February 3, 2020

Nick Acklam, Toxics Cleanup Program Department of Ecology P.O Box 47600 Olympia, WA 98504-7600

Subject: 2019 Annual Status Report Bud Clary Subaru 961 Commerce Way, Longview, Washington VCP # Pending

Dear Mr. Acklam

This report presents the 2019 quarterly groundwater monitoring at the Bud Clary Subaru dealership in Longview, Washington (the Site). In addition, the report summarizes site background, field activities, analytical reports, and results of quarterly monitoring.

Site Background

Below is a summary of the environmental actions completed at the Site. A complete background of the Site is discussed in the Blue Sage Environmental (BSE) *Site Investigation Interim Cleanup Action Report*, dated January 8, 2019.

The Site is located in a commercial and retail area of Longview, with other auto dealerships, businesses, and the offices of the Cowlitz County Public Utilities Division located nearby (*Figure 1*). In early 2018, a building was demolished to make way for the construction of a new showroom and service building for the Bud Clary Auto Group dealership. The 2018 redevelopment initiated a cycle of site investigations, remedial excavations, and other cleanup actions on the property, which are summarized below.

In April 2018, Cowlitz Clean Sweep, Inc. (CCS), completed several test pits across the north end of the Site, which discovered soils with petroleum odors and an oily sludge. In July 2018, CCS and Environmental Partners, Inc. (EPI) completed additional test pits and exploratory borings to characterize the discovered contaminants on the property (*Figure 2*).

In August 2018, Blue Sage Environmental (BSE) directed a remedial excavation to a depth of 11 feet in the area of contamination identified by EPI. Confirmation

soil samples collected from the bottom of the remedial excavation contained concentrations of lube oil above MTCA Method A Cleanup Levels (CULs) for unrestricted land use.

In August 2018, BSE coordinated with BB&A of Wilsonville, Oregon to inject 4,350 gallons of Boss 200, an activated carbon and biological culture mixture with nutrients to affect an in-situ biological remediation.

Scope of Work

As discussed in the January 8, 2019 *Site Investigation Interim Cleanup Action Report* (Blue Sage, 2019), the progress of bioremediation is being monitored with quarterly groundwater sampling. To accomplish this, five groundwater monitoring wells were installed in April 2019. A discussion of the well installations and groundwater sampling completed in 2019 are discussed below.

Soil Borings/Monitoring Wells

BSE directed the drilling of five soil borings in April 2019 at the locations shown on *Figure 3*. Each boring was completed as a groundwater monitoring well. Monitoring wells were installed by BB&A Environmental of Wilsonville, Oregon, a Washington State licensed driller. Each monitoring well was constructed out of 2" diameter, schedule 40 PVC slotted screen and pipe. The screened interval of each well straddled the water table and from four feet below ground surface (bgs) to 14 feet bgs. Boring logs for the five monitoring wells are attached in *Appendix A*. Soil samples were collected from each boring at various depths.

Well Development

Individual monitoring wells were developed a minimum of 48 hours after completion. Each monitoring well was developed by continuous pumping until the pump discharge was free of visible turbidity. The main purpose of developing new monitoring wells is to re-establish the natural hydraulic flow conditions of the formations which may have been disturbed during well construction.

Monitoring Well Survey

BSE coordinated with Gibbs & Olson Civil Engineers and Land Surveyors (Gibbs & Olson) to obtain NAVD88 elevation information for the newly installed monitoring wells. The elevations of each well are listed in Table 2.

Groundwater Sampling Procedures

Prior to sampling the monitoring wells, depth to water referenced to the top of the well casing, were measured and recorded. The static water level was measured in each monitoring well using a Slope Indicator Company, model 51453 water level indicator. The water level probe was lowered into the well until the instrument detected water. The cable on the indicator is laser-marked in 0.01-foot graduations with labels at 0.1-foot and 1.0-foot intervals.

Groundwater was sampled in each well using a peristaltic pump in accordance with the following protocol:

- The height of the water column within the well was calculated by subtracting the depth to water from the total depth of the well.
- Ground water samples were collected from the well casing following EPA low stress and purging procedures.
- Purge water was collected for proper disposal (based on analytical results).
- The contract laboratory prepared the sample containers to conform to EPA-recommended preservation techniques for the analytes of concern.
- Groundwater samples were collected with a peristaltic pump. Sample containers were open only as long as necessary to collect the samples.
- Dedicated tubing was used at each sampling location.
- Prior to sampling each monitoring well each well was purged at a nominal discharge rate of 500 ml/minute in order to affect limited draw-down. Purging continued until a minimum of three volumes were removed from each casing. Pumping continued at the low constant-rate throughout sampling at each monitoring well (USEPA, November 1992).

Quality Assurance/Quality Control (QA/QC) included generally accepted procedures for sample collection, storage, tracking, documentation, and analysis. Sampling equipment is decontaminated with an anionic, biodegradable detergent wash and water rinse before the collection of samples. Samples were collected into laboratory supplied containers. Each container was labeled with a sample number, date of sampling, project identifier, and analytical method. Sample bottles were placed inside zip-lock[™] bags, and stored inside a cooler/shipping container packed with ice. Samples were delivered to an Ecology-certified

analytical laboratory under chain-of-custody (COC) within 24-hours of being collected.

Purge Logs

Well purge and development forms are provided in Appendix B.

Laboratory Analysis

The analytical protocols followed for soil and groundwater samples collected at the Site include the required testing for petroleum releases for gasoline range organics (GRO), diesel range organics (DRO), and Waste Oil as described in Table 830-1, MTCA Cleanup Regulations, Chapter 173-340 WAC.

Analytical methods used for soil samples included:

- Gasoline by Northwest Method NWTPH-Gx;
- Diesel & Oils by Northwest Method NWTPH-Dx/Dx Extended;
- BTEX (benzene, toluene, ethylbenzene and total xylenes) by EPA Method 8260.

Analytical methods used for groundwater samples included:

- Gasoline by Northwest Method NWTPH-Gx;
- Diesel & Oils by Northwest Method NWTPH-Dx/Dx Extended;
- Volatile Organic Compounds by EPA Method 8260;
- Polynuclear Aromatic Hydrocarbons (PAH's) by EPA Method 8270
- Polychlorinated Biphenyls (PCB's) by EPA Method 8082
- Lead by EPA Method 6020

Soil Sample Analytical Results

A review of the analytical results for soil samples collected from borings B6/MW-1, B9/MW-4, and B10/MW-5 did not identify any analytes at concentrations above the laboratory reporting limits (non-detect). However, analytical results for soil samples collected from borings B7/MW-2 and B8/MW-3 identified concentrations of gasoline (Gx), benzene (B), diesel (Dx), and lube oil above CULs.

Boring	Depth (ft)	Gasoline (mg/kg)	Diesel (mg/kg)	Lube Oil (mg/kg)	Benzene (mg/kg)
B7	13	5,700	14,000	370,000	0.09
B7	15	11	210	30,000	0.08
B8	11	5,900	4,200	210,000	<0.02

Analytical results for soil samples are summarized in *Table 1*.

Groundwater Sample Analytical Results

Laboratory analytical results from the groundwater monitoring events were compared to applicable MTCA Method A CULs for groundwater.

In 2019 groundwater samples were collected and analyzed from each of the five monitoring wells in June, September, and December. Site contaminants of concern were not detected in any of the five wells collected at each sampling event. The analytical results are summarized in *Table 2*.

Data Quality Review

A QA/QC review of the analytical results was completed by the ESN Northwest laboratory. Samples were accepted at the laboratory within 48 hours of collection under chain of custody protocol. The quality control criteria were acceptable for the samples; therefore, the analytical results are usable to meet the project objectives. Copies of 2019 laboratory analytical reports are provided in *Appendix C*

Groundwater Contours

Using the measured depths to groundwater from each sampling event, and the survey information from the Gibbs & Olson survey water table elevations were calculated as shown in Table 2. Groundwater contours were inferred and are presented on *Figures WC-1, WC-2*, and *WC-3*.

The groundwater flow direction varies with seasonally. Specifically, the flow direction is observed to be to the north/northwest and west in June and September, and to the east in December. The water table across the Site is very flat. The greatest difference (0.09 feet) was between the highest and lowest

elevations in June 2019. The smallest difference (0.02 feet) was recorded for September 2019.

Summary of Findings

Elevated concentrations of Gx, Dx, and benzene in soil were detected in borings B-7 and B-8 below 10 feet bgs. There is a layer of Gx and Dx contamination across this area that extends down to 15 feet bgs. Contaminants of concern (COC) in soil continue to be DRO and GRO.

Groundwater samples obtained from monitoring wells located on the property have reported no concentrations of petroleum compounds, e.g., gasoline, diesel, oil, and BTEX above their MTCA Method A cleanup levels in 2019. No PAHs or PCBs were detected above laboratory detection limits in groundwater. COCs in groundwater continue to be DRO, GRO, and BTEX.

Recommendations

Quarterly groundwater monitoring will continue in 2020. Remediation strategies will be developed to address the layer of heavy oil contamination in soil that remains between 10 feet to approximately 15 feet bgs. This may involve adding additional nutrients to stimulate biological degradation of residual contamination in soil, oxidation methodologies, or additional excavation.

Limitations

This report has been prepared for the exclusive use of Bud Clary Subaru, Kelly and Bryce Clary, and their designated representatives for specific application to the Bud Clary Subaru Longview dealership. Reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Blue Sage Environmental/Hayman Environmental, shall be at the user's sole risk. Within the limitations of scope, schedule, and budget, this report was completed in a manner consistent with that level of care and skill exercised by members of the profession currently practicing in the same locality under similar conditions as this project. No warranty is either express or implied.

Sincerely,

Blue Sage Environmental, Inc./Hayman Environmental, LLC

Alexander H. Koch Project Manager

Blenn A. Haym

Glenn A. Hayman, LHg No. 1904 Senior Hydrogeologist

cc: Kelly Clary Bryce Clary

ATTACHMENTS

Figures

Figure 1 – Site Location Maps
Figure 2 – BSE Test Pits & Soil Borings
Figure 3 – Monitoring Well Locations
Figure WC-1 – Groundwater Elevation Contour Map, June 27, 2019
Figure WC-2 – Groundwater Elevation Contour Map, September 6, 2019
Figure WC-3 – Groundwater Elevation Contour Map, December 2, 2019

Tables

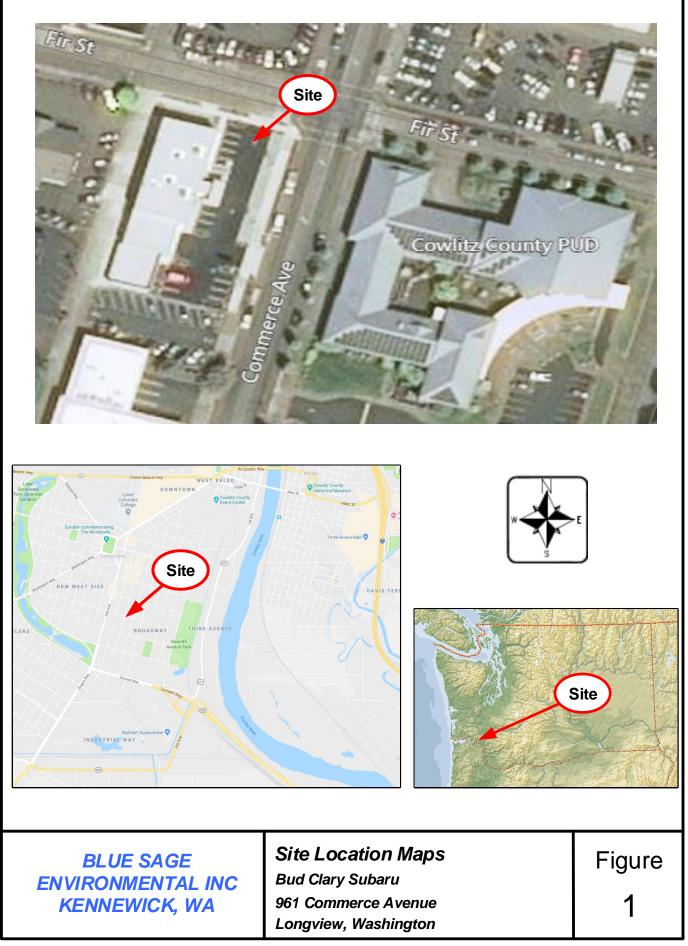
Table 1 – Soil Analytical Results

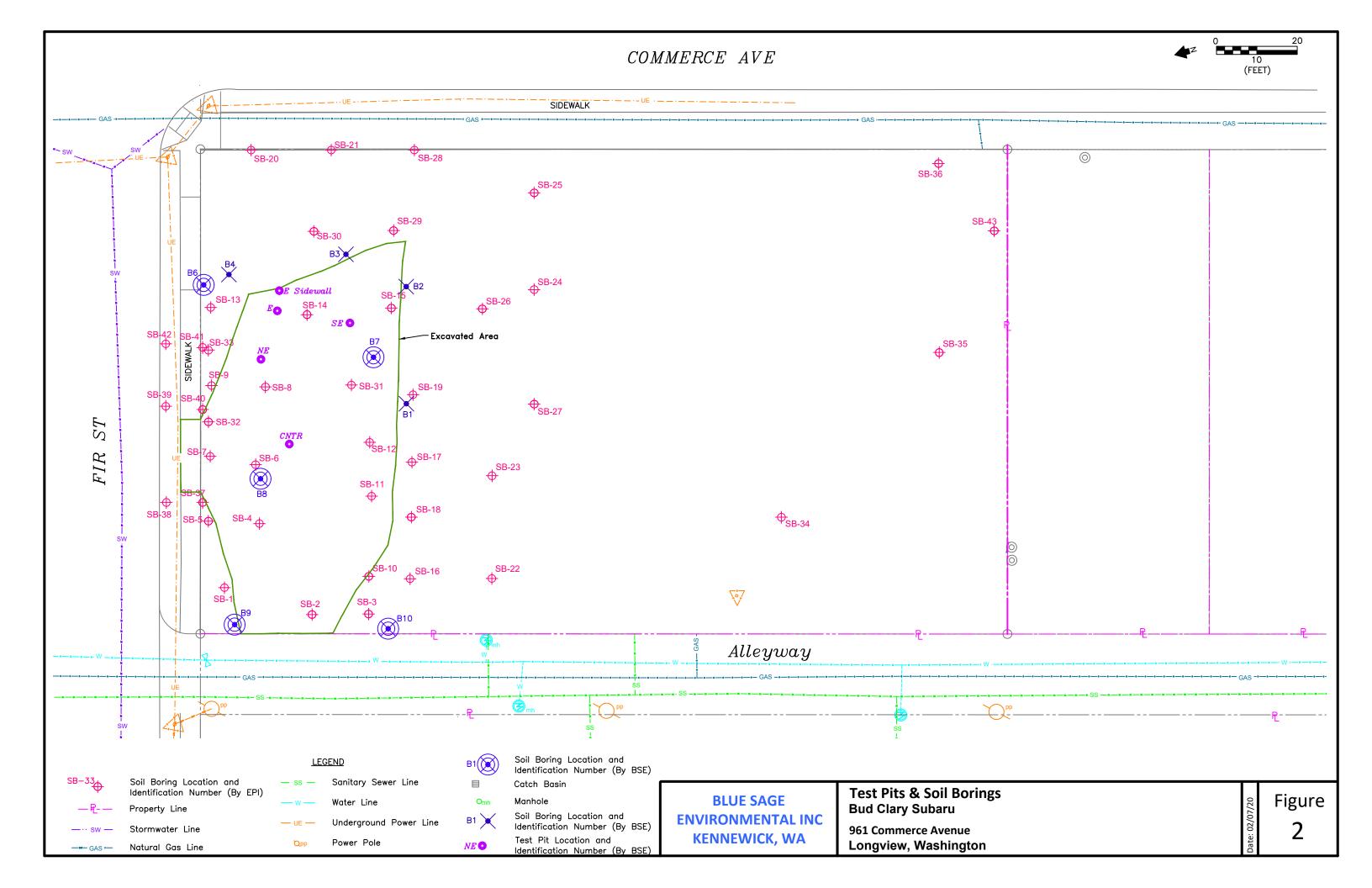
Table 1 – Groundwater Analytical Results

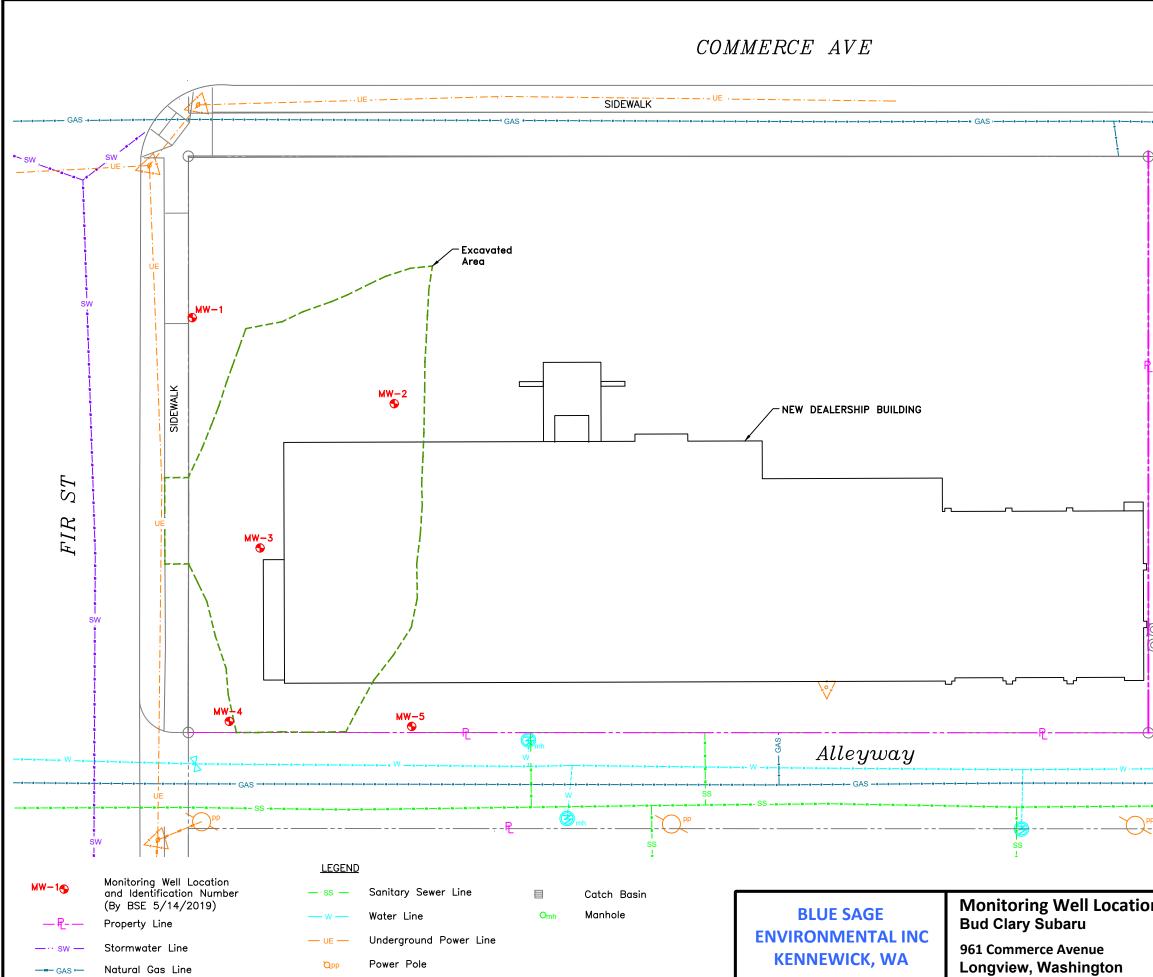
Appendices

Appendix A – Boring Logs Appendix B – Well Purge and Development Forms Appendix C – Laboratory Reports

References


Washington Department of Ecology, *Guidance for Remediation of Petroleum Contaminated Soils*, Publication No. 10-09-057, September 2011.


Washington Department of Ecology, Toxics Cleanup Program, *Model Toxics Control Act Cleanup Regulation, Chapter 173-340 WAC*, Publication No. 94-06, Revised 2013, Olympia, Washington.


Blue Sage Environmental, Inc., January 8, 2019, *Site Investigation/Interim Cleanup Action Report*, Kennewick, Washington, Consultants Report to Client.

FIGURES

Bud Clary Subaru 961 Commerce Avenue Longview, WA

		↓ Z	0 11 (FE	20 0 ET)
9	0		-•—•- GAS —•—•	
)	0			
-				
0				
)		-Æ		<u>P</u>
p			GAS -	
p				<u></u> የ
ns			Date: 02/07/20	Figure 3

TABLES

Bud Clary Subaru 961 Commerce Avenue Longview, WA

TABLE 1 BSE Soil Sample Detected Analyte Concentrations - Borings/Monitoring Wells

Bud Clary Subaru

961 Commerce Avenue, Longview, WA

Sample Date	Sample Number	Monitirng Well	Sample Depth	Diesel	Lube Oil	Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes
			(ft)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
04/29/19	B6-15	MW-1	15	<50	<100	<10	<0.02	<0.05	<0.05	<0.15
04/29/19	B7-13	MW-2	13	14000	370,000	5,700	0.09	0.48	1.4	5.8
04/29/19	B7-15	10100-2	15	210	30,000	11	0.08	0.05	<0.05	<0.15
04/29/19	B8-11	MW-3	11	4200	210,000	5,900	<0.02	<0.05	<0.05	<0.15
04/29/19	B8-15	10100-5	15	<50	<100	<10	<0.02	<0.05	<0.05	<0.15
04/29/19	B9-11	MW-4	11	<50	<100	<10	<0.02	<0.05	<0.05	<0.15
04/29/19	B10-15	MW-5	15	<50	<100	<10	<0.02	<0.05	<0.05	<0.15
MTCA Metho	MTCA Method A Cleanup Level for Unrestricted Land Use				2000	30/100*	0.03	7	6	9

Notes:

- Contaminant not analyzed

5.9 Bold number(s) indicate contaminant detected

31 Shaded numbers indicate a concentration above MTCA Method A Cleanup Level for Unrestricted Land Use

* 30 mg/kg if benzene is not present, 100 mg/kg if benzene is present

TABLE 2 **BSE Groundwater Analytical Results** Bud Clary Subaru 961 Commerce Avenue, Longview, WA

Sample Date	Monitoring Well	Diesel (μg/L)	Lube Oil (µg/L)	Gasoline (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (µg/L)	Total Lead (µg/L)	MTBE (µg/L)	EDB (µg/L)	EDC (µg/L)	c-PAH (µg/L)	PCB (µg/L)	Elevation TOC (MSL)	Depth to Water (ft)	Water Table Elevation (MSL)
06/27/19		<250	<250	<100	<1	<1	<1	<3	<1	<1	<1	<1	<0.1	-	16.95	8.94	8.01
09/10/19	MW-1	<250	<250	<100	<1	<1	<1	<3	-	<1	<1	<1	<0.1	<0.1	16.95	9.65	7.30
12/02/19		<250	<250	<100	<1	<1	<1	<3	-	<1	<1	<1	<0.1	<0.1	16.95	9.36	7.59
06/27/19		<250	<250	<100	<1	<1	<1	<3	<1	<1	<1	<1	<0.1	-	17.20	9.15	8.05
09/10/19	MW-2	<250	<250	<100	<1	<1	<1	<3	-	<1	<1	<1	<0.1	<0.1	17.20	9.90	7.30
12/02/19		<250	<250	<100	<1	<1	<1	<3	-	<1	<1	<1	<0.1	<0.1	17.20	9.60	7.60
06/27/19		<250	<250	<100	<1	<1	<1	<3	<1	<1	<1	<1	<0.1	-	17.32	9.28	8.04
09/10/19	MW-3	<250	<250	<100	<1	<1	<1	<3	-	<1	<1	<1	<0.1	<0.1	17.32	10.02	7.30
12/02/19		<250	<250	<100	<1	<1	<1	<3	-	<1	<1	<1	<0.1	<0.1	17.32	9.76	7.56
06/27/19		<250	<250	<100	<1	<1	<1	<3	<1	<1	<1	<1	<0.1	-	17.30	9.29	8.01
09/10/19	MW-4	<250	<250	<100	<1	<1	<1	<3	-	<1	<1	<1	<0.1	<0.1	17.30	10.00	7.30
12/02/19		<250	<250	<100	<1	<1	<1	<3	-	<1	<1	<1	<0.1	<0.1	17.30	9.73	7.57
06/27/19		<250	<250	<100	<1	<1	<1	<3	<1	<1	<1	<1	<0.1	-	17.16	9.20	7.96
09/10/19	MW-5	<250	<250	<100	<1	<1	<1	<3	-	<1	<1	<1	<0.1	<0.1	17.16	9.88	7.28
12/02/19		<250	<250	<100	<1	<1	<1	<3	-	<1	<1	<1	<0.1	<0.1	17.16	9.63	7.53
MTCA Method A	A Cleanup Level	500	500	800	50	1000	700	1000	15	20	0.01	5	0.1	0.1			

Notes:

Contaminant not analyzed -

5.9 Bold number(s) indicate contaminant detected31 Shaded numbers indicate a concentration above the MTCA Method A Cleanup Level

APPENDIX A

Bud Clary Subaru 961 Commerce Avenue Longview, WA

BSE Monitoring Well Boring Logs

BLOWS/6 inches		SAMPLE NUMBER	SOIL DESCF	RIPTIO	N	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION
									Concrete 10" Boring
			Asphalt S						Well Box
)					mported cover), gray, dry,	60	GW		
			medium, r			-	SM/GN		Bentonite Seal
			odor	ravelik	lix: brown, damp, medium, no	-	SM		2" PVC —
				l' brow	n, damp, medium, no odor	-			Blank -
5	┤╤╧				n, moist, medium, no odor	100	SM		
						-			 €=§; -
						-			Sand
									2" PVC Screen
			Silty Sand	l: gray,	wet, medium, no odor		SM		
			Sand: bro	wn, mo	bist, loose, no odor	100	sw		
						_			· · · · · · · · · · · · · · · · · · ·
_			Sand: gra	y, dam	p, loose, no odor	-	sw		2" PVC ¬
	┤┢								Plug Backfill
					EOB at 15'	-			
						-			-
						-			_
									-
									_
									_
5									_
									_
 						4			_
 						-			_
			l			1			
Dept	th in fe	et							
Drill i	ing Meth	od: Direct Push		Date:	4/29/19	Other Ir	nformatio	n: BHU-74	5
Drill I	Ing Com	oany: ESN No	rthwest		r: Overcast and warm				
					<u>1</u> of <u>1</u>				
Logg	Logged By: Alex Koch								
E		BLUE S RONME		Boring/Well Log Bud Clary Subaru					B-6/MW-1
	ENVIRONMENTAL IN KENNEWICK, WA								

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESCF	RIPTIO	N		Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION
											Concrete 10" Boring
0				Asphalt S			alm (40	GW		Well Box
4				medium, r		mported cover), gray,	ary,	40	Gw		
t						1ix: brown, damp, med	dium. no		БМ/GN		Bentonite Seal
t				odor							2" PVC
t				Silty Sand	l: browi	n, damp, medium, no	odor		SM		
5				Silty Sand	l: browi	n, damp, medium, no	odor	25	SM		
				Gravel-Sa	nd-Silt	Mix: Gray, wet, mediu	m, no odor		GМ		Sand 2" PVC Screen
0				Silty Sand	l: gray,	wet, medium, oil odo		50	SM		
				Sand: bro	wn, we	t, medium, no odor			sw		2" PVC
5							EOB at 15'		$\mathbf{\nabla}$		Backfill
											-
0											
1											_
+											-
ł											-
5											
t											-
1											
1											_
30 C	Depth	n in fe	et				<u>.</u>				
		-	d: Direct Push			4/29/19		Other Ir	formatio	n: BHU-74	6
			any: ESN No			r: Overcast and warm					
H		Diamet	^{er:} Two inch Alex Koch	ies	rage_	_1of					
F	BLUE SAGE ENVIRONMENTAL INC					NC Boring/Well Log Bud Clary Subaru					B-7/MW-2
		KENNEWICK, WA									

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESCR	RIPTIO	N		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
				Pavers Su	urface						Concrete 10" Boring
0		- 7				x: brown, dam	o, medium, no odor	100	SM/GN		Well Box
				Rock (imp	orted fi	ll): gray, damp	o, dense, no odor	-	GW		Cap BentonIte Seal 2" PVC Blank
5				Rock (imp	orted fi	ll): gray, damp	o, dense, no odor	100	GW		Sand 2" PVC Screen
0				Sand: blac	ck, wet,	loose, oil odo	vr @ 11'	100	SW		
5		-					EOB at 15'	-	$\overline{}$		2" PVC Plug Backfill
D											
-								-			
5								-			
-											
30	Dept	h in fe	et								
	Drill In Boring	ig Comp g Diamet	od: Direct Push pany: ESN Nor ter: Two inch Alex Koch			4/29/19 r: Overcast and <u>1</u> of <u>1</u>	warm	Other In	formatio	n: BHU-7	47
	BLUE SAGE ENVIRONMENTAL INC KENNEWICK, WA					961 Con	Vell Log ry Subaru nmerce Aven w, Washingto				B-8/MW-3

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESCR	IPTIO	N	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
					l. (Inc.)					Concrete Seal
0		₽				orted cover) ix: gray, damp, medium, no odo	r 50	SM/GN		Well Box
-						n, damp, medium, no odor		SM		Well Cap BentonIte Seal 2" PVC Blank
5				Silty Sand	: browi	n, damp, medium, no odor	100	SM		
-		╡ ╪ ╤				n, moist, medium, no odor		SM		Sand 2" PVC Screen
-						wet, medium, no odor , medium, no odor	100	SM SW		2" PVC ~ = =================================
5						EOB at 15	·	\checkmark		Plug Backfill
-							_			-
20							-			-
-										-
25							_			-
-										-
30		h in fee								
						4/29/19	Other Ir	formatio	n: BHU-74	4δ
	Boring					Weather: Overcast and warm Page 1 of 1				
	BLUE SAGE ENVIRONMENTAL IN KENNEWICK, WA					Boring/Well Log Bud Clary Subaru 961 Commerce Avenue				B-9/MW-4

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	RIPTIO	N		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
					_						Concrete 10" Boring Seal
0				Pavers Su Sand & G		ix: gray, damp, medium, r	no odor	100	SM/GN		
Į											Cap Bentonite Seal
ł						p, medium, no odor ı, damp, medium, no odo	r		SW SM		2" PVC - Blank
5				Silty Sand	: browr	n, moist, medium, no odo	r	100	SM		
Ţ							_				Sand
╂				Silty Sand	: gray,	moist, medium, no odor			SM		2" PVC Screen
7		**		Silty Sand	: gray,	wet, medium, no odor		100	SM		
╂				Sand: blac	ck, wet	, medium, no odor			sw		
t											2" PVC ~
5		─┢				FO	3 at 15'		$\mathbf{\nabla}$		Plug Backfill
t						20					-
╞											-
t											
2											_
t											-
ł											-
5											
Į											-
┨											_
┢		h in fea			D -4	4/00/40		041		1: BHU-7	
H		-	d:Direct Push any: ESN No	rthwest		4/29/19 r: Overcast and warm		Other In	formation	1: BHU-7	45
			er: Two incl	hes	Page	_1of1					
ŀ	∟ogge	аву: /	Alex Koch								
	BLUE SAGE					Boring/Well Log Bud Clarv Suba	l ru				
	ENVIRONMENTAL INC KENNEWICK, WA										B-10/MW-5

APPENDIX B

Bud Clary Subaru 961 Commerce Avenue Longview, WA

BSE Monitoring Well Purge and Development Logs

Project CodeNotes or Observations:Bate: $5/24/19$ Sampler: $Chris Cremex$ Diameter $M(y) - 1 \rightarrow UerrowichThe well diameter ininches it:The volume per linearfoot in gallons si:10.0034520.16340.69061.470MW-3 \rightarrow Dark brown,MW-5 = Dark brown,MW-$	y silty at first	r surface (possibly from previous) 961 Commerce 51, brown 2,3,5, 5, brown 2,3,5, 5, brown 0,10,0 0,10,0 0,10,0 0,10,0 0,10,0 0,10,0 0,10,0 0,0	
Sampler:ChariesCreakDiameterVolume - XThe well diameter in inches is:The volume per linear flot in gallons is:10.0054520.16340.69061.470MW-3 - Dark brown, MW-5 - Dark brown, 	y silty at tirst ck, oily i, oily i, siltyl, oil on rown to black si	2,35, 5 surface (possibly from previous) 2,35, 5 meller 014	à
DismeterVolume = XThe vell diameter in inches is:The volume per linear foot in gallons is: $MW - 3 \rightarrow Dack$ 10.0054520.16361.470Generalized Equations: $A = \pi r^2$; $V = xr^2 * 7.48$ Λ^3 Monitoring WellTimeNO.Well diameterStartEnd121.5 '' = 0 * 672Monitoring WellTimeWell diameterStartEnd0f PVC (feet)12121212121212121222210:37112:5123210:3712:54210:3712:55210111111	ck, oily , oily , siltyl, oil on . rown to black si	2,3,5, Smeller surface (possibly from previous) oily	δ
DismeterVolume = XThe well diameter in inches is:The volume per linear foot in gallons is: $MW - 3 \rightarrow Dack$ 10.00545 $1.5'' = 0 \times 672$ 20.163 $MW - 4 \rightarrow Brown$ 61.470 $MW - 5 \rightarrow Dack$ Generalized Equations: $A = \pi r^2$; $V = xr^2 * 7.48$ * height of water; $V = x$ Monitoring WellTimeWell Depth of PVC (feet)Depth to water of PVC (feet) $H=TD$ NO.Well diameterStartEndOf PVC (feet) $H=TD$ 1 Z $10:37$ $1/30$ $\#\# \# \# M$ $S = 8$ 2 $\# Z$ $10:37$ $1/2:50$ $14'.7$ $S = 8$ 3 Z $10:37$ $1/2:50$ $14'.85$ $S = 75$ 5 Z $10:37$ $12:50$ $14'.85$ $S = 75$ 6101110111011	, oily 1, siltyl, oil on . rown to black si	2 surface (possibly from previous) oily	
Generalized Equations: $A = \pi r^2$; $V = xr^2 * 7.48 *$ height of water; $V = xr^2 + 7.48 *$ height of water; $H = TD$ 1 2 $(0.2 - 35 + 17.5) / 4/.7 *$ 8.8 6 <	rown to black si	r surface (possibly from previous) oily	
Generalized Equations: $A = \pi r^2$; $V = xr^2 * 7.48 *$ height of water; $H = TD$ 1 2 $(0.37 \cdot 1/.05 \cdot 1/4 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 6 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 7 \cdot 5 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 7 \cdot 5 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 7 \cdot 5 \cdot 7 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 7 \cdot 5 \cdot 7 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 7 \cdot 5 \cdot 7 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 7 \cdot 5 \cdot 7 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 7 \cdot 5 \cdot 7 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 7 \cdot 5 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 7 \cdot 7 \cdot 7 \cdot 7$	rown to black si		2
Seneralized Equations: $A = \pi r^2$; $V = xr^2 * \frac{7.48}{R^3}$ * height of water; $V = xr^2$ Monitoring Well Time Well Depth (TD) from top of PVC (feet) Depth to water (DTW) from top of PVC (feet) H=TD 1 2 (035) 11:05 14'.7 8.3 1 2 2 10:37 1/:30 14'.7 8.8 1 3 2 10:37 1/:30 14'.7 8.8 1 4 2 10:37 12:15 14'.7 8.8 1 5 2 16:97 12:25 14'.85 8.75 1 5 2 16:97 12:50 14'.8 8.6 1 7 10 1 1 1 1 1 1 10 11 1 1 1 1 1 1 1	rown to black si		
Generalized Equations: $A = \pi r^2$; $V = xr^2 * 7.48 *$ height of water; $V = xr^2 + 7.48 *$ heig		silt	
Monitoring Well Time Well Depth (TD) from top of PVC (feet) Depth to water (DTW) from top of PVC (feet) H=TD 1 2 $(0:35)$ $11:05$ $14'.7$ 8.3 3 2 $=22$ $10:37$ $1/:30$ $=44:==74:4/8$ 8.6 3 3 Z $10:37$ $1/:30$ $=44:==74:4/8$ 8.6 3 4 Z $10:37$ $12:15$ $14'.7$ 8.8 3 4 Z $10:37$ $12:15$ $14'.85$ 8.75 5 5 Z $16:41$ $12:25$ $14'.85$ 8.6 6 7 $=$ $=$ $=$ $=$ $=$ $=$ 9 $=$ $=$ $=$ $=$ $=$ 10 $=$ $=$ $=$ $=$ $=$ 11 $=$ $=$ $=$ $=$ $=$			
NO. Well diameter Start End (TD) from top of PVC (feet) (DTW) from top of PVC (feet) 1 2 ($0:35$ 11:05 14'.7 8.3 2 $=2$ 10:37 1/:30 $=4$ $=2$			
NO. Well Start End of PVC (feet) of PVC (feet) 1 \mathcal{Z} $(0:35)$ 11.05 $/4'.7$ $\mathcal{R}.3$ 2 \mathcal{Z} $10:37$ $1/:30$ \mathcal{Z} $\mathcal{R}.3$ 3 \mathcal{Z} $10:37$ $1/:30$ \mathcal{Z} $\mathcal{R}.8$ 4 \mathcal{Z} $10:37$ $12:15$ $14'.7$ $\mathcal{R}.8$ 4 \mathcal{Z} $10:41$ $12:25$ 14.85 $\mathcal{R}.75$ 5 \mathcal{Z} $16:42$ $12:50$ $14'.8$ $\mathcal{R}.6$ 6 $16:42$ $12:50$ $14'.8$ $\mathcal{R}.6$ $\mathcal{R}.6$ 7 $\mathcal{R}.8$ $\mathcal{R}.6$ $\mathcal{R}.6$ $\mathcal{R}.6$ $\mathcal{R}.6$ $\mathcal{R}.6$ 9 $\mathcal{R}.6$ \mathcal	D*DTW Purge volume required	Including	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V=H*X*3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2/4/1	
3 Z 10:38 12:15 14.7 8.8 4 Z 10:41 12:25 14.85 8.75 5 Z 16:43 12:50 14.85 8.6 6		~[4ga] ~10gal	
4 2 10:41 12:25 14:85 8.75 5 2 16:43 12:50 14:8 8.6 6 7 7 7 7 8 9 9 10 10 10 11 11 11 11 11 12:25 14:85 8.75			
5 2 16:93 12:50 14.8 8.6 6 7 . . 7 . . . 8 . . . 9 . . . 10 . . . 11 . . .		6901	V
6		- laail	¥
8		Bgal	
9			
10			
11			
12			
13			
14			<u> </u>
15			

free free	L.C.	aset -	Sik	-	GROU	NDWAT	FER DAT	A SHE	ET			n f m fair g f		
Project: Location: Project Code:	ongrie SE-1	BUD	A				Date: Recorded Conditior	l by: s/Comment		-27. B	-19	_		
Monitoring Well	Time - start	Time - finish	teet Cepth to Water	Well Depth	Peee H feet	olume Burge Volume Ballous	E SU	m/Sm w/Sim	CT Turbidity	O mg/L	Temperature C aengeb	Mg/L·	ayo mV	
		0745	8.94		67.06		6-74 6-71 6-71	ators	82 61 - 65	-3-67 1. 42 8. 44	13.9	0.25 0.25 0:25	-84 -20 -23.	1 2 mg
~Z	07.5	0.23	9.15	15	57.25	2.0 56	A	5/m_ 0.153 0.153 0.153	56	2-52 1.69 1.44	15.2 15.6 15.6	1-3	163 194 206	to at the
	- 53	0815	J. 23	15	5-72	2.55	5.98	5/102 0-1434 0-1460, 0-1460,	170-	5-23 3-25 3-25	14.2 2	Da 70 D & 700 Da 90	167 224 251	Joge an

Alleran

.

GROUNDWATER DATA SHEET

	> 1	nr	\frown	0			LNDA	ASHE						
Project: Location: Project Code:	Jonge JSE-	Bud	Sud UA	bare		2 8 200 9 8	Date: Recorde Conditio	d by: ıs/Commen		-27 2LB	-19 hu			
Monitoring Well	Time - start	Time - finish	, tage Depth to Water	Mell Depth	ਇਲ ਅ Feet	Burge Volume Ballous	년 SU	S Conductivity	D.Turbidity	A mg/L	Temperature degree C	SO Mg/L.	д NO mV	
			7-27	65	5.71	2:43	6.38	0 . 117 0 . 117 0 . 106	258 220	2.42 1.57 1.48	13.2 13.2 13.2		157 130 121	1 97 29 29 -39
2								- Som						
	5842	-8 905	9.20	15	5. B	2.84 S/m_	6-78 6-79 6-81	3-397 = 91-7 \$9.2	150	2.32 1.52 1.40	L3.5 13.5 13.5		- <u>139</u> - <u>139</u> - <u>144</u>	Thurberton in
							L							

				<u>GKUL</u>	NDWAT	DR SAM	PLING		DATA			
Site		<u>Den</u>	<u>Ela</u>	RY	Notes or Obser	- Martine	en an		· · · ·	<u> </u>		
****		200	17	DUBAN	e e		i an a tha an	- 11 .				
							۵۰ میں دونی میں میں دونی میں دونی در اور دونی در اور دونی در اور دونی دونی در اور دونی در دونی در دونی در دونی میں دونی دونی در دونی دونی دونی دونی دونی دونی دونی دونی					
142 23 days	diameter in		the X				العمار من	4			۲۰۰۰ - ۲۰۰۶ ۲۰۰۰ - ۲۰۰۶ - ۲۰۰۶ ۲۰۰۰ - ۲۰۰۶ - ۲۰۰۶	_
inch	ies is: 1		gellons is: 200545		- GY	ار المدين المربع المربع المدينة المعالم المربع ا المربع المربع ا المربع المربع		·				-
	2	10,	163		-STEX	نے (م		. 0				
	4 · · · · ·		.690 .470		- ACB	15 ()	PAH)					
eneraliz	ed Equatio	INS:	$A = \pi r^2;$	- V=xr ² * 7.48 *	* height of water ;			<u> </u>				1. 2. 1.
		S. 1.	- x -	ft ³	Height of watch,	v = A * n = g	<i>sallons</i>					
Monitor	ing Well		ime .	Well Depth	Depth to water	H=TD*DTW	Purge volume	T (10)		<u> </u>	······	
NO.	Well diameter	Start	End	(TD) from top of PVC (feet)	(DTW) from top of PVC (feet)		required V=H*X*3	Temp (°C)	Cond. or Other	Total volume of	Remarks (i.e., clairty of water,	تر : تر : تر : :
1	2	80.49		151			-4.7.5			H ² O purged	recharge rate)	
·:2	6		065	12	9.65	5.35	1.51			2.500	He BROWN / Class	
3		0651	1 7	<u> </u>	9.90	5.10	6.44			2.50		
4	1		0.715	ih	10.00	5.00	1.40			2-500	Hitrown Clean	
5	2	0716	0730	15	7.88	5.12	1-41 1. alat			17.300	it. Brown / Cla	er_
6						~ // @~	1. 404.			2.55	Clear Clean ?	
7	· · · ·									<u> </u>		
8									1		· · · · · · · · · · · · · · · · · · ·	
9 10								• •	<u>.</u>		4	and and a second
11		- 19 <u>2</u> - 1	· · · ·			<u></u>			4			
12		· · ·								3		
13					······································		<u> </u>					
14	ale et			b ₂₁								
13-		- 3- 11		3	04. <i>24</i>							in the second
	1.				and a second s			15 11				and the second second

09/06/2019 15:33 #128 P.001/002

		Dun 2- 7 <u>P</u> B	-0-	ard Sister	NDWAT	wations:	BUDC	CAR	7			
Di	nucler	Vol	ume = X						_3			
The well inc	diameter in hes is:		me per linear gallons is:	-	-Gr	c			~			
	1		00545	-{	-07	د				÷		
_	2:		.163	1 -	-51	EK	<u>5</u>				2	
-	6	and the second se	.690		D) BT RCB'5 C	-PAH	~				L	
·	zed Equation		$A = \pi r^2;$	$V = xr^2 * \frac{7.48}{ft^3} *$ Well Depth	height of water ;	<u>. </u>	gallons		_			
¥O.	Well diameter	Start	End	(TD) from top of PVC (feet)	Depth to water (DTW) from top of PVC (feet)	H=TD*DTW	Purge volume required V=H*X*3	Temp (°C)	Cond. or Other	Total volume of H ² O purged	Remarks (i.e., clairty of war recharge rate)	iter,
1	2	<u>a512</u>	0525	15'	9.36	5.64	2.76			ļ		
2	(0510		7.60		the second se			2.500	Clear I.C.	hiom
3			asp			5.40	2.64		· · · · · · · · · · · · · · · · · · ·	2.50 0	clear 1 ch	2
4	L		2333		7.76	5.24	2.50			2.509		an
5	2				9.73	5-27	2.58			250		
5		2557	OE10	1.5'	9.63	5.37	263			2,500		
,							1			400	Lbar Cl	enn-
	· · ·											
											1)	
					· · · · · · · · · · · · · · · · · · ·							
												4 - S
										ų.	······································	
10								İ		, in the second s	e de la companya de l La companya de la comp	
												A and a feet
	I											

APPENDIX C

Bud Clary Subaru 961 Commerce Avenue Longview, WA

ESN Northwest Laboratory Reports

Environmental Services Network

May 13, 2019

Alex Koch Blue Sage Environmental 198007 E 30th Ave Kennewick, WA 99337

Dear Mr. Koch:

Please find enclosed the analytical data reports for the Subaru Groundwater Project in Longview, Washington. Soil samples were analyzed for Diesel and Oil by NWTPH-Dx/Dx Extended, Gasoline by NWTPH-Gx and BTEX by Method 8260 on May 2, 2019.

The results of the analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. A copy of the invoice for this work is enclosed for your records.

ESN Northwest appreciates the opportunity to have provided these services to Blue Sage Environmental for this project. If you have any further questions about the data report, please give us a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

michaela Rozonez

Michael A. Korosec President

ESN NORTHWEST CHEMISTRY LABORATORY

Bud Clary PROJECT SUBARU GROUNDWATER Longview, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Soil by Method NWTPH-Dx Extended

Sample	Date	Date	Surrogate	Diesel Range Organics	Lube Oil Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	5/2/2019	5/2/2019	94	nd	nd
LCS	5/2/2019	5/2/2019	69	111%	
B6-15	5/2/2019	5/2/2019	63	nd	nd
B7-13	5/2/2019	5/2/2019	81	14,000	370,000
B7-15	5/2/2019	5/2/2019	74	210	30,000
B8-11	5/2/2019	5/2/2019	95	4200	210,000
B8-15	5/2/2019	5/2/2019	56	nd	nd
B9-11	5/2/2019	5/2/2019	63	nd	nd
B10-15	5/2/2019	5/2/2019	57	nd	nd
B10-15 Duplicate	5/2/2019	5/2/2019	57	nd	nd
Reporting Limits				50	100

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

ESN NORTHWEST CHEMISTRY LABORATORY

Bud Clary PROJECT SUBARU GROUNDWATER Longview, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics & BTEX in Soil by Method NWTPH-Gx/8260

Sample Number	Date Prepared	Date Analyzed	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Gasoline Range Organics (mg/kg)	Surrogate Recovery (%)
Method Blank	4/29/2019	5/2/2019	nd	nd	nd	nd	nd	114
LCS	4/29/2019	5/2/2019	105%	99%	117%	113%	149%	110
LCSD	4/29/2019	5/2/2019	106%	99%	115%	117%	1	110
B6-15	4/29/2019	5/2/2019	nd	nd	nd	nd	nd	107
B7-13	4/29/2019	5/2/2019	0.09	0.48	1.4	5.8	5700	122
B7-15	4/29/2019	5/2/2019	0.08	0.05	nd	nd	11	109
B8-11	4/29/2019	5/2/2019	nd	nd	nd	nd	5900	114
B8-15	4/29/2019	5/2/2019	nd	nd	nd	nd	nd	107
B9-11	4/29/2019	5/2/2019	nd	nd	nd	nd	nd	116
B10-15	4/29/2019	5/2/2019	nd	nd	nd	nd	nd	109
B10-15 Duplicate	4/29/2019	5/2/2019	nd	nd	nd	nd	nd	104
Reporting Limits			0.02	0.05	0.05	0.15	10	

"---" Indicates not tested for component.

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Bromoflurorbenzene) & LCS : 65% TO 135%

Website: www.esnnw.com E-Mail: info@esnnw.com	2	Fax: 360-459-3432			01 01	Olympia, Washington 98501
L'uniteria uniter article and and						1010 Easteida Straat CE C
Turn Around Time: 74 HR 48 HR 5 DAY	RECEIVED GOOD COND./COLD					
		DATE/TIME	/ RECEIVED By (Signature)	DATE/TIME	cure)	KELINQUISHED BY (Signature)
	CHAIN OF CUSTODY SEALS Y/N/NA		Contraction in which the		0/1/19	
	TOTAL NUMBER OF CONTAINERS	V-1-2	10 ma 10 mail			F
LABORATORY NOTES:	SAMPLE RECEIPT	DATE/TIME	RECEIVED BY (Signature)	DATE/TIME	ture)	RELINQUISHED BY (Signature)
						18.
						17.
						16.
						15.
						14.
						13.
						12.
						11.
						10.
						9.
						8.
3				1110 4	IS	7. BCS - BIO-15
2				1045	11	6. BCS - B9-11
3				1005	5	5. BCS - B8 -15
3				1600	18)	4. BCS - B8 - 11
3				920 /	15	3. BCS-B7 - 15
3				ais ,	-W	2. BCS - B7 -13
S			x	1 715 028	157	1. BCS - B6 - 15
Total Number of Containers Laboratory Note Number	10 10 10 10 10 10 10 10 10 10	100 100 100 100 100 100 100 100	Container Type RT RT RT RT ST. ST.	Sample Cc Time Type	Depth	Sample Number
COLLECTION: DATE OF 4/20/19	10	KOCH	L	pp	#	CLIENT PROJECT #
	LOCATION: LONGVIEW		FAX:	F/		PHONE:
GROLIND WATER	PROJECT NAME: SLIGARLI G		LONGVIEW	*		ADDRESS:
PAGE OF	DATE: 4-29 - 19	(Bas)	5	AUTO GRAUP	LARY	CLIENT: BUDCL
CHAIN-OF-CUSTODY RECORD	CHAIN-OF-(0116	Environmental Services Network	ESN Envir

July 11, 2019

Alex Koch Blue Sage Environmental 198007 E 30th Ave Kennewick, WA 99337

Dear Mr. Koch:

Please find enclosed the analytical data reports for the GW Remediation Project in Washington. Water samples were analyzed for Diesel and Oil by NWTPH-Dx/Dx Extended, Gasoline by NWTPH-Gx, VOC's by Method 8260, PAH's by Method 8270, and Pb by Method 6020 on June 27 – 29, 2019.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. A copy of the invoice for this work is enclosed for your records.

ESN Northwest appreciates the opportunity to have provided these services to Blue Sage Environmental for this project. If you have any further questions about the data report, please give us a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

michael a Korone

Michael A. Korosec President

ESN NORTH	
IWEST CH	
EMISTRY	
LABORATORY	

Bud Clary Subaru PROJECT GW REMEDIATION Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Sample	Date	Date	Surrogate	Diesel Range Organics	Lube Oil Range Organics
Number	Prepared	Analyzed	Recovery (%)	(ug/L)	(ug/L)
Method Blank	6/28/2019	6/28/2019	126	nd	nd
LCS	6/28/2019	6/28/2019	112	%68	I
MW-1	6/28/2019	6/28/2019	146	nd	nd
MW-2	6/28/2019	6/28/2019	117	nd	nd
MW-3	6/28/2019	6/28/2019	125	nd	nd
MW-4	6/28/2019	6/28/2019	129	nd	nd
MW-5	6/28/2019	6/28/2019	142	nd	nd
Reporting Limits				250	250

Analysis of Diesel Range Organics & Lube Oil Range Organics in Water by Method NWTPH-Dx

"---" Indicates not tested for component.

"nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

ESN NORTHWEST CHEMISTRY LABORATORY

Bud Clary Subaru PROJECT GW REMEDIATION Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Sample	Date	Surrogate	Gasoline Range Organics
Number	Analyzed	Recovery (%)	(ug/L)
Method Blank	7/3/2019	111	nd
LCS	7/3/2019	103	103%
MW-1	7/3/2019	107	nd
MW-2	7/3/2019	100	nd
MW-3	7/3/2019	101	nd
MW-4	7/3/2019	101	nd
MW-5	7/3/2019	100	nd
MW-5 Duplicate	7/3/2019	106	nd
Reporting Limits			100

Analysis of Gasoline Range Organics in Water by Method NWTPH-Gx

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

ESN NORTHWEST CHEMISTRY LABORATORY

Bud Clary Subaru PROJECT GW REMEDIATION Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Analytical Results	RL	MB	LCS	LCSD	MW-1	MW-2	MW-3	MW-4
Date analyzed	(ug/L)	07/03/19	07/03/19	07/03/19	07/03/19	07/03/19	07/03/19	07/03/19
Dichlorodifluoromethane	1.0	nd			nd	nd	nd	nd
	1.0	nd			nd	nd	nd	nd
Chloromethane	0.2	nd	111%	81%	nd	nd	nd	nd
Vinyl chloride	1.0	nd	11170	0170	nd	nd	nd	nd
Bromomethane	1.0	nd			nd	nd	nd	nd
Chloroethane		nd			nd	nd	nd	nd
Trichlorofluoromethane	$\begin{array}{c} 1.0\\ 10.0 \end{array}$	nd			nd	nd	nd	nd
Acetone	1.0	nd	96%	98%	nd	nd	nd	nd
1,1-Dichloroethene			9070	70/0	nd	nd	nd	nd
Methylene chloride	1.0	nd			nd	nd	nd	nd
Methyl-t-butyl ether (MTBE)	1.0	nd				nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd			nd		nd	nd
1,1-Dichloroethane	1.0	nd			nd	nd		nd
2-Butanone (MEK)	10.0	nd			nd	nd	nd nd	nd nd
cis-1,2-Dichloroethene	1.0	nd			nd	nd		nd
2,2-Dichloropropane	1.0	nd	10/0/	1170/	nd	nd	nd	nd
Chloroform	1.0	nd	106%	117%	nd	nd	nd	
Bromochloromethane	1.0	nd			nd	nd	nd	nd
1,1,1-Trichloroethane	1.0	nd			nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd			nd	nd	nd	nd
1,1-Dichloropropene	1.0	nd			nd	nd	nd	nd
Carbon tetrachloride	1.0	nd			nd	nd	nd	nd
Benzene	1.0	nd	106%	120%	nd	nd	nd	nd
Trichloroethene (TCE)	1.0	nd	106%	116%	nd	nd	nd	nd
1,2-Dichloropropane	1.0	nd	90%	98%	nd	nd	nd	nd
Dibromomethane	1.0	nd			nd	nd	nd	nd
Bromodichloromethane	1.0	nd			nd	nd	nd	nd
4-Methyl-2-pentanone (MIBK)	1.0	nd			nd	nd	nd	nd
cis-1,3-Dichloropropene	1.0	nd			nd	nd	nd	nd
Toluene	1.0	nd	116%	114%	nd	nd	nd	nd
trans-1,3-Dichloropropene	1.0	nd			nd	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd			nd	nd	nd	nd
2-Hexanone	1.0	nd			nd	nd	nd	nd
1,3-Dichloropropane	1.0	nd			nd	nd	nd	nd
Dibromochloromethane	1.0	nd			nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	109%	119%	nd	nd	nd	nd
1,2-Dibromoethane (EDB)	1.0	nd			nd	nd	nd	nd
Chlorobenzene	1.0	nd	109%	117%	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd		1025-00215 - \$479805	nd	nd	nd	nd
Ethylbenzene	1.0	nd	108%	114%	nd	nd	nd	nd
Xylenes	3.0	nd	107%	109%	nd	nd	nd	nd
Styrene	1.0	nd	strabilit 205		nd	nd	nd	nd
Bromoform	1.0	nd			nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd			nd	nd	nd	nd
Isopropylbenzene	1.0	nd			nd	nd	nd	nd
1,2,3-Trichloropropane	1.0	nd			nd	nd	nd	nd
Bromobenzene	1.0	nd			nd	nd	nd	nd

Bud Clary Subaru PROJECT GW REMEDIATION Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Analytical Results	RL	MB	LCS	LCSD	MW-1	MW-2	MW-3	MW-4
Date analyzed	(ug/L)	07/03/19	07/03/19	07/03/19	07/03/19	07/03/19	07/03/19	07/03/19
Date analyzed	(ug/L)	01100113	01100100					
n-Propylbenzene	1.0	nd			nd	nd	nd	nd
2-Chlorotoluene	1.0	nd			nd	nd	nd	nd
4-Chlorotoluene	1.0	nd			nd	nd	nd	nd
1.3.5-Trimethylbenzene	1.0	nd			nd	nd	nd	nd
tert-Butylbenzene	1.0	nd			nd	nd	nd	nd
1,2,4-Trimethylbenzene	1.0	nd			nd	nd	nd	nd
sec-Butylbenzene	1.0	nd			nd	nd	nd	nd
1,3-Dichlorobenzene	1.0	nd			nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nd			nd	nd	nd	nd
Isopropyltoluene	1.0	nd			nd	nd	nd	nd
1.2-Dichlorobenzene	1.0	nd			nd	nd	nd	nd
n-Butylbenzene	1.0	nd			nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd			nd	nd	nd	nd
1,2,4-Trichlorobenzene	1.0	nd			nd	nd	nd	nd
Naphthalene	1.0	nd			nd	nd	nd	nd
Hexachloro-1,3-butadiene	1.0	nd			nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd			nd	nd	nd	nd
1,2,0		and the second second		_				
Surrogate recoveries							1000/	1000/
Dibromofluoromethane		113%	105%	113%	117%	119%	123%	123%
Toluene-d8		104%	97%	100%	105%	105%	110%	106%
4-Bromofluorobenzene		111%	104%	97%	107%	100%	101%	101%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

Bud Clary Subaru PROJECT GW REMEDIATION Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Analytical Results	•	volatile of
	RL	MW-5
Date analyzed	(ug/L)	07/03/19
Dichlorodifluoromethane	1.0	nd
Chloromethane	1.0	nd
Vinyl chloride	0.2	nd
Bromomethane	1.0	nd
Chloroethane	1.0	nd
Trichlorofluoromethane	1.0	nd
Acetone	10.0	nd
1,1-Dichloroethene	1.0	nd
Methylene chloride	1.0	nd
Methyl-t-butyl ether (MTBE)	1.0	nd
trans-1,2-Dichloroethene	1.0	nd
1,1-Dichloroethane	1.0	nd
2-Butanone (MEK)	10.0	nd
cis-1,2-Dichloroethene	1.0	nd
2,2-Dichloropropane	1.0	nd
Chloroform	1.0	nd
Bromochloromethane	1.0	nd
1,1,1-Trichloroethane	1.0	nd
1,2-Dichloroethane (EDC)	1.0	nd
1,1-Dichloropropene	1.0	nd
Carbon tetrachloride	1.0	nd
	1.0	nd
Benzene	1.0	nd
Trichloroethene (TCE)		nd
1,2-Dichloropropane	1.0 1.0	
Dibromomethane	1.0	nd nd
Bromodichloromethane		
4-Methyl-2-pentanone (MIBK)	1.0	nd
cis-1,3-Dichloropropene	1.0	nd
Toluene	1.0	nd
trans-1,3-Dichloropropene	1.0	nd
1,1,2-Trichloroethane	1.0	nd
2-Hexanone	1.0	nd
1,3-Dichloropropane	1.0	nd
Dibromochloromethane	1.0	nd
Tetrachloroethene (PCE)	1.0	nd
1,2-Dibromoethane (EDB)	1.0	nd
Chlorobenzene	1.0	nd
1,1,1,2-Tetrachloroethane	1.0	nd
Ethylbenzene	1.0	nd
Xylenes	3.0	nd
Styrene	1.0	nd
Bromoform	1.0	nd
1,1,2,2-Tetrachloroethane	1.0	nd
Isopropylbenzene	1.0	nd
1,2,3-Trichloropropane	1.0	nd
Bromobenzene	1.0	nd

Bud Clary Subaru PROJECT GW REMEDIATION Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Analytical Results	aiy 915 01	V Diatile O
	RL	MW-5
Date analyzed	(ug/L)	07/03/19
n-Propylbenzene	1.0	nd
2-Chlorotoluene	1.0	nd
4-Chlorotoluene	1.0	nd
1,3,5-Trimethylbenzene	1.0	1.1
tert-Butylbenzene	1.0	nd
1,2,4-Trimethylbenzene	1.0	nd
sec-Butylbenzene	1.0	nd
1,3-Dichlorobenzene	1.0	nd
1,4-Dichlorobenzene	1.0	nd
Isopropyltoluene	1.0	nd
1,2-Dichlorobenzene	1.0	nd
n-Butylbenzene	1.0	nd
1,2-Dibromo-3-Chloropropane	1.0	nd
1,2,4-Trichlorobenzene	1.0	nd
Naphthalene	1.0	nd
Hexachloro-1,3-butadiene	1.0	nd
1,2,3-Trichlorobenzene	1.0	nd
Surrogate recoveries		
Dibromofluoromethane		118%
Toluene-d8		107%
4-Bromofluorobenzene		100%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

Bud Clary Subaru PROJECT GW REMEDIATION Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear	Aromatic Hydrocarbons in	Water by Method 8270

	Reporting	MTH BLK	LCS	MW-1	MW-2	MW-3	MW-4	MW-5
Date extracted	Limits	06/28/19	06/28/19	06/28/19	06/28/19	06/28/19	06/28/19	06/28/19
Date analyzed	(ug/L)	06/28/19	06/28/19	06/28/19	06/28/19	06/28/19	06/28/19	06/28/19
Non-Labolance	0.1	nd	103%	nd	nd	nd	nd	nd
Naphthalene 2-Methylnaphthalene	0.1	nd	99%	nd	nd	nd	nd	nd
1-Methylnaphthalene	0.1	nd	105%	nd	nd	nd	nd	nd
	0.1	nd	153%	nd	nd	nd	nd	nd
Acenaphthylene Acenaphthene	0.1	nd	107%	nd	nd	nd	nd	nd
Fluorene	0.1	nd	92%	nd	nd	nd	nd	nd
Phenanthrene	0.1	nd	9270 95%	nd	nd	nd	nd	nd
Anthracene	0.1	nd	102%	nd	nd	nd	nd	nd
Fluoranthene	0.1	nd	115%	nd	nd	nd	nd	nd
Pyrene	0.1	nd	115%	nd	nd	nd	nd	nd
Benzo(a)anthracene*	0.1	nd	134%	nd	nd	nd	nd	nd
Chrysene*	0.1	nd	89%	nd	nd	nd	nd	nd
Benzo(b)fluoranthene*	0.1	nd	72%	nd	nd	nd	nd	nd
Benzo(k)fluoranthene*	0.1	nd	83%	nd	nd	nd	nd	nd
Benzo(a)pyrene*	0.1	nd	58%	nd	nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene*	0.1	nd	72%	nd	nd	nd	nd	nd
Dibenzo(a,h)anthracene*	0.1	nd	67%	nd	nd	nd	nd	nd
Benzo(ghi)perylene	0.1	nd	83%	nd	nd	nd	nd	nd
Total Carcinogens				nd	nd	nd	nd	nd
Surrogate recoveries:								
2-Fluorobiphenyl		88%	124%	111%	132%	143%	103%	139%
p-Terphenyl-d14		119%	121%	139%	123%	137%	142%	132%

Data Qualifiers and Analytical Comments

* - Carcinogenic Analyte

nd - not detected at listed reporting limits

ns - not spiked

Acceptable Recovery limits: 50% TO 150% Acceptable RPD limit: 35%

12524 130th Lane NE Kirkland WA 98034

Tel: (425) 214-5858 (425) 214-5868 Email: lisa@accu-lab.com Website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	19-AL0628-4
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/27/2019
Project Manager	Steve Loague	Date Received	6/28/2019
Project Name	Bud Clary Subaru	Date Reported	7/5/2019
Client Project#		2	

Total Metals in Water by EPA 6020B/EPA3010A

Accu Lab Batch# AL062919-13

Client sample	ID				MW-1	MW-2	MW-3	MW-4	MW-5
Lab ID	MRL	Unit	MTH BLK	LCS	19-AL0628-4-1	19-AL0628-4-2	19-AL0628-4-3	19-AL0628-4-4	19-AL0628-4-5
Matrix			Water	Water	Water	Water	Water	Water	Water
Date Digested			6/29/2019	6/29/2019	6/29/2019	6/29/2019	6/29/2019	6/29/2019	6/29/2019
Date Analyzed			6/29/2019	6/29/2019	6/29/2019	6/29/2019	6/29/2019	6/29/2019	6/29/2019
Lead (Pb)	1.0	ug/L	nd	102%	nd	nd	nd	nd	nd

LCS 80-120% MS/MSD 75-125% Acceptable RPD limit: 20%

12524 130th Lane NE Kirkland WA 98034

CCU LABORATORY

Tel: (425) 214-5858 (425) 214-5868 Email: lisa@accu-lab.com Website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	19-AL0628-4
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/27/2019
Project Manager	Steve Loague	Date Received	6/28/2019
Project Name	Bud Clary Subaru	Date Reported	7/5/2019
Project#			

Data Qualifiers and Comments:

- MRL- Method Reporting Limit
 - nd- Indicates the analyte is not detected at the listing reporting limit.
 - C- Coelution with other compounds.
 - M- % Recovery of surrogate, MS/MSD is out of the acceptable limit due to matrix effect.
 - B- Indicates the analyte is detected in the method blank associated with the sample.
 - J- The analyte is detected at below the reporting limit.
 - E- The result reported exceeds the calibration range, and is an estimate.
 - D- Sample required dilution due to matrix. Method Reporting Limits were elevated due to dilutions.
 - H- Sample was received or analyzed past holding time.
 - Q- Sample was received with head space, improper preserved or above recommended temperature.
 - I- Due to insufficient sample, LCS/LCS DUP were analyzed in place of MS/MSD.
 - R- The recovery of this analyte in QC sample failed high, but the analyte was not detected in all related samples. No action was taken.
- R-1- The RPD value for the MS/MSD was outside of QC acceptance limits however both recoveries were acceptable. All related samples were "nd". No action was taken.

Website: www.esnnw.com E-Mail: info@esnnw.com		Fax: 360-459-3432			Olympia, Washington 98501
Tan a and a mile. 24 MA 40 MA 2 DAY	70	Phone: 260-150 161			1210 Eastside Street SE, Suite 200
Turn Around Time: 24 HR 48 HR 5 DAV	NOTES:				
C	RECEIVED GOOD COND./COLD	1:25			
. d. wor Minows	SEALS INTACT? Y/N/NA	TIME	RECEIVED BY (Signature)	DATE/ HIVE	NELINQUIENEDB (SIEDATURE)
Source Cumple	ALS Y/N/NA	0/112/0-4	1. 1 A Mr- 10		- Andrewson
VIN ACTES - vion			7-19/1.1-	N	D VAND
LABORATORY NOTES:	SAMPLE RECEIPT	DATE/TIME	RECEIVED BY (Signature)	DATE/TIME	RELINQUISHED BY (Signature)
					18.
					17.
					16.
					15.
					14.
					13.
					12.
					11.
					10.
					9.
					7.
					6.
2	<u>\</u>	<		0700 1	5. MW -5
2				220	
5				2780	-
ly.				073	MWN.
27	~	X	AWPER X X	A FETHLO	
Total Nun of Contain Laborator Note Num	1,91,92,131,92,172, 193,931,931,931,931,931,931,931,931,931,		niner AL R. O. C.	Time Type	S
nber ners Y	22 - 425 - 628-1 - 125 - 628-1 - 125 - 628-1 - 125 - 1	3010 0010	Sel 4 01		
DATE OF COLLECTION:	COLLECTOR:	KOCH	GER:		CLIENT PROJECT #:
AVE	LOCATION: 961 (OMMERCE AVE		FAX:		PHONE:
NOLLEN	- PROJECT NAME: GW REMEDIATION		LONGVIEW		ADDRESS:
PAGE OF	DATE: G-27-17 PA	655)	ш	ARY SUBARU	CLIENT: BUD CLA
CHAIN-OF-CUSTODY RECORD	CHAIN-OF-CI			al work	ESN Environmental NORTHWEST, INC. Services Network

September 19, 2019

Alex Koch Blue Sage Environmental 198007 E 30th Ave Kennewick, WA 99337

Dear Mr. Koch:

Please find enclosed the analytical data reports for the GW Remediation Project in Washington. Water samples were analyzed for Diesel and Oil by NWTPH-Dx/Dx Extended, Gasoline by NWTPH-Gx, BTEX by Method 8260, and PCB's by Method 8082 on September 10 - 13, 2019.

The results of the analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. A copy of the invoice for this work is enclosed for your records.

ESN Northwest appreciates the opportunity to have provided these services to Blue Sage Environmental for this project. If you have any further questions about the data report, please give us a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

michaela Koron

Michael A. Korosec President

ESN
NORTH
IWEST
CHEMI
STRY I
ABORA
TORY

BSE (Bud Clary Subaru) GW REMEDIATION PROJECT Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Water by Method NWTPH-Dx

Sample	Date	Date	Surrogate	Diesel Range Organics	Lube Oil Range Organics
Number	Prepared	Analyzed	Recovery (%)	(ug/L)	(ug/L)
Method Blank	9/10/2019	9/10/2019	131	nd	nd
LCS	9/10/2019	9/10/2019	125	%98	1
BCS-MW-1	9/10/2019	9/10/2019	88	nd	nd
BCS-MW-2	9/10/2019	9/10/2019	140	nd	nd
BCS-MW-3	9/10/2019	9/10/2019	147	nd	nd
BCS-MW-4	9/10/2019	9/10/2019	85	nd	nd
BCS-MW-5	9/10/2019	9/10/2019	79	nd	nd
Reporting Limits				250	250
"" Indicates not tested for component.	ed for component.				

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

BSE (Bud Clary Subaru) GW REMEDIATION PROJECT Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics & BTEX in Water by Method NWTPH-Gx/8260

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline Range Organics	Surrogate
Number	Analyzed	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Recovery (%)
Method Blank	9/10/2019	nd	nd	nd	nd	nd	107
LCS	9/10/2019	126%	99%	107%	116%	97%	88
LCSD	9/10/2019	113%	106%	102%	114%		96
BCS-MW-1	9/10/2019	nd	nd	nd	nd	nd	107
BCS-MW-2	9/10/2019	nd	nd	nd	nd	nd	107
BCS-MW-3	9/10/2019	nd	nd	nd	nd	nd	88
BCS-MW-4	9/10/2019	nd	nd	nd	nd	nd	102
BCS-MW-5	9/10/2019	nd	nd	nd	nd	nd	102
TRIP BLANK	9/10/2019	nd	nd	nd	nd	nd	99%
Reporting Limits		1.0	1.0	1.0	3.0	100	

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Bromoflurorbenzene) & LCS: 65% TO 135%

U LABORATORY

12524 130th Lane NE Kirkland WA 98034

Tel: (425) 214-5858 (425) 214-5868 Email: lisa@accu-lab.com Website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	19-AL0909-2
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	9/6/2019
Project Manager	Steve Loague	Date Received	9/9/2019
Project Name	Bud Clary Subaru	Date Reported	9/13/2019
Project #		Date Reported	5/15/2019

Polychlorinated Biphenyls in Water by EPA 8082A/3510C

Accu Lab Batch# AL090919-8

Client sample	ID				BCS- MW-1	BCS- MW-2	BCS- MW-3	BCS- MW-4	BCS- MW-5
Lab ID	MRL	Unit	MTH BLK	LCS	19-AL0909-2-1	19-AL0909-2-2	19-AL0909-2-3	19-AL0909-2-4	19-AL0909-2-5
Matrix			Water	Water	Water	Water	Water	Water	Water
Date Extracted			9/9/2019	9/9/2019	9/9/2019	9/9/2019	9/9/2019	9/9/2019	9/9/2019
Date Analyzed			9/13/2019	9/13/2019	9/13/2019	9/13/2019	9/13/2019	9/13/2019	9/13/2019
A1016	0.10	ug/L	nd		nd	nd	nd	nd	nd
A1221	0.10	ug/L	nd		nd	nd	nd	nd	nd
A1232	0.10	ug/L	nd		nd	nd	nd	nd	nd
A1242	0.10	ug/L	nd		nd	nd	nd	nd	nd
A1248	0.10	ug/L	nd		nd	nd	nd	nd	nd
A1254	0.10	ug/L	nd		nd	nd	nd	nd	nd
A1260	0.10	ug/L	nd	93%	nd	nd	nd	nd	nd
A1262	0.10	ug/L	nd		nd	nd	nd	nd	nd
Surrogate Rec	overies								
Decachlorobiph			80%	79%	106%	101%	134%	104%	96%
Tetrachloro-m-x	ylene		76%	74%	116%	103%	116%	99%	102%

Surrogates/LCS

60-150% MS/MSD 50-150%

Acceptable RPD limit: 30%

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized.

12524 130th Lane NE Kirkland WA 98034

CCU LABORATORY

Tel: (425) 214-5858 (425) 214-5868 Email: lisa@accu-lab.com Website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	19-AL0909-2
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	9/6/2019
Project Manager	Steve Loague	Date Received	9/9/2019
Project Name Project#	Bud Clary Subaru	Date Reported	9/13/2019

Data Qualifiers and Comments:

- MRL- Method Reporting Limit
 - nd- Indicates the analyte is not detected at the listing reporting limit.
 - C- Coelution with other compounds.
 - M- % Recovery of surrogate, MS/MSD is out of the acceptable limit due to matrix effect.
 - B- Indicates the analyte is detected in the method blank associated with the sample.
 - J- The analyte is detected at below the reporting limit.
 - E- The result reported exceeds the calibration range, and is an estimate.
 - D- Sample required dilution due to matrix. Method Reporting Limits were elevated due to dilutions.
 - H- Sample was received or analyzed past holding time.
 - Q- Sample was received with head space, improper preserved or above recommended temperature.
 - I- Due to insufficient sample, LCS/LCS DUP were analyzed in place of MS/MSD.
 - R- The recovery of this analyte in QC sample failed high, but the analyte was not detected in all related samples. No action was taken.
- R-1- The RPD value for the MS/MSD was outside of QC acceptance limits however both recoveries were acceptable. All related samples were "nd". No action was taken.

BB&A Environmental 77 95	me P-C-19 me Time P-C-19 sobert Betse DBD	TAT Requested (circle) 24 HR 48 HR 72 HR A DAY 5 DAY 0 ther: A DAY 5 DAY 0 ther: RELINQUISHED BY: SAMPLES ARE HELD FOR 30 DAYS	Normal Turn Around Time (TAT) = 5-10 Business Dave	Bas merzy Bar 4 VV		SAMPLE SAMPLE	DY: CIVEON () HOO	CHAIN O CHAIN O Charles Figure, Figure, OR 97223 Fli: 503-718-2323 Fax: 503-718-0333- Company: BB&A Environmental Project Mgr: Him A. Kooiman Address: 32986 Roberts Court, Eugene Organo 07400
Company:	Signature: Printed Name:	RELINOUISHED RV.	CONTRACT OF MERCH		× ×	8260 RBDM VOCs 8260 Halo VOCs 8260 VOCs 8270 SIM PAHs 8082 PCBs 8081A Chlor. Pest RCRA Metals (8)	(541) 484-9484 Fax:	OF CUSTODY
	Date: Tîme:	possible further analyses.	- Analype			Priority Metals (13) Al, Sb, As, Ba, Be, Cd Ca, Cr, Co, Cu, Fe, Pb Hg, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Tl, V, Zn TCLP Metals (8) 1200- COLS	UE	Lab #
Company:	RECEIVED BY: Signature: Printed Name:	Coll	*			1200-Z 8141A Phosph. Pest 8151A Chlor. Herb	Email: "jakooiman@bbaenv.eom ST	Project #
	: Date: Time:	ley fr				Total Lead Total Arsenic		000
		S -				5035 Extract & Hold		10F1

December 11, 2019

Alex Koch Blue Sage Environmental 198007 E 30th Ave Kennewick, WA 99337

Dear Mr. Koch:

Please find enclosed the analytical data reports for the Bud Clary Subaru Project in Auburn, Washington. Water samples were analyzed for Diesel and Oil by NWTPH-Dx/Dx Extended, Gasoline by NWTPH-Gx, BTEX by Method 8260, and PCB's by Method 8082 on December 3 - 6, 2019.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. A copy of the invoice for this work is enclosed for your records.

ESN Northwest appreciates the opportunity to have provided these services to Blue Sage Environmental for this project. If you have any further questions about the data report, please give us a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

michaela Korone

Michael A. Korosec President

Aurburn, Washington	BUD CLARY SUBARU PROJECT	BSE		ESN NORTHWEST CHEMISTRY LABORATORY
(360) 459-4670 lab@esnnw.com	Olympia, WA 98501	1210 Eastside Street SE Suite 200	ESN Northwest	
(360) 459-4670 (360) 459-3432 Fax lab@esnnw.com	101 101	et SE Suite 200		

Sample	Date	Date	Surrogate	Diesel Range Organics	Lube Oil Range Organics
Number	Prepared	Analyzed	Recovery (%)	(ug/L)	(ug/L)
Method Blank	12/3/2019	12/3/2019	141	nd	nd
LCS	12/3/2019	12/3/2019	145	98%	1
BCS-MW-1	12/3/2019	12/3/2019	137	nd	nd
BCS-MW-1 duplicate	12/3/2019	12/3/2019	132	nd	nd
BCS-MW-2	12/3/2019	12/3/2019	115	nd	nd
BCS-MW-3	12/3/2019	12/3/2019	136	nd	nd
BCS-MW-4	12/3/2019	12/3/2019	120	nd	nd
BCS-MW-5	12/3/2019	12/3/2019	142	nd	nd
Reporting Limits				250	250

Analysis of Diesel Range Organics & Lube Oil Range Organics in Water by Method NWTPH-Dx

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

"---" Indicates not tested for component. "nd" Indicates not detected at the listed detection limits.

BSE BUD CLARY SUBARU PROJECT Aurburn, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analyses of Gasoline Range Organics in Water by Method NWTPH-Gx

Sample	Date	Surrogate	Gasoline Range Organics
Number	Analyzed	Recovery (%)	(ug/L)
Method Blank	12/4/2019	102	nd
LCS	12/4/2019	104	89%
BCS-MW-1	12/4/2019	106	nd
BCS-MW-1 duplicate	12/5/2019	103	nd
BCS-MW-2	12/4/2019	102	nd
BCS-MW-3	12/5/2019	97	nd
BCS-MW-4	12/5/2019	99	nd
BCS-MW-5	12/5/2019	99	nd
BCS-TRIP BLANK	12/5/2019	104	nd
Reporting Limits			100

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 65% TO 135%

ESN
NOR
THW
EST
CHE
MIST
RY L
ABO
RATO
ORY

BSE BUD CLARY SUBARU PROJECT Aurburn, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Surrogate
Number	Analyzed	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Recovery (%)
Method Blank	12/4/2019	nd	nd	nd	nd	103
LCS	12/4/2019	83%	83%	80%	84%	95
BCS-MW-2 MS	12/5/2019	78%	100%	119%	118%	90
BCS-MW-1	12/4/2019	nd	nd	nd	nd	106
BCS-MW-1 duplicate	12/5/2019	nd	nd	nd	nd	104
BCS-MW-2	12/4/2019	nd	nd	nd	nd	103
BCS-MW-3	12/5/2019	nd	nd	nd	nd	86
BCS-MW-4	12/5/2019	nd	nd	nd	nd	100
BCS-MW-5	12/5/2019	nd	nd	nd	nd	100
BCS-TRIP BLANK	12/5/2019	nd	nd	nd	nd	106
Reporting Limits		1.0	1.0	1.0	3.0	
"nd" Indicates not detected at the listed detection limits	at the listed detect	ion limits.				
"int" Indicates that interference prevents determination.	nce prevents deter	mination.				

Analyses of BTEX in Water by Method 8260D

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (4-Bromofluorobenzene) & LCS: 65% TO 135%

... Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

12/06/2019

ESN Northwest 1210 Eastside St SE Suite 200 Olympia, WA 98501 Attn: Julie Woods

Project:	Bud Clary Subaru
Client ID:	BCS-MW-1
Sample Matrix:	Water
Date Sampled:	
Date Received:	12/02/2019
Spectra Project:	2019120007
Spectra Number:	1

Analyte	Result	Units	Method
РСВ	<0.1	μg/L	SW846 8082A

Surrogate	Recovery	Method
Decachlorobiphenyl	114	SW846 8082A

SPECTRA LABORATORIES ooper, Laboratory Manager

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

12/06/2019

ESN Northwest 1210 Eastside St SE Suite 200 Olympia, WA 98501 Attn: Julie Woods Project:Bud Clary SubaruClient ID:BCS-MW-2Sample Matrix:WaterDate Sampled:12/02/2019Spectra Project:2019120007Spectra Number:2

Analyte	Result	Units	Method
РСВ	<0.1	μg/L	SW846 8082A

Surrogate	Recovery	Method
Decachlorobiphenyl	119	SW846 8082A

SPECTRA LABORATORIES ooper, Laboratory Manager

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

12/06/2019

ESN Northwest 1210 Eastside St SE Suite 200 Olympia, WA 98501 Attn: Julie Woods

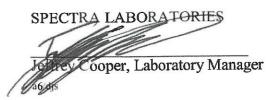
Project:	Bud Clary Subaru
Client ID:	BCS-MW-3
Sample Matrix:	Water
Date Sampled:	
Date Received:	12/02/2019
Spectra Project:	2019120007
Spectra Number:	3

Analyte	Result	Units	Method
PCB	<0.1	μg/L	SW846 8082A

Surrogate	Recovery	Method
Decachlorobiphenyl	117	SW846 8082A

SPECTRA LABORATORIES per, Laboratory Manager

... Where experience matters


2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

12/06/2019

ESN Northwest 1210 Eastside St SE Suite 200 Olympia, WA 98501 Attn: Julie Woods Project:Bud Clary SubaruClient ID:BCS-MW-4Sample Matrix:WaterDate Sampled:12/02/2019Spectra Project:2019120007Spectra Number:4

Analyte	Result	Units	Method
РСВ	<0.1	μ g /L	SW846 8082A

Surrogate	Recovery	Method
Decachlorobiphenyl	120	SW846 8082A

... Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

12/06/2019

ESN Northwest 1210 Eastside St SE Suite 200 Olympia, WA 98501 Attn: Julie Woods Project:Bud Clary SubaruClient ID:BCS-MW-5Sample Matrix:WaterDate Sampled:12/02/2019Spectra Project:2019120007Spectra Number:5

Analyte	Result	Units	Method
РСВ	<0.1	μg/L	SW846 8082A

Surrogate	Recovery	Method
Decachlorobiphenyl	106	SW846 8082A

SPECTRALABORATORIES ooper, Laboratory Manager

... Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

December 9, 2019

ESN Northwest 1210 Eastside St SE Suite 210 Olympia, WA 98501 Attn: Julie Woods Method:EPA Method 8082ASample Matrix:WaterUnits:ug/LSpectra Project:2019120007Applies to Spectra #1-5

PCB ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS) Spiked Sample: LCS Date Extracted: 12/2/2019								
-philip - philip				Date Analyzed:	12/4/2019			
		Spike	Spike					
	Sample	Amount	Amount	Percent				
Compound	Result	Added	Found	Recovery				
AR1260	<0.1	0.5	0.574	115%				
		ME	THOD BL.	ANK				
Date Extracted:	12/2/2019			Date Analyzed:	12/4/2019			
PCB's	<0.1							
Surrogate Recovery:								
Decachlorobiphenyl	118%							

SPECTRA LABORATORIES

Cooper, Laboratory Manager

BB&A Environmental, : ENC.	Company:	HED BY:	4 DAY	TAT Requested (circle)	Normal Turn Around T		and the set of the set		Bas-mart	BCS - MES-3	101	Ste Location: AR WA	Address: 32986 Roberts Court, Eugene, Oregon 97408 Sampled by Jacob	12232 S.W. Gurden-Place, Figuri, OR 97223 - Ph.: 503-718-2323 Company: BB&A Environmental Project Mgr.	HEALABS
Company:	Printed Name: Time:	EVED BY:	5 DAY Other:	48 HR 72 HR	Normal Turn Around Time (TAT) = 5-10 Business Days			1 1 2 1 2120 V		2 0 FM (2 1 4 4	, Eg	MATRIX	7408 Phone:	HEK KC	CHAIN OF
Company:	Printed Name: Time:	RELINQUISHED BY: Signature: Date:	C-PRHN	Call with DRAFT results for possible further analyses.	SPECIAL INSTRUCTIONS:				2 2		r r	8260 Halo VOCs 8260 VOCs 8270 SIM PAHs 8082 PCBs	Fax:	F Projections	CIISTONY
Сотрану:	Printed Name: Time:	Call Hertsch RECEIVED BY: Signature: Date:		lyses.								1200- COLS 1200-Z 8141A Phosph. Pest 8151A Chlor. Herb Total Lead	Email:	Lab #	