

Environment

Prepared for Port of Vancouver USA 3103 NW Lower River Road Vancouver, Washington 98660

Submitted to Washington Department of Ecology Submitted by AECOM 111 SW Columbia Suite 1500 Portland, Oregon 97201

60410261 May 2016

First Semi-Annual 2016 Groundwater Monitoring Letter Report

Former Fort Vancouver Plywood Site Port of Vancouver USA Vancouver, Washington

May 24, 2016

Mr. Matt Graves
Environmental Manager
Port of Vancouver USA
3103 NW Lower River Road
Vancouver, Washington 98660

Re: First Semi-Annual 2016 Groundwater Monitoring Letter Report

Former Fort Vancouver Plywood Site

Port of Vancouver USA Vancouver, Washington AECOM Job No. 60410261

Dear Mr. Graves:

AECOM has prepared this Groundwater Monitoring Letter Report on behalf of the Port of Vancouver USA (the Port). This letter report summarizes the results of the first semi-annual 2016 groundwater monitoring conducted at Cell 1 and Cell 2 of the Former Fort Vancouver Plywood (FVP) Site (herein referred to as the Site). This monitoring event is referenced as the March 2016 monitoring event.

1 Site Location and Background

The Site is located at West Eighth Street and Port Way, in an industrial-zoned area adjacent to the Columbia River, at the Port in Vancouver, Washington (Figure 1). The Site consists of approximately 13 acres of nearly level paved and unpaved land. The unpaved land exists along the shoreline of the Columbia River, and the remainder of the Site is paved. The northern portion of the Site is leased by the Great Western Malting Company, and the rest of the Site is leased by Pacific Coast Shredding, a metal recycling/processing facility (see Figure 2).

Great Western Malting Company is also located on the north adjacent property, and the former Brazier Forest Industries leasehold is located on the northeast adjacent property. The Site is bordered by Port Way to the southeast and the Columbia River to the southwest (see Figure 2).

The Site was occupied by plywood manufacturers and other lumber-related operations from the mid-1920s to the mid-1990s. FVP operated at the Site from 1955 until July 1996, when site operations terminated and the leasehold reverted to the Port. Former facilities at the Site included a wood processing and plywood manufacturing plant, chemical storage, a boiler house, a maintenance shop, fuel storage areas, a log yard, a retail store/warehouse, an oil/water separator, diesel underground storage tanks (USTs), and an office building. In July 1997, the Port demolished all structures associated with the plywood mill and consolidated wood debris from the former log yard. In September 1997, the Port installed a riprap wall along the Site boundary to protect the shoreline from further erosion by the Columbia River (ERM, 2008a and 2008b).

From 2012 to 2014, the Port constructed the West Vancouver Freight Access Project through the Site. The locations of the rail track centerline, retaining walls, and trench structure for the West Vancouver Freight Access Project are indicated on Figure 2.

2 Site Hydrogeology

Two groundwater-bearing zones are present within the upper 65 feet of soils explored beneath the Site. These include a shallow water table unit (shallow zone) and a deeper, confined aquifer referred to herein as the Unconsolidated Aquifer (USGS 1993). The two saturated zones are separated by a lower-permeability confining layer that ranges in thickness from approximately 14 to 40 feet. The Unconsolidated Aquifer was encountered below the confining layer at depths ranging from 49 to 55 feet below ground surface (bgs) (Ecology, 1999 and 2000).

The general direction of the hydraulic gradient (and presumed direction of groundwater flow) in the shallow zone is to the south, toward the Columbia River. According to the Cleanup Action Plans (CAP), the shallow zone horizontal hydraulic gradient at the Site was calculated to range from approximately 0.016 to 0.019 feet per foot (ft/ft) at Cell 1 and 0.01 to 0.02 feet per foot (ft/ft) at Cell 2 (Ecology, 1999 and 2000). The direction of the hydraulic gradient and presumed groundwater flow in the deeper Unconsolidated Aquifer appears to be toward the west in response to groundwater pumping by the Port and the Port's tenants. A net downward vertical gradient exists between the shallow zone and the deeper Unconsolidated Aquifer (Ecology, 1999).

Near-surface (upper 10 feet) soils beneath the Site consist predominantly of sand with varying amounts of silt. Considerable amounts of anthropogenic debris, including rubble (brick and concrete), wood ash, and trash, have been identified in the upper 10 feet of soil (Ecology, 1999).

3 Compliance Monitoring Plan

3.1 Agreed Orders

Presently the Site is separated into two areas designated as Cell 1 (C1) and Cell 2 (C2). Two Agreed Orders between the Port and Washington State Department of Ecology (Ecology) are in place for this Site:

- Agreed Order No. 99TC-S108 applies to Cell 1
- Agreed Order No. 99TCPSR-93 applies to Cell 2

In accordance with Agreed Orders, the Port completed a remedial investigation and feasibility study (RI/FS) in 1998. The RI/FS identified lead, total petroleum hydrocarbons (TPH), and polycyclic aromatic hydrocarbons (PAHs) concentrations above Ecology Model Toxics Control Act (MTCA) Method A or Method C industrial soil cleanup levels. The RI/FS also indicated that the area adjacent to the Columbia River contained buried anthropogenic debris and concentrations of soluble metals that could leach to the Columbia River. Pursuant to the conditions of the Agreed Orders, the Port completed Interim Actions at Cell 1 from November 1998 to February 1999 and at Cell 2 from October 2000 to December 2000 (ERM, 2008a and 2008b).

A total of 26 monitoring wells were originally located in Cells 1 and 2. These monitoring wells (MWs) are listed below and on Table 1 along with two replacement wells which are discussed in Section 3.3.

- Deeper Unconsolidated Aquifer
 - o C1-MW-6B
 - C2-MW-12B and C2-MW-13B
- Shallow zone
 - o C1-MW-1 through C1-MW-9
 - o C2-MW-1 through C2-MW-11 and C2-MW-14 through C2-MW-16

The groundwater cleanup levels and chemicals of concern (COCs) as determined by the Agreed Orders are described in the following subsections.

3.2 Groundwater Cleanup Levels

3.2.1 Deeper Unconsolidated Aguifer

Groundwater in the deeper Unconsolidated Aquifer is used as a potable and industrial water supply source; consequently, Ecology's MTCA Method A and B groundwater cleanup levels are used to assess potential adverse impacts to the Unconsolidated Aquifer.

In accordance with the Agreed Orders, the conditional point of compliance (POC) for groundwater within the Unconsolidated Aquifer is throughout the Site as represented by the following wells:

- C1-MW-6B
- C2-MW-12B and C2-MW-13B

3.2.2 Shallow Zone

The shallow zone groundwater cannot be used for drinking water due to low yield. However, the shallow groundwater discharges to the Columbia River at the Site. Consequently, the shallow zone cleanup levels are based on protection of surface water and are derived from the lowest of the following screening criteria for each analyte:

- Ecology's MTCA Method B surface water cleanup levels in accordance with Washington Administrative Code (WAC) 173-340-730
- Ecology's acute freshwater surface water quality criteria in accordance with WAC 173-201A-240
- US Environmental Protection Agency (EPA)'s National Toxics Rule human health criteria for surface water based on 40 Code of Federal Regulations (CFR) 131.36

In addition to shallow groundwater discharges to the Columbia River, there are indications that the shallow zone is hydraulically connected with the deeper Unconsolidated Aquifer. Because the deeper aquifer is a water supply source, groundwater occurring in the shallow zone is also compared to Ecology's MTCA Method A and B groundwater cleanup levels.

For the shallow zone groundwater, the conditional POC was established as the point where the groundwater discharges to surface water. Therefore, in the Agreed Orders, the shallow zone conditional POC wells for the Site included the following seven shoreline wells.

- C1-MW-3, C1-MW-4, C1-MW-5, and C1-MW-8
- C2-MW-9, C2-MW-10, and C2-MW-11

3.3 Monitoring Schedule and Chemicals of Concern

From September 2001 until March 2011, groundwater monitoring was conducted tri-annually (first, second, and fourth quarters) at each Cell in accordance with the Agreed Orders and the groundwater monitoring schedule proposed in a letter from Kennedy/Jenks Consultants (Kennedy/Jenks, 2011) to Mr. Dan Alexanian of Ecology dated September 17, 2001. Mr. Alexanian approved the monitoring schedule in an email to the Port dated October 4, 2001 (ERM, 2008a and 2008b).

Since September 2001, the monitoring plan included the collection of groundwater samples from 14 of the 26 monitoring wells listed in Section 3.1 and depth to groundwater measurements at all 26 wells during each event. The 14 sampled well included the 10 conditional POC wells and C1-MW-6, C1-MW-7, C2-MW-3, and C2-MW-7. Following approval from Ecology in 2004, conditional POC wells C1-MW-5 and C1-MW-8 were no longer required to be sampled.

The COCs for both Cells 1 and 2 in September 2001 originally included volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals. Gasoline-range hydrocarbons (gasoline) and diesel- and oil-range hydrocarbons (diesel and oil) were also included as COCs for Cell 2.

By 2007, following multiple correspondences between Ecology and the Port, monitoring of VOCs and total and dissolved metals was discontinued for both cells, and the VOC suite was reduced for a portion of the wells in Cell 1 to benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tert-butyl ether (MTBE) (ERM, 2008a and 2008b).

In April 2011, Ecology approved: a reduction in monitoring frequency from tri-annual to semi-annual (first and third quarters), the discontinuation of VOC analysis for C2-MW-3 and C2-MW-10, and the removal of the following eight monitoring wells from the groundwater monitoring plan (Ecology, 2011).

A=COM

- C1-MW-6
- C1-MW-6B
- C2-MW-4
- C2-MW-5
- C2-MW-7
- C2-MW-8
- C2-MW-13B
- C2-MW-16

Ecology requested in the April 2011 letter that the monitoring of C1-MW-3 continue to determine if any contaminant migration occurs as a result of the West Vancouver Freight Access Project.

In 2012 and 2013, monitoring wells C1-MW-6, C1-MW-6B, C2-MW-5, C2-MW-8 and C2-MW-13B were decommissioned. An attempt was made to locate and decommission monitoring wells C2-MW-4, C2-MW-7, and C2-MW-16 in September 2012; however, these monitoring wells were inadvertently paved over and not locatable.

The construction of the West Vancouver Freight Access Project required the relocation of monitoring wells C1-MW-3, C1-MW-5, and C1-MW-8. The Port submitted a request to Ecology for the relocation of the three monitoring wells, and in a letter dated April 16, 2012, Ecology approved the relocations. In 2012, the three monitoring wells were decommissioned, and C1-MW-3 and C1-MW-5 were re-installed in the same approximate configuration and depths as the original monitoring wells (with the same designations). C1-MW-8 was reinstalled in July 2014 with the same approximate configuration and depth; however, the replacement is labeled C1-MW-8(R).

In July 2014, monitoring well C2-MW-11 was abandoned due to construction activities at the Site. It was reinstalled with the same approximate configuration and depth; the replacement well is labeled C2-MW-11(R).

Additionally, monitoring well C2-MW-10 may have been inadvertently destroyed during the construction of the West Vancouver Freight Access Project or paved over, as it has not been located since March 2013. It was reinstalled in August 2015 with the same approximate configuration and depth; the replacement well is labeled C2-MW-10(R2).

4 Activities Conducted Since the Last Monitoring Event

Groundwater monitoring activities completed during the March 2016 event were conducted in accordance with the following three documents.

- EPA guidance document titled Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (EPA, 1996)
- Ecology letter titled Re: Former Fort Vancouver Plywood Proposed Groundwater Sampling Procedures (Ecology, 2002)
- Kennedy/Jenks Second Semi-Annual 2013 Groundwater Monitoring Report (Kennedy/Jenks, 2014)

The sampling plan and previous activities are summarized below and on Table 1.

- On March 28, 2016, AECOM collected depth to groundwater measurements at 14 of the 16 monitoring wells; C2-MW-1 and C2-MW-15 were covered with steel plates and debris. AECOM measured the depth to groundwater in the monitoring wells using an electronic water level meter. The depth to groundwater was measured from the northern side of top of casing (TOC), and recorded on the Groundwater Level Form (Appendix A). The depth to groundwater measurements and corresponding groundwater elevations are presented on Table 2.
- On March 28 and 29, 2016, AECOM collected groundwater samples from all eight monitoring wells in the groundwater monitoring program. The eight sampled monitoring wells are listed below.

A=COM

- C1-MW-3
- C1-MW-4
- C1-MW-7
- C2-MW-3
- C2-MW-9
- C2-MW-10(R2)
- C2-MW-11(R)
- C2-MW-12B
- AECOM collected the groundwater samples following purging and stabilization of temperature, pH, conductivity, dissolved oxygen, and oxidation reduction potential (ORP). A peristaltic pump was used for the purging at all the monitoring wells with the exception of C2-MW-12B where a decontaminated bladder pump was utilized, as C2-MW-12B is screened at the deeper Unconsolidated Aquifer, which is too deep for use of the peristaltic pump (Tables 1 and 2). AECOM collected the groundwater samples at each monitoring well using a disposable double check valve bailer. The peristaltic pump tubing, bladder pump, and disposable bailers were all lowered and retrieved gently, and set at the center of the screen interval. Monitoring Well Sampling Field Logs for this monitoring event are included in Appendix A, and the field parameters are listed on Table 3.
- On March 29, 2016, under strict chain-of-custody, AECOM delivered the samples to Apex Laboratories of Tigard, Oregon for one or more of the analyses listed below in accordance with Table 1.
 - BTEX and MTBE by EPA Method 5030B/8260B
 - Full list of VOCs by EPA Method 8260B
 - Diesel and oil by NWTPH-Dx
 - Gasoline by NWTPH-Gx
- The sample containers were stored in a cooler with ice from sample collection until delivery to the laboratory. The chain-of-custody form is included in Appendix B with the laboratory analytical report. In addition, a field duplicate sample from monitoring well C2-MW-9 and a trip blank were submitted for analysis.
- AECOM placed the purge and decontamination water into a labeled aboveground polyethylene tank, which is temporarily staged under the 26th Avenue overpass pending characterization and disposal.
 Disposable sampling equipment (including tubing and nitrile gloves) was managed as solid waste and disposed of as municipal waste.

5 Results of the March 2016 Monitoring Event

The results of groundwater level measurements are summarized in Table 2. Field parameters are provided in Table 3. The groundwater analytical results are summarized in Tables 4 through 7. A copy of the laboratory analytical report is included in Appendix B.

5.1 Groundwater Elevation Monitoring

All but one of the 16 existing monitoring wells listed on Table 1 are constructed with screened intervals intercepting the shallow zone (shallower than 35 feet bgs); C2-MW-12B is the only exception and is constructed with the screened interval intercepting the deeper Unconsolidated Aquifer (at 40 to 50 feet bgs).

On March 28, 2016, groundwater in C2-MW-12B, which is screened in the deeper Unconsolidated Aquifer, was measured at an elevation of 10.48 feet above mean sea level (AMSL).

On March 28, 2016, groundwater elevations in the shallow zone ranged from 8.70 feet AMSL at C1-MW-5 to 21.24 feet AMSL at C2-MW-3. The hydraulic gradient was calculated at 0.02 ft/ft to the south-southwest, consistent with previous sampling events. Groundwater elevation contours and the inferred direction of groundwater flow from March 28, 2016 are shown on Figure 3.

5.2 Groundwater Analytical Results

Analytical results in this section are compared to Ecology's MTCA Method A groundwater cleanup levels. Where MTCA Method A groundwater cleanup levels are not established, MTCA Method B groundwater cleanup levels are used.

5.2.1 Volatile Organic Compounds

During the March 2016 monitoring event, the following groundwater samples were submitted for VOCs.

- Groundwater samples from C1-MW-3 and C1-MW-7 were submitted for BTEX and MTBE only.
- Groundwater samples from C1-MW-4, C2-MW-9, C2-MW-11(R), and C2-MW-12B were submitted for the full list of VOCs.

The VOC analytical results for the groundwater samples collected from C2-MW-12B (deeper Unconsolidated Aquifer) are presented on Table 4, and the VOC analytical results for the groundwater samples collected from well screened in the shallow zone are presented on Table 5. Both Tables 4 and 5 include the same list of VOCs: the BTEX compounds, MTBE, and any other VOCs that have been detected at least once since February 2009.

The VOC analytical results from the March 2016 monitoring event were similar to previous results, as described below.

5.2.1.1 Deeper Unconsolidated Aquifer

No VOCs were detected above the method detection limits (MDLs) in the sample (C2-MW-12B) collected from the well screened in the deeper Unconsolidated Aquifer.

5.2.1.2 Shallow Zone

Toluene, MTBE, 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, and vinyl chloride were detected in the one or more of the samples collected from the wells screened in the shallow zone; these detections were compared to the following screening criteria, described further in Section 3.2.2, above.

- Ecology's MTCA Method B surface water cleanup levels
- Ecology's acute freshwater surface water quality criteria
- EPA's National Toxics Rule human health criteria for surface water
- Ecology's MTCA Method A and B groundwater cleanup levels
- 1,1-Dichloroethene and vinyl chloride were the only VOCs detected in the groundwater samples from the shallow zone wells at concentrations above the screening criteria.
 - The concentration of 1,1-dichloroethene in the groundwater sample collected from C1-MW-4 (0.51 micrograms per liter [μg/L]) exceeded the EPA's National Toxics Rule human health criterion for surface water of 0.057 μg/L. The other samples collected from wells C2-MW-9 and C2-MW-11(R) were non-detect for 1,1-dichloroethene; however the detection limit of 0.25 μg/L is above this screening criterion.
 - Concentrations of vinyl chloride in the groundwater samples collected from C2-MW-4 (0.49 μg/L), C2-MW-9 (0.63 μg/L) and C2-MW-11(R) (0.94 μg/L) exceeded both the MTCA Method A and B groundwater cleanup levels of 0.20 μg/L and 0.029 μg/L, respectively.

5.2.2 Total Petroleum Hydrocarbons

During the March 2016 monitoring event, groundwater samples from C2-MW-3, C2-MW-9, C2-MW-10(R2), C2-MW-11(R), and C2-MW-12B) were submitted for NWTPH-Dx and NWTPH-Gx analysis. Tables 6 and 7 present the TPH analytical results with the MTCA groundwater cleanup levels.

- Diesel was not detected above the MDLs in the five groundwater samples.
- Oil was detected in the groundwater samples collected from C2-MW-12B (0.23 mg/L), C2-MW-9 (0.31 mg/L), C2-MW-10(R2) (5.3 mg/L), and C2-MW-11(R) (0.26 mg/L); however, only the concentration of oil in the sample from C2-MW-10(R2) exceeded the MTCA Method A groundwater cleanup level of 0.50 mg/L.
- Gasoline was detected above the MDLs, at 0.385 mg/L, in the groundwater sample from C2-MW-10(R2) only. This does not exceed the MTCA Method A groundwater cleanup level of 1.0 mg/L when benzene is not present.

6 Data Quality and Management

Based on a review of the laboratory report, the analyses and results conformed to quality assurance standards, and the analytical data are of acceptable quality for their intended use. A data quality review is included in Appendix C.

The data from the March 2016 monitoring event will be uploaded into Ecology's Environmental Information Management (EIM) database. Data from 2009 through the 2015 have been uploaded onto the EIM database. Under WAC 173-340-840(5), environmental sampling data for all cleanup sites must be submitted in both printed and electronic form.

7 Conclusions and Future Sampling Activities

Groundwater monitoring was conducted at Cell 1 and Cell 2 of the Former FVP Site during the March 2016 event. The analytical results were generally consistent with previous monitoring events. Vinyl chloride in the groundwater samples from C2-MW-4, C2-MW-9, and C2-MW-11(R), and 1,1-dichloroethene from C1-MW-4 were the only VOC detections above the screening criteria. The oil-range TPH level from C2- MW-10(R2) was the only TPH detection above the screening criteria.

Groundwater monitoring will continue semi-annually, with the next monitoring event scheduled for September 2016. A letter summarizing the sampling activities and analytical results will be provided to the Port after the receipt of analytical results for each monitoring event.

8 References

Ecology, 1999. Cleanup Action Plan. Former Fort Vancouver Plywood Site - Cell 1. January.

Ecology, 2000. Cleanup Action Plan. Former Fort Vancouver Plywood Site - Cell 2. January.

- Ecology, 2002. Letter from the Washington State Department of Ecology to Century West Engineering Corporation. *Re: Former Fort Vancouver Plywood Proposed Groundwater Sampling Procedures*. November 4.
- Ecology, 2011. Letter from Washington State Department of Ecology to Kennedy/Jenks Consultants. *Ecology Response to Recommendations for Modification of the Groundwater Monitoring Program Former Fort Vancouver Plywood Site*. April 6.
- ERM, 2008a. *Cell 1 September 2007 Groundwater Monitoring Report and 5-Year Review.* Former Fort Vancouver Plywood, Port of Vancouver USA, Vancouver, Washington. May.
- ERM, 2008b. *Cell 2 September 2007 Groundwater Monitoring Report and 5-Year Review.* Former Fort Vancouver Plywood, Port of Vancouver USA, Vancouver, Washington. May.

- EPA, 1996. *Ground Water Issue. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures.* By Robert W. Puls and Michael J. Barcelona. EPA/540/S-95/504. April.
- Kennedy/Jenks, 2011. Letter from Kennedy/Jenks Consultants to the Washington State Department of Ecology. Subject: Recommendation for Modification of the Groundwater Monitoring Program, Former Fort Vancouver Plywood Site, Port of Vancouver USA. March 29.
- Kennedy/Jenks, 2014. Second Semi-Annual 2013 Groundwater Monitoring Report. Port of Vancouver USA, Fort Vancouver Plywood Site. February 11.
- U.S. Geological Survey (USGS), 1993. A Description of Hydrogeologic Units in the Portland Basin, Oregon and Washington. U.S. Geological Survey Water-Resources Investigations Report 90-4196. Prepared in cooperation with City of Portland Bureau of Water Works, Intergovernmental Resource Center, and Oregon Water Resources Department.

9 Limitations

AECOM has prepared this report for use by the Port. Within the limitations of scope, schedule, and budget, our services have been executed in accordance with accepted environmental science practices in this area at the time this report was prepared. No other warranty or conditions, expressed or implied, should be understood.

We appreciate the opportunity to be of service to the Port on this project. Please call Nicky Moody at (503) 478-2765 with any questions regarding this or any other referenced submittals.

AECOM Sincerely,

Nicky Moody Project Manager

Steve Wesley, PE Environmental Engineer

cc: Craig Rankine, RG, LHG, Cleanup Project Manager/Hydrogeologist, Washington Department of Ecology, Toxics Cleanup Program, 2108 Grand Blvd, Vancouver, WA 98661-4662

Attachments

List of Tables

Table 2 Groundwater Elevation Results Table 3 Groundwater Field Parameter Measurements Table 4 Voletile Organic Companyed in the Deeper I Incompalidated Age	
Table 4 Valetile Organic Compounds in the Deeper Unconcellidated Age	
Table 4 Volatile Organic Compounds in the Deeper Unconsolidated Aqu	uifer
Table 5 Volatile Organic Compounds in the Shallow Zone	
Table 6 Total Petroleum Hydrocarbons in the Deeper Unconsolidated A	quifer
Table 7 Total Petroleum Hydrocarbons in the Shallow Zone	-

A=COM

List of Figures

Figure 1 Vicinity Map Figure 2 Site Map Figure 3 Groundwate

Figure 3 Groundwater Elevation, Contours, and Flow Direction – March 2016

List of Appendices

Appendix A Field Forms

Appendix B Laboratory Report and Chain-of-Custody Form

Appendix C Data Quality Review Report

Tables

Table 1. Sampling Plan

Former Fort Vancouver Plywood Site

				Depth to Water						
			Screen	Measurement	Groundy					
			Interval	Semi-Annually	Semi-Annually	, , , , , , , , , , , , , , , , , , ,			Comments for the	
Cell #		Aquifer	(feet)	(March/Sept)	Analytes	Cont	ainers	Pump	Monitoring Event	
	C1-MW-1	Shallow	18-33	X	Sampling not required					
	C1-MW-2	Shallow	11-21	X	Sampling not required			•		
	C1-MW-3	Shallow	15-32	X	BTEX, MTBE	6 VOAs	-	Peristaltic		
	C1-MW-4	Shallow	17-32	X	VOCs	6 VOAs	-	Peristaltic		
	C1-MW-5	Shallow	16-32	X	Sampling not required since	e 2004				
Cell 1	C1-MW-6	Shallow	15-25	Abandoned in 2013 af	ter approval from Ecology in	2011 Sa	mpling prev	iously require	d	
	C1-MW-6B	Deeper	52.5-62.5	Abandoned in 2013 af	ter approval from Ecology in	2011 - Sa	mpling prev	iously require	d	
	C1-MW-7	Shallow	15-30	X	BTEX, MTBE	6 VOAs	-	Peristaltic	Monument Replaced	
	C1-MW-8	Shallow	16-31	Abandoned in 2012 af	ter approval from Ecology -	Sampling r	not required	since 2004		
	C1-MW-8(R)	Shallow	15-30	X	Sampling not required since	e 2004				
	C1-MW-9	Shallow	20-30	Χ	Sampling not required					
	C2-MW-1	Shallow	5-15	X	Sampling not required				Inaccessible	
	C2-MW-2	Shallow	6-16	Abandoned in August	2010 - Sampling not previous	usly require	ed			
	C2-MW-3	Shallow	6-16	Х	TPH-Gx, TPH-Dx	6 VOAs	2 Ambers	Peristaltic		
	C2-MW-4	Shallow	9-19	Abandonment approve	ed by Ecology in 2011; the w	ell was no	t locatable -	Sampling no	previously required	
	C2-MW-5	Shallow	6-16	Abandoned in 2012 af	ter approval from Ecology in	2011 - Sa	mpling not	previously red	quired	
	C2-MW-6	Shallow	15-20	Х	Sampling not required					
	C2-MW-7	Shallow	15-25	Abandonment approve	ed by Ecology in 2011; the w	ell was no	t locatable -	Sampling pre	eviously required	
	C2-MW-8	Shallow	6-16	Abandoned in 2012 fo	llowing approval from Ecolo	gy in 2011	- Sampling	not previously	required	
Cell 2	C2-MW-9**	Shallow	25-35	Х	VOCs, TPH-Gx, TPH-Dx	6 VOAs	2 Ambers	Peristaltic		
Cell 2	C2-MW-10(R)	Shallow	18-33	Well not locatable - Sa	ampling required					
	C2-MW-10(R2)	Shallow	20-35	Х	TPH-Gx, TPH-Dx	6 VOAs	2 Ambers	Peristaltic	Installed August 2015	
	C2-MW-11	Shallow	15-30	Abandoned in 2014 du	ue to construction activities -	Sampling	required			
	C2-MW-11(R)	Shallow	15-30	Х	VOCs, TPH-Gx, TPH-Dx	6 VOAs	2 Ambers	Peristaltic		
	C2-MW-12B	Deeper	40-50	Х	VOCs, TPH-Gx, TPH-Dx	6 VOAs	2 Ambers	Bladder		
	C2-MW-13B	Deeper	47-57	Abandoned in 2012 fo	llowing approval from Ecolo	gy in 2011	- Sampling	previously red	quired	
	C2-MW-14	Shallow	Unknown	NOWN Abandoned in 2002 following approval from Ecology - Sampling not previously required						
	C2-MW-15	Shallow	7-22	Х	Sampling not required				Inaccessible	
	C2-MW-16	Shallow	5-20	Abandonment approve	ed by Ecology in 2011; the w	ell was no	t locatable -	Sampling no	previously required	

Notes:

X = indicates that depth to groundwater measurements will be collected.

Red = indicates conditional Point of Compliance (POC) well in the Agreed Orders

BTEX = benzene, toluene, ethylbenzene, and total xylenes

TPH-Dx = diesel and heavy oil range organics

TPH-Gx = gasoline range organics

MTBE = methyl tert-butyl ether

(R) = C1-MW-8 and C2-MW-11 were replaced in July 2014.

VOA = volatile organic analysis

VOC = volatile organic carbon

** = Collect field duplicate on C2-MW-9. If not accessible, collect the field duplicate on C2-MW-11 or C2-MW-12B.

		Ton of Cooing	Depth to			
Well		Top of Casing Elevation ^(a)	Groundwater ^(b)	Total Well	Groundwater Elevation	Well Screened
Designation	Date	(feet)	(feet)	Depth (feet)	(feet)	Interval (feet)
Deeper Unconsolidat		(loot)	(loot)	(root)	(ICCI)	(1001)
Cell 1	.ou / (quiioi					
C1-MW-6B	02/26/09	30.96	NM	NM	NA	
	05/11/09	30.96	21.89	65.3	9.07	
	12/17/09	30.96	24.23	64.9	6.73	
	03/29/10	30.96	24.87	64.5	6.09	52.5-62.5
	05/25/10	30.96	NM	NM	NA	52.5-62.5
	11/29/10	30.96	NM	NM	NA	
	03/24/11	30.96	20.74	64.3	10.22	
	10/11/11	30.96	NM	NM	NA	
Deeper Unconsolidat	ed Aquifer					
Cell 2			1		1	1
C2-MW-12B	02/26/09	32.45	25.40	47.6	7.05	
	05/11/09	32.45	21.81	46.7	10.64	
	12/17/09	32.45	24.73	47.4	7.72	
	03/29/10	32.45	25.39	46.8	7.06	
	05/25/10	32.45	22.82	46.7	9.63	
	11/29/10	32.45	25.21	46.8	7.24	
	03/24/11 10/11/11	32.45	21.02	46.8	11.43	
	02/29/12	32.45 32.45	26.24 24.05	46.8 46.8	6.21 8.40	40-50
	02/29/12	32.45 32.45	26.39	46.8 46.8	6.06	40-50
	03/21/13	32.45	25.82	NM	6.63	
	09/20/13	32.45	26.34	NM	6.11	
	03/20/14	32.45	20.12	NM	12.33	
	09/02/14	32.45	27.04	NM	5.41	
	04/07/15	32.45	23.00	NM	9.45	
	09/28/15	32.45	26.87	NM	5.58	
	03/28/16	32.45	21.97	NM	10.48	
C2-MW-13B	02/26/09	32.38	NM	NM	NA	
	05/11/09	32.38	NM	NM	NA	
	12/17/09	32.38	NM	NM	NA	
	03/29/10	32.38	NM	NM	NA	47-57
	05/25/10	32.38	NM	NM	NA	41-31
	11/29/10	32.38	NM	NM	NA	
	03/24/11	32.38	21.35	54.98	11.03	
	10/11/11	32.38	NM	NM	NA	
Shallow Zone						
Cell 1	02/20/00	20.22	NINA	NINA	I NIA	
C1-MW-1	02/26/09	30.23	NM 31.06	NM	NA 0.17	
	05/11/09	30.23	21.06	33.5	9.17 6.76	
	12/17/09	30.23 30.23	23.47 24.32	33.3		
	03/29/10 05/25/10	30.23 30.23	24.32 21.72	33.5 33.4	5.91 8.51	
	11/29/10	30.23	24.58	33.4 33.4	5.65	
	03/24/11	30.23	20.08	33.4	10.15	
	10/11/11	30.23	24.87	33.4	5.36	
	02/29/12	30.23	23.20	33.4	7.03	18-33
	09/20/12	30.23	25.05	33.4	5.18	
	03/21/13	30.23	24.97	NM	5.26	
	09/23/13	30.23	25.62	NM	4.61	
	03/20/14	30.23	19.25	NM	10.98	
	09/02/14	30.23	26.02	NM	4.21	
	04/07/15	30.23	22.05	33.6	8.18	
	09/28/15	30.23	25.80	NM	4.43	
	03/28/16	30.23	21.19	NM	9.04	1

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation ^(a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C1-MW-2	02/26/09	31.03	14.53	20.8	16.50	
	05/11/09	31.03	14.26	20.3	16.77	
	12/17/09	31.03	13.29	20.4	17.74	
	03/29/10	31.03	14.05	NM	16.98	
	05/25/10	31.03	14.27	20.4	16.76	
	11/29/10	31.03	13.57	NM	17.46	
	03/24/11	31.03	13.02	20.4	18.01	
	10/11/11	31.03	14.83	20.4	16.20	
	02/29/12	31.03	13.91	20.4	17.12	11-21
	09/20/12	31.03	15.15	20.4	15.88	
	03/21/13	31.03	14.38	NM	16.65	
	09/23/13	31.03	NM	NM	NA	
	03/20/14	31.03	14.66	NM	16.37	
	09/02/14	31.03	15.02	NM	16.01	
	04/07/15	31.03	14.26	NM	16.77	
	09/28/15	31.03	15.56	NM	15.47	
	03/28/16	31.03	13.59	NM	17.44	
C1-MW-3	02/26/09	29.89	23.11	32.1	6.78	
	05/11/09	29.89	20.45	31.5	9.44	
	12/17/09	29.89	22.78	31.5	7.11	
	03/29/10	29.89	23.17	31.6	6.72	
	05/25/10	29.89	21.12	31.1	8.77	
	11/29/10	29.89	NM	NM	NA	
	03/24/11	29.89	19.42	31.4	10.47	
	10/11/11	29.89	23.71	31.4	6.18	
	02/29/12	29.89	22.06	31.4	7.83	15-32
	09/20/12	29.89	24.00	31.4	5.89	
	03/22/13	29.10	23.20	NM	5.90	
	09/23/13	29.10	NM	NM	NA	
	03/20/14	29.10	17.55	NM	11.55	
	09/02/14	29.10	23.93	NM	5.17	
	04/07/15	29.10	20.52	NM	8.58	
	09/28/15	29.10	24.02	NM	5.08	
	03/28/16	29.10	19.69	NM	9.41	
C1-MW-4	02/26/09	29.07	22.86	29.4	6.21	
	05/11/09	29.07	19.69	29.4	9.38	
	12/17/09	29.07	22.29	29.3	6.78	
	03/29/10	29.07	23.01	29.4	6.06	
	05/25/10	29.07	20.54	29.4	8.53	
	11/29/10	29.07	22.83	29.4	6.24	
	03/24/11	29.07	18.75	29.3	10.32	
	10/11/11	29.07	23.33	29.3	5.74	4=
	02/29/12	29.07	22.11	NM	6.96	17-32
	09/20/12	29.07	23.47	NM	5.60	
	03/22/13	29.07	23.75	NM	5.32	
	09/23/13	29.07	NM	NM	NA	
	03/20/14	29.07	17.92	NM	11.15	
	09/02/14	29.07	24.36	NM	4.71	
	04/07/15	29.07	20.45	NM	8.62	
	09/28/15	29.07	24.33	NM	4.74	
	03/28/16	29.07	19.65	NM	9.42	

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation ^(a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C1-MW-5	02/26/09	30.71	DRY	31.2	NA	
	05/11/09	30.71	21.37	31.2	9.34	
	12/17/09	30.71	23.89	31.2	6.82	
	03/29/10	30.71	24.72	33.2	5.99	
	05/25/10	30.71	22.15	31.2	8.56	
	11/29/10	30.71	24.93	31.2	5.78	
	03/24/11	30.71	20.49	31.2	10.22	
	10/11/11	30.71	25.27	31.2	5.44	16-32
	02/29/12	30.71	23.53	31.2	7.18	10-32
	03/21/13	29.84	24.93	NM	4.91	
	09/23/13	29.84	25.49	NM	4.35	
	03/20/14	29.84	19.16	NM	10.68	
	09/02/14	29.84	NM	NM	NA	
	04/07/15	29.84	21.96	31.0	7.88	
	09/28/15	29.84	25.71	NM	4.13	
	03/28/16	29.84	21.14	NM	8.70	
C1-MW-6	02/26/09	31.66	NM	NM	NA	
	05/11/09	31.66	12.13	27.1	19.53	
	12/18/09	31.66	12.19	26.9	19.47	
	03/29/10	31.66	NM	NM	NA	45.05
	05/25/10	31.66	NM	NM	NA	15-25
	11/29/10	31.66	11.29	26.7	20.37	
	03/24/11	31.66	10.75	26.6	20.91	
	10/11/11	31.66	NM	NM	NA	
C1-MW-7	02/26/09	30.05	17.85	29.1	12.20	
	05/11/09	30.05	17.74	28.5	12.31	
	12/17/09	30.05	17.87	28.5	12.18	
	03/29/10	30.05	17.41	28.5	12.64	
	05/25/10	30.05	17.41	28.5	12.64	
	11/29/10	30.05	17.56	28.5	12.49	
	03/24/11	30.05	16.92	28.5	13.13	
	10/11/11	30.05	17.59	28.5	12.46	
	02/29/12	30.05	17.48	28.5	12.57	15-30
	09/20/12	30.05	17.57	28.5	12.48	
	03/21/13	30.05	17.50	NM	12.55	
	09/23/13	30.05	17.76	NM	12.29	
	03/20/14	30.05	17.02	NM	13.03	
	09/02/14	30.05	17.53	NM	12.52	
	04/07/15	30.05	17.24	NM	12.81	
	09/28/15	29.29	17.54	NM	11.75	
	03/28/16	29.29	16.77	NM	12.52	
C1-MW-8	02/26/09	30.43	23.54	32.7	6.89	
	05/11/09	30.43	20.74	31.9	9.69	
	12/17/09	30.43	22.84	31.9	7.59	
	03/29/10	30.43	25.63	36.2	4.80	
	05/25/10	30.43	21.10	31.9	9.33	10.04
	11/29/10	30.43	23.91	31.9	6.52	16-31
	03/24/11	30.43	19.78	31.2	10.65	
	10/11/11	30.43	23.93	31.2	6.50	
	02/29/12	30.43	22.03	31.2	8.40	
	09/20/12	30.43	24.02	31.2	6.41	
C1-MW-8(R)	09/02/14	27.58	22.72	NM	4.86	
` '	04/07/15	27.58	18.85	NM	8.73	45.00
	09/28/15	27.58	22.68	NM	4.90	15-30
	03/28/16	27.58	18.49	NM	9.09	

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation (a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C1-MW-9	02/26/09	30.55	19.78	27.5	10.77	(/
	05/11/09	30.55	19.83	27.0	10.72	
	12/17/09	30.55	21.10	27.0	9.45	
	03/29/10	30.55	19.47	27.0	11.08	
	05/25/10	30.55	19.61	27.0	10.94	
	11/29/10	30.55	19.88	27.1	10.67	
	03/24/11	30.55	18.96	27.0	11.59	
	10/11/11	30.55	19.75	26.7	10.80	
	02/29/12	30.55		26.7	10.79	20-30
			19.76			20-30
	09/20/12	30.55	19.86	26.7	10.69	
	03/21/13	30.55	18.95	NM	11.60	
	09/23/13	30.55	19.92	NM	10.63	
	03/20/14	30.55	19.37	NM	11.18	
	09/02/14	30.55	19.75	NM	10.80	
	04/07/15	30.55	19.77	NM	10.78	
	09/28/15	30.55	19.95	NM	10.60	
	03/28/16	30.55	18.80	NM	11.75	
Shallow Zone						
Cell 2						
C2-MW-1	02/26/09	34.51	28.57	32.4	5.94	
	05/11/09	34.51	NM	NM	NA	
	12/17/09	34.51	25.40	32.5	9.11	
	03/29/10	34.51	26.37	32.3	8.14	
	05/25/10	34.51	NM	NM	NA	
	11/29/10	34.51	NM	NM	NA	
	03/24/11	34.51	22.11	32.5	12.40	
	10/11/11	34.51	27.50	32.5	7.01	5-15
	02/29/12	34.51	NM	NM	NA	
	09/23/13	34.51	NM	NM	NA	
	03/20/14	34.51	NM	NM	NA	
	09/02/14	34.51	NM	NM	NA	
	04/07/15	34.51	NM	NM	NA NA	
	09/28/15	NM	NM	NM	NM	
C2-MW-2	02/26/09	33.20	13.04	16.8	20.16	
C2-IVIVV-2						
	05/11/09	33.20	13.45	16.5	19.75	
	12/17/09	33.20	NM	NM	NA	6-16
	03/29/10	33.20	NM	NM	NA	
	05/25/10	33.20	NM	NM	NA	
00.1	11/29/10	33.20	NM	NM	NA 10.70	
C2-MW-3	02/26/09	32.43	12.70	15.4	19.73	
	05/11/09	32.43	13.04	15.0	19.39	
	12/17/09	32.43	13.12	15.3	19.31	
	03/29/10	32.43	12.22	15.1	20.21	
	05/25/10	32.43	12.08	15.1	20.35	
	11/29/10	32.43	12.20	15.1	20.23	
	03/24/11	32.43	11.32	15.0	21.11	
	10/11/11	32.43	12.56	15.0	19.87	
	02/29/12	32.43	11.99	15.0	20.44	6-16
	09/20/12	32.43	12.91	15.0	19.52	
	03/21/13	32.43	11.86	NM	20.57	
	09/20/13	32.43	12.52	NM	19.91	
i e	03/20/14	32.43	11.86	NM	20.57	
		32.43	12.40	NM	20.03	
	09/02/14	32.43 32.43	12.40 11.82	NM NM	20.03 20.61	
		32.43 32.43 32.43	12.40 11.82 12.81	NM NM NM	20.03 20.61 19.62	

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation ^(a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C2-MW-4	02/26/09	34.20	NM	NM	NA	(2 2 4)
	05/11/09	34.20	NM	NM	NA	
	12/17/09	34.20	NM	NM	NA	
	03/29/10	34.20	NM	NM	NA	0.40
	05/25/10	34.20	NM	NM	NA	9-19
	11/29/10	34.20	NM	NM	NA	
	03/24/11	34.20	NM	NM	NA	
	10/11/11	34.20	NM	NM	NA	
C2-MW-5	02/26/09	32.43	12.46	16.4	19.97	
	05/11/09	32.43	12.86	14.9	19.57	
	12/17/09	32.43	13.22	15.2	19.21	
	03/29/10	32.43	12.00	14.8	20.43	0.40
	05/25/10	32.43	11.92	14.9	20.51	6-16
	11/29/10	32.43	11.99	14.9	20.44	
	03/24/11	32.43	11.17	14.9	21.26	
	10/11/11	32.43	NM	NM	NA	
C2-MW-6	02/26/09	33.46	NM	NM	NA	
	05/11/09	33.46	NM	NM	NA	
	12/17/09	33.46	DRY	19.9	NA	
	03/29/10	33.46	DRY	19.7	NA	
	05/25/10	33.46	DRY	19.9	NA	
	11/29/10	33.46	NM	NM	NA	
	03/24/11	33.46	NM	NM	NA	
	10/11/11	33.46	19.48	19.9	13.98	15-20
	02/29/12	33.46	19.61	19.9	13.85	15-20
	03/21/13	33.46	18.66	NM	14.80	
	09/20/13	33.46	19.35	NM	14.11	
	03/20/14	33.46	18.19	NM	15.27	
	09/02/14	33.46	18.19	NM	15.27	
	04/07/15	33.46	14.81	NM	18.65	
	09/28/15	33.46	19.51	NM	13.95	
	03/28/16	33.46	15.39	NM	18.07	
C2-MW-7	02/26/09	34.55	NM	NM	NA	
	05/11/09	34.55	19.22	28.2	15.33	
	12/17/09	34.55	NM	NM	NA	
	03/29/10	34.55	NM	NM	NA	15-25
	05/25/10	34.55	NM	NM	NA	10 20
	11/29/10	34.55	NM	NM	NA	
	03/24/11	35.55	NM	NM	NA	
	10/11/11	35.55	NM	NM	NA	
C2-MW-8	02/26/09	31.90	NM	NM	NA	
	05/11/09	31.90	NM	NM	NA	
	12/17/09	31.90	DRY	14.9	NA	
	03/29/10	31.90	NM	NM	NA	6-16
	05/25/10	31.90	DRY	NM	NA	
	11/29/10	31.90	NM	NM	NA	
	03/24/11	31.90	DRY	14.6	NA	
	10/11/11	31.90	NM	NM	NA	

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation (a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C2-MW-9	02/26/09	33.00	NM	NM	NA	(1001)
02	05/11/09	33.00	21.89	34.5	11.11	
	12/17/09	33.00	24.69	33.8	8.31	
	03/29/10	33.00	NM	NM	NA	
	05/25/10	33.00	NM	NM	NA	
	11/29/10	33.00	NM	NM	NA	
	03/24/11	33.00	NM	NM	NA	
	10/11/11	33.00	24.97	33.8	8.03	
	02/29/12	33.00	18.81	33.8	14.19	25-35
	09/20/12	33.00	24.51	33.8	8.49	
	03/22/13	33.00	24.48	NM	8.52	
	09/23/13	33.00	25.50	NM	7.50	
	03/20/14	33.00	19.54	NM	13.46	
	09/02/14	32.25	24.49	NM	7.76	
	04/07/15	32.25	21.29	NM	10.96	
	09/28/15	32.25	25.68	NM	6.57	
	03/28/16	32.25	21.30	NM	10.95	
C2-MW-10(R)	02/26/09	34.18	25.72	36.2	8.46	
02-WW-10(IX)	05/11/09	34.18	22.61	36.1	11.57	
	12/17/09	34.18	25.39	36.4	8.79	
	03/29/10	34.18	25.63	36.2	8.55	
	05/25/10	34.18	23.60	36.1	10.58	
	11/29/10	34.18	25.93	36.2	8.25	
	03/24/11	34.18	21.95	36.1	12.23	
	10/11/11	34.18	25.99	36.1	8.19	15-30
	02/29/12	34.18	24.29	36.1	9.89	10 00
	09/20/12	34.18	26.00	36.1	8.18	
	03/22/13	34.18	26.20	NM	7.98	
	09/23/13	34.18	NM	NM	NA	
	03/20/14	34.18	NM	NM	NA NA	
	09/02/14	34.18	NM	NM	NA NA	
	04/07/15	34.18	NM	NM	NA NA	
C2-MW-10(R2)	09/28/15	33.57	28.38	35.45	5.19	
02 WW 10(112)	03/28/16	33.57	24.39	NM	9.18	20-35
C2-MW-11	02/26/09	34.26	25.60	36.0	8.66	
02 mm 11	05/11/09	34.26	22.63	36.1	11.63	
	12/17/09	34.26	25.33	36.3	8.93	
	03/29/10	34.26	25.67	36.1	8.59	
	05/25/10	34.26	23.45	36.1	10.81	
	11/29/10	34.26	25.81	36.1	8.45	
	03/24/11	34.26	21.94	36.1	12.32	15-30
	10/11/11	34.26	25.91	36.1	8.35	.5 55
	02/29/12	34.26	24.17	36.1	10.09	
	09/20/12	34.26	25.85	36.1	8.41	
	03/22/13	34.26	25.95	NM	8.31	
	09/23/13	34.26	26.52	NM	7.74	
	03/20/14	34.26	21.15	NM	13.11	
C2-MW-11(R)	09/02/14	30.80	25.23	NM	5.57	
J2 10100 11(10)	04/07/15	30.80	21.90	NM	8.90	
	09/28/15	30.80	25.62	NM	5.18	15-30
	03/28/16	30.80	21.58	NM	9.22	ĺ

Former Fort Vancouver Plywood Site

Well Designation	Date	Top of Casing Elevation (a) (feet)	Depth to Groundwater (b) (feet)	Total Well Depth (feet)	Groundwater Elevation (feet)	Well Screened Interval (feet)
C2-MW-15	02/26/09	33.06	21.56	24.3	11.50	
	05/11/09	33.06	20.72	23.9	12.34	
	12/17/09	33.06	21.92	23.9	11.14	
	03/29/10	33.06	NM	NM	NA	
	05/25/10	33.06	NM	NM	NA	
	11/29/10	33.06	NM	NM	NA	
	03/24/11	34.06	NM	NM	NA	
	10/11/11	34.06	NM	NM	NA	7-22
	02/29/12	34.06	NM	NM	NA	1-22
	09/20/12	34.06	21.22	NM	12.84	
	03/21/13	34.06	20.21	NM	13.85	
	09/23/13	34.06	21.08	NM	12.98	
	03/20/14	34.06	18.50	NM	15.56	
	09/02/14	34.06	NM	NM	NA	
	04/07/15	34.06	18.70	NM	15.36	
	09/28/15	NM	NM	NM	NM	
C2-MW-16	02/26/09	33.76	NM	NM	NA	
	05/11/09	33.76	19.68	23.5	14.08	
	12/17/09	33.76	NM	NM	NA	
	03/29/10	33.76	NM	NM	NA	5-20
	05/25/10	33.76	NM	NM	NA	3-20
	11/29/10	33.76	NM	NM	NA	
	03/24/11	33.76	NM	NM	NA	
	10/11/11	33.76	NM	NM	NA	

Notes

= Indicates a monitoring well that was either abandoned or paved over.

NM = Not measured because the well was inaccessible.

(b) = Measured in feet below the top of the well casing.

NA = Not applicable.

⁽a) = Elevation in feet relative to mean sea level based on ties to a local W&H Pacific Co. benchmark, vertical datum NGVD29(47).

				Field Parameters		
		Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Sample Date	(°C)	(mS/cm)	(mg/l)	Hq	(mV)
Deeper Unconsolida		(0)	((9,.)	p	()
Cell 1	iou / iquiioi					
C1-MW-6B	02/26/09	NS	NS	NS	NS	-
0	05/12/09	13.33	0.255	2.47	6.84	_
	12/18/09	12.85	0.281	0.71	6.85	_
	03/29/10	12.43	0.116	11.22	7.1	_
	05/26/10	NS	NS	NS	NS	_
	11/30/10	NS	NS	NS	NS	_
	03/25/11	11.90	0.260	7.21	7.00	_
Deeper Unconsolida	•	11.00	0.200	7.21	1.00	
Cell 2	ica Aquiloi					
C2-MW-12B	02/26/09	14.24	0.324	1.73	8.48	
G2-1010V-12D	05/12/09	15.03	0.325	1.79	7.20	
	12/17/09	14.46	0.325	0.68	6.97	
	03/29/10	14.47	0.393	8.57	7.09	
	05/29/10	15.23	0.167	4.49	6.70	_
	11/30/10	11.05	0.350	8.47	7.08	-
	03/25/11	14.55	0.166	0.86	7.06 7.13	-
		14.69				-
	10/11/11		0.281	4.11	7.30	-
	02/29/12	13.01	0.360	1.93	6.83	-
	09/21/12	14.02	0.311	33.60	5.73	-
	03/21/13	13.25	0.380	2.04	7.32	-
	09/20/13	15.10	0.340	3.10	7.60	-
	03/21/14	14.31	0.249	3.06	6.92	150.4
	09/03/14	17.09	0.263	1.61	6.95	43.4
	04/07/15	15.36	0.237	0.62	7.10	104.3
	09/29/15	14.94	0.256	0.70	7.10	37.9
00 100 400	03/29/16	14.19	0.184	3.67	7.01	39.4
C2-MW-13B	02/26/09	NS	NS	NS	NS	-
	05/12/09	NS	NS	NS	NS	-
	12/17/09	NS	NS	NS	NS	-
	03/29/10	NS	NS	NS	NS	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	14.37	0.256	2.55	6.71	-
Shallow Zone						
Cell 1						T
C1-MW-3	02/27/09	14.38	1.057	0.34	9.12	-
	05/12/09	14.84	1.123	1.43	7.02	-
	12/18/09	14.91	1.198	0.50	6.42	-
	03/30/10	13.5	0.455	0.93	6.45	-
	05/26/10	14.67	0.994	2.32	6.27	-
	11/30/10	NS	NS	NS	NS	-
	03/24/11	13.24	1.211	0.84	6.55	-
	10/12/11	14.5	0.920	1.62	7.56	-
	03/01/12	14.21	1.991	0.49	6.79	-
	09/20/12	15.27	0.944	0.91	6.44	-
	03/22/13	14.39	1.630	2.01	8.23	-
	09/23/13	NS	NS	NS	NS	-
	03/21/14	13.83	0.774	0.28	6.61	15.8
	09/03/14	20.28	1.094	1.16	6.10	-41.1
	04/07/15	14.79	1.103	0.57	6.41	-107.4
	09/29/15	16.96	0.855	0.30	6.19	-73.3
	03/29/16	12.41	0.701	3.31	6.49	59.1

				Field Parameters		
		Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Sample Date	(°C)	(mS/cm)	(mg/l)	рН	(mV)
C1-MW-4	02/27/09	15.05	1.057	0.45	8.39	`-
	05/12/09	15.52	1.217	1.32	6.92	-
	12/18/09	15.32	1.294	0.50	6.35	-
	03/30/10	14.71	0.515	0.88	6.36	-
	05/26/10	15.37	1.109	1.36	6.28	-
	11/30/10	14.2	1.366	1.10	6.54	-
	03/24/11	14.85	1.577	0.63	6.24	-
	10/11/11	15.19	1.149	1.39	7.93	-
	03/01/12	14.77	1.857	0.54	6.66	-
	09/20/12	15.48	1.262	0.97	6.33	-
	03/22/13	15.1	1.798	1.12	7.38	-
	09/23/13	NS	NS	NS	NS	_
	03/21/14	15.48	1.173	1.51	6.34	-54.2
	09/03/14	18.01	1.188	0.75	6.26	-45.1
	04/07/15	15.48	1.193	6.44	6.44	-92.2
	09/29/15	16.94	1.164	0.34	6.31	-53.4
	03/29/16	15.31	1.419	1.82	6.30	-58.1
C1-MW-6	02/26/09	NS	NS	NS	NS	-
	05/12/09	11.17	0.402	3.35	6.40	-
	12/18/09	11.80	0.540	0.61	6.65	-
	3/30/2010	NS	NS	NS	NS	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	10.78	0.302	0.29	6.86	-
C1-MW-7	02/27/09	15.82	0.501	0.63	7.37	-
	05/12/09	15.63	0.877	1.64	6.78	-
	12/18/09	16.16	1.025	0.54	6.26	-
	03/30/10	15.45	0.383	0.79	6.35	-
	05/26/10	15.70	0.610	3.32	6.00	-
	11/30/10	14.46	0.973	1.18	6.59	-
	03/25/11	15.05	1.048	1.26	6.44	-
	10/12/11	16.01	0.906	1.48	7.43	-
	02/29/12	14.44	0.599	1.66	6.65	-
	09/20/12	16.14	0.772	0.93	6.28	-
	03/22/13	15.17	1.331	0.91	7.80	-
	09/23/13	16.10	1.300	7.00	8.20	-
	03/21/14	15.75	1.056	0.38	6.55	-130.5
	09/04/14	17.29	1.003	4.55	6.35	-80.1
	04/07/15	17.36	1.138	0.70	6.42	-127.0
	09/29/15	19.24	1.078	0.60	6.45	-94.4
	03/29/16	16.33	1.103	2.06	6.36	32.1

				Field Parameters		
		Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Sample Date	(°C)	(mS/cm)	(mg/l)	рН	(mV)
Shallow Zone		, ,	,		·	,
Cell 2						
C2-MW-3	02/26/09	14.22	0.284	1.64	7.21	-
	05/12/09	14.61	0.316	1.75	6.62	-
	12/17/09	14.92	0.404	0.53	6.39	-
	03/29/10	13.02	0.102	10.60	6.7	-
	05/26/10	14.15	0.216	1.59	6.21	-
	11/30/10	14.8	0.240	12.00	6.72	-
	03/25/11	13.58	0.236	1.04	6.56	-
	10/11/11	16.11	0.173	1.39	7.07	-
	02/29/12	12.84	0.242	2.10	6.55	-
	09/21/12	16.14	0.200	14.90	6.23	-
	03/21/13	14.04	0.257	2.92	7.49	-
	09/20/13	16.90	0.220	3.30	6.90	
	03/21/14	14.02	0.157	2.28	6.49	80.1
	09/03/14	18.13	0.193	1.28	6.08	25.1
	04/07/15	16.26	0.190	2.33	6.36	4.0
	09/29/15	17.98	0.219	0.61	6.65	99.9
C2-MW-7	03/29/16	12.66	0.162	3.09	6.79	67.4
C2-IVIVV-7	02/26/09 05/12/09	NS 14.47	NS 0.549	NS 1.62	NS 6.81	-
	12/17/09	14.47 NS	0.549 NS	1.62 NS	NS	-
	03/30/10	NS NS	NS NS	NS NS	NS	_
	05/36/10	NS NS	NS NS	NS NS	NS NS	_
	11/30/10	NS NS	NS NS	NS	NS NS	
	03/25/11	13.44	0.885	0.30	6.72	_
C2-MW-9	02/26/09	NS	NS	NS	NS	_
02	05/12/09	14.24	0.974	2.18	7.05	_
	12/18/09	14.07	0.903	0.72	6.49	-
	03/30/10	NS	NS	NS	NS	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	13.71	0.879	0.37	6.61	-
	10/11/11	14.14	0.785	1.48	8.13	-
	05/22/12	12.91	0.870	0.71	8.00	-
	09/20/12	14.76	0.998	0.94	6.70	-
	03/22/13	12.52	1.239	1.41	6.84	-
	09/23/13	14.40	0.790	4.50	8.20	-
1	03/21/14	14.41	0.697	1.11	6.49	-66.3
	09/03/14	16.34	0.726	0.82	6.33	-90.3
	04/07/15	14.14	0.720	0.69	6.39	-100.8
	09/28/15	17.08	0.744	0.44	6.49	-89.4
	03/28/16	14.15	0.179	4.27	6.62	-35.1

Former Fort Vancouver Plywood Site

				Field Parameters		
		Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Sample Date	(°C)	(mS/cm)	(mg/l)	pН	(mV)
C2-MW-10(R)	02/27/09	15.1	1.045	0.28	9.10	-
	05/12/09	14.71	1.065	1.71	6.72	-
	12/17/09	14.98	1.298	0.79	6.44	-
	03/29/10	14.98	0.480	8.24	6.75	-
	05/25/10	15.21	1.080	2.29	6.43	-
	11/30/10	14.4	1.253	16.00	6.78	-
	03/25/11	14.12	1.217	0.36	6.63	-
	10/12/11	14.77	0.966	1.37	7.30	-
	03/01/12	13.84	1.371	0.40	7.21	-
	09/20/12	14.30	0.992	0.86	6.47	-
	03/22/13	13.50	1.204	1.59	6.42	-
	09/23/13	NS	NS	NS	NS	-
	03/21/14	NS	NS	NS	NS	-
	09/03/14	NS	NS	NS	NS	-
	04/07/15	NS	NS	NS	NS	-
C2-MW-10(R2)	09/28/15	16.89	0.814	0.34	6.57	-91.1
	03/28/16	16.28	0.788	1.06	6.44	-75.1
C2-MW-11	02/27/09	14.44	0.931	0.41	8.41	-
	05/12/09	14.18	0.401	1.80	6.88	-
	12/18/09	14.28	1.108	0.50	6.5	-
	03/29/10	14.25	0.458	7.15	6.71	-
	05/26/10	14.23	0.893	2.18	6.31	-
	11/30/10	13.83	0.990	2.39	6.79	-
	03/25/11	13.33	1.184	0.45	6.60	-
	10/12/11	14.30	0.909	1.59	7.89	-
	03/01/12	13.36	1.342	0.33	7.07	-
	09/20/12	14.57	0.932	0.77	6.42	-
	03/22/13	13.23	1.073	1.23	6.36	-
	09/23/13	14.10	0.930	8.80	8.60	-
	03/21/14	14.14	0.597	0.52	6.65	-14.8
C2-MW-11(R)	09/03/14	20.03	0.760	1.59	6.10	-43.8
	04/07/15	13.87	0.709	0.42	6.70	-131.8
	09/28/15	16.61	0.723	0.43	6.60	-86.8
	3/28/2016	15.26	0.776	1.06	6.49	-126.3

Notes:

= Indicates a monitoring well that was either abandoned or paved over.

mS/cm = millisiemens per centimeter.

mg/l = milligrams per liter

mv = millivolts

NS = Not sampled because well was not accessible.

ORP = oxidation reduction potential

^{- =} not available to AECOM for this report.

[°]C = Degrees Celsius.

Table 4. Volatile Organic Compounds in the Deeper Unconsolidated Aquifer

Former Fort Vancouver Plywood Site

					BTEX Co	mpoounds ar	d MTBE						His	storically Site	Detected VO	Cs (Since 200	09)			
Well Location	Sample ID	Date Sampled	الق آخ Benzene	րքո I/Oluene	তি Ethylbenzene	հն m,p-Xylene	o-Xylene القر	ਸੂ Total Xylenes	্ৰ Methyl Tertiary Butyl Ether	اله Acetone	ந் Chloroethane ⊔	ւին Chloromethane	ਜੂ 1,1-Dichloroethane	ত্র 1,1-Dichloroethene	চু cis-1,2-Dichloroethene	কু Isopropylbenzene (Cumene)	তি Maphthalene	≦ 1,2,4-Trimethylbenzene	∑ Trichlorofluoromethane	[©] Vinyl Chloride
Deeper Unconsolida			•																	
	thod A Groundwater Cl		5.0	1,000	700	1,000	1,000	1,000	20	NE	NE	NE	NE	NE	NE	NE	160	NE	NE	0.20
	thod B Groundwater Cl	eanup Levels	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
Cell 1	Luc	00/07/00		110			110	110	110	110	110		110	110	110	110	110	***		
C1-MW-6B	NS C4 MW CD	02/27/09	NS 4.0.11	NS 4.0.11	NS 4.0.11	NS	NS	NS 2.0.11	NS 4.0.11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-6B	05/12/09	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-6B	12/18/09	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-6B	03/29/10	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	NS	05/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	11/30/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Cell 2	C1-MW-6B	03/25/11	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
C2-MW-12B	C2-MW-12B	02/26/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	0.20 U
G2-WW-12B	C2-MW-12B	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	03/29/10	1.0 U	6.8	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B-DUP	03/29/10	1.0 U	13	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B-D0F	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	11/30/10	1.0 U	1.0 O	1.0 U	2.0 U	1.0 U		1.0 U	5.9	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	10/11/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	02/29/12	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	09/20/12	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U		0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
	C2-MW-12B	03/21/13	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U	3.0 U	0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
	C2-MW-12B	09/20/13	0.24 U	0.10 U	0.10 U	0.48 U	0.10 U		0.50 U	1.0 U	0.50 U	2.0 U	0.50 U	0.10 U	0.10 U	0.50 U	2.0 U	0.50 U	0.10 U	0.14 U
	C2-MW-12B	03/21/14	0.060 U	0.11 U	0.10 U	0.25 U	0.13 U		0.18 U	5.0 U	0.17 U	1.0 U	0.14 U	0.14 U	0.16 U	0.50 U	0.20 U	0.16 U	0.10 U	0.11 U
	C2-MW-12B	09/03/14	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U	0.50 U	0.50 U	10 U	5.0 U	2.5 UJ	0.25 U	0.25 U	0.25 U	0.50 U	1.0 U	0.50 U	1.0 U	0.10 U
	C2-MW-12B	04/07/15	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U		0.50 U	10 U	5.0 U	2.5 U	0.25 U	0.25 U	0.25 U	0.50 U	1.0 U	0.50 U	1.0 U	0.20 U
	C2-MW-12B	09/29/15	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U		0.50 U	10 U	5.0 U	2.5 UJ	0.25 U	0.25 U	0.25 U	0.50 U	1.0 U	0.50 U	1.0 U	0.10 U
	C2-MW-12B	03/29/16	0.13 U	0.50 U	0.25 U	0.50 U	0.20 U		0.50 U	10 U	5.0 U	2.5 U	0.25 U	0.25 U	0.25 U	0.50 U	1.0 U	0.50 U	1.0 U	0.25 U
C2-MW-13B	C2-MW-13B	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U

Notes:

--- = Sample not analyzed for constituent

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

MTBE = methyl tertiary butyl ether

MTCA = Washington State Department of Ecology Model Toxics Control Act

NE = Not established

NS = Not sampled because well was not accessible.

μg/l = micrograms per liter

R = The sample results were rejected based on the data quality review.

U = Constituent not detected at or above noted limit.

UJ = Constitient was not detected above the noted limit; the limit is approximate.

VOCs = volatile organic compounds

Values in **bold** were detected above the laboratory reporting limit.

= Indicates a monitoring well that was either abandoned or paved over.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

First Semi-Annual 2016 - Groundwater Monitoring Letter Report

Table 5. Volatile Organic Compounds in the Shallow Zone Former Fort Vancouver Plywood Site

					BTEX Co	mpoounds ar	nd MTBE						His	storically Site	Detected VOC	Cs (Since 200	9)			
Well Location Shallow Zone	Sample ID	Date Sampled	β Benzene	μο ^Λ Ι	ু Ethylbenzene	© m,p-Xylene	o-Xylene ™go	ট Total Xylenes	টু Methyl Tertiary Butyl Ether	թո Acetone	کار Chloroethane	Dioromethane γ	호 1,1-Dichloroethane	টু 1,1-Dichloroethene	^π cis-1,2-Dichloroethene	টু Isopropylbenzene (Cumene)	ا/ق Naphthalene	ਨੂੰ 1,2,4-Trimethylbenzene	টু Trichlorofluoromethane	الانار Vinyl Chloride
	lethod B Surface Water Cle	eanup Levels	23	18,900	6,820	NE	NE	NE	NE	NE	NE	NE	NE	23,100	NE	NE	4,710	NE	NE	3.7
Ecology's Acute Fr	reshwater Surface Water Q	Quality Criteria	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	xics Rule Human Health Cr		1.2	6,800	3,100	NE	NE	NE	NE	NE	NE	NE	NE	0.057	NE	NE	NE	NE	NE	2
•	lethod A Groundwater Clea	•	5.0	1,000	700	1,000	1,000	1,000	20	NE	NE	NE	NE	NE	NE	NE	160	NE	NE	0.20
	lethod B Groundwater Cle	anup Levels	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
C1-MW-3	C1-MW-3	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1011											
C I-IVIVV-3	C1-MW-3	02/27/09 05/12/09	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	2.0 0	1.0 U	1.0 U 3.0 U	1.0 U 1.0 U											
	C1-MW-3	12/18/09	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	03/30/10	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	05/26/10	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	11/30/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-3	03/24/11	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	10/12/11	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	03/01/12	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	09/20/12	0.10 U	0.10 U	0.10 U			0.30 U	0.10 U											
	C1-MW-3-Dup	09/20/12	0.10 U	0.10 U	0.10 U			0.30 U	0.10 U											
	C1-MW-3 NS	03/22/13 09/23/13	1.0 U NS	1.0 U NS	1.0 U NS	NS	NS	3.0 U NS	1.0 U NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-3	03/21/14	0.060 U	0.11 U	0.10 U			0.33 U	0.18 U					NO						
	C1-MW-3	09/03/14	0.13 U	0.50 U	0.10 U			0.75 U	0.50 U											
	C1-MW-3	04/08/15	0.13 U	0.50 U	0.25 U			0.75 U	0.50 U											
	C1-MW-3	09/29/15	0.13 U	0.50 U	0.25 U			0.75 U	0.50 U											
	C1-MW-3	03/29/16	0.10 U	0.50 U	0.25 U			0.75 U	0.50 U											
C1-MW-4	C1-MW-4	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.7	1.7	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	0.37
	C1-MW-4-Dup	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.9	1.9	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	0.35
	C1-MW-4 C1-MW-4	05/12/09 12/18/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U 1.5	1.0 U	2.1	1.0 U	1.8	1.0 U	1.0 U	1.0 U	1.0 U	0.34
	C1-MW-4	03/30/10	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	2.0 U 1.0 U	1.0 U 2.0 U		1.0 U 1.0 U	1.5 1.6	1.5 1.6	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	0.46 0.44
	C1-MW-4-DUP	03/30/10	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U		1.0 U	1.6	1.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.44
	C1-MW-4	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.6	1.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.37
	C1-MW-4	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.5	1.0 U	1.3	1.0 U	1.0 U	1.0 U	1.0 U	0.62
	C1-MW-4-Dup	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	6.9	1.1	1.8	1.2	1.0 U	1.0	1.0 U	1.0 U	1.0 U	1.0 U	0.61
	C1-MW-4	03/24/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	2.1	1.0 U	2.2	1.0 U	1.0 U	1.0 U	1.0 U	1.0
	C1-MW-4	10/11/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C1-MW-4-Dup	10/11/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.8	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C1-MW-4	03/01/12	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.6	1.0 U	1.5	1.0 U	1.0 U	1.0 U	1.0 U	0.25
	C1-MW-4-Dup C1-MW-4	03/01/12 09/20/12	1.0 U 0.10 U	1.0 U 0.10 U	1.0 U 0.10 U	2.0 U 0.20 U	1.0 U 0.10 U		1.0 U 0.10 U	5.0 U 1.0 U	1.0 U 0.10 U	1.0 U 0.10 U	1.6 0.10 U	1.0 U 0.10 U	1.4 1.1	1.0 U 0.10 U	3.3 0.10 U	1.0 U 0.10 U	1.0 U 0.10 U	0.25 0.39
	C1-MW-4	03/22/13	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	1.0 U	20 U	1.0 U	1.0 U	1.7	1.0 U	2.0	1.0 U	4.0 U	1.0 U	1.0 U	0.39
	C1-MW-4-Dup	03/22/13	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	1.0 U	20 U	1.0 U	1.0 U	1.9	1.0 U	2.1	1.0 U	4.0 U	1.0 U	1.0 U	0.23
	NS	09/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-4	03/21/14	0.060 U	0.11 U	0.10 U	0.25 U	0.13 U		0.18 U	5.0 U	0.17 U	1.0 U	1.5	0.63	2.8	0.50 U	0.20 U	0.16 U	0.10 U	0.11 U
	C1-MW-4	09/03/14	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U	0.50 U	0.50 U	10.0 U	5.0 U	2.5 UJ	1.1	0.38 J	1.7	0.50 U	1.0 U	0.50 U	1.0 U	0.24
	C1-MW-4	04/08/15	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U		0.50 U	10.0 U	5.0 U	2.5 U	1.7	0.54	2.7	0.50 U	1.0 U	0.50 U	1.0 U	0.45
	C1-MW-4	09/29/15	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U		0.50 U	10.0 U	5.0 U	2.5 UJ	0.8	0.29 J	1.5	0.50 U	1.0 U	0.50 U	1.0 U	0.25 U
	C1-MW-4	03/29/16	0.13 U	0.81 J	0.25 U	0.50 U	0.20 U		0.50 U	10.0 U	5.0 U	2.5 U	1.27	0.51	2.3	0.50 U	1.0 U	0.50 U	1.0 U	0.49 J

First Semi-Annual 2016 - Groundwater Monitoring Letter Report Page 1 of 4

Table 5. Volatile Organic Compounds in the Shallow Zone Former Fort Vancouver Plywood Site

					BTEX Cor	npoounds ar	nd MTBE						Hi	storically Site	Detected VOC	Cs (Since 200	9)			
																<u> </u>				
	Sample ID Method B Surface Water Clareshwater Surface Water C	' -	μg/l 23 NE	μg/l μg/l 18,900 NE	νε NE NE	M.p-Xylene ⊐ M.p-Xylene	νε ΝΕ ΝΕ	BZ	지 교 Methyl Tertiary Butyl Ether	NE Acetone	ам Потоеthane	Chloromethane Iν _{βμ} 3Ν 3Ν	M M M M 1.1-Dichloroethane	1,1-Dichloroethene	BZ	지 교 B Isopropylbenzene (Cumene	νε Naphthalene NE Naphthalene	Z Z	S S Trichlorofluoromethane	νε NE
	xics Rule Human Health C		1.2	6,800	3,100	NE	NE	NE	NE	NE	NE	NE	NE	0.057	NE	NE	NE	NE	NE	2
	Method A Groundwater Cle		5.0	1,000	700	1,000	1,000	1,000	20	NE	NE	NE	NE	NE	NE	NE	160	NE	NE	0.20
	Method B Groundwater Cle	1	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
C1-MW-6	C1-MW-6	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	10	1.7	1.0 U	1.0 U	1.0 U	1.0 U	4.2	0.20 U
	C1-MW-6-DUP	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	10	1.8	1.0 U	1.0 U	1.0 U	1.0 U	4.3	0.20 U
	C1-MW-6	12/18/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	8.8	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C1-MW-6-DUP	12/18/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	 NO	1.0 U	1.0 U	1.0 U	1.0 U	8.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	NS NS	05/26/10	NS NS	NS NS	NS NS	NS NS	NS NS	NS NC	NS NS	NS NC	NS NS	NS	NS NS	NS	NS NS	NS NS	NS NC	NS	NS NS	NS NS
	C1-MW-6	11/30/10 03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	NS 	1.0 U	NS 5.0 U	1.0 U	NS 1.0 U	1.6	NS 1.0 U	1.0 U	NS 1.0 U	NS 1.0 U	NS 1.0 U	1.3	0.20 U
	C1-MW-6-DUP	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U 5.0 U	1.0 U	1.0 U		1.0 U	1.0 U					0.20 U
C4 MM/ 7	C1-MW-7							4.0.11					1.6			1.0 U	1.0 U	1.0 U	1.3	
C1-MW-7	C1-MW-7	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	26											
	C1-MW-7	05/12/09	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U			3.0 U	24											
	C1-MW-7	12/18/09 03/30/10	1.0 U	1.0 U	1.0 U			3.0 U 3.0 U	23 24											
	C1-MW-7	05/26/10	1.0 U	1.0 U	1.0 U			3.0 U	16											
	C1-MW-7-DUP	05/26/10	1.0 U	1.0 U	1.0 U			3.0 U	14											
	C1-MW-7	11/30/10	1.0 U	1.0 U	1.0 U			3.0 U	28											
	C1-MW-7	03/25/11	1.0 U	1.0 U	1.0 U			3.0 U	24											
	C1-MW-7	10/12/11	1.0 U	1.0 U	1.0 U			3.0 U	2 4 25											
	C1-MW-7	02/29/12	1.0 U	1.0 U	1.0 U			3.0 U	3.2											
	C1-MW-7	09/20/12	0.10 U	0.10 U	0.10 U			0.30 U	13											
	C1-MW-7	03/22/13	1.0 U	1.0 U	1.0 U			3.0 U	12											
	C1-MW-7	09/23/13	0.24 U	0.23 U	0.24 U			3.0 0	16											
	C1-MW-7	03/23/13	0.12 U	0.23 U	0.24 U			0.66 U	14											
	C1-MW-7	09/04/14	0.12 U	0.50 U	0.20 U			0.00 U	12											
	C1-MW-7	04/08/15	0.13 U	0.50 U	0.25 U			0.75 U	17											
	C1-MW-7	09/29/15	0.13 U	0.50 U	0.25 U			0.75 U	18											
	C1-MW-7	03/29/16	0.10 U	0.50 U	0.25 U			0.75 U	19											
Cell 2	-																			
C2-MW-3	C2-MW-3	02/26/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3-DUP	02/26/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	05/11/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3-DUP	05/11/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3-DUP	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	03/29/10	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3-DUP	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3-Dup	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3-Dup	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U

First Semi-Annual 2016 - Groundwater Monitoring Letter Report Page 2 of 4

Table 5. Volatile Organic Compounds in the Shallow Zone Former Fort Vancouver Plywood Site

					BTEX Cor	mpoounds an	d MTBE						His	storically Site I	Detected VO	Cs (Since 2009	9)			
Well Location	Sample ID	Date Sampled	βenzene ⊡	πē. Toluene	≦ Ethylbenzene	m,p-Xylene ™ m,p-Xylene	o-Xylene باق	চু Total Xylenes	্ট্ৰ Methyl Tertiary Butyl Ether	اله Acetone	ւ/քո	රි Chloromethane	্র 1,1-Dichloroethane	ই 1,1-Dichloroethene	ਨੂੰ cis-1,2-Dichloroethene	ু Isopropylbenzene (Cumene)	∑ Naphthalene	፩ 1,2,4-Trimethylbenzene	∑ Trichlorofluoromethane	ந் Vinyl Chloride
Shallow Zone																				
•	ethod B Surface Water Clo	•	23	18,900	6,820	NE	NE	NE	NE	NE	NE	NE	NE	23,100	NE	NE	4,710	NE	NE	3.7
Ecology's Acute Fr	eshwater Surface Water C	Quality Criteria	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
EPA's National Tox	ics Rule Human Health Cı	riteria for Surface Water	1.2	6,800	3,100	NE	NE	NE	NE	NE	NE	NE	NE	0.057	NE	NE	NE	NE	NE	2
	ethod A Groundwater Cle	·	5.0	1,000	700	1,000	1,000	1,000	20	NE	NE	NE	NE	NE	NE	NE	160	NE	NE	0.20
•	ethod B Groundwater Cle	•	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
C2-MW-7	NS	02/27/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-7	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-7	12/17/09																		
	NS	03/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	05/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	11/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-7	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
C2-MW-9	C2-MW-9	02/27/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-9	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.7
	C2-MW-9	12/18/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.5	1.0 U	1.0 U	1.0 U	1.0 U	0.61
	C2-MW-9	03/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-9	05/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-9	11/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-9	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.1	1.0 U	1.0 U	1.0 U	1.0 U	1.2
	C2-MW-9	09/20/12	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U		0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	1.3	0.10 U	0.10 U	0.10 U	0.10 U	1.0
	C2-MW-9	03/22/13	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U	0.83
	C2-MW-9	09/23/13	0.24 U	0.23 U	0.24 U	0.48 U	0.24 U		0.50 U	10 U	0.50 U	2.0 U	0.50 U	0.24 U	2.5	0.50 U	2.0 U	0.50 U	0.13 U	0.14 U
	C2-MW-9-Dup	09/23/13	0.24 U	0.23 U	0.24 U	0.48 U	0.24 U		0.50 U	10 U	0.50 U	2.0 U	0.50 U	0.24 U	2.8	0.50 U	2.0 U	0.50 U	0.13 U	0.14 U
	C2-MW-9	03/21/14	0.060 U	0.11 U	0.10 U	0.25 UJ	0.13 UJ		0.18 UJ	8.3 J	0.17 UJ	1.0 UJ	0.14 UJ	0.14 UJ	0.79 J	0.50 UJ	0.20 UJ	0.16 UJ	0.10 UJ	1.3 J
	C2-MW-9-DUP	03/21/14	0.060 U	0.11 U	0.10 U	0.25 U	0.13 U		0.18 U	33	0.17 U	1.0 U	0.14 U	0.14 U	1.1	0.50 U	0.20 U	0.16 U	0.10 U	1.1
	C2-MW-9	09/03/14	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U	0.50 U	0.50 U	10 U	5.0 U	2.5 UJ	0.25 U	0.25 U	0.25 U	0.50 U	1.00 U	0.50 U	1.0 U	0.55
	C2-MW-9-DUP	09/03/14	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U	0.50 U	0.50 U	10 U	5.0 U	2.5 UJ	0.25 U	0.25 U	0.25 U	0.50 U	1.00 U	0.50 U	1.0 U	0.60
	C2-MW-9	04/08/15	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U		0.50 U	10 U	5.0 U	2.5 U	0.25 U	0.25 U	0.93	0.50 U	1.00 U	0.50 U	1.0 U	0.41
	C2-MW-9 DUP	04/08/15	R	R	R	R	R		R	R	R	R	R	R	R	R	R	R	R	R
	C2-MW-9	09/28/15	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U		0.50 U	10 U	5.0 U	2.5 UJ	0.25 U	0.25 U	1.84	0.50 U	1.00 U	0.50 U	1.0 U	0.37
	C2-MW-9 DUP	09/28/15	0.125 U	0.5 U	0.25 U	0.5 U	0.25 U		0.5 U	10.0 U	5.0 U	2.5 UJ	0.25 U	0.25 U	1.81	0.5 U	1.0 U	0.5 U	1.0 U	0.38
	C2-MW-9	03/28/2016	0.13 U	0.50 U	0.25 U	0.50 U	0.20 U		0.50 U	10 U	5.0 U	2.5 U	0.25 U	0.25 U	0.52	0.50 U	1.00 U	0.50 U	1.0 U	0.63
	C2-MW-9 (DUP)	03/28/2016	0.13 U	0.50 U	0.25 U	0.50 U	0.20 U		0.50 U	10 U	5.0 U	2.5 U	0.25 U	0.25 U	1.0	0.50 U	1.00 U	0.50 U	1.0 U	0.50
C2-MW-10(R)	C2-MW-10	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	0.27
	C2-MW-10	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	03/29/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	05/25/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.94
	C2-MW-10	10/12/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.28

First Semi-Annual 2016 - Groundwater Monitoring Letter Report Page 3 of 4

Table 5. Volatile Organic Compounds in the Shallow Zone

Former Fort Vancouver Plywood Site

					BTEX Co	mpoounds ar	nd MTBE						His	storically Site	Detected VO	Cs (Since 200	09)			
			Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Total Xylenes	Methyl Tertiary Butyl Ether	Acetone	Chloroethane	Chloromethane	1,1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	Isopropylbenzene (Cumene)	Naphthalene	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Vinyl Chloride
Well Location	Sample ID	Date Sampled	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
Shallow Zone Ecology's MTCA Me	ethod B Surface Water Cle	eanun I evels	23	18,900	6,820	NE	NE	NE	NE	NE	NE	NE	NE	23,100	NE	NE	4,710	NE	NE	3.7
	shwater Surface Water Q		NE	NE	0,020 NE	NE	NE	NE	NE	NE	NE	NE	NE	25,100 NE	NE	NE	NE	NE	NE	NE
	cs Rule Human Health Cr		1.2	6,800	3,100	NE	NE	NE	NE	NE	NE	NE	NE	0.057	NE	NE	NE	NE	NE	2
Ecology's MTCA Me	ethod A Groundwater Clea	anup Levels	5.0	1,000	700	1,000	1,000	1,000	20	NE	NE	NE	NE	NE	NE	NE	160	NE	NE	0.20
Ecology's MTCA Me	ethod B Groundwater Clea	anup Levels	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
C2-MW-11	C2-MW-11	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	12	1.0 U	1.0 U	1.4
	C2-MW-11	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.50
	C2-MW-11	12/18/09	1.0 U	1.0 U	1.6	4.0	2.0		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	101	2.7	1.0 U	0.74
	C2-MW-11	03/29/10	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	51	1.3	1.0 U	0.73
	C2-MW-11	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	64	2.3	1.0 U	0.57
	C2-MW-11	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.9	1.0 U	1.0 U	1.5
	C2-MW-11	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	16	1.0 U	1.0 U	1.4
	C2-MW-11	10/12/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.6
	C2-MW-11	03/01/12	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.7	1.0 U	1.0 U	1.1
	C2-MW-11	09/20/12	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U		0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	1.8
	C2-MW-11	03/22/13	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U	1.1
	C2-MW-11	09/23/13	0.24 U	0.23 U	0.24 U	0.48 U	0.24 U		0.50 U	10 U	0.50 U	2.0 U	0.50 U	0.24 U	0.23 U	0.50 U	2.0 U	0.50 U	0.13 U	1.2
	C2-MW-11	03/21/14	0.24	0.23 J	0.61	1.5	1.2		0.18 U	5.0 U	0.17 U	1.0 U	0.14 U	0.14 U	0.16 U	0.87 J	130	4.8	0.10 U	0.28 J
C2-MW-11(R)	C2-MW-11R	09/03/14	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U	0.50 U	0.50 U	10 U	5.0 U	2.5 UJ	0.25 U	0.25 U	0.25 U	0.50 U	1.0 U	0.50 U	1.0 U	1.1
	C2-MW-11R	04/08/15	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U		0.50 U	10 U	5.0 U	2.5 U	0.25 U	0.25 U	0.25 U	0.50 U	1.0 U	0.50 U	1.0 U	1.3
	C2-MW-11R	09/28/15	0.13 U	0.50 U	0.25 U	0.50 U	0.25 U		0.50 U	10 U	5.0 U	2.5 UJ	0.25 U	0.25 U	0.25 U	0.50 U	1.0 U	0.50 U	1.0 U	1.4
	C2-MW-11R	03/28/16	0.13 U	0.50 U	0.25 U	0.50 U	0.20 U		0.50 U	10 U	5.0 U	2.5 U	0.25 U	0.25 U	0.25 U	0.50 U	1.0 U	0.50 U	1.0 U	0.94

Notes:

--- = Sample not analyzed for constituent

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

MTBE = methyl tertiary butyl ether

MTCA = Washington State Department of Ecology Model Toxics Control Act

NE = Not established

NS = Not sampled because well was not accessible.

μg/l = micrograms per liter

R = The sample results were rejected based on the data quality review.

U = Constituent not detected at or above noted limit.

UJ = Constitient was not detected above the noted limit; the limit is approximate.

VOCs = volatile organic compounds

Values in **bold** were detected above the laboratory reporting limit.

= Indicates a monitoring well that was either abandoned or paved over.

= Indicates a monitoring well that is no longer sampled for volatile organic compounds as approved by Ecology in 2011.

= Indicates an exceedance of a screening criteria.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx Ecology's Acute Freshwater Surface Water Quality Criteria were obtained from the Washington State Legistlature Washington Administrative Code web site. http://apps.leg.wa.gov/WAC/default.aspx?cite=173-201A-240

EPA's National Toxics Rule Human Health Criteria for Surface Water were obtained throught the Washington State Department of Ecology web site for Toxics Standards and Criteria. http://www.ecy.wa.gov/programs/wq/swqs/toxics.html

Table 6. Total Petroleum Hydrocarbons in the Deeper Unconsolidated Aquifer

Former Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
Deeper Unconsolid	ated Aquifer				_
Ecology's MTCA Me	ethod A Groundwater Clea	nup Levels	0.50	0.50	1.0 ^(a)
Ecology's MTCA Me	ethod B Groundwater Clea	nup Levels	NE	NE	NE
Cell 2					
C2-MW-12B	C2-MW-12B	02/26/09	0.091 U	0.45 U	0.025 U
	C2-MW-12B	05/12/09	0.082 U	0.41 U	0.050 U
	C2-MW-12B	12/17/09	0.13	0.42 U	0.050 U
	C2-MW-12B	03/29/10	2.3	2.6	0.050 U
	C2-MW-12B	03/29/10	1.3	1.4	0.050 U
	C2-MW-12B	05/26/10	0.10	0.44	0.050 U
	C2-MW-12B	11/30/10	4.0	6.6	0.050 U
	C2-MW-12B	03/25/11	0.55	0.66	0.050 U
	C2-MW-12B	10/11/11	1.6	2.4	0.050 U
	C2-MW-12B	02/29/12	0.077 U	0.38 U	0.050 U
	C2-MW-12B	09/20/12	0.16 U	0.80 U	0.025 U
	C2-MW-12B	03/21/13	0.40 U	0.40 U	0.10 U
	C2-MW-12B	09/20/13	0.011 U	0.018 U	0.10 U
	C2-MW-12B	03/21/14	0.080 J	0.18 J	0.019 U
	C2-MW-12B	09/03/14	0.094 U	0.50	0.050 U
	C2-MW-12B	04/07/15	0.095 U	0.19 U	0.050 U
	C2-MW-12B	09/29/15	0.094 U	0.19 U	0.050 U
	C2-MW-12B	03/29/16	0.098 U	0.23 J	0.050 U
C2-MW-13B	C2-MW-13B	03/25/11	0.41	0.47	0.050 U

Notes:

B = Constituent was detected above the laboratory reporting limit in the method blank.

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

mg/l = milligrams per liter

MTCA = Washington State Department of Ecology Model Toxics Control Act

NA = Not analyzed

NE = Not established

NS = Not sampled because well was not accessible.

U = Constituent not detected at or above noted limit.

TPH = Total Petroleum Hydrocarbons

TPH-Gx = Total Petroleum Hydrocarbons gasoline-range

 $\mathsf{TPH}\text{-}\mathsf{Dx} = \mathsf{Total}\ \mathsf{Petroleum}\ \mathsf{Hydrocarbons}\ \mathsf{diesel}\text{-}\ \mathsf{and}\ \mathsf{oil}\text{-}\mathsf{range}$

Values in **bold** were detected above the laboratory reporting limit.

= Indicates a monitoring well that was either abandoned or paved over.

= Indicates an exceedance of a screening criteria.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx
(a) = Value is for gasoline concentration when benzene is not present.

Table 7. Total Petroleum Hydrocarbons in the Shallow ZoneFormer Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
Shallow Zone					
Ecology's MTCA Me	thod B Surface Water Clea	anup Levels	NE	NE	NE
Ecology's Acute Fre	shwater Surface Water Qu	iality Criteria	NE	NE	NE
EPA's National Toxic	cs Rule Human Health Cri	teria for Surface Water	NE	NE	NE
Ecology's MTCA Me	thod A Groundwater Clear	nup Levels	0.50	0.50	1.0 ^(a)
Ecology's MTCA Me	thod B Groundwater Clear	nup Levels	NE	NE	NE
Cell 2		•			
C2-MW-3	C2-MW-3	02/26/09	0.086 U	0.43 U	0.025 U
	C2-MW-3	02/26/09	0.089 B	0.41 U	0.025 U
	C2-MW-3	05/11/09	0.083 U	0.42 U	0.050 U
	C2-MW-3	05/11/09	0.094 U	0.47 U	0.050 U
	C2-MW-3	12/17/09	0.093	0.38 U	0.050 U
	C2-MW-3	12/17/09	0.089	0.39 U	0.050 U
	C2-MW-3	03/29/10	0.078 U	0.39 U	0.050 U
	C2-MW-3	05/26/10	0.078 U	0.39 U	0.050 U
	C2-MW-3	05/26/10	0.076 U	0.38 U	0.050 U
	C2-MW-3	11/30/10	0.082 U	0.41 U	0.050 U
	C2-MW-3-Dup	11/30/10	0.078 U	0.39 U	0.050 U
	C2-MW-3	03/25/11	0.078 U	0.39 U	0.050 U
	C2-MW-3-Dup	03/25/11	0.078 U	0.39 U	0.050 U
	C2-MW-3	10/11/11	0.076 U	0.38 U	0.050 U
	C2-MW-3-Dup	10/11/11	0.076 U	0.38 U	0.050 U
	C2-MW-3	02/29/12	0.076 U	0.38 U	0.050 U
	C2-MW-3-Dup	02/29/12	0.086 U	0.43 U	0.050 U
	C2-MW-3	09/20/12	0.16 U	0.81 U	0.025 U
	C2-MW-3	03/21/13	0.40 U	0.40 U	NA
	C2-MW-3-Dup	03/21/13	0.40 U	0.40 U	NA
	C2-MW-3	09/20/13	0.011 U	0.018 U	0.10 U
	C2-MW-3-Dup	09/20/13	0.011 U	0.018 U	0.10 U
	C2-MW-3	03/21/14	0.028 U	0.038 U	0.019 U
	C2-MW-3	09/03/14	0.094 U	0.71 J	0.050 U
	C2-MW-3	04/07/15	0.094 U	0.19 U	0.050 U
	C2-MW-3	09/29/15	0.094 U	0.27 J	0.050 U
	C2-MW-3	03/29/16	0.095 U	0.19 U	0.050 U
C2-MW-7	C2-MW-7	02/26/09	NS	NS	NS
	C2-MW-7	05/12/09	0.080 U	0.40 U	0.050 U
	C2-MW-7	12/17/09	NS	NS	NS
	C2-MW-7	03/29/10	NS	NS	NS
	C2-MW-7	05/26/10	NS	NS	NS
	C2-MW-7	11/30/10	NS	NS	NS
	C2-MW-7	03/25/11	0.19	0.84	0.050 U

Table 7. Total Petroleum Hydrocarbons in the Shallow ZoneFormer Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
Shallow Zone					
	thod B Surface Water Clea	•	NE	NE	NE
0,	shwater Surface Water Qu	•	NE	NE	NE
EPA's National Toxic	cs Rule Human Health Cri	teria for Surface Water	NE	NE	NE
Ecology's MTCA Met	thod A Groundwater Clear	nup Levels	0.50	0.50	1.0 ^(a)
Ecology's MTCA Met	thod B Groundwater Clear		NE	NE	NE
C2-MW-9	C2-MW-9	02/26/09	NS	NS	NS
	C2-MW-9	05/12/09	0.088 U	0.44 U	0.050 U
	C2-MW-9	12/18/09	0.17	0.40 U	0.050 U
	C2-MW-9	03/29/10	NS	NS	NS
	C2-MW-9	05/26/10	NS	NS	NS
	C2-MW-9	11/30/10	NS	NS	NS
	C2-MW-9	03/25/11	0.12	0.40 U	0.050 U
	C2-MW-9	10/11/11	0.13	0.38 U	0.050 U
	C2-MW-9	09/20/12	0.16 U	0.80 U	0.025 U
	C2-MW-9	03/22/13	0.41 U	0.41 U	0.10 U
	C2-MW-9	09/23/13	0.011 U	0.018 U	0.10 U
	C2-MW-9-Dup	09/23/13	0.011 U	0.018 U	0.10 U
	C2-MW-9	03/21/14	0.12	0.16 J	0.019 U
	C2-MW-9-DUP	03/21/14	0.099	0.096 J	0.019 U
	C2-MW-9	09/03/14	0.10 U	0.52 J	0.050 U
	C2-MW-9-DUP	09/03/14	0.10 U	0.20 U	0.050 U
	C2-MW-9	04/08/15	0.094 U	0.19 U	0.050 U
	C2-MW-9-DUP	04/08/15	NA	NA	NA
	C2-MW-9	09/28/15	0.094 U	0.19 U	0.050 U
	C2-MW-9	03/28/16	0.095 U	0.31 J	0.050 U
	C2-MW-9 (DUP)	03/28/16	0.095 U	0.34 J	0.050 U
C2-MW-10(R)	C2-MW-10	02/27/09	0.82 B	1.6	0.025 U
	C2-MW-10	05/12/09	1.1	0.85	0.050 U
	C2-MW-10	12/17/09	1.5	1.8	0.050 U
	C2-MW-10	03/29/10	0.82	1.0	0.050 U
	C2-MW-10	05/25/10	0.77	0.99	0.050 U
	C2-MW-10	11/30/10	1.7	1.9	0.050 U
	C2-MW-10	03/25/11	1.4	1.1	0.050 U
	C2-MW-10	10/12/11	0.70	0.90	0.050 U
	C2-MW-10	03/01/12	1.2	1.1	0.050 U
	C2-MW-10	09/20/12	1.2	0.92	0.025 U
	C2-MW-10-Dup	09/20/12	1.1	0.99	0.025 U
	C2-MW-10	03/21/13	0.90	1.6	NA
	C2-MW-10	09/23/13	NS	NS	NS
	C2-MW-10	03/21/14	NS	NS	NS
	C2-MW-10	09/03/14	NS	NS	NS
	C2-MW-10	09/03/14	NS	NS	NS
C2-MW-10(R2)	C2-MW-10(R)	09/29/15	0.094 U	1.6	0.050 U
	C2-MW-10R2	03/28/16	0.096 U	5.3	0.385

Table 7. Total Petroleum Hydrocarbons in the Shallow Zone

Former Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
Shallow Zone					
Ecology's MTCA Met	hod B Surface Water Clea	anup Levels	NE	NE	NE
Ecology's Acute Fres	shwater Surface Water Qu	iality Criteria	NE	NE	NE
EPA's National Toxio	s Rule Human Health Crit	teria for Surface Water	NE	NE	NE
Ecology's MTCA Met	hod A Groundwater Clear	nup Levels	0.50	0.50	1.0 ^(a)
Ecology's MTCA Met	hod B Groundwater Clear	nup Levels	NE	NE	NE
C2-MW-11	C2-MW-11	02/27/09	1.2 B	0.73	0.025 U
	C2-MW-11	05/12/09	0.085 U	0.43 U	0.050 U
	C2-MW-11	12/18/09	0.78	0.88	0.11
	C2-MW-11	03/29/10	0.56	0.61	0.050 U
	C2-MW-11	05/26/10	0.68	0.77	0.069
	C2-MW-11	11/30/10	0.27	0.39	0.050 U
	C2-MW-11	03/25/11	0.74	0.58	0.053
	C2-MW-11	10/12/11	0.19	0.38 U	0.050 U
	C2-MW-11	03/01/12	0.51	0.58	0.050 U
	C2-MW-11	09/20/12	0.27	0.80 U	0.025 U
	C2-MW-11	03/22/13	0.40 U	0.53	0.10 U
	C2-MW-11	09/23/13	0.011 U	0.018 U	0.10 U
	C2-MW-11	03/21/14	0.39	0.12 J	0.21
C2-MW-11(R)	C2-MW-11(R)	09/03/14	0.11 J	0.20 U	0.050 U
	C2-MW-11(R)	04/08/15	0.10 U	0.19 U	0.050 U
	C2-MW-11(R)	09/28/15	0.094 U	0.29 J	0.050 U
	C2-MW-11R	03/28/16	0.096 U	0.26 J	0.050 U

Notes:

B = Constituent was detected above the laboratory reporting limit in the method blank.

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

mg/l = milligrams per liter

MTCA = Washington State Department of Ecology Model Toxics Control Act

NA = Not analyzed

NE = Not established

NS = Not sampled because well was not accessible.

U = Constituent not detected at or above noted limit.

TPH = Total Petroleum Hydrocarbons

TPH-Gx = Total Petroleum Hydrocarbons gasoline-range

TPH-Dx = Total Petroleum Hydrocarbons diesel- and oil-range

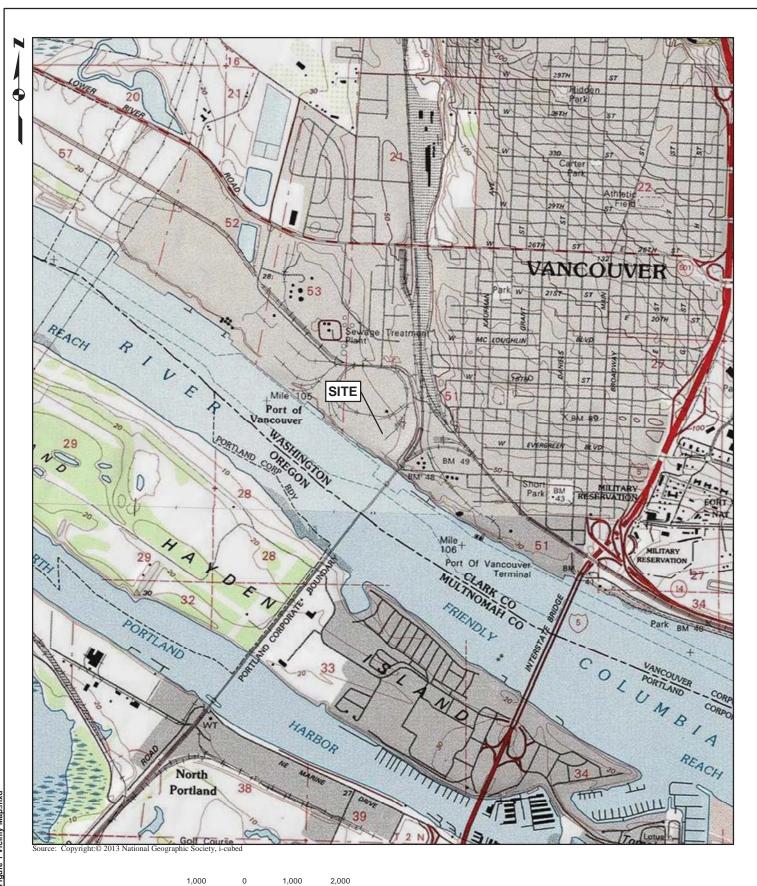
Values in **bold** were detected above the laboratory reporting limit.

= Indicates a monitoring well that was either abandoned or paved over.

= Indicates an exceedance of a screening criteria.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

Ecology's Acute Freshwater Surface Water Quality Criteria were obtained from the Washington State Legistlature Washington Adminstrative Code web site. http://apps.leg.wa.gov/WAC/default.aspx?cite=173-201A-240


EPA's National Toxics Rule Human Health Criteria for Surface Water were obtained throught the Washington State Department of Ecology web site for Toxics Standards and Criteria. http://www.ecy.wa.gov/programs/wq/swqs/toxics.html

(a) = Value is for gasoline concentration when benzene is not present.

Figures

VICINITY MAP

FORMER FORT VANCOUVER PLYWOOD SITE PORT OF VANCOUVER USA VANCOUVER, WA

MAY 2016 60410261

AECOM

MAY 2016 60410261 FORMER FORT VANCOUVER PLYWOOD SITE PORT OF VANCOUVER USA VANCOUVER, WA

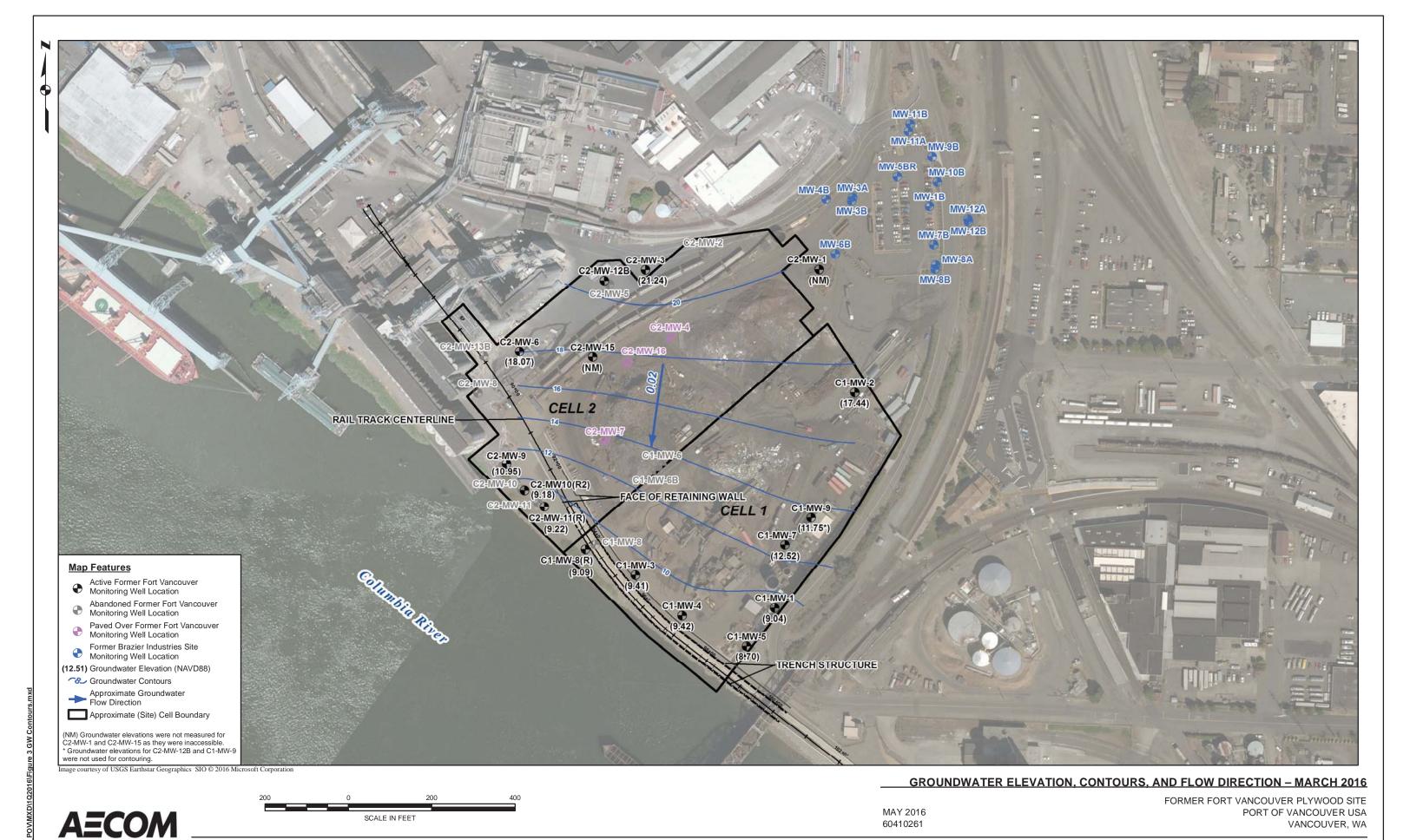


FIGURE 3

AECOM

Appendix AField Forms

Groundwater Level Form

Project Information

Project Name: PoV-FVP

URS Project Number: 6048-60410261

MARCH 28, 2016

Measurements				
Well Number	Time	Depth to Water	Total Depth	Comments
C1-MW-5	0850	21.14) -	
C1-MW-1	0855	21.19	_	
C1-MW-2	0905	13.59	ettinu.	
C1-MW-3	0915	19.69	-	
4-MW-4	0930	19.65		
C1-MW-7	0940	16.77	_	
U-MW-9	0950	18.80	_	
C2-MW-3	1025	11.19	_	
C2-MW-12B	1030	21.97	-	
C2-MW-6	1035	15.39	-	
C2-MW-9	1045	20.31		VACUUM UPON OPENING, WATER LEVEL
CZ-MW-IOR	1040	24.39		
C1-MW-812	1050	18.49		
CZ-MW-11R	i055	21.58		
62-MW-9	1115	21.30		STABULED
		-	1.0	
			· · · · · · · · · · · · · · · · · · ·	
				-1/2

Well Number: C1-MW-3

Date: 3-29-16

Project Information

Project Name: Poy - FVP

URS Project Number:

Sampling Information

Field Team: Field Team:

Purge Method: P. Pump

Sampling Method: BALLER

Water Quality Meter: Model:

Serial Number:

Purge Water Disposition:

Comments

uction Inform	ation			
or Flush	Well Diameter (in)	Total Depth (ft btoc)	Screen Interval (ft bgs or btoc)	
SH	2	32	15-32	
nformation				
DTW otoc)			Pump Intake Depth (ft btoc): (Mid Sat. Screen Interv	al)
Bo	20 -	32	26	
tainers				29
Type	Presen	vative	Analysis Required	Filtered?
40MIVO	HU		BTEX	
40mi VO	4 Itcl	1	MTBE	
				-
				-
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	or Flush SH Information DTW Stoc) DO Itainers Type	Diameter (in) SH Diameter (in) SH Diameter (in) SH Diameter (in) SH Diameter (in) Saturater Interval (ft b) DO tainers Type Preserv	Well Diameter (in) Total Depth (ft btoc) SH 2 32 Information DTW Saturated Screen Interval (ft bgs or btoc) DO 20 32 Italiners Type Preservative	Well Diameter (in) Total Depth (ft bdoc) Screen Interval (ft bgs or btoc) SH 2 32 15-32 Information DTW Saturated Screen Interval (ft bgs or btoc) Pump Intake Depth (ft btoc): (Mid Sat. Screen Interval (ft bgs or btoc) Type Preservative Analysis Required

Time	Data Volume	Purge Rate (L/min)	DTW	Temp.	Conductivity	D.O.	рН	ORP	Comments
	Purged M	(<0.5 L/min)	(ft btoc)	(°C)	(uS/cm)	(mg/L)	рп	(mV)	(i.e. odor, sediment, color)
10/0	Pump On		Initial		±3%	±10%	±0.1	±10mv	<= Stabilization Criteria
1020	1000		19.42	12.31	668	4.45	6.52	47.6	
1025	1200		19.92	12.22	683	3.64	6.52	48.2	
1030	1400		19.92	12.17	685	3.62	6.51	50.2	
1035	1600		19.92	12.17	688	3.30	6.51	52.9	
1040	1800		19.92	12:27	691	3.08	6.50	55.2	
1045	1900		19.92	12.33	697	3.14	6.52	57.7	
1050	2100		19.42	12.41	701	3.3i	6,49	59.1	
						l		<u> </u>	
	Start Sampling	1052		Sample ID: (1-MW	-3		Sample Time:	1055
	End Sampling	1057		QA/QC Sample				QA/QC Sample	Time: —

Note: bgs= below ground surface btoc=below top of casing DTW=depth to water

Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Well Constr	uction Inform	mation			
Stick-up	or Flush	Well Diameter (in)	Total Depth (ft btoc)	Screen Interval (ft bgs or btoc)	
FLUS	11	Z	37	17-32	
Monitoring I	nformation				
				Pump Intake Depth (ft btoc): (Mid Sat. Screen Inter	val)
19.80	1	19.89 - 3	32	28	
Sample Con	tainers				2
Number	Туре	Presen	vative	Analysis Required	Filtered?
3	AOV	HCL	•	VOC	N
	· · · · · · · · · · · · · · · · · · ·				
	Stick-up FLUS Monitoring I Initial (ft b I 9.80 Sample Con	Stick-up or Flush FLUSI-I Monitoring Information Initial DTW (ft btoc) I 9.89 Sample Containers Number Type	Monitoring Information Initial DTW Saturated Interval (ft bloc) 19.89 Sample Containers Number Type Present	Stick-up or Flush Well Diameter (in) FLUSIT Monitoring Information Initial DTW (ft btoc) If btoc) Saturated Screen Interval (ft bgs or btoc) I 9.89 I 9.89 - 3 Z Sample Containers Number Type Preservative	Stick-up or Flush Well Diameter (in) FLUSIA Z 3Z 17-3Z Monitoring Information Initial DTW (ft btoc) (ft btoc) Saturated Screen Interval (ft bgs or btoc) Pump Intake Depth (ft btoc): (Mid Sat. Screen Interval (ft bgs or btoc) 19.89 19.89-3Z Sample Containers Number Type Preservative Analysis Required

Well Purge	Data	1800								
Time	Volume Purged (L)	Purge Rate (L/min) (<0.5 L/min)	DTW (ft btoc)	Temp. (°C)	Conductivity (uS/cm)	D.O. (mg/L)	pН	ORP (mV)		omments sediment, color)
1010	Pump On		Initial		±3%	±10%	±0.1	±10mv	<= Stabil	ization Criteria
1015	Through	200	20.12	15.24	1310	10.89	6.54	-15.9	Ac	
1020	ll	200	20.09	15.78	1398	5.80	6.45	-35.3	AC	
1025	2	200	2007	15.49	1407	4.47	6.38	-47.0	clear	**************************************
1030	3	200	20.06	15,39	1407	3.16	6.35	-49.2	clear	
1035	Н	200	20.06	15.66	1421	2.39	6.34	-52.4	clear	جاهسدي
1040	4.5	100	19.97	14.73	1397	2.15	6.31	-53.3	cleer	
1045	5	100	19.98	14.92	1405	2.00	6.31	-55.4	clear	
1050	5.5 Ma	100	19.97	15.17	1418	1.91	6.31	-56.6	Clear	
1055	6	100		15.31	1419	1.82	6.30	-58.1	clear	
1100	SAMPL	Ē -								
						M				
	Start Samplin	9 1100	ò	Sample ID:	C1-M	w-4		Sample Time:	1100	
_	End Sampling	110	1	QA/QC Sample	ID:	_		QA/QC Samp	le Time: 🔍	

Note: bgs= below ground surface btoc=below top of casing DTW=depth to water Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Well Number: <1- \(\mu \cdot - 7 \)
Date: \(3/70/16 \)

Project Name: POV FVP URS Project Number: 60410261 Sampling Information Field Team: M. TAUSCHER / J. BAKER Purge Method: Low FLOW Sampling Method: Low FLOW Water Quality Meter: Model: Y51.554	K
Sampling Information Field Team: M. TAUSCHER / J. BAKER Purge Method: Low FLOW Sampling Method: Low BAILER	R
Field Team: M. TAUSCHER / J. BAKER Purge Method: Low Frow Sampling Method: Low BAILER	R
Purge Method: Low Frow Sampling Method: Low BAILEN	R
Purge Method: Low Frow Sampling Method: Low BAILEN	
Sampling Method: Low BAILEN	
Serial Number:	
Purge Water Disposition: On Site drum	Λ
Comments	

				Olca!	_
Well Constr	ruction Inform	nation			
Stick-up	or Flush	Well Diameter (in)	Total Depth (ft btoc)	Screen Interval (ft bgs or btoc)	
FLUS	>1-1	7	30	15-30	
Monitoring I	nformation				
	DTW otoc)	Saturated Interval (ft b		Pump Intake Depth (ft btoc): (Mid Sat. Screen Interv	/al)
. 16.	15	16.75-	30	25	
Sample Con	tainers				22
Number	Туре	Presen	vative	Analysis Required	Filtered?
3	VOA	HC	L	BTEX	N
3	VOA	HC	- 1	MTBE	N

Well Purge	Data				TERM SE					
Time	Volume Purged (L)	Purge Rate (L/min)	DTW (ft btoc)	Temp. (°C)	Conductivity (uS/cm)	D.O. (mg/L)	рН	ORP (mV)		omments sediment, color)
1145	Pump On		16 Initial 5	-	±3%	±10%	±0.1	±10mv	<= Stabil	ization Criteria
1150	THECOUNT	100	17.65	15.72	1088	7,31	6.51	-94.5	Lear	
1155	0.5	100	18.12	15.67	1087	4.17	6.45	-101.9	clea-	
1200	1	100	18.85	15.81	1089	3.11	6.41	-105.2	clear	The state of the s
1205	1.30	60	19.28	16.03	1095	2.38	6.39	270	clear	Sicued
1210	1.60	40	19.32	16.21	1101	2.11	6.38	31.7	clear	//
1215	20	40	19.42	16.07	1101	2.04	6.37	31.6	clear	
1220	2.2	40	19,48	16.33	1103	2.06	6.36	32.1	clear	
1225	SAMPL	5								
						,				
						Mt		,		
					-					
	Start Samplin	g 122	5	Sample ID:	CI-M	w-7	94	Sample Time:	1225	<u> </u>
	End Sampling			QA/QC Sample	de			QA/QC Samp		

Note: bgs= below ground surface bloc=below top of casing DTW=depth to water

Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Well Number: C2-MW-3
Date: 3-29-16

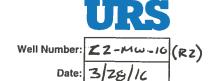
Project Information	
Project Name: $P_{\mathfrak e}$ i	1-FVP
URS Project Number:	60410261
Sampling Information	
Field Team: Jo	HN BAKER
	PUMP
Sampling Method:	AILER
Water Quality Meter:	Model: YSI 556 MPS
	Model: YSI 556 MPS Serial Number: 03C0005
Purge Water Disposition:	
Comments	
	,
*	

				J	<u> </u>
Well Const	ruction Inform	nation			
Stick-u	p or Flush	Well Diameter (in)	Total Depth (ft btoc)	Screen Interval (ft bgs or btoc)	
FLU	SH	2	16	6-16	
Monitoring	Information		15.3		
	al DTW btoc)	Saturated Interval (ft b		Pump Intake Depth (ft btoc): (Mid Sat. Screen Interv	/al)
11:3	2-3	11-16	5	13	
Sample Cor	ntainers				5
Number	Туре	Presen	/ative	Analysis Required	Filtered?
3	40ml vo	+ Itcl		NWTPH-GX	
2	IL AMBE	R HCI		NWTPH-DX	
	-				
	1 1		- 1		

Well Purge	Data John	٤					G Table			
Time	Volume Purged (Lini	Purge Rate (L/min)	DTW (ft btoc)	Temp. (°C)	Conductivity (uS/cm)	D.O. (mg/L)	рН	ORP (mV)	1	omments sediment, color)
815	Pump On		Initial	·	±3%	±10%	±0.1	±10mv	<= Stabi	lization Criteria
820	1000		11.25	12.64	175	74	7.36	645		95.07=0
825	1350		11.23	12.87	169	3.77	6.90	68.5		
830	1700		11:23	12.78	164	3.12	6.83	67.5		
835	2050		11.23	12.62	162	3.05	6.80	64.9		
840	2350		11.23	12.66	162	3.09	6.79	67.9		
								g 16 =4		
									E-1	
*								77	,	
	Start Sampling	<u> </u>		Sample ID:	2-MV	v - 3		Sample Time:	0845	,,,,,
	End Sampling	848		QA/QC Sample				QA/QC Samp	le Time: 👅	

Note: bgs= below ground surface btoc=below top of casing DTW=depth to water

Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear


Well Number: C2 -MW - 9

Project Information	
Project Name: Pc	V - FVP
URS Project Number:	60410261
Sampling Information	
Field Team: JUH	N BAKER
Purge Method: P. Pu	
Sampling Method: BAi	LER
Water Quality Meter:	Model: YSI 556 MPS
	Serial Number: 0300005
Purge Water Disposition:	ONSITETANK
Comments	

Well Constr	ruction Inform	nation			
Stick-up	Stick-up or Flush		Total Depth (ft btoc)	Screen Interval (ft bgs or btoc)	
FLL)SH	2	35	25-35	
Monitoring I	nformation				idal.
	DTW otoc)	Saturated Interval (ft b		Pump Intake Depth (ft btoc): (Mid Sat. Screen Interv	/al)
21	-30	25-3	5	30	
Sample Con	tainers				25
Number	Туре	Presen	/ative	Analysis Required	Filtered?
3x2	Houlve	A HC	(Voc's	
3×2	46m/Va	a ite	1	TPH-G	
2×2	12 AWRE	e HC	1	TPH-DX	

Pump On 1000 1300 1650 2000 2350	21.60 21.82 21.90 22.00 22.10	14,11	±3% 105 193 188 183	±10% 6.11 4.51 4,12	±0.1 7,02 6,67 6.66	±10mv -20.1 -33.7 -31.5	<= Stabilization Criteria
1300 1650 2000 2350	21.82 21.96 22-05	14,11	193	4.51	6.67	-33.2	
1650 2000 2350	21.96	14,14	188	4,12			
2350	22-05			•			
2350		14,19	182				
	7.2-10		LVJ	4.10	6.66	-32.3	
i		14,14	181	4.22	6.62	-34.3	
2700	22,12	14.15	179	4.27	6.62	-35,1	
tart Sampling) n ==	Sample ID:				0 1 7	1001
- 1							
t	art Sampling	art Sampling 1205	art Sampling 1205 Sample ID: (art Sampling 1205 Sample ID: C2 - MW	art Sampling 1205 Sample ID: C2 - MW-9	art Sampling 1205 Sample ID: C2 - MW-9	art Sampling 1205 Sample ID: C2 - MW-9 Sample Time:

Note: bgs= below ground surface btoc=below top of casing DTW=depth to water Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

roject Name: PoV FVP RS Project Number: 60410261 ampling Information eld Team: MARK TAUSCHER urge Method: Low Flow ampling Method: BAILER ater Quality Meter: Model: Y51-556
eld Team: MARK TAUSCHER urge Method: Low Flow ampling Method: BAILER
urge Method: LOW FLOW ampling Method: BAILER
ampling Method: BAILER
ampling Method: BAILER
ampling Method: BAILER
ater Quality Meter: Model: VS1 - 556
, , , , , ,
Serial Number:
orge Water Disposition: on site Drum
omments

Well Const	ruction Inform	nation				
Stick-u	p or Flush	Well Diameter (in)	Screen Interval (ft bgs or btoc)			
FLO	514	2	35	20-35		
Monitoring	Information					
	al DTW btoc)	Saturated Interval (ft b		Pump Intake Depth (ft btoc): (Mid Sat. Screen Inter	val)	
24.35		2435-3	5	30		
Sample Cor	ntainers				-E	
Number	Туре	Preser	vative	Analysis Required	Filtered?	
3	VOA	He		VC C MT	N	
3	VOA	HC		67X	N	
2	IL AMBER	40	L	DX	N	
					-	

Well Purge I	Data									
Time	Volume Purged (L)	Purge Rate (L/min) (<0.5 L/min)	DTW (ft btoc)	Temp.	Conductivity (uS/cm)	D.O. (mg/L)	рН	ORP (mV)	1	omments sediment, color)
1250	Pump On		Initial	-	±3%	±10%	±0.1	±10mv	<= Stabil	ization Criteria
1300	Through	150	24.47	16.64	830	4.94	6.65	-81.7	clear	Pump issues to start
1305	750	100	24.45	16.64	821	3.24	6.53	-83.1	clear	
1310	1,25	100	24.43	16.28	812	2.33	6.5Z	-84.0	clear	
1315	1.75	100	24.43	16.42	810	1.93	6.50	-85.0	Clear	
1320	2 .25	100	24.44	16,34	803	1.65	6.50	-85.1		
1325	2.75	100	24.44	15.97	792	1.43	6.45	-83.8	clear	
1330	3.25	100	24.45	16.03	789	1.21	6.45	-83.1	clear	
1335	3.75	100	24.46	16.00	786	1.06	6.43	-81.2	clear	
1340	4.25	100	24.46	16.28	790	1.05	6.45	-76.0	Clear	
1345	4.75	100	24.47	16.28	188	1.06	6.44	-75.1	clear	
1350	SAMP	LE								
_										
	Start Samplin	9 13	50	Sample ID: (2-MW	-10(R2)	Sample Time:	1350	
00.100	End Sampling			QA/QC Sample		413.0		QA/QC Samp		

Note: bgs= below ground surface bloc=below top of casing DTW=depth to water Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Well Number: CZ - Mw-116

Project Information			
Project Name: Po	V FVP		
URS Project Number:	60410261		
Sampling Information			
Field Team: MARK	TAUSCH	IER	
Purge Method: Low			
Sampling Method: 13	AILER		
Water Quality Meter:	Model: Y51	55 (
	Serial Number	•	
Purge Water Disposition:	on site	Drum	
Comments			

uction Inform	nation					
Stick-up or Flush Dia						
1	2 30 15		2 30 15-2		15.30	
nformation				13		
DTW toc)			Pump Intake Depth (ft btoc): (Mid Sat. Screen Interv	al)		
58	21.58-	30	26			
ainers				6		
Type	Presen	vative	Analysis Required	Filtered?		
VOA	HL	_	VOC	~		
VOA	HC	_	Gix	N		
IL AMB	HC	-L	DX	1		
				-		
				-		
				-		
	or Flush Information DTW toc) Sainers Type VOA	or Flush Diameter (in) 2 Information DTW Saturated Interval (ft b) 21.58 aliners Type Present VOA HC VOA HC	or Flush Well Diameter (in) Total Depth (ft btoc) Z 3 0 Information DTW Saturated Screen Interval (ft bgs or btoc) S 21.58-30 aliners Type Preservative VOA HCL VOA HCL	or Flush Well Diameter (in) Total Depth (ft bdoc) Screen Interval (ft bgs or btoc) Total Depth (ft bdoc) Total Depth (ft bgs or btoc) Total Depth (ft bgs or btoc) Total Depth (ft bgs or btoc) Saturated Screen Interval (ft bgs or btoc) Pump Intake Depth (ft btoc): (Mid Sat. Screen Interval (ft bgs or btoc) Total Depth (ft bgs or btoc) Pump Intake Depth (ft btoc): (Mid Sat. Screen Interval (ft bgs or btoc) Type Preservative Analysis Required VOA HCL VOC		

Well Purge	Data									
Time	Volume Purged (L)	Purge Rate (L/min) (<0.5 L/min)	DTW (ft btoc)	Temp. (°C)	Conductivity (uS/cm)	D.O. (mg/L)	рН	ORP (mV)		mments sediment, color)
1110	Pump On		21.158	-	±3%	±10%	±0.1	±10mv	<= Stabili	zation Criteria
1115	Flowers	120	21.65	14.69	182	1.94	6.57	-108.4	clear	ODOR
1120	0 6 L	120	21.65	14.41	773	7.29	6.56	-116.0	clear	Bubble on Do sensor
11.25	1.2	120	21.65	14.66	770	4.68	6.59	-170.9	cleas	
1130	1.8	120	21.65	14.73	768	2.91	6.54	-123.5	ckar	
1135	2.4	120	21.65	14.93	772	2.36	6.54	-125.5	Clear	
1140	3.0	120	21.65	15.07	713	1.75	6.53	-127.2	ckar	
1145	3,5	100	21.65	15.14	775	1.47	6.55	- 111.\	clear	
1150	4	100	21.65	15.35	780	1.26	6.51	-114,8	Clear	
1155	4.5	100	21.65	15.25	780	1.11	6.50	-119.9	clear	
1200	5,0	100	21.65	15.18	776	1,09	6.50	- 124.6		
1205	5.5	100	21.65	15.26	776	1.06	6.49	-126.3	clear	
1210	SAMPE	ے خار								- X
7	Start Samplin	9 1210		Sample ID: 👅	2-MW-	-11(2)		Sample Time:	1210	
	End Sampling	1215	-	QA/QC Sample	ID:			QA/QC Samp	le Time:	

Note: bgs= below ground surface btoc=below top of casing DTW=depth to water

Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Well Number: CZ - MW-12/3

ate: 3/29/16

Project Name: Po	V EVP
URS Project Number:	
Sampling Information	
Field Team: MARK	TAUSCHER
Purge Method: Low	
Sampling Method: 13,A	ILER
Water Quality Meter:	Model: 451 556
	Serial Number:
Purge Water Disposition	on site drum
Comments	

Well Consti	ruction Inform	ation			
Stick-u	Stick-up or Flush		Total Depth (ft btoc)	Screen Interval (ft bgs or btoc)	
FLUS	1-1	2	50	40-50	
Monitoring	Information				
	ll DTW btoc)	Saturated Interval (ft b		Pump Intake Depth (ft btoc): (Mid Sat. Screen Inter	val)
22	.32	40-5	0	45'	•
Sample Cor	ntainers				12
Number	Туре	Preser	vative	Analysis Required	Filtered?
3	VOA	HZ	_	VOL	N
3	VOA	HC	L	VOL CIX	N
2	I L AMB	HC	<u>_</u>	DX	N
*					
			ŀ		

Well Purge	Data									
Time	Volume Purged (L)	Purge Rate (L/min) (<0.5 L/min)	DTW (ft btoc)	Temp. (°C)	Conductivity (uS/cm)	D.O. (mg/L)	рН	ORP (mV)	1	omments sediment, color)
0805	Pump On		Initial	-	±3%	±10%	±0.1	±10mv	<= Stabi	ization Criteria
0810	-hrough	200	22.32	13.81	213	12.61	7.56	11.6	cloudy	Turbid
0815	١	200	22.31	14.16	188	8.84	7.25	23.7	cloudy	
0820	2	200	22.31	13.91	185	4.98	7.13	30.0	cloudy	
0825	3	200	22.32	13.80	184	4.48	7.07	34.5	clawy	
0830	4	200	22.32	13.83	183	4.26	7.03	37.3	clowy	Slowly.
0835	5	ZOO	22.32	14.09	186	3.84	7.03	38 Z	Ac	
0640	6	200	22.32	14.18	184	3.68	7.01	38.5	AL	
0845	7	200	22.32	14.19	184	3.67	7.01	39.4	Ac	
0850	SAMP	L6								
						UT-				
	Start Samplin	9 08£	70	Sample ID:	Z-Mu	1-1213		Sample Time	0850	
	End Sampling	0903	-	QA/QC Sample	ID:	_		QA/QC Samp	ole Time:	~

Note: bgs= below ground surface btoc=below top of casing DTW=depth to water

Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Appendix BLaboratory Report and Chain-of-Custody Form

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Wednesday, April 13, 2016

Nicky Moody AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201

RE: POV FVP / 60410261

Enclosed are the results of analyses for work order <u>A6C1113</u>, which was received by the laboratory on 3/30/2016 at 3:30:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

Dunnel la final

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION									
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received					
C2-MW-9	A6C1113-01	Water	03/28/16 12:05	03/30/16 15:30					
C2-MW-9 (DUP)	A6C1113-02	Water	03/28/16 12:05	03/30/16 15:30					
C2-MW-11R	A6C1113-03	Water	03/28/16 12:10	03/30/16 15:30					
C2-MW-10R2	A6C1113-04	Water	03/28/16 13:50	03/30/16 15:30					
C2-MW-3	A6C1113-05	Water	03/29/16 08:45	03/30/16 15:30					
C2-MW-12B	A6C1113-06	Water	03/29/16 08:50	03/30/16 15:30					
C1-MW-3	A6C1113-07	Water	03/29/16 10:55	03/30/16 15:30					
C1-MW-4	A6C1113-08	Water	03/29/16 11:00	03/30/16 15:30					
C1-MW-7	A6C1113-09	Water	03/29/16 12:25	03/30/16 15:30					
Trip Blank	A6C1113-10	Water	03/28/16 00:00	03/30/16 15:30					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		Diesel an	d/or Oil Hy	drocarbons b	y NWTPH-D	×		
			Reporting	3				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C2-MW-9 (A6C1113-01)			Matrix: Wa	ater	Batch: 60400	21		
Diesel	ND	0.0952	0.190	mg/L	1	04/01/16 21:48	NWTPH-Dx	
Oil	0.311	0.190	0.381	"	"	"	"	J, F-0
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 96 %	Limits: 50-150	% "	"	"	
C2-MW-9 (DUP) (A6C1113-02)			Matrix: Wa	ater	Batch: 60400	21		
Diesel	ND	0.0952	0.190	mg/L	1	04/01/16 22:10	NWTPH-Dx	
Oil	0.342	0.190	0.381	"	"	"	"	J, F-03
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 98 %	Limits: 50-150	% "	"	"	
C2-MW-11R (A6C1113-03)			Matrix: Wa	ater	Batch: 604002	21		
Diesel	ND	0.0962	0.192	mg/L	1	04/01/16 22:32	NWTPH-Dx	
Oil	0.262	0.192	0.385	"	"	n n	"	J, F-0
Surrogate: o-Terphenyl (Surr)		Rec	overy: 102 %	Limits: 50-150	% "	"	"	
C2-MW-10R2 (A6C1113-04)			Matrix: Wa	ater	Batch: 604002	21		
Diesel	ND	0.0962	0.192	mg/L	1	04/01/16 22:54	NWTPH-Dx	
Oil	5.25	0.192	0.385	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Rec	overy: 100 %	Limits: 50-150	% "	"	"	
C2-MW-3 (A6C1113-05)			Matrix: Wa	ater	Batch: 604002	21		
Diesel	ND	0.0952	0.190	mg/L	1	04/01/16 23:16	NWTPH-Dx	
Oil	ND	0.190	0.381	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Rec	overy: 102 %	Limits: 50-150	% "	"	"	
C2-MW-12B (A6C1113-06)			Matrix: Wa	ater	Batch: 604002	21		
Diesel	ND	0.0980	0.196	mg/L	1	04/01/16 23:38	NWTPH-Dx	
Oil	0.230	0.196	0.392	"	"	"	"	J, F-1
Surrogate: o-Terphenyl (Surr)		Rec	overy: 100 %	Limits: 50-150	% "	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C2-MW-9 (A6C1113-01)			Matrix: Wa	iter B	Batch: 60400	13		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	04/01/16 21:48	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rece	overy: 100 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	"	"	"	
C2-MW-9 (DUP) (A6C1113-02)			Matrix: Wa	iter B	Batch: 60400	13		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	04/01/16 22:16	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rece	overy: 100 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
C2-MW-11R (A6C1113-03)			Matrix: Wa	iter B	Batch: 60400	13		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	04/01/16 22:44	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 98 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	
C2-MW-10R2 (A6C1113-04)			Matrix: Wa	iter B	Batch: 60310	01		
Gasoline Range Organics	0.385	0.0500	0.100	mg/L	1	03/31/16 16:47	NWTPH-Gx (MS)	F-1
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 99 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			93 %	Limits: 50-150 %	"	"	"	
C2-MW-3 (A6C1113-05)			Matrix: Wa	iter B	Batch: 60310	01		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	03/31/16 17:15	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 93 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			93 %	Limits: 50-150 %	"	"	"	
C2-MW-12B (A6C1113-06)		Matrix: Water Batch: 6040013						
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	04/01/16 23:13	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	overy: 102 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		RBDM (Compound	s (BTEX+) by E	PA 8260B			
			Reporting	· ·				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C1-MW-3 (A6C1113-07RE1)			Matrix: Wa	ater B	atch: 60400	83		
Benzene	ND	0.100	0.200	ug/L	1	04/05/16 15:39	EPA 8260B	
Toluene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Xylenes, total	ND	0.750	1.50	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr	r)	Rec	overy: 117 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			101 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			101 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)		105 %	Limits: 80-120 %	"	"	"	
C1-MW-7 (A6C1113-09RE1)			Matrix: Wa	ater B	atch: 60400	83		
Benzene	ND	0.100	0.200	ug/L	1	04/05/16 16:07	EPA 8260B	
Toluene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Xylenes, total	ND	0.750	1.50	"	"	"	"	
Methyl tert-butyl ether (MTBE)	19.3	0.500	1.00	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr	r)	Rec	overy: 118 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			101 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			103 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)		100 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Compo	ounds by	EPA 8260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C2-MW-9 (A6C1113-01)			Matrix: Water		Batch: 60400	13		
Acetone	ND	10.0	20.0	ug/L	1	04/01/16 21:48	EPA 8260B	
Benzene	ND	0.125	0.250	"	"	"	"	
Bromobenzene	ND	0.250	0.500	"	"	"	"	
Bromochloromethane	ND	0.500	1.00	"	"	"	"	
Bromodichloromethane	ND	0.500	1.00	"	"	"	"	
Bromoform	ND	0.500	1.00	"	"	"	"	
Bromomethane	ND	5.00	5.00	"	"	"	"	
2-Butanone (MEK)	ND	5.00	10.0	"	"	"	"	
n-Butylbenzene	ND	0.500	1.00	"	"	"	"	
sec-Butylbenzene	ND	0.500	1.00	"	"	"	"	
tert-Butylbenzene	ND	0.500	1.00	"	"	"	"	
Carbon tetrachloride	ND	0.250	0.500	"	"	"	"	
Chlorobenzene	ND	0.250	0.500	"	"	"	"	
Chloroethane	ND	5.00	5.00	"	"	"	"	
Chloroform	ND	0.500	1.00	"	"	"	"	
Chloromethane	ND	2.50	5.00	"	"	"	"	
2-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
4-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"	"	"	
Dibromochloromethane	ND	0.500	1.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"	"	"	
Dibromomethane	ND	0.500	1.00	"	"	"	"	
1,2-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,3-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,4-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
Dichlorodifluoromethane	ND	0.500	1.00	"	"	"	"	
1,1-Dichloroethane	ND	0.250	0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"	
1,1-Dichloroethene	ND	0.250	0.500	"	"	"	"	
cis-1,2-Dichloroethene	0.520	0.250	0.500	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"	
1,2-Dichloropropane	ND	0.250	0.500	"	"	"	"	
1,3-Dichloropropane	ND	0.500	1.00	"	"	"	"	
2,2-Dichloropropane	ND	0.500	1.00	"	"	"	"	
1,1-Dichloropropene	ND	0.500	1.00	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		volatile	Organic Con	npounds by E	PA 8260B			
	ъ .) (D)	Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
2-MW-9 (A6C1113-01)			Matrix: Wate	er Ba	atch: 60400			
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	"	EPA 8260B	
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Hexachlorobutadiene	ND	2.50	5.00	"	"	"	"	
2-Hexanone	ND	5.00	10.0	"	"	"	"	Q-31
Isopropylbenzene	ND	0.500	1.00	"	"	"	"	
4-Isopropyltoluene	ND	0.500	1.00	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	"	"	"	"	Q-31
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Methylene chloride	ND	2.50	5.00	"	"	"	"	
Naphthalene	ND	1.00	2.00	"	"	"	"	Q-31
n-Propylbenzene	ND	0.250	0.500	"	"	"	"	
Styrene	ND	0.500	1.00	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"	"	"	
Toluene	ND	0.500	1.00	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"	"	"	
Trichloroethene (TCE)	ND	0.250	0.500	"	"	"	"	
Trichlorofluoromethane	ND	1.00	2.00	"	"	"	"	
1,2,3-Trichloropropane	ND	0.500	1.00	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
Vinyl chloride	0.630	0.250	0.500	"	"	"	"	
n,p-Xylene	ND	0.500	1.00	"	"	"	"	
o-Xylene	ND	0.200	0.200	"	"	"	"	
Surrogate: Dibromofluoromethane (Su	rr)	Rec	covery: 120 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			110 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Sur	r)		95 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand by fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C2-MW-9 (DUP) (A6C1113-02RE1)			Matrix: Water	Cino	Batch: 604004			
Acetone	ND	10.0	20.0	ug/L	1	04/04/16 13:29	EPA 8260B	
Benzene	ND	0.125	0.250	"	"	"	"	
Bromobenzene	ND	0.250	0.500	"	"	"	"	
Bromochloromethane	ND	0.500	1.00	"	"	"	"	
Bromodichloromethane	ND	0.500	1.00	"	"	"	"	
Bromoform	ND	0.500	1.00	"	"	"	"	
Bromomethane	ND	5.00	5.00	"	"	"	"	
2-Butanone (MEK)	ND	5.00	10.0	"	"	"	"	
n-Butylbenzene	ND	0.500	1.00	"	"	"	"	
sec-Butylbenzene	ND	0.500	1.00	"	"	"	"	
tert-Butylbenzene	ND	0.500	1.00	"	"	"	"	
Carbon tetrachloride	ND	0.250	0.500	"	"	"	"	
Chlorobenzene	ND	0.250	0.500	"	"	"	"	
Chloroethane	ND	5.00	5.00	"	"	"	"	
Chloroform	ND	0.500	1.00	"	"	"	"	
Chloromethane	ND	2.50	5.00	"	"	"	"	
2-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
4-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"	"	"	
Dibromochloromethane	ND	0.500	1.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"	"	"	
Dibromomethane	ND	0.500	1.00	"	"	"	"	
1,2-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,3-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,4-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
Dichlorodifluoromethane	ND	0.500	1.00	"	"	"	"	Q-31
1,1-Dichloroethane	ND	0.250	0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"	
1,1-Dichloroethene	ND	0.250	0.500	"	"	"	"	
cis-1,2-Dichloroethene	1.04	0.250	0.500	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"	
1,2-Dichloropropane	ND	0.250	0.500	"	"	"	"	
1,3-Dichloropropane	ND	0.500	1.00	"	"	"	"	
2,2-Dichloropropane	ND	0.500	1.00	"	"	"	"	
1,1-Dichloropropene	ND	0.500	1.00	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		volatile	Organic Con	npounds by E	PA 8260B			
	D l4	MDI	Reporting		D'''	D	M.d. 1	N
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C2-MW-9 (DUP) (A6C1113-02RE1)			Matrix: Wate		atch: 60400			
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	"	EPA 8260B	Q-31
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Hexachlorobutadiene	ND	2.50	5.00	"	"	"	"	
2-Hexanone	ND	5.00	10.0	"	"	"	"	Q-31
Isopropylbenzene	ND	0.500	1.00	"	"	"	"	
4-Isopropyltoluene	ND	0.500	1.00	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	"	"	"	"	Q-30
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Methylene chloride	ND	2.50	5.00	"	"	"	"	
Naphthalene	ND	1.00	2.00	"	"	"	"	Q-30
n-Propylbenzene	ND	0.250	0.500	"	"	"	"	
Styrene	ND	0.500	1.00	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"	"	"	
Toluene	ND	0.500	1.00	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"	"	"	
Trichloroethene (TCE)	ND	0.250	0.500	"	"	"	"	
Trichlorofluoromethane	ND	1.00	2.00	"	"	"	"	
1,2,3-Trichloropropane	ND	0.500	1.00	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
Vinyl chloride	0.500	0.250	0.500	"	"	"	"	
n,p-Xylene	ND	0.500	1.00	"	"	"	"	
o-Xylene	ND	0.200	0.200	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Rec	overy: 118 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			108 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			99 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			97 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ommel la finiel

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		<u>Volatile</u>	Organic Compo	Volatile Organic Compounds by EPA 8260B											
			Reporting												
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes							
2-MW-11R (A6C1113-03RE1)			Matrix: Water		Batch: 604004	43									
Acetone	ND	10.0	20.0	ug/L	1	04/04/16 13:57	EPA 8260B								
Benzene	ND	0.125	0.250	"	"	"	"								
Bromobenzene	ND	0.250	0.500	"	"	"	"								
Bromochloromethane	ND	0.500	1.00	"	"	"	"								
Bromodichloromethane	ND	0.500	1.00	"	"	"	"								
Bromoform	ND	0.500	1.00	"	"	"	"								
Bromomethane	ND	5.00	5.00	"	"	"	"								
2-Butanone (MEK)	ND	5.00	10.0	"	"	"	"								
n-Butylbenzene	ND	0.500	1.00	"	"	"	"								
sec-Butylbenzene	ND	0.500	1.00	"	"	"	"								
tert-Butylbenzene	ND	0.500	1.00	"	"	"	"								
Carbon tetrachloride	ND	0.250	0.500	"	"	"	"								
Chlorobenzene	ND	0.250	0.500	"	"	"	"								
Chloroethane	ND	5.00	5.00	"	"	"	"								
Chloroform	ND	0.500	1.00	"	"	"	"								
Chloromethane	ND	2.50	5.00	"	"	"	"								
2-Chlorotoluene	ND	0.500	1.00	"	"	"	"								
1-Chlorotoluene	ND	0.500	1.00	"	"	"	"								
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"	"	"								
Dibromochloromethane	ND	0.500	1.00	"	"	"	"								
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"	"	"								
Dibromomethane	ND	0.500	1.00	"	"	"	"								
1,2-Dichlorobenzene	ND	0.250	0.500	"	"	"	"								
1,3-Dichlorobenzene	ND	0.250	0.500	"	"	"	"								
1,4-Dichlorobenzene	ND	0.250	0.500	"	"	"	"								
Dichlorodifluoromethane	ND	0.500	1.00	"	"	"	"	Q-31							
1,1-Dichloroethane	ND	0.250	0.500	"	"	"	"								
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"								
1,1-Dichloroethene	ND	0.250	0.500	"	"	"	"								
cis-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"								
rans-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"								
1,2-Dichloropropane	ND	0.250	0.500	"	"	,,	"								
1,3-Dichloropropane	ND	0.500	1.00	"	"	"	"								
2,2-Dichloropropane	ND	0.500	1.00	"	"	"	"								
1,1-Dichloropropene	ND ND	0.500	1.00	"	"	"	"								

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		voiatile	Organic Con	npounds by E	ra 0200B			
A 1.	D - 14	MDI	Reporting		D21 - 2	D . A	M.d. 1	N T (
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C2-MW-11R (A6C1113-03RE1)			Matrix: Wate		atch: 60400			
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	"	EPA 8260B	Q-31
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Hexachlorobutadiene	ND	2.50	5.00	"	"	"	"	
2-Hexanone	ND	5.00	10.0	"	"	"	"	Q-31
Isopropylbenzene	ND	0.500	1.00	"	"	"	"	
4-Isopropyltoluene	ND	0.500	1.00	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	"	"	"	"	Q-30
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Methylene chloride	ND	2.50	5.00	"	"	"	"	
Naphthalene	ND	1.00	2.00	"	"	"	"	Q-30
n-Propylbenzene	ND	0.250	0.500	"	"	"	"	
Styrene	ND	0.500	1.00	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"	"	"	
Toluene	ND	0.500	1.00	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"	"	"	
Trichloroethene (TCE)	ND	0.250	0.500	"	"	"	"	
Trichlorofluoromethane	ND	1.00	2.00	"	"	"	"	
1,2,3-Trichloropropane	ND	0.500	1.00	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
Vinyl chloride	0.940	0.250	0.500	"	"	"	"	
m,p-Xylene	ND	0.500	1.00	"	"	"	"	
o-Xylene	ND	0.200	0.200	"	"	"	"	
Surrogate: Dibromofluoromethane (Sur	<i>r)</i>	Rec	covery: 119 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			106 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Suri	r)		95 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Compo	ounds by	EPA 8260B			
		,	Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C2-MW-12B (A6C1113-06)			Matrix: Water		Batch: 60400	13		
Acetone	ND	10.0	20.0	ug/L	1	04/01/16 23:13	EPA 8260B	
Benzene	ND	0.125	0.250	"	"	"	"	
Bromobenzene	ND	0.250	0.500	"	"	"	"	
Bromochloromethane	ND	0.500	1.00	"	"	"	"	
Bromodichloromethane	ND	0.500	1.00	"	"	"	"	
Bromoform	ND	0.500	1.00	"	"	"	"	
Bromomethane	ND	5.00	5.00	"	"	"	"	
2-Butanone (MEK)	ND	5.00	10.0	"	"	"	"	
n-Butylbenzene	ND	0.500	1.00	"	"	"	"	
sec-Butylbenzene	ND	0.500	1.00	"	"	"	"	
tert-Butylbenzene	ND	0.500	1.00	"	"	"	"	
Carbon tetrachloride	ND	0.250	0.500	"	"	"	"	
Chlorobenzene	ND	0.250	0.500	"	"	"	"	
Chloroethane	ND	5.00	5.00	"	"	"	"	
Chloroform	ND	0.500	1.00	"	"	"	"	
Chloromethane	ND	2.50	5.00	"	"	"	"	
2-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
4-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"	"	"	
Dibromochloromethane	ND	0.500	1.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"	"	"	
Dibromomethane	ND	0.500	1.00	"	"	"	"	
1,2-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,3-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,4-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
Dichlorodifluoromethane	ND	0.500	1.00	"	"	"	"	
1,1-Dichloroethane	ND	0.250	0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"	
1,1-Dichloroethene	ND	0.250	0.500	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"	
1,2-Dichloropropane	ND	0.250	0.500	"	"	"	"	
1,3-Dichloropropane	ND	0.500	1.00	"	"	"	"	
2,2-Dichloropropane	ND	0.500	1.00	"	"	"	"	
1,1-Dichloropropene	ND	0.500	1.00	"	,,	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		voiatile		npounds by E	. A 0200B			
Analyte	Result	MDL	Reporting Limit	Limita	Dilution	Date Analyzed	Method	Notes
C2-MW-12B (A6C1113-06)			Matrix: Wate	Units	atch: 60400		ouiou	110103
cis-1,3-Dichloropropene	ND	0.500	1.00		1	"	EPA 8260B	
				ug/L	1	,,	EPA 8200B	
trans-1,3-Dichloropropene	ND	0.500	1.00	,,	"	"	"	
Ethylbenzene Hexachlorobutadiene	ND	0.250	0.500	"	"	,,	"	
	ND	2.50	5.00	,,	"	"	"	0.21
2-Hexanone	ND	5.00	10.0	,,	"		,,	Q-31
Isopropylbenzene	ND	0.500	1.00	"	"	"	"	
4-Isopropyltoluene	ND	0.500	1.00	"	"	"	"	0.21
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	"	"	"	"	Q-31
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Methylene chloride	ND	2.50	5.00	"	"	"	"	
Naphthalene	ND	1.00	2.00					Q-31
n-Propylbenzene	ND	0.250	0.500	"	"	"	"	
Styrene	ND	0.500	1.00	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"	"	"	
Toluene	ND	0.500	1.00	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"	"	"	
Trichloroethene (TCE)	ND	0.250	0.500	"	"	"	"	
Trichlorofluoromethane	ND	1.00	2.00	"	"	"	"	
1,2,3-Trichloropropane	ND	0.500	1.00	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
Vinyl chloride	ND	0.250	0.500	"	"	"	"	
m,p-Xylene	ND	0.500	1.00	"	"	"	"	
o-Xylene	ND	0.200	0.200	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr	•)	Rec	overy: 122 %	Limits: 80-120 %	"	"	11	S-06
I,4-Difluorobenzene (Surr)				Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			98 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr))		93 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand to finish

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Compo	ounds by	EPA 8260B			
	D 1	MDI	Reporting		D.111		M.d. 1	3. 7 .
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C1-MW-4 (A6C1113-08)			Matrix: Water		Batch: 604004			
Acetone	ND	10.0	20.0	ug/L	1	04/04/16 15:22	EPA 8260B	
Benzene	ND	0.125	0.250	"	"	"	"	
Bromobenzene	ND	0.250	0.500	"	"	"	"	
Bromochloromethane	ND	0.500	1.00	"	"	"	"	
Bromodichloromethane	ND	0.500	1.00	"	"	"	"	
Bromoform	ND	0.500	1.00	"	"	"	"	
Bromomethane	ND	5.00	5.00	"	"	"	"	
2-Butanone (MEK)	ND	5.00	10.0	"	"	"	"	
n-Butylbenzene	ND	0.500	1.00	"	"	"	"	
sec-Butylbenzene	ND	0.500	1.00	"	"	"	"	
tert-Butylbenzene	ND	0.500	1.00	"	"	"	"	
Carbon tetrachloride	ND	0.250	0.500	"	"	"	"	
Chlorobenzene	ND	0.250	0.500	"	"	"	"	
Chloroethane	ND	5.00	5.00	"	"	"	"	
Chloroform	ND	0.500	1.00	"	"	"	"	
Chloromethane	ND	2.50	5.00	"	"	"	"	
2-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
4-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"	"	"	
Dibromochloromethane	ND	0.500	1.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"	"	"	
Dibromomethane	ND	0.500	1.00	"	n n	"	"	
1,2-Dichlorobenzene	ND	0.250	0.500	"	n n	"	"	
1,3-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,4-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
Dichlorodifluoromethane	ND	0.500	1.00	"	"	"	"	Q-3
1,1-Dichloroethane	1.27	0.250	0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"	
1,1-Dichloroethene	0.510	0.250	0.500	"	"	"	"	
cis-1,2-Dichloroethene	2.32	0.250	0.500	"	"	"	"	
rans-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"	
1,2-Dichloropropane	ND	0.250	0.500	"	"	"	"	
1,3-Dichloropropane	ND	0.500	1.00	"	"	"	"	
2,2-Dichloropropane	ND	0.500	1.00	"	"	"	"	
1,1-Dichloropropene	ND	0.500	1.00	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		voiatiiė		npounds by E	FM 020UB			
Analyte	Result	MDL	Reporting Limit	11. 2	Dilution	Date Analyzed	Method	Notes
C1-MW-4 (A6C1113-08)	Result	MIDE		Units	atch: 60400		Method	110105
) ID	0.500	Matrix: Wate			43	EDA 02/0D	0.23
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1 "	"	EPA 8260B	Q-31
trans-1,3-Dichloropropene	ND	0.500	1.00		"	"	"	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Hexachlorobutadiene	ND	2.50	5.00	"				
2-Hexanone	ND	5.00	10.0	"	"	"	"	Q-31
Isopropylbenzene	ND	0.500	1.00	"		"	"	
4-Isopropyltoluene	ND	0.500	1.00	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	"	"	"	"	Q-30
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Methylene chloride	ND	2.50	5.00	"	"	"	"	
Naphthalene	ND	1.00	2.00	"	"	"	"	Q-30
n-Propylbenzene	ND	0.250	0.500	"	"	"	"	
Styrene	ND	0.500	1.00	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"	"	"	
Toluene	0.810	0.500	1.00	"	"	"	"	J
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"	"	"	
Trichloroethene (TCE)	0.350	0.250	0.500	"	"	"	"	J
Trichlorofluoromethane	ND	1.00	2.00	"	"	"	"	
1,2,3-Trichloropropane	ND	0.500	1.00	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
Vinyl chloride	0.490	0.250	0.500	"	"	"	"	J
m,p-Xylene	ND	0.500	1.00	"	"	"	"	
o-Xylene	ND	0.200	0.200	"	"	"	11	
Surrogate: Dibromofluoromethane (St	urr)	Rec	covery: 120 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr))		108 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Su	rr)		95 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand by famil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		volatile	Organic Compo	ounds by	EPA 8260B			
	n k	MDI	Reporting				N. 4. 1	
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
rip Blank (A6C1113-10)			Matrix: Water		Batch: 60400			
Acetone	ND	10.0	20.0	ug/L	1	04/01/16 21:20	EPA 8260B	
Benzene	ND	0.125	0.250	"	"	"	"	
Bromobenzene	ND	0.250	0.500	"	"	"	"	
Bromochloromethane	ND	0.500	1.00	"	"	"	"	
Bromodichloromethane	ND	0.500	1.00	"	"	"	"	
Bromoform	ND	0.500	1.00	"	"	"	"	
Bromomethane	ND	5.00	5.00	"	"	"	"	
2-Butanone (MEK)	ND	5.00	10.0	"	"	"	"	
n-Butylbenzene	ND	0.500	1.00	"	"	"	"	
sec-Butylbenzene	ND	0.500	1.00	"	"	"	"	
tert-Butylbenzene	ND	0.500	1.00	"	"	"	"	
Carbon tetrachloride	ND	0.250	0.500	"	"	"	"	
Chlorobenzene	ND	0.250	0.500	"	"	"	"	
Chloroethane	ND	5.00	5.00	"	"	"	"	
Chloroform	ND	0.500	1.00	"	"	"	"	
Chloromethane	ND	2.50	5.00	"	"	"	"	
2-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
4-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"	"	"	
Dibromochloromethane	ND	0.500	1.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"	"	"	
Dibromomethane	ND	0.500	1.00	"	"	"	"	
1,2-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,3-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,4-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
Dichlorodifluoromethane	ND	0.500	1.00	"	"	"	"	
1,1-Dichloroethane	ND	0.250	0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"	
1,1-Dichloroethene	ND	0.250	0.500	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"	
1,2-Dichloropropane	ND	0.250	0.500	"	"	"	"	
1,3-Dichloropropane	ND	0.500	1.00	"	"	"	"	
2,2-Dichloropropane	ND	0.500	1.00	"	"	"	"	
1,1-Dichloropropene	ND	0.500	1.00	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Con	npounds by E	PA 8260B			
	D	, m,	Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
rip Blank (A6C1113-10)			Matrix: Wate	er Ba	atch: 60400			
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	"	EPA 8260B	
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Hexachlorobutadiene	ND	2.50	5.00	"	"	"	"	
2-Hexanone	ND	5.00	10.0	"	"	"	"	Q-31
Isopropylbenzene	ND	0.500	1.00	"	"	"	"	
4-Isopropyltoluene	ND	0.500	1.00	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	"	"	"	"	Q-31
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Methylene chloride	ND	2.50	5.00	"	"	"	"	
Naphthalene	ND	1.00	2.00	"	"	"	"	Q-31
n-Propylbenzene	ND	0.250	0.500	"	"	"	"	
Styrene	ND	0.500	1.00	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"	"	"	
Toluene	ND	0.500	1.00	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"	"	"	
Trichloroethene (TCE)	ND	0.250	0.500	"	"	"	"	
Trichlorofluoromethane	ND	1.00	2.00	"	"	"	"	
1,2,3-Trichloropropane	ND	0.500	1.00	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
Vinyl chloride	ND	0.250	0.500	"	"	"	"	
n,p-Xylene	ND	0.500	1.00	"	"	"	"	
o-Xylene	ND	0.200	0.200	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Rec	covery: 120 %	Limits: 80-120 %	"	"	11	
1,4-Difluorobenzene (Surr)			109 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			96 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cham I be fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/	or Oil Hyd	rocarbo	ns by NWT	PH-Dx					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040021 - EPA 3510	0C (Fuels/A	cid Ext.)					Wat	ter				
Blank (6040021-BLK1)				Pre	pared: 04/	01/16 10:07	Analyzed:	04/01/16 20	:43			
NWTPH-Dx												
Diesel	ND	0.0909	0.182	mg/L	1							
Oil	ND	0.182	0.364	"	"							
Surr: o-Terphenyl (Surr)		Rec	overy: 99 %	Limits: 50	-150 %	Dilu	tion: 1x					
LCS (6040021-BS1)				Pre	pared: 04/	01/16 10:07	Analyzed:	04/01/16 21	:05			
NWTPH-Dx												
Diesel	1.08	0.100	0.200	mg/L	1	1.25		86	58-115%			
Surr: o-Terphenyl (Surr)		Reco	very: 103 %	Limits: 50	-150 %	Dilu	ution: 1x					
LCS Dup (6040021-BSD1)				Pre	pared: 04/	01/16 10:07	Analyzed:	04/01/16 21	:26			Q-19
NWTPH-Dx												
Diesel	1.10	0.100	0.200	mg/L	1	1.25		88	58-115%	2	20%	
Surr: o-Terphenyl (Surr)		Reco	very: 104 %	Limits: 50	-150 %	Dilu	ition: 1x					

Apex Laboratories

Quand by fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolin	e Range F	lydrocarbo	ons (Benz	ene thro	ough Napht	halene) l	by NWTF	PH-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6031001 - EPA 5030	В						Wat	ter				
Blank (6031001-BLK1)				Pre	pared: 03/	31/16 11:55	Analyzed:	03/31/16 1	4:53			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 95 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			93 %	50	-150 %		"					
LCS (6031001-BS2)				Pre	pared: 03/	31/16 11:55	Analyzed:	03/31/16 1	4:25			
NWTPH-Gx (MS)												
Gasoline Range Organics	0.458	0.0500	0.100	mg/L	1	0.500		92	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 88 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			94 %	50	-150 %		"					

Apex Laboratories

Quand la finil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolin	e Range F	lydrocarbo	ons (Benz	ene thro	ough Napht	thalene)	by NWTF	PH-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040013 - EPA 5030	В						Wat	ter				
Blank (6040013-BLK1)				Pre	epared: 04/	/01/16 11:25	Analyzed:	04/01/16 1	4:15			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 95 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			96 %	50	-150 %		"					
LCS (6040013-BS2)				Pre	epared: 04/	/01/16 11:25	Analyzed:	04/01/16 1	3:47			
NWTPH-Gx (MS)												
Gasoline Range Organics	0.456	0.0500	0.100	mg/L	1	0.500		91	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 89 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			96 %	50	-150 %		"					

Apex Laboratories

Dund by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			RBDM Co	mpounds	(BLEX+) by EPA 8	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040043 - EPA 5030E	3						Wat	ter				
Blank (6040043-BLK1)				Prep	ared: 04/	04/16 09:21	Analyzed:	04/04/16 1	2:32			
EPA 8260B												
Benzene	ND	0.100	0.200	ug/L	1							
Toluene	ND	0.500	1.00	"	"							
Ethylbenzene	ND	0.250	0.500	"	"							
Xylenes, total	ND	0.750	1.50	"	"							
Naphthalene	ND	1.00	2.00	"	"							Q-30
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"							
Isopropylbenzene	ND	0.500	1.00	"	"							
n-Propylbenzene	ND	0.250	0.500	"	"							
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"							
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"							
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"							
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"							
Surr: Dibromofluoromethane (Surr)		Rec	overy: 116 %	Limits: 80-	120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			107 %		120 %		"					
Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)			98 % 97 %		120 % 120 %		"					
4-Бготојшоговенгене (Surr)			9/ 70	00-1	120 70							
LCS (6040043-BS1)				Prep	oared: 04/	04/16 09:21	Analyzed:	04/04/16 1	1:35			
EPA 8260B												
Benzene	21.5	0.100	0.200	ug/L	1	20.0		108	70-130%			
Toluene	21.5	0.500	1.00	"	"	"		107	"			
Ethylbenzene	21.8	0.250	0.500	"	"	"		109	"			
Xylenes, total	64.5	0.750	1.50	"	"	60.0		107	"			
Naphthalene	12.4	1.00	2.00	"	"	20.0		62	"			Q-30
Methyl tert-butyl ether (MTBE)	18.5	0.500	1.00	"	"	"		92	"			
Isopropylbenzene	21.4	0.500	1.00	"	"	"		107	"			
n-Propylbenzene	21.6	0.250	0.500	"	"	"		108	"			
1,2,4-Trimethylbenzene	21.8	0.500	1.00	"	"	"		109	"			
1,3,5-Trimethylbenzene	22.0	0.500	1.00	"	"	"		110	"			
1,2-Dibromoethane (EDB)	21.4	0.250	0.500	"	"	"		107	"			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund by finil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number: 60410261
 Reported:

 Portland, OR 97201
 Project Manager: Nicky Moody
 04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			RBDM Co	mpounds	(BTEX+) by EPA 8	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040043 - EPA 5030E	3						Wat	er				
LCS (6040043-BS1)				Pre	pared: 04/	04/16 09:21	Analyzed:	04/04/16 11	:35			
1,2-Dichloroethane (EDC)	20.9	0.250	0.500	ug/L	"	"		104	"			
Surr: Dibromofluoromethane (Surr)		Reco	very: 104 %	Limits: 80-	-120 %	Dilı	ution: Ix					
1,4-Difluorobenzene (Surr)			99 %	80-	120 %		"					
Toluene-d8 (Surr)			94 %		120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80-	120 %		"					
Duplicate (6040043-DUP1)				Pre	pared: 04/	04/16 10:39	Analyzed:	04/04/16 16	:18			
QC Source Sample: C1-MW-7 (A6C	C1113-09)											
EPA 8260B												
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Toluene	ND	0.500	1.00	"	"		ND				30%	
Ethylbenzene	ND	0.250	0.500	"	"		ND				30%	
Xylenes, total	ND	0.750	1.50	"	"		ND				30%	
Naphthalene	ND	1.00	2.00	"	"		ND				30%	Q-30
Methyl tert-butyl ether	15.0	0.500	1.00	"	"		16.2			8	30%	
(MTBE)				,,	"							
Isopropylbenzene	ND	0.500	1.00		"		ND				30%	
n-Propylbenzene	ND	0.250	0.500	"			ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"		ND				30%	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"		ND				30%	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"		ND				30%	
Surr: Dibromofluoromethane (Surr)		Reco	very: 121 %	Limits: 80-	-120 %	Dilı	ution: 1x					S-06
1,4-Difluorobenzene (Surr)			110 %	80-	120 %		"					
Toluene-d8 (Surr)			96 %		120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80-	120 %		"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			RBDM Co			-						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch 6040083 - EPA 5030B	3						Wat	er				
Blank (6040083-BLK1)				Prep	ared: 04/	05/16 10:07	Analyzed: (04/05/16 1	2:24			
EPA 8260B												
Benzene	ND	0.100	0.200	ug/L	1							
Toluene	ND	0.500	1.00	"	"							
Ethylbenzene	ND	0.250	0.500	"	"							
Xylenes, total	ND	0.750	1.50	"	"							
Naphthalene	ND	1.00	2.00	"	"							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"							
Isopropylbenzene	ND	0.500	1.00	"	"							
n-Propylbenzene	ND	0.250	0.500	"	"							
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"							
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"							
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"							
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"							
Surr: Dibromofluoromethane (Surr)		Reco	very: 112 %	Limits: 80-	120 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			100 %		20 %		"					
Toluene-d8 (Surr)			101 %		20 %		"					
4-Bromofluorobenzene (Surr)			99 %	80-1	20 %		"					
LCS (6040083-BS1)				Prep	ared: 04/	05/16 10:07	Analyzed:	04/05/16 1	1:28			
EPA 8260B												
Benzene	19.5	0.100	0.200	ug/L	1	20.0		98	70-130%			
Toluene	19.3	0.500	1.00	"	"	"		97	"			
Ethylbenzene	20.2	0.250	0.500	"	"	"		101	"			
Xylenes, total	63.1	0.750	1.50	"	"	60.0		105	"			
Naphthalene	18.7	1.00	2.00	"	"	20.0		94	"			
Methyl tert-butyl ether (MTBE)	21.6	0.500	1.00	"	"	"		108	"			
Isopropylbenzene	19.7	0.500	1.00	"	"	"		99	"			
n-Propylbenzene	19.6	0.250	0.500	"	"	"		98	"			
1,2,4-Trimethylbenzene	21.8	0.500	1.00	"	"	"		109	"			
1,3,5-Trimethylbenzene	21.5	0.500	1.00	"	"	"		108	"			
1,2-Dibromoethane (EDB)	20.0	0.250	0.500	"	"	"		100	"			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la finil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			RBDM Co	mpounds	(BTEX+) by EPA 82	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040083 - EPA 5030E	3						Wat	er				
LCS (6040083-BS1)				Pre	epared: 04/	05/16 10:07	Analyzed:	04/05/16 11	:28			
1,2-Dichloroethane (EDC)	22.9	0.250	0.500	ug/L	"	"		114	"			
Surr: Dibromofluoromethane (Surr)		Rec	covery: 99 %	Limits: 80	-120 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Surr)			96 %	80	-120 %		"					
Toluene-d8 (Surr)			95 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					

Apex Laboratories

Quand to buil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npound	s by EPA 8	3260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040013 - EPA 503	0B						Wat	er				
Blank (6040013-BLK1)				Prej	pared: 04/0	01/16 11:25	Analyzed: (04/01/16 14	:15			
EPA 8260B												
Acetone	ND	10.0	20.0	ug/L	1							
Benzene	ND	0.100	0.200	"	"							
Bromobenzene	ND	0.250	0.500	"	"							
Bromochloromethane	ND	0.500	1.00	"	"							
Bromodichloromethane	ND	0.500	1.00	"	"							
Bromoform	ND	0.500	1.00	"	"							
Bromomethane	ND	5.00	5.00	"	"							
2-Butanone (MEK)	ND	5.00	10.0	"	"							
n-Butylbenzene	ND	0.500	1.00	"	"							
sec-Butylbenzene	ND	0.500	1.00	"	"							
ert-Butylbenzene	ND	0.500	1.00	"	"							
Carbon tetrachloride	ND	0.250	0.500	"	"							
Chlorobenzene	ND	0.250	0.500	"	"							
Chloroethane	ND	5.00	5.00	"	"							
Chloroform	ND	0.500	1.00	"	"							
Chloromethane	ND	2.50	5.00	"	"							
2-Chlorotoluene	ND	0.500	1.00	"	"							
4-Chlorotoluene	ND	0.500	1.00	"	"							
1,2-Dibromo-3-chloroprop	ND	2.50	5.00	"	"							
ane	NID	0.500	1.00	"	,,							
Dibromochloromethane	ND	0.500	1.00	"	"							
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"							
Dibromomethane	ND	0.500	1.00	"	,,							
1,2-Dichlorobenzene	ND	0.250	0.500	"	"							
1,3-Dichlorobenzene	ND	0.250	0.500	"	"							
1,4-Dichlorobenzene	ND	0.250	0.500		"							
Dichlorodifluoromethane	ND	0.500	1.00	"								
1,1-Dichloroethane	ND	0.250	0.500	"	"							
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"							
1,1-Dichloroethene	ND	0.250	0.500	"	"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la finil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpound	s by EPA 8	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040013 - EPA 503	0B						Wat	er				
Blank (6040013-BLK1)				Pre	epared: 04/	01/16 11:25	Analyzed:	04/01/16 14	:15			
cis-1,2-Dichloroethene	ND	0.250	0.500	ug/L	"							
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"							
1,2-Dichloropropane	ND	0.250	0.500	"	"							
1,3-Dichloropropane	ND	0.500	1.00	"	"							
2,2-Dichloropropane	ND	0.500	1.00	"	"							
1,1-Dichloropropene	ND	0.500	1.00	"	"							
cis-1,3-Dichloropropene	ND	0.500	1.00	"	"							
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"							
Ethylbenzene	ND	0.250	0.500	"	"							
Hexachlorobutadiene	ND	2.50	5.00	"	"							
2-Hexanone	ND	5.00	10.0	"	"							Q-31
Isopropylbenzene	ND	0.500	1.00	"	"							
4-Isopropyltoluene	ND	0.500	1.00	"	"							
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	"	"							Q-31
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"							
Methylene chloride	ND	1.50	3.00	"	"							
Naphthalene	ND	1.00	2.00	"	"							Q-31
n-Propylbenzene	ND	0.250	0.500	"	"							
Styrene	ND	0.500	1.00	"	"							
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"							
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"							
Toluene	ND	0.500	1.00	"	"							
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"							
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"							
1,1,1-Trichloroethane	ND	0.250	0.500	"	"							
1,1,2-Trichloroethane	ND	0.250	0.500	"	"							
Trichloroethene (TCE)	ND	0.250	0.500	"	"							
Trichlorofluoromethane	ND	1.00	2.00	"	"							
1,2,3-Trichloropropane	ND	0.500	1.00	"	"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la famil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			Reporting			Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040013 - EPA 5030E	3						Wat	er				
Blank (6040013-BLK1)				Prep	oared: 04/	01/16 11:25	Analyzed:	04/01/16 1	4:15			
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"							
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"							
Vinyl chloride	ND	0.250	0.500	"	"							
m,p-Xylene	ND	0.500	1.00	"	"							
o-Xylene	ND	0.200	0.200	"	"							
Surr: Dibromofluoromethane (Surr)		Reco	very: 114 %	Limits: 80-		Dilu	ution: 1x					
1,4-Difluorobenzene (Surr)			106 %		120 %		"					
Toluene-d8 (Surr)			96 %		120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	120 %		"					
LCS (6040013-BS1)				Prep	oared: 04/	01/16 11:25	Analyzed:	04/01/16 1	3:19			
EPA 8260B												
Acetone	32.7	10.0	20.0	ug/L	1	40.0		82	70-130%			
Benzene	21.3	0.100	0.200	"	"	20.0		107	"			
Bromobenzene	22.1	0.250	0.500	"	"	"		111	"			
Bromochloromethane	19.5	0.500	1.00	"	"	"		98	"			
Bromodichloromethane	21.1	0.500	1.00	"	"	"		106	"			
Bromoform	20.0	0.500	1.00	"	"	"		100	"			
Bromomethane	19.2	5.00	5.00	"	"	"		96	"			
2-Butanone (MEK)	32.6	5.00	10.0	"	"	40.0		82	"			
n-Butylbenzene	20.6	0.500	1.00	"	"	20.0		103	"			
sec-Butylbenzene	23.2	0.500	1.00	"	"	"		116	"			
tert-Butylbenzene	20.6	0.500	1.00	"	"	"		103	"			
Carbon tetrachloride	22.4	0.250	0.500	"	"	"		112	"			
Chlorobenzene	23.6	0.250	0.500	"	"	"		118	"			
Chloroethane	22.2	5.00	5.00	"	"	"		111	"			
Chloroform	20.7	0.500	1.00	"	"	"		104	"			
Chloromethane	22.6	2.50	5.00	"	"	"		113	"			
2-Chlorotoluene	22.7	0.500	1.00	"	"	"		113	"			
4-Chlorotoluene	20.9	0.500	1.00	"	"	"		105	"			
1,2-Dibromo-3-chloroprop	16.2	2.50	5.00	"	"	"		81	"			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npound	s by EPA 8	3260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040013 - EPA 503	0B						Wat	ter				
LCS (6040013-BS1)				Pre	pared: 04/0	01/16 11:25	Analyzed:	04/01/16 13	:19			
Dibromochloromethane	21.8	0.500	1.00	ug/L	"	"		109	"			
1,2-Dibromoethane (EDB)	21.7	0.250	0.500	"	"	"		108	"			
Dibromomethane	23.6	0.500	1.00	"	"	"		118	"			
1,2-Dichlorobenzene	21.7	0.250	0.500	"	"	"		108	"			
1,3-Dichlorobenzene	22.7	0.250	0.500	"	"	"		114	"			
1,4-Dichlorobenzene	22.5	0.250	0.500	"	"	"		113	"			
Dichlorodifluoromethane	18.8	0.500	1.00	"	"	"		94	"			
1,1-Dichloroethane	21.0	0.250	0.500	"	"	"		105	"			
1,2-Dichloroethane (EDC)	20.1	0.250	0.500	"	"	"		100	"			
1,1-Dichloroethene	22.3	0.250	0.500	"	"	"		111	"			
cis-1,2-Dichloroethene	19.2	0.250	0.500	"	"	"		96	"			
trans-1,2-Dichloroethene	20.4	0.250	0.500	"	"	"		102	"			
1,2-Dichloropropane	20.0	0.250	0.500	"	"	"		100	"			
1,3-Dichloropropane	20.0	0.500	1.00	"	"	"		100	"			
2,2-Dichloropropane	14.7	0.500	1.00	"	"	"		74	"			
1,1-Dichloropropene	20.6	0.500	1.00	"	"	"		103	"			
cis-1,3-Dichloropropene	15.0	0.500	1.00	"	"	"		75	"			
trans-1,3-Dichloropropene	16.0	0.500	1.00	"	"	"		80	"			
Ethylbenzene	22.3	0.250	0.500	"	"	"		112	"			
Hexachlorobutadiene	19.4	2.50	5.00	"	"	"		97	"			
2-Hexanone	20.5	5.00	10.0	"	"	40.0		51	"			Q-31
Isopropylbenzene	22.2	0.500	1.00	"	"	20.0		111	"			
4-Isopropyltoluene	21.9	0.500	1.00	"	"	"		110	"			
4-Methyl-2-pentanone (MiBK)	27.1	5.00	10.0	"	"	40.0		68	"			Q-31
Methyl tert-butyl ether (MTBE)	17.7	0.500	1.00	"	"	20.0		88	"			
Methylene chloride	22.7	1.50	3.00	"	"	"		113	"			
Naphthalene	11.8	1.00	2.00	"	"	"		59	"			Q-31
n-Propylbenzene	22.3	0.250	0.500	"	"	"		112	"			
Styrene	22.2	0.500	1.00	"	"	"		111	"			
1,1,1,2-Tetrachloroethane	22.8	0.250	0.500	"	"	"		114	"			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpound	s by EPA 8	3260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040013 - EPA 5030	В						Wat	er				
LCS (6040013-BS1)				Pro	epared: 04/	01/16 11:25	Analyzed:	04/01/16 13	:19			
1,1,2,2-Tetrachloroethane	22.0	0.250	0.500	"	"	"		110	"			
Tetrachloroethene (PCE)	25.6	0.250	0.500	"	"	"		128	"			
Toluene	22.0	0.500	1.00	"	"	"		110	"			
1,2,3-Trichlorobenzene	16.1	1.00	2.00	"	"	"		80	"			
1,2,4-Trichlorobenzene	15.6	1.00	2.00	"	"	"		78	"			
1,1,1-Trichloroethane	21.5	0.250	0.500	"	"	"		107	"			
1,1,2-Trichloroethane	22.6	0.250	0.500	"	"	"		113	"			
Trichloroethene (TCE)	23.5	0.250	0.500	"	"	"		117	"			
Trichlorofluoromethane	25.7	1.00	2.00	"	"	"		129	"			
1,2,3-Trichloropropane	21.2	0.500	1.00	"	"	"		106	"			
1,2,4-Trimethylbenzene	22.0	0.500	1.00	"	"	"		110	"			
1,3,5-Trimethylbenzene	22.7	0.500	1.00	"	"	"		113	"			
Vinyl chloride	22.5	0.250	0.500	"	"	"		113	"			
m,p-Xylene	45.2	0.500	1.00	"	"	40.0		113	"			
o-Xylene	20.3	0.200	0.200	"	"	20.0		101	"			
Surr: Dibromofluoromethane (Surr)		Reco	very: 103 %	Limits: 80	0-120 %	Dili	ution: 1x					
1,4-Difluorobenzene (Surr)			99 %	80	0-120 %		"					
Toluene-d8 (Surr)			96 %		0-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80)-120 %		"					

Apex Laboratories

Quand to buil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			Reporting			Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040043 - EPA 503	0B						Wat	er				
Blank (6040043-BLK1)				Pre	pared: 04/0	04/16 09:21	Analyzed:	04/04/16 12	:32			
EPA 8260B												
Acetone	ND	10.0	20.0	ug/L	1							
Benzene	ND	0.100	0.200	"	"							
Bromobenzene	ND	0.250	0.500	"	"							
Bromochloromethane	ND	0.500	1.00	"	"							
Bromodichloromethane	ND	0.500	1.00	"	"							
Bromoform	ND	0.500	1.00	"	"							
Bromomethane	ND	5.00	5.00	"	"							
2-Butanone (MEK)	ND	5.00	10.0	"	"							
n-Butylbenzene	ND	0.500	1.00	"	"							
sec-Butylbenzene	ND	0.500	1.00	"	"							
ert-Butylbenzene	ND	0.500	1.00	"	"							
Carbon tetrachloride	ND	0.250	0.500	"	"							
Chlorobenzene	ND	0.250	0.500	"	"							
Chloroethane	ND	5.00	5.00	"	"							
Chloroform	ND	0.500	1.00	"	"							
Chloromethane	ND	2.50	5.00	"	"							
2-Chlorotoluene	ND	0.500	1.00	"	"							
4-Chlorotoluene	ND	0.500	1.00	"	"							
1,2-Dibromo-3-chloroprop	ND	2.50	5.00	"	"							
ane												
Dibromochloromethane	ND	0.500	1.00	"	"							
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"							
Dibromomethane	ND	0.500	1.00	"	"							
1,2-Dichlorobenzene	ND	0.250	0.500	"	"							
1,3-Dichlorobenzene	ND	0.250	0.500	"	"							
1,4-Dichlorobenzene	ND	0.250	0.500	"	"							
Dichlorodifluoromethane	ND	0.500	1.00	"	"							Q-3
1,1-Dichloroethane	ND	0.250	0.500	"	"							
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"							
1,1-Dichloroethene	ND	0.250	0.500	"	"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la final

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npound	s by EPA 8	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040043 - EPA 5030	В						Wat	er				
Blank (6040043-BLK1)				Pre	pared: 04/0	04/16 09:21	Analyzed: (04/04/16 12	:32			
cis-1,2-Dichloroethene	ND	0.250	0.500	ug/L	"							
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"							
1,2-Dichloropropane	ND	0.250	0.500	"	"							
1,3-Dichloropropane	ND	0.500	1.00	"	"							
2,2-Dichloropropane	ND	0.500	1.00	"	"							
1,1-Dichloropropene	ND	0.500	1.00	"	"							
cis-1,3-Dichloropropene	ND	0.500	1.00	"	"							Q-31
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"							
Ethylbenzene	ND	0.250	0.500	"	"							
Hexachlorobutadiene	ND	2.50	5.00	"	"							
2-Hexanone	ND	5.00	10.0	"	"							Q-31
Isopropylbenzene	ND	0.500	1.00	"	"							
4-Isopropyltoluene	ND	0.500	1.00	"	"							
4-Methyl-2-pentanone	ND	5.00	10.0	"	"							Q-30
(MiBK) Methyl tert-butyl ether	ND	0.500	1.00	"	"							
(MTBE) Methylene chloride	ND	1.50	3.00	"	"							
Naphthalene	ND	1.00	2.00	"	,,							Q-30
n-Propylbenzene	ND	0.250	0.500	,,	"							
Styrene	ND	0.500	1.00	"	,,							
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"							
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"							
Toluene	ND	0.500	1.00	"	"							
1,2,3-Trichlorobenzene	ND	1.00	2.00	,,	"							
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"							
1,1,1-Trichloroethane	ND	0.250	0.500	"	"							
1,1,2-Trichloroethane	ND	0.250	0.500	"	"					-		
Trichloroethene (TCE)	ND ND	0.250	0.500	"	,,							
Trichlorofluoromethane	ND	1.00	2.00	"	"							
1,2,3-Trichloropropane	ND ND	0.500	1.00	"	"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la final

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			Reporting			Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040043 - EPA 5030E	3						Wat	ter				
Blank (6040043-BLK1)				Prep	oared: 04/0	04/16 09:21	Analyzed:	04/04/16 1	2:32			
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"							
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"							
Vinyl chloride	ND	0.250	0.500	"	"							
m,p-Xylene	ND	0.500	1.00	"	"							
o-Xylene	ND	0.200	0.200	"	"							
Surr: Dibromofluoromethane (Surr)		Reco	very: 116 %	Limits: 80-		Dilu	ution: 1x					
1,4-Difluorobenzene (Surr)			107 %		120 %		"					
Toluene-d8 (Surr)			98 %		120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	120 %							
LCS (6040043-BS1)				Prep	oared: 04/0	04/16 09:21	Analyzed:	04/04/16 1	1:35			
EPA 8260B												
Acetone	31.9	10.0	20.0	ug/L	1	40.0		80	70-130%			
Benzene	21.5	0.100	0.200	"	"	20.0		108	"			
Bromobenzene	21.9	0.250	0.500	"	"	"		109	"			
Bromochloromethane	20.5	0.500	1.00	"	"	"		102	"			
Bromodichloromethane	21.8	0.500	1.00	"	"	"		109	"			
Bromoform	19.5	0.500	1.00	"	"	"		97	"			
Bromomethane	18.6	5.00	5.00	"	"	"		93	"			
2-Butanone (MEK)	31.0	5.00	10.0	"	"	40.0		78	"			
n-Butylbenzene	20.4	0.500	1.00	"	"	20.0		102	"			
sec-Butylbenzene	22.5	0.500	1.00	"	"	"		112	"			
tert-Butylbenzene	19.9	0.500	1.00	"	"	"		100	"			
Carbon tetrachloride	22.5	0.250	0.500	"	"	"		112	"			
Chlorobenzene	23.3	0.250	0.500	"	"	"		117	"			
Chloroethane	23.3	5.00	5.00	"	"	"		116	"			
Chloroform	21.1	0.500	1.00	"	"	"		106	"			
Chloromethane	24.6	2.50	5.00	"	"	"		123	"			
2-Chlorotoluene	22.1	0.500	1.00	"	"	"		111	"			
4-Chlorotoluene	20.8	0.500	1.00	"	"	"		104	"			
1,2-Dibromo-3-chloroprop	16.2	2.50	5.00	"	"	"		81	"			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npound	s by EPA 8	3260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040043 - EPA 503	80B						Wat	er				
LCS (6040043-BS1)				Pre	pared: 04/	04/16 09:21	Analyzed:	04/04/16 11	:35			
Dibromochloromethane	21.8	0.500	1.00	ug/L	"	"		109	"			
1,2-Dibromoethane (EDB)	21.4	0.250	0.500	"	"	"		107	"			
Dibromomethane	24.3	0.500	1.00	"	"	"		121	"			
1,2-Dichlorobenzene	21.6	0.250	0.500	"	"	"		108	"			
1,3-Dichlorobenzene	22.9	0.250	0.500	"	"	"		114	"			
1,4-Dichlorobenzene	22.4	0.250	0.500	"	"	"		112	"			
Dichlorodifluoromethane	18.6	0.500	1.00	"	"	"		93	"			Q-31
1,1-Dichloroethane	21.5	0.250	0.500	"	"	"		107	"			
1,2-Dichloroethane (EDC)	20.9	0.250	0.500	"	"	"		104	"			
1,1-Dichloroethene	22.1	0.250	0.500	"	"	"		110	"			
cis-1,2-Dichloroethene	18.5	0.250	0.500	"	"	"		92	"			
trans-1,2-Dichloroethene	20.2	0.250	0.500	"	"	"		101	"			
1,2-Dichloropropane	20.1	0.250	0.500	"	"	"		100	"			
1,3-Dichloropropane	20.2	0.500	1.00	"	"	"		101	"			
2,2-Dichloropropane	16.5	0.500	1.00	"	"	"		82	"			
1,1-Dichloropropene	20.3	0.500	1.00	"	"	"		101	"			
cis-1,3-Dichloropropene	14.6	0.500	1.00	"	"	"		73	"			Q-31
trans-1,3-Dichloropropene	16.2	0.500	1.00	"	"	"		81	"			
Ethylbenzene	21.8	0.250	0.500	"	"	"		109	"			
Hexachlorobutadiene	18.4	2.50	5.00	"	"	"		92	"			
2-Hexanone	19.8	5.00	10.0	"	"	40.0		50	"			Q-31
Isopropylbenzene	21.4	0.500	1.00	"	"	20.0		107	"			
4-Isopropyltoluene	21.6	0.500	1.00	"	"	"		108	"			
4-Methyl-2-pentanone (MiBK)	26.7	5.00	10.0	"	"	40.0		67	"			Q-30
Methyl tert-butyl ether (MTBE)	18.5	0.500	1.00	"	"	20.0		92	"			
Methylene chloride	23.3	1.50	3.00	"	"	"		116	"			
Naphthalene	12.4	1.00	2.00	"	"	"		62	"			Q-30
n-Propylbenzene	21.6	0.250	0.500	"	"	"		108	"			
Styrene	21.6	0.500	1.00	"	"	"		108	"			
1,1,1,2-Tetrachloroethane	23.0	0.250	0.500	"	"	"		115	"			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand by finish

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040043 - EPA 5030E	3						Wat	er				
LCS (6040043-BS1)				Pre	pared: 04/	04/16 09:21	Analyzed:	04/04/16 11	:35			
1,1,2,2-Tetrachloroethane	22.3	0.250	0.500	"	"	"		111	"			
Tetrachloroethene (PCE)	24.8	0.250	0.500	"	"	"		124	"			
Toluene	21.5	0.500	1.00	"	"	"		107	"			
1,2,3-Trichlorobenzene	16.3	1.00	2.00	"	"	"		81	"			
1,2,4-Trichlorobenzene	15.6	1.00	2.00	"	"	"		78	"			
1,1,1-Trichloroethane	21.6	0.250	0.500	"	"	"		108	"			
1,1,2-Trichloroethane	22.4	0.250	0.500	"	"	"		112	"			
Trichloroethene (TCE)	22.8	0.250	0.500	"	"	"		114	"			
Trichlorofluoromethane	25.5	1.00	2.00	"	"	"		127	"			
1,2,3-Trichloropropane	21.3	0.500	1.00	"	"	"		106	"			
1,2,4-Trimethylbenzene	21.8	0.500	1.00	"	"	"		109	"			
1,3,5-Trimethylbenzene	22.0	0.500	1.00	"	"	"		110	"			
Vinyl chloride	22.5	0.250	0.500	"	"	"		112	"			
m,p-Xylene	44.6	0.500	1.00	"	"	40.0		111	"			
o-Xylene	19.9	0.200	0.200	"	"	20.0		100	"			
urr: Dibromofluoromethane (Surr)		Rec	overy: 104 %	Limits: 80-	-120 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Surr)			99 %	80-	120 %		"					
Toluene-d8 (Surr)			94 %		120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80-	120 %		"					
Duplicate (6040043-DUP1)				Pre	pared: 04/	04/16 10:39	Analyzed:	04/04/16 16	:18			
QC Source Sample: C1-MW-7 (A60	C1113-09)											
EPA 8260B												
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	"	"		ND				30%	
Bromobenzene	ND	0.250	0.500	"	"		ND				30%	
Bromochloromethane	ND	0.500	1.00	"	"		ND				30%	
Bromodichloromethane	ND	0.500	1.00	"	"		ND				30%	
Bromoform	ND	0.500	1.00	"	"		ND				30%	
Bromomethane	ND	5.00	5.00	"	"		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	"	"		ND				30%	
n-Butylbenzene	ND	0.500	1.00	"	"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npound	by EPA 8	3260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040043 - EPA 503	0B						Wat	er				
Duplicate (6040043-DUP1)				Prep	oared: 04/0	04/16 10:39	Analyzed:	04/04/16 16	:18			
QC Source Sample: C1-MW-7 (A	6C1113-09)											
sec-Butylbenzene	ND	0.500	1.00	ug/L	"		ND				30%	
tert-Butylbenzene	ND	0.500	1.00	"	"		ND				30%	
Carbon tetrachloride	ND	0.250	0.500	"	"		ND				30%	
Chlorobenzene	ND	0.250	0.500	"	"		ND				30%	
Chloroethane	ND	5.00	5.00	"	"		ND				30%	
Chloroform	ND	0.500	1.00	"	"		ND				30%	
Chloromethane	ND	2.50	5.00	"	"		ND				30%	
2-Chlorotoluene	ND	0.500	1.00	"	"		ND				30%	
4-Chlorotoluene	ND	0.500	1.00	"	"		ND				30%	
1,2-Dibromo-3-chloroprop	ND	2.50	5.00	"	"		ND				30%	
Dibromochloromethane	ND	0.500	1.00	"	"		ND				30%	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"		ND				30%	
Dibromomethane	ND	0.500	1.00	"	"		ND				30%	
1,2-Dichlorobenzene	ND	0.250	0.500	"	"		ND				30%	
1,3-Dichlorobenzene	ND	0.250	0.500	"	"		ND				30%	
1,4-Dichlorobenzene	ND	0.250	0.500	"	"		ND				30%	
Dichlorodifluoromethane	ND	0.500	1.00	"	"		ND				30%	Q-31
1,1-Dichloroethane	ND	0.250	0.500	"	"		ND				30%	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"		ND				30%	
1,1-Dichloroethene	ND	0.250	0.500	"	"		ND				30%	
cis-1,2-Dichloroethene	ND	0.250	0.500	"	"		ND				30%	
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"		ND				30%	
1,2-Dichloropropane	ND	0.250	0.500	"	"		ND				30%	
1,3-Dichloropropane	ND	0.500	1.00	"	"		ND				30%	
2,2-Dichloropropane	ND	0.500	1.00	"	"		ND				30%	
1,1-Dichloropropene	ND	0.500	1.00	"	"		ND				30%	
cis-1,3-Dichloropropene	ND	0.500	1.00	"	"		ND				30%	Q-31
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"		ND				30%	
Ethylbenzene	ND	0.250	0.500	"	••		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpound	s by EPA 8	3260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040043 - EPA 5030	В						Wat	er				
Duplicate (6040043-DUP1)				Pre	pared: 04/	04/16 10:39	Analyzed:	04/04/16 16	5:18			
QC Source Sample: C1-MW-7 (A6	C1113-09)											
Hexachlorobutadiene	ND	2.50	5.00	ug/L	"		ND				30%	
2-Hexanone	ND	5.00	10.0	"	"		ND				30%	Q-31
Isopropylbenzene	ND	0.500	1.00	"	"		ND				30%	
4-Isopropyltoluene	ND	0.500	1.00	"	"		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	"	"		ND				30%	Q-30
Methyl tert-butyl ether (MTBE)	15.0	0.500	1.00	"	"		16.2			8	30%	
Methylene chloride	ND	1.50	3.00	"	"		ND				30%	
Naphthalene	ND	1.00	2.00	"	"		ND				30%	Q-30
n-Propylbenzene	ND	0.250	0.500	"	"		ND				30%	
Styrene	ND	0.500	1.00	"	"		ND				30%	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"		ND				30%	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"		ND				30%	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"		ND				30%	
Toluene	ND	0.500	1.00	"	"		ND				30%	
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"		ND				30%	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"		ND				30%	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"		ND				30%	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"		ND				30%	
Trichloroethene (TCE)	ND	0.250	0.500	"	"		ND				30%	
Trichlorofluoromethane	1.28	1.00	2.00	"	"		1.27			0.8	30%	J
1,2,3-Trichloropropane	ND	0.500	1.00	"	"		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"		ND				30%	
Vinyl chloride	ND	0.250	0.500	"	"		ND				30%	
n,p-Xylene	ND	0.500	1.00	"	"		ND				30%	
o-Xylene	ND	0.200	0.200	"	"		ND				30%	
urr: Dibromofluoromethane (Surr)		Reco	overy: 121 %	Limits: 80		Dill	ution: 1x					S-06
1,4-Difluorobenzene (Surr)			110 %		-120 %		"					
Toluene-d8 (Surr)			96 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund by fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpound	s by EPA 8	260B				
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits RF	RPD D Limit	Notes

Batch 6040043 - EPA 5030B Water

Duplicate (6040043-DUP1) Prepared: 04/04/16 10:39 Analyzed: 04/04/16 16:18

QC Source Sample: C1-MW-7 (A6C1113-09)

Surr: 4-Bromofluorobenzene (Surr) Recovery: 96 % Limits: 80-120 % Dilution: 1x

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

SAMPLE PREPARATION INFORMATION

		Diese	el and/or Oil Hydrod	arbons by NWTPH-D	(
Prep: EPA 3510C (Fuels/Acid	Ext.)			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 6040021							
A6C1113-01	Water	NWTPH-Dx	03/28/16 12:05	04/01/16 10:07	1050mL/5mL	1000mL/5mL	0.95
A6C1113-02	Water	NWTPH-Dx	03/28/16 12:05	04/01/16 10:07	1050mL/5mL	1000mL/5mL	0.95
A6C1113-03	Water	NWTPH-Dx	03/28/16 12:10	04/01/16 10:07	1040 mL/5 mL	1000mL/5mL	0.96
A6C1113-04	Water	NWTPH-Dx	03/28/16 13:50	04/01/16 10:07	1040 mL/5 mL	1000mL/5mL	0.96
A6C1113-05	Water	NWTPH-Dx	03/29/16 08:45	04/01/16 10:07	1050 mL/5 mL	1000mL/5mL	0.95
A6C1113-06	Water	NWTPH-Dx	03/29/16 08:50	04/01/16 10:07	1020mL/5mL	1000mL/5mL	0.98
	(Basoline Range Hydı	ocarbons (Benzene	e through Naphthalen	e) by NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 6031001							
A6C1113-04	Water	NWTPH-Gx (MS)	03/28/16 13:50	03/31/16 15:01	5mL/5mL	5mL/5mL	1.00
A6C1113-05	Water	NWTPH-Gx (MS)	03/29/16 08:45	03/31/16 15:01	5mL/5mL	5mL/5mL	1.00
Batch: 6040013							
A6C1113-01	Water	NWTPH-Gx (MS)	03/28/16 12:05	04/01/16 12:44	5mL/5mL	5mL/5mL	1.00
A6C1113-02	Water	NWTPH-Gx (MS)	03/28/16 12:05	04/01/16 12:44	5mL/5mL	5mL/5mL	1.00
A6C1113-03	Water	NWTPH-Gx (MS)	03/28/16 12:10	04/01/16 12:44	5mL/5mL	5mL/5mL	1.00
A6C1113-06	Water	NWTPH-Gx (MS)	03/29/16 08:50	04/01/16 12:44	5mL/5mL	5mL/5mL	1.00
		RB	DM Compounds (B	TEX+) by EPA 8260B			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 6040083				-			
A6C1113-07RE1	Water	EPA 8260B	03/29/16 10:55	04/05/16 13:09	5mL/5mL	5mL/5mL	1.00
A6C1113-09RE1	Water	EPA 8260B	03/29/16 12:25	04/05/16 13:09	5mL/5mL	5mL/5mL	1.00
		Vola	atile Organic Comp	ounds by EPA 8260B			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 6040013							
A6C1113-01	Water	EPA 8260B	03/28/16 12:05	04/01/16 12:44	5mL/5mL	5mL/5mL	1.00
A6C1113-06	Water	EPA 8260B	03/29/16 08:50	04/01/16 12:44	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Want to find

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: 60410261Reported:Portland, OR 97201Project Manager: Nicky Moody04/13/16 18:04

SAMPLE PREPARATION INFORMATION

		Vo	olatile Organic Comp	ounds by EPA 8260B			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A6C1113-10	Water	EPA 8260B	03/28/16 00:00	04/01/16 12:44	5mL/5mL	5mL/5mL	1.00
Batch: 6040043							
A6C1113-02RE1	Water	EPA 8260B	03/28/16 12:05	04/04/16 10:39	5mL/5mL	5mL/5mL	1.00
A6C1113-03RE1	Water	EPA 8260B	03/28/16 12:10	04/04/16 10:39	5mL/5mL	5mL/5mL	1.00
A6C1113-08	Water	EPA 8260B	03/29/16 11:00	04/04/16 10:39	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Quand to buil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: 60410261 Reported:
Portland, OR 97201 Project Manager: Nicky Moody 04/13/16 18:04

Notes and Definitions

Qualifiers:

F-03	The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not
	representative of the fuel nattern reported

- F-12 The result for this hydrocarbon range is primarily due to the presence of individual analyte peaks in the quantitation range. No fuel pattern detected.
- F-17 No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-30 Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
- Q-31 Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
- S-06 Surrogate recovery is outside of established control limits.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunel la fruit

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

 AECOM
 Project:
 POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number:
 60410261
 Reported:

 Portland, OR 97201
 Project Manager:
 Nicky Moody
 04/13/16 18:04

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Quand by funil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

 AECOM
 Project:
 POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number:
 60410261
 Reported:

 Portland, OR 97201
 Project Manager:
 Nicky Moody
 04/13/16 18:04

APEXLABS					CH		ō	Ö	CHAIN OF CUSTODY		>			Lab# MCL1173	Hec	7	60	5	coc / of	1
12232 S.W. Garden Place, Tigard, OR 97223 Ph; 503-718-2323 Fax; 503-718-0333	97223 P.	1: 503-7.	'8-2323 F	ax: 503	.718-03	33											#Od			
Company: RECOM		Pro	Project Myr: NICKY Moody	IICK	7	Qua			Projec	n Name	3	7 OF	13	1COV	1 32	NA	Project Name: Purt of UMNCONER - FVP Project #		60410261	_
Address III SW COLUMBIA, SUITE 1500, PORTLAND, OR	Sum	est =	1702	14N	3,0		Phone	505	Phone 503 222 7200	7200	Fax:	9			Email:	ii		i I		
Sampled by JoHN BAKER, MACK THISCHER	Mek 7	ALSCH.	只									ANA	LYSIS	ANALYSIS REQUEST	ST					
Site Location: OR (6/A) Other: SAMPLE ID	FVB ID #	9TAQ	TIME	# OF CONTAINERS	VWTPH D-	ХМТРН-Б _х	8590 AOCs Full List 80708	8700 KBD/I AOC8	8740 8AOC 8760 81EX AOC8 8760 HAOC8	8710 SIM BVH8 8710 SAOC	8087 BCB8	OTT 009	KCKV Metals (8)	TCLP Metals (8) Al, Sb. As, Ba, Be, Cd. Ca, Cr, Co, Cu, Fe, Pb.	Ca. Cr. Co. Cu. Fe. Pb. Hg. Mg. Mo. Mo. Me. K. Se. Ag. Ma. Tl. V. Zo. FOTAL DISS TCLP	1500- COFS	Z-0071			
1 C2-MW-9	1.6	8161	N 2021 11-81-8	80	^	×	×									<u>_</u>				-
22-MW-9 (DUP)		2	1205			X	火			-							-			-
3 CZ-MW-IIR		12	0121	ಚ	^	×	×													
4 C2-MW-10R2		13	1350	N		×										ļ				
5 CZ- MW -3	4	3-29-16 845	43	+		×					ļ									_
62-MW-12B		೦೦	850	89		×	×													
c1-MW-3		7	1055	૭					×											
CI- MW- 4		=	00!!	3			×													
CI- MW-7		1.7	1225	4			UNF1575		×											
O TRIP BLANK						12.10 X	メ													
Normal Turn Around Time (TAT) = 10 Business Days	ess Days		SIL		ON			S	SPECIAL INSTRUCTIONS:	NSTRE	CTIO	NS:								
TAT Requested (circle)	1 Day 4 DAY	2 2	2 Day 5 DAY	3 Day Other:																
SAMPLI	SAMPLES ARE HELD FOR 30 DAYS	LD FOR	30 DAYS					1												
RELINQUISHED BY:		REC /	RECEIVED BY:	1		1	1	~	RELINQUISHED BY	SHED B	Y:				REC	RECEIVED BY	BY:			
Signature: 1111	Date: 3/24/15Signature:	94/15Sign	ature:	1	4	1	3/50	1	29/15 ignature.					Date:	Sign	Signature:		Date:	ia;	
Printed Name: MACK TAUS 18 Printed Name, 1916 Comment Time 15:3 Oranied Name	Whe 15	2	ed Name:	The	Valve	Time	14:	5	rinted Name	ij	1	Marie Control		Time:	Prin	Printed Name	ŭ	Tir	Time:	The state of the s
Company. AECOM		Com	Company:	A Salar	ধ			\dashv	Company:						Con	Company:				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil For Darwin Thomas, Business Development Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

 AECOM
 Project:
 POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number:
 60410261
 Reported:

 Portland, OR 97201
 Project Manager:
 Nicky Moody
 04/13/16 18:04

	APEX LABS CO	OOLER RECEIPT FORM
Client: Al		Element WO#: A6 <u>01113</u>
Project/Project #:	Port of Vancouvi	er - FVP / 60410761
Delivery info:		
Date/Time Receive	d: 3/29/16 @ 15:30	By:lln S
Delivered by: Apex	Courier_Client_KFedEx	By:S UPSSwiftSenvoySDSOther
Cooler Inspection	Inspected by:	1/25: 3/29/16 @ 15:31
Chain of Custody In	. /	
Signed/Dated by Cl	ient? Yes No	
Signed/Dated by Ap	pex? Yes No	
	Cooler #1 Cooler #2	Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (deg. (27 45	
Received on Ice?)/N)	
Temp. Blanks? (Y/	3	
Ice Type: (Gel/Keal		
Condition:	4001 -	
Samples Inspection	: Inspected by:	n dot applied to out of temperature samples Yes/No/NA
Bottle Labels/COCs	agree? Yes X No Comr	ments:
	ate for Analysis? Yes No No Visible Headspace? Yes	mw -10 R2 3/3 Sed
Comments		
Water Samples: pH	Checked and Appropriate (excep	ot VOAs): Yes NoNA
Comments:		,
Additional Information	on:	
Labeled by:	Cooler Inspected by:	
mooied by.	Cooler inspected by:	See Project Contact Form: Y

Apex Laboratories

Appendix CData Quality Review Report

AECOM 111 SW Columbia Suite 1500 Portland, OR 97201 www.aecom.com 503 222 7200 tel 503 222 4292 fax

Data Quality Review Report

The data quality review of the eight primary groundwater samples, one field duplicate groundwater sample, and one trip blank collected March 28 and 29, 2016 at the Former Fort Vancouver Plywood Site in Vancouver, Washington has been completed. Samples were submitted to Apex Laboratories (Apex) of Tigard, Oregon. The samples submitted were analyzed for one or more of the following: volatile organic compounds (VOCs) and RBDM compounds (benzene, toluene, ethylbenzene, total xylenes, and methyl tert-butyl ether) (US Environmental Protection Agency [EPA] Method 8260B), gasoline-range hydrocarbons (Method NWTPH-Gx), and diesel- and oil hydrocarbons (Method NWTPH-Dx).

The review included the analytical data presented in Apex report A6C1113. The data was reviewed based on *National Functional Guidelines for Superfund Organic Methods Data Review*, August 2014, and laboratory quality control criteria. Items reviewed included: chain-of-custody (COC) records and sample condition, hold times, surrogate recoveries, laboratory control and laboratory control duplicate results, laboratory duplicate results, field duplicate results, method blank results and trip blank results. Qualifiers assigned as a result of this review are included in Table 1. The following criteria were evaluated during the review:

• <u>COC Records</u> – Acceptable with the following notes:

The laboratory noted that sediment was visible in the sample containers associated C1-MW-7 (A6C1113-09) and C2-MW-10R2 (A6C1113-04). Any observed matrix interferences associated with the analysis are addressed below. No further qualification is necessary.

- Temperature Acceptable
- Preservation Acceptable
- Hold Times Acceptable
- Trip Blanks Acceptable
- Method Blanks Acceptable
- Surrogates Acceptable with the following exceptions:

<u>VOCs by EPA Method 8260B</u> – The dibromofluoromethane recovery associated with sample C2-MW-12B (A6C1113-06) was above the upper laboratory limit of 120% at 122%. The potential bias is high and the associated results were non-detect, therefore; no qualification is necessary.

• <u>Laboratory Control Samples (LCS)</u> – Acceptable with the following exceptions:

RBCA compounds Method 8260B - The LCS recovery of naphthalene in batch 6040043 was below the laboratory limit of 70% at 62%. Naphthalene was not reported with RBDM compounds therefore no action is necessary.

<u>VOCs by EPA Method 8260B</u> – The LCS recoveries of 2-hexanone (51%), 4-Methyl-2-pentanone (68%), and Naphthalene (59%) in batch 6040013 and 2-Hexanone (50%), 4-Methyl-2-pentanone (67%), and Naphthalene (62%) in batch 6040043 were below the lower laboratory limit of 70%. Some of the low recoveries are associated with a continuing

AECOM Environment

calibration verification (CCV) which was recovered below the lower control limit (see below). All other associated results were qualified as estimated and flagged 'UJ' for the potential low bias.

- Laboratory Duplicate Acceptable
- <u>Field Duplicate</u> Sample C2-MW-9 (DUP) (A6C1113-02) was submitted as a field duplicate
 of sample C2-MW-9 (A6C1113-01). Relative percent difference calculations were not
 performed as all sample results were less than five times the method reporting limit.
- Reporting Limits Acceptable
- Laboratory Notes and Qualifiers
 - The laboratory noted that the oil result reported for samples C2-MW-9 (A6C1113-01), C2-MW-9 (DUP) (A6C1113-02), and C2-MW-11R (A6C1113-03) were elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported and flagged the result 'F-03'. In addition, the laboratory flagged the oil result reported for sample C2-MW-12B (A6C1113-06) 'F-17' to indicate the oil result represents carbon range >C24 to C40 and no fuel pattern was detected. All of these oil results were detected between the MDL and the MRL and qualified 'J' by the laboratory; no further qualification is necessary.
 - o The laboratory noted the gasoline result for sample C2-MW-10R2 (A6C1113-04) is primarily due to the presence of individual analyte peaks in the quantitation range and no fuel pattern detected. The laboratory flagged the result 'F-12'. The result was qualified as estimated and flagged 'J' to remain consistent with project qualifiers.
 - The CCV sample recoveries were below the lower laboratory control criteria for: 2-hexanone, 4-methyl-2-pentanone, and naphthalene in client samples C2-MW-9 (A6C1113-01) and C2-MW-12B (A6C1113-06), and dichlorodifluoromethane, cis-1,3-dichloropropene, and 2-hexanone in client samples C2-MW-9 (DUP) (A6C1113-02RE1), C2-MW-11R (A6C1113-03RE1) and C1-MW-4 (A6C1113-08). In addition, the CCV sample recoveries were also below the lower laboratory criteria for: 2-hexanone, 4-methyl-2-pentanone, and naphthalene in QC samples Trip Blank (A6C1113-10), Blank (6040013-BLK1), and LCS (6040013-BS1), dichlorodifluoromethane, cis-1,3-dichloropropene, 2-hexanone in QC samples Blank (6040043-BLK1), LCS (6040043-BS1), and Duplicate (6040043-DUP1). The laboratory noted the samples results were estimated (biased low) and flagged the results 'Q-31'. The affected client sample results were all non-detect; the results were qualified as estimated and flagged 'UJ' to account for the potential low bias.

Overall Assessment of Data

The completeness of the analytical reports for this groundwater monitoring event is 100%. The usefulness of the data is based on the EPA guidance documents referenced in the introduction of this report. Upon consideration of the information presented above, with the exception of the field duplicate results, the data are considered usable. The data qualifiers assigned by the laboratory are shown on the laboratory reports.

Data Quality Review Report April 2016

AECOM Environment 3

Data Qualifier Definitions

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria.
- DNR Do Not Report. Another result is available that is more reliable.

References

EPA, 2014. National Functional Guidelines for Superfund Organic Methods Data Review. August 2014.

Data Quality Review Report April 2016

AECOM 111 SW Columbia Suite 1500 Portland, OR 97201 www.aecom.com 503 222 7200 tel 503 222 4292 fax

Table 1. Sample Qualification Summary

AECOM Sample ID	Laboratory Sample ID	Analyte	Qualifier	Rationale	
		2-Hexanone			
C2-MW-9	A6C1113-01	4-Methyl-2-pentanone			
		Naphthalene	UJ	CCV recovery	
		Dichlorodifluoromethane	00	CCV recovery	
		cis-1,3-Dichloropropene			
C2-MW-9 (DUP)	A6C1113-02RE1	2-Hexanone			
		4-Methyl-2-pentanone	111	LCC receivers	
		Naphthalene	UJ	LCS recovery	
		Dichlorodifluoromethane			
		cis-1,3-Dichloropropene	UJ	CCV recovery	
C2-MW-11R	A6C1113-03RE1	2-Hexanone		•	
		4-Methyl-2-pentanone	111	LCS recovery	
		Naphthalene	UJ	LCS recovery	
		2-Hexanone			
C2-MW-12B	A6C1113-06	4-Methyl-2-pentanone		CCV recovery	
		Naphthalene	1		
		Dichlorodifluoromethane	- UJ		
		cis-1,3-Dichloropropene			
C1-MW-4	A6C1113-08	2-Hexanone			
		4-Methyl-2-pentanone	111	LCC recover:	
		Naphthalene	UJ	LCS recovery	
C2-MW-10R2	A6C1113-04	Gasoline	J	Compound identification	

Data Quality Review Report April 2016

About AFCOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With approximately 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$6 billion.

More information on AECOM and its services can be found at www.aecom.com.