GROUNDWATER MONITORING WELL INSTALLATION AND SAMPLING REPORT

Fourth Quarter 2019

Acrowood Corp

Site Address: 4425 S 3rd Avenue Everett, Washington 98203 Facility/Site No.: 22755667 VCP Project No.: NW2151 Cleanup Site ID No.: 4703

December 12, 2019

Prepared for:

Acrowood Corp 4425 S 3rd Avenue Everett, Washington 98203

Mie

Stephanie Holt Staff Geologist

David R. Polivka L.G. / L.Hg. Senior Hydrogeologist

Prepared by:

ECI | Environmental Services PO Box 153 Fox Island, Washington 98333 Office: (253) 238-9270

ECI Project No.: 0377-08

Practical Environmental Compliance Solutions

Table of Contents

1.0 IN 1.1 1.2 1.2.1 1.2.2	TRODUCTION Property Description/Location Physical Setting Geology and Hydrogeology Site Geology	1 2 2 2
1.2.3	Site Hydrogeology	2
2.0 PR 2.1 2.2 2.3 Installa 2.4 2.5	Adapt Engineering, Inc, November 1999, Preliminary Phase II Environmental Site Assessment Adapt Engineering, Inc, May 2000 - Supplemental Phase II Environmental Site Assessment Adapt Engineering, Inc, August 2000 through August 2001 - Groundwater Monitoring We tion and Groundwater Quality Monitoring Reports Adapt Engineering, Inc, January 2002 – Acrowood Closure Report Adapt Engineering, Inc., February 2009 – Supplemental Phase II Environmental Site Assessmen 6	3 4 911 5 5 nt
2.6	EcoCon Inc., September 2011 – Focused Subsurface Investigation	7
3.0 GF 3.1 3.2 3.2.1 3.3 3.3.1 3.4 3.5 3.5.1 3.5.2	ROUNDWATER MONITORING PROGRAM Regulatory Compliance. Contaminants of Concern (COCs) and Cleanup Levels cPAH Soil and Groundwater Cleanup Levels Monitoring Well Installation. Soil Sampling Groundwater Sampling Activities Groundwater Monitoring Results. Analytical Results Site Groundwater Characteristics	9 9 0 0 1 2 3 4
4.0 CC 4.1 4.2	DNCLUSION & RECOMMENDATIONS	. 5 .5
5.0 RE 5.1 5.2 5.3 5.4 5.5	PORT LIMITATIONS AND GUIDELINES FOR USE 1 Use of this Report by Others 1 Uncertainty May Remain after Completion of Site Investigation and Remedial Activities 1 Subsurface Conditions Can Change 1 Soil and Groundwater End Use 1 Most Environmental Findings Are Professional Opinions 1	6 6 7 7 7
List of Tal	bles	
Table 1: C	Contaminants of Concern	9

Table 2: Well Installation Soil Sample Results	11
Table 3: Groundwater Sample Analytical Results	13
Table 4: Summary of Area 3 Soil Analytical Results	
Table 5: Summary of Area 3 Groundwater Analytical Results	

Table 6: Summary of Area 3 Monitoring Well Analytical Result

ECI | Environmental Services O: (866) 730-9369 F: (253) 369-6228 E: info@ecocononline.com

List of Appendices

Appendix A - Project Figures

- Figure 1: Site Location Map
- Figure 2: Site Topographic Map
- Figure 3: Site Overview
- Figure 4: Area 3 Well Location Map
- Figure 5: Area 3 Historical Soil Sample Map
- Figure 6: Area 3 Historical Groundwater Sample Map
- Figure 7: Site Photographic Log

Appendix B – Project Tables

- Table 4: Summary of Area 3 Soil Analytical Results
- Table 5: Summary of Area 3 Groundwater Analytical Results
- Table 6: Summary of Area 3 Monitoring Well Analytical Results

Appendix C – Project Documentation

- Well Installation Logs
- Field Sampling Forms

Appendix D – Project Analytical Results

- Laboratory Analytical Report
- Chain of Custody

1.0 INTRODUCTION

EcoCon, Inc. (ECI) has prepared this Groundwater Monitoring Well Installation and Sampling Report to document the installation of four additional groundwater monitoring wells and groundwater-sampling conducted at 4425 South 3rd Avenue, Everett, Washington (Site/Subject Site/Property/Subject Property) (Figure 1, Appendix A). This report details field activities and observations, sampling activities, chemical analysis, and provides conclusions and recommendations.

As established in WAC 173-340-200, the "Site" is defined as:

"...any area where a hazardous substance, other than a consumer product in consumer use, has been deposited, stored, disposed of, or placed or otherwise come to be located..."

For this report, the "Site" is defined by the full lateral and vertical extent of contamination that has resulted from a former diesel underground storage tank (UST) that was located on the Property. Based on the findings of the previous environmental investigations, the Site has been defined as the nature and extent of the following contaminants in the soil and groundwater:

- Diesel-range Organics (DRO), and
- Oil-range Organics (ORO),
- Naphthalene, and
- Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs).

1.1 **Property Description/Location**

According to the Snohomish County Assessor, the Property (Snohomish County Tax Parcel numbers 29053200200100, 29053200200200, 29053200201400, 29053200205900, and 29053200304200) consists of a single industrial lot, approximately 21.07 acres in total. The Site is contained within the northernmost parcel, 29053200200100. This parcel is approximately 6.87 acres in size, and currently improved with two structures. The first structure was constructed in 1913 totally 120,284 square feet, and the second structure was constructed in 1948 totaling 324 square feet. Other buildings are present on the Property but are not listed on the Snohomish County Assessor's website. According to information obtained at the Snohomish County Assessor's office, the site is zoned "M-1" for general manufacturing/industrial uses.

ECI's historical research on the Property indicates that former land use activities included metal fabrication and iron foundry facilities dating as far back as the 1890s. The Property is currently used as a metal fabrication facility specializing in machinery for the pulp and paper industry. According to the Snohomish County Assessor, the Property is currently owned by Acrowood Corp.

1.2 Physical Setting

1.2.1 Geology and Hydrogeology

Geological and hydrogeological conditions can often affect, to some extent, the environmental integrity of property. Underlying soil and bedrock formations may facilitate or impede the migration of chemical contaminants in groundwater and may even be the source of contaminants such as radon and metals. This section of the report summarizes geologic factors that may affect the Subject Property in regard to environmental concerns.

The Site is located in the Puget Lowland geologic region. The Puget Sound Lowland is an elongated topographic and structural depression filled with complex sequences of glacial and non-glacial sediments that overlie bedrock. Continental ice sheets up to 3,000 feet thick covered portions of the Puget Lowland several times during the Quaternary period. Retreating ice carved new landscapes, rechanneled rivers, drained or formed lakes, and deposited glacial drift including till and outwash sands and gravels (WA DNR, 2002).

The primary aquifers in the Puget Sound region are typically in glacial sands and gravels overlain by relatively impermeable glacial till deposits, that are present at or near the ground surface. Within these till deposits are localized areas or lenses of water-bearing sands and gravels that may result in a shallow, localized, perched water table. Lateral and vertical migration of shallow groundwater may be impeded by the relatively impermeable nature of the till and by the sometimes-discontinuous nature of the perched water-bearing sands and gravel.

Perched and discontinuous zones of shallow groundwater may be seasonally or perennially present, depending on site-specific conditions. Shallow groundwater flow directions fluctuate and tend to follow topographic gradient but are also affected by seasonal high-water tables and variable soil characteristics. Groundwater migration pathways may also follow underground conduits.

1.2.2 Site Geology

According to the Washington State Geologic Portal, the area near the Property is characterized by Pleistocene Fraser-age to pre-Fraser transitional beds. These deposits consist of clay, silt, and very fine to fine sand; some layers of peaty sand and gravel are in the lower part of compact deposits but may be unstable because of high moisture content, plasticity, and local vertical jointing. The sediments were mostly deposited in still to slowly moving water, except for the coarse stream deposits in the lower part of the unit In the urban and more highly developed areas these materials can include modified land and artificial fill.

Soils observed during this and previous Site investigations on the Subject Property include red to medium brown silts and sands overlain by dark brown to black topsoil typically containing organic matter.

1.2.3 Site Hydrogeology

Based on previous environmental investigations at the Site, the depth to groundwater is between 2 and 9 feet below ground surface (bgs). Shallow groundwater beneath the Subject Property is anticipated to follow

the general topography near the Property and flow to the east towards wetlands and the Snohomish River approximately 1000 feet to the east (Figure 2, Appendix A). Land development and glacial till may also cause contaminants to migrate in different directions through utility corridors or other paths of least resistance.

2.0 PREVIOUS INVESTIGATIONS / INTERIM ACTIONS

According to documents reviewed by ECI, several previous investigations have been performed at the Site by Adapt Engineering, Inc (Adapt) beginning in 1999. During the course of investigations, three areas were identified as containing concentrations of target analytes in soil and/or groundwater at concentrations above the Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A or B Cleanup Levels (Figure 3, Appendix A). These areas are described as:

- Area 1 A paint and solvent storage shed where trichloroethene (TCE) was encountered in soil and groundwater at concentrations exceeded applicable MTCA Method A Soil and Groundwater Cleanup Levels.
- Area 2 A former heating oil UST location where oil-range organics (ORO) were encountered in soil at concentrations below the MTCA Method A Soil Cleanup Level. This area is referred to as Area 2.
- Area 3 An area where a release from a former fuel tank occurred and concentrations of DRO, ORO and polycyclic aromatic hydrocarbons (PAHs) in soil and groundwater exceeded MTCA Method A Soil and Groundwater Cleanup Levels.

An "Opinion Letter" dated June 22, 2010 issued through the Ecology Voluntary Cleanup Program (VCP) indicated that:

"Ecology does agree that groundwater monitoring in the area of the former paint and solvent storage shed [Area 1] indicates that there is no longer a TCE impact."

This opinion letter also indicated that:

"Groundwater characterization has not been completed for the area around the former heating oil UST [Area 2] located by the shipping and receiving dock."

Groundwater characterization in Area 2 was later completed in 2011 by ECI.

Because of the opinions given by Ecology in their 2010 "*Opinion Letter*", and the completion of the groundwater characterization in 2011 by ECI, Area 1 and Area 2 were not investigated during this groundwater monitoring event. The history presented in this section therefore omits information regarding Area 1 and Area 2 and focuses on presenting historical environmental investigations pertaining to Area 3.

2.1 Adapt Engineering, Inc, November 1999, Preliminary Phase II Environmental Site Assessment

In 1999, ADAPT conducted a Preliminary Phase II Environmental Site Assessment (ESA) to evaluate possible impacts from recognized environmental conditions identified in a Phase I ESA dated August 20, 1999. The Phase I ESA had identified five potential recognized environmental conditions that included:

- A former (heating oil) underground storage tank (Area 2),
- An area where a former fuel oil tank was located (Area 3),

- A paint storage building (Area 1),
- Iron and foundry waste fill area, and
- A storm water discharge pipe.

The Preliminary Phase II assessed the soil, and groundwater, conditions beneath the Site to provide data for evaluation of possible contaminants associated with the identified recognized environmental conditions.

The Preliminary Phase II ESA consisted of advancing 16 Geoprobe[®] borings to depths of between 8 and 22 feet within the areas of concern and the collection of soil and groundwater samples. Three of the boring were advanced in Area 3, the subject area of this report. The field and analytical data collected suggested that there was petroleum hydrocarbon impact in soil and groundwater above MTCA Method A Cleanup Levels (Figure 5, Appendix A; Table 5, Appendix B).

Adapt detailed the history and investigation of Area 3 in their Preliminary Phase II ESA report,

"The 1960 Sanborn Map, reviewed by ADAPT, depicts suspect fuel oil tanks located adjacent to the steel shop on the east edge of the site. According to Acrowood personnel, the tanks were removed prior to the 1970s when Acrowood purchased the site. Additional information was not available regarding the nature of these suspected tanks. Based on the location and current limited access to the area, it is likely that the fuel oil tanks were above ground tanks.

Analytical results from borings placed in and around the suspected fuel oil tanks area indicated that there had been a release of petroleum hydrocarbons. One boring (P1) placed within the estimated footprint of the fuel tanks, exhibited heavy staining and residual free product adhering to the soil particles from approximately 5 to 15 feet below ground surface. Analytical results from a soil sample at 16 feet below ground surface exhibited concentrations of diesel and heavy oil at 10,000 and 4,010 ppm, respectively.

Two additional borings (P3 and P2) were placed approximately 12 and 20 feet radial from P1, respectively, to the west and south, to delineate the lateral migration of the petroleum hydrocarbon. Diesel and heavy oil hydrocarbons were exhibited in P3, at 134 ppm for diesel and 210 for heavy oil, but not in P2. Analytical results appeared to limit the lateral extent of the release to an area within approximately 10 to 12 feet of P1. Vertical soil sampling results appeared to delineate the vertical extent to between approximately 4.5 feet and 20 feet below ground surface."

2.2 Adapt Engineering, Inc, May 2000 - Supplemental Phase II Environmental Site Assessment

Based on the results of the Preliminary Phase II ESA, a Supplemental Phase II was performed by Adapt to further delineate the extent of soil and groundwater impacts in Areas 1, 2, and 3.

Adapt states that four additional borings (P2, P3, HA1 and HA2) were placed south, west, east and northeast of boring P1 in Area 3 at a radial distance of approximately 20, 12, 10 and 15 feet from P1, respectively. However, results reported by Adapt in the Supplemental Phase I ESA indicated that samples from boring

locations P20, HA1, and HA2 were collected in April 2000 and that samples from locations P2 and P3 were collected in November 1999. The analytical results of samples from the borings revealed concentrations of ORO and DRO below the MTCA Method A Cleanup level of 2,000mg/kg for soils.

Adapt concluded that analytical results from soil and groundwater samples appeared to indicate that the area of petroleum hydrocarbon impact was localized to an area approximately 10 to 15 feet radial from P1 and P20 to the east, west and south. Adapt noted that the vertical extent of the release appears to be located from approximately 8 to 15 feet bgs. Due to the presence of the steel shop building, the northern lateral extent was not delineated. Adapt also noted that it was possible there may be residual localized petroleum hydrocarbons beneath the steel shop structure (Figure 5 & Figure 6, Appendix A; Tables 4 & 5, Appendix B).

2.3 Adapt Engineering, Inc, August 2000 through August 2001 - Groundwater Monitoring Well Installation and Groundwater Quality Monitoring Reports

In August 2000, Adapt oversaw the installation of three groundwater-monitoring wells in the former fuel tank area (Area 3) adjacent to the south wall of the fabrication shop. A *"Groundwater Monitoring Well Installation Report"* dated August 29, 2000 was prepared detailing the installation of the three monitoring wells and the results of the first quarterly groundwater quality sampling.

At the time of well installation, groundwater was estimated to be flowing to the east towards the Snohomish River. An upgradient well was placed approximately 30 feet west of the Geoprobe[®] borings that were located in the former fuel tank area during the Phase II ESAs and two downgradient wells were placed approximately ten feet east of a retaining wall on the fire lane easement.

The three groundwater-monitoring wells were sampled using low-flow purge and sample methods to minimize interferences caused by particulate material. Based on results from the initial (1st Quarter) sampling event, groundwater was observed to be flowing east-southeast. Analytical results indicated that ORO observed in the Geoprobe[®] and hand auger borings were not detected above the standard laboratory detection limits in the groundwater of the three wells.

Adapt conducted three additional quarterly sampling events in the groundwater-monitoring wells installed in the vicinity of the former fuel tanks. Based on the results of the additional quarterly sampling, DRO, ORO, and PAHs, were not detected above the standard laboratory detection limits in the upgradient or downgradient wells (Figure 6, Appendix A; Table 6, Appendix B).

2.4 Adapt Engineering, Inc, January 2002 – Acrowood Closure Report

In January 2002, Adapt prepared a closure report for Acrowood which detailed the previous environmental activities on the Property and recommended that the report be submitted to Ecology to obtain a "No Further Action" (NFA) determination. Based on the information summarized below, ADAPT believed the Subject Property qualified for an NFA. Adapt also noted that restrictive covenants as dictated by Ecology may be an appropriate condition for the NFA. Adapt made the following arguments for closure in Area 3:

- According to empirical data collected from four quarterly sampling events, in the area of the former fuel oil tanks, the groundwater migrating off-site meets MTCA Method A Cleanup Levels for TPH [total petroleum hydrocarbons] and PAHs. Based on these results, it appears site groundwater conditions meet requirements for site closure.
- Using the Johnson and Ettinger vapor intrusion model it appears that residual PAHs concentrations in on-site soil and groundwater do not pose an unacceptable risk to workers in the existing or proposed future site structures.
- Using Ecology's Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use for individual chemicals the current observed concentration of... TPH in soil meets current MTCA Method B cleanup levels and is protective of groundwater.
- Based on a review of records at the Washington Department of Ecology, it appears the closest possible sensitive receptor is the Snohomish River, located approximately 1/2 mile to the east of the site. Based on the attenuation observed on site, the likelihood that this receptor could be affected by the subject property appears to be low. No wetlands or drinking water wells were reported within approximately one mile of the subject property. The City of Everett provides water to the subject property and surrounding area. The water is obtained from surface sources collected approximately 10 to 20 miles east. It is unlikely the shallow aquifer below the site would be developed for beneficial uses.
- The site as well as adjacent and downgradient properties are currently used and zoned for industrial purposes. It is unlikely the site or downgradient properties would be used for residential purposes in the foreseeable future, further mitigating concern about residual TPH and PAHs.
- Proposed restrictive covenants would likely include requirement to excavate any heavy oil impacted soil during future redevelopment of the site, restriction on use of groundwater from the site, and deed restrictions.

2.5 Adapt Engineering, Inc., February 2009 – Supplemental Phase II Environmental Site Assessment

In 2009, a Phase II Environmental Site Assessment (Phase II ESA) was conducted by Adapt Engineering, Inc. (Adapt). The purpose of this Phase II ESA was to comply with additional sampling requirements requested by Ecology an April 18, 2007 "*Opinion Letter*". In June 2007, a total of eight direct push borings were advanced on site (three borings within Area 3) as well as four hollow-stem auger borings which were completed as 2-inch diameter monitoring wells (one of which was installed in Area 3). Groundwater samples were collected from the wells at the Site on August 20, 2007 and January 17, 2008.

Soil samples from borings advanced in Area 3 (P-23 through P-27) did not contain detectible concentrations of DRO, ORO, naphthalene, or PAHs except for soil sample P-26:12-14. While this sample contained DRO, ORO, and naphthalene below the MTCA Method A Cleanup Level, it contained a concentration of benzo(a)pyrene (BaP) at 6.1 ug/L with a total carcinogenic PAH (cPAH) toxic equivalent concentration (TEQ) as BaP of 8.2 ug/L, both well above the MTCA Method A Cleanup Level.

Groundwater samples collected from Area 3 revealed ORO above the MTCA Method A Cleanup in borings P-26 and P-27. DRO and cPAHs above the MTCA Method A Cleanup Level were also reported in P-26 (Figure 5 & Figure 6, Appendix A; Table 4 & Table 5, Appendix B).

Adapt concluded the following regarding Area 3:

- That further groundwater monitoring would not be necessary in Area 3 based on four consecutive quarters of groundwater monitoring in MW4 which did not indicate that groundwater contamination was migrating.
- Adapt argued that excavation of the residual contamination in Area 3 would likely affect the structural integrity of the building due to the sandy nature of soil observed on site. Adapt went on to say that the contamination is not anticipated to be migrating and that the retaining wall adjacent to the contaminated area may be acting as a barrier to contamination migration.

2.6 EcoCon Inc., September 2011 – Focused Subsurface Investigation

On July 21, 2011 ECI advanced a total of six borings (three within Area 3) as part of a Focused Subsurface investigation (FSI) on the Subject Property. The purpose of the FSI was to comply with a request from Ecology in their 2010 "*Further Action Letter*" stating that a single downgradient well in Area 3 is insufficient to demonstrate groundwater is meeting cleanup standards. The maximum depth of exploration during the FSI was approximately 20.5 feet bgs. Groundwater samples were collected from each of the boring locations except ECIMW-5, which was completed as a monitoring well with a 1-inch diameter PVC casing and 0.010-inch factory slotted well screen.

A total of 9 soil samples and 3 groundwater samples were collected in Area 3 and submitted to ESN Northwest Chemistry Laboratory in Olympia, Washington for analysis of DRO and ORO using Ecology Method NWTPH-Dx. One soil sample and one groundwater sample were selected for additional analysis of PAHs using EPA Method 8270 based on initial analytical results.

On August 25, 2011, ECI returned to the Site to develop, monitor, and sample the monitoring wells in Area 3. Groundwater samples obtained from MW1, MW4, and ECIMW-5 (Referred to as MW5 in this report) were submitted to ALS Environmental Laboratory (ALS) in Everett, Washington for analysis of DRO and ORO using Ecology Method NWTHP-Dx and PAHs using EPA Method 8270SIM.

Of the soil samples submitted to the laboratory, only soil sample ECIA3B-2:12 was above the MTCA Method A Cleanup Level for the contaminants analyzed, containing concentrations of DRO, ORO, total naphthalenes, and cPAHs above the MTCA Method A Cleanup Level.

Of the groundwater samples collected, one sample (ECIA3B-1GW) was above the MTCA Method A Cleanup Level for DRO, but below the MTCA Method A Cleanup Level for total naphthalene and cPAHs. However, ECI noted that the laboratory reporting limit for cPAHs for this sample was 0.1 ug/L, which makes it possible for the TEQ to be greater than 0.1 ug/L, and thus above the MTCA Method A Cleanup Level. Additionally, the analytical results of the groundwater sample (ECIMW5-5) collected from the newly installed MW5

revealed that cPAHs were present below the MTCA method A Cleanup Level with a total toxic equivalent concentration (TEQ) of 0.046 ug/L (Figure 5 & Figure 6, Appendix A; Tables 4 & 5, Appendix B).

The following conclusions were reported by ECI regarding Area 3:

- FSI soil and groundwater data combined with previous investigation data were sufficient to characterize the extent of soil and groundwater impacts at the Site.
- Soil in Area 3 was impacted with DRO, ORO, cPAHs, and naphthalenes at concentrations exceeding
 applicable MTCA Method A Soil Cleanup Levels. Soil impacts in Area 3 are confined to a relatively
 small area and do not appear to extend off-Property. It was estimated that approximately 60 yards
 of impacted soil remain in place in this location and that some of this soil is likely situated beneath
 the building. Soil impacts did not appear to be present below the groundwater table as previously
 reported.
- It would not be cost effective to excavate the small amount of impacted soil in Area 3 due to
 excessive costs associated with supporting the building and retaining wall during excavation
 activities.
- Groundwater in Area 3 is impacted with DRO, ORO, and cPAHs at concentrations exceeding MTCA Method A Groundwater Cleanup Levels. Groundwater impacts in Area 3 are confined to a relatively small area and do not appear to extend off-Property.
- The observed decreases in dissolved-phase concentrations of DRO, ORO, and cPAHs from July 2007 to July 2011 in the location of borings ECIA3B-2 and P-26 indicated that natural attenuation may be effective at remediating the observed groundwater impacts at the Site.
- The installation of groundwater monitoring well ECIMW-5 (MW5) has satisfied Ecology's requirement to install a monitoring well downgradient and south of the former excavation area in Area 3.

Based on the findings of this FSI, ECI recommended the following:

- ECI recommended leaving the estimated 60 yards of impacted soil in place and allowing groundwater impacts to naturally attenuate. This would involve requesting a "*No Further Action*" (NFA) determination from Ecology with an Environmental Covenant. ECI noted that Ecology would likely require the installation of additional groundwater monitoring wells in the impacted area and upgradient along with continued groundwater monitoring to achieve this goal.
- Ecology had indicated in previous opinion letters that a Feasibility Study (FS), including a disproportionate cost analysis (DCA) would be needed to support the selected cleanup action of leaving contaminated soil in place and implementing institutional controls. Ecology had also indicated that a Terrestrial Ecological Evaluation (TEE) needed to be completed for the Site.
- ECI also recommended scheduling a meeting with the Project Manager once he had had the opportunity to review the FSI report. The intent of the meeting would be to determine that the next actions taken at the Site were appropriate and cost effective.

3.0 GROUNDWATER MONITORING PROGRAM

The groundwater monitoring program discussed in this report was initiated at the Site beginning the fourth quarter of 2019 and includes:

- Installation of four additional groundwater-monitoring wells;
- Sampling the wells on a quarterly basis for four consecutive quarters; and
- Describes contaminants of concern along with their respective MTCA Method A Clean Up Levels (CULs).

3.1 Regulatory Compliance

Regulatory compliance for this project is based on the Washington Administrative Code (WAC) 173-340 – Model Toxic Control Act (MTCA) - RCW Chapter 70.105D, implemented by the Washington State Department of Ecology (Ecology). Pursuant to Chapter 70.105D RCW, Ecology has established procedures for developing cleanup levels and requirements for cleanup actions. The rules establishing these levels and requirements were developed by Ecology in consultation with a Science Advisory Board (established under the Act) and with representatives from local government, citizen, environmental, and business groups. The rules were first published in February 1991, with amendments in January 1996, February 2001, and October 2007.

3.2 Contaminants of Concern (COCs) and Cleanup Levels

Based upon the results of previous investigations, the COCs and respective MTCA Method A Cleanup Levels for the Site are presented below:

Contaminant	Analytical Method	Soil MTCA Method A CULs (mg/kg)	Groundwater MTCA Method A CULs (µg/L)
Primary Co	ontaminants of Co	ncern - Petroleum Hydrocarb	oons
Diesel-range Organics (DRO)	NWTPH-Dx	2000	500
Oil-range Organics (ORO)	NWTPH-Dx	2000	500
Secondary Contaminants o	f Concern - Carcin	ogenic Polycyclic Aromatic H	ydrocarbons (cPAHs)
Benzo (a) anthracene	EPA 8270		
Chrysene	EPA 8270		
Benzo (b) fluoranthene	EPA 8270		
Benzo (k) fluoranthene	EPA 8270		
Benzo (a) pyrene*	EPA 8270	0.1	0.1
dibenzo(a,h)anthracene	EPA 8270		
Indeno (1,2,3-cd) pyrene	EPA 8270		

Table 1: Contaminants of Concern

MTCA = Model Toxics Control Act

*The MTCA Method A Cleanup Level for cPAHs is based on a total toxic equivalent concentration (TEQ) calculation which compares the toxicity of individual cPAH compounds and presents them as a number equivalent to benzo(a)pyrene.

3.2.1 cPAH Soil and Groundwater Cleanup Levels

Carcinogenic PAHs (cPAHs) analyzed in soil and groundwater during the well installation and groundwater sampling included benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene and ideno(1,2,3-cd)pyrene. When establishing compliance with cleanup levels under MTCA, the mixture of these compounds is considered a single hazardous substance. The toxicity equivalency factor (TEF) methodology was developed by the U.S. Environmental Protection Agency (EPA) to evaluate the toxicity and assess the risks of a mixture of structurally related chemicals with a common mechanism of action. To evaluate the human health toxicity of a cPAH mixture, the chemical concentrations of the cPAHs in the mixture are converted to an equivalent concentration of benzo(a)pyrene. This calculation is expressed mathematically, below. For notation purposes, the result is referred here as the "total toxic equivalent concentration" or "cPAH TEQ."

Total TEQ = \sum (Cn * TEFn)

Where:

Total TEQ = Total Toxic Equivalent Concentration of a cPAH mixture Cn = Concentration of the individual cPAH in the mixture TEFn = Toxicity equivalency factor for the individual cPAH in the mixture

3.3 Monitoring Well Installation

On March 7, 2019 ECI oversaw the installation of three groundwater monitoring wells on the Subject Property (Figure 4, Appendix A). A fourth monitoring well was installed on April 4, 2019. The wells were drilled using a push-probe operated by a Washington State licensed driller. The borings for the wells were drilled until groundwater was encountered and then a minimum of five feet past the soil-water interface. The wells were constructed pursuant to the Washington State Resource Protection Well Regulations (Chapter 173-160 WAC) with ten feet of 1-inch diameter slotted PVC well screen starting at the base of the boring. The boring logs and well construction details are presented in Appendix B.

After installation, to assure that representative samples of the groundwater could be obtained, each well was developed to remove the effects that drilling may have had on the soils adjacent to the boing and to clean the sand-pack of silt that may have been introduced during well construction. This was accomplished by surging the well and pumping the water from the well until the water was clear or as clear as reasonably possible.

The following wells were installed on the Subject Property:

- **MW6** was installed northeast of the known impacted area in the anticipated cross and downgradient direction.
- **MW7** was installed southeast of the known impacted area in the anticipated downgradient direction.

- **MW8** was installed directly through the known impacted soil area. This well was the most likely to have groundwater impacted by the COCs.
- **MW9** was installed inside of the building adjacent to the known impacted area in the anticipated upgradient position.

3.3.1 Soil Sampling

During drilling of the borings for the monitoring wells, undisturbed soil samples were collected directly from the Macro-core[®] liner of the drilling rod. The samples collected at the capillary fringe in each boring were submitted to the laboratory for analysis.

The analytical results of the samples collected are detailed in Table 2 below:

	Sample		Total Pe Hydroc (mg	troleum arbons /kg)	Polycyclic Aro	matic Hydrocarb (mg/ł	oons (PAHs) (EPA ‹g)	8270 SIM)
Sample ID	Depth (ft)	Date Sampled	Diesel (mg/kg) ²	Heavy Oil (mg/kg) ²	Naphthalene	2-Methyl Naphthalene	1-Methyl Naphthalene	cPAHs TEQ ¹ as Benzo (a) Pyrene
MW6-6	6	11/12/2019	<25	<50	<0.02	<0.02	<0.02	<0.02
MW7-5	5	11/12/2019	80	210	<0.02	<0.02	<0.02	0.06149
MW8-5	5	11/12/2019	27	120				
MW8-15	15	11/12/2019	11,000	5,700	18	130	90	4.396
MW8-19	19	11/12/2019	<25	<50				
MW9-11	11	11/12/2019	<25	<50	<0.02	<0.02	<0.02	0.06463
Labor	atory Repor	ting Limit	25	50	0.020	0.020	0.020	
Ecology MTCA Method A Cleanup Levels			2,000	2,000	5	5	5	0.1

Table 2.	اام/۸۱	Installation	Soil	Samr	ماد	Results
Table Z.	wen	IIIStallation	2011	Squit	ле	Results

Notes:

¹TEQ refers to total toxic equivalent concentration (TEQ) of cPAHs as benzo(a)pyrene. Full PAH results for soil are displayed in Table 4, Appendix B. MTCA = Model Toxics Control Act

Mg/kg = milligram per kilogram

< indicated that the result is below the laboratory PQL

-- indicates that sample was not analyzed for this constituent

Bold indicates a detected concentration that is below Ecology MTCA Method A Cleanup Levels

Bold and Shaded indicates the detected concentration exceeds Ecology MTCA Method A or B Cleanup Levels

The analytical results revealed that monitoring well MW8 had been placed within the impacted area as intended. Analytical results of sample MW8-15 revealed DRO, ORO, Naphthalene, and the TEQ for cPAHs as benzo(a)pyrene were each above their respective MTCA Method A Cleanup Levels in soil. Two additional soil samples were collected and analyzed for DRO and ORO from boring MW8 in order to delineate the vertical extent of contamination. The results of the analysis of samples MW8-5 and MW8-19 indicated that DRO and ORO impact to soils is limited to between 5 and 19 feet bgs in the vicinity of MW8.

The analytical results for the soil sample collected from monitoring well MW6 were below laboratory reporting limits for each of the COCs analyzed, which are below their respective MTCA Method A Cleanup Levels.

Analytical results of the soil samples collected from monitoring wells MW7 and MW9 reported cPAHs above the reporting limit, with a calculated cPAH TEQ below the MTCA Method A Cleanup Level. Analytical results of soil from monitoring well MW7 revealed DRO, ORO above the reporting limit, but below the MTCA Method A Cleanup Level for DRO and ORO. For detailed analytical results including individual cPAH values, refer to Table 4, Appendix B.

Additional DRO and ORO analysis was requested for samples collected from MW8 at 5 feet and 19 feet bgs to further delineate the vertical extent of petroleum impact to soil. Analytical results revealed DRO and ORO present below the MTCA Method A Cleanup Level in sample MW8-5, and below the laboratory reporting limit for DRO and ORO in sample MW8-19. Detailed soil analytical results are presented in Table 4, Appendix B.

3.4 Groundwater Sampling Activities

Groundwater samples were collected from each of the seven monitoring wells (MW1, and MW4 through MW9) on November 13 and November 14, 2019 in accordance with American Society of Testing and Materials (*ASTM*) *Guideline* D6771-02 *"Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground-Water Quality Investigations"*. Monitoring wells MW2 and MW3 had previously been destroyed and decommissioned in 2007.

ECI field staff followed the procedures described below when collecting groundwater samples:

- The cap from each monitoring well at the Site was removed and the groundwater level was allowed to equilibrate to atmospheric pressure for a minimum of 20 minutes.
- The depth to groundwater in each monitoring well at the Site was measured relative to the top of the well casing using an electronic water-level meter.
- Each monitoring well that was sampled was then purged at a low-flow rate (100 to 300 milliliters per minute) using a peristaltic pump and dedicated polyethylene tubing. Temperature, pH, dissolved oxygen (DO), oxygen reduction potential (ORP) and specific conductivity were monitored during purging using a water quality meter and a flow-through cell to determine when these parameters stabilized.

Samples were collected in new laboratory-provided analyte-specific sample containers and assigned a unique sample ID. The samples were placed in a climate-controlled container and maintained at or below 4° Celsius until they were delivered to the laboratory ALS Environmental under industry standard chain of custody protocol.

3.5 Groundwater Monitoring Results

3.5.1 Analytical Results

Seven groundwater samples were submitted to ALS Environmental, of Everett, Washington and analyzed for site-specific COCs. Analytical methods were consistent with those presented in Section 3.2.

The analytical results for groundwater samples collected from MW4 and MW6 were below their respective laboratory reporting limits, which are below their respective MTCA Method A Cleanup Levels for the identified COCs. Analytical results for groundwater samples in MW1, MW7, and MW9 were above their respective laboratory reporting limits for DRO, ORO, and total naphthalene, but below the MTCA Method A Cleanup Level.

Analytical results for groundwater samples collected from MW5 and MW8 indicated that groundwater was impacted above the MTCA Method A Cleanup Level for the cPAH TEQ in each of these areas. Analytical results for DRO and ORO were above the MTCA Method A Cleanup Level in the groundwater sample collected from monitoring well MW8. A summary of the laboratory analytical results is provided in Table 3 below. The laboratory data sheets are presented in Appendix C.

Sample	Date	Depth to	Total Petroleun (NWTPH-	n Hydrocarbons Dx) (μg/l)	Polycyclic Arom (EPA 827(atic Hydrocarbons) SIM) (µg/l)
Number	Sampled	Water	Diesel (DRO)	Heavy Oil (ORO)	Total Naphthalene	cPAHs TEQ ¹ as Benzo (a) Pyrene
MW1	11/13/19	12.76	150	<250	<0.040	<0.040
MW4	11/13/19	4.70	<130	<250	<0.040	<0.040
MW5	11/13/19	13.41	<130	<250	<0.040	0.2405
MW6	11/13/19	4.21	<130	<250	<0.040	<0.040
MW7	11/13/19	4.58	320	400	<0.040	<0.040
MW8	11/14/19	13.39	16000	4000	174	0.1111
MW9	11/13/19	11.18	200	<250	0.37	<0.040
Laboratory Reporting Limit		g Limit	130	250	0.040	0.04
Ecology MTCA	Method A Cl	eanup Levels	500	500	160	0.1

Table 3: Groundwater Sample Analytical Results

Notes:

¹TEQ refers to total toxic equivalent concentration of cPAHs as benzo(a)pyrene. Full individual PAH results for groundwater are displayed in Table 6, Appendix B.

MTCA = Model Toxics Control Act

 μ g/l = milligram per kilogram

< indicated that the result is below the laboratory PQL

Bold indicates a detected concentration that is below Ecology MTCA Method A Cleanup Levels

Bold and Shaded indicates the detected concentration exceeds Ecology MTCA Method A or B Cleanup Levels

3.5.2 Site Groundwater Characteristics

The groundwater observed within the monitoring wells did not exhibit any strange odors or colors, however the water from monitoring well MW8 did exhibit some sheen on the surface of the purge water and sample. Monitoring wells MW4, MW6, and MW7 each exhibited either high pH values or malfunction of the pH probe (which is assumed to be the result of high pH). Each of these wells are located on the downgradient side of a partially buried concrete retaining wall within the fire lane. This concrete retaining wall may be the source of at least part of the elevated pH levels.

According to previous reports, the groundwater flow direction is to the east-southeast. Groundwater was encountered between 11.18 and 13.41 feet bgs in wells located on the level ground outside of the steel shop, and between 4.21 and 4.7 feet bgs in wells located in the fire lane beyond the retaining wall along the east of the steel shop. The elevation difference between the fire lane and the front of the steel shop is approximately 10 feet.

Groundwater levels for monitoring wells MW1 through MW9 were measured during the sampling of each well. A survey of the recently installed monitoring wells has not been conducted as of the date of this report. However, groundwater flow direction is expected to follow the general topography of the site to the east and southeast toward the Snohomish River as reported in previous groundwater monitoring reports. Detailed groundwater monitoring well results are presented in Table 6, Appendix B.

4.0 CONCLUSION & RECOMMENDATIONS

4.1 Conclusions

On November 12, 2019, ECI oversaw the installation of four additional groundwater monitoring wells on the Subject Property (MW6 through MW9). These wells were installed with the intent of monitoring the groundwater over four consecutive quarters before petitioning the Department of Ecology for a "*No Further Action*" determination with an Environmental Covenant to be prepared for the Subject Property.

Analytical results of soil samples collected during the well installation indicated DRO, ORO, and cPAH concentrations below the MTCA Method A Cleanup Levels in monitoring well MW7 and cPAH concentrations below the MTCA Method A Cleanup Level in monitoring well MW9. Analytical results of the soil sample MW8-15 indicated DRO, ORO, naphthalene, and cPAH concentrations above the MTCA Method A Cleanup Level in monitoring above the MTCA Method A Cleanup Level in monitoring above the MTCA Method A Cleanup Level in monitoring well MW8-15 indicated DRO, ORO, naphthalene, and cPAH concentrations above the MTCA Method A Cleanup Level in monitoring well MW8-15 indicated DRO, ORO, naphthalene, and cPAH concentrations above the MTCA Method A Cleanup Level in monitoring well MW8 at a depth of 15 feet bgs. Additional analysis of samples MW8-5 and MW8-19 indicated that the vertical extent of DRO and ORO contamination above the MTCA Method A Cleanup Level in the vicinity of MW8 is between 5 and 19 feet bgs.

On November 13 and November 14, 2019, groundwater samples were collected from the seven groundwater monitoring wells installed the Site. The samples were collected to evaluate groundwater quality and potential mobility of contaminants in Area 3.

The analytical results revealed concentrations of DRO, ORO, naphthalene, and cPAHs above their respective MTCA Method A Cleanup Levels in the groundwater sample collected from MW8, and cPAHs above the MTCA Method A Cleanup Levels for benzo(a)pyrene and total TEQ for cPAHs in the groundwater sample collected from MW5 (Table 6, Appendix B).

4.2 Recommendations

ECI recommends that the groundwater impact of cPAHs in the vicinity of MW5 be fully delineated. Following delineation, the source of the soil and groundwater contamination in Area 3 will need to be remediated, or show that the contamination is not migrating, and four consecutive quarters of groundwater monitoring completed before Ecology can be petitioned for a "*No Further Action*" determination.

5.0 REPORT LIMITATIONS AND GUIDELINES FOR USE

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology, and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. EcoCon Inc. includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with EcoCon if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or Site.

5.1 Use of this Report by Others

Our report was prepared for the exclusive use of Acrowood Corporation (Client) and / or their designated parties. This report may be provided to regulatory agencies for review if requested or required. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

This report has been prepared for subsurface investigation activities at the Subject Property. ECI considered a number of unique, project-specific factors when establishing the scope of services for this project and report. No one except our Client should rely on this environmental report without first conferring with ECI. This report should not be applied for any purpose or project except the one originally contemplated.

Unless ECI specifically indicates otherwise, do not rely on this report if it was:

- Not prepared for you,
- Not prepared for your project,
- Not prepared for the specific site explored, or
- Completed before important site changes were made.

If important changes are made after the date of this report, ECI should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

5.2 Uncertainty May Remain after Completion of Site Investigation and Remedial Activities

The investigation and remediation activities completed in a portion of a site cannot wholly eliminate uncertainty regarding the potential for contamination in connection with the entire property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from the locations sampled. It is always possible that contamination exists in areas that were not explored, sampled, or analyzed.

5.3 Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the Site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact EcoCon before applying this report to determine if it is still applicable.

5.4 Soil and Groundwater End Use

The cleanup levels referenced in this report are Site- and situation-specific and could change with time due to regulatory or Site changes. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater).

Note that hazardous substances may be present in some of the Site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. Because these cleanup levels can change, ECI should be contacted to evaluate the potential for associated environmental liabilities prior to the export of soil or groundwater from the Subject Site or reuse of the affected media on the Site. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the Subject Site to another location or its reuse on the Site in instances that we were not aware of or could not control.

5.5 Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from the locations sampled at the Site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. EcoCon Inc. reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the Site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

List of Appendices

Appendix A - Project Figures

Figure 1: Site Location Map Figure 2: Site Topographic Map Figure 3: Site Overview Figure 4: Area 3 Well Location Map Figure 5: Area 3 Historical Soil Sample Map Figure 6: Area 3 Historical Groundwater Sample Map Figure 7: Site Photographic Log **Appendix B – Project Tables**

Table 4: Summary of Area 3 Soil Analytical Results Table 5: Summary of Area 3 Groundwater Analytical Results Table 6: Summary of Area 3 Monitoring Well Analytical Results

Appendix C – Project Documentation

Well Installation Logs Field Sampling Forms

Appendix D – Project Analytical Results

Laboratory Analytical Report Chain of Custody

Appendix A - Project Figures

Figure 1: Site Location MapFigure 2: Site Topographic Map Figure 3: Site Overview Figure 4: Area 3 Well Location Map Figure 5: Area 3 Historical Soil Sample Map Figure 6: Area 3 Historical Groundwater Sample Map Figure 7: Site Photographic Log

<u>MW6-W (ug/L)</u> DRO:<130, ORO:<250, Tnap:<0.040, cPAHs TEQ:<0.040 <u>MW6-6 (mg/Kg)</u> DRO:<25, ORO:<50, Tnap:<0.020, cPAHs TEQ:<0.020

<u>MW7-W (ug/L)</u> DRO:320, ORO:400 Tnap:<0.040, cPAHs TEQ:<0.040 <u>MW-5 (mg/Kg)</u> DRO:80, ORO:210, Tnap: <0.020, cPAHs TEQ: 0.06149

<u>MW4-W (ug/L)</u> DRO:<130, ORO:<250 Tnap: <0.040, cPAHs TEQ: <0.040

rt	Date: De Completed By: Reviewed By.: Version: Project No.:	cember 3, 2019 C. Long S. Spencer ECI-001 0377-08	Figure No.: 04
	Environmental	Providing Practical Envir	onmental Compliance Solutions
	Services	Offices In: Anchorage Tacoma	Portland

ECIA3B-2-8 7/21/11 DRO:<50, ORO:<100 ECIA3B-2-12 7/21/11 DRO:31,000, ORO:2,600 Tnap:168, cPAHs TEQ:0.13 ECIA3B-2-16 7/21/11 DRO:<50, ORO:<100 ECIA3B-2-17 7/21/11 DRO:<50, ORO:<100 ECIA3B-2-20 7/21/11 DRO:<50, ORO:<100

> HA1-4 4/17/07 DRO:75, ORO:500

P-25 7/23/07 DRO:<50, ORO:<100

DRO:<50, ORO:<100

Photograph One: Advancing Boring MW6

Photograph Three: Preparing to Develop MW7

Photograph Five: Finished MW8

Not To Scale

Project Photographs Groundwater Monitoring Well Installation & Sampling Report 4425 S 3rd Ave Everett, Washington 98203

Photograph Two: MW7 Soil Core

Photograph Four: Drilling sample with sheen from MW8

Photograph Six: Drilling of MW9

Appendix B – Project Tables

Table 4: Summary of Area 3 Soil Analytical Results Table 5: Summary of Area 3 Groundwater Analytical Results Table 6: Summary of Area 3 Monitoring Well Analytical Results

Services					-																	,	,	<u> </u>
			Total Petroleun (NWTPH-D	n Hydrocarbons X) (mg/kg)								Semivo	olatile Org	anic Comp	ounds (EP	A 8270 SIN	I) (mg/kg))						
Sample ID	Sample Depth (ft)	Date Sampled	Diesel (DRO)	Heavy Oil (ORO)	Naphthalene	2-Methyl naphthlene	1-Methyl naphthlene	Total Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo (a) anthracene	Chrysene	Benzo (b) fluoranthene	Benzo (k) fluoranthene	Benzo (a) pyrene	Indeno (1,2,3-cd) pyrene	Dibenz (a,h) anthracene	Benzo (g,h,i) perylene	cPAHs TEQ as Benzo (a) Pyrene
				-	-			Ac	lapt Engir	eering Hi	storical S	oil Result	S							_	-			
P1S4	16	11/3/1999	10,000	4,010	-	-	-	11.8	1.21	6.27	7.86	28.2	6.94	2.86	11.3	4.62	7.01	0.705	<nd< td=""><td>1.53</td><td><nd< td=""><td><nd< td=""><td>0.745</td><td>2.133</td></nd<></td></nd<></td></nd<>	1.53	<nd< td=""><td><nd< td=""><td>0.745</td><td>2.133</td></nd<></td></nd<>	<nd< td=""><td>0.745</td><td>2.133</td></nd<>	0.745	2.133
P1S6	22	11/3/1999	<nd< td=""><td><nd< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></nd<></td></nd<>	<nd< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></nd<>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
P2S3	12	11/3/1999	<nd< td=""><td><nd< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></nd<></td></nd<>	<nd< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></nd<>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
P3S3	12	11/3/1999	134	210	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
P20-12	9-12	4/17/2000	-	-	-	-	-	16	ND	7.9	12	33	7.1	2.1	11	5.1	8	<2	<2	1.4	<nd< td=""><td><nd< td=""><td><2</td><td>1.99</td></nd<></td></nd<>	<nd< td=""><td><2</td><td>1.99</td></nd<>	<2	1.99
P20-16	12-16	4/17/2000	<nd< td=""><td><nd< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></nd<></td></nd<>	<nd< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></nd<>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
HA1-4	3-4	4/17/2000	75	500	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
HA2-5	4-5	4/17/2000	<nd< td=""><td><nd< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></nd<></td></nd<>	<nd< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></nd<>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
P-23	12-14	7/23/2007	<50	<100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
P-24	12-14	7/23/2007	<50	<100	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	
P-25	4-6	7/24/2007	<50	<100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
P-26	12-14	7/24/2007	440	580	-	-	-	1.9	<0.5	1.9	2	5.8	1.6	1.7	4.3	3.1	5	7	2.9	6.1	5.2	1.9	6.2	8.16
P-27	12-14	7/24/2007	<50	<250	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
									ECI	Historical	Soil Resu	lts												
ECIA3B-1:4	4	7/21/2011	<50	<100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
ECIA3B-1:12	12	7/21/2011	<50	<100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
ECIA3B-2:8	8	7/21/2011	<50	<100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
ECIA3B-2:12	12	7/21/2011	31,000	2,600	14	96	58	154	1.5	11	2.4	29	7.3	ND	ND	0.3	0.61	<nd< td=""><td>0.91</td><td><nd< td=""><td><nd< td=""><td><nd< td=""><td>0.61</td><td>0.13</td></nd<></td></nd<></td></nd<></td></nd<>	0.91	<nd< td=""><td><nd< td=""><td><nd< td=""><td>0.61</td><td>0.13</td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td>0.61</td><td>0.13</td></nd<></td></nd<>	<nd< td=""><td>0.61</td><td>0.13</td></nd<>	0.61	0.13
ECIA3B-2:16	16	7/21/2011	<50	<100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
ECIA3B-2:17	17	7/21/2011	250	<100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
ECIA3B-2:20	20	7/21/2011	<50	<100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
ECIA3B-3:12	12	7/21/2011	<50	200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
ECIA3B-3:16	16	7/21/2011	<50	<100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
								E	CI 2019 V	Vell Instal	lation So	il Results												
MW6-6	6	11/12/2019	<25	<50	< 0.02	<0.02	<0.02	<0.02								<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02		<0.02
MW7-5	5	11/12/2019	80	210	<0.02	<0.02	<0.02	<0.02								0.036	0.059	0.064	<0.02	0.039	0.097	0.022		0.06149
MW8-5	5	11/12/2019	27	120																				
MW8-15	15	11/12/2019	11,000	5,700	18	130	90	238								6.4	11	2.6	0.86	3.1	1.2	0.8		4.396
MW8-19	19	11/12/2019	<25	<50																				
MW9-11	11	11/12/2019	<25	<50	<0.02	<0.02	<0.02	<0.02								0.041	0.063	0.096	0.03	0.043	0.043	<0.020		0.06463
Labora	tory Reporting	Limit	25	50	0.020	0.020	0.020		0.020							0.020	0.020	0.020	0.020	0.020	0.020	0.020		
Ecology MTCA	A Method A Cle	eanup Levels	2,000	2,000	5	5	5	5	NE	NE	NE	NE	NE	NE	NE	1.0	10	1.0	1.0	0.1	1.0	1.0	NE	0.1

Notes:

mg/kg = Milligrams per kilogram

MTCA = Model Toxics Control Act

-- = not analyzed for this constituent

< = not detected above laboratory detection limits

NE = Ecology has not designated a MTCA Method A cleanup level for this constituent

Bold indicates a detected concentration that is below Ecology MTCA Method A Cleanup Levels

Bold and Shaded indicates the detected concentration exceeds Ecology MTCA Method A or B Cleanup Levels

Table 4: Summary of Area 3 Soil Analytical Results Acrowood - Groundwater Monitoring Well Installation & Sampling 4425 S 3rd Avenue, Everett, Washington

Table 5: Summary of Area 3 Groundwater Results

Acrowood - Groundwater Monitoring Well Installation & Sampling

4425 S 3rd Avenue, Everett, wasningto	Everett, Washingto	Everett,	rd Avenue,	4425 S 3r	
---------------------------------------	--------------------	----------	------------	-----------	--

		Total Pe Hydrocarb	etroleum oons (μg/l)							Ро	lycyclic A	Aromatic	Hydroca	arbons (F	PAHs) (μį	g/I)							
Sample Number	Date Sampled	Diesel (DRO)	Heavy Oil (ORO)	Naphthalene	2-Methyl naphthlene	1-Methyl naphthlene	Total Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo (a) anthracene	Chrysene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (k) fluoranthene	Indeno (1,2,3-cd) pyrene	Dibenz (a,h) anthracene	Benzo (g,h,i) perylene	cPAHs TEQ as Benzo (a) Pyrene
							Adapt B	inginee	ring Hist	orical G	roundw	ater Re	sults										
P-20	4/17/00						60	2.1	16	17	36	8.7	2.7	12	5.6	8.8	0.77	<0.5	1.6	<0.5	<0.5	0.94	2.33
HA1-W	4/17/00	<nd< td=""><td><nd< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></nd<></td></nd<>	<nd< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></nd<>							-													
HA2-W	4/17/00	<nd< td=""><td><nd< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></nd<></td></nd<>	<nd< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></nd<>							-	-												
P23-GW	7/23/07	52	<250																				
P26-GW	7/24/07	7,800	3,100				58	<1	17	16	43	11	4.9	18	7.4	13	5.4	2.3	6.2	3.4	1.1	4.4	8.29
P27-GW	7/24/07	160	510																				
			-					ECI Hist	orical G	roundw	ater Re	sults		-									-
ECIA3B-1GW	7/21/2011	<250	<500																				
ECIA3B-2GW	7/21/2011	920	<500	6	15	12	33	0.1	0.3	0.2		<0.1	<0.1		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		0.01
ECIA3B-3GW	7/21/2011	<250	<500																				
Ecology MTCA Me Leve	thod A Cleanup Is	500	500	160	160	160	160	NE	NE	NE	NE	NE	NE	NE	NE	NE	0.1	NE	NE	NE	NE	NE	0.1

Notes:

(µg/l) = micrograms per liter

-- Not analyzed for constituent

< or ND indicates Not detected above the laboratory reporting limit

Bold indicates the detected concentration is below Ecology MTCA Method A cleanup levels

Red Bold indicates the detected concentration exceeds Ecology MTCA Method A cleanup level

		Total Petroleun (NWTPH-I	n Hydrocarbons Dx) (µg/l)								Semi	volatile Or	ganic Com	pounds (E	PA 8270 SI	M) (μg/l)							
Sample Number	Date Sampled	Diesel (DRO)	Heavy Oil (ORO)	Naphthalene	2-Methyl Naphthalene	1-Methyl Naphthalene	Total Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo (a) anthracene	Chrysene	Benzo (b) fluoranthene	Benzo (k) fluoranthene	Benzo (a) pyrene	Indeno (1,2,3-cd) pyrene	Dibenz (a,h) anthracene	Benzo (g,h,i) perylene	cPAHs TEQ as Benzo (a) Pyrene
	8/10/00	<250	<500	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<>	<nd< td=""></nd<>
	11/15/00	<250	<500	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<>	<nd< td=""></nd<>
	2/23/01	<250	<500	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<>	<nd< td=""></nd<>
	6/5/01	<250	<500	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<>	<nd< td=""></nd<>
N/I\N/1	6/20/07	<50	<250																				
	1/17/08	<50	<250																				
	3/21/08	<50	<250																				
	8/7/08	<50	<250																				
	8/25/11	<130	<250	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	11/13/19	150	<250	<0.040	<0.040	<0.040	<0.040								<0.040	<0.040	< 0.040	<0.040	<0.040	<0.040	<0.040		<0.040
	8/10/00	<250	<500	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<>	<nd< td=""></nd<>
	11/15/00	<250	<500	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<>	<nd< td=""></nd<>
MW2	2/23/01	<250	<500	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<>	<nd< td=""></nd<>
	6/5/01	<250	<500	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<>	<nd< td=""></nd<>
	Well reported to be de	estroyed - was deco	omissioned by Ada	pt Engine	ering																		•
	8/10/00	<250	<500	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<>	<nd< td=""></nd<>
	11/15/00	<250	<500	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<>	<nd< td=""></nd<>
MW3	2/23/01	<250	<500	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<>	<nd< td=""></nd<>
	6/5/01	<250	<500	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""><td><nd< td=""></nd<></td></nd<></td></nd<>	<nd< td=""><td><nd< td=""></nd<></td></nd<>	<nd< td=""></nd<>
	Well reported to be de	estroyed - was deco	omissioned by Ada	pt Engine	ering																		
	8/10/00	<50	<250																				
	11/15/00	<50	<250																				
MW4	2/23/01	<50	<250																				
	6/5/01	<50	<250																				
	11/13/19	<130	<250	<0.040	< 0.040	< 0.040	<0.040								<0.040	<0.040	< 0.040	<0.040	<0.040	<0.040	<0.040		<0.040
N/1)A/E	8/25/11	<130	<250	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.036	0.034	0.03	0.041	0.048	0.03	0.032	0.028	<0.02	0.036	0.046
	11/13/19	<130	<250	<0.040	<0.040	<0.040	<0.040								0.16	0.21	0.31	0.13	0.16	0.13	0.054		0.2405
MW6	11/13/19	<130	<250	<0.040	<0.040	<0.040	<0.040								<0.040	< 0.040	<0.040	<0.040	<0.040	<0.040	<0.040		<0.040
MW7	11/13/19	320	400	<0.040	<0.040	<0.040	<0.040								<0.040	< 0.040	<0.040	<0.040	<0.040	< 0.040	<0.040		<0.040
MW8	11/14/19	16,000	4,000	32	71	71	174								0.22	0.33	0.068	< 0.040	0.079	< 0.040	<0.040		0.1111
MW9	11/13/19	200	<250	<0.040	0.17	0.2	0.37								<0.040	< 0.040	<0.040	< 0.040	<0.040	<0.040	<0.040		<0.040
Laboratory R	eporting Limit	130	250	0.040	0.040	0.040	0.040	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.02	0.04
Ecology MTCA Meth	nod A Cleanup Levels	500	500	160	160	160	160	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	0.1	NE	NE	NE	0.1

Notes:

(µg/l) = micrograms per liter

-- Not analyzed for constituent

< Not detected above the laboratory reporting limit

Dates in blue indicate current sampling event

Bold indicates the detected concentration is below Ecology MTCA Method A cleanup levels

Red Bold indicates the detected concentration exceeds Ecology MTCA Method A cleanup level

Table 6: Summary of Area 3 Monitoring Well Analytical Results Acrowood - Groundwater Monitoring Well Installation & Sampling 4425 S 3rd Avenue, Everett, WA

Appendix C – Project Documentation

Well Installation Logs Field Sampling Forms

Providing Practical Environmental Compliance Solutions Offices In: Anchorage | Tacoma | Portland

					Project:	Monitori	ng Well Installation	R	ori	na ID·			M	1\//6
6	ECL	Practical Env	vironmental C	Compliance Solutions	Location:	4425 S 3	Brd Avenue	Ľ		IIg ID.				
E	nvironmental Services		Offices In	: Anchorage Tacoma Portland		Everett,	WA	Pro	oject	Number:			03	377-08
					Client:	Acrowoo	od			Unified Soil C	lass	sifica	tion	System
Date	Start/Finish:	11/12/201	9		Drilling	Method:	Direct Push	ILS I	GW GP	WELL-GRADED GR POORLY-GRADED	RAVEL GRAV	., FINE /EL	тосо	DARSE GRAVEL
	ogged By:	5. Holl			Auger			SIVE SC	GM GC	SILTY GRAVEL CLAYEY GRAVEL				
	ontractor	Standard	Environme	ntal Probe	Sam	nler:	Geoprobe	COHES	SW SP	WELL-GRADED SA POORLY-GRADED	ND, F SANE	INE TC) COAF	RSE SAND
	Operator:	Russell	LINIOIIIIe		Hammer	Wt./Fall:		NON	SM SC	SILTY SAND CLAYEY SAND				
Bori	ng Location:	NW of bui	Iding corne	er	Ground E	levation:		ILS	CL	CLAY			~	
Co	ordinates:				Water	Depth:	6'	IVE SC	MH CH	SILT OF HIGH PLAS	STICIT	Y, ELA		SILT
	Weather:	Rain			Boring	Depth:	10'	COHES	OH PT	ORGANIC CLAY, OI PEAT	RGAN	IC SILT	r	
Depth (ft bgs)	Sample No.	Time	PID Reading	Remarks: Odor, Sheen, Etc		Soil and	Rock Description			Unified Classification			IIM	Construction Detail
0					- 0'	to 2.5' Dark	brown to black topso	oil					<u> </u>	
														Denter ite
3					-	2.5' to 4' R	eddish brown SAND			SP				Sand
4						4' to 5' Me	edium brown SAND			SP				
5				∇		Medium bro	own silty SAND, moist			SP				
6	MW6-6	8:45		ATD										
7										0.5				
8					- 6' to 1	0' Brown SA	AND with some grave	el, we	et	SP				
9														
10														
11					-									
12					-									
13					-									
14														
15														
16					-									
17					-									
18					1									
19					1									
20					1									
21					1						Γ			
22					1									
23					1									
24					1									
25					1						\square			
26					1						\vdash			
27					1									
28					1						┢			
29					-						\vdash			
30					-						┢			
Notes	: Well Tag ID:	BLS 084		I	1					1	I			<u>I</u>
	5													

					Project:	Monitori	ng Well Installation	B	oriu				M\\/7
6	ECL	Practical Env	rironmental C	Compliance Solutions	Location:	4425 S 3	3rd Avenue			Ig ID.			
E	nvironmental Services		Offices In	: Anchorage Tacoma Portland		Everett,	WA	Pro	oject N	lumber:			0377-08
					Client:	Acrowoo	od			Unified Soil C	lass	ificatio	n System
Date	Start/Finish:	11/12/201	9		Drilling	Method:	Direct Push	- R	GW GP	WELL-GRADED GR	GRAVEL,	FINE TO	COARSE GRAVEL
	ogged By:	S. Holt			Auger	ID/OD:		VE SO	GM GC	SILTY GRAVEL	0.010		
	necked By:	D. Polivka		ntal Drah a	Borehol	e ID/OD:	2"	OHESI	SW SP	WELL-GRADED SA POORLY-GRADED	ND, FI SAND	NE TO CO	DARSE SAND
	Ontractor:	Standard I	Environme	nial Probe	Sam	pier:	Geoprobe	D-NON	SM SC	SILTY SAND CLAYEY SAND			
Bori	ng Location:	Russell			Ground F	levation:		S	ML CL	SILT CLAY			
Co	ordinates:				Water	Depth:	5'	VE SOI	OL MH	ORGANIC SILT, OR SILT OF HIGH PLAS	GANIC	CLAY Y, ELAST	IC SILT
	Weather:	Cloudy			Boring	Depth:	10'	OHESI.	ОН	ORGANIC CLAY, OI	RGANI	FY, FAT C C SILT	LAY
		-	_	j,				0	PI	E C			-
Depth (ft bgs	Sample No.	Time	PID Reading	Remarks: Odd Sheen, Etc		Soil and	Rock Description			Unified Classificatio			Well Construction Detail
0													
1										0.0			
2						ark drown s	ing SAND with organ	ic ma	aller	58			Bentonite
3					1								Sand
4				∇	4	to 5' Redd	lish brown silty SAND)		SP			
5	MW7-5	9:30		ATD									
6					-								
7					5' to 10' M	edium browr	silty SAND, grades to	sand	with	SP			
, 8					-	son	ne gravel, wet						
0					-								
9													
10					-						_		
11					-								
12					_						_		
13					4						_		
14					4								
15					_								
16					_								
17					_								
18					_								
19													
20													
21													
22													
23													
24					7								
25					1								
26					1						1		
27					1								
28					1								
29					-								
20					-								
Note					1								
NOTES	s: vveli rag ID:	DLS 085											
L													

6														
		Practical Env	ironmental C	Compliance Solutions	Location [.]	4425 S 3	Brd Avenue			Ig ID.			IV	
Er	nvironmental		Offices In	n: Anchorage Tacoma Portland	Location.	Everett,	WA	Pro	oiect l	lumber:			03	77-08
	Jervices				Client:	Acrowoo	d							
Date	Start/Finish:	11/12/2019	9		Drilling	Method:	Direct Push	υ	GW	WELL-GRADED GR	AVEL,	FINE	TO CO	ARSE GRAVEL
Lo	ogged By:	S. Holt			Auger	ID/OD:		/E SOII	GM	SILTY GRAVEL	GRAVE	=L		
Ch	necked By:	D. Polivka			Borehol	e ID/OD:	2"	OHESIV	SW	WELL-GRADED SA	ND, FI	NE TO	COAF	SE SAND
C	ontractor:	Standard E	Environme	ental Probe	Sam	pler:	Geoprobe	ION-CO	SM	SILTY SAND	SAIND			
0	Operator:	Russell			Hammer	Wt./Fall:			ML	SILT				
Bori	ng Location:	In former c	contaminat	ted area	Ground E	levation:		SOILS	OL MH	ORGANIC SILT, OR	GANIC	CLAY	STIC S	ШΤ
Co	ordinates:	Dain			Water	Depth:	12'	HESIVE	СН ОН	CLAY OF HIGH PLA ORGANIC CLAY, OF	STICIT	Y, FA	CLAY	, ,
, 	weather:	Rain			Boring	Depth:	20'	8	PT	PEAT				
Depth (ft bgs)	Sample No.	Time	PID Reading	Remarks: Odor Sheen, Etc		Soil and	Rock Description			Unified Classification			Well	Construction Detail
0											ſ			
1														
2														Bentonite
3														
4					0' to 10' [Diagle gilty g	andu Ell Li atracka o	fore						
5	MW8-5	10:45		Odor		an an	d blue at 5'	ora	nge	FILL				
6	10100-5	10.45												
8														Sand
9														
10	MW8-10	10:45		Heavy odor, slight sheen										
11					10' to 15' P	look to gro	daroon cilty SAND y	ith k	highor					
12				ATD		silt conte	ent, sheen on soil	/10111	ligner	SP				
13														
14														
15	MW8-15	10:45		Heavy odor, heavy sheen										
16														
17					15' to 20' s	andy SILT:	heavy sheen and od grades to sand at 19	or o	n soil,	ML				
18					. 3									
19	MW8-19	10:45		Slight odor, no sheen										
20														
21														
22														
23														
20														
24														
25														
26														
27											_			
28														
29														
30														
Notes	: Well Tag ID:	BLS 086												

					Project:	Monitori	ng Well Installation	B/	ri i			Ν	۸۱۷۱۵
(ECL	Practical Env	ironmental C	Compliance Solutions	Location:	4425 S 3	3rd Avenue						
E	nvironmental Services		Offices In	: Anchorage Tacoma Portland		Everett,	WA	Proj	ect N	lumber:		0	377-08
	04 45 11	4440/004			Client:	Acrowoo	od			Unified Soil C	lassific	ation	Svstem
Date	Start/Finish:	11/12/2019	9		Drilling	Method:	Direct Push	ILS.	GW GP	WELL-GRADED GR POORLY-GRADED	AVEL, FIN GRAVEL	E TO C	OARSE GRAVEL
	ogged By:	S. HOIL			Auger			IVE SC	GM GC	SILTY GRAVEL CLAYEY GRAVEL			
	ontractor	Standard R	Environme	ntal Probe	Sam	nler:	Geoprobe	COHEIS	SW SP	WELL-GRADED SA POORLY-GRADED	ND, FINE 1 SAND	O COA	RSE SAND
	Operator:	Russell			Hammer	Wt./Fall:		Nov	SM SC	SILTY SAND CLAYEY SAND			
Bori	ng Location:	Inside buil	ding		Ground E	Elevation:		E.S	CL	SILT CLAY	0.000		
Co	ordinates:				Water	Depth:	12'	IVE SO	MH	SILT OF HIGH PLAS	STICITY, EL	AY ASTIC	SILT
	Weather:	Cloudy			Boring	Depth:	20'	COHES	OH	ORGANIC CLAY, OF PEAT	RGANIC SI	_T	
t bgs)	No.	٥	lding	: Odor, Etc						ed cation		_	il il
Depth (f	Sample	Tim	PID Rea	Remarks Sheen		Soil and	Rock Description			Unifi			we Constru Deta
0						Тор	3" of concrete					1	
1													
2					7								Bentonite
3					0' to 7	.5' Medium	brown SAND with m	ottled					
4					organics	layer of ar black orgai	nthracite at 2.5' to 3', nic sand at 7.5' to 8'	layer	of	SP			
5													
6					-								
7													
8					-								Sand
0 0					-								
10					-								
10		10:05			-								
11	101009-11	13:35			-								
12						Madissia			01				
13					8' to 20'	Mealum br	own to red SAND: we	et at 1	2	SP			
14					_								
15					_								
16					_								
17					_								
18					4								
19													
20					1								
21					_								
22													
23													
24													
25					7								
26					1								
27					1								
28					1								
29					1								
30					1								
Notes	: Well Tag ID:	I BLS 087		1	1					1			
	<u></u>												

Project Name	e. Acrowo	od		Proi	ect No · 0377-08	3	Well N	lo · MW	<u> </u>	Jate:11-	13-19
Field Person	nel: C7I			Stat	ic Water Level: 1	2 76					
Water Level	Measurem	nent Me	thod: F-Tape	Stat		2.70					
Time Start Pu	urge: 2:40			Tim	e End Purge: 3:00)	Time	Sampled	: 3:02		
Measuring P	oint Descri	intion [.] T	inc			·		Jumpicu			
Purge Metho	od: Low Flo			Pure	e Denth: 1' from	hottom					
Turge Wethe				TUIE							
Well Volume Calculation	e Total I (f	Depth t)	Depth to Wa (ft)	ater	Water Column (ft)	Multiplie	r for Cas	sing Diar	neter (ir	1)	Casing Volume (gal)
(Fill in before	e 20.07		12.76								
Poi 29/	Notes:	:									
		Time	2:40		2:45	2:50	2:55		3:00		
De	pth to Wa	ter (ft)									
Volu	ume Purge	d (mL)	0		500	1000	1500		2000		
	pl	H (0.1)	7.71		6.03	5.89	5.88		5.87		
Tem	perature C	C. (3%)	15.8		16.50	16.55	16.50		16.50		
Conduct	tivity uS/cr	n (3%)	198		174	161	159		170		
	Turbidity	(10%)	0		0	0	0		0		
Dissolv	ved Oxyge	n (0.3)	3.01		0	47.22	47.22		0		
		ORP	178		199	209	215		219		
		Color	Clear		Clear	Clear	Clear		Clear		
	Odor/	Sheen	None		None	None	None		None		
Comments:											
Percent Reco	overy:		Depth to Wat	ter at	Sampling (ft):	Note	e(s):				
Sampling / Fi	ield Equipr	ment (M	anufacture /	Mode	el / Last Calibratio	on):	/			./	
Sampling / Fi	ield Equipr	ment (M	anufacture /	Mode	el / Last Calibratio	on):	/			/	
Sampling / Fi	ield Equipr	nent (M	anufacture /	Mode	el / Last Calibratio	on):	/			/	
Sample No.	Sample Quantity	40 mL	Contair VOA/500 mL Aml	her Ty ber / 1	/pe L Amber / 250 mL	Preservative , Filtered (F	/ Field FF)	Ana Req	lysis uest	Visu (Clear	al Observation , Cloudy, Silty, Etc.)
MW1	2		500mL	. Ambe	r	None		DRO/C PAH	DRO	Clear	
Total Dischar	rge (gal): 0	.5gal		Disp	osal Method: Dr	um		Drum [Designat	ion(s)/V	olume:
WELL HEA		ITIONS	CHECKLIS	T (Ci	rcle YES or NO	if NO, add o	commei	nts <u>)</u>			
Well Securi	ity Device	s OK (E	Bollards, Chr	isty L	_id, Casing Lid a	and Lock): YE	s / <mark>N(</mark>	V <mark>C</mark>	Vell Cas	sing: <mark>YE</mark>	<mark>s</mark> / NO
Inside of W	/ell Head a	and Ou	ter Casing D	ry:	<mark>YES</mark> / NO						
Comments:	:		V								

Project Nam	e: Acrowo	od		Proi	ect No.:0377-08		Well N	lo.: MW	L 4	Date:11-	13-19
Field Person	nel: C7I			Stat	ic Water Level: 4	70			<u> </u>		
Water Level	Measurem	nent Me	thod: E-Tape	otat		., 0					
Time Start P	urge: 11:20)		Tim	e End Purge: 11:4	10	Time S	Sampled	: 11:42		
Measuring F	Point Descr	- iption: T									
Purge Meth	od: Low Flo	w		Pure	e Depth: 1' from	bottom					
Turge Weth				Tur							
Well Volum Calculation	e Total (f	Depth t)	Depth to Wa (ft)	ater	Water Column (ft)	Multiplie	r for Cas	sing Diar	neter (ir	ו)	Casing Volume (gal)
(Fill in befor	е 9.19		4.70								
Par 96/	Notes	:									
		Time	11:20		11:25	11:30	11:35		11:40		
De	epth to Wa	ter (ft)									
Vol	ume Purge	d (mL)	0		500	1000	1500		2000		
	pl	H (0.1)	6.76				-	-		-	
Ten	nperature (C. (3%)	14.23		14.10	14.00	14.00		14.00		
Conduc	tivity uS/cr	n (3%)	177		188	077	194		164		
	Turbidity	(10%)	0		0	0	0		0		
Disso	ved Oxyge	n (0.3)	14.13		49.59	49.60	49.70		49.70		
		ORP	50		-580	-549	-568		-534		
		Color	Cloudy		Cloudy	Clear	Clear		Clear		
<u> </u>	Odor/	'Sheen	None		None	None	None		None		
Comments:											
Percent Rec	overy:		Depth to Wat	ter at	Sampling (ft):	Note	e(s):				
Sampling / F	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/	
Sampling / F	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/	
Sampling / F	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			./	
Sample No.	Sample Quantity	40 mL	Contair VOA/500 mL Aml	her Ty ber / 1	/pe L Amber / 250 mL	Preservative Filtered (F	/ Field FF)	Ana Req	lysis uest	Visu (Clear	al Observation , Cloudy, Silty, Etc.)
MW4	2		500 ml	_ Ambe	er	None		DRO/C PAH	DRO	Clear	
Total Discha	rge (gal):			Disp	osal Method: Dr	um		Drum [Designat	ion(s)/V	olume:
WELL HEA	AD COND	ITIONS	CHECKLIS	T (Ci	rcle YES or NO	if NO, add o	commei	<u>nts)</u>			
Well Secur	ity Device	s OK (E	Bollards, Chr	isty L	_id, Casing Lid a	and Lock): YE	<mark>s</mark> / NG	o v	Vell Cas	sing: <mark>YE</mark>	<mark>S</mark> / NO
Inside of W	/ell Head a	and Ou	ter Casing D	ry:	YES / NO						
Comments											
	_										

Services			Chick and a chick of the state	-8-11					Date	:11-13-1	9		
Project Nam	Project Name: Acrowood Project No.: 0377-08 Well No.: MW5 Field Personnel: CZL Static Water Level: 13.41 Water Level Measurement Method: E-Tape Image: California Californi California California California California California												
Field Person	nel: CZL			Stat	ic Water Level: 1	3.41							
Water Level	Measurem	nent Me	thod: E-Tape										
Time Start P	urge: 3:45			Tim	e End Purge: 4:05	5	Time S	Sampled	: 4:07				
Measuring P	oint Descr	iption: T	ос										
Purge Metho	od: Low Flo	w		Pur	ge Depth: 1' from	bottom							
Well Volume Calculation	e Total (f	Depth t)	Depth to Wa (ft)	ater	Water Column (ft)	Multiplie	r for Cas	sing Diar	neter (ir	ר)	Casing Volume (gal)		
purging)	e 19.83		13.41										
	Notes	:	1		1	1	1						
		Time	3:45		3:50	3:55	4:00		4:05				
De	epth to Wa	ter (ft)											
Volu	ume Purge	d (mL)	0		500	1000	1500		2000				
	pl	H (0.1)	5.96		5.83	5.81	5.91		743				
Temperature C. (3%) 15.17 15.80 15.70 15.60 15.50 Conductivity uS/cm (3%) 185 183 186 186 184													
Conductivity uS/cm (3%) 185 183 186 186 184 Turbidity (10%) 0 0 0 0 0 0													
Turbidity (10%) 0 0 0 0													
Dissol	ved Oxyge	n (0.3)	48.08		2.29	47.88	48.08		48.18				
		ORP	45		90	119	133		62				
	Odar/	Color	Cloudy		Clear	Clear	Clear		Clear				
Comments:	Odory	Sneen	None		None	None	None		None				
Devee the Deve					Computing (ft)	Nete	(-).						
						, NOLE	e(S):						
Sampling / F	ield Equipr	ment (IV	lanufacture /	Node	el / Last Calibratio	on):	/			_/			
Sampling / F	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/			
Sampling / F	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/			
Sample No.	Sample Quantity	40 mL	Contair VOA/500 mL Aml Po	her Ty ber / 1 bly	r pe L Amber / 250 mL	Preservative Filtered (I	/ Field FF)	Ana Req	lysis uest	Visu (Clear	al Observation Cloudy, Silty, Etc.)		
MW5	2		500 ml	Ambe	er	None		DRO/C PAH	DRO	Clear			
Total Discha	rge (gal): 0	.5 gal		Disp	osal Method:			Drum [Designat	ion(s)/V	olume:		
WELL HEA		ITIONS	CHECKLIS	T (Ci	rcle YES or NO	if NO, add o	commei	nts <u>)</u>					
Well Securi	ity Device	s OK (E	Bollards, Chr	isty L	id, Casing Lid a	and Lock): <mark>YE</mark>	<mark>s</mark> / NG	V C	Vell Cas	sing: <mark>YE</mark>	<mark>S</mark> / NO		
Inside of W	nside of Well Head and Outer Casing Dry: YES / NO												
Comments	:												

Project Name	e. Acrowo	od		Proi	ect No · 0377-08	3	Well N	lo · MW	<u></u> 6	Jate:11-	13-19
Field Personr	nel: C7I			Stat	ic Water Level: 4	21			•		
Water Level I	Measurem	nent Me	thod: F-Tape	Stat							
Time Start Pu	urge: 10:00)		Tim	e End Purge: 10:2	20	Time	Sampled	: 10:22		
Measuring Pr	oint Descri	intion [.] T						Jumpicu	. 10.22		
Purge Metho	d. Low Flo			Pure	e Denth: 1' from	hottom					
i dige wetito		,,,,		TUIE							
Well Volume Calculation	e Total I (f	Depth t)	Depth to Wa (ft)	ater	Water Column (ft)	Multiplie	r for Cas	sing Diar	neter (ir	ו)	Casing Volume (gal)
(Fill in before	e 10.41		4.21								
Par 22/	Notes:										
		Time	10:00		10:05	10:10	10:15		10:20		
Dej	pth to Wat	ter (ft)									
Volu	ume Purge	d (mL)	0		500	1000	150		2000		
	pl	H (0.1)	8.16		12		-	-		-	
Tem	perature C	C. (3%)	16.38		14.20	14.20	14.20		14.20		
Conduct	tivity uS/cr	n (3%)	155		141	140	137		138		
	Turbidity	(10%)	0		0	0	0		0		
Dissolv	ved Oxyge	n (0.3)	1.60		0	0	0		0		
		ORP	74		-239	-502	-694		-797		
		Color	Cloudy		Cloudy	Cloudy	Cloudy	Y	Clear		
<u> </u>	Odor/	Sheen	None		None	None	None		None		
Comments:											
Percent Reco	overy:		Depth to Wat	ter at	Sampling (ft):	Note	e(s):				
Sampling / Fi	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/	<u>.</u>
Sampling / Fi	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/	
Sampling / Fi	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			./	
Sample No.	Sample Quantity	40 mL '	Contair VOA/500 mL Aml Po	ner Ty ber / 1 olv	/pe L Amber / 250 mL	Preservative , Filtered (F	/ Field FF)	Ana Req	lysis uest	Visu (Clear	al Observation , Cloudy, Silty, Etc.)
MW6	2		500 ml	_ Ambe	er	None		DOR/C PAH	DRO	Clear	
Total Dischar	rge (gal): 0	.5 gal		Disp	osal Method: Dr	um		Drum [Designat	ion(s)/V	olume:
WELL HEA		TIONS	CHECKLIS	T (Ci	rcle YES or NO	if NO, add o	commei	nts <u>)</u>			
Well Securi	ity Device	s OK (E	Bollards, Chr	isty L	id, Casing Lid a	and Lock): <mark>YE</mark>	<mark>s</mark> / NG	o v	Vell Cas	sing: <mark>YE</mark>	<mark>S</mark> / NO
Inside of W	ell Head a	and Ou	ter Casing D	ry:	YES / NO						
Comments:											

Services			Consecutive Consecutive	age (rec.	on official official of				Date	:11-13-19	9		
Project Nam	Project Name: Acrowood Project No.: 0377-08 Well No.: MW7 Field Personnel: CZL Static Water Level: 4.58 Water Level Measurement Method: E-Tape												
Field Person	nel: CZL			Stat	ic Water Level: 4	.58							
Water Level	Measurem	nent Me	thod: E-Tape										
Time Start P	urge: 10:42	2		Tim	e End Purge: 11:()2	Time S	Sampled	: 11:05				
Measuring P	oint Descr	iption: T	OC										
Purge Metho	od: Low Flo	w		Pur	ge Depth: 1' from) bottom							
Well Volume Calculation	e Total (f	Depth t)	Depth to Wa (ft)	ater	Water Column (ft)	Multiplie	r for Cas	sing Diar	neter (ir	ו)	Casing Volume (gal)		
purging)	e 9.46		4.58										
	Notes	:	1		I								
		Time	10:42		10:47	10:52	10:57		11:02				
De	epth to Wa	ter (ft)											
Volu	ume Purge	d (mL)	0		500	1000	1500		2000				
	pl	H (0.1)	6.35		11.06								
Temperature C. (3%) 14.60 14.43 14.33 14.30 14.35 Conductivity uS/cm (3%) 235 219 231 233 231													
Conductivity uS/cm (3%) 235 219 231 233 231 Turbidity (10%) 632 589 350 130 0													
Turbidity (10%) 632 589 350 130 0													
Dissol	ved Oxyge	n (0.3)	59.17		49.28	49.28	49.38		49.28				
		ORP	62.4		-264	-726	-804		-849				
	Odor/	Color	Cloudy		Cloudy	Semi-cloudy	Clear		Clear				
Comments:	00017	Sheen	None		None	NOTE	None		None				
Deveent Dee					Compliant (ft):	Nata	(_);						
	istal Causian						(S):			/			
Sampling / F	ield Equipr	nent (Iv	lanufacture /	Node	el / Last Calibratio	on):	/			_/			
Sampling / F	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/			
Sampling / F	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/			
Sample No.	Sample Quantity	40 mL	Contair VOA/500 mL Aml Po	her Ty ber / 1 oly	/pe L Amber / 250 mL	Preservative , Filtered (F	/ Field FF)	Ana Req	lysis uest	Visua (Clear,	al Observation Cloudy, Silty, Etc.)		
MW7	2		500 ml	Ambe	er	None		DRO/C PAH	DRO	Clear			
Total Discha	rge (gal): 0	.5 gal		Disp	osal Method:			Drum [Designat	ion(s)/V	olume:		
WELL HEA		ITIONS	CHECKLIS	T (Ci	rcle YES or NO	if NO, add o	commei	nts)					
Well Secur	ity Device	s OK (E	Bollards, Chr	isty L	id, Casing Lid a	and Lock): <mark>YE</mark>	<mark>s</mark> / NG	V C	Vell Cas	sing: <mark>YE</mark>	<mark>S</mark> / NO		
Inside of W	/ell Head a	and Ou	ter Casing D	ry:	YES / NO								
Comments	:												

Services			Consecutive Consecutive	080 T 100	onio (ronana				Date	:11-14-19	9	
Project Nam	ie: Acrowo	od		Proj	ect No.: 0377-08	3	Well N	lo.: MW	8			
Field Person	nel: CZL			Stat	ic Water Level: 1	3.39						
Water Level	Measurem	nent Me	thod: TOC									
Time Start P	urge: 8:35			Tim	e End Purge: 8:55	5	Time S	Sampled	: 8:57			
Measuring P	oint Descr	iption: T	OC .									
Purge Metho	od: Low Flo	w		Pur	ge Depth: 1' from	bottom						
Well Volum Calculation	e Total (f	Depth t)	Depth to Wa (ft)	ater	Water Column (ft)	Multiplie	r for Cas	ing Diar	neter (ir	ו)	Casing Volume (gal)	
purging)	e 18.74		13.39									
	Notes	:	1		1	1	1					
		Time	8:35		8:40	8:45	8:50		8:55			
De	epth to Wa	ter (ft)										
Vol	ume Purge	d (mL)	0		5800	1000	1500		2000			
pH (0.1) 6.52 6.56 6.54 6.53 6.52 Temperature C. (3%) 11.81 14.20 14.00 14.10 14.30												
Temperature C. (3%) 11.81 14.20 14.00 14.10 14.30 Conductivity uS/cm (3%) 626 588 579 587 563												
Conductivity uS/cm (3%) 626 588 579 587 563 Turbidity (10%) 0 0 0 0 0 0												
Turbidity (10%) 0 0 0 0 0												
Dissol	ved Oxyge	n (0.3)	13.93		49.54	49.76	49.55		49.34			
		ORP	-64		-67	-61	-66		-56			
	Odor/	Color	Cloudy		Cloudy Some sheen	Cloudy	Cloudy	Ý	Clear			
Comments:	00017	Sheen	None		Some sneen	Some sneen	None		None			
Doroont Doo	0.40.77.4		Donth to Wat	torat	Someling (ft)	Noto	(a)					
						NOLE	(5).			,		
Sampling / F	leid Equipr	nent (Iv	lanufacture /	IVIOGE	el / Last Calibratio	on):	/			_/		
Sampling / F	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/		
Sampling / F	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/		
Sample No.	Sample Quantity	40 mL	Contair VOA/500 mL Aml Po	ner Ty ber / 1 oly	/pe L Amber / 250 mL	Preservative , Filtered (F	/ Field FF)	Ana Req	lysis uest	Visu (Clear,	al Observation Cloudy, Silty, Etc.)	
MW8	2		500) mL		None		DRO/C PAH	DRO	Clear		
Total Discha	rge (gal): 0	.5 gal		Disp	osal Method: Dr	um		Drum [Designat	ion(s)/V	olume:	
WELL HEA		ITIONS	CHECKLIS	T (Ci	rcle YES or NO	if NO, add c	commei	<u>nts)</u>				
Well Secur	ity Device	s OK (E	Bollards, Chr	isty L	id, Casing Lid a	and Lock): <mark>YE</mark>	<mark>s</mark> / NG	o v	Vell Cas	sing: <mark>YE</mark>	<mark>S</mark> / NO	
Inside of W	/ell Head a	and Ou	ter Casing D	ry:	<mark>YES</mark> / NO							
Comments	:											

Services									Date	11-13-1	9
Project Nam	ie: Acrowo	od		Proj	ect No.: 0377-08	3	Well N	lo.: MW	9		
Field Person	nel: CZL			Stat	ic Water Level: 1	1.18					
Water Level	Measurem	nent Me	thod: E-Tape								
Time Start P	urge: 3:15			Tim	e End Purge: 3:35	5	Time S	Sampled	: 3:37		
Measuring P	oint Descr	iption: T	OC								
Purge Metho	od: Low Flo	w		Pur	ge Depth: 1' from	bottom					
Well Volum Calculation	e Total (f	Depth t)	Depth to Wa	ater	Water Column (ft)	Multiplie	r for Cas	sing Diar	neter (ir	1)	Casing Volume (gal)
purging)	e 16.59		11.18								
1 0 0,	Notes	:	1		I	I	I				
		Time	3:15		3:20	3:25	3:30		3:35		
De	epth to Wa	ter (ft)									
Vol	ume Purge	d (mL)	0		500	1000	1500		2000		
	pl	H (0.1)	6.22		6.35	6.47	9.00		9.27		
Temperature C. (3%) 15.60 15.40 15.40 15.40 Conductivity uS/cm (3%) 155 177 176 176 176											
Conductivity uS/cm (3%) 155 177 176 176 176 Turbidity (10%) 0 0 0 0 0 0											
Turbidity (10%) 0 0 0 0 0 Directual Outgram (0.2) 0.24 40.20 40.20 40.20 40.20											
Dissol	0.24	48.28	48.28		48.28						
		ORP	156		104	39	-152		-187		
	Odaut	Color	Cloudy		Cloudy	Cloudy	Cloudy	/	Clear		
Comments:	Udor/	Sneen	None		None	None	None		None		
connicitus.											
Percent Rec	overy:		Depth to Wa	ter at	Sampling (ft):	Note	(s):				
Sampling / F	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/	
Sampling / F	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/	
Sampling / F	ield Equipr	ment (M	lanufacture /	Mode	el / Last Calibratio	on):	/			_/	
Sample No.	Sample Quantity	40 mL	Contair VOA/500 mL Ami Po	n <mark>er Ty</mark> ber / 1 oly	r pe L Amber / 250 mL	Preservative , Filtered (F	/ Field FF)	Ana Req	lysis uest	Visu (Clear	al Observation , Cloudy, Silty, Etc.)
MW9	2		500 ml	Ambe	er	None		DRO/C PAH	DRO	Clear	
Total Discha	rge (gal): 0	.5 Gal		Disp	osal Method: Dr	um		Drum [Designat	ion(s)/V	olume:
WELL HEA	AD COND	ITIONS	CHECKLIS	T (Ci	rcle YES or NO	if NO, add o	commei	<u>nts)</u>			
Well Secur	ity Device	s OK (E	Bollards, Chr	isty L	id, Casing Lid a	and Lock): <mark>YE</mark>	<mark>S</mark> / NO	o v	Vell Cas	sing: <mark>YE</mark>	<mark>S</mark> / NO
Inside of W	side of Well Head and Outer Casing Dry: YES / NO										
Comments											

Appendix D – Project Analytical Results

Laboratory Analytical Report Chain of Custody

Providing Practical Environmental Compliance Solutions Offices In: Anchorage | Tacoma | Portland

December 4, 2019

Ms. Stephanie Holt EcoCon, Inc. PO Box 153 Fox Island, WA 98333

Dear Ms. Holt,

On November 14th, 14 samples were received by our laboratory and assigned our laboratory project number EV19110109. The project was identified as your 0377-08. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Bagun

Rick Bagan Laboratory Director

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	EcoCon, Inc. PO Box 153 Fox Island, WA 983 Stephanie Holt 0377-08 MW6-6	333	D/ COLI WDOE AC	DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED: LECTION DATE: CCREDITATION:	12/4/2019 EV19110109 EV19110109-01 11/14/2019 11/12/2019 8:45:00 AM C601				
		SAMPLE	DATA RESULTS						
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY		
TPH-Diesel Range	NWTPH-DX	U	25	1	MG/KG	11/19/2019	EBS		
TPH-Oil Range	NWTPH-DX	U	50	1	MG/KG	11/19/2019	EBS		
Naphthalene	EPA-8270 SIM	U	20	1	UG/KG	11/20/2019	JMK		
2-Methylnaphthalene	EPA-8270 SIM	U	20	1	UG/KG	11/20/2019	JMK		
1-Methylnaphthalene	EPA-8270 SIM	U	20	1	UG/KG	11/20/2019	JMK		
Benzo[A]Anthracene	EPA-8270 SIM	U	20	1	UG/KG	11/20/2019	JMK		
Chrysene	EPA-8270 SIM	U	20	1	UG/KG	11/20/2019	JMK		
Benzo[B]Fluoranthene	EPA-8270 SIM	U	20	1	UG/KG	11/20/2019	JMK		
Benzo[K]Fluoranthene	EPA-8270 SIM	U	20	1	UG/KG	11/20/2019	JMK		
Benzo[A]Pyrene	EPA-8270 SIM	U	20	1	UG/KG	11/20/2019	JMK		
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	U	20	1	UG/KG	11/20/2019	JMK		
Dibenz[A,H]Anthracene	EPA-8270 SIM	U	20	1	UG/KG	11/20/2019	JMK		
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY		
C25	NWTPH-DX	103				11/19/2019	EBS		
Terphenyl-d14	EPA-8270 SIM	129				11/20/2019	JMK		

U - Analyte analyzed for but not detected at level above reporting limit.

Page 2 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALISIS				
CLIENT: CLIENT CONTACT: CLIENT PROJECT:	EcoCon, Inc. PO Box 153 Fox Island, WA 98 Stephanie Holt 0377-08	333	D, COL	DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED: LECTION DATE:	12/4/201 EV1911 EV1911 11/14/20 11/12/20	19 0109 0109-02 019 019 9:30:00	AM
CLIENT SAMPLE ID	MW7-5		WDOE AC	CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS
TPH-Diesel Range	NWTPH-DX	80	25	1	MG/KG	11/20/2019	EBS
TPH-Oil Range	NWTPH-DX	210	50	1	MG/KG	11/20/2019	EBS
Naphthalene	EPA-8270 SIM	U	20	1	UG/KG	11/25/2019	JMK
2-Methylnaphthalene	EPA-8270 SIM	U	20	1	UG/KG	11/25/2019	JMK
1-Methylnaphthalene	EPA-8270 SIM	U	20	1	UG/KG	11/25/2019	JMK
Benzo[A]Anthracene	EPA-8270 SIM	36	20	1	UG/KG	11/25/2019	JMK
Chrysene	EPA-8270 SIM	59	20	1	UG/KG	11/25/2019	JMK
Benzo[B]Fluoranthene	EPA-8270 SIM	64	20	1	UG/KG	11/25/2019	JMK
Benzo[K]Fluoranthene	EPA-8270 SIM	U	20	1	UG/KG	11/25/2019	JMK
Benzo[A]Pyrene	EPA-8270 SIM	39	20	1	UG/KG	11/25/2019	JMK
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	97	20	1	UG/KG	11/25/2019	JMK
Dibenz[A,H]Anthracene	EPA-8270 SIM	22	20	1	UG/KG	11/25/2019	JMK
SURROGATE	METHOD	%RFC				ANALYSIS DATE	ANALYSIS BY
C25		73.1				11/20/2019	FBS
Terphenyl-d14	EPA-8270 SIM	101				11/25/2019	JMK

U - Analyte analyzed for but not detected at level above reporting limit.

Chromatogram indicates that it is likely that sample contains light oil/lube oil.

Page 3
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS				
CLIENT:	EcoCon, Inc. PO Box 153 Fox Island, WA 98	333	DATE: 12/4/2019 ALS JOB#: EV19110109 ALS SAMPLE#: EV19110109-03				
CLIENT CONTACT: CLIENT PROJECT:	Stephanie Holt 0377-08		D/ COL	ATE RECEIVED: LECTION DATE:	11/14/20 11/12/20)19)19 10:45:00) AM
CLIENT SAMPLE ID	MW8-5		WDOE ACCREDITATION: C601				
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range	NWTPH-DX	27 HT07	25	1	MG/KG	12/03/2019	EBS
TPH-Oil Range	NWTPH-DX	120 HT07	50	1	MG/KG	12/03/2019	EBS
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY
C25	NWTPH-DX	113				12/03/2019	EBS

HT07 -Sample holding time expired prior to sample receipt. It was analyzed at the request of the client. Results should be considered estimated. Chromatogram indicates that it is likely that sample contains an unidentified diesel range product and lube oil.

Page 4
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT:	EcoCon, Inc. PO Box 153 Fox Island, WA 983	333		DATE: ALS JOB#: ALS SAMPLE#:		12/4/2019 EV19110109 EV19110109-05		
CLIENT CONTACT:	Stephanie Holt		D	ATE RECEIVED:	11/14/20	019		
CLIENT PROJECT:	0377-08		COL	LECTION DATE:	11/12/20	019 10:45:0	D AM	
CLIENT SAMPLE ID	MW8-15		WDOE AC	CREDITATION:	C601			
		SAMPLE	DATA RESULTS					
ΔΝΔΙ ΥΤΕ	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
TPH-Diesel Range	NWTPH-DX	11000	120	5	MG/KG	11/20/2019	EBS	
TPH-Oil Range	NWTPH-DX	5700	250	5	MG/KG	11/20/2019	EBS	
Naphthalene	EPA-8270 SIM	18000	200	10	UG/KG	11/26/2019	JMK	
2-Methylnaphthalene	EPA-8270 SIM	130000	6000	300	UG/KG	11/20/2019	JMK	
1-Methylnaphthalene	EPA-8270 SIM	90000	6000	300	UG/KG	11/20/2019	JMK	
Benzo[A]Anthracene	EPA-8270 SIM	6400	200	10	UG/KG	11/26/2019	JMK	
Chrysene	EPA-8270 SIM	11000	200	10	UG/KG	11/26/2019	JMK	
Benzo[B]Fluoranthene	EPA-8270 SIM	2600	200	10	UG/KG	11/26/2019	JMK	
Benzo[K]Fluoranthene	EPA-8270 SIM	860	200	10	UG/KG	11/26/2019	JMK	
Benzo[A]Pyrene	EPA-8270 SIM	3100	200	10	UG/KG	11/26/2019	JMK	
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	1200	200	10	UG/KG	11/26/2019	JMK	
Dibenz[A,H]Anthracene	EPA-8270 SIM	800	200	10	UG/KG	11/26/2019	JMK	
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY	
C25 5X Dilution	NWTPH-DX	224 SUR12		i		11/20/2019	EBS	
Terphenyl-d14 300X Dilution	EPA-8270 SIM	139				11/20/2019	JMK	
Terphenyl-d14 10X Dilution	EPA-8270 SIM	90.4				11/26/2019	JMK	

SUR12 -Surrogate recoveries were outside of the control limits due to matrix interference. Chromatogram indicates that it is likely that sample contains bunker C.

Page 5 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS				
CLIENT:	EcoCon, Inc. PO Box 153 Fox Island, WA 98	333	DATE: 12/4/2019 ALS JOB#: EV19110109 ALS SAMPLE#: EV19110109-06				
CLIENT CONTACT: CLIENT PROJECT:	Stephanie Holt 0377-08		D/ COLI	ATE RECEIVED: LECTION DATE:	11/14/20 11/12/20)19)19 10:45:00) AM
CLIENT SAMPLE ID	MW8-19		WDOE ACCREDITATION: C601				
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range	NWTPH-DX	U, HT07	25	1	MG/KG	12/03/2019	EBS
TPH-Oil Range	NWTPH-DX	U, HT07	50	1	MG/KG	12/03/2019	EBS
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY
C25	NWTPH-DX	90.9				12/03/2019	EBS

HT07 -Sample holding time expired prior to sample receipt. It was analyzed at the request of the client. Results should be considered estimated.

Page 6
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS	1			
CLIENT: CLIENT CONTACT: CLIENT PROJECT:	EcoCon, Inc. PO Box 153 Fox Island, WA 983 Stephanie Holt 0377-08	333	D COL	DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED: LECTION DATE:	12/4/2019 EV19110109 EV19110109-07 11/14/2019 11/12/2019 1:35:00 PM		
CLIENT SAMPLE ID	MW9-11		WDOE A	CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range	NWTPH-DX	U	25	1	MG/KG	11/20/2019	EBS
TPH-Oil Range	NWTPH-DX	U	50	1	MG/KG	11/20/2019	EBS
Naphthalene	EPA-8270 SIM	U	20	1	UG/KG	11/25/2019	JMK
2-Methylnaphthalene	EPA-8270 SIM	U	20	1	UG/KG	11/25/2019	JMK
1-Methylnaphthalene	EPA-8270 SIM	U	20	1	UG/KG	11/25/2019	JMK
Benzo[A]Anthracene	EPA-8270 SIM	41	20	1	UG/KG	11/25/2019	JMK
Chrysene	EPA-8270 SIM	63	20	1	UG/KG	11/25/2019	JMK
Benzo[B]Fluoranthene	EPA-8270 SIM	96	20	1	UG/KG	11/25/2019	JMK
Benzo[K]Fluoranthene	EPA-8270 SIM	30	20	1	UG/KG	11/25/2019	JMK
Benzo[A]Pyrene	EPA-8270 SIM	43	20	1	UG/KG	11/25/2019	JMK
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	43	20	1	UG/KG	11/25/2019	JMK
Dibenz[A,H]Anthracene	EPA-8270 SIM	U	20	1	UG/KG	11/25/2019	JMK
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY
C25	NWTPH-DX	70.1				11/20/2019	EBS
Terphenyl-d14	EPA-8270 SIM	113				11/25/2019	JMK

U - Analyte analyzed for but not detected at level above reporting limit.

Page 7 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT:	EcoCon, Inc. PO Box 153 Fox Island, WA 983	333		DATE: ALS JOB#:		12/4/2019 EV19110109		
CLIENT CONTACT:	Stephanie Holt		D	ATE RECEIVED:	11/14/20	0109-08 019		
CLIENT PROJECT:	0377-08		COL	LECTION DATE:	11/13/20	019 10:22:00	D AM	
CLIENT SAMPLE ID	MW6		WDOE AG	CCREDITATION:	C601			
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
TPH-Diesel Range	NWTPH-DX	U	130	1	UG/L	11/16/2019	EBS	
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	11/16/2019	EBS	
Naphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
2-Methylnaphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
1-Methylnaphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[A]Anthracene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Chrysene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[B]Fluoranthene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[K]Fluoranthene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[A]Pyrene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Dibenz[A,H]Anthracene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
SURROGATE	METHOD	%REC				27112		
C25	NWTPH-DX	120				11/16/2019	EBS	
Terphenyl-d14	EPA-8270 SIM	123				11/19/2019	JMK	

U - Analyte analyzed for but not detected at level above reporting limit.

Page 8
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CENTIFIC	ATE OF ANAL 1515					
CLIENT: CLIENT CONTACT:	EcoCon, Inc. PO Box 153 Fox Island, WA 98 Stephanie Holt	333	D	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED:		12/4/2019 EV19110109 EV19110109-09 11/14/2019		
CLIENT PROJECT:	0377-08		COL	LECTION DATE:	11/13/20	019 11:05:0	0 AM	
CLIENT SAMPLE ID	MW7		WDOE AC	CCREDITATION:	C601			
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
TPH-Diesel Range	NWTPH-DX	320	130	1	UG/L	11/16/2019	EBS	
TPH-Oil Range	NWTPH-DX	400	250	1	UG/L	11/16/2019	EBS	
Naphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
2-Methylnaphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
1-Methylnaphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[A]Anthracene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Chrysene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[B]Fluoranthene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[K]Fluoranthene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[A]Pyrene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Dibenz[A,H]Anthracene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY	
C25	NWTPH-DX	123				11/16/2019	EBS	
Terphenyl-d14	EPA-8270 SIM	118				11/19/2019	JMK	

U - Analyte analyzed for but not detected at level above reporting limit.

Chromatogram indicates that it is likely that sample contains light oil/lube oil.

Page 9 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT:	EcoCon, Inc. PO Box 153 Fox Island WA 98:	333		DATE: ALS JOB#:		12/4/2019 EV19110109 EV10110109 10		
CLIENT CONTACT: CLIENT PROJECT:	Stephanie Holt 0377-08		D. COL	ATE RECEIVED: LECTION DATE:	11/14/2019 11/13/2019 11:42:00 AM			
CLIENT SAMPLE ID	MW4		WDOE AG	CCREDITATION:	C601			
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
TPH-Diesel Range	NWTPH-DX	U	130	1	UG/L	11/16/2019	EBS	
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	11/16/2019	EBS	
Naphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
2-Methylnaphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
1-Methylnaphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[A]Anthracene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Chrysene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[B]Fluoranthene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[K]Fluoranthene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[A]Pyrene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Dibenz[A,H]Anthracene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY	
C25	NWTPH-DX	111				11/16/2019	EBS	
Terphenyl-d14	EPA-8270 SIM	126				11/19/2019	JMK	

U - Analyte analyzed for but not detected at level above reporting limit.

Page 10 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

			ATE OF ANALISIS				
CLIENT: CLIENT CONTACT: CLIENT PROJECT:	EcoCon, Inc. PO Box 153 Fox Island, WA 98333 Stephanie Holt 0377-08		D, COLI	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE:		12/4/2019 EV19110109 EV19110109-11 11/14/2019 11/13/2019 3:02:00 PM	
CLIENT SAMPLE ID	MW1		WDOE AC	CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range	NWTPH-DX	150	130	1	UG/L	11/16/2019	EBS
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	11/16/2019	EBS
Naphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
2-Methylnaphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
1-Methylnaphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Benzo[A]Anthracene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Chrysene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Benzo[B]Fluoranthene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Benzo[K]Fluoranthene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Benzo[A]Pyrene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Dibenz[A,H]Anthracene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY
C25	NWTPH-DX	123				11/16/2019	EBS
Terphenyl-d14	EPA-8270 SIM	127				11/19/2019	JMK

U - Analyte analyzed for but not detected at level above reporting limit.

Chromatogram indicates that it is likely that sample contains an unidentified diesel range product.

Page 11 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT:	EcoCon, Inc. PO Box 153 Fox Island, WA 983	333		DATE: ALS JOB#:		12/4/2019 EV19110109		
CLIENT CONTACT:	Stephanie Holt	555	D	ALS SAMPLE#. ATE RECEIVED:	EV19110109-12 11/14/2019			
CLIENT PROJECT: CLIENT SAMPLE ID	0377-08 MW5		COL WDOE AC	LECTION DATE:	11/13/20 C601	019 4:07:00	PM	
		SAMPLE	DATA RESULTS					
ΔΝΔΙ ΥΤΕ	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
TPH-Diesel Range	NWTPH-DX	U	130	1	UG/L	11/16/2019	EBS	
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	11/16/2019	EBS	
Naphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
2-Methylnaphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
1-Methylnaphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK	
Benzo[A]Anthracene	EPA-8270 SIM	0.16	0.040	1	UG/L	11/19/2019	JMK	
Chrysene	EPA-8270 SIM	0.21	0.040	1	UG/L	11/19/2019	JMK	
Benzo[B]Fluoranthene	EPA-8270 SIM	0.31	0.040	1	UG/L	11/19/2019	JMK	
Benzo[K]Fluoranthene	EPA-8270 SIM	0.13	0.040	1	UG/L	11/19/2019	JMK	
Benzo[A]Pyrene	EPA-8270 SIM	0.16	0.040	1	UG/L	11/19/2019	JMK	
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	0.13	0.040	1	UG/L	11/19/2019	JMK	
Dibenz[A,H]Anthracene	EPA-8270 SIM	0.054	0.040	1	UG/L	11/19/2019	JMK	
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY	
C25	NWTPH-DX	112				11/16/2019	EBS	
Terphenyl-d14	EPA-8270 SIM	126				11/19/2019	JMK	

U - Analyte analyzed for but not detected at level above reporting limit.

Page 12 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

			ATE OF ANALISIS				
CLIENT: CLIENT CONTACT: CLIENT PROJECT:	EcoCon, Inc. PO Box 153 Fox Island, WA 98 Stephanie Holt 0377-08	333	D, COLI	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE:		12/4/2019 EV19110109 EV19110109-13 11/14/2019 11/13/2019 3:37:00 PM	
CLIENT SAMPLE ID	MW9		WDOE AC	CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range	NWTPH-DX	200	130	1	UG/L	11/16/2019	EBS
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	11/16/2019	EBS
Naphthalene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
2-Methylnaphthalene	EPA-8270 SIM	0.17	0.040	1	UG/L	11/19/2019	JMK
1-Methylnaphthalene	EPA-8270 SIM	0.20	0.040	1	UG/L	11/19/2019	JMK
Benzo[A]Anthracene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Chrysene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Benzo[B]Fluoranthene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Benzo[K]Fluoranthene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Benzo[A]Pyrene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
Dibenz[A,H]Anthracene	EPA-8270 SIM	U	0.040	1	UG/L	11/19/2019	JMK
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY
C25	NWTPH-DX	121				11/16/2019	EBS
Terphenyl-d14	EPA-8270 SIM	124				11/19/2019	JMK

U - Analyte analyzed for but not detected at level above reporting limit.

Chromatogram indicates that it is likely that sample contains an unidentified diesel range product.

Page 13 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

0 AM 3 ANALYSIS BY
S ANALYSIS BY
S ANALYSIS BY
EBS
EBS
JMK
S ANALYSIS BY
EBS
JMK
JMK
99999999999999999999999999999999999999

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains weathered diesel and lube oil.

Page 14 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CLIENT:	EcoCon, Inc.
	PO Box 153
	Fox Island, WA 98333
CLIENT CONTACT:	Stephanie Holt
CLIENT PROJECT:	0377-08

DATE: ALS SDG#: WDOE ACCREDITATION:

12/4/2019 EV19110109 C601

LABORATORY BLANK RESULTS

MB-111919S - Batch 147747 - Soil by NWTPH-DX

ANALYTE	METHOD	RESULTS	UNITS	REPORTING LIMITS	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range	NWTPH-DX	U	MG/KG	25	11/19/2019	EBS
TPH-Oil Range	NWTPH-DX	U	MG/KG	50	11/19/2019	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

MB-120219S - Batch 148243 - Soil by NWTPH-DX

ANALYTE	METHOD	RESULTS	UNITS	REPORTING LIMITS	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range	NWTPH-DX	U	MG/KG	25	12/02/2019	EBS
TPH-Oil Range	NWTPH-DX	U	MG/KG	50	12/02/2019	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

MB-111519W2 - Batch 147697 - Water by NWTPH-DX

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
TPH-Diesel Range	NWTPH-DX	U	UG/L	130	11/16/2019	EBS
TPH-Oil Range	NWTPH-DX	U	UG/L	250	11/16/2019	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

MB-111819S - Batch 147709 - Soil by EPA-8270 SIM

ANALYTE	METHOD	RESULTS	UNITS	LIMITS	ANALYSIS DATE	ANALYSIS BY
Naphthalene	EPA-8270 SIM	U	UG/KG	20	11/18/2019	JMK
2-Methylnaphthalene	EPA-8270 SIM	U	UG/KG	20	11/18/2019	JMK
1-Methylnaphthalene	EPA-8270 SIM	U	UG/KG	20	11/18/2019	JMK
Benzo[A]Anthracene	EPA-8270 SIM	U	UG/KG	20	11/18/2019	JMK
Chrysene	EPA-8270 SIM	U	UG/KG	20	11/18/2019	JMK
Benzo[B]Fluoranthene	EPA-8270 SIM	U	UG/KG	20	11/18/2019	JMK
Benzo[K]Fluoranthene	EPA-8270 SIM	U	UG/KG	20	11/18/2019	JMK
Benzo[A]Pyrene	EPA-8270 SIM	U	UG/KG	20	11/18/2019	JMK
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	U	UG/KG	20	11/18/2019	JMK
Dibenz[A,H]Anthracene	EPA-8270 SIM	U	UG/KG	20	11/18/2019	JMK
Benzo[G,H,I]Perylene	EPA-8270 SIM	U	UG/KG	20	11/18/2019	JMK

U - Analyte analyzed for but not detected at level above reporting limit.

MB-111919W - Batch 147768 - Water by EPA-8270 SIM

ANALYTE	METHOD	RESULTS	UNITS	REPORTING LIMITS	ANALYSIS DATE	ANALYSIS By
Naphthalene	EPA-8270 SIM	U	UG/L	0.020	11/19/2019	JMK

Page 15 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CLIENT CONTACT: CLIENT PROJECT:	Stephanie Holt 0377-08		
CLIENT CONTACT:	Fox Island, WA 98333 Stephanie Holt	WDOE ACCREDITATION:	C601
CLIENT:	EcoCon, Inc. PO Box 153	DATE:	12/4/2019 EV/19110109

LABORATORY BLANK RESULTS

MB-111919W - Batch 1477	68 - Water by EPA-	8270 SIM	l			
2-Methylnaphthalene	EPA-8270 SIM	U	UG/L	0.020	11/19/2019	JMK
1-Methylnaphthalene	EPA-8270 SIM	U	UG/L	0.020	11/19/2019	JMK
Benzo[A]Anthracene	EPA-8270 SIM	U	UG/L	0.040	11/19/2019	JMK
Chrysene	EPA-8270 SIM	U	UG/L	0.040	11/19/2019	JMK
Benzo[B]Fluoranthene	EPA-8270 SIM	U	UG/L	0.040	11/19/2019	JMK
Benzo[K]Fluoranthene	EPA-8270 SIM	U	UG/L	0.040	11/19/2019	JMK
Benzo[A]Pyrene	EPA-8270 SIM	U	UG/L	0.040	11/19/2019	JMK
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	U	UG/L	0.040	11/19/2019	JMK
Dibenz[A,H]Anthracene	EPA-8270 SIM	U	UG/L	0.040	11/19/2019	JMK
Benzo[G,H,I]Perylene	EPA-8270 SIM	U	UG/L	0.020	11/19/2019	JMK

U - Analyte analyzed for but not detected at level above reporting limit.

Page 16 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CLIENT:	EcoCon, Inc.
	PO Box 153
	Fox Island, WA 98333
CLIENT CONTACT:	Stephanie Holt
CLIENT PROJECT:	0377-08

DATE: ALS SDG#: WDOE ACCREDITATION:

12/4/2019 EV19110109 C601

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: 147747 - Soil by NWTPH-DX

					LIM	ITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
TPH-Diesel Range - BS	NWTPH-DX	91.0			75.5	122.1	11/19/2019	EBS
TPH-Diesel Range - BSD	NWTPH-DX	97.5	7		75.5	122.1	11/19/2019	EBS

ALS Test Batch ID: 148243 - Soil by NWTPH-DX

					LIN	NITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
TPH-Diesel Range - BS	NWTPH-DX	111			75.5	122.1	12/02/2019	EBS
TPH-Diesel Range - BSD	NWTPH-DX	102	9		75.5	122.1	12/02/2019	EBS

ALS Test Batch ID: 147697 - Water by NWTPH-DX

	-				LIMITS		ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
TPH-Diesel Range - BS	NWTPH-DX	89.5			67	125.2	11/16/2019	EBS
TPH-Diesel Range - BSD	NWTPH-DX	89.4	0		67	125.2	11/16/2019	EBS

ALS Test Batch ID: 147709 - Soil by EPA-8270 SIM

	····, _····				LIN	ITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
Naphthalene - BS	EPA-8270 SIM	90.7			20	150	11/18/2019	JMK
Naphthalene - BSD	EPA-8270 SIM	95.6	5		20	150	11/18/2019	JMK
2-Methylnaphthalene - BS	EPA-8270 SIM	86.6			20	150	11/18/2019	JMK
2-Methylnaphthalene - BSD	EPA-8270 SIM	92.0	6		20	150	11/18/2019	JMK
1-Methylnaphthalene - BS	EPA-8270 SIM	86.9			20	150	11/18/2019	JMK
1-Methylnaphthalene - BSD	EPA-8270 SIM	92.0	6		20	150	11/18/2019	JMK
Benzo[A]Anthracene - BS	EPA-8270 SIM	95.4			20	150	11/18/2019	JMK
Benzo[A]Anthracene - BSD	EPA-8270 SIM	105	10		20	150	11/18/2019	JMK
Chrysene - BS	EPA-8270 SIM	117			20	150	11/18/2019	JMK
Chrysene - BSD	EPA-8270 SIM	123	5		20	150	11/18/2019	JMK
Benzo[B]Fluoranthene - BS	EPA-8270 SIM	90.2			20	150	11/18/2019	JMK
Benzo[B]Fluoranthene - BSD	EPA-8270 SIM	97.2	7		20	150	11/18/2019	JMK
Benzo[K]Fluoranthene - BS	EPA-8270 SIM	101			20	150	11/18/2019	JMK
Benzo[K]Fluoranthene - BSD	EPA-8270 SIM	106	5		20	150	11/18/2019	JMK
Benzo[A]Pyrene - BS	EPA-8270 SIM	85.3			20	150	11/18/2019	JMK
Benzo[A]Pyrene - BSD	EPA-8270 SIM	92.0	8		20	150	11/18/2019	JMK
Indeno[1,2,3-Cd]Pyrene - BS	EPA-8270 SIM	86.3			20	150	11/18/2019	JMK
Indeno[1,2,3-Cd]Pyrene - BSD	EPA-8270 SIM	92.4	7		20	150	11/18/2019	JMK
Dibenz[A,H]Anthracene - BS	EPA-8270 SIM	85.1			20	150	11/18/2019	JMK
Dibenz[A,H]Anthracene - BSD	EPA-8270 SIM	91.0	7		20	150	11/18/2019	JMK
Benzo[G,H,I]Perylene - BS	EPA-8270 SIM	85.4			20	150	11/18/2019	JMK

Page 17

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

	PO Box 153
	Fox Island, WA 98333
ENT CONTACT:	Stephanie Holt
ENT PROJECT:	0377-08
ENT PROJECT:	0377-08

DATE: 12/4/2019 ALS SDG#: EV19110109 WDOE ACCREDITATION: C601

LABORATORY CONTROL SAMPLE RESULTS LIMITS ANALYSIS ANALYSIS BY DATE SPIKED COMPOUND METHOD %REC RPD QUAL MIN MAX Benzo[G,H,I]Perylene - BSD EPA-8270 SIM 90.4 6 20 150 11/18/2019 JMK

ALS Test Batch ID: 147768 - Water by EPA-8270 SIM

					LIMIT	S	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
Naphthalene - BS	EPA-8270 SIM	65.1			36	118	11/20/2019	JMK
Naphthalene - BSD	EPA-8270 SIM	68.4	5		36	118	11/20/2019	JMK
2-Methylnaphthalene - BS	EPA-8270 SIM	66.4			20	150	11/20/2019	JMK
2-Methylnaphthalene - BSD	EPA-8270 SIM	68.4	3		20	150	11/20/2019	JMK
1-Methylnaphthalene - BS	EPA-8270 SIM	67.8			20	150	11/20/2019	JMK
Benzo[A]Anthracene - BS	EPA-8270 SIM	110			20	150	11/20/2019	JMK
Benzo[A]Anthracene - BSD	EPA-8270 SIM	116	5		20	150	11/20/2019	JMK
Chrysene - BS	EPA-8270 SIM	116			20	150	11/20/2019	JMK
Chrysene - BSD	EPA-8270 SIM	123	5		20	150	11/20/2019	JMK
Benzo[B]Fluoranthene - BS	EPA-8270 SIM	97.3			20	150	11/20/2019	JMK
Benzo[B]Fluoranthene - BSD	EPA-8270 SIM	104	7		20	150	11/20/2019	JMK
Benzo[K]Fluoranthene - BS	EPA-8270 SIM	96.1			20	150	11/20/2019	JMK
Benzo[K]Fluoranthene - BSD	EPA-8270 SIM	105	9		20	150	11/20/2019	JMK
Benzo[A]Pyrene - BS	EPA-8270 SIM	86.4			20	150	11/20/2019	JMK
Benzo[A]Pyrene - BSD	EPA-8270 SIM	91.9	6		20	150	11/20/2019	JMK
Indeno[1,2,3-Cd]Pyrene - BS	EPA-8270 SIM	74.7			20	150	11/20/2019	JMK
Indeno[1,2,3-Cd]Pyrene - BSD	EPA-8270 SIM	78.0	4		20	150	11/20/2019	JMK
Dibenz[A,H]Anthracene - BS	EPA-8270 SIM	75.2			20	150	11/20/2019	JMK
Dibenz[A,H]Anthracene - BSD	EPA-8270 SIM	78.3	4		20	150	11/20/2019	JMK
Benzo[G,H,I]Perylene - BS	EPA-8270 SIM	72.8			43	140	11/20/2019	JMK
Benzo[G,H,I]Perylene - BSD	EPA-8270 SIM	76.1	4		43	140	11/20/2019	JMK

APPROVED BY

Laboratory Director

Page 18

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

ALS Environmenta 8620 Holly Drive Everett, WA 982 Phone (425) 356 Fax (425) 356	, Suite 100 08 -2600			Labo	Chai	y An	Cusalys	stod is R	y/ equ	est	undan			T *	#10 11 0	(Laborat	ory Use O	(ylu
(ALS) http://wv	/w.alsglobal.c	шо								71		Date	.11	4.19 Pa	ge		3	
PROJECT ID: 0377-08					ANALYS	SIS REQU	JESTE			VO				OTHE	R (Specif	() ()		
REPORT TO COMPANY: CCI							_			0 1	2 14	C						
PROJECT MANAGER: Stephanic	Holt									10 020	180] JAT		Herb				
ADDRESS: P.O. Box	53					3560	8260			012	08 AGE			150,				
Fox Islar	IN PU	T				3 A93	A93	8260		8 A93	Ad se	Pri Pol		d 🗆				SNOI
PHONE: 479-426-148	A P.O. #:	-7750	-08			EX pλ	560 BE b)	A93	(ມອງຊາ	۸d sb	A I) el			loV-in			58	
E-MAIL: Stephonie @	all eci.	COM				18	TM 8 A93	(q spi	(lios	ounodi	Peg] 8-AF		nə2			INFE	COL
INVOICE TO COMPANY: COMPANY:						C	γ γ γ	unodi	500 (moJ		RCF	(/				ATIN	
ATTENTION: Kelly Mell	and					1208	8021 [moD o	8 A93	oinspr		<u> </u>	(jioeq6	ΟΛ [ECO	N GO
ADDRESS:					н-рх н-нсір	N, EPA	A93 Vd	insgani	EDC pÀ	O elitelo	IS AGE V	-ADTM-	S) 1941O] etals [SER O	
SAMPLE I.D.	DATE	TIME	TYPE	LAB#	атwи атwи	NWTP X TEX I	MTBE	Volatile	ED8 \ 1	ovime2	CB P	Netals	alstelv	LCLP-I				JECE
1. MW6-6	11-12-19	SH:8	Soil	-	×							1	1				N	4
2. MW7-S	_	9:30	Dil	2	K					~	-							
3. MW8-5		10:45	Soil	3	8		-			-	-							
4. MW8-10		SH:01	Soil	2							-							
5. MW8-15		SH:01	Soil	ry.	×					X								
6.MW8-19		SH:01	Soil	ع	Ø													
11 - DMM - 11	7	13:35	Soil	rt)X					×								
8. MNNG	11.13.19	10:22	H20	S	X					X								
LWW .6	11.13.19	11:05	H20	9	×					X								
TO. MWH	11-13-19	2h:11	HZU	01	x					7	~							
SPECIAL INSTRUCTIONS	A B	had	ILAN	9 per	Stephon	re St	aler	1	LA	to	F	hold	t	me.				
SIGNATURES (Name, Compart	iy, Date Tit	(e):/	1 1	12			Ċ				URN.	AROL	H ON	EQUESTE	O in Busin	ess Day:	*0	
1. Relinquished By:	Sand	RES	Pilpil 1	2.2.2	10					2			N N N N N N	Speci				
2. Relinquished By:						11		uels &	Hydro	carbor	Ana	lysis						
Received By:										-	8	5		Turnsrout vo	and how then	and and and	den O anori	
														hai ninniai nini		stariuaru ma	Incur Hush	unarges

ody/ ALS Job# (Laboratory Use Only) s Request E√/ ¶ ∅ 0/0 9	本 Date 11-14.19 Page 2 Of 2	OTHER (Specify)		2 0728 1 1808 1 ÅT ⊡ 1 ÅT	260 by EPA 5 by EPA 5	r EPA 82 /rater) rater) raterbides raterbid	2) COI MINEL SHIVEL DOS(201) SHV-8 [SHV (k Mbonu Mbonu Mbonu Mbonu Mbonu Mbonu Mbonu Mbonu Mbonu Mbonu Mbonu	00C	 ίε Col ίε PA γ ΕΡΑ γ ΕΡΑ γ ΕΡΑ γ ΕΡΑ γ ΕΡΑ 	Organ Decomposition Decomposit	34ECEI 40/WE		×	×	×								TURNAROUND REQUESTED in Business Days* ic, Metals & Inorganic Analysis	5 3 2 1 Sweet Specify:	
Chain Of Cust atory Analysis		NALYSIS REQUESTED			PA 8260	SEC SE pÀ E EX pÀ E	178 TM 8 A93 \	κq sə	8021 8021 Volatil	N-PCX by EPA → EPA	Haloger MTBE I MTBE I MTBE I	×.	×		×								Organ	3.56	5 -
lential Chive, Suite 100 98208 Base 2600 Base 2600 Chive Suite 100 Chive Suite 100 Chive Suite 100 Chive Suite 100 Chive Suite	/www.alsglobal.com	-08 A		e Har		P.O. #:				IDH-F	DATE TIME TYPE LAB#	11-13-14 15:02 H20 11	21 1 2021	11-13-19 K:37 13	hi A 25.8 bi. Mi. 11								Agany, Date, Tupoli, / 11.111.10/12:56	111 6 gr Res 11/14/19 1	
ALS Environme 8620 Holly Di Everett, WA 5 Phone (425) 5 Fax (425) 5		PROJECT ID: 03777-	REPORT TO COMPANY: CCT PROJECT	MANAGER: SIZ MUNIC	ADDRESS:	PHONE:	E-MAIL: INVOICE TO	COMPANY:	ATTENTION:	ADDRESS:	SAMPLE I.D.	1. MWN	2. MU5	3. MWR	4. MWS	5.	Ö	7.	ő	ō	10.	SPECIAL INSTRUCTIONS	SIGNATURES (Name, Contra	Received By:	2. Relinquished By: