

Environment

Prepared for Port of Vancouver USA 3103 NW Lower River Road Vancouver, Washington 98660

Submitted to Washington Department of Ecology Submitted by AECOM 111 SW Columbia Suite 1500 Portland, Oregon 97201

60410261 October 2017

Groundwater Monitoring Letter Report - September 2017

Former Fort Vancouver Plywood Site Port of Vancouver USA Vancouver, Washington

November 13, 2017

Mr. Matt Graves Environmental Manager Port of Vancouver USA 3103 NW Lower River Road Vancouver, Washington 98660

Re: Groundwater Monitoring Letter Report - September 2017

Former Fort Vancouver Plywood Site

Port of Vancouver USA Vancouver, Washington AECOM Job No. 60519969

Dear Mr. Graves:

AECOM has prepared this Groundwater Monitoring Letter Report on behalf of the Port of Vancouver USA (the Port). This letter report summarizes the results of the September 2017 groundwater monitoring event conducted at Cell 1 and Cell 2 of the Former Fort Vancouver Plywood (FVP) Site (herein referred to as the Site). This monitoring event is referenced as the September 2017 monitoring event.

1 Site Location and Background

The Site is located at West Eighth Street and Port Way, in an industrial-zoned area adjacent to the Columbia River, at the Port in Vancouver, Washington (Figure 1). The Site consists of approximately 13 acres of nearly level paved and unpaved land. The unpaved land exists along the shoreline of the Columbia River, and the remainder of the Site is paved. The northern portion of the Site is leased by the Great Western Malting Company, and the rest of the Site is leased by Pacific Coast Shredding, a metal recycling/processing facility (see Figure 2).

Great Western Malting Company is also located on the north adjacent property, and the former Brazier Forest Industries leasehold is located on the northeast adjacent property. The Site is bordered by Port Way to the southeast and the Columbia River to the southwest (see Figure 2).

The Site was occupied by plywood manufacturers and other lumber-related operations from the mid-1920s to the mid-1990s. FVP operated at the Site from 1955 until July 1996, when site operations terminated and the leasehold reverted to the Port. Former facilities at the Site included a wood processing and plywood manufacturing plant, chemical storage, a boiler house, a maintenance shop, fuel storage areas, a log yard, a retail store/warehouse, an oil/water separator, diesel underground storage tanks (USTs), and an office building. In July 1997, the Port demolished all structures associated with the plywood mill and consolidated wood debris from the former log yard. In September 1997, the Port installed a riprap wall along the Site boundary to protect the shoreline from further erosion by the Columbia River (ERM, 2008a and 2008b).

From 2012 to 2014, the Port constructed the West Vancouver Freight Access Project through the Site. The locations of the rail track centerline, retaining walls, and trench structure for the West Vancouver Freight Access Project are indicated on Figure 2.

2 Site Hydrogeology

Two groundwater-bearing zones are present within the upper 65 feet of soils explored beneath the Site. These include a shallow water table unit (Shallow Zone) and a deeper, confined aquifer referred to herein as the Unconsolidated Aquifer (USGS 1993). The two saturated zones are separated by a lower-permeability confining layer that ranges in thickness from approximately 14 to 40 feet. The Unconsolidated Aquifer was encountered below the confining layer at depths ranging from 49 to 55 feet below ground surface (bgs) (Ecology, 1999 and 2000).

The general direction of the hydraulic gradient (and presumed direction of groundwater flow) in the Shallow Zone is to the south, toward the Columbia River. According to the Cleanup Action Plans (CAP), the Shallow Zone horizontal hydraulic gradient at the Site was calculated to range from approximately 0.016 to 0.019 feet per foot (ft/ft) at Cell 1 and 0.01 to 0.02 ft/ft at Cell 2 (Ecology, 1999 and 2000). The direction of the hydraulic gradient and presumed groundwater flow in the Deeper Unconsolidated Aquifer appears to be toward the west in response to groundwater pumping by the Port and the Port's tenants. A net downward vertical gradient exists between the Shallow Zone and the Deeper Unconsolidated Aquifer (Ecology, 1999).

Near-surface (upper 10 feet) soils beneath the Site consist predominantly of sand with varying amounts of silt. Considerable amounts of anthropogenic debris, including rubble (brick and concrete), wood ash, and trash, have been identified in the upper 10 feet of soil (Ecology, 1999).

3 Compliance Monitoring Plan

3.1 Agreed Orders

Presently the Site is separated into two areas designated as Cell 1 (C1) and Cell 2 (C2). Two Agreed Orders between the Port and Washington State Department of Ecology (Ecology) are in place for this Site:

- Agreed Order No. 99TC-S108 applies to Cell 1
- Agreed Order No. 99TCPSR-93 applies to Cell 2

In accordance with Agreed Orders, the Port completed a remedial investigation and feasibility study (RI/FS) in 1998. The RI/FS identified lead, total petroleum hydrocarbons (TPH), and polycyclic aromatic hydrocarbons (PAHs) concentrations above Ecology Model Toxics Control Act (MTCA) Method A or Method C industrial soil cleanup levels. The RI/FS also indicated that the area adjacent to the Columbia River contained buried anthropogenic debris and concentrations of soluble metals that could leach to the Columbia River. Pursuant to the conditions of the Agreed Orders, the Port completed Interim Actions at Cell 1 from November 1998 to February 1999 and at Cell 2 from October 2000 to December 2000 (ERM, 2008a and 2008b).

A total of 26 monitoring wells were originally located in Cells 1 and 2. These monitoring wells (MWs) are listed below and on Table 1 along with multiple replacement wells which are discussed in Section 3.3.

- Deeper Unconsolidated Aquifer
 - o C1-MW-6B
 - o C2-MW-12B and C2-MW-13B
- Shallow Zone
 - o C1-MW-1 through C1-MW-9
 - o C2-MW-1 through C2-MW-11 and C2-MW-14 through C2-MW-16

The groundwater cleanup levels and chemicals of concern (COCs) as determined by the Agreed Orders are described in the following subsections.

3.2 Groundwater Cleanup Levels

3.2.1 Deeper Unconsolidated Aquifer

Groundwater in the Deeper Unconsolidated Aquifer is used as a potable and industrial water supply source; consequently, Ecology's MTCA Method A and B groundwater cleanup levels are used to assess potential adverse impacts to the Unconsolidated Aquifer.

In accordance with the Agreed Orders, the conditional point of compliance (POC) for groundwater within the Unconsolidated Aquifer is throughout the Site as represented by the following wells:

- C1-MW-6B
- C2-MW-12B and C2-MW-13B

3.2.2 Shallow Zone

The Shallow Zone groundwater cannot be used for drinking water due to low yield. However, the shallow groundwater discharges to the Columbia River at the Site. Consequently, the Shallow Zone cleanup levels are based on protection of surface water and are derived from the lowest of the following screening criteria for each analyte:

- Ecology's MTCA Method B surface water cleanup levels in accordance with Washington Administrative Code (WAC) 173-340-730
- Ecology's acute freshwater surface water quality criteria in accordance with WAC 173-201A-240
- US Environmental Protection Agency (EPA)'s National Toxics Rule human health criteria for surface water based on 40 Code of Federal Regulations (CFR) 131.36

In addition to shallow groundwater discharges to the Columbia River, there are indications that the Shallow Zone is hydraulically connected with the Deeper Unconsolidated Aquifer. Because the deeper aquifer is a water supply source, groundwater occurring in the Shallow Zone is also compared to Ecology's MTCA Method A and B groundwater cleanup levels.

For the Shallow Zone groundwater, the conditional POC was established as the point where the groundwater discharges to surface water. Therefore, in the Agreed Orders, the Shallow Zone conditional POC wells for the Site included the following seven shoreline wells.

- C1-MW-3, C1-MW-4, C1-MW-5, and C1-MW-8
- C2-MW-9, C2-MW-10, and C2-MW-11

3.3 Past Modifications to the Compliance Monitoring Plan

From September 2001 until March 2011, groundwater monitoring was conducted tri-annually (first, second, and fourth quarters) at each Cell in accordance with the Agreed Orders and the groundwater monitoring schedule proposed in a letter from Kennedy/Jenks Consultants to Mr. Dan Alexanian of Ecology dated September 17, 2001. Mr. Alexanian approved the monitoring schedule in an email to the Port dated October 4, 2001 (ERM, 2008a and 2008b).

Since September 2001, the monitoring plan included the collection of groundwater samples from 14 of the 26 monitoring wells listed in Section 3.1 and depth to groundwater measurements at all 26 wells during each event. The 14 sampled wells included the 10 conditional POC wells and C1-MW-6, C1-MW-7, C2-MW-3, and C2-MW-7. Following approval from Ecology in 2004, conditional POC wells C1-MW-5 and C1-MW-8 were no longer required to be sampled.

The COCs for both Cells 1 and 2 in September 2001 originally included volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals. Gasoline-range hydrocarbons (gasoline) and diesel- and oil-range hydrocarbons (diesel and oil) were also included as COCs for Cell 2.

By 2007, following multiple correspondences between Ecology and the Port, monitoring of VOCs and total and dissolved metals was discontinued for both cells, and the VOC suite was reduced for a portion of the wells in Cell 1 to benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tert-butyl ether (MTBE) (ERM, 2008a and 2008b).

In April 2011, Ecology approved: a reduction in monitoring frequency from tri-annual to semi-annual (first and third quarters), the discontinuation of VOC analysis for C2-MW-3 and C2-MW-10, and the removal of the following eight monitoring wells from the groundwater monitoring plan (Kennedy/Jenks, 2011; Ecology, 2011).

A=COM

- C1-MW-6
- C1-MW-6B
- C2-MW-4
- C2-MW-5
- C2-MW-7
- C2-MW-8
- C2-MW-13B
- C2-MW-16

Ecology requested in the April 2011 letter that the monitoring of C1-MW-3 continue to determine if any contaminant migration occurs as a result of the West Vancouver Freight Access Project (Ecology, 2011).

In 2012 and 2013, monitoring wells C1-MW-6, C1-MW-6B, C2-MW-5, C2-MW-8 and C2-MW-13B were decommissioned. An attempt was made to locate and decommission monitoring wells C2-MW-4, C2-MW-7, and C2-MW-16 in September 2012; however, these monitoring wells were inadvertently paved over and not locatable.

The construction of the West Vancouver Freight Access Project required the relocation of monitoring wells C1-MW-3, C1-MW-5, and C1-MW-8. The Port submitted a request to Ecology for the relocation of the three monitoring wells, and in a letter dated April 16, 2012, Ecology approved the relocations. In 2012, the three monitoring wells were decommissioned, and C1-MW-3 and C1-MW-5 were re-installed in the same approximate configuration and depths as the original monitoring wells (with the same designations). C1-MW-8 was reinstalled in July 2014 with the same approximate configuration and depth; however, the replacement is labeled C1-MW-8(R).

In July 2014, monitoring well C2-MW-11 was abandoned due to construction activities at the Site. It was reinstalled with the same approximate configuration and depth; the replacement well is labeled C2-MW-11(R).

Additionally, monitoring well C2-MW-10 may have been inadvertently destroyed during the construction of the West Vancouver Freight Access Project or paved over, as it has not been located since March 2013. It was reinstalled in August 2015 with the same approximate configuration and depth; the replacement well is labeled C2-MW-10(R2).

3.4 Most Recent Modifications to the Compliance Monitoring Plan

In June 2016, Ecology approved the decommissioning of 12 monitoring wells and the reduction of the groundwater monitoring frequency from semi-annual to every 18 months (Ecology, 2016). The selected analytes for the retained monitoring wells did not change. Therefore, in November and December 2016, decommissioning activities were completed as described below and listed on Table 1 (AECOM, 2017).

- The following eight monitoring wells were successfully decommissioned.
 - o C1-MW-1
 - o C1-MW-2
 - o C1-MW-3
 - o C1-MW-5
 - o C1-MW-8(R)
 - o C1-MW-9
 - o C2-MW-6
 - o C2-MW-15
- The following four monitoring wells had been paved over and cannot be found, despite potholing and resurveying by the Port's surveyor.
 - o C2-MW-1
 - o C2-MW-4
 - C2-MW-7
 - o C2-MW-16

3.5 Current Compliance Monitoring Plan

Based on the Ecology June 2016 approval letter, the current compliance monitoring plan (Table 1) includes the collection of depth-to-groundwater measurements and groundwater samples from the following seven monitoring wells every 18 months:

- C1-MW-4
- C1-MW-7
- C2-MW-3
- C2-MW-9
- C2-MW-10(R2)
- C2-MW-11(R)
- C2-MW-12B

The analyte list varies between the monitoring wells and is shown on Table 1.

4 Activities Conducted During this Monitoring Event

Groundwater monitoring activities completed during the September 2017 event were conducted in accordance with the following three documents.

- EPA guidance document titled Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (EPA, 1996)
- Ecology letter titled Re: Former Fort Vancouver Plywood Proposed Groundwater Sampling Procedures (Ecology, 2002)
- Kennedy/Jenks Second Semi-Annual 2013 Groundwater Monitoring Report (Kennedy/Jenks, 2014)
- Ecology letter titled Re: Approval for Reducing Groundwater Level and Groundwater Sampling Frequency at the Former Fort Vancouver Plywood Facility (Ecology, 2017)

The groundwater monitoring activities completed during the September 2017 event are as follows:

- Following the decommissioning activities, the former monitoring well locations were patched to match the existing surrounding ground surface (landscaping, asphalt, gravel, or concrete) as listed on Table 1. At the asphalt or concrete patches for C1-MW-2, C1-MW-3, C1-MW-9, and C2-MW-6, AECOM will apply two treatments of the sealant product, ARMORSEAL A-100, during a dry weather period (spring/summer 2017). AECOM will document the completion of these treatments in the next groundwater monitoring report.
- AECOM collected depth to groundwater measurements from the seven monitoring wells included in the current compliance monitoring plan (see Section 3.5). AECOM measured the depth to groundwater in the monitoring wells using an electronic water level meter. The depth to groundwater was measured from the northern side of top of casing (TOC), and recorded on the Groundwater Level Form (Appendix A). The depth to groundwater measurements and corresponding groundwater elevations are presented on Table 2.
- AECOM collected groundwater samples from the seven monitoring wells included in the current compliance monitoring plan (see Section 3.5). AECOM collected each groundwater sample following purging and stabilization of temperature, pH, conductivity, dissolved oxygen (DO), and oxidation reduction potential (ORP). A peristaltic pump was used for the purging at six of the seven monitoring wells. Monitoring well C2-MW-12B was purged using a decontaminated bladder pump because C2-MW-12B is screened at the Deeper Unconsolidated Aquifer, which is too deep for use of the peristaltic pump (Table 2). AECOM collected the groundwater samples at each monitoring well using a disposable double check valve bailer. The peristaltic pump tubing, bladder pump, and disposable bailers were all lowered and retrieved gently, and set at the center of the screen interval. During this event to limit the re-suspension of

sediment in the short saturated water column of monitoring well C2-MW-11(R), AECOM filled the volatile organic analysis (VOA) containers using the bailer, and the two larger bottles for diesel and oil were filled using the polyethylene tubing. Monitoring Well Sampling Field Logs for this monitoring event are included in Appendix A, and final field parameters are reported in Table 3.

- AECOM delivered the samples to Apex Laboratories of Tigard, Oregon under strict chain-of-custody. The samples were submitted for one or more of the analyses listed below in accordance with Table 1.
 - o BTEX and MTBE by EPA Method 5030B/8260B
 - Full list of VOCs by EPA Method 8260B
 - o Diesel and oil by NWTPH-Dx
 - o Gasoline by NWTPH-Gx
- The sample containers were stored in a cooler with ice from sample collection until delivery to the laboratory. The chain-of-custody form is included in Appendix B with the laboratory analytical report. A field duplicate sample, collected from monitoring well C2-MW-9, and a trip blank were also submitted for analysis.
- AECOM placed the purge and decontamination water into a labeled, aboveground polyethylene tank, which is temporarily staged under the 26th Avenue overpass pending characterization and disposal.
 Disposable sampling equipment (including tubing and nitrile gloves) was managed as municipal solid waste.

Additional activities completed during the September 2017 event are as follows:

- As required by in the Agreed Orders, AECOM applied two coats of the sealant product, ARMORSEAL A-100, on the concrete patches from the monitoring wells which were decommissioned in November and December 2016 (AECOM, 2017).
- AECOM observed that the monument lid for monitoring well C1-MW-7 was cracked. As a result, Pacific Shredding personnel placed a large metal plate covering the monument for protection. The location of monitoring well C1-MW-7 is in a high traffic area, and the metal plate should prevent any further damage. AECOM will replace the monument lid before the end of the year.

5 Results of the September 2017 Monitoring Event

The results of groundwater level measurements are summarized in Table 2. Field parameters are provided in Table 3. The groundwater analytical results are summarized in Tables 4 through 7. A copy of the laboratory analytical report is included in Appendix B.

5.1 Groundwater Elevation Monitoring

Six of the remaining monitoring wells listed on Table 1 are constructed with screened intervals intercepting the Shallow Zone (shallower than 35 feet bgs), and the one remaining well, C2-MW-12B, is constructed with the screened interval intercepting the Deeper Unconsolidated Aquifer (at 40 to 50 feet bgs).

On September 11, 2017, the groundwater elevation in C2-MW-12B, which is screened in the Deeper Unconsolidated Aquifer, was 5.88 feet above mean sea level (AMSL).

On September 11, 2017, the groundwater elevations in the Shallow Zone ranged from 4.63 feet AMSL (C1-MW-4) to 19.85 feet AMSL (C2-MW-3). The hydraulic gradient was calculated at 0.02 ft/ft to the south-southwest, consistent with previous sampling events. Groundwater elevation contours and the inferred direction of groundwater flow from September 11, 2017 are shown on Figure 3.

5.2 Groundwater Analytical Results

Groundwater analytical results are summarized in the following subsections.

5.2.1 Volatile Organic Compounds

Samples collected during the September 2017 monitoring event were analyzed for the following VOCs:

- Samples from C1-MW-3 and C1-MW-7 were analyzed for BTEX and MTBE.
- Samples from C1-MW-4, C2-MW-9, C2-MW-11(R), and C2-MW-12B were analyzed for full list of VOCs.

The VOC results for the groundwater samples collected from the Deeper Unconsolidated Aquifer wells are presented on Table 4, and the VOC results for Shallow Zone wells are presented on Table 5. Both Tables 4 and 5 include BTEX, MTBE, and any other VOC that has been detected at least once since February 2009. The VOC results from the September 2017 monitoring event are summarized in the next two subsections.

5.2.1.1 Deeper Unconsolidated Aquifer

VOCs were not detected above their respective method detection limits (MDLs) in groundwater collected from C2-MW-12B (Table 4).

5.2.1.2 Shallow Zone

MTBE, 1,1-dichloroethane, cis-1,2-dichloroethene, and vinyl chloride were detected in one or more of the samples collected from the wells screened in the Shallow Zone; these detections were compared to the Shallow Zone screening criteria presented in Section 3.2.2 and on Table 5.

Vinyl chloride was the only VOC detected in the groundwater samples from the Shallow Zone wells at concentrations above the screening criteria. Concentrations of vinyl chloride in the groundwater samples collected from C1-MW-4 (0.300 μ g/L), C2-MW-9 (0.860 μ g/L) and C2-MW-11(R) (1.13 μ g/L) exceeded both the MTCA Method A and B groundwater cleanup levels of 0.20 μ g/L and 0.029 μ g/L, respectively.

5.2.2 Total Petroleum Hydrocarbons

During the September 2017 monitoring event, groundwater samples from C2-MW-3, C2-MW-9, C2-MW-10(R2), C2-MW-11(R), and C2-MW-12B were submitted for NWTPH-Dx and NWTPH-Gx analysis.

The TPH results for the groundwater samples collected from the Deeper Unconsolidated Aquifer wells are presented on Table 6, and the TPH results for Shallow Zone wells are presented on Table 7. The TPH results from the September 2017 monitoring event are summarized in the next two subsections.

5.2.2.1 Deeper Unconsolidated Aquifer

Diesel, oil, and gasoline were not detected above their respective MDLs in groundwater collected from C2-MW-12B (Table 6).

5.2.2.2 Shallow Zone

Oil was detected in the groundwater samples collected from shallow groundwater wells C2-MW-3 (0.283 mg/L) and C2-MW-10(R2) (0.216 mg/L); however, these detections were less than the Shallow Zone screening criteria presented in Section 3.2.2 and on Table 7.

6 Data Quality and Management

Based on a review of the laboratory report, the analyses and results conformed to quality assurance standards, and the analytical data are of acceptable quality for their intended use. A data quality review is included in Appendix C.

The data from the September 2017 monitoring event will be uploaded into Ecology's Environmental Information Management (EIM) database within the next 30 days. Data from 2009 through the 2016 has been uploaded onto the EIM database. Under WAC 173-340-840(5), environmental sampling data for all cleanup sites must be submitted in both printed and electronic form.

7 Conclusions and Future Sampling Activities

Groundwater monitoring was conducted at Cell 1 and Cell 2 of the Site during the September 2017 event. The analytical results were generally consistent with previous monitoring events. Vinyl chloride in groundwater samples from C1-MW-4, C2-MW-9, and C2-MW-11(R) were the only VOC detections that exceeded the screening criteria. TPH concentrations in were less than the screening criteria in all samples. Groundwater monitoring will continue every 18 months. The next monitoring event is scheduled for March 2019.

8 References

- AECOM, 2017. Well Decommissioning Summary Letter. Former Fort Vancouver Plywood Site, Port of Vancouver USA, Vancouver, Washington. February 10.
- Ecology, 1999. Cleanup Action Plan. Former Fort Vancouver Plywood Site Cell 1. January.
- Ecology, 2000. Cleanup Action Plan. Former Fort Vancouver Plywood Site Cell 2. January.
- Ecology, 2002. Letter from the Washington State Department of Ecology to Century West Engineering Corporation. Re: Former Fort Vancouver Plywood Proposed Groundwater Sampling Procedures. November 4.
- Ecology, 2011. Letter from Washington State Department of Ecology to Kennedy/Jenks Consultants. *Ecology Response to Recommendations for Modification of the Groundwater Monitoring Program Former Fort Vancouver Plywood Site*. April 6.
- Ecology, 2016. Letter from Washington State Department of Ecology to the Port of Vancouver. Re: Approval for Reducing Groundwater Level and Groundwater Sampling Frequency at the Former Fort Vancouver Plywood Facility, Port of Vancouver, Vancouver, Washington. June 28.
- ERM, 2008a. *Cell 1 September 2007 Groundwater Monitoring Report and 5-Year Review.* Former Fort Vancouver Plywood, Port of Vancouver USA, Vancouver, Washington. May.
- ERM, 2008b. *Cell 2 September 2007 Groundwater Monitoring Report and 5-Year Review.* Former Fort Vancouver Plywood, Port of Vancouver USA, Vancouver, Washington. May.
- EPA, 1996. *Ground Water Issue. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures.* By Robert W. Puls and Michael J. Barcelona. EPA/540/S-95/504. April.
- Kennedy/Jenks, 2011. Letter from Kennedy/Jenks Consultants to the Washington State Department of Ecology. Subject: Recommendation for Modification of the Groundwater Monitoring Program, Former Fort Vancouver Plywood Site, Port of Vancouver USA. March 29.
- Kennedy/Jenks, 2014. Second Semi-Annual 2013 Groundwater Monitoring Report. Port of Vancouver USA, Fort Vancouver Plywood Site. February 11.

U.S. Geological Survey (USGS), 1993. A Description of Hydrogeologic Units in the Portland Basin, Oregon and Washington. U.S. Geological Survey Water-Resources Investigations Report 90-4196. Prepared in cooperation with City of Portland Bureau of Water Works, Intergovernmental Resource Center, and Oregon Water Resources Department.

9 Limitations

AECOM has prepared this report for use by the Port. Within the limitations of scope, schedule, and budget, our services have been executed in accordance with accepted environmental science practices in this area at the time this report was prepared. No other warranty or conditions, expressed or implied, should be understood.

We appreciate the opportunity to be of service to the Port on this project. Please call Nicky Moody at (503) 478-2765 with any questions regarding this or any other referenced submittals.

Sincerely,

AECOM

Nicky Moody

Project Manager

Jonathan Horowitz P.E. Environmental Engineer

cc: Craig Rankine, RG, LHG, Cleanup Project Manager/Hydrogeologist, Washington Department of Ecology, Toxics Cleanup Program, 2108 Grand Blvd, Vancouver, WA 98661-4662

Attachments

List of Figures

Figure 1 Vicinity Map Figure 2 Site Map

Figure 3 Groundwater Elevation, Contours, and Flow Direction – September 2017

List of Tables

rable 1	Compliance Monitoring Plan
Table 2	Groundwater Elevation Results
Table 3	Groundwater Field Parameter Measurements
Table 4	Volatile Organic Compounds in the Deeper Unconsolidated Aquifer
Table 5	Volatile Organic Compounds in the Shallow Zone
Table 6	Total Petroleum Hydrocarbons in the Deeper Unconsolidated Aquifer
Table 7	Total Petroleum Hydrocarbons in the Shallow Zone

List of Appendices

Appendix A Field Forms

Appendix B Laboratory Report and Chain-of-Custody Form

Appendix C Data Quality Review Report

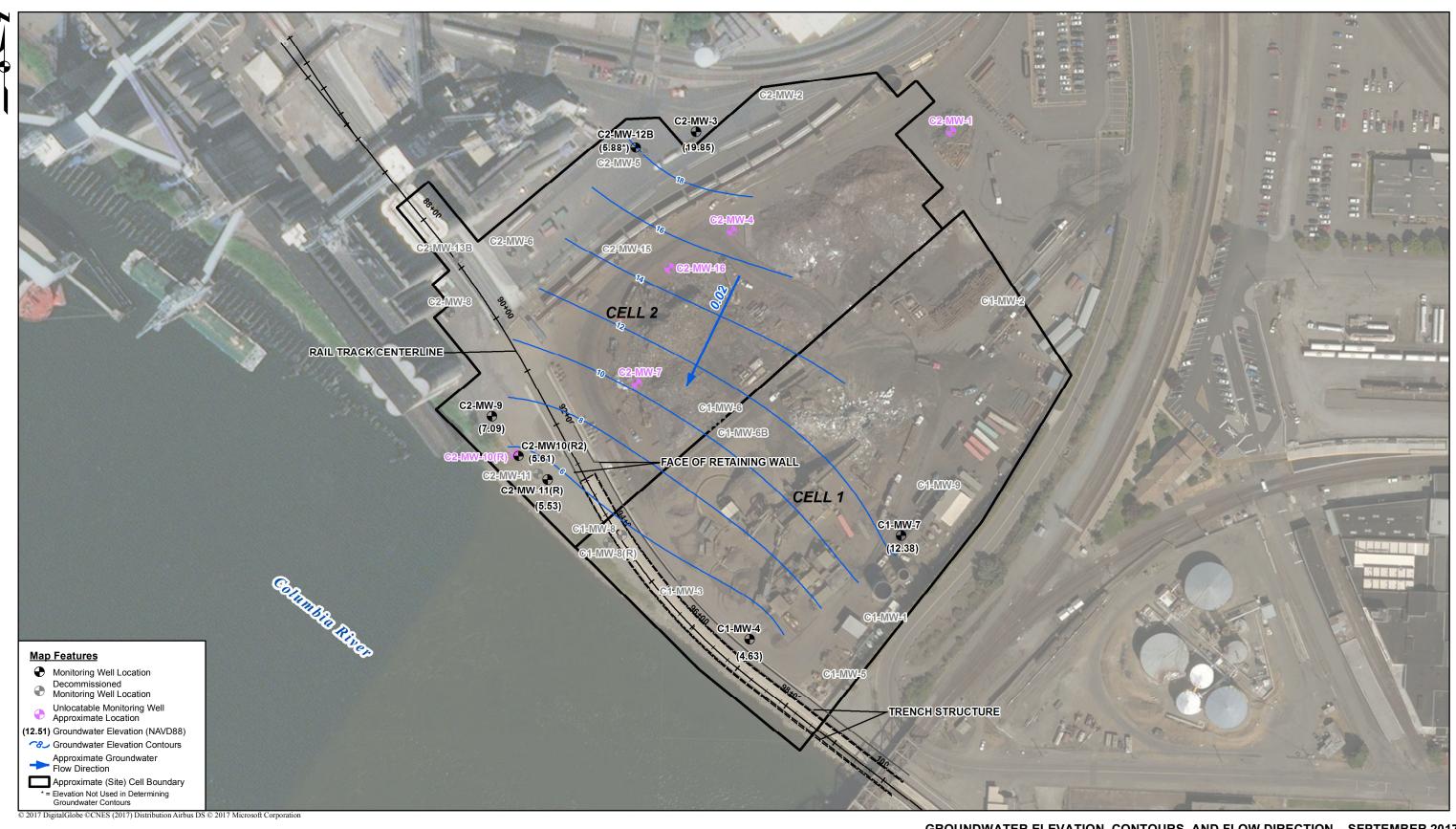
Figures

VICINITY MAP

FORMER FORT VANCOUVER PLYWOOD SITE
PORT OF VANCOUVER USA
VANCOUVER, WA

FIGURE 1

AECOM


OCTOBER 2017 60519969

AECOM

JIIL WA

FORMER FORT VANCOUVER PLYWOOD SITE PORT OF VANCOUVER USA VANCOUVER, WA

FIGURE 2

AECOM

GROUNDWATER ELEVATION, CONTOURS, AND FLOW DIRECTION – SEPTEMBER 2017

FORMER FORT VANCOUVER PLYWOOD SITE PORT OF VANCOUVER USA VANCOUVER, WA

FIGURE 3

Tables

Table 1. Compliance Monitoring Plan

Former Fort Vancouver Plywood Site

						Curre	nt Complia	nce Monit	oring Plan		
			Screen	Ground	water Mon	itoring & S	ampling		Sampling	Plan	
Cell #	Well ID	Aquifer	Interval (feet)	Sep-17	Mar-19	Sep-20	+18 months	Sampling Method	Analytes	Con	tainers
	C1-MW-4	Shallow	17-32	Χ	Χ	Χ	Χ	PP/Bailer	VOCs	6 VOAs	-
	C1-MW-7	Shallow	15-30	Χ	Χ	Χ	Χ	PP/Bailer	BTEX, MTBE	6 VOAs	-
	C1-MW-1	Shallow	18-33	Decommis	sioned in D	ecember 20)16 after ap	proval from	Ecology in June	e 2016	
	C1-MW-2	Shallow	11-21	Decommis	sioned in D	ecember 20)16 after ap	proval from	Ecology in June	e 2016	
	C1-MW-3	Shallow	15-32	Decommis	sioned in D	ecember 20)16 after ap	proval from	Ecology in June	e 2016	
Cell 1	C1-MW-5	Shallow	16-32	Decommis	Decommissioned in December 2016 after approval from Ecology in June 2016						
	C1-MW-6	Shallow	15-25	Decommis	sioned in 20	013 after ap	proval from	n Ecology in	2011		
	C1-MW-6B	Deeper	52.5-62.5	Decommis	sioned in 20	013 after ap	proval from	n Ecology in	2011		
	C1-MW-8	Shallow	16-31	Decommis	sioned in 20	012 after ap	proval from	n Ecology in	2011		
	C1-MW-8(R)	Shallow	15-30	Decommissioned in November 2016 after approval from Ecology in June 2016							
	C1-MW-9	Shallow	20-30	Decommis	ecommissioned in December 2016 after approval from Ecology in June 2016						
	C2-MW-3	Shallow	6-16	Х	Х	Χ	Χ	PP/Bailer	Gx, Dx	6 VOAs	2 Ambers
	C2-MW-9**	Shallow	25-35	Χ	Х	Χ	Χ	PP/Bailer	VOCs, Gx, Dx	6 VOAs	2 Ambers
	C2-MW-10(R2)	Shallow	20-35	Χ	Х	Χ	Χ	PP/Bailer	Gx, Dx	6 VOAs	2 Ambers
	C2-MW-11(R)	Shallow	15-30	Χ	Χ	Χ	Χ	PP/Bailer	VOCs, Gx, Dx	6 VOAs	2 Ambers
	C2-MW-12B	Deeper	40-50	Χ	Χ	Χ	Χ	Bladder	VOCs, Gx, Dx	6 VOAs	2 Ambers
	C2-MW-1	Shallow	5-15	Not decom	missioned a	as paved ov	er & not lo	cated again	in December 20)16	
	C2-MW-2	Shallow	6-16	Decommis	sioned in A	ugust 2010					
	C2-MW-4	Shallow	9-19	Not decom	missioned	as paved ov	er & not lo	cated again	in December 20	016	
Cell 2	C2-MW-5	Shallow	6-16	Decommis	sioned in 20	012 after ap	proval from	n Ecology in	2011		
OCII Z	C2-MW-6	Shallow	15-20	Decommis	sioned in N	ovember 20)16 after ap	proval from	Ecology in June	e 2016	
	C2-MW-7	Shallow	15-25	Not decom	missioned	as paved ov	er & not lo	cated again	in December 20	016	
	C2-MW-8	Shallow	6-16	Decommis	sioned in 20	012 followin	g approval	from Ecolo	gy in 2011		
	C2-MW-10(R)	Shallow	18-33	Well not lo	catable (un	known if da	maged or p	aved over);	replaced in 201	5 with C2-	-MW-10(R2)
	C2-MW-11	Shallow	15-30	Decommis	sioned in 20	014 due to	construction	activities;	replaced in 2014	with C2-I	MW-11(R)
	C2-MW-13B	Deeper	47-57	Decommis	sioned in 20	012 followin	g approval	from Ecolo	gy in 2011		
	C2-MW-14	Shallow	Unknown	Decommissioned in 2002 following approval from Ecology							
	C2-MW-15	Shallow	7-22	Decommis	sioned in D	ecember 20)16 after ap	proval from	Ecology in June	e 2016	
	C2-MW-16	Shallow	5-20	Not decom	missioned	as paved ov	er & not lo	cated again	in December 20	016	

Sampling Schedule (18+ months)*

September 2017 March 2019 September 2020 +18 months

Notes

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

X = indicates that depth to groundwater measurements will be collected.

Red = indicates active conditional Point of Compliance (POC) well in the Agreed Orders

BTEX = benzene, toluene, ethylbenzene, and total xylenes

Dx = diesel and heavy oil range organics

Gx = gasoline range organics

MTBE = methyl tert-butyl ether

PP/Bailer = purging conducted using peristaltic pump and then sampling conducted using a double check ball disposable bailer

(R) = C1-MW-8 and C2-MW-11 were replaced in July 2014.

VOA = volatile organic analysis

VOC = volatile organic carbon

** = Collect field duplicate on C2-MW-9. If not accessible, collect the field duplicate on C2-MW-11 or C2-MW-12B.

Table 1 Page 1 of 1

Former Fort Vancouver Plywood Site

Designation Date Elevation Groundwater Groundwater Greet			Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Designation Date (feet)	Well			•			
C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-9 C1-		Date				(feet)	
C1-MW-4 C2/2609 29.07 22.86 29.4 6.21 O5/11/09 29.07 19.69 29.3 6.78 O3/29/10 29.07 22.29 29.3 6.78 O3/29/10 29.07 22.54 29.4 8.38 O5/25/10 29.07 20.54 29.4 8.38 O3/24/11 29.07 18.75 29.3 10.32 O3/24/11 29.07 23.33 29.3 5.74 O2/29/12 29.07 22.11 NM 6.96 O5/29/12 29.07 23.47 NM 5.60 O3/22/13 29.07 23.47 NM 5.52 O3/22/13 29.07 23.47 NM 5.52 O9/23/13 29.07 NM NM NA O3/20/14 29.07 17.92 NM 11.15 O9/20/14 29.07 24.36 NM 4.71 O4/07/15 29.07 24.43 NM 4.82 O9/28/15 29.07 20.45 NM 8.62 O9/28/15 29.07 24.44 NM 4.63 O3/28/16 29.07 19.65 NM 9.42 O9/11/17 29.07 24.44 NM 4.63 O5/26/10 30.05 17.86 29.1 12.20 O5/26/10 30.05 17.87 28.5 12.31 O5/26/10 30.05 17.41 28.5 12.64 O5/26/10 30.05 17.41 28.5 12.64 O5/26/10 30.05 17.44 28.5 12.64 O3/24/11 30.05 16.92 28.5 12.46 O3/24/11 30.05 17.50 NM 12.25 O9/20/12 30.05 17.46 28.5 12.47 O9/20/12 30.05 17.48 28.5 12.47 O9/20/12 30.05 17.50 NM 12.25 O9/20/13 30.05 17.50 NM 12.55 O9/20/14 30.05 17.50 NM 12.51 O9/20/14 30.05 17.50 NM 12.51 O9/20/12 30.43 12.20 15.1 20.23 O5/26/10 32.43 12.66 15.0 19.37 O9/20/13 30.05 17.50 NM 12.51 O9/20/13 30.05 17.50 NM 12.52 O9/20/14 30.05 17.50 NM 12.51 O9/20/15 32.43 12.50 15.1 20.23 O5/26/10 32.43 12.50 15.1 20.23 O5/26/10 32.43 12.50 15.1 20.23 O5/26/10 32.43 12.50 15.1 20.23			,	Active Monitoring Wel	ls		
OSH1109	Cell 1 - Shallow Zone						
12/17/09 29.07 22.29 29.3 6.78	C1-MW-4						
03/29/10 29.07 23.01 29.4 6.06							
06/25/10 29.07 20.54 29.4 8.53 11/29/10 29.07 22.83 29.4 6.24 03/24/11 29.07 18.75 29.3 10.32 10.11/11 29.07 23.33 29.3 5.74 02/29/12 29.07 22.11 NM 6.96 17.32 03/22/13 29.07 22.11 NM 5.60 17.32 03/22/13 29.07 23.75 NM 5.32 03/22/13 29.07 NM NM NA NA 03/20/14 29.07 17.92 NM 11.15 03/20/14 29.07 24.36 NM 4.71 29.07 24.36 NM 4.71 29.07 24.36 NM 4.74 29.07 24.44 NM 4.63 29.07 24.44 NM 4.63 29.07 24.44 NM 4.63 29.07 20.05 17.85 29.17 12.20 20.05 20.05 17.74 28.5 12.31 22.0 22.07 22							
11/29/10							
03/24/11 29.07							
10/11/11 29.07 23.33 29.3 5.74 02/29/12 29.07 22.11 NM 6.96 03/20/13 29.07 23.47 NM 5.80 03/22/13 29.07 7.94 NM NM NA 03/20/14 29.07 17.92 NM 11.15 0.90/20/14 29.07 24.36 NM 4.71 0.90/20/14 29.07 24.36 NM 4.71 0.90/20/14 29.07 24.36 NM 4.71 0.90/20/15 29.07 20.45 NM 4.74 0.90/20/15 29.07 24.36 NM 4.74 0.90/20/16 29.07 19.65 NM 9.42 0.90/20/17 29.07 24.44 NM 4.63 0.90/11/17 29.07 24.44 NM 4.63 0.90/20/10 30.05 17.85 29.1 12.20 0.90/20/10 30.05 17.87 28.5 12.31 12/17/09 30.05 17.87 28.5 12.64 11/29/10 30.05 17.56 28.5 12.64 11/29/10 30.05 17.56 28.5 12.49 0.90/20/11 30.05 17.59 28.5 12.49 0.90/20/12 30.05 17.59 28.5 12.49 0.90/20/13 30.05 17.50 28.5 12.57 0.90/20/14 30.05 17.50 NM 12.52 0.90/20/14 30.05 17.50 NM 12.52 0.90/20/14 30.05 17.53 NM 12.52 0.90/20/14 30.05 17.53 NM 12.52 0.90/20/15 30.43 13.04 15.0 19.39 1.20/20/16 29.29 16.77 NM 12.38 0.90/20/14 30.43 13.04 15.0 19.39 1.20/20/10 32.43 13.04 15.0 19.39 1.20/20/10 32.43 13.04 15.0 19.39 1.20/20/10 32.43 13.04 15.0 19.39 1.20/20/10 32.43 13.04 15.0 19.39 1.20/20/10 32.43 13.04 15.0 19.39 1.20/20/10 32.43 13.04 15.0 19.39 1.20/20/10 32.43 13.04 15.0 19.39 1.20/20/10 32.43 13.04 15.0 19.39 1.20/20/10 32.43 13.04 15.0 19.30 0.90/20/14 32.43 13.04 15.0 19.87 0.90/20/14 32.43 13.06 15.0 19.87 0.90/20/14 32.43 13.06 15.0 0.90/20/14 32.43 13.06 15.0 0.90/20/14 32.43							
02/29/12							
09/20/12							
03/22/13 29.07 23.75 NM							17-32
09/23/13							
03/20/14 29.07 17.92 NM							
09/02/14 29.07 24.36 NM 4.71							
0407/15							
09/28/15 29.07 24.33 NM 4.74 09/21/16 29.07 19.65 NM 9.42 09/11/17 29.07 24.44 NM 4.63 4.63 09/11/17 29.07 24.44 NM 4.63 4.63 0.65 17.85 29.1 12.20 0.65 17.74 28.5 12.31 12.17/10/19 30.05 17.87 28.5 12.31 12.18 0.65/25/10 30.05 17.87 28.5 12.64 0.65/25/10 30.05 17.41 28.5 12.64 11/29/10 30.05 17.41 28.5 12.64 11/29/10 30.05 17.56 28.5 12.49 0.65/25/10 0.03/24/11 30.05 16.92 28.5 13.13 10/11/11 30.05 17.59 28.5 12.46 0.229/12 30.05 17.59 28.5 12.48 0.229/12 30.05 17.57 28.5 12.48 0.229/13 30.05 17.50 NM 12.57 0.9/20/12 30.05 17.50 NM 12.29 0.3/21/13 30.05 17.50 NM 12.29 0.3/21/13 30.05 17.76 NM 12.29 0.3/20/14 30.05 17.50 NM 12.29 0.3/20/14 30.05 17.53 NM 12.55 0.9/28/15 30.9/28/16 29.29 16.77 NM 12.81 0.9/28/15 29.29 16.77 NM 12.81 0.9/28/16 29.29 16.77 NM 12.38 0.9/28/16 29.29 16.77 NM 12.38 0.9/28/16 29.29 16.91 NM 12.38 0.9/28/16 29.29 16.91 NM 12.38 0.9/28/16 29.29 16.91 NM 12.39 0.9/28/16 29.29 16.91 NM 12.30 0.9/28/16 29.29 16.91 NM 20.31 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/16 20.23 0.9/28/							
03/28/16 29.07 19.65 NM 9.42							
C1-MW-7 O2/26/09 30.05 T7.85 29.1 12.20 05/11/09 30.05 17.74 28.5 12.31 12/17/09 30.05 17.87 28.5 12.18 03/29/10 30.95 17.41 28.5 12.64 05/25/10 30.05 17.41 28.5 12.64 05/25/10 30.05 17.41 28.5 12.64 11/29/10 30.05 17.41 28.5 12.64 11/29/10 30.05 17.56 28.5 12.49 03/24/11 30.05 17.59 28.5 12.48 02/29/12 30.05 17.59 28.5 12.48 02/29/12 30.05 17.57 28.5 12.48 03/21/13 30.05 17.57 28.5 12.48 03/21/13 30.05 17.57 28.5 12.48 03/21/13 30.05 17.57 28.5 12.48 03/21/13 30.05 17.57 28.5 12.48 03/21/13 30.05 17.57 28.5 12.48 03/21/13 30.05 17.76 NM 12.55 09/23/13 30.05 17.76 NM 12.29 03/20/14 30.05 17.76 NM 12.29 03/20/14 30.05 17.53 NM 12.52 04/07/15 30.05 17.24 NM 12.81 09/28/15 29.29 17.54 NM 11.75 03/28/16 29.29 16.77 NM 12.81 09/11/17 29.29 16.91 NM 12.38 12.81 09/11/17 29.29 16.91 NM 12.38 12.70 15.4 11/29/10 32.43 12.22 15.1 20.21 05/25/10 32.43 12.22 15.1 20.21 05/25/10 32.43 12.22 15.1 20.21 05/25/10 32.43 11.29/10 32.43 11.29/10 32.43 11.20 15.0 19.87 06/11/19 32.43 11.20 15.0 19.87 06/11/19 32.43 11.20 06/22/13 32.43 11.20 06/22/13 32.43 11.32 15.0 21.11 10/11/11 32.43 11.29 06/20/12 32.43 11.20 06/20/13 32.43 11.20 06/20/14 32.43 11.20 06/20/13 32.43 11.20 06/20/14 32.43 11.20 06/20/14 32.43 11.20 06/20/14 32.43 11.86 NM 20.57 09/20/14 32.43 11.86 NM 20.57 09/20/14 32.43 11.86 NM 20.61 09/20/15 09/20/15 00/28/16 32.43 11.80 NM 20.61 09/20/15 00/28/16 32.43 11.81 NM 19.62 00/20/16 00/28/16 00/							
C1-MW-7 02/26(09 05/11/09) 30.05 17.74 28.5 12.31 12/17/09 30.05 17.87 28.5 12.18 03/29/10 30.05 17.41 28.5 12.85 12.18 03/29/10 30.05 17.41 28.5 12.64 11/29/10 30.05 17.41 28.5 12.64 11/29/10 30.05 17.41 28.5 12.64 11/29/10 30.05 17.56 28.5 12.49 03/24/11 30.05 17.56 28.5 12.49 03/24/11 30.05 17.59 28.5 12.46 02/29/12 30.05 17.48 28.5 12.46 02/29/12 30.05 17.59 28.5 12.46 02/29/12 30.05 17.50 NM 12.55 09/20/13 30.05 17.50 NM 12.55 09/23/13 30.05 17.76 NM 12.29 03/24/13 03/20/14 30.05 17.53 NM 12.52 09/02/14 30.05 17.53 NM 12.52 09/02/14 30.05 17.53 NM 12.81 09/02/14 30.05 17.53 NM 12.81 09/02/14 30.05 17.54 NM 12.81 09/28/15 29.29 17.54 NM 11.75 03/28/16 29.29 16.77 NM 12.38 12.17 09/11/17 29.29 16.91 NM 12.38 12.17 09/28/15 29.29 16.91 NM 12.38 12.17 09/28/11 29.29 16.91 NM 12.38 12.17 09/28/13 13.04 15.0 19.39 12/17/09 32.43 13.12 15.3 19.31 03/29/10 32/24/1 32.43 12.20 15.1 20.21 05/25/10 32.43 12.20 15.1 20.21 05/25/10 32.43 12.20 15.1 20.23 03/24/11 32.43 12.20 15.1 20.23 03/24/11 32.43 11.32 15.0 21.11 10/11/11 32.43 11.32 15.0 21.11 10/11/11 32.43 11.32 15.0 21.11 10/11/11 32.43 11.36 NM 20.57 09/20/12 32.43 11.86 NM 20.57 09/20/13 32.43 11.86 NM 20.57 09/20/15 32.43 11.86 NM 20.03 09/20/14 32.43 11.86 NM 20.03 09/20/15 32.43 11.86 NM 20.03 09/20/15 32.43 11.86 NM 20.03 09/20/15 32.43 11.86 NM 20.07 09/20/15 32.43 11.86 NM 20.03							
05/11/09 30.05 17.74 28.5 12.31 12.17/09 30.05 17.87 28.5 12.18 03/29/10 30.05 17.41 28.5 12.64 12.64 11/29/10 30.05 17.41 28.5 12.64 11/29/10 30.05 17.41 28.5 12.49 03/24/11 30.05 16.92 28.5 13.13 10/11/11 30.05 17.59 28.5 12.49 02/29/12 30.05 17.59 28.5 12.57 12.57 09/20/12 30.05 17.59 28.5 12.57 09/20/12 30.05 17.57 28.5 12.48 03/21/13 30.05 17.50 NM 12.55 09/23/13 30.05 17.50 NM 12.29 03/20/14 30.05 17.76 NM 12.29 03/20/14 30.05 17.76 NM 12.29 03/20/14 30.05 17.50 NM 12.52 04/07/15 30.05 17.24 NM 12.81 09/28/15 29.29 16.77 NM 12.81 09/28/15 29.29 16.77 NM 12.38 11.70 03/28/16 29.29 16.77 NM 12.38 12.70 03/29/10 32.43 13.04 15.0 19.39 12/17/09 32.43 13.04 15.0 19.39 12/17/09 32.43 13.04 15.0 19.39 12/17/09 32.43 13.12 15.3 19.31 03/29/10 32.43 12.22 15.1 20.21 05/25/10 32.43 12.20 15.1 20.23 03/24/11 32.43 12.20 15.1 20.23 03/24/11 32.43 12.20 15.1 20.23 03/24/11 32.43 12.26 15.0 21.11 0/11/11 32.43 12.96 15.0 20.44 09/20/12 32.43 11.86 NM 20.57 09/20/13 32.43 12.52 NM 19.91 03/20/14 32.43 12.80 NM 20.57 09/20/13 32.43 12.81 NM 20.61 09/28/15 32.43 11.86 NM 20.57 09/20/15 32.43 12.81 NM 20.61 09/28/15 32.43 11.86 NM 20.61 09/28/15 32.43 11.86 NM 20.03 09/28/15 32.43 11.86 NM 20.03 09/28/15 32.43 11.86 NM 20.03 09/28/15 32.43 11.86 NM 20.01 09/28/15 32.43 11.86 NM 20.61 09/28/15 32.43 11.86 NM 20.61 09/28/15 32.43 11.86 NM 20.61 09/28/15 32.43 11.82 NM 20.61 09/28/15 32.43 11.82 NM 20.61 09/28/15 32.43 11.86 NM 20.61 09/28/15 32	04 1414/7						
12/17/09	C1-IVIVV-7						
03/29/10 30.05 17.41 28.5 12.64 05/25/10 30.05 17.41 28.5 12.64 11/29/10 30.05 17.56 28.5 12.49 03/24/11 30.05 16.92 28.5 13.13 10/11/11 30.05 17.59 28.5 12.46 02/29/12 30.05 17.57 28.5 12.46 02/29/12 30.05 17.57 28.5 12.48 03/21/13 30.05 17.50 NM 12.55 09/23/13 30.05 17.50 NM 12.55 09/23/13 30.05 17.50 NM 12.29 03/20/14 30.05 17.02 NM 13.03 09/02/14 30.05 17.53 NM 12.52 04/07/15 30.05 17.54 NM 12.81 09/28/15 29.29 16.77 NM 12.52 09/11/17 29.29 16.91 NM 12.38 12/17/09 32.43 13.12 15.3 19.31 03/29/10 32.43 13.04 15.0 19.39 12/17/09 32.43 13.12 15.3 19.31 03/29/10 32.43 12.22 15.1 20.23 03/24/11 32.43 12.22 15.1 20.23 03/24/11 32.43 12.20 15.1 20.23 03/24/11 32.43 12.20 15.1 20.23 03/24/11 32.43 12.20 15.1 20.23 03/24/11 32.43 12.91 15.0 29.44 09/20/12 32.43 12.91 15.0 20.44 09/20/12 32.43 12.91 15.0 20.44 09/20/13 32.43 12.91 15.0 20.44 09/20/14 32.43 12.91 15.0 20.44 09/20/15 32.43 12.91 15.0 20.57 09/20/13 32.43 12.91 15.0 20.57 09/20/14 32.43 12.81 NM 20.61 09/28/15 32.43 11.82 NM 20.61 09/28/15 32.43 11.82 NM 20.61 09/28/15 32.43 11.82 NM 20.61 09/28/15 32.43 11.89 NM 20.61 09/28/15 32.43 11.99 NM 21.24							
05/25/10 30.05 17.41 28.5 12.64 11/29/10 30.05 17.56 28.5 12.49 03/24/11 30.05 16.92 28.5 13.13 10/11/11 30.05 17.59 28.5 12.46 02/29/12 30.05 17.48 28.5 12.57 09/20/12 30.05 17.48 28.5 12.57 15-30 09/20/13 30.05 17.50 NM 12.55 09/23/13 30.05 17.50 NM 12.55 09/23/13 30.05 17.50 NM 12.55 09/23/13 30.05 17.50 NM 12.55 09/23/14 30.05 17.53 NM 12.52 04/07/15 30.05 17.53 NM 12.52 04/07/15 30.05 17.54 NM 12.81 09/28/15 29.29 16.77 NM 12.52 09/11/17 29.29 16.91 NM 12.38 09/11/17 29.29 16.91 NM 12.38 09/11/17 09/28/15 29.29 16.75 NM 12.52 09/11/17 29.29 16.91 NM 12.38 05/11/09 32.43 13.12 15.3 19.31 03/29/10 32.43 13.12 15.3 19.31 03/29/10 32.43 12.20 15.1 20.21 05/25/10 32.43 12.20 15.1 20.23 03/24/11 32.43 12.20 15.1 20.23 03/24/11 32.43 12.20 15.1 20.23 03/24/11 32.43 12.56 15.0 19.87 02/29/12 32.43 11.99 15.0 20.44 09/20/12 32.43 12.91 15.0 19.52 03/21/13 32.43 12.56 NM 20.57 09/20/13 32.43 11.86 NM 20.57 09/20/14 32.43 11.86 NM 20.57 09/20/14 32.43 11.86 NM 20.03 09/20/14 32.43 11.86 NM 20.03 09/20/14 32.43 11.86 NM 20.03 09/20/14 32.43 11.86 NM 20.57 09/20/14 32.43 11.86 NM 20.03 09/20/14 32.43 11.86 NM 20.05 09/20/15 32.43 11.86 NM 20.05 09/20/16 32.43 11.86 NM 20.							
11/29/10 30.05 17.56 28.5 12.49 13.13 10/11/11 30.05 16.92 28.5 13.13 13.13 10/11/11 30.05 17.59 28.5 12.46 02/29/12 30.05 17.48 28.5 12.57 12.48 03/21/13 30.05 17.57 28.5 12.48 03/21/13 30.05 17.50 NM 12.55 09/23/13 30.05 17.50 NM 12.29 03/20/14 30.05 17.76 NM 12.29 03/20/14 30.05 17.02 NM 13.03 09/02/14 30.05 17.53 NM 12.52 04/07/15 30.05 17.54 NM 12.81 09/28/15 29.29 17.54 NM 11.75 03/28/16 29.29 16.77 NM 12.38 12.70 03/28/16 29.29 16.91 NM 12.38 12.38 12.70 15.4 19.73 03/29/10 32.43 13.04 15.0 19.39 12/17/09 32.43 13.04 15.0 19.39 12/17/09 32.43 13.12 15.3 19.31 03/29/10 32.43 12.20 15.1 20.23 03/24/11 32.43 12.20 15.1 20.23 03/24/11 32.43 12.20 15.1 20.23 03/24/11 32.43 12.56 15.0 21.11 10/11/11 32.43 12.56 15.0 20.44 09/20/12 32.43 12.96 15.0 20.44 09/20/12 32.43 12.96 15.0 20.44 09/20/13 32.43 12.56 NM 20.57 09/20/13 32.43 12.56 NM 20.57 09/20/14 32.43 11.86 NM 20.61 09/28/15 32.43 11.86 NM 20.61 09/28/15 32.43 11.86 NM 20.61 09/28/15 32.43 11.80 NM 20.61 09/28/15 32.43 11.19 NM 21.24 09/28/15 32.43 11.19 NM							
03/24/11 30.05 16.92 28.5 13.13 10/11/11 30.05 17.59 28.5 12.46 02/29/12 30.05 17.48 28.5 12.57 09/20/12 30.05 17.57 28.5 12.48 15-30 03/21/13 30.05 17.57 28.5 12.48 15-30 03/21/13 30.05 17.57 28.5 12.48 15-30 03/21/13 30.05 17.57 08.5 12.48 12.55 09/23/13 30.05 17.50 NM 12.55 09/23/13 30.05 17.02 NM 13.03 09/02/14 30.05 17.02 NM 13.03 09/02/14 30.05 17.53 NM 12.52 04/07/15 30.05 17.24 NM 12.81 09/28/15 29.29 16.77 NM 12.81 09/28/16 29.29 16.77 NM 12.52 09/11/17 29.29 16.91 NM 12.38 12.38 12.30 12.34 13.04 15.0 19.39 12/17/09 32.43 13.04 15.0 19.39 12/17/09 32.43 13.12 15.3 19.31 03/29/10 32.43 12.22 15.1 20.21 05/25/10 32.43 12.22 15.1 20.21 05/25/10 32.43 12.20 15.1 20.23 03/24/11 32.43 12.20 15.1 20.23 03/24/11 32.43 12.56 15.0 19.87 02/29/12 32.43 11.32 15.0 21.11 10/11/11 32.43 12.56 15.0 19.87 02/29/12 32.43 11.99 15.0 20.44 09/20/12 32.43 12.91 15.0 19.52 03/21/13 32.43 12.50 NM 19.91 03/20/14 32.43 12.50 NM 19.91 03/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 11.86 NM 20.57 09/02/14 32.43 11.86 NM 20.57 09/02/14 32.43 11.82 NM 20.61 09/28/15 32.43 11.19 NM 21.24 1							
10/11/11 30.05							
02/29/12 30.05 17.48 28.5 12.57 15.30							
09/20/12 30.05 17.57 28.5 12.48 15-30							
03/21/13 30.05 17.50 NM 12.55							15-30
09/23/13 30.05 17.76 NM 12.29 NM 13.03 03/20/14 30.05 17.02 NM 13.03 09/02/14 30.05 17.53 NM 12.52 04/07/15 30.05 17.53 NM 12.81 09/28/15 29.29 17.54 NM 11.75 03/28/16 29.29 16.77 NM 12.52 09/11/17 29.29 16.91 NM 12.52 09/11/17 29.29 16.91 NM 12.38							
03/20/14 30.05 17.02 NM 13.03 09/02/14 30.05 17.53 NM 12.52 04/07/15 30.05 17.24 NM 12.81 09/28/15 29.29 17.54 NM 11.75 03/28/16 29.29 16.77 NM 12.52 09/11/17 29.29 16.91 NM 12.38							
09/02/14 30.05 17.53 NM 12.52 04/07/15 30.05 17.24 NM 12.81 09/28/15 29.29 17.54 NM 11.75 03/28/16 29.29 16.77 NM 12.52 09/11/17 29.29 16.91 NM 12.38							
04/07/15 30.05 17.24 NM 12.81 09/28/15 29.29 17.54 NM 11.75 03/28/16 29.29 16.77 NM 12.52 09/11/17 29.29 16.91 NM 12.38							
09/28/15							
03/28/16							
09/11/17 29.29 16.91 NM 12.38							
C2-MW-3 02/26/09 05/11/09 32.43 13.04 15.0 19.73 05/11/09 32.43 13.12 15.3 19.31 03/29/10 32.43 12.22 15.1 05/25/10 32.43 12.08 15.1 20.21 05/25/10 32.43 12.20 15.1 20.23 03/24/11 32.43 11.32 15.0 21.11 10/11/11 32.43 11.32 15.0 21.11 10/11/11 32.43 11.99 15.0 02/29/12 32.43 11.99 15.0 03/21/13 32.43 11.99 15.0 03/21/13 32.43 11.86 NM 20.57 09/20/13 32.43 11.86 NM 20.57 09/20/14 32.43 11.86 NM 20.57 09/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 11.86 NM 20.61 09/28/15 32.43 11.82 NM 20.61 09/28/15 32.43 11.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							
05/11/09 32.43 13.04 15.0 19.39 12/17/09 32.43 13.12 15.3 19.31 03/29/10 32.43 12.22 15.1 20.21 05/25/10 32.43 12.08 15.1 20.35 11/29/10 32.43 12.20 15.1 20.23 03/24/11 32.43 11.32 15.0 21.11 10/11/11 32.43 12.56 15.0 19.87 02/29/12 32.43 11.99 15.0 20.44 09/20/12 32.43 12.91 15.0 19.52 03/21/13 32.43 11.86 NM 20.57 09/20/13 32.43 12.52 NM 19.91 03/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 12.40 NM 20.03 04/07/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24	Cell 2 - Shallow Zone						
05/11/09 32.43 13.04 15.0 19.39 12/17/09 32.43 13.12 15.3 19.31 03/29/10 32.43 12.22 15.1 20.21 05/25/10 32.43 12.08 15.1 20.35 11/29/10 32.43 12.20 15.1 20.23 03/24/11 32.43 11.32 15.0 21.11 10/11/11 32.43 12.56 15.0 19.87 02/29/12 32.43 11.99 15.0 20.44 09/20/12 32.43 12.91 15.0 19.52 03/21/13 32.43 11.86 NM 20.57 09/20/13 32.43 12.52 NM 19.91 03/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 12.40 NM 20.03 04/07/15 32.43 11.82 NM 19.62 03/28/16 32.43 11.19 NM 21.24	C2-MW-3	02/26/09	32.43	12.70	15.4	19.73	
03/29/10 32.43 12.22 15.1 20.21 05/25/10 32.43 12.08 15.1 20.35 11/29/10 32.43 12.20 15.1 20.23 03/24/11 32.43 11.32 15.0 21.11 10/11/11 32.43 12.56 15.0 19.87 02/29/12 32.43 11.99 15.0 20.44 09/20/12 32.43 12.91 15.0 19.52 03/21/13 32.43 11.86 NM 20.57 09/20/13 32.43 12.52 NM 19.91 03/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 12.40 NM 20.03 04/07/15 32.43 11.82 NM 20.61 09/28/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							
05/25/10 32.43 12.08 15.1 20.35 11/29/10 32.43 12.20 15.1 20.23 03/24/11 32.43 11.32 15.0 21.11 10/11/11 32.43 12.56 15.0 19.87 02/29/12 32.43 11.99 15.0 20.44 09/20/12 32.43 12.91 15.0 19.52 03/21/13 32.43 11.86 NM 20.57 09/20/13 32.43 12.52 NM 19.91 03/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 12.40 NM 20.03 04/07/15 32.43 11.82 NM 20.61 09/28/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							
11/29/10 32.43 12.20 15.1 20.23 03/24/11 32.43 11.32 15.0 21.11 10/11/11 32.43 12.56 15.0 19.87 02/29/12 32.43 11.99 15.0 20.44 09/20/12 32.43 12.91 15.0 19.52 03/21/13 32.43 11.86 NM 20.57 09/20/13 32.43 12.52 NM 19.91 03/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 12.40 NM 20.03 04/07/15 32.43 11.82 NM 20.61 09/28/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							
03/24/11 32.43 11.32 15.0 21.11 10/11/11 32.43 12.56 15.0 19.87 02/29/12 32.43 11.99 15.0 20.44 09/20/12 32.43 12.91 15.0 19.52 03/21/13 32.43 11.86 NM 20.57 09/20/13 32.43 12.52 NM 19.91 03/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 12.40 NM 20.03 04/07/15 32.43 11.82 NM 20.61 09/28/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							
10/11/11 32.43 12.56 15.0 19.87 02/29/12 32.43 11.99 15.0 20.44 09/20/12 32.43 12.91 15.0 19.52 03/21/13 32.43 11.86 NM 20.57 09/20/13 32.43 12.52 NM 19.91 03/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 12.40 NM 20.03 04/07/15 32.43 11.82 NM 20.61 09/28/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							
02/29/12 09/20/12 32.43 32.43 11.99 15.0 20.44 19.52 03/21/13 09/20/13 32.43 32.43 11.86 11.86 11.86 NM 19.91 19.91 03/20/14 09/02/14 32.43 32.43 11.86 11.86 NM 20.57 11.86 09/02/14 09/02/14 32.43 32.43 11.82 11.82 NM 20.03 NM 20.61 09/28/15 03/28/16 32.43 32.43 12.81 11.19 NM 19.62 NM 03/28/16 32.43 32.43 11.19 NM 21.24							
09/20/12 32.43 12.91 15.0 19.52 03/21/13 32.43 11.86 NM 20.57 09/20/13 32.43 12.52 NM 19.91 03/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 12.40 NM 20.03 04/07/15 32.43 11.82 NM 20.61 09/28/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							
09/20/12 32.43 12.91 15.0 19.52 03/21/13 32.43 11.86 NM 20.57 09/20/13 32.43 12.52 NM 19.91 03/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 12.40 NM 20.03 04/07/15 32.43 11.82 NM 20.61 09/28/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							6-16
09/20/13 32.43 12.52 NM 19.91 03/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 12.40 NM 20.03 04/07/15 32.43 11.82 NM 20.61 09/28/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							
03/20/14 32.43 11.86 NM 20.57 09/02/14 32.43 12.40 NM 20.03 04/07/15 32.43 11.82 NM 20.61 09/28/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							
09/02/14 32.43 12.40 NM 20.03 04/07/15 32.43 11.82 NM 20.61 09/28/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							
04/07/15 32.43 11.82 NM 20.61 09/28/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							
09/28/15 32.43 12.81 NM 19.62 03/28/16 32.43 11.19 NM 21.24							
03/28/16 32.43 11.19 NM 21.24							
00/44/47 20/42 40.50 NIM 40.05		03/28/16 09/11/17	32.43 32.43	11.19 12.58	NM NM	21.24 19.85	

Table 2 Page 1 of 7

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation (a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C2-MW-9	02/26/09	33.00	NM	NM	NA	,
	05/11/09	33.00	21.89	34.5	11.11	
	12/17/09	33.00	24.69	33.8	8.31	
	03/29/10	33.00	NM	NM	NA	
	05/25/10	33.00	NM	NM	NA	
	11/29/10	33.00	NM	NM	NA	
	03/24/11	33.00	NM	NM	NA	
	10/11/11	33.00	24.97	33.8	8.03	
	02/29/12	33.00	18.81	33.8	14.19	25-35
	09/20/12	33.00	24.51	33.8	8.49	20-30
	03/22/13	33.00	24.48	NM	8.52	
	09/23/13	33.00	25.50	NM	7.50	
	03/20/14	33.00	19.54	NM	13.46	
	09/02/14	32.25	24.49	NM	7.76	
	04/07/15	32.25	21.29	NM	10.96	
	09/28/15	32.25	25.68	NM	6.57	
	03/28/16	32.25	21.30	NM	10.95	
	09/11/17	32.25	25.16	NM	7.09	
C2-MW-10(R2)	09/28/15	33.57	28.38	35.45	5.19	
` '	03/28/16	33.57	24.39	NM	9.18	20-35
	09/11/17	33.57	27.96	NM	5.61	
C2-MW-11(R)	09/02/14	30.80	25.23	NM	5.57	
` ,	04/07/15	30.80	21.90	NM	8.90	
	09/28/15	30.80	25.62	NM	5.18	15-30
	03/28/16	30.80	21.58	NM	9.22	
	09/11/17	30.80	25.27	NM	5.53	
Cell 2 - Deeper Uncor	nsolidated Aquifer					
C2-MW-12B	02/26/09	32.45	25.40	47.6	7.05	
	05/11/09	32.45	21.81	46.7	10.64	
	12/17/09	32.45	24.73	47.4	7.72	
	03/29/10	32.45	25.39	46.8	7.06	
	05/25/10	32.45	22.82	46.7	9.63	
	11/29/10	32.45	25.21	46.8	7.24	
	03/24/11	32.45	21.02	46.8	11.43	
	10/11/11	32.45	26.24	46.8	6.21	
	02/29/12	32.45	24.05	46.8	8.40	40-50
	09/20/12	32.45	26.39	46.8	6.06	40-50
	03/21/13	32.45	25.82	NM	6.63	
	09/20/13	32.45	26.34	NM	6.11	
	03/20/14	32.45	20.12	NM	12.33	
	09/02/14	32.45	27.04	NM	5.41	
	04/07/15	32.45	23.00	NM	9.45	
	09/28/15	32.45	26.87	NM	5.58	
	03/28/16	32.45	21.97	NM	10.48	
	09/11/17	32.45	26.57	NM	5.88	

Table 2 Page 2 of 7

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Croundwater	Well Coreened
Well		Elevation (a)	Groundwater ^(b)	Depth	Groundwater Elevation	Well Screened Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
Designation	Date		l or Unlocatable Moni	\ /	(ICCI)	(ICCI)
Cell 1 - Shallow Zone		Abandonec	or officeatable Mon	tornig Wens		
C1-MW-1	02/26/09	30.23	NM	NM	NA	
	05/11/09	30.23	21.06	33.5	9.17	
	12/17/09	30.23	23.47	33.3	6.76	
	03/29/10	30.23	24.32	33.5	5.91	
	05/25/10	30.23	21.72	33.4	8.51	
	11/29/10	30.23	24.58	33.4	5.65	
	03/24/11	30.23	20.08	33.4	10.15	
	10/11/11	30.23	24.87	33.4	5.36	
	02/29/12	30.23	23.20	33.4	7.03	18-33
	09/20/12	30.23	25.05	33.4	5.18	
	03/21/13	30.23	24.97	NM	5.26	
	09/23/13	30.23	25.62	NM	4.61	
	03/20/14	30.23	19.25	NM	10.98	
	09/02/14	30.23	26.02	NM	4.21	
	04/07/15	30.23	22.05	33.6	8.18	
	09/28/15	30.23	25.80	NM	4.43	
04.104.0	03/28/16	30.23	21.19	NM	9.04	
C1-MW-2	02/26/09	31.03	14.53	20.8	16.50	
	05/11/09	31.03	14.26	20.3	16.77	
	12/17/09	31.03	13.29	20.4	17.74	
	03/29/10	31.03	14.05	NM 20.4	16.98	
	05/25/10	31.03	14.27 13.57	20.4 NM	16.76	
	11/29/10 03/24/11	31.03 31.03	13.02	20.4	17.46 18.01	
	10/11/11	31.03	14.83	20.4	16.20	
	02/29/12	31.03	13.91	20.4	17.12	11-21
	09/20/12	31.03	15.15	20.4	15.88	11-21
	03/21/13	31.03	14.38	NM	16.65	
	09/23/13	31.03	NM	NM	NA	
	03/20/14	31.03	14.66	NM	16.37	
	09/02/14	31.03	15.02	NM	16.01	
	04/07/15	31.03	14.26	NM	16.77	
	09/28/15	31.03	15.56	NM	15.47	
	03/28/16	31.03	13.59	NM	17.44	
C1-MW-3	02/26/09	29.89	23.11	32.1	6.78	
	05/11/09	29.89	20.45	31.5	9.44	
	12/17/09	29.89	22.78	31.5	7.11	
	03/29/10	29.89	23.17	31.6	6.72	
	05/25/10	29.89	21.12	31.1	8.77	
	11/29/10	29.89	NM	NM	NA	
	03/24/11	29.89	19.42	31.4	10.47	
	10/11/11	29.89	23.71	31.4	6.18	
	02/29/12	29.89	22.06	31.4	7.83	15-32
	09/20/12	29.89	24.00	31.4	5.89	
	03/22/13	29.10	23.20	NM	5.90	
	09/23/13	29.10	NM	NM	NA	
	03/20/14	29.10	17.55	NM	11.55	
	09/02/14	29.10	23.93	NM	5.17	
	04/07/15	29.10	20.52	NM	8.58	
	09/28/15	29.10	24.02	NM	5.08	
	03/28/16	29.10	19.69	NM	9.41	

Table 2 Page 3 of 7

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation ^(a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C1-MW-5	02/26/09	30.71	DRY	31.2	NA	
	05/11/09	30.71	21.37	31.2	9.34	
	12/17/09	30.71	23.89	31.2	6.82	
	03/29/10	30.71	24.72	33.2	5.99	
	05/25/10	30.71	22.15	31.2	8.56	
	11/29/10	30.71	24.93	31.2	5.78	
	03/24/11	30.71	20.49	31.2	10.22	
	10/11/11	30.71	25.27	31.2	5.44	16-32
	02/29/12	30.71	23.53	31.2	7.18	10-32
	03/21/13	29.84	24.93	NM	4.91	
	09/23/13	29.84	25.49	NM	4.35	
	03/20/14	29.84	19.16	NM	10.68	
	09/02/14	29.84	NM	NM	NA	
	04/07/15	29.84	21.96	31.0	7.88	
	09/28/15	29.84	25.71	NM	4.13	
	03/28/16	29.84	21.14	NM	8.70	
C1-MW-6	02/26/09	31.66	NM	NM	NA	
	05/11/09	31.66	12.13	27.1	19.53	
	12/18/09	31.66	12.19	26.9	19.47	
	03/29/10	31.66	NM	NM	NA	15-25
	05/25/10	31.66	NM	NM	NA	15-25
	11/29/10	31.66	11.29	26.7	20.37	
	03/24/11	31.66	10.75	26.6	20.91	
	10/11/11	31.66	NM	NM	NA	
C1-MW-8	02/26/09	30.43	23.54	32.7	6.89	
	05/11/09	30.43	20.74	31.9	9.69	
	12/17/09	30.43	22.84	31.9	7.59	
	03/29/10	30.43	25.63	36.2	4.80	
	05/25/10	30.43	21.10	31.9	9.33	40.04
	11/29/10	30.43	23.91	31.9	6.52	16-31
	03/24/11	30.43	19.78	31.2	10.65	
	10/11/11	30.43	23.93	31.2	6.50	
	02/29/12	30.43	22.03	31.2	8.40	
	09/20/12	30.43	24.02	31.2	6.41	
C1-MW-8(R)	09/02/14	27.58	22.72	NM	4.86	
` '	04/07/15	27.58	18.85	NM	8.73	45.00
	09/28/15	27.58	22.68	NM	4.90	15-30
	03/28/16	27.58	18.49	NM	9.09	
C1-MW-9	02/26/09	30.55	19.78	27.5	10.77	
	05/11/09	30.55	19.83	27.0	10.72	
	12/17/09	30.55	21.10	27.0	9.45	
	03/29/10	30.55	19.47	27.0	11.08	
	05/25/10	30.55	19.61	27.0	10.94	
	11/29/10	30.55	19.88	27.1	10.67	
	03/24/11	30.55	18.96	27.0	11.59	
	10/11/11	30.55	19.75	26.7	10.80	
	02/29/12	30.55	19.76	26.7	10.79	20-30
	09/20/12	30.55	19.86	26.7	10.69	
	03/21/13	30.55	18.95	NM	11.60	
	09/23/13	30.55	19.92	NM	10.63	
	03/20/14	30.55	19.37	NM	11.18	
	09/02/14	30.55	19.75	NM	10.80	
	04/07/15	30.55	19.77	NM	10.78	
	09/28/15	30.55	19.95	NM	10.60	
	03/28/16	30.55	18.80	NM	11.75	

Table 2 Page 4 of 7

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation ^(a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
Cell 1 - Deeper Unco		(1001)	(1001)	(1001)	(.551)	(1001)
C1-MW-6B	02/26/09	30.96	NM	NM	NA	
	05/11/09	30.96	21.89	65.3	9.07	
	12/17/09	30.96	24.23	64.9	6.73	
	03/29/10	30.96	24.87	64.5	6.09	50 5 00 5
	05/25/10	30.96	NM	NM	NA	52.5-62.5
	11/29/10	30.96	NM	NM	NA	
	03/24/11	30.96	20.74	64.3	10.22	
	10/11/11	30.96	NM	NM	NA	
Cell 2 - Shallow Zone)				•	
C2-MW-1	02/26/09	34.51	28.57	32.4	5.94	
	05/11/09	34.51	NM	NM	NA	
	12/17/09	34.51	25.40	32.5	9.11	
	03/29/10	34.51	26.37	32.3	8.14	
	05/25/10	34.51	NM	NM	NA	
	11/29/10	34.51	NM	NM	NA	
	03/24/11	34.51	22.11	32.5	12.40	5-15
	10/11/11	34.51	27.50	32.5	7.01	5-15
	02/29/12	34.51	NM	NM	NA	
	09/23/13	34.51	NM	NM	NA	
	03/20/14	34.51	NM	NM	NA	
	09/02/14	34.51	NM	NM	NA	
	04/07/15	34.51	NM	NM	NA	
	09/28/15	NM	NM	NM	NM	
C2-MW-2	02/26/09	33.20	13.04	16.8	20.16	
	05/11/09	33.20	13.45	16.5	19.75	
	12/17/09	33.20	NM	NM	NA	6-16
	03/29/10	33.20	NM	NM	NA	
	05/25/10	33.20	NM	NM	NA	
	11/29/10	33.20	NM	NM	NA	
C2-MW-4	02/26/09	34.20	NM	NM	NA	
	05/11/09	34.20	NM	NM	NA	
	12/17/09	34.20	NM	NM	NA	
	03/29/10	34.20	NM	NM	NA	9-19
	05/25/10	34.20	NM	NM	NA	
	11/29/10	34.20	NM	NM	NA	
	03/24/11	34.20	NM	NM	NA NA	
00 MM 5	10/11/11	34.20	NM	NM	NA 40.07	
C2-MW-5	02/26/09	32.43	12.46	16.4	19.97	
	05/11/09	32.43	12.86	14.9	19.57	
	12/17/09	32.43	13.22	15.2	19.21	
	03/29/10	32.43	12.00	14.8	20.43	6-16
	05/25/10	32.43	11.92 11.99	14.9	20.51	
	11/29/10 03/24/11	32.43 32.43	11.99	14.9 14.9	20.44 21.26	
	10/11/11	32.43	NM	NM	NA	

Table 2 Page 5 of 7

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation ^(a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C2-MW-6	02/26/09	33.46	NM	NM	NA	
	05/11/09	33.46	NM	NM	NA	
	12/17/09	33.46	DRY	19.9	NA	
	03/29/10	33.46	DRY	19.7	NA	
	05/25/10	33.46	DRY	19.9	NA	
	11/29/10	33.46	NM	NM	NA	
	03/24/11	33.46	NM	NM	NA	
	10/11/11	33.46	19.48	19.9	13.98	45.00
	02/29/12	33.46	19.61	19.9	13.85	15-20
	03/21/13	33.46	18.66	NM	14.80	
	09/20/13	33.46	19.35	NM	14.11	
	03/20/14	33.46	18.19	NM	15.27	
	09/02/14	33.46	18.19	NM	15.27	
	04/07/15	33.46	14.81	NM	18.65	
	09/28/15	33.46	19.51	NM	13.95	
	03/28/16	33.46	15.39	NM	18.07	
C2-MW-7	02/26/09	34.55	NM	NM	NA	
	05/11/09	34.55	19.22	28.2	15.33	
	12/17/09	34.55	NM	NM	NA	
	03/29/10	34.55	NM	NM	NA	
	05/25/10	34.55	NM	NM	NA	15-25
	11/29/10	34.55	NM	NM	NA	
	03/24/11	35.55	NM	NM	NA	
	10/11/11	35.55	NM	NM	NA	
C2-MW-8	02/26/09	31.90	NM	NM	NA	
	05/11/09	31.90	NM	NM	NA	
	12/17/09	31.90	DRY	14.9	NA	
	03/29/10	31.90	NM	NM	NA	0.40
	05/25/10	31.90	DRY	NM	NA	6-16
	11/29/10	31.90	NM	NM	NA	
	03/24/11	31.90	DRY	14.6	NA	
	10/11/11	31.90	NM	NM	NA	
C2-MW-10(R)	02/26/09	34.18	25.72	36.2	8.46	
- (-)	05/11/09	34.18	22.61	36.1	11.57	
	12/17/09	34.18	25.39	36.4	8.79	
	03/29/10	34.18	25.63	36.2	8.55	
	05/25/10	34.18	23.60	36.1	10.58	
	11/29/10	34.18	25.93	36.2	8.25	
	03/24/11	34.18	21.95	36.1	12.23	
	10/11/11	34.18	25.99	36.1	8.19	15-30
	02/29/12	34.18	24.29	36.1	9.89	
	09/20/12	34.18	26.00	36.1	8.18	
	03/22/13	34.18	26.20	NM	7.98	
	09/23/13	34.18	NM	NM	NA	
	03/20/14	34.18	NM	NM	NA NA	
	09/02/14	34.18	NM	NM	NA NA	
	04/07/15	34.18	NM	NM	NA NA	

Table 2 Page 6 of 7

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation (a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C2-MW-11	02/26/09	34.26	25.60	36.0	8.66	, ,
	05/11/09	34.26	22.63	36.1	11.63	
	12/17/09	34.26	25.33	36.3	8.93	
	03/29/10	34.26	25.67	36.1	8.59	
	05/25/10	34.26	23.45	36.1	10.81	
	11/29/10	34.26	25.81	36.1	8.45	15-30
	03/24/11	34.26	21.94	36.1	12.32	
	10/11/11	34.26	25.91	36.1	8.35	
	02/29/12	34.26	24.17	36.1	10.09	
	09/20/12	34.26	25.85	36.1	8.41	
	03/22/13	34.26	25.95	NM	8.31	
	09/23/13	34.26	26.52	NM	7.74	
	03/20/14	34.26	21.15	NM	13.11	
C2-MW-15	02/26/09	33.06	21.56	24.3	11.50	
	05/11/09	33.06	20.72	23.9	12.34	
	12/17/09	33.06	21.92	23.9	11.14	
	03/29/10	33.06	NM	NM	NA	
	05/25/10	33.06	NM	NM	NA	
	11/29/10	33.06	NM	NM	NA	
	03/24/11	34.06	NM	NM	NA	
	10/11/11	34.06	NM	NM	NA	7-22
	02/29/12	34.06	NM	NM	NA	
	09/20/12	34.06	21.22	NM	12.84	
	03/21/13	34.06	20.21	NM	13.85	
	09/23/13	34.06	21.08	NM	12.98	
	03/20/14	34.06	18.50	NM	15.56	
	09/02/14	34.06	NM	NM	NA	
	04/07/15	34.06	18.70	NM	15.36	
	09/28/15	NM	NM	NM	NM	
C2-MW-16	02/26/09	33.76	NM	NM	NA	
02 WW 10	05/11/09	33.76	19.68	23.5	14.08	
	12/17/09	33.76	NM	NM	NA	
	03/29/10	33.76	NM	NM	NA NA	
	05/25/10	33.76	NM	NM	NA NA	5-20
	11/29/10	33.76	NM	NM	NA NA	
	03/24/11	33.76	NM	NM	NA NA	
	10/11/11	33.76	NM	NM	NA NA	
Call 2 Dannar Unas		33.70	I VIVI	I WIVI	IVA	
Cell 2 - Deeper Unco C2-MW-13B	02/26/09	32.38	NM	NM	NA	
02-IVIVV-13D	05/11/09	32.38	NM	NM	NA NA	
	12/17/09	32.38	NM	NM	NA NA	
		32.38	NM NM	NM	NA NA	
	03/29/10					47-57
	05/25/10	32.38	NM	NM	NA NA	
	11/29/10	32.38	NM	NM 54.09	NA 11.03	
	03/24/11	32.38	21.35	54.98	11.03	
	10/11/11	32.38	NM	NM	NA	

Notes:

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

NM = Not measured because the well was inaccessible.

NA = Not applicable.

(a) = Elevation in feet relative to mean sea level based on ties to a local W&H Pacific Co. benchmark, vertical datum NGVD29(47).

(b) = Measured in feet below the top of the well casing.

Table 2 Page 7 of 7

Former Fort Vancouver Plywood Site

				Field Parameters		
	Sample	Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Date	(°C)	(mS/cm)	(mg/l)	рН	(mV)
		(- /	Active Monitoring	\ \ \ \ \ \	P	(****)
Cell 1 - Shallow Zone	1					
C1-MW-4	02/27/09	15.05	1.057	0.45	8.39	-
	05/12/09	15.52	1.217	1.32	6.92	-
	12/18/09	15.32	1.294	0.50	6.35	-
	03/30/10	14.71	0.515	0.88	6.36	-
	05/26/10	15.37	1.109	1.36	6.28	-
	11/30/10	14.2	1.366	1.10	6.54	-
	03/24/11	14.85	1.577	0.63	6.24	-
	10/11/11	15.19	1.149	1.39	7.93	-
	03/01/12	14.77	1.857	0.54	6.66	-
	09/20/12	15.48	1.262	0.97	6.33	-
	03/22/13	15.1	1.798	1.12	7.38	-
	09/23/13	NS	NS	NS	NS	-
	03/21/14	15.48	1.173	1.51	6.34	-54.2
	09/03/14	18.01	1.188	0.75	6.26	-45.1
	04/07/15	15.48	1.193	6.44	6.44	-92.2
	09/29/15	16.94	1.164	0.34	6.31	-53.4
	03/29/16	15.31	1.419	1.82	6.30	-58.1
	09/11/17	20.36	1.41	1.99	6.65	-34
C1-MW-7	02/27/09	15.82	0.501	0.63	7.37	-
	05/12/09	15.63	0.877	1.64	6.78	-
	12/18/09	16.16	1.025	0.54	6.26	-
	03/30/10	15.45	0.383	0.79	6.35	-
	05/26/10	15.70	0.610	3.32	6.00	-
	11/30/10	14.46	0.973	1.18	6.59	-
	03/25/11	15.05	1.048	1.26	6.44	-
	10/12/11	16.01	0.906	1.48	7.43	-
	02/29/12	14.44	0.599	1.66	6.65	-
	09/20/12	16.14	0.772	0.93	6.28	-
	03/22/13	15.17	1.331	0.91	7.80	-
	09/23/13	16.10	1.300	7.00	8.20	- 400 5
	03/21/14	15.75	1.056	0.38	6.55	-130.5
	09/04/14 04/07/15	17.29	1.003	4.55	6.35	-80.1
	04/07/15	17.36 19.24	1.138	0.70 0.60	6.42	-127.0
	03/29/15	16.33	1.078 1.103	2.06	6.45 6.36	-94.4 32.1
	03/29/10	21.32	1.19	1.52	6.62	-91
Cell 2 - Shallow Zone		21.02	1.10	1.02	0.02	-51
C2-MW-3	02/26/09	14.22	0.284	1.64	7.21	_
52	05/12/09	14.61	0.316	1.75	6.62	_
	12/17/09	14.92	0.404	0.53	6.39	_
	03/29/10	13.02	0.102	10.60	6.7	_
	05/26/10	14.15	0.216	1.59	6.21	_
	11/30/10	14.8	0.240	12.00	6.72	_
	03/25/11	13.58	0.236	1.04	6.56	-
	10/11/11	16.11	0.173	1.39	7.07	-
	02/29/12	12.84	0.242	2.10	6.55	-
	09/21/12	16.14	0.200	14.90	6.23	-
	03/21/13	14.04	0.257	2.92	7.49	-
	09/20/13	16.90	0.220	3.30	6.90	-
	03/21/14	14.02	0.157	2.28	6.49	80.1
	09/03/14	18.13	0.193	1.28	6.08	25.1
	04/07/15	16.26	0.190	2.33	6.36	4.0
	09/29/15	17.98	0.219	0.61	6.65	99.9
	03/29/16	12.66	0.162	3.09	6.79	67.4
	09/11/17	23.54	0.222	1.47	6.85	111

Table 3 Page 1 of 4

Former Fort Vancouver Plywood Site

				Field Parameters		
	Sample	Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Date	(°C)	(mS/cm)	(mg/l)	рН	(mV)
C2-MW-9	02/26/09	NS	NS	NS	NS	-
	05/12/09	14.24	0.974	2.18	7.05	-
	12/18/09	14.07	0.903	0.72	6.49	-
	03/30/10	NS	NS	NS	NS	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	13.71	0.879	0.37	6.61	-
	10/11/11	14.14	0.785	1.48	8.13	-
	05/22/12	12.91	0.870	0.71	8.00	-
	09/20/12	14.76	0.998	0.94	6.70	-
	03/22/13	12.52	1.239	1.41	6.84	-
	09/23/13	14.40	0.790	4.50	8.20	-
	03/21/14	14.41	0.697	1.11	6.49	-66.3
	09/03/14	16.34	0.726	0.82	6.33	-90.3
	04/07/15	14.14	0.720	0.69	6.39	-100.8
	09/28/15	17.08	0.744	0.44	6.49	-89.4
	03/28/16	14.15	0.179	4.27	6.62	-35.1
	09/11/17	18.93	0.725	1.62	6.74	-78
C2-MW-10(R2)	09/28/15	16.89	0.814	0.34	6.57	-91.1
	03/28/16	16.28	0.788	1.06	6.44	-75.1
	09/11/17	19.54	0.842	1.97	6.87	-73
C2-MW-11(R)	09/03/14	20.03	0.760	1.59	6.10	-43.8
	04/07/15	13.87	0.709	0.42	6.70	-131.8
	09/28/15	16.61	0.723	0.43	6.60	-86.8
	3/28/2016	15.26	0.776	1.06	6.49	-126.3
	9/11/2017	18.04	0.774	2.35	6.81	-105
Cell 2 - Deeper Uncor	<u>.</u>					
C2-MW-12B	02/26/09	14.24	0.324	1.73	8.48	-
	05/12/09	15.03	0.325	1.79	7.20	-
	12/17/09	14.46	0.395	0.68	6.97	-
	03/29/10	14.47	0.167	8.57	7.09	-
	05/26/10	15.23	0.350	4.49	6.70	-
	11/30/10	11.05	0.186	8.47	7.08	-
	03/25/11	14.55	0.310	0.86	7.13	-
	10/11/11	14.69	0.281	4.11	7.30	-
	02/29/12	13.01	0.360	1.93	6.83	-
	09/21/12	14.02	0.311	33.60	5.73	-
	03/21/13	13.25	0.380	2.04	7.32	-
	09/20/13	15.10	0.340	3.10	7.60	
	03/21/14	14.31	0.249	3.06	6.92	150.4
	09/03/14	17.09	0.263	1.61	6.95	43.4
	04/07/15	15.36	0.237	0.62	7.10	104.3
	09/29/15	14.94	0.256	0.70	7.10	37.9
	03/29/16	14.19	0.184	3.67	7.01	39.4
	09/11/17	20.16	0.298	6.23	7.32	105

Table 3 Page 2 of 4

Former Fort Vancouver Plywood Site

				Field Parameters		
	Sample	Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Date	(°C)	(mS/cm)	(mg/l)	рH	(mV)
Campic Location	Duto		d or Unlocatable N	\ \ \ \ \ \	PII	(1114)
Cell 1 - Shallow Zone	<u> </u>	Abandone	d of officeatable in	nomitoring Wens		
C1-MW-3	02/27/09	14.38	1.057	0.34	9.12	_
O I-IVIVV-0	05/12/09	14.84	1.123	1.43	7.02	_
	12/18/09	14.91	1.198	0.50	6.42	
	03/30/10	13.5	0.455	0.93	6.45	_
	05/26/10	14.67	0.994	2.32	6.27	
	11/30/10	NS	NS	NS	NS	
	03/24/11	13.24	1.211	0.84	6.55	_
	10/12/11	14.5	0.920	1.62	7.56	_
	03/01/12	14.21	1.991	0.49	6.79	_
	09/20/12	15.27	0.944	0.91	6.44	_
	03/22/13	14.39	1.630	2.01	8.23	_
	09/23/13	NS	NS	NS	NS	
	03/21/14	13.83	0.774	0.28	6.61	15.8
	09/03/14	20.28	1.094	1.16	6.10	-41.1
	04/07/15	14.79	1.103	0.57	6.41	-107.4
	09/29/15	16.96	0.855	0.30	6.19	-73.3
	03/29/16	12.41	0.701	3.31	6.49	59.1
C1-MW-6	02/26/09	NS NS	NS	NS	NS	-
OT WWW 0	05/12/09	11.17	0.402	3.35	6.40	
	12/18/09	11.80	0.540	0.61	6.65	
	3/30/2010	NS	NS	NS	NS	
	05/26/10	NS	NS	NS	NS	_
	11/30/10	NS NS	NS NS	NS	NS	
	03/25/11	10.78	0.302	0.29	6.86	_
Cell 1 - Deeper Unco			0.002	0.20	0.00	
C1-MW-6B	02/26/09	NS	NS	NS	NS	_
01 mm 02	05/12/09	13.33	0.255	2.47	6.84	_
	12/18/09	12.85	0.281	0.71	6.85	_
	03/29/10	12.43	0.116	11.22	7.1	_
	05/26/10	NS	NS	NS	NS	_
	11/30/10	NS	NS	NS	NS	-
	03/25/11	11.90	0.260	7.21	7.00	-
Cell 2 - Shallow Zone			0.200			
C2-MW-7	02/26/09	NS	NS	NS	NS	-
	05/12/09	14.47	0.549	1.62	6.81	-
	12/17/09	NS	NS	NS	NS	-
	03/30/10	NS	NS	NS	NS	_
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	13.44	0.885	0.30	6.72	-
C2-MW-10(R)	02/27/09	15.1	1.045	0.28	9.10	-
, ,	05/12/09	14.71	1.065	1.71	6.72	-
	12/17/09	14.98	1.298	0.79	6.44	-
	03/29/10	14.98	0.480	8.24	6.75	-
	05/25/10	15.21	1.080	2.29	6.43	-
	11/30/10	14.4	1.253	16.00	6.78	-
	03/25/11	14.12	1.217	0.36	6.63	-
	10/12/11	14.77	0.966	1.37	7.30	-
	03/01/12	13.84	1.371	0.40	7.21	-
	09/20/12	14.30	0.992	0.86	6.47	-
	03/22/13	13.50	1.204	1.59	6.42	-
	09/23/13	NS	NS	NS	NS	-
	03/21/14	NS	NS	NS	NS	-
	09/03/14	NS	NS	NS	NS	-
	04/07/15	NS	NS	NS	NS	-

Table 3 Page 3 of 4

Former Fort Vancouver Plywood Site

				Field Parameters		
	Sample	Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Date	(°C)	(mS/cm)	(mg/l)	pН	(mV)
C2-MW-11	02/27/09	14.44	0.931	0.41	8.41	-
	05/12/09	14.18	0.401	1.80	6.88	-
	12/18/09	14.28	1.108	0.50	6.5	-
	03/29/10	14.25	0.458	7.15	6.71	-
	05/26/10	14.23	0.893	2.18	6.31	-
	11/30/10	13.83	0.990	2.39	6.79	-
	03/25/11	13.33	1.184	0.45	6.60	-
	10/12/11	14.30	0.909	1.59	7.89	-
	03/01/12	13.36	1.342	0.33	7.07	-
	09/20/12	14.57	0.932	0.77	6.42	-
	03/22/13	13.23	1.073	1.23	6.36	-
	09/23/13	14.10	0.930	8.80	8.60	-
	03/21/14	14.14	0.597	0.52	6.65	-14.8
Cell 2 - Deeper Uncor	nsolidated Aqu	ifer				
C2-MW-13B	02/26/09	NS	NS	NS	NS	-
	05/12/09	NS	NS	NS	NS	-
	12/17/09	NS	NS	NS	NS	-
	03/29/10	NS	NS	NS	NS	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	14.37	0.256	2.55	6.71	-

Notes:

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

mS/cm = millisiemens per centimeter.

mg/l = milligrams per liter

mv = millivolts

NS = Not sampled because well was not accessible.

ORP = oxidation reduction potential

Table 3 Page 4 of 4

^{- =} not available to AECOM for this report.

[°]C = Degrees Celsius.

Table 4. Volatile Organic Compounds in the Deeper Unconsolidated Aquifer

Former Fort Vancouver Plywood Site

					BTEX Co	mpounds an	d MTBE						His	torically Site	Detected VC	Cs (Since 200	9)			
Well Location	Sample ID	Date Sampled	⊵b Benzene	րը Toluene	ই Ethylbenzene	ັກ,p-Xylene	րը ∿.Xylene	E Total Xylenes	돌 Methyl Tertiary Butyl Ether	א Acetone	⊵ Chloroethane	ב Chloromethane	∑ 1,1-Dichloroethane	≦ 1,1-Dichloroethene	호 cis-1,2-Dichloroethene	E Isopropylbenzene (Cumene)	⊵ Naphthalene	돌 1,2,4-Trimethylbenzene	∑ Trichlorofluoromethane	চু Vinyl Chloride
	thod A Groundwater C		μg/i 5.0	<u>μ</u> g/i 1,000	μg/i 700	1,000	1,000	1,000	μg/i 20	μg/i NE	NΕ	NΕ	μg/i NE	NΕ	NΕ	NΕ	μg/i 160	NΕ	μg/i	μg/i 0.20
0,	thod B Groundwater C	•	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
			0.1.00	0.0		.,000	1,000		e Monitoring		.,_			100					2,100	0.020
Cell 2 - Deeper Unco	nsolidated Aquifer																			
C2-MW-12B	C2-MW-12B	02/26/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	03/29/10	1.0 U	6.8	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B-DUP	03/29/10	1.0 U	13	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	05/26/10 11/30/10	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B C2-MW-12B	03/25/11	1.0 U	1.0 1.0 U	1.0 U	2.0 U 2.0 U	1.0 U 1.0 U		1.0 U 1.0 U	5.9 5.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	0.20 U 0.20 U
	C2-MW-12B	10/11/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	02/29/12	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	09/20/12	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U		0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
	C2-MW-12B	03/21/13	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U	3.0 U	0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
	C2-MW-12B	09/20/13	0.24 U	0.23 U	0.24 U	0.48 U	0.24 U		0.50 U	10 U	0.50 U	2.0 U	0.50 U	0.24 U	0.23 U	0.50 U	2.0 U	0.50 U	0.13 U	0.14 U
	C2-MW-12B	03/21/14	0.060 U	0.11 U	0.10 U	0.25 U	0.13 U		0.18 U	5.0 U	0.17 U	1.0 U	0.14 U	0.14 U	0.16 U	0.50 U	0.20 U	0.16 U	0.10 U	0.11 U
	C2-MW-12B	09/03/14	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U	0.500 U	0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	0.250 U	0.500 U	1.000 U	0.500 U	1.00 U	0.100 U
	C2-MW-12B	04/07/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	1.00 U	0.200 U
	C2-MW-12B	09/29/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	1.00 U	0.100 U
	C2-MW-12B	03/29/16	0.125 U	0.500 U	0.250 U	0.500 U	0.200 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	1.00 U	0.250 U
	C2-MW-12B	09/11/17	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	20.0 UJ	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	2.00 UJ	0.500 U	1.00 U	0.200 U
0 4 5							Ak	oandoned or l	Jnlocatable N	Monitoring We	lls									
Cell 1 - Deeper Unco		00/07/00	NC	NC	NC	NC	NC	NC	NC	NC	NC	NS	NC	NC	NS	NC	NS	NC	NC	NC
	NS C1-MW-6B	02/27/09 05/12/09	NS 1.0 U	NS 1.0 U	NS 1.0 U	NS	NS	NS 3.0 U	NS 1011	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
	C1-MW-6B	12/18/09	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U 1.0 U											
	C1-MW-6B	03/29/10	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	NS	05/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	11/30/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-6B	03/25/11	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
Cell 2 - Deeper Unco		00,20,	3	3	3			3.0 3	3											
C2-MW-13B	C2-MW-13B	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	0.20 U

Notes

--- = Sample not analyzed for constituent

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

MTBE = methyl tertiary butyl ether

MTCA = Washington State Department of Ecology Model Toxics Control Act

NE = Not established

NS = Not sampled because well was not accessible.

μg/l = micrograms per liter

R = The sample results were rejected based on the data quality review.

U = Constituent not detected at or above noted limit.

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

= Indicates the analyte was not detected; however, the reported method detection limit exceeds a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

UJ = Constituent was not detected above the noted limit; the limit is approximate.

VOCs = volatile organic compounds

Values in **bold** were detected above the laboratory method detection limit.

					BTEX Co	ompounds an	nd MTBE						Hi	storically Site	Detected VO	Cs (Since 200	9)			
Ecology's Acute Fre EPA's National Toxio Ecology's MTCA Me	Sample ID thod B Surface Water Cle shwater Surface Water Q cs Rule Human Health Cr thod A Groundwater Clea thod B Groundwater Clea	uality Criteria iteria for Surface Water anup Levels	μg/I 23 NE 1.2 5.0 0.795	θυθη μg/l 18,900 NE 6,800 1,000 640	1/g/I Hg/I 6,820 AR 3,100 700 800	μg/l NE NE NE 1,000 1,600	μg/l NE NE NE 1,000 1,600	الهرب Total Xylenes الهرب Total Xylenes الهرب Total Xylenes الهرب Total Xylenes	8 8 N N N N N N N N N N N N N N N N N N	ης Νε ΑΕ ΝΕ ΑΕ ΝΕ ΑΕ ΑΕ ΑΕ ΑΕ ΑΕ ΑΕ ΑΕ ΑΕ ΑΕ ΑΕ ΑΕ ΑΕ ΑΕ	BN BM Chloroethane	BN BN Chloromethane	Mariane 1.1-Dichloroethane 1.1-Dichloroethane 1.00 1.1-Dichloroethane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1,1-Dichloroethene 1,1-Dichloroethene 1,1-Dichloroethene 1,1-Dichloroethene 1,1-Dichloroethene	15 B B B B cis-1,2-Dichloroethene	88 N N N 를 Isopropylbenzene (Cumene)	νου Ναρμτηαίευο ΝΕ ΝΕ 160 160	N N N N N S S S S S S S S S S S S S S S	्रिध्य Trichlorofluoromethane S S S S S S S S S S S S S S S S S S S	الهبر Vinyl Chloride 3.7 NE 2 0.20 0.029
								Active I	Ionitoring W	ells										
Cell 1 - Shallow Zone																				
C1-MW-4	C1-MW-4 C1-MW-4-Dup C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4-DUP C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4	02/27/09 02/27/09 05/12/09 12/18/09 03/30/10 03/30/10 05/26/10 11/30/10 03/24/11 10/11/11	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	2.0 U 2.0 U 2.0 U 1.0 U 1.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	1.0 U 1.0 U 1.0 U 2.0 U 2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U		1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.7 1.9 1.0 U 1.5 1.6 1.6 1.6 5.0 U 6.9 5.0 U 5.0 U	1.7 1.9 1.0 U 1.5 1.6 1.6 1.0 U 1.1 1.0 U 1.2	5.0 U 5.0 U 1.0 U	1.0 U 1.0 U 2.1 1.0 U 1.0 U 1.0 U 1.0 U 1.5 1.2 2.1 1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.8 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.3 1.0 2.2 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	5.0 U 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	0.37 0.35 0.34 0.46 0.44 0.41 0.37 0.62 0.61 1.0 0.20 U 0.20 U
	C1-MW-4-Dup C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4-Dup NS C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4 C1-MW-4	03/01/12 03/01/12 03/01/12 09/20/12 03/22/13 03/22/13 09/23/13 03/21/14 09/03/14 04/08/15 09/29/15 03/29/16 09/11/17	1.0 U 1.0 U 0.10 U 1.0 U 1.0 U NS 0.060 U 0.125 U 0.125 U 0.125 U 0.125 U	1.0 U 1.0 U 0.10 U 1.0 U 1.0 U 1.0 U NS 0.11 U 0.500 U 0.500 U 0.500 U 0.810 J	1.0 U 1.0 U 0.10 U 1.0 U 1.0 U 1.0 U NS 0.10 U 0.250 U 0.250 U 0.250 U 0.250 U	2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U NS 0.25 U 0.500 U 0.500 U 0.500 U 0.500 U	1.0 U 1.0 U 0.10 U 1.0 U 1.0 U 1.0 U NS 0.13 U 0.250 U 0.250 U 0.250 U 0.250 U	3.0 U 3.0 U NS 0.500 U	1.0 U 1.0 U 0.10 U 1.0 U 1.0 U 1.0 U NS 0.18 U 0.500 U 0.500 U 0.500 U 0.500 U	5.0 U 5.0 U 1.0 U 20 U 20 U NS 5.0 U 10.0 U 10.0 U 10.0 U 20.0 UJ	1.0 U 1.0 U 0.10 U 1.0 U 1.0 U 1.0 U NS 0.17 U 5.00 U 5.00 U 5.00 U 5.00 U	1.0 U 1.0 U 0.10 U 1.0 U 1.0 U 1.0 U NS 1.0 U 2.50 UJ 2.50 U 2.50 U 2.50 U	1.6 1.6 0.10 U 1.7 1.9 NS 1.5 1.12 1.67 0.82 1.27	1.0 U 1.0 U 1.0 U 0.10 U 1.0 U 1.0 U NS 0.63 0.380 J 0.540 0.290 J 0.510	1.5 1.4 1.1 2.0 2.1 NS 2.8 1.73 2.73 1.53 2.32 1.18	1.0 U 1.0 U 0.10 U 1.0 U 1.0 U 1.0 U NS 0.50 U 0.500 U 0.500 U 0.500 U 0.500 U	1.0 U 3.3 0.10 U 4.0 U 4.0 U 4.0 U NS 0.20 U 1.00 U 1.00 U 1.00 U 2.00 UJ	1.0 U 1.0 U 0.10 U 1.0 U 1.0 U 1.0 U NS 0.16 U 0.500 U 0.500 U 0.500 U 0.500 U	1.0 U 1.0 U 0.10 U 1.0 U 1.0 U NS 0.10 U 1.00 U 1.00 U 1.00 U 1.00 U	0.25 0.25 0.39 0.21 0.23 NS 0.11 U 0.240 0.450 0.25 U 0.490 J 0.300 J
C1-MW-7	C1-MW-7	02/27/09 05/12/09 12/18/09 03/30/10 05/26/10 05/26/10 11/30/10 03/25/11 10/12/11 02/29/12 09/20/12 03/22/13 09/23/13 03/21/14 09/04/14 04/08/15 09/29/16	1.0 U 0.10 U 0.12 U 0.125 U 0.125 U 0.125 U 0.100 U	1.0 U 0.10 U 0.23 U 0.22 U 0.500 U 0.500 U 0.500 U 0.500 U	1.0 U 0.10 U 0.24 U 0.25 U 0.250 U 0.250 U 0.250 U 0.250 U	2.0 U	1.0 U	1.0 U 3.0 U 0.30 U 0.750 U 0.750 U 0.750 U 0.750 U	26 24 23 24 16 14 28 24 25 3.2 13 12 16 14 12.1 17.2 18.1 19.3								 			
	C1-MW-7	09/11/17	0.100 U	0.500 U	0.250 U			0.750 U	15.3											

Table 5 Page 1 of 4

Table 5. Volatile Organic Compounds in the Shallow Zone Former Fort Vancouver Plywood Site

					BTEX Co	mpounds an	d MTBE						His	torically Site	Detected VO	Cs (Since 2009	9)			
Ecology's Acute Fre	Sample ID ethod B Surface Water Cle eshwater Surface Water Q	uality Criteria	μg/l 23 NE	ру Доје и доје	اگن ارقنا 820 فعر 188 فعر	Ne μg/ν NE NE	ο-Xylene μg/ι ΝΕ ΝΕ	지 교	지 교 출 Methyl Tertiary Butyl Ether	⊒X ⊒X = Acetone	ਤ ਨ ਜ ਜ ਨ ਂ ਜ ਜਿਹਾ ਜ ਜ ਜ	교 전 B Chloromethane	ਤ ਤ ਛੋਂ 1,1-Dichloroethane	1,1-Dichloroethene	ਤ ਤ ਲੂੰ cis-1,2-Dichloroethene	Z Z ☐ Isopropylbenzene (Cumene)	νε NE	지 교 조 조 전 1,2,4-Trimethylbenzene	Trichlorofluoromethane	νε NE
	ics Rule Human Health Cr		1.2	6,800	3,100	NE	NE	NE	NE	NE	NE	NE	NE	0.057	NE	NE	NE	NE	NE	2
•	ethod A Groundwater Clea	•	5.0	1,000	700	1,000	1,000	1,000	20	NE 7.000	NE	NE	NE	NE 100	NE	NE	160	NE	NE 0.400	0.20
Cell 2 - Shallow Zor	ethod B Groundwater Clea	anup Leveis	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
C2-MW-3	C2-MW-3	02/26/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	0.20 U
02-WW-0	C2-MW-3-DUP	02/26/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	05/11/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3-DUP	05/11/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3-DUP	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	03/29/10	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3-DUP	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3-Dup	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3-Dup	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
C2-MW-9	C2-MW-9	02/27/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-9	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.7
	C2-MW-9	12/18/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.5	1.0 U	1.0 U	1.0 U	1.0 U	0.61
	C2-MW-9	03/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-9	05/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-9	11/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-9	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.1	1.0 U	1.0 U	1.0 U	1.0 U	1.2
	C2-MW-9	09/20/12	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U		0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	1.3	0.10 U	0.10 U	0.10 U	0.10 U	1.0
	C2-MW-9	03/22/13	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U	0.83
	C2-MW-9	09/23/13	0.24 U	0.23 U	0.24 U	0.48 U	0.24 U		0.50 U	10 U	0.50 U	2.0 U	0.50 U	0.24 U	2.5	0.50 U	2.0 U	0.50 U	0.13 U	0.14 U
	C2-MW-9-Dup	09/23/13	0.24 U	0.23 U	0.24 U	0.48 U	0.24 U		0.50 U	10 U	0.50 U	2.0 U	0.50 U	0.24 U	2.8	0.50 U	2.0 U	0.50 U	0.13 U	0.14 U
	C2-MW-9 C2-MW-9-DUP	03/21/14	0.060 U	0.11 U	0.10 U	0.25 UJ	0.13 UJ		0.18 UJ	8.3 J	0.17 UJ	1.0 UJ	0.14 UJ	0.14 UJ	0.79 J	0.50 UJ	0.20 UJ	0.16 UJ	0.10 UJ	1.3 J
	C2-MW-9-DUP C2-MW-9	03/21/14 09/03/14	0.060 U 0.125 U	0.11 U 0.500 U	0.10 U 0.250 U	0.25 U 0.500 U	0.13 U 0.250 U	0.500 U	0.18 U 0.500 U	33 10.0 U	0.17 U 5.00 U	1.0 U 2.50 UJ	0.14 U 0.250 U	0.14 U 0.250 U	1.1 0.250 U	0.50 U 0.500 U	0.20 U	0.16 U 0.500 U	0.10 U 1.00 U	1.1 0.55
	C2-MW-9-DUP	09/03/14	0.125 U 0.125 U	0.500 U	0.250 U 0.250 U	0.500 U	0.250 U 0.250 U	0.500 U	0.500 U	10.0 U	5.00 U 5.00 U	2.50 UJ	0.250 U 0.250 U	0.250 U	0.250 U 0.250 U	0.500 U	1.00 U 1.00 U	0.500 U	1.00 U	0.60
	C2-MW-9	04/08/15	0.125 U 0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U 0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	1.00 U	0.41
	C2-MW-9 DUP	04/08/15	0.125 U R	0.500 U R	0.250 U R	0.500 U R	0.250 U R		0.500 U R	10.0 U R	5.00 U R	2.50 U R	0.250 U R	0.250 U R	u.93 R	0.500 U R	1.00 U R	0.500 U R	1.00 U R	R
	C2-MW-9	09/28/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	1.84	0.500 U	1.00 U	0.500 U	1.00 U	0.370
	C2-MW-9 DUP	09/28/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	1.81	0.500 U	1.00 U	0.500 U	1.00 U	0.370
	C2-MW-9	03/28/16	0.125 U	0.500 U	0.250 U	0.500 U	0.200 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.52	0.500 U	1.00 U	0.500 U	1.00 U	0.630
	C2-MW-9 (DUP)	03/28/16	0.125 U	0.500 U	0.250 U	0.500 U	0.200 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	1.04	0.500 U	1.00 U	0.500 U	1.00 U	0.500
	C2-MW-9	09/11/17	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	20.0 UJ	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	2.00 UJ	0.500 U	1.00 U	0.860
	C2-MW-9(DUP)	09/11/17	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	20.0 UJ	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	2.00 UJ	0.500 U	1.00 U	0.840
C2-MW-11(R)	C2-MW-11R	09/03/14	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U	0.500 U	0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	1.00 U	1.08
	C2-MW-11R	04/08/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	1.00 U	1.25
	C2-MW-11R	09/28/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	1.00 U	1.35
	C2-MW-11R	03/28/16	0.125 U	0.500 U	0.250 U	0.500 U	0.200 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	1.00 U	0.94
	C2-MW-11(R)	09/11/17	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	20.0 UJ	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	2.00 UJ	0.500 U	1.00 U	1.13

Table 5 Page 2 of 4

Table 5. Volatile Organic Compounds in the Shallow Zone Former Fort Vancouver Plywood Site

					BTEX Co	ompounds an	d MTBE						Hi	storically Site	Detected VOC	Ss (Since 200	09)			
						·											•			
Well Location	Sample ID	Date Sampled	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Total Xylenes	Methyl Tertiary Butyl Ether	Acetone	ր Chloroethane	Chloromethane	1,1-Dichloroethane	5 1,1-Dichloroethene	cis-1,2-Dichloroethene	S Isopropylbenzene (Cumene)	Naphthalene	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Vinyl Chloride
	Method B Surface Water Cl		μg/l 23	μg/l 18,900	μg/l 6,820	μg/l NE	μg/l NE	μg/l NE	μg/l NE	μg/l NE	NΕ	μg/l NE	μg/l NE	23,100	μg/l NE	μg/l NE	μg/l 4,710	μg/l NE	μg/l NE	μg/l 3.7
~ ~	reshwater Surface Water G	=	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	25,100 NE	NE	NE	NE	NE	NE	NE
	xics Rule Human Health C		1.2	6,800	3,100	NE	NE	NE	NE	NE	NE	NE	NE	0.057	NE	NE	NE	NE	NE	2
	lethod A Groundwater Cle		5.0	1,000	700	1,000	1,000	1,000	20	NE	NE	NE	NE	NE	NE	NE	160	NE	NE	0.20
	lethod B Groundwater Cle		0.795	640	800	1,600	1,600	1,600	24	7.200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
Loology o m rort m	iotiloa B oroanawator oro	unup Lovoio	0.700	0.10		1,000	,	,		nitoring Wells		.,	7.00	100	10		100	112	2,100	0.020
Cell 1 - Shallow Zo																				
C1-MW-3	C1-MW-3	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U											
	C1-MW-3	05/12/09	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	12/18/09	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	03/30/10	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	05/26/10	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	11/30/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-3	03/24/11	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	10/12/11	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	03/01/12	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	C1-MW-3	09/20/12	0.10 U	0.10 U	0.10 U			0.30 U	0.10 U											
	C1-MW-3-Dup	09/20/12	0.10 U	0.10 U	0.10 U			0.30 U	0.10 U											
	C1-MW-3	03/22/13	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U											
	NS	09/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-3	03/21/14	0.060 U	0.11 U	0.10 U			0.33 U	0.18 U											
	C1-MW-3	09/03/14	0.125 U	0.500 U	0.250 U			0.750 U	0.500 U											
	C1-MW-3	04/08/15	0.125 U	0.500 U	0.250 U			0.750 U	0.500 U											
	C1-MW-3	09/29/15	0.125 U	0.500 U	0.250 U			0.750 U	0.500 U											
	C1-MW-3	03/29/16	0.100 U	0.500 U	0.250 U			0.750 U	0.500 U											
C1-MW-6	C1-MW-6	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	10	1.7	1.0 U	1.0 U	1.0 U	1.0 U	4.2	0.20 U
	C1-MW-6-DUP	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	10	1.8	1.0 U	1.0 U	1.0 U	1.0 U	4.3	0.20 U
	C1-MW-6	12/18/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	8.8	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C1-MW-6-DUP	12/18/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	8.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	NS	05/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	11/30/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-6	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.3	0.20 U
	C1-MW-6-DUP	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.3	0.20 U
Cell 2 - Shallow Zo		1 00/0-15	.,.		.,-						115				116					NG
C2-MW-7	NS	02/27/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-7	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-7	12/17/09																		
	NS	03/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	05/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	11/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-7	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U

Table 5 Page 3 of 4

Table 5. Volatile Organic Compounds in the Shallow Zone

Former Fort Vancouver Plywood Site

					BTEX Co	mpounds an	d MTBE						Hi	storically Site	Detected VO	Cs (Since 200	9)			
			Benzene	Toluene	Ethylbenzene	m,p-Kylene	o-Xylene	Total Xylenes	Methyl Tertiary Butyl Ether	Acetone	Chloroethane	Chloromethane	1,1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	Isopropylbenzene (Cumene)	Naphthalene	1,2,4-Trimethylbenzene	Trichlorofluoromethane	Vinyl Chloride
Well Location	Sample ID lethod B Surface Water Cle	Date Sampled	μg/l 23	μg/l 18,900	μg/l 6,820	μg/l NE	μg/l NE	μg/l NE	μg/l NE	μg/l NE	μg/l NE	μg/l NE	μg/l NE	μg/l 23,100	μg/l NE	μg/l NE	μg/l 4,710	μg/l NE	μg/l NE	μg/l 3.7
0,	reshwater Surface Water Ci	•	NE	18,900 NE	0,820 NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	23,100 NE	NE NE	NE NE	4,710 NE	NE NE	NE NE	3.7 NE
	rics Rule Human Health Ci		1.2	6,800	3,100	NE	NE	NE	NE	NE	NE	NE	NE	0.057	NE	NE	NE	NE	NE	2
	lethod A Groundwater Cle		5.0	1,000	700	1,000	1,000	1,000	20	NE	NE	NE	NE	NE	NE	NE	160	NE	NE	0.20
	lethod B Groundwater Cle		0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	2,400	0.029
C2-MW-10(R)	C2-MW-10	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	0.27
	C2-MW-10	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	03/29/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	05/25/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.94
	C2-MW-10	10/12/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.28
C2-MW-11	C2-MW-11	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	12	1.0 U	1.0 U	1.4
	C2-MW-11	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.50
	C2-MW-11	12/18/09	1.0 U	1.0 U	1.6	4.0	2.0		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	101	2.7	1.0 U	0.74
	C2-MW-11	03/29/10	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	51	1.3	1.0 U	0.73
	C2-MW-11	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	64	2.3	1.0 U	0.57
	C2-MW-11	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.9	1.0 U	1.0 U	1.5
	C2-MW-11	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	16	1.0 U	1.0 U	1.4
	C2-MW-11	10/12/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.6
	C2-MW-11	03/01/12	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.7	1.0 U	1.0 U	1.1
	C2-MW-11	09/20/12	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U		0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	1.8
	C2-MW-11	03/22/13	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U	1.1
	C2-MW-11	09/23/13	0.24 U	0.23 U	0.24 U	0.48 U	0.24 U		0.50 U	10 U	0.50 U	2.0 U	0.50 U	0.24 U	0.23 U	0.50 U	2.0 U	0.50 U	0.13 U	1.2
	C2-MW-11	03/21/14	0.24	0.23 J	0.61	1.5	1.2		0.18 U	5.0 U	0.17 U	1.0 U	0.14 U	0.14 U	0.16 U	0.87 J	130	4.8	0.10 U	0.28 J

Notes

--- = Sample not analyzed for constituent

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

MTBE = methyl tertiary butyl ether

MTCA = Washington State Department of Ecology Model Toxics Control Act

NE = Not established

NS = Not sampled because well was not accessible.

μg/l = micrograms per liter

R = The sample results were rejected based on the data quality review.

U = Constituent not detected at or above noted limit.

UJ = Constituent was not detected above the noted limit; the limit is approximate.

VOCs = volatile organic compounds

Values in **bold** were detected above the laboratory method detection limit.

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

= Indicates an exceedance of a screening criterion.

= Indicates the analyte was not detected; however, the reported method detection limit exceeds a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx Ecology's Acute Freshwater Surface Water Quality Criteria were obtained from the Washington State Legislature Washington Administrative Code web site. http://apps.leg.wa.gov/WAC/default.aspx?cite=173-201A-240

EPA's National Toxics Rule Human Health Criteria for Surface Water were obtained through the Washington State Department of Ecology web site for Toxics Standards and Criteria. http://www.ecy.wa.gov/programs/wg/swqs/toxics.html

Table 6. Total Petroleum Hydrocarbons in the Deeper Unconsolidated Aquifer

Former Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
Ecology's MTCA Me	ethod A Groundwater Clea	nup Levels	0.50	0.50	1.0 ^(a)
Ecology's MTCA Me	ethod B Groundwater Clea	nup Levels	NE	NE	NE
		Active Monito	ring Wells		
Cell 2 - Deeper Unc	onsolidated Aquifer				
C2-MW-12B	C2-MW-12B	02/26/09	0.091 U	0.45 U	0.025 U
	C2-MW-12B	05/12/09	0.082 U	0.41 U	0.050 U
	C2-MW-12B	12/17/09	0.13	0.42 U	0.050 U
	C2-MW-12B	03/29/10	2.3	2.6	0.050 U
	C2-MW-12B	03/29/10	1.3	1.4	0.050 U
	C2-MW-12B	05/26/10	0.10	0.44	0.050 U
	C2-MW-12B	11/30/10	4.0	6.6	0.050 U
	C2-MW-12B	03/25/11	0.55	0.66	0.050 U
	C2-MW-12B	10/11/11	1.6	2.4	0.050 U
	C2-MW-12B	02/29/12	0.077 U	0.38 U	0.050 U
	C2-MW-12B	09/20/12	0.16 U	0.80 U	0.025 U
	C2-MW-12B	03/21/13	0.40 U	0.40 U	0.10 U
	C2-MW-12B	09/20/13	0.011 U	0.018 U	0.10 U
	C2-MW-12B	03/21/14	0.080 J	0.18 J	0.019 U
	C2-MW-12B	09/03/14	0.0943 U	0.496	0.0500 U
	C2-MW-12B	04/07/15	0.0952 U	0.190 U	0.0500 U
	C2-MW-12B	09/29/15	0.0943 U	0.189 U	0.0500 U
	C2-MW-12B	03/29/16	0.0980 U	0.230 J	0.0500 U
	C2-MW-12B	09/11/17	0.0952 U	0.190 U	0.0500 U
	Abar	ndoned or Unlocatal	ole Monitoring Wells		
Cell 2 - Deeper Unc	onsolidated Aquifer				
C2-MW-13B	C2-MW-13B	03/25/11	0.41	0.47	0.050 U

Notes:

 $\label{eq:B} \mbox{$\sf B$ = Constituent was detected above the laboratory reporting limit in the method blank}.$

DUP = Duplicate sample.

 $\mbox{\bf J}$ = Constituent was not positively identified; the associated value is estimated.

mg/l = milligrams per liter

MTCA = Washington State Department of Ecology Model Toxics Control Act

NA = Not analyzed

NE = Not established

NS = Not sampled because well was not accessible.

U = Constituent not detected at or above noted limit.

TPH = Total Petroleum Hydrocarbons

TPH-Gx = Total Petroleum Hydrocarbons gasoline-range

TPH-Dx = Total Petroleum Hydrocarbons diesel- and oil-range

Values in **bold** were detected above the laboratory method detection limit.

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

= Indicates an exceedance of a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

(a) = Value is for gasoline concentration when benzene is not present.

Table 6 Page 1 of 1

Table 7. Total Petroleum Hydrocarbons in the Shallow ZoneFormer Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
	thod B Surface Water Clea		NE	NE	NE
Ecology's Acute Free	shwater Surface Water Qu	uality Criteria	NE	NE	NE
	s Rule Human Health Cri		NE	NE	NE
•	thod A Groundwater Clea	•	0.50	0.50	1.0 ^(a)
Ecology's MTCA Met	thod B Groundwater Clea		NE	NE	NE
		Active Monitor	ring Wells		
Cell 2 - Deeper Unco					
C2-MW-3	C2-MW-3	02/26/09	0.086 U	0.43 U	0.025 U
	C2-MW-3	02/26/09	0.089 B	0.41 U	0.025 U
	C2-MW-3	05/11/09	0.083 U	0.42 U	0.050 U
	C2-MW-3	05/11/09	0.094 U	0.47 U	0.050 U
	C2-MW-3	12/17/09	0.093	0.38 U	0.050 U
	C2-MW-3	12/17/09	0.089	0.39 U	0.050 U
	C2-MW-3	03/29/10	0.078 U	0.39 U	0.050 U
	C2-MW-3	05/26/10	0.078 U	0.39 U	0.050 U
	C2-MW-3	05/26/10 11/30/10	0.076 U	0.38 U	0.050 U
	C2-MW-3 C2-MW-3-Dup	11/30/10 11/30/10	0.082 U 0.078 U	0.41 U 0.39 U	0.050 U 0.050 U
	•				
	C2-MW-3 C2-MW-3-Dup	03/25/11 03/25/11	0.078 U 0.078 U	0.39 U 0.39 U	0.050 U 0.050 U
	C2-MW-3	10/11/11	0.076 U	0.38 U	0.050 U
	C2-MW-3-Dup	10/11/11	0.076 U	0.38 U	0.050 U
	C2-MW-3	02/29/12	0.076 U	0.38 U	0.050 U
	C2-MW-3-Dup	02/29/12	0.086 U	0.43 U	0.050 U
	C2-MW-3	09/20/12	0.16 U	0.81 U	0.025 U
	C2-MW-3	03/21/13	0.40 U	0.40 U	NA
	C2-MW-3-Dup	03/21/13	0.40 U	0.40 U	NA
	C2-MW-3	09/20/13	0.011 U	0.018 U	0.10 U
	C2-MW-3-Dup	09/20/13	0.011 U	0.018 U	0.10 U
	C2-MW-3	03/21/14	0.028 U	0.038 U	0.019 U
	C2-MW-3	09/03/14	0.0943 U	0.714 J	0.0500 U
	C2-MW-3	04/07/15	0.0943 U	0.189 U	0.0500 U
	C2-MW-3	09/29/15	0.0943 U	0.269 J	0.0500 U
	C2-MW-3	03/29/16	0.0952 U	0.190 U	0.0500 U
	C2-MW-3	09/11/17	0.0935 U	0.283 J	0.0500 U
C2-MW-9	C2-MW-9	02/26/09	NS	NS	NS
	C2-MW-9	05/12/09	0.088 U	0.44 U	0.050 U
	C2-MW-9	12/18/09	0.17	0.40 U	0.050 U
	C2-MW-9 C2-MW-9	03/29/10	NS NC	NS NS	NS NS
	C2-MW-9	05/26/10 11/30/10	NS NS	NS NS	NS NS
	C2-MW-9	03/25/11	0.12	0.40 U	0.050 U
	C2-MW-9	10/11/11	0.13	0.38 U	0.050 U
	C2-MW-9	09/20/12	0.16 U	0.80 U	0.025 U
	C2-MW-9	03/22/13	0.41 U	0.41 U	0.10 U
	C2-MW-9	09/23/13	0.011 U	0.018 U	0.10 U
	C2-MW-9-Dup	09/23/13	0.011 U	0.018 U	0.10 U
	C2-MW-9	03/21/14	0.12	0.16 J	0.019 U
	C2-MW-9-DUP	03/21/14	0.099	0.096 J	0.019 U
	C2-MW-9	09/03/14	0.0952 U	0.517 J	0.050 U
	C2-MW-9-DUP	09/03/14	0.0990 U	0.198 U	0.050 U
	C2-MW-9	04/08/15	0.0943 U	0.189 U	0.050 U
	C2-MW-9-DUP	04/08/15	NA	NA	NA
	C2-MW-9	09/28/15	0.0943 U	0.189 U	0.050 U
	C2-MW-9	03/28/16	0.0952 U	0.311 J	0.050 U
	C2-MW-9 (DUP)	03/28/16	0.0952 U	0.342 J	0.050 U
	C2-MW-9	09/11/17	0.0935 U	0.187 U	0.050 U
	C2-MW-9(DUP)	09/11/17	0.0943 U	0.189 U	0.050 U

Table 7 Page 1 of 3

Table 7. Total Petroleum Hydrocarbons in the Shallow ZoneFormer Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
	thod B Surface Water Clea	•	NE	NE	NE
	shwater Surface Water Qu	•	NE NE	NE NE	NE NE
0,	s Rule Human Health Cri	•	NE	NE	NE
	thod A Groundwater Clea		0.50	0.50	1.0 ^(a)
	thod B Groundwater Clea		NE	NE	NE
C2-MW-11(R)	C2-MW-11(R)	09/03/14	0.110 J	0.198 U	0.050 U
02	C2-MW-11(R)	04/08/15	0.0952 U	0.190 U	0.050 U
	C2-MW-11(R)	09/28/15	0.0943 U	0.286 J	0.050 U
	C2-MW-11R	03/28/16	0.0962 U	0.262 J	0.050 U
	C2-MW-11(R)	09/11/17	0.0952 U	0.190 U	0.050 U
C2-MW-10(R2)	C2-MW-10(R)	09/29/15	0.0943 U	1.55	0.050 U
02 10(1.12)	C2-MW-10R2	03/28/16	0.0962 U	5,25	0.385
	C2-MW-10(R2)	09/11/17	0.0952 U	0.216 J	0.0500 U
	. ,	Abandoned or Unlocatab		<u> </u>	0.0000
Cell 2 - Deeper Unco			or mornioning room		
C2-MW-7	C2-MW-7	02/26/09	NS	NS	NS
02 11117 7	C2-MW-7	05/12/09	0.080 U	0.40 U	0.050 U
	C2-MW-7	12/17/09	NS	NS	NS
	C2-MW-7	03/29/10	NS	NS	NS
	C2-MW-7	05/26/10	NS	NS	NS
	C2-MW-7	11/30/10	NS	NS	NS
	C2-MW-7	03/25/11	0.19	0.84	0.050 U
C2-MW-10(R)	C2-MW-10	02/27/09	0.82 B	1.6	0.025 U
	C2-MW-10	05/12/09	1.1	0.85	0.050 U
	C2-MW-10	12/17/09	1.5	1.8	0.050 U
	C2-MW-10	03/29/10	0.82	1.0	0.050 U
	C2-MW-10	05/25/10	0.77	0.99	0.050 U
	C2-MW-10	11/30/10	1.7	1.9	0.050 U
	C2-MW-10	03/25/11	1.4	1.1	0.050 U
	C2-MW-10	10/12/11	0.70	0.90	0.050 U
	C2-MW-10	03/01/12	1.2	1.1	0.050 U
	C2-MW-10	09/20/12	1.2	0.92	0.025 U
	C2-MW-10-Dup	09/20/12	1.1	0.99	0.025 U
	C2-MW-10	03/21/13	0.90	1.6	NA
	C2-MW-10	09/23/13	NS	NS	NS
	C2-MW-10	03/21/14	NS	NS	NS
	C2-MW-10	09/03/14	NS	NS	NS
	C2-MW-10	09/03/14	NS	NS	NS

Table 7 Page 2 of 3

Table 7. Total Petroleum Hydrocarbons in the Shallow Zone

Former Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
Ecology's MTCA Met	hod B Surface Water Cle	anup Levels	NE	NE	NE
Ecology's Acute Free	shwater Surface Water Qu	uality Criteria	NE	NE	NE
EPA's National Toxic	s Rule Human Health Cri	teria for Surface Water	NE	NE	NE
Ecology's MTCA Met	hod A Groundwater Clea	nup Levels	0.50	0.50	1.0 ^(a)
Ecology's MTCA Met	thod B Groundwater Clea	nup Levels	NE	NE	NE
C2-MW-11	C2-MW-11	02/27/09	1.2 B	0.73	0.025 U
	C2-MW-11	05/12/09	0.085 U	0.43 U	0.050 U
	C2-MW-11	12/18/09	0.78	0.88	0.11
	C2-MW-11	03/29/10	0.56	0.61	0.050 U
	C2-MW-11	05/26/10	0.68	0.77	0.069
	C2-MW-11	11/30/10	0.27	0.39	0.050 U
	C2-MW-11	03/25/11	0.74	0.58	0.053
	C2-MW-11	10/12/11	0.19	0.38 U	0.050 U
	C2-MW-11	03/01/12	0.51	0.58	0.050 U
	C2-MW-11	09/20/12	0.27	0.80 U	0.025 U
	C2-MW-11	03/22/13	0.40 U	0.53	0.10 U
	C2-MW-11	09/23/13	0.011 U	0.018 U	0.10 U
	C2-MW-11	03/21/14	0.39	0.12 J	0.21

Notes:

B = Constituent was detected above the laboratory reporting limit in the method blank.

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

mg/l = milligrams per liter

MTCA = Washington State Department of Ecology Model Toxics Control Act

NA = Not analyzed

NE = Not established

NS = Not sampled because well was not accessible.

U = Constituent not detected at or above noted limit.

TPH = Total Petroleum Hydrocarbons

TPH-Gx = Total Petroleum Hydrocarbons gasoline-range

TPH-Dx = Total Petroleum Hydrocarbons diesel- and oil-range

Values in **bold** were detected above the laboratory method detection limit.

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

= Indicates an exceedance of a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

Ecology's Acute Freshwater Surface Water Quality Criteria were obtained from the Washington State Legislature Washington Administrative Code web site. http://apps.leq.wa.gov/WAC/default.aspx?cite=173-201A-240

EPA's National Toxics Rule Human Health Criteria for Surface Water were obtained through the Washington State Department of Ecology web site for Toxics Standards and Criteria. http://www.ecy.wa.gov/programs/wq/swqs/toxics.html

(a) = Value is for gasoline concentration when benzene is not present.

Table 7 Page 3 of 3

AECOM

Appendix AField Forms

AECOM

	DAY	s	Т	w	TH F	S
PROJECT MANAGER: NICKY MOODY	WEATHER	BRIGHT	CLEAR	OVERCAST	RAIN	SNOW
PROJECT: POV FVP	TEMP	To 32	32-50	50-70	70-85	85 up
JOB NO.:	WIND	Still	Moder	High	Repo	ort No.
AECOM FIELD REP: MARK TAUSCHER	HUMIDITY	Dry	Moder	Humid		
SUB-CONTRACTORS ON SITE: NONE						
EQUIPMENT ON SITE: GW Sampling supplies						7
WORK PERFORMED:						
		Lines				
- Picked up sample bottles from Al	EXEOI	10		,		
- AECOM ON SITE @ 0815, chec - looking to sample CZ	E in with	Mai	111 Sec	veity	gate	
- looking to sample CZ	series we	15 +	1161			
because the Fear was if bothles with the bailer, NOTE - tried to clear as much after sampling, well ran techarge quickly. 1315 - Sealed area around CZ-MW-G Also sealed CZ-MW-G Also sealed CZ-MW-G Also sealed CZ-MW-G (Soo - begin sampling CI series wells. (and some other well local	I would ! worker/sedim dry asher 123 and se wells as sealand ha	stir int a. I b	s pos ouler CZ	too not sible and -MW-	with did i	Scolin
The same of the sa			Film			
		11		HATGE		Simple 1
			-		-	
			1			1
ВУ		TITLE				
				SHEET	OF	

DATE 9/11/17

Groundwater Level Form

(Page 1)

Project Information	
Project Name: POV FVP	Date: 9/11/17
URS Project Number: 25698089	Personnel: MARK TAUSCHER

Measurements					
Well Number	Time	Depth to Water	Total Depth	Depth to Product	Comments
C2-MW-3	1517	12.58	16	-	
CZ-MW-6	1	-		125	abandoned
CZ-MW-9		25.16	35'	2	
CZ-MW-10(RZ)	1040	27.96	35'	_	
LZ-MW-11(R)	0905	25.27	30		
CZ-MW-12B	1335	26.57	50'	_	well under pressure
			- 1		
C1-MW-Z	-	-	_	_	abandoned
C1-MW-3	_	~	J	-	abandoned
C1-MW-4	1709	24.44	32'	_	
C1-MW-7	1821	16.91	30'	-	PLATE OVER WELL
L1-MW-9	<u> </u>		-		abandoned
				*	
	4.7				

Well Number:	6	1-	MW-4
Date:	91	111	17

Page 1 of	-54052				<u> </u>		- V 1-20	and the state of the	Date	e: <u> </u>	1 100
Project Info	rmation				Well Informa	ation		Stick-up o	r Flush	(circle one)	
Project Name	ne: POV	FVP	,		Well Diameter	Drilled V	Well Depth	Тор с	of Screen	Screen Interv	val
URS Project	Number:				(in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)	
Sampling In					7	37		17		17 - 3	
Field Team:		USCHE	52		CMT	Port=0.006 gal/ft	3/4"=0.023 ga	al/ft 2"=0.17 g	gal/ft 4"=0.66	gal/ft 6"=1.5 gal/ft	
Purge Metho	od: P-Pou	NP			Sample Cont	T					Filtered?
	e Depth (ft btc):				Number	Туре	Prese	ervative		tical Parameters	_
	gh Cell: Hol		52		6	VOA	HO	L	VC	OC'5	N
	ethod: BAI	There is not been all the									
	ation Method:										
	r Disposal: 🔿									100	
Field Condition Comments:	ions: Sunn	y 80-					-		-		
Initial DTW:		4									
	- L I										
	- 20	4-1-5									
						The second					
											1 4
Well Purge (4										
Time	Volume Purged (L)	Purge Rate (m⊔/m)	(ft btc)	Temp. (°C)	Conductivity	D.O. (mg/L)	рН	ORP (mV)	Turbidity (NTUs)	Clarity / Color Remarks	
1709	Pump On		24,44	-	±3%	±greater of 10% or 0.2mg/L	±0.1	±10mv	±10%	<= Stabilizatio	on
1715	Ó	100	24.76			3.08	6.63	-7	0.0	clear	
1720	.5	100	24.77			2.34	6.68		6.0	Clear	
1725	Ma	100	24.79	20 58		2.23	6.69	-25	0.0	Clear	
1730	1.5	100	24.79			1.99	6.68		0.0	Clear	
1735	20	100	24.00	20.59	1,40	2.15	6.66		00	Clear	
1740	3.0	100		20.51	1.90	1.96	6.65		0.0	clear	-
1750	3.5		24.81			198	6.65		0.0	clear	
	SAMI	DIJE	1-1.01	1000	11.1		6.60	- 0 1	0.0	Cico	
	774									A	-DK
											P
							- 37				
	<u> </u>				1	11					
		<u> </u>			/"	"					
		-			-				111111111111111111111111111111111111111		
										*	
											32
	Start Sampling	175								1	
1	End Sampling			Cample Numi	har / -	MW-4	•		Sample Time	. 1755	-

AC = almost clear Notes:

bgs = below ground surface

btc = below top of casing

CI = cloudy

DTW = depth to water C = clear

VC = very cloudy

Monitoring Well Sampling Field Log CZ-MW-3 Well Number: Page 1 of _ 9/11/17 Date: Project Information Well Information Stick-up or Flush (circle one) Well FVP POV **Drilled Well Depth** Top of Screen Project Name: Screen Interval Diameter (ft bgs) URS Project Number: (ft bgs) (ft btc) (ft bgs) (ft btc) (in) Sampling Information Field Team: CMT Port=0.006 gal/ft M. TAUSCHER 3/4"=0.023 gal/ft 2"=0.17 gal/ft 4"=0.66 gal/ft 6"=1.5 gal/ft Purge Method: P-PUMP Sample Containers Number Type Preservative Pump Intake Depth (ft btc): 15 **Analytical Parameters** VOA HLL Flow-Through Cell: HORIBA - U5Z N Sampling Method: TAILER IL AMIS HCL DX Decontamination Method: NA Purge Water Disposal: DN SITE Field Conditions: 500W 85° Comments: Initial DTW: 12.58 Well Purge Data Volume Purge Rate DTW Temp. Conductivity D.O. ORP Turbidity Clarity / Color / Time Purged рΗ (mL/m) (ft btc) (°C) WSIZEM (mg/L) (mV) (NTUs) Remarks ±greater of 10% <= Stabilization 17.58 Pump On ±3% ±0.1 ±10mv ±10% or 0.2mg/L Criteria 12.99 5.79 100 21.11 O. 212 6.89 0.0 04 Clear . 5 1325 50 13.42 22.18 0 209 2.86 6.8Z 1/2 0.0 lear 1530 .75 50 13.50 24 42 0.221 6.84 2.04 0.0 ear 1535 1.95 50 13.52 24.74 0.224 683 0.0 1540 13.53 23.67 1.25 1.63 50 0.222 6.85 111 0.0 ear 545 150 50 13.53 23.63 6.85 G. 222 1.64 clear 111 0.0 13.53 23.55 550 50 O.ZZZ 1.49 6.85 |11|0.0 clear 13.54 23.57 1555 20 50 O.ZZZ 49 6.85 110 0.0 lear 1600 2.25 23.54 50 13.54 1.47 clear 0. 272 111 0.0 1600 SAMPLE Start Sampling 1600

Notes: AC = almost clear

bgs = below ground surface

End Sampling

btc = below top of casing

Cf = cloudy

Sample Number: C2 - MW-3

C = clear

VC = very cloudy

DTW = depth to water

SC = slightly cloudy

1606

Sample Time:

Duplicate collected CZ-MW-9(DUP)

Well Number: Date:

(circle one)

Screen Interval (ft bgs)

25 - 35

6"=1.5 gal/ft

Project Information	Well Informa	ition	Market Error	Stick-up or	Flush	(cir
Project Name: PoV FVP	Well	Drilled We	ell Depth		Screen	Г
URS Project Number:	Diameter (in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	1
Sampling Information	2	35		25		Z
Field Team: M. TAUSCHER	CMT	Port=0.006 gal/ft	3/4"=0.023 ga	/ft 2"=0.17 ga	al/ft 4"=0.66 g	gal/ft
Purge Method: P-PUMP	Sample Con	tainers				
Pump Intake Depth (ft btc): 30	Number	Туре	Preser	vative	Analytic	cal Par
Flow-Through Cell: HORIBA U52	3	VOA	Ho	L	G	×
Sampling Method: BAILER	3	VOA	HC			ے د
Decontamination Method: NA	7_	IL AMIS	HC	L	0	ΣX
Purge Water Disposal: ON SITE						-
Field Conditions: Sunm 80°	3	VOA	HCL		Grx	
Comments:	3	VOA	HCZ		VO	2
Initial DTW: 25.14	2	IL AMB	HC	_	Dx	C
Sampled W/Baller						

1240

Number	Туре	Preservative	Analytical Parameters	Filter
3	VOA	HCL	Gx	1
3	VOA	HCL	VOC	1
2	1 L AMIS	HCL	DX	1
3 2	VOA	HCL HCL	Grx	~~
3	VOA	HCL	VO C DK	N
2	L AMB	HCL	Đχ	~
				+
		No.		
Conductivity	D.O.	ORP	Turbidity Clarity / Colo	r /

Time	Volume Purged (L)	Purge Rate (mL/m)	DTW (ft btc)	Temp. (°C)	Conductivity	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTUs)	Clarity / Color / Remarks
1040	Pump On		25.16	-	±3%	'±greater of 10% or 0.2mg/L	±0.1	±10mv	±10%	<= Stabilization Criteria
1045	0	100	25.44	1752	0.655	2.20	6.77	-70	5.9	- Ontone
150	.5	100	25.91	17.55	0.654	2.20	6.78	-72	0.0	Clear
1155		100	26.05	17.45	0.650		6.77	-73	0.0	clear
200	1.5	100	26.14		0.675		6.75	-76	0.0	clear
205	1.75	50	26.15	18 57	0.674	1.91	6.15	-77	0.0	clear
1210	2.0	50	26.19	18.85		1.83	6.74	-78	0.0	Clear
1215	2.25	50	26.22		0.693	1.86	6.74	- 78	0.0	clear
220	2.5	50	26.23		0.710	1.71	6.74	-78	6.0	clear
225	2.75	50	26.28	18.91	0.713	1.68	6.74	-78	0.0	Clear
230	3.0	50	26.31	18.93	0.725	1.62	6.74	-78	0.0	clear
235	SAMO	LE								
					_					
					/MT					T.= LH T =
					_(2-1-1	
	Start Sampling	123:	-		CZ-	MW.	9 (00)	>)		1240
	End Sampling	100		Sample Numb				-	Sample Time:	

AC = almost clear Notes:

btc = below top of casing

DTW = depth to water

VC = very cloudy

bgs = below ground surface

CI = cloudy

C = clear

Well Number: CZ-MW-//

rage 1 or_									Date	9/11/17	
Project Info	ormation				Well Informa	ation		Stick-up o	-	(circle one)	
Project Nan	ne: P	oV FV	P		Well	Drilled W	Vell Depth	-	of Screen	Screen Inter	val
URS Projec	t Number:		4		Diameter (in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)	vai
Sampling I	nformation				2	30		15		15 - 3	20
Field Team:	MARK	TAUSC	HCE		CMT	Port=0.006 gal/ft	3/4"=0.023 g	The second secon	gal/ft 4"=0.66		
Purge Meth	od: P-P	gme			Sample Con	tainers					3
Pump Intake Depth (ft btc): 28					Number	Туре	Pres	ervative	Analyt	ical Parameters	Filtered?
Flow-Throug	gh Cell: Ho	RIBA	U5Z		3	VOA	Н	CL	VOC	13	N
	ethod: Lou			ER	3	VOA		LL	CIX		1
Decontamin	ation Method:	NA	<u> </u>		2	11 AMB		il	DX		1
Purge Wate	r Disposal: 👩	N SITE	5				1700				
Field Condit	ions: SUM	m 15	0								
Comments:											
Initial DTW:	25 2-	1									
5 AMPL	ED VOA	5 (vo	c15 & 6	x) with	8 B						
ab	aikr.										
SAMPL	ED DX	(ILAV	43) WIL	h							
+051	s. I Lou	S Flow	- D-100	мр .							
mer	had -	Sedimu	din be	مرملار							
	of wel										1
Well Purge	Data								0.0000000000000000000000000000000000000		192.31
Time	Volume Purged (L)	Purge Rate (mL/m)	DTW (ft btc)	Temp. (°C)	Conductivity	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTUs)	Clarity / Color Remarks	1
0905	Pump On		25.27		±3%	±greater of 10% or 0.2mg/L	±0.1	±10mv	±10%	<= Stabilization	on
0910	0	50	25.32	21.05		11.06	840	66	90.0	TURBID	_
0920	.5	50	25.30	19.07			685	-87	104	Cloudy	
0925	.75	50	25.30	1801	0.737	2.93	6.78	-90	588	cloudy	
0935	1.25	50	25.29		0.743		681	-95	Z9Z	Cloudy	
mours		7	m = A1		17/	725				Choose	

Time	Purged (L)	(mL/m)	(ft btc)	(°C)	Conductivity	(mg/L)	pН	(mV)	Turbidity (NTUs)	Clarity / Color / Remarks
0905	Pump On		25.27	-	±3%	±greater of 10% or 0.2mg/L	±0.1	±10mv	±10%	<= Stabilization Criteria
0910	0	50	25.32	21.05	1.10	11.06	840	66	90.0	TURBID
0920	.5	50	25.30		0.150	3.43	6.85	-87	104	Cloudy
3925	.75	50	25.30	1801	0.737	2.93	6.78	-90	588	Cloudy
3935	1.25	50	25.29	1831	0.743	2.57	681	-95	292	Cloudy
0490	1.5	50	25 31	17.93	0.741	2.46	6.81	-98	164	Cloudy
0945	1.75	50	25.31				6.81	-99	112	Cloudy
0950	2.0	50	25.31		0.748	2.37	6.81	-102	109	Cloudy
5 75	2.25	50	25.32				680	-104	489	AC
000	2.5		25 32		6,762	2.34	6.81	-104	33.8	AC
005	275	50	25.32	18.04	0.774	2.35	681	-105	9.81	Clear
1010	SAMPL						- 30			+
		0								
					MT					
					1001					
	Start Sampling	101	0	1						
	End Sampling	103		Sample Numbe	(7 -	MW-IKE	7			10
			Final	Jampie Numbe	er:	1.00-16W	-)		Sample Time:	1010

Notes:

AC = almost clear

bgs = below ground surface

btc = below top of casing

CI = cloudy

DTW = depth to water

C = clear

VC = very cloudy

Well Number: Date:

(circle one)

Screen Interval (ft bgs)

40 - 50

Page 1 of	_		
Project Information	Well Informa	ation	
Project Name: PoV CVP	Well Diameter	Drilled We	ell Depth
URS Project Number:	(in)	(ft bgs)	(ft btc)
Sampling Information	2	50	
Field Team: MARK TAUSCHER	СМТ	Port=0.006 gal/ft	3/4"=0.023
Purge Method: Bladder Pomp	Sample Con	tainers	
Pump Intake Depth (ft btc): 45	Number	Туре	Pre
Flow-Through Cell: HOUIBA U57	3	VOA	H
Sampling Method: 3016R	3	VOA	H
Decontamination Method:	2	IL AMIS	1-2
Purge Water Disposal: 6N SITE			
Field Conditions: 500 M 80			
Comments:			
Initial DTW: 26.57	 		
well under pressure upon			
guasing lest to equilibrate		L. But	
	11		

Number	Туре	Preservative	Analytical Parameters	T
3	VOA	HCL	Gx	
3 2	VOA	HCL	VOC'S	
2	IL AMIS	HCL	Ox VOC'S	
				_
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
				-

Stick-up or Flush

(ft bgs)

Top of Screen

(ft btc)

	Volume			_						
Time	Purged (L)	Purge Rate (mL/m)	DTW (ft btc)	Temp. (⁰ C)	Conductivity	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTUs)	Clarity / Color / Remarks
335	Pump On		26.57	_	±3%	±greater of 10% or 0.2mg/L	±0.1	±10mv	±10%	<= Stabilization Criteria
345	•	.100	26.58	17.60	8. z8z	4.66	7. z8	69	error	Very terbio
350	1.5	100	26.58	16.85	6.780		7.31	83	448	Brown
355	2.0	100	26.59		0.288	6.18	7.29	89	268	131000 g
1400	2.5			18.43	0.291	6.16	7.29	91	238	CEODY
1405	3.0	100	26.60	19.08	0.293	6.31	7.29	95	186	Cloudy
1410	3.5	100	76.20		0.305		7.31	101	119	AC
1415	4.0	100	26.6	19.59	0.309		7.30	104	114	AC
420	4.5	100	76.61	19.21	0.292		7.31	97	88.4	AC
425	5.0	100	26.BI	19.72	0.293	6 21	7.31	98	83.9	AC
435	5.5	100		20.17	0.298	6.22	7.31	102	76.3	AC
438	6.25	100	26.62			6.22	7.32	104	675	AC
441			26 63		0 298	6.23	7.32	105	65.7	AC
444	6.50	100	26.63		0.298		7.32	105	65.4	AC
445	SAMP		26.63	20.16	0 278	6.23	7.32	105	6Z.9	AC
-1-13	_ JAINIT			\						
)						
										Service and
										No.
	Start Sampling	1445					The second			20
	End Sampling			Sample Numb	er: C2-	MW-1	ZB		Sample Time:	1445

Notes:

AC = almost clear

bgs = below ground surface

btc = below top of casing

CI = cloudy

DTW = depth to water

C = clear

VC = very cloudy

	ring Well S	ampling	Field Log	1		4		V		: C1-MW-	7
Page 1 of _				-					Date	: 9/11/17	
Project Info					Well Informa			Stick-up c	r Flush	(circle one)	
Project Nan		FVF			Well Diameter		Vell Depth	Тор	of Screen	Screen Interv	al
URS Projec	State of the same	upandesi (ca			(in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)	
Sampling in					2					-	
Field Team:	M. TA	WSCHO	ER		СМТ	Port=0.006 gal/ft	3/4"=0.023 g	al/ft 2"=0.17	gal/ft 4"=0.66	gal/ft 6"=1.5 gal/ft	
Purge Meth	od: P-Pu	MP			Sample Con	tainers					Filtered?
	e Depth (ft btc):				Number	Туре	Prese	ervative	Analyti	ical Parameters	File
Flow-Throug	gh Cell: HO	EIBA -	- USZ		3	VOV	BTO	EX	140	CL	
Sampling M	ethod:				_3_	VON	MT	34		CL	
Decontamin	ation Method:					1.1					
Purge Wate	r Disposal:				-						
Field Condit											
Comments:											
Initial DTW:	16.91										
1160-		2									-
NEEL	5 WELL	LACE	PLATE	OVEZ							
4 1115	o well	- 4									
						•					
					9						
						1					
						7					
Well Purge											
Time	Volume Purged (L)	Purge Rate (mL/m)	DTW (ft btc)	Temp. (°C)	Conductivity	D.O. (mg/L)	рН	ORP (mV)	Turbidity (NTUs)	Clarity / Color / Remarks	
1821	Pump On		16.91	-	±3%	±greater of 10% or 0.2mg/L	±0.1	±10mv	±10%	<= Stabilization	1
1825		100	17.06	7400	1.33	9.23	6.65	-45	0,0	Clear	
1830	.5	100	17.14	18.61	1.16	2.28	6.64	-81	0.0	clear	
1835		100	17.29	18.73	1.14	2.06	664	-86	6.0	Clear	
1846	1.5	100	17.55	10 82		1.65	6.63	-91	0.0	clear	
1845	2.0	100	17.76	21,01	1.18	1.62	6.63	-91	0.0	Clear	
1850	2.5	160	17.99	21.09	1.19	1.58	6.63	-9	0.0	clear	
1855	3.0	100	1821	21.32	1.19	1.52	6.67	-91	0.0	clec	
1900	SAMPL	6	1 1		-						
											488
							200				
							4.				
									L. Lait Ma	material states	
	101		- 1]					
					Bar a gri	Imo				1	
					(The state of					
				1 550							
				Page 1	per l						
											3.0
						The same of					
	Start Sampling	1900									
	End Sampling		Fig	Sample Numb	er: (1-	MW-7			Sample Time:	1900	
			Final								

btc = below top of casing

CI = cloudy

DTW = depth to water

C = clear

Notes:

AC = almost clear

bgs = below ground surface

VC = very cloudy

Page 1 of	ring Well S	ampling	Field Log	g				W	ell Number	9/11/17	R
Project Inf			XXXXXXXXX		Well Informa	41-10		Stick-up o		(circle one)	
	me: PoV	EVB	A CONTRACTOR OF THE PARTY OF TH		Well		/ell Depth		f Screen		46
URS Projec	•	101-			Diameter	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	Screen Interval (ft bgs)	ł
Annual Property.	Information				(in) 2	35	(It bic)	2 C	(it bic)		_
THE RESERVE TO THE PERSON NAMED IN	M TAU	Siner)			Port=0.006 gal/ft	3/4"=0.023 g		al/ft 4"=0.66	20 - 35 gal/ft 6"=1.5 gal/ft	2
Purge Meth	nod: P-Pu	MP			Sample Conf	OT ECONOMICS OF STREET	577 0,020 g	2 - 0,11 g	Jant 4 -0.00	Jank 0 - 1.5 gank	0.
	e Depth (ft btc):				Number	Type	Dress	ervative	Anabai	and Danners Anna	Filtered?
	igh Cell: HO'S									cal Parameters	╌
	Method: BA		15 6		2	VOA	HO		GN		^
	nation Method:				-	1 L AMB	14		D	2	نم
	er Disposal: 🖒										
Field Condi	tions: Sunn	u 75	e o		1 ×						<u> </u>
Comments		/									-
Initial DTW	M 27	96									
Saupl	20 w/	Bauler									
y	- 1										
											_
											_
Well Purge	Data								intermina		
Time	Volume Purged	Purge Rate	DTW	Temp.	Conductivity	D.O.	-11	ORP	Turbidity	Clarity / Color /	CARL
	(L)	(mL/m)	(ft btc)	(°C)	MSTZM	(mg/L)	pН	(mV)	(NTUs)	Remarks	
1040	Pump On		27.96		±3%	±greater of 10% or 0.2mg/L	±0.1	±10mv	±10%	<= Stabilization Criteria	
1050		50	27.96			1.73	6.55	44	10.3	clear	
1055		50	27.98			1.91	6.83	-6i	3.2	clear	
1100	1.0	120		19.84			6.86	-70	5.9	clear	
1105	1.75	125		19.85		2.04	6.86	-70	5.0	Clear	
1110	2.25	100	28.01	19.67	0.846	2.01	6.87	-72	1.0	clear	
1115	2.75	160	28.01	19.57	0.844	2.00	6.87	-72	0.0	Clear	
1120	2.75 3.25	160	2801	19.54	6.842	1.97	6.87	-73	6.0	Clear	
120	SAMPL	E									
				· · · · · · · · · · · · · · · · · · ·	M						-
= 1					/ NVI						
										<u> Pa</u>	
											_
											_
	1 1			1	, ,				J		
	Start Sampling	1120									

Notes:

AC = almost clear

bgs = below ground surface

btc = below top of casing

Sample Number: (2-MW-10(22

Ci = cloudy

DTW = depth to water

C = clear

VC = very cloudy

1120.

Sample Time:

Appendix BLaboratory Report and Chain-of-Custody Form

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Thursday, September 28, 2017

Nicky Moody AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201

RE: POV FVP / [none]

Enclosed are the results of analyses for work order <u>A7I0314</u>, which was received by the laboratory on 9/12/2017 at 10:51:00AM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

alumel la finiel

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION Laboratory ID **Date Received** Sample ID Matrix **Date Sampled** 09/12/17 10:51 C1-MW-4 A7I0314-01 Water 09/11/17 17:55 C1-MW-7 A7I0314-02 Water 09/11/17 19:00 09/12/17 10:51 C2-MW-3 A7I0314-03 Water 09/11/17 16:00 09/12/17 10:51 C2-MW-9 A7I0314-04 Water 09/11/17 12:35 09/12/17 10:51 C2-MW-9(DUP) A7I0314-05 Water 09/11/17 12:40 09/12/17 10:51 C2-MW-10(R2) A7I0314-06 Water 09/11/17 11:20 09/12/17 10:51 C2-MW-11(R) A7I0314-07 Water 09/11/17 10:10 09/12/17 10:51 C2-MW-12B A7I0314-08 Water 09/11/17 14:45 09/12/17 10:51 Trip Blank A7I0314-09 Water 09/11/17 00:00 09/12/17 10:51

Apex Laboratories

Dunnel la finiel

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 2 of 37

Darrell Auvil, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

		Diesel an	d/or Oil Hy	drocarbons b	y NWTPH-D	x			
			Reporting	;					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
C2-MW-3 (A7I0314-03RE1)			Matrix: Wa	ater	Batch: 70905	86			
Diesel	ND	0.0935	0.187	mg/L	1	09/14/17 11:03	NWTPH-Dx		
Oil	0.283	0.187	0.374	"	"	"	"	J, F-0	
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 91 %	Limits: 50-150	% "	"	"		
C2-MW-9 (A7I0314-04RE1)			Matrix: Wa	ater	Batch: 70905	86			
Diesel	ND	0.0935	0.187	mg/L	1	09/14/17 11:24	NWTPH-Dx		
Oil	ND	0.187	0.374	"	"	"	"		
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 77 %	Limits: 50-150	% "	"	"		
C2-MW-9(DUP) (A7I0314-05)			Matrix: Wa	ater	Batch: 70905	86			
Diesel	ND	0.0943	0.189	mg/L	1	09/14/17 00:09	NWTPH-Dx		
Oil	ND	0.189	0.377	"	"	"	"		
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 82 %	Limits: 50-150	% "	"	"		
C2-MW-10(R2) (A7I0314-06)			Matrix: Wa	ater	Batch: 70905	86			
Diesel	ND	0.0952	0.190	mg/L	1	09/14/17 00:31	NWTPH-Dx		
Oil	0.216	0.190	0.381	"	"	"	"		
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 99 %	Limits: 50-150	% "	"	"		
C2-MW-11(R) (A7I0314-07RE1)			Matrix: Wa	ater	Batch: 70905	86			
Diesel	ND	0.0952	0.190	mg/L	1	09/14/17 11:45	NWTPH-Dx		
Oil	ND	0.190	0.381	"	"	"	"		
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 93 %	Limits: 50-150	% "	"	"		
C2-MW-12B (A7I0314-08)			Matrix: Water Batch: 7090586						
Diesel	ND	0.0952	0.190	mg/L	1	09/14/17 01:39	NWTPH-Dx		
Oil	ND	0.190	0.381	"	"	"	"		
Surrogate: o-Terphenyl (Surr)		Rec	overy: 101 %	Limits: 50-150	% "	"	"		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: [none] Reported:
Portland, OR 97201 Project Manager: Nicky Moody 09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

Gase	oline Rang	e Hydrocai	bons (Ben	zene through	Naphthalen	e) by NWTPH-G	x	
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
C2-MW-3 (A7I0314-03)			Matrix: Wa	iter	Batch: 70905	60		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	09/13/17 18:07	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 89 %	Limits: 50-150 %	ó "	"	"	
1,4-Difluorobenzene (Sur)			96 %	Limits: 50-150 %	ó "	"	"	
C2-MW-9 (A7I0314-04)			Matrix: Wa	nter	Batch: 70905	60		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	09/13/17 18:35	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 90 %	Limits: 50-150 %	ó "	"	"	
1,4-Difluorobenzene (Sur)			95 %	Limits: 50-150 %	ó "	"	"	
C2-MW-9(DUP) (A7I0314-05)			Matrix: Wa	ater	Batch: 70905	60		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	09/13/17 19:03	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 92 %	Limits: 50-150 %	ś "	"	"	
1,4-Difluorobenzene (Sur)			97 %	Limits: 50-150 %	ó "	"	"	
C2-MW-10(R2) (A7I0314-06)			Matrix: Wa	iter	Batch: 70905	60		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	09/13/17 19:32	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 94 %	Limits: 50-150 %	ó "	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	ó "	"	"	
C2-MW-11(R) (A7I0314-07)			Matrix: Wa	ater	Batch: 70905	60		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	09/13/17 20:00	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 91 %	Limits: 50-150 %	ó "	"	"	
1,4-Difluorobenzene (Sur)			97 %	Limits: 50-150 %	ó "	"	"	
C2-MW-12B (A7I0314-08)			Matrix: Wa	ater	Batch: 70905	60		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	09/13/17 20:28	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 93 %	Limits: 50-150 %	ó "	"	"	
1,4-Difluorobenzene (Sur)			97 %	Limits: 50-150 %	ó "	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

	BTEX Compounds by EPA 8260C													
			Reporting											
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes						
Trip Blank (A7l0314-09)			Matrix: Wa	iter E	Batch: 709056	60								
Benzene	ND	0.100	0.200	ug/L	1	09/13/17 15:18	EPA 8260C							
Ethylbenzene	ND	0.250	0.500	"	"	"	"							
Toluene	ND	0.500	1.00	"	"	"	"							
Xylenes, total	ND	0.750	1.50	"	"	"	"							
Surrogate: 1,4-Difluorobenzene (Surr)		Rece	overy: 107 %	Limits: 80-120 %	"	"	"							
Toluene-d8 (Surr)			101 %	Limits: 80-120 %	"	"	"							
4-Bromofluorobenzene (Surr)			96 %	Limits: 80-120 %	"	"	"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

		RBDM (Compound	s (BTEX+) by	EPA 8260C			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C1-MW-7 (A7I0314-02)			Matrix: Wa	iter	Batch: 709050	60		
Benzene	ND	0.100	0.200	ug/L	1	09/13/17 17:39	EPA 8260C	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Methyl tert-butyl ether (MTBE)	15.3	0.500	1.00	"	"	"	"	
Toluene	ND	0.500	1.00	"	"	"	"	
Xylenes, total	ND	0.750	1.50	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 106 %	Limits: 80-120 %	ó "	"	"	
Toluene-d8 (Surr)			101 %	Limits: 80-120 %	6 "	"	"	
4-Bromofluorobenzene (Surr)		97 %	Limits: 80-120 %	6 "	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: [none] Reported:
Portland, OR 97201 Project Manager: Nicky Moody 09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
C1-MW-4 (A7I0314-01)			Matrix: Water		Batch: 70905	60						
Acetone	ND	20.0	20.0	ug/L	1	09/13/17 16:42	EPA 8260C					
Benzene	ND	0.100	0.200	"	"	"	"					
Bromobenzene	ND	0.250	0.500	"	"	"	"					
Bromochloromethane	ND	0.500	1.00	"	"	"	"					
Bromodichloromethane	ND	0.500	1.00	"	"	"	"					
Bromoform	ND	0.500	1.00	"	"	"	"					
Bromomethane	ND	5.00	5.00	"	"	"	"					
2-Butanone (MEK)	ND	5.00	10.0	"	"	"	"					
n-Butylbenzene	ND	0.500	1.00	"	"	"	"					
sec-Butylbenzene	ND	0.500	1.00	"	"	"	"					
tert-Butylbenzene	ND	0.500	1.00	"	"	"	"					
Carbon tetrachloride	ND	0.500	1.00	"	"	"	"					
Chlorobenzene	ND	0.250	0.500	"	"	"	"					
Chloroethane	ND	5.00	5.00	"	"	"	"					
Chloroform	ND	0.500	1.00	"	"	"	"					
Chloromethane	ND	2.50	5.00	"	"	"	"					
2-Chlorotoluene	ND	0.500	1.00	"	"	"	"					
4-Chlorotoluene	ND	0.500	1.00	"	"	"	"					
Dibromochloromethane	ND	0.500	1.00	"	"	"	"					
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"	"	"					
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"	"	"					
Dibromomethane	ND	0.500	1.00	"	"	"	"					
1,2-Dichlorobenzene	ND	0.250	0.500	"	"	"	"					
1,3-Dichlorobenzene	ND	0.250	0.500	"	"	"	"					
1,4-Dichlorobenzene	ND	0.250	0.500	"	"	"	"					
Dichlorodifluoromethane	ND	0.500	1.00	"	"	"	"					
1,1-Dichloroethane	0.540	0.250	0.500	"	"	"	"					
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"					
1,1-Dichloroethene	ND	0.250	0.500	"	"	"	"					
cis-1,2-Dichloroethene	1.18	0.250	0.500	"	"	"	"					
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"					
1,2-Dichloropropane	ND	0.250	0.500	"	"	"	"					
1,3-Dichloropropane	ND	0.500	1.00	"	"	"	"					
2,2-Dichloropropane	ND	0.500	1.00	"	"	"	"					
1,1-Dichloropropene	ND	0.500	1.00	"	"	"	"					

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 7 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Com	pounds by E	PA 8260C			
	D - 1	MDI	Reporting		D.1	D. A	M.d. 1	N
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C1-MW-4 (A7I0314-01)			Matrix: Wate	r B	atch: 70905			
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	"	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Hexachlorobutadiene	ND	2.50	5.00	"	"	"	"	
2-Hexanone	ND	10.0	10.0	"	"	"	"	
Isopropylbenzene	ND	0.500	1.00	"	"	"	"	
4-Isopropyltoluene	ND	0.500	1.00	"	"	"	"	
Methylene chloride	ND	1.50	3.00	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND	10.0	10.0	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Naphthalene	ND	2.00	2.00	"	"	"	"	
n-Propylbenzene	ND	0.250	0.500	"	"	"	"	
Styrene	ND	0.500	1.00	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"	"	"	
Toluene	ND	0.500	1.00	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"	"	"	
Trichloroethene (TCE)	ND	0.250	0.500	"	"	"	"	
Trichlorofluoromethane	ND	1.00	2.00	"	"	"	"	
1,2,3-Trichloropropane	ND	0.500	1.00	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
Vinyl chloride	0.300	0.200	0.400	"	"	"	"	
m,p-Xylene	ND	0.500	1.00	"	"	"	"	
o-Xylene	ND	0.250	0.500	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 104 % 1	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			100 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Sur	r)		96 % 1	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Ommel by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: [none] Reported:
Portland, OR 97201 Project Manager: Nicky Moody 09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
C2-MW-9 (A7I0314-04)			Matrix: Water		Batch: 70905	60						
Acetone	ND	20.0	20.0	ug/L	1	09/13/17 18:35	EPA 8260C					
Benzene	ND	0.100	0.200	"	"	"	"					
Bromobenzene	ND	0.250	0.500	"	"	"	"					
Bromochloromethane	ND	0.500	1.00	"	"	"	"					
Bromodichloromethane	ND	0.500	1.00	"	"	"	"					
Bromoform	ND	0.500	1.00	"	"	"	"					
Bromomethane	ND	5.00	5.00	"	"	"	"					
2-Butanone (MEK)	ND	5.00	10.0	"	"	"	"					
n-Butylbenzene	ND	0.500	1.00	"	"	"	"					
sec-Butylbenzene	ND	0.500	1.00	"	"	"	"					
tert-Butylbenzene	ND	0.500	1.00	"	"	"	"					
Carbon tetrachloride	ND	0.500	1.00	"	"	"	"					
Chlorobenzene	ND	0.250	0.500	"	"	"	"					
Chloroethane	ND	5.00	5.00	"	"	"	"					
Chloroform	ND	0.500	1.00	"	"	"	"					
Chloromethane	ND	2.50	5.00	"	"	"	"					
2-Chlorotoluene	ND	0.500	1.00	"	"	"	"					
4-Chlorotoluene	ND	0.500	1.00	"	"	"	"					
Dibromochloromethane	ND	0.500	1.00	"	"	"	"					
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"	"	"					
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"	"	"					
Dibromomethane	ND	0.500	1.00	"	"	"	"					
1,2-Dichlorobenzene	ND	0.250	0.500	"	"	"	"					
1,3-Dichlorobenzene	ND	0.250	0.500	"	"	"	"					
1,4-Dichlorobenzene	ND	0.250	0.500	"	"	"	"					
Dichlorodifluoromethane	ND	0.500	1.00	"	"	"	"					
1,1-Dichloroethane	ND	0.250	0.500	"	"	"	"					
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"					
1,1-Dichloroethene	ND	0.250	0.500	"	"	"	"					
cis-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"					
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"					
1,2-Dichloropropane	ND	0.250	0.500	"	"	"	"					
1,3-Dichloropropane	ND	0.500	1.00	"	"	"	"					
2,2-Dichloropropane	ND	0.500	1.00	"	"	"	"					
1,1-Dichloropropene	ND	0.500	1.00	"	"	"	"					

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 9 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Con	pounds by	EPA 8260C			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
2-MW-9 (A7I0314-04)			Matrix: Wate	r	Batch: 70905	60		
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	"	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Hexachlorobutadiene	ND	2.50	5.00	"	"	"	"	
2-Hexanone	ND	10.0	10.0	"	"	"	"	
Isopropylbenzene	ND	0.500	1.00	"	"	"	"	
4-Isopropyltoluene	ND	0.500	1.00	"	"	"	"	
Methylene chloride	ND	1.50	3.00	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND	10.0	10.0	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Naphthalene	ND	2.00	2.00	"	"	"	"	
n-Propylbenzene	ND	0.250	0.500	"	"	"	"	
Styrene	ND	0.500	1.00	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"	"	"	
Toluene	ND	0.500	1.00	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"	"	"	
Trichloroethene (TCE)	ND	0.250	0.500	"	"	"	"	
Trichlorofluoromethane	ND	1.00	2.00	"	"	"	"	
1,2,3-Trichloropropane	ND	0.500	1.00	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
Vinyl chloride	0.860	0.200	0.400	"	"	"	"	
n,p-Xylene	ND	0.500	1.00	"	"	"	"	
o-Xylene	ND	0.250	0.500	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Re	covery: 105 %	Limits: 80-120 %	% "	п	"	
Toluene-d8 (Surr)			-	Limits: 80-120 9		"	"	
4-Bromofluorobenzene (Surr)			96%	Limits: 80-120 9	% "	"	"	

Apex Laboratories

Quand to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 10 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: [none] Reported:
Portland, OR 97201 Project Manager: Nicky Moody 09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
C2-MW-9(DUP) (A7I0314-05)			Matrix: Water		Batch: 70905	60						
Acetone	ND	20.0	20.0	ug/L	1	09/13/17 19:03	EPA 8260C					
Benzene	ND	0.100	0.200	"	"	"	"					
Bromobenzene	ND	0.250	0.500	"	"	"	"					
Bromochloromethane	ND	0.500	1.00	"	"	"	"					
Bromodichloromethane	ND	0.500	1.00	"	"	"	"					
Bromoform	ND	0.500	1.00	"	"	"	"					
Bromomethane	ND	5.00	5.00	"	"	"	"					
2-Butanone (MEK)	ND	5.00	10.0	"	"	"	"					
n-Butylbenzene	ND	0.500	1.00	"	"	"	"					
sec-Butylbenzene	ND	0.500	1.00	"	"	"	"					
tert-Butylbenzene	ND	0.500	1.00	"	"	"	"					
Carbon tetrachloride	ND	0.500	1.00	"	"	"	"					
Chlorobenzene	ND	0.250	0.500	"	"	"	"					
Chloroethane	ND	5.00	5.00	"	"	"	"					
Chloroform	ND	0.500	1.00	"	"	"	"					
Chloromethane	ND	2.50	5.00	"	"	"	"					
2-Chlorotoluene	ND	0.500	1.00	"	"	"	"					
4-Chlorotoluene	ND	0.500	1.00	"	"	"	"					
Dibromochloromethane	ND	0.500	1.00	"	"	"	"					
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"	"	"					
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"	"	"					
Dibromomethane	ND	0.500	1.00	"	"	"	"					
1,2-Dichlorobenzene	ND	0.250	0.500	"	"	"	"					
1,3-Dichlorobenzene	ND	0.250	0.500	"	"	"	"					
1,4-Dichlorobenzene	ND	0.250	0.500	"	"	"	"					
Dichlorodifluoromethane	ND	0.500	1.00	"	"	"	"					
1,1-Dichloroethane	ND	0.250	0.500	"	"	"	"					
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"					
1,1-Dichloroethene	ND	0.250	0.500	"	"	"	"					
cis-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"					
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"					
1,2-Dichloropropane	ND	0.250	0.500	"	"	"	"					
1,3-Dichloropropane	ND	0.500	1.00	"	"	"	"					
2,2-Dichloropropane	ND	0.500	1.00	"	"	"	"					
1,1-Dichloropropene	ND	0.500	1.00	"	"	"	"					

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 11 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Com	pounds by	EPA 8260C			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C2-MW-9(DUP) (A7I0314-05)			Matrix: Wate	r	Batch: 709056	60		
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	"	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Hexachlorobutadiene	ND	2.50	5.00	"	"	"	"	
2-Hexanone	ND	10.0	10.0	"	"	"	"	
Isopropylbenzene	ND	0.500	1.00	"	"	"	"	
4-Isopropyltoluene	ND	0.500	1.00	"	"	"	"	
Methylene chloride	ND	1.50	3.00	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND	10.0	10.0	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Naphthalene	ND	2.00	2.00	"	"	"	"	
n-Propylbenzene	ND	0.250	0.500	"	"	"	"	
Styrene	ND	0.500	1.00	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"	"	"	
Toluene	ND	0.500	1.00	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"	"	"	
Trichloroethene (TCE)	ND	0.250	0.500	"	"	"	"	
Trichlorofluoromethane	ND	1.00	2.00	"	"	"	"	
1,2,3-Trichloropropane	ND	0.500	1.00	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
Vinyl chloride	0.840	0.200	0.400	"	"	"	"	
m,p-Xylene	ND	0.500	1.00	"	"	"	"	
o-Xylene	ND	0.250	0.500	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr))	Re	ecovery: 108 % 1	Limits: 80-120 9	% "	"	"	
Toluene-d8 (Surr)			101 %	Limits: 80-120 9	% "	"	"	
			0.504					

Limits: 80-120 %

Apex Laboratories

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 12 of 37

Darrell Auvil, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: [none] Reported:
Portland, OR 97201 Project Manager: Nicky Moody 09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Compo	ounds by	EPA 8260C			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C2-MW-11(R) (A7I0314-07)			Matrix: Water		Batch: 709056	60		
Acetone	ND	20.0	20.0	ug/L	1	09/13/17 20:00	EPA 8260C	
Benzene	ND	0.100	0.200	"	"	"	"	
Bromobenzene	ND	0.250	0.500	"	"	"	"	
Bromochloromethane	ND	0.500	1.00	"	"	"	"	
Bromodichloromethane	ND	0.500	1.00	"	"	"	"	
Bromoform	ND	0.500	1.00	"	"	"	"	
Bromomethane	ND	5.00	5.00	"	"	"	"	
2-Butanone (MEK)	ND	5.00	10.0	"	"	"	"	
n-Butylbenzene	ND	0.500	1.00	"	"	"	"	
sec-Butylbenzene	ND	0.500	1.00	"	"	"	"	
tert-Butylbenzene	ND	0.500	1.00	"	"	"	"	
Carbon tetrachloride	ND	0.500	1.00	"	"	"	"	
Chlorobenzene	ND	0.250	0.500	"	"	"	"	
Chloroethane	ND	5.00	5.00	"	"	"	"	
Chloroform	ND	0.500	1.00	"	"	"	"	
Chloromethane	ND	2.50	5.00	"	"	"	"	
2-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
4-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
Dibromochloromethane	ND	0.500	1.00	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"	"	"	
Dibromomethane	ND	0.500	1.00	"	"	"	"	
1,2-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,3-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,4-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
Dichlorodifluoromethane	ND	0.500	1.00	"	"	"	"	
1,1-Dichloroethane	ND	0.250	0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"	
1,1-Dichloroethene	ND	0.250	0.500	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"	
1,2-Dichloropropane	ND	0.250	0.500	"	"	"	"	
1,3-Dichloropropane	ND	0.500	1.00	"	"	"	"	
2,2-Dichloropropane	ND	0.500	1.00	"	"	"	"	
1,1-Dichloropropene	ND	0.500	1.00	"	"	"	"	

Apex Laboratories

Dund by Smil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 13 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Con	pounds by	EPA 8260C			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
2-MW-11(R) (A7I0314-07)			Matrix: Wate	r	Batch: 70905	60		
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	"	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Hexachlorobutadiene	ND	2.50	5.00	"	"	"	"	
2-Hexanone	ND	10.0	10.0	"	"	"	"	
Isopropylbenzene	ND	0.500	1.00	"	"	"	"	
4-Isopropyltoluene	ND	0.500	1.00	"	"	"	"	
Methylene chloride	ND	1.50	3.00	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND	10.0	10.0	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Naphthalene	ND	2.00	2.00	"	"	"	"	
n-Propylbenzene	ND	0.250	0.500	"	"	"	"	
Styrene	ND	0.500	1.00	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"	"	"	
Toluene	ND	0.500	1.00	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"	"	"	
Trichloroethene (TCE)	ND	0.250	0.500	"	"	"	"	
Trichlorofluoromethane	ND	1.00	2.00	"	"	"	"	
1,2,3-Trichloropropane	ND	0.500	1.00	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
Vinyl chloride	1.13	0.200	0.400	"	"	"	"	
m,p-Xylene	ND	0.500	1.00	"	"	"	"	
o-Xylene	ND	0.250	0.500	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Re	covery: 107 %	Limits: 80-120 %	6 "	"	"	
Toluene-d8 (Surr)			101 %	Limits: 80-120 %	6 "	n .	"	
4-Bromofluorobenzene (Surr)			96 %	Limits: 80-120 %	6 "	"	"	

Apex Laboratories

Quand to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 14 of 37

Darrell Auvil, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500 Project Number: [none] Reported:
Portland, OR 97201 Project Manager: Nicky Moody 09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Compo	ounds by	EPA 8260C			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
C2-MW-12B (A7I0314-08)			Matrix: Water		Batch: 709056	60		
Acetone	ND	20.0	20.0	ug/L	1	09/13/17 20:28	EPA 8260C	
Benzene	ND	0.100	0.200	"	"	"	"	
Bromobenzene	ND	0.250	0.500	"	"	"	"	
Bromochloromethane	ND	0.500	1.00	"	"	"	"	
Bromodichloromethane	ND	0.500	1.00	"	"	"	"	
Bromoform	ND	0.500	1.00	"	"	"	"	
Bromomethane	ND	5.00	5.00	"	"	"	"	
2-Butanone (MEK)	ND	5.00	10.0	"	"	"	"	
n-Butylbenzene	ND	0.500	1.00	"	"	"	"	
sec-Butylbenzene	ND	0.500	1.00	"	"	"	"	
tert-Butylbenzene	ND	0.500	1.00	"	"	"	"	
Carbon tetrachloride	ND	0.500	1.00	"	"	"	"	
Chlorobenzene	ND	0.250	0.500	"	"	"	"	
Chloroethane	ND	5.00	5.00	"	"	"	"	
Chloroform	ND	0.500	1.00	"	"	"	"	
Chloromethane	ND	2.50	5.00	"	"	"	"	
2-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
4-Chlorotoluene	ND	0.500	1.00	"	"	"	"	
Dibromochloromethane	ND	0.500	1.00	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"	"	"	
Dibromomethane	ND	0.500	1.00	"	"	"	"	
1,2-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,3-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
1,4-Dichlorobenzene	ND	0.250	0.500	"	"	"	"	
Dichlorodifluoromethane	ND	0.500	1.00	"	"	"	"	
1,1-Dichloroethane	ND	0.250	0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"	"	"	
1,1-Dichloroethene	ND	0.250	0.500	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"	"	"	
1,2-Dichloropropane	ND	0.250	0.500	"	"	"	"	
1,3-Dichloropropane	ND	0.500	1.00	"	"	"	"	
2,2-Dichloropropane	ND	0.500	1.00	"	"	"	"	
1,1-Dichloropropene	ND	0.500	1.00	"	"	"	"	

Apex Laboratories

Dund by Smil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 15 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Com	pounds by	EPA 8260C			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
2-MW-12B (A7I0314-08)			Matrix: Water	r	Batch: 70905	60		
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	"	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"	"	"	
Ethylbenzene	ND	0.250	0.500	"	"	"	"	
Hexachlorobutadiene	ND	2.50	5.00	"	"	"	"	
2-Hexanone	ND	10.0	10.0	"	"	"	"	
Isopropylbenzene	ND	0.500	1.00	"	"	"	"	
4-Isopropyltoluene	ND	0.500	1.00	"	"	"	"	
Methylene chloride	ND	1.50	3.00	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND	10.0	10.0	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"	"	"	
Naphthalene	ND	2.00	2.00	"	"	"	"	
n-Propylbenzene	ND	0.250	0.500	"	"	"	"	
Styrene	ND	0.500	1.00	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"	"	"	
Toluene	ND	0.500	1.00	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"	"	"	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"	"	"	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"	"	"	
Trichloroethene (TCE)	ND	0.250	0.500	"	"	"	"	
Trichlorofluoromethane	ND	1.00	2.00	"	"	"	"	
1,2,3-Trichloropropane	ND	0.500	1.00	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"	"	"	
Vinyl chloride	ND	0.200	0.400	"	"	"	"	
n,p-Xylene	ND	0.500	1.00	"	"	"	"	
o-Xylene	ND	0.250	0.500	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Re	covery: 108 % L	Limits: 80-120 %	6 "	"	"	
Toluene-d8 (Surr)			•	Limits: 80-120 %		"	"	
4-Bromofluorobenzene (Surr)			94 % L	Limits: 80-120 %	6 "	"	"	

Apex Laboratories

Quand to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 16 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

			Diesel and/	or Oil Hyd	Irocarbo	ns by NWT	PH-Dx					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7090586 - EPA 3510	C (Fuels/A	cid Ext.)					Wat	ter				
Blank (7090586-BLK1)				Pro	epared: 09/	13/17 13:47	Analyzed:	09/13/17 21	1:53			
NWTPH-Dx												
Diesel	ND	0.0909	0.182	mg/L	1							
Oil	ND	0.182	0.364	"	"							
Surr: o-Terphenyl (Surr)		Red	covery: 98 %	Limits: 50	0-150 %	Dilu	tion: 1x					
LCS (7090586-BS1)				Pro	epared: 09/	13/17 13:47	Analyzed:	09/13/17 22	2:15			
NWTPH-Dx												
Diesel	1.28	0.100	0.200	mg/L	1	1.25		103	58-115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 104 %	Limits: 50	0-150 %	Dilu	tion: Ix					
LCS Dup (7090586-BSD1)				Pre	epared: 09/	13/17 13:47	Analyzed:	09/13/17 22	2:38			Q-19
NWTPH-Dx												
Diesel	1.29	0.100	0.200	mg/L	1	1.25		103	58-115%	0.2	20%	
Surr: o-Terphenyl (Surr)		Rec	covery: 99 %	Limits: 50	0-150 %	Dilu	tion: 1x					

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 17 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarbo	ons (Be	nzene thre	ough Naph	thalene) l	by NWTP	H-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7090560 - EPA 5030	3						Wat	er				
Blank (7090560-BLK1)]	Prepared: 09	/13/17 10:07	Analyzed:	09/13/17 11	:32			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 92 %	Limits:	50-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			96 %		50-150 %		"					
LCS (7090560-BS2)]	Prepared: 09	/13/17 10:07	Analyzed:	09/13/17 11	:04			
NWTPH-Gx (MS)												
Gasoline Range Organics	0.444	0.0500	0.100	mg/L	1	0.500		89	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 91 %	Limits:	50-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %		50-150 %		"					
Duplicate (7090560-DUP1)]	Prepared: 09	/13/17 12:00	Analyzed:	09/13/17 17	':11			
QC Source Sample: C1-MW-4 (A7	10314-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 90 %	Limits:	50-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			95 %		50-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 18 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	Compo	unds by	EPA 8260C	; 					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7090560 - EPA 5030E	3						Wat	er				
Blank (7090560-BLK1)				Pr	epared: 09/	13/17 10:07	Analyzed:	09/13/17	11:32			
EPA 8260C												
Benzene	ND	0.100	0.200	ug/L	1							
Ethylbenzene	ND	0.250	0.500	"	"							
Toluene	ND	0.500	1.00	"	"							
Xylenes, total	ND	0.750	1.50	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 106 %	Limits: 8	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					
LCS (7090560-BS1)				Pr	epared: 09/	13/17 10:07	Analyzed:	09/13/17	10:35			
EPA 8260C					1							
Benzene	21.6	0.100	0.200	ug/L	1	20.0		108	80-120%			
Ethylbenzene	19.6	0.250	0.500	"	"	"		98	"			
Toluene	19.8	0.500	1.00	"	"	"		99	"			
Xylenes, total	57.2	0.750	1.50	"	"	60.0		95	"			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 103 %	Limits: 8	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %		0-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	8	0-120 %		"					
Duplicate (7090560-DUP1)				Pr	epared: 09/	13/17 12:00	Analyzed:	09/13/17	17:11			
QC Source Sample: C1-MW-4 (A7	I0314-01)						,					
EPA 8260C	10011 01)											
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Ethylbenzene	ND	0.250	0.500	ug/L	"		ND				30%	
Toluene	ND	0.500	1.00	"	"		ND				30%	
Xylenes, total	ND	0.750	1.50	"	"		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)	П		overy: 105 %	Limits: 8	0-120 %		ution: 1x				3070	
Toluene-d8 (Surr)		Rec	100 %		0-120 % 0-120 %	Dill	nion. 1x					
4-Bromofluorobenzene (Surr)			98 %		0-120 %		"					
. Stomogradio de l'action (Barry			20 70	0.								
Matrix Spike (7090560-MS1)				Pr	epared: 09/	13/17 12:00	Analyzed:	09/13/17	20:56			
QC Source Sample: C2-MW-12B (A	A7I0314-08)											
EPA 8260C												
Benzene	23.2	0.100	0.200	ug/L	1	20.0	ND	116	79-120%			
Ethylbenzene	20.7	0.250	0.500	"	"	"	ND	104	79-121%			
Toluene	21.1	0.500	1.00	"	"	"	ND	105	80-121%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Municipal Con Minimum

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	(Compo	unds by	EPA 8260C						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7090560 - EPA 50308	3						Wat	ter				
Matrix Spike (7090560-MS1)				Pr	epared: 09/	13/17 12:00	Analyzed:	09/13/17 2	0:56			
QC Source Sample: C2-MW-12B (A7I0314-08)											
EPA 8260C												
Xylenes, total	60.6	0.750	1.50	ug/L	"	60.0	ND	101	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 104 %	Limits: 80	0-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Dund by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7090560 - EPA 5030B							Wat	er				
Blank (7090560-BLK1)				I	Prepared: 09/	13/17 10:07	Analyzed:	09/13/17 1	1:32			
EPA 8260C												
Benzene	ND	0.100	0.200	ug/L	1							
Ethylbenzene	ND	0.250	0.500	"	"							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"							
Toluene	ND	0.500	1.00	"	"							
Xylenes, total	ND	0.750	1.50	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 106 %	Limits:	80-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			98 %		80-120 %		"					
LCS (7090560-BS1)				F	repared: 09/	13/17 10:07	Analyzed:	09/13/17 1	0:35			
EPA 8260C												
Benzene	21.6	0.100	0.200	ug/L	1	20.0		108	80-120%			
Ethylbenzene	19.6	0.250	0.500	"	"	"		98	"			
Methyl tert-butyl ether (MTBE)	18.2	0.500	1.00	"	"	"		91	"			
Toluene	19.8	0.500	1.00	"	"	"		99	"			
Xylenes, total	57.2	0.750	1.50	"	"	60.0		95	"			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 103 %	Limits:	80-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			94 %		80-120 %		"					
Duplicate (7090560-DUP1)				I	Prepared: 09/	13/17 12:00	Analyzed:	09/13/17 1	7:11			
QC Source Sample: C1-MW-4 (A710	0314-01)											
EPA 8260C												
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Ethylbenzene	ND	0.250	0.500	"	"		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"		ND				30%	
Toluene	ND	0.500	1.00	"	"		ND				30%	
Xylenes, total	ND	0.750	1.50	"	"		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 105 %	Limits:	80-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %		80-120 %		"					
4-Bromofluorobenzene (Surr)			98 %		80-120 %		"					
Matrix Spike (7090560-MS1)				I	Prenared: 09/	13/17 12:00	Analyzed: (09/13/17 20	0.56			

Chamal la famil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

EPA 8260C

Apex Laboratories

Page 21 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

			RBDM Co	mpounds	s (BTEX+) by EPA 8	260C					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7090560 - EPA 5030B	ı						Wat	ter				
Matrix Spike (7090560-MS1)				Pr	epared: 09/	13/17 12:00	Analyzed:	09/13/17 2	0:56			
QC Source Sample: C2-MW-12B (A	710314-08)											
EPA 8260C												
Benzene	23.2	0.100	0.200	ug/L	1	20.0	ND	116	79-120%			
Ethylbenzene	20.7	0.250	0.500	"	"	"	ND	104	79-121%			
Methyl tert-butyl ether (MTBE)	18.3	0.500	1.00	"	"	"	ND	92	71-124%			
Toluene	21.1	0.500	1.00	"	"	"	ND	105	80-121%			
Xylenes, total	60.6	0.750	1.50	"	"	60.0	ND	101	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 104 %	Limits: 8	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			98 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	8	0-120 %		"					

Apex Laboratories

Dund by Smil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 22 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

<u> </u>			Volatile Or		-							
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch 7090560 - EPA 5030E	3						Wat	er				
Blank (7090560-BLK1)				Pre	pared: 09/	13/17 10:07	Analyzed:	09/13/17 11	:32			
EPA 8260C												
Acetone	ND	20.0	20.0	ug/L	1							
Acrylonitrile	ND	1.00	2.00	"	"							
Benzene	ND	0.100	0.200	"	"							
Bromobenzene	ND	0.250	0.500	"	"							
Bromochloromethane	ND	0.500	1.00	"	"							
Bromodichloromethane	ND	0.500	1.00	"	"							
Bromoform	ND	0.500	1.00	"	"							
Bromomethane	ND	5.00	5.00	"	"							
2-Butanone (MEK)	ND	5.00	10.0	"	"							
n-Butylbenzene	ND	0.500	1.00	"	"							
sec-Butylbenzene	ND	0.500	1.00	"	"							
tert-Butylbenzene	ND	0.500	1.00	"	"							
Carbon disulfide	ND	5.00	10.0	"	"							
Carbon tetrachloride	ND	0.500	1.00	"	"							
Chlorobenzene	ND	0.250	0.500	"	"							
Chloroethane	ND	5.00	5.00	"	"							
Chloroform	ND	0.500	1.00	"	"							
Chloromethane	ND	2.50	5.00	"	"							
2-Chlorotoluene	ND	0.500	1.00	"	"							
4-Chlorotoluene	ND	0.500	1.00	"	"							
Dibromochloromethane	ND	0.500	1.00	"	"							
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"							
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"							
Dibromomethane	ND	0.500	1.00	"	"							
1,2-Dichlorobenzene	ND	0.250	0.500	"	"							
1,3-Dichlorobenzene	ND	0.250	0.500	"	"							
1,4-Dichlorobenzene	ND	0.250	0.500	"	"							
Dichlorodifluoromethane	ND	0.500	1.00	"	"							
1,1-Dichloroethane	ND	0.250	0.500	"	"							
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"							
1,1-Dichloroethene	ND	0.250	0.500	"	"							
cis-1,2-Dichloroethene	ND	0.250	0.500	"	"							
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"							
1,2-Dichloropropane	ND	0.250	0.500	"	"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 23 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	resur	IVIDE	Emm	Omes	D11.	Timount	resure	/ UTCLE	Limits	Tu D	Limit	110103
Batch 7090560 - EPA 5030B	PA 5030B Water											
Blank (7090560-BLK1)	Prepared: 09/13/17 10:07 Analyzed: 09/13/17 11:32											
EPA 8260C												
1,3-Dichloropropane	ND	0.500	1.00	ug/L	"							
2,2-Dichloropropane	ND	0.500	1.00	"	"							
1,1-Dichloropropene	ND	0.500	1.00	"	"							
cis-1,3-Dichloropropene	ND	0.500	1.00	"	"							
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"							
Ethylbenzene	ND	0.250	0.500	"	"							
Hexachlorobutadiene	ND	2.50	5.00	"	"							
2-Hexanone	ND	10.0	10.0	"	"							
Isopropylbenzene	ND	0.500	1.00	"	"							
4-Isopropyltoluene	ND	0.500	1.00	"	"							
Methylene chloride	ND	1.50	3.00	"	"							
4-Methyl-2-pentanone (MiBK)	ND	10.0	10.0	"	"							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"							
Naphthalene	ND	2.00	2.00	"	"							
n-Propylbenzene	ND	0.250	0.500	"	"							
Styrene	ND	0.500	1.00	"	"							
1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"							
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"							
Toluene	ND	0.500	1.00	"	"							
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"							
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"							
1,1,1-Trichloroethane	ND	0.250	0.500	"	"							
1,1,2-Trichloroethane	ND	0.250	0.500	"	"							
Trichloroethene (TCE)	ND	0.250	0.500	"	"							
Trichlorofluoromethane	ND	1.00	2.00	"	"							
1,2,3-Trichloropropane	ND	0.500	1.00	"	"							
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"							
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"							
Vinyl chloride	ND	0.200	0.400	"	"							
m,p-Xylene	ND	0.500	1.00	"	"							
o-Xylene	ND	0.250	0.500	"	"							
Surr: 1,4-Difluorobenzene (Surr)	1112		overy: 106 %	Limits: 80-	1000/		ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 24 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

		Volatile Organic Compounds by EPA 8260C										
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7090560 - EPA 5030B Water											_	
Blank (7090560-BLK1)				Pre	pared: 09/	13/17 10:07	Analyzed: 09/13/17 11:32					
EPA 8260C												
Surr: 4-Bromofluorobenzene (Surr)		Re	ecovery: 98 %	Limits: 80	-120 %	Dil	lution: 1x					
LCS (7090560-BS1)				Prepared: 09/13/17 10:07		Analyzed:	09/13/17	10:35				
EPA 8260C												
Acetone	30.5	20.0	20.0	ug/L	1	40.0		76	80-120%			Q-55
Acrylonitrile	18.3	1.00	2.00	"	"	20.0		91	"			
Benzene	21.6	0.100	0.200	"	"	"		108	"			
Bromobenzene	20.7	0.250	0.500	"	"	"		104	"			
Bromochloromethane	19.8	0.500	1.00	"	"	"		99	"			
Bromodichloromethane	22.3	0.500	1.00	"	"	"		111	"			
Bromoform	24.6	0.500	1.00	"	"	"		123	"			Q-56
Bromomethane	12.0	5.00	5.00	"	"	"		60	"			Q-55
2-Butanone (MEK)	33.8	5.00	10.0	"	"	40.0		85	"			
n-Butylbenzene	18.7	0.500	1.00	"	"	20.0		93	"			
sec-Butylbenzene	20.0	0.500	1.00	"	"	"		100	"			
tert-Butylbenzene	17.9	0.500	1.00	"	"	"		90	"			
Carbon disulfide	22.4	5.00	10.0	"	"	"		112	"			
Carbon tetrachloride	21.5	0.500	1.00	"	"	"		107	"			
Chlorobenzene	20.3	0.250	0.500	"	"	"		102	"			
Chloroethane	20.0	5.00	5.00	"	"	"		100	"			
Chloroform	21.6	0.500	1.00	"	"	"		108	"			
Chloromethane	25.4	2.50	5.00	"	"	"		127	"			Q-56
2-Chlorotoluene	20.8	0.500	1.00	"	"	"		104	"			
4-Chlorotoluene	19.7	0.500	1.00	"	"	"		98	"			
Dibromochloromethane	22.3	0.500	1.00	"	"	"		111	"			
1,2-Dibromo-3-chloropropane	18.4	2.50	5.00	"	"	"		92	"			
1,2-Dibromoethane (EDB)	20.7	0.250	0.500	"	"	"		104	"			
Dibromomethane	23.4	0.500	1.00	"	"	"		117	"			
1,2-Dichlorobenzene	20.8	0.250	0.500	"	"	"		104	"			
1,3-Dichlorobenzene	21.1	0.250	0.500	"	"	"		106	"			
1,4-Dichlorobenzene	20.7	0.250	0.500	"	"	"		104	"			
Dichlorodifluoromethane	19.8	0.500	1.00	"	"	"		99	"			
1,1-Dichloroethane	20.8	0.250	0.500	"	"	"		104	"			
1,2-Dichloroethane (EDC)	19.4	0.250	0.500	"	"	"		97	"			
1,1-Dichloroethene	19.8	0.250	0.500	"	"	"		99	"			

Apex Laboratories

Quant to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

			Donortino			Spiles	Source		%REC		RPD	
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch 7090560 - EPA 5030B							Wat	er				
LCS (7090560-BS1)				Pre	pared: 09/	13/17 10:07	Analyzed: (09/13/17 10	:35			
EPA 8260C												
cis-1,2-Dichloroethene	18.9	0.250	0.500	ug/L	"	"		94	"			
trans-1,2-Dichloroethene	20.3	0.250	0.500	"	"	"		102	"			
1,2-Dichloropropane	21.0	0.250	0.500	"	"	"		105	"			
1,3-Dichloropropane	20.3	0.500	1.00	"	"	"		101	"			
2,2-Dichloropropane	20.1	0.500	1.00	"	"	"		100	"			
1,1-Dichloropropene	19.9	0.500	1.00	"	"	"		100	"			
cis-1,3-Dichloropropene	17.9	0.500	1.00	"	"	"		89	"			
trans-1,3-Dichloropropene	20.5	0.500	1.00	"	"	"		103	"			
Ethylbenzene	19.6	0.250	0.500	"	"	"		98	"			
Hexachlorobutadiene	19.3	2.50	5.00	"	"	"		96	"			
2-Hexanone	26.6	10.0	10.0	"	"	40.0		66	"			Q-:
Isopropylbenzene	19.4	0.500	1.00	"	"	20.0		97	"			
4-Isopropyltoluene	19.9	0.500	1.00	"	"	"		100	"			
Methylene chloride	23.0	1.50	3.00	"	"	"		115	"			
4-Methyl-2-pentanone (MiBK)	28.3	10.0	10.0	"	"	40.0		71	"			Q-:
Methyl tert-butyl ether (MTBE)	18.2	0.500	1.00	"	"	20.0		91	"			
Naphthalene	15.9	2.00	2.00	"	"	"		79	"			Q-:
n-Propylbenzene	19.4	0.250	0.500	"	"	"		97	"			
Styrene	20.0	0.500	1.00	"	"	"		100	"			
1,1,1,2-Tetrachloroethane	22.0	0.250	0.500	"	"	"		110	"			
1,1,2,2-Tetrachloroethane	21.7	0.250	0.500	"	"	"		109	"			
Tetrachloroethene (PCE)	21.6	0.250	0.500	"	"	"		108	"			
Toluene	19.8	0.500	1.00	"	"	"		99	"			
1,2,3-Trichlorobenzene	17.4	1.00	2.00	"	"	"		87	"			
1,2,4-Trichlorobenzene	16.8	1.00	2.00	"	"	"		84	"			
1,1,1-Trichloroethane	20.5	0.250	0.500	"	"	"		102	"			
1,1,2-Trichloroethane	21.3	0.250	0.500	"	"	"		107	"			
Trichloroethene (TCE)	21.1	0.250	0.500	"	"	"		106	"			
Trichlorofluoromethane	19.2	1.00	2.00	"	"	"		96	"			
1,2,3-Trichloropropane	20.4	0.500	1.00	"	"	"		102	"			
1,2,4-Trimethylbenzene	19.9	0.500	1.00	"	"	"		99	"			
1,3,5-Trimethylbenzene	20.0	0.500	1.00	"	"	"		100	"			
Vinyl chloride	18.9	0.200	0.400	"	"	"		94	"			
m,p-Xylene	38.9	0.500	1.00	"	"	40.0		97	"			

Apex Laboratories

Quant to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 26 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

			D .:			0 1	C .		0/PEC		DDD	
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7090560 - EPA 5030E	3						Wat	ter				
LCS (7090560-BS1)				Pre	pared: 09/	13/17 10:07	Analyzed:	09/13/17 10	:35			
EPA 8260C												
o-Xylene	18.2	0.250	0.500	ug/L	"	20.0		91	"			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 103 %	Limits: 80	-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			98 %		120 %		"					
4-Bromofluorobenzene (Surr)			94 %	80-	120 %		"					
Duplicate (7090560-DUP1)				Pre	pared: 09/	13/17 12:00	Analyzed:	09/13/17 17	:11			
QC Source Sample: C1-MW-4 (A7	I0314-01)											
EPA 8260C												
Acetone	ND	20.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	"	"		ND				30%	
Benzene	ND	0.100	0.200	"	"		ND				30%	
Bromobenzene	ND	0.250	0.500	"	"		ND				30%	
Bromochloromethane	ND	0.500	1.00	"	"		ND				30%	
Bromodichloromethane	ND	0.500	1.00	"	"		ND				30%	
Bromoform	ND	0.500	1.00	"	"		ND				30%	
Bromomethane	ND	5.00	5.00	"	"		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	"	"		ND				30%	
n-Butylbenzene	ND	0.500	1.00	"	"		ND				30%	
sec-Butylbenzene	ND	0.500	1.00	"	"		ND				30%	
tert-Butylbenzene	ND	0.500	1.00	"	"		ND				30%	
Carbon disulfide	ND	5.00	10.0	"	"		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	"	"		ND				30%	
Chlorobenzene	ND	0.250	0.500	"	"		ND				30%	
Chloroethane	ND	5.00	5.00	"	"		ND				30%	
Chloroform	ND	0.500	1.00	"	"		ND				30%	
Chloromethane	ND	2.50	5.00	"	"		ND				30%	
2-Chlorotoluene	ND	0.500	1.00	"	"		ND				30%	
4-Chlorotoluene	ND	0.500	1.00	"	"		ND				30%	
Dibromochloromethane	ND	0.500	1.00	"	"		ND				30%	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	"	"		ND				30%	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	"	"		ND				30%	
Dibromomethane	ND	0.500	1.00	"	"		ND				30%	
1,2-Dichlorobenzene	ND	0.250	0.500	"	"		ND				30%	
1,3-Dichlorobenzene	ND	0.250	0.500	"	"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpound	s by EPA 8	3260C					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7090560 - EPA 5030B							Wat	er				
Duplicate (7090560-DUP1)				Pre	pared: 09/	13/17 12:00	Analyzed:	09/13/17 17	:11			
QC Source Sample: C1-MW-4 (A7I	0314-01)											
EPA 8260C												
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	"		ND				30%	
Dichlorodifluoromethane	ND	0.500	1.00	"	"		ND				30%	
1,1-Dichloroethane	0.540	0.250	0.500	"	"		0.540			0	30%	
1,2-Dichloroethane (EDC)	ND	0.250	0.500	"	"		ND				30%	
1,1-Dichloroethene	ND	0.250	0.500	"	"		ND				30%	
cis-1,2-Dichloroethene	1.06	0.250	0.500	"	"		1.18			11	30%	
trans-1,2-Dichloroethene	ND	0.250	0.500	"	"		ND				30%	
1,2-Dichloropropane	ND	0.250	0.500	"	"		ND				30%	
1,3-Dichloropropane	ND	0.500	1.00	"	"		ND				30%	
2,2-Dichloropropane	ND	0.500	1.00	"	"		ND				30%	
1,1-Dichloropropene	ND	0.500	1.00	"	"		ND				30%	
cis-1,3-Dichloropropene	ND	0.500	1.00	"	"		ND				30%	
trans-1,3-Dichloropropene	ND	0.500	1.00	"	"		ND				30%	
Ethylbenzene	ND	0.250	0.500	"	"		ND				30%	
Hexachlorobutadiene	ND	2.50	5.00	"	"		ND				30%	
2-Hexanone	ND	10.0	10.0	"	"		ND				30%	
Isopropylbenzene	ND	0.500	1.00	"	"		ND				30%	
4-Isopropyltoluene	ND	0.500	1.00	"	"		ND				30%	
Methylene chloride	ND	1.50	3.00	"	"		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND	10.0	10.0	"	"		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	"	"		ND				30%	
Naphthalene	ND	2.00	2.00	"	"		ND				30%	
n-Propylbenzene	ND	0.250	0.500	"	"		ND				30%	
Styrene	ND	0.500	1.00	"	"		ND				30%	
1,1,1,2-Tetrachloroethane	ND	0.250	0.500	"	"		ND				30%	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	"	"		ND				30%	
Tetrachloroethene (PCE)	ND	0.250	0.500	"	"		ND				30%	
Toluene	ND	0.500	1.00	"	"		ND				30%	
1,2,3-Trichlorobenzene	ND	1.00	2.00	"	"		ND				30%	
1,2,4-Trichlorobenzene	ND	1.00	2.00	"	"		ND				30%	
1,1,1-Trichloroethane	ND	0.250	0.500	"	"		ND				30%	
1,1,2-Trichloroethane	ND	0.250	0.500	"	"		ND				30%	
Trichloroethene (TCE)	ND	0.250	0.500	"	"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager
Page 28 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpouna	S DY EPA 8	326UC					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7090560 - EPA 5030E	3						Wat	ter				
Duplicate (7090560-DUP1)				P	repared: 09/	13/17 12:00	Analyzed:	09/13/17 17	7:11			
QC Source Sample: C1-MW-4 (A7	I0314-01)											
EPA 8260C												
Trichlorofluoromethane	ND	1.00	2.00	ug/L	"		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	"	"		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	"	"		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	"	"		ND				30%	
Vinyl chloride	0.280	0.200	0.400	"	"		0.300			7	30%	
m,p-Xylene	ND	0.500	1.00	"	"		ND				30%	
o-Xylene	ND	0.250	0.500	"	"		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Rec	covery: 105 %	Limits: 8	80-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	8	0-120 %		"					
Matrix Spike (7090560-MS1)				P	repared: 09/	13/17 12:00	Analyzed:	09/13/17 20):56			
QC Source Sample: C2-MW-12B (A7I0314-08)											
EPA 8260C												
Acetone	33.4	20.0	20.0	ug/L	1	40.0	ND	83	39-160%			Q-54
Acrylonitrile	21.1	1.00	2.00	"	"	20.0	ND	105	63-135%			
Benzene	23.2	0.100	0.200	"	"	"	ND	116	79-120%			
Bromobenzene	20.9	0.250	0.500	"	"	"	ND	104	80-120%			
Bromochloromethane	20.4	0.500	1.00	"	"	"	ND	102	78-123%			
Bromodichloromethane	23.1	0.500	1.00	"	"	"	ND	115	79-125%			
Bromoform	25.2	0.500	1.00	"	"	"	ND	126	66-130%			Q-5
Bromomethane	13.0	5.00	5.00	"	"	"	ND	65	53-141%			Q-54
2-Butanone (MEK)	34.9	5.00	10.0	"	"	40.0	ND	87	56-143%			
n-Butylbenzene	19.0	0.500	1.00	"	"	20.0	ND	95	75-128%			
sec-Butylbenzene	20.8	0.500	1.00	"	"	"	ND	104	77-126%			
tert-Butylbenzene	18.7	0.500	1.00	"	"	"	ND	94	78-124%			
Carbon disulfide	24.7	5.00	10.0	"	"	"	ND	124	64-133%			
Carbon tetrachloride	23.6	0.500	1.00	"	"	"	ND	118	72-136%			
Chlorobenzene	21.5	0.250	0.500	"	"	"	ND	108	80-120%			
Chloroethane	21.8	5.00	5.00	"	"	"	ND	109	60-138%			
Chloroform	23.0	0.500	1.00	"	"	"	ND	115	79-124%			
Chloromethane	25.2	2.50	5.00	"	"	"	ND	126	50-139%			Q-54
					"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 29 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	mpound	s by EPA 8	3260C					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7090560 - EPA 5030E	3						Wat	er				
Matrix Spike (7090560-MS1)				Pre	pared: 09/	13/17 12:00	Analyzed:	09/13/17 2	0:56			
QC Source Sample: C2-MW-12B (A	A7I0314-08)											
EPA 8260C												
4-Chlorotoluene	20.4	0.500	1.00	ug/L	"	"	ND	102	78-122%			
Dibromochloromethane	22.8	0.500	1.00	"	"	"	ND	114	74-126%			
1,2-Dibromo-3-chloropropane	19.4	2.50	5.00	"	"	"	ND	97	62-128%			
1,2-Dibromoethane (EDB)	21.0	0.250	0.500	"	"	"	ND	105	77-121%			
Dibromomethane	24.0	0.500	1.00	"	"	"	ND	120	79-123%			
1,2-Dichlorobenzene	21.4	0.250	0.500	"	"	"	ND	107	80-120%			
1,3-Dichlorobenzene	21.7	0.250	0.500	"	"	"	ND	108	"			
1,4-Dichlorobenzene	20.9	0.250	0.500	"	"	"	ND	104	79-120%			
Dichlorodifluoromethane	22.0	0.500	1.00	"	"	"	ND	110	32-152%			
1,1-Dichloroethane	22.4	0.250	0.500	"	"	"	ND	112	77-125%			
1,2-Dichloroethane (EDC)	20.2	0.250	0.500	"	"	"	ND	101	73-128%			
1,1-Dichloroethene	21.8	0.250	0.500	"	"	"	ND	109	71-131%			
cis-1,2-Dichloroethene	19.7	0.250	0.500	"	"	"	ND	99	78-123%			
trans-1,2-Dichloroethene	22.1	0.250	0.500	"	"	"	ND	110	75-124%			
1,2-Dichloropropane	22.0	0.250	0.500	"	"	"	ND	110	78-122%			
1,3-Dichloropropane	20.6	0.500	1.00	"	"	"	ND	103	80-120%			
2,2-Dichloropropane	18.3	0.500	1.00	"	"	"	ND	92	60-139%			
1,1-Dichloropropene	21.9	0.500	1.00	"	"	"	ND	110	79-125%			
cis-1,3-Dichloropropene	17.9	0.500	1.00	"	"	"	ND	90	75-124%			
trans-1,3-Dichloropropene	20.5	0.500	1.00	"	"	"	ND	103	73-127%			
Ethylbenzene	20.7	0.250	0.500	"	"	"	ND	104	79-121%			
Hexachlorobutadiene	19.9	2.50	5.00	"	"	"	ND	99	66-134%			
2-Hexanone	26.7	10.0	10.0	"	"	40.0	ND	67	57-139%			Q-5
Isopropylbenzene	20.6	0.500	1.00	"	"	20.0	ND	103	72-131%			
4-Isopropyltoluene	20.4	0.500	1.00	"	"	"	ND	102	77-127%			
Methylene chloride	23.8	1.50	3.00	"	"	"	ND	119	74-124%			
4-Methyl-2-pentanone (MiBK)	28.6	10.0	10.0	"	"	40.0	ND	71	67-130%			Q-5
Methyl tert-butyl ether (MTBE)	18.3	0.500	1.00	"	,,	20.0	ND	92	71-124%			۷.
Naphthalene	16.9	2.00	2.00	"	,,	20.0	ND ND	92 84	61-128%			Q-5
n-Propylbenzene	20.1	0.250	0.500	"	,,	"	ND ND	101	76-126%			Q-3
	20.1	0.230	1.00	"	,,	"	ND ND	101	78-123%			
Styrene 1,1,2-Tetrachloroethane	23.3	0.300	0.500	"	,,	,,	ND ND		78-123% 78-124%			
1,1,2,2-Tetrachloroethane	23.3	0.250	0.500	"		,,	ND ND	116 108	71-121%			

Apex Laboratories

Dund by Smil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 30 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpound	s by EPA 8	3260C					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7090560 - EPA 5030I	В						Wat	er				
Matrix Spike (7090560-MS1)				Pre	epared: 09/	13/17 12:00	Analyzed:	09/13/17 2	0:56			
QC Source Sample: C2-MW-12B (A7I0314-08)											
EPA 8260C												
Tetrachloroethene (PCE)	23.3	0.250	0.500	ug/L	"	"	ND	116	74-129%			
Toluene	21.1	0.500	1.00	"	"	"	ND	105	80-121%			
1,2,3-Trichlorobenzene	18.4	1.00	2.00	"	"	"	ND	92	69-129%			
1,2,4-Trichlorobenzene	17.6	1.00	2.00	"	"	"	ND	88	69-130%			
1,1,1-Trichloroethane	22.0	0.250	0.500	"	"	"	ND	110	74-131%			
1,1,2-Trichloroethane	21.9	0.250	0.500	"	"	"	ND	110	80-120%			
Trichloroethene (TCE)	22.9	0.250	0.500	"	"	"	ND	114	79-123%			
Trichlorofluoromethane	21.5	1.00	2.00	"	"	"	ND	108	65-141%			
1,2,3-Trichloropropane	21.1	0.500	1.00	"	"	"	ND	106	73-122%			
1,2,4-Trimethylbenzene	20.0	0.500	1.00	"	"	"	ND	100	76-124%			
1,3,5-Trimethylbenzene	20.3	0.500	1.00	"	"	"	ND	102	75-124%			
Vinyl chloride	20.7	0.200	0.400	"	"	"	ND	104	58-137%			
m,p-Xylene	41.7	0.500	1.00	"	"	40.0	ND	104	80-121%			
o-Xylene	18.9	0.250	0.500	"	"	20.0	ND	94	78-122%			
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 104 %	Limits: 80	0-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80)-120 %		"					

Apex Laboratories

Dund by Smil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 31 of 37

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP

111 SW Columbia St. Ste. 1500Project Number: [none]Reported:Portland, OR 97201Project Manager: Nicky Moody09/28/17 10:20

SAMPLE PREPARATION INFORMATION

		Diese	el and/or Oil Hydroc	arbons by NWTPH-D	(
Prep: EPA 3510C (I	uels/Acid	Ext.)			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
atch: 7090586							
A7I0314-03RE1	Water	NWTPH-Dx	09/11/17 16:00	09/13/17 13:47	1070mL/5mL	1000mL/5mL	0.94
A7I0314-04RE1	Water	NWTPH-Dx	09/11/17 12:35	09/13/17 13:47	1070mL/5mL	1000mL/5mL	0.94
A7I0314-05	Water	NWTPH-Dx	09/11/17 12:40	09/13/17 13:47	1060mL/5mL	1000mL/5mL	0.94
A7I0314-06	Water	NWTPH-Dx	09/11/17 11:20	09/13/17 13:47	1050mL/5mL	1000mL/5mL	0.95
A7I0314-07RE1	Water	NWTPH-Dx	09/11/17 10:10	09/13/17 13:47	1050mL/5mL	1000mL/5mL	0.95
A7I0314-08	Water	NWTPH-Dx	09/11/17 14:45	09/13/17 13:47	1050mL/5mL	1000mL/5mL	0.95
	G	Sasoline Range Hydi	rocarbons (Benzene	e through Naphthalen	e) by NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
atch: 7090560				<u>-</u>			
A7I0314-03	Water	NWTPH-Gx (MS)	09/11/17 16:00	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00
A7I0314-04	Water	NWTPH-Gx (MS)	09/11/17 12:35	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00
A7I0314-05	Water	NWTPH-Gx (MS)	09/11/17 12:40	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00
A7I0314-06	Water	NWTPH-Gx (MS)	09/11/17 11:20	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00
A7I0314-07	Water	NWTPH-Gx (MS)	09/11/17 10:10	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00
A7I0314-08	Water	NWTPH-Gx (MS)	09/11/17 14:45	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00
			BTEX Compounds	s by EPA 8260C			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
atch: 7090560			1	1			
A7I0314-09	Water	EPA 8260C	09/11/17 00:00	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00
		RB	DM Compounds (B	TEX+) by EPA 8260C			
Prep: EPA 5030B			·		Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
atch: 7090560	111du IA	meniou	Sumpiou	Tiepaieu			
A7I0314-02	Water	EPA 8260C	09/11/17 19:00	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00
		Vol:	atile Organic Comp	ounds by EPA 8260C			
		¥010	and organio comp	5			

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AECOM Project: POV FVP
111 SW Columbia St. Ste. 1500 Project Number: [none]

Portland, OR 97201 Project Manager: Nicky Moody

Reported: 09/28/17 10:20

SAMPLE PREPARATION INFORMATION

		Vo	latile Organic Comp	ounds by EPA 8260C			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 7090560							
A7I0314-01	Water	EPA 8260C	09/11/17 17:55	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00
A7I0314-04	Water	EPA 8260C	09/11/17 12:35	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00
A7I0314-05	Water	EPA 8260C	09/11/17 12:40	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00
A7I0314-07	Water	EPA 8260C	09/11/17 10:10	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00
A7I0314-08	Water	EPA 8260C	09/11/17 14:45	09/13/17 12:00	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Quand by hair

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

 AECOM
 Project
 POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number: [none]
 Reported:

 Portland, OR 97201
 Project Manager: Nicky Moody
 09/28/17 10:20

Notes and Definitions

Qualifiers:

_	Juanners:	
	F-03	The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
	J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
	Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
	Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +3%. The results are reported as Estimated Values.
	Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +7%. The results are reported as Estimated Values.
	Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the \pm -20% criteria listed in EPA method 8260C/8270D by -1%. The results are reported as Estimated Values.
	Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -14%. The results are reported as Estimated Values.
	Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -20%. The results are reported as Estimated Values.
	Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the \pm 20% criteria listed in EPA method 8260C/8270D by \pm 4%. The results are reported as Estimated Values.
	Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the \pm 20% criteria listed in EPA method 8260C/8270D by -9%. The results are reported as Estimated Values.

Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260C, however there is adequate sensitivity to

Notes and Conventions:

DET	Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

ensure detection at the reporting level.

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260C

Batch QC

Q-55

Q-56

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

 AECOM
 Project:
 POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number:
 [none]
 Reported:

 Portland, OR 97201
 Project Manager:
 Nicky Moody
 09/28/17 10:20

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- *** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Dunall la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

 AECOM
 Project:
 POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number:
 [none]
 Reported:

 Portland, OR 97201
 Project Manager:
 Nicky Moody
 09/28/17 10:20

THE HALL BALLET							9		CHAIN OF CUSTODY	9					ab#	Lab# オーナッツー	4	, ,	717	500	Jo
12232 S.W. Garden Place, Tigard, OR 97223 Ph; 503-718-2323 Fax; 503-718-0333	97223 Ph	- 503-718-	2323 Fa	к: 503-	718-0	33												Д.	#Od		
Company: AECOM		Project	Project Mgr. NIcky	Jok		MODULY	24		Pr	oject A	Project Name: POV	5	>	17	ロンコ			<u>a</u>	Project #		
Address: 111 Sw Colombia		Suk	1500	0	,		Phor	Phone: 503-222-1260	-222	-720	õ	Fax					mail:	7,Ck	.y. in	Finall: O.Chy. Mac), @ accom. com	COM. C
Sampled by: MACK TAUX HER	1C.R												ANA	ANALYSIS REQUEST	REQ	0.00			,		
Site Location: OR (A) Other:	# OL 8 V T	LIME	XISTAM	# OF CONTAINERS	ZWTPH-DZ ZWTPH-HCID	ZZZLSH-CZ	8700 AOC? Eull List	8500 KBD21 AOC8	8700 BLEX AOC8 8700 HAOC8	30AS 0478	SHV4 IXIS 0478	8087 bCB?	O.L.I. 009	RCRA Metals (8)	TCLP Metals (8)	TOTAL DISS TCLP For Cr. Co. Cu. Fo. Pb. Fig. Mg. Ma, Tt. V. Zn. Fig. Mg. Ma, Tt. V. Zn. Fig. Mg. Mg. Mg. W. Fig. Mg. Mg. Mg. Fig. Mg. Mg. Mg. Fig. Mg. Mg. Mg. Fig. Mg.		1700- COFS	₹91W 2-0071		
C1- MW-4	2	9/11/11/25 V	3	S			X			-	_							-	-		
C1-MM-7		2	W 22/2)	ر.					×	.,							ļ		7		-
5-MW-27		<u>3</u>	3000	മ		×												-	-		
CZ-MW-9		17.3	735W	ω		×	X												-		
(2- MW-9 (DUP)		12:40	1240 W	8	<u> </u>	×	×														
CZ-MW-IO(RZ)		1120	N20 W	<i>သ</i>	/	X															
C2-MW-11 (R)		્રં	3 3 3	∞		\times	×														
CZ-MW-12B	>		3 2==1	w		У У	×	-	-											and the state of t	
				1				No.	-		_				-			+	_		
「ドイド 与しなかべ Normal Turn Around Time (TAT) ≈10 Business Days	ss Days		3 8	7	ON			-	SPECIAL INSTRUCTIONS:	N. S.	TRUC				-						
	1 Day	2 Day		3 Day																	
TAF Requested (circle)	4 DAY	S DAY		Other:	l																
SAMPLE	SAMPLES ARE HELD FOR 30 DAYS	D FOR 30	DAYS					Τ													
RELENQUISHED BY:		RECEL	RECEIVED BY:	,		,		=	RELINQUISHED BY:	HSH	D BY:					22	RECEIVED BY:	ED BY			The second secon
Synature: Mu Tantu	Date: 9/12	12/17 Signature: 1/2/	The	1/4	1	Date	Date: 9-12-17		Signature						Date:	35	Signature			Date:	
Printed Name: MARK TAOSHR Time.	Finc.	Printed ?	Printed Name Alder Hockely Time 1051	Les 1	Selection of the select	Time	105		Printed Name	ame	ĺ			- Contraction of the Contraction	Lime	£	Printed Name:	ame;		Fine:	
				-																	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

 AECOM
 Project:
 POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number:
 [none]
 Reported:

 Portland, OR 97201
 Project Manager:
 Nicky Moody
 09/28/17 10:20

APEX LABS COOLER RECEIPT FORM
Client: AE (1) M Element WO#: A7 IO314
Project/Project #: POV FVP
Delivery info:
Date/Time Received: 9-12-17 @ 1051 By: MM
Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other
Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other Cooler Inspection Inspected by: (2-17) @ 1370
Chain of Custody Included? Yes X No Custody Seals? Yes No No MM M
Signed/Dated by Client? Yes × No
Signed/Dated by Apex? Yes X No
Cooler#1 Cooler#2 Cooler#3 Cooler#4 Cooler#5 Cooler#6 Cooler#7
Temperature (deg. C)
Received on Ice? (Y)N)
Temp. Blanks?((VN) 3.) 4,3
Ice Type: (Gel/Real/Other)
Condition: god 11
Cooler out of temp? (YN) Possible reason why: If some coolers are in temp and some out, were even dot applied to out of temperature samples? Yes/No/NA Samples Inspection: Inspected by: : (@
All Samples Intact? Yes No Comments:
Bottle Labels/COCs agree? Yes Y No Comments:
Containers/Volumes Received Appropriate for Analysis? Yes X No Comments:
Do VOA Vials have Visible Headspace? Yes No X NA
Comments:
Additional Information: TB # 1612
Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund by Smil

Appendix CData Quality Review Report

AECOM 111 SW Columbia Suite 1500 Portland, OR 97201 www.aecom.com 503 222 7200 tel 503 222 4292 fax

Data Quality Review Report

The data quality review of the seven primary groundwater samples, one field duplicate groundwater sample, and one trip blank sample collected on September 11, 2017, at the Former Fort Vancouver Plywood Site in Vancouver, Washington has been completed. Samples were submitted to Apex Laboratories (Apex) of Tigard, Oregon and were analyzed for one or more of the following: volatile organic compounds (VOCs) and RBDM compounds (benzene, toluene, ethylbenzene, total xylenes, and methyl tert-butyl ether by US Environmental Protection Agency [EPA] Method 8260C), gasoline-range hydrocarbons (Method NWTPH-Gx), and diesel-range and oil-range hydrocarbons (Method NWTPH-Dx).

The review included the analytical data presented in Apex report A710314. The data was reviewed based on *USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017*, and laboratory quality control criteria. Items reviewed included: chain-of-custody (COC) records and sample condition, hold times, surrogate recoveries, laboratory control and laboratory control duplicate results, laboratory duplicate results, field duplicate results, method blank results, trip blank results, and matrix spike results. Qualifiers assigned as a result of this review are included in Table 1. The following criteria were evaluated during the review:

- · COC Records Acceptable with the following notes:
 - The laboratory noted that sediment was visible in one of the six volatile organic compound (VOC) sample containers associated C2-MW-11(R) (A7I0314-07. Data were not qualified based on the presence of sediment in the sample container.
- · Temperature Acceptable
- Preservation Acceptable
- Holding Times Acceptable
- Trip Blanks Acceptable where applicable
- · Method Blanks Acceptable
 - Surrogates Acceptable
- <u>Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)</u> Acceptable with the following exceptions:
 - VOCs by EPA Method 8260C The percent recoveries for acetone (76%), bromomethane (60%), 2-hexanone (66%), 4-methyl-2-pentanone (71%), and naphthalene (79%) in the LCS associated with analytical batch 7090560 were below the lower laboratory control limit of 80%. All of the associated sample results for these analytes were qualified as estimated and flagged 'UJ' for the potential low bias.
 - The percent recoveries for bromoform (123%) and chloromethane (127%) in the LCS associated with analytical batch 7090560 exceeded the upper laboratory control limit of 120%. Bromoform and chloromethane were not detected in the associated samples; therefore, data were not qualified for these analytes based on these elevated LCS recoveries.

AECOM Environment 2

- Laboratory Duplicate Acceptable
- <u>Field Duplicate</u> Acceptable where applicable
 - Sample C2-MW-9 (DUP) (A7I0314-05) was submitted as a field duplicate of sample C2-MW-9 (A7I0314-04). Relative percent difference calculations were not performed as all sample results were less than five times the method reporting limits.
- Reporting Limits Acceptable
- Laboratory Notes and Qualifiers
 - The laboratory noted the oil result for sample C2-MW-3 (A7I0314-03RE1) was primarily due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported. The laboratory flagged the result 'F-03.' The result was qualified as estimated and flagged 'J' to remain consistent with project qualifiers.
 - The results for oil in C2-MW-3 and C2-MW-10 and vinyl chloride in C1-MW-4 were flagged 'J' by the laboratory to indicate that the sample concentrations were less than the laboratory reporting limits but above the method detection limits. As there are greater levels of uncertainty with these concentrations, these results are considered estimated.

Overall Assessment of Data

The completeness of the analytical reports for this groundwater monitoring event is 100%. The usefulness of the data is based on the EPA guidance documents referenced in the introduction of this report. Upon consideration of the information presented above, the data are considered usable. The data qualifiers assigned by the laboratory are shown on the laboratory reports.

Data Qualifier Definitions

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria.

DNR Do Not Report. Another result is available that is more reliable.

References

USEPA, 2017. National Functional Guidelines for Organic Superfund Methods Data Review, January 2017.

Data Quality Review Report April 2016

AECOM 111 SW Columbia Suite 1500 Portland, OR 97201 www.aecom.com 503 222 7200 tel 503 222 4292 fax

Table 1. Sample Qualification Summary

AECOM Sample ID	Laboratory Sample ID	Analyte	Qualifier	Rationale
C1-MW-4	A7I0314-01	Acetone	UJ	LCS recovery
		Bromomethane		
		2-Hexanone		
		4-Methyl-2-pentanone		
		Naphthalene		
C2-MW-9	A7I0314-04	Acetone	UJ	LCS recovery
		Bromomethane		
		2-Hexanone		
		4-Methyl-2-pentanone		
		Naphthalene		
C2-MW-9(DUP)	A7I0314-05	Acetone	UJ	LCS recovery
		Bromomethane		
		2-Hexanone		
		4-Methyl-2-pentanone		
		Naphthalene		
C2-MW-11(R)	A7l0314-07	Acetone		LCS recovery
		Bromomethane	UJ	
		2-Hexanone		
		4-Methyl-2-pentanone		
		Naphthalene		
C2-MW-12B	A7I0314-08	Acetone	UJ	LCS recovery
		Bromomethane		
		2-Hexanone		
		4-Methyl-2-pentanone		
		Naphthalene		
C2-MW-3	A7I0314-03	Oil	J	Compound identification

About AFCOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With approximately 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$6 billion.

More information on AECOM and its services can be found at www.aecom.com.