ADDENDUM TO WORK PLAN FOR INDEPENDENT PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Kimberly-Clark Worldwide Site Upland Area, Everett, Washington

Prepared for: Kimberly-Clark Worldwide, Inc.

Project No. 110207-002-03 • September 7, 2012

ADDENDUM TO WORK PLAN FOR INDEPENDENT PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Kimberly-Clark Worldwide Site Upland Area, Everett, Washington

Prepared for: Kimberly-Clark Worldwide, Inc.

Project No. 110207-002-03 • September 7, 2012

Aspect Consulting, LLC

Steve Germiat, LHG

Sr. Associate Hydrogeologist sgermiat@aspectconsulting.com

v:\110207 KC Everett Mill\Deliverables\Work Plan Addendum\Sept 2012\Addendum to Phase 2 ESA Work Plan - final.docx

Table of Contents

1	Intr	oduction	
	1.1	Addendum Organization	2
2	2.1	Groundwater Screening Levels	3 3
3	Ass	sessment Findings, Data Gaps, and Proposed Round 3 Ass	essment5
	3.1	REC 1: ExxonMobil ADC Site	6
	3.2	REC 2: Former Oil House and Fuel ASTs	8
	3.3	REC 3: Heavy Duty Shop Sump	11
	3.4	REC 5: Dutch Ovens	
	3.5	REC 6 (Latex Spill) and Former UST No. 29, 67	
	3.6	REC 7: East Waterway Shoreline	
	3.7	Former USTs No. 68, 68R	
	3.8	Former UST No. 69	
	3.9	Former USTs No. 70, 70R	
	3.10	Former USTs No. 71, 72, and 73	
	3.11	HREC 2: Naval Reserve Parcel	
	3.	.11.1 Updated Historical Information regarding Navy's Independent of Naval Reserve Parcel	
	3.	.11.2 Former USTs Area	
	3.	.11.3 Former Firing Range Area	
	3.12	Log Pond Fill Area	31
	3.13	Acid Plant	32
	3.14	Central Maintenance Shop	33
	3.15	Old Machine Shop	
	3.16	Boiler/Baghouse Area	
	3.17	Hazardous Waste Cage	
	3.18	Diesel AST Area	
	3.19	Hydraulic Barker Building	
	3.20	General Fill Soil Quality	
	3.21	Groundwater Quality along Upgradient Edge of Property	41
4	Нус	drogeologic Data Collection and Results	42
	4.1	Data Collection	
	4.	.1.1 Site-Wide Water Level Measurements	42

ASPECT CONSULTING

	4.1.2 Tidal Study42
	4.2 Groundwater Flow Directions43
	4.2.1 Low Tide Groundwater Flow Directions
	4.2.2 High Tide Groundwater Flow Directions
5	References45
3	1/6/6/6/106340
Tal	oles
1	Groundwater Screening Levels for Environmental Assessment
2	Soil Screening Levels for Environmental Assessment
ЗА	Soil Quality Data for REC 2 – Former Oil House and Fuel ASTs
3B	Groundwater Quality Data for REC 2 – Former Oil House and Fuel ASTs
4A	Soil Quality Data for REC 3 – Heavy Duty Shop Sump
4B	Groundwater Quality Data for REC 3 – Heavy Duty Shop Sump
5A	Soil Quality Data for REC 5 – Dutch Ovens 1-5
5B	Groundwater Quality Data for REC 5 – Dutch Ovens 1-5
6A	Soil Quality Data for REC 6 (Latex Spill) + USTs 29, 67, 69
6B	Groundwater Quality Data for REC 6 (Latex Spill) + USTs 29, 67, 69
7	Groundwater Quality Data for REC 7 – East Waterway Shoreline
8A	Soil Quality Data for USTs 68, 68R
8B	Groundwater Quality Data for USTs 68, 68R
9A	Soil Quality Data for USTs 70, 70R
9B	Groundwater Quality Data for USTs 70, 70R
10	Soil Quality Data for USTs 71, 72, 73
10E	Groundwater Quality Data for USTs 71, 72, 73
11/	Soil Quality Data for HREC 2 – Naval Reserve Parcel
11E	Groundwater Quality Data for HREC 2 – Naval Reserve Parcel
12/	Soil Quality Data for Log Pond Fill
12E	Groundwater Quality Data for Log Pond Fill
13/	Soil Quality Data for Acid Plant

13B	Groundwater Quality Data for Acid Plant
14A	Soil Quality Data for Central Maintenance Shop
14B	Groundwater Quality Data for Central Maintenance Shop
15A	Soil Quality Data for Old Machine Shop
15B	Groundwater Quality Data for Old Machine Shop
16	Soil Quality Data for Boiler, Fly Ash, and Baghouse Area
17A	Soil Quality Data for Hazardous Waste Cage
17B	Groundwater Quality Data for Hazardous Waste Cage
18	Soil Quality Data for General Fill
19	Groundwater Quality Data for Upgradient Groundwater Quality

Low Tide and High Tide Water Level Data, July 3 and 6, 2012

List of Figures

20

	_
1	Phase 2 ESA Exploration Locations within Upland Area
2	REC 1 Proposed Explorations
3A	REC 2 Soil TPH Data
3B	REC 2 Groundwater TPH and PAH Data
4	REC 3 Soil and Groundwater Data
5	REC 5 Groundwater Metals Exceedances and Proposed Explorations
6	REC 6, USTs 29, 67, 69 Area Soil and Groundwater Exceedances
7	REC 7 (East Waterway Shoreline) Groundwater Exceedances
8	UST 68, 68R Soil and Groundwater Data and Proposed Explorations
9A	UST 70, 70R Soil TPH Data
9B	UST 70, 70R Groundwater TPH and PAH Data
10A	USTs 71, 72, 73 Soil TPH Data
10B	USTs 71, 72, 73 Groundwater TPH and PAH Data
11A	Naval Reserve Parcel USTs Area Soil Data and Proposed Explorations
11B	Naval Reserve Parcel USTs Area Groundwater Data

ASPECT CONSULTING

11C	Naval Reserve Parcel Firing Range Area Soil Metals Exceedances
12	Log Pond Fill Soil and Groundwater Exceedances
13	Acid Plant Soil and Groundwater Data
14	Central Maintenance Shop Soil and Groundwater Exceedances
15	Old Machine Shop Soil and Groundwater Exceedances
16	Boiler/Baghouse Area Soil Exceedances and Proposed Explorations
17	Hazardous Waste Cage Soil and Groundwater Exceedances and Proposed Explorations
18A	Diesel AST Area Soil TPH Data and Proposed Explorations
18B	Diesel AST Area Groundwater TPH Data
19	Hydraulic Barker Building Proposed Explorations
20	General Fill Soil Exceedances
21	Groundwater Elevation Contours "Low" Tide – 7/3/2012
22	Groundwater Elevation Contours "High" Tide – 7/6/2012
23	Groundwater Elevation Contours 72-hour Tidal Average
24	Tidal Study Groundwater Elevation Data

Appendices

A Exploration Logs

1 Introduction

Aspect Consulting, LLC (Aspect) has prepared this Addendum to the Work Plan for independent Phase 2 Environmental Site Assessment (ESA) for the Upland Area portion of the Kimberly-Clark Worldwide Site (Aspect, 2012). The Site is located at 2600 Federal Avenue in Everett, Washington (Figure 1), and included a pulp and paper mill operating since 1931. The Kimberly-Clark Everett Mill is currently on Ecology's database of confirmed and suspected contaminated sites under Facility/Site Number 9. The independent Phase 2 ESA addresses the Upland Area of the Site, with a western boundary at mean higher high water (MHHW). The assessment does not include the East Waterway (Port Gardner Bay); however, one objective of the Phase 2 ESA is to evaluate whether the Upland Area currently represents a source of contamination to the East Waterway.

In February 2012, Aspect conducted Round 1 of the Phase 2 ESA to initiate evaluation of environmental conditions in three areas of the Upland Area. A Work Plan for independent Phase 2 ESA was subsequently prepared, hereafter termed the Work Plan (Aspect, 2012). The objectives of the Work Plan were to:

- Synthesize the prior environmental investigation and cleanup information for the Upland Area (including the Round 1 data);
- Identify data gaps in the prior environmental investigation/cleanup information and other historical information; and
- Define an environmental assessment scope of work to address the identified data gaps.

K-C submitted a draft Work Plan to Washington State Department of Ecology (Ecology) for review and comment. Ecology provided expedited review and written comments on the draft Work Plan (Ecology, 2012). Many but not all of the comments were incorporated, and a final Work Plan was prepared (Aspect, 2012). The assessment scope of work included in the Work Plan constituted Round 2 of the independent Phase 2 ESA.

The Work Plan acknowledged that, following completion of the assessment scope of work it defined, an additional round of data collection may be warranted to further define the contaminant nature and extent in the Upland Area. This Work Plan Addendum presents the rationale and scope of work for an additional round (Round 3) of independent assessment, as anticipated in the Work Plan.

K-C is conducting the Phase 2 ESA as an independent remedial action. However, the Work Plan and this Addendum have been prepared in general accordance with MTCA, and the ESA is intended to meet the requirements for substantial equivalence under WAC 173-340-515 involving independent remedial actions. The ESA will support, not foreclose, selection of a cleanup action consistent with MTCA requirements.

Information gathered during the independent ESA will help in development of the remedial investigation/feasibility study (RI/FS) Work Plan for the Upland Area, in accordance with WAC 173-340-350, under an Agreed Order between K-C and Ecology

that is currently in preparation. The RI/FS will be conducted to define and document the nature and extent of contamination, and define and evaluate cleanup alternatives for identified contamination, within the Upland Area, in accordance with MTCA.

1.1 Addendum Organization

The Work Plan (Aspect, 2012) included information regarding property history, environmental setting, and previous remedial actions that will not be repeated in this Addendum. However, where updated information is available, it is presented here. Likewise, the prior Sampling and Analysis Plan and Quality Assurance Project Plan (Appendices A and B of the Work Plan) are incorporated by reference in this Addendum.

Following this introductory section, the remaining sections of this Work Plan Addendum are organized as follows:

- Section 2—Screening Levels summarizes the numerical screening levels used to
 evaluate Upland Area soil and groundwater contaminant nature and extent in this
 independent ESA.
- Section 3—Assessment Findings, Data Gaps, and Proposed Round 3 Assessment presents the ESA data collection methods and results and, based on the collective information, identifies data gaps and proposes additional data collection to be conducted during Round 3 of the independent ESA. The results are organized by the areas defined in the Work Plan.
- **Section 4**—Hydrogeologic Data Collection summarizes groundwater elevation data collection and interpreted groundwater flow directions.
- **Section 5**—References lists documents cited in this Addendum.

Appendix A provides the boring logs for the Round 1 and Round 2 ESA explorations.

2 Screening Levels for Environmental Assessment

This section describes the numerical screening levels against which Upland Area soil and groundwater data are compared for identifying constituents of potential concern during the independent Phase 2 ESA. The screening levels applied in this assessment do not necessarily represent cleanup levels for the property under MTCA. Additional information may be collected in subsequent steps of the assessment process to support selection of cleanup levels and/or remediation levels for the property, in accordance with MTCA. This will be done as part of the subsequent RI/FS for the Upland Area.

2.1 Groundwater Screening Levels

Upland Area groundwater is not considered a practicable source of potable water, in accordance with MTCA (WAC 173-340-720[2]), for the reasons presented in Section 3.2.1 of the Work Plan (Aspect, 2012). Therefore, discharge to marine water, not drinking water, is proposed as the highest beneficial use for Upland Area groundwater.

Groundwater screening levels applied in this independent assessment are the most stringent criterion based on protection of the adjacent marine water body (East Waterway) and vapor intrusion (VI) to future structures (indoor air) on the property. Sections 2.1.1 and 2.1.2 describe the screening criteria for marine protection and VI protection, respectively, that are incorporated into the groundwater screening level derivation. For arsenic, the 5 μ g/L MTCA Method A groundwater cleanup level, based on background, is included in the groundwater screening criteria. In addition, because there are no marine water criteria for petroleum mixtures (TPH), MTCA Method A groundwater cleanup levels, based on drinking water, are included in the groundwater screening criteria for TPH mixtures. Note that the individual constituents comprising TPH mixtures (volatile organic compounds [VOCs], polycyclic aromatic hydrocarbons [PAHs], etc.) are also analyzed for, and have their own marine-based and VI-based groundwater screening levels.

Table 1 presents the groundwater screening criteria incorporated into the groundwater screening level derivation, and the resulting most stringent groundwater screening levels applied for this independent assessment.

2.1.1 Protection of Marine Water Quality

For protection of marine water quality, screening levels are the most stringent of the following aquatic life criteria (marine chronic) and human health criteria for consumption of aquatic organisms under state and federal laws:

- MTCA standard Method B surface water cleanup levels based on human consumption of fish (human health only);
- Washington State Water Quality Standards (WAC 173-201A-240);
- Federal National Recommended Water Quality Criteria pursuant to Section 304(a) of the Clean Water Act; and

• The Federal National Toxics Rule (NTR; 40 CFR 131.36).

2.1.2 Protection from Vapor Intrusion (VI)

Volatilization of contaminants in shallow groundwater can potentially create vapor intrusion into future structures (indoor air) or outdoor ambient air within the Upland Area. For the purposes of this environmental assessment, conservative ("Tier 1") groundwater VI screening levels are obtained from Appendix B to Ecology's draft guidance for evaluating soil gas intrusion (Ecology, 2009). That document's air cleanup levels for VOCs of potential concern in the Upland Area (e.g., benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes), from which the VI-based groundwater criteria are derived, are consistent with current values (August 2012) included in Ecology's online Cleanup Level and Risk Calculation database (CLARC; (https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx). If needed, measured soil gas data can also be used to assess the groundwater-to-air pathway, in accordance with Ecology (2009).

2.2 Soil Screening Levels

Because future land use in the Upland Area is not currently determined, the environmental assessment soil data are evaluated relative to soil screening levels for both unrestricted and industrial land uses. The unrestricted soil screening levels are the most stringent of MTCA Method B soil cleanup levels and Method A unrestricted soil cleanup levels. The industrial soil screening levels are the most stringent of MTCA Method C soil cleanup levels and Method A unrestricted soil cleanup levels. The soil criteria are downloaded from Ecology's online CLARC database as of August 2012.

Table 2 presents the soil screening criteria incorporated into the soil screening level derivation, and the resulting soil screening levels applied for this independent assessment.

3 Assessment Findings, Data Gaps, and Proposed Round 3 Assessment

This section summarizes the assessment results from Rounds 1 and 2 of the independent Phase 2 ESA and, based on that information, identifies remaining data gaps warranting further investigation, for each of the areas identified in the Work Plan (Aspect, 2012). The scope of the Work Plan focused on addressing recognized environmental conditions (RECs) and historical RECs (HRECs) identified in the Phase I ESA (AECOM, 2011), as well as other areas with existing environmental data and/or historical operations that warranted assessment to evaluate the presence or absence of contamination. The objective and intent was to evaluate those areas of the Site most likely to contain contaminants. The field sampling and analysis methods employed during Round 2 were consistent with those described in the Sampling and Analysis Plan (SAP) and Quality Assurance Project Plan (QAPP) included as Appendices A and B, respectively, of the Work Plan. To date, localized contamination has been discovered in the Upland Area, consisting primarily of metals and hydrocarbons at levels commonly found at older industrial facilities.

As discussed in the Work Plan, the following RECs and HRECs will be addressed in the near future during mill demolition, as structures are removed, so were not investigated during the independent assessment:

- Potential total petroleum hydrocarbon (TPH) contamination within and beneath the heavy duty shop sump (REC 3); however, an area of reported oily water discharge just north of the sump was investigated during the assessment;
- Potential TPH contamination beneath the rail dumper hydraulic system building (REC 4), which appears to be constructed on top of the Pulp Mill dock;
- Potential Bunker C TPH contamination beneath the Screen/Bleach Unit 2 of the Pulp Mill (HREC 3); and
- Potential PCB contamination associated with electrical transformers 5 and 6 within Screen/Bleach Unit 2 (HREC 4).

The following sections describe, area by area, the methods and findings from the independent ESA to date, and identifies data gaps and additional characterization proposed for Round 3 of the independent ESA planned for early September 2012. Deviations from the Work Plan, where they occurred, are also described specific to the areas. Figure 1 shows locations of collective explorations completed during Rounds 1 and 2 of the independent ESA to date.

Note that the Round 3 explorations proposed below are contingent upon access during ongoing demolition activities. If access to specific explorations cannot be safely made during the planned Round 3 timeframe, the explorations will be deferred until a later date. Likewise, specific proposed Round 3 exploration locations are contingent upon avoidance of subsurface utilities and other access considerations.

3.1 REC 1: ExxonMobil ADC Site

As described in the Work Plan, additional assessment of REC 1 was not conducted during Round 2, pending review of the findings from ExxonMobil and ADC's recent independent cleanup of liquid phase hydrocarbons (LPH) seeping through the asphalt pavement on K-C's Upland Area property just south of the Distribution Warehouse (Everett Avenue easement). The ExxonMobil/ADC independent cleanup work was done, without Ecology oversight, in advance of the City of Everett replacing a sewer line in that area (on K-C property). The report of the independent action (AMEC, 2012) states that the source of the LPH appeared to be in part coming from property owned by BNSF (location of former monitoring wells MW-27 and MW-29 on BNSF property). As a result, the cleanup activities started on BNSF property and proceeded north onto K-C property. The cleanup work was completed between December 2011 and April 2012.

According to AMEC (2012), the northern lateral extent of excavation, and the depth of excavation (3 to 5 feet), on K-C's property was limited in order to protect existing utilities. The northern limit of excavation maintained a 12-foot separation from the south edge of K-C's Warehouse based on City of Everett requirements to maintain vehicle access in that location. Approximately 725 tons of soil and debris were reportedly removed from K-C property for offsite disposal. In addition, nearly 1.5 million gallons of petroleum-impacted groundwater was removed from BNSF property and discharged to City of Everett's wastewater treatment plant, under a discharge authorization (DA) from the City. The amount of LPH present at the surface lessened as the excavation proceeded to the west, and therefore the excavation was terminated at a line approximately 30 feet west of the intersection of the BNSF property line with Everett Avenue. No soil samples were collected on K-C's property, and observations of the excavation conditions on K-C's property are not reported.

Fourteen years earlier, Pacific Environmental Group (PEG) (1998), on behalf of K-C, Chevron, Texaco, and BNSF, conducted an environmental investigation to assess petroleum contamination encountered in 1995 adjacent to the City of Everett Combined Sewer Outfall (CSO) line, which runs east-west immediately south of the K-C Distribution Warehouse. The purpose of the investigation was to evaluate soil and groundwater quality in the vicinity of former petroleum bulk facilities located north of the CSO (former Associated Oil and Standard Oil facilities on K-C property) and south of it (on ExxonMobil/ADC site), to assess whether the historical facilities contributed to petroleum contamination documented at the CSO line. Approximate locations of the former Associated Oil and Standard Oil facilities are shown on Figure 2.

The PEG (1998) investigation consisted of advancing 15 soil borings (Probe-1 through Probe-15), with collection and analysis of reconnaissance groundwater samples from 14 of them. The investigation also included installation and groundwater sampling of two monitoring wells (KC-1 and KC-2), drilled through the floor of K-C's Distribution Warehouse, and located between the former Standard Oil facilities near the middle of the Warehouse and the observed petroleum contamination just south of the Warehouse. The two wells have since been decommissioned. Figure 2 depicts (grayed back) locations of the PEG (1998) explorations.

The 1998 investigation confirmed the highest petroleum concentrations in Probes 7 and 11, located immediately adjacent to the CSO line (groundwater diesel/oil-range TPH concentrations above 90,000 μ g/L in both). Just to the north, beneath the Warehouse, diesel/oil-range groundwater TPH concentrations at wells KC-1 and KC-2 were below the 500 μ g/L groundwater screening level (430 μ g/L at well KC-1; non-detect at well KC-2). These data suggest that the source of TPH encountered along the CSO line is not migrating from the former Standard Oil facilities K-C property, consistent with AMEC's (2012) interpretation of a petroleum source to the south of the CSO line.

Data Gaps and Proposed Assessment for REC 1 Area

Additional data are warranted to define the nature and extent of petroleum impacts associated with the former Standard Oil (now Chevron) fuel storage facilities beneath K-C's Distribution Warehouse.

The data collection proposed for this area during Round 3 of the independent ESA is as follows (and shown on Figure 2):

- Advance to 20 feet and sample soil from nine soil borings to be completed as monitoring wells (REC1-MW-1 through MW-9), located as follows:
 - REC1-MW-1 and REC1-MW-2 will be completed on the downgradient (west) edge of the former Standard Oil facilities located beneath K-C's Distribution Warehouse.
 - REC1-MW-3 and REC1-MW-4 will be completed on the downgradient (west) edge of the former Associated Oil facilities located beneath and on the west edge of K-C's Distribution Warehouse.
 - REC1-MW-5 will be completed on the downgradient (west) edge of K-C's Distribution Warehouse adjacent to the southern property boundary with the Exxon/Mobil property.
 - REC1-MW-6 and REC1-MW-7 will be completed inside the south edge of the Distribution Warehouse, just north of the CSO line, from where liquidphase petroleum was removed and the highest TPH concentrations were detected in groundwater during the PEG (1998) investigation.
 - REC1-MW-8 will be completed at the south property boundary, at the location of inferred former Standard Oil fuel storage tanks.
 - REC1-MW-9 will be completed on the shoreline, at the south property boundary.
- Based on field screening information, analyze up to 3 soil samples from each boring for gasoline-range TPH, diesel-/oil-range TPH, VOCs and PAHs; and
- Analyze the groundwater samples for gasoline-range TPH, diesel-/oil-range TPH, VOCs, low-level PAHs, and TSS. As a shoreline well, the groundwater sample from REC1-MW-9 will also be analyzed for priority pollutant metals, SVOCs, dissolved sulfide, and ammonia, consistent with the other shoreline wells.

The precise locations of the proposed wells are dependent on access, particularly within the Warehouse.

3.2 REC 2: Former Oil House and Fuel ASTs

The Round 1 assessment work identified Bunker C-contaminated soil warranting remediation within the former Bunker C above-ground storage tank (AST) area (described in Aspect, 2012). Further delineation of the extent of contaminated soil, including sampling beneath the footprint of the shipping warehouse, was warranted to design and estimate cost for a prospective cleanup action.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 3A):

- Advanced and sampled soil from 12 additional soil borings (REC2-B-1 through -12) in and around the inferred area of Bunker C-contaminated soil as determined from Round 1 data collection. Five borings (REC2-B-1, -2, -3, -6, -10) were advanced within the north end of Warehouse, through the building floor. Based on field screening information, analyzed the soil samples for diesel-/oil-range TPH and PAHs;
- Installed and sampled soil from a new monitoring well boring (REC2-MW-5) located downgradient of the existing 250,000-gallon diesel AST immediately north of the distribution warehouse. Based on field screening information, analyzed the soil samples for diesel-/oil-range TPH and PAHs; and
- Collected groundwater samples from the five REC 2 area monitoring wells (existing wells MW-1 through -4 and new well REC2-MW-5) for analysis of gasoline-range TPH, VOCs, diesel-/oil-range TPH, low-level PAHs, and total suspended solids (TSS). In addition, the groundwater sample from well MW-4 was analyzed for total and dissolved lead, in replicate, to verify the result from the February 2012 sampling (Aspect, 2012). The groundwater samples from shoreline wells MW-1 and MW-2 were also analyzed for SVOCs, dissolved priority pollutant metals, dissolved sulfide, and ammonia. The groundwater sample from well MW-2 was one of ten Round 2 groundwater samples also analyzed for total priority pollutant metals (unfiltered sample) to assess influence of sample turbidity on metals results.

Assessment Findings

Soil Quality Data

The Round 2 data collection provided better refinement regarding the extent of Bunker C soil contamination previously identified in the area of the former ASTs (Aspect, 2012). Table 3A presents the soil quality data for this area, and Figure 3A depicts the soil TPH data for this area. On Figure 3A, explorations with detected Bunker C soil concentrations¹ exceeding the 2,000 mg/kg soil screening level² are shown in brown; explorations with concentrations below the screening level are shown in green.

Within the center of the identified Bunker C contamination, detected Bunker C soil concentrations exceed 20,000 mg/kg, which are at or above residual saturation

¹ Sum of detected diesel- and oil-range TPH concentrations since they represent a single petroleum product type, in accordance with MTCA. Referred to as "Total TPH" in tables and figures.

² Based on groundwater protection, thus same screening level for unrestricted or industrial land use.

concentrations. Consistent with the Round 1 observations, no separate-phase product accumulation was observed on the water table in any of the Round 2 borings, but the contamination is present beneath the water table – maximum observed depth of 10 to 12 feet³. Bunker C oil has a density very close to that of water (specific gravity of 0.95 to 1.03; NOAA, 2006; CITGO, 2006), so may float or sink through saturated soil, depending on degree of weathering, soil characteristics, and other factors. In any event, the vertical extent of Bunker C exceedance in soil is vertically bound at each of the borings (Table 3A; Figure 3A).

Downgradient of the existing 250,000-gallon diesel AST, TPH was detected at 5,030 mg/kg (predominantly oil-range) in the upper 2 feet of soil at REC2-MW-5. The underlying 2.5- to 3.5-foot and 7- to 8-foot (at water table) soil samples had no detectable petroleum (Table 3A; Figure 3A). The surficial detection of oil at this location does not appear related to the diesel AST.

Total cPAH concentrations⁴ are detected above the 0.14 mg/kg unrestricted soil screening level in soil samples with greater than 2,000 mg/kg TPH (Table 3A). Note that the 0.14 mg/kg total cPAH unrestricted soil screening level is below urban background soil concentrations measured in Seattle residential neighborhoods (90th percentile of 0.39 mg/kg total cPAH; Ecology, 2011).

Groundwater Quality Data

The Round 2 groundwater TPH concentrations were somewhat higher than detected in Round 1, but were still at or below respective groundwater screening levels based on potable groundwater (Table 3B). During Round 2, gasoline- and diesel-range TPH were detected in well MW-3 at concentrations (960 and 500 μ g/L, respectively) at or below the respective 1,000 and 500 μ g/L groundwater screening levels. In accordance with MTCA (WAC 173-340-900 Table 720-1), a 1,000 μ g/L gasoline-range TPH groundwater screening level is applied since benzene is not detected in REC 2 groundwater (or soil). TPH was not detected in shoreline wells MW-1 and MW-2, located downgradient of REC 2, consistent with Round 1 data (Table 3B).

One low-level PAH exceedance was detected in the Round 2 groundwater samples: $0.02 \,\mu g/L$ total cPAHs, marginally above the $0.018 \,\mu g/L$ screening level, in well MW-4 (confirmed in a field duplicate sample). No PAH exceedances were detected in groundwater samples from the shoreline wells MW-1 and MW-2 (Table 3B).

Figure 3B displays TPH, naphthalene (a mobile PAH commonly associated with Bunker C), and total cPAH data for REC 2 groundwater (Round 1 and 2 data). Data from the UST 68 area monitoring wells downgradient of REC 2 are also displayed (installed to monitor for former gasoline UST 68, as described in Section 3.7).

.

³ Boring REC2-B-12 had 39,000 mg/kg in the 8- to 9-foot sample. The boring had hard drilling below about 11 or 12 feet and hit refusal at about 14 feet; thus the drill rig moved over a few feet to re-drill deeper. TPH was non-detect in the 17- to 18-foot sample from that boring (Table 3A).

⁴ Total cPAHs, calculated as toxic equivalent concentration of benzo(a)pyrene, in accordance with MTCA (WAC 173-340-708[8]).

During the Round 2 groundwater sampling, lead was detected in groundwater from well MW-4 at a concentration (14 μ g/L dissolved; 23 μ g/L total⁵) above the 8.1 μ g/L screening level, confirming the Round 1 exceedance (Table 3B). The elevated dissolved-phase lead is attributable to alkaline (pH > 10) groundwater present at well MW-4, which is attributable to its location immediately downgradient of the former caustic storage tank. Slightly alkaline groundwater pH (7.6 to 8.4) and lead concentrations below the screening level are measured in downgradient shoreline wells MW-1 and MW-2 (Table 3B).

The Round 2 data confirm that REC 2 groundwater is slightly to moderately reducing (field-measured oxidation-reduction potential [ORP] ranging from -146 at inland well REC2-MW-5 to 114 mv at shoreline well MW-1), and moderately to highly brackish (specific conductance field measurements ranging from 266 at REC2-MW-5 to 19,500 uS/cm at shoreline well MW-2).

The groundwater exceedances detected in shoreline wells MW-1 and MW-2 were nickel (13.1 µg/L, above 8.2 µg/L screening level) and copper (2.6 µg/L, marginally above the 2.4 µg/L screening level) (Table 3B). Arsenic, copper, and nickel concentrations above the stringent screening levels are commonly detected in Upland Area groundwater, attributable to geochemically reducing (anoxic) groundwater within a nearshore organic-rich fill unit (e.g., dredge fill with wood). Figure 7, discussed in Section 3.6, displays groundwater exceedances for each of the 14 shoreline wells installed along the Upland Area shoreline. Relatively low-turbidity groundwater samples were achieved for the REC 2 monitoring wells, and dissolved (filtered) and total (unfiltered) metals concentrations were generally comparable in the sample from MW-2, where both were measured (Table 3B).

The groundwater samples collected from shoreline wells MW-1 and MW-2 had no detectable dissolved sulfide or SVOCs (including phenol, methylphenols). Ammonia was detected in MW-2 at 0.118 mg/L, above the 0.035 mg/L screening level; ammonia was not detected in MW-1.

Data Gaps and Proposed Round 3 Assessment for REC 2

The proposed Round 3 data collection for this area includes the following:

- Conduct the dry-season groundwater sampling and analysis event for the REC 2 wells, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012).
- Additional investigation is warranted for the diesel AST area including the adjacent diesel pump house. This area is considered distinct from REC 2, and is addressed in Section 3.18.

Opportunistic Interim Action Recommended

Beyond the Round 3 assessment, we recommend planning for an opportunistic interim action removal of Bunker C-contaminated soil in REC 2, to be conducted in coordination with mill demolition activities, and in accordance with the Interim Action Plan (Exhibit C

-

⁵ Total metals are from unfiltered samples, which include suspended solids. Dissolved metals are from filtered samples to remove suspended sediment larger than 0.45 microns.

to forthcoming Agreed Order). The collective Round 1 and 2 explorations define the lateral and vertical extent of Bunker C soil contamination sufficiently to initiate a soil cleanup action for REC 2. Given the long-term storage of oil in this area, and the multiple configurations of storage tanks, pipelines, etc., multiple separate releases of oil are probable, which is suggested by the data. For example, shallow contamination at REC2-B-4 may be a surficial release not contiguous with deeper contamination in borings to the southeast. Removal of Bunker C-contaminated soil is warranted in this area and soil excavation will reveal the extent of contamination most accurately, such that additional time and money would be better spent removing contaminated soil, rather than further investigation, in our opinion.

Excavation would be conducted at each exploration location where Bunker C concentrations above 2,000 mg/kg have been detected, and extend laterally and vertically until soil containing Bunker C concentrations above 2,000 mg/kg are removed to the extent practicable, as confirmed by excavation soil verification sampling and analysis. If warranted, additional analysis can be conducted to generate risk-based TPH soil cleanup levels for REC 2. The interim action soil removal would not extend beneath the Warehouse. Additional sampling and analysis of soil and groundwater beneath the Warehouse will be conducted in Round 3 (Section 3.1), providing data to assess whether residual Bunker C in soil beneath the Warehouse is a source of groundwater contamination.

As described in PEG (1998), a portion of the subsurface Bunker C pipeline between the unloading dock south of the Old Machine Shop to the former Bunker C AST remains in place (its west end is currently visible at the unloading dock). Soil and groundwater sampling along the pipeline (borings DP-10 through DP-13, MW-1, and MW-2) indicated no contamination (Figure 3A). However, we recommend removal of the remaining pipeline, with removal of associated contaminated soil if present, as part of the opportunistic interim action.

3.3 REC 3: Heavy Duty Shop Sump

In 1991, an estimated 40 to 50 cubic yards of petroleum-stained soil was removed from an area north of the Heavy Duty Shop where oily water from the Shop sump was reportedly diverted in 1990 (refer to Section 4.1.3 of Aspect, 2012). The location of the soil removal was not well documented, and verification data from the cleanup were not reported. Therefore, soil and groundwater quality data were warranted to assess residual TPH concentrations.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 4):

- Advanced and sampled soil from one soil boring (REC3-MW-1) in the inferred area of the 1991 soil cleanup. Analyzed the soil sample collected at the water table for diesel-/oil-range TPH, VOCs, PAHs, total lead, and PCBs; and
- Completed the boring as a monitoring well, and collected a groundwater sample from it for analysis of diesel-/oil-range TPH, low-level PAHs, and TSS. Because it is a shoreline well, the REC3-MW-1 groundwater sample was also analyzed for

the full suites of VOCs and SVOCs, priority pollutant metals, ammonia, and dissolved sulfide.

Assessment Findings

No field screening evidence of petroleum was noted during drilling of REC3-MW-1, and the soil sample contained no detectable concentrations of TPH, VOCs, PAHs, or PCBs (Table 4A). The groundwater sample had no detectable TPH, VOCs, SVOCs, or dissolved sulfide, had dissolved metals below screening levels, and contained an ammonia concentration (0.041 mg/L) marginally above the 0.035 mg/L screening level (Table 4B).

Proposed Round 3 Assessment for REC 3

No data gaps are identified for this area. The proposed Round 3 data collection for this area includes the following:

• Conduct the dry-season groundwater sampling and analysis event for the REC 3 well, repeating the Round 2 groundwater sampling and analyses as outlined in the Work Plan.

3.4 REC 5: Dutch Ovens

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 5):

- Advanced and sampled soil at the water table from one soil boring (REC5-MW1) on the west (downgradient) end of the Old Boiler House. The soil sample was
 analyzed for priority pollutant metals, and, because waste solvents were
 reportedly disposed of in the adjacent hog fuel pile, VOCs; and
- Completed the boring as a monitoring well, and collected a groundwater sample from it for analysis of total and dissolved priority pollutant metals, VOCs, and TSS.

Assessment Findings

The REC5-MW-1 soil sample contained metals concentrations below respective screening levels for unrestricted use, and no detectable VOCs (Table 5A).

The REC5-MW-1 groundwater sample contained no detectable VOCs, but contained concentrations of selected metals (both dissolved and total) above respective screening levels. The higher of dissolved or total concentrations in the sample are: 218 μ g/L arsenic, 226 μ g/L copper, 234 μ g/L lead, 0.57 μ g/L mercury, 14.8 μ g/L nickel, and 274 μ g/L zinc (confirmed in field duplicate sample; Table 5B). The detected metals concentrations, particularly arsenic, copper, and lead, are well above those detected elsewhere on site. The shoreline well UST70-MW-2 located generally downgradient has much lower groundwater metals concentrations, with exceedances for arsenic (5.2 μ g/L) and zinc (116 μ g/L), as described in Section 3.9 and depicted on Figure 7.

Groundwater at REC5-MW-1 is reducing (ORP = -114 mv), mildly alkaline (pH = 8.5), and only slightly brackish (specific conductance = 384 uS/cm). It is also warm (23°C) due to proximity to the hog fuel pile, with its high degree of biological (microbial) activity. Wells within the footprint of the hog fuel area, in the USTs 70 and 71 areas,

have warmer groundwater, as previously documented in Landau (1991) and discussed in Sections 3.9 and 3.10.

In our experience, given the groundwater geochemistry, the metals concentrations detected in upgradient soil removed from beneath the Boiler House during foundation work for Sand Filter 1 (e.g., arsenic up to 35 mg/kg, lead up to 140 mg/kg; CRETE, 2011⁶), and the soil metals concentrations detected at the REC5-MW-1 location (Table 5B), are not high enough to account for the groundwater metals concentrations detected at REC5-MW-1.

REC5-MW-1 is not a shoreline well, and its groundwater sample and field duplicate were not brackish based on field specific conductance; therefore, pre-treatment was not conducted for their metals analyses. The dissolved metals concentrations show greater variability than the total metals concentrations, which may suggest chemical interference in the analysis. Although the validation of metals analytical data does not reveal specific analytical QC issues, the ICP-MS analysis (all metals except mercury) can be subject to interferences from chemicals other than salinity, including sulfate. The REC5-MW-1 groundwater sample is currently undergoing re-analysis with reductive precipitation pre-treatment (EPA Method 1640) as a confirmatory step, in accordance with the QAPP (Appendix B to Aspect, 2012).

Proposed Round 3 Assessment for REC 5

Resolving the source of groundwater metals concentrations detected at REC5-MW-1 is currently a data gap for REC 5. The June 2012 groundwater sample is still within analytical hold time for the metals analyzed by ICP-MS (all but mercury), and is undergoing re-analysis for those metals with reductive precipitation pretreatment, as stated above. REC 5 was defined in AECOM (2011) based on metals concentrations detected in soils upgradient of REC5-MW-1. Therefore, additional soil sampling and analysis for metals, and potential opportunistic soil cleanup, within REC 5 had been planned following demolition of the Old Boiler House, as indicated in the Work Plan Aspect (2012). However, given the groundwater data from REC5-MW-1, additional soil sampling for metals is warranted during the Round 3 assessment to assess potential source concentrations not currently documented.

The proposed Round 3 data collection for this area therefore includes the following:

- Conduct the dry-season groundwater sampling and analysis event for the REC 3
 well, repeating the Round 2 groundwater sampling and analyses as outlined in the
 Work Plan.
- Through the floor of the Old Boiler House, advance six hand-augered soil borings (REC5-HA-1 through -6; Figure 5) to 3-foot depth. From each boring, analyze two soil samples (0- to 1-foot and 2- to 3-foot depths below soil grade) for priority pollutant metals. Precise locations for the proposed borings will depend on access within the building.

Further delineation and removal of soils containing elevated metals concentrations can also occur during demolition of the Old Boiler House, as warranted.

-

⁶ The basis for defining REC 5 (see Section 4.1.2 in Aspect, 2012).

3.5 REC 6 (Latex Spill) and Former UST No. 29, 67

A release of xylene to soil and groundwater was identified during the 1989 removal of USTs No. 29 and 67 located immediately west of the Paper Machine Building. Adjacent to that location, a release of latex product occurred in 2008 (refer to Sections 4.1.5 and 4.1.11 of Aspect [2012] respectively). Data collected during the Round 2 assessment indicates that the latex spill area (REC 6) overlaps with the adjacent xylene release area (UST 29, 67; HREC 1); therefore, the areas are discussed together in this section.

Updated Historical Information regarding Xylene Release (UST 29)

Since preparation of the Work Plan (Aspect, 2012), we have obtained documentation (Landau, 1989, 1992, 1994) for the identification and cleanup activities associated with a release of xylene from the former 12,500-gallon xylene UST (UST No. 29). That information, updating the prior description in the Work Plan (Aspect, 2012), is summarized below.

A release of xylene to soil and groundwater was identified during removal of USTs No. 29 and 67 in 1989 (Landau, 1989). The USTs were positioned end-to-end and were located immediately west of the Paper Machine Building. UST 29 was a 12,500-gallon single-walled UST used to store xylene, which was used as a solvent for cleaning certain machinery in the paper mill. UST 67 was a 12,500-gallon single-walled UST used to store kerosene. Figure 6 depicts the locations former tanks and their excavation outline, as reported in Landau (1989).

The xylene release was first identified by solvent odors observed during the initial excavation conducted on November 7, 1989. USTs 29 and 67 were subsequently removed on November 8, 1989, and excavated soil was stockpiled on site. No release of kerosene was observed during decommissioning of UST 67; however, the xylene release from UST 29 was apparent in the UST 67 excavation location. During the 1989 UST decommissioning, removal of contaminated soil on the excavation's north wall was restricted by the tank pad and secondary containment wall for the Pulp Chests located immediately north of the former USTs, and currently in place.

During the 1989 tank removal activities, a process water drain line was broken and approximately 15,000-gallons of wastewater from the No. 1 and No. 2 paper machines filled the excavation. An oily sheen was observed on the water surface within the excavation. Water sample TS-29 was collected from the excavation for laboratory analysis, and absorbent pads were applied to limit oil material from entering the broken water line. The water line was subsequently repaired on November 9, 1989. After notifying Ecology, approximately 15,000 gallons of water were pumped from the excavation into a Baker tank for temporary storage, and subsequent treatment, on site.

Water sample TS-29, collected from the excavation, was submitted for laboratory analysis of TPH (EPA Method 418.1) and VOCs (EPA Method 8240). A TPH concentration of 310,000 μ g/L was detected in the water sample by the 418.1 method, which is not specific to petroleum fraction. Subsequent analysis of water sample TS-29 by Modified EPA Method 8015 detected a concentration of 1,900,000 μ g/L gasoline-range hydrocarbons, while kerosene was not detected. Total xylenes, ethylbenzene, and toluene were also detected in excavation water sample TS-29 at concentrations of

 $770,000 \mu g/L$, $160,000 \mu g/L$, and $4,800, \mu g/L$, respectively. Benzene was not detected. Ethylbenzene and toluene are reportedly impurities in technical grade xylene (Landau, 1989).

In addition, Landau collected a sample of water stored in the Baker tank (BT-1) for analysis of benzene, toluene, ethylbenzene, and xylene (BTEX). Detected concentrations in water sample BT-1 were 120,000 $\mu g/L$ total xylenes, 20,000 $\mu g/L$ ethylbenzene, and 2,100 $\mu g/l$ toluene (benzene not detected).

Following testing to confirm that the mill's wastewater treatment system could adequately treat the contaminated water, and after receiving verbal approval from Ecology, the Baker tank water was discharged to the mill's secondary wastewater treatment plant at a maximum feed rate of 15 gpm for treatment (Scott Paper, 1990).

Within the final limits of the UST 29/67 excavation, discrete soil samples TS-29-W, TW-29-NW, TS-29-N, and TS-29-E⁷ were collected from excavation sidewalls at a depth of approximately 4 feet bgs. Composite soil sample TS-29-STCK was also collected from the stockpile of excavated soil. The five soil samples were submitted for laboratory analysis of TPH by EPA Method 418.1, and BTEX.

As observed with the water data, the soil analytical data showed highest concentrations of xylenes with lower concentrations of ethylbenzene and much lower concentrations of toluene. In the four excavation sidewall soil samples, the lowest concentrations were detected in the eastern sidewall (0.75 mg/kg xylenes, 0.048 mg/kg ethylbenzene, and nondetect TPH, benzene, and toluene), and the highest concentrations were detected in the northern sidewall (37,000 mg/kg xylenes, 6,600 mg/kg ethylbenzene, 5,700 mg/kg TPH, non-detect benzene and toluene). The sample of stockpiled soil contained 2,800 mg/kg xylenes, 590 mg/kg ethylbenzene, and no detectable benzene or toluene. The UST 29 excavation was backfilled with the stockpiled soil removed from the excavation (Landau, 1989).

Landau then installed a test soil vapor extraction (SVE) system on top of the impacted backfill soil to passively remove vapors and for use as an active vacuum extraction system. The SVE piping was encased in an approximately 2-foot layer of pea gravel placed on top of the soil backfill, which was covered with a high density polyethylene (HDPE) liner and resurfaced with asphalt. Scott Paper informed Ecology of the SVE system operation plans (Scott Paper, 1991).

Landau initiated startup of the SVE system with two 4-hour tests conducted on November 22 and December 2, 1991. The primary purpose of the test was to measure the expected mass discharge rate of xylenes from the SVE system to assess compliance with a 15 pounds per day (lbs/day) rate dictated by the Puget Sound Air Pollution Control Agency (PSAPCA). Based on the tests, Landau calculated an expected mass flow rate of 1.3 lbs/day from the SVE system. Following review of those results, Landau initiated continuous operation of the SVE system on January 10, 1992, and recommended that operation of the SVE system continue until the mass discharge flow rate fell below 0.1 lbs/day (Landau, 1992).

-

⁷ Soil sample ID suffixes (W, NW, N, and E) refer to the sidewall directions from which the samples were collected (west, northwest, north, east, respectively)

The SVE system operated on a near-continuous basis from startup in November 1991 through January 1993. From January 1993 through mid-1994, the SVE system was periodically shut down for 1- to 3-month periods and then restarted to operate on a pulsing basis. In mid-1994, laboratory analytical results indicated that the mass flow rate generated from the SVE system no longer warranted continued operation, and Landau initiated a compliance monitoring investigation of the tank area to assess whether the cleanup action had attained applicable cleanup standards.

The June 1994 compliance monitoring investigation consisted of (Landau, 1994):

- Advancing nine direct-push soil borings DP-1 through DP-9 to a depth of approximately 9 feet bgs in areas adjacent to and within 100 feet west (downgradient) of the former UST 29/67 excavation;
- Collecting and analyzing for BTEX six soil samples from five borings (DP-4 and DP-6 through DP-9) located around and downgradient of the excavation;
- Collecting and analyzing for BTEX grab groundwater samples from five downgradient borings (DP-1 through DP-5); and
- Collecting and submitting vapor samples from the SVE system for laboratory analysis of BTEX.

In soil borings DP-6 and DP-7, located immediately north of the excavation, detected concentrations of total xylenes ranged from 123 mg/kg in the vadose zone to 2,990 mg/kg in the saturated zone. In 1989, prior to operation of the SVE system, xylenes had been detected at 26,000 mg/kg in soil sample TS-29-N, located adjacent to the 123 mg/kg sample from DP-7, suggesting a substantial concentration decline in vadose zone soil at the excavation location. Within 10 feet west of the excavation, detected soil xylenes concentrations declined to less than 7 mg/kg (DP-8 and DP-9). Approximately 50 feet west of the former excavations, xylenes were not detected in the soil sample from boring DP-4.

Concentrations of total xylenes detected in the grab groundwater samples declined with increasing downgradient distance. Xylenes were detected at 30,560 μ g/L in the DP-5 groundwater sample, located about 35 feet west of the excavation's western end. Approximately 60 feet west of the excavation, the detected groundwater xylenes concentration was 315 μ g/L (boring DP-3). In borings also roughly 60 feet west of the excavations, but positioned 25 to 30 feet north (DP-2) and south (DP-4) of DP-3, xylenes were detected in groundwater at 5.1 and 1.5 μ g/L, respectively. Approximately 90 feet west of the excavations, xylenes were not detected in the groundwater sample from boring DP-1. Ethylbenzene concentrations in the groundwater samples were lower than detected xylenes concentrations. Low-level concentrations of benzene and/or toluene were also detected in the groundwater samples collected.

Based on the collective data collected during the 1989 UST removal and in 1994, Landau (1994) concluded the following:

- In 2.5 years of operation, the SVE system had been effective in reducing xylene concentrations in soil located above the water table in the former excavation area;
- Further operation of the SVE system was not warranted since vapor-phase VOC concentrations generated by the system were no longer detectable;
- Residual xylene-contaminated soil may be concentrated on the north side of the former tank excavation area, beneath the adjacent tank pad;
- The downgradient extent of xylene and ethylbenzene in groundwater was defined within approximately 100 feet of the excavation area, and the contamination was not impacting downgradient receptors. Additional groundwater monitoring would be required to demonstrate conclusively that natural attenuation of residual xylene is occurring; and
- More aggressive remedial measures for the xylene release would require removal
 of operating infrastructure, the cost of which was not warranted because the
 plume was contained and appeared to be attenuating naturally.

Scott Paper submitted to Ecology the reports prepared by Landau regarding UST No. 29 release identification and independent cleanup activities. Ecology made no determination on sufficiency of the independent cleanup. In 2002, Ecology listed the Facilities Leaking Underground Storage Tank (LUST) ID No. 1627 as inactive.

Round 2 Data Collection

The Round 2 data collection for the combined REC 6/USTs 29, 67 area included (Figure 6):

- Completed two soil borings/monitoring wells within the former USTs 29, 67 excavation footprint: REC6-MW-1, within the footprint of former UST 29 and at the west (downgradient) end of the inferred latex release location, and UST29-MW-1, within the footprint of UST 67 and immediately downgradient of UST 29. The borings were positioned to avoid the numerous subsurface utilities in the immediate area. Both borings encountered the pea gravel backfill of the former excavation;
- Based on field screening information, analyzed one sample of soil beneath the
 pea gravel backfill from each of the borings: the REC6-MW-1 sample for
 gasoline-range TPH and VOCs including 1,4-dioxane and vinyl acetate8, and the
 UST29-MW-1 sample for VOCs and (to assess presence of residual kerosene)
 diesel-/oil-range TPH and PAHs;
- Collected a groundwater sample from wells REC6-MW-1 and UST29-MW-1 for analysis of gasoline-range TPH, VOCs, and TSS, adding analysis for formaldehyde8 in the REC6-MW-1 sample, and analysis for diesel-/oil-range TPH and low-level PAHs in the UST29-MW-1 sample; and

-

⁸ Trace constituents in the latex product released.

• Installed a monitoring well, REC6-MW-2, along the shoreline downgradient (west) of REC 6 and USTs 29, 67, and analyzed the groundwater sample from it for gasoline-range TPH, VOCs, formaldehyde, dissolved priority pollutant metals, SVOCs, ammonia, dissolved sulfide, and TSS.

UST No. 69

Former leaded gasoline UST No. 69 is located generally west (downgradient) of former USTs 29 and 67 (Figure 6). Therefore, we include those downgradient data for assessing extent of contamination associated with UST 29 and REC 6. The Round 2 data collection for UST 69 included completing a new soil boring/monitoring well UST69-MW-1 at the location of the former UST. From the boring, we collected a soil sample from the water table depth interval for analysis of gasoline-range TPH, VOCs, and total lead. The UST69-MW-1 groundwater sample was analyzed for gasoline-range TPH, VOCs including low-level EDB, total and dissolved lead, and TSS.

Assessment Findings

Xylene Release

The Round 2 data confirm that high concentrations of xylene remain in soil and groundwater within the former UST 29 excavation footprint (REC6-MW-1):

- The REC6-MW-1 soil sample contained 9,700 mg/kg gasoline-range hydrocarbons, 2,250 mg/kg total xylenes, 630 mg/kg ethylbenzene, with lower concentrations (below screening levels) of other VOCs. Benzene was not detected in the soil sample or its field duplicate sample (Table 6A).
- The REC6-MW-1 groundwater sample contained 24,000 μg/L gasoline-range hydrocarbons and 8,500 μg/L total xylenes, and lower concentrations (below screening levels) of other VOCs. Benzene was not detected.

Figure 6 depicts the soil and groundwater concentrations exceeding respective screening levels (exceedances of unrestricted soil screening levels) for the REC 6/UST 29, 67 area.

The magnitude of the xylene-related contamination is lower just downgradient of the former UST 29 footprint, at UST29-MW-1:

- The UST29-MW-1 soil sample contained gasoline- and diesel-/oil-range hydrocarbons (150 mg/kg and 2,600 mg/kg, respectively) above soil screening levels based on groundwater protection, but no VOCs above soil screening levels (e.g., 0.2 mg/kg total xylenes, 0.056 mg/kg ethylbenzene). The detected total cPAH concentration (17 mg/kg)⁹ exceeds soil screening levels for unrestricted use (0.14 mg/kg) and industrial use (2 mg/kg) (Table 6A). For total cPAHs, the unrestricted soil screening level is based on direct contact, and the industrial soil screening level is based on groundwater protection.
- The UST29-MW-1 groundwater sample contained gasoline-range hydrocarbons and xylenes concentrations (350 and 72 μg/L, respectively) below screening

⁹ Note that the PAH analysis for UST29-MW-1 was run on a sample of soil from a depth of 8- to 9-feet, not the 7- to 8-foot depth that the other analyses were conducted, due to sample volume limitations in the soil core recovered.

levels, no detectable diesel-/oil-range hydrocarbons, but a total cPAH (TEQ) concentration (0.026 μ g/L) marginally above the 0.018 μ g/L screening level based on marine protection (Table 6B). The empirical groundwater data indicate that the residual concentrations of gasoline-range and diesel-/oil-range hydrocarbons in soil at the UST29-MW-1 location are protective of groundwater quality in accordance with MTCA (WAC 173-340-747(9)). The total cPAH soil concentration at UST29-MW-1 exceeds a conservative soil screening level based on groundwater protection, but there is very limited leaching of cPAHs to groundwater, consistent with their low mobility, particularly in organic-rich matrices such as occur in the Upland Area.

Further downgradient, the soil and groundwater samples collected from UST69-MW-1 contained no detectable gasoline-range hydrocarbons or VOCs, confirmed in field duplicate samples (Tables 6A and 6B). The UST 69 data are further discussed in Section 3.8. Likewise, gasoline-range hydrocarbons and VOCs were not detected in the groundwater sample from downgradient shoreline well REC6-MW-2 (Table 6B). REC6-MW-2 is outside the map view of Figure 6, but is shown on Figure 7.

The Round 2 data indicate that the UST29-MW-1 well delineates the downgradient extent of groundwater exceedances associated with the historical xylene release from former UST No. 29. Comparing the Round 2 data against data collected by Landau (1994) indicates that the downgradient extent of groundwater contamination is reduced relative to the 1994 conditions.

Latex Release

Latex product was observed in the REC6-MW-1 and UST29-MW-1 borings, at the bottom of the pea gravel excavation backfill. The latex was not observed in soil beneath the pea gravel, indicating it has migrated from the release location laterally within the permeable backfill, which extends essentially to the western edge of the Paper Machine building.

In the REC6-MW-1 groundwater sample, downgradient of the inferred latex release location and where residual latex is present, formaldehyde was detected at an estimated concentration (29 μ g/L) below the reporting limit, and well below the 1,600 μ g/L groundwater screening level. The VOCs 1,4-dioxane and vinyl acetate were not detected in the soil or groundwater sample from REC6-MW-1. Formaldehyde, 1,4-dioxane, and vinyl acetate were not detected in the groundwater sample from downgradient shoreline well REC6-MW-2.

The latex released is a component of household paper towels and contains only trace concentrations of formaldehyde, vinyl acetate, and 1,4-dioxane. The Round 2 data indicate that leaching of the residual latex poses negligible risk to groundwater quality.

Data Gaps and Proposed Round 3 Assessment for REC 6/UST 29 Area The proposed Round 3 data collection for this area includes the following:

 Conduct the dry-season groundwater sampling and analysis event for the REC 6, USTs 29, 67, and UST 69 wells, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012). Add analysis for diesel-/oil-range TPH for the REC6-MW-1 groundwater sample.

Opportunistic Interim Action Recommended

Beyond the Round 3 assessment, we recommend planning for an opportunistic interim action removal of xylene-contaminated soil in the UST 29 area, to be conducted in coordination with mill demolition activities, and in accordance with the Interim Action Plan (Exhibit C to forthcoming Agreed Order). An area of xylene-contaminated soil is currently accessible for excavation, but it is probable that the contamination extends beneath the adjacent structures (secondary containment structure immediately north, and Paper Machine building immediately east). The data indicate that residual latex product in the ground is not leaching contaminants to groundwater at concentrations of concern; however, the interim action should also remove residual latex product accumulations to the extent practicable, in accordance with MTCA. We expect that latex product remains in the ground beneath the southwest corner of the Paper Machine Building, including the loading dock there. Therefore, we recommend conducting the opportunistic cleanup after demolition and removal of the surrounding structures.

3.6 REC 7: East Waterway Shoreline

During Rounds 1 and 2 of the independent environmental assessment, 14 monitoring wells have been installed along the East Waterway shoreline to assess potential for groundwater contaminant migration from the Upland Area to the East Waterway marine environment. The 14 shoreline wells, shown on Figure 7, include from north to south: REC7-MW-1, NRP-MW-3, MW-5, NRP-MW-2, REC7-MW-2, REC6-MW-2, MW-6, UST70-MW-2, REC3-MW-1, REC7-MW-3, OMS-MW-1, MW-1, MW-2, and REC7-MW-4. Of the 14 shoreline monitoring wells, four (REC7-MW-1, REC7-MW-2, REC7-MW-3, and REC7-MW-4) were installed in locations between shoreline monitoring wells that were installed for specific areas described in other sections of this Addendum.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 7):

 Sampled groundwater from the 14 shoreline wells for priority pollutant metals, VOCs, SVOCs (which includes phthalates, phenols, benzoic acid, benzyl alcohol, and PAHs), ammonia, and dissolved sulfide, in addition to area-specific analytes for select shoreline wells.

Assessment Findings

During the Round 2 sampling, scattered low-level exceedances for four metals were detected in groundwater samples from the 14 shoreline wells: arsenic above 5 μ g/L in two wells, copper above 2.4 μ g/L in five wells, nickel above 8.1 μ g/L in one well, and zinc above 81 μ g/L in one well. In addition, ten of the 14 wells had detected ammonia concentrations above the 0.035 mg/L screening level (any detection above the analytical reporting limit exceeds the stringent screening level). The highest ammonia concentration (15.5 mg/L) was detected at well MW-6, located on the downgradient edge of the Log Pond fill. The ammonia is consistent with the lack of dissolved oxygen in Upland Area groundwater. Figure 7 depicts the distribution of groundwater exceedances in the shoreline wells.

VOCs were not detected in the 14 shoreline groundwater samples. Where analyzed for, TPH was not detected in shoreline groundwater samples; this includes well UST70-MW-

2 located just downgradient of the UST 70 area where a diesel release is documented, and wells MW-5, NRP-MW-2, and NRP-MW-3 just downgradient of the Naval Reserve Parcel USTs area where residual petroleum hydrocarbons are present (refer to Sections 3.9 and 3.11, respectively). The only SVOC detections in the shoreline groundwater samples were low-level PAH concentrations below screening levels. Dissolved sulfide concentrations in the groundwater samples were at or below 3 mg/L, with the exception of the 21.5 mg/L detection at well REC6-MW-2 – a concentration anomalously high enough to suggest the sample was not field filtered (i.e., it is a total sulfide concentration). The detection warrants confirmation in the dry season sampling event.

Proposed Round 3 Assessment for East Waterway Shoreline

No data gaps are identified for this area. The proposed Round 3 data collection for this area includes the following:

• Conduct the dry-season groundwater sampling and analysis event for the REC 3 well, repeating the Round 2 groundwater sampling and analyses as outlined in the Work Plan. Analyses to add, relative to the Round 2 analyses, are diesel-/oil-range TPH for well REC6-MW-1, and gasoline- and diesel-/oil-range TPH for well REC7-MW-4.

3.7 Former USTs No. 68, 68R

Former UST No. 68 was a 250-gallon unleaded gasoline tank removed in 1991. It was not replaced at that time. At the time of Work Plan preparation, we inferred that the location of the replacement 500-gallon unleaded gasoline UST No. 68R was northeast of UST No. 68 (where UST68-MW-1 located; Figure 8). We subsequently obtained information correctly locating UST No. 68R east of the South Office Building, next to the former Bunker C AST area, as depicted on Figure 8. UST No. 68R was removed in 1999. Sections 4.1.3 and 4.1.9 in the Work Plan (Aspect, 2012) provide information regarding removal of the former USTs.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 8):

- Completed one new soil boring/monitoring well (UST68-MW-2) within the footprint of the former UST 68 excavation on the north side of the South Office Building, and a downgradient boring/monitoring well UST68-MW-5;
- Completed one new soil boring/monitoring well (UST68-MW-1) within the previously inferred footprint of the former UST 68R northeast of the South Office Building, and a downgradient boring/monitoring well UST68-MW-4;
- During drilling of the planned downgradient well UST68-MW-3, the drill rig
 penetrated a pressurized fire water line. The pressurized water damaged the
 pavement and created a hole at the rupture location, preventing completion of
 drilling there. The UST68-MW-3 well was therefore not completed pending
 review of results from the surrounding wells;
- Based on field screening information, analyzed one soil sample from each of the four borings for gasoline-range TPH and VOCs; and

• Collected a groundwater sample from the four monitoring wells for analysis of gasoline-range TPH, VOCs, low-level EDB, and TSS. Shoreline monitoring wells MW-1 and MW-2, installed for characterization of REC 2, provide additional groundwater quality data downgradient of UST 68 (Figure 8).

Assessment Findings

Detected hydrocarbon concentrations in soil and groundwater at the location of former UST 68 (UST68-MW-2), and generally downgradient of it (UST68-MW-4, UST68-MW-5, MW-1, MW-2), are below respective screening levels.

Within the former UST 68 excavation location (gravel backfill observed), a moderate petroleum odor and sheen and detection on the photoionization detector (PID) was observed in the 10- to 12-foot depth interval; however, gasoline-range TPH was detected at only 4.9 mg/kg, well below the unrestricted soil screening level, in the soil sample from that depth interval. VOCs, including BTEX, were not detected in the soil sample (Table 8A). Therefore, the appropriate unrestricted soil screening level for gasoline-range TPH in this area is 100 mg/kg, in accordance with MTCA.

Gasoline-range TPH and VOCs were not detected in samples of saturated soil (beneath water table) collected from borings UST68-MW-4 and UST68-MW-5 (Table 8A), and MW-1 and MW-2 (Table 3A).

Gasoline-range TPH and VOCs were not detected in groundwater samples collected from well UST68-MW-2 in the excavation footprint, or downgradient wells UST68-MW-4 and UST68-MW-5 (Table 8B), and MW-1 and MW-2 (two rounds of data; Table 3B).

Gasoline-range TPH and VOCs were not detected in soil and groundwater samples collected from UST68-MW-1; however, it is not in the location of former UST 68R.

The Round 2 data indicate that residual gasoline-related groundwater contamination observed in 1991 (Landau, 1991; refer to Section 4.1.3 of Aspect, 2012) has attenuated to below screening levels.

Proposed Round 3 Assessment for UST 68, 68R Area

The lack of characterization of the former UST 68R location, now correctly located, remains a data gap to be addressed. The proposed Round 3 data collection for this area includes the following:

- Install a new monitoring well UST68-MW-6 at the correct location of former UST 68R (Figure 8). Based on field screening information, analyze one soil sample from the boring for gasoline-range TPH and VOCs. Analyze the groundwater sample from the well for gasoline-range TPH, VOCs, and TSS; and
- Conduct the dry-season groundwater sampling and analysis event for UST68-MW-2, -4, and -5, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012). The incorrectly located UST68-MW-1 will not be resampled.

3.8 Former UST No. 69

UST No. 69 was a 260-gallon leaded gasoline tank removed in 1989 (refer to Section 4.1.1 in Aspect, 2012) (Figure 6). The data for this area are discussed in Section 3.5, in

connection with the upgradient former UST 29. Former UST No. 69 is a distinct area for assessment, and the data are briefly reiterated here.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 6):

- Completed a new soil boring/monitoring well (UST69-MW-1) on the west (downgradient) side of former UST No. 69. From the boring, collected a soil sample from the water table depth interval for analysis of gasoline-range TPH, VOCs, and total lead; and
- Collected a groundwater sample from the well for analysis of gasoline-range TPH, VOCs including low-level EDB, total and dissolved lead, and TSS.

Assessment Findings

No field screening evidence of petroleum was observed during drilling of UST69-MW-1, and the soil and groundwater data collected from UST69-MW-1 are consistent with that observation. Gasoline-range TPH and VOCs were not detected in soil or groundwater samples, and lead was detected in the soil sample at 2.9 mg/kg, well below the 250 mg/kg unrestricted soil screening level (soil data in Table 6A; groundwater data in Table 6B).

Proposed Round 3 Assessment for Former UST No. 69

No data gaps are identified for this area. The proposed Round 3 data collection for this area includes the following:

 Conduct the dry-season groundwater sampling and analysis event for well UST69-MW-1, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012).

3.9 Former USTs No. 70, 70R

Former UST No. 70 was a 1,000-gallon diesel storage tank removed in 1989 (Figure 9A). Former UST No. 70R was a 2,000-gallon diesel UST installed in the same location in 1989; it was a double-walled tank with cathodic protection and electronic overflow sensor, and was subsequently removed in 1995. Landau (1991) documented diesel contamination in the area of the former USTs (refer to Section 4.1.3 of Aspect, 2012), which warranted assessment to document current conditions.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 9A):

- Advanced and sampled soil from four soil borings (UST70-B-1 through -4) within the area of former USTs No. 70/70R as located from Landau (1991), in addition to one boring/monitoring well (UST70-MW-2) along the shoreline due west of the former USTs location. Based on field screening information, analyzed soil samples from each of the five borings for diesel-/oil-range TPH, PAHs, and, because the former USTs were within the hog fuel area where waste solvents were reportedly disposed of, VOCs;
- Based on the field screening during drilling of the four borings, completed monitoring well UST70-MW-1 immediately downgradient of the location with

- highest apparent TPH soil concentrations. Also completed the shoreline boring UST70-MW-2 as a monitoring well; and
- Analyzed a groundwater sample from new wells UST70-MW-1 and UST-70-MW-2 for diesel-/oil-range TPH, VOCs, low-level PAHs, and TSS. The groundwater sample from shoreline well UST70-MW-2 was also analyzed for priority pollutant metals, SVOCs, ammonia, and dissolved sulfide.

Assessment Findings

A diesel-range TPH concentration (12,300 mg/kg) was detected in the 3- to 4-foot soil sampling from boring UST70-B-1, which, based on observed pea gravel in the upper few feet, is within the former UST location. Field screening information indicates diesel contamination extending between depths of about 3 and 12 feet in the boring. TPH was not detected in the 13.5- to 14.5-foot soil sample from UST70-B-1. At boring UST70-B-2 to the south of UST70-B-1, TPH was detected in the 9- to 10-foot sample at a concentration (570 mg/kg) below the unrestricted soil screening level. TPH was not detected in soil samples from UST70-B-3 and UST70-B-4. Detected soil concentrations of PAHs and VOC were below unrestricted soil screening levels (Table 9A). Figure 9A depicts the TPH soil data, with exceedances highlighted, for the UST 70/70R area. Note that the soil sample depths are relative to former grade prior to removal of several feet of hog fuel that occurred subsequent to the Round 2 data collection.

Petroleum-related concentrations in groundwater samples from the two wells were below respective screening levels. TPH was detected in the groundwater sample from well UST70-MW-1, located immediately downgradient of UST70-B-1, at a concentration (179 μ g/L¹⁰) below the 500 μ g/L groundwater screening level. TPH was not detected in groundwater at downgradient shoreline well UST70-MW-2. PAH and VOC concentrations in both wells were below screening levels (Table 9B). Despite the elevated soil TPH concentrations at UST70-B-1, only limited TPH leachability is indicated by the immediately downgradient UST70-MW-1 groundwater data. Figure 9B depicts the TPH, naphthalene, and total cPAH groundwater data for this area.

The groundwater metals exceedances detected at shoreline well UST70-MW-2 (arsenic, zinc, ammonia) are consistent with groundwater exceedances observed elsewhere in the Upland Area, and are attributable to the reducing groundwater conditions in the fill. The groundwater sample from shoreline well UST70-MW-2 contained a dissolved arsenic concentration (5.23 μ g/L) marginally above the 5 μ g/L screening level, and a dissolved zinc concentration (116 μ g/L) above the 81 μ g/L screening level. The detected ammonia concentration (0.575 mg/L) exceeds the 0.035 mg/L screening level. The only SVOCs detected in the groundwater sample were the non-carcinogenic PAHs acenaphthene and naphthalene, at concentrations well below respective screening levels. Dissolved sulfide was not detected in the sample (Table 9B). Figure 7 depicts the groundwater exceedances detected at well UST70-MW-2 and the other shoreline wells.

-

¹⁰ Sum of diesel + oil-range TPH concentrations, including ½ the detection limit concentration for non-detected values.

Proposed Round 3 Assessment for USTs 70, 70R Area

The proposed Round 3 data collection for this area includes the following:

• Conduct the dry-season groundwater sampling and analysis event for the UST 70/70R wells, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012).

Opportunistic Interim Action Recommended

Beyond the Round 3 assessment, we recommend planning for an opportunistic interim action removal of diesel-contaminated soil in the UST 70/70R area, to be conducted in coordination with mill demolition activities, and in accordance with the Interim Action Plan (Exhibit C to forthcoming Agreed Order). The available data indicate that the soil contamination extent should be relatively localized around the location of the former UST. Soil excavation will reveal the extent of contamination most accurately, such that additional time and money would be better spent removing contaminated soil, rather than further investigation, in our opinion. Excavation would start at the UST70-B-1 location, and extend laterally and vertically until soils containing TPH concentrations above 2,000 mg/kg are removed to the extent practicable, as confirmed by excavation soil verification sampling and analysis.

3.10 Former USTs No. 71, 72, and 73

Former USTs 71, 72, and 73 were reportedly railroad cars used as Bunker C oil USTs (approximately 12,000-gallon capacity each), which were removed in 1989. Landau (1991) documented Bunker C contamination in the area of the former USTs (refer to Section 4.1.3 of Aspect, 2012), which warranted assessment to document current conditions.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 10):

- Advanced and sampled soil from four soil borings (UST71-B-1 through UST71-B-4) within the area of former USTs No. 71/72/73 as located from Landau (1991). Based on field screening information, analyzed soil samples from each of the four borings for diesel-/oil-range TPH and PAHs, and, because the former USTs were within the hog fuel area where waste solvents were reportedly disposed of, VOCs;
- Based on the field screening during drilling of the four borings, completed monitoring well REC71-MW-1 immediately downgradient of the area with highest apparent TPH soil concentrations; and
- Analyzed a groundwater sample from well UST71-MW-1 for analysis of diesel/oil-range TPH, VOCs, low-level PAHs, and TSS.

Assessment Findings

During drilling of the Round 2 borings, Bunker C soil contamination was evident to depths greater than 20 feet – well below the water table - within the area of the former USTs, which is consistent with the former tanks (railroad cars) extending to substantial depths below grade. Note that the drilling and soil sample depths are relative to former

grade prior to removal of several feet of hog fuel that occurred subsequent to the Round 2 data collection.

Bunker C-saturated soil adjacent to the former tanks is reflected by detected TPH soil concentrations above 30,000 mg/kg detected in borings UST71-B-2 (38,000 mg/kg in 13-to 14-foot sample), UST71-B-3 (36,000 mg/kg in 18- to 19-foot sample), and UST-B-4 (32,000 mg/kg in 12.5- to 13.5-foot sample). In borings UST71-B-3 and UST71-B-4, TPH was not detected in soil samples collected from depths of 19 to 20 feet and 28 to 29 feet, respectively. TPH was not detected in boring UST71-B-1, located on the north side of the former tanks. Soil PAH concentrations above unrestricted and industrial soil screening levels occur in association with elevated Bunker C concentrations. VOC concentrations in the soil samples were below screening levels (Table 10A). Figure 10A depicts the TPH soil data, with exceedances highlighted, for the UST 71/72/73 area. Again, the reported soil sample depths are several feet deeper than current conditions following removal of the hog fuel accumulation.

The groundwater sample collected from well UST71-MW-1, located immediately downgradient of the Bunker C-saturated soil, was turbid (TSS = 110 mg/L) despite extended well development, and contained Bunker C and cPAH concentrations (1,180 µg/L and 0.44 µg/L, respectively) above respective groundwater screening levels. VOC concentrations in the groundwater sample were below respective screening levels (Table 10B). Figure 10B depicts the TPH groundwater data, with exceedances highlighted, for this area. The downgradient extent of groundwater contamination is limited, with downgradient wells UST70-MW-1 and shoreline wells UST70-MW-2 and REC3-MW-1 showing no petroleum-related concentrations above groundwater screening levels (see Tables 9B and 4B).

Proposed Round 3 Assessment for USTs 71, 72, 73 Area

The proposed Round 3 data collection for this area includes the following:

• Conduct the dry-season groundwater sampling and analysis event for well UST71-MW-1, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012).

Opportunistic Interim Action Recommended

Beyond the Round 3 assessment, we recommend planning for an opportunistic interim action removal of Bunker C-contaminated soil in the UST 71, 72, 73 area, to be conducted in coordination with mill demolition activities, and in accordance with the Interim Action Plan (Exhibit C to forthcoming Agreed Order). The available data indicate that the soil contamination extent should be relatively localized around the location of the former USTs, and time and money would be better spent removing contaminated soil, rather than further investigation, in our opinion. Excavation would start within the area of known soil contamination (UST71-B-2, -3, and -4 locations), and extend laterally and vertically until soils containing TPH concentrations above 2,000 mg/kg are removed to the extent practicable, as confirmed by excavation soil verification sampling and analysis.

3.11 HREC 2: Naval Reserve Parcel

The Naval Reserve Parcel includes two distinct areas of contamination where the Navy reportedly completed cleanup: an area of petroleum contamination associated with former USTs near the shoreline, and an area of metals contamination in shallow soil at a former Firing Range farther inland, as described in Section 4.1.6 of Aspect (2012). Subsequent to preparation of the Work Plan, we obtained the Navy's 1998 report for their cleanup of the Naval Reserve Parcel, which is summarized below.

3.11.1 Updated Historical Information regarding Navy's Independent Cleanup of Naval Reserve Parcel

Foster Wheeler (1998) documents the Navy's independent cleanup of the former Naval Reserve Parcel as part of the land exchange with K-C. According to the report, the Naval Reserve Center was commissioned in 1949 and served as the administrative and operations for local naval reserve activities. From 1949 to about 1981, naval vessels regularly docked at the Naval Reserve Center dock, which remains in place. The Naval Reserve Center included a combined garage/shop, boiler room, and diesel generator room (Building 1), and to the east a Firing Range (Building 2). Two diesel USTs (5,000 gallon Tank 1 and 3,000 gallon Tank 2) were located immediately south of the boiler room, and supplied fuel for the steam boiler and electrical generator.

The two diesel USTs were removed in July 1996. A hole was observed in Tank 1 during its removal. No visible flaws were documented for Tank 2 during its removal. Following removal of the USTs, Foster Wheeler collected confirmation soil samples from the excavation. Diesel-range TPH soil contamination was detected within the excavation around each of the tanks, with detected TPH concentrations up to 16,000 mg/kg.

Based on that first round of confirmation sampling, the excavation pits were over-excavated and sampled again. The excavation depth was approximately 12 feet, extending below the water table. In addition to the tank pits, and exploratory test pit was excavated and sampled approximately 5 feet south of the southern excavation limit. The inferred location of the final excavation limit, based on unscaled maps in the report, is shown on Figure 11A. The petroleum-contaminated soil was removed from the site for thermal desorption.

Following over-excavation, a second round of excavation verification soil samples indicated residual diesel contamination present on the excavation bottom and south of the excavation. Diesel-range TPH was detected at 42,000 mg/kg in the sample of soil from bottom of the excavation near its center (sample A). TPH was not detected in samples B, D, and E collected on the south, north, and west sidewalls, respectively, of the excavation. Sample C, on the east sidewall contained 260 mg/kg diesel-range TPH.

Three soil samples (AA, BB, CC) were collected from different depths in the exploratory test pit just south of the excavation. Detected diesel-range TPH was not detected in the 5-foot sample, but was detected at concentrations of 53,000 mg/kg and 7,000 mg/kg in the 7.5-foot and 9-foot soil samples, respectively.

According to the report, "groundwater and pilings driven randomly spaced at about 8-feet bgs impeded further excavation; therefore, soil excavation was suspended and the pits

backfilled with pea gravel to approximately 1 foot above groundwater. The remainder of the excavations were filled to grade with clean backfill material."

The report also states that additional TPH-contaminated soil identified beneath the former boiler room was removed, but does not provide location information or verification soil sample data for the excavation. Likewise, the report states that 15 cubic yards of lead-contaminated soil was removed from beneath the former Firing Range building, but does not provide location information or verification soil sample data for the excavation.

In August 1997 through October 1998, following demolition of the facility structures, Foster Wheeler conducted characterization soil sampling and analysis from the former USTs area, adjacent bilge water tank location and flammable material storage shed, and the former Firing Range area. Twenty four drilled soil borings (BOR-1 through -24) were advanced to depths of approximately 10 feet in the Building 1 area to characterize soil quality around the USTs, former bilge water tank location, and flammable material storage shed. Four additional hand-augered borings (FMS-1 through -4) were also sampled to depths of 1.25 feet around the flammable material storage shed. Twenty one hand-augered borings (FFR-1 through -21) were sampled to depths of 3 feet at the former Firing Range. The first 14 borings were sampled in September 1997, and the last seven in October 1997; the report presents locations only for the first 14 of them.

Following soil removal and site restoration, two monitoring wells were installed in the most contaminated areas to monitor groundwater quality as a reflection of the soil removal effectiveness. The wells were identified as North Well and South Well, but the report does not present locations for them. The January 1998 groundwater samples collected from the two wells contained no detectable TPH or BTEX, and concentrations of the PAHs acenaphthene, fluorene, and naphthalene (up to 4 μ g/L) were below respective screening levels applied in this environmental assessment. Based on the June 21, 1999, report transmittal letter from the Navy to K-C, the wells were decommissioned.

The Round 2 data collection, assessment results, and proposed Round 3 assessment activities are discussed below - separately for the former USTs area and the former Firing Range area.

3.11.2 Former USTs Area

Following preparation of the Work Plan (Aspect, 2012) and based on review of the Foster Wheeler (1998) report described above, the locations for two of the Round 2 soil borings in the former USTs Area (NRP-B-2 and NRP-B-7) were adjusted southward to provide better coverage of the area south of the former excavation. The excavation extent was inferred from the unscaled maps in Foster Wheeler (1998).

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 11A):

Advance and sampled soil from nine soil borings (NRP-B-1 through -5, NRP-B-7, and NRP-B-8, NRP-MW-2, and NRP-MW-3). Boring NRP-B-6 encountered 4 feet of gravel, probable excavation backfill, and then encountered refusal; the same conditions were encountered in another attempt a few feet away. Based on field screening information, analyzed soil samples from each boring for gasoline, diesel-/oil-range TPH, VOCs, PAHs, and priority pollutant metals;

- Based on the field screening during drilling of borings NRP-B-1 through -8, completed monitoring well NRP-MW-1 at the location with highest apparent TPH soil concentrations;
- Completed two monitoring wells along the shoreline: NRP-MW-2 downgradient (west) of the former USTs and NRP-MW-3 near where soil mercury was reported at 14 mg/kg (below screening level); and
- Collected a groundwater sample from the three new monitoring wells plus
 previously installed well MW-5 for analysis of gasoline- and diesel-/oil-range
 TPH, VOCs, low-level PAHs, dissolved priority pollutant metals, and TSS.
 Groundwater samples from the shoreline wells MW-5, NRP-MW-2 and NRPMW-3 were also analyzed for SVOCs, ammonia, and dissolved sulfide.

Assessment Findings

The Round 2 soil data confirmed soil TPH exceedances at the two locations on the south end of the former excavation, but at lower concentrations than those reported from the 1997 samples (Foster Wheeler, 1998).

The 8- to 10-foot soil sample from the southernmost boring, NRP-B-2, had the highest TPH concentration detected in the Round 2 samples (4,400 mg/kg gasoline-range), exceeding the 100 mg/kg soil screening level for unrestricted and industrial use. In addition, the sample contained 1,580 mg/kg oil-range TPH, below the screening level. The chromatogram for the TPH analyses suggests the presence of two different petroleum products: weathered gasoline and heavy (lube) oil. The 14- to 15-foot sample from boring NRP-B-2 had no detectable TPH (Table 11A).

The 9- to 10-foot soil sample from boring NRP-B-7 contained gasoline-range TPH (120 mg/kg) and total cPAHs (17 mg/kg) above respective soil screening levels for unrestricted and industrial use. The detected concentration of diesel- + oil-range TPH (1,540 mg/kg) was below the 2,000 mg/kg screening level. The sample chromatogram suggests a creosote-like product, not a fuel, which is consistent with the high PAH concentrations detected. Petroleum-like sheen was visible in the soil core to a depth of about 17 feet in boring NRP-B-7. The 19- to 20-foot soil sample had no detectable TPH (Table 11A).

No soil metals exceedances, and no detectable mercury, were detected in the soil sample from NRP-B-1, located in the area of prior reported soil mercury detection adjacent to the former flammable materials storage shed.

Figure 11A depicts the TPH soil data, with exceedances highlighted, for the former USTs Area of the Naval Reserve Parcel.

Groundwater samples from the four USTs Area monitoring wells MW-5, NRP-MW-1, NRP-MW-2, and NRP-MW-3 contained concentrations of petroleum-related compounds - TPH, cPAH, and VOCs – below respective screening levels (Table 11B). Gasoline-range hydrocarbons were detected at the analytical reporting limit (100 µg/L) in well NRP-MW-1, located adjacent to the highest soil hydrocarbon concentrations detected in the Round 2 soil sampling (at NRP-B-2). The detected low groundwater hydrocarbon concentrations are consistent with groundwater data reported in Foster Wheeler (1998).

Figure 11B depicts the TPH, naphthalene, and total cPAH data for groundwater samples in this area.

The Round 2 groundwater dissolved copper exceedance detected at shoreline well MW-5 (5.2 μ g/L) confirms the Round 1 result (7.09 μ g/L dissolved copper; Table 11B). No other metals exceedances were detected in the four groundwater samples, including in well NRP-MW-3 located adjacent to the former flammable materials storage location. No SVOC concentrations exceeded groundwater screening levels. The ammonia concentrations detected in the four wells exceeded the screening level, and showed considerable variability (0.38 mg/L at NRP-MW-2 to 11.3 mg/L in NRP-MW-3 located 50 feet away). Dissolved sulfide concentrations ranged from non-detect at NRP-MW-3 to 3.0 mg/L at MW-5 (Table 11B). Groundwater exceedances for these wells are shown on Figure 7, along with the other shoreline wells.

Data Gaps and Proposed Round 3 Assessment for Former USTs Area of Naval Reserve Parcel

The extent of soil hydrocarbon contamination in the southern portion of the area, and at the bottom of the former UST excavation, is a data gap warranting additional delineation. The proposed Round 3 data collection for this area includes the following:

- Advance and sample soil from six additional soil borings, NRP-B-17 through -22; NRP-B-17 through -21 will be advanced in the area of detected exceedances, while NRP-B-22 will be advanced in the approximate center of the inferred excavation area (Figure 11A). Based on field screening information, analyze up to three soil samples from each boring for gasoline- and diesel-/oil-range TPH, VOCs, and PAHs; and
- Conduct the dry-season groundwater sampling and analysis event for wells MW-5, NRP-MW-1, -2, and -3, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012).

Based on the collective data available after Round 3, and the information regarding prior excavation in this area (Foster Wheeler, 1998), K-C will assess whether to conduct an opportunistic interim action removal of residual hydrocarbon-contaminated soil in this area.

3.11.3 Former Firing Range Area

The soil sampling and analysis proposed in the Work Plan (Aspect, 2012) provided spatial coverage of the former Firing Range area, since at the time there was no information available regarding removal of shallow metals-contaminated soil there. Because the Foster Wheeler (1998) report provides no specific information regarding location of the soil removal completed, no changes were made to the sampling program defined in the Work Plan.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 11C):

• Advanced and sampled soil from depths of 0 to 1 and 3 to 4 feet in eight soil borings (NRP-B-9 through -16) for analysis of priority pollutant metals; and

 Completed monitoring wells NRP-MW-4 and NRP-MW-5 along the downgradient (western) edge of the inferred metals-contaminated area, and analyzed groundwater samples from them for dissolved and total priority pollutant metals and TSS.

Assessment Findings

Two of 16 shallow soil samples had low-level arsenic exceedances (35 and 22 mg/kg in 0- to 1-foot samples from NRP-B-10 and -15, respectively). No other metals concentrations exceeded soil screening levels (Table 11A). Figure 11C depicts the detected soil exceedances for this area. No field screening evidence of petroleum was observed during drilling in this area; therefore, petroleum-related analyses were not conducted for the soil samples, in accordance with the Work Plan.

One of the two wells, NRP-MW-4, had a detected exceedance for total copper (9.2 μ g/L); the dissolved copper concentration (1.09 μ g/L) was below the 2.4 μ g/L screening level. No other metals concentrations exceeded groundwater screening levels in either well (Table 11B).

Proposed Round 3 Assessment for Former Firing Range Area of Naval Reserve Parcel

The proposed Round 3 data collection for this area includes the following:

Conduct the dry-season groundwater sampling and analysis event for wells NRP-MW-4 and -5, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012).

3.12 Log Pond Fill Area

The Round 1 assessment included sampling and analysis of fill soil beneath the wood chips at six locations within the Log Pond Fill Area (borings DP-18 through -22, and MW-6), and installation and groundwater sampling of shoreline well MW-6, located at the downgradient edge of the area (Figure 12). The Round 2 data collection for this area included:

Sampled groundwater from shoreline well MW-6 for analysis of gasoline-range TPH, diesel-/oil-range TPH, VOCs, low-level PAHs, total and dissolved priority pollutant metals, SVOCs, ammonia, dissolved sulfide, and TSS.

Assessment Findings

Detected concentrations of gasoline-range TPH, diesel-/oil-range TPH, BTEX, metals, SVOCs, and PCBs in the six Round 1 samples of Log Pond Fill soil were below unrestricted soil screening levels (Table 12A).

Low-level arsenic and copper exceedances were detected in the Round 1 and Round 2 groundwater samples from well MW-6 (5.2 and 6.38 µg/L arsenic; 4.14 and 3.85 µg/L copper¹¹). The metals concentrations are attributable to the reducing groundwater conditions in the fill. The Round 2 groundwater sample from MW-6 contained no detectable TPH, VOCs, SVOCs including PAHs, or dissolved sulfide. The 15.5 mg/L

_

¹¹ The higher of dissolved or total concentrations are listed for the Round 2 sample. Table 12B provides the complete data.

ammonia concentration is the highest detected at the Upland Area shoreline wells (Table 12B). Figure 12 depicts the groundwater exceedances for well MW-6, and Figure 7 displays the groundwater exceedances for it and the other shoreline wells.

Proposed Round 3 Assessment for Log Pond Fill Area

The proposed Round 3 data collection for this area includes the following:

 Conduct the dry-season groundwater sampling and analysis event for well MW-6, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012).

Additional soil sampling and analysis will also be conducted within the Log Pond Fill to delineate soil metals concentrations adjacent to the Hazardous Waste Cage, as discussed in Section 3.17.

3.13 Acid Plant

Potential acidic releases from the Acid Plant can leach metals from equipment, piping, etc., and/or potentially leach naturally occurring metals from soils. The assessment evaluated groundwater pH and metals within the Acid Plant as an indicator of potential acidic releases.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 13):

- Advanced boring AP-MW-1 at an accessible location on the edge of the Acid Plant tank farm, sampled soil from it at depths of 1 to 2 feet and just below the water table, and analyzed the soil samples for priority pollutant metals and soil pH; and
- Collected a groundwater sample from the well for analysis of total and dissolved priority pollutant metals and TSS. Groundwater pH is a field parameter measured for each groundwater sample collected.

Assessment Findings

The soil and groundwater sampling from AP-MW-1 provides no indication for acidic release. Soil pH and groundwater pH were both near neutral (soil pH of 7.4 to 7.5; groundwater pH of 7.2). Metals concentrations detected in the soil and groundwater samples were below respective screening levels. The soil and groundwater quality data for this area are presented in Tables 13A and 13B, respectively.

There was no field screening evidence of petroleum contamination during drilling of AP-MW-1, therefore the soil and groundwater samples were not analyzed for petroleum-related compounds, in accordance with the Work Plan.

Proposed Round 3 Assessment for Acid Plant

The proposed Round 3 data collection for this area includes the following:

 Conduct the dry-season groundwater sampling and analysis event for well AP-MW-1, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012).

3.14 Central Maintenance Shop

A variety of hazardous materials may have historically been used in the Central Maintenance Shop/Old Auto Shop; therefore, assessment of soil and groundwater quality at the existing shop was conducted as part of the assessment.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 14):

- Cored through the concrete floor of the shop and advanced by hand auger three soil borings to depths of 3 feet (CMS-B-1 through -3). From each boring, collected soil samples from depths of 0 to 1 and 2 to 3 feet for analysis of gasoline-range TPH, diesel-/oil-range TPH, VOCs, PAHs, priority pollutant metals, and PCBs; and
- Completed monitoring well CMS-MW-1 immediately downgradient (west) of the shop, and analyzed the groundwater sample from it for gasoline-range TPH, diesel-/oil-range TPH, low-level PAHs, VOCs, total and dissolved priority pollutant metals, and TSS.

Assessment Findings

Detected concentrations of TPH, VOCs, PAHs, and metals were below unrestricted soil screening levels in each of the six soil samples. Total PCB concentrations above the 1 mg/kg unrestricted soil screening level but below the 10 mg/kg industrial soil screening level were detected in soil samples from two of three borings (Table 14A):

- 2.15 mg/kg in 0- to 1-foot sample from CMS-B-2. The 2- to 3-foot sample had a concentration (0.85 mg/kg) below the unrestricted soil screening level; and
- 2.55 mg/kg and 2.15 mg/kg in 0- to 1-foot and 2- to 3-foot samples, respectively, from CMS-B-3.

For this assessment, total PCBs are calculated using one half the reporting limit for non-detected Aroclors, as the MTCA default. Only Aroclors 1254 and 1260 are detected in the samples. If site-wide data demonstrate the absence of certain Aroclors, the total PCB summation can be adjusted to include only detected Aroclors.

The groundwater sample from CMS-MW-1 contained detected concentrations of diesel/oil-range TPH (735 μ g/L), naphthalene (200 μ g/L), and total cPAH (TEQ) (0.04 μ g/L) above respective screening levels. Review of the TPH chromatogram, in combination with the high naphthalene to petroleum ratio, suggests a creosote source, not fuel source. Figure 14 depicts the soil and groundwater exceedances for this area.

Proposed Round 3 Assessment for Central Maintenance Shop

The proposed Round 3 data collection for this area includes the following:

Conduct the dry-season groundwater sampling and analysis event for well CMS-MW-1, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012).

During demolition, PCBs in soil beneath the shop will be delineated and cleaned up opportunistically, as warranted.

3.15 Old Machine Shop

As with the Central Maintenance Shop, a variety of hazardous materials may have historically been used in the Old Machine Shop; therefore, assessment of soil and groundwater quality at the existing shop was conducted as part of the assessment.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 15):

- Cored through the concrete floor of the shop and advanced by hand auger three soil borings to depths of 3 feet (OMS-B-1 through -3). From each boring, collected soil samples from depths of 0 to 1 and 2 to 3 feet for analysis of gasoline-range TPH, diesel-/oil-range TPH, VOCs, PAHs, priority pollutant metals, and PCBs; and
- Completed monitoring well OMS-MW-1 downgradient (south) of the shop, and analyzed the groundwater sample from it for gasoline-range TPH, diesel-/oil-range TPH, low-level PAHs, VOCs, dissolved priority pollutant metals, SVOCs, ammonia, dissolved sulfide, TSS.

Assessment Findings

Detected concentrations of TPH and VOCs were below unrestricted soil screening levels in each of the six soil samples. Detected concentrations of total cPAHs (0.46 mg/kg) and lead (378 mg/kg) in the 2- to 3-foot soil sample from OMS-B-3 were above their respective unrestricted soil screening levels but below industrial soil screening levels. Total PCB concentrations above the 1 mg/kg unrestricted soil screening level were detected in both soil samples from boring OMS-B-3 (1.4 and 2.2 mg/kg); both were below the 10 mg/kg industrial soil screening level. Only Aroclor 1254 was detected in the samples (Table 15A). Figure 15 depicts the soil exceedances for this area.

The groundwater sample from OMS-MW-1 contained no detected concentrations above respective groundwater screening levels (Table 15B). Well MW-1, installed to characterize REC 2, is also positioned downgradient of the east end of the Old Machine Shop¹², and had a dissolved copper concentration (2.56 μ g/L) marginally above the 2.4 μ g/L groundwater screening level (Section 3.2). Figure 15 depicts the groundwater exceedances for this area, including surrounding wells.

Proposed Round 3 Assessment for Old Machine Shop

The proposed Round 3 data collection for this area includes the following:

Conduct the dry-season groundwater sampling and analysis event for well CMS-MW-1, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012).

During demolition, PCBs in soil beneath the shop will be delineated and cleaned up opportunistically, as warranted.

_

¹² Computer servers were housed in the east end of the Old Machine Shop, thus the building name reference to "MIS" which standards for Manufacturing Information Services.

3.16 Boiler/Baghouse Area

Biomass including wood chips and hog fuel, and reportedly other materials including scrap rubber and solvents, were historically burned in the boilers. Therefore, the assessment included soil sampling and analysis for dioxins/furans, metals, SVOCs, and VOCs.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 16):

• Advanced and sampled soil from five hand-augered soil borings (Boiler-B-1 through -5) positioned around the collective perimeter of the existing Boiler No. 10, Boiler No. 14, No. 7, 8, 9 Old Boiler, Fly Ash Clarifier, and Baghouse structures. From each boring, collected one soil sample from a depth of 1 to 2 feet for analysis of VOCs, SVOCs, priority pollutant metals, and dioxins/furans. Also analyzed the Boiler-B-3 sample for diesel-/oil-range TPH based on the presence of petroleum in the sample.

Assessment Findings

No exceedances of unrestricted soil screening levels were detected in soil samples Boiler-B-4 and Boiler-B-5 on the north end of the area. Detected constituent concentrations exceeding unrestricted soil screening levels in soil samples Boiler-B-1, Boiler B-2 and Boiler-B-3, on the south side of area, are as follows (Table 16):

- At Boiler-B-1, near the southeast corner of the area, the detected 33.6 mg/kg soil arsenic concentration exceeds the 20 mg/kg unrestricted (and industrial) soil screening level;
- At Boiler-B-2, at the east edge of the Baghouse, the detected soil lead concentration of 1,870 mg/kg exceeded the unrestricted screening level and the 1,000 mg/kg industrial screening level. In addition, the detected total cPAH concentration of 0.276 mg/kg was above the unrestricted screening level but below the industrial screening level. The detected dioxins/furans concentration in the sample, expressed as Total 2,3,7,8-TCDD (TEQ) (hereafter termed TCDD (TEQ)), was 2.69 x 10⁻⁵ mg/kg (27 ng/kg), above the 1.1 x 10⁻⁵ mg/kg (11 ng/kg) unrestricted soil screening level and below the 1.5 x 10⁻³ mg/kg (1,500 ng/kg) industrial screening level. Although above the unrestricted soil screening level, the detected concentration is below urban background TCDD (TEQ) concentrations measured in residential neighborhoods within Bellingham (up to 3.5 x 10⁻⁵ mg/kg; Ecology and Environment, 2002) and Seattle (90th percentile concentration of 4.6 x 10⁻⁵ mg/kg; Ecology, 2011).
- At Boiler-B-3, near the southwest corner of the area, Bunker C-saturated soil (108,000 mg/kg oil-range TPH; 32 mg/kg total cPAH) was encountered to the 2-foot depth of exploration. In addition, the detected lead concentration (342 mg/kg) is above the unrestricted soil screening level but below the industrial screening level. The detected TCDD (TEQ) concentration was 1.76 x 10⁻⁵ mg/kg (18 ng/kg), above the 1.1 x 10⁻⁵ mg/kg (11 ng/kg) unrestricted soil screening level, below the 1.5 x 10⁻³ mg/kg (1,500 ng/kg) industrial screening level, and

below urban background concentrations as described above for sample Boiler-B-2.

Figure 16 depicts the soil exceedances for the Boiler/Baghouse Area.

Data Gaps and Proposed Round 3 Assessment for Boiler/Baghouse Area

Remaining data gaps for the Boiler/Baghouse Area include determining the extent of soil lead exceedances around the Boiler-B-2 location, and the extent of petroleum and lead exceedances around the Boiler-B-3 location.

The proposed Round 3 data collection for this area includes the following (Figure 16):

- Sample soil at depths of 0 to 1 foot and 2 to 3 feet from three hand-augered borings (Boiler-HA-2A, -2B, and -2C) around Boiler-B-2 for analysis of lead, arsenic, TPH-Dx, and PAHs; and
- Drill and sample soil from three borings around Boiler-B-3 (Boiler-B-3A, -3B, and Boiler-MW-1). Collect soil samples from each at depths of 1 to 2 feet, 4 to 5 feet, and at the water table observed during drilling, unless other depths are warranted based on field screening. Analyze the soil samples for diesel-/oil-range TPH, PAHs, and priority pollutant metals. Complete Boiler-MW-1 as a monitoring well, and collect a groundwater sample from it for analysis of diesel-/oil-range TPH, low-level PAHs, dissolved priority pollutant metals, and TSS.

Additional shallow soil samples will also be collected for metals analysis within the footprint of the Old Boiler House to further characterize REC 5 (Section 3.4) (proposed samples also shown on Figure 16).

3.17 Hazardous Waste Cage

Sampling and analysis around the current hazardous waste cage was added after finalization of the Work Plan (Aspect, 2012).

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 17):

- Sampled soil from borings on three sides of hazardous waste cage: HW-B-1, HW-B-2, and HW-MW-1. The east side is a below-grade concrete containment structure and not currently accessible for drilling. Analyzed the soil samples for VOCs, SVOCs, priority pollutant metals, and PCBs; and
- Completed immediately downgradient well HW-MW-1 and analyzed the groundwater sample from it for VOCs, low-level PAHs, dissolved priority pollutant metals, and TSS.

Assessment Findings

Lead was detected in the 3- to 4-foot sample from HW-MW-1 at a concentration (303 mg/kg) above the unrestricted soil screening level and below the industrial screening level. The detected lead concentrations in the shallower and deeper soil samples from the boring were 198 and 115 mg/kg, respectively. In addition, the 0- to 1-foot soil sample from HW-MW-1 contained an arsenic concentration (20.6 mg/kg) marginally above the

unrestricted and industrial soil screening level. The detected total cPAH concentration in 3- to 4-foot sample from HW-B-2 (0.16 mg/kg) marginally exceeded the 0.14 mg/kg unrestricted soil screening level, but was well below the industrial screening level. No soil exceedances were detected for VOCs or PCBs (Table 17A).

The groundwater sample from HW-MW-1 contained dissolved concentrations of arsenic (14.9 μ g/L), copper (8.3 μ g/L), and nickel (30 μ g/L) above respective groundwater screening levels. Note that the well is completed in silt, and is slow to produce groundwater (sampled collected over two days). No exceedances for VOCs or PAHs were detected in the groundwater sample (Table 17B).

Data Gaps and Proposed Round 3 Assessment for Hazardous Waste Cage

Defining the extent of soil lead exceedance adjacent to HW-MW-1 remains a data gap. The proposed Round 3 data collection for this area includes the following (Figure 17):

- Sample soil at depths of 0 to 1 feet, 3 to 4 feet, and 6 to 7 feet from two borings (HW-B-3 and -4) located west of HW-MW-1, within former chip pile area, and analyze the samples for lead and arsenic. A 9- to 10-foot soil sample will also be collected and archived for later analysis if needed; and
- Conduct the dry-season groundwater sampling and analysis event for well HW-MW-1, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012).

3.18 Diesel AST Area

Data from the monitoring well REC2-MW-5, located to monitor groundwater downgradient of the Diesel AST, are discussed in Section 3.3. West of the AST is the diesel pump station (Figure 18A). This fuel storage location is distinct from REC 2, and is therefore addressed as its own area here.

Round 2 Data Collection

As stated in Section 3.3, the Round 2 data collection for this area included (Figure 18):

- Installed and sampled soil from a new monitoring well boring (REC2-MW-5) located downgradient of the existing 250,000-gallon diesel above-ground storage tank (AST) immediately north of the distribution warehouse. Based on field screening information, analyzed the soil samples for diesel-/oil-range TPH and PAHs; and
- Collected a groundwater sample from well REC2-MW-5 for analysis of gasoline-range TPH, VOCs, diesel-/oil-range TPH, low-level PAHs, and TSS.

Assessment Findings

Downgradient of the diesel AST, TPH was detected at 5,030 mg/kg (predominantly oil-range) in the upper 2 feet of soil at REC2-MW-5. The underlying 2.5- to 3.5-foot and 7-to 8-foot (at water table) soil samples had no detectable petroleum (Figure 18). The surficial detection of oil at this location does not appear related to the diesel AST.

The groundwater sample from REC2-MW-5 contained detectable diesel (222 μ g/L) and the PAH fluorene (0.71 μ g/L) below respective groundwater screening levels, and no detectable VOCs (Table 3B).

Data Gaps and Proposed Round 3 Assessment for Diesel AST Area

Lack of data immediately adjacent to the AST and the diesel pump house is a data gap. The proposed Round 3 data collection for this area includes the following (Figure 18):

- Drill soil borings on the downgradient (west) sides of the diesel AST (DA-B-1) and diesel pump house (DA-MW-1), and, from each, collect up to three soil samples based on field screening for analysis of diesel-/oil-range TPH and PAHs; and
- Sample groundwater from wells DA-MW-1 and REC2-MW-5 for diesel-/oil-range TPH, low-level PAHs, VOCs, and TSS.

3.19 Hydraulic Barker Building

The Hydraulic Barker Building was located on the east side of the Log Pond Fill (Figure 19) from before 1947 until sometime after 1992. High pressure water was used to remove bark from logs at the building.

Data Gaps and Proposed Round 3 Assessment for Hydraulic Barker Building

General Fill borings GF-B6- and -7 have been sampled to the north and east sides of the Hydraulic Barker Building (Section 3.20), but the lack of data at the Building location itself is considered a data gap. The proposed Round 3 data collection for this area includes the following (Figure 19):

- Drill and sample four soil borings in at the Hydraulic Barker Building (HB-B-1, -2, -3, and HB-MW-1). Collect from each boring three soil samples at depths of 1 to 2 feet, 3 to 4 feet, and 6 to 7 feet, unless otherwise indicated based on field screening. Analyze each soil sample for diesel-/oil-range TPH, SVOCs, and priority pollutant metals; also analyze the 1- to 2-foot soil sample from each boring for PCBs; and
- Complete HB-MW-1 as a monitoring well, and analyze the groundwater sample collected from it for diesel-/oil-range TPH, low-level PAHs, SVOCs, VOCs, and TSS.

3.20 General Fill Soil Quality

Because of the uncertain composition and source of the fill upon which the mill facility was constructed, and the mill's long-term industrial operations, a general assessment of the fill soil quality outside of other operational areas was conducted.

Round 2 Data Collection

The Round 2 data collection for this area included (Figure 20):

• Advanced and sampled soil from 15 soil borings (GF-B-1 through -15A) in accessible locations spread across the Upland Area. Boring GF-B-15A was a

replacement boring, located a few feet from GF-B-15 which had poor soil recovery that limited soil sample collection. Twelve of the General Fill borings (GF-B-1, -2, -3, -4, -5, -6, -7, -10, -11, -13, -14, and -15A) were drilled using hollow stem auger to collect geotechnical information (blow counts) in addition to the environmental sampling; and

• From each boring, collected soil samples generally at depths of 1 to 2.5 feet and 7.5 to 9.0 feet below grade, subject to soil recovery. Where inadequate soil volume was recovered to conduct the required analyses, a second sample was collected immediately beneath the target depth interval for the additional analyses. Each soil sample was analyzed for gasoline-range TPH, diesel-/oil-range TPH, VOCs, SVOCs, priority pollutant metals, PCBs, and total organic carbon. In addition, the 1- to 2.5-foot soil sample from each boring was analyzed for dioxins/furans. At borings GF-B-1 and GF-B-2 in the northernmost portion of the Upland Area, at least 10 feet of wood waste, no soil, was present below depths of about 5 to 6 feet; therefore, the intended deeper soil sample (7.5 to 9 feet) was not collected from these borings.

Assessment Findings

The soil quality data for the General Fill borings are tabulated in Table 18, and the detected soil concentrations exceeding unrestricted soil screening levels are shown on Figure 20.

Detected concentrations of gasoline-range TPH, VOCs other than methylene chloride, SVOCs other than cPAHs, metals other than lead, and PCBs were below soil screening levels for unrestricted use. Soil concentrations of diesel-/oil-range TPH, total cPAHs methylene chloride, lead, and dioxins/furans exceeded screening levels in one or more General Fill soil samples, as described below.

Diesel- or oil-range TPH exceedances were detected in soil at two of the General Fill boring locations:

- GF-B-9: 6,520 mg/kg diesel-range TPH detected in 7.5- to 9-foot soil sample (saturated soil). The sample's total cPAH concentration (0.056 mg/kg) was below the unrestricted soil screening level. TPH was not detected in the 1- to 2.5-foot sample from the boring; and
- GF-B-14: 7,800 mg/kg oil-range TPH, and associated total cPAH (1.43 mg/kg TEQ), detected in 1- to 2.5-foot soil sample. TPH not detected in 7.5- to 9-foot sample from the boring. The oil-range TPH in shallow soil at this location is on the edge of similar contamination associated with REC 2 (Section 3.2), and is likely associated with former petroleum storage in that area.

Lower concentrations of diesel-/oil-range TPH, up to about 1,000 mg/kg and well below the unrestricted soil screening level, were detected in one or more soil samples from several General Fill borings (GF-B-4, -5, -6, -7, and -15A). No exceedances for gasoline-range TPH were detected in the samples.

In addition to the GF-B-14 sample, total cPAH concentrations above the unrestricted soil screening level were detected at General Fill borings GF-B-3 (1.6 and 0.34 mg/kg in 7.5-to 9- and 11- to 12.5-foot soil samples, respectively) and GF-B15A (0.28 mg/kg in 25- to

26.6-foot sample). No detected total cPAH concentrations exceeded the 2 mg/kg industrial soil screening level.

Methylene chloride was detected in the 7.5- to 9-foot sample from GF-B-12 at a concentration of 0.5 mg/kg, equal to the analytical reporting limit. Methylene chloride is a solvent used in analytical laboratories, and is recognized by EPA as a common laboratory contaminant (EPA, 2008). The 0.02 mg/kg unrestricted (and industrial) soil screening level applied in this assessment is the MTCA Method A soil cleanup level, which is based on leaching to protect groundwater used for drinking water. Groundwater in the fill is not a practicable drinking water source, and the most stringent groundwater screening level for methylene chloride applied in this assessment is 94 μ g/L, based on vapor intrusion (Table 2), approximately 18 times higher than the 5 μ g/L drinking water criterion. Methylene chloride has not been detected in Upland Area groundwater. The lone detection of methylene chloride in soil at GF-B-12 is above the soil screening level applied in this assessment, but is not a constituent of concern for the Upland Area based on the collective data to date.

Lead was detected at a concentration (659 mg/kg) above the unrestricted soil screening level, but below the industrial screening level in the 1- to 2.5-foot sample from boring GF-B-11. The deeper 7.5- to 9-foot sample from the boring contained 15 mg/kg lead.

Dioxins/furans (TCDD (TEQ)) were detected at a concentration above the 1.1 x 10⁻⁵ mg/kg unrestricted soil screening level in one of the 15 General Fill borings: 1.48 x 10⁻⁵ mg/kg at GF-B-5. The detected dioxins/furans concentrations in the General Fill borings, including the GF-B-5 exceedance, are representative of urban background soil concentrations, as discussed in Section 3.16.

Data Gaps and Proposed Round 3 Assessment for General Fill Soil The proposed Round 3 data collection for this area includes the following (Figure 19):

- GF-B-9 area: To refine characterization of the diesel contamination observed below the water table at GF-B-9, drill and sample soil from three soil borings (GF9-B-1, GF9-B-2, and, GF9-MW-1) around GF-B-9. Collect soil samples at depths of 4 to 5 feet below grade, at the water table depth observed during drilling, and 3 to 4 feet below the water table, unless otherwise indicated by field screening during drilling. Analyze the soil samples for diesel-/oil-range TPH and PAHs. Complete GF9-MW-1 as a monitoring well, and collect a groundwater sample from it for analysis of diesel-/oil-range TPH, low-level PAHs, and TSS; and
- GF-B-11 area: To refine characterization of the lead contamination observed in shallow soil at GF-B-11, drill and sample soil from three soil borings (GF11-B-1, GF11-B-2, and, GF11-B-3) around GF-B-11. Collect soil samples at depths of 0 to 1 foot, 2 to 3 feet, and 4 to 5 feet. Analyze the soil samples for lead. A soil sample will also be collected from the 7- to 8-foot depth and archived for later analysis if warranted based on the shallower soil results.

We recommend that oil-range petroleum detected at the GF-B-14 location be addressed as part of the opportunistic interim action recommended for REC 2 (Section 3.3). Therefore, no Round 3 assessment is proposed for that location.

3.21 Groundwater Quality along Upgradient Edge of Property

Metals concentrations in groundwater along the upgradient (eastern) edge of the Upland Area were measured to assess background groundwater quality in the fill. The wells are also available for assessing background concentrations of other analytes if useful for comparison, based on data collected.

Round 2 Data Collection

The Round 2 data collection for this area included:

• Installed and collected groundwater samples from monitoring wells UG-MW-1 and UG-MW-2 along the upgradient edge of the Upland Area (Figure 1), for analyses of priority pollutant metals and TSS. The groundwater sample from well UG-MW-1 was also analyzed for total priority pollutant metals.

There was no field screening evidence of petroleum contamination during drilling of the two monitoring wells; therefore no analyses for petroleum-related constituents were conducted in accordance with the Work Plan.

Assessment Findings

Detected dissolved and total metals concentrations in the upgradient wells were below respective groundwater screening levels. Chromium, nickel and zinc were detected in the samples at maximum concentrations of $1.05~\mu g/L$, $5.04~\mu g/L$, and $5.03~\mu g/L$, respectively (Table 19). Groundwater at well UG-MW-1 to the north was more oxygen-rich (dissolved oxygen [DO] of 3.9~m g/L and positive ORP) than groundwater at UG-MW-2 (0.3~m g/L DO and slightly negative ORP).

Proposed Round 3 Assessment

The proposed Round 3 data collection for this area includes the following:

Conduct the dry-season groundwater sampling and analysis event for wells UG-MW-1 and UG-MW-2, repeating the Round 2 sampling and analyses as outlined in the Work Plan (Aspect, 2012).

4 Hydrogeologic Data Collection and Results

4.1 Data Collection

4.1.1 Site-Wide Water Level Measurements

Two sets of concurrent depth-to-water measurements were collected from Upland Area monitoring wells. A "low" tide set of groundwater measurements was collected on July 3, 2012, shortly after a lower low tide of approximately -5 feet. A "high" tide set of measurements was collected on July 6, 2012, shortly after a higher high tide of approximately 10 feet. The Upland Area wells were professionally surveyed to a common datum (NAVD88 vertical datum) by David Evans and Associates on July 6, 2012. Table 20 presents the monitoring well tops of casing elevations and two sets of manual water level measurements.

4.1.2 Tidal Study

Between July 3 and 6, 2012, a period of large tidal fluctuations (maximum of approximately 15.4 feet), a 72-hour tidal study was conducted to evaluate effects of tidal fluctuations on nearshore groundwater levels, and thus flow directions, throughout the tidal cycle. The tidal study involved collecting continuous water level measurements throughout a 72-hour period at twelve upland monitoring wells: shoreline wells REC7-MW-1, REC7-MW-2, MW-6, UST70-MW2, REC7-MW-3, and REC7-MW-4 where tidal fluctuations are greatest, and inland wells NRP-MW-4, UST69-MW-1, AP-MW-1, REC5-MW-1, UST68-MW-1, and UST-68-MW-5 where tidal fluctuations are muted. The manual water level measurements confirm only minor water level fluctuations in wells within the eastern portion of the Upland Area (Table 20)¹³.

Each of the wells was equipped with a downhole pressure transducer/data logger to allow automated collection of water level data at 5-minute intervals. A data logger was also installed at a standpipe placed in the Waterway to directly record tidal fluctuations (Tidal Station TM-1, shown in Figures 21, 22, and 23). A barometric pressure data logger was also installed on site to allow the water level data to be corrected for changes in atmospheric pressure throughout the study. Manual depth-to-water measurements were collected at each monitoring well during the installation and the retrieval of the pressure transducer/data loggers. These data are used to convert the transducer readings to groundwater elevation.

The tidal data were analyzed using the method of Serfes (1991) to derive a 72- hour tidally-averaged groundwater elevation for the study period for each monitoring location. The data were used to assess the net (tidally averaged) groundwater flow direction and

¹³ Well HW-MW-1 shows a large fluctuation between the low-tide and high-tide manual measurements. However, the change is attributable to the effects of prior groundwater sampling, and not representative of normal conditions. The HW-MW-1 well is screened in low permeability silt. It was sampled on July 2 and 3, 2012, to collect a suitable sample volume, and the sampling drew down the water level essentially to the well bottom. As such, the July 3 low tide groundwater elevation is biased low since the well was still recovering from prior groundwater sampling.

hydraulic gradients. The tidal study data will also be assessed for usability in estimating hydraulic conductivity by the methods of Ferris (1963).

4.2 Groundwater Flow Directions

Groundwater flow directions across the tidal cycle are depicted on the water table elevation contour maps developed for low tide, high tide, and tidal-average conditions (Figures 21, 22, and 23, respectively). Because changes in groundwater levels lag behind the tidal changes, the water table elevation contours represent "snapshots" of times when groundwater levels, not the tide, were, on average, at minimum, midpoint, or maximum levels. Flow directions in upland areas in the eastern portion of the site remain relatively constant throughout the tidal cycle, and shoreline wells exhibit short term flow direction changes and/or reversals in response to tidal extremes.

4.2.1 Low Tide Groundwater Flow Directions

At low tide (Figure 21), groundwater flows generally west towards the East Waterway, perpendicular to the long dimension of the property. Hydraulic gradients within the eastern half of the property are relatively low (0.03 to 0.009 ft/ft), and relatively higher within 200 ft of the shoreline (0.06 to 0.1 ft/ft). Two slight groundwater divides are present at low tide (1): an east-west trending divide in the central portion of the Site near the Wood Chip storage area, and (2) a second east-west trending divide in the southern portion of the property near the Acid Plant and the Boiler/Baghouse area. At extreme low tides, groundwater elevations within 50 feet of the shoreline remain 8 to 12 feet above the tide.

4.2.2 High Tide Groundwater Flow Directions

At high tide (Figure 22), the tide level in the East Waterway rises more rapidly than does the water table within the Upland Area, temporarily causing flow from the East Waterway into the nearshore portion of the fill (saline intrusion). Upgradient groundwater in the eastern portion of the Upland Area remains westward during high tide. A "trough" of stagnant groundwater is present for several hours surrounding tidal lows along the shoreline. The "trough" of stagnant groundwater is approximately 50 feet wide in the northern portion of the Site near REC7-MW-1, NRP-MW-3, MW-5, and NRP-MW-2; and becomes wider in the southern portion of the Site near MW-6, UST70-MW-1, UST70-MW-2, REC3-MW-1, UST68-MW-2, and UST68-MW-5. The slight groundwater divides present at low tide are also present at high tide. At extreme high tides, groundwater elevations within 50 feet of the shoreline remain 0.2 to 2 feet below the tide.

4.2.3 Tidal-Averaged Net Groundwater Flow Directions

Figure 23 provides the water table elevation contour map based on mean groundwater elevations calculated using data from the 72-hour tidal monitoring period (July 3 through 6, 2012). While nearshore groundwater flow directions reverse diurnally with the tide, contouring of the mean groundwater elevations from a synchronous time period provides a picture of the net groundwater flow condition. In other words, although tidal fluctuations cause short-term reversals in hydraulic gradients and thus groundwater flow directions (Figure 22), the net (tidally averaged) groundwater flow directions within the Upland Area are as depicted in Figure 23, demonstrating the expected net discharge to the East Waterway.

ASPECT CONSULTING

To prepare Figure 23, the tidally averaged groundwater elevations were calculated from the tidal monitoring station and twelve wells instrumented during the tidal study (Section 4.1.2) and, for the remaining 22 wells, were calculated by averaging their respective low tide and high tide manual water level measurements. On Figure 23, the groundwater elevation data from the instrumented wells are displayed in blue, and data from the manual measurements are display in gray. Our interpreted groundwater elevation contours relied more heavily on the instrumented well data.

The map of tidally averaged groundwater conditions confirms the general flow patterns seen at high and low tide, but without the inland flow component observed at high tide only. The northern and southern groundwater divides present at high and low tide are also present in the tidally-averaged groundwater elevation data, and the hydraulic gradients in the eastern portion of the Site are consistent with the high and low tide snapshots. Tidally averaged groundwater elevations within 50 feet of the shoreline remain approximately 1.5 to 4 feet above the tide.

5 References

- AMEC, 2012, Excavation Report, ExxonMobil/ADC Property, Ecology Site ID 2728, Everett, Washington, June 29, 2012.
- Aspect, 2012, Work Plan for Independent Phase 2 Environmental Site Assessment, Kimberly-Clark Mill Uplands, Everett, Washington, May 21, 2012.
- BEK McDonnell Engineering, 1999, Report Underground Storage Tank Removal Site Check/Site Assessment, Kimberly Clark Corporation Mill Site, UST ID #5351, November 23, 1999.
- CITGO, 2006, No. 6 Fuel Oil Material Safety Data Sheet, February 16, 2006.
- CRETE Consulting, 2011, Soil Characterization Sand Filter 1 Foundation Excavation, January 14, 2011.
- Ecology, 2011, Urban Seattle Area Soil Dioxin and PAH Concentrations, Initial Summary Report, September 2011, Prepared for Ecology by Hart Crowser Inc., Ecology publication no. 11-09-049.
- Ecology and Environment, 2002, The Oeser Company Superfund Site Remedial Investigation Report, Bellingham, Washington, TDD: 01-03-0015, June 2002.
- Foster Wheeler, 1998, Independent Remedial Action Closure Report, Old Naval Reserve Center, Everett, Washington, December 16, 1998.
- Landau Associates, 1989, Report of Xylene Release, Scott Paper Company, Everett, Washington, December 6, 1989.
- Landau Associates, 1991, Soil and Groundwater Investigation, Former Underground Petroleum Storage Tanks, Everett Pulp and Paper Mill, Everett, Washington, April 18, 1991.
- Landau Associates, 1992, Results of 8-Hour Startup Test and First Month of Operation, Xylene Vapor Extraction System, Scott Paper Company, Everett, Washington, April 1, 1992.
- Landau Associates, 1994, Former Tank No. 29 Compliance Monitoring Investigation, Scott Paper Company, Everett, Washington, August 16, 1994.
- National Oceanographic and Atmospheric Administration (NOAA), 2006, No. 6 Fuel Oil (Bunker C) Spills, November 2006.
- Pacific Environmental Group, Inc. (PEG), 1998, Environmental Investigation Report, Former Bulk Fuel Facilities, 2600 Federal Avenue, Everett, Washington, April 14, 1998.
- Scott Paper, 1989, Internal Memorandum regarding Removal of UST No. 69, December 6, 1989.

ASPECT CONSULTING

- Scott Paper, 1990, Letter from Ann Bailey to Don Nelson (Ecology) summarizing the treatment of xylene-contaminated wastewater from UST 29, January 31, 1990.
- Scott Paper, 1991, Letter from Richard Abrams to Don Nelson (Ecology) describing remediation approach for UST 29, June 25, 2991.
- Scott Paper, 1994, Internal memorandum regarding Site Cleanup Actions, August 3, 1994.
- US Environmental Protection Agency (EPA), 2008, USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Method Data Review, USEPA-540-R-08-01, June 2008.
- Washington State Department of Ecology (Ecology), 1994, Natural Background Soil Metals Concentrations in Washington State, Ecology Publication No. 94-115, October.
- Washington State Department of Ecology (Ecology), 2009, Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action, Ecology Publication No. 09-09-047, October 2009.
- Washington State Department of Ecology (Ecology), 2011, Urban Seattle Area Soil Dioxin and PAH Concentrations, Initial Summary Report, Publication No. 11-09-049, September 2011.
- Washington State Department of Ecology (Ecology), 2012, Kimberly-Clark Pulp and Paper Mill Draft Work Plan for Environmental Assessment. Letter to Steve Germiat, Aspect, from Andy Kallus, Ecology, April 27, 2012.

K-C Worldwide Site Upland Area 110207

				APPLICABLE GROUND	WATER CRITERIA					
				e Water Criteria						
ANALYTE (BY GROUP)	Surface Water ARAR - Aquatic Life - Marine Ch. 173-201A WAC	Surface Water ARAR - Aquatic Life - Marine - Clean Water Act §304	Surface Water ARAR - Aquatic Life - Marine - National Toxics Rule, 40 CFR 131	Surface Water ARAR - Human Health — Marine — Clean Water Act §304	Surface Water ARAR - Human Health – Marine – National Toxics Rule, 40 CFR 131	Surface Water, Method B, Most- Restrictive, Standard Formula ^{a,b}	Tier 1 Vapor Intrusion Groundwater Screening Level for Unrestricted + Method A for TPH ⁶	State Background Groundwater Concentration	Most St Ground	•
7.10 IE 7 IE (B7 G110 G7)	(ma-wac)	(ma-cwa)	(ma-ntr)	(hh-cwa)	(hh-ntr)	(sw-b)	(vi-b)	(back)	Screenin	
Total Petroleum Hydrocarbons (TPH)	(ma-wac)	(ma-cwa)	(ma-ntr)	(IIII-cwa)	(IIII-IICI)	(3W-D)	(VI-D)	(Such)	Screenii	ig Level
Gasoline Range Hydrocarbons ^e in ug/L	l	I	I		I	I	800		800	(vi-b)
Diesel Range Hydrocarbons in ug/L							500		500	(vi-b)
Oil Range Hydrocarbons in ug/L							500		500	(vi-b)
										1
Total TPH ^f in ug/L							500		500	(vi-b)
Metals				1	1000	1000			1	T
Antimony ug/L				640	4300	1000			640	(hh-cwa)
Arsenic ^g in ug/L	36	36	36	0.14	0.14	0.098		5	5	(back)
Beryllium ug/L						270			270	(sw-b)
Cadmium in ug/L	9.3	8.8	9.3			41			8.8	(ma-cwa
Chromium (III) in ug/L						240000			240000	(sw-b)
Chromium (VI) in ug/L	50	50	50			490			50	(ma-wac
Chromium (Total) in ug/L										
Copper in ug/L	3.1	3.1	2.4			2900			2.4	(ma-ntr)
Lead in ug/L	8.1	8.1	8.1						8.1	(ma-wac,
Mercury in ug/L		0.94			0.15		0.89		0.15	(hh-ntr)
Nickel in ug/L	8.2	8.2	8.2	4600	4600	1100			8.2	(ma-wac
Selenium in ug/L	71	71	71	4200		2700	*		71	(ma-wac
Silver in ug/L	1.9	1.9	1.9			26000			1.9	(ma-wac
Thallium ug/L				0.47	6.3				0.47	(hh-cwa)
Zinc in ug/L	81	81	81	26000		17000			81	(ma-wac
Conventional Chemistry Parameters									_	
Ammonia in mg/L	0.035								0.035	(ma-wac
Formaldehyde ^h in ug/L									1600	footnote h
Sulfide in ug/L										
olatile Organic Compounds (VOCs)										
1,1,1,2-Tetrachloroethane in ug/L							7.4		7.4	(vi-b)
1,1,1-Trichloroethane in ug/L						930000	11000		11000	(vi-b)
1,1,2 - Trichlorotrifluoroethane in ug/L							1100		1100	(vi-b)
1,1,2,2-Tetrachloroethane in ug/L				4	11	6.5	6.2		4	(hh-cwa)
1,1,2-Trichloroethane in ug/L				16	42	25	7.9		7.9	(vi-b)
1,1-Dichloroethane in ug/L							2300		2300	(vi-b)
1,1-Dichloroethene in ug/L				7100	3.2	23000	130		3.2	(hh-ntr)
1,1-Dichloropropene in ug/L										
1,2,3-Trichlorobenzene in ug/L										
1,2,3-Trichloropropane in ug/L										
1,2,4-Trichlorobenzene in ug/L				70		2	3900		2	(sw-b)
1,2,4-Trimethylbenzene in ug/L							24		24	(vi-b)
1,2-Dibromo-3-chloropropane in ug/L										

Aspect Consulting

				APPLICABLE GROUNDY	VATER CRITERIA					
				Water Criteria						
							Tier 1 Vapor			
					Surface Water ARAR -		Intrusion			
			Surface Water ARAR -	Curfoso Motor ADAD	Human Health –	Surface Water,	Groundwater	State		
	Surface Water ARAR -	Surface Water ARAR -	Aquatic Life - Marine	Human Health –	Marine – National	Method B, Most-	Screening Level for	Background		
	Aquatic Life - Marine	Aquatic Life - Marine	National Toxics Rule,	Marine – Clean	Toxics Rule, 40 CFR	Restrictive, Standard	-	Groundwater	Most St	ringont
ANALYTE (BY GROUP)	Ch. 173-201A WAC	Clean Water Act §304	40 CFR 131	Water Act §304	131	Formula ^{a,b}	Method A for TPH ^c	Concentration	Ground	_
1,2-Dibromoethane (EDB) in ug/L	CII. 175 201A WAC	Cicali Water Act 3504	40 CI N 151	Water Act 3304	151	Torritala	0.74	Concentration	0.74	(vi-b)
1,2-Dishornoethane (EDB) in ug/L				1300	17000	4200	1800		1300	(hh-cwa)
1,2-Dichloroethane (EDC) in ug/L				37	99	59				(vi-b)
` , , ,				15	99	59	4.2 28		4.2 15	
1,2-Dichloropropane in ug/L				15			_			(hh-cwa)
1,3,5-Trimethylbenzene in ug/L				0.00	2500		25		25	(vi-b)
1,3-Dichlorobenzene in ug/L				960	2600				960	(hh-cwa)
1,3-Dichloropropane in ug/L										
1,4-Dichloro-2-Butene in ug/L										
1,4-Dichlorobenzene in ug/L				190	2600		7900		190	(hh-cwa)
2,2-Dichloropropane in ug/L										
2-Butanone in ug/L							350000		350000	(vi-b)
2-Chloroethyl Vinyl Ether in ug/L										
2-Chlorotoluene in ug/L										
2-Hexanone in ug/L										
4-Chlorotoluene in ug/L										
4-Methyl-2-pentanone in ug/L							11000		11000	(vi-b)
Acetone in ug/L										
Acrolein in ug/L				290	780		2.9		2.9	(vi-b)
Acrylonitrile in ug/L				0.25	0.66	0.4	16		0.25	(hh-cwa)
Benzene in ug/L				51	71	23	2.4		2.4	(vi-b)
bis(2-chloroisopropyl)ether ug/L				65000	170000				65000	(hh-cwa)
Bromobenzene in ug/L										
Bromochloromethane in ug/L										
Bromodichloromethane in ug/L				17	22	28	0.09		0.09	(vi-b)
Bromoethane in ug/L							0.00			, ,
Bromoform in ug/L				140	360	220	200		140	(hh-cwa)
Bromomethane in ug/L				1500	4000	970	13		13	(vi-b)
Carbon disulfide in ug/L				1500	4000	370	400		400	(vi-b)
Carbon tetrachloride in ug/L				1.6	4.4	4.9	0.22		0.22	(vi-b)
Chlorobenzene in ug/L				1600	21000	5000	100		100	(vi-b)
Chloroethane in ug/L				1000	21000	3000	12		12	(vi-b)
Chloroform in ug/L				470	470	6900	1.2		1.2	(vi-b)
<u>.</u>				4/0	4/0	0900			5.2	
Chloromethane in ug/L							5.2 160		160	(vi-b) (vi-b)
cis-1,2-Dichloroethene (DCE) in ug/L							160		160	(VI-D)
cis-1,3-Dichloropropene in ug/L				42	24	24	0.22		0.22	
Dibromochloromethane in ug/L				13	34	21	0.22		0.22	(vi-b)
Dibromomethane in ug/L										
Dichlorodifluoromethane in ug/L							9.9		9.9	(vi-b)
Ethylbenzene in ug/L				2100	29000	6900	2800		2100	(hh-cwa)
Hexachlorobutadiene in ug/L				18	50	30	0.81		0.81	(vi-b)
Isopropylbenzene in ug/L	<u> </u>						720		720	(vi-b)

	APPLICABLE GROUNDWATER CRITERIA											
			Marine Surface	e Water Criteria								
							Tier 1 Vapor					
					Surface Water ARAR -		Intrusion					
			Surface Water ARAR -	Surface Water ARAR -	Human Health –	Surface Water,	Groundwater	State				
	Surface Water ARAR -	Surface Water ARAR -	Aquatic Life - Marine	Human Health –	Marine – National	Method B, Most-	Screening Level for	Background				
		Aquatic Life - Marine	National Toxics Rule,	Marine – Clean	Toxics Rule, 40 CFR	Restrictive, Standard	_	Groundwater	Most St	ringent		
ANALYTE (BY GROUP)	· ·	Clean Water Act §304		Water Act §304	131	Formula ^{a,b}	Method A for TPH ^c	Concentration	Ground	-		
m,p-Xylenes in ug/L							310		310	(vi-b)		
o-Xylene in ug/L							440		440	(vi-b)		
Xylenes (total) in ug/L							310		310	(vi-b)		
Methylene chloride in ug/L				590	1600	960	94		94	(vi-b)		
Methyl-Tert-Butyl Ether ug/L							610		610	(vi-b)		
Methyliodide in ug/L												
n-Butylbenzene in ug/L												
n-Propylbenzene in ug/L												
p-Isopropyltoluene in ug/L												
Pyridine in ug/L												
sec-Butylbenzene in ug/L												
Styrene in ug/L							78		78	(vi-b)		
tert-Butylbenzene in ug/L												
Tetrachloroethene (PCE) in ug/L				3.3	8.9	0.39	1		0.39	(sw-b)		
Toluene in ug/L				15000	200000	19000	15000		15000	(hh-cwa)		
trans-1,2-Dichloroethene in ug/L				10000		33000	130		130	(vi-b)		
trans-1,3-Dichloropropene in ug/L												
Trichloroethene (TCE) in ug/L				30	81	6.7	0.42		0.42	(vi-b)		
Trichlorofluoromethane in ug/L							120		120	(vi-b)		
Vinyl acetate in ug/L							7800		7800	(vi-b)		
Vinyl chloride in ug/L				2.4	530	3.7	0.35		0.35	(vi-b)		
Polycyclic Aromatic Hydrocarbons (PA	(Hs)											
Acenaphthene in ug/L				990		640			640	(sw-b)		
Acenaphthylene in ug/L										1		
Anthracene in ug/L				40000	110000	26000			26000	(sw-b)		
Benzo(g,h,i)perylene in ug/L										, ,		
Fluoranthene in ug/L				140	370	90			90	(sw-b)		
Fluorene in ug/L				5300	14000	3500			3500	(sw-b)		
Phenanthrene in ug/L												
Pyrene in ug/L				4000	11000	2600			2600	(sw-b)		
1-Methylnaphthalene in ug/L												
2-Methylnaphthalene in ug/L												
Naphthalene in ug/L						4900	170		170	(vi-b)		
Total Naphthalenes in ug/L												
Benz(a)anthracene in ug/L				0.018	0.031	0.3			0.018	(hh-cwa)		
Benzo(a)pyrene in ug/L				0.018	0.031	0.03			0.018	(hh-cwa)		
Benzo(b)fluoranthene in ug/L				0.018	0.031	0.3			0.018	(hh-cwa)		
Benzo(k)fluoranthene in ug/L				0.018	0.031	3			0.018	(hh-cwa)		
Chrysene in ug/L				0.018	0.031	30			0.018	(hh-cwa)		
Dibenzo(a,h)anthracene in ug/L				0.018	0.031	0.03			0.018	(hh-cwa)		
Indeno(1,2,3-cd)pyrene in ug/L				0.018	0.031	0.3			0.018	(hh-cwa)		

				APPLICABLE GROUND	WATER CRITERIA					
				e Water Criteria						
		Surface Water ARAR - Aquatic Life - Marine	Surface Water ARAR - Aquatic Life - Marine National Toxics Rule,		Surface Water ARAR - Human Health – Marine – National Toxics Rule, 40 CFR	Surface Water, Method B, Most- Restrictive, Standard	Tier 1 Vapor Intrusion Groundwater Screening Level for Unrestricted +	State Background Groundwater	Most St	tringent
NALYTE (BY GROUP)	·	Clean Water Act §304	40 CFR 131	Water Act §304	-	Formula ^{a,b}	Method A for TPH ^c	Concentration		dwater
Total cPAHs TEQ in ug/L	CII. 1/3-201A WAC	Clean Water Act 9304	40 CFR 131	0.018	131 0.031	0.03	Wethou A for IPH	Concentration	0.018	(hh-cwa)
ther Semi-Volatile Organics				0.018	0.031	0.03			0.018	(IIII-CWU)
1,2,4-Trichlorobenzene in ug/L				70		2	3900		2	(sw-b)
1,2-Dichlorobenzene in ug/L				1300	17000	4200	1800		1300	(hh-cwa)
1,3-Dichlorobenzene in ug/L				960	2600	4200	1800		960	(hh-cwa)
1,4-Dichlorobenzene in ug/L				190	2600		7900		190	(hh-cwa)
				190	2000		7900		190	(IIII-CWU)
2,3,4,6-Tetrachlorophenol ug/L				2000					2000	(lala access)
2,4,5-Trichlorophenol in ug/L				3600 2.4	6.5	3.9			3600 2.4	(hh-cwa)
2,4,6-Trichlorophenol in ug/L					790					
2,4-Dichlorophenol in ug/L				290	790	190			190	(sw-b)
2,4-Dimethylphenol in ug/L				850		550			550	(sw-b)
2,6-Dichlorophenol ug/L				5000	11000	2500			2722	
2,4-Dinitrophenol in ug/L				5300	14000	3500			3500	(sw-b)
2-Chloronaphthalene in ug/L				1600		1000			1000	(sw-b)
2-Chlorophenol in ug/L						97			97	(sw-b)
2-Methylphenol in ug/L										
2-Nitroaniline in ug/L										
2-Nitrophenol in ug/L										
3,3'-Dichlorobenzidine in ug/L				0.028	0.077	0.046			0.028	(hh-cwa)
3-Nitroaniline in ug/L										
4,6-Dinitro-2-methylphenol in ug/L										
4-Bromophenyl phenyl ether in ug/L										
4-Chloro-3-methylphenol in ug/L										
4-Chloroaniline in ug/L										
4-Chlorophenyl phenyl ether in ug/L										
4-Methylphenol in ug/L										
4-Nitroaniline in ug/L										
4-Nitrophenol in ug/L										
Aniline ug/L										
Azobenzene ug/L										
Benzoic acid in ug/L										
Benzyl alcohol in ug/L										
Benzyl butyl phthalate in ug/L				1900		8.2			8.2	(sw-b)
Bis(2-chloro-1-methylethyl) ether in ug/L						37			37	(sw-b)
Bis(2-chloroethoxy)methane in ug/L										
Bis(2-chloroethyl) ether in ug/L				0.53	1.4	0.85	26		0.53	(hh-cwa)
Bis(2-ethylhexyl) phthalate in ug/L				2.2	5.9	3.6			2.2	(hh-cwa)
Carbazole in ug/L										T
Dibenzofuran in ug/L										
Diethyl phthalate in ug/L				44000	120000	28000			28000	(sw-b)
Dimethyl phthalate in ug/L				1100000	2900000				1100000	

				APPLICABLE GROUND	VATER CRITERIA					
			Marine Surface	e Water Criteria						
		Surface Water ARAR - Aquatic Life - Marine -	•		Surface Water ARAR - Human Health – Marine – National Toxics Rule, 40 CFR	Surface Water, Method B, Most- Restrictive, Standard	Tier 1 Vapor Intrusion Groundwater Screening Level for Unrestricted +	State Background Groundwater	Most Str	ringent
ANALYTE (BY GROUP)	'	Clean Water Act §304	· ·	Water Act §304	131	Formula ^{a,b}	Method A for TPH ^c	Concentration	Ground	Ü
Di-n-butyl phthalate in ug/L	G 175 2017 W.Y.C	Great Water Net 350 :	10 01 11 101	4500	12000	2900			2900	(sw-b)
Di-n-octyl phthalate in ug/L										, ,
Hexachlorobenzene in ug/L				0.00029	0.00077	0.00047			0.00029	(hh-cwa)
Hexachlorobutadiene in ug/L				18	50	30	0.81		0.81	(vi-b)
Hexachlorocyclopentadiene in ug/L				1100	17000	3600			1100	(hh-cwa)
Hexachloroethane in ug/L				3.3	8.9	5.3	8.6		3.3	(hh-cwa)
Isophorone in ug/L				960	600	1600			600	(hh-ntr)
m,p-Cresol in ug/L										
Nitrobenzene in ug/L				690	1900	1800	690		690	(hh-cwa)
N-Nitroso-di-n-propylamine in ug/L				0.51		0.82			0.51	(hh-cwa)
N-Nitrosodiethanolamine ug/L										
N-Nitrosodimethylamine ug/L				3	8.1	4.9			3	(hh-cwa)
N-Nitrosodiphenylamine in ug/L				6	16	9.7			6	(hh-cwa)
Pentachlorophenol in ug/L	7.9	7.9	7.9	3	8.2	1.5			1.5	(sw-b)
Phenol in ug/L				1700000	4600000	560000			560000	(sw-b)
Retene ug/L										
trans-1,4-Dichloro-2-butene ug/L										
2,4-Dinitrotoluene in ug/L				3.4	9.1	1400			3.4	(hh-cwa)
2,6-Dinitrotoluene in ug/L										

- a) Values from Ecology's CLARC Database; except as noted.
- b) Method B values are most restrictive of carcinogenic or non-carcinogenic values presented in Ecology's CLARC database.
- c) Vapor intrusion screening levels from Table B-1 (Appendix B) of Ecology's Guidance for Evaluation of Soil Vapor Intrusion (Ecology, 2009). Method A values for TPH mixtures assume potable groundwater use, but are used in absence of other criteria.
- d) Most stringent of values protective of marine surface water and vapor intrusion, not less than background.
- e) For gasoline-range TPH, the displayed Method A value assumes benzene is present; the value is 100 mg/kg if benzene is not present and sum of BTEX
- f) Total TPH = sum of diesel- and oil-range hydrocarbon concentrations, in accordance with MTCA.
- g) For arsenic, the Method A groundwater cleanup level, based on state-wide background, is retained as the screening level (WAC 173-340-900 Table 720-1).
- h) For formaldehyde, screening level is based on protection of aquatic life (Anchor Environmental, 2008).
- i) Analytical practical quantitation limits (PQLs) are not considered in this tabulation of screening levels, but may be a factor in defining cleanup levels.

	Un	restricted Land (Use	Industrial Land Use					
					Soil, Method C,				
	Soil, Method A,	Soil, Method B,	Most Restrictive	Soil, Method A,	Most Restrictive	Most Restrictive			
	Unrestricted	Standard	Unrestricted Soil	Industrial Land	Standard	Industrial Soil			
***************************************	Land Use, Table	Formula Value	Screening Level	Use, Table Value		Screening Level			
ANALYTE (BY GROUP) Total Petroleum Hydrocarbons (TPH)	Value (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
	20		1 20 I	20		20			
Gasoline Range Hydrocarbons ^c	30		30	30		30			
Diesel Range Hydrocarbons Oil Range Hydrocarbons	2000 2000		2000	2000		2000 2000			
Total TPH ^d	2000		2000	2000		2000			
Metals	2000		2000	2000		2000			
Antimony									
Arsenic ^e	20	0.67	20	20	88	20			
Beryllium	20	0.07	20	20	00	20			
Cadmium	2		2	2		2			
Chromium (III)	2000		2000	2000		2000			
Chromium (VI)	19		19	19		19			
Chromium (Total)	13		15	15		13			
Copper									
Lead	250		250	1000		1000			
Mercury	2		2	2		2			
Nickel									
Selenium									
Silver									
Thallium									
Zinc									
Volatile Organic Compounds									
1,1,1,2-Tetrachloroethane		38	38		5000	5000			
1,1,1-Trichloroethane	2		2	2		2			
1,1,2 - Trichlorotrifluoroethane									
1,1,2,2-Tetrachloroethane		5	5		660	660			
1,1,2-Trichloroethane		18	18		2300	2300			
1,1-Dichloroethane									
1,1-Dichloroethene									
1,1-Dichloropropene 1,2,3-Trichlorobenzene									
1,2,3-Trichloropenzene		0.033	0.033		4.4	4.4			
1,2,4-Trichlorobenzene		35	35		4500	4500			
1,2,4-Trimethylbenzene		33	33		4300	4300			
1,2-Dibromo-3-chloropropane		1.3	1.3		160	160			
1,2-Dibromoethane (EDB)	0.005	0.5	0.005	0.005	66	0.005			
1,2-Dichlorobenzene	0.000		5.000	0,000		0.000			
1,2-Dichloroethane (EDC)		11	11		1400	1400			
1,2-Dichloropropane									
1,3,5-Trimethylbenzene									
1,3-Dichlorobenzene									
1,3-Dichloropropane									
1,4-Dichloro-2-Butene									
1,4-Dichlorobenzene									
2,2-Dichloropropane									
2-Butanone									
2-Chloroethyl Vinyl Ether									
2-Chlorotoluene									
2-Hexanone									
4-Chlorotoluene									
4-Methyl-2-pentanone									
Acroloin									
Acrolein	<u> </u>								

	Un	restricted Land	Use		Industrial Land Use					
				ľ		Soil, Method C,				
	Soil, Method A,	Soil, Method B,	Most Restrictive		Soil, Method A,		Most Restrictive			
	Unrestricted	Standard	Unrestricted Soil		Industrial Land	Standard	Industrial Soil			
	Land Use, Table	Formula Value	Screening Level		Use, Table Value	Formula Value	Screening Level			
ANALYTE (BY GROUP)	Value (mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)			
Acrylonitrile		1.9	1.9			240	240			
Benzene	0.03	18	0.03		0.03	2400	0.03			
bis(2-chloroisopropyl)ether										
Bromobenzene										
Bromochloromethane										
Bromodichloromethane		16	16			2100	2100			
Bromoethane										
Bromoform		130	130	Ī		17000	17000			
Bromomethane										
Carbon disulfide				ľ						
Carbon tetrachloride		14	14			1900	1900			
Chlorobenzene				ľ						
Chloroethane				Ī						
Chloroform				ľ						
Chloromethane										
cis-1,2-Dichloroethene (DCE)										
cis-1,3-Dichloropropene										
Dibromochloromethane		12	12	ľ		1600	1600			
Dibromomethane										
Dichlorodifluoromethane				ľ						
Ethylbenzene	6		6		6		6			
Hexachlorobutadiene		13	13	ľ		1700	1700			
Isopropylbenzene										
m,p-Xylenes		16000	16000			700000	700000			
o-Xylene		16000	16000			700000	700000			
Xylenes (total)	9		9		9		9			
Methylene chloride	0.02	130	0.02		0.02	18000	0.02			
Methyl-Tert-Butyl Ether	0.1		0.1	ľ	0.1		0.1			
Methyliodide	3.2			ŀ						
n-Butylbenzene				ŀ						
n-Propylbenzene				ı						
p-Isopropyltoluene				ŀ						
Pyridine				ŀ						
sec-Butylbenzene				ŀ						
Styrene				ŀ						
tert-Butylbenzene				ŀ						
Tetrachloroethene (PCE)	0.05	1.9	0.05	ŀ	0.05	240	0.05			
Toluene	7	2.5	7	ŀ	7	_ 10	7			
trans-1,2-Dichloroethene			,	ŀ	,		,			
trans-1,3-Dichloropropene				ŀ						
Trichloroethene (TCE)	0.03	11	0.03	ŀ	0.03	1500	0.03			
Trichlorofluoromethane	0.03	11	0.03	-	0.03	1300	0.03			
Vinyl acetate				ŀ						
Vinyl chloride		0.67	0.67	ŀ		88	88			
Naphthalene	5	0.07	5	ŀ	5	00	5			
Ιναρπιπαιεπε	J		J	L	J		3			

	Un	restricted Land	Use	Industrial Land Use					
					Soil, Method C,	I			
	Soil, Method A,	Soil, Method B,	Most Restrictive	Soil, Method A,	Most Restrictive	Most Restrictiv			
	Unrestricted	Standard	Unrestricted Soil	Industrial Land	Standard	Industrial Soi			
	Land Use, Table	Formula Value	Screening Level	Use, Table Value	Formula Value	Screening Leve			
NALYTE (BY GROUP)	Value (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
olycyclic Aromatic Hydrocarbons					<u> </u>				
Acenaphthene	(171115)		Т						
Acenaphthylene									
Anthracene									
Benzo(g,h,i)perylene									
Fluoranthene									
Fluorene									
Phenanthrene									
Pyrene									
1-Methylnaphthalene		35	35		4500	4500			
2-Methylnaphthalene						1000			
Naphthalene	5		5	5		5			
Total Naphthalenes				J		,			
Benz(a)anthracene		1.4	1.4		180	180			
Benzo(a)pyrene ^f	0.1	0.14	0.14	2	18	2			
	0.1								
Benzo(b)fluoranthene		1.4	1.4		180	180			
Benzo(k)fluoranthene		14	14		1800	1800			
Chrysene		140	140		18000	18000			
Dibenzo(a,h)anthracene		0.14	0.14		18	18			
Indeno(1,2,3-cd)pyrene	0.1	1.4	1.4		180	180			
Total cPAHs TEQ	0.1	0.14	0.14	2	18	2			
ther Semi-Volatile Organics		25		1	4500	4700			
1,2,4-Trichlorobenzene		35	35		4500	4500			
1,2-Dichlorobenzene									
1,3-Dichlorobenzene									
1,4-Dichlorobenzene									
2,3,4,6-Tetrachlorophenol									
2,4,5-Trichlorophenol		01	01		12000	12000			
2,4,6-Trichlorophenol 2,4-Dichlorophenol		91	91		12000	12000			
2,4-Dimethylphenol									
2,6-Dichlorophenol									
2,4-Dinitrophenol									
2-Chloronaphthalene									
2-Chlorophenol									
2-Methylphenol									
2-Nitroaniline									
2-Nitrophenol		2.2			200	200			
3,3'-Dichlorobenzidine		2.2	2.2		290	290			
3-Nitroaniline									
4,6-Dinitro-2-methylphenol			 						
4-Bromophenyl phenyl ether									
4-Chloro-3-methylphenol		-	_		660	666			
4-Chloroaniline		5	5		660	660			
4-Chlorophenyl phenyl ether									
4-Methylphenol									
4-Nitroaniline									
4-Nitrophenol						_			
Aniline		180	180		23000	23000			
Azobenzene		9.1	9.1		1200	1200			
Benzoic acid									
Benzyl alcohol									
Benzyl butyl phthalate		530	530		69000	69000			
Bis(2-chloro-1-methylethyl) ether		14	14		1900	1900			

	Un	restricted Land	Use	Industrial Land Use					
ANALYTE (BY GROUP)	Soil, Method A, Unrestricted Land Use, Table Value (mg/kg)	Soil, Method B, Standard Formula Value (mg/kg)	Most Restrictive Unrestricted Soil Screening Level (mg/kg)	Soil, Method A, Industrial Land Use, Table Value (mg/kg)	Standard	Most Restrictive Industrial Soil Screening Level (mg/kg)			
Bis(2-chloroethoxy)methane									
Bis(2-chloroethyl) ether		0.91	0.91		120	120			
Bis(2-ethylhexyl) phthalate		71	71		9400	9400			
Carbazole									
Dibenzofuran									
Diethyl phthalate									
Dimethyl phthalate									
Di-n-butyl phthalate									
Di-n-octyl phthalate									
Hexachlorobenzene		0.63	0.63		82	82			
Hexachlorobutadiene		13	13		1700	1700			
Hexachlorocyclopentadiene									
Hexachloroethane		71	71		9400	9400			
Isophorone		1100	1100		140000	140000			
m,p-Cresol									
Nitrobenzene									
N-Nitroso-di-n-propylamine		0.14	0.14		19	19			
N-Nitrosodiethanolamine		0.36	0.36		47	47			
N-Nitrosodimethylamine		0.02	0.02		2.6	2.6			
N-Nitrosodiphenylamine		200	200		27000	27000			
Pentachlorophenol		2.5	2.5		330	330			
Phenol									
Retene									
trans-1,4-Dichloro-2-butene									
2,4-Dinitrotoluene									
2,6-Dinitrotoluene									
Polychlorinated Biphenyls (PCBs)									
Aroclor 1016		14	14		1900	1900			
Aroclor 1221									
Aroclor 1232									
Aroclor 1242									
Aroclor 1248									
Aroclor 1254		0.5	0.5		66	66			
Aroclor 1260		0.5	0.5		66	66			
Aroclor 1262									
Aroclor 1268									
Total PCBs	1	0.5	0.5	10	66	10			

K-C Worldwide Site Upland Area 110207

	Uni	restricted Land (Use	Industrial Land Use					
ANALYTE (BY GROUP)	Soil, Method A, Unrestricted Land Use, Table Value (mg/kg)	Soil, Method B, Standard Formula Value (mg/kg)	Most Restrictive Unrestricted Soil Screening Level (mg/kg)	Soil, Method A, Industrial Land Use, Table Value (mg/kg)	Standard	Most Restrictive Industrial Soil Screening Level (mg/kg)			
Dioxins/Furans									
2,3,7,8-TCDD		1.1E-05	1.1E-05		1.5E-03	1.5E-03			
1,2,3,7,8-PeCDD									
1,2,3,4,7,8-HxCDD									
1,2,3,6,7,8-HxCDD									
1,2,3,7,8,9-HxCDD		1.6E-04	1.6E-04		2.1E-02	2.1E-02			
1,2,3,4,6,7,8-HpCDD									
OCDD									
2,3,7,8-TCDF									
1,2,3,7,8-PeCDF									
2,3,4,7,8-PeCDF									
1,2,3,4,7,8-HxCDF									
1,2,3,6,7,8-HxCDF									
1,2,3,7,8,9-HxCDF									
2,3,4,6,7,8-HxCDF									
1,2,3,4,6,7,8-HpCDF									
1,2,3,4,7,8,9-HpCDF									
OCDF									
Total 2,3,7,8 TCDD (TEQ)		1.1E-05	1.1E-05	_	1.5E-03	1.5E-03			

Notes:

- a) Values from Ecology's CLARC Database; except as noted.
- b) Method B and C values are most restrictive of carcinogenic or non-carcinogenic values presented in Ecology's CLARC database.
- c) For gasoline-range TPH, the displayed Method A value assumes benzene is present; the value is 100 mg/kg if benzene is not present and sum of BTEX concentrations is less than 1% of the TPH concentration. This is an area-specific determination.
- d) Total TPH = sum of diesel- and oil-range hydrocarbon concentrations, in accordance with MTCA.
- e) For arsenic, the Method B cleanup level is below background concentrations, thus the Method A unrestricted soil cleanup level, based on background, is retained as the unrestricted screening level.
- f) For benzo(a)pyrene, the Method A unrestricted soil cleanup level is the Method B cleanup level rounded to one significant digit. Therefore, the Method B value is retained as the unrestricted screening level.
- g) Analytical practical quantitation limits (PQLs) are not considered in this tabulation of screening levels, but may be a factor in defining cleanup levels.

K-C Worldwide Site Upland Area 110207

			1		1	1			1								1		
	Unrestricted Soil	Industrial Soil	DP-01	DP-01	DP-02	DP-02	DP-03	DP-03	DP-04	DP-04	DP-05	DP-05	DP-06	DP-06	DP-08	DP-08	DP-10	DP-10	DP-11
	Screening Level	Screening Level	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/14/2012	2/15/2012
Chemical Name	(mg/kg)	(mg/kg)	(2.5-3 ft.)	(5.5-6 ft.)	(1.5-2.5 ft.)	(6-7 ft.)	(4-5 ft.)	(6-7 ft.)	(1-2 ft.)	(9-10 ft.)	(7-8 ft.)	(13-14 ft.)	(3-4 ft.)	(7-8 ft.)	(6-7 ft.)	(12-13 ft.)	(3-4 ft.)	(9-10 ft.)	(8.5-9.5 ft.)
Total Petroleum Hydrocarbons																			
Gasoline Range Hydrocarbons in mg/kg	100	100	2 U	2 U	2 U	2 U	46	2 U	2 U	2 U	21	2 U	2 U	2 U	2 U	7	2 U	2 U	J 2 U
Diesel Range Hydrocarbons in mg/kg	2,000	2,000	7,400	50 U	50 U	50 U	21,000	50 U	50 U	50 U	250	50 U	50 U	50 U	78	50 U	50 U	50 U	J 50 U
Oil Range Hydrocarbons in mg/kg	2,000	2,000	9,000	250 U	250 U	250 U	10,000	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	J 250 U
Total TPH in mg/kg	2,000	2,000	16,400	ND	ND	ND	31,000	ND	ND	ND	375	ND	ND	ND	203	ND	ND	ND	ND
Metals		•				•						•	•			•		•	
Lead in mg/kg	250	1,000					2.37												
Polycyclic Aromatic Hydrocarbons (PAHs)							-											-	
Acenaphthene in mg/kg			3.1	0.01 U			7	0.01 U											
Acenaphthylene in mg/kg			2 U	0.01 U			2 U	0.01 U											
Anthracene in mg/kg			5.2	0.01 U			8.7	0.01 U											
Benzo(g,h,i)perylene in mg/kg			3.2	0.01 U			2.2	0.01 U											
Fluoranthene in mg/kg			3.1	0.01 U			2.7	0.01 U											
Fluorene in mg/kg			4.3	0.01 U			8.5	0.01 U											
Phenanthrene in mg/kg			13	0.035			32	0.01 U											
Pyrene in mg/kg			23	0.02			17	0.01 U											
Naphthalene in mg/kg	5	5	2 U	0.01 U			2 U	0.01 U											
Benz(a)anthracene in mg/kg	1.4	180	8.6	0.012			8.8	0.01 U											
Benzo(a)pyrene in mg/kg	0.14	0.14	5.7	0.01 U			4.7	0.01 U											
Benzo(b)fluoranthene in mg/kg	1.4	180	2	0.01 U			2 U	0.01 U											
Benzo(k)fluoranthene in mg/kg	14	1,800	2 U	0.01 U			2 U	0.01 U											
Chrysene in mg/kg	140	18,000	17	0.022			14	0.01 U											
Dibenzo(a,h)anthracene in mg/kg	0.14	18	2 U	0.01 U			2 U	0.01 U											
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180	2 U	0.01 U			2 U	0.01 U											
Total cPAHs TEQ in mg/kg	0.14	2	7.23	0.00842			6.12	ND											
Volatile Organic Compounds			-	_			-	_											
1,2-Dibromoethane (EDB) in mg/kg	0.005	0.005					0.05 U												
1,2-Dichloroethane (EDC) in mg/kg	11	1,400					0.05 U												
Benzene in mg/kg	0.03	0.03	0.02 U	0.02 U	0.02 U	0.02 U	0.055	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Diisopropyl ether (DIPE) in mg/kg							0.05 U												
Ethanol in mg/kg							50 U												
Ethyl t-butyl ether (ETBE) in mg/kg							0.05 U												
Ethylbenzene in mg/kg	6	6	0.02 U	0.02 U	0.02 U	0.02 U	0.52	0.02 U	0.02 U	0.02 U	0.11	0.02 U	0.02 U	0.02 U	0.02 U	0.084	0.02 U	0.02 U	0.02 U
Methyl-Tert-Butyl Ether in mg/kg	0.1	0.1					0.05 U												
t-Amyl methyl ether (TAME) in mg/kg							0.05 U												
t-Butyl alcohol (TBA) in mg/kg							2.5 U												
Toluene in mg/kg	7	7	0.02 U	0.02 U	0.02 U	0.02 U	0.1	0.02 U	0.02 U	0.02 U	0.03	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Xylenes (total) in mg/kg	9	9	0.06 U	0.06 U	0.06 U	0.06 U	1.5	0.06 U	0.06 U	0.06 U	0.26	0.06 U	0.06 U	0.06 U	0.06 U	0.072	0.06 U	0.06 U	0.06 U

Notes

Concentrations in shaded cells exceed unrestricted soil screening leve Concentrations within bold border exceed industrial soil screening level

- J Analyte was positively identified. The reported result is an estimate
- U Analyte was not detected at or above the reported result
- UJ Analyte was not detected at or above the reported estimate

K-C Worldwide Site Upland Area 110207

Г	1		1					1											
	Unrestricted Soil	Industrial Soil	DP-11	DP-12	DP-12	DP-13	DP-13	MW-01	MW-01	MW-02	MW-02	MW-03	MW-03	MW-04	MW-04	REC2-B-01	REC2-B-01	REC2-B-01	REC2-B-02
	Screening Level	Screening Level	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/14/2012	2/14/2012	6/28/2012	6/28/2012	6/28/2012	6/28/2012
Chemical Name	(mg/kg)	(mg/kg)	(14-15 ft.)	(6.5-7.5 ft.)	(9-10 ft.)	(3-4 ft.)	(12-13 ft.)	(3-4 ft.)	(6.5-7.5 ft.)	(3-4 ft.)	(9-10 ft.)	(7.5-8.5 ft.)	(13-14 ft.)	(4-5 ft.)	(7-8 ft.)	(3.5-4.5 ft.)	(5.5-6.5 ft.)	(7.5-8.5 ft.)	(3-4 ft.)
Total Petroleum Hydrocarbons			•																
Gasoline Range Hydrocarbons in mg/kg	100	100	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	4.9	2 U	2 U				
Diesel Range Hydrocarbons in mg/kg	2,000	2,000	50 U	50 U	50 U	67	50 U	120	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Oil Range Hydrocarbons in mg/kg	2,000	2,000	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U
Total TPH in mg/kg	2,000	2,000	ND	ND	ND	192	ND	245	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals	•	•						•	•		•	•		•	•	•	•		
Lead in mg/kg	250	1,000																	
Polycyclic Aromatic Hydrocarbons (PAHs)																			
Acenaphthene in mg/kg																0.01 U	0.01 U	0.01 U	0.01 U
Acenaphthylene in mg/kg																0.01 U	0.01 U	0.01 U	0.01 U
Anthracene in mg/kg																0.01 U	0.01 U	0.01 U	0.01 U
Benzo(g,h,i)perylene in mg/kg																0.01 U	0.01 U	0.01 U	0.01 U
Fluoranthene in mg/kg																0.01 U	0.01 U	0.01 U	0.01 U
Fluorene in mg/kg																0.01 U	0.01 U	0.01 U	0.01 U
Phenanthrene in mg/kg																0.01 U	0.01 U	0.01 U	0.01 U
Pyrene in mg/kg																0.01 U	0.01 U	0.01 U	0.01 U
Naphthalene in mg/kg	5	5														0.01 U	0.01 U	0.01 U	0.01 U
Benz(a)anthracene in mg/kg	1.4	180														0.01 U	0.01 U	0.01 U	0.01 U
Benzo(a)pyrene in mg/kg	0.14	0.14														0.01 U	0.01 U	0.01 U	0.01 U
Benzo(b)fluoranthene in mg/kg	1.4	180														0.01 U	0.01 U	0.01 U	0.01 U
Benzo(k)fluoranthene in mg/kg	14	1,800														0.01 U	0.01 U	0.01 U	0.01 U
Chrysene in mg/kg	140	18,000														0.01 U	0.01 U	0.01 U	0.01 U
Dibenzo(a,h)anthracene in mg/kg	0.14	18														0.01 U	0.01 U	0.01 U	0.01 U
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180														0.01 U	0.01 U	0.01 U	0.01 U
Total cPAHs TEQ in mg/kg	0.14	2														ND	ND	ND	ND
Volatile Organic Compounds	_			•				T						•	•	•			
1,2-Dibromoethane (EDB) in mg/kg	0.005	0.005																	
1,2-Dichloroethane (EDC) in mg/kg	11	1,400																	
Benzene in mg/kg	0.03	0.03	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U				
Diisopropyl ether (DIPE) in mg/kg																			
Ethanol in mg/kg																			
Ethyl t-butyl ether (ETBE) in mg/kg																			
Ethylbenzene in mg/kg	6	6	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.042	0.02 U	0.02 U		ļI		
Methyl-Tert-Butyl Ether in mg/kg	0.1	0.1																	
t-Amyl methyl ether (TAME) in mg/kg																			
t-Butyl alcohol (TBA) in mg/kg				6.55								0.00						!	
Toluene in mg/kg	7	7	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U				\vdash
Xylenes (total) in mg/kg	9	9	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U				1

Notes

Concentrations in shaded cells exceed unrestricted soil screening leve Concentrations within bold border exceed industrial soil screening level

- J Analyte was positively identified. The reported result is an estimate
- U Analyte was not detected at or above the reported result
- UJ Analyte was not detected at or above the reported estimate

K-C Worldwide Site Upland Area 110207

To Worldwide Site Spiana / trea 11	1						1	T			ı			T	1		_		
	Unrestricted Soil	Industrial Soil	REC2-B-02	REC2-B-02	REC2-B-03	REC2-B-03	REC2-B-03	REC2-B-04	REC2-B-04	REC2-B-04	REC2-B-05	REC2-B-05	REC2-B-06	REC2-B-06	REC2-B-06	REC2-B-07	REC2-B-07	REC2-B-08	REC2-B-08
	Screening Level	Screening Level	6/28/2012	6/28/2012	6/28/2012	6/28/2012	6/28/2012	5/23/2012	5/23/2012	5/23/2012	5/24/2012	5/24/2012	6/28/2012	6/28/2012	6/28/2012	5/23/2012	5/23/2012	5/23/2012	5/23/2012
Chemical Name	(mg/kg)	(mg/kg)	(4.5-5.5 ft.)	(6.5-7.5 ft.)	(4-5 ft.)	(5.5-6.5 ft.)	(7.5-8.5 ft.)	(1.5-2.5 ft.)	(4-5 ft.)	(6.5-7.5 ft.)	(2-3 ft.)	(7-8 ft.)	(4.5-5.5 ft.)	(6.5-7.5 ft.)	(8.5-9.5 ft.)	(4-5 ft.)	(6.5-7.5 ft.)	(4-5 ft.)	(10-11 ft.)
Total Petroleum Hydrocarbons							•	-						-	-				
Gasoline Range Hydrocarbons in mg/kg	100	100																ſ '	
Diesel Range Hydrocarbons in mg/kg	2,000	2,000	50 U	50 U	50 U	50 U	50 U	2,900	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	2,300	50 U
Oil Range Hydrocarbons in mg/kg	2,000	2,000	250 U	250 U	250 U	250 U	250 U	5,700	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	3,100	250 U
Total TPH in mg/kg	2,000	2,000	ND	ND	ND	ND	ND	8,600	ND	ND	ND	ND	ND	ND	ND	ND	ND	5,400	ND
Metals	-						•							•	•		•		
Lead in mg/kg	250	1,000																í '	
Polycyclic Aromatic Hydrocarbons (PAHs)																			
Acenaphthene in mg/kg			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.5 U	0.01 U	0.01 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.63	0.01
Acenaphthylene in mg/kg			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.5 U	0.01 U	0.01 U	0.33	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U
Anthracene in mg/kg			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.73	0.01 U	0.01 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.86	0.01 U
Benzo(g,h,i)perylene in mg/kg			0.01 U	0.01 U	0.016	0.01 U	0.01 U	0.59	0.01 U	0.01 U	0.45	0.01 U	0.01 U	0.01 U	0.023	0.01 U	0.01 U	0.58	0.01 U
Fluoranthene in mg/kg			0.01 U	0.01 U	0.036	0.01 U	0.01 U	0.55	0.01 U	0.01 U	0.1 U	0.01 U	0.01 U	0.01 U	0.049	0.01 U	0.01 U	0.59	0.01 U
Fluorene in mg/kg			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.73	0.01 U	0.01 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.93	0.01 U
Phenanthrene in mg/kg			0.01 U	0.01 U	0.019	0.01 U	0.01 U	1.1	0.01 U	0.01 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	3.5	0.01 U
Pyrene in mg/kg			0.01 U	0.01 U	0.039	0.01 U	0.01 U	2.9	0.01	0.01 U	0.18	0.01 U	0.01 U	0.016	0.1	0.01 U	0.01 U	4	0.01 U
Naphthalene in mg/kg	5	5	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.5 U	0.01 U	0.01 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U
Benz(a)anthracene in mg/kg	1.4	180	0.01 U	0.01 U	0.02	0.01 U	0.01 U	0.74	0.01 U	0.01 U	0.22	0.01 U	0.01 U	0.012	0.061	0.01 U	0.01 U	2.1	0.01 U
Benzo(a)pyrene in mg/kg	0.14	0.14	0.01 U	0.01 U	0.02	0.01 U	0.01 U	0.65	0.01 U	0.01 U	0.62	0.01 U	0.01 U	0.01 U	0.044	0.01 U	0.01 U	1.1	0.01 U
Benzo(b)fluoranthene in mg/kg	1.4	180	0.01 U	0.01 U	0.026	0.01 U	0.01 U	0.5 U	0.01 U	0.01 U	0.55	0.01 U	0.01 U	0.01	0.049	0.01 U	0.01 U	0.45	0.01 U
Benzo(k)fluoranthene in mg/kg	14	1,800	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.5 U	0.01 U	0.01 U	0.16	0.01 U	0.01 U	0.01 U	0.014	0.01 U	0.01 U	0.076	0.01 U
Chrysene in mg/kg	140	18,000	0.01 U	0.01 U	0.02	0.01 U	0.01 U	1.4	0.01 U	0.01 U	0.41	0.01 U	0.01 U	0.013	0.087	0.01 U	0.01 U	2.5	0.01 U
Dibenzo(a,h)anthracene in mg/kg	0.14	18	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.5 U	0.01 U	0.01 U	0.13	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180	0.01 U	0.01 U	0.018	0.01 U	0.01 U	0.5 U	0.01 U	0.01 U	0.42	0.01 U	0.01 U	0.01 U	0.024	0.01 U	0.01 U	0.24	0.01 U
Total cPAHs TEQ in mg/kg	0.14	2	ND	ND	0.0276	ND	ND	0.838	ND	ND	0.772	ND	ND	0.00883	0.0602	ND	ND	1.41	ND
Volatile Organic Compounds							-	•						•	•				
1,2-Dibromoethane (EDB) in mg/kg	0.005	0.005																'	
1,2-Dichloroethane (EDC) in mg/kg	11	1,400																<u> </u>	
Benzene in mg/kg	0.03	0.03																<u> </u>	
Diisopropyl ether (DIPE) in mg/kg																		<u> </u>	
Ethanol in mg/kg																		<u>'</u>	
Ethyl t-butyl ether (ETBE) in mg/kg																		<u>'</u>	
Ethylbenzene in mg/kg	6	6																 '	
Methyl-Tert-Butyl Ether in mg/kg	0.1	0.1																 '	<u> </u>
t-Amyl methyl ether (TAME) in mg/kg																		 '	
t-Butyl alcohol (TBA) in mg/kg	_																	 '	<u> </u>
Toluene in mg/kg	7	7																 '	
Xylenes (total) in mg/kg	9	9					<u> </u>											']

Notes

Concentrations in shaded cells exceed unrestricted soil screening leve Concentrations within bold border exceed industrial soil screening level

J - Analyte was positively identified. The reported result is an estimate

U - Analyte was not detected at or above the reported result

UJ - Analyte was not detected at or above the reported estimate

Page 3 of 4

K-C Worldwide Site Upland Area 110207

TO Worldwide One Opidia Area 1	1					Ī	ī		1		ı		Ī			1	1	
	Unrestricted Soil	Industrial Soil	REC2-B-09	REC2-B-09	REC2-B-09	REC2-B-10	REC2-B-10	REC2-B-10 FD	REC2-B-10	REC2-B-11	REC2-B-11	REC2-B-11	REC2-B-12	REC2-B-12	REC2-B-12	REC2-MW-05	REC2-MW-05	REC2-MW-05
	Screening Level	Screening Level	5/24/2012	5/24/2012	5/24/2012	6/28/2012	6/28/2012	6/28/2012	6/28/2012	5/24/2012	5/24/2012	5/24/2012	5/23/2012	5/23/2012	5/23/2012	5/29/2012	5/29/2012	5/29/2012
Chemical Name	(mg/kg)	(mg/kg)	(2-6 ft.)	(6-7 ft.)	(7.5-8.5 ft.)	(3.5-4.5 ft.)	(5.5-6.5 ft.)	(5.5-6.5 f	(8.5-9.5 ft.)	(3-4 ft.)	(7.5-8.5 ft.)	(11-12 ft.)	(5-6 ft.)	(8-9 ft.)	(17-18 ft.)	(0-2 ft.)	(2.5-3.5 ft	(7-8 ft.)
Total Petroleum Hydrocarbons																		-
Gasoline Range Hydrocarbons in mg/kg	100	100																
Diesel Range Hydrocarbons in mg/kg	2,000	2,000	12,000	1,200	50 U	10,000	990	540	50 U	110	290	50 U	2,500	24,000	50 U	930	50 U	J 50 U
Oil Range Hydrocarbons in mg/kg	2,000	2,000	6,800	1,300	250 U	19,000	3,100	1,800	250 U	250 U	250 U	250 U	2,800	15,000	250 U	4,100	250 U	J 250 U
Total TPH in mg/kg	2,000	2,000	18,800	2,500	ND	29,000	4,090	2,340	ND	235	415	ND	5,300	39,000	ND	5,030	ND	ND
Metals	•	•								•								
Lead in mg/kg	250	1,000																
Polycyclic Aromatic Hydrocarbons (PAHs)						•	•	•	•	•			•	•		•	•	
Acenaphthene in mg/kg			15	0.13	0.01 U	0.5 UJ	0.1 U	0.1 UJ	0.01 U	0.59	0.01 U	0.01 U	0.57	9.6	0.01 U	0.042	0.01 U	0.022
Acenaphthylene in mg/kg			0.5 U	0.05 U	0.01 U	0.5 UJ	0.1 U	0.1 UJ	0.01 U	0.1 U	0.01 U	0.01 U	0.05 U	1 U	0.01 U	0.44	0.01 U	0.01 U
Anthracene in mg/kg			10	0.05 U	0.01 U	0.5 UJ	0.1 U	0.1 UJ	0.01 U	0.44	0.01 U	0.01 U	0.67	12	0.01 U	0.39	0.01 U	0.01 U
Benzo(g,h,i)perylene in mg/kg			3	0.068	0.01 U	0.81 J	0.54	0.41 J	0.01 U	0.55	0.01 U	0.01 U	0.32	2.4	0.01 U	1.7 J	0.01 U	0.01 U
Fluoranthene in mg/kg			4.6	0.19	0.01 U	0.5 UJ	0.1 U	0.1 UJ	0.01 U	1.7	0.01 U	0.01 U	0.23	2.8	0.01 U	0.43	0.01 U	0.01 U
Fluorene in mg/kg			17	0.076	0.01 U	0.5 UJ	0.1 U	0.1 UJ	0.01 U	0.97	0.013	0.01 U	0.8	13	0.01 U	0.058	0.01 U	0.01 U
Phenanthrene in mg/kg			61	0.12	0.01 U	0.5 UJ	0.1 U	0.1 UJ	0.01 U	3.5	0.01 U	0.01 U	2	43	0.024	0.29	0.01 U	0.01 U
Pyrene in mg/kg			23	0.29	0.01 U	3.0 J	0.14	0.27 J	0.01 U	2.4	0.01 U	0.01 U	1.5	18	0.012	1.3	0.01 U	0.01 U
Naphthalene in mg/kg	5	5	6.8	0.05 U	0.01 U	0.5 U	0.1 U	0.1 U	0.01 U	0.1 U	0.01 U	0.01 U	0.05 U	1 U	0.01 U	0.18	0.01 U	0.01 U
Benz(a)anthracene in mg/kg	1.4	180	16	0.11	0.01 U	0.5 UJ	0.1 U	0.1 UJ	0.01 U	0.86	0.01 U	0.01 U	0.8	9.6	0.01 U	0.29	0.01 U	0.01 U
Benzo(a)pyrene in mg/kg	0.14	0.14	7.2	0.075	0.01 U	1.0 J	0.26	0.26 J	0.01 U	0.79	0.01 U	0.01 U	0.41	4.5	0.01 U	1.3	0.01 U	0.01 U
Benzo(b)fluoranthene in mg/kg	1.4	180	3.1	0.078	0.01 U	0.55 J	0.1 U	0.11 J	0.01 U	0.77	0.01 U	0.01 U	0.17	1.6	0.01 U	1.3	0.01 U	0.01 U
Benzo(k)fluoranthene in mg/kg	14	1,800	0.43	0.05 U	0.01 U	0.5 UJ	0.1 U	0.1 UJ	0.01 U	0.23	0.01 U	0.01 U	0.05 U	1 U	0.01 U	0.01 U	0.01 U	0.01 U
Chrysene in mg/kg	140	18,000	18	0.18	0.01 U	1.2 J	0.31	0.21 J	0.01 U	1.3	0.01 U	0.01 U	1.1	13	0.01 U	0.55	0.01 U	0.01 U
Dibenzo(a,h)anthracene in mg/kg	0.14	18	1.3	0.05 U	0.01 U	0.5 UJ	0.1 U	0.1 UJ	0.01 U	0.15	0.01 U	0.01 U	0.05 U	1 U	0.01 U	0.32	0.01 U	0.01 U
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180	1	0.06	0.01 U	0.5 UJ	0.25	0.20 J	0.01 U	0.48	0.01 U	0.01 U	0.13	1 U	0.01 U	1.8 J	0.01 U	0.01 U
Total cPAHs TEQ in mg/kg	0.14	2	9.56	0.107	ND	1.17 J	0.308	0.308 J	ND	1.05	ND	ND	0.536	5.9	ND	1.68	ND	ND
Volatile Organic Compounds		•	-												_			
1,2-Dibromoethane (EDB) in mg/kg	0.005	0.005																
1,2-Dichloroethane (EDC) in mg/kg	11	1,400																
Benzene in mg/kg	0.03	0.03																
Diisopropyl ether (DIPE) in mg/kg																		
Ethanol in mg/kg																		
Ethyl t-butyl ether (ETBE) in mg/kg																		
Ethylbenzene in mg/kg	6	6																
Methyl-Tert-Butyl Ether in mg/kg	0.1	0.1																
t-Amyl methyl ether (TAME) in mg/kg																		
t-Butyl alcohol (TBA) in mg/kg																		
Toluene in mg/kg	7	7																
Xylenes (total) in mg/kg	9	9																

Notes

Concentrations in shaded cells exceed unrestricted soil screening leve Concentrations within bold border exceed industrial soil screening level

- J Analyte was positively identified. The reported result is an estimate
- U Analyte was not detected at or above the reported result
- UJ Analyte was not detected at or above the reported estimate

Page 4 of 4

Table 3B - Groundwater Quality Data for REC 2 - Former Oil House and Fuel ASTs K-C Worldwide Site Upland Area 110207

Control form Cont		1						1				
Entering tensing expension 1	Chemical Name											REC2-MW-05 6/8/2012
Paralle Personness neight	,											100 U
The control of the	Diesel Range Hydrocarbons in ug/L	500	50 U	50 U	50 U	50 U	80	500	130	150	89	97
Belletic delivation of the content												250 U. 222
Second Continue of Continue	Dissolved Metals	640		4 11		0.50						
Reserved Continue Fig.	. 6											
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5											
Proceedition with	Dissolved Chromium (Total) in ug/L			0.34		1.13						
Description Color			5 U		1 U		1 U		26.8	14.3 J	5.56 J	
The content of the												
Bellever Entries Sept. 927 928 9	Dissolved Selenium in ug/L	71		1 U		1 U						
Test Name Test Te												
Section of the Company		81		8.84		2.31						
Text Design Text	Total Antimony in ug/L											
Total Configuration												
Test Control Control Chemistry Promotions 1	Total Cadmium in ug/L	8.8										
1920 ROCK PROSES 12 12 12 12 12 12 12	Total Copper in ug/L					0.718						
Transference with preference of the preference										23.1	24.3	
Tract Bill Delivery (1)	Total Nickel in ug/L	8.2				13.1						
Total Price Total Control	Total Silver in ug/L	1.9				0.02 U						
Conventional Consists pregramming 1,000												<u> </u>
Total Disconted Section Fungal 22,613 2,771 2,977 2,133	Conventional Chemistry Parameters			0.05								
Tool Supposed Solida energy	Total Dissolved Solids in mg/L	0.035	22,632		4,771		297		2,132			
Processing American Processing (1997)	<u> </u>	<u> </u>	10 U		20		10 11	10 11	170	10 U	12	15
Accomplythmen rough	Polycyclic Aromatic Hydrocarbons (PAHs)	C40						1				
Beneda, Normheren may .	Acenaphthylene in ug/L	640								0.05 U		9.9 0.05 U
Theorems may		26,000										0.05 U
Present trough	Fluoranthene in ug/L		0.1 U	0.05 UJ	0.1 U	0.05 UJ	0.1 U	0.47	0.1	0.05 U	0.05 U	0.05 U
Nanotherwise reg ()		3,500										0.71 0.05 U
Recompliphermanement in right	,											0.05 U 0.05 U
Remoniphisticanethrem in agis, DOISS D. 1. U DOI U U	Benz(a)anthracene in ug/L	0.018	0.1 U	0.01 UJ	0.1 U	0.01 UJ	0.1 U	0.01 U	0.1 U	0.011	0.011	0.01 U
Chrysnels in Light												0.01 U 0.01 U
District Color Program Section Color C	,											0.01 U 0.01 U
Total Carbon Companies	Dibenzo(a,h)anthracene in ug/L	0.018	0.1 U	0.01 UJ	0.1 U	0.01 UJ	0.1 U	0.01 U	0.1 U	0.01 U	0.01 U	0.01 U
1,1,2-Trichtoroberthame in ug/L												0.01 U ND
1,1,2,17-fictionerethaver in ugit		7.4		1 11		1 U		1 1		1 U	1 U	1 U
1,12,17 inchiomentame in wg/L	1,1,1-Trichloroethane in ug/L	11,000		1 U		1 U		1 U		1 U	1 U	1 U
1.1-Dehrbrorenen in ug/L 1.2-Behrbrorenen in ug/L 1.1-Dehrbrorenen in ug/L 1.2-Behrbrorenen in ug/L 1.1-Dehrbrorenen i												1 U 1 U
1.1-Dehrbroropene in ug/L												1 U
1.2.4-Frichloreprepare in ug/L 2 1 U	1,1-Dichloropropene in ug/L	3.2		1 U		1 U		1 U		1 U	1 U	1 U
1.2.4 Frimethyberzeen in ung/L												1 U 1 U
1.2-Dibrome-schloropropane in ug/L												1 U
1.2-Dichloropenzene in ug/L	1,2-Dibromo-3-chloropropane in ug/L			10 U		10 U		10 U		10 U	10 U	10 U
1.2-bicknorpopane in ug/L 15							0.01 0		0.01 U			1 U 1 U
1.3-Firmethylbenzene in ug/L							1 U		1 U			1 U 1 U
1.4-Dichloropropane in ug/L 10	1,3,5-Trimethylbenzene in ug/L	25		1 U		1 U		1 U		1 U	1 U	1 U
1.4-bichloroberzene in ug/L 190		960				1 U	<u> </u>					1 U
2-Butanone in ug/L 2-Chiorotoluene in ug/L 1 0 0 1 10 0 10 0 10 0 10 0 10 0 10 0		190										1 U
2-Hexanone in ug/L	2-Butanone in ug/L	350,000		10 U		10 U		10 U		10 U	10 U	10 U
## A-Methyl-2-pentanone in ug/L	2-Hexanone in ug/L			10 U		10 U		10 U		10 U	10 U	1 U 10 U
Acetone in ug/L	<u>.</u>	11.000										1 U 10 U
Bromobenzene in ug/L	Acetone in ug/L			10 U		10 U		10 U		10 U	10 U	10 U
Bromofrom in ug/L	Bromobenzene in ug/L	2.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.35 U
Bromomethane in ug/L												1 U
Chlorobenzene in ug/L Chlorothane in ug/L Cis-1,2-Dichlorothane in ug/L Cis-1,3-Dichlorothane in ug/L Dibromochloromethane in ug/L Dibromochlo	Bromomethane in ug/L	13		1 U		1 U		1 U		1 U	1 U	1 U
Chloroform in ug/L Chloromethane in ug/L Cis-1,2-Dichloroethene (DCE) in ug/L Cis-1,2-Dichloroethene (DCE) in ug/L Cis-1,3-Dichloropropene in ug/L Dibromochloromethane in ug/L Dibromochlorom	Chlorobenzene in ug/L											1 U
Chloromethane in ug/L cis-1,2-Dichloroperhene (DCE) in ug/L cis-1,3-Dichloropropene in ug/L Dibromochloromethane in ug/L Dibromochlo												1 U 1 U
cis-1,3-Dichloropropene in ug/L 1 U	Chloromethane in ug/L	5.2		10 U		10 U		10 U		10 U	10 U	10 L
Dibromochloromethane in ug/L 0.22 1 U 1		160										1 L 1 L
Dichlorodifluoromethane in ug/L 9.9 1 U	Dibromochloromethane in ug/L	0.22		1 U								1 U
Hexachlorobutadiene in ug/L 0.81 1 U	Dichlorodifluoromethane in ug/L			1 U		1 U		1 UJ		1 U	1 U	1 L
Styrene in ug/L 720			1 U		1 U		1.4		1 U			1 U 1 U
Methyl-Tert-Butyl Ether in ug/L 610 1 U	Isopropylbenzene in ug/L	720		1 U	_	1 U		7.6		1 U	1 U	1 L 5 L
p-Isopropyltoluene in ug/L 1 U 1 </td <td>Methyl-Tert-Butyl Ether in ug/L</td> <td></td> <td></td> <td>1 U</td> <td></td> <td>1 U</td>	Methyl-Tert-Butyl Ether in ug/L			1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U
sec-Butylbenzene in ug/L 1 U 1 U 6.5 1 U 1 U Styrene in ug/L 78 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 1 U 0		1										1 U
	sec-Butylbenzene in ug/L	70		1 U		1 U		6.5		1 U	1 U	1 U
tert-Butylbenzene in ug/L 1 U 1 U 1 U 1 U	tert-Butylbenzene in ug/L			1 U		1 U		1 U		1 U	1 U	1 U
Tetrachloroethene (PCE) in ug/L 0.39 1 U <th< td=""><td></td><td></td><td>1 11</td><td></td><td>1 11</td><td></td><td>6.8</td><td></td><td>1 11</td><td></td><td></td><td>1 U</td></th<>			1 11		1 11		6.8		1 11			1 U

Table 3B - Groundwater Quality Data for REC 2 - Former Oil House and Fuel ASTs

K-C Worldwide Site Upland Area 110207

Chemical Name	Groundwater Screening Level	MW-01 2/17/2012	MW-01 6/6/2012	MW-02 2/17/2012	MW-02 6/6/2012	MW-03 2/17/2012	MW-03 6/5/2012	MW-04 2/17/2012	MW-04 6/8/2012	MW-04 FD 6/8/2012	REC2-MW-0 6/8/2012
trans-1,2-Dichloroethene in ug/L	130		1 U		1 U		1 U		1 U	1 U	1
trans-1,3-Dichloropropene in ug/L			1 U		1 U		1 U		1 U	1 U	1
Trichloroethene (TCE) in ug/L	0.42		1 U		1 U		1 U		1 U	1 U	1
Trichlorofluoromethane in ug/L	120		1 U		1 U		1 U		1 U	1 U	1
Vinyl chloride in ug/L	0.35		0.2 U		0.2 U		0.2 U		0.2 U	0.2 U	0.2
m,p-Xylenes in ug/L	310		2 U		2 U		2 U		2 U	2 U	2
o-Xylene in ug/L	440		1 U		1 U		1 U		1 U	1 U	1
Xylenes (total) in ug/L	310	3 U	ND	3 U	ND	3.2	ND	3 U	ND	ND	ND
Semi-Volatile Organics	-	•		•	•					•	-
1,2,4-Trichlorobenzene in ug/L	2		1 U		1 U						
1,2-Dichlorobenzene in ug/L	1,300		1 U		1 U						
1,3-Dichlorobenzene in ug/L	960		1 U		1 U						
1,4-Dichlorobenzene in ug/L	190		1 U		1 U						
2,4,5-Trichlorophenol in ug/L	3,600		10 U		10 U						
2,4,6-Trichlorophenol in ug/L	2.4		10 U		10 U						
2,4-Dichlorophenol in ug/L	190		10 U		10 U						
2,4-Dimethylphenol in ug/L	550		10 U		10 U						
2,4-Dinitrophenol in ug/L	3,500		30 U		30 U						
2-Chloronaphthalene in ug/L	1,000		1 U		1 U						
2-Chlorophenol in ug/L	97	 	10 U		10 U					†	
2-Methylphenol in ug/L	31	-	10 U		10 U					 	
2-Nitroaniline in ug/L	1		3 U		3 U					 	
2-Nitroaniline in ug/L 2-Nitrophenol in ug/L	1	 	10 U		10 U					 	
3 & 4 Methylphenol in ug/L	1	+	20 U		20 U					 	
	1	 	20 U		20 U					 	
3-Nitroaniline in ug/L	 	 								 	
4,6-Dinitro-2-methylphenol in ug/L	-	 			30 U					 	
4-Bromophenyl phenyl ether in ug/L			1 U		1 U					1	
4-Chloro-3-methylphenol in ug/L	1	 	10 U		10 U					 	
4-Chloroaniline in ug/L	1	ļ	3 U		3 U					1	
4-Chlorophenyl phenyl ether in ug/L			1 U		1 U						
4-Nitroaniline in ug/L			10 U		10 U						
4-Nitrophenol in ug/L			10 U		10 U						
Acenaphthene in ug/L	640		1 U								
Acenaphthylene in ug/L			1 U								
Anthracene in ug/L	26,000		1 U								
Benzo(g,h,i)perylene in ug/L			1 U								
Benzoic acid in ug/L			50 U		50 U						
Benzyl alcohol in ug/L			10 U		10 U						
Benzyl butyl phthalate in ug/L	8.2		1 U		1 U						
Bis(2-chloro-1-methylethyl) ether in ug/L	37		10 U		10 U						
Bis(2-chloroethoxy)methane in ug/L			1 U		1 U						
Bis(2-chloroethyl) ether in ug/L	0.53		10 U		10 U						
Bis(2-ethylhexyl) phthalate in ug/L	2.2		10 U		10 U						
Carbazole in ug/L			1 U		1 U						
Dibenzofuran in ug/L			1 U		1 U						
Diethyl phthalate in ug/L	28,000		1 U		1 U						
Dimethyl phthalate in ug/L	1,100,000		1 U		1 U						
Di-n-butyl phthalate in ug/L	2,900		1 U		1 U						
Di-n-octyl phthalate in ug/L	,		1 U		1 U						
Fluoranthene in ug/L	90		1 U		1 0						
Fluorene in ug/L	3,500	 	1 U							1	
Hexachlorobenzene in ug/L	0.00029		1 U		1 U					 	
Hexachlorobutadiene in ug/L	0.81	 	1 U		1 U					 	1
Hexachlorocyclopentadiene in ug/L	1,100		3 U		3 U					 	
Hexachloroethane in ug/L	3.3		1 U		1 U					 	
Isophorone in ug/L	600		1 U		1 U					 	
Nitrobenzene in ug/L	690	 	1 U		1 U					 	l
N-Nitroso-di-n-propylamine in ug/L	0.51	+	10 U		10 U					1	
N-Nitrosodiphenylamine in ug/L	0.51	 	10 U		10 U					 	
Pentachlorophenol in ug/L	1.5	+	1 U		10 U					1	
Phenanthrene in ug/L	1.5	+	10 U		10 0					 	
	F60 000	 			10 11					 	
Phenol in ug/L	560,000	 			10 U					 	
Pyrene in ug/L	2,600	—	1 U							 	
Benz(a)anthracene in ug/L	0.018	ļ	1 U							 	
Benzo(a)pyrene in ug/L	0.018	ļ	1 U							 	
Benzo(b)fluoranthene in ug/L	0.018		1 U							1	
Benzo(k)fluoranthene in ug/L	0.018	ļļ	1 U							.	
Chrysene in ug/L	0.018	ļ	1 U								
Dibenzo(a,h)anthracene in ug/L	0.018		1 U							ļ	
Indeno(1,2,3-cd)pyrene in ug/L	0.018		1 U								
2,4-Dinitrotoluene in ug/L	3.4		1 U		1 U						
2,6-Dinitrotoluene in ug/L			1 U		1 U						
2-Methylnaphthalene in ug/L			1 U		1 U						
eld Parameters											
Dissolved Oxygen in mg/L		6.31	6.99	6.6	1.44	0.22	0.26	1.4	0.23		0.18
Eh (ORP) in mVolts	ĺ	118	114.1	-102	87.5	-070	-69.1	-302	-54.8		-145.7
pH in pH Units		7.43	7.61	8.85	8.04	7.07	6.52	10.5	10.65	1	7.02
Specific Conductance in us/cm		36,646	19,290	9,109	19,510	6,263	454	2,587	3,635	1	265.7
Temperature in deg C	1	8.3	14.57	10.4	14.67	10.9	13.75	10.9	14.83	1	13.6
		5.5	14.57	10.7	17.07	3.9	13.73	10.5	17.00	1	15.0

 $Concentrations \ in \ shaded \ cells \ exceed \ groundwater \ screening \ level.$

J - Analyte was positively identified. The reported result is an estimate

U - Analyte was not detected at or above the reported result.

Table 4A - Soil Quality Data for REC 3 - Heavy Duty Shop Sump K-C Worldwide Site Upland Area 110207

Chemical Name	Unrestricted Soil Screening Level (mg/kg)	Industrial Soil Screening Level (mg/kg)	REC3-MW-0 6/5/2012 (8.5-9.5 ft.
Total Petroleum Hydrocarbons	(6161	(6/8)	(0.0 0.0 1.0
Diesel Range Hydrocarbons in mg/kg	2,000	2,000	50
Oil Range Hydrocarbons in mg/kg	2,000	2,000	250
Total TPH in mg/kg	2,000	2,000	ND
Metals Lead in mg/kg	250	1,000	14.9
Polycyclic Aromatic Hydrocarbons (PAHs)		1,000	2.113
Acenaphthene in mg/kg			0.01
Acenaphthylene in mg/kg			0.01
Anthracene in mg/kg			0.01
Benzo(g,h,i)perylene in mg/kg			0.01
Fluoranthene in mg/kg Fluorene in mg/kg			0.01
Phenanthrene in mg/kg			0.01
Pyrene in mg/kg			0.01
Naphthalene in mg/kg	5	5	0.01
Benz(a)anthracene in mg/kg	1.4	180	0.01
Benzo(a)pyrene in mg/kg	0.14	0.14	0.01
Benzo(b)fluoranthene in mg/kg Benzo(k)fluoranthene in mg/kg	1.4	180 1,800	0.01
Chrysene in mg/kg	140	18,000	0.01
Dibenzo(a,h)anthracene in mg/kg	0.14	18	0.01
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180	0.01
Total cPAHs TEQ in mg/kg	0.14	2	ND
Volatile Organic Compounds			
1,1,1,2-Tetrachloroethane in mg/kg	38	5,000	0.05
1,1,1-Trichloroethane in mg/kg	2	2 660	0.05
1,1,2,2-Tetrachloroethane in mg/kg 1,1,2-Trichloroethane in mg/kg	5 18	660 2,300	0.05 0.05
1,1-Dichloroethane in mg/kg	10	۷,۵۵۷	0.05
1,1-Dichloroethene in mg/kg	1		0.05
1,1-Dichloropropene in mg/kg			0.05
1,2,3-Trichlorobenzene in mg/kg			0.25
1,2,3-Trichloropropane in mg/kg	0.033	4.4	0.05
1,2,4-Trichlorobenzene in mg/kg	35	4,500	0.25
1,2,4-Trimethylbenzene in mg/kg	1.2	460	0.05
1,2-Dibromo-3-chloropropane in mg/kg	1.3 0.005	160 0.005	0.5 0.05
1,2-Dibromoethane (EDB) in mg/kg 1,2-Dichlorobenzene in mg/kg	0.005	0.005	0.05
1,2-Dichloroethane (EDC) in mg/kg	11	1,400	0.05
1,2-Dichloropropane in mg/kg		_,:::	0.05
1,3,5-Trimethylbenzene in mg/kg			0.05
1,3-Dichlorobenzene in mg/kg			0.05
1,3-Dichloropropane in mg/kg			0.05
1,4-Dichlorobenzene in mg/kg			0.05
2,2-Dichloropropane in mg/kg			0.05 0.5
2-Butanone in mg/kg 2-Chlorotoluene in mg/kg			0.05
2-Hexanone in mg/kg			0.5
4-Chlorotoluene in mg/kg			0.05
4-Methyl-2-pentanone in mg/kg			0.5
Acetone in mg/kg			0.5
Benzene in mg/kg	0.03	0.03	0.03
Bromobenzene in mg/kg Bromodichloromethane in mg/kg	16	2,100	0.05 0.05
Bromoform in mg/kg	130	17,000	0.05
Bromomethane in mg/kg	150	17,000	0.5
Carbon tetrachloride in mg/kg	14	1,900	0.05
Chlorobenzene in mg/kg			0.05
Chloroethane in mg/kg			0.5
Chloroform in mg/kg			0.05
Chloromethane in mg/kg			0.5 0.05
cis-1,2-Dichloroethene (DCE) in mg/kg cis-1,3-Dichloropropene in mg/kg			
Dibromochloromethane in mg/kg	12	1,600	0.05 0.05
Dibromomethane in mg/kg			0.05
Dichlorodifluoromethane in mg/kg			0.5 l
Ethylbenzene in mg/kg	6	6	0.05
Hexachlorobutadiene in mg/kg	13	1,700	0.25
Isopropylbenzene in mg/kg Methylene chloride in mg/kg	0.02	0.02	0.05
Methylene chloride in mg/kg Methyl-Tert-Butyl Ether in mg/kg	0.02	0.02 0.1	0.5 0.05
n-Propylbenzene in mg/kg	0.1	0.1	0.05
p-Isopropyltoluene in mg/kg	1		0.05
sec-Butylbenzene in mg/kg			0.05
Styrene in mg/kg			0.05
tert-Butylbenzene in mg/kg			0.05
Tetrachloroethene (PCE) in mg/kg	0.05	0.05	0.025
Toluene in mg/kg trans-1,2-Dichloroethene in mg/kg	7	7	0.05 0.05
trans-1,2-Dichloropethene in mg/kg	1		0.05
Trichloroethene (TCE) in mg/kg	0.03	0.03	0.03
Trichlorofluoromethane in mg/kg	5.55	2.00	0.5
Vinyl chloride in mg/kg	0.67	88	0.05
m,p-Xylenes in mg/kg	16,000	700,000	0.1
o-Xylene in mg/kg	16,000		0.05
Xylenes (total) in mg/kg	9	9	ND
Polychlorinated Biphenyls (PCBs)	4.4	1 000	0.1
Aroclor 1016 in mg/kg Aroclor 1221 in mg/kg	14	1,900	0.1
Aroclor 1232 in mg/kg Aroclor 1232 in mg/kg	1		0.1
Aroclor 1242 in mg/kg	1		0.1
Aroclor 1248 in mg/kg	1		0.1
Aroclor 1254 in mg/kg	0.5	66	0.1
Aroclor 1260 in mg/kg	0.5	66	0.1
	1	10	ND

Notes

Concentrations in shaded cells exceed unrestricted soil screening level

Concentrations within bold border exceed industrial soil screening level. U - Analyte was not detected at or above the reported result.

UJ - Analyte was not detected at or above the reported estimate

Table 4B - Groundwater Quality Data for REC 3 - Heavy Duty Shop Sump

K-CWorldwide Site Upland Area 110207

Chemical Name Total Petroleum Hydrocarbons Diesel Range Hydrocarbons in ug/L Oil Range Hydrocarbons in ug/L Total TPHs in ug/L Dissolved Metals Dissolved Antimony in ug/L Dissolved Beryllium in ug/L Dissolved Cadmium in ug/L Dissolved Chromium (Total) in ug/L Dissolved Copper in ug/L Dissolved Head in ug/L Dissolved Mercury in ug/L Dissolved Mercury in ug/L Dissolved Selenium in ug/L Dissolved Silver in ug/L Dissolved Silver in ug/L Dissolved Silver in ug/L Dissolved Thallium in ug/L	500 500 500 500 500 500 640 5 270 8.8	SO U 250 UJ ND 1.2 2.22 0.0012 J 0.776 0.09 J
Total Petroleum Hydrocarbons Diesel Range Hydrocarbons in ug/L Oil Range Hydrocarbons in ug/L Total TPHs in ug/L Dissolved Metals Dissolved Antimony in ug/L Dissolved Arsenic in ug/L Dissolved Beryllium in ug/L Dissolved Cadmium in ug/L Dissolved Chromium (Total) in ug/L Dissolved Lead in ug/L Dissolved Mercury in ug/L Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Selenium in ug/L	500 500 500 640 5 270 8.8	50 U 250 UJ ND 1.2 2.22 0.0012 J 0.776
Diesel Range Hydrocarbons in ug/L Oil Range Hydrocarbons in ug/L Total TPHs in ug/L Dissolved Metals Dissolved Antimony in ug/L Dissolved Beryllium in ug/L Dissolved Cadmium in ug/L Dissolved Chromium (Total) in ug/L Dissolved Copper in ug/L Dissolved Head in ug/L Dissolved Head in ug/L Dissolved Selenium in ug/L Dissolved Selenium in ug/L	500 500 640 5 270 8.8	250 UJ ND 1.2 2.22 0.0012 J 0.776
Oil Range Hydrocarbons in ug/L Total TPHs in ug/L Dissolved Metals Dissolved Antimony in ug/L Dissolved Arsenic in ug/L Dissolved Beryllium in ug/L Dissolved Cadmium in ug/L Dissolved Chromium (Total) in ug/L Dissolved Copper in ug/L Dissolved Lead in ug/L Dissolved Mercury in ug/L Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Selenium in ug/L	500 500 640 5 270 8.8	250 UJ ND 1.2 2.22 0.0012 J 0.776
Total TPHs in ug/L Dissolved Metals Dissolved Antimony in ug/L Dissolved Arsenic in ug/L Dissolved Beryllium in ug/L Dissolved Cadmium in ug/L Dissolved Chromium (Total) in ug/L Dissolved Copper in ug/L Dissolved Lead in ug/L Dissolved Mercury in ug/L Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Selenium in ug/L	500 640 5 270 8.8	1.2 2.22 0.0012 J 0.776
Dissolved Metals Dissolved Antimony in ug/L Dissolved Arsenic in ug/L Dissolved Beryllium in ug/L Dissolved Cadmium in ug/L Dissolved Chromium (Total) in ug/L Dissolved Copper in ug/L Dissolved Lead in ug/L Dissolved Mercury in ug/L Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Selenium in ug/L	640 5 270 8.8	1.2 2.22 0.0012 J 0.776
Dissolved Antimony in ug/L Dissolved Arsenic in ug/L Dissolved Beryllium in ug/L Dissolved Cadmium in ug/L Dissolved Chromium (Total) in ug/L Dissolved Copper in ug/L Dissolved Lead in ug/L Dissolved Mercury in ug/L Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Selenium in ug/L	5 270 8.8	2.22 0.0012 J 0.776
Dissolved Arsenic in ug/L Dissolved Beryllium in ug/L Dissolved Cadmium in ug/L Dissolved Chromium (Total) in ug/L Dissolved Copper in ug/L Dissolved Lead in ug/L Dissolved Mercury in ug/L Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Silver in ug/L	5 270 8.8	2.22 0.0012 J 0.776
Dissolved Beryllium in ug/L Dissolved Cadmium in ug/L Dissolved Chromium (Total) in ug/L Dissolved Copper in ug/L Dissolved Lead in ug/L Dissolved Mercury in ug/L Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Silver in ug/L	270 8.8	0.0012 J 0.776
Dissolved Cadmium in ug/L Dissolved Chromium (Total) in ug/L Dissolved Copper in ug/L Dissolved Lead in ug/L Dissolved Mercury in ug/L Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Silver in ug/L	8.8	0.776
Dissolved Chromium (Total) in ug/L Dissolved Copper in ug/L Dissolved Lead in ug/L Dissolved Mercury in ug/L Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Silver in ug/L		
Dissolved Copper in ug/L Dissolved Lead in ug/L Dissolved Mercury in ug/L Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Silver in ug/L	2.4	
Dissolved Lead in ug/L Dissolved Mercury in ug/L Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Silver in ug/L	2.4	0.568
Dissolved Mercury in ug/L Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Silver in ug/L	8.1	0.022
Dissolved Nickel in ug/L Dissolved Selenium in ug/L Dissolved Silver in ug/L	0.15	0.022 0.1 U
Dissolved Selenium in ug/L Dissolved Silver in ug/L	8.2	4.95
Dissolved Silver in ug/L	71	1 U
<u> </u>	1.9	0.02 U
	0.47	0.007 J
Dissolved Zinc in ug/L	81	2.4
Conventional Chemistry Parameters	01	2.4
Total Ammonia as Nitrogen in mg/L	0.035	0.041 J
Dissolved Sulfide in mg/L	0.033	0.05 U
Total Suspended Solids in mg/L		17
Polycyclic Aromatic Hydrocarbons (PAHs)		17
Acenaphthene in ug/L	640	0.05 U
Acenaphthylene in ug/L	0.10	0.05 U
Anthracene in ug/L	26,000	0.05 U
Benzo(g,h,i)perylene in ug/L	20,000	0.05 UJ
Fluoranthene in ug/L	90	0.05 UJ
Fluorene in ug/L	3,500	0.05 U
Phenanthrene in ug/L	-,,,,,	0.05 U
Pyrene in ug/L	2,600	0.05 UJ
Naphthalene in ug/L	170	0.05 U
Benz(a)anthracene in ug/L	0.018	0.01 UJ
Benzo(a)pyrene in ug/L	0.018	0.01 UJ
Benzo(b)fluoranthene in ug/L	0.018	0.01 UJ
Benzo(k)fluoranthene in ug/L	0.018	0.01 UJ
Chrysene in ug/L	0.018	0.01 UJ
Dibenzo(a,h)anthracene in ug/L	0.018	0.01 UJ
Indeno(1,2,3-cd)pyrene in ug/L	0.018	0.01 UJ
Total cPAHs TEQ in ug/L	0.018	ND
Volatile Organic Compounds		<u> </u>
1,1,1,2-Tetrachloroethane in ug/L	7.4	1 U
1,1,1-Trichloroethane in ug/L	11,000	1 U
1,1,2,2-Tetrachloroethane in ug/L	4	1 U
1,1,2-Trichloroethane in ug/L	7.9	1 U
1,1-Dichloroethane in ug/L	2,300	1 U
1,1-Dichloroethene in ug/L	3.2	1 U
1,1-Dichloropropene in ug/L		1 U
1,2,3-Trichlorobenzene in ug/L		1 U
1,2,3-Trichloropropane in ug/L		1 U
1,2,4-Trichlorobenzene in ug/L	2	1 U
1,2,4-Trimethylbenzene in ug/L	24	1 U
1,2-Dibromo-3-chloropropane in ug/L		10 U
1,2-Dibromoethane (EDB) in ug/L	0.74	1 U
1,2-Dichlorobenzene in ug/L	1,300	1 U
1,2-Dichloroethane (EDC) in ug/L	4.2	1 U
1,2-Dichloropropane in ug/L	15	1 U
1,3,5-Trimethylbenzene in ug/L	25	1 U
1,3-Dichlorobenzene in ug/L	960	1 U
1,3-Dichloropropane in ug/L		1 U

Aspect Consulting

8/22/2012

Page 1 of 3

Table 4B - Groundwater Quality Data for REC 3 - Heavy Duty Shop Sump

K-CWorldwide Site Upland Area 110207

Chemical Name	Groundwater Screening Level	REC3-MW-01 6/7/2012
1,4-Dichlorobenzene in ug/L	190	1 U
2,2-Dichloropropane in ug/L		1 U
2-Butanone in ug/L	350,000	10 U
2-Chlorotoluene in ug/L		1 U
2-Hexanone in ug/L		10 U
4-Chlorotoluene in ug/L		1 U
4-Methyl-2-pentanone in ug/L	11,000	10 U
Acetone in ug/L		10 U
Benzene in ug/L	2.4	0.35 L
Bromobenzene in ug/L		1 L
Bromodichloromethane in ug/L	0.09	1 L
Bromoform in ug/L	140	1 U.
Bromomethane in ug/L	13	1 L
Carbon tetrachloride in ug/L	0.22	1 L
Chlorobenzene in ug/L	100	1 L
Chloroethane in ug/L	12	1 L
Chloroform in ug/L	1.2	1 L
Chloromethane in ug/L	5.2	10 U
cis-1,2-Dichloroethene (DCE) in ug/L	160	1 U
cis-1,3-Dichloropropene in ug/L	0.00	1 U
Dibromochloromethane in ug/L	0.22	1 L
Dibromomethane in ug/L		1 U
Dichlorodifluoromethane in ug/L	9.9	1 L
Ethylbenzene in ug/L	2,100	1 U
Hexachlorobutadiene in ug/L	0.81	1 U
Isopropylbenzene in ug/L	720	1 L
Methylene chloride in ug/L	94	5 L
Methyl-Tert-Butyl Ether in ug/L	610	1 L
n-Propylbenzene in ug/L		1 U
p-Isopropyltoluene in ug/L		1 U
sec-Butylbenzene in ug/L	70	1 L
Styrene in ug/L	78	
tert-Butylbenzene in ug/L	0.20	1 L
Tetrachloroethene (PCE) in ug/L	0.39	1 U
Toluene in ug/L	15,000	1 L
trans-1,2-Dichloroethene in ug/L	130	1 L
trans-1,3-Dichloropropene in ug/L	0.42	1 U
Trichloroethene (TCE) in ug/L	0.42	
Trichlorofluoromethane in ug/L	120	1 (
Vinyl chloride in ug/L	0.35	0.2 L
m,p-Xylenes in ug/L	310	2 L
o-Xylene in ug/L	440	1 U
Xylenes (total) in ug/L	310	ND
Semi-Volatile Organics	1 2	1 1
1,2,4-Trichlorobenzene in ug/L	1 200	1 (
1,2-Dichlorobenzene in ug/L	1,300	1 U
1,3-Dichlorobenzene in ug/L	960	1 U
1,4-Dichlorobenzene in ug/L	190	
2,4,5-Trichlorophenol in ug/L	3,600 2.4	
2,4,6-Trichlorophenol in ug/L		10 U
2,4-Directly laboration ug/L	190 550	10 U
2,4-Dimethylphenol in ug/L		
2,4-Dinitrophenol in ug/L	3,500	
2-Chloronaphthalene in ug/L	1,000	
2-Chlorophenol in ug/L	97	10 U
2-Methylphenol in ug/L		10 L 3 L
2-Nitrophonel in ug/L		
2-Nitrophenol in ug/L		10 L 20 L
3 & 4 Methylphenol in ug/L		
3-Nitroaniline in ug/L		3 L

Aspect Consulting

8/22/2012

Page 2 of 3

Table 4B - Groundwater Quality Data for REC 3 - Heavy Duty Shop Sump

K-CWorldwide Site Upland Area 110207

Chemical Name	Groundwater Screening Level	REC3-MW-01 6/7/2012
	Sercerning Lever	
4,6-Dinitro-2-methylphenol in ug/L		30 L 1 L
4-Bromophenyl phenyl ether in ug/L		
4-Chloro-3-methylphenol in ug/L		
4-Chloroaniline in ug/L		3 L
4-Chlorophenyl phenyl ether in ug/L		1 L
4-Nitroaniline in ug/L		10 L
4-Nitrophenol in ug/L		10 U
Benzoic acid in ug/L		50 L
Benzyl alcohol in ug/L		10 L
Benzyl butyl phthalate in ug/L	8.2	1 L
Bis(2-chloro-1-methylethyl) ether in ug/L	37	10 L
Bis(2-chloroethoxy)methane in ug/L		1 L
Bis(2-chloroethyl) ether in ug/L	0.53	10 L
Bis(2-ethylhexyl) phthalate in ug/L	2.2	10 L
Carbazole in ug/L		1 L
Dibenzofuran in ug/L		1 L
Diethyl phthalate in ug/L	28,000	1 L
Dimethyl phthalate in ug/L	1,100,000	1 L
Di-n-butyl phthalate in ug/L	2,900	1 L
Di-n-octyl phthalate in ug/L		1 L
Hexachlorobenzene in ug/L	0.00029	1 L
Hexachlorobutadiene in ug/L	0.81	1 L
Hexachlorocyclopentadiene in ug/L	1,100	3 L
Hexachloroethane in ug/L	3.3	1 L
Isophorone in ug/L	600	1 L
Nitrobenzene in ug/L	690	1 L
N-Nitroso-di-n-propylamine in ug/L	0.51	10 L
N-Nitrosodiphenylamine in ug/L	6	1 L
Pentachlorophenol in ug/L	1.5	10 L
Phenol in ug/L	560,000	10 L
2,4-Dinitrotoluene in ug/L	3.4	1 L
2,6-Dinitrotoluene in ug/L		1 L
2-Methylnaphthalene in ug/L		1 L
Field Parameters		B .
Dissolved Oxygen in mg/L		0.29
Eh (ORP) in mVolts		22.7
pH in pH Units		7.8
Specific Conductance in us/cm		17.829
Temperature in deg C		13.1
Turbidity in NTU		7.03

Notes

Concentrations in shaded cells exceed groundwater screening level

- J Analyte was positively identified. The reported result is an estimate
- U Analyte was not detected at or above the reported result
- \mbox{UJ} Analyte was not detected at or above the reported estimate

Page 3 of 3

Table 5A - Soil Quality Data for REC 5 - Dutch Ovens 1-5 K-C Worldwide Site Upland Area 110207

Chemical Name	Unrestricted Soil Screening Level (mg/kg)	Industrial Soil Screening Level (mg/kg)	REC5-MW-01 6/5/2012 (6.5-7.5 ft.
Metals			
Antimony in mg/kg			1 (
Arsenic in mg/kg	20	20	18.1
Beryllium in mg/kg			1 (
Cadmium in mg/kg	2	2	1
Chromium (Total) in mg/kg			20.5
Copper in mg/kg	250	1.000	28.8
Lead in mg/kg	250	1,000	5.28
Mercury in mg/kg	2	2	0.1 U 41.1
Nickel in mg/kg Selenium in mg/kg			1
Silver in mg/kg			1 (
Thallium in mg/kg			1 (
Zinc in mg/kg			37
/olatile Organic Compounds			37
1,1,1,2-Tetrachloroethane in mg/kg	38	5,000	0.05
1,1,1-Trichloroethane in mg/kg	2	2	0.05
1,1,2,2-Tetrachloroethane in mg/kg	5	660	0.05
1,1,2-Trichloroethane in mg/kg	18	2,300	0.05
1,1-Dichloroethane in mg/kg	10	2,555	0.05
1,1-Dichloroethene in mg/kg			0.05
1,1-Dichloropropene in mg/kg			0.05
1,2,3-Trichlorobenzene in mg/kg			0.25
1,2,3-Trichloropropane in mg/kg	0.033	4.4	0.05
1,2,4-Trichlorobenzene in mg/kg	35	4,500	0.25
1,2,4-Trimethylbenzene in mg/kg			0.05 l
1,2-Dibromo-3-chloropropane in mg/kg	1.3	160	0.5
1,2-Dibromoethane (EDB) in mg/kg	0.005	0.005	0.05 l
1,2-Dichlorobenzene in mg/kg			0.05 l
1,2-Dichloroethane (EDC) in mg/kg	11	1,400	0.05 U
1,2-Dichloropropane in mg/kg			0.05 l
1,3,5-Trimethylbenzene in mg/kg			0.05
1,3-Dichlorobenzene in mg/kg			0.05
1,3-Dichloropropane in mg/kg			0.05
1,4-Dichlorobenzene in mg/kg			0.05
2,2-Dichloropropane in mg/kg			0.05
2-Butanone in mg/kg			0.5 l
2-Chlorotoluene in mg/kg	1		0.05
2-Hexanone in mg/kg			0.5
4-Chlorotoluene in mg/kg			0.05
4-Methyl-2-pentanone in mg/kg			0.5
Acetone in mg/kg			0.5
Benzene in mg/kg	0.03	0.03	0.03
Bromobenzene in mg/kg			0.05
Bromodichloromethane in mg/kg	16	2,100	0.05
Bromoform in mg/kg	130	17,000	0.05
Bromomethane in mg/kg	-		0.5
Carbon tetrachloride in mg/kg	14	1,900	0.05
Chlorobenzene in mg/kg	-		0.05
Chloroethane in mg/kg			0.5
Chloroform in mg/kg	1		0.05
Chloromethane in mg/kg	1		0.5
cis-1,2-Dichloroethene (DCE) in mg/kg	-		0.05
cis-1,3-Dichloropropene in mg/kg	1	4.600	0.05
Dibromochloromethane in mg/kg	12	1,600	0.05
Dibromomethane in mg/kg	-		0.05
Dichlorodifluoromethane in mg/kg			0.5 L
Ethylbenzene in mg/kg Hexachlorobutadiene in mg/kg	6	6 1,700	0.05 0.25

Page 1 of 2

Table 5A - Soil Quality Data for REC 5 - Dutch Ovens 1-5

K-C Worldwide Site Upland Area 110207

Chemical Name	Unrestricted Soil Screening Level (mg/kg)	Industrial Soil Screening Level (mg/kg)	REC5-MW-01 6/5/2012 (6.5-7.5 ft.
Isopropylbenzene in mg/kg			0.05 U
Methylene chloride in mg/kg	0.02	0.02	0.5 U
Methyl-Tert-Butyl Ether in mg/kg	0.1	0.1	0.05 U
n-Propylbenzene in mg/kg			0.05 U
p-Isopropyltoluene in mg/kg			0.05 U
sec-Butylbenzene in mg/kg			0.05 U
Styrene in mg/kg			0.05 U
tert-Butylbenzene in mg/kg			0.05 U
Tetrachloroethene (PCE) in mg/kg	0.05	0.05	0.025 U
Toluene in mg/kg	7	7	0.05 U
trans-1,2-Dichloroethene in mg/kg			0.05 U
trans-1,3-Dichloropropene in mg/kg			0.05 U
Trichloroethene (TCE) in mg/kg	0.03	0.03	0.03 U
Trichlorofluoromethane in mg/kg			0.5 U
Vinyl chloride in mg/kg	0.67	88	0.05 U
m,p-Xylenes in mg/kg	16,000	700,000	0.1 U
o-Xylene in mg/kg	16,000	700,000	0.05 U
Xylenes (total) in mg/kg	9	9	ND
Naphthalene in mg/kg	5	5	0.05 U

Notes

Concentrations in shaded cells exceed unrestricted soil screening leve Concentrations within bold border exceed industrial soil screening level

U - Analyte was not detected at or above the reported result

UJ - Analyte was not detected at or above the reported estimate

Table 5B - Groundwater Quality Data for REC 5 - Dutch Ovens 1-5

K-C Worldwide Site Upland Area 110207

	Groundwater	REC5-MW-01	REC5-MW-0 FD
Chemical Name	Screening Level	6/8/2012	6/8/2012
Dissolved Metals		5, 5, 2522	5,5,252
Dissolved Antimony in ug/L	640	3.96	8.95
Dissolved Arsenic in ug/L	5	201	235
Dissolved Beryllium in ug/L	270	1 U	1
Dissolved Cadmium in ug/L	8.8	1 U	3.87
Dissolved Chromium (Total) in ug/L		52	72.7
Dissolved Copper in ug/L	2.4	44.9 J	167
Dissolved Lead in ug/L	8.1	37.3 J	174
Dissolved Mercury in ug/L	0.15	0.12 J	0.41
Dissolved Nickel in ug/L	8.2	3.37	10.8
Dissolved Selenium in ug/L	71	1 U	1.11
Dissolved Silver in ug/L	1.9	1 U	1
Dissolved Thallium in ug/L	0.47	1 U	1
Dissolved Zinc in ug/L	81	42.3 J	203
otal Metals	_		
Total Antimony in ug/L	640	9.02	9.86
Total Arsenic in ug/L	5	218	236
Total Beryllium in ug/L	270	1 U	1
Total Cadmium in ug/L	8.8	5.22	5.26
Total Chromium (Total) in ug/L		83.8	84.8
Total Copper in ug/L	2.4	226	225
Total Lead in ug/L	8.1	234	242
Total Mickel in ug/L	0.15	0.57	0.55
Total Nickel in ug/L	8.2 71	14.8 1.51	14.7
Total Selenium in ug/L Total Silver in ug/L	1.9	1.51 1 U	1.68
Total Thallium in ug/L	0.47	1 U	1
Total Zinc in ug/L	81	274	274
onventional Chemistry Parameters	- 01	271	271
Total Suspended Solids in mg/L		50	
olatile Organic Compounds			
1,1,1,2-Tetrachloroethane in ug/L	7.4	1 U	
1,1,1-Trichloroethane in ug/L	11,000	1 U	
1,1,2,2-Tetrachloroethane in ug/L	4	1 U	
1,1,2-Trichloroethane in ug/L	7.9	1 U	
1,1-Dichloroethane in ug/L	2,300	1 U	
1,1-Dichloroethene in ug/L	3.2	1 U	
1,1-Dichloropropene in ug/L		1 U	
1,2,3-Trichlorobenzene in ug/L		1 U	
1,2,3-Trichloropropane in ug/L		1 U	
1,2,4-Trichlorobenzene in ug/L	2	1 U	
1,2,4-Trimethylbenzene in ug/L	24	1 U	
1,2-Dibromo-3-chloropropane in ug/L		10 U	
1,2-Dibromoethane (EDB) in ug/L	0.74	1 U	
1,2-Dichlorobenzene in ug/L	1,300	1 U	
1,2-Dichloroethane (EDC) in ug/L	4.2	1 U	
1,2-Dichloropropane in ug/L	15	1 U	
1,3,5-Trimethylbenzene in ug/L	25	1 U	
1,3-Dichlorobenzene in ug/L	960	1 U	
1,3-Dichloropropane in ug/L		1 U	
1 / Dichlorohonzono in ug/l	190	1 U	
1,4-Dichlorobenzene in ug/L		1 U	
2,2-Dichloropropane in ug/L		10 U	
2,2-Dichloropropane in ug/L 2-Butanone in ug/L	350,000		
2,2-Dichloropropane in ug/L 2-Butanone in ug/L 2-Chlorotoluene in ug/L	350,000	1 U	
2,2-Dichloropropane in ug/L 2-Butanone in ug/L 2-Chlorotoluene in ug/L 2-Hexanone in ug/L	350,000	1 U 10 U	
2,2-Dichloropropane in ug/L 2-Butanone in ug/L 2-Chlorotoluene in ug/L 2-Hexanone in ug/L 4-Chlorotoluene in ug/L		1 U 10 U 1 U	
2,2-Dichloropropane in ug/L 2-Butanone in ug/L 2-Chlorotoluene in ug/L 2-Hexanone in ug/L 4-Chlorotoluene in ug/L 4-Methyl-2-pentanone in ug/L	350,000	1 U 10 U 1 U 10 U	
2,2-Dichloropropane in ug/L 2-Butanone in ug/L 2-Chlorotoluene in ug/L 2-Hexanone in ug/L 4-Chlorotoluene in ug/L		1 U 10 U 1 U	

Aspect Consulting

8/22/2012

Table 5B - Groundwater Quality Data for REC 5 - Dutch Ovens 1-5

K-C Worldwide Site Upland Area 110207

			REC5-MW-0
	Groundwater	REC5-MW-01	FD
Chemical Name	Screening Level	6/8/2012	6/8/2012
Bromodichloromethane in ug/L	0.09	1 U	
Bromoform in ug/L	140	1 UJ	
Bromomethane in ug/L	13	1 U	
Carbon tetrachloride in ug/L	0.22	1 U	
Chlorobenzene in ug/L	100	1 U	
Chloroethane in ug/L	12	1 U	
Chloroform in ug/L	1.2	1 U	
Chloromethane in ug/L	5.2	10 U	
cis-1,2-Dichloroethene (DCE) in ug/L	160	1 U	
cis-1,3-Dichloropropene in ug/L		1 U	
Dibromochloromethane in ug/L	0.22	1 U	
Dibromomethane in ug/L		1 U	
Dichlorodifluoromethane in ug/L	9.9	1 U	
Ethylbenzene in ug/L	2,100	1 U	
Hexachlorobutadiene in ug/L	0.81	1 U	
Isopropylbenzene in ug/L	720	1 U	
Methylene chloride in ug/L	94	5 U	
Methyl-Tert-Butyl Ether in ug/L	610	1 U	
n-Propylbenzene in ug/L		1 U	
p-Isopropyltoluene in ug/L		1 U	
sec-Butylbenzene in ug/L		1 U	
Styrene in ug/L	78	1 U	
tert-Butylbenzene in ug/L		1 U	
Tetrachloroethene (PCE) in ug/L	0.39	1 U	
Toluene in ug/L	15,000	1 U	
trans-1,2-Dichloroethene in ug/L	130	1 U	
trans-1,3-Dichloropropene in ug/L		1 U	
Trichloroethene (TCE) in ug/L	0.42	1 U	
Trichlorofluoromethane in ug/L	120	1 U	
Vinyl chloride in ug/L	0.35	0.2 U	
m,p-Xylenes in ug/L	310	2 U	
o-Xylene in ug/L	440	1 U	
Xylenes (total) in ug/L	310	ND	
Naphthalene in ug/L	170	1 U	
ield Parameters			
Dissolved Oxygen in mg/L		0.05	
Eh (ORP) in mVolts		-113.7	
pH in pH Units		8.51	
Specific Conductance in us/cm		384	
Temperature in deg C		23.16	
Turbidity in NTU		97.3	

Notes

Concentrations in shaded cells exceed groundwater screening level

- J Analyte was positively identified. The reported result is an estimate
- U Analyte was not detected at or above the reported result
- \mbox{UJ} Analyte was not detected at or above the reported estimate

Table 6A - Soil Quality Data for REC 6 (Latex Spill) + USTs 29, 67, 69 K-C Worldwide Site Upland Area 110207

Chemical Name	Unrestricted Soil Screening Level (mg/kg)	Industrial Soil Screening Level (mg/kg)	REC6-MW-01 6/28/2012 (6 ft.)	REC6-MW-01 FD 6/27/2012 (6 ft.)	UST29-MW- 01 6/27/2012 (7-8 ft.)	UST29-MW- 01 FD 6/27/2012 (7-8 ft	UST29-MW- 01 6/27/2012 (8-9 ft.)	UST29-MW- 01 FD 6/27/2012 (8-9 ft	UST69-MW- 01 5/25/2012 (6-7 ft.)	UST69-MW- 01 FD 5/25/2012 (6-7 ft
Total Petroleum Hydrocarbons	\'''6/ \\5/	(1116/116)	(0 11.)	(0 10.)	(7 0 11.)	(, 011	(0 5 11.)	10.211	(0 / 16.)	(0-7 11
Gasoline Range Hydrocarbons in mg/kg	100	100	9,700	7,900	150				2 U	2 U
Diesel Range Hydrocarbons in mg/kg	2,000	2,000			1,700	1,500				
Oil Range Hydrocarbons in mg/kg Total TPH in mg/kg	2,000	2,000			920	990				
Metals	2,000	2,000			2,620	2,490				
Lead in mg/kg	250	1,000							2.91	2.1
Polycyclic Aromatic Hydrocarbons (PAHs)										
Acenaphthulana in mg/kg							10 U	10 U		
Acenaphthylene in mg/kg Anthracene in mg/kg							10 U	10 0		
Benzo(g,h,i)perylene in mg/kg							10 U	12		
Fluoranthene in mg/kg							37	58		
Phononthrono in mg/kg							10 U 25	10 U 37		
Phenanthrene in mg/kg Pyrene in mg/kg							32	49		
Naphthalene in mg/kg	5	5					10 U	10 U		
Benz(a)anthracene in mg/kg	1.4	180					18	30		
Benzo(a)pyrene in mg/kg Benzo(b)fluoranthene in mg/kg	0.14 1.4	0.14 180					12 15	24 30		
Benzo(k)fluoranthene in mg/kg	1.4	1,800					10 U	12		
Chrysene in mg/kg	140	18,000					20	34		
Dibenzo(a,h)anthracene in mg/kg	0.14	18					10 U	10 U		
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180					10 U	15		
Total cPAHs TEQ in mg/kg /olatile Organic Compounds	0.14	2					17.0	33.5	<u> </u>	
1,1,1,2-Tetrachloroethane in mg/kg	38	5,000	0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	0.05 U
1,1,1-Trichloroethane in mg/kg	2	2	0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	0.05 U
1,1,2,2-Tetrachloroethane in mg/kg	5	660	0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	0.05 U
1,1,2-Trichloroethane in mg/kg 1,1-Dichloroethane in mg/kg	18	2,300	0.05 U	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U			0.05 U 0.05 U	
1,1-Dichloroethene in mg/kg			0.05 U		0.05 U	0.05 U			0.05 U	0.05 U
1,1-Dichloropropene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	0.05 U
1,2,3-Trichlorobenzene in mg/kg	0.022		0.25 U	0.25 U	0.25 U	0.25 U			0.25 U	0.25 U
1,2,3-Trichloropropane in mg/kg 1,2,4-Trichlorobenzene in mg/kg	0.033 35	4.4 4,500	0.05 U 0.25 U		0.05 U 0.25 U	0.05 U 0.25 U			0.05 U 0.25 U	
1,2,4-Trimethylbenzene in mg/kg	33	4,300	9.3	9.5	0.05 U	0.05 U			0.05 U	
1,2-Dibromo-3-chloropropane in mg/kg	1.3	160	0.5 U	0.5 U	0.5 U	0.5 U			0.5 U	0.5 U
1,2-Dibromoethane (EDB) in mg/kg	0.005	0.005	0.05 U	0.05 U 0.42	0.05 U 0.05 U	0.05 U 0.05 U			0.05 U	0.05 U 0.05 U
1,2-Dichlorobenzene in mg/kg 1,2-Dichloroethane (EDC) in mg/kg	11	1,400	0.4 0.05 U	0.42 0.05 U	0.05 U	0.05 U			0.05 U 0.05 U	
1,2-Dichloropropane in mg/kg		1,100	0.05 U		0.05 U	0.05 U			0.05 U	
1,3,5-Trimethylbenzene in mg/kg			5.1	4.6	0.05 U	0.05 U			0.05 U	0.05 U
1,3-Dichlorobenzene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U 0.05 U			0.05 U	0.05 U 0.05 U
1,3-Dichloropropane in mg/kg 1,4-Dichlorobenzene in mg/kg			0.05 U	0.05 U	0.05 U 0.05 U	0.05 U			0.05 U 0.05 U	
1,4-Dioxane in mg/kg			0.5 U		0.05	0.00			0.05	0.00
2,2-Dichloropropane in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	0.05 U
2-Butanone in mg/kg 2-Chlorotoluene in mg/kg			0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U			0.5 U 0.05 U	0.5 U 0.05 U
2-Unorotoluene in riig/kg 2-Hexanone in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	
4-Chlorotoluene in mg/kg			0.05 U		0.05 U	0.05 U			0.05 U	
4-Methyl-2-pentanone in mg/kg			0.5 U	0.5 U	0.5 U	0.5 U			0.5 U	0.5 U
Acetone in mg/kg Benzene in mg/kg	0.03	0.03	0.5 U 0.03 U	0.5 U 0.03 U	0.5 U 0.03 U	0.5 U 0.03 U			0.5 U 0.03 U	0.5 U 0.03 U
Bromobenzene in mg/kg	0.03	0.03	0.03 U		0.03 U	0.03 U			0.03 U	
Bromodichloromethane in mg/kg	16	2,100	0.05 U		0.05 U	0.05 U			0.05 U	0.05 U
Bromoform in mg/kg	130	17,000	0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	0.05 U
Bromomethane in mg/kg Carbon tetrachloride in mg/kg	14	1,900	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U			0.5 U 0.05 U	0.5 U 0.05 U
Chlorobenzene in mg/kg	14	1,300	0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	
Chloroethane in mg/kg			0.5 U	0.5 U	0.5 U	0.5 U			0.5 U	0.5 U
Chloroform in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	0.05 U
Chloromethane in mg/kg cis-1,2-Dichloroethene (DCE) in mg/kg			0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U			0.5 UJ 0.05 U	
cis-1,3-Dichloropropene in mg/kg			0.05 U		0.05 U	0.05 U			0.05 U	
Dibromochloromethane in mg/kg	12	1,600	0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	0.05 U
Dibromomethane in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	0.05 U
Dichlorodifluoromethane in mg/kg Ethylbenzene in mg/kg	6	6	0.5 U 630	0.5 U 660	0.5 U 0.056	0.5 U 0.05 U			0.5 UJ 0.05 U	
Hexachlorobutadiene in mg/kg	13	1,700	0.25 U		0.056 0.25 U	0.05 U			0.05 U	
Isopropylbenzene in mg/kg		_,	9.6	7.9	1.1	1			0.05 U	0.05 U
Methylene chloride in mg/kg	0.02	0.02	0.5 U	0.5 U	0.5 U	0.5 U			0.5 U	
Methyl-Tert-Butyl Ether in mg/kg	0.1	0.1	0.05 U 7.6	0.05 U 6.9	0.05 U 0.83	0.05 U 0.76			0.05 U 0.05 U	0.05 U 0.05 U
n-Propylbenzene in mg/kg p-Isopropyltoluene in mg/kg			0.33	0.29	0.83 0.05 U	0.76 0.05 U			0.05 U	
sec-Butylbenzene in mg/kg			0.27	0.22	0.05 U				0.05 U	
Styrene in mg/kg			0.05 U			0.05 U			0.05 U	
tert-Butylbenzene in mg/kg Tetrachloroethene (PCE) in mg/kg	0.05	0.05	0.05 U 0.025 U		0.05 U 0.025 U	0.05 U 0.025 U			0.05 U 0.025 U	0.05 U 0.025 U
Toluene in mg/kg	0.05	0.05	1.6	2.2	0.025 U	0.025 U			0.025 U	
trans-1,2-Dichloroethene in mg/kg	<u> </u>	,	0.05 U	0.05 U	0.05 U	0.05 U			0.05 U	
trans-1,3-Dichloropropene in mg/kg			0.05 U			0.05 U			0.05 U	0.00
Trichloroethene (TCE) in mg/kg	0.03	0.03	0.03 U		0.03 U	0.03 U			0.03 U	0.03 U
Trichlorofluoromethane in mg/kg Vinyl acetate in mg/kg			0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U			0.5 U	0.5 U
Vinyl chloride in mg/kg	0.67	88	0.5 U	0.5 U	0.05 U	0.05 U			0.05 U	0.05 U
m,p-Xylenes in mg/kg	16,000	700,000	1,800	2,300	0.18	0.12			0.1 U	0.1 U
o-Xylene in mg/kg	16,000	700,000 9	450 2,250	500 2,800	0.05 U 0.205	0.05 U			0.05 U	0.05 U
Xylenes (total) in mg/kg	9		2250	1 000	U 20E	0.145	1		ND	ND

Notes

Concentrations in shaded cells exceed unrestricted soil screening leve Concentrations within bold border exceed industrial soil screening level

U - Analyte was not detected at or above the reported result

Table 6B - Groundwater Quality Data for REC 6 (Latex Spill) + USTs 29, 67, 69 K-C Worldwide Site Upland Area 110207

Troub Performance of the company of	Chemical Name	Groundwater Screening Level	REC6-MW-01 7/2-6/2012	REC6-MW-01 FD 7/2-6/2012	REC6-MW-02 6/5/2012	UST29-MW- 01 7/2/2012	UST29-MW- 01 FD 7/2/2012	UST69-MW- 01 6/8/2012	UST69-MV 01 FD 6/8/2012
Signate September Programmer (1997) 1900		Screening Level	7/2-0/2012	7/2-0/2012	0/3/2012	7/2/2012	7/2/2012	0/8/2012	0/8/2012
Of Enemy in purpose of the Common C	soline Range Hydrocarbons in ug/L		24,000	25,000	100 U			100 U	100
Total part in sing									
Description in age Column									
Description for margin			•	1	1			_	1
Denoted Capturer in ugit	, 5								
Dissovered Chromium (Tendin rug) .	<u> </u>								
Description (Company range)		8.8							
Dissolved Lost of Ingiff		2.4				0.19	0.10		
Desidenced Nisher In regist								1 U	
Descheed Services in ug/L					0.1 U	0.000			
Descripted Table 1.9 1.9 1.0 0.085 0.09	<u>-</u>								
Desobert Part Internin rings									
Name	-								
Trout learning ming memerational Chemistry Parameters Formal deflying in mys. Formal Ammonia on Normgen in mys. 1000 30 5 20 J 100 U 10 U 10 U 10 U 10 U 10 U 10 U	<u> </u>	81			1 U	0.16	0.18		
Total Assemble Parameters Ferromorbidy 100 1		8.1						1 U	
Total Americana in Mirrogen in Ingit		0.12	<u>. </u>	l	l				<u>I</u>
Disposed Sufficient mg/L			30 J	29 J					
Total Suspended Solies In mig/L Accessage Private Priv		0.035							
Negretar Annate Hydrocarbons (PAHs)			20 U	20 U		10 U	10 U	10 U	10
Accomplayber in wg/L	yclic Aromatic Hydrocarbons (PAHs)			<u> </u>	<u> </u>				
Anthracene in ug/L Flooranthrone in ug/L Flo		640							
Bezord B		26.000	1					 	<u> </u>
Filipare in lug/L	nzo(g,h,i)perylene in ug/L								
Penearthree in ug/L	<u>.</u>								
Pyreme in ug/L send planthracene in ug/L send		3,500	 					1	
Naphthaler in light		2,600						 	
Benzola/puramene in ug/L						0.064	0.065		
Benzolighturarathene in ug/L 0.018 0.018 0.001									
Benzo(k)									
Dibenzola/hantracene in ug/L 0.018 0.01									
Indenof L 2,3-cd pyrene in ug/L									
1,1,1-Trichloroethane in ug/L			-	•	•				
1.1.2.2-Trichloroethane in ug/L 1.1.2-Trichloroethane in ug/L 1.1.2-Trichloroethane in ug/L 1.1.2-Trichloroethane in ug/L 1.1.2-Drichloroethane in ug/L 1.1.								1 U	1
1,1,2-Trichloroethane in ug/L								1 U	
1,1-Dichloroethene in ug/L 1,1-Dichloropropene in ug/L 1,1-Dichloropropene in ug/L 1,1-Dichloropropene in ug/L 1,1-Dichlorobenzene in ug/L 1,2-3-Trichloropropane in ug/L 1,2-3-Trichloropropane in ug/L 1,2-3-Trichloropropane in ug/L 1,2-4-Trichloropropane in ug/L 1,2-0-Dichloroethene in ug/L 1,2-0-Dichloroethene (EDB) in ug/L 1,2-Dichloropropane i	-	7.9			1 U	1 U		1 U	
1,1-Dichloropropene in ug/L 1,2,3-Trichloropropane in ug/L 1,2-Dibromo-5-chloropropane in ug/L 1,2-Dibromo-6-chloropropane in ug/L 1,3-Dichloropropane in ug/L 1,2-Dibromo-6-chloropropane in ug/L 1,3-Dichloropropane in ug/L 1,3-Dich								1 U	
1,2,3-Trichlorobenzene in ug/L		3.2						1 U	1
1,2,4-Trintlorobenzene in ug/L								1 U	
1,2,4-Trimethylbenzene in ug/L 1,2-Dibromo-3-chloropropane in ug/L 1,3-Dibromo-3-chloropropane in ug/L 1,4-Dibromo-3-chloropropane in ug/L 1,4-Dibromo-3-chloropropane in ug/L 1,4-Dibromo-3-chloropropane in ug/L 1,4-Dibromo-3-chloropropane in ug/L 1,2-Dibromo-3-chloropropane in ug/L 1,3-Dibromo-3-chloropropane in ug/L 1,3-Dibromo-3-chloropropane in ug/L 1,3-Dibromo-3-chloropropane in ug/L 1,4-Dibromo-3-chloropropane in ug/L			_					1 U	
1,2-Dibromo-3-chloropropane in ug/L 1,2-Dibromo-3-chloropropane in ug/L 1,2-Dibromo-chane (EDB) in ug/L 1,300 1 U 1 U 1 U 1 U 1 U 1,2-Dichloropene in ug/L 1,300 1 U 1 U 1 U 1 U 1 U 1 U 1,2-Dichloropene in ug/L 1,2-Dichloropene in ug/L 1,3-Dichloropene in ug/L 1,0-Dichloropene in ug/L 1,0-Dichlor								1 U	
1,2-Dischoroenthane (EDB) in ug/L 1,2-Dischoroenthane (EDC) in ug/L 1,2-Di		24						10 U	10
1,2-Dichloroethane (EDC) in ug/L 1,2-Dichloroethane (EDC) in ug/L 1,2-Dichloroethane in ug/L 1,3-Dichloroethane in ug/L 1,3-Dichl	-Dibromoethane (EDB) in ug/L							10 U	
1,2-Dichloropropane in ug/L 15 1 U 1 U 1 U 1 U 1,3-5-Trimethylbenzene in ug/L 1,3-5-Trimethylbenzene in ug/L 1,3-Dichloropropane in ug/L 1,1-Dichloropropane in ug/L 1,1-Dichloropropane in ug/L 1,1-Dichloropropane in ug/L 1,1-D			_					1 U	
1,3,5-Trimethylbenzene in ug/L 1,3-Dichlorobenzene in ug/L 1,3-Dichlorobenzene in ug/L 1,3-Dichlorobenzene in ug/L 1,4-Dichlorobenzene in ug/L 2,2-Dichloropropane in ug/L 350,000 10 10 10 10 10 10 10 10 10 10 10 10								1 U	
1,3-Dichloropropane in ug/L 1,4-Dichlorobenzene in ug/L 1					1 U	1 U		1 U	1
1,4-Dichlorobenzene in ug/L 1,4-Dichlorobenzene in ug/L 1,4-Dichloropropane in ug/L 1		960						1 U	
1.4-Dioxane in ug/L 2.2-Dichloropropane in ug/L 2.3-Dichloropropane in ug/L 350,000 10 10 10 10 10 10 10 10 10 10 10 10		190	_					1 U	
2,2-Dichloropropane in ug/L 350,000 10 U 1 U 1 U 1 U 1 U 1 U 1 U 2 C-chlorotoluene in ug/L 350,000 10 U		150				1 0			
2-Chlorotoluene in ug/L	-Dichloropropane in ug/L							1 U	
10		350,000						10 U	
Chlorotoluene in ug/L		<u>t_</u>	_					10 U	
Acetone in ug/L Senzene in ug/L Senzen	Chlorotoluene in ug/L		1 U	1 U	1 U	1 U		1 U	1
Serzene in ug/L 2.4 0.35 U 0.35		11,000						10 U	10 10
Stromobenzene in ug/L 1		2.4						10 U 0.35 U	
Stromoform in ug/L	omobenzene in ug/L			1 U	1 U	1 U		1 U	
Standard Recommendation Standard Recomme								1 U	
Carbon tetrachloride in ug/L 0.22 1 U								1 U 1 U	
Chlorobenzene in ug/L 100 1 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 U</td> <td></td>								1 U	
Chloroform in ug/L 1.2 1 U </td <td>orobenzene in ug/L</td> <td></td> <td></td> <td>1 U</td> <td>1 U</td> <td>1 U</td> <td></td> <td>1 U</td> <td>1</td>	orobenzene in ug/L			1 U	1 U	1 U		1 U	1
Chloromethane in ug/L 5.2 10 U 10 U <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 U</td><td></td></td<>								1 U	
is-1,2-Dichloroethene (DCE) in ug/L is-1,3-Dichloropropene in ug/L is-1,3-Dichloropropene in ug/L Dibromochloromethane in ug/L Dibromomethane in ug/L Dichlorodifluoromethane in ug/L Strylbenzene in ug/L Exachlorobutadiene in ug/L Sopropylbenzene in ug/L Dichlorodifluoromethane in ug/L D								1 U 10 U	
Dibromochloromethane in ug/L	-1,2-Dichloroethene (DCE) in ug/L		1 U	1 U	1 U	1 U		10 U	
Dibromomethane in ug/L								1 U	
Dichlorodifluoromethane in ug/L 9.9 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 10 10 10 10 10 1 U 1 <td></td> <td>0.22</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 U 1 U</td> <td>1</td>		0.22						1 U 1 U	1
Ethylbenzene in ug/L 2,100 2,000 2,000 1 U 10 Hexachlorobutadiene in ug/L 0.81 1 U 1 U 1 U 1 U 1 U 1 U 1.2 U 1.2	5	9.9						1 U	
Hexachlorobutadiene in ug/L 0.81 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1.2 U 1.2	ylbenzene in ug/L		2,000	2,000	1 U	10		1 U	:
	xachlorobutadiene in ug/L	0.81	1 U	1 U	1 U	1 U		1 U	
vicinyiche dillonde in dg/t ■ 24 ■ 25 UL 2 UL 2 UL 2 UL 2 UL 2 UL								1 U 5 U	
Wethyl-Tert-Butyl Ether in ug/L 610 1 U 1 U 1 U 1 U U 1 U								1 U	
n-Propylbenzene in ug/L 7.7 7.4 1 U 1 U	Propylbenzene in ug/L	010	7.7	7.4		1 U		1 U	:
o-Isopropyltoluene in ug/L 1 U 1 U 1 U 1 U								1 U	
rec-Butylbenzene in ug/L		70						1 U 1 U	

Table 6B - Groundwater Quality Data for REC 6 (Latex Spill) + USTs 29, 67, 69

K-C Worldwide Site Upland Area 110207

			REC6-MW-01	DE65	UST29-MW-	UST29-MW-	UST69-MW-	UST69-MW
Chemical Name	Groundwater	REC6-MW-01	FD 7/2-6/2012	REC6-MW-02	01 7/2/2012	01 FD 7/2/2012	01 6/8/2012	01 FD
Tetrachloroethene (PCE) in ug/L	Screening Level 0.39	7/2-6/2012 1 U	7/2-6/2012 1 U	6/5/2012 1 U	7/2/2012 1 U	7/2/2012	6/8/2012 1 U	6/8/2012
Toluene in ug/L	15,000	18	17	1 U			1 U	1
trans-1,2-Dichloroethene in ug/L	130	1 U					1 U	1
trans-1,3-Dichloropropene in ug/L		1 U			1 U		1 U	1
Trichloroethene (TCE) in ug/L	0.42	1 U			1 U		1 U	1
Trichlorofluoromethane in ug/L Vinyl acetate in ug/L	120	1 U			1 U		1 U	1
Vinyl chloride in ug/L	7,800 0.35	10 U 0.2 U			0.2 U		0.2 U	0.2
m,p-Xylenes in ug/L	310	6,900	6,900	2 U	53		0.2 U	2
o-Xylene in ug/L	440	1,600	1,600	1 U			1 U	1
Xylenes (total) in ug/L	310	8,500	8,500	ND	72.0		ND	ND
Naphthalene in ug/L	170	1.7	1.4				1 U	1
Semi-Volatile Organics				T			1	
1,2,4-Trichlorobenzene in ug/L 1,2-Dichlorobenzene in ug/L	2 1,300			1 U 1 U				
1,3-Dichlorobenzene in ug/L	960			1 U				
1,4-Dichlorobenzene in ug/L	190			1 U				
2,4,5-Trichlorophenol in ug/L	3,600			10 U				
2,4,6-Trichlorophenol in ug/L	2.4			10 U				
2,4-Dichlorophenol in ug/L	190			10 U				
2,4-Dimethylphenol in ug/L 2,4-Dinitrophenol in ug/L	550			10 U 30 U				
2-Chloronaphthalene in ug/L	3,500 1,000			1 U				
2-Chlorophenol in ug/L	97	 		1 U				
2-Methylphenol in ug/L	1	<u> </u>		10 U	<u> </u>			
2-Nitroaniline in ug/L				3 U				
2-Nitrophenol in ug/L				10 U		·		
3 & 4 Methylphenol in ug/L	1			20 U				
3-Nitroaniline in ug/L				3 U 30 U				
4,6-Dinitro-2-methylphenol in ug/L 4-Bromophenyl phenyl ether in ug/L				1 U				
4-Chloro-3-methylphenol in ug/L				10 U				
4-Chloroaniline in ug/L				3 U				
4-Chlorophenyl phenyl ether in ug/L				1 U				
4-Nitroaniline in ug/L				10 U				
4-Nitrophenol in ug/L				10 U				
Acenaphthene in ug/L Acenaphthylene in ug/L	640			1 U				
Anthracene in ug/L	26,000			1 U				
Benzo(g,h,i)perylene in ug/L	20,000			1 U				
Benzoic acid in ug/L				50 U				
Benzyl alcohol in ug/L				10 U				
Benzyl butyl phthalate in ug/L	8.2			1 U				
Bis(2-chloro-1-methylethyl) ether in ug/L Bis(2-chloroethoxy)methane in ug/L	37			10 U 1 U				
Bis(2-chloroethyl) ether in ug/L	0.53			1 U				
Bis(2-ethylhexyl) phthalate in ug/L	2.2			10 U				
Carbazole in ug/L				1 U				
Dibenzofuran in ug/L				1 U				
Diethyl phthalate in ug/L	28,000			1 U				
Dimethyl phthalate in ug/L	1,100,000			1 U				
Di-n-butyl phthalate in ug/L	2,900			1 U 1 U				
Di-n-octyl phthalate in ug/L Fluoranthene in ug/L	90			1 U				
Fluorene in ug/L	3,500			1 U				
Hexachlorobenzene in ug/L	0.00029			1 U				
Hexachlorobutadiene in ug/L	0.81			1 U				
Hexachlorocyclopentadiene in ug/L	1,100			3 U				
Hexachloroethane in ug/L	3.3	<u> </u>		1 U			<u> </u>	
Isophorone in ug/L Nitrobenzene in ug/L	600 690	<u> </u>		1 U 1 U				
N-Nitroso-di-n-propylamine in ug/L	0.51	<u> </u>		10 U				
N-Nitrosodiphenylamine in ug/L	6	l		10 U				
Pentachlorophenol in ug/L	1.5			10 U				
Phenanthrene in ug/L				1 U				
Phenol in ug/L	560,000			10 U				
Pyrene in ug/L Benz(a)anthracene in ug/L	2,600 0.018			1 U 1 U				
Benzo(a)pyrene in ug/L	0.018	 		1 U				
Benzo(b)fluoranthene in ug/L	0.018	<u> </u>		1 U				
Benzo(k)fluoranthene in ug/L	0.018			1 U				
Chrysene in ug/L	0.018			1 U				
Dibenzo(a,h)anthracene in ug/L	0.018			1 U				
Indeno(1,2,3-cd)pyrene in ug/L	0.018	<u> </u>		1 U				
2,4-Dinitrotoluene in ug/L 2,6-Dinitrotoluene in ug/L	3.4			1 U				
2,6-Dinitrotoluene in ug/L 2-Methylnaphthalene in ug/L	1			1 U				
Naphthalene in ug/L	170	<u> </u>		1 U				
eld Parameters	1,0	<u> </u>	<u> </u>			<u> </u>		<u> </u>
Dissolved Oxygen in mg/L	<u></u> _	1.39		0.02	0.25		0.24	
Eh (ORP) in mVolts		7.6		-233	-46.9		-104.6	
pH in pH Units		6.46		6.97	6.52		7.12	
Specific Conductance in us/cm		232		1,935	264.7		292	
Temperature in deg C		16.5		14.85	17		15.9	

Notes

Concentrations in shaded cells exceed groundwater screening level

J - Analyte was positively identified. The reported result is an estimate

U - Analyte was not detected at or above the reported result

 $[\]mbox{UJ}$ - Analyte was not detected at or above the reported estimate

Table 7 - Groundwater Quality Data for REC 7 (East Waterway Shoreline)
K-C Worldwide Site Upland Area 110207

	0201																			
											NRP-MW-03									
	Groundwater	MW-01	MW-01	MW-02	MW-02	MW-05	MW-05	MW-06	MW-06	NRP-MW-02	06/05/12	NRP-MW-03	OMS-MW-01	REC3-MW-01	REC6-MW-02	REC7-MW-01	REC7-MW-02	REC7-MW-03	REC7-MW-04	UST70-MW-02
Chemical Name	Screening Level	02/17/12	06/06/12	02/17/12	06/06/12	02/17/12	06/05/12	02/17/12	06/07/12	06/05/12	FD	06/05/12	06/06/12	06/07/12	06/05/12	06/05/12	06/05/12	06/06/12	06/06/12	06/07/12
Total Petroleum Hydrocarbons																				
Gasoline Range Hydrocarbons in ug/L	1000	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	J	100 U	100 U		100 U					
Diesel Range Hydrocarbons in ug/L	500	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	J	50 U	50 U	50 U						50 U
Oil Range Hydrocarbons in ug/L	500	250 U	250 UJ	250 U	250 UJ	250 U	250 U	250 U	250 UJ	250 U	J	250 U	250 UJ	250 UJ						250 UJ
Total TPHs in ug/L	500	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND						ND
Dissolved Metals													_	_	_	_				
Dissolved Antimony in ug/L	640		1 U		0.69 J		1 U		1 U	1 U		1 U		1.2	1 U	1 U	1 U	0.93 J	1.8	2.27
Dissolved Arsenic in ug/L	5		0.95		1.35	4.68	3.92	5.2	6.38	1 U		2.11	0.76	2.22	3.44	2.52	1 U	1.9	2.64	5.23
Dissolved Beryllium in ug/L	270		0.02 U		0.0023 J	4 11	1 U	4 11	1 U	1 U		1 U	0.0012 J	0.0012 J	1 U	1 U	1 U	0.0009 J	0.009 J	0.0014 J
Dissolved Cadmium in ug/L	8.8		0.096		0.077	1 U	1 U	1 U	1 U	1 U		1 0	0.079	0.776	1 U	1 U	1 0	0.094	0.118	0.135
Dissolved Corpor in ug/L	2.4		0.34 2.56		1.13 1.36	7.09	1.58 5.21	4.28 4.14	5.26 3.29	1 U)	5.48 1.84	0.35 1.07	0.09 J 0.568	4.03	1.74 4.41	1.02	0.31 1.48	0.15 J 0.311	0.18 J 1.09
Dissolved Copper in ug/L Dissolved Lead in ug/L	2.4 8.1	5 U	0.097	1 11	6.42	7.09 1 U	5.21 1 U	4.14 1 U	3.29 1 U	1 U 1 U	+	1.84 1 U	0.056	0.022	2.56 1 U	4.41 1 U	1 U	0.045	1.49	0.125
Dissolved Lead III ug/L Dissolved Mercury in ug/L	0.15	3 0	0.097 0.1 U	1 0	0.42 0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1	0.1 U	0.036 0.1 U	0.022 0.1 U	0.1 U	0.1 U	0.1 U	0.043 0.1 U	0.1 U	0.123
Dissolved Nickel in ug/L	8.2		2.65		12.3	3.48	3.38	5.95	7.81	2.12	1	2.31	6.75	4.95	4.08	4.55	2.97	0.73	6.22	2.01
Dissolved Selenium in ug/L	71		1 U		1 U	15.3	13.8 J	12.4	16.3	1.11 J		4.49 J	0.8	1 U	4.54 J	8.59 J	1 U	1 U	1 U	1 U
Dissolved Silver in ug/L	1.9		0.009 J		0.013 J	1 U	1 U	1 U	1 U	1 U		1 U		0.02 U	1 U	1 U	1 U	0.013 J	0.03	0.02 U
Dissolved Thallium in ug/L	0.47		0.005 J		0.005 J	1 0	1 U	1 0	1 U	1 U	ı	1 U	0.026	0.007 J	1 U	1 U	1 U	0.006 J	0.012 J	0.014 J
Dissolved Zinc in ug/L	81		8.84		2.31	1.61	1 U	1.49	13	4.44	1	3.57	3.99	2.4	1 U	17	1 U	2.58	8.3	116
Total Metals	-		- U								-	-	-	-		-	-			
Total Antimony in ug/L	640				0.57 J				1 U								1 U		2.06	
Total Arsenic in ug/L	5				1.33				5.88								1 U		2.66	
Total Beryllium in ug/L	270				0.0005 J				1 U								1 U		0.0005 J	
Total Cadmium in ug/L	8.8				0.035				1 U								1 U		0.105	
Total Chromium (Total) in ug/L					0.38				6.62								1.06		0.08 J	
Total Copper in ug/L	2.4				0.718				3.85								1 U		0.212	
Total Lead in ug/L	8.1				0.198				1 U								1 U		0.421	
Total Mercury in ug/L	0.15				0.1 U				0.1 U								0.1 U		0.1 U	
Total Nickel in ug/L	8.2				13.1				7.82								2.62		6.25	
Total Selenium in ug/L	71 1.9				1 U 0.02 U				14.6				<u> </u>				1 U		1 U 0.004 J	
Total Silver in ug/L Total Thallium in ug/L	0.47				0.02 U				1 U								1 U		0.004 J	
Total Zinc in ug/L	81																			
Total Zilic III ug/ L					17				3 96								1 11		7 5 8	
	91				1.7				3.96				<u> </u>	<u> </u>			1 U		7.58	L
Conventional Chemistry Parameters	01				1.7				3.96		<u> </u>		<u> </u>		100 U		<u> 1 U</u>		7.58	
Conventional Chemistry Parameters Formaldehyde in ug/L	0.035		0.05 U		0.118		0.662		3.96 15.5	0.383		11.3	0.023	0.041 J	100 U 8.27	1.9	1 0	0.05 U	7.58 0.05 U	0.575
Conventional Chemistry Parameters		22,632	0.05 U	4,771		2,775	0.662	2,726		0.383		11.3	0.023	0.041 J		1.9		0.05 U		0.575
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L		22,632	0.05 U	4,771		2,775	0.662	2,726		0.383		11.3 0.2 U	0.023 J	0.041 J		1.9		0.05 U		0.575 0.05 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L		22,632 10 U		4,771	0.118	2,775		2,726	15.5						8.27		1.21		0.05 U	
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L	0.035	,	0.05 U	·	0.118 0.05 U	,	3.01		15.5 0.05 U	0.506		0.2 U	0.05 U	0.05 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L		10 U	0.05 U 12	20 0.1 U	0.118 0.05 U 10 U	100	3.01 10 U	41 0.1 U	15.5 0.05 U 13	0.506 10 U		0.2 U 19	0.05 U 17	0.05 U 17	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L	0.035	10 U	0.05 U 12 0.05 U 0.05 U	20 0.1 U 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U	100 0.28 0.1 U	3.01 10 U 0.22 0.05 U	0.1 U	15.5 0.05 U 13 0.05 U 0.05 U	0.506 10 U 0.05 U 0.05 U		0.2 U 19 0.6 0.05 U	0.05 U 17 0.05 U 0.05 U	0.05 U 17 0.05 U 0.05 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 0.15 0.05 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Anthracene in ug/L	0.035	10 U 0.1 U 0.1 U 0.1 U	0.05 U 12 0.05 U 0.05 U 0.05 U	20 0.1 U 0.1 U 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U	100 0.28 0.1 U 0.1 U	3.01 10 U 0.22 0.05 U 0.05 U	0.1 U 0.1 U 0.1 U	15.5 0.05 U 13 0.05 U 0.05 U 0.05 U 0.05 U	0.506 10 U 0.05 U 0.05 U 0.05 U		0.2 U 19 0.6 0.05 U 0.05 U	0.05 U 17 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U 0.05 U 0.05 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 0.15 0.05 U 0.05 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Benzo(g,h,i)perylene in ug/L	0.035 640 26,000	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.05 U 12 0.05 U 0.05 U 0.05 U 0.05 U 0.05 UJ	0.1 U 0.1 U 0.1 U 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.28 0.1 U 0.1 U 0.1 U	3.01 10 U 0.22 0.05 U 0.05 U 0.05 U	0.1 U 0.1 U 0.1 U 0.1 U	0.05 U 13 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.506 10 U 0.05 U 0.05 U 0.05 U 0.05 U		0.2 U 19 0.6 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 0.15 0.05 U 0.05 U 0.05 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L	0.035 640 26,000	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.05 U 12 0.05 U 0.05 U 0.05 U 0.05 UJ 0.05 UJ	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.118 0.05 U 10 U 0.05 U	0.28 0.1 U 0.1 U 0.1 U 0.1 U	3.01 10 U 0.22 0.05 U 0.05 U 0.05 U 0.05 U	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	15.5 0.05 U 13 0.05 U	0.506 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U		0.2 U 19 0.6 0.05 U 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 UJ	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 0.15 0.05 U 0.05 U 0.05 UJ
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L	0.035 640 26,000	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.05 U 12 0.05 U 0.05 U 0.05 U 0.05 UJ 0.05 UJ 0.05 UJ	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 UJ 0.05 UJ 0.05 U	0.28 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	3.01 10 U 0.22 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	15.5 0.05 U 13 0.05 U	0.506 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U		0.2 U 19 0.6 0.05 U 0.05 U 0.05 U 0.075 0.12	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 UJ 0.05 UJ	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 0.15 0.05 U 0.05 U 0.05 U 0.05 UJ 0.05 UJ
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L	0.035 640 26,000 90 3,500	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.05 U 12 0.05 U 0.05 U 0.05 U 0.05 UJ 0.05 UJ 0.05 UJ	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	15.5 0.05 U 13 0.05 U	0.506 10 U 0.05 U		0.2 U 19 0.6 0.05 U 0.05 U 0.05 U 0.075 0.12 0.2	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 UJ 0.05 UJ 0.05 U 0.05 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 0.15 0.05 U 0.05 U 0.05 U 0.05 UJ 0.05 UJ 0.05 UJ 0.05 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L	0.035 640 26,000 90 3,500 2,600	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.05 U 12 0.05 U 0.05 U 0.05 U 0.05 UJ 0.05 UJ 0.05 U 0.05 U	0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	15.5 0.05 U 13 0.05 U	0.506 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U		0.2 U 19 0.6 0.05 U 0.05 U 0.05 U 0.075 0.12 0.2 0.067	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 0.15 0.05 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L	0.035 640 26,000 90 3,500	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.05 U 12 0.05 U 0.05 U 0.05 U 0.05 UJ 0.05 UJ 0.05 UJ	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	15.5 0.05 U 13 0.05 U	0.506 10 U 0.05 U		0.2 U 19 0.6 0.05 U 0.05 U 0.05 U 0.075 0.12 0.2	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 0.15 0.05 U 0.05 U 0.05 U 0.05 UJ 0.05 UJ 0.05 UJ 0.05 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluorene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L	0.035 640 26,000 90 3,500 2,600 170	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.05 U 12 0.05 U 0.05 U 0.05 U 0.05 UJ 0.05 UJ 0.05 U 0.05 U 0.05 U	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	15.5 0.05 U 13 0.05 U	0.506 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U		0.2 U 19 0.6 0.05 U 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 0.15 0.05 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluorene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018	0.1 U	0.05 U 12 0.05 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U	0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	0.05 U 13 0.05 U	0.506 10 U 0.05 U		0.2 U 19 0.6 0.05 U 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 0.15 0.05 U 0.01 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benz(a)anthracene in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018	0.1 U	0.05 U 12 0.05 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U 0.01 U 0.01 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U	0.1 U	15.5 0.05 U 13 0.05 U	0.506 10 U 0.05 U		0.2 U 19 0.6 0.05 U 0.05 U 0.07 0.12 0.2 0.067 0.05 U 0.014 0.01 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 0.15 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Suspended Solids in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018	0.1 U	0.05 U 12 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U	0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U 0.01 U 0.01 U	0.1 U	15.5 0.05 U 13 0.05 U	0.506 10 U 0.05 U		0.2 U 19 0.6 0.05 U 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U 0.01 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	0.05 U 17 0.05 U 0.01 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 10 U 0.15 0.05 U 0.01 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluoranthene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benzo(a)pyrene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018	0.1 U	0.05 U 12 0.05 U 0.01 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U	0.1 U	15.5 0.05 U 13 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U	0.506 10 U 0.05 U 0.01 U		0.2 U 19 0.6 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U 0.01 U 0.01 U 0.011 0.01 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U	0.05 U 17 0.05 U 0.01 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 10 U 0.15 0.05 U 0.01 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L L Indeno(1,2,3-cd)pyrene in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.1 U	0.05 U 12 0.05 U 0.01 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U	0.1 U	15.5 0.05 U 13 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U	0.506 10 U 0.05 U 0.01 U		0.2 U 19 0.6 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U	0.05 U 17 0.05 U 0.01 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 10 U 0.15 0.05 U 0.01 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018	0.1 U	0.05 U 12 0.05 U 0.01 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U	0.1 U	15.5 0.05 U 13 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U	0.506 10 U 0.05 U 0.01 U		0.2 U 19 0.6 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U 0.01 U 0.01 U 0.011 0.01 U	0.05 U 17 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U	0.05 U 17 0.05 U 0.01 U	8.27 21.5	0.429	0.14	0.05 U	0.05 U	0.05 U 10 U 10 U 0.15 0.05 U 0.01 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benzo(a)pyrene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Chrysene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L Volatile Organic Compounds	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.1 U	0.05 U 12 0.05 U 0.01 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U	0.1 U	15.5 0.05 U 13 0.05 U 0.01 U	0.506 10 U 0.05 U 0.01 U		0.2 U 19 0.6 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U	0.05 U 17 0.05 U 0.01 U	0.05 U 17 0.05 U 0.01 U	8.27 21.5 10 U	0.429 10 U	1.21 0.14 14	0.05 U	0.05 U	0.05 U 10 U 10 U 0.15 0.05 U 0.01 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Phenanthrene in ug/L Phenanthrene in ug/L Naphthalene in ug/L Naphthalene in ug/L Benzo(a)pyrene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L Volatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 7.4	0.1 U	0.05 U 12 0.05 U 0.01 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 UJ	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U	0.1 U	15.5 0.05 U 13 0.05 U 0.01 U	0.506 10 U 0.05 U 0.01 U		0.2 U 19 0.6 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U	0.05 U 17 0.05 U 0.01 U	0.05 U 17 0.05 U 0.01 U	8.27 21.5 10 U	0.429 10 U	1.21 0.14 14	0.05 U	0.05 U 0.05 U 10 U	0.05 U 10 U 10 U 0.15 0.05 U 0.01 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Phenanthrene in ug/L Pyrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Volatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,1-Trichloroethane in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 1.018 0.018 0.018 1.018 1.018 1.018	0.1 U	0.05 U 12 0.05 U 0.01 U 1 U 0.01 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U	0.1 U	15.5 0.05 U 13 0.05 U 0.01 U	0.506 10 U 0.05 U 0.01 U		0.2 U 19 0.6 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U	0.05 U 17 0.05 U 0.01 U	0.05 U 17 0.05 U 0.01 U	8.27 21.5 10 U	0.429 10 U	1.21 0.14 14 14 1 U	0.05 U 10 U	0.05 U 0.05 U 10 U	0.05 U 10 U 10 U 0.15 0.05 U 0.01 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Phenanthrene in ug/L Pyrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Lord CAHS TEQ in ug/L Volatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,2-Tetrachloroethane in ug/L 1,1,2-Tetrachloroethane in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 10,018 0.018 0.018 0.018 0.018	0.1 U	0.05 U 12 0.05 U 0.01 U 1 U 0.01 U 1 U 0.01 U 1 U 1 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U 1 U 1 U 1 U	0.1 U	0.05 U 13 0.05 U 0.01 U	0.506 10 U 0.05 U 0.01 U		0.2 U 19 0.6 0.05 U 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U 1 U 0.01 U 1 U 0.01 U 1 U 0.01 U	0.05 U 17 0.05 U 0.01 U	0.05 U 17 0.05 U 0.01 U	8.27 21.5 10 U	0.429 10 U	1.21 0.14 14 14 14 1 U 1 U 1 U	0.05 U 10 U	0.05 U 10 U 10 U 11 U 1 U 1 U 1 U	0.05 U 10 U 10 U 0.15 0.05 U 0.01 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Phenanthrene in ug/L Pyrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Dibenzo(a,h)anthracene in ug/L Lindeno(1,2,3-cd)pyrene in ug/L Volatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 10,018 11,000 4 7.9	0.1 U	0.05 U 12 0.05 U 0.01 U 1 U 0.01 U 1 U 0.01 U 1 U 0.01 U 1 U 1 U 1 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.01 U 1 U 0.01 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U	0.1 U	15.5 0.05 U 13 0.05 U 0.01 U 1 U 1 U 1 U 1 U	0.506 10 U 0.05 U 0.01 U 1 U 1 U 1 U 1 U		0.2 U 19 0.6 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U 1 U 0.00 U 1 U 0.00 U 0.00 U 0.00 U 0.00 U 0.01 U	0.05 U 17 0.05 U 0.01 U 1 U 0.01 U 1 U 0.01 U 1 U 0.01 U 1 U 0.01 U	0.05 U 17 0.05 U 0.01 U 1 U 0.01 U	1 U 1 U 1 U 1 U	0.429 10 U	1.21 0.14 14 14 14 1 U 1 U 1 U 1 U	0.05 U 10 U	0.05 U 10 U 10 U 11 U 11 U 11 U 11 U	0.05 U 10 U 10 U 0.15 0.05 U 0.01 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Anthracene in ug/L Benzo(g,h,i)perylene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Naphthalene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Dibenzo(a,h)anthracene in ug/L Lndeno(1,2,3-cd)pyrene in ug/L Volatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,1-Dichloroethane in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 11,000 4 7.9 2,300	0.1 U	0.05 U 12 0.05 U 0.01 U 1 U 0.01 U 1 U 0.01 U 1 U 1 U 1 U 1 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.01 UJ 0.01 UJ 0.01 UJ 0.01 UJ 0.01 UJ 0.01 UJ 1 U 1 U 1 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U	0.1 U	0.05 U 13 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U	0.506 10 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U		0.2 U 19 0.6 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U	0.05 U 17 0.05 U 0.01 U 1 U 1 U 1 U 1 U	0.05 U 17 0.05 U 0.01 U 1 U 0.01 U	1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U	1.21 0.14 14 14 1 U 1 U 1 U 1 U 1 U	0.05 U 10 U 10 U 10 U 10 U 10 U 10 U 11 U 11	0.05 U 10 U 10 U 11 U 11 U 11 U 11 U	0.05 U 10
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluoranthene in ug/L Pyrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Volatile Organic Compounds 1,1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 10,018 11,000 4 7.9	0.1 U	0.05 U 12 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U	0.1 U	15.5 0.05 U 13 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U	0.506 10 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U		0.2 U 19 0.6 0.05 U 0.05 U 0.07 0.12 0.2 0.067 0.05 U 0.014 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U	0.05 U 17 0.05 U 0.01 U 1 U 1 U 1 U 1 U	0.05 U 17 0.05 U 0.01 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1.21 0.14 14 14 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 10 U 10 U 10 U 10 U 10 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 0.05 U 10 U 10 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 10 U 10 U 0.15 0.05 U 0.01 U 1 U 1 U 1 U 1 U 1 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Phenanthrene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benzo(a)pyrene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Volatile Organic Compounds 1,1,1,2-Tertachloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1-Dichloroethane in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 11,000 4 7.9 2,300	0.1 U	0.05 U 12 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U	0.1 U	15.5 0.05 U 13 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.506 10 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U		0.2 U 19 0.6 0.05 U 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 17 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U	0.05 U 17 0.05 U 0.01 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1.21 0.14 14 14 14 1 U 1 U 1 U 1 U 1 U	0.05 U 10 U 10 U 10 U 10 U 10 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 10 U 10 U 11 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 10
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Phenanthrene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benzo(a)pyrene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Dibenzo(a,h)anthracene in ug/L Lotrysene in ug/L Dibenzo(a,h)anthracene in ug/L Volatile Organic Compounds 1,1,2-Tertachloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1-Dichloroethane in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 11,000 4 7.9 2,300	0.1 U	0.05 U 12 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.1 U	15.5 0.05 U 13 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.506 10 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U		0.2 U 19 0.6 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 17 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 17 0.05 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1.21 0.14 14 14 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 10 U 10 U 10 U 10 U 10 U 11 U 11 U 11	0.05 U 10 U 10 U 11 U 11 U 11 U 11 U 11 U 11	0.05 U 10
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Phenanthrene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benzo(a)pyrene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L L Dibenzo(a,h)anthracene in ug/L Volatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,1-Dichloroethane in ug/L 1,1-Dichloroethane in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloropropene in ug/L 1,2,3-Trichlorobenzene in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 11,000 4 11,000 4 7.9 2,300 3.2	0.1 U	0.05 U 12 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U	0.1 U	15.5 0.05 U 13 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.506 10 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U		0.2 U 19 0.6 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 17 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 17 0.05 U 0.01 UJ 0.01 UJ 0.01 UJ 0.01 UJ 0.01 UJ 0.01 UJ 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1.21 0.14 14 14 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 10 U 10 U 11 U 11 U 11 U 11 U 11 U 11	0.05 U 10 U 10 U 0.15 0.05 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U
Conventional Chemistry Parameters Formaldehyde in ug/L Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L Total Sulfide in mg/L Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluoranthene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benzo(a)pyrene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L L ndeno(1,2,3-cd)pyrene in ug/L Volatile Organic Compounds 1,1,1,2-Tertachloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1-Dichloroethane in ug/L	0.035 640 26,000 90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 11,000 4 7.9 2,300	0.1 U	0.05 U 12 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U	20 0.1 U	0.118 0.05 U 10 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.28 0.1 U	3.01 10 U 0.22 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.1 U	15.5 0.05 U 13 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.506 10 U 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U		0.2 U 19 0.6 0.05 U 0.05 U 0.075 0.12 0.2 0.067 0.05 U 0.014 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 17 0.05 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 17 0.05 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1.21 0.14 14 14 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.05 U 10 U 10 U 11 U 11 U 11 U 11 U 11 U 11	0.05 U 10 U 10 U 0.15 0.05 U 0.01 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U

Table 7 - Groundwater Quality Data for REC 7 (East Waterway Shoreline)
K-C Worldwide Site Upland Area 110207

		1	I I		ı	1	1						1			T	1	1	1	
											NRP-MW-03									
	Groundwater	MW-01	MW-01	MW-02	MW-02	MW-05	MW-05	MW-06	MW-06	NRP-MW-02	06/05/12	NRP-MW-03	OMS-MW-01	REC3-MW-01	REC6-MW-02	REC7-MW-01	REC7-MW-02	REC7-MW-03	REC7-MW-04	UST70-MW-02
Chemical Name	Screening Level	02/17/12	06/06/12	02/17/12	06/06/12	02/17/12	06/05/12	02/17/12	06/07/12	06/05/12	FD	06/05/12	06/06/12	06/07/12	06/05/12	06/05/12	06/05/12	06/06/12	06/06/12	06/07/12
1,2-Dibromo-3-chloropropane in ug/L			10 U		10 U		10 U		10 U	10 U		10 U	10 U	10 U	10 U	J 10 U	J 10 U	10 UJ	10 UJ	10 U
1,2-Dibromoethane (EDB) in ug/L	0.74		1 U		1 U		1 U		1 U	1 U		1 U	1 U	1 U	1 U	1 L	J 1 U	1 U	1 U	1 U
1,2-Dichlorobenzene in ug/L	1,300		1 U		1 U		1 U		1 U			1 U	1 U		1 U			1 U	1 U	
1,2-Dichloroethane (EDC) in ug/L	4.2		1 U		1 U		1 U		1 U			1 U			1 U				1 U	
1,2-Dichloropropane in ug/L	15		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U				1 U	
1,3,5-Trimethylbenzene in ug/L	25		1 U		1 U		1 U		1 U	1 U		1 U	1 U	1 U	1 U	1 L	J 1 U	1 U	1 U	
1,3-Dichlorobenzene in ug/L	960		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U		J 1 U		1 U	
1,3-Dichloropropane in ug/L	100		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U		1 U		1 U	
1,4-Dichlorobenzene in ug/L	190		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U				1 U	
2,2-Dichloropropane in ug/L 2-Butanone in ug/L	350,000		1 U 10 U		1 U 10 U		1 U 10 U		1 U	1 U		1 U 10 U	1 U 10 U		1 U		1 U		1 U 10 U	1 U 10 U
2-Chlorotoluene in ug/L	350,000		10 U		10 U		10 U		10 U	10 U 1 U		10 U	10 U		10 U		J 10 U	1	10 U	
2-Hexanone in ug/L			10 U		10 U		10 U		10 U	10 U		10 U	10 U	10 U	10 U	10 0	10 U	10 U	10 U	10 U
4-Chlorotoluene in ug/L			10 U		10 U		10 U		10 U	10 U		10 U	10 U	10 U	10 U	10 0	J 1 U	10 U	10 U	
4-Methyl-2-pentanone in ug/L	11,000		10 U		10 U		10 U		10 U	10 U		10 U	10 U	10 U	10 U	10 L	J 10 U	10 U	10 U	10 U
Acetone in ug/L	,		10 U		10 U		10 U		10 U	10 U		10 U	10 U	10 U	10 U	J 10 L	J 10 U	10 U	10 U	10 U
Benzene in ug/L	2.4	1 U	0.35 U	1 U	0.35 U	1 U	0.35 U	1 U	0.35 U	0.35 U		0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
Bromobenzene in ug/L			1 U		1 U		1 U		1 U	1 U		1 U	1 U	1 U	1 U	1 1 U	J 1 U	1 U	1 U	1 U
Bromodichloromethane in ug/L	0.09		1 U		1 U		1 U		1 U	1 U		1 U	1 U	1 U	1 U	1 L	1 U	1 U	1 U	1 U
Bromoform in ug/L	140		1 UJ		1 UJ		1 UJ		1 U	1 UJ		1 UJ	1 UJ	1 UJ	1 UJ	1 U.	1 UJ	1 UJ	1 UJ	1 UJ
Bromomethane in ug/L	13		1 U		1 U		1 U		1 U	1 U		1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
Carbon tetrachloride in ug/L	0.22		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U	1 L	1 U	1 U	1 U	-
Chlorobenzene in ug/L	100		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U		1 U		1 U	
Chloroethane in ug/L	12		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U		1 U		1 U	
Chloroform in ug/L	1.2		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U				1 U	
Chloromethane in ug/L	5.2		10 U		10 U		10 U		10 U	10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
cis-1,2-Dichloroethene (DCE) in ug/L	160		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U			1	1 U	
cis-1,3-Dichloropropene in ug/L Dibromochloromethane in ug/L	0.22		1 U 1 U		1 U		1 U		1 U	1 U 1 U		1 U 1 U			1 U				1 U 1 UJ	
Dibromochloromethane in ug/L Dibromomethane in ug/L	0.22		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U				1 U	
Dichlorodifluoromethane in ug/L	9.9		1 U		1 U		1 UJ		1 U	1 UJ		1 UJ	1 U	1 U	1 UJ		1 UJ		1 U	
Ethylbenzene in ug/L	2,100	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U		1 U		1 0		1 U	-
Hexachlorobutadiene in ug/L	0.81		1 U		1 U		1 U	1 0	1 U	1 U		1 U	1 U		1 U		J 1 U		1 U	
Isopropylbenzene in ug/L	720		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U		J 1 U	1 U	1 U	1 U
Methylene chloride in ug/L	94		5 UJ		5 UJ		5 U		5 U	5 U		5 U	5 UJ	5 U	5 U			5 U	5 U	5 U
Methyl-Tert-Butyl Ether in ug/L	610		1 U		1 U		1 U		1 U	1 U		1 U	1 U	1 U	1 U	1 L	1 U	1 U	1 U	1 U
n-Propylbenzene in ug/L			1 U		1 U		1 U		1 U	1 U		1 U	1 U	1 U	1 U	1 L	1 U	1 U	1 U	1 U
p-Isopropyltoluene in ug/L			1 U		1 U		1 U		1 U	1 U		1 U	1 U	1 U	1 U	1 L	1 U	1 U	1 U	1 U
sec-Butylbenzene in ug/L			1 U		1 U		1 U		1 U	1 U		1 U	1 U	1 U	1 U	1 L	J 1 U	1 U	1 U	1 U
Styrene in ug/L	78		1 U		1 U		1 U		1 U	1 U		1 U	1 U	1 U	1 U	1 L	J 1 U	1 U	1 U	
tert-Butylbenzene in ug/L	2.22		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U		1 U		1 U	
Tetrachloroethene (PCE) in ug/L	0.39	4 11	1 U	4 11	1 U	4 11	1 U	4 11	1 U	1 U		1 U	1 U	1 U	1 U	1 1	1 U		1 U	
Toluene in ug/L	15,000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U		1 U	1 1	1 0		1 U	
trans-1,2-Dichloroethene in ug/L trans-1,3-Dichloropropene in ug/L	130		1 U 1 U		1 U		1 U 1 U		1 U			1 U			1 U				1 U 1 U	
Trichloroethene (TCE) in ug/L	0.42		1 U		1 U		1 U		1 U			1 U			1 U				1 U	
Trichlorofluoromethane in ug/L	120		1 U		1 U		1 U		1 U	1 U		1 U	1 U		1 U				1 U	
Vinyl chloride in ug/L	0.35		0.2 U		0.2 U		0.2 U		0.2 U	0.2 U		0.2 U	0.2 U		0.2 U		0.2 U		0.2 U	
m,p-Xylenes in ug/L	310		2 U		2 U		2 U		2 U	2 U		2 U	2 U		2 U		J 2 U		2 U	
o-Xylene in ug/L	440		1 U		1 U		1 U		1 U	1 U		1 U	1 U	1 U	1 U	1 L	1 U	1 U	1 U	1 U
Xylenes (total) in ug/L	310	3 U	ND	3 U	ND	3 U	ND	3 U	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND
Semi-Volatile Organics																				
1,2,4-Trichlorobenzene in ug/L	2		1 U		1 U	1 U		1 U	1 U		1 U	1 U			1 U				1 U	
1,2-Dichlorobenzene in ug/L	1,300		1 U		1 U	1 U	_	1 U	1 U		1 U	1 U			1 U				1 U	
1,3-Dichlorobenzene in ug/L	960		1 U		1 U	1 U	_	1 U	1 U		1 U	1 U			1 U				1 U	
1,4-Dichlorobenzene in ug/L	190		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			1 U		1 0	1 U	1 U	
2,4,5-Trichlorophenol in ug/L	3,600		10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U		10 U		10 U	
2,4,6-Trichlorophenol in ug/L	2.4 190		10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U		10 U	10 U	10 U	
2,4-Dichlorophenol in ug/L 2,4-Dimethylphenol in ug/L	190 550		10 U 10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	10 U 10 U	10 U	10 U 10 U	
2,4-Dinitrophenol in ug/L	3,500		30 U		30 U	30 U	30 U	30 U	30 U	30 U	30 U	30 U			30 U		30 U		30 U	
2-Chloronaphthalene in ug/L	1,000		30 U		30 U	1 U	30 U	1 U	1 U		30 U	1 U			1 U			1	1 U	
2-Chlorophenol in ug/L	97		10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	10 0	10 U	10 U	10 U	
2-Methylphenol in ug/L	3,		10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 0	10 U	10 U	10 U	10 U
2-Nitroaniline in ug/L	1		3 U		3 U	1 U	3 U	1 U	3 U	3 U	3 U	3 U			3 U	3 1	J 3 U		3 U	
2-Nitrophenol in ug/L			10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U		J 10 U	10 U	10 U	
3 & 4 Methylphenol in ug/L			20 U		20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U		20 U		J 20 U		20 U	
3-Nitroaniline in ug/L			3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U			3 U	J 3 L	J 3 U	1	3 U	
4,6-Dinitro-2-methylphenol in ug/L			30 U		30 U	30 U	30 U	30 U	30 U	30 U	30 U	30 U	30 U	30 U	30 U	30 L	30 U	30 U	30 U	30 U

Table 7 - Groundwater Quality Data for REC 7 (East Waterway Shoreline)

K-C Worldwide Site Upland Area 110207

	T I		1		1	T .	ı	1	1			ı	ı	ı		ı	ı	ı	ı	
											NRP-MW-03									
	Groundwater	MW-01	MW-01	MW-02	MW-02	MW-05	MW-05	MW-06	MW-06	NRP-MW-02	06/05/12	NRP-MW-03	OMS-MW-01	REC3-MW-01	REC6-MW-02	REC7-MW-01	REC7-MW-02	REC7-MW-03	REC7-MW-04	UST70-MW-02
Chemical Name	Screening Level	02/17/12	06/06/12	02/17/12	06/06/12	02/17/12	06/05/12	02/17/12	06/07/12	06/05/12	FD	06/05/12	06/06/12	06/07/12	06/05/12	06/05/12	06/05/12	06/06/12	06/06/12	06/07/12
4-Bromophenyl phenyl ether in ug/L			1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	+
4-Chloro-3-methylphenol in ug/L			10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
4-Chloroaniline in ug/L			3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	
4-Chlorophenyl phenyl ether in ug/L			1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	
4-Nitroaniline in ug/L			10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
4-Nitrophenol in ug/L			10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
Acenaphthene in ug/L	640		10 U		10 0	10 0	10 0	10 0	10 0	10 0	10 U	10 0	10 0	10 0	10 U	2.7	10 U	10 U	10 U	
Acenaphthylene in ug/L	040		1 U								1 U				1 U	1 U	1 0	1 U	1 U	
Anthracene in ug/L	26,000		1 U								1 U				1 U	1 U			1 U	
Benzo(g,h,i)perylene in ug/L	20,000		1 U								1 U				1 U	1 U		1 U	1 U	
Benzoic acid in ug/L			50 U		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U					
Benzyl alcohol in ug/L			10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
Benzyl butyl phthalate in ug/L	8.2		10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 0	10 U	10 U	10 U					
Bis(2-chloro-1-methylethyl) ether in ug/L	37		10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	1 0 U	10 U	10 U	10 U					
Bis(2-chloroethoxy)methane in ug/L	37		10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 0	10 U	10 U						
Bis(2-chloroethyl) ether in ug/L	0.53		10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	1 10 U	10 U	10 U	1 0 10 U					
Bis(2-ethylhexyl) phthalate in ug/L	2.2		10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
Carbazole in ug/L	۷.۷		10 U		10 U		10 U	10 U		10 U	1									
Dibenzofuran in ug/L			1 U		1 U	1 U	1 U	1 U	1 U		1 U	1 U		1 U	1 U	1 U			1 U	
Diethyl phthalate in ug/L	28,000		1 U		1 U	1 U	1 U	1 U	1 U		1 U	1 U		1 U	1 U	1 U			1 U	
Dimethyl phthalate in ug/L	1,100,000		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 1 11	1 U	1 U	
Di-n-butyl phthalate in ug/L	2,900		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 0	1 U	1 U	
Di-n-octyl phthalate in ug/L	2,900		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 1 0		1 U	
Fluoranthene in ug/L	90		1 U		1 0	1 0	1 0	1 0	1 0	1 0	1 U	1 0	1 0	1 0	1 U	1 U			1 U	
Fluorene in ug/L	3,500		1 U								1 U				1 U	1 U	1 1 0	1 U	1 U	
Hexachlorobenzene in ug/L	0.00029		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			1 U	
Hexachlorobetizette iii ug/L	0.81		1 U		1 U	1 U		1 U	1 U		1 U	1 U		1 U	1 U	1 U			1 U	
Hexachlorocyclopentadiene in ug/L	1,100		3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U		3 U	3 U	3 U	3 U		3 U	
Hexachloroethane in ug/L	3.3		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U	1 U	
Isophorone in ug/L	600		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 1 11	1 U	1 U	
Nitrobenzene in ug/L	690		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 0	1 U	1 U	
N-Nitroso-di-n-propylamine in ug/L	0.51		10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
N-Nitrosodiphenylamine in ug/L	6		10 U		1 U	10 U	10 U	1 U	1 U	1 U	10 U	10 U	10 U	1 U	1 U	1 U	10 0	10 U	10 U	
Pentachlorophenol in ug/L	1.5		10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
Phenanthrene in ug/L	1.5		10 U		10 0	10 0	10 0	10 0	10 0	10 0	1 U	10 0	10 0	10 0	1 U	1 U	1 1 U	10 U	10 U	
Phenol in ug/L	560,000		10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
Pyrene in ug/L	2,600		1 U		10 0	10 0	10 0	10 0	10 0	10 0	1 U	10 0	10 0	10 0	1 U	1 U	1 1 1	1 U	1 U	
Benz(a)anthracene in ug/L	0.018		1 U								1 U				1 U	1 U	1 1 1	1 U	1 U	
Benzo(a)pyrene in ug/L	0.018		1 U								1 U	 	Ì		1 U	1 U	1 U	1 U	1 U	
Benzo(b)fluoranthene in ug/L	0.018		1 U								1 U	 	Ì		1 U	1 U	1 U		1 U	
Benzo(k)fluoranthene in ug/L	0.018		1 U								1 U	i			1 U	1 U	1 U	1 U	1 U	1
Chrysene in ug/L	0.018		1 U								1 U	İ			1 U	1 U	1 U	1 U	1 U	
Dibenzo(a,h)anthracene in ug/L	0.018		1 U								1 U	İ			1 U	1 U		1 U	1 U	
Indeno(1,2,3-cd)pyrene in ug/L	0.018		1 U								1 U	İ			1 U	1 U	1 U			
2,4-Dinitrotoluene in ug/L	3.4		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			1 U	
2,6-Dinitrotoluene in ug/L			1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			1 U	1 U		1 U	1 U	-
2-Methylnaphthalene in ug/L			1 U		1 U	1 U	1 U	1 U	1 U		1 U	1 U		1 U	1 U	1 U		1 U	1 U	-
Naphthalene in ug/L	170										1 U	<u> </u>	Ì		1 U	1 U			1 U	
Field Parameters	-		<u>. </u>									•								
Conductivity in us/cm		36,646		9,109		5,773		3,809												
Dissolved Oxygen in mg/L		6.31	6.99	6.6	1.44	1.53	0.07	4.96	0.23	0.35		2.01	4.69	0.29	0.02	0.39	1.04	6.92	0.19	0.47
Eh (ORP) in mVolts		118	114.1	-102	87.5	-222	-78.1	-141	-39.9	-1.3		-98.9	115.1	22.7	-233	-88.8	-128.1	100.6	-154.7	-62.3
pH in pH Units		7.43	7.61	8.85	8.04	6.67	5.8	7.39	7.34	6.13		6.51	7.16	7.8	6.97	0.61	6.91	7.76	8.11	7.28
Specific Conductance in us/cm			19,290		19,510		3,554		3,347	770		1,410	19,300	17,829	1,935	3,340	872	21,420	21,882	8,768
Temperature in deg C		8.3	14.57	10.4	14.67	11	12.94	17.2	17.73	13.37		12.6	14.5	13.1	14.85	12.6	14	13.75	13.2	23.2
Turbidity in NTU		4.7	2.47	79.4	2.01	70	0.73	25.8	22.1	1.9		37.4	15.8	7.03	5.38	0.58	1.21	1.39	2.49	1.47
		7.7	2.77	, ,,,	2.01	, 0	3.73	23.0		1.7		37.7	15.0	7.03	5.50	0.50	1.22	1.55	2.73	2.77

 $Concentrations \ in \ shaded \ cells \ indicate \ value \ exceeds \ Preliminary \ Groundwater \ Screening \ Level \ for \ Unrestricted \ Land \ Use$

J - Analyte was positively identified. The reported result is an estimate.

U - Analyte was not detected at or above the reported result.

UJ - Analyte was not detected at or above the reported estimate

Table 8A - Soil Quality Data for USTs 68, 68R K-C Worldwide Site Upland Area 110207

			UST68-MW-	UST68-MW-	UST68-MW-	UST68-MW-	UST68-MW-	UST68-MW-	UST68-MW-
	Unrestricted Soil	Industrial Soil	01	02	02 FD	04	04 FD	05	05
Chemical Name	Screening Level	Screening Level	5/25/2012	5/30/2012	5/30/2012	5/24/2012	5/24/2012	5/24/2012	5/24/2012
	(mg/kg)	(mg/kg)	(7-8 ft.)	(10-11 ft.	(10-11	(11-12 ft.	(11-12	(7-8 ft.)	(12-13 ft.
Total Petroleum Hydrocarbons Gasoline Range Hydrocarbons in mg/kg	100	100	2 U	4.9	2 U	2 U	2 U	2 U	2 U
Volatile Organic Compounds	100	100	2 0	4.5			2 0	2 0	2 0
1,1,1,2-Tetrachloroethane in mg/kg	38	5,000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1,1-Trichloroethane in mg/kg	2	2	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1,2,2-Tetrachloroethane in mg/kg	5	660	0.05 U	0.05 U		0.05 U		0.05 U	0.05 U
1,1,2-Trichloroethane in mg/kg	18	2,300	0.05 U		0.00		0.05 U	0.05 U	0.05 U
1,1-Dichloroethane in mg/kg	_		0.05 U		0.05 U		0.05 U	0.05 U	0.05 U
1,1-Dichloroethene in mg/kg 1,1-Dichloropropene in mg/kg			0.05 U				0.05 U 0.05 U	0.05 U 0.05 U	0.05 U
1,2,3-Trichlorobenzene in mg/kg			0.03 U					0.03 U	0.05 U
1,2,3-Trichloropropane in mg/kg	0.033	4.4	0.05 U				0.05 U	0.05 U	0.05 U
1,2,4-Trichlorobenzene in mg/kg	35	4,500	0.25 U		0.25 U		0.25 U	0.25 U	0.25 U
1,2,4-Trimethylbenzene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2-Dibromo-3-chloropropane in mg/kg	1.3	160	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane (EDB) in mg/kg	0.005	0.005	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U
1,2-Dichlorobenzene in mg/kg		1 100	0.05 U		0.05 U		0.05 U	0.05 U	0.05 U
1,2-Dichloroethane (EDC) in mg/kg	11	1,400	0.05 U		0.05 U		0.05 U	0.05 U	0.05 U
1,2-Dichloropropane in mg/kg 1,3,5-Trimethylbenzene in mg/kg	+	 	0.05 U				0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
1,3-Dichlorobenzene in mg/kg	+	 	0.05 U				0.05 U	0.05 U	0.05 U
1,3-Dichloropropane in mg/kg	1	 	0.05 U		0.05 U		0.05 U	0.05 U	0.05 U
1,4-Dichlorobenzene in mg/kg			0.05 U		0.05 U		0.05 U	0.05 U	0.05 U
2,2-Dichloropropane in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
2-Butanone in mg/kg			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Chlorotoluene in mg/kg			0.05 U		0.05 U		0.05 U	0.05 U	0.05 U
2-Hexanone in mg/kg			0.5 U	0.5 U			0.5 U	0.5 U	0.5 U
4-Chlorotoluene in mg/kg			0.05 U		0.05 U		0.05 U	0.05 U	0.05 U
4-Methyl-2-pentanone in mg/kg Acetone in mg/kg	-		0.5 U 0.5 U				0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
Benzene in mg/kg	0.03	0.03	0.03 U				0.03 U	0.03 U	0.03 U
Bromobenzene in mg/kg	0.03	0.03	0.05 U				0.05 U	0.05 U	0.05 U
Bromodichloromethane in mg/kg	16	2,100	0.05 U		0.05 U		0.05 U	0.05 U	0.05 U
Bromoform in mg/kg	130	17,000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Bromomethane in mg/kg			0.5 U		0.0		0.5 U	0.5 U	0.5 U
Carbon tetrachloride in mg/kg	14	1,900	0.05 U		0.00				
Chlorobenzene in mg/kg			0.05 U				0.05 U		0.05 U 0.5 U
Chloroethane in mg/kg Chloroform in mg/kg	-		0.5 U 0.05 U				0.5 U 0.05 U	0.5 U 0.05 U	0.5 U
Chloromethane in mg/kg			0.5 UJ				0.5 UJ		0.05 UJ
cis-1,2-Dichloroethene (DCE) in mg/kg			0.05 U					0.05 U	0.05 U
cis-1,3-Dichloropropene in mg/kg			0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U
Dibromochloromethane in mg/kg	12	1,600	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dibromomethane in mg/kg			0.05 U					0.05 U	
Dichlorodifluoromethane in mg/kg	1		0.5 UJ						0.5 UJ
Ethylbenzene in mg/kg	6	1 700	0.05 U					0.05 U	
Hexachlorobutadiene in mg/kg Isopropylbenzene in mg/kg	13	1,700	0.25 U 0.05 U				0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U
Methylene chloride in mg/kg	0.02	0.02	0.03 U					0.03 U	0.05 U
Methyl-Tert-Butyl Ether in mg/kg	0.1	0.1	0.05 U					0.05 U	
n-Propylbenzene in mg/kg			0.05 U					0.05 U	
p-Isopropyltoluene in mg/kg			0.05 U				0.05 U	0.05 U	0.05 U
sec-Butylbenzene in mg/kg			0.05 U					0.05 U	
Styrene in mg/kg	1	<u> </u>	0.05 U					0.05 U	
tert-Butylbenzene in mg/kg	0.05	0.05	0.05 U					0.05 U	
Tetrachloroethene (PCE) in mg/kg Toluene in mg/kg	0.05 7	0.05 7	0.025 U 0.05 U				0.025 U 0.05 U	0.025 U 0.05 U	0.025 U 0.05 U
trans-1,2-Dichloroethene in mg/kg	<u>'</u>	 	0.05 U					0.05 U	
trans-1,3-Dichloropropene in mg/kg	1	 	0.05 U					0.05 U	
Trichloroethene (TCE) in mg/kg	0.03	0.03	0.03 U				0.03 U	0.03 U	
Trichlorofluoromethane in mg/kg			0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Vinyl chloride in mg/kg	0.67	88	0.05 U		0.05 U		0.05 U	0.05 U	0.05 U
m,p-Xylenes in mg/kg	16,000	700,000	0.1 U					0.1 U	0.1 U
o-Xylene in mg/kg	16,000	700,000	0.05 U					0.05 U	0.05 U
Xylenes (total) in mg/kg	9	9	ND 0.05 U	ND O OF 11	ND O.O. II	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND O OF 11
Naphthalene in mg/kg	5	5	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U

Concentrations in shaded cells exceed unrestricted soil screening leve Concentrations within bold border exceed industrial soil screening level

U - Analyte was not detected at or above the reported result \mbox{UJ} - Analyte was not detected at or above the reported estimate

Table 8B - Groundwater Quality Data for USTs 68, 68R

		UST68-MW-	UST68-MW-	UST68-MW-	UST68-MW
Chemical Name	Groundwater Screening Level	01 6/6/2012	02 6/6/2012	04 6/6/2012	05 6/6/2012
Total Petroleum Hydrocarbons	Jeree8 2010.	0/0/2012	0/0/2022	0/0/2012	0,0,2012
Gasoline Range Hydrocarbons in ug/L	1000	100 U	100 U	100 U	100
Conventional Chemistry Parameters		40 11	40 11	40 11	10
Total Suspended Solids in mg/L /olatile Organic Compounds		10 U	10 U	10 U	10
1,1,1,2-Tetrachloroethane in ug/L	7.4	1 U	1 U	1 U	1
1,1,1-Trichloroethane in ug/L	11,000	1 U	1 U	1 U	1
1,1,2,2-Tetrachloroethane in ug/L	4	1 U	1 U	1 U	1
1,1,2-Trichloroethane in ug/L	7.9	1 U 1 U	1 U 1 U	1 U 1 U	1
1,1-Dichloroethane in ug/L 1,1-Dichloroethene in ug/L	2,300 3.2	1 U	1 U 1 U	1 U	1
1,1-Dichloropropene in ug/L	3.2	1 U	1 U	1 U	1
1,2,3-Trichlorobenzene in ug/L		1 U	1 U	1 U	1
1,2,3-Trichloropropane in ug/L		1 U	1 U	1 U	1
1,2,4-Trichlorobenzene in ug/L	2 24	1 U 1 U	1 U 1 U	1 U 1 U	1 1
1,2,4-Trimethylbenzene in ug/L 1,2-Dibromo-3-chloropropane in ug/L	24	1 U 10 UJ	1 U 10 UJ	10 UJ	10
1,2-Dibromoethane (EDB) in ug/L	0.74	0.01 U	0.01 U	0.01 U	0.01
1,2-Dichlorobenzene in ug/L	1,300	1 U	1 U	1 U	1
1,2-Dichloroethane (EDC) in ug/L	4.2	1 U	1 U	1 U	1
1,2-Dichloropropane in ug/L	15	1 U	1 U	1 U	1
1,3,5-Trimethylbenzene in ug/L 1,3-Dichlorobenzene in ug/L	25 960	1 U 1 U	1 U 1 U	1 U 1 U	1
1,3-Dichloropropane in ug/L	300	1 U	1 U	1 U	1
1,4-Dichlorobenzene in ug/L	190	1 U	1 U	1 U	1
2,2-Dichloropropane in ug/L		1 U	1 U	1 U	1
2-Butanone in ug/L	350,000	10 U	10 U	10 U	10
2-Chlorotoluene in ug/L 2-Hexanone in ug/L		1 U 10 U	1 U 10 U	1 U 10 U	10
4-Chlorotoluene in ug/L		10 U	10 U	10 U	10
4-Methyl-2-pentanone in ug/L	11,000	10 U	10 U	10 U	10
Acetone in ug/L		10 U	10 U	10 U	10
Benzene in ug/L	2.4	0.35 U	0.35 U	0.35 U	0.35
Bromobenzene in ug/L	0.00	1 U	1 U 1 U	1 U 1 U	1
Bromodichloromethane in ug/L Bromoform in ug/L	0.09	1 U 1 UJ	1 U 1 UJ	1 U 1 UJ	1
Bromomethane in ug/L	13	1 U	1 U	1 U	1
Carbon tetrachloride in ug/L	0.22	1 U	1 U	1 U	1
Chlorobenzene in ug/L	100	1 U	1 U	1 U	1
Chloroethane in ug/L	12	1 U 1 U	1 U 1 U	1 U	1
Chloroform in ug/L Chloromethane in ug/L	1.2 5.2	1 U 10 U	1 U 10 U	1 U 10 U	10
cis-1,2-Dichloroethene (DCE) in ug/L	160	10 U	10 U	10 U	1
cis-1,3-Dichloropropene in ug/L		1 U	1 U	1 U	1
Dibromochloromethane in ug/L	0.22	1 UJ	1 UJ	1 UJ	1
Dibromomethane in ug/L		1 U	1 U	1 U	1
Dichlorodifluoromethane in ug/L Ethylbenzene in ug/L	9.9 2,100	1 U 1 U	1 U 1 U	1 U 1 U	1
Hexachlorobutadiene in ug/L	0.81	1 U	1 U	1 U	1
Isopropylbenzene in ug/L	720	1 U	1 U	1 U	1
Methylene chloride in ug/L	94	5 U	5 U	5 U	5
Methyl-Tert-Butyl Ether in ug/L	610	1 U	1 U	1 U	1
n-Propylbenzene in ug/L p-Isopropyltoluene in ug/L		1 U 1 U	1 U 1 U	1 U 1 U	1
sec-Butylbenzene in ug/L		1 U	1 U	1 U	1
Styrene in ug/L	78	1 U	1 U	1 U	1
tert-Butylbenzene in ug/L		1 U	1 U	1 U	1
Tetrachloroethene (PCE) in ug/L	0.39	1 U	1 U	1 U	1
Toluene in ug/L trans-1,2-Dichloroethene in ug/L	15,000	1 U 1 U	1 U	1 U 1 U	1
trans-1,2-Dichloroethene in ug/L trans-1,3-Dichloropropene in ug/L	130	1 U 1 U	1 U 1 U	1 U 1 U	1
Trichloroethene (TCE) in ug/L	0.42	1 U	1 U	1 U	1
Trichlorofluoromethane in ug/L	120	1 U	1 U	1 U	1
Vinyl chloride in ug/L	0.35	0.2 U	0.2 U	0.2 U	0.2
m,p-Xylenes in ug/L	310	2 U	2 U	2 U	2
o-Xylene in ug/L Xylenes (total) in ug/L	440 310	1 U ND	1 U ND	1 U ND	1 ND
Naphthalene in ug/L	170	1 U	1 U	1 U	1
rield Parameters					
Dissolved Oxygen in mg/L		0.37	1.09	0.61	0.28
Eh (ORP) in mVolts		-19.2	-12.9	-124.1	-77.3
pH in pH Units		7.3	6.78	6.74	7.24
Specific Conductance in us/cm Temperature in deg C		433.5 14.8	228.6 15	409 14.4	20,253 15.9
. C INC. I U. U. U. U. U. U. U. U. U. U. U. U. U.		17.0	1.0	⊥ ¬.→	13.3

Notes

 $Concentrations \ in \ shaded \ cells \ exceed \ groundwater \ screening \ level$

U - Analyte was not detected at or above the reported result

UJ - Analyte was not detected at or above the reported estimate

Table 9A - Soil Quality Data for USTs 70, 70R K-C Worldwide Site Upland Area 110207

				UST70-B-01						UST70-MW-
	Unrestricted Soil Screening Level	Industrial Soil Screening Level	UST70-B-01 5/31/2012	FD 5/31/2012	UST70-B-01 5/31/2012	UST70-B-02 5/31/2012	UST70-B-03 5/31/2012	UST70-B-04 5/31/2012	UST70-B-04 5/31/2012	02 6/5/2012
Chemical Name	(mg/kg)	(mg/kg)	(3-4 ft.)	(3-4 ft.)	(13.5-14.5	(9-10 ft.)	(8-9 ft.)	(0-1 ft.)	(4.5-5.5 ft	(8-9 ft.)
Total Petroleum Hydrocarbons Diesel Range Hydrocarbons in mg/kg	2,000	2,000	12,000 J	8,300 J	50 U	120 J	50 U	50 U	50 U	50 U
Oil Range Hydrocarbons in mg/kg	2,000	2,000	330	250 U	250 U	450	250 U		250 U	250 U
Total TPH in mg/kg	2,000	2,000	12,300	8,420 J	ND	570	ND	ND	ND	ND
Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in mg/kg			0.10	0.40 J	0.01 U	0.082	0.01 U	0.01 U	0.01 11	0.01 U
Acenaphthylene in mg/kg			0.18 J 0.01 U	0.40 J		0.082 0.01 U	0.01 U		0.01 U 0.01 U	0.01 U
Anthracene in mg/kg			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		0.01 U	0.01 U
Benzo(g,h,i)perylene in mg/kg Fluoranthene in mg/kg			0.01 U 0.037 J	0.01 U 0.01 UJ		0.052 0.018	0.02 0.01 U	0.012 0.025	0.01 U 0.01 U	0.01 U
Fluorene in mg/kg			0.33 J	0.18 J	0.01 U	0.010 U	0.01 U		0.01 U	0.01 U
Phenanthrene in mg/kg			0.47 J	0.31 J	0.01 U	0.016	0.01 U		0.01 U	0.01 U
Pyrene in mg/kg Naphthalene in mg/kg	5	5	0.047 J 0.083 J	0.085 J 0.18 J	0.01 U 0.01 U	0.026 0.01 U	0.01 U 0.01 U		0.01 0.01 U	0.01 U
Benz(a)anthracene in mg/kg	1.4	180	0.01 U	0.01 U	0.01 U	0.012	0.01 U		0.01 U	0.01 U
Benzo(a)pyrene in mg/kg	0.14	0.14	0.01 U	0.01 U		0.017	0.01 U		0.01 U	0.01 U
Benzo(b)fluoranthene in mg/kg Benzo(k)fluoranthene in mg/kg	1.4 14	180 1,800	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.019 0.01 U	0.01 U 0.01 U		0.011 0.01 U	0.01 U
Chrysene in mg/kg	140	18,000	0.017	0.033	0.01 U	0.02	0.01 U	0.017	0.01 U	0.01 U
Dibenzo(a,h)anthracene in mg/kg Indeno(1,2,3-cd)pyrene in mg/kg	0.14	18	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.017	0.01 U 0.01 U		0.01 U 0.01 U	0.01 U 0.01 U
Total cPAHs TEQ in mg/kg	1.4 0.14	180	0.00767	0.01 0	ND	0.017	0.01 U ND	0.013	0.01 0	0.01 U
Volatile Organic Compounds	•				I		I			
1,1,1,2-Tetrachloroethane in mg/kg 1,1,1-Trichloroethane in mg/kg	38	5,000 2	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U
1,1,2,2-Tetrachloroethane in mg/kg	5	660	0.05 U	0.05 U		0.05 U	0.05 U		0.05 U	0.05 U
1,1,2-Trichloroethane in mg/kg	18	2,300	0.05 U	0.05 U		0.05 U	0.05 U		0.05 U	0.05 U
1,1-Dichloroethane in mg/kg 1,1-Dichloroethene in mg/kg	1		0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U
1,1-Dichloropropene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2,3-Trichlorobenzene in mg/kg 1,2,3-Trichloropropane in mg/kg	0.033	4.4	0.25 U 0.05 U	0.25 U 0.05 U		0.25 U 0.05 U	0.25 U 0.05 U		0.25 U 0.05 U	0.25 U 0.05 U
1,2,4-Trichlorobenzene in mg/kg	35	4,500	0.03 U	0.05 U	0.03 U	0.03 U	0.05 U		0.03 U	0.03 U
1,2,4-Trimethylbenzene in mg/kg			0.076	0.088	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U
1,2-Dibromo-3-chloropropane in mg/kg 1,2-Dibromoethane (EDB) in mg/kg	1.3 0.005	160 0.005	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U		0.5 U 0.05 U	0.5 U 0.05 U
1,2-Dichlorobenzene in mg/kg	0.003	0.003	0.05 U	0.05 U		0.05 U	0.05 U		0.05 U	0.05 U
1,2-Dichloroethane (EDC) in mg/kg	11	1,400	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U
1,2-Dichloropropane in mg/kg 1,3,5-Trimethylbenzene in mg/kg			0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U			0.05 U 0.05 U	0.05 U
1,3-Dichlorobenzene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,3-Dichloropropane in mg/kg 1,4-Dichlorobenzene in mg/kg			0.05 U	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U
2,2-Dichloropropane in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U
2-Butanone in mg/kg			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
2-Chlorotoluene in mg/kg 2-Hexanone in mg/kg			0.05 U 0.5 U	0.05 U		0.05 U 0.5 U	0.05 U		0.05 U 0.5 U	0.05 U
4-Chlorotoluene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
4-Methyl-2-pentanone in mg/kg Acetone in mg/kg			0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U		0.5 U 0.5 U	0.5 U
Benzene in mg/kg	0.03	0.03	0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U
Bromobenzene in mg/kg			0.05 U	0.05 U		0.05 U	0.05 U		0.05 U	0.05 U
Bromodichloromethane in mg/kg Bromoform in mg/kg	16 130	2,100 17,000	0.05 U	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U
Bromomethane in mg/kg	130	17,000	0.5 UJ	0.5 UJ	0.5 U	0.5 U				
Carbon tetrachloride in mg/kg Chlorobenzene in mg/kg	14	1,900	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U
Chloroethane in mg/kg Chloroethane in mg/kg			0.05 UJ	0.05 UJ	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U
Chloroform in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U
Chloromethane in mg/kg cis-1,2-Dichloroethene (DCE) in mg/kg	1		0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U		0.5 U 0.05 U	0.5 U 0.05 U
cis-1,3-Dichloropropene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dibromochloromethane in mg/kg	12	1,600	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U
Dibromomethane in mg/kg Dichlorodifluoromethane in mg/kg	1		0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ		0.05 U 0.5 UJ	0.05 UJ
Ethylbenzene in mg/kg	6	6	0.05 U	0.05 U		0.05 U	0.05 U		0.05 U	0.05 U
Hexachlorobutadiene in mg/kg Isopropylbenzene in mg/kg	13	1,700	0.25 UJ 0.05 U	0.25 UJ 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U		0.25 U 0.05 U	0.25 U 0.05 U
Methylene chloride in mg/kg	0.02	0.02	0.03 U	0.5 U		0.5 U	0.03 U		0.05 U	0.03 U
Methyl-Tert-Butyl Ether in mg/kg	0.1	0.1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.00	0.05 U	0.05 U
n-Propylbenzene in mg/kg p-Isopropyltoluene in mg/kg	1		0.06 0.14	0.067 0.16	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U
sec-Butylbenzene in mg/kg			0.13	0.14	0.05 U	0.05 U				
Styrene in mg/kg tert-Butylbenzene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U
Tetrachloroethene (PCE) in mg/kg	0.05	0.05	0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U
Toluene in mg/kg	7	7	0.05 U	0.05 U	0.05 U	0.05 U				0.05 U
trans-1,2-Dichloroethene in mg/kg trans-1,3-Dichloropropene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U						0.05 U
Trichloroethene (TCE) in mg/kg	0.03	0.03	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
Trichlorofluoromethane in mg/kg	0.67	00	0.5 U	0.5 U		0.5 U				0.5 U
Vinyl chloride in mg/kg m,p-Xylenes in mg/kg	0.67 16,000	700,000	0.05 U 0.1 U	0.05 U 0.1 U		0.05 U 0.1 U	0.05 U 0.1 U		0.05 U 0.1 U	0.05 U 0.1 U
o-Xylene in mg/kg	16,000	700,000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.058	0.05 U	0.05 U
Xylenes (total) in mg/kg	9	9	ND	ND	ND	ND	ND	0.188	ND	ND

Notes

Concentrations in shaded cells exceed unrestricted soil screening leve

Concentrations within bold border exceed industrial soil screening level J - Analyte was positively identified. The reported result is an estimate

U - Analyte was not detected at or above the reported result

 \mbox{UJ} - Analyte was not detected at or above the reported estimate

Table 9B - Groundwater Quality Data for USTs 70, 70R K-C Worldwide Site Upland Area 110207

Chemical Name	Groundwater Screening Level	UST70-MW- 01 6/7/2012	UST70-MW 02 6/7/2012
otal Petroleum Hydrocarbons			
Diesel Range Hydrocarbons in ug/L	500	54	50
Oil Range Hydrocarbons in ug/L Total TPHs in ug/L	500 500	250 UJ 179	250 ND
issolved Metals	300	1,3	110
Dissolved Antimony in ug/L	640		2.27
Dissolved Arsenic in ug/L	5		5.23
Dissolved Beryllium in ug/L Dissolved Cadmium in ug/L	270 8.8		0.0014 0.135
Dissolved Caumium in ug/L Dissolved Chromium (Total) in ug/L	0.0		0.133
Dissolved Copper in ug/L	2.4		1.09
Dissolved Lead in ug/L	8.1		0.125
Dissolved Mercury in ug/L	0.15		0.1
Dissolved Nickel in ug/L	8.2		2.01
Dissolved Selenium in ug/L Dissolved Silver in ug/L	71 1.9		0.02
Dissolved Thallium in ug/L	0.47		0.014
Dissolved Zinc in ug/L	81		116
onventional Chemistry Parameters			
Total Ammonia as Nitrogen in mg/L	0.035		0.575
Dissolved Sulfide in mg/L Total Suspended Solids in mg/L		10 U	0.05
olycyclic Aromatic Hydrocarbons (PAHs)		10 0	10
Acenaphthene in ug/L	640	0.49	0.15
Acenaphthylene in ug/L		0.05 U	0.05
Anthracene in ug/L	26,000	0.026	0.05
Benzo(g,h,i)perylene in ug/L		0.05 U	0.05
Fluoranthene in ug/L	90	0.18	0.05
Fluorene in ug/L Phenanthrene in ug/L	3,500	0.12 0.061	0.05
Pyrene in ug/L	2,600	0.061	0.05
Naphthalene in ug/L	170	0.34	0.19
Benz(a)anthracene in ug/L	0.018	0.015	0.01
Benzo(a)pyrene in ug/L	0.018	0.01 U	0.01
Benzo(b)fluoranthene in ug/L	0.018	0.01 U	0.01
Benzo(k)fluoranthene in ug/L	0.018	0.01 U	0.01
Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L	0.018	0.016 0.01 U	0.01
Indeno(1,2,3-cd)pyrene in ug/L	0.018 0.018	0.01 U	0.01
Total cPAHs TEQ in ug/L	0.018	0.00866	ND
olatile Organic Compounds			
1,1,1,2-Tetrachloroethane in ug/L	7.4	1 U	1
1,1,1-Trichloroethane in ug/L	11,000	1 U	1
1,1,2,2-Tetrachloroethane in ug/L	4	1 U	1
1,1,2-Trichloroethane in ug/L	7.9	1 U	1
1,1-Dichloroethane in ug/L 1,1-Dichloroethene in ug/L	2,300 3.2	1 U 1 U	1
1,1-Dichloropropene in ug/L	3.2	1 U	1
1,2,3-Trichlorobenzene in ug/L		1 U	1
1,2,3-Trichloropropane in ug/L		1 U	1
1,2,4-Trichlorobenzene in ug/L	2	1 U	1
1,2,4-Trimethylbenzene in ug/L	24	1 U	1
1,2-Dibromo-3-chloropropane in ug/L 1,2-Dibromoethane (EDB) in ug/L	0.74	10 U	10
1,2-Dishorhoethane (EDB) in ug/L	1,300	1 U	1
1,2-Dichloroethane (EDC) in ug/L	4.2	1 U	1
1,2-Dichloropropane in ug/L	15	1 U	1
1,3,5-Trimethylbenzene in ug/L	25	1 U	1
1,3-Dichlorobenzene in ug/L	960	1 U	1
1,3-Dichloropropane in ug/L	100	1 U	1
1,4-Dichlorobenzene in ug/L 2,2-Dichloropropane in ug/L	190	1 U 1 U	1
2-Butanone in ug/L	350,000	10 U	10
2-Chlorotoluene in ug/L		1 U	1
2-Hexanone in ug/L		10 U	10
4-Chlorotoluene in ug/L		1 U	1
4-Methyl-2-pentanone in ug/L	11,000	10 U	10
Acetone in ug/L	2.4	25 0.35 H	0.35
Benzene in ug/L Bromobenzene in ug/L	2.4	0.35 U 1 U	0.35
Bromodichloromethane in ug/L	0.09	1 U	1
Bromoform in ug/L	140	1 U	1
Bromomethane in ug/L	13	1 U	1
Carbon tetrachloride in ug/L	0.22	1 U	1
Chlorobenzene in ug/L	100	1 U	1
Chloroform in ug/L	12	1 U	1
Chloroform in ug/L Chloromethane in ug/L	1.2 5.2	1 U 10 U	10
cis-1,2-Dichloroethene (DCE) in ug/L	160	2.2	10
cis-1,3-Dichloropropene in ug/L	130	1 U	1
Dibromochloromethane in ug/L	0.22	1 U	1
Dibromomethane in ug/L		1 U	1
Dichlorodifluoromethane in ug/L	9.9	1 U	1
Ethylbenzene in ug/L	2,100	1.2	1
Hexachlorobutadiene in ug/L Isopropylbenzene in ug/L	0.81 720	1 U	1
Methylene chloride in ug/L	94	5 U	5
Methyl-Tert-Butyl Ether in ug/L	610	1 U	1
n-Propylbenzene in ug/L		1 U	1
p-Isopropyltoluene in ug/L		1 U	1
sec-Butylbenzene in ug/L		1 U	1
Styrene in ug/L	78	1 U	1
tert-Butylbenzene in ug/L	2.22	1 U	1
Tetrachloroethene (PCE) in ug/L Toluene in ug/L	0.39 15,000	1 U	1
trans-1,2-Dichloroethene in ug/L	130	1 U	1
	130	1 U	1
trans-1,3-Dichloropropene in ug/L	•		
trans-1,3-Dichloropropene in ug/L Trichloroethene (TCE) in ug/L	0.42	1 U	1

Page 1 of 2

Table 9B - Groundwater Quality Data for USTs 70, 70R K-C Worldwide Site Upland Area 110207

		UST70-MW-	UST70-MW
	Groundwater	01	02
Chemical Name	Screening Level	6/7/2012	6/7/2012
m,p-Xylenes in ug/L	310	2 U	2
o-Xylene in ug/L	440	1 U	1
	4	ND	ND
Xylenes (total) in ug/L	310	ND	ND
emi-Volatile Organics	2		4
1,2,4-Trichlorobenzene in ug/L	2		1
1,2-Dichlorobenzene in ug/L	1,300		1
1,3-Dichlorobenzene in ug/L	960		1
1,4-Dichlorobenzene in ug/L	190		1
2,4,5-Trichlorophenol in ug/L	3,600		10
2,4,6-Trichlorophenol in ug/L	2.4		10
2,4-Dichlorophenol in ug/L	190		10
2,4-Dimethylphenol in ug/L	550		10
2,4-Dinitrophenol in ug/L	3,500		30
2-Chloronaphthalene in ug/L	1,000		1
2-Chlorophenol in ug/L	97		10
2-Methylphenol in ug/L			10
2-Nitroaniline in ug/L			3
2-Nitrophenol in ug/L			10
3 & 4 Methylphenol in ug/L			20
3-Nitroaniline in ug/L			3
4,6-Dinitro-2-methylphenol in ug/L	1		30
4-Bromophenyl phenyl ether in ug/L	1		1
4-Chloro-3-methylphenol in ug/L			10
4-Chloroaniline in ug/L			3
4-Chlorophenyl phenyl ether in ug/L			1
4-Nitroaniline in ug/L			10
_			10
4-Nitrophenol in ug/L	-		
Benzoic acid in ug/L	+		50
Benzyl alcohol in ug/L	0.2		10
Benzyl butyl phthalate in ug/L Bis(2-chloro-1-methylethyl) ether in ug/L	8.2		10
Bis(2-chloroethoxy)methane in ug/L	37		10
	0.53		10
Bis(2-chloroethyl) ether in ug/L	4		
Bis(2-ethylhexyl) phthalate in ug/L	2.2		10
Carbazole in ug/L			1
Dibenzofuran in ug/L	20.000		1
Diethyl phthalate in ug/L	28,000		1
Dimethyl phthalate in ug/L	1,100,000		1
Di-n-butyl phthalate in ug/L	2,900		1
Di-n-octyl phthalate in ug/L			1
Hexachlorobenzene in ug/L	0.00029		1
Hexachlorobutadiene in ug/L	0.81		1
Hexachlorocyclopentadiene in ug/L	1,100		3
Hexachloroethane in ug/L	3.3		1
Isophorone in ug/L	600		1
Nitrobenzene in ug/L	690		1
N-Nitroso-di-n-propylamine in ug/L	0.51		10
N-Nitrosodiphenylamine in ug/L	6		1
Pentachlorophenol in ug/L	1.5		10
Phenol in ug/L	560,000		10
2,4-Dinitrotoluene in ug/L	3.4		1
2,6-Dinitrotoluene in ug/L			1
2-Methylnaphthalene in ug/L	1		1
ield Parameters			
Dissolved Oxygen in mg/L		0.26	0.47
Eh (ORP) in mVolts	1	-216.3	-62.3
pH in pH Units	1	7.48	7.28
Specific Conductance in us/cm	1	1,403	8,768
Temperature in deg C	+	36.4	23.2
Turbidity in NTU	-	6.19	23.2

Notes

Concentrations in shaded cells exceed groundwater screening level

- J Analyte was positively identified. The reported result is an estimate
- U Analyte was not detected at or above the reported result
- \mbox{UJ} Analyte was not detected at or above the reported estimate

Table 10A - Soil Quality Data for USTs 71, 72, 73 K-C Worldwide Site Upland Area 110207

	Unrestricted Soil	Industrial Soil	UST71-B-01	UST71-B-02	UST71-B-03	UST71-B-03	UST71-B-04	UST71-B-04
Chemical Name	Screening Level	Screening Level	5/31/2012	5/31/2012	5/31/2012	5/31/2012	5/31/2012	5/31/2012
	(mg/kg)	(mg/kg)	(12-13 ft.)	(13-14 ft.)	(18-19 ft.)	(19-20 ft.)	(12.5-13.5	(28-29 ft.)
Total Petroleum Hydrocarbons	2.000	2 000	50 11	10,000	47,000	50 11	16,000	50 1
Diesel Range Hydrocarbons in mg/kg	2,000	2,000	50 U	18,000 J	17,000 J	50 U	-,	30 0
Oil Range Hydrocarbons in mg/kg	2,000	2,000	250 U	20,000 J	19,000 J	250 U	16,000 J	250 U
Total TPH in mg/kg	2,000	2,000	ND	38,000 J	36,000 J	ND	32,000 J	ND
Polycyclic Aromatic Hydrocarbons (PAHs)	1	1	0.013	7.5	0	0.020	0.05	0.01
Acenaphthene in mg/kg Acenaphthylene in mg/kg	<u> </u>		0.012 0.01 U	7.5 0.5 U	8 0.5 U	0.039 0.01 U	0.95 0.5 U	0.01 U
Anthracene in mg/kg	1		0.01 U	6.8	11	0.01 0	1.2	0.01 U
Benzo(g,h,i)perylene in mg/kg			0.015	2.6	2.2	0.000	0.5 U	0.01 U
Fluoranthene in mg/kg			0.013	4	3.3	0.019	0.5 U	0.014
Fluorene in mg/kg			0.01 U		6.2	0.021	1.1	0.01 U
Phenanthrene in mg/kg			0.01 U	32	22	0.083	4.4	0.031
Pyrene in mg/kg			0.021	21	20	0.13	2.2	0.028
Naphthalene in mg/kg	5	5	0.01 U	7.7	1.1	0.01 U	0.5 U	0.01 U
Benz(a)anthracene in mg/kg	1.4	180	0.012	8.5	9.2	0.055	0.85	0.01 L
Benzo(a)pyrene in mg/kg	0.14	0.14	0.01 U	4.8	4.5	0.026	0.5 U	0.01 L
Benzo(b)fluoranthene in mg/kg	1.4	180	0.01 U	2.6	1.6	0.01 U	0.5 U	0.01 U
Benzo(k)fluoranthene in mg/kg	14	1,800	0.01 U	0.5 U	0.5 U	0.01 U	0.5 U	0.01 L
Chrysene in mg/kg	140	18,000	0.015	9.7	12	0.083	1.3	0.012
Dibenzo(a,h)anthracene in mg/kg	0.14	18	0.01 U	0.78	0.5 U	0.01 U		0.01 L
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180	0.01 U	1.3	0.97	0.01 U	0.5 U	0.01 L
Total cPAHs TEQ in mg/kg	0.14	2	0.00835	6.24	5.85	0.0343	0.448	0.00762
Volatile Organic Compounds								
1,1,1,2-Tetrachloroethane in mg/kg	38	5,000	0.05 U	0.05 U		0.05 U		0.05 L
1,1,1-Trichloroethane in mg/kg	2	2	0.05 U			0.05 U		0.05 L
1,1,2,2-Tetrachloroethane in mg/kg	5	660	0.05 U	0.05 U	0.05 U	0.05 U		0.05 L
1,1,2-Trichloroethane in mg/kg	18	2,300	0.05 U			0.05 U		0.05 L
1,1-Dichloroethane in mg/kg			0.05 U		0.05 U	0.05 U		0.05 L
1,1-Dichloroethene in mg/kg 1,1-Dichloropropene in mg/kg	1		0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 L
1,2,3-Trichlorobenzene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U		0.05 L
1,2,3-Trichloropropane in mg/kg	0.033	4.4	0.25 U			0.25 U		0.25 C
1,2,4-Trichlorobenzene in mg/kg	35	4,500	0.03 U		0.05 U	0.05 U		0.05 C
1,2,4-Trimethylbenzene in mg/kg	33	1,500	0.05 U	0.72	0.056	0.05 U		0.05 L
1,2-Dibromo-3-chloropropane in mg/kg	1.3	160	0.5 U	0.5 U		0.5 U		0.5 L
1,2-Dibromoethane (EDB) in mg/kg	0.005	0.005	0.05 U	0.05 U		0.05 U		0.05 U
1,2-Dichlorobenzene in mg/kg			0.05 U .05 U					
1,2-Dichloroethane (EDC) in mg/kg	11	1,400	0.05 U .05 U					
1,2-Dichloropropane in mg/kg			0.05 U .05 U					
1,3,5-Trimethylbenzene in mg/kg			0.05 U	0.19	0.05 U	0.05 U		0.05 U
1,3-Dichlorobenzene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U		0.05 U
1,3-Dichloropropane in mg/kg			0.05 U	0.05 U		0.05 U		0.05 L
1,4-Dichlorobenzene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U		0.05 L
2,2-Dichloropropane in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U		0.05 L
2-Butanone in mg/kg			0.5 U	0.5 U		0.5 U		0.5 U
2-Chlorotoluene in mg/kg 2-Hexanone in mg/kg	<u> </u>		0.05 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U		0.05 U
4-Chlorotoluene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U		0.05 U
4-Methyl-2-pentanone in mg/kg	<u> </u>		0.5 U	0.5 U	0.5 U	0.5 U		0.5 U
Acetone in mg/kg			0.5 U	0.5 U		0.5 U		0.5 U
Benzene in mg/kg	0.03	0.03	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U
Bromobenzene in mg/kg			0.05 U .05 L					
Bromodichloromethane in mg/kg	16	2,100	0.05 U	0.05 U	0.05 U	0.05 U		0.05 L
Bromoform in mg/kg	130	17,000	0.05 U .05 L					
Bromomethane in mg/kg			0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ	0.5 L
Carbon tetrachloride in mg/kg	14	1,900	0.05 U	0.05 U	0.05 U	0.05 U		0.05 L
Chlorobenzene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U		0.05 L
Chloroethane in mg/kg			0.5 UJ	0.5 UJ	0.5 UJ	0.5 U		0.5 L
Chloroform in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U		0.05 L
Chloromethane in mg/kg			0.5 U	0.5 U		0.5 U		0.5 L
cis-1,2-Dichloropethene (DCE) in mg/kg			0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 L
cis-1,3-Dichloropropene in mg/kg Dibromochloromethane in mg/kg	12	1,600	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U
Dibromomethane in mg/kg	12	1,000	0.05 U	0.05 U	0.05 U	0.05 U		0.05 L
Dichlorodifluoromethane in mg/kg	†		0.03 UJ	0.03 U	0.03 U	0.03 U		0.05 U
Ethylbenzene in mg/kg	6	6	0.05 U	0.19	0.05 U	0.05 U		0.05 L
Hexachlorobutadiene in mg/kg	13	1,700	0.25 UJ	0.25 UJ	0.25 UJ	0.25 U		0.25 L
Isopropylbenzene in mg/kg			0.05 U .05 L					
Methylene chloride in mg/kg	0.02	0.02	0.5 U .5 L					
Methyl-Tert-Butyl Ether in mg/kg	0.1	0.1	0.05 U	0.05 U	0.05 U	0.05 U		0.05 L
n-Propylbenzene in mg/kg			0.05 U	0.12	0.05 U	0.05 U	0.05 U	0.05 L
p-Isopropyltoluene in mg/kg			0.05 U		0.05 U	0.05 U		0.05 L
sec-Butylbenzene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U		0.05 L
Styrene in mg/kg	ļ		0.05 U	0.05 U	0.05 U	0.05 U		0.05 L
tert-Butylbenzene in mg/kg	2.5-	0.0-	0.05 U	0.05 U		0.05 U		0.05 L
Tetrachloroethene (PCE) in mg/kg	0.05	0.05	0.025 U .025 L					
Toluene in mg/kg trans-1,2-Dichloroethene in mg/kg	7	7	0.05 U			0.05 U		0.05 L 0.05 L
				0.05 U		0.05 U 0.05 U		0.05 U
trans-1,3-Dichloropropene in mg/kg Trichloroethene (TCE) in mg/kg	0.03	0.03	0.05 U 0.03 U			0.05 U		0.05 t
Trichloroethene (TCE) in mg/kg Trichlorofluoromethane in mg/kg	0.03	0.03	0.03 U			0.03 U		0.03 C
Vinyl chloride in mg/kg	0.67	88	0.5 U			0.5 U		0.5 t
m,p-Xylenes in mg/kg	16,000	700,000	0.03 U		0.03 U	0.03 U		0.03 C
o-Xylene in mg/kg	16,000	700,000	0.05 U	0.4	0.1 U	0.05 U		0.05 L
Xylenes (total) in mg/kg	9	9	ND	0.9	ND	ND	ND	ND
		•	-		•			

Notes

Concentrations in shaded cells exceed unrestricted soil screening leve Concentrations within bold border exceed industrial soil screening level

J - Analyte was positively identified. The reported result is an estimate

U - Analyte was not detected at or above the reported result

UJ - Analyte was not detected at or above the reported estimate

Table 10B - Groundwater Quality Data for USTs 71, 72, 73 K-C Worldwide Site Upland Area 110207

Chemical Name	Groundwater Screening Level	UST71-MW-0 6/7/2012
Total Petroleum Hydrocarbons	•	
Diesel Range Hydrocarbons in ug/L	500	900
Oil Range Hydrocarbons in ug/L	500	280
Total TPHs in ug/L	500	1,180
Conventional Chemistry Parameters Total Suspended Solids in mg/L		110
Polycyclic Aromatic Hydrocarbons (PAHs)		110
Acenaphthene in ug/L	640	4.1
Acenaphthylene in ug/L		0.05
Anthracene in ug/L	26,000	2.5
Benzo(g,h,i)perylene in ug/L		0.15
Fluoranthene in ug/L	90	0.66
Fluorene in ug/L	3,500	4.4
Phenanthrene in ug/L		10
Pyrene in ug/L	2,600	5
Naphthalene in ug/L	170	1.9
Benz(a)anthracene in ug/L	0.018	0.71
Benzo(a)pyrene in ug/L	0.018 0.018	0.33
Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L	0.018	0.12 0.018
	0.018	1.3
Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L	0.018	0.033
	0.018	0.053
Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L	0.018	0.032
/olatile Organic Compounds	0.016	0.430
1,1,1,2-Tetrachloroethane in ug/L	7.4	1
1,1,1-Trichloroethane in ug/L	11,000	1
1,1,2,2-Tetrachloroethane in ug/L	4	1
1,1,2-Trichloroethane in ug/L	7.9	1
1,1-Dichloroethane in ug/L	2,300	1
1,1-Dichloroethene in ug/L	3.2	1
1,1-Dichloropropene in ug/L		1
1,2,3-Trichlorobenzene in ug/L		1
1,2,3-Trichloropropane in ug/L		1
1,2,4-Trichlorobenzene in ug/L	2	1
1,2,4-Trimethylbenzene in ug/L	24	3.4
1,2-Dibromo-3-chloropropane in ug/L		10
1,2-Dibromoethane (EDB) in ug/L	0.74	1
1,2-Dichlorobenzene in ug/L	1,300	1
1,2-Dichloroethane (EDC) in ug/L	4.2	1
1,2-Dichloropropane in ug/L	15	1
1,3,5-Trimethylbenzene in ug/L	25	1
1,3-Dichlorobenzene in ug/L 1,3-Dichloropropane in ug/L	960	1
1,4-Dichlorobenzene in ug/L	190	1
2,2-Dichloropropane in ug/L	150	1
2-Butanone in ug/L	350,000	10
2-Chlorotoluene in ug/L	333,555	1
2-Hexanone in ug/L		10
4-Chlorotoluene in ug/L		1
4-Methyl-2-pentanone in ug/L	11,000	10
Acetone in ug/L		10
Benzene in ug/L	2.4	0.35
Bromobenzene in ug/L		1
Bromodichloromethane in ug/L	0.09	1
Bromoform in ug/L	140	1 (
Bromomethane in ug/L	13	1
Carbon tetrachloride in ug/L	0.22	1
Chlorobenzene in ug/L	100	1
Chloroform in ug/L	12	1
Chloromethane in ug/L	1.2	
Chloromethane in ug/L	5.2 160	10
cis-1,2-Dichloroethene (DCE) in ug/L cis-1,3-Dichloropropene in ug/L	100	1
Dibromochloromethane in ug/L	0.22	1
Dibromomethane in ug/L	0.22	1
Dichlorodifluoromethane in ug/L	9.9	1
Ethylbenzene in ug/L	2,100	1
Hexachlorobutadiene in ug/L	0.81	1
Isopropylbenzene in ug/L	720	1
Methylene chloride in ug/L	94	5
Methyl-Tert-Butyl Ether in ug/L	610	1
n-Propylbenzene in ug/L		1
p-Isopropyltoluene in ug/L	1	1
sec-Butylbenzene in ug/L	1	1
Styrene in ug/L	78	1
tert-Butylbenzene in ug/L	1	1
Tetrachloroethene (PCE) in ug/L	0.39	4
Toluene in ug/L	15,000	1
trans-1,2-Dichloropethene in ug/L	130	1
trans-1,3-Dichloropropene in ug/L Trichloroethene (TCE) in ug/L	0.42	1
Trichlorofluoromethane in ug/L	0.42 120	1
Vinyl chloride in ug/L	0.35	0.2
m,p-Xylenes in ug/L	310	2
o-Xylene in ug/L	440	1.6
Xylenes (total) in ug/L	310	2.6
ield Parameters	310	2.0
Dissolved Oxygen in mg/L	T	0.08
Eh (ORP) in mVolts	1	-22.1
pH in pH Units	1	6.85
Specific Conductance in us/cm	1	1,913
Temperature in deg C	1	37.7
. c. iiperatare iii acg e	<u> </u>	

 $\label{lem:concentrations} \mbox{Concentrations in shaded cells exceed groundwater screening level.}$

- J Analyte was positively identified. The reported result is an estimate.
- U Analyte was not detected at or above the reported result.
- UJ Analyte was not detected at or above the reported estimate

K-C Worldwide Site Upland Area 17	10207								Former U	ISTs Area						
	Unrestricted Soil	Industrial Soil	MW-05	NRP-B-01	NRP-B-02	NRP-B-02 FD	NRP-B-02	NRP-B-03	NRP-B-04	NRP-B-05	NRP-B-07	NRP-B-07	NRP-B-08	NRP-B-08	NRP-MW-02	NRP-MW-03
	Screening Level	Screening Level	2/16/2012	6/1/2012	6/1/2012	6/1/2012	6/1/2012	6/1/2012	6/1/2012	6/1/2012	6/1/2012	6/1/2012	6/1/2012	6/1/2012	5/29/2012	5/29/2012
Chemical Name	(mg/kg)	(mg/kg)	(6-7 ft.)	(9-12 ft.)	(8-10 ft.)	(8-10 ft.)	(14-15 ft.)	(8.5-9.5 ft.)	(13.5-14.5 ft.)	(9-10 ft.)	(9-10 ft.)	(19-20 ft.)	(8.5-9.5 ft.)	(11-12 ft.)	(7.5-8.5 ft.)	(6.5-7.5 ft.)
Total Petroleum Hydrocarbons	_	1	_	, i					, ,			•	1		1	т
Gasoline Range Hydrocarbons in mg/kg	100	100	2 U	2 U	4,400 J	220 J	2 U	2 U		23	120	2 U	2 U		2 U	
Diesel Range Hydrocarbons in mg/kg	2,000	2,000	50 U	50 U	780	920	50 U	50 U	240	430	1,000	50 U	50 U	50 U	50 U	50
Oil Range Hydrocarbons in mg/kg	2,000	2,000	250 U	250 UJ	1,600 UJ	1,900 UJ	250 UJ	250 UJ	250 UJ	250 U	540	250 U	250 U	250 U	250 U	250
Total TPH in mg/kg Metals	2,000	2,000	ND	ND	1580	1870	ND	ND	365	555	1,540	ND	ND	ND	ND	ND
Antimony in mg/kg	7		F	1 U	1 U	1 U	1 U	1.95	2.13	1 U	1 U	1 U	1 U	1 U	1 U	1
Arsenic in mg/kg	20	20	8.47	4.18	4.14	5.07	4.01	11.8	14	7.75	5.96	4.42	6.02	4.26	5.72	3.48
Beryllium in mg/kg				1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1
Cadmium in mg/kg	2	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Chromium (Total) in mg/kg			16.7	14.1	13	12.9	11.3	21	13.7	14.3	14.8	12.4	17.6	13.1	20.7	10.2
Copper in mg/kg			24.3	13.2	11.4	12.6	10.1	30.1	28.3	25.3	15.8	11.6	19.4	13.7	24.8	10
Lead in mg/kg	250	1,000	15.6	3.98	3.95	2.56	1.8	28.3	27.9	15	5.24	2.21	4.75	2.66	3.74	1.78
Mercury in mg/kg	2	2	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U	0.1
Nickel in mg/kg			21.9	20.7	23.3	26	17.8	29.7	22.5	23.7	20.8	18.3	24.1	19.6	23.3	16.2
Selenium in mg/kg	+	ļ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	
Silver in mg/kg			1 U	1 U	1 U	ł	1 U	1 U	1 U	1 U		1 U 1 U	1 U	1 U 1 U	1 U	
Thallium in mg/kg Zinc in mg/kg	+		63.2	40.6	37.6	1 U 39.2	33.3	1 U 117	1 0	1 U	1 U 42.4	36.3	50.6	39.1	1 U 36.9	1 19.7
Polycyclic Aromatic Hydrocarbons (PAHs)	1	I	05.2	40.0	37.0	33.4	33.3	11/	125	66.2	42.4	30.3	50.0	25.1	30.9	19./
Acenaphthene in mg/kg	1		I	0.43	0.045	0.048	0.18	0.13	0.097	0.37	16	0.49	0.12	0.022	0.01 U	0.38
Acenaphthylene in mg/kg				0.012	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	1 U	0.012	0.01 U	0.01 U	0.01 U	0.01
Anthracene in mg/kg				0.4	0.01 U	0.01 U	0.01 U	0.064	0.1	0.16	13	0.16	0.09	0.012	0.014	0.011
Benzo(g,h,i)perylene in mg/kg				0.03	0.01 U	0.01 U	0.01 U	0.14	0.032	0.034	3.9	0.049	0.015	0.01 U	0.01 U	0.02
Fluoranthene in mg/kg				0.84	0.042	0.035 J	0.01 U	0.54	0.21	0.12	76	0.77	0.12	0.06	0.04	0.049
Fluorene in mg/kg				0.46	0.038	0.034	0.086	0.078	0.066	0.42	17	0.33	0.16	0.023	0.01 U	0.15
Phenanthrene in mg/kg				2.3	0.044	0.039	0.05	0.23	0.062	0.92	82	1	0.17	0.039	0.026	0.054
Pyrene in mg/kg				0.9	0.042	0.039 J	0.01 U	0.59	0.3	0.34	73	0.83	0.18	0.062	0.036	0.049
Naphthalene in mg/kg	5	5		0.35	0.043	0.052	0.024	0.11	0.084	0.081	4.8	1.7	0.058	0.05	0.033	0.64
Benz(a)anthracene in mg/kg	1.4 0.14	180 0.14		0.13 0.064	0.01 U	0.01 U 0.01 U	0.01 U	0.21 0.25	0.11 0.061	0.13 0.061	20 12	0.22 0.13	0.064 0.028	0.018 0.012	0.017 0.01 U	0.023
Benzo(a)pyrene in mg/kg Benzo(b)fluoranthene in mg/kg	1.4	180		0.064	0.01 U	0.01 U	0.01 U	0.23	0.061	0.061	18	0.13	0.028	0.012	0.01	0.028
Benzo(k)fluoranthene in mg/kg	1.4	1,800		0.079	0.01 U	0.01 U	0.01 U	0.096	0.002	0.048	6	0.21	0.020 0.01 U	0.018 0.01 U	0.012 0.01 U	0.033
Chrysene in mg/kg	140	18,000		0.13	0.011	0.012 J	0.01 U	0.24	0.13	0.15	19	0.19	0.091	0.016	0.035	0.029
Dibenzo(a,h)anthracene in mg/kg	0.14	18		0.01 U	0.01 U	0.01 U	0.01 U	0.035	0.01	0.011	1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180		0.029	0.01 U	0.011 J	0.01 U	0.17	0.025	0.022	4.3	0.049	0.011	0.01 U	0.01 U	0.021
Total cPAHs TEQ in mg/kg	0.14	2		0.0924	0.00761	0.00822 J	ND	0.334	0.0848	0.085	17.1	0.187	0.04	0.0173	0.00975	0.038
Volatile Organic Compounds																
1,1,1,2-Tetrachloroethane in mg/kg	38	5,000		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	0.05 U	0.05
1,1,1-Trichloroethane in mg/kg	2	2		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 L
1,1,2,2-Tetrachloroethane in mg/kg	5	660		0.05 U	0.05 U		0.05 U	0.05 U		0.05 U		0.05 U	0.05 U	0.05 U	0.05 U	
1,1,2-Trichloroethane in mg/kg	18	2,300		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U	0.05 U	0.05
1,1-Dichloroethane in mg/kg 1,1-Dichloroethene in mg/kg	1		 	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U	0.05 U	0.05 U 0.05 U	0.05 U		0.05 U	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05
1,1-Dichloropropene in mg/kg	1			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 (
1,2,3-Trichlorobenzene in mg/kg	1	1		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.03 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.25
1,2,3-Trichloropropane in mg/kg	0.033	4.4	1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05
1,2,4-Trichlorobenzene in mg/kg	35	4,500		0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 L
1,2,4-Trimethylbenzene in mg/kg				0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.11	0.05 U	0.05 U	0.05 U	0.05 U	0.05
1,2-Dibromo-3-chloropropane in mg/kg	1.3	160		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5
1,2-Dibromoethane (EDB) in mg/kg	0.005	0.005		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05
1,2-Dichlorobenzene in mg/kg				0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	0.05 U	0.05
1,2-Dichloroethane (EDC) in mg/kg	11	1,400		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05
1,2-Dichloropropane in mg/kg 1,3,5-Trimethylbenzene in mg/kg	+		-	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U	0.05 U	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05
1,3-Dichlorobenzene in mg/kg	+			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05
1,3-Dichloropropane in mg/kg				0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05
1,4-Dichlorobenzene in mg/kg	1			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05
2,2-Dichloropropane in mg/kg	1			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	0.05 U	0.05
2-Butanone in mg/kg			1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5
2-Chlorotoluene in mg/kg	<u></u>			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05
2-Hexanone in mg/kg				0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5

Aspect Consulting

									Former I	JSTs Area						
T T																
	Unrestricted Soil	Industrial Soil	MW-05	NRP-B-01	NRP-B-02	NRP-B-02 FD	NRP-B-02	NRP-B-03	NRP-B-04	NRP-B-05	NRP-B-07	NRP-B-07	NRP-B-08	NRP-B-08	NRP-MW-02	NRP-MW-03
Chemical Name	Screening Level	Screening Level	2/16/2012	6/1/2012	6/1/2012	6/1/2012	6/1/2012	6/1/2012	6/1/2012 (13.5-14.5 ft.)	6/1/2012	6/1/2012	6/1/2012	6/1/2012	6/1/2012	5/29/2012	5/29/2012
	(mg/kg)	(mg/kg)	(6-7 ft.)	(9-12 ft.)	(8-10 ft.)	(8-10 ft.)	(14-15 ft.)	(8.5-9.5 ft.)	,	(9-10 ft.)	(9-10 ft.)	(19-20 ft.)	(8.5-9.5 ft.)	(11-12 ft.)	(7.5-8.5 ft.)	(6.5-7.5 ft.)
4-Chlorotoluene in mg/kg 4-Methyl-2-pentanone in mg/kg				0.05 U	0.05 U 0.5 U	0.05 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U	0.05 U	0.05 U 0.5 U
Acetone in mg/kg				0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Benzene in mg/kg	0.03	0.03	0.02 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 UJ
Bromobenzene in mg/kg				0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Bromodichloromethane in mg/kg	16	2,100		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Bromoform in mg/kg	130	17,000		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Bromomethane in mg/kg				0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U.	0.5 U	0.5 UJ
Carbon tetrachloride in mg/kg	14	1,900		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ
Chlorobenzene in mg/kg				0.05 U	0.05 U 0.5 U	0.05 U	0.05 U	0.05 U	0.05 U 0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Chloroethane in mg/kg Chloroform in mg/kg				0.5 U	0.5 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U. 0.05 U	0.5 U	0.5 UJ 0.05 UJ
Chloromethane in mg/kg				0.03 U	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U 0.5 UJ	0.03 UJ				
cis-1,2-Dichloroethene (DCE) in mg/kg				0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
cis-1,3-Dichloropropene in mg/kg				0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dibromochloromethane in mg/kg	12	1,600		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dibromomethane in mg/kg				0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dichlorodifluoromethane in mg/kg				0.5 UJ	0.5 UJ		0.5 UJ	0.5 UJ		0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U.		0.5 UJ
Ethylbenzene in mg/kg	6	6	0.02 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.093	0.05 U				
Hexachlorobutadiene in mg/kg Isopropylbenzene in mg/kg	13	1,700		0.25 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.13	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U	0.25 UJ 0.05 U
Methylene chloride in mg/kg	0.02	0.02		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.13 0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ
Methyl-Tert-Butyl Ether in mg/kg	0.02	0.02		0.05 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.5 U	0.05 U
n-Propylbenzene in mg/kg	0.1	0.1		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.063	0.05 U				
p-Isopropyltoluene in mg/kg				0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
sec-Butylbenzene in mg/kg				0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.051	0.092	0.05 U				
Styrene in mg/kg				0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
tert-Butylbenzene in mg/kg				0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.059	0.05 U					
Tetrachloroethene (PCE) in mg/kg	0.05	0.05	0.02	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 UJ
Toluene in mg/kg trans-1,2-Dichloroethene in mg/kg	7	7	0.02 U	0.05 U	0.05 U	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U	0.05 U	0.05 U 0.05 UJ
trans-1,3-Dichloropropene in mg/kg				0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Trichloroethene (TCE) in mg/kg	0.03	0.03		0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 UJ
Trichlorofluoromethane in mg/kg				0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
Vinyl chloride in mg/kg	0.67	88		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UJ
m,p-Xylenes in mg/kg	16,000	700,000		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
o-Xylene in mg/kg	16,000	700,000	0.00	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Xylenes (total) in mg/kg	9	9	0.06 U	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Semi-Volatile Organics 1,2,4-Trichlorobenzene in mg/kg	35	4,500	0.03 U						ı	I	Ī	Ī	Ī	1		Ī
1,2-Dichlorobenzene in mg/kg	33	4,500	0.03 U													
1,3-Dichlorobenzene in mg/kg			0.03 U													
1,4-Dichlorobenzene in mg/kg			0.03 U													
2,4,5-Trichlorophenol in mg/kg			0.3 U													
2,4,6-Trichlorophenol in mg/kg	91	12,000	0.3 U													
2,4-Dichlorophenol in mg/kg			0.3 U											-		
2,4-Dimethylphenol in mg/kg 2,4-Dinitrophenol in mg/kg			0.3 U 0.9 U													
2,4-Dinitrophenoi in mg/kg 2-Chloronaphthalene in mg/kg			0.9 U													
2-Chlorophenol in mg/kg			0.03 U													
2-Methylphenol in mg/kg			0.3 U													
2-Nitroaniline in mg/kg			0.03 U													
2-Nitrophenol in mg/kg			0.3 U													
3 & 4 Methylphenol in mg/kg			0.6 U													
3-Nitroaniline in mg/kg			3 U													
4,6-Dinitro-2-methylphenol in mg/kg			0.9 U												1	
4-Bromophenyl phenyl ether in mg/kg 4-Chloro-3-methylphenol in mg/kg			0.03 U 0.3 U			1								1		
4-Chloroaniline in mg/kg	5	660	3 U													
4-Chlorophenyl phenyl ether in mg/kg	<u>, </u>	330	0.03 U													
4-Nitroaniline in mg/kg			3 U													
4-Nitrophenol in mg/kg			0.9 U													

Chemical Name	NRP-B-08 NRP-MW-0 6/1/2012 5/29/2012	
Screening Level Screening		
Chemical Name Mig/kg Mig		2 5/29/2012
Acenaphthene in mg/kg	(11-12 ft.) (7.5-8.5 ft	
Acenaphthylene in mg/kg Anthracene in mg/kg Benzo(g.h.)/gerylene in mg/kg Benzo(g.h.)/gerylene in mg/kg Benzo(g.h.)/gerylene in mg/kg Benzyl aboth in mg/kg Benzyl aboth in mg/kg Benzyl butyl phthalate in mg/kg Benzyl butyl phthalate in mg/kg Benzyl butyl phthalate in mg/kg Benzyl butyl phthalate in mg/kg Benzyl butyl phthalate in mg/kg Benzyl butyl phthalate in mg/kg Bis(2-chloroethyl) ether in mg/kg Bis(
Anthracene in mg/kg		_
Benzo(g,h,l)perylene in mg/kg		-
Benzoic acid in mg/kg		_
Benzyl alcohol in mg/kg		_
Benzyl butyl phthalate in mg/kg		_
Bis(2-chloro-1-methylethyl) ether in mg/kg		
Bis(2-chloroethoxy)methane in mg/kg		
Bis(2-chloroethyl) ether in mg/kg		_
Bis(2-ethylhexyl) phthalate in mg/kg		_
Carbazole in mg/kg		_
Dibenzofuran in mg/kg		_
Diethyl phthalate in mg/kg		+
Dimethyl phthalate in mg/kg		+
Di-n-butyl phthalate in mg/kg 0.03 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.09 U </td <td></td> <td>+</td>		+
Di-n-octyl phthalate in mg/kg 0.03 U 0.087 U 0.087 U 0.087 U 0.087 U 0.087 U 0.087 U 0.087 U 0.09 U 0		+
Fluoranthene in mg/kg		-
Fluorene in mg/kg		
Hexachlorobenzene in mg/kg 0.63 82 0.03 U		
Hexachlorobutadiene in mg/kg 13 1,700 0.03 U </td <td></td> <td></td>		
Hexachlorocyclopentadiene in mg/kg 0.09 U <td></td> <td></td>		
Hexachloroethane in mg/kg 71 9,400 0.03 U 9,400 <th< td=""><td></td><td></td></th<>		
Isophorone in mg/kg 1,100 140,000 0.03 U Image: Control of the co		
Nitrobenzene in mg/kg 0.03 U 0.03 U		
N-Nitroso-di-n-propylamine in mg/kg 0.14 19 0.03 U		
N-Nitrosodiphenylamine in mg/kg 200 27,000 0.03 U		
Phenanthrene in mg/kg 0.093		
Phenol in mg/kg 0.3 U		
Pyrene in mg/kg 0.33		
Benz(a)anthracene in mg/kg 1.4 180 0.14		
Benzo(a)pyrene in mg/kg 0.14 0.19		
Benzo(b)fluoranthene in mg/kg 1.4 180 0.19		
Benzo(k)fluoranthene in mg/kg 14 1,800 0.076		
Chrysene in mg/kg 140 18,000 0.16		
Dibenzo(a,h)anthracene in mg/kg 0.14 18 0.037		
Indeno(1,2,3-cd)pyrene in mg/kg 1.4 180 0.12		
2,4-Dinitrotoluene in mg/kg 0.03 U		
2,6-Dinitrotoluene in mg/kg 0.03 U		
2-Methylnaphthalene in mg/kg 0.03 U		
Naphthalene in mg/kg 5 5 0.057 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 7 6 7 <td></td> <td></td>		
Total cPAH (TEQ) in mg/kg 0.14 2 0.25		
Polychlorinated Biphenyls (PCBs)		
Aroclor 1016 in mg/kg 14 1,900 0.1 U		
Aroclor 1221 in mg/kg 0.1 U 0.1 U		
Aroclor 1232 in mg/kg 0.1 U		
Aroclor 1242 in mg/kg 0.1 U 0.1 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Aroclor 1248 in mg/kg 0.1 U 0.		
Aroclor 1254 in mg/kg 0.5 66 0.1 U		
Aroclor 1260 in mg/kg 0.5 66 0.1 U		
Total PCBs in mg/kg		+

Notes

Concentrations in shaded cells exceed unrestricted soil screening level Concentrations within bold border exceed industrial soil screening level

J - Analyte was positively identified. The reported result is an estimate

U - Analyte was not detected at or above the reported result.

UJ - Analyte was not detected at or above the reported estimate

K-C Worldwide Site Upland Area 11	0207	ı								ormor Shoot	ing Range Are	2						
	1	1					<u> </u>		<u>'</u>	ormer Snoot	ing Kange Are	a	I		I			
Chemical Name	Unrestricted Soil Screening Level (mg/kg)	Industrial Soil Screening Level (mg/kg)	NRP-B-09 6/27/2012 (0-1 ft.)	NRP-B-09 6/27/2012 (3-4 ft.)	NRP-B-10 6/27/2012 (0-1 ft.)	NRP-B-10 6/27/2012 (3-4 ft.)	NRP-B-11 6/6/2012 (0-1 ft.)	NRP-B-11 6/6/2012 (3-4 ft.)	NRP-B-12 6/6/2012 (0-1 ft.)	NRP-B-12 6/6/2012 (3-4 ft.)	NRP-B-13 6/6/2012 (0-1 ft.)	NRP-B-13 6/6/2012 (3-4 ft.)	NRP-B-14 6/27/2012 (0-1 ft.)	NRP-B-14 6/27/2012 (3-4 ft.)	NRP-B-15 6/6/2012 (0-1 ft.)	NRP-B-15 6/6/2012 (3-4 ft.)	NRP-B-16 6/27/2012 (0-1 ft.)	NRP-B-16 6/27/2012 (3-4 ft.)
Total Petroleum Hydrocarbons	,	,		, ,		<u> </u>		<u> </u>	<u> </u>		<u> </u>	, ,			, ,	<u> </u>		,
Gasoline Range Hydrocarbons in mg/kg	100	100																
Diesel Range Hydrocarbons in mg/kg	2,000	2,000																
Oil Range Hydrocarbons in mg/kg	2,000	2,000																
Total TPH in mg/kg	2,000	2,000																
Metals											•	•	•		•			
Antimony in mg/kg			2.43	1 U	7.36	1 U	1.03	1 U	3.34	1 U	1 U	1 U	1 U	1 U	2.21	1 U	1.36	1 l
Arsenic in mg/kg	20	20	12.9	6.14	35.3	12.7	5.62	9.72	18	5.42	12.3	8.16	1.56	8.74	22.2	6.12	7.33	3.57
Beryllium in mg/kg			1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 l
Cadmium in mg/kg	2	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 l
Chromium (Total) in mg/kg			18.3	16	12.6	28.9	17	32.3	10.6	15.6	9.05	30.8	17.7	34.5	7.81	18.4	18.6	20.1
Copper in mg/kg			32.1	14.8	38.4	38	22.4	45.7	24.6	19.1	19.9	38.5	16.6	35.6	50.3	21.8	21.9	18.1
Lead in mg/kg	250	1,000	52	18.5	74.1	7.68	14.5	9.26	28.3	3.76	6.03	7.82	2.52	6.24	15.3	3.94	10.3	2.52
Mercury in mg/kg	2	2	0.1	0.18	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.31	0.1 U	0.1 U	0.1 U	0.1 l
Nickel in mg/kg	1		36.5	21.8	25.6	30.5	32.8	35.2	21.1	20.5	12.1	33.5	44.7	32.5	9.04	18.6	28.3	23.7
Selenium in mg/kg	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 l
Silver in mg/kg			1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 l
Thallium in mg/kg	_		1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 L
Zinc in mg/kg			123	45.8	345	59.6	60.6	57.9	138	31.9	42.6	56.6	27.4	55.4	92	32	86.1	35.6
Polycyclic Aromatic Hydrocarbons (PAHs)		1					1	1	1		T	T	T	1	T			
Acenaphthene in mg/kg																		
Acenaphthylene in mg/kg																		
Anthracene in mg/kg																		
Benzo(g,h,i)perylene in mg/kg																		
Fluoranthene in mg/kg																		
Fluorene in mg/kg																		
Phenanthrene in mg/kg																		
Pyrene in mg/kg Naphthalene in mg/kg	5	5																
Benz(a)anthracene in mg/kg	1.4	180																
Benzo(a)pyrene in mg/kg	0.14	0.14																
Benzo(b)fluoranthene in mg/kg	1.4	180																
Benzo(k)fluoranthene in mg/kg	1.4	1,800																
Chrysene in mg/kg	140	18,000																
Dibenzo(a,h)anthracene in mg/kg	0.14	18																
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180																
Total cPAHs TEQ in mg/kg	0.14	2																
Volatile Organic Compounds												<u>I</u>	<u>I</u>		<u>I</u>			
1,1,1,2-Tetrachloroethane in mg/kg	38	5,000																
1,1,1-Trichloroethane in mg/kg	2	2									1	İ	İ		İ			
1,1,2,2-Tetrachloroethane in mg/kg	5	660																
1,1,2-Trichloroethane in mg/kg	18	2,300																
1,1-Dichloroethane in mg/kg																		
1,1-Dichloroethene in mg/kg																		
1,1-Dichloropropene in mg/kg																		
1,2,3-Trichlorobenzene in mg/kg																		
1,2,3-Trichloropropane in mg/kg	0.033	4.4																
1,2,4-Trichlorobenzene in mg/kg	35	4,500																
1,2,4-Trimethylbenzene in mg/kg																		
1,2-Dibromo-3-chloropropane in mg/kg	1.3	160																
1,2-Dibromoethane (EDB) in mg/kg	0.005	0.005																
1,2-Dichlorobenzene in mg/kg											ļ							
1,2-Dichloroethane (EDC) in mg/kg	11	1,400									 							
1,2-Dichloropropane in mg/kg											 							
1,3,5-Trimethylbenzene in mg/kg	+																	
1,3-Dichlorobenzene in mg/kg	+																	
1,3-Dichloropropane in mg/kg	 										 							
1,4-Dichlorobenzene in mg/kg 2,2-Dichloropropane in mg/kg	 										 							
2,2-Dichloropropane in mg/kg 2-Butanone in mg/kg	1										 							
2-Butanone in mg/kg 2-Chlorotoluene in mg/kg	+												1		1			
											 							
2-Hexanone in mg/kg	1	Ī					Ī				Ī	Ī	Ī	Ī	Ī			

Aspect Consulting

									F	ormer Shooti	ng Range Are	a						
			NDC C	NDS 5 55	NDS 5 15	NDC 5 :-	AIRS S.	NDC C ::					NDC C ::	NRS S	NES 5 :=	NES S. I	NDC C : -	NES 5 1 5
	Unrestricted Soil	Industrial Soil	NRP-B-09	NRP-B-09	NRP-B-10	NRP-B-10	NRP-B-11	NRP-B-11	NRP-B-12	NRP-B-12	NRP-B-13	NRP-B-13	NRP-B-14	NRP-B-14	NRP-B-15	NRP-B-15	NRP-B-16	NRP-B-16
Chemical Name		Screening Level	6/27/2012 (0.1 ft.)	6/27/2012	6/27/2012	6/27/2012 (3-4 ft.)	6/6/2012	6/6/2012 (3-4 ft.)	6/6/2012	6/6/2012	6/6/2012	6/6/2012	6/27/2012	6/27/2012	6/6/2012 (0.1 ft.)	6/6/2012	6/27/2012 (0.1 ft.)	6/27/2012
	(mg/kg)	(mg/kg)	(0-1 ft.)	(3-4 ft.)	(0-1 ft.)	(3-4 11.)	(0-1 ft.)	(3-4 11.)	(0-1 ft.)	(3-4 ft.)	(0-1 ft.)	(3-4 ft.)	(0-1 ft.)	(3-4 ft.)	(0-1 ft.)	(3-4 ft.)	(0-1 ft.)	(3-4 ft.)
4-Chlorotoluene in mg/kg 4-Methyl-2-pentanone in mg/kg																		
Acetone in mg/kg																		
Benzene in mg/kg	0.03	0.03																
Bromobenzene in mg/kg	0.03	0.03																
Bromodichloromethane in mg/kg	16	2,100																
Bromoform in mg/kg	130	17,000																
Bromomethane in mg/kg																		
Carbon tetrachloride in mg/kg	14	1,900																
Chlorobenzene in mg/kg																		
Chloroethane in mg/kg																		
Chloroform in mg/kg																		
Chloromethane in mg/kg cis-1,2-Dichloroethene (DCE) in mg/kg																		
cis-1,3-Dichloropropene in mg/kg																		
Dibromochloromethane in mg/kg	12	1,600																
Dibromomethane in mg/kg		_,_ 50																
Dichlorodifluoromethane in mg/kg																		
Ethylbenzene in mg/kg	6	6																
Hexachlorobutadiene in mg/kg	13	1,700																
Isopropylbenzene in mg/kg																		
Methylene chloride in mg/kg	0.02	0.02																
Methyl-Tert-Butyl Ether in mg/kg	0.1	0.1																
n-Propylbenzene in mg/kg																		
p-Isopropyltoluene in mg/kg sec-Butylbenzene in mg/kg																		
Styrene in mg/kg																		
tert-Butylbenzene in mg/kg																		
Tetrachloroethene (PCE) in mg/kg	0.05	0.05																
Toluene in mg/kg	7	7																
trans-1,2-Dichloroethene in mg/kg																		
trans-1,3-Dichloropropene in mg/kg																		
Trichloroethene (TCE) in mg/kg	0.03	0.03																
Trichlorofluoromethane in mg/kg	0.67	00																
Vinyl chloride in mg/kg m,p-Xylenes in mg/kg	0.67 16,000	700,000																
o-Xylene in mg/kg	16,000	700,000																
Xylenes (total) in mg/kg	9	9																
Semi-Volatile Organics										ı	ı	ı			1	1		<u> </u>
1,2,4-Trichlorobenzene in mg/kg	35	4,500																
1,2-Dichlorobenzene in mg/kg																		
1,3-Dichlorobenzene in mg/kg																		
1,4-Dichlorobenzene in mg/kg																		
2,4,5-Trichlorophenol in mg/kg 2,4,6-Trichlorophenol in mg/kg	01	12,000																
2,4,6-Trichlorophenol in mg/kg 2,4-Dichlorophenol in mg/kg	91	12,000																
2,4-Dictilorophenol in mg/kg																		
2,4-Dinitrophenol in mg/kg																		
2-Chloronaphthalene in mg/kg																		
2-Chlorophenol in mg/kg																		
2-Methylphenol in mg/kg																		
2-Nitroaniline in mg/kg																		
2-Nitrophenol in mg/kg																		
3 & 4 Methylphenol in mg/kg																		
3-Nitroaniline in mg/kg																		
4,6-Dinitro-2-methylphenol in mg/kg																		
4-Bromophenyl phenyl ether in mg/kg 4-Chloro-3-methylphenol in mg/kg																		
4-Chloroaniline in mg/kg	5	660																
4-Chlorophenyl phenyl ether in mg/kg	,	000																
4-Nitroaniline in mg/kg																		
4-Nitrophenol in mg/kg																		

N-C Worldwide Site Opiand Area 11										ormer Shooti	ing Range Are	а						
	1	1		ı	ı		ı	1		טוווכו אווטטנו	ing Nange Are	a			ı		1	
	Unrestricted Soil Screening Level	Industrial Soil Screening Level	NRP-B-09 6/27/2012	NRP-B-09 6/27/2012	NRP-B-10 6/27/2012	NRP-B-10 6/27/2012	NRP-B-11 6/6/2012	NRP-B-11 6/6/2012	NRP-B-12 6/6/2012	NRP-B-12 6/6/2012	NRP-B-13 6/6/2012	NRP-B-13 6/6/2012	NRP-B-14 6/27/2012	NRP-B-14 6/27/2012	NRP-B-15 6/6/2012	NRP-B-15 6/6/2012	NRP-B-16 6/27/2012	NRP-B-16 6/27/2012
Chemical Name	(mg/kg)	(mg/kg)	(0-1 ft.)	(3-4 ft.)	(0-1 ft.)	(3-4 ft.)	(0-1 ft.)	(3-4 ft.)	(0-1 ft.)	(3-4 ft.)	(0-1 ft.)	(3-4 ft.)	(0-1 ft.)	(3-4 ft.)	(0-1 ft.)	(3-4 ft.)	(0-1 ft.)	(3-4 ft.)
Acenaphthene in mg/kg																		
Acenaphthylene in mg/kg																		
Anthracene in mg/kg																		
Benzo(g,h,i)perylene in mg/kg																		
Benzoic acid in mg/kg																		
Benzyl alcohol in mg/kg																		
Benzyl butyl phthalate in mg/kg	530	69,000																
Bis(2-chloro-1-methylethyl) ether in mg/kg	14	1,900																
Bis(2-chloroethoxy)methane in mg/kg		,																
Bis(2-chloroethyl) ether in mg/kg	0.91	120																
Bis(2-ethylhexyl) phthalate in mg/kg	71	9,400																
Carbazole in mg/kg		-,																
Dibenzofuran in mg/kg	1												 	 		 	1	
Diethyl phthalate in mg/kg	1												 	 		 	1	
Dimethyl phthalate in mg/kg	1												 	 		 	1	
Di-n-butyl phthalate in mg/kg	1												 	 		 	1	
Di-n-octyl phthalate in mg/kg																		
Fluoranthene in mg/kg																		
Fluorene in mg/kg																		
Hexachlorobenzene in mg/kg	0.63	82																
Hexachlorobutadiene in mg/kg	13	1,700																
Hexachlorocyclopentadiene in mg/kg	13	1,700																
Hexachloroethane in mg/kg	71	9,400																
Isophorone in mg/kg	1,100	140,000																
Nitrobenzene in mg/kg	1,100	140,000																
N-Nitroso-di-n-propylamine in mg/kg	0.14	19																
N-Nitrosodiphenylamine in mg/kg	200	27,000																
Pentachlorophenol in mg/kg	2.5	330																\vdash
Phenanthrene in mg/kg	2.3	330																\vdash
Phenol in mg/kg																	1	
Pyrene in mg/kg																	1	
Benz(a)anthracene in mg/kg	1.4	180																
																		
Benzo(a)pyrene in mg/kg	0.14	0.14																igwdapprox igwedge
Benzo(b)fluoranthene in mg/kg	1.4	180																<u> </u>
Benzo(k)fluoranthene in mg/kg	14	1,800																<u> </u>
Chrysene in mg/kg	140	18,000																igwdot
Dibenzo(a,h)anthracene in mg/kg	0.14	18	ļ										_	ļ		_	ļ	\vdash
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180	ļ										_	ļ		_	ļ	\vdash
2,4-Dinitrotoluene in mg/kg																		 '
2,6-Dinitrotoluene in mg/kg																		 '
2-Methylnaphthalene in mg/kg	ļ	ļ											_	_		_	_	 '
Naphthalene in mg/kg	5	5																 '
Total cPAH (TEQ) in mg/kg	0.14	2											<u> </u>	<u> </u>		<u> </u>		
Polychlorinated Biphenyls (PCBs)	1		T	ı	ı	ı	ı	1	1	ı	ı	ı	T	T	ı	T	T	
Aroclor 1016 in mg/kg	14	1,900																 '
Aroclor 1221 in mg/kg																		 '
Aroclor 1232 in mg/kg																		 '
Aroclor 1242 in mg/kg																	ļ	
Aroclor 1248 in mg/kg													<u> </u>	ļ		<u> </u>		
Aroclor 1254 in mg/kg	0.5	66											<u> </u>	ļ		<u> </u>		<u>'</u>
Aroclor 1260 in mg/kg	0.5	66																<u> </u>
Total PCBs in mg/kg	1	10																

Notes

Concentrations in shaded cells exceed unrestricted soil screening level Concentrations within bold border exceed industrial soil screening level

- J Analyte was positively identified. The reported result is an estimate
- U Analyte was not detected at or above the reported result.
- UJ Analyte was not detected at or above the reported estimate

Aspect Consulting

K-C Worldwide Site Upland Area 11	0207			E _C	ormer USTs Ar	.03			Former Shooti	ng Range Area
					NRP-MW-01	Ca		NRP-MW-03	Former Shooti	ilg Kalige Alea
Chemical Name	Groundwater	MW-05 2/17/2012	MW-05 6/5/2012	NRP-MW-01 6/8/2012	FD 6/8/2012	NRP-MW-02 6/5/2012	NRP-MW-03 6/5/2012	FD 6/5/2012	NRP-MW-04 7/3/2012	NRP-MW-05 7/3/2012
Total Petroleum Hydrocarbons	Screening Level	2/17/2012	6/5/2012	6/8/2012	6/8/2012	6/5/2012	0/5/2012	6/5/2012	7/3/2012	7/3/2012
Gasoline Range Hydrocarbons in ug/L	1000	100 U	100 U	100	-	100 U	100 U			
Diesel Range Hydrocarbons in ug/L Oil Range Hydrocarbons in ug/L	500 500	50 U 250 U	50 U 250 U	50 U 250 UJ		50 U 250 U				
Total TPHs in ug/L	500	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			
Dissolved Metals Dissolved Antimony in ug/L	640	<u> </u>	1 U	1 U	1 U	1 U	1 U		1 U	1 U
Dissolved Artificity in ug/L	5	4.68	3.92	1.6	1.51	1 U			1 U	1 U
Dissolved Beryllium in ug/L Dissolved Cadmium in ug/L	270 8.8	1 U	1 U 1 U	1 U 1 U		1 U			1 U	1 U
Dissolved Caumum (Total) in ug/L	8.8	1.92	1.58	1.13	1.04	1 U			1 U	1 U
Dissolved Copper in ug/L	2.4	7.09	5.21	1 U		1 U			1.09	1 U
Dissolved Lead in ug/L Dissolved Mercury in ug/L	8.1 0.15	1 U 0.1 U	1 U 0.1 U	1 U 0.1 U		0.1 U	-		1 U 0.1 U	0.1 U
Dissolved Nickel in ug/L	8.2	3.48	3.38	3.2	2.94	2.12	2.31		2.69	3.65
Dissolved Selenium in ug/L Dissolved Silver in ug/L	71 1.9	15.3 1 U	13.8 J 1 U	3.61 1 U	3.12 1 U	1.11 J 1 U	4.49 J 1 U		1 U 1 U	1 U
Dissolved Thallium in ug/L	0.47		1 U	1 U		1 U			1 U	1 U
Dissolved Zinc in ug/L Total Metals	81	1.61	1 U	2.01	1 U	4.44	3.57		3.54	2.77
Total Antimony in ug/L	640								1 U	
Total Arsenic in ug/L Total Beryllium in ug/L	5 270								1 U 1 U	1 U
Total Cadmium in ug/L	8.8								1 U	1 U
Total Copper in ug/L	2.4								1 U	1 U
Total Copper in ug/L Total Lead in ug/L	2.4 8.1				<u> </u>	<u></u>			9.2 1 U	1 U
Total Mercury in ug/L	0.15								0.1 U	0.1 U
Total Nickel in ug/L Total Selenium in ug/L	8.2 71				<u> </u>		1		3.64 1 U	3.28 1 U
Total Silver in ug/L	1.9								1 U	1 U
Total Thallium in ug/L Total Zinc in ug/L	0.47 81								1 U 6.16	1 U 2.34
Conventional Chemistry Parameters		<u> </u>						<u> </u>	0.10	2.37
Total Ammonia as Nitrogen in mg/L Total Dissolved Solids in mg/L	0.035	2,775	0.662	3.26	3.26	0.383	11.3			
Dissolved Sulfide in mg/L		2,773	3.01	0.05 U	0.05 U	0.506	0.2 U			
Total Suspended Solids in mg/L Polycyclic Aromatic Hydrocarbons (PAHs)		100	10 U	10 U		10 U	19		10 U	10 U
Acenaphthene in ug/L	640	0.28	0.22	0.2	0.19	0.05 U	0.6			
Acenaphthylene in ug/L	26,000	0.1 U	0.05 U	0.05 U 0.05 U		0.05 U				
Anthracene in ug/L Benzo(g,h,i)perylene in ug/L	26,000	0.1 U 0.1 U	0.05 U	0.05 U 0.05 U		0.05 U 0.05 U				
Fluoranthene in ug/L	90	0.1 U	0.05 U			0.05 U				
Fluorene in ug/L Phenanthrene in ug/L	3,500	0.1 U 0.1 U	0.05 U	0.089 0.17	0.084 0.17	0.05 U 0.05 U				
Pyrene in ug/L	2,600	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U				
Naphthalene in ug/L Benz(a)anthracene in ug/L	170 0.018	0.1 U 0.1 U	0.05 U 0.01 U			0.05 U 0.01 U				
Benzo(a)pyrene in ug/L	0.018	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U				
Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L	0.018 0.018	0.1 U 0.1 U	0.01 U	0.01 U 0.01 U		0.01 U 0.01 U				
Chrysene in ug/L	0.018	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.011			
Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L	0.018 0.018	0.1 U 0.1 U	0.01 U	0.01 U 0.01 U		0.01 U 0.01 U				
Total cPAHs TEQ in ug/L	0.018	ND	ND	ND	ND	ND	0.00851			
Volatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L	7.4	T	1 U	1 U	<u> </u>	1 U	1 U		<u> </u>	
1,1,1-Trichloroethane in ug/L	11,000		1 U	1 U		1 U				
1,1,2,2-Tetrachloroethane in ug/L	7.9		1 U	1 U		1 U				
1,1,2-Trichloroethane in ug/L 1,1-Dichloroethane in ug/L	2,300		1 U 1 U	1 U		1 U 1 U				
1,1-Dichloroethene in ug/L	3.2		1 U	1 U		1 U				
1,1-Dichloropropene in ug/L 1,2,3-Trichlorobenzene in ug/L			1 U 1 U	1 U 1 U	<u> </u>	1 U				
1,2,3-Trichloropropane in ug/L			1 U	1 U		1 U	1 U			
1,2,4-Trichlorobenzene in ug/L 1,2,4-Trimethylbenzene in ug/L	2 24		1 U 1 U	1 U 1 U	<u> </u>	1 U			<u> </u>	
1,2-Dibromo-3-chloropropane in ug/L			10 U	10 U		10 U	10 U			
1,2-Dibromoethane (EDB) in ug/L 1,2-Dichlorobenzene in ug/L	0.74 1,300		1 U 1 U	1 U		1 U				
1,2-Dichloroethane (EDC) in ug/L	4.2		1 U	1 U		1 U	1 U			
1,2-Dichloropropane in ug/L 1,3,5-Trimethylbenzene in ug/L	15 25		1 U 1 U	1 U 1 U		1 U	1			
1,3-Dichlorobenzene in ug/L	960		1 U	1 U		1 U	1 U			
1,3-Dichloropropane in ug/L 1,4-Dichlorobenzene in ug/L	190		1 U 1 U	1 U 1 U		1 U				
2,2-Dichloropropane in ug/L	130		1 U	1 U		1 U	1 U			
2-Butanone in ug/L	350,000		10 U			10 U				
2-Chlorotoluene in ug/L 2-Hexanone in ug/L			1 U 10 U	1 U 10 U		1 U 10 U			<u> </u>	
4-Chlorotoluene in ug/L			1 U	1 U		1 U	1 U			
4-Methyl-2-pentanone in ug/L Acetone in ug/L	11,000		10 U			10 U 10 U			<u> </u>	
Benzene in ug/L	2.4	1 U	0.35 U	0.35 U		0.35 U	0.35 U			
Bromobenzene in ug/L Bromodichloromethane in ug/L	0.09		1 U 1 U			1 U				
Bromoform in ug/L	140		1 UJ	1 U		1 UJ	1 UJ			
Bromomethane in ug/L Carbon tetrachloride in ug/L	13 0.22		1 U 1 U	1 U 1 U		1 U				
Carbon tetrachioride in ug/L Chlorobenzene in ug/L	100		1 U	1 U		1 U	1 U			
Chloroethane in ug/L	12		1 U	1 U 1 U		1 U				
Chloroform in ug/L Chloromethane in ug/L	1.2 5.2		1 U 10 U	1 U		1 U 10 U				
cis-1,2-Dichloroethene (DCE) in ug/L	160		1 U	1 U		1 U	1 U			
cis-1,3-Dichloropropene in ug/L Dibromochloromethane in ug/L	0.22		1 U 1 U			1 U				
Dibromomethane in ug/L			1 U	1 U		1 U	1 U			
Dichlorodifluoromethane in ug/L	9.9 2.100	1 11	1 UJ			1 UJ				
Ethylbenzene in ug/L	2,100	1 U	1 U	1 U		1 U	1 U			

Page 1 of 2

K-C Worldwide Site Upland Area 11	020 <i>1</i>	Former USTs Area					Former Shooti	ng Range Area		
Chemical Name	Groundwater	MW-05	MW-05	NRP-MW-01	NRP-MW-01 FD	NRP-MW-02	NRP-MW-03	NRP-MW-03 FD	NRP-MW-04	NRP-MW-05
Hexachlorobutadiene in ug/L	Screening Level 0.81	2/17/2012	6/5/2012 1 U	6/8/2012 1 U	6/8/2012	6/5/2012 1 U	6/5/2012 1 U	6/5/2012	7/3/2012	7/3/2012
Isopropylbenzene in ug/L	720		1 U	1 U		1 U	1 U			
Methylene chloride in ug/L	94		5 U	5 U		5 U	5 U			
Methyl-Tert-Butyl Ether in ug/L	610		1 U	1 U		1 U	1 U			
n-Propylbenzene in ug/L p-Isopropyltoluene in ug/L			1 U	1 U 1 U		1 U 1 U	1 U			
sec-Butylbenzene in ug/L			1 U	1 U		1 U	1 U			
Styrene in ug/L	78		1 U	1 U		1 U	1 U			
tert-Butylbenzene in ug/L			1 U			1 U				
Tetrachloroethene (PCE) in ug/L Toluene in ug/L	0.39 15,000	1 U	1 U	1 U 1 U		1 U 1 U	1 U 1 U			
trans-1,2-Dichloroethene in ug/L	130	1 0	1 U	1 U		1 U	1 U			
trans-1,3-Dichloropropene in ug/L			1 U	1 U		1 U				
Trichloroethene (TCE) in ug/L	0.42		1 U	1 U		1 U	1 U			
Trichlorofluoromethane in ug/L Vinyl chloride in ug/L	120 0.35		1 U 0.2 U	1 U 0.2 U		1 U 0.2 U	1 U 0.2 U			
m,p-Xylenes in ug/L	310		2 U	2 U		2 U				
o-Xylene in ug/L	440		1 U	1 U		1 U	1 U			
Xylenes (total) in ug/L	310	3 U	ND	ND		ND	ND			
Semi-Volatile Organics	2	1 U	1 11			1 11	1 U	1 1	1	
1,2,4-Trichlorobenzene in ug/L 1,2-Dichlorobenzene in ug/L	1,300	1 U	1 U			1 U	1 U	1 U 1 U		
1,3-Dichlorobenzene in ug/L	960	1 U	1 U			1 U	1 U	1 U		
1,4-Dichlorobenzene in ug/L	190	1 U	1 U			1 U	1 U	1 U		
2,4,5-Trichlorophenol in ug/L	3,600	10 U	10 U			10 U	10 U			
2,4,6-Trichlorophenol in ug/L 2,4-Dichlorophenol in ug/L	2.4 190	10 U 10 U	10 U			10 U	10 U	10 U 10 U		
2,4-Dictiorophenol in ug/L 2,4-Dimethylphenol in ug/L	550	10 U	10 U			10 U	10 U	10 U		
2,4-Dinitrophenol in ug/L	3,500	30 U	30 U			30 U	30 U	30 U		
2-Chloronaphthalene in ug/L	1,000	1 U	1 U			1 U	1 U			
2-Chlorophenol in ug/L	97	10 U	10 U			10 U	10 U	10 U		
2-Methylphenol in ug/L 2-Nitroaniline in ug/L		10 U 1 U	10 U 3 U			10 U 3 U	10 U 3 U	10 U 3 U		
2-Nitrophenol in ug/L		10 U	10 U			10 U	10 U	10 U		
3 & 4 Methylphenol in ug/L		20 U	20 U			20 U	20 U	20 U		
3-Nitroaniline in ug/L		3 U	3 U			3 U	3 U	3 U		
4,6-Dinitro-2-methylphenol in ug/L 4-Bromophenyl phenyl ether in ug/L		30 U 1 U	30 U 1 U			30 U 1 U				
4-Chloro-3-methylphenol in ug/L		10 U	10 U			10 U	10 U	10 U		
4-Chloroaniline in ug/L		3 U	3 U			3 U	3 U	3 U		
4-Chlorophenyl phenyl ether in ug/L		1 U	1 U			1 U	1 U	1 U		
4-Nitroaniline in ug/L		10 U	10 U			10 U	10 U	10 U		
4-Nitrophenol in ug/L Acenaphthene in ug/L	640	10 U	10 U			10 U	10 U	10 U 1 U		
Acenaphthylene in ug/L	0.10							1 U		
Anthracene in ug/L	26,000							1 U		
Benzo(g,h,i)perylene in ug/L		50 11	F0 11			F0 11	50 11	1 U		
Benzoic acid in ug/L Benzyl alcohol in ug/L		50 U 10 U	50 U 10 U			50 U 10 U	50 U 10 U	50 U 10 U		
Benzyl butyl phthalate in ug/L	8.2	10 U	1 U			10 U	10 U			
Bis(2-chloro-1-methylethyl) ether in ug/L	37	10 U	10 U			10 U	10 U	10 U		
Bis(2-chloroethoxy)methane in ug/L		1 U	1 U			1 U	1 U	1 U		
Bis(2-chloroethyl) ether in ug/L Bis(2-ethylhexyl) phthalate in ug/L	0.53 2.2	10 U 10 U	10 U			10 U 10 U	10 U 10 U	10 U 10 U		
Carbazole in ug/L	2.2	10 U	10 U			10 U	10 U			
Dibenzofuran in ug/L		1 U	1 U			1 U	1 U	1 U		
Diethyl phthalate in ug/L	28,000	1 U	1 U			1 U	1 U	1 U		
Dimethyl phthalate in ug/L	1,100,000	1 U 1 U	1 U			1 U				
Di-n-butyl phthalate in ug/L Di-n-octyl phthalate in ug/L	2,900	1 U	1 U			1 U	1 U	1 U		
Fluoranthene in ug/L	90							1 U		
Fluorene in ug/L	3,500							1 U		
Hexachlorobenzene in ug/L Hexachlorobutadiene in ug/L	0.00029 0.81	1 U 1 U	1 U			1 U 1 U	1 U	1 U 1 U		
Hexachlorocyclopentadiene in ug/L	1,100	3 U	3 U			3 U	3 U	3 U		
Hexachloroethane in ug/L	3.3	1 U	1 U			1 U	1 U	1 U		
Isophorone in ug/L	600	1 U	1 U			1 U		_		
Nitrobenzene in ug/L	690	1 U 10 U	1 U			1 U	1 U 10 U	1 U 10 U		
N-Nitroso-di-n-propylamine in ug/L N-Nitrosodiphenylamine in ug/L	0.51 6	10 U 1 U	10 U			10 U 1 U	10 U	10 U		
Pentachlorophenol in ug/L	1.5	10 U	10 U			10 U	10 U	10 U		
Phenanthrene in ug/L				_	-			1 U		
Phenol in ug/L	560,000	10 U	10 U			10 U	10 U	10 U		
Pyrene in ug/L Benz(a)anthracene in ug/L	2,600 0.018							1 U		
Benzo(a)pyrene in ug/L	0.018							1 U		
Benzo(b)fluoranthene in ug/L	0.018							1 U		
Benzo(k)fluoranthene in ug/L	0.018							1 U		
Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L	0.018 0.018							1 U		
Indeno(1,2,3-cd)pyrene in ug/L	0.018 0.018							1 U 1 U		
2,4-Dinitrotoluene in ug/L	3.4	1 U	1 U			1 U	1 U			
2,6-Dinitrotoluene in ug/L		1 U	1 U	_	-	1 U	1 U	1 U		
2-Methylnaphthalene in ug/L		1 U	1 U			1 U	1 U			
Naphthalene in ug/L Field Parameters	170							1 U	<u> </u>	
Dissolved Oxygen in mg/L		1.53	0.07	0.59		0.35	2.01		0.35	0.37
Eh (ORP) in mVolts		-222	-78.1	-77.5		-1.3	-98.9		-102.2	-110.9
pH in pH Units		6.67	5.8	6.64		6.13	6.51		7.16	7.12
Specific Conductance in us/cm Temperature in deg C		5,773 11	3,554 12.94	991 15.4		770 13.37	1,410 12.6		717 14	736 14.4
Turbidity in NTU		70	0.73	3.89		13.37	37.4		2.72	2.54
, -						=:=		i		

Concentrations in shaded cells exceed groundwater screening level.

UJ - Analyte was not detected at or above the reported estimate

 $[\]ensuremath{\mathsf{J}}$ - Analyte was positively identified. The reported result is an estimate.

U - Analyte was not detected at or above the reported result.

Table 12A - Soil Quality Data for Log Pond Fill K-C Worldwide Site Upland Area 110207

Chemical Name	Unrestricted Soil Screening Level (mg/kg)	Industrial Soil Screening Level (mg/kg)	DP-18 2/16/2012 (2.5-3.5 ft.)	DP-19 2/16/2012 (2.5-3.5 ft.)	DP-20 2/16/2012 (2.5-3.5 ft.)	DP-21 2/16/2012 (4-5 ft.)	DP-22 2/16/2012 (3-4 ft.)	MW-06 2/16/2012 (22-23 ft.)
Total Petroleum Hydrocarbons	•	ı		ı	1			
Gasoline Range Hydrocarbons in mg/kg Diesel Range Hydrocarbons in mg/kg	100 2,000	100 2,000	2 U 50 U	2 U 50 U	2 U 50 U	2 U 50 U	2 U 50 U	2 U 50 U
Oil Range Hydrocarbons in mg/kg	2,000	2,000	250 U			250 U	250 U	250 U
Total TPH in mg/kg	2,000	2,000	ND	ND	ND	ND	ND	ND
Metals Arsenic in mg/kg	20	20	2.81	1.89	3.18	9.19	4.81	2.96
Cadmium in mg/kg	2	2	1 U	1 U	1 U	1 U	1 U	1 U
Chromium (Total) in mg/kg			18.9 38.8	13.3 13.2	12.3 27.1	75.8 63.4	12 15.1	17.2 23.2
Copper in mg/kg Lead in mg/kg	250	1,000	11.5	3.94	128	22.8	3.8	17.5
Mercury in mg/kg	2	2	0.1 U		0.2	0.1 U	0.1 U	0.1 U
Nickel in mg/kg Selenium in mg/kg			34.1 1 U	41.4 1 U	24.2 1 U	47.4 1 U	16 1 U	28 1 U
Silver in mg/kg			1 U			1 U	1 U	1 U
Zinc in mg/kg			189	21.9	106	75	26.7	280
Volatile Organic Compounds Benzene in mg/kg	0.03	0.03	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Ethylbenzene in mg/kg	6	6	0.02 U			0.02 U	0.02 U	0.02 U
Toluene in mg/kg Xylenes (total) in mg/kg	7 9	7 9	0.02 U 0.06 U			0.02 U 0.06 U	0.02 U 0.06 U	0.02 U 0.06 U
Semi-Volatile Organics	<u>. </u>	9	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00
1,2,4-Trichlorobenzene in mg/kg	35	4,500	0.03 U			0.03 U	0.03 U	0.03 U
1,2-Dichlorobenzene in mg/kg 1,3-Dichlorobenzene in mg/kg	<u> </u>		0.03 U 0.03 U			0.03 U 0.03 U	0.03 U 0.03 U	0.03 U
1,4-Dichlorobenzene in mg/kg	<u> </u>		0.03 U			0.03 U	0.03 U	0.03 U
2,4,5-Trichlorophenol in mg/kg	2.	13.000	0.3 U			0.3 U	0.3 U	0.3 U
2,4,6-Trichlorophenol in mg/kg 2,4-Dichlorophenol in mg/kg	91	12,000	0.3 U 0.3 U		0.3 U 0.3 U	0.3 U	0.3 U 0.3 U	0.3 U
2,4-Dimethylphenol in mg/kg			0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
2,4-Dinitrophenol in mg/kg			0.9 U		0.9 U	0.9 U	0.9 U	0.9 U
2-Chloronaphthalene in mg/kg 2-Chlorophenol in mg/kg			0.03 U 0.3 U		0.03 U 0.3 U	0.03 U	0.03 U 0.3 U	0.03 U
2-Methylphenol in mg/kg			0.3 U			0.3 U	0.3 U	0.3 U
2-Nitroaniline in mg/kg 2-Nitrophenol in mg/kg	<u> </u>		0.03 U 0.3 U		0.03 U 0.3 U	0.03 U 0.3 U	0.03 U 0.3 U	0.03 U
3 & 4 Methylphenol in mg/kg	†		0.5 U		0.5 U	0.5 U	0.5 U	0.5 U
3-Nitroaniline in mg/kg			3 U			3 U	3 U	3 U
4,6-Dinitro-2-methylphenol in mg/kg 4-Bromophenyl phenyl ether in mg/kg	<u> </u>		0.9 U 0.03 U		0.9 U 0.03 U	0.9 U 0.03 U	0.9 U 0.03 U	0.9 U
4-Chloro-3-methylphenol in mg/kg			0.3 U	0.3 U		0.3 U	0.3 U	0.3 U
4-Chloroaniline in mg/kg	5	660	3 U		3 U	3 U	3 U	3 U
4-Chlorophenyl phenyl ether in mg/kg 4-Nitroaniline in mg/kg			0.03 U 3 U	0.03 U 3 U	0.03 U 3 U	0.03 U 3 U	0.03 U 3 U	0.03 U
4-Nitrophenol in mg/kg			0.9 U	0.9 U	0.9 U	0.9 U	0.9 U	0.9 U
Acenaphthene in mg/kg Acenaphthylene in mg/kg	ļ		0.03 U 0.03 U		0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U	0.03 U
Anthracene in mg/kg			0.03 U			0.03 U	0.03 U	0.03 U
Benzo(g,h,i)perylene in mg/kg			0.03 U			0.033	0.03 U	0.03 U
Benzoic acid in mg/kg Benzyl alcohol in mg/kg			1.5 U 0.3 U		1.5 U 0.3 U	1.5 U 0.3 U	1.5 U 0.3 U	1.5 U 0.3 U
Benzyl butyl phthalate in mg/kg	530	69,000	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
Bis(2-chloro-1-methylethyl) ether in mg/kg	14	1,900	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
Bis(2-chloroethoxy)methane in mg/kg Bis(2-chloroethyl) ether in mg/kg	0.91	120	0.03 U 0.03 U		0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U	0.03 U
Bis(2-ethylhexyl) phthalate in mg/kg	71	9,400	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
Carbazole in mg/kg			0.03 U 0.03 U		0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U	0.03 U
Dibenzofuran in mg/kg Diethyl phthalate in mg/kg			0.03 U			0.03 U	0.03 U	0.03 U
Dimethyl phthalate in mg/kg			0.03 U			0.03 U	0.03 U	0.03 U
Di-n-butyl phthalate in mg/kg Di-n-octyl phthalate in mg/kg			0.03 U 0.03 U		0.03 U 0.03 U	0.03 U	0.03 U 0.03 U	0.03 U
Fluoranthene in mg/kg			0.03 U			0.049	0.03 U	0.049
Fluorene in mg/kg			0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
Hexachlorobenzene in mg/kg Hexachlorobutadiene in mg/kg	0.63 13	82 1,700	0.03 U 0.03 U			0.03 U 0.03 U	0.03 U 0.03 U	0.03 U
Hexachlorocyclopentadiene in mg/kg			0.09 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Hexachloroethane in mg/kg Isophorone in mg/kg	71 1,100	9,400 140,000	0.03 U 0.03 U			0.03 U 0.03 U	0.03 U 0.03 U	0.03 U
Nitrobenzene in mg/kg	1,100	140,000	0.03 U			0.03 U	0.03 U	0.03 U
N-Nitroso-di-n-propylamine in mg/kg	0.14	19	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
N-Nitrosodiphenylamine in mg/kg Pentachlorophenol in mg/kg	200 2.5	27,000 330	0.03 U 0.3 U		0.03 U 0.3 U	0.03 U 0.3 U	0.03 U 0.3 U	0.03 U
Phenanthrene in mg/kg	2.3	330	0.3 U			0.3 U	0.3 U	0.044
Phenol in mg/kg			0.3 U		0.3 U	0.3 U	0.3 U	0.3 U
Pyrene in mg/kg Benz(a)anthracene in mg/kg	1.4	180	0.03 U 0.03 U		0.068 0.031	0.052 0.03 U	0.03 U 0.03 U	0.056 0.03 U
Benzo(a)pyrene in mg/kg	0.14	0.14	0.03 U	0.03 U	0.047	0.033	0.03 U	0.03 U
Benzo(b)fluoranthene in mg/kg	1.4 14	180	0.03 U 0.03 U			0.051 0.03 U	0.03 U	0.03 U
Benzo(k)fluoranthene in mg/kg Chrysene in mg/kg	14	1,800 18,000	0.03 U			0.03 U 0.036	0.03 U 0.03 U	0.03 U
Dibenzo(a,h)anthracene in mg/kg	0.14	18	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
Indeno(1,2,3-cd)pyrene in mg/kg 2,4-Dinitrotoluene in mg/kg	1.4	180	0.03 U 0.03 U		0.038 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U	0.03 U
2,6-Dinitrotoluene in mg/kg	<u> </u>		0.03 U			0.03 U		
2-Methylnaphthalene in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
Naphthalene in mg/kg Total cPAH (TEQ) in mg/kg	5 0.14	5 2	0.03 U ND	0.03 U ND	0.03 U 0.062	0.03 U 0.044	0.03 U ND	0.063 ND
Polychlorinated Biphenyls (PCBs)	0.14		IND	עווי ווער	0.002	U.U 44	140	IND
Aroclor 1016 in mg/kg	14	1,900	0.1 U			0.1 U	0.1 U	0.1 L
Aroclor 1221 in mg/kg Aroclor 1232 in mg/kg	 		0.1 U 0.1 U			0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
Aroclor 1242 in mg/kg			0.1 U	0.1 U		0.1 U		0.1 U
Aroclor 1248 in mg/kg	0.5		0.1 U			0.1 U	0.1 U	0.1 U
Aroclor 1254 in mg/kg Aroclor 1260 in mg/kg	0.5 0.5	66 66	0.1 U 0.1 U			0.1 U 0.1 U	0.1 U 0.1 U	0.1 U
Alociol 1200 III IIIg/ Kg				0		0		

Concentrations in shaded cells exceed unrestricted soil screening level Concentrations within bold border exceed industrial soil screening level. U - Analyte was not detected at or above the reported result.

Table 12B - Groundwater Quality Data for Log Pond Fill K-C Worldwide Site Upland Area 110207

Chemical Name	Groundwater	MW-06	MW-06
	Screening Level	2/17/2012	6/7/2012
Total Petroleum Hydrocarbons	1000	100 11	100
Gasoline Range Hydrocarbons in ug/L Diesel Range Hydrocarbons in ug/L	1000 500	100 U 50 U	100 50
Oil Range Hydrocarbons in ug/L	500	250 U	250
Total TPHs in ug/L	500	ND ND	ND
Dissolved Metals	300	ND	110
Dissolved Antimony in ug/L	640		1
Dissolved Arsenic in ug/L	5	5.2	6.38
Dissolved Beryllium in ug/L	270		1
Dissolved Cadmium in ug/L	8.8	1 U	1
Dissolved Chromium (Total) in ug/L		4.28	5.26
Dissolved Copper in ug/L	2.4	4.14	3.29
Dissolved Lead in ug/L	8.1	1 U	1
Dissolved Mercury in ug/L	0.15	0.1 U	0.1
Dissolved Nickel in ug/L	8.2	5.95	7.81
Dissolved Selenium in ug/L	71	12.4	16.3
Dissolved Silver in ug/L	1.9	1 U	1
Dissolved Thallium in ug/L	0.47	1.40	1
Dissolved Zinc in ug/L Total Metals	81	1.49	13
Total Antimony in ug/L	640		1
Total Arsenic in ug/L	5		5.88
Total Beryllium in ug/L	270		1
Total Cadmium in ug/L	8.8		1
Total Chromium (Total) in ug/L	0.0		6.62
Total Copper in ug/L	2.4		3.85
Total Lead in ug/L	8.1		1
Total Mercury in ug/L	0.15		0.1
Total Nickel in ug/L	8.2		7.82
Total Selenium in ug/L	71		14.6
Total Silver in ug/L	1.9		1
Total Thallium in ug/L	0.47		1
Total Zinc in ug/L	81		3.96
Conventional Chemistry Parameters			
Total Ammonia as Nitrogen in mg/L	0.035	2.726	15.5
Total Dissolved Solids in mg/L		2,726	0.05
Dissolved Sulfide in mg/L Total Suspended Solids in mg/L		41	13
Polycyclic Aromatic Hydrocarbons (PAHs)		41	13
Acenaphthene in ug/L	640	0.1 U	0.05
Acenaphthylene in ug/L	040	0.1 U	0.05
Anthracene in ug/L	26,000	0.1 U	0.05
Benzo(g,h,i)perylene in ug/L		0.1 U	0.05
Fluoranthene in ug/L	90	0.1 U	0.05
Fluorene in ug/L	3,500	0.1 U	0.05
Phenanthrene in ug/L		0.1 U	0.05
Pyrene in ug/L	2,600	0.1 U	0.05
Naphthalene in ug/L	170	0.1 U	0.05
Benz(a)anthracene in ug/L	0.018	0.1 U	0.01
Benzo(a)pyrene in ug/L	0.018	0.1 U	0.01
Benzo(b)fluoranthene in ug/L	0.018	0.1 U	0.01
Benzo(k)fluoranthene in ug/L	0.018	0.1 U	0.01
Chrysene in ug/L	0.018	0.1 U	0.01
Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L	0.018 0.018	0.1 U 0.1 U	0.01
Total cPAHs TEQ in ug/L	0.018	ND	ND
/olatile Organic Compounds	0.016	NU	NU
1,1,1,2-Tetrachloroethane in ug/L	7.4		1
1,1,1-Trichloroethane in ug/L	11,000		1
1,1,2,2-Tetrachloroethane in ug/L	4		1
1,1,2-Trichloroethane in ug/L	7.9		1
1,1-Dichloroethane in ug/L	2,300		1
1,1-Dichloroethene in ug/L	3.2		1
1,1-Dichloropropene in ug/L			1

Aspect Consulting

Table 12B - Groundwater Quality Data for Log Pond Fill K-C Worldwide Site Upland Area 110207

Chemical Name	Groundwater Screening Level	MW-06 2/17/2012	MW-06 6/7/2012
1,2,3-Trichlorobenzene in ug/L	Screening Level	2/17/2012	1 U
1,2,3-Trichloropenzene in ug/L			1 U
1,2,4-Trichlorobenzene in ug/L	2		1 U
1,2,4-Trimethylbenzene in ug/L	24		1 U
1,2-Dibromo-3-chloropropane in ug/L			10 U
1,2-Dibromoethane (EDB) in ug/L	0.74		1 U
1,2-Dichlorobenzene in ug/L	1,300		1 U
1,2-Dichloroethane (EDC) in ug/L	4.2		1 U
1,2-Dichloropropane in ug/L	15		1 U
1,3,5-Trimethylbenzene in ug/L	25		1 U
1,3-Dichlorobenzene in ug/L	960		1 U
1,3-Dichloropropane in ug/L			1 U
1,4-Dichlorobenzene in ug/L	190		1 U
2,2-Dichloropropane in ug/L			1 U
2-Butanone in ug/L	350,000		10 U
2-Chlorotoluene in ug/L			1 U
2-Hexanone in ug/L			10 U
4-Chlorotoluene in ug/L			1 U
4-Methyl-2-pentanone in ug/L	11,000		10 U
Acetone in ug/L			10 U
Benzene in ug/L	2.4	1 U	0.35 U
Bromobenzene in ug/L			1 U
Bromodichloromethane in ug/L	0.09		1 U
Bromoform in ug/L	140		1 U
Bromomethane in ug/L	13		1 U
Carbon tetrachloride in ug/L	0.22		1 U
Chlorobenzene in ug/L	100		1 U
Chloroethane in ug/L	12		1 U
Chloroform in ug/L	1.2		1 U
Chloromethane in ug/L	5.2		10 U
cis-1,2-Dichloroethene (DCE) in ug/L	160		1 U
cis-1,3-Dichloropropene in ug/L			1 U
Dibromochloromethane in ug/L	0.22		1 U
Dibromomethane in ug/L			1 U
Dichlorodifluoromethane in ug/L	9.9		1 U
Ethylbenzene in ug/L	2,100	1 U	1 U
Hexachlorobutadiene in ug/L	0.81		1 U
Isopropylbenzene in ug/L	720		1 U
Methylene chloride in ug/L	94		5 U
Methyl-Tert-Butyl Ether in ug/L	610		1 U
n-Propylbenzene in ug/L			1 U
p-Isopropyltoluene in ug/L			1 U
sec-Butylbenzene in ug/L			1 U
Styrene in ug/L	78		1 U
tert-Butylbenzene in ug/L			1 U
Tetrachloroethene (PCE) in ug/L	0.39		1 U
Toluene in ug/L	15,000	1 U	1 U
trans-1,2-Dichloroethene in ug/L	130		1 U
trans-1,3-Dichloropropene in ug/L			1 U
Trichloroethene (TCE) in ug/L	0.42		1 U
Trichlorofluoromethane in ug/L	120		1 U
Vinyl chloride in ug/L	0.35		0.2 U
m,p-Xylenes in ug/L	310		2 U
o-Xylene in ug/L	440		1 U
Xylenes (total) in ug/L	310	3 U	ND
Semi-Volatile Organics			
1,2,4-Trichlorobenzene in ug/L	2	1 U	1 U
1,2-Dichlorobenzene in ug/L	1,300	1 U	1 U
1,3-Dichlorobenzene in ug/L	960	1 U	1 U
1,4-Dichlorobenzene in ug/L	190	1 U	1 U
2,4,5-Trichlorophenol in ug/L	3,600	10 U	10 U
2,4,6-Trichlorophenol in ug/L	2.4	10 U	10 U
2,4-Dichlorophenol in ug/L	190	10 U	10 U
2,4-Dimethylphenol in ug/L	550	10 U	10 U

Aspect Consulting

Table 12B - Groundwater Quality Data for Log Pond Fill

K-C Worldwide Site Upland Area 110207

Chemical Name	Groundwater Screening Level	MW-06 2/17/2012	MW-06 6/7/2012
2,4-Dinitrophenol in ug/L	3,500	30 U	30
2-Chloronaphthalene in ug/L	1,000	1 U	1
2-Chlorophenol in ug/L	97	10 U	10
2-Methylphenol in ug/L		10 U	10
2-Nitroaniline in ug/L		1 U	3
2-Nitrophenol in ug/L		10 U	10
3 & 4 Methylphenol in ug/L		20 U	20
3-Nitroaniline in ug/L		3 U	3
4,6-Dinitro-2-methylphenol in ug/L		30 U	30
4-Bromophenyl phenyl ether in ug/L		1 U	1
4-Chloro-3-methylphenol in ug/L		10 U	10
4-Chloroaniline in ug/L		3 U	3
4-Chlorophenyl phenyl ether in ug/L		1 U	1
4-Nitroaniline in ug/L		10 U	10
4-Nitrophenol in ug/L		10 U	10
Benzoic acid in ug/L		50 U	50
Benzyl alcohol in ug/L		10 U	10
Benzyl butyl phthalate in ug/L	8.2	1 U	1
Bis(2-chloro-1-methylethyl) ether in ug/L	37	10 U	10
Bis(2-chloroethoxy)methane in ug/L	-	1 U	1
Bis(2-chloroethyl) ether in ug/L	0.53	10 U	10
Bis(2-ethylhexyl) phthalate in ug/L	2.2	10 U	10
Carbazole in ug/L		1 U	1
Dibenzofuran in ug/L		1 U	1
Diethyl phthalate in ug/L	28,000	1 U	1
Dimethyl phthalate in ug/L	1,100,000	1 U	1
Di-n-butyl phthalate in ug/L	2,900	1 U	1 1
Di-n-octyl phthalate in ug/L	=,5 5 5	1 U	1
Hexachlorobenzene in ug/L	0.00029	1 U	1
Hexachlorobutadiene in ug/L	0.81	1 U	1 1
Hexachlorocyclopentadiene in ug/L	1,100	3 U	3
Hexachloroethane in ug/L	3.3	1 U	1
Isophorone in ug/L	600	1 U	1
Nitrobenzene in ug/L	690	1 U	1
N-Nitroso-di-n-propylamine in ug/L	0.51	10 U	10
N-Nitrosodiphenylamine in ug/L	6	1 U	1
Pentachlorophenol in ug/L	1.5	10 U	
Phenol in ug/L	560,000	10 U	10 10
2,4-Dinitrotoluene in ug/L	3.4	1 U	1
2,6-Dinitrotoluene in ug/L	5	1 U	1 1
2-Methylnaphthalene in ug/L		1 U	1
eld Parameters		1 0	
Dissolved Oxygen in mg/L		4.96	0.23
Eh (ORP) in mVolts		-141	-39.9
pH in pH Units		7.39	7.34
Specific Conductance in us/cm		3,809	3,347
Temperature in deg C		17.2	17.73
Turbidity in NTU		25.8	22.1

Notes

 $Concentrations \ in \ shaded \ cells \ exceed \ groundwater \ screening \ level.$

U - Analyte was not detected at or above the reported result.

 \mbox{UJ} - Analyte was not detected at or above the reported estimate

Table 13A - Soil Quality Data for Acid Plant

K-C Worldwide Site Upland Area 110207

	Unrestricted Soil	Industrial Soil	AP-MW-01	AP-MW-01 FD	AP-MW-01	AP-MW-01 FD
	Screening Level	Screening Level	6/29/2012	6/29/2012	6/29/2012	6/29/2012
Chemical Name	(mg/kg)	(mg/kg)	(1-2 ft.)	(1-2 ft.)	(6-7 ft.)	(6-7 ft.)
Metals						
Antimony in mg/kg			1 U	1 U	1 U	1 U
Arsenic in mg/kg	20	20	4.86	4.62	5.72	2.57
Beryllium in mg/kg			1 U	1 U	1 U	1 U
Cadmium in mg/kg	2	2	1 U	1 U	1 U	1 U
Chromium (Total) in mg/kg			11.6	11	18.3	14.6
Copper in mg/kg			11.8	9.5	17.2	12
Lead in mg/kg	250	1,000	2.42	2.89	2.52	2.13
Mercury in mg/kg	2	2	0.1 U	0.1 U	0.1 U	0.1 U
Nickel in mg/kg			19	18.6	28.7	20.6
Selenium in mg/kg			1 U	1 U	1 U	1 U
Silver in mg/kg			1 U	1 U	1 U	1 U
Thallium in mg/kg			1 U	1 U	1 U	1 U
Zinc in mg/kg			21.9	21.5	32.2	27.2
Conventional Chemistry Parameters						
pH in pH units			7.44	7.45	7.51	

Notes

Concentrations in shaded cells exceed unrestricted soil screening leve Concentrations within bold border exceed industrial soil screening level

U - Analyte was not detected at or above the reported result

Table 13B - Groundwater Quality Data for Acid Plant

K-C Worldwide Site Upland Area 110207

			1
Chaminal Name	Groundwater	AP-MW-01	AP-MW-01 FD
Chemical Name	Screening Level	7/3/2012	7/3/2012
Dissolved Metals			
Dissolved Antimony in ug/L	640	1 U	1 U
Dissolved Arsenic in ug/L	5	1.2	1.22
Dissolved Beryllium in ug/L	270	1 U	1 U
Dissolved Cadmium in ug/L	8.8	1 U	1 U
Dissolved Chromium (Total) in ug/L		1 U	1 U
Dissolved Copper in ug/L	2.4	1 U	1 U
Dissolved Lead in ug/L	8.1	1 U	1 U
Dissolved Mercury in ug/L	0.15	0.1 U	0.1 U
Dissolved Nickel in ug/L	8.2	1.85	2.04
Dissolved Selenium in ug/L	71	1 U	1 U
Dissolved Silver in ug/L	1.9	1 U	1 U
Dissolved Thallium in ug/L	0.47	1 U	1 U
Dissolved Zinc in ug/L	81	1.39	1.74
Total Metals			•
Total Antimony in ug/L	640		1 U
Total Arsenic in ug/L	5		1.11
Total Beryllium in ug/L	270	1 U	1 U
Total Cadmium in ug/L	8.8		1 U
Total Chromium (Total) in ug/L		1 U	1 U
Total Copper in ug/L	2.4		1 U
Total Lead in ug/L	8.1		1 U
Total Mercury in ug/L	0.15	0.1 U	0.1 U
Total Nickel in ug/L	8.2		2.02
Total Selenium in ug/L	71		1 U
Total Silver in ug/L	1.9		1 U
Total Thallium in ug/L	0.47		1 U
Total Zinc in ug/L	81		1.82
Conventional Chemistry Parameters			•
Total Suspended Solids in mg/L		10 U	
Field Parameters	_		-
Dissolved Oxygen in mg/L		0.39	
Eh (ORP) in mVolts		-90.4	
pH in pH Units		7.18	
Specific Conductance in us/cm		661	
Temperature in deg C		14.5	

Notes

Concentrations in shaded cells exceed groundwater screening level

U - Analyte was not detected at or above the reported result

Table 14A - Soil Quality Data for Central Maintenance Shop K-C Worldwide Site Upland Area 110207

Chemical Name	Unrestricted Soil Screening Level (mg/kg)	Industrial Soil Screening Level (mg/kg)	CMS-B-01 7/6/2012 (0-1 ft.)	CMS-B-01 7/6/2012 (2-3 ft.)	CMS-B-02 7/6/2012 (0-1 ft.)	CMS-B-02 7/6/2012 (2-3 ft.)	CMS-B-03 7/6/2012 (0-1 ft.)	CMS-B-03 7/6/2012 (2-3 ft.)
Total Petroleum Hydrocarbons Gasoline Range Hydrocarbons in mg/kg	100	100	2 U	2 U	11	2 U	2 U	2 L
Diesel Range Hydrocarbons in mg/kg Oil Range Hydrocarbons in mg/kg	2,000 2,000	2,000 2,000	50 U 250 U	50 U 250 U	50 U 250 U	58 250 U	50 U 250 U	50 L 250 L
Total TPH in mg/kg Metals	2,000	2,000	ND	ND	ND	183	ND	ND
Antimony in mg/kg			1.68	1 U	1.23	1.21	1 U	1 U
Arsenic in mg/kg Beryllium in mg/kg	20	20	6.02 1 U	4.25 1 U	7.06 1 U	4.63 1 U	6.17 1 U	4.3 1 U
Cadmium in mg/kg Chromium (Total) in mg/kg	2	2	1.32 16.6	1 U 11.4	1 U 22.7	1 U 15.4	1 U 19.1	1 U 12.8
Copper in mg/kg	250	1 000	74.2	20.1	44.1	37.5	29.9	27.4
Lead in mg/kg Mercury in mg/kg	250 2	1,000 2	73.3 0.32	17 0.1 U	55.8 0.14	37.9 0.24	32.7 0.1 U	28.2 0.1 U
Nickel in mg/kg Selenium in mg/kg			22.4 1 U	17 1 U	47.5 1 U	16.4 1 U	17.8 1 U	17.7 1 U
Silver in mg/kg Thallium in mg/kg			1 U 1 U	1 U				
Zinc in mg/kg			297	35.2	57.4	46.1	44.9	58.9
Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in mg/kg			0.01 U	0.01 U	0.01 U	0.011	0.01 U	0.01 U
Acenaphthylene in mg/kg Anthracene in mg/kg			0.01 U	0.01 U	0.01 U 0.014	0.025 0.028	0.01 U 0.01 U	0.01 U
Benzo(g,h,i)perylene in mg/kg Fluoranthene in mg/kg			0.01 U 0.01 U	0.03 0.01 U	0.032 0.12	0.045 0.18	0.013 0.03	0.032 0.083
Fluorene in mg/kg			0.01 U	0.01 U	0.01 U	0.016	0.01 U	0.01 U
Phenanthrene in mg/kg Pyrene in mg/kg			0.01 U	0.01 U	0.062 0.14	0.2 0.23	0.024 0.037	0.068
Naphthalene in mg/kg Benz(a)anthracene in mg/kg	5 1.4	5 180	0.01 U 0.01 U	0.01 U 0.01 U	0.092 0.034	0.25 0.057	0.015 0.013	0.05 0.031
Benzo(a)pyrene in mg/kg Benzo(b)fluoranthene in mg/kg	0.14	0.14 180	0.01 U	0.01 U	0.034 0.06	0.048	0.013 0.021	0.031 0.053
Benzo(k)fluoranthene in mg/kg	14	1,800	0.01 U	0.01 U	0.018	0.021	0.01 U	0.016
Chrysene in mg/kg Dibenzo(a,h)anthracene in mg/kg	140 0.14	18,000 18	0.01 U 0.01 U	0.01 U 0.01 U	0.06 0.01 U	0.093 0.01 U	0.019 0.01 U	0.048 0.01 U
Indeno(1,2,3-cd)pyrene in mg/kg Total cPAHs TEQ in mg/kg	1.4 0.14	180	0.01 U ND	0.023 0.0106	0.029 0.0492	0.036 0.0691	0.012 0.0188	0.027 0.0447
Volatile Organic Compounds						<u></u>		
1,1,1,2-Tetrachloroethane in mg/kg 1,1,1-Trichloroethane in mg/kg	38	5,000 2	0.05 U 0.05 U	0.05 U				
1,1,2,2-Tetrachloroethane in mg/kg 1,1,2-Trichloroethane in mg/kg	5 18	660 2,300	0.05 U 0.05 U	0.05 U				
1,1-Dichloroethane in mg/kg	10	2,300	0.05 U					
1,1-Dichloroethene in mg/kg 1,1-Dichloropropene in mg/kg			0.05 U 0.05 U					
1,2,3-Trichlorobenzene in mg/kg 1,2,3-Trichloropropane in mg/kg	0.033	4.4	0.25 U 0.05 U	0.25 U				
1,2,4-Trichlorobenzene in mg/kg 1,2,4-Trimethylbenzene in mg/kg	35	4,500	0.25 U 0.05 U					
1,2-Dibromo-3-chloropropane in mg/kg	1.3	160	0.5 U					
1,2-Dibromoethane (EDB) in mg/kg 1,2-Dichlorobenzene in mg/kg	0.005	0.005	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U
1,2-Dichloroethane (EDC) in mg/kg 1,2-Dichloropropane in mg/kg	11	1,400	0.05 U 0.05 U					
1,3,5-Trimethylbenzene in mg/kg			0.05 U					
1,3-Dichlorobenzene in mg/kg 1,3-Dichloropropane in mg/kg			0.05 U 0.05 U	0.05 U				
1,4-Dichlorobenzene in mg/kg 2,2-Dichloropropane in mg/kg			0.05 U 0.05 U	0.05 U				
2-Butanone in mg/kg 2-Chlorotoluene in mg/kg			0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U	0.5 U 0.05 U	0.5 U
2-Hexanone in mg/kg			0.5 U					
4-Chlorotoluene in mg/kg 4-Methyl-2-pentanone in mg/kg			0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U	0.05 U 0.5 U	0.05 U
Acetone in mg/kg Benzene in mg/kg	0.03	0.03	0.5 U 0.03 U	0.5 U				
Bromobenzene in mg/kg			0.05 U					
Bromodichloromethane in mg/kg Bromoform in mg/kg	16 130	2,100 17,000	0.05 U 0.05 U					
Bromomethane in mg/kg Carbon tetrachloride in mg/kg	14	1,900	0.5 U 0.05 U	0.5 U				
Chlorobenzene in mg/kg Chloroethane in mg/kg			0.05 U 0.5 U	0.05 U				
Chloroform in mg/kg			0.05 U					
Chloromethane in mg/kg cis-1,2-Dichloroethene (DCE) in mg/kg			0.5 U 0.05 U					
cis-1,3-Dichloropropene in mg/kg Dibromochloromethane in mg/kg	12	1,600	0.05 U 0.05 U	0.05 U				
Dibromomethane in mg/kg Dichlorodifluoromethane in mg/kg		, , , , ,	0.05 U					
Ethylbenzene in mg/kg	6	6	0.05 U					
Hexachlorobutadiene in mg/kg Isopropylbenzene in mg/kg	13	1,700	0.25 U 0.05 U					
Methylene chloride in mg/kg Methyl-Tert-Butyl Ether in mg/kg	0.02 0.1	0.02 0.1	0.5 U 0.05 U	0.5 U				
n-Propylbenzene in mg/kg			0.05 U					
p-Isopropyltoluene in mg/kg sec-Butylbenzene in mg/kg			0.05 U					
Styrene in mg/kg tert-Butylbenzene in mg/kg			0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U
Tetrachloroethene (PCE) in mg/kg Toluene in mg/kg	0.05	0.05 7	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U 0.05 U	0.025 U
trans-1,2-Dichloroethene in mg/kg		,	0.05 U					
trans-1,3-Dichloropropene in mg/kg Trichloroethene (TCE) in mg/kg	0.03	0.03	0.05 U 0.03 U	0.05 U				
Trichlorofluoromethane in mg/kg Vinyl chloride in mg/kg	0.67	88	0.5 U 0.05 U	0.5 U				
m,p-Xylenes in mg/kg	16,000	700,000	0.1 U					
o-Xylene in mg/kg Xylenes (total) in mg/kg	16,000 9	700,000 9	0.05 U ND					
Polychlorinated Biphenyls (PCBs) Aroclor 1016 in mg/kg	14	1,900	0.1 U					
Aroclor 1221 in mg/kg		,,,,,,,	0.1 U 0.1 U	0.1 U				
Aroclor 1232 in mg/kg Aroclor 1242 in mg/kg			0.1 U					
Aroclor 1248 in mg/kg	0.5	66	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 1.3	0.1 U 0.4	0.1 U 1.3	0.1 U
Aroclor 1254 in mg/kg	0.5	- 00	0.1 0	0.1	1.5		1.5	

Concentrations in shaded cells exceed unrestricted soil screening level

Concentrations within bold border exceed industrial soil screening level.
U - Analyte was not detected at or above the reported result.

Table 14B - Groundwater Quality Data for Central Maintenance Shop K-C Groundwater Quality Data for Central Maintenance Shop 110207

Chemical Name	Groundwater Screening Level	CMS-MW-01 7/2-3/2012
Total Petroleum Hydrocarbons	our coming zever	.,2 0,2012
Gasoline Range Hydrocarbons in ug/L	1000	100 L
Diesel Range Hydrocarbons in ug/L	500	610
Oil Range Hydrocarbons in ug/L	500	250 L
Total TPHs in ug/L	500	735
Dissolved Metals		, , ,
Dissolved Antimony in ug/L	640	1 (
Dissolved Arsenic in ug/L	5	1.26
Dissolved Beryllium in ug/L	270	1 (
Dissolved Cadmium in ug/L	8.8	1 (
Dissolved Chromium (Total) in ug/L		1.59
Dissolved Copper in ug/L	2.4	1 (
Dissolved Lead in ug/L	8.1	1 L
Dissolved Mercury in ug/L	0.15	0.1 l
Dissolved Nickel in ug/L	8.2	7.18
Dissolved Selenium in ug/L	71	1 (
Dissolved Silver in ug/L	1.9	1 (
Dissolved Thallium in ug/L	0.47	1 (
Dissolved Zinc in ug/L	81	2.73
Total Metals	•	-
Total Antimony in ug/L	640	1 (
Total Arsenic in ug/L	5	1 (
Total Beryllium in ug/L	270	1 (
Total Cadmium in ug/L	8.8	1 (
Total Chromium (Total) in ug/L		1.61
Total Copper in ug/L	2.4	1 (
Total Lead in ug/L	8.1	1 L
Total Mercury in ug/L	0.15	0.1 L
Total Nickel in ug/L	8.2	1.11
Total Selenium in ug/L	71	1 L
Total Silver in ug/L	1.9	1 L
Total Thallium in ug/L	0.47	1 L
Total Zinc in ug/L	81	1.65
Conventional Chemistry Parameters		
Total Suspended Solids in mg/L		10 L
Polycyclic Aromatic Hydrocarbons (PAHs)		
Acenaphthene in ug/L	640	54
Acenaphthylene in ug/L		0.68
Anthracene in ug/L	26,000	1.9
Benzo(g,h,i)perylene in ug/L		0.05 L
Fluoranthene in ug/L	90	6.1
Fluorene in ug/L	3,500	29
Phenanthrene in ug/L		36
Pyrene in ug/L	2,600	4.2
Naphthalene in ug/L	170	200
Benz(a)anthracene in ug/L	0.018	0.26
Benzo(a)pyrene in ug/L	0.018	0.011
Benzo(b)fluoranthene in ug/L	0.018	0.022
Benzo(k)fluoranthene in ug/L	0.018	0.01 l
Chrysene in ug/L	0.018	0.14
Dibenzo(a,h)anthracene in ug/L	0.018	0.01 l
Indeno(1,2,3-cd)pyrene in ug/L	0.018	0.01 l
Total cPAHs TEQ in ug/L	0.018	0.0421
Volatile Organic Compounds		
1,1,1,2-Tetrachloroethane in ug/L	7.4	1 (
1,1,1-Trichloroethane in ug/L	11,000	1 (
1,1,2,2-Tetrachloroethane in ug/L	4	1 (
1,1,2-Trichloroethane in ug/L	7.9	1 (
1,1-Dichloroethane in ug/L	2,300	1 (
	3.2	1 (
1,1-Dichloroethene in ug/L	5.2	
1,1-Dichloroethene in ug/L 1,1-Dichloropropene in ug/L	5.2	1 (
1,1-Dichloroethene in ug/L 1,1-Dichloropropene in ug/L 1,2,3-Trichlorobenzene in ug/L	5.2	1 1
1,1-Dichloroethene in ug/L 1,1-Dichloropropene in ug/L	3.2	1

Aspect Consulting

Table 14B - Groundwater Quality Data for Central Maintenance Shop

K-C Groundwater Quality Data for Central Maintenance Shop 110207

Chemical Name	Groundwater Screening Level	CMS-MW-01 7/2-3/2012
1,2,4-Trimethylbenzene in ug/L	24	1 U
1,2-Dibromo-3-chloropropane in ug/L	24	10 U
1,2-Dibromoethane (EDB) in ug/L	0.74	10 U
1,2-Dichlorobenzene in ug/L	1,300	1 U
1,2-Dichloroethane (EDC) in ug/L	4.2	1 U
1,2-Dichloropropane in ug/L	15	1 U
1,3,5-Trimethylbenzene in ug/L	25	1 U
1,3-Dichlorobenzene in ug/L	960	1 U
1,3-Dichloropropane in ug/L	300	1 U
1,4-Dichlorobenzene in ug/L	190	1 U
2,2-Dichloropropane in ug/L	150	1 U
2-Butanone in ug/L	350,000	10 U
2-Chlorotoluene in ug/L	330,000	1 U
2-Hexanone in ug/L	_	10 U
4-Chlorotoluene in ug/L	_	10 U
4-Methyl-2-pentanone in ug/L	11,000	10 U
Acetone in ug/L	11,000	10 U
Benzene in ug/L	2.4	0.35 U
Bromobenzene in ug/L		1 U
Bromodichloromethane in ug/L	0.09	1 U
Bromoform in ug/L	140	1 U
Bromomethane in ug/L	13	1 U
Carbon tetrachloride in ug/L	0.22	1 U
Chlorobenzene in ug/L	100	1 U
Chloroethane in ug/L	12	1 U
Chloroform in ug/L	1.2	1 U
Chloromethane in ug/L	5.2	10 U
cis-1,2-Dichloroethene (DCE) in ug/L	160	10 U
cis-1,3-Dichloropropene in ug/L	100	1 U
Dibromochloromethane in ug/L	0.22	1 U
Dibromomethane in ug/L	- 0.22	1 U
Dichlorodifluoromethane in ug/L	9.9	1 U
Ethylbenzene in ug/L	2,100	1 U
Hexachlorobutadiene in ug/L	0.81	1 U
Isopropylbenzene in ug/L	720	1 U
Methylene chloride in ug/L	94	5 U
Methyl-Tert-Butyl Ether in ug/L	610	1 U
n-Propylbenzene in ug/L	010	1 U
p-Isopropyltoluene in ug/L	_	1 U
sec-Butylbenzene in ug/L	_	1 U
Styrene in ug/L	78	1 U
tert-Butylbenzene in ug/L		1 U
Tetrachloroethene (PCE) in ug/L	0.39	1 U
Toluene in ug/L	15,000	1 U
trans-1,2-Dichloroethene in ug/L	130	1 U
trans-1,3-Dichloropropene in ug/L	150	1 U
Trichloroethene (TCE) in ug/L	0.42	1 U
Trichlorofluoromethane in ug/L	120	1 U
Vinyl chloride in ug/L	0.35	0.2 U
m,p-Xylenes in ug/L	310	2 U
o-Xylene in ug/L	440	1 U
Xylenes (total) in ug/L	310	ND ND
Field Parameters		ND
Dissolved Oxygen in mg/L	1	0.42
Eh (ORP) in mVolts		-117.5
pH in pH Units		6.87
Specific Conductance in us/cm		434
apasine conductance in as/tin		7.77

Notes

Concentrations in shaded cells exceed groundwater screening level.

U - Analyte was not detected at or above the reported result.

Aspect Consulting

Page 2 of 2

Table 15A - Soil Quality Data for Old Machine Shop K-C Worldwide Site Upland Area 110207

Chemical Name	Unrestricted Soil Screening Level (mg/kg)	Industrial Soil Screening Level (mg/kg)	OMS-B-01 7/5/2012 (0-1 ft.)	OMS-B-01 7/5/2012 (2-3 ft.)	OMS-B-02 7/5/2012 (0-1 ft.)	OMS-B-02 7/5/2012 (2-3 ft.)	OMS-B-03 7/5/2012 (0-1 ft.)	OMS-B-0 7/6/201 (2-3 ft.
otal Petroleum Hydrocarbons Gasoline Range Hydrocarbons in mg/kg	100	100	2 U	2 U	2 U	2 U	2 U	2
Diesel Range Hydrocarbons in mg/kg Oil Range Hydrocarbons in mg/kg	2,000 2,000	2,000 2,000	50 U 250 U	50 250				
Total TPH in mg/kg letals	2,000	2,000	ND	ND	ND	ND	ND	NE
Antimony in mg/kg Arsenic in mg/kg	20	20	1 U 5.54	1 U 8.16	1 U 5.99	1 U 5.48	4.81 3.84	7.12
Beryllium in mg/kg Cadmium in mg/kg	2	2	1 U 1 U	1				
Chromium (Total) in mg/kg		-	16.4	20.7	20.7	16.9	10.8	22.4
Copper in mg/kg Lead in mg/kg	250	1,000	19.2 4.17	31.6 4.92	34 4.31	18.4 3.89	59.7 116	265 378
Mercury in mg/kg Nickel in mg/kg	2	2	0.1 U 22.6	0.1 U 28.5	0.1 U 30.9	0.1 U 20.5	0.23 23.9	0.8 ₄
Selenium in mg/kg Silver in mg/kg			1 U 1 U					
Thallium in mg/kg			1 U	1 U	1 U	1 U	1 U	
Zinc in mg/kg plycyclic Aromatic Hydrocarbons (PAHs)			33.7	43.4	37.6	32.4	59.3	11
Acenaphthene in mg/kg Acenaphthylene in mg/kg			0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 0.01
Anthracene in mg/kg Benzo(g,h,i)perylene in mg/kg			0.01 U 0.01 U	0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.064	0.05
Fluoranthene in mg/kg Fluorene in mg/kg			0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.14 0.01 U	0.6 0.01
Phenanthrene in mg/kg			0.01 U	0.01 U	0.01 U	0.01 U	0.094	0.4
Pyrene in mg/kg Naphthalene in mg/kg	5	5	0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.17 0.012	0.6 0.05
Benz(a)anthracene in mg/kg Benzo(a)pyrene in mg/kg	1.4 0.14	180 0.14	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.053 0.069	0.3
Benzo(b)fluoranthene in mg/kg	1.4	180	0.01 U	0.01 U	0.01 U	0.01 U	0.093	0.5
Benzo(k)fluoranthene in mg/kg Chrysene in mg/kg	14 140	1,800 18,000	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.036 0.087	0.1 0.4
Dibenzo(a,h)anthracene in mg/kg Indeno(1,2,3-cd)pyrene in mg/kg	0.14 1.4	18 180	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.012 0.06	0.05
Total cPAHs TEQ in mg/kg platile Organic Compounds	0.14	2	ND	ND	ND	ND	0.0953	0.46
1,1,1,2-Tetrachloroethane in mg/kg	38	5,000	0.05 U	0.0				
1,1,1-Trichloroethane in mg/kg 1,1,2,2-Tetrachloroethane in mg/kg	5	2 660	0.05 U 0.05 U	0.0				
1,1,2-Trichloroethane in mg/kg 1,1-Dichloroethane in mg/kg	18	2,300	0.05 U 0.05 U	0.0				
1,1-Dichloroethene in mg/kg 1,1-Dichloropropene in mg/kg			0.05 U 0.05 U	0.0				
1,2,3-Trichlorobenzene in mg/kg			0.25 U	0.2				
1,2,3-Trichloropropane in mg/kg 1,2,4-Trichlorobenzene in mg/kg	0.033 35	4.4 4,500	0.05 U 0.25 U	0.0				
1,2,4-Trimethylbenzene in mg/kg 1,2-Dibromo-3-chloropropane in mg/kg	1.3	160	0.05 U 0.5 U	0.0				
1,2-Dibromoethane (EDB) in mg/kg 1,2-Dichlorobenzene in mg/kg	0.005	0.005	0.05 U 0.05 U	0.0				
1,2-Dichloroethane (EDC) in mg/kg	11	1,400	0.05 U	0.0				
1,2-Dichloropropane in mg/kg 1,3,5-Trimethylbenzene in mg/kg			0.05 U 0.05 U	0.0				
1,3-Dichlorobenzene in mg/kg 1,3-Dichloropropane in mg/kg			0.05 U	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.0
1,4-Dichlorobenzene in mg/kg 2,2-Dichloropropane in mg/kg			0.05 U 0.05 U	0.0				
2-Butanone in mg/kg			0.5 U	0				
2-Chlorotoluene in mg/kg 2-Hexanone in mg/kg			0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.0
4-Chlorotoluene in mg/kg 4-Methyl-2-pentanone in mg/kg			0.05 U 0.5 U	0.0				
Acetone in mg/kg Benzene in mg/kg	0.03	0.03	0.5 U 0.03 U	0.0				
Bromobenzene in mg/kg			0.05 U	0.0				
Bromodichloromethane in mg/kg Bromoform in mg/kg	16 130	2,100 17,000	0.05 U 0.05 U	0.0				
Bromomethane in mg/kg Carbon tetrachloride in mg/kg	14	1,900	0.5 U 0.05 U	0.0				
Chlorobenzene in mg/kg Chloroethane in mg/kg			0.05 U 0.5 U	0.0 C				
Chloroform in mg/kg			0.05 U	0.0				
Chloromethane in mg/kg cis-1,2-Dichloroethene (DCE) in mg/kg			0.5 U	0.5 U	0.5 U	0.5 U 0.05 U	0.5 U 0.05 U	0.0
cis-1,3-Dichloropropene in mg/kg Dibromochloromethane in mg/kg	12	1,600	0.05 U 0.05 U	0.0				
Dibromomethane in mg/kg Dichlorodifluoromethane in mg/kg			0.05 U 0.5 U	0.0 C				
Ethylbenzene in mg/kg Hexachlorobutadiene in mg/kg	6 13	6 1,700	0.05 U 0.25 U	0.0				
Isopropylbenzene in mg/kg			0.05 U	0.0				
Methylene chloride in mg/kg Methyl-Tert-Butyl Ether in mg/kg	0.02 0.1	0.02 0.1	0.5 U 0.05 U	0.0				
n-Propylbenzene in mg/kg p-Isopropyltoluene in mg/kg			0.05 U 0.05 U	0.0				
sec-Butylbenzene in mg/kg Styrene in mg/kg			0.05 U 0.05 U	0.0				
tert-Butylbenzene in mg/kg	0.05	0.05	0.05 U	0.0				
Tetrachloroethene (PCE) in mg/kg Toluene in mg/kg	0.05	0.05 7	0.025 U	0.025 U	0.025 U	0.025 U 0.05 U	0.025 U	0.0
trans-1,2-Dichloroethene in mg/kg trans-1,3-Dichloropropene in mg/kg			0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.0
Trichloroethene (TCE) in mg/kg Trichlorofluoromethane in mg/kg	0.03	0.03	0.03 U 0.5 U	0.0				
Vinyl chloride in mg/kg	0.67	88	0.05 U	0.0				
m,p-Xylenes in mg/kg o-Xylene in mg/kg	16,000 16,000	700,000 700,000	0.1 U 0.05 U	0.0				
Xylenes (total) in mg/kg Nychlorinated Biphenyls (PCBs)	9	9	ND	ND	ND	ND	ND	١
Aroclor 1016 in mg/kg Aroclor 1221 in mg/kg	14	1,900	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0
Aroclor 1232 in mg/kg			0.1 U	0				
Aroclor 1242 in mg/kg Aroclor 1248 in mg/kg			0.1 U 0.1 U	0				
Aroclor 1254 in mg/kg Aroclor 1260 in mg/kg	0.5 0.5	66 66	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	1.1 0.1 U	1
Total PCBs in mg/kg	1	10	ND	ND	ND	ND	1.4	2

Notes

Concentrations in shaded cells exceed unrestricted soil screening level

Concentrations within bold border exceed industrial soil screening level. J - Analyte was positively identified. The reported result is an estimate.

U - Analyte was not detected at or above the reported result.

Table 15B - Groundwater Quality Data for Old Machine Shop

K-C Worldwide Site Upland Area 110207

Chemical Name	Groundwater Screening Level	OMS-MW-0 6/6/2012
Total Petroleum Hydrocarbons	•	
Gasoline Range Hydrocarbons in ug/L	1000	100
Diesel Range Hydrocarbons in ug/L	500	50
Oil Range Hydrocarbons in ug/L	500	250
Total TPHs in ug/L	500	ND
Dissolved Metals		
Dissolved Antimony in ug/L	640	1.1
Dissolved Arsenic in ug/L	5	0.76
Dissolved Beryllium in ug/L	270	0.0012
Dissolved Cadmium in ug/L	8.8	0.079
Dissolved Chromium (Total) in ug/L		0.35
Dissolved Copper in ug/L	2.4	1.07
Dissolved Lead in ug/L	8.1	0.056
Dissolved Mercury in ug/L	0.15	0.1
Dissolved Nickel in ug/L	8.2	6.75
Dissolved Selenium in ug/L	71	0.8
Dissolved Silver in ug/L	1.9	0.005
Dissolved Thallium in ug/L	0.47	0.026
Dissolved Zinc in ug/L	81	3.99
Conventional Chemistry Parameters		
Total Ammonia as Nitrogen in mg/L		0.023
Dissolved Sulfide in mg/L		0.05
Total Suspended Solids in mg/L		17
Polycyclic Aromatic Hydrocarbons (PAHs)	640	0.05
Acenaphthene in ug/L	640	0.05
Acenaphthylene in ug/L	26,000	0.05
Anthracene in ug/L	26,000	0.05
Benzo(g,h,i)perylene in ug/L	00	0.05
Fluoranthene in ug/L Fluorene in ug/L	90 3,500	0.05 0.05
Phenanthrene in ug/L	3,300	0.05
Pyrene in ug/L	2,600	0.05
Naphthalene in ug/L	170	0.05
Benz(a)anthracene in ug/L	0.018	0.01
Benzo(a)pyrene in ug/L	0.018	0.01
Benzo(b)fluoranthene in ug/L	0.018	0.01
Benzo(k)fluoranthene in ug/L	0.018	0.01
Chrysene in ug/L	0.018	0.01
Dibenzo(a,h)anthracene in ug/L	0.018	0.01
Indeno(1,2,3-cd)pyrene in ug/L	0.018	0.01
Total cPAHs TEQ in ug/L	0.018	ND
Volatile Organic Compounds		1
1,1,1,2-Tetrachloroethane in ug/L	7.4	1
1,1,1-Trichloroethane in ug/L	11,000	1
1,1,2,2-Tetrachloroethane in ug/L	4	1
1,1,2-Trichloroethane in ug/L	7.9	1
1,1-Dichloroethane in ug/L	2,300	1
1,1-Dichloroethene in ug/L	3.2	1
1,1-Dichloropropene in ug/L		1
1,2,3-Trichlorobenzene in ug/L		1
1,2,3-Trichloropropane in ug/L		1
1,2,4-Trichlorobenzene in ug/L	2	1
1,2,4-Trimethylbenzene in ug/L	24	1
1,2-Dibromo-3-chloropropane in ug/L		10
1,2-Dibromoethane (EDB) in ug/L	0.74	1
1,2-Dichlorobenzene in ug/L	1,300	1
1,2-Dichloroethane (EDC) in ug/L	4.2	1
1,2-Dichloropropane in ug/L	15	1
1,3,5-Trimethylbenzene in ug/L	25	1
1,3-Dichlorobenzene in ug/L	960	1

Aspect Consulting

8/22/2012

Table 15B - Groundwater Quality Data for Old Machine Shop

K-C Worldwide Site Upland Area 110207

Chemical Name	Groundwater Screening Level	OMS-MW-01 6/6/2012
1,3-Dichloropropane in ug/L	0	1 (
1,4-Dichlorobenzene in ug/L	190	1 (
2,2-Dichloropropane in ug/L	150	1 (
2-Butanone in ug/L	350,000	10 U
2-Chlorotoluene in ug/L	330,000	1 1
2-Hexanone in ug/L		10 U
4-Chlorotoluene in ug/L		10 C
4-Methyl-2-pentanone in ug/L	11,000	10 U
Acetone in ug/L	11,000	10 U
Benzene in ug/L	2.4	0.35 L
Bromobenzene in ug/L	2.1	1 L
Bromodichloromethane in ug/L	0.09	1 (
Bromoform in ug/L	140	1 U
Bromomethane in ug/L	13	1 U
Carbon tetrachloride in ug/L	0.22	1 (
Chlorobenzene in ug/L	100	1 (
Chloroethane in ug/L		
<u>-</u>	12 1.2	
Chloroform in ug/L		
Chloromethane in ug/L	5.2	
cis-1,2-Dichloroethene (DCE) in ug/L	160	1 U
cis-1,3-Dichloropropene in ug/L		1 U
Dibromochloromethane in ug/L	0.22	1 L
Dibromomethane in ug/L		1 U
Dichlorodifluoromethane in ug/L	9.9	1 U
Ethylbenzene in ug/L	2,100	1 L
Hexachlorobutadiene in ug/L	0.81	1 U
Isopropylbenzene in ug/L	720	1 U
Methylene chloride in ug/L	94	5 U.
Methyl-Tert-Butyl Ether in ug/L	610	1 U
n-Propylbenzene in ug/L		1 L
p-Isopropyltoluene in ug/L		1 L
sec-Butylbenzene in ug/L		1 L
Styrene in ug/L	78	1 U
tert-Butylbenzene in ug/L		1 l
Tetrachloroethene (PCE) in ug/L	0.39	1 L
Toluene in ug/L	15,000	1 L
trans-1,2-Dichloroethene in ug/L	130	1 L
trans-1,3-Dichloropropene in ug/L		1 l
Trichloroethene (TCE) in ug/L	0.42	1 (
Trichlorofluoromethane in ug/L	120	1 L
Vinyl chloride in ug/L	0.35	0.2 L
m,p-Xylenes in ug/L	310	2 l
o-Xylene in ug/L	440	1 l
Xylenes (total) in ug/L	310	ND
Semi-Volatile Organics		_
1,2,4-Trichlorobenzene in ug/L	2	1 l
1,2-Dichlorobenzene in ug/L	1,300	1 l
1,3-Dichlorobenzene in ug/L	960	1 l
1,4-Dichlorobenzene in ug/L	190	1 l
2,4,5-Trichlorophenol in ug/L	3,600	10 U
2,4,6-Trichlorophenol in ug/L	2.4	10 U
2,4-Dichlorophenol in ug/L	190	10 U
2,4-Dimethylphenol in ug/L	550	10 U
2,4-Dinitrophenol in ug/L	3,500	30 l
2-Chloronaphthalene in ug/L	1,000	1 (
2-Chlorophenol in ug/L	97	10 (
2-Methylphenol in ug/L		10 (
2-Nitroaniline in ug/L		3 (
2-Nitrophenol in ug/L		10 U

Aspect Consulting

8/22/2012

Table 15B - Groundwater Quality Data for Old Machine Shop

K-C Worldwide Site Upland Area 110207

4,6-Dinitro-2-methylphenol in ug/L 4-Bromophenyl phenyl ether in ug/L 4-Chloro-3-methylphenol in ug/L 4-Chloroaniline in ug/L 4-Chlorophenyl phenyl ether in ug/L 4-Nitroaniline in ug/L 1		U U U
3-Nitroaniline in ug/L 4,6-Dinitro-2-methylphenol in ug/L 3 4-Bromophenyl phenyl ether in ug/L 4-Chloro-3-methylphenol in ug/L 4-Chloroaniline in ug/L 4-Chlorophenyl phenyl ether in ug/L 4-Nitroaniline in ug/L 1	3 0 1 0 3	U U U
4,6-Dinitro-2-methylphenol in ug/L 4-Bromophenyl phenyl ether in ug/L 4-Chloro-3-methylphenol in ug/L 4-Chloroaniline in ug/L 4-Chlorophenyl phenyl ether in ug/L 4-Nitroaniline in ug/L 1	0 1 0 3	U
4,6-Dinitro-2-methylphenol in ug/L 4-Bromophenyl phenyl ether in ug/L 4-Chloro-3-methylphenol in ug/L 4-Chloroaniline in ug/L 4-Chlorophenyl phenyl ether in ug/L 4-Nitroaniline in ug/L 1	0 1 0 3	U
4-Bromophenyl phenyl ether in ug/L 4-Chloro-3-methylphenol in ug/L 4-Chloroaniline in ug/L 4-Chlorophenyl phenyl ether in ug/L 4-Nitroaniline in ug/L 1	0	U
4-Chloro-3-methylphenol in ug/L 4-Chloroaniline in ug/L 4-Chlorophenyl phenyl ether in ug/L 4-Nitroaniline in ug/L 1	3	
4-Chloroaniline in ug/L 4-Chlorophenyl phenyl ether in ug/L 4-Nitroaniline in ug/L 1	-	
4-Chlorophenyl phenyl ether in ug/L 4-Nitroaniline in ug/L 1	1	U
4-Nitroaniline in ug/L 1	_	U
	0	U
4-Nitrophenol in ug/L 1	0	U
	0	U
	0	U
	1	U
Bis(2-chloro-1-methylethyl) ether in ug/L 37 1	0	U
	1	U
	0	U
Bis(2-ethylhexyl) phthalate in ug/L 2.2 1		U
	1	U
	1	U
	1	U
	1	U
	1	U
	1	U
	1	U
	1	U
	3	U
	1	U
	1	U
	1	U
N-Nitroso-di-n-propylamine in ug/L 0.51 1	0	U
	1	U
Pentachlorophenol in ug/L 1.5 1	0	U
	0	U
2,4-Dinitrotoluene in ug/L 3.4	1	U
2,6-Dinitrotoluene in ug/L	1	U
	1	U
Field Parameters		
Dissolved Oxygen in mg/L 4.6	9	
Eh (ORP) in mVolts 115.	1	
pH in pH Units 7.1	6	
Specific Conductance in us/cm 19,30	0	
Temperature in deg C 14.	5	
Turbidity in NTU 15.	8	

Notes

Concentrations in shaded cells exceed groundwater screening level

- J Analyte was positively identified. The reported result is an estimate
- U Analyte was not detected at or above the reported result
- UJ Analyte was not detected at or above the reported estimate

Page 3 of 3

Table 16 - Soil Quality Data for Boiler, Fly Ash, and Baghouse Area K-C Worldwide Site Upland Area 110207

Chemical Name	Unrestricted Soil Screening Level (mg/kg)	Industrial Soil Screening Level (mg/kg)	Boiler-B-01 7/5/2012 (1-2 ft.)	Boiler-B-02 7/5/2012 (1-2 ft.)	Boiler-B-03 7/5/2012 (1-2 ft.)	Boiler-B-04 7/6/2012 (1-1.5 ft.)	Boiler-B-05 7/6/2012 (1-1.5 ft.)
otal Petroleum Hydrocarbons						1	
Diesel Range Hydrocarbons in mg/kg Oil Range Hydrocarbons in mg/kg	2,000 2,000	2,000 2,000			62,000 46,000		
Total TPH in mg/kg	2,000	2,000			108,000		
/letals							
Antimony in mg/kg Arsenic in mg/kg	20	20	7.2 33.6	71.9 8.77	1.46 8.79	1 U 4.06	2.11
Beryllium in mg/kg	20	20	1 U	1 U	1 U	1 U	
Cadmium in mg/kg	2	2	1 U	1 U	1 U	1 U	1
Chromium (Total) in mg/kg			15.3	15.5	18.6	17.1	10.7
Copper in mg/kg Lead in mg/kg	250	1,000	65.4 118	167 1,870	153 342	33.2 19.8	13.3 6.02
Mercury in mg/kg	2	2	0.2	1.8	1.5	0.1 U	
Nickel in mg/kg			12.3	18.4	21.3	78.7	26
Selenium in mg/kg Silver in mg/kg			1 U 1 U	1 U	1 U 1 U	1 U	1
Thallium in mg/kg			1 U	1 U	1 U		
Zinc in mg/kg			222	87.9	61.3	54.1	34.9
/olatile Organic Compounds 1,1,1,2-Tetrachloroethane in mg/kg	38	5,000	0.05 U	0.05 U	0.05 U	0.05 U	0.05
1,1,1-Trichloroethane in mg/kg	2	2	0.05 U	0.05 U	0.05 U		
1,1,2,2-Tetrachloroethane in mg/kg	5	660	0.05 U	0.05 U	0.05 U		
1,1,2-Trichloroethane in mg/kg 1,1-Dichloroethane in mg/kg	18	2,300	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U		
1,1-Dichloroethene in mg/kg			0.05 U	0.05 U	0.05 U		
1,1-Dichloropropene in mg/kg			0.05 U	0.05 U	0.05 U		
1,2,3-Trichlorobenzene in mg/kg 1,2,3-Trichloropropane in mg/kg	0.033	4.4	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U		
1,2,4-Trichlorobenzene in mg/kg	35	4,4	0.05 U	0.05 U	0.05 U		
1,2,4-Trimethylbenzene in mg/kg		·	0.05 U	0.05 U	0.19	0.05 U	0.05
1,2-Dibromo-3-chloropropane in mg/kg	1.3	160 0.005	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U		
1,2-Dibromoethane (EDB) in mg/kg 1,2-Dichlorobenzene in mg/kg	0.005	0.005	0.05 U	0.05 U	0.05 U 0.05 U		
1,2-Dichloroethane (EDC) in mg/kg	11	1,400	0.05 U	0.05 U	0.05 U		
1,2-Dichloropropane in mg/kg			0.05 U	0.05 U	0.05 U		
1,3,5-Trimethylbenzene in mg/kg 1,3-Dichlorobenzene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
1,3-Dichloropropane in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U	
1,4-Dichlorobenzene in mg/kg			0.05 U	0.05 U	0.05 U		
2,2-Dichloropropane in mg/kg 2-Butanone in mg/kg			0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	
2-Chlorotoluene in mg/kg			0.5 U	0.5 U	0.05 U		
2-Hexanone in mg/kg			0.5 U	0.5 U	0.5 U	0.5 U	
4-Chlorotoluene in mg/kg			0.05 U	0.05 U	0.05 U		
4-Methyl-2-pentanone in mg/kg Acetone in mg/kg			0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	
Benzene in mg/kg	0.03	0.03	0.03 U	0.03 U	0.03 U		
Bromobenzene in mg/kg	16	2.400	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
Bromodichloromethane in mg/kg Bromoform in mg/kg	16 130	2,100 17,000	0.05 U	0.05 U	0.05 U 0.05 U		
Bromomethane in mg/kg		·	0.5 U	0.5 U	0.5 U	0.5 U	
Carbon tetrachloride in mg/kg	14	1,900	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
Chlorobenzene in mg/kg Chloroethane in mg/kg			0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U		
Chloroform in mg/kg			0.05 U	0.05 U	0.05 U		
Chloromethane in mg/kg			0.5 U	0.5 U	0.5 U		
cis-1,2-Dichloroethene (DCE) in mg/kg cis-1,3-Dichloropropene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
Dibromochloromethane in mg/kg	12	1,600	0.05 U	0.05 U	0.05 U		
Dibromomethane in mg/kg			0.05 U	0.05 U	0.05 U		
Dichlorodifluoromethane in mg/kg Ethylbenzene in mg/kg	6	6	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	
Hexachlorobutadiene in mg/kg	13	1,700	0.25 U	0.25 U	0.25 U		
Isopropylbenzene in mg/kg			0.05 U	0.05 U	0.05 U		
Methylene chloride in mg/kg Methyl-Tert-Butyl Ether in mg/kg	0.02	0.02 0.1	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U		
n-Propylbenzene in mg/kg	0.1	0.1	0.05 U	0.05 U	0.083	0.05 U	
p-Isopropyltoluene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U	0.05
sec-Butylbenzene in mg/kg Styrene in mg/kg	 		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
tert-Butylbenzene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U	
Tetrachloroethene (PCE) in mg/kg	0.05	0.05	0.025 U	0.025 U	0.025 U	0.025 U	0.025
Toluene in mg/kg	7	7	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
trans-1,2-Dichloroethene in mg/kg trans-1,3-Dichloropropene in mg/kg	+		0.05 U	0.05 U	0.05 U 0.05 U		
Trichloroethene (TCE) in mg/kg	0.03	0.03	0.03 U	0.03 U	0.03 U	0.03 U	0.03
Trichlorofluoromethane in mg/kg			0.5 U	0.5 U			
Vinyl chloride in mg/kg m,p-Xylenes in mg/kg	0.67 16,000	88 700,000	0.05 U 0.1 U	0.05 U 0.1 U	0.05 U 0.1	0.05 U 0.1 U	
o-Xylene in mg/kg	16,000	700,000	0.1 U	0.1 U	0.092	0.05 U	
Xylenes (total) in mg/kg	9	9	ND	ND	0.192	ND	ND
emi-Volatile Organics 1,2,4-Trichlorobenzene in mg/kg	35	4,500	0.03 U	0.03 U	3 U	0.03 U	0.03
1,2-Dichlorobenzene in mg/kg	35	4,300	0.03 U	0.03 U	3 U		
1,3-Dichlorobenzene in mg/kg	1		0.03 U	0.03 U	3 U	0.03 U	0.03
1,4-Dichlorobenzene in mg/kg	 		0.03 U	0.03 U	3 U		
2,4,5-Trichlorophenol in mg/kg 2,4,6-Trichlorophenol in mg/kg	91	12,000	0.3 U 0.3 U	0.3 U 0.3 U	30 U 30 U		
2,4-Dichlorophenol in mg/kg		,000	0.3 U	0.3 U	30 U		
2,4-Dimethylphenol in mg/kg			0.3 U	0.3 U	30 U	0.3 U	
2,4-Dinitrophenol in mg/kg 2-Chloronaphthalene in mg/kg	 		0.9 U 0.03 U	0.9 U 0.03 U	90 U 3 U		
2-Chlorophenol in mg/kg	+		0.03 U	0.03 U	3 U		
2-Methylphenol in mg/kg			0.3 U	0.3 U	30 U		
2-Nitroaniline in mg/kg			0.03 U	0.03 U	3 U		
2-Nitrophenol in mg/kg 3 & 4 Methylphenol in mg/kg	+		0.3 U 0.6 U	0.3 U 0.6 U	30 U 60 U		
3-Nitroaniline in mg/kg	+		0.6 U	0.6 U	300 U		
	_		5 5	0.9 U	90 U		

Page 1 of 2

Table 16 - Soil Quality Data for Boiler, Fly Ash, and Baghouse Area K-C Worldwide Site Upland Area 110207

	Unrestricted Soil	Industrial Soil	Boiler-B-01	Boiler-B-02	Boiler-B-03	Boiler-B-04	Boiler-B-05
Chemical Name	Screening Level	Screening Level	7/5/2012 (1-2 ft.)	7/5/2012 (1-2 ft.)	7/5/2012 (1-2 ft.)	7/6/2012 (1-1.5 ft.)	7/6/2012 (1-1.5 ft.)
4-Bromophenyl phenyl ether in mg/kg	(mg/kg)	(mg/kg)	0.03 U		(1-2 II.)	` '	0.03 L
4-Chloro-3-methylphenol in mg/kg			0.03 U	0.03 U	30 U		0.03 U
4-Chloroaniline in mg/kg	5	660	3 U	3 U	300 U		3 L
4-Chlorophenyl phenyl ether in mg/kg			0.03 U	0.03 U	3 U	0.03 U	0.03 L
4-Nitroaniline in mg/kg			3 U	3 U	300 U		3 L
4-Nitrophenol in mg/kg Acenaphthene in mg/kg			0.9 U 0.03 U	0.9 U 0.03 U	90 U 31	0.9 U 0.03 U	0.9 L 0.03 L
Acenaphthylene in mg/kg			0.03 U	0.03 U	3 U		0.03 L
Anthracene in mg/kg			0.03 U	0.03 U	32	0.03 U	0.03 L
Benzo(g,h,i)perylene in mg/kg			0.037	0.15	11	0.03 U	0.03 L
Benzoic acid in mg/kg Benzyl alcohol in mg/kg			1.5 U 0.3 U	1.5 U 0.3 U	150 U		1.5 U 0.3 U
Benzyl butyl phthalate in mg/kg	530	69,000	0.065	0.03 U	30 U		0.03 L
Bis(2-chloro-1-methylethyl) ether in mg/kg	14	1,900	0.03 U	0.03 U	3 U	0.03 U	0.03 L
Bis(2-chloroethoxy)methane in mg/kg			0.03 U	0.03 U	3 U		0.03 L
Bis(2-chloroethyl) ether in mg/kg	0.91	120	0.03 U	0.03 U	3 U		0.03 L
Bis(2-ethylhexyl) phthalate in mg/kg	71	9,400	0.48 U 0.03 U	0.48 U 0.03 U	48 U 3 U		1.0 fc 0.03 L
Carbazole in mg/kg Dibenzofuran in mg/kg			0.03 U	0.03 U	18	0.03 0	0.03 L
Diethyl phthalate in mg/kg			0.03 U	0.03 U	3 U		0.03 L
Dimethyl phthalate in mg/kg			0.033	0.03 U	3 U	0.03 U	0.03 L
Di-n-butyl phthalate in mg/kg			0.03 U	0.03 U	3 U		0.03 L
Di-n-octyl phthalate in mg/kg Fluoranthene in mg/kg			0.03 U 0.19	0.03 U 0.26	3 U 16	0.03 U 0.11	0.03 L 0.032
Fluorantinene in mg/kg Fluorene in mg/kg			0.19 0.03 U	0.26 0.03 U	64	0.11 0.03 U	0.032 0.03 L
Hexachlorobenzene in mg/kg	0.63	82	0.03 U	0.03 U	3 U		0.03 L
Hexachlorobutadiene in mg/kg	13	1,700	0.03 U	0.03 U	3 U		0.03 L
Hexachlorocyclopentadiene in mg/kg			0.09 U	0.09 U	9 U		0.09 L
Hexachloroethane in mg/kg Isophorone in mg/kg	71 1,100	9,400 140,000	0.03 U 0.03 U	0.03 U 0.03 U	3 U	0.03 U 0.03 U	0.03 L 0.03 L
Nitrobenzene in mg/kg	1,100	140,000	0.03 U	0.03 U	3 U		0.03 U
N-Nitroso-di-n-propylamine in mg/kg	0.14	19	0.03 U	0.03 U	3 U	0.03 U	0.03 L
N-Nitrosodiphenylamine in mg/kg	200	27,000	0.03 U	0.03 U	3 U		0.03 L
Pentachlorophenol in mg/kg	2.5	330	0.3 U 0.03 U	0.3 U	30 U	0.3 U	0.3 L
Phenanthrene in mg/kg Phenol in mg/kg			0.03 U	0.11 0.3 U	300 30 U	0.072 0.3 U	0.03 L 0.3 L
Pyrene in mg/kg			0.18	0.29	120	0.081	0.034
Benz(a)anthracene in mg/kg	1.4	180	0.059	0.19	32	0.032	0.03 L
Benzo(a)pyrene in mg/kg	0.14	0.14	0.039	0.2	26	0.03 U	0.03 L
Benzo(b)fluoranthene in mg/kg	1.4	180	0.12	0.27	11	0.05	0.03 L
Benzo(k)fluoranthene in mg/kg Chrysene in mg/kg	14 140	1,800 18,000	0.035 0.092	0.096 0.22	3 U 70	0.03 U 0.043	0.03 L 0.03 L
Dibenzo(a,h)anthracene in mg/kg	0.14	18,000	0.092 0.03 U	0.035	4.5	0.043 0.03 U	
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180	0.041	0.15	3.5	0.03 U	
2,4-Dinitrotoluene in mg/kg			0.03 U	0.03 U	3 U		
2,6-Dinitrotoluene in mg/kg			0.03 U		3 U		
2-Methylnaphthalene in mg/kg Naphthalene in mg/kg	5	5	0.03 U 0.053	0.053 0.035	300 5.9	0.11 0.28	0.03 L
Total cPAH (TEQ) in mg/kg	0.14	2	0.053	0.035	32.1	0.28	0.03 C
Dioxins/Furans	J.17	<u> </u>	3.000	3.270	J2.1	0.020	140
2,3,7,8-TCDD in mg/kg	1.1E-05	1.5E-03	3.17E-07 J	2.20E-06		1.61E-06	8.80E-07 L
1,2,3,7,8-PeCDD in mg/kg			1.31E-06 J	6.38E-06		3.49E-06	2.20E-06 L
1,2,3,4,7,8-HxCDD in mg/kg	1		1.81E-06 J 4.20E-06	1.38E-05		2.32E-06 J	2.20E-06 U 4.71E-07
1,2,3,6,7,8-HxCDD in mg/kg 1,2,3,7,8,9-HxCDD in mg/kg	1.6E-04	2.1E-02	4.20E-06 3.74E-06	3.61E-05 3.06E-05		5.64E-06 5.84E-06	4.71E-07 .
1,2,3,4,6,7,8-HpCDD in mg/kg	2.02.04		4.14E-05	3.67E-04		6.05E-05	5.64E-06
OCDD in mg/kg			1.90E-04	5.35E-04		5.70E-04	4.01E-05
2,3,7,8-TCDF in mg/kg			3.64E-06	2.04E-05		1.26E-05	1.70E-07
1,2,3,7,8-PeCDF in mg/kg	1		9.40E-07 J	5.66E-06		3.89E-06	2.20E-06 U
2,3,4,7,8-PeCDF in mg/kg 1,2,3,4,7,8-HxCDF in mg/kg			1.29E-06 J 1.97E-06 J	8.29E-06 1.46E-05		3.11E-06 3.81E-06	2.20E-06 U 2.12E-07
1,2,3,6,7,8-HxCDF in mg/kg			1.02E-06 J	7.06E-06		2.19E-06 J	2.12E-07 2.20E-06 U
1,2,3,7,8,9-HxCDF in mg/kg			2.69E-06 U	2.82E-07 J		2.11E-07 J	2.20E-06 U
2,3,4,6,7,8-HxCDF in mg/kg			1.17E-06 J	5.87E-06		1.96E-06 J	2.20E-06 L
1,2,3,4,6,7,8-HpCDF in mg/kg			1.13E-05	1.04E-05		2.00E-05	1.31E-06
1,2,3,4,7,8,9-HpCDF in mg/kg OCDF in mg/kg	-		5.69E-07 J 1.68E-05	2.71E-06 J 1.60E-05		6.12E-07 J 2.58E-05	9.05E-08 2.94E-06
Total 2,3,7,8 TCDD (TEQ) in mg/kg	1.1E-05	1.5E-03	4.17E-06	2.69E-05		9.90E-06	1.74E-07

Notes

Concentrations in shaded cells exceed unrestricted soil screening leve Concentrations within bold border exceed industrial soil screening level J - Analyte was positively identified. The reported result is an estimate

U - Analyte was not detected at or above the reported result

Table 17A - Soil Quality Data for Hazardous Waste Cage K-C Worldwide Site Upland Area 110207

Security price service 1967 2700 19.0	Chemical Name	Unrestricted Soil Screening Level (mg/kg)	Industrial Soil Screening Level (mg/kg)	HW-B-01 6/29/2012 (0-1 ft.)	HW-B-01 6/29/2012 (3-4 ft.)	HW-B-01 6/29/2012 (6-7 ft.)	HW-B-02 6/29/2012 (0-1 ft.)	HW-B-02 6/29/2012 (3-4 ft.)	HW-B-02 6/29/2012 (6-7 ft.)	HW-MW-01 6/29/2012 (0-1 ft.)	HW-MW-01 6/29/2012 (3-4 ft.)	HW-MW-01 6/29/2012 (6-7 ft.)
The contemps 1,000	Total Petroleum Hydrocarbons Diesel Range Hydrocarbons in mg/kg	2,000	2,000	50 U								
March Marc												
Amount program 10	Metals	2,000	2,000		4 11	4 11		1.10	1.00	0.42	6.45	C 44
General Park Mindel		20	20									6.41 18.5
Cream Professor Service		2	2									1 1
James Property P	Chromium (Total) in mg/kg	2	2	12.3	15.3	14.4	11.5	16.1	19.6	24.8	26.6	30.4
Meters 1966 1967		250	1.000									46.3 115
School	Mercury in mg/kg			0.1 U	0.1 U	0.1 U	0.1 U	0.1	0.1 U	0.31	0.1 U	0.12
Test marker												
2.00 may	5. 5											1 1
10.1 1.5	Zinc in mg/kg											107
1. Francescheen interplay 2 2 Cast		38	5.000	0.05 U	0.05 U	0.05						
30.00000000000000000000000000000000000	1,1,1-Trichloroethane in mg/kg	2	2	0.05 U	0.05 U	0.05						
1.00 1.00	- · · · ·	1										0.05
1.00 1.00												0.05 0.05
1.24 Trinspersoner mg/s	1,1-Dichloropropene in mg/kg			0.05 U	0.05 U	0.05						
1.0.1		0.033	4.4									0.25 0.05
1.5 Different and Concept print in Physics 1.3 160 0.5 0	1,2,4-Trichlorobenzene in mg/kg			0.25 U	0.25 U	0.25						
1.00 1.00	1,2-Dibromo-3-chloropropane in mg/kg	1.3	160		0.5 U							0.05 0.5
1.00 Delinsonham principle		0.005	0.005									0.05 0.05
1.15	1,2-Dichloroethane (EDC) in mg/kg	11	1,400	0.05 U	0.05 U	0.05						
Section of the property												0.05 0.05
	1,3-Dichlorobenzene in mg/kg			0.05 U	0.05 U	0.05						
2-bitterrore in ring/lig		<u> </u>										0.05 0.05
2.00mm/cross in right												
Collectories in marging	2-Chlorotoluene in mg/kg			0.05 U	0.05 U	0.05						
A Methylic personene meglig	<u> </u>											0.5 0.05
Electrical migrigs	4-Methyl-2-pentanone in mg/kg			0.5 U		0.5 U		0.5 U		0.5 U		0.5
Bernardorin merglg	0. 0	0.03	0.03									0.5 0.03
Personnerin mergle		16	2 100									0.05 0.05
Chroberterare in mg/kg	Bromoform in mg/kg			0.05 U	0.05 U	0.05						
Chloriopertame in ring/fig	5, 0	14	1,900									0.5 0.05
Colorioration marging			,									0.05
### CHALLE COLOR TOWN THE PRINT OF THE PRINT	<u> </u>			0.05 U								0.05
Control Cont												0.5 0.05
Dibromentation in mg/kg	cis-1,3-Dichloropropene in mg/kg			0.05 U	0.05 U	0.05						
Ethybersene in mg/kg	5. 0	12	1,600									0.05 0.05
Heacathrobatediene in mg/kg			C									0.5
Meethy-fere-binder in mg/kg	,						0.25 U					0.05
Methyl-Free Butyl Ether in my/kg		0.02	0.02									0.05 0.5
p-sopropytotuene in mg/kg	Methyl-Tert-Butyl Ether in mg/kg			0.05 U	0.05 U	0.05						
Syrene in mg/kg												0.05 0.05
Eert-Buylbenzene in mg/kg	sec-Butylbenzene in mg/kg											0.05 0.05
Toluene in mg/kg TOLUENE IN mg/kg TOLUEN	tert-Butylbenzene in mg/kg			0.05 U	0.05 U	0.05						
Trans-1,2-Dichloroethene in mg/kg		1										0.025 0.05
Trichlorofluoromethane in mg/kg 0.03 0.05 0.0	trans-1,2-Dichloroethene in mg/kg	<u> </u>	,	0.05 U	0.05 U	0.05						
Trichtorolluoromethane in mg/kg 0.5 U 0.05 U		0.03	0.03									0.05 0.03
mp-xylenes in mg/kg	Trichlorofluoromethane in mg/kg	0.67	00									0.5 0.05
Sylenes (total) in mg/kg	m,p-Xylenes in mg/kg	16,000	700,000	0.1 U	0.1 U	0.1						
1,24-Trichlorophenol in mg/kg		· · · · · · · · · · · · · · · · · · ·										0.05 ND
1,2-Dichlorobenzene in mg/kg	Semi-Volatile Organics											ı
1,4-Dichlorobenzene in mg/kg 3 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.02 U 0.02 U 0.02 U 0.03		35	4,500			0.03 U						
2,4,5-Trichlorophenol in mg/kg 91 12,000 30 U 0.3 U 0.												0.03 0.03
2,4-Dichlorophenol in mg/kg 30 U 0.3 U 0.	2,4,5-Trichlorophenol in mg/kg			30 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3
2,4-Dinterthylphenol in mg/kg 90 J 0,9 J 0,9 J 0,9 J 0,9 J 0,9 J 0,9 J 0,9 J 0,9 J 0,9 J 0,9 J 0,9 J 0,9 J 0,9 J 0,0 J 0		91	12,000									0.3
2-Chloronaphthalene in mg/kg 3 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.02 Chlorophenol in mg/kg 3 U 0.03 U 0.3	2,4-Dimethylphenol in mg/kg			30 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3
2-Methylphenol in mg/kg	2-Chloronaphthalene in mg/kg			3 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.9 0.03
2-Nitroaniline in mg/kg												0.3
3 & 4 Methylphenol in mg/kg	2-Nitroaniline in mg/kg			3 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
3-Nitroaniline in mg/kg		 										0.3 0.6
4-Bromophenyl phenyl ether in mg/kg 3 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.04 U 0.05	3-Nitroaniline in mg/kg			300 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3
4-Chloro-3-methylphenol in mg/kg 30 U 0.3 U 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td></td> <td><u>L</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.9</td>		<u>L</u>										0.9
4-Chlorophenyl phenyl ether in mg/kg 3 U 0.03 U 0.03<	4-Chloro-3-methylphenol in mg/kg	F	660	30 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3
4-Nitrophenol in mg/kg 90 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 0.03	4-CHIOLOGHIIINE III Mg/Kg	5	660				0.03 U				0.03 U	0.03
Acenaphthene in mg/kg 3 U 0.03 U 0.032 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U	4-Chlorophenyl phenyl ether in mg/kg	<u> </u>										
Acenaphthylene in mg/kg 3 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.00 U 0.	4-Nitroaniline in mg/kg											3 0.9

Table 17A - Soil Quality Data for Hazardous Waste Cage K-C Worldwide Site Upland Area 110207

	Unrestricted Soil	Industrial Soil	HW-B-01	HW-B-01	HW-B-01	HW-B-02	HW-B-02	HW-B-02	HW-MW-01	HW-MW-01	HW-MW-01
	Screening Level	Screening Level	6/29/2012	6/29/2012	6/29/2012	6/29/2012	6/29/2012	6/29/2012	6/29/2012	6/29/2012	6/29/2012
Chemical Name	(mg/kg)	(mg/kg)	(0-1 ft.)	(3-4 ft.)	(6-7 ft.)	(0-1 ft.)	(3-4 ft.)	(6-7 ft.)	(0-1 ft.)	(3-4 ft.)	(6-7 ft.)
Anthracene in mg/kg			3 U	0.03 U	0.03 UJ	0.03 U		0.03 U		0.03 U	0.03
Benzo(g,h,i)perylene in mg/kg			3 UJ	0.03 U	0.03 U	0.03 U	0.00-	0.03 U	0.038	0.034	0.031
Benzoic acid in mg/kg			150 J	1.5 J	1.5 U	1.5 J	1.5 J	1.5 J	1.5 J	1.5 J	1.5
Benzyl alcohol in mg/kg			30 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3
Benzyl butyl phthalate in mg/kg	530	69,000	3 U	0.03 U	0.03 U		0.00	0.03 U			0.03
Bis(2-chloro-1-methylethyl) ether in mg/kg	14	1,900	3 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U		0.03
Bis(2-chloroethoxy)methane in mg/kg			3 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
Bis(2-chloroethyl) ether in mg/kg	0.91	120	3 U	0.03 U	0.03 U	0.03 U		0.03 U			0.03
Bis(2-ethylhexyl) phthalate in mg/kg	71	9,400	48 U	0.48 U	0.48 U	0.48 U		0.48 U	0.48 U		0.48
Carbazole in mg/kg			3 U	0.03 U	0.03 UJ	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
Dibenzofuran in mg/kg			3 U	0.03 U	0.05		0.00	0.03 U			0.03
Diethyl phthalate in mg/kg			3 U	0.03 U	0.03 U	0.03 U	0.00	0.03 U	0.03 U	0.03 U	0.03
Dimethyl phthalate in mg/kg			3 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U		0.03
Di-n-butyl phthalate in mg/kg			3 U	0.03 U	0.03 UJ			0.03 U			0.03
Di-n-octyl phthalate in mg/kg			3 UJ	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
Fluoranthene in mg/kg			3 U	0.03 U	0.066 J	0.03 U		0.081	0.06	0.093	0.25
Fluorene in mg/kg			3 U	0.03 U	0.03 U	0.03 U	0.03 U	0.033	0.03 U	0.03 U	0.03
Hexachlorobenzene in mg/kg	0.63	82	3 U	0.03 U	0.03 UJ	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
Hexachlorobutadiene in mg/kg	13	1,700	3 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
Hexachlorocyclopentadiene in mg/kg			9 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09
Hexachloroethane in mg/kg	71	9,400	3 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
Isophorone in mg/kg	1,100	140,000	3 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
Nitrobenzene in mg/kg			3 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
N-Nitroso-di-n-propylamine in mg/kg	0.14	19	3 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
N-Nitrosodiphenylamine in mg/kg	200	27,000	3 U	0.03 U	0.03 UJ	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
Pentachlorophenol in mg/kg	2.5	330	30 U	0.3 U	0.3 UJ	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3
Phenanthrene in mg/kg			3 U	0.03 U	0.049 J	0.03 U	0.033	0.084	0.042	0.085	0.21
Phenol in mg/kg			30 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3
Pyrene in mg/kg			3 U	0.03 U	0.072 J	0.03 U	0.13 J	0.081 J	0.085 J	0.10 J	0.22
Benz(a)anthracene in mg/kg	1.4	180	3 U	0.03 U	0.03 U	0.03 U	0.098	0.03 U	0.042	0.04	0.055
Benzo(a)pyrene in mg/kg	0.14	0.14	3 UJ	0.03 U	0.03 U	0.03 U	0.12	0.03 U	0.05	0.044	0.041
Benzo(b)fluoranthene in mg/kg	1.4	180	3 UJ	0.03 U	0.03 U	0.03 U	0.13	0.035	0.06	0.055	0.065
Benzo(k)fluoranthene in mg/kg	14	1,800	3 UJ	0.03 U	0.03 U	0.03 U	0.05	0.03 U	0.03 U	0.03 U	0.03
Chrysene in mg/kg	140	18,000	3 U	0.03 U	0.03 U	0.03 U	0.11	0.03 U	0.048	0.047	0.063
Dibenzo(a,h)anthracene in mg/kg	0.14	18	3 UJ	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180	3 UJ	0.03 U	0.03 U	0.03 U	0.096	0.035	0.05	0.049	0.045
2,4-Dinitrotoluene in mg/kg			3 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
2,6-Dinitrotoluene in mg/kg			3 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
2-Methylnaphthalene in mg/kg			3 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03
Naphthalene in mg/kg	5	5	3 U								
Total cPAH (TEQ) in mg/kg	0.14	2	ND	ND	ND	ND	0.162	0.027	0.072	0.062	0.061
olychlorinated Biphenyls (PCBs)	-	-			-	-	-		-	-	
Aroclor 1016 in mg/kg	14	1,900	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1
Aroclor 1221 in mg/kg			0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1
Aroclor 1232 in mg/kg			0.1 U	0.1 U	0.1 U	0.1 U		0.1 U			0.1
Aroclor 1242 in mg/kg			0.1 U	0.1 U	0.1 U			0.1 U			0.1
Aroclor 1248 in mg/kg			0.1 U	0.1 U				0.1 U			0.1
Aroclor 1254 in mg/kg	0.5	66	0.1 U	0.1 U	0.1 U			0.1 U			0.1
Aroclor 1260 in mg/kg	0.5	66	0.1 U	0.1 U				0.1 U			0.1
Total PCBs in mg/kg	1	10	ND								

Notes

Concentrations in shaded cells exceed unrestricted soil screening level Concentrations within bold border exceed industrial soil screening level.

- J Analyte was positively identified. The reported result is an estimate
- U Analyte was not detected at or above the reported result.
- $\ensuremath{\mathsf{UJ}}$ Analyte was not detected at or above the reported estimate

Table 17B - Groundwater Quality Data for Hazardous Waste Cage K-C Worldwide Site Upland Area 110207

Chemical Name	Groundwater Screening Level	HW-MW-01 7/2-3/2012
Dissolved Metals		
Dissolved Antimony in ug/L	640	1.04
Dissolved Arsenic in ug/L	5	14.9
Dissolved Beryllium in ug/L	270	1
Dissolved Cadmium in ug/L	8.8	1
Dissolved Chromium (Total) in ug/L		2.96
Dissolved Copper in ug/L	2.4	3.37
Dissolved Lead in ug/L	8.1	1
Dissolved Mercury in ug/L	0.15	0.1
Dissolved Nickel in ug/L	8.2	18
Dissolved Selenium in ug/L	71	20
Dissolved Silver in ug/L	1.9	1
Dissolved Thallium in ug/L	0.47	1
Dissolved Zinc in ug/L	81	4.04
otal Metals		
Total Antimony in ug/L	640	3.51
Total Arsenic in ug/L	5	14.9
Total Beryllium in ug/L	270	1
Total Cadmium in ug/L	8.8	1
Total Chromium (Total) in ug/L		6.86
Total Copper in ug/L	2.4	8.28
Total Lead in ug/L	8.1	6.81
Total Mercury in ug/L	0.15	0.1
Total Nickel in ug/L	8.2	30.1
Total Selenium in ug/L	71	10.5
Total Silver in ug/L	1.9	1
Total Thallium in ug/L	0.47	1
Total Zinc in ug/L	81	21.9
Conventional Chemistry Parameters		
Total Suspended Solids in mg/L		15
Polycyclic Aromatic Hydrocarbons (PAHs)	640	
Acenaphthene in ug/L	640	0.05
Acenaphthylene in ug/L		0.05
	20.000	0.0=
Anthracene in ug/L	26,000	
Benzo(g,h,i)perylene in ug/L		0.05
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L	90	0.05 0.05
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L		0.05 0.05 0.05
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L	90 3,500	0.05 0.05 0.05 0.05
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L	90 3,500 2,600	0.05 0.05 0.05 0.05 0.05
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L	90 3,500 2,600 170	0.05 0.05 0.05 0.05 0.05 0.05
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L	90 3,500 2,600 170 0.018	0.05 0.05 0.05 0.05 0.05 0.05 0.051
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L	90 3,500 2,600 170 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.05 0.051 0.01
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L	90 3,500 2,600 170 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.01
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L	90 3,500 2,600 170 0.018 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.01
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.01 0.01 0.01
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.01
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.01
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.01 0.01 0.01 0.01
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L //olatile Organic Compounds	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.01
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L //olatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.0
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L //olatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,1-Trichloroethane in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 1.0018	0.05 0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.0
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L folatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,1-Trichloroethane in ug/L 1,1,2-Tetrachloroethane in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 1.0018	0.05 0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.0
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L //olatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,1-Trichloroethane in ug/L 1,1,2-Tetrachloroethane in ug/L 1,1,2-Tetrachloroethane in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 1.0018 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.0
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L //olatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,1-Trichloroethane in ug/L 1,1,2-Tetrachloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,1-Trichloroethane in ug/L 1,1,1-Trichloroethane in ug/L 1,1,1-Trichloroethane in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 1,0018 0.018 0.018 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.0
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L //olatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,1-Trichloroethane in ug/L 1,1,2-Tetrachloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,1-Trichloroethane in ug/L 1,1,1-Dichloroethane in ug/L 1,1-Dichloroethane in ug/L 1,1-Dichloroethene in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 1.0018 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.0
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benz(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L //olatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,1-Trichloroethane in ug/L 1,1,2-Tetrachloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,1-Trichloroethane in ug/L 1,1,1-Dichloroethane in ug/L 1,1-Dichloroethane in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 1,0018 0.018 0.018 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.0
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benzo(a)anthracene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L //olatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,2-Tetrachloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1-Dichloroethane in ug/L 1,1-Dichloroethane in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloropropene in ug/L 1,1-Dichloropropene in ug/L 1,2,3-Trichlorobenzene in ug/L 1,2,3-Trichlorobenzene in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 1,0018 0.018 0.018 0.018 0.018	0.05 0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.0
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benzo(a)anthracene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L //olatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,2-Tetrachloroethane in ug/L 1,1,2-Tichloroethane in ug/L 1,1,1-Dichloroethane in ug/L 1,1-Dichloroethane in ug/L 1,1-Dichloroethane in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L 1,2,3-Trichlorobenzene in ug/L 1,2,3-Trichloropropane in ug/L 1,2,3-Trichloropropane in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 1.000 4 11,000 4 7.9 2,300 3.2	0.05 0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.0
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benzo(a)anthracene in ug/L Benzo(a)pyrene in ug/L Benzo(b)fluoranthene in ug/L Benzo(k)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Volatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,1-Trichloroethane in ug/L 1,1,2-Tetrachloroethane in ug/L 1,1,2-Trichloroethane in ug/L 1,1,1-Dichloroethane in ug/L 1,1-Dichloroethane in ug/L 1,1-Trichloroethane in ug/L 1,1-Dichloroethane in ug/L 1,2-Trichloroethane in ug/L 1,2-Trichloropropene in ug/L 1,2,3-Trichlorobenzene in ug/L 1,2,3-Trichlorobenzene in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 11,000 4 7.9 2,300 3.2	0.05 0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.0
Benzo(g,h,i)perylene in ug/L Fluoranthene in ug/L Fluorene in ug/L Phenanthrene in ug/L Phenanthrene in ug/L Pyrene in ug/L Naphthalene in ug/L Benzo(a)anthracene in ug/L Benzo(b)fluoranthene in ug/L Benzo(b)fluoranthene in ug/L Chrysene in ug/L Dibenzo(a,h)anthracene in ug/L Indeno(1,2,3-cd)pyrene in ug/L Total cPAHs TEQ in ug/L //olatile Organic Compounds 1,1,1,2-Tetrachloroethane in ug/L 1,1,2-Tetrachloroethane in ug/L 1,1,2-Tichloroethane in ug/L 1,1,1-Dichloroethane in ug/L 1,1-Dichloroethane in ug/L 1,1-Dichloroethane in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L 1,1-Dichloroethene in ug/L 1,2,3-Trichlorobenzene in ug/L 1,2,3-Trichloropropane in ug/L 1,2,3-Trichloropropane in ug/L	90 3,500 2,600 170 0.018 0.018 0.018 0.018 0.018 0.018 0.018 1.000 4 11,000 4 7.9 2,300 3.2	0.05 0.05 0.05 0.05 0.05 0.05 0.051 0.01 0.0

Aspect Consulting

Table 17B - Groundwater Quality Data for Hazardous Waste Cage

K-C Worldwide Site Upland Area 110207

1,3-Dichloropropane in ug/L 1,4-Dichlorobenzene in ug/L 2,2-Dichloropropane in ug/L 2,2-Dichloropropane in ug/L 2-Butanone in ug/L 2-Hexanone in ug/L 4-Chlorotoluene in ug/L 4-Methyl-2-pentanone in ug/L Benzene in ug/L Bromobenzene in ug/L Bromodichloromethane in ug/L Bromodichloromethane in ug/L Bromodichloromethane in ug/L Bromodichloromethane in ug/L Carbon tetrachloride in ug/L Chlorobenzene in ug/L Chlorotomethane in ug/L Chloromethane in ug/L Chloropenethane in ug/L Cis-1,3-Dichloropropene in ug/L Dibromomethane in ug/L Dibromomethane in ug/L Dibromothloromethane in ug/L Bropopylbenzene in ug/L Dichlorodifluoromethane in ug/L Disporopylbenzene in ug/L Styrene in ug/L Methyl-Tert-Butyl Ether in ug/L D-Isopropyltoluene in ug/L Styrene in ug/L Styrene in ug/L Tetrachloroethene (PCE) in ug/L Tetrachloroethene (PCE) in ug/L Trichloroethene (TCE) in ug/L Trichloroethene (TCE) in ug/L Trichlorofluoromethane in ug/L Vinyl chloride in ug/L Vinyl chloride in ug/L Np-Xylenes in ug/L O-Xylenes in ug/L Sylenes (total) in ug/L Naphthalene in ug/L Stylenes (total) in ug/L Naphthalene in ug/L	Groundwater Screening Level	HW-MW-01 7/2-3/2012
1.2-Dichlorobenzene in ug/L	1,300	1 U
	4.2	1 U
	15	1 U
	25	1 U
1,3-Dichlorobenzene in ug/L	960	1 U
		1 U
1,4-Dichlorobenzene in ug/L	190	1 U
2,2-Dichloropropane in ug/L		1 U
2-Butanone in ug/L	350,000	10 U
2-Chlorotoluene in ug/L		1 U
2-Hexanone in ug/L		10 U
4-Chlorotoluene in ug/L		1 U
4-Methyl-2-pentanone in ug/L	11,000	10 U
Acetone in ug/L		12
Benzene in ug/L	2.4	0.35 U
Bromobenzene in ug/L		1 U
Bromodichloromethane in ug/L	0.09	1 U
Bromoform in ug/L	140	1 U
Bromomethane in ug/L	13	1 U
Carbon tetrachloride in ug/L	0.22	1 U
Chlorobenzene in ug/L	100	1 U
Chloroethane in ug/L	12	1 U
Chloroform in ug/L	1.2	1 U
Chloromethane in ug/L	5.2	10 U
cis-1,2-Dichloroethene (DCE) in ug/L	160	1 U
cis-1,3-Dichloropropene in ug/L		1 U
Dibromochloromethane in ug/L	0.22	1 U
Dibromomethane in ug/L		1 U
	9.9	1 U
	2,100	1 U
	0.81	1 U
	720	1 U
	94	5 U
	610	1 U
		1 U
		1 U
		1 U
	78	1 U
		1 U
	0.39	1 U
<u>. </u>	15,000	1 U
	130	1 U
	0.43	1 U
, , ,	0.42	1 U
-	120	
	0.35 310	0.2 U 2 U
	440	
,	310	1 U ND
	170	1 U
	1/0	1 0
		1.08
		-77.6
	_	7.04
	1	3,857
		17.2
Turbidity in NTU		51.2
· · · · · · · · · · · · · · · · · · ·		

Notes

Concentrations in shaded cells exceed groundwater screening level.

U - Analyte was not detected at or above the reported result.

Aspect Consulting

Page 2 of 2

K-C Worldwide Site Upland Area 11	0207											
	Unrestricted Soil Screening Level	Industrial Soil Screening Level	GF-B-01 5/25/2012	GF-B-02 5/25/2012	GF-B-03 5/29/2012	GF-B-03 5/29/2012	GF-B-03 5/29/2012	GF-B-04 5/25/2012	GF-B-04 5/25/2012	GF-B-05 5/29/2012	GF-B-05 5/29/2012	GF-B-06 5/29/2012
Chemical Name	(mg/kg)	(mg/kg)	(1-2.5 ft.)	(2.5-4 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(11-12.5 ft.)	(2.5-4 ft.)	(7.5-9 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(1-2.5 ft.)
Total Petroleum Hydrocarbons Gasoline Range Hydrocarbons in mg/kg	100	100	2 U	2 U	2 U	2 U	6.8	2 U	2 U	40	18	2 U
Diesel Range Hydrocarbons in mg/kg	2,000	2,000	50 U	50 U	50 UJ	50 UJ		65	50 U	270 J	76 J	50 UJ
Oil Range Hydrocarbons in mg/kg Total TPH in mg/kg	2,000 2,000	2,000 2,000	250 U ND	620 685	250 U ND	720 990	250 U 201 J	250 U ND				
Metals	2,000	2,000										
Antimony in mg/kg Arsenic in mg/kg	20	20	1 U 6.05	3.02 12.6	1 U 3.58	1 U 6.32	1 U 9.26	1 U 6.75	1 U 1.63	3.68 11.7	1 U 3.36	1 U 3.1
Beryllium in mg/kg			1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cadmium in mg/kg Chromium (Total) in mg/kg	2	2	1 U 13.2	1 U 12.9	1 U 17.4	1 U 21	1 U 21.1	1 U 19.5	1 U 9.67	1 U 16.2	7.74	1 U 10.2
Copper in mg/kg Lead in mg/kg	250	1,000	16.2 4.66	23.4 32.4	21.3 6.86	27.6 12.4	52.4 34	26.9 5.82	8.01 2.79	42.1 59.5	7.85 5.26	19.9 6.94
Mercury in mg/kg	2	2	0.1 U	0.14	0.1 U	0.1 U						
Nickel in mg/kg Selenium in mg/kg			28.7 1 U	21.1 1 U	36.3 1 U	24 1 U	24.9 1 U	23.2 1 U	12.1 1 U	44.1 1 U	12.3 1 U	31.2 1 U
Silver in mg/kg			1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Thallium in mg/kg Zinc in mg/kg			1 U 22.4	1 U 140	1 U 41.9	1 U 44.5	1 U 93.5	1 U 40	1 U 18.2	1 U 214	1 U 19.8	1 U 24.5
Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in mg/kg					0.01 U	0.1 U	0.019	-		0.01 U	0.015	0.41
Acenaphthylene in mg/kg					0.01 U	0.3	0.065			0.01 U	0.01 U	0.048
Anthracene in mg/kg Benzo(g,h,i)perylene in mg/kg					0.01 U 0.01 U	0.25 0.83	0.057 0.2			0.012 0.043	0.022 0.011	0.32 0.1
Fluoranthene in mg/kg					0.019	3.1	0.53			0.061	0.19	0.64
Fluorene in mg/kg Phenanthrene in mg/kg					0.01 U 0.016	0.29 3.3	0.036 0.37			0.014 0.05	0.029 0.025	0.36
Pyrene in mg/kg Naphthalene in mg/kg	5	5			0.016 0.012	3 0.54	0.49 0.13			0.074 0.12	0.18 0.018	0.51 0.42
Benz(a)anthracene in mg/kg	1.4	180			0.01 U	0.77	0.17			0.028	0.042	0.15
Benzo(a)pyrene in mg/kg Benzo(b)fluoranthene in mg/kg	0.14	0.14 180			0.01 U	1.2 1.5	0.25 0.32			0.039 0.056	0.022 0.039	0.091 0.14
Benzo(k)fluoranthene in mg/kg	14	1,800			0.01 U	0.42	0.11			0.013	0.01 U	0.029
Chrysene in mg/kg Dibenzo(a,h)anthracene in mg/kg	140 0.14	18,000 18			0.01 0.01 U	1.3 0.14	0.26 0.033			0.054 0.01 U	0.051 0.01 U	0.17 0.014
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180			0.01 U	0.88	0.2			0.036	0.01 U	0.092
Total cPAHs TEQ in mg/kg Volatile Organic Compounds	0.14	2		<u> </u>	0.0076	1.58	0.336	<u> </u>	l 	0.0533	0.0321	0.135
1,1,1,2-Tetrachloroethane in mg/kg 1,1,1-Trichloroethane in mg/kg	38	5,000 2	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
1,1,2,2-Tetrachloroethane in mg/kg	5	660	0.05 U									
1,1,2-Trichloroethane in mg/kg 1,1-Dichloroethane in mg/kg	18	2,300	0.05 U	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
1,1-Dichloroethene in mg/kg			0.05 U									
1,1-Dichloropropene in mg/kg 1,2,3-Trichlorobenzene in mg/kg			0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U
1,2,3-Trichloropropane in mg/kg 1,2,4-Trichlorobenzene in mg/kg	0.033 35	4.4 4,500	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U
1,2,4-Trimethylbenzene in mg/kg	33		0.05 U	0.051	0.05 U	0.05 U						
1,2-Dibromo-3-chloropropane in mg/kg 1,2-Dibromoethane (EDB) in mg/kg	1.3 0.005	160 0.005	0.5 U 0.05 U									
1,2-Dichlorobenzene in mg/kg			0.05 U									
1,2-Dichloroethane (EDC) in mg/kg 1,2-Dichloropropane in mg/kg	11	1,400	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
1,3,5-Trimethylbenzene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
1,3-Dichlorobenzene in mg/kg 1,3-Dichloropropane in mg/kg			0.05 U									
1,4-Dichlorobenzene in mg/kg 2,2-Dichloropropane in mg/kg			0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
2-Butanone in mg/kg			0.5 U									
2-Chlorotoluene in mg/kg 2-Hexanone in mg/kg			0.05 U 0.5 U	7.6 0.5 U	0.81 0.5 U	0.05 U 0.5 U						
4-Chlorotoluene in mg/kg			0.05 U	0.11	0.05 U	0.05 U						
4-Methyl-2-pentanone in mg/kg Acetone in mg/kg			0.5 U 0.5 U									
Benzene in mg/kg Bromobenzene in mg/kg	0.03	0.03	0.03 U 0.05 U	0.03 U 0.05 U	0.03 U 0.05 U	0.03 U 0.05 U	0.03 U 0.05 U	0.03 U 0.05 U	0.03 U 0.05 U	0.03 U 0.05 U	0.03 U 0.05 U	0.03 U 0.05 U
Bromodichloromethane in mg/kg	16	2,100	0.05 U									
Bromoform in mg/kg Bromomethane in mg/kg	130	17,000	0.05 U 0.5 U									
Carbon tetrachloride in mg/kg	14	1,900	0.05 U 0.05 U	0.05 U	0.05 U	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
Chlorobenzene in mg/kg Chloroethane in mg/kg			0.05 U	0.05 U 0.5 U	0.05 U 0.5 U	0.5 U	0.05 U 0.5 U	0.05 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U	0.05 U
Chloroform in mg/kg Chloromethane in mg/kg			0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ
cis-1,2-Dichloroethene (DCE) in mg/kg			0.05 U									
cis-1,3-Dichloropropene in mg/kg Dibromochloromethane in mg/kg	12	1,600	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
Dibromomethane in mg/kg Dichlorodifluoromethane in mg/kg			0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ
Ethylbenzene in mg/kg	6	6	0.05 U									
Hexachlorobutadiene in mg/kg Isopropylbenzene in mg/kg	13	1,700	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U
Methylene chloride in mg/kg	0.02	0.02	0.5 U									
Methyl-Tert-Butyl Ether in mg/kg n-Propylbenzene in mg/kg	0.1	0.1	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
p-Isopropyltoluene in mg/kg			0.05 U	0.05 U	0.05 U	0.052	1.5	0.05 U				
sec-Butylbenzene in mg/kg Styrene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.1 0.05 U	0.05 U 0.05 U	
tert-Butylbenzene in mg/kg Tetrachloroethene (PCE) in mg/kg	0.05	0.05	0.05 U 0.025 U	0.05 U 0.025 U	0.05 U 0.025 U	0.05 U 0.025 U	0.05 U 0.025 U	0.05 U 0.025 U	0.05 U 0.025 U	0.05 U 0.025 U	0.05 U 0.025 U	0.05 U 0.025 U
Toluene in mg/kg	7	0.05 7	0.05 U									
trans-1,2-Dichloroethene in mg/kg trans-1,3-Dichloropropene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
Trichloroethene (TCE) in mg/kg	0.03	0.03	0.03 U									
Trichlorofluoromethane in mg/kg Vinyl chloride in mg/kg	0.67	88	0.5 U 0.05 U									
m,p-Xylenes in mg/kg	16,000	700,000	0.1 U									
o-Xylene in mg/kg Xylenes (total) in mg/kg	16,000 9	700,000 9	0.05 U ND									
Naphthalene in mg/kg Semi-Volatile Organics	5	5						0.05 U	0.05 U			
1,2,4-Trichlorobenzene in mg/kg	35	4,500	0.03 U			0.03 U	0.03 U	0.03 U				
1,2-Dichlorobenzene in mg/kg 1,3-Dichlorobenzene in mg/kg			0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U				0.03 U 0.03 U	0.03 U 0.03 U	
1,4-Dichlorobenzene in mg/kg			0.03 U			0.03 U	0.03 U	0.03 U				
2,4,5-Trichlorophenol in mg/kg 2,4,6-Trichlorophenol in mg/kg	91	12,000	0.3 U 0.3 U			0.3 U 0.3 U	0.3 U 0.3 U	0.3 U 0.3 U				
2,4-Dichlorophenol in mg/kg			0.3 U			0.3 U	0.3 U					
2,4-Dimethylphenol in mg/kg	<u> </u>	I	0.3 U		Ī	0.3 U	0.3 U	0.3 U				

	Unrestricted Cail	Industrial Cail	CE D 01	CE D 03	CE D 03	CE D 03	CE D 03	CE D 04	CE D 04	CE D OF	CE D OF	CE D 06
	Unrestricted Soil Screening Level	Industrial Soil Screening Level	GF-B-01 5/25/2012	GF-B-02 5/25/2012	GF-B-03 5/29/2012	GF-B-03 5/29/2012	GF-B-03 5/29/2012	GF-B-04 5/25/2012	GF-B-04 5/25/2012	GF-B-05 5/29/2012	GF-B-05 5/29/2012	GF-B-06 5/29/2012
Chemical Name	(mg/kg)	(mg/kg)	(1-2.5 ft.)	(2.5-4 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(11-12.5 ft.)	(2.5-4 ft.)	(7.5-9 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(1-2.5 ft.)
2,4-Dinitrophenol in mg/kg			0.9 U	0.9 U	0.9 U	0.9 U	0.9 U			0.9 U	0.9 U	0.9 L
2-Chloronaphthalene in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 L
2-Chlorophenol in mg/kg			0.3 U	0.3 U	0.3 U	0.3 U	0.3 U			0.3 U	0.3 U	0.3 U
2-Methylphenol in mg/kg			0.3 U	0.3 U	0.3 U	0.3 U	0.3 U			0.3 U	0.3 U	0.3 U
2-Nitroaniline in mg/kg 2-Nitrophenol in mg/kg			0.03 U 0.3 U	0.03 U 0.3 U	0.03 U 0.3 U	0.03 U 0.3 U	0.03 U 0.3 U			0.03 U 0.3 U	0.03 U 0.3 U	0.03 U
3 & 4 Methylphenol in mg/kg			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			0.5 U	0.5 U	0.5 U
3-Nitroaniline in mg/kg			3 U	3 U	3 U	3 U	3 U			3 U	3 U	3 U
4,6-Dinitro-2-methylphenol in mg/kg			0.9 U	0.9 U	0.9 U	0.9 U	0.9 U			0.9 U	0.9 U	0.9 U
4-Bromophenyl phenyl ether in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U
4-Chloro-3-methylphenol in mg/kg	_	660	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U			0.3 U	0.3 U	0.3 U
4-Chloroaniline in mg/kg 4-Chlorophenyl phenyl ether in mg/kg	5	660	3 U 0.03 U	3 U 0.03 U	3 U 0.03 U	3 U 0.03 U	3 U 0.03 U			3 U 0.03 U	3 U 0.03 U	3 U 0.03 U
4-Nitroaniline in mg/kg			3 U		3 U	3 U	3 U			3 U	3 U	3 U
4-Nitrophenol in mg/kg			0.9 U	0.9 U	0.9 U	0.9 U	0.9 U			0.9 U	0.9 U	0.9 U
Acenaphthene in mg/kg			0.03 U	0.03 U								
Acenaphthylene in mg/kg			0.03 U	0.03 U								
Anthracene in mg/kg			0.03 U	0.03 U								
Benzo(g,h,i)perylene in mg/kg Benzoic acid in mg/kg			0.03 U 1.5 U	0.03 U 1.5 U	1.5 U	1.5 U	1.5 U			1.5 U	1.5 U	1.5 U
Benzyl alcohol in mg/kg			0.3 U	0.3 U	0.3 U	0.3 U	0.3 U			0.3 U	0.3 U	0.3 U
Benzyl butyl phthalate in mg/kg	530	69,000	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U
Bis(2-chloro-1-methylethyl) ether in mg/kg	14	1,900	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U
Bis(2-chloroethoxy)methane in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U
Bis(2-chloroethyl) ether in mg/kg	0.91	120	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U
Bis(2-ethylhexyl) phthalate in mg/kg Carbazole in mg/kg	71	9,400	0.48 U 0.03 U	0.48 U 0.03 U	0.48 U 0.03 U	0.48 U 0.29	0.48 U 0.033			0.48 U 0.03 U	0.48 U 0.03 U	0.48 U 0.053
Dibenzofuran in mg/kg			0.03 U	0.03 U	0.03 U	0.29	0.033 0.03 U			0.03 U	0.03	0.053
Diethyl phthalate in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U
Dimethyl phthalate in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U
Di-n-butyl phthalate in mg/kg			0.03 U		0.03 U	0.03 U	0.00			0.042	0.03 U	0.03 U
Di-n-octyl phthalate in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 UJ
Fluoranthene in mg/kg Fluorene in mg/kg			0.03 U 0.03 U	0.062 0.03 U								
Hexachlorobenzene in mg/kg	0.63	82	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U
Hexachlorobutadiene in mg/kg	13	1,700	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U
Hexachlorocyclopentadiene in mg/kg			0.09 U	0.09 U	0.09 U	0.09 U	0.09 U			0.09 U	0.09 U	0.09 U
Hexachloroethane in mg/kg	71	9,400	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U
Isophorone in mg/kg	1,100	140,000	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U
Nitrobenzene in mg/kg N-Nitroso-di-n-propylamine in mg/kg	0.14	19	0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U			0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U
N-Nitrosodiphenylamine in mg/kg	200	27,000	0.03 U							0.03 U		
Pentachlorophenol in mg/kg	2.5	330	0.3 U	0.3 U	0.3 U		0.3 U			0.3 U	0.3 U	0.3 U
Phenanthrene in mg/kg			0.03 U	0.064								
Phenol in mg/kg			0.3 U	0.3 U	0.3 U	0.3 U	0.3 U			0.3 U	0.3 U	0.3 U
Pyrene in mg/kg		100	0.03 U	0.064 J								
Benz(a)anthracene in mg/kg Benzo(a)pyrene in mg/kg	1.4 0.14	180 0.14	0.03 U	0.03 U 0.03 U								
Benzo(b)fluoranthene in mg/kg	1.4	180	0.03 U	0.03 U								
Benzo(k)fluoranthene in mg/kg	14	1,800	0.03 U	0.03 U								
Chrysene in mg/kg	140	18,000	0.03 U	0.03 U								
Dibenzo(a,h)anthracene in mg/kg	0.14	18	0.03 U	0.03 U								
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180	0.03 U	0.03 U								
2,4-Dinitrotoluene in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U
2,6-Dinitrotoluene in mg/kg 2-Methylnaphthalene in mg/kg			0.03 U	0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.22	0.03 U 0.03 U			0.03 U 0.036	0.03 U 0.03 U	0.03 U 0.21
Naphthalene in mg/kg	5	5	0.03 0	0.03 0	0.03 0	0.22	0.03 0			0.030	v.vs U	0.21
Total cPAH (TEQ) in mg/kg	0.14	2	ND	ND								
Polychlorinated Biphenyls (PCBs)												
Aroclor 1016 in mg/kg	14	1,900	0.1 U		0.1 U			0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Aroclor 1221 in mg/kg			0.1 U	0.1 U	0.1 U			0.1 U	0.1 U	0.1 U	0.1 U	0.1 U 0.1 U
Aroclor 1232 in mg/kg Aroclor 1242 in mg/kg			0.1 U 0.1 U		0.1 U 0.1 U	0.1 U 0.1 U		0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U
Aroclor 1242 ii riig/kg Aroclor 1248 in mg/kg			0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Aroclor 1254 in mg/kg	0.5	66	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Aroclor 1260 in mg/kg	0.5	66	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Total PCBs in mg/kg	1	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dioxins/Furans	1 1 5 0 5	1 [[02	1.015.06 11	1 67E 07 · · ·	1.04E-06 U		[1 215 06 11		6.87E-07 U		1.02E-06 U
2,3,7,8-TCDD in mg/kg 1,2,3,7,8-PeCDD in mg/kg	1.1E-05	1.5E-03	1.01E-06 U 2.51E-06 U	4.67E-07 U 8.31E-07 U	1.04E-06 U 2.59E-06 U			1.21E-06 U 3.02E-06 U		6.87E-07 U 2.32E-06 J		2.55E-06 U
1,2,3,4,7,8-HxCDD in mg/kg			1.51E-07 U	1.20E-06 U	4.22E-07 J			3.02E-06 U		5.11E-06		2.33E-06 U
1,2,3,6,7,8-HxCDD in mg/kg			5.09E-07 J	2.56E-06 J	3.24E-07 J			3.02E-06 U		2.00E-05		4.19E-07 U
1,2,3,7,8,9-HxCDD in mg/kg	1.6E-04	2.1E-02	4.53E-07 U	2.32E-06 J	3.76E-07 U			3.02E-06 U		1.10E-05		4.38E-07 J
1,2,3,4,6,7,8-HpCDD in mg/kg			3.76E-06	2.14E-05	6.77E-06			1.28E-06 J		3.95E-04		6.06E-06
OCDD in mg/kg			1.72E-05	1.06E-04 J	5.66E-05			1.27E-05 J		3.83E-03 J		4.91E-05
2,3,7,8-TCDF in mg/kg 1,2,3,7,8-PeCDF in mg/kg			5.19E-07 U 2.51E-06 U	2.37E-06 1.07E-06 U	3.65E-07 J 2.59E-06 U			1.21E-06 U 3.02E-06 U		7.05E-06 1.98E-06 U		1.02E-06 U 2.55E-06 U
2,3,4,7,8-PeCDF in mg/kg			2.51E-06 U	1.07E-06 U	2.59E-06 U			3.02E-06 U		2.66E-06 J		1.51E-07 U
1,2,3,4,7,8-HxCDF in mg/kg			1.79E-07 J	1.63E-06 U	2.73E-07 U			3.02E-06 U		5.91E-06 U		1.50E-07 J
1,2,3,6,7,8-HxCDF in mg/kg			2.51E-06 U	1.55E-06 J	2.16E-07 U			3.02E-06 U		2.78E-06		1.43E-07 J
1,2,3,7,8,9-HxCDF in mg/kg			2.51E-06 U	2.68E-06 U	2.59E-06 U			3.02E-06 U		2.73E-06 U		2.55E-06 U
2,3,4,6,7,8-HxCDF in mg/kg			2.02E-07 J	2.97E-06 U	2.96E-07 J			3.02E-06 U		3.92E-06		1.95E-07 J
1,2,3,4,6,7,8-HpCDF in mg/kg			5.71E-07 J	5.74E-06	2.80E-06 2.59E-06 U			3.02E-06 U 3.02E-06 U		5.69E-05 1.65E-06 U		1.16E-06 J 2.55E-06 U
							_					
1,2,3,4,7,8,9-HpCDF in mg/kg OCDF in mg/kg			2.51E-06 U 1.06E-06 U	4.44E-07 U 9.92E-06	4.93E-06 J			6.03E-06 U		8.49E-05 J		3.11E-06 J

Notes

 $\label{lem:concentrations} \textbf{Concentrations in shaded cells exceed unrestricted soil screening level}$ Concentrations within bold border exceed industrial soil screening level.

J - Analyte was positively identified. The reported result is an estimate.

U - Analyte was not detected at or above the reported result.

•				T	T	T					T	
1	Unrestricted Soil Screening Level	Industrial Soil Screening Level	GF-B-06 5/29/2012	GF-B-06 5/29/2012	GF-B-07 5/24/2012	GF-B-07 5/24/2012	GF-B-07 5/24/2012	GF-B-08 5/30/2012	GF-B-08 5/30/2012	GF-B-09 6/28/2012	GF-B-09 6/28/2012	GF-B-09 FD 6/28/2012
Chemical Name	(mg/kg)	(mg/kg)	(7.5-9 ft.)	(20-21.5 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(10-11.5 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(1-2.5 ft.)	(2.5-3.5 ft.)	(2.5-3.5 ft.)
Total Petroleum Hydrocarbons Gasoline Range Hydrocarbons in mg/kg	100	100	5	2 U	2 U	2 U		2 U	2 U	2 U		
Diesel Range Hydrocarbons in mg/kg Oil Range Hydrocarbons in mg/kg	2,000 2,000	2,000 2,000	150 J 250 U	50 U 250 U	110 480	50 U 250 U		50 U 250 U	50 U 250 U	50 U 250 U		
Total TPH in mg/kg	2,000	2,000	275 J	ND	590	ND		ND	ND ND	ND		
Metals Antimony in mg/kg			1 U	1 U	1 U	1 U	1	1.07	1 U	1 U	1	
Arsenic in mg/kg	20	20	4.64	1.5	1.81	2		6.46	5.15	3.88		
Beryllium in mg/kg Cadmium in mg/kg	2	2	1 U 1 U	1 U 1 U		1 U 1 U		1 U	1 U 1 U	1 U 1 U		
Chromium (Total) in mg/kg Copper in mg/kg			17.5 20.7	7.65 5.84	9.99 10.1	9.19 9.15		17.2 65.6	8.85 11.9	13.9 16.4		
Lead in mg/kg	250	1,000	13.4	1.28	2.49	5.11		214	59.8	18.3		
Mercury in mg/kg Nickel in mg/kg	2	2	0.1 U 20.7	0.1 U 15.3	0.1 U 23.8	0.1 U 17.4		0.1 U 22.3	0.58 14.1	0.13 25.3		
Selenium in mg/kg Silver in mg/kg			1 U	1		1 U		1 U 1 U	1 U			
Thallium in mg/kg			1 U	1 U	1 U	1 U		1 U	1 U	1 U		
Zinc in mg/kg Polycyclic Aromatic Hydrocarbons (PAHs)			40.2	13	16.3	26.8		65.3	33.8	31.3		<u> </u>
Acenaphthene in mg/kg Acenaphthylene in mg/kg			0.14 0.019	0.01 U 0.01 U								
Anthracene in mg/kg			0.13	0.01 U								
Benzo(g,h,i)perylene in mg/kg Fluoranthene in mg/kg			0.034 0.28	0.01 U 0.01 U								
Fluorene in mg/kg Phenanthrene in mg/kg			0.16 0.57	0.01 U 0.01 U								
Pyrene in mg/kg			0.2	0.01 U								
Naphthalene in mg/kg Benz(a)anthracene in mg/kg	5 1.4	5 180	0.09 0.074	0.01 U 0.01 U							<u> </u>	
Benzo(a)pyrene in mg/kg	0.14	0.14	0.039	0.01 U								
Benzo(b)fluoranthene in mg/kg Benzo(k)fluoranthene in mg/kg	1.4 14	180 1,800	0.054 0.016	0.01 U 0.01 U								
Chrysene in mg/kg Dibenzo(a,h)anthracene in mg/kg	140 0.14	18,000 18	0.076 0.01 U	0.01 U 0.01 U								
Indeno(1,2,3-cd)pyrene in mg/kg Total cPAHs TEQ in mg/kg	1.4	180	0.025	0.01 U								
Volatile Organic Compounds	0.14	2	0.0572	ND	<u> </u>	<u> </u>			<u> </u>			
1,1,1,2-Tetrachloroethane in mg/kg 1,1,1-Trichloroethane in mg/kg	38	5,000 2	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
1,1,2,2-Tetrachloroethane in mg/kg	5	660	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	-	
1,1,2-Trichloroethane in mg/kg 1,1-Dichloroethane in mg/kg	18	2,300	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U		0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
1,1-Dichloroethene in mg/kg 1,1-Dichloropropene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
1,2,3-Trichlorobenzene in mg/kg	0.022	4.4	0.25 U	0.25 U	0.25 U	0.25 U		0.25 U	0.25 U	0.25 U		
1,2,3-Trichloropropane in mg/kg 1,2,4-Trichlorobenzene in mg/kg	0.033 35	4.4 4,500	0.05 U 0.25 U	0.05 U 0.25 U		0.05 U 0.25 U		0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U		
1,2,4-Trimethylbenzene in mg/kg 1,2-Dibromo-3-chloropropane in mg/kg	1.3	160	0.05 U 0.5 U	0.05 U 0.5 U		0.05 U 0.5 U		0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U		
1,2-Dibromoethane (EDB) in mg/kg	0.005	0.005	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U		
1,2-Dichlorobenzene in mg/kg 1,2-Dichloroethane (EDC) in mg/kg	11	1,400	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
1,2-Dichloropropane in mg/kg 1,3,5-Trimethylbenzene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
1,3-Dichlorobenzene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U 0.05 U		0.05 U	0.05 U	0.05 U		
1,3-Dichloropropane in mg/kg 1,4-Dichlorobenzene in mg/kg			0.05 U	0.05 U 0.05 U	0.05 U	0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U		
2,2-Dichloropropane in mg/kg 2-Butanone in mg/kg			0.05 U 0.5 U	0.05 U 0.5 U		0.05 U 0.5 U		0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U		
2-Chlorotoluene in mg/kg 2-Hexanone in mg/kg			0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U		0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U		
4-Chlorotoluene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U		
4-Methyl-2-pentanone in mg/kg Acetone in mg/kg			0.5 U 0.5 U			0.5 U 0.5 U		0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U		
Benzene in mg/kg	0.03	0.03	0.03 U 0.05 U	0.03 U 0.05 U		0.03 U 0.05 U		0.03 U 0.05 U	0.03 U 0.05 U	0.03 U 0.05 U		
Bromobenzene in mg/kg Bromodichloromethane in mg/kg	16	2,100	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U		
Bromoform in mg/kg Bromomethane in mg/kg	130	17,000	0.05 U 0.5 U	0.05 U 0.5 U		0.05 U 0.5 U		0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U		1
Carbon tetrachloride in mg/kg Chlorobenzene in mg/kg	14	1,900	0.05 U	0.05 U 0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U 0.05 U		
Chloroethane in mg/kg			0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		
Chloroform in mg/kg Chloromethane in mg/kg			0.05 U 0.5 UJ	0.05 U 0.5 UJ		0.05 U 0.5 UJ		0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	<u> </u>	
cis-1,2-Dichloroethene (DCE) in mg/kg cis-1,3-Dichloropropene in mg/kg			0.05 U	0.05 U 0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U		
Dibromochloromethane in mg/kg	12	1,600	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U		
Dibromomethane in mg/kg Dichlorodifluoromethane in mg/kg			0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ		0.05 U 0.5 U	0.05 U 0.5 UJ	0.05 U 0.5 U		
Ethylbenzene in mg/kg Hexachlorobutadiene in mg/kg	6 13	6 1,700	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U		0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U		
Isopropylbenzene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U		
Methylene chloride in mg/kg Methyl-Tert-Butyl Ether in mg/kg	0.02 0.1	0.02 0.1	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U		0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U		
n-Propylbenzene in mg/kg p-Isopropyltoluene in mg/kg			0.05 U 0.25	0.05 U		0.05 U 0.05 U		0.05 U	0.05 U 0.05 U	0.05 U		
sec-Butylbenzene in mg/kg			0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U		
Styrene in mg/kg tert-Butylbenzene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
Tetrachloroethene (PCE) in mg/kg Toluene in mg/kg	0.05 7	0.05 7	0.025 U 0.05 U	0.025 U 0.05 U	0.025 U 0.05 U	0.025 U 0.05 U		0.025 U 0.05 U	0.025 U 0.05 U	0.025 U 0.05 U		
trans-1,2-Dichloroethene in mg/kg	,	,	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U		
trans-1,3-Dichloropropene in mg/kg Trichloroethene (TCE) in mg/kg	0.03	0.03	0.05 U 0.03 U	0.05 U 0.03 U	0.05 U 0.03 U	0.05 U 0.03 U		0.05 U 0.03 U	0.05 U 0.03 U	0.05 U 0.03 U		
Trichlorofluoromethane in mg/kg Vinyl chloride in mg/kg	0.67	88	0.5 U 0.05 U	1		0.5 U 0.05 U		0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U		
m,p-Xylenes in mg/kg	16,000	700,000	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U		
o-Xylene in mg/kg Xylenes (total) in mg/kg	16,000 9	700,000 9	0.05 U ND	0.05 U ND	0.05 U ND	0.05 U ND		0.05 U ND	0.05 U ND	0.05 U ND		
Naphthalene in mg/kg Semi-Volatile Organics	5	5										
1,2,4-Trichlorobenzene in mg/kg	35	4,500	0.03 U	0.03 U		0.03 U		0.03 U	0.03 U	0.03 U		
1,2-Dichlorobenzene in mg/kg 1,3-Dichlorobenzene in mg/kg			0.03 U	0.03 U 0.03 U		0.03 U 0.03 U		0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U		
1,4-Dichlorobenzene in mg/kg 2,4,5-Trichlorophenol in mg/kg			0.03 U 0.3 U	0.03 U 0.3 U		0.03 U 0.3 U		0.03 U 0.3 U	0.03 U 0.3 U	0.03 U 0.3 U		
2,4,6-Trichlorophenol in mg/kg	91	12,000	0.3 U	0.3 U	0.3 U	0.3 U 0.3 U		0.3 U 0.3 U	0.3 U 0.3 U	0.3 U		
2,4-Dichlorophenol in mg/kg		-	0.3 U	0.3 U								

	Unrestricted Soil	Industrial Soil	GF-B-06	GF-B-06	GF-B-07	GF-B-07	GF-B-07	GF-B-08	GF-B-08	GF-B-09	GF-B-09	GF-B-09 FD
	Screening Level	Screening Level	5/29/2012	5/29/2012	5/24/2012	5/24/2012	5/24/2012	5/30/2012	5/30/2012	6/28/2012	6/28/2012	6/28/2012
Chemical Name	(mg/kg)	(mg/kg)	(7.5-9 ft.)	(20-21.5 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(10-11.5 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(1-2.5 ft.)	(2.5-3.5 ft.)	(2.5-3.5 ft.)
2,4-Dinitrophenol in mg/kg	,	, 6. 6.	0.9 U	0.9 U	0.9 U	0.9 U		0.9 U	0.9 U	0.9 J		
2-Chloronaphthalene in mg/kg			0.03 U	0.03 U	0.03 U			0.03 U	0.03 U			
2-Chlorophenol in mg/kg			0.3 U	0.3 U	0.3 U	0.3 U		0.3 U	0.3 U	0.3 U		
2-Methylphenol in mg/kg			0.3 U	0.3 U	0.3 U	0.3 U		0.3 U	0.3 U	0.3 U		
2-Nitroaniline in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
2-Nitrophenol in mg/kg			0.3 U	0.3 U	0.3 U	0.3 U		0.3 U	0.3 U	0.3 U		L
3 & 4 Methylphenol in mg/kg			0.6 U	0.6 U	0.6 U	0.6 U		0.6 U	0.6 U	0.6 U		
3-Nitroaniline in mg/kg			3 U	3 U	3 U	3 U		3 U	3 U	3 U		
4,6-Dinitro-2-methylphenol in mg/kg			0.9 U	0.9 U	0.9 U	0.9 U		0.9 U	0.9 U	0.9 U		
4-Bromophenyl phenyl ether in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
4-Chloro-3-methylphenol in mg/kg			0.3 U	0.3 U	0.3 U	0.3 U		0.3 U	0.3 U	0.3 U		
4-Chloroaniline in mg/kg	5	660	3 U	3 U	3 U	3 U		3 U	3 U	3 U		
4-Chlorophenyl phenyl ether in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
4-Nitroaniline in mg/kg			3 U	3 U	3 U	3 U		3 U	3 U	3 U		
4-Nitrophenol in mg/kg			0.9 U	0.9 U	0.9 U	0.9 U		0.9 U	0.9 U	0.9 U		
Acenaphthene in mg/kg					0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Acenaphthylene in mg/kg					0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Anthracene in mg/kg					0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Benzo(g,h,i)perylene in mg/kg					0.063	0.03 U		0.035	0.03 U	0.03 U		
Benzoic acid in mg/kg			1.5 U	1.5 U	1.5 U	1.5 U		1.5 U	1.5 U	1.5 J		
Benzyl alcohol in mg/kg			0.3 U	0.3 U	0.3 U	0.3 U		0.3 U	0.3 U	0.3 U		
Benzyl butyl phthalate in mg/kg	530	69,000	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Bis(2-chloro-1-methylethyl) ether in mg/kg	14	1,900	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U			
Bis(2-chloroethoxy)methane in mg/kg	0.01	400	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Bis(2-chloroethyl) ether in mg/kg	0.91	120	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Bis(2-ethylhexyl) phthalate in mg/kg	71	9,400	0.48 U	0.48 U	0.48 U	0.48 U 0.03 U		0.48 U	0.48 U	0.48 U		
Carbazole in mg/kg			0.037	0.03 U	0.03 U			0.03 U	0.03 U	0.03 U	<u> </u>	
Dibenzofuran in mg/kg Diethyl phthalate in mg/kg			0.12 0.03 U	0.03 U	0.03 U 0.03 U	0.03 U 0.03 U		0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U		
, , , , , , , , , , , , , , , , , , , ,												
Dimethyl phthalate in mg/kg			0.03 U	0.03 U	0.03 U 0.03 U	0.03 U 0.03 U		0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U		
Di-n-butyl phthalate in mg/kg Di-n-octyl phthalate in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Fluoranthene in mg/kg			0.03 0	0.03 0	0.03 0	0.03 U		0.03 U	0.03 U	0.03 U		
Fluorene in mg/kg					0.033 U	0.03 U		0.03 U	0.03 U	0.03 U		
Hexachlorobenzene in mg/kg	0.63	82	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Hexachlorobutadiene in mg/kg	13	1,700	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Hexachlorocyclopentadiene in mg/kg	15	1,700	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Hexachloroethane in mg/kg	71	9,400	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Isophorone in mg/kg	1,100	140,000	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Nitrobenzene in mg/kg	1,100	140,000	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
N-Nitroso-di-n-propylamine in mg/kg	0.14	19	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
N-Nitrosodiphenylamine in mg/kg	200	27,000	0.03 U	0.03 U				0.03 U				
Pentachlorophenol in mg/kg	2.5	330	0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U			
Phenanthrene in mg/kg	2.3	330	0.5 0	0.5 0	0.077	0.03 U		0.03 U	0.03 U	0.031		
Phenol in mg/kg			0.3 U	0.3 U	0.3 U	0.3 U		0.3 U	0.3 U	0.3 U		
Pyrene in mg/kg			0.5	0.5 0	0.068	0.03 U		0.03 U	0.03 U	0.036 J		
Benz(a)anthracene in mg/kg	1.4	180			0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Benzo(a)pyrene in mg/kg	0.14	0.14			0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Benzo(b)fluoranthene in mg/kg	1.4	180			0.03 U	0.03 U		0.06	0.03 U	0.03 U		
Benzo(k)fluoranthene in mg/kg	14	1,800			0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Chrysene in mg/kg	140	18,000			0.03 U	0.03 U		0.031	0.03 U	0.03 U		
Dibenzo(a,h)anthracene in mg/kg	0.14	18			0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180			0.03 U	0.03 U		0.033	0.03 U	0.03 U		
2,4-Dinitrotoluene in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
2,6-Dinitrotoluene in mg/kg			0.03 U	0.03 U	0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
2-Methylnaphthalene in mg/kg			0.087	0.03 U	0.075	0.03 U		0.03 U	0.03 U	0.03 U		
Naphthalene in mg/kg	5	5			0.03 U	0.03 U		0.03 U	0.03 U	0.03 U		
Total cPAH (TEQ) in mg/kg	0.14	2			ND	ND		0.02911				
Polychlorinated Biphenyls (PCBs)												
Aroclor 1016 in mg/kg	14	1,900	0.1 U	0.1 U	0.1 U			0.1 U	0.1 U			
Aroclor 1221 in mg/kg			0.1 U	0.1 U	0.1 U			0.1 U	0.1 U	0.1 U		
Aroclor 1232 in mg/kg			0.1 U	0.1 U	0.1 U			0.1 U	0.1 U			
Aroclor 1242 in mg/kg			0.1 U	0.1 U	0.1 U			0.1 U	0.1 U	0.1 U		
Aroclor 1248 in mg/kg			0.1 U	0.1 U	0.1 U			0.1 U	0.1 U	0.1 U		
Aroclor 1254 in mg/kg	0.5	66	0.1 U	0.1 U	0.1 U			0.4	0.1 U	0.1 U		
Aroclor 1260 in mg/kg	0.5	66	0.1 U	0.1 U	0.1 U			0.1 U	0.1 U	0.1 U		
Total PCBs in mg/kg	1	10	ND	ND	ND			0.7	ND	ND		
Dioxins/Furans					1		1	1	1		1	
2,3,7,8-TCDD in mg/kg	1.1E-05	1.5E-03			1.01E-06 U		1.10E-06 U	1.16E-06 J			1.02E-06 U	8.60E-07 l
1,2,3,7,8-PeCDD in mg/kg					2.54E-06 U		2.76E-06 U	5.13E-07 U			2.56E-06 U	1.75E-07
1,2,3,4,7,8-HxCDD in mg/kg					2.54E-06 U		2.76E-06 U	8.54E-07 J			1.07E-07 J	1.86E-07
1,2,3,6,7,8-HxCDD in mg/kg					2.54E-06 U		2.76E-06 U	1.85E-06 J			2.70E-07 J	4.43E-07
1,2,3,7,8,9-HxCDD in mg/kg	1.6E-04	2.1E-02			2.54E-06 U		2.76E-06 U	2.04E-06 J			2.32E-07 J	2.55E-07
1,2,3,4,6,7,8-HpCDD in mg/kg					2.21E-06 J		1.79E-06 J	2.04E-05			3.73E-06	8.01E-06
OCDD in mg/kg					1.37E-05 J		4.29E-06 J	1.00E-04			1.90E-05	1.39E-04
2,3,7,8-TCDF in mg/kg					1.01E-06 U		1.21E-06 U	2.12E-06			1.02E-06 U	6.59E-07
1,2,3,7,8-PeCDF in mg/kg					2.54E-06 U		2.55E-07 U	1.26E-06 U			2.56E-06 U	1.93E-07
2,3,4,7,8-PeCDF in mg/kg					2.54E-06 U		2.76E-06 U	1.65E-06 U			2.56E-06 U	2.64E-07
1,2,3,4,7,8-HxCDF in mg/kg					2.28E-07 U		3.55E-07 U	3.52E-06			1.69E-07 J	3.60E-07
1,2,3,6,7,8-HxCDF in mg/kg					2.54E-06 U		1.81E-07 J	1.45E-06 J			9.83E-08 J	1.67E-07
1,2,3,7,8,9-HxCDF in mg/kg					2.54E-06 U		2.76E-06 U	2.90E-06 U			2.56E-06 U	2.15E-06
2,3,4,6,7,8-HxCDF in mg/kg					2.54E-06 U		2.76E-06 U	1.17E-06 U			9.98E-08 J	2.19E-07
1,2,3,4,6,7,8-HpCDF in mg/kg					5.70E-07 U		8.16E-07 J	9.37E-06			7.20E-07 J	1.22E-06
1,2,3,4,7,8,9-HpCDF in mg/kg					2.54E-06 U		2.76E-06 U	7.48E-07 J			2.56E-06 U	9.79E-08
OCDE :/I					6.97E-07 J		5.52E-06 U	1.14E-05			1.51E-06 J	4.24E-06
OCDF in mg/kg Total 2,3,7,8 TCDD (TEQ) in mg/kg	1.1E-05	1.5E-03			5.49E-08		1.29E-07	2.68E-06			1.48E-07	5.59E-07

Notes

 $\label{lem:concentrations} \textbf{Concentrations in shaded cells exceed unrestricted soil screening level}$ $\label{lem:concentrations} \textbf{Concentrations within bold border exceed industrial soil screening level.}$

J - Analyte was positively identified. The reported result is an estimate.

U - Analyte was not detected at or above the reported result.

K-C Worldwide Site Upland Area 11	0207	_										
	Unrestricted Soil Screening Level	Industrial Soil Screening Level	GF-B-09 6/28/2012	GF-B-09 FD 6/28/2012	GF-B-10 5/24/2012	GF-B-10 5/24/2012	GF-B-10 5/24/2012	GF-B-10 5/24/2012	GF-B-11 5/24/2012	GF-B-11 5/24/2012	GF-B-12 6/28/2012	GF-B-12 6/28/2012
Chemical Name	(mg/kg)	(mg/kg)	(7.5-9 ft.)	(7.5-9 ft.)	(1-1.25 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(10-11.5 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(1-2.5 ft.)	(7.5-9 ft.)
Total Petroleum Hydrocarbons Gasoline Range Hydrocarbons in mg/kg	100	100	2 U			2 U	2 U		2 U	2 U	2 U	2 L
Diesel Range Hydrocarbons in mg/kg Oil Range Hydrocarbons in mg/kg	2,000 2,000	2,000 2,000	6,400 250 U			50 U 250 U	50 U 250 U		50 U 250 U	50 U 250 U	50 U 250 U	50 L 250 L
Total TPH in mg/kg	2,000	2,000	6,520			ND	ND ND		ND	ND	ND	ND
Metals Antimony in mg/kg		<u> </u>	1 U	I	I	2.64	1 U	<u> </u>	1 U	1 U	1 U	1 (
Arsenic in mg/kg	20	20	1.12			4.86	1 U		6.48	5.65	4.79	2.77
Beryllium in mg/kg Cadmium in mg/kg	2	2	1 U 1 U			1 U	1 U 1 U		1 U 1 U		1 U 1 U	1 U
Chromium (Total) in mg/kg Copper in mg/kg			10.7 10.8			14.4 13.3	6.76 4.42		8.72 26.4	16.9 21.2	36.6 20.8	33.3 15.9
Lead in mg/kg	250	1,000	11.2			5.89	1.94		659	15.4	116	33.1
Mercury in mg/kg Nickel in mg/kg	2	2	0.1 U 19.1			0.1 U 29.1	0.1 U 7.32		0.1 U 17.6	0.1 U 27.1	0.21 10.4	0.1 U 29.5
Selenium in mg/kg Silver in mg/kg			1 U 1 U			1 U 1 U			1 U 1 U		1 U 1 U	1 L
Thallium in mg/kg			1 U			1 U	1 U		1 U	1 U	1 U	1 U
Zinc in mg/kg Polycyclic Aromatic Hydrocarbons (PAHs)			26.6			27.7	9.76		50	37.8	21.8	46.5
Acenaphthene in mg/kg Acenaphthylene in mg/kg											0.01 U 0.01 U	0.01 U
Anthracene in mg/kg											0.01 U	0.01 l
Benzo(g,h,i)perylene in mg/kg Fluoranthene in mg/kg											0.01 U 0.01 U	0.01 U
Fluorene in mg/kg											0.01 U 0.01 U	0.01 U
Phenanthrene in mg/kg Pyrene in mg/kg											0.01 U	0.01 U
Naphthalene in mg/kg Benz(a)anthracene in mg/kg	5 1.4	5 180		<u> </u>							0.01 U 0.01 U	0.01 U
Benzo(a)pyrene in mg/kg	0.14	0.14									0.01 U	0.01 l
Benzo(b)fluoranthene in mg/kg Benzo(k)fluoranthene in mg/kg	1.4 14	180 1,800		<u> </u>	<u> </u>						0.01 U 0.01 U	0.01 U
Chrysene in mg/kg Dibenzo(a,h)anthracene in mg/kg	140 0.14	18,000 18									0.01 U 0.01 U	0.01 U
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180									0.01 U	0.01 U
Total cPAHs TEQ in mg/kg Volatile Organic Compounds	0.14	2									ND	ND
1,1,1,2-Tetrachloroethane in mg/kg	38	5,000	0.05 U			0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U	0.05 L
1,1,1-Trichloroethane in mg/kg 1,1,2,2-Tetrachloroethane in mg/kg	5	660	0.05 U			0.05 U 0.05 U			0.05 U 0.05 U			0.05 L 0.05 L
1,1,2-Trichloroethane in mg/kg 1,1-Dichloroethane in mg/kg	18	2,300	0.05 U 0.05 U			0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 L 0.05 L
1,1-Dichloroethene in mg/kg			0.05 U			0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	0.05 L
1,1-Dichloropropene in mg/kg 1,2,3-Trichlorobenzene in mg/kg			0.05 U 0.25 U			0.05 U 0.25 U	0.05 U 0.25 U		0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 L 0.25 L
1,2,3-Trichloropropane in mg/kg 1,2,4-Trichlorobenzene in mg/kg	0.033 35	4.4 4,500	0.05 U 0.25 U			0.05 U 0.25 U	0.05 U 0.25 U		0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 L 0.25 L
1,2,4-Trimethylbenzene in mg/kg			0.05 U			0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	0.05 L
1,2-Dibromo-3-chloropropane in mg/kg 1,2-Dibromoethane (EDB) in mg/kg	1.3 0.005	160 0.005	0.5 U 0.05 U			0.5 U 0.05 U	0.5 U 0.05 U		0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 L 0.05 L
1,2-Dichlorobenzene in mg/kg 1,2-Dichloroethane (EDC) in mg/kg		1 400	0.05 U			0.05 U	0.05 U 0.05 U		0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 L 0.05 L
1,2-Dichloropropane in mg/kg	11	1,400	0.05 U			0.05 U 0.05 U	0.05 U		0.05 U 0.05 U	0.05 U	0.05 U	0.05 L
1,3,5-Trimethylbenzene in mg/kg 1,3-Dichlorobenzene in mg/kg			0.05 U 0.05 U			0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 L 0.05 L
1,3-Dichloropropane in mg/kg			0.05 U			0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	0.05 L
1,4-Dichlorobenzene in mg/kg 2,2-Dichloropropane in mg/kg			0.05 U 0.05 U			0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U
2-Butanone in mg/kg 2-Chlorotoluene in mg/kg			0.5 U 0.05 U			0.5 U 0.05 U	0.5 U 0.05 U		0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 L 0.05 L
2-Hexanone in mg/kg			0.5 U			0.5 U	0.5 U		0.5 U	0.5 U	0.5 U	0.5 L
4-Chlorotoluene in mg/kg 4-Methyl-2-pentanone in mg/kg			0.05 U 0.5 U			0.05 U 0.5 U	0.05 U 0.5 U		0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 L 0.5 L
Acetone in mg/kg Benzene in mg/kg	0.03	0.03	0.5 U 0.03 U			0.5 U 0.03 U	0.5 U 0.03 U		0.5 U 0.03 U	0.5 U 0.03 U	0.5 U 0.03 U	0.5 L 0.03 L
Bromobenzene in mg/kg	0.03		0.05 U			0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	0.05 L
Bromodichloromethane in mg/kg Bromoform in mg/kg	16 130	2,100 17,000	0.05 U 0.05 U			0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 L 0.05 L
Bromomethane in mg/kg Carbon tetrachloride in mg/kg	14	1,900	0.5 U 0.05 U			0.5 U 0.05 U	0.5 U 0.05 U		0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 L 0.05 L
Chlorobenzene in mg/kg	14	1,900	0.05 U			0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	0.05 L
Chloroethane in mg/kg Chloroform in mg/kg			0.5 U 0.05 U			0.5 U 0.05 U	0.5 U 0.05 U		0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U
Chloromethane in mg/kg cis-1,2-Dichloroethene (DCE) in mg/kg			0.5 U			0.5 UJ 0.05 U	0.5 UJ 0.05 U		0.5 UJ 0.05 U		0.5 U	0.5 U
cis-1,3-Dichloropropene in mg/kg			0.05 U			0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	0.05 l
Dibromochloromethane in mg/kg Dibromomethane in mg/kg	12	1,600	0.05 U 0.05 U			0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U
Dichlorodifluoromethane in mg/kg		_	0.5 U			0.5 UJ	0.5 UJ		0.5 UJ	0.5 UJ	0.5 U	0.5 l
Ethylbenzene in mg/kg Hexachlorobutadiene in mg/kg	6 13	6 1,700	0.05 U 0.25 U			0.05 U 0.25 U	0.05 U 0.25 U		0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 L 0.25 L
Isopropylbenzene in mg/kg Methylene chloride in mg/kg	0.02	0.02	0.05 U 0.5 U			0.05 U 0.5 U	0.05 U 0.5 U		0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U
Methyl-Tert-Butyl Ether in mg/kg	0.02	0.02	0.05 U			0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	0.05 L
n-Propylbenzene in mg/kg p-Isopropyltoluene in mg/kg			0.05 U 0.05 U	<u></u>		0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.35	0.05 U 0.05 U	0.05 L 0.05 L
sec-Butylbenzene in mg/kg			0.05 U			0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	0.05 l
Styrene in mg/kg tert-Butylbenzene in mg/kg			0.05 U			0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U
Tetrachloroethene (PCE) in mg/kg Toluene in mg/kg	0.05 7	0.05 7	0.025 U 0.05 U			0.025 U 0.05 U	0.025 U 0.05 U		0.025 U 0.05 U	0.025 U 0.05 U	0.025 U 0.05 U	0.025 l 0.05 l
trans-1,2-Dichloroethene in mg/kg		, ·	0.05 U			0.05 U	0.05 U		0.05 U	0.05 U	0.05 U	0.05 l
trans-1,3-Dichloropropene in mg/kg Trichloroethene (TCE) in mg/kg	0.03	0.03	0.05 U 0.03 U	<u> </u>	<u> </u>	0.05 U 0.03 U	0.05 U 0.03 U		0.05 U 0.03 U	0.05 U 0.03 U	0.05 U 0.03 U	0.05 U 0.03 U
Trichlorofluoromethane in mg/kg Vinyl chloride in mg/kg	0.67	88	0.5 U 0.05 U			0.5 U 0.05 U	0.5 U 0.05 U		0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 t 0.05 t
m,p-Xylenes in mg/kg	16,000	700,000	0.1 U			0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 l
o-Xylene in mg/kg Xylenes (total) in mg/kg	16,000 9	700,000 9	0.05 U ND	<u> </u>	<u> </u>	0.05 U ND	0.05 U ND		0.05 U ND	0.05 U ND	0.05 U ND	0.05 I
Naphthalene in mg/kg	5	5										
Semi-Volatile Organics 1,2,4-Trichlorobenzene in mg/kg	35	4,500	0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 l
1,2-Dichlorobenzene in mg/kg 1,3-Dichlorobenzene in mg/kg	<u> </u>		0.03 U 0.03 U	0.03 U 0.03 U		0.03 U 0.03 U	0.03 U 0.03 U		0.03 U 0.03 U		0.03 U 0.03 U	0.03 U
1,4-Dichlorobenzene in mg/kg			0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 l
2,4,5-Trichlorophenol in mg/kg 2,4,6-Trichlorophenol in mg/kg	91	12,000	0.3 U 0.3 U	0.3 U 0.3 U		0.3 U 0.3 U	0.3 U 0.3 U		0.3 U 0.3 U	0.3 U 0.3 U	0.3 U 0.3 U	0.3 U
2,4-Dichlorophenol in mg/kg 2,4-Dimethylphenol in mg/kg			0.3 U 0.3 U	0.3 U 0.3 U		0.3 U 0.3 U			0.3 U 0.3 U		0.3 U 0.3 U	0.3 L 0.3 L
د,4-کاباتافزایایا in mg/kg	<u>I</u>	<u> </u>	U.3 U	U.3 U	<u> </u>	U.3 U	U.3 U		U.3 U	U.3 U	U.3 U	0.3

	Uprostricted Soil	Industrial Soil	GF-B-09	GF-B-09 FD	GF-B-10	GF-B-10	GF-B-10	GF-B-10	GF-B-11	GF-B-11	GF-B-12	GF-B-12
	Unrestricted Soil Screening Level	Industrial Soil Screening Level	6/28/2012	6/28/2012	5/24/2012	5/24/2012	5/24/2012	5/24/2012	5/24/2012	5/24/2012	6/28/2012	6/28/2012
Chemical Name	(mg/kg)	(mg/kg)	(7.5-9 ft.)	(7.5-9 ft.)	(1-1.25 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(10-11.5 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(1-2.5 ft.)	(7.5-9 ft.)
2,4-Dinitrophenol in mg/kg			0.9 J	0.9 J		0.9 U	0.9 U		0.9 U	0.9 U	0.9 U	0.9
2-Chloronaphthalene in mg/kg			0.03 U			0.03 U			0.03 U		0.05	0.03 U
2-Chlorophenol in mg/kg			0.3 U	0.3 U		0.3 U	0.3 U		0.3 U		0.3 U	0.3 U
2-Methylphenol in mg/kg			0.3 U	0.3 U		0.3 U	0.3 U		0.3 U		0.3 U	0.3 U
2-Nitroaniline in mg/kg 2-Nitrophenol in mg/kg			0.03 U	0.03 U 0.3 U		0.03 U 0.3 U	0.03 U 0.3 U		0.03 U 0.3 U		0.03 U 0.3 U	
3 & 4 Methylphenol in mg/kg			0.5 U	0.5 U		0.5 U	0.5 U		0.5 U		0.5 U	0.5 U
3-Nitroaniline in mg/kg			3 U	3 U		3 U	3 U		3 U		3 U	3 U
4,6-Dinitro-2-methylphenol in mg/kg			0.9 U	0.9 U		0.9 U	0.9 U		0.9 U	0.9 U	0.9 U	0.9 U
4-Bromophenyl phenyl ether in mg/kg			0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
4-Chloro-3-methylphenol in mg/kg			0.3 U	0.3 U		0.3 U	0.3 U		0.3 U		0.3 U	0.3 U
4-Chloroaniline in mg/kg	5	660	3 U	3 U		3 U	3 U		3 U		3 U	3 U
4-Chlorophenyl phenyl ether in mg/kg			0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
4-Nitroaniline in mg/kg 4-Nitrophenol in mg/kg			3 U 0.9 U	3 U 0.9 U		3 U 0.9 U	3 U 0.9 U		3 U 0.9 U		3 U 0.9 U	3 U 0.9 U
Acenaphthene in mg/kg			0.9 U	0.9 U		0.9 U	0.9 U		0.9 U	0.3 0	0.9 U	0.9 U
Acenaphthylene in mg/kg			0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
Anthracene in mg/kg			0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	1	0.03 U	0.03 U
Benzo(g,h,i)perylene in mg/kg			0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.031	0.03 U	0.03 U
Benzoic acid in mg/kg			1.5 J	1.5 J		1.5 U	1.5 U		1.5 U			1.5 J
Benzyl alcohol in mg/kg		60.055	0.3 U	0.3 U		0.3 U	0.3 U		0.3 U		0.3 U	0.3 U
Benzyl butyl phthalate in mg/kg	530	69,000	0.03 U	0.03 U		0.03 U	0.03 U		0.03 U		0.03 U	0.03 U
Bis(2-chloro-1-methylethyl) ether in mg/kg Bis(2-chloroethoxy)methane in mg/kg	14	1,900	0.03 U	0.03 U 0.03 U		0.03 U 0.03 U	0.03 U 0.03 U		0.03 U 0.03 U		0.03 U 0.03 U	0.03 U 0.03 U
Bis(2-chloroethyl) ether in mg/kg	0.91	120	0.03 U	0.03 U		0.03 U	0.03 U		0.03 U			0.03 U
Bis(2-ethylhexyl) phthalate in mg/kg	71	9,400	0.48 U	0.48 U		0.48 U	0.48 U		0.48 U		0.48 U	0.48 U
Carbazole in mg/kg			0.03 U			0.03 U	0.03 U		0.03 U			
Dibenzofuran in mg/kg			0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
Diethyl phthalate in mg/kg			0.03 U	0.03 U		0.03 U	0.03 U		0.03 U		0.03 U	0.03 U
Dimethyl phthalate in mg/kg			0.03 U	0.03 U		0.03 U	0.03 U		0.03 U		0.03 U	0.03 U
Di-n-butyl phthalate in mg/kg			0.03 U	0.03 U 0.03 U		0.03 U	0.03 U 0.03 U		0.03 U		0.03 U 0.03 U	0.03 U 0.03 U
Di-n-octyl phthalate in mg/kg Fluoranthene in mg/kg			0.03 0	0.03 U		0.03 U 0.03 U	0.03 U		0.03 U 0.03 U		0.03 U	0.03 U
Fluorene in mg/kg			0.002 0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.042 0.03 U	0.03 U	0.03 U
Hexachlorobenzene in mg/kg	0.63	82	0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	1	0.03 U	0.03 U
Hexachlorobutadiene in mg/kg	13	1,700	0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	1	0.03 U	0.03 U
Hexachlorocyclopentadiene in mg/kg			0.09 U	0.09 U		0.09 U	0.09 U		0.09 U	0.09 U	0.09 U	0.09 U
Hexachloroethane in mg/kg	71	9,400	0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
Isophorone in mg/kg	1,100	140,000	0.03 U	0.03 U		0.03 U	0.03 U		0.03 U		0.03 U	
Nitrobenzene in mg/kg	0.14	40	0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
N-Nitroso-di-n-propylamine in mg/kg N-Nitrosodiphenylamine in mg/kg	0.14 200	19 27,000	0.03 U	0.03 U 0.03 U		0.03 U 0.03 U	0.03 U		0.03 U 0.03 U		0.03 U 0.03 U	0.03 U 0.03 U
Pentachlorophenol in mg/kg	2.5	330	0.03 U	0.03 U		0.03 U	0.03 U		0.03 U		0.03 U	
Phenanthrene in mg/kg	2.3	330	0.035	0.03 U		0.03 U	0.03 U		0.03 U		0.03 U	0.03 U
Phenol in mg/kg			0.3 U	0.3 U		0.3 U	0.3 U		0.3 U	1	0.3 U	0.3 U
Pyrene in mg/kg			0.064 J	0.033 J		0.03 U	0.03 U		0.03 U	0.04	0.03 U	0.03 U
Benz(a)anthracene in mg/kg	1.4	180	0.041	0.03 U		0.03 U	0.03 U		0.03 U		0.03 U	0.03 U
Benzo(a)pyrene in mg/kg	0.14	0.14	0.039	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
Benzo(b)fluoranthene in mg/kg	1.4	180	0.052	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
Benzo(k)fluoranthene in mg/kg Chrysene in mg/kg	14 140	1,800 18,000	0.03 U 0.039	0.03 U 0.03 U		0.03 U 0.03 U	0.03 U 0.03 U		0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U	0.03 U 0.03 U
Dibenzo(a,h)anthracene in mg/kg	0.14	18,000	0.039 0.03 U	0.03 U		0.03 U	0.03 U		0.03 U		0.03 U	0.03 U
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180	0.045	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
2,4-Dinitrotoluene in mg/kg			0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
2,6-Dinitrotoluene in mg/kg			0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
2-Methylnaphthalene in mg/kg			0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	0.03 U	0.03 U
Naphthalene in mg/kg	5	5	0.03 U	0.03 U		0.03 U	0.03 U		0.03 U	0.03 U	ND	ND
Total cPAH (TEQ) in mg/kg Polychlorinated Biphenyls (PCBs)	0.14	2	0.056	ND		ND	ND		ND	ND	ND	ND
Aroclor 1016 in mg/kg	14	1,900	0.1 U	0.1 U		0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
Aroclor 1221 in mg/kg			0.1 U	0.1 U		0.1 U	0.1 U		0.1 U			
Aroclor 1232 in mg/kg			0.1 U	0.1 U		0.1 U			0.1 U			
Aroclor 1242 in mg/kg			0.1 U			0.1 U			0.1 U			
Aroclor 1248 in mg/kg	<u> </u>		0.1 U	0.1 U		0.1 U	0.1 U		0.1 U		0.1 U	0.1 U
Aroclor 1254 in mg/kg Aroclor 1260 in mg/kg	0.5 0.5	66 66	0.1 U 0.1 U	0.1 U 0.1 U		0.1 U 0.1 U	0.1 U 0.1 U		0.1 U 0.1 U			0.1 U 0.1 U
Total PCBs in mg/kg	0.5	10	ND	ND		ND	ND		ND	ND	ND	ND
Dioxins/Furans		10	110	1,0		1,10	110		140	110	140	110
2,3,7,8-TCDD in mg/kg	1.1E-05	1.5E-03			1.05E-06 U			1.18E-06 U	1.10E-06 U	1.20E-06 U	1.14E-06 U	
1,2,3,7,8-PeCDD in mg/kg					2.62E-06 U			2.95E-06 U	7.56E-07 J	3.00E-06 U	3.16E-07 J	
1,2,3,4,7,8-HxCDD in mg/kg					6.62E-07 J			2.95E-06 U	1.63E-06 U	3.00E-06 U	2.78E-07 J	
1,2,3,6,7,8-HxCDD in mg/kg	4.55.51	2.45.00			9.73E-06			2.95E-06 U	5.53E-06	3.00E-06 U	2.86E-06 U	
1,2,3,7,8,9-HxCDD in mg/kg	1.6E-04	2.1E-02			2.02E-06 J			2.95E-06 U	3.33E-06 U	3.00E-06 U	7.31E-07 J	
1,2,3,4,6,7,8-HpCDD in mg/kg OCDD in mg/kg					2.74E-04 3.05E-03			4.20E-06 3.14E-05	9.28E-05 5.11E-04	3.98E-06 2.56E-05	9.28E-06 5.37E-05	
2,3,7,8-TCDF in mg/kg					1.49E-06			1.18E-06 U	1.00E-06 J	1.20E-06 U	1.14E-06 U	
1,2,3,7,8-PeCDF in mg/kg					4.56E-07 U			2.95E-06 U	6.81E-07 J	3.00E-06 U	2.86E-06 U	
2,3,4,7,8-PeCDF in mg/kg	<u> </u>				4.54E-07 J			2.95E-06 U	7.24E-07 J	3.00E-06 U	1.75E-07 J	
1,2,3,4,7,8-HxCDF in mg/kg					2.62E-06 U			2.95E-06 U	1.76E-06 J	2.86E-07 J	2.47E-07 J	
1,2,3,6,7,8-HxCDF in mg/kg					2.62E-06 U			2.95E-06 U	7.67E-07 J	3.00E-06 U	1.32E-07 J	
1,2,3,7,8,9-HxCDF in mg/kg					2.62E-06 U			2.95E-06 U	2.75E-06 U	3.00E-06 U	2.86E-06 U	
2,3,4,6,7,8-HxCDF in mg/kg	ļ				1.43E-06 J			2.95E-06 U	9.39E-07 J	3.00E-06 U	1.95E-07 J	
1,2,3,4,6,7,8-HpCDF in mg/kg 1,2,3,4,7,8,9-HpCDF in mg/kg	 				5.72E-05 1.96E-06 J			1.19E-06 J 2.95E-06 U	1.04E-05 7.32E-07 J	8.99E-07 J 3.00E-06 U	1.89E-06 J 1.20E-07 J	
OCDF in mg/kg					2.22E-04			2.40E-06 J	1.05E-05	1.50E-06 U	6.17E-06	
Total 2,3,7,8 TCDD (TEQ) in mg/kg	1.1E-05	1.5E-03			5.91E-06			6.40E-08	3.58E-06	8.55E-08	6.58E-07	
	2.11.00	1.56 05			51- 00			J. 102 00	552 00	2.552 00	552 57	

Notes

 $\label{lem:concentrations} \textbf{Concentrations in shaded cells exceed unrestricted soil screening level}$ Concentrations within bold border exceed industrial soil screening level.

J - Analyte was positively identified. The reported result is an estimate.

U - Analyte was not detected at or above the reported result.

	Unrestricted Soil Screening Level	Industrial Soil Screening Level	GF-B-13 5/24/2012	GF-B-13 5/24/2012	GF-B-14 5/23/2012	GF-B-14 5/23/2012	GF-B-15A 5/23/2012	GF-B-15A 5/23/2012	GF-B-15A 5/23/2012	GF-B-15A 5/23/2012	GF-B-15A 5/23/2012
Chemical Name	(mg/kg)	(mg/kg)	(1-2.5 ft.)	(10-11.5 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(10-11.5 ft.)	(15-16.5 ft.)	(25-26.5 ft.
otal Petroleum Hydrocarbons Gasoline Range Hydrocarbons in mg/kg	100	100	2 U	2 U	3	2 U	2 U	2 U	2 U		
Diesel Range Hydrocarbons in mg/kg Oil Range Hydrocarbons in mg/kg	2,000 2,000	2,000 2,000	50 U 250 U	50 U 250 U	2,900 4,900	50 U 250 U	50 U 250 U	230 810	50 U 250 U	310 440	50 250
Total TPH in mg/kg 1etals	2,000	2,000	ND	ND	7,800	ND	ND	1,040	ND	750	ND
Antimony in mg/kg			4	1 U	1.08	1 U	1.74	1.98	1 U		
Arsenic in mg/kg Beryllium in mg/kg	20	20	2.22 1 U	2 1 U	4.19 1 U	2.12 1 U	7.09 1 U	6.65 1 U	5.17 1 U		
Cadmium in mg/kg Chromium (Total) in mg/kg	2	2	1 U 10.2	1 U 8.37	1 U 9.62	1 U 6.82	1 U 12.6	1 U 17.4	1 U 15.5		
Copper in mg/kg			13.6	6.31	12.7	4.2	40.8	63	36.6		
Lead in mg/kg Mercury in mg/kg	250 2	1,000 2	115 0.1 U	3.69 0.1 U	30.5 0.1 U	1.46 0.1 U	34.4 0.1 U	84.8 0.1 U	119 0.1 U		
Nickel in mg/kg Selenium in mg/kg			25.8 1 U	14 1 U	13.5 1 U	12.1 1 U	20.6 1 U	22.2 1 U	21.4 1 U		
Silver in mg/kg Thallium in mg/kg			1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Zinc in mg/kg			23.4	14.1	153	12.3	58.3	69.4	71.5		
olycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in mg/kg							0.01 U	0.01 U	0.01 U	0.012	0.2
Acenaphthylene in mg/kg Anthracene in mg/kg							0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.014 0.076
Benzo(g,h,i)perylene in mg/kg							0.036	0.012	0.028	0.012	0.066
Fluoranthene in mg/kg Fluorene in mg/kg							0.068 0.01 U	0.017 0.01 U	0.029 0.01 U	0.032 0.01 U	0.9
Phenanthrene in mg/kg Pyrene in mg/kg							0.027 0.081	0.01 U 0.019	0.018 0.035	0.026 0.038	0.22 0.83
Naphthalene in mg/kg	5	5					0.01 U	0.01 U	0.01 U	0.021	0.099
Benz(a)anthracene in mg/kg Benzo(a)pyrene in mg/kg	1.4 0.14	180 0.14					0.035 0.043	0.01 0.011	0.02 0.042	0.011 0.011	0.29 0.19
Benzo(b)fluoranthene in mg/kg Benzo(k)fluoranthene in mg/kg	1.4 14	180 1,800					0.05 0.018	0.013 0.01 U	0.054 0.015	0.018 0.01 U	0.34 0.094
Chrysene in mg/kg	140	18,000					0.049	0.013	0.031	0.018	0.4
Dibenzo(a,h)anthracene in mg/kg Indeno(1,2,3-cd)pyrene in mg/kg	0.14	18 180					0.01 U 0.034	0.01 U 0.01	0.01 U 0.026	0.01 U 0.01	0.014 0.072
Total cPAHs TEQ in mg/kg Colatile Organic Compounds	0.14	2					0.0577	0.0154	0.0543	0.0161	0.275
1,1,1,2-Tetrachloroethane in mg/kg	38	5,000	0.05 U	0.05 U	0.05 U						
1,1,1-Trichloroethane in mg/kg 1,1,2,2-Tetrachloroethane in mg/kg	5	2 660	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
1,1,2-Trichloroethane in mg/kg 1,1-Dichloroethane in mg/kg	18	2,300	0.05 U	0.05 U	0.05 U		0.05 U	0.05 U	0.05 U		
1,1-Dichloroethene in mg/kg			0.05 U	0.05 U	0.05 U						
1,1-Dichloropropene in mg/kg 1,2,3-Trichlorobenzene in mg/kg			0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U		
1,2,3-Trichloropropane in mg/kg 1,2,4-Trichlorobenzene in mg/kg	0.033 35	4.4 4,500	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U	0.05 U 0.25 U		
1,2,4-Trimethylbenzene in mg/kg			0.05 U	0.05 U	0.05 U						
1,2-Dibromo-3-chloropropane in mg/kg 1,2-Dibromoethane (EDB) in mg/kg	1.3 0.005	160 0.005	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U						
1,2-Dichlorobenzene in mg/kg 1,2-Dichloroethane (EDC) in mg/kg	11	1,400	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
1,2-Dichloropropane in mg/kg	11	1,400	0.05 U	0.05 U	0.05 U						
1,3,5-Trimethylbenzene in mg/kg 1,3-Dichlorobenzene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
1,3-Dichloropropane in mg/kg 1,4-Dichlorobenzene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
2,2-Dichloropropane in mg/kg			0.05 U	0.05 U	0.05 U						
2-Butanone in mg/kg 2-Chlorotoluene in mg/kg			0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U						
2-Hexanone in mg/kg 4-Chlorotoluene in mg/kg	1		0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U						
4-Methyl-2-pentanone in mg/kg Acetone in mg/kg			0.5 U	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U		
Benzene in mg/kg	0.03	0.03	0.5 U 0.03 U	0.03 U	0.5 U 0.03 U	0.03 U	0.03 U	0.03 U	0.03 U		
Bromobenzene in mg/kg Bromodichloromethane in mg/kg	16	2,100	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
Bromoform in mg/kg Bromomethane in mg/kg	130	17,000	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U						
Carbon tetrachloride in mg/kg	14	1,900	0.05 U	0.05 U	0.05 U						
Chlorobenzene in mg/kg Chloroethane in mg/kg	<u> </u>		0.05 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U		<u> </u>
Chloroform in mg/kg Chloromethane in mg/kg			0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ		
cis-1,2-Dichloroethene (DCE) in mg/kg	1		0.05 U	0.05 U	0.05 U						
cis-1,3-Dichloropropene in mg/kg Dibromochloromethane in mg/kg	12	1,600	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 UJ	0.05 U 0.05 UJ	0.05 U 0.05 UJ	0.05 U 0.05 UJ	0.05 U 0.05 UJ		
Dibromomethane in mg/kg Dichlorodifluoromethane in mg/kg			0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ	0.05 U 0.5 UJ		
Ethylbenzene in mg/kg	6	6	0.05 U	0.05 U	0.05 U						
Hexachlorobutadiene in mg/kg Isopropylbenzene in mg/kg	13	1,700	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U		
Methylene chloride in mg/kg Methyl-Tert-Butyl Ether in mg/kg	0.02 0.1	0.02 0.1	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U						
n-Propylbenzene in mg/kg	0.1	0.1	0.05 U	0.05 U	0.05 U						
p-Isopropyltoluene in mg/kg sec-Butylbenzene in mg/kg			0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
Styrene in mg/kg tert-Butylbenzene in mg/kg	+		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
Tetrachloroethene (PCE) in mg/kg	0.05	0.05	0.025 U	0.025 U	0.025 U						
Toluene in mg/kg trans-1,2-Dichloroethene in mg/kg	7	7	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		
trans-1,3-Dichloropropene in mg/kg Trichloroethene (TCE) in mg/kg	0.03	0.03	0.05 U 0.03 U	0.05 U 0.03 U	0.05 U 0.03 U	0.05 U 0.03 U	0.05 U 0.03 U	0.05 U 0.03 U	0.05 U 0.03 U		
Trichlorofluoromethane in mg/kg			0.5 U	0.5 U	0.5 U						
Vinyl chloride in mg/kg m,p-Xylenes in mg/kg	0.67 16,000	700,000	0.05 U 0.1 U					0.05 U 0.1 U			
o-Xylene in mg/kg Xylenes (total) in mg/kg	16,000 9	700,000	0.05 U ND	0.05 U ND	0.05 U ND						
Naphthalene in mg/kg	5	5	IND	IND	IND	ואט	טאו	IND	טאו		
emi-Volatile Organics 1,2,4-Trichlorobenzene in mg/kg	35	4,500	0.03 U	0.03 U	0.3 U	0.03 U	0.03 U	0.15 U	0.03 U		L
1,2-Dichlorobenzene in mg/kg 1,3-Dichlorobenzene in mg/kg			0.03 U	0.03 U	0.3 U	0.03 U	0.03 U 0.03 U	0.15 U	0.03 U		
1,4-Dichlorobenzene in mg/kg			0.03 U	0.03 U	0.3 U	0.03 U	0.03 U	0.15 U	0.03 U		
2,4,5-Trichlorophenol in mg/kg 2,4,6-Trichlorophenol in mg/kg	91	12,000	0.3 U 0.3 U	0.3 U 0.3 U	3 U 3 U		0.3 U 0.3 U	1.5 U 1.5 U	0.3 U 0.3 U		<u> </u>
2,4-Dichlorophenol in mg/kg			0.3 U	0.3 U	3 U		0.3 U	1.5 U	0.3 U		

	Unrestricted Soil	Industrial Soil	GF-B-13	GF-B-13	GF-B-14	GF-B-14	GF-B-15A	GF-B-15A	GF-B-15A	GF-B-15A	GF-B-15A
	Screening Level	Screening Level	5/24/2012	5/24/2012	5/23/2012	5/23/2012	5/23/2012	5/23/2012	5/23/2012	5/23/2012	5/23/2012
Chemical Name	(mg/kg)	(mg/kg)	(1-2.5 ft.)	(10-11.5 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(1-2.5 ft.)	(7.5-9 ft.)	(10-11.5 ft.)	(15-16.5 ft.)	(25-26.5 ft.)
2,4-Dinitrophenol in mg/kg	1		0.9 U	0.9 U	9 U	0.9 U	0.9 U	4.5 U	0.9 U		
2-Chloronaphthalene in mg/kg			0.03 U	0.03 U	0.3 U	0.03 U	0.03 U	0.15 U	0.03 U		
2-Chlorophenol in mg/kg			0.3 U		3 U		0.3 U	1.5 U			
2-Methylphenol in mg/kg			0.3 U		3 U		0.3 U	1.5 U			
2-Nitroaniline in mg/kg			0.03 U		0.3 U		0.03 U	0.15 U			
2-Nitrophenol in mg/kg 3 & 4 Methylphenol in mg/kg			0.3 U 0.6 U		3 U 6 U		0.3 U 0.6 U	1.5 U 3 U			
3-Nitroaniline in mg/kg			3 U		30 U	3 U	3 U	15 U			
4,6-Dinitro-2-methylphenol in mg/kg			0.9 U	0.9 U	9 U		0.9 U	4.5 U			
4-Bromophenyl phenyl ether in mg/kg			0.03 U				0.03 U	0.15 U			
4-Chloro-3-methylphenol in mg/kg			0.3 U	0.3 U	3 U		0.3 U	1.5 U			
4-Chloroaniline in mg/kg	5	660	3 U	3 U	30 U	3 U	3 U	15 U	3 U		
4-Chlorophenyl phenyl ether in mg/kg			0.03 U	0.03 U	0.3 U	0.03 U	0.03 U	0.15 U	0.03 U		
4-Nitroaniline in mg/kg			3 U		30 U		3 U	15 U			
4-Nitrophenol in mg/kg			0.9 U		9 U		0.9 U	4.5 U	0.9 U		
Acenaphthene in mg/kg			0.03 U		0.3 U	0.14					
Acenaphthylene in mg/kg			0.03 U 0.03 U		0.3 U						
Anthracene in mg/kg Benzo(g,h,i)perylene in mg/kg			0.03 U		0.3 U 1	0.03 U 0.03 U					
Benzoic acid in mg/kg			1.5 U		15 U		1.5 U	7.5 U	1.5 U		
Benzyl alcohol in mg/kg			0.3 U		3 U		0.3 U	1.5 U			
Benzyl butyl phthalate in mg/kg	530	69,000	0.03 U		0.3 U		0.03 U	0.15 U			
Bis(2-chloro-1-methylethyl) ether in mg/kg	14	1,900	0.03 U					0.15 U			
Bis(2-chloroethoxy)methane in mg/kg			0.03 U		0.3 U	0.03 U	0.03 U	0.15 U			
Bis(2-chloroethyl) ether in mg/kg	0.91	120	0.03 U				0.03 U	0.15 U			
Bis(2-ethylhexyl) phthalate in mg/kg	71	9,400	0.48 U		4.8 U		0.48 U	2.4 U			
Carbazole in mg/kg	.		0.03 U				0.03 U	0.15 U			
Dibenzofuran in mg/kg	 		0.03 U		0.3 U		0.03 U	0.15 U			
Diethyl phthalate in mg/kg	1		0.03 U		0.3 U		0.03 U	0.15 U			
Dimethyl phthalate in mg/kg	 		0.03 U		0.3 U 0.3 U		0.03 U 0.03 U	0.15 U 0.15 U			
Di-n-butyl phthalate in mg/kg Di-n-octyl phthalate in mg/kg	1		0.03 U		0.3 U	0.03 U	0.03 U	0.15 U			
Fluoranthene in mg/kg			0.03 U			0.03 U	0.03 0	0.13 0	0.03 0		
Fluorene in mg/kg			0.03 U		0.3 U						
Hexachlorobenzene in mg/kg	0.63	82	0.03 U				0.03 U	0.15 U	0.03 U		
Hexachlorobutadiene in mg/kg	13	1,700	0.03 U	0.03 U	0.3 U	0.03 U	0.03 U	0.15 U	0.03 U		
Hexachlorocyclopentadiene in mg/kg			0.09 U	0.09 U	0.9 U	0.09 U	0.09 U	0.45 U	0.09 U		
Hexachloroethane in mg/kg	71	9,400	0.03 U	0.03 U	0.3 U	0.03 U	0.03 U	0.15 U	0.03 U		
Isophorone in mg/kg	1,100	140,000	0.03 U				0.03 U	0.15 U			
Nitrobenzene in mg/kg			0.03 U	0.00	0.3 U	0.03 U	0.03 U	0.15 U	0.03 U		
N-Nitroso-di-n-propylamine in mg/kg	0.14	19	0.03 U		0.3 U		0.03 U	0.15 U			
N-Nitrosodiphenylamine in mg/kg	200	27,000	0.03 U					0.15 U			
Pentachlorophenol in mg/kg	2.5	330	0.3 U				0.3 U	1.5 U	0.3 U		
Phenanthrene in mg/kg Phenol in mg/kg			0.03 U		0.45 3 U	0.11 0.3 U	0.3 U	1.5 U	0.3 U		
Pyrene in mg/kg			0.3 U			0.052 J	0.3 0	1.5 0	0.3 0		
Benz(a)anthracene in mg/kg	1.4	180	0.03 U			0.032 J					
Benzo(a)pyrene in mg/kg	0.14	0.14	0.03 U		1.2	0.03 U					
Benzo(b)fluoranthene in mg/kg	1.4	180	0.03 U	0.03 U	0.52	0.03 U					
Benzo(k)fluoranthene in mg/kg	14	1,800	0.03 U								
Chrysene in mg/kg	140	18,000	0.03 U	0.03 U	1.8	0.03 U					
Dibenzo(a,h)anthracene in mg/kg	0.14	18	0.03 U	0.03 U	0.3 U	0.03 U					
Indeno(1,2,3-cd)pyrene in mg/kg	1.4	180	0.03 U	0.03 U	0.3 U	0.03 U					
2,4-Dinitrotoluene in mg/kg			0.03 U					0.15 U			
2,6-Dinitrotoluene in mg/kg	!		0.03 U				0.03 U	0.15 U			
2-Methylnaphthalene in mg/kg		_	0.03 U		0.3 U	0.073	0.03 U	0.15 U	0.03 U		
Naphthalene in mg/kg Total cPAH (TEQ) in mg/kg	5	5 2	0.03 U ND	0.03 U ND	0.3 U 1.425	0.2 ND					
Polychlorinated Biphenyls (PCBs)	0.14	2	טא	טא	1.425	עא			<u> </u>		
Aroclor 1016 in mg/kg	14	1,900	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.24 U	0.1 U		
Aroclor 1221 in mg/kg	1	_,555	0.1 U				0.1 U	0.24 U			
Aroclor 1232 in mg/kg			0.1 U				0.1 U	0.24 U			
Aroclor 1242 in mg/kg			0.1 U		0.1 UJ	0.1 U		0.24 U	0.1 U		
Aroclor 1248 in mg/kg			0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.24 U	0.1 U		
Aroclor 1254 in mg/kg	0.5	66	0.1 U					0.24 U			
Aroclor 1260 in mg/kg	0.5	66	0.1 U				0.1 U	0.24 U			
Total PCBs in mg/kg	1	10	ND	ND	ND	ND	ND	ND	0.52		
Dioxins/Furans	1 15 05	1 55 00	1.000.00	1 225 00	E 74F 07 .	1	E 27F 07 1.				
2,3,7,8-TCDD in mg/kg 1,2,3,7,8-PeCDD in mg/kg	1.1E-05	1.5E-03	1.00E-06 U				5.37E-07 U 8.76E-07 U				
1,2,3,4,7,8-PECDD in mg/kg 1,2,3,4,7,8-HxCDD in mg/kg	 		2.50E-06 U 2.50E-06 U		1.22E-06 J 1.74E-06 J		1.79E-06 J				
1,2,3,4,7,8-HXCDD in mg/kg 1,2,3,6,7,8-HxCDD in mg/kg	 		6.32E-07 J	3.05E-06 U	2.77E-06 J		3.86E-06				
1,2,3,7,8,9-HxCDD in mg/kg	1.6E-04	2.1E-02	7.16E-07 J	3.05E-06 U	2.27E-06 J		3.53E-06				
1,2,3,4,6,7,8-HpCDD in mg/kg	1	-	5.59E-06	5.87E-07 U	3.14E-05		5.93E-05				
OCDD in mg/kg			2.12E-05	2.42E-06 J	1.24E-04		5.46E-04				
2,3,7,8-TCDF in mg/kg	<u> </u>		7.39E-07 U	1.22E-06 U	5.09E-06		2.57E-06				
1,2,3,7,8-PeCDF in mg/kg			2.08E-07 U	3.05E-06 U	1.25E-06 J		9.38E-07 U				
2,3,4,7,8-PeCDF in mg/kg			3.35E-07 J	3.05E-06 U	1.71E-06 J		1.50E-06 U				
1,2,3,4,7,8-HxCDF in mg/kg			6.47E-07 J	3.05E-06 U	1.38E-06 J		1.91E-06 U				
1,2,3,6,7,8-HxCDF in mg/kg	<u> </u>		2.74E-07 J	3.05E-06 U	8.81E-07 J		1.17E-06 U				
1,2,3,7,8,9-HxCDF in mg/kg	!		2.50E-06 U	3.05E-06 U	2.73E-06 U		2.68E-07 U				
2,3,4,6,7,8-HxCDF in mg/kg	 		3.92E-07 J	3.05E-06 U	1.52E-06 J		1.77E-06 J				
1,2,3,4,6,7,8-HpCDF in mg/kg	 		2.45E-06 J	2.37E-07 J	4.30E-06		1.24E-05				
1,2,3,4,7,8,9-HpCDF in mg/kg	!		2.50E-06 U 2.29E-06 U	9.26E-07 J 6.09E-06 U	4.02E-07 J 6.17E-06		2.36E-06 J 3.19E-05				
OCDE in malka						-	2.195-02		_		
OCDF in mg/kg Total 2,3,7,8 TCDD (TEQ) in mg/kg	1.1E-05	1.5E-03	5.01E-07	1.82E-08	4.05E-06		4.49E-06				

Notes

 $\label{lem:concentrations} \textbf{Concentrations in shaded cells exceed unrestricted soil screening level}$ $\label{lem:concentrations} \textbf{Concentrations within bold border exceed industrial soil screening level.}$

J - Analyte was positively identified. The reported result is an estimate.

U - Analyte was not detected at or above the reported result.

Table 19 - Groundwater Quality Data for Upgradient Groundwater Quality

K-C Worldwide Site Upland Area 110207

Chemical Name	Groundwater Screening Level	UG-MW-01 7/3/2012	UG-MW-02 7/3/2012
Dissolved Metals	0 1	, -, -	, -, -
Dissolved Antimony in ug/L	640	1 U	1 U
Dissolved Arsenic in ug/L	5	1 U	1 U
Dissolved Beryllium in ug/L	270	1 U	1 U
Dissolved Cadmium in ug/L	8.8	1 U	1 U
Dissolved Chromium (Total) in ug/L		1.05	1 U
Dissolved Copper in ug/L	2.4	1 U	1 U
Dissolved Lead in ug/L	8.1	1 U	1 U
Dissolved Mercury in ug/L	0.15	0.1 U	0.1 U
Dissolved Nickel in ug/L	8.2	5.04	2.31
Dissolved Selenium in ug/L	71	1 U	1 U
Dissolved Silver in ug/L	1.9	1 U	1 U
Dissolved Thallium in ug/L	0.47	1 U	1 U
Dissolved Zinc in ug/L	81	1.75	5.03
Total Metals			
Total Antimony in ug/L	640	1 U	
Total Arsenic in ug/L	5	1 U	
Total Beryllium in ug/L	270	1 U	
Total Cadmium in ug/L	8.8	1 U	
Total Chromium (Total) in ug/L		1 U	
Total Copper in ug/L	2.4	1 U	
Total Lead in ug/L	8.1	1 U	
Total Mercury in ug/L	0.15	0.1 U	
Total Nickel in ug/L	8.2	4.79	
Total Selenium in ug/L	71	1 U	
Total Silver in ug/L	1.9	1 U	
Total Thallium in ug/L	0.47	1 U	
Total Zinc in ug/L	81	2.42	
Conventional Chemistry Parameters	-		
Total Suspended Solids in mg/L		10 U	10 U
Field Parameters			
Dissolved Oxygen in mg/L		3.86	0.3
Eh (ORP) in mVolts		53.5	-36.7
pH in pH Units		6.77	7.03
Specific Conductance in us/cm		400.7	556
Temperature in deg C		13	14.5
Turbidity in NTU			2.99

Notes

Concentrations in shaded cells exceed groundwater screening level

U - Analyte was not detected at or above the reported result

Aspect Consulting

Table 20 - Low Tide and High Tide Water Level Data, July 3 and 6, 2012 K-C Worldwide Site Upland Area 110207

		7/3/2012 - Low Tide			7/6/2012 - High Tide			
	Top of Casing	Depth to		Groundwater	Depth to		Groundwater	
	Elevation	Water (ft		Elevation	Water (ft		Elevation	
Well	(NAVD88)	bTOC)	Time	(NAVD88)	bTOC)	Time	(NAVD88)	
AP-MW-1	15.45	5.83	10:56	9.62	5.83	7:47	9.62	
CMS-MW-1	14.7	1.72	11:05	12.98	1.73	7:50	12.97	
HW-MW-1	15.43	5.08	11:30	10.35	3.72	7:59	11.71	
MW-1	14.15	8.78	10:50	5.37	6.48	7:32	7.67	
MW-2	13.23	8.55	11:02	4.68	5.1	7:34	8.13	
MW-3	15.11	7.24	11:31	7.87	6.93	7:49	8.18	
MW-4	15.2	7.02	11:26	8.18	6.34	7:53	8.86	
MW-5	13.36	8.85	10:17	4.51	5.92	7:34	7.44	
MW-6	20.43	13.04	10:50	7.39	13.1	7:29	7.33	
NRP-MW-1	13.56	6.07	11:02	7.49	5.72	7:41	7.84	
NRP-MW-2	15.09	8.5	11:12	6.59	7.99	7:37	7.1	
NRP-MW-3	13.3	7.72	10:28	5.58	5.93	7:30	7.37	
NRP-MW-4	15.39	5.05	10:54	10.34	4.94	7:48	10.45	
NRP-MW-5	15.14	4.48	10:50	10.66	4.43	7:49	10.71	
OMS-MW-1	14.68	11.41	10:45	3.27	7.11	7:27	7.57	
REC2-MW-5	15.05	0.73	11:10	14.32	0.91	7:56	14.14	
REC3-MW-1	14.43	8.91	10:30	5.52	7.45	7:38	6.98	
REC5-MW-1	15.49	6.85	10:41	8.64	7.05	7:42	8.44	
REC6-MW-1	15.38	5.49	11:45	9.89	NM ²	-	-	
REC6-MW-2	16.67	9.05	11:53	7.62	8.83	7:25	7.84	
REC7-MW-1	13.14	7.7	10:35	5.44	5.86	7:20	7.28	
REC7-MW-2	15.11	7.01	11:50	8.10	6.64	7:43	8.47	
REC7-MW-3	14.92	9.43	10:40	5.49	6.97	7:25	7.95	
REC7-MW-4	12.69	9.18	11:16	3.51	4.93	7:39	7.76	
UG-MW-1	16.95	1.21	11:58	15.74	1.2	7:55	15.75	
UG-MW-2	18.05	4.55	11:00	13.50	4.5	7:55	13.55	
UST29-MW-1	15.24	4.69	11:40	10.55	NM ²	_	-	
UST68-MW-1	15.12	7.55	11:16	7.57	7.19	7:46	7.93	
UST68-MW-2	15.33	7.98	11:27	7.35	7.92	7:43	7.41	
UST68-MW-4	14.34	6.85	11:07	7.49	6.54	7:37	7.8	
UST68-MW-5	14.12	7.1	11:00	7.02	6.89	7:31	7.23	
UST69-MW-1	14.88	4.6	11:41	10.28	3.6	7:30	11.28	
UST70-MW-1	14.65	8.23	10:35	6.42	7.13	7:34	7.52	
UST70-MW-2	14.23	7.64	10:33	6.59	6.9	7:32	7.33	
UST71-MW-1	13.66	6.43	10:41	7.23	5.96	7:35	7.7	
TM-1 ¹	16.63	19.47	11:05	-2.84	9	7:44	7.63	

^{1 -} Tidal monitoring station

^{2 -} Not Measured

-Shoreline well REC6-MW-2 is not shown. It is shown with groundwater exceedances on Figure 7 and had no soil data collected.

-BOLD, PURPLE, UNDERLINED TEXT indicates exceedance of groundwater screening level

-BOLD, BROWN, UNDERLINED TEXT indicates exceedance of unrestricted soil screening level -"ND" = Non-detect.

-*Total TPH is the sum of diesel- and oil- range TPHs

and Groundwater Exceedances

Phase 2 Environmental Site Assessment Work Plan Addendum K-C Worldwide Site Upland Area Everett, Washington

AUG-2012	SJG / PPW
PROJECT NO. 110207	REV BY:

FIGURE NO. 6

Locations with No Exceedance -Well locations without data boxes did not have any detections above site

- screening levels. -BOLD, PURPLE, UNDERLINED TEXT indicates exceedance of groundwater screening level
- -For samples with both dissolved and total metals analyses, the higher concentration is listed.
- -"NA" = Not Analyzed

Groundwater Exceedances

Phase 2 Environmental Site Assessment Work Plan Addendum K-C Worldwide Site Upland Area Everett, Washington

Aspect	
CONSULTING	

AUG-2012	SJG / PPW
PROJECT NO. 110207	REV BY:

FIGURE NO. 7

Monitoring Well

Acid Plant Soil and Groundwater Data

Phase 2 Environmental Site Assessment Work Plan Addendum K-C Worldwide Site Upland Area Everett, Washington

Aspect	
CONSULTING	

AUG-2012	SJG / PPW
PROJECT NO.	REV BY:
110207	

FIGURE NO. **13**

Monitoring Well

- NOTES:
 -BOLD, PURPLE TEXT indicates exceedance of groundwater screening level
- -BOLD, BROWN TEXT indicates exceedance of unrestricted soil screening level
- -"ND" = Non-detect. -"NA" = Not Analyzed
- -*Total TPH is the sum of diesel- and oil- range TPHs

Central Maintenance Shop Soil and Groundwater Exceedances

Phase 2 Environmental Site Assessment Work Plan Addendum K-C Worldwide Site Upland Area Everett, Washington

Aspect	
CONSULTING	

AUG-2012	SJG / PPW
PROJECT NO.	REV BY:
110207	

FIGURE NO.

14

-BOLD, BROWN TEXT indicates exceedance of unrestricted soil screening level -"ND" = Non-detect.

Upland Area Boundary

- -"NA" = Not Analyzed
- -*Total TPH is the sum of diesel- and oil- range TPHs

Proposed Monitoring Well

Phase 2 Environmental Site Assessment Work Plan Addendum K-C Worldwide Site Upland Area Everett, Washington

Aspect	
CONSULTING	

AUG-2012	SJG / PPW
PROJECT NO. 110207	REV BY:

FIGURE NO. **20**

Aspect Consulting
8/22/12
C:\Users\drugh\Desktop\Figure 24 Tidal Study

Figure 24
Tidal Study Groundwater Elevation Data
Kimberly-Clark Worldwide Site Upland Area, Everett, Washington

APPENDIX A

Exploration Logs

Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

Exploration Log Key

	Mana	<u></u>			N	/lonit	oring Well Constructio		
	Aspe	CT			ect Numb	er	Well Number	Sheet	
	CONSULTI		44 N 4:11	1	10207		AP-MW-01	1 of 1	
Project Name:	Kimberly Cla	ir-Evere	ett iviiii				Ground Surface Elev	15.45	
Location: Driller/Method:	Everett, WA Cascade Drilling	a / Direct D	uch Broho				Top of Casing Elev Depth to Water (ft BGS)	6	
	d: Continuous Cor		usii Fiobe				Start/Finish Date	6/29/2012	
Depth /				PID	Blows/	Matarial		0/29/2012	
Elevation B (feet)	orehole Completion	Sample Type/ID	Tests	(ppm)	6"	Material Type	Description		De (1
	8" Flush-mount monument and						Asphalt	L LOAND (OD) 1	_
1 +	thermos cap Concrete surface seal	Ш	AP-MW-1-1-2	0			Moist, brown, iron-oxide-gray mott fine gravel, fine sand, scattered or	led SAND (SP); trac ganics-seashells	ce \perp ´
2 + 🖾 🛇	0' to 2'			0					+ 2
		CC-1							
3 +	3/8" Hydrated bentonite chips 2' to 3'			0					+;
4 +	10/20 pre-pack Silica sand filter pack 3' to 14'			0			 Moist, dark gray SAND (SP); fine	sand	+ 4
5 +	. Suria likel public to 14	0	-				, ,		ļ.
				0			Moist, brown SAND (SP); fine san	d	
6 +	<u>*</u>		AP-MW-1-6-7	0					
7 +	•			0			Wet, dark gray, silty SAND (SM); dilatency, scattered organics-seas	fine sand, rapid shells	+ 7
8 +	2" Diameter PVC	CC-2					_		- 8
	pre-packed .001 slot			0			Numerous organics-seashells- 8' to Wet, dark gray SAND (SP); trace		
9	screen 4' to 14'			0			medium sand	graver, fille to	+ 9
10+		H	-	0					<u> </u>
11	-								+1
				0					
12+		CC-3		0					+1
13+ 🗐				0					-1
14 -	Threaded cap								<u> </u>
	Slough			0					
15+	9		-	0			Bottom of boring at 15' BGS		1:
16 -									1
17 -									-1
18+									 1
19 🕂									-1
20 +									-2
21 +									+2
22 +									-2
23 -									-2
24 +									+2
25 -									-2
26 -									-2
27+									-2
28									-2
29+									-2
									-
Sampler T	ype:	1 1	PID - Pt	otoioniz	ation De	tector	Logged by:	AET	
No Recovery				atic Wate					
Continuous C				ter Leve			Approved by:	210	
					, -,		Figure No.	A- 3	

		Mana	لم					<u> </u>	/lonit	oring Well Construction		
		Aspe	C1	Γ				ct Numb	oer	Well Number	Sheet	
Dunia at Ni					N Aill		1	10207		CMS-MW-01	1 of 1	
Project Na Location:	ame:	Kimberly Cla	ai K-	-Everett	IVIIII					Ground Surface Elev Top of Casing Elev.	14.70	
Driller/Me	thod:	Cascade Drilling	a / [Direct Pus	h Probe					Depth to Water (ft BGS)	3	
		d: Continuous Cor		2001. 00						Start/Finish Date	6/28/2012	
Depth / Elevation		orehole Completion	5	Sample Fype/ID	Test	s	PID (ppm)	Blows/	Material Type	Description		
Depth /			S T	CC-2	Test	s				Wet, dark gray, slightly silty SAND Wet, dark gray SAND (SP); trace gmedium sand Wet, dark gray, silty CLAY (CL) Wet, dark gray, slightly gravelly SAmedium sand, fine gravel Wet, dark brown, organic SILT (OL) Wet, dark brown, sandy organic SI medium sand Bottom of boring at 15' BGS	ND (SP); fine to	Dec (() () () () () () () () () () () () ()
26+ 27+												+
28												+:
29 -												+:
	mplor T	N/DO:			DIE) Db-	4-11-	-ti D-	44	Logged by:	AET	
	mpler T							ation De	lector	Logged by:	\∟ I	
Contin					Ţ Ž			r Level I (ATD)		Approved by:	SJG	
						, , alc	000	. (, (, D)		Figure No.	۹- 4	

	A	م <u>ا</u>					Boring Log	
	Aspe	CT			ct Numb	er	Boring Number	Sheet
	OCONSULT	ING		11	10207		DP-01	1 of 1
Project N		ark-Evere	tt Mill				Ground Surface Elev	
ocation:		/ D: / D					Double to Water (# DCC)	4
Driller/Me			ısn Probe-L	Imited Acces	iS		Depth to Water (ft BGS) Start/Finish Date	2/14/2012
Depth /	Method: Continuous Co			- DID	T =		Start/Finish Date	
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description Asphalt	Dep (fi
	Backfilled with medium bentonite chips,	1		0		000000000	Wet, brown to gray, slightly sandy of silt, fine angular gravel	GRAVEL (GP); trace
	concrete seal at ground surface, and asphalt cold-patch	CC-1	DP-1-2.				Wet, dark brown, slightly silty, grave to medium sand	Illy SAND (SP); fine
		Ц		0				
5 +				0.7			Gray sand, trace gravel	
5 —			DP-2-5.	5-6 0.7				- 5
Ī				0				
Ī		CC-2		0				
				0				
				0				
10+				0			Slightly gravelly, scattered shell frag	gments +10
				0		0000	Wet, gray, sandy GRAVEL (GP); fir	ne to medium
1		CC-3		0		0000	gravel, scattered shell fragments Wet, gray SAND (SP); trace gravel	and silt, fine to
†				0			medium sand	
†				0				
15+				0			Bottom of boring at 15' BGS	1!
+								
†								
†								
+								
_	 mpler Type:	<u> </u>		onization Dete	ctor (He	eadspa	 ce Measurement)	MAR
=	ecovery		<u>_</u>	Static Wate	r Level		Approved by: S	SJG
Conti	nuous Core		$\bar{\Delta}$	Water Level	(ATD)		rr	
							Figure No. 🛭 🗡	∖ - 5

Project N	Aspe	JCT	- t					Boring Log		
-						t Numb	er	Boring Number	Sheet	
-		TING	44 8 4:11		110	0207		DP-02	1 of 1	
-ocation		Clark-Evere	ett iviiii					Ground Surface Elev		—
Oriller/M		ling / Direct P	uch Probo I	imited Acc	2000			Depth to Water (ft BGS)	1	
	g Method: Continuous (usii Fiobe-L	iiiiileu Acc	JE55)		Start/Finish Date	2/14/2012	
Depth /				Р	'ID	Drive/	Material		2/11/2012	Dept
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests		pm)	Recovery (inches)	Type	Description		(ft)
		Ш					A A A A A A A A A A A A A A A A A A A	Concrete to 9"		
+	Backfilled with media bentonite chips,	um	DP-2-1.5	i-2.5	0		*\000000 *\000000	Wet brown to gray, slightly sandy to sa (GP); trace silt,fine to medium subangu	ndy GRAVEL . ular gravel	_
†	concrete seal at ground surface, and asphalt cold-patch	CC-1			0		000	Wet, brown SAND (SP); trace gravel, fi sand	ine to medium	
+	aspriali colu-pateri				0				-	-
+			DP-2-4	-5 9).5			Wet, black, gravelly, silty SAND (SP);	occasional wood	_
5 +			-	57	7.7			Wet, gray SAND (SP); fine to medium	sand	- 5
+		Ц	DP-2-6	i-7						_
+		CC-2		2	2.9					-
+		O No		0).4					_
+				0).4			Wet, brown, SILT (ML)	-	_
10 -			_	0).4			Wet, gray, slightly gravelly SAND (SP)	fine to modium	10
+				0).4			sand	, inte to mediam	_
+		CC-3		0).4					-
+				0).4					_
+				0).4				-	-
15-			_	0).5		<u> </u>	Bottom of boring at 15' BGS		15
+									-	_
+										_
+										_
+									-	_
_	ampler Type:	F					adspac	e Measurement) Logged by: MA	R	<u></u>
=	Recovery inuous Core		Ā	Static Wa				Approved by: SJC	3	
COIL	indua COIE		$\bar{\Sigma}$	Water Lev	vel ((ATD)				

	N A	a L					Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
				11	0207		DP-03	1 of 1	
Project N		lark-Everet	t Mill				Ground Surface Elev		
ocation:								0	
Oriller/Me			sh Probe-Limit	ed Access	3		Depth to Water (ft BGS)	2	
	Method: Continuous Co	ore					Start/Finish Date	2/14/2012	_
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	.,,,,,	Description		Depth (ft)
						2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Concrete to 9"		
+			DP-3-1-2	0		00000	Wet, brown, sandy GRAVEL (GP); angular gravel		}
+	<u></u>			0.1			Wet, brown to gray, silty, gravelly S medium sand	AND (SP); fine to	_
	Backfilled with mediur bentonite chips,	E CC-1		0				-	
	concrete seal at ground surface, and asphalt cold-patch						Product from 3.5' to 5'		
+	asprian cold-pateri		DP-3-4-5					dor -	-
			_, _,				Wood at 4', strong petroleum-like or	uoi	
5 +				28.7				-	- 5
+			DP-3-6-7				Black SILT (ML)	-	<u> </u>
				1.5			Wet, gray SAND (SP); trace gravel,	medium sand	
		CC-2		1.5					
†				1.5				-	<u> </u>
+				1.5				-	+
10 -				4.5			Wet, dark gray, silty SAND (SM); fir	ne sand	10
				1.5					
†				0.2			Wet, gray SAND (SP); trace gravel, sand	fine to medium	
+		0		0.2				-	-
1		CC-3		0.2				-	-
Ī				0.2				-	
15-				0.2			Bottom of boring at 15' BGS		15
+								-	_
Ī								-	
+								-	-
+								-	_
_	mpler Type:	PI	_			adspa	ce Measurement) Logged by: N	MAR	
☐ No Re			$\overline{}$	itic Water			Approved by: S	SJG	
Contil	nuous Core		<u>▽</u> Wa	ter Level	(ATD)				
							Figure No. 🛮 🕹	\- 7	

	Mana						Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
	■ CONSULT	ING	4 8 4111	11	0207		DP-04	1 of 1	
Project N		ark-Everet	t Mill				Ground Surface Elev		
ocation:		/D: /D					Donath to Motor (# DCC)	1 5	
Driller/Me			sh Probe-Limite	d Acces	3		Depth to Water (ft BGS) Start/Finish Date	1.5 2/14/2012	
Depth /	Method: Continuous Co			T DID	T		Start/Finish Date	2/14/2012	_
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft)
						,,,,,,	Asphalt	(00)	
1			DP-4-1-2	0			Wet, brown, slightly sandy GRAVEL (fine-medium gravel	(GP); subangular	1
	<u> </u>		DF -4- 1-2				Wet, gray, SAND (SP); fine to medium	m sand	٦
1	Backfilled with mediun	1		0					4
	bentonite chips, concrete seal at	CC-1					Wet, gray, silty SAND (SM); fine sand	I, brick fragment	
1	ground surface, and	7		0					1
	asphalt cold-patch								
1		Ц		0			Wet, gray SAND (SP); fine to mediun	1 sand	1
5 +									<u> </u>
				0					
1				0					1
1				0					
		CC-2							
1		-2		0					1
1		Ц	DP-4-9-10	0					1
			DF-4-9-10				Very silty SAND (SP); numerous orga	anics	
0 +									+10
				0					
1				0					1
1				0			Fibrous brown PEAT (PT); hydrogen	sulfide odor	1
		CC-3							
1		ώ		0					+
							Sand lens Fibrous brown PEAT (PT); hydrogen	sulfide odor	4
+				0			(,, ., ., g		+
							City CAND (CM), fine and mureus		4
15 +				0			Silty SAND (SM); fine sand, numerou	s organics	<u> </u>
							Bottom of boring at 15' BGS		
+									+
+									+
1									1
1									1
Sa	mpler Type:	PI	D - Photoionizat	ion Dete	ctor (He	adsna	ce Measurement) Logged by: M	AR	
_	ecovery			ic Water		aaopa	, , , ,		
	nuous Core		∇	er Level			Approved by: SJ	IG	
			vvat	0	,		Figure No. A-	8	

	Asped	NG			t Numb 0207	er	Boring Log Boring Number DP-05	Sheet 1 of 1
Project Name: _ocation:	Kimberly Cla						Ground Surface Elev	•
Oriller/Method:	Cascade Drilling Continuous Core		'ush Probe-L	imited Acces	S		Depth to Water (ft BGS) Start/Finish Date	2/14/2012
Depth / Blevation Bo	rehole Completion	Sample	Tests	PID (ppm)	Drive/ Recovery	Materia Type		
(feet)	Backfilled with medium bentonite chips, concrete seal at ground surface, and asphalt cold-patch	CC-2 CC-3	DP-5-13	65.9 65.9 65.9 65.9 0 0	Recovery (inches)	Type	Concrete to 9" Wet, brown, sandy GRAVEL (GP) medium gravel Wet, gray SAND (SP); fine to med Wet, gray, slightly sandy SILT (Mi) Wet, gray SAND (SP); fine to med Wet, gray SAND (SP); fine to med Wet, gray SAND (SP); fine to med Wet, gray SAND (SP); fine to coal Bottom of boring at 15' BGS	dium sand

		\ \\	^t		Denis -	t Nivee-	or	Boring Log	Chast	
		Aspe	Ŭ I			t Numb 0207	er	Boring Number DP-06	Sheet 1 of 1	
Project N	lama:	Kimberly Cla		 ≥tt Mill	11	0207		Ground Surface Elev	1 01 1	
Location:		Everett, WA	III LVCI	ott iviiii				Ordered Surface Liev		
Driller/Me		Cascade Drilling	g / Direct F	ush Probe-Li	imited Access	 S		Depth to Water (ft BGS)	3	
Sampling	Method	: Continuous Cor						Start/Finish Date	2/14/2012	
Depth / Elevation (feet)	В	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft)
								Asphalt		
+		Backfilled with medium bentonite chips,			0.2		00000	Moist, gray, slightly silty, sandy GF medium subrounded gravel	AVEL (GP); fine to	+
		concrete seal at ground surface, and						Moist, brown, SILT (ML)		
Ī		asphalt cold-patch	CC-1		0.2		00000	Wet, brown, sandy GRAVEL (GP); subrounded gravel	fine to medium	
†		<u>¥</u>	Ш	DP-6-3-	-4 0.2			Wet, dark gray, slightly sandy SILT	(ML)	†
+			Ц		0.2					+
_										– 5
5 +					0					
†			II		0					
+			CC-2	DP-6-7-	-8 0					+
+			-2		0					+
			Ш					Wet, dark gray SAND (SP); trace g	ravel, fine to	\dashv
†			II		0			medium sand		†
10				_	0					10
			Ш							
			II		0					
+			0		0					+
1			CC-3		0					1
								4" organic SILT (OL)		
1					0			Wet, gray, silty SAND (SP); fine to numerous organics	medium sand,	
15 –					0					<u> </u>
								Bottom of boring at 15' BGS		
†										+
1										+
†										†
1										
Sa	mpler Ty	 /pe:	<u> </u>	 PID - Photoio	nization Dete	ctor (He	adspa	ce Measurement) Logged by:	MAR	
O No R	ecovery			_	Static Water			, ,		
Conti	nuous C	ore		$\bar{\Delta}$	Water Level	(ATD)		Approved by:	SJG	
								Figure No.	A- 10	

		Aspe	ct		Projec	t Numb	er	Boring Log Boring Number Sheet	
						0207		DP-08 1 of 1	
Project N	ame:	Kimberly Cla	ark-Evere	ett Mill				Ground Surface Elev	
Location:		Everett, WA						<u></u>	
Driller/Me				ush Probe-Limit	ed Access	3		Depth to Water (ft BGS) 5	
Sampling Depth /	Method	: Continuous Cor	e I	1				Start/Finish Date 2/14/2012	
Elevation (feet)	Bo	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description	Der (fi
+		Backfilled with medium			0			Moist, brown, silty, sandy GRAVEL (GM); fine angu gravel	ar
+		bentonite chips, concrete seal at ground surface, and	CC-1		0				+
+		asphalt cold-patch			0			Name and in house CAND (CD) trans around fine and	-
+				DP-8-4-5	0			Very moist, brown SAND (SP); trace gravel, fine said	na
5 +		Ţ			1.8			Wet, dark gray, very silty SAND (SM); fine sand, scattered shell fragments	- 5
+				DP-8-6-7	1.8				+
+			CC-2		1.8			3" bed organic SILT (OL) Wet, dark gray SAND (SP); fine to medium sand	
+					1.8			wet, dank gray GAND (OF), line to medium sand	_
+					1.8				+
10+				_	35.8				-10
Ť					35.8				
			CC-3	DP-8-12-13	35.8				
					35.8 35.8				
15-					33.6			D. (1)	1:
								Bottom of boring at 15' BGS	
+									-
+									+
+									+
_	mpler Ty	rpe:	F	PID - Photoioniza	tion Dete	ctor (He	adspac	e Measurement) Logged by: MAR	
◯ No Re		ore		$\overline{}$	atic Water Iter Level			Approved by: SJG	
						. ,		Figure No. A- 11	

Project Name: Kimberly C Location: Everett, WA Driller/Method: Cascade Drill Sampling Method: Continuous C Depth / Elevation (feet) Backfilled with media bentonite chips, concrete seal at ground surface, and asphalt cold-patch	ling / Direct P Core Sample Type/ID	ett Mill rush Probe-Limit Tests DP-10-3-4	0.2 0.2 0.2 0.2 0.2	Drive/ Recovery (inches)	Material Type	Depth to Water (ft BGS) Start/Finish Date Description Asphalt Concrete Moist, brown to gray, silty SAND (SN alternating bands of gray and brown Moist to wet, dark gray SAND (SP);	fine to medium
Sampling Method: Continuous Conti	Sample Type/ID	Tests	PID (ppm) 0.2 0.2 0.2 0.2	Drive/ Recovery	Туре	Start/Finish Date Description Asphalt Concrete Moist, brown to gray, silty SAND (SN alternating bands of gray and brown Moist to wet, dark gray SAND (SP);	2/14/2012 M); fine sand,
Depth / Elevation (feet) Backfilled with media bentonite chips, concrete seal at ground surface, and asphalt cold-patch	Sample Type/ID		0.2 0.2 0.2 0.2	Recovery	Туре	Description Asphalt Concrete Moist, brown to gray, silty SAND (SN alternating bands of gray and brown Moist to wet, dark gray SAND (SP);	M); fine sand,
Elevation (feet) Backfilled with media bentonite chips, concrete seal at ground surface, and asphalt cold-patch	Type/ID		0.2 0.2 0.2 0.2	Recovery	Туре	Asphalt Concrete Moist, brown to gray, silty SAND (SN alternating bands of gray and brown Moist to wet, dark gray SAND (SP);	vl); fine sand,
bentonite chips, concrete seal at ground surface, and asphalt cold-patch	CC-1	DP-10-3-4	0.2			Concrete Moist, brown to gray, silty SAND (SN alternating bands of gray and brown Moist to wet, dark gray SAND (SP);	fine to medium
15-	CC-3	DP-10-9-10	0.8 0.8 0.8 0.8 21.4 21.4 21.4 21.4 21.4			2" silt interbed Wet, dark gray, silty SAND (SM); fin Wet, dark gray SAND (SP); fine to n Wet, dark gray, silty SAND (SM); fin Wet, dark gray, silty SAND (SM); fin Bottom of boring at 15' BGS	e sand nedium sand e sand

		Msne	ct		Droine	t Numb	or	Boring Log	Chaot			
		Aspe	Ŭ I NG			t Numb 0207	CI	Boring Number DP-11	Sheet 1 of 1			
Project N	ame:	Kimberly Cla		ett Mill	• • •	0201		Ground Surface Elev	1011			
Location:		Everett, WA										
Oriller/Me	thod:	Cascade Drilling	g / Direct P	ush Probe-Limited	d Access	S		Depth to Water (ft BGS)	4			
	Method	: Continuous Cor	е					Start/Finish Date	2/15/2012			
Depth / Elevation (feet)	В	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (fi		
		Backfilled with medium bentonite chips, concrete seal at			0			Asphalt Very moist, brown to dark brown, gr fine to medium sand	ravelly SAND (SP);	_ _ _		
_		ground surface, and asphalt cold-patch	CC-1		0							
		▼										
5 +			0	DP-11-4-5	0			Wet, dark gray SILT (ML); scattered	d organics (wood),			
5 +					0			slight H2S odor				
					0					Ť		
†		3 3 3	CC-2		0					+		
				DP-11-8.5-9.5	0					†		
+					0					†		
10-		5 5 5			0					-1		
+					0					+		
†			CC-3		2.7			Wet, black, SAND (SP); fine to med scattered shell fragments, H2S odo	lium sand, r	+		
+					2.7					+		
†				DP-11-14-15	2.7					+		
15-	×Ö×Ö			_	10.0			Bottom of boring at 15' BGS		+1		
+										+		
+										+		
+										+		
_	mpler Ty	ype:	<u>I </u> F	PID - Photoionizati			adspa	Logged by: Note: N	MAR			
○ No Re		ore		$\overline{}$	c Water			Approved by: S	SJG			
				÷ vvate	er Level	(ATD)		Figure No. A	A- 13			

		Asne	ct		Project	t Numb	er	Boring Log Boring Number	Sheet	
		Aspe	N G			0207	CI	DP-12	1 of 1	
Project N	ame:	Kimberly Cla		ett Mill				Ground Surface Elev		
Location:		Everett, WA								
Driller/Me	thod:	Cascade Drilling	g / Direct P	ush Probe-Limit	ed Access	3		Depth to Water (ft BGS) 6		
	Method	Continuous Cor	e					Start/Finish Date	2/15/2012	_
Depth / Elevation (feet)	Bo	rehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft
		Backfilled with medium bentonite chips, concrete seal at ground surface, and asphalt cold-patch	CC-1		0 0			Moist, brown, very silty GRAVEL (GM); odor Moist, brown, gravelly SAND (SP); fine sand; debris (burnt/melted plastic, char	to medium	 - - -
5 -			0		0					+ 5
		•			0			Wet, brown, very silty GRAVEL (GM); f subangular gravel; debris (burnt/melted brick) to 8'	ine to medium I plastic, charred	
		_		DP-12-6.5-7.5						
+			CC-2		0 0					_
+				DP-12-9-10	0					-
10-				_	0		0000	Wet, black, SAND (SP); fine to medium Wet, dark brown to dark gray, very sand (GP); trace black silt, fine to medium su	dy GRAVEL	11
					0		00000000	gravel		_
† +			CC-3		0		0000000			Ī
+					0		0000000	H2S odor at 14'		_
15					0		00000			 +1
15+								Bottom of boring at 15' BGS		[
										-
+										+
+										+
 Sai	mpler Ty	pe:	F	ı PID - Photoioniza	tion Dete	tor (He	ı eadspac	ce Measurement) Logged by: MA	R	
	ecovery		•	¥ Sta	itic Water ter Level (Level		Approved by: SJC		
_				- vva	CO LEVEI ((מוט)		Figure No. A- 1	I.A	

	NA						Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
				11	0207		DP-18	1 of 1	
roject Na	·	lark-Evere	ett Mill				Ground Surface Elev		
ocation:	_ Everett, WA							-	
Oriller/Me			ush Probe-L	imited Acces	S		Depth to Water (ft BGS)	5	
Depth /	Method: Continuous C						Start/Finish Date	2/16/2012	$\overline{}$
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	2000.1500.1		Depth (ft)
5	Backfilled with mediu bentonite chips ▼		DP-18-2.	0	Recovery (inches)	Type	Moist, gray, sandy, gravelly SILT (Number of Silvers) Bottom of boring at 10' BGS	IL); fine to medium	- 10 - 15 - 15 - 15 - 15 - 15 - 15 - 15
Ī									
1									
	mpler Type:		 ID - Photoic	nization Dete	ctor (He	adspa	 ce Measurement)	MAR	L
O No Re			Ā	Static Water	Level		Approved by: S	SJG	
Contin	nuous Core		$\bar{\Delta}$	Water Level	(ATD)				
							Figure No. 🛭 🕹	\- 16	

	Mana	>CT				Boring Log	
	Aspe	≠CT			t Number	Boring Number	Sheet
				11	0207	DP-19	1 of 1
Project Na		Clark-Evere	ett IVIIII			Ground Surface Elev	
Location: Driller/Me	Everett, WA		uch Droho Lin	mitad Assass		Depth to Water (ft BGS)	5
	Method: Cascade Dni	ling / Direct P	usn Probe-Lir	nited Access	5	Start/Finish Date	2/16/2012
Depth /				PID	Drive/		
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	(ppm)	Drive/ Recovery (inches) Materia Type	Boosiipaon	Dep (ft
-	Backfilled with medit bentonite chips	um CC-1	DP-19-2.5-	0 0 -3.5 0		Wood chips Moist, gray, slightly gravelly, very s sand	+
5 +	**************************************			0			- 5
+				0		Wet, gray to blue-gray, slightly gra slight H2S odor	velly SILT (ML);
+		CC-2		0			+
+		کٰ		0			-
10-			_	0			-10 -
15-		CC-3				Bottom of boring at 15' BGS	15
- - - -							
Sar	mpler Type:		ID - Photoico	ization Doto	ctor (Headens	ce Measurement) Logged by:	MAR
	ecovery	F				ice wieasurement) Logged by.	
			 (Static Water	Level	Approved by:	S IC
_	nuous Core		<u> </u>	Nater Level		Approved by.	333

		\\ana							Boring Log		
		Aspe	CT				t Numb	er	Boring Number	Sheet	
		OCONSULTI	NG			11	0207		DP-20	1 of 1	
Project Na	ıme:	Kimberly Cla	irk-Evere	ett Mill					Ground Surface Elev		
Location:		Everett, WA							Death to Weter (ft DOO)		
Driller/Met		Cascade Drilling		ush Probe-l	_imited	Access	3		Depth to Water (ft BGS)		
Sampling Depth /	Method:	Continuous Cor	е						Start/Finish Date	2/16/2012	$\overline{}$
Elevation (feet)	Bo	rehole Completion	Sample Type/ID	Tests	3	PID (ppm)	Drive/ Recovery (inches)	Materia Type	Description Wood chips		Dep (ft)
T >		Backfilled with medium bentonite chips				0					
+			CC-1	DP-20-2.	5-3.5	0			Moist, gray, gravelly, silty SAND (SM	M); fine sand	_
+ >						0			Moist, dark gray, gravelly, sandy SIL	T (ML)	_
5 +						0			Concrete rubble 5' to 6'		 5
+ >		Ţ				0			Wet, black, gravelly, silty SAND (SM 7', fine sand	1); Wood chips at	+
+ >			CC-2			0					
+						0					_
10-				_					Bottom of boring at 10' BGS		<u> </u>
									Doctorii di Boriig di 10 Boo		_
_											+
+											+
15-											+ 15
											+
+											+
O No Re			F	Ā	Static	Water	Level	adspa	ice Measurement) Logged by: N Approved by: S	MAR SJG	
Contin	uous Co	ore		$\bar{\Delta}$	Water	Level	(ATD)				
									Figure No. A	·- 18	

		Mana	~T					Boring Log		
		Aspe	CT			t Numb	er	Boring Number	Sheet	
					11	0207		DP-21	1 of 1	
Project Na	ame:	Kimberly Cla	rk-Evere	tt Mill				Ground Surface Elev		
Location:		Everett, WA								
Driller/Me		Cascade Drilling		ush Probe-Li	mited Acces	3		Depth to Water (ft BGS)	7.5	
	Method	: Continuous Core	е					Start/Finish Date	2/16/2012	
Depth / Elevation	Во	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery	Material	Description		Dep (ft)
(feet)	MM		Type/ID		(ррііі)	(inches)	Type	Wood chips		(π)
								Wood Chips		
1					0					
		Backfilled with medium								
1		bentonite chips								
			CC-1		0					
			7							
†					0					†
+				DP-21-4	-5 0			Moist, dark gray, gravelly, silty SAN	D (SM)	+
									,	
5 +	28				0					- 5
	38									
+					0		P 5 4	Concrete rubble from 6' to 7'		\perp
								Concrete rubble from 6 to 7		
1					0				L OUT (141)	+
		<u>¥</u>	CC-2					Very moist to wet, dark gray, gravel	iy, sandy Sili (ML)	
1			'n		0					1
					0					
T					0					Τ
										1.0
10+	IXI IXI							Bottom of boring at 10' BGS		+10
+										†
+										+
+										+
1										1
15-										- 15
										'
1										
†										†
+										+
+										+
									445	
	mpler Ty	/pe:	Р				adspa	ce Measurement) Logged by: N	//AR	
_	covery				Static Water	Level		Approved by: S	SJG	
Contir	nuous C	ore		Ā,	Water Level	(ATD)			-	
								Figure No. 🛮 🕹	\ - 19	

	Aspe	ct	-		t Numb	er	Boring Log Boring Number	Sheet	
Desired News			44 N #:II	11	0207		DP-22	1 of 1	
Project Name: Location:	Everett, WA	iaik-Evere	LL IVIIII				Ground Surface Elev		_
		na / Direct Pi	ush Prohe-l i	mited Acces			Depth to Water (ft BGS)		
			usiii iobe-Li	milea Acces	3			2/16/2012	
Depth /				PID	Drive/	Material			<u> </u>
		Sample Type/ID	Tests DP-22-3	PID (ppm) O	Drive/ Recovery (inches)	Material Type	Depth to Water (ft BGS) Start/Finish Date Description Wood chips Moist, gray, very silty SAND (SM); ft Moist, dark gray, sandy, gravelly SI Concrete rubble 6' to 7' Moist, gray, sandy SILT (ML); silt is gray Bottom of boring at 10' BGS	fine sand LT (ML)	Dep (ft)
†								†	-
									_
†								†	•
<u> </u>									_
								T	
									_
Ţ								Ţ	-
									-
Sample		Р				adspa	ce Measurement) Logged by:	MAR	
○ No Recove☐ Continuous				Static Water			Approved by: \$	SJG	
Continuous	3 0016		$\bar{\Delta}$	Water Level	(ATD)			A 00	
							Figure No.	A- 20	

Project Name:	Aspe	CT					Boring Log	
Project Name:	■CONICHITI	•			t Numb	er	Boring Number Sheet	
Project Name:		ING		11	0207		GF-B-01 1 of 2	
-	Kimberly Cla	ark-Evere	tt Mill				Ground Surface Elev	
Location:	Everett, WA							
Driller/Method:	Cascade Drillin	g / Hollow S	Stem Auger				Depth to Water (ft BGS) 2	
Sampling Method	d: Splitspoon						Start/Finish Date5/25/2012	
Depth / Elevation	Borehole Completion	Sample		PID	Drive/	Material	Description	Den
(feet)	- I	Sample Type/ID	Tests	(ppm)	Recovery (inches)	Туре	Βοσοπριώτ	Dep (ft)
+		800					Loose, slightly moist, gray, slightly silty, gravelly SAND (SW-SM); well-graded fine to coarse sand, poorly graded fine gravel	_
	Y		GF-B-1-1-2.5				Loose, moist to wet, gray, silty SAND (SM); poorly graded fine sand	
		φ.1		0				
5 -	Backfilled with medium bentonite chips	S-2		0			Wood chips.	5
		္		0			Becomes loose	_
10-		- - - 4		0				-10
_							Becomes very loose	
15-		S-5		0				
							Very loose, wet, gray, SAND (SW); trace silt, well-graded fine to coarse sand, sampler driven with	
							just weight of hammer	
Sampler T		F	_			adspa	ce Measurement) Logged by: MV	
No Recovery				atic Water	Level		Approved by: SJG	
Grab Sample	e M Split-Spoon r		∑ Wa	iter Level	(ATD)		Approved by, 33G	
			* * * *		· · · · · /			

		Mana		<u> </u>					Boring Log		
		Aspe	C.	T		Project		er	Boring Number	Sheet	
						110	0207		GF-B-01	2 of 2	
Project N		Kimberly C	lark	-Everet	t Mill				Ground Surface Elev		
Location:		Everett, WA								0	
Driller/Me		Cascade Drilli	ing /	Hollow St	em Auger				Depth to Water (ft BGS)	2	
	Method	d: Splitspoon							Start/Finish Date	5/25/2012	
Depth / Elevation (feet)	В	Borehole Completion		Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dept (ft)
1				S-6		0					+
			0	<u> </u>							
Ť											Ť
†		>									†
		>						******			
25		>							Becomes medium dense		-25
		>		0				*****	becomes mediam dense		
+		> >		S-7		0					+
				1				*****			
+									Bottom of boring at 26.5' BGS		1
1											
1											
00											00
30+											-30
†											<u> </u>
+											+
+											+
+											+
35											-35
1											
1											
T											Γ
†											†
	mpler T			PII	D - Photoioni	zation Detec	ctor (He	adspac	ce Measurement) Logged by: N	ИV	
=	ecovery				▼ 8	Static Water	Level		Annroyad him	SIG	
Grab	Sample				Ā M	Vater Level ((ATD)		Approved by: S	500	
3.25"	OD D&	M Split-Spoon r				1	,		Figure No. A	\- 21	

Manact					Boring Log									
		742be	spect				Project Number				Boring Number Sheet			
							11	0207			GF-B-02		1 of 2	
Project N	Name:	Kimberly Cla	ark-	-Evere	tt Mill						Ground Surface E	lev		
ocation	າ:	Everett, WA												
Oriller/M	lethod:	Cascade Drilling	g / F	Hollow S	Stem Auger						Depth to Water (f	t BGS)	2	
Samplin	g Method:	Splitspoon									Start/Finish Date		5/25/2012	
Depth /	Pore	hole Completion	5	Sample			PID	Drive/	Material					Denti
Elevation (feet)	Bole	note Completion	Ť	Sample Type/ID	Tests		(ppm)	Recovery (inches)	Туре		De	escription		Depti (ft)
										ft				
			Ш						200					
+			Ш											+
			Ш						818.					
1		• -	Ш											1
			Ш						8,8,8					
					GF-B-2-2	2.5-4								
+				Ş-1					9161					+
							0		949					
1			\square							1				1
										Medi	ium dense, wet, blac	k. siltv SA	ND (SM): noorly	
_									7111	grad	ed fine sand	.,, 01	= (5), poony	
5 +		Backfilled with medium entonite chips			1									 5
		omornic Grips		S			_							
+				S-2			0							+
			Ц											
			Ш							Becc				
Ť			Ш							Dece	onics wood chips			T
					-				\ggg	1				
+				ω					XXX	X				+
				S-3			0		$\times\!\!\times\!\!\times$					
1									XXX					
									XXX					Γ
									$\times\!\!\times\!\!\times$					
10+					-				\ggg					-10
				· · ·					XXX					
1				S-4			0		$\times\!\!\times\!\!\times$					1
									\ggg					
									$\times\!\!\times\!\!\times$,				
†									$\times\!\!\times\!\!\times$	1				†
										1				
+									$\times\!\!\times\!\!\times$,				+
									$\times\!\!\times\!\!\times$	1				
1										1				
T									$\times\!\!\times\!\!\times$,				Γ
									$\times\!\!\times\!\!\times$	1				
15+					1					1				-15
				S					$\times\!\!\times\!\!\times$					
1				S-5			0		XXX	}				1
										1				
									$\times\!\!\times\!\!\times$,				
†									XXX	}				†
										1				
+									\bowtie	1/05	loose wat area C	VND (CD):	trace silt massis	
									X	grad	loose, wet, gray, Saled fine to medium s	าเทบ (อห); and	uace siit, poorly	
1]				
Ţ														Ţ
_	ampler Typ	e:		Р	ID - Photoic	onizatio	n Dete	ctor (He	adspa	ce Me	asurement) Log	ged by:	MV	
O No F	Recovery	Omlik O			Ā	Static	Water	Level			۸	roved by:	SIG	
3.25 Ring	אט טט א Sampler	Split-Spoon			$\bar{\Sigma}$	Water	Level	(ATD)			App	ioveu by.		
3	•							,			Fia	re No.	A- 22	
											. 190		•	

		\\ana	- ل			Boring Log							
		Aspe	C				t Numb	er	Boring Number Sh				
						11	0207		GF-B-02	2 of 2			
Project Na	ame:	•	ark-	-Everet	t Mill				Ground Surface Elev				
ocation:		Everett, WA								_			
Driller/Me		Cascade Drillin	ng / F	Hollow St	em Auger				Depth to Water (ft BGS)	2			
	Method:	Splitspoon					1		Start/Finish Date	5/25/2012			
Depth / Elevation (feet)	Bor	rehole Completion	S	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dept (ft)		
1			0	S-6		0					1		
Ť											T		
+								/:	Medium dense, wet, gray, SAND (S	W): trace silt	\rightarrow		
]	,,			
+											+		
5+											-25		
<u>ا</u> [T23		
				S-7		0							
†											+		
									Bottom of boring at 26.5' BGS		\dashv		
+									Bottom of boring at 26.5 BGS		+		
1											+		
T											T		
o+											-30		
+											+		
+											+		
											T		
†											†		
_													
35+											-35		
+											+		
+											+		
1											\perp		
†											†		
	mpler Ty			PI	D - Photoioni	zation Dete	ctor (He	adspa	ce Measurement) Logged by: N	ЛV			
No Re	ecovery	10 111 0			▼ S	tatic Water	Level		۵ الدعر دعد ساما ۸	S IC			
3.25" Ring 8	טט D&M Sampler	l Split-Spoon			Ā M	/ater Level	(ATD)		Approved by: S	טטפ			
Ū	•						•		Figure No. 🛮 🕹	A- 22			

			~ J	ı						Boring Log		
	7 4	spec	JT	-				t Numb	er	Boring Number	Sheet	
		ON SULTII					11	0207		GF-B-03	1 of 2	
Project Name		berly Cla	rk-	∟vere	ett Mill					Ground Surface Elev		
Location:		rett, WA									_	
Driller/Metho			j / H	lollow S	Stem Auger					Depth to Water (ft BGS)	5	
Sampling Me	ethod: Splits	spoon								Start/Finish Date	5/29/2012	
Depth / Elevation (feet)	Borehole Co	mpletion	S Ty	ample ype/ID	Tests		PID (ppm)	Drive/ Recovery	Material Type	Description		Depth (ft)
5 - 10 - 115 - 15 - 15 - 15 - 15 - 15 -		d with medium		### S-2 S-3 S-4 S-5 S-5 S-5 S-6 S-7 S-	GF-B-3-7	1-2.5 7.5-9		Driver (inches)	Material Type	Loose, slightly moist. gray, grave SAND (SW); gravel rounded, size Loose, moist, gray, clean fine SA Very loose, wet, gray, slightly slity SA graded fine sand Becomes wood chips Very loose, wet, gray, gravelly SA wood chips, grades from SP to S Very loose, wet, gray, gravelly SA wood chips, grades from SP to S	ND (SP); poorly ND (SP); poorly AND (SP/SW); trace W	Depti (ft)
+ \$										Very loose, wet, gray SAND (SM medium coarse sand, no fine sar		+
Samol	ler Type:			п	ID - Photoic	nizatio	n Dete	ctor (Ha	adence	ce Measurement) Logged by:		
No Reco				۲	'ID - Pnotoid <u>▼</u>		n Dete		auspa(,		
Grab Sar	-				<u>~</u>					Approved by	: SJG	
■ 3.25" OD	D&M Split-S	Spoon			-	vvater	Level	(ATD)		Figure No.	A- 23	
Ring San	ripier									rigule NO.	/ \- ZU	

	1		لم	L						Boring Log		
		Aspe CONSULT	C	Г		Р		Numb	er	Boring Number	Sheet	
							110	0207		GF-B-03	2 of 2	
Project Na	ame:	Kimberly Cl	ark-	-Everet	t Mill					Ground Surface Elev		
Location:		Everett, WA										
Driller/Me		Cascade Drillin	ng / I	Hollow St	em Auger					Depth to Water (ft BGS)	5	
	Method:	Splitspoon								Start/Finish Date	5/29/2012	
Depth / Elevation (feet)	Bor	ehole Completion	3	Sample Type/ID	Tests	s (PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft)
25-				\$-6 \$-7			0	(inches)		Becomes dense Bottom of boring at 26.5' BGS		-25
30-										-30		
35-												
												+
+												
Sar	npler Typ	oe:		PII	D - Photoi	onization	Detec	tor (He	adspac	ce Measurement) Logged by:	GL	
O No Re					Ţ	Static W			-	·	0.10	
	Sample				$\bar{\Sigma}$					Approved by:	SJG	
	00.004	Split-Spoon				Water L	evel (AID)				

Continue			Asne	ct		Projec	t Numb	er	Boring Log Boring Number	Sheet	
Soleton: Extrect, WA Cascade Drilling / Hollow Stem Auger			CONSULT	ING				CI			
Scarlor Severett, WA Intelliminate that the content of the conten	Project Na	ame:			ett Mill						
Sampler Type: No Recovery Spills poon Start Finish Date Scarge Document Doc	Location:										
Diversible Completion Diversible Completion Surreits Treets Pilo Photolonization Detector (Headspace Measurement) Pilo	Driller/Me	thod:	Cascade Drillin	ng / Hollow	Stem Auger				Depth to Water (ft BGS)	9	
Tests (gen) Recovery (procedure) Decidation (Sampling	Method	Splitspoon						Start/Finish Date	5/25/2012	
Seamler Type: Sampler Type: PID - Photoionization Detector (Headspace Messurement) Sompler Type: PID - Photoionization Detector (Headspace Messurement) Sompler Type: PID - Photoionization Detector (Headspace Messurement) Sompler Type: Sompler Type: PID - Photoionization Detector (Headspace Messurement) Sompler Type: Sompler Type: PID - Photoionization Detector (Headspace Messurement) Sompler Type: Sompler Type: PID - Photoionization Detector (Headspace Messurement) Sompler Type: Sompler Type: Sompler Type: PID - Photoionization Detector (Headspace Messurement) Sompler Type: Sompler Type: Sompler Type: PID - Photoionization Detector (Headspace Messurement) Sompler Type: Sompler Type: Sompler Type: PID - Photoionization Detector (Headspace Messurement) Sompler Type: Sompler Type: Sompler Type: PID - Photoionization Detector (Headspace Messurement) Logged by: MIV Approved by: SJG Approved by: SJG	Depth / Elevation (feet)	Во	rehole Completion	Sample Type/ID	Tests		Recovery		Description		Dept (ft)
Sampler Type: No Recovery 3.25" OD D&M Split-Spoon Ring Sampler PID - Photoionization Detector (Headspace Measurement) Static Water Level Water Level (ATD) Very loose, wet, gray, silty SAND (SM); poorly graded fine to medium sand with wood chips present Very loose, wet, gray, silty SAND (SM); poorly graded fine to medium sand with wood chips present Approved by: SJG		Backfilled with medium bentonite chips GF-E GF-E GF-E GF-E GF-E GF-E GF-E		GF-B-4-2.5-4	(ppm) 0	Recovery		Slightly moist, gray-brown, slightly silt GRAVEL (GW) Loose, moist, gray, silty SAND (SM); sand Becomes very loose Loose, moist, gray, silty SAND (SM); sand with wood chips present Very loose, wet, gray SAND (SP); trac graded fine to medium sand Soft, wet, gray, sandy SILT (ML) intergray, silty SAND (SM); poorly graded	poorly graded fine poorly graded fine pe silt, poorly	- 5	
Sampler Type: No Recovery 3.25" OD D&M Split-Spoon Ring Sampler PID - Photoionization Detector (Headspace Measurement) Static Water Level Water Level (ATD) Logged by: MV Approved by: SJG	15-			ý		0				-	- 15 - -
3.25" OD D&M Split-Spoon Approved by: SJG Ring Sampler Water Level (ATD)	_		pe:	F	_			adspace	fine to medium sand with wood chips	present -	-
Ring Sampler $\stackrel{\vee}{=}$ Water Level (ATD)	NO Re ■ 3.25"	od D&N	1 Split-Spoon		∇				Approved by: SJ	G	
	Ring 8	Sampler	. p		⊻ Wat	er Level	(ATD)				

		1	لے	L					Boring Log		
		Aspe	CT	Γ	Ī		Numb	er	Boring Number	Sheet	
						11	0207		GF-B-04	2 of 2	
Project Na	ame:	Kimberly C	lark-	-Everet	t Mill				Ground Surface Elev		
_ocation:		Everett, WA								•	
Oriller/Me		Cascade Drilli	ng / F	Hollow St	tem Auger				Depth to Water (ft BGS)	9	
Sampling Depth /									Start/Finish Date	5/25/2012	$\overline{}$
Elevation (feet)	Bo	orehole Completion	T	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		De (f
(feet)				S-6 S-7		O O	(inches)	Jype	Loose, wet, gray, SAND (SW); trace fine to coarse sand Bottom of boring at 26.5' BGS	e silt, well-graded	
_	mpler Ty	rpe:		PI				eadspac	ce Measurement) Logged by: N	/IV	
○ No Re	ecovery	/ Split-Spoon				Static Water	Level		Approved by: S	SJG	
Ring 8	Sampler	/I Split-Spoon			$\bar{\Delta}$	Water Level	(ATD)				
									Figure No. 🛮 🕹	۸- 24	

		N A							Boring Log		
		Aspe	C 1	•		Proje	ct Numb	er	Boring Number	Sheet	
		● CONSULT	ING	;		11	0207		GF-B-05	1 of 2	
Project N	ame:	Kimberly C	lark	-Evere	tt Mill				Ground Surface Elev		
Location:		Everett, WA									
Driller/Me	ethod:	Cascade Drilli	ng / l	Hollow S	Stem Auger				Depth to Water (ft BGS)	5	
Sampling	Method	l: Splitspoon							Start/Finish Date	5/29/2012	
Depth /				Sample		PID	Drive/	Material			Depth
Elevation (feet)	В	orehole Completion	-	Гуре/ID	Tests	(ppm)	Recovery (inches)	Туре	Description		(ft)
									Loose, slightly moist, gray, gravelly SA	ND (SW)	
+		}		-							+
		1	m		GF-B-5-1-2	2.5					
+		?							Loose, very moist, slightly gravelly SAI	ND (SP); trace	7
		>							coarse sand, poorly graded fine to med	dium sand	
		> >									
T		>									T
				δ.		0					
+		>									+
5 +		Ţ									- 5
)									
		>	S-2		0			Very loose, wet, slightly gravelly SAND	(SP); poorly		
†		> >						graded medium sand		†	
		>									
+	Backfilled with medium bentonite chips										+
1					05.5.7.5						
		1		ှ	GF-B-5-7.5	9 0			Shells present, organic or slight hydrod	carbon odor	
+		> >	\vdash								+
		>									
) 											10
									Trace silt, shells present		
		}		S-4		0					
Ť		1									Ť
		7							Becomes coarser grained, poorly grad	ed medium to	
+		>							coarse sand, shells present		+
		>									
1											1
†		1									+
		7							Very loose silty SAND (SP); poorly gra	ded fine sand	_
5									wood detritus present	aca iiric saria,	15
		>									
				S-5		0			Medium dense, wet, gray SAND (SP);	trace organics,	
T		}							poorly graded medium sand, organic of hydrocarbon odor	i Silgrit	T
									, , , , , , , , , , , , , , , , , , , ,		
+		1									+
1		> >									1
		>									
†											†
		}									
Sa	mpler Ty] ype:		P	 ID - Photoioni	zation Dete	ctor (He	eadspac	ce Measurement) Logged by: GL		
O No R	ecovery				_	Static Wate				_	
_	Sample				\Box				Approved by: SJ0	j	
3.25"	OD D&N	M Split-Spoon			- V	Vater Level	(AID)		N A	25	
■ Ring :	Sampler	•							Figure No. A- 2	<u>∠</u> ບ	

		Mana	L							Boring Log	
		Aspe	CI				ct Nui		er	Boring Number Sheet	
		OCONSULT	ING	i		1	1020	7		GF-B-05 2 of 2	
Project Na	ame:	Kimberly Cl	ark-	-Everet	t Mill					Ground Surface Elev	
Location:		Everett, WA									
Driller/Me		Cascade Drilling	ng / F	Hollow S	tem Auger					Depth to Water (ft BGS) 5	
	Method	: Splitspoon								Start/Finish Date5/29/2012	
Depth / Elevation	В	orehole Completion	S	Sample Type/ID	Tests	PID (ppm)	Driv Reco	very	Material Type	Description	Dep (ft)
25	B	orehole Completion	ST	Sample ype/ID S-6	Tests	0 O	Entre Record (inch	very	Material Type	Becomes coarse grained SAND (SP); trace shells, poorly graded medium to coarse sand, slight marine/ organic/ slight hydrocarbon odor Bottom of boring at 26.5' BGS	-25
35-											-30 - - - -35
○ No Re	mpler Ty ecovery Sample OD D&N Sampler	И Split-Spoon		PI	Ā	onization Det Static Wate Water Leve	r Leve	el	adspac	ce Measurement) Logged by: GL Approved by: SJG Figure No. A- 25	

		Mana	لے							Boring Log		
		Aspe		ſ				t Numb	er	Boring Number	Sheet	
							11	0207		GF-B-06	1 of 2	
Project N		Kimberly Cla	ırk-	-Evere	tt Mill					Ground Surface Elev		
Location:		Everett, WA									_	
Driller/Me		Cascade Drilling	g / F	Hollow S	Stem Auger					Depth to Water (ft BGS)	5	
	Method	: Splitspoon								Start/Finish Date	5/29/2012	_
Depth / Elevation (feet)	Во	orehole Completion	S	Sample Type/ID	Tests		PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft)
		Backfilled with medium bentonite chips		\$-1 S-2 S-3 S-4	GF-B-6-7	1-2.5	(ppm) 0 0 0	(inches)	Type	Loose, slightly moist, gray, slightly gravelly SAND (SW) Medium dense, slightly moist, gray silt, poorly graded fine to medium selection to medium selection. Loose, wet, medium to course SAI Loose, slightly moist, gray SAND (graded medium to coarse sand) Becomes medium dense Becomes wood chips Loose, wet, gravelly SAND (SP); tr	SAND (SP); trace sand ND (SP) SP); trace silt, poorly	- (ft - (ft
_										Medium dense, wet, gray, gravelly woody debris, poorly graded mediu fine to medium rounded gravel	SAND (SP); trace im to coarse grains,	 - -
Sa	mpler Ty	/pe:	1	P	ID - Photoic	onizatio	n Dete	ctor (He	adspa	ce Measurement) Logged by:	GL	
O No Re	ecovery				Ī	Statio	: Water	Level		Α	S IC	
Grab	Sample	1 Split-Space			$\bar{\Delta}$		Level			Approved by:	5JG	
J.20	אמים חסון	// Split-Spoon								Figure No.	A- 26	

		N Asne		ŀ			Dro!	+ NJ. 100-1-	or	Boring Log	Chast	
		Aspe	FINI (■ ≥				t Numb 0207	er	Boring Number GF-B-06	Sheet 2 of 2	
Project N	lame.	Kimberly C			tt Mill		- 11	0201		Ground Surface Elev	2012	
Location:		Everett, WA	iaik	LVCIC	JCC IVIIII					Ground duriace Liev		
Driller/Me		Cascade Drilli	ina /	Hollow	Stem Auger					Depth to Water (ft BGS)	5	
		d: Splitspoon	iiig /	I IOIIOW V	otern Auger					Start/Finish Date	5/29/2012	
							PID	Drive/			3/23/2012	1_
Depth / Elevation (feet)	B	Borehole Completion		Sample Type/ID	Tests		(ppm)	Recovery (inches)	Material Type	Description		Dept (ft)
		>			GF-B-6-20)-21.5						
1		?		9-S			0					L
		2										
Ť		}										Ť
+		}										+
		}										
+												+
		}										
25		1										-25
		}										
1				S-7			0					L
		1								Bottom of boring at 26.5' BGS		
Ť												Ť
+												+
+												+
30 -												-30
Ť												T
+												+
+												+
1												+
35+												- 35
Ť												T
†												+
+												+
+												+
	maler T	l l								M. Dagged by	GL	
	impler T ecovery			F					aaspa	ce Measurement) Logged by:	OL .	
					Ā		Water			Approved by:	SJG	
Grab3.25"	Sample OD D&	· M Split-Spoon r			$\bar{\Delta}$	Water	Level	(ATD)				
■ Ring :	Sample	r								Figure No.	A- 26	

	-	Mana	لے							Boring Log	
		Aspe	C					t Numb	er	Boring Number Sheet	
							11	0207		GF-B-07 1 of 2	
Project Na		Kimberly Cl	lark-	-Evere	ett Mill					Ground Surface Elev	
Location:		Everett, WA									
Driller/Me		Cascade Drillin	ng / l	Hollow S	Stem Auger					Depth to Water (ft BGS) 2	
Sampling Depth /	Method:	: Splitspoon	_							Start/Finish Date 5/21/2012	
Elevation (feet)	Во	orehole Completion	3	Sample Type/ID	Tests	;	PID (ppm)	Drive/ Recovery (inches)	Materia Type	Description	Dep (ft
_		Y	W.		GF-B-7-1	1-2.5				Very loose, moist to wet, brown, slightly silty, slightly gravelly SAND (SW-SM); well-graded fine to coarse sand	_
5 —		Backfilled with mediun bentonite chios		φ.1			0				- - - 5
+		bentonite chips					0			Becomes loose and gray Becomes trace silt	-
10-				S-3	GF-B-7-7	7.5-9	0				-10
_				ν 4			0			Becomes woody debris	-
15-					-					Soft, wet, gray, sandy SILT (ML); laminae rusty brov organic silt	vn
+				φ ₋₅			0				_
+	· -										
	mpler Ty	rpe:		Р					adspa	ace Measurement) Logged by: MV	
_	ecovery				<u>_</u>	Static	Water	Level		Approved by: SJG	
Grab	Sample	1 Colit Cooss			$\bar{\Delta}$	Water	Level ((ATD)			
3.25 Ding (UD D&N	/I Split-Spoon								Figure No. A- 27	

		A		L					Boring Log		
		Aspe	C.	ľ			t Numb	er	Boring Number	Sheet	
		● CONSULT	TINC	3		11	0207		GF-B-07	2 of 2	
Project Na	ame:	Kimberly C	lark	-Everet	t Mill				Ground Surface Elev		
Location:		Everett, WA									
Driller/Me	thod:	Cascade Drilli	ing /	Hollow St	em Auger				Depth to Water (ft BGS)	2	
	Method	d: Splitspoon							Start/Finish Date	5/21/2012	
Depth / Elevation	В	orehole Completion		Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery	Material Type	Description		Dep (ft)
(feet)			С	ې ه ه		0	(inches)		Becomes very stiff		+
25 -				S-7		Dense, wet, brown, silty SAND (SM); trace gravel, poorly graded fine to medium sand, diamict fabric present					
30-	8.7					Bottom of boring at 26.5' BGS		-30			
35 -								-35 -			
Sar	npler T	ype:		PI	D - Photoion	ization Detec	ctor (He	adspac	ce Measurement) Logged by: 「	MV	
O No Re	covery				_	Static Water				210	
[™] Grab S	Sample				$\overline{}$	Vater Level (Approved by: \$	SJG	
■ 3 25" (ואת חס	M Split-Spoon			– V	valer Level ((טורי				

	,	Mana	o t					Boring Log		
		Aspe	CT			t Numb	er	Boring Number	Sheet	
		● CON S ULT	ING		11	0207		GF-B-08	1 of 2	
Project Na	ame:	Kimberly Cl	ark-Evere	tt Mill				Ground Surface Elev		
Location:		Everett, WA								
Driller/Me		Cascade Drillir	_	ush Probe				Depth to Water (ft BGS)	10	
	Method:	Continuous Co	ore					Start/Finish Date	5/30/2012	
Depth / Elevation (feet)	Bor	rehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft)
T					0	(
_			CC-1		0			Moist, gray, gravelly, silty SAND (SM	1)	1
+				GF-B-8-1-2	2.5 0					_
†					0					1
+					0			Moist, brown, SAND (SP); poorly gra		+
5 +		Backfilled with medium bentonite chips			0			Becomes poorly graded fine sand wi	iii iioii staiiiiig	- 5
+					0					+
	CC-2		CC-2	GF-B-8-7.5	i-9 0			Very moist, dark gray, very sandy SI silty SAND (SM)	LT (ML) and very	+
†					0			Very moist, brown SAND (SP); poorl Becomes medium grained sand	y graded fine sand	†
+		_	0		0			Becomes black Becomes wet, gray, and well-graded	fine to coarse	
10+		<u>¥</u>			0			sand		+10
+					0					
			CC-3		0		00000	Wet, gray, sandy, GRAVEL (GP); pogravel	oorly graded fine	+
†					0		22020	Wet, gray, slightly gravelly SAND (Sigrains poorly graded fine to medium		+
+					0			Becomes woody debris		
15+					0					-15
					0					
Ī				0						
					0					
					0					
	mpler Ty _l	pe:	Р	ID - Photoioni	zation Dete	ctor (He	eadspa	ce Measurement) Logged by: M	IAR	
O No Re	ecovery			<u>¥</u> 8	Static Water	Level		Approved by C	IG	
Contir	nuous Co	ore		∑ v	Vater Level	(ATD)		Approved by: S	JG	
						•		Figure No. A	- 28	

		\\ana						Boring Log		
	`	Aspe	CT		Projec		er	Boring Number	Sheet	
					11	0207		GF-B-08	2 of 2	
Project N		Kimberly Cla	ark-Everett	Mill				Ground Surface Elev		
_ocation:		Everett, WA								
Driller/Me		Cascade Drillin		h Probe				Depth to Water (ft BGS)	10	
	Method:	Continuous Co	re					Start/Finish Date	5/30/2012	
Depth / Elevation	Bore	ehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Depti (ft)
(feet)			, ypons		0	(inches)	: ::::	Becomes mostly medium grained		(,
								3		
+					0					+
+					0					+
			CC-4							
1			4		1.5					1
					1.5			Slight hydrogen sulfide odor		
T					2.7					T
25+					0		· · ·	Bottom of boring at 25' BGS		25
†										†
+										+
+										+
+										+
80 +										-30
Ţ										T
†										†
†										+
35+										-35
+										+
+										+
1										1
1										
Sa	mpler Typ	oe:	PID	- Photoionia	zation Dete	ctor (He	adspa	ce Measurement) Logged by: N	ЛAR	
☐ No Re					tatic Water		•	·		
	nuous Co	re		$\overline{}$	ater Level (Approved by: S	SJG	
_				– VV	alei Level ((מוט)		Figure No.	N- 28	
								i iguit ino. <i>F</i>	. 20	

	Mana	~ ‡	Į				Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
			(11	0207		GF-B-09	1 of 1	
Project Name:		ark- <u></u> Evere	TT IVIIII				Ground Surface Elev		
ocation:	Everett, WA	/ Direct D	uah Duaha				Donth to Water (ft BCS)	5	
Oriller/Method:			usn Probe				Depth to Water (ft BGS)	5 6/28/2012	
Depth /	nod: Continuous Co			- DID	T		Start/Finish Date	0/20/2012	$\overline{}$
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft)
Elevation (feet)	Backfilled with medium bentonite chips	CC-1	GF-B-9-1-2	(ppm) 0 2.5 0 0 0	Recovery (inches)	Material Type	Asphalt Moist, brown, gravelly, slightly silty sirved fine to medium sand, well-gravel, crushed rocks Wet, brown, slightly gravelly SAND fine to medium sand	(SP); poorly graded	
10				0			Wet, black, sandy, gravelly SILT (M Bottom of boring at 10' BGS	L)	-10 - - - - - - -
Samplei	r Type:		ID - Photoioni	zation Dete	ctor (He	adspa	ce Measurement) Logged by: A	AET	\perp
No Recove				Static Water		,	,		
_				***	_0 101		Approved by: S	SJG	
Continuous	s Core		∑ v	Vater Level	(ATD)		, pp. 0.00 2). C		

		Mana	ا م	L					Boring Log		
		Aspe	:C1				t Numb	er	Boring Number	Sheet	
						11	0207		GF-B-10	1 of 2	
Project N	ame:	Kimberly C	lark-	Evere	ett Mill				Ground Surface Elev		
Location:		Everett, WA									
Driller/Me	thod:	Cascade Drilli	ing / I	Hollow S	Stem Auger				Depth to Water (ft BGS)	6.5	
	Method	l: Splitspoon							Start/Finish Date	5/24/2012	
Depth / Elevation (feet)	Во	orehole Completion	9	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery	Material Type	I Description		Dept (ft)
(leet)				,,,,			(inches)	2 4 4	Concrete		
								A A A			
Ť			.000					444	ž Ž		T
			W.		GF-B-10-1-2	2.5		2 4 4 A			
+		; ;							Loose, moist, brown-gray, silty SA	ND (SM): poorly	+
					+				graded fine sand	(-),)	
+											+
		}		ς.		0					
									-		
T									.]		Τ
									Medium stiff, moist, brown, sandy	SILT (ML)	
5 +		Backfilled with medium bentonite chips	m		-				Loose, moist, gray, silty SAND (S	M)	
		bentonite chips		S-2						,	
+				ν̈́		0			-		+
		▼			1						
1									Stiff, wet, brown, sandy SILT (ML))	_
								HIIII			
					GF-B-10-7.5	5-9					
†				ς- ₃		0			Loose, wet, gray, SAND (SP); trac	ce silt, poorly sorted	\top
				ω					medium to coarse sand		
+					-				-		+
10 +		}]		10
									-		
				S-4		0			:		
Ť		1	10						-1 -		Ť
					1						
+											+
									-		
+		? ?							* -		+
									-		
									-		
T									.]		Τ
5+					-				Becomes slightly gravelly and me	dium dense	-15
		}		S							
+				S-5		0					+
		1							1		
									-		
†									:		+
+									-		+
Sa	mpler Ty	vne.			PID - Photoioni:	zation Dete	ctor (He	adena	ce Measurement) Logged by:	MV	
_	ecovery	, r ~ .		Г	_	tatic Water		Jauspa	,		
⊕ Grab	Sample				∇	/ater Level			Approved by:	SJG	
■ 3.25"	OD D&N	M Split-Spoon			V	. 3.0. 2000	,, ,, D)		Figure No.	A- 30	
Ring	Sampler	vi Spiit-Spoori							Figure No.	A- 30	

		N A	ا ـــا	L					Boring Log		
		Aspe	C 1	ſ			t Numb	er	Boring Number	Sheet	
		■CONSUL	TING	€		11	0207		GF-B-10	2 of 2	
Project N	ame:	Kimberly C	Clark	-Everet	t Mill				Ground Surface Elev		
Location:		Everett, WA									
Driller/Me	thod:	Cascade Drill	ing /	Hollow St	em Auger				Depth to Water (ft BGS)	6.5	
Sampling	Method	: Splitspoon							Start/Finish Date	5/24/2012	
Depth / Elevation (feet)	Вс	orehole Completion		Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft)
T							(Becomes very loose, poorly sorted	fine to medium	
				S-6		0			sand		
†											
+											+
1											
								.11	Medium dense, wet, gray, silty SAN coarse sand, poorly graded fine to r	ID (SM); trace	
									graded saria, poorly graded line to r	nediam dana	
Ť											T
25 +											-25
				S-7							
+			C	7		0					+
									Dettern of having at 20 FLDCC		_
+							Bottom of boring at 26.5' BGS		+		
+											+
1											1
30+											-30
†											†
+											+
+											+
+											+
35+											-35
+											+
+											+
Ī											
Sai	mpler Ty	/pe:		PII	D - Photoioni	zation Dete	ctor (He	adsna	ce Measurement) Logged by: N	МV	
☐ No Re				1 11	_	static Water		aaopat	,		
Grab	Sample	A Colit Cosses			\leftarrow	/ater Level			Approved by: S	วาด	
3.25"	אט חסין	// Split-Spoon					•		Figure No. 🛭 🕹	\- 30	

		Acro	لم	.							Boring Log		
		Aspe	;C1	l				t Numbe	er		Boring Number	Sheet	
					44 B 4211		110	0207			GF-B-11	1 of 2	
Project N		Kimberly C	lark-	-Evere	ett Mill						Ground Surface Elev		
Location		Everett, WA	. ,.									0.5	
Driller/Me	_	Cascade Drilli	ing / F	Hollow	Stem Auger						Depth to Water (ft BGS)	9.5	
Depth /	g Method: S	splitspoon								_	Start/Finish Date	5/24/2012	$\overline{}$
Elevation (feet)	Boreho	le Completion	1	Sample Type/ID	Tests		PID (ppm)	Drive/ Recovery (inches)	Materia Type		Description		Dep (ft
											Asphalt Loose, black, silty SAND (SM); p	oorly graded fine	
+										s	sand, charcoal odor	oony graded line	+
			m		GF-B-11-	1-2.5							
+													+
					-								
1			L							H			+
				\(\frac{7}{\dots}\)			0						
1			Ĺ]-			1
5 +	Bac	kfilled with mediu	m 💂]-			+ 5
	ben	tonite chips	L										
1				S-2			0						
1													1
					05.5.44								1
T				ဟု မ	GF-B-11-	7.5-9	0						
Ţ													Τ
10-													1,0
										L	Loose, wet, dark gray, silty SANE ine to medium sand	(SM); poorly graded	+10
				\$ 4			0				ine to medium sand		
Ī													T
]								
Ţ													T
Ť										V	Medium dense, wet, gray SAND	(SP); trace silt, trace	T
										. "	ine sand, poorly graded medium	to coarse sand	
Ţ													T
45													1,5
15+													-15
				S-2			0						
Ť													T
					1								
†													Ť
										•			
Ť													Ť
										•			
Ť													Ť
_	ampler Type:			F					adspa	ace	Measurement) Logged by:	MV	
_	Recovery				Ā		Water				Approved by	: SJG	
Grab 3.25"	Sample ' OD D&M Sp Sampler	olit-Spoon			$\bar{\Delta}$	Water	Level ((ATD)					
■ Ring	Sampler	•									Figure No.	A- 31	

		Mana	~ Ł					Boring Log		
		Aspe	CT			t Numb	er	Boring Number	Sheet	
		OCONSULT	ING		11	0207		GF-B-11	2 of 2	
Project Na	ame:	Kimberly Cl	ark-Ever	ett Mill				Ground Surface Elev		
Location:		Everett, WA								
Driller/Met	thod:	Cascade Drillin	ng / Hollow	Stem Auger				Depth to Water (ft BGS)	9.5	
	Method:	Splitspoon	_					Start/Finish Date	5/24/2012	
Depth / Elevation	Во	rehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery	Material Type	Description		Dep
(feet)			♥♥	_	0	(inches)		Becomes trace gravel (1" thick layer	er of wood chips)	
25-		S-7		0			Becomes trace silt, trace fine sand, fragments Bottom of boring at 26.5' BGS	, and wood	-25	
30-						Bottom of Borning at 20.5 BOS		-300		
35-										-35 -
Sar	mpler Ty	pe:		PID - Photoic	onization Dete	ctor (He	eadspac	ce Measurement) Logged by:	MV	
	covery			Ţ	Static Water		•	,		
	Sample			<u>_</u>				Approved by: \$	SJG	
2 25" (שאם חט	1 Split-Spoon			Water Level	(ATD)				

Project Name: Location:	Aspe	CT		Droice	4 NI. una la	<u>-</u>	Boring Log		
Location:	■ CON S ULT				t Numb	er	Boring Number	Sheet	
Location:				11	0207		GF-B-12	1 of 1	
	Kimberly Cl	ark-⊨vere	tt Mill				Ground Surface Elev		
	Everett, WA						Double to Mater (# DOO)	0	
Oriller/Method:	•		ush Probe				Depth to Water (ft BGS)	6	
Depth /	nod: Continuous Co						Start/Finish Date	6/28/2012	$\overline{}$
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft
					(mondo)		Asphalt debris		
5	Backfilled with medium bentonite chips	CC-1	GF-B-12-1-2.5	0 0			Very moist, brown orange, mottled s SAND (SP); poorly graded fine to me SAND (SP); poorly graded fine to me Wet, dark gray, very sandy SILT (MI fine sand, rapid dilatancy Wood Bottom of boring at 10' BGS	edium sand	-10
Sampler No Recove Continuous	ery	P	<u>▼</u> Sta	tion Dete	Level	eadspac	ce Measurement) Logged by: A	ET	

		Mana	لے	L							Boring Log		
	`	Aspe	C1	Γ				t Numb	er		Boring Number	Sheet	
							11	0207			GF-B-13	1 of 2	
Project	Name:	Kimberly Cla	ark-	-Evere	ett Mill						Ground Surface Elev		
Locatior	า:	Everett, WA											
Driller/M	lethod:	Cascade Drillin	g/F	Hollow S	Stem Auger						Depth to Water (ft BGS)	3	
Samplin	g Method:	Splitspoon									Start/Finish Date	5/24/2012	
Depth /		ehole Completion		Sample			PID	Drive/	Ma	terial			Depti
Elevation (feet)		Choic Completion	j i	Гуре/ID	Tests		(ppm)	Recovery (inches)	T	уре	Description		(ft)
											Loose, moist, gray-brown, slightly	silty, gravelly, SAND	
											(SW); well-graded fine to coarse s	and, angular gravel	
+													+
			m		GF-B-13-	1-2.5							
1			Ĺ										_
		-											
†		<u>-</u>		δ.			_				Becomes wet		†
							0						
1			\square										1
_													_
5 +	\sim	Backfilled with medium bentonite chips									Becomes trace gravel		 5
		beritorite emps		S-2			_				_		
+				'n			0			Ш			+
			\bigcirc										
											Loose, wet, SAND (SP); trace coa	rse sand noorly	-
T									11	111	graded fine to medium sand, shell	fragments	Γ
					1								
+				S									+
				S-3			0						
1													1
											Loose, wet SAND (SW); well-grad	ed fine to coarse	_
									1	111	sand and shell fragments	ca fine to coarse	
10+					1						_		+10
				w	GF-B-13-1	0-11.5							
1				\$ <u>4</u>			0						+
			0							Ш	Becomes trace coarse sand		
†											Becomes very loose with wood ch	ips from 12 to 13'	†
					1								
+			F	S									+
				S-2			0						
1													1
										11	Very loose, wet, slightly silty SANI	O (SP); trace coarse	
											sand, poorly sorted fine to medium fragments, slight sulfide odor	i sand, snell	
15+					-						nagmente, engin eamae eaci		15
				m									
1				S-6			0						1
†													†
+													+
1									1				1
Ţ													Τ
_	ampler Typ	pe:		F		nizatio	n Dete	ctor (He	ads	spa	ce Measurement) Logged by:	MV	
=	Recovery				Ā	Static	Water	Level			Approved by:	SJG	
	o Sample	Split-Spoon			$\bar{\Delta}$	Water	Level	(ATD)					
Pinc	Sampler	opiit-opuuli									Figure No.	A- 33	

•		Mana	ا م	L					Boring Log		
		Aspe	C	Γ			t Numb	er	Boring Number	Sheet	
						11	0207		GF-B-13	2 of 2	
Project Na	ame:	Kimberly Cl	ark	-Everet	t Mill				Ground Surface Elev		
Location:		Everett, WA									
Driller/Me	thod:	Cascade Drilling	ng /	Hollow St	em Auger				Depth to Water (ft BGS)	3	
Sampling	Method	d: Splitspoon							Start/Finish Date	5/24/2012	
Depth / Elevation	В	orehole Completion		Sample	Tooto	PID	_Drive/	Material	Description		Dept
(feet)	N N		L	Type/ID	16515	(ppm)	(inches)	Туре	Description		(ft)
25				Sample Type/ID S-7 S-8	Tests	O O	Recovery	Туре	Very dense, wet, gray, very silty, S coarse sand, poorly graded fine to diamict fabric Bottom of boring at 25.5' BGS	SAND (SM); trace medium sand,	Dept (ft) -25
35-											-35
											+
+											†
											+
	mpler T			PI				eadspa	ce Measurement) Logged by:	MV	
Grab 9	ecovery Sample				Ţ Ţ	Static Water Water Level			Approved by:	SJG	
■ 3 25"	OD D&I	M Split-Spoon			-	vvalci LEVEI	(עוט)		Figure No.	A- 33	

	ı	Mana								Boring Log		
		Aspe	CT					t Numb	er	Boring Number	Sheet	
							11	0207		GF-B-14	1 of 2	
Project N		Kimberly Cl	ark-l	Evere	ett Mill					Ground Surface Elev		
Location:		Everett, WA										
Driller/Me	ethod:	Cascade Drillin	ng / H	lollow S	Stem Auger					Depth to Water (ft BGS)	2.5	
	Method	Splitspoon								Start/Finish Date	5/23/2012	
Depth / Elevation (feet)	Вс	orehole Completion	S:	ample ype/ID	Tests		PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dept (ft)
								(mence)		Very loose, slightly moist, brown, s SAND (SW-SM); petroleum-like on	lightly gravelly	
										o, and (err enr), periodem into ee		
				<u> </u>			0					
Ť		_			GF-B-14-	1-2.5				Becomes wet, gray, poorly sorted to	fine sand, faint	Ť
		Ā								petroleum-like odor, and trace she	lls	
+				S-2								+
				Ń			0					
+					-					-		+
5 +		Backfilled with medium	, 🔲		1							- 5
		bentonite chips										
				S-3			0					
]					Very loose, wet, gray SAND (SW);	trava fina graval	_
†										trace silt, well-graded fine to coars	e sand	Ť
+				S ₄	GF-B-14-7.5-9 0			+				
				4			0					
+					-							+
]		
10												10
1				S-2			0			Becomes medium dense		
†												†
†												†
+												+
15					+							-15
				S								
+				S-6			0					+
			1		1							
1									~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			1
1												
Ţ												Γ
†												†
	mpler Ty	rpe:		F					adspa	ce Measurement) Logged by:	MV	
○ No Ro	ecovery OD D&N	/I Split-Spoon			Ā		Water			Approved by:	SJG	
■ Ring	Sampler				$\bar{\Delta}$	Water	Level	(ATD)				
										Figure No.	A- 34	

		\\ana	لے							Boring Log		
		Aspe	C1	Γ		Pr		Numb	er	Boring Number	Sheet	
							110	0207		GF-B-14	2 of 2	
roject Na	ame:	Kimberly C	lark-	-Everett	Mill					Ground Surface Elev		
ocation:		Everett, WA									0.5	
Oriller/Me		Cascade Drilli	ng / l	Hollow St	em Auger					Depth to Water (ft BGS)	2.5	
Sampling Depth /	Method:	Splitspoon								Start/Finish Date	5/23/2012	_
Elevation (feet)	Bor	ehole Completion	3	Sample Type/ID	Tests	(t	PID ppm)	Drive/ Recovery (inches)	Materia Type	Description		Dept (ft)
25 —				S-7 S-8			0	(inches)		Dense, wet, gray SAND (SP); trace medium to coarse sand \(0.5 \) inch bed organic SILT (ML); wo Very soft, wet, brown, SILT (ML); si sulfide odor	silt, poorly graded	-25
30-				S-9			0			Bottom of boring at 31.5' BGS		-30
35-												-35
- - - -												_
+											-	<u> </u>
⊥l Sar	npler Typ	oe:		PII) - Photoio	nization 「	Deter	∟ ctor (He	adsna	ce Measurement) Logged by:	MV	
No Re	coverv				<u>▼</u>	Static W				,		
3.25"	OD D&M	Split-Spoon								Approved by: \$	SJG	
■ Ring S	Sampler				$\bar{\Delta}$	Water Le	evel (ATD)				
										Figure No.	\ - 34	

		A		L						Boring Log		
		A spe	CI	ſ				t Numbe	er	Boring Number	Sheet	
		● CON SULT	ING	;			11	0207		GF-B-15A	1 of 2	
roject N	lame:	Kimberly Cl	ark-	-Evere	ett Mill					Ground Surface Elev		
ocation:		Everett, WA										
Driller/Me	ethod:	Cascade Drillir	ng / H	Hollow S	Stem Auger					Depth to Water (ft BGS)	10	
	-	Splitspoon								Start/Finish Date	5/23/2012	
Depth /			Τ,	DI-			PID	Drive/	Material			
Elevation (feet)	Bore	hole Completion	ì	Sample Type/ID	Tests		(ppm)	Recovery (inches)	Туре	Description		Dep (ft
T								(11.01.00)		Medium dense, wet, brown, sligh	tly gravelly SAND	
										(SW-SM); trace building debris		
+					-							+
					GF-B-15A	_1_2 5						
1				\$ -1	01-0-13A	-1-2.5	0					L
			0									
					1							
+				S-2					* * *			+
				Ń			0					
1			\square									1
_												
5 +		ackfilled with medium entonite chips	n 📕							Becomes very loose		† ;
		0p0		S-3								
+				ώ			0]		+
			\square									
												L
T												Τ
					GF-B-15A	-7.5-9						
+				ې 4								+
			$ \circ $	4			0					
1												1
0+					1					Becomes loose, wet, and gray to	black	+1
				S-5	OF D 454	40 44 5						
+				φ	GF-B-15A-1	10-11.5	0		••••			+
			\bigcirc									
1										•		T
+										Medium dense, wet, black, slight	ly silty GRAVEL (GM)	.
										modium donde, wet, black, slight	., Sity STANCE (OIVI)	'
1									4 M			1
_									7110			
5+					1					7		+1
				S-6	GF-B-15A-1	15-16.5	_		111			
+				စ်			0					+
			\square		1					d 3		
									\$ B			
T												T
									9 M			
+										Very loose, wet, dark gray to blace	ck. slightly silty SAND	+
									9:1	(SW-SM); trace shell fragments	on, onginer only OrtiVD	
1										-		1
 Sai	mpler Type	e:			PID - Photoic	nizatio	n Dete	ctor (He	adsna adsna	ce Measurement) Logged by:	MV	
_	ecovery			ŗ	- ID - F110t01C				uuspa	oo maadarementj = ==================================		
⊴ 13.25"	OD D&M	Split-Spoon					Water			Approved by	r: SJG	
[⊥] Ring S	Sampler	Split-Spoon			$\bar{\Delta}$	Water	Level	(ATD)				
										Figure No.	A- 35	

	A A ===						Boring Log		
	74 5	Dect			t Number		Boring Number	Sheet	
				11	0207		GF-B-15A	2 of 2	
Project Na		y Clark-Evere	ett Mill				Ground Surface Elev		
ocation:	Everett, '								
Driller/Met		Drilling / Hollow	Stem Auger				Depth to Water (ft BGS)	10	
	Method: Splitspoo	n					Start/Finish Date	5/23/2012	
Depth / Elevation (feet)	Borehole Completi	on Sample Type/ID	Tests	PID (ppm)	Recovery	faterial Type	Description		Depth (ft)
25 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3		Type/ID S-7 S-8 S-9	GF-B-15A-2	0	(inches)	Type	Becomes dark gray, trace gravel, we coarse sand Very dense, wet, gray, slightly grave trace silt, trace shell fragments Bottom of boring at 31.5 BGS		-30 -35
No Re	npler Type:		PID - Photoic	nization Detec		dspac	,	MV	
3.25" (OD D&M Split-Spoo Sampler	n	$\overline{}$	Water Level			Approved by: S	SJG	
■ I D: ∩									

		~ •	1				Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
			44 N A:11	11	0207		HW-B-01	1 of 1	
roject Na		ark-Evere	tt iviiii				Ground Surface Elev		
.ocation: Oriller/Met	Everett, WA chod: Cascade Drillin	a / Direct Di	ich Drobo				Depth to Water (ft BGS)	6	
	Method: Continuous Con		isii Piobe				Start/Finish Date	6/29/2012	
Depth /				DID	Drive/	Mota-i-		0/20/20 12	<u> </u>
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	(ppm)	Recovery (inches)	Material Type	Description		De
Elevation	Backfilled with medium bentonite chips	Sample Type/ID CC-1 CC-2 CC-3	HW-B-1-6	0-1 0.3 0 0 0 0 0	Drive/ Recovery (inches)	Material Type	Asphalt Slightly moist, dark brown and brow silty, very gravelly SAND (SP-SM); if Moist, brown-orange mottled, slightly (SP); fine to medium sand Wet, dark gray, sandy SILT (ML); trisand Wet, dark gray, slightly gravelly Scoarse gravel Wet, dark gray, slightly gravelly, slightly; trace fibrous organics Bottom of boring at 15 'BGS	y gravelly SAND ace gravel, fine	
No Re	npler Type: covery	P	_	nization Dete Static Water		eadspac	ce Measurement) Logged by: AApproved by: S	AET NG	
Contin	uous Core		∇	Water Level	/ A T.C.		Approved by:	000	

	Maria						Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
	● CONSULTI	NG		11	0207		HW-B-02	1 of 1	
Project N		ark-Evere	tt Mill				Ground Surface Elev		
Location:								_	
Driller/Me			ush Probe				Depth to Water (ft BGS)	5	
Sampling Depth /	Method: Continuous Cor						Start/Finish Date	6/29/2012	$\overline{}$
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dept (ft)
_	Backfilled with medium bentonite chips	CC-1	HW-B-2-0-	0			Wood chips Very moist, gray SAND (SW); trac coarse sand	e gravel, fine to	
Ť		Ц	HW-B-2-3-4	4 0				OU T (11)	1
1				0			Moist, dark brown, gravelly, sandy		
							Vet, gray, slightly gravelly SAND (SW); fine to coarse and, fine gravel		
5 +	<u> </u>			0			Wet, dark brown, sandy SILT (ML))	- 5
+			HW-B-2-6-7	7 0		•••••	Wet, gray, gravelly SAND (SW); fil fine gravel	ne to coarse sand,	7
+				0			Wet, gray, gravelly, sandy SILT (Norganic-wood-debris	IL); scattered	_
+		CC-2		0					+
<u> </u>							Olimbath		-
40							Slightly clayey		40
10-				0					+10
				0					
Ī		CC-3		0					
				0					
†				0					†
15-				0			Bottom of boring at 15 ' BGS		15
+									+
†									†
+									+
Sa	mpler Type:		ID - Photoionia	zation Doto	ctor (Ha	adena	ce Measurement) Logged by:	AET	
_	ecovery	Г		tatic Water		uuspal	,		
_	nuous Core						Approved by:	SJG	
			<u> </u>	ater Level	(AID)		Figure No.	A- 37	

	1	Mena	c+			N	/lonit	oring Well Constructio		
		Aspe				ct Numb 10207	oer	Well Number MW-01 (DP-15)	Sheet 1 of 1	
Project N	ame.	Kimberly Cla		 ett Mill	- 1	10207		Ground Surface Elev	1 01 1	
ocation:		Everett, WA	III LVCI	ott iviiii				Top of Casing Elev.	14.15	
Driller/Me		Cascade Drilling	g / Direct F	Push Probe-Lim	nited Acces	SS		Depth to Water (ft BGS)	6	
ampling	Method	: Continuous Cor	e	_				Start/Finish Date	2/15/2012	
Depth / Elevation (feet)	Во	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		De (
1 +		5" Flush-mount monument and thermos cap			0			Asphalt, gravel Very moist, brown to gray, silty, sa fine to medium, subrounded grave	andy GRAVEL (GM);	-{
2 -		Concrete surface seal 0' to 2' 3/8" Hydrated bentonite	CC-1		0		124 1421	organics at 1' Very moist, brown, gravelly SAND		1
3 +		chips 2' to 2.5" 2/12 Silica sand filter	00-1	DP-15-3-4	0			sand		+
4 +		pack 2.5' to 13'			0			Very moist, brown, very silty SANI		+,
5 +			_	0			Very moist, brown SAND (SP); fin Fill debris from 4.75' to 6.5': charre	e to medium sand ed wood, nails,	+	
6 🕂		Ā			0			ceramic, black and orange debris		+ 1
7 🕂		1" Diameter PVC pre-packed .001 slot	CC-2	DP-15-6.5-7	.5 0					+ .
8 +		screen 3' to 13'			0		0000	Wet, gray, very sandy GRAVEL (0	GP); fine, rounded	+;
9 🕂					0		0000	gravel Wet, gray SAND (SP); fine to med	lium sand	+
10+				_	0					+1
11+					0					+1
12+			CC-3		0			Wet, gray, sandy SILT (ML)		+1
13+		Threaded cap			0			Wet, gray SAND (SP); fine to med	lium sand, frequent	+1
14+		Slough			0			silt laminae		+1
15+	*******			_	0			Bottom of boring at 15 ' BGS		+1
16+										+1
17+										+1
18+										+1
19+										+1
20+										+2
21+										+2
22+										+2
23+										-2
24+										-2
25+										+2
26+										+2
27+										+2
28+										+2
29+										+2
	mpler Ty	rpe:		_	Photoioniza		tector	Logged by:	MAR	
○ No Re	ecovery nuous Co	ore		$\overline{}$	Static Wate			Approved by:	SJG	
				<u>+</u> W	/ater Level	(ATD)		Figure No.	A- 39	

		Mana					Monit	oring Well Construction		
		Aspe	CI .			ct Numl	per	Well Number	Sheet	
Dunia at N	la	CONSULTI Kimberly Cla		++ N./III	1	10207		MW-02 (DP-14)	1 of 1	
Project N ∟ocation:		Everett, WA	aik-Evele	LL IVIIII				Ground Surface Elev Top of Casing Elev.	13.23	
Driller/Me		Cascade Drillin	a / Direct Pu	ısh Probe-l im	ited Acce	ss		Depth to Water (ft BGS)	6	
		d: Continuous Co		201111000 2.111	1000			Start/Finish Date	2/15/2012	
Depth / Elevation (feet)		orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/	Material Type	Description		Dept (ft)
		5" Flush-mount monument and						Asphalt		_
1 +		thermos cap			0			Very moist, gray to brown, gravelly medium sand	/ SAND (SP); fine to	+ 1
2 +		Concrete surface seal 0' to 2'			0					- 2
3 +		3/8" Hydrated bentonite chips 2' to 2.5"	CC-1	DD 44 0 4						+ 3
		2/12 Silica sand filter pack 2.5' to 13'		DP-14-3-4	0					
4 +		pack 2.5' to 13'			0			Landfill debris: brick, wood, plastic		+ 4
5 +					0			Wet, brown to gray, slightly sandy (GM); fine to medium subrounded	, very silty GRAVEL	- 5
6 +		_			0			plastic, tile/ceramics, wood	. g ,	+ 6
7 +		. 1" Diameter PVC					8,8,3			+ 7
′ T		pre-packed .001 slot	CC-2		0					Γ΄
8 +		screen 3' to 13'			0					8
9 +				DP-14-9-10	0					- 9
10 +							200			+10
44					0					,,
11+					0					+11
12+			CC-3		0		8:8:8	Black from 12' to 15'		12
13 +		Threaded cap			0					13
14 -		Slough			0					<u>+14</u>
4.5		•								1,5
15+		1			0			Bottom of boring at 15' BGS		+ 15
16+										- 16
17 🕂										17
18 +										18
19-										- 19
19 —										
20+										-20
21										-21
22+										-22
23 -										-23
23 +										
24+										-24
25										-25
26 +										-26
27 -										-27
28+										- 28
29										-29
	mpler T			PID - P	hotoioniz	ation De	tector	Logged by:	MAR	
_	ecovery				tatic Wate	r Level		Approved by:	SJG	
Conti	nuous C	Core		∑ w	ater Leve	l (ATD)				
								Figure No.	A- 40	

	Mana	~+ 				/lonit	oring Well Constructio		
	Aspe	CT			ct Numl	er	Well Number	Sheet	
	OCON SULTI		44 N A:II	1	10207		MW-03 (DP-09)	1 of 1	
Project Nam		ark-Evere	tt IVIIII				Ground Surface Elev	45.44	
ocation:	Everett, WA	/ Di Di	b Dash a Linci	A			Top of Casing Elev.	15.11 3	
Oriller/Metho	od: Cascade Drillin lethod: Continuous Co	_	usn Probe-Limi	ea Acce	SS		Depth to Water (ft BGS) Start/Finish Date	3 2/15/2012	
Depth /				DID	Blows/	Ī	Start/Fillish Date	2/13/2012	T_
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	6"	Material Type	Description		De _l
1 -	5" Flush-mount monument and thermos cap			0		00000	Asphalt V. moist, gray, sandy, silty GRAV medium subrounded gravel	EL (GP); fine to	- - 1
2 +	Concrete surface seal 0' to 2'	Ш		0		8000	Wet, gray, slightly gravelly SAND	(SD): fine to modium	+ 2
3 -	3/8" Hydrated bentonite	CC-1					sand	(SF), line to medium	ļ;
3	2/12 Silica sand filter			0					Γ,
4 🕂 📗	pack 2.5' to 13'		DP-9-3.5-4.5	0					+ 4
5 +							Wet, dark gray, silty SAND (SM), shell fragments	fine sand, numerous	- 5
6 +				5.4					+ 6
7 +	1" Diameter PVC	11							+ 7
	pre-packed .001 slot screen 3' to 13'	CC-2					Wet, gray, SAND (SP); fine to me	edium sand	┧,
8 +	Sciento io io		DP-9-7.5-8.5						+ 8
9 +				25.9					+ 9
10+ :		0							+1
11+				20.3					+1
12+									1
13 -	Threaded cap	CC-3	DP-9-13-14						+1
	• • • • • •		DI -0-10-14				Wet, gray, silty SAND (SM); fine s	sand	\dashv
14+	Slough			12.3			Wet, gray, slightly gravelly SAND		/ 1
15+ 👫	*****						sand Bottom of boring at 15' BGS		+1
16+									1
17 +									
''T									+1
18+									+1
19 -									-1
20+									+2
									-
21+									+2
22 -									-2
23+									-2
24 +									-2
25 +									-2
26 +									-2
27 +									-2
28 +									-2
29 +									-2
29									-
Samo	oler Type:	1 1	PID - PI	notoioniz	ation De	tector	Logged by:	MAR	
No Reco			_	atic Wate					
Continue			$\overline{}$	ater Leve			Approved by:	SJG	
			- ۷۷	ALC: LEVE	י (אוט)		Figure No.	A- 41	

		Asne	cŧ		Б.	N N	/lonit	oring Well Construction		
		Aspe				ct Numb 10207	per	Well Number MW-04 (DP-07)	Sheet 1 of 1	
Project N	ame.	Kimberly Cla		tt Mill		10207		Ground Surface Elev	1 01 1	
_ocation:	airie.	Everett, WA	III LVCIC	CC IVIIII				Top of Casing Elev.	15.2	
Driller/Me	thod:	Cascade Drilling	a / Direct Pu	ısh Probe-Lin	nited Acce	SS		Depth to Water (ft BGS)	5	
		d: Continuous Cor						Start/Finish Date	2/15/2012	
Depth / Elevation	В	Borehole Completion	Sample	Tests	PID	Blows/	Material	Description		De
(feet)	S41 190	5" Flush-mount	Type/ID		(ppm)	6"	Туре	Asphalt		(
1 +		monument and thermos cap			0		0000	Moist, gray, slightly silty, sandy GR subangular gravel	AVEL (GP); fine	
2 +		Concrete surface seal 0' to 2'			0		0000			+
3 +		3/8" Hydrated bentonite chips 2' to 2.5"	CC-1					Wet, gray, sandy SILT (ML)		
3		2/12 Silica sand filter pack 2.5' to 13'			0		0000	Moist, gray, slightly silty, sandy GR	AVEL (GP); fine	T
4 +		. pack 2.3 to 13		DP-7-4-5	0			subangular gravel Wet, gray, sandy SILT (ML)		+
5 🕂					0.1					+
6 🕂	pre-packed .001 slot CC-2 screen 3' to 13'				0.1					+ 1
7 🕂			00.3	DP-7-7-8	0.1					+ :
8 +			CC-2		0.1			Wet, dark gray SAND (SP); fine to medium sand		+ 8
9 🕂				0.1			Wet, dark gray SAND (SP); fine to	medium sand	7	
10-				0					-1	
11 +					0					-1
12+		}	CC-3		0			Wet, dark gray SILT (ML)		 1
13-		Threaded cap			0			Wet, dark gray to dark brown, sligh fine to medium sand, numerous org		-1
14 +		Slough			0					-1
15-		1					1	Bottom of boring at 15' BGS		+1
16										+1
17										-1
18+										+1
19-										-1
20-										-2
21 -										-2
22+										+2
23+										+2
24 +										+:
25+										+:
26+										+:
27 +										+2
28+										+2
29 –										+2
_	mpler T			PID - I	l Photoioniz	ation De	tector	Logged by:	MAR	
○ No Re	-			$\overline{}$	Static Wate			Approved by:	SJG	
		-		* V	Vater Leve	ı (ATD)		Figure No. /	A- 42	

	\	- 1			N	/lonito	oring Well Construction	ng Well Construction Log		
·	\ Aspe	CT		Proje	ect Numb	er	Well Number	Sheet		
	CONSULTI		1	10207		MW-05 (DP-16)	1 of 1			
Project Name:	Kimberly Cla	ark-Evere	tt Mill				Ground Surface Elev			
Location:	Everett, WA					Top of Casing Elev.	13.36			
Driller/Method:	Cascade Drilling	g / Direct Pi	ush Probe-Lim	nited Acce	ss		Depth to Water (ft BGS)	6		
Sampling Method:	Continuous Cor	e					Start/Finish Date	2/16/2012		
Depth / Elevation (feet)	vation Borehole Completion Sample Tes					Material Type	Description		Depti (ft)	
	5" Flush-mount monument and					11/2 1/1	Grass over topsoil			

Sampling	Method: Continuous Core		sn Probe-Limite				Start/Finish Date 2/16/2012	
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description	Dep (ft
1 -	5" Flush-mount monument and thermos cap			0		1/ x 1/	Grass over topsoil Very moist, brown to gray, sandy SILT (ML); fine sand	+ ` + 1
2 +	Concrete surface seal 0' to 2' 3/8" Hydrated bentonite	CC-1		0				- 2
3 +	chips 2' to 2.5" 2/12 Silica sand filter pack 2.5' to 13'			0			Very moist, dark gray, sandy, gravelly SILT (ML)	+ 3
4 +	pack 2.3 to 13		DP-7-4-5	0				+ 4
5 6 	<u> </u>			0.1				+ 5
7 +	1" Diameter PVC		DP-7-7-8	0.1				+ 7
8 +	pre-packed .001 slot screen 3' to 13'	CC-2	5	0.1				- 8
9 +				0.1				- 6
0				0				-1
1+				0			Wet, organic SILT (OL); numerous wood organics	+1
2+ 3+		CC-3		0				+1 +1
4+	Threaded cap			0			Wet, dark gray SAND (SP); fine to medium sand, numerous shells and wood debris	T'
5-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						Bottom of boring at 15' BGS	 1
6								-1
7								-1
8+								+1
9+								+1 +2
11 +								-2
2+								-2
3+								-2
4								-2
5-								-2
6+ 7+								+2 +2
8+								-2
9-								-2
Sa	Impler Type:		PID - Pho	ntoioniza	ation De	tector	Logged by: MAR	\perp
_	ecovery			tic Wate			Approved by: SJG	

MONITORING WELL KIMBERLY CLARK-EVERETT.GPJ September 9, 2012 Continuous Core

Water Level (ATD)

Approved by: SJG

A- 43 Figure No.

		Aspe	ct		Droio	ct Numl	vionit	oring Well Construction Well Number	n Log Sheet	
		CONSULTI	NG			10207	Dei	MW-06 (DP-17)	1 of 1	
Project N	ame:	Kimberly Cla		tt Mill	•	10201		Ground Surface Elev	1 01 1	
Location:		Everett, WA						Top of Casing Elev.	20.43	
Driller/Me	ethod:	Cascade Drillin	g / Direct P	ush Probe-Limite	ed Acces	ss		Depth to Water (ft BGS)	16	
	Method	d: Continuous Co	re					Start/Finish Date	2/16/2012	
Depth / Elevation (feet)	В	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Dept (ft)
(1001)	X	5" Flush-mount monument and	П					Asphalt		
1 +		thermos cap			0		74 4 9	Concrete Moist, dark gray, sandy GRAVEL ((CD): fine to modium	1
2 +		Concrete surface seal 0' to 2'	Ш		0		0000	subrounded to angular gravel	(GF), line to mediam	+ 2
3 +			CC-1				0000			- 3
3					0		0000			
4 +				DP-17-4-5	0			Moist, dark gray, SAND (SP); fine	sand, occasional	 4
5 +					0.1			shell fragments		- 5
6 +			Ш		0.1					- 6
7		3/8" Hydrated bentonite	\mathbf{H}							+ 7
7 +		chips 2' to 12'	CC-2		0.1					Γ΄
8 +			Ш		0.1					8
9 +			Ш		0.1		9 4 9	Concrete rubble Moist, gray, slightly gravelly, slight	ly sandy SILT (ML):	-+ 9
10-			\mathbf{H}		0			fine sand	ly sality SIET (IVIE),	-10
11 -			Ш							<u> </u>
			Ш		0			Moist, gray-green CLAY (CL)		
12+			CC-3		0			Moist, gray, slightly gravelly, sandy	y SILT (ML); fine	 12
13		2/12 Silica sand filter			0			sand		-13
14 +		pack 12' to 24'	Ш		0					-14
15-										 15
			Ш							
16+		· \\ :	Ш					Wet from 16' to 18'		+16
17			CC-4							17
18-		. 1" Diameter PVC	00-4		0			Wood debris at 17.5'		18
19-		pre-packed .001 slot screen 14' to 24'	Ц							 19
20+								Wet, gray to dark gray, gravelly SI	LT (ML); no odor	+20
21-			Ш							-21
22			Ш	DP-17-22-23	0					-22
23+			CC-5		0					-23
24+		Threaded cap Slough								-24
25-		9						Bottom of boring at 25' BGS		+ 25
26										-26
27 -										-27
28-										-28
29+										-29
 Sa	mpler T	ype:		PID - Ph	otoioniza	ation De	tector	Logged by:	MAR	
=	ecovery			<u>▼</u> Sta	tic Wate	r Level		Approved by:	SIG	
Conti	nuous C	Core		<u> </u>	ter Leve	l (ATD)		Approved by:	50G	
								Figure No.	A- 44	

		Aspe	ΝG	·			t Numb 0207	er		Boring Log Boring Number NRP-B-01	Sheet 1 of 1	
Project Nation:		Kimberly Cla								Ground Surface Elev		
Driller/Me		Cascade Drillin		Direct P	ush Probe					Depth to Water (ft BGS)	9	
Sampling Depth /		Continuous Co				PID	T 5: /			Start/Finish Date	6/1/2012	
Elevation (feet)	Bo	rehole Completion	S	ample ype/ID	Tests	(ppm)	Drive/ Recovery (inches)	.,,,,		Description		Dep (ft)
(feet)		Backfilled with medium bentonite chips		CC-2 CC-3	NRP-B-1-9-	0.2 0.2 0.2 0.2 0.3 0.3	(inches)	iype	Mois Fine Poo	st, brown, gravelly, very silty S. st, gray, gravelly SAND (SP); f e sand, no gravel or recovery 5' to 10' t, gray, slightly silty SAND (SP-	ine to medium sand	
_	mpler Ty ecovery	pe:		Р	PID - Photoioni ▼ s	zation Dete Static Water		eadspa	се Ме	,	MAR	
_	nuous Co	ore			$\overline{}$	/ater Level				Approved by:	SJG	
					V	vater Level	(AID)			Figure No.	A- 45	

		Aspe	C†		F		Numb	er	Boring Log Boring Number NRP-B-02	Sheet 1 of 1	
Project Na	ame:	Kimberly Cla		ett Mill		1 11			Ground Surface Elev	1 01 1	
Driller/Me	thod:	Cascade Drillin	a / Direct P	Push Probe					Depth to Water (ft BGS)		
		Continuous Con		401111000					Start/Finish Date	6/1/2012	
Depth / Elevation (feet)		rehole Completion	Sample Type/ID	Tests	,	PID (ppm)	Drive/ Recovery	Material Type	Description		Dept (ft)
(loct)		Backfilled with medium bentonite chips	CC-1	NRP-B-2		1.2 1.2 12.7	(inches)		Asphalt Moist, gray, slightly silty, sandy GR coarse angular gravel Moist, gray SAND (SP); fine sand	PAVEL (GW); fine to	
5 -				-		47.8 61.3 16.8 21.5			Silt lens at 4.5'		- 5
				NRP-B-2	-8-10	190.5 152.0 89.0 446.8 397.7 353.7 360.2			Dark gray, strong petroleum-like or metallic/rainbow sheen	dor, moderate	- - - -10
			CC-3	NRP-B-2-		356.3 464.3 426.8 46.5 7.3 4.6			Silt and wood 11.5' to 12'		
15-						2.5			Bottom of boring at 15' BGS		+ 15 - - -
20-											-20
+											
_	mpler Typecovery		F	PID - Photoic ▼ ▽	onization Static \ Water I	Water	Level	eadspac	ce Measurement) Logged by: Approved by:	MAR SJG	
						(,		Figure No.	A- 46	

		Aspe	Ct			t Numb	er	Boring Log Boring Number NRP-B-03	Sheet 1 of 1
Project N	ame:	Kimberly Cla		ett Mill				Ground Surface Elev	
Location:		Everett, WA							
Driller/Me		Cascade Drillin		Push Probe				Depth to Water (ft BGS)	9
Sampling Depth /	Method	Continuous Cor	e T	1				Start/Finish Date 6	6/1/2012
Elevation (feet)	Bo	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Grass over topsoil	Dep (ft)
		Backfilled with medium bentonite chips	CC-1		0.2			Moist, brown, very gravelly SAND (SW); sand, subrounded gravel, cobble at 2.5'	The to coarse
+								Moist, gray, very gravelly, very silty SANI	D (SM); fine
5 +					0.3			sand	
					0.2				+
CC 2					0.2				+
				NRP-B-3-8.5-9.	9.5 0				Wet, gray, SAND (SP); trace silt and gravel, fine to nedium sand
10-					0				10
+					0				+
+			CC-3		0				†
_					0			Wood at 14'	_
15-					0			Silt at 14.75' Bottom of boring at 15' BGS	
+								Bottom of borning at 15 BGS	-
20-									-20
+									
+									+
1									†
_	mpler Ty	pe:	F	PID - Photoionizat			eadspac	ce Measurement) Logged by: MAR	
O No Re		ore		$\overline{}$	ic Water er Level			Approved by: SJG	
								Figure No. A- 47	,

	Aspec	Spect			et Numb	er	Boring Log Boring Number NRP-B-04	Sheet 1 of 1	
Project Name: Kimberly Clark-Everett Mill								Ground Surface Elev	
Location		Everett, WA						<u></u>	
Driller/Me		Cascade Drilling		Push Probe				Depth to Water (ft BGS)	9
Sampling Depth /	g Method:	: Continuous Core	•	1		1		Start/Finish Date	6/1/2012
Elevation (feet)	Bo 🖂	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description	Dep (ft)
10-	impler Ty	Backfilled with medium bentonite chips	CC-1	NRP-B-4-13.5-1	5.0 3.4 3.5 3.5 3.5 3.5			Asphalt Moist, gray, sandy GRAVEL (GW); trace fine to coarse gravel Becomes wet, slightly silty Wet, gray, silty GRAVEL (GM); fine to cogravel, faint petroleum-like odor, rainbov 20' Bottom of boring at 20' BGS	oarse angular v sheen 15' to
☐ No R			·	▼ Sta	ation Dete atic Water ater Level	Level	auspal	ce Measurement) Logged by: MAR Approved by: SJG	
				***	20101	, <i>D</i>)		Figure No. A- 48	8

	Manag						Boring Log		
	Aspec				t Numb	er	Boring Number	Sheet	
			44 N 4:11	11	0207		NRP-B-05	1 of 1	
Project N		irk-Evere	ett IVIIII				Ground Surface Elev		
Location:		v / Disc et Di	ush Drobo				Donth to Water (ft BCS)	8.5	
Driller/Me			usn Probe				Depth to Water (ft BGS)	6/1/2012	
Depth /	Method: Continuous Core			T DID	T		Start/Finish Date	6/1/2012	$\overline{}$
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dept (ft)
		Ш					Asphalt Moist, gray, slightly sandy GRAVEL	(CW): fine to	
+				0		5.5.5	coarse subangular to subrounded g		+
	Backfilled with medium bentonite chips					0000			
Ť		CC-1		0					T
1		7		0					1
							Refusal at 4.5', moved hole over ~1	/2': Moist brown to	4
+				0			gray, sandy, silty GRAVEL (GM); fir	ne to coarse angula	ır 🕂
_							gravel		_
5 +				0					+ 5
+		Ш		2.0					+
+				2.0					+
+		CC-2		1.6		200			+
	<u> </u>	Ш				305101	Wet, gray, slightly silty, gravelly SA	ND (SP); fine to	\dashv
Ī			NRP-B-5-9-10	17.0 18.3			medium sand, trace organics: wood odor, moderate rainbow and bleb sh	l; petroleum-like neen	T
10 +									10
		CC-3		30.6		0000	Wet, gray GRAVEL (GP); fine round	ded gravel	\dashv
+	XXX					0000	Refusal at 11', bottom of boring at 1		+
							_		
+									+
Ť									Ť
15 +									15
+									+
T									
+									+
Ť									Ť
20									-20
+									+
									1
T									
+									+
†									†
Sai	 mpler Type:		 ID - Photoionization	on Dete	ctor (He	adspa	ce Measurement) Logged by: N	MAR	
_	ecovery			c Water	Level		Approved by: S	SJG	
Contir	nuous Core			r Level	(ATD)				
							Figure No. 🛮 🕹	\- 49	

		Aspe	ct			t Numb	er	Boring Log Boring Number	Sheet
Desired N		Kimberly Cla		44 N /I:II	11	0207		NRP-B-06	1 of 1
Project Na _ocation:	ame:	Everett, WA	ark-Evere	LL IVIIII				Ground Surface Elev	
Driller/Me	thod:	Cascade Drillin	a / Direct Pu	ısh Prohe				Depth to Water (ft BGS)	
		Continuous Con		301111000					6/1/2012
Depth / Elevation		rehole Completion	Sample Type/ID	Tests	PID	Drive/	Material	Description	Dep (ft)
(feet)			Type/ID		(ppm)	Recovery (inches)	Type	Asphalt	(ft
							0000	Slightly moist, gray, sandy GRAVEL (G)	N); fine to
1		Backfilled with medium			0			coarse angular gravel	†
+		bentonite chips	CC-1		0		000		+
Ť					0		8,8,8		Ť
+					0			Bottom of boring at 4' BGS	
								Bottom of boning at 4 BGS	
5 +									 5
									1
†									†
+									_
†									†
10+									+10
+									†
+									+
1									_
15+									 15
1									
+									†
1									
+									+
20+									-20
20									
+									+
1									
+									+
									T
Sai	mpler Ty	ne.	D	ID - Photoion	ization Doto	ctor (L)	adena	Logged by: MAF	
Oai		r	Р		Static Water		zauspal	,	
Contir		ore		_	Nater Level			Approved by: SJG	
				- '	TAICI LEVE	(מוט)		Figure No. A- 5	0

		Mana	~+	,					Boring Log		
		Aspe					t Numb	er	Boring Number	Sheet	
Orainat N		Kimberly Cla			stt Mill	11	0207		NRP-B-07 Ground Surface Elev	1 of 1	
Project N Location:	anie.	Everett, WA	-אוג	LVCIC	SEE IVIIII				Glound Sunace Elev		
Driller/Me	thod:	Cascade Drilling	n / Γ	Direct P	ush Prohe				Depth to Water (ft BGS)	9	
		: Continuous Cor		2110011	401111000				Start/Finish Date	6/1/2012	
Depth / Elevation (feet)		orehole Completion	s	Sample ype/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		De _j
(1001)							(inches)		Asphalt, post-holed to 1' because of	of utilities	
1									Moist, brown, silty, sandy GRAVEL gravel	. (GM); fine angular	1
		Backfilled with medium	Н			0		8 8 8	graver		
+		bentonite chips	Н			0					+
			Н	CC-1							
T			Н	7,		0			Concrete rubble 3.25' to 4'		\top
+			Ц			0		יב"ב יולינע	Moist, very silty, very sandy GRAV	EL (CM): fine to	+
									coarse angular gravel	EL (GIVI), IIIIE IO	
5 +			П		1	0					+ :
			Н					8 8 8			
			Н								
+			Н	0		6.7			Very moist, gray SAND (SP); fine t	o medium sand	+
			Н	CC-2					strong petroleum-like odor, heavy i	ainbow and bleb	
Ť			Н			10.8			sheen		Ť
+		<u>¥</u>	Н		NRP-B-7-9-10	15.1					+
			Н		144 27 0 10	109.8			Numerous organics at 9'		
10+			H		†	10.8					+
		, ,	Н			40.7					
			Н			10.7					
+			Н	0		7.1					+
				сс-з							
Ť						7.1					Ť
+			Ц			6.8			Wet, dark gray, very silty SAND (S	M): fine cond	+
15 —			0								<u> </u>
						5.0			Wet, gray, SAND (SP); fine sand, f	trace organics	'
Ī						10.1					Ť
†				CC-4		12.1			Wet, dark gray, very silty SAND (S	M); fine sand	†
+				4		10.1					+
+					NRP-B-7-19-20	10.1					+
20 +						7.1			√Wood at 19.75'		/ 2
20						7.1			Bottom of boring at 20' BGS		^ ^
+									_		+
†											†
1											+
+											+
	mpler Ty	/pe:		F	PID - Photoionizati	on Dete	ctor (He	adspa	ce Measurement) Logged by:	MAR	
O No Re					▼ Stati	c Water	Level		Approved by:	SJG	
Contir	nuous C	ore			∑ Wate	er Level	(ATD)		Approved by:	OJ G	
							•		Figure No.	A- 51	

	Mana						Boring Log		
	Aspe	CT			ct Numb	er	Boring Number	Sheet	
	OCONSULTI	NG	44 8 4:11	11	0207		NRP-B-08	1 of 1	
Project N		irk-Ever	ett Mill				Ground Surface Elev		
Location:								0.5	
Driller/Me			Push Probe				Depth to Water (ft BGS) Start/Finish Date	8.5 6/1/2012	
Depth /	Method: Continuous Cor		1	DID	T		Start/Fillish Date	0/1/2012	_
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Depti (ft)
5	■ Backfilled with medium bentonite chips	CC-1 CC-2 CC-3	NRP-B-8-8.5-9.	8.3 0 0 0 0 0			Asphalt Moist, gray, slightly sandy GRAVEI coarse angular gravel Very moist, gray, sandy, very silty of to coarse angular gravel Moist, gray, sandy SILT (ML) Wet, gray, SAND (SP); fine to med Wood at 9.5' Wet, dark gray SILT (ML) Wet, gray, SAND (SP); fine to med 13' Refusal at 13.5'; bottom of boring a	ium sand ium sand, wood at	-10 -20
	mpler Type:	I	PID - Photoioniza	tion Dete	ector (He	eadspac	ce Measurement) Logged by:	MAR	
_	ecovery		<u>▼</u> Sta	tic Wate	r Level		Anarouad bu	s IG	
Contin	nuous Core		<u> </u>	er Level	(ATD)		Approved by: \$		
							Figure No.	A- 52	

	Manag	~±					Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
				11	0207		NRP-B-09	1 of 1	
Project N		ırk-Evere	tt Mill				Ground Surface Elev		
ocation:		/ D:					Double to Mater (# DOC)	0.5	
Oriller/Me			ush Probe				Depth to Water (ft BGS)	9.5	
Depth /	Method: Continuous Con	e 					Start/Finish Date	6/27/2012	
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Везеприон		Depti (ft)
5 -	Backfilled with medium bentonite chips	CC-1	NRP-B-8	0 0	(inches)		Asphalt Slightly moist, brown-gray, sandy Grushed rock Moist, dark gray, sandy SILT (ML); Wood Wet, dark gray SAND (SP); fine to Bottom of boring at 10' BGS	fine sand	- 5
15-									- 15
+									+
-									
20-									-20
<u></u>									
+									+
+									+
Sa	mpler Type:		ID - Photoic	onization Dete	ctor (He	adspac	ce Measurement) Logged by: /	AET	
O No Re			Ā	Static Water	Level		Anarouad bu	s IG	
Contir	nuous Core		$\bar{\Delta}$	Water Level	(ATD)		Approved by: \$		
							Figure No. /	4- 53	

	•	Asped	NG			t Numb 0207	er	Boring Log Boring Number NRP-B-10	Sheet 1 of 1	
Project N Location:		Kimberly Cla	rk-Evere	tt Mill				Ground Surface Elev		
Driller/Me		Cascade Drilling		ush Probe				Depth to Water (ft BGS)	7	
Sampling Depth /	Method:	Continuous Core	e I	I		1		Start/Finish Date	6/27/2012	_
Elevation (feet)	Bor	ehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dept (ft)
+	$r \times x \times x$	Backfilled with medium bentonite chips	CC-1	NRP-B-10	0		0000000000	Asphalt Slightly moist, gray to brown, sand crushed rock Moist, dark gray, sandy SILT (ML); Wood debris at 3' and 4.5'		- - - -
5 -		_	0		0					_ - 5 -
10-			CC-2					Wood Wet, gray SAND (SP); fine to med Bottom of boring at 10' BGS	ium sand	- - - - 10
+										- -
15-										_ -15 -
20-										_ - -20
+										_ _ _
+										_
_	mpler Typ	pe:			nization Dete	ctor (He	adspa	ce Measurement) Logged by:	AET	
_	ecovery			Ā	Static Water	Level		Approved by:	SJG	
Conti	nuous Co	re		Ā	Water Level	(ATD)				
								Figure No.	A- 54	

	Mana						Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
			(11	0207		NRP-B-11	1 of 1	
Project Na		ırk-Evere	tt Mill				Ground Surface Elev		
ocation:	Everett, WA	/ D:					Donath to Motor (ft DCC)	6	
Oriller/Me			usn Probe				Depth to Water (ft BGS) Start/Finish Date	6 6/6/2012	
Depth /	Method: Continuous Cor			DID	Τ		Start/Finish Date	0/0/2012	$\overline{}$
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft
5 - 10 - 15 - 15 - 15 - 15 - 15 - 15 - 1	Backfilled with medium bentonite chips ▼	Type/ID CC-1 CC-2	NRP-B-11-3-	-1 1.5 0	Recovery (inches)	Type O D D O D O D O D O D O D O D O D O D	Asphalt Moist, gray, sandy, silty GRAVEL (Gi Moist, dark gray SAND (SP) Moist, gray, slightly sandy CLAY (CL Wood Wet, gray, SAND (SP); fine to mediu Bottom of boring at 10' BGS)	- 5
20-									-20
†									+
+									+
+									+
	mpler Type:			ation Dete	ctor (He	eadspa	ce Measurement) Logged by: M	AR	
_	ecovery			atic Water	Level		Approved by: S	IG	
Contin	nuous Core		¥ w	ater Level	(ATD)				
							Figure No. A-	- 55	

		Aspe	C †			ct Numb	er	Boring Log Boring Number Sheet NRP-B-12 1 of 1		
Project Na	ame:	Kimberly Cla		ett Mill	<u>'</u>	. 0201		Ground Surface Elev		
Driller/Met	thod:	Cascade Drilling	g / Direct P	ush Probe				Depth to Water (ft BGS)		
		Continuous Cor						Start/Finish Date	6/6/2012	
Depth / Elevation (feet)		rehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery	Material Type	Description		Dept (ft)
		Backfilled with medium bentonite chips	CC-1	NRP-B-1	0.5			Asphalt Moist, gray, sandy GRAVEL (GP) Moist, gray, very silty SAND (SM) Moist, gray, slightly sandy SILT (lorganics, wood); fine sand	
5 +					0					<u>+</u> 5
10-								Refusal at 7.5'; bottom of boring a	at 7.5 BGS	-10 -10
15-										-15 -
20-										-20
										<u> </u>
Sar No Re Contin			F	PID - Photoic ▼ ▽	onization Det Static Wate Water Leve	r Level	eadspa	ce Measurement) Logged by: Approved by	MAR : SJG	
								Figure No.	A- 56	

	Mana	~+					Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
				11	0207		NRP-B-13	1 of 1	
Project Na		ark-Evere	tt Mill				Ground Surface Elev		
Location:	Everett, WA						December 4- 1M-4 (# DOO)	7.5	
Driller/Me			ush Probe				Depth to Water (ft BGS)	7.5	
	Method: Continuous Con						Start/Finish Date	6/6/2012	$\overline{}$
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	(ppm)	Recovery	Material Type	Description		Dep (ft
Depth / Elevation (feet)	Backfilled with medium bentonite chips	Sample Type/ID CC-1 CC-2	NRP-B-13-C	0-1 1.5 0	Drive/ Recovery (inches)	Material Type	Asphalt Moist, gray, sandy GRAVEL (GP); of Moist, gray SAND (SP); fine sand Moist, gray SILT (ML) Wood Wet. gray SAND (SP); fine to media Bottom of boring at 10' BGS		Dep(ft)
20	mpler Type:	P	ID - Photoioni	zation Dete	ctor (He	eadspac	ce Measurement) Logged by: N	<i>M</i> AR	-20 -
		Р				auspac	ье меаѕитетнетт, подученый, п	VII ALA	
○ No Re				Static Water	Level		Approved by: S	SJG	
Contin	nuous Core		Ā M	Vater Level	(ATD)			-	
							Figure No. 🛭 🕹	A- 57	

		Aspe	ct			t Numb	er	Boring Log Boring Number	Sheet 1 of 1	
Project N	omo:	Kimberly Cla		htt Mill	11	0207		NRP-B-14 Ground Surface Elev	1 01 1	
ocation:		Everett, WA	IIK-LVCIC	CL IVIIII				Ground Surface Liev		
Driller/Me		Cascade Drilling	a / Direct P	ush Probe				Depth to Water (ft BGS)	6	
		: Continuous Cor						Start/Finish Date	6/27/2012	
Depth / Elevation (feet)	Во	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft
+				NRP-B-14-	0-1		00000	Asphalt Slightly moist, gray, sandy gravel (GP); crushed rock	_
+		Backfilled with medium bentonite chips	O		0			Moist, dark gray, sandy SILT (ML)		+
+			CC-1	NRP-B-14-	3-4 0					+
+					0					+
5 +				_	0					- 5
+		<u>¥</u>			0			Wet, black/brown wood debris		+
†			CC-2		0			Wet, gray SAND (SP); fine to med	ium sand	+
					0					Ī
10+					0					10
+								Bottom of boring at 10' BGS		+
+										+
+										+
+										+
15										-15
+										+
Ť										_
20-										-20
+										+
+										+
+										+
+										+
	mpler Ty	rpe:	F				eadspa	Logged by:	AET	
O No Re ☐ Conti		ore		_	Static Water Vater Level			Approved by:	SJG	
								Figure No.	A- 58	

	A Acros						Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
				11	0207		NRP-B-15	1 of 1	
Project Na		irk-Evere	tt Mill				Ground Surface Elev		
ocation:	Everett, WA						Double to Make (# DOO)	7	
Driller/Met			ush Probe				Depth to Water (ft BGS)	7	
Depth /	Method: Continuous Cor						Start/Finish Date	6/6/2012	
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft
5	Backfilled with medium bentonite chips	CC-1 CC-2	NRP-B-15	-0-1 2.5 0.5	Recovery (inches)	Type	Asphalt Moist, light gray GRAVEL (GP); cru Moist, dark gray, very silty SAND (S Wet, gray sandy SILT (ML) Wet, dark brown PEAT (PT) Bottom of boring at 10' BGS		- (ff
O No Re		P	Ā	nization Dete		eadspac	ce Measurement) Logged by: N	MAR SJG	
Contin	uous Core		∑ ,	Water Level	(ATD)			-	
					,		Figure No. 🛮 🕹	\ - 59	

	N A = = = =						Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
				11	0207		NRP-B-16	1 of 1	
Project N		ark-Evere	ett Mill				Ground Surface Elev		
Location:	·							_	
Driller/Me			ush Probe				Depth to Water (ft BGS)	7	
Sampling Depth /	Method: Continuous Co						Start/Finish Date	6/27/2012	
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Depth (ft)
(feet)	Backfilled with medium bentonite chips		NRP-B-15	-0-1 2.5 0.5	(inches)		Asphalt, crushed rock and gravel Moist, dark gray, slightly sandy SIL 2" of gravel at 6' Wet, dark gray, silty CLAY (CL) Wood Wet, gray, sand (SP); fine to mediu Bottom of boring at 10' BGS		-10 -20
_	mpler Type:	F				eadspa	ce Measurement) Logged by: /	AET	
_	ecovery nuous Core		\leftarrow	Static Water			Approved by: \$	SJG	
LI COILLI	114043 0016		'\'	Water Level	(ATD)		Figure No.	A- 60	
							i idule ino. 7	7-00	

		Manas	-1				Monit	oring Well Construction	n Log	
		Aspec	ST			ct Numl	oer	Well Number	Sheet	
		OCON SULTIN		N A:II	1	10207		NRP-MW-01	1 of 1	
Project N		Kimberly Cla	rk-Everett	IVIII				Ground Surface Elev	42.50	
ocation:		Everett, WA	/ Dina at Dua	h Duaha				Top of Casing Elev	13.56 9	
Oriller/Me		Cascade Drilling		n Probe				Depth to Water (ft BGS) Start/Finish Date	6/6/2012	
Depth /		d: Continuous Core			- DID	Blows/	T	Start Illish Date	0/0/2012	1_
Elevation (feet)	E	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	6"	Material Type	Description		De _l
Ì		8" Flush-mount monument and						Asphalt and crushed rock		Ť
1 🕂		thermos cap						(Refer to boring log for NRP-B-2 fo	or PID readings)	+ 1
2 +		Concrete surface seal 0' to 2'								\perp 2
-			CC-1					Moist, gray SAND (SP); fine to me	dium sand	'
3 +		3/8" Hydrated bentonite chips 2' to 4'								+;
ı 丰	10/20 pre-pack Silica sand filter pack 4' to 15'								1 4	
.										
5 +							Moist, gray, silty SAND (SM); fine	sand	+ 5	
+									+ 6	
. 🗼		1						Moist, gray SAND (SP); fine to me	dium sand, trace	╡;
			CC-2					organics: shells and wood, strong sheen at 8'	petroleum-like odor,	
†										+ ;
, 📙	Diameter PVC pre-packed .001 slot screen 5' to 15'								+ 6	
0 +									 1	
'								Wet, gray, silty SAND (SM); trace	gravel medium to	Τ'
1+		-						coarse sand, slight petroleum-like	odor, slight sheen	+1
2										+1
		<u>.</u>	CC-3					Wood chips at 12'		
3+										
4]						Wet, gray SAND (SP); medium sa trace seashell fragments	nd, trace organics,	1
5+		Threaded cap						Trace seasien ragineries		1
1								Bottom of boring at 15' BGS		Τ'
3+										-1
7										+1
3+										+1
9+										-1
0 +										-2
1+										+2
2										-2
3+										-2
4 🕂										-2
5 										-2
6+										+2
7	-								-2	
28 -									-2	
.0										[2
9+										-2
	mpler T	ivno:		DID	Dhataianin	ation Da	44	Logged by:	MAR	
_	ecovery			_	Photoioniz Static Wate		ileClOf			
_	nuous C			\Box				Approved by:	SJG	
_				 \	Water Leve	ı (AID)		Figure No.	Δ- 61	
								Figure No. A- 61		

		ne.	~ +	L		<u> </u>	/lonit	oring Well Constructio		
	722	PE				ect Numb 10207	er	Well Number NRP-MW-02	Sheet 1 of 1	
Project Name			ırk-Everet	t Mill	ı	10207		Ground Surface Elev	1 01 1	
ocation:	Everett		III LVOICE	CIVIIII				Top of Casing Elev.	15.09	
oriller/Method			g / Direct Pu	sh Probe				Depth to Water (ft BGS)	8	
Sampling Met	thod: Continu							Start/Finish Date	5/29/2012	
Depth / Elevation	Borehole Comple	etion	Sample Type/ID	Tests	PID (ppm)	Blows/	Material Type	Description		De (f
(feet)	8" Flush-mou		Турель		(pp)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Grass over topsoil; post-holed to 2	2 feet for utilities	- (
1 +	monument ar thermos cap	nd			0		1, 31,			<u> </u>
2 +	Concrete sur 0' to 2'	face seal						Moist, dark gray, gravelly, very silisand	ty SAND (SW), line	+ :
					0					
3 +	3/8" Hydrated chips 2' to 4'	d bentonite	CC-1		0					+;
1 -					0			Moist, dark gray SAND (SP); fine	sand interhedded	+ 4
;	10/20 pre-pack Silica sand filter pack 4' to 15'						with 1/4" lenses of silt		ļ.	
					0					
	2" Diameter PVC pre-packed .001 slot screen 5' to 15'			0					+ 6	
'† <u> </u>				0			4" lens of dark gray SILT (ML) Moist to wet, dark gray SAND (SF)): fine sand	+ 7	
3 + [0				,,o sana	- 8	
,				0					1,5	
							Medium sand at 9', trace organics	s-shell fragments		
0				0					+1	
1+				0					+1	
11- 12- 10 CC-3 CC-3			+1							
3			CC-3							+1
	∄.]				0					
4					0			Wet, dark gray SILT (ML) Wet, dark gray SAND (SP); nume	rous organics-wood	_†1
5+	Threaded cap	p			0			Bottom of boring at 15' BGS	ious organics-wood	 1
6+										+1
7+										- 1
8+										-1
9+										-1
0 +										-2
1+										-2
2+										-2
3+										-2
4+										-2
5+										-2
6+										-2
27 -	.+								-2	
28 -									-2	
29 -										-2
Sample	er Type:		<u> </u>	PID - F	 Photoioniz	l ation De	tector	Logged by:	MAR	
No Recov					Static Wate	er Level		Approved by:	SJG	
Continuou	is Core			Ā ∧	Vater Leve	l (ATD)		Appioved by.		
								Figure No.	A- 62	

		-1			I	vionit	oring Well Construction	ı Log	
	Aspec	T			ct Num	ber	Well Number	Sheet	
	■ CONSULTIN	1 G		1	10207		NRP-MW-03	1 of 1	
Project Name:	Kimberly Clar	rk-Everett	Mill				Ground Surface Elev		
Location:	Everett, WA						Top of Casing Elev.	13.3	
Driller/Method:	Cascade Drilling		Probe				Depth to Water (ft BGS)	7.5	
	d: Continuous Core)					Start/Finish Date	5/29/2012	
Depth / Elevation (feet)	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Dep (ft)
	8" Flush-mount monument and					1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1	Grass over topsoil; post-holed to 2	feet for utilities	
1 +	thermos cap Concrete surface seal			0		7.87	Moist, dark gray SAND (SP); fine so	and, trace	1
2 +	0' to 2'			0			organics-wood		- 2
3 +	3/8" Hydrated bentonite chips 2' to 4'	CC-1		0			Moist, dark gray SILT (ML)		 3
4 -	·	00-1		0			Moist, dark gray SAND (SP); fine s	and	 4
5 -	10/20 pre-pack Silica sand filter pack 4' to 15'			0			Moist, dark gray SILT (ML)		
6 +				0			Moist to wet, dark gray SAND (SP)	; fine to medium	- 6
7 +							sand		+ 7
	.▼	CC-2		0					8
8 +				0			Wet, dark gray SILT (ML)		
9 +	pre-packed .001 slot			0			Moist, dark gray SAND (SP); fine to	medium sand,	9
10+	2" Diameter PVC pre-packed .001 slot screen 5' to 15'			0			numerous organics-wood- every 2"		10
11-				0					-11
12-		CC-3		0					12
13-		CC-3		0			Wet, dark gray SILT (ML); numeroเ	ıs organics-wood	 13
14-				0			TVOL, dank gray OILT (NIL), Hamorot	do organico wood	 14
15	Threaded cap			0					15
16+							Bottom of boring at 15' BGS		 16
17 -									+ 17
18+									-18
19+									-19
20+									-20
21-									-21
22-									-22
23-									-23
24 -									-24
25+									-25
26+									-26
27+									-27
28+									-28
29									-29
Sampler T	ype:		PID - PI	hotoioniz	ation De	etector	Logged by:	MAR	
p	Sampler Type: No Recovery						-33,.		

A- 63

Figure No.

CHIACON

		Aspec	~ +		5 .	<u> </u>	Monit	oring Well Construction		
		CONSULTI				ect Numl 10207	oer	Well Number NRP-MW-04	Sheet 1 of 1	
Project N	ame.	Kimberly Cla		Mill	I	10207		Ground Surface Elev	1011	
Location:		Everett, WA	III LVCICIL	IVIIII				Top of Casing Elev.	15.39	
Driller/Me		Cascade Drilling	g / Direct Pus	h Probe				Depth to Water (ft BGS)	6.5	
Sampling	Method	d: Continuous Cor						Start/Finish Date	6/6/2012	
Depth / Elevation (feet)	В	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Materia Type	Description		Dep (ft
		8" Flush-mount monument and						Asphalt		
1 +		thermos cap Concrete surface seal			0		0.00	Slightly moist, sandy, silty GRAVE	L (GM); fine gravel	 1
2 +		0' to 2'			0		8:8:			- 2
3 +		3/8" Hydrated bentonite chips 2' to 3'	CC-1		0 8.8.9					+ 3
4		10/20 pre-pack Silica sand filter pack 3' to 14'			Moist, gray, slightly silty SAND (SP-				P-SM); fine sand	\dashv
4 +		. Sand like pack 3 to 14	\square		0				,	+ 4
5 +				0		11111		 5		
6 🕂					0					- 6
7 +		. <u>\\</u>			0					+ 7
			CC-2					Wet, gray CLAY (CL)		-
8 +	2" Diameter PVC pre-packed .001 slot screen 4' to 14'			0			, g.u, (/		+ 8	
9 +				0			Wet, dark brown to black PEAT (P	PT)	 9	
10 -				0			Wet gray SAND (SD) fine to med	ium sand trace	 10	
1 +							organics-wood- at 11' and 12'	idili salid, trace	<u>+</u> 1	
		0 Wet, gray SAND (SP)I fine to medium san								
12+		.]	CC-3		0			. Fine and 40 Fite 441		 12
13+					0			Fine sand 12.5 to 14		-13
14		Threaded cap			0			Pofusal at 14's hottom of horing at	14' BCS	 14
15 —								Trefusar at 14, bottom or boning at	14 000	<u>+1</u> 5
16+										+16
17+										+17
18										-18
19 –										<u> </u>
20 –										-20
21 -										-2
22+										-22
23+										-23
24 +										-24
25 –										-25
26 –										-26
27 -										-27
28										-28
29										-29
Sa	mpler T	ype:		PID - P	hotoioniz	ation De	tector	Logged by:	MAR	
_	ecovery			_	atic Wate					
☐ Contir				~ ·	ater Leve			Approved by:	SJG	
						. /		Figure No.	A- 64	

		Aspec	~ +		<u> </u>	N 1 1 1 1	Vlonit	oring Well Construction		
		CONSULTIN	J			ct Numl 10207	oer	Well Number NRP-MW-05	Sheet	
Orainat N	ama:	Kimberly Cla		Mill	1	10207			1 of 1	
Project Na Location:		Everett, WA	ık-⊑verett	IVIIII				Ground Surface Elev Top of Casing Elev.	15.14	
Driller/Me		Cascade Drilling	/ Direct Pus	h Probe				Depth to Water (ft BGS)	6.5	
		d: Continuous Core						Start/Finish Date	6/27/2012	
Depth / Elevation		orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/	Material Type	Description		Dep (fi
(feet) 1 - 2 - 3 -		8" Flush-mount monument and thermos cap Concrete surface seal 0' to 2' 3/8" Hydrated bentonite chips 2' to 3' 2/12 pre-pack Silica	CC-1		0		000000000000000000000000000000000000000	Moist, gray, slightly silty, sandy GF crushed rock, fine to coarse sand Moist, gray to dark gray, clayey SI		- 1 - 2 - 3
4 + 5 + 6 +	sand filter pack 3' to 14' Z" Diameter PVC pre-packed .001 slot screen 4' to 14' CC-3			0 0		70 PO	Moist to wet, dark gray SAND (SP Moist, gray, sandy, silty GRAVEL Wet, dark gray, silty CLAY (CL)		- 4 - 5 - 6	
7 + 8 + 9 +				0 0		0000	Wet, dark gray, very sandy GRAV medium sand, fine gravel, charred Wet, gray SAND (SP); fine to med	wood debris	- 7 - 8 - 9	
10+ 11+ 12+				0 0			6" slightly silty sand layer at 12'		+1 -1 -1	
13 14 15 		Threaded cap			0 0			Scattered organics-seashells		+1 +1 -+1
16 - 17 -								Bottom of boring at 15' BGS		-1 -1
18+ 19+										-1 -1
20 21 										-2 -2
22-										-2
23 –										-2
24 –										-2
25 –										-2
26 -										-2
27-									-2	
28										-2
29 -										-2
_	mpler T			_	hotoioniz		tector	Logged by:	AET	
O No Re ☐ Contir	ecovery nuous C			$\overline{}$	tatic Wate ater Leve			Approved by:	SJG	
				• • • • • • • • • • • • • • • • • • • •		· · · · · ·)		Figure No.	A- 65	

	Manag	~ +			ı	Monit	oring Well Construction		
	Aspe	CT			ct Numl	ber	Well Number OMS-MW-01	Sheet 1 of 1	
Project Name:	Kimberly Cla		Mill	'	10201		Ground Surface Elev	1 01 1	
ocation:	Everett, WA						Top of Casing Elev.	14.68	
riller/Method:	Cascade Drilling	J / Direct Push	Probe				Depth to Water (ft BGS)	9.5	
ampling Metho	od: Continuous Core	е					Start/Finish Date	6/4/2012	
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/	Material Type	Description		
(leet)	8" Flush-mount monument and			1	-		Gravel surface		_
1 🕂 💥 🖟	thermos cap			0		*****	Moist, brown SAND (SP); fine to		
2 🛭	Concrete surface seal 0' to 2'	Ц				*****	Moist, brown SAND (SW); trace (gravei, fine to coarse	,
		CC-1		0			Moist, brown sand (SP); trace gra	avel, fine to medium	_
3 +	3/8" Hydrated bentonite chips 2' to 4'			0			Sanu		
				0					
,	10/20 pre-pack Silica sand filter pack 4' to 15'								
				0					
) † <u> </u>	. :			0			lana adda at the state		
'十 目		000		0					
	2" Diameter PVC Pre-packed .001 slot screen 5' to 15' CC-2 CC-2 CC-2 CC-2							-1 (00) 5	
						0000	Moist, brown, very sandy GRAVE subrounded gravel	EL (GP); fine	
'†				0		0000			
아				0		0000	Wet, brown SAND (SP); fine to m	nedium sand	_
CC-2 O O O O O O O O O O O O O									
								(SP); fine to medium sand	
		CC-3		0					
3+				0					
4				0			Dark gray 13.5' to 15'		
5+	Threaded cap						H2S smell		
							Bottom of boring at 15' BGS		_
6+									
7									
8+									
9+									
o 									
1 +									
2+									
3+									
4									
5+									
6+									
7									
8+									
9+									
Sampler	 Tvpe:		PID - Ph	otoioniz:	ation De	tector	Logged by:	MAR	_
No Recover			_	itic Wate					
Continuous				ter Leve			Approved by	r: SJG	
			vva	.5. LOVE	. (, (, D)		Figure No.	A- 66	

	Mana	20±					Boring Log		
	Aspe	ECT			t Numb	er	Boring Number	Sheet	
				11	0207		REC2-B-01	1 of 1	
Project N			ett Mill				Ground Surface Elev		
Location:							<u></u>		
Driller/Me			Push Probe-"Mini	Me"			Depth to Water (ft BGS)	7.5	
	Method: Continuous (Core	_				Start/Finish Date	6/28/2012	_
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Depth (ft)
					(mones)	2 A A A	Concrete		
							Void		1
Ť									†
	Backfilled with medi	um				000000	Moist, brown, gravelly SAND (SW); fine to coarse sand,	1
+	bentonite chips			0			fine gravel	,,	+
		L 66-							
+				0		*****	Moist, brown, gravelly SAND (SP)	· fine cond fine	+
							gravel	, inte sand, inte	
1		9		0					1
5 +									- 5
			REC2-B-1-5-6	6 0					
							Moist, brown, gravelly SAND (SW); fine to coarse sand,	
Ţ				0			fine gravel		T
†			REC2-B-1-7-8	3 0					†
	∑	CC-2					Wet, dark gray SAND (SP); fine s	and with scattered	1
+				0			seashells		+
+			REC2-B-1-9-1	0 0					+
10		9		0			No recovery from 10' to 15'		10
				"			No recovery from 10 to 15		
+									+
1									1
		CC;3							
		<u>ω</u>							
Ť									T
15+							Bottom of boring at 15' BGS		+15
†									†
+									+
+									+
+									+
 Sa	 mpler Type:	 	│ PID - Photoioniza	tion Dete	ctor (He	adspa	ce Measurement) Logged by:	AET	
O No Re				tic Water			,		
_	nuous Core		$\overline{}$	ter Level			Approved by:	SJG	
					. ,		Figure No.	A- 67	

		A							Boring Log	
	•	Aspe	CT				Numb	er	Boring Number	Sheet
						110	0207		REC2-B-02	1 of 1
Project N	lame:	Kimberly Cla	ırk-Evere	ett Mill					Ground Surface Elev	
Location:		Everett, WA								
Driller/Me		Cascade Drilling		ush Probe-"	Mini Me"				Depth to Water (ft BGS)	6.5
	Method:	Continuous Core	e	1					Start/Finish Date	6/28/2012
Depth / Elevation (feet)	Bore	ehole Completion	Sample Type/ID	Tests	P (p)	PID pm)	Drive/ Recovery (inches)	Material Type	Description	Dept (ft)
								2 9 d	Concrete	
									Void	
Ţ										Ī
		Backfilled with medium entonite chips							Moist, brown, gravelly SAND (SW); fin	e to coarse sand,
Ť		·				0			fine gravel	†
			CC-1							
+						0				+
+						0				+
				REC2-B-2-4	4.5-5.5			******	Moist, brown, slightly gravelly SAND (S	SD): fine sand
5 +				-		0			fine gravel	- 5
						۱ ۱				
1				REC2-B-2	267	0				1
		, -		NLUZ-D-Z	2-0-1	۱				
			CC-2			0				
			ž							
Ţ				REC2-B-2	2-8-9	0				Ī
†						0				†
10+				1		0				- 10
+						0				+
+						0				+
			CC-3							
+			ω			0				-
1						0				_
15-						0				15
									Bottom of boring at 15' BGS	
T										
†										Ť
†										†
+										+
	mpler Typ	e:	, ,	PID - Photoic	nization D	etec	tor (He	adspa	ce Measurement) Logged by: AE	T
_	ecovery			Ā	Static Wa	ater l	Level		Approved by: SJ0	G
Conti	nuous Cor	e		$\bar{\Delta}$	Water Le	vel (ATD)		Apploved by, 330	_
									Figure No. A- (68

	Mana	~ 1					Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
				11	0207		REC2-B-03	1 of 1	
Project N		lark-Evere	ett Mill				Ground Surface Elev		
Location:							<u></u>		
Driller/Me			Push Probe-"Mini N	/le"			Depth to Water (ft BGS)	7.5	
	Method: Continuous Co	ore	1				Start/Finish Date	6/28/2012	
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Depth (ft)
					(9 4 9	Concrete		
		Ш					Void		
†		Ш							†
	Backfilled with mediun bentonite chips	n				*****	Moist, brown, gravelly SAND (SW); fine to coarse sand	,
+	Deritorite crips			0			fine gravel	,	+
		<u> </u>							
+				0		*****	Moist, orange-brown, gravelly SA	ND (SD): fine sand	+
							fine gravel	(or), line sand,	
+				0					+
5 +									+ 5
		Ш	DE00 D 0 5 5 0	0					
1		Ш	REC2-B-3-5.5-6.			*****	Very moist, gray SAND (SW); fine	e to coarse sand	
		Ш		0			Moist, gray-orange SILT (ML)		
		Ш					Wet, brown SAND (SW); fine to o	oarse sand	
T	₩.	Ω	REC2-B-3-7-8	0					Τ
		CC-2							
Ť		Ш		0					Ť
		Ш							
+		Ш	REC2-B-3-9-10	0			Wet, brown gravelly SAND (SP);	fine to medium sand	+
		Ш							
10+		H_{-}		0					10
		CC-3							
+			_				Refusal at 11'; bottom of boring a	t 11' BGS	+
							Trefusar at 11, bottom of boning a	111 000	
+									+
+									+
1									1
15-									- 15
									13
Ī									T
†									†
+									†
+									+
Sa	mpler Type:	 F	□ PID - Photoionizati	on Dete	ctor (He	eadspa	ce Measurement) Logged by:	AET	
O No Re	ecovery		_	c Water				810	
Contin	nuous Core		$\overline{}$	er Level			Approved by:	310	
							Figure No.	A- 69	

	A							Boring Log		
	Aspe	CT:		ı		t Numb	er	Boring Number	Sheet	
					11	0207		REC2-B-04	1 of 1	
Project Na		lark-Ever	ett Mill					Ground Surface Elev		
Location:	Everett, WA								2.5	
Driller/Met			Push Probe					Depth to Water (ft BGS)	3.5	
Depth /	Method: Continuous C				DID	T		Start/Finish Date	5/23/2012	$\overline{}$
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	3	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dept (ft)
		Ш						Asphalt		
_	Backfilled with medium bentonite chips	m	REC2-B-4-	1.5-2.5	9.5 11.8		0000000000	Very moist, brown to black GRAVE subangular to angular gravel; slight and bleb sheen	petroleum-like odor	- - -
_		CC-1			1.2			Very moist, gray SAND (SP); fine to) medium sand	
_	<u>_</u>		REC2-B-	4.4.5	1.2			Wet at 3.5' BGS		
5 +			RECZ-B-	4-4-5						- 5
					1.2					
			REC2-B-4-	6.5-7.5	0.3					
		CC-2			0.3			Trace gravel, fine sand from 7' to 9, fragments	.5' BGS with shell	
		Ш			0.3					
10+					0.3					-10
					0.3					
					0.3			Fine sand interbedded with medium fragments from 11' to 13' BGS	ı sand; shell	
		CC-3			0.3					
					0.3					
15-					0.3					15
					0.0			Bottom of boring at 15' BGS		
T										
1										
1										
Sar	mpler Type:		PID - Photoic	onization	n Dete	ctor (He	adspa	ce Measurement) Logged by: N	MAR	
O No Re	ecovery		Ā	Static \					210	
	nuous Core		$\bar{\Sigma}$	Water				Approved by: S	SJG	
						,		Figure No. A	A- 70	

	A A = = =	a L					Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
	U CONSULT	ING		11	0207		REC2-B-05	1 of 1	
Project Na		ark-Evere	ett Mill				Ground Surface Elev		
Location:	Everett, WA	/ D: / D					Don'th to Water (# DOC)	2	
Driller/Me	•		ush Probe				Depth to Water (ft BGS) Start/Finish Date	2 5/24/2012	
Sampling Depth /	Method: Continuous Co			DID	T 5: /		StarvFinish Date	5/24/2012	$\overline{}$
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft)
							Asphalt		
		Ш					Very moist, brown SAND (SW); fine	to coarse sand	
T		Ш		0.5					T
		Ш							
1	**************************************	Ω	REC2-B-5-2-3	0.5			Wet at 2' BGS		Ť
		<u> </u>							
† [0.2					Ť
†				0.2			Wet, gray, silty SAND (SM); fine sar	nd	+
5 +	Backfilled with medium bentonite chips	,		0.1					 5
+				0.1			Wet, brown SAND (SW); fine to coa	rse sand	+
+			REC2-B-5-7-8	0.1					+
		CC-2							
+				0.2			Gray at 8' to 10' BGS		+
+				0.3					+
		Ш							
10+				0.3			Wet, gray SAND (SP); trace gravel,	medium to coarse	10
							sand		
+		Ш		0.3					+
† [0.6					T
		CC-3							
†		Ш		0.6					Ť
†		Ш					Wood 14' to 15' BGS		
15+							Bottom of boring at 15' BGS		15
†									†
†									Ť
†									Ť
†									†
Sar	mpler Type:	P	ID - Photoionizat	ion Dete	ctor (He	eadspa	ce Measurement) Logged by: N	//AR	
O No Re	ecovery			ic Water				e IC	
Contin	nuous Core		$\overline{}$	er Level			Approved by: S	ou G	
					. ,		Figure No. A	- 71	

	A	a L					Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
				11	0207		REC2-B-06	1 of 1	
Project N		lark-Ever	ett Mill				Ground Surface Elev		
Location:									
Driller/Me			Push Probe-"Mini	Me"			Depth to Water (ft BGS)	8.5	
	Method: Continuous C	ore	_				Start/Finish Date	6/28/2012	_
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	.,,,,,	Description		Depth (ft)
						0 4 4 7 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4	Concrete		
		Ш					Void		1
Ť		Ш							Ť
	Backfilled with mediu bentonite chips	m					Moist, brown, gravelly SAND (SW); fine to coarse sand,	,
+				0			fine gravel		†
		CC-1							
+		Ш		0					+
		Ц							
1				0					+
5 +									- 5
		Ш		0					"
		Ш							
Ţ		Ш	REC2-B-6-6-7	0			Moist to wet, brown SAND (SP); fi	ne to medium sand	T
		Ш							
†				0					†
		CC-2							
+		Ш	REC2-B-6-8-9	0					+
	¥	Ш					Wet, gray, sandy SILT (ML); fine s	sand	+
+		F .4		0					+
				0					
10			_ REC2-B-6-10-1	1			Wet, brown SAND (SP); fine to me	edium sand	10
		Ш	NEO2-B-0-10-1						
+		Ш							+
		Ш							
1		Ш							_
		CC-3		0			1' vertically split wet, brown SAND sand, and wet, gray SILT (ML)	(SP); fine to medium	1
		ယ်							
T		Ш		0			Wet, brown SAND (SP); fine to me	edium sand	
		Ш							
Ť		Ш		0					Ť
.		Ш							
15+			-				Bottom of boring at 15' BGS		+15
+									+
+									+
.									
1									1
.									
1									
T									Γ
	impler Type:	ı	_			eadspa	ce Measurement) Logged by:	AET	
○ No Re			$\overline{}$	tic Water			Approved by:	SJG	
L Conti	nuous Core		<u>▽</u> Wa	ter Level	(ATD)				
							Figure No.	A- 72	

		Aspe	C†		Projec	t Numb	er	Boring Log Boring Number Sheet REC2-B-07 1 of 1	
Project N	lame:	Kimberly Cla		ett Mill				Ground Surface Elev	
Location:		Everett, WA							
Driller/Me		Cascade Drilling		ush Probe				Depth to Water (ft BGS) 4	
	Method	: Continuous Cor	e					Start/Finish Date 5/23/2012	
Depth / Elevation (feet)	Вс	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description	Dep (ft)
+							00000	Very moist, slightly silty GRAVEL (GP)	_
		Backfilled with medium			16.8		0000	Very moist, gray to brown SAND (SP); fine to mediun	1
+		bentonite chips	CC-1		1.6			sand	+
+					0.8				+
+		<u> </u>		REC2-B-7-4-	-5 0.6			Wet at 4' BGS	+
5 +				_	0.6				- 5
+					0.3				-
+			CC-2	REC2-B-7-6.5-	0.3			Slightly silty, gray SAND (SP); fine sand	+
+			2		0.3				+
<u> </u>					0.3			Shell fragments 9' to 10', fine to medium sand	+
10-				_	0.3				-10
+					0.3				_
1					0.3				_
+		 	CC-3		0.3				+
+					0.3			Slightly gravelly at 14' BGS	+
4.5					0.3				1
15+					0.3			Bottom of boring at 15' BGS	15
†									Ť
†									†
+									+
+									+
_	mpler Ty	/pe:	<u> </u>	_			adspa	ee Measurement) Logged by: MAR	
○ No Re		ore			atic Water			Approved by: SJG	
LI CONTI	nuous C	UI C		∑ wa	ater Level ((ATD)			
								Figure No. A- 73	

	_	Aspe	ct		Dec! -	of Niconal-	or	Boring Log	Chast	
		CONSULTI	U I			t Numb 0207	er	Boring Number REC2-B-08	Sheet 1 of 1	
Project N	lame [.]	Kimberly Cla		ett Mill		0201		Ground Surface Elev	1011	
Location:		Everett, WA								
Driller/Me		Cascade Drilling	g / Direct F	Push Probe				Depth to Water (ft BGS)	4.5	
Sampling	Method	: Continuous Cor	re ·					Start/Finish Date	5/23/2012	
Depth / Elevation (feet)	Bo	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft
							9,90	Asphalt Moist, brown, silty, sandy GRAVEL	(GM): fine	-
+							8.8	subangular gravel, slight bleb sheel	n	+
		Backfilled with medium bentonite chips			0.7			Moist, dark gray, slightly silty, slight (SP); fine to medium sand	ly gravelly SAND	1
			CC-1		2.7			(or), mile to modition out to		
+					10.3					+
†		▼		REC2-B-8-4-5	1.4					T
5 +		_		_	7.0			Wet at 4.5' BGS, Faint petroleum-li 7' BGS	ke odor from 4.5' to	+ 5
					7.3					
†			П		8.0			Wet, gray SAND (SP); trace gravel, sand	, fine to medium	+
+					1.5					+
			CC-2							
Ī					0.8					T
+			Ц		0.8					+
10+				REC2-B-8-10-1	1 0.8					+10
+					0.3					+
†			CC-3		0.3					†
+			မိ		0.3					-
†					0.3			Wet, gray, very sandy SILT (ML)		\dagger
15			Μ		0.3			Wet, brown PEAT (PT)		_
15+					0.3			Bottom of boring at 15' BGS		T
+										+
Ť										Ť
+										+
†										Ť
Sa	mpler Ty	/pe:	<u> </u>	 PID - Photoionizat	ion Dete	ctor (He	 eadspa	ce Measurement) Logged by:	MAR	
O No R	ecovery			▼ Stat	ic Water			Approved by: \$	SJG	
Conti	nuous C	ore		<u>▽</u> Wate	er Level	(ATD)				
								Figure No. 🛮 🕹	\ - 74	

		Aspe	cł				roica	Numb	or	Boring Log Boring Number Sheet	+
		CONSULTI	∵ I			Р		1900 1007	CI	REC2-B-09 1 of 7	
Project N	ame:	Kimberly Cla		Ever	ett Mill		- 1 11	3201		Ground Surface Elev	•
_ocation:		Everett, WA									
Oriller/Me	thod:	Cascade Drillin	g/E	Direct F	Push Probe					Depth to Water (ft BGS) 2	
	Method	: Continuous Co	re							Start/Finish Date5/24/2012	2
Depth / Elevation (feet)	Во	orehole Completion	S	Sample ype/ID	Tests		PID (ppm)	Drive/ Recovery (inches)	Material Type	Description	De (f
										Asphalt	
							0.4			Very moist, gravelly SAND (SW); fine to coarse s strong petroleum-like odor, moderate to heavy ble	and,
							0.4			sheen	
1		T			REC2-B-9		-				
				CC-1	RECZ-B-8	9-2-3 2	21.3			Wet at 2' BGS	
1		Backfilled with medium	Ц	<u> </u>			28.0				
		bentonite chips					20.0 30.0				
1							6.0			Wet, gray, silty, sandy GRAVEL (GM); fine subar gravel, strong petroleum-like odor, moderate to he	igular eavv +
							7.0		\$! \$!\$	bleb sheen, black product present in soil sample	
5 +					4					Wet, gray SAND (SP); medium to coarse sand, tr gravel, strong petroleum-like odor	race
							3.5 82.2				
+					REC2-B-9		01.5				1
					INLOZ-D-0		56.5				
1							9.5				
				CC-2	REC2-B-9-7		5.5			Wet, gray, SAND (SP); fine sand	
+				Ò	INEOE B 0 7		7.0				+
							7.0				
+							7.0				1
							1.0				
10 +			Н		-		2.0				-1
							2.0				
+							1.8				+
+							2.0			Medium to coarse sand 12' to 14' BGS	+
				CC-3						Michael to course saile 12 to 14 DOS	
+				<u></u>			1.7				+
+							1.3		0000	Wet, gray, very sandy GRAVEL (GP); fine, subro	unded
									0000	gravel.	
15+					=		2.7		2020	Bottom of boring at 15' BGS	1
†											†
†											†
†											†
Ţ											Ţ
Sa	mpler Ty	/pe:	, ,	ı	PID - Photoio	nization	Detec	tor (He	adspac	ce Measurement) Logged by: MAR	
O No Re					Ī	Static W	Vater	Level		Annound his SIC	
Conti	nuous C	ore			$\bar{\Delta}$	Water Lo	evel (ATD)		Approved by: SJG	
							`	,		Figure No. A- 75	

	N A	-1					Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
	■ CONSULT	ING		11	0207		REC2-B-10	1 of 1	
Project Na	ame: Kimberly C	ark-Evere	ett Mill				Ground Surface Elev		
Location:	Everett, WA								
Driller/Me	thod: Cascade Drilli	ng / Direct F	Push Probe-"Mi	ni Me"			Depth to Water (ft BGS)	7.5	
Sampling	Method: Continuous Co	ore					Start/Finish Date	6/28/2012	
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Depti (ft)
	Backfilled with medium bentonite chips		REC2-B-10-1	0 0 0 0 5-6 7-8 0.5 1.3	Recovery (inches)	Type	Void Concrete rubble Slightly moist, brown, gravelly SAN coarse sand, fine gravel Moist, brown, slightly silty, gravelly to medium sand, fine gravel, fine gravel, fine gravel, medium sand Very moist, dark brown, sandy SILT medium sand Very moist to wet, blue-gray SAND medium sand Bottom of boring at 15' BGS	SAND (SP-SM); fine ravel (SP); fine to Γ (ML); fine to	(ft)
O No Re	mpler Type: ecovery nuous Core	F	y s	zation Dete Static Water Vater Level	Level	eadspac	ce Measurement) Logged by: A	AET SJG	
			•		,		Figure No. A	A- 76	

		Aspe	ct		Project	t Numb	er	Boring Log Boring Number	Sheet	
		CONSULTI	□ ∎ N G			0207	lei	REC2-B-11	1 of 1	
Project Na	ame:	Kimberly Cla		ett Mill				Ground Surface Elev		
Location:		Everett, WA								
Driller/Me	thod:	Cascade Drilling	g / Direct P	ush Probe				Depth to Water (ft BGS)	3	
	Method:	Continuous Cor	е					Start/Finish Date	5/24/2012	—
Depth / Elevation (feet)	Во	rehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (fi
_		Backfilled with medium						Moist, black, gravelly SAND (SP); to very strong petroleum-like odor, morainbow and bleb sheen mix	fine to medium sand, oderate to heavy	, _
+		bentonite chips	CC-1		18.4					+
		▼	7		46.9					
Ī		-		REC2-B-1	1-3-4 107.5 179.4			Wet, color changes to brown, fine	sand, no gravel	
+					103.8			 Wet, gray SAND (SP); fine to medi	um sand strong	+
					46.6			petroleum-like odor, moderate met	allic sheen	
5 +				1	43.2 36.0					+ :
1					37.5					1
					55.6			Slightly cilty		
+					296.8			Slightly silty		+
			CC-2	REC2-B-11-	7.5-8. 5 123.6					
+					69.8			Wet, gray, gravelly SAND (SP/SW); fine to coarse sand	+ t
					42.2				•	
†					15.6					+
10-				_	13.8					 -1
				REC2-B-11	-11-12 1.3					
†			CC-3		1.2					t
+			ယ်		1.2					+
					1.0					
					1.8					
15				1	1.2		- 10.00	Bottom of boring at 15' BGS		+1
†										+
+										+
_	mpler Ty	pe:	F		nization Dete	ctor (He	eadspa	ce Measurement) Logged by:	MAR	
○ No Re		ore		<u>▼</u>	Static Water Water Level			Approved by:	SJG	
				_	vvalei Level	(A1D)		Figure No.	A- 77	

		1							Boring Log		
		A spe	CT				t Numb	er	Boring Number	Sheet	
		■ CONSULTI	NG			11	0207		REC2-B-12	1 of 1	
Project N	ame:	Kimberly Cla	irk-E	vere	ett Mill				Ground Surface Elev		
Location:		Everett, WA								_	
Driller/Me	•	Cascade Drilling		ect P	ush Probe				Depth to Water (ft BGS)	5	
Sampling Depth /	Method:	Continuous Cor	e						Start/Finish Date	5/23/2012	_
Elevation (feet)	Bore	ehole Completion	Sar Typ	nple e/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft)
Ť			П				(11101100)		Asphalt		
			Н					P 4 4	Concrete rubble, fill debris: burlap		1
†			Н					0 b d			†
		Backfilled with medium	Н					D D D			
+		pentonite chips	Н	_		0.5		0 0 0			+
			Н	CC-1							
+			Н	_		2.8			Maint was CAND (C)A(), to a silt	£: t	+
			Н			2.0			Moist, gray SAND (SW); trace silt, petroleum-like odor	fine to coarse sand,	
			Н			14.0			•		\perp
			Н			11.8			Moist, brown, silty SAND (SM); trace medium sand, numerous organics-	ce gravel, fine to	
_		,							mediam sana, namerous organics-	10015	_
5 +		_	П		REC2-B-12-5-6	3 4.5			Wet, dark gray SAND (SP); fine to	medium sand,	+ 5
			Н						strong petroleum-like odor, modera sheen from 5' to 10' BGS, sticky br	ate to heavy bleb	
+			Н			28.8			present	own to black product	+
			Н								
+			Н			76.8					+
			Н	CC-2		108.9					
1			Н	Ò	DEC2 D 42 0 (1
			Н		REC2-B-12-8-9	110.1					
			Н								
1						466.6					Ť
			9								
10+			П		_	84.5					+10
			Н								
+			Н			43.5					+
			Н								
1			Н			91.7					1
			Н	CC-3		91.7			Trace gravel		
			Н	ယ်							
Ţ			П			63.7					Τ
†						42.5			Refusal at 14' BGS, moved hole ~6	6 inches to re-drill	†
15-									│ │Wet, dark brown to dark gray SAN	D (SP): trace silt and	<u> </u>
			Н						trace gravel	b (or), trace out and	
4			Н			8.0					+
			Н			0.0					
			Н								
ı T			Н	Ω	REC2-B-12-17-	1.7					Γ
			Н	CC-4							
Ť						0.8					†
+						0.8					+
									D "		
						0.8			Bottom of boring at 20' BGS	MAD	
_	mpler Typ	e:		F	_			eadspa	ce Measurement) Logged by:	MAR	
=	ecovery					ic Water	Level		Approved by:	SJG	
Contir	nuous Cor	re			<u>▽</u> Wat	er Level	(ATD)		Apploved by.	-	
									Figure No.	A- 78	

		Aspec	JT		-	ct Numl	oer	oring Well Construction Well Number	Sheet	
		■ CONSULTII	٧G		1	10207		REC2-MW-05	1 of 1	
Project N	ame:	Kimberly Cla	rk-Evere	ett Mill				Ground Surface Elev		
Location:		Everett, WA						Top of Casing Elev.	15.05	
Driller/Me	ethod:	Cascade Drilling	/ Direct P	ush Probe				Depth to Water (ft BGS)	2.5	
	Method	d: Continuous Core	9					Start/Finish Date	5/29/2012	
Depth / Elevation (feet)	В	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Depti (ft)
_		8" Flush-mount monument set in concrete and thermos cap 10/20 pre-pack Silica sand filter pack 1' to 12'		REC2-MW-5-0	0-2 9.4			Post-holed to 2' for utilities Moist, dark gray to black, slightly g SAND (SM); fine sand, petroleum- sheen from 0' to 2' BGS	gravelly, very silty like odor, slight bleb	_
			CC-1	REC2-MW-5-2.	5-3.5 0			Wet, gray, slightly silty, slightly grafine to medium sand	evelly SAND (SP);	<u></u>
5 +				_	0					- 5
+		2" Diameter PVC pre-packed .001 slot			0					
+		screen 2' to 12'	CC-2	REC2-MW-5-7	7-8 0					
+					0			Black at 8'		
+					0			Wet, gray SILT (ML) Wet, dark gray, SAND (SP); fine s	and	/
10+				-	0			Wet, gray SILT (ML) Wet, dark gray, slightly silty SAND	(SP); fine sand	<u></u>
		Threaded cap	CC-3		0					
_		Slough		_	0			Numerous organics (shell fragmer BGS	nts) from 12.5' to 13'	+
+								Bottom of boring at 13' BGS		-
15-										-15
+										
+										+
†										+
Sa	mpler T	ype:		PID - F	hotoioniz	ation De	tector	Logged by:	MAR	
O No R	ecovery			▼ S	tatic Wate	er Level			S IC	
Conti	nuous C	ore		\Box	ater Leve			Approved by:	310	
								Figure No.	A- 79	

Denth /	Kimberly Cla Everett, WA Cascade Drilling Continuous Core corehole Completion 8" Flush-mount	rk-Everett / Direct Pusl	Mill		ct Numb 10207	per	oring Well Construction Well Number REC3-MW-01	Sheet 1 of 1	
Location: Driller/Method: Sampling Method Depth / Elevation Bo	Kimberly Cla Everett, WA Cascade Drilling Continuous Core	rk-Everett / Direct Pusl	Mill						
Location: Driller/Method: Sampling Method Depth / Elevation Bo	Everett, WA Cascade Drilling Continuous Core Corehole Completion	/ Direct Pusl					Ground Surface Elev		
Driller/Method: Sampling Method Depth / Elevation Bo	Cascade Drilling Continuous Core Corehole Completion						Top of Casing Elev.	14.43	
Depth / Elevation Bo	: Continuous Core		h Probe				Depth to Water (ft BGS)	9	
Elevation Bo		-					Start/Finish Date	6/5/2012	
(feet)	8" Flush-mount	Sample	Tests	PID	Blows/	Material	Description		Depti
		Type/ID	1000	(ppm)	6"	Type	Concrete-top 8" cored		(ft)
	monument and thermos cap Concrete surface seal 0' to 2'			0			Moist, brown SAND (SP); trace silt, medium sand	trace gravel, fine to	
	3/8" Hydrated bentonite	CC-1		0					_
	chips 2' to 4'			0					+
5 +	10/20 pre-pack Silica sand filter pack 4' to 15'			0					- 5
				0					
		CC-2		0					
	Diameter PVC pre-packed .001 slot	REC	C3-MW-1-8.5-9				Wet, slightly silty		_
10-	screen 5' to 15'			0					-10
				0					
		CC-3		0					
				0					+
15-	Threaded cap			0			1" lens of silt at 14' BGS		 - 15
							Bottom of boring at 15' BGS		- - -
Sampler Ty			PID - Pho	toioniza	ation De	tector	Logged by: $$ $$ $$ $$ $$ $$	//AR	
○ No Recovery Continuous C			▼ Stati	c Wate	r Level		Approved by: S	SIG.	

A- 80

Figure No.

LIVE CIVIL CONTRACTOR

	Meno	~ +			<u> </u>	Monit	oring Well Construction		
	Aspe	⊌I			ct Num		Well Number	Sheet	
				1	10207		REC5-MW-01	1 of 1	
Project Name		rk-Everett	MIII				Ground Surface Elev		
Location:	_Everett, WA						Top of Casing Elev.	15.49	
Driller/Method			h Probe				Depth to Water (ft BGS)	7	
	thod: Continuous Core	e					Start/Finish Date	6/5/2012	_
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Везеприон		De _l
	8" Flush-mount monument and thermos cap Concrete surface seal					4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Concrete-cored to 1'		
	0' to 2'			0			Moist, dark gray SAND (SP); trace medium sand	gravel, fine to	
†				0.4					T
		CC-1		1.5					
+	3/8" Hydrated bentonite			7.5			 Slight metallic sheen at 3' BGS, fin	e sand	+
	chips 2' to 4'			137.5			Siight metalic sheef at 3 1555, iiii	e sanu	
									L
				60.5			Wood at 4' BGS		
	10/20 pre-pack Silica sand filter pack 4' to 15'	9		13.5					
5 +	= : : Gaing miles pask : 18 18			1.5					+
	31								
	∄ ∷.			1.2					1
	3 ∷		25 1444 4 2 5						
		REC	C5-MW-1-6.5				Wet, gray, silty SAND (SM); fine sa	and	
				0.3					T
	∃	CC-2							
+	∃ :			0.2					+
	∄ }								
	O'' Diameter DVC						Wet, gray, SAND (SP); fine to med	ium sand, trace	
T ME	2" Diameter PVC pre-packed .001 slot			0.2			coarse sand		Τ
	screen 5' to 15'								
10+	∄ :			0.2					+1
	31			0.2					
	∃ :								\perp
	3 1								
	= :1								
+ [3 .1						Wet, dark gray, very silty SAND (S	M): fine sand, wood	+
	= [1]	CC-3					at 12.5' BGS	,,	
1] :]								+
	∄:								
	1 .1								
] ::]						Wet, gray SILT (ML); frequent orga	nics-shell fragments	T
	Threaded cap						Wet, gray, very silty SAND (SM); fil	ne sand	┪
15	Tilleaded cap					1-[1]-	Bottom of boring at 15' BGS		+1
							Bottom of boning at 10 BGO		
1									1
+									+
 									1
†									T
								MAD	
	er Type:			notoioniza	ation De	etector	Logged by:	MAR	
O No Recov			▼ Sta	atic Wate	r Level		, , ,	210	
Continuou	is Core		∑ wa	ater Leve	I (ATD)		Approved by: \$	200	
			***	LUVG	. (, (, D)		Figure No.	Δ_ 81	

		Mana				N	/lonit	oring Well Construction	n Log	
		Aspe	CI			ect Numb 10207	er	Well Number REC6-MW-01	Sheet 1 of 1	
Project N	lame.	Kimberly Cla		 ≥tt Mill	ı	10207		Ground Surface Elev	1 01 1	
Location:		Everett, WA	ant Evore) (VIIII				Top of Casing Elev.	15.38	
Driller/Me		Cascade Drillin	a / Direct P	ush Probe				Depth to Water (ft BGS)	1	
		d: Continuous Con	_					Start/Finish Date	6/27/2012	
Depth / Elevation		Borehole Completion	Sample	- .	PID	Blows/	Material	Description		Dep
(feet)	NZIZI NA		Type/ID	Tests	(ppm)	6"	Type	Description		(f
		8" Flush-mount monument set in					4 4 4	Concrete		
1		concrete and thermos						Pea gravel, white liquid at bottom	of pea gravel	
		3/8" Hydrated bentonite								
		chips 1' to 1.5' 10/20 pre-pack Silica								L
T		sand filter pack 1.5' to					$ $ \otimes			Γ
		12.5'	CC-1					Wet, brown, SAND (SP); fine to m	edium sand	
Ť					7					Ť
					1			Pea gravel		1
†										†
		1								
5 +				-	1			Wet, dark gray, sandy SILT (ML); t	race gravel , strong	+ 5
		<u> </u>						sweet odor	_	
+		2" Diameter PVC pre-packed .001 slot		REC6-MW-1-6						+
		screen 2.5' to 12.5'			55					
+		.]								+
		_	CC-2							
+		.]								+
]								
+		: :	M							+
]			20					
10 +					20					+1
+					50					+
			CC-3		50					
1			Ц							1
		Threaded cap			50					
1					30			Bottom of boring at 12.5' BGS		1
15 –										+1
13										[
†										†
†										†
†										†
+										+
Sa	l Impler T	ype:		 PID - Pho	otoioniz	ation De	tector	Logged by:	AET	
O No R				_		er Level				
_	nuous C					l (ATD)		Approved by:	SJG	
				- vval	SI LEVE	· (AID)		Figure No.	A- 82	
								Figure NO.	A- 02	

		Mana	~ ‡			N	/lonit	oring Well Construction		
		Aspec	- I			ct Numb	oer	Well Number	Sheet	
		CONSULTIN		N 4:11	1	10207		REC6-MW-02	1 of 1	
Project N		Kimberly Cla	rk-Everell	IVIIII				Ground Surface Elev	16.67	
Location:		Everett, WA	/ Dire of Due	h Dunha				Top of Casing Elev Depth to Water (ft BGS)	16.67 5	
Driller/Me		Cascade Drilling		n Probe				Start/Finish Date	5/25/2012	
Depth /		d: Continuous Core			1	Dlaws/	T	Start/Fillish Date	3/23/2012	$\overline{}$
Elevation (feet)	В	Forehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Dep (ft)
		8" Flush-mount monument and thermos cap						Asphalt Top 2' post-holed for utilities; Woo	d chips	-
+		Concrete surface seal 0' to 2'			0			,		+
†					0		8.8.3	Moist, dark gray, sandy, very silty to coarse gravel	GRAVEL (GM); fine	†
†	П	3/8" Hydrated bentonite chips 2' to 4'	CC-1		0					
_ أ		10/20 pre-pack Silica			0		8.8	Wood chips		†
5 +		· · ·			0			Wet, dark gray, very silty GRAVEL subrounded gravel	. (GM); fine to coarse	+ 5
					0					
			CC-2		0		8,8,8	Wet, gray and brown (mottled), sliç SILT (ML)	ghtly sandy, gravelly	_
1					0					_
10-		pre-packed .001 slot screen 5' to 15'			0					-10
+					0			Wet, black to dark gray, very sand (GM); fine to coarse subrounded to slight H2S odor	y, very silty GRAVEL o subangular gravel;	-
+			00.3		0					-
+			CC-3		0					-
+					0					+
15-		Threaded cap			0			Bottom of boring at 15' BGS		 15
+										-
+										+
†										+
†										
Sa	mpler T	ype:		PID - P	hotoioniz	ation De	tector	Logged by:	MAR	
_	ecovery			_	atic Wate			-		
Conti				\Box	ater Leve			Approved by:		
								Figure No.	A- 83	

	Mana				ľ	Monito	oring Well Constructio	n Log	
	Aspe	CT		Proje	ect Numl	oer	Well Number	Sheet	
	● CON SULTI	NG		1	10207		REC7-MW-01	1 of 1	
Project Name:	Kimberly Cla	rk-Evere	ett Mill				Ground Surface Elev		
Location:	Everett, WA						Top of Casing Elev.	13.14	
Driller/Method:	Cascade Drilling	g / Direct P	ush Probe				Depth to Water (ft BGS)	7	
Sampling Method	l: Continuous Cor	е					Start/Finish Date	5/29/2012	
Depth / Elevation (feet)	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Depth (ft)
	8" Flush-mount monument and thermos cap Concrete surface seal 0' to 2'			0			Gravel fill; driller post-holed to 2' E	BGS for utilities	

0 Moist, brown, silty, gravelly SAND (SM); fine sand, iron-staining 3/8" Hydrated bentonite 0 chips 2' to 4' CC-1 Moist, gray SILT (ML) 0 10/20 pre-pack Silica Moist, gray SAND (SP); fine sand sand filter pack 4' to 15' 5 5 0 0 Moist, brown SAND (SP); medium sand 0 Woody debris at 7' BGS CC-2 Wet, gray SAND (SP); medium sand, rare organics-shell fragments 0 2" Diameter PVC 0 pre-packed .001 slot screen 5' to 15' 10 10 0 Trace to numerous organics 11' to 15' BGS CC-3 Threaded cap 15-15 Bottom of boring at 15' BGS MAR Logged by: Sampler Type: PID - Photoionization Detector O No Recovery ▼ Static Water Level Approved by: SJG Continuous Core

KIMBERLY CLARK-EVERETT.GPJ September 9, 2012

 $\underline{\nabla}$ Water Level (ATD)

> A- 84 Figure No.

		Mana	~ +			N	/lonit	oring Well Constructio	n Log	
		Aspe	UT			ect Numb	per	Well Number	Sheet	
					1	10207		REC7-MW-02	1 of 1	
Project N		Kimberly Cla	irk-Evereti	: IVIIII				Ground Surface Elev	45.44	
Location:		Everett, WA						Top of Casing Elev	15.11	
Driller/Me		Cascade Drilling		sh Probe				Depth to Water (ft BGS)	5.5	
Depth /	Method	d: Continuous Cor	e T			T		Start/Finish Date	5/25/2012	$\overline{}$
Elevation (feet)	В	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		De (
		8" Flush-mount monument and						Asphalt		
+		thermos cap Concrete surface seal 0' to 2'			0			Moist, brown, sandy, very gravelly subrounded gravel	SILT (ML); fine	
+		3/8" Hydrated bentonite	CC-1		0					+
+		chips 2' to 3'			0					+
+		. 10/20 pre-pack Silica sand filter pack 3' to 15'			0					+
		· <u>_</u>						Black, charred debris		
5 +					0			Wet, brown, silty SAND (SM); fine	sand	
†					0					
†			CC-2		0			Color changes to gray at 7'		
+		2" Diameter PVC pre-packed .001 slot	00-2		0			Wet, dark gray SAND (SP); mediu	ım sand	7
+		screen 4' to 14'			0					+
10-					0					 +1
+					0					+
+					0					+
1		· · ·	CC-3		0					-
		Threaded cap			0					
		Slough								
15+	• • • • • •	7.			0		·····	Bottom of boring at 15' BGS		1
+										
+										+
+										+
+										+
Sa	mpler T	ype:		PID - P	hotoioniz	ation De	tector	Logged by:	MAR	
◯ No R	ecovery			₹ st	tatic Wate	er Level		Approved by:	SJG	
_				VV	2101 FEAG	(, (, D)		Figure No.	A- 85	

		Mana	~+			ľ	/lonit	oring Well Construction		
		Aspe	CT			ct Numl	oer	Well Number	Sheet	
					1	10207		REC7-MW-03	1 of 1	
Project N		Kimberly Cla	rk-Everett	Mill				Ground Surface Elev		
Location:		Everett, WA						Top of Casing Elev.	14.92	
Driller/Me		Cascade Drilling		n Probe				Depth to Water (ft BGS)	9	
	Method	d: Continuous Cor	е					Start/Finish Date	6/4/2021	—
Depth / Elevation (feet)	В	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Depti (ft)
+		8" Flush-mount monument and thermos cap Concrete surface seal 0' to 2'			0			Post-holed to 3' for utilities		
		3/8" Hydrated bentonite chips 2' to 4'	CC-1		0			Concrete rubble		
		10/00 1- 0:1:	00-1		0			Moist, brown, SILT (ML)		
_		10/20 pre-pack Silica sand filter pack 4' to 15'	M					Numerous wood organics at 4.5'		_
5 +					0		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Concrete rubble		+ 5
+					0		9 d d 4			+
1			CC-2		0		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			_
		Diameter PVC			0			Wet, brown, silty SAND (SM); fine s		<u> </u>
10-		pre-packed .001 slot screen 5' to 15'			0			Wet, brown SAND (SP); fine sand 9 medium sand from 10' to 15'	to 9.5', grades to	-10
+					0					+
+			CC-3		0					
+					0					+
†					0					Ť
		Threaded cap	9					Gravelly at 14.5'		
15+	i i				0			Bottom of boring at 15' BGS		 15
+										†
†										†
†										Ť
†										†
_	ampler T			_	hotoioniza	ation De	tector	Logged by:	MAR	
○ No R					tatic Wate ater Leve			Approved by: §	SJG	
				V V	LCVC	(,,,,,,,)		Figure No.	۹- 86	

		1	Mana		<u> </u>				Λ	/lonit	oring Well Construction		
			Aspe	ا پ					ct Numb 10207	er	Well Number REC7-MW-04	Sheet 1 of 1	
			Kimberly Cla			- N /III		1	10207			1 01 1	
Project N			Everett, WA	II K-	-Evereu	LIVIIII					Ground Surface Elev _ Top of Casing Elev.	12.69	
_ocation: Driller/Me			Cascade Drilling	n / [Direct Due	sh Probo					Depth to Water (ft BGS)	8	
			Cascade Dilling		Jilect Fus	SII FIODE					Start/Finish Date	5/24/2012	
Depth /	IVICII				T			DID	Blows/		Otarvi ilisii Bate	3/24/2012	T_
Elevation (feet)	N/I	Bo M	rehole Completion 8" Flush-mount	1	Sample Type/ID	Tests		PID (ppm)	6"	Material Type	Description		Dep (fi
			monument and thermos cap Concrete surface seal 0' to 3'					0.1			Moist, brown SAND (SP); trace graconcrete rubble debris	avel, fine sand; brick,	
					CC-1			0.2					
†			3/8" Hydrated bentonite					0.3					†
+			chips 3' to 4'	0				0.4			Moist, brown SILT(ML)		+
5 +			10/20 pre-pack Silica sand filter pack 4' to 15'					0.4		00000	Very moist, brown to gray sandy of silt and concrete rubble, coarse, s	GRAVEL (GP): trace ubrounded to	- - 5
_								0.4			subangular gravel		<u></u>
_		•	2" Diameter PVC pre-packed .001 slot screen 5' to 15'	0	CC-2					0000	Wet, brown to gray, slightly gravel medium to coarse sand	ly SAND (SP);	<u> </u> -
10-			Scient S to 13								No recovery 10' to 15'		10
_				0	CC-3								_
15-			Threaded cap								Bottom of boring at 15' BGS		 15
+													-
+													
+													-
+													-
								_					
_	mpler		pe:			PID	- Pho	toioniza	ation De	tector	Logged by:	MAR	
○ No Re			ore			Ţ Ţ			r Level (ATD)		Approved by:	SJG	
						-	vvale	Leve	(AID)		Figure No.	A- 87	

	Aspec	JT		Droio	ct Numl		coring Well Construction Well Number		
	■CONSULTIN					Jei		Sheet	
				1	10207		UG-MW-01	1 of 1	
Project Name:	Kimberly Cla	rk-Everett	Mill				Ground Surface Elev		
_ocation:	Everett, WA						Top of Casing Elev	16.95	
Oriller/Method:	Cascade Drilling		n Probe				Depth to Water (ft BGS)	5.5	
Sampling Method Depth /	d: Continuous Core)				1	Start/Finish Date	6/27/2012	_
Elevation (feet)	orehole Completion 8" Flush-mount	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Dep (ft)
	monument and						Asphalt debris, crushed rock, and g	ravel fill	
1 + 💥 🧗	thermos cap Concrete surface seal			0.4					† 1
2 +	0' to 2'			0					- 2
3 +	3/8" Hydrated bentonite chips 2' to 3'	CC-1				XXX	Slightly moist, dark gray SAND (SP); fine sand	 3
	· 2/12 pre-pack Silica			0					٦
4 +	sand filter pack 3' to 14'			0			Wood debris at 4'		+ 4
5 +		9							+ 5
6 +	. <u>¥</u>			0			Wet, dark gray, slightly clayey, slightly	ntly sandy SILT	- 6
7				0			(ML); numerous wood organic debr	IS ITOTII 8 TO 12.5	+ 7
8 +	. 2" Diameter PVC	CC-2		0					8
9 -	pre-packed .001 slot screen 4' to 14'						Difficult to drill through wood, hole r to re-drill	moved over 2' east	- 9
				0					-10
10+				0					
11+				0					+11
12+		CC-3		0			Wet, gray with iron-oxide staining, §	CAND (CM): trace	<u>+</u> 12
13+				0			fine gravel, fine to coarse sand	SAND (SVV), trace	-13
14	Threaded cap Slough			0					14
15				0		*	Bottom of boring at 15' BGS		15
16 -									16
17									17
18									18
19-									19
20									-20
21 -									-21
22-									-22
23-									-23
24 -									-24
25+									-25
26+									-26
27+									-27
28+									-28
29+									-29
Sampler T		1 1	PID - Ph	otoioniz	ation De	tector	Logged by: A	\ET	
No Recovery			$\overline{}$	atic Wate			Approved by: \$	SJG	
Continuous C	ore		<u>▽</u> Wa	ter Leve	l (ATD)		Figure No.		

		Mana	 -+				Monit	oring Well Construction		
		Aspec	JT			ct Num		Well Number	Sheet	
		CONSULTIN		N #:11	1	10207		UG-MW-02	1 of 1	
Project N Location:		Kimberly Cla Everett, WA	ık-⊏verett	IVIIII				Ground Surface Elev Top of Casing Elev.	18.05	
Driller/Me		Cascade Drilling	ı / Direct Pus	h Probe				Depth to Water (ft BGS)	4	
		d: Continuous Core						Start/Finish Date	6/27/2012	
Depth / Elevation (feet)	В	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/	Material Type	Description		Dep (ft)
(leet)		8" Flush-mount monument and					P 6 4	Concrete		 ``
1 +		thermos cap			0.4		الا عام	Moist, dark gray SAND (SP); brick	debris	 1
2 +		Concrete surface seal 0' to 1'			0					- 2
3 +		. 3/8" Hydrated bentonite chips 1' to 2'	CC-1					Moist to wet, dark gray SILT (ML); t	race gravel	3
		2/12 pre-pack Silica →and filter pack 2' to 13'			0					
4 +					0					4
5 🕂					0					- 5
6 +					0					- 6
7 +										<u> </u>
			CC-2		0		•••••	Wet, dark, gray, slightly gravelly SA	ND (SW): fine to	_
8 +	- 2" Diameter PVC			0		*****	coarse sand	(OVV), IIIIC (O	- 8	
9 🕂		screen 3' to 13'			0			Orange-gray color 9' to 12.5'		- 9
0 +		-								-10
1+										-11

12+		Thursday and	CC-3							+12
13+		Threaded cap					*****			<u>+</u> 13
4		Slough						Wet, dark gray, sandy SILT (ML); fi	ne sand	14
5	******	.]					ЩЩ	Bottom of boring at 15' BGS		15
6+								Bottom of boning at 15 BGS		- 16
7+										+17
8+										-18
9+										-19
0+										-20
1										-21
22										-22
23 -										-23
24										-24
25 										-25
26 +										-26
27 +										-27
										-28
28+										
29+										-29
_	mpler T			PID - P	hotoioniz	ation De	etector	Logged by: /	AET	
○ No R				_	tatic Wate			Approved by: \$	SJG	
Conti	nuous C	ore		Ā W	ater Leve	l (ATD)				
								Figure No. /	\ - 89	

		Mana	~ +			N	/lonit	oring Well Construction		
		Aspe	CT			ect Numb	oer	Well Number	Sheet	
Desis et N		●consulti Kimberly Cla		++ N /III	1	10207		UST29-MW-01	1 of 1	
Project Na Location:	ame:	Everett, WA	irk-Evere	LL IVIIII				Ground Surface Elev Top of Casing Elev.	15.24	
Driller/Me	thod:	Cascade Drilling	n / Direct Pu	ish Prohe				Depth to Water (ft BGS)	3.5	
		d: Continuous Cor		3311 1000				Start/Finish Date	6/27/2012	
Depth /		Forehole Completion	Sample		PID	Blows/	Material		0.2.7.20.2	Dept
Elevation (feet)	VVI M		Type/ID	Tests	(ppm)	6"	Туре	Description		(ft)
		8" Flush-mount monument set in concrete and thermos cap 3/8" Hydrated bentonite chips 1' to 1.5' #2/12 pre-pack Silica sand filter pack 1.5' to 12.5' 2" Diameter PVC pre-packed .001 slot screen 2.5' to 12.5' Threaded cap	CC-2	JST29-MW-1-7- JST29-MW-1-8-	0.7 0.8 0.8 2700	6"	Type	Asphalt Moist, brown, slightly silty, gravely to medium sand Pea gravel with white liquid at bottom with a layer comprised of a place of the place	fine to medium astic sheet at 3.5' 7'	<u> </u>
Sa	mpler T	ype:		PID - Pho	otoioniz	ation De	tector	Logged by:	AET	
	ecovery			_	ic Wate					
=	nuous C			∇	er Leve			Approved by: \$		
								Figure No.	A- 90	

		Asna	~ +			N	/lonit	oring Well Construction	n Log	
		Aspe				ect Numb	oer	Well Number	Sheet	
D!4 N		Kimberly Cla		.++ N /III	1	10207		UST68-MW-01	1 of 1	
Project N Location		Everett, WA	iik-Evere	ELL IVIIII				Ground Surface Elev Top of Casing Elev.	15.12	
Driller/Me		Cascade Drilling	n / Direct P	ush Proho				Depth to Water (ft BGS)	7	
		d: Continuous Con		usii Fiobe				Start/Finish Date	5/25/2012	
Depth /					PID	Blows/	Material		0,20,2012	
Elevation (feet)	E	Borehole Completion	Sample Type/ID	Tests	(ppm)	6"	Туре	Description		De _l
		8" Flush-mount monument and						Asphalt		
		thermos cap						Moist, brown SAND (SP); trace gra	avel, fine sand	
Ţ					0					T
		Concrete surface seal 0' to 2'								
Ť			00.4		0					Ť
		3/8" Hydrated bentonite chips 2' to 4'	CC-1							
†		l '			0					Ť
†					0					+
		10/20 pre-pack Silica sand filter pack 4' to 15'								
5 +		Sand liner pack 4 to 15			0					 5
		.]								
+					0			Very moist, gray SILT (ML)		_
		.]						Wet, brown SAND (SP); fine sand		-
+				 UST68-MW-1-7	-8 0			Trot, Brown of the Cer J, mile cand		+
			CC-2							
+					0			Color changes to gray		+
								Color changes to gray		
1		· 2" Diameter PVC	Ц		0			011 1-11-1-111 -4-01		+
		pre-packed .001 slot screen 5' to 15'						2" layer of silt at 9'		
10		. Screen 3 to 13								 -10
					0					
1										1
					0					
			CC-3		0					
1		•	00-3							
Ţ					0					Γ
T					0			Wet, gray silty SAND (SM); fine sa	and	
45		Threaded cap								
15+					0			Bottom of boring at 15' BGS		1
†										†
†										†
+										+
+										+
		<u> </u>				<u> </u>			MAD	
	ampler T			PID - Ph			tector	Logged by:	MAR	
○ No R					atic Wate	er Level		Approved by:	SJG	
Conti	muous C	ore		<u> </u> Wa	iter Leve	el (ATD)				
								Figure No.	A- 91	

		Aspec	~ †		Dro!-	ect Numl	Monit	oring Well Constructio	n Log Sheet	
		CONSULTIN	⊌ I N G			10207	ber	UST68-MW-02	1 of 1	
Project N	ame:	Kimberly Cla		tt Mill	•	10201		Ground Surface Elev	1011	
Location:		Everett, WA						Top of Casing Elev.	15.33	
Driller/Me	thod:	Cascade Drilling	g / Direct Ρι	ısh Probe				Depth to Water (ft BGS)	9	
Sampling	Method	l: Continuous Core	e					Start/Finish Date	5/30/2012	
Depth / Elevation (feet)	В	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Depti (ft)
T		8" Flush-mount monument and						Asphalt		
		thermos cap						Pea gravel		
Ť										Ť
		Concrete surface seal 0' to 2'								
		3/8" Hydrated bentonite								
1		chips 2' to 4'			0			Moist, brown, slightly silty SAND (iron staining	SP-SM); fine sand.	1
			CC-1							
1		-	Ц		0					1
		10/20 pre-pack Silica						1" lens of silt at 4'		
5 +		sand filter pack 4' to 15'								- 5
					0			Trace to numerous organics (shell wood) 5' to 8.5'	I fragments and	
1		•			0					+
+					0					+
			CC-2							
+		•			0			Wet, gray, silty SAND (SM); fine s	eand	+
								1" lens of silt at 8.5'	ariu	4
+		Diameter PVC			0			Wet, brown SAND (SP); fine to m	edium sand	
		pre-packed .001 slot screen 5' to 15'					*****	Wet, brown SAND (SW); fine to c	narea cand	
10				ST68-MW-2	2-10-11 0			Wet, gray SAND (SP); fine to med petroleum-like odor and sheen fro		- 10
				0100 WW 2	51.5			petroleum-like odor and sheen fro	m 10' to 11'	
+		-			46.8					+
					3.7					
+		-			1.8					+
			CC-3							
+					0.8			Trace organics (shell fragments)	13' to 14'	+
+					2.0			Fine sand at 14'		+
		Threaded cap								
15+	-, -,	Triicadea cap			2.0			Bottom of boring at 15' BGS		15
†										Ť
†										†
Ţ										Ţ
Ţ										T
	mpler T	ype:		PID -	- Photoioniz	ation De	etector	Logged by:	MAR	
_	ecovery			<u>*</u>	Static Water	er Level		Approved by:	SJG	
Conti	nuous C	ore		$\bar{\Delta}$	Water Leve	l (ATD)				
								Figure No.	A- 92	

		Vanor	> ∳	<u> </u>		4.1	//OIIIt	oring Well Construction		
		Aspec	₄ 			ct Numb 10207	er	Well Number UST68-MW-04	Sheet 1 of 1	
Project Na	ama:	Kimberly Clar		Mill	ı ı	10207		Ground Surface Elev	1 01 1	
Location:	ame.	Everett, WA	K-EVEIELLI	VIIII				Top of Casing Elev.	14.34	
Driller/Me	thod:	Cascade Drilling	/ Direct Buch	Droho				Depth to Water (ft BGS)	6.5	
		l: Continuous Core		Probe				Start/Finish Date	5/24/2012	
Depth /					l pip	Plows/		Starti Illisii Date	3/24/2012	
Elevation (feet)	В	•	Type/ID	Tests	(ppm)	6"	Туре	Description		Dep (ft
Elevation	B	orehole Completion 8" Flush-mount monument and thermos cap Concrete surface seal 0' to 2' 3/8" Hydrated bentonite chips 2' to 4' 10/20 pre-pack Silica sand filter pack 4' to 15' Threaded cap Threaded cap	CC-1 UST	Tests 68-MW-4-6-6	0.2 0.2 0.2 0.2 0.2 .5 0.1 0.1 0.1	Blows/6"	Material Type	Asphalt Moist, brown, slightly silty SAND (Sfine sand) Wet Wet, brown, very silty SAND (SM); Wet, gray, slightly silty SAND (SP) Wet, dark gray SAND (SP); medium faint odor	fine sand	Dep (fft)
								J. T. T. T. T. T. T. T. T. T. T. T. T. T.		+
⊥ Sai	l mpler Ty	ıl ype:		PID - Pho) otoioniz:	l ation De	tector	Logged by:	MAR	
_	ecovery	/ I -		_	ic Wate		.55(0)			
_		oro						Approved by:	SJG	
Contir	IUOUS C	OIC		\/	!	l (ATD)				

		Mana	c+			N	/lonit	oring Well Constructio		
		Aspe	CI			ect Numb	er	Well Number	Sheet	
Duningt N	la	Kimberly Cla		SH Mill	1	10207		UST68-MW-05	1 of 1	
Project N			ark-Evere	ett iviiii				Ground Surface Elev	14.12	
Location:		Everett, WA	a. / Disc et D	V. ab Daaba				Top of Casing Elev Depth to Water (ft BGS)	7	
Driller/Me		Cascade Drilling		rush Probe				Start/Finish Date	5/24/2012	
Depth /		d: Continuous Cor				T _{B1} ,	T	Start/Firrish Date	5/24/2012	\overline{T}
Elevation (feet)	В	Forehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Dept (ft)
		8" Flush-mount monument and						Asphalt		
		thermos cap						Moist, gray to brown, gravelly SAN	ND (SP); trace fine	
Ť					0.2			sand, mostly medium sand		T
		Concrete surface seal 0' to 2'								
Ť					0.2					†
		3/8" Hydrated bentonite chips 2' to 4'	CC-1							
+		cnips 2' to 4'	H		0.2					+
+					0.2					+
		. 10/20 pre-pack Silica			0.2					
5 +		sand filter pack 4' to 15	'							- 5
٦					0.2					"
†					0.3			Wet, brown to gray SAND (SP); tr	ace fine sand, mostly	Ť
								medium sand		
+		.¥		UST68-MW-5-	7-8 0.8					+
			CC-2							
+					0.7					+
1		2" Diameter PVC	Ц		0.7					1
		pre-packed .001 slot			0.7			Dark brown 9' to 12'		
10		screen 5' to 15'	\square							-10
10+					0.4					T 10
†		j	L	JST68-MW-5-1	2-130.4					t
+					3.2			Dark gray to black in color 12' to 1	5' slight H2S odor	+
			CC-3					James gray to short in color 12 to 1	o, og	
+					7.2					+
		-								
4					6.1					1
					0.1					
15		Threaded cap			0.3					15
15					0.0			Bottom of boring at 15' BGS		'
Ť										Ť
+										+
+										+
+										+
Sa	mpler T	vpe:		PID - E	hotoioniz	ation De	tector	Logged by:	MAR	
□ No R				_						
Conti					tatic Wate ater Leve			Approved by:	SJG	
				***	2010	. ()		Figure No.	A- 94	

et
f 1
12
Depti (ft)
(1.)
†
io
†
+
 5
+
y fine
^
+
+
-10
+
+
+
15
+
+
+
+
<u>_</u>
;tl

		Manag						Boring Log		
		Aspec	.			t Numb 0207	er	Boring Number UST70-B-01	Sheet 1 of 1	
Project N	ama:	Kimberly Cla		SH Mill	11	0207		Ground Surface Elev	1 01 1	
Location:		Everett, WA	IK-LVEI	SIL IVIIII				Gloulid Sulface Elev		
Driller/Me		Cascade Drilling	/ Direct F	Push Probe-Lim	ited Access	 S		Depth to Water (ft BGS)	8.5	
		I: Continuous Core						Start/Finish Date	5/31/2012	
Depth / Elevation (feet)	В	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft
Ť						(monoc)		Wood chips-hogged fuel		$\frac{1}{\sqrt{1-x^2}}$
								Moist, gray, sandy, very silty GRA\	/EL (GM)	
Ţ					25.1			Pea gravel		Ť
		Backfilled with medium bentonite chips								
T			CC-1							Γ
			$\vec{7}$					Moist, gray SAND (SP); fine to med petroleum-like odor	dium sand, strong	1
T				UST70-B-1-3	3-4 95.5			petroleum-like odol		
					75.1					
5 +										+ 5
					85.9					`
1					99.7					
					99.7			Moist, gray, slightly silty SAND (SP medium sand, strong petroleum-lik	'-SM); fine to e odor from 6' to 12'	
1					100.5			3		1
			CC-2		100.5					
1			-2		99.5					1
		<u></u>			99.5					
1					25.5					1
					25.5					
10 +				_	05.5					1
					25.5					
+					25.5			Clightly grovally 11! to 12!		+
								Slightly gravelly 11' to 12'		
+					25.5					+
			CC-3							
+				JST70-B-1-13.5	5-14 5 6.0					+
+					6.0					+
15+				-	4.5			Bottom of boring at 15' BGS		+1:
								_		
+										+
†										†
†										†
†										†
Sa	mpler Ty	ype:	F	PID - Photoioniz	zation Dete	ctor (He	adspa	ce Measurement) Logged by:	MAR	
O No Re					tatic Water		•	,	810	
Conti		ore			ater Level			Approved by:	270	
				• • • • • • • • • • • • • • • • • • • •		. ,		Figure No.	A- 96	

Project Number 110207		Mana						Boring Log		
### CONSULTING reject Name: position Everett, WA		Aspe	CT				er	Boring Number		
Depth to Water (ft BGS) 9 Sampler Type: PID - Photoionization Detector (Headspace Measurement) Sampler Type: Sampler Type: PID - Photoionization Detector (Headspace Measurement) Sampler Type: No Recovery PID - Photoionization Detector (Headspace Measurement) Sampler Type: No Recovery Valer Level (ATD) PID - Photoionization Detector (Headspace Measurement) Logged by: MAR Approved by: SJG MAR Approved by: SJG MAR Sampler Type: Valer Level (ATD)		■ CONSULTI	NG	- 44 B A:II	11	0207			1 of 1	
of Recovery Sampler Type: PID - Photoiomization Detector (Headspace Measurement) Sampler Type: PID - Photoiomization Detector (Headspace Measurement) Sampler Type: PID - Photoiomization Detector (Headspace Measurement) Sampler Type: PID - Photoiomization Detector (Headspace Measurement) Sampler Type: PID - Photoiomization Detector (Headspace Measurement) No Recovery Visite Water Level (ATD) Sampler Type: PID - Photoiomization Detector (Headspace Measurement) Visite Water Level (ATD) Sampler Type: PID - Photoiomization Detector (Headspace Measurement) Visite Water Level (ATD) Approved by: SJG Approved by: SJG Approved by: SJG	-		ark-Evere	ett iviiii				Ground Surface Elev		
ampling Wethord: Continuous Core Start/Finish Date Start/Finish Date Start/Finish Date Start/Finish Date Start/Finish Date Description Moist, brown, slightly gravelly SAND (SP-SM) And Description Description Description Description Description Description Moist, dark brown, slightly silty SAND (SP-SM) Moist, brown, slightly silty SAND (SP-SM) Description Description Description Description Description Description Moist, dark brown, slightly silty SAND (SP-SM) Description Description Description Moist, dark brown, slightly silty SAND (SP-SM) Description Des		<u> </u>	a / Direct F	ush Proho Limita	nd Accocs			Depth to Water (ft BGS)	q	
Together Conviction Borelive Conviction Type ID Type I				usii Fiobe-Liiliite	u Acces	>				
Sampler Type: PID - Photolonization Detector (Headspace Measurement) Sampler Type: PID - Photolonization Detector (Headspace Measurement) No Recovery Continuous Core PID - Photolonization Detector (Headspace Measurement) Logged by: MAR Approved by: SJIG Approved by: SJIG	Depth /				PID	Drive/	Material		0/01/2012	Dept
Backflied with medium sentrothe cities R		Borenole Completion	Type/ID	Tests	(ppm)	Recovery	Type	·		(ft)
No Recovery Static Water Level Approved by: SJG Water Level (ATD)	5	N NI	CC-1 CC-2	UST70-B-1-9-1	0.4 0.4 0.4 0.4 0.4 0.4	(inches)		Moist, brown, slightly gravelly SANI Moist, dark brown, slightly silty SAN Concrete rubble Wet, gray, slightly silty, gravelly SA coarse sand, fine to medium sand	ND (SP-SM)	- 5
Continuous Core Water Level (ATD) Approved by: SJG	_		F				eadspac	ce Measurement) Logged by: N	MAR	
- Water Level (ATD)	_			$\overline{}$				Approved by: S	SJG	
	LI Contin	iuous Core		⊻ Wat	er Level	(ATD)			\- 97	

	Mana	~ ‡					Boring Log		
	Aspe	CT			t Numb	er	Boring Number	Sheet	
			44 B 4:11	11	0207		UST70-B-03	1 of 1	
roject Nam		ark-⊨vere	ett IVIIII				Ground Surface Elev		
ocation:	Everett, WA	/ Di D					Don'th to Water (# DCC)	0	
Oriller/Metho			ush Probe-Limited	Access	8		Depth to Water (ft BGS)	9 5/31/2012	
Depth /	ethod: Continuous Cor			- DID	T		Start/Finish Date	5/31/2012	$\overline{}$
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	(ppm)	Drive/ Recovery (inches)	Material Type	Description		Dept (ft)
Elevation	Backfilled with medium bentonite chips	Sample Type/ID CC-1 CC-2	UST70-B-3-8-9	PID (ppm) 1.0 0.5 0.6 0.6 0.6 0.5 0.5 0.5 0	Drive/ Recovery (inches)	Material Type	Moist, brown, slightly gravelly SAND medium sand Brick rubble at 4' Concrete rubble Wet, gray, slightly silty SAND (SP-S sand)		(ft)
Samp	oler Type: overy	P	PID - Photoionizatio ▼ Statio	on Dete		eadspac	,	//AR	-
Continuo			\Box	r Level			Approved by: S	JG	
			vvale		(, (, D)		Figure No. A	. - 98	

Denth /	Kimberly Cla Everett, WA Cascade Drilling Continuous Cor Borehole Completion	ark-Evere	ett Mill		t Numb 0207	el	Boring Number Sheet UST70-B-04 1 of 1	
Location: Driller/Method: Sampling Method Depth / Elevation	Kimberly Cla Everett, WA Cascade Drilling d: Continuous Cor	ark-Evere	ett Mill	11	0201		00170-0-0-	
Location: Driller/Method: Sampling Method Depth / Elevation	Everett, WA Cascade Drilling d: Continuous Cor		JCC 141111				Ground Surface Elev	
Driller/Method: Sampling Method Depth / Elevation Depth / Elevation	Cascade Drilling d: Continuous Cor	a / Direct D						
Depth / Elevation		g / Direct P	ush Probe-Limi	ited Access	3		Depth to Water (ft BGS) 8	
Elevation E	Borehole Completion	re					Start/Finish Date 5/31/2012	
(feet)	Boronolo Gompiotion	Sample	Tests	PID (ppm)	Drive/	Material	Description	Dep
5	Backfilled with medium bentonite chips	Sample Type/ID CC-1 CC-2 CC-3	UST70-B-4-4.5	(ppm) 245.5 15.8 7.8 1.2	Drive/ Recovery (inches)	Matry = 0.000.000.000.000.000.000.000.000.000	Description Moist, gray, sandy, very silty GRAVEL (GM); fine subrounded gravel Moist, dark gray to brown, gravelly SAND (SP); fine sand Wet Wet Wet, gray to brown, gravelly SAND (SW); fine to coars sand Bottom of boring at 15' BGS	Dec (ft 15 15 15 15 15 15 15 1
Sampler T No Recovery Continuous C	y	F	₹ St	zation Deter tatic Water ater Level	Level	eadspac	e Measurement) Logged by: MAR Approved by: SJG	

	Managh	Monitor	ing Well Construction	on Log
`	A spect	Project Number	Well Number	Sheet
	OCON SULTING	110207	UST70-MW-01	1 of 1
Project Name:	Kimberly Clark-Everett Mill		Ground Surface Elev	
Location:	Everett, WA		Top of Casing Elev.	14.65
Driller/Method:	Cascade Drilling / Direct Push Probe		Depth to Water (ft BGS)	8.5
Sampling Method:	Continuous Core		Start/Finish Date	6/5/2012

O No Recovery Continuous Core

 ∇ Water Level (ATD) Approved by: SJG

A- 100 Figure No.

Dept (ft)
ind
P);
_
- 5
and
+
+
-10
+
_
_
_
15
<u> </u>
†
+

	Mana	~					Boring Log	
	Aspe	CT			t Numb	er	Boring Number	Sheet
			44 B A:11	11	0207		UST71-B-01	1 of 1
Project N		lark-Evere	ett IVIIII				Ground Surface Elev	
ocation:		· /D: /D		•			Donath to Water (# DOC)	
Driller/Me			ush Probe-Limited	Access	8		Depth to Water (ft BGS)	E/21/2012
Depth /	Method: Continuous C				l		Start/Finish Date	5/31/2012
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description	Dep (ft)
							Wood chips-hog fuel	
						XXX		
T						XXX		T
	Backfilled with mediu bentonite chips	ım 📗				>>>		
†		n		4.0		XX		<u></u>
		CC-1				XXX		
†						XXX		†
							Moist, gray SILT (ML)	
+				1.7			Moist, gray SAND (SP); fine sand 4'	to 4.5', medium
				3.0			sand 4.5' to 15'	,
5 🕂			+					- 5
		Ш		2.0				
+				2.5				+
1				1.7				_
		CC-2						
1		Ä		1.5				_
				1.5				
				4.5			Silty	
				1.5				
10 -								+10
				1.5				
Ť		Ш						Ī
†		0	UST71-B-1-12-13					†
		CC-3		140.0				
†								†
+				9.0				+
15+			1	5.0		<u> </u>	Bottom of boring at 15' BGS	15
+								+
+								_
1								_
1								
	mpler Type:	F	PID - Photoionizatio			adspa	ce Measurement) Logged by: M	IAR
◯ No Re			\Box	Water			Approved by: S	JG
Contir	nuous Core		<u> </u> Water	Level	(ATD)			
							Figure No. A	- 102

		N Asneo	~ †			Droino	t Numb	or	Boring Log Boring Number Sheet	
		Aspe	₩ I N G				t Numb 0207	CI.	UST71-B-02 1 of 1	
Project N	ame:	Kimberly Cla		/erett	t Mill				Ground Surface Elev	
Location:		Everett, WA								
Driller/Me	thod:	Cascade Drilling	g / Dire	ct Pus	sh Probe-Limited	Access	3		Depth to Water (ft BGS) 5	
	Method	: Continuous Cor	е						Start/Finish Date5/31/2012	!
Depth / Elevation (feet)	В	orehole Completion	Samp Type/	ple /ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description	De (f
		Backfilled with medium bentonite chips		CC-1		2.5			Wood chips-hogged fuel Concrete rubble Wood chips	
5 +		<u>¥</u>	0			3.2			Very moist, gray, sandy, very silty GRAVEL (GM) subrounded gravel	; fine - 5
_						16.9		0000000 000000000000000000000000000000	Wet, gray GRAVEL (GP); coarse subrounded gra petroleum-like odor	vel,
_				CC-2		10.5 11.5				-
10-						15.5		0000000	Moderate rainbow sheen Wet, dark brown to black SAND (SP); numerous	1
+						75			organics: Wood chips Heavy bleb sheen	+
+				CC-3	JST71-B-2-13-14	85 75.0				+
_			0			80.0			Wet, dark gray to dark brown, silty SAND (SM); h sheen	eavy
15-						75.8			Bottom of boring at 15' BGS	1
+										+
+										
+										+
Sai				PI		Water	Level	adspac	ce Measurement) Logged by: MAR Approved by: SJG	
					= vvater	Level	(AID)		Figure No. A- 103	

	Man	~~					Boring Log		
	Asp	ect			t Numb	er	Boring Number	Sheet	
			44.5.4	11	0207		UST71-B-03	1 of 1	
Project N		Clark-Ever	ett Mill				Ground Surface Elev		
Location:							Double to Webse (# DOO)	0	
Driller/Me			Push Probe-Limited	Access	3		Depth to Water (ft BGS) Start/Finish Date	8 5/31/2012	
Depth /	Method: Continuous			- DID			Start/Finish Date	5/31/2012	$\overline{}$
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Dep (ft
+	Backfilled with m bentonite chips	edium CC-1					Wood chips-hogged fuel		-
		0		6.5			Moist, gray, sandy, very silty GRAV subrounded gravel	EL (GM); fine,	Ţ
5 +				7.0 9.0		000000000000000000000000000000000000000	Wet, gray GRAVEL (GP)		5
†	<u> </u>	CC-2		6.0					+
10-				5.0					+1
+				5.0		000000000000000000000000000000000000000			+
+		CC-3		75.0		000000000000000000000000000000000000000			+
+				75.0		000000000000000000000000000000000000000			
15-				60.0			Wood chips; heavy bleb sheen, stro odor	ng petroleum-like	-1
+				53.6					-
+		CC-4		75.3					+
+			UST71-B-3-18-19						+
			UST71-B-3-19-20	88.5					
_	mpler Type:		PID - Photoionizatio	n Dete	ctor (He	adspa	ce Measurement) Logged by: N	MAR	
_	ecovery		▼ Station	Water	Level		Approved by: S	SIG	
Contir	nuous Core		<u> </u> Wate	r Level	(ATD)				
							Figure No. 🛮 🖊	N- 104	

		_1					Boring Log		
	Aspe	CT		Project		er	Boring Number	Sheet	
	● CON SULTI			110	0207		UST71-B-04	1 of 2	
Project Name		ark-Evere	ett iviiii				Ground Surface Elev		
Location:	Everett, WA	/ Di 1 D	and Dark - Limit				Don'th to Water (# DCS)	10.5	
Driller/Method	hod: Continuous Cor		ush Probe-Limit	ed Access			Depth to Water (ft BGS) Start/Finish Date	5/31/2012	
Depth /				PID	Drive/		Start I IIISI Date	3/3 1/2012	Τ
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	(ppm)	Recovery (inches)	Material Type	Description		Depti (ft)
5 -	Backfilled with medium bentonite chips	CC-2		10.7 11.5 61.2 12.7 12.7			Moist, gray, sandy, very silty GRAV subrounded gravel, slight petroleun moderate sheen Moist, gray GRAVEL (GP); poor recrock 2 separate times	n-like odor,	+ + + + + + + + + + + + + + + + + + + +
10-	▼	0	_ 	66 84.5 13,561.5		000000000000000000000000000000000000000	Wet, dark brown, very silty SAND (fine sand, strong petroleum-like odd	SM); trace gravel, or, heavy bleb sheen	- - - 10
15-		0		89.7 101.9 28.5 47.8 27.5 31.8			Wet, gray SAND (SP); trace silt, fin	e sand	-15
		00.4		21.5 11.8 15.7			Medium sand 18' to 19'		-
Sample	er Type:		ID - Photoioniza	ation Dates	tor (⊔o	adena	ce Measurement) Logged by:	MAR	
No Recov		F	_			auspac	e weasurement) Logged by. I	711 U C	
<u> </u>				tic Water	Level		Approved by: \$	SJG	
Continuou	s Core		∑ Wa	ter Level (A T		• • • • • • • • • • • • • • • • • • • •		

	Mana						Boring Log		
	Aspe	ECT			t Numb	er	Boring Number	Sheet	
				11	0207		UST71-B-04	2 of 2	
Project N		Clark-Evere	tt Mill				Ground Surface Elev		
Location:	Everett, WA							40 =	
Driller/Me	· · · · · · · · · · · · · · · · · · ·		ush Probe-Limite	d Access	3		Depth to Water (ft BGS)	10.5	
Sampling Depth /	Method: Continuous (Core	I	1	1		Start/Finish Date	5/31/2012	
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Drive/ Recovery (inches)	Material Type	Description		Depth (ft)
				00.0					
1		Ш		69.0					L
		Ш		90.0					
		Ш		91.1					
T		S		76.8					T
		CC-5		22.0					
Ť		Ш							T
		Ш		7.9					
1		Ш		5.4					Ť
		Ш							
25+				12.9					-25
		Ш							
†		Ш		62.7					Ť
		Ш							
†		Q		25.7					†
		CC-6		14.7					
Ť		Ш	UST71-B-4-28-2				Moderate metallic sheen		Ť
		Ш		31.4					
†		Ш		19.5					Ť
		Ш							
30+				7.8			Bottom of boring at 30' BGS		30
1									Ť
Ť									Ť
Ť									Ť
1									Ť
0.5									0.5
35+									-35
T									Ī
T									T
T									T
1									Ť
	mpler Type:	Р	ID - Photoioniza	tion Dete	ctor (He	adspa	ce Measurement) Logged by:	MAR	
O No Re			▼ Sta	tic Water	Level		A	S IC	
Contir	nuous Core		<u></u> Wat	er Level	(ATD)		Approved by: \$	2010	
					. ,		Figure No. /	A- 105	

	Mana	-			Mor	nito	ring Well Construction	n Log	
	Aspe			Project N	lumber		Well Number	Sheet	
	●CON SULTI			1102	207		UST71-MW-01	1 of 1	
roject Name:	Kimberly Cla	ark-Everett I	VIII				Ground Surface Elev	10.00	
ocation:	Everett, WA	151 (D b	- 1 1 to 1 to 1 to 1				Top of Casing Elev	13.66	
riller/Method:	Cascade Drilling		Probe-Limited	Access			Depth to Water (ft BGS)	6	
ampling Metho	d: Continuous Cor	e		1		1	Start/Finish Date	5/31/2012	$\overline{}$
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests		ows/ Mate 6" Typ		Description		ı
<u> </u>	8" Flush-mount monument and						(Top 3.5 feet of Wood chips cleare order to set a concrete well monur	ed away by CAT in	T
	thermos cap				[8][8	M	Moist, gray, very sandy, very silty	GRAVEL (GM); fine	
1 💥 🖔				5.9	14	်မြို့ s	subrounded gravel	•	1
	Concrete surface seal 0' to 2'								
+	. 1			3.1		209			†
	10/20 pre-pack Silica	CC-1			11				
+	sand filter pack 2' to 13'			2.3	[\$ {				+
					14				
1]			1.7					+
				'					_
					000	SSI V	Wet, gray GRAVEL (GP); coarse	subrounded gravel]
				3.5	000	000			
					000	000			
				2.7	••••	: v	Wet, gray, gravelly SAND (SW); fi	ne to coarse sand,	
						n	moderate rainbow sheen		
† []	2" Diameter PVC pre-packed .001 slot			5.0					-
	screen 3' to 13'	CC-2				· · · V	Wet, black SAND (SP); fine to me	dium sand, strong	_
+				31.3		p	petroleum-like odor, heavy bleb sh	neen	-
				34.0					
				85.0					-
				85.0					
o									_
				75.0					
				115.0					
				115.0					-
	•			120.0		V	Wet, dark gray, very silty SAND (S	SM); fine sand	
				28.5					
	Threaded cap	CC-3		16.5					
	•			23.3	111	V	Wet, gray SAND (SP); fine sand, t	trace organics	_
	:]								
+ :::::::	Slough			28.3			Coarser sand at 14'		-
5 -	• <u>1</u>			38.0	· · · ·	F	Bottom of boring at 15' BGS		_
						'	bottom of boring at 15 boo		
+									-
1									
1									
†									-
Sampler T	ype:	1 1	PID - Phot	toionizatio	n Detecto	or —	Logged by:	MAR	_
No Recovery			_	c Water Le			-		
Continuous ($\overline{}$	r Level (A			Approved by:	SJG	
			vvaic	I LCVCI (A	10)				