

Environment

Prepared for Port of Vancouver USA 3103 NW Lower River Road Vancouver, Washington 98660

Submitted to Washington Department of Ecology Submitted by AECOM 111 SW Columbia Suite 1500 Portland, Oregon 97201

60410261 July 2019

Groundwater Monitoring Letter Report - March 2019

Former Fort Vancouver Plywood Site Port of Vancouver USA Vancouver, Washington

July 22, 2019

Mr. Matt Graves Environmental Manager Port of Vancouver USA 3103 NW Lower River Road Vancouver, Washington 98660

Re: Groundwater Monitoring Letter Report - March 2019

Former Fort Vancouver Plywood Site

Port of Vancouver USA Vancouver, Washington AECOM Job No. 60519969

Dear Mr. Graves:

AECOM has prepared this Groundwater Monitoring Letter Report on behalf of the Port of Vancouver USA (the Port). This letter report summarizes the results of the March 2019 groundwater monitoring event conducted at Cell 1 and Cell 2 of the Former Fort Vancouver Plywood (FVP) Site (herein referred to as the Site). This monitoring event is referenced as the March 2019 monitoring event.

1 Site Location and Background

The Site is located at West Eighth Street and Port Way, in an industrial-zoned area adjacent to the Columbia River, at the Port in Vancouver, Washington (Figure 1). The Site consists of approximately 13 acres of nearly level paved and unpaved land. The unpaved land exists along the shoreline of the Columbia River, and the remainder of the Site is paved. The northern portion of the Site is leased by the Great Western Malting Company, and the rest of the Site is leased by Pacific Coast Shredding, a metal recycling/processing facility (see Figure 2).

Great Western Malting Company is also located on the north adjacent property, and the former Brazier Forest Industries leasehold is located on the northeast adjacent property. The Site is bordered by Port Way to the southeast and the Columbia River to the southwest (see Figure 2).

The Site was occupied by plywood manufacturers and other lumber-related operations from the mid-1920s to the mid-1990s. FVP operated at the Site from 1955 until July 1996, when site operations terminated and the leasehold reverted to the Port. Former facilities at the Site included a wood processing and plywood manufacturing plant, chemical storage, a boiler house, a maintenance shop, fuel storage areas, a log yard, a retail store/warehouse, an oil/water separator, diesel underground storage tanks (USTs), and an office building. In July 1997, the Port demolished all structures associated with the plywood mill and consolidated wood debris from the former log yard. In September 1997, the Port installed a riprap wall along the Site boundary to protect the shoreline from further erosion by the Columbia River (ERM, 2008a and 2008b).

From 2012 to 2014, the Port constructed the West Vancouver Freight Access Project through the Site. The locations of the rail track centerline, retaining walls, and trench structure for the West Vancouver Freight Access Project are indicated on Figure 2.

2 Site Hydrogeology

Two groundwater-bearing zones are present within the upper 65 feet of soils explored beneath the Site. These include a shallow water table unit (Shallow Zone) and a deeper, confined aquifer referred to herein as the Unconsolidated Aquifer (USGS 1993). The two saturated zones are separated by a lower-permeability confining layer that ranges in thickness from approximately 14 to 40 feet. The Unconsolidated Aquifer was encountered below the confining layer at depths ranging from 49 to 55 feet below ground surface (bgs) (Ecology, 1999 and 2000).

The general direction of the hydraulic gradient (and presumed direction of groundwater flow) in the Shallow Zone is to the south, toward the Columbia River. According to the Cleanup Action Plans (CAP), the Shallow Zone horizontal hydraulic gradient at the Site was calculated to range from approximately 0.016 to 0.019 feet per foot (ft/ft) at Cell 1 and 0.01 to 0.02 ft/ft at Cell 2 (Ecology, 1999 and 2000). The direction of the hydraulic gradient and presumed groundwater flow in the Deeper Unconsolidated Aquifer appears to be toward the west in response to groundwater pumping by the Port and the Port's tenants. A net downward vertical gradient exists between the Shallow Zone and the Deeper Unconsolidated Aquifer (Ecology, 1999).

Near-surface (upper 10 feet) soils beneath the Site consist predominantly of sand with varying amounts of silt. Considerable amounts of anthropogenic debris, including rubble (brick and concrete), wood ash, and trash, have been identified in the upper 10 feet of soil (Ecology, 1999).

3 Compliance Monitoring Plan

3.1 Agreed Orders

Presently the Site is separated into two areas designated as Cell 1 (C1) and Cell 2 (C2). Two Agreed Orders between the Port and Washington State Department of Ecology (Ecology) are in place for this Site:

- Agreed Order No. 99TC-S108 applies to Cell 1
- Agreed Order No. 99TCPSR-93 applies to Cell 2

In accordance with Agreed Orders, the Port completed a remedial investigation and feasibility study (RI/FS) in 1998. The RI/FS identified lead, total petroleum hydrocarbons (TPH), and polycyclic aromatic hydrocarbons (PAHs) concentrations above Ecology Model Toxics Control Act (MTCA) Method A or Method C industrial soil cleanup levels. The RI/FS also indicated that the area adjacent to the Columbia River contained buried anthropogenic debris and concentrations of soluble metals that could leach to the Columbia River. Pursuant to the conditions of the Agreed Orders, the Port completed Interim Actions at Cell 1 from November 1998 to February 1999 and at Cell 2 from October 2000 to December 2000 (ERM, 2008a and 2008b).

A total of 26 monitoring wells were originally located in Cells 1 and 2. These monitoring wells (MWs) are listed below and on Table 1 along with multiple replacement wells which are discussed in Section 3.3.

- Deeper Unconsolidated Aquifer
 - o C1-MW-6B
 - C2-MW-12B and C2-MW-13B
- Shallow Zone
 - o C1-MW-1 through C1-MW-9
 - o C2-MW-1 through C2-MW-11 and C2-MW-14 through C2-MW-16

The groundwater cleanup levels and chemicals of concern (COCs) as determined by the Agreed Orders are described in the following subsections.

3.2 Groundwater Cleanup Levels

3.2.1 Deeper Unconsolidated Aguifer

Groundwater in the Deeper Unconsolidated Aquifer is used as a potable and industrial water supply source; consequently, Ecology's MTCA Method A and B groundwater cleanup levels are used to assess potential adverse impacts to the Unconsolidated Aquifer.

In accordance with the Agreed Orders, the conditional point of compliance (POC) for groundwater within the Unconsolidated Aquifer is throughout the Site as represented by the following wells:

- C1-MW-6B
- C2-MW-12B and C2-MW-13B

3.2.2 Shallow Zone

The Shallow Zone groundwater cannot be used for drinking water due to low yield. However, the shallow groundwater discharges to the Columbia River at the Site. Consequently, the Shallow Zone cleanup levels are based on protection of surface water and are derived from the lowest of the following screening criteria for each analyte:

- Ecology's MTCA Method B surface water cleanup levels in accordance with Washington Administrative Code (WAC) 173-340-730
- Ecology's acute freshwater surface water quality criteria in accordance with WAC 173-201A-240
- US Environmental Protection Agency (EPA)'s National Toxics Rule human health criteria for surface water based on 40 Code of Federal Regulations (CFR) 131.36

In addition to shallow groundwater discharges to the Columbia River, there are indications that the Shallow Zone is hydraulically connected with the Deeper Unconsolidated Aquifer. Because the deeper aquifer is a water supply source, groundwater occurring in the Shallow Zone is also compared to Ecology's MTCA Method A and B groundwater cleanup levels.

For the Shallow Zone groundwater, the conditional POC was established as the point where the groundwater discharges to surface water. Therefore, in the Agreed Orders, the Shallow Zone conditional POC wells for the Site included the following seven shoreline wells.

- C1-MW-3, C1-MW-4, C1-MW-5, and C1-MW-8
- C2-MW-9, C2-MW-10, and C2-MW-11

3.3 Past Modifications to the Compliance Monitoring Plan

From September 2001 until March 2011, groundwater monitoring was conducted tri-annually (first, second, and fourth quarters) at each Cell in accordance with the Agreed Orders and the groundwater monitoring schedule proposed in a letter from Kennedy/Jenks Consultants to Mr. Dan Alexanian of Ecology dated September 17, 2001. Mr. Alexanian approved the monitoring schedule in an email to the Port dated October 4, 2001 (ERM, 2008a and 2008b).

Since September 2001, the monitoring plan included the collection of groundwater samples from 14 of the 26 monitoring wells listed in Section 3.1 and depth to groundwater measurements at all 26 wells during each event. The 14 sampled wells included the 10 conditional POC wells and C1-MW-6, C1-MW-7, C2-MW-3, and C2-MW-7. Following approval from Ecology in 2004, conditional POC wells C1-MW-5 and C1-MW-8 were no longer required to be sampled.

The COCs for both Cells 1 and 2 in September 2001 originally included volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals. Gasoline-range hydrocarbons (gasoline) and diesel- and oil-range hydrocarbons (diesel and oil) were also included as COCs for Cell 2.

By 2007, following multiple correspondences between Ecology and the Port, monitoring of VOCs and total and dissolved metals was discontinued for both cells, and the VOC suite was reduced for a portion of the wells in Cell 1 to benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tert-butyl ether (MTBE) (ERM, 2008a and 2008b).

In April 2011, Ecology approved: a reduction in monitoring frequency from tri-annual to semi-annual (first and third quarters), the discontinuation of VOC analysis for C2-MW-3 and C2-MW-10, and the removal of the following eight monitoring wells from the groundwater monitoring plan (Kennedy/Jenks, 2011; Ecology, 2011).

A=COM

- C1-MW-6
- C1-MW-6B
- C2-MW-4
- C2-MW-5
- C2-MW-7
- C2-MW-8
- C2-MW-13B
- C2-MW-16

Ecology requested in the April 2011 letter that the monitoring of C1-MW-3 continue to determine if any contaminant migration occurs as a result of the West Vancouver Freight Access Project (Ecology, 2011).

In 2012 and 2013, monitoring wells C1-MW-6, C1-MW-6B, C2-MW-5, C2-MW-8 and C2-MW-13B were decommissioned. An attempt was made to locate and decommission monitoring wells C2-MW-4, C2-MW-7, and C2-MW-16 in September 2012; however, these monitoring wells were inadvertently paved over and not locatable.

The construction of the West Vancouver Freight Access Project required the relocation of monitoring wells C1-MW-3, C1-MW-5, and C1-MW-8. The Port submitted a request to Ecology for the relocation of the three monitoring wells, and in a letter dated April 16, 2012, Ecology approved the relocations. In 2012, the three monitoring wells were decommissioned, and C1-MW-3 and C1-MW-5 were re-installed in the same approximate configuration and depths as the original monitoring wells (with the same designations). C1-MW-8 was reinstalled in July 2014 with the same approximate configuration and depth; however, the replacement is labeled C1-MW-8(R).

In July 2014, monitoring well C2-MW-11 was abandoned due to construction activities at the Site. It was reinstalled with the same approximate configuration and depth; the replacement well is labeled C2-MW-11(R).

Additionally, monitoring well C2-MW-10 may have been inadvertently destroyed during the construction of the West Vancouver Freight Access Project or paved over, as it has not been located since March 2013. It was reinstalled in August 2015 with the same approximate configuration and depth; the replacement well is labeled C2-MW-10(R2).

3.4 Most Recent Modifications to the Compliance Monitoring Plan

In June 2016, Ecology approved the decommissioning of 12 monitoring wells and the reduction of the groundwater monitoring frequency from semi-annual to every 18 months (Ecology, 2016). The selected analytes for the retained monitoring wells did not change. Therefore, in November and December 2016, decommissioning activities were completed as described below and listed on Table 1 (AECOM, 2017).

- The following eight monitoring wells were successfully decommissioned.
 - o C1-MW-1
 - o C1-MW-2
 - o C1-MW-3
 - o C1-MW-5
 - o C1-MW-8(R)
 - o C1-MW-9
 - o C2-MW-6
 - o C2-MW-15
- The following four monitoring wells had been paved over and cannot be found, despite potholing and resurveying by the Port's surveyor.
 - o C2-MW-1
 - o C2-MW-4
 - o C2-MW-7
 - C2-MW-16

3.5 Current Compliance Monitoring Plan

Based on the Ecology June 2016 approval letter, the current compliance monitoring plan (Table 1) includes the collection of depth-to-groundwater measurements and groundwater samples from the following seven monitoring wells every 18 months:

- C1-MW-4
- C1-MW-7
- C2-MW-3
- C2-MW-9
- C2-MW-10(R2)
- C2-MW-11(R)
- C2-MW-12B

The analyte list varies between the monitoring wells and is shown on Table 1.

4 Activities Conducted During this Monitoring Event

Groundwater monitoring activities completed during the March 2019 event were conducted in accordance with the following three documents.

- EPA guidance document titled Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (EPA, 1996)
- Ecology letter titled Re: Former Fort Vancouver Plywood Proposed Groundwater Sampling Procedures (Ecology, 2002)
- Kennedy/Jenks Second Semi-Annual 2013 Groundwater Monitoring Report (Kennedy/Jenks, 2014)
- Ecology letter titled Re: Approval for Reducing Groundwater Level and Groundwater Sampling Frequency at the Former Fort Vancouver Plywood Facility (Ecology, 2017)

The groundwater monitoring activities completed during the March 2019 event are as follows:

- AECOM collected depth to groundwater measurements from the seven monitoring wells included in the current compliance monitoring plan (see Section 3.5). AECOM measured the depth to groundwater in the monitoring wells using an electronic water level meter. The depth to groundwater was measured from the northern side of top of casing (TOC), and recorded on the Groundwater Level Form (Appendix A). The depth to groundwater measurements and corresponding groundwater elevations are presented on Table 2.
- AECOM collected groundwater samples from the seven monitoring wells included in the current compliance monitoring plan (see Section 3.5). AECOM collected each groundwater sample following purging and stabilization of temperature, pH, conductivity, dissolved oxygen (DO), and oxidation reduction potential (ORP). A peristaltic pump was used for the purging all seven monitoring wells. AECOM collected the groundwater samples at each monitoring well using a disposable double check valve bailer. The peristaltic pump tubing and disposable bailers were all lowered and retrieved gently, and set at the center of the screen interval.. Monitoring Well Sampling Field Logs for this monitoring event are included in Appendix A, and final field parameters are reported in Table 3.
- AECOM delivered the samples to Apex Laboratories of Tigard, Oregon under strict chain-of-custody. The samples were submitted for one or more of the analyses listed below in accordance with Table 1.
 - BTEX and MTBE by EPA Method 5030B/8260C
 - Full list of VOCs by EPA Method 8260C
 - Diesel and oil by NWTPH-Dx
 - Gasoline by NWTPH-Gx

- The sample containers were stored in a cooler with ice from sample collection until delivery to the laboratory. The chain-of-custody form is included in Appendix B with the laboratory analytical report. A field duplicate sample, collected from monitoring well C2-MW-9, and a trip blank were also submitted for analysis.
- AECOM placed the purge and decontamination water into a labeled, aboveground polyethylene tank, which is temporarily staged under the 26th Avenue overpass pending characterization and disposal.
 Disposable sampling equipment (including tubing and nitrile gloves) was managed as municipal solid waste.

5 Results of the March 2019 Monitoring Event

The results of groundwater level measurements are summarized in Table 2. Field parameters are provided in Table 3. The groundwater analytical results are summarized in Tables 4 through 7. A copy of the laboratory analytical report is included in Appendix B.

5.1 Groundwater Elevation Monitoring

Of the remaining monitoring wells listed on Table 1, six are constructed with screened intervals intercepting the Shallow Zone (shallower than 35 feet bgs), and one, C2-MW-12B, is constructed with the screened interval intercepting the Deeper Unconsolidated Aquifer (at 40 to 50 feet bgs). Depth-to-groundwater measurements recorded on March 19, 2019 were used to calculate groundwater elevation above mean sea level at each well. All elevations are presented in North American Vertical Datum of 1988 (NAVD88).

On March 19, 2019, the groundwater elevation in C2-MW-12B, which is screened in the Deeper Unconsolidated Aquifer, was 6.57 feet^a.

On March 19, 2019, the groundwater elevations in the Shallow Zone ranged from 5.26 feet^a (C1-MW-4) to 19.55 feet^a (C2-MW-3). The hydraulic gradient was calculated at 0.02 ft/ft to the south-southwest, consistent with previous sampling events. Groundwater elevation contours and the inferred direction of groundwater flow from March 19, 2019 are shown on Figure 3.

5.2 Groundwater Analytical Results

Groundwater analytical results are summarized in the following subsections.

5.2.1 Volatile Organic Compounds

Samples collected during the March 2019 monitoring event were analyzed for the following VOCs:

- The sample from C1-MW-7 was analyzed for BTEX and MTBE.
- The samples from C1-MW-4, C2-MW-9, C2-MW-11(R), and C2-MW-12B were analyzed for full list of VOCs.

The VOC results for the groundwater sample collected from the Deeper Unconsolidated Aquifer wells are presented on Table 4, and the VOC results for Shallow Zone wells are presented on Table 5. Both Tables 4 and 5 include BTEX, MTBE, and any other VOC that has been detected at least once since February 2009. The VOC results from the March 2019 monitoring event are summarized in the next two subsections.

^a North American Vertical Datum of 1988

5.2.1.1 Deeper Unconsolidated Aquifer

VOCs were not detected above their respective method detection limits (MDLs) in groundwater collected from C2-MW-12B (Table 4).

5.2.1.2 Shallow Zone

MTBE, 1,1-dichloroethane, cis-1,2-dichloroethene, and vinyl chloride were detected in one or more of the samples collected from the wells screened in the Shallow Zone; these detections were compared to the Shallow Zone screening criteria presented in Section 3.2.2 and on Table 5.

Vinyl chloride was the only VOC detected in the groundwater samples from the Shallow Zone wells at concentrations above the screening criteria. Concentrations of vinyl chloride in the groundwater samples collected from C1-MW-4 (0.216 μ g/L) and C2-MW-9 (0.453 μ g/L) exceeded both the MTCA Method A and B groundwater cleanup levels of 0.20 μ g/L and 0.029 μ g/L, respectively. The concentration of vinyl chloride in the groundwater sample collected from C2-MW-11(R) (0.16 μ g/L) only exceeded the MTCA B groundwater cleanup level.

5.2.2 Total Petroleum Hydrocarbons

During the March 2019 monitoring event, groundwater samples from C2-MW-3, C2-MW-9, C2-MW-10(R2), C2-MW-11(R), and C2-MW-12B were submitted for NWTPH-Dx and NWTPH-Gx analysis.

The TPH results for the groundwater sample collected from the Deeper Unconsolidated Aquifer well are presented on Table 6, and the TPH results for Shallow Zone wells are presented on Table 7. The TPH results from the March 2019 monitoring event are summarized in the next two subsections.

5.2.2.1 Deeper Unconsolidated Aquifer

Diesel, oil, and gasoline were not detected above their respective MDLs in groundwater collected from C2-MW-12B (Table 6).

5.2.2.2 Shallow Zone

Oil was detected in the groundwater sample collected from shallow groundwater well C2-MW-10(R2) (1.10 mg/L), exceeding the MTCA Method A groundwater cleanup level of 0.50 mg/L.

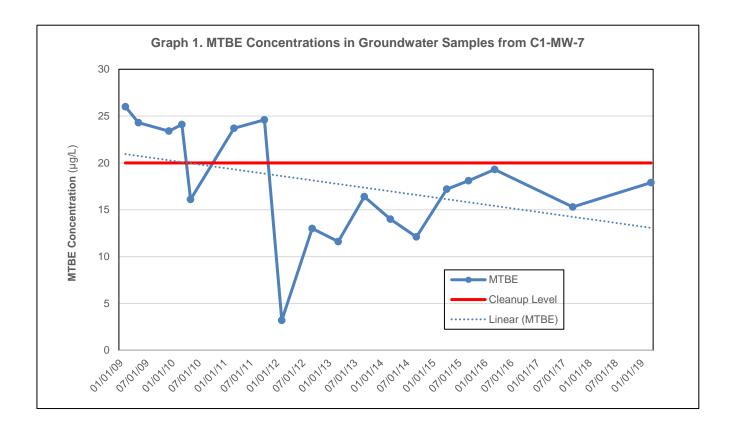
6 Data Quality and Management

Based on a review of the laboratory report, the analyses and results conformed to quality assurance standards, and the analytical data are of acceptable quality for their intended use. A data quality review is included in Appendix C.

The data from the March 2019 monitoring event will be uploaded into Ecology's Environmental Information Management (EIM) database within the next 30 days. Data from 2009 through the 2017 has been uploaded onto the EIM database. Under WAC 173-340-840(5), environmental sampling data for all cleanup sites must be submitted in both printed and electronic form.

7 Conclusions

Groundwater monitoring was conducted at Cell 1 and Cell 2 of the Site during the March 2019 event. The analytical results were generally consistent with previous monitoring events. Vinyl chloride concentrations in groundwater samples from C1-MW-4, C2-MW-9, and C2-MW-11(R) were the only VOC detections that exceeded the screening criteria. TPH gasoline and diesel concentrations in groundwater were less than the screening



criteria in all samples. TPH oil concentrations in groundwater samples exceeded screening criteria only in the sample collected from C2-MW10(R2).

8 Recommendations and Future Sampling Activities

AECOM recommends decommissioning C1-MW-7 due to safety and well head integrity concerns as the monitoring well is located within a heavy equipment, high traffic area. Historically only MTBE has exceeded the cleanup levels in groundwater samples from C1-MW-7; however, MTBE has not been detected above a cleanup level over the past 11 events conducted between February 2012 and March 2019 (Table 5). Graph 1 below shows the MTBE concentrations have been trending downward.

Groundwater monitoring will continue every 18 months but without C1-MW-7. The next monitoring event is scheduled for September 2020.

9 References

AECOM, 2017. Well Decommissioning Summary Letter. Former Fort Vancouver Plywood Site, Port of Vancouver USA, Vancouver, Washington. February 10.

Ecology, 1999. Cleanup Action Plan. Former Fort Vancouver Plywood Site - Cell 1. January.

Ecology, 2000. Cleanup Action Plan. Former Fort Vancouver Plywood Site - Cell 2. January.

Ecology, 2002. Letter from the Washington State Department of Ecology to Century West Engineering Corporation. *Re: Former Fort Vancouver Plywood Proposed Groundwater Sampling Procedures*. November 4.

- Ecology, 2011. Letter from Washington State Department of Ecology to Kennedy/Jenks Consultants. *Ecology Response to Recommendations for Modification of the Groundwater Monitoring Program Former Fort Vancouver Plywood Site*. April 6.
- Ecology, 2016. Letter from Washington State Department of Ecology to the Port of Vancouver. Re: Approval for Reducing Groundwater Level and Groundwater Sampling Frequency at the Former Fort Vancouver Plywood Facility, Port of Vancouver, Vancouver, Washington. June 28.
- ERM, 2008a. *Cell 1 September 2007 Groundwater Monitoring Report and 5-Year Review.* Former Fort Vancouver Plywood, Port of Vancouver USA, Vancouver, Washington. May.
- ERM, 2008b. *Cell 2 September 2007 Groundwater Monitoring Report and 5-Year Review.* Former Fort Vancouver Plywood, Port of Vancouver USA, Vancouver, Washington. May.
- EPA, 1996. Ground Water Issue. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. By Robert W. Puls and Michael J. Barcelona. EPA/540/S-95/504. April.
- Kennedy/Jenks, 2011. Letter from Kennedy/Jenks Consultants to the Washington State Department of Ecology. Subject: Recommendation for Modification of the Groundwater Monitoring Program, Former Fort Vancouver Plywood Site. Port of Vancouver USA. March 29.
- Kennedy/Jenks, 2014. Second Semi-Annual 2013 Groundwater Monitoring Report. Port of Vancouver USA, Fort Vancouver Plywood Site. February 11.
- U.S. Geological Survey (USGS), 1993. A Description of Hydrogeologic Units in the Portland Basin, Oregon and Washington. U.S. Geological Survey Water-Resources Investigations Report 90-4196. Prepared in cooperation with City of Portland Bureau of Water Works, Intergovernmental Resource Center, and Oregon Water Resources Department.

10 Limitations

AECOM has prepared this report for use by the Port. Within the limitations of scope, schedule, and budget, our services have been executed in accordance with accepted environmental science practices in this area at the time this report was prepared. No other warranty or conditions, expressed or implied, should be understood.

We appreciate the opportunity to be of service to the Port on this project. Please call Nicky Moody at (503) 478-2765 with any questions regarding this or any other referenced submittals.

Sincerely,

AECOM

CC:

Nicky Moody Project Manager Jeremy Haney, LG Geologist

Craig Rankine, RG, LHG, Cleanup Project Manager/Hydrogeologist, Washington Department of Ecology,

2sed Geo

Toxics Cleanup Program, 2108 Grand Blvd, Vancouver, WA 98661-4662

Attachments

List of Figures

Figure 1 Vicinity Map Figure 2 Site Map

Figure 3 Groundwater Elevation, Contours, and Flow Direction – March 2019

List of Tables

Table 1	Compliance Monitoring Plan
Table 2	Groundwater Elevation Results
Table 3	Groundwater Field Parameter Measurements
Table 4	Volatile Organic Compounds in the Deeper Unconsolidated Aquifer
Table 5	Volatile Organic Compounds in the Shallow Zone
Table 6	Total Petroleum Hydrocarbons in the Deeper Unconsolidated Aquifer
Table 7	Total Petroleum Hydrocarbons in the Shallow Zone

List of Appendices

Appendix A Field Forms

Appendix B Laboratory Report and Chain-of-Custody Form

Appendix C Data Quality Review Report

Figures

53

Mile 105 Port of

SITE

VICINITY MAP

FORMER FORT VANCOUVER PLYWOOD SITE PORT OF VANCOUVER USA VANCOUVER, WA

VANCOUVER

FIGURE 1

REACH

SCALE IN FEET

FORMER FORT VANCOUVER PLYWOOD SITE PORT OF VANCOUVER USA VANCOUVER, WA

FIGURE 2

AECOM

AECOM

FORMER FORT VANCOUVER PLYWOOD SITE PORT OF VANCOUVER USA VANCOUVER, WA

FIGURE 3

Table 1. Compliance Monitoring Plan

Former Fort Vancouver Plywood Site

					Current Compliance Monitoring Plan							
			Screen	Groundwater Monitoring & Sampling Sampling Plan								
			Interval				+18	Sampling				
Cell #	Well ID	Aquifer	(feet)	Sep-17	Mar-19	Sep-20	months	Method	Analytes	Con	tainers	Recommendation
	C1-MW-4	Shallow	17-32	Complete	Complete	Х	Χ	PP/Bailer	VOCs	6 VOAs	-	-
	C1-MW-7	Shallow	15-30	Complete	Complete	Χ	Χ	PP/Bailer	BTEX, MTBE	6 VOAs	-	Decommission
	C1-MW-1	Shallow	18-33	Decommis	sioned in De	ecember 20)16 after ap	proval from	Ecology in June	2016		
	C1-MW-2	Shallow	11-21	Decommis	ecommissioned in December 2016 after approval from Ecology in June 2016							
	C1-MW-3	Shallow	15-32	Decommis	ecommissioned in December 2016 after approval from Ecology in June 2016							
Cell 1	C1-MW-5	Shallow	16-32	Decommis	sioned in De	ecember 20)16 after ap	proval from	Ecology in June	2016		
C1-MW-6 Shallow 15-25 Decommissioned in 2013 after approval from Ecology in 2011												
	C1-MW-6B	Deeper	52.5-62.5	Decommis	ecommissioned in 2013 after approval from Ecology in 2011							
	C1-MW-8	Shallow	16-31	Decommis	ecommissioned in 2012 after approval from Ecology in 2011							
	C1-MW-8(R)	Shallow	15-30	Decommis	Decommissioned in November 2016 after approval from Ecology in June 2016							
	C1-MW-9	Shallow	20-30	Decommis	commissioned in December 2016 after approval from Ecology in June 2016							
	C2-MW-3	Shallow	6-16	Complete	Complete	Χ	Χ	PP/Bailer	Gx, Dx	6 VOAs	2 Ambers	-
	C2-MW-9**	Shallow	25-35	Complete	Complete	Χ	Χ	PP/Bailer	VOCs, Gx, Dx	6 VOAs	2 Ambers	-
	C2-MW-10(R2	Shallow	20-35	Complete	Complete	Χ	Χ	PP/Bailer	Gx, Dx	6 VOAs	2 Ambers	-
	C2-MW-11(R)	Shallow	15-30	Complete	Complete	Χ	Χ	PP/Bailer	VOCs, Gx, Dx	6 VOAs	2 Ambers	-
	C2-MW-12B	Deeper	40-50	Complete	Complete	Χ	Χ	Bladder	VOCs, Gx, Dx	6 VOAs	2 Ambers	-
	C2-MW-1	Shallow	5-15	Not decom	missioned a	as paved ov	er & not lo	cated again	in December 20)16		
	C2-MW-2	Shallow	6-16	Decommis	sioned in Au	ugust 2010						
	C2-MW-4	Shallow	9-19	Not decom	missioned a	as paved ov	er & not lo	cated again	in December 20)16		
Cell 2	C2-MW-5	Shallow	6-16	Decommis	sioned in 20)12 after ap	proval from	Ecology in	2011			
00.12	C2-MW-6	Shallow	15-20	Decommis	sioned in No	ovember 20)16 after ap	proval from	Ecology in June	2016		
	C2-MW-7	Shallow	15-25	Not decom	missioned a	as paved ov	er & not lo	cated again	in December 20)16		
	C2-MW-8	Shallow	6-16	Decommis	sioned in 20	12 followin	g approval	from Ecolog	gy in 2011			
	C2-MW-10(R)	Shallow	18-33	Well not lo	catable (unl	nown if da	maged or p	aved over);	replaced in 201	5 with C2	-MW-10(R2	2)
	C2-MW-11	Shallow	15-30	Decommis	sioned in 20)14 due to	construction	activities;	replaced in 2014	with C2-	MW-11(R)	
	C2-MW-13B	Deeper	47-57	Decommis	sioned in 20	12 followin	g approval	from Ecolog	gy in 2011			
	C2-MW-14	Shallow			Decommissioned in 2002 following approval from Ecology							
	C2-MW-15	Shallow	7-22						Ecology in June			
	C2-MW-16	Shallow	5-20	Not decom	missioned a	as paved ov	er & not lo	cated again	in December 20)16		

Sampling Schedule (18+ months)*

September 2017 March 2019 September 2020

+18 months

Notes:
= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

X = indicates that depth to groundwater measurements will be collected.

Red = indicates active conditional Point of Compliance (POC) well in the Agreed Orders

BTEX = benzene, toluene, ethylbenzene, and total xylenes

Dx = diesel and heavy oil range organics

Gx = gasoline range organics

MTBE = methyl tert-butyl ether

PP/Bailer = purging conducted using peristaltic pump and then sampling conducted using a double check ball disposable bailer

(R) = C1-MW-8 and C2-MW-11 were replaced in July 2014.

VOA = volatile organic analysis

VOC = volatile organic carbon

** = Collect field duplicate on C2-MW-9. If not accessible, collect the field duplicate on C2-MW-11 or C2-MW-12B.

Table 1 Page 1 of 1

Tables

Former Fort Vancouver Plywood Site

Well		Top of Casing Elevation ^(a)	Depth to	Total Well Depth	Groundwater Elevation	Well Screened Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
200.9			Active Monitoring Wel	\ /	(.551)	(.551)
Cell 1 - Shallow Zone						
C1-MW-4	02/26/09	29.07	22.86	29.4	6.21	
	05/11/09	29.07	19.69	29.4	9.38	
	12/17/09	29.07	22.29	29.3	6.78	
	03/29/10	29.07	23.01	29.4	6.06	
	05/25/10	29.07	20.54	29.4	8.53	
	11/29/10	29.07	22.83	29.4	6.24	
	03/24/11	29.07	18.75	29.3	10.32	
	10/11/11	29.07	23.33	29.3	5.74	
	02/29/12	29.07	22.11	NM	6.96	
	09/20/12	29.07	23.47	NM	5.60	17-32
	03/22/13	29.07	23.75	NM	5.32	
	09/23/13	29.07	NM	NM	NA	
	03/20/14	29.07	17.92	NM	11.15	
	09/02/14	29.07	24.36	NM	4.71	
	04/07/15	29.07	20.45	NM	8.62	
	09/28/15	29.07	24.33	NM	4.74	
	03/28/16	29.07	19.65	NM	9.42	
	09/11/17	29.07	24.44	NM	4.63	
	03/19/19	29.07	23.81	NM	5.26	
C1-MW-7	02/26/09	30.05	17.85	29.1	12.20	
	05/11/09	30.05	17.74	28.5	12.31	
	12/17/09	30.05	17.87	28.5	12.18	
	03/29/10	30.05	17.41	28.5	12.64	
	05/25/10	30.05	17.41	28.5	12.64	
	11/29/10	30.05	17.56	28.5	12.49	
	03/24/11	30.05	16.92	28.5	13.13	
	10/11/11	30.05	17.59	28.5	12.46	
	02/29/12	30.05	17.48	28.5	12.57	
	09/20/12	30.05	17.57	28.5	12.48	15-30
	03/21/13	30.05	17.50	NM	12.55	
	09/23/13	30.05	17.76	NM	12.29	
	03/20/14	30.05	17.02	NM	13.03	
	09/02/14	30.05	17.53	NM	12.52	
	04/07/15	30.05	17.24	NM	12.81	
	09/28/15	29.29	17.54	NM	11.75	
	03/28/16	29.29	16.77	NM	12.52	
	09/11/17	29.29	16.91	NM	12.38	
	03/19/19	29.29	17.11	NM	12.18	

Table 2 Page 1 of 7

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation (a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
Cell 2 - Shallow Zone						
C2-MW-3	02/26/09	32.43	12.70	15.4	19.73	
	05/11/09	32.43	13.04	15.0	19.39	
	12/17/09	32.43	13.12	15.3	19.31	
	03/29/10	32.43	12.22	15.1	20.21	
	05/25/10	32.43	12.08	15.1	20.35	
	11/29/10	32.43	12.20	15.1	20.23	
	03/24/11	32.43	11.32	15.0	21.11	
	10/11/11	32.43	12.56	15.0	19.87	
	02/29/12	32.43	11.99	15.0	20.44	
	09/20/12	32.43	12.91	15.0	19.52	6-16
	03/21/13	32.43	11.86	NM	20.57	
	09/20/13	32.43	12.52	NM	19.91	
	03/20/14	32.43	11.86	NM	20.57	
	09/02/14	32.43	12.40	NM	20.03	
	04/07/15	32.43	11.82	NM	20.61	
	09/28/15	32.43	12.81	NM	19.62	
	03/28/16	32.43	11.19	NM	21.24	
	09/11/17	32.43	12.58	NM	19.85	
	03/19/19	32.43	12.88	NM	19.55	
C2-MW-9	02/26/09	33.00	NM	NM	NA	
02	05/11/09	33.00	21.89	34.5	11.11	
	12/17/09	33.00	24.69	33.8	8.31	
	03/29/10	33.00	NM	NM	NA	
	05/25/10	33.00	NM	NM	NA NA	
	11/29/10	33.00	NM	NM	NA NA	
	03/24/11	33.00	NM	NM	NA NA	
	10/11/11	33.00	24.97	33.8	8.03	
	02/29/12	33.00	18.81	33.8	14.19	
	09/20/12	33.00	24.51	33.8	8.49	25-35
	03/22/13	33.00	24.48	NM	8.52	20 00
	09/23/13	33.00	25.50	NM	7.50	
	03/20/14	33.00	19.54	NM	13.46	
	09/02/14	32.25	24.49	NM	7.76	
	04/07/15	32.25	21.29	NM	10.96	
	09/28/15	32.25	25.68	NM	6.57	
	03/28/16	32.25	21.30	NM	10.95	
	09/11/17	32.25	25.16	NM	7.09	
	03/19/19	32.25	24.02	NM	8.23	
C2-MW-10(R2)	09/28/15	33.57	28.38	35.45	5.19	
02 WW 10(1\2)	03/28/16	33.57	24.39	NM	9.18	
	09/11/17	33.57	27.96	NM	5.61	20-35
	03/19/19	33.57	27.12	NM	6.45	
C2-MW-11(R)	09/02/14	30.80	25.23	NM	5.57	
52 WWW 11(IX)	04/07/15	30.80	21.90	NM	8.90	
	09/28/15	30.80	25.62	NM	5.18	
	03/28/16	30.80	21.58	NM	9.22	15-30
	09/11/17	30.80	25.27	NM	5.53	
	03/11/17	30.00	20.21	INIVI	0.00	1

Table 2 Page 2 of 7

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation ^(a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
Cell 2 - Deeper Unco				·		T
C2-MW-12B	02/26/09	32.45	25.40	47.6	7.05	
	05/11/09	32.45	21.81	46.7	10.64	
	12/17/09	32.45	24.73	47.4	7.72	
	03/29/10	32.45	25.39	46.8	7.06	
	05/25/10	32.45	22.82	46.7	9.63	
	11/29/10	32.45	25.21	46.8	7.24	
	03/24/11	32.45	21.02	46.8	11.43	
	10/11/11	32.45	26.24	46.8	6.21	
	02/29/12	32.45	24.05	46.8	8.40	
	09/20/12	32.45	26.39	46.8	6.06	40-50
	03/21/13	32.45	25.82	NM	6.63	
	09/20/13	32.45	26.34	NM	6.11	
	03/20/14	32.45	20.12	NM	12.33	
	09/02/14	32.45	27.04	NM	5.41	
	04/07/15	32.45	23.00	NM	9.45	
	09/28/15	32.45	26.87	NM	5.58	
	03/28/16	32.45	21.97	NM	10.48	
	09/11/17	32.45	26.57	NM	5.88	
	03/19/19	32.45	25.88	NM	6.57	
	03/13/13		d or Unlocatable Moni		0.51	
Cell 1 - Shallow Zone	<u> </u>	Abandoned	or Uniocatable Mon	tornig wens		
C1-MW-1	02/26/09	30.23	NM	NM	NA	
01-10100-1	05/11/09	30.23	21.06	33.5	9.17	
	12/17/09	30.23	23.47	33.3	6.76	
	03/29/10	30.23	24.32	33.5	5.91	
	05/25/10	30.23	21.72	33.4	8.51	
	11/29/10	30.23	24.58	33.4	5.65	
	03/24/11	30.23	20.08	33.4	10.15	
	10/11/11	30.23	24.87	33.4	5.36	40.00
	02/29/12	30.23	23.20	33.4	7.03	18-33
	09/20/12	30.23	25.05	33.4	5.18	
	03/21/13	30.23	24.97	NM	5.26	
	09/23/13	30.23	25.62	NM	4.61	
	03/20/14	30.23	19.25	NM	10.98	
	09/02/14	30.23	26.02	NM	4.21	
	04/07/15	30.23	22.05	33.6	8.18	
	09/28/15	30.23	25.80	NM	4.43	
	03/28/16	30.23	21.19	NM	9.04	
C1-MW-2	02/26/09	31.03	14.53	20.8	16.50	
	05/11/09	31.03	14.26	20.3	16.77	
	12/17/09	31.03	13.29	20.4	17.74	
	03/29/10	31.03	14.05	NM	16.98	
	05/25/10	31.03	14.27	20.4	16.76	
	11/29/10	31.03	13.57	NM	17.46	
	03/24/11	31.03	13.02	20.4	18.01	
	10/11/11	31.03	14.83	20.4	16.20	
	02/29/12	31.03	13.91	20.4	17.12	11-21
	09/20/12	31.03	15.15	20.4	15.88	
	03/21/13	31.03	14.38	NM	16.65	
	09/23/13	31.03	NM	NM	NA	
	03/20/14	31.03	14.66	NM	16.37	
	09/02/14	31.03	15.02		16.01	
		31.03		NM		
	04/07/15		14.26	NM	16.77	
	09/28/15	31.03	15.56	NM	15.47	
	03/28/16	31.03	13.59	NM	17.44	

Table 2 Page 3 of 7

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation (a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C1-MW-3	02/26/09	29.89	23.11	32.1	6.78	
	05/11/09	29.89	20.45	31.5	9.44	
	12/17/09	29.89	22.78	31.5	7.11	
	03/29/10	29.89	23.17	31.6	6.72	
	05/25/10	29.89	21.12	31.1	8.77	
	11/29/10	29.89	NM	NM	NA	
	03/24/11	29.89	19.42	31.4	10.47	
	10/11/11	29.89	23.71	31.4	6.18	
	02/29/12	29.89	22.06	31.4	7.83	15-32
	09/20/12	29.89	24.00	31.4	5.89	
	03/22/13	29.10	23.20	NM	5.90	
	09/23/13	29.10	NM	NM	NA	
	03/20/14	29.10	17.55	NM	11.55	
	09/02/14	29.10	23.93	NM	5.17	
	04/07/15	29.10	20.52	NM	8.58	
	09/28/15	29.10	24.02	NM	5.08	
	03/28/16	29.10	19.69	NM	9.41	
C1-MW-5	02/26/09	30.71	DRY	31.2	NA	
	05/11/09	30.71	21.37	31.2	9.34	
	12/17/09	30.71	23.89	31.2	6.82	
	03/29/10	30.71	24.72	33.2	5.99	
	05/25/10	30.71	22.15	31.2	8.56	
	11/29/10	30.71	24.93	31.2	5.78	
	03/24/11	30.71	20.49	31.2	10.22	
	10/11/11	30.71	25.27	31.2	5.44	
	02/29/12	30.71	23.53	31.2	7.18	16-32
	03/21/13	29.84	24.93	NM	4.91	
	09/23/13	29.84	25.49	NM	4.35	
	03/20/14	29.84	19.16	NM	10.68	
	09/02/14	29.84	NM	NM	NA	
	04/07/15	29.84	21.96	31.0	7.88	
	09/28/15	29.84	25.71	NM	4.13	
	03/28/16	29.84	21.14	NM	8.70	
C1-MW-6	02/26/09	31.66	NM	NM	NA	
OT WIVE O	05/11/09	31.66	12.13	27.1	19.53	
	12/18/09	31.66	12.19	26.9	19.47	
	03/29/10	31.66	NM	NM	NA	
	05/25/10	31.66	NM	NM	NA NA	15-25
	11/29/10	31.66	11.29	26.7	20.37	
	03/24/11	31.66	10.75	26.6	20.91	
	10/11/11	31.66	NM	NM	NA	
C1-MW-8	02/26/09	30.43	23.54	32.7	6.89	
O I-IVIVV-O	05/11/09	30.43	20.74	31.9	9.69	
	12/17/09	30.43	22.84	31.9	7.59	
		30.43	25.63		4.80	
	03/29/10 05/25/10	30.43	21.10	36.2 31.9	9.33	
	11/29/10	30.43	23.91		6.52	16-31
				31.9		
	03/24/11	30.43	19.78	31.2	10.65	
	10/11/11	30.43	23.93	31.2	6.50	
	02/29/12	30.43	22.03	31.2	8.40	
O4 MM/ O/D)	09/20/12	30.43	24.02	31.2	6.41	
C1-MW-8(R)	09/02/14	27.58	22.72	NM	4.86	
	04/07/15	27.58	18.85	NM	8.73	15-30
	09/28/15	27.58	22.68	NM	4.90	
	03/28/16	27.58	18.49	NM	9.09	

Table 2 Page 4 of 7

Former Fort Vancouver Plywood Site

Well		Top of Casing Elevation ^(a)	Depth to Groundwater ^(b)	Total Well Depth	Groundwater Elevation	Well Screened Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C1-MW-9	02/26/09	30.55	19.78	27.5	10.77	
	05/11/09	30.55	19.83	27.0	10.72	
	12/17/09	30.55	21.10	27.0	9.45	
	03/29/10	30.55	19.47	27.0	11.08	
	05/25/10	30.55	19.61	27.0	10.94	
	11/29/10	30.55	19.88	27.1	10.67	
	03/24/11	30.55	18.96	27.0	11.59	
	10/11/11	30.55	19.75	26.7	10.80	22.22
	02/29/12	30.55	19.76	26.7	10.79	20-30
	09/20/12	30.55	19.86	26.7	10.69	
	03/21/13	30.55	18.95	NM	11.60	
	09/23/13	30.55	19.92	NM	10.63	
	03/20/14	30.55	19.37	NM	11.18	
	09/02/14	30.55	19.75	NM	10.80	
	04/07/15	30.55	19.77	NM	10.78	
	09/28/15	30.55	19.95	NM	10.60	
	03/28/16	30.55	18.80	NM	11.75	
Cell 1 - Deeper Unco						
C1-MW-6B	02/26/09	30.96	MM	NM	NA	
	05/11/09	30.96	21.89	65.3	9.07	
	12/17/09	30.96	24.23	64.9	6.73	
	03/29/10	30.96	24.87	64.5	6.09	E0 E 60 E
	05/25/10	30.96	NM	NM	NA	52.5-62.5
	11/29/10	30.96	NM	NM	NA	
	03/24/11	30.96	20.74	64.3	10.22	
	10/11/11	30.96	NM	NM	NA	
Cell 2 - Shallow Zone					1	
C2-MW-1	02/26/09	34.51	28.57	32.4	5.94	
	05/11/09	34.51	NM	NM	NA	
	12/17/09	34.51	25.40	32.5	9.11	
	03/29/10	34.51	26.37	32.3	8.14	
	05/25/10	34.51	NM	NM	NA	
	11/29/10	34.51	NM	NM	NA NA	
	03/24/11	34.51	22.11	32.5	12.40	
	10/11/11	34.51	27.50	32.5	7.01	5-15
	02/29/12	34.51	NM	NM	NA	
	09/23/13	34.51	NM	NM	NA NA	
	03/20/14	34.51	NM	NM	NA NA	
	09/02/14	34.51	NM	NM	NA NA	
	04/07/15	34.51	NM	NM	NA NA	
	09/28/15	NM	NM	NM	NM	
C2-MW-2	02/26/09	33.20	13.04	16.8	20.16	
0Z-1VIVV-Z	05/11/09	33.20	13.45	16.5	19.75	
			13.45 NM		NA	
	12/17/09	33.20		NM		6-16
	03/29/10	33.20	NM	NM	NA NA	
	05/25/10	33.20	NM	NM	NA NA	
CO MAN 4	11/29/10	33.20	NM	NM	NA NA	
C2-MW-4	02/26/09	34.20	NM	NM	NA	
	05/11/09	34.20	NM	NM	NA	
	12/17/09	34.20	NM	NM	NA	
	03/29/10	34.20	NM	NM	NA	9-19
	05/25/10	34.20	NM	NM	NA	
	11/29/10	34.20	NM	NM	NA	
	03/24/11	34.20	NM	NM	NA	
	10/11/11	34.20	NM	NM	NA	

Table 2 Page 5 of 7

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation ^(a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C2-MW-5	02/26/09	32.43	12.46	16.4	19.97	
	05/11/09	32.43	12.86	14.9	19.57	
	12/17/09	32.43	13.22	15.2	19.21	
	03/29/10	32.43	12.00	14.8	20.43	6-16
	05/25/10	32.43	11.92	14.9	20.51	0-10
	11/29/10	32.43	11.99	14.9	20.44	
	03/24/11	32.43	11.17	14.9	21.26	
	10/11/11	32.43	NM	NM	NA	
C2-MW-6	02/26/09	33.46	NM	NM	NA	
	05/11/09	33.46	NM	NM	NA	
	12/17/09	33.46	DRY	19.9	NA	
	03/29/10	33.46	DRY	19.7	NA	
	05/25/10	33.46	DRY	19.9	NA	
	11/29/10	33.46	NM	NM	NA	
	03/24/11	33.46	NM	NM	NA	
	10/11/11	33.46	19.48	19.9	13.98	15-20
	02/29/12	33.46	19.61	19.9	13.85	13-20
	03/21/13	33.46	18.66	NM	14.80	
	09/20/13	33.46	19.35	NM	14.11	
	03/20/14	33.46	18.19	NM	15.27	
	09/02/14	33.46	18.19	NM	15.27	
	04/07/15	33.46	14.81	NM	18.65	
	09/28/15	33.46	19.51	NM	13.95	
	03/28/16	33.46	15.39	NM	18.07	
C2-MW-7	02/26/09	34.55	NM	NM	NA	
	05/11/09	34.55	19.22	28.2	15.33	
	12/17/09	34.55	NM	NM	NA	
	03/29/10	34.55	NM	NM	NA	15-25
	05/25/10	34.55	NM	NM	NA	13-23
	11/29/10	34.55	NM	NM	NA	
	03/24/11	35.55	NM	NM	NA	
	10/11/11	35.55	NM	NM	NA	
C2-MW-8	02/26/09	31.90	NM	NM	NA	
	05/11/09	31.90	NM	NM	NA	
	12/17/09	31.90	DRY	14.9	NA	
	03/29/10	31.90	NM	NM	NA	6 16
	05/25/10	31.90	DRY	NM	NA	6-16
	11/29/10	31.90	NM	NM	NA	
	03/24/11	31.90	DRY	14.6	NA	
	10/11/11	31.90	NM	NM	NA	
C2-MW-10(R)	02/26/09	34.18	25.72	36.2	8.46	
	05/11/09	34.18	22.61	36.1	11.57	
	12/17/09	34.18	25.39	36.4	8.79	
	03/29/10	34.18	25.63	36.2	8.55	
	05/25/10	34.18	23.60	36.1	10.58	
	11/29/10	34.18	25.93	36.2	8.25	
	03/24/11	34.18	21.95	36.1	12.23	
	10/11/11	34.18	25.99	36.1	8.19	15-30
	02/29/12	34.18	24.29	36.1	9.89	
	09/20/12	34.18	26.00	36.1	8.18	
	03/22/13	34.18	26.20	NM	7.98	
	09/23/13	34.18	NM	NM	NA	
	03/20/14	34.18	NM	NM	NA	
	09/02/14	34.18	NM	NM	NA	
	04/07/15	34.18	NM	NM	NA	

Table 2 Page 6 of 7

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well	Dete	Elevation (a)	Groundwater (b)	Depth	Elevation	Interval
Designation C2-MW-11	Date 02/26/09	(feet) 34.26	(feet) 25.60	(feet) 36.0	(feet) 8.66	(feet)
G2-IVIVV-11	05/11/09	34.26	22.63	36.1	11.63	
	12/17/09	34.26 34.26	25.33	36.3	8.93	
	03/29/10	34.26	25.67	36.1	8.59	
	05/25/10	34.26	23.45	36.1	10.81	
	11/29/10	34.26	25.81	36.1	8.45	
		34.26 34.26				45.20
	03/24/11 10/11/11	34.26 34.26	21.94 25.91	36.1 36.1	12.32 8.35	15-30
		34.26 34.26	25.91	36.1		
	02/29/12			36.1	10.09 8.41	
	09/20/12	34.26	25.85	NM	_	
	03/22/13	34.26	25.95		8.31	
	09/23/13	34.26	26.52	NM	7.74	
00.104.45	03/20/14	34.26	21.15	NM	13.11	
C2-MW-15	02/26/09	33.06	21.56	24.3	11.50	
	05/11/09	33.06	20.72	23.9	12.34	
	12/17/09	33.06	21.92	23.9	11.14	
	03/29/10	33.06	NM	NM	NA NA	
	05/25/10	33.06	NM	NM	NA	
	11/29/10	33.06	NM	NM	NA	
	03/24/11	34.06	NM	NM	NA	
	10/11/11	34.06	NM	NM	NA	7-22
	02/29/12	34.06	NM	NM	NA	
	09/20/12	34.06	21.22	NM	12.84	
	03/21/13	34.06	20.21	NM	13.85	
	09/23/13	34.06	21.08	NM	12.98	
	03/20/14	34.06	18.50	NM	15.56	
	09/02/14	34.06	NM	NM	NA	
	04/07/15	34.06	18.70	NM	15.36	
	09/28/15	NM	NM	NM	NM	
C2-MW-16	02/26/09	33.76	NM	NM	NA	
	05/11/09	33.76	19.68	23.5	14.08	
	12/17/09	33.76	NM	NM	NA	
	03/29/10	33.76	NM	NM	NA	5-20
	05/25/10	33.76	NM	NM	NA	
	11/29/10	33.76	NM	NM	NA	
	03/24/11	33.76	NM	NM	NA	
	10/11/11	33.76	NM	NM	NA	
Cell 2 - Deeper Unco						
C2-MW-13B	02/26/09	32.38	NM	NM	NA	
	05/11/09	32.38	NM	NM	NA	
	12/17/09	32.38	NM	NM	NA	
	03/29/10	32.38	NM	NM	NA	47-57
	05/25/10	32.38	NM	NM	NA	41-01
	11/29/10	32.38	NM	NM	NA	
	03/24/11	32.38	21.35	54.98	11.03	
	10/11/11	32.38	NM	NM	NA	

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

NM = Not measured because the well was inaccessible.
NA = Not applicable.

Table 2 Page 7 of 7

⁽a) = Elevation in feet relative to mean sea level based on ties to a local W&H Pacific Co. benchmark, vertical datum NGVD29(47).

⁽b) = Measured in feet below the top of the well casing.

Former Fort Vancouver Plywood Site

				Field Parameters		
	Sample	Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Date	(°C)	(mS/cm)	(mg/l)	pН	(mV)
			Active Monitoring			
Cell 1 - Shallow Zone)					
C1-MW-4	02/27/09	15.05	1.057	0.45	8.39	-
	05/12/09	15.52	1.217	1.32	6.92	-
	12/18/09	15.32	1.294	0.50	6.35	-
	03/30/10	14.71	0.515	0.88	6.36	-
	05/26/10	15.37	1.109	1.36	6.28	-
	11/30/10	14.2	1.366	1.10	6.54	-
	03/24/11	14.85	1.577	0.63	6.24	-
	10/11/11	15.19	1.149	1.39	7.93	-
	03/01/12	14.77	1.857	0.54	6.66	-
	09/20/12	15.48	1.262	0.97	6.33	-
	03/22/13	15.1	1.798	1.12	7.38	-
	09/23/13	NS	NS	NS	NS	-
	03/21/14	15.48	1.173	1.51	6.34	-54.2
	09/03/14	18.01	1.188	0.75	6.26	-45.1
	04/07/15	15.48	1.193	6.44	6.44	-92.2
	09/29/15	16.94	1.164	0.34	6.31	-53.4
	03/29/16	15.31	1.419	1.82	6.30	-58.1
	09/11/17	20.36	1.41	1.99	6.65	-34
	03/19/19	16.33	2.61	1.05	6.41	-81
C1-MW-7	02/27/09	15.82	0.501	0.63	7.37	-
	05/12/09	15.63	0.877	1.64	6.78	-
	12/18/09	16.16	1.025	0.54	6.26	-
	03/30/10	15.45	0.383	0.79	6.35	-
	05/26/10	15.70	0.610	3.32	6.00	-
	11/30/10	14.46	0.973	1.18	6.59	-
	03/25/11	15.05	1.048	1.26	6.44	-
	10/12/11	16.01	0.906	1.48	7.43	-
	02/29/12	14.44	0.599	1.66	6.65	-
	09/20/12	16.14	0.772	0.93	6.28	-
	03/22/13	15.17	1.331	0.91	7.80	-
	09/23/13	16.10	1.300	7.00	8.20	-
	03/21/14	15.75	1.056	0.38	6.55	-130.5
	09/04/14	17.29	1.003	4.55	6.35	-80.1
	04/07/15	17.36	1.138	0.70	6.42	-127.0
	09/29/15	19.24	1.078	0.60	6.45	-94.4
	03/29/16	16.33	1.103	2.06	6.36	32.1
	09/11/17	21.32	1.19	1.52	6.62	-91
	03/19/19	15.78	1.69	1.18	6.40	-121

Table 3 Page 1 of 4

Former Fort Vancouver Plywood Site

				Field Parameters		
	Sample	Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Date	(°C)	(mS/cm)	(mg/l)	рН	(mV)
Cell 2 - Shallow Zone		(- /	()	(****3,**/	P	()
C2-MW-3	02/26/09	14.22	0.284	1.64	7.21	-
02	05/12/09	14.61	0.316	1.75	6.62	_
	12/17/09	14.92	0.404	0.53	6.39	_
	03/29/10	13.02	0.102	10.60	6.7	_
	05/26/10	14.15	0.216	1.59	6.21	_
	11/30/10	14.8	0.240	12.00	6.72	_
	03/25/11	13.58	0.236	1.04	6.56	_
	10/11/11	16.11	0.173	1.39	7.07	_
	02/29/12	12.84	0.242	2.10	6.55	_
	09/21/12	16.14	0.200	14.90	6.23	_
	03/21/13	14.04	0.257	2.92	7.49	_
	09/20/13	16.90	0.220	3.30	6.90	_
	03/21/14	14.02	0.157	2.28	6.49	80.1
	09/03/14	18.13	0.193	1.28	6.08	25.1
	04/07/15	16.26	0.190	2.33	6.36	4.0
	09/29/15	17.98	0.219	0.61	6.65	99.9
	03/29/16	12.66	0.162	3.09	6.79	67.4
	09/11/17	23.54	0.222	1.47	6.85	111
	03/19/19	13.21	0.270	2.10	6.74	109
C2-MW-9	02/26/09	NS	NS	NS	NS	-
02	05/12/09	14.24	0.974	2.18	7.05	_
	12/18/09	14.07	0.903	0.72	6.49	_
	03/30/10	NS	NS	NS	NS	_
	05/26/10	NS	NS	NS	NS	_
	11/30/10	NS	NS	NS	NS	_
	03/25/11	13.71	0.879	0.37	6.61	_
	10/11/11	14.14	0.785	1.48	8.13	_
	05/22/12	12.91	0.870	0.71	8.00	_
	09/20/12	14.76	0.998	0.94	6.70	_
	03/22/13	12.52	1.239	1.41	6.84	_
	09/23/13	14.40	0.790	4.50	8.20	-
	03/21/14	14.41	0.697	1.11	6.49	-66.3
	09/03/14	16.34	0.726	0.82	6.33	-90.3
	04/07/15	14.14	0.720	0.69	6.39	-100.8
	09/28/15	17.08	0.744	0.44	6.49	-89.4
	03/28/16	14.15	0.179	4.27	6.62	-35.1
	09/11/17	18.93	0.725	1.62	6.74	-78
	03/19/19	14.46	1.010	1.64	6.61	-114
C2-MW-10(R2)	09/28/15	16.89	0.814	0.34	6.57	-91.1
' '	03/28/16	16.28	0.788	1.06	6.44	-75.1
	09/11/17	19.54	0.842	1.97	6.87	-73
	03/19/19	16.24	1.180	1.36	6.64	-104
C2-MW-11(R)	09/03/14	20.03	0.760	1.59	6.10	-43.8
` '	04/07/15	13.87	0.709	0.42	6.70	-131.8
	09/28/15	16.61	0.723	0.43	6.60	-86.8
	3/28/2016	15.26	0.776	1.06	6.49	-126.3
	9/11/2017	18.04	0.774	2.35	6.81	-105
	3/19/2019	15.67	0.862	0.92	6.53	-78

Table 3 Page 2 of 4

Former Fort Vancouver Plywood Site

				Field Parameters		
	Sample	Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Date	(°C)	(mS/cm)	(mg/l)	рН	(mV)
Cell 2 - Deeper Unco			(morem)	(1119/1)	p	(1117)
C2-MW-12B	02/26/09	14.24	0.324	1.73	8.48	_
02	05/12/09	15.03	0.325	1.79	7.20	_
	12/17/09	14.46	0.395	0.68	6.97	_
	03/29/10	14.47	0.167	8.57	7.09	_
	05/26/10	15.23	0.350	4.49	6.70	_
	11/30/10	11.05	0.186	8.47	7.08	_
	03/25/11	14.55	0.310	0.86	7.13	_
	10/11/11	14.69	0.281	4.11	7.30	_
	02/29/12	13.01	0.360	1.93	6.83	_
	09/21/12	14.02	0.311	33.60	5.73	_
	03/21/13	13.25	0.380	2.04	7.32	_
	09/20/13	15.10	0.340	3.10	7.60	_
	03/21/14	14.31	0.249	3.06	6.92	150.4
	09/03/14	17.09	0.263	1.61	6.95	43.4
	04/07/15	15.36	0.237	0.62	7.10	104.3
	09/29/15	14.94	0.256	0.70	7.10	37.9
	03/29/16	14.19	0.184	3.67	7.01	39.4
	09/11/17	20.16	0.298	6.23	7.32	105
	03/19/19	13.00	0.401	3.47	7.10	104
			d or Unlocatable N			
Cell 1 - Shallow Zone	1			<u> </u>		
C1-MW-3	02/27/09	14.38	1.057	0.34	9.12	-
	05/12/09	14.84	1.123	1.43	7.02	-
	12/18/09	14.91	1.198	0.50	6.42	-
	03/30/10	13.5	0.455	0.93	6.45	-
	05/26/10	14.67	0.994	2.32	6.27	-
	11/30/10	NS	NS	NS	NS	-
	03/24/11	13.24	1.211	0.84	6.55	-
	10/12/11	14.5	0.920	1.62	7.56	-
	03/01/12	14.21	1.991	0.49	6.79	-
	09/20/12	15.27	0.944	0.91	6.44	-
	03/22/13	14.39	1.630	2.01	8.23	-
	09/23/13	NS	NS	NS	NS	-
	03/21/14	13.83	0.774	0.28	6.61	15.8
	09/03/14	20.28	1.094	1.16	6.10	-41.1
	04/07/15	14.79	1.103	0.57	6.41	-107.4
	09/29/15	16.96	0.855	0.30	6.19	-73.3
	03/29/16	12.41	0.701	3.31	6.49	59.1
C1-MW-6	02/26/09	NS	NS	NS	NS	-
	05/12/09	11.17	0.402	3.35	6.40	-
	12/18/09	11.80	0.540	0.61	6.65	-
	3/30/2010	NS	NS	NS	NS	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	10.78	0.302	0.29	6.86	-
Cell 1 - Deeper Unco	•				.,-	
C1-MW-6B	02/26/09	NS	NS	NS	NS	-
	05/12/09	13.33	0.255	2.47	6.84	-
	12/18/09	12.85	0.281	0.71	6.85	-
	03/29/10	12.43	0.116	11.22	7.1	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	11.90	0.260	7.21	7.00	-

Table 3 Page 3 of 4

Former Fort Vancouver Plywood Site

				Field Parameters		
	Sample	Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Date	(°C)	(mS/cm)	(mg/l)	рН	(mV)
Cell 2 - Shallow Zone		` ,	,			, ,
C2-MW-7	02/26/09	NS	NS	NS	NS	-
	05/12/09	14.47	0.549	1.62	6.81	-
	12/17/09	NS	NS	NS	NS	-
	03/30/10	NS	NS	NS	NS	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	13.44	0.885	0.30	6.72	-
C2-MW-10(R)	02/27/09	15.1	1.045	0.28	9.10	-
, ,	05/12/09	14.71	1.065	1.71	6.72	-
	12/17/09	14.98	1.298	0.79	6.44	-
	03/29/10	14.98	0.480	8.24	6.75	-
	05/25/10	15.21	1.080	2.29	6.43	-
	11/30/10	14.4	1.253	16.00	6.78	-
	03/25/11	14.12	1.217	0.36	6.63	-
	10/12/11	14.77	0.966	1.37	7.30	-
	03/01/12	13.84	1.371	0.40	7.21	-
	09/20/12	14.30	0.992	0.86	6.47	-
	03/22/13	13.50	1.204	1.59	6.42	-
	09/23/13	NS	NS	NS	NS	-
	03/21/14	NS	NS	NS	NS	-
	09/03/14	NS	NS	NS	NS	-
	04/07/15	NS	NS	NS	NS	-
C2-MW-11	02/27/09	14.44	0.931	0.41	8.41	•
	05/12/09	14.18	0.401	1.80	6.88	-
	12/18/09	14.28	1.108	0.50	6.5	-
	03/29/10	14.25	0.458	7.15	6.71	-
	05/26/10	14.23	0.893	2.18	6.31	-
	11/30/10	13.83	0.990	2.39	6.79	-
	03/25/11	13.33	1.184	0.45	6.60	-
	10/12/11	14.30	0.909	1.59	7.89	-
	03/01/12	13.36	1.342	0.33	7.07	-
	09/20/12	14.57	0.932	0.77	6.42	-
	03/22/13	13.23	1.073	1.23	6.36	-
	09/23/13	14.10	0.930	8.80	8.60	-
	03/21/14	14.14	0.597	0.52	6.65	-14.8
Cell 2 - Deeper Unco				,		
C2-MW-13B	02/26/09	NS	NS	NS	NS	-
	05/12/09	NS	NS	NS	NS	-
	12/17/09	NS	NS	NS	NS	-
	03/29/10	NS	NS	NS	NS	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	14.37	0.256	2.55	6.71	-

Notes:

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

°C = Degrees Celsius.
mS/cm = millisiemens per centimeter.

mg/l = milligrams per liter

mv = millivolts

NS = Not sampled because well was not accessible.

ORP = oxidation reduction potential

Table 3 Page 4 of 4

^{- =} not available to AECOM for this report.

Table 4. Volatile Organic Compounds in the Deeper Unconsolidated Aquifer

Former Fort Vancouver Plywood Site

					BTEX C	ompounds an	d MTBE						His	torically Site	Detected VO	Cs (Since 200	19)			
	Sample ID ethod A Groundwater C		ηθη 2.0	υ Oluena μg/l 1,000	© Ethylbenzene	m, p-Xylene 1,000	0.000 1,000	Total Xylenes	은 등 Methyl Tertiary Butyl Ether	Acetone	☐ © Chloroethane	ZZ ⊟ ⊆ Chloromethane	지절 1,1-Dichloroethane	S N ≦ 1,1-Dichloroethene	지호 cis-1,2-Dichloroethene	지호 Isopropylbenzene (Cumene)	Naphthalene	지호 1,2,4-Trimethylbenzene	o M ≦ Trichlorofluoromethane	νων Chloride
Ecology's MTCA Me	ethod B Groundwater C	Sieanup Leveis	0.795	640	800	1,600	1,600	1,600 Activ	24 e Monitoring	7,200 Wells	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
Cell 2 - Deeper Unco	onsolidated Aquifer							Activ	C MOINTOINING	VVCIIS										
C2-MW-12B	C2-MW-12B C2-MW-12B	02/26/09 05/12/09 12/17/09 03/29/10 05/26/10 11/30/10 03/25/11 10/11/11 02/29/12 09/20/12 03/21/13 09/20/13 03/21/14 09/03/14 04/07/15 09/29/15	1.0 U 0.10 U 0.10 U 0.24 U 0.060 U 0.125 U 0.125 U 0.125 U 0.125 U	1.0 U 1.0 U 1.0 U 6.8 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.10 U 0.11 U 0.23 U 0.500 U 0.500 U 0.500 U 0.500 U	1.0 U 0.10 U 0.10 U 0.24 U 0.10 U 0.250 U 0.250 U 0.250 U 0.250 U	2.0 U 2.0 U 2.0 U 1.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 0.20 U 0.20 U 0.48 U 0.500 U 0.500 U 0.500 U 0.500 U	1.0 U 1.0 U 1.0 U 2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.10 U 0.10 U 0.13 U 0.250 U 0.250 U 0.250 U 0.250 U	 3.0 U 0.500 U	1.0 U 0.10 U 0.10 U 0.50 U 0.500 U 0.500 U 0.500 U	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 5.9 5.0 U 5.0 U 1.0 U 1.0 U 1.0 U 10.0 U 10.0 U 10.0 U 10.0 U	1.0 U 0.10 U 0.10 U 0.10 U 0.50 U 0.17 U 5.00 U 5.00 U 5.00 U 5.00 U	5.0 U 1.0 1.0 U 0.10 U 0.10 U 0.10 U 2.0 U 1.0 U 2.50 UJ 2.50 UJ 2.50 UJ	1.0 U 0.10 U 0.10 U 0.50 U 0.250 U 0.250 U 0.250 U 0.250 U	1.0 U 0.10 U 0.10 U 0.24 U 0.250 U 0.250 U 0.250 U 0.250 U	1.0 U 0.10 U 0.10 U 0.23 U 0.250 U 0.250 U 0.250 U 0.250 U	1.0 U 0.10 U 0.10 U 0.50 U 0.500 U 0.500 U 0.500 U 0.500 U	5.0 U 1.0 U 0.10 U 0.10 U 0.20 U 1.00 U 1.00 U 1.00 U 1.00 U	1.0 U 0.10 U 0.10 U 0.50 U 0.500 U 0.500 U 0.500 U	1.0 U 0.10 U 0.10 U 0.13 U 0.10 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	0.20 U 0.10 U 0.11 U 0.11 U 0.110 U 0.200 U 0.200 U 0.200 U 0.200 U
	C2-MW-12B	09/11/17	0.123 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	20.0 UJ	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	2.00 UJ	0.500 U	1.00 U	0.200 U
	C2-MW-12B	03/19/19	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.200 U	0.200 U	0.200 U	0.500 U	1.00 U	0.500 U	1.00 U	0.100 U
0.114 D							Ab	andoned or l	Uniocatable I	Monitoring We	lls									
Cell 1 - Deeper Unco		02/27/00	l NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
C1-MW-6B	NS C1-MW-6B C1-MW-6B C1-MW-6B NS NS C1-MW-6B	02/27/09 05/12/09 12/18/09 03/29/10 05/26/10 11/30/10 03/25/11	NS 1.0 U 1.0 U 1.0 U NS NS 1.0 U	NS 1.0 U 1.0 U 1.0 U NS NS 1.0 U	NS 1.0 U 1.0 U 1.0 U NS NS 1.0 U	NS NS NS	NS NS NS	NS 3.0 U 3.0 U 3.0 U NS NS 3.0 U	NS 1.0 U 1.0 U 1.0 U NS NS 1.0 U	NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS NS
Cell 2 - Deeper Unco																				
C2-MW-13B	C2-MW-13B	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	0.20 U

Notes:

--- = Sample not analyzed for constituent

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

MTBE = methyl tertiary butyl ether

MTCA = Washington State Department of Ecology Model Toxics Control Act

NE = Not established

NS = Not sampled because well was not accessible.

μg/I = micrograms per liter

R = The sample results were rejected based on the data quality review.

U = Constituent not detected at or above the reporting limit (prior to 2014) or method detection limit (2014 to current).

UJ = Constituent was not detected above the noted limit; the limit is approximate.

VOCs = volatile organic compounds

Values in **bold** were detected above the laboratory method detection limit.

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

= Indicates the analyte was not detected; however, the reported method detection limit exceeds a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

Table 5. Volatile Organic Compounds in the Shallow ZoneFormer Fort Vancouver Plywood Site

					BTEX Co	mpounds an	d MTBE						Hi	storically Site	Detected VC	Cs (Since 200	9)			
Ecology's Acute Fre	Sample ID ethod B Surface Water Cleshwater Surface Water (cics Rule Human Health Cethod A Groundwater Cle	Quality Criteria riteria for Surface Water	нду/л 23 NE 1.2 5.0	49/l 18,900 NE 6,800 1,000	Преписация (преписация в преписация в препи	m,p-Xylene ™ p-Xylene NE NE 1,000	o-Xylene pg/ NE NE NE 1,000	πg Total Xylenes B N T H T T T T T T T T T T T T T T T T T	o 지 고 Z 를 Methyl Tertiary Butyl Ether	ਤ ਤ ਤ ਤ ਤ ਤ ਤ ਤ Acetone	N N N N N N N N N N N N N N N N N N N	ਕ ਕ ਕ ਕ G Chloromethane ਜ ਜ ਜ ਜ ਯੂ Chloromethane	지 지 지 점 절 1,1-Dichloroethane	23,100 NE 0.057 NE	ZZZZZ E cis-1,2-Dichloroethene	Z Z Z Z 를 Isopropylbenzene (Cumene)	Naphthalene NE NE NE NE 160	Z Z Z 를 1,2,4-Trimethylbenzene	Z Z Z 돌 Trichlorofluoromethane 때 때 때 때 일 Trichlorofluoromethane	νε 2 1.8 2 NE 2 0.20
	ethod B Groundwater Cle	•	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
								Active I	Monitoring W	ells										
Cell 1 - Shallow Zon	ie																			
C1-MW-4	C1-MW-4 C1-MW-4 C1-MW-4	02/27/09 05/12/09 12/18/09	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	2.0 U 2.0 U 2.0 U	1.0 U 1.0 U 1.0 U	 	1.0 U 1.0 U 1.0 U	1.7 1.0 U 1.5	1.7 1.0 U 1.5	5.0 U 1.0 U 1.0 U	1.0 U 2.1 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.8 1.0 U	1.0 U 1.0 U 1.0 U	5.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	0.37 0.34 0.46
	C1-MW-4 C1-MW-4 C1-MW-4	03/30/10 05/26/10 11/30/10	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 2.0 U 2.0 U	2.0 U 1.0 U 1.0 U		1.0 U 1.0 U 1.0 U	1.6 1.6 5.0 U	1.6 1.6 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.5	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.3	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	0.44 0.37 0.62
	C1-MW-4 C1-MW-4 C1-MW-4	03/24/11 10/11/11 03/01/12	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	2.0 U 2.0 U 2.0 U	1.0 U 1.0 U 1.0 U	 	1.0 U 1.0 U 1.0 U	5.0 U 5.0 U 5.0 U	1.0 U 1.2 1.0 U	1.0 U 1.0 U 1.0 U	2.1 1.0 U 1.6	1.0 U 1.0 U 1.0 U	2.2 1.0 U 1.5	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 0.20 U 0.25
	C1-MW-4 C1-MW-4 NS	09/20/12 03/22/13 09/23/13	0.10 U 1.0 U NS	0.10 U 1.0 U NS	0.10 U 1.0 U NS	0.20 U 2.0 U NS	0.10 U 1.0 U NS	3.0 U NS	0.10 U 1.0 U NS	1.0 U 20 U NS	0.10 U 1.0 U NS	0.10 U 1.0 U NS	0.10 U 1.7 NS	0.10 U 1.0 U NS	1.1 2.0 NS	0.10 U 1.0 U NS	0.10 U 4.0 U NS	0.10 U 1.0 U NS	0.10 U 1.0 U NS	0.39 0.21 NS
	C1-MW-4 C1-MW-4 C1-MW-4	03/21/14 09/03/14 04/08/15	0.060 U 0.125 U 0.125 U	0.11 U 0.500 U 0.500 U	0.10 U 0.250 U 0.250 U	0.25 U 0.500 U 0.500 U	0.13 U 0.250 U 0.250 U	0.500 U	0.18 U 0.500 U 0.500 U	5.0 U 10.0 U 10.0 U	0.17 U 5.00 U 5.00 U	1.0 U 2.50 UJ 2.50 U	1.5 1.12 1.67	0.63 0.380 J 0.540	2.8 1.73 2.73	0.50 U 0.500 U 0.500 U	0.20 U 1.00 U 1.00 U	0.16 U 0.500 U 0.500 U	0.10 U 1.00 U 1.00 U	0.11 U 0.240 0.450
	C1-MW-4 C1-MW-4 C1-MW-4	09/29/15 03/29/16 09/11/17	0.125 U 0.125 U 0.100 U	0.500 U 0.810 J 0.500 U	0.250 U 0.250 U 0.250 U	0.500 U 0.500 U 0.500 U	0.250 U 0.200 U 0.250 U		0.500 U 0.500 U 0.500 U	10.0 U 10.0 U 20.0 UJ	5.00 U 5.00 U 5.00 U	2.50 UJ 2.50 U 2.50 U	0.82 1.27 0.540	0.290 J 0.510 0.250 U	1.53 2.32 1.18	0.500 U 0.500 U 0.500 U	1.00 U 1.00 U 2.00 UJ	0.500 U 0.500 U 0.500 U	1.00 U 1.00 U 1.00 U	0.25 U 0.490 J 0.300 J
C1-MW-7	C1-MW-4 C1-MW-7	03/19/19	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U 1.0 U	1.0 U	0.500 U 26.0	10.0 U	5.00 U	2.50 U	0.554	0.200 U	1.55	0.500 U	1.00 U	0.500 U	1.00 U	0.216
C1-IVIVV-7	C1-MW-7 C1-MW-7	02/27/09 05/12/09 12/18/09	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	2.0 U 		3.0 U 3.0 U	24.3 23.4	 	 	 		 						
	C1-MW-7 C1-MW-7 C1-MW-7	03/30/10 05/26/10 03/25/11	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U			3.0 U 3.0 U 3.0 U	24.1 16.1 23.7			 								
	C1-MW-7 C1-MW-7 C1-MW-7	10/12/11 02/29/12 09/20/12	1.0 U 1.0 U 0.10 U	1.0 U 1.0 U 0.10 U	1.0 U 1.0 U 0.10 U			3.0 U 3.0 U 0.30 U	24.6 3.2 13			 	 				 			
	C1-MW-7 C1-MW-7 C1-MW-7	03/22/13 09/23/13 03/21/14	1.0 U 0.24 U 0.12 U	1.0 U 0.23 U 0.22 U	1.0 U 0.24 U 0.20 U		 	3.0 U 3.0 U 0.66 U	11.6 16.4 14.0							 				
	C1-MW-7 C1-MW-7	09/04/14 04/08/15	0.125 U 0.125 U	0.500 U 0.500 U	0.250 U 0.250 U			0.750 U 0.750 U	12.1 17.2											
	C1-MW-7 C1-MW-7 C1-MW-7	09/29/15 03/29/16 09/11/17	0.125 U 0.100 U 0.100 U	0.500 U 0.500 U 0.500 U	0.250 U 0.250 U 0.250 U			0.750 U 0.750 U 0.750 U	18.1 19.3 15.3			 				 				
	C1-MW-7	03/19/19	0.100 U	0.500 U	0.250 U			0.750 U	17.9											

Table 5 Page 1 of 4

Table 5. Volatile Organic Compounds in the Shallow ZoneFormer Fort Vancouver Plywood Site

					BTEX Co	mpounds an	d MTBE						His	storically Site	Detected VO	Cs (Since 200	9)			
									Ether							(eueu		d)	ø	
			Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Total Xylenes	Methyl Tertiary Butyl	Acetone	Chloroethane	Chloromethane	1,1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	Isopropylbenzene (Cun	Naphthalene	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Vinyl Chloride
Well Location	Sample ID thod B Surface Water Cl	Date Sampled	μg/l 23	μg/l 18,900	μg/l 6,820	μg/l NE	μg/l NE	μg/l NE	μg/l NE	μg/l NE	μg/l NE	μg/I NE	μg/I NE	μg/l 23,100	μg/l NE	μg/l NE	μg/l 4,710	μg/l NE	μg/l NE	μg/l 3.7
~ ~	eshwater Surface Water C	-	NE	16,900 NE	0,020 NE	NE	NE	NE	NE NE	NE	NE	NE	NE	23,100 NE	NE	NE	4,710 NE	NE	NE	NE
~~	cs Rule Human Health C	<u> </u>		6,800	3,100	NE	NE	NE	NE	NE	NE	NE	NE	0.057	NE	NE	NE	NE	NE	2
	thod A Groundwater Cle		5.0	1,000	700	1,000	1,000	1,000	20	NE	NE	NE	NE	NE	NE	NE	160	NE	NE	0.20
0,	thod B Groundwater Cle	•	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
Cell 2 - Shallow Zon						,	.,	.,		,=									-,	
C2-MW-3	C2-MW-3	02/26/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	03/29/10	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
C2-MW-9	C2-MW-9	02/27/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-9	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.7
	C2-MW-9	12/18/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.5	1.0 U	1.0 U	1.0 U	1.0 U	0.61
	C2-MW-9	03/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-9	05/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-9	11/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-9	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.1	1.0 U	1.0 U	1.0 U	1.0 U	1.2
	C2-MW-9	09/20/12	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U		0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	1.3	0.10 U	0.10 U	0.10 U	0.10 U	1.0
	C2-MW-9	03/22/13	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U	0.83
	C2-MW-9	09/23/13	0.24 U	0.23 U	0.24 U	0.48 U	0.24 U		0.50 U	10 U	0.50 U	2.0 U	0.50 U	0.24 U	2.5	0.50 U	2.0 U	0.50 U	0.13 U	0.14 U
	C2-MW-9 C2-MW-9	03/21/14 09/03/14	0.060 U 0.125 U	0.11 U 0.500 U	0.10 U 0.250 U	0.25 UJ 0.500 U	0.13 UJ 0.250 U	0.500 U	0.18 UJ 0.500 U	8.3 J 10.0 U	0.17 UJ 5.00 U	1.0 UJ 2.50 UJ	0.14 UJ 0.250 U	0.14 UJ 0.250 U	0.79 J 0.250 U	0.50 UJ 0.500 U	0.20 UJ 1.00 U	0.16 UJ 0.500 U	0.10 UJ 1.00 U	1.3 J 0.55
	C2-MW-9	09/03/14	0.125 U 0.125 U	0.500 U	0.250 U 0.250 U	0.500 U	0.250 U 0.250 U	0.500 0	0.500 U	10.0 U	5.00 U 5.00 U	2.50 UJ 2.50 U	0.250 U 0.250 U	0.250 U 0.250 U	0.250 U 0.93	0.500 U	1.00 U	0.500 U 0.500 U	1.00 U	0.55
	C2-MW-9	09/28/15	0.125 U 0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	0.93 1.84	0.500 U	1.00 U	0.500 U	1.00 U	0.41
	C2-MW-9	03/28/16	0.125 U	0.500 U	0.250 U	0.500 U	0.200 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.52	0.500 U	1.00 U	0.500 U	1.00 U	0.630
	C2-MW-9	09/11/17	0.123 U 0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	20.0 UJ	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	2.00 UJ	0.500 U	1.00 U	0.860
	C2-MW-9	03/19/19	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.200 U	0.200 U	0.256	0.500 U	1.00 U	0.500 U	1.00 U	0.453
C2-MW-11(R)	C2-MW-11R	09/03/14	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U	0.500 U	0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	1.00 U	1.08
	C2-MW-11R	04/08/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	1.00 U	1.25
	C2-MW-11R	09/28/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	1.00 U	1.35
	C2-MW-11R	03/28/16	0.125 U	0.500 U	0.250 U	0.500 U	0.200 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	1.00 U	0.94
	C2-MW-11(R)	09/11/17	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	20.0 UJ	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	2.00 UJ	0.500 U	1.00 U	1.13
	C2-MW-11(R)	03/19/19	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.200 U	0.200 U	0.200 U	0.500 U	1.00 U	0.500 U	1.00 U	0.16
	OZ-IVIVV- I I(N)	03/18/18	0.100 0	0.500 0	U.ZJU U	0.500 0	U.2JU U		0.500 0	10.0 0	3.00 0	2.50 U	U.2UU U	0.200 0	U.2UU U	0.500 0	1.00 0	0.500 0	1.00 0	0.10

Table 5 Page 2 of 4

Table 5. Volatile Organic Compounds in the Shallow ZoneFormer Fort Vancouver Plywood Site

					BTEX Co	ompounds an	d MTBE						His	storically Site	Detected VOC	S (Since 200	19)			
Well Location	Sample ID	Date Sampled	дд Лоди	Toluene hg/l	لة Ethylbenzene	րթ.Yylene ⊪ö	ν o-Xylene	চু Total Xylenes	ই Methyl Tertiary Butyl Ether	ւնո Acetone	յեն Մեր	թե Chloromethane	호 1,1-Dichloroethane	ङ्क 1,1-Dichloroethene	ਨੂੰ cis-1,2-Dichloroethene	ু Isopropylbenzene (Cumene)	ال Naphthalene	© 1,2,4-Trimethylbenzene	ರ್ G Trichlorofluoromethane	القرار Vinyl Chloride
	ethod B Surface Water Cl	-	23	18,900	6,820	NE	NE	NE	NE	NE	NE	NE	NE	23,100	NE	NE	4,710	NE	NE	3.7
	eshwater Surface Water (<u> </u>	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	ics Rule Human Health C			6,800	3,100	NE	NE	NE	NE	NE	NE	NE	NE	0.057	NE	NE	NE	NE	NE	2
	ethod A Groundwater Cle		5.0	1,000	700	1,000	1,000	1,000	20	NE	NE	NE	NE	NE	NE	NE	160	NE	NE	0.20
Ecology's MTCA Me	ethod B Groundwater Cle	anup Levels	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
0 114 01 11 7							Abar	doned or Un	locatable Mo	nitoring Wells										
Cell 1 - Shallow Zor C1-MW-3	ne C1-MW-3	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	I										
CI-IVIVV-3	C1-MW-3	05/12/09	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	12/18/09	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	03/30/10	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	05/26/10	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	11/30/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-3	03/24/11	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	10/12/11	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	03/01/12	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	09/20/12	0.10 U	0.10 U	0.10 U			0.30 U	0.10 U											
	C1-MW-3	03/22/13	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	NS	09/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-3	03/21/14	0.060 U	0.11 U	0.10 U			0.33 U	0.18 U											
	C1-MW-3	09/03/14	0.125 U	0.500 U	0.250 U			0.750 U	0.500 U											
	C1-MW-3	04/08/15	0.125 U	0.500 U	0.250 U			0.750 U	0.500 U											
	C1-MW-3	09/29/15	0.125 U	0.500 U	0.250 U			0.750 U	0.500 U											
	C1-MW-3	03/29/16	0.100 U	0.500 U	0.250 U			0.750 U	0.500 U											
C1-MW-6	C1-MW-6	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	10	1.7	1.0 U	1.0 U	1.0 U	1.0 U	4.2	0.20 U
	C1-MW-6	12/18/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	8.8	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	NS	05/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	11/30/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-6	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.3	0.20 U
Cell 2 - Shallow Zor	_	·								ı										
C2-MW-7	NS	02/27/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-7	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-7	12/17/09																		
	NS	03/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	05/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	11/29/10	NS	NS 4.0.11	NS 4.0.11	NS	NS	NS	NS 4.0.11	NS	NS 4.0.11	NS 4.0.11	NS 4.0.11	NS 4.0.11	NS	NS 4.0.11	NS 4.0.11	NS 4.0.11	NS	NS 0.00 H
	C2-MW-7	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U

Table 5 Page 3 of 4

Table 5. Volatile Organic Compounds in the Shallow Zone

Former Fort Vancouver Plywood Site

					BTEX Co	mpounds an	d MTBE						Hi	storically Site	Detected VO	Cs (Since 200	09)			
			Benzene	Toluene	Ethylbenzene	m, p-Xylene	o-Xylene	Total Xylenes	Methyl Tertiary Butyl Ether	Acetone	Chloroethane	Chloromethane	1,1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	Isopropylbenzene (Cumene)	Naphthalene	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Vinyl Chloride
Well Location	Sample ID	Date Sampled	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
~ ~ ~	ethod B Surface Water Cl eshwater Surface Water (•	23 NE	18,900 NE	6,820 NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	23,100 NE	NE NE	NE NE	4,710 NE	NE NE	NE NE	3.7 NE
0,	esnwater Surface Water t ics Rule Human Health C			6,800	3,100	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	0.057	NE NE	NE NE	NE NE	NE NE	NE NE	2
	ethod A Groundwater Cle		5.0	1,000	700	1,000	1,000	1,000	20	NE	NE	NE	NE	NE	NE	NE	160	NE	NE	0.20
0,	ethod B Groundwater Cle	•	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
C2-MW-10(R)	C2-MW-10	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	0.27
	C2-MW-10	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	03/29/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	05/25/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.94
	C2-MW-10	10/12/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.28
C2-MW-11	C2-MW-11	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	12	1.0 U	1.0 U	1.4
	C2-MW-11	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.50
	C2-MW-11	12/18/09	1.0 U	1.0 U	1.6	4.0	2.0		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	101	2.7	1.0 U	0.74
	C2-MW-11	03/29/10	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	51.4	1.3	1.0 U	0.73
	C2-MW-11	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	63.8	2.3	1.0 U	0.57
	C2-MW-11	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.9	1.0 U	1.0 U	1.5
	C2-MW-11	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	16.2	1.0 U	1.0 U	1.4
	C2-MW-11	10/12/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.6
	C2-MW-11	03/01/12	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.7	1.0 U	1.0 U	1.1
	C2-MW-11	09/20/12	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U		0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	1.8
	C2-MW-11	03/22/13	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U	1.1
	C2-MW-11	09/23/13	0.24 U	0.23 U	0.24 U	0.48 U	0.24 U		0.50 U	10 U	0.50 U	2.0 U	0.50 U	0.24 U	0.23 U	0.50 U	2.0 U	0.50 U	0.13 U	1.2
	C2-MW-11	03/21/14	0.24	0.23 J	0.61	1.5	1.2		0.18 U	5.0 U	0.17 U	1.0 U	0.14 U	0.14 U	0.16 U	0.87 J	130	4.8	0.10 U	0.28 J

Notes:

--- = Sample not analyzed for constituent

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

MTBE = methyl tertiary butyl ether

MTCA = Washington State Department of Ecology Model Toxics Control Act

NE = Not established

NS = Not sampled because well was not accessible. μg/l = micrograms per liter

R = The sample results were rejected based on the data quality review.

U = Constituent not detected at or above the reporting limit (prior to 2014) or method detection limit (2014 to current).

UJ = Constituent was not detected above the reporting limit (prior to 2014) or method detection limit (2014 to current); the limit is approximate.

VOCs = volatile organic compounds

Values in **bold** were detected above the laboratory method detection limit.

= Indicates a monitoring well that was either abandoned or unlocatable as paved over. = Indicates an exceedance of a screening criterion.

= Indicates the analyte was not detected; however, the reported method detection limit exceeds a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx Ecology's Acute Freshwater Surface Water Quality Criteria were obtained from the Washington State Legislature Washington Administrative Code web site. http://apps.leg.wa.gov/WAC/default.aspx?cite=173-201A-240

EPA's National Toxics Rule Human Health Criteria for Surface Water were obtained through the Washington State Department of Ecology web site for Toxics Standards and Criteria. http://www.ecy.wa.gov/programs/wq/swqs/toxics.html

Table 6. Total Petroleum Hydrocarbons in the Deeper Unconsolidated Aquifer

Former Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
Ecology's MTCA Me	ethod A Groundwater Clea	anup Levels	0.50	0.50	1.0 ^(a)
Ecology's MTCA Me	ethod B Groundwater Clea	anup Levels	NE	NE	NE
		Active Monito	ring Wells		
Cell 2 - Deeper Unc	onsolidated Aquifer				
C2-MW-12B	C2-MW-12B	02/26/09	0.091 U	0.45 U	0.025 U
	C2-MW-12B	05/12/09	0.082 U	0.41 U	0.050 U
	C2-MW-12B	12/17/09	0.13	0.42 U	0.050 U
	C2-MW-12B	03/29/10	2.3	2.6	0.050 U
	C2-MW-12B	03/29/10	1.3	1.4	0.050 U
	C2-MW-12B	05/26/10	0.10	0.44	0.050 U
	C2-MW-12B	11/30/10	4.0	6.6	0.050 U
	C2-MW-12B	03/25/11	0.55	0.66	0.050 U
	C2-MW-12B	10/11/11	1.6	2.4	0.050 U
	C2-MW-12B	02/29/12	0.077 U	0.38 U	0.050 U
	C2-MW-12B	09/20/12	0.16 U	0.80 U	0.025 U
	C2-MW-12B	03/21/13	0.40 U	0.40 U	0.10 U
	C2-MW-12B	09/20/13	0.011 U	0.018 U	0.10 U
	C2-MW-12B	03/21/14	0.080 J	0.18 J	0.019 U
	C2-MW-12B	09/03/14	0.0943 U	0.496	0.0500 U
	C2-MW-12B	04/07/15	0.0952 U	0.190 U	0.0500 U
	C2-MW-12B	09/29/15	0.0943 U	0.189 U	0.0500 U
	C2-MW-12B	03/29/16	0.0980 U	0.230 J	0.0500 U
	C2-MW-12B	09/11/17	0.0952 U	0.190 U	0.0500 U
	C2-MW-12B	03/19/19	0.0952 U	0.190 U	0.0500 U
	Abar	doned or Unlocatal	ole Monitoring Wells		
Cell 2 - Deeper Unc	onsolidated Aquifer				
C2-MW-13B	C2-MW-13B	03/25/11	0.41	0.47	0.050 U

Notes:

B = Constituent was detected above the laboratory reporting limit in the method blank.

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

mg/l = milligrams per liter

MTCA = Washington State Department of Ecology Model Toxics Control Act

NA = Not analyzed

NE = Not established

NS = Not sampled because well was not accessible.

U = Constituent not detected at or above the reporting limit (prior to 2014) or method detection limit (2014 to current).

TPH = Total Petroleum Hydrocarbons

TPH-Gx = Total Petroleum Hydrocarbons gasoline-range

TPH-Dx = Total Petroleum Hydrocarbons diesel- and oil-range

Values in **bold** were detected above the laboratory method detection limit.

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

= Indicates an exceedance of a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

(a) = Value is for gasoline concentration when benzene is not present.

Table 7. Total Petroleum Hydrocarbons in the Shallow Zone

Former Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
Ecology's MTCA Met	thod B Surface Water Cle	anup Levels	NE	NE	NE
Ecology's Acute Fre	shwater Surface Water Q	uality Criteria	NE	NE	NE
EPA's National Toxic	cs Rule Human Health Cri	teria for Surface Water	NE	NE	NE
Ecology's MTCA Me	thod A Groundwater Clea	nup Levels	0.50	0.50	1.0 ^(a)
	thod B Groundwater Clea	•	NE	NE	NE
		Active Monitor			
Cell 2 - Deeper Unco	onsolidated Aquifer		g		
C2-MW-3	C2-MW-3	02/26/09	0.086 U	0.43 U	0.025 U
	C2-MW-3	02/26/09	0.089 B	0.41 U	0.025 U
	C2-MW-3	05/11/09	0.083 U	0.42 U	0.050 U
	C2-MW-3	05/11/09	0.094 U	0.47 U	0.050 U
	C2-MW-3	12/17/09	0.093	0.38 U	0.050 U
	C2-MW-3	12/17/09	0.089	0.39 U	0.050 U
	C2-MW-3	03/29/10	0.078 U	0.39 U	0.050 U
	C2-MW-3	05/26/10	0.078 U	0.39 U	0.050 U
	C2-MW-3	05/26/10	0.076 U	0.38 U	0.050 U
	C2-MW-3	11/30/10	0.082 U	0.41 U	0.050 U
	C2-MW-3	03/25/11	0.078 U	0.39 U	0.050 U
	C2-MW-3	10/11/11	0.076 U	0.38 U	0.050 U
	C2-MW-3	02/29/12	0.076 U	0.38 U	0.050 U
	C2-MW-3	09/20/12	0.16 U	0.81 U	0.025 U
	C2-MW-3	03/21/13	0.40 U	0.40 U	NA
	C2-MW-3	09/20/13	0.011 U	0.018 U	0.10 U
	C2-MW-3	03/21/14	0.028 U	0.038 U	0.019 U
	C2-MW-3	09/03/14	0.0943 U	0.714 J	0.0500 U
	C2-MW-3	04/07/15	0.0943 U	0.189 U	0.0500 U
	C2-MW-3	09/29/15	0.0943 U	0.269 J	0.0500 U
	C2-MW-3	03/29/16	0.0952 U	0.190 U	0.0500 U
	C2-MW-3	09/11/17	0.0935 U	0.283 J	0.0500 U
	C2-MW-3	03/19/19	0.0952 U	0.190 U	0.0500 U
C2-MW-9	C2-MW-9	02/26/09	NS	NS	NS
	C2-MW-9	05/12/09	0.088 U	0.44 U	0.050 U
	C2-MW-9	12/18/09	0.17	0.40 U	0.050 U
	C2-MW-9	03/29/10	NS	NS	NS
	C2-MW-9	05/26/10	NS	NS	NS
	C2-MW-9	11/30/10	NS	NS	NS
	C2-MW-9	03/25/11	0.12	0.40 U	0.050 U
	C2-MW-9	10/11/11	0.13	0.38 U	0.050 U
	C2-MW-9	09/20/12	0.16 U	0.80 U	0.025 U
	C2-MW-9	03/22/13	0.41 U	0.41 U	0.10 U
	C2-MW-9	09/23/13	0.011 U	0.018 U	0.10 U
	C2-MW-9	03/21/14	0.12	0.16 J	0.019 U
	C2-MW-9	09/03/14	0.0952 U	0.517 J	0.050 U
	C2-MW-9	04/08/15	0.0943 U	0.189 U	0.050 U
	C2-MW-9	09/28/15	0.0943 U	0.189 U	0.050 U
	C2-MW-9	03/28/16	0.0952 U	0.311 J	0.050 U
	C2-MW-9	09/11/17	0.0935 U	0.187 U	0.050 U
	C2-MW-9	03/19/19	0.0980 U	0.196 U	0.050 U

Table 7 Page 1 of 3

Table 7. Total Petroleum Hydrocarbons in the Shallow Zone

Former Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
	thod B Surface Water Cle		NE	NE	NE
	shwater Surface Water Q	•	NE	NE	NE
0,	s Rule Human Health Cri		NE	NE	NE
	thod A Groundwater Clea		0.50	0.50	1.0 ^(a)
Ecology's MTCA Met	thod B Groundwater Clea	nup Levels	NE	NE	NE
C2-MW-11(R)	C2-MW-11(R)	09/03/14	0.110 J	0.198 U	0.050 U
, ,	C2-MW-11(R)	04/08/15	0.0952 U	0.190 U	0.050 U
	C2-MW-11(R)	09/28/15	0.0943 U	0.286 J	0.050 U
	C2-MW-11R	03/28/16	0.0962 U	0.262 J	0.050 U
	C2-MW-11(R)	09/11/17	0.0952 U	0.190 U	0.050 U
	C2-MW-11(R)	03/19/19	0.0971 U	0.194 U	0.05000 U
C2-MW-10(R2)	C2-MW-10(R)	09/29/15	0.0943 U	1.55	0.050 U
	C2-MW-10R2	03/28/16	0.0962 U	5.25	0.385
	C2-MW-10(R2)	09/11/17	0.0952 U	0.216 J	0.0500 U
	C2-MW-10(R2)	03/19/19	0.0962 U	1.10	0.0500 U
	Į.	Abandoned or Unlocatab	le Monitoring Wells		
Cell 2 - Deeper Unco	nsolidated Aquifer				
C2-MW-7	C2-MW-7	02/26/09	NS	NS	NS
	C2-MW-7	05/12/09	0.080 U	0.40 U	0.050 U
	C2-MW-7	12/17/09	NS	NS	NS
	C2-MW-7	03/29/10	NS	NS	NS
	C2-MW-7	05/26/10	NS	NS	NS
	C2-MW-7	11/30/10	NS	NS	NS
	C2-MW-7	03/25/11	0.19	0.84	0.050 U
C2-MW-10(R)	C2-MW-10	02/27/09	0.82 B	1.6	0.025 U
	C2-MW-10	05/12/09	1.1	0.85	0.050 U
	C2-MW-10	12/17/09	1.5	1.8	0.050 U
	C2-MW-10	03/29/10	0.82	1.0	0.050 U
	C2-MW-10	05/25/10	0.77	0.99	0.050 U
	C2-MW-10	11/30/10	1.7	1.9	0.050 U
	C2-MW-10	03/25/11	1.4	1.1	0.050 U
	C2-MW-10	10/12/11	0.70	0.90	0.050 U
	C2-MW-10	03/01/12	1.2	1.1	0.050 U
	C2-MW-10	09/20/12	1.2	0.92	0.025 U
	C2-MW-10	03/21/13	0.90	1.6	NA
	C2-MW-10	09/23/13	NS	NS	NS
	C2-MW-10	03/21/14	NS	NS	NS
	C2-MW-10	09/03/14	NS	NS	NS
	C2-MW-10	09/03/14	NS	NS	NS

Table 7 Page 2 of 3

Table 7. Total Petroleum Hydrocarbons in the Shallow Zone

Former Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
Ecology's MTCA Met	hod B Surface Water Cle	anup Levels	NE	NE	NE
Ecology's Acute Free	shwater Surface Water Q	uality Criteria	NE	NE	NE
EPA's National Toxic	s Rule Human Health Cri	teria for Surface Water	NE	NE	NE
Ecology's MTCA Met	hod A Groundwater Clea	nup Levels	0.50	0.50	1.0 ^(a)
Ecology's MTCA Met	hod B Groundwater Clea	nup Levels	NE	NE	NE
C2-MW-11	C2-MW-11	02/27/09	1.2 B	0.73	0.025 U
	C2-MW-11	05/12/09	0.085 U	0.43 U	0.050 U
	C2-MW-11	12/18/09	0.78	0.88	0.11
	C2-MW-11	03/29/10	0.56	0.61	0.050 U
	C2-MW-11	05/26/10	0.68	0.77	0.069
	C2-MW-11	11/30/10	0.27	0.39	0.050 U
	C2-MW-11	03/25/11	0.74	0.58	0.053
	C2-MW-11	10/12/11	0.19	0.38 U	0.050 U
	C2-MW-11	03/01/12	0.51	0.58	0.050 U
	C2-MW-11	09/20/12	0.27	0.80 U	0.025 U
	C2-MW-11	03/22/13	0.40 U	0.53	0.10 U
	C2-MW-11	09/23/13	0.011 U	0.018 U	0.10 U
	C2-MW-11	03/21/14	0.39	0.12 J	0.21

Notes

B = Constituent was detected above the laboratory reporting limit in the method blank.

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

mg/l = milligrams per liter

MTCA = Washington State Department of Ecology Model Toxics Control Act

NA = Not analyzed

NE = Not established

NS = Not sampled because well was not accessible.

U = Constituent not detected at or above the reporting limit (prior to 2014) or method detection limit (2014 to current).

TPH = Total Petroleum Hydrocarbons

TPH-Gx = Total Petroleum Hydrocarbons gasoline-range

TPH-Dx = Total Petroleum Hydrocarbons diesel- and oil-range

Values in **bold** were detected above the laboratory method detection limit.

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

= Indicates an exceedance of a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

Ecology's Acute Freshwater Surface Water Quality Criteria were obtained from the Washington State Legislature Washington Administrative Code web site. http://apps.leg.wa.gov/WAC/default.aspx?cite=173-201A-240

EPA's National Toxics Rule Human Health Criteria for Surface Water were obtained through the Washington State Department of Ecology web site for Toxics Standards and Criteria. http://www.ecy.wa.gov/programs/wq/swqs/toxics.html

(a) = Value is for gasoline concentration when benzene is not present.

AECOM

Appendix AField Forms

Proje	ect Informatio	n										
Proje	ct Name:	Fort Vancouv	er Plywood				Fi	eld Team:	TAU	Sci	IER	
Proje	ct Number:	60519969						Date:	3/10	1	9	Page 1 of 1
Field	Measuremer	nts and Obs	ervations									
			Depth to	Condition Assessment		Screen			Samplin	g Plar	1	
Cell#	Well ID	Time	Water (feet BTOC)	Slatus of each well Replace broken lids, bolts, gaskets, caps, & locks	Aquifer	Interval (feet)	Collect Sample	Sampling Method	Analytes	QC	Con	tainers
Cell 1	C1-MW-4	1330	23.81	no bolts on monount	Shallow	17-32	x	PP/Bailer	VOCs		3 VOAs	
OGII 1	C1-MW-7	1427	17.11	Monument broken bolls broken NEEDSpair	Shallow	15-30	х	PP/Bailer	BTEX, MTBE		3 VOAs	- 4
	C2-MW-3	0824	12.88*	new lock masket missing everythin else ok	Shallow	6-16	х	PP/Bailer	Gx, Dx		3 VOAs	2 Ambers
	C2-MW-9	0924	24.02	new lock) bots stripped - new bolts All else ok.	Shallow	25-35	х	PP/Bailer	VOCs, Gx, Dx	FD**		2 Ambers 2 Ambers
Cell 2	C2-MW-10(R2)	1040	27.12	All ok	Shallow	20-35	x	PP/Bailer	Gx, Dx		3 VOAs	2 Ambers
	C2-MW-11(R)	1148	24.35	All else good	Shallow	15-30	х	PP/Bailer	VOCs, Gx, Dx		3 VOAs	2 Ambers
	C2-MW-12B	0705	25.88	new lock bolls I boll removed	Deeper	40-50	х	Bladder	VOCs, Gx, Dx		3 VOAs	2 Ambers

Definitions:

BTEX = benzene, toluene, ethylbenzene, and total xylenes

Dx = diesel and heavy oil range organics

Gx = gasoline range organics

MTBE = methyl tert-butyl ether

PP/Bailer = purging conducted using peristaltic pump and then sampling conducted using a double check ball disposable bailer

QC = quality control samples

VOA = volatile organic analysis

VOC = volatile organic carbon

Sampling Schedule (18+ months):

September 2017 March 2019 September 2020 March 2022

Sampling Notes:

FD ** = Fieldd duplicate - collect field duplicate on C2-MW-9. If not accessible, collect the field duplicate on C2-MW-11 or C2-MW-12B, Run duplicate for all analyses.

Drum purge water. Store drums under the 26th Ave Underpass until they are full enough for disposal.

Trip Blank - VOCs only

*Edited Field notation error on 6/12/2019.

Page 1 of

Well Number: <u>(1-MW-4</u>)
Date: <u>3/19/19</u>

								Date	13/14/1	1
Project Information				Well Informa	ition		Stick-up o	or Flush	(circle one)	
Project Name:	or F	VP		Well Diameter	Drilled V	Well Depth	Тор о	f Screen	Screen Inte	rval
AECOM Project Numb	er: 6051	9969		(in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)	
Sampling Information				Z"	32		17		17.3	37
Field Team: M	TAUS	HER		CMT	Port=0.006 gal/ft	3/4"=0.023 ga	al/ft 2"=0.17 g	al/It 4"=0,66 g	al/ft 6"=1.5 gal/ft	_
Purge Method:	- Pump			Sample Conf	tainers					ed?
Pump Intake Depth (ft		. A.		Number	Туре	Pres	ervative	Analytic	al Parameters	Filtered?
Flow-Through Cell:	HORIBA	052							101	121
	3AILER			3	VOA	HOL	_	VC	ا ح	1
Decontamination Meth	od:									
N/A - all supplies dispo	sable									
Purge Water Disposal:	0131	16 2								
	unny									
Comments:	23.81	DTU								
Well Purge Data Time Purged (L) 1331 Pump O 1335 - 5 1340 1.5 1345 2.5 1350 3.5 1455 4.5 1400 5 1410 6 1415 SA	Purge Hate (mL/m) 180 200 200 200 200 100	(ft btc) 13.89 23.99 24.06 24.11 24.14 24.16 24.18	16.94 16.50 16.45 16.37	2.57 2.59 2.61 2.61 2.62 7.62	D.O. (mg/L) ±greater of 10% or 0.2mg/L 3.53 1.79 1.51 1.34 1.72 1.10 1.08 1.05	6.49 6.41 6.41 6.41 6.41 6.41	ORP (mV) ±10mv -60 -69 -70 -77 -79 -80 -80 -81	Turbidity (NTUs) ±10% or under 10 NTUs 14. 9 1. Z 0. 7 0. 6 0. 7 0. 5 0. 4	Clarity / Color Remarks <= Stabilizat Criteria Clear	ion
Start Samp End Samp		115	QA/QC Sample Sample Numb	e: per: 6 -	- MW-	nr 4		Sample Time:	1415	

C = clear

Page 1 of ____

Well Number: (1-146-7)
Date: 3/19/19

Project Info	ormation				Well Informa	ation		Stick-up	or Flush	(circle one)	
Project Nar	ne: Po	V FV	P		Well	Drilled \	Well Depth	Тор	of Screen	Screen Inter	val
AECOM Pro			19969		Diameter (in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)	V (2)
Sampling I					7	30	17.00	15	-	15.3	0
Field Team:	M	TAUS	HCR		CMT	Port=0 006 gal/fi	3/4"=0.023 ga		nal/ft 4"=0.66 ga	il/ft 6"=1.5 gal/ft	
Purge Meth		PUMP			Sample Con				,	- 110 gam	12
-		o): Z4'			Number	Туре	Presi	ervative	Analytic	al Parameters	Filtered?
		0813A	05	7	1807.54	TO TO THE			7 in any dist	arr didiriotoro	
Sampling M		AILER			3	VOA	140	1	I name	1	Τ.
	ation Method					VUM	170		BIEN	MIBE	1
have been	plies disposa								4		+
Purge Wate			٠. سويسد .								+
Field Condit		ON									+
Comments	ioris.	7	65			-					-
Initial DTP /		7.11	DTW								-
	1		01-0		d						
									-		-
Man	and.	10	BADS	1							-
I. COME	Succes	111	2403	uape		-					+
		-									
Well Purge	Data										
Time	Volume Purged (L)	Purge Rate (mL/m)	DTW (ft btc)	Temp (°C)	Conductivity	D ₁ O. (mg/L)	pH	ORP (mV)	Turbidity (NTUs)	Clarity / Color Remarks	1
1427	Pump On		17. U		±3%	±greater of 10% o 0.2mg/L	±0.1	±10mv	±10% or under 10 NTUs	<= Stabilization	on
1430	-	150	17.91	16.03		1.80	6.42	-105		Criteria	_
1435	.5	100	1867	16.06		1.74	6.42	-108	0.0	clear	
1440	1	100		16.42			6.41	-114	0.0		
1445	1.25	50	18.19	16.73	1.68	1.23	6.40		0.0	Clear	
1450	1.5	50	18.84	16.40		1.25	6.41	-119		clear	
1455	2.0	150	18.89		1.66	1.21	6.41	-119	0.0	Clear	
y Charles and the Control of the Con			1892	16.0Z		1.20	1 411	-119	0.0	Clear	
1505	33	180	18 97	15 22	1 69	1 10	6.11	-171	0.0	Cleon	
1510	375	50	19 05	15.21	1/9	1 10	1 40	- 121	0.0	clear	
1515	SAM	PIE.	1.00	15.10	1.61	1.18	6.70	-121	0.00	CICOI	
1510	21400	100	~								
		1	-								
					1						_
						-					
					/	mT					
_		-		-		,,,,					
					-(,-	
A						-					
									12.24		
	Start Samplin			QA/QC Sample					Sample Time:		
	End Sampling	9 15	721	Sample Numb	er: (1-	Mw-			Sample Time:	1515	
			Final								

Well Number:

					ir				1	_	- Spring	
Project In		/ -			- W	ell Informa Well	T			or Flusti	(circle one)	
Project Na					-11	Diameter		Vell Depth	Тор	of Screen	Screen Inter	val
	roject Number	6051	9969		+	(in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)	-
	Information	-			- L	2	-	16.	-	6	6.1	6
Field Team		TAUSC	HER		1	CMT	Port=0.006 gal/ft	3/4°=0 023 ga	al/ft 2"=0.17 g	gal/ft 4"=0.66 g	al/ft 6"=1.5 gal/ft	
	hod: P-F		_			mple Con	tainers	-				Filtered?
	ke Depth (ft bto				11-	Number	Туре	Prese	ervative	Analytic	cal Parameters	I I
Flow-Throu	ıgh Cell: 🕌				-11-							
Sampling N	Method: B	AILER			-11-	3	VOA		4	61	X	1
Decontami	nation Method	:				2	1 L AMB	H		D	X	N
	pplies disposa				11-							
	er Disposal:											
Field Cond	itions: 50	nny 5	00		41					4		
Comments		001 -			-11-							
Initial DTP	DTW: 12	.80 0	TW		41-							
					-11-							
					11_							1
					Ш							
					11							
					11			-				+
Well Purge	Dota							-				1
well Purge	Volume	Duran Bata	DTW	T	1.							
Time	Purged (L)	Purge Rate (mL/m)	DTW (ft btc)	Temp.		nductivity (u0 /cm)	D.O. (mg/L)	рН	ORP (mV)	Turbidity (NTUs)	Clarity / Color Remarks	1
0825	-		12.88			-	±greater of 10% or		()	±10% or under	<= Stabilization	on
0830		200	12.00	12.9		±3%	0.2mg/L	±0.1	±10mv	10 NTUs	Criteria	
0835	1.5	200				.282		6.79	106	1.0	clear	
0840	2.5		17.80	13.07	2 4	280		6.74	110	0.5	clear	
0845	3.5	200		13.0				6.73	109	0.4	clear	
		200	12.87	13.0	50	272	3.41	6.72	111	0.3	clear	
0850		200	12.05	13.0	50	270	2.44	6.72	109	6.2	clear	
0855	4			13.Z				6.73	109	0.1	clear	
0900	6.5	200	13.21	13.2	0	.270	2.14	6.74	109	0.1	Clear	
0905	1.5	200	15.17	13.2	10	.270	2.10	6.74	109	0.1	cleor	
0910	DAM	PLC										
					-				-			
	-				-							
							/	-				
		-					nt					
					1							
					1							
					-							
1								9	4 1			
	Start Samplin			QA/QC Sam	ple:			-		Sample Time:	-	
	End Sampling	09	20	Sample Nur	nber:	67.	MW- :	3		Sample Time:	0910	

Page 1 of ___

Well Number: <2-Mw-9

Date: 3 | 9 | 6 |

Project Info					Well Informa	ation		Stick-up	or (Flush)	(circle one)	
Project Nan					Well Diameter	Drilled W	/ell Depth	Тор с	of Screen	Screen Inte	erval
AECOM Pro	oject Number	6051	9969		(in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)	
Sampling I	nformation				2	-	75	1.0	35	25-	35
		TAUSCH	ier		CMT	Port=0.006 gal/ft	3/4"=0.023 ga	al/ft 2"=0.17 g	al/ft 4"=0 66 ga	al/ft 6"=1.5 gal/fi	
Purge Meth	od: P-	PUMP			Sample Con	tainers					Filtered?
Pump Intak	e Depth (ft bt	c): 30'			Number	Туре	Presi	ervative	Analytic	al Parameters	File
		PEIBA	052	_						,	
Sampling M	ethod: B	SILER			3 2	VOD	H	CL	VOC	16nc	N
Decontamin	ation Method	f:			2	14 AMB	H	CL	D	ý	~
N/A - all sup	plies disposa	ible								,	1/ 1
Purge Wate	r Disposal:	00 31	te		3 2	VOA	40	LL	VOC	. / Cox	M
		nny 5	5		2	14 AME	He	cl	D.	x	N
Comments											
Initial DTP /	DTW: 2	4.02	DTW								
	\										
Fiel	O Du	plicak	colle	CLU							
Sampl	c car	we up	tosti	9							
wish	the '	bouler	- not	clear							
as 1	A	rac									+
Well Purge		4.5									_
well ruige	Volume	Duran Data	DTW	Tama	1						
Time	Purged (L)	Purge Rate (mL/m)	DTW (ft btc)	Temp. (°C)	Conductivity	D ₁ O ₋ (mg/L)	рН	ORP (mV)	Turbidity (NTUs)	Clarity / Cold Remarks	or /
0825	Pump On		24.0Z		±3%	±greater of 10% or	.0.1	40	±10% or under	<= Stabilizat	ion
0825	-	700		12.93	0.904	0.2mg/L	±0.1	±10mv	10 NTUs	Criteria	
0835		200	74.87	13.57		2.17	6.60		0.8	clear	
0840	2	200		13.86		3.10	6.61	-113	0.7	clear	
0845	2 3	200		14.03		2.27	6.60		0.4		
0850	3.5	100		14.07		2.32	6.60	-117	0.3	clar	
0855	4.0	120	75.09	14.15	1.01	1.38	6.60		0.2	Clcar	
1000	4.5	100		14.22					0.1	clear	
1005	5.0	100	75.03	14.70	1.01	1.65	6.61	-114	0.0	Clear	
1010	5.5	100	7501	14.28	1.01	1.64	6.61		0.0	Clear	-
1015	501	MPCE	25,01	111.10	1.01	1.07	0.61	1101	0.0	CIGOL	
1015	,,,,	100								- 12-5	
			-								
			-	-							
					2	1	_				
						ant	_				
						0001					
		/									
					1-		•				
	Start Samplin	ng O		QA/QC Sampl		- MW-C	1- DUP		Sample Time:	1020	
1	End Samplin	g 10	36	Sample Numb	er: LZ-	MW-9			Sample Time:	1015	

Page 1 of 1

Well Number: CZ-MW-10(RZ)
Date: 3/19/19

Page 1 of									Date	3/19/19	
Project In	formation				Well Informa	ation		Stick-up o		(circle one)	
Project Na	ame: Po	V FV-	P		Well		Well Depth		of Screen	Screen Inte	20/2
AECOM P	roject Number		19969		Diameter (in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)	
Sampling	Information				Z	35		20		20 -	35
Field Team		TAUSC	HER		CMT	Port=0.006 gal/ft	3/4*=0,023 ga		gal/ft 4"=0.66 ga		
Purge Met	hod: P-P	DUMP			Sample Con	ıtainers					c Pa
Pump Intal	ke Depth (ft bto	c): 33			Number	Туре	Prese	ervative	Analytic	cal Parameters	Filtered?
Flow-Throu	ugh Cell: H										
Sampling N	vlethod: 3	AILER	_		3	VOA		LL	GX		N.
Decontami	ination Method	l:			12	IL AMIS		LL	DX		~
	ipplies disposa										
	ter Disposal:										
Field Condi		onny ,	windy	60							
Initial DTP	100	7.12	DTW	1							
filliai Di.,	DIW.	1.16	VIW								
						-					-
									-		-
											-
erall Diverse											
Well Purge	Volume	Purge Rate	DTW	Temp_	Candinativity	T 50		1 000	F		
Time	Purged (L)	(mL/m)	(ft blc)	(°C)	Conductivity	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTUs)	Clarity / Cold Remarks	
1039	Pump On		Z7.12		±3%	±greater of 10% or 0.2mg/L	±0.1	±10mv	±10% or under 10 NTUs	<= Stabilizat	tion
1042	-	2.00	27.41	16.32	1	5.42	6.65	-94	3.8	Criteria	
1045	.5	100	27.22	16.14	1.08	2.90	6.65		2.2	clear	
1050		100	27.24	16.03	174	2.13	6.65	-9Z	0.7	clear	
1055	1.5	100	27.25	15.94	1.09	1.59	6.65	-97	OZ	clear	
1100	2.0	100	27.26	16.11	1.10	1.48	6.65	-97	0.0	clear	
1105	Z.5	100	27.25		1.18	1.39	6.64	-103		clear	
1110	3.0	100	27.25		1.19	1.41	6.64	-104	0.0	clear	
1115	3.5	100	27.26	16.24	1.18	1.36	6.64	-104	0.0	Clear	-
11.70	SAMP	PE _							4		
_											
					1	-					
-					mit			-			
						\					
						1	_				
	Start Samplin	9 112	0	QA/QC Sample	a.	_	4	- 1	Sample Time:		
	End Sampling	1 1 -		Sample Number		MW-10	(RZ)		Sample Time:	1120	
		-	The state of	Duripio		1.1.	11-01		sample Time.	1100	

Page 1 of

Well Number: (2-MW-11(K))
Date: 3 19/19

Project Information				Well Informa	ition		Stick-up o	r (Flush)	(circle one)	
Project Name: PoV	FVP			Well	1	/ell Depth	Top of	Screen	Screen Inter	val
AECOM Project Number:		19969		Diameter (in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)	
Sampling Information				2	30		15-	1	15.3	0
Field Team: M. T	AUSCI	HER		CMT	Port=0.006 gal/ft	3/4"=0.023 ga	•	ıl/ft 4"=0.66 ga		
Purge Method: P-P				Sample Con	tainers					Q 29
Pump Intake Depth (ft btc):		5		Number	Туре	Prese	ervative	Analytica	al Parameters	Filtered?
Flow-Through Cell: HOE		057	,	FLATER	MATERIA				1000000	1 -
	LER	- 2		3	VOA	HC	1.	Voc's	167X	N
Decontamination Method:				3 2	11 AMB		1	D	7 01%	N
N/A - all supplies disposable				-	I L MMIS	110		0.	^	1~
						-				-
Purge Water Disposal:	10 7	2						-		-
Field Conditions: 50no	00/ 6	26								
Initial DTP / DTW: 24.	35	DTW								
								,		
Well Purge Data										
	urge Rate (mL/m)	DTW (fl btc)	Temp. (°C)	Conductivity (05/cm)	D,O, (mg/L)	рН	ORP (mV)	Turbidity (NTUs)	Clarity / Color Remarks	1
1150 Pump On		74.35		±3%	±greater of 10% or	.0.1	. 10	±10% or under	<= Stabilizatio	nc
		24.42	16.92	0.857	3.66	±0.1	±10mv	10 NTUs 16.5	Criteria	11
		24.48	16.73	0.855	2.56	6.62	-10	14.8		10
		1446	15.57	0.846		6.53	-31	7.0	_	
1210 4 2		24.46	15.55	0.851	1.14	6.53	-15	2.4	clear	
1 m 1 mm 1 mm		24,47	15.64			6.54		2.3		
		24,47	-	0.861	0.94		-76	1 0	clear	
				0.867		6.57		1.0	Clear	
1230 8 2	200 7	14.40	13.66	0.006	0.92	6.53	- 18	1.2	clear	
1730 8 2 1735 SAMPO	00 2	170	13.61	0.86Z	0.92	6.53	- 78	0.8	clear	
1633 SAINPL	ے۔	_								-
	150									
)						-
	-									
				mit	,					
				10(1						
										_
			3							
Start Sampling	12:	35	QA/QC Sample		Barr			Sample Time:	*****	
End Sampling	171	13 s	Sample Numb	er: CZ	-MW-	11(R)		Sample Time:	1235	-
		r irlati				- /				

Page 1 of _/

Project Info	ormation				Well Informa	ation		Stick-up	or Elusio	(circle one)	=
Project Nam		V FV	P		Well		/ell Depth		of Screen	T	
	oject Number				Diameter (in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	Screen Interv (ft bgs)	/ai
Sampling Ir					7	(,	50	(1.290)	40	40-5	0
Field Team:		TAUSCH	11=10			Port=0.006 gal/ft		al/ft 2"=0.17 g		pal/ft 6"=1.5 gal/ft	<u></u>
Purge Metho	od: P-P	OMP			Sample Con	tainers					T
	e Depth (ft bt		5		Number	Туре	Pres	ervative	Analytic	cal Parameters	-
Flow-Throug	h Cell:	DEIBA		2							-
Sampling M		Bauler			3	VOA	1 H	ILL	(ax	, voc	1
Decontamin	ation Method				3	IL AMP		26	D	,,,,,	1
N/A - all sup	plies disposa	ble									Ť
Purge Water	r Disposal:	on s	ME								
Field Conditi Comments:	ions: 5	onny	450								1
Initial DTP /	DTW: Z	.5.88	' DIU	0							
Well Purge I	Volume Purged (L)	Purge Rate (mL/m)	DTW (ft btc)	Temp. (°C)	Conductivity	D.O. (mg/L)	рН	ORP (mV)	Turbidity (NTUs)	Clarity / Color Remarks	
0715	Pump On		25.88		±3%	±greater of 10% or 0.2mg/L	±0.1	±10mv	±10% or under 10 NTUs	<= Stabilizatio Criteria	n
6718	~~		15.88	13.53	0.418	7.14	7.ZI	106	2.5	Clear	
0721	.75	280	25.81	13.54	0.409	4.64	7.13	105	0.9	clear	
0775	Z	300	25.81	13.59	0.408	4.13	7.12	108	0.5	Clear	
0730	3		15.80	13.16	0.403	5.51	7.10	106	0.6	clear	
0735		200	25.88	12.94	0.402	5.63	7.10	106	0.4	Clear	
0745	5				6.401		7.10	108	0.4	clear	
	67	200	75.00	12.01	0.461	2,76	7.10	105	0.2	clear	
0750 0755		SIE		13,00	0.401	5,41	7.10	104	0.2	Clear	
					1						
				/	not			16			
						1				·	
	Start Samplin	19 07.	4 4	QA/QC Sample		MW-17	213		Sample Time:	0755	

Sample Time: 0755

AECOM

Appendix BLaboratory Report and Chain-of-Custody Form

Wednesday, March 27, 2019 Nicky Moody AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201

RE: A9C0616 - POV FVP - 605-19969

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9C0616, which was received by the laboratory on 3/19/2019 at 5:05:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1

5.9 degC Cooler #2

1.8 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 1 of 40

Portland, OR 97201

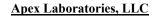
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AECOM 111 SW Columbia St. Ste. 1500

Project: POV FVP
Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL REPORT FOR SAMPLES


	SAMPLE INFORMATION									
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received						
C1-MW-4	A9C0616-01	Water	03/19/19 14:15	03/19/19 17:05						
C1-MW-7	A9C0616-02	Water	03/19/19 15:15	03/19/19 17:05						
C2-MW-3	A9C0616-03	Water	03/19/19 09:10	03/19/19 17:05						
C2-MW-9	A9C0616-04	Water	03/19/19 10:15	03/19/19 17:05						
C2-MW-10 (R2)	A9C0616-05	Water	03/19/19 11:20	03/19/19 17:05						
C2-MW-11 (R)	A9C0616-06	Water	03/19/19 12:35	03/19/19 17:05						
C2-MW-12 B	A9C0616-07	Water	03/19/19 07:55	03/19/19 17:05						
C2-MW-9-DUP	A9C0616-08	Water	03/19/19 10:20	03/19/19 17:05						
TRIP BLANK	A9C0616-09	Water	03/19/19 00:00	03/19/19 17:05						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 2 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project Number: Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or Oi	l Hydrocarl	bons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-3 (A9C0616-03)				Matrix: Wate	ər	Ba	tch: 9031075	
Diesel	ND	0.0952	0.190	mg/L	1	03/23/19	NWTPH-Dx	
Oil	ND	0.190	0.381	mg/L	1	03/23/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 93 %	Limits: 50-150 %	6 I	03/23/19	NWTPH-Dx	
C2-MW-9 (A9C0616-04)				Matrix: Wate	er	Ba	tch: 9031075	
Diesel	ND	0.0980	0.196	mg/L	1	03/23/19	NWTPH-Dx	
Oil	ND	0.196	0.392	mg/L	1	03/23/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 99%	Limits: 50-150 %	6 I	03/23/19	NWTPH-Dx	
C2-MW-10 (R2) (A9C0616-05RE1)				Matrix: Wate	er	Ba	tch: 9031075	
Diesel	ND	0.0962	0.192	mg/L	1	03/26/19	NWTPH-Dx	
Oil	1.10	0.192	0.385	mg/L	1	03/26/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 92 %	Limits: 50-150 %	6 I	03/26/19	NWTPH-Dx	
C2-MW-11 (R) (A9C0616-06)				Matrix: Wate	er	Ba	tch: 9031075	
Diesel	ND	0.0971	0.194	mg/L	1	03/23/19	NWTPH-Dx	
Oil	ND	0.194	0.388	mg/L	1	03/23/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 94%	Limits: 50-150 %	6 I	03/23/19	NWTPH-Dx	
C2-MW-12 B (A9C0616-07)				Matrix: Wate	er	Ba	tch: 9031075	
Diesel	ND	0.0952	0.190	mg/L	1	03/23/19	NWTPH-Dx	
Oil	ND	0.190	0.381	mg/L	1	03/23/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 89 %	Limits: 50-150 %	6 I	03/23/19	NWTPH-Dx	
C2-MW-9-DUP (A9C0616-08)				Matrix: Wate	er	Ва	tch: 9031075	
Diesel	ND	0.104	0.208	mg/L	1	03/23/19	NWTPH-Dx	
Oil	ND	0.208	0.417	mg/L	1	03/23/19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 99 %	Limits: 50-150 %	6 1	03/23/19	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 3 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project Number: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

Gasoli	ine Range Hy	drocarbons (B	enzene th	rough Naphtha	lene) by	NWTPH-G	Sx	
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-3 (A9C0616-03)				Matrix: Wate	r	В	atch: 9030975	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	03/20/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery.	: 101 % 87 %	Limits: 50-150 % 50-150 %		03/20/19 03/20/19	NWTPH-Gx (MS) NWTPH-Gx (MS)	
C2-MW-9 (A9C0616-04)				Matrix: Wate	r	В	atch: 9030975	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	03/20/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery.	: 101 % 87 %	Limits: 50-150 % 50-150 %		03/20/19 03/20/19	NWTPH-Gx (MS) NWTPH-Gx (MS)	
C2-MW-10 (R2) (A9C0616-05)				Matrix: Wate	r	В	atch: 9030975	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	03/20/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	: 100 % 87 %	Limits: 50-150 % 50-150 %		03/20/19 03/20/19	NWTPH-Gx (MS) NWTPH-Gx (MS)	
C2-MW-11 (R) (A9C0616-06)				Matrix: Wate	r	В	atch: 9030975	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	03/20/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	: 103 % 87 %	Limits: 50-150 % 50-150 %		03/20/19 03/20/19	NWTPH-Gx (MS) NWTPH-Gx (MS)	
C2-MW-12 B (A9C0616-07)				Matrix: Wate	r	В	atch: 9030975	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	03/20/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	: 100 % 87 %	Limits: 50-150 % 50-150 %		03/20/19 03/20/19	NWTPH-Gx (MS) NWTPH-Gx (MS)	
C2-MW-9-DUP (A9C0616-08)				Matrix: Wate	r	В	atch: 9030975	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	03/20/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	: 102 % 87 %	Limits: 50-150 % 50-150 %		03/20/19 03/20/19	NWTPH-Gx (MS) NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 4 of 40

Darrell Auvil, Project Manager

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	Select	ted Volatile O	rganic Com	pounds by EP	A 8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
C1-MW-7 (A9C0616-02)				Matrix: Wate	ər	Ba		
Benzene	ND	0.100	0.200	ug/L	1	03/20/19	EPA 8260C	
Ethylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	17.9	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Toluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Xylenes, total	ND	0.750	1.50	ug/L	1	03/20/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 107%	Limits: 80-120 %	6 I	03/20/19	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	6 I	03/20/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	6 1	03/20/19	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 5 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
1-MW-4 (A9C0616-01)				Matrix: Wa	ater	Bat	tch: 9030975	
Acetone	ND	10.0	20.0	ug/L	1	03/20/19	EPA 8260C	
Benzene	ND	0.100	0.200	ug/L	1	03/20/19	EPA 8260C	
Bromobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromoform	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	03/20/19	EPA 8260C	
-Butanone (MEK)	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Thlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
hloroethane	ND	5.00	5.00	ug/L	1	03/20/19	EPA 8260C	
hloroform	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
hloromethane	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
-Chlorotoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Chlorotoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
bibromochloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Dibromomethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1-Dichloroethane	0.554	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
s-1,2-Dichloroethene	1.55	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
ans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
2-Dichloropropane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
3-Dichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 6 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compour	nds by EPA 826	UC			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C1-MW-4 (A9C0616-01)				Matrix: Wate	or	Bat	tch: 9030975	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Ethylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Hexanone	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Methylene chloride	ND	1.50	3.00	ug/L	1	03/20/19	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Naphthalene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
Toluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
inyl chloride	0.216	0.100	0.200	ug/L	1	03/20/19	EPA 8260C	
n,p-Xylene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
p-Xylene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	5 1	03/20/19	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	<i>1</i>	03/20/19	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 7 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C1-MW-4 (A9C0616-01)				Matrix: Wate	r	Bat	ch: 9030975	
Surrogate: 4-Bromofluorobenzene (Surr)		Recove	ry: 102 %	Limits: 80-120 %	1	03/20/19	EPA 8260C	
C2-MW-9 (A9C0616-04)				Matrix: Wate	r	Bat	ch: 9030975	
Acetone	ND	10.0	20.0	ug/L	1	03/20/19	EPA 8260C	
Benzene	ND	0.100	0.200	ug/L	1	03/20/19	EPA 8260C	
Bromobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromoform	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Chlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Chloroethane	ND	5.00	5.00	ug/L	1	03/20/19	EPA 8260C	
Chloroform	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Chloromethane	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Dibromomethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
cis-1,2-Dichloroethene	0.956	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 8 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-9 (A9C0616-04)				Matrix: Wa	ater	Bat	tch: 9030975	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Ethylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Hexanone	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Methylene chloride	ND	1.50	3.00	ug/L	1	03/20/19	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Naphthalene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
Toluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
Frichlorofluoromethane	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Vinyl chloride	0.453	0.100	0.200	ug/L	1	03/20/19	EPA 8260C	
n,p-Xylene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
o-Xylene	ND	0.250	0.500	ug/L ug/L	1	03/20/19	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 9 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-9 (A9C0616-04)		Matrix: Water		Bat	ch: 9030975			
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 106 %	Limits: 80-120 %	1	03/20/19	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	1	03/20/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	03/20/19	EPA 8260C	
C2-MW-11 (R) (A9C0616-06)				Matrix: Wate	r	Bat	ch: 9030975	
Acetone	ND	10.0	20.0	ug/L	1	03/20/19	EPA 8260C	
Benzene	ND	0.100	0.200	ug/L	1	03/20/19	EPA 8260C	
Bromobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromoform	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Chlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Chloroethane	ND	5.00	5.00	ug/L	1	03/20/19	EPA 8260C	
Chloroform	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Chloromethane	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Dibromomethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 10 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project Number: Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-11 (R) (A9C0616-06)				Matrix: W	ater	Bat	tch: 9030975	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Ethylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Hexanone	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Methylene chloride	ND	1.50	3.00	ug/L	1	03/20/19	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Naphthalene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
Toluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Vinyl chloride	0.159	0.100	0.200	ug/L	1	03/20/19	EPA 8260C	J

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 11 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project Number: Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
C2-MW-11 (R) (A9C0616-06)				Matrix: Wate	r	Batch: 9030975		
m,p-Xylene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
o-Xylene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 106 %	Limits: 80-120 %	1	03/20/19	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	I	03/20/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	03/20/19	EPA 8260C	
C2-MW-12 B (A9C0616-07)				Matrix: Wate	r	Bat	tch: 9030975	
Acetone	ND	10.0	20.0	ug/L	1	03/20/19	EPA 8260C	
Benzene	ND	0.100	0.200	ug/L	1	03/20/19	EPA 8260C	
Bromobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromoform	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Chlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Chloroethane	ND	5.00	5.00	ug/L	1	03/20/19	EPA 8260C	
Chloroform	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Chloromethane	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Dibromomethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1.1-Dichloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 12 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project Number: Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-12 B (A9C0616-07)				Matrix: Wa	ater	Ва	tch: 9030975	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
sis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Ethylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
-Hexanone	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
sopropylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
-Isopropyltoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Methylene chloride	ND	1.50	3.00	ug/L	1	03/20/19	EPA 8260C	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Naphthalene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
-Propylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
Toluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
richloroethene (TCE)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
richlorofluoromethane	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 13 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
2-MW-12 B (A9C0616-07)				Matrix: Wate	r	Ва	tch: 9030975	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Vinyl chloride	ND	0.100	0.200	ug/L	1	03/20/19	EPA 8260C	
m,p-Xylene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
o-Xylene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 105 %	Limits: 80-120 %	1	03/20/19	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	03/20/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	03/20/19	EPA 8260C	
2-MW-9-DUP (A9C0616-08)				Matrix: Wate	r	Ва	tch: 9030975	
Acetone	ND	10.0	20.0	ug/L	1	03/20/19	EPA 8260C	
Benzene	ND	0.100	0.200	ug/L	1	03/20/19	EPA 8260C	
Bromobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromoform	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Chlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Chloroethane	ND	5.00	5.00	ug/L	1	03/20/19	EPA 8260C	
Chloroform	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Chloromethane	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
-Chlorotoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Dibromomethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 14 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
2-MW-9-DUP (A9C0616-08)				Matrix: Wa	ater	Bat	tch: 9030975	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
cis-1,2-Dichloroethene	0.942	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Ethylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Iexachlorobutadiene	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
-Hexanone	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
sopropylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
-Isopropyltoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Methylene chloride	ND	1.50	3.00	ug/L	1	03/20/19	EPA 8260C	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Naphthalene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Cetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
oluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Crichloroethene (TCE)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
richlorofluoromethane	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 15 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-9-DUP (A9C0616-08)				Matrix: Wate	r	Bat	tch: 9030975	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Vinyl chloride	0.315	0.100	0.200	ug/L	1	03/20/19	EPA 8260C	
m,p-Xylene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
o-Xylene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	106 %	Limits: 80-120 %	1	03/20/19	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	I	03/20/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	03/20/19	EPA 8260C	
RIP BLANK (A9C0616-09)				Matrix: Wate	r	Bat	tch: 9030975	
Acetone	ND	20.0	20.0	ug/L	1	03/20/19	EPA 8260C	
Benzene	ND	0.100	0.200	ug/L	1	03/20/19	EPA 8260C	
Bromobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromoform	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Chlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Chloroethane	ND	5.00	5.00	ug/L	1	03/20/19	EPA 8260C	
Chloroform	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Chloromethane	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Dibromomethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 16 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
RIP BLANK (A9C0616-09)				Matrix: Wa	ater	Ва	tch: 9030975	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
is-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Ethylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	03/20/19	EPA 8260C	
-Hexanone	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
sopropylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
l-Isopropyltoluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Methylene chloride	ND	1.50	3.00	ug/L	1	03/20/19	EPA 8260C	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	03/20/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
Naphthalene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C	
etrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
oluene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C	
.1.1-Trichloroethane	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L ug/L	1	03/20/19	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 17 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project Number: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	Volatile Organic Compounds by EPA 8260C												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes							
RIP BLANK (A9C0616-09)			atch: 9030975												
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	03/20/19	EPA 8260C								
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	03/20/19	EPA 8260C								
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C								
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C								
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C								
Vinyl chloride	ND	0.100	0.200	ug/L	1	03/20/19	EPA 8260C								
m,p-Xylene	ND	0.500	1.00	ug/L	1	03/20/19	EPA 8260C								
o-Xylene	ND	0.250	0.500	ug/L	1	03/20/19	EPA 8260C								
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	5 1	03/20/19	EPA 8260C								
Toluene-d8 (Surr)			102 %	80-120 %	1	03/20/19	EPA 8260C								
4-Bromofluorobenzene (Surr)			102 %	80-120 %	I	03/20/19	EPA 8260C								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 18 of 40

Darrell Auvil, Project Manager

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 9031075 - EPA 3510C (Fuels/Acid	Ext.)					Wat	er					
Blank (9031075-BLK1)			Prepared	1: 03/22/19	13:17 Ana	lyzed: 03/23	/19 01:07						
NWTPH-Dx													
Diesel	ND	0.0909	0.182	mg/L	1								
Oil	ND	0.182	0.364	mg/L	1								
Surr: o-Terphenyl (Surr)		Recov	ery: 101 %	Limits: 50	0-150 %	Dilı	ution: 1x						
LCS (9031075-BS1)			Prepared	1: 03/22/19	13:17 Ana	lyzed: 03/23	/19 01:30						
NWTPH-Dx													
Diesel	1.21	0.100	0.200	mg/L	1	1.25		97	58-115%				
Surr: o-Terphenyl (Surr)		Reco	very: 97 %	Limits: 50	0-150 %	Dilt	ution: 1x						
LCS Dup (9031075-BSD1)			Prepared	1: 03/22/19	13:17 Ana	lyzed: 03/23	/19 01:52					Q-1	
NWTPH-Dx													
Diesel	1.12	0.100	0.200	mg/L	1	1.25		89	58-115%	8	20%		
Surr: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50	0-150 %	Dilt	ution: 1x						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 19 of 40

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	ydrocarbo	ns (Ben	zene thro	ugh Naphi	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9030975 - EPA 5030B							Wat	er				
Blank (9030975-BLK1)			Prepared	1: 03/20/19	14:00 Ana	lyzed: 03/20/	/19 16:05					
NWTPH-Gx (MS) Gasoline Range Organics	ND	0.0500	0.100	mg/L	. 1							
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 97 % 87 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: Ix					
LCS (9030975-BS2)			Prepared	1: 03/20/19	14:00 Ana	lyzed: 03/20/	/19 15:36					
NWTPH-Gx (MS) Gasoline Range Organics	0.548	0.0500	0.100	mg/L	. 1	0.500		110	80-120%			
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	ery: 101 % 110 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: 1x					
Duplicate (9030975-DUP1)			Prepared	l: 03/20/19	15:46 Ana	lyzed: 03/20/	/19 18:55					
QC Source Sample: C1-MW-7 (A	9C0616-02)											
NWTPH-Gx (MS) Gasoline Range Organics	ND	0.0500	0.100	mg/L	. 1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	ery: 102 % 87 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 20 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selec	cted Volatil	e Organi	c Compo	unds by E	PA 82600	<u> </u>				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9030975 - EPA 5030B							Wat	er				
Blank (9030975-BLK1)			Prepared	: 03/20/19	14:00 Anal	lyzed: 03/20	/19 16:05					
EPA 8260C												
Benzene	ND	0.100	0.200	ug/L	1							
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1							
1,2-Dichloroethane (EDC)	ND	0.250	0.500	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	1.00	2.00	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Xylenes, total	ND	0.750	1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)			very: 105 %	Limits: 80		Dilı	ution: Ix					
Toluene-d8 (Surr)			103 %		120 %	- ***	"					
4-Bromofluorobenzene (Surr)			102 %		-120 %		"					
LCS (9030975-BS1)			Prepared	: 03/20/19	14:00 Anal	yzed: 03/20	/19 15:08					
EPA 8260C				~								
Benzene	21.7	0.100	0.200	ug/L	1	20.0			80-120%			
1,2-Dibromoethane (EDB)	20.4	0.250	0.500	ug/L	1	20.0			80-120%			
1,2-Dichloroethane (EDC)	20.5	0.250	0.500	ug/L	1	20.0			80-120%			
Ethylbenzene	20.6	0.250	0.500	ug/L	1	20.0			80-120%			
Isopropylbenzene	20.7	0.500	1.00	ug/L	1	20.0			80-120%			
Methyl tert-butyl ether (MTBE)	20.0	0.500	1.00	ug/L	1	20.0		100	80-120%			
Naphthalene	20.0	1.00	2.00	ug/L	1	20.0		100	80-120%			
Toluene	20.4	0.500	1.00	ug/L	1	20.0		102	80-120%			
1,2,4-Trimethylbenzene	20.8	0.500	1.00	ug/L	1	20.0		104	80-120%			
1,3,5-Trimethylbenzene	20.5	0.500	1.00	ug/L	1	20.0		102	80-120%			
Xylenes, total	61.8	0.750	1.50	ug/L	1	60.0		103	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 105 %	Limits: 80	0-120 %	Dilı	ution: 1x					_
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 21 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9030975 - EPA 5030B							Wat	er				
Duplicate (9030975-DUP1)			Prepared	: 03/20/19	15:46 Anal	yzed: 03/20/	/19 18:55					
QC Source Sample: C1-MW-7 (A	9C0616-02)											
EPA 8260C												
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	ug/L	1		ND				30%	
Ethylbenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Isopropylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	17.6	0.500	1.00	ug/L	1		17.9			1	30%	
Naphthalene	ND	1.00	2.00	ug/L	1		ND				30%	
Toluene	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Xylenes, total	ND	0.750	1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 106 %	Limits: 80	-120 %	Dilu	ıtion: 1x					
Toluene-d8 (Surr)			102 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80-	-120 %		"					
Matrix Spike (9030975-MS1)			Prepared	: 03/20/19 1	15:46 Anal	yzed: 03/21/	/19 00:34					
QC Source Sample: Non-SDG (A9	<u>C0625-01)</u>											
EPA 8260C				~	_	20.0			50.15			
Benzene	22.2	0.100	0.200	ug/L	1	20.0	ND	111	79-120%			
1,2-Dibromoethane (EDB)	20.8	0.250	0.500	ug/L	1	20.0	ND	104	77-121%			
1,2-Dichloroethane (EDC)	20.9	0.250	0.500	ug/L	1	20.0	ND	104	73-128%			
Ethylbenzene	21.1	0.250	0.500	ug/L	1	20.0	ND	105	79-121%			
•		0.500	1.00	ug/L	1	20.0	ND	104	72-131%			
Isopropylbenzene	20.9					20.0	ND	99	71-124%			
Isopropylbenzene Methyl tert-butyl ether (MTBE)	19.9	0.500	1.00	ug/L	1							
Isopropylbenzene Methyl tert-butyl ether		0.500 1.00	2.00	ug/L	1	20.0	ND	107	61-128%			
Isopropylbenzene Methyl tert-butyl ether (MTBE)	19.9	0.500		ug/L ug/L			ND ND	107 105	61-128% 80-121%			
Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene	19.9 21.4	0.500 1.00	2.00	ug/L	1	20.0		105				
Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene Toluene	19.9 21.4 21.0	0.500 1.00 0.500	2.00 1.00	ug/L ug/L	1 1	20.0 20.0	ND	105	80-121%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 22 of 40

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

 AECOM
 Project:
 POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number:
 605-19969

 111 SW Columbia St. Ste. 1500
 Project Number: 605-19969
 Report ID:

 Portland, OR 97201
 Project Manager: Nicky Moody
 A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS

Selected Volatile Organic Compounds by EPA 8260C Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit Batch 9030975 - EPA 5030B Water Matrix Spike (9030975-MS1) Prepared: 03/20/19 15:46 Analyzed: 03/21/19 00:34 QC Source Sample: Non-SDG (A9C0625-01) Surr: Toluene-d8 (Surr) Recovery: 101 % Limits: 80-120 % Dilution: 1x 4-Bromofluorobenzene (Surr) 97% 80-120 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 23 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C Detection Reporting % REC RPD Spike Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Water Batch 9030975 - EPA 5030B Blank (9030975-BLK1) Prepared: 03/20/19 14:00 Analyzed: 03/20/19 16:05 EPA 8260C ND 10.0 20.0 ug/L Acetone ug/L ND 1.00 2.00 1 Acrylonitrile Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 1 ug/L Bromochloromethane ND 0.500 1.00 ug/L 1 Bromodichloromethane ND 0.500 ug/L 1.00 1 Bromoform ND 0.500 1.00 ug/L 5.00 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 ug/L 1 sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 1.00 ug/L 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ------Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane ug/L 1 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 ND Dibromochloromethane 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 0.250 1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 Dibromomethane ND 0.500 1.00 ug/L 1 ND 0.250 0.500 1,2-Dichlorobenzene ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1

Apex Laboratories

Quand la famil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 24 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9030975 - EPA 5030B							Wat	er				
Blank (9030975-BLK1)			Prepared	: 03/20/19	14:00 Anal	yzed: 03/20	/19 16:05					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	4.29	1.50	3.00	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	1.00	2.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1							
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.100	0.200	ug/L	1							
m,p-Xylene	ND	0.500	1.00	ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 25 of 40

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	B DY EPA 8	526UC					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9030975 - EPA 5030B							Wa	ter				
Blank (9030975-BLK1)			Prepared	1: 03/20/19	14:00 Ana	lyzed: 03/20)/19 16:05					
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 8	0-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			103 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	0-120 %		"					
LCS (9030975-BS1)			Prepared	1: 03/20/19	14:00 Ana	lyzed: 03/20	0/19 15:08					
EPA 8260C												
Acetone	48.9	10.0	20.0	ug/L	1	40.0		122	80-120%			Q-5
Acrylonitrile	23.9	1.00	2.00	ug/L	1	20.0		120	80-120%			
Benzene	21.7	0.100	0.200	ug/L	1	20.0		109	80-120%			
Bromobenzene	19.6	0.250	0.500	ug/L	1	20.0		98	80-120%			
Bromochloromethane	22.9	0.500	1.00	ug/L	1	20.0		115	80-120%			
Bromodichloromethane	22.1	0.500	1.00	ug/L	1	20.0		111	80-120%			
Bromoform	21.7	0.500	1.00	ug/L	1	20.0		108	80-120%			
Bromomethane	21.4	5.00	5.00	ug/L	1	20.0		107	80-120%			E-0
2-Butanone (MEK)	45.5	5.00	10.0	ug/L	1	40.0		114	80-120%			
n-Butylbenzene	21.4	0.500	1.00	ug/L	1	20.0		107	80-120%			
sec-Butylbenzene	21.2	0.500	1.00	ug/L	1	20.0		106	80-120%			
tert-Butylbenzene	19.7	0.500	1.00	ug/L	1	20.0		99	80-120%			
Carbon disulfide	21.4	5.00	10.0	ug/L	1	20.0		107	80-120%			
Carbon tetrachloride	21.0	0.500	1.00	ug/L	1	20.0		105	80-120%			
Chlorobenzene	20.3	0.250	0.500	ug/L	1	20.0		102	80-120%			
Chloroethane	20.2	5.00	5.00	ug/L	1	20.0		101	80-120%			
Chloroform	21.0	0.500	1.00	ug/L	1	20.0		105	80-120%			
Chloromethane	17.7	2.50	5.00	ug/L	1	20.0		89	80-120%			
2-Chlorotoluene	20.1	0.500	1.00	ug/L	1	20.0		100	80-120%			
4-Chlorotoluene	20.4	0.500	1.00	ug/L	1	20.0		102	80-120%			
Dibromochloromethane	19.8	0.500	1.00	ug/L	1	20.0		99	80-120%			
1,2-Dibromo-3-chloropropane	18.9	2.50	5.00	ug/L	1	20.0		94	80-120%			
1,2-Dibromoethane (EDB)	20.4	0.250	0.500	ug/L	1	20.0		102	80-120%			
Dibromomethane	22.1	0.500	1.00	ug/L	1	20.0		111	80-120%			
1,2-Dichlorobenzene	19.9	0.250	0.500	ug/L	1	20.0		99	80-120%			
1,3-Dichlorobenzene	19.9	0.250	0.500	ug/L	1	20.0		100	80-120%			
1,4-Dichlorobenzene	19.5	0.250	0.500	ug/L	1	20.0		98	80-120%			
Dichlorodifluoromethane	21.0	0.500	1.00	ug/L	1	20.0		105	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 26 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260C

Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC Limits RPD Limit Amount Limit Notes Batch 9030975 - EPA 5030B Water LCS (9030975-BS1) Prepared: 03/20/19 14:00 Analyzed: 03/20/19 15:08 20.0 22.2 0.200 0.400 ug/L 111 80-120% 1,1-Dichloroethane 1,2-Dichloroethane (EDC) 20.5 0.200 0.400 ug/L 1 20.0 102 80-120% ---------20.0 1,1-Dichloroethene 20.6 0.200 0.400 ug/L 1 103 80-120% cis-1,2-Dichloroethene 22.4 0.200 0.400ug/L 1 20.0 112 80-120% 21.9 20.0 trans-1,2-Dichloroethene 0.200 0.400109 80-120% ug/L 1 22.2 20.0 80-120% 1,2-Dichloropropane 0.250 0.500 ug/L 1 111 0.500 1,3-Dichloropropane 20.9 1.00 ug/L 1 20.0 105 80-120% 20.0 80-120% 2,2-Dichloropropane 20.4 0.500 1.00 ug/L 1 102 21.9 0.500 1.00 20.0 1,1-Dichloropropene ug/L 1 110 80-120% cis-1,3-Dichloropropene 20.4 0.500 1.00 ug/L 1 20.0 102 80-120% 20.0 trans-1,3-Dichloropropene 20.6 0.500 1.00 1 103 80-120% ug/L 0.250 20.0 80-120% Ethylbenzene 20.6 0.500 ug/L 1 103 Hexachlorobutadiene 18.6 2.50 20.0 93 80-120% 5.00 ug/L 1 ------80-120% 2-Hexanone 41.8 5.00 10.0 ug/L 1 40.0 104 20.0 Isopropylbenzene 20.7 0.500 104 80-120% 1.00 ug/L 1 4-Isopropyltoluene 20.6 0.500 1.00 ug/L 1 20.0 103 80-120% 21.4 1.50 3.00 20.0 107 80-120% В Methylene chloride ug/L 1 ---4-Methyl-2-pentanone (MiBK) 41.0 5.00 10.0 1 40.0 103 80-120% ug/L 0.500 80-120% Methyl tert-butyl ether 20.0 1.00 20.0 100 ug/L 1 ------(MTBE) 20.0 1.00 2.00 20.0 Naphthalene 1 100 80-120% ug/L n-Propylbenzene 20.9 0.250 0.500 20.0 105 80-120% ug/L 1 0.500 Styrene 21.1 1.00 ug/L 1 20.0 105 80-120% ---1,1,1,2-Tetrachloroethane 20.4 0.200 0.400 20.0 102 80-120% ug/L 1 1,1,2,2-Tetrachloroethane 21.3 0.250 0.500 20.0 106 80-120% ug/L 1 Tetrachloroethene (PCE) 20.0 0.200 0.400 ug/L 1 20.0 100 80-120%

1

1

1

1

1

1

1

1

1

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

Apex Laboratories

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

Dund la finil

Toluene

20.4

18.9

19.4

20.6

20.8

21.4

20.1

20.4

20.8

0.500

1.00

1.00

0.200

0.250

0.200

1.00

0.500

0.500

1.00

2.00

2.00

0.400

0.500

0.400

2.00

1.00

1.00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

102

94

97

103

104

107

100

102

104

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

Darrell Auvil, Project Manager

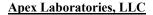
Page 27 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201

Project: POV FVP
Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS


			Volatile Or	yanıc Co	inpounas	Dy EPA 8	2000					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9030975 - EPA 5030B							Wat	er				
LCS (9030975-BS1)			Prepared	: 03/20/19	14:00 Anal	yzed: 03/20	/19 15:08					
1,3,5-Trimethylbenzene	20.5	0.500	1.00	ug/L	1	20.0		102	80-120%			
Vinyl chloride	20.2	0.200	0.400	ug/L	1	20.0		101	80-120%			
m,p-Xylene	41.5	0.500	1.00	ug/L	1	40.0		104	80-120%			
o-Xylene	20.3	0.250	0.500	ug/L	1	20.0		102	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80)-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					
Dunkasta (0020075 DIJB1)			n.	02/20/10	15 46 A 1	1 02/20	/10.10.55					
Ouplicate (9030975-DUP1) QC Source Sample: C1-MW-7 (A9	OC0616 02\		Preparec	: 03/20/19	15:46 Anal	yzed: 03/20	19 18:55					
EPA 8260C	7CUU10-U2)											
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 28 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 9030975 - EPA 5030B Water **Duplicate (9030975-DUP1)** Prepared: 03/20/19 15:46 Analyzed: 03/20/19 18:55 QC Source Sample: C1-MW-7 (A9C0616-02) Dibromomethane ND 0.500 1.00 ug/L 1 ND 30% 30% ND 0.250 0.500 ND 1,2-Dichlorobenzene ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% ---1,1-Dichloroethane ND 0.200 0.400 ND 30% ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400ug/L 1 ND 30% 30% ND 0.200 0.400 ND 1,1-Dichloroethene ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% ND 0.500 1.00 ND 30% 1,3-Dichloropropane ug/L 1 ND 2,2-Dichloropropane 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 1 ND 30% 1,1-Dichloropropene ug/L 0.500 1.00 cis-1,3-Dichloropropene ND ug/L 1 ND 30% trans-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% Ethylbenzene ND 0.250 0.500 ug/L 1 ND 30% ND 2.50 5.00 ND 30% Hexachlorobutadiene ug/L 1 ND ND 30% 2-Hexanone 5.00 10.0 ug/L 1 0.500 1.00 30% Isopropylbenzene ND ND ug/L 1 ND 0.500 1.00 ug/L 1 ND 30% 4-Isopropyltoluene Methylene chloride ND 1.50 3.00 ug/L 1 ND ------30% 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND 30% Methyl tert-butyl ether 17.6 0.500 17.9 1 30% 1.00 ug/L 1 (MTBE) ND 1.00 2.00 30% Naphthalene ug/L 1 ND n-Propylbenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.500 1.00 ND 30% Styrene 1 ug/L 1,1,1,2-Tetrachloroethane ND 0.200 0.400 ug/L 1 ND 30% ug/L 1.1.2.2-Tetrachloroethane ND 0.250 0.500 ND 30% 1 Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 ND 30% Toluene ND 0.500 1.00 1 ND 30% ug/L ------------1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND 30%

Apex Laboratories

Dund to finil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 29 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS

Duplicate (9030975-DUP1) Prepared: 03/20/19 15:46 Analyzed: 03/20/19 18:55	RPD Limit Notes 30% 30% 30% 30% 30% 30% 30% 30% 30% 30	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Limits RPD	% REC Limit	Result % RE Water //19 18:55 ND ND ND ND ND ND ND	yzed: 03/20/	15:46 Anal	ug/L ug/L	Prepared 2.00	Limit	A9C0616-02)	Batch 9030975 - EPA 5030B Duplicate (9030975-DUP1)
Duplicate (9030975-DUP1) Prepared: 03/20/19 15:46 Analyzed: 03/20/19 18:55	30% 30% 30% 30% 30% 30% 30% 30% 30%	30% 30% 30% 30% 30% 30% 30% 30% 30%	 	 	ND ND ND ND ND ND ND ND	 	1 1 1 1	ug/L ug/L	2.00	1.00		Duplicate (9030975-DUP1)
OC Source Sample: C1-MW-7 (A9C0616-02) 1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND	30% 30% 30% 30% 30% 30% 30% 30% 30%	30% 30% 30% 30% 30% 30% 30% 30% 30%	 	 	ND ND ND ND ND	 	1 1 1 1	ug/L ug/L	2.00	1.00		
1,2,4-Trichlorobenzene	30% 30% 30% 30% 30% 30% 30% 30% 30%	30% 30% 30% 30% 30% 30% 30% 30% 30%	 	 	ND ND ND ND		1 1 1	ug/L		1.00		OC Source Sample: C1 MW 7 (A)
1,1,1-Trichloroethane	30% 30% 30% 30% 30% 30% 30% 30% 30%	30% 30% 30% 30% 30% 30% 30% 30% 30%	 	 	ND ND ND ND		1 1 1	ug/L		1.00	ND	QC Source Sample, C1-MW-/ (A)
1,1,2-Trichloroethane	30% 30% 30% 30% 30% 30% 30% 30%	30% 30% 30% 30% 30% 30% 30%	 	 	ND ND ND		1 1	_	0.400		110	1,2,4-Trichlorobenzene
Trichloroethene (TCE) ND 0.200 0.400 ug/L 1	30% 30% 30% 30% 30% 30% 30%	30% 30% 30% 30% 30% 30% 30%	 	 	ND ND		1		0.400	0.200	ND	1,1,1-Trichloroethane
Trichlorofluoromethane ND 1.00 2.00 ug/L 1 ND 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 ND 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 ND 1,3,5-Trimethylbenzene ND 0.500 1.00 ug/L 1 ND 1,3,5-Trimethylbenzene ND 0.500 1.00 ug/L 1 ND ND	30% 30% 30% 30% 30% 30%	30% 30% 30% 30% 30%	 		ND		-	ug/L	0.500	0.250	ND	1,1,2-Trichloroethane
1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 ND 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 ND 1,3,5-Trimethylbenzene ND 0.500 1.00 ug/L 1 ND ND	30% 30% 30% 30% 30%	30% 30% 30% 30%	 					ug/L	0.400	0.200	ND	Trichloroethene (TCE)
1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 ND 1,3,5-Trimethylbenzene ND 0.500 1.00 ug/L 1 ND 1,3,5-Trimethylbenzene ND 0.500 1.00 ug/L 1 ND ND	30% 30% 30% 30%	30% 30% 30% 30%			ND		1	ug/L	2.00	1.00	ND	Trichlorofluoromethane
1,3,5-Trimethylbenzene ND 0.500 1.00 ug/L 1 ND Vinyl chloride ND 0.200 0.400 ug/L 1 ND ND	30% 30% 30%	30% 30% 30%			ND		1	ug/L	1.00	0.500	ND	1,2,3-Trichloropropane
Vinyl chloride ND 0.200 0.400 ug/L 1 ND m,p-Xylene ND 0.500 1.00 ug/L 1 ND o-Xylene ND 0.250 0.500 ug/L 1 ND ND	30% 30%	30% 30%			ND		1	ug/L	1.00	0.500	ND	1,2,4-Trimethylbenzene
m,p-Xylene ND 0.500 1.00 ug/L 1 ND o-Xylene ND 0.250 0.500 ug/L 1 ND ND	30%	30%			ND		1	ug/L	1.00	0.500	ND	1,3,5-Trimethylbenzene
o-Xylene ND 0.250 0.500 ug/L 1 ND Surr: 1,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 102 % 80-120 % " 4-Bromofluorobenzene (Surr) 99 % 80-120 % " Matrix Spike (9030975-MS1) Prepared: 03/20/19 15:46 Analyzed: 03/21/19 00:34 OC Source Sample: Non-SDG (A9C0625-01) EPA 8260C Acetone 65.1 10.0 20.0 ug/L 1 40.0 21.9 108 39-160% Acrylonitrile 24.5 1.00 2.00 ug/L 1 20.0 ND 122 63-135%					ND		1	ug/L	0.400	0.200	ND	Vinyl chloride
Surr: 1,4-Diffuorobenzene (Surr) Recovery: 106 % Limits: 80-120 % Dilution: Ix Toluene-d8 (Surr) 102 % 80-120 % " 4-Bromofluorobenzene (Surr) 99 % 80-120 % " Matrix Spike (9030975-MS1) Prepared: 03/20/19 15:46 Analyzed: 03/21/19 00:34 OC Source Sample: Non-SDG (A9C0625-01) EPA 8260C Acetone 65.1 10.0 20.0 ug/L 1 40.0 21.9 108 39-160% Acrylonitrile 24.5 1.00 2.00 ug/L 1 20.0 ND 122 63-135%	30%	30%			ND		1	ug/L	1.00	0.500	ND	m,p-Xylene
Toluene-d8 (Surr)					ND		1	ug/L	0.500	0.250	ND	o-Xylene
### Acrylonitrile ### About 10.0 ### About 10.0 ### Acrylonitrile ### About 10.0					ution: 1x	Dilu	-120 %	Limits: 80	very: 106 %	Recov		Surr: 1,4-Difluorobenzene (Surr)
Matrix Spike (9030975-MS1) Prepared: 03/20/19 15:46 Analyzed: 03/21/19 00:34					"		-120 %	80	102 %			Toluene-d8 (Surr)
QC Source Sample: Non-SDG (A9C0625-01) EPA 8260C Acetone 65.1 10.0 20.0 ug/L 1 40.0 21.9 108 39-160% Acrylonitrile 24.5 1.00 2.00 ug/L 1 20.0 ND 122 63-135%					"		-120 %	80	99 %			4-Bromofluorobenzene (Surr)
EPA 8260C Acetone 65.1 10.0 20.0 ug/L 1 40.0 21.9 108 39-160% Acrylonitrile 24.5 1.00 2.00 ug/L 1 20.0 ND 122 63-135%					/19 00:34	yzed: 03/21/	15:46 Anal	: 03/20/19	Prepared			
Acetone 65.1 10.0 20.0 ug/L 1 40.0 21.9 108 39-160% Acrylonitrile 24.5 1.00 2.00 ug/L 1 20.0 ND 122 63-135%											9C0625-01)	
Acrylonitrile 24.5 1.00 2.00 ug/L 1 20.0 ND 122 63-135%			20 1600/	109 20 1609	21.0 109	40.0	1	ng/I	20.0	10.0	65.1	
								_				
Belizelie 22.2 0.100 0.200 ug/L 1 20.0 ND 111 /9-120/0								_				•
Bromobenzene 19.8 0.250 0.500 ug/L 1 20.0 ND 99 80-120%								•				
Bromochloromethane 24.1 0.500 1.00 ug/L 1 20.0 ND 121 78-123%								_				
Bromodichloromethane 22.7 0.500 1.00 ug/L 1 20.0 ND 114 79-125%								·				
Bromoform 20.4 0.500 1.00 ug/L 1 20.0 ND 102 66-130%												
Bromomethane 14.3 5.00 5.00 ug/L 1 20.0 ND 71 53-141%								_				
2-Butanone (MEK) 49.5 5.00 10.0 ug/L 1 40.0 ND 124 56-143%												
n-Butylbenzene 21.1 0.500 1.00 ug/L 1 40.0 ND 124 56-145%												` ′
sec-Butylbenzene 21.1 0.500 1.00 ug/L 1 20.0 ND 106 /3-126%								•				•
												•
·								•				•
g and a second s								•				
Carbon tetrachloride 21.8 0.500 1.00 ug/L 1 20.0 ND 109 72-136% Chlorobenzene 20.6 0.250 0.500 ug/L 1 20.0 ND 103 80-120%												

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 30 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 9030975 - EPA 5030B Water Matrix Spike (9030975-MS1) Prepared: 03/20/19 15:46 Analyzed: 03/21/19 00:34 QC Source Sample: Non-SDG (A9C0625-01) Chloroethane 20.6 5.00 5.00 ug/L 1 20.0 ND 103 60-138% Chloroform 22.6 0.500 1.00 20.0 79-124% ug/L 1 0.751 109 Chloromethane 15.4 2.50 5.00 ug/L 1 20.0 ND 77 50-139% 2-Chlorotoluene 20.2 0.500 1.00 ug/L 1 20.0 ND 101 79-122% 4-Chlorotoluene 20.7 0.500 1.00 ug/L 1 20.0 ND 104 78-122% 20.0 Dibromochloromethane 18.9 0.500 1.00 ND 94 74-126% ug/L 1 93 1,2-Dibromo-3-chloropropane 18.6 2.50 5.00 ug/L 1 20.0 ND 62-128% 1,2-Dibromoethane (EDB) 20.8 0.500 20.0 ND 104 77-121% 0.250 ug/L 1 20.0 Dibromomethane 21.9 0.500 1.00 ug/L 1 ND 109 79-123% 1,2-Dichlorobenzene 20.0 0.250 0.500 ug/L 1 20.0 ND 100 80-120% 1,3-Dichlorobenzene 20.2 0.250 0.500 ug/L 1 20.0 ND 101 80-120% 0.250 0.500 20.0 19.6 ND 98 79-120% 1,4-Dichlorobenzene ug/L 1 20.0 ND 32-152% Dichlorodifluoromethane 21.2 0.500 1.00 ug/L 1 106 1,1-Dichloroethane 20.0 ND 23.3 0.200 0.400 1 117 77-125% ug/L 0.200 0.400 1,2-Dichloroethane (EDC) 20.9 ug/L 1 20.0 ND 104 73-128% 1,1-Dichloroethene 21.6 0.200 0.400 ug/L 1 20.0 ND 108 71-131% ___ cis-1,2-Dichloroethene 23.0 0.200 0.400 ug/L 1 20.0 ND 115 78-123% 22.8 0.200 0.400 20.0 ND 75-124% trans-1,2-Dichloroethene ug/L 1 114 22.9 0.250 20.0 ND 114 78-122% 1,2-Dichloropropane 0.500 ug/L 1 0.500 1.00 20.0 107 1,3-Dichloropropane 21.3 ND 80-120% ug/L 1 18.1 0.500 20.0 ND 91 60-139% 2,2-Dichloropropane 1.00 ug/L 1 1,1-Dichloropropene 22.3 0.500 1.00 ug/L 1 20.0 ND 111 79-125% --cis-1,3-Dichloropropene 19.1 0.500 1.00 ug/L 1 20.0 ND 96 75-124% 19.1 0.500 20.0 ND 95 73-127% trans-1,3-Dichloropropene 1.00 ug/L 1 21.1 0.250 0.500 20.0 ND 105 79-121% Ethylbenzene ug/L 1 18.4 20.0 ND 92 Hexachlorobutadiene 2.50 5.00 1 66-134% ug/L 2-Hexanone 45.1 5.00 10.0 40.0 ND 113 57-139% ug/L 1 20.9 20.0 ND 104 72-131% Isopropylbenzene 0.500 1.00 ug/L 1 4-Isopropyltoluene 20.5 0.500 1.00 ug/L 1 20.0 ND 102 77-127% Methylene chloride 21.4 1.50 3.00 1 20.0 ND 107 74-124% ug/L ---4-Methyl-2-pentanone (MiBK) 43.3 5.00 10.0 ug/L 1 40.0 ND 108 67-130% 19.9 0.500 1.00 ug/L 20.0 ND 99 71-124% Methyl tert-butyl ether 1 (MTBE)

Apex Laboratories

Dund to finil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 31 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Orç	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9030975 - EPA 5030B							Wat	er				
Matrix Spike (9030975-MS1)			Prepared	: 03/20/19	15:46 Anal	yzed: 03/21	/19 00:34					
QC Source Sample: Non-SDG (A9	C0625-01)											
Naphthalene	21.4	1.00	2.00	ug/L	1	20.0	ND	107	61-128%			
n-Propylbenzene	21.1	0.250	0.500	ug/L	1	20.0	ND	105	76-126%			
Styrene	21.1	0.500	1.00	ug/L	1	20.0	ND	106	78-123%			
1,1,1,2-Tetrachloroethane	20.7	0.200	0.400	ug/L	1	20.0	ND	103	78-124%			
1,1,2,2-Tetrachloroethane	21.2	0.250	0.500	ug/L	1	20.0	ND	106	71-121%			
Tetrachloroethene (PCE)	19.8	0.200	0.400	ug/L	1	20.0	ND	99	74-129%			
Toluene	21.0	0.500	1.00	ug/L	1	20.0	ND	105	80-121%			
1,2,3-Trichlorobenzene	19.4	1.00	2.00	ug/L	1	20.0	ND	97	69-129%			
1,2,4-Trichlorobenzene	19.4	1.00	2.00	ug/L	1	20.0	ND	97	69-130%			
1,1,1-Trichloroethane	21.5	0.200	0.400	ug/L	1	20.0	ND	107	74-131%			
1,1,2-Trichloroethane	20.7	0.250	0.500	ug/L	1	20.0	ND	104	80-120%			
Trichloroethene (TCE)	21.7	0.200	0.400	ug/L	1	20.0	ND	108	79-123%			
Trichlorofluoromethane	20.6	1.00	2.00	ug/L	1	20.0	ND	103	65-141%			
1,2,3-Trichloropropane	20.6	0.500	1.00	ug/L	1	20.0	ND	103	73-122%			
1,2,4-Trimethylbenzene	20.9	0.500	1.00	ug/L	1	20.0	ND	104	76-124%			
1,3,5-Trimethylbenzene	20.7	0.500	1.00	ug/L	1	20.0	ND	103	75-124%			
Vinyl chloride	19.2	0.200	0.400	ug/L	1	20.0	ND	96	58-137%			
m,p-Xylene	42.4	0.500	1.00	ug/L	1	40.0	ND	106	80-121%			
o-Xylene	20.6	0.250	0.500	ug/L	1	20.0	ND	103	78-122%			
urr: 1,4-Difluorobenzene (Surr)		Recov	very: 105 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 32 of 40

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

SAMPLE PREPARATION INFORMATION

Prep: EPA 3510C (Fu	uels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9031075							
A9C0616-03	Water	NWTPH-Dx	03/19/19 09:10	03/22/19 13:17	1050mL/5mL	1000mL/5mL	0.95
A9C0616-04	Water	NWTPH-Dx	03/19/19 10:15	03/22/19 13:17	1020mL/5mL	1000mL/5mL	0.98
A9C0616-05RE1	Water	NWTPH-Dx	03/19/19 11:20	03/22/19 13:17	1040mL/5mL	1000mL/5mL	0.96
A9C0616-06	Water	NWTPH-Dx	03/19/19 12:35	03/22/19 13:17	1030mL/5mL	1000mL/5mL	0.97
A9C0616-07	Water	NWTPH-Dx	03/19/19 07:55	03/22/19 13:17	1050mL/5mL	1000mL/5mL	0.95
A9C0616-08	Water	NWTPH-Dx	03/19/19 10:20	03/22/19 13:17	960mL/5mL	1000mL/5mL	1.04

	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9030975							
A9C0616-03	Water	NWTPH-Gx (MS)	03/19/19 09:10	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00
A9C0616-04	Water	NWTPH-Gx (MS)	03/19/19 10:15	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00
A9C0616-05	Water	NWTPH-Gx (MS)	03/19/19 11:20	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00
A9C0616-06	Water	NWTPH-Gx (MS)	03/19/19 12:35	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00
A9C0616-07	Water	NWTPH-Gx (MS)	03/19/19 07:55	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00
A9C0616-08	Water	NWTPH-Gx (MS)	03/19/19 10:20	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00

		Selected Vo	latile Organic Compo	ounds by EPA 82600	,		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9030975							
A9C0616-02	Water	EPA 8260C	03/19/19 15:15	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00

		Volatile	Organic Compounds	by EPA 8260C			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9030975							
A9C0616-01	Water	EPA 8260C	03/19/19 14:15	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00
A9C0616-04	Water	EPA 8260C	03/19/19 10:15	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00
A9C0616-06	Water	EPA 8260C	03/19/19 12:35	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00
A9C0616-07	Water	EPA 8260C	03/19/19 07:55	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00
A9C0616-08	Water	EPA 8260C	03/19/19 10:20	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 33 of 40

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AECOM Project: POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number: 605-19969
 Report ID:

 Portland, OR 97201
 Project Manager: Nicky Moody
 A9C0616 - 03 27 19 1702

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	by EPA 8260C			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A9C0616-09	Water	EPA 8260C	03/19/19 00:00	03/20/19 15:46	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 34 of 40

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM Project: POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number: 605-19969
 Report ID:

 Portland, OR 97201
 Project Manager: Nicky Moody
 A9C0616 - 03 27 19 1702

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- B Analyte detected in an associated blank at a level above the MRL. (See Notes and Conventions below.)
- E-05 Estimated Result. Initial Calibration Verification (ICV) failed high. No affect on non-detect results.
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +2%. The results are reported as Estimated Values.
- Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260C

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Dund la finil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM Project: POV FVP
111 SW Columbia St. Ste. 1500 Project Number: 605-19969
Portland, OR 97201 Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported
RPD Relative Percent Difference

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

mull be finish

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 36 of 40

Darrell Auvil, Project Manager

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

mull by frail

Page 37 of 40

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM Project: POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number: 605-19969
 Report ID:

 Portland, OR 97201
 Project Manager: Nicky Moody
 A9C0616 - 03 27 19 1702

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI ID Analyte TNI ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

mul la fimil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 38 of 40

Darrell Auvil, Project Manager

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 605-19969
Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

ALLA LABO			CHAIN OF COSTOD!	Lab#	Lab # 1 \ \C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
12232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333	3 97223 Ph. 503-718-2323 Fax: 50	3-718-0333			#Od
Company: AECOM	Project Mgr. NICky	ky Moody	Project Name: Por	OV FVP	Project # 605-1996 9
Address III SW Columbic	bic 501k 1500	. +	Portland Phone: 503 -222 -7200 Fax	3X:	Email: MCKy, Moody @aecom. com
Sampled by: MARK TAUSCHER	te¢			ANALYSIS REQUEST	
Sire Location: OR (WA) Other: SAMPLE ID	LAB ID # TIME TIME WATRIX # OF CONTAINERS	8760 BBDM AOC* 8760 AOC* E ^{III} FF81 AMLEH-C ^X AMLEH-D ^X AMLEH-HCID	8087 bCB8 8740 81M bVH8 8740 8AOC 8760 BLEX AOC8 8760 HAOC8	## TOTAL DISS TCLP TCLP Metals (8) TCLP Metals (8) TCLP Metals (8) TCLP Metals (8) TOTAL DISS TCLP TOTAL DISS TCLP	1500-Z 1500-COF2 1500-COF2 28' V8' AI' LI' A' Zu
C1-MW-H	3 M SIM PINE 3	*			
L-MW-12	1515W 3		X		×
62-mm-3	0910 W 5	***	THE PARTY OF THE P		
6-MM-27	1015 W S				
CZ-MW-10(RZ)	1120 W 5	×			
(2-MW-11(R)	2 M 22 M 5				
62-MW-12B	√ 0155 W 5	× ×			
400-b-MM-27	3/19/020 W S	*			
TRIP BLANK	3 - 3	*	*		
Normal Turn Around Time (TAT) = 10 Business Days	less Days (YES)	NO	SPECIAL INSTRUCTIONS:	NS:	And the second s
TAT Requested (circle)	1 Day 2 Day 3 Day 4 DAY 5 DAY Other;	y er:			
	SAMPLES ARE HELD FOR 30 DAYS				
RELINQUISHED BY: Signature: Met Llee	RECEIVED BY: Date: 3/19/19 Signature: 1). Date: 3/9/19	RELINQUISHED BY: Signature:	Date:	RECEIVED BY: Signature: Date
Princed Name, MARIK TAUX USE Time: 1705 Princel Name, MISSA KRPG Time: 1705	Time: 1705 Printed Name: #NS8	a Kapa Time 1705	Printed Name:	Time;	Printed Name: Time:
MECON	Commence	AD SOL	Company		Company

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 39 of 40

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>AECO</u>M

111 SW Columbia St. Ste. 1500

Portland, OR 97201

Project: Project Number: 605-19969

Project Manager: Nicky Moody

Report ID: A9C0616 - 03 27 19 1702

APEX LABS COOLER RECEIPT FORM Client: AECOM ______Element WO#: A9 COCO \ 6 Project/Project #: POU FUP #60519969 **Delivery Info:** Date/time received: 3/19/19 @ 1705 By: #W Client ESS FedEx UPS Swift Senvoy SDS Other Date/time inspected: 3 19 19 @ 1705 By: AFC Cooler Inspection Chain of Custody included? Yes X No ___ Custody seals? Yes No Yes × No ___ Signed/dated by client? Yes Y No Signed/dated by Apex? Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 1.8 Temperature (°C) Received on ice? (Y/N) Temp. blanks? (Y/N) Real Real Ice type: (Gel/Real/Other) Condition: Good Good Out of temperature samples form initiated? Yes/No/NA By: #WC All samples intact? Yes / No _ Comments: Bottle labels/COCs agree? Yes X No Comments: TB #2013 COC/container discrepancies form initiated? Yes ____ No ___ NA ____ Containers/volumes received appropriate for analysis? Yes X No Comments: Do VOA vials have visible headspace? Yes ____ No ____ NA ____ Comments C2-MW-9 & C2-MW-10(R2)& C2-MW-11(R2)& C2-MW-9-Dyp 3/3 Sed. Water samples: pH checked: Yes No_NA_ pH appropriate? Yes No_NA Comments: _ Additional information: Labeled by Witness: Cooler Inspected by: See Project Contact Form: Y DKK

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Appendix CData Quality Review Report

AECOM 111 SW Columbia Suite 1500 Portland, OR 97201 www.aecom.com 503 222 7200 tel 503 222 4292 fax

Data Quality Review Report

The data quality review of the seven primary groundwater samples, one field duplicate groundwater sample, and one trip blank sample collected on March 19, 2019, at the Former Fort Vancouver Plywood Site in Vancouver, Washington has been completed. Samples were submitted to Apex Laboratories (Apex) of Tigard, Oregon, and were analyzed for volatile organic compounds (VOCs) and RBDM compounds (benzene, toluene, ethylbenzene, total xylenes, and methyl tert-butyl ether by US Environmental Protection Agency [EPA] Method 8260C), gasoline-range hydrocarbons (Method NWTPH-Gx), and/or diesel-range and oil-range hydrocarbons (Method NWTPH-Dx).

This review included the analytical data presented in Apex report A9C0616. The data was reviewed based on *USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017*, and laboratory quality control criteria. Items reviewed included: chain-of-custody (COC) records and sample condition, hold times, surrogate recoveries, laboratory control and laboratory control duplicate results, laboratory duplicate results, field duplicate results, method blank results, trip blank results, and matrix spike results. Qualifiers assigned as a result of this review are included in Table 1. The following criteria were evaluated during the review:

- COC Records Acceptable
 - The laboratory noted that one or more vials for C2-MW-9, C2-MW-10 (R2), C2-MW-11 (R), and C2-MW-9-DUP had sediment present in the vials. Analysis proceeded for each of the required analyses for these samples.
- Temperature Acceptable
- Preservation Acceptable
- Holding Times Acceptable
- <u>Trip Blanks</u> Acceptable where applicable
- Method Blanks Acceptable with the following exception:
 - VOCs by EPA Method 8260C Methylene chloride (4.29 ug/L) was detected in the method blank associated with analytical batch 9030975. Methylene chloride was not detected in the samples associated with this method blank; therefore, data were not qualified based on this method blank result.
- Surrogates Acceptable
- <u>Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)</u> Acceptable with the following exception:
 - VOCs by EPA Method 8260C The percent recovery for acetone (122%) in the LCS associated with analytical batch 9030975 exceeded the control limits of 80-120%.
 Acetone was not detected in the samples associated with this LCS; therefore, data were not qualified based on this elevated LCS recovery.

AECOM Environment 2

- Matrix Spike Acceptable where applicable
 - VOCs by EPA Method 8260C A matrix spike was performed using a sample from a project unrelated to the Port of Vancouver Former Fort Vancouver Plywood Site. Results were acceptable.
- Laboratory Duplicate Acceptable where applicable
 - VOCs by EPA Method 8260C A laboratory duplicate was performed using C1-MW Results were comparable.
 - NWTPH-Gx A laboratory duplicate was performed using C1-MW-7. Results were comparable.
- Field Duplicate Acceptable where applicable
 - Sample C2-MW-9-DUP (A9C0616-08) was submitted as a field duplicate of sample C2-MW-9 (A9C0616-04). Relative percent difference calculations were not performed as all sample results were less than five times the reporting limits.
- Reporting Limits Acceptable
- Laboratory Notes and Qualifiers
 - The result for vinyl chloride in C2-MW-11 (R) was flagged 'J' by the laboratory to indicate that the sample concentration was less than the laboratory reporting limit but above the method detection limit. As there are greater levels of uncertainty with this concentration, this result is considered estimated.
 - The laboratory noted that bromomethane exceeded the method control limits of ± 20% in the initial calibration verification (ICV). Bromomethane was not detected in the samples associated with this ICV; therefore, data were not qualified for based on this elevated ICV result.

Overall Assessment of Data

The completeness of the analytical report for this groundwater monitoring event is 100%. The usefulness of the data is based on the EPA guidance documents referenced in the introduction of this report. Upon consideration of the information presented above, the data are considered usable. The data qualifiers assigned by the laboratory are shown on the laboratory reports.

Data Qualifier Definitions

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria.

AECOM Environment 3

DNR Do Not Report. Another result is available that is more reliable.

References

USEPA, 2017. National Functional Guidelines for Organic Superfund Methods Data Review, January 2017.

Table 1. Sample Qualification Summary

AECOM Sample ID	Laboratory Sample ID	Analyte	Qualifier	Rationale
No data qualifiers w	ere assigned to the results	reported in	A9C0616 ba	ased on this data validation.

About AFCOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With approximately 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$6 billion.

More information on AECOM and its services can be found at www.aecom.com.