

Final Phase II Environmental Site Assessment

601 Dexter Property 601 Dexter Avenue North Seattle, Washington

Prepared for Alexandria Real Estate Equities, Inc.

May 23, 2019 19449-00

Final Phase II Environmental Site Assessment

601 Dexter Property 601 Dexter Avenue North Seattle, Washington

Prepared for Alexandria Real Estate Equities, Inc.

May 23, 2019 19449-00

Prepared by Hart Crowser, Inc.

Marysa Hoodmin

Marissa Goodman, EIT Project, Environmental Engineer Marissa.Goodman@hartcrowser.com

Juli K. W. Wukelin

Julie K. W. Wukelic Senior Principal, Engineer Julie.Wukelic@hartcrowser.com

Contents

EXECUTIVE SUMMARY	1
INTRODUCTION	2
FIELD INVESTIGATION	3
SITE BACKGROUND	4
Site Description	4
Geology and Hydrogeology	4
SUBSURFACE ASSESSMENT	5
Field Investigation Activities and Observations	5
Soil Sample Chemical Analysis and Results	6
Groundwater Sample Chemical Analysis and Results	7
Sub-Slab Soil Vapor Sample Chemical Analysis and Results	8
Indoor Air Sample Chemical Analysis and Results	9
CONCLUSIONS AND RECOMMENDATIONS	9
LIMITATIONS	10

TABLES

- 1 Analytical Results for Soil Samples
- 2 Analytical Results for Groundwater Samples
- 3 Analytical Results for Sub-Slab Soil Vapor Samples
- 4 Analytical Results for Crawl Space Indoor Air Samples
- 5 Historical Analytical Results for Soil Samples at 615 Dexter Property
- 6 Historical Analytical Results for Groundwater Samples at 615 Dexter Property

FIGURES

- 1 Vicinity Map
- 2 Site Plan

APPENDIX A

Field Exploration Methods and Boring Logs

APPENDIX B

Chemical Data Quality Review and Laboratory Reports

Final Phase II Environmental Site Assessment

601 Dexter Property 601 Dexter Avenue North Seattle, Washington

EXECUTIVE SUMMARY

Hart Crowser conducted a Phase II Environmental Site Assessment (Phase II) at the 601 Dexter Property (Property) at 601 Dexter Avenue North in Seattle, Washington (Figure 1) to evaluate potential environmental impacts from on-site and off-site historical uses, as well as to better understand the geological conditions of the Property for the planned development.

The previous Phase I Environmental Site Assessment (Phase I) reports by others, and a recent one conducted by Hart Crowser (May 2019), identified recognized environmental conditions (RECs) for the Property, including the past use of the Property as a gasoline service station, laundry/cleaners, and other light industrial uses since 1919. City street directories indicated that Sanitary Laundry operated on the Property in 1930 and 1935. The Colotyle Corporation (building materials business) was an occupant of the Property in the 1940s to 1950s. The gas station located on the east side of the Property near Dexter Avenue North was present in the 1940s until the late 1950s. A 1949 Sanborn Fire Insurance Map indicated four solvent tanks (500 gallons each) located in the alley to the north of the western half of the Property. A service station was also identified directly north of the eastern third of the Property and alley as well as south across Mercer Street.

Our Phase II included advancing six hollow-stem auger (HSA) explorations on the Property on April 3 and 4, 2019, to depths of 16.5 to 50 feet. Continuous soil samples at exploration locations were used for soil classification and field screening using visual, sheen, and headspace vapor methods. Soil samples were screened, and 25 selected soil samples were submitted for chemical analysis.

The soil analytical results and field observations from our Phase II found environmental impacts associated with gasoline-related constituents (petroleum and volatile organic compounds [VOCs]) in soil in the southeast corner exploration (HC-4) of the Property and in soil and groundwater in the exploration (HC-1) adjacent to the Property in the right-of-way/alley. The groundwater sample from the monitoring well HC-4 had no detections of any constituents of concern above the laboratory detection limit. The detections of gasoline-petroleum-related constituents in the soil at HC-4 were low and below Model Toxics Control Act (MTCA) cleanup levels. The detections of these constituents were also in the soil sample at a depth of 35 feet and not detected in the two other samples at depths of 10 and 15 feet. The groundwater depth noted in the HC-4 boring during drilling was at a depth of 35 feet.

There were detectable concentrations of gasoline-related constituents (petroleum and VOCs) in two of the nine soil samples from HC-1 at depths of 25 and 30 feet. No benzene was detected in any of the soil samples indicated aged gasoline. There was an exceedance above MTCA cleanup levels in the soil sample from HC-1 at the 25 foot depth. The concentration detected was 290 milligrams per kilogram (mg/kg),

2 | 601 Dexter Property

which is over the 100 mg/kg MTCA Method A cleanup level for petroleum in the gasoline range with no benzene present. The soil sample at 30 feet from HC-1 had a detectable concentration of gasoline 90 mg/kg, which is below the MTCA Method A cleanup level. The grab groundwater sample from HC-1 also had a detection of gasoline of 6.9 micrograms per liter (ug/L) in the petroleum-range above the MTCA Method A cleanup level of 1.0 ug/L.

There were no detections above the laboratory detection limits in the soil samples analyzed for other VOCs related to chlorinated solvents; other petroleum constituents; polyaromatic hydrocarbons (PAHs); or polychlorinated biphenyl (PCBs). The metal results in the soil samples were either low concentrations or below the laboratory detection limits.

Based on the soil and groundwater sampling results, it appears that there have been petroleum-related impacts in the soil and groundwater beneath the Property in the eastern end. The likely source(s) were the previous gasoline service stations that operated on the Property and adjacent site to the north. The soil sampling was limited to the eastern third of the Property that was not covered by a structure. Although there were no soil or groundwater samples collected directly beneath the existing structure, the soil and groundwater samples collected on the Property did not indicate a widespread environmental concern of chlorinated solvents associated with a laundry/cleaning operations or other VOC constituents associated with industrial operations that could have used chemicals and petroleum products.

Several VOCs, including benzene, toluene, ethylbenzene, and xylene (BTEX), chlorinated solvents, and nontypical VOCs acrolein and carbon tetrachloride were detected in the sub-slab soil vapor and/or indoor air samples. Acrolein and naphthalene were detected at concentrations exceeding MTCA Method B screening levels in both sub-slab soil vapor samples. 1,3-butadiene, acrolein, carbon tetrachloride, naphthalene, and total petroleum hydrocarbons (TPH) were detected at concentrations exceeding MTCA Method B cleanup levels in one or more indoor air samples. This indicates the possibility of isolated areas of soil and/or groundwater impacts below the existing building from historical operations and uses on the Property.

INTRODUCTION

This report presents the Phase II activities and results from soil, groundwater, soil vapor, and air sampling and analysis on the Property. Our report is organized as follows:

- Executive Summary;
- Introduction;
- Field Investigation;
- Site Background;
- Subsurface Assessment;
- Conclusions and Recommendations; and
- Limitations.

Soil, groundwater, sub-slab soil vapor, and crawl space analytical results are summarized in Tables 1 through 6, respectively. Figure 1 is a Vicinity Map showing the location of the Property. A site plan showing

boring locations is presented on Figure 2. Field exploration methods and soil boring logs are provided in Appendix A and the chemical data quality review and laboratory reports are presented in Appendix B.

FIELD INVESTIGATION

The scope of work was based on our review of available data on the Property and surrounding area, Phase I findings from previous and current Phase I, and anticipated potential future development options requiring subsurface soil excavations.

The following scope of work was completed for this Phase II:

- Advanced six auger borings on and near the Property to depths ranging from 16.5 to 50 feet.
- Collected continuous soil samples at the boring locations for soil classification and field screening using visual, sheen, and headspace vapor methods.
- Collected and chemically analyzed select soil samples for one or more of the following, with analytes selected based upon location and field observations:
 - Diesel- and Lube Oil-Range Total Petroleum Hydrocarbon (TPH-D and TPH-O, respectively);
 - Gasoline-Range Petroleum Hydrocarbons (TPH-G);
 - VOCs, including BTEX;
 - Polycyclic Aromatic Hydrocarbons (PAHs);
 - PCBs;
 - Total Metals (arsenic, cadmium, chromium, lead, and mercury); and
 - Total solids.
- Collected a grab groundwater sample from boring HC-1.
- Installed and developed a monitoring well in boring HC-4.
- Collected a groundwater sample from new monitoring well HC-4.
- Chemically analyzed groundwater samples for one or more of the following:
 - TPH-D and TPH-O;
 - TPH-G;
 - VOCs, including BTEX;
 - PAHs;
 - Total and Dissolved Metals (arsenic, cadmium, chromium, lead, and mercury); and
 - Total suspended solids (TSS).
- Prepared draft and final reports presenting the findings of our work.

SITE BACKGROUND

Site Description

The Property is located at 601 Dexter Avenue North, in Seattle, and is bounded by an alleyway and 615 Dexter Avenue North property to the north, Dexter Avenue North to the east, Mercer Street to the south, and Aurora Avenue North to the west. The Property consists of a single King County tax parcel (2249000100), approximately 23,632-square-feet (0.54 acres).

The Property contains one structure, though the original structure (west side) was constructed in 1919 and expanded to the east in 1941 and 1943. An asphalt paved parking lot and loading dock are located on the northeast corner of the Property.

The abbreviated legal description from the King County assessor website is:

EDEN ADD LESS ALLEY LESS ST PLat Block: 3 Plat Lot: 1, 2, 7, and 8

The Property is bounded by:

- An office and warehouse building/property owned by the City of Seattle and currently leased by Copiers Northwest to the north, across an alleyway between the two buildings;
- Vacant lot owned by the City of Seattle to the east across Dexter Avenue North, recently used as a staging area for construction equipment and materials by a general contractor;
- Aurora Avenue North (State Route 99) to the west.

The surrounding sites are generally used for commercial purposes.

Geology and Hydrogeology

Our drilling program consisted of drilling six borings at the Property to explore the subsurface conditions. The approximate locations of the borings are shown on Figure 2, and the boring logs are included in Appendix A.

The Property is within the central portion of the Puget Sound lowland physiographic province of Washington State. The Puget Lowland is a north—south trending depression bounded on the east and west by the Cascade Range and Olympic Mountains, respectively. This area has been glaciated repeatedly during the past 2 million years. The last glacial advance and retreat known as the Vashon Stade of the Fraser Glaciation ended approximately 10,000 to 13,000 years ago. Topography of the lowland is characterized by generally north—south trending ridges and valleys that are the result of glacial scouring. These ridges and valleys have been modified by postglacial erosion and deposition. The region is typically underlain by glacial till, which ranges from a gray, gravelly, sandy silt to a silty sand, and is typically very dense.

Our understanding of the Property's geology and hydrogeology is based on the recent drilling program and investigations conducted by Hart Crowser and others nearby. The Property is approximately at an elevation of 50 feet above sea level and is mostly topographically flat, though slightly sloped towards the east on the eastern portion of the parcel.

Current and previous explorations conducted on the Property indicate that subsurface geologic units are homologous across the Property. The Property is underlain by a layer of artificial fill over competent glacial till and advance sand deposits. Coarse to medium-grained sandy fill reach 12 feet below ground surface (bgs) and silty sand with gravel further below to 20 feet bgs.

The explorations on the Property found groundwater at 35 feet bgs at the southeast corner of the parcel and 25 feet bgs in the alleyway. Based on groundwater level borings taken around the Property, the Property may be characteristic of perched groundwater, as other explorations at equivalent depths did not observe groundwater.

SUBSURFACE ASSESSMENT

Field Investigation Activities and Observations

Utility locates were conducted around the Property at the proposed boring locations. On April 3 and 4, 2019, Hart Crowser advanced five hollow-stem auger (HSA) borings (HC-2 through HC-5 and MW-1) in the asphalt-paved parking lot at the Property and one HSA boring (HC-1) in the right-of-way/alley north of the eastern portion of the Property. The borings were advanced between 16.5 feet bgs to 50 feet bgs (Figure 2).

Boring HC-4 was advanced to a depth of 50 feet and completed as a monitoring well (MW). Boring MW-1 was originally intended to be converted to a monitoring well, except no groundwater was encountered during drilling of the boring. During drilling of HC-4, we continued until water was encountered and the well was screened between 40 and 50 feet bgs. The well was developed, and a groundwater sample collected on April 12, 2019.

Soil samples were collected from the split-spoon sampler in 2.5-foot sample intervals in the upper 15 feet and collected every 5 feet until 35 feet or groundwater was encountered. Forty-two soil samples were field screened using headspace vapor (PID) tests, sheen tests, and visual observations. PID field screening results were primarily <0.1 parts per million (ppm), except for elevated PID detections in the nine soil samples collected and screened from boring HC-1. Petroleum odors were observed at HC-1 between 25 and 30 feet bgs. The field screening results are presented on the exploration logs in Appendix A.

Sub-slab soil vapor sampling was conducted on April 9 and 10, 2019. Indoor air sampling was conducted on April 10, 2019. Two sub-slab soil vapor samples (SV-1 and SV-2) and two indoor air samples from the crawl space below the building (CSE-1 and CSW-1) were collected and analyzed.

Soil vapor samples were collected using an electric rotary hammer drill to drill a 1-1/4-inch hole approximately 4 to 5 inches down through the existing concrete slab. A temporary probe casing, vapor

6 | 601 Dexter Property

collection screen, and sampling tubing was then advanced into the hole and sealed with a rubber stopper and bentonite clay. A shroud was placed over the sampling assembly. Before sampling began, the tracer gas (helium) was released into the shroud. The sub-slab soil vapor samples were analyzed for helium, which was not detected at or above laboratory reporting limits in either sample. This indicates that we had a tight seal and did not collect ambient air into the sample. A 6-liter sub-slab soil vapor sample was collected over the course of approximately 10 to 30 minutes using a Summa canister. After sample collection was completed, the temporary probe casing and sampling assembly were removed, and the hole was filled with Portland cement until flush with the existing surface. Field staff did not detect any odors or obvious environmental concerns during sampling. The sub-slab soil vapor samples were submitted to a qualified laboratory (Fremont Analytical, Inc.) and analyzed using Environmental Protection Agency (EPA) Method TO-15 for VOCs and air-phase hydrocarbon (APH) petroleum fractions, helium, and EPA Method 3C for oxygen, carbon dioxide, and methane.

Indoor air samples were collected over 8 hours (from approximately 10:00 a.m. to 6:00 p.m.) using evacuated stainless-steel Summa canisters equipped with 8-hour flow controllers. While sampling was in progress, canister vacuum readings were monitored four times—just after sample collection began, 1 hour after sample collection, 7 hours after sample collection, and just before sample collection ended—to verify that collection was progressing at the correct rate. Weather conditions were monitored during the sampling period, as changing weather conditions can affect vapor intrusion potential. The weather during the sampling period was generally cool, with temperatures (in degrees Fahrenheit) in the high 40s to low 50s, and cloudy with rain off-and-on. Weather observations were recorded three times throughout the day. The indoor air samples were submitted to a qualified laboratory (Fremont Analytical, Inc.) and analyzed using EPA Method TO-15 SIM for VOCs and APH petroleum fractions.

Soil Sample Chemical Analysis and Results

Twenty-five soil samples were selected for chemical analysis, based on either field screening results or representative sample depths in the eastern third of the Property. Samples collected from the east parking lot were primarily selected for analysis to evaluate if petroleum products were present on the Property from the past use of that area of the Property as a gasoline station or migration onto the Property from the former gasoline station to the north. Soil samples selected for VOCs were to evaluate for possible migration of VOCs from past releases beneath the building from historical uses as a laundry/cleaners and other light industrial uses. Historical documents indicated that trenches and pits were filled in the warehouses in the 1950s therefore indicating a risk of potential past releases of petroleum or other chemicals that may have been used in historical operations.

The soil sample locations were limited to the accessible east parking lot, which would be considered downgradient from most of the building on the Property.

The soil sample analytical results are summarized in Table 1.

For screening purposes, most of the sample results were compared to MTCA Method A soil cleanup levels for unrestricted land use. Based on the soil sample analytical results and comparison to MTCA Method A cleanup levels, the following was observed:

- Sixteen soil samples were analyzed for TPH-D and TPH-O. None of the samples analyzed had detectable concentrations above the laboratory detection limits.
- Fifteen soil samples were analyzed for TPH-G. Only three soil samples (HC-1-25; HC-1-30; and HC-4-35 had detectable concentrations of TPH-G in the gasoline range. One of the samples (HC-1-25) had a concentration of 290 mg/kg, which was above the MTCA Method A cleanup level of 100 mg/kg for TPH-G when benzene is not present. The other two concentrations were well below the MTCA Method A cleanup level of 100 mg/kg.
- Six soil samples were analyzed for VOCs or BTEX. BTEX concentrations were not detected above the laboratory reporting limits for any of the samples analyzed. Low levels of VOCs were found in HCPP3-10-11 and HCPP11-13-14. The concentrations of the analytes found (acetone, 2-butanone, and carbon disulfide), were below applicable regulatory criteria.
- Sixteen soil samples were analyzed for VOCs. Only three samples (HC-1-25; HC-1-30; and HC-4) contained low concentrations of ethylbenzene, xylenes, and other petroleum-related VOC concentrations below the MTCA Method A or B cleanup levels.
- Four soil samples were analyzed for PAHs and all detectable concentrations were below the laboratory detection limit.
- One soil sample was analyzed for PCBs and the concentrations were below the laboratory reporting limits.

Groundwater Sample Chemical Analysis and Results

Two groundwater samples were collected and analyzed. One water sample was a grab sample collected from boring HC-1 and the other water sample was collected from the permanent well, HC-4. The groundwater sample analytical results are summarized in Table 2.

For screening purposes, the sample results were compared to MTCA Method A groundwater cleanup levels. Based on the groundwater sample analytical results and comparison to MTCA Method A cleanup levels, the following was observed:

- No concentrations of petroleum in the diesel- or gasoline-range, PAHs, VOCs, total chromium, total cadmium, total arsenic, or total mercury were detected above the laboratory limits for any of these analytes in the groundwater sample collected from HC-4. A low total lead concentration (.002 mg/L) was detected in the groundwater sample from HC-4 and was below the MTCA Method A cleanup level of .015 mg/L.
- A petroleum concentration in the gasoline-range was detected at 6.0 mg/L in the grab groundwater sample from HC-1 that is above the MTCA Method A cleanup level of 1.0 mg/L for petroleum gasoline when benzene is not present.

- 8 601 Dexter Property
- Low concentrations of ethylbenzene, xylenes, and other petroleum-related VOCs below the MTCA Method A or B cleanup levels were detected in the grab groundwater sample from HC-1.
- No concentrations of petroleum in the diesel-range, total and dissolved chromium, total and dissolved cadmium, total and dissolved arsenic, or total and dissolved mercury were detected above the laboratory limits for any of these analytes in the grab groundwater sample collected from HC-1. A low total lead concentration (.006 mg/L) was detected in the groundwater sample from HC-2 and was below the MTCA Method A cleanup level of .015 mg/L.
- The low detections of lead in the two groundwater samples may be due to high suspended solids as the dissolved lead concentration in groundwater sample from HC-1 was below the laboratory detection limit.

Sub-Slab Soil Vapor Sample Chemical Analysis and Results

The sub-slab soil vapor sample analytical results are summarized in Table 3, and the laboratory report is in Appendix B.

We compared the results with MTCA Method B sub-slab soil gas screening levels. Laboratory analysis and results were:

- APH petroleum fractions (C5-C8 aliphatics) were detected in both samples at concentrations ranging between 144 and 1,030 micrograms per cubic meter (µg/m³), below the MTCA Method B screening level of 90,000 µg/m³. APH petroleum fractions (C9-C12 aliphatics and C9-C10 aromatics) were detected in SV-1 at concentrations of 1,050 and 191 µg/m³, respectively, below the applicable MTCA Method B screening levels.
- Several VOCs were detected in one or both samples, including BTEX and the chlorinated solvents tetrachloroethene and trichloroethene. For most of these constituents, there is no published screening level, or the detected concentration was below the MTCA Method B screening level. Both samples had concentrations of naphthalene ranging from 2.77 to 3.31 µg/m³, exceeding the MTCA Method B screening level of 2.45 µg/m³. Both samples had concentrations of acrolein ranging from 0.855 to 1.02 µg/m³, exceeding the MTCA Method B screening level of 0.305 µg/m³.
- The concentrations of total petroleum hydrocarbons (calculated as the summation of BTEX, naphthalene, and APH petroleum fraction concentrations) ranged between 1,054 and 1,405 μg/m³, below the MTCA Method B screening level of 4,700 μg/m³.
- Both samples were analyzed for helium, which was not detected at or above laboratory reporting limits in either sample.
- Both samples were analyzed for three major gases: oxygen, methane, and carbon dioxide. Oxygen was detected in both samples at a concentration of approximately 24 percent. Methane was not detected at or above the laboratory reporting limits in either sample. Carbon dioxide was detected in one sample (SV-1) at a concentration of 0.124 percent.

Indoor Air Sample Chemical Analysis and Results

The indoor air sample analytical results for the crawl space samples are summarized in Table 4, and the laboratory report is in Appendix B.

We compared the results with MTCA Method B indoor air cleanup levels. Laboratory analysis and results were:

- APH petroleum fractions (C5-C8 aliphatics) were detected in both samples at concentrations ranging between 132 and 183 µg/m³, below the MTCA Method B cleanup level of 2,700 µg/m³. APH petroleum fractions (C9-C12 aliphatics and C9-C10 aromatics) were not detected at or above laboratory reporting limits in either sample.
- Several VOCs were detected in one or both samples, including toluene. Chlorinated solvents were not detected at or above laboratory reporting limits in either sample. For most of the detected constituents, there is no published cleanup level, or the detected concentration was below the MTCA Method B cleanup level. Both samples had concentrations of naphthalene of 1.56 µg/m³, exceeding the MTCA Method B cleanup level of 0.735 µg/m³. Both samples had concentrations of acrolein ranging from 1.27 to 1.56 µg/m³, exceeding the MTCA Method B cleanup level of 0.417 µg/m³. Both samples had concentrations of carbon tetrachloride of approximately 0.47 µg/m³, exceeding the MTCA Method B cleanup level of 0.417 µg/m³. 1,3-butadiene was detected in one sample (CSW-1) at a concentration of 0.91 µg/m³, exceeding the MTCA Method B cleanup level of 0.0833 µg/m³.
- The concentrations of total petroleum hydrocarbons (calculated as the summation of BTEX, naphthalene, and APH petroleum fraction concentrations) ranged between 134.7 and 185.7 μg/m³. The concentration of total petroleum hydrocarbons in sample CSW-1 exceeded the MTCA Method B cleanup level of 140 μg/m³.

CONCLUSIONS AND RECOMMENDATIONS

The soil and groundwater analytical results and field observations from our Phase II indicated petroleum soil impacts likely associated with the former gasoline station on the Property and adjacent site to the north next to Dexter Avenue North that will require special handling and premium disposal at an approved receiving facility during Property redevelopment, involving soil removal.

There were petroleum-related constituents also detected in two groundwater samples, indicating that the shallow groundwater zone has also likely been impacted and will require groundwater management during construction if excavations are planned at 25 feet below grade or more. Although no benzene concentrations were detected in either soil or groundwater samples analyzed, other VOCs were detected, thus there is a potential for vapor intrusion that may warrant a vapor barrier as part of the future development.

No chlorinated solvents were detected in any of the soil or groundwater samples collected and analyzed; however, chlorinated solvent constituents and other VOCs were detected in soil vapor and air samples collected beneath the building. Although the chlorinated solvent concentrations were low in the soil vapor

10 | 601 Dexter Property

samples analyzed, their presence indicates possible soil and/or groundwater impacts, though likely in isolated pockets. The historical research indicated that former drains and pits beneath the warehouse (2/3 of the building) were filled in the 1950s during building renovations and these are possible sources for the detections in the soil vapor and air samples. The other possible source for the detected VOCs in the soil vapor and air samples are the former solvent and fuel oil tanks reported in the alleyway to the north.

The soil and groundwater sample results collected and analyzed on the adjacent upgradient 615 Dexter Site and alley in 2017 by Shannon and Wilson and 2019 by Hart Crowser indicated similar isolated areas of petroleum-related impacts in the soil and groundwater by the former gasoline station on the east end of the site and alley where known USTs were located. No chlorinated solvents were detected in any of the soil and groundwater samples analyzed. Tables 5 and 6 summarize the results of the historical soil and groundwater data on this site.

The criteria for accepting clean soil required by clean disposal facilities or sites have become very strict. Based on data from the soil samples analyzed and historical uses of the Property, even though most soil samples analyzed had detections of contaminants of concern (COCs) below applicable cleanup levels or the laboratory reporting limits, a large quantity of the soil in the fill will likely require special handling and a premium disposal fee at a licensed disposal facility. Based on boring logs on the Property and surrounding sites, the thickness of the fill is typically less than 10 feet from the surface.

Prior to redevelopment of the Property, and after the building has been demolished, we recommend that a cleanup action plan/construction contingency plan/soil management plan (CAP/CCP/SMP) be developed to address the known petroleum-impacted soil, the suspect petroleum- and VOC-impacted (including marginally impacted soil containing low levels of VOCs, petroleum, PAHs, and potential unknown environmental impacts or abandoned underground storage tanks (USTs) that may be encountered during subsurface excavation. Prior to commencing cleanup activities, supplemental sampling and analysis could be conducted beneath the building footprint once the existing building has been removed for soil disposal characterization. The CAP/CCP/SMP would include protocols for removal of the known impacted soil, marginally impacted soil, clean soil, and address off-Property disposal of soils and any discovered USTs or previously unknown impacted soil.

Since several VOCs, including BTEX, chlorinated solvents, and non-typical VOCs of acrolein and carbon tetrachloride were detected in the sub-slab soil vapor and/or indoor air samples, there could be isolated impacted soil sources of these constituents beneath the building or from off-property sources (e.g. alley or 615 Dexter site), as they were generally not detected in the soil samples collected in the six borings advanced in this Phase II.

LIMITATIONS

Work for this project was performed, and this report prepared, in accordance with generally accepted professional practices for the nature and conditions of the work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of Alexandria Real Estate Equities, Inc. for specific application to the referenced property. This report is not meant to represent a legal opinion. No other warranty, express or implied, is made.

The MTCA cleanup levels included in this report are provided for comparison purposes only and are based on our understanding of cleanup levels required by Ecology for similar projects. They do not represent MTCA interpretations.

Please call if you have any questions regarding our work and this report, the presentation of the information, or the interpretation of the data.

\\seafs\Projects\Notebooks\1944900_601_Dexter_Due_Dilegence\Deliverables\Reports\Phase II Final Report\Final 601 Dexter Avenue Property Ph II.docx

Table 1 Analytical Beaulto for Sail Sample

Sample ID	MTCA		oil Samp		HC-1-5	HC-1-7.5	HC-1-10	HC-1-12.5	HC-1-15	HC-1-17.5	HC-1-20	HC-1-25	HC-1-30	HC-5-10	HC-5-15	HC-2-5	HC-2-10	HC-2-15	HC-4-10	HC-4-15
Sampling Date		4/11/2019		4/11/2019		4/11/2019	4/11/2019	4/11/2019				4/11/2019			4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019
	Level ^a																			
bisture in %		17%	16%	17%	17%	16%	15%	16%	16%	16%	15%	17%	17%	16%	16%	16%	15%	16%	17%	14%
VTPH-Dx in mg/kg																				
Kerosene/Jet fuel		20 U	20 U		20 U			20 U				20 U	20 U	20 U	20 U	20 U			20 U	
Diesel/Fuel oil	2000	20 U	20 U		20 U			20 U	20 U			20 U	20 U	20 U	20 U	20 U			20 U	
leavy oil /TPH-Gx in mg/kg	2000	50 U	50 U		50 U			50 U	50 U			50 U	50 U	50 U	50 U	50 U	50 U		50 U	50 l
lineral spirits/Stoddard	100	5.0 U	5.0 U		5.0 U		5.0 U	5.0 U			5.0 U	5.0 U	5.0 U		5.0 U		5.0 U		5.0 U	5.0 l
Basoline	30/100 ^b		5.0 U		5.0 U		5.0 U				5.0 U	290			5.0 U		5.0 U		5.0 U	
EX in µg/kg	30/100	5.0 U	5.0 0		5.0 0		5.0 0	5.0 U			5.0 0	290	30		5.0 0		5.0 0		5.0 0	5.0 l
enzene	0.03				20 U		20 U				20 U									
oluene	7				50 U		50 U				50 U									
thylbenzene	6				50 U		50 U				50 U									
ylenes	9				50 U		50 U				50 U									
tals in mg/kg	-				000		000				000									
ead (Pb)	250					1.0 U			1.0 U		1.0 U	1.2 J	1.0 U		1.0 U					1.0
chromium (Cr)	19/2000 ^d					1.2			1.0 U		1.0 U		1.0 U		1.0 U					1.0
admium (Cd)	2					1.0 U			1.0 U		1.0 U		1.0 U		1.0 U					1.0
rsenic (As)	20					1.0 U			1.0 U		1.0 U		1.0 U		1.0 U					1.0
ercury (Hg) (7471)	20					0.5 U			0.5 U		0.5 U		0.5 U		0.5 U					0.5
Bs in mg/kg	2					0.0 0			0.0 0		0.0 0		0.0 0		0.0 0					0.0
1221													0.20 U							
1232													0.20 U							
1242 (A1016)													0.20 U							
1248													0.20 U							
1254													0.20 U							
1260													0.20 U							
otal PCBs	1												0.20 U							
Hs in mg/kg																				
-Methylnaphthalene							0.10 U				0.10 U									0.10 l
-Methylnaphthalene							0.10 U				0.10 U									0.10 l
aphthalene	5						0.10 U				0.10 U									0.10 0
cenaphthylene							0.10 U				0.10 U									0.10
cenaphthene							0.10 U				0.10 U									0.10
luorene							0.10 U				0.10 U									0.10
henanthrene							0.10 U				0.10 U									0.10
nthracene							0.10 U				0.10 U									0.10
luoranthene							0.10 U				0.10 U									0.10
yrene							0.10 U				0.10 U									0.10
enzo(a)anthracene							0.10 U				0.10 U									0.10
nrysene							0.10 U				0.10 U									0.10
enzo(b)fluoranthene							0.10 U				0.10 U									0.10
enzo(k)fluoranthene	0.1						0.10 U 0.10 U				0.10 U 0.10 U									0.10
enzo(a)pyrene	0.1						0.10 U 0.10 U				0.10 U 0.10 U									0.10 0.10
deno(1,2,3-cd)pyrene benzo(ah)anthracene							0.10 U 0.10 U				0.10 U 0.10 U									0.10
enzo(ghi)perylene							0.10 U 0.10 U				0.10 U 0.10 U									0.10
otal cPAHs TEQ	0.1						0.10 U NC				0.10 U NC									NC
atiles in µg/kg	0.1						NC				NC									NC
TBE	100	100 U	100 U	100 U				100 U		100 U		100 11	100 11		100 11		100 11	100 11		100
ichlorodifluoromethane	100	50 U	50 U	50 U				50 U		50 U		100 0	100 U 50 U ks∖1944900_60		50 0		50 0	50 0		Hart Crov

Table 1 - Analyti	cal Res	ults for S	oil Samp	les																Sheet 2 of 6
Sample ID	MTCA	MW-1-10	MW-1-25	MW-1-30	HC-1-5	HC-1-7.5	HC-1-10	HC-1-12.5	HC-1-15	HC-1-17.5	HC-1-20	HC-1-25	HC-1-30	HC-5-10	HC-5-15	HC-2-5	HC-2-10	HC-2-15	HC-4-10	HC-4-15
Sampling Date	Method A	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019
	Cleanup																			
	Level ^a																			
Chloromethane		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Vinyl chloride		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Bromomethane		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Chloroethane		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Trichlorofluoromethane		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
1,1-Dichloroethene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Methylene chloride	20	20 U	20 U	20 U				20 U		20 U		20 U	20 U		20 U		20 U	20 U		20 U
trans-1,2-Dichloroethene	1	50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
1,1-Dichloroethane		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
2,2-Dichloropropane		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
cis-1,2-Dichloroethene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Chloroform		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
1,1,1-Trichloroethane	2000	50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Carbontetrachloride		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
1,1-Dichloropropene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Benzene	30	20 U	20 U	20 U				20 U		20 U		20 U	20 U		20 U		20 U	20 U		20 U
1,2-Dichloroethane(EDC)	20 U	20 U	20 U				20 U		20 U		20 U	20 U		20 U		20 U	20 U		20 U
Trichloroethene	, 30	20 U	20 U	20 U				20 U		20 U		20 U	20 U		20 U		20 U	20 U		20 U
1,2-Dichloropropane		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Dibromomethane		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Bromodichloromethane		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
cis-1,3-Dichloropropene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Toluene	7000	50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
trans-1,3-Dichloropropen		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
1,1,2-Trichloroethane		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Tetrachloroethene	50	50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
1,3-Dichloropropane		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Dibromochloromethane		20 U	20 U	20 U				20 U		20 U		20 U	20 U		20 U		20 U	20 U		20 U
1,2-Dibromoethane (EDE	3 5	5 U	5 U	5 U				5 U		5 U		5 U	5 U		5 U		5 U	5 U		5 U
Chlorobenzene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
1,1,1,2-Tetrachloroethan	е	50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Ethylbenzene	6000	50 U	50 U	50 U				50 U		50 U		840	220		50 U		50 U	50 U		50 U
Xylenes	9000	50 U	50 U	50 U				50 U		50 U		620	190		50 U		50 U	50 U		50 U
Styrene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Bromoform		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Isopropylbenzene		50 U	50 U	50 U				50 U		50 U		660	130		50 U		50 U	50 U		50 U
1,2,3-Trichloropropane		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Bromobenzene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U			50 U
1,1,2,2-Tetrachloroethan	е	50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U			50 U
n-Propylbenzene	-	50 U	50 U	50 U				50 U		50 U		1,400	320		50 U		50 U			50 U
2-Chlorotoluene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
4-Chlorotoluene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
1,3,5-Trimethylbenzene		50 U	50 U	50 U				50 U		50 U		1,900	430		50 U		50 U	50 U		50 U
tert-Butylbenzene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
1,2,4-Trimethylbenzene		50 U	50 U	50 U				50 U		50 U		2,800	970		50 U		50 U	50 U		50 U
sec-Butylbenzene		50 U	50 U	50 U				50 U		50 U		660	100		50 U		50 U	50 U		50 U
1,3-Dichlorobenzene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Isopropyltoluene		50 U	50 U	50 U				50 U		50 U		1,000	160		50 U		50 U	50 U		50 U
1,4-Dichlorobenzene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
1,2-Dichlorobenzene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		
n-Butylbenzene		50 U	50 U	50 U				50 U		50 U						aliverables D -				Hart Crowser slts-1944900-Soil
		500									\\sears\Pro		NS11944900_6	un_pexier_pu	e_Dilegence4L	enverables\Re	punspinaseen	mai keponti	ables/ChemR	5113-1944900-3011

Sample ID	MTCA	MW-1-10	MW-1-25	MW-1-30	HC-1-5	HC-1-7.5	HC-1-10	HC-1-12.5	HC-1-15	HC-1-17.5	HC-1-20	HC-1-25	HC-1-30	HC-5-10	HC-5-15	HC-2-5	HC-2-10	HC-2-15	HC-4-10	HC-4-15
Sampling Date	Method A	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019
	Cleanup																			
	Level ^a																			
1,2-Dibromo-3-Chloropro	pane	50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
1,2,4-Trichlorobenzene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Hexachloro-1,3-butadien	е	50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U
Naphthalene	5000									50 U		50 U	50 U		50 U		50 U	50 U		50 U
1,2,3-Trichlorobenzene		50 U	50 U	50 U				50 U		50 U		50 U	50 U		50 U		50 U	50 U		50 U

Sheet	3	of	6
-------	---	----	---

Sample ID Sampling Date	-	HC-4-35 4/11/2019	HC-3-7.5 4/11/2019	HC-3-12.5 4/11/2019	HC-3-15 4/11/2019	HC-3-20 4/11/2019	HC-3-30 4/11/2019
Moisture in %		18%	19%	15%	18%	17%	19%
NWTPH-Dx in mg/kg Kerosene/Jet fuel Diesel/Fuel oil Heavy oil	2000 2000	20 U 20 U 50 U	20 U 20 U 50 U				20 U 20 U 50 U
NWTPH-Gx in mg/kg Mineral spirits/Stoddard	100	5.0 U	5.0 U				5.0 U
Gasoline BTEX in µg/kg	30/100 ^b	9.8	5.0 U				5.0 U
Benzene Toluene	0.03 7						
Ethylbenzene	6						
Xylenes	9						
Metals in mg/kg							
Lead (Pb)	250			1.0 UJ			
Chromium (Cr)	19/2000 ^d			1.0 UJ			
Cadmium (Cd)	2			1.0 U			
Arsenic (As)	20			1.0 U			
Mercury (Hg) (7471)	2			0.5 U			
PCBs in mg/kg A1221 A1232 A1242 (A1016) A1248 A1254 A1260							
Total PCBs	1						
PAHs in mg/kg 1-Methylnaphthalene 2-Methylnaphthalene				0.10 U 0.10 U			
Naphthalene	5			0.10 U			
Acenaphthylene Acenaphthene				0.10 U 0.10 U			
Fluorene				0.10 U			
Phenanthrene				0.10 U			
Anthracene				0.10 U			
Fluoranthene				0.10 U			
Pyrene				0.10 U			
Benzo(a)anthracene				0.10 U			
Chrysene Benzo(b)fluoranthene				0.10 U 0.10 U			
Benzo(k)fluoranthene				0.10 U			
Benzo(a)pyrene	0.1			0.10 U			
Indeno(1,2,3-cd)pyrene				0.10 U			
Dibenzo(ah)anthracene				0.10 U			
Benzo(ghi)perylene				0.10 U			
Total cPAHs TEQ	0.1			NC			
Volatiles in µg/kg MTBE Dichlorodifluoromethane	100	100 U 50 U	100 U 50 U		100 U 50 U	100 U 50 U	100 U 50 U

Sheet 4 of 6

Table 1 - Analytical Results for Soil Samples Sample ID MTCA HC-4-35 HC-3-7.5 HC-3-12.5 HC-3-15 HC-3-20 HC-3-30

Sample ID Sampling Date	MTCA Method A	HC-4-35 4/11/2019	HC-3-7.5 4/11/2019	HC-3-12.5 4/11/2019	HC-3-15 4/11/2019	HC-3-20 4/11/2019	HC-3-30 4/11/2019
	Cleanup Level ^a						
Chloromethane		50 U	50 U		50 U	50 U	50 U
Vinyl chloride		50 U	50 U		50 U	50 U	50 U
Bromomethane		50 U	50 U		50 U	50 U	50 U
Chloroethane		50 U	50 U		50 U	50 U	50 U
Trichlorofluoromethane		50 U	50 U		50 U	50 U	50 U
1,1-Dichloroethene		50 U	50 U		50 U	50 U	50 U
Methylene chloride	20	20 U	20 U		20 U	20 U	20 U
trans-1,2-Dichloroethene		50 U	50 U		50 U	50 U	50 U
1,1-Dichloroethane		50 U	50 U		50 U	50 U	50 U
2,2-Dichloropropane		50 U	50 U		50 U	50 U	50 U
cis-1,2-Dichloroethene		50 U	50 U		50 U	50 U	50 U
Chloroform		50 U	50 U		50 U	50 U	50 U
1,1,1-Trichloroethane	2000	50 U	50 U		50 U	50 U	50 U
Carbontetrachloride		50 U	50 U		50 U	50 U	50 U
1,1-Dichloropropene		50 U	50 U		50 U	50 U	50 U
Benzene	30	20 U	20 U		20 U	20 U	20 U
1,2-Dichloroethane(EDC)		20 U	20 U		20 U	20 U	20 U
Trichloroethene	30	20 U	20 U		20 U	20 U	20 U
1,2-Dichloropropane		50 U	50 U		50 U	50 U	50 U
Dibromomethane		50 U	50 U		50 U	50 U	50 U
Bromodichloromethane		50 U	50 U		50 U	50 U	50 U
cis-1,3-Dichloropropene		50 U	50 U		50 U	50 U	50 U
Toluene	7000	50 U	50 U		50 U	50 U	50 U
trans-1,3-Dichloropropene		50 U	50 U		50 U	50 U	50 U
1,1,2-Trichloroethane		50 U	50 U		50 U	50 U	50 U
Tetrachloroethene	50	50 U	50 U		50 U	50 U	50 U
1,3-Dichloropropane		50 U	50 U		50 U	50 U	50 U
Dibromochloromethane		20 U	20 U		20 U	20 U	20 U
1,2-Dibromoethane (EDB	5	5 U	5 U		5 U	5 U	5 U
Chlorobenzene		50 U	50 U		50 U	50 U	50 U
1,1,1,2-Tetrachloroethane	•	50 U	50 U		50 U	50 U	50 U
Ethylbenzene	6000	310	50 U		50 U	50 U	50 U
Xylenes	9000	190	50 U		50 U	50 U	50 U
Styrene		50 U	50 U		50 U	50 U	50 U
Bromoform		50 U	50 U		50 U	50 U	50 U
Isopropylbenzene		79	50 U		50 U	50 U	50 U
1,2,3-Trichloropropane		50 U	50 U		50 U	50 U	50 U
Bromobenzene		50 U	50 U		50 U	50 U	50 U
1,1,2,2-Tetrachloroethane	1	50 U	50 U		50 U	50 U	50 U
n-Propylbenzene		50 U	50 U		50 U	50 U	50 U
2-Chlorotoluene		50 U	50 U		50 U	50 U	50 U
4-Chlorotoluene		50 U	50 U		50 U	50 U	50 U
1,3,5-Trimethylbenzene		180	50 U		50 U	50 U	50 U
tert-Butylbenzene		50 U	50 U		50 U	50 U	50 U
1,2,4-Trimethylbenzene		370	50 U		50 U	50 U	50 U
sec-Butylbenzene		50 U	50 U		50 U	50 U	50 U
1,3-Dichlorobenzene		50 U	50 U		50 U	50 U	50 U
Isopropyltoluene		50 U	50 U		50 U	50 U	50 U
1,4-Dichlorobenzene		50 U	50 U		50 U	50 U	50 U
1,2-Dichlorobenzene		50 U	50 U		50 U	50 U	50 U

Sheet 5 of 6

Sample ID	MTCA	HC-4-35	HC-3-7.5	HC-3-12.5	HC-3-15	HC-3-20	HC-3-30	
Sampling Date	Method A	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	
	Cleanup							
	Level ^a							
1,2-Dibromo-3-Chlorop	ropane	50 U	50 U		50 U	50 U	50 U	J = Estimated value.
1,2,4-Trichlorobenzene	•	50 U	50 U		50 U	50 U	50 U	Detected concentrations are bolded.
Hexachloro-1,3-butadie	ene	50 U	50 U		50 U	50 U	50 U	Concentrations that exceed cleanup level are shaded.
Naphthalene	5000	50 U	50 U		50 U	50 U	50 U	a. Method A soil cleanup level for
1,2,3-Trichlorobenzene)	50 U	50 U		50 U	50 U	50 U	unrestricted land uses.
								b. 30 when benzene present/100 without benzene.

b. 30 when benzene present/100 without benzene.c. 19 as Chromium VI/2000 as Chromium III.

NC = Not calculated.

Sheet 6 of 6

Table 2 - Analytical Results for Groundwater Samples

Sample ID Sampling Date	MTCA Method A Cleanup Level	HC-1-TMW /11/2019	HC-4 4/12/2019
Total Susp. Solids in mg/L		160 J	
NWTPH-Dx in mg/L			
Kerosene/Jet fuel		0.20 U	0.20 U
Diesel/Fuel oil	0.5	0.20 U	0.20 U
Heavy oil	0.5	0.50 U	0.50 U
NWTPH-Gx in mg/L			
Mineral spirits/Stoddard		0.10 U	0.10 U
Gasoline	0.8/1.0 ^a	6.9	0.10 U
Dissolved Metals in mg/L			
Lead (Pb)	0.015	0.002 U	
Chromium (Cr)	0.05	0.01 U	
Cadmium (Cd)	0.005	0.005 U	
Arsenic (As)	0.005	0.005 U	
Mercury (Hg) (7470A)	0.002	0.0005 U	
Total Metals in mg/L			
Lead (Pb)	0.015	0.006	0.002
Chromium (Cr)	0.05	0.01 U	0.01 U
Cadmium (Cd)	0.005	0.005 U	0.005 U
Arsenic (As)	0.005	0.005 U	0.005 U
Mercury (Hg) (7470A)	0.002	0.0005 U	0.0005 U
PAHs in µg/L			
Naphthalene			0.1 U
1-MethylNaphthalene			0.1 U
2-MethylNaphthalene			0.1 U
Acenaphthylene			0.1 U
Acenaphthene			0.1 U
Fluorene			0.1 U
Phenanthrene			0.1 U
Anthracene			0.1 U
Fluoranthene			0.1 U
Pyrene			0.1 U
Benzo(a)anthracene			0.1 U
Chrysene			0.1 U
Benzo(b)fluoranthene			0.1 U
Benzo(k)fluoranthene			0.1 U
Benzo(a)pyrene	0.1		0.1 U
Indeno(1,2,3-cd)pyrene			0.1 U
Dibenzo(ah)anthracene			0.1 U
Benzo(ghi)perylene			0.1 U
Volatiles in µg/L	20	5011	5 O U
MTBE	20	5.0 U	5.0 U
Chloromethane	0.0	1.0 U	1.0 U
Vinyl chloride(*) Bromomethane	0.2	0.2 U 1.0 U	0.2 U 1.0 U
Chloroethane		1.0 U 1.0 U	1.0 U
Trichlorofluoromethane		1.0 U 1.0 U	1.0 U
1,1-Dichloroethene		1.0 U	1.0 U
\\seafs\Projects\Notebooks\194	14900 601 Dexter		

Hart Crowser

\\seafs\Projects\Notebooks\1944900_601_Dexter_Due_Dilegence\Deliverables\Reports\Phase II Final Report\Tables\ChemRslts-1944900-Water

Table 2 - Analytical Results for Groundwater Samples

Sample ID Sampling Date	MTCA Method A Cleanup Level	HC-1-TMW /11/2019	HC-4 4/12/2019
Methylene chloride	5	1.0 U	1.0 U
trans-1,2-Dichloroethene		1.0 U	1.0 U
1,1-Dichloroethane		1.0 U	1.0 U
2,2-Dichloropropane		1.0 U	1.0 U
cis-1,2-Dichloroethene		1.0 U	1.0 U
Chloroform		1.0 U	1.0 U
1,1,1-Trichloroethane	200	1.0 U	1.0 U
Carbontetrachloride		1.0 U	1.0 U
1,1-Dichloropropene		1.0 U	1.0 U
Benzene	5	1.0 U	1.0 U
1,2-Dichloroethane(EDC)	5	1.0 U	1.0 U
Trichloroethene	5	1.0 U	1.0 U
1,2-Dichloropropane		1.0 U	1.0 U
Dibromomethane		1.0 U	1.0 U
Bromodichloromethane		1.0 U	1.0 U
cis-1,3-Dichloropropene		1.0 U	1.0 U
Toluene	1000	1.0 U	1.0 U
trans-1,3-Dichloropropene		1.0 U	1.0 U
1,1,2-Trichloroethane		1.0 U	1.0 U
Tetrachloroethene	5	1.0 U	1.0 U
1,3-Dichloropropane		1.0 U	1.0 U
Dibromochloromethane		1.0 U	1.0 U
1,2-Dibromoethane (EDB)*	0.01	0.01 U	0.01 U
Chlorobenzene		1.0 U	1.0 U
1,1,1,2-Tetrachloroethane		1.0 U	1.0 U
Ethylbenzene	700	25	1.0 U
Xylenes	1000	11	1.0 U
Styrene		1.0 U	1.0 U
Bromoform		1.0 U	1.0 U
Isopropylbenzene		37	1.0 U
1,2,3-Trichloropropane		1.0 U	1.0 U
Bromobenzene		1.0 U	1.0 U
1,1,2,2-Tetrachloroethane		1.0 U	1.0 U
n-Propylbenzene		51	1.0 U
2-Chlorotoluene		1.0 U	1.0 U
4-Chlorotoluene		1.0 U	1.0 U
1,3,5-Trimethylbenzene		81	1.0 U
tert-Butylbenzene		1.1	1.0 U
1,2,4-Trimethylbenzene		150	1.0 U
sec-Butylbenzene		12	1.0 U
1,3-Dichlorobenzene		1.0 U	1.0 U
Isopropyltoluene		19	1.0 U
1,4-Dichlorobenzene		1.0 U	1.0 U
1,2-Dichlorobenzene		1.0 U	1.0 U
n-Butylbenzene		12	1.0 U
1,2-Dibromo-3-Chloropropane		1.0 U	1.0 U
1,2,4-Trichlorobenzene		1.0 U	1.0 U

Hart Crowser

\\seafs\Projects\Notebooks\1944900_601_Dexter_Due_Dilegence\Deliverables\Reports\Phase II Final Report\Tables\ChemRslts-1944900-Water

Table 2 - Analytical Results for Groundwater Samples

Sample ID Sampling Date	MTCA Method A Cleanup Level	HC-1-TMW /11/2019	HC-4 4/12/2019
Hexachloro-1,3-butadiene		1.0 U	1.0 U
Naphthalene	160	1.0 U	1.0 U
1,2,3-Trichlorobenzene		1.0 U	1.0 U

U = Not detected at reporting limit indicated.

J = Estimated value.

a. 0.8 mg/L when benzene is present in groundwater; 1.0 when benzene is not detected.

Detected concentrations are bolded.

Concentrations that exceed cleanup level are shaded.

Table 3 - Analytical Results for Sub-Slab Soil Vapor Samples

-	MTCA Method B		
Sample ID	Sub-Slab Soil Gas	SV-1	SV-2
Sampling Date	Screening	4/9/2019	4/10/2019
	Level		
Helium in ppt		100 U	100 U
Method EPA3C in %			
Carbon Dioxide		0.124	0.066 U
Methane		0.069 U	0.066 U
Oxygen		23.8	24.1
Method EPA-TO-15 in ug/m3			
1,1,1-Trichloroethane		0.546 U	0.546 U
1,1,2,2-Tetrachloroethane		0.515 U	0.515 U
1,1,2-Trichloroethane		0.682 U	0.682 U
1,1-Dichloroethane		0.202 U	0.202 U
1,1-Dichloroethene		0.397 U	0.397 U
1,2,4-Trichlorobenzene		0.557 UJ	0.557 UJ
1,2,4-Trimethylbenzene	107	14.9	7.35
1,2-Dichlorobenzene	3,050	0.601 U	0.601 U
1,2-Dichloroethane	-,	0.202 U	0.202 U
1,2-Dichloropropane		0.578 U	0.578 U
1,3,5-Trimethylbenzene		9.61	1.88
1,3-Butadiene	2.78	0.285	0.946
1,3-Dichlorobenzene	2.1.0	0.681	1.78
1,4-Dichlorobenzene	7.58	0.451 U	1.98
1-Propene	1.00	2.29	0.172 U
2-Butanone		7.86	5.03
2-Hexanone		1.02 UJ	1.02 UJ
Acetone		49.4	81.3
Acrolein	0.305	1.02	0.855
APH C5 - C8 Aliphatics	90,000	144	1030
APH C9 - C12 Aliphatics	4,700	1050	442 U
APH C9 - C10 Aromatics	6,000	191	31.4 U
Benzene	10.7	2.9	2.93
Benzene, 1-Ethyl-4-Methyl-	10.7	2.06	2.11
Bromoform		0.517 U	0.517 U
Bromomethane		0.485 U	0.485 U
Carbon Disulfide	10,700	1.17 U	1.17 U
Carbon Tetrachloride	13.9	0.574	0.513
CFC-11	10,700	1.75	1.63
CFC-113	10,700	0.766 U	0.766 U
CFC-114		0.699 U	0.699 U
CFC-12	1,520	2.33	0.033 0 2.11
Chlorobenzene	762	0.23 U	0.288
Chlorodibromomethane	702	0.23 U 1.06 U	1.06 U
Chloroethane		0.264 U	0.264 U
Chloroform	3.62	0.204 0 0.871	0.204 U 0.244 U
Chloromethane	3.02	0.258 U	0.244 0 0.258 U
Cis-1,2-Dichloroethene		0.198 U	0.198 U
Cis-1,3-Dichloropropene		0.454 U	0.454 U
Cyclohexane		0.401	5.08
Dichlorobromomethane		0.502 U	0.502 U
Dioxane, 1,4-		0.36 UJ	0.36 UJ
Ethyl Acetate		0.901 U	4.17

Hart Crowser

\\seafs\Projects\Notebooks\1944900_601_Dexter_Due_Dilegence\Deliverables\Reports\Phase II Final Report\Tables\ChemRslts-1944900-Soil Vapor

Table 3 - Analytical Results for Sub-Slab Soil Vapor Samples

	MTCA Method B		
Sample ID	Sub-Slab Soil Gas	SV-1	SV-2
Sampling Date	Screening	4/9/2019	4/10/2019
	Level		
Ethylbenzene	15,200	0.954	1.67
Ethylene dibromide		0.384 U	0.384 U
Heptane		0.517	6.9
Hexachlorobutadiene		2.67 U	2.67 U
Hexane	10,700	0.434	12.6
Isopropyl Alcohol		4.43	11.4
m, p-Xylene	1,520	3.39	6.93
Methyl isobutyl ketone	45,700	1.02 U	1.02 U
Methyl Methacrylate		0.409 U	0.409 U
Methyl t-butyl ether	321	0.361 U	1.02
Methylene Chloride	8,330	1.74 UJ	1.74 UJ
Naphthalene	2.45	3.31	2.77
o-Xylene	1,520	1.47	2.45
Styrene		0.481	0.426 U
Tetrachloroethene	321	1.9	1.09
Tetrahydrofuran		0.295 U	0.511
Toluene	76,200	8.18	7.25
Toluene, Alpha-Chloro-		0.647 U	0.647 U
Trans-1,2-Dichloroethene		0.198 U	0.198 U
Trans-1,3-Dichloropropene		0.567 U	0.567 U
Trichloroethene	12.3	0.0872 U	0.228
Vinyl Acetate	3,050	0.88 U	0.88 U
Vinyl Chloride	9.33	0.0685 U	0.0685 U
Total TPH	4,700	1405.2	1054

U = Not detected at the reporting limit indicated.

J = Estimated value.

Detected concentrations are bolded.

Concentrations that exceed screening level are shaded.

Table 4 - Analytical Results for Crawl Space Samples MTCA Method B

	MTCA Method I	В	
Sample ID	Indoor Air	CSE-1	CSW-1
Sampling Date	Cleanup	4/10/2019	4/10/2019
	Level		
Method EPA-TO-15 in ug/m3			
1,1,1-Trichloroethane		0.546 U	0.546 U
1,1,2,2-Tetrachloroethane		0.515 U	0.515 U
1,1,2-Trichloroethane		0.682 U	0.682 U
1,1-Dichloroethane		0.202 U	0.202 U
1,1-Dichloroethene		0.397 U	0.397 U
1,2,4-Trichlorobenzene		0.557 UJ	0.557 UJ
1,2,4-Trimethylbenzene	3.2	0.369 U	0.369 U
1,2-Dichlorobenzene	91.4	0.601 U	0.601 U
1,2-Dichloroethane		0.202 U	0.202 U
1,2-Dichloropropane		0.578 U	0.578 U
1,3,5-Trimethylbenzene		0.369 U	0.369 U
1,3-Butadiene	0.0833	0.277 U	0.91
1,3-Dichlorobenzene		0.451 U	0.451 U
1,4-Dichlorobenzene	0.227	0.451 U	0.451 U
1-Propene		0.172 U	0.172 U
2-Butanone		1.13	1.14
2-Hexanone		1.02 UJ	1.02 UJ
Acetone		8.26	9.29
Acrolein	0.00914	1.27	1.56
APH C5 - C8 Aliphatics	2,700	132	183
APH C9 - C12 Aliphatics	140	44.2 U	44.2 U
APH C9 - C10 Aromatics	180	31.4 U	31.4 U
Benzene	0.321	0.586 U	0.761 U
Benzene, 1-Ethyl-4-Methyl-		0.492 U	0.492 U
Bromoform		0.517 U	0.517 U
Bromomethane		0.485 U	0.485 U
Carbon Disulfide	320	1.17 U	1.17 U
Carbon Tetrachloride	0.417	0.469	0.468
CFC-11	320	1.38	1.53
CFC-113		0.766 U	0.766 U
CFC-114		0.699 U	0.699 U
CFC-12	45.7	1.72	1.8
Chlorobenzene	22.9	0.23 U	0.23 U
Chlorodibromomethane		1.06 U	1.06 U
Chloroethane		0.264 U	0.264 U
Chloroform	0.109	0.244 U	0.244 U
Chloromethane		1.1	1.18
Cis-1,2-Dichloroethene		0.198 U	0.198 U
Cis-1,3-Dichloropropene		0.454 U	0.454 U
Cyclohexane		0.629	0.878
Dichlorobromomethane		0.502 U	0.502 U
Dioxane, 1,4-		0.36 UJ	0.36 UJ
Ethyl Acetate		0.901 U	1.32
Ethylbenzene	457	0.434 U	0.434 U
Ethylene dibromide		0.384 U	0.384 U
Heptane		0.433	0.652
Hexachlorobutadiene		2.67 U	2.67 U
Hexane	320	1.74	3.21

 Hart Crowser

 \\seafs\Projects\Notebooks\1944900_601_Dexter_Due_Dilegence\Deliverables\Reports\Phase II Final Report\Tables\ChemRslts-1944900-Crawl Space

Table 4 - Analytical Results for Crawl Space Samples

	MTCA Method	В	
Sample ID	Indoor Air	CSE-1	CSW-1
Sampling Date	Cleanup	4/10/2019	4/10/2019
	Level		
Isopropyl Alcohol		2.4	2.48
m, p-Xylene	45.7	0.868 U	0.868 U
Methyl isobutyl ketone	1,370	1.02 U	1.02 U
Methyl Methacrylate		0.409 U	0.409 U
Methyl t-butyl ether	9.62	0.361 U	0.361 U
Methylene Chloride	250	1.74 UJ	1.74 UJ
Naphthalene	0.0735	1.56	1.56
o-Xylene	45.7	0.434 U	0.434 U
Styrene		0.426 U	0.426 U
Tetrachloroethene	9.62	0.339 U	0.339 U
Tetrahydrofuran		0.295 U	0.295 U
Toluene	2,290	1.15	1.18
Toluene, Alpha-Chloro-		0.647 U	0.647 U
Trans-1,2-Dichloroethene		0.198 U	0.198 U
Trans-1,3-Dichloropropene		0.567 U	0.567 U
Trichloroethene	0.37	0.0872 U	0.0872 U
Vinyl Acetate	91.4	0.88 U	0.88 U
Vinyl Chloride	0.28	0.0685 U	0.0685 U
Total TPH	140	134.71	185.74

U = Not detected at the reporting limit indicated.

J = Estimated value.

Detected concentrations are bolded.

Concentrations that exceed cleanup level are shaded.

Samples with reporting limits exceeding cleanup level are italicized.

mple ID	MTCA	DGW1-10	DGW1-12.5		DGW1-25	DGW1-30	DGW3-2.5	DGW3-12.5	DGW3-15	DGW3-20	DGW3-25	DGW4-5	DGW4-10	DGW4-15	DGW4-20	DGW4-35	DGW4-50
mple Depth mpling Date	Method A Cleanup	3/6/2019 10	3/6/2019 12.5	3/6/2019 15	3/6/2019 25	3/6/2019 30	3/6/2019 2.5	3/6/2019 12.5	3/6/2019 15	3/6/2019 20	3/6/2019 25	3/4/2019 5	3/4/2019 10	3/4/2019 15	3/4/2019 20	3/4/2019 35	3/4/2019 50
ture in %	Level ^a	13% J	14% J	14% J	16% J	14% J	15% J	15% J	14% J	14% J	14% J	11% J	12% J	12% J	13% J	14% J	13% J
PH-Dx in mg/kg																	
rosene/Jet fuel		20 U	20 U	20 U	20 U	20 U	20 U	20 U			20 U	20 U		20 U	20 U	20 U	20 U
esel/Fuel oil avy oil	2000 2000	20 U 50 U	20 U 50 U	20 U 50 U	20 U 50 U	20 U 50 U	20 U 50 U	20 U 50 U			20 U 50 U	20 U 50 U		20 U 50 U	20 U 50 U	20 U 50 U	20 U 50 U
PH-Gx in mg/kg	2000	50 0	50 0	50 0	50 0	50 0	50 0	50 0			50 0	50 0		50 0	50 0	50 0	50 0
neral spirits/Stoddard	100	5.0 U	5.0 U	5.0 U	5.0 U		5.0 U	5.0 U			5.0 U	5.0 U		5.0 U	5.0 U	5.0 U	5.0 U
soline	30/100 ^b	5.0 U	5.0 U	5.0 U	5.0 U		5.0 U	5.0 U			5.0 U	5.0 U		5.0 U	5.0 U	5.0 U	5.0 U
(in μg/kg																	
nzene uene	0.03 7																
lylbenzene	6																
enes	9																
s in mg/kg																	
ad (Pb)	250	5.8 U			5.5 U		5.5 U	5.6 U			5.5 U	5.8 U		27	5.3 U	6 U	
omium (Cr) Imium (Cd)	19/2000 ^d 2	34 0.58 U			29 0.55 U		25 0.55 U	30 0.56 U			23 0.55 U	34 0.58 U		47 0.54 U	22 0.53 U	67 0.6 U	
enic (As)	20	0.58 U 12 U			0.55 U 11 U		0.55 U 11 U	0.56 U 11 U			0.55 U 11 U	0.58 U 12 U		0.54 U 11 U	0.53 U 11 U	0.6 U 12 U	
cury (Hg) (7471)	2	0.29 U			0.28 U		0.28 U	0.28 U			0.28 U	0.29 U		0.27 U	0.27 U	0.3 U	
in mg/kg																	
21																	
32 42 (A1016)																	
48																	
54																	
60																	
al PCBs in mg/kg	1																
ethylnaphthalene		1.0 U															
ethylnaphthalene		1.0 U															
hthalene	5	1.0 U															
naphthylene		1.0 U															
naphthene brene		1.0 U 1.0 U															
nanthrene		1.0 U															
iracene		1.0 U															
oranthene		1.0 U															
ene zo(a)anthracene		1.0 U 1.0 U															
/sene		1.0 U															
zo(b)fluoranthene		1.0 U															
zo(k)fluoranthene		1.0 U															
zo(a)pyrene	0.1	1.0 U 1.0 U															
no(1,2,3-cd)pyrene nzo(ah)anthracene		1.0 U															
zo(ghi)perylene		1.0 U															
al cPAHs TEQ	0.1	NC															
les in μg/kg	100					100 11	100 17			100 11	400.11				100 11	100 11	
3E Ilorodifluoromethane	100	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U	100 U 50 U	100 l 50 l
promethane		50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 l
l chloride		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 1
nomethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 l
oroethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 L
hlorofluoromethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 ו Hart Cı

Sheet 1 of 6

L:\Notebooks\1944900_601_Dexter_Due_Dilegence\Workspace\Historical ChemRslts-1944900-Soil

Table 5 - Historical Analytical Results for Soil Samples at 615 Dexter Property

Table 5 - Historical A	nalytica	I Results t	or Soll San	nples at 6 [°]	15 Dexter I	Property											Sheet 2 01
Sample ID	MTCA	DGW1-10	DGW1-12.5	DGW1-15	DGW1-25	DGW1-30	DGW3-2.5	DGW3-12.5	DGW3-15	DGW3-20	DGW3-25	DGW4-5	DGW4-10	DGW4-15	DGW4-20	DGW4-35	DGW4-50
Sample Depth		3/6/2019	3/6/2019	3/6/2019	3/6/2019	3/6/2019	3/6/2019	3/6/2019	3/6/2019	3/6/2019	3/6/2019	3/4/2019	3/4/2019	3/4/2019	3/4/2019	3/4/2019	3/4/2019
Sampling Date	Method A		12.5	15	25	30	2.5	12.5	15	20	25	5	10	15	20	35	50
1 0	Cleanup																
	Level ^a																
1,1-Dichloroethene	Lovoi	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
	20	20 U	20 U	20 U	20 U			20 U	20 U	20 U	20 U	20 U	50 U 20 U		20 U		20 U
Methylene chloride	20					20 U	20 U							20 U		20 U	
trans-1,2-Dichloroethene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,1-Dichloroethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
2,2-Dichloropropane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
cis-1,2-Dichloroethene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Chloroform		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,1,1-Trichloroethane	2000	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Carbontetrachloride		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,1-Dichloropropene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Benzene	30	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
1,2-Dichloroethane(EDC)		20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Trichloroethene	30	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
1,2-Dichloropropane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Dibromomethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Bromodichloromethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
cis-1,3-Dichloropropene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Toluene	7000	50 U	50 U	50 U 50 U	50 U	50 U	50 U	50 U	50 U 50 U	50 U 50 U	50 U	50 U 50 U	50 U 50 U	50 U	50 U 50 U	50 U	50 U
trans-1,3-Dichloropropene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,1,2-Trichloroethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Tetrachloroethene	50	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,3-Dichloropropane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Dibromochloromethane		20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
1,2-Dibromoethane (EDB)*	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,1,1,2-Tetrachloroethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Ethylbenzene	6000	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Xylenes	9000	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Styrene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Bromoform		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Isopropylbenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,2,3-Trichloropropane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Bromobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,1,2,2-Tetrachloroethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
n-Propylbenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
2-Chlorotoluene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
4-Chlorotoluene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,3,5-Trimethylbenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
tert-Butylbenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,2,4-Trimethylbenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
sec-Butylbenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,3-Dichlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Isopropyltoluene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,4-Dichlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,2-Dichlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
n-Butylbenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,2-Dibromo-3-Chloropropa	ane	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,2,4-Trichlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Hexachloro-1,3-butadiene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Naphthalene	5000	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,2,3-Trichlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
.,_,			000		000			000		000							

Table 5 - Historical A	nalytical	Results f	or Soil San	nples at 61	5 Dexter P	roperty										
Sample ID	MTCA	DMW1S-5	DMW1S-10		5 DMW1S-15	DMW1S-20		DPP2-10	DPP4-12.5	DPP4-17.5	DPP4-20	21417-GP7	21417-GP7	21417-GP6	DPP-4	DPP-2
Sample Depth Sampling Date	Method A Cleanup Level ^a	3/23/2019 5	3/23/2019 10	3/23/2019 12.5	3/23/2019 15	3/23/2019 20	3/4/2019 5	3/4/2019 10	3/4/2019 12.5	3/4/2019 17.5	3/4/2019 20	5/19/2017 2	5/19/2017 13	5/19/2017 18	4/11/2019	4/11/2019
Moisture in %		14% J	15% J	14% J	14% J	15% J	15% J	15% J	8%	20%	17%					
NWTPH-Dx in mg/kg Kerosene/Jet fuel		20 U	20 U	20 U		20 U	20 U	20 U	20 U		20 U					
Diesel/Fuel oil	2000	20 U	20 U	20 U		20 U	20 U	20 U	20 U		20 U	<20.4	<20.4	<20.4		
Heavy oil NWTPH-Gx in mg/kg	2000	50 U	50 U	50 U		50 U	50 U	50 U	50 U		50 U	<50.9	<50.9	<50.9		
Mineral spirits/Stoddard	100	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U										
Gasoline	30/100 ^b	5.0 U	5.0 U	1200	67	5.0 U						<3.71	<3.71	<3.71		
BTEX in μg/kg Benzene	0.03											ND	ND	ND		
Toluene	7											ND	ND	ND		
Ethylbenzene	6											<0.0223	<0.0223	<0.0223		
Xylenes Motolo in ma/ka	9											<0.0148	<0.0148	<0.0148		
Metals in mg/kg Lead (Pb)	250		5.8 U		5.4 U	5.5 U	6 U	5.4 U	5.4 U		6 U					
Chromium (Cr)	19/2000 ^d		31		23	35	43	34	24		31					
Cadmium (Cd)	2		0.58 U		0.54 U	0.55 U	0.6 U	0.54 U	0.54 U		0.6 U					
Arsenic (As)	20		12 U		11 U	11 U	12 U	11 U	11 U		12 U					
Mercury (Hg) (7471) PCBs in mg/kg	2		0.29 U		0.27 U	0.27 U	0.3 U	0.27 U	0.27 U		0.3 U					
A1221																
A1232																
A1242 (A1016)																
A1248 A1254																
A1260																
Total PCBs	1															
PAHs in mg/kg																
1-Methylnaphthalene 2-Methylnaphthalene					1.0 U 1.0 U											
Naphthalene	5				1.0 U											
Acenaphthylene					1.0 U											
Acenaphthene					1.0 U											
Fluorene Phenanthrene					1.0 U 1.0 U											
Anthracene					1.0 U											
Fluoranthene					1.0 U											
Pyrene Banza (a) anthroacha					1.0 U 1.0 U											
Benzo(a)anthracene Chrysene					1.0 U											
Benzo(b)fluoranthene					1.0 U											
Benzo(k)fluoranthene					1.0 U											
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	0.1				1.0 U 1.0 U											
Dibenzo(ah)anthracene					1.0 U											
Benzo(ghi)perylene					1.0 U											
Total cPAHs TEQ	0.1				NC											
Volatiles in μg/kg MTBE	100	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	ND U	ND U	ND U		
Dichlorodifluoromethane	100	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U ND U	ND U		
Chloromethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Vinyl chloride		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Bromomethane Chloroethane		50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	ND U ND U	ND U ND U	ND U ND U		
Trichlorofluoromethane		50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	ND U	ND U ND U	ND U		
								200								

Table 5 - Historical Analytical Results for Soil Samples at 615 Dexter Property

Sample ID Sample Depth	MTCA	DMW1S-5 3/23/2019	DMW1S-10 3/23/2019	DMW1S-12 3/23/2019	.5 DMW1S-15 3/23/2019	DMW1S-20 3/23/2019	DPP2-5 3/4/2019	DPP2-10 3/4/2019	DPP4-12.5 3/4/2019	DPP4-17.5 3/4/2019	DPP4-20 3/4/2019	21417-GP7 5/19/2017	21417-GP7 5/19/2017	21417-GP6 5/19/2017	DPP-4 4/11/2019	DPP-2 4/11/2019
Sampling Date	Method A		3/23/2019 10	3/23/2019 12.5	3/23/2019 15	3/23/2019 20	3/4/2019 5	3/4/2019 10	3/4/2019 12.5	3/4/2019 17.5	3/4/2019 20	2	13	18	4/11/2019	4/11/2019
Camping Late	Cleanup	C					0					-				
	Level ^a															
1,1-Dichloroethene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Methylene chloride	20	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	ND U	ND U	ND U		
trans-1,2-Dichloroethene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
1,1-Dichloroethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
2,2-Dichloropropane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
cis-1,2-Dichloroethene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Chloroform		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
1,1,1-Trichloroethane	2000	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Carbontetrachloride		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
1,1-Dichloropropene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Benzene	30	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	ND U	ND U	ND U		
1,2-Dichloroethane(EDC)		20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	ND U	ND U	ND U		
Trichloroethene	30	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	ND U	ND U	ND U		
1,2-Dichloropropane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Dibromomethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Bromodichloromethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
cis-1,3-Dichloropropene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Toluene	7000	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
trans-1,3-Dichloropropene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
1,1,2-Trichloroethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Tetrachloroethene	50	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
1,3-Dichloropropane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Dibromochloromethane		20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	ND U	ND U	ND U		
1,2-Dibromoethane (EDB)*	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	ND U	ND U	ND U		
Chlorobenzene		50 U 50 U	50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U	ND U ND U	ND U ND U	ND U ND U		
1,1,1,2-Tetrachloroethane	6000	50 U 50 U	50 U			50 U 50 U	50 U	50 U 50 U	50 U 50 U		50 U 50 U	ND U ND U	ND U	ND U		
Ethylbenzene	6000 9000	50 U 50 U	53 71	2100 4400	120	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	ND U ND U	ND U	ND U ND U		
Xylenes Styrene	9000	50 U	71 50 U	4400 50 U	200 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U	50 U 50 U	50 U 50 U	ND U	ND U	ND U		
Bromoform		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Isopropylbenzene		50 U	50 U	1500	120	50 U	50 U	50 U	50 U	50 U	50 U	<.0594 U	<.0594 U	<.0594 U		
1,2,3-Trichloropropane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	<.0394 0 ND U	<.0394 0 ND U	<.0394 0 ND U		
Bromobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
1,1,2,2-Tetrachloroethane		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
n-Propylbenzene		50 U	110	3200	280	50 U	50 U	50 U	50 U	50 U	50 U	<.0148 U	<.0148 U	<.0148 U		
2-Chlorotoluene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
4-Chlorotoluene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
1,3,5-Trimethylbenzene		50 U	190	6200	760	50 U	50 U	50 U	50 U	50 U	50 U	<.0148 U	<.0148 U	<.0148 U		
tert-Butylbenzene		50 U	50 U	105	50 U	50 U	50 U	50 U	50 U	50 U	50 U	<.0148 U	<.0148 U	<.0148 U		
1,2,4-Trimethylbenzene		50 U	510	13000	1900	50 U	50 U	50 U	50 U	50 U	50 U	<.0148 U	<.0148 U	<.0148 U		
sec-Butylbenzene		50 U	71	1900	250	50 U	50 U	50 U	50 U	50 U	50 U	<.0148 U	<.0148 U	<.0148 U		
1,3-Dichlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Isopropyltoluene		50 U	120	3200	480	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
1,4-Dichlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
1,2-Dichlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
n-Butylbenzene		50 U	180	820	580	50 U	50 U	50 U	50 U	50 U	50 U	<.0148 U	<.0148 U	<.0148 U		
1,2-Dibromo-3-Chloropropa	ane	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
1,2,4-Trichlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Hexachloro-1,3-butadiene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		
Naphthalene	5000	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	<.0223	<.0223	<.0223		
1,2,3-Trichlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	ND U	ND U	ND U		

Table 5 - Historical A	nalytical	Rosulte fr	or Soil Sam	nlos at 615	Dovtor Pro	nortv		
Sample ID	MTCA	21417-GP5	21417-GP5	DGW-3	21417-GP4	21417-GP4	DGW-1	DMW-1S
Sample Depth		5/19/2017	5/19/2017	4/11/2019	4/21/2017	4/21/2017	4/11/2019	4/11/2019
Sampling Date	Method A		14		12	15		
1 0	Cleanup							
	Level ^a							
Moisture in %							16%	15%
NWTPH-Dx in mg/kg								
Kerosene/Jet fuel				20 U				
Diesel/Fuel oil	2000	<20.9	<20.4	20 U	<21.2	<20.9		
Heavy oil	2000	<52.4	<50.9	50 U	<53.0	<52.2		
NWTPH-Gx in mg/kg	2000	NUC.	<00.0	50 0	<00.0	\JL.L		
Mineral spirits/Stoddard	100			5.0 U				5.0 U
Gasoline	30/100 ^b	<4.32	<3.71	5.0 U		269		5.0 U
BTEX in µg/kg	50/100	<4.32	<3.71	5.0 0	14.6	209		5.0 0
Benzene	0.03	ND	ND		ND	ND		20 U
Toluene	0.03	ND	ND		ND	ND		50 U
Ethylbenzene	6	<0.0259	<0.0223		0.0414	0.458		50 U
Xylenes	9	<0.0239	< 0.0148		0.0607	0.381		50 U
Metals in mg/kg	0	<0.0170	<0.0140		0.0007	0.001		00 0
Lead (Pb)	250					1.5		1.0 U
	19/2000 ^d	00.7						
Chromium (Cr)		20.7						1.0 U
Cadmium (Cd)	2	39.1 <0.178						1.0 U 1.0 U
Arsenic (As) Mercury (Hg) (7471)	20 2	<0.178 4.6						0.5 U
PCBs in mg/kg	2	4.0						0.5 0
A1221								
A1232								
A1242 (A1016)								
A1248								
A1254								
A1260								
Total PCBs	1							
PAHs in mg/kg	-							
1-Methylnaphthalene		<.0420						0.10 U
2-Methylnaphthalene		<.0420						0.10 U
Naphthalene	5	<.0420						0.10 U
Acenaphthylene		<.0420						0.10 U
Acenaphthene		<.0420						0.10 U
Fluorene		<.0420						0.10 U
Phenanthrene		<.0420						0.10 U
Anthracene		<.0420						0.10 U
Fluoranthene		<.0420						0.10 U
Pyrene		<.0420						0.10 U
Benzo(a)anthracene		ND						0.10 U
Chrysene		ND						0.10 U
Benzo(b)fluoranthene		ND						0.10 U
Benzo(k)fluoranthene	- ·	ND						0.10 U
Benzo(a)pyrene	0.1	ND						0.10 U
Indeno(1,2,3-cd)pyrene		ND						0.10 U
Dibenzo(ah)anthracene		ND						0.10 U
Benzo(ghi)perylene	<u> </u>	ND						0.10 U
Total cPAHs TEQ	0.1	0.01						NC
Volatiles in μg/kg MTBE	100		ND	100 U			100 U	
Dichlorodifluoromethane	100	ND ND	ND ND	50 U	ND ND			
Chloromethane		ND ND	ND ND	50 U 50 U	ND ND			
Vinyl chloride		ND ND	ND	50 U 50 U	ND			
Bromomethane		ND	ND	50 U 50 U	ND			
Chloroethane		ND	ND	50 U	ND			
Trichlorofluoromethane		ND	ND	50 U	ND			
monoronaoronnemane				50.0	ND	ND	50 0	

Sheet 5 of 6

Table 5 - Historical An	alytical	Results for	or Soil Sam	ples at 615	Dexter Pro	operty		
Sample ID	MTCA	21417-GP5	21417-GP5	DGW-3	21417-GP4	21417-GP4	DGW-1	DMW-1S
Sample Depth		5/19/2017	5/19/2017	4/11/2019	4/21/2017	4/21/2017	4/11/2019	4/11/2019
Sampling Date	Method A	1	14		12	15		
	Cleanup							
	Level ^a							
1,1-Dichloroethene		ND	ND	50 U	ND	ND	50 U	
Methylene chloride	20	ND	ND	20 U	ND	ND	20 U	
trans-1,2-Dichloroethene		ND	ND	50 U	ND	ND	50 U	
1,1-Dichloroethane		ND	ND	50 U	ND	ND	50 U	
2,2-Dichloropropane		ND	ND	50 U	ND	ND	50 U	
cis-1,2-Dichloroethene		ND	ND	50 U	ND	ND	50 U	
Chloroform		ND	ND	50 U	ND	ND	50 U	
1,1,1-Trichloroethane	2000	ND	ND	50 U	ND	ND	50 U	
Carbontetrachloride		ND	ND	50 U	ND	ND	50 U	
1,1-Dichloropropene		ND	ND	50 U	ND	ND	50 U	
Benzene	30	ND	ND	20 U	ND	ND	20 U	
1,2-Dichloroethane(EDC)		ND	ND	20 U	ND	ND	20 U	
Trichloroethene	30	ND	ND	20 U	ND	ND	20 U	
1,2-Dichloropropane		ND	ND	50 U	ND	ND	50 U	
Dibromomethane		ND	ND	50 U	ND	ND	50 U	
Bromodichloromethane		ND	ND	50 U	ND	ND	50 U	
cis-1,3-Dichloropropene		ND	ND	50 U	ND	ND	50 U	
Toluene	7000	ND	ND	50 U	ND	ND	50 U	
trans-1,3-Dichloropropene		ND	ND	50 U	ND	ND	50 U	
1,1,2-Trichloroethane		ND	ND	50 U	ND	ND	50 U	
Tetrachloroethene	50	ND	ND	50 U	ND	ND	50 U	
1,3-Dichloropropane		ND	ND	50 U	ND	ND	50 U	
Dibromochloromethane		ND	ND	20 U	ND	ND	20 U	
1,2-Dibromoethane (EDB)*	5	ND	ND	5 U	ND	ND	5 U	
Chlorobenzene		ND	ND	50 U	ND	ND	50 U	
1,1,1,2-Tetrachloroethane		ND	ND	50 U	ND		50 U	
Ethylbenzene	6000	ND	ND	50 U	ND	ND	50 U	
Xylenes	9000	ND	ND	50 U	ND	ND	50 U	
Styrene		ND	ND	50 U	ND	ND	50 U	
Bromoform		ND	ND	50 U	ND	ND	50 U	
Isopropylbenzene		<.0691	<.0594	50 U	<.0			
1,2,3-Trichloropropane		ND	ND	50 U	ND	ND	50 U	
Bromobenzene		ND	ND	50 U	ND	ND	50 U	
1,1,2,2-Tetrachloroethane		ND	ND	50 U	ND	ND	50 U	
n-Propylbenzene		<.0173	<.0148	50 U		0 0.4		
2-Chlorotoluene		ND	ND	50 U	ND)		
4-Chlorotoluene		ND	ND	50 U	ND	ND	50 U	
1,3,5-Trimethylbenzene		<.0173	<.0148	50 U	<.0			
tert-Butylbenzene		<.0173	<.0148	50 U	<.0			
1,2,4-Trimethylbenzene		<.0173	<.0148	50 U	0.			
sec-Butylbenzene		<.0173	<.0148	50 U	<.0			
1,3-Dichlorobenzene		ND	ND	50 U	ND ND	ND	50 U	
Isopropyltoluene		ND	ND	50 U	ND	ND ND	50 U	
1,4-Dichlorobenzene		ND	ND	50 U			50 U	
1,2-Dichlorobenzene		ND	ND	50 U	ND	ND	50 U	
n-Butylbenzene		<.0173	<.0148	50 U	<.0			
1,2-Dibromo-3-Chloropropan		ND ND	ND ND	50 U 50 U	ND ND	ND ND	50 U 50 U	
1,2,4-Trichlorobenzene Hexachloro-1,3-butadiene		ND ND	ND	50 U 50 U	ND		50 U 50 U	
Naphthalene	5000	<.0259	<.0223	50 0	0.			
1,2,3-Trichlorobenzene	5000	<.0259 ND	<.0223 ND	50 U	ND		50 U	
				50 0	ND		50 0	

Table 5 - Historical Analytical Results for Soil Samples at 615 Dexter Property

U = Not detected at detection limit indicated.

J = Estimated value.

ND = Not detected.

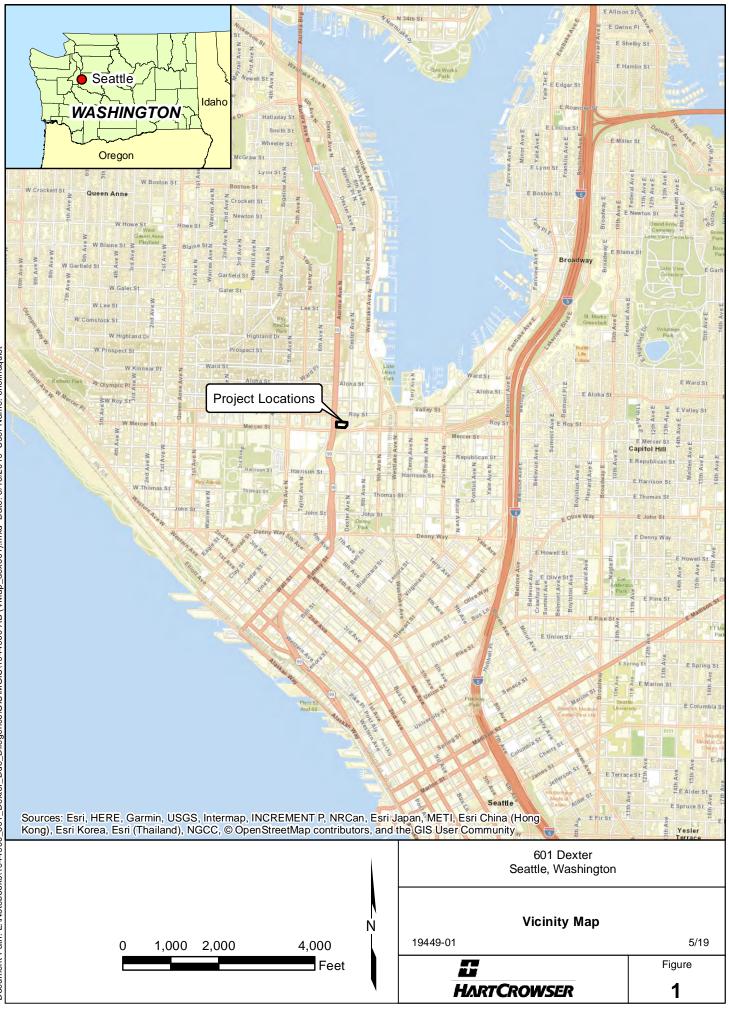
--- = Not analyzed.

Sheet 6 of 6

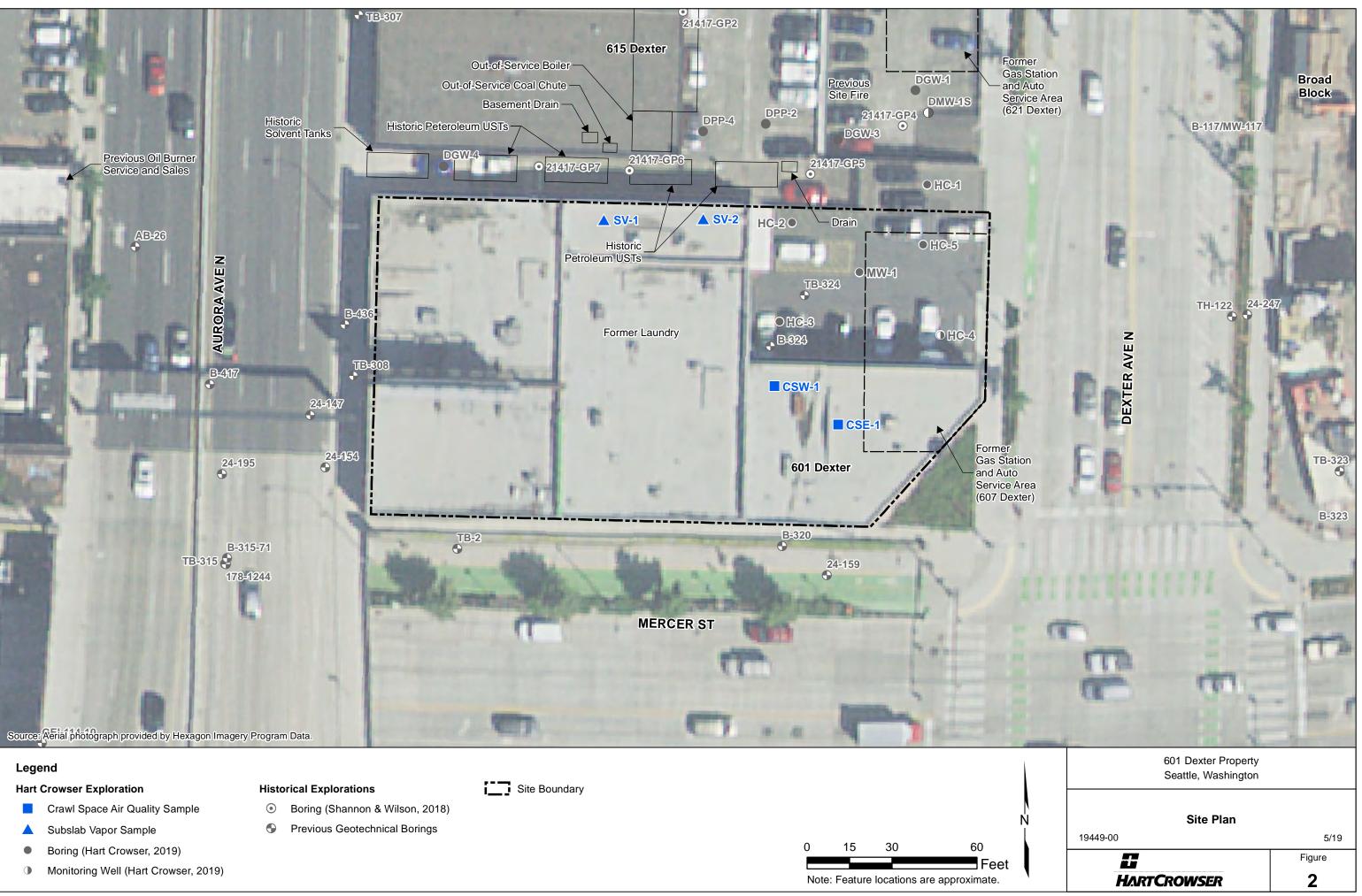
Table 6 - Historical Ana	lytical Re	sults for Gr	oundwater Sa	amples at 61	5 Dexter Prop	perty Sheet 1 of 2
Sample ID Sampling Date	MTCA Method A Cleanup	HC-1-TMW 4/11/2019	DGW1-GW 3/6/2019	DGW3-GW 3/6/2019	DGW4-GW 3/4/2019	DMW-1S-GW-21 03/25/19
Total Susp. Solids in mg/L	Level	160 J	5600	20000	42000	31
• •		100 5	5000	20000	42000	51
NWTPH-Dx in mg/L Kerosene/Jet fuel		0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Diesel/Fuel oil	0.5	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U	0.20 U
Heavy oil	0.5	0.20 U	0.50 U	0.20 U	0.50 U	0.50 U
NWTPH-Gx in mg/L	0.0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
Mineral spirits/Stoddard		0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Gasoline	0.8/1.0 ^a	6.9	0.34	0.10 U	0.10 U	0.35
Dissolved Metals in mg/L						
Lead (Pb)	0.015	0.002 U	0.0010 U	0.0010 U	0.0010 U	
Chromium (Cr)	0.05	0.01 U	0.0100 U	0.0100 U	0.0100 U	
Cadmium (Cd)	0.005	0.005 U	0.0040 U	0.0040 U	0.0040 U	
Arsenic (As)	0.005	0.005 U	0.0031	0.0030 U	0.0030 U	
Mercury (Hg) (7470A)	0.002	0.0005 U	0.0005 UJ	0.0005 UJ	0.0005 UJ	
Total Metals in mg/L	0.015	0.006	0.0920	0.1200	0.0650	0.0011.11
Lead (Pb) Chromium (Cr)	0.015 0.05	0.000 0.01 U	0.0920	1.4000	0.5900	0.0011 U 0.011 U
Cadmium (Cd)	0.005	0.005 U	0.0044 U	0.0051	0.0044 U	0.0044 U
Arsenic (As)	0.005	0.005 U	0.0880	0.1000	0.0870	0.0081
Mercury (Hg) (7470A)	0.002	0.0005 U	0.00092	0.0013	0.00075	0.0005 U
PAHs in µg/L						
Naphthalene						0.1 U
1-MethylNaphthalene						0.1 U
2-MethylNaphthalene						0.1 U
Acenaphthylene						0.1 U
Acenaphthene						0.1 U
Fluorene						0.1 U
Phenanthrene Anthracene						0.1 U 0.1 U
Fluoranthene						0.1 U
Pyrene						0.1 U
Benzo(a)anthracene						0.1 U
Chrysene						0.1 U
Benzo(b)fluoranthene						0.1 U
Benzo(k)fluoranthene						0.1 U
Benzo(a)pyrene	0.1					0.1 U
Indeno(1,2,3-cd)pyrene						0.1 U
Dibenzo(ah)anthracene						0.1 U
Benzo(ghi)perylene						0.1 U
Volatiles in µg/L	00	5011	5 U	5 11	E 11	E 11
MTBE Chloromethane	20	5.0 U 1.0 U	5 U 1.0 U	5 U 1.0 U	5 U 1.0 U	5 U 1.0 U
Vinyl chloride(*)	0.2	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Bromomethane	0.2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2,2-Dichloropropane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	000	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	200	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

Hart Crowser L:\Notebooks\1944900_601_Dexter_Due_Dilegence\Workspace\Historical ChemRsIts-1944900-Water

Table 6 - Historical Analy	/tical Re	sults for Gr	oundwater Sa	amples at 61	5 Dexter Prop	perty Sheet 2 of 2
Sample ID	MTCA	HC-1-TMW	DGW1-GW	DGW3-GW	DGW4-GW	DMW-1S-GW-21
Sampling Date	-	4/11/2019	3/6/2019	3/6/2019	3/4/2019	03/25/19
eanping zate	Cleanup		0/0/2013	0/0/2013	0/4/2010	
	Level					
Carbontetrachloride	_0.0.	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloropropene	F	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U	1.0 0 1.5
Benzene	5	1.0 U 1.0 U	1.0 U 1.0 U		1.0 U 1.0 U	1.0 U
1,2-Dichloroethane(EDC)	5 5	1.0 U 1.0 U		1.0 U		
Trichloroethene	5		1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromomethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	1000	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichloropropane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane (EDB)*	0.01	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlorobenzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1,2-Tetrachloroethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	700	25	8.0	1.0 U	1.0 U	1.0 U
Xylenes	1000	11	14	1.0 U	1.0 U	1.0 U
Styrene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene		37	2.6	1.0 U	1.0 U	1.0 U
1,2,3-Trichloropropane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromobenzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
n-Propylbenzene		51	3.7	1.0 U	1.0 U	1.0 U
2-Chlorotoluene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
4-Chlorotoluene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3,5-Trimethylbenzene		81	6.5	1.0 U	1.0 U	1.0 U
tert-Butylbenzene		1.1	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trimethylbenzene		150	12	1.0 U	1.0 U	1.0 U
sec-Butylbenzene		12	1.2	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropyltoluene		19	1.7	1.0 U	1.0 U	1.5
1,4-Dichlorobenzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
n-Butylbenzene		12	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-Chloropropar	ne	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	-	1.0 U	1.5	1.0 U	1.0 U	1.0 U
Hexachloro-1,3-butadiene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene	160	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,3-Trichlorobenzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
, ,						


U = Not detected at reporting limit indicated.

J = Estimated value.


a. 0.8 mg/L when benzene is present in groundwater; 1.0 when benzene is not detected.

Detected concentrations are bolded.

Concentrations that exceed cleanup level are shaded.

Document Path: L:Notebooks/1944900_601_Dexter_Due_Dilegence/GIS/MGIS/1944900-AB (VMap_dex601).mxd Date: 5/16/2019 User Name: ericlindquist

APPENDIX A Field Exploration Methods and Boring Logs

APPENDIX A

Field Exploration Methods and Boring Logs

This appendix describes the field exploration methods we used to advance explorations, collect soil and groundwater samples, collect sub-slab vapor and indoor air samples, and field screen the soil for visible impacts and headspace vapor. The exploration logs in this appendix show our interpretation of the exploration sampling and testing data. The logs indicate the depth where the soils change. Note that the soil changes may be gradual and may vary in depth across the site. In the field, we classified the samples taken from the explorations according to the methods presented on Figure A-1 – Key to Exploration Logs. This figure also provides a legend explaining the symbols and abbreviations used in the logs.

Explorations and Their Locations

The exploration locations were located and marked in the field by a Hart Crowser field representative. We contracted with a private utility-locating contractor to search for potential utilities at the proposed boring locations. Subsurface explorations for this project include six hollow-stem auger borings. Figure 2 shows the approximate location of explorations. The ground surface elevations at these locations are referenced to the North American Vertical Datum of 1988 (NAVD88). The method used determines the accuracy of the location and elevation of the explorations.

Auger Borings

All borings (HC-1 through HC-5 and MW-1) were drilled with a 4.25-inch-inside-diameter hollow-stem auger using a truck-mounted drill rig subcontracted by Hart Crowser. Prior to advancing the auger, the upper 5 feet of soil in each boring was removed via air knifing to reduce the risk of encountering unknown utilities. A Hart Crowser geologist continuously observed the drilling. A detailed field log was prepared for the boring. Using the standard penetration test (SPT), we obtained samples at intervals of 2.5 feet, 5 feet, or 10 feet, depending on the depth of the boring. Samples were classified in general accordance with ASTM D2488. The auger borings were screened for potential soil contamination. Detailed logs for each probe are on Figures A-2 through A-7 at the end of this appendix.

Soil Screening and Analysis

Field screening results were used as a general guideline to identify potential chemical constituents in soil samples. Soil samples were field screened for evidence of impacts related to petroleum and/or volatile organic compounds (VOCs) using: (1) visual and olfactory observations, (2) sheen testing, and (3) headspace vapor screening using a MiniRAE photoionization detector (PID). Field screening results were site-specific. The effectiveness of field screening varies with temperature, moisture content, organic content, soil type, and age of constituents. Visual examination consists of inspecting the soil for stains indicative of impacts. Visual screening is generally more effective when impacts are related to heavy petroleum hydrocarbons, such as motor or hydraulic oil, or when hydrocarbon concentrations are high.

We tested for sheen by placing a small volume of soil in a pan of water and observing the water surface for signs of sheen. Sheens were classified as follows:

A-2 | 601 Dexter Property

No sheen (NS)	No visible sheen on water surface.
Slight sheen (SS)	Light colorless film, spotty to globular; spread was irregular, not rapid, areas of no sheen remain, film dissipates rapidly.
Moderate sheen (MS)	Light to heavy film, may have some color or iridescence, globular to stringy, spread was irregular to flowing; few remaining areas of no sheen on water surface.
Heavy sheen (HS)	Heavy colorful film with iridescence; stringy, spread was rapid; sheen flows off the sample; most of the water surface might be covered with sheen.

Headspace vapor screening was used to indicate the presence of volatile organic vapors. It involved placing a 3- to 6-ounce soil sample in a pint-sized plastic sample bag. The plastic bag was shaken for several minutes to expose the soil sample to the air captured in the plastic bag headspace and volatilize any VOCs. The probe of the PID was inserted into the bag and the instrument measured the concentration of organic vapors in the bag headspace. The highest vapor reading was recorded for each sample. The PID measures concentrations in parts per million (ppm) and is calibrated to isobutylene. The PID is typically designed to quantify organic vapor concentrations in the range of 0 to 1,000 ppm. The presence (or absence) of a sheen or headspace vapors does not definitively determine whether petroleum hydrocarbons are present (or absent); positive results do indicate that further testing may be warranted. The results of field screening are on the exploration logs at the end of this appendix.

Monitoring Well Installation

A monitoring well was installed at HC-4 to assess groundwater quality and to provide water quality data for the site. Two-inch-diameter Schedule 40 PVC riser pipe and 2-inch-diameter 0.020-inch machine-slotted screen were used for the well casing and screen. The well screen and casing riser were lowered down through the hollow-stem auger. As the auger was withdrawn, silica sand was placed in the annular space from the base of the boring to approximately 1 to 2 feet above the top of the well screen.

The well seal was constructed by placing bentonite chips in the annular space on top of the filter sand to within 1 foot of ground surface. The remaining annular space was backfilled with concrete to complete the surface seal. The monitoring well was completed with a flush-mount monument set in concrete, allowing foot and vehicle traffic above the well. The monitoring well was installed in accordance with Washington State Department of Ecology regulations.

Well Development

The monitoring well was developed on April 12, 2019, after installation using a combination of surge block and purging methods and a submersible bailer pump with disposable tubing. A field representative from Hart Crowser conducted the well development and documented field parameters. Sediment thickness at the bottom of the well was measured and recorded before and after well development. Well development began by surging and bailing the first five casing volumes using a stainless steel bailer which also removed

sediment from the bottom of the wells. Development was completed by using a submersible bailer pump to remove a minimum of five additional casing volumes, for a total of ten casing volumes. Well development proceeded until water from the well became visibly clear.

Monitoring Well Groundwater Sampling

A groundwater sample was collected from HC-4 monitoring well on April 12, 2019 for chemical analysis after completion of well development.

Upon arrival at the wellhead, field personnel recorded well conditions, water, and sediment in the well using a Solinst or equivalent interface probe. A groundwater sample was collected using EPA's Low-flow Ground-water Sampling Procedures to minimize suspended solids in the samples and maximize the sample's representativeness of the aquifer. The well was purged and sampled with a peristaltic pump. Clean sample tubing was used for the well and disposed of after use.

Grab Groundwater Sampling

A grab groundwater sample was collected at HC-1 (Figure 2) on April 3, 2019. A temporary mini-well was installed by lowering a stainless-steel screen section and tubing to a depth of 25-30 feet below ground surface (bgs). A sample was obtained using a peristaltic pump and the low-flow groundwater sampling techniques. The grab groundwater sample was collected directly from the polyethylene tubing and placed in pre-cleaned, laboratory supplied containers. The containers were sealed and labeled. Filled sample containers were stored in a cooler containing bagged ice prior to submittal to the chemistry laboratory under chain of custody protocols.

Sample Handling and Laboratory Analysis

Soil and groundwater samples collected during the Phase II sampling event were returned to Hart Crowser for review prior to submission to OnSite Environmental Inc. (OnSite) of Redmond, Washington, or Advanced Analytical Laboratory (AAL) of Redmond, Washington, for chemical analysis. Samples were delivered to the laboratories under chain of custody protocols.

Investigation-Derived Waste Storage and Disposal

Soil cuttings and purge water generated during exploration activities and groundwater sampling were placed into separate labeled drums and stored on the adjacent site with other IDW containers pending laboratory results and arrangements for appropriate disposal.

Sample Description

Identification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. ASTM D 2488 visual-manual identification methods were used as a guide. Where laboratory testing confirmed visual-manual identifications, then ASTM D 2487 was used to classify the soils.

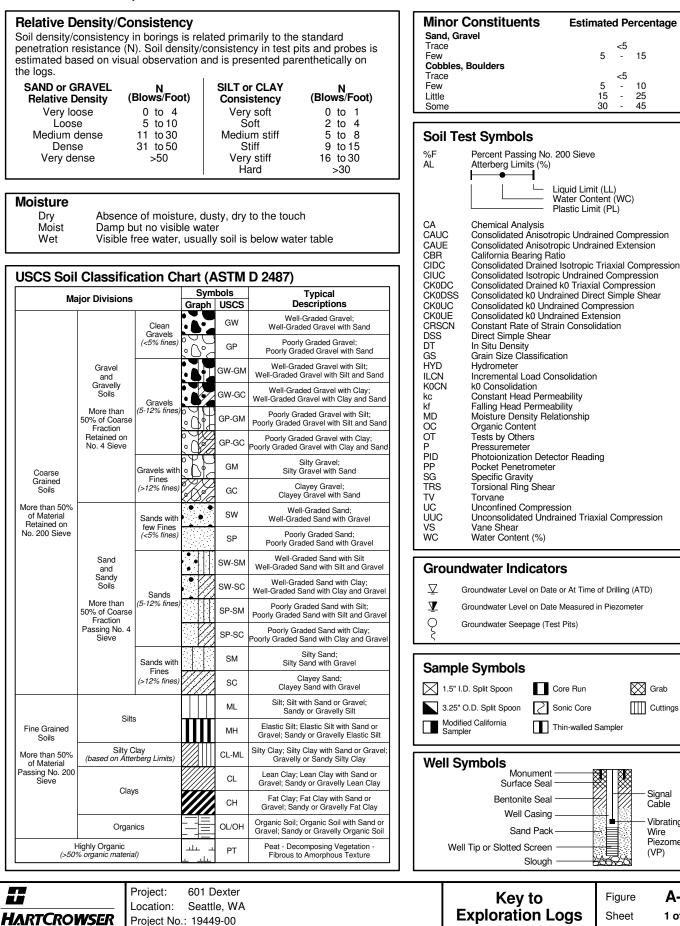


Figure A-1 Sheet 1 of 1

Grab Grab

Cuttings

Signal

Cable

Wire Piezometer

(VP)

500×0

Vibrating

Estimated Percentage

<5 5

15

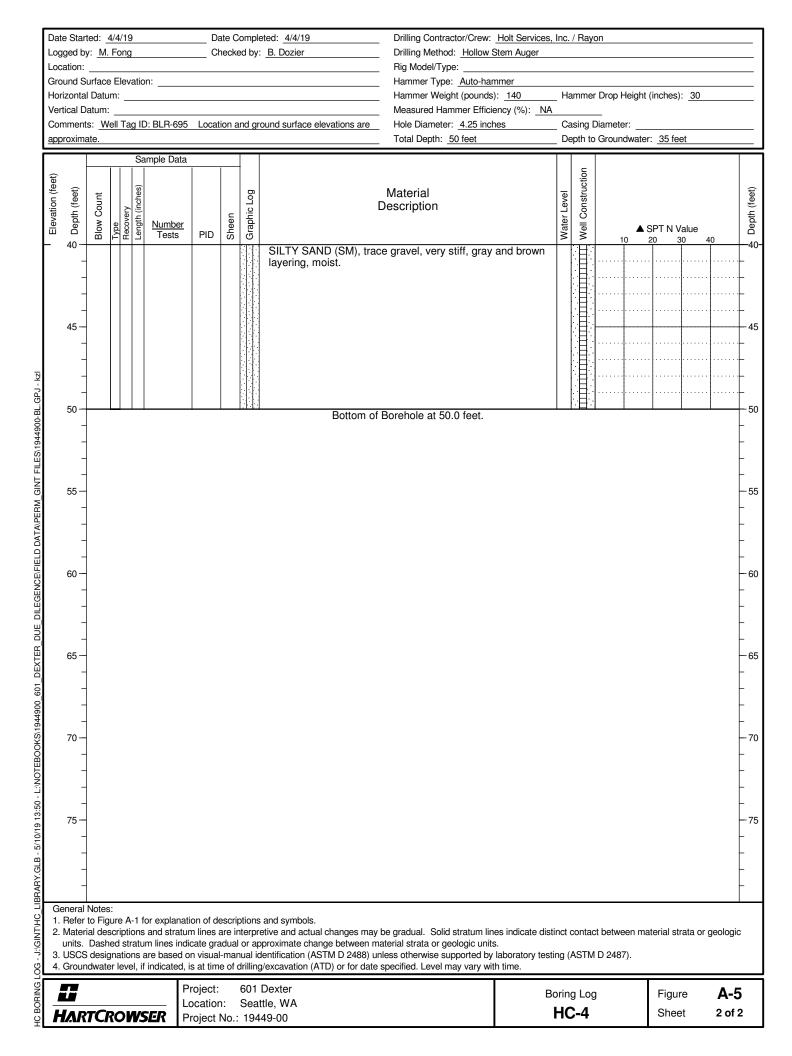
10

45

5

15 _ 25

30


Plastic Limit (PL)

HC BC	H	AR	TC	RO	WS		roject					HC-	1			Shee	et	1 of	1
JRING (ł					roject: ocatior			Dexter ttle, WA		oring	-]		Figu	e	A-2	2
HC BORING LOG - J.:/GINT/HC_LIBRARY.GLB - 5/10/19 13:50 - L.:NOTEBOOKS/194900_601_DEXTER_DUE	2. I נ 3. I	Materi units. USCS	al de Dash desi	script ned st gnatio	ions tratu ons a	and stratur Im lines indi are based o	n lines cate gra n visua	are ir adual I-mar	nterpro or ap nual ic	proximate change between ma lentification (ASTM D 2488) un	be gradual. Solid stratum lines indicate dis aterial strata or geologic units. less otherwise supported by laboratory test specified. Level may vary with time.					erial st	rata or g	geologi	iC
LIBRARY.(neral																	-
3LB - 5/10/19		-																	
13:50 - L		35 -																	
:\NOTEB		_				<u> </u>	1	1	<u>+. `.[` </u>		of Borehole at 31.5 feet.		I	1	1	1	1	<u> </u>	-
OOKS/194		30 -	32 50	X ÷	18	<u>S-9</u> PID	485	SS		SILTY SAND WITH GR petroleum-like odor.	AVEL (SM), very stiff, gray, moist,								30
4900_601_D		-																	
EXTER_DUI		25 -	50	M iệ	18	<u>S-8</u> PID	900	SS		Becomes gray, with ver	y strong petroleum-like odor.		atd ¥						25
		-	26 50	X=	18	<u>S-7</u> PID	275	NS										· · · · · · · ·	▲
E\FIELD D		- 20	18 50				89.7			Becomes brown-tan wit	h intermittent red streaks.							······	20
ATA/PERV		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
DILEGENCE/FIELD DATA/PERM_GINT FILES/1944900-BL.GPJ - kzl													·····	15					
ES\194490(-	29 47 25	Ĥ			15	SS											76
)-BL.GPJ -		_ 10 _	11	П	18													·····	10
kzl		-	34 20 50			1.0	9.4	ss		moist. 	gravel, stiff, brown, moist.								69
		- 5-	21 35 34	Mig	18	<u>S-1</u> PID	20	SS			ND WITH GRAVEL (SP), stiff, tan,								5
		-								Air knife to 4 feet. Auge	r to 5 feet.								
-	Elevation (feet)	O Depth (feet)	Blow Count	Type Recoverv	Length (inches)	<u>Number</u> Tests	PID	Sheen	Graphic Log	_ Asphalt/Concrete	Material Description		Water Level	1		PT N V 0 3		40	Depth (feet)
ĺ	feet)					ample Data			-										
										are approximate.	Hole Diameter: <u>4.25 inches</u> Total Depth: <u>31.5 feet</u>	_ Casi	•		er: <u>NA</u> dwater:		ət		
	Hori	zontal	l Datu	um: _							Hammer Type: <u>Auto-hammer</u> Hammer Weight (pounds): <u>140</u> Measured Hammer Efficiency (%): NA	_	mei	^r Drop I	Height (inches)	: <u>30</u>		
	Loca	ation:							-	B. Dozier	Drilling Method: <u>Hollow Stem Auger</u> Rig Model/Type:								
		e Starl								eted: <u>4/3/19</u>	Drilling Contractor/Crew: Holt Services	, Inc. / F	Ray	on					

НС Н	H/	AR	ГС	RO	WS	SER P	roject	No.:	194	49-00		H	C-2		Shee	et	1 of	1
BORINC						Lo	roject: ocatio			Dexter ttle, WA				9	Figur		A-3	
HC BORING LOG - J:/GINTHC_LIBRARY.GLB - 5/10/19 13:50 - L:/NOTEBOOKS/194900_601_DEXTER_DU	2. M ur 3. U 4. G	lateria nits. JSCS Ground	al de Dash desig	script ned si gnatio	tions tratu	and stratur m lines indi are based o indicated, i	n lines cate gra n visua s at tim	are i adua I-mai ie of	nterpr l or ap nual ic drilling	etive and actual changes may b pproximate change between ma dentification (ASTM D 2488) unl g/excavation (ATD) or for date s	terial strata or geologic units. ess otherwise supported by l	aboratory testing			erial str	rata or ç		
LL LIBF		neral I Refer t			∖ -1 f	or explanati	ion of d	escri	ptions	and symbols.								<u> </u>
ARY.GLB		-																_
- 5/10/19 1	3	35																- 35
3:50 - L:\N		-																-
OTEBOO		-																_
KS\19449	3	_ 30 —																- 30
100_601_L		-																_
DEXTER_I	2	25 -																-25
DUE_DILE																		
GENCE	2	20																- 20 -
IELD DAT		-																-
A\PERM		-	25 50	Me	18	S-6		NS		Bottom	of Borehole at 16.5 feet	t.			 			▲ - -
GINT FILE	1	15 - 12 - 13 - 13 - 53 - 55 - 55 - 55 - 55 - 55						, , ,			 		'	● 94 ↓15				
E_DILEGENCE/FIELD DATA/PERM_GINT FILES/1944900-BL.GPJ - kzl				Ĥ						SILTY SAND WITH GR	AVEL (SM), medium stiff	f to verv stiff. a	rav.		 			
0-BL.GPJ	1	- 10 -	33 50	Ħ	18		<0.1	SS							 		· · · · · · · · · · · · · · · · · · ·	10
- kzl		-	22 50	X ÷	18	<u>S-3</u> PID	<0.1	NS		Becomes medium stiff, t	an-gray.				 		 	93
		5	16 43 50	, ig	18	<u>S-2</u> PID	<0.1	SS		Becomes very stiff.					 			↓ 5
		-	21 32 33	<u> </u>	18	<u>S-1</u> PID	<0.1	SS		POORLY GRADED SAN gray, moist.	ID WITH GRAVEL (SP)	, medium stiff,			 			65
		0								Asphalt/Concrete Air knife to 2.5 feet.					 			
	Elevation (feet)	Depth (feet)	Blow Count	Type Becoverv	Length (inches)	<u>Number</u> Tests	PID	Sheen	Graphic Log		Description			1	PT N V 0 3		10	Depth (feet)
	(feet)	et)				ample Data			g		Material							et)
ļ	Comr	ments	s: <u>L</u>	ocatio			urrace e	eleva	tions	are approximate.	Hole Diameter: <u>4.25 inche</u> Total Depth: <u>16.5 feet</u>		Casing E Depth to			lentified	1	
	Vertic	cal Da	atum	:							Hammer Weight (pounds): Measured Hammer Efficien	ncy (%): <u>NA</u>	lammer	_		: <u>30</u>		
	_ocat	tion:									Rig Model/Type: Hammer Type: <u>Auto-ham</u>							
		Start ed by								eted: <u>4/3/19</u>	Drilling Contractor/Crew: _ Drilling Method: Hollow Si		. / Rayo	on				

Logge Locatio Ground Horizo Vertica	ate Started: <u>4/4/19</u> Date Completed: <u>4/4/19</u> gged by: <u>M. Fong</u> Checked by: <u>B. Dozier</u> cation: cound Surface Elevation: prizontal Datum: crucial Datum: c									Drilling Contractor/Crew: H Drilling Method: Hollow Ste Rig Model/Type: Hammer Type: Auto-hamm Hammer Weight (pounds): Measured Hammer Efficient	em Auger ner 140 Hamme cy (%): <u>NA</u>	er Drop	 	: <u>30</u>	
Comm	ents	: <u>Lo</u>	catio	on ar	nd ground s	surface	eleva	tions	are approximate.	Hole Diameter: <u>4.25 inches</u> Total Depth: <u>31.5 feet</u>	s Casing Depth t			dentified	1
				Sa	ample Data					· • • • • • • • • • • • • • • • • • • •	•p··· •	1			
		Blow Count	Type	ches)		PID	Sheen	Graphic Log		Material Description		-	PT N V		0
	-								Asphalt/Concrete Air knife to 4 feet. Auger	r to 5 feet.	/	- 	 		
	_												 		
;	5	19 40 42	X ig	18	<u>S-1</u> PID	<0.1	SS		SILTY SAND (SM), loos	se, tan-brown, moist.			 		
	-		X é		S-2								 		
	-	13 49 21	Д÷	18	<u>S-2</u> PID	<0.1	SS						 		
1(10 - 37 = 37 = 37 = 37 = 37 = 37 = 37 = 37											 			
	-								December brown				 		
	_	18 50	$\begin{bmatrix} 18\\ 50 \end{bmatrix} = \begin{bmatrix} 18\\ 18 \end{bmatrix} = \begin{bmatrix} S-4\\ PID \end{bmatrix} < 0.1 \end{bmatrix} \text{ NS} \end{bmatrix} = Becomes brown.$							 					
1	5-	32 50	X é	18	<u>S-5</u> PID	<0.1	SS								
	_	50			ΠD								 		
	_												 		
20	0-	37 40 50	V 5	18	<u>S-6</u> PID	<0.1	NS		SILTY SAND WITH GR.	AVEL (SM), very stiff, tan	-brown, moist.		 		
	_	50	Δ.		PID								 		
	_												 		
2	5 -	50			<u>S-7</u> PID	.0.1	NC			ND WITH GRAVEL (SP),	medium stiff,				
	_	50	4	° 18	PID	<0.1	NS		tan-brown, moist.				 		•••••
	-												 		
30	0-	19	X i		6 9			ПП	SILTY SAND (SM), stiff,	brown moist					
	_	19 44 50	<u>N</u> f	18	<u>S-8</u> PID	<0.1	SS			n of Borehole at 31.5 feet.			 		
3!	-														
	_														
	-														
Gene	- aral N	lotee													
1. Re 2. Ma uni 3. US	efer te ateria its. I SCS (o Fig al des Dash desig	ure / cript ed s natio	tions tratu ons a	and stratu m lines indi are based c	m lines icate gra on visua	are ir adual ıl-mar	nterpro or ap	and symbols. etive and actual changes may b proximate change between ma lentification (ASTM D 2488) un y/excavation (ATD) or for date s	aterial strata or geologic units. less otherwise supported by la	boratory testing (ASTN		terial st	rata or (geologia
-t-						roject:			Dexter		Boring Lo	g	Figu	re	A- 4
_	-	IC	20	WS		ocatio Project			ttle, WA 49-00		HC-3		Shee		1 of

Logged b Location: Ground S Horizonta Vertical D	oy: <u>N</u> Surfa al Da Datur	<u>И. Fo</u> ce E tum: n: _	eng	atio	n:	Cł	necke	ed by	eted: <u>4/4/19</u> : <u>B. Dozier</u>	Drilling Contractor/Crew: <u>Holt Service</u> Drilling Method: <u>Hollow Stem Auger</u> Rig Model/Type: Hammer Type: <u>Auto-hammer</u> Hammer Weight (pounds): <u>140</u> Measured Hammer Efficiency (%): <u>N</u> Hole Diameter: <u>4.25 inches</u> Total Depth: 50 feet	H JA C	lamm			
аррголіті				Sa	mple Data					Total Depth. <u>30 leet</u>	_			. 33 1661	
 Elevation (feet) Depth (feet) 	Blow Count	Tvpe	Recovery	ches)	Number Tests	PID	Sheen	Graphic Log	D	Material escription	Water Level		10	SPT N Value	40
-	-								Asphalt/Concrete Air knife to 4 feet. Auger	to 5 feet.	\neg		Ø		
- - 5 - - - - - - - - - - - - - - - -	26 - 26 - 50 - 32 - 35 - 33 - 35 - 35 - 35 - 35 - 35 - 35			18 18 18	<u>S-1</u> PID S-22 PID S-33 PID	<0.1 <0.1 <0.1			SILTY SAND WITH GRA gray-brown, moist.	VEL (SM), medium stiff,					
										gravel very stiff grav and brown	_				80
-	$ \begin{array}{c c} - & 40 \\ 50 \end{array} \xrightarrow{c}{18} \begin{array}{c} \frac{5.4}{PID} \\ \hline \end{array} \\ < 0.1 \end{array} $ SILTY SAND (SM), trace gr layering, dry.								layering, dry.	graver, very still, gray and brown					
15 - -	24 50		1 1 1 1	18	<u>S-5</u> PID	<0.1	SS						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·
- 20 - - -	- 18 - 50		11in.	18	<u>S-6</u> PID	<0.1	SS							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·
- 25 — - -	18 - 50	X	11.5in.	18	<u>S-7</u> PID	<0.1	SS		Becomes medium stiff, b	rown-gray, moist.			······	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·
- 30 - -	50		2in.	18	S-8								· · · · · · · · · · · · · · · · · · ·		
- 35 - - -	38 - 50		8in.	18	<u>S-9</u> PID	<0.1	SS				ati Ţ				
 Mater units. USCS 	r to F rial d Das S des	igur escr shed signa	riptio I str atio	ons atur ns a	and stratun m lines indic are based or	n lines a cate gra n visual	are in adual I-mar	nterpr or ap nual io	pproximate change between mate dentification (ASTM D 2488) unle	e gradual. Solid stratum lines indicate d erial strata or geologic units. ss otherwise supported by laboratory te pecified. Level may vary with time.				terial strata o	r geologic
						roject:			Dexter		Borir	ng L	og	Figure	A-5
	27	R	21	VS		ocatior roject			ttle, WA 49-00			C-4		Sheet	1 of 2

	.ogged b .ocation: Ground S Horizonta /ertical E	bogged by: M. Fong Checked by: B. Dozier cocation:								Drilling Contractor/Crew: Drilling Method: Hollow St Rig Model/Type: Hammer Type: Auto-ham Hammer Weight (pounds): Measured Hammer Efficien Hole Diameter: 4.25 inche Total Depth: 16.5 feet	tem Auger Imer : <u>140</u> ncy (%): <u>NA</u> es	Hammer Casing I Depth to	r Drop I Diamete	er: <u>NA</u>			3	
: : : :	Clevation (reet)	Blow Count	Type Recoverv	Length (inches)	mple Data <u>Number</u> Tests	PID	Sheen	Graphic Log		Material Description				▲ s	PT N V	alue	.0	Depth (feet)
		-							Asphalt/Concrete Air knife to 4 feet. Auger Air knife to 4 feet. Auger Air knife to 4 feet. Auger	to 5 feet.								
_	5 -	20 40 50	Ĥ	18	<u>S-1</u> PID	<0.1	SS		SILTY SAND WITH GR		prown, moist.				· · · · · · · · · · · · · · · · · · ·			+ 5 ● 90
)-BL.GPJ - kz	- - 10 -	19 50 27	.5in.	18 18		<0.1			Becomes very dense, gr Becomes dense, tan.	ay.								10
ILES\194490(-	27 50 33 50	Ħ	18	<u>S-3</u> PID S-4 PID	<0.1			SILTY SAND (SM), few	gravels, medium stiff, tai	n-gray, moist						· · · · · · · · ·	
ERM_GINT F	- 15 –	34 50	12in	18		<0.1	SS		SILTY SAND WITH GR								· · · · · · · · · · · · · · · · · · ·	
HC BORING LOG - J.;GINTHC_LIBRARY.GLB - 5/10/19 13:50 - L;NOTEBOOKS/194900_601_DEXTER_DUE_DILEGENCE/FIELD DATA/PERM_GINT FILES/194900-BL.GPJ - kzi	- 20 - - - - 25 - - - - - - - - - - - - - - - - - - -									n of Borehole at 16.5 feet								- 20
-OG - J:\GINT\HC	 Refer Mater units. USCS 	rial de rial de Dasl S desi	gure A script ned st gnatic	ions ratu ons a	and stratur m lines indi are based o	m lines cate gra n visua	are i adua I-ma	nterpr l or ap nual ic	and symbols. etive and actual changes may b proximate change between ma lentification (ASTM D 2488) uni //excavation (ATD) or for date s	terial strata or geologic units. less otherwise supported by la	aboratory testing				erial str	rata or ç	geologi	с
HC BORING	E Har	RTC	ROI	ws	Lo	roject: ocatioi roject	n:	Sea	Dexter ttle, WA 49-00			ring Log IC-5	9		Figur Shee		A-6 1 of	

Comments: Location and granut surface descatures are supported. Hote Dameter: 4.25 India: Casing Dameter: MA Total Diptri: 31.5 test Depth to downdowser: Not depth total No	Logge Locati Grour Horizo Vertic	ed by ion: nd Su ontal cal Da	v: <u>M.</u> urface Datu atum:	Fon Ele m:	ig evatio	on:	C	hecke	ed by	: <u>B. Dozier</u> Dri Ric Ha Ha Me	easured Hammer Efficiency (%): <u>NA</u>	mer Drop Heigh		30	
New years New years New years New years New years 0	Comn	nents	s: <u>Lo</u>	catio	on ai	nd ground s	urface	eleva	tions					entified	[
0 0 0 0 Asphalt/Concrete 10 0 0 0 5 10 0 0 0 Asphalt/Concrete 10 0 0 0 6 10 0 0 0 0 Air Kinfe to 4 feet. Auger to 5 feet. 10 0<					Sa	ample Data									
Air knife to 4 feet. Auger to 5 feet. Air knife to 4 feet. Auger to 5 feet. Air knife to 4 feet. Auger to 5 feet. Air knife to 4 feet. Auger to 5 feet. Big Air Air knife to 4 feet. Auger to 5 feet. Big Air Air knife to 4 feet. Auger to 5 feet. Big Air Air knife to 4 feet. Auger to 5 feet. Big Air Air knife to 4 feet. Auger to 5 feet. Big Air Air knife to 4 feet. Auger to 5 feet. Big Air Air Air Knife to 4 feet. Auger to 5 feet. Big Air			Blow Count	Type	Length (inches)	<u>Number</u> Tests	PID	Sheen	Graphic Log	D					0
Image: Second		-									feet.	-/			
		-								C C					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													•••		
Image: Section of the explanation of descriptions and symbols. Comment Mode: 1. Section Figure A-1 for explanation of descriptions and symbols. 2. Marcial descriptions are based on visual-manual identification (ASTM D 2489) unless otherwise supported by laboratory testing (ASTM D 2487). 2. Sections are based on visual-manual identification (ASTM D 2489) unless otherwise supported by laboratory testing (ASTM D 2487). 2. Marcial descriptions are based on visual-manual identification (ASTM D 2489) unless otherwise supported by laboratory testing (ASTM D 2487). 2. More the limit indicate (is limit in the of difference within the of		5-		\square	_						al an allow all the barrow and at				
$\frac{10}{90} = \frac{10}{10} = 10$		-	19 50	X a	⁵ 18	S-1 PID	<0.1	SS		אוע (סוען), tew grav	ei, medium sun, drown, moist.				4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-	~		<u>.</u>										
$= \frac{30}{10} \frac{10}{10} $			31 50	Д	= 18	PID	<0.1	SS							
a b	1	10-	20			6.2									
Image: Section of the section of th	$-\begin{array}{c c} & & \\ & $														
Image: Section of the section of th															
20 20 <td< td=""><td></td><td>_</td><td>50</td><td>Щ</td><td>18</td><td>PID</td><td><0.1</td><td>SS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		_	50	Щ	18	PID	<0.1	SS							
20 48 51 10 <td< td=""><td>1</td><td>15 —</td><td colspan="2"></td><td><u>S-5</u></td><td>.0.1</td><td></td><td></td><td>Becomes gray-brown.</td><td></td><td></td><td></td><td></td><td></td></td<>	1	15 —			<u>S-5</u>	.0.1			Becomes gray-brown.						
48 Note: 18 Status			50	Η	- 18	PID	<0.1 SS								
48 Note: 18 Status		_													
48 Note: 18 Status		-													
a a b	2	20	48	ة N		<u>S-6</u>	<0.1	SS		SILTY SAND WITH GRAVE	L (SM), medium stiff, brown, moist.		-		
130 Image: Triple in the strate indicate gradual or approximate changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. 30 1 Strate indicated gradual or approximate changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. 30 1 Strate indicated gradual or approximate change strate indicate distinct contact between material strata or geologic units. 30 1 Strate of changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. 31 USCS designations are based on visual-manual identification (ASTM D 2487) unless otherwise supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time. Project: 601 Dexter			50	Ĥ		PID									
Image: Second		-													
130 Image: Triple in the strate indicate gradual or approximate changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. 30 1 Strate indicated gradual or approximate changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. 30 1 Strate indicated gradual or approximate change strate indicate distinct contact between material strata or geologic units. 30 1 Strate of changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. 31 USCS designations are based on visual-manual identification (ASTM D 2487) unless otherwise supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time. Project: 601 Dexter		_													
General Notes: 1. Refer to Figure A-1 for explanation of descriptions and symbols. 2. Material descriptions and stratum lines are interpretive and actual changes may be gradual. Solid stratum lines indicate gradual or approximate change between material strata or geologic units. 3. USCS designations are based on visual-manual identification (ASTM D 2489) unless otherwise supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.	2		18 50	Ĭ	18	<u>S-7</u> PID	<0.1	SS							
50 Image: State of the second state second state of the second state of the second state of the seco		-		Ħ											
50 Image: State of the second state second state of the second state of the second state of the seco		-											•••		
50 Image: State of the second state second state of the second state of the second state of the seco	3	30 –		Ц.								_			
General Notes:	-	-	50	Å,	⁷⁵ 18	<u>S-8</u> PID	<0.1	SS							
General Notes: 1. Refer to Figure A-1 for explanation of descriptions and symbols. 2. Material descriptions and stratum lines are interpretive and actual changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. 3. USCS designations are based on visual-manual identification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time. Project: 601 Dexter Boring Log Figure A-f		-								Bottom of E	Borehole at 31.5 feet.				
General Notes: 1. Refer to Figure A-1 for explanation of descriptions and symbols. 2. Material descriptions and stratum lines are interpretive and actual changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. 3. USCS designations are based on visual-manual identification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time. Project: 601 Dexter Boring Log Figure A-f															
 Refer to Figure A-1 for explanation of descriptions and symbols. Material descriptions and stratum lines are interpretive and actual changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. Dashed stratum lines indicate gradual or approximate change between material strata or geologic units. USCS designations are based on visual-manual identification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487). Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time. 	3	35 -													
 Refer to Figure A-1 for explanation of descriptions and symbols. Material descriptions and stratum lines are interpretive and actual changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. Dashed stratum lines indicate gradual or approximate change between material strata or geologic units. USCS designations are based on visual-manual identification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487). Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time. 															
 Refer to Figure A-1 for explanation of descriptions and symbols. Material descriptions and stratum lines are interpretive and actual changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. Dashed stratum lines indicate gradual or approximate change between material strata or geologic units. USCS designations are based on visual-manual identification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487). Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time. 		_													
 Refer to Figure A-1 for explanation of descriptions and symbols. Material descriptions and stratum lines are interpretive and actual changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. Dashed stratum lines indicate gradual or approximate change between material strata or geologic units. USCS designations are based on visual-manual identification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487). Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time. 		-													
 2. Material descriptions and stratum lines are interpretive and actual changes may be gradual. Solid stratum lines indicate distinct contact between material strata or geologic units. Dashed stratum lines indicate gradual or approximate change between material strata or geologic units. 3. USCS designations are based on visual-manual identification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time. 					A-1 f	for explanati	ion of d	escriv	otione	and symbols					
 3. USCS designations are based on visual-manual identification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time. 	2. M	ateria	al des	scrip	tions	and stratur	m lines	are ir	nterpr	etive and actual changes may be gra		ntact between m	aterial stra	ata or g	jeologio
Project: 601 Dexter Boring Log Figure A-6	3. US	SCS	desig	gnati	ons	are based o	on visua	l-mar	nual io	dentification (ASTM D 2488) unless o	therwise supported by laboratory testing (AS	STM D 2487).			
				. 101	, 1										• •
HARTCROWSER Project No.: 19449-00 MW-1 Sheet 1 of						L	ocatio	n:	Sea	ttle, WA			_		A-t

APPENDIX B Chemical Data Quality Review and Laboratory Reports

APPENDIX B

Chemical Data Quality Review and Laboratory Reports

Chemical Data Quality Review

On April 3 and 4, 2019, 44 soil samples and one groundwater sample were collected and submitted to Advanced Analytical Laboratory (AAL) of Redmond, Washington for analysis. Results were reported as AAL Job Number C90411-3. On April 12, 2019, one groundwater sample was collected and submitted to AAL of Redmond, Washington for analysis. Results were reported as AAL Job Number C90412-3. On April 9 and 10, 2019, two soil vapor and two indoor air samples were collected and submitted to Fremont Analytical, Inc. (Fremont) of Seattle, Washington for analysis. Results were reported as Fremont Work Order Number 1904223.

Selected soil samples were analyzed for one or more of:

- Diesel- and heavy-oil-range total petroleum hydrocarbons (TPH) by Washington State Department of Ecology (Ecology) Method NWTPH-Dx;
- Gasoline-range TPH by Ecology Method NWTPH-Gx;
- Volatile organic compounds (VOCs) by Environmental Protection Agency (EPA) Method 8260B;
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B;
- Total metals (arsenic, cadmium, chromium, and lead) by EPA Method 7010;
- Total mercury by EPA Method 7471;
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270 SIM;
- Polychlorinated biphenyls (PCBs) by EPA Method 8082;
- Percent moisture by Standard Method (SM) 2540B.

Selected groundwater samples were analyzed for one or more of:

- VOCs by EPA Method 8260B;
- Diesel- and heavy-oil-range TPH by Ecology Method NWPTH-Dx;
- Gasoline-range TPH by Ecology Method NWTPH-Gx;
- Total and dissolved metals (lead, chromium, cadmium, and arsenic) by EPA Method 7010;
- Total and dissolved mercury by EPA Method 7470A;
- PAHs by EPA Method 8270; and
- Total suspended solids (TSS) by EPA Method 160.2.

Selected air samples (soil vapor and indoor air) were analyzed for one or more of:

- Petroleum fractionation by EPA Method TO-15;
- Helium by GC/TCD;
- Major gases (carbon dioxide, methane, and oxygen) by EPA Method 3C; and
- VOCs by EPA Method TO-15.

The laboratories performed ongoing quality assurance/quality control (QA/QC) reviews. Hart Crowser reviewed summary reports to check that they met data quality objectives for the project.

B-2 | 601 Dexter Property

The following criteria were evaluated during the standard data quality review process:

- Holding times;
- Reporting limits (RLs);
- Method blanks;
- Laboratory control sample (LCS) recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries;
- Laboratory duplicate relative percent difference (RPD); and
- Surrogate recoveries.

Most of the data were acceptable for use without qualification. The complete laboratory reports are at the end of this attachment. The data review is summarized below.

Sample Receiving Notes

No sample receiving discrepancies were noted by the laboratory. Discrepancies from the chains of custody (COCs) are:

C90411-3. Nineteen samples were placed on hold and not analyzed by the laboratory. The laboratory report contained two copies of the COC, one with a signature in the "Received by" section and one without. Sample results were not affected and no results were qualified.

1904223. The laboratory report contained two copies of the COC, one with additional analyses requested. Sample results were not affected and no results were qualified.

Soil Results

Diesel- and Heavy-Oil-Range TPH by NWTPH-Dx

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. The laboratory duplicate RPDs were not applicable as the sample and duplicate results were below the reporting limits. The method states that there should be one duplicate analyzed per ten or fewer samples. Sixteen samples were analyzed, but only one duplicate was analyzed. Analytical results were not affected, and no samples were qualified.

The data are acceptable for use without qualification.

Gasoline-Range TPH by NWTPH-Gx

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. The laboratory duplicate RPDs were not applicable as the sample and duplicate results were below the reporting limits. The method states that there should be one duplicate analyzed per ten or fewer samples. Fifteen samples were analyzed, but only one duplicate was analyzed. Analytical results were not affected, and no samples were qualified.

The data are acceptable for use without qualification.

VOCs by EPA Method 8260B

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits. MS and MSD recoveries and associated RPDs were within laboratory control limits.

The data are acceptable for use without qualification.

BTEX by EPA Method 8021B

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits. MS and MSD recoveries and associated RPDs were within laboratory control limits.

The data are acceptable for use without qualification.

Total Metals (As, Cd, Cr, and Pb) by EPA Method 7010

Holding times and reporting limits were acceptable. No method blank contamination was detected. The laboratory duplicate RPDs either were within method control limits or were not applicable because the sample and duplicate results were below the reporting limits.

LCS recoveries were within method control limits with the following exception:

 LCS 4/22/19. The LCS recovery for the lead analysis fell below the method control limit, but was within the laboratory control limit. The result for lead in sample HC-1-25 was qualified as estimated (J).

MS recoveries were within method control limits with the following exceptions:

MS HC-3-12.5. The MS recoveries for the lead and chromium analyses were not reported, and were flagged as M by the laboratory due to matrix interference. The results for lead and chromium in sample HC-3-12.5 were qualified as estimated (J).

The data are acceptable for use with qualification.

Total Metals (Hg) by EPA Method 7471

Holding times and reporting limits were acceptable. No method blank contamination was detected. LCS and MS recoveries were within method control limits. The laboratory duplicate RPDs were not applicable because the sample and duplicate results were below the reporting limits.

The data are acceptable for use without qualification.

PAHs by EPA Method 8270 SIM

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits. MS and MSD recoveries and associated RPDs were within laboratory control limits.

The data are acceptable for use without qualification.

PCBs by EPA Method 8082

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits. MS and MSD recoveries and associated RPDs were within laboratory control limits.

The data are acceptable for use without qualification.

Percent Moisture by SM 2540B

Holding times and reporting limits were acceptable.

The data are acceptable for use without qualification.

Groundwater Results

VOCs by EPA Method 8260B

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits. MS and MSD recoveries and associated RPDs were within laboratory control limits.

The data are acceptable for use without qualification.

Diesel- and Heavy-Oil-Range TPH by NWTPH-Dx

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. The laboratory duplicate RPDs were not applicable because the sample and duplicate results were below the reporting limits.

The data are acceptable for use without qualification.

Gasoline-Range TPH by NWTPH-Gx

Holding times and reporting limits were acceptable. No method blank contamination was detected. The laboratory duplicate RPDs either were within laboratory control limits or were not applicable because the sample and duplicate results were below the reporting limits.

Surrogate recoveries were within laboratory control limits with the following exception:

Samples HC-1-TMW and HC-1-TMW Laboratory Duplicate. One of two surrogate recoveries were not reported, and were flagged as C by the laboratory due to coelution with sample peaks. A high concentration of gasoline was present in the samples, and sample results were not qualified.

The data are acceptable for use without qualification.

Total and Dissolved Metals (As, Cd, Cr, and Pb) by EPA Method 7010

Holding times and reporting limits were acceptable. No method blank contamination was detected. LCS and MS recoveries were within method control limits. The laboratory duplicate RPDs either were within method control limits or were not applicable because the sample and duplicate results were below the reporting limits.

The data are acceptable for use without qualification.

Total and Dissolved Metals (Hg) by EPA Method 7470A

Holding times and reporting limits were acceptable. No method blank contamination was detected. LCS and MS recoveries were within method control limits. The laboratory duplicate RPDs were not applicable because the sample and duplicate results were below the reporting limits.

The data are acceptable for use without qualification.

PAHs by EPA Method 8270

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits. MS and MSD recoveries and associated RPDs were within laboratory control limits.

The data are acceptable for use without qualification.

TSS by EPA Method 160.2

Reporting limits were acceptable.

Holding times were acceptable with the following exceptions:

■ Sample HC-1-TMW. The method recommended holding time was exceeded. The result for TSS in sample HC-1-TMW was qualified as estimated (J).

The data are acceptable for use with qualification.

Air Results

Petroleum Fractionation by EPA Method TO-15

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits. The laboratory duplicate RPDs either were within laboratory control limits or were not applicable because the sample and duplicate results were below the reporting limits.

The data are acceptable for use without qualification.

Helium by GC/TCD

Holding times and reporting limits were acceptable. No method blank contamination was detected. LCS recoveries were within laboratory control limits. The laboratory duplicate RPDs were not applicable because the sample and duplicate results were below the reporting limits.

The data are acceptable for use without qualification.

Major Gases (Carbon Dioxide, Methane, and Oxygen) by EPA Method 3C

Holding times and reporting limits were acceptable. LCS recoveries were within laboratory control limits. The laboratory duplicate RPDs either were within laboratory control limits or were not applicable because the sample and duplicate results were below the reporting limits.

The data are acceptable for use without qualification.

VOCs by EPA Method TO-15

Holding times and reporting limits were acceptable. Surrogate recoveries were within laboratory control limits.

LCS and LCSD recoveries and associated RPDs were within laboratory control limits with the following exceptions:

LCS/LCSD 4/16/19. The LCS and LCSD recoveries for the 1,2,4-trichlorobenzene, 2-hexanone, 1,4-dioxane, and methylene chloride analyses fell below laboratory control limits. The results for 1,2,4-trichlorobenzene, 2-hexanone, 1,4-dioxane, and methylene chloride in samples CSE-1, CSW-1, SV-1, and SV-2 were qualified as estimated (J).

No method blank contamination was detected with the following exception:

Method Blank 4/16/19. Benzene was detected in the method blank. Samples CSE-1 and CSW-1 had benzene concentrations less than 5 times the concentration of benzene in the method blank. The results for benzene in samples CSE-1 and CSW-1 were qualified as non-detect (U). Samples SV-1 and SV-2 had benzene concentrations greater than 5 times the concentration of benzene in the method blank, and these sample results were not qualified.

The data are acceptable for use with qualification.

LABORATORY REPORTS

Environmental Testing Laboratory

April 19, 2019

Julie Wukelic Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600 Seattle, WA 98121

Dear Ms. Wukelic:

Please find enclosed the analytical data report for the 601 Dexter 19449-00 (C90412-3) Project.

Samples were received on *April 12*, 2019. The results of the analyses are presented in the attached tables. Applicable reporting limits, QA/QC data and data qualifiers are included. A copy of the chain-of-custody and an invoice for the work is also enclosed.

ADVANCED ANALYTICAL LABORATORY appreciates the opportunity to provide analytical services for this project. Should there be any questions regarding this report, please contact me at (425) 702-8571.

It was a pleasure working with you, and we are looking forward to the next opportunity to work together.

Sincerely,

. Ivanov

Val G. Ivanov, Ph.D. Laboratory Manager

4078 148 Ave NE ■ Redmond, WA 98052 425.702-8571 *E-mail: aachemlab@yahoo.com*

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized.

Sample Custody Record C90412-3

Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600 Seattle, Washington 98121 Office: 206.324.9530 • Fax 206.328.5581

JOB 194490	C LAB					· · · · · ·	REQU	JESTI 101	ED AN/	ALYSI	S	TI		<u>v</u>	2		
ی دی PROJECT NAME HART CROWSER CONT	1 Den	iter			NWTPH-GIA	Ц Ч			đ	ಸ್ನ							OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS
HART CROWSER CONT	ACT JUL	ie Wul	Lelic		1	1 1	5		Ci Ci	LL K							COMPOSITING INSTRUCTIONS
					1 D	G	РАН	VDC.S	7 32	5							5
SAMPLED BY: Mat	thew f	ong			N N	NWT PH-	9	3	Total MICH								
LAB NO. SAMPLE ID	DESCRIPTI		TIME	MATRIX												Ģ	5
HC-4		4/12/1	13:30	Water	X	X	X	X	X								
		1															
													_				
													_				
												_					
	DATE			DATE													
RELINQUISHED BY	DATE	RECEIVED, BY							NT H/ REME		LING O	к					TOTAL NUMBER OF CONTAINERS
STOTIAN PRESS	- 4/12 TIME	BIGNIATURE DE COLOR	n D/	04/12 TIME	-			-									CUSTODY SEALS:
PRINT NAME		PRINTINAME	AND		1												□YES □NO □N/A GOOD CONDITION
	- 16:10.	COMPANY		16:10													□YES □NO TEMPERATURE
RELINQUISHED BY DATE RECEIVED BY DATE				DATE	1												SHIPMENT METHOD: HAND
					† co	OLE	R NO	.:				STOR	AGE L	OCA	ION:	· · · · · · · · · · · · · · · · · · ·	URNAROUND TIME:
SIGNATURE SIGNATURE TIME				TIME	-												□ 24 HOURS □ 1 WEEK
PRINT NAME		PRINT NAME			See	e Lab	Wor	k Or	der N	0							□48 HOURS TANDARD
COMPANY		for	Oth	er Co	ntrac	ct Rec	quire	ments						□72 HOURS OTHER			

White to Lab Yellow to Project Manager Pink to Sample Custodian

AAL Job Number: Client: Project Manager: Client Project Name: Client Project Number: Date received: C90412-3 Hart Crowser, Inc. Julie Wukelic 601 Dexter 19449-00 04/12/19

C90412-3
Hart Crowser, Inc.
Julie Wukelic
601 Dexter
19449-00
04/12/19

Analytical Results 8260B, μg/L		MTH BLK	LCS	HC-4	MS HC-4	MSD HC-4	RPD HC-4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits			04/18/19			
Bate analyzed	Roporting Linito	01/10/10	01/10/10	01/10/10	01/10/10	0 1/ 10/ 10	0 1/ 10/ 10
МТВЕ	5.0	nd		nd			
Chloromethane	1.0	nd		nd			
Vinyl chloride(*)	0.2	nd		nd			
Bromomethane	1.0	nd		nd			
Chloroethane	1.0	nd		nd			
Trichlorofluoromethane	1.0	nd		nd			
1,1-Dichloroethene	1.0	nd		nd			
Methylene chloride	1.0	nd		nd			
trans-1,2-Dichloroethene	1.0	nd		nd			
1,1-Dichloroethane	1.0	nd		nd			
2,2-Dichloropropane	1.0	nd		nd			
cis-1,2-Dichloroethene	1.0	nd		nd			
Chloroform	1.0	nd		nd			
1,1,1-Trichloroethane	1.0	nd		nd			
Carbontetrachloride	1.0	nd		nd			
1,1-Dichloropropene	1.0	nd		nd			
Benzene	1.0	nd	84%	nd	87%	93%	7%
1,2-Dichloroethane(EDC)	1.0	nd	01/0	nd	07.70	00/0	,,,,
Trichloroethene	1.0	nd	79%	nd	86%	88%	3%
1,2-Dichloropropane	1.0	nd	7070	nd	0070	0070	070
Dibromomethane	1.0	nd		nd			
Bromodichloromethane	1.0	nd		nd			
cis-1,3-Dichloropropene	1.0	nd		nd			
Toluene	1.0	nd	89%	nd	89%	98%	9%
trans-1,3-Dichloropropene	1.0	nd	0070	nd	0070	5070	370
1,1,2-Trichloroethane	1.0	nd		nd			
Tetrachloroethene	1.0	nd		nd			
1,3-Dichloropropane	1.0	nd		nd			
Dibromochloromethane	1.0	nd		nd			
1,2-Dibromoethane (EDB)*	0.01	nd		nd			
Chlorobenzene	1.0	nd	97%	nd	95%	106%	11%
1,1,1,2-Tetrachloroethane	1.0	nd	01/0	nd	5070	10070	1170
Ethylbenzene	1.0	nd		nd			
Xylenes	1.0	nd		nd			
Styrene	1.0	nd		nd			
Bromoform	1.0	nd		nd			
Isopropylbenzene	1.0	nd		nd			
1,2,3-Trichloropropane	1.0	nd		nd			
Bromobenzene	1.0	nd		nd			
1,1,2,2-Tetrachloroethane	1.0	nd		nd			
n-Propylbenzene	1.0	nd		nd			
2-Chlorotoluene	1.0	nd		nd			
4-Chlorotoluene	1.0	nd		nd			
1,3,5-Trimethylbenzene	1.0	nd		nd			
tert-Butylbenzene	1.0	nd		nd			
1,2,4-Trimethylbenzene	1.0	nd		nd			
sec-Butylbenzene	1.0	nd		nd			
1,3-Dichlorobenzene	1.0	nd		nd			
1,0 DIGHIOLODGHZGHG	1.0	nu		nu			

AAL Job Number:	C90412-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19449-00
Date received:	04/12/19

Analytical Results					MS	MSD	RPD
8260B, μg/L		MTH BLK	LCS	HC-4	HC-4	HC-4	HC-4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	04/18/19	04/18/19	04/18/19	04/18/19	04/18/19	04/18/19
Isopropyltoluene	1.0	nd		nd			
1,4-Dichlorobenzene	1.0	nd		nd			
1,2-Dichlorobenzene	1.0	nd		nd			
n-Butylbenzene	1.0	nd		nd			
1,2-Dibromo-3-Chloropropane	1.0	nd		nd			
1,2,4-Trichlorobenzene	1.0	nd		nd			
Hexachloro-1,3-butadiene	1.0	nd		nd			
Naphthalene	1.0	nd		nd			
1,2,3-Trichlorobenzene	1.0	nd		nd			
*-instrument detection limits							
Surrogate recoveries							
Dibromofluoromethane		95%	89%	92%	96%	91%	
Toluene-d8		104%	86%	93%	93%	87%	
1,2-Dichloroethane-d4		95%	98%	97%	98%	95%	
4-Bromofluorobenzene		101%	96%	108%	99%	97%	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90412-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19449-00
Date received:	04/12/19

Analytical Results				Dupl
NWTPH-Dx, mg/L		MTH BLK	HC-4	HC-4
Matrix	Water	Water	Water	Water
Date extracted	Reporting	04/13/19	04/13/19	04/13/19
Date analyzed	Limits	04/13/19	04/13/19	04/13/19
Kerosene/Jet fuel	0.20	nd	nd	nd
Diesel/Fuel oil	0.20	nd	nd	nd
Heavy oil	0.50	nd	nd	nd
Surrogate recoveries:				
Fluorobiphenyl		115%	113%	130%
o-Terphenyl		102%	117%	128%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

na - not analyzed

Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

AAL Job Number:	C90412-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19449-00
Date received:	04/12/19

Analytical Results				Dupl
NWTPH-Gx		MTH BLK	HC-4	HC-4
Matrix	Water	Water	Water	Water
Date analyzed	Reporting Limits	04/15/19	04/15/19	04/15/19
<u>NWTPH-Gx, mg/L</u>				
Mineral spirits/Stoddard	0.10	nd	nd	nd
Gasoline	0.10	nd	nd	nd
Surrogate recoveries:				
Trifluorotoluene		120%	112%	102%
Bromofluorobenzene		115%	93%	71%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

na - not analyzed C - coelution with sample peaks Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90412-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19449-00
Date received:	04/12/19

Analytical Results					Dupl	MS
Metals Total (7010/747A), mg	g/L	MTH BLK	LCS	HC-4	HC-4	HC-4
Matrix	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	04/17/19	04/17/19	04/17/19	04/17/19	04/17/19
Date analyzed	Limits	04/17,18/19 (04/17,18/19	04/17,18/19	04/17,18/19	04/17,18/19
Lead (Pb)	0.002	nd	100%	0.002	nd	75%
Chromium (Cr)	0.01	nd	96%	nd	nd	92%
Cadmium (Cd)	0.005	nd	84%	nd	nd	92%
Arsenic (As)	0.005	nd	106%	nd	nd	115%
Mercury (Hg) (7470A)	0.0005	nd	118%	nd	nd	108%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90412-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19449-00
Date received:	04/12/19

Analytical Results					MS	MSD	RPD
PAH(8270), ug/L		MTH BLK	LCS	HC-4	HC-4	HC-4	HC-4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	04/18/19	04/18/19	04/18/19	04/18/19	04/18/19	04/18/19
Date analyzed	Limits	04/18/19	04/18/19	04/18/19	04/18/19	04/18/19	04/18/19
	<u> </u>						
Naphthalene	0.1	nd		nd			
1-MethylNaphthalene	0.1	nd		nd			
2-MethylNaphthalene	0.1	nd		nd			
Acenaphthylene	0.1	nd		nd			
Acenaphthene	0.1	nd	83%	nd	98%	83%	16%
Fluorene	0.1	nd		nd			
Phenanthrene	0.1	nd		nd			
Anthracene	0.1	nd		nd			
Fluoranthene	0.1	nd		nd			
Pyrene	0.1	nd	80%	nd	99%	85%	15%
Benzo(a)anthracene	0.1	nd		nd			
Chrysene	0.1	nd		nd			
Benzo(b)fluoranthene	0.1	nd		nd			
Benzo(k)fluoranthene	0.1	nd		nd			
Benzo(a)pyrene	0.1	nd		nd			
Indeno(1,2,3-cd)pyrene	0.1	nd		nd			
Dibenzo(ah)anthracene	0.1	nd		nd			
Benzo(ghi)perylene	0.1	nd		nd			

Surrogate recoveries:						
Fluorobiphenyl	135%	101%	149%	104%	99%	
o-Terphenyl	104%	102%	106%	99%	105%	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed Acceptable Recovery limits: 50% TO 150% Acceptable RPD limit: 50%

Environmental Testing Laboratory

April 23, 2019

Julie Wukelic Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600 Seattle, WA 98121

Dear Ms. Wukelic:

Please find enclosed the analytical data report for the 6091 Dexter 19D1155070 (C90411-3) Project.

Samples were received on *April 11*, 2019. The results of the analyses are presented in the attached tables. Applicable reporting limits, QA/QC data and data qualifiers are included. A copy of the chain-of-custody and an invoice for the work is also enclosed.

ADVANCED ANALYTICAL LABORATORY appreciates the opportunity to provide analytical services for this project. Should there be any questions regarding this report, please contact me at (425) 702-8571.

It was a pleasure working with you, and we are looking forward to the next opportunity to work together.

Sincerely,

V. Ivanov

Val G. Ivanov, Ph.D. Laboratory Manager

4078 148 Ave NE ■ Redmond, WA 98052 425.702-8571 *E-mail: aachemlab@yahoo.com*

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized.

Sample Custody Record	y Record			HARTCROWSER	Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600 Seattle, Washington 98121 Office: 206.324.9530 • Fax 206.328.5581
INF ICIDIISSO70	I AR NIIMRER			SREQUESTED ANALYSIS	
JECT NAME	exter			(/ /s.t.2	ORCERVATIONS/COMMENTS/
HART CROWSER CONTACT				- 67 - 5 - 5 - 5 - 5 - 5 - 6 - 5 - 6 - 5 - 6 - 5 - 6 - 5 - 6 - 5 - 6 - 5 	
				2#). OF
SAMPLED BY: M. Forg				TP TP Vo To P F TI To	NO
LAB NO. SAMPLE ID DES	DESCRIPTION DATE	TIME	MATRIX		PID reading (77m) Sheentest
1-5 5-1-5 S-1	E/h 1-	119 Dazz	5011		
F1C-1-7.5 S.	-2	2tho			1 d'1 25
HC-1-10 5.	5-3	0957			15 55
HC-1-115 S.	S-4	1005			IHO SS
HC-1-15 S.	5	Je01			CH.H SS
HC-1-17.5 5-	6	1026			SS Ł'be
HC-1-20 S	5-7	1034			275 NS
HC-1-25 S	Ś	8401			cloo ss
HC-1-30 S	-q V	1104	4		5S 52H A
HC-1-THW S-	-10 4/3,	00/19 1400	water		8 water found at 25A, bgs
RELINQUISHED BY , D/	DATE RECEIVED BY	ВҮ	DATE	SPECIAL SHIPMENT HANDLING OR	TOTAL NUMBER OF CONTAINERS
Tom All	TIME SIGNATURE		TIME	N	SAMPLE RECEIPT INFORMATION CUSTODY SEALS:
Harr Lawe 2	1240 COMPANY			WATER MEIALS DISSOLVED & TOTAL	GOOD CONDITION
RELINQUISHED BY D/	DATE RECEIVED BY	ВҮ	DATE		SHIPMENT METHOD: DHAND
SIGNATURE	TIME SIGNATURE		TIME	COOLER NO.: STORAGE LOCATION:	TURNAROUND TIME:
Æ				See Lab Work Order No.	□48 HOURS □STANDARD
				for Other Contract Requirements	D72 HOURS OTHER
White to Lab Yellow to Project Manager	nager Pink to Sample Custodian	le Custodian			

-

□48 HOURS □STANDARD □72 HOURS OTHER	See Lab Work Order No		PRINT NAME COMPANY Pink to Sample Custodian		VE Yellow to Project Manager	PRINT NAME COMPANY White to Lab
TURNAROUND TIME:	COOLER NO.: STORAGE LOCATION:	TIME	SIGNATURE	TIME SIGN	m	SIGNATURE
TEMPERATURE INO SHIPMENT METHOD: IHAND ICOURIER IOVERNIGHT		DATE	COMPANY RECEIVED BY	DATE RECEIVE	SHED BY	COMPANY
		TIME	SIGNATURE	TIME SIGN		SIGNATURE
TOTAL NUMBER OF CONTAINERS	SPECIAL SHIPMENT HANDLING OR STORAGE REQUIREMENTS:	DATE	RECEIVED BY		ISHED BY	RELINQUISHED
4-		4-	A 1619	d-S	HC-2-15	
25.25			1609	55	1-10-2-12-5	õ-
			1602	F V	416-2-10	Q 0
NC NC			1525	2-2	HC-2-5	4-0
			1520	5-	HC-2-25	Ø
0.0 /		4	\$ 1435	5-5	HC-5-15	(JI
0,0 /			1415	S-4	HC-5-12.5	F
0,0 /			1335	5-3	HC-5-10	3
0.0 / 55	*		1323	S-2	HC-5-75	2
3 0.0 /		1:05	4/3/14 1305	5-1	HC-5-5	_
PID reading / Sheen test		MATRIX	DATE TIME	DESCRIPTION	SAMPLE ID D	LAB NO.
NO. OF CO	TPH-6X TPH-DX VOCS TOTALM PAHS PCBS				HART CROWSER CONTACT	HART CRO SAMPLED
	letals			Dexter	RE	PROJECT NAME
5	REQUESTED ANALYSIS		-00	19449		Les .
Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600 Seattle, Washington 98121 Office: 206.324.9530 • Fax 206.328.5581	HARTCROWSER		d	ly Recor	Sample Custody Record	Samble C

DARD	24 HOURS I I WEEK 148 HOURS I STANDARD						ter No.	Nork On	See Lah Work Order No	IIME		PRINT NAME		IIME		PRINT NAME
	ID TIMI		STORAGE LOCATION:	AGE LO	STOR,			NO.:	COOLER NO.:			SIGNATURE	<u> </u>			SIGNATURE
	COURIER									DATE		RECEIVED BY	<u> </u>	DATE	HED BY	RELINQUISHED BY
		TEMPE										COMPANY		(UHO	1.260	COMPANY
	CONDITI	60										PRINT NAME		5	0	PRINT NAME
	CUSTODY SEALS:									TIME		SIGNATURE		\leq	r r	SIGNATURE
NO	SAMPLE RECEIPT INFORMATION	SAM					REMENT	E REQUI	STORAGE REQUIREMENTS:				à	Ę	X	
TOTAL NUMBER OF CONTAINERS	TOTAL NUMBE				R		VT HAN	SHIPME	SPECIAL	DATE		RECEIVED BY		DATE	HED BY	RELINQUISHED BY
				_									- - - - - -			
						-										
SS	4	3						X	X	4-	633	4-	à	S	HC-4-35	
SS		w							N N		1545		4	F-2	HC-4-25	
S		w									1536		6		HC-4-20	
		3					X	X	XX		1515		5	5-5	HC-4-15	
		-						· ·			1505		1	5-4	HC-4-12.5	
SS		Ś							\mathbf{X}		1455		V	5-2	HC-4-10	
<i>\$</i> \$		-				'n					1445			S-7	HC-4-7.5	
SS SS	Û, Û	S							X	501		4/14/19		5-1	HC-4-5	
Sheen Test	(MAd) QIZ									MATRIX	TIME	DATE	DESCRIPTION	BESC	Sample 1D	LAB NO.
		NO.				/	P	VC Ta	TP					77	SAMPLED BY: W. For	SAMPLED
		. OF (<u> </u>	4 H C [)(5ta	<u>пн</u> н -							
COMPOSITING INSTRUCTIONS	COMPOSITIN	CONT				/	3-	s 1 <u>M</u>	$\frac{1}{D}$					ั 	HART CROWSER CONTACT	HART CRO
ORSERVATIONS/COMMENTS/	ORSERVATIO	FAINE						ko	6-X (Derter		AME GOI	PROJECT NAME_
		RS				TED AN	REQUESTED ANALYSIS	145				SER	LAB NUMBER		1155070	JOB 19011555
Seattle, Washington 98121 Office: 206.324.9530 • Fax 206.328.5581	Seattle Office: 206.324.			R	NSER	ЮM	LARTCRON	HNA							oed to:	Samples Shipped to:
Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600	3131 Ellic							H	1.			rd	Reco	ody	Sample Custody Record	Sampl

----9

				Custodian	Pink to Sample Custodian	╞	White to Lab Yellow to Project Manager
T72 HOURS OTHER	irements	for Other Con			COMPANY		COMPANY
HOURS STANDARD		See Lab Work Order No.			PRINT NAME		PRINT NAME
24 HOURS 1 WEEK	I 24		TIME		SIGNATURE	TIME	SIGNATURE
TURNAROUND TIME:	STORAGE LOCATION: TURN/	COOLER NO .:					
COURIER DOVERNIGHT			DATE		RECEIVED BY	DATE I	RELINQUISHED BY
					COMPANY	0112	COMPANY CONSEC
			TIME		PRINT NAME	TIME	PRINT NAME
CUSTODY SEALS:		STORAGE REQUIREMENTS:				Hurid	CICANTIINE AND
TOTAL NUMBER OF CONTAINERS	SPECIAL SHIPMENT HANDLING OR	SPECIAL SHIPI	DATE		RECEIVED BY	DATE F	RELINQUISHED BY
V 25			4	Oquu	4-	5-2	HC-3-30
				2		_	•
55	3			0925		t-5	HC-3-25
2M	l l	Х		0910		5-6	HC-3-20
55		X		0855		5-5	HC-3- 15
SN				0845		5-4	HC-3-12-5
SNI			1	0835		S-J	HC-3-10
SS		XXX		0230		2-2	HC-3-7.5
55 0.0			5011	02200	4/4/19	5-1	HC-3-5
PID (rom) Sheen Test			MATRIX	TIME	DATE	DESCRIPTION	LAB NO. SAMPLE ID
	Tot PA P	TP TPH Ve				de la	SAMPLED BY: 1U, Forg
	of cc	2#- 2-12 025					HARI CRUWSER CUNIACI
	S	6))X					
		X	*			Dexter	PROJECT NAME
	REQUESTED ANALYSIS				MBER	C LAB NUMBER	JOB UDVISSO 7
Seattle, Washington 98121 Office: 206.324.9530 • Fax 206.328.5581	LARTCROWSER	НИ					Samples Shipped to:
Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600		H			ord	ody Rec	Sample Custody Record

	ramonto		COMPANY		COMPANY
□48 HOURS □STANDARD	See Lah Work Order No.		PRINT NAME		PRINT NAME
24 HOURS 1 WEEK		TIME	SIGNATURE	TIME	SIGNATURE
ND TIME:	COOLER NO.: STORAGE LOCATION: TUR				
COURIER DOVERNIGHT	SH	DATE	RECEIVED BY	DATE RI	RELINQUISHED BY
	TE		COMPANY	(1040 CC	
GOOD CONDITION			PRINI NAME		
		TIME	SIGNATURE		USIGNATURE Forg
SAMPLE RECEIPT INFORMATION				Wivig	and the second
TOTAL NUMBER OF CONTAINERS	SPECIAL SHIPMENT HANDLING OR	DATE	RECEIVED BY	DATE RE	RELINQUISHED BY
		•			
0 55		<1-	0171 A	5-2	14W-1-30
moderatie survey			1158	42	MW-1-25
SS	3		1150	56	1410-1-20
ŚŚ			1130	5-5	NWW-1-15
SS			1125	Y-4	M/W-1-125
25			11/02	5-3	MW-1-10
SS			1052	5-2	MW-1-7,5
0.0 SS		Sor	4/4/19 1035	4	MW-1-5
PID Steen Test		MATRIX	DATE TIME	DESCRIPTION	LAB NO. SAMPLE ID
				ť	SAMPLED BY: M. Fory
		011			
COMPOSITING INSTRUCTIONS	B 5				HART CROWSER CONTACT
OBSERVATIONS/COMMENTS/				Dexter	PROJECT NAME
	REQUESTED ANALYSIS		1BER	LAB NUMBER	108 19 11 1550 70
Clifee: 200.327.3330 - 187 200.320.3301		-			-
3131 Elliott Avenue, suite 600 Seattle, Washington 98121 Office: 206 324 9530 • Fax 206 328 5581	HARTCROWSER		ora	oay kec	Samples Shipped to:
Hart Crowser, Inc.				ndi Doc	comple Cirt

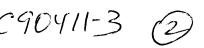
-

Sample Custody Record

MFW MLSE	C90411-3
--------------------	----------

1

Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600 Seattle, Washington 98121 Office: 206.324.9530 • Fax 206.328.5581

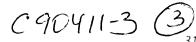

Samples	Shipped	to:
Junphed	ampped	

amples Shipped to:				MARTCROWSER	Seattle, Washington 981 Office: 206.324.9530 • Fax 206.328.55		
JOB 197155070 LAB NUMBER PROJECT NAME 601 Dexter HART CROWSER CONTACT SAMPLED BY: M. Forg			J. H. C. C. S. C.	NO. OF CONTAINERS	ц. О		
	DESCRIPTIO	N DATE TIME	MATRIX			PID reading (FPM)	Shlentest
46-1-5	5-1	4/3/19 0935	2011		3	20	S S
1-10-1-7.5		1 0948				9.4	SS
HC-1- 10	· · · · · · · · · · · · · · · · · · ·	0957				15	55
HC-1-17=	· · · · · · · · · · · · · · · · · · ·	1005		XXX		140	55
HC-1-15	5-5	7501				64.4	SS
+10-1-17.5	5 5-6	1026				397	55
HC-1-20	5-7	1634				275	NS
HC-1-25	5-8	1048		\times \times \times \times	·····	900	<u></u>
HC-1-30		V 1104	4		∇	485	55
HC-L-TMW	D 5-10	4/3/19 1400	Water		8	Water Found at 251 & Addled b	
						04/22/19	VFZ
RELINQUISHED BY	DATE	RECEIVED BY	DATE	SPECIAL SHIPMENT HANDLING OR		TOTAL NUMBER OF	CONTAINERS
SIGNATURE	\$/11/19	hand	04/18/19	STORAGE REQUIREMENTS: METALS - MTCH S	1	PLE RECEIPT INFORMATION TODY SEALS	
Treshan Morgania	TIME	SIGNATURE TAND	TIME	WATER METALS		es 🛛 🗆 NO Do Condition	⊡N/A
COMPANY	1240	COMPANY		DISSOLVED & TOTAL MTCA S	⊂⊐Y TEN∕	ES 🖾 NO IPERATURE	
RELINQUISHED BY	DATE	RECEIVED BY	DATE			PMENT METHOD: □HAND OURIER □OVERNIG	GHT
				COOLER NO.: STORAGE LOCATION	: TURI	NAROUND TIME:	
SIGNATURE	TIME	SIGNATURE	TIME			4 HOURS 🗌 1 WEEK	
PRINT NAME		PRINT NAME		See Lab Work Order No		HOURS ESTANDAR	
COMPANY		COMPANY		for Other Contract Requirements	[[]7:	2 HOURS OTHER	

Yellow to Project Manager White to Lab

Sample Custody Record

C	90


Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600 Seattle, Washington 98121

Office:	206.	324.	9530	• Fax	206.328	1.5581

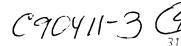
Samples Shi	pped to:		1000	2	Harrinowser		1970-1000-1000-1000-1000-1000-1000-1000-	Seattle	e, Washington 9812 2530 • Fax 206.328.558
			VUMBER		REQUESTED ANALYSIS		LERS .		
	NAME 601				-E		CONTAINERS	OBSERVATIO	N5/COMMENTS/
HART CROWSER CONTACT WIKELL				BS HALL		ч О	COMPOSITING	G INSTRUCTIONS	
SAMPLE	WY: A C. For	<u>}</u>			P 4 6 1 2 # 1 3 #		NON INC.		
LAB NO.	SAMPLE ID	DESCRIPTIC	N DATE	TIME MATRIX			71	Dreading	/ Sheontest
1	HC-5-5	5-1	4/3/14	1305 soil			3	0.0	/ 55
	146-5-75	S-7		1323				0 · 0	<u>\$5</u> .
3	HC-5-10	S-3		1335				0.0	/55
4	H(-5-123	5-4		1415				0.0 /	1 105
5	HC-5-15	5-5	4	1435 1			171	0.0	<u> </u>
4	1-1C-2-25	⁽ 3-1		1520				0.0	55
7	HC.7-5	S- 2		1525				0.0	the ss
8	+16-2-7.5	<u>S-3</u>		1545				0.0	NS
9	HC-2-10	<u> </u>		1602	XXXXXXX			0.0	55
01	1-10-2-12.5	5-5		1609					##\$ 55
! (1-1C-2-15	5-6	∇	1619 2			∇		S NS
RELINQUI	ISHED BY	DATE	RECEIVED BY	DATE	SPECIAL SHIPMENT HANDLING OR STORAGE REQUIREMENTS:				OF CONTAINERS
SIGNATURE		4/17/19			IG TOTAGE REQUIREMENTS.		CUSTOD	RECEIPT INFORMATIC (SEALS:	JN
PRINT NAM	June marine	TIME	SIGNATURE TVAC	MV TIME			GOOD CO		□N/A
COMPANY	inderstander die	12.462	COMPANY	1.000000000000000000000000000000000000			TEMPERA	⊡NO	
RELINQUI	ISHED BY	DATE	RECEIVED BY	DATE	-		SHIPMEN	IT METHOD □HANI ER □OVEF	
					COOLER NO.: STORAGE L	OCATION:		DUND TIME:	
SIGNATURE		TIME	SIGNATURE	TIME		-	🗆 24 HO	URS 🗆 1 WEE	ΕK
PRINT NAM	E		PRINT NAME		See Lab Work Order No.		€]48 ноц		ARD
COMPANY			COMPANY		for Other Contract Requirements		□72 HOU	JRS OTHER _	

Yellow to Project Manager White to Lab Pink to Sample Custodian

laFhii March

Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600

Sampl	es	Shipped	to:	
-------	----	---------	-----	--


Samples Shippe	ed to:		=				HART	CROWS				Seattle Office: 206.324.9	, Washington 98121 530 • Fax 206.328.5581
PROJECT NA	ME <u>GOI</u> /ser contac	Dextex T	and the second se			<u>ТРН-6Х</u> ТРН-DX	VULS TOTAL METALS	QUESTED ANAL	YSIS		NO. OF CONTAINERS		IS/COMMENTS/ INSTRUCTIONS
	SAMPLE ID	DESCRIPTI	ON DATE	TIME	MATRIX							PID (FFM)	Sheer Test
H	10-4-5	5-1	1/11/19	1432	soil	1 He					3	0.0	<u>Ss</u>
H	16-4-75	S-2		1445									55
	1C-4-10			1455		XX				THE OWNER OF THE OWNER OWNER OF THE OWNER	3		<u>\$</u> \$
H	10-4-12,5	5-4		1505			4			a construction of the second sec			
Н	1-4-15	5-5		1515		X X	XXX				3		
				1536							3		<u>SS</u>
H	10-4-25	5-7		1545		HE I	£4				2		55 85
+	10-4-35	5-Q	4	1633	4	X_X	$\times \square$				3	4	55
										i			
RELINQUISHI	ED BY	DATE	RECEIVED BY		DATE			HANDLING OR				TOTAL NUMBER	OF CONTAINERS
SIGNATURE PRINT NAME Hasi (), OF COMPANY	-ong-	TIME	SIGNATURE SIGNATURE PRINT NAME A COMPANY	THIN DY/18/15 STORAGE REQUIREMENTS: TRANOL TIME AL				SAMPLE RECEIPT INFORMATION CUSTODY SEALS. INC IN/A GOOD CONDITION INFS INO TEMPERATURE		□N/A			
RELINQUISH	ED BY	DATE	RECEIVED BY		DATE						SHIPMI	ENT METHOD. □HAND RIER □OVERI	
SIGNATURE PRINT NAME		TIME	SIGNATURE PRINT NAME		TIME				ORAGE LOCATIC	DN:		ROUND TIME:	
COMPANY			COMPANY					equirements			□72 H	OURS OTHER	

White to Lab Yellow to Project Manager

Sample Custody Record

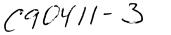
HarrCrowes

Hart Crowser. Inc. 3131 Elliott Avenue, Suite 600 Seattle, Washington 98121

Office: 206.324.9530 • Fax 206.328.5581

Samples Shipped to:

REQUESTED ANALYSIS JOB CONSCIENCE LAB NUMBER CONTAINERS PROJECT NAME 601 Dexter X OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS HART CROWSER CONTACT 5 NO. SAMPLED BY: MIFCING LAB NO. SAMPLE ID DESCRIPTION DATE MATRIX PID (m) TIME Sheen Test 4/4/19 0820 25 W1-2-5 Soil 2 5-1 0.0 0830 46-3-75 5-2 55 NS HC-3-101 0835 3 5-2 41-3-17-5 5-4 NS 0845 HC-3-15 2 5-5 55 0855 中 \supset 3 NS 40-3-20 5-6 0910 3 35 HC-3-25 5-7 0925 55 HC-3-30 5-7 ()944 77 ∇ RECEIVED BY **RELINQUISHED BY** DATE DATE SPECIAL SHIPMENT HANDLING OR TOTAL NUMBER OF CONTAINERS V. HEALDY SIGNATURE TVANOV PRINT NAME AL STORAGE REOUREMENTS: 04/18/ TIME SAMPLE RECEIPT INFORMATION Jeffaction of CUSTODY SEALS: SIGNATURE TIME Morthu 1-10-ΠNO DN/A PRINT NAME. GOOD CONDITION 1911() -that Contactor **E**YES **DNO** COMPANY **TEMPERATURE** SHIPMENT METHOD. □HAND **RELINQUISHED BY** DATE RECEIVED BY DATE □OVERNIGHT COOLER NO. STORAGE LOCATION: TURNAROUND TIME: SIGNATURE SIGNATURE □ 24 HOURS 🗆 1 WEEK TIME TIME PRINT NAME PRINT NAME 1248 HOURS **CISTANDARD** See Lab Work Order No. COMPANY COMPANY OTHER for Other Contract Requirements T72 HOURS


Yellow to Project Manager White to Lab

Pink to Sample Custodian

Sample Custody Record

2750 AR AT

HASTOPALISER

Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600 Seattle, Washington 98121

Seattle, Washington 98121 Office: 206 324 9530 • Fax 206 328 5581

Samples Shipped to:

REQUESTED ANALYSIS JOB 9 USSO70 LAB NUMBER CONTAINERS PROJECT NAME (CO) Dexter OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS HART CROWSER CONTACT 4O NO. SAMPLED BY: M. Forg PID LAB NO. SAMPLE ID DESCRIPTION DATE TIME MATRIX Stean Test SS 4/4/191.035 3 (), 012/11-1-5 5-1 South MW-1-7.5 1052 55 5-2 3 5-3 1102 55 MW-1-10 35 MW-1-125 5-4 1125 3 55 MW-1-15 5-5 1130 55 1410-1-201 1150 5-6 3 e shren a, 677 iMW-1-25 1158 5-8 3 MW-1-30 1210 **RELINQUISHED BY** DATE DATE RECEIVED BY SPECIAL SHIPMENT HANDLING OR TOTAL NUMBER OF CONTAINERS -Vann STORAGE REQUIREMENTS: DU 18 SAMPLE RECEIPT INFORMATION SIGNVALE FRAN CUSTODY SEALS: SIGNATURE Landers) From TIME DN/A PRINT NAMA PRINT NAME GOOD CONDITION **ENO** COMPANY COMPANY TEMPERATURE _ SHIPMENT METHOD: CHAND **RELINOUISHED BY** DATE RECEIVED BY DATE COVERNIGHT COOLER NO .: STORAGE LOCATION: TURNAROUND TIME: SIGNATURE SIGNATURE 24 HOURS 1 WEEK TIME TIME PRINT NAME PRINT NAME ☐48 HOURS **EISTANDARD** See Lab Work Order No. COMPANY COMPANY for Other Contract Requirements □72 HOURS OTHER

White to Lab Yellow to Project Manager Pink to Sample Custodian

AAL Job Number: Client: Project Manager: Client Project Name: Client Project Number: Date received: C90411-3 Hart Crowser, Inc. Julie Wukelic 601 Dexter 19D1155070 04/11/19

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results					MS	MSD	RPD
8260B, μg/L		MTH BLK	LCS	HC-1-TMW	HC-1-TMW	HC-1-TMW	HC-1-TMW
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	aporting Lim	04/11/19 0	4/11/19	04/11/19	04/11/19	04/11/19	04/11/19
MIDE	5.0						
MTBE	5.0	nd		nd			
Chloromethane	1.0	nd		nd			
Vinyl chloride(*)	0.2	nd		nd			
Bromomethane	1.0	nd		nd			
Chloroethane	1.0	nd		nd			
Trichlorofluoromethane	1.0	nd		nd			
1,1-Dichloroethene	1.0	nd		nd			
Methylene chloride	1.0	nd		nd			
trans-1,2-Dichloroethene	1.0	nd		nd			
1,1-Dichloroethane	1.0	nd		nd			
2,2-Dichloropropane	1.0	nd		nd			
cis-1,2-Dichloroethene	1.0	nd		nd			
Chloroform	1.0	nd		nd			
1,1,1-Trichloroethane	1.0	nd		nd			
Carbontetrachloride	1.0	nd		nd			
1,1-Dichloropropene	1.0	nd		nd			• • •
Benzene	1.0	nd	77%	nd	80%	80%	0%
1,2-Dichloroethane(EDC)	1.0	nd		nd			
Trichloroethene	1.0	nd	78%	nd	82%	84%	3%
1,2-Dichloropropane	1.0	nd		nd			
Dibromomethane	1.0	nd		nd			
Bromodichloromethane	1.0	nd		nd			
cis-1,3-Dichloropropene	1.0	nd		nd			
Toluene	1.0	nd	90%	nd	88%	94%	6%
trans-1,3-Dichloropropene	1.0	nd		nd			
1,1,2-Trichloroethane	1.0	nd		nd			
Tetrachloroethene	1.0	nd		nd			
1,3-Dichloropropane	1.0	nd		nd			
Dibromochloromethane	1.0	nd		nd			
1,2-Dibromoethane (EDB)*	0.01	nd		nd			
Chlorobenzene	1.0	nd	100%	nd	98%	105%	7%
1,1,1,2-Tetrachloroethane	1.0	nd		nd			
Ethylbenzene	1.0	nd		25			
Xylenes	1.0	nd		11			
Styrene	1.0	nd		nd			
Bromoform	1.0	nd		nd			
Isopropylbenzene	1.0	nd		37			
1,2,3-Trichloropropane	1.0	nd		nd			
Bromobenzene	1.0	nd		nd			
1,1,2,2-Tetrachloroethane	1.0	nd		nd			
n-Propylbenzene	1.0	nd		51			
2-Chlorotoluene	1.0	nd		nd			
4-Chlorotoluene	1.0	nd		nd			
1,3,5-Trimethylbenzene	1.0	nd		81			
tert-Butylbenzene	1.0	nd		1.1			
1,2,4-Trimethylbenzene	1.0	nd		150			
sec-Butylbenzene	1.0	nd		12			
1,3-Dichlorobenzene	1.0	nd		nd			

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results					MS	MSD	RPD
8260B, μg/L		MTH BLK	LCS	HC-1-TMW	HC-1-TMW	HC-1-TMW	HC-1-TMW
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Porting Lim	04/11/19 0	4/11/19	04/11/19	04/11/19	04/11/19	04/11/19
Isopropyltoluene	1.0	nd		19			
1,4-Dichlorobenzene	1.0	nd		nd			
1,2-Dichlorobenzene	1.0	nd		nd			
n-Butylbenzene	1.0	nd		12			
1,2-Dibromo-3-Chloropropane	1.0	nd		nd			
1,2,4-Trichlorobenzene	1.0	nd		nd			
Hexachloro-1,3-butadiene	1.0	nd		nd			
Naphthalene	1.0	nd		nd			
1,2,3-Trichlorobenzene	1.0	nd		nd			
*-instrument detection limits							
Surrogate recoveries							
Dibromofluoromethane		89%	86%	88%	89%	88%	
Toluene-d8		93%	79%	89%	89%	80%	
1,2-Dichloroethane-d4		90%	98%	95%	95%	97%	
4-Bromofluorobenzene		95%	95%	97%	97%	94%	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results				Dupl
NWTPH-Dx, mg/L		MTH BLK	HC-1-TMW	HC-1-TMW
Matrix	Water	Water	Water	Water
Date extracted	Reporting	04/12/19	04/12/19	04/12/19
Date analyzed	Limits	04/12/19	04/12/19	04/12/19
Kerosene/Jet fuel	0.20	nd	nd	nd
Diesel/Fuel oil	0.20	nd	nd	nd
Heavy oil	0.50	nd	nd	nd
Surrogate recoveries:				
Fluorobiphenyl		110%	112%	115%
o-Terphenyl		117%	115%	116%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

na - not analyzed

Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results				Dupl	RPD
NWTPH-Gx		MTH BLK	HC-1-TMW	HC-1-TMW	HC-1-TMW
Matrix	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	04/11/19	04/11/19	04/11/19	04/11/19
NWTPH-Gx, mg/L Mineral spirits/Stoddard Gasoline	0.10 0.10	nd nd	nd 6.9	nd 7.0	1%
Surrogate recoveries:					
Trifluorotoluene Bromofluorobenzene		125% 120%	C 121%	C 125%	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results					Dupl	RPD	MS
Metals Total (7010/747A)	, mg/L	MTH BLK	LCS	HC-1-TMW	HC-1-TMW	HC-1-TMW	HC-1-TMW
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	04/17/19	04/17/19	04/17/19	04/17/19	04/17/19	04/17/19
Date analyzed	Limits	04/17,18/19	04/17,18/19	04/17,18/19	04/17,18/19	04/17,18/19	04/17,18/19
Lead (Pb)	0.002	nd	100%	0.006	0.007	15%	75%
Chromium (Cr)	0.01	nd	96%	nd	nd		92%
Cadmium (Cd)	0.005	nd	84%	nd	nd		92%
Arsenic (As)	0.005	nd	106%	nd	nd		115%
Mercury (Hg) (7470A)	0.0005	nd	118%	nd	nd		108%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results					Dupl	MS
Metals Dissolved (7010/747	A), mg/L	MTH BLK	LCS	HC-1-TMW	HC-1-TMW	HC-1-TMW
Matrix	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	04/17/19	04/17/19	04/17/19	04/17/19	04/17/19
Date analyzed	Limits	04/17,18/19 0	04/17,18/19	04/17,18/19	04/17,18/19	04/17,18/19
Lead (Pb)	0.002	nd	100%	nd	nd	75%
Chromium (Cr)	0.01	nd	96%	nd	nd	92%
Cadmium (Cd)	0.005	nd	84%	nd	nd	92%
Arsenic (As)	0.005	nd	106%	nd	nd	115%
Mercury (Hg) (7470A)	0.0005	nd	118%	nd	nd	108%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical	Results
------------	---------

TSS (160.2)		HC-1-TMW
Matrix	Water	Water
Date analyzed	Reporting Limits	04/16/19
Total Suspended Solids, mg/L	10	160

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

8260B, μg/kg		MTH BLK	LCS	MTH BLK	LCS	MW-1-10	MW-1-25	MW-1-30
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/11/19 04	4/11/19	04/12/19 0		04/11/19	04/11/19	04/11/19
Date analyzed	Limits	04/11/19 04	4/11/19	04/12/19 0	4/12/19	04/11/19	04/11/19	04/11/19
MTBE	100	nd		nd		nd	nd	nd
Dichlorodifluoromethane	50	nd		nd		nd	nd	nd
		nd		nd		nd	nd	nd
Chloromethane	50	nd		nd		nd	nd	nd
Vinyl chloride	50	nd		nd		nd	nd	nd
Bromomethane	50	nd		nd		nd	nd	nd
Chloroethane	50	nd		nd		nd	nd	nd
Trichlorofluoromethane	50	nd		nd		nd	nd	nd
1,1-Dichloroethene	50	nd		nd		nd	nd	nd
Methylene chloride	20	nd		nd		nd	nd	nd
trans-1,2-Dichloroethene	50	nd		nd		nd	nd	nd
1,1-Dichloroethane	50	nd		nd		nd	nd	nd
2,2-Dichloropropane	50	nd		nd		nd	nd	nd
cis-1,2-Dichloroethene	50	nd		nd		nd	nd	nd
Chloroform	50	nd		nd		nd	nd	nd
1,1,1-Trichloroethane	50	nd		nd		nd	nd	nd
Carbontetrachloride	50	nd		nd		nd	nd	nd
1,1-Dichloropropene	50	nd		nd	050/	nd	nd	nd
Benzene	20	nd	77%	nd	95%	nd	nd	nd
1,2-Dichloroethane(EDC)	20	nd		nd		nd	nd	nd
Trichloroethene	20	nd	78%	nd	92%	nd	nd	nd
1,2-Dichloropropane	50	nd		nd		nd	nd	nd
Dibromomethane	50	nd		nd		nd	nd	nd
Bromodichloromethane	50	nd		nd		nd	nd	nd
cis-1,3-Dichloropropene	50	nd		nd		nd	nd	nd
Toluene	50	nd	90%	nd	104%	nd	nd	nd
trans-1,3-Dichloropropene	50	nd		nd		nd	nd	nd
1,1,2-Trichloroethane	50	nd		nd		nd	nd	nd
Tetrachloroethene	50	nd		nd		nd	nd	nd
1,3-Dichloropropane	50	nd		nd		nd	nd	nd
Dibromochloromethane	20	nd		nd		nd	nd	nd
1,2-Dibromoethane (EDB)*	5	nd		nd		nd	nd	nd
Chlorobenzene	50	nd	100%	nd	109%	nd	nd	nd
1,1,1,2-Tetrachloroethane	50	nd		nd		nd	nd	nd
Ethylbenzene	50	nd		nd		nd	nd	nd
Xylenes	50	nd		nd		nd	nd	nd
Styrene	50	nd		nd		nd	nd	nd
Bromoform	50	nd		nd		nd	nd	nd
Isopropylbenzene	50	nd		nd		nd	nd	nd
1,2,3-Trichloropropane	50	nd		nd		nd	nd	nd
Bromobenzene	50	nd		nd		nd	nd	nd
1,1,2,2-Tetrachloroethane	50	nd		nd		nd	nd	nd
n-Propylbenzene	50	nd		nd		nd	nd	nd
2-Chlorotoluene	50	nd		nd		nd	nd	nd
4-Chlorotoluene	50	nd		nd		nd	nd	nd
1,3,5-Trimethylbenzene	50	nd		nd		nd	nd	nd
tert-Butylbenzene	50	nd		nd		nd	nd	nd
1,2,4-Trimethylbenzene	50	nd		nd		nd	nd	nd

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

8260B, μg/kg		MTH BLK	LCS	MTH BLK	LCS	MW-1-10	MW-1-25	MW-1-30
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/11/19 04	/11/19	04/12/19 0	4/12/19	04/11/19	04/11/19	04/11/19
Date analyzed	Limits	04/11/19 04	/11/19	04/12/19 0	4/12/19	04/11/19	04/11/19	04/11/19
sec-Butylbenzene	50	nd		nd		nd	nd	nd
1,3-Dichlorobenzene	50	nd		nd		nd	nd	nd
Isopropyltoluene	50	nd		nd		nd	nd	nd
1,4-Dichlorobenzene	50	nd		nd		nd	nd	nd
1,2-Dichlorobenzene	50	nd		nd		nd	nd	nd
n-Butylbenzene	50	nd		nd		nd	nd	nd
1,2-Dibromo-3-Chloropropane	50	nd		nd		nd	nd	nd
1,2,4-Trichlorobenzene	50	nd		nd		nd	nd	nd
Hexachloro-1,3-butadiene	50	nd		nd		nd	nd	nd
Naphthalene	50							
1,2,3-Trichlorobenzene	50	nd		nd		nd	nd	nd
*-instrument detection limits								
Surrogate recoveries								
Dibromofluoromethane		89%	86%	92%	93%	83%	89%	90%
Toluene-d8		93%	79%	104%	90%	88%	98%	94%
1,2-Dichloroethane-d4		90%	98%	98%	100%	99%	96%	94%
4-Bromofluorobenzene		95%	95%	95%	98%	96%	93%	93%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits M-matrix interference

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowse
Project Manager:	Julie Wukel
Client Project Name:	601 Dexter
Client Project Number:	19D115507
Date received:	04/11/19

8260B, μg/kg		HC-1-12.5	HC-1-17.5	HC-1-25	HC-1-30	HC-5-15	HC-2-10
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/12/19	04/12/19	04/12/19	04/12/19	04/11/19	04/11/19
Date analyzed	Limits	04/12/19	04/12/19	04/12/19	04/12/19	04/11/19	04/11/19
ź							
MTBE	100	nd	nd	nd	nd	nd	nd
Dichlorodifluoromethane	50	nd	nd	nd	nd	nd	nd
Chloromethane	50	nd	nd	nd	nd	nd	nd
Vinyl chloride	50	nd	nd	nd	nd	nd	nd
Bromomethane	50	nd	nd	nd	nd	nd	nd
Chloroethane	50	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	50	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	50	nd	nd	nd	nd	nd	nd
Methylene chloride	20	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	50	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	50	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	50	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	50	nd	nd	nd	nd	nd	nd
Chloroform	50	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	50	nd	nd	nd	nd	nd	nd
Carbontetrachloride	50	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	50	nd	nd	nd	nd	nd	nd
Benzene	20	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane(EDC)	20	nd	nd	nd	nd	nd	nd
Trichloroethene	20	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	50	nd	nd	nd	nd	nd	nd
Dibromomethane	50	nd	nd	nd	nd	nd	nd
Bromodichloromethane	50	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	50	nd	nd	nd	nd	nd	nd
Toluene	50	nd	nd	nd	nd	nd	nd
trans-1,3-Dichloropropene	50	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	50	nd	nd	nd	nd	nd	nd
Tetrachloroethene	50	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	50	nd	nd	nd	nd	nd	nd
Dibromochloromethane	20	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB)*	5	nd	nd	nd	nd	nd	nd
Chlorobenzene	50	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	50	nd	nd	nd	nd	nd	nd
Ethylbenzene	50	nd	nd	840	220	nd	nd
Xylenes	50	nd	nd	620	190	nd	nd
Styrene	50	nd	nd	nd	nd	nd	nd
Bromoform	50	nd	nd	nd	nd	nd	nd
Isopropylbenzene	50	nd	nd	660	130	nd	nd
1,2,3-Trichloropropane	50	nd	nd	nd	nd	nd	nd
Bromobenzene	50	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	50	nd	nd	nd	nd	nd	nd
n-Propylbenzene	50	nd	nd	1,400	320	nd	nd
2-Chlorotoluene	50	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	50	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	50	nd	nd	1,900	430	nd	nd
tert-Butylbenzene	50	nd	nd	nd	430 nd	nd	nd
1,2,4-Trimethylbenzene	50	nd	nd	2,800	970	nd	nd
	50	nu	nu	2,000	370	nu	nu

AAL Job Number:	C90411-3
Client:	Hart Crowse
Project Manager:	Julie Wukel
Client Project Name:	601 Dexter
Client Project Number:	19D115507
Date received:	04/11/19

8260B, μg/kg		HC-1-12.5	HC-1-17.5	HC-1-25	HC-1-30	HC-5-15	HC-2-10
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soi
Date extracted	Reporting	04/12/19	04/12/19	04/12/19	04/12/19	04/11/19	04/11/19
Date analyzed	Limits	04/12/19	04/12/19	04/12/19	04/12/19	04/11/19	04/11/19
sec-Butylbenzene	50	nd	nd	660	100	nd	nc
1,3-Dichlorobenzene	50	nd	nd	nd	nd	nd	nc
Isopropyltoluene	50	nd	nd	1,000	160	nd	nc
1,4-Dichlorobenzene	50	nd	nd	nd	nd	nd	nc
1,2-Dichlorobenzene	50	nd	nd	nd	nd	nd	nc
n-Butylbenzene	50	nd	nd	1,000	170	nd	nc
1,2-Dibromo-3-Chloropropane	50	nd	nd	nd	nd	nd	nc
1,2,4-Trichlorobenzene	50	nd	nd	nd	nd	nd	nc
Hexachloro-1,3-butadiene	50	nd	nd	nd	nd	nd	nc
Naphthalene	50		nd	nd	nd	nd	nc
1,2,3-Trichlorobenzene	50	nd	nd	nd	nd	nd	nc
*-instrument detection limits							
Surrogate recoveries							
Dibromofluoromethane		86%	90%	88%	84%	83%	86%
Toluene-d8		90%	99%	90%	87%	89%	89%
1,2-Dichloroethane-d4		95%	97%	96%	97%	95%	98%
4-Bromofluorobenzene		102%	104%	129%	106%	100%	99%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits M-matrix interference

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowse
Project Manager:	Julie Wukel
Client Project Name:	601 Dexter
Client Project Number:	19D115507
Date received:	04/11/19

8260B, μg/kg		HC-2-15	HC-4-15	HC-4-35	HC-3-7.5	HC-3-15	HC-3-20	HC-3-30
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19	04/12/19
Date analyzed	Limits	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19	04/12/19
MTBE	100	nd						
Dichlorodifluoromethane	50	nd						
Chloromethane	50	nd						
Vinyl chloride	50	nd						
Bromomethane	50	nd						
Chloroethane	50	nd						
Trichlorofluoromethane	50	nd						
1,1-Dichloroethene	50	nd						
Methylene chloride	20	nd						
trans-1,2-Dichloroethene	50	nd						
1,1-Dichloroethane	50	nd						
2,2-Dichloropropane	50	nd						
cis-1,2-Dichloroethene	50	nd						
Chloroform	50	nd						
1,1,1-Trichloroethane	50	nd						
Carbontetrachloride	50	nd						
1,1-Dichloropropene	50	nd						
Benzene	20	nd						
1,2-Dichloroethane(EDC)	20	nd						
Trichloroethene	20	nd						
1,2-Dichloropropane	50	nd						
Dibromomethane	50	nd						
Bromodichloromethane	50	nd						
cis-1,3-Dichloropropene	50	nd						
Toluene	50	nd						
trans-1,3-Dichloropropene	50	nd						
1,1,2-Trichloroethane	50	nd						
Tetrachloroethene	50	nd						
1,3-Dichloropropane	50	nd						
Dibromochloromethane	20	nd						
1,2-Dibromoethane (EDB)*	5	nd						
Chlorobenzene	50	nd						
1,1,1,2-Tetrachloroethane	50	nd						
Ethylbenzene	50	nd	nd	310	nd	nd	nd	nd
Xylenes	50	nd	nd	190	nd	nd	nd	nd
Styrene	50	nd						
Bromoform	50	nd						
Isopropylbenzene	50	nd	nd	79	nd	nd	nd	nd
1,2,3-Trichloropropane	50	nd						
Bromobenzene	50	nd						
1,1,2,2-Tetrachloroethane	50	nd						
n-Propylbenzene	50	nd						
2-Chlorotoluene	50	nd						
4-Chlorotoluene	50	nd						
1,3,5-Trimethylbenzene	50	nd	nd	180	nd	nd	nd	nd
tert-Butylbenzene	50	nd						
1,2,4-Trimethylbenzene	50	nd	nd	370	nd	nd	nd	nd
· · · · · · · ·					-	-		

AAL Job Number:	C90411-3
Client:	Hart Crowse
Project Manager:	Julie Wukel
Client Project Name:	601 Dexter
Client Project Number:	19D115507
Date received:	04/11/19

8260B, μg/kg		HC-2-15	HC-4-15	HC-4-35	HC-3-7.5	HC-3-15	HC-3-20	HC-3-30
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soi
Date extracted	Reporting	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19	04/12/19
Date analyzed	Limits	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19	04/12/19
sec-Butylbenzene	50	nd						
1,3-Dichlorobenzene	50	nd						
Isopropyltoluene	50	nd						
1,4-Dichlorobenzene	50	nd						
1,2-Dichlorobenzene	50	nd						
n-Butylbenzene	50	nd						
1,2-Dibromo-3-Chloropropane	50	nd						
1,2,4-Trichlorobenzene	50	nd						
Hexachloro-1,3-butadiene	50	nd						
Naphthalene	50	nd						
1,2,3-Trichlorobenzene	50	nd						
*-instrument detection limits								
Surrogate recoveries								
Dibromofluoromethane		84%	85%	84%	86%	85%	84%	90%
Toluene-d8		91%	88%	86%	91%	90%	90%	96%
1,2-Dichloroethane-d4		96%	96%	98%	98%	97%	98%	96%
4-Bromofluorobenzene		99%	95%	97%	98%	104%	96%	102%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

M-matrix interference

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

AAL Job Number: Client:	C90411-3 Hart Crowse	
Project Manager:	Julie Wukel	
Client Project Name:	601 Dexter	
Client Project Number:	19D115507	
Date received:	04/11/19	
Analytical Results		М

Analytical Results		MS	MSD	RPD
8260B, μg/kg		HC-3-30	HC-3-30	HC-3-30
Matrix	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/12/19	04/12/19	04/12/19
Date analyzed	Limits	04/12/19	04/12/19	04/12/19
MTBE	100			
Dichlorodifluoromethane	50			
Chloromethane	50			
Vinyl chloride	50			
Bromomethane	50			
Chloroethane	50			
Trichlorofluoromethane	50			
1,1-Dichloroethene	50			
Methylene chloride	20			
trans-1,2-Dichloroethene	50			
1,1-Dichloroethane	50			
2,2-Dichloropropane	50			
cis-1,2-Dichloroethene	50			
Chloroform	50			
1,1,1-Trichloroethane	50			
Carbontetrachloride	50			
1,1-Dichloropropene	50	050/	070/	00/
Benzene	20	95%	87%	9%
1,2-Dichloroethane(EDC)	20	020/	0.40/	100/
Trichloroethene	20	93%	84%	10%
1,2-Dichloropropane Dibromomethane	50 50			
Bromodichloromethane	50 50			
cis-1,3-Dichloropropene	50 50			
Toluene	50 50	102%	94%	8%
trans-1,3-Dichloropropene	50 50	102 /0	94 /0	0 /0
1,1,2-Trichloroethane	50 50			
Tetrachloroethene	50 50			
1,3-Dichloropropane	50			
Dibromochloromethane	20			
1,2-Dibromoethane (EDB)*	5			
Chlorobenzene	50	107%	96%	11%
1,1,1,2-Tetrachloroethane	50			
Ethylbenzene	50			
Xylenes	50			
Styrene	50			
Bromoform	50			
Isopropylbenzene	50			
1,2,3-Trichloropropane	50			
Bromobenzene	50			
1,1,2,2-Tetrachloroethane	50			
n-Propylbenzene	50			
2-Chlorotoluene	50			
4-Chlorotoluene	50			
1,3,5-Trimethylbenzene	50			
tert-Butylbenzene	50			
1,2,4-Trimethylbenzene	50			

C90411-3
Hart Crowse
Julie Wukel
601 Dexter
19D115507
04/11/19

Analytical Results		MS	MSD	RPD
8260B, μg/kg		HC-3-30	HC-3-30	HC-3-30
Matrix	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/12/19	04/12/19	04/12/19
Date analyzed	Limits	04/12/19	04/12/19	04/12/19
sec-Butylbenzene	50			
1,3-Dichlorobenzene	50			
Isopropyltoluene	50			
1,4-Dichlorobenzene	50			
1,2-Dichlorobenzene	50			
n-Butylbenzene	50			
1,2-Dibromo-3-Chloropropane	50			
1,2,4-Trichlorobenzene	50			
Hexachloro-1,3-butadiene	50			
Naphthalene	50			
1,2,3-Trichlorobenzene	50			
*-instrument detection limits				
_				
Surrogate recoveries				
Dibromofluoromethane		90%	92%	
Toluene-d8		89%	85%	
1,2-Dichloroethane-d4		99%	99%	
4-Bromofluorobenzene		101%	110%	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits M-matrix interference C - coelution with sample peaks Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

	MTH BLK	MW-1-10	MW-1-25	HC-1-5	HC-1-12.5	HC-1-15	HC-1-25
Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Reporting	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19
Limits	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19
20	nd	nd	nd	nd	nd	nd	nd
20	nd	nd	nd	nd	nd	nd	nd
50	nd	nd	nd	nd	nd	nd	nd
	110% 118%	108% 112%	108% 108%	105% 98%	109% 110%	104% 95%	111% 110%
	Reporting Limits 20 20	Soil Soil Reporting 04/12/19 Limits 04/12/19 20 nd 20 nd 50 nd 110% 110%	Soil Soil Soil Reporting 04/12/19 04/12/19 Limits 04/12/19 04/12/19 20 nd nd 20 nd nd 50 nd nd 110% 108% 108%	Soil Soil Soil Soil Soil Reporting 04/12/19 04/12/19 04/12/19 04/12/19 Limits 04/12/19 04/12/19 04/12/19 04/12/19 20 nd nd nd 20 nd nd nd 50 nd nd nd 110% 108% 108% 108%	Soil Soil <th< td=""><td>Soil Soil <th< td=""><td>Soil Soil <th< td=""></th<></td></th<></td></th<>	Soil Soil <th< td=""><td>Soil Soil <th< td=""></th<></td></th<>	Soil Soil <th< td=""></th<>

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

C - coelution with sample peaks Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results								
NWTPH-Dx, mg/kg		HC-1-30	HC-5-10	HC-5-15	HC-2-5	HC-2-10	HC-4-10	HC-4-15
Matrix	Soil							
Date extracted	Reporting	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19
Date analyzed	Limits	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19
Kerosene/Jet fuel Diesel/Fuel oil Heavy oil	20 20 50	nd nd nd						
Surrogate recoveries: Fluorobiphenyl o-Terphenyl		109% 115%	107% 109%	105% 111%	108% 111%	109% 120%	108% 112%	108% 113%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits C - coelution with sample peaks Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results					Dupl
NWTPH-Dx, mg/kg		HC-4-35	HC-3-7.5	HC-3-30	HC-3-30
Matrix	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/12/19	04/12/19	04/12/19	04/12/19
Date analyzed	Limits	04/12/19	04/12/19	04/12/19	04/12/19
Kerosene/Jet fuel	20	nd	nd	nd	nd
Diesel/Fuel oil	20	nd	nd	nd	nd
Heavy oil	50	nd	nd	nd	nd
Surrogate recoveries:					
Fluorobiphenyl		109%	107%	109%	104%
o-Terphenyl		115%	112%	113%	99%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits C - coelution with sample peaks Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results								
NWTPH-Gx / BTEX		MTH BLK	LCS /	TH BLK	LCS	MW-1-10	MW-1-25	HC-1-5
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/11/19 0			-	04/11/19	04/11/19	04/11/19
Date analyzed	Limits	04/11/19 0	4/11/19 0	4/12/19 0	4/12/19	04/11/19	04/11/19	04/11/19
<u>NWTPH-Gx, mg/kg</u>								
Mineral spirits/Stoddard	5.0	nd		nd		nd	nd	nd
Gasoline	5.0	nd		nd		nd	nd	nd
<u>ΒΤΕΧ 8021Β, μg/kg</u>								
Benzene	20	nd	104%	nd	98%			nd
Toluene	50	nd	105%	nd	98%			nd
Ethylbenzene	50	nd		nd				nd
Xylenes	50	nd		nd				nd
Surrogate recoveries:								
Trifluorotoluene		110%	127%	106%	112%	96%	102%	99%
Bromofluorobenzene		72%	74%	77%	76%	104%	101%	96%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

M - matrix interference

C - coelution with sample peaks

Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

NWTPH-Gx / BTEX		HC-1-10	HC-1-12.5	HC-1-20	HC-1-25	HC-1-30	HC-5-15	HC-2-10
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19
Date analyzed	Limits	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19	04/11/19
NWTPH-Gx, mg/kg								
Mineral spirits/Stoddard	5.0	nd	nd	nd	nd	nd	nd	nd
Gasoline	5.0	nd	nd	nd	290	30	nd	nd
<u> BTEX 8021B, μg/kg</u>								
Benzene	20	nd		nd				
Toluene	50	nd		nd				
Ethylbenzene	50	nd		nd				
Xylenes	50	nd		nd				
Surrogate recoveries:								
Trifluorotoluene		105%	105%	104%	130%	87%	93%	90%
Bromofluorobenzene		99%	88%	99%	99%	96%	86%	90%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

M - matrix interference

C - coelution with sample peaks

Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

NWTPH-Gx / BTEX		HC-4-10	HC-4-15	HC-4-35	HC-3-7.5	HC-3-30	HC-3-30	
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/11/19	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19	04/11/19
Date analyzed	Limits	04/11/19	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19	04/11/19
NWTPH-Gx, mg/kg								
Mineral spirits/Stoddard	5.0	nd	nd	nd	nd	nd	nd	
Gasoline	5.0	nd	nd	9.8	nd	nd	nd	
<u>ВТЕХ 8021В, µg/kg</u>								
Benzene	20							89%
Toluene	50							116%
Ethylbenzene	50							
Xylenes	50							
Surrogate recoveries:								
Trifluorotoluene		98%	92%	91%	97%	99%	113%	130%
Bromofluorobenzene		87%	82%	82%	88%	85%	75%	123%

nd - not detected at listed reporting limits

na - not analyzed

M - matrix interference

C - coelution with sample peaks

Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, In
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results		MSD	RPD
NWTPH-Gx / BTEX			
Matrix	Soil	Soil	Soil
Date extracted	Reporting	04/11/19	04/11/19
Date analyzed	Limits	04/11/19	04/11/19
<u>NWTPH-Gx, mg/kg</u> Mineral spirits/Stoddard Gasoline	5.0 5.0		
BTEX 8021B, μg/kg Benzene Toluene Ethylbenzene Xylenes	20 50 50 50	111% 124%	23% 6%
Ayleries	50		
Surrogate recoveries:			
Trifluorotoluene		128%	
Bromofluorobenzene		102%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

M - matrix interference

C - coelution with sample peaks

Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

PAH (8270 sim), mg/kg		MTH BLK		HC1-10	HC1-20	HC4-15	HC3-12.5
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/15/19	04/15/19	04/15/19	04/15/19	04/15/19	04/15/19
Date analyzed	Limits	04/15/19	04/15/19	04/15/19	04/15/19	04/15/19	04/15/19
1-Methylnaphthalene	0.10	nd		nd	nd	nd	nd
2-Methylnaphthalene	0.10	nd		nd	nd	nd	nd
Naphthalene	0.10	nd		nd	nd	nd	nd
Acenaphthylene	0.10	nd		nd	nd	nd	nd
Acenaphthene	0.10	nd	93%	nd	nd	nd	nd
Fluorene	0.10	nd		nd	nd	nd	nd
Phenanthrene	0.10	nd		nd	nd	nd	nd
Anthracene	0.10	nd		nd	nd	nd	nd
Fluoranthene	0.10	nd		nd	nd	nd	nd
Pyrene	0.10	nd	98%	nd	nd	nd	nd
Benzo(a)anthracene	0.10	nd		nd	nd	nd	nd
Chrysene	0.10	nd		nd	nd	nd	nd
Benzo(b)fluoranthene	0.10	nd		nd	nd	nd	nd
Benzo(k)fluoranthene	0.10	nd		nd	nd	nd	nd
Benzo(a)pyrene	0.10	nd		nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene	0.10	nd		nd	nd	nd	nd
Dibenzo(ah)anthracene	0.10	nd		nd	nd	nd	nd
Benzo(ghi)perylene	0.10	nd		nd	nd	nd	nd
Surrogate recoveries:							
2-Fluorobyphenyl		120%	107%	55%	58%	53%	56%
o-Terphenyl		101%	96%	102%	105%	105%	106%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed M - matrix interference Results reported on dry-weight basis Acceptable Recovery limits: 50% TO 150% Acceptable RPD limit: 50%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results		MS	MSD	RPD
PAH (8270 sim), mg/kg		HC3-12.5	HC3-12.5	HC3-12.5
Matrix	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/15/19	04/15/19	04/15/19
Date analyzed	Limits	04/15/19	04/15/19	04/15/19
1-Methylnaphthalene	0.10			
2-Methylnaphthalene	0.10			
Naphthalene	0.10			
Acenaphthylene	0.10			
Acenaphthene	0.10	76%	78%	3%
Fluorene	0.10			
Phenanthrene	0.10			
Anthracene	0.10			
Fluoranthene	0.10			
Pyrene	0.10	97%	98%	1%
Benzo(a)anthracene	0.10			
Chrysene	0.10			
Benzo(b)fluoranthene	0.10			
Benzo(k)fluoranthene	0.10			
Benzo(a)pyrene	0.10			
Indeno(1,2,3-cd)pyrene	0.10			
Dibenzo(ah)anthracene	0.10			
Benzo(ghi)perylene	0.10			
Surrogate recoveries:				
2-Fluorobyphenyl		50%	51%	
o-Terphenyl		99%	100%	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed M - matrix interference Results reported on dry-weight basis Acceptable Recovery limits: 50% TO 150% Acceptable RPD limit: 50%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results					MS	MSD	RPD
8082 (PCBs), mg/kg		MTH BLK	LCS	HC1-30	HC1-30	HC1-30	HC1-30
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/15/19	04/15/19	04/15/19	04/15/19	04/15/19	04/15/19
Date analyzed	Limits	04/15/19	04/15/19	04/15/19	04/15/19	04/15/19	04/15/19
A1221	0.20	nd		nd			
A1232	0.20	nd		nd			
A1242 (A1016)	0.20	nd		nd			
A1248	0.20	nd		nd			
A1254	0.20	nd		nd			
A1260	0.20	nd	111%	nd	75%	74%	1%
Surrogate recoveries:							
Tetrachloro-m-xylene		94%	116%	90%	113%	115%	
Decachlorobiphenyl		89%	111%	85%	109%	111%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

M - matrix interference

Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Metals (7010/7471), mg/kg		MTH BLK	LCS	HC-1-7.5	HC-1-15	HC-1-20	HC-1-30
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/15/19 0	4/15/19	04/15/19	04/15/19	04/15/19	04/15/19
Date analyzed	Limits	04/15/19 0	4/15/19	04/15/19	04/15/19	04/15/19	04/15/19
Lead (Pb)	1.0	nd	86%	nd	nd	nd	nd
Chromium (Cr)	1.0	nd	93%	1.2	nd	nd	nd
Cadmium (Cd)	1.0	nd	98%	nd	nd	nd	nd
Arsenic (As)	1.0	nd	84%	nd	nd	nd	nd
Mercury (Hg) (7471)	0.5	nd	92%	nd	nd	nd	nd

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

M- matrix interference

Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results					Dupl	MS	
Metals (7010/7471), mg/kg		HC-5-15	HC-4-15	HC-3-12.5	HC-3-12.5	HC-3-12.5	MTH BLK
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/15/19	04/15/19	04/15/19	04/15/19	04/15/19	04/22/19
Date analyzed	Limits	04/15/19	04/15/19	04/15/19	04/15/19	04/15/19	04/22/19
Lead (Pb)	1.0	nd	nd	nd	nd	Μ	nd
Chromium (Cr)	1.0	nd	nd	nd	nd	Μ	
Cadmium (Cd)	1.0	nd	nd	nd	nd	94%	
Arsenic (As)	1.0	nd	nd	nd	nd	114%	
Mercury (Hg) (7471)	0.5	nd	nd	nd	nd	103%	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed

M- matrix interference

Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results				Dupl	RPD	MS
Metals (7010/7471), mg/kg		LCS	HC-1-25	HC-1-25	HC-1-25	HC-1-25
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	04/22/19	04/22/19	04/22/19	04/22/19	04/22/19
Date analyzed	Limits	04/22/19	04/22/19	04/22/19	04/22/19	04/22/19
Lead (Pb)	1.0	70%	1.2	1.1	8%	95%
Chromium (Cr)	1.0					
Cadmium (Cd)	1.0					
Arsenic (As)	1.0					
Mercury (Hg) (7471)	0.5					

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed M- matrix interference Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results						
Moisture, SM2540B	MW-1-10	MW-1-25	MW-1-30	HC-1-5	HC-1-7.5	HC-1-10
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date analyzed	04/16/19	04/16/19	04/16/19	04/16/19	04/16/19	04/16/19
Moisture, %	17%	16%	17%	17%	16%	15%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results						
Moisture, SM2540B	HC-1-12.5	HC-1-15	HC-1-17.5	HC-1-20	HC-1-25	HC-1-30
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date analyzed	04/16/19	04/16/19	04/16/19	04/16/19	04/16/19	04/16/19
Moisture, %	16%	16%	16%	15%	17%	17%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results							
Moisture, SM2540B	HC-5-10	HC-5-15	HC-2-5	HC-2-10	HC-2-15	HC-4-10	HC-4-15
Matrix	Soil						
Date analyzed	04/16/19	04/16/19	04/16/19	04/16/19	04/16/19	04/16/19	04/16/19
Moisture, %	16%	16%	16%	15%	16%	17%	14%

AAL Job Number:	C90411-3
Client:	Hart Crowser, Inc.
Project Manager:	Julie Wukelic
Client Project Name:	601 Dexter
Client Project Number:	19D1155070
Date received:	04/11/19

Analytical Results						
Moisture, SM2540B	HC-4-35	HC-3-7.5	HC-3-12.5	HC-3-15	HC-3-20	HC-3-30
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date analyzed	04/16/19	04/16/19	04/16/19	04/16/19	04/16/19	04/16/19
Moisture, %	18%	19%	15%	18%	17%	19%

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Hart Crowser, Inc. Marissa Goodman 3131 Elliott Avenue, Suite 600 Seattle, WA 98121

RE: 601 Dexter Work Order Number: 1904223

May 03, 2019

Attention Marissa Goodman:

Fremont Analytical, Inc. received 4 sample(s) on 4/11/2019 for the analyses presented in the following report.

Helium by GC/TCD Major Gases by EPA Method 3C Petroleum Fractionation by EPA Method TO-15 Volatile Organic Compounds by EPA Method TO-15

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mohal c. Rady

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Hart Crowser, Inc. 601 Dexter 1904223	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1904223-001	CSE-1	04/10/2019 10:11 AM	04/11/2019 4:17 PM
1904223-002	CSW-1	04/10/2019 10:10 AM	04/11/2019 4:17 PM
1904223-003	SV-1	04/09/2019 4:50 PM	04/11/2019 4:17 PM
1904223-004	SV-2	04/10/2019 11:50 AM	04/11/2019 4:17 PM

Case Narrative

WO#: **1904223** Date: **5/3/2019**

CLIENT:Hart Crowser, Inc.Project:601 Dexter

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS: Air samples are reported in ppbv and ug/m3.

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Note: Canister was pressurized with Nitrogen to obtain sample volume required to analyze Major Gases. See data results for additional information.

Rev1: Full list VOCs reported.

Qualifiers & Acronyms

WO#: **1904223** Date Reported: **5/3/2019**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL - Reporting Limit RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 1904223

 Date Reported:
 5/3/2019

CLIENT: Hart Crowser, Inc.

Project: 601 Dexter

Lab ID: 1904223-003 Client Sample ID: SV-1			Collection Date: 4/9/2019 4:50:00 PM Matrix: Air			
Analyses	Result	RLC	Qual	Units	DF	Date Analyzed
Helium by GC/TCD				Batch	n ID: R50	0823 Analyst: AD
Helium NOTES: ppt = parts per thousand	ND	100		ppt	1	4/18/2019 12:19:00 PM
Major Gases by EPA Method 3C				Batch	n ID: R50	0797 Analyst: AD
Carbon Dioxide Methane Oxygen	0.124 ND 23.8	0.0690 0.0690 0.0690	D D D	% % %	1.38 1.38 1.38	4/17/2019 12:59:00 PM 4/17/2019 12:59:00 PM 4/17/2019 12:59:00 PM

NOTES:

Canister was pressurized with Nitrogen to obtain sample volume required to analyze Major Gases. The added nitrogen resulted in a 1.38X dilution. Detections of analytes were adjusted accordingly.

Lab ID: 1904223-004 Client Sample ID: SV-2				Collection Matrix: A	4/10/2019 11:50:00 AM	
Analyses	Result	RL Q	ual	Units	DF	Date Analyzed
Helium by GC/TCD				Batch	1D: R50	0823 Analyst: AD
Helium NOTES: ppt = parts per thousand	ND	100		ppt	1	4/18/2019 12:27:00 PM
Major Gases by EPA Method 3C				Batch	1D: R50	0797 Analyst: AD
Carbon Dioxide Methane Oxygen	ND ND 24.1	0.0660 0.0660 0.0660	D D D	% % %	1.32 1.32 1.32	4/17/2019 2:01:00 PM 4/17/2019 2:01:00 PM 4/17/2019 2:01:00 PM

NOTES:

Canister was pressurized with Nitrogen to obtain sample volume required to analyze Major Gases. The added nitrogen resulted in a 1.32X dilution. Detections of analytes were adjusted accordingly.

Analyte Petroleum Fractionatio	on by EPA Meth		tration	Reportir					
Petroleum Fractionatio	on by EPA Meth			-	ng Limit	Qual	Method	Date/Analy	'st
		<u>od 10-15</u>							
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Aliphatic Hydrocarbon (EC	5-8)	34.6	132	7.50	28.5		EPA-TO-15	04/13/2019	AD
Aliphatic Hydrocarbon (EC	9-12)	<7.50	<44.2	7.50	44.2		EPA-TO-15	04/13/2019	AD
Aromatic Hydrocarbon (EC	9-10)	<6.25	<31.4	6.25	31.4		EPA-TO-15	04/13/2019	AD
Surr: 4-Bromofluorobenz	zene 8	87.8 %Rec		70-130			EPA-TO-15	04/13/2019	AD
Volatile Organic Comp	ounds by EPA I	Method TO	<u>-15</u>						
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,1-Trichloroethane		<0.100	<0.546	0.100	0.546		EPA-TO-15	04/16/2019	AD
1,1,2,2-Tetrachloroethane		<0.0750	<0.515	0.0750	0.515		EPA-TO-15	04/16/2019	AD
CFC-113		<0.100	<0.766	0.100	0.766		EPA-TO-15	04/16/2019	AD
1,1,2-Trichloroethane (TCA	A)	<0.125	<0.682	0.125	0.682		EPA-TO-15	04/16/2019	AD
1,1-Dichloroethane		<0.0500	<0.202	0.0500	0.202		EPA-TO-15	04/16/2019	AD
1,1-Dichloroethene (DCE)		<0.100	<0.397	0.100	0.397		EPA-TO-15	04/16/2019	AD
1,2,4-Trichlorobenzene		<0.0750	<0.557	0.0750	0.557	*	EPA-TO-15	04/16/2019	AD
1,2,4-Trimethylbenzene		<0.0750	<0.369	0.0750	0.369		EPA-TO-15	04/16/2019	AD
1,2-Dibromoethane (EDB)		<0.0500	<0.384	0.0500	0.384		EPA-TO-15	04/16/2019	AD
1,2-Dichlorobenzene		<0.100	<0.601	0.100	0.601		EPA-TO-15	04/16/2019	AD
1,2-Dichloroethane		<0.0500	<0.202	0.0500	0.202		EPA-TO-15	04/16/2019	AD
1,2-Dichloropropane		<0.125	<0.578	0.125	0.578		EPA-TO-15	04/16/2019	AD
1,3,5-Trimethylbenzene		<0.0750	<0.369	0.0750	0.369		EPA-TO-15	04/16/2019	AD
1,3-Butadiene		<0.125	<0.277	0.125	0.277		EPA-TO-15	04/16/2019	AD
1,3-Dichlorobenzene		<0.0750	<0.451	0.0750	0.451		EPA-TO-15	04/16/2019	AD
1,4-Dichlorobenzene		<0.0750	<0.451	0.0750	0.451		EPA-TO-15	04/16/2019	AD
1,4-Dioxane		<0.100	<0.360	0.100	0.360	*	EPA-TO-15	04/16/2019	AD
(MEK) 2-Butanone		0.384	1.13	0.250	0.737		EPA-TO-15	04/16/2019	AD
2-Hexanone		<0.250	<1.02	0.250	1.02	*	EPA-TO-15	04/16/2019	AD
Isopropyl Alcohol		0.978	2.40	0.250	0.614		EPA-TO-15	04/16/2019	AD
4-Methyl-2-pentanone (MIE	3K)	<0.250	<1.02	0.250	1.02		EPA-TO-15	04/16/2019	AD
Acetone		3.48	8.26	0.250	0.594		EPA-TO-15	04/16/2019	AD
Acrolein		0.553	1.27	0.125	0.287		EPA-TO-15	04/16/2019	AD
Benzene		0.183	0.586	0.0224	0.0715	В	EPA-TO-15	04/16/2019	AD

Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst
Sample Type:	Summa Canister					
Lab ID:	1904223-001A			Date Ree	ceived: 4/11	/2019
Client Sample ID:	CSE-1			Date Sai	mpled: 4/10)/2019

Volatile Organic Compounds by EPA Method TO-15										
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)						
Benzyl chloride	<0.125	<0.647	0.125	0.647		EPA-TO-15	04/16/2019	AD		
Dichlorobromomethane	<0.0750	<0.502	0.0750	0.502		EPA-TO-15	04/16/2019	AD		
Bromoform	<0.0500	<0.517	0.0500	0.517		EPA-TO-15	04/16/2019	AD		
Bromomethane	<0.125	<0.485	0.125	0.485		EPA-TO-15	04/16/2019	AD		
Carbon disulfide	<0.375	<1.17	0.375	1.17		EPA-TO-15	04/16/2019	AD		
Carbon tetrachloride	0.0745	0.469	0.0164	0.103		EPA-TO-15	04/16/2019	AD		
Chlorobenzene	<0.0500	<0.230	0.0500	0.230		EPA-TO-15	04/16/2019	AD		
Dibromochloromethane	<0.125	<1.06	0.125	1.06		EPA-TO-15	04/16/2019	AD		
Chloroethane	<0.100	<0.264	0.100	0.264		EPA-TO-15	04/16/2019	AD		
Chloroform	<0.0500	<0.244	0.0500	0.244		EPA-TO-15	04/16/2019	AD		
Chloromethane	0.534	1.10	0.125	0.258		EPA-TO-15	04/16/2019	AD		
cis-1,2-Dichloroethene	<0.0500	<0.198	0.0500	0.198		EPA-TO-15	04/16/2019	AD		
cis-1,3-dichloropropene	<0.100	<0.454	0.100	0.454		EPA-TO-15	04/16/2019	AD		
Cyclohexane	0.183	0.629	0.100	0.344		EPA-TO-15	04/16/2019	AD		
Dichlorodifluoromethane (CFC-12)	0.348	1.72	0.100	0.495		EPA-TO-15	04/16/2019	AD		
Dichlorotetrafluoroethane (CFC-114)	<0.100	<0.699	0.100	0.699		EPA-TO-15	04/16/2019	AD		
Ethyl acetate	<0.250	<0.901	0.250	0.901		EPA-TO-15	04/16/2019	AD		
Ethylbenzene	<0.100	<0.434	0.100	0.434		EPA-TO-15	04/16/2019	AD		
Heptane	0.108	0.433	0.100	0.402		EPA-TO-15	04/16/2019	AD		
Hexachlorobutadiene	<0.250	<2.67	0.250	2.67		EPA-TO-15	04/16/2019	AD		
m,p-Xylene	<0.200	<0.868	0.200	0.868		EPA-TO-15	04/16/2019	AD		
Methyl methacrylate	<0.100	<0.409	0.100	0.409		EPA-TO-15	04/16/2019	AD		
Methylene chloride	<0.500	<1.74	0.500	1.74	*	EPA-TO-15	04/16/2019	AD		
Naphthalene	0.298	1.56	0.00319	0.0167	MDL	EPA-TO-15	04/16/2019	AD		
n-Hexane	0.492	1.74	0.100	0.352		EPA-TO-15	04/16/2019	AD		
o-Xylene	<0.100	<0.434	0.100	0.434		EPA-TO-15	04/16/2019	AD		
4-Ethyltoluene	<0.100	<0.492	0.100	0.492		EPA-TO-15	04/16/2019	AD		
Propylene	<0.100	<0.172	0.100	0.172		EPA-TO-15	04/16/2019	AD		
Styrene	<0.100	<0.426	0.100	0.426		EPA-TO-15	04/16/2019	AD		
Methyl tert-butyl ether (MTBE)	<0.100	<0.361	0.100	0.361		EPA-TO-15	04/16/2019	AD		

Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst
Sample Type:	Summa Canister					
Lab ID:	1904223-001A			Date Red	ceived: 4/11	/2019
Client Sample ID:	CSE-1			Date Sar	mpled: 4/10	/2019

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)					
Tetrachloroethene (PCE)	<0.0500	<0.339	0.0500	0.339	EPA-TO-15	04/16/2019	AD		
Tetrahydrofuran	<0.100	<0.295	0.100	0.295	EPA-TO-15	04/16/2019	AD		
Toluene	0.305	1.15	0.100	0.377	EPA-TO-15	04/16/2019	AD		
trans-1,2-Dichloroethene	<0.0500	<0.198	0.0500	0.198	EPA-TO-15	04/16/2019	AD		
trans-1,3-dichloropropene	<0.125	<0.567	0.125	0.567	EPA-TO-15	04/16/2019	AD		
Trichloroethene (TCE)	<0.0162	<0.0872	0.0162	0.0872	EPA-TO-15	04/16/2019	AD		
Trichlorofluoromethane (CFC-11)	0.245	1.38	0.100	0.562	EPA-TO-15	04/16/2019	AD		
Vinyl acetate	<0.250	<0.880	0.250	0.880	EPA-TO-15	04/16/2019	AD		
Vinyl chloride	<0.0268	<0.0685	0.0268	0.0685	EPA-TO-15	04/16/2019	AD		
Surr: 4-Bromofluorobenzene	87.5 %Rec		70-130		EPA-TO-15	04/16/2019	AD		

NOTES:

 * - Flagged value is not within established control limits.

MDL - Analyte reported to Method Detection Limit (MDL)

Client Sample ID: Lab ID: Sample Type:	CSW-1 1904223-002 Summa Cani					Date Sa Date Re	/2019 /2019		
Analyte		Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analy	vst
Petroleum Fractiona	tion by EPA Me	ethod TO-15							
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Aliphatic Hydrocarbon (E	C5-8)	48.1	183	7.50	28.5		EPA-TO-15	04/13/2019	AD
Aliphatic Hydrocarbon (E	C9-12)	<7.50	<44.2	7.50	44.2		EPA-TO-15	04/13/2019	AD
Aromatic Hydrocarbon (E	EC9-10)	<6.25	<31.4	6.25	31.4		EPA-TO-15	04/13/2019	AD
Surr: 4-Bromofluorobe	enzene	83.9 %Rec		70-130			EPA-TO-15	04/13/2019	AD
Volatile Organic Com	npounds by EF	A Method TO	<u>-15</u>						
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,1-Trichloroethane		<0.100	<0.546	0.100	0.546		EPA-TO-15	04/16/2019	AD
1,1,2,2-Tetrachloroethan	e	<0.0750	<0.515	0.0750	0.515		EPA-TO-15	04/16/2019	AD
CFC-113		<0.100	<0.766	0.100	0.766		EPA-TO-15	04/16/2019	AD
1,1,2-Trichloroethane (To	CA)	<0.125	<0.682	0.125	0.682		EPA-TO-15	04/16/2019	AD
1,1-Dichloroethane		<0.0500	<0.202	0.0500	0.202		EPA-TO-15	04/16/2019	AD
1,1-Dichloroethene (DCE	E)	<0.100	<0.397	0.100	0.397		EPA-TO-15	04/16/2019	AD
1,2,4-Trichlorobenzene		<0.0750	<0.557	0.0750	0.557	*	EPA-TO-15	04/16/2019	AD
1,2,4-Trimethylbenzene		<0.0750	<0.369	0.0750	0.369		EPA-TO-15	04/16/2019	AD
1,2-Dibromoethane (EDE	3)	<0.0500	<0.384	0.0500	0.384		EPA-TO-15	04/16/2019	AD
1,2-Dichlorobenzene		<0.100	<0.601	0.100	0.601		EPA-TO-15	04/16/2019	AD
1,2-Dichloroethane		<0.0500	<0.202	0.0500	0.202		EPA-TO-15	04/16/2019	AD
1,2-Dichloropropane		<0.125	<0.578	0.125	0.578		EPA-TO-15	04/16/2019	AD
1,3,5-Trimethylbenzene		<0.0750	<0.369	0.0750	0.369		EPA-TO-15	04/16/2019	AD
1,3-Butadiene		0.411	0.910	0.125	0.277		EPA-TO-15	04/16/2019	AD
1,3-Dichlorobenzene		<0.0750	<0.451	0.0750	0.451		EPA-TO-15	04/16/2019	AD
1,4-Dichlorobenzene		<0.0750	<0.451	0.0750	0.451		EPA-TO-15	04/16/2019	AD
1,4-Dioxane		<0.100	<0.360	0.100	0.360	*	EPA-TO-15	04/16/2019	AD
(MEK) 2-Butanone		0.387	1.14	0.250	0.737		EPA-TO-15	04/16/2019	AD
2-Hexanone		<0.250	<1.02	0.250	1.02	*	EPA-TO-15	04/16/2019	AD
Isopropyl Alcohol		1.01	2.48	0.250	0.614		EPA-TO-15	04/16/2019	AD
4-Methyl-2-pentanone (M	(IBK)	<0.250	<1.02	0.250	1.02		EPA-TO-15	04/16/2019	AD
Acetone		3.91	9.29	0.250	0.594		EPA-TO-15	04/16/2019	AD
Acrolein		0.681	1.56	0.125	0.287		EPA-TO-15	04/16/2019	AD
Benzene		0.238	0.761	0.0224	0.0715	В	EPA-TO-15	04/16/2019	AD

Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst
Sample Type:	Summa Canister					
Lab ID:	1904223-002A			Date Ree	ceived: 4/11	/2019
Client Sample ID:	CSW-1			Date Sa	mpled: 4/10)/2019

7	Volatile Organic Compounds by EPA	Method TO-	10						
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
E	Benzyl chloride	<0.125	<0.647	0.125	0.647		EPA-TO-15	04/16/2019	AD
C	Dichlorobromomethane	<0.0750	<0.502	0.0750	0.502		EPA-TO-15	04/16/2019	AD
E	Bromoform	<0.0500	<0.517	0.0500	0.517		EPA-TO-15	04/16/2019	AD
E	Bromomethane	<0.125	<0.485	0.125	0.485		EPA-TO-15	04/16/2019	AD
C	Carbon disulfide	<0.375	<1.17	0.375	1.17		EPA-TO-15	04/16/2019	AD
C	Carbon tetrachloride	0.0744	0.468	0.0164	0.103		EPA-TO-15	04/16/2019	AD
C	Chlorobenzene	<0.0500	<0.230	0.0500	0.230		EPA-TO-15	04/16/2019	AD
C	Dibromochloromethane	<0.125	<1.06	0.125	1.06		EPA-TO-15	04/16/2019	AD
C	Chloroethane	<0.100	<0.264	0.100	0.264		EPA-TO-15	04/16/2019	AD
C	Chloroform	<0.0500	<0.244	0.0500	0.244		EPA-TO-15	04/16/2019	AD
C	Chloromethane	0.569	1.18	0.125	0.258		EPA-TO-15	04/16/2019	AD
С	sis-1,2-Dichloroethene	<0.0500	<0.198	0.0500	0.198		EPA-TO-15	04/16/2019	AD
С	cis-1,3-dichloropropene	<0.100	<0.454	0.100	0.454		EPA-TO-15	04/16/2019	AD
C	Cyclohexane	0.255	0.878	0.100	0.344		EPA-TO-15	04/16/2019	AD
C	Dichlorodifluoromethane (CFC-12)	0.364	1.80	0.100	0.495		EPA-TO-15	04/16/2019	AD
C	Dichlorotetrafluoroethane (CFC-114)	<0.100	<0.699	0.100	0.699		EPA-TO-15	04/16/2019	AD
E	Ethyl acetate	0.366	1.32	0.250	0.901		EPA-TO-15	04/16/2019	AD
E	Ethylbenzene	<0.100	<0.434	0.100	0.434		EPA-TO-15	04/16/2019	AD
H	Heptane	0.162	0.652	0.100	0.402		EPA-TO-15	04/16/2019	AD
H	Hexachlorobutadiene	<0.250	<2.67	0.250	2.67		EPA-TO-15	04/16/2019	AD
n	n,p-Xylene	<0.200	<0.868	0.200	0.868		EPA-TO-15	04/16/2019	AD
Ν	Methyl methacrylate	<0.100	<0.409	0.100	0.409		EPA-TO-15	04/16/2019	AD
Ν	Methylene chloride	<0.500	<1.74	0.500	1.74	*	EPA-TO-15	04/16/2019	AD
Ν	Naphthalene	0.297	1.56	0.00319	0.0167	MDL	EPA-TO-15	04/16/2019	AD
n	n-Hexane	0.910	3.21	0.100	0.352		EPA-TO-15	04/16/2019	AD
C	o-Xylene	<0.100	<0.434	0.100	0.434		EPA-TO-15	04/16/2019	AD
4	I-Ethyltoluene	<0.100	<0.492	0.100	0.492		EPA-TO-15	04/16/2019	AD
F	Propylene	<0.100	<0.172	0.100	0.172		EPA-TO-15	04/16/2019	AD
S	Styrene	<0.100	<0.426	0.100	0.426		EPA-TO-15	04/16/2019	AD
Ν	Methyl tert-butyl ether (MTBE)	<0.100	<0.361	0.100	0.361		EPA-TO-15	04/16/2019	AD

Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst
Sample Type:	Summa Canister					
Lab ID:	1904223-002A			Date Red	ceived: 4/11	/2019
Client Sample ID:	CSW-1			Date Sar	mpled: 4/10	/2019

Volatile Organic Compounds by EPA Method TO-15

veraine erganne eempeanae by		10					
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
Tetrachloroethene (PCE)	<0.0500	<0.339	0.0500	0.339	EPA-TO-15	04/16/2019	AD
Tetrahydrofuran	<0.100	<0.295	0.100	0.295	EPA-TO-15	04/16/2019	AD
Toluene	0.314	1.18	0.100	0.377	EPA-TO-15	04/16/2019	AD
trans-1,2-Dichloroethene	<0.0500	<0.198	0.0500	0.198	EPA-TO-15	04/16/2019	AD
trans-1,3-dichloropropene	<0.125	<0.567	0.125	0.567	EPA-TO-15	04/16/2019	AD
Trichloroethene (TCE)	<0.0162	<0.0872	0.0162	0.0872	EPA-TO-15	04/16/2019	AD
Trichlorofluoromethane (CFC-11)	0.273	1.53	0.100	0.562	EPA-TO-15	04/16/2019	AD
Vinyl acetate	<0.250	<0.880	0.250	0.880	EPA-TO-15	04/16/2019	AD
Vinyl chloride	<0.0268	<0.0685	0.0268	0.0685	EPA-TO-15	04/16/2019	AD
Surr: 4-Bromofluorobenzene	85.0 %Rec		70-130		EPA-TO-15	04/16/2019	AD

NOTES:

* - Flagged value is not within established control limits.

MDL - Analyte reported to Method Detection Limit (MDL)

Client Sample ID: Lab ID: Sample Type:	SV-1 1904223-003A Summa Caniste	er				Date Sa Date Re	2019 /2019		
Analyte		Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analy	st
Petroleum Fractionat	ion by EPA Meth	od TO-15							
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Aliphatic Hydrocarbon (EC	C5-8)	38.0	144	7.50	28.5		EPA-TO-15	04/13/2019	AD
Aliphatic Hydrocarbon (EC	C9-12)	178	1,050	75.0	442		EPA-TO-15	04/13/2019	AD
Aromatic Hydrocarbon (E	C9-10)	38.0	191	6.25	31.4		EPA-TO-15	04/13/2019	AD
Surr: 4-Bromofluorober	izene	93.4 %Rec		70-130			EPA-TO-15	04/13/2019	AD
Volatile Organic Com	pounds by EPA	<u>Method TO</u>	<u>-15</u>						
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,1-Trichloroethane		<0.100	<0.546	0.100	0.546		EPA-TO-15	04/16/2019	AD
1,1,2,2-Tetrachloroethane	9	<0.0750	<0.515	0.0750	0.515		EPA-TO-15	04/16/2019	AD
CFC-113		<0.100	<0.766	0.100	0.766		EPA-TO-15	04/16/2019	AD
1,1,2-Trichloroethane (TC	A)	<0.125	<0.682	0.125	0.682		EPA-TO-15	04/16/2019	AD
1,1-Dichloroethane		<0.0500	<0.202	0.0500	0.202		EPA-TO-15	04/16/2019	AD
1,1-Dichloroethene (DCE))	<0.100	<0.397	0.100	0.397		EPA-TO-15	04/16/2019	AD
1,2,4-Trichlorobenzene		<0.0750	<0.557	0.0750	0.557	*	EPA-TO-15	04/16/2019	AD
1,2,4-Trimethylbenzene		3.03	14.9	0.0750	0.369		EPA-TO-15	04/16/2019	AD
1,2-Dibromoethane (EDB))	<0.0500	<0.384	0.0500	0.384		EPA-TO-15	04/16/2019	AD
1,2-Dichlorobenzene		<0.100	<0.601	0.100	0.601		EPA-TO-15	04/16/2019	AD
1,2-Dichloroethane		<0.0500	<0.202	0.0500	0.202		EPA-TO-15	04/16/2019	AD
1,2-Dichloropropane		<0.125	<0.578	0.125	0.578		EPA-TO-15	04/16/2019	AD
1,3,5-Trimethylbenzene		1.96	9.61	0.0750	0.369		EPA-TO-15	04/16/2019	AD
1,3-Butadiene		0.129	0.285	0.125	0.277		EPA-TO-15	04/16/2019	AD
1,3-Dichlorobenzene		0.113	0.681	0.0750	0.451		EPA-TO-15	04/16/2019	AD
1,4-Dichlorobenzene		<0.0750	<0.451	0.0750	0.451		EPA-TO-15	04/16/2019	AD
1,4-Dioxane		<0.100	<0.360	0.100	0.360	*	EPA-TO-15	04/16/2019	AD
(MEK) 2-Butanone		2.66	7.86	0.250	0.737		EPA-TO-15	04/16/2019	AD
2-Hexanone		<0.250	<1.02	0.250	1.02	*	EPA-TO-15	04/16/2019	AD
Isopropyl Alcohol		1.80	4.43	0.250	0.614		EPA-TO-15	04/16/2019	AD
4-Methyl-2-pentanone (M	IBK)	<0.250	<1.02	0.250	1.02		EPA-TO-15	04/16/2019	AD
Acetone		20.8	49.4	0.250	0.594		EPA-TO-15	04/16/2019	AD
Acrolein		0.445	1.02	0.125	0.287		EPA-TO-15	04/16/2019	AD
Benzene		0.908	2.90	0.0224	0.0715	В	EPA-TO-15	04/16/2019	AD

Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst
Sample Type:	Summa Canister					
Lab ID:	1904223-003A			Date Rec	ceived: 4/11	/2019
Client Sample ID:	SV-1			Date Sar	mpled: 4/9/2	2019

Volatile Organic Compounds by EPA		-15					
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
Benzyl chloride	<0.125	<0.647	0.125	0.647	EPA-TO-15	04/16/2019	AD
Dichlorobromomethane	<0.0750	<0.502	0.0750	0.502	EPA-TO-15	04/16/2019	AD
Bromoform	<0.0500	<0.517	0.0500	0.517	EPA-TO-15	04/16/2019	AD
Bromomethane	<0.125	<0.485	0.125	0.485	EPA-TO-15	04/16/2019	AD
Carbon disulfide	<0.375	<1.17	0.375	1.17	EPA-TO-15	04/16/2019	AD
Carbon tetrachloride	0.0912	0.574	0.0164	0.103	EPA-TO-15	04/16/2019	AD
Chlorobenzene	<0.0500	<0.230	0.0500	0.230	EPA-TO-15	04/16/2019	AD
Dibromochloromethane	<0.125	<1.06	0.125	1.06	EPA-TO-15	04/16/2019	AD
Chloroethane	<0.100	<0.264	0.100	0.264	EPA-TO-15	04/16/2019	AD
Chloroform	0.178	0.871	0.0500	0.244	EPA-TO-15	04/16/2019	AD
Chloromethane	<0.125	<0.258	0.125	0.258	EPA-TO-15	04/16/2019	AD
cis-1,2-Dichloroethene	<0.0500	<0.198	0.0500	0.198	EPA-TO-15	04/16/2019	AD
cis-1,3-dichloropropene	<0.100	<0.454	0.100	0.454	EPA-TO-15	04/16/2019	AD
Cyclohexane	0.116	0.401	0.100	0.344	EPA-TO-15	04/16/2019	AD
Dichlorodifluoromethane (CFC-12)	0.470	2.33	0.100	0.495	EPA-TO-15	04/16/2019	AD
Dichlorotetrafluoroethane (CFC-114)	<0.100	<0.699	0.100	0.699	EPA-TO-15	04/16/2019	AD
Ethyl acetate	<0.250	<0.901	0.250	0.901	EPA-TO-15	04/16/2019	AD
Ethylbenzene	0.220	0.954	0.100	0.434	EPA-TO-15	04/16/2019	AD
Heptane	0.129	0.517	0.100	0.402	EPA-TO-15	04/16/2019	AD
Hexachlorobutadiene	<0.250	<2.67	0.250	2.67	EPA-TO-15	04/16/2019	AD
m,p-Xylene	0.781	3.39	0.200	0.868	EPA-TO-15	04/16/2019	AD
Methyl methacrylate	<0.100	<0.409	0.100	0.409	EPA-TO-15	04/16/2019	AD
Methylene chloride	<0.500	<1.74	0.500	1.74	* EPA-TO-15	04/16/2019	AD
Naphthalene	0.631	3.31	0.0250	0.131	EPA-TO-15	04/16/2019	AD
n-Hexane	0.123	0.434	0.100	0.352	EPA-TO-15	04/16/2019	AD
o-Xylene	0.339	1.47	0.100	0.434	EPA-TO-15	04/16/2019	AD
4-Ethyltoluene	0.420	2.06	0.100	0.492	EPA-TO-15	04/16/2019	AD
Propylene	1.33	2.29	0.100	0.172	EPA-TO-15	04/16/2019	AD
Styrene	0.113	0.481	0.100	0.426	EPA-TO-15	04/16/2019	AD
Methyl tert-butyl ether (MTBE)	<0.100	<0.361	0.100	0.361	EPA-TO-15	04/16/2019	AD

Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst
Sample Type:	Summa Canister					
Lab ID:	1904223-003A			Date Rec	ceived: 4/11	/2019
Client Sample ID:	SV-1			Date Sar	mpled: 4/9/2	2019

Volatile Organic Compounds by EPA Method TO-15

veraine erganne eempeanae by		10					
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
Tetrachloroethene (PCE)	0.280	1.90	0.0500	0.339	EPA-TO-15	04/16/2019	AD
Tetrahydrofuran	<0.100	<0.295	0.100	0.295	EPA-TO-15	04/16/2019	AD
Toluene	2.17	8.18	0.100	0.377	EPA-TO-15	04/16/2019	AD
trans-1,2-Dichloroethene	<0.0500	<0.198	0.0500	0.198	EPA-TO-15	04/16/2019	AD
trans-1,3-dichloropropene	<0.125	<0.567	0.125	0.567	EPA-TO-15	04/16/2019	AD
Trichloroethene (TCE)	<0.0162	<0.0872	0.0162	0.0872	EPA-TO-15	04/16/2019	AD
Trichlorofluoromethane (CFC-11)	0.312	1.75	0.100	0.562	EPA-TO-15	04/16/2019	AD
Vinyl acetate	<0.250	<0.880	0.250	0.880	EPA-TO-15	04/16/2019	AD
Vinyl chloride	<0.0268	<0.0685	0.0268	0.0685	EPA-TO-15	04/16/2019	AD
Surr: 4-Bromofluorobenzene	94.9 %Rec		70-130		EPA-TO-15	04/16/2019	AD

NOTES:

* - Flagged value is not within established control limits.

Petroleum Fractionation by EPA Method TO-15 (ppby) (ug/m²) (ppby) (ug/m²) Aliphatic Hydrocarbon (ECS-8) 270 1,030 75.0 285 EPA-TO-15 04/15/2019 Aliphatic Hydrocarbon (ECS-12) 57.8 340 75.0 442 EPA-TO-15 04/15/2019 Aromatic Hydrocarbon (EC9-10) <6.25 <31.4 6.25 31.4 EPA-TO-15 04/15/2019 Yolatile Organic Compounds by EPA Method TO-15 EPA-TO-15 04/15/2019 1.1,2-Zristrachloroethane <0.100 <0.546 0.100 0.546 EPA-TO-15 04/16/2019 1.1,2-Trichloroethane <0.100 <0.546 0.100 0.546 EPA-TO-15 04/16/2019 1.1,2-Trichloroethane <0.0750 <0.515 EPA-TO-15 04/16/2019 1.1,2-Trichloroethane <0.0500 <0.202 0.500 0.202 EPA-TO-15 04/16/2019 1.2-Trichloroethane <0.0500 <0.202 0.557 EPA-TO-15 04/16/2019 1.2-Dichloroethane <0.050	Client Sample ID: SV-2 Lab ID: 1904223-004A				Date Sampled: 4/10/2019 Date Received: 4/11/2019					
Petroleum Fractionation by EPA Method TO-15 (ppby) (ug/m²) (ppby) (ug/m²) Aliphatic Hydrocarbon (EC5-8) 270 1,030 75.0 285 EPA-TO-15 04/15/2019 Aliphatic Hydrocarbon (EC9-12) 57.8 340 75.0 442 EPA-TO-15 04/15/2019 Surr: 4-Bromofluorobenzene 87.6 %Rec - 70-130 - EPA-TO-15 04/15/2019 Volatile Organic Compounds by EPA Method TO-15 (ug/m²) (ug/m²) (ug/m²) 1,1,2-Zrietrachloroethane <0.0750 <0.515 EPA-TO-15 04/16/2019 1,1,2-Trichloroethane <0.0700 <0.546 0.100 0.546 EPA-TO-15 04/16/2019 1,1,2-Trichloroethane <0.0700 <0.515 EPA-TO-15 04/16/2019 1,1,2-Trichloroethane <0.0500 <0.22 0.682 EPA-TO-15 04/16/2019 1,2-Trichloroethane <0.0500 <0.22 0.680 0.202 EPA-TO-15 04/16/2019 1,2-Trichlorobenzene <0.0750 <0.557 <th></th>										
(ppby) (ug/m²) (ug/m²) (ug/m²) Aliphatic Hydrocarbon (ECS-8) 270 1.030 75.0 285 EPA-T0-15 04/15/2019 Aliphatic Hydrocarbon (ECS-12) 57.8 340 75.0 442 EPA-T0-15 04/15/2019 Aromatic Hydrocarbon (EC9-12) 57.8 340 75.0 442 EPA-T0-15 04/15/2019 Surr 4-Bromofluorobenzene 87.6 %Rec - 70-130 - EPA-T0-15 04/15/2019 Volatile Organic Compounds by EPA Method TO-15 - EPA-T0-15 04/16/2019 1,1,1-Trichloroethane <0.0100 <0.546 EPA-T0-15 04/16/2019 1,1,2.2-Tetrachloroethane <0.0750 <0.515 EPA-T0-15 04/16/2019 1,1,2-Trichloroethane (TCA) <0.125 <0.682 EPA-T0-15 04/16/2019 1,1-Dichloroethane (DCE) <0.0100 <0.397 EPA-T0-15 04/16/2019 1,2-Dichloroethane (DCE) <0.0500 <0.384 EPA-T0-15 04/16/2019 1,2-Dichloroethane <0.0500 <0.384	Analyte		Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analy	vst
Aliphatic Hydrocarbon (ECS-8) 270 1,030 75.0 285 EPA-T0-15 04/15/2019 Aliphatic Hydrocarbon (EC9-12) 57.8 340 75.0 442 EPA-T0-15 04/15/2019 Surr: 4-Bromofluorobenzene 87.6 %Rec - 70-130 EPA-T0-15 04/15/2019 Volatile Organic Compounds by EPA-Method TO-15 (ug/m) (ug/m) (ug/m) (ug/m) 1,1,1-Trichloroethane <0.100 <0.656 0.6515 EPA-T0-15 04/16/2019 1,1,2,2-Tetrachloroethane <0.0750 <0.515 0.662 EPA-T0-15 04/16/2019 1,1,2,2-Tetrachloroethane <0.0500 <0.525 0.662 EPA-T0-15 04/16/2019 1,1,2,2-Tetrachloroethane <0.0500 <0.202 0.6602 EPA-T0-15 04/16/2019 1,1,2,2-Tetrachloroethane <0.0500 <0.202 EPA-T0-15 04/16/2019 1,2,2-Trichloroethane (TCA) <0.125 <0.682 0.202 EPA-T0-15 04/16/2019 1,2-Dichloroethane <0.0500 <0.202 EPA-T0-15 <td< th=""><th>Petroleum Fractiona</th><th>ation by EPA Met</th><th><u>hod TO-15</u></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	Petroleum Fractiona	ation by EPA Met	<u>hod TO-15</u>							
Aliphatic Hydrocarbon (EC9-12) 57.8 340 75.0 442 EPA-T0-15 04/15/2019 Aromatic Hydrocarbon (EC9-10) <6.25 <31.4 6.25 31.4 EPA-T0-15 04/15/2019 Surr: 4-Bromofluorobenzene 87.6 %Rec - 70-130 EPA-T0-15 04/15/2019 Volatile Organic Compounds by EPA Method TO-T5 (ug/m)			(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Aromatic Hydrocarbon (EC9-10) <6.25 <31.4 6.25 31.4 EPA-T0-15 04/15/2019 Surr: 4-Bromofluorobenzene 87.6 %Rec 70-130 EPA-T0-15 04/15/2019 Volatile Organic Compounds by EPA-Method TO-TS (ug/m) (ug/m) (ug/m) (ug/m) 0.546 EPA-T0-15 04/16/2019 1,1,1-Trichloroethane <0.0750	Aliphatic Hydrocarbon (EC5-8)	270	1,030	75.0	285		EPA-TO-15	04/15/2019	AD
Surr. 4-Bromofluorobenzene 87.6 %Rec - 70-130 EPA-T0-15 04/15/2019 Volatile Organic Compounds by EPA Method TO-15 (ug/m3) (Aliphatic Hydrocarbon (EC9-12)	57.8	340	75.0	442		EPA-TO-15	04/15/2019	AD
Volatile Organic Compounds by EPA Method TO-15: (ppbv) (ug/m) (ppbv) (ug/m)	Aromatic Hydrocarbon ((EC9-10)	<6.25	<31.4	6.25	31.4		EPA-TO-15	04/15/2019	AD
(ppbv) (ug/m³) (ppbv) (ug/m³) 1,1,1-Trichloroethane <0.100	Surr: 4-Bromofluorob	enzene	87.6 %Rec		70-130			EPA-TO-15	04/15/2019	AD
1,1,1-Trichloroethane <0.100	Volatile Organic Co	mpounds by EPA	Method TO	<u>-15</u>						
1,1,2,2-Tetrachloroethane <0.0750			(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
CFC-113 <0.100 <0.766 0.100 0.766 EPA-TO-15 0.4/16/2019 1,1,2-Trichloroethane (TCA) <0.125	1,1,1-Trichloroethane		<0.100	<0.546	0.100	0.546		EPA-TO-15	04/16/2019	AD
1,1,2-Trichloroethane (TCA) <0.125	1,1,2,2-Tetrachloroetha	ne	<0.0750	<0.515	0.0750	0.515		EPA-TO-15	04/16/2019	AD
1.1-Dichloroethane <0.0500	CFC-113		<0.100	<0.766	0.100	0.766		EPA-TO-15	04/16/2019	AD
1.1-Dichloroethene (DCE) <0.100	1,1,2-Trichloroethane (T	CA)	<0.125	<0.682	0.125	0.682		EPA-TO-15	04/16/2019	AD
1,2,4-Trichlorobenzene<0.0750<0.5570.07500.557EPA-TO-1504/16/20191,2,4-Trimethylbenzene1.497.350.07500.369EPA-TO-1504/16/20191,2-Dibromoethane (EDB)<0.0500	1,1-Dichloroethane		<0.0500	<0.202	0.0500	0.202		EPA-TO-15	04/16/2019	AD
1,2,4-Trimethylbenzene1.497.350.07500.369EPA-TO-1504/16/20191,2-Dibromoethane (EDB)<0.0500	1,1-Dichloroethene (DC	E)	<0.100	<0.397	0.100	0.397		EPA-TO-15	04/16/2019	AD
1,2-Dibromoethane (EDB)<0.0500<0.3840.05000.384EPA-TO-1504/16/20191,2-Dichlorobenzene<0.100	1,2,4-Trichlorobenzene		<0.0750	<0.557	0.0750	0.557	*	EPA-TO-15	04/16/2019	AD
1,2-Dichlorobenzene<0.100<0.601EPA-TO-1504/16/20191,2-Dichloroethane<0.0500	1,2,4-Trimethylbenzene		1.49	7.35	0.0750	0.369		EPA-TO-15	04/16/2019	AD
1,2-Dichloroethane<0.0500<0.2020.05000.202EPA-TO-1504/16/20191,2-Dichloropropane<0.125	1,2-Dibromoethane (ED	B)	<0.0500	<0.384	0.0500	0.384		EPA-TO-15	04/16/2019	AD
1,2-Dichloropropane<0.125<0.5780.1250.578EPA-TO-1504/16/20191,3,5-Trimethylbenzene0.3821.880.07500.369EPA-TO-1504/16/20191,3-Butadiene0.4280.9460.1250.277EPA-TO-1504/16/20191,3-Dichlorobenzene0.2971.780.07500.451EPA-TO-1504/16/20191,4-Dichlorobenzene0.3291.980.07500.451EPA-TO-1504/16/20191,4-Dichlorobenzene0.3291.980.07500.451EPA-TO-1504/16/20191,4-Dichlorobenzene0.100<0.360	1,2-Dichlorobenzene		<0.100	<0.601	0.100	0.601		EPA-TO-15	04/16/2019	AD
1,3,5-Trimethylbenzene0.3821.880.07500.369EPA-TO-1504/16/20191,3-Butadiene0.4280.9460.1250.277EPA-TO-1504/16/20191,3-Dichlorobenzene0.2971.780.07500.451EPA-TO-1504/16/20191,4-Dichlorobenzene0.3291.980.07500.451EPA-TO-1504/16/20191,4-Dioxane<0.100	1,2-Dichloroethane		<0.0500	<0.202	0.0500	0.202		EPA-TO-15	04/16/2019	AD
1,3-Butadiene0.4280.9460.1250.277EPA-TO-1504/16/20191,3-Dichlorobenzene0.2971.780.07500.451EPA-TO-1504/16/20191,4-Dichlorobenzene0.3291.980.07500.451EPA-TO-1504/16/20191,4-Dioxane<0.100	1,2-Dichloropropane		<0.125	<0.578	0.125	0.578		EPA-TO-15	04/16/2019	AD
1,3-Dichlorobenzene0.2971.780.07500.451EPA-TO-1504/16/20191,4-Dichlorobenzene0.3291.980.07500.451EPA-TO-1504/16/20191,4-Dioxane<0.100	1,3,5-Trimethylbenzene		0.382	1.88	0.0750	0.369		EPA-TO-15	04/16/2019	AD
1,4-Dichlorobenzene0.3291.980.07500.451EPA-TO-1504/16/20191,4-Dioxane<0.100	1,3-Butadiene		0.428	0.946	0.125	0.277		EPA-TO-15	04/16/2019	AD
1,4-Dioxane<0.100<0.3600.1000.360*EPA-TO-1504/16/2019(MEK) 2-Butanone1.715.030.2500.737EPA-TO-1504/16/20192-Hexanone<0.250	1,3-Dichlorobenzene		0.297	1.78	0.0750	0.451		EPA-TO-15	04/16/2019	AD
Interview	1,4-Dichlorobenzene		0.329	1.98	0.0750	0.451		EPA-TO-15	04/16/2019	AD
2-Hexanone <0.250	1,4-Dioxane		<0.100	<0.360	0.100	0.360	*	EPA-TO-15	04/16/2019	AD
Isopropyl Alcohol 4.64 11.4 0.250 0.614 EPA-TO-15 04/16/2019 4-Methyl-2-pentanone (MIBK) <0.250	(MEK) 2-Butanone		1.71	5.03	0.250	0.737		EPA-TO-15	04/16/2019	AD
4-Methyl-2-pentanone (MIBK) <0.250 <1.02 0.250 1.02 EPA-TO-15 04/16/2019 Acetone 34.2 81.3 0.250 0.594 EPA-TO-15 04/16/2019 Acrolein 0.373 0.855 0.125 0.287 EPA-TO-15 04/16/2019	2-Hexanone		<0.250	<1.02	0.250	1.02	*	EPA-TO-15	04/16/2019	AD
Acetone 34.2 81.3 0.250 0.594 EPA-TO-15 04/16/2019 Acrolein 0.373 0.855 0.125 0.287 EPA-TO-15 04/16/2019	Isopropyl Alcohol		4.64	11.4	0.250	0.614		EPA-TO-15	04/16/2019	AD
Acrolein 0.373 0.855 0.125 0.287 EPA-TO-15 04/16/2019	4-Methyl-2-pentanone (I	MIBK)	<0.250	<1.02	0.250	1.02		EPA-TO-15	04/16/2019	AD
	Acetone		34.2	81.3	0.250	0.594		EPA-TO-15	04/16/2019	AD
	Acrolein		0.373	0.855	0.125	0.287		EPA-TO-15	04/16/2019	AD
DOLEGIO 0.010 2.30 0.0224 U.U/15 D EFA-10-15 04/10/2019	Benzene		0.916	2.93	0.0224	0.0715	В	EPA-TO-15	04/16/2019	AD

Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst
Sample Type:	Summa Canister					
Lab ID:	1904223-004A			Date Ree	ceived: 4/11	/2019
Client Sample ID:	SV-2			Date Sar	mpled: 4/10)/2019

Volatile Organic Compounds by EPA		-15						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzyl chloride	<0.125	<0.647	0.125	0.647	EPA-TO-15	04/16/2019	AD	
Dichlorobromomethane	<0.0750	<0.502	0.0750	0.502	EPA-TO-15	04/16/2019	AD	
Bromoform	<0.0500	<0.517	0.0500	0.517	EPA-TO-15	04/16/2019	AD	
Bromomethane	<0.125	<0.485	0.125	0.485	EPA-TO-15	04/16/2019	AD	
Carbon disulfide	<0.375	<1.17	0.375	1.17	EPA-TO-15	04/16/2019	AD	
Carbon tetrachloride	0.0815	0.513	0.0164	0.103	EPA-TO-15	04/16/2019	AD	
Chlorobenzene	0.0626	0.288	0.0500	0.230	EPA-TO-15	04/16/2019	AD	
Dibromochloromethane	<0.125	<1.06	0.125	1.06	EPA-TO-15	04/16/2019	AD	
Chloroethane	<0.100	<0.264	0.100	0.264	EPA-TO-15	04/16/2019	AD	
Chloroform	<0.0500	<0.244	0.0500	0.244	EPA-TO-15	04/16/2019	AD	
Chloromethane	<0.125	<0.258	0.125	0.258	EPA-TO-15	04/16/2019	AD	
cis-1,2-Dichloroethene	<0.0500	<0.198	0.0500	0.198	EPA-TO-15	04/16/2019	AD	
cis-1,3-dichloropropene	<0.100	<0.454	0.100	0.454	EPA-TO-15	04/16/2019	AD	
Cyclohexane	1.48	5.08	0.100	0.344	EPA-TO-15	04/16/2019	AD	
Dichlorodifluoromethane (CFC-12)	0.428	2.11	0.100	0.495	EPA-TO-15	04/16/2019	AD	
Dichlorotetrafluoroethane (CFC-114)	<0.100	<0.699	0.100	0.699	EPA-TO-15	04/16/2019	AD	
Ethyl acetate	1.16	4.17	0.250	0.901	EPA-TO-15	04/16/2019	AD	
Ethylbenzene	0.386	1.67	0.100	0.434	EPA-TO-15	04/16/2019	AD	
Heptane	1.72	6.90	0.100	0.402	EPA-TO-15	04/16/2019	AD	
Hexachlorobutadiene	<0.250	<2.67	0.250	2.67	EPA-TO-15	04/16/2019	AD	
m,p-Xylene	1.60	6.93	0.200	0.868	EPA-TO-15	04/16/2019	AD	
Methyl methacrylate	<0.100	<0.409	0.100	0.409	EPA-TO-15	04/16/2019	AD	
Methylene chloride	<0.500	<1.74	0.500	1.74	* EPA-TO-15	04/16/2019	AD	
Naphthalene	0.528	2.77	0.0250	0.131	EPA-TO-15	04/16/2019	AD	
n-Hexane	3.56	12.6	0.100	0.352	EPA-TO-15	04/16/2019	AD	
o-Xylene	0.565	2.45	0.100	0.434	EPA-TO-15	04/16/2019	AD	
4-Ethyltoluene	0.429	2.11	0.100	0.492	EPA-TO-15	04/16/2019	AD	
Propylene	<0.100	<0.172	0.100	0.172	EPA-TO-15	04/16/2019	AD	
Styrene	<0.100	<0.426	0.100	0.426	EPA-TO-15	04/16/2019	AD	
Methyl tert-butyl ether (MTBE)	0.284	1.02	0.100	0.361	EPA-TO-15	04/16/2019	AD	

Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst
Sample Type:	Summa Canister					
Lab ID:	1904223-004A			Date Red	ceived: 4/11	/2019
Client Sample ID:	SV-2			Date Sar	mpled: 4/10)/2019

Volatile Organic Compounds by EPA Method TO-15

volatile organic compounds by E		10					
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
Tetrachloroethene (PCE)	0.160	1.09	0.0500	0.339	EPA-TO-15	04/16/2019	AD
Tetrahydrofuran	0.173	0.511	0.100	0.295	EPA-TO-15	04/16/2019	AD
Toluene	1.92	7.25	0.100	0.377	EPA-TO-15	04/16/2019	AD
trans-1,2-Dichloroethene	<0.0500	<0.198	0.0500	0.198	EPA-TO-15	04/16/2019	AD
trans-1,3-dichloropropene	<0.125	<0.567	0.125	0.567	EPA-TO-15	04/16/2019	AD
Trichloroethene (TCE)	0.0425	0.228	0.0162	0.0872	EPA-TO-15	04/16/2019	AD
Trichlorofluoromethane (CFC-11)	0.291	1.63	0.100	0.562	EPA-TO-15	04/16/2019	AD
Vinyl acetate	<0.250	<0.880	0.250	0.880	EPA-TO-15	04/16/2019	AD
Vinyl chloride	<0.0268	<0.0685	0.0268	0.0685	EPA-TO-15	04/16/2019	AD
Surr: 4-Bromofluorobenzene	92.3 %Rec		70-130		EPA-TO-15	04/16/2019	AD

NOTES:

* - Flagged value is not within established control limits.

Fremont
Analytical

Work Order: 1904223 CLIENT: Hart Crow	wser Inc							QC S	SUMMA	RY REF	POR
Project: 601 Dexte	,					Petr	oleum	Fractionati	on by EPA	Method	I TO-1
Sample ID LCS-R50742A	SampType: LCS			Units: ppbv		Prep Date	: 4/13/20	19	RunNo: 507	42	
Client ID: LCSW	Batch ID: R50742					Analysis Date	: 4/13/20	19	SeqNo: 996	885	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	12.4	7.50	12.00	0	103	70	130				
Aliphatic Hydrocarbon (EC9-12)	11.9	7.50	12.00	0	98.9	70	130				
Aromatic Hydrocarbon (EC9-10)) 9.35	6.25	10.00	0	93.5	70	130				
Surr: 4-Bromofluorobenzene	4.04		4.000		101	70	130				
Sample ID MB-R50742A	SampType: MBLK			Units: ppbv		Prep Date	: 4/13/20	19	RunNo: 507	/42	
Client ID: MBLKW	Batch ID: R50742					Analysis Date	: 4/13/20	19	SeqNo: 996	886	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	ND	7.50									
Aliphatic Hydrocarbon (EC9-12)	ND	7.50									
Aromatic Hydrocarbon (EC9-10)) ND	6.25									
Surr: 4-Bromofluorobenzene	3.26		4.000		81.5	70	130				
Sample ID 1904223-001AREP	SampType: REP			Units: ppbv		Prep Date	: 4/13/20	19	RunNo: 507	42	
Client ID: CSE-1	Batch ID: R50742					Analysis Date	: 4/13/20	19	SeqNo: 996	888	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	37.7	7.50						34.59	8.56	30	
Aliphatic Hydrocarbon (EC9-12)	ND	7.50						0		30	
Aromatic Hydrocarbon (EC9-10)) ND	6.25						0		30	
Surr: 4-Bromofluorobenzene	3.49		4.000		87.3	70	130		0		
Sample ID LCS-R50742B	SampType: LCS			Units: ppbv		Prep Date	: 4/15/20	19	RunNo: 507	/42	
Client ID: LCSW	Batch ID: R50742					Analysis Date	: 4/15/20	19	SeqNo: 996	892	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aliphatic Hydrocarbon (EC5-8)	13.4	7.50	12.00	0	112	70	130				

Fremont
[Analytical]

Work Order:1904223CLIENT:Hart Crowse	er, Inc.							•	SUMMA		-
Project: 601 Dexter						Petro	oleum F	ractionati	on by EPA	Method	TO-15
Sample ID LCS-R50742B	SampType: LCS			Units: ppbv		Prep Date:	4/15/201	9	RunNo: 507	742	
Client ID: LCSW	Batch ID: R50742					Analysis Date:	4/15/201	9	SeqNo: 996	6892	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (EC9-10)	9.48	6.25	10.00	0	94.8	70	130				
Surr: 4-Bromofluorobenzene	4.14		4.000		104	70	130				
Sample ID MB-R50742B	SampType: MBLK			Units: ppbv		Prep Date:	4/15/201	9	RunNo: 507	742	
Client ID: MBLKW	Batch ID: R50742					Analysis Date:	4/15/201	9	SeqNo: 996	6893	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	ND	7.50									
Aliphatic Hydrocarbon (EC9-12)	ND	7.50									
Aromatic Hydrocarbon (EC9-10)	ND	6.25									
Surr: 4-Bromofluorobenzene	3.18		4.000		79.4	70	130				
Sample ID 1904223-004AREP	SampType: REP			Units: ppbv		Prep Date:	4/15/201	9	RunNo: 507	742	
Client ID: SV-2	Batch ID: R50742					Analysis Date:	4/15/201	9	SeqNo: 996	6897	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	135	7.50						129.8	4.03	30	Е
Aliphatic Hydrocarbon (EC9-12)	229	7.50						231.6	1.03	30	Е
Aromatic Hydrocarbon (EC9-10)	6.29	6.25						6.199	1.49	30	
Surr: 4-Bromofluorobenzene NOTES:	3.51		4.000		87.8	70	130		0		
E - Estimated value. The amount	exceeds the linear working	g range of	the instrumen	t.							
Sample ID LCS-R50742C	SampType: LCS			Units: ppbv		Prep Date:	4/17/201	9	RunNo: 507	742	
Client ID: LCSW	Batch ID: R50742					Analysis Date:	4/17/201	9	SeqNo: 998	3547	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	14.5	7.50	12.00	0	121	70	130				
Aliphatic Hydrocarbon (EC9-12)	12.2	7.50	12.00	0	101	70	130				
Aromatic Hydrocarbon (EC9-10)	10.3	6.25	10.00	0	103	70	130				

CLIENT: Hart	1223 Crowser, Inc. Dexter					Petr	roleum	QC S	SUMMAI on by EP#		
Sample ID LCS-R507420	C SampType	LCS		Units: ppbv		Prep Date	e: 4/17/2 0)19	RunNo: 50	742	
Client ID: LCSW	Batch ID:	R50742				Analysis Date	e: 4/17/2 0	019	SeqNo: 99	8547	
Analyte	F	Result F	RL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofluoroben	zene	3.86	4.000		96.5	70	130				
Sample ID MB-R50742C	SampType	BLK		Units: ppbv		Prep Date	e: 4/17/2 0)19	RunNo: 50	742	
Client ID: MBLKW	Batch ID:	R50742				Analysis Date	e: 4/17/20	019	SeqNo: 99	8548	
Analyte	F	Result F	RL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC	25-8)	ND 7.	50								
Aliphatic Hydrocarbon (EC	09-12)	ND 7.	50								
Aromatic Hydrocarbon (E	C9-10)	ND 6.2	25								
Surr: 4-Bromofluoroben	izene	3.62	4.000		90.5	70	130				
Sample ID 1904262-001	AREP SampType	: REP		Units: ppbv		Prep Date	e: 4/17/20)19	RunNo: 50	742	
Client ID: BATCH	Batch ID:	R50742				Analysis Date	e: 4/17/20)19	SeqNo: 99	8552	
Analyte	F	Result F	RL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC	25-8)	735 7.	50					732.9	0.265	30	Е
Aliphatic Hydrocarbon (EC	29-12)	2,540 7.	50					2,514	0.849	30	Е
Aromatic Hydrocarbon (E	C9-10)	7.36 6.2	25					7.280	1.14	30	
Surr: 4-Bromofluoroben	izene	3.92	4.000		98.1	70	130		0		
NOTES:											

E - Estimated value. The amount exceeds the linear working range of the instrument.

Work Orde CLIENT: Project:	r: 1904223 Hart Crowse 601 Dexter	er, Inc.								QC S	SUMMAI Hel	RY REF ium by G	-
Sample ID LC Client ID: LC	CS-R50823 CSW	SampType Batch ID:	E LCS R50823			Units: ppt		Prep Dat Analysis Dat	e: 4/18/2 e: 4/18/2		RunNo: 50 SeqNo: 99		
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	-		RPD Ref Val	%RPD	RPDLimit	Qual
Helium NOTES: ppt = parts p	per thousand		100	100	100.0	0	100	80	120				
Sample ID MI	B-R50823	SampType	: MBLK			Units: ppt		Prep Dat	e: 4/18/2	019	RunNo: 50	823	
Client ID: MI	BLKW	Batch ID:	R50823					Analysis Dat	e: 4/18/2	019	SeqNo: 99	8792	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Helium NOTES: ppt = parts p	per thousand		ND	100									
Sample ID 19	04223-03AREP	SampType	: REP			Units: ppt		Prep Dat	e: 4/18/2	019	RunNo: 50	823	
Client ID: BA	АТСН	Batch ID:	R50823					Analysis Dat	e: 4/18/2	019	SeqNo: 99	8789	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Helium NOTES:			ND	100						0		30	

ppt = parts per thousand

Work Order: CLIENT: Project:	1904223 Hart Crowser 601 Dexter	, Inc.							•	SUMMAF Gases by F		-
Sample ID LCS-F Client ID: LCSW		SampType: LCS Batch ID: R50797			Units: %	0/ DE0	Analysis Dat		019	RunNo: 507 SeqNo: 998	3276	Qual
Analyte		Result	RL		SPK Ref Val	%REC		0	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide		100	0.0500	100.0	0	100	70	130				
Methane		100	0.0500	100.0	0	100	70	130				
Oxygen		100	0.0500	100.0	0	100	70	130				
Sample ID 19042	23-001AREP	SampType: REP			Units: %		Prep Dat	ie: 4/17/20)19	RunNo: 507	/97	
Client ID: CSE-1	I	Batch ID: R50797					Analysis Dat	te: 4/17/20)19	SeqNo: 998	3272	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide		0.108	0.0865						0.09276	15.0	30	D
Methane		ND	0.0865						0		30	D
Oxygen		24.6	0.0865						24.68	0.219	30	D
NOTES												

NOTES:

Canister was pressurized with Nitrogen to obtain sample volume required to analyze Major Gases. The added nitrogen resulted in a 1.73X dilution. Detections of analytes were adjusted accordingly.

Work Order: 1	904223
---------------	--------

Project:

CLIENT: Hart Crowser, Inc.

QC SUMMARY REPORT

Sample ID LCS-R50768	SampType: LCS			Units: ppbv		Prep Date: 4/16/2019 RunNo: 50768					
Client ID: LCSW	Batch ID: R50768					Analysis Dat	e: 4/16/20)19	SeqNo: 997	7502	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Propylene	2.19	0.400	2.000	0	109	70	130				
Dichlorodifluoromethane (CFC-12)	2.15	0.400	2.000	0	108	70	130				
Chloromethane	2.18	0.500	2.000	0	109	70	130				
Dichlorotetrafluoroethane (CFC-114)	2.09	0.400	2.000	0	104	70	130				
Vinyl chloride	2.09	0.107	2.000	0	105	70	130				
1,3-Butadiene	1.90	0.500	2.000	0	94.8	70	130				
Bromomethane	2.01	0.500	2.000	0	101	70	130				
Trichlorofluoromethane (CFC-11)	2.11	0.400	2.000	0	106	70	130				
Chloroethane	1.95	0.400	2.000	0	97.5	70	130				
Acrolein	1.56	0.500	2.000	0	77.9	70	130				
1,1-Dichloroethene (DCE)	1.91	0.400	2.000	0	95.7	70	130				
Acetone	2.13	1.00	2.000	0	106	70	130				
Isopropyl Alcohol	2.27	1.00	2.000	0	114	70	130				
Methylene chloride	0.451	2.00	2.000	0	22.6	70	130				S
Carbon disulfide	2.00	1.50	2.000	0	99.9	70	130				
trans-1,2-Dichloroethene	2.19	0.200	2.000	0	109	70	130				
Methyl tert-butyl ether (MTBE)	2.36	0.400	2.000	0	118	70	130				
n-Hexane	1.76	0.400	2.000	0	88.1	70	130				
1,1-Dichloroethane	2.04	0.200	2.000	0	102	70	130				
Vinyl acetate	2.31	1.00	2.000	0	116	70	130				
cis-1,2-Dichloroethene	1.82	0.200	2.000	0	90.8	70	130				
(MEK) 2-Butanone	2.30	1.00	2.000	0	115	70	130				
Ethyl acetate	1.74	1.00	2.000	0	87.1	70	130				
Chloroform	2.09	0.200	2.000	0	104	70	130				
Tetrahydrofuran	1.80	0.400	2.000	0	90.1	70	130				
1,1,1-Trichloroethane	1.97	0.400	2.000	0	98.5	70	130				
Carbon tetrachloride	1.94	0.0657	2.000	0	97.0	70	130				
1,2-Dichloroethane	2.02	0.200	2.000	0	101	70	130				
Benzene	1.87	0.0895	2.000	0	93.6	70	130				
Cyclohexane	1.85	0.400	2.000	0	92.3	70	130				
Trichloroethene (TCE)	1.98	0.0649	2.000	0	99.2	70	130				

Hart Crowser, Inc. CLIENT:

QC SUMMARY REPORT

Sample ID LCS-R50768	SampType: LCS			Units: ppbv		Prep Dat	e: 4/16/20	019	RunNo: 507	768	
Client ID: LCSW	Batch ID: R50768					Analysis Dat	e: 4/16/20)19	SeqNo: 997	7502	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloropropane	2.04	0.500	2.000	0	102	70	130				
Methyl methacrylate	1.87	0.400	2.000	0	93.4	70	130				
Dichlorobromomethane	2.08	0.300	2.000	0	104	70	130				
1,4-Dioxane	1.27	0.400	2.000	0	63.4	70	130				S
cis-1,3-dichloropropene	1.69	0.400	2.000	0	84.6	70	130				
Toluene	1.64	0.400	2.000	0	82.2	70	130				
trans-1,3-dichloropropene	1.90	0.500	2.000	0	95.0	70	130				
1,1,2-Trichloroethane (TCA)	2.00	0.500	2.000	0	100	70	130				
Tetrachloroethene (PCE)	2.01	0.200	2.000	0	101	70	130				
Dibromochloromethane	1.90	0.500	2.000	0	94.9	70	130				
1,2-Dibromoethane (EDB)	1.90	0.200	2.000	0	95.2	70	130				
Chlorobenzene	1.95	0.200	2.000	0	97.5	70	130				
Ethylbenzene	1.68	0.400	2.000	0	84.0	70	130				
n,p-Xylene	3.33	0.800	4.000	0	83.2	70	130				
o-Xylene	1.68	0.400	2.000	0	83.8	70	130				
Styrene	1.63	0.400	2.000	0	81.3	70	130				
Bromoform	1.89	0.200	2.000	0	94.3	70	130				
1,1,2,2-Tetrachloroethane	1.92	0.300	2.000	0	95.8	70	130				
1,3,5-Trimethylbenzene	1.69	0.300	2.000	0	84.7	70	130				
1,2,4-Trimethylbenzene	1.54	0.300	2.000	0	76.9	70	130				
Benzyl chloride	1.53	0.500	2.000	0	76.5	70	130				
4-Ethyltoluene	1.64	0.400	2.000	0	82.1	70	130				
1,3-Dichlorobenzene	1.79	0.300	2.000	0	89.4	70	130				
1,4-Dichlorobenzene	1.73	0.300	2.000	0	86.5	70	130				
1,2-Dichlorobenzene	1.82	0.400	2.000	0	90.9	70	130				
1,2,4-Trichlorobenzene	1.36	0.300	2.000	0	67.9	70	130				S
Hexachlorobutadiene	1.73	1.00	2.000	0	86.4	70	130				
Naphthalene	1.63	0.100	2.000	0	81.5	70	130				
2-Hexanone	1.10	1.00	2.000	0	55.0	70	130				S
4-Methyl-2-pentanone (MIBK)	1.53	1.00	2.000	0	76.6	70	130				
CFC-113	1.98	0.400	2.000	0	99.1	70	130				

Work Order: CLIENT: Project:	1904223 Hart Crowse 601 Dexter	er, Inc.						Volatile	Organio	QC S Compoun	SUMMAI ds by EP#		
Sample ID LCS-R Client ID: LCSW		SampType Batch ID:	: LCS R50768			Units: ppbv		Prep Da Analysis Da	te: 4/16/20 te: 4/16/20		RunNo: 50 SeqNo: 99		
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Heptane Surr: 4-Bromoflu NOTES: S - Outlying spik		erved (low bias)	1.77 4.26 . Samples w	0.400 vill be qualit	2.000 4.000 fied with a *.	0	88.6 106	70 70	130 130				

Sample ID LCSD-R50768	SampType: LCSD			Units: ppbv		Prep Date	e: 4/16/20	19	RunNo: 507	768	
Client ID: LCSW02	Batch ID: R50768					Analysis Date	e: 4/16/20	19	SeqNo: 997	7503	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Propylene	2.23	0.400	2.000	0	112	70	130	2.188	2.05	30	
Dichlorodifluoromethane (CFC-12)	2.19	0.400	2.000	0	109	70	130	2.152	1.61	30	
Chloromethane	2.19	0.500	2.000	0	109	70	130	2.175	0.600	30	
Dichlorotetrafluoroethane (CFC-114)	2.13	0.400	2.000	0	107	70	130	2.087	2.18	30	
Vinyl chloride	2.08	0.107	2.000	0	104	70	130	2.093	0.817	30	
1,3-Butadiene	1.87	0.500	2.000	0	93.5	70	130	1.896	1.35	30	
Bromomethane	1.99	0.500	2.000	0	99.3	70	130	2.010	1.24	30	
Trichlorofluoromethane (CFC-11)	2.09	0.400	2.000	0	105	70	130	2.112	0.862	30	
Chloroethane	2.05	0.400	2.000	0	102	70	130	1.949	4.95	30	
Acrolein	1.58	0.500	2.000	0	79.0	70	130	1.558	1.41	30	
1,1-Dichloroethene (DCE)	1.94	0.400	2.000	0	96.8	70	130	1.915	1.12	30	
Acetone	2.14	1.00	2.000	0	107	70	130	2.130	0.624	30	
Isopropyl Alcohol	2.34	1.00	2.000	0	117	70	130	2.271	3.12	30	
Methylene chloride	0.677	2.00	2.000	0	33.8	70	130	0		30	S
Carbon disulfide	1.99	1.50	2.000	0	99.3	70	130	1.998	0.582	30	
trans-1,2-Dichloroethene	2.14	0.200	2.000	0	107	70	130	2.189	2.30	30	
Methyl tert-butyl ether (MTBE)	2.34	0.400	2.000	0	117	70	130	2.362	1.09	30	
n-Hexane	1.78	0.400	2.000	0	88.9	70	130	1.762	0.964	30	
1,1-Dichloroethane	2.04	0.200	2.000	0	102	70	130	2.042	0.334	30	
Vinyl acetate	2.29	1.00	2.000	0	115	70	130	2.314	0.853	30	
cis-1,2-Dichloroethene	1.79	0.200	2.000	0	89.6	70	130	1.817	1.41	30	
(MEK) 2-Butanone	2.30	1.00	2.000	0	115	70	130	2.301	0.206	30	

Work Order: 19	04223
----------------	-------

Hart Crowser, Inc. CLIENT:

QC SUMMARY REPORT

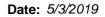
Sample ID LCSD-R50768	SampType: LCSD			Units: ppbv		Prep Date:	4/16/20	19	RunNo: 507	768	
Client ID: LCSW02	Batch ID: R50768					Analysis Date:	4/16/20	19	SeqNo: 997	7503	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethyl acetate	1.74	1.00	2.000	0	87.2	70	130	1.741	0.186	30	
Chloroform	2.08	0.200	2.000	0	104	70	130	2.086	0.0806	30	
Tetrahydrofuran	1.87	0.400	2.000	0	93.3	70	130	1.802	3.43	30	
1,1,1-Trichloroethane	1.96	0.400	2.000	0	97.9	70	130	1.970	0.653	30	
Carbon tetrachloride	1.91	0.0657	2.000	0	95.3	70	130	1.939	1.67	30	
1,2-Dichloroethane	2.00	0.200	2.000	0	100	70	130	2.020	1.03	30	
Benzene	1.90	0.0895	2.000	0	95.1	70	130	1.872	1.63	30	
Cyclohexane	1.84	0.400	2.000	0	92.1	70	130	1.845	0.147	30	
Trichloroethene (TCE)	2.00	0.0649	2.000	0	100	70	130	1.984	1.05	30	
1,2-Dichloropropane	2.01	0.500	2.000	0	101	70	130	2.041	1.41	30	
Methyl methacrylate	1.90	0.400	2.000	0	94.9	70	130	1.868	1.53	30	
Dichlorobromomethane	2.05	0.300	2.000	0	103	70	130	2.080	1.30	30	
1,4-Dioxane	1.25	0.400	2.000	0	62.7	70	130	1.267	0.991	30	S
cis-1,3-dichloropropene	1.65	0.400	2.000	0	82.7	70	130	1.692	2.31	30	
Toluene	1.65	0.400	2.000	0	82.3	70	130	1.644	0.156	30	
trans-1,3-dichloropropene	1.90	0.500	2.000	0	94.9	70	130	1.899	0.0996	30	
1,1,2-Trichloroethane (TCA)	1.98	0.500	2.000	0	99.0	70	130	2.004	1.26	30	
Tetrachloroethene (PCE)	2.01	0.200	2.000	0	100	70	130	2.015	0.467	30	
Dibromochloromethane	1.89	0.500	2.000	0	94.5	70	130	1.897	0.385	30	
1,2-Dibromoethane (EDB)	1.85	0.200	2.000	0	92.5	70	130	1.905	2.90	30	
Chlorobenzene	1.93	0.200	2.000	0	96.7	70	130	1.951	0.893	30	
Ethylbenzene	1.70	0.400	2.000	0	85.0	70	130	1.680	1.24	30	
m,p-Xylene	3.33	0.800	4.000	0	83.2	70	130	3.328	0.0409	30	
o-Xylene	1.68	0.400	2.000	0	84.1	70	130	1.676	0.388	30	
Styrene	1.63	0.400	2.000	0	81.4	70	130	1.626	0.192	30	
Bromoform	1.86	0.200	2.000	0	92.8	70	130	1.886	1.64	30	
1,1,2,2-Tetrachloroethane	1.90	0.300	2.000	0	95.0	70	130	1.917	0.933	30	
1,3,5-Trimethylbenzene	1.71	0.300	2.000	0	85.4	70	130	1.694	0.868	30	
1,2,4-Trimethylbenzene	1.52	0.300	2.000	0	75.9	70	130	1.538	1.35	30	
Benzyl chloride	1.52	0.500	2.000	0	75.9	70	130	1.530	0.843	30	
4-Ethyltoluene	1.63	0.400	2.000	0	81.3	70	130	1.641	0.880	30	

Work Order: 1904223

Project:

CLIENT: Hart Crowser, Inc.

QC SUMMARY REPORT


Volatile Organic Compounds by EPA Method TO-15

Sample ID LCSD-R50768	SampType: LCSD			Units: ppbv		Prep Da	ate: 4/16/2	RunNo: 50			
Client ID: LCSW02	Batch ID: R50768					Analysis Da	ate: 4/16/2	019	SeqNo: 997503		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,3-Dichlorobenzene	1.74	0.300	2.000	0	87.1	70	130	1.788	2.63	30	
1,4-Dichlorobenzene	1.69	0.300	2.000	0	84.3	70	130	1.730	2.57	30	
1,2-Dichlorobenzene	1.77	0.400	2.000	0	88.5	70	130	1.818	2.68	30	
1,2,4-Trichlorobenzene	1.27	0.300	2.000	0	63.5	70	130	1.358	6.77	30	S
Hexachlorobutadiene	1.66	1.00	2.000	0	82.9	70	130	1.728	4.19	30	
Naphthalene	1.55	0.100	2.000	0	77.3	70	130	1.629	5.20	30	
2-Hexanone	1.12	1.00	2.000	0	56.2	70	130	1.100	2.24	30	S
4-Methyl-2-pentanone (MIBK)	1.48	1.00	2.000	0	74.2	70	130	1.531	3.09	30	
CFC-113	1.99	0.400	2.000	0	99.4	70	130	1.981	0.361	30	
Heptane	1.79	0.400	2.000	0	89.7	70	130	1.772	1.21	30	
Surr: 4-Bromofluorobenzene	4.15		4.000		104	70	130		0		
Surr: 4-Bromofluorobenzene	4.15		4.000		104	70	130		0		

NOTES:

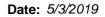
S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Sample ID MB-R50768	SampType	npType: MBLK			Units: ppbv		Prep Da	nte: 4/16/2	019	RunNo: 50768		
Client ID: MBLKW	Batch ID:	R50768					Analysis Da	ate: 4/16/2	019	SeqNo: 99	7504	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Propylene		ND	0.100									
Dichlorodifluoromethane (CFC-12)		ND	0.100									
Chloromethane		ND	0.125									
Dichlorotetrafluoroethane (CFC-114)		ND	0.100									
Vinyl chloride		ND	0.0268									
1,3-Butadiene		ND	0.125									
Bromomethane		ND	0.125									
Trichlorofluoromethane (CFC-11)		ND	0.100									
Chloroethane		ND	0.100									
Acrolein		ND	0.125									
1,1-Dichloroethene (DCE)		ND	0.100									
Acetone		ND	0.250									
Isopropyl Alcohol		ND	0.250									

Fremont
Analytical

Work Order: CLIENT: Project:	1904223 Hart Crowse 601 Dexter	r, Inc.					Volatile	Organi	QC S
Sample ID MB-R5	50768	SampType: MBLK			Units: ppbv		Prep Da	te: 4/16/2	019
Client ID: MBLK	w	Batch ID: R50768					Analysis Da	te: 4/16/2	019
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val
Methylene chloride	1	ND	0.500						
Carbon disulfide		ND	0.375						
trans-1,2-Dichloroe	ethene	ND	0.0500						
Methyl tert-butyl eth	her (MTBE)	ND	0.100						
n-Hexane		ND	0.100						
1,1-Dichloroethane	•	ND	0.0500						
Vinyl acetate		ND	0.250						
cis-1,2-Dichloroeth	ene	ND	0.0500						
(MEK) 2-Butanone		ND	0.250						
Ethyl acetate		ND	0.250						
Chloroform		ND	0.0500						
Tetrahydrofuran		ND	0.100						
1,1,1-Trichloroetha	ne	ND	0.100						
Carbon tetrachlorid	le	ND	0.0164						
1,2-Dichloroethane	•	ND	0.0500						
Benzene		0.0961	0.0224						
Cyclohexane		ND	0.100						
Trichloroethene (T	CE)	ND	0.0162						
1,2-Dichloropropan	ie	ND	0.125						
Methyl methacrylat	е	ND	0.100						
Dichlorobromometh	hane	ND	0.0750						
1,4-Dioxane		ND	0.100						
cis-1,3-dichloroprop	pene	ND	0.100						
Toluene		ND	0.100						
trans-1,3-dichlorop	ropene	ND	0.125						
1,1,2-Trichloroetha		ND	0.125						
Tetrachloroethene		ND	0.0500						
Dibromochlorometh	· ,	ND	0.125						
1,2-Dibromoethane	e (EDB)	ND	0.0500						
Chlorobenzene	- •	ND	0.0500						
Ethylbenzene		ND	0.100						

QC SUMMARY REPORT


%RPD RPDLimit

Qual

RunNo: **50768** SeqNo: **997504**

Volatile Organic Compounds by EPA Method TO-15

*

Fremont
[Analytical]

CLIENT: +	904223 Iart Crowser, 601 Dexter	Inc.						Volatile	Organi	QC S c Compoun	SUMMAF		
Sample ID MB-R507	68	SampTyp	e: MBLK			Units: ppbv		Prep Da	te: 4/16/2	019	RunNo: 507	768	
Client ID: MBLKW		Batch ID:	R50768					Analysis Da	te: 4/16/2	019	SeqNo: 997	7504	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene			ND	0.200									
o-Xylene			ND	0.100									
Styrene			ND	0.100									
Bromoform			ND	0.0500									
1,1,2,2-Tetrachloroeth	nane		ND	0.0750									
1,3,5-Trimethylbenzer	ne		ND	0.0750									
1,2,4-Trimethylbenzer	ne		ND	0.0750									
Benzyl chloride			ND	0.125									
4-Ethyltoluene			ND	0.100									
1,3-Dichlorobenzene			ND	0.0750									
1,4-Dichlorobenzene			ND	0.0750									
1,2-Dichlorobenzene			ND	0.100									
1,2,4-Trichlorobenzen	e		ND	0.0750									*
Hexachlorobutadiene			ND	0.250									
Naphthalene			ND	0.00319									MDL
2-Hexanone			ND	0.250									*
4-Methyl-2-pentanone	e (MIBK)		ND	0.250									
CFC-113			ND	0.100									
Heptane			ND	0.100									
Surr: 4-Bromofluoro	obenzene		0.834		1.000		83.4	70	130				

* - Flagged value is not within established control limits.

MDL - Analyte reported to Method Detection Limit (MDL)

Sample Log-In Check List

Client Name: HART	Work Order Numb	per: 1904223	
Logged by:	Date Received:	4/11/2019	4:17:00 PM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🖌	No 🗌	Not Present
2. How was the sample delivered?	Client		
Log In			
3. Coolers are present?	Yes	No 🗌	NA 🗹
4. Shipping container/cooler in good condition?	Yes 🖌	No 🗌	
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No 🗌	Not Required 🗹
6. Was an attempt made to cool the samples?	Yes	No 🗌	NA 🗹
7. Were all items received at a temperature of $>0^{\circ}C$ to $10.0^{\circ}C^{*}$	Yes	No 🗌	NA 🔽
8. Sample(s) in proper container(s)?	Yes 🖌	No 🗌	
9. Sufficient sample volume for indicated test(s)?	Yes 🖌	No 🗌	
10. Are samples properly preserved?	Yes 🖌	No 🗌	
11. Was preservative added to bottles?	Yes	No 🗹	NA 🗌
12. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🗹
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14. Does paperwork match bottle labels?	Yes 🖌	No 🗌	
15. Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16. Is it clear what analyses were requested?	Yes 🖌	No 🗌	
17. Were all holding times able to be met?	Yes 🗹	No 🗌	
<u>Special Handling (if applicable)</u>			
18. Was client notified of all discrepancies with this order?	Yes	No 🗹	NA 🗌
Person Notified: Dat	te		
By Whom: Via	: 🗌 eMail 🗌 Phe	one 🗌 Fax [In Person
Regarding:			
Client Instructions:			
19. Additional remarks:			

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Same Day		ate/ inte	ç						×						3
Device of the second se		Date/Time		R	Ŋ	F	N	Received	RX	n	1 16:17	4/11/19 Date/Time	Date	12 Cont	x Jessiek Relinquished
inquished and have been been been been been been been be	rified Client's agree	ave ve	at I h	ve, th	abo	t namec	the Clien	behalf of	nalytical or	emont An	nt with Fr	reement.	this Agreen	terms on the front and backside of this Agreement.	terms on the fr
	Bag	= Tedlar Bag	TB :	ube	S = Sorbent Tube	S = So	F = Filter	Cylinder	CYL = High Pressure Cylinder	CYL = H	1L = 1L Canister	6L = 6L Canister 1L	ac 6L = 6L	: BV = 1 Liter Bottle Vac	Container Codes:
Turn Around Tr		Ì	ł		t				il Gas	S = Subslab / Soil Gas		r L = Landfill	IA = Indoor Air	A = Ambient Air	* Matrix Codes:
						1.205-1	Property	- Sedanta				L'are	Concerts and the		
	× ×				X	E.7	(A.OS	4/3/2019	~30 min	6L	ts	4/10/19	17235 L		SV-2
	× ×				×	H.1	50°H	10mtorr 4/3/2019	~30 min	6L	S	4/9/19	17240 (Satester First Forg		1-NS
naphalene to MDL	×			X		J."4	B. 62	10mtorr 4/3/2019	8hr	6L	STA	H/10/19	12667 FR8-12		CSW-1
naphalene to MDL	X			X		A.F	A. 08	10mtorr House 4/3/2019	8hr	9L	# HA	1101	12669 FR8-02		CSE-1
Final Pressure ("Hg)	Sulfur Ext. TO15 APH TO15 Helium Major Gases 3C	Siloxanes TO15 Sulfur TO15	VOCs TO15 SIM	VOCs TO15 SCAN LL	VOCs TO15 SCAN	Field Final Sample Pressure (" Hg)	Field Initial Sample Pressure (" Hg)	Initial Evacuation Pressure (mtorr)	Fill Time / Flow Rate	Container Type **	Sample Type (Matrix) *	Sample Date & Time	# OW	Sample Name Ga	Sampl
Internal	Analysis	-1	Can	2	201	CIMIN	Immun	Internel		Email (PM):					
otherwise requested. OK to Dispose Hold (fees may apply)	otherwise requested.				3	an	mpood	Reports to (PM): Wavissa Goodman	10	Reports to		******		Ma. Sherd MI	Fax:
							8	collected by: J. Blanchette	by: J.BI	Collected I			12186	Seattle, WA	Cip.
								xter	Location: (00) Dexter	Location:			#(000	Address: 3131 Elliott Ave	Address: 3131
The to rear the car i was	napthale							100	Project No: 19449-00	Project No				Crowser	client: Hart
cial Remarks:	Special Remarks:			01:		Page:	¢.	1 Deuter	Project Name: 001		Fax: 206-352-7178		amolynnon	An	
nernal: 190423	Labora		-		-				Date: 4/11/19		Seattle, WA 98103 Tel: 206-352-3790		G	renon	- ik
Laboratory Services Agreement	20	Custody Record	Re	dy	sto	of Cu	lain c	Air Chain			3600 Fremont Ave N.				A L

Page 1 of 2

COCAir 1.4 - 4.12.18

Page 31 of 32

		3600 Fremont Ave N.	Π		Air C	hain	Air Chain of Custo	stod	dy Record &	ec	ă	00		8	9	Laboratory Services Agreement	emen
		Seattle, WA 98103 Tel: 206-352-3790 Fax: 206-352-7178	Date: 4/11/19	111/19			Page:	1 of:	-			Labo	orator	y Proj	ect No	Laboratory Project No (Internal): 1904223	
client: Hart Cinwser			Project Nar	Project Name: (00)		Deuter						Spe	napthu	emar pt	ha	naphalene to MDL for CSE-1 KSW-1	tSu-1
Address: 3131 Elliott Ave	e \$600		Location: (0) Dev Lev	In Derta	-W							F	÷	3	3	I TO EMALI TOP VOC SELECT LIST.	of list.
city, state, zip: Selottle, WA	UA, 98121		Collected hur. A. R. Conclusion	1.21	Conclust	1.0						1.1	£.				
Telephone: Wo-8W . 4721	721		Reports to (PM): MQNISSA GOODMAN	PMI: Ma	nissa (hoodin	an					Air sa	mple	sare	dispo	sed of one week after report	lient unless
Fax:			Email (DMI:	Muntss	.a 0.0.	dman	manissa and man a bartonissor and	ALL SAL				otherwise requested.	wise	eque	sted.	OK to Dispose U Hold (fees may apply)	tay apply)
					Internal				- 2		Analysis	Sis					Internal
Sample Name	Canister / Flow Sample Date & Reg Serial # Time	Sample Type (Matrix) *	Container Type **	Fill Time / Flow Rate	Initial Evacuation Pressure (mtorr)	Field Initial Sample Pressure (" Hg)	Field Fina) Sample Pressure (" Hg)	VOCs TO15 SCAN	VOCs TO15 SIM	Siloxanes TO15	Sulfur TO15	Sulfur Ext. TO15	APH TO15	Helium	Major Gases 3C	Comments	Final Pressure ("Hg)
CSE-1	12669 Canister FRe-02 Floor Re-02 Floor Re	# F	6L	8hr	10mtorr Pressure 4/3/2019	30 W	9"H						X			naphalene to MDL	R
CSW-1	12667 Canisier FR8-12 Flave Page 10010 Trane	TA	6L	8hr	10mtorr Pressure 4/3/2019	30 B	J"Hong	X				24	×			naphalene to MDL	AC
SN-1	17240 Carrister Flow Reg 1650	S S	6	~30 min	10mtorr Presaure 4/3/2019	So"Hy Pressure	Pressed a	\times				×	××××	-		97	3
SV-2	17235 Canister 4/10/19/201 Flow Peter 1150 Tan	t S		~30 min	Pressure 4/3/2019	50 HJ	Presta	X				×	X	×			0
	Canater Date			1	538\$\$-7 ²	PLAN SALA	6.81.5684.6				-						
* Matrix Codes: AA = Amblent Air IA ** Container Codes: BV = 1 Liter Bottle Vac	IA = Indoor Air L = Landfill		S = Subslab / Soil Gas	se	A	19190	41ED									Turn-Around Time:	ind Time:
I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, terms on the front and backside of this Agreement.	to enter into this Agree of this Agreement.	ment with Fren	nont Analy	ont Analytical on behalf	pehalf of t	he Client	named above, ti	bove, th	at I h	IB = Tedlar Bag I have verific	ar Ba	lied	Clie	nt's	agr	De 18 = Tedlar Bag , that I have verified Client's agreement to each of the	ard
" Jessien Blanchert	B Date/Time 4/11/19	19 16.17	1	Receive	ively	2	7		7.7	Date/Time	- A					Day	
Relinquished U	Date/Time	**************		Received	wed	1	4 V	40	T	te/To	ne					Next Day	Jay
																	(specify)

Page 1 of 2

COC Air 1.4 - 4.12.18