wood.

Quarterly report, second quarter 2019

RCRA Corrective Action Program
Boeing Renton Facility
Project # 0088880100.2019 The Boeing Company

Prepared for:

The Boeing Company Seattle, Washington

August 15, 2019

Quarterly report, second quarter 2019

RCRA Corrective Action Program
Boeing Renton Facility
Project # 0088880100.2019 The Boeing Company

Prepared for:

The Boeing Company Seattle, Washington

Prepared by:

Wood Environment & Infrastructure Solutions, Inc. 600 University Street, Suite 600 Seattle, Washington 98101 USA

T: 206-342-1760

August 15, 2019

This report was prepared by the staff of Wood Environment & Infrastructure Solutions, Inc., under the supervision of the Hydrogeologist whose seal and signature appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Wood Environment & Infrastructure Solutions, Inc.

John Long, L.G. L. Hg. Licensed Geologist/Hydrogeologist #1354 Expiration Date: May 23, 2022

Copyright and non-disclosure notice

The contents and layout of this report are subject to copyright owned by Wood (© Wood Environment & Infrastructure Solutions, Inc.), save to the extent that copyright has been legally assigned by us to another party or is used by Wood under license. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of Wood. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the third-party disclaimer set out below.

Third-party disclaimer

Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by Wood at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third party who is able to access it by any means. Wood excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.

Table of contents

1.0	Introduction				
	1.1	Quarte	rly progress reporting	2	
		1.1.1	Work completed in the second quarter 2019		
		1.1.2	Deviations from required tasks	2	
		1.1.3	Deviations from CAP	3	
		1.1.4	Schedule revisions	3	
		1.1.5	Work projected for the next quarter	3	
2.0	Ground	lwater sa	mpling methodology	4	
3.0	Correct	ive actio	n activities completed during quarter	5	
	3.1	SWMU	-168	5	
	3.2	SWMU	-172 and SWMU-174	5	
		3.2.1	Cleanup action activities	5	
		3.2.2	Compliance monitoring plan deviations	5	
		3.2.3	Water levels	5	
		3.2.4	Groundwater monitoring results	5	
	3.3	Buildin	g 4-78/79 SWMU/AOC group	7	
		3.3.1	Cleanup action activities	7	
		3.3.2	Compliance monitoring plan deviations	7	
		3.3.3	Water levels	7	
		3.3.4	Groundwater monitoring results	7	
	3.4	Former	Fuel Farm AOC group	9	
		3.4.1	Cleanup action activities	9	
		3.4.2	Compliance monitoring plan deviations	9	
		3.4.3	Water levels	9	
		3.4.4	Groundwater monitoring results		
	3.5	AOC-0	01 and AOC-002	. 10	
		3.5.1	Cleanup action activities	. 10	
		3.5.2	Compliance monitoring plan deviations	. 10	
		3.5.3	Water levels	. 10	
		3.5.4	Groundwater monitoring results	. 10	
	3.6	AOC-003		. 11	
		3.6.1	Cleanup action activities		
		3.6.2	Compliance monitoring plan deviations	. 11	
		3.6.3	Water levels		
		3.6.4	Groundwater monitoring results	. 11	
	3.7	AOC-0	04	. 12	
	3.8	AOC-060		. 12	
	3.9	AOC-090			
	3.10	Building 4-70 area		. 12	
	3.11	Lot 20/	Former Building 10-71 Parcel	. 12	
		3.11.1	Cleanup action activities	. 12	
		3.11.2	Water levels		
		3.11.3	Groundwater monitoring results	. 13	
	3.12	Apron	A area		
		3.12.1	Cleanup action activities	. 13	
		3.12.2	Water levels	. 13	
		3.12.3	Groundwater monitoring results	. 13	
4.0	Referer	nces		. 15	

List of figures

Figure 1 SWMU-172 and SWMU-174 Monitoring Well Locations and Groundwater Elevations, May 6, 2019 Figure 2 SWMU-172 and SWMU-174 Trend Plots for Source Area Wells GW152S and GW153S Figure 3 SWMU-172 and SWMU-174 Trend Plots for Downgradient Plume Area Wells GW172S and GW173S Figure 4 SWMU-172 and SWMU-174 Trend Plots for Arsenic in Select Source Area and Downgradient Plume Area Wells Figure 5 SWMU-172 and SWMU-174 Trend Plots for cis-1,2-Dichloroethene, Trichloroethene, and Vinyl Chloride in CPOC Area Wells SWMU-172 and SWMU-174 Trend Plots for Arsenic, Copper, and Lead in CPOC Area Figure 6 Wells Figure 7 Building 4-78/79 SWMU/AOC Group Monitoring Well Locations and Groundwater Elevations, May 7 and 8, 2019 Figure 8 Building 4-78/79 SWMU/AOC Group Trend Plots for cis-1,2-Dichloroethene and Benzene in Injection Wells Figure 9 Building 4-78/79 SWMU/AOC Group Trend Plots for Trichloroethene and Vinyl Chloride in Injection Wells Figure 10 Building 4-78/79 SWMU/AOC Group Trend Plots for Source Area Wells GW031S and GW033S Figure 11 Building 4-78/79 SWMU/AOC Group Trend Plots for Source Area Well GW034S and Downgradient Plume Area Well GW209S Figure 12 Building 4-78/79 SWMU/AOC Group Trend Plots for Benzene and cis-1,2-Dichloroethene in CPOC Area Wells Figure 13 Building 4-78/79 SWMU/AOC Group Trend Plots for Trichloroethene and Vinyl Chloride in CPOC Area Wells Figure 14 Building 4-78/79 SWMU/AOC Group Trend Plots for TPH as Gasoline in CPOC Area Wells Figure 15 Former Fuel Farm AOC Group Monitoring Well Locations and Groundwater Elevations, May 6 and 7, 2019 Figure 16 Former Fuel Farm AOC Group Trend Plots for CPOC Area Wells GW211S, GW221S, and **GW224S** Figure 17 AOC-001 and AOC-002 Monitoring Well Locations and Groundwater Elevations, May 8, 2019 Figure 18 AOC-001 and 002 Trend Plots for cis-1,2-Dichloroethene and Vinyl Chloride in CPOC Area Wells Figure 19 AOC-003 Monitoring Well Locations and Groundwater Elevations, May 8, 2019 Figure 20 Lot 20/Former Building 10-71 Parcel Monitoring Well Locations and Groundwater Elevations, May 8, 2019 Figure 21 Apron A Monitoring Well Locations and Depth to Groundwater, May 7, 2019 List of tables Table 1 SWMU-172 and SWMU-174 Group Groundwater Elevation Data, May 6, 2019

	· · · · · · · · · · · · · · · · · · ·
Table 2	SWMU-172 and SWMU-174 Group Concentrations of Primary Geochemical Indicators,
	May 6, 2019
Table 3	SWMU-172 and SWMU-174 Group Concentrations of Constituents of Concern, May 6,
	2019
Table 4	Building 4-78/79 SWMU/AOC Group Groundwater Elevation Data, May 7 and 8, 2019

Table 5	Building 4-78/79 SWMU/AOC Group Concentrations of Primary Geochemical Indicators, May 7 and 8, 2019
Table 6	Building 4-78/79 SWMU/AOC Group Concentrations of Constituents of Concern, May 7 and 8, 2019
Table 7	Former Fuel Farm Groundwater Elevation Data, May 6 and 7, 2019
Table 8	Former Fuel Farm Concentrations of Primary Geochemical Indicators, May 6 and 7, 2019
Table 9	Former Fuel Farm Concentrations of Constituents of Concern, May 6 and 7, 2019
Table 10	AOC-001 and AOC-002 Groundwater Elevation Data, May 8, 2019
Table 11	AOC-001 and AOC-002 Concentrations of Primary Geochemical Indicators, May 8, 2019
Table 12	AOC-001 and AOC-002 Concentrations of Constituents of Concern, May 8, 2019
Table 13	AOC-003 Groundwater Elevation Data, May 8, 2019
Table 14	AOC-003 Concentrations of Primary Geochemical Indicators, May 8, 2019
Table 15	AOC-003 Concentrations of Constituents of Concern, May 8, 2019
Table 16	Lot 20/Former Building 10-71 Parcel Groundwater Elevation Data, May 8, 2019
Table 17	Lot 20/Former Building 10-71 Parcel Concentrations of Primary Geochemical Indicators
	May 8, 2019
Table 18	Lot 20/Former Building 10-71 Parcel Concentrations of Constituents of Concern, May 8,
	2019
Table 19	Apron A Groundwater Elevation Data, May 7, 2019
Table 20	Apron A Concentrations of Primary Geochemical Indicators, May 7, 2019
Table 21	Apron A Concentrations of Constituents of Concern, May 7, 2019

List of appendices

Appendix A	Summary of Groundwater Sampling Methodology
Appendix B	Field Forms
Appendix C	Data Validation Memos

SVE Report

Appendix D

1.0 Introduction

This report provides progress reporting in conformance with Section VII.B.1 of Agreed Order No. 8191 (Order) and summarizes cleanup actions and monitoring conducted at the Boeing Renton Facility (the Facility) during the second quarter 2019. This work is required under the Resource Conservation and Recovery Act (RCRA) Corrective Action Program being performed at the Facility. Corrective action activities are performed for those solid waste management units (SWMUs), areas of concern (AOCs), and other areas where cleanup actions are ongoing. Monitoring, cleanup activities, and reporting are being conducted as part of the final remedy implementation described in the Engineering Design Report (EDR) (AMEC, 2014). The groundwater monitoring program is detailed in the Addendum to the Compliance Monitoring Plan (Wood, 2019), which contains changes to the revised Compliance Monitoring Plan (Amec Foster Wheeler, 2016a) that superseded the original plan presented in Appendix D of the EDR (AMEC, 2014).

Groundwater monitoring and final cleanup action implementation are being conducted at the following areas (the ongoing remedies for each of these areas are noted in parentheses):

- SWMU-168: (monitored natural attenuation [MNA]);
- SWMU-172 and SWMU-174: (bioremediation, soil vapor extraction [SVE] and monitored attenuation [MA]);
- Building 4-78/79 SWMU/AOC Group: (bioremediation, SVE, MNA, and MA);
- Former Fuel Farm AOC Group: (MNA);
- AOC-001 and AOC-002: (bioremediation and MA);
- AOC-003: (bioremediation and MA);
- AOC-004: (bioremediation and MA);
- AOC-060: (bioremediation and MA);
- AOC-090: (bioremediation and MA);
- Building 4-70: (bioremediation and MA);
- Lot 20/Former Building 10-71 Parcel: (bioremediation and MA); and
- Apron A: (bioremediation and MA).

The background and investigation history for each affected unit or group of units is described in the Cleanup Action Plan (CAP) (AMEC, 2012) and/or EDR (AMEC, 2014). It should be noted that monitoring for the Building 10-71 area and Building 4-70 area is included in this monitoring report to maintain continuity with the monitoring program that has been conducted for these areas for several years and as approved by the Washington State Department of Ecology (Ecology); these two areas are not addressed explicitly in the Compliance Monitoring Plan but are being addressed per Ecology's December 30, 2015, email to Boeing with comments on the revised Compliance Monitoring Plan. Monitoring for Apron A is also included, as semiannual monitoring began in this area starting in the fourth quarter 2016, as reported in the Apron A Investigation Results report (Amec Foster Wheeler, 2016b).

The goals for cleanup of groundwater at the Facility, as described in the CAP, include protection of groundwater for drinking water beneficial use at all areas of the site, and demonstration of protection of surface water beneficial uses at the conditional points of compliance (CPOCs) for each SWMU and AOC. Cleanup goals are discussed for each SWMU and AOC below. Discussions include comparisons to

protection of groundwater for drinking water beneficial uses by comparing concentrations to the Model Toxics Control Act (MTCA) or United States Environmental Protection Agency Maximum Contaminant Level (MCL), as well as to site specific cleanup levels (CULs), which are based on protection of surface water beneficial uses. Analytical data for groundwater presented in the tables are compared to the AOC/SWMU specific CULs established for the respective points of compliance.

This quarterly report:

- Describes work completed during the reporting quarter;
- Describes any deviations from corrective action tasks required under the Order and/or CAP;
- Describes revisions to the corrective action schedule;
- Describes work projected to occur during the next quarter, including any planned deviation from the CAP;
- Discusses remediation operation and maintenance activities conducted at the Facility during the reporting period;
- Documents monitoring activities conducted during the quarter;
- Describes and discusses trends in monitoring data;
- Assesses remediation at each area; and
- Assesses attainment CULs at the CPOCs.

This report presents this information for the second quarter 2019, the period from April through June 2019.

1.1 Quarterly progress reporting

In accordance with the requirements of the Order, corrective action activities were conducted at the Facility, as described in this report. As approved by Ecology in their letter dated November 18, 2015, progress reporting is conducted on a quarterly basis in conjunction with monitoring, operations, and maintenance activities conducted under the CAP.

1.1.1 Work completed in the second quarter 2019

The following work was completed during the second quarter 2019, the period from April through June 2019:

- Groundwater monitoring for the second quarter 2019 was completed during May 2019.
- On behalf of Boeing, Wood submitted the first quarter 2019 report to Ecology on May 15, 2019.
- On May 8, 2019, CALIBRE Systems, Inc. (CALIBRE) collected groundwater samples from Building 4-78/79 monitoring wells (GW031S and GW244S) and injection wells (B78-11, B78-13, B78-17, B78-18, and B78-20) as part of the nitrate study.
- On June 13 and 14, 2019, CALIBRE completed the soil investigation at Building 4-78/79, as described in the work plan submitted to Ecology on May 8, 2019.

1.1.2 Deviations from required tasks

No deviations from tasks required in the Order occurred during this activity period.

1.1.3 Deviations from CAP

There were no deviations from the CAP during this activity period, and there are no planned deviations from the CAP expected for the next activity period.

1.1.4 Schedule revisions

There were no significant revisions to the schedule for this reporting period and no revisions are expected for the next activity period.

1.1.5 Work projected for the next quarter

The following work is projected for the third quarter 2019:

- Reporting will be completed in accordance with the Order, CAP, EDR, and any changes approved by Ecology.
- Groundwater sampling and analysis will be completed.
- Nitrate and sulfate injections may be performed for the Building 4-78/79 area, depending on performance monitoring results.
- Soil with TPH exceeding cleanup levels within unsaturated and smear zones is planned for excavation
 on the east side of building 4-79. Groundwater elevations are currently being monitored to
 determine if water levels will be low enough to allow for sufficient excavations to occur this year.
- Performance monitoring to support the benzene plume study is currently scheduled to be conducted.

2.0 Groundwater sampling methodology

Groundwater was sampled and analyzed as described in Appendix A. These procedures are in accordance with the methods specified in the revised Compliance Monitoring Plan (Amec Foster Wheeler, 2016a). Table A-1 summarizes the current groundwater monitoring program and constituents of concern (COCs) specified in the CAP and revised in the Addendum to the Compliance Monitoring Plan (Wood, 2019) for all Facility corrective action areas. Table A-2 summarizes the current groundwater monitoring program for the corrective action areas that include MNA or MA as part of the cleanup remedy specified in the CAP. Tables A-1 and A-2 also include Building 4-70, Lot 20/Former Building 10-71, and Apron A, which were not included in the CAP. Any changes or exceptions to the sampling or analytical methods cited in Appendix A during the quarter are described in the applicable subsections in Section 3. The field data sheets, which document the groundwater sample collection and field parameter monitoring for each well sampled during this quarter, are included in Appendix B.

The analytical methods, field duplicate, lab duplicate, and matrix spike/matrix spike duplicate frequencies are specified in the Quality Assurance Project Plan (Amec Foster Wheeler, 2016c). The full analytical reports provided by the laboratory are provided separately on compact disc. The data validation memoranda are included in Appendix C.

3.0 Corrective action activities completed during quarter

This section describes the corrective action activities conducted at the Facility during the second quarter 2019. Operation of the SVE system at SWMU-172/174 continued during the second quarter, as discussed in Section 3.2.1.2. Quarterly compliance monitoring was conducted in accordance with the Addendum to the Compliance Monitoring Plan (Wood, 2019).

3.1 SWMU-168

SWMU-168 is monitored semiannually during the first and third quarters; therefore, no monitoring was conducted for this area during the second quarter 2019.

3.2 SWMU-172 and SWMU-174

This section describes corrective action activities conducted at these two SWMUs. The cleanup remedy for SWMU-172 and SWMU-174 is a combination of bioremediation, SVE, and MA. Figure 1 shows the layout of the groundwater monitoring wells and the remediation system for these SWMUs.

3.2.1 Cleanup action activities

3.2.1.1 Installation/construction activities

No installation/construction activities were conducted for these SWMUs during the second quarter.

3.2.1.2 Soil vapor extraction and bioremediation operations

The SVE system at SWMU-172 and SWMU-174 operated normally during the second quarter. Details for system operations are included in the SVE operations and monitoring report prepared by CALIBRE and included as Appendix D.

3.2.2 Compliance monitoring plan deviations

No deviations from the Compliance Monitoring Plan occurred for this area during the second guarter.

3.2.3 Water levels

Groundwater elevations for the SWMU-172 and SWMU-174 area measured during the second quarter 2019 are summarized in Table 1 and shown on Figure 1. The contoured data for May 2019 show that groundwater generally flows east from SWMU-172 and SWMU-174 toward the Cedar River Waterway, with an approximate horizontal gradient of 0.01.

3.2.4 Groundwater monitoring results

Groundwater in this area is monitored following the schedules presented in Tables A-1 and A-2 in Appendix A. Results for primary geochemical indicators are presented in Table 2; results for the SWMU-172 and SWMU-174 area COCs are presented in Table 3.

3.2.4.1 Monitored attenuation/geochemical indicators

The geochemical indicator results are presented in Table 2. Total organic carbon (TOC) concentrations ranged from 0.90 milligrams per liter (mg/L) to 7.10 mg/L for all SWMU-172 and SWMU-174 monitoring wells. The pH measurements in the source area monitoring wells were slightly depressed and near neutral in the downgradient and CPOC area wells. The other natural attenuation parameter results indicate that geochemical conditions were generally uniform and appropriate for reductive dechlorination of

chlorinated volatile organic compounds; the dissolved oxygen and oxidation/reduction potential results indicate reducing conditions were present.

3.2.4.2 COC results for source and downgradient plume areas

Table 3 lists second quarter 2019 analytical results for the SWMU-172 and SWMU-174 COCs. Figures 2 and 3 show historical trend plots for tetrachloroethene (PCE), trichloroethene (TCE), vinyl chloride (VC), and cis-1,2-dicholoethene (cis-1,2-DCE) in source area wells GW152S and GW153S, and in downgradient plume area wells GW172S and GW173S. Flow generally moves from the vicinity of source area well GW152S to downgradient plume area well GW172S, and from source area well GW153S to downgradient plume area well GW173S. PCE and TCE are the chlorinated solvents that were used at the Facility, and cis-1,2-DCE and VC are breakdown products resulting from biodegradation processes.

As shown in Table 3, cis-1,2-DCE, TCE, PCE, and VC concentrations exceeded the CPOC CULs in the groundwater from both source area and downgradient plume area wells. As shown in Figures 2 and 3, the concentrations of COCs in groundwater from source area wells GW152S and GW 153S and downgradient wells GW172S and GW173S generally remained stable during the second quarter, except for PCE, which shows decreasing concentrations in the groundwater from both source area wells.

Arsenic was detected above the CUL in the groundwater from all source area and downgradient plume area wells. As shown in Figure 4, the arsenic concentrations in the groundwater from both source area and downgradient wells either decreased or remained stable during the second quarter sampling event. Copper was detected in the groundwater from source area and downgradient plume area wells, but concentrations were below the CUL. Lead was detected above the CUL in the groundwater from source area well GW152S, but was not in the groundwater from the downgradient plume area wells.

While concentrations of select COCs in groundwater from source area and downgradient plume area wells exceed the CULs established at the CPOC, COC concentrations are below the applicable MCLs/MTCA criteria for potable water supply.

3.2.4.3 COC results for conditional point of compliance area

Results from the CPOC area wells are presented in Table 3 and trend charts for cis-1,2-DCE, TCE, and VC for all CPOC area wells are presented in Figure 5. As shown in Table 3, cis-1,2-DCE was detected at concentrations above the CUL, ranging from 0.0281 to 0.319 micrograms per liter (µg/L) in the groundwater from all CPOC area wells; TCE was detected above the CUL in the groundwater from all CPOC area wells except for GW234S; and VC was detected above the CUL in the groundwater from monitoring well GW232S. PCE was not detected in the groundwater from the CPOC wells and is not shown in Figure 5. As shown on Figure 5, concentrations of cis-1,2-DCE have exceeded the CUL in the CPOC wells since compliance monitoring began, but are generally stable. The concentrations of both TCE and VC generally appear to be stable.

Arsenic was detected above the CUL in the groundwater from all CPOC area wells except for GW233I and GW235I. Copper was not detected above the CUL in the groundwater from CPOC wells. Lead was detected above the CUL in the groundwater from CPOC well GW236S (Table 3). Figure 6 shows arsenic, copper, and lead trends since the beginning of compliance monitoring in groundwater from the CPOC area wells. As shown in Figure 6, though arsenic, copper and lead concentrations appear to vary over time, there are no apparent long-term increasing or decreasing trends in the groundwater from CPOC area wells.

While select COC concentrations exceed the CUL in the groundwater from select CPOC wells, as detailed above, COC concentrations are below the applicable MCLs/MTCA criteria for potable water supply in all CPOC wells.

3.3 Building 4-78/79 SWMU/AOC group

This section describes corrective action activities conducted at the Building 4-78/79 SWMU/AOC Group during the second quarter 2019. The cleanup remedy for this SMWU/AOC group is bioremediation, SVE, MNA, and MA. Figure 7 shows the location of groundwater monitoring wells, bioremediation wells, and SVE wells for this area.

3.3.1 Cleanup action activities

3.3.1.1 Installation/construction activities

No installation/construction activities were conducted for these SWMUs during the second quarter.

3.3.1.2 Soil vapor extraction and bioremediation operations

As previously reported during 2018 monitoring events, the SVE system at Building 4-78/79 SWMU/AOC Group was shut down during the first quarter 2018, during which rebound testing was implemented. Soil samples were collected during the second quarter 2018 to assess the attainment of soil CULs, and results were reported in the second quarter monitoring report (Wood, 2018). The CULs were attained with one exception: the sample from 4.5 feet below ground surface at well PP13 had a concentration of total petroleum hydrocarbons as gasoline (TPH-G) of 147 milligrams per kilogram (mg/kg), and the field duplicate was 131 mg/kg, above the CUL of 30 mg/kg. A revised work plan (CALIBRE, 2019) for excavating the soils near PP13 and GW013S was submitted to Ecology on May 8, 2019, in response to a request from Ecology. The investigation described in the work plan was conducted on June 13 and 14, 2019, and the results will be presented to Ecology in a separate report.

As reported in the first quarter 2019 report, a sixth round of nitrate/sulfate injections was performed in March 2019. Groundwater samples were collected in February and May 2019. The results of the performance monitoring are shown in Table 3-1 of Appendix D. Concentrations of benzene and cis-1,2-DCE in the groundwater from all injection wells related to ongoing benzene treatment in this area are shown in Figure 8. As shown in Figure 8, benzene concentrations in groundwater from injection wells ranged from below the reporting limit of 0.20 μ g/L to 16.30 μ g/L. in the second quarter. The May 2019 benzene concentration in the source area well GW031S in was 7.13 μ g/L. Trend charts for TCE and VC in the injection wells are presented in Figure 9.

Details regarding injection concentrations for each event are provided in Appendix D.

3.3.2 Compliance monitoring plan deviations

No deviations from the compliance monitoring plan occurred for this area during the second quarter.

3.3.3 Water levels

Table 4 presents the groundwater elevations measured during the second quarter 2019 groundwater monitoring event at the Building 4-78/79 SWMU/AOC group. As shown in Figure 7, the observed direction of groundwater flow from the source area during May 2019 is generally to the west, with a hydraulic gradient of 0.0002.

3.3.4 Groundwater monitoring results

Results for primary geochemical indicators are presented in Table 5; results for the COCs for Building 4-78/79 SWMU/AOC Group are presented in Table 6. Groundwater at this area is monitored following the schedule presented in Tables A-1 and A-2 in Appendix A.

3.3.4.1 Natural attenuation/geochemical indicators

The geochemical indicator results are presented in Table 5. In general, source area, downgradient, and CPOC area wells had low levels of dissolved oxygen and oxidation/reduction potential, indicating that reducing conditions are present over the area and are generally favorable for reductive dechlorination of chlorinated volatile organic compounds. The pH in all monitoring wells was above 6.0 standard units during the second quarter monitoring period. Results for the other primary geochemical indicators were fairly consistent throughout this area. TOC concentrations in source area wells ranged from 4.80 to 28.09 mg/L.

3.3.4.2 COC results for source and downgradient plume areas

Table 6 lists second quarter 2019 analytical results for the Building 4-78/79 SWMU/AOC Group COCs. The CULs established in the CAP for the CPOC are also presented on Table 6. Figures 10 and 11 are trend charts showing historical trends for COCs for four groundwater monitoring wells that have a history of frequent detections. Trend charts have not been prepared for groundwater monitoring wells or COCs that do not have a history of frequent detections.

As shown in Table 6, benzene, cis-1,2-DCE, and VC were detected in groundwater from several source area wells at concentrations above the CPOC CULs. In source area wells GW034S, GW039S, and GW243I, all COCs were below CULs. TCE was not detected in the groundwater from source area wells. TPH-G was detected in the groundwater from source area well GW031S, at a concentration of 1,020 μ g/L (the field duplicate concentration was 848 μ g/L),. TPH-G was also detected in the groundwater from source area wells GW033S at a concentration below the CPOC CUL. No COCs were detected in the groundwater from the downgradient plume area wells.

Figure 10 shows trends for selected COCs for source area wells GW031S and GW033S, and Figure 11 shows trends for selected COCs for source area well GW034S and downgradient plume area well GW209S. COC concentrations in the groundwater from GW031S and GW033S are generally consistent with historical results and trends, though the concentration of VC decreased significantly during the second quarter in source area well GW033S. Groundwater from GW033S historically had the highest concentrations of cis-1,2-DCE and VC prior to the Duct Bank dewatering project.

COC concentrations in groundwater from source area well GW034S and downgradient plume area well GW209S (Figure 11) remain stable with concentrations below detection during the second quarter. Nitrate and sulfate injections described in Appendix D are continuing, in order to address remaining benzene present between GW210S and GW244S.

Concentrations of COCs in the groundwater from select source area wells remain above the MCLs/MTCA standard for potable water supply (specifically for benzene, VC, and TPH-G). Active treatment is ongoing. Concentrations of COCs in downgradient monitoring wells are below the applicable MCLs/MTCA criteria for potable water supply.

3.3.4.3 COC results for conditional point of compliance area

Groundwater monitoring results from the second quarter for the CPOC area are summarized in Table 6. Trends for CPOC wells GW143S, GW237S, and GW240D are shown in Figures 12 through 14. Benzene was detected at a concentration of 2.20 μ g/L, above the CUL, in the groundwater from CPOC area well GW237S; all other benzene results for the CPOC area were below detection (Table 6). As shown in Figure 12, benzene has been sporadically detected in the groundwater from CPOC area well GW237S but has not been detected above the CUL in the groundwater from any other CPOC wells. The benzene concentrations in the groundwater from CPOC well GW237S have remained lower than the concentrations observed during the first quarter. The only other COCs detected in the groundwater from the CPOC area

during the second quarter was VC at a concentration of 0.27 μ g/L in the groundwater from CPOC well GW240D.

3.4 Former Fuel Farm AOC group

The Former Fuel Farm AOC group is monitored semiannually in May and November. The final remedy for the Former Fuel Farm is MNA.

3.4.1 Cleanup action activities

No installation/construction activities were conducted for this cleanup action area during the second quarter.

3.4.2 Compliance monitoring plan deviations

No deviations from the compliance monitoring plan occurred for this area during the second quarter.

3.4.3 Water levels

Groundwater elevations for the Former Fuel Farm AOC Group measured during the second quarter 2019 are summarized in Table 7 and shown on Figure 15. Groundwater elevation contours are not shown on Figure 15 due to anomalous measurements.

3.4.4 Groundwater monitoring results

Results for primary geochemical indicators are presented in Table 8; results for COCs for the Former Fuel Farm AOC Group are presented in Table 9. Groundwater in this area is monitored following the schedule presented in Tables A-1 and A-2 in Appendix A.

3.4.4.1 Monitored natural attenuation indicators

The geochemical indicator results are presented in Table 8. Results in Table 8 indicate that geochemical conditions are generally consistent throughout the Former Fuel Farm AOC Group. The pH in CPOC area wells GW212S and GW257S was below 6.0 standard units; low pH may interfere with biological degradation of site COCs. However, COCs are below CULs at these wells. The other geochemical indicators indicate that conditions are generally conducive to natural attenuation of the COCs for the Former Fuel Farm AOC Group.

3.4.4.2 COC results for source area

Table 9 lists second quarter 2019 analytical results for the Former Fuel Farm AOC Group COCs. The CULs established in the CAP are also presented on Table 9. As shown in Table 9, TPH in the diesel and Jet A ranges was not detected above the reporting limit in the groundwater from source area well GW255S.

3.4.4.3 COC results for conditional point of compliance area

CPOC area monitoring results are presented in Table 9. Figure 16 shows trend data for CPOC area wells GW211S, GW221S, and GW224S. TPH in the diesel range exceeded the CUL in the groundwater from CPOC area wells GW221S and GW224S, and was detected below the CUL in CPOC well GW211S. TPH in the Jet A range exceeded the CUL in the groundwater from CPOC area well GW224S, and was detected below the CUL in CPOC wells GW211S and GW221S. Figure 16 shows that the second quarter results for these wells are consistent with the historical monitoring results since late 2013.

Samples were analyzed for TPH in the diesel and Jet A ranges both with and without a silica gel cleanup which can be performed on samples to remove non-petroleum based biogenic interferences. As shown in Table 9, concentrations of TPH as diesel and Jet A were both lower after silica gel cleanup had been performed (except for sample GW221S). We propose to analyze samples GW211S, GW221S and GW224S with the silica gel procedure for future sampling events starting in the fourth quarter 2019.

3.5 AOC-001 and AOC-002

This section describes corrective action activities conducted at these AOCs during the second quarter 2019. The cleanup remedy for this corrective action area is bioremediation and MA. Bioremediation commenced for this area in late 2004, following source area excavation. Figure 17 shows the location of groundwater monitoring wells and the bioremediation injection system for AOC-001 and AOC 002, as well as the groundwater elevations measured during this monitoring event.

3.5.1 Cleanup action activities

No installation/construction activities were conducted for this cleanup action area during the second quarter.

3.5.2 Compliance monitoring plan deviations

No deviations from the compliance monitoring plan occurred for this area during the second quarter.

3.5.3 Water levels

Table 10 presents the groundwater elevations measured during the second quarter 2019 monitoring event at AOC-001 and AOC-002. Figure 17 shows the groundwater elevations from this event. Groundwater flow directions cannot be determined from the available groundwater elevation data.

3.5.4 Groundwater monitoring results

Groundwater in this area is monitored following the schedule presented in Tables A-1 and A-2 in Appendix A. Results for primary geochemical indicators are presented in Table 11; results for the AOC-001 and AOC-002 COCs are presented in Table 12. The COCs detected (cis-1,2-DCE and VC) are present at levels below the applicable MCLs/MTCA criteria for potable water supply in all wells.

3.5.4.1 Monitored attenuation/geochemical indicators

The geochemical indicator results are presented in Table 11. The pH was near neutral in all CPOC wells and is conducive to microbial activity. Table 11 also suggests that geochemical conditions are appropriate for reductive dechlorination of the COCs in the AOC-001 and AOC-002 CPOC area, as indicated by the reducing conditions, low dissolved oxygen levels, and generally appropriate TOC concentrations.

3.5.4.2 COC results for source and downgradient plume areas

Source area and downgradient wells are monitored semiannually in the first and third quarters; therefore, no monitoring for source area or downgradient plume area wells was conducted in the second quarter.

3.5.4.3 COC results for conditional point of compliance area

As shown in Table 12, 1,1-dichloroethene, benzene, and TCE concentrations in the groundwater from CPOC area wells were either below detection or below the CUL. Concentrations of cis-1,2-DCE were above the CUL in the groundwater from all CPOC area wells except for GW194S. VC was detected at

concentrations above the CUL in the groundwater from CPOC area wells 185S and 197S, and was detected at a concentration below the CUL in well 196D.

As shown in Figure 18, aside from the increase in concentrations of cis-1,2-DCE and VC observed in the in the groundwater from GW185S in the second and third quarters of 2016; concentrations of cis-1,2-DCE and VC in the CPOC area monitoring wells have been generally stable since compliance monitoring began. CPOC area wells GW194S and GW245S are not shown on Figure 18 because COCs are generally not detected in the groundwater from these wells. Similarly, the remaining COCs are generally below the CUL in the CPOC area monitoring wells and are not included on Figure 18.

As previously noted, CULs may need to be re-evaluated based on overly conservative COC concentration assumptions that were made prior to remedial action implementation, but that have changed over time, resulting in an over-estimation of total site risk based on current relative concentrations of individual COCs.

3.6 AOC-003

This section describes corrective action activities conducted at AOC-003 for the second quarter 2019. The cleanup remedy for this AOC is bioremediation and MA. Figure 19 shows the location of groundwater monitoring and bioremediation wells at AOC-003, as well as the groundwater elevations measured during this monitoring event.

3.6.1 Cleanup action activities

No installation/construction activities were conducted for this cleanup action area during the second quarter.

3.6.2 Compliance monitoring plan deviations

Groundwater samples were collected from the source and downgradient area wells during the second quarter. Following the schedule presented in Table A-1, source and downgradient area wells are sampled semiannually in the first and third quarters.

3.6.3 Water levels

Table 13 presents the groundwater elevations measured during the second quarter 2019 monitoring event at AOC-003 and AOC-092. Figure 19 shows the groundwater elevations from this event. Groundwater flow directions cannot be determined from the available groundwater elevation data.

3.6.4 Groundwater monitoring results

Groundwater at AOC-003 is monitored following the schedule presented in Tables A-1 and A-2 in Appendix A. Results for geochemical indicators are presented in Table 14; results for the AOC-003 COCs are presented in Table 15.

3.6.4.1 Monitored attenuation//geochemical indicators

The geochemical indicator results are presented in Table 14. Results in Table 14 indicate that geochemical conditions are generally consistent throughout this AOC and are generally conducive to biodegradation of the COCs for this AOC.

3.6.4.2 COC results for source and downgradient plume areas

Source area and downgradient wells are monitored semiannually in May and November; therefore, no monitoring for source area or downgradient plume wells was conducted in the second quarter.

3.6.4.3 COC results for conditional point of compliance area

Groundwater from the two CPOC area wells had no detections of PCE, TCE or cis-1,2-DCE above their respective CULs. VC was detected at concentrations above the CUL in the groundwater from both CPOC wells (GW247S and GW248I), at concentrations of 0.497 and 0.551 μ g/L, respectively.

While VC concentrations exceed the CUL in the groundwater from CPOC wells, as detailed above, VC concentrations are below the applicable MCLs/MTCA criteria for potable water supply in both CPOC wells.

3.7 AOC-004

AOC-004 is monitored semiannually during the first and third quarters; therefore, no monitoring was conducted for this area during the second quarter 2019.

3.8 AOC-060

AOC-060 is monitored semiannually during the first and third quarters; therefore, no monitoring was conducted for this area during the second quarter 2019.

3.9 AOC-090

AOC-090 is monitored semiannually during the first and third quarters; therefore, no monitoring was conducted for this area during the second quarter 2019.

3.10 Building 4-70 area

The Building 4-70 Area is monitored semiannually during the first and third quarters; therefore, no monitoring was conducted for this area during the second quarter 2019.

3.11 Lot 20/Former Building 10-71 Parcel

This section describes corrective action activities conducted for this area during the second quarter 2019. Figure 20 shows the locations of the groundwater monitoring wells and the bioremediation injection system at the Lot 20/Former Building 10-71 Parcel, as well as the groundwater elevations measured during the second quarter. The Lot 20/Former Building 10-71 Parcel was not included in the EDR, but was later added to the Compliance Monitoring Plan (Amec Foster Wheeler, 2016a) and has been regularly monitored in conjunction with the Facility corrective action areas. The cleanup remedy for the Lot 20/Former Building 10-71 Parcel is bioremediation and MA. This area is monitored semiannually in the second and fourth quarters, in accordance with Table A-1 in Appendix A.

3.11.1 Cleanup action activities

No construction or operations work was conducted for the Lot 20/Former Building 10-71 Parcel during the second quarter.

3.11.2 Water levels

The groundwater elevations measured during the second quarter at the Lot 20/Former Building 10-71 Parcel are presented in Table 16 and on Figure 20. Groundwater contours are not shown on Figure 20 because the three monitoring wells measured are arranged nearly in a straight line and do not provide

enough water level data to prepare contours. Based on the second quarter water level measurements, the apparent groundwater flow appears to be generally to the northwest.

3.11.3 Groundwater monitoring results

Results for primary geochemical indicators for groundwater from the Lot 20/Former Building 10-71 Parcel monitoring wells are presented in Table 17; results for COCs for the Lot 20/Former Building 10-71 Parcel monitoring wells are presented in Table 18. Groundwater in this area is monitored following the schedule presented in Tables A-1 in Appendix A.

3.11.3.1 Monitored attenuation/geochemical indicators

The geochemical indicator results are presented in Table 17. The pH in groundwater from two of the Lot 20/Former Building 10-71 Parcel monitoring wells (10-71-MW1 and 10-71-MW2) was below 6 standard units. All remaining parameters in the groundwater from these monitoring wells appear uniform.

3.11.3.2 COC results

Second quarter analytical results for the Lot 20/Former Building 10-71 Parcel COCs are presented in Table 18. The concentrations of all of the COCs—cis-1,2-DCE, toluene, TCE, and VC—in the groundwater from Lot 20/Former Building 10-71 Parcel monitoring wells were below detection, and hence below the applicable MCLs/MTCA criteria for potable water supply.

3.12 Apron A area

This section describes corrective action activities conducted at the Apron A area during the second quarter 2019. The cleanup remedy proposed for the Apron A area is bioremediation and MA. Figure 21 shows the locations of the groundwater monitoring wells in the Apron A area.

3.12.1 Cleanup action activities

No construction or operations work was conducted in the Apron A area during the second quarter.

3.12.2 Water levels

The depth to groundwater measured during the second quarter at Apron A are presented in Table 19 and on Figure 12. Groundwater elevations are not available because the top of casing elevations were never surveyed.

3.12.3 Groundwater monitoring results

Results for primary geochemical indicators for groundwater from groundwater monitoring wells GW262S and GW264S are presented in Table 20; results for COCs from these wells are presented in Table 21. Groundwater in this area is monitored following the schedule presented in Tables A-1 and A-2 in Appendix A.

3.12.3.1 Monitored attenuation/geochemical indicators

Geochemical parameters are presented in Table 20. TOC concentrations in the monitoring wells were slightly elevated during the second quarter 2019 monitoring event. The other primary geochemical indicators show that reducing conditions were present and that conditions were conducive to biological degradation of the chlorinated volatile organic compounds.

3.12.3.2 COC results

Second quarter analytical results for the Apron A COCs (cis-1,2-DCE and VC) are presented in Table 21. Cis-1,2-DCE was not detected in the groundwater from either GW262S or GW264S. VC was detected in the groundwater from monitoring well GW264S at a concentration of 1.39 μ g/L. VC was not detected in the groundwater from monitoring well GW262S.

4.0 References

- AMEC Environment & Infrastructure, Inc. (AMEC), 2012, Draft Cleanup Action Plan, Boeing Renton Facility, Renton, Washington: Prepared for The Boeing Company, September.
- AMEC, 2014, Draft Engineering Design Report, Boeing Renton Cleanup Plan Implementation, Boeing Renton Facility, Renton, Washington: Prepared for The Boeing Company, July.
- Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016a, Compliance Monitoring Plan, Boeing Renton Facility, Renton, Washington: Prepared for The Boeing Company, February.
- Amec Foster Wheeler, 2016b, Apron A Investigation Results, Renton Municipal Airport Boeing Apron A Renton, Washington, June.
- Amec Foster Wheeler, 2016c, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for The Boeing Company, February.
- CALIBRE Systems, Inc. (CALIBRE), 2019, Plan for Evaluation of Soils around Probe PP13 at Building 4-78/4-79 SWMU/AOC Group; Boeing Renton Site, April 29.
- Wood Environment & Infrastructure Solutions, Inc. (Wood), 2018, Quarterly report, second quarter 2018, RCRA Corrective Action Program, Boeing Renton Facility.
- Wood, 2019, Addendum to the Compliance Monitoring Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, April.

wood.

Figures

SOURCE AREA WELL GW152S

SOURCE AREA WELL GW153S

DOWNGRADIENT PLUME AREA WELL GW172S

DOWNGRADIENT PLUME AREA WELL GW173S

TOTAL ARSENIC IN SOURCE AREA WELLS

TOTAL ARSENIC IN DOWNGRADIENT PLUME AREA WELLS

cis-1,2-Dichloroethene

Benzene

Note: non-detected values shown at one-half the reporting limit and graphed with an open symbol.

wood.

BUILDING 4-78/79 SWMU/AOC GROUP TREND PLOTS FOR CIS-1,2-DICHLOROETHENE AND BENZENE IN INJECTION WELLS Boeing Renton Facility Renton, Washington

Project No. 8888

Figure 8

Trichloroethene

Vinyl Chloride

Note: non-detected values shown at one-half the reporting limit and graphed with an open symbol.

wood.

BUILDING 4-78/79 SWMU/AOC GROUP TREND PLOTS FOR TRICHLOROETHENE AND VINYL CHLORIDE IN INJECTION WELLS Boeing Renton Facility Renton, Washington

Project No. 8888

> Figure 9

SOURCE AREA WELL GW031S

SOURCE AREA WELL GW033S

 $\underline{\text{Note}} : \text{non-detected values shown at one-half the reporting limit and graphed with an open symbol.}$

SOURCE AREA WELL GW034S

DOWNGRADIENT PLUME AREA WELL GW209S

 $\underline{\text{Note}} : \text{non-detected values shown at one-half the reporting limit and graphed with an open symbol.}$

cis-1,2-Dichloroethene

Note: non-detected values shown at one-half the reporting limit and graphed with an open symbol.

BUILDING 4-78/79 SWMU/AOC GROUP TREND PLOTS FOR BENZENE AND CIS-1,2-DICHLOROETHENE IN CPOC AREA WELLS **Boeing Renton Facility** Renton, Washington

Project No. **8888**

> Figure 12

Trichloroethene

Vinyl Chloride

TPH as Gasoline

 $\underline{\text{Note}}\text{: non-detected values shown at one-half the reporting limit and graphed with an open symbol.}$

wood.

CPOC WELL GW211S

CPOC WELL GW221S

CPOC WELL GW224S

wood.

FORMER FUEL FARM AOC GROUP TREND PLOTS
FOR CPOC AREA WELLS GW211S, GW221S, AND GW224S
Boeing Renton Facility
Renton, Washington

Project No. 8888

> Figure 16

cis-1,2-Dichloroethene

Vinyl Chloride

Note: non-detected values shown at one-half the reporting limit and graphed with an open symbol.

AOC-001 AND 002 TREND PLOTS FOR CIS-1,2-DICHLOROETHENE AND VINYL CHLORIDE IN CPOC AREA WELLS **Boeing Renton Facility** Renton, Washington

Project No. 8888

Figure 18

wood.

Tables

TABLE 1: SWMU-172 and SWMU-174 GROUP GROUNDWATER ELEVATION DATA May 6, 2019

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ²	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ²
GW081S	5 to 20 ³	25.91	8.68	17.23
GW152S	5 to 20 ³	26.98	9.06	17.92
GW153S	5 to 20 ³	27.47	9.45	18.02
GW172S	8 to 18 ³	26.44	9.38	17.06
GW173S	8 to 18 ³	26.51	9.44	17.07
GW226S	5 to 20 ³	26.86	8.84	18.02
GW232S	4 to 14	24.45	7.92	16.53
GW233I	15 to 25	24.35	7.56	16.79
GW234S	3 to 13	24.95	8.09	16.86
GW235I	15 to 25	24.90	7.66	17.24
GW236S	5 to 15	24.36	7.12	17.24

Notes

- 1. S = shallow well; I = intermediate well.
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.
- 3. Screen intervals are approximate and based on database listings of the screen interval depths for these wells.

Abbreviations

bgs = below ground surface

TABLE 2: SWMU-172 AND SWMU-174 GROUP CONCENTRATIONS OF PRIMARY GEOCHEMICAL INDICATORS ¹ MAY 6, 2019

Boeing Renton Facility, Renton, Washington

	Well ID ²														
		Source Area			Downgradier	nt Plume Are	a	CPOC Area							
		GW152S													
	GW152S	(field dup.)	GW153S	GW081S	GW172S	GW173S	GW226S	GW232S	GW233I	GW234S	GW235I	GW236S			
Specific Conductivity (µS/cm)	193.3	191.3	225.8	222.3	279.1	349.4	250.7	459.3	223.7	239.8	131.8	357.5			
Dissolved Oxygen (mg/L)	0.55	0.57	0.54	0.67	0.47	0.44	0.52	3.87	3.79	0.59	0.77	1.86			
Oxidation/Reduction Potential (mV)	18.2	18.9	-11.8	-6.1	-40.6	-27.6	-28.4	-31.3	9.7	-10.7	5.3	-22.3			
pH (standard units)	5.93	5.92	6.21	6.27	6.30	6.26	6.31	6.10	6.14	6.16	6.18	6.26			
Temperature (degrees C)	18.10	18.20	17.30	17.50	18.10	15.30	19.40	16.30	16.90	15.80	16.00	15.60			
Total Organic Carbon (mg/L)	2.65	2.58	7.10	4.47	3.67	5.11	5.79	6.09	4.16	1.31	0.90	1.87			

Notes

- 1. Primary geochemical indicators are measured in the field, with the exception of total organic carbon, which is measured in the laboratory.
- 2. S = shallow well: I = intermediate well.

Abbreviations

µS/cm = microsiemens per centimeter CPOC = conditional point of compliance degrees C = degrees Celsius field dup. = field duplicate mg/L = milligrams per liter mV = millivolts

TABLE 3: SWMU-172 AND SWMU-174 GROUP CONCENTRATIONS OF CONSTITUENTS OF CONCERN^{1, 2} MAY 6, 2019

Boeing Renton Facility, Renton, Washington

			Well ID ³												
			Source Area			Downgradier	nt Plume Are	a			CPOC Area				
	Cleanup		GW152S												
	Level ⁴	GW152S	(field dup.)	GW153S	GW081S	GW172S	GW173S	GW226S	GW232S	GW233I	GW234S	GW235I	GW236S		
Volatile Organic Compounds (µg/L)															
cis-1,2-Dichloroethene	0.03	0.655	0.700	0.108	0.025	0.0581	0.037	0.0223	0.319	0.054	0.0630	0.109	0.0281		
Tetrachloroethene	0.02	0.0594	0.0677	0.020 U	0.020 U	0.020 U	0.0416	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U		
Trichloroethene	0.02	0.157	0.196	0.0212	0.020 U	0.020 U	0.0742	0.020 U	0.0331	0.0225	0.020 U	0.0342	0.0206		
Vinyl Chloride	0.11	0.173	0.201	0.242	0.020 U	0.0808	0.0486	0.0459	0.348	0.020 U	0.0235	0.020 U	0.020 U		
Total Metals (µg/L)															
Arsenic	1.0	4.49	4.72	5.97	2.49	7.71	7.38	2.97	3.96	0.428	2.22	0.403	2.10		
Copper	3.5	2.35	2.86	1.25	0.546	2.13	1.11	0.500 U	1.15	0.500 U	1.93	1.58	2.17		
Lead	1.0	1.26	1.65	0.198	0.100 U	0.991	0.251	0.100 U	0.167	0.100 U	0.843	0.405	1.90		

Notes

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
- 2. **Bolded** values exceed the cleanup levels.
- 3. S = shallow well; I = intermediate well.
- 4. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.

Abbreviations

μg/L = micrograms per liter

CPOC = conditional point of compliance

field dup. = field duplicate

TABLE 4: BUILDING 4-78/79 SWMU/AOC GROUP GROUNDWATER ELEVATION DATA MAY 7 AND 8, 2019

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ²	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ²
GW031S	5 to 25	19.44	4.09	15.35
GW033S	5 to 25	19.49	4.25	15.24
GW034S	5 to 25	19.65	4.12	15.53
GW038S	5 to 25	19.68	4.44	15.24
GW039S	3.5 to 13.5	19.30	3.89	15.41
GW143S	10 to 15	19.81	4.52	15.29
GW209S	3.5 to 13.3	19.37	4.08	15.29
GW210S	3.5 to 13.3	19.19	3.61	15.58
GW237S	5 to 15	18.85	3.57	15.28
GW238I	5 to 20	18.94	3.66	15.28
GW239I	15 to 20	19.69	4.42	15.27
GW240D	22 to 27	19.81	5.07	14.74
GW241S	4 to 14	20.28	5.05	15.23
GW242I	15 to 20	20.44	5.18	15.26
GW243I	5 to 20	19.49	4.20	15.29
GW244S	5 to 15	19.53	4.19	15.34

Notes

- 1. S = shallow well; I = intermediate well; D = deep well.
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations

bgs = below ground surface

TABLE 5: BUILDING 4-78/79 SWMU/AOC GROUP CONCENTRATIONS OF PRIMARY GEOCHEMICAL INDICATORS ¹ MAY 7 AND 8, 2019

Boeing Renton Facility, Renton, Washington

	Well ID ²													
			Downg	gradient Plume Area										
		GW031S												
	GW031S	(field dup.)	GW033S	GW034S	GW039S	GW243I	GW244S	GW038S	GW209S	GW210S				
Specific Conductivity (µS/cm)	478.0	487.2	359.8	321.3	209.7	378.9	515.0	316.7	407.9	306.6				
Dissolved Oxygen (mg/L)	0.25	0.26	0.26	0.58	0.81	0.35	0.37	0.20	0.20	0.17				
Oxidation/Reduction Potential (mV)	-33.1	-37.6	-16.1	-57.3	53.4	-16.5	-25.7	-24.2	-37.3	6.7				
pH (standard units)	6.20	6.21	6.17	6.23	6.04	6.22	6.12	6.40	6.40	6.07				
Temperature (degrees C)	22.10	23.00	16.60	22.60	17.20	16.60	23.7	16.20	20.50	17.40				
Total Organic Carbon (mg/L)	9.53	9.09	28.09	7.66	4.80	9.96	15.32	9.17	9.36	6.37				

				Well ID ²			
				CPOC Area			
	GW143S	GW237S	GW238I	GW239I	GW240D	GW241S	GW242I
Specific Conductivity (µS/cm)	308.9	313	419	328.4	389	331.0	329.4
Dissolved Oxygen (mg/L)	0.21	0.24	0.26	0.23	0.21	0.47	0.35
Oxidation/Reduction Potential (mV)	-21.2	-26.9	-25.1	-35.6	-49.1	-28.5	-24.4
pH (standard units)	6.39	6.55	6.25	6.38	6.46	6.30	6.33
Temperature (degrees C)	16.90	16.00	16.30	17.80	17.90	18.10	18.80
Total Organic Carbon (mg/L)	10.40	10.72	14.55	10.07	5.39	NA	NA

Notes

1. Primary geochemical indicators are measured in the field, with the exception of total organic carbon, which is measured in the laboratory.

2. S = shallow well; I = intermediate well; D = deep well.

Abbreviations

 μ S/cm = microsiemens per centimeter CPOC = conditional point of compliance

degrees C = degrees Celsius field dup. = field duplicate

mg/L = milligrams per liter

mV = millivolts NA = not analyzed

TABLE 6: BUILDING 4-78/79 SWMU/AOC GROUP CONCENTRATIONS OF CONSTITUENTS OF CONCERN ^{1, 2} MAY 7 AND 8, 2019

Boeing Renton Facility, Renton, Washington

						Well ID ³			
		Cleanup Level ⁴	GW031S	GW031S (field dup.)	GW033S	Source Area GW034S	GW039S	GW2431	GW244S
Volatile Organic Com	npounds (μg/L)								
Benzene cis-1,2-Dichloroethe	ane.	0.80	7.13 0.43	6.69 0.38	12.5 0.41	0.20 U 0.20 U	0.21 0.20 U	0.20 U 0.20 U	1.47 2.03
Trichloroethene	ene	0.70	0.43 0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Vinyl Chloride		0.20	0.29	0.27	0.53	0.20 U	0.20 U	0.20 U	1.45
Total Petroleum Hyd	rocarbons (µg/L)								
TPH-G (C7-C12)		800	1020	848	297	100 U	100 U	100 U	100 U

				Well ID ³					
		Cleanup	Downgradient Plume Area						
		Level ⁴	GW038S	GW209S	GW210S				
Volatile Organic Com	pounds (µg/L)								
Benzene		0.80	0.20 U	0.20 U	0.20 U				
cis -1,2-Dichloroeth	ene	0.70	0.20 U	0.20 U	0.20 U				
Trichloroethene		0.23	0.20 U	0.20 U	0.20 U				
Vinyl Chloride		0.20	0.20 U	0.20 U	0.20 U				
Total Petroleum Hyd	rocarbons (µg/L)								
TPH-G (C7-C12)		800	100 U	100 U	100 U				

						Well ID ³			
		Cleanup				CPOC Area			
		Level ⁴	GW143S	GW237S	GW238I	GW239I	GW240D	GW241S	GW242I
Volatile Organic Comp	oounds (µg/L)								
Benzene		0.80	0.20 U	2.20	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
cis -1,2-Dichloroether	ne	0.70	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Trichloroethene		0.23	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Vinyl Chloride		0.20	0.20 U	0.20 U	0.20 U	0.20 U	0.27	0.20 U	0.20 U
Total Petroleum Hydro	Petroleum Hydrocarbons (µg/L)								
TPH-G (C7-C12)		800	100 U	100 U	100 U	100 U	100 U	100 U	100 U

Notes

- 1. Data qualifiers are as follows:
 - ${\sf U}={\sf The}$ analyte was not detected at the reporting limit indicated.
- $\ \ \, \textbf{2. Bolded} \ \text{values exceed the cleanup levels.}$
- 3. S = shallow well; I = intermediate well; D = deep well.
- 4. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.

Abbreviations

μg/L = micrograms per liter

CPOC = conditional point of compliance

field dup. = field duplicate

TPH-G = total petroleum hydrocarbons as gasoline

TABLE 7: FORMER FUEL FARM GROUNDWATER ELEVATION DATA May 6 AND 7, 2019

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ²	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ²
GW183S	5.5 to 15	26.58	8.78	17.80
GW184S	5.6 to 15	27.14	9.34	17.80
GW211S	4.8 to 14.7	27.77	8.89	18.88
GW212S	4.9 to 14.8	28.06	10.38	17.68
GW221S	5 to 15	27.93	10.06	17.87
GW224S	5 to 15	27.98	10.49	17.49
GW255S	6 to 16	27.49	10.02	17.47
GW256S	7 to 16	27.22	8.60	18.62
GW257S	8 to 16	27.87	9.49	18.38
GW258S	9 to 16	25.51	7.91	17.60

Notes

- 1. S = shallow well, I = intermediate well
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations

bgs = below ground surface

TABLE 8: FORMER FUEL FARM CONCENTRATIONS OF PRIMARY GEOCHEMICAL INDICATORS ¹ MAY 6 AND 7, 2019

Boeing Renton Facility, Renton, Washington

						Wel	l ID²								
	Source Area		CPOC Area GW224S												
	GW255S	GW183S	GW184S	GW211S	GW212S	GW221S	GW224S	(field dup.)	GW255S	GW256S	GW257S	GW258S			
Specific Conductivity (µS/cm)	217.8	149.2	146.2	196.7	255.7	243.2	200.0	200.3	217.8	149.5	142.0	366.4			
Dissolved Oxygen (mg/L)	0.35	0.32	1.17	0.47	0.78	0.5	0.4	0.41	0.35	0.47	0.56	0.37			
Oxidation/Reduction Potential (mV)	23.3	24.1	11.7	6.4	52.9	17.7	16.9	15.0	23.3	32.2	77.7	-2.7			
pH (standard units)	6.23	6.18	6.18	6.03	5.66	6.02	6.06	6.05	6.23	6.17	5.73	6.11			
Temperature (degrees C)	18.30	18.20	18.90	14.20	17.90	20.60	19.60	19.70	18.30	18.20	14.60	17.30			

Notes

1. Primary geochemical indicators are measured in the field.

2. S = shallow well; I = intermediate well.

<u>Abbreviations</u>

 μ S/cm = microsiemens per centimeter CPOC = conditional point of compliance degrees C = degrees Celsius field dup. = field duplicate mg/L = milligrams per liter mV = millivolts

TABLE 9: FORMER FUEL FARM CONCENTRATIONS OF CONSTITUENTS OF CONCERN $^{1,\,2,\,3}$ MAY 6 AND 7, 2019

Boeing Renton Facility, Renton, Washington

									Well ID⁴							
		Source Area							СРОС	Area						
	Cleanup															
	Level ⁵	GW255S	GW183S	GW184S	GW:	211S	GW212S	GW.	2215	GW:	224S	GW224S (field dup.)	GW256S	GW257S	GW258S
Total Petroleum Hydrocarbons (mg/L)																
TPH-D (C12-C24)	0.5	0.100 U	0.100 U	0.100 U	0.316	0.124	0.100 U	0.419	0.630	1.21	0.256	1.13	0.191	0.100 U	0.100 U	0.100 U
Jet A	0.5	0.100 U	0.100 U	0.100 U	0.236	0.117	0.100 U	0.278	0.397	1.32	0.388	1.10	0.281	0.100 U	0.100 U	0.100 U

Notes

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
- 2. **Bolded** values exceed the cleanup levels.
- 3. Italicized values are results after silica gel cleanup to remove biogenic interference.
- 4. S = shallow well; I = intermediate well.
- 5. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.

Abbreviations

CPOC = conditional point of compliance field dup. = field duplicate

mg/L = milligrams per liter

TPH-D = total petroleum hydrocarbons as diesel

TABLE 10: AOC-001 AND AOC-002 GROUNDWATER ELEVATION DATA MAY 8, 2019

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ²	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ²
GW185S	4.5 to 14.5	16.27	0.91	15.36
GW190S	3.0 to 13.0	17.30	NM	NM
GW191D	26.5 to 36.0	17.53	NM	NM
GW192S	5.0 to 9.5	17.54	NM	NM
GW193S	3.0 to 12.8	18.67	NM	NM
GW194S	7.3 to 12.0	16.79	1.73	15.06
GW195S	7.3 to 12.0	16.34	1.07	15.27
GW196D	26.8 to 36.8	16.46	1.13	15.33
GW197S	7.8 to 12.5	16.52	0.70	15.82
GW245S	3.0 to 13.0	16.08	0.80	15.28

Notes

- 1. S = shallow well; D = deep well.
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations

bgs = below ground surface

NM = not measured

TABLE 11: AOC-001 AND AOC-002 CONCENTRATIONS OF PRIMARY GEOCHEMICAL INDICATORS¹ MAY 8, 2019

Boeing Renton Facility, Renton, Washington

		Well ID ² CPOC Area						
	GW185S	GW185S (field dup.)	GW194S	GW195S	GW196D ³	GW197S	GW245S ⁴	
Specific Conductivity (µS/cm)	795	805	853	684.0	406.2	923	711.0	
Dissolved Oxygen (mg/L)	0.60	0.62	0.30	0.21	0.15	0.47	0.44	
Oxidation/Reduction Potential (mV)	-57.9	-61.8	-42.3	-46.1	-22.9	-95.4	-72.4	
pH (standard units)	6.40	6.40	6.24	6.33	6.33	6.81	6.72	
Temperature (degrees C)	19.4	19.5	20.7	16.7	18.2	18.3	17.8	
Total Organic Carbon (mg/L)	19.39	18.48	18.01	16.98	8.44	12.73	9.92	

Notes

- 1. Primary geochemical indicators are measured in the field, with the exception of total organic carbon, which is measured in the laboratory.
- 2. S = shallow well; D = deep well.
- 3. GW196D is installed in a cluster with GW195S, and is screened below a silt layer at 26.8 to 36.8 feet in depth.
- 4. GW245S is both the source area and CPOC well for AOC-093.

Abbreviations

µS/cm = microsiemens per centimeter CPOC = conditional point of compliance degrees C = degrees Celsius field dup. = field duplicate mg/L = milligrams per liter mV = millivolts

TABLE 12: AOC-001 AND AOC-002 CONCENTRATIONS OF CONSTITUENTS OF CONCERN $^{1,\,2}$ MAY 8, 2019

Boeing Renton Facility, Renton, Washington

		CPOC Area ³						
	Cleanup		GW185S					
	Level ⁴	GW185S	(field dup.)	GW194S	GW195S	GW196D⁵	GW197S	GW245S
Volatile Organic Compounds (µg/	L)							
1,1-Dichloroethene	0.057	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U
Benzene	0.8	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.28	0.20 U
cis-1,2-Dichloroethene	0.02	0.120	0.118	0.020 U	0.473	0.0257	0.427	0.0261
Trichloroethene	0.02	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U
Vinyl Chloride	0.05	0.122	0.121	0.020 U	0.020 U	0.0324	1.66	0.020 U

Notes

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
- 2. **Bolded** values exceed the cleanup levels.
- 3. S = shallow well; D = deep well.
- 4. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.
- 5. GW196D is installed in a cluster with GW195S, and is screened below a silt layer at 26.8 to 36.8 feet in depth.

Abbreviations

 μ g/L = micrograms per liter

CPOC = conditional point of compliance

field dup. = duplicate field

TABLE 13: AOC-003 GROUNDWATER ELEVATION DATA MAY 8, 2019

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ²	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ²
GW188S ³	3.5 to 13.5	18.78	NM	NM
GW247S	4 to 14	18.91	3.49	15.42
GW248I	10 to 20	18.78	3.41	15.37
GW249S	4 to 14	18.85	NM	NM

Notes

- 1. S = shallow well; I = intermediate well.
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.
- 3. Depth to water measurement not collected at GW188S during the second quarter 2017.

Abbreviations

bgs = below ground surface

NM = not measured

TABLE 14: AOC-003 CONCENTRATIONS OF PRIMARY GEOCHEMICAL INDICATORS ¹ MAY 8, 2019

Boeing Renton Facility, Renton, Washington

		Well ID ²				
	Source Area	Downgradient				
	Source Area	Plume Area	СРОС	CPOC Area		
	GW249S	GW188S	GW247S	GW248I		
Specific Conductivity (µS/cm)			448	544		
Dissolved Oxygen (mg/L)		NM	0.38	0.45		
Oxidation/Reduction Potential (mV)	NM		-31.3	-70.9		
pH (standard units)	INIVI		6.39	6.34		
Temperature (degrees C)			19.60	22.00		
Total Organic Carbon (mg/L)			9.82	12.68		

Notes

- 1. Primary geochemical indicators are measured in the field, with the exception of total organic carbon, which is measured in the laboratory.
- 2. S = shallow well; I = intermediate well.

Abbreviations

µS/cm = microsiemens per centimeter CPOC = conditional point of compliance degrees C = degrees Celsius mg/L = milligrams per liter mV = millivolts

NM = not measured

TABLE 15: AOC-003 CONCENTRATIONS OF CONSTITUENTS OF CONCERN ^{1, 2} MAY 8, 2019

Boeing Renton Facility, Renton, Washington

	Cleanup				
	Level⁴	GW247S	GW248I		
Volatile Organic Compounds (μg/L)					
cis-1,2-Dichloroethene	0.78	0.058	0.020 U		
Tetrachloroethene	0.02	0.020 U	0.020 U		
Trichloroethene	0.16	0.020 U	0.020 U		
Vinyl Chloride	0.24	0.497	0.551		

Notes

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
- 2. **Bolded** values exceed the cleanup levels.
- 3. S = shallow well; I = intermediate well.
- 4. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.

Abbreviations

 μ g/L = micrograms per liter

CPOC = conditional point of compliance

TABLE 16: LOT 20/FORMER BUILDING 10-71 PARCEL GROUNDWATER ELEVATION DATA¹ MAY 8, 2019

Boeing Renton Facility, Renton, Washington

Well ID	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ²	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ²
10-71-MW-1	7 to 17	30.07	8.29	21.78
10-71-MW-2	7 to 17	29.88	8.61	21.27
10-71-MW-4	6 to 16	28.97	8.38	20.59

Notes

- 1. Water levels not measured in monitoring well 10-71-MW-3 so it is not included in this table.
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations

bgs = below ground surface

TABLE 17: LOT 20/FORMER BUILDING 10-71 PARCEL CONCENTRATIONS OF PRIMARY GEOCHEMICAL INDICATORS ¹ MAY 8, 2019

Boeing Renton Facility, Renton, Washington

		Well ID			
	10-71-MW1	10-71-MW2	10-71-MW4		
Specific Conductivity (µS/cm)	187.4	199	321		
Dissolved Oxygen (mg/L)	0.91	1.75	1.14		
Oxidation/Reduction Potential (mV)	48.7	84.0	35.1		
pH (standard units)	5.85	5.63	6.17		
Temperature (degrees C)	14.10	13.90	15.30		

Notes

1. Primary geochemical indicators are measured in the field.

Abbreviations

µS/cm = microsiemens per centimeter degrees C = degrees Celsius mg/L = milligrams per liter mV = millivolts

TABLE 18: LOT 20/FORMER BUILDING 10-71 PARCEL CONCENTRATIONS OF CONSTITUENTS OF CONCERN ^{1, 2} MAY 8, 2019

Boeing Renton Facility, Renton, Washington

		Well ID				
	10-71-MW1	10-71-MW2	10-71-MW4			
Volatile Organic Compounds (µg/L)						
cis- 1,2-Dichloroethene	0.20 U	0.20 U	0.20 U			
Toluene	0.20 U	0.20 U	0.20 U			
Trichloroethene	0.20 U	0.20 U	0.20 U			
Vinyl Chloride	0.20 U	0.20 U	0.20 U			

Notes

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
- 2. No cleanup standards have been established for the Building 10-71 Parcel.

Abbreviations

 μ g/L = micrograms per liter

TABLE 19: APRON A GROUNDWATER ELEVATION DATA MAY 7, 2019

Boeing Renton Facility, Renton, Washington

Well ID	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ¹	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ¹
GW262S	8 to 18	NA	4.90	NA
GW263S	8 to 18	NA	6.36	NA
GW264S	8 to 18	NA	6.08	NA

Notes

1. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations

bgs = below ground surface

NA = not available

TABLE 20: APRON A CONCENTRATIONS OF PRIMARY GEOCHEMICAL INDICATORS ¹ MAY 7, 2019

Boeing Renton Facility, Renton, Washington

		Well ID ²				
		Source Area Wells				
		GW262S				
	GW262S	(field dup.)	GW264S			
Specific Conductivity (µS/cm)	459	456	739			
Dissolved Oxygen (mg/L)	1.28	1.21	0.86			
Oxidation/Reduction Potential (mV)	-44.2	-46.9	-40.2			
pH (standard units)	5.90	5.91	6.14			
Temperature (degrees C)	14.10	13.70	15.60			
Total Organic Carbon (mg/L)	33.94	33.29	37.28			

Notes

- 1. Primary geochemical indicators are measured in the field, with the exception of total organic carbon, which is measured in the laboratory.
- 2. S = shallow well.

Abbreviations

µS/cm = microsiemens per centimeter degrees C = degrees Celsius field dup. = field duplicate mg/L = milligrams per liter mV = millivolts

TABLE 21: APRON A CONCENTRATIONS OF CONSTITUENTS OF CONCERN^{1, 2}

MAY 7, 2019

Boeing Renton Facility, Renton, Washington

	Well ID ³			
	GW262S	GW262S (field dup.)	GW264S	
Volatile Organic Compounds (μg/L)				
cis- 1,2-Dichloroethene	0.20 U	0.20 U	0.20 U	
Vinyl Chloride	0.20 U	0.20 U	1.39	

Notes

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
- 2. No cleanup standards have been established for the Apron A Parcel.
- 3. S = shallow well.

Abbreviations

 μ g/L = micrograms per liter

wood.

Appendix A

TABLE A-1: GROUNDWATER COMPLIANCE MONITORING SCHEDULE

Boeing Renton Facility, Renton, Washington

Cleanup Action	Monitoring Frequency ¹			Groundwate	er Monitoring Wells ²	Additional Water Level				
Area	Quarterly	Semiannual	Cross-Gradient Wells	Source Area Wells	Downgradient Plume Wells	CPOC Wells	Monitoring Wells ³	Constituents of Concern⁴	Analyses ⁵	
SWMU-168		X (1,3)	NA	GW228S ⁷	NA	GW229S, GW230I, and GW231S		VC	SW8260C SIM	
SWMU-172/SWMU-174	x		NA	GW152S and GW153S	GW081S, GW172S, GW173S,	GW232S, GW233I, GW234S,		cis -1,2-DCE, PCE, TCE, VC	SW8260C SIM ⁶	
3WW0-172/3WW0-174	WMU-1/2/SWMU-1/4 X		IVA	GW 1323 and GW 1333	and GW226S	GW235I, and GW236S		Arsenic, copper, and lead	EPA 6020A	
Building 4-78/79	x		NA	GW031S, GW033S, GW034S,	GW038S, GW209S, and GW210S	GW143S, GW237S, GW238I, GW239I, GW240D, GW241S,		VC, TCE, cis -1,2-DCE, benzene	SW8260C ⁶	
SWMU/AOC Group	^		IVA	GW039S, GW243I, and GW244S	GW0303, GW2093, and GW2103	and GW242I		TPH-gasoline	NWTPH-Gx	
Former Fuel Farm SWMU/AOC Group		X (2,4)	NA	GW255S, GW256S, and GW257S	NA	GW183S, GW184S, GW211S, GW212S, GW221S, GW224S, and GW258S		TPH-jet fuel, TPH-diesel	NWTPH-Dx	
AOC-001/AOC-002	X	X (1,3)	NA	GW193S	GW190S, GW191D, GW192S,	GW190S, GW191D, GW192S, GW185S, GW194S, GW195S,		Benzene	SW8260C ⁶	
AOC-001/AOC-002	(CPOC wells)	(all other wells)	IVA	GW1935	and GW246S	GW196D, GW197S, and GW245S		TCE, cis -1,2-DCE, 1,1-dichloroethene, VC	SW8260C SIM ⁶	
X X	Х	X (1,3)	NA	GW249S	GW188S	GW247S and GW248I		PCE, TCE	SW8260C SIM ⁶	
AOC-003	(CPOC wells)	(all other wells)		GW2493				cis -1,2-DCE, VC	3440200C 31141	
AOC-004		X (1,3)	NA	GW250S	NA	GW174S		Lead	EPA 6020A	
AOC-060	406.060	X (1,3)	GW012S and GW014S	GW009S	GW147S	GW149S, GW150S, GW252S,	GW010S and GW011D	VC	SW8260C SIM ⁶	
AOC-000		A (1,3)	GW0123 and GW0143	GW0093	GW1473	GW253I, and GW254S	GW0103 and GW011D	TCE, cis -1,2-DCE	SVV8ZOUC SIM	
					1,1,2-Trichloroethane, acetone, benzene, toluene, carbon tetrachloride, chloroform, <i>cis</i> -1,2-DCE, <i>trans</i> -1,2-DCE, methylene chloride	SW8260C ⁶				
AOC-090		X (1,3)	NA	GW189S	GW175I and GW176S	GW163I, GW165I, GW177I, GW178S, GW179I, GW180S, GW207S, and GW208S		1,1-Dichloroethene, 1,1,2,2-tetrachloroethane, VC, PCE, TCE	SW8260C SIM ⁶	
						·		TPH-gasoline	NWPTH-Gx	
								TPH-diesel, TPH-motor oil	NWTPH-Dx	
Building 4-70 Area		X (1,3)	NA	NA	NA	GW259S and GW260S		TCE, cis -1,2-DCE, VC	SW8260C ⁶	
Lot 20/Former Building 10-71		X (2,4)	NA	10-71-MW1, 10-71-MW2, and 10-71-MW4	NA	NA		Toluene, cis-1,2-DCE, TCE, VC	SW8260C ⁶	
Apron A		X (2,4)	NA	GW262S and GW264S	NA	NA		cis -1,2-DCE and VC	SW8260C ⁶	

Notes:

- 1. The EDR presents the groundwater monitoring frequency for each SWMU/AOC. For sites with semiannual monitoring frequency, specific quarters when monitoring will be conducted is indicated by 1 for quarter 1, 2 for quarter 2, etc.
- 2. Groundwater monitoring wells are also monitored for groundwater levels.
- 3. Additional wells are monitored for groundwater levels only.
- 4. In addition to COCs, primary geochemical indicators will be monitored during each regular monitoring event. Geochemical indicators are listed in Table A-2.
- 5. Details of analytical methods are specified in the Quality Assurance Project Plan, which is Appendix E to the Cleanup Action Plan (AMEC, 2012).
- 6. SIM methods will be used if the cleanup level is lower than the reporting limit achieved by the conventional 8021, 8260 or 8270 method. If cleanup levels become higher or if the conventional 8021, 8260 or 8270 methods are updated and able to achieve reporting limits below the cleanup levels, then the conventional method rather than the SIM method will be used.
- 7. GW228S will not be monitored on a semiannual basis only the CPOC wells will be monitored on a semiannual basis for SWMU-168.

Abbreviations:

AOC = area of concern cis -1,2-DCE = cis -1,2 dichloroethene COCs = constituents of concern

CPOC = conditional point of compliance

Cr = chromium

EDR = Engineering Design Report EPA = Environmental Protection Agency NA = not applicable PCE = tetrachloroethene
SIM = selected ion monitoring
SWMU = solid waste management unit
TCE = trichloroethene
TPH = total petroleum hydrocarbons

IPH = total petroleum hydrocarbonstrans -1,2-DCE = trans -1,2 dichloroethene

VC = vinyl chloride

VOCs = volatile organic compounds

TABLE A-2: MONITORED NATURAL ATTENUATION/MONITORED ATTENUATION SCHEDULE

Boeing Renton Facility, Renton, Washington

				Primary Geochemical Parameters ²				
Cleanup Action			er Monitoring Wells			Monitoring Frequency ³		
Area	Cross-Gradient Wells	Source Area Wells	Downgradient Plume Wells	CPOC Wells	Indicators	Quarterly	Semiannual	
SWMU-168	NA	GW228S⁴	NA	GW229S, GW230l, and GW231S	Dissolved oxygen, pH, ORP, temperature, specific conductance		X (1,3)	
SWMU-172/SWMU-174	NA	GW152S and GW153S	GW081S, GW172S, GW173S, and GW226S	GW232S, GW233I, GW234S, GW235I, and GW236S	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC	X		
Building 4-78/79 SWMU/AOC Group	NA	GW031S, GW033S, GW034S, GW039S, GW243I, and GW244S	GW038S, GW209S, and GW210S	GW143S, GW237S, GW238I, GW239I, GW240D, GW241S, and GW242I	Dissolved oxygen, pH, ORP, temperature, specific conductance in all wells, TOC in all wells except GW241S and GW242I	Х		
Former Fuel Farm SWMU/AOC Group	NA	GW255S, GW256S, and GW257S	NA	GW183S, GW184S, GW211S, GW212S, GW221S, GW224S, and GW258S	Dissolved oxygen, pH, ORP, temperature, specific conductance		X (2,4)	
AOC-001/AOC-002	NA	GW193S	GW190S, GW191D, GW192S, and GW246S	GW185S, GW194S, GW195S, GW196D, GW197S, and GW245S	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC	X (CPOC wells)	X (1,3) (all other wells)	
AOC-003	NA	GW249S	GW188S	GW247S and GW248I	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC	X (CPOC wells)	X (1,3) (all other wells)	
AOC-004	NA	GW250S	NA	GW174S	Dissolved oxygen, pH, ORP, temperature, specific conductance		X (1,3)	
AOC-060	GW012S and GW014S	GW009S	GW147S	GW149S, GW150S, GW252S, GW253I, and GW254S	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC		X (1,3)	
AOC-090	NA	GW189S	GW175I and GW176S	GW163I, GW165I, GW177I, GW178S, GW179I, GW180S, GW207S, and GW208S	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC ⁵		X (1,3)	
Building 4-70 Area	NA	NA	NA	GW259S and GW260S	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC		X (1,3)	
Lot 20/Former Building 10-71	NA	10-71-MW1, 10-71-MW2, and 10-71-MW4	NA	NA	Dissolved oxygen, pH, ORP, temperature, specific conductance		X (2,4)	
Apron A	NA	GW262S and GW264S	NA	NA	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC		X (2,4)	

Notes

- 1. In addition to COCs listed in Table A-1, primary geochemical indicators will be monitored during each regular monitoring event.
- 2. All primary geochemical indicators except TOC are monitored in the field during sampling. TOC is analyzed in the laboratory following methods specified in the Quality Assurance Project Plan, which is Appendix E to the Cleanup Action Plan (AMEC, 2012).
 The primary geochemical indicators differ slightly depending on whether the site is a fuel-related site or a solvent-related site.
 At a fuel related site, TOC is not necessary; at a solvent-related site, TOC is a measure of how much electron donor remains present.
- 3. The EDR presents the groundwater monitoring frequency for each SWMU/AOC. For sites with semiannual monitoring frequency, specific quarters when monitoring will be conducted is indicated by 1 for quarter 1, 2 for quarter 2, etc.
- 4. Primary geochemical parameters will not be collected at GW228S only at CPOC wells that are sampled semiannually.
- 5. TOC will only be analyzed in the groundwater from the source area well (GW189S).

Abbreviations:

AOC = area of concern

COCs = constituents of concern

CPOC = conditional point of compliance

EDR = Engineering Design Report

NA = not applicable

ORP = oxidation reduction potential

SWMU = solid waste management unit

TOC = total organic carbon

wood.

Appendix B

Groundwater Low-Flow Sample Collection Form

Project Nam	Name: Boeing Renton				Project Number: 0025217.099.099					
Event:	May-19			Date/Time:	05/ 6 /2019@ 8	⊉ 800				
Sample Num	nber:	RGWDUP1	190506		Weather:	CLEAR				
Landau Repr	resentative:	SRB								
WATER LEV	/EL/WELL/PU	IRGE DATA								
Well Conditio		Secure (YES))	Damaged (N	O)	Describe:	Flush Mount			
DTW Before			Time:	=	Flow through ce			GW Meter No.(s	HERON3	
Begin Purge:		05/ 06 /2019		End Purge:	=	05/ 06 /2019 @		Gallons Purged:		
Purge water d			55-gal Drum	i i	Storage Tank	Ground	Other	SITE TREATMI		
Turge water a			_							
Time	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Internal Purge Volume (gal)	Comments/ Observations	
Time				ters for three		dings within the fo		>/= 1 flow	Observations	
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell		
		DUI	PLICA	ATE T	O RGV	W152S				
	· ——									
SAMPLE CO	LLECTION D	OATA								
Sample Collec			Bailer		Pump/Pump Type	DED BLADDER				
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated		
Decon Proced	lure:	Alconox Was	sh 🗖	Tap Rinse	DI Water	Dedicated	_	_		
(By Numerica		Other		1						
G 1.D										
Sample Descr	ription (color, t	urbidity, odor,	sheen, etc.):	SLIGHTY O	RAY AND CLO	UDY NO/NS				
Sample Descr	ription (color, t	curbidity, odor,	sheen, etc.):	SLIGHTY C	RAY AND CLO	UDY NO/NS				
Replicate	Temp	Cond.	D.O.	pH	ORP	Turbidity	DTW (ft)	Ferrous iron	Comments/	
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)		DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations	
Replicate 1	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pH 5.93	ORP (mV)	Turbidity				
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity				
Replicate 1	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pH 5.93	ORP (mV)	Turbidity				
Replicate 1 2	Temp (°F/°C) 18.2	Cond. (uS/cm) 192.3 191.5	D.O. (mg/L) 0.56 0.57	pH 5.93 5.93	ORP (mV) 18.6	Turbidity				
Replicate 1 2 3	Temp (°F/°C) 18.2 18.2	Cond. (uS/cm) 192.3 191.5	D.O. (mg/L) 0.56 0.57	pH 5.93 5.93 5.92	ORP (mV) 18.6 18.4	Turbidity				
Replicate 1 2 3 4 Average:	Temp (°F/°C) 18.2 18.2 18.2 18.3 18.2	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3	D.O. (mg/L) 0.56 0.57 0.58 0.58	5.93 5.93 5.92 5.91 5.92	ORP (mV) 18.6 18.4 18.9 19.5	Turbidity (NTU) #DIV/0!	(ft)	(Fe II)		
Replicate 1 2 3 4 Average:	Temp (°F/°C) 18.2 18.2 18.2 18.3 18.2 TYPICAL A	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3	D.O. (mg/L) 0.56 0.57 0.58 0.58 0.57	5.93 5.93 5.92 5.91 5.92 R BOTTLE	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle a)	Turbidity (NTU)	(ft)	(Fe II)	Observations	
Replicate 1 2 3 4 Average:	Temp (°F/°C) 18.2 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM)	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020	D.O. (mg/L) 0.56 0.57 0.58 0.58 0.57 LLOWED PE	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPH	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle and H-Gx) (BTEX)	Turbidity (NTU) #DIV/0!	(ft)	nalysis below)	Observations OR	
Replicate 1 2 3 4 Average:	Temp (°F/°C) 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPH	D.O. (mg/L) 0.56 0.57 0.58 0.57 LOWED PE 0. (NWTPH-CH-D) (NWTPH-CH-D) (NWTPH-CH-D)	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPH	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle a) H-Gx) (BTEX) H-HCID) (8081)	#DIV/0!	non-standard arrease)	(Fe II) malysis below) WA WA WA	Observations	
Replicate 1 2 3 4 Average:	Temp (°F/°C) 18.2 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA(pH) (Condu	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS)	D.O. (mg/L) 0.56 0.57 0.58 0.58 0.57 LOWED PE 0) (NWTPH-H-D) (NWTPH-H-D	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPHOD) (Turbic	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle a) I-Gx) (BTEX) H-HCID) (8081) dity) (Alkalinity)	#DIV/0! #DIV/0! pplicable or write in the second	non-standard arrease)	(Fe II) malysis below) WA WA WA	Observations OR	
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 18.2 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS)	D.O. (mg/L) 0.56 0.57 0.58 0.58 0.57 LOWED PE 0) (NWTPH-H-D) (NWTPH-H-D	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPHOD) (Turbic tal Kiedahl N	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle a) H-Gx) (BTEX) H-HCID) (8081)	#DIV/0! #DIV/0! pplicable or write in the second	non-standard arrease)	(Fe II) malysis below) WA WA WA	Observations OR	
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Conduction) (COD) (TOO (Total Cyanid	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPH (ctivity) (TDS) (C5310C) (Total	D.O. (mg/L) 0.56 0.57 0.58 0.58 0.57 LOWED PE 0) (NWTPH-0 H-D) (NWTP S) (TSS) (B tal PO4) (Totanide) (Free	5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPHOD) (Turbic tal Kiedahl N Cyanide)	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle and H-Gx) (BTEX) H-HCID) (8081) lity) (Alkalinity) (itrogen) (NH3)	#DIV/0! #DIV/0! pplicable or write in the second	non-standard and rease)	malysis below) WA WA WA WO WO WO WO WO WO WO WO WO WO	Observations OR OR OR	
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 18.2 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals)	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPH (ctivity) (TDS) (C5310C) (Total	D.O. (mg/L) 0.56 0.57 0.58 0.57 LOWED PE 0) (NWTPH-H-D) (NWTPH-D) (NWT	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPHOD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle and Hellon) (8081) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (Cr) (Cu) (Fe)	#DIV/0! #DIV/0! pplicable or write in the interpolation of the interpo	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA 3) (NO2) (F)	Observations OR OR OR	
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 18.2 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals)	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS (25310C) (Too (le) (WAD Cy) (As) (Sb) (cetals) (As) (Sb) (Sb)	D.O. (mg/L) 0.56 0.57 0.58 0.57 LOWED PE 0) (NWTPH-H-D) (NWTPH-D) (NWT	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPHOD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle and Hellon) (8081) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (Cr) (Cu) (Fe)	#DIV/0! #DIV/0! pplicable or write in the interpolation of the interpo	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR	
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS (25310C) (Too (le) (WAD Cy) (As) (Sb) (cetals) (As) (Sb) (Sb)	D.O. (mg/L) 0.56 0.57 0.58 0.58 0.57 LOWED PE 0) (NWTPH-H-D) (NWTPH-H-D	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPHOD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle and Hellon) (8081) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (Cr) (Cu) (Fe)	#DIV/0! #DIV/0! pplicable or write in the interpolation of the interpo	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR	
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPHactivity) (TDS (C5310C) (Total) (le) (WAD Cy) (As) (Sb) (etals) (As) (Sb) g short list)	D.O. (mg/L) 0.56 0.57 0.58 0.58 0.57 LOWED PE 0) (NWTPH-H-D) (NWTPH-H-D	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPHOD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle and Hellon) (8081) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (Cr) (Cu) (Fe)	#DIV/0! #DIV/0! pplicable or write in the interpolation of the interpo	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR	
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPHactivity) (TDS (C5310C) (Total) (le) (WAD Cy) (As) (Sb) (etals) (As) (Sb) g short list)	D.O. (mg/L) 0.56 0.57 0.58 0.58 0.57 LOWED PE 0) (NWTPH-H-D) (NWTPH-H-D	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPHOD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle and Hellon) (8081) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (Cr) (Cu) (Fe)	#DIV/0! #DIV/0! pplicable or write in the interpolation of the interpo	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR	
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPHactivity) (TDS (C5310C) (Total) (le) (WAD Cy) (As) (Sb) (etals) (As) (Sb) g short list)	D.O. (mg/L) 0.56 0.57 0.58 0.58 0.57 LOWED PE 0) (NWTPH-H-D) (NWTPH-H-D	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPHOD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle and Hellon) (8081) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (Cr) (Cu) (Fe)	#DIV/0! #DIV/0! pplicable or write in the interpolation of the interpo	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR	
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein Methane Eth	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPI- (100) (Tool (100) (AS) (Sb) (Cetals) (As) (cetals) (cetals) (cetals) (cetals) (cetals) (cetals) (cetals) (cetal	D.O. (mg/L) 0.56 0.57 0.58 0.58 0.57 LOWED PE 0) (NWTPH-H-D) (NWTPH-H-D	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPHOD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle and Hellon) (8081) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (Cr) (Cu) (Fe)	#DIV/0! #DIV/0! pplicable or write in the interpolation of the interpo	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR	
Replicate 1 2 3 4 Average: QUANTITY 3 1 1 Duplicate San	Temp (°F/°C) 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein Methane Eth	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPHactivity) (TDS (C5310C) (Total) (le) (WAD Cy) (As) (Sb) (etals) (As) (Sb) g short list)	D.O. (mg/L) 0.56 0.57 0.58 0.58 0.57 LOWED PE 0) (NWTPH-H-D) (NWTPH-H-D	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPHOD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle and Hellon) (8081) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (Cr) (Cu) (Fe)	#DIV/0! #DIV/0! pplicable or write in the interpolation of the interpo	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR	
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 18.2 18.2 18.3 18.2 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein Methane Eth	Cond. (uS/cm) 192.3 191.5 190.7 190.5 191.3 NALYSIS AI (8010) (8020 AH) (NWTPI- (100) (Tool (100) (AS) (Sb) (Cetals) (As) (cetals) (cetals) (cetals) (cetals) (cetals) (cetals) (cetals) (cetal	D.O. (mg/L) 0.56 0.57 0.58 0.58 0.57 LOWED PE 0) (NWTPH-H-D) (NWTPH-H-D	5.93 5.93 5.92 5.91 5.92 R BOTTLE G) (NWTPHH-Dx) (TPHOD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) 18.6 18.4 18.9 19.5 18.9 TYPE (Circle and Hellon) (8081) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (BTEX) (Cr) (Cu) (Fe)	#DIV/0! #DIV/0! pplicable or write in the interpolation of the interpo	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR	

Groundwater Low-Flow Sample Collection Form

Project Nam	e:	Boeing Ren	ton		Project Numbe	r: (0025217.099.0	99		
Event:	-	May-19			Date/Time:	05/6 /2019@ 94				
Sample Nun	nber:	RGW081S- 190506			Weather:	SUNNY WARM				
Landau Rep		BXM								
WATED LEV	/EL/WELL/PU	IDGE DATA								
Well Condition		Secure (YES)	Damaged (N	(O)	Describe: 1	Flush Mount			
DTW Before		8.68	Time:	-	Flow through ce	-		GW Meter No.(s	1-HERON	
	Date/Time:			End Purge:	=	05/ 6 /2019 @ 935		Gallons Purged:		
Purge water d			55-gal Drum	Ė	Storage Tank	Ground		SITE TREATMI		
Ü		Cond.	D.O.	pH	ORP	— Turbidity	DTW	Internal Purge	Comments/	
Time	Temp (°F/°C)	(uS/cm)	(mg/L)	þп	(mV)	(NTU)	(ft)	Volume (gal)	Observations	
						dings within the follo	~	>/= 1 flow		
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units		+/- 10%	< 0.3 ft	through cell		
918		192.4	1.77	6.22	44.1		8.67			
921	16.9	205.8	0.88	6.17	32.6		8.67			
924	16.8	211.3	0.57	6.22	17.8		8.67			
927	17.1	216.2	0.58	6.25	6.0					
930	17.2	219.2	0.59	6.26	-1.2					
933	17.5	222.3	0.67	6.27	-6.1					
					•				-	
SAMPLE CO	LLECTION D	ATA			<u> </u>	<u> </u>			<u> </u>	
Sample Colle			Bailer		Pump/Pump Type	DED BLADDER				
Made of:		Stainless Ste	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated		
Decon Proced	lure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated				
(By Numerica	ıl Order)	Other								
Sample Descr	ription (color, t	urbidity, odor,	sheen, etc.):	CLEAR, CO	LORLESS, SMA	LL YELLOWISH SO	LIDS, NO SHI	EEN		
Replicate	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/	
replicate	(°F/°C)	(uS/cm)	(mg/L)	pm	(mV)	(NTU)	(ft)	(Fe II)	Observations	
1	17.5	223.0	0.67	6.27	-6.3					
2	17.6	223.3	0.68	6.27	-6.5					
3	17.6	222.6	0.68	6.27	-7.0					
4	17.7	223.4	0.67	6.27	-7.4					
						#DIV/01				
Average:	17.6	223.1	0.68	6.27	-6.8	#DIV/0!				
QUANTITY						plicable or write non	-standard ana			
3		(8010) (8020				(0141) (01.0.0		WA 🗆	OR 🗆	
					I-HCID) (8081)	(8141) (Oil & Grea (HCO3/CO3) (Cl)		WA []	OR L	
1	<u> </u>	* * * * * * * * * * * * * * * * * * * *			itrogen) (NH3)		(504) (1103	, (1102) (1)		
		le) (WAD Cy				<u> </u>				
1	(Total Metals) (As) (Sb) (Ba) (Be) (Ca	(Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni)	(Ag) (Se) (T	(I) (V) (Zn) (Hg)	(K) (Na)	
) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pt	o) (Mg) (Mn) (Ni) (Ag	g) (Se) (Tl) (V)	(Zn) (Hg) (K) (Na	a) (Hardness) (Silica)	
	VOC (Boein		. 1							
	Methane Eth	ane Ethene Ac	etylene							
	others									
_										
Duplicate Sar	nple No(s):									
Comments:										
Signature:	BXM					Date:	5/6/2019			

Groundwater Low-Flow Sample Collection Form

Project Nam	e:	Boeing Rent	on		Project Numbe	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 6 /2019@	1149		
Sample Num	ıber:	RGW152S-	190506		Weather:	CLEAR			
Landau Repr	resentative:	SRB							
WATER LEV	EL/WELL/PI	JRGE DATA							
Well Conditio		Secure (YES)		Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	9.06	Time:	1110	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 06 /2019	1119	End Purge:	Date/Time:	05/ 06 /2019 @	1136	Gallons Purged:	0.25
Purge water d	isposed to:		1119		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	-	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa +/- 3%	ls: Stablization +/- 3%		ters for three +/- 0.1 units	consecutive rea +/- 10 mV	dings within the fo +/- 10%	ollowing limits < 0.3 ft	>/= 1 flow through cell	
1122	14.6	220.4	0.70	5.96		LOW	9.06	tiii ougii ceii	
1125		223.5	0.50	5.96	13.1	EOW	9.06		
	17.8				•				
1128	18.0	196.6	0.52	5.96	15.1	-	9.06		
1131	18.1	195.0	0.54	5.95	16.1		·		
1134	18.1	193.3	0.55	5.93	18.2				
					,				
SAMPLE CO									
Sample Collec	cted With:	_	Bailer			DED BLADDER	<u> </u>		
Made of:		Stainless Steel		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Wash	ı 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	,	Other _	1 ()	OLIGIES V	CD AV AND CL	OLIDA NO AIG			
Sample Descr	iption (color, i	turbiaity, odor,	sneen, etc.):_	SLIGHTLY	GRAY AND CL	OUDY NO/NS			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	18.2	192.5	0.55	5.93	17.9				
2	18.2	191.7	0.57	5.92	18.5				
3	18.2	191.2	0.57	5.92	19.2				
4	18.3	190.7	0.58	5.93	18.7				
Average:	18.2	191.5	0.57	5.93	18.6	#DIV/0!			
QUANTITY 3					I-Gx) (BTEX)	oplicable or write	non-standard ar	WA WA	OR 🗆
					H-HCID) (8081)	(8141) (Oil & G	rease)	WA □	OR 🗆
						(HCO3/CO3) (C	·		
1	(COD) (TO	C5310C) (Tota	al PO4) (To	tal Kiedahl N	itrogen) (NH3)	(NO3/NO2)			
		le) (WAD Cya							
1						(Pb) (Mg) (Mn) (I			
	VOC (Boein		(Ba) (Be) (C	(Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (N1) (Ag) (Se) (T1) (V) (Zn) (Hg) (K) (N	Na) (Hardness) (Silica
		ane Ethene Ace	etylene						
	-								
	others								
Duplicate San	onle No(c):	Duplicate Loc	ation (DLID1	k					
Comments:	upie mo(s):	Duplicate Loc	adoli (DUPI	<u>/</u>					
Signature:	SRB					Date:	5/6/2019		

Project Name	e <u>:</u>	Boeing Ren	ton		Project Number	r <u>:</u>	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 6 /2019@ 1	225		
Sample Num	ıber:	RGW153S-	190506		Weather:	SUNNY, WARM	1		
Landau Repr	resentative:	BXM							
WATER LEV	EL/WELL/PU	IRGE DATA							
Well Conditio		Secure (YES))	Damaged (N	O)	Describe:	Flush Mount		
DTW Before l	Purging (ft)	9.45	Time:	1200	Flow through cel	l vol.		GW Meter No.(s	1-HERON
Begin Purge:				End Purge:	=	05/ 6/2019 @ 12	221	Gallons Purged:	
Purge water di	isposed to:		55-gal Drum	Ä	Storage Tank	Ground	Other	SITE TREATM	
· ·	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	pii	(mV)	(NTU)	(ft)	Volume (gal)	Observations
						lings within the fol		>/= 1 flow	
	+/- 3%	+/- 3%		+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
1204	16.9	235.9	2.38	6.17	35.1		9.53	TURNED TH	ROTTLE DOWN
1207	17.3	243.2	1.46	6.17	24.2		9.49		
1210	17.4	233.8	0.94	6.19	9.6		9.49		
1213	17.4	233.8	0.66	6.21	-1.7				
1216		228.8	0.54	6.21	-8.0				
1219	17.3	225.8		6.21	-11.8		1		
1219	17.5	223.8	0.54	0.21	-11.6				
							•		
SAMPLE CO			Dailan		Danier / Danier Trans	DED BLADDER			
Sample Collect	cted with:		Bailer	PVC		DED BLADDER	Other	Dadinated	
Made of:		Stainless Stee			Teflon	Polyethylene	∟ Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerical		Other	ahaan ata).	CLEAD CO	LODIECE NO C	HEEN COME DI A	CV AND WHIT	E COLIDE	
•			sheen, etc.):	CLEAR, CO	LORLESS, NO SI	HEEN, SOME BLA	CK AND WHIT	E SOLIDS	
•			sheen, etc.):	CLEAR, CO	ORP (mV)	HEEN, SOME BLA Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
Sample Descri	iption (color, t	urbidity, odor,	D.O.		ORP	Turbidity	DTW	Ferrous iron	
Sample Descri	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity	DTW	Ferrous iron	
Sample Descri Replicate	Temp (°F/°C) 17.5	Cond. (uS/cm) 224.8	D.O. (mg/L) 0.58	рН 6.21	ORP (mV) -12.4 -12.7	Turbidity	DTW	Ferrous iron	
Replicate 1 2 3	Temp (°F/°C) 17.5 17.5	Cond. (uS/cm) 224.8 224.9 225.0	D.O. (mg/L) 0.58 0.56	pH 6.21 6.21 6.21	ORP (mV) -12.4 -12.7 -13.0	Turbidity	DTW	Ferrous iron	
Replicate 1 2 3 4	Temp (°F/°C) 17.5 17.5 17.6	Cond. (uS/cm) 224.8 224.9 225.0 224.6	D.O. (mg/L) 0.58 0.56 0.55	6.21 6.21 6.21 6.21	ORP (mV) -12.4 -12.7 -13.0 -13.3	Turbidity (NTU)	DTW	Ferrous iron	
Replicate 1 2 3 4 Average:	Temp (°F/°C) 17.5 17.5 17.6 17.5	Cond. (uS/cm) 224.8 224.9 225.0 224.6	D.O. (mg/L) 0.58 0.56 0.55 0.57	6.21 6.21 6.21 6.21 6.21	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9	Turbidity (NTU) #DIV/0!	DTW (ft)	Ferrous iron (Fe II)	
Replicate 1 2 3 4 Average:	Temp (°F/°C) 17.5 17.5 17.6 17.5	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8	D.O. (mg/L) 0.58 0.56 0.55 0.57	6.21 6.21 6.21 6.21 6.21 6.21	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Observations
Replicate 1 2 3 4 Average:	Temp (°F/°C) 17.5 17.5 17.5 17.6 17.5 TYPICAL AI (8260-SIM)	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020)	D.O. (mg/L) 0.58 0.56 0.55 0.57 0.57	6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle apple-Gx) (BTEX)	Turbidity (NTU) #DIV/0!	DTW (ft)	Ferrous iron (Fe II)	Observations OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 17.5 17.5 17.6 17.5 17.6 17.5 17.6 279ICAL AI (8260-SIM) (8270D) (PA	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020 AH) (NWTPH	D.O. (mg/L) 0.58 0.56 0.55 0.57 0.57 0.57 LOWED PE 0) (NWTPH-0	6.21 6.21 6.21 6.21 6.21 6.21 G.21 R BOTTLE 7 G) (NWTPH	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle applement) -GX) (BTEX) -HCID) (8081)	#DIV/0!	DTW (ft) On-standard ana	Ferrous iron (Fe II) Llysis below) WA WA WA	Observations
Replicate 1 2 3 4 Average:	Temp (°F/°C) 17.5 17.5 17.6 17.5 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS	D.O. (mg/L) 0.58 0.56 0.55 0.57 0.57 LOWED PE 0 (NWTPH-C) (NWTPH-C) (NWTPH-C) (NWTPH-C) (NWTPH-C) (NWTPH-C) (BS) (BS) (BS)	6.21 6.21 6.21 6.21 6.21 6.21 G. (NWTPH H-Dx) (TPH OD) (Turbid	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle apple-Gx) (BTEX) -HCID) (8081) ity) (Alkalinity)	#DIV/0! blicable or write not (8141) (Oil & Gree (HCO3/CO3) (CI	DTW (ft) On-standard ana	Ferrous iron (Fe II) Llysis below) WA WA WA	Observations OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.5 17.5 17.6 17.5 17.6 17.5 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020 AH) (NWTPH ctivity) (TDS	D.O. (mg/L) 0.58 0.56 0.55 0.57 0.57 LOWED PE 0) (NWTPH-6 I-D) (NWTP I-D) (NWTP I-D) (NWTP I-D) (TSS) (Be al PO4) (Tot	6.21 6.21 6.21 6.21 6.21 6.21 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid al Kiedahl Ni	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle applement) -GX) (BTEX) -HCID) (8081)	#DIV/0! blicable or write not (8141) (Oil & Gree (HCO3/CO3) (CI	DTW (ft) On-standard ana	Ferrous iron (Fe II) Llysis below) WA WA WA	Observations OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.5 17.5 17.5 17.6 17.5 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS	D.O. (mg/L) 0.58 0.56 0.55 0.57 0.57 LOWED PE 0) (NWTPH-C 1-D) (NWTP 3) (TSS) (Becal PO4) (Totanide) (Free	6.21 6.21 6.21 6.21 6.21 6.21 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid all Kiedahl Ni Cyanide)	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle apple-Gx) (BTEX) -HCID) (8081) ity) (Alkalinity) trogen) (NH3) (#DIV/0! blicable or write not (8141) (Oil & Gree (HCO3/CO3) (CI	DTW (ft) On-standard ana ease)) (SO4) (NO3	Ferrous iron (Fe II) Allysis below) WA WA WA O (NO2) (F)	Observations OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.5 17.5 17.5 17.6 17.5 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals)	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020 AH) (NWTPE ectivity) (TDS (CS310C) (Tot e) (WAD Cy. () (As) (Sb) (S	D.O. (mg/L) 0.58 0.56 0.57 0.57 LOWED PE 0 (NWTPH-C) (NWTPH-C) (NWTPH-C) (NWTPH-C) (TSS) (Becal PO4) (Totanide) (Free Ba) (Be) (Ca	6.21 6.21 6.21 6.21 6.21 6.21 6.21 G. (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle apple-Gx) (BTEX) [-HCID] (8081) ity) (Alkalinity) trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	on-standard ana ease)) (SO4) (NO3	Ferrous iron (Fe II) Alysis below) WA WA O (NO2) (F)	Observations OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.5 17.5 17.6 17.5 17.6 17.5 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Mo	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS (25310C) (Tot e) (WAD Cy) () (As) (Sb) (Setals) (As) (Sb) (Sb g short list)	D.O. (mg/L) 0.58 0.56 0.57 0.57 0.57 LOWED PE 0) (NWTPH-6 I-D) (NWTP dal PO4) (Totanide) (Free Ba) (Be) (Ca 0) (Ba) (Be) (Ca	6.21 6.21 6.21 6.21 6.21 6.21 6.21 G. (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle apple-Gx) (BTEX) [-HCID] (8081) ity) (Alkalinity) trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	on-standard ana ease)) (SO4) (NO3	Ferrous iron (Fe II) Alysis below) WA WA O (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.5 17.5 17.6 17.5 17.6 17.5 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Mo	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020) AH) (NWTPHotivity) (TDS C5310C) (Tot e) (WAD Cy. () (As) (Sb) (Setals) (As) (Sb) (Sb)	D.O. (mg/L) 0.58 0.56 0.57 0.57 0.57 LOWED PE 0) (NWTPH-6 I-D) (NWTP dal PO4) (Totanide) (Free Ba) (Be) (Ca 0) (Ba) (Be) (Ca	6.21 6.21 6.21 6.21 6.21 6.21 6.21 G. (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle apple-Gx) (BTEX) [-HCID] (8081) ity) (Alkalinity) trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	on-standard ana ease)) (SO4) (NO3	Ferrous iron (Fe II) Alysis below) WA WA O (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.5 17.5 17.6 17.5 17.6 17.5 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Mo	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS (25310C) (Tot e) (WAD Cy) () (As) (Sb) (Setals) (As) (Sb) (Sb g short list)	D.O. (mg/L) 0.58 0.56 0.57 0.57 0.57 LOWED PE 0) (NWTPH-6 I-D) (NWTP dal PO4) (Totanide) (Free Ba) (Be) (Ca 0) (Ba) (Be) (Ca	6.21 6.21 6.21 6.21 6.21 6.21 6.21 G. (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle apple-Gx) (BTEX) [-HCID] (8081) ity) (Alkalinity) trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	on-standard ana ease)) (SO4) (NO3	Ferrous iron (Fe II) Alysis below) WA WA O (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.5 17.5 17.6 17.5 17.6 17.5 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Methane Eth	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS (25310C) (Tot e) (WAD Cy) () (As) (Sb) (Setals) (As) (Sb) (Sb g short list)	D.O. (mg/L) 0.58 0.56 0.57 0.57 0.57 LOWED PE 0) (NWTPH-6 I-D) (NWTP dal PO4) (Totanide) (Free Ba) (Be) (Ca 0) (Ba) (Be) (Ca	6.21 6.21 6.21 6.21 6.21 6.21 6.21 G. (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle apple-Gx) (BTEX) [-HCID] (8081) ity) (Alkalinity) trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	on-standard ana ease)) (SO4) (NO3	Ferrous iron (Fe II) Alysis below) WA WA O (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.5 17.5 17.6 17.5 17.6 17.5 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Mo	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS (25310C) (Tot e) (WAD Cy) () (As) (Sb) (Setals) (As) (Sb) (Sb g short list)	D.O. (mg/L) 0.58 0.56 0.57 0.57 0.57 LOWED PE 0) (NWTPH-6 I-D) (NWTP dal PO4) (Totanide) (Free Ba) (Be) (Ca 0) (Ba) (Be) (Ca	6.21 6.21 6.21 6.21 6.21 6.21 6.21 G. (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle apple-Gx) (BTEX) [-HCID] (8081) ity) (Alkalinity) trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	on-standard ana ease)) (SO4) (NO3	Ferrous iron (Fe II) Alysis below) WA WA O (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.5 17.5 17.5 17.6 17.5 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Methane Eth others	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS (25310C) (Tot e) (WAD Cy) () (As) (Sb) (Setals) (As) (Sb) (Sb g short list)	D.O. (mg/L) 0.58 0.56 0.57 0.57 0.57 LOWED PE 0) (NWTPH-6 I-D) (NWTP dal PO4) (Totanide) (Free Ba) (Be) (Ca 0) (Ba) (Be) (Ca	6.21 6.21 6.21 6.21 6.21 6.21 6.21 G. (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle apple-Gx) (BTEX) [-HCID] (8081) ity) (Alkalinity) trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	on-standard ana ease)) (SO4) (NO3	Ferrous iron (Fe II) Alysis below) WA WA O (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.5 17.5 17.5 17.6 17.5 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Methane Eth others	Cond. (uS/cm) 224.8 224.9 225.0 224.6 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS (25310C) (Tot e) (WAD Cy) () (As) (Sb) (Setals) (As) (Sb) (Sb g short list)	D.O. (mg/L) 0.58 0.56 0.57 0.57 0.57 LOWED PE 0) (NWTPH-6 I-D) (NWTP dal PO4) (Totanide) (Free Ba) (Be) (Ca 0) (Ba) (Be) (Ca	6.21 6.21 6.21 6.21 6.21 6.21 6.21 G. (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) -12.4 -12.7 -13.0 -13.3 -12.9 TYPE (Circle apple-Gx) (BTEX) [-HCID] (8081) ity) (Alkalinity) trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	on-standard ana ease)) (SO4) (NO3	Ferrous iron (Fe II) Alysis below) WA WA O (NO2) (F)	Observations OR □ OR □ OR □

Project Nam	e:	Boeing Ren	ton		Project Numbe	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 6 /2019@	1114		
Sample Num	ıber:	RGW172S-	190506		Weather:	CLEAR			
Landau Repr	resentative:	SRB							
WATER LEV	'EL/WELL/PI	URGE DATA							
Well Condition	n:	Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	9.38	Time:	1040	Flow through ce	ll vol.	i	GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 06 /2019	1044	End Purge:	Date/Time:	05/ 06 /2019 @	1107	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	tors for thro	(mV)	(NTU) dings within the fo	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%		+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
1047	15.5	269.9	0.56	5.98	34.1	LOW	9.74		
1050	16.2	278.5	0.49	5.93	15.7		9.41		
1053	18.9	300.9	0.47	6.33	-27.8		9.5		
1056	18.5	296.4	0.46	6.37	-35.6		9.5		
1059	18.4		0.42	6.36	-40.0		7.3		
1102	18.3	284.2	0.46	6.34	-40.8		-		
					-				
1105	18.1	279.1	0.47	6.30	-40.6	-	-		
SAMPLE CO	I LECTION I	<u></u>			<u> </u>	<u> </u>			
Sample Collect			Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other			-				
Sample Descr	iption (color, t	turbidity, odor,	sheen, etc.):	SLIGHTLY	YELLOW AND	TURBID NO/NS			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	18.1	278.9	0.46	6.30	-40.5				
2	18.2	278.3	0.46	6.28	-39.4				
3	18.1	278.0	0.46	6.28	-39.7				
4	18.1	277.9	0.46	6.28	-39.7	-			
Average:	18.1	278.3	0.46	6.29	-39.8	#DIV/0!			
QUANTITY 3					TYPE (Circle a) I-Gx) (BTEX)	oplicable or write	non-standard ar	wa 🗆	OR 🗆
3						(8141) (Oil & G	rease)	WA 🗆	OR 🗆
						(HCO3/CO3) (C			
1	(COD) (TO	C5310C) (To	tal PO4) (To	tal Kiedahl N	itrogen) (NH3)	(NO3/NO2)			
		le) (WAD Cy							
1						(Pb) (Mg) (Mn) (I			
	VOC (Boein) (Ba) (Be) (C	<i>.a)</i> (Ca) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (MIII) (MI) (Ag) (Se) (11) (V) (ZII) (Hg) (K) (I	Na) (Hardness) (Silica
		nane Ethene Ac	etylene						
			-						
	others								
Duplicate San Comments:	nple No(s):								
Signature:	SRB					Date:	5/6/2019		

Project Name	e:	Boeing Ren	ton		Project Number	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/6 /2019@	1030		
Sample Num	ber:	RGW173S-	190506		Weather:	SUNNY, WAR	M		
Landau Repr	esentative:	BXM							
WATER LEV	EL/WELL/PU	IRGE DATA							
Well Conditio		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	9.44	Time:	1003	Flow through cel	l vol.	•	GW Meter No.(s	1-HERON
Begin Purge:	Date/Time:		@ 1007	End Purge:	Date/Time:	05/6 /2019 @ 10	027	Gallons Purged:	<1
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATMI	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa	ds: Stablization +/- 3%	on of Parame +/- 10%	ters for three +/- 0.1 units	e consecutive read +/- 10 mV	lings within the fo +/- 10%	llowing limits < 0.3 ft	>/= 1 flow through cell	
1010						+/- 10 /0		un ough cen	
1010	15.6	320.4	1.28	6.15	28.7		9.46		
1013	16.0	357.6	0.44	6.23	6.8		9.46		
1016	15.7	360.9	0.32	6.29	-14.7		9.46		
1019	15.6	357.1	0.33	6.29	-21.6				
1022	15.4	353.1	0.36	6.28	-24.9				
1025	15.3	349.4	0.44	6.26	-27.6				
							-		
SAMPLE CO	LLECTION D	ATA							
Sample Collec	eted With:		Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other					<u>.</u>		
Sample Descr	iption (color, t	urbidity, odor,	sheen, etc.):	COLORLES	S, SLIGHTLY CI	LOUDY, SOME W	HITE SOLIDS, N	IO SHEEN	
Replicate	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
•	(° F /° C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	(Fe II)	Observations
1	15.2	347.2	0.46	6.26	-27.7				
2	15.2	347.4	0.45	6.25	-27.9				
3	15.2	347.5	0.44	6.25	-28.0				
4	15.3	346.8	0.43	6.26	-28.4				
Average:	15.2	347.2	0.45	6.26	-28.0	#DIV/0!			
· · ·									
QUANTITY 3					IYPE (Circle ap ₎ I-Gx) (BTEX)	olicable or write n	on-standard ana	WA □	OR 🗆
3						(8141) (Oil & Gr	ease)	WA □	OR 🗆
						(HCO3/CO3) (C			
1						(NO3/NO2)			
	(Total Cyanid	e) (WAD Cy	anide) (Free	Cyanide)					
1						Pb) (Mg) (Mn) (N			
) (Ba) (Be) (C	(Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (A	Ag) (Se) (Tl) (V)	(Zn) (Hg) (K) (Na	a) (Hardness) (Silica)
	VOC (Boein	g snort list) ane Ethene Ac	otylono						
	wichiane Elli	and Eulelle AC	ctyrelle						
	others								
D1' : C	1- NT ()								
Duplicate San Comments:	nple No(s): MSMSD Lo	antion							
Comments.	MISMISD LO	cation							
Signature:	BXM					Date:	5/6/2019		

\\sea2-fs1\projectF\$\8888 - Boeing Renton\02 Data Management\2019\2Q2019\field data\RGW 153S

Project Nam	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:	<u> </u>	May-19			Date/Time:	05/ 6/2019@ 11			
Sample Num	nber:	RGW226S-	190506		Weather:	SUNNY, WARM	[
Landau Repi		BXM			•				
WATERIEV	'EL/WELL/PU	IRCE DATA							
Well Condition		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before		8.84	Time:	_	Flow through ce			GW Meter No.(s	1-HERON
		05/ 6 /2019		End Purge:	_	05/ 6/2019 @ 113	32	Gallons Purged:	
Purge water d			55-gal Drum	Ė	Storage Tank	Ground		SITE TREATMI	
Ü	_	Cond.	D.O.	pH	ORP	— Turbidity	DTW	Internal Purge	Comments/
Time	Temp (°F/°C)	(uS/cm)	(mg/L)	рп	(mV)	(NTU)	(ft)	Volume (gal)	Observations
						dings within the foll	_	>/= 1 flow	
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units		+/- 10%	< 0.3 ft	through cell	
1116		268.5	1.46	6.25	31.5		8.87		
1119	19.3	282.8	0.94	6.29	8.7		8.88		
1122	19.3	275.5	0.68	6.31	-9.4		8.89		
1125	19.5	265.5	0.59	6.32	-20.0		8.89		
1128	19.5	261.1	0.49	6.32	-25.5				
1131	19.4	250.7	0.52	6.31	-28.4				
					•	-			-
SAMPLE CO	LLECTION D	OATA			<u> </u>				<u> </u>
Sample Collec			Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Ste	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other							
Sample Descr	iption (color, t	turbidity, odor,	sheen, etc.):	CLEAR, CO	LORLESS, ORA	NGE SOLIDS, NO S	HEEN		
Replicate	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
Керпсан	(°F/°C)	(uS/cm)	(mg/L)	pii	(mV)	(NTU)	(ft)	(Fe II)	Observations
1	19.4	249.5	0.56	6.31	-28.6				
2	19.3	249.7	0.53	6.31	-28.8				
3	19.4		0.52	6.31	-28.9	· ·			
4	19.4	247.2	0.56	6.31	-29.1				
Average:	19.4	249.0	0.54	6.31	-28.9	#DIV/0!			
QUANTITY						plicable or write no	n-standard ana	_	
3		(8010) (8020						WA 🗆	OR 🗆
						(8141) (Oil & Gre		WA D	OR □
1	`				trogen) (NH3)	(HCO3/CO3) (CI) (NO3/NO2)	(SO4) (NOS) (1 10 2) (F)	
		le) (WAD Cy			arogen) (1413)	(1103/1102)			
1					(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni	i) (Ag) (Se) (T	(I) (V) (Zn) (Hg)	(K) (Na)
	(Dissolved M	etals) (As) (Sb) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb	o) (Mg) (Mn) (Ni) (A	.g) (Se) (Tl) (V)	(Zn) (Hg) (K) (Na	a) (Hardness) (Silica)
	VOC (Boein								
	Methane Eth	ane Ethene Ac	etylene						
	others								
	omers.								
Duplicate San	nple No(s):								
Comments:									
Signature:	BXM					Date:	5/6/2019		

\\sea2-fs1\projectF\$\8888 - Boeing Renton\02 Data Management\2019\2Q2019\field data\RGW 153S

Project Nam	e:	Boeing Ren	ton		Project Numbe	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 6 /2019@	839		
Sample Nun	nber:	RGW232S-	190506		Weather:	CLEAR			
Landau Repr	resentative:	SRB							
WATER LEV	EL/WELL/PI	URGE DATA							
Well Condition		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	7.92	Time:	808	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 06 /2019	809	End Purge:	Date/Time:	05/ 06 /2019 @	833	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	Volume (gal)	Observations
	+/- 3%	ds: Stablizatio +/- 3%		ters for three +/- 0.1 units	e consecutive rea +/- 10 mV	dings within the fo +/- 10%	< 0.3 ft	>/= 1 flow through cell	
812		403.5	5.80	5.65	30.7	LOW	8.31	g	
815	14.7	438.9	5.00	5.61	10.7		8.5		
818		450.0	4.30	5.80	-9.7	-	8.61		
821	15.3	451.8	4.21	5.81	-12.4	-	8.65		
824	15.6	453.0	4.11	5.94	-21.0				
							0.61		
827	16.0	456.2	4.04	6.05	-26.2		8.61		
830	16.3	459.3	3.87	6.10	-31.3		-		
SAMPLE CO	LIECTIONI	<u> </u>							
Sample Collection			Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🗖	Tap Rinse	DI Water	Dedicated	_	_	
(By Numerica	l Order)	Other		-		_			
Sample Descr	iption (color,	turbidity, odor,	sheen, etc.):	CLEAR CO	LORLESS NO/N	S			
Replicate	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
керпеше	(°F/°C)	(uS/cm)	(mg/L)	pm	(mV)	(NTU)	(ft)	(Fe II)	Observations
1	16.3	458.3	3.80	6.09	-31.5				
2	16.4	456.2	3.80	6.11	-32.2				
3	16.4	457.4	3.76	6.09	-32.1				
4	16.5	456.1	3.75	6.11	-33.1	-			
Average:	16.4	457.0	3.78	6.10	-32.2	#DIV/0!			
				D DOTTI E			non standard or	- alvaia balaw)	
QUANTITY 3					H-Gx) (BTEX)	oplicable or write	non-standard at	WA \square	OR 🗆
						(8141) (Oil & G	rease)	WA □	OR 🗆
	(pH) (Condu	activity) (TDS	S) (TSS) (B	OD) (Turbio	dity) (Alkalinity)	(HCO3/CO3) (C	Cl) (SO4) (NO	3) (NO2) (F)	
1					itrogen) (NH3)	(NO3/NO2)			
1		le) (WAD Cy			(Ca) (Ca) (Ea)	(Dk) (Ma) (Ma) (Ati) (A a) (Ca) (T1) (V) (7a) (Ua	(V) (Na)
1						(<mark>Pb) (Mg) (Mn) (</mark> lb) (Mg) (Mn) (Ni) (Va) (Hardness) (Silica
	VOC (Boein) (<i>Du</i>) (<i>D</i>) (0	<i>54)</i> (<i>64)</i> (<i>66)</i>	(61) (64) (16) (1		(118) (30) (11) (1) (211) (11g) (11) (1	(Line Green) (Since
	Methane Eth	nane Ethene Ac	cetylene					· · · · · · · · · · · · · · · · · · ·	
	others								
	others								
Duplicate San	nple No(s):								
Comments:									
Signature:	SRB					Date:	5/6/2019		

Project Name	e:	Boeing Ren	ton		Project Number	r <u>:</u>	0025217.099.0	99	
Event:		May-19			Date/Time:	05/6 /2019@ 84	45		
Sample Num	nber:	RGW233I-	190506		Weather:	SUNNY, WARM	I		
Landau Repr	resentative:	BXM			_				
WATER LEV	'EL/WELL/PU	IRGE DATA							
Well Conditio		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	7.56	Time:	913	Flow through cel	l vol.		GW Meter No.(s	s 1-HERON
	Date/Time:			End Purge:	=	05/ 6 /2019 @ 83	9	Gallons Purged:	
Purge water d			55-gal Drum		Storage Tank	Ground		SITE TREATM	
Ü	Тотт	Cond	_		_				
Time	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Internal Purge Volume (gal)	Comments/ Observations
	Purge Goa	ls: Stablizatio	on of Parame		consecutive read	dings within the fol	lowing limits	>/= 1 flow	
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
823	15.5	214.3	4.68	6.60	21.0		7.56		
826	16.0	222.0	4.55	6.37	12.6		7.56		
829	16.4	224.8	4.15	6.26	7.6		7.56		
832		222.9	3.96	6.20	8.4				
835			3.79	6.14	9.7				
633	16.9	223.7	3.19	0.14	9.7				
	LLECTION D								
Sample Collec	cted With:	_	Bailer			DED BLADDER		_	
Made of:		Stainless Stee		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	1 Ondon)	□ O/1							
. •		Other	•						
. •			sheen, etc.):	CLEAR, CO	LORLESS, SOMI	E BLACK SOLIDS,	NO SHEEN		
Sample Descr	ription (color, t	urbidity, odor,	_					Ferrous iron	Comments/
. •			sheen, etc.): _ D.O. (mg/L)	CLEAR, CO	ORP (mV)	E BLACK SOLIDS, Turbidity (NTU)	NO SHEEN DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
Sample Descr	ription (color, t	urbidity, odor,	D.O.		ORP	Turbidity	DTW		
Sample Descr Replicate	Temp (°F/°C) 17.1	Cond. (uS/cm) 224.7	D.O. (mg/L)	pH 6.14	ORP (mV)	Turbidity	DTW		
Sample Descr Replicate 1 2	Temp (°F/°C) 17.1	Cond. (uS/cm) 224.7	D.O. (mg/L) 3.65 3.63	pH 6.14 6.14	ORP (mV) 9.2 8.9	Turbidity	DTW		
Sample Descr Replicate 1 2 3	Temp (°F/°C) 17.1 17.1	Cond. (uS/cm) 224.7 225.0 224.7	D.O. (mg/L) 3.65 3.63	pH 6.14 6.14 6.14	ORP (mV) 9.2 8.9 9.0	Turbidity	DTW		
Replicate 1 2 3 4	Temp (°F/°C) 17.1 17.1 17.2	Cond. (uS/cm) 224.7 225.0 224.8	D.O. (mg/L) 3.65 3.63 3.65 3.62	pH 6.14 6.14 6.14 6.13	ORP (mV) 9.2 8.9 9.0 8.9	Turbidity (NTU)	DTW		
Sample Descr Replicate 1 2 3	Temp (°F/°C) 17.1 17.1	Cond. (uS/cm) 224.7 225.0 224.7	D.O. (mg/L) 3.65 3.63	pH 6.14 6.14 6.14	ORP (mV) 9.2 8.9 9.0	Turbidity	DTW		
Replicate 1 2 3 4 Average:	Temp (°F/°C) 17.1 17.1 17.1 17.2	Cond. (uS/cm) 224.7 225.0 224.7 224.8	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64	6.14 6.14 6.14 6.13 6.14	ORP (mV) 9.2 8.9 9.0 8.9	Turbidity (NTU)	DTW (ft)	(Fe II)	
Replicate 1 2 3 4 Average:	Temp (°F/°C) 17.1 17.1 17.1 17.2 17.1 TYPICAL A	Cond. (uS/cm) 224.7 225.0 224.7 224.8	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64	pH 6.14 6.14 6.13 6.14 R BOTTLE 7	ORP (mV) 9.2 8.9 9.0 8.9 9.0	Turbidity (NTU) #DIV/0!	DTW (ft)	(Fe II)	Observations OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA	Cond. (uS/cm) 224.7 225.0 224.7 224.8 224.8 NALYSIS AI (8010) (8020)	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE 0) (NWTPH-0	6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH	ORP (mV) 9.2 8.9 9.0 8.9 9.0 TYPE (Circle applement) 1-Gx) (BTEX) 1-HCID) (8081)	#DIV/0! plicable or write no	DTW (ft) n-standard ana	(Fe II)	Observations
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu	Cond. (uS/cm) 224.7 225.0 224.7 224.8 224.8 NALYSIS AL (8010) (8020) AH) (NWTPH ctivity) (TDS	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE O) (NWTPH-CHE) (NWTPH-CHE	6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid	ORP (mV) 9.2 8.9 9.0 8.9 9.0 FYPE (Circle apple-Gx) (BTEX) 1-HCID) (8081) ity) (Alkalinity)	#DIV/0! blicable or write not (8141) (Oil & Green (HCO3/CO3) (CI	DTW (ft) n-standard ana	(Fe II)	Observations OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu	Cond. (uS/cm) 224.7 225.0 224.8 224.8 NALYSIS AI (8010) (8020 AH) (NWTPH ctivity) (TDS 25310C) (Tot	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE (I) (NWTPH-6 II-D) (NWTP	6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid al Kiedahl Ni	ORP (mV) 9.2 8.9 9.0 8.9 9.0 TYPE (Circle applement) 1-Gx) (BTEX) 1-HCID) (8081)	#DIV/0! blicable or write not (8141) (Oil & Green (HCO3/CO3) (CI	DTW (ft) n-standard ana	(Fe II)	Observations OR OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.1 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu	Cond. (uS/cm) 224.7 225.0 224.7 224.8 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHetivity) (TDS	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE (I) (NWTPH-C) (NWTPH-C) (NWTPH-C) (NWTPH-C) (NWTPH-C) (TSS) (Becal PO4) (Totanide) (Free	6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)	ORP (mV) 9.2 8.9 9.0 8.9 9.0 FYPE (Circle application (BTEX) 6-HCID) (8081) ity) (Alkalinity) (trogen) (NH3)	#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Gree (HCO3/CO3) (CI (NO3/NO2)	n-standard ana	(Fe II) Ilysis below) WA WA (NO2) (F)	Observations OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.1 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals)	Cond. (uS/cm) 224.7 225.0 224.7 224.8 224.8 NALYSIS AI (8010) (8020 AH) (NWTPEctivity) (TDS (25310C) (Total conditions) (SD (2500)) (As) (Sb) (D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE (NWTPH-O) (NWTPH-O) (NWTPH-O) (NWTPH-O) (NWTPH-O) (NWTPH-O) (NWTPH-O) (NWTPH-O) (TSS) (Botal PO4) (Totanide) (Free Ba) (Be) (Ca	pH 6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) 9.2 8.9 9.0 8.9 9.0 FYPE (Circle apple-Gx) (BTEX) -HCID) (8081) ity) (Alkalinity) (trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	n-standard ana ase)) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.1 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Metals)	Cond. (uS/cm) 224.7 225.0 224.7 224.8 224.8 NALYSIS AI (8010) (8020) (H) (NWTPEctivity) (TDS C5310C) (Tot e) (WAD Cy) (As) (Sb) (Cetals) (As) (Sb) (Sb)	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE (NWTPH-O) (NWTPH-O) (NWTPH-O) (NWTPH-O) (NWTPH-O) (NWTPH-O) (NWTPH-O) (NWTPH-O) (TSS) (Botal PO4) (Totanide) (Free Ba) (Be) (Ca	pH 6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) 9.2 8.9 9.0 8.9 9.0 FYPE (Circle apple-Gx) (BTEX) -HCID) (8081) ity) (Alkalinity) (trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	n-standard ana ase)) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.1 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Mo	Cond. (uS/cm) 224.7 225.0 224.7 224.8 224.8 NALYSIS AI (8010) (8020) (H) (NWTPEctivity) (TDS C5310C) (Tot e) (WAD Cy) (As) (Sb) (Cetals) (As) (Sb) (Sb)	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE (INWTPH-CH-D) (NWTPH-CH-D) (NW	pH 6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) 9.2 8.9 9.0 8.9 9.0 FYPE (Circle apple-Gx) (BTEX) -HCID) (8081) ity) (Alkalinity) (trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	n-standard ana ase)) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.1 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Mo	Cond. (uS/cm) 224.7 225.0 224.7 224.8 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS C5310C) (Total) (e) (WAD Cy) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE (INWTPH-CH-D) (NWTPH-CH-D) (NW	pH 6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) 9.2 8.9 9.0 8.9 9.0 FYPE (Circle apple-Gx) (BTEX) -HCID) (8081) ity) (Alkalinity) (trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	n-standard ana ase)) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.1 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Mo	Cond. (uS/cm) 224.7 225.0 224.7 224.8 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS C5310C) (Total) (e) (WAD Cy) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE (INWTPH-CH-D) (NWTPH-CH-D) (NW	pH 6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) 9.2 8.9 9.0 8.9 9.0 FYPE (Circle apple-Gx) (BTEX) -HCID) (8081) ity) (Alkalinity) (trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	n-standard ana ase)) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.1 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Mo	Cond. (uS/cm) 224.7 225.0 224.7 224.8 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS C5310C) (Total) (e) (WAD Cy) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE (INWTPH-CH-D) (NWTPH-CH-D) (NW	pH 6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) 9.2 8.9 9.0 8.9 9.0 FYPE (Circle apple-Gx) (BTEX) -HCID) (8081) ity) (Alkalinity) (trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	n-standard ana ase)) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.1 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Methane Eth others	Cond. (uS/cm) 224.7 225.0 224.7 224.8 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS C5310C) (Total) (e) (WAD Cy) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE (INWTPH-CH-D) (NWTPH-CH-D) (NW	pH 6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) 9.2 8.9 9.0 8.9 9.0 FYPE (Circle apple-Gx) (BTEX) -HCID) (8081) ity) (Alkalinity) (trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	n-standard ana ase)) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3 1 Duplicate San	Temp (°F/°C) 17.1 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Methane Eth others	Cond. (uS/cm) 224.7 225.0 224.7 224.8 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS C5310C) (Total) (e) (WAD Cy) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE (INWTPH-CH-D) (NWTPH-CH-D) (NW	pH 6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) 9.2 8.9 9.0 8.9 9.0 FYPE (Circle apple-Gx) (BTEX) -HCID) (8081) ity) (Alkalinity) (trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	n-standard ana ase)) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 17.1 17.1 17.1 17.2 17.1 TYPICAL AI (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Methane Eth others	Cond. (uS/cm) 224.7 225.0 224.7 224.8 224.8 NALYSIS AL (8010) (8020 AH) (NWTPHotivity) (TDS C5310C) (Total) (e) (WAD Cy) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 3.65 3.63 3.65 3.62 3.64 LOWED PE (INWTPH-CH-D) (NWTPH-CH-D) (NW	pH 6.14 6.14 6.13 6.14 R BOTTLE 7 G) (NWTPH H-Dx) (TPH OD) (Turbid tal Kiedahl Ni Cyanide)) (Cd) (Co)	ORP (mV) 9.2 8.9 9.0 8.9 9.0 FYPE (Circle apple-Gx) (BTEX) -HCID) (8081) ity) (Alkalinity) (trogen) (NH3) (Cr) (Cu) (Fe) (#DIV/0! #DIV/0! plicable or write not (8141) (Oil & Green (HCO3/CO3) (CI) (NO3/NO2) Pb) (Mg) (Mn) (Note (Mn) (Note (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	n-standard ana ase)) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □

\\sea2-fs1\projectF\$\8888 - Boeing Renton\02 Data Management\2019\2Q2019\field data\RGW 153S

Project Nam	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 6 /2019@	1041		
Sample Num	ıber:	RGW234S-	190506		Weather:	CLEAR			
Landau Repr	resentative:	SRB							
WATER LEV	EL/WELL/PI	URGE DATA							
Well Conditio		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	8.09	Time:	955	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 06 /2019	1011	End Purge:	Date/Time:	05/ 06 /2019 @	1030	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	Volume (gal)	Observations
	+/- 3%	ds: Stablizatio +/- 3%		ters for three +/- 0.1 units	+/- 10 mV	dings within the fo +/- 10%	ollowing limits < 0.3 ft	>/= 1 flow through cell	
1014	13.8	219.8	2.25	5.63	70.6	LOW	8.14	9	
1017	15.7	253.0	0.64	6.14	-6.0		8.14		
1020	15.7	250.8	0.64	6.15	-7.2		8.14		
1023	15.6	245.8	0.61	6.16	-9.8		0.14		
1026	15.7	241.4	0.60	6.16	-0.4	-			
1029	15.8	239.8	0.59	6.16	-10.7				
						-	-		
CAMPLE CO	LICTION					ı			
Sample Collection			Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Ste		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🗖	Tap Rinse	DI Water	Dedicated	_	_	
(By Numerica	l Order)	Other		-					
Sample Descr	iption (color, t	turbidity, odor	, sheen, etc.):	SLIGHTLY	CLOUDY AND	TURBID NO/NS			
Daulianta	Томан	Cond.	D.O.	pН	ORP	Tankidita	DTW	Ferrous iron	Comments/
Replicate	Temp (°F/°C)	(uS/cm)	D.O. (mg/L)	рп	(mV)	Turbidity (NTU)	(ft)	(Fe II)	Observations
1	15.8	240.0	0.59	6.15	-10.4				
2	15.8	239.5	0.58	6.15	-10.7				
3	15.8	239.5	0.58	6.15	-10.3				
4	15.8	239.8	0.58	6.14	-10.0				
Average:	15.8	239.7	0.58	6.15	-10.4	#DIV/0!			
QUANTITY 3					<u>TYPE (Circle ap</u> I-Gx) (BTEX)	oplicable or write	non-standard ar	nalysis below) WA 🏻	OR 🗆
3						(8141) (Oil & G	rease)	WA 🗆	OR 🗆
						(HCO3/CO3) (C			
1	(COD) (TO	C5310C) (To	tal PO4) (To	tal Kiedahl N	itrogen) (NH3)	(NO3/NO2)			
		le) (WAD Cy							
1						(Pb) (Mg) (Mn) (I			g) (K) (Na) Na) (Hardness) (Silica
	VOC (Boein) (Ба) (Бе) (C	<i>a)</i> (Ca) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (MIII) (MI) (Ag) (Se) (11) (V) (ZII) (Hg) (K) (N	va) (Hardness) (Sinca
		ane Ethene A	cetylene						
	others								
Duplicate San	nple No(s):								
Comments:									
Signature:	SRB					Date:	5/6/2019		

Project Nam	e:	Boeing Ren	ton		Project Numbe	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 6 /2019@	1011		
Sample Num	ıber:	RGW235I-	190506		Weather:	CLEAR			
Landau Repr	resentative:	SRB							
WATER LEV	EL/WELL/PU	URGE DATA							
Well Condition	n:	Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	7.66	Time:	940	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 06 /2019	941	End Purge:	Date/Time:	05/ 06 /2019 @	1002	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	- 4 6 41	(mV)	(NTU)	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	4/- 3%		ters for three +/- 0.1 units	+/- 10 mV	dings within the fo +/- 10%	< 0.3 ft	through cell	
943	13.9	131.8	1.09	6.71	5.2	MED	7.71	U	
946	15.1	137.1	1.10	5.59	58.8		7.71		
949	15.6	147.0	0.99	5.81	42.7		7.71		
952	15.7	147.4	0.98	5.83	41.6	-	7.71		
955	15.9	144.6	0.80	6.09	17.6		-		
				6.11					
958	16.0	144.7	0.79		16.3				
1001	16.0	142.8	0.77	6.18	5.3				
SAMPLE CO	LIECTION)ATA			<u> </u>				
Sample Collection			Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee		PVC	Teflon	Polyethylene		Dedicated	
Decon Proced	ure:	Alconox Was	sh 🗖	Tap Rinse	DI Water	Dedicated	_	_	
(By Numerica	l Order)	Other				_			
Sample Descr	iption (color, t	turbidity, odor,	sheen, etc.):	CLEAR CO	LORLESS NO/N	S			
Replicate	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
	(°F/°C)	(uS/cm)	(mg/L)	F	(mV)	(NTU)	(ft)	(Fe II)	Observations
1	16.0	142.8	0.76	6.20	4.0				
2	16.1	142.9	0.75	6.20	3.4				
3	16.1	142.4	0.75	6.20	2.6				
4	16.1	142.4	0.74	6.21	1.1				
Average:	16.1	142.6	0.75	6.20	2.8	#DIV/0!			
QUANTITY	TVDICAL A	NAI VSIS AI	I OWED PE	'P RATTI F	TVPF (Circle a	oplicable or write	non-standard ar	nalysis halow)	
3					H-Gx) (BTEX)	opiicable of write	non-stanuaru ai	WA \square	OR 🗆
						(8141) (Oil & G	rease)	WA □	OR 🗆
	(pH) (Condu	ctivity) (TDS	S) (TSS) (B	OD) (Turbio	dity) (Alkalinity)	(HCO3/CO3) (C	Cl) (SO4) (NO	3) (NO2) (F)	
1					itrogen) (NH3)	(NO3/NO2)			
		le) (WAD Cy							
1						(Pb) (Mg) (Mn) (I			
	VOC (Boein) (Ba) (Be) (C	(Ca) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (N1) (Ag) (Se) (11) (V) (Zn) (Hg) (K) (N	Va) (Hardness) (Silica
		ig short list) iane Ethene Ad	etylene						
	others								
Duplicate San	nple No(s)								
Comments:									
Signature:	SRB					Date:	5/6/2019		

Project Name	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 6 /2019@	931		
Sample Num	nber:	RGW236S-	190506		Weather:	CLEAR			
Landau Repr	resentative:	SRB			•				
WATER LEV	EI WEI I DI	IDGE DATA							
WATER LEV Well Conditio		Secure (YES)	Damaged (N	0)	Describe:	Flush Mount		
				_			Trush Would	CW Matan No. (s	HEDON2
DTW Before I		7.12	Time:		Flow through cel		025	GW Meter No.(s	
Begin Purge:				— —		05/ 06 /2019 @		Gallons Purged:	
Purge water di	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENTSYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	tors for three	(mV)	(NTU) dings within the fo	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
914	14.0	338.7	3.44	5.73	46.4	HIGH	7.45	J	
917	16.7	364.5	2.04	6.19	-9.4		7.35		
920	16.6	365.1	1.97	6.21	-13.1		7.35		
923	15.6	357.5	1.86	6.26	-22.3				
SAMPLE CO			D !!		D D T	DED DI (DDED			
Sample Collec			Bailer			DED BLADDER			
Made of:		Stainless Stee		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	1 Order	Othor							
, ,	,	Other							
, ,	,	_	sheen, etc.):	SLIGHTLY	YELLOW AND	TURBID NO/NS			
Sample Descri	iption (color, t	urbidity, odor,	_				DTW	Ferrous iron	Comments/
, ,	,	_	D.O.	SLIGHTLY pH	YELLOW AND ORP (mV)	TURBID NO/NS Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
Sample Descri Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity			
Sample Descri Replicate	Temp (°F/°C)	Cond. (uS/cm) 355.7	D.O. (mg/L)	рН 6.25	ORP (mV)	Turbidity			
Replicate 1 2	Temp (°F/°C) 15.4	Cond. (uS/cm) 355.7 355.9	D.O. (mg/L) 1.84	pH 6.25 6.22	ORP (mV) -21.7 -20.9	Turbidity			
Sample Descri Replicate	Temp (°F/°C)	Cond. (uS/cm) 355.7 355.9 355.0	D.O. (mg/L) 1.84 1.81	pH 6.25 6.22 6.22	ORP (mV) -21.7 -20.9	Turbidity			
Replicate 1 2	Temp (°F/°C) 15.4	Cond. (uS/cm) 355.7 355.9	D.O. (mg/L) 1.84	pH 6.25 6.22	ORP (mV) -21.7 -20.9	Turbidity			
Replicate 1 2 3	Temp (°F/°C) 15.4 15.5	Cond. (uS/cm) 355.7 355.9 355.0	D.O. (mg/L) 1.84 1.81	pH 6.25 6.22 6.22	ORP (mV) -21.7 -20.9	Turbidity			
Replicate 1 2 3 4 Average:	Temp (°F/°C) 15.4 15.5 15.4 15.4	Cond. (uS/cm) 355.7 355.9 355.1 355.4	D.O. (mg/L) 1.84 1.81 1.81 1.81	pH 6.25 6.22 6.22 6.20 6.22	ORP (mV) -21.7 -20.9 -20.9 -20.1	Turbidity (NTU) #DIV/0!	(ft)	(Fe II)	
Replicate 1 2 3 4 Average:	Temp (°F/°C) 15.4 15.5 15.4 15.4 TYPICAL A	Cond. (uS/cm) 355.7 355.9 355.0 355.1	D.O. (mg/L) 1.84 1.81 1.81 1.81 1.82 LOWED PE	pH 6.25 6.22 6.20 6.20 6.22 R BOTTLE	ORP (mV) -21.7 -20.9 -20.1 -20.9	Turbidity (NTU)	(ft)	(Fe II)	
Replicate 1 2 3 4 Average:	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM)	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020	D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE	6.25 6.22 6.22 6.20 6.22 R BOTTLE	ORP (mV) -21.7 -20.9 -20.1 -20.9 TYPE (Circle and H-Gx) (BTEX)	Turbidity (NTU) #DIV/0!	(ft)	(Fe II)	Observations
Replicate 1 2 3 4 Average:	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPH	D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE 1.0 (NWTPH-H-D) (NWTF	6.25 6.22 6.20 6.22 6.20 6.22 CR BOTTLE G) (NWTPF	ORP (mV) -21.7 -20.9 -20.9 -20.1 -20.9 TYPE (Circle ap H-Gx) (BTEX) H-HCID) (8081)	Turbidity (NTU) #DIV/0!	non-standard ar	(Fe II) malysis below) WA □ WA □	Observations OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS)	D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE 1.0 (NWTPH-H-D) (NW	6.25 6.22 6.20 6.22 6.20 6.22 R BOTTLE G) (NWTPH PH-Dx) (TPH OD) (Turbic	ORP (mV) -21.7 -20.9 -20.9 -20.1 -20.9 TYPE (Circle ap H-Gx) (BTEX) H-HCID) (8081)	#DIV/0! (8141) (Oil & G. (HCO3/CO3) (C. (C. (NTU))	non-standard ar	(Fe II) malysis below) WA □ WA □	Observations OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS)	D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE 1. (NWTPH-H-D) (NWT	6.25 6.22 6.20 6.22 6.22 6.20 6.22 R BOTTLE G) (NWTPF H-Dx) (TPF OD) (Turbio tal Kiedahl N	ORP (mV) -21.7 -20.9 -20.9 -20.1 -20.9 TYPE (Circle ap I-Gx) (BTEX) I-HCID) (8081) dity) (Alkalinity)	#DIV/0! (8141) (Oil & G. (HCO3/CO3) (C. (C. (NTU))	non-standard ar	(Fe II) malysis below) WA □ WA □	Observations OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (TOO (Total Cyanid	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS	D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE 1. (NWTPH-H-D) (NWTPH-H-D) (NWTPH-H-D) (NWTPH-H-D) (NWTPH-H-D) (NWTPH-H-D) (Toganide) (Free	6.25 6.22 6.20 6.20 6.22 CR BOTTLE G) (NWTPF CH-Dx) (TPF OD) (Turbic tal Kiedahl N Cyanide)	ORP (mV) -21.7 -20.9 -20.1 -20.9 TYPE (Circle application of the company of	#DIV/0! (8141) (Oil & G. (HCO3/CO3) (C. (C. (NTU))	non-standard arrease)	malysis below) WA WA WA NO2) (F)	Observations OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals)	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS (1000) (TOS (1000)) (TOS (1000)) (MAD Cy (1000)) (As) (Sb) (D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE (NWTPH-H-D) (NWTPH-H-D) (NWTPH-H-D) (NWTPH-H-D) (NWTPH-H-D) (NWTPH-H-D) (NWTPH-H-D) (To anide) (Free Ba) (Be) (Ca	6.25 6.22 6.20 6.22 6.20 6.22 R BOTTLE G) (NWTPF H-Dx) (TPF OD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) -21.7 -20.9 -20.9 -20.1 -20.9 TYPE (Circle ap H-Gx) (BTEX) H-HCID) (8081) dity) (Alkalinity) itrogen) (NH3)	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Crand (NO3/NO2)) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	MA	Observations OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS (25310C) (To (25310C)) (To (25310C)) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE 1.83 (NWTPH-H-D) (N	6.25 6.22 6.20 6.22 6.20 6.22 R BOTTLE G) (NWTPF H-Dx) (TPF OD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) -21.7 -20.9 -20.9 -20.1 -20.9 TYPE (Circle ap H-Gx) (BTEX) H-HCID) (8081) dity) (Alkalinity) itrogen) (NH3)	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Crand (NO3/NO2)) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	MA	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS) (C5310C) (To e) (WAD Cy) (As) (Sb) (etals) (As) (Sb) (D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE 1.83 (NWTPH-H-D) (N	6.25 6.22 6.20 6.22 6.20 6.22 R BOTTLE G) (NWTPF H-Dx) (TPF OD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) -21.7 -20.9 -20.9 -20.1 -20.9 TYPE (Circle ap H-Gx) (BTEX) H-HCID) (8081) dity) (Alkalinity) itrogen) (NH3)	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Crand (NO3/NO2)) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	MA	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS (25310C) (To (25310C)) (To (25310C)) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE 1.83 (NWTPH-H-D) (N	6.25 6.22 6.20 6.22 6.20 6.22 R BOTTLE G) (NWTPF H-Dx) (TPF OD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) -21.7 -20.9 -20.9 -20.1 -20.9 TYPE (Circle ap H-Gx) (BTEX) H-HCID) (8081) dity) (Alkalinity) itrogen) (NH3)	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Crand (NO3/NO2)) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	MA	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA (COD) (Total Cyanid (Total Metals) (Dissolved M VOC (Boein Methane Eth	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS (25310C) (To (25310C)) (To (25310C)) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE 1.83 (NWTPH-H-D) (N	6.25 6.22 6.20 6.22 6.20 6.22 R BOTTLE G) (NWTPF H-Dx) (TPF OD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) -21.7 -20.9 -20.9 -20.1 -20.9 TYPE (Circle ap H-Gx) (BTEX) H-HCID) (8081) dity) (Alkalinity) itrogen) (NH3)	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Crand (NO3/NO2)) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (S) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS (25310C) (To (25310C)) (To (25310C)) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE 1.83 (NWTPH-H-D) (N	6.25 6.22 6.20 6.22 6.20 6.22 R BOTTLE G) (NWTPF H-Dx) (TPF OD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) -21.7 -20.9 -20.9 -20.1 -20.9 TYPE (Circle ap H-Gx) (BTEX) H-HCID) (8081) dity) (Alkalinity) itrogen) (NH3)	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Crand (NO3/NO2)) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (S) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA (COD) (Total Cyanid (Total Metals) (Dissolved M VOC (Boein Methane Eth	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS (25310C) (To (25310C)) (To (25310C)) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE 1.83 (NWTPH-H-D) (N	6.25 6.22 6.20 6.22 6.20 6.22 R BOTTLE G) (NWTPF H-Dx) (TPF OD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) -21.7 -20.9 -20.9 -20.1 -20.9 TYPE (Circle ap H-Gx) (BTEX) H-HCID) (8081) dity) (Alkalinity) itrogen) (NH3)	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Crand (NO3/NO2)) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (S) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 3 1 1 1 Duplicate San	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA (COD) (Total Cyanid (Total Metals) (Dissolved M VOC (Boein Methane Eth	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS (25310C) (To (25310C)) (To (25310C)) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE 1.83 (NWTPH-H-D) (N	6.25 6.22 6.20 6.22 6.20 6.22 R BOTTLE G) (NWTPF H-Dx) (TPF OD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) -21.7 -20.9 -20.9 -20.1 -20.9 TYPE (Circle ap H-Gx) (BTEX) H-HCID) (8081) dity) (Alkalinity) itrogen) (NH3)	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Crand (NO3/NO2)) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (S) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 15.4 15.5 15.4 15.4 15.4 TYPICAL A (8260-SIM) (8270D) (PA (COD) (Total Cyanid (Total Metals) (Dissolved M VOC (Boein Methane Eth	Cond. (uS/cm) 355.7 355.9 355.0 355.1 355.4 NALYSIS AI (8010) (8020 AH) (NWTPHetivity) (TDS (25310C) (To (25310C)) (To (25310C)) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 1.84 1.81 1.81 1.82 LOWED PE 1.83 (NWTPH-H-D) (N	6.25 6.22 6.20 6.22 6.20 6.22 R BOTTLE G) (NWTPF H-Dx) (TPF OD) (Turbic tal Kiedahl N Cyanide)) (Cd) (Co)	ORP (mV) -21.7 -20.9 -20.9 -20.1 -20.9 TYPE (Circle ap H-Gx) (BTEX) H-HCID) (8081) dity) (Alkalinity) itrogen) (NH3)	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Crand (NO3/NO2)) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (S) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR

Project Nam	e:	Boeing Ren	ton		Project Number	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	1446		
Sample Num	ıber:	RGW-244S	190507		Weather:	CLEAR			
Landau Repr	resentative:	RJC							
WATER LEV	EL/WELL/PU	URGE DATA							
Well Conditio	n:	Secure (YES))	Damaged (N	(O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	4.19	Time:	1410	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 07 /2019	1413	End Purge:	Date/Time:	05/ 07 /2019 @	1435	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	tors for thro	(mV)	(NTU) dings within the fo	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%		+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
1416	17.1	436.8	0.43	5.73	43.6		4.19		
1419	18.0	447.9	0.36	5.74	38.0		4.19		
1422	20.1	464.0	0.35	5.90	14.7		4.19		
1425	21.4	479.4	0.34	5.97	2.7	-			
1428	22.2	494.8	0.36	6.05	-10.7				
				6.09					
1431	22.9	506.0	0.36		-18.5				
1434	23.7	515.0	0.37	6.12	-25.7		-		
SAMPLE CO	LIECTION)ATA							
Sample Collect			Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🗖	Tap Rinse	DI Water	Dedicated	_	_	
(By Numerica	l Order)	Other		_	—	_			
Sample Descr	iption (color, t	urbidity, odor,	sheen, etc.):	CLEAR CO	LORLESS NO/N	S			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	23.9	516.0	0.37	6.12	-26.9	(1110)	(11)	(FC II)	Observations
2	23.9	516.0	0.38	6.12	-27.0				
					•				
3	23.9	517.0	0.39	6.13	-28.0		-		
4	24.2	520.0	0.37	6.13	-28.7				
Average:	24.0	517.3	0.38	6.13	-27.7	#DIV/0!			
						oplicable or write	non-standard ar		
5		0) (8020) (N				(01.41) (O'1.0.C		WA 🗆	OR 🗆
						(8141) (Oil & Gre) (HCO3/CO3) (O		WA □ 3) (NO2) (F)	OR 🗆
1	(COD) (TOO	*			n) (NH3) (NO3)		51) (504) (110	3) (1102) (1)	
	(Total Cyanid	le) (WAD Cy			,	,			
	(Total Metals	(As) (Sb) (Ba) (Be) (Ca	ı) (Cd) (Co)	(Cr) (Cu) (Fe)	(Pb) (Mg) (Mn) (I	Ni) (Ag) (Se) (Γl) (V) (Zn) (Hg	g) (K) (Na)
) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (Ni) ((Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (N	Va) (Hardness) (Silica
	VOC (Boein	g short list) ane Ethene Ac	retylene						
	Meniane Eu	iane Eulene AC	ctylene						
	others								
Dunlinst- C	nolo Ma(s):								
Duplicate San Comments:	ibie 140(8):								
Signature:	RJC					Date:	5/7/2019		

Project Nam	ne:	Boeing Rer	nton		Project Number	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	800		
Sample Nun	nber:	RGWDUP2	2 190507		Weather:	CLEAR 70S			
Landau Rep	resentative:	RJC							
WATER LEV	VEL/WELL/PI	URGE DATA							
Well Condition		Secure (YES		Damaged (N	(O)	Describe:	Flush Mount		
DTW Before	Purging (ft)		Time:			ell vol.		GW Meter No.(s HERON3
	Date/Time:	05/7 /2019	@	End Purge:	Date/Time:	05/7 /2019 @	•	Gallons Purged:	
Purge water of	lisposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa	ds: Stablization +/- 3%		ters for three +/- 0.1 units		dings within the for +/- 10%	ollowing limits < 0.3 ft	>/= 1 flow through cell	
	+/- 370	+/- 370	+/- 10 70	+/- 0.1 units	+/- 10 III V	+/- 10 70	< 0.5 11	tiirougii cen	
	-								
	-	DIII	DI IC	TE	TO RGV	M0315			
	-					W 0212			
	-								
	-								
					•				
							-		
CAMPIE CO	NI ECTION I	NATE A							
Sample Colle	OLLECTION I	DATA	Bailer		Pump/Pump Typ	o DED BLAD			
Made of:	cted with.	Stainless Ste		PVC	Teflon	Polyethylene	Other	☐ Dedicated	
	. —		_				U Other	i Dedicated	
Decon Proced		Alconox Wa	sn 📋	Tap Rinse	DI Water	☐ Dedicated			
(By Numerica	· · · · · · · · · · · · · · · · · · ·	Other	1	CLEAD CO	I ODI EGG NO N		•		
Sample Descr	ription (color,	turbiaity, oaor	, sneen, etc.):_	CLEAR CO	LORLESS NO/N	5			
Replicate	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
	(° F /° C)	(uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	(Fe II)	Observations
1	22.7	482.3	0.25	6.20	-35.6				
2	22.9	486.1	0.26	6.21	-37.1				
3	23.1	489.0	0.27	6.21	-38.7				
4	23.3	491.2	0.27	6.21	-39.0				
Average:	23.0	487.2	0.26	6.21	-37.6	#DIV/0!	•		
OLI A NITUTNI	TYDICALA	NIAT VOIC AL	LLOWED DE	D DOTTI E	TVDE (Circle -	pplicable or write			
5 5	1		WTPH-G) (,	pplicable of write	non-standard at	WA \square	OR 🗆
3						(8141) (Oil & Gre	ease)	WA 🗆	OR 🗆
) (HCO3/CO3) (
1					n) (NH3) (NO3		, , ,	, , , , ,	
	(Total Cyanic	le) (WAD Cy	vanide) (Free	Cyanide)					
	(Total Metals) (As) (Sb) ((Ba) (Be) (Ca	(Cd) (Co)	(Cr) (Cu) (Fe)	(Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Γl) (V) (Zn) (H ₂	g) (K) (Na)
	(Dissolved M	etals) (As) (Sl	o) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	(b) (Mg) (Mn) (Ni)	(Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (I	Na) (Hardness) (Silica
	VOC (Boein								
	Methane Eth	nane Ethene A	cetylene						
	others								
Duplicate Sar	mple No(s):	Duplicate to	RGW031S						
Comments:	1 (7)								
Signature:	RJC					Date:	5/7/2019		

Project Name	e:	Boeing Ren	ton		Project Number	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	1412		
Sample Num	ıber:	RGW031S-	190507		Weather:	CLEAR 70S			
Landau Repr	resentative:	RJC							
WATER LEV	'EL/WELL/PU	JRGE DATA							
Well Conditio	n:	Secure (YES)	Damaged (N	(O)	Describe:	Flush Mount		
DTW Before I	Purging (ft)	4.09	Time:	13355	Flow through ce	ll vol.		GW Meter No.(s HERON3
Begin Purge:	Date/Time:	05/7 /2019	1342	End Purge:	Date/Time:	05/7 /2019 @	1401	Gallons Purged:	0.25
Purge water di	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	·	(mV)	(NTU)	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%		+/- 0.1 units		dings within the fo +/- 10%	< 0.3 ft	through cell	
1342	16.0	423.3	0.23	5.85	30.0			0	
1345	17.1	426.5	0.22	5.83	26.4		4.12		SLOWED PUMP
1348	17.7	436.8	0.21	5.87	16.0		4.09		
1351	19.1	450.8	0.20	6.04	-5.2				
1354	20.3	461.0	0.22	6.15	-20.4				
1357	21.3	468.5	0.23	6.18	-26.4				
1400	22.1	478.0	0.25	6.20	-33.1				
SAMPLE CO	LLECTION D	DATA							
Sample Collec	cted With:		Bailer		Pump/Pump Type	DED BLAD			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerical	l Order)	Other							
Sample Descri	iption (color, t	urbidity, odor,	sheen, etc.):_	CLEAR CO	LORLESS NO/N	S			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	22.4	480.3	0.25	6.21	-34.6				
2	22.6	483.6	0.26	6.21	-36.6				
3	23.3	487.9	0.27	6.21	-38.1				
4	23.5	490.6	0.27	6.21	-39.0				
Average:	23.0	485.6	0.26	6.21	-37.1	#DIV/0!			
OUANTITY	TYPICAL A	NALYSIS AI	LOWED PE	R BOTTLE	TYPE (Circle a	oplicable or write	non-standard ar	nalysis helow)	
5		0) (8020) (N				photological writer		WA □	OR 🗆
						(8141) (Oil & Gre	ase)	WA □	OR □
	(pH) (Condu	ctivity) (TDS	S) (TSS) (B	OD) (Turbio	dity) (Alkalinity)	(HCO3/CO3) (C	Cl) (SO4) (NO	3) (NO2) (F)	
1					n) (NH3) (NO3)	/NO2)			
		le) (WAD Cy			(0) (0) (0)	(M) (A1) (A1) (A			\ (T) \ \ (T)
						(Pb) (Mg) (Mn) (I			g) (K) (Na) Na) (Hardness) (Silica
	VOC (Boein) (Da) (De) (C	a) (Cu) (Co)	(CI) (Cu) (Fe) (F	b) (Mg) (MIII) (MI) (Ag) (Se) (11) (V) (ZII) (Hg) (K) (I	Na) (Hardness) (Silica
		ane Ethene Ac	etylene						
	-								
	others								
Duplicate Sam	nple No(s):	Duplicate Lo	cation (DUP2)					
Comments:									

Project Name	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/8 /2019@ 1	030		
Sample Num	ber:	RGW033S-	190508	,	Weather:	SUNNY, WARM	1		
Landau Repr	esentative:	BXM			•				
WATER LEV	FI /WFI I /PI	IRGE DATA							
WATER EEV Well Conditio		Secure (YES))	Damaged (N	O)	Describe:	Flush Mount		
DTW Before I		4.25	Time:	_	Flow through cel			GW Meter No.(s	1-HFRON
Begin Purge:				End Purge:	=	05/8 /2019 @ 10	28	Gallons Purged:	
Purge water di		03/ 0 /2012	55-gal Drum	Ė	Storage Tank	Ground		SITE TREATMI	
Turge water u			_		_				
Time	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Internal Purge Volume (gal)	Comments/ Observations
Time				ters for three		dings within the fol		>/= 1 flow	Observations
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
1012	16.6	350.4	0.34	6.19	29.8		4.25		
1015	16.7	351.1	0.34	6.18	16.0		4.25		
1018	16.7	352.4	0.28	6.19	1.8		4.25		
1021	16.5	356.8	0.26	6.19	-9.7				
1024	16.6	358.1	0.24	6.18	-12.4				
1027	16.6	359.8	0.26	6.17	-16.1				
SAMPLE CO			D - 11		D /D T	DED DI ADDED			
Sample Collect Made of:	tea with:	Stainless Stee	Bailer	PVC	Teflon	DED BLADDER Polyethylene	Other	Dedicated	
			_			=	□ Other	Dedicated	
Decon Proced (By Numerica)		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
, ,	· ·		shoon ata):	CLEAD CO	IODIESS WHIT	E FLOATING SOI	IDS NO SHEE	N	
Sample Descri	iption (color, t	urbiarty, odor,	sileen, etc.).	CLEAR, CO.	LOKLESS, WIII	ETLOATING SOL	LIDS, NO STIEL		
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	16.6	360.5	0.25	6.17	-16.4				
2	16.6	360.6	0.26	6.17	-16.7				
3	16.6	360.7	0.25	6.17	-17.2				
4	16.6	361.7	0.25	6.17	-17.4				
Average:	16.6	360.9	0.25	6.17	-16.9	#DIV/0!			
QUANTITY 5		NALYSIS AL (1) (8020) (N				olicable or write no	n-standard ana	WA	OR 🗆
5						8141) (Oil & Grea	(a)	WA □	OR 🗆
						(HCO3/CO3) (Cl			OK —
1) (NH3) (NO3/I				
	(Total Cyanid	e) (WAD Cy	anide) (Free	Cyanide)					
	(Total Metals)	(As) (Sb) (Ba) (Be) (Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (N	i) (Ag) (Se) (T	(l) (V) (Zn) (Hg)	(K) (Na)
) (Ba) (Be) (C	(Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (A	(Se) (Tl) (V)	(Zn) (Hg) (K) (Na	a) (Hardness) (Silica)
	VOC (Boein		atulas -						
	Methane Eth	ane Ethene Ac	etylene						
	others								
Duplicate San	ple No(s):								
Comments:									
Signature	RYM					Data	5/8/2010		

				r:	0025217.099.0	, ,	
	_			05/ 7 /2019@	1511		
Sample Number: RGW034	4S- 190507		Weather:	CLEAR			
Landau Representative: RJC							
WATER LEVEL/WELL/PURGE DAT							
Well Condition: Secure (Y	ES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before Purging (ft) 4.	<u>12</u> Time:	1435	Flow through ce	l vol.		GW Meter No.(s	HERON3
Begin Purge: Date/Time: 05/ 07 /2	2019 1438	End Purge:	Date/Time:	05/ 07 /2019 @	1500	Gallons Purged:	0.25
Purge water disposed to:	55-gal Drum	ı 📙	Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
Temp Cond. Time $(^{\circ}F/^{\circ}C)$ (uS/cm		pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Internal Purge Volume (gal)	Comments/ Observations
Purge Goals: Stabliz		eters for three	consecutive rea			>/= 1 flow	Observations
+/- 3% +/- 3%	+/- 10%	+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
1441 16.3 310	0.38	6.02	18.0		4.2		
1444 17.1 309	0.32	5.84	17.7		4.2		
1447 18.9 309	0.02	6.00	-5.0		4.2		
1450 20.4 315	0.02	6.09	-24.8				
1453 21.2 319	0.02	6.14	-35.7				
1456 21.8 324	0.02	6.21	-48.3				
1459 22.6 321	.3 0.58	6.23	-57.3				
SAMPLE COLLECTION DATA							
Sample Collected With:	Bailer		Pump/Pump Type	DED BLADDER			
Made of: Stainless	Steel	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Procedure: Alconox		Tap Rinse	DI Water	Dedicated			
(By Numerical Order) Oth	-						
Sample Description (color, turbidity, o	dor, sheen, etc.):	CLEAR CO	LORLESS NO/N	S			
Replicate Temp Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
(°F/°C) (uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	(Fe II)	Observations
1 22.7 327	0.44	6.24	-58.1				
2 22.7 327	0.39	6.24	-58.3				
3 22.8 327	0.37	6.24	-59.2				
4 22.8 328	3.0 0.36	6.24	-59.3				
Average: 22.8 327	0.39	6.24	-58.7	#DIV/0!			
QUANTITY TYPICAL ANALYSIS	ALLOWED PI	ER BOTTLE	TYPE (Circle at	onlicable or write r	on-standard ar	nalysis helow)	
5 (8260) (8010) (8020)				phenoic of write i	ion standard ar	WA □	OR 🗆
(8270) (PAH) (NWTH				(8141) (Oil & Grea	ase)	WA □	OR □
(pH) (Conductivity) (TDS) (TSS) (I	BOD) (Turbio	dity) (Alkalinity)	(HCO3/CO3) (C	(SO4) (NO	3) (NO2) (F)	
1 (COD) (TOC) (Total			i) (NH3) (NO3)	NO2)			
(Total Cyanide) (WAD			(0) (0) (0)	T	T) (1) (2) (\ (T) (A)
(Total Metals) (As) (St							
(Dissolved Metals) (As) VOC (Boeing short list		<u>(Ca) (Ca) (C0)</u>	(C1) (Cu) (Fe) (P) (1819) (1811) (181) (.	ng) (se) (11) (V) (ZII) (FIG) (K) (N	a) (Faiuliess) (Silica
Methane Ethane Ethene							
others							
others Duplicate Sample No(s):							

Signature: RJC Date: 5/\sea2-fs1\projectF\$\8888 - Boeing Renton\02 Data Management\2019\2Q2019\field data\BLDG4.78.79_5.7.19_RJC

Project Name	e:	Boeing Ren	ton		Project Number	••	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 8/2019@ 1			
Sample Num	ber:	RGW038S-	190508		Weather:	PARTLY CLOU	DY, WARM		
Landau Repr	esentative:	BXM			_				
WATER LEV	EL/WELL/PU	IRGE DATA							
Well Conditio		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before I	Purging (ft)	4.44	Time:	1048	Flow through cel	l vol.		GW Meter No.(s	s 1-HERON
Begin Purge:	Date/Time:		@ 1053	End Purge:	Date/Time:	05/ 8 /2019 @ 11	12	Gallons Purged:	<1
Purge water di	sposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa	ds: Stablization +/- 3%		ters for three +/- 0.1 units	e consecutive read +/- 10 mV	lings within the fo	llowing limits < 0.3 ft	>/= 1 flow through cell	
1056						+/- 10 /0		un ough cen	
1056	16.3	301.0	0.30	6.29	18.6		4.43		
1059	16.3	308.9	0.21	6.33	4.2		4.43		
1102	16.3	311.7	0.21	6.36	-4.2		4.43		
1105	16.4	314.5	0.19	6.37	-10.3				
1108	16.4	315.8	0.19	6.39	-18.5				
1111	16.2	316.7	0.20	6.40	-24.2				
SAMPLE CO	LLECTION D	ATA							
Sample Collec	ted With:		Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerical	l Order)	Other							
Sample Descri	iption (color, t	urbidity, odor,	sheen, etc.):	CLEAR, CO	LORLESS, NO SI	HEEN, SOME BLA	CK SOLIDS		
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	16.3	316.7	0.20	6.40	-24.8	, ,	. ,	, ,	
2	16.3	316.7	0.20	6.40	-25.4				
3	16.3	316.9	0.20	6.41	-26.0				
			0.19	6.40					
4	16.3	317.0			-26.5	# DI II /01			
Average:	16.3	316.8	0.20	6.40	-25.7	#DIV/0!			
						olicable or write n	on-standard ana	_	
5		(8020) (N				21.41) (07.0.0		WA 🗆	OR 🗆
						(HCO3/CO3) (C)		WA []	OR 🗆
1) (NH3) (NO3/N		1) (304) (1103) (NO2) (I ¹)	
		e) (WAD Cy			, (1112) (1132)1				
					(Cr) (Cu) (Fe) (l	Pb) (Mg) (Mn) (N	li) (Ag) (Se) (T	(I) (V) (Zn) (Hg) (K) (Na)
	(Dissolved M	etals) (As) (Sb) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (A	Ag) (Se) (Tl) (V)	(Zn) (Hg) (K) (N	a) (Hardness) (Silica)
	VOC (Boein								
	Methane Eth	ane Ethene Ac	etylene						
	others								
	0.11013								
Dumlingto Com									
	nple No(s):								
Comments:	nple No(s):								

Project Nam	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/8 /2019@ 90)5		
Sample Nun	nber:	RGW039S-	190508		Weather:	SUNNY, COOL			
Landau Rep	•	BXM			•				
WATER LEV	/EL/WELL/PU	IRGE DATA							
Well Condition		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	3.89	Time:	_	Flow through ce	ll vol.		GW Meter No.(s	1 - HERON
	Date/Time:	05/ 8/2019	@ 842	End Purge:	_	05/ 8/2019 @ 901	1	Gallons Purged:	
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATMI	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa	als: Stablizatio +/- 3%	on of Parame +/- 10%	ters for three +/- 0.1 units		dings within the foll +/- 10%	owing limits < 0.3 ft	>/= 1 flow through cell	
9.45						+/- 10 /0		un ough cen	
845		214.1	1.34	6.18	55.2		3.88		
848		217.9	1.10	6.07	54.9		3.88		
851	16.9	217.7	1.15	6.06	54.9		3.88		
854	17.8	216.4	1.09	6.05	54.5				
857	17.2	210.1	0.97	6.04	53.9				
900	17.2	209.7	0.81	6.04	53.4				
SAMPLE CO	LLECTION D	OATA							
Sample Colle	cted With:		Bailer	_	Pump/Pump Type	DED BLADDER			
Made of:		Stainless Ste	el 📙	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proceed	lure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	*	Other							
Sample Descr	ription (color, t	turbidity, odor,	sheen, etc.):	CLEAR, CO	LORLESS, ORA	NGE SOLIDS, NO S	HEEN		
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	17.1	208.7	0.81	6.04	53.1				
2	17.0	198.7	0.80	6.04	53.0				
3	17.1	208.8	0.76	6.04	52.9				
4	17.0	207.5	0.78	6.04	52.5				
Average:	17.1	205.9	0.79	6.04	52.9	#DIV/0!			
QUANTITY						plicable or write no	n-standard ana	_	OD \square
5	T	0) (8020) (N				8141) (Oil & Greas	e)	WA □ WA □	OR OR
						(HCO3/CO3) (Cl)			OK —
1	(COD) (TOO) (NH3) (NO3/				
	(Total Cyanid	le) (WAD Cy	anide) (Free	Cyanide)					
						Pb) (Mg) (Mn) (Ni			
) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pt	o) (Mg) (Mn) (Ni) (A	g) (Se) (Tl) (V)	(Zn) (Hg) (K) (Na	a) (Hardness) (Silica)
	VOC (Boein	g short list) ane Ethene Ac	atulana						
	iviculane Eth	ane dulelle At	ALYICHE .						
	others								
D1' : C	1. NT ()								
Duplicate Sar Comments:	npie No(s):								
	DVM					D.,	E/0/2010		
Signature:	BXM					Date:	5/8/2019		

Project Name	e:	Boeing Ren	ton		Project Number	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7/2019@ 1	405		
Sample Num	ber:	RGW143S-	190507		Weather:	SUNNY, WAR	M		
Landau Repr	esentative:	BXM							
WATER LEV	EL/WELL/PU	IRGE DATA							
Well Conditio		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before I	Purging (ft)	4.52	Time:	1338	Flow through cel	l vol.	•	GW Meter No.(s	1-HERON
Begin Purge:	Date/Time:	05/ 7 /2019	@ 1343	End Purge:	Date/Time:	05/7 /2019 @ 1	402	Gallons Purged:	< 1
Purge water di	sposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATMI	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	+/- 3%	ıls: Stablizatio +/- 3%	on of Parame +/- 10%	ters for three +/- 0.1 units	consecutive read +/- 10 mV	lings within the fo +/- 10%	llowing limits < 0.3 ft	>/= 1 flow through cell	
1346	17.2	298.9	0.68	6.28	29.0	.,,			
1349	17.0	302.6	0.30	6.33	14.8		4.5		
1352	16.9	305.7	0.28	6.36	12.3		4.52		
1355	17.0	306.6	0.23	6.37	-6.5		4.52		
1358	16.9	308.1	0.23	6.38	-13.7				
1401	16.9	308.9	0.21	6.39	-21.2				
SAMPLE CO		ATA							
Sample Collec	eted With:		Bailer			DED BLADDER		_	
Made of:		Stainless Ste	_	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerical		Other	1 ()	CLEAD CO	I ODI EGG OD A	IGE EL AVEG NO	CHEEN		
Sample Descri	iption (color, t	urbiaity, odor,	sneen, etc.):	CLEAR, CO	LURLESS, UKAI	NGE FLAKES, NO	SHEEN		
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	16.9	308.7	0.21	6.39	-21.8				
2	17.1	309.5	0.23	6.39	-22.4				
3	16.9	309.1	0.21	6.39	-23.1				
4	16.9	309.1	0.20	6.39	-23.6				
Average:	17.0	309.1	0.21	6.39	-22.7	#DIV/0!			
QUANTITY 5		NALYSIS AL 0) (8020) (N				olicable or write n	on-standard ana	WA	OR 🗆
3						8141) (Oil & Grea	ise)	WA 🗆	OR 🗆
						(HCO3/CO3) (C	•		
1	(COD) (TOC	C) (Total PO	(Total Kied	dahl Nitrogen) (NH3) (NO3/I	NO2)			
	(Total Cyanid	e) (WAD Cy	anide) (Free	Cyanide)					
						Pb) (Mg) (Mn) (N			
) (Ba) (Be) (C	(Cd) (Co)	(Cr) (Cu) (Fe) (Pt) (Mg) (Mn) (Ni) (A	Ag) (Se) (Tl) (V)	(Zn) (Hg) (K) (Na	a) (Hardness) (Silica)
	VOC (Boein Methane Eth	g snort list) ane Ethene Ac	retylene						
	Monaic Elli	and Elliche AC	ory to the						
	others								
D1' : C	1- N. ()								
Duplicate Sam Comments:	ipie No(s):								
Signature:	BXM					Date:	5/7/2019		
						Liste.	3////1119		

Project Name	e:	Boeing Ren	ton		Project Number	:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/7 /2019@ 1	500		
Sample Num	ber:	RGW209S-	190507		Weather:	SUNNY, WARM	1		
Landau Repr	esentative:	BXM			_				
WATER LEV	EL/WELL/PU	IRGE DATA							
Well Conditio		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before l	Purging (ft)	4.08	Time:	1434	Flow through cel	l vol.		GW Meter No.(s	s 1-HERON
Begin Purge:	Date/Time:	05/ 7 /2019	@ 1436	End Purge:	Date/Time:	05/ 7 /2019 @ 14	55	Gallons Purged:	< 1
Purge water di	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa +/- 3%	ıls: Stablizatio +/- 3%	on of Parame +/- 10%	ters for three +/- 0.1 units	e consecutive read +/- 10 mV	lings within the fol +/- 10%	llowing limits < 0.3 ft	>/= 1 flow through cell	
1439	19.7	393.6	0.27	6.30	17.8	17- 1070	4.06	ım ougn een	
					2.0		4.08		
1442	20.1	397.3	0.30	6.33					-
1445	20.2	400.5	0.23	6.38	-17.3		4.08		
1448	20.4	404.0	0.19	6.40	-27.9				
1451	20.5	405.7	0.19	6.40	-31.8				
1454	20.5	407.9	0.20	6.40	-37.3				
SAMPLE CO	LLECTION D	ATA							
Sample Collec	eted With:		Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other							
Sample Descri	iption (color, t	urbidity, odor,	sheen, etc.):	CLEAR, CO	LORLESS, NO S	HEEN			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	20.5	407.9	0.18	6.40	-38.0				
2	20.5	408.6	0.19	6.40	-38.2				
3	20.5	408.6	0.20	6.40	-38.6				
4	20.5	408.4	0.19	6.40	-38.9				
Average:	20.5	408.4	0.19	6.40	-38.4	#DIV/0!			
						olicable or write no	on-standard ana	_	OD \square
5		(NWTDL)				3141) (Oil & Greas	ca)	WA □ WA □	OR OR
						(HCO3/CO3) (Cl			OK L
1) (NH3) (NO3/I		, (33.) (3.32	/ (= -= / (= /	
	(Total Cyanid	e) (WAD Cy	anide) (Free	Cyanide)					
	(Total Metals	(As) (Sb) (Ba) (Be) (Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (N	(i) (Ag) (Se) (T	(I) (V) (Zn) (Hg)) (K) (Na)
) (Ba) (Be) (C	(Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (A	Ag) (Se) (Tl) (V)	(Zn) (Hg) (K) (N	a) (Hardness) (Silica)
	VOC (Boein								
	Methane Eth	ane Ethene Ac	etylene						
	others								
Duplicate San	ple No(s):								
Comments:	BXM					Date:	5/7/2019		

Project Nam	e:	Boeing Ren	ton		Project Numbe	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	1335		
Sample Num	ıber:	RGW210S-	190507		Weather:	CLEAR 70S			
Landau Repr	resentative:	RJC							
WATER LEV	EL/WELL/PI	URGE DATA							
Well Conditio	n:	Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	3.61	Time:	1312	Flow through ce	ll vol.		GW Meter No.(s HERON3
Begin Purge:	Date/Time:		1312	End Purge:	Date/Time:	05/7 /2019 @	1332	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	ters for three	(mV)	(NTU) dings within the fo	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%		+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
1312	21.0	317.0	0.19	6.27	39.5				
1315	19.3	290.2	0.22	6.27	35.7		3.9		SLOWED DISCHARGE
1318	17.3	289.7	0.19	5.93	42.8		3.9		
1321	18.4	305.0	0.17	6.14	19.4				
1325	18.3	309.7	0.17	6.19	5.9				
1328	17.0	306.0	0.17	6.23	-2.1				
1331	17.4	306.6	0.17	6.07	6.7				
SAMPLE CO	LIFCTION	ΔΤΔ			<u> </u>	<u> </u>			<u> </u>
Sample Collect			Bailer		Pump/Pump Type	e DED BLAD			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other							
Sample Descr	iption (color, t	turbidity, odor,	sheen, etc.):	TURBID YE	ELLOW CLEAR	NO ODOR NO SH	EEN		
Replicate	Temp (°F/°C)	Cond.	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	17.6	320.5	0.16	6.00	9.7	(1110)	(11)	(FC II)	Observations
2	19.8	323.7		6.12	0.8				
			0.16		-				
3	19.7	324.7	0.16	6.16			-		
4	19.5	322.0	0.16	6.23	-3.7				
Average:	19.2	322.7	0.16	6.13	0.7	#DIV/0!			
						oplicable or write	non-standard ar		
5		0) (8020) (N				(01.41) (O'1.0 C	`	WA 🗆	OR 🗆
						(8141) (Oil & Gre (HCO3/CO3) (WA □ 3) (NO2) (F)	OR 🗆
1					i) (NH3) (NO3)		CI) (BO+) (110	3) (1(02) (1)	
		le) (WAD Cy			,	,			
	(Total Metals) (As) (Sb) (Ba) (Be) (Ca	ı) (Cd) (Co)	(Cr) (Cu) (Fe)	(Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Γl) (V) (Zn) (H	g) (K) (Na)
) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (Ni) ((Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (I	Na) (Hardness) (Silica
	VOC (Boein	g short list) nane Ethene Ac	petylene						
	Michalle Ell	iane Eulene At	Ctylene						
	others								
Duplicate San	nla No(c):								
Comments:	.μις 1 1 0(8).								
Signature:	RJC					Date:	5/7/2019		

Project Name	e:	Boeing Ren	ton		Project Number	••	0025217.099.0	99	
Event:		May-19			Date/Time:	05/7 /2019@ 1	310		
Sample Num	ber:	RGW237S-	190507		Weather:	SUNNY, WARN	Л		
Landau Repr	esentative:	BXM							
WATER LEV	EL/WELL/PU	IRGE DATA							
Well Conditio		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before l	Purging (ft)	3.57	Time:	1246	Flow through cel	l vol.		GW Meter No.(s	1-HERON
Begin Purge:	Date/Time:	05/ 7/2019	@ 1249	End Purge:	Date/Time:	05/ 7/2019@13	308	Gallons Purged:	< 1
Purge water di	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATMI	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	Volume (gal)	Observations
	+/- 3%	ıls: Stablizatio +/- 3%	on of Parame +/- 10%	ters for three +/- 0.1 units	e consecutive read +/- 10 mV	lings within the fol +/- 10%	llowing limits < 0.3 ft	>/= 1 flow through cell	
1252	16.2	277.9	1.11	6.34	21.1	,,,,	3.57		
1255	16.0	303.9	0.50	6.48	5.2		3.57		
1258	16.0	304.7	0.48	6.50	-0.8		3.57		
1301	16.0	308.8	0.33	6.54	-14.0				
1304	15.9	311.0	0.28	6.55	-19.9				
1307	16.0	312.7	0.24	6.55	-26.9				
SAMPLE CO		ATA							
Sample Collec	eted With:		Bailer			DED BLADDER		_	
Made of:		Stainless Ste	_	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	*	Other							
Sample Descri	iption (color, t	urbidity, odor,	sheen, etc.):	CLOUDY, Y	ELLOW WITH Y	ELLOW/ORANGI	E SOLIDS, NO S	SHEEN	
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	16.0	312.5	0.24	6.55	-27.7				
2	16.0	312.4	0.24	6.55	-28.1				
3	16.0	312.6	0.24	6.55	-28.5				
4	16.0	312.4	0.23	6.55	-28.9				
Average:	16.0	312.5	0.24	6.55	-28.3	#DIV/0!			
QUANTITY 5						olicable or write no	on-standard ana		OR 🗆
3		(NWTPH-				8141) (Oil & Grea	se)	WA □	OR OR
						(HCO3/CO3) (CI	•		
1) (NH3) (NO3/I				
	(Total Cyanid	e) (WAD Cy	anide) (Free	Cyanide)					
						Pb) (Mg) (Mn) (N			
) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (A	Ag) (Se) (Tl) (V)	(Zn) (Hg) (K) (Na	a) (Hardness) (Silica)
	VOC (Boein	g short list) ane Ethene Ac	etylene						
	wichiane Elli	and Eulelle AC	ery telle						
	others								
D 11	1 37 (
Duplicate San Comments:	nple No(s):								
comments.									
Signature:	BXM					Date:	5/7/2019		

Project Name	e:	Boeing Ren	ton		Project Number	·•	0025217.099.0	99	
Event:		May-19			Date/Time:	05/7 /2019@ 1			
Sample Num	ber:	RGW238I-	190507		Weather:	SUNNY, WARM	Л		
Landau Repr	esentative:	BXM			_				
WATER LEV	EL/WELL/PU	IRGE DATA							
Well Conditio		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before I	Purging (ft)	3.66	Time:	1159	Flow through cel	l vol.		GW Meter No.(s	1-HERON
Begin Purge:	Date/Time:	05/ 7/2019	@ 1204	End Purge:	Date/Time:	05/ 7/2019 @ 122	23	Gallons Purged:	< 1
Purge water di	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa +/- 3%	ıls: Stablizatio +/- 3%	on of Parame +/- 10%	ters for three +/- 0.1 units	e consecutive read +/- 10 mV	lings within the fol +/- 10%	llowing limits < 0.3 ft	>/= 1 flow through cell	
1207	16.7	367.1	0.54	6.08	30.8	17 20 70	3.66	un ough cen	
	17.0								
1210		434.4	0.36	6.16	20.2		3.66		
1213	16.5	427.5	0.40	6.23	7.8		3.66		
1216	16.3	418.4	0.30	6.26	-5.9				
1219	16.3	416.9	0.30	6.23	-13.6				
1222	16.3	419.1	0.26	6.25	-25.1				
SAMPLE CO	LLECTION D	ATA							
Sample Collec	eted With:		Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Ste	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerical	l Order)	Other							
Sample Descri	iption (color, t	urbidity, odor,	sheen, etc.):	CLEAR, YE	LLOW TINY, BL	ACK AND YELLO	OW SOLIDS, NO	SHEEN	
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	16.3	422.2	0.24	6.26	-27.4				
2	16.3	422.3	0.24	6.27	-29.8				
3	16.4	425.3	0.23	6.27	-31.1				
4	16.4	427.5	0.24	6.28	-32.7				
Average:	16.4	424.3	0.24	6.27	-30.3	#DIV/0!			
						olicable or write no	on-standard ana	_	OD \square
5		0) (8020) (N				8141) (Oil & Grea	(20)	WA □ WA □	OR OR
						(HCO3/CO3) (Cl	•		OK L
1) (NH3) (NO3/I		, (221) (2122	/ (= - = - / (= /	
	(Total Cyanid	e) (WAD Cy	anide) (Free	Cyanide)					
	(Total Metals	(As) (Sb) (Ba) (Be) (Ca	(Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (N	(Ii) (Ag) (Se) (T	(l) (V) (Zn) (Hg)	(K) (Na)
) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (A	Ag) (Se) (Tl) (V)	(Zn) (Hg) (K) (N	a) (Hardness) (Silica)
	VOC (Boein								
	Methane Eth	ane Ethene Ac	etylene						
	others								
Duplicate San	1 NT ()								
C	ipie No(s):								
Comments: Signature:	BXM					Date:	5/7/2019		

Project Name	e:	Boeing Ren	ton		Project Number	:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/7 /2019@ 1	110		
Sample Num	ber:	RGW239I-	190507		Weather:	SUNNY, WARN	Л		
Landau Repr	esentative:	BXM			_				
WATER LEV	EL/WELL/PU	IRGE DATA							
Well Conditio		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before I	Purging (ft)	4.42	Time:	1044	Flow through cel	l vol.	•	GW Meter No.(s	1-HERON
Begin Purge:	Date/Time:	05/ 7 /2019	@ 1045	End Purge:	Date/Time:	05/7 /2019 @ 11	.05	Gallons Purged:	< 1
Purge water di	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa +/- 3%	ıls: Stablizatio +/- 3%	on of Parame +/- 10%	ters for three +/- 0.1 units	e consecutive read +/- 10 mV	lings within the fol +/- 10%	llowing limits < 0.3 ft	>/= 1 flow through cell	
1048	17.8	297.6	0.26	6.29	11.4	17- 1070	4.43	tin ough cen	
					5.2				
1051	17.8	310.2	0.23	6.31			4.42		
1054	17.8	322.0	0.21	6.35	-11.4		4.44		
1057	17.9	327.2	0.21	6.37	-26.2		4.42		
1100	17.9	328.4	0.21	6.38	-33.0				
1103	17.8	328.4	0.23	6.38	-35.6				
SAMPLE CO	LLECTION D	ATA							
Sample Collec	eted With:		Bailer			DED BLADDER		_	
Made of:		Stainless Ste	_	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	*	Other		GT E L D G G			D		
Sample Descri	iption (color, t	urbidity, odor,	sheen, etc.):	CLEAR, CO	LORLESS, NO S	HEEN, SMALL DA	ARK SOLIDS		
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	17.9	328.3	0.23	6.38	-36.3				
2	17.8	328.5	0.22	6.38	-37.1				
3	17.8	328.4	0.21	6.39	-37.7				
4	17.9	328.5	0.24	6.39	-38.2				
Average:	17.9	328.4	0.23	6.39	-37.3	#DIV/0!			
QUANTITY 5		NALYSIS AL (1) (8020) (N				olicable or write no	on-standard ana	WA	OR 🗆
3						3141) (Oil & Grea	se)	WA 🗆	OR 🗆
						(HCO3/CO3) (CI	•		
1	(COD) (TOO	C) (Total PO	(Total Kied	dahl Nitrogen) (NH3) (NO3/I	NO2)			
	(Total Cyanid	e) (WAD Cy	anide) (Free	Cyanide)					
						Pb) (Mg) (Mn) (N			
) (Ba) (Be) (C	(Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (A	Ag) (Se) (Tl) (V)	(Zn) (Hg) (K) (N	a) (Hardness) (Silica)
	VOC (Boein Methane Eth	g snort list) ane Ethene Ac	retylene						
	Modiane Elli	and Elliche AC	ory to the						
	others								
Down!! C	anla NI-(-)								
Duplicate San Comments:		cation							
Comments:	MSMSD Lo	cation							
Signature:	BXM					Date:	5/7/2019		

Project Name	e:	Boeing Ren	ton		Project Number	::	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@ 10			
Sample Num	ber:	RGW240D-	190507		Weather:	SUNNY, WARM	[
Landau Repr	esentative:	BXM			•				
WATER LEV	EL/WELL/PL	IRGE DATA							
Well Conditio		Secure (YES))	Damaged (N	O)	Describe:	Flush Mount		
DTW Before I	Purging (ft)	5.07	Time:	_	Flow through cel	l vol.		GW Meter No.(s	s 1-HERON
Begin Purge:		05/7 /2019		End Purge:	_	05/7 /2019 @ 103	32	Gallons Purged:	
Purge water di	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa	ds: Stablization +/- 3%		ters for three +/- 0.1 units	consecutive read +/- 10 mV	lings within the foll +/- 10%	lowing limits < 0.3 ft	>/= 1 flow through cell	
1012						+/- 10 /0		un ough cen	
1012	17.9	393.1	0.36	6.38	11.6	<u> </u>	5.07		
1015	17.8	395.6	0.24	6.43	-16.0		5.13		
1018	17.8	391.1	0.22	6.43	-26.5		5.13		
1021	17.8	389.2	0.24	6.44	-35.7				
1024	17.8	388.5	0.22	6.45	-45.8				
1027	17.9	389.1	0.21	6.46	-49.1				
SAMPLE CO	LLECTION D	ATA							<u>. </u>
Sample Collec	eted With:		Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	h 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	*	Other							
Sample Descri	iption (color, t	urbidity, odor,	sheen, etc.):	CLEAR, CO	LORLESS, NO S	HEEN, SMALL BLA	ACK SOLIDS		
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	18.0	389.5	0.21	6.46	-49.9				
2	18.0	389.5	0.21	6.46	-50.3				
3	18.0	389.5	0.21	6.46	-50.8				
4	18.0	390.0	0.21	6.46	-51.3				
						#D# //O!			
Average:	18.0	389.6	0.21	6.46	-50.6	#DIV/0!			
						olicable or write no	n-standard ana		
5		0) (8020) (N				2141) (01.0.0	`	WA 🗆	OR 🗆
						(HCO3/CO3) (Cl)		WA []	OR 🗆
1	(COD) (TOC) (NH3) (NO3/I		(504) (1103) (1102) (1)	
		e) (WAD Cya			, (, , , , , , , , , , , , , , , , , ,				
	(Total Metals	(As) (Sb) (l	Ba) (Be) (Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni	i) (Ag) (Se) (T	(l) (V) (Zn) (Hg) (K) (Na)
) (Ba) (Be) (C	(Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (A	g) (Se) (Tl) (V)	(Zn) (Hg) (K) (N	a) (Hardness) (Silica)
	VOC (Boein		. 1						
	Methane Eth	ane Ethene Ac	etylene						
	others								
Duplicate San	nple No(s):								
Comments: Signature:									
	BXM					Date:	5/7/2019		

Project Name	e:	Boeing Ren	ton		Project Number	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7/2019@ 84	.5		
Sample Num	ber:	RGW-241S	190507		Weather:	SUNNNY, WARI	M		
Landau Repr	esentative:	BX0							
WATER LEV	EL/WELL/PU	IRGE DATA							
Well Conditio		Secure (YES)	Damaged (N	(O)	Describe:	Flush Mount		
DTW Before l	Purging (ft)	5./5	Time:	819	Flow through cel	l vol.		GW Meter No.(s	1-SLOPE
Begin Purge:	Date/Time:	05/7 /2019	@ 824	End Purge:	Date/Time:	05/ 7/2019 @ 843	3	Gallons Purged:	< 1
Purge water di	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATMI	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa +/- 3%	ıls: Stablizatio +/- 3%	on of Parame +/- 10%	ters for three +/- 0.1 units		dings within the foll +/- 10%	owing limits < 0.3 ft	>/= 1 flow through cell	
827	16.8	338.6	0.63	6.27	55.2	17 20 70	5.04	viii vugii vvii	
830	17.3	341.6	0.56	6.15	37.0		5.04		
							3.04		
833	17.8	340.1	0.68	6.20	5.1				
836	18.0	337.0	0.58	6.24	-9.3				
839	18.0	335.7	0.51	6.28	-21.2				
842	18.1	331.0	0.47	6.30	-28.5				
SAMPLE CO									
Sample Collec	eted With:		Bailer	_		DED BLADDER		_	
Made of:		Stainless Stee		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	*	Other		GT E L D G G					
Sample Descri	iption (color, t	urbidity, odor,	sheen, etc.):	CLEAR, CO	LORLESS, NO S	HEEN			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	18.0	331.8	0.47	6.31	-29.1				
2	18.0	332.2	0.46	6.31	-29.7				
3	18.1	332.4	0.46	6.31	-30.5				
4	18.0	331.1	0.46	6.31	-31.0				
Average:	18.0	331.9	0.46	6.31	-30.1	#DIV/0!			
						· ·			
QUANTITY 5		NALYSIS AL (1) (8020) (N				plicable or write nor	1-standard ana	WA \square	OR 🗆
3						8141) (Oil & Grease	<u>-)</u>	WA 🗆	OR 🗆
						(HCO3/CO3) (Cl)			
1	(COD) (TOO	C) (Total PO4	(Total Kied	lahl Nitrogen) (NH3) (NO3/I	NO2)			
		e) (WAD Cy							
						Pb) (Mg) (Mn) (Ni			
) (Ba) (Be) (C	(Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag	g) (Se) (Tl) (V)	(Zn) (Hg) (K) (Na	a) (Hardness) (Silica)
	VOC (Boein	g short list) ane Ethene Ac	etylene						
	wichiane Elli	and Eulelle AC	CLYICHE						
	others								
D 11	1 37 ()								
Duplicate San	nple No(s):								
Comments:						Date:	5/7/2019		
Signature:	BXM								

Project Name):	Boeing Ren	ton		Project Number	·: (0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7/2019@93	0		
Sample Numl	ber:	RGW-242I-	190507		Weather:	SUNNY, WARM			
Landau Repro	esentative:	BXM			_				
WATER LEVI	EL/WELL/PU	RGE DATA							
Well Condition		Secure (YES))	Damaged (N	O)	Describe: 1	Flush Mount		
DTW Before P	Purging (ft)	5.18	Time:	903	Flow through cel	l vol.		GW Meter No.(s	1-HERON
Begin Purge:	Date/Time:	05/ 7/2019	@ 907	End Purge:	Date/Time:	05/ 7 /2019 @ 926		Gallons Purged:	< 1
Purge water di	sposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATMI	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa +/- 3%	ds: Stablizatio +/- 3%		ters for three +/- 0.1 units	consecutive read +/- 10 mV	lings within the follo +/- 10%	owing limits < 0.3 ft	>/= 1 flow through cell	
910	16.4	304.7	0.40	6.19	24.2	1, 20,0	5.19	un ough con	
913	16.4	309.5	0.35	6.23	15.8		5.19		
916	17.0	314.2	0.36	6.27	2.9		5.18		
919	17.9	320.9	0.34	6.30	-7.9				
922	18.4	325.7	0.36	6.31	-16.2				
925	18.7	328.8	0.35	6.32	-22.8				
SAMPLE COL									
Sample Collect	ted With:		Bailer			DED BLADDER		—	
Made of:		Stainless Stee		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Procedu		Alconox Was	sh 📋	Tap Rinse	DI Water	Dedicated			
(By Numerical	*	Other	-1	CLEAD CO	LODI EGG NO GI	IEEN COME OD AN	ICE COL IDC		
Sample Descri	ption (color, t	urbiaity, odor,	sneen, etc.):	CLEAR, CO	LURLESS, NU SI	HEEN, SOME ORAN	IGE SOLIDS		
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	18.7	329.0	0.35	6.32	-23.5				
2	18.7	329.2	0.35	6.33	-24.0				
3	18.8	329.6	0.34	6.33	-24.7		_		
4	18.8	329.8	0.34	6.33	-25.4				
Average:	18.8	329.4	0.35	6.33	-24.4	#DIV/0!			
			LOWED DE	D DOTTE E		l: l: 1	-4		
		NALYSIS AL (1) (8020) (N				licable or write non	-standard ana	WA	OR 🗆
						3141) (Oil & Grease	:)	WA 🗆	OR 🗆
						(HCO3/CO3) (Cl)			
1	(COD) (TOC	C) (Total PO4	(Total Kied	dahl Nitrogen	(NH3) (NO3/N	NO2)			
		e) (WAD Cy							
						Pb) (Mg) (Mn) (Ni)			
- ') (Ba) (Be) (C	(Cd) (Co)	(Cr) (Cu) (Fe) (Pb)) (Mg) (Mn) (N1) (Ag	g) (Se) (Tl) (V)	(Zn) (Hg) (K) (N	a) (Hardness) (Silica)
	VOC (Boein	g snort list) ane Ethene Ac	etylene						
	cumic Etti	Lilelle At	,10110						
	others								
Duplicate Sam Comments:									

Project Name	e:	Boeing Ren	ton		Project Number	r: (0025217.099.0	99	
Event:		May-19			Date/Time:	05/8 /2019@ 94	45		
Sample Num	ber:	RGW-243I-	190508		Weather:	OVERCAST, CO	OL		
Landau Repr	esentative:	BXM			•				
WATER LEV	EL/WELL/PU	IRGE DATA							
Well Conditio		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before I	Purging (ft)	4.2	Time:	917	Flow through cel	l vol.		GW Meter No.(s	1-HERON
Begin Purge:			@ 922	End Purge:	_	05/ 8/2019 @ 942		Gallons Purged:	
Purge water di			55-gal Drum	i i	Storage Tank	Ground	Other	SITE TREATMI	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa	ıls: Stablizatio +/- 3%	on of Parame +/- 10%	ters for three +/- 0.1 units	e consecutive read +/- 10 mV	lings within the follo +/- 10%	owing limits < 0.3 ft	>/= 1 flow through cell	
025						17- 10 /0		tin ough cen	
925	16.6	356.4	0.35	6.21	51.2		4.2		
928	16.5	367.4	0.44	6.21	33.0		4.2		
931	16.5	375.4	0.40	6.19	14.8				
934	16.5	377.0	0.39	6.19	-0.4				
937	16.6	378.4	0.35	6.21	-12.9				
940	16.6	378.9	0.35	6.22	-16.5				
SAMPLE CO	LLECTION D	ATA							
Sample Collec	eted With:		Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other							
Sample Descri	iption (color, t	urbidity, odor,	sheen, etc.):	CLEAR, CO	LORLESS, NO S	HEEN, SOME DARI	K SMALL SOL	IDS	
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	16.6	379.3	0.35	6.22	-17.2				
2	16.7	379.4	0.35	6.22	-18.1				
3	16.7	379.4	0.34	6.23	-18.7				
4	16.7	379.9	0.35	6.23	-19.3				
Average:	16.7	379.5	0.35	6.23	-18.3	#DIV/0!			
						olicable or write nor	n-standard ana	_	OD \square
5		(NWTPH)				8141) (Oil & Grease	<u> </u>	WA □ WA □	OR OR
						(HCO3/CO3) (Cl)			OK —
1) (NH3) (NO3/I			, <u>, , , , , , , , , , , , , , , , , , </u>	
	(Total Cyanid	e) (WAD Cy	anide) (Free	Cyanide)					
	(Total Metals	(As) (Sb) (Ba) (Be) (Ca	(Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni)	(Ag) (Se) (T	(l) (V) (Zn) (Hg)	(K) (Na)
) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag	g) (Se) (Tl) (V)	(Zn) (Hg) (K) (Na	a) (Hardness) (Silica)
	VOC (Boein		atulas -						
	Methane Eth	ane Ethene Ac	etytene						
	others								
Duplicate San	nple No(s):								
Comments:						_	=		
Signature:	BXM					Date:	5/8/2019		

Project Nam	e:	Boeing Ren	iton		Project Number	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	900		
Sample Num	ıber:	DUP3-	190507		Weather:	CLEAR			
Landau Repi	resentative:	RJC							
WATER LEV	'EL/WELL/PU	URGE DATA							
Well Condition		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)		Time:	=		l vol.		GW Meter No.(s	HERON3
		05/ 07 /2019		End Purge:	_	05/ 07 /2019 @		Gallons Purged:	
Purge water d			55-gal Drum	ė.	Storage Tank	Ground	Other	SITE TREATMI	
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	pm	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	_		on of Paramet			dings within the fo	_	>/= 1 flow	
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
		т		T A T	т то г		ıc		
		1	JUPL	ICAI	EIUK	RGW224	12		
							1		
SAMPLE CO									
Sample Collec	cted With:		Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Ste	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other							
Sample Descr	iption (color, t	turbidity, odor	, sheen, etc.):_	CLEAR COI	LORLESS NO OI	OOR NO SHEEN			
DU	Т	C J			ODD	T1:1:4	DTW	Ferrous iron	Comments/
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	(Fe II)	Observations
1	19.6	200.2	0.40	6.05	15.5	(' - /			
2	19.7	200.2	0.40	6.05	15.0				
3	19.7	200.3	0.41	6.04	14.8				
4	19.8	200.4							
Average:		200.4	0.41	6.04	14.6				
OLI A NITETTE I	19.7	200.4	0.41	6.04 6.05	14.6 15.0	#DIV/0!			
LULIANITTO		200.3	0.41	6.05	15.0		non-standard ox	nalysis helow)	
QUANTITY	TYPICAL A	200.3 NALYSIS AI	0.41	6.05	15.0 TYPE (Circle ap	#DIV/0!	non-standard ar		OR \square
2	TYPICAL A (8260) (8010	200.3 NALYSIS AI 0) (8020) (N	0.41 LLOWED PE WTPH-G) (6.05 CR BOTTLE NWTPH-Gx)	15.0 TYPE (Circle ap (BTEX)			WA □	OR 🗆
	TYPICAL A (8260) (8010 (8270) (PAF	200.3 NALYSIS AI 0) (8020) (NH) (NWTPH-	0.41 LLOWED PE NWTPH-G) (1 D) (NWTPH	6.05 CR BOTTLE NWTPH-Gx) I-Dx) (TPH-	15.0 TYPE (Circle ap) (BTEX) HCID) (8081) (plicable or write 1	ase)	WA □ WA □	
	TYPICAL A (8260) (8010 (8270) (PAH (pH) (Condu	200.3 NALYSIS AI (200.3) (2	0.41 LLOWED PE NWTPH-G) (D) (NWTPH S) (TSS) (B	6.05 CR BOTTLE NWTPH-Gx) I-Dx) (TPH- OD) (Turbic	15.0 TYPE (Circle ap) (BTEX) HCID) (8081) ((8141) (Oil & Gree (HCO3/CO3) (C	ase)	WA □ WA □	
	TYPICAL A (8260) (8010 (8270) (PAH (pH) (Condu	200.3 NALYSIS AI (D) (8020) (N H) (NWTPH- (ctivity) (TD: (C) (Total PO-	0.41 LLOWED PE NWTPH-G) (D) (NWTPH S) (TSS) (B	6.05 CR BOTTLE NWTPH-Gx) [-Dx) (TPH-OD) (Turbic dahl Nitrogen	TYPE (Circle ap (BTEX) HCID) (8081) (dity) (Alkalinity)	(8141) (Oil & Gree (HCO3/CO3) (C	ase)	WA □ WA □	
	TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (TOtal Cyanid (Total Metals	200.3 NALYSIS AI (1) (8020) (N (1) (NWTPH- (1) (Total PO- (1) (WAD Cy (1) (As) (Sb) (0.41 LLOWED PE WWTPH-G) (D) (NWTPH S) (TSS) (B 4) (Total Kie- vanide) (Free Ba) (Be) (Ca	6.05 CR BOTTLE NWTPH-Gx) (-Dx) (TPH-OD) (Turbic dahl Nitrogen Cyanide) 1) (Cd) (Co)	15.0 TYPE (Circle ap	(8141) (Oil & Gre. (HCO3/CO3) (O NO2)	ase) Cl) (SO4) (NO Ni) (Ag) (Se) (WA □ WA □ 3) (NO2) (F) TI) (V) (Zn) (Hg	OR (K) (Na)
	TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (TOO (Total Cyanid (Total Metals (Dissolved M	200.3 NALYSIS AI (1) (8020) (N (2) (NWTPH- (3) (1) (TDS) (3) (Total PO- (4) (WAD Cy (4) (As) (Sb) ((4) (4) (Sb) (Sb)	0.41 LLOWED PE WWTPH-G) (D) (NWTPH S) (TSS) (B 4) (Total Kie- vanide) (Free Ba) (Be) (Ca	6.05 CR BOTTLE NWTPH-Gx) (-Dx) (TPH-OD) (Turbic dahl Nitrogen Cyanide) 1) (Cd) (Co)	15.0 TYPE (Circle ap	(8141) (Oil & Gre. (HCO3/CO3) (O NO2)	ase) Cl) (SO4) (NO Ni) (Ag) (Se) (WA □ WA □ 3) (NO2) (F) TI) (V) (Zn) (Hg	OR 🗆
	TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (TOO (Total Cyanid (Total Metals (Dissolved M VOC (Boein	200.3 NALYSIS AI (D) (8020) (N H) (NWTPH- (ctivity) (TD) (C) (Total PO- (le) (WAD Cy) (As) (Sb) (etals) (As) (Sb g short list)	0.41 LLOWED PE WTPH-G) (C D) (NWTPH S) (TSS) (B 4) (Total Kie- vanide) (Free (Ba) (Be) (Ca b) (Ba) (Be) (C	6.05 CR BOTTLE NWTPH-Gx) (-Dx) (TPH-OD) (Turbic dahl Nitrogen Cyanide) 1) (Cd) (Co)	15.0 TYPE (Circle ap	(8141) (Oil & Gre. (HCO3/CO3) (O NO2)	ase) Cl) (SO4) (NO Ni) (Ag) (Se) (WA □ WA □ 3) (NO2) (F) TI) (V) (Zn) (Hg	OR (K) (Na)
	TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (TOO (Total Cyanid (Total Metals (Dissolved M VOC (Boein	200.3 NALYSIS AI (1) (8020) (N (2) (NWTPH- (3) (1) (TDS) (3) (Total PO- (4) (WAD Cy (4) (As) (Sb) ((4) (4) (Sb) (Sb)	0.41 LLOWED PE WTPH-G) (C D) (NWTPH S) (TSS) (B 4) (Total Kie- vanide) (Free (Ba) (Be) (Ca b) (Ba) (Be) (C	6.05 CR BOTTLE NWTPH-Gx) (-Dx) (TPH-OD) (Turbic dahl Nitrogen Cyanide) 1) (Cd) (Co)	15.0 TYPE (Circle ap	(8141) (Oil & Gre. (HCO3/CO3) (O NO2)	ase) Cl) (SO4) (NO Ni) (Ag) (Se) (WA □ WA □ 3) (NO2) (F) TI) (V) (Zn) (Hg	OR (K) (Na)
	TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (TOO (Total Cyanid (Total Metals (Dissolved M VOC (Boein	200.3 NALYSIS AI (D) (8020) (N H) (NWTPH- (ctivity) (TD) (C) (Total PO- (le) (WAD Cy) (As) (Sb) (etals) (As) (Sb g short list)	0.41 LLOWED PE WTPH-G) (C D) (NWTPH S) (TSS) (B 4) (Total Kie- vanide) (Free (Ba) (Be) (Ca b) (Ba) (Be) (C	6.05 CR BOTTLE NWTPH-Gx) (-Dx) (TPH-OD) (Turbic dahl Nitrogen Cyanide) 1) (Cd) (Co)	15.0 TYPE (Circle ap	(8141) (Oil & Gre. (HCO3/CO3) (O NO2)	ase) Cl) (SO4) (NO Ni) (Ag) (Se) (WA □ WA □ 3) (NO2) (F) TI) (V) (Zn) (Hg	OR (K) (Na)
	TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (TOO (Total Cyanid (Total Metals (Dissolved M VOC (Boein Methane Eth	200.3 NALYSIS AI (D) (8020) (N H) (NWTPH- (ctivity) (TD) (C) (Total PO- (le) (WAD Cy) (As) (Sb) (etals) (As) (Sb g short list)	0.41 LLOWED PE WTPH-G) (C D) (NWTPH S) (TSS) (B 4) (Total Kie- vanide) (Free (Ba) (Be) (Ca b) (Ba) (Be) (C	6.05 CR BOTTLE NWTPH-Gx) (-Dx) (TPH-OD) (Turbic dahl Nitrogen Cyanide) 1) (Cd) (Co)	15.0 TYPE (Circle ap	(8141) (Oil & Gre. (HCO3/CO3) (O NO2)	ase) Cl) (SO4) (NO Ni) (Ag) (Se) (WA □ WA □ 3) (NO2) (F) TI) (V) (Zn) (Hg	OR (K) (Na)
	TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (TOO (Total Cyanid (Total Metals (Dissolved M VOC (Boein	200.3 NALYSIS AI (D) (8020) (N H) (NWTPH- (ctivity) (TD) (C) (Total PO- (le) (WAD Cy) (As) (Sb) (etals) (As) (Sb g short list)	0.41 LLOWED PE WTPH-G) (C D) (NWTPH S) (TSS) (B 4) (Total Kie- vanide) (Free (Ba) (Be) (Ca b) (Ba) (Be) (C	6.05 CR BOTTLE NWTPH-Gx) (-Dx) (TPH-OD) (Turbic dahl Nitrogen Cyanide) 1) (Cd) (Co)	15.0 TYPE (Circle ap	(8141) (Oil & Gre. (HCO3/CO3) (O NO2)	ase) Cl) (SO4) (NO Ni) (Ag) (Se) (WA □ WA □ 3) (NO2) (F) TI) (V) (Zn) (Hg	OR (K) (Na)
	TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (TOO (Total Cyanid (Total Metals (Dissolved M VOC (Boein Methane Eth	200.3 NALYSIS AI (D) (8020) (N H) (NWTPH- (ctivity) (TD) (C) (Total PO- (le) (WAD Cy) (As) (Sb) (etals) (As) (Sb g short list)	0.41 LLOWED PE NWTPH-G) (D) (NWTPH S) (TSS) (B 4) (Total Kie- vanide) (Free Ba) (Be) (Ca b) (Ba) (Be) (Co cetylene	6.05 CR BOTTLE NWTPH-Gx) (-Dx) (TPH-OD) (Turbic dahl Nitrogen Cyanide) 1) (Cd) (Co)	15.0 TYPE (Circle ap	(8141) (Oil & Gre. (HCO3/CO3) (O NO2)	ase) Cl) (SO4) (NO Ni) (Ag) (Se) (WA □ WA □ 3) (NO2) (F) TI) (V) (Zn) (Hg	OR (K) (Na)
2	TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (TOO (Total Cyanid (Total Metals (Dissolved M VOC (Boein Methane Eth	200.3 NALYSIS AI (1) (8020) (N H) (NWTPH- (1) (Total PO- (1) (WAD Cy (1) (As) (Sb) (etals) (As) (Sb) (g short list) (anne Ethene Ac	0.41 LLOWED PE NWTPH-G) (D) (NWTPH S) (TSS) (B 4) (Total Kie- vanide) (Free Ba) (Be) (Ca b) (Ba) (Be) (Co cetylene	6.05 CR BOTTLE NWTPH-Gx) (-Dx) (TPH-OD) (Turbic dahl Nitrogen Cyanide) 1) (Cd) (Co)	15.0 TYPE (Circle ap	(8141) (Oil & Gre. (HCO3/CO3) (O NO2)	ase) Cl) (SO4) (NO Ni) (Ag) (Se) (WA □ WA □ 3) (NO2) (F) TI) (V) (Zn) (Hg	OR (K) (Na)
2 Duplicate San	TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (TOO (Total Cyanid (Total Metals (Dissolved M VOC (Boein Methane Eth	200.3 NALYSIS AI (1) (8020) (N H) (NWTPH- (1) (Total PO- (1) (WAD Cy (1) (As) (Sb) (etals) (As) (Sb) (g short list) (anne Ethene Ac	0.41 LLOWED PE NWTPH-G) (D) (NWTPH S) (TSS) (B 4) (Total Kie- vanide) (Free Ba) (Be) (Ca b) (Ba) (Be) (Co cetylene	6.05 CR BOTTLE NWTPH-Gx) (-Dx) (TPH-OD) (Turbic dahl Nitrogen Cyanide) 1) (Cd) (Co)	15.0 TYPE (Circle ap	(8141) (Oil & Gre. (HCO3/CO3) (O NO2)	ase) Cl) (SO4) (NO Ni) (Ag) (Se) (WA □ WA □ 3) (NO2) (F) TI) (V) (Zn) (Hg	OR (K) (Na)

Project Nam	ne:	Boeing Ren	nton		Project Numbe	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 6 /2019@	1409		
Sample Nun	nber:	RGW183S-	- 190506		Weather:	CELAR			
Landau Rep	resentative:	SRB							
WATER LEV	VEL/WELL/PI	JRGE DATA							
Well Condition	on:	Secure (YES	5)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	8.78	Time:	1338	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 06 /201	1339	End Purge:	Date/Time:	05/ 06 /2019 @	1352	Gallons Purged:	0.25
Purge water d	lisposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	Volume (gal)	Observations
	+/- 3%	18: Stabilzatio +/- 3%		ters for three +/- 0.1 units	e consecutive rea +/- 10 mV	dings within the fo +/- 10%	< 0.3 ft	>/= 1 flow through cell	
1342		151.7	1.09	6.04	66.2	LOW	8.78	8	
1345		150.4	0.34	6.20	26.2		8.78		
1348		150.4	0.34	6.19	26.0		8.78		
					-		0.70		
1351	18.2	149.2	0.32	6.18	24.1				
									-
					,				
		,			,				
	LLECTION I								
Sample Colle	cted With:		Bailer			DED BLADDER		— • • • • •	
Made of:	. 🗀	Stainless Ste	_	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Wa	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica		Other	choon ato)	CLEAD COL	LODI ESS NO/N	<u> </u>			
Sample Desci	ription (color, i	urbiaity, odor	, sheen, etc.).	CLEAR CO	LORLESS NO/N	3			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	18.2	149.2	0.32	6.19	23.6				
2	18.2	149.3	0.32	6.20	22.9				
3	18.2	149.1	0.31	6.19	23.4				
4	18.1	149.0	0.32	6.20	22.4				
Average:	18.2	149.2	0.32	6.20	23.1	#DIV/0!			
QUANTITY			LLOWED PE WTPH-G) (pplicable or write i	non-standard ar	WA	OR 🗆
2						(8141) (Oil & Gre	ase)	WA 🗆	OR 🗆
						(HCO3/CO3) (C			
	(COD) (TO	C) (Total PO	4) (Total Kie	dahl Nitrogen	i) (NH3) (NO3)	NO2)			
				Cyanide)					
		le) (WAD Cy							
	(Total Metals) (As) (Sb) ((Ba) (Be) (Ca	(Cd) (Co)		(Pb) (Mg) (Mn) (I			
	(Total Metals (Dissolved M) (As) (Sb) (etals) (As) (St	(Ba) (Be) (Ca	(Cd) (Co)					
	(Total Metals (Dissolved M VOC (Boein	(As) (Sb) (etals) (As) (Sb) g short list)	(Ba) (Be) (Ca b) (Ba) (Be) (C	(Cd) (Co)					
	(Total Metals (Dissolved M VOC (Boein) (As) (Sb) (etals) (As) (St	(Ba) (Be) (Ca b) (Ba) (Be) (C	(Cd) (Co)					
	(Total Metals (Dissolved M VOC (Boein	(As) (Sb) (etals) (As) (Sb) g short list)	(Ba) (Be) (Ca b) (Ba) (Be) (C	(Cd) (Co)					
	(Total Metals (Dissolved M VOC (Boein	(As) (Sb) (etals) (As) (Sb) g short list)	(Ba) (Be) (Ca b) (Ba) (Be) (C	(Cd) (Co)					
Dunkingt C	(Total Metals (Dissolved M VOC (Boein Methane Eth	(As) (Sb) (etals) (As) (Sb) g short list)	(Ba) (Be) (Ca b) (Ba) (Be) (C	(Cd) (Co)					g) (K) (Na) Na) (Hardness) (Silica
Duplicate Sar	(Total Metals (Dissolved M VOC (Boein Methane Eth	(As) (Sb) (etals) (As) (Sb) g short list)	(Ba) (Be) (Ca b) (Ba) (Be) (C	(Cd) (Co)					

Project Name	e:	Boeing Ren	ton		Project Number	:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 6 /2019@14	120		
Sample Num	nber:	RGW184S-	190506		Weather:	SUNNY, WARN	1		
Landau Repr	resentative:	BXM							
WATER LEV	'EL/WELL/PU	RGE DATA							
Well Conditio		Secure (YES))	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	9.34	Time:	=	Flow through cell	l vol.		GW Meter No.(s	1-HERON
	Date/Time:			End Purge:	Date/Time:		16	Gallons Purged:	
Purge water d			55-gal Drum	Ė	Storage Tank	Ground		SITE TREATMI	
r argo water a			_		_				
Time	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Internal Purge Volume (gal)	Comments/ Observations
Time				ters for three		lings within the fol		>/= 1 flow	Observations
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units	+/ - 10 mV	+/- 10%	< 0.3 ft	through cell	
1359	19.1	158.0	2.57	6.14	33.4		9.35		
1402	19.3	153.3	1.91	6.14	25.8		9.34		
1405	19.1	150.3	1.36	6.16	17.3		9.34		
1408		148.6	1.22	6.17	14.2				
1411	18.8	146.3	1.17	6.18	12.3				
1414	18.9	146.2	1.17	6.18	11.7				
SAMPLE CO	LLECTION D	ATA							
Sample Collec	cted With:		Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other							
	,	₩							
. •			sheen, etc.):	CLEAR, CO	LORLESS, NO SI	HEEN			
Sample Descr		urbidity, odor,							
. •	iption (color, t	urbidity, odor,	D.O.	CLEAR, CO	ORP	Turbidity	DTW	Ferrous iron	Comments/
Sample Descr Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)		DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
Sample Descr	Temp (°F/°C)	Cond. (uS/cm) 146.3	D.O. (mg/L)	pH 6.19	ORP (mV)	Turbidity			
Sample Descr Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity			
Sample Descr Replicate	Temp (°F/°C)	Cond. (uS/cm) 146.3	D.O. (mg/L)	pH 6.19	ORP (mV)	Turbidity			
Sample Descr Replicate 1 2	Temp (°F/°C) 19.0	Cond. (uS/cm) 146.3	D.O. (mg/L) 1.10	pH 6.19 6.19	ORP (mV) 11.8 11.7	Turbidity			
Replicate 1 2 3 4	Temp (°F/°C) 19.0 19.0	Cond. (uS/cm) 146.3 146.3 146.3	D.O. (mg/L) 1.10 1.06 1.16	pH 6.19 6.19 6.19	ORP (mV) 11.8 11.7 11.5 11.6	Turbidity (NTU)			
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0	Cond. (uS/cm) 146.3 146.3 146.3 146.3	D.O. (mg/L) 1.10 1.06 1.16 1.11	6.19 6.19 6.19 6.19 6.19	ORP (mV) 11.8 11.7 11.5 11.6 11.7	Turbidity (NTU) #DIV/0!	(ft)	(Fe II)	
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0	Cond. (uS/cm) 146.3 146.3 146.3 146.3 NALYSIS AL	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11	6.19 6.19 6.19 6.19 6.19 6.19	ORP (mV) 11.8 11.7 11.5 11.6 11.7	Turbidity (NTU)	(ft)	(Fe II)	Observations
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 19.0 19.0 (8260) (8010	Cond. (uS/cm) 146.3 146.3 146.3 146.3 NALYSIS AL	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PE	6.19 6.19 6.19 6.19 6.19 6.19 KR BOTTLE TANKTPH-GX)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 TYPE (Circle approximately (BTEX)	Turbidity (NTU) #DIV/0!	on-standard ana	(Fe II)	Observations OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 19.0 19.0 (8260) (8010) (8270) (PAF	Cond. (uS/cm) 146.3 146.3 146.3 146.3 NALYSIS AL ()) (8020) (N	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PEI WTPH-G) (IO) (NWTPH	6.19 6.19 6.19 6.19 6.19 NWTPH-Gx)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 TYPE (Circle approximate) (BTEX) HCID) (8081) (8081)	#DIV/0!	on-standard ana	(Fe II)	Observations
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 19.0 (8260) (8010 (8270) (PAH (pH) (Condu	Cond. (uS/cm) 146.3 146.4 146.3 146.3 146.3 NALYSIS AL 0) (8020) (NI) (NWTPH-Ictivity) (TDS	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PE WTPH-G) (10 O) (NWTPH-G) (10 O) (TSS) (Be	6.19 6.19 6.19 6.19 6.19 R BOTTLE TOWER HOT LE TOWN (TPH-Gx) -Dx) (TPH-HOD) (Turbid	ORP (mV) 11.8 11.7 11.5 11.6 11.7 TYPE (Circle app (BTEX) HCID) (8081) (8 ity) (Alkalinity)	#DIV/0! slicable or write not (HCO3/CO3) (CI	on-standard ana	(Fe II)	Observations OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 19.0 (8260) (8010 (8270) (PAH (pH) (Condu	Cond. (uS/cm) 146.3 146.4 146.3 146.3 146.3 NALYSIS AL 0) (8020) (N I) (NWTPH-I ctivity) (TDS C) (Total PO4	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PE WTPH-G) (I D) (NWTPH G) (TSS) (BC E) (Total Kiece	6.19 6.19 6.19 6.19 6.19 R BOTTLE TOWTPH-Gx) -Dx) (TPH-FOD) (Turbid dahl Nitrogen)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 TYPE (Circle approximate) (BTEX) HCID) (8081) (8081)	#DIV/0! slicable or write not (HCO3/CO3) (CI	on-standard ana	(Fe II)	Observations OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 19.0 (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOC (Total Cyanid	Cond. (uS/cm) 146.3 146.3 146.3 146.3 146.3 NALYSIS AL O) (8020) (N I) (NWTPH-Ictivity) (TDS C) (Total PO4 e) (WAD Cy.	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PE WTPH-G) (I D) (NWTPH C) (TSS) (BC c) (Total Kiecanide) (Free	6.19 6.19 6.19 6.19 6.19 R BOTTLE TOWTPH-GX) -Dx) (TPH-HOD) (Turbid dahl Nitrogen) Cyanide)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 TYPE (Circle approximately (BTEX) HCID) (8081) (8 ity) (Alkalinity) (NH3) (NO3/N	#DIV/0! #DIV/0! #Idicable or write not (HCO3/CO3) (CI	on-standard ana	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 19.0 (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOtal Cyanid (Total Metals)	Cond. (uS/cm) 146.3 146.3 146.3 146.3 146.3 NALYSIS AL (I) (8020) (NI) (NWTPH-Ictivity) (TDS (C) (Total PO4 e) (WAD Cya) () (As) (Sb) (I)	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PER WITPH-G) (IO) (NWTPH-G) (IO) (NWTPH-G) (IO) (TSS) (Bo) (Total Kiecanide) (Free Ganide) (F	6.19 6.19 6.19 6.19 6.19 R BOTTLE TONWTPH-Gx) -Dx) (TPH-FOD) (Turbid dahl Nitrogen) Cyanide) () (Cd) (Co)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 EYPE (Circle approximate) (BTEX) (BTEX) (CID) (8081) (8 (ity) (Alkalinity) (NH3) (NO3/N (Cr) (Cu) (Fe) (I	#DIV/0! #DIV/0! #Idicable or write not (HCO3/CO3) (CINO2) #DIV/0!	on-standard ana se) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 19.0 (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOtal Cyanid (Total Metals)	Cond. (uS/cm) 146.3 146.4 146.3 146.3 146.3 NALYSIS AL (NWTPH-Ictivity) (TDS (Total PO4 e) (WAD Cye (As) (Sb) (Ictals) (As) (Sb)	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PER WITPH-G) (IO) (NWTPH-G) (IO) (NWTPH-G) (IO) (TSS) (Bo) (Total Kiecanide) (Free Ganide) (F	6.19 6.19 6.19 6.19 6.19 R BOTTLE TONWTPH-Gx) -Dx) (TPH-FOD) (Turbid dahl Nitrogen) Cyanide) () (Cd) (Co)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 EYPE (Circle approximate) (BTEX) (BTEX) (CID) (8081) (8 (ity) (Alkalinity) (NH3) (NO3/N (Cr) (Cu) (Fe) (I	#DIV/0! #DIV/0! #Idicable or write not (HCO3/CO3) (CINO2) #DIV/0!	on-standard ana se) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 TYPICAL AI (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Mo	Cond. (uS/cm) 146.3 146.4 146.3 146.3 146.3 NALYSIS AL (NWTPH-Ictivity) (TDS (Total PO4 e) (WAD Cye (As) (Sb) (Ictals) (As) (Sb)	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PE WTPH-G) (I) (I) (TSS) (BC) (Total Kiecanide) (Free Canide) (Free Canide) (Free Canide) (Ba) (Be) (Canide) (Canide	6.19 6.19 6.19 6.19 6.19 R BOTTLE TONWTPH-Gx) -Dx) (TPH-FOD) (Turbid dahl Nitrogen) Cyanide) () (Cd) (Co)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 EYPE (Circle approximate) (BTEX) (BTEX) (CID) (8081) (8 (ity) (Alkalinity) (NH3) (NO3/N (Cr) (Cu) (Fe) (I	#DIV/0! #DIV/0! #Idicable or write not (HCO3/CO3) (CINO2) #DIV/0!	on-standard ana se) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 TYPICAL AI (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Mo	Cond. (uS/cm) 146.3 146.4 146.3 146.3 146.3 NALYSIS AL (b) (8020) (N (ctivity) (TDS) (C) (Total PO4 (e) (WAD Cya) (b) (AS) (Sb) (detals) (AS) (Sb) (g short list)	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PE WTPH-G) (I) (I) (TSS) (BC) (Total Kiecanide) (Free Canide) (Free Canide) (Free Canide) (Ba) (Be) (Canide) (Canide	6.19 6.19 6.19 6.19 6.19 R BOTTLE TONWTPH-Gx) -Dx) (TPH-FOD) (Turbid dahl Nitrogen) Cyanide) () (Cd) (Co)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 EYPE (Circle approximate) (BTEX) (BTEX) (CID) (8081) (8 (ity) (Alkalinity) (NH3) (NO3/N (Cr) (Cu) (Fe) (I	#DIV/0! #DIV/0! #Idicable or write not (HCO3/CO3) (CINO2) #DIV/0!	on-standard ana se) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 TYPICAL AI (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Mo	Cond. (uS/cm) 146.3 146.4 146.3 146.3 146.3 NALYSIS AL (b) (8020) (N (ctivity) (TDS) (C) (Total PO4 (e) (WAD Cya) (b) (AS) (Sb) (detals) (AS) (Sb) (g short list)	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PE WTPH-G) (I) (I) (TSS) (BC) (Total Kiecanide) (Free Canide) (Free Canide) (Free Canide) (Ba) (Be) (Canide) (Canide	6.19 6.19 6.19 6.19 6.19 R BOTTLE TONWTPH-Gx) -Dx) (TPH-FOD) (Turbid dahl Nitrogen) Cyanide) () (Cd) (Co)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 EYPE (Circle approximate) (BTEX) (BTEX) (CID) (8081) (8 (ity) (Alkalinity) (NH3) (NO3/N (Cr) (Cu) (Fe) (I	#DIV/0! #DIV/0! #Idicable or write not (HCO3/CO3) (CINO2) #DIV/0!	on-standard ana se) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 TYPICAL AI (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Mo	Cond. (uS/cm) 146.3 146.4 146.3 146.3 146.3 NALYSIS AL (b) (8020) (N (ctivity) (TDS) (C) (Total PO4 (e) (WAD Cya) (b) (AS) (Sb) (detals) (AS) (Sb) (g short list)	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PE WTPH-G) (I) (I) (TSS) (BC) (Total Kiecanide) (Free Canide) (Free Canide) (Free Canide) (Ba) (Be) (Canide) (Canide	6.19 6.19 6.19 6.19 6.19 R BOTTLE TONWTPH-Gx) -Dx) (TPH-FOD) (Turbid dahl Nitrogen) Cyanide) () (Cd) (Co)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 EYPE (Circle approximate) (BTEX) (BTEX) (CID) (8081) (8 (ity) (Alkalinity) (NH3) (NO3/N (Cr) (Cu) (Fe) (I	#DIV/0! #DIV/0! #Idicable or write not (HCO3/CO3) (CINO2) #DIV/0!	on-standard ana se) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 TYPICAL AI (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Methane Eth others	Cond. (uS/cm) 146.3 146.4 146.3 146.3 146.3 NALYSIS AL (b) (8020) (N (ctivity) (TDS) (C) (Total PO4 (e) (WAD Cya) (b) (AS) (Sb) (detals) (AS) (Sb) (g short list)	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PE WTPH-G) (I) (I) (TSS) (BC) (Total Kiecanide) (Free Canide) (Free Canide) (Free Canide) (Ba) (Be) (Canide) (Canide	6.19 6.19 6.19 6.19 6.19 R BOTTLE TONWTPH-Gx) -Dx) (TPH-FOD) (Turbid dahl Nitrogen) Cyanide) () (Cd) (Co)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 EYPE (Circle approximate) (BTEX) (BTEX) (CID) (8081) (8 (ity) (Alkalinity) (NH3) (NO3/N (Cr) (Cu) (Fe) (I	#DIV/0! #DIV/0! #Idicable or write not (HCO3/CO3) (CINO2) #DIV/0!	on-standard ana se) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 2 Duplicate San	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 TYPICAL AI (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOC (Total Cyanid (Total Metals) (Dissolved Methane Eth others	Cond. (uS/cm) 146.3 146.4 146.3 146.3 146.3 NALYSIS AL (b) (8020) (N (ctivity) (TDS) (C) (Total PO4 (e) (WAD Cya) (b) (AS) (Sb) (detals) (AS) (Sb) (g short list)	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PE WTPH-G) (I) (I) (TSS) (BC) (Total Kiecanide) (Free Canide) (Free Canide) (Free Canide) (Ba) (Be) (Canide) (Canide	6.19 6.19 6.19 6.19 6.19 R BOTTLE TONWTPH-Gx) -Dx) (TPH-FOD) (Turbid dahl Nitrogen) Cyanide) () (Cd) (Co)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 EYPE (Circle approximate) (BTEX) (BTEX) (CID) (8081) (8 (ity) (Alkalinity) (NH3) (NO3/N (Cr) (Cu) (Fe) (I	#DIV/0! #DIV/0! #Idicable or write not (HCO3/CO3) (CINO2) #DIV/0!	on-standard ana se) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 2 Duplicate San Comments:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 TYPICAL AI (8260) (8010 (8270) (PAH (pH) (Condu (COD) (Total Cyanid (Total Metals) (Dissolved Mo VOC (Boein Methane Eth others	Cond. (uS/cm) 146.3 146.4 146.3 146.3 146.3 NALYSIS AL (b) (8020) (N (ctivity) (TDS) (C) (Total PO4 (e) (WAD Cya) (b) (AS) (Sb) (detals) (AS) (Sb) (g short list)	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PE WTPH-G) (I) (I) (TSS) (BC) (Total Kiecanide) (Free Ba) (Be) (Ca) (Ba) (Be) (Ca)	6.19 6.19 6.19 6.19 6.19 R BOTTLE TONWTPH-Gx) -Dx) (TPH-FOD) (Turbid dahl Nitrogen) Cyanide) () (Cd) (Co)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 EYPE (Circle approximate) (BTEX) (BTEX) (CID) (8081) (8 (ity) (Alkalinity) (NH3) (NO3/N (Cr) (Cu) (Fe) (I	#DIV/0! #DIV/0! #Idicable or write not (HCO3/CO3) (CI (HCO3/CO3) (CI (HCO3/CO3)) (CI (HCO3/CO3)) (Mg) (Mg) (Mg) (Mg) (Mg) (Mg) (Mg) (M	on-standard ana se)) (SO4) (NO3 (i) (Ag) (Se) (Tl) (V)	(Fe II) alysis below) WA WA (NO2) (F)	Observations OR □ OR □ OR □
Replicate 1 2 3 4 Average: QUANTITY 2 Duplicate San Comments: Signature:	Temp (°F/°C) 19.0 19.0 19.0 19.0 19.0 TYPICAL AI (8260) (8010 (8270) (PAH (pH) (Condu (COD) (Total Cyanid (Total Metals) (Dissolved Mo VOC (Boein Methane Eth others mple No(s):	Cond. (uS/cm) 146.3 146.4 146.3 146.3 146.3 146.3 NALYSIS AL 1) (8020) (NI) (NWTPH-Ictivity) (TDS C) (Total PO4 e) (WAD Cya) o) (As) (Sb) (I) etals) (As) (Sb g short list) ane Ethene Ac	D.O. (mg/L) 1.10 1.06 1.16 1.11 1.11 LOWED PE WTPH-G) (I D) (NWTPH G) (TSS) (Be anide) (Free e Ba) (Be) (Ca) (Ba) (Be) (C etylene	6.19 6.19 6.19 6.19 6.19 R BOTTLE To NWTPH-Gx) -Dx) (TPH-HOD) (Turbid dahl Nitrogen) Cyanide) (Cd) (Co) (a) (Cd) (Co)	ORP (mV) 11.8 11.7 11.5 11.6 11.7 TYPE (Circle approximately (BTEX) HCID) (8081) (8 ity) (Alkalinity) (NH3) (NO3/N (Cr) (Cu) (Fe) (If (Cr) (Cu) (Fe) (Pb)	#DIV/0! #DIV/0! #Idicable or write not (HCO3/CO3) (CINO2) #DIV/0!	on-standard ana se) (SO4) (NO3	(Fe II) alysis below) WA WA (NO2) (F) (I) (V) (Zn) (Hg) (Zn) (Hg) (K) (No	Observations OR □ OR □ OR □

Event May-19	Project Nam	ne:	Boeing Ren	iton		Project Number	er:	0025217.099.0	99	
Landau Representative RIC	•					•		940		
Water Note	Sample Nun	nber:		190507		Weather:	CLEAR			
Well Confidence Secure (YFS) Damaged (N) Describe Fine-thousant DTW Before Purging (ft) 8.89 Time 906 Flow through cell vol. Flow Purging Date Time 905 Total Purging Purging Date Time 905 Total Purging Purging Purging Date Time 905 Total Purging Pu	Landau Rep	resentative:	RJC							
Well Confidence Secure (YFS) Damaged (N) Describe Fine-thousant DTW Before Purging (ft) 8.89 Time 906 Flow through cell vol. Flow Purging Date Time 905 Total Purging Purging Date Time 905 Total Purging Purging Purging Date Time 905 Total Purging Pu	WATER LEV	VEL/WELL/PI	URGE DATA							
Begin Purges Date-Time Color C)	Damaged (N	(O)	Describe:	Flush Mount		
Begin Purges Date-Time Color C	DTW Before	Purging (ft)	8.89	Time:	906	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Time	Begin Purge:	Date/Time:	05/ 07 /201	906	End Purge:	Date/Time:	05/ 07 /2019 @	927	Gallons Purged:	0.25
Time	Purge water of	lisposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATMI	ENT SYSTEM
Time		Temp	Cond.	D.O.	nН	ORP	Turbidity	DTW	Internal Purge	Comments/
SAMPLE COLLECTION DATA Stainless Steel PVC Tenflon Polyethylene Other Dedicated	Time	(° F /° C)	(uS/cm)	(mg/L)	-	(mV)	(NTU)	(ft)	Volume (gal)	0 0
910 13.9 201.7 0.45 5.94 31.9 913 13.8 196.2 0.46 5.88 28.3 9.1 914.1 196.7 0.46 5.89 22.8 8.95 919 14.1 197.3 0.47 6.04 8.2 922 14.1 197.3 0.47 6.04 8.2 925 14.2 196.7 0.47 6.03 6.4 Sample Collected With:								~		
913 13.8 196.2 0.46 5.88 28.3 9.1 916 13.9 185.7 0.46 5.89 22.8 8.95 919 14.1 196.7 0.46 5.89 22.8 8.95 922 14.1 197.3 0.47 6.04 8.2 925 14.2 196.7 0.47 6.03 6.4 8.2 925 14.2 196.7 0.47 6.03 6.4 8.2 Pample Collected With: Bailer PVC Deployed Deployed Other Deployed D	910						17 2070	V 010 IV	tiii ougii ceii	
916 13.9 185.7 0.46 5.89 22.8 8.95 919 14.1 196.7 0.46 5.99 13.6 922 14.1 197.3 0.47 6.04 8.2 925 14.2 196.7 0.47 6.03 6.4 SAMPLE COLLECTION DATA Sample Collected With:						`		0.1		
919 14.1 1967; 0.46 5.99 13.6 922 14.1 1973; 0.47 6.04 8.2 925 14.2 1967; 0.47 6.03 6.4 SAMPLE COLLECTION DATA Sample Collected With:							-			
SAMPLE COLLECTION DATA Sample Collected With: Bailer Pump/Pump Type DED BLADDER Dedicated						•		8.95		
SAMPLE COLLECTION DATA Sample Collected With: Bailer PVC Teflon Polyethylene Other Dedicated			196.7	0.46	5.99			-		
SAMPLE COLLECTION DATA	922	14.1	197.3	0.47	6.04	8.2				
Sample Collected With: Bailer Pump/Pump Type DED BLADDER Dedicated Decon Procedure: Alconox Wash Tap Rinse DI Water Dedicated	925	14.2	196.7	0.47	6.03	6.4				
Sample Collected With: Bailer Pump/Pump Type DED BLADDER Dedicated Decon Procedure: Alconox Wash Tap Rinse DI Water Dedicated										
Sample Collected With: Bailer Pump/Pump Type DED BLADDER Dedicated Decon Procedure: Alconox Wash Tap Rinse DI Water Dedicated										
Made of: Stainless Steel PVC Teflon Polyethylene Other Dedicated Decon Procedure: Alconox Wash Tap Rinse DI Water Dedicated Complex Description (color, turbidity, odor, sheen, etc.): Turbid Resource Color, turbidity DD Water Dedicated Replicate Temp Cond. D.O. pH ORP Turbidity DTW Ferrous iron Comments/Observations 1 42 196.7 0.45 6.02 6.4 6.02 6.4 9 4 14.2 196.7 0.45 6.03 5.9 4 14.2 196.6 0.45 6.03 5.5 5.9 4 14.2 196.6 0.45 6.03 5.5 5.9 #DIV/0! WA OR OR <td></td> <td></td> <td>DATA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			DATA							
Decon Procedure: Alconox Wash Tap Rinse DI Water Dedicated	=	cted With:							_	
Sample Description (color, turbidity, odor, sheen, etc.): TURBID DARK BROWN COLOR NO ODOR NO SHEEN	Made of:					-		U Other	Dedicated	
Replicate Temp (Color, turbidity, odor, sheen, etc.): TURBID DARK BROWN COLOR NO ODOR NO SHEEN				sh 🔲	Tap Rinse	DI Water	Dedicated			
Replicate Temp (Cond. (ng/L) (ng/L) PH (nv) (nv) (NTU) (ft) Ferrous iron (Fe II) Observations	` -	,	_		munnun n					
CFFC US/cm (mg/L) (mV) (NTU) (ft) (Fe II) Observations	Sample Descri	ription (color, t	turbidity, odor	, sheen, etc.):	TURBID DA	ARK BROWN CO	DLOR NO ODOR I	NO SHEEN		
2 14.2 196.7 0.46 6.03 5.9 3 14.2 196.6 0.45 6.02 5.9 4 14.2 196.6 0.45 6.03 5.5 Average: 14.2 196.7 0.45 6.03 5.9 #DIV/0! QUANTITY TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) (8260) (8010) (8020) (NWTPH-G) (NWTPH-Gx) (BTEX) WA □ OR □ 2 (8270) (PAH) (NWTPH-D) (NWTPH-Dx) (TPH-HCID) (8081) (8141) (Oil & Grease) WA □ OR □ (pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (Cl) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Keidahl Nitrogen) (NH3) (NO3/NO2) (Total Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Dissolved Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silic VOC (Boeing short list) Methane Ethane Ethene Acetylene Duplicate Sample No(s): Comments:	Replicate	-			pН		•			
3 14.2 196.7 0.45 6.02 5.9 4 14.2 196.6 0.45 6.03 5.5 Average: 14.2 196.7 0.45 6.03 5.9 #DIV/0! QUANTITY TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) (8260) (8010) (8020) (NWTPH-G) (NWTPH-G) (BTEX) (8270) (PAH) (NWTPH-D) (NWTPH-D) (TPH-HCID) (8081) (8141) (Oil & Grease) WA □ OR □ (PH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (Cl) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Dissolved Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silic VOC (Boeing short list) Methane Ethane Ethene Acetylene Duplicate Sample No(s): Comments:	1	14.2	196.7	0.45	6.02	6.4				
4 14.2 196.6 0.45 6.03 5.5 Average: 14.2 196.7 0.45 6.03 5.9 #DIV/0! QUANTITY TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) (8260) (8010) (8020) (NWTPH-G) (NWTPH-GN) (BTEX) WA □ OR □ 2 (8270) (PAH) (NWTPH-D) (NWTPH-DN) (TPH-HCID) (8081) (8141) (0il & Grease) WA □ OR □ (pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (Cl) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Dissolved Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silic VOC (Boeing short list) Methane Ethane Ethene Acetylene Duplicate Sample No(s): Comments:	2	14.2	196.7	0.46	6.03	5.9				
4 14.2 196.6 0.45 6.03 5.5 Average: 14.2 196.7 0.45 6.03 5.9 #DIV/0! QUANTITY TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) (8260) (8010) (8020) (NWTPH-G) (NWTPH-GN) (BTEX) WA □ OR □ 2 (8270) (PAH) (NWTPH-D) (NWTPH-DN) (TPH-HCID) (8081) (8141) (0il & Grease) WA □ OR □ (pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (Cl) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Dissolved Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silic VOC (Boeing short list) Methane Ethane Ethene Acetylene Duplicate Sample No(s): Comments:	3	14.2	196.7	0.45	6.02	5.9				
Average: 14.2 196.7 0.45 6.03 5.9 #DIV/0! QUANTITY TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) (8260) (8010) (8020) (NWTPH-G) (NWTPH-Gx) (BTEX) WA OR	4		196.6			5.5				
QUANTITY TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) (8260) (8010) (8020) (NWTPH-G) (NWTPH-Gx) (BTEX) WA OR OR (8270) (PAH) (NWTPH-Dx) (TPH-HCID) (8081) (8141) (Oil & Grease) WA OR OR (9H) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (Cl) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Dissolved Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silic VOC (Boeing short list) Methane Ethane Ethene Acetylene Duplicate Sample No(s): Comments:	Average:				6.03		#DIV/0!			
(8260) (8010) (8020) (NWTPH-G) (NWTPH-Gx) (BTEX) WA □ OR □ 2 (8270) (PAH) (NWTPH-D) (NWTPH-Dx) (TPH-HCID) (8081) (8141) (Oil & Grease) WA □ OR □ (pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (Cl) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Dissolved Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silic VOC (Boeing short list) Methane Ethane Ethene Acetylene Others										
2 (8270) (PAH) (NWTPH-D) (NWTPH-Dx) (TPH-HCID) (8081) (8141) (Oil & Grease) WA OR OR (PH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (Cl) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Dissolved Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silic VOC (Boeing short list) (Methane Ethane Ethane Acetylene (Others) (Silic Sample No(s)) (Comments:	QUANTITY						pplicable or write	non-standard ai		OP \square
(pH) (Conductivity) (TDS) (TSS) (BOD) (Turbidity) (Alkalinity) (HCO3/CO3) (Cl) (SO4) (NO3) (NO2) (F) (COD) (TOC) (Total PO4) (Total Kiedahl Nitrogen) (NH3) (NO3/NO2) (Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Dissolved Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silic VOC (Boeing short list) Methane Ethane Ethene Acetylene others Duplicate Sample No(s): Comments:	2						(8141) (Oil & Gre	ase)		
(Total Cyanide) (WAD Cyanide) (Free Cyanide) (Total Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Dissolved Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silical Voc (Boeing short list) Methane Ethane Ethene Acetylene others Duplicate Sample No(s): Comments:										
(Total Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Dissolved Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silic VOC (Boeing short list) Methane Ethane Ethene Acetylene others Duplicate Sample No(s): Comments:		(COD) (TO	C) (Total PO	4) (Total Kie	dahl Nitroger	n) (NH3) (NO3	/NO2)			
(Dissolved Metals) (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na) (Hardness) (Silice VOC (Boeing short list) Methane Ethane Ethane Acetylene others Duplicate Sample No(s): Comments:		1	-							
VOC (Boeing short list) Methane Ethane Ethene Acetylene others Duplicate Sample No(s): Comments:										
Methane Ethane Ethene Acetylene others Duplicate Sample No(s): Comments:				o) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (N	la) (Hardness) (Silic
others Duplicate Sample No(s): Comments:				cetylene						
Duplicate Sample No(s): Comments:		1.12thane Ett		- 50, 10110						
Duplicate Sample No(s): Comments:										
Comments:		others								
Comments:	Dualicate C									
	_	mpie Mo(s):								
	Signature:	RJC					Date:	5/7/2019		

Project Nam	e:	Boeing Ren	ton		Project Numbe	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	1011		
Sample Num	nber:	RGW212S-	190507		Weather:	CLEAR			
Landau Repr	resentative:	RJC							
WATER LEV	'EL/WELL/PU	URGE DATA							
Well Condition	n:	Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	10.38	Time:		Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 07 /2019	941	End Purge:	Date/Time:	05/ 07 /2019 @	1002	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	tors for three	(mV)	(NTU) dings within the fo	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%		+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
942	14.0	224.5	0.50	5.34	68.1				
945	14.3	231.4	0.50	5.40	65.0		10.71		
948	15.9	238.3	0.51	5.53	56.7		10.58		
951	17.1	248.0	0.58	5.67	50.8	-			
954	17.5	251.6	0.64	5.66	51.6	-			
957	17.7	253.7	0.70	5.67	52.0				
					-				
1000	17.9	255.7	0.78	5.66	52.9		-		
SAMPLE CO	LIECTION	ΔΤΔ			<u> </u>	<u> </u>	_		
Sample Collect			Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other					ı		
Sample Descr	iption (color, t	urbidity, odor,	sheen, etc.):	CLEAR CO	LORLESS NO O	DOR NO SHEEN			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	17.9	256.0	0.81	5.66	53.3				
2	18.0	256.4	0.84	5.66	53.3				
3	18.0	256.7	0.85	5.66	53.6		-		
4	18.0	257.3	0.86	5.66	53.6	-	-		
Average:	18.0	256.6	0.84	5.66	53.5	#DIV/0!	-		
QUANTITY						oplicable or write	non-standard aı	nalysis below) WA	OR 🗆
2		0) (8020) (N H) (NWTPH-				(8141) (Oil & Gre	ase)	WA 🗆	OR 🗆
_						(HCO3/CO3) (C			
	(COD) (TO	C) (Total PO	4) (Total Kie	dahl Nitroger) (NH3) (NO3.	/NO2)			
		le) (WAD Cy							
						(Pb) (Mg) (Mn) (I			
	VOC (Boein) (Ba) (Be) (C	(Ca) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (N1) (Ag) (Se) (11) (V) (Zn) (Hg) (K) (N	Na) (Hardness) (Silica
		ane Ethene Ac	etylene						
	-		•						
	others								
Duplicate San Comments:	nple No(s):								
Signature:	RJC					Date:	5/7/2019		

Project Name	e:	Boeing Ren	ton		Project Number	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/6 /2019@ 1			
Sample Num	ber:	RGW221S-	190506		Weather:	SUNNY, WARM	1		
Landau Repr	esentative:	BXM			•				
WATER LEV	EL/WELL/PU	IRGE DATA							
Well Conditio		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before l	Purging (ft)	10.06	Time:	1258	Flow through cel	l_vol.		GW Meter No.(s	1-HERON
Begin Purge:	Date/Time:	05/6 /2019	@ 1301	End Purge:	Date/Time:	05/6 /2019 @ 13	321	Gallons Purged:	< 1
Purge water di	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATMI	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	- 4 6 41	(mV)	(NTU)	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units	+/- 10 mV	dings within the fol +/- 10%	< 0.3 ft	through cell	
1304	19.3	217.9	1.88	5.94	49.2		10.07		
1307	20.5	248.4	1.55	6.00	45.4		10.06		
1310	21.8	268.2	1.17	6.03	31.6		10.06		
1313	21.5	260.1	0.93	6.04	26.8		10.00		
1316	20.7	247.2	0.60	6.03	20.7			-	
1319	20.6	243.2	0.50	6.02	17.7				
1319	20.0	243.2	0.30	0.02	17.7				
			-						
SAMPLE CO	LI ECTION D	ΔΤΔ			<u> </u>				
Sample Collect			Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Ste	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other							
Sample Descri	iption (color, t	urbidity, odor,	sheen, etc.):	CLEAR, CO	LORELESS, NO	SHEEN			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	20.6	242.2	0.50	6.02	16.9				
2	20.5	242.2	0.48	6.62	16.7				
3	20.5	242.0	0.46	6.02	16.6				
4	20.5	240.9	0.48	6.02	16.1				
Average:	20.5	241.8	0.48	6.17	16.6	#DIV/0!			
QUANTITY		NALYSIS AL (1) (8020) (N				olicable or write no	n-standard ana	WA \square	OR 🗆
2						8141) (Oil & Grea	se)	WA 🗆	OR 🗆
						(HCO3/CO3) (Cl) (NO2) (F)	
	(COD) (TOO				(NH3) (NO3/I	NO2)			
		e) (WAD Cy			(C) (C) (F) ('\	W (7) (1)	(IZ) (N.)
						Pb) (Mg) (Mn) (N			a) (Hardness) (Silica)
	VOC (Boein		() (Ba) (Bc) (C	<i>(a)</i> (<i>cu)</i> (<i>co)</i>	(C1) (Cu) (1 c) (1 u) (IVIg) (IVIII) (IVI) (I	ig) (SC) (11) (V)	(Zii) (Tig) (IX) (TX	i) (Hardiess) (Silica)
		ane Ethene Ac	etylene						
	a								
	others								
Duplicate San Comments:	nple No(s):								
Signature:	BXM					Date:	5/6/2019		

Project Nam	e <u>:</u>	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	1221		
Sample Num	nber:	RGW224S-	190507		Weather:	CLEAR			
Landau Repr	resentative:	RJC			•				
WATER LEV	/FI /WFI I /PI	IRGE DATA							
Well Conditio		Secure (YES))	Damaged (N	(O)	Describe:	Flush Mount		
DTW Before		10.49	Time:	_	Flow through ce		Tradit Mount	GW Meter No.(s	HERON3
Begin Purge:				End Purge:	_	05/ 07 /2019 @	1208	Gallons Purged:	
Purge water d			55-gal Drum	Ť	Storage Tank	Ground		SITE TREATM	
range water a	_	_	_		_	_			
Time	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Internal Purge Volume (gal)	Comments/ Observations
Time				ters for three		dings within the fo		>/= 1 flow	Obsci vations
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
1151	14.5	182.5	0.48	5.68	65.1				
1154	16.7	189.2	0.40	5.67	59.2		10.6		SLOWED PUMP
1157	18.1	193.9	0.42	5.91	36.6		10.53		
					•				
1200	19.3	198.5	0.40	6.05	21.5		10.5		
1203	19.4	199.1	0.40	6.05	20.5		· 		
1206	19.6	200.0	0.40	6.06	16.9				
SAMPLE CO	LLECTION D	OATA							
Sample Collec	cted With:		Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee	ıl 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	h 🔲	Tap Rinse	DI Water	Dedicated			
(D. M	101)				_				
(By Numerica	l Order)	Other					ı		
, ,	,		sheen, etc.):	CLEAR CO	LORLESS NO O	DOR NO SHEEN			
Sample Descr	iption (color, t	urbidity, odor,							
, ,	iption (color, t	urbidity, odor,	D.O.	CLEAR CO	ORP	Turbidity	DTW (ft)	Ferrous iron (Fe II)	Comments/
Sample Descr Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)		DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
Sample Descr Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	рН 6.05	ORP (mV)	Turbidity			
Sample Descr Replicate	Temp (°F/°C)	Cond. (uS/cm) 200.1	D.O. (mg/L) 0.40	pH 6.05 6.04	ORP (mV) 16.1	Turbidity			
Sample Descr Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	рН 6.05	ORP (mV)	Turbidity			
Sample Descr Replicate 1 2	Temp (°F/°C) 19.6	Cond. (uS/cm) 200.1	D.O. (mg/L) 0.40	pH 6.05 6.04	ORP (mV) 16.1	Turbidity			
Sample Descr Replicate 1 2 3	Temp (°F/°C) 19.6 19.7	Cond. (uS/cm) 200.1 200.2	D.O. (mg/L) 0.40 0.40	pH 6.05 6.04 6.04	ORP (mV) 16.1 15.7	Turbidity			
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7	Cond. (uS/cm) 200.1 200.1 200.2 200.3	D.O. (mg/L) 0.40 0.40 0.41 0.41	6.05 6.04 6.04 6.04	ORP (mV) 16.1 15.7 15.0 15.0	Turbidity (NTU) #DIV/0!	(ft)	(Fe II)	
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7	Cond. (uS/cm) 200.1 200.2 200.3 NALYSIS AI	D.O. (mg/L) 0.40 0.41 0.41 0.41	6.05 6.04 6.04 6.04 6.04	ORP (mV) 16.1 15.7 15.0 15.0 15.5 TYPE (Circle a)	Turbidity (NTU)	(ft)	(Fe II)	Observations
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010	Cond. (uS/cm) 200.1 200.2 200.3 200.2 NALYSIS AL 0) (8020) (N	D.O. (mg/L) 0.40 0.41 0.41 0.41 LOWED PE	6.05 6.04 6.04 6.04 6.04 CR BOTTLE	ORP (mV) 16.1 15.7 15.0 15.0 15.5 TYPE (Circle ap (BTEX)	#DIV/0!	(ft)	(Fe II)	
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010) (8270) (PAF	Cond. (uS/cm) 200.1 200.1 200.2 200.3 200.2 NALYSIS AI 0) (8020) (N	D.O. (mg/L) 0.40 0.41 0.41 0.41 LOWED PE WTPH-G) (ON (NWTPH)	6.05 6.04 6.04 6.04 6.04 ER BOTTLE NWTPH-Gx)	ORP (mV) 16.1 15.7 15.0 15.5 TYPE (Circle a) (BTEX) HCID) (8081)	Turbidity (NTU) #DIV/0!	non-standard an	(Fe II) malysis below) WA WA WA	Observations OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010 (8270) (PAH (pH) (Condu	Cond. (uS/cm) 200.1 200.1 200.2 200.3 200.2 NALYSIS AL 0) (8020) (N I) (NWTPH-Ictivity) (TDS	D.O. (mg/L) 0.40 0.41 0.41 0.41 LOWED PE WTPH-G) (CO) (NWTPH G) (TSS) (B	6.05 6.04 6.04 6.04 6.04 R BOTTLE NWTPH-Gx) -Dx) (TPH-OD) (Turbic	ORP (mV) 16.1 15.7 15.0 15.5 TYPE (Circle a) (BTEX) HCID) (8081)	#DIV/0! #DIV/0! pplicable or write: (8141) (Oil & Green (HCO3/CO3) (Oil & Control (HCO3/CO3))	non-standard an	(Fe II) malysis below) WA WA WA	Observations OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010 (8270) (PAH (pH) (Condu	Cond. (uS/cm) 200.1 200.1 200.2 200.3 200.2 NALYSIS AL 0) (8020) (N I) (NWTPH-Ictivity) (TDS	D.O. (mg/L) 0.40 0.41 0.41 0.41 LOWED PE WTPH-G) (CO) (NWTPH G) (TSS) (B	6.05 6.04 6.04 6.04 6.04 6.04 R BOTTLE NWTPH-Gx) -Dx) (TPH-OD) (Turbio dahl Nitrogen	ORP (mV) 16.1 15.7 15.0 15.5 TYPE (Circle ap (BTEX)) HCID) (8081) dity) (Alkalinity)	#DIV/0! #DIV/0! pplicable or write: (8141) (Oil & Green (HCO3/CO3) (Oil & Control (HCO3/CO3))	non-standard an	(Fe II) malysis below) WA WA WA	Observations OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (Total Cyanid (Total Metals)	Cond. (uS/cm) 200.1 200.2 200.3 200.2 NALYSIS AI 0) (8020) (NI) (NWTPH-lectivity) (TDS C) (Total PO4 e) (WAD Cy.) (As) (Sb) (1	D.O. (mg/L) 0.40 0.41 0.41 0.41 LOWED PE WTPH-G) (CO) (NWTPH G) (TSS) (Be) (Total Kieler anide) (Freel Ba) (Be) (Ca	6.05 6.04 6.04 6.04 6.04 6.04 CR BOTTLE NWTPH-Gx) CD) (Turbic dahl Nitroger Cyanide) (Cd) (Co)	ORP (mV) 16.1 15.7 15.0 15.5 TYPE (Circle a) (BTEX) HCID) (8081) dity) (Alkalinity) (NH3) (NO3)	#DIV/0! #DIV/0! pplicable or write in the interest of the in	non-standard an ase) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOG (Total Cyanid (Total Metals) (Dissolved Metals)	Cond. (uS/cm) 200.1 200.2 200.3 200.2 NALYSIS AI () (8020) (NI () (NWTPH-Ictivity) (TDS C) (Total PO4 e) (WAD Cy () (As) (Sb) (I etals) (As) (Sb) (Sb)	D.O. (mg/L) 0.40 0.41 0.41 0.41 LOWED PE WTPH-G) (CO) (NWTPH G) (TSS) (Be) (Total Kieler anide) (Freel Ba) (Be) (Ca	6.05 6.04 6.04 6.04 6.04 6.04 CR BOTTLE NWTPH-Gx) CD) (Turbic dahl Nitroger Cyanide) (Cd) (Co)	ORP (mV) 16.1 15.7 15.0 15.5 TYPE (Circle a) (BTEX) HCID) (8081) dity) (Alkalinity) (NH3) (NO3)	#DIV/0! #DIV/0! pplicable or write in the interest of the in	non-standard an ase) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (NO2) (F)	Observations OR □ OR □
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOd (Total Cyanid (Total Metals) (Dissolved Metals) (VOC (Boein	Cond. (uS/cm) 200.1 200.1 200.2 200.3 200.2 NALYSIS AL (NWTPH-Ictivity) (TDS (C) (Total PO4 e) (WAD Cy (AS) (Sb) (Setals) (As) (Sb g short list)	D.O. (mg/L) 0.40 0.41 0.41 0.41 0.41 LOWED PE WTPH-G) (CO) (NWTPH G) (TSS) (BE) (Total Kieler anide) (Free Ba) (Be) (Ca) (Ba) (Be) (Ca)	6.05 6.04 6.04 6.04 6.04 6.04 CR BOTTLE NWTPH-Gx) CD) (Turbic dahl Nitroger Cyanide) (Cd) (Co)	ORP (mV) 16.1 15.7 15.0 15.5 TYPE (Circle a) (BTEX) HCID) (8081) dity) (Alkalinity) (NH3) (NO3)	#DIV/0! #DIV/0! pplicable or write in the interest of the in	non-standard an ase) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOd (Total Cyanid (Total Metals) (Dissolved Metals) (VOC (Boein	Cond. (uS/cm) 200.1 200.2 200.3 200.2 NALYSIS AI () (8020) (NI () (NWTPH-Ictivity) (TDS C) (Total PO4 e) (WAD Cy () (As) (Sb) (I etals) (As) (Sb) (Sb)	D.O. (mg/L) 0.40 0.41 0.41 0.41 0.41 LOWED PE WTPH-G) (CO) (NWTPH G) (TSS) (BE) (Total Kieler anide) (Free Ba) (Be) (Ca) (Ba) (Be) (Ca)	6.05 6.04 6.04 6.04 6.04 6.04 CR BOTTLE NWTPH-Gx) CD) (Turbic dahl Nitroger Cyanide) (Cd) (Co)	ORP (mV) 16.1 15.7 15.0 15.5 TYPE (Circle a) (BTEX) HCID) (8081) dity) (Alkalinity) (NH3) (NO3)	#DIV/0! #DIV/0! pplicable or write in the interest of the in	non-standard an ase) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOd (Total Cyanid (Total Metals) (Dissolved Metals) (VOC (Boein	Cond. (uS/cm) 200.1 200.1 200.2 200.3 200.2 NALYSIS AL (NWTPH-Ictivity) (TDS (C) (Total PO4 e) (WAD Cy (AS) (Sb) (Setals) (As) (Sb g short list)	D.O. (mg/L) 0.40 0.41 0.41 0.41 0.41 LOWED PE WTPH-G) (CO) (NWTPH G) (TSS) (BE) (Total Kieler anide) (Free Ba) (Be) (Ca) (Ba) (Be) (Ca)	6.05 6.04 6.04 6.04 6.04 6.04 CR BOTTLE NWTPH-Gx) CD) (Turbic dahl Nitroger Cyanide) (Cd) (Co)	ORP (mV) 16.1 15.7 15.0 15.5 TYPE (Circle a) (BTEX) HCID) (8081) dity) (Alkalinity) (NH3) (NO3)	#DIV/0! #DIV/0! pplicable or write in the interest of the in	non-standard an ase) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010 (8270) (PAH (pH) (Condu (COD) (Total Cyanid (Total Metals) (Dissolved Methane Eth	Cond. (uS/cm) 200.1 200.1 200.2 200.3 200.2 NALYSIS AL (NWTPH-Ictivity) (TDS (C) (Total PO4 e) (WAD Cy (AS) (Sb) (Setals) (As) (Sb g short list)	D.O. (mg/L) 0.40 0.41 0.41 0.41 0.41 LOWED PE WTPH-G) (CO) (NWTPH G) (TSS) (BE) (Total Kieler anide) (Free Ba) (Be) (Ca) (Ba) (Be) (Ca)	6.05 6.04 6.04 6.04 6.04 6.04 CR BOTTLE NWTPH-Gx) CD) (Turbic dahl Nitroger Cyanide) (Cd) (Co)	ORP (mV) 16.1 15.7 15.0 15.5 TYPE (Circle a) (BTEX) HCID) (8081) dity) (Alkalinity) (NH3) (NO3)	#DIV/0! #DIV/0! pplicable or write in the interest of the in	non-standard an ase) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010 (8270) (PAH (pH) (Condu (COD) (TOd (Total Cyanid (Total Metals) (Dissolved Metals) (VOC (Boein	Cond. (uS/cm) 200.1 200.1 200.2 200.3 200.2 NALYSIS AL (NWTPH-Ictivity) (TDS (C) (Total PO4 e) (WAD Cy (AS) (Sb) (Setals) (As) (Sb g short list)	D.O. (mg/L) 0.40 0.41 0.41 0.41 0.41 LOWED PE WTPH-G) (CO) (NWTPH G) (TSS) (BE) (Total Kieler anide) (Free Ba) (Be) (Ca) (Ba) (Be) (Ca)	6.05 6.04 6.04 6.04 6.04 6.04 CR BOTTLE NWTPH-Gx) CD) (Turbic dahl Nitroger Cyanide) (Cd) (Co)	ORP (mV) 16.1 15.7 15.0 15.5 TYPE (Circle a) (BTEX) HCID) (8081) dity) (Alkalinity) (NH3) (NO3)	#DIV/0! #DIV/0! pplicable or write in the interest of the in	non-standard an ase) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (Total Cyanid (Total Metals) (Dissolved Methane Ether) others	Cond. (uS/cm) 200.1 200.1 200.2 200.3 200.2 NALYSIS AL (NWTPH-Ictivity) (TDS (C) (Total PO4 e) (WAD Cy (AS) (Sb) (Setals) (As) (Sb g short list)	D.O. (mg/L) 0.40 0.41 0.41 0.41 0.41 LOWED PE WTPH-G) (CO) (NWTPH-G) (TSS) (BE) (TSS) (BE) (Calanide) (Free Ba) (Be) (Calanide) (Expense) (Ba) (Ba) (Be) (Calanide) (Calanide) (Expense) (Expe	pH 6.05 6.04 6.04 6.04 6.04 ER BOTTLE NWTPH-Gx) (-Dx) (TPH-OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co) Ca) (Cd) (Co)	ORP (mV) 16.1 15.7 15.0 15.5 TYPE (Circle a) (BTEX) HCID) (8081) dity) (Alkalinity) (NH3) (NO3)	#DIV/0! #DIV/0! pplicable or write in the interest of the in	non-standard an ase) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 2	Temp (°F/°C) 19.6 19.7 19.7 19.7 19.7 TYPICAL A (8260) (8010 (8270) (PAF (pH) (Condu (COD) (Total Cyanid (Total Metals) (Dissolved Methane Ether) others	Cond. (uS/cm) 200.1 200.1 200.2 200.3 200.2 NALYSIS AI () (8020) (NI) (NWTPH-lectivity) (TDS C) (Total PO4 e) (WAD Cyell) (As) (Sb) (Jetals) (As) (Sb g short list) ane Ethene Acceptable (Line Control of the Con	D.O. (mg/L) 0.40 0.41 0.41 0.41 0.41 LOWED PE WTPH-G) (CO) (NWTPH-G) (TSS) (BE) (TSS) (BE) (Calanide) (Free Ba) (Be) (Calanide) (Expense) (Ba) (Ba) (Be) (Calanide) (Calanide) (Expense) (Expe	pH 6.05 6.04 6.04 6.04 6.04 ER BOTTLE NWTPH-Gx) (-Dx) (TPH-OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co) Ca) (Cd) (Co)	ORP (mV) 16.1 15.7 15.0 15.5 TYPE (Circle a) (BTEX) HCID) (8081) dity) (Alkalinity) (NH3) (NO3)	#DIV/0! #DIV/0! pplicable or write in the interest of the in	non-standard an ase) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR

Project Nam	e:	Boeing Ren	ton		Project Number	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	1152		
Sample Num	ıber:	RGW255S-	190507		Weather:	CLEAR			
Landau Repr	resentative:	RJC							
WATER LEV	EL/WELL/PI	URGE DATA							
Well Conditio	n:	Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	10.02	Time:	1122	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 07 /2019	1122	End Purge:	Date/Time:	05/ 07 /2019 @	1142	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	tors for three	(mV)	(NTU) dings within the fo	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%		+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
1122	13.7	187.2	0.43	5.82	72.1				
1125	14.8	192.7	0.37	5.79	71.6		10.15		REDUCED
1128	15.3	194.5	0.35	5.96	54.4		10.1		DISCHARGE RATE
1131	17.1	204.6	0.34	6.13	36.8		10.1		
1134	17.4	207.0	0.33	6.14	35.2				
1137	18.1	215.0	0.35	6.21	25.0			-	
1140	18.3	217.8	0.35	6.23	23.3		-		
SAMPLE CO	LIECTION)ATA							
Sample Collect			Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🗖	Tap Rinse	DI Water	Dedicated	_	_	
(By Numerica	l Order)	Other		-		_			
Sample Descr	iption (color, t	turbidity, odor,	sheen, etc.):	CLEAR CO	LORLESS NO/N	S			
Replicate	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
	(° F /° C)	(uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	(Fe II)	Observations
1	18.3	218.4	0.34	6.23	22.9				
2	18.4	220.6	0.34	6.22	22.6				
3	18.5	220.1	0.34	6.23	22.2				
4	18.5	219.9	0.34	6.23	21.7				-
Average:	18.4	219.8	0.34	6.23	22.4	#DIV/0!			
QUANTITY	TYPICAL A	NALYSIS AI	LOWED PE	R BOTTLE	TYPE (Circle a	pplicable or write	non-standard aı	nalvsis below)	
Q 0 1 2 1 2 2 2		0) (8020) (N						WA □	OR 🗆
2	(8270) (PAH	H) (NWTPH-	D) (NWTPH	I-Dx) (TPH-	HCID) (8081)	(8141) (Oil & Gre	ase)	WA □	OR □
						(HCO3/CO3) (C	Cl) (SO4) (NO	3) (NO2) (F)	
					i) (NH3) (NO3	/NO2)			
		le) (WAD Cy			(Cr) (Cu) (Fo)	(Pb) (Mg) (Mn) (I	Ni) (Ag) (Sg) (F1) (V) (7 n) (U)	r) (K) (No)
									Na) (Hardness) (Silica
	VOC (Boein) (Bu) (Bc) (C	ou) (eu) (eo)	(C1) (C4) (10) (1	o) (111g) (1111) (111) (11g) (50) (11) (1) (Zii) (11g) (11) (1	va) (Haraness) (Sine
		ane Ethene Ac	etylene						
	-41								
	others								
Duplicate San	nple No(s):								
Comments:									
Signature:	RJC					Date:	5/7/2019		

Project Nam	e:	Boeing Ren	ton		Project Number	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	1052		
Sample Num	ıber:	RGW256S-	190507		Weather:	CLEAR			
Landau Repr	resentative:	RJC							
WATER LEV	EL/WELL/PI	URGE DATA							
Well Conditio	n:	Secure (YES)	Damaged (N	(O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	8.6	Time:	1022	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 07 /2019	1022	End Purge:	Date/Time:	05/ 07 /2019 @	1042	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	tors for three	(mV)	(NTU) dings within the fo	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%		+/- 0.1 units		+/- 10%	< 0.3 ft	through cell	
1022	14.1	138.6	0.56	5.57	85.4				
1025	14.1	136.1	0.54	5.65	79.2		8.89		
1028	14.7	137.2	0.50	5.76	69.4		8.98		PERMIT
1031	16.3	142.3	0.49	6.02	47.4	-	8.95		REDUCED DISCHARGE
1034	17.2	145.7	0.49	6.09	40.0		0.73		DISCITINGE
1037	17.9	148.2	0.48	6.15	35.3				
1040	18.2	149.5	0.47	6.17	32.2		-		
SAMPLE CO	LIECTION	<u> </u>							
Sample Collection			Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🗖	Tap Rinse	DI Water	Dedicated	_	_	
(By Numerica	l Order)	Other					,		
Sample Descr	iption (color, t	turbidity, odor,	sheen, etc.):	CLEAR CO	LORLESS NO O	DOR NO SHEEN			
Replicate	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
	(°F/°C)	(uS/cm)	(mg/L)	P	(mV)	(NTU)	(ft)	(Fe II)	Observations
1	18.3	149.9	0.47	6.18	31.3				
2	18.4	150.4	0.47	6.19	31.0				
3	18.4	150.5	0.47	6.19	30.9				
4	18.5	150.9	0.47	6.20	30.8				
Average:	18.4	150.4	0.47	6.19	31.0	#DIV/0!			
QUANTITY		0) (8020) (N				oplicable or write	non-standard at	WA WA	OR 🗆
2						(8141) (Oil & Gre	ase)	WA □	OR 🗆
) (HCO3/CO3) (C		3) (NO2) (F)	
					n) (NH3) (NO3	/NO2)			
		le) (WAD Cy			(0) (0) (7)	(M) (A1) (A1) (AT'	m) (1) (7) (1)	\ (II) (AL)
						(Pb) (Mg) (Mn) (I			g) (K) (Na) Na) (Hardness) (Silica
	VOC (Boein) (Ба) (Бе) (С	<i>(Cu)</i> (Co)	(CI) (Cu) (Fe) (F	b) (lvig) (lviii) (lvi) ((Ag) (Se) (11) (V) (ZII) (Hg) (K) (F	va) (Hardiless) (Silica
		ane Ethene Ac	etylene						
	others								
Duplicate San	nple No(s):								
Comments:									
Signature:	RJC					Date:	5/7/2019	·	

Project Nam	e:	Boeing Ren	iton		Project Number	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	1125		
Sample Num	ıber:	RGW257S-	190507		Weather:	CLEAR			
Landau Repr	resentative:	RJC							
WATER LEV	'EL/WELL/PU	JRGE DATA							
Well Conditio	n:	Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	9.49	Time:	1055	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 07 /201	1054	End Purge:	Date/Time:	05/ 07 /2019 @	1056	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	- 4 6 41	(mV)	(NTU)	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%		ters for three +/- 0.1 units	+/- 10 mV	dings within the fo +/- 10%	< 0.3 ft	through cell	
1055	13.6	142.2	0.70	5.69	85.8				
1058	14.3	142.2	0.62	5.63	87.7		9.49		
1101	14.6	142.7	0.60	5.68	83.4		9.49		
					-		7.47		
1104	14.6	142.0	0.56	5.73	77.7	-			
					-				
0 1 1 PV F 00									
SAMPLE CO Sample Collect		DATA	Bailer		Pump/Pump Type	DED BLADDER			
Made of:	Acca With.	Stainless Ste		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Wa		Tap Rinse	DI Water	Dedicated		Bearcatea	
(By Numerica		Other		rup runse		Bealeatea			
Sample Descr	iption (color, t	_	, sheen, etc.):	CLEAR CO	LORLESS NO O	DOR NO SHEEN	ı		
Replicate	Temp (° F /° C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	14.6	141.7	0.57	5.74	77.4				
2	14.6	141.6	0.57	5.76	75.9				
3	14.6	141.7	0.57	5.75	75.6				
4	14.6	141.4	0.56	5.79	75.8	-	-		
Average:	14.6	141.6	0.57	5.76	76.2				
QUANTITY						pplicable or write	non-standard ar		OR 🗆
2			WTPH-G) ((8141) (Oil & Gre	ase)	WA □	OR OR
						(HCO3/CO3) (C			OK —
					i) (NH3) (NO3				
	(Total Cyanid	le) (WAD Cy	anide) (Free	Cyanide)					
						(Pb) (Mg) (Mn) (l			
			o) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (Ni) ((Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (N	Va) (Hardness) (Silica
	VOC (Boein	g short list) ane Ethene A	retylene						
	wichiane Eu	anc Eulelle A	CLYICHE						
	others								
Duplicate Co.	nla Na(a):								
Duplicate San Comments:	ipie NO(S):								
Signature:	RJC					Date:	5/7/2019		

Project Nam	e:	Boeing Ren	ton		Project Number	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 6 /2019@	1329		
Sample Nun	nber:	RGW258S-	190506		Weather:	CLEAR			
Landau Repr	resentative:	SRB							
WATER LEV	EL/WELL/PU	URGE DATA							
Well Condition		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	7.91	Time:	1258	Flow through ce	ll vol.		GW Meter No.(s	s HERON3
Begin Purge:	Date/Time:	05/ 06 /2019	1259	End Purge:	Date/Time:	05/ 06 /2019 @	1312	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa +/- 3%	ds: Stablizatio +/- 3%		ters for three +/- 0.1 units	e consecutive rea +/- 10 mV	dings within the fo +/- 10%	ollowing limits < 0.3 ft	>/= 1 flow through cell	
1302		297.7	0.77	5.60		LOW	7.91	tiii ougii cen	
						LOW			
1305	17.4	370.3	0.40	6.10	3.7		7.91		
1308	17.4	369.8	0.39	6.10	2.3		7.91		
1311	17.3	366.4	0.37	6.11	-2.7				
SAMPLE CO	LLECTION D	DATA							
Sample Collec	cted With:		Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Ste	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	· · · · · · · · · · · · · · · · · · ·	Other							
Sample Descr	iption (color, t	turbidity, odor	, sheen, etc.):	CLEAR CO	LORLESS NO/N	S			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	17.3	365.3	0.37	6.11	-3.6				
2	17.4	364.6	0.37	6.11	-3.8				
3	17.4		0.36	6.10	-3.6				
4	17.4	363.0	0.37	6.10	-3.9				
						#DIV/01	-		
Average:	17.4	364.3	0.37	6.11	-3.7	#DIV/0!			
QUANTITY					` '	oplicable or write	non-standard ar		
		0) (8020) (N				(01.41) (01.0.0		WA 🗆	OR 🗆
2						(8141) (Oil & Gre (HCO3/CO3) (O		WA □	OR 🗆
					i) (NH3) (NO3)		21) (304) (110	3) (NO2) (1·)	
		le) (WAD Cy			(1112) (1100)	1,02)			
					(Cr) (Cu) (Fe)	(Pb) (Mg) (Mn) (l	Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg	g) (K) (Na)
	(Dissolved M	etals) (As) (St) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (Ni) ((Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (N	Na) (Hardness) (Silica
	VOC (Boein								
	Methane Eth	ane Ethene Ac	cetylene						
	others								
	omers								
Duplicate San	nple No(s):								
Duplicate San Comments:	nple No(s): MSMSD Lo	cation							

Project Name	e:	Boeing Ren	ton		Project Numbe	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 8/2019@	1125		
Sample Num	ber:	RGW197S-	190508		Weather:	CLEAR			
Landau Repr	esentative:	SRB							
WATER LEV	EL/WELL/PU	JRGE DATA							
Well Conditio	n:	Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before l	Purging (ft)	0.7	Time:	1045	Flow through ce	ll vol.	_	GW Meter No.(s	s HERON3
Begin Purge:	Date/Time:	05/ 8 /2019	1055	End Purge:	Date/Time:	05/8 /2019 @	1118	Gallons Purged:	0.25
Purge water di	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	4 6 41	(mV)	(NTU)	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%		ters for unrec +/- 0.1 units	+/- 10 mV	dings within the fo +/- 10%	< 0.3 ft	through cell	
1058	16.1	858	0.54	6.23	7.9	LOW	0.7		
1101	16.4	881	0.50	6.31	-6.0		0.7		
		891	0.48	6.39			0.7		
1104	17.2				-19.5		0.7		
1107	7.8	911	0.48	6.62	-52.9		· 		
1110	18.1	924	0.47	6.72	-73.3	-	· 		
1113	18.2	924	0.47	6.77	-84.5				
1116	18.3	923	0.47	6.81	-95.4		·		
					,	1			
SAMPLE CO			D. '1		D /D /T	DED BY 4 D			
Sample Collect	ted With:		Bailer	_	Pump/Pump Type			D. Street	
Made of:		Stainless Stee		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerical	,	Other	-1	CI ICUTI V	CD AN WITH M	INOD DA DETCLU	ATEC NO CLICI	UT DETROI EUN	A L HZE CHEEN VICE
Sample Descr	ipuon (color, i	urbianty, odor,	sneen, etc.).	SLIGHTLI	GRAI WIIH M	INOK PAKTICULI	ATES NO SLIGI	HI FEIROLEUN	1 LIKE SHEEN VISI
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	18.3	923	0.47	6.82	-96.8				
2	18.3	923	0.47	6.83	-98.1				
3	18.3	922	0.47	6.83	-99.9				
4	18.3	922	0.47	6.84	-101.2				
Average:	18.3	923	0.47	6.83	-99.0	#DIV/0!			
			LOWED DE			!:!			
QUANTITY 5		NALYSIS AI (1) (8020) (N				oplicable or write	non-standard ar	WA WA	OR 🗆
						(8141) (Oil & G	rease)	WA 🗆	OR 🗆
						(HCO3/CO3) (C			
1	(COD) (TOO	C) (Total PO	4) (Total Kie	dahl Nitroger	i) (NH3) (NO3)	NO2)			
		e) (WAD Cy							
						(Pb) (Mg) (Mn) (I			
) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (Ni) ((Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (N	Na) (Hardness) (Silica
	VOC (Boein	g snort list) ane Ethene Ac	etylene						
	Wiemane Eth	and Eulelle At	ocytone						
	others								
D1' : C	1- NT ()								
Duplicate San Comments:	ipie No(s):								
Comments.							5.8.19		

Project Nan	ne:	Boeing Rer	Boeing Renton F			Project Number: 0025217.099			9.099		
Event:		May-19			Date/Time:	05/ 8/2019@	1000				
Sample Nur	nber:	RGWDUP4	4 190508		Weather:	CLEAR					
Landau Rep	resentative:	SRB									
WATER LE	VEL/WELL/PI	URGE DATA									
Well Condition		Secure (YES		Damaged (N	(O)	Describe:	Flush Mount				
DTW Before	Purging (ft)		Time:		Flow through ce	ell vol.	•	GW Meter No.(s HERON3		
Begin Purge:	Date/Time:	05/ 8 /2019	@	End Purge:	Date/Time:	05/8 /2019 @		Gallons Purged:	0.25		
Purge water of	disposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM		
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/		
Time	(° F /° C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	Volume (gal)	Observations		
	Purge Goa +/- 3%	ds: Stablizatio +/- 3%		ters for three +/- 0.1 units		dings within the for +/- 10%	ollowing limits < 0.3 ft	>/= 1 flow through cell			
	17- 370	17-370	17- 10 / 0	1/- 0.1 units	17- 10 III V	17- 10 / 0	< 0.5 It	tin ough cen			
	_										
		DH	PI ICA	TEI	TO RGV	W185S					
	-					1035					
	-										
					•		-				
SAMPLE CO	DLLECTION I)ATA				<u> </u>					
Sample Colle			Bailer	П	Pump/Pump Type	e DED BLAD					
Made of:		Stainless Ste	el	PVC	Teflon	Polyethylene	Other	Dedicated			
Decon Proced	dure:	Alconox Wa	sh 🗖	Tap Rinse	DI Water	Dedicated	_	_			
(By Numerica	al Order)	Other		1	4						
Sample Desc	ription (color,	turbidity, odor	, sheen, etc.):	SLIGHTLY	YELLOW CLEA	AR NO/NS	•				
			_								
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations		
1				C 10	` ′		(11)	(Fe II)	Observations		
1	19.4	799	0.61	6.40	-59.8						
2	19.5	804	0.61	6.40	-61.2	·	·				
3	19.5	805	0.62	6.40	-62.5	-					
4	19.5	810	0.63	6.39	-63.6						
Average:	19.5	805	0.62	6.40	-61.8	#DIV/0!					
OHANTITY	TVPICALA	NALVSIS AI	LLOWED PE	R ROTTLE	TVPF (Circle a	pplicable or write	non-standard ar	nalysis helow)			
5	1		WTPH-G) (ppileable of write	non-standaru ar	WA \square	OR 🗆		
						(8141) (Oil & G	rease)	WA □	OR 🗆		
) (HCO3/CO3) (0					
1	(COD) (TO	C) (Total PO	4) (Total Kie	dahl Nitroger	n) (NH3) (NO3	/NO2)					
	 	•	yanide) (Free								
						(Pb) (Mg) (Mn) (
			b) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	(b) (Mg) (Mn) (Ni)	(Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (I	Na) (Hardness) (Silica		
	VOC (Boein		41								
	Methane Eth	ane Ethene A	cetylene								
	-										
	others										
<u> </u>	•										
Duplicate Sar	mple No(s):	Duplicate to	RGW185S								
Comments:											
Signature:	SRB					Date:	5.8.19				

Project Nam	e:	Boeing Ren	ton		Project Numbe	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 8/2019@	1050		
Sample Num	ıber:	RGW185S-	190508		Weather:	CLEAR			
Landau Repr	resentative:	SRB							
WATER LEV	EL/WELL/PU	JRGE DATA							
Well Conditio	n:	Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	0.91	Time:	1016	Flow through ce	ll vol.		GW Meter No.(s	s HERON3
Begin Purge:	Date/Time:	05/ 8 /2019	1020	End Purge:	Date/Time:	05/8 /2019 @	1340	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	4 6 41	(mV)	(NTU)	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%		ters for unrec +/- 0.1 units	+/- 10 mV	dings within the fo +/- 10%	< 0.3 ft	through cell	
1023	15.5	654	0.57	6.05	60.2	MED	0.91		
1026	18.0	725	0.52	6.31	-1.1		0.91		
1029	17.9	729		6.33	•		0.91		
			0.52		-5.2		0.91		
1032	19.1	782	0.56	6.40	-45.3		· 		
1035	19.3	784	0.56	6.40	-46.8				
1038	19.4	795	0.60	6.40	-57.9				
							· 		
					,				
SAMPLE CO									
Sample Collec	cted With:		Bailer	_	Pump/Pump Type			— • • • • •	
Made of:		Stainless Stee	_	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	· · ·	Other		CLICUTI V	YELLOW CLEA	D NO/NC	•		
Sample Descr	iption (color, t	urbiany, odor,	sneen, etc.):	SLIGHTLT	TELLOW CLEA	IK NO/NS			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	19.4	798	0.60	6.40	-58.7				
2	19.4	799	0.62	6.40	-60.6				
3	19.5	805	0.61	6.40	-61.8				
4	19.5	810	0.62	6.40	-63.2				
Average:	19.5	803	0.61	6.40	-61.1	#DIV/0!			
			LOWED DE	D DOTTI E	TYPE (Ct., -1-,	!:!-		-1:- h -1)	
QUANTITY 5		NALYSIS AI 0) (8020) (N				oplicable or write	non-standard ar	WA WA	OR 🗆
						(8141) (Oil & G	rease)	WA 🗆	OR 🗆
						(HCO3/CO3) (C			
1	(COD) (TO	C) (Total PO	4) (Total Kie	dahl Nitroger	i) (NH3) (NO3,	/NO2)			
		le) (WAD Cy							
						(Pb) (Mg) (Mn) (
) (Ba) (Be) (C	(Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (N1) (Ag) (Se) (11) (V) (Zn) (Hg) (K) (ľ	Na) (Hardness) (Silica
	VOC (Boein Methane Eth	g snort list) ane Ethene Ac	etvlene						
		Zulone / ic							
	others								
Duplicate San	anla Na(a):	Dunlianta I.	cation (DUD4)					
Comments:	ipie mo(s):	Duplicate Lo	Cation (DOP4)					
Signature:	SRB					Date	5.8.19		

Project Name	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:	<u> </u>	May-19			Date/Time:	05/ 8/2019@ 1:			
Sample Num	nber:	RGW194S-	190508		Weather:	SUNNY, WARM			
Landau Repr		BXM			•				
WATER LEV	FI/WELL/PI	IRGE DATA							
Well Conditio		Secure (YES))	Damaged (N	O)	Describe:	Flush Mount		
DTW Before		1.73	Time:	1324			,	GW Meter No.(s	1-HERON
Begin Purge:				End Purge:	=	05/8 /2019 @ 13	346	Gallons Purged:	
Purge water d			55-gal Drum	Ă	Storage Tank	Ground		SITE TREATMI	
Ü	Tomn	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	Temp (°F/°C)	(uS/cm)	(mg/L)	рп	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	_					dings within the fol	_	>/= 1 flow	
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units		+/- 10%	< 0.3 ft	through cell	
1329	15.7	679	0.14	6.14	28.3		1.59		
1332	16.4	751	0.14	6.18	14.2		1.54		
1335	17.3	776	0.15	6.21	-6.6		1.5		
1338	18.7	815	0.17	6.22	-16.9		1.5		
1341	19.9	841	0.24	6.24	-35.5		1.5		
1344	20.7	853	0.30	6.24	-42.3				
SAMPLE CO	LLECTION D	ATA							
Sample Collec			Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated		_	
(By Numerica	l Order)	Other							
Sample Descr	iption (color, t	urbidity, odor,	sheen, etc.):	CLEAR, CO	LORLESS, WITH	I ORANGE SOLID	FLAKES, NO S	HEEN	
D = =1' = = (=	Т	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
Replicate	Temp (°F/°C)	(uS/cm)	(mg/L)	рп	(mV)	(NTU)	(ft)	(Fe II)	Observations
1	20.7	854	0.31	6.24	-43.2				
2	20.7	855	0.31	6.24	-43.7				
3					-44.4				
	20.8	856	0.31	6.24					
4	20.8	857	0.32	6.24	-45.2			· 	
Average:	20.8	856	0.31	6.24	-44.1	#DIV/0!	•		
QUANTITY	TYPICAL A	NALYSIS AL	LOWED PE	R BOTTLE	ГҮРЕ (Circle ap	plicable or write no	n-standard ana	alysis below)	
5		0) (8020) (N						WA 🗆	OR 🗆
						(8141) (Oil & Gre		WA 🗆	OR 🗆
1	(COD) (TOO) (NH3) (NO3/	(HCO3/CO3) (Cl) (SO4) (NO3	(NO2) (F)	
1	· / `	le) (WAD Cy) (1113) (1103/	1102)			
					(Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (N	i) (Ag) (Se) (T	(I) (V) (Zn) (Hg)	(K) (Na)
									a) (Hardness) (Silica)
	VOC (Boein	•							
	Methane Eth	ane Ethene Ac	etylene						
	othors								
	others								
Duplicate San	nple No(s):								
Comments:									
Signature:	BXM					Date:	5/8/2019		

Project Name	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/8 /2019@ 1			
Sample Num	ber:	RGW195S-	190508		Weather:	SUNNY, WARM	1		
Landau Repr	esentative:	BXM							
WATER LEV	EL/WELL/PU	JRGE DATA							
Well Conditio		Secure (YES))	Damaged (N	O)	Describe:	Flush Mount		
DTW Before l	Purging (ft)	1.07	Time:	1153	Flow through cel	ll_vol.		GW Meter No.(s	1-HERON
Begin Purge:	Date/Time:	05/ 8/2019	@ 1157	End Purge:	Date/Time:	05/ 8 /2019 @ 12	17	Gallons Purged:	< 1
Purge water di	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	. 6 41	(mV)	(NTU)	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	118: Stablizatio +/- 3%	on of Parame +/- 10%	ters for three +/- 0.1 units	+/- 10 mV	dings within the fol +/- 10%	< 0.3 ft	through cell	
1200	17.0	625	0.33	6.12	41.0		1.08		
1203	16.8	700	0.22	6.19	29.1		1.08		
1206	16.9	725	0.19	6.27	-8.9		1.09		
1209	16.8	709	0.21	6.30	-25.0		1.08		
			0.21				1.00		
1212	16.9	710		6.31	-32.4				-
1215	16.7	684	0.21	6.33	-46.1				
CAMPLE CO	LIECTIONE								
Sample Collect			Bailer		Pump/Pump Type	DED BLADDER			
Made of:		Stainless Stee	_	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🗖	Tap Rinse	DI Water	Dedicated	_	_	
(By Numerica	l Order)	Other		_					
Sample Descri	iption (color, t	urbidity, odor,	sheen, etc.):	CLEAR, CO	LORLESS, NO S	HEEN			
Replicate	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
перисис	(°F/°C)	(uS/cm)	(mg/L)	pm	(mV)	(NTU)	(ft)	(Fe II)	Observations
1	16.7	677	0.22	6.33	-46.9				
2	16.7	677	0.22	6.33	-47.6				
3	16.7	678	0.22	6.33	-48.1				
4	16.7	671	0.22	6.34	-48.8				
Average:	16.7	676	0.22	6.33	-47.9	#DIV/0!			
QUANTITY 5		NALYSIS AL 0) (8020) (N				plicable or write no	n-standard ana	WA	OR 🗆
						(8141) (Oil & Gre	ease)	WA 🗆	OR 🗆
						(HCO3/CO3) (Cl			
1	(COD) (TOO) (NH3) (NO3/I	NO2)			
		e) (WAD Cy			(C) (C) (E) (DI A A A A A A A	"\		(E) (M.)
						Pb) (Mg) (Mn) (N			a) (K) (Na) (Bardness) (Silica)
	VOC (Boein) (Ba) (Bc) (C	a) (Cu) (Co)	(C1) (Cu) (1 c) (1 c	(1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (<u>ig) (5c) (11) (v)</u>	(Zii) (Tig) (K) (Tv	a) (Hardness) (Silica)
		ane Ethene Ac	etylene						
	a								
	others								
Duplicate San	nple No(s):								
Comments:									
Signature:	BXM					Date:	5/8/2019		

Project Name	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:	-	May-19			Date/Time:	05/ 8/2019@ 1:			
Sample Num	ber:	RGW196D-	190508		Weather:	SUNNY, WARM	ſ		
Landau Repr	esentative:	BXM			•				
WATER LEV	EL/WELL/PL	IRGE DATA							
Well Conditio		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	1.13	Time:	_	Flow through ce	ll vol.		GW Meter No.(s	1- HERON
Begin Purge:		05/ 8/2019	@ 1243	End Purge:	=	05/ 8 /2019 @ 13	02	Gallons Purged:	
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATMI	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	•	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa +/- 3%	ıls: Stablizatio +/- 3%	on of Parame +/- 10%	ters for three +/- 0.1 units	e consecutive rea +/- 10 mV	dings within the fol +/- 10%	lowing limits < 0.3 ft	>/= 1 flow through cell	
1246	17.1	393.6	0.16	6.21	18.7	1, 10,0	1.14	un ough cen	
1249	17.0	396.7	0.13	6.22	12.4		1.14		
1252	16.9	398.4	0.14	6.27	0.9		1.15		
1255	17.0	399.2	0.13	6.30	-7.7				
1258	17.4	402.2	0.14	6.32	-17.8				
1301	18.2	406.2	0.15	6.33	-22.9				
SAMPLE CO									
Sample Collec	eted With:	_	Bailer			DED BLADDER			
Made of:		Stainless Stee	_	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	*	Other	1 ()	CLEAD CO	LODI EGG NO G	HEEN			
Sample Descr	iption (color, t	urbiaity, oaor,	sneen, etc.):	CLEAR, CO	LORLESS, NO S	HEEN			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	18.2	407.4	0.18	6.33	-23.0				
2	18.2	408.3	0.18	6.34	-24.6				
3	19.0	409.8	0.17	6.34	-25.7				
4	18.0	411.5	0.17	6.34	-26.6				
Average:	18.4	409.3	0.18	6.34	-25.0	#DIV/0!			
				D DOTTE E			4		
QUANTITY 5		0) (8020) (N				plicable or write no	n-standard ana	WA \square	OR 🗆
				-		(8141) (Oil & Gre	ase)	WA 🗆	OR 🗆
						(HCO3/CO3) (CI			
1	(COD) (TO	C) (Total PO4	(Total Kie	dahl Nitrogen	(NH3) (NO3/	NO2)			
		e) (WAD Cy							
						Pb) (Mg) (Mn) (N			
	VOC (Boein) (Ba) (Be) (C	(Cd) (Co)	(Cr) (Cu) (Fe) (Pt	o) (Mg) (Mn) (N1) (A	(Se) (T1) (V)	(Zn) (Hg) (K) (Na	a) (Hardness) (Silica)
		ane Ethene Ac	etvlene						
	others								
Duplicate San	nla No(a):								
Comments:	ipic 110(8).								
Signature:	BXM					Date:	5/8/2019		

Project Nam	e:	Boeing Ren	ton		Project Number	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 8/2019@	1155		
Sample Nun	nber:	RGW245S-	190508		Weather:	CLEAR			
Landau Rep	resentative:	SRB							
WATER LEV	EL/WELL/PU	JRGE DATA							
Well Condition	n:	Secure (YES)	Damaged (N	(O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	0.8	Time:	1115	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 8 /2019	1125	End Purge:	Date/Time:	05/8 /2019 @	1143	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	Volume (gal)	Observations
	+/- 3%	ls: Stablizatio +/- 3%		ters for three +/- 0.1 units	e consecutive rea +/- 10 mV	dings within the fo +/- 10%	ollowing limits < 0.3 ft	>/= 1 flow through cell	
1128		614	0.66	6.77		LOW	0.8		
1131	15.6	643	0.50	6.39	-22.0	2011	0.8		
					•				
1134		693	0.45	6.65	-60.0		•		
1137	17.7	711	0.45	6.71	-71.3	-			
1140	17.8	711	0.44	6.72	-72.4				
SAMPLE CO									
Sample Colle	cted With:		Bailer	_	Pump/Pump Type			_	
Made of:		Stainless Ste		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica		Other	•	ar rarrmr rr	GD 1 11 11 11 11 11 11 11 11 11 11 11 11	DEVOLUE A PERSONAL			
Sample Descr	iption (color, t	urbidity, odor	sheen, etc.):	SLIGHTLY	GRAY WITH PA	ARTICULATES NO	J/NS		
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	17.8	715	0.45	6.72	-74.0				
2	17.9	715	0.45	6.73	-75.3	-			
3	17.9	716	0.45	6.73	-76.2				
4	18.0	719	0.44	6.73	-77.7				
Average:	17.9	716	0.45	6.73	-75.8	#DIV/0!			
QUANTITY 5						oplicable or write	non-standard ar		OR 🗆
		(NWTPI				(8141) (Oil & G	rease)	WA □ WA □	OR OR
						(HCO3/CO3) (C			
1					n) (NH3) (NO3		, , ,	, , , ,	
	(Total Cyanid	e) (WAD Cy	anide) (Free	Cyanide)					
						(Pb) (Mg) (Mn) (
) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (Ni) ((Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (N	Na) (Hardness) (Silica
	VOC (Boein	g short list) ane Ethene Ac	estylene						
	ivietnane Eth	ane Emene Ac	ctylelle						
	others								
Duplicate Sar	-	NIDOE PAGE	ZET						
Comments: Signature:	SHEEN IN I	TUKGE BUCI	XEI				5010		
						Dotor	5.8.19		

Project Nam	e:	Boeing Ren	ton		Project Numbe	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 8/2019@	1255		
Sample Num	ıber:	RGW247S-	190508		Weather:	CLEAR			
Landau Repi	resentative:	SRB							
WATER LEV	EL/WELL/PI	URGE DATA							
Well Condition		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	3.49	Time:	1222	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:			1225	End Purge:	_	05/8 /2019 @	1246	Gallons Purged:	
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	-	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa	ds: Stablizatio +/- 3%		ters for three +/- 0.1 units	e consecutive rea +/- 10 mV	dings within the fo	ollowing limits < 0.3 ft	>/= 1 flow through cell	
1228	18.3	455.3	0.78	6.97		LOW	3.67	un ough con	
1231	18.7	430.2	0.39	6.18	27.4	LOW	3.61		
1234	18.7	432.0	0.38	6.23	21.2	-	3.61		
1237	19.5	444.0	0.37	6.35	-4.5	-			
1240	19.5	446.7	0.38	6.39	-19.5				
1243	19.6	448.3	0.38	6.39	-31.3				
SAMPLE CO									
Sample Collec	cted With:	_	Bailer		Pump/Pump Type	_		_	
Made of:		Stainless Ste		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	,	Other							
Sample Descr	iption (color, t	turbidity, odor	, sheen, etc.):	SLIGHTLY	YELLOW WITH	MINOR PARTIC	ULATES NO/NS	8	
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	19.6	448.4	0.38	6.39	-32.8				
2	19.7	448.8	0.38	6.39	-34.0				
3	19.6	448.9	0.38	6.39	-34.8				
4	19.7	448.9	0.38	6.39	-35.8				
Average:	19.7	448.8	0.38	6.39	-34.4	#DIV/0!	-		
QUANTITY						oplicable or write	non-standard aı		07.0
3		0) (8020) (N				(8141) (Oil & G	ranca)	WA □	OR \square
						(8141) (Oli & O			OK L
1	\ \ \ \	2/ \		/	i) (NH3) (NO3/		21) (801) (110	3) (1102) (1)	
		le) (WAD Cy			, , , ,	,			
	(Total Metals) (As) (Sb) (Ba) (Be) (Ca	a) (Cd) (Co)	(Cr) (Cu) (Fe)	(Pb) (Mg) (Mn) (l	Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg	(K) (Na)
) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (Ni) ((Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (N	la) (Hardness) (Silica
	VOC (Boein		. 1						
	Methane Eth	ane Ethene A	cetylene						
	others								
Duplicate San	nple No(s):								
Comments:									
Signature:	SRB					Date:	5.8.19		

Project Nam	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 8/2019@	1320		
Sample Nun	nber:	RGW248I-	190508		Weather:	CLEAR			
Landau Repr	resentative:	SRB							
WATER LEV	/EL/WELL/PI	URGE DATA							
Well Condition		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	3.41	Time:	1240	Flow through ce	ll vol.	•	GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 8 /2019	1250	End Purge:	Date/Time:	05/8 /2019 @	1306	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	4 6 41	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	+/- 3%	ds: Stablizatio +/- 3%	on of Parame +/- 10%	ters for three +/- 0.1 units	e consecutive rea +/- 10 mV	dings within the fo +/- 10%	< 0.3 ft	>/= 1 flow through cell	
1253	18.7	503	0.48	6.31	-45.7	LOW	3.29	g	
1256		515	0.45	6.28	-59.0		3.29		
1259	21.8	535		6.34	-67.0		3.29		
			0.43		N	•	3.29		
1302	21.9	540	0.43	6.34	-68.8		·		
1305	22.0	544	0.45	6.34	-70.9		· 		
							· 		
					,				
SAMPLE CO									
Sample Collec	cted With:		Bailer		Pump/Pump Type				
Made of:		Stainless Ste		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Wa	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	*	Other	shoon ata):	CI ICUTI V	GRAY AND TU	DDID NNO/NS	•		
Sample Descr	iption (color, i	turbiuity, odor	, silecii, etc.)	SLIGITLI	ORAT AND TO	RDID IVIO/IVS			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	22.0	543	0.45	6.34	-71.3				
2	22.0	544	0.45	6.34	-71.4				
3	22.0	545	0.45	6.34	-71.6				
4	22.0	545	0.45	6.34	-71.8				
Average:	22.0	544	0.45	6.34	-71.5	#DIV/0!			
	1								
QUANTITY 3		NALYSIS AI 0) (8020) (N				oplicable or write	non-standard ar	wa 🗆	OR 🗆
3						(8141) (Oil & G	rease)	WA 🗆	OR 🗆
						(HCO3/CO3) (
1	(COD) (TO	C) (Total PO	4) (Total Kie	dahl Nitrogen	i) (NH3) (NO3)	/NO2)			
		le) (WAD Cy							
						(Pb) (Mg) (Mn) (
			o) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (Ni) ((Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (N	Na) (Hardness) (Silica
	VOC (Boein	ig short list) nane Ethene A	retylene						
	Triculant Ett	mic Ethelle At	octy ione						
	others								
D1'	1- NT ()								
Duplicate San Comments:	npie ivo(s):								
Signature:	SRB					Dota	5.8.19		
orgnature.	DIAD					Date:	J.U.17		

Project Nam	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 8/2019@	925		
Sample Num	nber:	10-71-MW1	190508		Weather:	CLEAR			
Landau Repr	resentative:	SRB							
WATER LEV	EL/WELL/PU	URGE DATA							
Well Condition	on:	Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	8.29	Time:	845	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 8 /2019	855	End Purge:	Date/Time:	05/8 /2019 @	918	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	tors for thro	(mV)	(NTU) dings within the fo	(ft)	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
858	14.1	142.2	2.27	5.72	76.8	LOW	8.31		
901	13.9	167.8	1.52	5.63	76.6	'	8.31		
904	13.9	182.8	1.18	5.71	69.2		8.31		
907	13.9	185.9	1.05	5.78	60.3				
910		186.5	1.03	5.79	59.6				
913	14.0	187.1	0.95	5.83	51.8		-		
					-				
916	14.1	187.4	0.91	5.85	48.7		-		
SAMPLE CO	I LECTION D	ΔΤΔ			<u> </u>				
Sample Collect			Bailer		Pump/Pump Type	DED BLAD			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other							
Sample Descr	iption (color, t	turbidity, odor,	sheen, etc.):	CLEAR CO	LORLESS NO/N	S			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	14.1	187.3	0.90	5.85	48.0				
2	14.2	187.4	0.89	5.85	47.0				
3	14.2	187.6	0.88	5.85	47.2				
4	14.2	187.8	0.86	5.86	45.7	•			
Average:	14.2	187.5	0.88	5.85	47.0	#DIV/0!			
QUANTITY 3		NALYSIS AI 0) (8020) (N				oplicable or write	non-standard ar	nalysis below) WA	OR 🗆
3						(8141) (Oil & G	rease)	WA 🗆	OR 🗆
						(HCO3/CO3) (C			
1	(COD) (TO	C) (Total PO	4) (Total Kie	dahl Nitroger) (NH3) (NO3,	/NO2)			
		le) (WAD Cy							
						(Pb) (Mg) (Mn) (Ng) (Mg) (Ng)			
	VOC (Boein) (Ba) (Be) (C	<i>.a)</i> (Ca) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (MIII) (MI) (Ag) (Se) (11) (V) (ZII) (Hg) (K) (N	Na) (Hardness) (Silica
		ane Ethene Ac	etylene						
			-						
	others								
Duplicate San Comments:	nple No(s):								
Signature:	SRB					Date:	5.8.19		

Project Nam	0:	Boeing Ren	ton		Project Numbe	.,,,,,	0025217.099.0	00	
Event:	<u>.</u>	May-19	ton		Date/Time:	05/ 8/2019@		77	
Sample Num	her:	10-71-MW2	100508		Weather:	CLEAR	855		
Landau Rep	-	SRB	190306		weather.	CLEAR			
WATER LEV Well Condition	/EL/WELL/PU		\	Domogad (N	(O)	Dogariba	Flush Mount		
		Secure (YES)		Damaged (N			Flush Mount	CW Matar Na (a	HEDON2
DTW Before		8.61	Time:		Flow through ce		. 040	GW Meter No.(s	
Purge water d		05/ 8 /2019	825 55-gal Drum	End Purge:	Storage Tank	05/ 8 /2019 @ Ground		Gallons Purged:	
Purge water d	isposed to:		· ·		Storage Tank			SITE TREATME	ENI SISIEM
Time	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C) Purge Goa	(uS/cm) ls: Stablizatio	(mg/L) on of Parame	ters for three	(mV) e consecutive rea	(NTU) dings within the fo	(ft) ollowing limits	Volume (gal) >/= 1 flow	Observations
	+/- 3%	+/- 3%		+/- 0.1 units		+/- 10%	< 0.3 ft	through cell	
828	14.0	150.2	7.40	5.30	114.9	LOW	8.61		
831	14.0	180.0	4.66	5.32	113.5	'	8.61		
834	14.0	185.3	4.20	5.37	110.0		8.61		
837	13.9	191.2	3.58	5.44	105.3	-	0.01		
840	,	195.2	2.85	5.51	99.7				
843	14.0	198.1	2.21	5.59	91.5				
846	13.9	198.8	1.75	5.63	84.0				
						1			
	LLECTION D		D. 11		D D T	DED DY AD			
Sample Collec	cted With:	_	Bailer		Pump/Pump Type				
Made of:		Stainless Stee		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 📋	Tap Rinse	DI Water	Dedicated			
(By Numerica		Other	1	CI ICITEI I	WELLOW CLE	A D. MONIG	•		
Sample Descr	iption (color, t	urbiaity, odor,	sneen, etc.):	SLIGHTLY	YELLOW, CLEA	AR NONS			
Replicate	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
	(° F /° C)	(uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	(Fe II)	Observations
1	13.9	198.9	1.71	5.63	83.0				
2	13.9	198.8	1.67	5.64	82.0				
3	13.9	198.9	1.62	5.64	81.3				
4	13.9	199.0	1.60	5.65	80.4				
Average:	13.9	198.9	1.65	5.64	81.7	#DIV/0!			
QUANTITY 3		NALYSIS AL (1) (8020) (N				oplicable or write	non-standard ai		OR 🗆
3						(8141) (Oil & G	reace)		OR □
						(HCO3/CO3) (OK —
1					n) (NH3) (NO3/		01) (201) (110	2) (1:02) (1)	
	(Total Cyanid	e) (WAD Cy	anide) (Free	Cyanide)		,			
	(Total Metals)	(As) (Sb) (I	Ba) (Be) (Ca	a) (Cd) (Co)	(Cr) (Cu) (Fe)	(Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na)
	(Dissolved M	etals) (As) (Sb) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (Ni) ((Ag) (Se) (Tl) (V	(Zn) (Hg) (K) (N	(a) (Hardness) (Silic
	VOC (Boein								
	Methane Eth	ane Ethene Ac	etylene						
	others								
	omers								
Duplicate San	nple No(s):								
Comments:									
Signature	SRR					Data	5 8 10		

Project Nam	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 8/2019@	955		
Sample Num	ıber:	10-71-MW	190508		Weather:	CLEAR			
Landau Repi	resentative:	SRB							
WATER LEV	EL/WELL/PU	JRGE DATA							
Well Condition		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	8.38	Time:	910	Flow through ce	ll vol.		GW Meter No.(s	HERON3
Begin Purge:	Date/Time:	05/ 8 /2019	925	End Purge:	Date/Time:	05/8 /2019 @	949	Gallons Purged:	0.25
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)	-	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa +/- 3%	ls: Stablizatio +/- 3%		ters for three +/- 0.1 units	e consecutive rea +/- 10 mV	dings within the fo +/- 10%	ollowing limits < 0.3 ft	>/= 1 flow through cell	
928	15.1	198.8	2.51	6.13		LOW	8.38	1 0 1- g 0 1	
931	14.9	216.3	2.28	6.11	41.7		8.38		
934	15.1	307.4	1.82	5.98	50.4		8.38		
							0.30		
937	15.2	334.8	1.50	6.09	45.1				
940	15.3	331.0	1.39	6.14	40.7				
943	15.3	325.6	1.21	6.15	38.2				
946	15.3	320.9	1.14	6.17	35.1				
GANGE GO	LLECTION								
Sample Collection			Bailer		Pump/Pump Type	DED BLAD			
Made of:	Acca With.	Stainless Stee		PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was		Tap Rinse	DI Water	Dedicated			
(By Numerica		Other	·· •	Tup Tunge		Beareasea			
Sample Descr	iption (color, t		sheen, etc.):	SLIGHTLY	YELLOW CLEA	R NO/NS			
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	15.3	318.8	1.12	6.17	35.0				
2	15.3	317.9	1.10	6.17	34.3				
3	15.3	317.3	1.09	6.18	33.7		· 		
4	15.3	315.8	1.08	6.16	34.2				
Average:	15.3	317.5	1.10	6.17	34.3	#DIV/0!			
QUANTITY	TYPICAL A	NALYSIS AI	LOWED PE	ER BOTTLE	TYPE (Circle at	oplicable or write	non-standard ar	nalysis below)	
3		0) (8020) (N				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		WA □	OR 🗆
						(8141) (Oil & G	rease)	WA □	OR □
	` `					(HCO3/CO3) (C	Cl) (SO4) (NO	3) (NO2) (F)	
1					n) (NH3) (NO3)	(NO2)			
		le) (WAD Cy			(C) (C) (F)	(DI) (MA) (MA) (AT'		\ (II) (N)
						(Pb) (Mg) (Mn) (I			Va) (Hardness) (Silica
	VOC (Boein) (Ba) (Bc) (C	<i>(Cu)</i> (<i>Co)</i>	(C1) (Cu) (1 c) (1)	b) (Wig) (Will) (IVI) ((11g) (Sc) (11) (V	(Zii) (Tig) (K) (T	(a) (Hardiess) (Sinea
		ane Ethene Ac	etylene						
	others								
Duplicate San	nple No(s):								
Comments:									
Signature:	SRB					Date:	5.8.19		

Project Nam	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	800		
Sample Num	nber:	RGW262S-	190507		Weather:	CLEAR			
Landau Repr	resentative:	RJC							
WATER LEV	/EL/WELL/PI	JRGE DATA							
Well Conditio		Secure (YES))	Damaged (N	O)	Describe:	Flush Mount		
DTW Before			Time:	_	Flow through cel			GW Meter No.(s	HERON3
		05/ 07 /2019		End Purge:	ū	05/ 07 /2019 @		Gallons Purged:	
Purge water d			55-gal Drum	i i	Storage Tank	Ground	Other	SITE TREATMI	
Turge water a	_		_		_				
Time	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Internal Purge Volume (gal)	Comments/ Observations
Time				ters for three		dings within the fo		>/= 1 flow	Observations
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
		Ъ	1 •	4 4) () ()			
		Di	aplica	ite to	RGW2	2628			
			1				-		
SAMPLE CO	LLECTION I	OATA							
Sample Collec	cted With:		Bailer		Pump/Pump Type	PERI			
Made of:		Stainless Stee	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	lure:	Alconox Was	sh 🗖	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other		_					
Sample Descr			1 ()	CLEAD VE					
Sumpre Deser	ipuon (coior, i	turbidity, odor,	sneen, etc.):_	CLEAR YE	LLOW TINT NO	ODOR NO SHEEN	V		
	ipuon (color, i	turbidity, odor,	sneen, etc.):_	CLEAR YE	LLOW TINT NO	ODOR NO SHEEN	N		
Replicate	Temp	Cond.	D.O.	pH	ORP	Turbidity	DTW	Ferrous iron	Comments/
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)			Ferrous iron (Fe II)	Comments/ Observations
	Temp	Cond.	D.O.		ORP	Turbidity	DTW		
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity	DTW		
Replicate 1	Temp (°F/°C)	Cond. (uS/cm) 457.0	D.O. (mg/L)	pH 5.95	ORP (mV)	Turbidity	DTW		
Replicate 1 2	Temp (°F/°C) 13.8 13.6	Cond. (uS/cm) 457.0 456.8	D.O. (mg/L) 1.27 1.23	pH 5.95 5.90	ORP (mV) -47.4 -45.8	Turbidity	DTW		
Replicate 1 2 3 4	Temp (°F/°C) 13.8 13.6 13.7	Cond. (uS/cm) 457.0 456.8 454.7 454.2	D.O. (mg/L) 1.27 1.23 1.20 1.15	pH 5.95 5.90 5.88	ORP (mV) -47.4 -45.8 -47.2	Turbidity (NTU)	DTW		
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7	D.O. (mg/L) 1.27 1.23 1.20 1.15	pH 5.95 5.90 5.88 5.91	ORP (mV) -47.4 -45.8 -47.2 -47.2	Turbidity (NTU) #DIV/0!	DTW (ft)	(Fe II)	
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE	pH 5.95 5.90 5.88 5.91 R BOTTLE	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap	Turbidity (NTU)	DTW (ft)	(Fe II)	Observations
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 TYPICAL A (8260) (8010	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI 0) (8020) (N	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE	5.95 5.90 5.88 5.91 CR BOTTLE NWTPH-Gx)	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX)	Turbidity (NTU) #DIV/0!	DTW (ft)	nalysis below) WA	Observations OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI (0) (8020) (NAH) (NWTPH	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE WTPH-G) (M-D) (NWTP	5.95 5.90 5.88 5.91 CR BOTTLE NWTPH-Gx)	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081)	#DIV/0!	DTW (ft)	(Fe II) malysis below) WA □ WA □	Observations
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI (0) (8020) (N AH) (NWTPHetivity) (TDS)	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE WTPH-G) (M-D) (NWTP S) (TSS) (B	5.95 5.90 5.88 5.91 R BOTTLE NWTPH-Gx) PH-Dx) (TPHOD) (Turbic	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081) dity) (Alkalinity)	#DIV/0! #DIV/0! plicable or write in the second control of the s	DTW (ft)	(Fe II) malysis below) WA □ WA □	Observations OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI (2) (8020) (N AH) (NWTPH (1ctivity) (TDS) (C) (Total PO4	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE WTPH-G) (M-D) (NWTP G) (TSS) (B H) (Total Kie	5.95 5.90 5.88 5.91 R BOTTLE NWTPH-Gx) H-Dx) (TPH OD) (Turbio	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081)	#DIV/0! #DIV/0! plicable or write in the second control of the s	DTW (ft)	(Fe II) malysis below) WA □ WA □	Observations OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (TOO (Total Cyanid	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI (D) (8020) (N AH) (NWTPH (Dictivity) (TDS) (C) (Total PO-2 (de) (WAD Cy	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE WTPH-G) (M-D) (NWTP S) (TSS) (B 4) (Total Kie- anide) (Free	5.95 5.90 5.88 5.91 ER BOTTLE NWTPH-Gx) PH-Dx) (TPH OD) (Turbic dahl Nitrogen Cyanide)	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081) dity) (Alkalinity) (NH3) (NO3/	#DIV/0! #DIV/0! pplicable or write in the image of the	DTW (ft) non-standard and arease) Cl) (SO4) (NO	malysis below) WA WA WA NO2) (F)	Observations OR OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals)	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI 0) (8020) (N AH) (NWTPH detivity) (TDS C) (Total PO4 le) (WAD Cy) (As) (Sb) (D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE WTPH-G) (MTPH-G) (MTPH	5.95 5.90 5.88 5.91 ER BOTTLE NWTPH-Gx) OH-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081) dity) (Alkalinity) () (NH3) (NO3/	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Cincid (NO2)) (Pb) (Mg) (Mn) (I	non-standard and rease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals)	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI (0) (8020) (N AH) (NWTPHactivity) (TDS (C) (Total PO4 (de) (WAD Cy (de) (As) (Sb) (cetals) (As) (Sb) (Sb)	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE WTPH-G) (MTPH-G) (MTPH	5.95 5.90 5.88 5.91 ER BOTTLE NWTPH-Gx) OH-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081) dity) (Alkalinity) () (NH3) (NO3/	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Cincid (NO2)) (Pb) (Mg) (Mn) (I	non-standard and rease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI (0) (8020) (N AH) (NWTPHactivity) (TDS (C) (Total PO4 (de) (WAD Cy (de) (As) (Sb) (cetals) (As) (Sb) (Sb)	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE WTPH-G) (Manual Period (Manual Period Pe	5.95 5.90 5.88 5.91 ER BOTTLE NWTPH-Gx) OH-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081) dity) (Alkalinity) () (NH3) (NO3/	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Cincid (NO2)) (Pb) (Mg) (Mn) (I	non-standard and rease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI (0) (8020) (N AH) (NWTPHactivity) (TDS (C) (Total PO4 (le) (WAD Cy (le) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE WTPH-G) (Manual Period (Manual Period Pe	5.95 5.90 5.88 5.91 ER BOTTLE NWTPH-Gx) OH-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081) dity) (Alkalinity) () (NH3) (NO3/	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Cincid (NO2)) (Pb) (Mg) (Mn) (I	non-standard and rease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI (0) (8020) (N AH) (NWTPHactivity) (TDS (C) (Total PO4 (le) (WAD Cy (le) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE WTPH-G) (Manual Period (Manual Period Pe	5.95 5.90 5.88 5.91 ER BOTTLE NWTPH-Gx) OH-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081) dity) (Alkalinity) () (NH3) (NO3/	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Cincid (NO2)) (Pb) (Mg) (Mn) (I	non-standard and rease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average:	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI (0) (8020) (N AH) (NWTPHactivity) (TDS (C) (Total PO4 (le) (WAD Cy (le) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE WTPH-G) (Manual Period (Manual Period Pe	5.95 5.90 5.88 5.91 ER BOTTLE NWTPH-Gx) OH-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081) dity) (Alkalinity) () (NH3) (NO3/	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Cincid (NO2)) (Pb) (Mg) (Mn) (I	non-standard and rease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein Methane Eth	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI (0) (8020) (N AH) (NWTPI- (1) (Total PO- (1) (WAD Cy (2) (As) (Sb) ((1) (2) (etals) (As) (Sb) (3) (sport list) (457.0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE (WTPH-G) (M-D) (NWTP (M-D) (NWTP (M-D) (NWTP (M-D)	5.95 5.90 5.88 5.91 ER BOTTLE NWTPH-Gx) OH-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081) dity) (Alkalinity) () (NH3) (NO3/	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Cincid (NO2)) (Pb) (Mg) (Mn) (I	non-standard and rease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 3 Duplicate San	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein Methane Eth	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI (0) (8020) (N AH) (NWTPHactivity) (TDS (C) (Total PO4 (le) (WAD Cy (le) (As) (Sb) (etals) (As) (Sb) (g short list)	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE (WTPH-G) (M-D) (NWTP (M-D) (NWTP (M-D) (NWTP (M-D)	5.95 5.90 5.88 5.91 ER BOTTLE NWTPH-Gx) OH-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081) dity) (Alkalinity) () (NH3) (NO3/	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Cincid (NO2)) (Pb) (Mg) (Mn) (I	non-standard and rease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
Replicate 1 2 3 4 Average: QUANTITY 3	Temp (°F/°C) 13.8 13.6 13.7 13.7 13.7 TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein Methane Eth	Cond. (uS/cm) 457.0 456.8 454.7 454.2 455.7 NALYSIS AI (0) (8020) (N AH) (NWTPI- (1) (Total PO- (1) (WAD Cy (2) (As) (Sb) ((1) (2) (etals) (As) (Sb) (3) (sport list) (457.0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	D.O. (mg/L) 1.27 1.23 1.20 1.15 1.21 LOWED PE (WTPH-G) (M-D) (NWTP (M-D) (NWTP (M-D) (NWTP (M-D)	5.95 5.90 5.88 5.91 ER BOTTLE NWTPH-Gx) OH-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	ORP (mV) -47.4 -45.8 -47.2 -46.9 TYPE (Circle ap (BTEX) H-HCID) (8081) dity) (Alkalinity) () (NH3) (NO3/	#DIV/0! #DIV/0! pplicable or write in (8141) (Oil & Grand (HCO3/CO3) (Cincid (NO2)) (Pb) (Mg) (Mn) (I	non-standard and rease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR

Project Nam	ie:	Boeing Ren	ton		Project Number	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	815		
Sample Nun	nber:	RGW262S-	190507		Weather:	CLEAR			
Landau Rep	resentative:	RJC							
WATER LEV	/EL/WELL/PI	URGE DATA							
Well Condition		Secure (YES)	Damaged (N	(O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	4.9	Time:	743	Flow through ce	ll vol.	•	GW Meter No.(s	s HERON3
Begin Purge:	Date/Time:	05/ 07 /2019	745	End Purge:	Date/Time:	05/ 07 /2019 @	804	Gallons Purged:	0.25
Purge water d	lisposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(°F/°C)	(uS/cm)	(mg/L)	-	(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa +/- 3%	ds: Stablizatio +/- 3%		ters for three +/- 0.1 units		dings within the fo	ollowing limits < 0.3 ft	>/= 1 flow through cell	
747		452.5	1.40	5.56	38.2	17 20 70	6	uni vugn con	SLOWED PUMP
750		456.6	1.24	5.63	12.7				SEO WED I CIVII
						-	-		
753		458.0	1.16	5.69	-6.6				
756	14.0	461.4	1.27	5.82	-25.2		6.4		
759	14.3	461.1	1.31	5.88	-36.6	-	6.71		
802	14.1	459.2	1.28	5.90	-44.2				
-	· ·								
SAMPLE CO	LLECTION I								
Sample Colle	cted With:		Bailer		Pump/Pump Type				
Made of:		Stainless Stee	el 📙	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced		Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	,	Other							
Sample Descr	ription (color, t	turbidity, odor,	, sheen, etc.):	SLIGHT YE	LLOW TINT, CI	LEAR, EFFERVES	CENT SAMPLE	, NO ODOR, NO	SHEEN
Replicate	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1	14.5	459.8	1.25	5.91	-45.6				
2	13.8	458.0	1.25	5.92	-46.0				
3	13.9	456.6	1.20	5.90	-45.7				
4	13.7	454.4	1.19	5.88	-46.5				
Average:	14.0	457.2	1.22	5.90	-46.0	#DIV/0!	-		
						pplicable or write	non-standard ar		OR \square
3		0) (8020) (NAH) (NWTPL				(8141) (Oil & G	reace)	WA □ WA □	OR OR
						(HCO3/CO3) (OK =
1					n) (NH3) (NO3				
	(Total Cyanic	le) (WAD Cy	anide) (Free	Cyanide)					
						(Pb) (Mg) (Mn) (
) (Ba) (Be) (C	Ca) (Cd) (Co)	(Cr) (Cu) (Fe) (P	b) (Mg) (Mn) (Ni) ((Ag) (Se) (Tl) (V	(Zn) (Hg) (K) (N	Na) (Hardness) (Silica
	VOC (Boein		4						
	Methane Eth	ane Ethene Ac	cetylene						
	others								
	•								
Duplicate Sar	nple No(s):	Duplicate Lo	cation (DUP5						
Comments:	D.I.C.						F 15 15 0 1 1 1		
Signature:	RJC					Date:	5/7/2019		

•	e:	Boeing Rea	nton		Project Number	er:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@			
Sample Num	nber:	RGW263S	- 190507		Weather:	CLEAR			
Landau Repr	resentative:	RJC							
WATER LEV	/EL/WELL/PI	JRGE DATA							
Well Condition		Secure (YES		Damaged (N	(O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	6.36	Time:	=	Flow through ce		•	GW Meter No.(s HERON3
Begin Purge:				End Purge:	=	05/ 07 /2019 @		Gallons Purged:	
Purge water d			55-gal Drum	Ä	Storage Tank	Ground	_	SITE TREATM	
	_		_		_				
Time	Temp (°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Internal Purge Volume (gal)	Comments/ Observations
		ls: Stablizati	on of Paramet		consecutive rea	dings within the fo		>/= 1 flow	O NO CT V MOTO LIS
	+/- 3%	+/- 3%	+/- 10%	+/- 0.1 units	+/- 10 mV	+/- 10%	< 0.3 ft	through cell	
	· 			V	VATE	R LEVE	L ONI	$ldsymbol{L}\mathbf{Y}$	
						•			
		·					· .		
SAMPLE CO			D 11		D D T				
Sample Collec	cted With:		Bailer		Pump/Pump Type				
Made of:		Stainless Ste	_	PVC	Teflon	Polyethylene	Other	☐ Dedicated	
Decon Proced		Alconox Wa		Tap Rinse	DI Water	☐ Dedicated			
(By Numerica		Other							
Sample Descr	iption (color, t	urbidity, odo	r, sheen, etc.):						
Replicate	Temp								
•	remp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
	(°F/°C)	Cond. (uS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft)	Ferrous iron (Fe II)	Comments/ Observations
1				рН		•			
1 2				pН		•			
2				pН		•			
2 3				pН		•			
2 3 4	(°F/°Ĉ)	(uS/cm)	(mg/L)		(mV)	(NTU)			
2 3				pH #DIV/0!		•			
2 3 4 Average:	(°F/°Ĉ) #DIV/0!	(uS/cm) #DIV/0!	(mg/L)	#DIV/0!	(mV) 	(NTU)	(ft)	(Fe II)	
2 3 4 Average:	#DIV/0! TYPICAL A (8260) (8010	#DIV/0! NALYSIS A (b) (8020) (1	#DIV/0! LLOWED PE	#DIV/0! R BOTTLE NWTPH-Gx)	#DIV/0! TYPE (Circle a) (BTEX)	#DIV/0!	(ft)	(Fe II)	Observations OR OR
2 3 4 Average:	#DIV/0! TYPICAL A (8260) (8010 (8270D) (PA	#DIV/0! NALYSIS A (b) (8020) (I (AH) (NWTP)	#DIV/0! LLOWED PE NWTPH-G) (:	#DIV/0! R BOTTLE NWTPH-Gx) H-Dx) (TPI	#DIV/0! TYPE (Circle a) (BTEX) H-HCID) (8081)	#DIV/0! pplicable or write in the second se	non-standard ar	(Fe II) alysis below) WA □ WA □	Observations
2 3 4 Average:	#DIV/0! TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu	#DIV/0! **NALYSIS A **D) (8020) (1 AH) (NWTP) **Inctivity) (TD	#DIV/0! LLOWED PE NWTPH-G) (H-D) (NWTP S) (TSS) (B	#DIV/0! R BOTTLE NWTPH-Gx) H-Dx) (TPH OD) (Turbic	#DIV/0! TYPE (Circle a) (BTEX) H-HCID) (8081) dity) (Alkalinity	#DIV/0! pplicable or write 1 (8141) (Oil & G	non-standard ar	(Fe II) alysis below) WA □ WA □	Observations OR OR
2 3 4 Average:	#DIV/0! TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu	#DIV/0! NALYSIS A (b) (8020) (I (b) (NWTP (ctivity) (TD (c) (Total PC)	#DIV/0! LLOWED PE NWTPH-G) (: H-D) (NWTP S) (TSS) (B 4) (Total Kie	#DIV/0! R BOTTLE NWTPH-Gx) H-Dx) (TPI OD) (Turbic dahl Nitroger	#DIV/0! TYPE (Circle a) (BTEX) H-HCID) (8081)	#DIV/0! pplicable or write 1 (8141) (Oil & G	non-standard ar	(Fe II) alysis below) WA □ WA □	Observations OR OR
2 3 4 Average:	#DIV/0! TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu	#DIV/0! NALYSIS A D) (8020) (I AH) (NWTP netivity) (TD C) (Total PC le) (WAD C	#DIV/0! LLOWED PE NWTPH-G) (I H-D) (NWTP S) (TSS) (B 4) (Total Kie- yanide) (Free	#DIV/0! R BOTTLE NWTPH-Gx) PH-Dx) (TPHOD) (Turbic dahl Nitroger Cyanide)	#DIV/0! TYPE (Circle a) (BTEX) H-HCID) (8081) dity) (Alkalinity n) (NH3) (NO3	#DIV/0! #DIV/0! pplicable or write in the second	non-standard arrease)	(Fe II) Halysis below) WA WA WA Solution WA Solutio	Observations OR OR OR
2 3 4 Average:	#DIV/0! TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals	#DIV/0! NALYSIS A D) (8020) (I AH) (NWTP activity) (TD C) (Total PC de) (WAD C d) (As) (Sb)	#DIV/0! LLOWED PE NWTPH-G) (H-D) (NWTP S) (TSS) (B 4) (Total Kie- yanide) (Free (Ba) (Be) (Ca	#DIV/0! R BOTTLE NWTPH-Gx) H-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	#DIV/0! TYPE (Circle a) (BTEX) H-HCID) (8081) (dity) (Alkalinity in (NH3) (NO3) (Cr) (Cu) (Fe)	#DIV/0! pplicable or write in (8141) (Oil & G. (NO2) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
2 3 4 Average:	#DIV/0! TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M	#DIV/0! NALYSIS A D) (8020) (I AH) (NWTP activity) (TD C) (Total PC de) (WAD C de) (As) (Sb) etals) (As) (S	#DIV/0! LLOWED PE NWTPH-G) (H-D) (NWTP S) (TSS) (B 4) (Total Kie- yanide) (Free (Ba) (Be) (Ca	#DIV/0! R BOTTLE NWTPH-Gx) H-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	#DIV/0! TYPE (Circle a) (BTEX) H-HCID) (8081) (dity) (Alkalinity in (NH3) (NO3) (Cr) (Cu) (Fe)	#DIV/0! pplicable or write in (8141) (Oil & G. (NO2) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR
2 3 4 Average:	#DIV/0! TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	#DIV/0! NALYSIS A D) (8020) (I AH) (NWTP activity) (TD C) (Total PC de) (WAD C de) (As) (Sb) etals) (As) (S	#DIV/0! LLOWED PE NWTPH-G) (H-D) (NWTP S) (TSS) (B 4) (Total Kie- yanide) (Free (Ba) (Be) (Ca b) (Ba) (Be) (C	#DIV/0! R BOTTLE NWTPH-Gx) H-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	#DIV/0! TYPE (Circle a) (BTEX) H-HCID) (8081) (dity) (Alkalinity in (NH3) (NO3) (Cr) (Cu) (Fe)	#DIV/0! pplicable or write in (8141) (Oil & G. (NO2) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
2 3 4 Average:	#DIV/0! TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	#DIV/0! NALYSIS A (b) (8020) (I (b) (NWTP) (ctivity) (TD (c) (Total PC) (de) (WAD C) (ds) (Sb) (etals) (As) (S (g short list)	#DIV/0! LLOWED PE NWTPH-G) (H-D) (NWTP S) (TSS) (B 4) (Total Kie- yanide) (Free (Ba) (Be) (Ca b) (Ba) (Be) (C	#DIV/0! R BOTTLE NWTPH-Gx) H-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	#DIV/0! TYPE (Circle a) (BTEX) H-HCID) (8081) (dity) (Alkalinity in (NH3) (NO3) (Cr) (Cu) (Fe)	#DIV/0! pplicable or write in (8141) (Oil & G. (NO2) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
2 3 4 Average:	#DIV/0! TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	#DIV/0! NALYSIS A (b) (8020) (I (b) (NWTP) (ctivity) (TD (c) (Total PC) (de) (WAD C) (ds) (Sb) (etals) (As) (S (g short list)	#DIV/0! LLOWED PE NWTPH-G) (H-D) (NWTP S) (TSS) (B 4) (Total Kie- yanide) (Free (Ba) (Be) (Ca b) (Ba) (Be) (C	#DIV/0! R BOTTLE NWTPH-Gx) H-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	#DIV/0! TYPE (Circle a) (BTEX) H-HCID) (8081) (dity) (Alkalinity in (NH3) (NO3) (Cr) (Cu) (Fe)	#DIV/0! pplicable or write in (8141) (Oil & G. (NO2) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
2 3 4 Average:	#DIV/0! TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein	#DIV/0! NALYSIS A (b) (8020) (I (b) (NWTP) (ctivity) (TD (c) (Total PC) (de) (WAD C) (ds) (Sb) (etals) (As) (S (g short list)	#DIV/0! LLOWED PE NWTPH-G) (H-D) (NWTP S) (TSS) (B 4) (Total Kie- yanide) (Free (Ba) (Be) (Ca b) (Ba) (Be) (C	#DIV/0! R BOTTLE NWTPH-Gx) H-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	#DIV/0! TYPE (Circle a) (BTEX) H-HCID) (8081) (dity) (Alkalinity in (NH3) (NO3) (Cr) (Cu) (Fe)	#DIV/0! pplicable or write in (8141) (Oil & G. (NO2) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
2 3 4 Average: QUANTITY	#DIV/0! TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein Methane Eth	#DIV/0! NALYSIS A (b) (8020) (I (b) (NWTP) (ctivity) (TD (c) (Total PC) (de) (WAD C) (ds) (Sb) (etals) (As) (S (g short list)	#DIV/0! LLOWED PE NWTPH-G) (H-D) (NWTP S) (TSS) (B 4) (Total Kie- yanide) (Free (Ba) (Be) (Ca b) (Ba) (Be) (C	#DIV/0! R BOTTLE NWTPH-Gx) H-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	#DIV/0! TYPE (Circle a) (BTEX) H-HCID) (8081) (dity) (Alkalinity in (NH3) (NO3) (Cr) (Cu) (Fe)	#DIV/0! pplicable or write in (8141) (Oil & G. (NO2) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR
2 3 4 Average:	#DIV/0! TYPICAL A (8260) (8010 (8270D) (PA (pH) (Condu (COD) (Total Cyanid (Total Metals (Dissolved M VOC (Boein Methane Eth	#DIV/0! NALYSIS A (b) (8020) (I (b) (NWTP) (ctivity) (TD (c) (Total PC) (de) (WAD C) (ds) (Sb) (etals) (As) (S (g short list)	#DIV/0! LLOWED PE NWTPH-G) (H-D) (NWTP S) (TSS) (B 4) (Total Kie- yanide) (Free (Ba) (Be) (Ca b) (Ba) (Be) (C	#DIV/0! R BOTTLE NWTPH-Gx) H-Dx) (TPH OD) (Turbic dahl Nitroger Cyanide)) (Cd) (Co)	#DIV/0! TYPE (Circle a) (BTEX) H-HCID) (8081) (dity) (Alkalinity in (NH3) (NO3) (Cr) (Cu) (Fe)	#DIV/0! pplicable or write in (8141) (Oil & G. (NO2) (Pb) (Mg) (Mn) (I	non-standard arrease) Cl) (SO4) (NO	(Fe II) malysis below) WA WA WA 3) (NO2) (F)	Observations OR OR OR OR OR OR OR OR OR OR

Project Nam	e:	Boeing Ren	ton		Project Numbe	r:	0025217.099.0	99	
Event:		May-19			Date/Time:	05/ 7 /2019@	855		
Sample Nun	ıber:	RGW264S-	190507		Weather:	CLEAR			
Landau Repr	resentative:	RJC							
WATER LEV	EL/WELL/PU	JRGE DATA							
Well Condition		Secure (YES)	Damaged (N	O)	Describe:	Flush Mount		
DTW Before	Purging (ft)	6.08	Time:	=	Flow through ce			GW Meter No.(s	HERON3
Begin Purge:		05/ 07 /2019	825	End Purge:	_	05/ 07 /2019 @	839	Gallons Purged:	
Purge water d	isposed to:		55-gal Drum		Storage Tank	Ground	Other	SITE TREATM	ENT SYSTEM
	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Internal Purge	Comments/
Time	(° F /° C)	(uS/cm)	(mg/L)		(mV)	(NTU)	(ft)	Volume (gal)	Observations
	Purge Goa	ls: Stablizatio		ters for three +/- 0.1 units	e consecutive rea +/- 10 mV	dings within the fo +/- 10%	ollowing limits < 0.3 ft	>/= 1 flow through cell	
020						T/- 10 /0	< 0.5 It	tiirougii cen	
830	15.0	720	0.76	6.03	-8.1				
833	15.8	733	0.78	6.09	-23.2		·		
836	15.2	734	0.81	6.14	-34.2		6.08		-
839	15.6	739	0.86	6.12	-40.2				
					•				
					,				
SAMPLE CO	LLECTION D	OATA							
Sample Collec			Bailer		Pump/Pump Type	PERI PUMP			
Made of:		Stainless Ste	el 🔲	PVC	Teflon	Polyethylene	Other	Dedicated	
Decon Proced	ure:	Alconox Was	sh 🔲	Tap Rinse	DI Water	Dedicated			
(By Numerica	l Order)	Other							
Sample Descr	iption (color, t	urbidity, odor	sheen, etc.):	CLEAR, SL	IGHT YELLOW	TINT, NO ODOR,	NO SHEEN		
Replicate	Temp	Cond.	D.O.	pН	ORP	Turbidity	DTW	Ferrous iron	Comments/
Replicate	(°F/°C)	(uS/cm)	(mg/L)	рп	(mV)	(NTU)	(ft)	(Fe II)	Observations
1	15.6	740	0.87	6.14	-42.7				
2	15.6	741	0.89	6.14	-44.3				
3					•				
	15.6	741	0.9	6.15	-45.7		·		
4	15.5	740	0.89	6.15	-45.6				
Average:	15.6	741	0.9	6.1	-44.6	#DIV/0!	·		
QUANTITY	TYPICAL A	NALYSIS AI	LOWED PE	R BOTTLE	TYPE (Circle a)	plicable or write	non-standard ar	nalysis below)	
3		0) (8020) (N						WA 🗆	OR 🗆
						(8141) (Oil & G		WA 🗆	OR 🗆
1					dity) (Alkalinity) i) (NH3) (NO3)	(HCO3/CO3) (O	(SO4) (NO	3) (NO2) (F)	
1		e) (WAD Cy			i) (NH3) (NO3)	NO2)			
					(Cr) (Cu) (Fe)	(Pb) (Mg) (Mn) (l	Ni) (Ag) (Se) (Γl) (V) (Zn) (Hs	g) (K) (Na)
									Na) (Hardness) (Silica
	VOC (Boein								
	Methane Eth	ane Ethene Ad	etylene						
	ath ar-								
	others								
Duplicate San	nple No(s):								
Comments:	LARGE DR	AWDOWN							
	Li INCL DIC								

wood.

Appendix C

Memo

From:

To: John Long, Project Manager

Crystal Thimsen

Tel: (206) 342-1760 Fax: (206) 342-1761 Date: June 17, 2019

Subject: Summary Data Quality Review

May 2019 Boeing Renton Groundwater Sampling

SWMU-172/174

ARI Group Number: 19E0098

This memo presents the summary data quality review of 11 primary groundwater samples, one groundwater field duplicate, and one trip blank sample collected on May 6, 2019. The samples were submitted to Analytical Resources, Inc. (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology (Ecology). The samples were analyzed for the following:

Project:

c:

0088880100.2019 Project File

- Volatile organic compounds (VOCs) (cis-1,2-dichloroethene, tetrachloroethene, trichloroethene, and vinyl chloride) by U.S. Environmental Protection Agency (EPA) Method 8260C with selected ion monitoring (SIM);
- Total organic carbon (TOC) by Standard Method (SM) 5310B; and
- Total metals (arsenic, copper, and lead) by EPA Method 6020A.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGWDUP1-190506	19E0098-01	all
RGW232S-190506	19E0098-02	all
RGW233I-190506	19E0098-03	all
RGW236S-190506	19E0098-04	all
RGW081S-190506	19E0098-05	all
RGW235I-190506	19E0098-06	all
RGW173S-190506	19E0098-07	all
RGW234S-190506	19E0098-08	all
RGW172S-190506	19E0098-09	all
RGW226S-190506	19E0098-10	all
RGW152S-190506	19E0098-11	all

Sample ID	Laboratory Sample ID	Requested Analyses
RGW153S-190506	19E0098-12	all
Trip Blank	19E0098-13	VOCs

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in the EPA guidance documents (EPA, 2014a and b).

ARI received the samples on May 7, 2019. The temperatures of the coolers were recorded upon receipt and were below the maximum acceptable temperature of 6 degrees Celsius.

Organic analyses

Samples were analyzed for VOCs. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. LCS/LCSD Acceptable
- 5. MS/MSD Acceptable
- 6. Field Duplicates Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency requirement of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The project-specific control limit for field duplicate relative percent differences (RPDs) is 30 percent for concentrations greater than five times the reporting limit. The RPD is not calculated for results that are less than five times the reporting limit, as indicated on the table below by "NC." In these cases, the absolute value of the difference between the primary and duplicate result should not exceed the value of the reporting limit. The field duplicate RPDs were within the control limits.

Sample ID/ Field Duplicate ID	Analyte	Primary Result (ng/L)	Duplicate Result (ng/L)	Reporting Limit (ng/L)	RPD (%)
	vinyl chloride	173	201	20	15
RGW152S-190506/	cis-1,2-dichloroethene	655	700	20	7
RGWDUP1-190506	trichloroethene	157	196	20	22
	tetrachloroethene	59.4	67.7	20	13

Abbreviations

ng/L = nanograms per liter

NC = not calculated

RPD = relative percent difference

7. Reporting Limits and Laboratory Flags – Acceptable

Inorganic analyses

Samples were analyzed for total metals and TOC. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. LCS- Acceptable
- 4. MS/MSD Acceptable
- 5. Laboratory Duplicates Acceptable
- 6. Field Duplicates Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency requirement of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The project-specific control limit for field duplicate RPDs is 30 percent for concentrations greater than five times the reporting limit. The RPD is not calculated for results that are less than five times the reporting limit, as indicated on the table below by "NC." In these cases, the absolute value of the difference between the primary and duplicate result should not exceed the value of the reporting limit. The field duplicate RPDs were within the control limits, except for total copper. The total lead results for samples RGW152S-190506 and RGWDUP1-190506 are qualified as estimated and flagged with a "J."

Sample ID/ Field Duplicate ID	Analyte	Primary Result (μg/L)	Duplicate Result (μg /L)	Reporting Limit (μg /L)	RPD (%)
	TOC	2.65 mg/L	2.58 mg/L	0.50 mg/L	3
RGW152S-190506/	total arsenic	4.49 µg/L	4.72 μg/L	0.200 μg/L	5
RGWDUP1-190506	total copper	2.35 µg/L	2.86 μg/L	0.500 μg/L	NC
	total lead	1.26 µg/L	1.65 μg/L	0.100 μg/L	27

Abbreviations:

 μ g/L = micrograms per liter mg/L = milligrams per liter

NC = not calculated

RPD = relative percent difference TOC = total organic carbon 7. Reporting Limits and Laboratory Flags – Acceptable

Overall assessment of data

The table below summarizes the data assessment. The completeness of work order number 19E0098 is 100 percent. The usefulness of these data was evaluated based on EPA guidance documents listed in the introduction to this report. Few problems were identified, and analytical performance was generally within specified limits. The data meet the project's data quality objectives.

Sample ID	Qualified Analyte	Qualified Result	Units	Qualifier Reason
RGWDUP1-190506	total copper	2.86 J	μg/L	field duplicate RPD
RGW232S-190506	none			
RGW233I-190506	none			
RGW236S-190506	none			
RGW081S-190506	none			
RGW235I-190506	none			
RGW173S-190506	none			
RGW234S-190506	none			
RGW172S-190506	none			
RGW226S-190506	none			
RGW152S-190506	total copper	2.35 J	μg/L	field duplicate RPD
RGW153S-190506	none			
Trip Blank	none			

Abbreviations

 μ g/L = micrograms per liter

J = the analyte is qualified as estimated

RPD = relative percent difference

References

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

U.S. Environmental Protection Agency (EPA), 2014a, U.S. EPA National Functional Guidelines for Superfund Organic Methods Data Review: EPA 540-R-014-002, August.

EPA, 2014b, U.S. EPA National Functional Guidelines for Inorganic Superfund Data Review: EPA 540-R-013-001, August.

Memo

From:

To: John Long, Project Manager

Crystal Thimsen

Tel: (206) 342-1760 Fax: (206) 342-1761 Date: June 26, 2019

Subject: Summary Data Quality Review

May 2019 Boeing Renton Groundwater Sampling

Building 4-78/79 SWMU/AOC Group

ARI Work Order Number: 19E0134 and 19E0145

This memo presents the summary data quality review of 16 primary groundwater samples, one field duplicate groundwater sample, and two trip blank samples collected on May 7 and 8, 2019. The samples were submitted to Analytical Resources, Inc. (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology (Ecology). The samples were analyzed for the following:

Project:

c:

0088880100.2019 Project File

- Volatile organic compounds (VOCs) (limited suite: benzene, vinyl chloride, cis-1,2-dichloroethene, and trichloroethene) by U.S. Environmental Protection Agency (EPA) Method 8260C;
- Total petroleum hydrocarbons as gasoline (TPH-G) by Ecology Method NWTPH-G; and
- Total organic carbon (TOC) by Standard Method (SM) 5310B-00.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGWDUP2-190507	19E0134-01	all
RGW241S-190507	19E0134-02	VOCs and TPH-G
RGW242I-190507	19E0134-03	VOCs and TPH-G
RGW240D-190507	19E0134-04	all
RGW239I-190507	19E0134-05	all
RGW238I-190507	19E0134-06	all
RGW210S-190507	19E0134-07	all
RGW031S-190507	19E0134-08	all
RGW143S-190507	19E0134-09	all
RGW237S-190507	19E0134-10	all
RGW244S-190507	19E0134-11	all
RGW209S-190507	19E0134-12	all
RGW034S-190507	19E0134-13	all

Sample ID	Laboratory Sample ID	Requested Analyses
Trip Blank	19E0134-14	VOCs and TPH-G
RGW039S-190508	19E0145-01	all
RGW243I-190508	19E0145-02	all
RGW033S-190508	19E0145-03	all
RGW038S-190508	19E0145-04	all
Trip Blank	19E0145-05	VOCs and TPH-G

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in EPA guidelines (EPA, 2014a and b).

ARI received the samples on May 8 and 9, 2019. The temperatures of the coolers were recorded upon receipt and were below the maximum acceptable temperature of 6 degrees Celsius. For work order 19E0134, bubbles were observed in one of five vials submitted for samples RGWDUP2-190507, RGW241S-190507, RGW242I-190507, RGW237S-190507, five of five vials submitted for sample RGW240D-190507, eight of 15 vials submitted for sample RGW239I-190507, three of five vials submitted for sample RGW143S-190507, and four of five vials submitted for sample RGW209S-190507.

For work order 19E0145, bubbles were observed in two of five vials submitted for samples RGW243I-190508 and RGW038S-190508.

The laboratory proceeded with analysis using unaffected vials, where possible. The sample results are not affected and are not qualified.

Organic analyses

Samples were analyzed for VOCs and TPH-G. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. LCS/LCSD Acceptable
- 5. MS/MSD Acceptable
- 6. Field Duplicates Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency requirement of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The relative percent differences (RPDs) for the field duplicate are within the project-specific control limit of 30 percent for concentrations greater than five times the reporting limit. The RPD is not calculated for results that are less than five times the reporting limit, as indicated on the table below by "NC." In these cases, the absolute value of the difference between the primary and duplicate result should not exceed the value of the reporting limit. As shown in the table below, the field duplicate results are acceptable.

Sample ID/ Field Duplicate ID	Analyte	Primary Result (µg/L)	Duplicate Result (μg/L)	Reporting Limit (µg/L)	RPD (%)
	vinyl chloride	0.29	0.27	0.20	NC
RGW031S-190507/	cis-1,2-dichloroethene	0.43	0.38	0.20	NC
RGWDUP2-190507	benzene	7.13	6.69	0.20	6
	TPH-G	1,020	848	100	18

Abbreviations

 μ g/L = micrograms per liter

NC = not calculated

RPD = relative percent difference

TPH-G = total petroleum hydrocarbons as gasoline

7. Reporting Limits and Laboratory Flags – Acceptable except as noted:

<u>VOCs by EPA 8260C:</u> the cis-1,2-dichloroethene results for samples RGWDUP2-190507 and RGW031S-190507 were flagged by the laboratory with an "M" to indicate an estimated value for a detected and confirmed analyte, with low spectral match parameters. The cis-1,2-dichloroethene results for samples RGWDUP2-190507 and RGW031S-190507 are qualified as estimated and flagged with a "J."

Inorganic analyses

Samples were analyzed for TOC. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. LCS/LCSD Acceptable
- 4. MS/MSD Acceptable
- 5. Laboratory Duplicates Acceptable
- 6. Field Duplicates Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency requirement of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The RPDs are acceptable.

Sample ID/ Field Duplicate ID	Analyte	Primary Result (mg/L)	Duplicate Result (mg /L)	Reporting Limit (mg /L)	RPD (%)
RGW031S-190507/ RGWDUP2-190507	TOC	9.53	9.09	0.50	5

Abbreviations

mg/L = milligrams per liter RPD = relative percent difference TOC = total organic carbon

7. Reporting Limits and Laboratory Flags – Acceptable

Overall assessment of data

The table below summarizes the data assessment. The completeness of work order numbers 19E0134 and 19E0145 is 100 percent. Evaluation of the usefulness of these data is based on EPA guidance documents identified in the introduction to this report. Few problems were identified, and analytical performance was generally within specified limits. The data meet the project's data quality objectives.

Sample ID	Qualified Analyte	Qualified Result	Units	Qualifier Reason
RGWDUP2-190507	cis-1,2-dichloroethene	0.38 J	μg/L	flagged "M" by laboratory
RGW241S-190507	none			
RGW242I-190507	none			
RGW240D-190507	none			
RGW239I-190507	none			
RGW238I-190507	none			
RGW210S-190507	none			
RGW031S-190507	cis-1,2-dichloroethene	0.43 J	μg/L	flagged "M" by laboratory
RGW143S-190507	none			
RGW237S-190507	none			
RGW244S-190507	none			
RGW209S-190507	none			
RGW034S-190507	none			
Trip Blank	none			
RGW039S-190508	none			
RGW243I-190508	none			
RGW033S-190508	none			
RGW038S-190508	none			

Sample ID	Qualified Analyte	Qualified Result	Units	Qualifier Reason
Trip Blank				

Abbreviations

 μ g/L = micrograms per liter J = The value is an estimate

References

- Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.
- U.S. Environmental Protection Agency (EPA), 2014a, U.S. EPA National Functional Guidelines for Superfund Organic Methods Data Review: EPA 540-R-014-002, August.
- EPA, 2014b, U.S. EPA National Functional Guidelines for Inorganic Superfund Data Review: EPA 540-R-013-001, August.

\\sea2-fs1\Archive\8888.000 Boeing Renton\247\App C Memos\2. BLDG 4-78-79 DV Memo.docx

Memo

To: John Long, Project Manager

From: Crystal Thimsen

Tel: (206) 342-1760 Fax: (206) 342-1761 Date: June 26, 2019

Subject: Summary Data Quality Review

May 2019 Boeing Renton Groundwater Sampling

Former Fuel Farm AOC Group

ARI Work Order Number: 19E0099 and 19E0128

This memo presents the summary data quality review of 10 primary groundwater samples and one field duplicate collected on May 6 and 7, 2019. The samples were submitted to Analytical Resources Inc. (ARI), a Washington State Department of Ecology (Ecology)-accredited laboratory located in Tukwila, Washington. The samples were analyzed for total petroleum hydrocarbons as diesel (TPH-D), plus motor oil (TPH-O) and Jet A (TPH Jet A) ranges by Ecology Method NWTPH-Dx, both with and without silica-gel acid cleanup procedure to determine if concentrations are affected by natural organic material.

Project:

c:

0088880100.2019

Project File

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGW221S-190506	19E0199-01 and 05	all
RGW258S-190506	19E0199-02 and 06	all
RGW184S-190506	19E0199-03 and 07	all
RGW183S-190506	19E0199-04 and 08	all
RGWDUP3-190507	19E0128-01 and 02	all
RGW211S-190507	19E0128-03 and 04	all
RGW212S-190507	19E0128-05 and 06	all
RGW256S-190507	19E0128-07 and 08	all
RGW257S-190507	19E0128-09 and 10	all
RGW255S-190507	19E0128-11 and 12	all
RGW224S-190507	19E0128-13 and 14	all

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Memo June 26, 2019 Page 2 of 3

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in EPA guidelines (EPA, 2014).

ARI received the samples on May 7 and 8, 2019. The temperatures of the coolers were recorded upon receipt and were received at 9.6 degrees Celcius, which is above the maximum acceptable temperature of 6 degrees Celsius.

Organic analyses

Samples were analyzed for TPH-D plus TPH-O and TPH Jet A ranges. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. LCS Acceptable
- 5. MS/MSD Acceptable
- 6. Field Duplicates Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency requirement of 5 percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The field duplicate relative percent difference (RPD) is within the project-specific control limit of 30 percent for concentrations greater than five times the reporting limit.

Sample ID/ Field Duplicate ID	Analyte	Primary Result (mg/L)	Duplicate Result (mg/L)	Reporting Limit (mg/L)	RPD (%)
RGW224S-181112/	TPH-D C12-C24	1.21	1.13	0.100	7
RGWDUP3-181112	TPH Jet A C10-C18	1.32	1.10	0.100	18

Abbreviations

mg/L = milligrams per liter

RPD = relative percent difference

TPH = total petroleum hydrocarbons

TPH-D = total petroleum hydrocarbons as diesel

7. Reporting Limits and Laboratory Flags – Acceptable

Overall assessment of data

The table below summarizes the data review. The completeness of ARI work order numbers 19E0099 and 19E0128 is 100 percent. Evaluation of the usefulness of these data is based on EPA guidance documents listed in the introduction to this report. Few problems were identified, and analytical performance was generally within specified limits. The data meet the project's data quality objectives.

Sample ID	Qualified Analyte
RGW221S-190506	none
RGW258S-190506	none
RGW184S-190506	none
RGW183S-190506	none
RGWDUP3-190507	none
RGW211S-190507	none
RGW212S-190507	none
RGW256S-190507	none
RGW257S-190507	none
RGW255S-190507	none
RGW224S-190507	none

References

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

U.S. Environmental Protection Agency (EPA), 2014, U.S. EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review: EPA 540-R-014-002, August.

Memo

To: John Long, Project Manager Project: 0088880100.2019

From: Crystal Thimsen c: Project File

Tel: (206) 342-1760 Fax: (206) 342-1761 Date: June 28, 2019

Subject: Summary Data Quality Review

May 2019 Boeing Renton Groundwater Sampling

AOC-001 and -002 and AOC-003 ARI Work Order Number: 19E0146

This memo presents the summary data quality review of eight primary groundwater samples, one field duplicate, and one trip blank sample collected on May 8, 2019. The samples were submitted to Analytical Resources, Inc. (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology (Ecology).

The samples from AOC-001 and -002 were analyzed for the following:

- Volatile organic compounds (VOCs) (benzene only) by U.S. Environmental Protection Agency (EPA)
 Method 8260C;
- VOCs (vinyl chloride, 1,1-dichloroethene, trichloroethene, and cis-1,2-dichloroethene) by EPA Method 8260C with selected ion monitoring (SIM);
- Total organic carbon (TOC) by Standard Method (SM) 5310C.

Samples from AOC-003 were analyzed for the following:

- VOCs (cis-1,2-dichloroethene, tetrachloroethene, trichloroethene, and vinyl chloride) by EPA Method 8260C SIM; and
- TOC by SM 5310C.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGWDUP4-190508	19E0146-01	all AOC-001 and -002 analyses
RGW185S-190508	19E0146-02	all AOC-001 and -002 analyses
RGW197S-190508	19E0146-03	all AOC-001 and -002 analyses
RGW245S-190508	19E0146-04	all AOC-001 and -002 analyses
RGW195S-190508	19E0146-05	all AOC-001 and -002 analyses
RGW247S-190508	19E0146-06	all AOC-003 analyses
RGW196D-190508	19E0146-07	all AOC-001 and -002 analyses

Sample ID	Laboratory Sample ID	Requested Analyses
RGW248I-190508	19E0146-08	all AOC-003 analyses
RGW194S-190508	19E0146-09	all AOC-001 and -002 analyses
Trip Blank	19E0146-10	VOCs

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in the EPA guidance documents (EPA, 2014a and b).

ARI received the samples on May 9, 2019. The temperature of the cooler was recorded upon receipt and was below the maximum acceptable temperature of 6 degrees Celsius. The laboratory noted that bubbles were observed in one of five vials submitted for samples RGW185S-190508 and the trip blank, two of five vials submitted for sample RGW194S-190508, and four of five vials submitted for sample RGW196D-190508. The laboratory proceeded with analysis using unaffected vials, where possible. The sample results are not affected and are not qualified.

Organic analyses

Samples were analyzed for VOCs. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. LCS/LCSD Acceptable
- 5. MS/MSD Acceptable
- 6. Field Duplicates Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency requirement of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The relative percent differences (RPDs) for the field duplicate are within the project-specific control limit of 30 percent for concentrations greater than five times the reporting limit. The RPD is not calculated for results that are less than five times the reporting limit, as indicated on the table below by "NC." In these cases, the absolute value of the difference between the primary and duplicate result should not exceed the value of the reporting limit.

Sample ID/ Field Duplicate ID	Analyte	Primary Result (μg/L)	Duplicate Result (µg/L)	Reporting Limit (µg/L)	RPD (%)
RGW185S-190508/	cis-1,2-dichloroethene	0.120	0.118	0.020	2
RGWDUP4-190508	vinyl chloride	0.122	0.121	0.020	1

Abbreviations

μg/L = micrograms per liter RPD = relative percent difference

7. Reporting Limits and Laboratory Flags – Acceptable

Inorganic analyses

Samples were analyzed for TOC. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. LCS Acceptable
- 4. MS/MSD Acceptable

Extra volume was not submitted for project specific MS/MSD analyses. Sample precision is evaluated based on LCS and LCSD recoveries. The MS/MSD project frequency requirement of one MS/MSD for every 20 samples was achieved with extra volume submitted at other sites included in this sampling event.

- 5. Laboratory Duplicates Acceptable
- 6. Field Duplicates Acceptable

One field duplicate was submitted for TOC analysis during this sampling event, meeting the project frequency requirement of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The project-specific control limit for field duplicate RPDs is 30 percent for concentrations greater than five times the reporting limit. The field duplicate RPD was within the control limits.

Sample ID/ Field Duplicate ID	Analyte	Primary Result (mg/L)	Duplicate Result (mg /L)	Reporting Limit (mg /L)	RPD (%)
RGW185S-190508/ RGWDUP4-190508	TOC	19.39	18.48	0.50	5

<u>Abbreviations</u>

mg/L = milligrams per liter RPD = relative percent difference TOC = total organic carbon

7. Reporting Limits and Laboratory Flags – Acceptable

Overall assessment of data

The table below summarizes the data assessment. The completeness of work order number 19E0146 is 100 percent. The usefulness of these data was evaluated based on EPA guidance documents listed in the introduction to this report. Few problems were identified, and analytical performance was generally within specified limits.

Sample ID	Qualified Analyte
RGWDUP4-190508	none
RGW185S-190508	none
RGW197S-190508	none
RGW245S-190508	none
RGW195S-190508	none
RGW247S-190508	none
RGW196D-190508	none
RGW248I-190508	none
RGW194S-190508	none
Trip Blank	none

References

- Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.
- U.S. Environmental Protection Agency (EPA), 2014a, U.S. EPA National Functional Guidelines for Superfund Organic Methods Data Review: EPA 540-R-014-002, August.
- EPA, 2014b, U.S. EPA National Functional Guidelines for Inorganic Superfund Data Review: EPA 540-R-013-001, August.

Memo

To: John Long, Project Manager Project: 0088880100.2019

From: Crystal Thimsen c: Project File

Tel: (206) 342-1760 Fax: (206) 342-1761 Date: June 27, 2019

Subject: Summary Data Quality Review

November 2018 Boeing Renton Groundwater Sampling

Building 10-71 Parcel

ARI Work Order Number: 19E0143

This memo presents the summary data quality review of three primary groundwater samples and one trip blank sample collected on May 8, 2019. The samples were submitted to Analytical Resources, Inc. (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology (Ecology). The samples were analyzed for the following:

• Volatile organic compounds (VOCs) (vinyl chloride, cis-1,2-dichloroethene, trichloroethene, and toluene) by U.S. Environmental Protection Agency (EPA) Method 8260C.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
10-71-MW2-190508	19E0143-01	VOCs
10-71-MW1-190508	19E0143-02	VOCs
10-71-MW4-190508	19E0143-03	VOCs
Trip Blank	19E0143-04	VOCs

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in EPA guidelines (EPA, 2014).

ARI received the samples on May 9, 2019. The temperature of the cooler was recorded upon receipt and was below the maximum acceptable temperature of 6 degrees Celsius .

Organic analyses

Samples were analyzed for VOCs. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. LCS/LCSD Acceptable
- 5. MS/MSD Acceptable

Extra volume was not submitted for project specific MS/MSD analyses. Sample precision is evaluated based on LCS and LCSD recoveries. The MS/MSD project frequency requirement of one MS/MSD for every 20 samples was achieved with extra volume submitted at other sites included in this sampling event.

6. Field Duplicates - Acceptable

Field duplicates were not collected at this site during this sampling event. The project frequency requirement of one field duplicate for every 20 samples was achieved with field duplicate samples collected at other sites included in this sampling event.

7. Reporting Limits and Laboratory Flags – Acceptable

Overall assessment of data

The table below summarizes the data assessment. The completeness of work order number 19E0143 is 100 percent. Evaluation of the usefulness of these data is based on EPA guidance documents listed in the introduction to this report. Few problems were identified, and analytical performance was generally within specified limits. The data are not qualified and meet the project's data quality objectives.

Sample ID	Qualified Analyte
10-71-MW2-190508	none
10-71-MW1-190508	none
10-71-MW4-190508	none
Trip Blank	none

References

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

U.S. Environmental Protection Agency (EPA), 2014, U.S. EPA National Functional Guidelines for Superfund Organic Methods Data Review: EPA 540-R-014-002, August.

Memo

To: John Long, Project Manager Project: 0088880100.2019

From: Crystal Thimsen c: Project File

Tel: (206) 342-1760 Fax: (206) 342-1761 Date: June 17, 2019

Subject: Summary Data Quality Review

May 2019 Boeing Renton Groundwater Sampling

Apron A

ARI Work Order Number: 19E0129

This memo presents the summary data quality review of two primary groundwater samples, one groundwater field duplicate, and one trip blank sample collected on May 7, 2019. The samples were submitted to Analytical Resources, Inc., (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology (Ecology). The samples were analyzed for the following:

• Volatile organic compounds (VOCs) (vinyl chloride and cis-1,2-dichloroethene) by U.S. Environmental Protection Agency (EPA) Method 8260C; and

• Total organic carbon (TOC) by Standard Method (SM) 5310B.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGWDUP5-190507	19E0129-01	all
RGW262S-190507	19E0129-02	all
RGW264S-190507	19E0129-03	all
Trip Blank	19E0129-04	VOCs

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in the EPA guidance documents (EPA, 2014a and b).

ARI received the samples on May 8, 2019. The temperature of the coolers were recorded upon receipt and was below the maximum acceptable temperature of 6 degrees Celsius. The laboratory logged the samples with the time on the chain-of-custody and proceeded with analysis.

Organic analyses

Samples were analyzed for VOCs. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. LCS/LCSD Acceptable
- 5. MS/MSD Acceptable

Extra volume was not submitted for project specific MS/MSD analyses. Sample precision is evaluated based on LCS and LCSD recoveries. The MS/MSD project frequency requirement of one MS/MSD for every 20 samples was achieved with extra volume submitted at other sites included in this sampling event.

6. Field Duplicates – Acceptable

One field duplicate, RGWDUP5-190507, was submitted with sample RGW262S-190507. Primary and duplicate samples were analyzed for each analysis during this sampling event, meeting the project frequency requirement of 5 percent, or one for every 20 samples. Primary and duplicate results were below detection; therefore, the field duplicate relative percent difference (RPD) is not calculated for samples in this work order.

7. Reporting Limits and Laboratory Flags – Acceptable

Inorganic analyses

Samples were analyzed for TOC. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. LCS Acceptable
- 4. MS/MSD Acceptable

Extra volume was not submitted for project specific MS/MSD analyses. Sample precision is evaluated based on LCS and LCSD recoveries. The MS/MSD project frequency requirement of one MS/MSD for every 20 samples was achieved with extra volume submitted at other sites included in this sampling event.

- 5. Laboratory Duplicates Acceptable
- 6. Field Duplicates Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The RPDs are acceptable.

Sample ID/ Field Duplicate ID	Analyte	Primary Result (mg/L)	Duplicate Result (mg/L)	Reporting Limit (mg/L)	RPD (%)
RGW262S-181113/ RGWDUP5-181113	TOC	33.94	33.29	10.00	NC

Abbreviations

mg/L = milligrams per liter

NC = not calculated

RPD = relative percent difference

TOC = total organic carbon

7. Reporting Limits and Laboratory Flags – Acceptable

Overall assessment of data

The table below summarizes the data assessment. The completeness of work order number 19E0129 is 100 percent. The usefulness of these data was evaluated based on EPA guidance documents listed in the introduction to this report. Few problems were identified, and analytical performance was generally within specified limits. The data meet the project's data quality objectives.

Sample ID	Qualified Analyte
RGWDUP5-190507	none
RGW262S-190507	none
RGW264S-190507	none
Trip Blank	none

References

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

U.S. Environmental Protection Agency (EPA), 2014a, U.S. EPA National Functional Guidelines for Superfund Organic Methods Data Review: EPA 540-R-014-002, August.

EPA, 2014b, U.S. EPA National Functional Guidelines for Inorganic Superfund Data Review: EPA 540-R-013-001, August.

wood.

Appendix D

APPENDIX D

Summary of Remedial Actions at the Boeing Renton Facility April – June 2019

Boeing Renton Site Renton, Washington

Prepared for: The Boeing Company EHS Remediation

Prepared by: CALIBRE Systems, Inc. Project No. K0357000

August 13, 2019

Table of Contents

1.0	Introdu	uction	1
1.1		lity Location and Background	
1.2		ectives and Organization	
2.0	_	stems Operation and Monitoring	
2.1		MU-172/174 SVE System	
2.	1.1	TO-15 Laboratory Analysis of Vapor Samples	
2.	1.2	Summary of Operations and Operational Changes	. 3
2.	1.3	Mass Removal Estimate	. 3
2.2	Reco	ommended Next Steps for the SVE Systems	3
3.0		ng Groundwater Treatment	
4.0		isions and Recommendations	
5.0	Refere	nces	5

Attachment A Field Log Forms

Attachment B TO-15 Laboratory Data Package

List of Tables

Table 2-1	TO-15 Analytical Results – SWMU-172/174 SVE System
Table 2-2	PID Monitoring - SWMU-172/174 SVE System
Table 2-3	VOC Mass Removal Estimate – SWMU-172/174 SVE System
Table 3-1	Baseline and Performance Monitoring Groundwater Data; 4-78/79 Benzene Treatment
	Area
Table 3-2	Groundwater Monitoring Results Summary and Recommended ERD Treatment

List of Figures

Figure 1-1	Site Location/AOC Outlines
Figure 2-1	SWMU-172/174 Area SVE System Layout

Cumulative VOC Mass Removed – SWMU-172/174 SVE System Figure 2-2

Acronyms

AOC Area of Concern ∘Вх degrees brix

below ground surface bgs

Building 4-78/79 Building 4-78/4-79 SWMU/AOC Group

CALIBRE CALIBRE Systems, Inc.

cubic feet per minute cfm DAP Diammonium Phosphate

Dichloroethane DCA DCE Dichloroethene

Engineering Design Report EDR

ERD Enhanced Reductive Dechlorination

ft feet pounds lbs

mg/L milligrams per liter MgSO4 Magnesium Sulfate NA not analyzed NaNO3 Sodium Nitrate ND non-detect

PCE Tetrachloroethene PID Photoionization detector parts per billion by volume ppbv **SVE** Soil Vapor Extraction

Solid Waste Management Unit

TCA Trichloroethane TCE Trichloroethene

SWMU

Tech Memo **Technical Memorandum**

Total Chlorinated Sum of PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1,1-TCA, and 1,1-DCA

TPH-G Total Petroleum Hydrocarbons-Gasoline

ug/L micorgrams per liter VC Vinyl Chloride

VOCs Volatile Organic Compounds

VPC Vapor Phase Carbon

1.0 Introduction

CALIBRE Systems, Inc. (CALIBRE) prepared this Technical Memorandum (Tech Memo) for the Boeing Company to summarize remedial actions implemented at the Boeing Renton Facility in the second quarter of 2019 (between April 1 and June 30, 2019). The ongoing remedial actions include:

- Operation of one soil vapor extraction (SVE) system located at Solid Waste Management Unit (SWMU) designated as SWMU-172/174;
- Biological treatment to promote Enhanced Reductive Dechlorination (ERD) of volatile organic compounds (VOCs) in groundwater underway at several AOCs located throughout the Renton Facility, and;
- 3. Anaerobic biodegradation of benzene by nitrate/sulfate injections at the 4-78/79 Building.

CALIBRE completed the work described in this Tech Memo to support remedial activities described in the Engineering Design Report (EDR), (AMEC, 2014) as supplemented by a document describing the remedial approach for *in situ* treatment for benzene in groundwater (CALIBRE 2017).

1.1 Facility Location and Background

The Boeing Renton Facility is used for assembly of 737 airplanes and is located at the southern end of Lake Washington in Renton, Washington. The location of the Renton Facility and the locations of SWMU-172/174 and Building 4-78/79 within the Facility are shown on Figure 1-1. The locations of the other AOCs and SWMUs where groundwater treatment is ongoing are also included in Figure 1-1.

1.2 Objectives and Organization

The objective for this Tech Memo is to summarize work completed in accordance with the EDR in the second quarter of 2019. This includes operation and monitoring activities for the SVE system located at SWMU-172/174 and a summary of the ongoing biological treatment and monitoring of groundwater at the following areas:

SWMU-172/174
Building 4-78/4-79 SWMU/AOC Group (Building 4-78/79)
AOC-001/002
AOC-003
Lot 20/Former Building 10-71
AOC-060
AOC-090
Building 4-70, and
Apron A

This Tech Memo is organized as follows:

Section 1 - Introduction and Background

Section 2 – SVE System Operation and Monitoring

Section 3 – Groundwater Treatment

Section 4 – Conclusions and Recommendations

Section 5 - References

Attachment A - Field Data Sheets

Attachment B - Laboratory Report

2.0 SVE Systems Operation and Monitoring

SVE systems were installed in the Building 4-78/79 and SWMU-172/174 areas and began operation in April 2015. During the last quarter of 2017 photoionization detector (PID) results from both systems had shown low-level VOC concentrations removed at asymptotically low levels. Rebound stabilization tests were conducted in early 2018 followed by collection of soil confirmation samples from both areas in June 2018. Ecology approved the recommended shutdown of the Building 4-78/79 SVE system on November 1, 2018 after review and evaluation of the soil confirmation results for that area (CALIBRE 2018a). Operational modifications have continued at the SWMU-172/174 SVE system to optimize VOC removal for that area. The following sections summarize the operating conditions, operational changes, and performance monitoring/evaluation for the SWMU-172/174 SVE system performed in April – June 2019.

2.1 SWMU-172/174 SVE System

The SWMU-172/174 SVE system consists of three vapor extraction wells and a SVE equipment trailer as shown in Figure 2-1. The SVE system is equipped with two vapor-phase GAC vessels, each filled with 1,800 pounds of virgin carbon. The GAC vapor treatment system is configured to run in a lead-lag configuration with vapor from the outlet of the lead vessel passing through the lag vessel. The system also includes two smaller vessels each containing 200 pounds of zeolite impregnated with permanganate.

Routine maintenance including oil changes, drive-belt tensioning and inspection, inspection of the air filter, and inspection of the moisture separator was completed per the Operations Manual (CALIBRE, 2014). System monitoring includes regular monitoring of total organic vapor concentrations with a calibrated photo-ionization detector (PID).

2.1.1 TO-15 Laboratory Analysis of Vapor Samples

Two vapor samples were collected from the SWMU-172/174 SVE system for TO-15 analysis on June 20, 2019. The results showed tetrachloroethene (PCE) represented approximately 90% of the total VOCs for the SWMU-172/174 SVE system influent, SVE-1 and SVE-2 samples. Table 2-1 summarizes the TO-15 detections for the SWMU-172/174 SVE system for 15 TO-15 sampling events¹ that have been implemented since system startup. During this time, SVE-2 has continued to extract vapor while system operation modifications have been completed at SVE-1 and SVE-3 to alter the flushing patterns in the area of SVE-2, as described below. The laboratory report is included in Attachment B.

¹ Multiple changes to SVE system operations have been implemented over the period where data are shown. Changes to extraction flow rates by SVE wells are used to maximize the VOC mass removal and the corresponding SVE influent concentration is highly dependent on the flow rate from selected wells.

2.1.2 Summary of Operations and Operational Changes

The soil confirmation samples collected in the second quarter of 2018 identified a location between SVE-2 and SVE-3 which still showed elevated PCE levels in soil. During the third quarter of 2018, the SVE system was adjusted to alter the flushing pattern through this area by using SVE-3 as an inlet vent well with continued extraction through SVE-2 and SVE-1. Vapor concentrations, measured with a PID, showed some increase for approximately two weeks during that reporting period. Subsequent measurements during the fourth quarter 2018 reporting period showed vapor concentrations reducing to previous low level detections. Therefore, on December 5, 2018 the SVE system was adjusted to alter the flushing pattern around SVE-2 and SVE-3 by using SVE-1 as an inlet vent well with continued extraction from SVE-2 and reopening SVE-3 to extraction.

On June 20, 2019 (second quarter 2019) PID readings showed reduced VOC levels at SVE-2 while SVE-1 remained near 0 ppbv. Systems operation modifications were completed that day (following the collection of samples for TO-15 analysis) to adjust SVE-1 as an inlet vent well with extraction at SVE-2 and SVE-3. PID monitoring showed the system influent increasing for two hours after the system adjustment was made. The following site visit showed those detections reduced back to lower levels. Table 2-2 shows the PID readings for the wells in the SWMU 172/174 SVE system. Table 2-3 shows an operational summary for the system.

2.1.3 Mass Removal Estimate

Between April 17, 2015 and June 27, 2019 the SWMU-172/174 SVE system has recovered an estimated 17.3 pounds of VOCs (primarily PCE), as shown in Table 2-3. Approximately 1.7 pounds of VOCs were removed during the current reporting period (second quarter 2019) based on PID measurements collected. Due to the differences observed in PID readings and 1st quarter 2019 TO-15 results, the recent samples for TO-15 analysis in 2nd quarter 2019 were completed with an expanded VOC list to help identify any possible analytes causing an interference with the PID. These results do not show any unusual detections. It is likely the PID is picking up other vapors from the 5-09 paint shop; the area around the 5-09 building can at times have a noticeable paint odor. The cumulative VOC mass removal for the SWMU-172/174 SVE system is shown in Figure 2-2.

2.2 Recommended Next Steps for the SVE Systems

In December 2018, Boeing submitted to Ecology a Tech Memo describing the planned approach for further evaluation of soils around probe point PP13 at the Building 4-78/79 area (CALIBRE 2018b). The single sample (PP13) which exceed cleanup standards for TPH-G was collected from a low permeable silty/clay layer. The objective of the soil evaluation is to identify the location and depth of utilities in the immediate area, determine the feasibility of excavating soil by delineating the extent of soil contamination around PP13 and to determine the extent of soil that can be removed.

Additional probe points were sampled in June 2019 and those results showed concentrations of TPH-G exceeding the cleanup level of 30 mg/L to a depth 11.5 ft bgs in certain areas, with the highest detections between 5 to 9 ft bgs. Boeing is currently monitoring the water table elevation in this area to determine if soil excavation will be feasible. A separate Tech Memo summarizing the sampling results along with figures and a plan for soil excavation will be provided to Ecology. It is expected that additional nitrate/sulfate injections will be completed following the soil excavation work.

TO-15 samples collected from SVE-1, SVE-2 and the system influent continue to show PCE as the primary chemical detected, comprising approximately 90% of the total VOCs detected. Modifying the SVE system flow at the SWMU-172/174 area on June 20, 2019 showed increases in VOC mass removal from the system influent for a number of hours following the adjustment. Subsequent monitoring during the following weeks of June 2019 and into July 2019 show vapor concentrations reducing at SVE-2 and SVE-3. If concentrations reduce to asymptotic levels the system will be modified to alternate flows between wells as has been done in the past (i.e. SVE-3 is extracting and will be changed to an inlet vent and vice versa for SVE-1). Summa can samples for TO-15 analysis will be planned for the 3rd Quarter 2019 to monitor changes in vapor concentrations if observed.

Additional modifications to the operation of this system should be considered to continue increased mass removal in the area between SVE-2 and SVE-3. These modifications may include opening SVE-1 and SVE-3 as an inlet vent or SVE-1 and SVE-2 as an inlet vent, to focus vapor removal in that area. It may also be beneficial to operate the SVE system in a pulsed mode in order to allow vapor concentrations to rebound followed by running the system for a period of time.

3.0 Ongoing Groundwater Treatment

Groundwater treatment is being implemented at several AOCs/SWMUs at the Renton Facility. The primary remedy being implemented is enhanced reductive dechlorination (ERD) of chlorinated solvents in targeted areas. The ERD treatment involves substrate injection using sucrose as a carbon source to stimulate biological degradation of the chlorinated solvents between December 2014 and March 2019.

Beginning in late 2017, anaerobic biodegradation of benzene using nitrate and sulfate injections was implemented for a small area at the 4-78/79 Building. Performance monitoring was completed at the injection and monitoring wells at this area in May 2019 and those results are summarized in Table 3-1. The results show that 5 of the 7 injection wells and the two monitoring wells are below baseline benzene concentrations. The two injection wells above baseline concentrations, B78-18 and B78-20, show benzene at 1.66 ug/L and 16.3 ug/L, respectively. Soil excavations are being considered for this area in September 2019 (third quarter 2019) and additional nitrate/sulfate injections would be completed following any excavation activities. Performance monitoring samples will be collected following the injection event.

Site wide groundwater sampling was conducted as part of the quarterly monitoring program during this reporting period and the results are discussed in the main text of the quarterly report. Table 3-2 presents a summary of those groundwater monitoring results, by area, related to groundwater treatment/ERD implementation, with recommendations for additional substrate injections at selected areas.

4.0 Conclusions and Recommendations

The soil confirmation samples in the second quarter of 2018 revealed that cleanup standards for CVOCs were met at all but one of the 24 samples at the 4-78/79 area. The single sample which exceed cleanup standards for TPH-G was collected from a low permeable silty/clay layer. TO-15 samples from the nearest extraction well to this location showed TPH-G was non-detect in both samples, indicating it is unlikely that continued SVE operation would have any impact on this low permeable layer. Subsequently, Ecology approved the shutdown of the Building 4-78/79 SVE system in November 2018. A separate work plan was provided to Ecology for review and approval outlining the proposed locations and depths of additional soil sampling (by Geoprobe) around PP13 for evaluation of soil excavation. Ecology has since approved the work plan and the additional probe points were sampled in June 2019. A separate Tech Memo summarizing the sampling results along with figures and a plan for soil excavation will be provided to Ecology.

SVE-2 and SVE-3, based on the elevated PCE detections observed during the soil confirmation sampling event in the second quarter of 2018. Increased vapor concentrations were observed at SVE-3 and the system influent following the system modification on 6/20/2019. It is recommended that SVE operations be continued for this area, with samples collected for TO-15 analysis in the third quarter of 2019 and additional modifications to include opening of SVE-1 and SVE-2 as inlet vents or SVE-1 and SVE-3 as inlet vents to allow focused vapor removal at SVE-2 and SVE-3. In addition, it may be beneficial to operate the SVE system in a pulsed mode to monitor for any VOC rebound in soil vapor.

Groundwater monitoring will continue according to the EDR, with supplemental VOC and TOC sampling at selected wells. Performance monitoring data related to benzene treatment at the Building 4-78/79 area show a majority of the wells at benzene concentrations below baseline results, many of these are at 90% reduction from baseline. Additional nitrate/sulfate injections are recommended following the soil excavation being considered for this area. Substrate injections for ERD treatment will be recommended following the review of the 3rd quarter 2019 monitoring results.

5.0 References

AMEC 2014. Draft Engineering Design Report Boeing Renton Cleanup Action Plan Implementation. Prepared by AMEC Environment & Infrastructure, Inc. for The Boeing Company. July 2014.

CALIBRE 2014. Operations and Maintenance Plan for the Renton Cleanup Action Soil Vapor Extraction Systems. Prepared by CALIBRE Systems, Inc. for The Boeing Company, EHS Remediation. July 2014.

CALIBRE 2017. Bioremediation of Benzene in Groundwater; Building 4-78/79 Area, Boeing Renton Facility Rev. 1. Prepared by CALIBRE Systems, Inc. for The Boeing Company, EHS Remediation. September 2017.

CALIBRE 2018a. Recommendation to shut down SVE system at Building 4-78/4-79 SWMU/AOC Group; Boeing Renton Site. Prepared by CALIBRE Systems, Inc. for The Boeing Company, EHS Remediation. October 2018.

CALIBRE 2018b. Plan for Evaluation of Soils around Probe PP13 at Building 4-78/4-79 SWMU/AOC Group; Boeing Renton Site. Prepared by CALIBRE Systems, Inc. for The Boeing Company, EHS Remediation. November 2018.

Ecology 2015. Washington State Water Quality Standards: Human Health Criteria and Implementation Tools. Prepared by the Washington Department of Ecology. Publication no. 14-10-058. January 2015.

USACE 2002. Engineering and Design - Soil Vapor Extraction and Bioventing. Prepared by US Army Corps of Engineers. EM 1110-1-4001. June 2002.

TABLES

Table 2-1 TO-15 Analytical Results - SWMU-172/174 SVE System Project History

SVE System Inlet

SVE System miet																
			cis-1,2-	trans-1,2-	Vinyl										Total	Total
Date	PCE	TCE	DCE	DCE	Chloride	1,1,1-TCA	1,1-DCA	Acetone	Toluene	m,p-Xylene	Chloroform	o-Xylene	Pentane	Hexane	Chlorinated	VOCs
4/17/2015	1,500	130	120	ND	ND	13	ND	ND	ND	ND	ND	ND	ND	ND	1,763	1,763
10/13/2015	400	31	13	ND	ND	3.3	ND	ND	ND	ND	ND	ND	ND	ND	447	447
3/8/2016	82	5.4	3.1	ND	ND	ND	ND	ND	1.1	2.2	ND	ND	ND	ND	91	94
6/30/2016	230	18	10	ND	ND	1.8	ND	11	ND	ND	2.4	ND	ND	ND	260	273
9/12/2016	230	16	8.3	ND	ND	1.9	ND	ND	ND	ND	1.2	ND	ND	ND	256	257
12/14/2016	100	6.2	3.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	110	110
5/30/2017 - 30 min	520	220	17	ND	ND	13	2.7	ND	ND	ND	ND	ND	ND	ND	773	773
5/30/2017 - 100 min	530	200	17	ND	ND	14	ND	ND	ND	ND	ND	ND	ND	ND	761	761
5/30/2017 - 225 min	510	130	16	ND	ND	12	ND	ND	ND	ND	ND	ND	ND	ND	668	668
8/16/2017	180	16	7.8	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	206	206
12/8/2017 - Rebound																
Start	99	7.6	3.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	110	110
5/22/2018	430	43	13	ND	ND	12	ND	ND	ND	ND	ND	ND	ND	ND	498	498
6/7/2018	160	13	5.4	ND	ND	1.8	ND	ND	ND	ND	ND	ND	ND	ND	180	180
6/20/2018	170	14	5.7	ND	ND	1.8	ND	ND	ND	ND	ND	ND	ND	ND	192	192
8/30/2018	110	8.6	3.7	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	122	122
2/13/2019	32	2.2	1.6	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	36	36
6/20/2019	74	6.2	3.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	84	84

SVE-1

				cis-1,2-	trans-1,2-	Vinyl										Total	Total
Date		PCE	TCE	DCE	DCE	Chloride	1,1,1-TCA	1,1-DCA	Acetone	Toluene	m,p-Xylene	Chloroform	o-Xylene	Pentane	Hexane	Chlorinated	VOCs
	6/20/2019	10	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	11

SVE-2

				cis-1,2-	trans-1,2-	Vinyl										Total	Total
Date		PCE	TCE	DCE	DCE	Chloride	1,1,1-TCA	1,1-DCA	Acetone	Toluene	m,p-Xylene	Chloroform	o-Xylene	Pentane	Hexane	Chlorinated	VOCs
	8/30/2018	180	14	6.1	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	200	200
	2/13/2019	48	3.3	2.8	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	54	54
	6/20/2019	100	9.6	5.1	ND	ND	1.4	ND	ND	1.4	ND	ND	ND	ND	ND	116	118

SVE-3

			cis-1,2-	trans-1,2-	Vinyl										Total	Total
Date	PCE	TCE	DCE	DCE	Chloride	1,1,1-TCA	1,1-DCA	Acetone	Toluene	m,p-Xylene	Chloroform	o-Xylene	Pentane	Hexane	Chlorinated	VOCs
5/30/2017 - 30 min	540	51	18	ND	ND	14	2.6	ND	2.2	ND	ND	ND	ND	ND	626	628
5/30/2017 - 100 min	200	16	6.5	ND	ND	5.5	ND	ND	ND	ND	ND	ND	ND	ND	228	228
8/16/2017	350	30	15	ND	ND	3.5	ND	ND	ND	ND	1.3	ND	ND	ND	399	400
12/8/2017 - Rebound																
Start	170	13	5.8	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	191	191
1/19/2018 - 35-Day 60																
Minute Sample	310	30	13	ND	ND	6.9	1.3	ND	ND	ND	1.1	ND	ND	ND	361	362
1/19/2018 - 35-Day 180																
Minute Sample	310	28	12	ND	ND	7.9	1.1	ND	ND	ND	1.1	ND	ND	ND	359	360
3/6/2018 - 80-Day 60																
Min Sample	440	41	15	ND	ND	14	2.2	ND	ND	ND	ND	ND	ND	ND	512	512
3/6/2018 - 80-Day 180																
Min Sample	410	33	13	ND	ND	13	1.6	ND	ND	ND	ND	ND	ND	ND	471	471
5/22/2018	790	66	22	ND	ND	22	ND	ND	ND	ND	ND	ND	ND	ND	900	900
6/7/2018	280	23	9.6	ND	ND	3	ND	ND	ND	ND	ND	ND	ND	ND	316	316
6/20/2018	310	24	11	ND	ND	3.4	ND	ND	ND	ND	ND	ND	ND	ND	348	348

Table 2-1 TO-15 Analytical Results - SWMU-172/174 SVE System Project History

VPC Outlet

			cis-1,2-	trans-1,2-	Vinyl										Total	Total
Date	PCE	TCE	DCE	DCE	Chloride	1,1,1-TCA	1,1-DCA	Acetone	Toluene	m,p-Xylene	Chloroform	o-Xylene	Pentane	Hexane	Chlorinated	VOCs
4/17/2015	5.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.1	5.1
10/13/2015	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	11
3/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6/30/2016	ND	ND	ND	ND	ND	ND	ND	ND	15	1.6	ND	1.2	6.2	1.2	ND	25
9/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12/14/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
8/16/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

All results are in parts per billion by volume (ppbv).

ND = non-detect

NA = not analyzed

DCE = Dichloroethene

PCE = tetrachloroethene

TCE = trichloroethene

Total Chlorinated = the sum of PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1,1-TCA, and 1,1-DCA.

Shaded cells are results from 2nd Quarter 2019.

Table 2-2 PID Monitoring - SWMU-172/174 SVE System

	Days in Operation							
Date	Since Startup 1	SVE-01	SVE-02	SVE-03	VPC Inlet	VPC Mid	VPC Outlet	Notes
4/8/2019	1,289	0	1,518	Vent	1,092		0	
4/18/2019	1,299	0	68	Vent	41		0	
4/23/2019	1,304	0	772	Vent	809		0	
5/3/2019	1,314	0	1,760	Vent	0		0	System down on arrival.
5/7/2019	1,318	0	4,764	Vent	2,279		0	
5/24/2019	1,335	0	0	Vent	0		0	
5/29/2019	1,340	0	2,082	Vent	1,461		0	
6/3/2019	1,345	75	314	Vent	175		0	
								Samples for TO-15 from SVE-1, SVE-2, and
								Influent. Adjusted system after sampling
								to open SVE-1 as vent well and SVE-3 for
6/20/2019	1,362	10	2,032	Vent	1,861		0	system extraction.
								System PID Readings 1 hour after
6/20/2019	1,362	Vent	1,665	2,766	4,356		0	adjustments.
6/27/2019	1,369	Vent	68	330	331		0	
7/2/2019	1,374	Vent	0	440	844		0	Changed blower oil
7/19/2019	1,391	Vent	56	350	148		0	
7/24/2019	1,396	Vent	0	570	385		0	

Notes:

Operational change was made on 6/20/19. Due to reduced concentrations observed at SVE-1 and the influent, SVE-01 was opened as a vent well to promote focused flow towards SVE-02 and SVE-03.

Blank cells - Not all wells were measured with the PID during each sampling event.

 $^{^{\}mathrm{1}}$ Days in operation since system startup on April 17, 2015.

Table 2-3 VOC Mass Removal Estimate - SWMU 172/174 SVE System

	PID Reading	Corrected Value	System Flow	Cumulative	VOCs removed in Operating Period Between Monitoring	Cumulative VOC Mass Removed Since Start of SVE Operations in April, 2015
Date	(ppbv)	(PCE) (ppbv) ¹	(cfm)	Runtime Hours	Events (lbs) ²	(lbs)
4/8/2019	1,092	628	70	24,755	0.458	16.04
4/18/2019	41	24	70	24,992	0.010	16.05
4/23/2019	809	466	70	25,111	0.094	16.14
5/3/2019	0	0	70	25,275	0.000	16.14
5/7/2019	1,765	1,016	70	25,372	0.169	16.31
5/24/2019	0	0	70	25,772	0.000	16.31
5/29/2019	1,461	841	70	25,885	0.161	16.47
6/3/2019	175	101	70	26,006	0.021	16.49
6/20/2019	1,861	1,071	70	26,407	0.731	17.22
6/27/2019	331	190	100	26,572	0.077	17.30
7/2/2019	844	486	98	26,690	0.136	17.43
7/19/2019	148	85	100	27,093	0.083	17.52
7/24/2019	385	222	98	27,205	0.059	17.58

Notes:

PID = photoionization detector ppbv = parts per billion by volume cfm = cubic feet per minute

lbs = pounds

¹ A correction factor of 0.57 has been applied to the PID vapor measurement for VOCs based on the mixture of analytes detected in the TO-15 analysis at the influent sample point from 6/20/19. This number is much higher than the TO-15 results.

² These are based soley on the PID measurements collected this quarter; the TO-15 analysis indicates much lower mass. TO-15 analysis results showed Tetrachloroethene made up 88% of the total VOCs removed at the influent on 6/20/19.

Table 3-1 - Baseline and Performance Monitoring Groundwater Data; 4-78/79 Benzene Treatment Area

Sample ID	Date	Sample Depth	TCE (ug/L)		cis-1,2-		VC (ug/L)		Benzene		Nitrate		Nitrite		Sulfate	
Sample ID	Date	(ft bgs)	TCE (ug/L)		DCE (ug/L)		VC (ug/L)		(ug/L)		(mg-N/L)		(mg-N/L)	\vdash	(mg/L)	+
B78-11-8-113017	11/30/2017	8	0.42		0.98		1.11		9.66		<0.100	U	<0.100	U	1.94	+
B78-11-021418	2/14/2018	8	1.16		0.84		1.09		14.8		<0.100	U	<0.100	U	9.22	D
B78-11-051518	5/15/2018	8	1.86		0.78		1.06		12.6		<0.100	U	<0.100	U	34.1	D
B78-11-180917	9/17/2018	8	5.01		7.90		3.62		9.20		<0.100	U	<0.100	U	23.4	D
B78-11-020719	2/7/2019	8	3.13		2.47		1.81		4.88		<0.100	U	<0.100	U	25.0	D
B78-11-050719	5/7/2019	8	8.60		6.55		3.56		2.15		<0.100	Ū	<0.100	Ū	47.0	D
	1						ı		ı							
B78-13-15-112917	11/29/2017	15	0.24		1.29		2.02		9.92		0.135		<0.100	U	0.652	T
B78-13-021418	2/14/2018	15	<0.2	υ	1.78		8.49		4.11		<0.100	U	<0.100	U	1.31	T
B78-13-051518	5/15/2018	15	<0.2	U	0.85		0.87		4.94		0.182		<0.100	U	4.32	D
B78-13-180917	9/17/2018	15	<0.2	U	0.61		0.38		3.29		<0.100	U	<0.100	U	0.812	Ť
B78-13-020719	2/7/2019	15	<0.2	U	0.37		0.29		0.74		<0.100	U	<0.100	U	0.189	+
B78-13-050719	5/7/2019	15	<0.2	U	0.57		0.45		1.16		<0.100	Ū	<0.100	U	<0.100	U
B78-17-9-100617	10/6/2017	9	<0.2	U	0.17	J	0.33		4.84		-		-		-	Т
B78-17-15-112917	11/29/2017	15	1.25		0.81		1.31		6.52		<0.100	U	<0.100	U	17.1	D
B78-17-021418	2/14/2018	15	2.57		1.78		1.47		4.61		<0.100	U	<0.100	U	7.35	D
B78-17-051518	5/15/2018	15	0.91		1.63		0.53		2.60		<0.100	U	<0.100	U	8.66	D
B78-17-180917	9/17/2018	15	<0.2	U	0.39		<0.2	U	1.37		<0.100	Ü	<0.100	U	9.63	D
B78-17-020719	2/7/2019	15	<0.2	U	0.68		0.47		0.56		0.101		<0.100	U	2.32	T
B78-17-050719	5/7/2019	15	5.00	Ť	5.72		1.79		1.07		0.101		<0.100	U	4.92	D
	1						ı		ı							
B78-18-8-100617	10/6/2017	8	<0.2	U	0.07	J	0.29		0.72		-		-		-	T
B78-18-15-112917	11/29/2017	15	<0.2	U	<0.2	U	0.35	М	3.10		<0.100	U	<0.100	U	0.343	1
DUP-01-112917	11/29/2017	15	<0.2	U	<0.2	U	0.36		2.96		<0.100	U	<0.100	U	1.68	1
B78-18-021418	2/14/2018	15	<0.2	U	<0.2	U	0.24		1.28		<0.100	U	<0.100	U	1.47	1
B78-18-051518	5/15/2018	15	<0.2	U	<0.2	U	0.23		1.68		<0.100	U	<0.100	U	27.6	D
B78-18-180917	9/17/2018	15	<0.2	U	<0.2	U	<0.2	U	0.89		<0.100	U	<0.100	U	7.28	D
B78-18-020719	2/7/2019	15	<0.2	U	<0.2	U	0.22		1.32		<0.100	U	<0.100	U	2.41	D
B78-18-050719	5/7/2019	15	<0.2	U	0.31		0.24		1.66		<0.100	U	<0.100	U	2.44	D
B78-19-9-100617	10/6/2017	9	<0.2	U	0.06	J	0.22		0.69		-		-		-	
B78-19-15-112917	11/29/2017	15	<0.2	U	<0.2	U	0.27	М	0.36		<0.100	U	<0.100	U	0.255	
B78-19-021418	2/14/2018	15	<0.2	U	<0.2	U	0.21		0.23		<0.100	U	<0.100	U	1.22	
B78-19-051518	5/15/2018	15	<0.2	U	<0.2	U	0.21		0.34		<0.100	U	<0.100	U	22.4	D
B78-19-180917	9/17/2018	15	<0.2	U	<0.2	U	<0.2	U	<0.2	U	<0.100	U	<0.100	U	1.91	
B78-19-020719	2/7/2019	15	<0.2	U	<0.2	U	<0.2	U	<0.2	U	<0.100	U	<0.100	U	2.16	
B78-19-050719	5/7/2019	15	<0.2	U	<0.2	U	<0.2	U	0.50		<0.100	U	<0.100	U	14.2	D
B78-20-8-100617	10/6/2017	8	<0.2	U	<0.2	U	0.14	J	8.81		-		-	Ш	-	\bot
B78-20-15-113017	11/30/2017	15	0.41	Ш	<0.2	U	<0.2	U	25.9		2.93	D	<0.100	U	53.9	D
B78-20-021418	2/14/2018	15	0.25	Ш	0.49	М	<0.2	U	40.0		<0.100	U	<0.100	U	21.1	D
B78-20-051518	5/15/2018	15	<0.2	U	0.39		0.22		54.2		<0.100	U	<0.100	U	15.5	D
B78-20-180917	9/17/2018	15	0.24		0.27		0.29		0.98	Щ	<0.100	U	<0.100	U	2.39	L
B78-20-020719	2/7/2019	15	<0.2	U	0.41	М	0.25		16.5	Щ	<0.100	U	<0.100	U	1.89	L
B78-20-050719	5/7/2019	15	< 0.2	U	0.32	1	0.28	1	16.3	1 1	< 0.100	U	< 0.100	U	4.93	D

Table 3-1 - Baseline and Performance Monitoring Groundwater Data; 4-78/79 Benzene Treatment Area

				Π												П
		Sample Depth			cis-1,2-				Benzene		Nitrate		Nitrite		Sulfate	
Sample ID	Date	(ft bgs)	TCE (ug/L)		DCE (ug/L)		VC (ug/L)		(ug/L)		(mg-N/L)		(mg-N/L)		(mg/L)	
B78-21-8-100617	10/6/2017	8	<0.2	U	0.13	J	0.21		1.42		-		-		-	\Box
Dup01-100617	10/6/2017	15	<0.2	U	0.15	J	0.20	J	2.01		-		-		-	\Box
B78-21-15-112917	11/29/2017	15	<0.2	U	0.31	М	0.26		2.27		0.101		<0.100	U	4.43	D
B78-21-021418	2/14/2018	15	<0.2	U	0.24		0.30		0.86		<0.100	U	<0.100	U	1.60	П
B78-21-051518	5/15/2018	15	<0.2	U	0.27		0.27		1.08		<0.100	U	<0.100	U	4.59	D
B78-21-180917	9/17/2018	15	0.22		0.29		<0.2	U	0.59		<0.100	U	<0.100	U	3.62	D
B78-21-020719	2/7/2019	15	<0.2	U	0.28		0.32		0.43		0.170		0.161		3.78	D
B78-21-050719	5/7/2019	15	<0.2	U	0.42		<0.2	υ	0.80		<0.100	U	<0.100	U	5.73	D
		•	•				•		•	•			•			
GW-244S-13-112917	11/29/2017	13	3.48		8.06		5.68		7.97		<0.100	U	<0.100	U	0.753	
GW-244S-021418	2/14/2018	13	1.01		1.25		1.22		5.34		<0.100	U	<0.100	U	1.25	
GW-244S	3/6/2018	13	1.26		2.00		1.56		6.86				-		-	
GW-244S-051518	5/15/2018	13	<0.2	U	0.30		0.41		3.89		<0.100	U	<0.100	U	<0.100	U
GW-244S-180917	9/17/2018	13	<0.2	U	0.25		0.38		3.74		<0.100	U	<0.100	U	0.113	
GW-244S	11/13/2018	13	<0.2	U	0.26		0.55		2.95		1		-		-	
GW-244S-020719	2/7/2019	13	<0.2	U	0.26		0.47		1.14		0.101		<0.100	U	0.337	
GW-244S	3/4/2019	13	0.22		0.82		0.86		1.73				-		-	
GW-244S-050719	5/7/2019	13	<0.2	U	1.22		1.18		1.13		<0.100	U	<0.100	U	1.45	
GW-244S	5/7/2019	13	<0.2	U	2.03		1.45		1.47				-		-	
GW-031S-23-113017	11/30/2017	23	<0.2	U	<0.2	U	<0.2	U	17.6		<0.100	U	<0.100	U	2.54	D
GW-031S-021418	2/14/2018	23	<0.2	U	0.45	М	0.49		21.9		<0.100	U	<0.100	U	3.67	D
DUP-01-021418	2/14/2018	23	<0.2	U	0.46		0.42		21.4		-		-		-	
GW-031S	3/6/2018	23	<0.2	U	1.18		<0.2	U	60.3		-		-		-	
GW-031S-051518	5/15/2018	23	0.36		0.40		0.21		2.68		<0.100	U	<0.100	U	2.95	D
Dup-01-051518	5/15/2018	23	0.32		0.34		0.20		2.64		<0.100	U	<0.100	U	2.87	D
GW-031S-180917	9/17/2018	23	<0.2	U	<0.2	U	0.28		<0.2	U	<0.100	U	<0.100	U	0.499	
Dup-01-180917	9/17/2018	23	<0.2	U	0.21		0.30		<0.2	U	<0.100	U	<0.100	U	0.441	
GW-031S	11/13/2018	23	<0.2	U	0.63		0.31		28.3		-		-		-	
Dup-01	11/13/2018	23	<0.2	U	0.58		0.30		23.8		-		-		-	
GW-031S-020719	2/7/2019	23	<0.2	U	0.51	М	<0.2	U	21.6		<0.100	U	<0.100	U	0.170	
Dup-01-020719	2/7/2019	23	<0.2	U	0.57	М	0.24		22.7		<0.100	U	<0.100	U	0.202	
GW-031S	3/4/2019	23	<0.2	U	<0.2	U	<0.2	U	55.9		-		-		-	
Dup-01	3/4/2019	23	<0.2	U	<0.2	U	<0.2	U	58.6		-		-		-	Ш
GW-031S-050719	5/7/2019	23	<0.2	U	0.22		0.30		1.90		<0.100	U	<0.100	U	1.86	
Dup-01-050719	5/7/2019	23	<0.2	U	0.27		<0.2	U	2.16		<0.100	U	<0.100	U	0.689	
GW-031S	5/7/2019	23	<0.2	U	0.43		0.29		7.13		-		-		-	
Dup-01	5/7/2019	23	<0.2	U	0.38		0.27		6.69		-		-		-	

Notes:

U = non-detect

D = dilution

M = Estimated value for a GC/MS analyte detected and confirmed by an analyst but with low spectral match parameters. Samples in italics collected as part of the Renton quarterly groundwater monitoring program.

Table 3-2 Groundwater Monitoring Results Summary May 2019 and Recommended ERD Treatment

GW Treatment Area	Source and down gradient MWs	CPOC wells	Treatment IWs	ERD Treatment Recommendation
SWMU-172/174	PCE less than 0.1 ug/L and TCE less than 0.20 ug/L; cisDCE less than 0.70 ug/L; VC less than 0.25 ug/L.	All detections are at 0.35 ug/L or less.	Prior data Mar 2018, North and South IWS showed total CVOCs range from 0.03 ug/L to 6.90 ug/L. TOC near background.	Detections are very low and less than 1 ug/L throughout the site. Will consider additional injections if beneficial.
Building 4-78/4-79 SWMU/AOC Group	TCE, cisDCE and VC are ND or less than 0.55 ug/L at all but GW244S (cDCE at 2 ug/L and VC at 1.5 ug/L). One central well (GW033S) continues to show significant reductions in total CVOCs from 1,430 ug/L in Nov 2017. Recent data show 46 ug/L in Nov 2018, 4.1 ug/L in Mar 2019, and 0.94 ug/L in May 2019. Substrate was applied to this area after Mar 2019 sampling. Benzene decreased at source well GW031S (59 ug/L in Mar 2019 to 7.1 ug/L in May 2019). Nitrate/sulfate injected following Mar 2019 sampling.	All CPOC wells are ND for CVOCs except GW240D with VC at 0.27 ug/L (CUL is 0.20 ug/L). Northern well GW237S showed decrease in Benzene from 9.58 ug/L to 2.20 ug/L in May 2019.	Prior data May 2017, 4 of 5 wells with low detections where sum of CVOCs are less than 3 ug/L	Detections are very low throughout the site. Will consider additional injections if beneficial. Nitrate/sulfate injections to be completed following planned soil excavations in benzene treatment area.
AOC-001/002	Prior data Mar 2019: Source MW: TCE is ND; cisDCE less than 0.60 ug/L and VC less than 0.07 ug/L. Down gradient wells less than 0.71 ug/L	All detections below 0.50 ug/L with the exception of GW1975 which showed an increase in VC from 0.0647 ug/L in Mar to 1.66 ug/L in May 2019.	Prior data Mar 2018, detections at or below 0.30 ug/L.	Consider injection at infiltration galleries at source (IPRA and IPRB) when area is accessible.
AOC-003	Prior data Mar 2019: All detections are less than 0.54 ug/L.	All detections are less than 0.55 ug/L.	Prior data May 2017 one of four IWs sampled – VC detection less than 0.30 ug/L	Substrate injection to be considered in conjunction with AOC-001/002.
Lot 20 / former 10-71	All wells are ND.	-	-	No action at this time.
AOC-60	Prior data Mar 2019: MW's with detections less than 0.30 ug/L; treatment MWs with total CVOCs less than 2.6 ug/L.	Prior data Mar 2019: Detections less than 0.15 ug/L.	-	Detections are very low throughout the site. Will consider additional injections if beneficial.
AOC – 90	Prior data Mar 2019: Treatment MW at source with total CVOCs at 1.6 ug/L total CVOCs down from 27 ug/L in Aug 2018; down gradient wells less than 0.30 ug/L.	Prior data Mar 2019: Detections less than 0.44 ug/L.	-	Detections are very low throughout the site. Will consider additional injections if beneficial.
Apron A	Two of three wells ND; other well shows VC at 1.39 ug/L.	-	-	Detections are very low throughout the site. Will consider additional injections if beneficial.
Building 4-70	-	Prior data Mar 2019: Detections less than 0.42 ug/L.	-	No action at this time.

FIGURES

CALIBRE Systems, Inc.

Figure 1-1 Site Location/ AOC Outlines

Figure 2-2 Cumulative VOC Mass Removed - SWMU-172/174 SVE System

^{*}SWMU 172/174 SVE system did not run Winter 2017 due to equipment failure.

Attachment A: Field Log Forms

0935 Current 45" H- 10" H2: 70 SCF	Value 20 Pic 0 from	Hours:	994 p new		er Notes	" Linkert	
45" H21 10" H21 70 SCF	m	ked u	p new	battle of	er Notes	1 delent	
10" Hzi	m	Ked u Noction	p new	bottle of	10 ppm 1		A 41 - A 5
70 SCF	m	- Noction	al sal		17.6.1	-50 pary pro-	caigas
114°F	m			ety			
21.1							
-11 11							
coll level,	drive belts, TEFC	motor fai	n, any un	usual noise/vi	bration		
			Detaile:	0	1		
PBRAE	3000		37734737	- LAN			
te: 093	5 4/8/19	F	PID check	after monitor	1.7		
Time	PID Reading (1)		the state of the s	Vacuum	Flow Rate (gauge)	Pressure	Flow Rate
19	8 874	Орру	,		24	4.4	25.7
0)(0	1,518 pps	1,45	7pp5		>30	>5	
Ven							
9957	1,092 pph	1,089	ppb				
0950	6 83 9	0 990					
lated from th	e equation Flow Rate	e (cfm) = 12	$2.24 \times \sqrt{dif}$	ferential pressu	·e.		
tin Neste (f a monitor	@ (360) 981-5600 ring event scan m	6 nonitoring	forms an	d email to Jus	tin Neste: Justi	n.Neste@calibr	esys.com
	PBRAE te: 093 Time 19 10 Ven9 957	PB LAE 3000 te: 0935 4 5 4 6 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	PRINTER 3000 Ite: 0935 4/8/14 F Time PID Reading (1) PID Reading (2) 19 0 pps 0 pps 10 1,518 pps 1,45 10 1,518 pps 1,45 10 1,518 pps 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 1,089 1,089 10 <td>PBRAE 3000 Te: 0935 4 3 9 PID check Time PID Reading (1) 19 0 976 0 976 1518 976 1 1518 976 Vent 1997 976 0 976 The property of the pr</td> <td>PROPERTY OF PID Check after monitor PID Reading PID Reading (1) Time PID Reading (2) 19 974 0 PP4 19 10 1518 pp 1 1517 pp Vent 1957 1,592 pp 1 1,089 pp PID Reading (2) 1950 0 PP4 PID Reading (2) PID</td> <td>PROAF 3000 te: 0935 4 1 1 PID check after monitoring: Time PID Reading (2) Vacuum Flow Rate (gauge) 19 0 974 0 994 24 10 1518 995 1,089 995 PID check after monitoring: 19 0 975 0 995 24 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26</td> <td>PBLAE 3000 Details: 0 ppb 10.06 ppm PID check after monitoring: Time PID Reading (1) PID Reading (2) PID Reading (2) PID Reading (3) PID Reading (4) Pressure 1996 1518 ppb 1,451 ppb $>30>5$ Vent 1997 1692 ppb 1,089 ppb PID check after monitoring: 1998 1998 1998 24 94 95 95 95 95 95 95 95 95 95 95 95 95 95</td>	PBRAE 3000 Te: 0935 4 3 9 PID check Time PID Reading (1) 19 0 976 0 976 1518 976 1 1518 976 Vent 1997 976 0 976 The property of the pr	PROPERTY OF PID Check after monitor PID Reading PID Reading (1) Time PID Reading (2) 19 974 0 PP4 19 10 1518 pp 1 1517 pp Vent 1957 1,592 pp 1 1,089 pp PID Reading (2) 1950 0 PP4 PID Reading (2) PID	PROAF 3000 te: 0935 4 1 1 PID check after monitoring: Time PID Reading (2) Vacuum Flow Rate (gauge) 19 0 974 0 994 24 10 1518 995 1,089 995 PID check after monitoring: 19 0 975 0 995 24 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	PBLAE 3000 Details: 0 ppb 10.06 ppm PID check after monitoring: Time PID Reading (1) PID Reading (2) PID Reading (2) PID Reading (3) PID Reading (4) Pressure 1996 1518 ppb 1,451 ppb $>30>5$ Vent 1997 1692 ppb 1,089 ppb PID check after monitoring: 1998 1998 1998 24 94 95 95 95 95 95 95 95 95 95 95 95 95 95

Check each SVE		Operationa	Parame	eters - Moni	toring interval	is variable.		
Inspection Time:	10.30	Moto	r Hours:	10,183				
Blower	Current				Oth	er Notes		
Vacuum gauge	45"4	20						
Pressure gauge	10 00 14	10						
System flow rate	70 SUF	m						
Blower Temperature	11908							
Temp.at lag VPC discharge				• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		hration		
Other notes: che	ck oil level	, drive belts, TEF	C motor	fan, any un	usuai noise/vi	oration		
PID Model:				Details:				
Calibration time/	date:			PID check	after monitor	ing:		
Sampling Point	Time	PID Reading (1)	PID	Reading (2)	Vacuum	Flow Rate (gauge)	Differential Pressure	Flow Rate Calculated
SVE-01		0 075	00	pb				
SVE-02		66 pp6	62	PPb				
SVE-03		Vent						
VPC Inlet		26 pps	41	PPb				
VPC Midpoint							_	
VPC Outlet		0076	0 0	פקי				
Other vapor point								
VPC Outlet Other vapor point	culated from	9 PPb the equation Flow Ro		= 12.24 × √dif	ferential pressur	e.		

Inspection Time:	1100		r Hours:		toring interval			
Blower	Current	Value		10100	Oth	er Notes		
Vacuum gauge	45"Hz							
Pressure gauge	8 "Hw							
System flow rate	70 SCF1	M						
Blower Temperature	123°F							
Temp.at lag					and a size bil	oration		
Other notes: ch	eck oil level	, drive belts, TEF	·C motor	tan, any un	usuai noise/vii	oration		
PID Model:	PPB RA	E 3000		Details:	O PPb	10.01 7	>m	
Calibration time/	date.	3/19 1100		PID check	after monitor	ing:		V-
Sampling Point	Time	PID Reading (1)	PID	Reading (2)	Vacuum	Flow Rate (gauge)	Differential Pressure	Flow Rat Calculate
SVE-01		Upph	0	طحرح				
SVE-02		772 ppb	74	1 ppb				
SVE-03		Vent						
VPC Inlet		609 pps	780	o ppb				
VPC Midpoint								
VPC Outlet		O PPb	OPF	o b				
Other vapor point								
1. Flow rate ca	alculated from t	the equation Flow Ro	ate (cfm) =	$= 12.24 \times \sqrt{dif}$	ferential pressur	e.		

) Check each SVE	well, VPC	Operational I	Parame	ters - Mon	itoring interval is	s variable.		
Inspection Time:	1130		Hours:					
Blower	Current	Value			Othe	r Notes		
Vacuum gauge	48"H.	20 645	ten do	wn @ as	cium			
Pressure gauge	10*1128							
System flow rate	70 50	sm						
Blower Temperature	94ºP				3			
Temp.at lag VPC discharge								
Other notes: che	ck oil level,	drive belts, TEFC	motor	fan, any un	usual noise/vib	ration		
				Details:				No.
PID Model:				100	- offer manitorin	og.	-	_
Calibration time/	date:			A OF STREET	k after monitorin			F. D.4.
Sampling Point	Time	PID Reading (1)	PID	Reading (2)	Vacuum	Flow Rate (gauge)	Differential Pressure	Flow Rate
SVE-01		Opply	Oppl	0 @ 25 min				
SVE-02		3	705	op CiDain	1.731 pp & 20m	in		
SVE-03		1,760ppb Vent						
VPC Inlet		Oppo	Dad	6 C 10min	Opple 25min			
VPC Midpoint			1					
VPC Outlet		0 224	0 7	ph				
Other vapor point								
Flow rate cal Questions? Call Ju At the Completion	C NI-LL	me equation Flow Rate	8				n.Neste@calibr	esys.com
At the Completion	or a monito	ning event soan n	ionitor	.g ,oo			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		Y						

Field Operat					-10	La		
nspection Date: _	5/1/19		ate of	last inspecti	on:5/3	119	_	
Pariadic evetems	heck.							
) Check flowrate,	vacuum, pro	essure, moisture s	eparat	or, water sto	orage druins			
) Check each SV	E well, VPC	inlet, and VPC ou Operational I	Parame	eters - Moni	toring interval	is variable.		
Inspection Time:	1420		Hours:		.2			
Blower	Current	Value			Oth	er Notes		
Vacuum gauge	45"	tw						
Pressure gauge	10" 147	20						
System flow rate	-10 SUF	-m						
Blower Temperature	125°P							
Temp.at lag VPC discharge						· · · · ·		
Other notes: che	eck oil level,	drive belts, TEFC	motor	fan, any un	usual noise/vi	bration		
PID Model: 21	BRAE	3,700	-	Details:	Dpph /	9,991 pas		
Calibration time/	1.1.	19 1420		PID check	after monitor			
Sampling Point	Time	PID Reading (1)	PID	Reading (2)	Vacuum	Flow Rate (gauge)	Differential Pressure	Flow Rate Calculated
SVE-01		0 ppb						
SVE-02		4,764 PPb	3,4	00 ppb				
SVE-03		Vent						
VPC Inlet		1,765 pps	2,2	19 ppb				
VPC Midpoint		1						

Oppo

VPC Outlet
Other vapor
point _____

Questions? Call Justin Nes At the Completion of a mor	ite @ (360) 981-5606 nitoring event scan monitoring forms a	nd email to Justin Neste: Justin.Ne	este@calibresys.com
Signature	Juyfin Wester Printed Name	Signature	5/7/19 Date

Uppb

^{1.} Flow rate calculated from the equation Flow Rate (cfm) = $12.24 \times \sqrt{differential}$ pressure.

Inspection Time:	. 1)		Parameters - Moni Hours:		is variable.	1 200	
	Current	Value	10.10		er Notes		
Blower Vacuum gauge	45"\fi						
Pressure gauge	10"420						
System flow rate	70 Scrv	n					
Blower Temperature	1190						
Temp.at lag VPC discharge							
Other notes: che	eck oil level,	drive belts, TEFC	C motor fan, any un	usual noise/vii	oration		
PID Model:			Details:				
Calibration time/	date:		PID check	after monitor	ing:		
Sampling Point	Time	PID Reading (1)	PID Reading (2)	Vacuum	Flow Rate (gauge)	Differential Pressure	Flow Rate Calculated
SVE-01		Oppo	PPP				
SVE-02		Opplo	Dedo				
SVE-03		Vent	42		1		
VPC Inlet		D 026	Deto				
VPC Midpoint		1,	i				
VPC Outlet		D 220	0476				
Other vapor point							
Questions? Call II	ietin Naeta	<i>രു</i> (360) 981-560	$e(cfm) = 12.24 \times \sqrt{diff}$ 6 nonitoring forms an			n.Neste@calibr	esys.com

		Operational P	Parameters - Mon	itoring interval	is variable.		
Inspection Time	0600		11075.				
Blower	Current \	Value		Oth	ner Notes		
Vacuum gauge	46"112	0				*	
Pressure gauge	10" H 20						
System flow rate	70 SUF1	N					
Blower Temperature	116°F						
Temp.at lag					V		
Other notes: c	neck oil level, o	drive belts, TEFC	motor fan, any ur	nusuai noise/vi	bration		
PID Model:	PPBEAF	3000	Details:		19,991 pp	,6	
	I dalar	1	PID chec	k after monitor	ing:		
Calibration time	/ date: 5 2	9/19 0630	1 1 1 2 1 2 1 2 1				
Sampling Point	Time	9 19 0630 PID Reading (1)	PID Reading (2)	Vacuum	Flow Rate (gauge)	Differential Pressure	Flow Rat Calculate
Sampling	5 12	PID Reading	PID Reading		Flow Rate		The second section of the second second
Sampling Point	Time	PID Reading (1)	PID Reading (2)		Flow Rate		The second section of the second second
Sampling Point SVE-01	Time 0785	PID Reading (1)	PID Reading (2)		Flow Rate		The second section of the second second
Sampling Point SVE-01 SVE-02 SVE-03	Time 0705	PID Reading (1)	PID Reading (2)		Flow Rate		The second second second
Sampling Point SVE-01 SVE-02 SVE-03	71me 0705 0715 Vent	PID Reading (1) Open 2,087ppb	PID Reading (2)		Flow Rate		The second section of the second second
Sampling Point SVE-01 SVE-02 SVE-03 VPC Inlet	71me 0705 0715 Vent	PID Reading (1) Open 2,087ppb	PID Reading (2)		Flow Rate		The second second second

Justin Neste

Signature

				itoring interval	15 variable.		
Inspection Time: 0920			11,190	,4	N-4	-	
				Oth	er Notes		
45"4	20						
10 " Hz	0						
705CF1	n						
125°F							
		4					
ck oil level,	drive belts, TEF	C motor	fan, any ur	iusual noise/VII	oration		
			Details:				
	E 3000					>	
late: 6/3	119 0920		PID chec	k after monitor			
Time '	PID Reading (1)	ing PID Reading (2)		Vacuum	Flow Rate (gauge)	Differential Pressure	Flow Rate Calculated
	58 726	7	5 PPS				
	285 ppb	224	pb 314	PPP			
	Vent		1				
	#40 ppb	175	PPb				
	1,		CALCULATION CO.				
	0 026	Op	Pb				
culated from t	ne equation Flow Rat	e (cfm) =	= $12.24 \times \sqrt{dif}$	ferential pressur	e.		
stin Neste	@ (360) 981-560 ring event scan n	6 nonitorir	ng forms ar	nd email to Just	tin Neste: Justin	n.Neste@calibr	esys.com
	Current 45"H 10" H 2709CFV 125" F ck oil level, PB R H date: 6/3 Time	Current Value 45"H20 10"H20 705CFM 125"F ck oil level, drive belts, TEFO PB RHE 3000 date: 6/3/19 0920 Time PID Reading (1) 58 ppb 285 ppb Vent 440 ppb culated from the equation Flow Ratestin Neste @ (360) 981-560	Current Value 45"H20 10"H20 705CFM 125°F ck oil level, drive belts, TEFC motor PB RHE 3000 date: 6/3/19 0920 Time PID Reading (1) 58 ppb 79 285 ppb 229 Vent 175 0 ppb 0p	Current Value 45"H20 10" H20 705cFm 125°F Ck oil level, drive belts, TEFC motor fan, any ur PB PHE 3000 Details: PID chec Time PID Reading (1) 58 ppb 75 ppb 205 ppb 205 ppb 175 ppb 175 ppb 175 ppb 175 ppb Culated from the equation Flow Rate (cfm) = 12.24 × \sqrt{dif}	Current Value 15" H20 705 CF M 125 ° F Ck oil level, drive belts, TEFC motor fan, any unusual noise/vil PB RHE 3000 Details: Dppb Details: PID check after monitori Time PID Reading PID Reading (1) 58 ppb 75 ppb 205 ppb 175 ppb 175 ppb 175 ppb Culated from the equation Flow Rate (cfm) = 12.24 × $\sqrt{differential}$ pressuration Neste @ (360) 981-5606	Current Value 45"H20 10" H20 705cFm 125°F Ck oil level, drive belts, TEFC motor fan, any unusual noise/vibration Details: PID check after monitoring: PID Reading (1) 75 ppb 28 ppb 75 ppb	Current Value 45" H20 705cFm 125° F Ck oil level, drive belts, TEFC motor fan, any unusual noise/vibration PB R H E 3000 Details: DPP 999 P5 Jate: PID check after monitoring: Time PID Reading PID Reading Vacuum Flow Rate (gauge) 58 PP 75 PP 265 PP 274 P5 314 P5 Vent 175 PP Culated from the equation Flow Rate (cfm) = 12.24 × Jdifferential pressure.

Inspection Date: Periodic systems cl	HECK.	Date of last inspection: 613119					
1) Check flowrate.	vacuum, pressure, m	noisture separator, water storage drums					
2) Check each SVE	well, VPC inlet, and	VPC outlet with PID. rational Parameters - Monitoring interval is variable.					
Inspection Time:	0800	Motor Hours: VI 597.4					
Blower	Current Value	Other Notes					
Vacuum gauge	46"420	Sampled SVE-1, 2 or Influent					
Pressure gauge	10"420	After samples, adjusted system to open SVE-1 to vent & SVE-3					
System flow rate	70 scfm	Jac = 40"Hz0 SUE-3 >305cFm >5"Hz0					
Blower Temperature	mil	Pas = 20" Had SUE-Z 730 SUFM >5" Had					
Temp.at lag VPC discharge		Flow = 98 SUFM Temp = 117°F SEE PID READINATS AFTER CHANGE BELOW ts, TEFC motor fan, any unusual noise/vibration					

PID Model: PRE SON) Calibration time/ date: 6/20/19 0 800				Details: 0 PPb / 10:0 1 PPm					
				PID check after monitoring:					
Sampling Point	Time	PID Reading (1)	PID Reading (2)	g Vacuum	Flow Rate (gauge)	Differential Pressure	Flow Rate Calculated ¹		
SVE-01		6 ррв	10 ppb						
SVE-02		1,989 ppb	2,032 000						
SVE-03		Vent							
VPC Inlet		1,861pb	1,807 ppb						
VPC Midpoint									
VPC Outlet	0840	0 pgb	0 ppb						
Other vapor point			1						

^{1.} Flow rate calculated from the equation Flow Rate (cfm) = $12.24 \times \sqrt{differential}$ pressure.

Questions? Call Justin Neste @ (360) 981-5606

At the Completion of a monitoring event scan monitoring forms and email to Justin Neste: Justin.Neste@calibresys.com

Current 31"Hz	Value			2 1			
	v arms	Table 1 Annual A	11,76	Oth	er Notes		
~	0					1 / 10	
20"420							
100508	-un						
113°P							
k oil level,	drive belts, TEFC	C motor fa	an, any un	usual noise/vi	oration		
5 RAE 30	00					1000	
ate:	1 0015		PID check	after monitor	ing:		
Time	PID Reading (1)		Reading (2)	Vacuum	Flow Rate (gauge)	Differential Pressure	Flow Rate
	Vent						
	68 700	5300	58 pp				
	285 pp	125ppb	330000				
	399 ppb	33	1 PPS				
	0 200	UPI	de				
stin Neste	ത (360) 981-560	6				n.Neste@calibro	esys.com
	ate:	Time PID Reading (1) PLAT PROPERTY OF THE PID READING (1) PR	Time PID Reading (1) PLAT PROPERTY STATE PID Reading (1) PLAT PROPERTY STATE PROPERTY ST	Details: Details: PID check Time PID Reading (1) PREADING (2) PREAD	Details: Details: PID check after monitor Time PID Reading (1) PEUT PEUT	Details: Details: PID check after monitoring: Time PID Reading (1) PER Span Shape Shape 185 pp	Details: Details: PID check after monitoring: Time PID Reading (1) Details: PID Reading (2) Details: PID Reading (3) Details: PID check after monitoring: Differential pressure Differential pressure Details: PID check after monitoring: Differential pressure Differential pressure Details: Details: D

Renton Cleanup Action SVE System – SWMU 172/174 Field Operations Log Form

Inspection Time:	- 1111	Operational I	Hours:	Total Late		is variable.		
	0650			11,8	80.6	er Notes		
Blower Vacuum gauge	Current						, pol-1411	
vacuum gauge	38"4	20 (1	raina	ed of	1 in 1	ower.		
Pressure gauge	22.6	120						
System flow rate	98 5	Fou						
Blower Temperature	113°F							
Temp.at lag VPC discharge					1	Casta a		
Other notes: ch	eck oil level,	drive belts, TEFC	motor	tan, any un	usuai noise/vii	oration		
PID Model:	PPB RAE	3000		Details:	OPPS		20 pph	
Calibration time	date:			PID check	after monitor	ing:		
Sampling Point	Time	PID Reading (1)	PID	Reading (2)	Vacuum	Flow Rate (gauge)	Differential Pressure	Flow Rate
SVE-01		Vent						
SVE-02	0924	Opple	0 =	طوه				
SVE-03	0932	440 pps	42	عام ه				
VPC Inlet	७५२०	840 ppb	844	1 PPb				
VPC Midpoint								
VPC Outlet	0916	0 ppb	000	6				
Other vapor point								
1. Flow rate o	alculated from t	he equation Flow Rate	e (cfm) =	$12.24 \times \sqrt{dif}$	ferential pressur	e.		

Renton Cleanup Action SVE System – SWMU 172/174 Field Operations Log Form

pp		er Notes	Othe	notor fan, any un		(10	39"4	Blower Vacuum gauge
pb		pration	usual noise/vib	notor fan, any un		120	39"4	
pb		oration	usual noise/vib	notor fan, any un		2)		
pb		oration	usual noise/vib	notor fan, any un			22" 14.	Pressure gauge
opb		oration	usual noise/vib	notor fan, any un		cfm	10050	System flow rate
pp b		oration	usual noise/vib	notor fan, any un	_		119°F	Blower Temperature
ppb		oration	usual noise/vib	notor fan, any un				Temp.at lag
pp					ts, TEFC	el, drive bel	eck oil level,	Other notes: che
pp b		1		Details:				DID M. L.L.
	PPP	9,999	after monitori				BRAE	
Differential Flow Rate	Differential				421			Calibration time/
Pressure Calculated	The state of the s	Flow Rate (gauge)	Vacuum	PID Reading (2)	eading 1)		Time	Sampling Point
					ent	V		SVE-01
				56 ppb	PPB	45		SVE-02
				736 pp	PPb	350		SVE-03
				148 ppb	ppb	146		VPC Inlet
								VPC Midpoint
				طوم ق	6	OPP		VPC Outlet
								Other vapor point
		9.	ferential pressure	$c(fm) = 12.24 \times \sqrt{dif}$	Flow Rate	n the equation	lculated from t	Flow rate cal
Neste@calibresys.com	stin.Neste@calib	in Neste: Justii	d email to .lust	nitoring forms an	981-5606	te @ (360)	ustin Neste	Questions? Call Ju
Nes	stin.Ne			(148 ppb) (1795) (1795) (1795) (1795)	Flow Rate	146	uetin Nesto	VPC Inlet VPC Midpoint VPC Outlet Other vapor point 1. Flow rate cal

Renton Cleanup Action SVE System – SWMU 172/174 Field Operations Log Form

J Oneon same	E well, VPC inlet, and Ope	rational Parameters - Monitoring interval is variable.
Inspection Time:		Motor Hours: 12, 395.7
Blower	Current Value	Other Notes
Vacuum gauge	4011420	Paint room door ppen new SVE-1 PID pends 13.9 ppm renthinging
Pressure gauge	22.,110	
System flow rate	98 SCFM	
Blower Temperature	113°F	
Temp.at lag VPC discharge		

Calibration time/	5000 GERG BILL	PID check	PID check after monitoring:				
Sampling Point	Time	PID Reading (1)	PID Reading (2)	Vacuum	Flow Rate (gauge)	Differential Pressure	Flow Rate Calculated ¹
SVE-01		Vent					
SVE-02		OPPH	Oppb				
SVE-03		522 ppb	570 PPB				
VPC Inlet		375 ppb	385 p.26				
VPC Midpoint							
VPC Outlet		0 000	D Pp6				
Other vapor point							

^{1.} Flow rate calculated from the equation Flow Rate $(cfm) = 12.24 \times \sqrt{differential}$ pressure.

Questions? Call Justin Nest At the Completion of a mon	te @ (360) 981-5606 itoring event scan monitoring forms and er	mail to Justin Neste: Justin.Nes	te@calibresys.com
Signature	Justin Nuste	Signature	7 ZY 19 Date

Attachment B: TO-15 Laboratory Data Package

7/8/2019 Mr. Justin Neste CALIBRE, Environmental Technology Solutions 20926 Pugh Rd NE

Poulsbo WA 98370

Project Name: Boeing Renton

Project #:

Workorder #: 1906480

Dear Mr. Justin Neste

The following report includes the data for the above referenced project for sample(s) received on 6/24/2019 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

July Butte

WORK ORDER #: 1906480

Work Order Summary

CLIENT: BILL TO: Mr. Justin Neste Accounts Payable

> CALIBRE, Environmental Technology **Eurofins Lancaster Laboratories**

Solutions

Environmental, LLC 20926 Pugh Rd NE 2425 New Holland Pike Poulsbo, WA 98370 Lancaster, PA 17605-2425

PHONE: 360-981-5606 **P.O.** #

FAX: PROJECT# **Boeing Renton**

DATE RECEIVED: 06/24/2019 **CONTACT:** Kelly Buettner DATE COMPLETED: 07/08/2019

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SVE-1-062019	TO-15	4.7 "Hg	15.1 psi
02A	SVE-2-062019	TO-15	4.7 "Hg	15.9 psi
03A	SVE-IN-062019	TO-15	5.3 "Hg	15.5 psi
04A	Lab Blank	TO-15	NA	NA
05A	CCV	TO-15	NA	NA
06A	LCS	TO-15	NA	NA
06AA	LCSD	TO-15	NA	NA

	1	cide Thayes		
CERTIFIED BY:		0 0	DATE: $\frac{07/08/19}{}$	

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-15-9, UT NELAP CA0093332015-6, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2015, Expiration date: 10/17/2016. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE EPA Method TO-15 CALIBRE, Environmental Technology Solutions Workorder# 1906480

Three 1 Liter Summa Canister samples were received on June 24, 2019. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds. Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

A single point calibration for TPH referenced to Gasoline was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SVE-1-062019

Lab ID#: 1906480-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	1.2	1.4	6.4	7.4
Tetrachloroethene	1.2	10	8.1	72

Client Sample ID: SVE-2-062019

Lab ID#: 1906480-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	1.2	5.1	4.9	20
1,1,1-Trichloroethane	1.2	1.4	6.7	7.4
Trichloroethene	1.2	9.6	6.6	52
Toluene	1.2	1.4	4.6	5.4
Tetrachloroethene	1.2	100	8.4	720

Client Sample ID: SVE-IN-062019

Lab ID#: 1906480-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	1.2	3.5	5.0	14
Trichloroethene	1.2	6.2	6.7	33
Tetrachloroethene	1.2	74	8.5	500

Client Sample ID: SVE-1-062019 Lab ID#: 1906480-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17070509	Date of Collection: 6/20/19 9:56:00 AM
Dil. Factor:	2.40	Date of Analysis: 7/5/19 03:38 PM

DII. Factor.	2.40	Date	Date of Analysis: 7/5/19 03:38 PW		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Chloromethane	12	Not Detected	25	Not Detected	
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected	
Freon 113	1.2	Not Detected	9.2	Not Detected	
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected	
Acetone	12	Not Detected	28	Not Detected	
Carbon Disulfide	4.8	Not Detected	15	Not Detected	
Methylene Chloride	12	Not Detected	42	Not Detected	
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected	
Hexane	1.2	Not Detected	4.2	Not Detected	
1,1-Dichloroethane	1.2	Not Detected	4.8	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	4.8	Not Detected	14	Not Detected	
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected	
Chloroform	1.2	Not Detected	5.8	Not Detected	
1,1,1-Trichloroethane	1.2	Not Detected	6.5	Not Detected	
Benzene	1.2	Not Detected	3.8	Not Detected	
Trichloroethene	1.2	1.4	6.4	7.4	
Toluene	1.2	Not Detected	4.5	Not Detected	
1,1,2-Trichloroethane	1.2	Not Detected	6.5	Not Detected	
Tetrachloroethene	1.2	10	8.1	72	
Chlorobenzene	1.2	Not Detected	5.5	Not Detected	
Ethyl Benzene	1.2	Not Detected	5.2	Not Detected	
m,p-Xylene	1.2	Not Detected	5.2	Not Detected	
o-Xylene	1.2	Not Detected	5.2	Not Detected	
Styrene	1.2	Not Detected	5.1	Not Detected	
Cumene	1.2	Not Detected	5.9	Not Detected	
Propylbenzene	1.2	Not Detected	5.9	Not Detected	
1,3,5-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected	
1,2,4-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected	
TPH ref. to Gasoline (MW=100)	120	Not Detected	490	Not Detected	
Acetonitrile	12	Not Detected	20	Not Detected	
Vinyl Acetate	4.8	Not Detected	17	Not Detected	
Octane	4.8	Not Detected	22	Not Detected	
Pentane	4.8	Not Detected	14	Not Detected	
Butylbenzene	4.8	Not Detected	26	Not Detected	
Decane	4.8	Not Detected	28	Not Detected	
Dodecane	12	Not Detected	84	Not Detected	
sec-Butylbenzene	4.8	Not Detected	26	Not Detected	
•	4.8	Not Detected	26	Not Detected	
p-Cymene	4.0	NOI DEIECIEU	20	Not Detected	

Container Type: 1 Liter Summa Canister

Client Sample ID: SVE-1-062019 Lab ID#: 1906480-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17070509 Date of Collection: 6/20/19 9:56:00 AM Dil. Factor: 2.40 Date of Analysis: 7/5/19 03:38 PM

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	104	70-130	
1,2-Dichloroethane-d4	96	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: SVE-2-062019 Lab ID#: 1906480-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17070510	Date of Collection: 6/20/19 10:06:00 AM
Dil. Factor:	2.47	Date of Analysis: 7/5/19 04:06 PM

	2.71	Date	Ol Allalysis. 115/1	3 04.00 i W
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Chloromethane	12	Not Detected	26	Not Detected
Vinyl Chloride	1.2	Not Detected	3.2	Not Detected
Freon 113	1.2	Not Detected	9.5	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Acetone	12	Not Detected	29	Not Detected
Carbon Disulfide	4.9	Not Detected	15	Not Detected
Methylene Chloride	12	Not Detected	43	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Hexane	1.2	Not Detected	4.4	Not Detected
1,1-Dichloroethane	1.2	Not Detected	5.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.9	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	1.2	5.1	4.9	20
Chloroform	1.2	Not Detected	6.0	Not Detected
1,1,1-Trichloroethane	1.2	1.4	6.7	7.4
Benzene	1.2	Not Detected	3.9	Not Detected
Trichloroethene	1.2	9.6	6.6	52
Toluene	1.2	1.4	4.6	5.4
1,1,2-Trichloroethane	1.2	Not Detected	6.7	Not Detected
Tetrachloroethene	1.2	100	8.4	720
Chlorobenzene	1.2	Not Detected	5.7	Not Detected
Ethyl Benzene	1.2	Not Detected	5.4	Not Detected
m,p-Xylene	1.2	Not Detected	5.4	Not Detected
o-Xylene	1.2	Not Detected	5.4	Not Detected
Styrene	1.2	Not Detected	5.3	Not Detected
Cumene	1.2	Not Detected	6.1	Not Detected
Propylbenzene	1.2	Not Detected	6.1	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	6.1	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	6.1	Not Detected
TPH ref. to Gasoline (MW=100)	120	Not Detected	500	Not Detected
Acetonitrile	12	Not Detected	21	Not Detected
Vinyl Acetate	4.9	Not Detected	17	Not Detected
Octane	4.9	Not Detected	23	Not Detected
Pentane	4.9	Not Detected	14	Not Detected
Butylbenzene	4.9	Not Detected	27	Not Detected
Decane	4.9	Not Detected	29	Not Detected
Dodecane	12	Not Detected	86	Not Detected
sec-Butylbenzene	4.9	Not Detected	27	Not Detected
p-Cymene	4.9	Not Detected	27	Not Detected
F - J		= 5.55.54	_ -	= 5.55.64

Container Type: 1 Liter Summa Canister

Client Sample ID: SVE-2-062019 Lab ID#: 1906480-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17070510 Date of Collection: 6/20/19 10:06:00 AM Dil. Factor: 2.47 Date of Analysis: 7/5/19 04:06 PM

Surrogates	%Recovery	Method Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	95	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: SVE-IN-062019 Lab ID#: 1906480-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17070511 Date of Collection: 6/20/19 10:16:00 AM Dil. Factor: 2.50 Date of Analysis: 7/5/19 04:34 PM

			D 4 11 14	•
Camanasum	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Chloromethane	12	Not Detected	26	Not Detected
Vinyl Chloride	1.2	Not Detected	3.2	Not Detected
Freon 113	1.2	Not Detected	9.6	Not Detected
1,1-Dichloroethene	1.2	Not Detected	5.0	Not Detected
Acetone	12	Not Detected	30	Not Detected
Carbon Disulfide	5.0	Not Detected	16	Not Detected
Methylene Chloride	12	Not Detected	43	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	5.0	Not Detected
Hexane	1.2	Not Detected	4.4	Not Detected
1,1-Dichloroethane	1.2	Not Detected	5.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.0	Not Detected	15	Not Detected
cis-1,2-Dichloroethene	1.2	3.5	5.0	14
Chloroform	1.2	Not Detected	6.1	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.8	Not Detected
Benzene	1.2	Not Detected	4.0	Not Detected
Trichloroethene	1.2	6.2	6.7	33
Toluene	1.2	Not Detected	4.7	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.8	Not Detected
Tetrachloroethene	1.2	74	8.5	500
Chlorobenzene	1.2	Not Detected	5.8	Not Detected
Ethyl Benzene	1.2	Not Detected	5.4	Not Detected
m,p-Xylene	1.2	Not Detected	5.4	Not Detected
o-Xylene	1.2	Not Detected	5.4	Not Detected
Styrene	1.2	Not Detected	5.3	Not Detected
Cumene	1.2	Not Detected	6.1	Not Detected
Propylbenzene	1.2	Not Detected	6.1	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	6.1	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	6.1	Not Detected
TPH ref. to Gasoline (MW=100)	120	Not Detected	510	Not Detected
Acetonitrile	12	Not Detected	21	Not Detected
Vinyl Acetate	5.0	Not Detected	18	Not Detected
Octane	5.0	Not Detected	23	Not Detected
Pentane	5.0	Not Detected	15	Not Detected
Butylbenzene	5.0	Not Detected	27	Not Detected
Decane	5.0	Not Detected	29	Not Detected
Dodecane	12	Not Detected	87	Not Detected
sec-Butylbenzene	5.0	Not Detected	27	Not Detected
p-Cymene	5.0	Not Detected	27	Not Detected
F -7	0.0	2 0.00.00	- -	2 0.00.00

Container Type: 1 Liter Summa Canister

Surrogates Method Limits

Client Sample ID: SVE-IN-062019 Lab ID#: 1906480-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17070511 Date of Collection: 6/20/19 10:16:00 AM Dil. Factor: 2.50 Date of Analysis: 7/5/19 04:34 PM

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	104	70-130	
1,2-Dichloroethane-d4	95	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: Lab Blank Lab ID#: 1906480-04A

File Name: Dil. Factor:	17070508d Date of Collection: NA 1.00 Date of Analysis: 7/5/19		9 02:34 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detecte
Toluene	0.50	Not Detected	1.9	Not Detecte
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detecte
Tetrachloroethene	0.50	Not Detected	3.4	Not Detecte
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detecte
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
TPH ref. to Gasoline (MW=100)	50	Not Detected	200	Not Detecte
Acetonitrile	5.0	Not Detected	8.4	Not Detecte
Vinyl Acetate	2.0	Not Detected	7.0	Not Detecte
Octane	2.0	Not Detected	9.3	Not Detecte
Pentane	2.0	Not Detected	5.9	Not Detected
Butylbenzene	2.0	Not Detected	11	Not Detected
Decane	2.0	Not Detected	12	Not Detected
Dodecane	5.0	Not Detected	35	Not Detected
sec-Butylbenzene	2.0	Not Detected	11	Not Detected
p-Cymene	2.0	Not Detected	11	Not Detected

Method Surrogates %Recovery Limits

Client Sample ID: Lab Blank Lab ID#: 1906480-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17070508d	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 7/5/19 02:34 PM

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	102	70-130	
1,2-Dichloroethane-d4	97	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: CCV Lab ID#: 1906480-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17070502 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/5/19 10:37 AM

Compound	%Recovery	
Chloromethane	84	
Vinyl Chloride	101	
Freon 113	84	
1,1-Dichloroethene	93	
Acetone	100	
Carbon Disulfide	96	. – –
Methylene Chloride	91	
trans-1,2-Dichloroethene	105	
Hexane	110	
1,1-Dichloroethane	107	
2-Butanone (Methyl Ethyl Ketone)	112	
cis-1,2-Dichloroethene	111	
Chloroform	108	
1,1,1-Trichloroethane	98	
Benzene	113	
Trichloroethene	106	. – –
Toluene	109	
1,1,2-Trichloroethane	102	
Tetrachloroethene	96	
Chlorobenzene	99	
Ethyl Benzene	98	. – –
m,p-Xylene	102	
o-Xylene	101	
Styrene	105	
Cumene	104	
Propylbenzene	103	
1,3,5-Trimethylbenzene	101	
1,2,4-Trimethylbenzene	103	
TPH ref. to Gasoline (MW=100)	100	
Acetonitrile	86	
Vinyl Acetate	107	. – –
Octane	121	
Pentane	86	
Butylbenzene	98	
Decane	118	
Dodecane	115	
sec-Butylbenzene	98	
p-Cymene	102	
• •		

Container Type: NA - Not Applicable

Surrogates Method
Limits

Client Sample ID: CCV Lab ID#: 1906480-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17070502	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 7/5/19 10:37 AM

Surrogates	%Recovery	Method Limits
Toluene-d8	105	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: LCS Lab ID#: 1906480-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17070504 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/5/19 11:33 AM

Compound	%Recovery	Method Limits
Chloromethane	95	70-130
Vinyl Chloride	102	70-130
Freon 113	84	70-130
1,1-Dichloroethene	94	70-130
Acetone	92	70-130
Carbon Disulfide	84	70-130
Methylene Chloride	89	70-130
trans-1,2-Dichloroethene	88	70-130
Hexane	109	70-130
1,1-Dichloroethane	107	70-130
2-Butanone (Methyl Ethyl Ketone)	112	70-130
cis-1,2-Dichloroethene	123	70-130
Chloroform	107	70-130
1,1,1-Trichloroethane	100	70-130
Benzene	116	70-130
Trichloroethene	108	70-130
Toluene	112	70-130
1,1,2-Trichloroethane	101	70-130
Tetrachloroethene	95	70-130
Chlorobenzene	99	70-130
Ethyl Benzene	98	70-130
m,p-Xylene	102	70-130
o-Xylene	105	70-130
Styrene	111	70-130
Cumene	106	70-130
Propylbenzene	108	70-130
1,3,5-Trimethylbenzene	103	70-130
1,2,4-Trimethylbenzene	108	70-130
TPH ref. to Gasoline (MW=100)	Not Spiked	
Acetonitrile	Not Spiked	
Vinyl Acetate	104	70-130
Octane	Not Spiked	
Pentane	Not Spiked	
Butylbenzene	Not Spiked	
Decane	Not Spiked	
Dodecane	Not Spiked	
sec-Butylbenzene	Not Spiked	
p-Cymene	Not Spiked	

Surrogates Method Limits

Client Sample ID: LCS Lab ID#: 1906480-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17070504 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/5/19 11:33 AM

Surrogates	%Recovery	Method Limits
Toluene-d8	107	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: LCSD Lab ID#: 1906480-06AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17070505 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/5/19 11:59 AM

		Method
Compound	%Recovery	Limits
Chloromethane	96	70-130
Vinyl Chloride	103	70-130
Freon 113	86	70-130
1,1-Dichloroethene	95	70-130
Acetone	96	70-130
Carbon Disulfide	86	70-130
Methylene Chloride	89	70-130
trans-1,2-Dichloroethene	93	70-130
Hexane	112	70-130
1,1-Dichloroethane	107	70-130
2-Butanone (Methyl Ethyl Ketone)	116	70-130
cis-1,2-Dichloroethene	128	70-130
Chloroform	108	70-130
1,1,1-Trichloroethane	101	70-130
Benzene	113	70-130
Trichloroethene	108	70-130
Toluene	111	70-130
1,1,2-Trichloroethane	102	70-130
Tetrachloroethene	100	70-130
Chlorobenzene	101	70-130
Ethyl Benzene	102	70-130
m,p-Xylene	106	70-130
o-Xylene	109	70-130
Styrene	114	70-130
Cumene	109	70-130
Propylbenzene		70-130
1,3,5-Trimethylbenzene	105	70-130
1,2,4-Trimethylbenzene	109	70-130
TPH ref. to Gasoline (MW=100)	Not Spiked	
Acetonitrile	Not Spiked	
Vinyl Acetate	 110	70-130
Octane	Not Spiked	
Pentane	Not Spiked	
Butylbenzene	Not Spiked	
Decane	Not Spiked	
Dodecane	Not Spiked	
sec-Butylbenzene	Not Spiked	
p-Cymene	Not Spiked	

Container Type: NA - Not Applicable

Surrogates Method Limits

Client Sample ID: LCSD Lab ID#: 1906480-06AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17070505	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 7/5/19 11:59 AM

		Method
Surrogates	%Recovery	Limits
Toluene-d8	106	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	100	70-130

21 May 2019

Carl Bach The Boeing Company P.O. Box 3707 MC 9U4-26 Seattle, WA 98124

RE: Boeing Renton Regional GW Building 4-78/79

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

19E0092

Associated SDG ID(s)

N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Cert# 10000

But Bothe

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around		Stande		Page:	1	of	2			Analytic	cal Resources, Incorporated cal Chemists and Consultants
ARI Client Company: Boeing		Phone: 20	898	० ५३८	Date: 05/0	2/19	Ice Prese	ent? Ke	(-	Tukwila	outh 134th Place, Suite 100 a, WA 98168
Client Contact: Carl Back Tom Mckesn				4	No. of Coolers:		Coole Temp	er os: 5.7	30			5-6200 206-695-6201 (fax) rilabs.com
Client Project Name: Penton								Analysis	Requested			Notes/Comments
Client Project #: 12 en lon	Samplers:	Justin L Lune L	ueste			a) a) a)						Vas TCE
Sample ID	Date	Time	Matrix	No. Containers	VOC 8260	ないこと						Cis 1.2-DE VC, Berzere
0507/9-1378-19	5/0/19	941	Wher	4	×	X						
B78-20-050719		942			X	a						
B78-11-050719		1036			α	Œ						
tw-0315-050719		1044			a.	0						
B78-18-050719		1120			市	d						
GW-2448-056719		1134			2	a						
B28-12-050219		12/0			£	4						
B78-13-0507-19		12/0			Q	A						
DUP01-058719		0800			d	Ø.						
TRIP Blank		_	-	1	7	55.						
Comments/Special Instructions	Relinquished by: (Signature)	n		Received by: (Signature)	fel	4	>	Relinquished (Signature)	by:		Received by: (Signature)	
CC Justin Nesse	Printed Name:	Lassen		Printed Name:	Cacol	bhal	K	Printed Nam	e:		Printed Nam	e:
ä	Company:			Company:	12			Company:			Company:	
	Date & Time:	1	613	Date & Time:	07/19	16	13	Date & Time			Date & Time:	i. a

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around	Requested:	Stane	land	Page:	2	of	2_		Analytic	cal Resources, Incorporated cal Chemists and Consultants
ARI Client Company: Boeny		Phone: 20	26 898	0438	Date:	02/19	Ice Pres	ent?	es	Tukwila	outh 134th Place, Suite 100 a, WA 98168
Client Contact: Carl Berch TOM Mckeon					No. of Coolers:	1	Cool	er Siz	°C	206-69. www.ai	5-6200 206-695-6201 (fax) rilabs.com
Client Project Name:								Analysis I	Requested		Notes/Comments
Client Project #:	Samplers: 7	Justin he	sle sser			2017		12			VX + 12E
Sample ID	Date	Time	Matrix	No. Containers	100 8260	Rital Richard					VC Benzene
878-21-050719	05/07/19	1253	Water	4	X	×					
Comments/Special Instructions	Relinquished by:	1		Received by:	1111	7		Relinquished	by:	Received by:	
CC Justinner	(Signature) Printed Name:	2		(Signature) Printed Name:	all		-	(Signature) Printed Name		(Signature)	
23111187	Rine	Lassen		1	eco S	nals	le	Printed Name	12	Printed Name	9:
	Calilo	18		Company:	61			Company:		Company:	
	Date & Time: 05/67/	19 10	613	Date & Time:	27/19	161	7	Date & Time:		Date & Time:	
	03104	1		0)(0	0/11/	101	7				

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

The Boeing CompanyProject:Boeing Renton Regional GW Building 4-78/79P.O. Box 3707 MC 9U4-26Project Number:Boeing Renton Regional GW Building 4-78/79Reported:Seattle WA, 98124Project Manager:Carl Bach21-May-2019 13:59

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
050719-B78-19	19E0092-01	Water	07-May-2019 09:41	07-May-2019 16:13
B78-20-050719	19E0092-02	Water	07-May-2019 09:42	07-May-2019 16:13
B78-11-050719	19E0092-03	Water	07-May-2019 10:36	07-May-2019 16:13
GW-031S-050719	19E0092-04	Water	07-May-2019 10:44	07-May-2019 16:13
B78-18-050719	19E0092-05	Water	07-May-2019 11:29	07-May-2019 16:13
GW-244S-050719	19E0092-06	Water	07-May-2019 11:34	07-May-2019 16:13
B78-17-050719	19E0092-07	Water	07-May-2019 12:10	07-May-2019 16:13
B78-13-050719	19E0092-08	Water	07-May-2019 12:10	07-May-2019 16:13
DUP01-050719	19E0092-09	Water	07-May-2019 08:00	07-May-2019 16:13
Trip Blank	19E0092-10	Water	07-May-2019 08:00	07-May-2019 16:13
B78-21-050719	19E0092-11	Water	07-May-2019 12:53	07-May-2019 16:13

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

Work Order Case Narrative

Volatiles - EPA Method SW8260C

The sample(s) were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Wet Chemistry

The sample(s) were prepared and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Printed: 5/7/2019 5:16:16PM

WORK ORDER

19E0092

Client: The Bo	oeing Company	Proje	ct Manager:	: Kelly Bottem	
Project: Boeing	Renton Regional GW Building 4-78/79	Proje	ct Number:	Boeing Renton Regional GW Building	4-78/79
Report To:		Invoic	e To:		
The Boeing Com	pany	The E	Boeing Comp	any	
Carl Bach		Jennit	fer Parsons		
P.O. Box 3707 N	1C 9U4-26	РО В	ox 3703 MS	2R-96	
Seattle, WA 9812	24	Seattl	e, WA 98124		
Phone: (206) 898	3-0438	Phone	0.5		
Fax: -		Fax: -	200-00		
		r ux.		-	
Date Due:	22-May-2019 18:00 (10 day TAT)				
Received By:	Jacob Walter	Date I	Received:	07-May-2019 16:13	
Logged In By:	Jacob Walter	Date I	Logged In:	07-May-2019 16:54	
Samples Received at:5	5.7°C				
Intact, properly sig	gned and dated custody seals attached to outside of cooler(s)	No	Custody pap	ers included with the cooler	Yes
Custody papers pr	operly filled out (in, signed, analyses requested, etc)	Yes	Was a tempe	rature blank included in the cooler	No
Was sufficient ice	used (if appropriate)	Yes		aled in individual plastic bags	
Number of contain	in good condition (unbroken)ers listed on COC match number received	Yes		els complete and legible	
Correct bottles use	ed for the requested analyses	Voc	All VOC via	and tags agree with COCls free of air bubbles	Yes
Analyses/bottles re	equire preservation (attach preservation sheet excluding VOC	"\ No		nount of sample sent in each bottle	Yes Yes
	I		Samelent an	rount of sample sent in each bottle	105
Analysis	Due TAT		Expires	Comments	

Nitrite-N, IC, EPA 300.0

WORK ORDER

19E0092

Client: The Boeing Company Project Manager: Kelly Bottem

22-May-2019 15:00

10

09-May-2019 11:29

Project: Boeing Renton Regional GW Building 4-78/79 Project Number: Boeing Renton Regional GW Building 4-78/79

Froject: Boeing Renton I	Regional GW Building 4-78/79		Project Number:	Boeing Renton Regional GW Building 4-78
Analysis	Due	TAT	Expires	Comments
19E0092-01 050719-B78	-19 [Water] Sampled 07-May	-2019	9 09:41 (GMT-08:00)	
Pacific Time (US & Cana	nda)		,	
A = Small OJ, 500 mL	B = VOA Vial, Clear, 40 mL, HCL	L C	C = VOA Vial, Clear, 40 mL, F	HCL D = VOA Vial, Clear, 40 mL, HCL
Nitrate-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 09:41	
Nitrite-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 09:41	
Sulfate, IC, EPA 300.0	22-May-2019 15:00	10	04-Jun-2019 09:41	
8260C VOA	22-May-2019 15:00	10	21-May-2019 09:41	
19E0092-02 B78-20-0507 Pacific Time (US & Cana	719 [Water] Sampled 07-May- da)	-2019	9 09:42 (GMT-08:00)	
$A = Small \ OJ, \ 500 \ mL$	B = VOA Vial, Clear, 40 mL, HCL	c	= VOA Vial, Clear, 40 mL, H	ICL D = VOA Vial, Clear, 40 mL, HCL
Nitrate-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 09:42	
8260C VOA	22-May-2019 15:00	10	21-May-2019 09:42	
Sulfate, IC, EPA 300.0	22-May-2019 15:00	10	04-Jun-2019 09:42	
Nitrite-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 09:42	
19E0092-03 B78-11-0507 Pacific Time (US & Cana	19 Water Sampled 07-May- da)	2019	10:36 (GMT-08:00)	
4 = Small OJ, 500 mL	B = VOA Vial, Clear, 40 mL, HCL	. C	= VOA Vial, Clear, 40 mL, H	CL D = VOA Vial, Clear, 40 mL, HCL
Nitrate-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 10:36	
Nitrite-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 10:36	
3260C VOA	22-May-2019 15:00	10	21-May-2019 10:36	
Sulfate, IC, EPA 300.0	22-May-2019 15:00	10	04-Jun-2019 10:36	
9E0092-04 GW-031S-05 GMT-08:00) Pacific Time	60719 [Water] Sampled 07-Ma e (US & Canada)	ay-20	019 10:44	
1 = Small OJ, 500 mL	B = VOA Vial, Clear, 40 mL, HCL	C	= VOA Vial, Clear, 40 mL, H	CL D = VOA Vial, Clear, 40 mL, HCL
260C VOA	22-May-2019 15:00	10	21-May-2019 10:44	
Vitrate-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 10:44	
Nitrite-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 10:44	
Sulfate, IC, EPA 300.0	22-May-2019 15:00	10	04-Jun-2019 10:44	
9E0092-05 B78-18-0507 Pacific Time (US & Canac	19 [Water] Sampled 07-May- da)	2019	11:29 (GMT-08:00)	
1 = Small OJ, 500 mL	B = VOA Vial, Clear, 40 mL, HCL	С	= VOA Vial, Clear, 40 mL, H	CL D = VOA Vial, Clear, 40 mL, HCL
ulfate, IC, EPA 300.0	22-May-2019 15:00	10	04-Jun-2019 11:29	
260C VOA	22-May-2019 15:00	10	21-May-2019 11:29	
Vitrate-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 11:29	
litrita N. IC. EDA 200.0	22.14 2010.17.00		THE RESERVE TO SERVE STATE OF THE SERVER STATE OF THE SERVER SERV	

8260C VOA

WORK ORDER

19E0092

Client: The Boeing Company Project Manager: Kelly Bottem

22-May-2019 15:00

10

21-May-2019 08:00

Project: Boeing Renton Regional GW Building 4-78/79

Project Number: Boeing Renton Regional GW Building 4-78/79

Project: Boeing Renton Res	gional GW Building 4-78/79		Project Number:	Boeing Renton Regional GW Building 4-78/7
Analysis	Due	TAT	Expires	Comments
19E0092-06 GW-244S-050 (GMT-08:00) Pacific Time	719 [Water] Sampled 07-M (US & Canada)	ay-2	019 11:34	
$A = Small \ OJ, \ 500 \ mL$	B = VOA Vial, Clear, 40 mL, HCL	(C = VOA Vial, Clear, 40 mL, F	ACL D = VOA Vial, Clear, 40 mL, HCL
8260C VOA	22-May-2019 15:00	10	21-May-2019 11:34	
Nitrite-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 11:34	
Sulfate, IC, EPA 300.0	22-May-2019 15:00	10	04-Jun-2019 11:34	
Nitrate-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 11:34	
19E0092-07 B78-17-050719 Pacific Time (US & Canada	[Water] Sampled 07-May-	2019	9 12:10 (GMT-08:00)	
$A = Small \ OJ, \ 500 \ mL$	B = VOA Vial, Clear, 40 mL, HCL	C	C = VOA Vial, Clear, 40 mL, H	ICL D = VOA Vial, Clear, 40 mL, HCL
8260C VOA	22-May-2019 15:00	10	21-May-2019 12:10	
Nitrate-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 12:10	
Nitrite-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 12:10	
Sulfate, IC, EPA 300.0	22-May-2019 15:00	10	04-Jun-2019 12:10	
19E0092-08 B78-13-050719 Pacific Time (US & Canada)	[Water] Sampled 07-May-	2019	12:10 (GMT-08:00)	
A = Small OJ, 500 mL	B = VOA Vial, Clear, 40 mL, HCL	C	= VOA Vial, Clear, 40 mL, H	CL D = VOA Vial, Clear, 40 mL, HCL
Nitrate-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 12:10	
Nitrite-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 12:10	
8260C VOA	22-May-2019 15:00	10	21-May-2019 12:10	
Sulfate, IC, EPA 300.0	22-May-2019 15:00	10	04-Jun-2019 12:10	
9E0092-09 DUP01-050719 Pacific Time (US & Canada)	[Water] Sampled 07-May-	2019	08:00 (GMT-08:00)	
4 = Small OJ, 500 mL	B = VOA Vial, Clear, 40 mL, HCL	С	= VOA Vial, Clear, 40 mL, H	CL D = VOA Vial, Clear, 40 mL, HCL
3260C VOA	22-May-2019 15:00	10	21-May-2019 08:00	
Nitrate-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 08:00	
Nitrite-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 08:00	
Sulfate, IC, EPA 300.0	22-May-2019 15:00	10	04-Jun-2019 08:00	
9E0092-10 Trip Blank [Wa Pacific Time (US & Canada)	ater Sampled 07-May-2019	08:0	00 (GMT-08:00)	
4 = VOA Vial, Clear, 40 mL, HCL	B = VOA Vial, Clear, 40 mL, HCL			
***************************************	······································		***************************************	

Printed: 5/7/2019 5:16:16PM

WORK ORDER

19E0092

Client: The Boeing Company

Project Manager: Kelly Bottem

Project: Boeing Renton Regional GW Building 4-78/79

Project Number: Boeing Renton Regional GW Building 4-78/79

Analysis	Due	TAT	Expires	Comments
19E0092-11 B78-21-0507 Pacific Time (US & Canad	19 [Water] Sampled 07-May- da)	2019	12:53 (GMT-08:00)	
$A = Small \ OJ, \ 500 \ mL$	B = VOA Vial, Clear, 40 mL, HCL	С	= VOA Vial, Clear, 40 mL, F	HCL D = VOA Vial, Clear, 40 mL, HCL
Sulfate, IC, EPA 300.0	22-May-2019 15:00	10	04-Jun-2019 12:53	
8260C VOA	22-May-2019 15:00	10	21-May-2019 12:53	
Nitrate-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 12:53	
Nitrite-N, IC, EPA 300.0	22-May-2019 15:00	10	09-May-2019 12:53	2

Reviewed By

Date

Page 4 of 4

Cooler Receipt Form

1					
ARI Client: Sue of		Project Name:	~		
COC No(s):		Delivered by: Fed-Ex UPS Cou	rier Hand Delivere	ed Other	
Assigned ARI Job No: 4	60092	Tracking No:		-	NA)
Preliminary Examination Phase		madking rvo.	Name of the Control o		_ INA
Were intact, properly signed and	d dated custody seals attached to the	he outside of the cooler?	YE	-s ,	NO)
	vith the cooler?		XE		NO
	lled out (ink, signed, etc.)			4	
	recommended 2.0-6.0 °C for chemi		XE	.0	NO
Time [61]		5.76			
If cooler temperature is out of co	mpliance fill out form 00070F	<u> </u>	Temp Gun ID#:	DOO 5 2	,6
Cooler Accepted by:	750	Date: 65/07/19 Time	1613		
		d attach all shipping documents			
Log-In Phase:		a accor an empping documents		-	
TALL .					
	ded in the cooler?			YES	NO
		Wet Ice Gel Packs Baggies Foam	50 60000	STATE AND ADDRESS OF	
	opriate)? stic bags?		NA	YES	NO
	ndition (unbroken)?		Individually	Grouped	Nót
	and legible?			YES	NO
		er of containers received?		YES	NO
		or or containers received:	*	YES	NO NO
	r the requested analyses?			YES	NO
		servation sheet, excluding VOCs)	NA	YES	NO
	ubbles?	THE RESIDENCE OF THE PROPERTY	NA	YES	NO
Was sufficient amount of sampl	e sent in each bottle?			YES	NO
	e at ARI	······································	NA	5/61	19
Were the sample(s) split by ARI?	NA) YES Date/Time:	Equipment:		Split by:	
	/	/			23
Samples Logged by:	1 Date: 05/07/	19 Time: 1657 La	bels checked by: _	8150	
	** Notify Project Manager o	f discrepancies or concerns **			
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample	ID on COC	
Additional Notes, Discrepance	ies, & Resolutions:				
10 180000000000000000000000000000000000					
By: D	ate:				
	210.				- 1

0016F 01/17/2018

Cooler Receipt Form

Revision 014A

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

050719-B78-19 19E0092-01 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2019 09:41

 Instrument: NT3 Analyst: PKC
 Analyzed: 05/08/2019 17:34

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19E0092-01 D

Preparation Batch: BHE0191 Sample Size: 10 mL Prepared: 08-May-2019 Final Volume: 10 mL

	Reporting						
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes	
Vinyl Chloride	75-01-4	1	0.20	ND	ug/L	U	
cis-1,2-Dichloroethene	156-59-2	1	0.20	ND	ug/L	U	
Benzene	71-43-2	1	0.20	0.50	ug/L		
Trichloroethene	79-01-6	1	0.20	ND	ug/L	U	
Surrogate: 1,2-Dichloroethane-d4			80-129 %	105	%		
Surrogate: Toluene-d8			80-120 %	99.8	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	89.9	%		

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

050719-B78-19 19E0092-01 (Water)

Wet Chemistry

Method: EPA 300.0Sampled: 05/07/2019 09:41Instrument: DX500Analyst: KOTTAnalyzed: 05/07/2019 22:57Sample Preparation:Preparation Method: No Prep Wet ChemExtract ID: 19E0092-01 A

Preparation Batch: BHE0189 Sample Size: 5 mL Prepared: 07-May-2019 Final Volume: 5 mL

Reporting Detection CAS Number Dilution Limit Limit Units Analyte Result Notes 14797-55-8 0.100 ND U Nitrate-N 0.100 mg/L

				Detection	Reporting			
Ana	alyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitr	rite-N	14797-65-0	1	0.100	0.100	ND	mg/L	U

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

050719-B78-19 19E0092-01RE4 (Water)

Wet Chemistry

 Method: EPA 300.0
 Sampled: 05/07/2019 09:41

 Instrument: DX2100
 Analysed: 05/20/2019 13:24

Sample Preparation: Preparation Method: No Prep Wet Chem Extract ID: 19E0092-01RE4 A
Preparation Batch: BHE0189 Sample Size: 5 mL

Prepared: 07-May-2019 Final Volume: 5 mL

Reporting Detection CAS Number Dilution Limit Limit Units Analyte Result Notes 14808-79-8 1.00 D Sulfate 10 1.00 14.2 mg/L

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-20-050719 19E0092-02 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2019 09:42

 Instrument: NT3
 Analyst: PKC

 Analyzed: 05/08/2019 18:00

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19E0092-02 D

Preparation Batch: BHE0191 Sample Size: 10 mL Prepared: 08-May-2019 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	0.20	0.28	ug/L	
cis-1,2-Dichloroethene	156-59-2	1	0.20	0.32	ug/L	
Benzene	71-43-2	1	0.20	16.3	ug/L	
Trichloroethene	79-01-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	111	%	
Surrogate: Toluene-d8			80-120 %	102	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	98.6	%	

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-20-050719 19E0092-02 (Water)

Wet Chemistry

Method: EPA 300.0Sampled: 05/07/2019 09:42Instrument: DX500Analyst: KOTTAnalyzed: 05/07/2019 23:48Sample Preparation:Preparation Method: No Prep Wet ChemExtract ID: 19E0092-02 A

Preparation Batch: BHE0189 Sample Size: 5 mL Prepared: 07-May-2019 Final Volume: 5 mL

Reporting Detection CAS Number Dilution Limit Limit Units Analyte Result Notes 14797-55-8 ND U Nitrate-N 0.100 0.100 mg/L

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrite-N	14797-65-0	1	0.100	0.100	ND	mg/L	U

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-20-050719 19E0092-02RE2 (Water)

Wet Chemistry

Method: EPA 300.0Sampled: 05/07/2019 09:42Instrument: DX2100Analyst: KOTTAnalyzed: 05/17/2019 20:39Sample Preparation:Preparation Method: No Prep Wet ChemExtract ID: 19E0092-02RE2 A

Preparation Batch: BHE0189 Sample Size: 5 mL

Prepared: 07-May-2019 Final Volume: 5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Sulfate	14808-79-8	5	0.500	0.500	4.93	mg/L	D

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-11-050719 19E0092-03 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2019 10:36

 Instrument: NT3
 Analyst: PKC

 Analyzed: 05/08/2019 18:26

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19E0092-03 D

Preparation Batch: BHE0191 Sample Size: 10 mL Prepared: 08-May-2019 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	0.20	3.56	ug/L	
cis-1,2-Dichloroethene	156-59-2	1	0.20	6.55	ug/L	
Benzene	71-43-2	1	0.20	2.15	ug/L	
Trichloroethene	79-01-6	1	0.20	8.60	ug/L	
Surrogate: 1,2-Dichloroethane-d4			80-129 %	105	%	
Surrogate: Toluene-d8			80-120 %	99.4	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	94.0	%	

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-11-050719 19E0092-03 (Water)

Wet Chemistry

Method: EPA 300.0Sampled: 05/07/2019 10:36Instrument: DX500Analyzet: KOTTAnalyzed: 05/08/2019 00:38Sample Preparation:Preparation Method: No Prep Wet ChemExtract ID: 19E0092-03 A

Preparation Batch: BHE0189 Sample Size: 5 mL Prepared: 07-May-2019 Final Volume: 5 mL

Reporting Detection CAS Number Dilution Limit Limit Units Analyte Result Notes 14797-55-8 ND U Nitrate-N 0.100 0.100 mg/L

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrite-N	14797-65-0	1	0.100	0.100	ND	mg/L	U

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-11-050719 19E0092-03RE1 (Water)

Wet Chemistry

 Method: EPA 300.0
 Sampled: 05/07/2019 10:36

 Instrument: DX500
 Analyzed: 05/09/2019 14:52

Sample Preparation: Preparation Method: No Prep Wet Chem Extract ID: 19E0092-03RE1 A
Preparation Batch: BHE0189 Sample Size: 5 mL

Prepared: 07-May-2019 Final Volume: 5 mL

Reporting Detection CAS Number Dilution Limit Limit Units Analyte Result Notes 14808-79-8 50 D Sulfate 5.00 5.00 47.0 mg/L

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:
Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

GW-031S-050719 19E0092-04 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2019 10:44

 Instrument: NT3
 Analyst: PKC

 Analyzed: 05/08/2019 18:52

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19E0092-04 D

Preparation Batch: BHE0191 Sample Size: 10 mL Prepared: 08-May-2019 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	0.20	0.30	ug/L	
cis-1,2-Dichloroethene	156-59-2	1	0.20	0.22	ug/L	
Benzene	71-43-2	1	0.20	1.90	ug/L	
Trichloroethene	79-01-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	118	%	
Surrogate: Toluene-d8			80-120 %	103	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	96.9	%	

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

GW-031S-050719 19E0092-04 (Water)

Wet Chemistry

wet Chemistry								
Method: EPA 300.0						S	ampled: 05/	07/2019 10:44
Instrument: DX500 Ana	ılyst: KOTT					Aı	nalyzed: 05/	08/2019 00:55
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BHE0189 Prepared: 07-May-2019	Sample Size: 5 Final Volume: 5					Extract ID:	19E0092-04 A
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrate-N		14797-55-8	1	0.100	0.100	ND	mg/L	U
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrite-N		14797-65-0	1	0.100	0.100	ND	mg/L	U
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Sulfate		14808-79-8	1	0.100	0.100	1.86	mg/L	-

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-18-050719 19E0092-05 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2019 11:29

 Instrument: NT3 Analyst: PKC
 Analyzed: 05/08/2019 19:18

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19E0092-05 D

Preparation Batch: BHE0191 Sample Size: 10 mL Prepared: 08-May-2019 Final Volume: 10 mL

Trepared: 00 Way 2019	i mai voidine. i	O IIIL				
			Reporting		_	
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	0.20	0.24	ug/L	
cis-1,2-Dichloroethene	156-59-2	1	0.20	0.31	ug/L	
Benzene	71-43-2	1	0.20	1.66	ug/L	
Trichloroethene	79-01-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	107	%	
Surrogate: Toluene-d8			80-120 %	99.4	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	95.4	%	

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-18-050719 19E0092-05 (Water)

Wet Chemistry

Method: EPA 300.0Sampled: 05/07/2019 11:29Instrument: DX500Analyst: KOTTAnalyzed: 05/08/2019 01:12Sample Preparation:Preparation Method: No Prep Wet ChemExtract ID: 19E0092-05 A

Preparation Batch: BHE0189 Sample Size: 5 mL Prepared: 07-May-2019 Final Volume: 5 mL

Reporting Detection CAS Number Dilution Limit Limit Units Analyte Result Notes 14797-55-8 ND U Nitrate-N 0.100 0.100 mg/L

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrite-N	14797-65-0	1	0.100	0.100	ND	mg/L	U

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:
Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-18-050719 19E0092-05RE1 (Water)

Wet Chemistry

Method: EPA 300.0Sampled: 05/07/2019 11:29Instrument: DX500Analyzet: KOTTAnalyzed: 05/09/2019 15:09Sample Preparation:Preparation Method: No Prep Wet ChemExtract ID: 19E0092-05RE1 A

Preparation Batch: BHE0189 Sample Size: 5 mL

Prepared: 07-May-2019 Final Volume: 5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Sulfate	14808-79-8	2	0.200	0.200	2.44	mg/L	D

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

GW-244S-050719 19E0092-06 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2019 11:34

 Instrument: NT3 Analyst: PKC
 Analyzed: 05/08/2019 19:44

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19E0092-06 D

Preparation Batch: BHE0191 Sample Size: 10 mL Prepared: 08-May-2019 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	0.20	1.18	ug/L	
cis-1,2-Dichloroethene	156-59-2	1	0.20	1.22	ug/L	
Benzene	71-43-2	1	0.20	1.13	ug/L	
Trichloroethene	79-01-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	102	%	
Surrogate: Toluene-d8			80-120 %	96.1	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	97.5	%	

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:
Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

GW-244S-050719 19E0092-06 (Water)

Wet Chemistry

wet Chemistry								
Method: EPA 300.0						S	ampled: 05	/07/2019 11:34
Instrument: DX500 Ana	alyst: KOTT					Aı	nalyzed: 05/	08/2019 01:28
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BHE0189 Prepared: 07-May-2019	Sample Size: 5 Final Volume: 5					Extract ID:	19E0092-06 A
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Nitrate-N		14797-55-8	1	0.100	0.100	ND	mg/L	U
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrite-N		14797-65-0	1	0.100	0.100	ND	mg/L	U
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Sulfate		14808-79-8	1	0.100	0.100	1.45	mg/L	

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-17-050719 19E0092-07 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2019 12:10

 Instrument: NT3 Analyst: PKC
 Analyzed: 05/08/2019 20:10

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19E0092-07 D

Preparation Batch: BHE0191 Sample Size: 10 mL Prepared: 08-May-2019 Final Volume: 10 mL

Trepared. 00 ividy 2017	i mai voiume. i	O IIIL				
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	0.20	1.79	ug/L	
cis-1,2-Dichloroethene	156-59-2	1	0.20	5.72	ug/L	
Benzene	71-43-2	1	0.20	1.07	ug/L	
Trichloroethene	79-01-6	1	0.20	5.00	ug/L	
Surrogate: 1,2-Dichloroethane-d4			80-129 %	102	%	
Surrogate: Toluene-d8			80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	95.5	%	

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-17-050719 19E0092-07 (Water)

Wet Chemistry

Method: EPA 300.0Sampled: 05/07/2019 12:10Instrument: DX500Analyzet: KOTTAnalyzed: 05/08/2019 01:45Sample Preparation:Preparation Method: No Prep Wet ChemExtract ID: 19E0092-07 A

Preparation Batch: BHE0189 Sample Size: 5 mL Prepared: 07-May-2019 Final Volume: 5 mL

Reporting Detection CAS Number Dilution Limit Limit Units Analyte Result Notes 14797-55-8 0.100 ND U Nitrate-N 0.100 mg/L

				Detection	Reporting			
Ana	alyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitr	rite-N	14797-65-0	1	0.100	0.100	ND	mg/L	U

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-17-050719 19E0092-07RE1 (Water)

Wet Chemistry

Method: EPA 300.0Sampled: 05/07/2019 12:10Instrument: DX500Analyzet: KOTTAnalyzed: 05/09/2019 15:26Sample Preparation:Preparation Method: No Prep Wet ChemExtract ID: 19E0092-07RE1 A

Preparation Batch: BHE0189 Sample Size: 5 mL Prepared: 07-May-2019 Final Volume: 5 mL

Reporting Detection CAS Number Dilution Limit Limit Units Analyte Result Notes 14808-79-8 5 0.500 D Sulfate 0.500 4.92 mg/L

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-13-050719 19E0092-08 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2019 12:10

 Instrument: NT3 Analyst: PKC
 Analyzed: 05/08/2019 20:35

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19E0092-08 B

Preparation Batch: BHE0191 Sample Size: 10 mL Prepared: 08-May-2019 Final Volume: 10 mL

Trepared: 00 May 2019	i mai voiame. i	o mie				
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	0.20	0.45	ug/L	
cis-1,2-Dichloroethene	156-59-2	1	0.20	0.57	ug/L	
Benzene	71-43-2	1	0.20	1.16	ug/L	
Trichloroethene	79-01-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	106	%	
Surrogate: Toluene-d8			80-120 %	103	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	93.9	%	

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-13-050719 19E0092-08 (Water)

Wet Chemistry

Method: EPA 300.0						S	ampled: 05	/07/2019 12:10
Instrument: DX500 Ana	ılyst: KOTT					Ai	nalyzed: 05	/08/2019 02:02
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BHE0189 Prepared: 07-May-2019	Sample Size: 5 Final Volume: 5		Extract ID: 19E0092-08 A				
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Nitrate-N		14797-55-8	1	0.100	0.100	ND	mg/L	U
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Nitrite-N		14797-65-0	1	0.100	0.100	ND	mg/L	U
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Sulfate		14808-79-8	1	0.100	0.100	ND	mg/L	U

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:
Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

DUP01-050719 19E0092-09 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2019 08:00

 Instrument: NT3
 Analyst: PKC

 Analyzed: 05/08/2019 21:01

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19E0092-09 C

Preparation Batch: BHE0191 Sample Size: 10 mL Prepared: 08-May-2019 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	0.20	ND	ug/L	U
cis-1,2-Dichloroethene	156-59-2	1	0.20	0.27	ug/L	
Benzene	71-43-2	1	0.20	2.16	ug/L	
Trichloroethene	79-01-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	118	%	
Surrogate: Toluene-d8			80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	96.4	%	

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

DUP01-050719 19E0092-09 (Water)

Wet Chemistry

wet Chemistry								
Method: EPA 300.0						S	ampled: 05/	07/2019 08:00
Instrument: DX500 Ana	llyst: KOTT					Aı	nalyzed: 05/	08/2019 02:19
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BHE0189 Prepared: 07-May-2019	Sample Size: 5 Final Volume: 5		Extract ID:	19E0092-09 A			
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrate-N		14797-55-8	1	0.100	0.100	ND	mg/L	U
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrite-N		14797-65-0	1	0.100	0.100	ND	mg/L	U
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Sulfate		14808-79-8	1	0.100	0.100	0.689	mg/L	

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

Trip Blank 19E0092-10 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2019 08:00

 Instrument: NT3
 Analyst: PKC

 Analyzed: 05/09/2019 13:37

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19E0092-10 A

Preparation Batch: BHE0194 Sample Size: 10 mL Prepared: 09-May-2019 Final Volume: 10 mL

Trepared. 07 Way 2017	i mai voiume. i	O IIIL				
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
<u> </u>		Dilution			Onits	Notes
Vinyl Chloride	75-01-4	1	0.20	ND	ug/L	U
cis-1,2-Dichloroethene	156-59-2	1	0.20	ND	ug/L	U
Benzene	71-43-2	1	0.20	ND	ug/L	U
Trichloroethene	79-01-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	113	%	
Surrogate: Toluene-d8			80-120 %	101	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	90.6	%	

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:
Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-21-050719 19E0092-11 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 05/07/2019 12:53

 Instrument: NT3 Analyst: PKC
 Analyzed: 05/09/2019 16:45

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap) Extract ID: 19E0092-11 B

Preparation Batch: BHE0194 Sample Size: 10 mL Prepared: 09-May-2019 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	0.20	ND	ug/L	U
cis-1,2-Dichloroethene	156-59-2	1	0.20	0.42	ug/L	
Benzene	71-43-2	1	0.20	0.80	ug/L	
Trichloroethene	79-01-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	107	%	
Surrogate: Toluene-d8			80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	98.0	%	

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-21-050719 19E0092-11 (Water)

Wet Chemistry

 Method: EPA 300.0
 Sampled: 05/07/2019 12:53

 Instrument: DX500
 Analyzed: 05/08/2019 02:35

Sample Preparation: Preparation Method: No Prep Wet Chem Extract ID: 19E0092-11 A
Preparation Batch: BHE0189 Sample Size: 5 mL

Prepared: 07-May-2019 Final Volume: 5 mL

Reporting Detection CAS Number Dilution Limit Limit Units Analyte Result Notes 14797-55-8 ND U Nitrate-N 0.100 0.100 mg/L

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrite-N	14797-65-0	1	0.100	0.100	ND	mg/L	U

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:
Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

B78-21-050719 19E0092-11RE1 (Water)

Wet Chemistry

Method: EPA 300.0Sampled: 05/07/2019 12:53Instrument: DX2100Analyst: KOTTAnalyzed: 05/17/2019 15:57Sample Preparation:Preparation Method: No Prep Wet ChemExtract ID: 19E0092-11RE1 A

Preparation Batch: BHE0189 Sample Size: 5 mL Prepared: 07-May-2019 Final Volume: 5 mL

Reporting Detection CAS Number Dilution Limit Limit Units Analyte Result Notes 14808-79-8 5 0.500 D Sulfate 0.500 5.73 mg/L

Analytical Resources, Inc.

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

Volatile Organic Compounds - Quality Control

Batch BHE0191 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

000 1/4 1/4	n k	Reporting	TT	Spike	Source		%REC	DDD	RPD	NT 4
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BHE0191-BLK1)			Prepa	ared: 08-Ma	y-2019 A	Analyzed: 08-	May-2019	13:07		
Vinyl Chloride	ND	0.20	ug/L							U
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Benzene	ND	0.20	ug/L							U
Trichloroethene	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	5.22		ug/L	5.00		104	80-129			
Surrogate: Toluene-d8	5.00		ug/L	5.00		100	80-120			
Surrogate: 4-Bromofluorobenzene	4.79		ug/L	5.00		95.7	80-120			
LCS (BHE0191-BS1)			Prepa	ared: 08-Ma	y-2019 A	Analyzed: 08-	May-2019	10:57		
Vinyl Chloride	9.84	0.20	ug/L	10.0		98.4	66-133			
cis-1,2-Dichloroethene	9.87	0.20	ug/L	10.0		98.7	80-121			
Benzene	10.4	0.20	ug/L	10.0		104	80-120			
Trichloroethene	10.3	0.20	ug/L	10.0		103	80-120			
Surrogate: 1,2-Dichloroethane-d4	4.98		ug/L	5.00		99.5	80-129			
Surrogate: Toluene-d8	5.13		ug/L	5.00		103	80-120			
Surrogate: 4-Bromofluorobenzene	4.86		ug/L	5.00		97.2	80-120			
LCS Dup (BHE0191-BSD1)			Prepa	ared: 08-Ma	y-2019 A	Analyzed: 08-	May-2019	11:23		
Vinyl Chloride	11.1	0.20	ug/L	10.0		111	66-133	12.20	30	
cis-1,2-Dichloroethene	11.2	0.20	ug/L	10.0		112	80-121	12.80	30	
Benzene	11.6	0.20	ug/L	10.0		116	80-120	11.30	30	
Trichloroethene	11.1	0.20	ug/L	10.0		111	80-120	7.95	30	
Surrogate: 1,2-Dichloroethane-d4	5.01		ug/L	5.00		100	80-129			
Surrogate: Toluene-d8	5.10		ug/L	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene	4.92		ug/L	5.00		98.4	80-120			

Analytical Resources, Inc.

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:
Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

Volatile Organic Compounds - Quality Control

Batch BHE0194 - EPA 5030 (Purge and Trap)

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Resuit	Limit							LIIIII	notes
Blank (BHE0194-BLK1)			Prepa	ared: 09-Ma	y-2019 A	Analyzed: 09-	May-2019	12:44		
Vinyl Chloride	ND	0.20	ug/L							U
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Benzene	ND	0.20	ug/L							U
Trichloroethene	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	5.14		ug/L	5.00		103	80-129			
Surrogate: Toluene-d8	5.01		ug/L	5.00		100	80-120			
Surrogate: 4-Bromofluorobenzene	4.52		ug/L	5.00		90.5	80-120			
LCS (BHE0194-BS1)			Prepa	ared: 09-Ma	y-2019 A	Analyzed: 09-	May-2019 1	10:07		
Vinyl Chloride	9.80	0.20	ug/L	10.0	-	98.0	66-133			
cis-1,2-Dichloroethene	9.74	0.20	ug/L	10.0		97.4	80-121			
Benzene	10.2	0.20	ug/L	10.0		102	80-120			
Trichloroethene	10.1	0.20	ug/L	10.0		101	80-120			
Surrogate: 1,2-Dichloroethane-d4	5.07		ug/L	5.00		101	80-129			
Surrogate: Toluene-d8	5.03		ug/L	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene	4.94		ug/L	5.00		98.7	80-120			
LCS Dup (BHE0194-BSD1)			Prepa	ared: 09-Ma	y-2019 A	Analyzed: 09-	May-2019	11:26		
Vinyl Chloride	9.10	0.20	ug/L	10.0		91.0	66-133	7.45	30	
cis-1,2-Dichloroethene	9.84	0.20	ug/L	10.0		98.4	80-121	0.99	30	
Benzene	10.4	0.20	ug/L	10.0		104	80-120	1.51	30	
Trichloroethene	10.3	0.20	ug/L	10.0		103	80-120	2.58	30	
Surrogate: 1,2-Dichloroethane-d4	5.27		ug/L	5.00		105	80-129			
Surrogate: Toluene-d8	4.97		ug/L	5.00		99.3	80-120			
Surrogate: 4-Bromofluorobenzene	4.90		ug/L	5.00		98.1	80-120			

Analytical Resources, Inc.

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

Wet Chemistry - Quality Control

Batch BHE0189 - No Prep Wet Chem

Instrument: DX2100 Analyst: KOTT

QC Sample/Analyte	I Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Duplicate (BHE0189-DUP3)	So	urce: 19E	0092-01RE4	Prep	ared: 07-Ma	y-2019 An	alyzed: 20-	May-2019	13:43		
Sulfate	14.5	1.00	1.00	mg/L		14.2			1.67	20	D
Matrix Spike (BHE0189-MS2)	So	urce: 19E	0092-01RE4	Prep	ared: 07-May	y-2019 An	alyzed: 17-	May-2019	16:59		
Sulfate	34.6	2.00	2.00	mg/L	20.0	14.2	102	75-125			*, D

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Instrument: DX500 Analyst: KOTT

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHE0189-BLK1)				Prepa	ared: 07-May	-2019 An	alyzed: 08-	May-2019 6	13:09		
Nitrate-N	ND	0.100	0.100	mg/L							U
Nitrite-N	ND	0.100	0.100	mg/L							U
Sulfate	ND	0.100	0.100	mg/L							U
LCS (BHE0189-BS1)				Prepa	ared: 07-May	r-2019 An	alyzed: 08-	May-2019 0	13:59		
Nitrate-N	1.42	0.100	0.100	mg/L	1.50		94.9	90-110			
Nitrite-N	1.56	0.100	0.100	mg/L	1.50		104	90-110			
Sulfate	1.60	0.100	0.100	mg/L	1.50		107	90-110			
Duplicate (BHE0189-DUP1)	So	ource: 19E	0092-01	Prepa	ared: 07-May	-2019 An	Analyzed: 07-May-2019 23:14				
Nitrate-N	ND	0.100	0.100	mg/L		ND					U
Nitrite-N	ND	0.100	0.100	mg/L		ND					U
Matrix Spike (BHE0189-MS1)	Source: 19E0092-01		Prepa	Prepared: 07-May-2019 Analy		Analyzed: 07-May-2019 23:31		23:31			
Nitrate-N	2.06	0.100	0.100	mg/L	2.00	ND	103	90-110			
Nitrite-N	2.19	0.100	0.100	mg/L	2.00	ND	109	90-110			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Certifications

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:
Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

Certified Analyses included in this Report

Analyte

7 111 11 11 10	- Continuation
EPA 300.0 in Water	
Nitrate-N	DoD-ELAP,WADOE,WA-DW,NELAP
Nitrite-N	DoD-ELAP,WADOE,WA-DW,NELAP
Sulfate	DoD-ELAP,WADOE,WA-DW,NELAP
EPA 8260C in Water	
Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Acrolein	DoD-ELAP,NELAP,CALAP,WADOE
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Acetone	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromoethane	DoD-ELAP,NELAP,CALAP,WADOE
Iodomethane	DoD-ELAP,NELAP,CALAP,WADOE
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Acrylonitrile	DoD-ELAP,NELAP,CALAP,WADOE
Carbon Disulfide	DoD-ELAP,NELAP,CALAP,WADOE
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Vinyl Acetate	DoD-ELAP,NELAP,CALAP,WADOE
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
2-Butanone	DoD-ELAP,NELAP,CALAP,WADOE
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Benzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Trichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Dibromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE

Analytical Resources, Inc.

The Boeing Company	Project: Boeing Renton Regional GW Building 4-78/79	
P.O. Box 3707 MC 9U4-26	Project Number: Boeing Renton Regional GW Building 4-78/79	Reported:
Seattle WA, 98124	Project Manager: Carl Bach	21-May-2019 13:59

2-Chloroethyl vinyl ether DoD-ELAP, ADEC, NELAP, CALAP, WADOE 4-Methyl-2-Pentanone DoD-ELAP, NELAP, CALAP, WADOE cis-1,3-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Toluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE trans-1,3-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 2-Hexanone DoD-ELAP, NELAP, CALAP, WADOE 1,1,2-Trichloroethane DoD-ELAP,ADEC,NELAP,CALAP,WADOE DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,3-Dichloropropane Tetrachloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Dibromochloromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2-Dibromoethane DoD-ELAP, NELAP, CALAP, WADOE Chlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Ethylbenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1,1,2-Tetrachloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE m,p-Xylene DoD-ELAP, ADEC, NELAP, CALAP, WADOE o-Xylene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Styrene DoD-ELAP, NELAP, CALAP, WADOE Bromoform DoD-ELAP, NELAP, CALAP, WADOE DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE trans-1.4-Dichloro 2-Butene DoD-ELAP, ADEC, NELAP, CALAP, WADOE n-Propylbenzene DoD-ELAP, NELAP, CALAP, WADOE Bromobenzene DoD-ELAP, NELAP, CALAP, WADOE Isopropyl Benzene DoD-ELAP, NELAP, CALAP, WADOE 2-Chlorotoluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 4-Chlorotoluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE t-Butylbenzene 1,3,5-Trimethylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1,2,4-Trimethylbenzene DoD-ELAP, NELAP, CALAP, WADOE s-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE 4-Isopropyl Toluene DoD-ELAP, NELAP, CALAP, WADOE 1,3-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,4-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE n-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1.2-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2-Dibromo-3-chloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1.2.4-Trichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Hexachloro-1,3-Butadiene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Naphthalene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2,3-Trichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

Dichlorodifluoromethane DoD-ELAP,ADEC,NELAP,CALAP,WADOE Methyl tert-butyl Ether DoD-ELAP,ADEC,NELAP,CALAP,WADOE

n-Hexane WADOE 2-Pentanone WADOE

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
CALAP	California Department of Public Health CAELAP	2748	06/30/2019
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2020
WADOE	WA Dept of Ecology	C558	06/30/2019
WA-DW	Ecology - Drinking Water	C558	06/30/2019

Analytical Resources, Inc.

The Boeing Company Project: Boeing Renton Regional GW Building 4-78/79

P.O. Box 3707 MC 9U4-26 Project Number: Boeing Renton Regional GW Building 4-78/79 Reported:

Seattle WA, 98124 Project Manager: Carl Bach 21-May-2019 13:59

Notes and Definitions

 Flagged value is not within established control limits.

D The reported value is from a dilution

E The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

Y1 Raised reporting limit due to interference

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.