

Date:	February 08, 2019	Reference No.:	037894-21
To	Mr. Panjini Balarju		
10.	Site Manager		
	Washington Department of Ecology		
	Southwest Regional Office		
	300 Desmond Drive		
	Lacey, WA 98503		
Subject:	Annual Report		

No. of Copies	Description/Title	Drawing No./ Document Ref.	Issue
1	Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report 2018	037894-(51)	

Issued for:		Your informationYour approval/comr	□ As red ments □ Return	quested ned to you		Construction For re-submis	□ Quotation sion
Sent by:	□ 0 □ 0	vernight courier	Same day courier	□ Mailed u 	nder s	eparate cover	⊠ Mail enclosed
Remarks:							
Copy to:		Rick Bieber @ T	acoma GWTP				
Completed by: Rick Bieber [Please Print]			Signed:	-			
Filing: Co	rrespo	ndence File					

February 1, 2020

Reference No. 11159500-D23102 (55)

Mr. Panjini Balarju Site Manager Washington Department of Ecology Southwest Regional Office 300 Desmond Drive Lacey, WA 98503

Dear Mr. Balarju:

Re: Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report – 2019 Bonneville Power Administration Site Consent Order No. 97206045

On behalf of Occidental Chemical Corporation, GHD is submitting the enclosed "Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report 2019". This report summarizes the operation and maintenance (O&M) activities and groundwater monitoring results for the period of December 2018 through November 2019 and presents an overview of the effectiveness of the Site remedy.

Based on the review of the Site remedy and Compliance Monitoring Program analytical data it is concluded that:

- The Remedial Action has been effective in addressing the concerns for protection of human health and the environment as laid forth in the Consent Decree.
- No further remedial action is required at the Site at this time.

Should you have any questions, require additional information, or wish to meet to discuss the performance of the Remedial Action, please do not hesitate to contact us.

Yours truly,

GHD

Matchen Damio

Matthew Davis, LG Site Manager

Chuto J. Shoch

Clint Babcock Director Operations Glenn Springs Holding

MD/cd/53

Encl.

Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report - 2019

- c.c. R. Bakemeier (Bakemeier PC) B. Sherer (BPA)
 - C. Babcock (GSH) I. Richardson (Geosyntec) R. Bieber (Geosyntec)

Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report – 2019

Bonneville Power Administration Site Tacoma, Washington Consent Order No. 97206045

Prepared for: Occidental Chemical

Executive Summary

In March 1997, Occidental Chemical Corporation (OCC) and the Bonneville Power Administration (BPA) entered into a Consent Decree with the Washington Department of Ecology (Ecology) to provide for the performance of a Remedial Action (RA) at the Site. The RA included excavation of impacted fill materials and soils and placement of these excavated materials in an on Site engineered landfill. The RA was considered complete on August 24, 1998.

The RA Operation and Maintenance (O&M) Program includes the performance of routine Site inspections, compliance monitoring of groundwater, and comprehensive annual reporting to evaluate the effectiveness of the RA in addressing the concerns of Ecology, stated in the Consent Decree as follows:

- i) Ongoing impact of groundwater in the Lower Sand unit by volatile organic compounds (VOCs) in buried sludge and soils
- ii) Potential for direct human exposure to asbestos contained in the sludge
- iii) Potential for direct human exposure to metal contained in grit and shot
- iv) Potential surface and groundwater impacts from metals contained in the grit and shot

The O&M Program commenced with baseline groundwater monitoring in September 1998 following completion of the RA. This annual report has been prepared covering the period of December 2018 through December 2019.

The results of the O&M and Compliance Monitoring activities demonstrate that:

- i) The security and integrity of the landfill was maintained throughout this reporting period; therefore, there was no potential for direct human exposure to impacted materials.
- ii) There were no systematic increases in the concentrations of monitoring parameters in groundwater during this reporting period; therefore, there is no ongoing impact of chemicals to groundwater in the Lower Sand unit.

The O&M activities and Compliance Monitoring performed during this reporting period demonstrate that the RA is effective in mitigating Ecology's concerns for human health exposure and groundwater impacts.

Table of Contents

Introduction1					
Operation and Maintenance Activities2					
2.1	Site Inspe	ections and Corrective Actions	2		
	2.1.1 2.1.2	Security Site	2 3		
2.2	Routine N	laintenance	4		
Comp	oliance Mo	nitoring	4		
3.1 Hydraulic Monitoring					
3.2 Water Quality Monitoring 4					
Assessment of Site Conditions5					
4.1 Direct Contact with Impacted Materials					
4.2 Groundwater and Surface Water Impact					
Conclusions and Recommendations6					
	Introd Opera 2.1 2.2 Comp 3.1 3.2 Asses 4.1 4.2 Conc	Introduction Operation and M 2.1 Site Inspective 2.1.1 2.1.2 2.2 Routine M Compliance More 3.1 Hydraulic 3.2 Water Qu Assessment of S 4.1 Direct Core 4.2 Groundwa Conclusions and	Introduction		

Figure Index

Figure 3.1	Site Plan and Groundwater Contour Map
Figure 4.1	Concentration Versus Time – 1 20
Figure 4.2	Concentration Versus Time – 7 26

Table Index

Table 3.1	Compliance	Monitoring Points
-----------	------------	--------------------------

- Table 3.2 Summary of Water Level Elevations
- Table 3.3 Groundwater Compliance Monitoring Analytical Parameters
- Table 3.4 Analytical Results Summary

Appendices

- Appendix A Site Inspection Sheets
- Appendix B Groundwater Sample Collection Summary Logs
- Appendix C Analytical Data Verification and Assessment
- Appendix D Analytical Database

1. Introduction

The Bonneville Power Administration (BPA) property (Site) is located at the corner of Taylor Way and Highway 509 in Tacoma, Washington. In the late 1960s and early 1970s, fill material from the Occidental Chemical Corporation (OCC) Tacoma facility was deposited at the Site. At about the same time, baghouse grit/shot material from an unidentified source was also placed at the Site.

In March 1997, OCC and BPA entered into a Consent Decree with the Washington Department of Ecology (Ecology) to provide for the performance of a Remedial Action (RA) at the Site. The RA included excavation of impacted fill materials and soils and placement of these excavated materials in an on-Site engineered landfill. The RA was considered complete on August 24, 1998.

An RA Operation and Maintenance (O&M) Plan was submitted to Ecology with the remedial design documents. The RA O&M Plan includes the performance of routine Site inspections, compliance monitoring of groundwater, and comprehensive annual reporting. The O&M Program commenced in September 1998.

This report presents the annual report for the period of December 20178 through December 2019. The report is organized as follows:

- i) <u>Section 1 Introduction</u>: The introduction presents a brief summary of the project history and the organization of the report
- ii) <u>Section 2 Operation and Maintenance Activities:</u> The O&M activities performed during this reporting period are discussed in Section 2
- iii) <u>Section 3 Compliance Monitoring:</u> The groundwater compliance monitoring activities performed during this reporting period are described in Section 3 and the resultant data are presented
- v) <u>Section 4 Assessment of Site Conditions:</u> An assessment of the Site conditions in terms of the effectiveness of the remedy is presented in Section 4
- vi) <u>Section 5 Conclusions and Recommendations:</u> Section 5 presents the conclusions drawn from the Site assessment

The current project coordinators for the Site are:

Ecology: Mr. Panjini Balarju 300 Desmond Drive Lacey, Washington 98503

<u>BPA</u>: Mr. Brett Sherer Environmental Engineer 707 W. Main Street, Suite 500 Spokane, Washington 99201-0641

OCC: Mr. Clint Babcock Director Operations Glenn Springs Holdings, Inc. 605 Alexander Avenue Tacoma, WA 98421

The designated Site Custodian is:

GHD 3600 Port of Tacoma Road, Suite 302 Tacoma, WA 98424 Telephone: (253) 573-1218

The primary contact at GHD is Matt Davis.

2. **Operation and Maintenance Activities**

O&M activities performed during this reporting period included Site inspections and compliance monitoring. The O&M activities were performed by GHD, on behalf of OCC in accordance with the requirements of the "Operation and Maintenance Plan" (May 1997) with the modifications approved by Ecology in letters dated August 3, 1998, September 16, 1998, March 18, 1999, and November 14, 2003. The approved modifications consist of:

- i) The use of monitoring well 9-30 instead of monitoring well 5-21 (August 3, 1998)
- ii) The use of low-flow well purging and sampling techniques in the Compliance Monitoring Plan (CMP) (September 16, 1998)
- iii) Revision of the analyte list for compliance monitoring (March 18, 1999, and November 14, 2003)
- iv) Reduction in monitoring points from 7 to 2 (November 14, 2003)
- v) Reduction in the frequency of sampling from semi-annual to annual (November 14, 2003)

2.1 Site Inspections and Corrective Actions

Site inspections were performed on a quarterly basis during this reporting period. Observations were logged on inspection log sheets. The inspection log sheets for the 2018/2019 reporting period are contained in Appendix A.

Descriptions of the inspection observations are presented in the following subsections. No deficiencies requiring corrective action were observed during this reporting period.

2.1.1 Security

The security features include landfill perimeter fence, fence gates and locks, and signs. Each feature was examined during each Site inspection. No damage to security features was noted and the

integrity of the security features was maintained. The security features and their conditions during this reporting period are described below.

Perimeter Fence

No damage to the perimeter fence was identified during the quarterly inspections conducted for this reporting period.

Gates and Locks

No damage to perimeter fence gates or locks was identified during the quarterly inspections conducted for this reporting period.

<u>Signs</u>

All signs were in place and legible.

2.1.2 Site

The Site features include final and vegetative covers, drainage swales, and monitoring wells. Each of these features was examined during each Site inspection. The integrity of the Site features was maintained. The condition of the Site features during this reporting period is described below.

Final and Vegetative Covers

No surface cracking or failure of the landfill cap was observed during this reporting period. Issues identified during the quarterly inspections included deep rooted vegetation and stressed vegetation due to area drought. The deep rooted growth was hand pulled during maintenance activities in May 2018. Mowing of the entire mound was conducted following the hand removal of weeds. The cut vegetation was raked and removed. No burrows were observed during recent inspections and during the mowing of the cap, GHD will continue to monitor for the presence of burrowing animals during quarterly inspections.

Drainage Swales

No erosion or excessive buildup of sediment was identified in the drainage swales during the quarterly inspections conducted for this reporting period. Limited vegetation has begun to encroach on the drainage swales. In May 2018 contractors applied an Ecology approved herbicide to knock back the vegetation from the rockery in the swales and the vegetation has been significantly reduced.

Monitoring Wells

The inspection of the monitoring wells was conducted in November 25, 2019 and included the verification of the presence and condition of well caps and locks, integrity of protective casings, and inspection for settlement or displacement of the wells. During the Reporting period, the bladder pump used to sample well 1-20 became lodged in the well and was not able to removed. Further assessment will be necessary to remove the pump from the well. If the pump cannot be removed, a replacement well may need to be installed.

2.2 Routine Maintenance

The O&M Plan requires that the landfill cap vegetative cover be fertilized and maintained as necessary. In September 2019 crews hand removed the deep rooted vegetation and sprayed the encroaching vegetation in the rockery in the swales. Mowing of the mound was completed following the hand weeding. Overall the landfill cap is in good condition and no repairs outside of the routine maintenance activities are required at this time.

3. Compliance Monitoring

The CMP is included as Appendix B of the O&M Plan. The groundwater CMP commenced in September 1998 at the completion of the RA. The CMP states that groundwater monitoring will be conducted semi-annually for 5 years following which a review will be conducted. The first 5-year review period ended in September 2003. A review of the groundwater monitoring program was presented in the "Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report – 2004." Based on the review, a modified groundwater monitoring program was approved by Ecology (see letter from G. Barrett (Ecology) to C. Barron (CRA) dated November 14, 2003).

The second 5-year review period ended in September 2008. A review of the groundwater monitoring program was presented in the "Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report – 2008." There were no approved modifications to the CMP following the second 5-year review period; however, potentiometric contour lines have been added to the site plan, as recommended by Ecology (see letter from G. Barrett (Ecology) to J. Cornetta (CRA) dated February 4, 2008). A third 5-year review was completed by Ecology in 2014, results were presented in a March 2015 report. A fourth 5-year review was completed by Ecology in 2018 with results presented in the 2019 report. No amendments to the CMP were made following this review.

Compliance monitoring currently consists of:

- i) Annual hydraulic monitoring of all site monitoring wells
- ii) Annual groundwater sample collection and analyses of two wells, 1-20 and 7-26

The monitoring wells included in the Site monitoring program are listed in Table 3.1 and shown on Figure 3.1.

3.1 Hydraulic Monitoring

Site-wide hydraulic monitoring is performed in conjunction with each groundwater sampling event. A tabulation of the groundwater elevations measured since the commencement of the CMP is presented in Table 3.2. Groundwater elevations, potentiometric contour lines and groundwater flow direction are presented on Figure 3.1.

3.2 Water Quality Monitoring

Groundwater samples were collected in accordance with the low-flow monitoring well purging and sample collection procedures approved by Ecology on September 16, 1998 with one exception. As noted above, GHD was unable to use the bladder pump lodged in the well. The sample was

collected using a peristaltic pump following approval from Ecology. A sample collection summary log is contained in Appendix B.

Groundwater samples collected during this reporting period were analyzed for the parameters listed in Table 3.3. Cleanup levels for the monitoring parameters listed in Table 3.3 are the Model Toxic Control Act (MTCA) Method B groundwater levels, or the analytical method's Practical Quantitation Limit (PQL) where the Method B levels are lower than the PQL.

The groundwater analytical data generated during this reporting period and cleanup levels are presented in Table 3.4. The results are consistent with the historic data. The data validation for this reporting period is contained in Appendix C of this report. A complete groundwater analytical database is presented in Appendix D. All investigative samples were analyzed within the recommended holding time.

4. Assessment of Site Conditions

One of the purposes of the annual review of the O&M activities and monitoring data is to assess the current Site conditions in terms of the effectiveness of the RA.

Based upon the findings of the site investigations performed prior to the RA, Ecology stated the following concerns regarding fill materials present at the Site:

- i) Ongoing impact to groundwater in the Lower Sand unit by volatile organic compounds (VOCs) in buried sludge and soils
- ii) Potential for direct human exposure to asbestos contained in the sludge
- iii) Potential for direct human exposure to metals contained in grit and shot
- iv) Potential surface and groundwater impacts from metals contained in the grit and shot

These concerns were presented in Exhibit B, "Cleanup Action Plan," of the Consent Decree filed March 3, 1997.

The RA addressed each of these concerns through the removal of impacted sludge, grit, and shot and containment of these materials in the on-Site engineered landfill. Confirmatory analyses were performed on samples of in situ soils to confirm that concentrations of the Site compounds which exceeded the cleanup standards specified in Table 2 of Exhibit B of the Consent Decree did not remain following the completion of the RA.

The following subsections present evaluations of the current Site condition relative to these concerns. The evaluations are based upon the O&M activities performed during this reporting period and on the Compliance Monitoring data.

4.1 Direct Contact with Impacted Materials

The security and integrity of the landfill was maintained throughout this reporting period; therefore, there was no potential for direct human exposure to asbestos contained in sludge or metals contained in grit or shot.

4.2 Groundwater and Surface Water Impact

The sludge and soils containing concentrations of the Site compounds at concentrations exceeding the cleanup standards are isolated within the landfill and the integrity of the landfill was maintained throughout this reporting period. Therefore, the sludge or soils no longer represent a continuing source of VOCs or metals to groundwater or surface water.

The groundwater points of compliance are Lower Sand Unit monitoring wells located adjacent to the containment facility (MW-2) and at the downgradient boundaries of the Site (1-20, 2-27, 6-26, and 7-26). The locations of the points of compliance are shown on Figure 3.1. In the first 5-year review of the groundwater monitoring program conducted in November 2003, it was demonstrated that compliance with cleanup standards was achieved and maintained at all monitoring points except 1-20 and 7-26. Therefore, routine monitoring of the remaining compliance points is no longer required.

The 2019 groundwater sampling event was conducted on November 25, 2019. There were detections of cis-1,2-DCE for both monitoring wells 1-20 and 7-26. These detections are consistent with the historic data and the general decreasing trend of both contaminates continues.

No exceedance of the cleanup standards for vinyl chloride or cis-1,2-DCE were detected in the samples collected from either monitoring wells. The concentrations of vinyl chloride and cis-1,2-DCE are consistent with historical data.

The analytical data for cis-1,2-DCE and vinyl chloride in monitoring wells 1-20 and 7-26 have been graphed as shown on Figures 4.1 and 4.2. To assist in the evaluation of chemical presence at these locations, linear trend lines have been added to the graphs. The graphs show overall downward trends in the cis-1,2-DCE concentrations in these wells since the baseline monitoring event was conducted in September 1998. The graphs also show a downward trend in vinyl chloride concentrations in well 1-20 and stable concentrations in well 7-26.

The analytical data collected during this reporting period, therefore, demonstrate that there is no ongoing impact of chemicals to groundwater in the Lower Sand unit by Site sludge or grit/shot. It is expected that, over time, the natural attenuation process will restore the Lower Sand groundwater to a quality that meets or exceeds the cleanup standards.

5. Conclusions and Recommendations

The O&M activities and Compliance Monitoring performed during this reporting period demonstrate that the RA remains effective in mitigating the concerns for human health exposure and groundwater impact that are stated in the Cleanup Action Plan. There is no further remedial action required at the Site at this time.

Figures

GHD | Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report – 2018 | 11159500-D23102 (53)

P:\drawings\11195000s\11195900\11195900\11195900-REPORTS\11195900-D23102(055)GN\11195900-D23102(055)GN\4001.dwg Plot Date: JAN 17, 2020

Tacoma, Washington

CONCENTRATION VS. TIME - 7-26 COMPLIANCE MONITORING PROGRAM BONNEVILLE POWER ADMINISTRATION *Tacoma, Washington*

GHD

Tables

GHD | Remedial Action Operation and Maintenance and Groundwater Monitoring Annual Report – 2018 | 11159500-D23102 (53)

Compliance Monitoring Points Bonneville Power Administration Site Taylor Way Tacoma, Washington

Well No.	Hydraulic Monitoring	Water Quality Monitoring
1-20	Х	Х
2-27	Х	
6-26	х	
7-26	х	Х
9-30	х	
MW-1	х	
MW-2	Х	

Summary of Groundwater Elevations Bonneville Power Administration Site Taylor Way Tacoma, Washington

	Top of									
Well No.	Casing*	Nov. 98	May 99	Nov. 99	May 00	Nov. 00	May 01	Nov. 01	May 02	Nov. 02
1-20	8.40	2.00	2.94	2.24	3.42	3.10	3.15	2.24	3.70	2.01
2-27	14.92	3.14	5.13	3.48	5.44	4.34	5.00	3.58	6.07	2.96
6-26	13.27	2.38	4.09	2.77	4.55	3.57	4.06	2.87	4.87	2.41
7-26	12.73	1.85	2.91	2.14	3.55	2.94	3.02	2.14	3.54	1.90
9-30	14.65	3.76	5.74	4.22	5.99	4.96	5.66	4.28	6.43	3.49
MW-1	13.97	2.42	4.03	1.87	4.48	4.06	4.11	NM	4.88	3.85
MW-2	12.32	2.12	3.03	2.42	3.92	3.23	3.28	2.25	3.85	NM
	Top of									
Well No.	Casing*	May. 03	Nov. 03	Nov. 04	Nov. 05	Nov. 06	Nov. 07	Nov. 08	Nov. 09	Nov. 10
1-20	8.40	3.58	3.04	3.01	3.66	1.04	2.71	4.29	-0.36	4.39
2-27	14.92	5.76	5.02	4.81	5.34	3.18	4.16	6.36	6.30	6.60
6-26	13.27	4.66	4.04	3.86	4.59	2.49	3.45	5.73	5.39	5.76
7-26	12.73	3.46	2.86	2.92	3.58	1.91	2.73	4.15	3.20	4.38
9-30	14.65	6.28	5.68	5.52	5.82	3.82	4.74	6.27	6.14	6.68
MW-1	13.97	4.73	4.02	3.94	4.57	NM	3.11	5.56	5.42	5.59
MW-2	12.32	3.79	2.92	3.15	3.8	2.00	2.90	4.47	4.39	4.45
	Top of									
Well No.	Casing*	Nov. 11	Nov. 12	Nov. 13	Nov. 14	Nov. 15	Nov. 16	Nov. 17	Nov. 18	Nov. 19
1-20	8.40	2.71	4.78	3.80	4.10	4.55	4.93	4.09	2.28	2.37
2-27	14.92	3.93	6.93	5.94	5.96	6.79	7.53	5.85	3.21	3.02
6-26	13.27	3.27	6.09	4.99	5.2	5.96	6.80	5.30	2.62	2.47
7-26	12.73	2.62	4.72	3.79	4.04	5.47	4.01	4.47	2.21	1.87
9-30	14.65	4.43	7.01	6.21	6.25	6.70	7.26	6.54	3.68	3.88
MW-1	13.97	3.17	5.92	4.92	5.12	5.71	6.51	4.30	1.99	2.37
MW-2	12.32	2.74	4.90	3.88	4.14	4.66	5.15	4.25	2.26	3.05

Notes:

* Elevation surveyed January 2010. Vertical Datum: NGVD 29. Water level elevations updated based on 2010 survey.

NM Not measured

Groundwater Compliance Monitoring Analytical Parameters Bonneville Power Administration Site Taylor Way Tacoma, Washington

Parameter ⁽¹⁾	Cleanup Level ⁽²⁾ (µg/L)
cis-1,2-Dichloroethene	70
Dichloromethane (methylene chloride)	5
Tetrachloroethene	5
Trichloroethene	5
Vinyl chloride	10*

Notes:

- ⁽¹⁾ Analytical parameter list modified in January 2004.
- ⁽²⁾ Model Toxic Control Act (MTCA Method B Surface Water Standard, Cleanup Levels and Risk Calculations (CLARC), Version 3.1, updated November 2001.
- Practical Quantitation Limit (PQL), "Washington State Department of Ecology Toxics Cleanup Program, Guidance on Sampling and Data Analysis Methods," January 1995.

Analytical Results Summary Bonneville Power Administration Site Taylor Way Tacoma, Washington

Sample Location: Sample ID: Sample Date:		:	1-20 GW-112519-NT-1-20 11/25/2019	7-26 GW-112519-NT-7-26 11/25/2019	1-20 GW-112519-NT-FD1 11/25/2019 (Duplicate)	
Parameter	Units	Cleanup Level ⁽¹⁾				
Volatile Organic Comp	ounds	_				
cis-1,2-Dichloroethene	μg/L	70	23	11	23	
Methylene chloride	µg/L	5	2.5 U	2.5 U	2.5 U	
Tetrachloroethene	µg/L	5	2.5 U	2.5 U	2.5 U	
Trichloroethene	µg/L	5	0.46 J	0.32 J	2.5 U	
Vinyl chloride	µg/L	10*	2.1	4.9	2.3	

Notes:

- ⁽¹⁾ Model Toxic Control Act (MTCA Method B Surface Water Standard, Cleanup Levels and Risk Calculations (CLARC), Version 3.1, updated November 2001.
- J Estimated.
- U Non-detect at associated value.
- * Practical quantitation limit.

Concentration exceeds the cleanup standard.

Appendix A Site Inspection Sheets

SITE

Specific Item		No	Yes (If yes give details below)
Erosion or Settlement of Low Permeability Cap		~	
Surface Cracking or Failure of Cap Along Slopes		1	
Emergence/Presence of Deep Rooted Vegetation (i.e. tree	s, brush, etc.)	V	
Vegetation Burnout		1	
Excessive Growth of Vegetation	Cap Drainage Swale	V	~
Presence of Burrowing Mammals		/	
Well Protective Casings and Appurtenances in Acceptable	e Condition		Yes
Erosion of Drainage Swale/Ditch		V	
Comments: If no problems with cap noted - state "No Pro If problems noted summarize problems below and correct No problems Noted	bblems Noted." ive actions taken, use ac	lditional sheets if ne	cessary.

Rick Breber (Inspector's Name - Please Print)

(Inspector's Signature and Date of Inspection)

SECURITY

Specific Item		No	Yes (If yes give details below)				
Perimeter Fence (i.e. damage or excessive							
deterioration)		V					
Gates and Locks (missing damaged or inoperable)		V					
Signs (damaged, missing or no longer readable)		V					
Comments: If no problems with perimeter fence, gates or locks noted - state "No Problems Noted." If problems noted summarize problems below and corrective actions taken, use additional sheets if necessary.							

Rick Breber

(Inspector's Name - Please Print) 2

(Inspector's Signature and Date of Inspection)

SITE

Specific Item		No	Yes (If yes give details below)
Erosion or Settlement of Low Permeability Cap		×	
Surface Cracking or Failure of Cap Along Slopes		×	
		\sim	
Emergence/Presence of Deep Rooted Vegetation (i.e. tree	es, brush, etc.)	×	
Vegetation Burnout		X	
Excessive Growth of Vegetation	Сар	¥	NO
	Drainage Swale		yes schedule indecopery & cleare schedu
Presence of Burrowing Mammals	<u>U</u>		jes server a server for server souther
		×	
Well Protective Casings and Appurtenances in Acceptabl	e Condition		
			Yes
Erosion of Drainage Swale/Ditch		X	
Comments: If no problems with cap noted - state "No Pro-	oblems Noted."		
If problems noted summarize problems below and correct	tive actions taken, use ad	ditional sheets if	necessary.
No significant problems refer	scheduled now	1-3 6 66	ving at surfle
			-

Rick Broker (Inspector's Name - Please Print) 5

(Inspector's Signature and Date of Inspection)

SECURITY

Specific Item		No	Yes (If yes give details below)	
Perimeter Fence (i.e. damage or excessive				
deterioration)		V		
Gates and Locks (missing damaged or inoperable)				
		\checkmark		
Signs (damaged, missing or no longer readable)		1		
Comments: If no problems with perimeter fence, gates or	locks noted - state "No	Problems Noted."		
If problems noted summarize problems below and correct	ive actions taken, use ad	ditional sheets if ne	cessary.	
no polotens noted				

Rick Brebee (Inspector's Name - Please Print)

19 S 15

(Inspector's Signature and Date of Inspection)

SITE

Specific Item	No	Yes (If yes give details below)
Erosion or Settlement of Low Permeability Cap		
Surface Cracking or Failure of Cap Along Slopes		
Emergence/Presence of Deep Rooted Vegetation (i.e. trees, brush, etc.)	/	
Vegetation Burnout	i	
Excessive Growth of Vegetation Cap Drainage S	wale	Monsing Under way
Presence of Burrowing Mammals		
Well Protective Casings and Appurtenances in Acceptable Condition		yes
Erosion of Drainage Swale/Ditch		
Comments: If no problems with cap noted - state "No Problems Noted." If problems noted summarize problems below and corrective actions taken.	, use additional sheets if ne	cessary.

(Inspector's Name - Please Print) 9 19 6

/ (Inspector's Signature and Date of Inspection)

SECURITY

Specific Item	No	Yes (If yes give details below)
Perimeter Fence (i.e. damage or excessive	······	
deterioration)		
Gates and Locks (missing damaged or inoperable)		· · · · · · · · · · · · · · · · · · ·
Signs (damaged, missing or no longer readable)		
Comments: If no problems with perimeter fence, gates or locks noted -	state "No Problems Noted "	
If problems noted summarize problems below and corrective actions tal	ken, use additional sheets if necess	ary.
· · · · · · · · · · · · · · · · · · ·		

Rick Breber

(Inspector's Name - Please Print) Ż

(Inspector's Signature and Date of Inspection)

SITE

Specific Item		No	Yes (If yes give details below)	
Erosion or Settlement of Low Permeability Cap		\checkmark		
Surface Cracking or Failure of Cap Along Slopes		\checkmark		
Emergence/Presence of Deep Rooted Vegetation (i.e. trees	s, brush, etc.)			
Vegetation Burnout		\checkmark		
Excessive Growth of Vegetation	Cap Drainage Swale	/		
Presence of Burrowing Mammals		V		
Well Protective Casings and Appurtenances in Acceptable	Condition		yes	
Erosion of Drainage Swale/Ditch				
Comments: If no problems with cap noted - state "No Pro	blems Noted."			
If problems noted summarize problems below and corrections pole problems pole	ive actions taken, use ad	lditional sheets if ne	ecessary.	

Rick BREBER (Inspector's Name - Please Print) Z 11 (Inspector's Signature and Date of Inspection)

TreaTek-CRA 7412 (4) APPA

SECURITY

Specific Item		No	Yes (If yes give details below)	
Perimeter Fence (i.e. damage or excessive				
deterioration)				
Gates and Locks (missing damaged or inoperable)				
		V		
Signs (damaged, missing or no longer readable)				
Comments: If no problems with perimeter fence, gates or lock	s noted - state "No	Problems Noted."		
It problems noted summarize problems below and corrective a	ctions taken, use ad	ditional sheets if ne	cessary.	

Rick Breber

(Inspector's Name - Please Print)

(Inspector's Signature and Date of Inspection)

Appendix B Groundwater Sample Collection Summary Logs

TABLE B

SAMPLE COLLECTION DATA SHEET - GROUNDWATER SAMPLING PROGRAM OCCIDENTAL CHEMICAL CORPORATION BPA SITE TACOMA, WASHINGTON

ROJECT NAME			BPA						PROJEC [®]	T NO.	11195900-D23102 (1 of 1)
MPLING CREW MEMBERS			Nate Tandeki						SUPERV	ISOR R. Bieb	er
TE OF SAMPLE COLLECTION			11/25/2019				[Note: For	2" dia well	1 ft = 0.14	L gal (imp) or 0.16	nal (Jau)
Sample I.D.	Well Number	Measuring Point Elev.	Water Depth	Water Elevation	Volume Flow	Volume Purged	Field pH	Field Temp.	Field Cond.	Time	Sample Description
Number		(NGVD)	(ft. btoc)	(NGVD)	(ml/min)	(gal US)		(C)	(mS/cm)		& Analysis
GW-112519-NT-1-20 ⁽²⁾	1-20	8.40	5.3	3.10		6.75	6.22	12.3	2.09	13:10	Clear
GW-112519-NT-7-26 ⁽¹⁾	7-26	12.73	10.86	1.87		4.5	6.40	12.2	1.84	10:45	Clear
Additional Comments:		SAMPLE SET:	3 x 40ml glass	w/ HCI preser	rve for VOC						
Copies to:		(1) MS / MSD (2) field duplica	taken ite taken								

Appendix C Analytical Data Verification and Assessment

January 7, 2020

To:	Rick Bieber	Ref. No.:	037894
	17		
From:	Sheri Finn/adh/28	Tel:	716-205-1977
Subject:	Analytical Results and Reduced Validation Tacoma BPA Annual Groundwater Monitoring Glenn Springs Holdings, Inc. Tacoma, Washington November 2019		

1. Introduction

This document details a reduced validation of analytical results for groundwater samples collected in support of the Tacoma BPA Annual Groundwater Monitoring Program at the Tacoma, Washington site during November 2019. Samples were submitted to APPL Labs located in Clovis, California. A sample collection and analysis summary is presented in Table 1. The validated analytical results are summarized in Table 2. A summary of the analytical methodology is presented in Table 3. A copy of the chain of custody can be found in Attachment A.

Standard GHD report deliverables were submitted by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody form, finished report forms, method blank data, recovery data from surrogate spikes/laboratory control samples (LCS)/matrix spikes (MS), and field QA/QC samples.

The QA/QC criteria by which these data have been assessed are outlined in the analytical method referenced in Table 3 and applicable guidance from the document entitled "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review", United States Environmental Protection Agency (USEPA) 540-R-2016-002, September 2016, subsequently referred to as the "Guidelines" in this Memorandum.

2. Sample Holding Time and Preservation

The sample holding time criterion for the analyses is summarized in Table 3. The sample chain of custody document and analytical report were used to determine sample holding times. All samples were analyzed within the required holding time.

All samples were properly preserved, delivered on ice, and stored by the laboratory at the required temperature (0-6°C).

3. Laboratory Method Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

All method blank results were non-detect, indicating that laboratory contamination was not a factor for this investigation.

4. Surrogate Spike Recoveries

In accordance with the method employed, all samples, blanks, and QC samples analyzed for organics are spiked with surrogate compounds prior to sample analysis. Surrogate recoveries provide a means to evaluate the effects of laboratory performance on individual sample matrices.

All samples submitted for volatile organic compound (VOC) determinations were spiked with the appropriate number of surrogate compounds prior to sample analysis.

Surrogate recoveries were assessed against laboratory control limits. All surrogate recoveries were acceptable.

5. Laboratory Control Sample Analyses

LCS are prepared and analyzed as samples to assess the analytical efficiencies of the method employed, independent of sample matrix effects.

For this study, LCS were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

The LCS contained all compounds of interest. LCS recoveries were within the laboratory control limits, demonstrating acceptable analytical accuracy.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

To evaluate the effects of sample matrices on the preparation process, measurement procedures, and accuracy of a particular analysis, samples are spiked with known concentrations of the analytes of concern and analyzed as MS/MSD samples.

MS/MSD analysis was performed as specified in Table 1.

The MS/MSD sample was spiked with all compounds of interest. Most percent recoveries and all relative percent difference (RPD) values were within the laboratory control limits, demonstrating acceptable

analytical accuracy and precision. Low MS/MSD recoveries were reported for vinyl chloride; the associated sample result was qualified as estimated (see Table 4).

7. Field QA/QC Samples

The field QA/QC consisted of one trip blank sample and one field duplicate sample set.

7.1 Trip Blank Sample Analysis

To evaluate contamination from sample collection, transportation, storage, and analytical activities, a trip blank was submitted to the laboratory for VOC analysis. All results were non-detect for the compounds of interest.

7.2 Field Duplicate Sample Analysis

To assess the analytical and sampling protocol precision, a field duplicate sample set was collected and submitted "blind" to the laboratory, as specified in Table 1. The RPDs associated with the duplicate sample must be less than 50 percent for water samples. If the reported concentration in either the investigative sample or its duplicate is less than five times the reporting limit (RL), the evaluation criterion is one times the RL value for water samples.

The field duplicate results were in agreement, demonstrating acceptable sampling and analytical precision.

8. Analyte Reporting

The laboratory evaluated detected results down to the laboratory's method detection limit (MDL) for each analyte. Positive analyte detections less than the RL but greater than the MDL were reported as estimated (J) in Table 2. Non-detect results were presented as non-detect at the RL in Table 2.

9. Conclusion

Based on the assessment detailed in the foregoing, the data summarized in Table 2 are acceptable with the qualification noted.

Page 1 of 1

Table 1

Sample Collection and Analysis Summary Tacoma BPA Annual Groundwater Monitoring Glenn Springs Holdings, Inc. Tacoma, Washington November 2019

			Analysis					
Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	Volatiles	Comments		
GW-112519-NT-1-20	MW1-20	Water	11/25/2019	13:10	Х	Field Duplicate of GW-112519-NT-7-26		
GW-112519-NT-FD-3	MW1-20	Water	11/25/2019	00:01	Х			
GW-112519-NT-7-26	MW7-26	Water	11/25/2019	10:50	Х	Matrix Spike/Matrix Spike Duplicate		
TRIP BLANK	-	Water	11/25/2019	00:01		Trip Blank		

Notes:

- - Not applicable

Table 2

Analytical Results Summary Tacoma BPA Annual Groundwater Monitoring Glenn Springs Holdings, Inc. Tacoma, Washington November 2019

Location ID: Sample Name: Sample Date:		MW1-20 GW-112519-NT-1-20 11/25/2019	MW1-20 GW-112519-NT-FD-3 11/25/2019 Duplicate	MW7-26 GW-112519-NT-7-26 11/25/2019	
Parameters	Unit				
Volatile Organic Compounds					
cis-1,2-Dichloroethene	µg/L	21	23	11	
Methylene chloride	µg/L	2.5 U	2.5 U	2.5 U	
Tetrachloroethene	µg/L	2.5 U	2.5 U	2.5 U	
Trichloroethene	µg/L	0.46 J	2.5 U	0.32 J	
Vinyl chloride	µg/L	2.1	2.3	4.9 J	

Notes:

- J Estimated concentration
- U Not detected at the associated reporting limit

Table 3

Analytical Method Tacoma BPA Annual Groundwater Monitoring Glenn Springs Holdings, Inc. Tacoma, Washington November 2019

			Holding Time Collection to
Parameter	Method	Matrix	to Analysis (Days)
Volatile Organic Compounds (VOCs)	SW-846 8260B	Water	14

Notes:

SW-846 - "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, 1986, with subsequent revisions

Table 4

Qualified Sample Results Due to Outlying MS/MSD Results Tacoma BPA Annual Groundwater Monitoring Glenn Springs Holdings, Inc. Tacoma, Washington November 2019

			MS	MSD		Control Limits		Qualified	
Parameter	Sample ID	Analyte	% Recovery	% Recovery	RPD (percent)	% Recovery	RPD	Result	Units
VOC	GW-112519-NT-7-26	Vinyl chloride	70	71	0.84	75-125	20	4.9 J	µg/L

Notes:

MS - Matrix Spike

MSD - Matrix Spike Duplicate

RPD - Relative Percent Difference

VOC - Volatile Organic Compounds

J - Estimated concentration

Attachment A Chain of Custody Document

	ר נמצג			 Al	PPL,	Inc.								l	CH	AIN	OF (CUS	TOI	DY	c RE(२ <i>०</i> -६७४ CORD
			4	908 N Te	empe	ranc	e Ar	ve		Pho	ne:	(559)) 2'	75-2	175							
	te-			Clovi	s, ĈA	x 930	511			Fax	: (5	59) 2	275	-442	22				57	01	A	
	, M	-		www	.appl	inc.c	om			coc	@a	pplin	IC.C	om	;	C.0	.C		<u>51</u>	01	_ 4	
Report to: F	PLEASE PRI	NT					- L	nvoice	e to:						PLF	ASE F	RINT					And Dan -
Company Name: <u>GHD</u>		I	Phone: <u>25</u>	3-988	5-76	219	0	Compa	any N	lame:	<u>C</u>	540)							I	Phone	253-988-7619
Address: 3600 POIT	of Tau	oma Rd,					A	Addres	ss:	36	<u>Ģ</u>	<u>0 f</u>	00	(+)	OE	- 70	ico*	<u>19</u>	R	d	Eav	
<u>Suite 302 Ta</u>	icomg V	VA 984	u Fax:			_			_	50	114	e	30	2	Ta	Geor	g h	1 1	98	42	Yax	·
Atta: Rick Bieb	er				.*			Atta:	k	210	EX	<u> </u>	Sie	be	r							
Email: Rick. bieber	Ogh	d.con	<u>^</u>		<u>.</u>	_	. E	Email:		Ri	ck	: · k	ne	ber	- () J	hd.	03	m			
Project Name/Number	Sampler (P	rint)	dock										Ana	lysis	Requ	ested/I	Aetho	i Nun	iber		_	Date Shipped:
3/8440M (11199900-1)22102-41	19) IN	. 19/1	MACF	1		ners		Mat	trix		2	8	.	ł							0	Carrier:
Purchase Order Number	Sampler (S	ignature) . 7	بر 			Contair					055	107	r								M5	Waybill No.:
Sample Identification	Loc		Date	Time	Time	No. of	Aq	Sed	Soi		Ser	-26-	5								<u>N5/</u>	Comments:
GW-112519-NT-1-212	1-75		11-25-19	1310	PS-	13	X				X						_				~	
GW-112519-NT- F0-3	FD-	<u>, </u>	11-25-19		1	3	X				X											
GW-112519-NT-7-26	7-2	6	11-25-19	1050		12	X				χ	,	_								X	MS/MSD
Trip Blank											/ `											
· ·																				·		-
															_							
Shuttle Temperature: R5@ to.n Z.0/2.n		d Requested: 2-3 wk	Check one One week	3 days	24	/48 H	rs. 🌶	Othe	er: SC	23	5501	N 02-D	07-1	310	0		Sam	ple D Returr	ispos to cl	al: ient	X	Disposal by Lab (30-day retention)
Relinquished by sampler:	Date 11-25-19	Time 1340	Received	by:			R	elinqu	uishe	d by:					Dat	e	Tim	e	Re	ceive	d by:	<u>}</u>
Relinquished by:	Date	Time	Received	by:			R	elinqu	uishe	d by:				·	Dat	e 6.19	Tim	e 50	Re	ceive	d at l	ab by:
White: Return to client with repo	nt	Yello	w: Laborat	tory Copy		S	ee re	verse	e side	e for	Cor	ntainer	r Pre	eserv	ative	and S	ampl	ing li	ıforn	iatio	n••	

. ..

Appendix D Analytical Database

Sample Location:		1-20	1-20	1-20	1-20	1-20	1-20	1-20	1-20	1-20	1-20	1-20
Sample ID:		W-7412-092398-MW1-20-DCM	IW1-20-1198-TI	WW1-20-0599-TF	MWD1-0599-TR	/W1-20-1199-TF	MWD1-1199-TR	/W1-20-0500-TF	MW1-20-1100-TF	FD1-1100-TR	MW1-20-0501-TF	FD1-0501-TR
Sample Date:		9/23/1998	11/5/1998	5/12/1999	5/12/1999	11/8/1999	11/8/1999	5/9/2000	11/9/2000	11/9/2000	5/21/2001	5/21/2001
-					Duplicate		Duplicate			Duplicate		Duplicate
Parameter	Units											
Volatiles												
cis-1,2-Dichloroethene	ug/L	160 ^j	140 ^J	130	120	130	140	83	100	100	90	89
Methylene chloride	ug/L	5 1	5	5	5	1.0u	1.0 U	2.3 U	4.0 U	10 บ	2.5u	2.5 ∪
Tetrachloroethene	ug/L	5 /	5	5	5	1.0u	1.0u	1.0u	4.0U	10 U	2.5U	2.5U
Trichloroethene	ug/L	9,	8.0	4.1	4.4	3.4	3.6	2.2	1.2	10 U	1.7 J	1.7 J
Vinyl chloride	ug/L	21,	31	25	32	16	16	9.8	12	12	33	34
Semi-Volatiles												
bis(2-Ethylhexyl)phthalat	ug/L	3.5	3.5	-	-	-	-	-	-	-	-	-
Hexachlorobenzene	ug/L	1.3	1.3	-	-	-	-	-	-	-	-	-
Hexachlorobutadiene	ug/L	0.75	0.75	-	-	-	-	-	-	-	-	-
Motals												
Arsonic	ua/l	_	_	_	_	_	_	_	_	_	_	_
Arsenic (Dissolved)	ug/L	- 15	52	4.8	4.2	4 2 11	4 2 11	4 2 11	- 3 0 I II	3.0m	- 1 Ou	- 1 Ou
Lead	ua/l	-	-	-	-	-	-	-	-	-	-	-
Lead (Dissolved)	ua/l	5	5 ^J	5	5	27u	27 U	27u	27 U	27u	3 O UI	3 0 UI
2000 (2.000100)	~g/L	5	5	5	5	2.7 0					0.00)	0.00)

Sample Location: Sample ID: Sample Date:		1-20 WW1-20-1101-TF 11/9/2001	1-20 FD1-1101-TR 11/9/2001 Duplicate	1-20 WW1-20-0502-TF 5/1/2002	1-20 FD1-0502-TR 5/1/2002 Duplicate	1-20 MW1-20-1102-D(11/14/2002	1-20 FD1-1102-DC 11/14/2002 <i>Duplicat</i> e	1-20 1-20-0503 5/8/2003	1-20 FD1-0503 5/8/2003 Duplicate	1-20 1-20-1103 11/11/2003	1-20 1-20-1104 11/11/2004	1-20 -20-1105-NR-00 11/18/2005	1-20 1-20-1105-NR-002 11/18/2005 Duplicate
Parameter	Units												
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	ug/L ug/L ug/L ug/L ug/L	51 2.5⊍ 2.5⊍ 1.3」 5.8	55 2.5u 2.5u 1.3 J 6.4	72 2.5u 2.5u 2.5u 18	71 2.50 2.50 2.50 18	94 2.5uj 2.5u 2.0j 10	91 2.5ຫ 2.5ຫ 1.9յ 9.8	22 UJ 2.5U 2.5U 2.5U 3.1	19 2.50 2.50 2.50 2.7	52 2.5 U 2.5 U 2.5 U 11	22 J 2.5 U 2.5 U 2.5 U 3.6	38) 2.50 2.50 2.50 4.7)	160 2.5ປ 2.5ປ 2.5ປ 2.5ປ 14ປ
Semi-Volatiles bis(2-Ethylhexyl)phthalat Hexachlorobenzene Hexachlorobutadiene	ug/L ug/L ug/L	- - -	-	- - -	- - -	- - -	:	-	- -	- -	-	-	- -
<i>Metals</i> Arsenic Arsenic (Dissolved) Lead Lead (Dissolved)	ug/L ug/L ug/L ug/L	1.0u - 3.0u -	1.00 - 3.00 -	1.0 u 3.0 u	1.00 - 3.00	- 1.0บ - 3.0บ	1.0u - 3.0u	0.4 - 3.0 u	0.7 3.0 U	0.7 3.0 U			- - -

Sample Location:		1-20	1-20	1-20	1-20	1-20	1-20	1-20	1-20
Sample ID:		1-20-1106-ILM-00	11-20-1107-ILM-0013W	/-111408-TG-BPA-1-20-0	GW-110609-TG-1-20	GW-111610-JS-1-20	GW-111610-JS-1-20	GW-111711-AK-1-20	GW-112912-MD-1-20
Sample Date:		11/3/2006	11/2/2007	11/14/2008	11/6/2009	11/16/2010	11/16/2010 Duplicate	11/17/2011	11/29/2012
Parameter	Units	;							
Volatiles									
cis-1,2-Dichloroethene	ug/L	91	28 J	65	18	54	50	110	70
Methylene chloride	ug/L	2.5	2.5	2.5 U	2.5U	2.5 U	2.5 U	2.5 U	2.0 U
Tetrachloroethene	ug/L	2.5	2.5	2.5 U	2.5U	2.5 U	2.5 U	2.5 U	0.50 U
Trichloroethene	ug/L	0.43	2.5	0.26 J	0.17J	2.5 U	2.5 U	2.5 U	0.10 J
Vinyl chloride	ug/L	11	6.3	12	3.1	4.6	4.2	11	6.5
Semi-Volatiles									
bis(2-Ethylhexyl)phthalat	ug/L	-	-	-	-	-	-	-	-
Hexachlorobenzene	ug/L	-	-	-	-	-	-	-	-
Hexachlorobutadiene	ug/L	-	-	-	-	-	-	-	-
Metals									
Arsenic	ug/L	-	-	-	-	-	-	-	-
Arsenic (Dissolved)	ug/L	-	-	-	-	-	-	-	-
Lead	ug/L	-	-	-	-	-	-	-	-
Lead (Dissolved)	ug/L	-	-	-	-	-	-	-	-
. ,	0								

Sample Location: Sample ID: Sample Date:		1-20 \ GW-112613-BP-1-20 11/26/2013	1-20 GW-111814-BP-1-20 11/18/2014	1-20 GW-113015-BP-1-20 11/30/2015	1-20 GW-111716-NT-1-20 11/17/16	1-20 GW-201117-NT-1-20 11/20/17	1-20 GW-201117-NT-FD1 11/20/17 Duplicate	1-20 GW-110618-NT-1-20 11/06/2018	1-20 GW-112519-NT-1-20 11/25/2019
Parameter	Units								
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	ug/L ug/L ug/L ug/L ug/L	80 2.0 U 0.50 U 0.50 U 9.0	38 2.0 U 0.50 U 0.50 U 3.3	81 2.0 U 0.50 U 0.50 U 10	39 J 2.5 U 2.5 U 2.5 U 3.7	80 2.5 U 2.5 U 2.5 U 7.1	75 2.5 U 2.5 U 2.5 U 2.5 U 5.5	43 2.5 U 2.5 U 2.5 U 2.5 U 0.5 U	23 2.5 U 0.15 U 0.46 J 2.1
Semi-Volatiles bis(2-Ethylhexyl)phthalat Hexachlorobenzene Hexachlorobutadiene	ug/L ug/L ug/L	:	- - -	- - -	- - -	- - -	- - -	- - -	-
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved)	ug/L ug/L ug/L ug/L		- - -	- - -	- - -	- - -	- - -	- - -	

Sample Location:		1-20	7-26	7-26	7-26	7-26	7-26	7-26	7-26	7-26	7-26	7-26
Sample ID:		GW-112519-NT-FD3	N-7412-092398-MW7-26-	DCMW7-26-1198-T	FMWD1-1198-TR	WW7-26-0599-TI	WW7-26-1199-TI	WW7-26-0500-TI	WW7-26-1100-T	WW7-26-0501-TI	WW7-26-1101-TI	WW7-26-0502-TF
Sample Date:		11/25/19	9/23/1998	11/4/1998	11/4/1998	5/12/1999	11/8/1999	5/10/2000	11/9/2000	5/21/2001	11/8/2001	5/1/2002
		Duplicate			Duplicate							
Parameter	Units											
Volatiles												
cis-1,2-Dichloroethene	ug/L	23	180	140	150	140	220 D	170 ⊳	250	130	220	110
Methylene chloride	ug/L	2.5 U	5.3	5	5	5	1.0 U	5.3D	8.0 U	2.5U	2.5U	2.5 ∪
Tetrachloroethene	ug/L	0.15 U	5	5	5	5	1.0u	1.3u	8.0 U	2.5 ∪	2.5U	2.5 ∪
Trichloroethene	ug/L	0.15 U	10	9.2	9.4	5.5	4	1.8	8.0 U	1.4 J	2.5u	2.5u
Vinyl chloride	ug/L	2.3	6.9	22	22	4.4	16	6.0	16	8.3	44	4.3
Semi-Volatiles												
bis(2-Ethylhexyl)phthalat	ug/L	-	3.5	3.5	3.5	-	-	-	-	-	-	-
Hexachlorobenzene	ug/L	-	1.3	1.3	1.3	-	-	-	-	-	-	-
Hexachlorobutadiene	ug/L	-	0.75	0.75	0.75	-	-	-	-	-	-	-
Metals												
Arsenic	ua/L	-	-	-	-	-	-	-	-	-	7.2	-
Arsenic (Dissolved)	ug/L	-	5.4	7.8	6.4	7.5J	5.5в	4.2	3.8J	7.8	-	4
Lead	ug/L	-	-	-	-	-	-	-	-	-	3.0U	-
Lead (Dissolved)	ug/L	-	5	5	5	5	2.7 U	2.7 ∪	2.7 U	3.0 UJ	-	3.0 U
. ,	2											

Sample Location: Sample ID: Sample Date:		7-26 WW7-26-1102-DC 11/14/2002	7-26 7-26-0503 5/8/2003	7-26 7-26-1103 11/10/2003	7-26 FD1-1103 11/10/2003 Duplicate	7-26 7-26-1104 11/11/2004	7-26 FD1-1104 11/11/2004 <i>Duplicat</i> e	7-26 7-26-1105-NR 11/18/2005	7-26 -26-1106-ILM-00 11/3/2006	7-26 7-26-1106-ILM-003 11/3/2006 Duplicate	7-26 7-26-1107-ILM 11/2/2007	7-26 FDUP-1107-ILM 11/2/2007 Duplicate
Parameter	Units											
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	ug/L ug/L ug/L ug/L ug/L	120 2.5uj 2.5uj 2.0j 8.9	48 2.5u 2.5u 2.5u 2.4	170 2.5u 2.5u 1.4J 37	220 2.5u 2.5u 1.5J 37	150 2.5u 2.5u 1.3J 31	150 2.5u 2.5u 1.3J 31	120 2.50 2.50 2.50 14	170) 2.5u 2.5u 0.78 11	170 2.5 ^U 0.24 ^I 0.85 11	110 2.5v 2.5v 2.5v 16	100 2.5ນ 2.5ນ 2.5ນ 20
Semi-Volatiles bis(2-Ethylhexyl)phthalat Hexachlorobenzene Hexachlorobutadiene	ug/L ug/L ug/L	-	-	-	- - -	- - -	-	:	- -	- - -	:	-
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved)	ug/L ug/L ug/L ug/L	6.4 - 3.0u	7.1 3.0 u	7.6 - 3.0 u	8.1 - 3.00	- - -		-	- - -		:	-

Sample Location: Sample ID: Sample Date:		7-26 GW-111408-TG-BPA-7-26-04 11/14/2008	7-26 GW-111408-TG-BPA-FD-0! 11/14/2008 Duplicate	7-26 GW-110609-TG-7-26 11/6/2009	7-26 GW-110609-TG-FD1 11/6/2009 Duplicate	7-26 GW-111610-JS-7-26 11/16/2010 Duplicate	7-26 GW-111711-AK-7-26 11/17/2011	7-26 GW-111711-AK-D1 11/17/2011 Duplicate
Parameter	Units		Daphoard		Dupnouto	Dupilouto		Dupnoute
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	ug/L ug/L ug/L ug/L ug/L	62 2.5 U 2.5 U 0.34 J 4.4	94 2.5 U 2.5 U 0.44 J 7.5	77 2.5 U 2.5 U 0.40J 7.3	91 2.5 U 2.5 U 0.39J 9.7	140 2.5 U 2.5 U 0.30 J 15 J	130 2.5 U 2.5 U 0.30 J 11	130 2.5 U 2.5 U 0.31 J 9.9
Semi-Volatiles bis(2-Ethylhexyl)phthalat Hexachlorobenzene Hexachlorobutadiene	ug/L ug/L ug/L	- - -	- -	-	- -	- -	- - -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved)	ug/L ug/L ug/L ug/L	- - -			- - -	- - -	- - -	

Sample Location: Sample ID: Sample Date:	١	7-26 GW-112912-MD-7-26 11/29/2012	7-26 GW-112912-MD-FD1 11/29/2012	7-26 GW-112613-BP-7-26 11/26/2013	7-26 GW-112613-BP-FD-1 11/26/2013	7-26 GW-111814-BP-7-26 11/18/2014	7-26 GW-111814-BP-FD-1 11/18/2014	7-26 GW-120115-BP-7-26 12/1/2015
Parameter	Units		(Duplicate)		(Duplicate)		(Duplicate)	
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	ug/L ug/L ug/L ug/L ug/L	26 2.0 U 0.50 U 0.21 J 2.0 J	40 2.0 U 0.50 U 0.22 J 3.7 J	51 J 2.0 U 0.50 U 0.22 J 8.5 J	100 J 2.0 U 0.50 U 0.26 J 23 J	74 2.0 U 0.50 U 0.23 J 13	73 2.0 U 0.50 U 0.20 J 13	64 2.0 U 0.50 U 0.20 J 18
Semi-Volatiles bis(2-Ethylhexyl)phthalal Hexachlorobenzene Hexachlorobutadiene	ug/L ug/L ug/L	- - -	- -	- -	- - -	- - -	- -	- -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved)	ug/L ug/L ug/L ug/L	- - -	- - -	- - -	- - -	- - -	- - -	-

Sample Location: Sample ID: Sample Date:		7-26 \ GW-120115-BP-FD-1 12/1/2015	7-26 GW-111716-NT-7-26 11/17/2016	7-26 GW-111716-NT-FD-1 11/17/2016	7-26 GW-201117-NT-7-26 11/20/2017	7-26 GW-110618-NT-7-26 11/6/2018	7-26 GW-110618-NT-FD1 11/6/2018	7-26 GW-112519-NT-7-26 11/25/2019
				Duplicate				
Parameter	Units							
Volatiles								
cis-1,2-Dichloroethene	ug/L	61	27	38	24J	12	12	11
Methylene chloride	ug/L	2.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Tetrachloroethene	ug/L	0.50 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Trichloroethene	ug/L	0.20 J	0.23 J	2.5 U	0.21J	0.22 J	0.22 J	0.32 J
Vinyl chloride	ug/L	17	7.1	11	8.8	0.5 U	0.5 U	4.9
Semi-Volatiles								
bis(2-Ethylhexyl)phthalat	ug/L	-	-	-	-	-	-	-
Hexachlorobenzene	ug/L	-	-	-	-	-	-	-
Hexachlorobutadiene	ug/L	-	-	-	-	-	-	-
Metals								
Arsenic	ug/L	-	-	-	-	-	-	-
Arsenic (Dissolved)	ug/L	-	-	-	-	-	-	-
Lead	ug/L	-	-	-	-	-	-	-
Lead (Dissolved)	ug/L	-	-	-	-	-	-	-
. ,	2							

Sample Location:		MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1	MW1
Sample ID:		W-7412-092298-MW1-DG	MW1-1198-TR	MW1-0599-TR	MW1-1199-TR	MW1-0500-TR	MWD1-0500-TR	MW1-1100-TR	MW1-0501-TR	MW1-1101-DC	MW1-0502-TR	MW-1-1102-DC
Sample Date:		9/22/1998	11/4/1998	5/11/1999	11/8/1999	5/9/2000	5/9/2000	11/9/2000	5/21/2001	11/8/2001	5/1/2002	11/14/2002
							Duplicate					
Parameter	Units											
Volatiles												
cis-1,2-Dichloroethene	ug/L	5	5 J	10	12	59	88	5.7	41	9.2	17	8.6
Methylene chloride	ug/L	5	5 J	5	1.0 U	1.0 U	2.7 U	4.0 U	2.5 ∪	2.5 ∪	2.5 ∪	2.5 UJ
Tetrachloroethene	ug/L	5	5 J	5	1.0 U	1.0 U	1.0u	4.0 U	2.5 ∪	2.5 ∪	2.5 ∪	2.5∪
Trichloroethene	ug/L	2.4 J	5 J	5	1.0 U	1.0 U	2.6	4.0 U	2.5∪	2.5u	2.5 U	2.5u
Vinyl chloride	ug/L	0.18 J	0.18 J	26	13	15	11	2.3	16	0.5u	3.7	1.1
Semi-Volatiles												
bis(2-Ethylhexyl)phthalat	ug/L	4.4	3.5	-	-	-	-	-	-	-	-	-
Hexachlorobenzene	ug/L	1.3	1.3	-	-	-	-	-	-	-	-	-
Hexachlorobutadiene	ug/L	0.75	0.75	-	-	-	-	-	-	-	-	-
Metals												
Arsenic	ug/L	-	-	-	-	-	-	-	-	1.0 U	-	-
Arsenic (Dissolved)	ug/L	3.2	4.5	4.4	4.2 U	4.2 U	4.2 U	3.0 IJ	1.0 U	-	1.0 U	1.0 U
Lead	ug/L	-	-	-	-	-	-	-	-	3.0 U	-	-
Lead (Dissolved)	ug/L	5	5 J	5	2.7 U	2.7 ∪	2.7U	2.7U	3.0 UJ	-	3.0 U	3.0 U
	-											

Sample Location: Sample ID: Sample Date:	١	MW1 MW-1-0503 5/8/2003	MW1 MW1-1103 11/11/2003	MW2 W-7412-092298-MW2-DG 9/22/1998	MW2 MW2-1198-TR 11/5/1998	MW2 MW2-0599-TR 5/11/1999	MW2 MW2-1199-TR 11/8/1999	MW2 MW2-0500-TR 5/10/2000	MW2 MW2-1100-TR 11/9/2000	MW2 MW2 W2-1100-TR MW2-0501-TR M 11/9/2000 5/21/2001		MW2 MW2-0502-TR 5/1/2002
Parameter	Units											
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	ug/L ug/L ug/L ug/L ug/L	15 2.5u 2.5u 2.5u 1.4	6.2 2.5∪ 2.5∪ 2.5∪ 0.42 J	100 J 5 5 J 22 J	72 J 5.3 5 5 23	35 5 5 5 4.4	27 1.00 1.00 1.00 2.0	18 1.0u 1.0u 1.0u 3.0	16 8.0 U 8.0 U 8.0 U 4.0	15 2.5u 2.5u 2.5u 8.9	10 2.5u 2.5u 2.5u 5.0	11 2.50 2.50 2.50 6.1
Semi-Volatiles bis(2-Ethylhexyl)phthalal Hexachlorobenzene Hexachlorobutadiene	ug/L ug/L ug/L	- -	- - -	3.5 1.3 0.75	3.5 1.3 0.75	- -	- -	- -	- -	- -	- -	- - -
<i>Metals</i> Arsenic Arsenic (Dissolved) Lead Lead (Dissolved)	ug/L ug/L ug/L ug/L	້.0ບ 3.0ບ	0.05 U 3.0 u	5.3 5	- 6.0 - 5 J	- 7.9 - 5	4.2 U 2.7u	- 4.2 U - 2.7 ບ	3.0 ບງ - 2.7 ບ	1.0ப 3.0பு	1.0u - 3.0u	1.0u 3.0u

Sample Location: Sample ID:		MW2	MW2 MW-2-0503	MW2 MW2-1103	MW2-27 W-7412-092398-MW2-27-DCN-	MW2-27 7412-092398-MW100-	MW2-27 DCMW2-27-1198-TR	MW2-27 MW2-27-0599-TF	MW2-27 MW2-27-1199-TF	MW2-27 MW2-27-0500-TF	MW2-27 MW2-27-1100-TF
Sample Date:		11/14/2002	5/8/2003	11/11/2003	9/23/1998	9/23/1998 Duplicate	11/4/1998	5/12/1999	11/8/1999	5/10/2000	11/9/2000
Parameter	Units										
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	ug/L ug/L ug/L ug/L ug/L	16 2.5ຫ 2.5ຫ 2.5ຫ 5.6	16 2.50 2.50 2.50 6.1	23 2.5u 2.5u 2.5u 5.0	5 10 5 5 J 0.18 J	5 38 5 5 J 0.18 J	5 5.1 5 5 0.18	5 5 5 5 0.49	0.28 J 1.0บ 1.0บ 1.0บ 0.5บ	1.2 1.0u 1.0u 1.0u 0.60	10 ບ 10 ບ 10 ບ 10 ບ 5.0 U
Semi-Volatiles bis(2-Ethylhexyl)phthalal Hexachlorobenzene Hexachlorobutadiene	ug/L ug/L ug/L	- - -	-	- -	5.3 1.3 0.75	4.4 1.3 0.75	3.5 1.3 0.75	- -	-	- -	- -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved)	ug/L ug/L ug/L ug/L	່ 1.0ບ 3.0ບ	1.00 3.00	0.1 - 3.0 U	- 4.8 - 5	5.2 - 5	- 5.9 - 5	- 4.5 - 5	4.2 U 2.7 U	4.2 U 2.7 u	3.0 UJ - 2.7 U

Sample Location: Sample ID: Sample Date:		MW2-27 MW2-27-0501-TFM 5/21/2001	MW2-27 W2-27-1101-TFM 11/8/2001	MW2-27 W2-27-0502-T 5/1/2002	MW2-27 FWW2-27-1102-D(1 11/14/2002	MW2-27 MW2-27-0503 5/8/2003	MW2-27 2-27-1103 11/10/2003	6-26 W-7412-092398-MW6-26-DC 9/23/1998	6-26 /W6-26-1198-T 11/4/1998	6-26 FWW6-26-0599-TF 5/12/1999	6-26 MW6-26-1199-TF 11/8/1999	6-26 WW6-26-0500-TF 5/10/2000
Parameter	Units											
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	ug/L ug/L ug/L ug/L ug/L	2.50 2.50 2.50 2.50 0.84	2.50 2.50 2.50 2.50 0.50	1.0 J 2.50 2.50 2.50 0.80	2.5ບ 2.5ບງ 2.5ບ 2.5ບ 0.5 ບ	2.5 υ 2.5 υ 2.5 υ 2.5 υ 0.77	2.5 U 2.5 U 2.5 U 2.5 U 0.5 U	4.0 J 5 5 5 J 1.7 J	5.1 5 5 5 3.5	4.1 J 5 5 5 3.2	3.6 1.0บ 1.0บ 1.0บ 2.5	2.8 1.0u 1.0u 0.34 J 3.0
Semi-Volatiles bis(2-Ethylhexyl)phthalat Hexachlorobenzene Hexachlorobutadiene	ug/L ug/L ug/L	-	- - -	-	- - -	- -	- -	3.5 J 1.3 J 0.75 J	3.5 1.3 0.75	- -	- -	- -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved)	ug/L ug/L ug/L ug/L	1.0ບ 3.0ບງ	1.0u 3.0 U	1.2 - 3.0 U	້.0ບ 3.0ບ	0.2 - 3.0 U	0.7 3.0 U	5.4 - 5	- 4.2 - 5	6.8 J - 5	- 4.2u - 2.7∪	- 4.2ບ - 2.7 ບ

Sample Location: Sample ID: Sample Date:		6-26 MW6-26-1100-TF 11/9/2000	6-26 MW6-26-0501-TF 5/21/2001	6-26 ₩W6-26-1101-TF 11/8/2001	6-26 AW6-26-0502-TI 5/1/2002	6-26 WW6-26-1102-D(11/14/2002	6-26 6-26-0503 5/8/2003	6-26 6-26-1103 11/10/2003	MW9 W-7412-092398-MW9-D(9/23/1998	MW9 G MW9-1198-TR 11/4/1998	MW9 MW9-0599-TR 5/11/1999	MW9 MW9-30-1199-TF 11/8/1999
Parameter	Units											
Volatiles cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene Trichloroethene Vinyl chloride	ug/L ug/L ug/L ug/L ug/L	10 U 10 U 10 U 10 U 5.0 U	2.1 J 2.5u 2.5u 2.5u 2.0	2.5u 2.5u 2.5u 2.5u 1.4	1.6 J 2.5u 2.5u 2.5u 2.3	1.2 J 2.5ர 2.5ர 2.5ர 2.5ர 1.0	1.4 J 2.5u 2.5u 2.5u 2.0	2.5∪ 2.5∪ 2.5∪ 2.5∪ 1.1	5 36 5 J 5 J0.18	5 6.9 5 5 0.18	5 5 5 5 0.49	2.7u 3.2u 3.2u 3.2u 3.2u 3.2u
Semi-Volatiles bis(2-Ethylhexyl)phthalat Hexachlorobenzene Hexachlorobutadiene	ug/L ug/L ug/L	:	- -	- - -	- -	-	-	:	J 3.5 J 1.3 J0.75	3.5 1.3 0.75	- -	- - -
Metals Arsenic Arsenic (Dissolved) Lead Lead (Dissolved)	ug/L ug/L ug/L ug/L	3.0 IJ 2.7 IJ	1.0 U 3.0 ர	0.47766 J - 3.0 u -	1.0 u 3.0 u	1.0 U 3.0 u	1.0 U 3.0 U	0.3 3.0 U	- 5.3 - 5	- 17) - 5	- 5 J - 5	- 8.4∪ - 2.7∪

Page 15 of 15

Table D.1

Sample Location: Sample ID:	MW9-30 MW9-30-0500-T	MW9-30 MW9-30-1100-TI	MW9-30 MW9-30-0501-TF	MW9-30 MW9-30-1101-TF	MW9-30 NW9-30-0502-T	MW9-30 FMW9-30-1102-DC	MW9-30 MW9-30-0503	MW9-30 9-30-1103
Sample Date:	5/9/2000	11/9/2000	5/21/2001	11/8/2001	5/1/2002	11/14/2002	5/8/2003	11/10/2003
Parameter Unit	s							
Volatiles								
cis-1,2-Dichloroethene ug/L	_ 1.6 U	10 บ	2.5J	2.5 ∪	2.5 ∪	2.5 U	2.5u	2.5 ∪
Methylene chloride ug/L	_ 1.6 U	10 บ	2.5J	2.5 ∪	2.5 ∪	2.5 ∪	2.5u	2.5 ∪
Tetrachloroethene ug/L	_ 1.6 U	10 บ	2.5J	2.5 UI	2.5 ∪	2.5 U	2.5u	2.5 U
Trichloroethene ug/L	_ 1.6 U	10 u	2.5J	2.5u	2.5 ∪	2.5 u	2.5u	2.5u
Vinyl chloride ug/L	_ 1.6 u	5.0 U	0.5J	0.5u	0.5u	0.5 U	0.5u	0.5 U
Semi-Volatiles								
bis(2-Ethylhexyl)phthalal ug/L		-	-	-	-	-	-	-
Hexachlorobenzene ug/L		-	-	-	-	-	-	-
Hexachlorobutadiene ug/L		-	-	-	-	-	-	-
Metals								
Arsenic ug/L		-	-	1.0 U	-	-	-	-
Arsenic (Dissolved) ug/L	8.4 U	3.0 UJ	1.Oj	-	1.0 U	1.0 U	1.0u	0.1
Lead ug/L		-	-	3.0 U	-	-	-	-
Lead (Dissolved) ug/L	2.7 U	2.7 U	3. 0 IJ	-	3.0 U	3.0 U	15.0J	3.0 U

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

www.ghd.com