

Environment

Prepared for Port of Vancouver USA 3103 NW Lower River Road Vancouver, Washington 98660

Submitted to Washington Department of Ecology Submitted by AECOM 111 SW Columbia Suite 1500 Portland, Oregon 97201

60624310 February 2020

Groundwater Monitoring Letter Report - 2019

Former Automotive Services, Inc. Site Port of Vancouver USA 2327 West Mill Plain Boulevard Vancouver, Washington

February 14, 2020

Mr. Panjini Balaraju Environmental Engineer Toxics Cleanup Program Ecology SW Regional Office Lacey, WA (PDF copy via email: <u>PBAL461@ecy.wa.gov</u>)

Re: Groundwater Monitoring Letter Report - 2019 Former Automotive Services, Inc. Site Port of Vancouver USA

2327 West Mill Plain Boulevard Vancouver, Washington AECOM Job No. 60519969

Dear Mr. Balaraju:

AECOM has prepared this Groundwater Monitoring Letter Report (herein referred to as the report) on behalf of the Port of Vancouver USA (the Port). This report summarizes the results of the 2019 groundwater monitoring events conducted at the Former Automotive Services, Inc. (ASI) Site (herein referred to as the Site). Results of June and December monitoring events are presented in this report.

1 Site Location and Background

The Site is located at 2327 West Mill Plain Boulevard in Vancouver, Washington (Figure 1). The Site consists of approximately 4.33 acres of nearly level unpaved land. The current tax parcel number is 059115-068 and is owned by the Port (Ecology, 2014). The Site is leased by CalPortland for a ready-mix plant (Figure 2).

The Site was historically an agricultural field until the ASI car wash facility was constructed on the Site in 1972 and 1973. The car wash process used hot water with kerosene to clean off a Cosmoline-based protective coating from newly imported cars upon arrival via ship to the Port. The car wash facility originally covered a larger area; however, the site was dissected by the Mill Plain Boulevard extension in 1998. Residual contamination and former car wash areas are located at the Site as summarized below (Ecology, 2014).

- In 1980, due to a process malfunction in the facility's water treatment system, water with kerosene flowed onto the ground surface west of the car wash building resulting in petroleum soil contamination.
- In 1991, four underground storage tanks (USTs) (containing kerosene, gasoline, and diesel) at the car wash facility were removed; confirmation soil samples collected following the removal activities indicated residual petroleum contamination. During the UST removal activities, approximately 1,500 cubic yards of soil was excavated; however, further excavation to remove the remaining impacted soil was not feasible as it would have undermined an on-Site structure.
- In 1992, diesel-impacted soil was encountered on the west side of the Site near the adjacent Tesoro aboveground storage tank farm. The source, based on field evidence, appeared to be from a surface spill which occurred in the 1960s prior to placement of Columbia River sand and silt dredge spoils on the ground surface.

Between September 1999 and February 2001, cleanup activities included the on-Site bioremediation of dieseland kerosene-impacted soils from two soil excavation events described below (Ecology, 2014):

 In August 1999, during the initial excavation event, soils were excavated to approximately 16 feet below ground surface (bgs) where a change in lithology was observed and groundwater was encountered. The excavation was halted because of the presence of groundwater, lack of available stockpile space, and constraints along the Tesoro property boundary.

In July 2000, a second excavation event occurred to remove diesel contamination left from the initial event. Deeper excavation depths were reached, varying from 17 to 20 feet bgs, and the footprint of the excavation area was expanded to follow contamination in all directions, even into the adjoining Tesoro property. Confirmation soil samples were collected from the walls and bottom of the final excavation. Based on samples collected, it was estimated that approximately 389 cubic yards of diesel-impacted soil remained at the Site below 16 feet bgs. Groundwater impacts are limited to the center of the Site around well GL-2 (Figure 2).

As detailed in the No Further Action (NFA) letter from the Washington Department of Ecology (Ecology), an Environmental Covenant 3407456 was filed with Clark County in 2012 and revised in September 2013 to address the remaining impacted areas (Ecology, 2014). To confirm the long-term effectiveness of the cleanup operations completed at the Site, conformational monitoring is necessary; the data will be used by Ecology during periodic reviews. In the NFA, Ecology approved a monitoring plan for the Site's monitoring wells; the monitoring program is summarized in Section 3 below.

A total of seven monitoring wells have been installed at the Site to date: GL-1, GL-2 and GL-3 (formerly identified as MW-1, MW-2 and MW-3) in 1991 and GL-4, GL-5, GL-6 and GL-7 in 2002. All monitoring wells listed on Table 1 are constructed with screened intervals of 10 to 30 feet below top of casing (btoc).

2 Site Hydrogeology and Soils

The depth to groundwater seasonally ranges between 14 to 21 feet bgs (Ecology, 2014). The direction of hydraulic gradient is seasonally variable to the northwest and south-southeast but is nearly flat. Soils beneath the Site have been classified as Hillsboro loam with McBee silty clay loam located diagonally across the center of the property from the northwest corner to southeast corner. The soils become sandy at approximately 10 to 15 feet and the sand becomes coarser at 18 to 20 feet bgs (Ecology, 2014).

3 Groundwater Monitoring Program and Cleanup Levels

The ASI Site was closed under the Environmental Covenant 3407456, revised in 2012. As part of Ecology's NFA, a site-specific monitoring plan was required. Long-term groundwater monitoring has been conducted at the Site in accordance with the following monitoring plans and revisions since 2009:

- Long-Term Confirmational Groundwater Monitoring Plan (CEC, 2007)
- Ecology approval email for use of low-flow sampling techniques (Ecology, 2009)
- Revised Long-Term Confirmational Groundwater Monitoring Plan for the ASI/Glacier Site (Kennedy/Jenks Consultants, 2010)

The *Revised Long-Term Monitoring Plan* proposed a reduction in the number of wells sampled during each event and the abandonment of monitoring wells GL-5 and GL-7. In 2010, Ecology agreed that the remaining wells were deemed sufficient to monitor the localized area of diesel impacts in groundwater near GL-2 (Ecology, 2014). Decommissioning activities at GL-7 were completed in October 2019. GL-5 was not located until the December 2019 event; the well is scheduled to be decommissioned in 2020.

Based on the *Revised Long-Term Confirmational Groundwater Monitoring Plan*, the current compliance monitoring plan (Table 1) includes the collection of depth-to-groundwater measurements and groundwater samples from the following five monitoring wells every 18 months:

- GL-1
- GL-2
- GL-3
- GL-4

– GL-6

The analyte list for groundwater samples collected includes full list of Volatile Organic Compounds (VOCs) and diesel- and oil-range total petroleum hydrocarbons (diesel and oil) at all monitoring wells.

In accordance with *Revised Long-Term Confirmational Groundwater Monitoring Plan*, the analytical results are compared to the Ecology Model Toxics Control Act (MTCA) Method A groundwater cleanup levels (CULs).

4 Activities Conducted During 2019

Groundwater monitoring activities completed during the June and December 2019 events were conducted in accordance with the following three documents.

- Environmental Protection Agency (EPA) guidance document titled *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures* (EPA, 1996)
- Revised Long-Term Confirmational Groundwater Monitoring Plan for the ASI/Glacier Site (Kennedy/Jenks Consultants, 2010)
- Ecology NFA letter (Ecology, 2014)

The groundwater monitoring activities completed during the June and December 2019 events are as follows:

- Depth-to-groundwater measurements were collected from the five monitoring wells included in the current monitoring plan (see Section 3) using an electronic water level meter. The depth to groundwater was measured from the top of casing (TOC) at each well and recorded on the Groundwater Level Form (Appendix A). Depth-to-groundwater measurements and calculated groundwater elevations are presented on Table 2.
- Groundwater samples were collected from the five monitoring wells included in the current monitoring plan (see Section 3). Each groundwater sample was collected following low-flow purging and stabilization of the following field parameters: temperature, pH, conductivity, dissolved oxygen (DO), and oxidation reduction potential (ORP). A peristaltic pump was used for purging the five monitoring wells. Groundwater samples were collected at each monitoring well using a disposable double check valve bailer. The peristaltic pump tubing and disposable bailers were all lowered and retrieved gently and set at the center of the screen interval. Monitoring Well Sampling Field Logs for both monitoring events are included in Appendix A, and final field parameters are reported in Table 3.
- A field duplicate sample collected from monitoring well GL-2, a field blank, and a trip blank were also collected and submitted for analysis.
- Sample containers were stored in a cooler with ice from the time of sample collection until delivery to the laboratory.
- Groundwater samples were delivered to Apex Laboratories of Tigard, Oregon under strict chain-ofcustody procedures. The samples were submitted for the analyses listed below in accordance with Table 1.
 - Full list of VOCs by EPA Method 8260C
 - o Diesel and oil by the NWTPH-Dx Method
- Chain-of-custody forms are included in Appendix B with the laboratory analytical reports. Purge and decontamination water was placed into a labeled, aboveground polyethylene tank, which is temporarily staged under the 26th Avenue overpass pending characterization and disposal. Disposable sampling equipment (including tubing and nitrile gloves) was managed as municipal solid waste.

5 Results of the 2019 Monitoring Events

Depth-to-groundwater measurements and groundwater samples were collected on June 10 and December 5, 2019. Groundwater level measurements are summarized in Table 2. Stabilized groundwater field parameters are provided in Table 3. Groundwater analytical results are summarized in Table 4. The laboratory analytical reports are included in Appendix B.

5.1 Groundwater Elevation Monitoring

Depth-to-groundwater measurements recorded in June and December 2019 were used to calculate groundwater elevations above mean sea level at each monitoring well. The groundwater elevations are presented in Table 2 in feet relative to the National Geodetic Vertical Datum based on the City of Vancouver Benchmark L-181.

- On June 10, 2019, the groundwater elevations ranged from 19.39 feet at GL-6 to 20.91 feet at GL-4.
- On December 5, 2019, the groundwater elevation ranged from 22.12 feet at GL-6 to 24.48 feet at GL-4.

Groundwater elevation contours and the inferred direction of groundwater flow from the June and December 2019 events are shown on Figures 3 and 4, respectively. The hydraulic gradient was calculated to be 0.005 ft/ft to the west-northwest in June 2019 and 0.003 ft/ft to the west-southwest in December 2019. Calculated hydraulic gradients for both events are consistent with those of previous sampling events.

5.2 Groundwater Analytical Results

Groundwater analytical results are summarized in the following subsections.

5.2.1 Volatile Organic Compounds

Samples collected during the 2019 monitoring events were analyzed for VOCs using EPA Method 8260C. The VOC results for the historically detected VOCs (not the full list) are presented on Table 4 and summarized below:

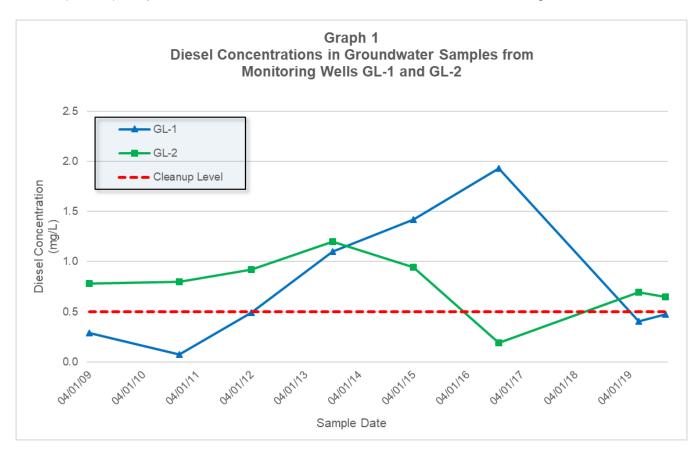
- In June 2019, sec-butylbenzene, isopropylbenzene and n-propylbenzene were detected in monitoring well GL-1 above their respective method reporting limits (MRLs) but below the established MTCA Method A groundwater CULs. Acetone was detected in monitoring wells GL-1 and GL-3 at concentrations above the MRL but below the established MTCA Method A groundwater CUL.
- In December 2019, VOCs sec-butylbenzene, isopropylbenzene and n-propylbenzene were detected in monitoring well GL-1 at concentrations above the method detection limits (MDLs) but below the established MTCA Method A groundwater CULs.

5.2.2 Total Petroleum Hydrocarbons

Samples collected during the 2019 monitoring events were analyzed for diesel and oil by Method NWTPH-Dx. The diesel and oil results for the groundwater samples are presented on Table 4 and summarized below:

- In June 2019, diesel was detected above the MRL in monitoring wells GL-1 and GL-2 at concentrations of 0.404 mg/L and 0.695 mg/L, respectively. The concentration in GL-2 exceeds the MTCA Method A groundwater CUL of 0.5 mg/L.
- In December 2019, diesel was detected above the MDLs in monitoring wells GL-1, GL-2, GL-3, and GL-4 at concentrations ranging from 0.0629 mg/L at GL-4 to 0.647 mg/L at GL-2. The concentration of diesel exceeds the MTCA Method A groundwater CUL of 0.5 mg/L only in the sample form GL-2.
- Oil was not detected in any monitoring well in 2019.

6 Data Quality and Management


Based on a review of the laboratory reports, the analyses and results conformed to quality assurance standards, and the analytical data are of acceptable quality for their intended use. A data quality review is included in Appendix C.

The data from the June and December 2019 monitoring events will be uploaded into Ecology's Environmental Information Management (EIM) database within the next 30 days. Prior data has been uploaded onto the EIM database. Under WAC 173-340-840(5), environmental sampling data for all cleanup sites must be submitted in both printed and electronic form.

7 Conclusions

Groundwater monitoring was conducted at the Site on June 10 and December 5, 2019. The analytical results were generally consistent with previous monitoring events. All detected concentrations of VOCs in groundwater were less than the established MCTA Method A groundwater CULs. The concentration of diesel in groundwater was above the MCTA Method A groundwater CUL only in the sample collected from well GL-2. Oil was not detected in any of the groundwater samples.

Historically diesel has exceeded the CUL in groundwater samples from only GL-1 and GL-2; however, diesel was not detected in GL-1 above the MCTA Method A groundwater CUL during the two groundwater monitoring events in 2019 (Table 4). Graph 1 below shows the diesel concentrations in these two monitoring wells over time.

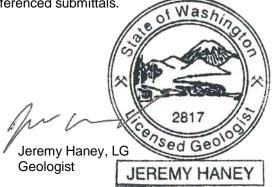
8 Recommendations and Future Sampling Activities

AECOM does not recommend any changes to the groundwater monitoring program. Groundwater monitoring will continue every 18 months and include measuring depth to groundwater and collecting samples from five wells. Samples will continue to be analyzed for VOCs, diesel, and oil. The next monitoring event is scheduled for June 2021. Monitoring well GL-5 in 2020 will be decommissioned as planned now that the monitoring well has been located.

9 References

- CEC, 2007. Long-Term Confirmational Groundwater Monitoring Plan for the ASI/Glacier Site. Port of Vancouver USA. March 9.
- Ecology, 2014. Letter from Washington State Department of Ecology to Port of Vancouver. *No Further Action for the Former Automotive Services Inc Site.* March 7.
- EPA, 1996. Ground Water Issue. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. By Robert W. Puls and Michael J. Barcelona. EPA/540/S-95/504. April.
- Kennedy/Jenks, 2010. Letter from Kennedy/Jenks Consultants to the Washington State Department of Ecology. Subject: Automotive Services, Inc. – REVISED Long Term Groundwater Monitoring Plan, Former ASI/Glacier Site, Port of Vancouver USA. May 10.

10 Limitations


AECOM has prepared this report for use by the Port. Within the limitations of scope, schedule, and budget, our services have been executed in accordance with accepted environmental science practices in this area at the time this report was prepared. No other warranty or conditions, expressed or implied, should be understood.

We appreciate the opportunity to be of service to the Port on this project. Please call Nicky Moody at (503) 478-2765 with any questions regarding this or any other referenced submittals.

Sincerely,

AECOM

Nicky Moody Project Manager

cc: Craig Rankine, RG, LHG, Cleanup Project Manager/Hydrogeologist, Washington Department of Ecology, Toxics Cleanup Program, Vancouver Field Office, 12121 NE 99th Street, Suite 2100, Vancouver, WA 98682, cran461@ECY.WA.GOV

Matt Graves, LG, Environmental Manager, Port of Vancouver USA, 3103 NW Lower River Road, Vancouver, WA 98660, <u>mgraves@Portvanusa.com</u>

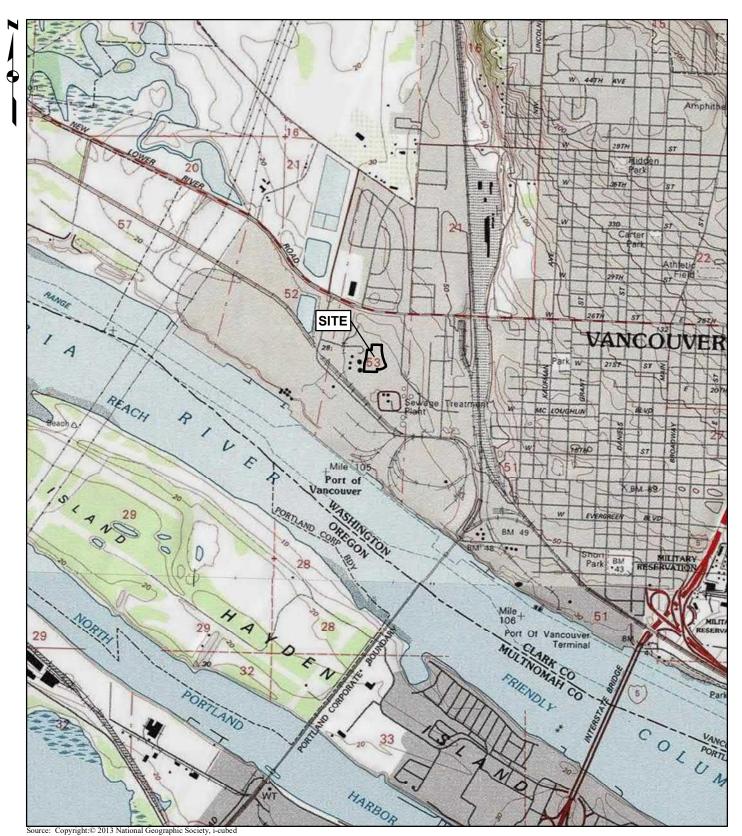
Attachments

List of Figures

Figure 1	Vicinity Map
i igaio i	violinity inap

- Figure 2 Site Map
- Figure 3 Groundwater Elevation, Contours, and Flow Direction June 2019
- Figure 4 Groundwater Elevation, Contours, and Flow Direction December 2019

List of Tables


- Table 1Compliance Monitoring Plan
- Table 2Groundwater Elevation Results
- Table 3 Groundwater Field Parameter Measurements
- Table 4 Volatile Organic Compounds and Total Petroleum Hydrocarbons in Groundwater

List of Appendices

- Appendix A Field Forms
- Appendix B Laboratory Reports and Chain-of-Custody Forms
- Appendix C Data Quality Review Report

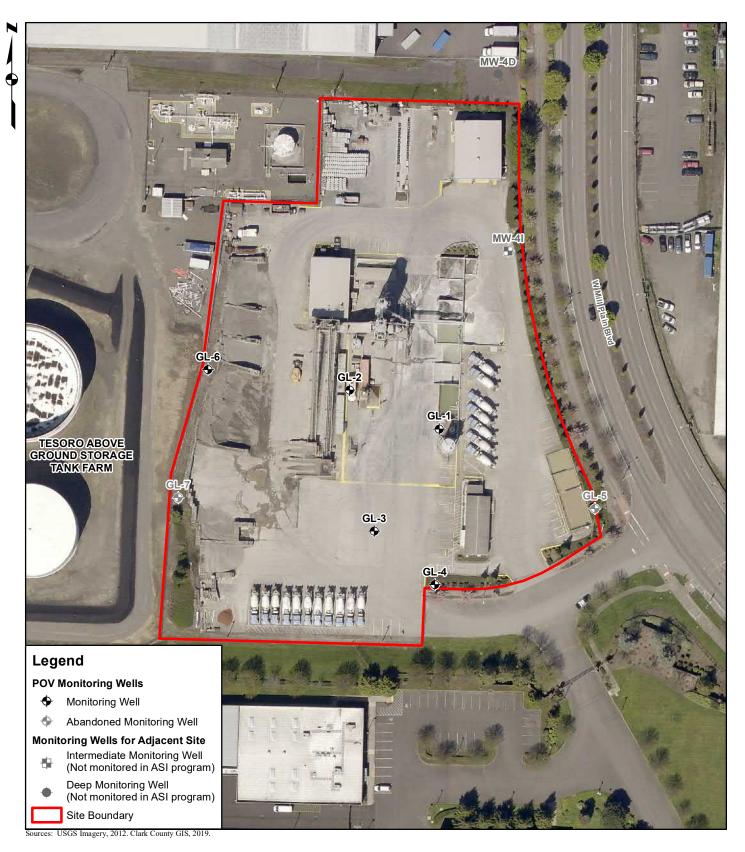
Figures

VICINITY MAP

FORMER AUTOMOTIVE SERVICES, INC. SITE PORT OF VANCOUVER USA 2327 WEST MILL PLAIN BOULEVARD, VANCOUVER, WA

FIGURE 1

1,000

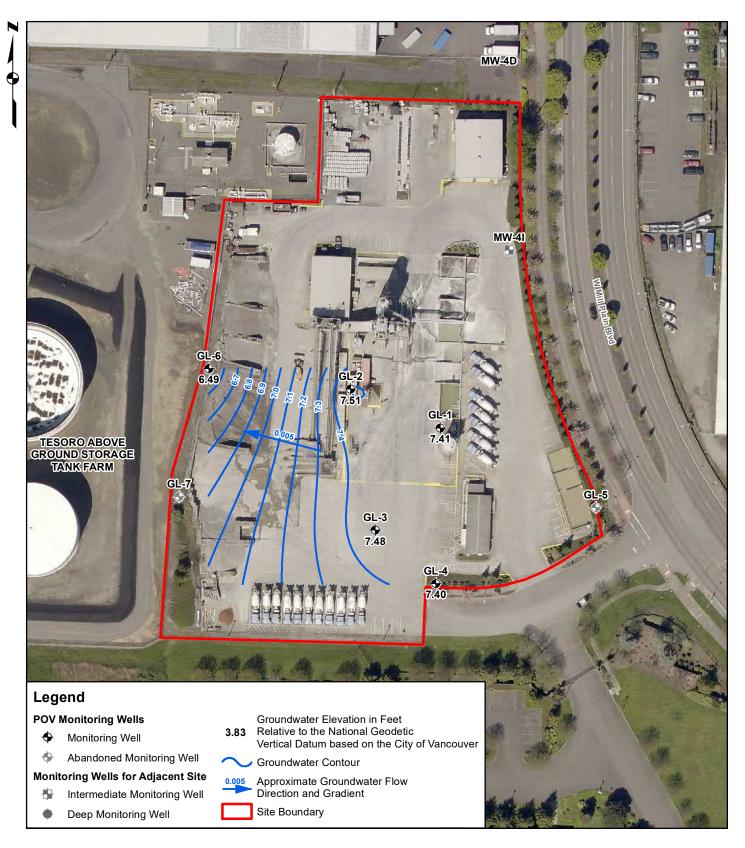

AECOM

٥

SCALE IN FEET

1,000

2,000

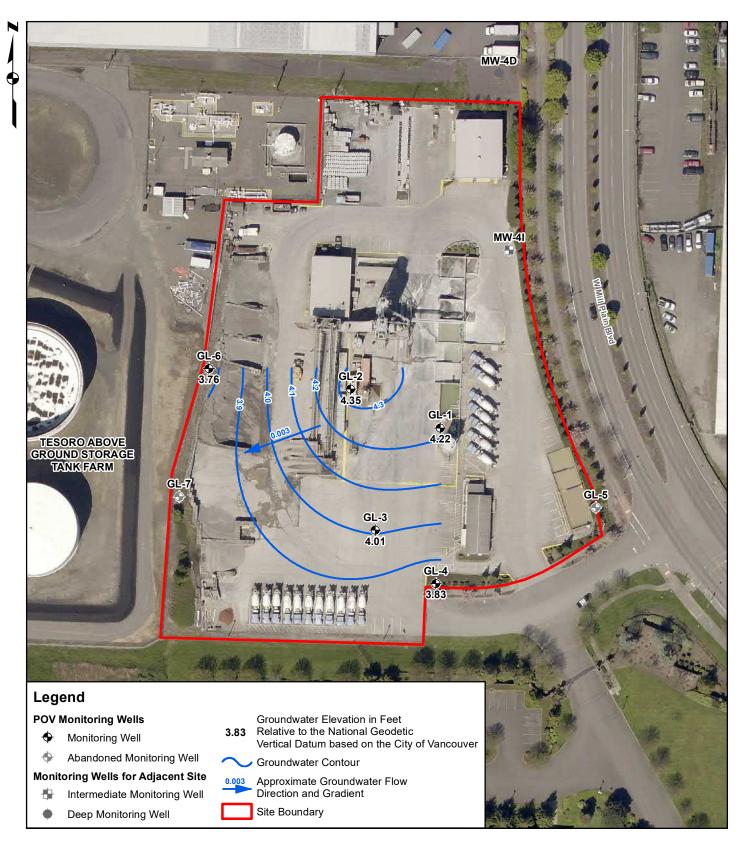


FORMER AUTOMOTIVE SERVICES, INC. SITE PORT OF VANCOUVER USA 2327 WEST MILL PLAIN BOULEVARD, VANCOUVER, WA

FIGURE 2

SITE MAP

100


SCALE IN FEET

GROUNDWATER ELEVATION, CONTOURS, AND FLOW DIRECTION – JUNE 2019

FORMER AUTOMOTIVE SERVICES, INC. SITE PORT OF VANCOUVER USA 2327 WEST MILL PLAIN BOULEVARD, VANCOUVER, WA

AECOM

100

SCALE IN FEET

GROUNDWATER ELEVATION, CONTOURS, AND FLOW DIRECTION – DECEMBER 2019

FORMER AUTOMOTIVE SERVICES, INC. SITE PORT OF VANCOUVER USA 2327 WEST MILL PLAIN BOULEVARD, VANCOUVER, WA

FIGURE 4

AECOM

Tables

Table 1. Compliance Monitoring Plan

Former Automotive Services, Inc. Site

Monitoring	Current Analytical Requirements		Well Log Total Depth	Measured Total Depth	Well Screen Interval	Monument	Diameter
Well ID		NWTPH-Dx	(feet)	(feet BTOC)	(feet BTOC)	Туре	(inches)
Onsite Shallo	W						
GL-1			33.00	33.00	10-30	Flush	2.00
GL-2			27.20	27.20	10-30	Flush	2.00
GL-3	1	8 mo	26.80	26.80	10-30	Flush	2.00
GL-4			30.40	30.40	10-30	Flush	2.00
GL-6			28.00	28.00	10-30	Flush	2.00
Abandonment	t Pending	1					
GL-5		n/a	30.00	34.65	10-30	Flush	2.00
Abandoned/O	utside M	onitoring Pro	gram				
GL-7			30.00	30.00	10-30	Flush	2.00
MW-4D		n/a	Installed a part o	f the adjacent Cad	et Manufacturing	site investigation a	nd not monitored
MW-4I				for <i>i</i>	ASI program per N	IFA	

Acronyms and Abbreviations:

BTOC = below top of well casing

18 mo = monitoring conducted every 18 months

Notes:

D = Deep NWTPH-Dx = Diesel and oil-range total petroleum hydrocarbons

I = intermediate

n/a = not includedS = shallow

VOCs = volatile organic compounds

Table 2. Groundwater Elevation Results

Former Automotive Services, Inc. Site

		Top of Casing	Depth to		Groundwater
Monitoring		Elevation ^(a)	Groundwater ^(b)	Total Well Depth	Elevation
Well ID	Date	(feet)	(feet)	(feet)	(feet)
GL-1	4/1/2009	27.42	21.03	33.00	6.39
	12/16/2010	27.42	18.03	33.00	9.39
	4/26/2012	27.42	13.79	33.00	13.63
	10/17/2013	27.42	23.41	33.00	4.01
	4/29/2015	27.42	22.48	33.00	4.94
	11/3/2016	27.42	20.70	33.00	6.72
	6/10/2019	27.42	20.01	33.00	7.41
	12/5/2019	27.42	23.20	33.00	4.22
GL-2	4/1/2009	27.82	21.41	27.20	6.41
	12/16/2010	27.82	18.41	27.22	9.41
	4/26/2012	27.82	14.23	27.22	13.59
	10/17/2013	27.82	23.75	27.20	4.07
	4/29/2015	27.82	22.85	27.20	4.97
	11/2/2016	27.82	21.62	27.20	6.20
	6/10/2019	27.82	20.31	27.20	7.51
	12/5/2019	27.82	23.47	27.20	4.35
GL-3	4/1/2009	27.17	20.79	26.70	6.38
	12/16/2010	27.17	17.75	26.75	9.42
	4/26/2012	27.17	13.51	26.75	13.66
	10/17/2013	27.17	23.08	26.80	4.09
	4/29/2015	27.17	22.48	26.80	4.69
	11/2/2016	27.17	20.72	26.80	6.45
	6/10/2019	27.17	19.69	26.80	7.48
	12/5/2019	27.17	23.16	26.80	4.01
GL-4	4/1/2009	28.31	21.95	30.80	6.36
	12/16/2010	28.31	18.87	30.44	9.44
	4/26/2012	28.31	14.71	30.44	13.60
	10/17/2013	28.31	24.28	30.40	4.03
	4/29/2015	28.31	23.31	30.40	5.00
	11/1/2016	28.31	21.91	30.40	6.40
	6/10/2019	28.31	20.91	30.40	7.40
	12/5/2019	28.31	24.48	30.40	3.83
GL-6	4/1/2009	25.88	19.51	28.00	6.37
	12/16/2010	25.88	16.53	27.98	9.35
	4/26/2012	25.88	12.45	27.98	13.43
	10/17/2013	25.88	21.85	28.00	4.03
	4/30/2015	25.88	22.90	28.00	2.98
	11/2/2016	25.88	19.17	28.00	6.71
	6/11/2019	25.88	19.39	28.00	6.49
	12/5/2019	25.88	22.12	28.00	3.76

Notes:

(a) Elevation in feet relative to the National Geodetic Vertical Datum based on the City of Vancouver Benchmark L-181.

(b) Measured in feet below the top of the well casing.

Table 3. Groundwater Field Parameter Measurements

Former Automotive Services, Inc. Site

			Fiel	d Parameters		
Monitoring Well ID	Sample Date	Temperature (°C) ^(a)	Conductivity (mS/cm)	Dissolved Oxygen (mg/l)	рН	ORP (mV)
GL-1	4/1/2009	55.69	0.369	0.78	6.53	-
	12/16/2010	55.92	0.537	0.54	-	-
	4/26/2012	57.40	0.300	2.97	6.79	-
	10/17/2013	57.30	0.890	0.1	6.61	-
	4/29/2015	57.25	0.946	0.1	6.42	-
	11/3/2016	54.91	0.514	17.2	6.64	-
	6/10/2019	57.96	0.794	6.92	-	-
	12/5/2019	14.10	0.991	0.0	7.05	-113
GL-2	4/1/2009	54.71	0.858	1.38	6.03	-
	12/16/2010	55.26	0.890	1.00	NA	-
	4/26/2012	55.40	0.715	0.71	6.92	-
	10/17/2013	55.80	1.000	0.08	6.68	-
	4/29/2015	56.91	0.946	0.54	6.7	-
	11/2/2016	54.17	0.540	1.91	6.72	-
	6/10/2019	57.61	0.845	-	6.59	-
	12/5/2019	12.97	1.030	0.00	6.85	37
GL-3	4/1/2009	55.77	0.363	1.83	6.20	-
	12/16/2010	56.79	0.375	0.74	NA	-
	4/26/2012	56.57	0.236	0.95	6.55	-
	10/17/2013	58.80	0.468	0.51	6.02	-
	4/29/2015	59.68	0.346	0.48	6.1	-
	11/2/2016	56.48	0.238	1.86	5.93	-
	6/10/2019	64.18	0.370	-	6.12	-
	12/5/2019	14.40	0.486	0.0	6.42	158
GL-4	4/1/2009	56.78	0.389	1.42	6.38	-
	12/16/2010	56.68	0.593	0.71	NA	-
	4/26/2012	55.33	0.373	1.37	6.71	-
	10/18/2013	57.60	0.293	0.25	6.23	-
	4/29/2015	58.04	0.376	0.49	6.2	-
	11/1/2016	55.24	0.184	2.31	5.82	-
	6/10/2019	58.55	0.260	-	6.11	-
	12/5/2019	12.30	0.320	0.0	6.50	186
GL-6	4/1/2009	52.65	0.175	3.50	5.92	-
	12/16/2010	54.00	0.190	4.93	NA	-
	4/26/2012	52.23	0.089	8.03	6.19	-
	10/18/2013	53.60	0.070	7.50	6.15	-
	4/30/2015	56.62	0.070	7.21	5.79	-
	11/2/2016 6/11/2019	53.64 55.20	0.140 0.125	7.07 4.11	5.62 6.17	-
	12/5/2019	11.86	0.125	4.11	6.21	- 209
	12/3/2013	11.00	0.150	7.12	0.21	209

Notes:

(a) °C = Degrees Celsius, readings collected prior to Decemeber 2019 collected in °F = Degrees Fahrenheit mS/cm = millisiemens per centimeter mg/l = milligrams per liter

mV = millivolts

ORP = oxidation reduction potential - = not available to AECOM for this report.

Former Automotive Services, Inc. Site

			His	torically Site	Detected V	/OCs		NWT	PH-Dx
Monitoring Well ID	Sample Date	a ⊤ ⊐	له ۲ sec-Butylbenzene	الم) Isopropylbenzene	لم) الم) Naphthalene	لم n-Propylbenzene	н руд/L	Diesel mg/L	liO mg/L
	A GW Cleanup Level	NE	NE	NE	µg/∟ 160	NE	μg/L 5		
	Gw Cleanup Level				100		5	0.5	0.5
GL-1	4/1/2009	100	NA	NA	5.0 U	NA	1.0 U	0.29	0.40 U
GL-1 GL-1	12/16/2010	5.0 U	NA	NA	1.0 U	NA	1.0 0 1.2	0.29	0.40 U
GL-1	4/26/2012	5.0 U	NA	NA	3.4	NA	1.0 U	0.49	0.38 U
GL-1	10/17/2013	25 U	NA	NA	2.0 U	NA	0.5 U	1.1	0.24 U
GL-1	4/29/2015	20 U	NA	NA	2.0 U	NA	0.5 U	1.4	0.38 U
GL-1	11/3/2016		NA	NA	2.0 U	NA		1.9	0.38 U
GL-1	6/10/2019	24.6	2.85	6.74	2.00 UJ	10.6	0.400 U	0.404	0.381 U
GL-1	12/5/2019	10.0 U	0.610 J	1.88	2.00 UJ	1.18	0.200 U	0.475	0.0755 U
GL-2	4/1/2009	20 U	NA	NA	5.0 U	NA	1.0 U	0.78	0.40 U
GL-2	12/16/2010	5.0 U	NA	NA	1.0 U	NA	1.0 U	0.8	0.40 U
GL-2	4/26/2012	5.0 U	NA	NA	1.0 U	NA	1.0 U	0.92	0.38 U
GL-2	10/17/2013	25 U	NA	NA	2.0 U	NA	0.5 U	1.2	0.24 U
GL-2	4/29/2015	20 U	NA	NA	2.0 U	NA	0.5 U	0.943	0.38 U
GL-2	11/2/2016		NA	NA	2.0 U	NA		0.189 U	0.38 U
GL-2	6/10/2019	20.0 U	1.00 U	1.00 U	2.00 UJ	0.500 U	0.400 U	0.659	0.381 U
GL-2	12/5/2019	10.0 U	0.500 U	0.500 U	2.00 UJ	0.250 U	0.200 U	0.647	0.0755 U
GL-3	4/1/2009	20 U	NA	NA	5.0 U	NA	1.0 U	0.084	0.42 U
GL-3	12/16/2010	5.0 U	NA	NA	1.0 U	NA	1.1	0.080 U	0.40 U
GL-3	4/26/2012	5.0 U	NA	NA	1.0 U	NA	1.0 U	0.077 U	0.38 U
GL-3	10/17/2013	25 U	NA	NA	2.0 U	NA	0.5 U	0.15	0.24 U
GL-3	4/29/2015	20 U	NA	NA	2.0 U	NA	0.5 U	0.19 U	0.38 U
GL-3	11/2/2016		NA	NA	2.0 U	NA		0.19 U	0.38 U
GL-3	6/10/2019	20.6	1.00 U	1.00 U	2.00 UJ	0.500 U	0.400 U	0.190 U	0.381 U
GL-3	12/5/2019	10.0 U	0.500 U	0.500 U	2.00 UJ	0.250 U	0.200 U	0.120	0.0792 U
GL-4	4/1/2009	20 U	NA	NA NA	5.0 U	NA	1.0 U	0.19 U	0.41 U
GL-4	12/16/2010 4/26/2012	5.0 U 5.0 U	NA NA	NA NA	1.0 U 1.0 U	NA NA	1.0 U 1.0 U	0.077	0.38 U 0.38 U
GL-4 GL-4	10/18/2013			NA		NA		0.28	
GL-4 GL-4	4/29/2015	25 U 20 U	NA NA	NA	2.0 U 2.0 U	NA	0.5 U 0.5 U	0.096 U 0.19 U	0.24 U 0.38 U
GL-4 GL-4	4/29/2015	20 0	NA	NA	2.0 U 2.0 U	NA	0.5 0	0.19 U 0.19 U	0.38 U 0.38 U
GL-4 GL-4	6/10/2019	20.0 U	1.00 U	1.00 U	2.0 U 2.00 UJ	0.500 U	0.400 U	0.19 U 0.190 U	0.38 U 0.381 U
GL-4 GL-4	12/5/2019	20.0 UJ	0.500 U	0.500 U	2.00 UJ	0.300 U 0.250 U	0.400 U 0.200 U	0.0629 J	0.381 U 0.0784 U
GL-6	4/1/2009	20:0 U	NA	NA	5.0 U	NA	1.0 U	0.082 U	0.0104 U
GL-6	12/16/2010	5.0 U	NA	NA	1.0 U	NA	1.0 U	0.34	0.38 U
GL-6	4/26/2012	5.0 U	NA	NA	1.0 U	NA	1.0 U	0.079 U	0.40 U
GL-6	10/18/2013	25 U	NA	NA	2.0 U	NA	0.5 U	0.096 U	0.24 U
GL-6	4/30/2015	20 U	NA	NA	2.0 U	NA	0.5 U	0.189 U	0.377 U
GL-6	11/2/2016		NA	NA	2.0 U	NA		0.189 U	0.381 U
GL-6	6/11/2019	20.0 U	1.00 U	1.00 U	2.00 UJ	0.500 U	0.400 U	0.190 U	0.381 U
GL-6	12/5/2019	20.0 UJ	0.500 U	0.500 U	2.00 UJ	0.250 U	0.200 U	0.0385 U	0.0769 U

Table 4. Volatile Organic Compounds and Total Petroleum Hydrocarbons in Groundwater

Former Automotive Services, Inc. Site

			His	torically Site	Detected \	/OCs	-	NWT	PH-Dx
Monitoring Well ID	Sample Date	T/aπ ר	مالک sec-Butylbenzene ا	ropropylbenzene الأ	לסר רקש	ր. ո.Propylbenzene	на На При	mg/L	io mg/L
MTCA Method A	GW Cleanup Level	NE	NE	NE	160	NE	5	0.5	0.5
Abandoned Monitoring Wells									
GL-7	4/1/2009	20 U	NA	NA	5.0 U	NA	1.0 U	0.11	0.42 U

Notes:

--- = Sample not analyzed for constituent

MTCA = Washington State Department of Ecology Model Toxics Control Act

NA = Not Available

NE = Not Established

PCE = Tetrachloroethene

NWTPH-Dx = Diesel- and oil-range total petroleum hydrocarbons

mg/L = milligrams per liter

ug/I = Micrograms per liter

U = Constituent not detected above the reported limit.

UJ = Constituent not detected above the reported limit; however, the reported limit is approximate.

VOCs = volatile organic compounds

Values in **bold** were detected above the laboratory detection and/or reporting limit. = Indicates an exceedance of a screening criterion.

= Indicates the analyte was not detected; however, the reported method detection limit exceeds a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

Appendix A Field Forms

GROUNDWATER LEVEL MEASUREMENTS

Port of Vancouver USA

Name: Phil Markello Date: 4/12/11 Weather: Sunny, 70's

WELL ID	TIME	DTW	COMMENTS
66-6	10:15	18.1	Large Manhole orange needs I waither, seal & cap in good condition needs rubber seal, cap good condition, sediment accompliation everything in good shape -everything good soudition
66-4	10:10	20.92	needs I washer seal of cap in good condition
66-1	10:11	20.04	needs rubber scal, cap your undition, sediment accomplation
66-2	10:12	20.39	evenything in good shape
66-3	10:15	19.79	-everything good soudition

3103 NW Lower River Road, Vancouver, WA 98660 • (360) 693-3611 • Fax (360) 735-1565 • www.portvanusa.com

Port of Vancouver USA

PROJECT NAME:	Former ASI Site	WELL ID: 64-4
SITE ADRESS:	2327 Mill Plain Blvd Vancouver, Wa	BLIND ID:
		DUP ID:

WIND:	N	NE	E	SE	S	SW	W	NW	LIGHT	MEDIU		Y
WEATHER:	80	NNY	CLC	UDY	R/	AIN			TEMPERA		70%	
			1		2 2							

HYDROLOGY/LEVEL MEASUREMENTS (nearest 0.01ft)

Date	Time	DT-Water	Purge Rate (liters per minute)		
6/10/19	10.25	20.71	<u>0.3 lpm</u>		

GROUNDWATER SAMPLING DATA (if product is detected do NOT sample)

Sample ID	Bottle Type	Date	Time Collected	# of Containers	Analysis Required	Amount & Volume	Preservative
	VOA - Glass			<u>3</u>	VOCs	mL <u>40 mL</u>	HCI
	AMBER - Glass			<u>1</u>	<u>Dx</u>	<u>1L</u>	HCI

WATER QUALITY DATA

****	LK QUALII	I DAIA		I uige a	statt I	nnc.	6.00	
Time	Cummlative	Temperature	ORP	Conductivity	pH	Dissolved	DTW	Comments
	Liters	C	mV	us/cm		Oxygen		(i.e., odor,
	Purged					(mg/L)		sediment, color)
10:52	2	14.68		227	6.15		21.02	clear, no odor
10:35	2	14.70		233	6.15		11.02	clar, po ador
10:40	2	19.69		239	6.12		21.02	clear, no o dur
10 144	2	14.78		252	6.11		21.02	clear no oder
10:47		14.75		240	6.11			1

Purge Start Time

Sampler: Phil Martello (PRINTED NAME)

(SIGNATURE)

Port of Vancouver USA

PROJECT NAME:	Former ASI Site	WELL ID: GL-1
SITE ADRESS:	2327 Mill Plain Blvd Vancouver, Wa	BLIND ID:
		DUP ID:

WIND:	N	NE	E	SE	S	SW	W	NW	LIGHT	MEDIUN	M	HEAVY
WEATHER:	SUNNY CLOUI		DUDY	RA	AIN	TEMPERATURE: 7			20'			
		-										

HYDROLOGY/LEVEL MEASUREMENTS (nearest 0.01ft)

Date	Time	DT-Water	Purge Rate (liters per minute)
6/10/19	11:05	20.01	<u>0.3 lpm</u>

GROUNDWATER SAMPLING DATA (if product is detected do NOT sample)

Sample ID	Bottle Type	Date	Time Collected	# of Containers	Analysis Required	Amount & Volume	Preservative
						mL	
	VOA - Glass			<u>3</u>	<u>VOCs</u>	<u>40 mL</u>	<u>HCl</u>
	AMBER - Glass			<u>1</u>	<u>Dx</u>	<u>1L</u>	<u>HCl</u>

WATER OUALITY DATA

VIIII	ER QUITEIT	I DAMA		Turge c	man 1	mic.	C	
Time	Cummlative	Temperature	ORP	Conductivity	pH	Dissolved	DTW	Comments
	Liters	°C	mV	us/cm		Oxygen		(i.e., odor,
	Purged					(mg/L)		sediment, color)
11:10	2	14.00		791		6.81	20.01	nind colontin
	2	14.42		804		6.90	20.01	clear, so de
14:11	2	14.38		777		6.91	20.01	
11:23	2	14.42		794		6.12	20,01	clar, a odor clar, odor - deise
L	L	L	L			I		

Purge Start Time:

Sampler:__________(PRINTED NAME)

(SIGNATURE)

PROJECT NAME:	Former ASI Site	WELL ID: 64-2
SITE ADRESS:	2327 Mill Plain Blvd Vancouver, Wa	BLIND ID:
		DUP ID: 66-21

WIND:	N	NE	E	SE	S	SW	W	NW	LIGHT	MEDIU	M	HEAVY
WEATHER:	ទហ	NNY	CLC	DUDY		AIN			TEMPERA	TURE:		

HYDROLOGY/LEVEL MEASUREMENTS (nearest 0.01ft)

Date	Time	DT-Water	Purge Rate (liters per minute)
6/10/19	12:45	20.31	<u>0.3 lpm</u>

GROUNDWATER SAMPLING DATA (if product is detected do NOT sample)

Sample ID	Bottle Type	Date	Time	# of	Analysis	Amount	Preservative
			Collected	Containers	Required	&	
					-	Volume	
						mL	
	VOA - Glass			<u>3</u>	VOCs	<u>40 mL</u>	<u>HCl</u>
	AMBER - Glass	224		<u>1</u>	<u>Dx</u>	<u>1L</u>	<u>HCl</u>
	10						

WATER QUALITY DATA

Purge Start Time:

447713	ER QUILLI	I DATA		Turge Blart Thile:					
Time	Cummlative	Temperature	ORP	Conductivity	pH	Dissolved	DTW	Comments	
	Liters	°C	mV	us/cm		Oxygen	1992 - LINE 1922	(i.e., odor,	
	Purged					(mg/L)		sediment, color)	
12:50	2	14.25		832	6.60		20.91	clar, 10 dor	
12:53	2	14.04		831	6.60		21.05	dow, poor	
12:57		14.19		241	6.6		21.09	clear, go o der	
[:01	2	14.2.3		845	6.59		21.09	dear to oder	
-								-	

Sampler:

(PRINTED NAME)

-

(SIGNATURE)

3103 NW Lower River Road, Vancouver, WA 98660 • (360) 693-3611 • Fax (360) 735-1565 • www.portvanusa.com

PROJECT NAME:	Former ASI Site	WELL ID: 64-3
SITE ADRESS:	2327 Mill Plain Blvd Vancouver, Wa	BLIND ID:
		DUP ID:

WIND:	N NE	E	SE	S	SW	W	NW	LIGHT	MEDIU	M	HEAVY
WEATHER:	SUNNY	CLO	UDY	RĀ	AIN			TEMPERA	TURE:		

HYDROLOGY/LEVEL MEASUREMENTS (nearest 0.01ft)

(liters per	
	minute)
6/10/19 1:37 19.69 0.3 lpm	

GROUNDWATER SAMPLING DATA (if product is detected do NOT sample)

Sample ID	Bottle Type	Date	Time	# of	Analysis	Amount	Preservative
			Collected	Containers	Required	&	
					-	Volume	
						mL	
	VOA - Glass			3	<u>VOCs</u>	<u>40 mL</u>	<u>HCl</u>
	AMBER - Glass			<u><u>1</u></u>	<u>Dx</u>	<u>1L</u>	<u>HCl</u>

WATER QUALITY DATA

Purge Start Time:

on gomen				JANNEL A			
Cummlative	Temperature	ORP	Conductivity	pH	Dissolved	DTW	Comments
Liters	°C	mV	us/cm		Oxygen		(i.e., odor,
Purged					(mg/L)		sediment, color)
2	18.15		391	604		19.71	clear, yo ador
2	17.90		380	6.11		19.74	ciar ao soor
2	17.95		375	6-12		19.71	clear poods-
2	17.88		375	6.12		11.70	clear no oder
							•
	Cummlative Liters Purged	Cummlative LitersTemperature °CPurged?C218.15217.10217.95	Cummlative Liters PurgedTemperature °CORP mV218.15217.90217.95	Cummlative LitersTemperature °CORP mVConductivity us/cmPurged	Cummlative Liters PurgedTemperature °CORP mVConductivity us/cmpH218.153914.04217.103806.11217.95375642	Cummlative Liters PurgedTemperature °CORP mVConductivity us/cmpHDissolved Oxygen (mg/L)218.153914.04217.903806.11217.95375642	Cummlative Liters PurgedTemperature °CORP mVConductivity us/cmpHDissolved Oxygen (mg/L)DTW217.103914.04111.71217.903806.1111.71217.953756.219.71

Sampler:

(PRINTED NAME)

(SIGNATURE)

Port of Vancouver USA

Rise :

PROJECT NAME:	Former ASI Site	WELL ID: 66-6
SITE ADRESS:	2327 Mill Plain Blvd Vancouver, Wa	BLIND ID:
		DUP ID:

WIND:	N	NE	E	SE	S	SW	W	NW	LIGHT	MEDIU	M	HEAVY
WEATHER:	SUN	NY	CLC	UDY	RA	IN			TEMPERA	TURE:		

HYDROLOGY/LEVEL MEASUREMENTS (nearest 0.01ft)

- Marine

Date	Time	DT-Water	Purge Rate (liters per minute)
411/19	7:35	17.39	<u>0.3 lpm</u>

GROUNDWATER SAMPLING DATA (if product is detected do NOT sample)

Sample ID	Bottle Type	Date	Time	# of	Analysis	Amount	Preservative
			Collected	Containers	Required	&	
					-	Volume	
						mL	
	VOA - Glass			<u>3</u>	VOCs	<u>40 mL</u>	<u>HCl</u>
	AMBER - Glass			1	<u>Dx</u>	<u>IL</u>	<u>HCl</u>
54 1							

WATER QUALITY DATA

Purge Start Time:

	DIC COMDIT			1 41.64				
Time	Cummlative	Temperature	ORP	Conductivity	pH	Dissolved	DTW	Comments
	Liters	°C	mV	us/cm	ł	Oxygen		(i.e., odor,
	Purged					(mg/L)		sediment, color)
9:10	2	/3.01		/27	6.10		18.37	no abr, cloudy
9:44	2	12.91			6.15	4.19	18.37	no alor dardy
9:10 9:11 9:11	2	12.87		125	617	4.11	18.41	65 /
						•	•	
							1	
	-				1			
	1			L	1			

Martello Sampler: (PRINTED NAME)

(SIG

AECOM

Project Inform	ation											
Project Name:	Automotive S	Services, Inc. (AS	il)			Fi	eld Team:	-1-44	See	168		
Project Number:	60519969						Date:	1	1 -	}	Page 1 of	
Field Measure	ments and	Observations				Contraction (Marine		and the second second				
		Depth to	Condition Assessment Well Tag ID verification		Screen	n		Samplin	g Plar	an		
Well ID	Time	Water (feet BTOC)	Status of each well Replace broken lids, bolts, gaskets, caps, & locks	Aquifer	Interval (feet)	Collect Sample	Sampling Method	Analytes	QC	Con	tainers	
GL-6	0845	22.12	Well good Manhole 110	Shallow	10-30	x	PP/Bailer	VOCs, Dx		3 VOAs	2 Amber	
GL-4	0912	Z4.48	AHE596 Well good	Shallow	10-30	x	PP/Bailer	VOCs, Dx		3 VOAs	2 Amber	
GL-3	0917	23.16	NO COTO present well good fail metal plate	Shallow	10-30	x	PP/Bailer	VOCs, Dx		3 VOAs	2 Amber	
GL-2	0923	7370	NO CAED well good	Shallow	10-30	x	PP/Bailer	VOCs, Dx	FD**		2 Ambers 2 Ambers	
GL-1	0931	23.20	- vell good bold.	Shallow	10-30	x	PP/Bailer	VOCs, Dx		3 VOAs	2 Amber	

Definitions:

FD = field duplicate

Dx = diesel and heavy oil range organics

PP/Bailer = purging conducted using peristaltic pump and then sampling conducted using a double check ball disposable bailer

QC = quality control samples

VOA = volatile organic analysis VOC = volatile organic carbon

Sampling Schedule (18+ months):

December 2019 June 2021 December 2022 June 2024

Sampling Notes:

FD ** = Field duplicate - collect field duplicate on GL-2. If not accessible, collect the field duplicate on GL-1 or GL-3. Run duplicate for all analyses. Lab = Apex Labs

Drum purge water. Store drums under the 26th Ave Underpass until they are full enough for disposal. Trip and Field Blank - VOCs only

Well Number:	GIL-1
Date	17-9-19

Page 1 of _									Date:	12-9-1	9
Project Info	ormation		N. H. H. H.	enter Carenda debarro	Well Informa	ition		Stick-up or	Flush	(circle one)	
Project Nam	ne: POV	/ A	51		Well	Drilled W	/ell Depth	Тор о	f Screen	Screen Inter	val
Project					Diameter (in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)	
Sampling Ir	nformation	ione onterne Arionaliani		eteratorian departamente Parterian de tantorian	Z	33.45	33.10				
Field Team:	TAUS	SCHER			CMT	Port=0.006 gal/ft	and the second design of the s	And the second se	al/ft 4"=0.66 g	gal/ft 6"=1.5 gal/ft	
Purge Metho	od: P-P	JULP			Sample Con	tainers					¿pe
Pump Intake	e Depth (ft btc):	28'			Number	Туре	Prese	rvative	Analytic	cal Parameters	Filtered?
	gh Cell: HO		052		3	VOA	HC	L	Ve	SC	R
Sampling M		ALER			2	IL AMB			D		N
Decontamin	ation Method:										
Purge Wate	r Disposal: 🛛 💍	n site	; tan	ik.							1
Field Condit		INY 5									
Comments:		/	5								_
Initial DTW:	23.2	0							1		_
	1	1	,								_
NO W	ell car	o pre	send.			1					_
											_
									1		
Well Purge	Data Volume	anana a					renter de la companya de la company T				
Time	Purged	Purge Rate (mL/m)	DTW (ft btc)	Temp. (⁰C)	Conductivity	D.O. (mg/L)	Hq	ORP (mV)	Turbidity (NTUs)	Clarity / Color Remarks	• /
1247	Pump On		Initial		±3%	±greater of 10% or 0.2mg/L	±0.1	±10mv	±10%	<= Stabilizatio	on
1250	0.5	200	23.21	13.69		0.14	7.29	-120	67.5	Criteria	_
1255	1.5	a second s	23.22		0.995		7.23	-105	69.3	clear	
1300	2.5	200		13.78		0.00	7.10	-11Z	68.9	clear	
1305	3.5	200		13.78			7.10	-113	67.9	clear	
1310	4.5	200		13.92	0.997	0.0	7.12	-113	59.7	clear	
1315	5.5	200	23.23	13.97		0.0	7.12	- 113	58.5	clear	
1320	6.5	200	23.23	14.04	0.993	0.0	7.08	-113	36.Z	clear	
1323	7.1	200	23.22	14.13	0.991	0.0	7.05	-113	35.1	clear	-
1326	7.7	200	23:22	14.10	0.991	0.0	7.05	-113	36.4	clear	
1326	SAMP	PLE									
					100 C						
							2				_
_						ni	T				
					\leq						
								>			
	Start Samalian	12:	20								
	Start Sampling End Sampling	13	Ja	Comple Nor	ber: G	1 . 1			Canal T	1770	-
	End Sampling		Final	Sample Num					Sample Time	1330	
11.2					1 						
Notes:	AC = almost clea bgs = below grou			btc = below top CI = cloudy	or casing		DTW = depth to C = clear	water		VC = very cloudy SC = slightly cloudy	

Page 1 of _									Date:	12/5/19
Project Info	ormation				Well Informa	tion		Stick-up or	Flush	(circle one)
Project Nar	me: POV	AS	1		Well Diameter	Drilled W	ell Depth	Тор о	f Screen	Screen Interval
Projec	ct Number:				(in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)
Sampling I	Information				2	27.60	27.33			-
Field Team	TAUS	HER			CMT I	Port=0.006 gal/ft	3/4"=0.023 gal	/ft 2"=0.17 g	al/ft 4"=0.66 g	al/ft 6"=1.5 gal/ft
Purge Meth	and a second	and the second			Sample Cont	tainers				
Pump Intak	e Depth (ft btc):	26			Number	Туре	Preser	vative	Analytic	al Parameters
	gh Cell: Ho	STATISTICS IN THE STATE	U57	7	2	1 L AMI	z h	ICL	Γ	NX
Sampling M		ILER		-	3	VON		+CL		roc
	nation Method:		x 1Di							~~
Purge Wate	er Disposal: 👩	osite	tank		Z	1 L AMIS	14	CL	D	v.
Field Condi	itions: Sun	M 57	5		3	VOA		CL		oc
Comments										
nitial DTW	: 23.4	7								
Well Purge	Data									
Time	Volume Purged (L)	Purge Rate (mL/m)	DTW (ft btc)	Temp. ([°] C)	Conductivity (vS/cm)	D.O. (mg/L)	рН	ORP (mV)	Turbidity (NTUs)	Clarity / Color / Remarks
1430	the second se	•	Initial		±3%	±greater of 10% or 0.2mg/L	±0.1	±10mv	±10%	<= Stabilization
1435	and and	180	23.62	14.22	0.980		6.89	-31	2 1133	Clear
1440	5 1	200		13.94			6.82	-12	31.6	Clear
1445	7	200	23.91	13.53		0.34	6.84	17	14.4	clear
1450		200		13.46	1.00	0.14	6.84	20	17.6	clear
1455	4	200	23.94	13.18	1.01	0.0	6.85	32	17.1	clear
1500	5	200	23.94	13.14	1.02	0.0	6.85	33	17.0	clear
1505	17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200	23.94	12.97	1.03	0.0	6.85	36	16.6	clear
1510	7	200	23.97	12.97	1.03	0.0	6.85	37	16.1	cleas
1515	SAM	PLE								
	1. I. I.		-							
										Conversion of the second s
ж					C BARD					
							>			
*							>			
							>			
×										
					,					
					/					
					/					
	Start Sampling	15	15	DUPL		Gr.L.	-2-00	2	1520	
	Start Sampling End Sampling	15	15 19 Final	DopL Sample Numb		61-	2-00	12	1520 Sample Time:	

Well Number: GL-Z

	ing Well S	ampling	Field Log					w	ell Number:	In Price	
Page 1 of _			an an tanàna an				en e		Date:		
Project Info					Well Informa Well	1		Stick-up or		(circle one)	
Project Nam		A	51		Diameter	and a second second	/ell Depth	8 1 0	fScreen	Screen Interva	al
Project	1			10. 10. 1. 10. 10. 10. 10. 10. 10. 10. 1	(in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)	
Sampling In	Carl and the second second		200000000		2	27.3	26.7	whole stay and ether	10110 - 1011 - 101000-1	and a second second second	
Field Team:	TAUSO				1111111111111111111111	Port=0.006 gal/ft	3/4"=0.023 ga	al/ft 2"=0.17 g	al/ft 4"=0.66 g	al/ft 6"=1.5 gal/ft	-
Purge Metho					Sample Cont	tainers	n de la d T				Filtered?
Pump Intake	Depth (ft btc):	23			Number	Туре		ervative	Analytic	al Parameters	Life
Flow-Throug	h Cell: HO		V52		2	11 AMB		CL	D	· · ·	
Sampling Me		ILER			3	VOA	HZ	L	vo	C	
Decontamina	ation Method:		the second se	,							
Purge Water	the second s	1152 1.454	e tail	k							
Field Conditi	ons: 500	ny 40	10								
Comments:		C.									-
Initial DTW:	23.1	0									8
11.2	I	>	. 1								
NU	well co	and p	rsen.								
											_
					300						
Well Purge I	president and the second second second				<u>de de com</u>						
Time	Volume Purged (L)	Purge Rate (mL/m)	DTW (ft btc)	Temp. (⁰C)	Conductivity	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTUs)	Clarity / Color / Remarks	
1123	Pump On		23.16	14	±3%	±greater of 10% or 0.2mg/L	±0.1	±10mv	±10%	<= Stabilization Criteria	ו
1145	0	200	23.22	13.42	0.493		6.46	121	67.1	Cloudy	
1150		200	23.09		0.48Z		6.44	125	46.0	AC	
1155	2	200	23.10		0.484	0.0	6.43	138	32.1	AC	
1200	3	200	23.10	14.17		0.0	6.43	143	32.3	clear	
1205	4	200	23.10	14.27	0.485	0.0	6.43	149	31.4	Clear	-
12:0	5	200	23.10	14.37	0.486	6.0	6.42	156	33.9	clear	
1215	6	200	23.11	14.39	0.486	0.0	6.42	157	33.9	Clear	-
1220	7	200	23,11	14.40	0.486	0.0	6.42	158	33.9	clear	•
1220	SAMP	LE			_						
					MI						
				(10.550						
											-
		10-	0								
	Start Sampling	122			1	~			Rollad and an annual and an annual an	×	
	End Sampling	123	Final	Sample Numl	ber: Col	-3			Sample Time:	1220	
Notes:	AC = almost clea	ar		btc = below top	of casing		DTW = depth to	o water	0	VC = very cloudy	

bgs = below ground surface

CI = cloudy

DTW = depth to water C = clear

VC = very cloudy SC = slightly cloudy

Page 1 of		ampling	Field Log	1				W		12/9/19
Project Info		popolitica de la competitica de la comp	annan an a	den de la composition	Well Informa	tion		Stick-up or	PEA ST 25001	(circle one)
Project Nam		·			Well		/ell Depth			[
Project Nam	22.0 10	AS	21		Diameter	(ft bgs)	(ft btc)	(ft bgs)	5-20-5253 2005 99900 0050 - 98	Screen Interva (ft bgs)
Sampling In		Historica		0.000.0	(in)	30.96	30.68		(11 blc)	10 - 30
Field Team:		CHER		999-999-999-999-999-999-999-999-999-99		Port=0.006 gal/ft	2	Notice - commence - comme	121/ft 4"=0.66.g	
Purge Metho		UMP			all the state of the state	ing the state of the state of the	0.4 0.020 gt	anit 2-0.11 g	Jaint 4 -0.00 g	aint 0 - 1.5 gaint
					Sample Cont	1		n na dalar dalar dalar Manazi	initialainininitialaini musees	<u>- Heisterich Friskerski († 1868)</u> 24. – Andrea Status
	e Depth (ft btc):				Number	Туре		ervative		al Parameters
Flow-Throug	h Cell: Ho		U52		23	11 AmB				
Sampling Me	and the property line of the second	AILER			3	VOA	He	<u> </u>	Ct	Voc
	rge Water Disposal: On Sik tank									
				e						
Field Conditi	ions: Sur	ng 4	50					184		
Comments:		1								
Initial DTW:	24.49	0								
-Trouble	c w/p	UMGIAS	as Mus	s depth.						
w/P	pump	5 2							of Screen (ft btc) gal/ft 4"=0.66 gr Analytic Dx (%h U U U U Image: Constraint of the second se	×
AVA I	AHE 3	96								
		10								
Well Purge [Data									
Time	Volume Purged	Purge Rate (mL/m)	DTW (ft btc)	Temp. (⁰ C)	Conductivity	D.O. (mg/L)	pН	ORP (mV)		Clarity / Color / Remarks
	(L)	()	Initial	(0)	±3%	±greater of 10%		Cartor C		<= Stabilization
1000	Duma On					or 0.2mg/L	±0.1	±10mv		
1000	Pump On	100	7501	1176		-				Criteria
1020	0	200	25.01		0.304	0.93	6.24	184	51.7	AC
1020	0	200	25.01	11.64	0.304	0.93	6.24 6.42	184	51.7 39.2	AC
1020 1025 1030	0 1 1.5	200	25.01	11.64	0.304	0.93	6.24 6.42 6.45	184 185 188	51.7 39.2 36:4	AC AC AC
1020 1025 1030 1035	0 1 1.5 2.0	200	25.01	11.83	0.304 0.311 0.315 0.316	0.93 0.0 0.0 0.0	6.24 6.42 6.45 6.46	184 185 188 188	51.7 39.2 36.4 36.9	AC AC AC Clear
1020 1025 1030 1035 1040	0 1 1.5 2.0 2.5	200 100 100	25.01	11.64 11.83 11.85 12.06	0.304 0.311 0.315 0.316 0.316	0.93 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46	184 185 188 188 188 187	51.7 39.2 36.9 36.9 35.9	AC AC Clear Clear
1020 1025 1030 1035 1040 1045	0 1 1.5 2.0 2.5 3.0	200 100 100 100	25.0	11.64 11.83 11.85 12.06 12.27	0.304 0.311 0.315 0.316 0.316 0.323 0.319	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1045 1050	0 1 1.5 2.0 2.5 3.0 3.5	200 100 100 100 100	25.0	11.64 11.83 11.85 12.06 12.27	0.304 0.311 0.315 0.316 0.316	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46	184 185 188 188 188 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear
1020 1025 1030 1035 1040 1045	0 1 1.5 2.0 2.5 3.0	200 100 100 100 100	25.0	11.64 11.83 11.85 12.06 12.27	0.304 0.311 0.315 0.316 0.316 0.323 0.319	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	Date	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1045 1050	0 1 1.5 2.0 2.5 3.0 3.5	200 100 100 100 100	25.0	11.64 11.83 11.85 12.06 12.27	0.304 0.311 0.315 0.316 0.316 0.323 0.319	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1045 1050	0 1 1.5 2.0 2.5 3.0 3.5	200 100 100 100 100	2.5.0	11.64 11.83 11.85 12.06 12.27	0.304 0.311 0.315 0.316 0.316 0.323 0.319	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1045 1050	0 1 1.5 2.0 2.5 3.0 3.5	200 100 100 100 100	2.5.0	11.64 11.83 11.85 12.06 12.27	0.304 0.311 0.315 0.316 0.316 0.323 0.319	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1045 1050	0 1 1.5 2.0 2.5 3.0 3.5	200 100 100 100 100	2.5.0	11.64 11.83 11.85 12.06 12.27	0.304	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1045 1050	0 1 1.5 2.0 2.5 3.0 3.5	200 100 100 100 100	2.5.0	11.64 11.83 11.85 12.06 12.27	0.304 0.311 0.315 0.316 0.316 0.323 0.319	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1045 1050	0 1 1.5 2.0 2.5 3.0 3.5	200 100 100 100 100	2.5.0	11.64 11.83 11.85 12.06 12.27	0.304	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1045 1050	0 1 1.5 2.0 2.5 3.0 3.5	200 100 100 100 100	2.5.0	11.64 11.83 11.85 12.06 12.27	0.304	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1045 1050	0 1 1.5 2.0 2.5 3.0 3.5	200 100 100 100 100	2.5.0	11.64 11.83 11.85 12.06 12.27	0.304	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1045 1050	0 1 1.5 2.0 2.5 3.0 3.5	200 100 100 100 100	2.5.0	11.64 11.83 11.85 12.06 12.27	0.304	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1045 1050	0 1 1.5 2.0 2.5 3.0 3.5	200 100 100 100 100	2.5.0	11.64 11.83 11.85 12.06 12.27	0.304	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1045 1050 1055	0 1 1.5 2.0 2.5 3.0 3.5	200 100 100 100 100 100 100 100 100 100	5	11.64 11.83 11.85 12.06 12.27	0.304 0.311 0.315 0.316 0.323 0.319 0.320	0.93 0.0 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.5	AC AC Clear Clear Clear
1020 1025 1030 1035 1040 1055 1055	0 1 1.5 2.0 2.5 3.0 3.5 5 5 5 5 5	200 100 100 100 100 100	5	11.64 11.83 11.85 12.06 12.27	0.304 0.311 0.315 0.316 0.323 0.319 0.320	0.93 0.0 0.0 0.0 0.0 0.0	6.24 6.42 6.45 6.46 6.46 6.48 6.49	184 185 188 188 188 187 187	51.7 39.2 36.9 35.9 35.9 35.3	Ac Ac Ac clear clear clear

Monitori Page 1 of	ng Well Sa 	ampling	Field Log					w	ell Number: Date:	612-5-1	
Project Infor	rmation				Well Informa	tion		Stick-up o	Flush	(circle one)	
Proiect Name		As	51		Well	Drilled W	ell Depth	200	f Screen	Screen Interva	ĺ
Project		1			Diameter (in)	(ft bgs)	(ft btc)	(ft bgs)	(ft btc)	(ft bgs)	
Sampling In	10.000000000000000000000000000000000000				7_	29.50	28.30			10-30	1
Field Team:	TAUS	HAR			CMT	Port=0.006 gal/ft			al/ft 4"=0.66 ga		
Purge Metho	and the second second	all a second second			Sample Cont	ainers			10/00/00/00		ćp
	Depth (ft btc):				Number	Туре	Prese	rvative	Analytic	al Parameters	Filtered?
Flow-Through Cell: HORIBA USZ				Z	I L AMB	H	L	D	X		
Sampling Me	and the second se				3	VOA	HCO	and the second se	Voc		
Decontamina	tion Method:		× 1 Di								
and the second se	Disposal:										
Field Conditio	197	n 45									
Comments:											
Initial DTW:	22.1	Z						1			
		×	1.2	1							
well	der cou	0 10	Manho	le,				e.			
Un	der cou	ier w/	Concreh	c prid.				10.00			
AHES	-0.2			-				all the second			
AHES	13										
								_			
Well Purge D	and a store in the second state of the second		gidaddagde)								
Time	Volume Purged (L)	Purge Rate (mL/m)	DTW (ft btc)	Temp. (⁰ C)	Conductivity	D.O. (mg/L)	рН	ORP (mV)	Turbidity (NTUs)	Clarity / Color / Remarks	
0848	Pump On		Initial		±3%	±greater of 10% or 0.2mg/L	±0.1	±10mv	±10%	<= Stabilization Criteria	
0855	01	150	22.50	12.37	0.190	5,74	6.39	187	95.8	Ac/cla	a
0900	2	200	22.26	12.17	0.163	4.94	6.31	190	58.8	AC	/
0905	3	200	22.22	11.74	0.149	4.15	6.25	198	60.0	AC	
0910	4	200	12.25	11.69	0.140	4.14	6.23	203	49.4	clear	
0915	5	200	22.22	11.67	0.138	4.14	6.24	203	48.3	clear	
0920	6	200	22.22	11.69	0.136	4.13	6.23	204	48.Z	clear	
0925	6.5	100	ZZ.Z1	11.76	0.135	4.13	6.22	207	47.3	clear	
0930	7.0	100	22.21	11.86	0.136	4.12	6.21	209	45.5	clear	
0930	SAMF	NE.									
										Real Parts	
					\subset						
											_
											_
									2		

Start S	ampling	09:	30							
End S	ampling	09	Final	Sample Numbe	r: Gil	-6			Sample Time	: 0930
			Final		_					
lotes: AC = almost clear				btc = below top of	casing		DTW = depth to v	vater		VC = very cloudy

bgs = below ground surface

CI = cloudy

C = clear

SC = slightly cloudy

Appendix B Laboratory Report and Chain-of-Custody Form

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Friday, June 21, 2019 Matt Graves Port of Vancouver 3103 NW Lower River Road Vancouver, WA 98660

RE: A9F0368 - ASI - [none]

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9F0368, which was received by the laboratory on 6/11/2019 at 4:03:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>DAuvil@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

Cooler Receipt Information

Cooler #1

(See Cooler Receipt Form for details) 4.9 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

and to finit

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	Report ID:
Vancouver, WA 98660	Project Manager: Matt	Graves A9F0368 - 06 21 19 1005

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION								
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
Dup	A9F0368-01	Water	06/10/19 13:05	06/11/19 16:03				
GL-1	A9F0368-02	Water	06/10/19 11:25	06/11/19 16:03				
GL-2	A9F0368-03	Water	06/10/19 13:15	06/11/19 16:03				
GL-3	A9F0368-04	Water	06/10/19 14:00	06/11/19 16:03				
GL-4	A9F0368-05	Water	06/10/19 10:30	06/11/19 16:03				
GL-6	A9F0368-06	Water	06/11/19 00:00	06/11/19 16:03				
Тгір	A9F0368-07	Water	06/10/19 00:00	06/11/19 16:03				

Apex Laboratories

Quand to finil

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	Report ID:
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or Oi	I Hydrocarl	bons by NWTPH	I-Dx			
	Sample	Detection	Reporting	TT .	D'1 -:	Date		N
Analyte	Result	Limit	Limit	Units	Dilution	5	Method Ref.	Notes
Dup (A9F0368-01)				Matrix: Wate	r	Batch	9060943	
Diesel	0.563		0.190	mg/L	1	06/14/19 02:28	NWTPH-Dx	F-11
Oil	ND		0.381	mg/L	1	06/14/19 02:28	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 92 %	Limits: 50-150 %	1	06/14/19 02:28	NWTPH-Dx	
GL-1 (A9F0368-02)				Matrix: Wate	r	Batch	9060943	
Diesel	0.404		0.190	mg/L	1	06/14/19 02:51	NWTPH-Dx	F-20
Oil	ND		0.381	mg/L	1	06/14/19 02:51	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 91 %	Limits: 50-150 %	1	06/14/19 02:51	NWTPH-Dx	
GL-2 (A9F0368-03)				Matrix: Wate	r	Batch	9060943	
Diesel	0.659		0.190	mg/L	1	06/14/19 03:14	NWTPH-Dx	F-11
Oil	ND		0.381	mg/L	1	06/14/19 03:14	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 99%	Limits: 50-150 %	1	06/14/19 03:14	NWTPH-Dx	
GL-3 (A9F0368-04)				Matrix: Wate	r	Batch	9060943	
Diesel	ND		0.190	mg/L	1	06/14/19 03:36	NWTPH-Dx	
Oil	ND		0.381	mg/L	1	06/14/19 03:36	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 94%	Limits: 50-150 %	1	06/14/19 03:36	NWTPH-Dx	
GL-4 (A9F0368-05)				Matrix: Wate	r	Batch	9060943	
Diesel	ND		0.190	mg/L	1	06/14/19 03:59	NWTPH-Dx	
Oil	ND		0.381	mg/L	1	06/14/19 03:59	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 93 %	Limits: 50-150 %	1	06/14/19 03:59	NWTPH-Dx	
GL-6 (A9F0368-06)				Matrix: Wate	r	Batch	9060943	
Diesel	ND		0.190	mg/L	1	06/14/19 04:22	NWTPH-Dx	
Oil	ND		0.381	mg/L	1	06/14/19 04:22	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 93 %	Limits: 50-150 %	1	06/14/19 04:22	NWTPH-Dx	

Apex Laboratories

and to fimil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

			ic Compound					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
up (A9F0368-01)				Matrix: Wa	ater	Batcl	h: 9060861	
Acetone	47.0		20.0	ug/L	1	06/12/19 15:16	EPA 8260C	
Acrylonitrile	ND		2.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Benzene	ND		0.200	ug/L	1	06/12/19 15:16	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	06/12/19 15:16	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	06/12/19 15:16	EPA 8260C	
-Butanone (MEK)	ND		10.0	ug/L	1	06/12/19 15:16	EPA 8260C	
Butylbenzene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
ec-Butylbenzene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
ert-Butylbenzene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Carbon disulfide	ND		10.0	ug/L	1	06/12/19 15:16	EPA 8260C	
arbon tetrachloride	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Chlorobenzene	ND		0.500	ug/L	1	06/12/19 15:16	EPA 8260C	
Chloroethane	ND		5.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Chloroform	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Chloromethane	ND		5.00	ug/L	1	06/12/19 15:16	EPA 8260C	
-Chlorotoluene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
-Chlorotoluene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	06/12/19 15:16	EPA 8260C	
,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	06/12/19 15:16	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
,2-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 15:16	EPA 8260C	
,3-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 15:16	EPA 8260C	
4-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 15:16	EPA 8260C	
ichlorodifluoromethane	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
1-Dichloroethane	ND		0.400	ug/L	1	06/12/19 15:16	EPA 8260C	
2-Dichloroethane (EDC)	ND		0.400	ug/L	1	06/12/19 15:16	EPA 8260C	
1-Dichloroethene	ND		0.400	ug/L	1	06/12/19 15:16	EPA 8260C	
s-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 15:16	EPA 8260C	
ans-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 15:16	EPA 8260C	

Apex Laboratories

much la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	Report ID:
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Dup (A9F0368-01)				Matrix: W	ater	Batc	h: 9060861	
1,2-Dichloropropane	ND		0.500	ug/L	1	06/12/19 15:16	EPA 8260C	
1,3-Dichloropropane	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
2,2-Dichloropropane	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
1,1-Dichloropropene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	06/12/19 15:16	EPA 8260C	
Hexachlorobutadiene	ND		5.00	ug/L	1	06/12/19 15:16	EPA 8260C	
2-Hexanone	ND		10.0	ug/L	1	06/12/19 15:16	EPA 8260C	
Isopropylbenzene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
4-Isopropyltoluene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Methylene chloride	ND		3.00	ug/L	1	06/12/19 15:16	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	06/12/19 15:16	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	06/12/19 15:16	EPA 8260C	
n-Propylbenzene	ND		0.500	ug/L	1	06/12/19 15:16	EPA 8260C	
Styrene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	06/12/19 15:16	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	06/12/19 15:16	EPA 8260C	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	06/12/19 15:16	EPA 8260C	
Toluene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 15:16	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 15:16	EPA 8260C	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	06/12/19 15:16	EPA 8260C	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	06/12/19 15:16	EPA 8260C	
Trichloroethene (TCE)	ND		0.400	ug/L	1	06/12/19 15:16	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	06/12/19 15:16	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	06/12/19 15:16	EPA 8260C	
m,p-Xylene	ND		1.00	ug/L	1	06/12/19 15:16	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	06/12/19 15:16	EPA 8260C	

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	Report ID:
Vancouver, WA 98660	Project Manager: Matt Grave	A9F0368 - 06 21 19 1005
.		

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Dup (A9F0368-01)				Matrix: Wate	r	Batch	n: 9060861	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 111 %	Limits: 80-120 %	1	06/12/19 15:16	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %		06/12/19 15:16		
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	06/12/19 15:16	EPA 8260C	
GL-1 (A9F0368-02)				Matrix: Wate	r	Batch	n: 9060861	
Acetone	24.6		20.0	ug/L	1	06/12/19 15:43	EPA 8260C	
Acrylonitrile	ND		2.00	ug/L	1	06/12/19 15:43	EPA 8260C	
Benzene	ND		0.200	ug/L	1	06/12/19 15:43	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	06/12/19 15:43	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	06/12/19 15:43	EPA 8260C	
2-Butanone (MEK)	ND		10.0	ug/L	1	06/12/19 15:43	EPA 8260C	
n-Butylbenzene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
sec-Butylbenzene	2.85		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
tert-Butylbenzene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
Carbon disulfide	ND		10.0	ug/L	1	06/12/19 15:43	EPA 8260C	
Carbon tetrachloride	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
Chlorobenzene	ND		0.500	ug/L	1	06/12/19 15:43	EPA 8260C	
Chloroethane	ND		5.00	ug/L	1	06/12/19 15:43	EPA 8260C	
Chloroform	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
Chloromethane	ND		5.00	ug/L	1	06/12/19 15:43	EPA 8260C	
2-Chlorotoluene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
4-Chlorotoluene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	06/12/19 15:43	EPA 8260C	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	06/12/19 15:43	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 15:43	EPA 8260C	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 15:43	EPA 8260C	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 15:43	EPA 8260C	
Dichlorodifluoromethane	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
1,1-Dichloroethane	ND		0.400	ug/L	1	06/12/19 15:43	EPA 8260C	

Apex Laboratories

mul la finiel

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	Report ID:
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

	V	olaule Organ	ic Compoun	us by EPA 8	2006			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
L-1 (A9F0368-02)				Matrix: Wa	ater	Batc	h: 9060861	
,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	06/12/19 15:43	EPA 8260C	
,1-Dichloroethene	ND		0.400	ug/L	1	06/12/19 15:43	EPA 8260C	
is-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 15:43	EPA 8260C	
ans-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 15:43	EPA 8260C	
2-Dichloropropane	ND		0.500	ug/L	1	06/12/19 15:43	EPA 8260C	
3-Dichloropropane	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
2-Dichloropropane	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
1-Dichloropropene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
s-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
ans-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
thylbenzene	ND		0.500	ug/L	1	06/12/19 15:43	EPA 8260C	
exachlorobutadiene	ND		5.00	ug/L	1	06/12/19 15:43	EPA 8260C	
-Hexanone	ND		10.0	ug/L	1	06/12/19 15:43	EPA 8260C	
opropylbenzene	6.74		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
Isopropyltoluene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
lethylene chloride	ND		3.00	ug/L	1	06/12/19 15:43	EPA 8260C	
-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	06/12/19 15:43	EPA 8260C	
fethyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
laphthalene	ND		2.00	ug/L	1	06/12/19 15:43	EPA 8260C	
-Propylbenzene	10.6		0.500	ug/L	1	06/12/19 15:43	EPA 8260C	
tyrene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	06/12/19 15:43	EPA 8260C	
1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	06/12/19 15:43	EPA 8260C	
etrachloroethene (PCE)	ND		0.400	ug/L	1	06/12/19 15:43	EPA 8260C	
oluene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
2,3-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 15:43	EPA 8260C	
2,4-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 15:43	EPA 8260C	
1,1-Trichloroethane	ND		0.400	ug/L	1	06/12/19 15:43	EPA 8260C	
1,2-Trichloroethane	ND		0.500	ug/L	1	06/12/19 15:43	EPA 8260C	
ichloroethene (TCE)	ND		0.400	ug/L	1	06/12/19 15:43	EPA 8260C	
richlorofluoromethane	ND		2.00	ug/L	1	06/12/19 15:43	EPA 8260C	
2,3-Trichloropropane	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
2,4-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	

Apex Laboratories

much la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005
	ANALYTICAL SAMPLE RESULTS	

	V	olatile Organ	ic Compou	nds by EPA 826	0C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-1 (A9F0368-02)				Matrix: Wate	r	Batch	n: 9060861	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	06/12/19 15:43	EPA 8260C	
m,p-Xylene	ND		1.00	ug/L	1	06/12/19 15:43	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	06/12/19 15:43	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 108 %	Limits: 80-120 %	1	06/12/19 15:43	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	1	06/12/19 15:43	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	06/12/19 15:43	EPA 8260C	
iL-2 (A9F0368-03)				Matrix: Wate	r	Batch	n: 9060861	
Acetone	ND		20.0	ug/L	1	06/12/19 16:10	EPA 8260C	
Acrylonitrile	ND		2.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Benzene	ND		0.200	ug/L	1	06/12/19 16:10	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	06/12/19 16:10	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	06/12/19 16:10	EPA 8260C	
2-Butanone (MEK)	ND		10.0	ug/L	1	06/12/19 16:10	EPA 8260C	
n-Butylbenzene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
sec-Butylbenzene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
tert-Butylbenzene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Carbon disulfide	ND		10.0	ug/L	1	06/12/19 16:10	EPA 8260C	
Carbon tetrachloride	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Chlorobenzene	ND		0.500	ug/L	1	06/12/19 16:10	EPA 8260C	
Chloroethane	ND		5.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Chloroform	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Chloromethane	ND		5.00	ug/L	1	06/12/19 16:10	EPA 8260C	
2-Chlorotoluene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
4-Chlorotoluene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	06/12/19 16:10	EPA 8260C	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	06/12/19 16:10	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 16:10	EPA 8260C	

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compoun	ds by EPA 8	260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-2 (A9F0368-03)				Matrix: W	ater	Batc	h: 9060861	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 16:10	EPA 8260C	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 16:10	EPA 8260C	
Dichlorodifluoromethane	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
1,1-Dichloroethane	ND		0.400	ug/L	1	06/12/19 16:10	EPA 8260C	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	06/12/19 16:10	EPA 8260C	
1,1-Dichloroethene	ND		0.400	ug/L	1	06/12/19 16:10	EPA 8260C	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 16:10	EPA 8260C	
rans-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 16:10	EPA 8260C	
1,2-Dichloropropane	ND		0.500	ug/L	1	06/12/19 16:10	EPA 8260C	
1,3-Dichloropropane	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
2,2-Dichloropropane	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
1,1-Dichloropropene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
vis-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
rans-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	06/12/19 16:10	EPA 8260C	
Hexachlorobutadiene	ND		5.00	ug/L	1	06/12/19 16:10	EPA 8260C	
2-Hexanone	ND		10.0	ug/L	1	06/12/19 16:10	EPA 8260C	
sopropylbenzene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
4-Isopropyltoluene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Methylene chloride	ND		3.00	ug/L	1	06/12/19 16:10	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	06/12/19 16:10	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	06/12/19 16:10	EPA 8260C	
n-Propylbenzene	ND		0.500	ug/L	1	06/12/19 16:10	EPA 8260C	
Styrene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	06/12/19 16:10	EPA 8260C	
,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	06/12/19 16:10	EPA 8260C	
Cetrachloroethene (PCE)	ND		0.400	ug/L	1	06/12/19 16:10	EPA 8260C	
oluene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
,2,3-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 16:10	EPA 8260C	
,2,4-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 16:10	EPA 8260C	
,1,1-Trichloroethane	ND		0.400	ug/L ug/L	1	06/12/19 16:10	EPA 8260C	
,1,2-Trichloroethane	ND		0.400	ug/L ug/L	1	06/12/19 16:10	EPA 8260C	

Apex Laboratories

much la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-2 (A9F0368-03)				Matrix: Wate	er	Batcl	h: 9060861	
Trichloroethene (TCE)	ND		0.400	ug/L	1	06/12/19 16:10	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	06/12/19 16:10	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	06/12/19 16:10	EPA 8260C	
m,p-Xylene	ND		1.00	ug/L	1	06/12/19 16:10	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	06/12/19 16:10	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 110 %	Limits: 80-120 %	1	06/12/19 16:10) EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	06/12/19 16:10	D EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	06/12/19 16:10	<i>EPA 8260C</i>	
GL-3 (A9F0368-04)				Matrix: Wate	er	Batcl	h: 9060861	
Acetone	20.6		20.0	ug/L	1	06/12/19 16:38	EPA 8260C	
Acrylonitrile	ND		2.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Benzene	ND		0.200	ug/L	1	06/12/19 16:38	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
	ND		1.00	/1	1	06/12/10 16.29	EDA 9260C	

Benzene	ND	 0.200	ug/L	1	06/12/19 16:38	EPA 8260C	
Bromobenzene	ND	 0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
Bromochloromethane	ND	 1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Bromodichloromethane	ND	 1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Bromoform	ND	 1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Bromomethane	ND	 5.00	ug/L	1	06/12/19 16:38	EPA 8260C	
2-Butanone (MEK)	ND	 10.0	ug/L	1	06/12/19 16:38	EPA 8260C	
n-Butylbenzene	ND	 1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
sec-Butylbenzene	ND	 1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
tert-Butylbenzene	ND	 1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Carbon disulfide	ND	 10.0	ug/L	1	06/12/19 16:38	EPA 8260C	
Carbon tetrachloride	ND	 1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Chlorobenzene	ND	 0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
Chloroethane	ND	 5.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Chloroform	ND	 1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Chloromethane	ND	 5.00	ug/L	1	06/12/19 16:38	EPA 8260C	
2-Chlorotoluene	ND	 1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
4-Chlorotoluene	ND	 1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Dibromochloromethane	ND	 1.00	ug/L	1	06/12/19 16:38	EPA 8260C	

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	Report ID:
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compoun	ds by EPA 8	260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-3 (A9F0368-04)				Matrix: W	ater	Batc	h: 9060861	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	06/12/19 16:38	EPA 8260C	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
Dichlorodifluoromethane	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
1,1-Dichloroethane	ND		0.400	ug/L	1	06/12/19 16:38	EPA 8260C	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	06/12/19 16:38	EPA 8260C	
1,1-Dichloroethene	ND		0.400	ug/L	1	06/12/19 16:38	EPA 8260C	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 16:38	EPA 8260C	
rans-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 16:38	EPA 8260C	
1,2-Dichloropropane	ND		0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
1,3-Dichloropropane	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
2,2-Dichloropropane	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
1,1-Dichloropropene	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
rans-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
Hexachlorobutadiene	ND		5.00	ug/L	1	06/12/19 16:38	EPA 8260C	
2-Hexanone	ND		10.0	ug/L	1	06/12/19 16:38	EPA 8260C	
Isopropylbenzene	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
4-Isopropyltoluene	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Methylene chloride	ND		3.00	ug/L	1	06/12/19 16:38	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	06/12/19 16:38	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Japhthalene	ND		2.00	ug/L	1	06/12/19 16:38	EPA 8260C	
-Propylbenzene	ND		0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
Styrene	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	06/12/19 16:38	EPA 8260C	
,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
Fetrachloroethene (PCE)	ND		0.400	ug/L	1	06/12/19 16:38	EPA 8260C	
Toluene	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	

Apex Laboratories

much la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-3 (A9F0368-04)				Matrix: Water Bat		Batcl	n: 9060861	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 16:38	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 16:38	EPA 8260C	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	06/12/19 16:38	EPA 8260C	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
Trichloroethene (TCE)	ND		0.400	ug/L	1	06/12/19 16:38	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	06/12/19 16:38	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	06/12/19 16:38	EPA 8260C	
m,p-Xylene	ND		1.00	ug/L	1	06/12/19 16:38	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	06/12/19 16:38	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 110 %	Limits: 80-120 %	1	06/12/19 16:38	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	06/12/19 16:38	EPA 8260C	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	06/12/19 16:38	EPA 8260C	
GL-4 (A9F0368-05)				Matrix: Wate	r	Batcl	n: 9060861	
Acetone	ND		20.0	ug/L	1	06/12/19 17:05	EPA 8260C	
Acrylonitrile	ND		2.00	ug/L	1	06/12/19 17:05	EPA 8260C	
Benzene	ND		0.200	ug/L	1	06/12/19 17:05	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	06/12/19 17:05	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	06/12/19 17:05	EPA 8260C	
2-Butanone (MEK)	ND		10.0	ug/L	1	06/12/19 17:05	EPA 8260C	
n-Butylbenzene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
sec-Butylbenzene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
tert-Butylbenzene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
Carbon disulfide	ND		10.0	ug/L	1	06/12/19 17:05	EPA 8260C	
Carbon tetrachloride	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
Chlorobenzene	ND		0.500	ug/L	1	06/12/19 17:05	EPA 8260C	
Chloroethane	ND		5.00	ug/L	1	06/12/19 17:05	EPA 8260C	
Chloroform	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: ASI	Ĺ	
3103 NW Lower River Road	Project Number: [no	ne]	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Ma	tt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	us by EPA 8	2006			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
L-4 (A9F0368-05)				Matrix: Wa	ater	Batc	h: 9060861	
Chloromethane	ND		5.00	ug/L	1	06/12/19 17:05	EPA 8260C	
-Chlorotoluene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
-Chlorotoluene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	06/12/19 17:05	EPA 8260C	
,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	06/12/19 17:05	EPA 8260C	
ibromomethane	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
,2-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 17:05	EPA 8260C	
,3-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 17:05	EPA 8260C	
,4-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 17:05	EPA 8260C	
Dichlorodifluoromethane	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
1-Dichloroethane	ND		0.400	ug/L	1	06/12/19 17:05	EPA 8260C	
2-Dichloroethane (EDC)	ND		0.400	ug/L	1	06/12/19 17:05	EPA 8260C	
1-Dichloroethene	ND		0.400	ug/L	1	06/12/19 17:05	EPA 8260C	
s-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 17:05	EPA 8260C	
ans-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 17:05	EPA 8260C	
,2-Dichloropropane	ND		0.500	ug/L	1	06/12/19 17:05	EPA 8260C	
,3-Dichloropropane	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
,2-Dichloropropane	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
,1-Dichloropropene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
is-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
ans-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
thylbenzene	ND		0.500	ug/L	1	06/12/19 17:05	EPA 8260C	
exachlorobutadiene	ND		5.00	ug/L	1	06/12/19 17:05	EPA 8260C	
-Hexanone	ND		10.0	ug/L	1	06/12/19 17:05	EPA 8260C	
sopropylbenzene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
Isopropyltoluene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
ethylene chloride	ND		3.00	ug/L	1	06/12/19 17:05	EPA 8260C	
Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	06/12/19 17:05	EPA 8260C	
ethyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
aphthalene	ND		2.00	ug/L	1	06/12/19 17:05	EPA 8260C	
Propylbenzene	ND		0.500	ug/L	1	06/12/19 17:05	EPA 8260C	
yrene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	

Apex Laboratories

much la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	Report ID:
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

	-			nds by EPA 826				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-4 (A9F0368-05)				Matrix: Wate	er	Batcl	n: 9060861	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	06/12/19 17:05	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	06/12/19 17:05	EPA 8260C	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	06/12/19 17:05	EPA 8260C	
Toluene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 17:05	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 17:05	EPA 8260C	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	06/12/19 17:05	EPA 8260C	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	06/12/19 17:05	EPA 8260C	
Trichloroethene (TCE)	ND		0.400	ug/L	1	06/12/19 17:05	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	06/12/19 17:05	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	06/12/19 17:05	EPA 8260C	
m,p-Xylene	ND		1.00	ug/L	1	06/12/19 17:05	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	06/12/19 17:05	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 111 %	Limits: 80-120 %	1	06/12/19 17:05	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	1	06/12/19 17:05	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	06/12/19 17:05	EPA 8260C	

GL-6 (A9F0368-06)			Matrix: Wat	er	Batch:	9060861	
Acetone	ND	 20.0	ug/L	1	06/12/19 17:33	EPA 8260C	
Acrylonitrile	ND	 2.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Benzene	ND	 0.200	ug/L	1	06/12/19 17:33	EPA 8260C	
Bromobenzene	ND	 0.500	ug/L	1	06/12/19 17:33	EPA 8260C	
Bromochloromethane	ND	 1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Bromodichloromethane	ND	 1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Bromoform	ND	 1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Bromomethane	ND	 5.00	ug/L	1	06/12/19 17:33	EPA 8260C	
2-Butanone (MEK)	ND	 10.0	ug/L	1	06/12/19 17:33	EPA 8260C	
n-Butylbenzene	ND	 1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
sec-Butylbenzene	ND	 1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
tert-Butylbenzene	ND	 1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Carbon disulfide	ND	 10.0	ug/L	1	06/12/19 17:33	EPA 8260C	

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

	V	oranie Organ	ic Compound	S DY LFA 0				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-6 (A9F0368-06)				Matrix: Wa	ater	Batch	h: 9060861	
Carbon tetrachloride	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Chlorobenzene	ND		0.500	ug/L	1	06/12/19 17:33	EPA 8260C	
Chloroethane	ND		5.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Chloroform	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Chloromethane	ND		5.00	ug/L	1	06/12/19 17:33	EPA 8260C	
2-Chlorotoluene	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
-Chlorotoluene	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	06/12/19 17:33	EPA 8260C	
,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	06/12/19 17:33	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
,2-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 17:33	EPA 8260C	
,3-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 17:33	EPA 8260C	
,4-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 17:33	EPA 8260C	
Dichlorodifluoromethane	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
,1-Dichloroethane	ND		0.400	ug/L	1	06/12/19 17:33	EPA 8260C	
,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	06/12/19 17:33	EPA 8260C	
,1-Dichloroethene	ND		0.400	ug/L	1	06/12/19 17:33	EPA 8260C	
vis-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 17:33	EPA 8260C	
rans-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 17:33	EPA 8260C	
,2-Dichloropropane	ND		0.500	ug/L	1	06/12/19 17:33	EPA 8260C	
,3-Dichloropropane	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
,2-Dichloropropane	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
,1-Dichloropropene	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
is-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
ans-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
thylbenzene	ND		0.500	ug/L	1	06/12/19 17:33	EPA 8260C	
exachlorobutadiene	ND		5.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Hexanone	ND		10.0	ug/L	1	06/12/19 17:33	EPA 8260C	
opropylbenzene	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
-Isopropyltoluene	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Iethylene chloride	ND		3.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	06/12/19 17:33	EPA 8260C	

Apex Laboratories

much la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-6 (A9F0368-06)				Matrix: Water		Batch		
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	06/12/19 17:33	EPA 8260C	
n-Propylbenzene	ND		0.500	ug/L	1	06/12/19 17:33	EPA 8260C	
Styrene	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	06/12/19 17:33	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	06/12/19 17:33	EPA 8260C	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	06/12/19 17:33	EPA 8260C	
Toluene	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 17:33	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 17:33	EPA 8260C	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	06/12/19 17:33	EPA 8260C	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	06/12/19 17:33	EPA 8260C	
Trichloroethene (TCE)	ND		0.400	ug/L	1	06/12/19 17:33	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	06/12/19 17:33	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	06/12/19 17:33	EPA 8260C	
m,p-Xylene	ND		1.00	ug/L	1	06/12/19 17:33	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	06/12/19 17:33	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	111 %	Limits: 80-120 %	1	06/12/19 17:33	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %		06/12/19 17:33		
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	06/12/19 17:33	EPA 8260C	
rip (A9F0368-07)				Matrix: Wate	er	Batch	n: 9060861	
Acetone	ND		20.0	ug/L	1	06/12/19 14:48	EPA 8260C	
Acrylonitrile	ND		2.00	ug/L	1	06/12/19 14:48	EPA 8260C	
Benzene	ND		0.200	ug/L	1	06/12/19 14:48	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	06/12/19 14:48	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C	

1.00

5.00

10.0

ug/L

ug/L

ug/L

Apex Laboratories

Bromoform

Bromomethane

2-Butanone (MEK)

and to finil

ND

ND

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1

1

1

06/12/19 14:48

06/12/19 14:48

06/12/19 14:48

EPA 8260C

EPA 8260C

EPA 8260C

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
rip (A9F0368-07)				Matrix: Wa	ater	Batcl	h: 9060861			
n-Butylbenzene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
sec-Butylbenzene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
ert-Butylbenzene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
Carbon disulfide	ND		10.0	ug/L	1	06/12/19 14:48	EPA 8260C			
Carbon tetrachloride	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
Chlorobenzene	ND		0.500	ug/L	1	06/12/19 14:48	EPA 8260C			
Chloroethane	ND		5.00	ug/L	1	06/12/19 14:48	EPA 8260C			
Chloroform	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
Chloromethane	ND		5.00	ug/L	1	06/12/19 14:48	EPA 8260C			
-Chlorotoluene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
-Chlorotoluene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
Dibromochloromethane	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	06/12/19 14:48	EPA 8260C			
,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	06/12/19 14:48	EPA 8260C			
bibromomethane	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
,2-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 14:48	EPA 8260C			
,3-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 14:48	EPA 8260C			
,4-Dichlorobenzene	ND		0.500	ug/L	1	06/12/19 14:48	EPA 8260C			
Dichlorodifluoromethane	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
,1-Dichloroethane	ND		0.400	ug/L	1	06/12/19 14:48	EPA 8260C			
,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	06/12/19 14:48	EPA 8260C			
,1-Dichloroethene	ND		0.400	ug/L	1	06/12/19 14:48	EPA 8260C			
is-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 14:48	EPA 8260C			
ans-1,2-Dichloroethene	ND		0.400	ug/L	1	06/12/19 14:48	EPA 8260C			
,2-Dichloropropane	ND		0.500	ug/L	1	06/12/19 14:48	EPA 8260C			
,3-Dichloropropane	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
2-Dichloropropane	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
1-Dichloropropene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
s-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
ans-1,3-Dichloropropene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C			
thylbenzene	ND		0.500	ug/L	1	06/12/19 14:48	EPA 8260C			
lexachlorobutadiene	ND		5.00	ug/L	1	06/12/19 14:48	EPA 8260C			
Hexanone	ND		10.0	ug/L	1	06/12/19 14:48	EPA 8260C			

Apex Laboratories

much la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>Report ID:</u>
A9F0368 - 06 21 19 1005

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compour	nds by EPA 826	50C			
Analyte	te Sample Detection te Result Limit		Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Trip (A9F0368-07)				Matrix: Wate	er	Batc		
Isopropylbenzene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C	
4-Isopropyltoluene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C	
Methylene chloride	ND		3.00	ug/L	1	06/12/19 14:48	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	06/12/19 14:48	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	06/12/19 14:48	EPA 8260C	
n-Propylbenzene	ND		0.500	ug/L	1	06/12/19 14:48	EPA 8260C	
Styrene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	06/12/19 14:48	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	06/12/19 14:48	EPA 8260C	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	06/12/19 14:48	EPA 8260C	
Toluene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 14:48	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	06/12/19 14:48	EPA 8260C	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	06/12/19 14:48	EPA 8260C	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	06/12/19 14:48	EPA 8260C	
Trichloroethene (TCE)	ND		0.400	ug/L	1	06/12/19 14:48	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	06/12/19 14:48	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	06/12/19 14:48	EPA 8260C	
m,p-Xylene	ND		1.00	ug/L	1	06/12/19 14:48	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	06/12/19 14:48	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 108 %	Limits: 80-120 %	5 1	06/12/19 14:48	B EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %		06/12/19 14:48		
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	06/12/19 14:48	8 EPA 8260C	

Apex Laboratories

Quel & finil

Darrell Auvil, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>Report ID:</u> A9F0368 - 06 21 19 1005

	Project: <u>ASI</u>
3103 NW Lower River Road	Project Number: [none]
Vancouver, WA 98660	Project Manager: Matt Graves

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	or Oil Hyd	rocarbor	s by NW1	PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060943 - EPA 3510C (Fuels/Acid	Ext.)					Wat	er				
Blank (9060943-BLK1)			Prepared	l: 06/13/19	13:38 Ana	lyzed: 06/14	/19 00:35					
NWTPH-Dx												
Diesel	ND		0.182	mg/L	1							
Oil	ND		0.364	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 90 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS (9060943-BS1)			Prepared	l: 06/13/19	13:38 Ana	lyzed: 06/14	/19 00:57					
NWTPH-Dx												
Diesel	1.06		0.200	mg/L	1	1.25		85	58-115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 98 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS Dup (9060943-BSD1)			Prepared	l: 06/13/19	13:38 Ana	lyzed: 06/14	/19 01:20					Q-19
NWTPH-Dx												
Diesel	1.01		0.200	mg/L	1	1.25		81	58-115%	5	20%	
Surr: o-Terphenyl (Surr)		Rece	overy: 90 %	Limits: 50)-150 %	Dilı	ution: 1x					

Apex Laboratories

mul la finiel

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005
	QUALITY CONTROL (QC) SAMPLE RESULTS	

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060861 - EPA 5030B							Wate	ər				
Blank (9060861-BLK1)			Prepared:	: 06/12/19	09:30 Anal	yzed: 06/12/	'19 12:48					
EPA 8260C												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		5.00	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L	1							
Dichlorodifluoromethane	ND		1.00	ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L	1							
vis-1,2-Dichloroethene	ND		0.400	ug/L ug/L	1							
rans-1,2-Dichloroethene	ND		0.400	ug/L ug/L	1							

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>Port of Vancouver</u> 3103 NW Lower River Road Vancouver, WA 98660			Pro		<u>ASI</u> per: [none] ger: Matt G	raves			l	-	<u>Report ID:</u> 3 - 06 21 19	-
		_	ALITY CO		(-)							
			Volatile Ol	game oo	mpounus		2000					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060861 - EPA 5030B							Wat	er				
Blank (9060861-BLK1)			Prepared	: 06/12/19	09:30 Ana	yzed: 06/12	/19 12:48					
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2 2 D: 11												

1,2-Dichloropropane	ND	 0.500	ug/L	1	 	 	
1,3-Dichloropropane	ND	 1.00	ug/L	1	 	 	
2,2-Dichloropropane	ND	 1.00	ug/L	1	 	 	
1,1-Dichloropropene	ND	 1.00	ug/L	1	 	 	
cis-1,3-Dichloropropene	ND	 1.00	ug/L	1	 	 	
trans-1,3-Dichloropropene	ND	 1.00	ug/L	1	 	 	
Ethylbenzene	ND	 0.500	ug/L	1	 	 	
Hexachlorobutadiene	ND	 5.00	ug/L	1	 	 	
2-Hexanone	ND	 10.0	ug/L	1	 	 	
Isopropylbenzene	ND	 1.00	ug/L	1	 	 	
4-Isopropyltoluene	ND	 1.00	ug/L	1	 	 	
Methylene chloride	ND	 3.00	ug/L	1	 	 	
4-Methyl-2-pentanone (MiBK)	ND	 10.0	ug/L	1	 	 	
Methyl tert-butyl ether (MTBE)	ND	 1.00	ug/L	1	 	 	
Naphthalene	ND	 2.00	ug/L	1	 	 	
n-Propylbenzene	ND	 0.500	ug/L	1	 	 	
Styrene	ND	 1.00	ug/L	1	 	 	
1,1,1,2-Tetrachloroethane	ND	 0.400	ug/L	1	 	 	
1,1,2,2-Tetrachloroethane	ND	 0.500	ug/L	1	 	 	
Tetrachloroethene (PCE)	ND	 0.400	ug/L	1	 	 	
Toluene	ND	 0.500	ug/L	1	 	 	
1,2,3-Trichlorobenzene	ND	 2.00	ug/L	1	 	 	
1,2,4-Trichlorobenzene	ND	 2.00	ug/L	1	 	 	
1,1,1-Trichloroethane	ND	 0.400	ug/L	1	 	 	
1,1,2-Trichloroethane	ND	 0.500	ug/L	1	 	 	
Trichloroethene (TCE)	ND	 0.400	ug/L	1	 	 	
Trichlorofluoromethane	ND	 2.00	ug/L	1	 	 	
1,2,3-Trichloropropane	ND	 1.00	ug/L	1	 	 	
1,2,4-Trimethylbenzene	ND	 1.00	ug/L	1	 	 	
1,3,5-Trimethylbenzene	ND	 1.00	ug/L	1	 	 	
Vinyl chloride	ND	 0.400	ug/L	1	 	 	
m,p-Xylene	ND	 1.00	ug/L	1	 	 	
o-Xylene	ND	 0.500	ug/L	1	 	 	

Apex Laboratories

Quand to finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

											D. OKU	<u> </u>
<u>Port of Vancouver</u> 3103 NW Lower River Road Vancouver, WA 98660		Project: <u>ASI</u> Project Number: [none] Project Manager: Matt Graves							A		<u>Report ID</u> - 06 21 19	-
		QU	ALITY CO	ONTROI	L (QC) SA	MPLE R	ESULTS	1				
			Volatile Or	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060861 - EPA 5030B							Wat	er				
Blank (9060861-BLK1)			Prenared	ŀ 06/12/19	09·30 Ana	yzed: 06/12	/19 12.48					
Surr: Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)		Reco	very: 102 % 102 %	Limits: 80		-	ution: 1x "					
LCS (9060861-BS1)			Prepared	l: 06/12/19	09:30 Ana	yzed: 06/12	/19 11:53					
EPA 8260C												
Acetone	36.2		20.0	ug/L	1	40.0		90	80-120%			
Acrylonitrile	20.4		2.00	ug/L	1	20.0		102	80-120%			
Benzene	19.1		0.200	ug/L	1	20.0		95	80-120%			
Bromobenzene	19.8		0.500	ug/L	1	20.0		99	80-120%			
Bromochloromethane	21.4		1.00	ug/L	1	20.0		107	80-120%			
Bromodichloromethane	20.9		1.00	ug/L	1	20.0		105	80-120%			
Bromoform	23.3		1.00	ug/L	1	20.0		117	80-120%			
Bromomethane	21.3		5.00	ug/L	1	20.0		106	80-120%			
2-Butanone (MEK)	39.5		10.0	ug/L	1	40.0		99	80-120%			
n-Butylbenzene	20.2		1.00	ug/L	1	20.0		101	80-120%			
sec-Butylbenzene	18.9		1.00	ug/L	1	20.0		94	80-120%			
tert-Butylbenzene	17.1		1.00	ug/L	1	20.0		86	80-120%			
Carbon disulfide	16.4		10.0	ug/L	1	20.0		82	80-120%			
Carbon tetrachloride	20.0		1.00	ug/L	1	20.0		100	80-120%			
Chlorobenzene	19.7		0.500	ug/L	1	20.0		99	80-120%			
Chloroethane	13.6		5.00	ug/L	1	20.0		68	80-120%			Q-55
Chloroform	19.9		1.00	ug/L	1	20.0		99	80-120%			
Chloromethane	17.7		5.00	ug/L	1	20.0		88	80-120%			
2-Chlorotoluene	18.8		1.00	ug/L	1	20.0		94	80-120%			
4-Chlorotoluene	18.7		1.00	ug/L	1	20.0		94	80-120%			
Dibromochloromethane	19.1		1.00	ug/L	1	20.0		96	80-120%			
1,2-Dibromo-3-chloropropane	18.6		5.00	ug/L	1	20.0		93	80-120%			
1,2-Dibromoethane (EDB)	19.7		0.500	ug/L	1	20.0		99	80-120%			
Dibromomethane	21.0		1.00	ug/L	1	20.0		105	80-120%			
1,2-Dichlorobenzene	19.8		0.500	ug/L	1	20.0		99	80-120%			
1,3-Dichlorobenzene	19.8		0.500	ug/L	1	20.0		99	80-120%			
1,4-Dichlorobenzene	19.5		0.500	ug/L	1	20.0		97	80-120%			-
Dichlorodifluoromethane	15.1		1.00	ug/L	1	20.0		76	80-120%			Q-55
1,1-Dichloroethane	19.0		0.400	ug/L	1	20.0		95	80-120%			

Apex Laboratories

U la formini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

	QUALITY CONTROL (QC) SAMPLE RESULTS	
3103 NW Lower River Road Vancouver, WA 98660	Project Number: [none] Project Manager: Matt Graves	<u>Report ID:</u> A9F0368 - 06 21 19 1005
Port of Vancouver	Project: ASI	

			volatile Org	ganic Co	mpounds		2000					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060861 - EPA 5030B							Wat	er				
LCS (9060861-BS1)			Prepared	: 06/12/19	09:30 Anal	lyzed: 06/12	/19 11:53					
1,2-Dichloroethane (EDC)	20.0		0.400	ug/L	1	20.0		100	80-120%			
1,1-Dichloroethene	17.3		0.400	ug/L	1	20.0		87	80-120%			
cis-1,2-Dichloroethene	19.1		0.400	ug/L	1	20.0		96	80-120%			
rans-1,2-Dichloroethene	19.1		0.400	ug/L	1	20.0		95	80-120%			
1,2-Dichloropropane	19.8		0.500	ug/L	1	20.0		99	80-120%			
1,3-Dichloropropane	19.2		1.00	ug/L	1	20.0		96	80-120%			
2,2-Dichloropropane	16.9		1.00	ug/L	1	20.0		85	80-120%			
1,1-Dichloropropene	18.6		1.00	ug/L	1	20.0		93	80-120%			
cis-1,3-Dichloropropene	18.0		1.00	ug/L	1	20.0		90	80-120%			
rans-1,3-Dichloropropene	18.0		1.00	ug/L	1	20.0		90	80-120%			
Ethylbenzene	18.3		0.500	ug/L	1	20.0		92	80-120%			
Hexachlorobutadiene	20.4		5.00	ug/L	1	20.0		102	80-120%			
-Hexanone	38.2		10.0	ug/L	1	40.0			80-120%			
sopropylbenzene	18.0		1.00	ug/L	1	20.0			80-120%			
4-Isopropyltoluene	18.9		1.00	ug/L	1	20.0			80-120%			
Methylene chloride	19.1		3.00	ug/L	1	20.0			80-120%			
4-Methyl-2-pentanone (MiBK)	37.1		10.0	ug/L	1	40.0			80-120%			
Methyl tert-butyl ether (MTBE)	16.1		1.00	ug/L	1	20.0			80-120%			
Naphthalene	15.4		2.00	ug/L	1	20.0			80-120%			Q-
n-Propylbenzene	18.2		0.500	ug/L	1	20.0			80-120%			×
Styrene	10.2		1.00	ug/L	1	20.0			80-120%			
1,1,1,2-Tetrachloroethane	19.8		0.400	ug/L ug/L	1	20.0			80-120%			
1,1,2,2-Tetrachloroethane	19.4 21.1		0.400	-	1	20.0			80-120% 80-120%			
Tetrachloroethene (PCE)			0.300	ug/L								
	18.8			ug/L	1	20.0			80-120%			
Toluene	18.1		0.500	ug/L	1	20.0			80-120%			
1,2,3-Trichlorobenzene	19.6		2.00	ug/L	1	20.0			80-120%			
1,2,4-Trichlorobenzene	18.2		2.00	ug/L	1	20.0			80-120%			
1,1,1-Trichloroethane	18.0		0.400	ug/L	1	20.0			80-120%			
1,1,2-Trichloroethane	20.2		0.500	ug/L	1	20.0			80-120%			
Trichloroethene (TCE)	19.2		0.400	ug/L	1	20.0			80-120%			
Trichlorofluoromethane	22.5		2.00	ug/L	1	20.0			80-120%			
1,2,3-Trichloropropane	19.4		1.00	ug/L	1	20.0		97	80-120%			
1,2,4-Trimethylbenzene	19.0		1.00	ug/L	1	20.0		95	80-120%			
1,3,5-Trimethylbenzene	18.8		1.00	ug/L	1	20.0		94	80-120%			

Apex Laboratories

Quel to finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>Port of Vancouver</u> 3103 NW Lower River Road Vancouver, WA 98660			Pro	Project: oject Numb ject Manag	<u>ASI</u> er: [none] er: Matt G	raves			A		<u>eport ID:</u> - 06 21 19	-
		QUA	ALITY CO	ONTROI	L (QC) SA	MPLE R	ESULTS					
		١	/olatile Or	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060861 - EPA 5030B							Wat	er				
LCS (9060861-BS1)			Prepared	1.06/12/19	09:30 Anal	vzed: 06/12	/19 11.53					
Vinyl chloride	17.4		0.400	ug/L	1	20.0		87	80-120%			
m,p-Xylene	37.5		1.00	ug/L ug/L	1	20.0 40.0		87 94	80-120%			
o-Xylene	17.0		0.500	ug/L ug/L	1	20.0		94 85	80-120%			
Surr: 1,4-Difluorobenzene (Surr)	17.0	Recove		Limits: 80			ution: 1x	05	00 12070			
Toluene-d8 (Surr)		Recove	99 %)-120 %)-120 %	Dui	unon. 1x "					
4-Bromofluorobenzene (Surr)			99 % 94 %)-120 %		"					
4-Bromojiuorobenzene (Burr)			7470	00	-120 /0							
Duplicate (9060861-DUP1)			Preparec	1: 06/12/19	13:38 Anal	yzed: 06/12	/19 23:01					T-02
OC Source Sample: Non-SDG (A9	F0387-01)											
Acetone	ND		200	ug/L	10		ND				30%	
Acrylonitrile	ND		20.0	ug/L	10		ND				30%	
Benzene	240		2.00	ug/L	10		238			0.9	30%	
Bromobenzene	ND		5.00	ug/L	10		ND				30%	
Bromochloromethane	ND		10.0	ug/L	10		ND				30%	
Bromodichloromethane	ND		10.0	ug/L	10		ND				30%	
Bromoform	ND		10.0	ug/L	10		ND				30%	
Bromomethane	ND		50.0	ug/L	10		ND				30%	
2-Butanone (MEK)	ND		100	ug/L	10		ND				30%	
n-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
sec-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
tert-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
Carbon disulfide	ND		100	ug/L	10		ND				30%	
Carbon tetrachloride	ND		10.0	ug/L	10		ND				30%	
Chlorobenzene	ND		5.00	ug/L	10		ND				30%	
Chloroethane	ND		50.0	ug/L	10		ND				30%	
Chloroform	ND		10.0	ug/L	10		ND				30%	
Chloromethane	ND		50.0	ug/L	10		ND				30%	
2-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
4-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
Dibromochloromethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dibromo-3-chloropropane	ND		50.0	ug/L	10		ND				30%	
1,2-Dibromoethane (EDB)	ND		5.00	ug/L	10		ND				30%	
				2								

Apex Laboratories

Dibromomethane

1,2-Dichlorobenzene

mel la fimil

ND

ND

10.0

5.00

ug/L

ug/L

10

10

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

ND

30%

30%

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060861 - EPA 5030B							Wate	er				
Duplicate (9060861-DUP1)			Prepared	: 06/12/19	13:38 Anal	yzed: 06/12/	/19 23:01					T-02
QC Source Sample: Non-SDG (A9	F0387-01)											
1,3-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
1,4-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
Dichlorodifluoromethane	ND		10.0	ug/L	10		ND				30%	
1,1-Dichloroethane	ND		4.00	ug/L	10		ND				30%	
1,2-Dichloroethane (EDC)	ND		4.00	ug/L	10		ND				30%	
1,1-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
cis-1,2-Dichloroethene	12.9		4.00	ug/L	10		11.8			9	30%	
rans-1,2-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
1,2-Dichloropropane	ND		5.00	ug/L	10		ND				30%	
1,3-Dichloropropane	ND		10.0	ug/L	10		ND				30%	
2,2-Dichloropropane	ND		10.0	ug/L	10		ND				30%	
1,1-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
cis-1,3-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
rans-1,3-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
Ethylbenzene	165		5.00	ug/L	10		172			4	30%	
Hexachlorobutadiene	ND		50.0	ug/L	10		ND				30%	
2-Hexanone	ND		100	ug/L	10		ND				30%	
lsopropylbenzene	ND		10.0	ug/L	10		5.34			***	30%	
4-Isopropyltoluene	ND		10.0	ug/L	10		ND				30%	
Methylene chloride	ND		30.0	ug/L	10		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		100	ug/L	10		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		10.0	ug/L	10		ND				30%	
Naphthalene	5560		20.0	ug/L	10		5730			3	30%	E, Q-5
n-Propylbenzene	ND		5.00	ug/L	10		ND				30%	
Styrene	ND		10.0	ug/L	10		ND				30%	
1,1,1,2-Tetrachloroethane	ND		4.00	ug/L	10		ND				30%	
1,1,2,2-Tetrachloroethane	ND		5.00	ug/L	10		ND				30%	
Tetrachloroethene (PCE)	ND		4.00	ug/L	10		ND				30%	
Toluene	6.67		5.00	ug/L	10		7.11			6	30%	
1,2,3-Trichlorobenzene	ND		20.0	ug/L	10		ND				30%	
1,2,4-Trichlorobenzene	ND		20.0	ug/L	10		ND				30%	
1,1,1-Trichloroethane	ND		4.00	ug/L	10		ND				30%	
1,1,2-Trichloroethane	ND		5.00	ug/L	10		ND				30%	

Apex Laboratories

mul la finil

3103 NW Lower River Road Vancouver, WA 98660			Pro	Project: oject Numbo ject Manago	<u>ASI</u> er: [none] er: Matt G	raves			A		<u>Report ID:</u> - 06 21 19	
		QU	ALITY CO	ONTROL	. (QC) SA	MPLE R	ESULTS					
			Volatile Or	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060861 - EPA 5030B							Wate	ər				
Duplicate (9060861-DUP1)			Prepared	: 06/12/19	13:38 Anal	yzed: 06/12	/19 23:01					T-02
QC Source Sample: Non-SDG (A9	9F0387-01)											
Trichloroethene (TCE)	ND		4.00	ug/L	10		ND				30%	
Trichlorofluoromethane	ND		20.0	ug/L	10		ND				30%	
1,2,3-Trichloropropane	ND		10.0	ug/L	10		ND				30%	
1,2,4-Trimethylbenzene	37.2		10.0	ug/L	10		38.5			3	30%	
1,3,5-Trimethylbenzene	10.7		10.0	ug/L	10		11.3			5	30%	
Vinyl chloride	20.2		4.00	ug/L	10		19.5			4	30%	
n,p-Xylene	93.4		10.0	ug/L	10		98.5			5	30%	
o-Xylene	55.6		5.00	ug/L	10		57.2			3	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 103 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	-120 %		"					
Matrix Spike (9060861-MS1) QC Source Sample: GL-6 (A9F03	368-06)		Prepared	: 06/12/19	13:38 Anal	yzed: 06/12	/19 18:00					
	<u></u>											
EPA 8260C			20.0	/T	1	40.0	ND	100	20.1(00/			
EPA 8260C Acetone	40.1		20.0	ug/L	1	40.0	ND	100	39-160%			
<u>EPA 8260C</u> Acetone Acrylonitrile	40.1 22.0		2.00	ug/L	1	20.0	ND	110	63-135%			
EPA 8260C Acetone Acrylonitrile Benzene	40.1 22.0 21.1		2.00 0.200	ug/L ug/L	1 1	20.0 20.0	ND ND	110 105	63-135% 79-120%			
EPA 8260C Acetone Acrylonitrile Benzene Bromobenzene	40.1 22.0 21.1 21.0		2.00 0.200 0.500	ug/L ug/L ug/L	1 1 1	20.0 20.0 20.0	ND ND ND	110 105 105	63-135% 79-120% 80-120%		 	
EPA 8260C Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane	40.1 22.0 21.1 21.0 23.3	 	2.00 0.200 0.500 1.00	ug/L ug/L ug/L ug/L	1 1 1	20.0 20.0 20.0 20.0	ND ND ND ND	110 105 105 117	63-135% 79-120% 80-120% 78-123%	 	 	
<u>EPA 8260C</u> Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane	40.1 22.0 21.1 21.0 23.3 23.0	 	2.00 0.200 0.500 1.00 1.00	ug/L ug/L ug/L ug/L ug/L	1 1 1 1	20.0 20.0 20.0 20.0 20.0	ND ND ND ND	110 105 105 117 115	63-135% 79-120% 80-120% 78-123% 79-125%	 	 	
EPA 8260C Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	40.1 22.0 21.1 21.0 23.3 23.0 24.3	 	2.00 0.200 0.500 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1	20.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND ND	110 105 105 117 115 122	63-135% 79-120% 80-120% 78-123% 79-125% 66-130%	 	 	
EPA 8260C Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromonethane	40.1 22.0 21.1 21.0 23.3 23.0 24.3 20.5	 	$\begin{array}{c} 2.00\\ 0.200\\ 0.500\\ 1.00\\ 1.00\\ 1.00\\ 5.00 \end{array}$	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1	20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND ND ND	110 105 105 117 115 122 102	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141%	 	 	
EPA 8260C Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	40.1 22.0 21.1 21.0 23.3 23.0 24.3 20.5 41.8	 	2.00 0.200 0.500 1.00 1.00 1.00 5.00 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1	20.0 20.0 20.0 20.0 20.0 20.0 20.0 40.0	ND ND ND ND ND ND ND	110 105 105 117 115 122 102 104	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143%	 	 	
EPA 8260C Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) 1-Butylbenzene	40.1 22.0 21.1 21.0 23.3 23.0 24.3 20.5 41.8 20.5	 	$\begin{array}{c} 2.00\\ 0.200\\ 0.500\\ 1.00\\ 1.00\\ 1.00\\ 5.00\\ 10.0\\ 1.00\\ \end{array}$	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1	20.0 20.0 20.0 20.0 20.0 20.0 20.0 40.0 20.0	ND ND ND ND ND ND ND ND	110 105 105 117 115 122 102 104 102	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128%		 	
EPA 8260C Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	40.1 22.0 21.1 21.0 23.3 23.0 24.3 20.5 41.8 20.5 19.9	 	$\begin{array}{c} 2.00\\ 0.200\\ 0.500\\ 1.00\\ 1.00\\ 1.00\\ 5.00\\ 10.0\\ 1.00\\ 1.00\\ 1.00\end{array}$	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1	20.0 20.0 20.0 20.0 20.0 20.0 20.0 40.0 20.0 2	ND ND ND ND ND ND ND ND	110 105 105 117 115 122 102 104 102 100	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126%			
EPA 8260C Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene exec-Butylbenzene ert-Butylbenzene	40.1 22.0 21.1 21.0 23.3 23.0 24.3 20.5 41.8 20.5 19.9 18.3		2.00 0.200 0.500 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1	20.0 20.0 20.0 20.0 20.0 20.0 20.0 40.0 20.0 2	ND ND ND ND ND ND ND ND ND	110 105 105 117 115 122 102 104 102 100 92	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126% 78-124%			
EPA 8260C Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	40.1 22.0 21.1 21.0 23.3 23.0 24.3 20.5 41.8 20.5 19.9 18.3 17.2		$\begin{array}{c} 2.00\\ 0.200\\ 0.500\\ 1.00\\ 1.00\\ 1.00\\ 5.00\\ 10.0\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 10.0\\ \end{array}$	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND ND ND ND ND ND ND	110 105 105 117 115 122 102 104 102 100 92 86	63-135% 79-120% 80-120% 78-123% 66-130% 53-141% 56-143% 75-128% 77-126% 78-124% 64-133%			
EPA 8260C Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride	40.1 22.0 21.1 21.0 23.3 23.0 24.3 20.5 41.8 20.5 19.9 18.3 17.2 22.0		2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND ND ND ND ND ND ND ND	110 105 105 117 115 122 102 104 102 100 92 86 110	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126% 78-124% 64-133% 72-136%			
EPA 8260C Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene carbon disulfide Carbon tetrachloride Chlorobenzene	40.1 22.0 21.1 21.0 23.3 23.0 24.3 20.5 41.8 20.5 19.9 18.3 17.2 22.0 21.2		2.00 0.200 0.500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.500	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND ND ND ND ND ND ND ND	110 105 105 117 115 122 102 104 102 100 92 86 110 106	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126% 78-124% 64-133% 72-136% 80-120%			Q-54
	40.1 22.0 21.1 21.0 23.3 23.0 24.3 20.5 41.8 20.5 19.9 18.3 17.2 22.0		2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND ND ND ND ND ND ND	110 105 105 117 115 122 102 104 102 100 92 86 110	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126% 78-124% 64-133% 72-136%			Q-54

Apex Laboratories

Quand to finil

Vancouver, WA 20000	QUALITY CONTROL (QC) SAMPLE RESULTS	A9F0368 - 06 21 19 1005
Vancouver, WA 98660	Project Manager: Matt Graves	
3103 NW Lower River Road	Project Number: [none]	Report ID:
Port of Vancouver	Project: <u>ASI</u>	

Volatile Organic Compounds by EPA 8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060861 - EPA 5030B							Wat	er				
Matrix Spike (9060861-MS1)			Prepared	: 06/12/19	13:38 Anal	yzed: 06/12/	19 18:00					
QC Source Sample: GL-6 (A9F03	<u>68-06)</u>											
2-Chlorotoluene	19.7		1.00	ug/L	1	20.0	ND	99	79-122%			
4-Chlorotoluene	19.6		1.00	ug/L	1	20.0	ND	98	78-122%			
Dibromochloromethane	20.0		1.00	ug/L	1	20.0	ND	100	74-126%			
1,2-Dibromo-3-chloropropane	19.1		5.00	ug/L	1	20.0	ND	96	62-128%			
1,2-Dibromoethane (EDB)	20.7		0.500	ug/L	1	20.0	ND	103	77-121%			
Dibromomethane	22.5		1.00	ug/L	1	20.0	ND	112	79-123%			
1,2-Dichlorobenzene	20.7		0.500	ug/L	1	20.0	ND	103	80-120%			
1,3-Dichlorobenzene	20.5		0.500	ug/L	1	20.0	ND	103	80-120%			
1,4-Dichlorobenzene	20.4		0.500	ug/L	1	20.0	ND	102	79-120%			
Dichlorodifluoromethane	16.2		1.00	ug/L	1	20.0	ND	81	32-152%			Q-:
1,1-Dichloroethane	21.0		0.400	ug/L	1	20.0	ND	105	77-125%			
1,2-Dichloroethane (EDC)	21.8		0.400	ug/L	1	20.0	ND	109	73-128%			
1,1-Dichloroethene	17.6		0.400	ug/L	1	20.0	ND	88	71-131%			
cis-1,2-Dichloroethene	20.6		0.400	ug/L	1	20.0	ND	103	78-123%			
rans-1,2-Dichloroethene	20.6		0.400	ug/L	1	20.0	ND	103	75-124%			
1,2-Dichloropropane	21.6		0.500	ug/L	1	20.0	ND	108	78-122%			
1,3-Dichloropropane	20.2		1.00	ug/L	1	20.0	ND	101	80-120%			
2,2-Dichloropropane	15.3		1.00	ug/L	1	20.0	ND	77	60-139%			
1,1-Dichloropropene	20.2		1.00	ug/L	1	20.0	ND	101	79-125%			
cis-1,3-Dichloropropene	16.1		1.00	ug/L	1	20.0	ND	81	75-124%			
rans-1,3-Dichloropropene	17.8		1.00	ug/L	1	20.0	ND	89	73-127%			
Ethylbenzene	19.6		0.500	ug/L	1	20.0	ND	98	79-121%			
Hexachlorobutadiene	21.6		5.00	ug/L	1	20.0	ND	108	66-134%			
2-Hexanone	40.2		10.0	ug/L	1	40.0	ND	101	57-139%			
sopropylbenzene	19.2		1.00	ug/L	1	20.0	ND	96	72-131%			
4-Isopropyltoluene	19.5		1.00	ug/L	1	20.0	ND	97	77-127%			
Methylene chloride	19.0		3.00	ug/L	1	20.0	ND	95	74-124%			
4-Methyl-2-pentanone (MiBK)	38.1		10.0	ug/L	1	40.0	ND	95	67-130%			
Methyl tert-butyl ether (MTBE)	16.9		1.00	ug/L	1	20.0	ND	85	71-124%			
Naphthalene	16.2		2.00	ug/L	1	20.0	ND	81	61-128%			Q-
-Propylbenzene	19.3		0.500	ug/L	1	20.0	ND	96	76-126%			
Styrene	21.0		1.00	ug/L ug/L	1	20.0	ND	105	78-123%			
,1,1,2-Tetrachloroethane	21.0		0.400	ug/L ug/L	1	20.0	ND	103	78-123%			

Apex Laboratories

and to fimil

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River Road	Project Number: [none]	<u>Report ID:</u>
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060861 - EPA 5030B							Wate	er				
Matrix Spike (9060861-MS1)			Prepared	: 06/12/19	13:38 Ana	yzed: 06/12/	/19 18:00					
QC Source Sample: GL-6 (A9F03	<u>68-06)</u>											
1,1,2,2-Tetrachloroethane	22.9		0.500	ug/L	1	20.0	ND	115	71-121%			
Tetrachloroethene (PCE)	19.9		0.400	ug/L	1	20.0	ND	100	74-129%			
Toluene	19.2		0.500	ug/L	1	20.0	ND	96	80-121%			
1,2,3-Trichlorobenzene	20.9		2.00	ug/L	1	20.0	ND	105	69-129%			
1,2,4-Trichlorobenzene	18.4		2.00	ug/L	1	20.0	ND	92	69-130%			
1,1,1-Trichloroethane	20.4		0.400	ug/L	1	20.0	ND	102	74-131%			
1,1,2-Trichloroethane	21.2		0.500	ug/L	1	20.0	ND	106	80-120%			
Trichloroethene (TCE)	21.0		0.400	ug/L	1	20.0	ND	105	79-123%			
Trichlorofluoromethane	25.8		2.00	ug/L	1	20.0	ND	129	65-141%			
1,2,3-Trichloropropane	20.0		1.00	ug/L	1	20.0	ND	100	73-122%			
1,2,4-Trimethylbenzene	19.9		1.00	ug/L	1	20.0	ND	99	76-124%			
1,3,5-Trimethylbenzene	19.8		1.00	ug/L	1	20.0	ND	99	75-124%			
Vinyl chloride	19.4		0.400	ug/L	1	20.0	ND	97	58-137%			
m,p-Xylene	39.4		1.00	ug/L	1	40.0	ND	99	80-121%			
o-Xylene	18.2		0.500	ug/L	1	20.0	ND	91	78-122%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80	-120 %		"					

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>Port of Vancouver</u> 3103 NW Lower River Road Vancouver, WA 98660	Project:ASIProject Number:[none]Project Manager:Matt Graves	<u>Report ID:</u> A9F0368 - 06 21 19 1005
	SAMPLE PREPARATION INFORMATION	

Diesel and/or Oil Hydrocarbons by NWTPH-Dx								
Prep: EPA 3510C (F	uels/Acid Ext.)				Sample	Default	RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 9060943								
A9F0368-01	Water	NWTPH-Dx	06/10/19 13:05	06/13/19 13:38	1050mL/5mL	1000mL/5mL	0.95	
A9F0368-02	Water	NWTPH-Dx	06/10/19 11:25	06/13/19 13:38	1050mL/5mL	1000mL/5mL	0.95	
A9F0368-03	Water	NWTPH-Dx	06/10/19 13:15	06/13/19 13:38	1050mL/5mL	1000mL/5mL	0.95	
A9F0368-04	Water	NWTPH-Dx	06/10/19 14:00	06/13/19 13:38	1050mL/5mL	1000mL/5mL	0.95	
A9F0368-05	Water	NWTPH-Dx	06/10/19 10:30	06/13/19 13:38	1050mL/5mL	1000mL/5mL	0.95	
A9F0368-06	Water	NWTPH-Dx	06/11/19 00:00	06/13/19 13:38	1050mL/5mL	1000mL/5mL	0.95	
		Volatile	Organic Compounds	by EPA 8260C				
Prep: EPA 5030B		Volatile	Organic Compounds	by EPA 8260C	Sample	Default	RL Prep	
Prep: EPA 5030B Lab Number	Matrix	Volatile	Organic Compounds Sampled	by EPA 8260C	Sample Initial/Final	Default Initial/Final	RL Prep Factor	
	Matrix			•	-		1	
Lab Number Batch: 9060861	Matrix Water			•	-		1	
Lab Number		Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Lab Number Batch: 9060861 A9F0368-01	Water	Method EPA 8260C	Sampled 06/10/19 13:05	Prepared 06/12/19 13:38	Initial/Final 5mL/5mL	Initial/Final 5mL/5mL	Factor	
Lab Number <u>Batch: 9060861</u> A9F0368-01 A9F0368-02	Water Water	Method EPA 8260C EPA 8260C	Sampled 06/10/19 13:05 06/10/19 11:25	Prepared 06/12/19 13:38 06/12/19 13:38	Initial/Final 5mL/5mL 5mL/5mL	Initial/Final 5mL/5mL 5mL/5mL	Factor 1.00 1.00	
Lab Number <u>Batch: 9060861</u> A9F0368-01 A9F0368-02 A9F0368-03	Water Water Water	Method EPA 8260C EPA 8260C EPA 8260C	Sampled 06/10/19 13:05 06/10/19 11:25 06/10/19 13:15	Prepared 06/12/19 13:38 06/12/19 13:38 06/12/19 13:38	Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL	Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL	Factor 1.00 1.00 1.00	
Lab Number Batch: 9060861 A9F0368-01 A9F0368-02 A9F0368-03 A9F0368-04	Water Water Water Water	Method EPA 8260C EPA 8260C EPA 8260C EPA 8260C	Sampled 06/10/19 13:05 06/10/19 11:25 06/10/19 13:15 06/10/19 14:00	Prepared 06/12/19 13:38 06/12/19 13:38 06/12/19 13:38 06/12/19 13:38	Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL 5mL/5mL	Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL 5mL/5mL	Factor 1.00 1.00 1.00 1.00	

Apex Laboratories

Que la finiel

Port of Vancouver
3103 NW Lower River Road
Vancouver, WA 98660

Project: ASI

Project Number: [none] Project Manager: Matt Graves <u>Report ID:</u> A9F0368 - 06 21 19 1005

QUALIFIER DEFINITIONS

<u>Client Sample and Quality Control (QC) Sample Qualifier Definitions:</u>

Apex Laboratories

- **E** Estimated Value. The result is above the calibration range of the instrument.
- F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
- F-20 Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -12%. The results are reported as Estimated Values.
- Q-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -3%. The results are reported as Estimated Values.
- Q-54b Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -4%. The results are reported as Estimated Values.
- Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260C, however there is adequate sensitivity to ensure detection at the reporting level.
- T-02 This Batch QC sample was analyzed outside of the method specified 12 hour tune window. Results are estimated.

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Port of Vancouver	
3103 NW Lower River Road	Pr
Vancouver, WA 98660	Pro

Project: ASI

Project Number: [none] Project Manager: Matt Graves <u>Report ID:</u> A9F0368 - 06 21 19 1005

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.
ND	Analyte NOT DETECTED at or above the detection or reporting limit.
NR	Result Not Reported
RPD	Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.
ICI D	require recent Difference. It Distort mature spikes and mature spike Dupreates are sussed on concentration, not receivery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "____ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

Apex Laboratories

mul la fimil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Port of Vancouver</u> 3103 NW Lower River Road Vancouver, WA 98660

Project: ASI

Project Number: [none] Project Manager: Matt Graves <u>Report ID:</u> A9F0368 - 06 21 19 1005

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

June to finil

Port of Vancouver

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

3103 NW Lower Rive Vancouver, WA 9866		5	Project Number: [none] Project Manager: Matt Graves			<u>Report ID:</u> A9F0368 - 06 21 19 1005		
	LABORATORY ACCREDITATION INFORMATION							
	TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039							
	2 1	orted from work performed at Apex Laborate exception of any analyte(s) listed below		led on Apex Laboratories' OR	RELAP			
<u>Apex Labora</u>	<u>Apex Laboratories</u>							
Matrix	Analysis	TNI_ID	Analyte	TN	I_ID	Accreditation		
	All reported analytes are included in Apex Laboratories' current ORELAP scope.							

ASI

Project:

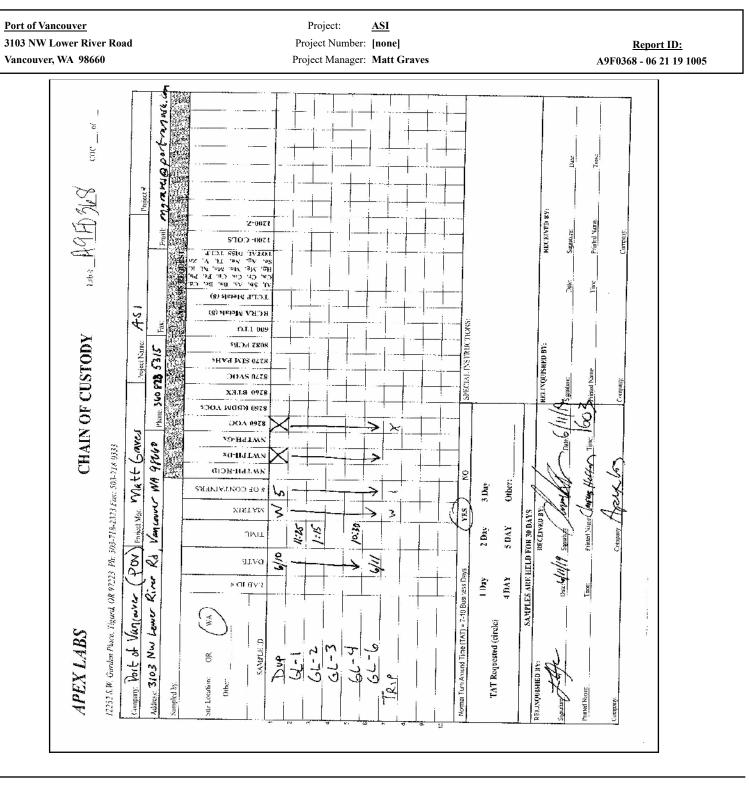
Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters


Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

June la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Apex Laboratories

mel la finit

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Port of Vancouver	Project: <u>ASI</u>	
3103 NW Lower River	Road Project Number: [none]	Report ID:
Vancouver, WA 98660	Project Manager: Matt Graves	A9F0368 - 06 21 19 1005
	APEX LARS COOLER RECEIPT FORM CHent: $Port of Of Of Of Other Project/Project #: A \in I Delivery Info: Date/time received: 6/11/1960 + 603 By: (f + 1) Delivery Info: Date/time received: 6/11/1960 + 603 By: (f + 1) Delivered by: Apex X_Client_ESS_FedEx_UPS_Swift_Senvoy_SDS_Other_Cooler Inspection Date/time inspected: 6/11/1960 + 8100 By: (f = 1) $	~
	Chain of Custody included? Yes X No Custody seals? Yes No Signed/dated by client? Yes X No Signed/dated by Apex? Yes X No	
	Cooler #1Cooler #2Cooler #3Cooler #4Cooler #5Cooler #6CoolerI emperature (°C) $\underline{4}$ $\underline{4}$ $\underline{4}$ $\underline{4}$ $\underline{6}$ $\underline{6}$ $\underline{6}$ Received on ice? (Y/N) \underline{Y} \underline{Y} \underline{N} $\underline{1}$ $\underline{6}$ $\underline{1}$ $\underline{6}$ Temp. blanks? (Y/N) \underline{N} \underline{N} $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ Temp. blanks? (Y/N) \underline{N} \underline{N} $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ Temp. blanks? (Y/N) \underline{N} $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ Condition: $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ Cooler out of temp? (Y/Q) Possible reason why: $\underline{1}$ Cooler out of temp? (Y/Q) Possible reason why: $\underline{1}$ 1	
	o VOA vials have visible headspace? YesNo XNA omments	

Apex Laboratories

Quand to finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Monday, December 23, 2019 Nicky Moody AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201

RE: A9L0182 - POVASI - 60519969

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9L0182, which was received by the laboratory on 12/6/2019 at 8:46:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>DAuvil@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample reciept, unless prior arrangements have been made.

Cooler Receipt Information								
	(See Cooler Receipt Form for details)							
Cooler #1	4.3 degC	Cooler #2	1.3 degC					

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

mell la finit

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: POV ASI	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	Report ID:
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION							
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received			
GL-1	A9L0182-01	Water	12/05/19 13:30	12/06/19 08:46			
GL-2	A9L0182-02	Water	12/05/19 15:15	12/06/19 08:46			
GL-2-DUP	A9L0182-03	Water	12/05/19 15:20	12/06/19 08:46			
GL-3	A9L0182-04	Water	12/05/19 12:20	12/06/19 08:46			
GL-4	A9L0182-05	Water	12/05/19 10:55	12/06/19 08:46			
GL-6	A9L0182-06	Water	12/05/19 09:30	12/06/19 08:46			
Field Blank	A9L0182-07	Water	12/05/19 16:00	12/06/19 08:46			
Trip Blank	A9L0182-08	Water	12/05/19 00:00	12/06/19 08:46			

Apex Laboratories

Quand to finil

Darrell Auvil, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM		Proje		V ASI					
111 SW Columbia St. Ste. 1500		5	Number: 605				<u>Report ID:</u>		
Portland, OR 97201		Project N	fanager: Nic	ky Moody			A9L0182 - 12 23 19 1609		
		ANALYTIC	AL SAMI	PLE RESULTS					
	Die	esel and/or Oil	Hydrocar	bons by NWTP	H-Dx				
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
GL-1 (A9L0182-01)				Matrix: Wate	ər	Batch	1: 9120818		
Diesel	0.475	0.0377	0.0755	mg/L	1	12/12/19 23:00	NWTPH-Dx		
Oil	ND	0.0755	0.151	mg/L	1	12/12/19 23:00	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recove	ry: 79 %	Limits: 50-150 %	1	12/12/19 23:00	NWTPH-Dx		
GL-2 (A9L0182-02)				Matrix: Wate	ər	Batch	ı: 9120818		
Diesel	0.647	0.0377	0.0755	mg/L	1	12/12/19 23:23	NWTPH-Dx	F-11	
Oil	ND	0.0755	0.151	mg/L	1	12/12/19 23:23	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recove	ry: 79 %	Limits: 50-150 %	5 1	12/12/19 23:23	NWTPH-Dx		
GL-2-DUP (A9L0182-03)				Matrix: Wate	ər	Batch	n: 9120818		
Diesel	0.715	0.0392	0.0784	mg/L	1	12/12/19 23:46	NWTPH-Dx	F-11	
Oil	ND	0.0784	0.157	mg/L	1	12/12/19 23:46	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recove	ry: 85 %	Limits: 50-150 %	1	12/12/19 23:46	NWTPH-Dx		
GL-3 (A9L0182-04)				Matrix: Wate	ər	Batch	: 9120818		
Diesel	0.120	0.0396	0.0792	mg/L	1	12/13/19 00:08	NWTPH-Dx	F-11	
Oil	ND	0.0792	0.158	mg/L	1	12/13/19 00:08	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recove	ry: 83 %	Limits: 50-150 %	5 1	12/13/19 00:08	NWTPH-Dx		
GL-4 (A9L0182-05)				Matrix: Wate	ər	Batch	n: 9120818		
Diesel	0.0629	0.0392	0.0784	mg/L	1	12/13/19 00:31	NWTPH-Dx	J	
Oil	ND	0.0784	0.157	mg/L	1	12/13/19 00:31	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recove	ry: 77 %	Limits: 50-150 %	1	12/13/19 00:31	NWTPH-Dx		
GL-6 (A9L0182-06)				Matrix: Wate	ər	Batch	n: 9120716		
Diesel	ND	0.0385	0.0769	mg/L	1	12/11/19 00:39	NWTPH-Dx		
Oil	ND	0.0769	0.154	mg/L	1	12/11/19 00:39	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recove	ry: 88 %	Limits: 50-150 %	5 1	12/11/19 00:39	NWTPH-Dx		

Apex Laboratories

Quand to finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POV</u>	V ASI	
111 SW Columbia St. Ste. 1500	Project Number: 6051	19969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nick	ky Moody	A9L0182 - 12 23 19 1609

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C										
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
GL-1 (A9L0182-01)				Matrix: Water		Batch: 9120635				
Acetone	ND	10.0	20.0	ug/L	1	12/07/19 20:13	EPA 8260C			
Acrylonitrile	ND	1.00	2.00	ug/L	1	12/07/19 20:13	EPA 8260C			
Benzene	ND	0.100	0.200	ug/L	1	12/07/19 20:13	EPA 8260C			
Bromobenzene	ND	0.250	0.500	ug/L	1	12/07/19 20:13	EPA 8260C			
Bromochloromethane	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
Bromodichloromethane	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
Bromoform	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
Bromomethane	ND	5.00	5.00	ug/L	1	12/07/19 20:13	EPA 8260C			
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	12/07/19 20:13	EPA 8260C			
n-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
sec-Butylbenzene	0.610	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C	J		
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
Carbon disulfide	ND	5.00	10.0	ug/L	1	12/07/19 20:13	EPA 8260C			
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
Chlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 20:13	EPA 8260C			
Chloroethane	ND	5.00	5.00	ug/L	1	12/07/19 20:13	EPA 8260C			
Chloroform	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
Chloromethane	ND	2.50	5.00	ug/L	1	12/07/19 20:13	EPA 8260C			
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
Dibromochloromethane	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	12/07/19 20:13	EPA 8260C			
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	12/07/19 20:13	EPA 8260C			
Dibromomethane	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 20:13	EPA 8260C			
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 20:13	EPA 8260C			
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 20:13	EPA 8260C			
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
1.1-Dichloroethane	ND	0.200	0.400	ug/L	1	12/07/19 20:13	EPA 8260C			
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L ug/L	1	12/07/19 20:13	EPA 8260C			
1,1-Dichloroethene	ND	0.200	0.400	ug/L ug/L	1	12/07/19 20:13	EPA 8260C			
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L ug/L	1	12/07/19 20:13	EPA 8260C			
,	ND				1	12/07/19 20:13	EPA 8260C			
trans-1,2-Dichloroethene	ND ND	0.200 0.250	0.400 0.500	ug/L	1	12/07/19 20:13	EPA 8260C			
1,2-Dichloropropane				ug/L	1	12/07/19 20:13	EPA 8260C EPA 8260C			
1,3-Dichloropropane	ND	0.500	1.00	ug/L	-					
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C			

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POV ASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	Report ID:
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609
	ANALVERAL CAMPLE DECLIPE	

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoui	nds by EPA 826	0C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GL-1 (A9L0182-01)				Matrix: Wate	r	Batch:	9120635	
Ethylbenzene	ND	0.250	0.500	ug/L	1	12/07/19 20:13	EPA 8260C	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	12/07/19 20:13	EPA 8260C	
2-Hexanone	ND	5.00	10.0	ug/L	1	12/07/19 20:13	EPA 8260C	
Isopropylbenzene	1.88	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C	
Methylene chloride	ND	2.50	5.00	ug/L	1	12/07/19 20:13	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	12/07/19 20:13	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C	
Naphthalene	ND	2.00	2.00	ug/L	1	12/07/19 20:13	EPA 8260C	
n-Propylbenzene	1.18	0.250	0.500	ug/L	1	12/07/19 20:13	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	12/07/19 20:13	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	12/07/19 20:13	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	12/07/19 20:13	EPA 8260C	
Toluene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/07/19 20:13	EPA 8260C	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/07/19 20:13	EPA 8260C	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	12/07/19 20:13	EPA 8260C	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	12/07/19 20:13	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	12/07/19 20:13	EPA 8260C	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	12/07/19 20:13	EPA 8260C	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C	
Vinyl chloride	ND	0.200	0.400	ug/L	1	12/07/19 20:13	EPA 8260C	
m,p-Xylene	ND	0.500	1.00	ug/L	1	12/07/19 20:13	EPA 8260C	
o-Xylene	ND	0.250	0.500	ug/L	1	12/07/19 20:13	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 112 %	Limits: 80-120 %	1	12/07/19 20:13	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	1	12/07/19 20:13	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	12/07/19 20:13	EPA 8260C	
GL-2 (A9L0182-02)				Matrix: Wate	r	Batch:	9120635	
Acetone	ND	10.0	20.0	ug/L	1	12/07/19 20:40	EPA 8260C	
Acrylonitrile	ND	1.00	2.00	ug/L	1	12/07/19 20:40	EPA 8260C	
Benzene	ND	0.100	0.200	ug/L	1	12/07/19 20:40	EPA 8260C	
Bromobenzene	ND	0.250	0.500	ug/L	1	12/07/19 20:40	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	

Apex Laboratories

Quand to finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POV ASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	Report ID:
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	as by EPA 8	260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GL-2 (A9L0182-02)				Matrix: Wa	ater	Batch:	9120635	
Bromoform	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	12/07/19 20:40	EPA 8260C	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	12/07/19 20:40	EPA 8260C	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
Carbon disulfide	ND	5.00	10.0	ug/L	1	12/07/19 20:40	EPA 8260C	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
Chlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 20:40	EPA 8260C	
Chloroethane	ND	5.00	5.00	ug/L	1	12/07/19 20:40	EPA 8260C	
Chloroform	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
Chloromethane	ND	2.50	5.00	ug/L	1	12/07/19 20:40	EPA 8260C	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	12/07/19 20:40	EPA 8260C	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	12/07/19 20:40	EPA 8260C	
Dibromomethane	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 20:40	EPA 8260C	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 20:40	EPA 8260C	
1.4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 20:40	EPA 8260C	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	12/07/19 20:40	EPA 8260C	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	12/07/19 20:40	EPA 8260C	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 20:40	EPA 8260C	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 20:40	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 20:40	EPA 8260C	
1,2-Dichloropropane	ND	0.250	0.400	ug/L ug/L	1	12/07/19 20:40	EPA 8260C	
1,3-Dichloropropane	ND	0.230	1.00	ug/L ug/L	1	12/07/19 20:40	EPA 8260C	
2,2-Dichloropropane	ND	0.500	1.00	ug/L ug/L	1	12/07/19 20:40	EPA 8260C	
1,1-Dichloropropene	ND	0.500	1.00	•	1	12/07/19 20:40	EPA 8260C	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
				ug/L	-	12/07/19 20:40	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
Ethylbenzene	ND	0.250	0.500	ug/L	1		EPA 8260C	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	12/07/19 20:40		
2-Hexanone	ND	5.00	10.0	ug/L	1	12/07/19 20:40	EPA 8260C	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
Methylene chloride	ND	2.50	5.00	ug/L	1	12/07/19 20:40	EPA 8260C	

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POV ASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	iic Compou	nds by EPA 826	OC			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GL-2 (A9L0182-02)				Matrix: Wate	er	Batch:	9120635	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	12/07/19 20:40	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
Naphthalene	ND	2.00	2.00	ug/L	1	12/07/19 20:40	EPA 8260C	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	12/07/19 20:40	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	12/07/19 20:40	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	12/07/19 20:40	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	12/07/19 20:40	EPA 8260C	
Toluene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/07/19 20:40	EPA 8260C	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/07/19 20:40	EPA 8260C	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	12/07/19 20:40	EPA 8260C	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	12/07/19 20:40	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	12/07/19 20:40	EPA 8260C	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	12/07/19 20:40	EPA 8260C	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
Vinyl chloride	ND	0.200	0.400	ug/L	1	12/07/19 20:40	EPA 8260C	
m,p-Xylene	ND	0.500	1.00	ug/L	1	12/07/19 20:40	EPA 8260C	
o-Xylene	ND	0.250	0.500	ug/L	1	12/07/19 20:40	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 114 %	Limits: 80-120 %	1	12/07/19 20:40	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	1	12/07/19 20:40	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	12/07/19 20:40	EPA 8260C	

GL-2-DUP (A9L0182-03)				Matrix: Wate	er	Batch:	9120635	
Acetone	ND	10.0	20.0	ug/L	1	12/07/19 21:07	EPA 8260C	
Acrylonitrile	ND	1.00	2.00	ug/L	1	12/07/19 21:07	EPA 8260C	
Benzene	ND	0.100	0.200	ug/L	1	12/07/19 21:07	EPA 8260C	
Bromobenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:07	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
Bromoform	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	12/07/19 21:07	EPA 8260C	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	12/07/19 21:07	EPA 8260C	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POV ASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ		us by EFA 0	2000			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GL-2-DUP (A9L0182-03)				Matrix: Wa	ater	Batch:	9120635	
Carbon disulfide	ND	5.00	10.0	ug/L	1	12/07/19 21:07	EPA 8260C	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
Chlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:07	EPA 8260C	
Chloroethane	ND	5.00	5.00	ug/L	1	12/07/19 21:07	EPA 8260C	
Chloroform	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
Chloromethane	ND	2.50	5.00	ug/L	1	12/07/19 21:07	EPA 8260C	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	12/07/19 21:07	EPA 8260C	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	12/07/19 21:07	EPA 8260C	
Dibromomethane	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
1.2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:07	EPA 8260C	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:07	EPA 8260C	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:07	EPA 8260C	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
1.1-Dichloroethane	ND	0.200	0.400	ug/L	1	12/07/19 21:07	EPA 8260C	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	12/07/19 21:07	EPA 8260C	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 21:07	EPA 8260C	
cis-1.2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 21:07	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 21:07	EPA 8260C	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	12/07/19 21:07	EPA 8260C	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
1,1-Dichloropropene	ND	0.500	1.00	ug/L ug/L	1	12/07/19 21:07	EPA 8260C	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L ug/L	1	12/07/19 21:07	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L ug/L	1	12/07/19 21:07	EPA 8260C	
Ethylbenzene	ND	0.300	0.500	ug/L ug/L	1	12/07/19 21:07	EPA 8260C	
5	ND ND				1	12/07/19 21:07	EPA 8260C	
Hexachlorobutadiene	ND	2.50 5.00	5.00 10.0	ug/L	1	12/07/19 21:07	EPA 8260C	
2-Hexanone				ug/L			EPA 8260C EPA 8260C	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 21:07		
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
Methylene chloride	ND	2.50	5.00	ug/L	1	12/07/19 21:07	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	12/07/19 21:07	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
Naphthalene	ND	2.00	2.00	ug/L	1	12/07/19 21:07	EPA 8260C	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:07	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	12/07/19 21:07	EPA 8260C	

Apex Laboratories

mul la finiel

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>AECOM</u> 111 SW Columbia St. Ste. 1500	Project: <u>POV ASI</u> Project Number: 60519969	Report ID:
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609
	ANALYTICAL SAMPLE RESULTS	

				nds by EPA 826		_		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-2-DUP (A9L0182-03)				Matrix: Wate			9120635	
. ,								
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	12/07/19 21:07	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	12/07/19 21:07	EPA 8260C	
Toluene	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/07/19 21:07	EPA 8260C	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/07/19 21:07	EPA 8260C	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	12/07/19 21:07	EPA 8260C	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	12/07/19 21:07	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	12/07/19 21:07	EPA 8260C	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	12/07/19 21:07	EPA 8260C	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
Vinyl chloride	ND	0.200	0.400	ug/L	1	12/07/19 21:07	EPA 8260C	
m,p-Xylene	ND	0.500	1.00	ug/L	1	12/07/19 21:07	EPA 8260C	
o-Xylene	ND	0.250	0.500	ug/L	1	12/07/19 21:07	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 115 %	Limits: 80-120 %	1	12/07/19 21:07	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	12/07/19 21:07	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	12/07/19 21:07	EPA 8260C	
GL-3 (A9L0182-04)				Matrix: Wate	r	Batch:	9120635	
Acetone	ND	10.0	20.0	ug/L	1	12/07/19 21:34	EPA 8260C	
Acrylonitrile	ND	1.00	2.00	ug/L	1	12/07/19 21:34	EPA 8260C	
Benzene	ND	0.100	0.200	ug/L	1	12/07/19 21:34	EPA 8260C	
Bromobenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:34	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
Bromoform	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	12/07/19 21:34	EPA 8260C	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	12/07/19 21:34	EPA 8260C	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
Carbon disulfide	ND	5.00	1.00	ug/L ug/L	1	12/07/19 21:34	EPA 8260C	
Carbon disulfide Carbon tetrachloride	ND ND			-		12/07/19 21:34	EPA 8260C	
		0.500	1.00	ug/L	1		EPA 8260C EPA 8260C	
Chlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:34		
Chloroethane	ND	5.00	5.00	ug/L	1	12/07/19 21:34	EPA 8260C	
Chloroform	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
Chloromethane	ND	2.50	5.00	ug/L	1	12/07/19 21:34	EPA 8260C	

Apex Laboratories

Quand la famil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POV ASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compoun	ds by EPA 8	260C			
	Sample Result	Detection Limit	Reporting Limit	T T '		Date		NT 4
Analyte	Kesuit	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GL-3 (A9L0182-04)				Matrix: Wa	ater	Batch:	9120635	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	12/07/19 21:34	EPA 8260C	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	12/07/19 21:34	EPA 8260C	
Dibromomethane	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:34	EPA 8260C	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:34	EPA 8260C	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:34	EPA 8260C	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	12/07/19 21:34	EPA 8260C	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	12/07/19 21:34	EPA 8260C	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 21:34	EPA 8260C	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 21:34	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 21:34	EPA 8260C	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	12/07/19 21:34	EPA 8260C	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
Ethylbenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:34	EPA 8260C	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	12/07/19 21:34	EPA 8260C	
2-Hexanone	ND	5.00	10.0	ug/L	1	12/07/19 21:34	EPA 8260C	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
Methylene chloride	ND	2.50	5.00	ug/L	1	12/07/19 21:34	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	12/07/19 21:34	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
Naphthalene	ND	2.00	2.00	ug/L	1	12/07/19 21:34	EPA 8260C	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	12/07/19 21:34	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L ug/L	1	12/07/19 21:34	EPA 8260C	
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L ug/L	1	12/07/19 21:34	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.300		1	12/07/19 21:34	EPA 8260C	
Toluene	ND	0.200	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
1,2,3-Trichlorobenzene	ND ND	1.00	2.00	ug/L	1	12/07/19 21:34	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	12/07/19 21:34	EPA 8260C EPA 8260C	
		1.00		ug/L				
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	12/07/19 21:34	EPA 8260C	

Apex Laboratories

Quand to finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POV ASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609
L	ANALVTICAL SAMDLE DESULTS	

	V	olatile Organ	ic Compou	nds by EPA 826	0C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-3 (A9L0182-04)				Matrix: Wate	er	Batch:	9120635	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	12/07/19 21:34	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	12/07/19 21:34	EPA 8260C	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	12/07/19 21:34	EPA 8260C	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
Vinyl chloride	ND	0.200	0.400	ug/L	1	12/07/19 21:34	EPA 8260C	
m,p-Xylene	ND	0.500	1.00	ug/L	1	12/07/19 21:34	EPA 8260C	
o-Xylene	ND	0.250	0.500	ug/L	1	12/07/19 21:34	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 115 %	Limits: 80-120 %	1	12/07/19 21:34	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	1	12/07/19 21:34	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	12/07/19 21:34	EPA 8260C	

GL-4 (A9L0182-05)				Matrix: Wate	er	Batch:	9120654	
Acetone	ND	20.0	20.0	ug/L	1	12/09/19 20:32	EPA 8260C	
Acrylonitrile	ND	1.00	2.00	ug/L	1	12/09/19 20:32	EPA 8260C	
Benzene	ND	0.100	0.200	ug/L	1	12/09/19 20:32	EPA 8260C	
Bromobenzene	ND	0.250	0.500	ug/L	1	12/09/19 20:32	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
Bromoform	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	12/09/19 20:32	EPA 8260C	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	12/09/19 20:32	EPA 8260C	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
Carbon disulfide	ND	5.00	10.0	ug/L	1	12/09/19 20:32	EPA 8260C	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
Chlorobenzene	ND	0.250	0.500	ug/L	1	12/09/19 20:32	EPA 8260C	
Chloroethane	ND	5.00	5.00	ug/L	1	12/09/19 20:32	EPA 8260C	
Chloroform	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
Chloromethane	ND	2.50	5.00	ug/L	1	12/09/19 20:32	EPA 8260C	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	12/09/19 20:32	EPA 8260C	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	12/09/19 20:32	EPA 8260C	
Dibromomethane	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	

Apex Laboratories

Quand to finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POV ASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	Report ID:
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609
	ANALVER AL CAMPLE DECULES	

ANALYTICAL SAMPLE RESULTS

	v		ic Compoun	us by LFA 0	2000			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-4 (A9L0182-05)				Matrix: Wa	ater	Batch:	9120654	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/09/19 20:32	EPA 8260C	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/09/19 20:32	EPA 8260C	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/09/19 20:32	EPA 8260C	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	12/09/19 20:32	EPA 8260C	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	12/09/19 20:32	EPA 8260C	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	12/09/19 20:32	EPA 8260C	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/09/19 20:32	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/09/19 20:32	EPA 8260C	
1,2-Dichloropropane	ND	0.250	0.400	ug/L ug/L	1	12/09/19 20:32	EPA 8260C	
1,3-Dichloropropane	ND	0.230	1.00	ug/L ug/L	1	12/09/19 20:32	EPA 8260C	
2,2-Dichloropropane	ND	0.500	1.00	ug/L ug/L	1	12/09/19 20:32	EPA 8260C	
1,1-Dichloropropene	ND	0.500	1.00	ug/L ug/L	1	12/09/19 20:32	EPA 8260C	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L ug/L	1	12/09/19 20:32	EPA 8260C	
trans-1,3-Dichloropropene	ND ND	0.500	1.00	ug/L ug/L	1	12/09/19 20:32	EPA 8260C	
Ethylbenzene	ND ND	0.300	0.500	ug/L ug/L	1	12/09/19 20:32	EPA 8260C	
Hexachlorobutadiene	ND	2.50	5.00	-	1	12/09/19 20:32	EPA 8260C	
2-Hexanone	ND ND	2.50 10.0	5.00 10.0	ug/L	1	12/09/19 20:32	EPA 8260C	
				ug/L	1	12/09/19 20:32	EPA 8260C	
Isopropylbenzene	ND ND	0.500	1.00	ug/L	-	12/09/19 20:32	EPA 8260C	
4-Isopropyltoluene	ND ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C EPA 8260C	
Methylene chloride	ND	1.50	3.00	ug/L	1	12/09/19 20:32	EPA 8260C EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND ND	5.00	10.0	ug/L	1 1	12/09/19 20:32	EPA 8260C EPA 8260C	
Methyl tert-butyl ether (MTBE)		0.500	1.00	ug/L				
Naphthalene	ND	2.00	2.00	ug/L	1	12/09/19 20:32	EPA 8260C	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	12/09/19 20:32	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	12/09/19 20:32	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	12/09/19 20:32	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	12/09/19 20:32	EPA 8260C	
Toluene	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/09/19 20:32	EPA 8260C	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/09/19 20:32	EPA 8260C	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	12/09/19 20:32	EPA 8260C	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	12/09/19 20:32	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	12/09/19 20:32	EPA 8260C	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	12/09/19 20:32	EPA 8260C	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

EPA 8260C

								<u>.</u>
<u>AECOM</u> 111 SW Columbia St. Ste. 1500 Portland, OR 97201		Project	ject: <u>PO</u> t Number: 605 Manager: Nic				<u>Report ID:</u> A9L0182 - 12 23 19	1609
		ANALYTI	CAL SAMI	PLE RESULTS				
	V	olatile Organ	iic Compou	nds by EPA 826	0C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GL-4 (A9L0182-05)				Matrix: Wate	ər	Batch	i: 9120654	
Vinyl chloride	ND	0.200	0.400	ug/L	1	12/09/19 20:32	EPA 8260C	
m,p-Xylene	ND	0.500	1.00	ug/L	1	12/09/19 20:32	EPA 8260C	
o-Xylene	ND	0.250	0.500	ug/L	1	12/09/19 20:32	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 113 %	Limits: 80-120 %	1	12/09/19 20:32	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	1	12/09/19 20:32	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	12/09/19 20:32	EPA 8260C	
GL-6 (A9L0182-06)				Matrix: Wate	ər	Batch	: 9120654	
Acetone	ND	20.0	20.0	ug/L	1	12/09/19 20:59	EPA 8260C	
Acrylonitrile	ND	1.00	2.00	ug/L	1	12/09/19 20:59	EPA 8260C	
Benzene	ND	0.100	0.200	ug/L	1	12/09/19 20:59	EPA 8260C	
Bromobenzene	ND	0.250	0.500	ug/L	1	12/09/19 20:59	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
Bromoform	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	12/09/19 20:59	EPA 8260C	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	12/09/19 20:59	EPA 8260C	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
Carbon disulfide	ND	5.00	10.0	ug/L	1	12/09/19 20:59	EPA 8260C	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
Chlorobenzene	ND	0.250	0.500	ug/L	1	12/09/19 20:59	EPA 8260C	
Chloroethane	ND	5.00	5.00	ug/L	1	12/09/19 20:59	EPA 8260C	
				-				

1.00

5.00

1.00

1.00

1.00

5.00

0.500

1.00

0.500

0.500

0.500

1.00

0.400

0.400

ug/L

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.500

2.50

0.500

0.500

0.500

2.50

0.250

0.500

0.250

0.250

0.250

0.500

0.200

0.200

ND

Apex Laboratories

Chloroform

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

Dichlorodifluoromethane

1,2-Dichloroethane (EDC)

Dibromochloromethane

1,2-Dibromo-3-chloropropane

1,2-Dibromoethane (EDB)

Quel la finiel

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12/09/19 20:59

12/09/19 20:59

12/09/19 20:59

12/09/19 20:59

12/09/19 20:59

12/09/19 20:59

12/09/19 20:59

12/09/19 20:59

12/09/19 20:59

12/09/19 20:59

12/09/19 20:59

12/09/19 20:59

12/09/19 20:59

12/09/19 20:59

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POV ASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GL-6 (A9L0182-06)				Matrix: Wate	r	Batch:	9120654	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	12/09/19 20:59	EPA 8260C	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/09/19 20:59	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/09/19 20:59	EPA 8260C	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	12/09/19 20:59	EPA 8260C	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
Ethylbenzene	ND	0.250	0.500	ug/L	1	12/09/19 20:59	EPA 8260C	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	12/09/19 20:59	EPA 8260C	
2-Hexanone	ND	10.0	10.0	ug/L	1	12/09/19 20:59	EPA 8260C	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
Methylene chloride	ND	1.50	3.00	ug/L	1	12/09/19 20:59	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	12/09/19 20:59	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
Naphthalene	ND	2.00	2.00	ug/L	1	12/09/19 20:59	EPA 8260C	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	12/09/19 20:59	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	12/09/19 20:59	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	12/09/19 20:59	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	12/09/19 20:59	EPA 8260C	
Toluene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/09/19 20:59	EPA 8260C	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/09/19 20:59	EPA 8260C	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	12/09/19 20:59	EPA 8260C	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	12/09/19 20:59	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	12/09/19 20:59	EPA 8260C	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	12/09/19 20:59	EPA 8260C	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
Vinyl chloride	ND	0.200	0.400	ug/L	1	12/09/19 20:59	EPA 8260C	
m,p-Xylene	ND	0.500	1.00	ug/L	1	12/09/19 20:59	EPA 8260C	
o-Xylene	ND	0.250	0.500	ug/L	1	12/09/19 20:59	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)			ery: 113 %	Limits: 80-120 %		12/09/19 20:59	EPA 8260C	
Toluene-d8 (Surr)		Recov	100 %	80-120 %		12/09/19 20:59	EPA 8260C EPA 8260C	

Apex Laboratories

much la finiel

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>AECOM</u> 111 SW Columbia St. Ste. 1500 Portland, OR 97201		Project	ject: <u>PO</u> t Number: 605 Manager: Nic				<u>Report ID:</u> A9L0182 - 12 23 19 1	1609
		ANALYTI	CAL SAMP	LE RESULTS	5			
	V	olatile Organ	ic Compour	nds by EPA 820	60C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-6 (A9L0182-06)				Matrix: Wat	er	Batch:	9120654	
Surrogate: 4-Bromofluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-120 %	6 1	12/09/19 20:59	EPA 8260C	
Field Blank (A9L0182-07)				Matrix: Wat	er	Batch:	9120635	
Acetone	ND	10.0	20.0	ug/L	1	12/07/19 11:44	EPA 8260C	
Acrylonitrile	ND	1.00	2.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Benzene	ND	0.100	0.200	ug/L	1	12/07/19 11:44	EPA 8260C	
Bromobenzene	ND	0.250	0.500	ug/L	1	12/07/19 11:44	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Bromoform	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	12/07/19 11:44	EPA 8260C	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	12/07/19 11:44	EPA 8260C	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Carbon disulfide	ND	5.00	10.0	ug/L	1	12/07/19 11:44	EPA 8260C	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Chlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 11:44	EPA 8260C	
Chloroethane	ND	5.00	5.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Chloroform	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Chloromethane	ND	2.50	5.00	ug/L	1	12/07/19 11:44	EPA 8260C	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	12/07/19 11:44	EPA 8260C	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	12/07/19 11:44	EPA 8260C	
Dibromomethane	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 11:44	EPA 8260C	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 11:44	EPA 8260C	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 11:44	EPA 8260C	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	12/07/19 11:44	EPA 8260C	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	12/07/19 11:44	EPA 8260C	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 11:44	EPA 8260C	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 11:44	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 11:44	EPA 8260C	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	12/07/19 11:44	EPA 8260C	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	

Apex Laboratories

1) la famil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POV ASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 8260	С			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units I	Dilution	Analyzed	Method Ref.	Notes
Field Blank (A9L0182-07)				Matrix: Water		Batch:	9120635	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Ethylbenzene	ND	0.250	0.500	ug/L	1	12/07/19 11:44	EPA 8260C	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	12/07/19 11:44	EPA 8260C	
2-Hexanone	ND	5.00	10.0	ug/L	1	12/07/19 11:44	EPA 8260C	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Methylene chloride	ND	2.50	5.00	ug/L	1	12/07/19 11:44	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	12/07/19 11:44	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Naphthalene	ND	2.00	2.00	ug/L	1	12/07/19 11:44	EPA 8260C	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	12/07/19 11:44	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	12/07/19 11:44	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	12/07/19 11:44	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	12/07/19 11:44	EPA 8260C	
Toluene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/07/19 11:44	EPA 8260C	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/07/19 11:44	EPA 8260C	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	12/07/19 11:44	EPA 8260C	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	12/07/19 11:44	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	12/07/19 11:44	EPA 8260C	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	12/07/19 11:44	EPA 8260C	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
Vinyl chloride	ND	0.200	0.400	ug/L	1	12/07/19 11:44	EPA 8260C	
m,p-Xylene	ND	0.500	1.00	ug/L	1	12/07/19 11:44	EPA 8260C	
o-Xylene	ND	0.250	0.500	ug/L	1	12/07/19 11:44	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 113 %	Limits: 80-120 %	1	12/07/19 11:44	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	12/07/19 11:44	EPA 8260C	
4-Bromofluorobenzene (Surr)			<i>99 %</i>	80-120 %	1	12/07/19 11:44	EPA 8260C	
				Matrix: Water		Batch	9120635	

20.0

2.00

0.200

ug/L

ug/L

ug/L

Apex Laboratories

Acetone

Benzene

Acrylonitrile

and to finil

ND

ND

ND

10.0

1.00

0.100

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1

1

1

12/07/19 12:11

12/07/19 12:11

12/07/19 12:11

EPA 8260C

EPA 8260C

EPA 8260C

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POV ASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	as by EPA 8	2600			
	Sample	Detection	Reporting	** *		Date		N .
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Trip Blank (A9L0182-08)				Matrix: W	ater	Batch:	9120635	
Bromobenzene	ND	0.250	0.500	ug/L	1	12/07/19 12:11	EPA 8260C	
Bromochloromethane	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
Bromoform	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
Bromomethane	ND	5.00	5.00	ug/L	1	12/07/19 12:11	EPA 8260C	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	12/07/19 12:11	EPA 8260C	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
Carbon disulfide	ND	5.00	10.0	ug/L	1	12/07/19 12:11	EPA 8260C	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
Chlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 12:11	EPA 8260C	
Chloroethane	ND	5.00	5.00	ug/L	1	12/07/19 12:11	EPA 8260C	
Chloroform	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
Chloromethane	ND	2.50	5.00	ug/L	1	12/07/19 12:11	EPA 8260C	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	12/07/19 12:11	EPA 8260C	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	12/07/19 12:11	EPA 8260C	
Dibromomethane	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 12:11	EPA 8260C	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 12:11	EPA 8260C	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	12/07/19 12:11	EPA 8260C	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	12/07/19 12:11	EPA 8260C	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	12/07/19 12:11	EPA 8260C	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 12:11	EPA 8260C	
cis-1.2-Dichloroethene	ND	0.200	0.400	ug/L	1	12/07/19 12:11	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L ug/L	1	12/07/19 12:11	EPA 8260C	
1,2-Dichloropropane	ND	0.250	0.400	ug/L ug/L	1	12/07/19 12:11	EPA 8260C	
1,3-Dichloropropane	ND	0.230	1.00	-	1	12/07/19 12:11	EPA 8260C	
2,2-Dichloropropane	ND	0.500	1.00	ug/L ug/L	1	12/07/19 12:11	EPA 8260C	
	ND	0.500	1.00		1	12/07/19 12:11	EPA 8260C	
1,1-Dichloropropene			1.00	ug/L	1	12/07/19 12:11	EPA 8260C EPA 8260C	
cis-1,3-Dichloropropene	ND	0.500		ug/L	-	12/07/19 12:11	EPA 8260C	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1			
Ethylbenzene	ND	0.250	0.500	ug/L	1	12/07/19 12:11	EPA 8260C	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	12/07/19 12:11	EPA 8260C	
2-Hexanone	ND	5.00	10.0	ug/L	1	12/07/19 12:11	EPA 8260C	

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POV ASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	Report ID:
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609
	ANALVER AL CAMPLE DECULES	

ANALYTICAL SAMPLE RESULTS

L				nds by EPA 826				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Trip Blank (A9L0182-08)				Matrix: Wate	۶r	Batch:	9120635	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	_
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
Methylene chloride	ND	2.50	5.00	ug/L	1	12/07/19 12:11	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	12/07/19 12:11	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
Naphthalene	ND	2.00	2.00	ug/L	1	12/07/19 12:11	EPA 8260C	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	12/07/19 12:11	EPA 8260C	
Styrene	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	12/07/19 12:11	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	12/07/19 12:11	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	12/07/19 12:11	EPA 8260C	
Toluene	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/07/19 12:11	EPA 8260C	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	12/07/19 12:11	EPA 8260C	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	12/07/19 12:11	EPA 8260C	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	12/07/19 12:11	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	12/07/19 12:11	EPA 8260C	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	12/07/19 12:11	EPA 8260C	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
1.3.5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
Vinyl chloride	ND	0.200	0.400	ug/L	1	12/07/19 12:11	EPA 8260C	
m,p-Xylene	ND	0.500	1.00	ug/L	1	12/07/19 12:11	EPA 8260C	
o-Xylene	ND	0.250	0.500	ug/L	1	12/07/19 12:11	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 113 %	Limits: 80-120 %	5 I	12/07/19 12:11	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %	5 1	12/07/19 12:11	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %		12/07/19 12:11	EPA 8260C	

Apex Laboratories

mul la finiel

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Notes

<u>AECOM</u> 111 SW Columbia St. Ste. 1500 Portland, OR 97201			Pro	0	POV AS ber: 6051990 ger: Nicky M	59			А	_	<u>Report ID:</u> - 12 23 19	-
		_	JALITY CO		(-)							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 9120716 - EPA 3510C (Fu	uels/Acid	Ext.)					Wate	er				

Blank (9120716-BLK1)		Prepared: 12	2/10/19 12:0	06 Analyzed	1: 12/10/	19 20:12						
NWTPH-Dx												
Diesel	ND	0.0364	0.0727	mg/L	1							
Oil	ND	0.0727	0.145	mg/L	1							
Surr: o-Terphenyl (Surr)		Recover	ry: 90 %	Limits: 50-1	50 %	Dilut	tion: 1x					
LCS (9120716-BS1)		Prepared: 12	2/10/19 12:0	06 Analyzed	1: 12/10/	19 20:33						
NWTPH-Dx												
Diesel	0.361	0.0400	0.0800	mg/L	1	0.500		72	58 - 115%			
Surr: o-Terphenyl (Surr)		Recovery	v: 106 %	Limits: 50-1	50 %	Dilut	tion: 1x					
LCS Dup (9120716-BSD1)		Prepared: 12	2/10/19 12:0	06 Analyzed	l: 12/10/	19 20:53						Q-19
NWTPH-Dx												
Diesel	0.336	0.0400	0.0800	mg/L	1	0.500		67	58 - 115%	7	20%	
Surr: o-Terphenyl (Surr)		Recovery	v: 102 %	Limits: 50-1	50 %	Dilut	tion: 1x					

Batch 9120818 - EPA 3510C (Fuels/Acid E	xt.)					Wat	er				
Blank (9120818-BLK1)		Prepared: 1	2/12/19 10:	10 Analyzeo	d: 12/12/	19 21:52						
<u>NWTPH-Dx</u>												
Diesel	ND	0.0364	0.0727	mg/L	1							
Oil	ND	0.0727	0.145	mg/L	1							
Surr: o-Terphenyl (Surr)		Recove	ery: 91%	Limits: 50-1	150 %	Dilu	tion: 1x					
LCS (9120818-BS1)		Prepared: 1	2/12/19 10:	10 Analyzeo	d: 12/12/	19 22:15						
<u>NWTPH-Dx</u>												
Diesel	0.359	0.0400	0.0800	mg/L	1	0.500		72	58 - 115%			
Surr: o-Terphenyl (Surr)		Recove	ery: 93 %	Limits: 50-1	150 %	Dilu	tion: 1x					
LCS Dup (9120818-BSD1)		Prepared: 1	2/12/19 10:	10 Analyzeo	d: 12/12/	19 22:37						Q-19
NWTPH-Dx												
Diesel	0.364	0.0400	0.0800	mg/L	1	0.500		73	58 - 115%	1	20%	
Surr: o-Terphenyl (Surr)		Recove	ery: 91 %	Limits: 50-1	150 %	Dilu	tion: 1x					

Apex Laboratories

Quel la finiel

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: POVASI	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	Report ID:
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

QUALITY CONTROL (QC) SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260C											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9120635 - EPA 5030B							Wate	ər				
Blank (9120635-BLK1)		Prepared	12/07/19 08:3	0 Analyz	ed: 12/07/19	9 10:51						
EPA 8260C												
Acetone	ND	10.0	20.0	ug/L	1							
Acrylonitrile	ND	1.00	2.00	ug/L	1							
Benzene	ND	0.100	0.200	ug/L	1							
Bromobenzene	ND	0.250	0.500	ug/L	1							
Bromochloromethane	ND	0.500	1.00	ug/L	1							
Bromodichloromethane	ND	0.500	1.00	ug/L	1							
Bromoform	ND	0.500	1.00	ug/L	1							
Bromomethane	ND	5.00	5.00	ug/L	1							
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1							
n-Butylbenzene	ND	0.500	1.00	ug/L	1							
sec-Butylbenzene	ND	0.500	1.00	ug/L	1							
ert-Butylbenzene	ND	0.500	1.00	ug/L	1							
Carbon disulfide	ND	5.00	10.0	ug/L	1							
Carbon tetrachloride	ND	0.500	1.00	ug/L	1							
Chlorobenzene	ND	0.250	0.500	ug/L	1							
Chloroethane	ND	5.00	5.00	ug/L	1							
Chloroform	ND	0.500	1.00	ug/L	1							
Chloromethane	ND	2.50	5.00	ug/L	1							
2-Chlorotoluene	ND	0.500	1.00	ug/L	1							
4-Chlorotoluene	ND	0.500	1.00	ug/L	1							
Dibromochloromethane	ND	0.500	1.00	ug/L	1							
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1							
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1							
Dibromomethane	ND	0.500	1.00	ug/L	1							
.2-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
.4-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1							
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1							
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1							
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1							
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L ug/L	1					-		

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: POV ASI	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	Report ID:
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9120635 - EPA 5030B							Wate	er				
Blank (9120635-BLK1)		Prepared:	12/07/19 08:3	30 Analyz	ed: 12/07/19	9 10:51						
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
vis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
sopropylbenzene	ND	0.500	1.00	ug/L	1							
-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Aethylene chloride	ND	2.50	5.00	ug/L	1							
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	2.00	2.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Fetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
.1.2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Frichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1							
,2,3-Trichloropropane	ND	0.500	1.00	ug/L ug/L	1							
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L ug/L	1							
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L ug/L	1							
/inyl chloride	ND	0.200	0.400	ug/L ug/L	1							
n,p-Xylene	ND	0.200	1.00	ug/L ug/L	1							
-Xylene	ND	0.250	0.500	ug/L ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)	нD		very: 111 %	Limits: 80			tion: 1x					

Apex Laboratories

much la famil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>AECOM</u> 111 SW Columbia St. Ste. 1500 Portland, OR 97201			Pro	0	POV AS er: 6051996 er: Nicky M	9			А		Report II - 12 23	
		QU	ALITY CO	ONTROI	L (QC) SA	MPLE R	RESULTS					
			Volatile Org	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9120635 - EPA 5030B							Wat	er				
Blank (9120635-BLK1)		Prepared:	12/07/19 08:	30 Analyz	zed: 12/07/19	9 10:51						
Surr: Toluene-d8 (Surr)		-	very: 101 %	Limits: 80			ution: 1x					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					
LCS (9120635-BS1)		Prepared:	12/07/19 08::	30 Analvz	zed: 12/07/19	9 09:57						
EPA 8260C												
Acetone	33.9	10.0	20.0	ug/L	1	40.0		85	80 - 120%			
Acrylonitrile	21.0	1.00	2.00	ug/L	1	20.0		105	80 - 120%			
Benzene	20.9	0.100	0.200	ug/L	1	20.0		104	80 - 120%			
Bromobenzene	20.2	0.250	0.500	ug/L	1	20.0		101	80 - 120%			
Bromochloromethane	24.6	0.500	1.00	ug/L	1	20.0		123	80 - 120%			Q-56
Bromodichloromethane	22.1	0.500	1.00	ug/L	1	20.0		110	80 - 120%			
Bromoform	25.3	0.500	1.00	ug/L	1	20.0		126	80 - 120%			Q-56
Bromomethane	24.0	5.00	5.00	ug/L	1	20.0		120	80 - 120%			
2-Butanone (MEK)	36.6	5.00	10.0	ug/L	1	40.0		91	80 - 120%			
n-Butylbenzene	19.4	0.500	1.00	ug/L	1	20.0		97	80 - 120%			
ec-Butylbenzene	18.7	0.500	1.00	ug/L	1	20.0		94	80 - 120%			
ert-Butylbenzene	17.2	0.500	1.00	ug/L	1	20.0		86	80 - 120%			
Carbon disulfide	20.1	5.00	10.0	ug/L	1	20.0		100	80 - 120%			
Carbon tetrachloride	23.1	0.500	1.00	ug/L	1	20.0		115	80 - 120%			
Chlorobenzene	20.3	0.250	0.500	ug/L	1	20.0		101	80 - 120%			
Chloroethane	17.5	5.00	5.00	ug/L	1	20.0		87	80 - 120%			
Chloroform	21.4	0.500	1.00	ug/L	1	20.0		107	80 - 120%			
Chloromethane	18.3	2.50	5.00	ug/L	1	20.0		92	80 - 120%			
2-Chlorotoluene	19.1	0.500	1.00	ug/L	1	20.0		96	80 - 120%			
-Chlorotoluene	18.6	0.500	1.00	ug/L	1	20.0		93	80 - 120%			
Dibromochloromethane	25.6	0.500	1.00	ug/L	1	20.0		128	80 - 120%			Q-56

1

1

1

1

1

1

1

1

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

Apex Laboratories

1,2-Dibromo-3-chloropropane

1,2-Dibromoethane (EDB)

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

Dichlorodifluoromethane

Quand to buil

2.50

0.250

0.500

0.250

0.250

0.250

0.500

0.200

5.00

0.500

1.00

0.500

0.500

0.500

1.00

0.400

18.5

20.0

22.5

19.7

19.8

19.8

20.9

20.1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

92

100

112

99

99

99

105

100

80 - 120%

80 - 120%

80 - 120%

80 - 120%

80 - 120%

80 - 120%

80 - 120%

80 - 120%

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POVASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9120635 - EPA 5030B							Wate	ər				
LCS (9120635-BS1)		Prepared	: 12/07/19 08:3	30 Analyz	ed: 12/07/19	9 09:57						
,2-Dichloroethane (EDC)	19.2	0.200	0.400	ug/L	1	20.0		96 8	0 - 120%			
,1-Dichloroethene	19.7	0.200	0.400	ug/L	1	20.0		98 8	0 - 120%			
vis-1,2-Dichloroethene	19.6	0.200	0.400	ug/L	1	20.0		98 8	0 - 120%			
rans-1,2-Dichloroethene	20.5	0.200	0.400	ug/L	1	20.0		102 8	0 - 120%			
,2-Dichloropropane	20.3	0.250	0.500	ug/L	1	20.0		102 8	0 - 120%			
,3-Dichloropropane	19.5	0.500	1.00	ug/L	1	20.0		98 8	0 - 120%			
2,2-Dichloropropane	19.3	0.500	1.00	ug/L	1	20.0		96 8	0 - 120%			
,1-Dichloropropene	19.8	0.500	1.00	ug/L	1	20.0		99 8	0 - 120%			
vis-1,3-Dichloropropene	18.7	0.500	1.00	ug/L	1	20.0		94 8	0 - 120%			
rans-1,3-Dichloropropene	18.5	0.500	1.00	ug/L	1	20.0		92 8	0 - 120%			
Ethylbenzene	18.9	0.250	0.500	ug/L	1	20.0		95 8	0 - 120%			
Hexachlorobutadiene	17.5	2.50	5.00	ug/L	1	20.0		87 8	0 - 120%			
2-Hexanone	32.8	5.00	10.0	ug/L	1	40.0		82 8	0 - 120%			
sopropylbenzene	18.4	0.500	1.00	ug/L	1	20.0		92 8	0 - 120%			
l-Isopropyltoluene	19.2	0.500	1.00	ug/L	1	20.0		96 8	0 - 120%			
Methylene chloride	22.0	2.50	5.00	ug/L	1	20.0		110 8	0 - 120%			
-Methyl-2-pentanone (MiBK)	34.3	5.00	10.0	ug/L	1	40.0		86 8	0 - 120%			
Methyl tert-butyl ether (MTBE)	17.5	0.500	1.00	ug/L	1	20.0		87 8	0 - 120%			
Naphthalene	15.6	2.00	2.00	ug/L	1	20.0		78 8	0 - 120%			Q-55
n-Propylbenzene	19.0	0.250	0.500	ug/L	1	20.0		95 8	0 - 120%			
Styrene	19.1	0.500	1.00	ug/L	1	20.0		96 8	0 - 120%			
,1,1,2-Tetrachloroethane	22.5	0.200	0.400	ug/L	1	20.0		112 8	0 - 120%			
,1,2,2-Tetrachloroethane	20.9	0.250	0.500	ug/L	1	20.0		104 8	0 - 120%			
Fetrachloroethene (PCE)	20.7	0.200	0.400	ug/L	1	20.0		103 8	0 - 120%			
Foluene	19.2	0.500	1.00	ug/L	1	20.0		96 8	0 - 120%			
,2,3-Trichlorobenzene	18.3	1.00	2.00	ug/L	1	20.0		91 8	0 - 120%			
,2,4-Trichlorobenzene	17.0	1.00	2.00	ug/L	1	20.0		85 8	0 - 120%			
,1,1-Trichloroethane	19.8	0.200	0.400	ug/L	1	20.0		99 8	0 - 120%			
,1,2-Trichloroethane	21.2	0.250	0.500	ug/L	1	20.0			0 - 120%			
Frichloroethene (TCE)	22.4	0.200	0.400	ug/L	1	20.0			0 - 120%			
Frichlorofluoromethane	21.4	1.00	2.00	ug/L	1	20.0			0 - 120%			
,2,3-Trichloropropane	20.3	0.500	1.00	ug/L	1	20.0			0 - 120%			
,2,4-Trimethylbenzene	19.4	0.500	1.00	ug/L ug/L	1	20.0			0 - 120%			
,3,5-Trimethylbenzene	19.4	0.500	1.00	ug/L	1	20.0			0 - 120%			

Apex Laboratories

much la famil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: POV ASI	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

QUALITY CONTROL (QC) SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 9120635 - EPA 5030B							Wat	er					
LCS (9120635-BS1)		Prepared:	12/07/19 08:	30 Analyz	ed: 12/07/1	9 09:57							
Vinyl chloride	20.3	0.200	0.400	ug/L	1	20.0		102	80 - 120%				
m,p-Xylene	37.8	0.500	1.00	ug/L	1	40.0		95	80 - 120%				
o-Xylene	17.6	0.250	0.500	ug/L	1	20.0		88	80 - 120%				
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 108 %	Limits: 80	0-120 %	Dilı	ution: 1x						
Toluene-d8 (Surr)			99 %	80)-120 %		"						
4-Bromofluorobenzene (Surr)			96 %	80)-120 %		"						

Apex Laboratories

Quand to finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: POVASI	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	Report ID:
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orga	anic Co	mpounds	by EPA 8	260C		Volatile Organic Compounds by EPA 8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes									
Batch 9120654 - EPA 5030B							Wate	ər													
Blank (9120654-BLK1)		Prepared:	12/09/19 11:00) Analyz	ed: 12/09/19	0 12:56															
EPA 8260C																					
Acetone	ND	20.0	20.0	ug/L	1																
Acrylonitrile	ND	1.00	2.00	ug/L	1																
Benzene	ND	0.100	0.200	ug/L	1																
Bromobenzene	ND	0.250	0.500	ug/L	1																
Bromochloromethane	ND	0.500	1.00	ug/L	1																
Bromodichloromethane	ND	0.500	1.00	ug/L	1																
Bromoform	ND	0.500	1.00	ug/L	1																
Bromomethane	ND	5.00	5.00	ug/L	1																
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1																
n-Butylbenzene	ND	0.500	1.00	ug/L	1																
sec-Butylbenzene	ND	0.500	1.00	ug/L	1																
ert-Butylbenzene	ND	0.500	1.00	ug/L	1																
Carbon disulfide	ND	5.00	10.0	ug/L	1																
Carbon tetrachloride	ND	0.500	1.00	ug/L	1																
Chlorobenzene	ND	0.250	0.500	ug/L	1																
Chloroethane	ND	5.00	5.00	ug/L	1																
Chloroform	ND	0.500	1.00	ug/L	1																
Chloromethane	ND	2.50	5.00	ug/L	1																
2-Chlorotoluene	ND	0.500	1.00	ug/L	1																
4-Chlorotoluene	ND	0.500	1.00	ug/L	1																
Dibromochloromethane	ND	0.500	1.00	ug/L	1																
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1																
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1																
Dibromomethane	ND	0.500	1.00	ug/L	1																
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1																
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1																
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1																
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1																
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1																
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1																
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1																
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1																
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L ug/L	1																

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: POV ASI	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	Report ID:
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	,		,						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9120654 - EPA 5030B							Wate	er				
Blank (9120654-BLK1)		Prepared:	: 12/09/19 11:0	00 Analyz	ed: 12/09/19	9 12:56						
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
vis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	10.0	10.0	ug/L	1							
sopropylbenzene	ND	0.500	1.00	ug/L	1							
-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	1.50	3.00	ug/L	1							
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	2.00	2.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Fetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Foluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Frichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Frichlorofluoromethane	ND	1.00	2.00	ug/L	1							
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
/inyl chloride	ND	0.200	0.400	ug/L	1							
n,p-Xylene	ND	0.500	1.00	ug/L	1							
-Xylene	ND	0.250	0.500	ug/L ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)	112		very: 112 %	Limits: 80		= -	ution: 1x					

Apex Laboratories

mul la finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>AECOM</u> 111 SW Columbia St. Ste. 1500 Portland, OR 97201			Pro	-	POV AS er: 6051996 er: Nicky M	59			А	_	Report II - 12 23	
r			ALITY CO		/							
			Volatile Or	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9120654 - EPA 5030B							Wat	er				
Blank (9120654-BLK1)		Prepared	: 12/09/19 11:	00 Analyz	zed: 12/09/1	9 12:56						
Surr: Toluene-d8 (Surr)		Recon	very: 101 %	Limits: 80	0-120 %	Dil	ution: 1x					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					
LCS (9120654-BS1)		Prepared	: 12/09/19 11:	00 Analyz	zed: 12/09/1	9 12:03						
EPA 8260C												
Acetone	31.4	20.0	20.0	ug/L	1	40.0		78	80 - 120%			Q-55
crylonitrile	20.2	1.00	2.00	ug/L	1	20.0		101	80 - 120%			
Benzene	20.3	0.100	0.200	ug/L	1	20.0		101	80 - 120%			
Bromobenzene	20.0	0.250	0.500	ug/L	1	20.0		100	80 - 120%			
Bromochloromethane	24.5	0.500	1.00	ug/L	1	20.0		122	80 - 120%			Q-56
Bromodichloromethane	21.8	0.500	1.00	ug/L	1	20.0		109	80 - 120%			
Bromoform	25.6	0.500	1.00	ug/L	1	20.0		128	80 - 120%			Q-56
Bromomethane	21.2	5.00	5.00	ug/L	1	20.0		106	80 - 120%			
2-Butanone (MEK)	34.9	5.00	10.0	ug/L	1	40.0		87	80 - 120%			
-Butylbenzene	18.0	0.500	1.00	ug/L	1	20.0		90	80 - 120%			
ec-Butylbenzene	17.8	0.500	1.00	ug/L	1	20.0		89	80 - 120%			
ert-Butylbenzene	16.3	0.500	1.00	ug/L	1	20.0		82	80 - 120%			
Carbon disulfide	19.4	5.00	10.0	ug/L	1	20.0		97	80 - 120%			
Carbon tetrachloride	22.5	0.500	1.00	ug/L	1	20.0		113	80 - 120%			
Chlorobenzene	19.6	0.250	0.500	ug/L	1	20.0		98	80 - 120%			
Chloroethane	16.6	5.00	5.00	ug/L	1	20.0		83	80 - 120%			
Chloroform	20.6	0.500	1.00	ug/L	1	20.0		103	80 - 120%			
Chloromethane	16.9	2.50	5.00	ug/L	1	20.0		84	80 - 120%			
-Chlorotoluene	18.4	0.500	1.00	ug/L	1	20.0		92	80 - 120%			
-Chlorotoluene	17.8	0.500	1.00	ug/L	1	20.0		89	80 - 120%			
Dibromochloromethane	25.9	0.500	1.00	ug/L	1	20.0		130	80 - 120%			Q-56
,2-Dibromo-3-chloropropane	19.3	2.50	5.00	ug/L	1	20.0		97	80 - 120%			
,2-Dibromoethane (EDB)	19.9	0.250	0.500	ug/L	1	20.0		99	80 - 120%			
Dibromomethane	22.6	0.500	1.00	ug/L	1	20.0		113	80 - 120%			
,2-Dichlorobenzene	19.2	0.250	0.500	ug/L	1	20.0		96	80 - 120%			
120.11 1	10 (0.250	0.500	/1	1	20.0		00	00 1200/			

Apex Laboratories

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

Dichlorodifluoromethane

and to fimil

19.6

19.3

19.7

19.0

0.250

0.250

0.500

0.200

0.500

0.500

1.00

0.400

ug/L

ug/L

ug/L

ug/L

1

1

1

1

20.0

20.0

20.0

20.0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

98

97

98

95

80 - 120%

80 - 120%

80 - 120%

80 - 120%

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: <u>POVASI</u>	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	janic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9120654 - EPA 5030B							Wate	er				
LCS (9120654-BS1)		Prepared	: 12/09/19 11:0	0 Analyz	ed: 12/09/19	9 12:03						
,2-Dichloroethane (EDC)	18.0	0.200	0.400	ug/L	1	20.0		90 8	0 - 120%			
1,1-Dichloroethene	18.5	0.200	0.400	ug/L	1	20.0		92 8	0 - 120%			
cis-1,2-Dichloroethene	18.6	0.200	0.400	ug/L	1	20.0		93 8	0 - 120%			
rans-1,2-Dichloroethene	19.1	0.200	0.400	ug/L	1	20.0		96 8	0 - 120%			
1,2-Dichloropropane	20.2	0.250	0.500	ug/L	1	20.0		101 8	0 - 120%			
1,3-Dichloropropane	18.9	0.500	1.00	ug/L	1	20.0		95 8	0 - 120%			
2,2-Dichloropropane	17.9	0.500	1.00	ug/L	1	20.0		90 8	0 - 120%			
1,1-Dichloropropene	18.9	0.500	1.00	ug/L	1	20.0		95 8	0 - 120%			
cis-1,3-Dichloropropene	18.4	0.500	1.00	ug/L	1	20.0		92 8	0 - 120%			
rans-1,3-Dichloropropene	18.1	0.500	1.00	ug/L	1	20.0		90 8	0 - 120%			
Ethylbenzene	18.1	0.250	0.500	ug/L	1	20.0		91 8	0 - 120%			
Hexachlorobutadiene	16.8	2.50	5.00	ug/L	1	20.0		84 8	0 - 120%			
2-Hexanone	31.0	10.0	10.0	ug/L	1	40.0		77 8	0 - 120%			Q-55
sopropylbenzene	18.0	0.500	1.00	ug/L	1	20.0		90 8	0 - 120%			
4-Isopropyltoluene	18.1	0.500	1.00	ug/L	1	20.0		91 8	0 - 120%			
Methylene chloride	21.0	1.50	3.00	ug/L	1	20.0		105 8	0 - 120%			
4-Methyl-2-pentanone (MiBK)	32.2	5.00	10.0	ug/L	1	40.0		81 8	0 - 120%			
Methyl tert-butyl ether (MTBE)	17.5	0.500	1.00	ug/L	1	20.0		87 8	0 - 120%			
Naphthalene	15.9	2.00	2.00	ug/L	1	20.0		79 8	0 - 120%			Q-55
n-Propylbenzene	18.0	0.250	0.500	ug/L	1	20.0		90 8	0 - 120%			
Styrene	18.5	0.500	1.00	ug/L	1	20.0		92 8	0 - 120%			
1,1,1,2-Tetrachloroethane	21.9	0.200	0.400	ug/L	1	20.0			0 - 120%			
1,1,2,2-Tetrachloroethane	20.0	0.250	0.500	ug/L	1	20.0			0 - 120%			
Fetrachloroethene (PCE)	19.8	0.200	0.400	ug/L	1	20.0			0 - 120%			
Foluene	18.3	0.500	1.00	ug/L	1	20.0			0 - 120%			
1.2.3-Trichlorobenzene	18.0	1.00	2.00	ug/L	1	20.0			0 - 120%			
1,2,4-Trichlorobenzene	16.9	1.00	2.00	ug/L	1	20.0			0 - 120%			
1,1,1-Trichloroethane	19.0	0.200	0.400	ug/L	1	20.0			0 - 120%			
1,1,2-Trichloroethane	20.5	0.250	0.500	ug/L	1	20.0			0 - 120%			
Trichloroethene (TCE)	20.5	0.200	0.400	ug/L ug/L	1	20.0			0 - 120%			
Frichlorofluoromethane	20.7	1.00	2.00	ug/L	1	20.0			0 - 120%			
1,2,3-Trichloropropane	19.8	0.500	1.00	ug/L ug/L	1	20.0			0 - 120%			
1,2,4-Trimethylbenzene	19.8	0.500	1.00	ug/L ug/L	1	20.0			0 - 120%			
1,3,5-Trimethylbenzene	18.3	0.500	1.00	ug/L	1	20.0			0 - 120%			

Apex Laboratories

much la famil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project: POV ASI	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

QUALITY CONTROL (QC) SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260C											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9120654 - EPA 5030B							Wat	er				
LCS (9120654-BS1)		Prepared:	12/09/19 11:	00 Analyz	ed: 12/09/19	9 12:03						
Vinyl chloride	19.3	0.200	0.400	ug/L	1	20.0		96 8	30 - 120%			
m,p-Xylene	35.8	0.500	1.00	ug/L	1	40.0		89 8	30 - 120%			
o-Xylene	17.5	0.250	0.500	ug/L	1	20.0		87 8	30 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 111 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80)-120 %		"					

Apex Laboratories

Quand to finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>AECOM</u> 111 SW Columbia St. Ste. 1500 Portland, OR 97201	Project:POV ASIProject Number:60519969Project Manager:Nicky Moody	<u>Report ID:</u> A9L0182 - 12 23 19 1609
	SAMPLE PREPARATION INFORMATION	

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx						
Prep: EPA 3510C (Fuels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9120716							
A9L0182-06	Water	NWTPH-Dx	12/05/19 09:30	12/10/19 15:26	1040mL/2mL	1000mL/2mL	0.96
Batch: 9120818							
A9L0182-01	Water	NWTPH-Dx	12/05/19 13:30	12/12/19 10:10	1060mL/2mL	1000mL/2mL	0.94
A9L0182-02	Water	NWTPH-Dx	12/05/19 15:15	12/12/19 10:10	1060mL/2mL	1000mL/2mL	0.94
A9L0182-03	Water	NWTPH-Dx	12/05/19 15:20	12/12/19 10:10	1020mL/2mL	1000mL/2mL	0.98
A9L0182-04	Water	NWTPH-Dx	12/05/19 12:20	12/12/19 10:10	1010mL/2mL	1000mL/2mL	0.99
A9L0182-05	Water	NWTPH-Dx	12/05/19 10:55	12/12/19 10:10	1020mL/2mL	1000mL/2mL	0.98

Volatile Organic Compounds by EPA 8260C							
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9120635							
A9L0182-01	Water	EPA 8260C	12/05/19 13:30	12/07/19 11:00	5mL/5mL	5mL/5mL	1.00
A9L0182-02	Water	EPA 8260C	12/05/19 15:15	12/07/19 11:00	5mL/5mL	5mL/5mL	1.00
A9L0182-03	Water	EPA 8260C	12/05/19 15:20	12/07/19 11:00	5mL/5mL	5mL/5mL	1.00
A9L0182-04	Water	EPA 8260C	12/05/19 12:20	12/07/19 11:00	5mL/5mL	5mL/5mL	1.00
A9L0182-07	Water	EPA 8260C	12/05/19 16:00	12/07/19 11:00	5mL/5mL	5mL/5mL	1.00
A9L0182-08	Water	EPA 8260C	12/05/19 00:00	12/07/19 11:00	5mL/5mL	5mL/5mL	1.00
Batch: 9120654							
A9L0182-05	Water	EPA 8260C	12/05/19 10:55	12/09/19 12:34	5mL/5mL	5mL/5mL	1.00
A9L0182-06	Water	EPA 8260C	12/05/19 09:30	12/09/19 12:34	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Quand to finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AECOM	Project: POV ASI	
111 SW Columbia St. Ste. 1500	Project Number: 60519969	<u>Report ID:</u>
Portland, OR 97201	Project Manager: Nicky Moody	A9L0182 - 12 23 19 1609

QUALIFIER DEFINITIONS

<u>Client Sample and Quality Control (QC) Sample Qualifier Definitions:</u>

Apex Laboratories

- F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
 J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
 Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260C, however there is adequate sensitivity to ensure detection at the reporting level.
- Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260C

Apex Laboratories

mul la finiel

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AECOM	Project:	POV ASI
111 SW Columbia St. Ste. 1500	Project Number:	60519969
Portland, OR 97201	Project Manager:	Nicky Moody

Report ID: A9L0182 - 12 23 19 1609

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.
ND	Analyte NOT DETECTED at or above the detection or reporting limit.
NR	Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- " wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- " " Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- " ___ " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- " *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

Apex Laboratories

mul la finit

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AECOM

111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV ASI

Project Number: 60519969 Project Manager: Nicky Moody

<u>Report ID:</u> A9L0182 - 12 23 19 1609

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

June la finil

AECOM

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

SW Columbia	1 St. Ste. 1500	Project Number:	Project Number: 60519969				
rtland, OR 972	201	Project Manager:	Project Manager: Nicky Moody				
		LABORATORY ACCRED	ITATION INFORMATI	ON			
	TNI Certific	cation ID: OR100062 (Primar	v Accreditation) - EP	A ID: OR01039			
			<u>y Accreditation</u> - <u>Er</u>	AID. 0K01037			
	2 1	om work performed at Apex Labor	1	x Laboratories' ORELAP			
Scope of Ce	ertification, with the exce	ption of any analyte(s) listed below	W:				
Apex Labo	oratories						
Matrix	Analysis	TNI_ID	Analyte	TNI_ID Accreditation			
	<u>All r</u>	reported analytes are included in Apex	Laboratories' current ORELAI	<u>scope.</u>			

POV ASI

Project:

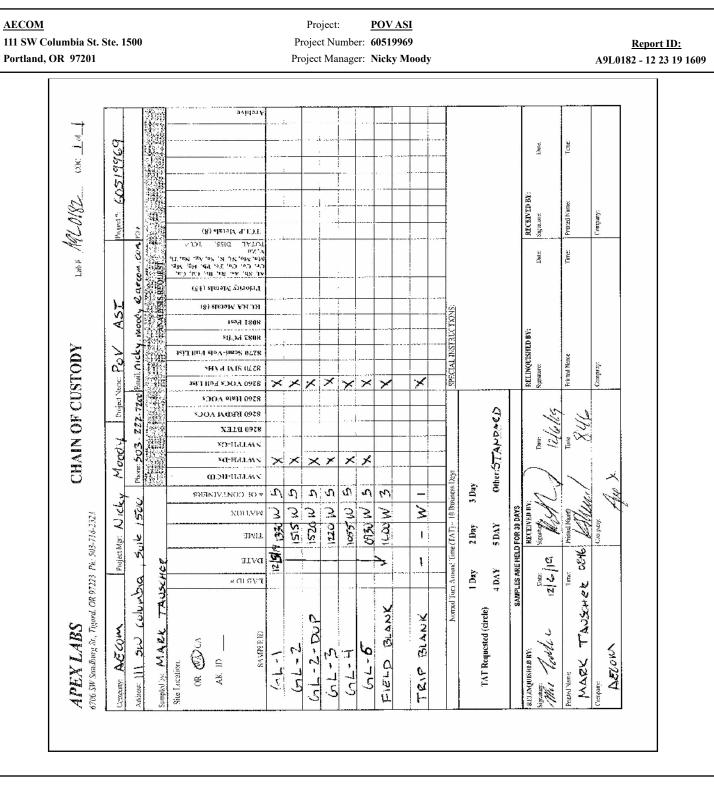
Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters


Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Quand to finil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Apex Laboratories

mel la fimil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>AECOM</u> 111 SW Columbia St. Ste. 1500 Portland, OR 97201	Project:POV ASIProject Number:60519969Project Manager:Nicky Moody	<u>Report ID:</u> A9L0182 - 12 23 19 1609
III SW Columbia St. Ste. 1500 Portland, OR 97201 AP Client: <u>ALCDW</u> Project/Project #:POU Delivery Info: Date/time received:POU Date/time inspection ClientPOU Cooler Inspection Date/time inspection: Chain of Custody included? Yes Signed/dated by Apex? Yes Cooler #I Temperature (°C) Marks? (Y/N) Ice type: (Gel/Real/Other)	Project Number: 60519969 Project Manager: Nicky Moody EX LABS COOLER RECEIPT FORM Element WO#: A9 <u>L</u> O KG T <u>L</u> <u>LaC5144664</u> SS_FedEx UPS Swift Servoy SDS Pected: <u>L2C646</u> <u>By</u> : <u>M3</u> No	A9L0182 - 12 23 19 1609
Do VOA vials have visible headspace? Comments	te for analysis? Yes <u>No</u> Comments: Yes <u>No No</u> NA NApH appropriate? Yes <u>No</u> NA	
Additional information: 713# 21	Cooler Inspected by: See Project Contact	Form: Y

Apex Laboratories

Quand to finil

Appendix C Data Quality Review Report

Data Quality Review Report

Laboratory & Report No.	Apex Laboratories, Incorporated #A9F0368 and #A9L0182
Report Date	January 21, 2020
Sampling Event	June and December 2019
Site Location	Port of Vancouver, ASI
AECOM Project No.	60519969, Task 11
Project Name	2019 Groundwater Monitoring

This document summarizes the data quality review of the five primary groundwater samples, one field duplicate groundwater sample, and one trip blank collected on June 10 and June 11, 2019 and reported in laboratory group A9F0368 as well as, five primary groundwater samples, one field duplicate groundwater sample, one field blank, and one trip blank collected on December 5, 2019, and reported in laboratory group A9L0182, at the former Automotive Services, Incorporated (ASI) site located at the Port of Vancouver in Vancouver, Washington. Samples were submitted to Apex Laboratories (Apex) of Tigard, Oregon and analyzed for the following:

- Volatile organic compounds (VOCs) by US Environmental Protection Agency (EPA) Method 8260C
- Diesel-range and oil-range hydrocarbons by NWTPH-Dx

Analytical data results are presented in Apex reports A9F0368 and A9L0182. The data was reviewed based on *National Functional Guidelines for Superfund Organic Methods Data Review*, January 2017, and/or laboratory quality control criteria. Items reviewed included: chain-of-custody (COC) records and holding times, along with results for surrogate recoveries, laboratory control sample and laboratory control sample duplicates (LCS/LCSD), matrix spike sample and matrix spike sample duplicates (MS/MSD), laboratory duplicates, field duplicates, method blanks, and field/trip blanks, where applicable. Qualifiers assigned as a result of this review are included in Table 1. The following criteria were evaluated during the review:

• <u>COC Records</u> – Acceptable except as noted below:

Samples DUP, GL-3, and GL-6 reported in laboratory group A9F0368 did not have sample times listed on the COC. The laboratory logged the samples using the time recorded on the sample containers.

- <u>Temperature</u> Acceptable
- <u>Preservation</u> Acceptable
- <u>Holding Times</u> Acceptable
- <u>Field/Trip Blanks</u> Acceptable
- <u>Method Blanks</u> Acceptable
- <u>Surrogates</u> Acceptable

• Laboratory Control Samples (LCS) – Acceptable except as noted below:

<u>VOCs by EPA Method 8260C</u> – The percent recoveries for one or more analytes in the laboratory control samples listed below were outside the control limits of 80-120%:

Batch	Analyte	Percent Recovery
9060861	Chloroethane	68%
	Dichlorodifluoromethane	76%
	Naphthalene	77%
9120635	Bromochloromethane	123%
	Bromoform	126%
	Dibromochloromethane	128%
	Naphthalene	78%
9120654	Acetone	78%
	Bromochloromethane	122%
	Bromoform	128%
	Dibromochloromethane	130%
	2-Hexanone	77%
	Naphthalene	79%

The results for chloroethane and dichlorodifluoromethane in all the samples reported in laboratory group A9F0368 were qualified as estimated and flagged 'UJ' based on the LCS recoveries associated with batch 9060861. Bromochloromethane, bromoform, and dibromochloromethane were not detected in the samples associated with batches 9120635 and 9120635; therefore, data were not qualified for these analytes based on the elevated LCS recoveries. The results for acetone and 2-hexanone in GL-4 and GL-6 reported in laboratory group A9L0182 were qualified as estimated and flagged 'UJ' based on the LCS recoveries associated with batch 9120654. The results for naphthalene in all the samples reported in laboratory groups A9F0368 and A9L0182 were qualified as estimated and flagged 'UJ' based on the LCS recoveries associated with batch 9120654.

• <u>Matrix Spike Samples (MS)</u> – Acceptable

<u>VOCs by EPA Method 8260C</u> – A matrix spike was performed using GL-6 reported in laboratory group A9F0368. Results were acceptable.

<u>Diesel and Oil-range Hydrocarbons by NWTPH-Dx</u> – Matrix spikes were not performed using project samples. Accuracy was assessed using the LCS and/or LCSD results.

Laboratory Duplicates

Laboratory duplicates were not performed using project samples. Precision was assessed using LCS/LCSD and field duplicate results, where applicable.

• <u>Field Duplicate</u> – Acceptable

Two field duplicates were submitted for these groundwater monitoring events. The field duplicates were submitted for GL-2 in both laboratory groups A9F0368 and A9L0182 and identified as DUP and GL-2-DUP, respectively. Relative percent differences (RPDs) were calculated on sample results that were greater than five times the associated reporting limits and compared to the

AECOM 111 SW Columbia Suite 1500 Portland, OR 97201 www.aecom.com

laboratory duplicate criteria of 30%. Results were comparable.

- <u>Reporting Limits</u> Acceptable
- Laboratory Notes and Qualifiers

The results for sec-butylbenzene in GL-1 and diesel-range hydrocarbons in GL-4 reported in laboratory group A9L0182 were flagged 'J' by the laboratory to indicate that the sample concentrations were less than the laboratory reporting limits but above the method detection limits. As there are greater levels of uncertainty with these concentrations, these results are considered estimated.

The laboratory noted that the diesel-range hydrocarbons patterns in GL-2 and DUP reported in laboratory group A9F0368 and GL-2, GL-2-DUP, and GL-3 reported in laboratory group A9L0182 indicated possible weathered diesel, mineral oil, or a contribution from a related component. No data qualifiers were assigned based on these qualitative observations by the laboratory.

The laboratory noted that the diesel-range hydrocarbons result in GL-1 reported in laboratory group A9F0368 is estimated due to overlap from gasoline-range organics or other VOCs. No data qualifiers were assigned based on these qualitative observations by the laboratory.

<u>VOCs by EPA Method 8260C</u> – The laboratory noted that the percent differences (%Ds) for chloroethane (-12% low), dibromochloromethane (-3% low), and naphthalene (-4% low) were outside the method limits of ±20% in the continuing calibration verification (CCV) analyzed on June 12, 2019. The results for these analytes for the samples reported in laboratory group A9F0368 were qualified based on the associated LCS recoveries and no further qualifications based on these CCV %Ds were required.

Overall Assessment of Data

The completeness of the analytical report for this groundwater monitoring event is 100%. The usefulness of the data is based on the EPA guidance documents referenced in the introduction of this report. Upon consideration of the information presented above, the data are considered usable. The data qualifiers assigned by the laboratory are shown on the laboratory reports.

Data Qualifier Definitions

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria.
- DNR Do Not Report. Another result is available that is more reliable.

AECOM 111 SW Columbia Suite 1500 Portland, OR 97201 www.aecom.com 503 222 7200 tel 503 222 4292 fax

References

EPA, 2017 EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. EPA-540-R-2016-002. January.

Table 1. Sample Qualification Summary

Field Complet D	Laboratory	Amelyie	Qualifian	Detionals
Field Sample ID	Sample ID	Analyte	Qualifier	Rationale
DUP	A9F0368-01	Chloroethane	UJ	Low LCS Recovery
GL-1	A9F0368-02	Dichlorodifluoromethane		
GL-2	A9F0368-03			
GL-3	A9F0368-04			
GL-4	A9F0368-05			
GL-6	A9F0368-06			
Trip	A9F0368-07			
DUP	A9F0368-01	Naphthalene	UJ	Low LCS Recovery
GL-1	A9F0368-02			
GL-2	A9F0368-03			
GL-3	A9F0368-04			
GL-4	A9F0368-05			
GL-6	A9F0368-06]		
Trip	A9F0368-07			
GL-1	A9F0459-01			
GL-2	A9F0459-02			
GL-2 DUP	A9F0459-03]		
GL-3	A9F0459-04			
GL-4	A9F0459-05			
GL-6	A9F0459-06			
Field Blank	A9F0459-07			
Trip Blank	A9F0459-08]		
GL-4	A9F0459-05	Acetone	UJ	Low LCS Recovery
GL-6	A9F0459-06	2-Hexanone		

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With approximately 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$6 billion.

More information on AECOM and its services can be found at www.aecom.com.

111 SW Columbia, Suite 1500 Portland, OR 97201-5850 (503) 222-7200