Construction Documentation Report

Implementation of Cleanup Action Under Model Toxics Control Act (MTCA)

Soil Excavation/Groundwater Monitoring

Aladdin Plating 1657 Center Street Tacoma, Washington FSID 1277

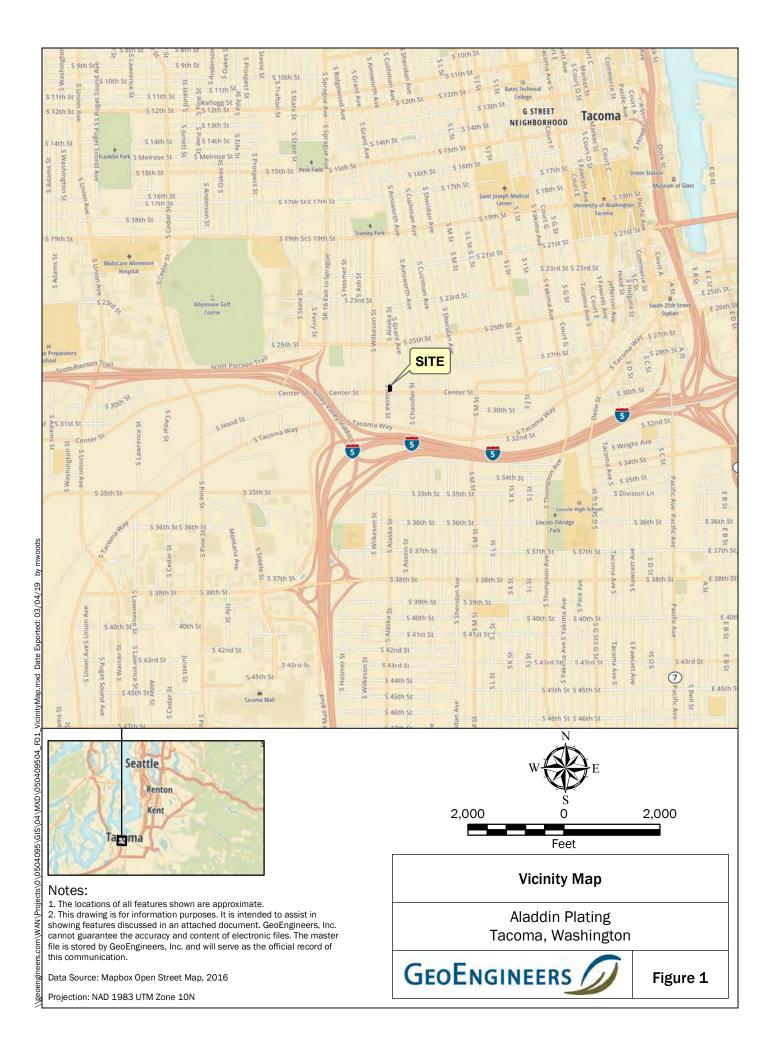
Table of Contents

A.	Site Location and History	1
	Figure 1 – Vicinity Map	3
В.	Chemicals of Concern and Cleanup Values	5
	Table 1: Selected Soil and Groundwater Cleanup Levels	5
C.	Selected Site Cleanup Action	5
D.	Implementation of Cleanup Action	5
E.	Nickel Contaminated Soil Remaining in Place above Cleanup Level	6
F.	Conclusions	7
	Figure 3 – Site Sketch: Original Excavation Layout and Additional Remediation Areas	11
G.	Groundwater Monitoring After the Excavation of Contaminated Soil	13
	Table 2 – Analytical Results Aladdin Plating Site Tacoma, Washington	15
Аp	pendices	17
	Appendix A – Groundwater Monitoring (GeoEngineers Memorandum)	19
	Appendix B – Final Report by GeoEngineers	.57
	Appendix C – Electronic Documentation	.63
	Appendix D – Site Management	.65
	Fact Sheet for a Potential Buver	67

A. Site Location and History

The property is located at 1657 Center Street in Tacoma, Washington (Figure 1). The Site is a corner lot on the northeast corner parcel at the intersection of Center Street and South Alaska Street measuring approximately 100 feet long and 30 feet wide, with no building structures currently standing on the parcel.

The Site was used historically for commercial electroplating between 1958 and 1994. Chemicals used at the Site have included chromium, nickel, lead, caustic soda, sulfuric acid, and alkaline cleaners. The Site is currently under Pierce County's management with no liability on their part. This property was obtained by Pierce County as a tax foreclosure.


The environmental cleanup work was managed and funded by the Washington State Department of Ecology (Ecology) as an orphan site. Several investigations were performed at the Site between 2005 and 2013 by Ecology, Landau Associates, and GeoEngineers to characterize the Site's soil and groundwater.

Site contaminants of concern (COC) have been identified as total chromium, hexavalent chromium, lead, and nickel in on-property soil, and total chromium, hexavalent chromium, and nickel in the shallow groundwater aquifer both on- and off-site. Several rounds of groundwater monitoring were conducted at the Site from 2006 to 2019, including both on-property and off-property wells.

The Remedial Investigation/Feasibility Study (RI/FS) was finalized on December 9, 2014; the Cleanup Action Plan (CAP) was finalized on December 10, 2014; and the Engineering Design Report (EDR) was finalized on August 15, 2015. The RI/FS, CAP, and EDR are stored in Ecology's Document Storage and Retrieval System (DSARS). All the documents have been prepared pursuant to the requirements of the Model Toxics Control Act (MTCA) administered by Ecology under chapter 173-340 of the Washington Administrative Code (WAC).

B. Chemicals of Concern and Cleanup Values

The soil and groundwater cleanup levels as stated in the CAP are shown in Table 1:

Table 1: Selected Soil and Groundwater Cleanup Levels

Parameter	Soil Cleanup Level ¹ (mg/kg)	Groundwater Cleanup Level ² (µg/L)
Total Chromium	2000	50
Hexavalent Chromium	18.4	48
Trivalent Chromium	_	24,000
Lead	250	15
Nickel	417 ³	320

- Soil cleanup levels are taken from MTCA Method A Soil Cleanup Levels for unrestricted land use and MTCA Method B carcinogen and non-carcinogen values for human health protection and for protection of groundwater as drinking water, taken from Ecology's CLARC database. In general, the lowest of the regulatory criteria listed were identified as the proposed cleanup levels.
- 2 Groundwater cleanup levels are taken from published values for the Safe Water Drinking Act and MTCA Method B carcinogen and non- carcinogen standard formula values for human health protection obtained from Ecology's CLARC database. In general, the lowest of the regulatory criteria listed were identified as the proposed cleanup levels.
- 3 Soil cleanup level derived by entering MTCA Method B groundwater cleanup level protective of drinking water into the MTCA fixed parameter three-phase partitioning model (Equation 747-1).

C. Selected Site Cleanup Action

The preferred Remedial Alternative in the CAP was removal of metals-contaminated soil at the subject property that exceeds MTCA Method A and B cleanup levels protective of direct human contact and MTCA Method B cleanup levels for soil protective of groundwater as drinking water (Table 1), and monitoring the attenuation of metals concentrations in groundwater after the contaminated soil was removed.

D. Implementation of Cleanup Action

The bids and specifications were prepared in May 2018 based on the 2015 EDR. The project was advertised for bid and a contractor was selected in June 2018.

The soil excavation project was started in August 2018 and concluded in November 2018. The contractor estimated a total of 619 tons (412 cubic yards, based on soil density of 1.5 tons/cubic yard) of soil was removed and disposed at Roosevelt Regional Landfill as a non-hazardous waste. The bid package specified for removal of 330 tons (220 cubic yards).

The discrepancy between the amount of contaminated soil removed by the contractor and the amount specified in the bid was a subject of a dispute between the contractor and Ecology. Eventually Ecology and Ecology's consultant decided the actual contaminated soil excavated was only 40 tons more than specified in the bid package. Therefore, the total contaminated soil removal was approximately 370 tons (250 cubic yards). See Figure 2 for excavation locations. These locations were developed based on information from RI/FS and the CAP.

E. Nickel Contaminated Soil Remaining in Place above Cleanup Level

After the excavation of the contaminated soil, the confirmational soil samplings showed, in some locations soil exceeding the Nickel soil cleanup level of 417 mg/kg remain in place. The range of depths of Nickel exceedance were 4 feet to 8 feet below ground surface (bgs) and the range of concentrations were 450 mg/kg – 4,500 mg/kg. Figure 2 shows the confirmational soil samples where exceedances occurred and the limits of the excavations.

Ecology determined that two areas with high concentrations of Nickel should be excavated. The concentrations measured at the depth of 8 feet bgs was 4,500 mg/kg at AP-TP13-5.5, and at the depth of 4 feet bgs was 1300 mg/kg at AP-TP4-2. The proposed areas for additional excavation are shown in Figure 3.

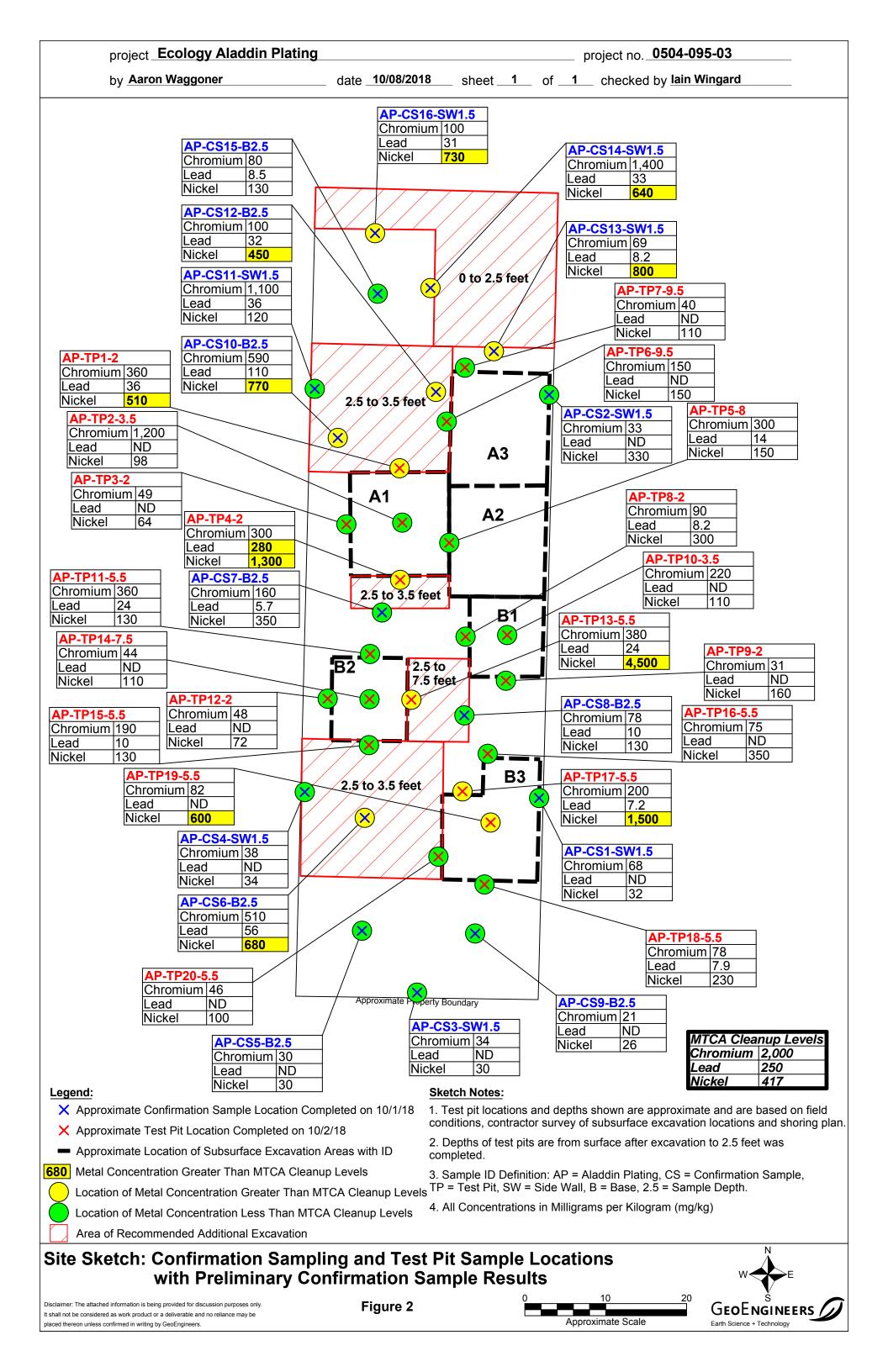
Ecology requested that the contractor provide an estimated cost for the removal of 20 cubic yards of soil from these areas. The contractor proposed cost of \$110,000 to remove 20 cubic yards of Nickel contaminated soil.

Ecology decided that the cost to remove 20 cubic yards of Nickel contaminated for \$110,000 was too high and rejected the contractor's proposal. Ecology made this determination based on the following:

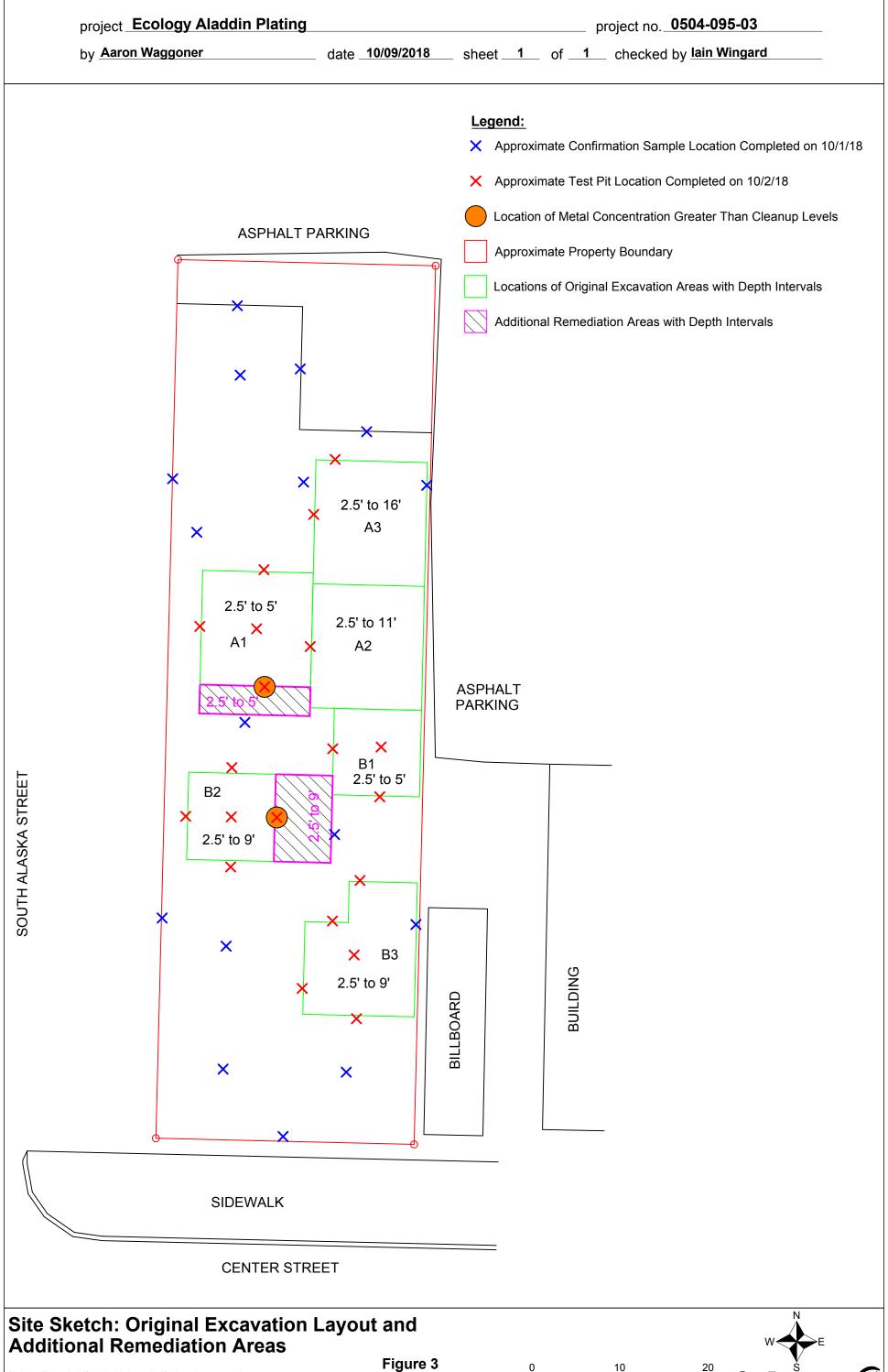
- The majority of Nickel contaminated soil (approximately 250 cubic yards) has been removed. Therefore, the majority of source to cause Nickel groundwater contamination has been removed.
- 2. The Nickel MTCA Method B soil cleanup level for direct contact unrestricted land use is 1,600 mg/kg and MTCA Method C industrial cleanup level is 70,000 mg/kg. Only one soil sample has a concentration above MTCA Method B Nickel soil cleanup level of 1,600 mg/kg with a concentration of 4,500 mg/kg at a depth of 8 feet bgs. Since this location is above the 15-foot MTCA Method B direct contact cleanup level of 1,600 mg/kg, an environmental deed restriction will be placed on the property. This property is zoned light industrial. Currently, the entire site is also covered by two feet of clean fill.
- 3. The Site is located in the South Tacoma Groundwater protection district. A City of Tacoma drinking water well is located one mile to the southwest of the Site. The groundwater flow direction at the site is to the south-southeast. The depth to groundwater in the shallow aquifer is 20-30 feet bgs. The shallow groundwater is impacted by Nickel contamination and the plume has moved approximately 120 feet down gradient from the Site's boundary. Based on this information, there does not appear to be the potential of Nickel contaminated groundwater to impact the City of Tacoma's drinking water well. As a result of the Nickel source removal, the groundwater contamination in future will likely decline over time.

F. Conclusions

The metals contaminated soils were removed in accordance with the plans and specifications for the project. The estimated contaminated soils removed was approximately 370 tons, which is 40 tons more than estimated in the plans and specifications. Ecology estimates that approximately 30 tons of nickel contaminated soil with concentrations above the MTCA Method B cleanup level remains in place to a maximum depth of approximately 8 feet bgs. The maximum extent of metals impacted groundwater is approximately 120 feet downgradient of the site. With the removal of most of the contaminated soils from the site, Ecology anticipates that the concentrations of metals in the groundwater will reduce over time.


Ecology does not anticipate the City of Tacoma pumping well will be impacted by the contaminated groundwater from the site anytime in the future due to the majority of the source being removed.

Ecology will continue to monitor the groundwater at the site to demonstrate metals concentration trends and that the site continues to be protective of human health and the environment.


An Environmental Covenant will be placed on the property informing of the metals contaminated soil and groundwater beneath the site and restrict the property to industrial site uses only.



It shall not be considered as work product or a deliverable and no reliance may be placed thereon unless confirmed in writing by GeoEngineers.

G. Groundwater Monitoring After the Excavation of Contaminated Soil

The groundwater was monitored one time immediately after the excavation. One well down gradient show high concentration of Nickel. Table 1 shows the results. The complete groundwater report is in Appendix A.

To evaluate the effect of contaminated soil removal on Nickel groundwater contamination, annual groundwater monitoring wells should be conducted.

The following Appendices have the project descriptions and documentations.

Table 1

Analytical Results Aladdin Plating Site Tacoma, Washington

		Metals ² (μg/L)	Total Chromium	Dissolved Chromium	Total Nickel	Dissolved Nickel	Hexavalent Chromium
Exploration		Groundwater Cleanup Levels ³	50		32	48 4	
Location ¹	Date Sampled	Sample ID					
MW4sR	2/6/2019	MW4sR-190206	15	11	2,600	2,700	12
MW5s	-	-	-	-	_	-	
MW6s	2/6/2019	MW6s-190206	8.1	1.0 U	12	8.0 U	10 U
MW7s	2/6/2019	MW7s-190206	2.1	1.0 U	8.9 U	8.0 U	10 U
MW8s	2/6/2019	MW8s-190206	32	27	13,000	13,000	31
IVIVVOS	2/0/2019	DUP-1-190206	32	28	14,000	13,000	32

Notes:

Bolding indicates analyte was detected.

Yellow highlighting indicates exceedance of MTCA cleanup level.

 $^{^{\}rm 1}\,{\rm Exploration}$ locations shown on Figure 4.

 $^{^2}$ Total and dissolved metals analyzed by United States Environmental Protection Agency (EPA) 200.7/6010C.

 $^{^{\}rm 3}\,{\rm Model}\,{\rm Toxics}$ Cleanup Act (MTCA) Method A Cleanup Level for groundwater.

 $^{^4}$ No Method A Value exists for this metal, MTCA Method B Value was used in its place. $\mu g/L = micrograms$ per liter

U = Not detected greater than laboratory reporting limit

^{-- =} Not Analyzed

Appendices

Appendix A – Groundwater Monitoring (GeoEngineers Memorandum)

Memorandum

1101 Fawcett Avenue, Suite 200, Tacoma, Washington 98402, Telephone: 253.383.4940, Fax: 253.383.4923

www.geoengineers.com

To: Mohsen Kourehdar, Washington State Department of Ecology, TCP Site Manager

From: Aaron Waggoner, LG, LHG; lain Wingard

Date: March 29, 2019 **File:** 0504-095-04

Subject: Aladdin Plating Groundwater Monitoring Event – February 2019

Introduction

This technical memorandum presents the results of groundwater monitoring completed by GeoEngineers on behalf of the Washington State Department of Ecology (Ecology) for the former Aladdin Plating Site located at 1657 Center Street in the Nalley Valley of Tacoma, Washington. A vicinity map showing the location of the site within the City of Tacoma is provided as Figure 1. The groundwater monitoring event was completed on February 6, 2019.

Background

The site was a metals plating facility that was shut down in the 1990s and was subsequently acquired by Pierce County. Ecology, on behalf of Pierce County coordinated the demolition of the site structures in 2005 and subsequently performed soil and groundwater investigations. Metals associated with the plating activities including total chromium, hexavalent chromium and nickel were identified as the contaminants of concern for site soil and groundwater.

The property underwent remedial action in 2018 using an Ecology-hired environmental contractor (Contractor) who excavated metals-contaminated soil within the limits of the former property to depths ranging from 2.5 feet below ground surface (bgs) to 16 feet bgs, transported the contaminated soil offsite for disposal, and backfilled and restored the property to near the original grade. Prior to initiating remedial excavation, the Contractor subcontracted Cascade Drilling to decommission the monitoring wells located on the property on September 18, 2018. The decommissioned wells included MW1s, MW2s, MW3s, MW4s and MW4d. Figure 2 shows the locations of all monitoring wells relative to the property boundaries and other surrounding features.

Following construction, two monitoring wells were installed, one on and one off the property, in December 2018. The well installed on the property was given the identification of MW4sR as a replacement well for MW4s and was installed in generally the same location as the original. The other well installed off the property, MW8s, was located west of South Asotin Street and east of the gated entrance to Bills Towing. MW8s was installed on private property with the permission of the property owner who signed an access agreement with Ecology.

Groundwater Monitoring Activities

GeoEngineers personnel visited the site on February 6, 2019 to collect depth to groundwater measurements from the five monitoring wells, MW4sR, MW-5s, MW-6s, MW7s and MW8s. In addition to the depth to groundwater, the total well depth and the depth of the top of the well casing below the ground surface was measured. The groundwater and well measurements are included in Table 1.

GeoEngineers subcontracted David Evans and Associates (DEA) of Tacoma, Washington to complete a professional survey of the well location and top of casing elevation of the five monitoring wells on

February 18, 2019. The top of casing elevation was surveyed from the north side of the PVC well casing. The location and elevation survey data are provided in Table 1. The groundwater elevation contours resulting from the depth to groundwater measurements and survey data are shown on Figure 3. Low-flow sampling equipment comprised of a pneumatic bladder pump rented from Field Environmental Instruments of Everett, Washington was used to purge groundwater, collect groundwater quality parameters and determine stabilization prior to sample collection from monitoring wells MW4sR, MW6s, MW7s and MW8s. Monitoring well MW-5s was not sampled due to its distant upgradient and somewhat cross gradient location relative to the site. Monitoring well MW6s was sampled using compressed nitrogen to lift water to the surface due to the well's location and depth. Groundwater was measured at 134.42 feet below the top of casing at MW-6s. The pneumatic compressor in the sampling equipment lacked the necessary pressure to lift water from this depth up to the ground surface for sampling. The groundwater monitoring field report and sampling forms are included in Attachment 1.

After the wells achieved stabilization, groundwater samples were collected from monitoring wells MW4sR, MW6s, MW7s and MW8s along with one duplicate sample from MW8s. The samples were transported under chain of custody to OnSite Environmental, Inc. of Renton, Washington (an Ecology-accredited laboratory) for chemical analysis of total and dissolved metals including chromium and nickel using Environmental Protection Agency (EPA) Method 200 series and hexavalent chromium by SM 3500-Cr B.

Groundwater that was purged during the monitoring event was placed in a 55 gallon drum that was labeled and stored within the fenced property. A sample was collected from the drum of purge water as well as the drums of decontamination water and well development water that were generated when monitoring wells MW4sR and MW8s were installed. The sample will be used to characterize and profile the drums for pickup and disposal at an approved disposal facility.

Groundwater Results

The groundwater monitoring results for wells MW4sR, MW6s, MW7s and MW8s are presented in Table 2 and summarized on Figure 4. The laboratory analytical report from OnSite Environmental, Inc. is included in Attachment 2. The memorandum presenting the results of the laboratory data validation is presented in Attachment 3. The results of the data validation indicate that the results are acceptable for the intended use.

AMW:IHW:ch

Attachments:

Figure 1. Vicinity Map

Figure 2. Site Plan

Figure 3. Groundwater Contour Map

Figure 4. Groundwater Analytical Results

Table 1. Groundwater and Well Measurements

Table 2. Analytical Results

Attachment 1. Field Files

Attachment 2. Laboratory Analytical Data

Attachment 3. Data Validation Report

Table 1

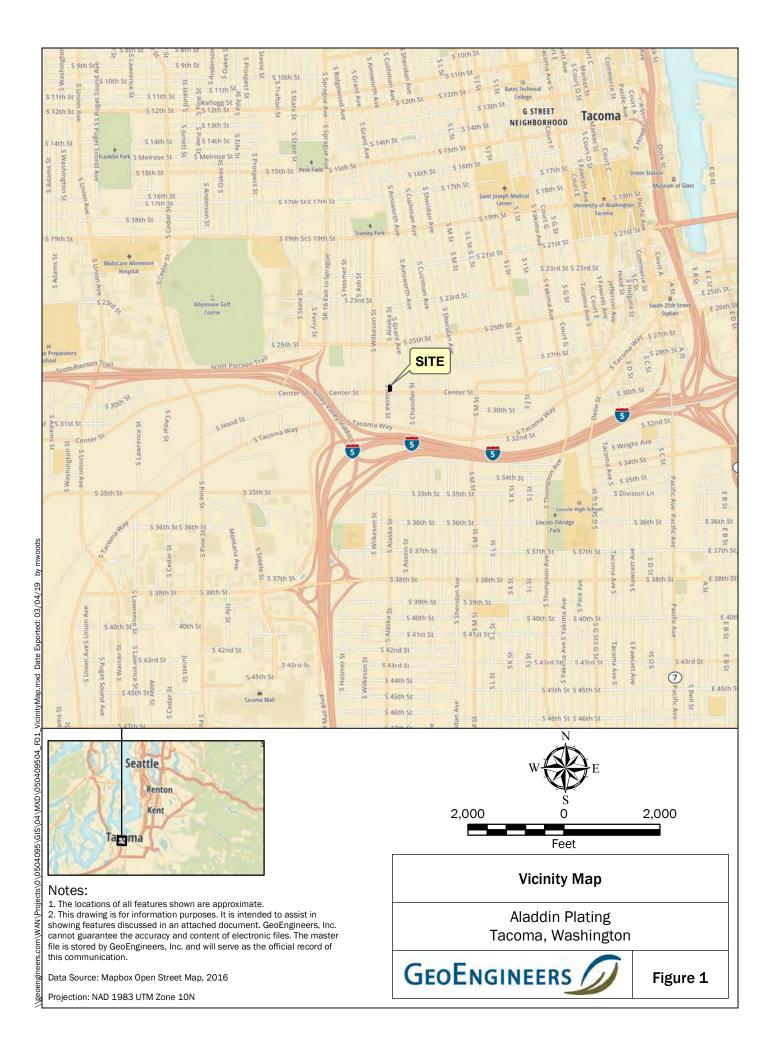
Groundwater and Well Measurements Aladdin Plating Site Tacoma, Washington

					Horizontal Cod	ordinates ⁴
Exploration Location ¹	Date Measured	Top of Casing Elevation ⁴ (ft)	Depth to Groundwater (ft BTOC)	Groundwater Elevation (ft)	Northing (ft)	Easting (ft)
MW4sR ²	2/6/2019	245.13	24.93	220.20	1154127.383	699228.804
MW5s	2/6/2019	248.01	27.03	220.98	1153783.195	699051.481
MW6s	2/6/2019	358.19	137.42	220.77	1154323.617	699665.392
MW7s	2/6/2019	242.57	23.53	219.04	1154572.961	699157.450
MW8s ³	2/6/2019	242.96	23.01	219.95	1154237.648	699195.698

Notes:

ft = feet

BTOC = below top of casing



¹Exploration locations shown on Figures 2 and 3.

² MW4s replacement monitoring well installed in December 2018.

³ New monitoring installed in December 2018.

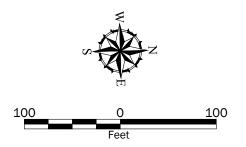
⁴ Top of casing elevations and horizontal coordinates based on professional land survey by David Evans and Associates of Tacoma, WA on February, 18, 2019. Datums: Horizontal NAD83, Vertical NGVD29

Legend

Site Boundary

MW4sR • Groundwater Monitoring Well

*Monitoring Well Decommissioned During Remedial Excavation Activities on 9/18/2018


Notes:

- The locations of all features shown are approximate.

 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/13/2018.

Projection: NAD83 Washington State Planes, South Zone, US Foot

Site Plan

Aladdin Plating Tacoma, Washington

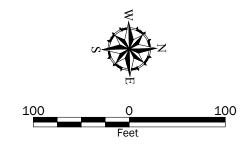
Figure 2

Legend

Site Boundary

Groundwater Elevation Contour (0.2-foot interval)

Groundwater Flow Direction


Monitoring Well and Groundwater Elevation

Notes:

- 1. The locations of all features shown are approximate.
 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/13/2018.

Projection: NAD83 Washington State Planes, South Zone, US Foot

Groundwater Contour Map

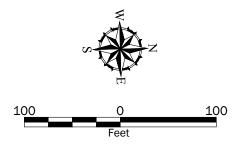
Aladdin Plating Tacoma, Washington

Figure 3

Legend

Site Boundary

 $\mu g/L$ = micrograms per liter


Bolding indicates analyte was detected. Gray Shading indicates exceedance of MTCA cleanup level.

Notes:

- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document.
 GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/13/2018.

Projection: NAD83 Washington State Planes, South Zone, US Foot

Groundwater Analytical Results

Aladdin Plating Tacoma, Washington

Figure 4

ATTACHMENT 1 Field Files

GEOENGINEERS 5	Field Report	File Number: 0504-095-04		
1101 Fawcett Avenue, Suite 200	Project: Aladdin Plating	Date: 02/06/2019		
Tacoma, Washington 98402 253.383.4940	Owner: Ecology	Time of Arrival: 0815	Report Number:	
Prepared by:	Location:	Time of Departure:	Page:	
Eric Knoedler	Tacoma, Washington	1640	1 of 2	
Purpose of visit:	Weather:	Travel Time:	Permit Number:	
Groundwater Monitoring	Clear, 30's	0.5 hrs	N/A	

Upon arrival to the site I assessed personal safety hazards: 🛛 Yes or 🗖 Referred to Site Safety Plan and Safety Tailgate if applicable

Safety Hazards Were Addressed by :

Staying Alert to Construction and Equipment Hazards

Other (describe):

GeoEngineers representatives Eric Knoedler (ENK), Roger Chang (RC), and Aaron Waggoner (AMW) arrived at the Aladdin Plating site (site) located at 1657 Center Street in Tacoma, Washington at about 8:15 AM. The purpose of this site visit was to obtain groundwater samples from site monitoring wells MW4sR, MW6s, MW7s, and MW8s and measure the water level at monitoring well MW5s. Photos taken during this sampling event are available on the P-drive at the following link: \\geoengineers.com\\WAN\\Projects\0\0504095\04\Photos\GW Sampling\20190206.

Each monitoring well was purged following standard low-flow techniques and groundwater quality parameters were recorded to determine stabilization. Groundwater parameters monitored included:

- Temperature,
- Oxidation-reduction potential,
- Dissolved oxygen,
- Conductivity (recorded in microsiemens per centimeter [µS/cm]),
- pH, and
- Turbidity.

Stabilization was considered achieved when water quality parameters (except for conductivity and turbidity) varied by less than 10% through three consecutive readings. The stabilization criteria allowed for a 3% variation in conductivity through three consecutive readings and one turbidity reading equal to, or less than 25 nephelometric turbidity units (NTUs). Water levels were measured to the nearest 0.01 feet from the north side of the top of well casing.

Equipment

Equipment used for the purge and sampling procedures included:

- YSI ProPlus water quality meter with flow-through cell,
- Hach 2100Q turbidity meter,
- Waterline M200 electric water level meter,
- QED SamplePro bladder pump,
- QED MP50 compressor/controller, and
- Compressed nitrogen gas (for monitoring well MW6s only).

Decontamination

Durable and reusable equipment that directly or indirectly contacted potentially contaminated groundwater was decontaminated using an Alconox® wash followed by a distilled-water rinse. New, plastic tubing was used for each monitoring

□т⊦	IIS FIELD REPORT IS PRELIMINARY A preliminary report is provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the final report may vary from and shall take precedence over those indicated in a preliminary report.		DATE 2/07/19
Ø	THIS FIELD REPORT IS FINAL A final report is an instrument of professional service. Any conclusions drawn from this report should be discussed with and evaluated by the professional involved.	REVIEWED BY Aaron Waggoner	DATE 02/07/19

This report presents opinions formed as a result of our observation of activities relating to our services only. We rely on the contractor to comply with the plans and specification throughout the duration of the project irrespective of the presence of our representative. Our work does not include supervision or direction of the work of others. Our firm will not be responsible for job or site safety of others on this project. DISCLAIMER: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Attachments: Lab COC, Groundwater Sampling Forms

Distribution: Project File

File No. 0504-095-04

Page 2

well. Disposable materials (e.g., nitrile gloves, paper towels, etc.) used throughout this sampling event were considered *de minimus* and disposed of in a municipal waste bin.

Sampling

Samples obtained during this sampling event are listed in Table 1. Monitoring well construction details and current conditions are summarized in Table 2. Groundwater samples were obtained from each monitoring well following parameter stabilization by removing the flow-through cell and filling laboratory-supplied bottles directly from the sample tubing. Each sample comprised two 500-mL polyethylene bottles with nitric acid preservative and one 500-mL polyethylene bottle with no preservative. Groundwater filling one of the nitric acid-preserved bottles for each sample was filtered using a 0.45-micron in-line filter.

Samples were stored in a cooler on ice and transported to OnSite Environmental of Redmond, Washington under standard chain-of-custody procedures. Samples were submitted for chemical analysis of total and dissolved nickel, total and dissolved chromium, and total hexavalent chromium on a standard turnaround request. Samples were direct-dropped at the lab to meet the 24-hour hold time for the requested hexavalent chromium analysis.

Investigation-Derived Waste

About 15 gallons of purge water was generated during this sampling event. Purge water was transferred to a labeled 55-gallon steel drum stored on site. There are currently six 55-gallon drums with soil cuttings, and three 55-gallon drums with purge and decontamination water (one water drum is about $\frac{1}{4}$ full) on site.

GeoEngineers departed the site at about 4:40 PM.

Table 1 – Groundwater sample summary.

Monitoring Well ID	Sample Name	Time	Date
MW4sR	MW4sR-190206	1320	02/06/2019
MW6s	MW6s-190206	1100	02/06/2019
MW7s	MW7s-190206	1415	02/06/2019
MW8s	MW8s-190206	1605	02/06/2019

Table 2 - Summary of monitoring well construction and current conditions.

Monitoring Well ID	Static Water Level (ft. BTOC)	Total Depth (ft. BTOC)	Stickup (ft. bgs)	Screened Interval ¹ (ft. BTOC)	Monument and TOC Condition
MW4sR	24.93	37.11 (soft)	-0.40	24 to 39	Good
MW6s	137.42	153.29 (soft)	-0.28	144 to 145	Good
MW7s	23.53	41.65 (soft)	-0.41	32 to 42	Good
MW8s	23.01	39.26 (soft)	-0.44	24 to 39	Good
MW5s	27.03	-	-0.54	-	Missing one bolt

Notes:

TOC = top of casing

¹ Screened interval for monitoring wells MW6s and MW7s are assumed. Screened interval for MW4sR and MW8s are reported on the respective boring logs.

ft. BTOC = feet below top of casing

ft. bgs = feet below ground surface

[&]quot;Good" condition indicates all monument bolts are accounted for and working, compression cap is functioning providing an adequate seal, and casing is not cracked or worn.

GROUNDWATER SAMPLE COLLECTION FORM

PURGE DATA	Project	Aladdin Plating	9		Job No.	0504-095-03	Collector	ENK/RC	Sample ID	MWY	512-190	206
Dameter Dame						PURGE D	ATA					
Dameler Color Dameler Damele] Yes [No	D	escribe Damage	Non	E (STICK	4P = 0.	4ft)		
Dameler Continue		ACTION OF THE PROPERTY OF	*		1 4 0							Volume
Casing TypeDiameter Z ₁			A STATE OF THE STATE OF) &		3790W - 92			Diameter			
ne Casing Volume (gal.)	and the ball				Height o	of Water Column	12.18		(in.)	OD	ID	Linear F
Image: Content of the content of t	Well Casin	ng Type/Diamete							2	2.375"	2.067"	0.17
A		The second secon			3.ven=	6.21			3	3.500"	3.068"	0.38
### SAMPLING DATA ### Storage/Disposal Drum on site of parameters stabilize) ### Time Collected (moldylyr) ### Time Collected			Pump (type)	Bladder		Bailer (type)	N/A		4	4.500"	4.026"	0.66
Image Depth to Water Purge Volume General (Feet)												
Time Collected (mo/dy/yr) 2									8	8.625	7.981	2.6
SAMPLING DATA SAMPLING DATA												
Time Collected (morelylyr) 2/1/18	Drum Ideni	tification, sample a	inalysis, sample	e results, sto	rage location, et							
ample Location and Depth 24 High Tide at Low Tide at Weather Clear Laury ample type (Group Water, Product, Other) ample Collected with [] Bailer [] PVC [] Teffon [] Disposable LDPE [] Other ampler Decon Procedure Alomes Wash Mines of I] I was example Description (color, free product thickness, odor, turbidity, etc.) FIELD PARAMETERS						SAMPLING	DATA					
High Tide at Low Tide at Low Tide at Weather Clear Mount Clear Mount Clear Mount Clear Mount Clear Mount			2/6/	114			_			1.00 Long	127	-
Apple Collected with									Tim			
Ample Collected with					at		Low Tide at			Weather		lacin
Add of Stainless Steel						Nih a a					305	
Secont Procedure Alimax Wash Alimax Dissolved Dissolved Color, free product thickness, odor, turbidity, etc.) FIELD PARAMETERS		/			100			2 2 2 2 2 1 1				
Depth to Water Purge Volume Gallons pH Conductivity Turbidity Opm GFC Gallons pH Conductivity Turbidity Opm Op							e LDPE	[] Other				
FIELD PARAMETERS Depth to Water Purge Volume (feet) (gallons) (pH Vitro) (ppm) (FC) (mV) (ppm) (FC) (mV) (ppm) (FC) (mV) (ppm) (FC) (ppm) (FC) (ppm) (FC) (ppm) (ppm) (FC) (ppm)	1		1111010	wash	11/198 D	I whiter						
Depth to Water Purge Volume Conductivity Turbidity Quality Turbidity	bample D	escription (color	, free product	tnickness,	odor, turbidity	, etc.)						
Depth to Water Purge Volume (feet) Pur						FIELD PARAM	IETERS					
Time (feet) (gallons) pH (NTU) (ppm) (F/C) (mV) 2 2 2 1 9 5 20 338 351 9.7 756 2 1 2 1 9 5 1 5 5 5 2 2 2 1 9 5 5 5 5 2 2 2 1 9 5 5 2 2 1 9 5 5 2 2 1 9 5 5 2 2 1 9 5 5 2 2 1 9 7 7 5 2 2 1 9 7 7 2 2 1 9 7 2 2 1 9 7 2 2 1 9 7 2 2 1 9 7 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 2 1 9 2 3 1 9 2 4 9 3 4 9 3 4 9 4				77.7			Dissolved	F-10-00-0				
2				No. of the last	Conductivity		100 100 100 100 100 100 100 100 100 100		1 3-4 1		N	
219 21-93			100				10.7			4		
1.23 21.43 7.53 56.5 6.59 4.75 11.5 54.7 12.37 7.58 56.4 5.37 4.94 11.6 76.9 12.31 7.60 56.3 61.37 4.94 11.6 79.8 12.35 7.52 56.1 34.5 4.90 11.4 78.3 7.52 56.1 34.5 4.90 11.4 78.3 7.52 56.1 34.5 4.90 11.6 37.0 12.43 7.46 56.0 18.2 4.86 11.6 37.9 7.46 56.1 14.8 4.85 11.6 36.8 4.25 1.6 36.8 4.25 1.6 36.8 4.25 1.6 36.8 4.25 1.6 36.8 4.25 1.6 36.8 4.25 1.6 36.8 4.27			Start	_				9.7				
127					54.5			11.4				-
123		24.93									1	
1235	1727	-	0.75	758		537						
1.25											2	
1243		-			56-1					11 - 1-1		
1248		-	1.25		55.9	295			87.0		1	. —
1253		~					4.86					
1301				7.46		148		11.6				
1301		_	2.5					11.6				7
leters Used for Measurement H/Con./DO Instrument Calibration ADDITIONAL INFORMATION ADDITIONAL INFO		-		7.53			4.89					
The state of the surface of the surf		_						,				
ADDITIONAL INFORMATION amples Composited Overtime, Distance nalyses, Number and Volume of Sample Containers uplicate Sample Number(s) omments: (Filtered, Not Filtered, Calculations, etc.) Date 2/6/19 Page of 2				7.50				11.6	52.3		1	
ADDITIONAL INFORMATION amples Composited Overtime, Distance nalyses, Number and Volume of Sample Containers Uplicate Sample Number(s) uplicate Sample Number(s) omments: (Filtered, Not Filtered, Calculations, etc.) Date 2/6/19 Page of 2						Huch 1-2	2)					
amples Composited Overtime, Distance nalyses, Number and Volume of Sample Containers 2×500ml coly w/ Vitro 1×500ml coly writesame uplicate Sample Number(s) omments: (Filtered, Not Filtered, Calculations, etc.) - 150ml/min Date 2/6/19 Page of 2	H/Con./E	00 Instrument C	alibration	Yes Yes	[] No					E-Tape	Materla	ne inz
nalyses, Number and Volume of Sample Containers 2×500ml Coly w/ NHTC 1×500ml Coly un present uplicate Sample Number(s) omments: (Filtered, Not Filtered, Calculations, etc.) - ISOm V m in Date 2/6/19 Page of 2					ADI	DITIONAL INF	ORMATION	V				
uplicate Sample Number(s) omments: (Filtered, Not Filtered, Calculations, etc.) - ISOM V / m in ignature Date 2/6/19 Page of 2	Samples	Composited Ove	ertime, Distan	ce								
uplicate Sample Number(s) omments: (Filtered, Not Filtered, Calculations, etc.) — ISOm V / m in ignature	Analyses,	Number and Vo	olume of Sam	ple Contair	ners	2× 500m	L 0014	WHILL IM	1×500	me ai	y wy. Pre	Some
ignature The Calculations, etc.) - ISOm V / min Date 2/6/19 Page of 2							1-7				/	
ignature 7/1/ Date 2/6/19 Page of 2							,					
10 11	Comment	ts: (Filtered, Not	Filtered, Cal	culations, e	etc.)	-150ml	min					
10 11												
10 11	Cianctur	177	1/2				Deta	211 110		Dage	1 -	2
	100000000000000000000000000000000000000	-1-6					_ Date	0/19/10		rage	1 0	4

GROUNDWATER SAMPLE COLLECTION FORM

	g		300 140.	0504-095-03	Collector	ENK/RC	Sample II	nw4s	K-140	206
					ETERS					
Depth to Water (feet)	Purge Volume (gallons)	рН	Conductivity	Turbidity (NTU)	Dissolved O ₂ (ppm)	Temperature (F/C)	ORP (mV)			
- C	3.25	7.50	55.9	43.8	4.89	11.6	81.9			
		7.51	55.6	36-9	4.86	11-6				
			56-6	33.3			81.1			
	4.0		56.8	25.6		11.7	815			Ĭ .
	1.5							Samale	1320	
				1						
	7									
									-1	
									1,772	
			A = (7	1
)	1	
					1					
								-		
			7			1				
					1				-	5
										-
		-								
			1							
								+		
							-			
								+		1
										1
								-		-
									-	
					-	1				
									-	
			1	1		_				
	(feet)	(feet) (gallons)	- 3.25 7.50 7.51 7.50	Depth to Water (gallons) PH Conductivity (gallons) PH Conductivity PH 7.50 55.6 7.50 56.6	Depth to Water (gallons) PH Conductivity (NTU) - 3 25 7.50 55.6 36.9 7.50 56.6 33.3	Depth to Water (feet) Purge Volume (gallons) pH Conductivity (NTU) O2 (ppm)	Depth to Water (feet) Purge Volume (gallons) Conductivity Turbidity (NTU) Dissolved O2 (ppm) Temperature (F/C) - 3.25 7.50 55.9 43.8 4.89 11.6 7.51 55.6 36.9 4.86 11.6 7.50 56.6 38.3 4.87 11.6	Depth to Water (feet) Purge Volume (gallons) Conductivity pH Turbidity (NTU) Dissolved O2 (ppm) Temperature (mV) ORP (mV) - 3.25 7.50 55.9 43.8 4.89 11.6 81.9 7.51 55.6 36.9 4.86 11.6 81.0 7.50 56.6 38.3 4.87 11.6 81.1	Depth to Water (feet) Purge Volume (gallons) pH (Conductivity (NTU) Dissolved (ppm) (F/C) (mV) - 3.25 7.50 55.9 43.8 4.89 11.6 81.0 7.50 56.6 33.3 4.87 11.6 81.1 11.0 7.54 56.8 75.6 4.86 11.7 81.5	Depth to Water (feet) Purge Volume (gallons) Conductivity pH Turbidity (NTU) Dissolved O ₂ (ppm) Temperature (mV) ORP (mV) - 3.25 7.50 55.9 43.8 4.89 11.6 81.9 7.51 55.6 36.9 4.86 11.6 81.0 7.50 56.6 38.3 4.87 11.6 81.1

Page of

Project	Aladdin Platir	ng		Job No.	0504-095-03	Collecto	or ENK/RC	Sample ID	Mu-65	5-1902	06
					PURGE D	ATA					
Well Con	dition: Secure		×] No	1	Describe Damage	Nov	E (Snew	UP = 0.4	8 [6]		
	rand and number)		15 - NO	LOCK							
	Water (from top	of well casing	137	42 6	0€50 €	0938		Diameter			Volume
Depth to	Base of Well	153.290	V. SOFT	Height	of Water Column		- 0.0	(in.)	OD	ID	Gal./ Linear F
Well Casi	ing Type/Diame	ter 2"					_	2	2.375"	2.067"	0.17
One Casi	ng Volume (gal.)					_	3	3.500"	3.068"	0.38
Purge Me		Pump (type)	Bladder		Bailer (type) N/A	=	4	4.500"	4.026"	0.66
Gallons P	urged ~4.5						- 24	6	6.625"	6.065"	1.5
(Remove n	ninimum of 3 well	volumes or unti						8	8.625	7.981	2.6
	ater Storage/Dis		Drum on s								
(Drum iden	tification, sample	analysis, sampi	e results, sto	rage location, e							
Data O. II					SAMPLING	DATA					
Sample I	ected (mo/dy/yr)								JY w L oz		
Tidal Cycl	ocation and Dep	out 145	High Tide	- MID SE	REEN	1		Tim	e Collected	-110	
	pe (Groundwate	er Product O	ther)	at		Low Tide a	t	_	Weather	CLUAR,	30'5
Sample C	collected with	[] Bailer	[X] Pu	mp [] (Other	2	A - A-	(- 7			
	[X] Stainless St] Teflon	[] Disposable	1 DDE	[] Other	SAMPLE T	20		
	Decon Procedur	.0			DECATED TEATH		[] Oulei				
Sample D	escription (colo	r, free produc	t thickness,	odor, turbidity	y, etc.)	Cause	. No 00	- 5			
			2 200 8 200 200	4 4 4 7 5 6 6 6 7	FIELD PARAM		NO UD	DIC			
		*			FIELD FARAIV						
	Depth to Water			Conductivity	Turbidity	Dissolved O ₂	Temperature	ORP			
Time	(feet)	(gallons)	pН	(MS/cm)	(NTU)	(ppm)	(F.C)	(mV)		110	
0902	- 57AZ	PURCE	- Fas		VATER TO						
0940	- REST										
0945	137.42	0.35	7.62	201.7	321	7.61	6,5	46.7			
0950	137.42	1.0	7.98.	210.3	247	5.42	10.3	27.4			
0955		1.181.25	8.18	211.0	183	2.52	10.5	8.1	UJL STA	RIE	
1000		201.75	8.21	211.8	185	2.35	10.5	4.4		000	27.
1005		A.B.2.0	8.24	211.7	178	2.10	10.4	3.0			
1010		3402.25		212.5	152	1.90	10.4	-1.8			
1015		3/1825		214.1	117	1.75	10.5	-1.6			
1020		2.75	8.28	214.9	106	1.65	10.5	-1.5			
1025		3.0	8.32	215.9	85.2	1.56	10.6	-3.9			
1030	3	3.25	8.43	216.1	71.3	1.50	10.60	-12.0			
1035 Notore He		3.50	8.50	216.2	65.0	1.43	10.4	-14.1			
	sed for Measure		V	20 Peus; Holo	21100				4 22 7		
PIT/CON./L	OO Instrument C	alibration	[×] Yes	[] No					E-Tape	WATER	ME
				ADI	DITIONAL INFO	DRMATIO	N				
	Composited Over			~ 115	int/mons						
Analyses,	Number and Vo	olume of Sam	ple Contain	ers	2 x 500ml F	bys w/	NOTETE (1 F	naven);	1×5004	il Pory	LANPRESTA
Dunlicato	Sample Numbe	r(c)									
	s: (Filtered, No		culations o	tc.)	2 - 2 - 2 - 2	-	-			1 -	
	E IS M/11				-Denicar	ELAD BLAD	DER PUMP	- : 0 4/1	F 1715	15 C &	DPSF-
* Es		n Purge B		rump -							
Signature		TAKES PI	u.K.E.I			Date	2/6/19		Page	/ of	2
Check if ad	ditional Informatio	n on book [1/2		7			- 0/11			- 51	~

Project	Aladdin Platin	g		Job No.	0504-095-03	Collector	ENK/RC	Sample ID	MW-65	-1902	06
				F	IELD PARAM	ETERS					
Time	Depth to Water (feet)	₩ Purge Volume (gallons)	pН	Conductivity	Turbidity (NTU)	Dissolved O ₂ (ppm)	Temperature (F/C)	ORP (mV)			
040		3.75	8.54	217.2	55.4	1.30	10.6	-19.2			
045		4.0	8.68	218.7	47.4	1.34	10.7	-26.9			
1050		4.25	8.63	219.6	41-7	1.36	10.6	-23.7			
1055		4.5	8.65	219.8	45.5	1.38	10.6	-24.4			
		E 1		4							
					-						
											4
-				-							
										-	
				1							
				1							
				4							
		-									
100											

Page 2 of 2

Project	Aladdin Plati	ing		Job No.	0504-095-03	Collecto	or ENK/RC	Sample II	Nw7	<-1900	0/2
					PURGE	DATA		12000	1111	3 1100	06
Well Con	ndition: Secure		[४] No		Describe Dama	ge Non	SE (STECK	UP = 0.	43)		
	Water (from top	10 live	-1	12-2	7		×				
Depth to	Base of Well	41.63		23.53 Height	e 1538 of Water Colum	nn 1812		Diameter (in.)	OD	10	Volume Gal./
	ing Type/Diame	eter 2 "	1			10110		2	2.375"	2.067"	Linear F
One Casi	ing Volume (gal	1.) = 3,08	(x3~4	1.24)				3	3.500"	3.068"	0.17
Purge Me	ethod	Pump (type)	Bladder		Bailer (typ	e) N/A		4	4.500"	4.026"	0.66
Gallons F (Remove n	rurgea minimum of 3 well	volumes or unt	il field param	otoro otobilizal		-	- 10	6	6.625"	6.065"	1.5
Purge Wa	ater Storage/Dis	sposal	Drum on s	site				8	8.625	7.981	2.6
(Drum ider	ntification, sample	analysis, samp	le results, sto	orage location, e	tc.)						
					SAMPLING	DATA					
Date Coll	ected (mo/dy/yr	2/6	0/19			2000					
Sample L Tidal Cycl	ocation and De	pth ~mros	CREEN AT	38.65 f	t Broc			Tim	e Collected	1415	-
	le NA [x] /pe (Groundwat		mign Hige	at		Low Tide a	t	0 13		Cours 3	30'3
Sample C	collected with	[] Bailer	(X) Pu	mp []C	Ythor			£			
	[X] Stainless S] Teflon		I- I DDE					
Sampler [Decon Procedu	re A	Park Park	v. D.=	[] Disposab	le LDPE	[] Other				
Sample D	escription (colo	r, free produc	t thickness,	odor, turbidity	, etc.)	6					
					IELD PARAM	METERS					_
		*				Dissolved					_
Time	(feet)	Purge Volume (gallons)	pН	Conductivity (AS/en)	Turbidity (NTU)	O ₂ (ppm)	Temperature (F/C)	ORP (mV)			
1340 -	- SMEY PU	26E - L	DADE AT	1347				18			
1348	15 ==	_	6.75	150.5	319	4.14	11.3	-			
1400	23.53	0.5	7.41	179.60	77.9	3.79	11.6	84.5			
1405	23.49	1.5	7.54	177.5	43.5	3.82	11.6	78.0			
1410	23.50	2.0	7.601	177.5	30.9	3.87	11.5	74.8			
110	35.70	3.0	1.002	177.6	23.5	3.87	11.5	72.3		11.	T
			Ī								
Apters I le	ed for Measure	mont	0. 5)_ =		
	O Instrument C			PLUS : HAC	H 21000						
	o modulient o	alibration	[x] Yes	[] No _					E-Tape	NATERIA	DE MAC
Samples C	Composited Ove	odina Distan			ITIONAL INF	ORMATION	l .				
nalyses.	Number and Vo	olume of Same	ce ole Contain	~ 150	ml/mms						
	RESERVED	name or oam	ole Containe	-	2x 500 ml	. POLY W/	Notes (1	- FILTEREI); Ix 5	DOML PO	-4
Suplicate S	Sample Number		N/4						Manager 1		
omments	: (Filtered, Not	Filtered, Calc	ulations, et	c.)	1x 500 ul	PALY W/	NARK FR	2000			
	1				700 100	1007 07	THE THE	icice			-
ignature		-									
	litional information	<i>y</i> -11	700			Date	2/6/19		Page	/ of	1

Project Aladdin Plating Job No. 0504-095-03 Collector ENK/RC Sample ID											
					FIELD PARAM	ETERS					
Time	Depth to Water (feet)	Purge Volume (gallons)	рН	Conductivity	Turbidity (NTU)	Dissolved O ₂ (ppm)	Temperature (F/C)	ORP (mV)			
_					7 - 2					1 = 1	1
											1
										-	
										1	
								1			
		4 = [$T = \lambda$				
						إسسا		1			
								-			
										1 1	
							1			1	
7											
			1								
	1										

Gra	Eucine		0
GEO	ENGINE	ERS	W)

of

Page

Project	Aladdin Platir	ng		_ Job No	0504-095-03	Collecto	r ENK/RC	Sample ID jN W 85 - 190206			6
					PURGE D	ATA					
	dition: Secure rand and number)		≈]No	1	Describe Damag	e_Noise	Concent	= 0.4476)		
	Water (from top		1 02	63						_	T Values
	Base of Well		25	(0)	-410/-1 - 0 -1	11 0	-	Diameter	367		Volume Gal./
		39.26		- Height	of Water Colum	n 16.25		(in.)	OD	ID	Linear F
One Cosi	ing Type/Diame	ter L·n						2	2.375"	2.067"	0.17
Ourse Ma	ng Volume (gal.	1 Inshi=	2.+6	उपशा =	8.28			3	3.500"	3.068"	0.38
Purge Me		Pump (type)	Bladder	-	Bailer (type) N/A	-	4	4.500"	4.026"	0.66
Remove n	rurged ~ 5	valumas as unti	I field sees	-4				6	6.625"	6.065"	1.5
Purae Ws	ater Storage/Dis	posal	Drum on s					8	8.625	7.981	2.6
Drum iden	tification, sample	analysis, sampl	le results, st	orage location e	etc.)						
			- 1,1,	orage recalion, c	SAMPLING	DATA					
Date Colle	ected (mo/dy/yr)	216/10			OAM LING	DAIA					
	ocation and De					-		Time	e Collected	1605	
Tidal Cycl	e NAM	- 01	High Tide	at		Low Tide at		- 3110		clear	20.
Sample ty	pe (Groundwate	er, Product, O	ther)		•	4-11 1144 4		-	VVCalifet	_CI com	303
		[] Bailer	[]Pu	ump []	Other						
Made of	Stainless St	teel []P	VC [] Teflon	[] Disposabl	e LDPE	[] Other				
	Decon Procedur	e Alcon	x Was	h / DI :	Ance	7.77	[] outon				
Sample D	escription (colo	r, free product	t thickness	, odor, turbidit	y, etc.)						
					FIELD PARAM	/ETEDS					
					FIELD PARAM						
Time	Depth to Water (feet)	Purge Volume (gallons)	pН	Conductivity	Turbidity (NTU)	Dissolved O ₂ (ppm)	Temperature (F/C)	ORP (mV)			
1446	23.01	Stan	7.24	140.4	over	3.94	12.0				
1450	23.01	01.00	7.27	144.8	over	3.92	12.0	933			
1455	23.01		7.64	141.6		4.39		72.6			
500	-		7.94	137.2	over		12./	-			
504		1-25	8.03	138.2	aver	4.32	12.2	80 Z			
508		17.60	8.06	139.1	our	4.23	124	55.7			
1517	L-30 - I		8.06	191.1	965	4.21	12.2	53.8			
516			8.11	144.4	658	4.27		53.5			
520			8:12	145.6	461	4.33	12.6	51.3 51.3			
524	120	2.50	8.09	146.7	316	4.37	12-3	51.6			
528	_	2.00	8.15	150.3	269	4.39	12.5	49.0			-
532	-		8.18	152.8	184	4.49		48.66		-	
536		3:25	8.13	156.7	112	9.60	12.4	50.0			
	sed for Measure		45, Pro		Huch T.Z		14.5	30.0		_	
	O Instrument C		M Yes	[] No	HUCH 16				C Table		
	- modulitoric c	dibidaon	XI ica			V 3 V 7 3 V			E-Tape	Warter/1)	TE MILL
				ADI	DITIONAL INF	ORMATION	V				
	Composited Ove										
Analyses,	Number and Vo	olume of Sam	ple Contain	ners	2x toomi	DOLY WI	nitre acid	1× 50	0 m2 60	iy	
Junlicate	Sample Numbe	r/o\	2.1.0	4 10.15		2.7				′	
	s: (Filtered, No		yu()-	1-190201			7.4	7.1			
Comment	o. (i intered, NO	i intereu, Cali	culations, 6		Stick up	0.455	22	POML/mi	n		
Comment								1.4			
Comment	111					V					

		g			0504-095-03	_	ENK/RC	Sample ID	1010000	1100	16
				- 1	FIELD PARA	METERS					
Time	Depth to Water (feet)	Purge Volume (gallons)	pН	Conductivity	Turbidity (NTU)	Dissolved O ₂ (ppm)	Temperature (F/C)	ORP (mV)			
1540			813	158.5	103	4.66	122	50.5			
1544			8.14	160.8	63,2 61.3	4.74	12.3	50.9		1	
1548			8.16	162-1	61.3	4.81	123	50.8			
1552	7		8.22	163.2	45.7	4.83	12.3	50.)		-	
1556		4.5	8.18	162.9	39.1	4.93	12.2	big 9			
1600			8.23	1639	31.0	4.98	17.4	49.9			
1604			8.22	163.8	24.8	4.98	12.3	48.6			
	lec_										
										-	
		+									
				1.5							
		11	2 000 2		1					1	1
	- 4			1							
									1		
				2.5							
						1				-	1
	-									-	
								1			
								-		-	
										-	
											2
										1	2

Page of

ATTACHMENT 2 Laboratory Analytical Data

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

February 14, 2019

Aaron Waggoner GeoEngineers, Inc. 1101 Fawcett Avenue South, Suite 200 Tacoma, WA 98402

Re: Analytical Data for Project 504-095-04

Laboratory Reference No. 1902-037

Dear Aaron:

Enclosed are the analytical results and associated quality control data for samples submitted on February 6, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 504-095-04

Case Narrative

Samples were collected on February 6, 2019 and received by the laboratory on February 6, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 504-095-04

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
MW6s-190206	02-037-01	Water	2-6-19	2-6-19	
MW4sR-190206	02-037-02	Water	2-6-19	2-6-19	
MW7s-190206	02-037-03	Water	2-6-19	2-6-19	
MW8s-190206	02-037-04	Water	2-6-19	2-6-19	
DUP-1-190206	02-037-05	Water	2-6-19	2-6-19	

Project: 504-095-04

HEXAVALENT CHROMIUM SM 3500-Cr B

Matrix: Water Units: ug/L

J				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6s-190206					
Laboratory ID:	02-037-01					
Hexavalent Chromium	ND	10	SM 3500-Cr B	2-7-19	2-7-19	
Client ID:	MW4sR-190206					
Laboratory ID:	02-037-02					
Hexavalent Chromium	12	10	SM 3500-Cr B	2-7-19	2-7-19	
Client ID:	MW7s-190206					
Laboratory ID:	02-037-03					
Hexavalent Chromium	ND	10	SM 3500-Cr B	2-7-19	2-7-19	
Client ID:	MW8s-190206					
••						
Laboratory ID:	02-037-04					
Hexavalent Chromium	31	10	SM 3500-Cr B	2-7-19	2-7-19	
Client ID:	DUP-1-190206					
Laboratory ID:	02-037-05					
Hexavalent Chromium	32	10	SM 3500-Cr B	2-7-19	2-7-19	

Project: 504-095-04

TOTAL METALS EPA 200.8

Matrix: Water
Units: ug/L (ppb)

Omio. ug/E (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6s-190206					
Laboratory ID:	02-037-01					
Chromium	8.1	1.1	EPA 200.8	2-13-19	2-13-19	
Nickel	12	8.9	EPA 200.8	2-13-19	2-13-19	
Client ID:	MW4sR-190206					
Laboratory ID:	02-037-02					
Chromium	15	1.1	EPA 200.8	2-13-19	2-13-19	
Nickel	2600	220	EPA 200.8	2-13-19	2-13-19	
Client ID:	MW7s-190206					
Laboratory ID:	02-037-03					
Chromium	2.1	1.1	EPA 200.8	2-13-19	2-13-19	
Nickel	ND	8.9	EPA 200.8	2-13-19	2-13-19	
Client ID:	MW8s-190206					
Laboratory ID:	02-037-04					
Chromium	32	1.1	EPA 200.8	2-13-19	2-13-19	
Nickel	13000	890	EPA 200.8	2-13-19	2-13-19	
Client ID:	DUP-1-190206					
Laboratory ID:	02-037-05					
Chromium	32	1.1	EPA 200.8	2-13-19	2-13-19	
Nickel	14000	890	EPA 200.8	2-13-19	2-13-19	

Project: 504-095-04

DISSOLVED METALS EPA 200.8

Matrix: Water
Units: ug/L (ppb)

στικο: αg/2 (pps)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6s-190206					
Laboratory ID:	02-037-01					
Chromium	ND	1.0	EPA 200.8		2-12-19	
Nickel	ND	8.0	EPA 200.8		2-12-19	
Client ID:	MW4sR-190206					
Laboratory ID:	02-037-02					
Chromium	11	1.0	EPA 200.8		2-12-19	
Nickel	2700	200	EPA 200.8		2-13-19	
	MNA/7 . 400000					
Client ID:	MW7s-190206					
Laboratory ID:	02-037-03					
Chromium	ND	1.0	EPA 200.8		2-12-19	
Nickel	ND	8.0	EPA 200.8		2-12-19	
Client ID:	MW8s-190206					
Laboratory ID:	02-037-04					
Chromium	27	1.0	EPA 200.8		2-12-19	
Nickel	13000	800	EPA 200.8		2-13-19	
Client ID:	DUP-1-190206					
Laboratory ID:	02-037-05					
Chromium	28	1.0	EPA 200.8		2-12-19	
Nickel	13000	800	EPA 200.8		2-13-19	

Project: 504-095-04

HEXAVALENT CHROMIUM SM 3500-Cr B QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0207W1					
Hexavalent Chromium	ND	10	SM 3500-Cr B	2-7-19	2-7-19	

Analyte	Res	sult	Spike	Level	Source Result		rcent overy	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE			•								
Laboratory ID:	02-03	37-02									
-	ORIG	DUP									
Hexavalent Chromium	12.3	13.0	١	NA		1	NΑ	NA	6	20	
MATRIX SPIKES Laboratory ID:	02-03	37-02									
-	MS	MSD	MS	MSD		MS	MSD				
Hexavalent Chromium	117	111	100	100	12.3	105	99	75-125	5	20	
SPIKE BLANK											
Laboratory ID:	SB02	07W1									
	S	В	5	SB		SB					
Hexavalent Chromium	99	.9	1	00	NA	1	00	85-115	NA	NA	

Project: 504-095-04

TOTAL METALS EPA 200.8 QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0213WM1					
Chromium	ND	1.1	EPA 200.8	2-13-19	2-13-19	
Nickel	ND	8.9	EPA 200.8	2-13-19	2-13-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-00	05-08									
	ORIG	DUP									
Chromium	ND	ND	NA	NA		NA		NA	NA	20	
Nickel	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	02-00	05-08									
	MS	MSD	MS	MSD		MS	MSD				
Chromium	272	257	111	111	ND	245	232	75-125	5	20	
Nickel	271	258	111	111	ND	244 233		75-125	5	20	

Project: 504-095-04

DISSOLVED METALS EPA 200.8 QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0212D1					
Chromium	ND	1.0	EPA 200.8		2-12-19	_
Nickel	ND	8.0	EPA 200.8		2-12-19	

	_				Source		rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-04	44-05									
	ORIG	DUP									
Chromium	ND	ND	NA	NA		NA		NA	NA	20	
Nickel	ND	ND	NA	NA		NA		NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	02-04	44-05									
	MS	MSD	MS	MSD		MS	MSD				
Chromium	183	183	200	200	ND	91	92	75-125	0	20	
Nickel	183	179	200	200	ND	92	89	75-125	2	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page _______ of ________

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days) Laboratory Numbe								er:	0	2 -	03	37												
Phone: (425) 883-3881 • www.onsite-env.com Company: GEI Project Number: 504-095-04 Project Name: ALADOM PLANDIG Project Manager: ANZON WALGONGZ Sampled by:	Date	/s [dard (7 Days) (other)	1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX		NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEW (oil and grosse) 1664# HEX CHRONIUM	TOTAL No	DISSOLVED Ni	Total Car	DESSOLVED Cr	Moisture
J MWA65-190206	2/6/19	Sampled	Matrix	3	2	Z	Z	Z	>	Т.	Ш	00 2 0			0	0	-	F	-	×	-		X	X	%
2 MW 45R-190206		1320		3																X	X	χ	x	X	
3 MW75-190206		1415		3																×	×	X	X	x	
4 MW85-190206	1	1605	1	3																X	x	X	x	x	
5 DUP-1-190206	2/6/19	2000	W	3																X	X	X	X	*	
Signature Relinquished	C	GET				Date	0/19	7	Time	00)	Comn	nents/	Specia	l Instr	uctio	ns				- 11				
Received Relinquished		0	E			21	61	UR.	18	M)														
Received										_															
Relinquished																									
Received									Data Package: Standard Level III Level IV																
Reviewed/Date		Reviewed/Da	te								Chromatograms with final report Electronic Data Deliverables (EDDs)] Ele	4							

ATTACHMENT 3Data Validation Report

Data Validation Report

1101 Fawcett Avenue, Suite 200, Tacoma, Washington 98402, Telephone: 253.383.4940, Fax: 253.383.4923

www.geoengineers.com

Project: WA State Department of Ecology – Aladdin Plating 2019 Post-Construction

Groundwater Monitoring

GEI File No: 0504-095-04

Date: March 25, 2019

This report documents the results of a United States Environmental Protection Agency (USEPA) defined Stage 2A data validation (USEPA Document 540-R-08-005; USEPA 2009) of the analytical data for groundwater samples collected as part of the 2019 monitoring event and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Aladdin Plating Site located at 1657 Center Street in Tacoma, Washington.

Objective and Quality Control Elements

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (USEPA 2017) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Soil and Groundwater Sampling and Analysis Plan (GeoEngineers 2014), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples
- Laboratory/Field Duplicates

Validated Sample Delivery Groups

This data validation included review of the sample delivery group (SDG) listed below in Table 1.

TABLE 1. SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

L	aboratory SDG	Samples Validated
	1902-037	MW4sR-190206, MW6s-190206, MW7s-190206, MW8s-190206, DUP-1-190206

Chemical Analysis Performed

OnSite Environmental, Inc. (OnSite), located in Redmond, Washington, performed laboratory analysis on the samples using the following methods:

- Total and Dissolved Metals by Method EPA200.8; and
- Hexavalent Chromium by Method SM3500-Cr B

Data Validation Summary

The results for each of the QC elements are summarized below.

Data Package Completeness

OnSite provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory, with the following exception:

SDG 1902-037: The laboratory noted that Sample DUP-1-190206 was not listed on the COC. The sample was added to the COC by the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for each analysis. The sample cooler arrived at the laboratory at the appropriate temperatures of between two and six degrees Celsius.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For the sample batches, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the

associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Control Samples

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS control limits for accuracy are usually more rigorous than for MS analyses. Additionally, data qualification based on LCS analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits are specified in the laboratory documents.

One LCS analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. The RPD control limits are specified in the laboratory documents. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met.

Field Duplicates

In order to assess precision, field duplicate samples are collected and analyzed along with the reviewed sample batches. The duplicate samples are analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control for water is 35 percent.

SDG 1902-037: One field duplicate sample pair, MW8s-190206 and DUP-1-190206, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair.

Overall Assessment

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the LCS and MS/MSD percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD and laboratory/field duplicate RPD values.

No analytical results were qualified. The data are acceptable for the intended use.

References

- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review," EPA-540-R-2017-001. January 2017.
- GeoEngineers, Inc., "Soil and Groundwater Sampling and Analysis Plan", prepared for Washington State Department of Ecology. March 6, 2014.

This page intentionally left blank for double-sided copying.

Appendix B – Final Report by GeoEngineers

GeoEngineers conducted the final walk through/warranty inspection (in accordance with the project manual) on October 30, 2019, and provided the following report. The report concluded that there were no issues related to this construction/excavation project left.

This page intentionally left blank for double-sided copying.

GEOENGINEERS	Field Report	File Number: 00504-095-05						
1101 Fawcett Avenue, Suite 200	Project: Aladdin Plating	,						
Tacoma, Washington 98402 253.383.4940	Owner: Dept. of Ecology	Time of Arrival:	Report Number:					
Prepared by:	Location:	Time of Departure:	Page:					
Aaron Waggoner	1657 Center St, Tacoma, WA	10:45	1 of 3					
Purpose of visit:	Weather:	Travel Time:	Permit Number:					
Warranty Inspection	Sunny, 40s F, Light Breeze	0.25 hr	None					

Upon arrival to the site I assessed personal safety hazards: 🛛 Yes or 🗎 Referred to Site Safety Plan and Safety Tailgate if applicable Safety Hazards Were Addressed by: 🗎 Staying Alert to Construction and Equipment Hazards 🗖 Other (describe):

Photographed the current condition of the site. Aaron Waggoner, lain Wingard and Ken Fellows of GeoEngineers on site.

Photo 1 - Inside Fence Looking Northwest

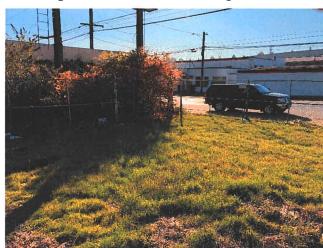


Photo 2 - Front 1/3rd of Lot Looking Southeast

Photo 3 - Gravel in Back 2/3rd of Lot Looking North

Photo 4 - Inside Fence Looking South

	THIS FIELD REPORT IS PRELIMINARY A preliminary report is provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the final report may vary from and shall take precedence over those indicated in a preliminary report.		/E	DATE 10/30/19
X	THIS FIELD REPORT IS FINAL A final report is an instrument of professional service. Any conclusions drawn from this report should be discussed with and evaluated by the professional involved.	REVIEWED BY	mound	DATE 10/30/19
			//	

This report presents opinions formed as a result of our observation of activities relating to our services only. We rely on the contractor to comply with the plans and specification throughout the duration of the project irrespective of the presence of our representative. Our work does not include supervision or direction of the work of others. Our firm will not be responsible for job or site safety of others on this project. DISCLAIMER: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Attachments: None

Distribution: Ken Fellows, lain Wingard, Mohsen Kourehdar, File

Photo 5 - North End of Lot Looking East

Photo 6 - Replacement Monitoring Well MW4sR

Photo 7 - Monitoring Well MW8s

Photo 8 - Billboard and Building East of Site

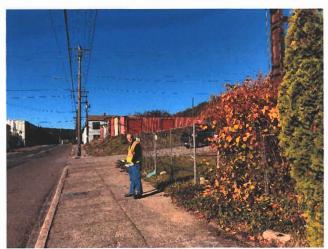


Photo 9 - Center Street Sidewalk

Photo 10 - Southwest Corner of Fencing and Alaska Street

There does not appear to be any visible settlement of the gravel covered portion of the site. There were tire tracks left on the surface of the gravel from the Waste Management forklift that was used to pick up the drums in August 2019. The forklift did not leave ruts in the gravel.

The topsoil covered portion of the site was observed to be sufficiently covered with grass.

There was no apparent accumulation of soil or sediment on the sidewalk adjacent to the site indicating that stormwater does not appear to be migrating off site after the TESC measures were removed following construction.

File No. 00504-095-05 Page 3 of 3	10/30/2019										
The fencing appeared to be secure and in good condition and preventing access to the site and the adjacent of the fencing were secured with sandbags and there were bracing installed around the perimeter of the fermion of the fermio	ncing preventing.										
The replacement monitoring well MW4sR was visible and not covered with gravel, debris or vegetation and was secured in the well box. The offsite monitoring well MW8s located east of the site was visible and not covered with gravel, debris or vegetation and was secured in the well box. The well J-plug in MW4sR and MW8s were each secured with a padlock.											
Only a minor amount of debris was present on the property inside the fenced area that appeared to have been thrown over the fence from the adjacent rights-of-ways.											
It is our opinion that there are no apparent warranty related items requiring attention for this project.											
	N N										

This page intentionally left blank for double-sided copying.

Appendix C – Electronic Documentation

The attached flash storage device has all the documentation for this project. It is approximately 2,000 pages. It contains all the project record, new well installation report, and letters of transmittal.

This page intentionally left blank for double-sided copying.

Appendix D – Site Management

The Site is currently managed by Pierce County with no liability on their part. This property is being held by Pierce County in tax foreclosure.

The Contact name in Pierce County for the property is:

Michael D. Gonzales Real Property Management Specialist Pierce County Department of Facilities Management 1102 Broadway, Suite 302 Tacoma, WA 98402

Main: 253-798-7223 Tell: 253-798-6364 Fax: 253-798-7401

Ecology developed a fact sheet and shared this with Pierce County to be shared with potential buyers.

This page intentionally left blank for double-sided copying.

Fact Sheet for a Potential Buyer

1657 South Center Street, Tacoma Washington Tax Parcel No. 2855000010 Former Aladdin Plating (Ecology FSID 1277)

This fact sheet is to provide information to the potential buyer.

Work Performed

The Washington State Department of Ecology (Ecology) sponsored a cleanup project that removed approximately 500 cubic yards of contaminated soil and backfilled the site with clean fill. This work was concluded in November 2018. Ecology will conduct a one-time groundwater monitoring event on four existing groundwater monitoring wells in February 2019.

The environmental cleanup work was conducted in accordance with the Model Toxics Control Act (MTCA). To see the cleanup documents for the site, please go to: https://fortress.wa.gov/ecy/gsp/CleanupSiteDocuments.aspx?csid=3257.

Current Site Conditions

There is residual nickel contaminated soil beneath the site and nickel and chromium contaminated groundwater beneath the site and approximately 100 feet south of the property.

The remaining nickel contaminated soil concentrations are in the range of 450 milligrams per kilogram (mg/kg) – 4,500 mg/kg (cleanup level for nickel is 417 mg/kg) at depths between 4.0 feet – 8.0 feet below ground surface (bgs). All the excavated areas have been filled with clean fill and a cap of 2.5 feet of clean fill covers the property.

The highest groundwater concentration in 2014 for total nickel was 7,770 micrograms per liter (μ g/l) (groundwater cleanup level is 320 μ g/l) and for total chromium concentration was 96 μ g/l (groundwater cleanup level is 50 μ g/l).

Ecology Requirements for Property Purchase

The buyer of this property will be required by Ecology to commit to conduct the following:

- 1. The buyer will put an environmental (restrictive) covenant (EC) on this property which shall be recorded with Pierce County.
- 2. The EC will require annual groundwater monitoring of four groundwater monitoring wells. The EC will require a sampling and analysis plan to perform the groundwater monitoring. The groundwater shall be tested for total chromium and total nickel. The groundwater monitoring will be required to continue until these wells meet the cleanup levels for four consecutive groundwater monitoring events.

- 3. The EC will require capping (CAP) of the property. A building or an asphalt surface will qualify as a CAP. The CAP will require an operation and maintenance (O&M) manual, which will require annual inspection. The CAP will need to be repaired as needed in accordance with the approved O&M manual. The buyer could contact Ecology to get guidance in drafting the O&M manual.
- 4. When the groundwater meets the cleanup levels, the property owner may apply to Ecology's Voluntary Cleanup Program to have the site removed from Ecology's hazardous site list.
- 5. The Ecology approved boilerplate copy of an EC is attached to this fact sheet.
- The buyer will be a Potential Liable Person under Revised Code of Washington (RCW) 70.105D.040. Ecology shall give notice to any person and allow an opportunity for comment before making that finding.
- 7. If you have any questions, please contact:

Mohsen Kourehdar, P.E. Toxics Cleanup Program Southwest Regional Office PO Box 47775 Olympia, WA 98504-7775

Phone: 360-407-6256 Fax: 360-407-6305

mohsen.kourehdar@ecy.wa.gov

