

December 27, 2019 Project No. 9085.10.12

Matt Graves, LG Port of Vancouver USA 3103 Northwest Lower River Road Vancouver, Washington 98660

Re: Terminal 1 October 2019 Groundwater Monitoring

Dear Mr. Graves:

In October 2019, on behalf of the Port of Vancouver (Port), Maul Foster & Alongi, Inc. (MFA) completed groundwater monitoring at the Terminal 1 property located at 200 Columbia Street in Vancouver, Washington (Terminal 1) (see Figure 1). The purpose of this investigation was to gather supplemental data to assist the Port with planning related to future redevelopment of Terminal 1. MFA collected groundwater samples from six monitoring wells to support evaluation of potential seasonal variability in groundwater quality.

Previous investigations at Terminal 1 include Ecology & Environment, Inc.'s subsurface investigation conducted in November 2008, and Hahn and Associates, Inc.'s (HAI) initial and follow-up soil and groundwater investigations in 2015 and 2016 (E&E, 2009; HAI, 2016). MFA conducted subsurface investigations at Block D in 2017 and 2018 (MFA, 2017d, 2018e); Block B in 2017 and 2018 (MFA, 2017b, 2018b); and Blocks A and C in 2018 (MFA, 2018a,d). HAI collected groundwater samples from monitoring wells MW-1-37 through MW-5-34 in June 2015 and February 2016 (a groundwater analytical data table from these sampling events is included as Attachment A). MFA collected groundwater samples from these wells in November 2016, February 2017, February 2018, and February 2019 (MFA, 2017c, 2018c, 2019). Monitoring well MW-6-30 was installed in Block C in July 2018 and sampled in August 2018 (MFA, 2018d). All groundwater analytical data from MFA's groundwater sampling events to date are included in Table 1, including the August 2018 event at MW-6-30.

One detection of total chromium in a groundwater sample collected by HAI from well MW-2-40 in June 2015 led to the addition of hexavalent chromium analysis during subsequent groundwater sampling events. The Washington State Model Toxics Control Act (MTCA) Method A groundwater cleanup level (CUL) for unrestricted land use for hexavalent chromium is 48 ug/L. Since MFA began sampling in 2016, hexavalent chromium was detected once at a concentration of 5 ug/L. Because of the lack of frequent detections of hexavalent chromium in groundwater at Terminal 1, including a single detection much less than the MTCA CUL, groundwater was not analyzed for hexavalent chromium during the October 2019 sampling event.

#### FIELD ACTIVITIES

MFA conducted the groundwater monitoring at the six monitoring wells on October 28 and October 29, 2019. The wells were initially opened to allow the water level to equilibrate with the ambient air pressure, followed by measurement of the static water level, using a water level indicator. The water levels were measured from the north side of the casing and were recorded on the water field sampling data sheets, which are included as Attachment B.

Each monitoring well was purged of groundwater before it was sampled. The MW-1-37, MW-3-35, and MW-6-30 well casings were purged using low-flow purging methods with a peristaltic pump and dedicated tubing. Low-flow purging was not implemented at MW-2-40 because the well did not yield sufficient groundwater to permit sustained pumping of groundwater from the well. Instead, a new, disposable plastic bailer was used, and MW-2-40 was purged dry after removal of about 1.3 pore volumes of groundwater. Low flow purging was not implemented at wells MW-4-34 and MW-5-35 because the groundwater levels were below the depth capability of the peristaltic pump. The two wells were purged dry using a new, disposable plastic bailer at each well. Approximately two pore volumes were removed from wells MW-4-34 and MW-5-35.

Water quality parameter measurements were collected during low-flow and bailer purging with a flow-through cell and an in-line, multiprobe meter at approximately three- to five-minute intervals. Water levels were also measured during purging to monitor drawdown. Parameter measurements recorded during purging included purge volume, water level, temperature, specific conductivity, dissolved oxygen, pH, oxygen reduction potential, and turbidity.

Once monitoring parameters had stabilized, sampling was conducted using the peristaltic pump at MW-1-37, MW-3-35, and MW-6-30. At MW-2-40, MW-4-34, and MW-5-35, sampling was conducted with a disposable bailer upon sufficient recharge of groundwater into the well casing.

Laboratory-supplied containers appropriate for the analytical suite were properly filled, labeled, capped, and preserved consistent with method requirements. The sample bottles were then transferred to a chilled cooler for shipment to Apex Laboratories, LLC, in Portland, Oregon, under standard chain-of-custody procedures.

Approximately 10 gallons of purge water and decontamination water were generated during the monitoring event. The waste was disposed of at the Port's aboveground storage tank beneath the West 26th Avenue overpass in Vancouver, Washington.

#### ANALYTICAL WORK

The groundwater samples were analyzed for the following:

- Diesel- and oil-range total petroleum hydrocarbons (TPH) by method Northwest (NW) TPH-Dx
- Gasoline-range TPH by method NWTPH-Gx
- Priority pollutant 13 total and dissolved metals by U.S. Environmental Protection Agency (USEPA) Method 6020
- Polycyclic aromatic hydrocarbons (PAHs) by USEPA Method 8270D
- Volatile organic compounds by USEPA 8260B

Groundwater analytical laboratory results are included as Attachment C. Results are compared to the Washington State MTCA Method A groundwater CULs for unrestricted land use or, if Method A CULs are not available, to Method B CULs. The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned (see Attachment D for the data validation memorandum).

Consistent with Washington Administrative Code 173-340-708(8), mixtures of carcinogenic PAHs (cPAHs) are considered as single hazardous substances in evaluation of compliance with CULs such that the toxicity of a particular congener is expressed relative to the most toxic congener (benzo(a)pyrene). The toxicity of cPAHs as a group was assessed using a toxic equivalency approach. Each congener in the group is assigned a toxic equivalency factor (TEF) corresponding to the toxicity of that congener relative to the toxicity of benzo(a)pyrene. For example, a congener that is equal in toxicity to benzo(a)pyrene would have a TEF of 1. Similarly, a congener that is half as toxic as benzo(a)pyrene would have a TEF of 0.5, and so on. Multiplying the concentration of a congener by its TEF produces the concentration for that congener that is equivalent in toxicity to the benzo(a)pyrene concentration, known as the toxicity equivalent concentration (TEC). Computing the TEC for each congener (Ci in the equation below) in a sample, followed by summing all TEC values, results in a single cPAH total TEC (i.e., cPAH TTEC) that can be compared to the CUL. The following formula represents the summation approach:

cPAH TTEC = 
$$\sum_{i=1}^{k} \text{Ci x TEFi}$$

cPAH TTECs were qualified and calculated as follows:

• Congeners qualified as non-detect and flagged with a "U" are used in the TTEC calculation at one-half the associated value.

- Congeners qualified as estimated and flagged with a "J" are used without modification in the TTEC calculation.
- Typically, if all congeners in a chemical group are undetected, the group sum is reported as undetected; however, based on the limited data set for Terminal 1, this action was not completed.

Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were summed to compare to the MTCA Method A CUL for naphthalenes.

Consistent with Ecology Implementation Memorandum No. 4 (Ecology, 2004), the diesel- and oil-range TPH results were summed for a total detection value and were calculated as follows:

- Diesel and oil results qualified as non-detect and flagged with a "U" are used in the total calculation at one-half the associated value.
- Diesel and oil results qualified as estimated and flagged with a "J" are used in the total calculation without modification.

#### RESULTS

Table 1 provides the analytical results for the sampling events conducted from November 2016 through October 2019. Water level and groundwater elevation data for these events are provided in Table 2.

#### Groundwater Flow Direction

During the October 2019 sampling event, groundwater was encountered in the monitoring wells at approximately 25 to 29 feet below the top of casing (see Table 2). The groundwater level surface shown on Figure 2 indicates that the dominant groundwater flow direction (as indicated with arrows on the figure) is north-northeast, away from the Columbia River. The groundwater elevation at MW-3-35 is less than at MW-4-34, indicating a slight groundwater flow gradient south toward the Columbia River in the southeast portion of the property. A similar groundwater flow direction was documented during the February 2019 monitoring event.

During the February 2018 sampling event, the groundwater flow direction was south-southeast, toward the Columbia River. During the monitoring events conducted in November 2016 and February 2017, the groundwater flow direction was north-northwest, away from the Columbia River.

This variability in groundwater flow direction may be a function of the Columbia River surface water elevation. At a high river stage, groundwater at Terminal 1 likely is recharged by the

Columbia River and flows north. At low river stage, groundwater at Terminal 1 flows south and discharges to the Columbia River.

#### Petroleum Hydrocarbons

The following is a summary of the October 2019 results:

- Gasoline-range TPH was detected only at MW-3-35 at a concentration less than the CUL.
- Diesel-range TPH was detected only at MW-3-35 at a concentration greater than the CUL.
- Oil-range TPH was detected only at MW-1-37 at a concentration greater than the CUL.
- The sum of the diesel- and oil-range hydrocarbon concentrations<sup>1</sup> exceeded the CUL at MW-1-37 and MW-3-35.

The following is a summary of the complete dataset, including sampling conducted by HAI in June 2015 and February 2016 and sampling conducted by MFA from November 2016 to October 2019:

- At MW-1-37, after a period of non-detections, oil was detected in October 2019.
- At MW-2-40, detections of diesel have been sporadic; diesel was detected in 2015, 2017, and February 2019 but not in 2016, 2018, or October 2019. Oil was detected at a maximum concentration in November 2016, decreased in 2017, and has not been detected since then.
- At MW-3-35, detections of gasoline and diesel have also been sporadic. Gasoline and diesel exceeded the CULs in 2015 and February 2016, were not detected in November 2016, were detected at generally increasing concentrations from February 2017 to February 2019, and decreased in concentration in October 2019. Oil was detected once in February 2018 at a concentration greater than the CUL.
- At MW-4-34, petroleum hydrocarbons have not been detected.
- At MW-5-35, oil was detected once in February 2018 at a concentration greater than the CUL.

<sup>&</sup>lt;sup>1</sup> Note that oil-range TPH were not actually detected at MW-2-40 and MW-3-35. The sum of the diesel- and oil-range TPH uses half the reporting limit for non-detected results, which was the case for the oil-range TPH in this instance.

• At MW-6-30, oil was detected once in August 2018 at a concentration greater than the CUL.

The sporadic nature of detections and CUL exceedances may be related to the groundwater flow direction relative to contaminated soil that may be acting as a source of groundwater contamination.

- When groundwater beneath Terminal 1 was flowing toward the Columbia River in February 2018, CUL exceedances occurred at the downgradient well MW-3-35 but not at the upgradient well MW-2-40.
- Conversely, when groundwater beneath Terminal 1 was flowing north, away from the Columbia River, CUL exceedances occurred at downgradient well MW-2-40 but not at the upgradient well MW-3-35.

#### **Primary Pollutant Metals**

Of the listed 13 priority pollutant metals, only arsenic was detected at a concentration greater than its CUL, at MW-1-37, MW-4-34, and MW-5-35. All other metals either were not detected or were detected below the CULs (Table 1).

The 2016 to 2019 data include total and dissolved arsenic concentration CUL exceedances at MW-1-37 through MW-5-35. This is consistent with the HAI 2015 and 2016 investigations, which included total arsenic CUL exceedances at the same wells (HAI, 2016). At MW-5-35, a slight increase in concentration is apparent. No trend in concentration is apparent at MW-1-37, MW-2-40, MW-3-35, and MW-4-34. To date, total and dissolved arsenic have not been detected at MW-6-30.

#### Volatile Organic Compounds

Only acetone at MW-2-40 and naphthalene at MW-3-35 were detected at concentrations less than the CULs during the October 2019 sampling event (Table 1). The naphthalene concentration exceeded the CUL at MW-3-35 during the February 2019 sampling event. This CUL exceedance corresponds with the highest gasoline- and oil-range TPH concentrations detected in February 2019 at MW-3-35.

#### Polycyclic Aromatic Hydrocarbons

PAHs were detected at MW-1-37, MW-3-35 (MW-3-35 and MW-3-35-DUP), MW-4-34, and MW-6-30 during the October 2019 sampling event. The dibenzofuran detection at MW-3-35 exceeded the CUL; the concentration appears to fluctuate consistent with gasoline- and oil-range TPH concentrations at MW-3-35. Prior CUL exceedances include benzo(a)pyrene and the cPAH TTEC in February 2019 at MW-2-40, the cPAH TTEC in February 2018 at MW-3-35, and naphthalenes in February 2019 at MW-3-35.

#### **SUMMARY**

CUL exceedances in the October 2019 groundwater samples collected at Terminal 1 are limited to the combined diesel- and oil-range hydrocarbons from MW-1-37 and MW-3-35; arsenic from MW-1-37, MW-4-34, and MW-5-35; and dibenzofuran from MW-3-35. These exceedances were generally consistent with previous monitoring events. The groundwater flow direction beneath Terminal 1 appears to fluctuate from discharging to the Columbia River (February 2018) to flowing away from the Columbia River (November 2016, February 2017, and October 2019). The fluctuations in flow direction may account for the spatial and temporal fluctuations of diesel- and oil-range hydrocarbon CUL exceedances at MW-2-40 and MW-3-35.

Sincerely,

Maul Foster & Alongi, Inc.

Emily Heas

Emily Hess, LG Project Geologist

Meaghan Pollock

Meaghan Pollock Staff Geologist

Attachments: Limitations References Tables Figures A—HAI Analytical Tables B—Water Field Sampling Data Sheets C—Laboratory Analytical Report D—Data Validation Memorandum The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report. E&E. 2009. Terminal 1 phase II environmental assessment report, Port of Vancouver, USA, Vancouver, Washington. Prepared by Ecology & Environment, Inc. March.

Ecology. 2004. Memorandum (re: determining compliance with Method A cleanup levels for diesel and heavy oil) to file. Implementation memorandum no. 4. Prepared by T. Nord, Washington State Department of Ecology. June.

HAI. 2016. Subsurface investigation report, Port of Vancouver, USA—Terminal 1 property. Prepared by Hahn and Associates, Inc. May 18.

MFA. 2017a. Contaminated media management plan, Terminal 1, Port of Vancouver. Maul Foster & Alongi, Inc., Vancouver, Washington. April 12.

MFA. 2017b. Letter (re: former hotel soil sampling—Port of Vancouver USA Terminal 1) to M. Graves, Port of Vancouver, from K. Roslund and M. Hughes, Maul Foster & Alongi, Inc., Vancouver, Washington. June 14.

MFA. 2017c. Letter (re: Terminal 1 November 2016 and February 2017 groundwater monitoring) to M. Graves, Port of Vancouver, from K. Roslund and E. Hess, Maul Foster & Alongi, Inc., Vancouver, Washington. June 16.

MFA. 2017d. Letter (re: Block D baseline environmental assessment—Port of Vancouver USA Terminal 1) to M. Graves, Port of Vancouver, from D. Weatherby and E. Hess, Maul Foster & Alongi, Inc., Vancouver, Washington. October 9.

MFA. 2018a. Letter (re: Block A Phase II environmental assessment—Port of Vancouver USA Terminal 1) to M. Graves, Port of Vancouver, from D. Weatherby and C. Schweitzer, Maul Foster & Alongi, Inc., Vancouver, Washington. May 11.

MFA. 2018b. Letter (re: Block B soil sampling—Port of Vancouver USA Terminal 1) to M. Graves, Port of Vancouver, from D. Weatherby and C. Schweitzer, Maul Foster & Alongi, Inc., Vancouver, Washington. May 11.

MFA. 2018c. Letter (re: Terminal 1 February 2018 groundwater monitoring) to M. Graves, Port of Vancouver USA, Vancouver, Washington, from D. Weatherby and C. Schweitzer, Maul Foster & Alongi, Inc., Vancouver, Washington. May 24.

MFA. 2018d. Letter (re: Block C phase II environmental assessment—Port of Vancouver USA Terminal 1) to M. Graves, Port of Vancouver USA, Vancouver, Washington, from D. Weatherby and C. Schweitzer, Maul Foster & Alongi, Inc., Vancouver, Washington. November 7.

MFA. 2018e. Letter (re: Block D soil excavation sampling—Port of Vancouver USA Terminal 1) to M. Graves, Port of Vancouver USA, Vancouver, Washington, from D. Weatherby and C. Schweitzer, Maul Foster & Alongi, Inc., Vancouver, Washington. November 21.

MFA. 2019. Letter (re: Terminal 1 February 2019 groundwater monitoring) to M. Graves, Port of Vancouver USA, Vancouver, Washington, from D. Weatherby and E. Hess, Maul Foster & Alongi, Inc., Vancouver, Washington. March 27.

# TABLES





| Location:                     |                      |            |            | MW-1-37    |            |            |            |            | MW-2-40    |            |            |
|-------------------------------|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sample Name:                  | MTCA <sup>(a)</sup>  | MW-1-37    | MW-1-37    | MW-1-37    | MW-1-37    | MW-1-37    | MW-2-40    | MW-2-40    | MW-2-40    | MW-2-40    | MW-2-40    |
| Collection Date:              |                      | 11/28/2016 | 02/23/2017 | 02/15/2018 | 02/21/2019 | 10/28/2019 | 11/29/2016 | 02/24/2017 | 02/15/2018 | 02/22/2019 | 10/29/2019 |
| otal Petroleum Hydrocarbons ( | (ug/L)               | 1          |            | 1          |            |            | •          | 1          |            |            |            |
| Gasoline-range                | 1,000 <sup>(b)</sup> | 100 U      | 277        | 100 U      |
| Diesel-range                  | 500                  | 206 U      | 80.9 U     | 189 U      | 222 U      | 230 U      | 211 U      | 368        | 213 U      | 526        | 303 U      |
| Oil-range                     | 500                  | 412 U      | 202 U      | 377 U      | 444 U      | 603        | 1,520      | 262        | 426 U      | 412 U      | 606 U      |
| Diesel + Oil <sup>(c)</sup>   | 500                  | ND         | ND         | ND         | ND         | 718        | 1,626      | 630        | ND         | 732        | ND         |
| otal Metals (ug/L)            |                      |            |            | 1          |            |            |            | •          |            |            |            |
| Antimony                      | 6.4                  | 1 U        | 0.5 U      | 1 U        | 1 U        | 1 U        | 1 U        | 0.5 U      | 1 U        | 1 U        | 1 U        |
| Arsenic                       | 5                    | 4.12       | 4.04       | 10.6       | 8.78       | 11.8       | 11.6       | 2.06       | 3.19       | 10.9       | 3.01 J     |
| Beryllium                     | 32                   | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Cadmium                       | 5                    | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.211      | 0.105      | 0.2 U      | 0.2 U      | 0.2 U      |
| Chromium                      | 50                   | 1 U        | 0.255      | 1 U        | 1 U        | 1 U        | 17.8       | 0.289      | 1.26       | 3.12       | 1 U        |
| Chromium (hexavalent)         | 48                   | 5 UJ       | 2 UJ       | 5 UJ       |            |            | 5 U        | 2 U        | 5 UJ       |            |            |
| Copper                        | 640                  | 1 U        | 0.508      | 1 U        | 1.01       | 1 U        | 17         | 1.55       | 2.13       | 4.33       | 2.11       |
| Lead                          | 15                   | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      | 4.96       | 0.1 U      | 0.4        | 1.05       | 0.2 U      |
| Mercury                       | 2                    | 0.08 U     | 0.1 U      | 0.08 U     | 0.08 U     | 0.08 U     | 0.08 U     | 0.1 U      | 0.08 U     | 0.08 U     | 0.08 U     |
| Nickel                        | 320                  | 1 U        | 0.5 U      | 1.04       | 1 U        | 1 U        | 5.94       | 3.66       | 3.51       | 4.35       | 1.08 J     |
| Selenium                      | 80                   | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Silver                        | 80                   | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Thallium                      | 0.16                 | 0.2 U      | 0.5 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.5 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Zinc                          | 4,800                | 4 U        | 5.02       | 4 U        | 4 U        | 4 U        | 14         | 3.81       | 5.51       | 8.32       | 4 UJ       |
| Dissolved Metals (ug/L)       |                      |            |            |            |            |            |            |            |            |            |            |
| Antimony                      | 6.4                  | 1 U        | 0.5 U      | 1 U        | 1 U        | 1 U        | 1 U        | 0.5 U      | 1 U        | 1 U        | 1 U        |
| Arsenic                       | 5                    | 1.97       | 3.32       | 6.86       | 5.93       | 9.97       | 4.08       | 1.62       | 2.71       | 5.22       | 4.16 J     |
| Beryllium                     | 32                   | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Cadmium                       | 5                    | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.155      | 0.2 U      | 0.2 U      | 0.2 U      |
| Chromium                      | 50                   | 1 U        | 0.1 U      | 1 U        | 1 U        | 1 U        | 1 U        | 0.241      | 1 U        | 1 U        | 1 U        |
| Chromium (hexavalent)         | 48                   |            |            |            | 5 U        |            |            |            |            | 5 U        |            |
| Copper                        | 640                  | 1 U        | 0.5 U      | 1 U        | 1 U        | 1 U        | 1 U        | 2.27       | 1 U        | 1.22       | 1.23       |
| Lead                          | 15                   | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Mercury                       | 2                    | 0.08 U     | 0.1 U      | 0.08 U     | 0.08 U     | 0.08 U     | 0.08 U     | 0.1 U      | 0.08 U     | 0.08 U     | 0.08 U     |
| Nickel                        | 320                  | 1 U        | 0.5 U      | 1 U        | 1 U        | 1 U        | 2.54       | 4.57       | 3.19       | 2.16       | 1.78 J     |
| Selenium                      | 80                   | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1.07       | 1 U        | 1 U        | 1 U        | 1 U        |
| Silver                        | 80                   | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Thallium                      | 0.16                 | 0.2 U      | 0.5 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.5 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Zinc                          | 4,800                | 4 U        | 2 U        | 4 U        | 4 U        | 4 U        | 4 U        | 2.6        | 6.56       | 4 U        | 9.12 J     |



| Location:                      |                     |            |            | MW-1-37    |            |            |            |            | MW-2-40    |            |            |
|--------------------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sample Name:                   | MTCA <sup>(a)</sup> | MW-1-37    | MW-1-37    | MW-1-37    | MW-1-37    | MW-1-37    | MW-2-40    | MW-2-40    | MW-2-40    | MW-2-40    | MW-2-40    |
| Collection Date:               |                     | 11/28/2016 | 02/23/2017 | 02/15/2018 | 02/21/2019 | 10/28/2019 | 11/29/2016 | 02/24/2017 | 02/15/2018 | 02/22/2019 | 10/29/2019 |
| Volatile Organic Compounds (ug | /L)                 |            |            | 1          |            |            |            |            | 1          |            |            |
| 1,1,1,2-Tetrachloroethane      | 1.68                | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| 1,1,1-Trichloroethane          | 200                 | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| 1,1,2,2-Tetrachloroethane      | 0.219               | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 1,1,2-Trichloroethane          | 0.768               | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 1,1-Dichloroethane             | 7.68                | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| 1,1-Dichloroethene             | 400                 | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| 1,1-Dichloropropene            | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 1,2,3-Trichlorobenzene         | NV                  | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        |
| 1,2,3-Trichloropropane         | 0.00146             | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 1,2,4-Trichlorobenzene         | 1.51                | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        |
| 1,2,4-Trimethylbenzene         | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 1,2-Dibromo-3-chloropropane    | 0.0547              | 5 U        | 1 U        | 5 U        | 5 U        | 5 U        | 5 U        | 1 U        | 5 U        | 5 U        | 5 U        |
| 1,2-Dibromoethane              | 0.01                | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 1,2-Dichlorobenzene            | 720                 | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 1,2-Dichloroethane             | 5                   | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| 1,2-Dichloropropane            | 1.22                | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 1,3,5-Trimethylbenzene         | 80                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 1,3-Dichlorobenzene            | NV                  | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 1,3-Dichloropropane            | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 1,4-Dichlorobenzene            | 8.1                 | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 2,2-Dichloropropane            | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 2-Butanone                     | 4,800               | 10 U       |
| 2-Chlorotoluene                | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 2-Hexanone                     | NV                  | 10 U       | 11 U       | 55 U       | 10 U       |
| 4-Chlorotoluene                | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 4-Isopropyltoluene             | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 4-Methyl-2-pentanone           | 640                 | 10 U       | 20 U       | 10 U       | 10 U       | 10 U       | 10 U       | 20 U       | 10 U       | 10 U       | 10 U       |
| Acetone                        | 7,200               | 20 U       | 50 U       | 20 U       | 20 U       | 20 U       | 20 U       | 50 U       | 23         | 27.3       | 33.4       |
| Acrylonitrile                  | 0.081               |            | 5 U        | 2 U        | 2 U        | 2 U        |            | 5 U        | 2 U        | 2 U        | 2 U        |
| Benzene                        | 5                   | 0.2 U      | 0.3 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.2 U      | 0.3 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Bromobenzene                   | NV                  | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| Bromodichloromethane           | 0.706               | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Bromoform                      | 5.54                | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Bromomethane                   | 11.2                | 5 U        | 1 U        | 5 U        | 5 U        | 5 U        | 5 U        | 1 U        | 5 U        | 5 UJ       | 5 U        |
| Carbon disulfide               | 800                 |            | 2 U        | 10 U       | 10 U       | 10 U       |            | 2 U        | 10 U       | 10 U       | 10 U       |



| Location:                 |                     |            |            | MW-1-37    |            |            |            |            | MW-2-40    |     |
|---------------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Sample Name:              | MTCA <sup>(a)</sup> | MW-1-37    | MW-1-37    | MW-1-37    | MW-1-37    | MW-1-37    | MW-2-40    | MW-2-40    | MW-2-40    | N   |
| Collection Date:          |                     | 11/28/2016 | 02/23/2017 | 02/15/2018 | 02/21/2019 | 10/28/2019 | 11/29/2016 | 02/24/2017 | 02/15/2018 | 02, |
| Carbon tetrachloride      | 0.625               | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| Chlorobenzene             | 160                 | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 1 U        | 0.5 U      |     |
| Chlorobromomethane        | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| Chloroethane              | NV                  | 5 U        | 1 U        | 5 U        | 5 UJ       | 5 U        | 5 U        | 1 U        | 10 U       |     |
| Chloroform                | 1.41                | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| Chloromethane             | NV                  | 5 UJ       | 1 U        | 5 U        | 5 U        | 5 U        | 5 U        | 1 U        | 5 U        |     |
| cis-1,2-Dichloroethene    | 16                  | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      | 0.5 U      | 1 U        | 0.4 U      |     |
| cis-1,3-Dichloropropene   | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| Dibromochloromethane      | 0.521               | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| Dibromomethane            | 80                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| Dichlorodifluoromethane   | 1,600               | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| Ethylbenzene              | 700                 | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 1 U        | 0.5 U      |     |
| Freon 113                 | 240,000             |            | 1 U        |            |            |            |            | 1 U        |            |     |
| Hexachlorobutadiene       | 0.561               | 5 U        | 1 U        | 5 U        | 5 U        | 5 U        | 5 U        | 1 U        | 5 U        |     |
| lsopropylbenzene          | 800                 | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| m,p-Xylene                | 1,000               | 1 U        | 2 U        | 1 U        | 1 U        | 1 U        | 1 U        | 2 U        | 1 U        |     |
| Methyl tert-butyl ether   | 20                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| Methylene chloride        | 5                   | 3 U        | 20 U       | 3 U        | 3 U        | 10 U       | 3 U        | 20 U       | 3 U        |     |
| Naphthalene               | 160                 | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        | 2 U        | 1 U        | 2 U        |     |
| n-Butylbenzene            | 400                 | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| n-Propylbenzene           | 800                 | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 1 U        | 0.5 U      |     |
| o-Xylene                  | 1,600               | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      | 0.5 U      | 1 U        | 0.5 U      |     |
| sec-Butylbenzene          | 800                 | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| Styrene                   | 1,600               | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| tert-Butylbenzene         | 800                 | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| Tetrachloroethene         | 5                   | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      | 0.5 U      | 1 U        | 0.4 U      |     |
| Toluene                   | 1,000               | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| trans-1,2-dichloroethene  | 160                 | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      | 0.5 U      | 1 U        | 0.4 U      |     |
| trans-1,3-Dichloropropene | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |     |
| Trichloroethene           | 5                   | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      | 0.5 U      | 1 U        | 0.4 U      |     |
| Trichlorofluoromethane    | 2,400               | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        | 2 U        | 1 U        | 2 U        |     |
| Vinyl chloride            | 0.2                 | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      | 0.5 U      | 1 U        | 0.4 U      |     |

| MW-2-40    | MW-2-40    |
|------------|------------|
| 02/22/2019 | 10/29/2019 |
| 1 U        | 1 U        |
| 0.5 U      | 0.5 U      |
| 1 U        | 1 U        |
| 5 U        | 5 U        |
| 1 U        | 1 U        |
| 5 U        | 5 U        |
| 0.4 U      | 0.4 U      |
| 1 U        | 1 U        |
| 1 U        | 1 U        |
| 1 U        | 1 U        |
| 1 U        | 1 U        |
| 0.5 U      | 0.5 U      |
|            |            |
| 5 U        | 5 U        |
| 1 U        | 1 U        |
| 1 U        | 1 U        |
| 1 U        | 1 U        |
| 3 U        | 10 U       |
| 2 U        | 2 U        |
| 1 U        | 1 U        |
| 0.5 U      | 0.5 U      |
| 0.5 U      | 0.5 U      |
| 1 U        | 1 U        |
| 1 U        | 1 U        |
| 1 U        | 1 U        |
| 0.4 U      | 0.4 U      |
| 1 U        | 1 U        |
| 0.4 U      | 0.4 U      |
| 1 U        | 1 U        |
| 0.4 U      | 0.4 U      |
| 2 U        | 2 U        |
| 0.4 U      | 0.4 U      |



| Location:                       |                     |            |            | MW-1-37    |            |            |            |            | MW-2-40    |            |            |
|---------------------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sample Name:                    | MTCA <sup>(a)</sup> | MW-1-37    | MW-1-37    | MW-1-37    | MW-1-37    | MW-1-37    | MW-2-40    | MW-2-40    | MW-2-40    | MW-2-40    | MW-2-40    |
| Collection Date:                |                     | 11/28/2016 | 02/23/2017 | 02/15/2018 | 02/21/2019 | 10/28/2019 | 11/29/2016 | 02/24/2017 | 02/15/2018 | 02/22/2019 | 10/29/2019 |
| Polycyclic Aromatic Hydrocarbor | is (ug/L)           |            |            |            |            |            |            |            |            |            |            |
| 1-Methylnaphthalene             | NV <sup>(d)</sup>   | 0.087 U    | 0.0487 U   | 0.0762 U   | 0.08 U     | 0.0808 U   | 0.0825 U   | 0.048 U    | 0.086 U    | 0.0833 U   | 0.101 U    |
| 2-Methylnaphthalene             | NV <sup>(d)</sup>   | 0.087 U    | 0.0487 U   | 0.0762 U   | 0.08 U     | 0.0808 U   | 0.0825 U   | 0.048 U    | 0.086 U    | 0.0833 U   | 0.101 U    |
| Acenaphthene                    | 960                 | 0.0435 U   | 0.0487 U   | 0.0381 U   | 0.04 U     | 0.0404 U   | 0.0412 U   | 0.048 U    | 0.043 U    | 0.0417 U   | 0.0506 U   |
| Acenaphthylene                  | NV                  | 0.0435 U   | 0.0487 U   | 0.0381 U   | 0.04 U     | 0.0404 U   | 0.0412 U   | 0.048 U    | 0.043 U    | 0.0417 U   | 0.0506 U   |
| Anthracene                      | 4,800               | 0.0435 U   | 0.0487 U   | 0.0381 U   | 0.04 U     | 0.0404 U   | 0.0412 U   | 0.048 U    | 0.043 U    | 0.0417 U   | 0.0506 U   |
| Benzo(a)anthracene              | NV <sup>(e)</sup>   | 0.0435 U   | 0.0487 U   | 0.0381 U   | 0.04 U     | 0.0446     | 0.0412 U   | 0.048 U    | 0.043 U    | 0.215 J    | 0.0506 U   |
| Benzo(a)pyrene                  | 0.1                 | 0.0435 U   | 0.0487 U   | 0.0381 U   | 0.04 U     | 0.0458     | 0.0412 U   | 0.048 U    | 0.043 U    | 0.255      | 0.0506 U   |
| Benzo(b)fluoranthene            | NV <sup>(e)</sup>   | 0.0435 U   | 0.0487 U   | 0.0418 J   | 0.04 U     | 0.0702 J   | 0.0412 U   | 0.048 U    | 0.043 U    | 0.407 J    | 0.0506 U   |
| Benzo(ghi)perylene              | NV                  | 0.0435 U   | 0.0487 U   | 0.0381 U   | 0.04 U     | 0.0464     | 0.0412 U   | 0.048 U    | 0.043 U    | 0.188      | 0.0506 U   |
| Benzo(k)fluoranthene            | NV <sup>(e)</sup>   | 0.0435 U   | 0.0487 U   | 0.0381 U   | 0.04 U     | 0.0404 U   | 0.0412 U   | 0.048 U    | 0.043 U    | 0.134 J    | 0.0506 U   |
| Chrysene                        | NV <sup>(e)</sup>   | 0.0435 U   | 0.0487 U   | 0.043 J    | 0.04 U     | 0.0643     | 0.0412 U   | 0.048 U    | 0.043 U    | 0.357 J    | 0.0506 U   |
| Dibenzo(a,h)anthracene          | NV <sup>(e)</sup>   | 0.0435 U   | 0.0487 U   | 0.0381 U   | 0.04 U     | 0.0404 U   | 0.0412 U   | 0.048 U    | 0.043 U    | 0.0492     | 0.0506 U   |
| Dibenzofuran                    | 16                  | 0.0435 U   |            | 0.0381 U   | 0.04 U     | 0.0404 U   | 0.0412 U   |            | 0.043 U    | 0.0417 U   | 0.0506 U   |
| Fluoranthene                    | 640                 | 0.0435 U   | 0.0487 U   | 0.0629     | 0.04 U     | 0.0965     | 0.0412 U   | 0.048 U    | 0.043 U    | 0.481      | 0.0506 U   |
| Fluorene                        | 640                 | 0.0435 U   | 0.0487 U   | 0.0381 U   | 0.04 U     | 0.0404 U   | 0.0412 U   | 0.048 U    | 0.043 U    | 0.0417 U   | 0.0506 U   |
| Indeno(1,2,3-cd)pyrene          | NV <sup>(e)</sup>   | 0.0435 U   | 0.0487 U   | 0.0381 U   | 0.04 U     | 0.0534     | 0.0412 U   | 0.048 U    | 0.043 U    | 0.219      | 0.0506 U   |
| Naphthalene                     | 160                 | 0.087 U    | 0.0487 U   | 0.0762 U   | 0.08 U     | 0.0808 U   | 0.0825 U   | 0.048 U    | 0.086 U    | 0.0833 U   | 0.101 U    |
| Phenanthrene                    | NV                  | 0.0435 U   | 0.0487 U   | 0.0381 U   | 0.04 U     | 0.0447     | 0.0412 U   | 0.048      | 0.043 U    | 0.271      | 0.0506 U   |
| Pyrene                          | 480                 | 0.0435 U   | 0.0487 U   | 0.0624     | 0.04 U     | 0.0974     | 0.0412 U   | 0.048      | 0.043 U    | 0.469      | 0.0506 U   |
| Naphthalenes <sup>(f)</sup>     | 160                 | ND         |
| CPAH TTEC <sup>(g)</sup>        | 0.1                 | ND         | ND         | 0.0313 J   | ND         | 0.0673     | ND         | ND         | ND         | 0.361 J    | ND         |



| Location:                        |                      |         |           |         |           | Ν       | /W-3-35     |         |             |         |             |            |            | MW-4-34    |            |            |
|----------------------------------|----------------------|---------|-----------|---------|-----------|---------|-------------|---------|-------------|---------|-------------|------------|------------|------------|------------|------------|
| Sample Name:                     | MTCA <sup>(a)</sup>  | MW-3-35 | MW-DUP-35 | MW-3-35 | MW-DUP-35 | MW-3-35 | MW-3-35-DUP | MW-3-35 | MW-3-35-DUP | MW-3-35 | MW-3-35-DUP | MW-4-34    | MW-4-34    | MW-4-34    | MW-4-34    | MW-4-34    |
| Collection Date:                 |                      | 11/28   | /2016     | 02/24   | /2017     | 02/1    | 5/2018      | 02/2    | 1/2019      | 10/2    | 8/2019      | 11/28/2016 | 02/24/2017 | 02/14/2018 | 02/21/2019 | 10/29/2019 |
| Total Petroleum Hydrocarbons (ug | /L)                  |         |           |         |           |         |             |         |             |         |             |            |            |            |            |            |
| Gasoline-range                   | 1,000 <sup>(b)</sup> | 100 U   | 100 U     | 100 U   | 100 U     | 761     | 791         | 975     | 920         | 267     | 254         | 100 U      |
| Diesel-range                     | 500                  | 200 U   | 192 U     | 206     | 180       | 698     | 868         | 1,480   | 1,260       | 432     | 460         | 192 U      | 85.4 U     | 200 U      | 217 U      | 204 U      |
| Oil-range                        | 500                  | 400 U   | 385 U     | 206 U   | 201 U     | 783     | 388 U       | 426 U   | 430 U       | 435 U   | 412 U       | 385 U      | 213 U      | 400 U      | 435 U      | 408 U      |
| Diesel + Oil <sup>(c)</sup>      | 500                  | ND      | ND        | 309     | 281       | 1,481   | 1,062       | 1,693   | 1,475       | 650     | 666         | ND         | ND         | ND         | ND         | ND         |
| Total Metals (ug/L)              |                      |         |           |         |           |         |             |         |             |         | •           |            |            |            |            |            |
| Antimony                         | 6.4                  | 1 U     | 1 U       | 0.5 U   | 0.5 U     | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 0.5 U      | 1 U        | 1 U        | 1 U        |
| Arsenic                          | 5                    | 1 U     | 1 U       | 3.78    | 4.06      | 3.78    | 4.18        | 5.27    | 4.78 J      | 3.13    | 3.08        | 10.1       | 6.07       | 9.12       | 8.23       | 7.84       |
| Beryllium                        | 32                   | 0.2 U   | 0.2 U     | 0.1 U   | 0.1 U     | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Cadmium                          | 5                    | 0.2 U   | 0.2 U     | 0.1 U   | 0.1 U     | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Chromium                         | 50                   | 1.1     | 1 U       | 0.146   | 0.171     | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 2.83       | 0.4        | 1 U        | 1 U        | 1 U        |
| Chromium (hexavalent)            | 48                   | 5 UJ    | 5 UJ      | 2 UJ    | 2 UJ      | 5 UJ    | 5 UJ        |         |             |         |             | 5 J        | 2 UJ       | 5 UJ       |            |            |
| Copper                           | 640                  | 1.02    | 1.38      | 0.5 U   | 0.5 U     | 1 U     | 1 U         | 1.18    | 1.1         | 1 U     | 1 U         | 3.47       | 0.617      | 1.23       | 1.33       | 3.47       |
| Lead                             | 15                   | 0.2 U   | 0.2 U     | 0.1 U   | 0.1 U     | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.578      | 0.1 U      | 0.411      | 0.219      | 0.4        |
| Mercury                          | 2                    | 0.08 U  | 0.08 U    | 0.1 U   | 0.1 U     | 0.08 U  | 0.08 U      | 0.08 U  | 0.08 U      | 0.08 U  | 0.08 U      | 0.08 U     | 0.1 U      | 0.08 U     | 0.08 U     | 0.08 U     |
| Nickel                           | 320                  | 5.43    | 4.47      | 4.39    | 4.32      | 4.54    | 4.34        | 3.29    | 3.3         | 3.49    | 3.49        | 5.74       | 2.7        | 1.38       | 1 U        | 1.25       |
| Selenium                         | 80                   | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Silver                           | 80                   | 0.2 U   | 0.2 U     | 0.101   | 0.119     | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Thallium                         | 0.16                 | 0.2 U   | 0.2 U     | 0.5 U   | 0.5 U     | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U      | 0.5 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Zinc                             | 4,800                | 15      | 14.3      | 14.9    | 14.2      | 4 U     | 4 U         | 4 U     | 4 U         | 9.08 J  | 9.01 J      | 5.51       | 2 U        | 4 U        | 4 U        | 4.35       |
| Dissolved Metals (ug/L)          |                      |         |           |         |           |         |             |         |             |         |             |            |            |            |            |            |
| Antimony                         | 6.4                  | 1 U     | 1 U       | 0.57    | 0.5 U     | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 0.5 U      | 1 U        | 1 U        | 1 U        |
| Arsenic                          | 5                    | 1 U     | 1 U       | 4.25    | 4.02      | 4.03    | 4.11        | 6.27    | 5.94 J      | 3.02    | 3.01        | 3.5        | 6.27       | 8.41       | 8.09       | 8.01       |
| Beryllium                        | 32                   | 0.2 U   | 0.2 U     | 0.1 U   | 0.1 U     | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Cadmium                          | 5                    | 0.2 U   | 0.2 U     | 0.1 U   | 0.1 U     | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Chromium                         | 50                   | 1 U     | 1 U       | 0.1 U   | 0.1 U     | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 0.309      | 1 U        | 1 U        | 1 U        |
| Chromium (hexavalent)            | 48                   |         |           |         |           |         |             | 5       | 5 U         |         |             |            |            |            | 5 U        |            |
| Copper                           | 640                  | 1 U     | 1 U       | 0.5 U   | 0.5 U     | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 0.5 U      | 1 U        | 1 U        | 1 U        |
| Lead                             | 15                   | 0.2 U   | 0.2 U     | 0.1 U   | 0.1 U     | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Mercury                          | 2                    | 0.08 U  | 0.08 U    | 0.1 U   | 0.1 U     | 0.08 U  | 0.08 U      | 0.08 U  | 0.08 U      | 0.08 U  | 0.08 U      | 0.08 U     | 0.1 U      | 0.08 U     | 0.08 U     | 0.08 U     |
| Nickel                           | 320                  | 5.18    | 5.01      | 4.27    | 4.32      | 4.37    | 4.53        | 3.95    | 4.33        | 3.5     | 4.14        | 6.02       | 2.46       | 1.28       | 1.37       | 1.59       |
| Selenium                         | 80                   | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Silver                           | 80                   | 0.2 U   | 0.2 U     | 0.238   | 0.1 U     | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Thallium                         | 0.16                 | 0.2 U   | 0.2 U     | 0.5 U   | 0.5 U     | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U      | 0.5 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Zinc                             | 4,800                | 15.3    | 14.6      | 14.1    | 14.5      | 4 U     | 4 U         | 4 U     | 4 U         | 12.7 J  | 16.4 J      | 4 U        | 2 U        | 4 U        | 8.45       | 4 U        |



| Location:                      |                     |         |           |         |           | 1       | MW-3-35     |         |             |         |             |            |            | MW-4-34    |            |            |
|--------------------------------|---------------------|---------|-----------|---------|-----------|---------|-------------|---------|-------------|---------|-------------|------------|------------|------------|------------|------------|
| Sample Name:                   | MTCA <sup>(a)</sup> | MW-3-35 | MW-DUP-35 | MW-3-35 | MW-DUP-35 | MW-3-35 | MW-3-35-DUP | MW-3-35 | MW-3-35-DUP | MW-3-35 | MW-3-35-DUP | MW-4-34    | MW-4-34    | MW-4-34    | MW-4-34    | MW-4-34    |
| Collection Date:               |                     | 11/28   | /2016     | 02/24   | /2017     | 02/1    | 5/2018      | 02/2    | 1/2019      | 10/2    | 8/2019      | 11/28/2016 | 02/24/2017 | 02/14/2018 | 02/21/2019 | 10/29/2019 |
| Volatile Organic Compounds (ug | /L)                 |         |           |         |           |         |             |         |             |         |             |            |            |            |            |            |
| 1,1,1,2-Tetrachloroethane      | 1.68                | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| 1,1,1-Trichloroethane          | 200                 | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| 1,1,2,2-Tetrachloroethane      | 0.219               | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 1,1,2-Trichloroethane          | 0.768               | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 1,1-Dichloroethane             | 7.68                | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| 1,1-Dichloroethene             | 400                 | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| 1,1-Dichloropropene            | NV                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 1,2,3-Trichlorobenzene         | NV                  | 2 U     | 2 U       | 1 U     | 1 U       | 2 U     | 2 U         | 2 U     | 2 U         | 2 U     | 2 U         | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        |
| 1,2,3-Trichloropropane         | 0.00146             | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 1,2,4-Trichlorobenzene         | 1.51                | 2 U     | 2 U       | 1 U     | 1 U       | 2 U     | 2 U         | 2 U     | 2 U         | 2 U     | 2 U         | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        |
| 1,2,4-Trimethylbenzene         | NV                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 1,2-Dibromo-3-chloropropane    | 0.0547              | 5 U     | 5 U       | 1 U     | 1 U       | 5 U     | 5 U         | 5 U     | 5 U         | 5 U     | 5 U         | 5 U        | 1 U        | 5 U        | 5 U        | 5 U        |
| 1,2-Dibromoethane              | 0.01                | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 1,2-Dichlorobenzene            | 720                 | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 1,2-Dichloroethane             | 5                   | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| 1,2-Dichloropropane            | 1.22                | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 1,3,5-Trimethylbenzene         | 80                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 1,3-Dichlorobenzene            | NV                  | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 1,3-Dichloropropane            | NV                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 1,4-Dichlorobenzene            | 8.1                 | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| 2,2-Dichloropropane            | NV                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 2-Butanone                     | 4,800               | 10 U    | 10 U      | 10 U    | 10 U      | 10 U    | 10 U        | 10 U    | 10 U        | 10 U    | 10 U        | 10 U       | 10 U       | 10 U       | 10 U       | 10 U       |
| 2-Chlorotoluene                | NV                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 2-Hexanone                     | NV                  | 10 U    | 10 U      | 10 U    | 10 U      | 10 U    | 10 U        | 10 U    | 10 U        | 10 U    | 10 U        | 10 U       | 10 U       | 10 U       | 10 U       | 10 U       |
| 4-Chlorotoluene                | NV                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 4-Isopropyltoluene             | NV                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| 4-Methyl-2-pentanone           | 640                 | 10 U    | 10 U      | 20 U    | 20 U      | 10 U    | 10 U        | 10 U    | 10 U        | 10 U    | 10 U        | 10 U       | 20 U       | 10 U       | 10 U       | 10 U       |
| Acetone                        | 7,200               | 20 U    | 20 U      | 50 U    | 50 U      | 20 U    | 20 U        | 20 U    | 20 U        | 20 U    | 20 U        | 20 U       | 50 U       | 20 U       | 20 U       | 20 U       |
| Acrylonitrile                  | 0.081               |         |           | 5 U     | 5 U       | 2 U     | 2 U         | 2 U     | 2 U         | 2 U     | 2 U         |            | 5 U        | 2 U        | 2 U        | 2 U        |
| Benzene                        | 5                   | 0.2 U   | 0.2 U     | 0.3 U   | 0.3 U     | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U   | 0.2 U       | 0.2 U      | 0.3 U      | 0.2 U      | 0.2 U      | 0.2 U      |
| Bromobenzene                   | NV                  | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| Bromodichloromethane           | 0.706               | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Bromoform                      | 5.54                | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Bromomethane                   | 11.2                | 5 U     | 5 U       | 1 U     | 1 U       | 5 U     | 5 U         | 5 UJ    | 5 UJ        | 5 U     | 5 U         | 5 U        | 1 U        | 5 U        | 5 UJ       | 5 U        |
| Carbon disulfide               | 800                 |         |           | 2 U     | 2 U       | 10 U    | 10 U        | 10 U    | 10 U        | 10 U    | 10 U        |            | 2 U        | 10 U       | 10 U       | 10 U       |



| Location:                 |                     |         | MW-3-35   |         |           |         |             |         |             |         |             |            |            | MW-4-34    |            |            |
|---------------------------|---------------------|---------|-----------|---------|-----------|---------|-------------|---------|-------------|---------|-------------|------------|------------|------------|------------|------------|
| Sample Name:              | MTCA <sup>(a)</sup> | MW-3-35 | MW-DUP-35 | MW-3-35 | MW-DUP-35 | MW-3-35 | MW-3-35-DUP | MW-3-35 | MW-3-35-DUP | MW-3-35 | MW-3-35-DUP | MW-4-34    | MW-4-34    | MW-4-34    | MW-4-34    | MW-4-34    |
| Collection Date:          |                     | 11/28   | 3/2016    | 02/24   | 4/2017    | 02/1    | 5/2018      | 02/2    | 1/2019      | 10/2    | 28/2019     | 11/28/2016 | 02/24/2017 | 02/14/2018 | 02/21/2019 | 10/29/2019 |
| Carbon tetrachloride      | 0.625               | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Chlorobenzene             | 160                 | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| Chlorobromomethane        | NV                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Chloroethane              | NV                  | 5 U     | 5 U       | 1 U     | 1 U       | 5 U     | 5 U         | 5 U     | 5 U         | 5 U     | 5 U         | 5 U        | 1 U        | 10 U       | 5 U        | 5 U        |
| Chloroform                | 1.41                | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Chloromethane             | NV                  | 5 U     | 5 U       | 1 U     | 1 U       | 5 U     | 5 U         | 5 U     | 5 U         | 5 U     | 5 U         | 5 U        | 1 U        | 5 U        | 5 U        | 5 U        |
| cis-1,2-Dichloroethene    | 16                  | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| cis-1,3-Dichloropropene   | NV                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Dibromochloromethane      | 0.521               | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Dibromomethane            | 80                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Dichlorodifluoromethane   | 1,600               | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Ethylbenzene              | 700                 | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| Freon 113                 | 240,000             |         |           | 1 U     | 1 U       |         |             |         |             |         |             |            | 1 U        |            |            |            |
| Hexachlorobutadiene       | 0.561               | 5 U     | 5 U       | 1 U     | 1 U       | 5 U     | 5 U         | 5 U     | 5 U         | 5 U     | 5 U         | 5 U        | 1 U        | 5 U        | 5 U        | 5 U        |
| Isopropylbenzene          | 800                 | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| m,p-Xylene                | 1,000               | 1 U     | 1 U       | 2 U     | 2 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 2 U        | 1 U        | 1 U        | 1 U        |
| Methyl tert-butyl ether   | 20                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Methylene chloride        | 5                   | 3 U     | 3 U       | 20 U    | 20 U      | 3 U     | 3 U         | 3 U     | 3 U         | 3 U     | 3 U         | 3 U        | 20 U       | 3 U        | 3 U        | 10 U       |
| Naphthalene               | 160                 | 2 U     | 2 U       | 1 U     | 1 U       | 148     | 147         | 217     | 216         | 105     | 103         | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        |
| n-Butylbenzene            | 400                 | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| n-Propylbenzene           | 800                 | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| o-Xylene                  | 1,600               | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U   | 0.5 U       | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |
| sec-Butylbenzene          | 800                 | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Styrene                   | 1,600               | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| tert-Butylbenzene         | 800                 | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Tetrachloroethene         | 5                   | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| Toluene                   | 1,000               | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| trans-1,2-dichloroethene  | 160                 | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| trans-1,3-Dichloropropene | NV                  | 1 U     | 1 U       | 1 U     | 1 U       | 1 U     | 1 U         | 1 U     | 1 U         | 1 U     | 1 U         | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |
| Trichloroethene           | 5                   | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |
| Trichlorofluoromethane    | 2,400               | 2 U     | 2 U       | 1 U     | 1 U       | 2 U     | 2 U         | 2 U     | 2 U         | 2 U     | 2 U         | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        |
| Vinyl chloride            | 0.2                 | 0.5 U   | 0.5 U     | 1 U     | 1 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.4 U   | 0.4 U       | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |



| Location:                       |                     |          |           |          |           | ١        | MW-3-35     |          |             |         |             |            |            | MW-4-34    |            |            |
|---------------------------------|---------------------|----------|-----------|----------|-----------|----------|-------------|----------|-------------|---------|-------------|------------|------------|------------|------------|------------|
| Sample Name:                    | MTCA <sup>(a)</sup> | MW-3-35  | MW-DUP-35 | MW-3-35  | MW-DUP-35 | MW-3-35  | MW-3-35-DUP | MW-3-35  | MW-3-35-DUP | MW-3-35 | MW-3-35-DUP | MW-4-34    | MW-4-34    | MW-4-34    | MW-4-34    | MW-4-34    |
| Collection Date:                |                     | 11/28    | /2016     | 02/24    | /2017     | 02/1     | 5/2018      | 02/2     | 1/2019      | 10/2    | 8/2019      | 11/28/2016 | 02/24/2017 | 02/14/2018 | 02/21/2019 | 10/29/2019 |
| Polycyclic Aromatic Hydrocarbor | ns (ug/L)           |          |           |          |           |          |             |          |             |         |             |            |            |            |            |            |
| 1-Methylnaphthalene             | NV <sup>(d)</sup>   | 0.326 J  | 1.11 J    | 1.04     | 1.09      | 27.2     | 21          | 33.4     | 23.7        | 12.8    | 13.8        | 0.0784 U   | 0.0506 U   | 0.0769 U   | 0.0792 U   | 0.092 U    |
| 2-Methylnaphthalene             | NV <sup>(d)</sup>   | 0.124 J  | 0.613 J   | 0.697    | 0.894     | 35.6     | 27.4        | 39.8     | 26.6        | 2.03    | 2.1         | 0.0784 U   | 0.0506 U   | 0.0769 U   | 0.0792 U   | 0.092 U    |
| Acenaphthene                    | 960                 | 3.25 J   | 6.69 J    | 15.2     | 15.8      | 113      | 88.7        | 134      | 93.3        | 62.5    | 71.4        | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.112      | 0.13       |
| Acenaphthylene                  | NV                  | 0.0404 U | 0.0408 U  | 0.129    | 0.0936    | 0.495 U  | 0.4 U       | 0.522 U  | 0.422 U     | 0.444 U | 0.426 U     | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Anthracene                      | 4,800               | 0.114 J  | 0.173 J   | 0.439    | 0.457     | 1.14     | 1.07        | 1.91     | 1.28        | 1.02    | 1.04        | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Benzo(a)anthracene              | NV <sup>(e)</sup>   | 0.0404 U | 0.0408 U  | 0.0643   | 0.0624    | 0.249 J  | 0.253 J     | 0.153 J  | 0.0717 J    | 0.444 U | 0.426 U     | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Benzo(a)pyrene                  | 0.1                 | 0.0404 U | 0.0408 U  | 0.0536 U | 0.052 U   | 0.0553   | 0.0561      | 0.0444 U | 0.0444 U    | 0.444 U | 0.426 U     | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Benzo(b)fluoranthene            | NV <sup>(e)</sup>   | 0.0404 U | 0.0408 U  | 0.0536 U | 0.052 U   | 0.108 J  | 0.101 J     | 0.0444 U | 0.0444 U    | 0.444 U | 0.426 U     | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Benzo(ghi)perylene              | NV                  | 0.0404 U | 0.0408 U  | 0.0536 U | 0.052 U   | 0.0396 U | 0.04 U      | 0.0444 U | 0.0444 U    | 0.444 U | 0.426 U     | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Benzo(k)fluoranthene            | NV <sup>(e)</sup>   | 0.0404 U | 0.0408 U  | 0.0536 U | 0.052 U   | 0.0461 J | 0.0454 J    | 0.0444 U | 0.0444 U    | 0.444 U | 0.426 U     | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Chrysene                        | NV <sup>(e)</sup>   | 0.0404 U | 0.0408 U  | 0.0536 U | 0.052 U   | 0.234 J  | 0.226 J     | 0.123 J  | 0.0527 J    | 0.444 U | 0.426 U     | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Dibenzo(a,h)anthracene          | NV <sup>(e)</sup>   | 0.0404 U | 0.0408 U  | 0.0536 U | 0.052 U   | 0.0396 U | 0.04 U      | 0.0444 U | 0.0444 U    | 0.444 U | 0.426 U     | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Dibenzofuran                    | 16                  | 1.71 J   | 3.04 J    |          |           | 40       | 31.8        | 51.7     | 34.9        | 20      | 23.5        | 0.0392 U   |            | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Fluoranthene                    | 640                 | 0.691 J  | 0.969 J   | 2.71     | 2.54      | 6.41     | 6.26        | 5.97 J   | 3.52 J      | 2.53    | 3.15        | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Fluorene                        | 640                 | 0.0854 J | 0.32 J    | 1.47     | 1.65      | 37.1     | 31.9        | 50.4     | 32.4        | 20.8    | 24.6        | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Indeno(1,2,3-cd)pyrene          | NV <sup>(e)</sup>   | 0.0404 U | 0.0408 U  | 0.0536 U | 0.052 U   | 0.0396 U | 0.04 U      | 0.0444 U | 0.0444 U    | 0.444 U | 0.426 U     | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Naphthalene                     | 160                 | 0.87 J   | 3.66 J    | 2.95     | 3.23      | 97.5     | 75.2        | 115      | 83.5        | 25.8    | 28.6        | 0.0784 U   | 0.0506 U   | 0.0769 U   | 0.127      | 0.126      |
| Phenanthrene                    | NV                  | 1.32 J   | 2.44 J    | 5.86     | 6.08      | 50.4     | 47.7        | 55       | 36          | 21.9    | 27          | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.047      |
| Pyrene                          | 480                 | 0.387 J  | 0.542 J   | 1.68     | 1.85      | 3.51     | 3.44        | 3.22 J   | 1.82 J      | 1.31    | 1.64        | 0.0392 U   | 0.0506 U   | 0.0385 U   | 0.0396 U   | 0.046 U    |
| Naphthalenes <sup>(f)</sup>     | 160                 | 1.32     | 5.38      | 4.69     | 5.21      | 160      | 124         | 188      | 134         | 40.6    | 44.5        | ND         | ND         | ND         | 0.206      | 0.218      |
| CPAH TTEC <sup>(g)</sup>        | 0.1                 | ND       | ND        | 0.0442   | 0.0429    | 0.102 J  | 0.102 J     | 0.0476 J | 0.0388 J    | ND      | ND          | ND         | ND         | ND         | ND         | ND         |



| Location:                        |                      |            |            | MW-5-35    |            |            |            | MW-6       |            |
|----------------------------------|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sample Name:                     | MTCA <sup>(a)</sup>  | MW-5-35    | MW-5-35    | MW-5-35    | MW-5-35    | MW-5-35    | MW-6       | MW-6-30    | MW-6-30    |
| Collection Date:                 | 1                    | 11/28/2016 | 02/24/2017 | 02/14/2018 | 02/21/2019 | 10/29/2019 | 08/02/2018 | 02/21/2019 | 10/28/2019 |
| Total Petroleum Hydrocarbons (ug | μ<br>γ/L)            |            |            |            |            |            |            |            |            |
| Gasoline-range                   | 1,000 <sup>(b)</sup> | 100 U      |
| Diesel-range                     | 500                  | 200 U      | 81.5 U     | 190 U      | 202 U      | 202 U      | 211 U      | 222 U      | 217 U      |
| Oil-range                        | 500                  | 400 U      | 204 U      | 939        | 404 U      | 404 U      | 1,760      | 444 U      | 435 U      |
| Diesel + Oil <sup>(c)</sup>      | 500                  | ND         | ND         | 1,034      | ND         | ND         | 1,866      | ND         | ND         |
| Total Metals (ug/L)              |                      |            |            |            |            |            |            |            |            |
| Antimony                         | 6.4                  | 1 U        | 0.5 U      | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Arsenic                          | 5                    | 1.77       | 2.33       | 3.8        | 6.01       | 7.46       | 1 U        | 1 U        | 1 U        |
| Beryllium                        | 32                   | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |            | 0.2 U      | 0.2 U      |
| Cadmium                          | 5                    | 0.333      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |            | 0.2 U      | 0.2 U      |
| Chromium                         | 50                   | 1 U        | 0.529      | 1 U        | 1 U        | 2.94       |            | 1 U        | 1 U        |
| Chromium (hexavalent)            | 48                   | 5 UJ       | 2 UJ       | 5 UJ       |            |            |            |            |            |
| Copper                           | 640                  | 1.92       | 0.576      | 1 U        | 1 U        | 5.04       |            | 1 U        | 1.23       |
| Lead                             | 15                   | 0.2 U      | 0.1 U      | 0.322      | 0.2 U      | 3.23       | 2.96       | 0.2 U      | 0.51       |
| Mercury                          | 2                    | 0.08 U     | 0.1 U      | 0.08 U     | 0.08 U     | 0.08 U     |            | 0.08 U     | 0.08 U     |
| Nickel                           | 320                  | 8.89       | 6.22       | 1 U        | 1 U        | 5.26       |            | 1 U        | 1 U        |
| Selenium                         | 80                   | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Silver                           | 80                   | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |            | 0.2 U      | 0.2 U      |
| Thallium                         | 0.16                 | 0.2 U      | 0.5 U      | 0.2 U      | 0.2 U      | 0.2 U      |            | 0.2 U      | 0.2 U      |
| Zinc                             | 4,800                | 18.7       | 3.5        | 4 U        | 4 U        | 24.1       |            | 4 U        | 4 UJ       |
| Dissolved Metals (ug/L)          |                      |            |            |            |            |            |            |            |            |
| Antimony                         | 6.4                  | 1 U        | 0.5 U      | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Arsenic                          | 5                    | 1 U        | 2.48       | 3.67       | 5.18       | 5.63       | 1 U        | 1 U        | 1 U        |
| Beryllium                        | 32                   | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |            | 0.2 U      | 0.2 U      |
| Cadmium                          | 5                    | 0.489      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |            | 0.2 U      | 0.2 U      |
| Chromium                         | 50                   | 1 U        | 0.405      | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Chromium (hexavalent)            | 48                   |            |            |            | 5 U        |            |            | 5 U        |            |
| Copper                           | 640                  | 1.16       | 0.5 U      | 1 U        | 1 U        | 1 U        |            | 1 U        | 1.23       |
| Lead                             | 15                   | 0.2 U      | 0.1 U      | 0.289      | 0.2 U      |
| Mercury                          | 2                    | 0.08 U     | 0.1 U      | 0.08 U     | 0.08 U     | 0.08 U     |            | 0.08 U     | 0.08 U     |
| Nickel                           | 320                  | 11.1       | 5.9        | 1 U        | 1 U        | 3.65       |            | 1 U        | 1 U        |
| Selenium                         | 80                   | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Silver                           | 80                   | 0.2 U      | 0.1 U      | 0.2 U      | 0.2 U      | 0.2 U      |            | 0.2 U      | 0.2 U      |
| Thallium                         | 0.16                 | 0.2 U      | 0.5 U      | 0.2 U      | 0.2 U      | 0.2 U      |            | 0.2 U      | 0.2 U      |
| Zinc                             | 4,800                | 17.3       | 3.42       | 4 U        | 4 U        | 10.3       |            | 4 U        | 10.7 J     |



| Location:                      |                     |            |            | MW-5-35    |            |            |            | MW-6       |            |
|--------------------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sample Name:                   | MTCA <sup>(a)</sup> | MW-5-35    | MW-5-35    | MW-5-35    | MW-5-35    | MW-5-35    | MW-6       | MW-6-30    | MW-6-30    |
| Collection Date:               | 1                   | 11/28/2016 | 02/24/2017 | 02/14/2018 | 02/21/2019 | 10/29/2019 | 08/02/2018 | 02/21/2019 | 10/28/2019 |
| Volatile Organic Compounds (ug | /L)                 |            |            |            |            |            |            |            |            |
| 1,1,1,2-Tetrachloroethane      | 1.68                | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |            | 0.4 U      | 0.4 U      |
| 1,1,1-Trichloroethane          | 200                 | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |            | 0.4 U      | 0.4 U      |
| 1,1,2,2-Tetrachloroethane      | 0.219               | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |            | 0.5 U      | 0.5 U      |
| 1,1,2-Trichloroethane          | 0.768               | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |            | 0.5 U      | 0.5 U      |
| 1,1-Dichloroethane             | 7.68                | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |            | 0.4 U      | 0.4 U      |
| 1,1-Dichloroethene             | 400                 | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |            | 0.4 U      | 0.4 U      |
| 1,1-Dichloropropene            | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| 1,2,3-Trichlorobenzene         | NV                  | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        |            | 2 U        | 2 U        |
| 1,2,3-Trichloropropane         | 0.00146             | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| 1,2,4-Trichlorobenzene         | 1.51                | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        |            | 2 U        | 2 U        |
| 1,2,4-Trimethylbenzene         | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| 1,2-Dibromo-3-chloropropane    | 0.0547              | 5 U        | 1 U        | 5 U        | 5 U        | 5 U        |            | 5 U        | 5 U        |
| 1,2-Dibromoethane              | 0.01                | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |            | 0.5 U      | 0.5 U      |
| 1,2-Dichlorobenzene            | 720                 | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |            | 0.5 U      | 0.5 U      |
| 1,2-Dichloroethane             | 5                   | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |            | 0.4 U      | 0.4 U      |
| 1,2-Dichloropropane            | 1.22                | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |            | 0.5 U      | 0.5 U      |
| 1,3,5-Trimethylbenzene         | 80                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| 1,3-Dichlorobenzene            | NV                  | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |            | 0.5 U      | 0.5 U      |
| 1,3-Dichloropropane            | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| 1,4-Dichlorobenzene            | 8.1                 | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |            | 0.5 U      | 0.5 U      |
| 2,2-Dichloropropane            | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| 2-Butanone                     | 4,800               | 10 U       |            | 10 U       | 10 U       |
| 2-Chlorotoluene                | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| 2-Hexanone                     | NV                  | 10 U       |            | 10 U       | 10 U       |
| 4-Chlorotoluene                | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| 4-Isopropyltoluene             | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| 4-Methyl-2-pentanone           | 640                 | 10 U       | 20 U       | 10 U       | 10 U       | 10 U       |            | 10 U       | 10 U       |
| Acetone                        | 7,200               | 20 U       | 50 U       | 20 U       | 20 U       | 20 U       |            | 20 U       | 20 U       |
| Acrylonitrile                  | 0.081               |            | 5 U        | 2 U        | 2 U        | 2 U        |            | 2 U        | 2 U        |
| Benzene                        | 5                   | 0.2 U      | 0.3 U      | 0.2 U      | 0.2 U      | 0.2 U      |            | 0.2 U      | 0.2 U      |
| Bromobenzene                   | NV                  | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |            | 0.5 U      | 0.5 U      |
| Bromodichloromethane           | 0.706               | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Bromoform                      | 5.54                | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Bromomethane                   | 11.2                | 5 U        | 1 U        | 5 U        | 5 U        | 5 U        |            | 5 U        | 5 U        |
| Carbon disulfide               | 800                 |            | 2 U        | 10 U       | 10 U       | 10 U       |            | 10 U       | 10 U       |



| Location:                 |                     |            |            | MW-5-35    |            |            |            | MW-6       |            |
|---------------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sample Name:              | MTCA <sup>(a)</sup> | MW-5-35    | MW-5-35    | MW-5-35    | MW-5-35    | MW-5-35    | MW-6       | MW-6-30    | MW-6-30    |
| Collection Date:          |                     | 11/28/2016 | 02/24/2017 | 02/14/2018 | 02/21/2019 | 10/29/2019 | 08/02/2018 | 02/21/2019 | 10/28/2019 |
| Carbon tetrachloride      | 0.625               | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Chlorobenzene             | 160                 | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |            | 0.5 U      | 0.5 U      |
| Chlorobromomethane        | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Chloroethane              | NV                  | 5 U        | 1 U        | 5 U        | 5 UJ       | 5 U        |            | 5 UJ       | 5 U        |
| Chloroform                | 1.41                | 1 U        | 1          | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Chloromethane             | NV                  | 5 U        | 1 U        | 5 U        | 5 U        | 5 U        |            | 5 U        | 5 U        |
| cis-1,2-Dichloroethene    | 16                  | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |            | 0.4 U      | 0.4 U      |
| cis-1,3-Dichloropropene   | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Dibromochloromethane      | 0.521               | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Dibromomethane            | 80                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Dichlorodifluoromethane   | 1,600               | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Ethylbenzene              | 700                 | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |            | 0.5 U      | 0.5 U      |
| Freon 113                 | 240,000             |            | 1 U        |            |            |            |            |            |            |
| Hexachlorobutadiene       | 0.561               | 5 U        | 1 U        | 5 U        | 5 U        | 5 U        |            | 5 U        | 5 U        |
| Isopropylbenzene          | 800                 | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| m,p-Xylene                | 1,000               | 1 U        | 2 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Methyl tert-butyl ether   | 20                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Methylene chloride        | 5                   | 3 U        | 20 U       | 3 U        | 3 U        | 10 U       |            | 3 U        | 10 U       |
| Naphthalene               | 160                 | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        |            | 2 U        | 2 U        |
| n-Butylbenzene            | 400                 | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| n-Propylbenzene           | 800                 | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |            | 0.5 U      | 0.5 U      |
| o-Xylene                  | 1,600               | 0.5 U      | 1 U        | 0.5 U      | 0.5 U      | 0.5 U      |            | 0.5 U      | 0.5 U      |
| sec-Butylbenzene          | 800                 | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Styrene                   | 1,600               | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| tert-Butylbenzene         | 800                 | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Tetrachloroethene         | 5                   | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |            | 0.4 U      | 0.4 U      |
| Toluene                   | 1,000               | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| trans-1,2-dichloroethene  | 160                 | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |            | 0.4 U      | 0.4 U      |
| trans-1,3-Dichloropropene | NV                  | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        |            | 1 U        | 1 U        |
| Trichloroethene           | 5                   | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |            | 0.4 U      | 0.4 U      |
| Trichlorofluoromethane    | 2,400               | 2 U        | 1 U        | 2 U        | 2 U        | 2 U        |            | 2 U        | 2 U        |
| Vinyl chloride            | 0.2                 | 0.5 U      | 1 U        | 0.4 U      | 0.4 U      | 0.4 U      |            | 0.4 U      | 0.4 U      |



| Location:                       |                     |            |            | MW-5-35    |            |            |            | MW-6       |            |
|---------------------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sample Name:                    | MTCA <sup>(a)</sup> | MW-5-35    | MW-5-35    | MW-5-35    | MW-5-35    | MW-5-35    | MW-6       | MW-6-30    | MW-6-30    |
| Collection Date:                |                     | 11/28/2016 | 02/24/2017 | 02/14/2018 | 02/21/2019 | 10/29/2019 | 08/02/2018 | 02/21/2019 | 10/28/2019 |
| Polycyclic Aromatic Hydrocarbor | ns (ug/L)           |            |            |            |            |            |            |            |            |
| 1-Methylnaphthalene             | NV <sup>(d)</sup>   | 0.0784 U   | 0.0524 U   | 0.0755 U   | 0.0842 U   | 0.086 U    | 0.08 U     | 0.0842 U   | 0.0833 U   |
| 2-Methylnaphthalene             | NV <sup>(d)</sup>   | 0.0784 U   | 0.0524 U   | 0.0755 U   | 0.0842 U   | 0.086 U    | 0.08 U     | 0.0842 U   | 0.0833 U   |
| Acenaphthene                    | 960                 | 0.0392 U   | 0.0524 U   | 0.0477     | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0455     |
| Acenaphthylene                  | NV                  | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Anthracene                      | 4,800               | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Benzo(a)anthracene              | NV <sup>(e)</sup>   | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Benzo(a)pyrene                  | 0.1                 | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Benzo(b)fluoranthene            | NV <sup>(e)</sup>   | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Benzo(ghi)perylene              | NV                  | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Benzo(k)fluoranthene            | NV <sup>(e)</sup>   | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Chrysene                        | NV <sup>(e)</sup>   | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Dibenzo(a,h)anthracene          | NV <sup>(e)</sup>   | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Dibenzofuran                    | 16                  | 0.0392 U   |            | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Fluoranthene                    | 640                 | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Fluorene                        | 640                 | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Indeno(1,2,3-cd)pyrene          | NV <sup>(e)</sup>   | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Naphthalene                     | 160                 | 0.0784 U   | 0.0524 U   | 0.0815     | 0.0842 U   | 0.086 U    | 0.08 U     | 0.0842 U   | 0.0833 U   |
| Phenanthrene                    | NV                  | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Pyrene                          | 480                 | 0.0392 U   | 0.0524 U   | 0.0377 U   | 0.0421 U   | 0.043 U    | 0.04 U     | 0.0421 U   | 0.0417 U   |
| Naphthalenes <sup>(f)</sup>     | 160                 | ND         |
| cPAH TTEC <sup>(g)</sup>        | 0.1                 | ND         |



#### NOTES:

Shading indicates CUL exceedance.

-- = not analyzed.

cPAH = carcinogenic polycyclic aromatic hydrocarbon.

CUL = cleanup level.

ft bgs = feet below ground surface.

J = estimated result.

MTCA = Model Toxics Control Act.

ND = not detected above method reporting limit.

NV = no value.

TTEC = total toxicity equivalent concentration.

U = not detected at or above method reporting limit.

ug/L = micrograms per liter.

UJ = estimated, non-detect.

<sup>(a)</sup>MTCA A CUL unless no value, then lowest of MTCA B carcinogenic/noncarcinogenic.

<sup>(b)</sup>MTCA CUL, no detectable benzene.

<sup>(c)</sup>Diesel + Oil = sum of diesel-range hydrocarbons and oil-range hydrocarbons; half of the reporting limit is used when results are not detected.

<sup>(d)</sup>Analyte is evaluated against MTCA A CUL as constituent of naphthalenes. MTCA B CUL is not applicable.

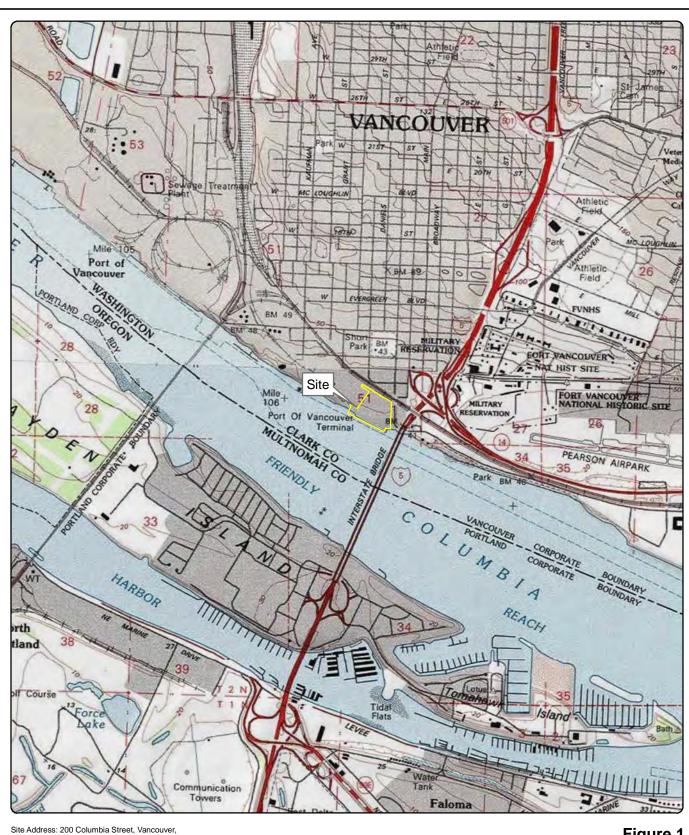
<sup>(e)</sup>Analyte is evaluated against MTCA A CUL as constituent of cPAH TTEC. MTCA B CUL is not applicable.

<sup>(f)</sup>The sum of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene, with half the reporting limit value for non-detect results.

<sup>(9)</sup>The sum of the seven defined cPAHs, with half the reporting limit used for non-detect results.

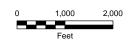


#### Table 2 Groundwater Elevations Port of Vancouver Terminal 1 Vancouver, Washington


| Location                                | TOC Reference<br>Elevation<br>(feet) | Date               | Water Level<br>(feet below TOC) | Water Level<br>Elevation<br>(feet) |
|-----------------------------------------|--------------------------------------|--------------------|---------------------------------|------------------------------------|
|                                         |                                      | 11/28/2016         | 20.76                           | 8.30                               |
|                                         |                                      | 02/23/2017         | 16.94                           | 12.12                              |
| MW-1-37                                 | 29.06                                | 02/14/2018         | 20.34                           | 8.72                               |
|                                         |                                      | 02/21/2019         | 22.34                           | 6.72                               |
|                                         |                                      | 10/28/2019         | 25.12                           | 3.94                               |
|                                         |                                      | 11/28/2016         | 29.62                           | 1.91                               |
|                                         |                                      | 02/23/2017         | 20.74                           | 10.79                              |
| MW-2-40                                 | 31.53                                | 02/14/2018         | 20.10                           | 11.43                              |
|                                         |                                      | 02/21/2019         | 26.60                           | 4.93                               |
|                                         |                                      | 10/28/2019         | 28.83                           | 2.70                               |
|                                         |                                      | 11/28/2016         | 21.63                           | 8.87                               |
|                                         |                                      | 02/23/2017         | 17.51                           | 12.99                              |
| MW-3-35                                 | 30.50                                | 02/14/2018         | 22.20                           | 8.30                               |
|                                         |                                      | 02/21/2019         | 23.97                           | 6.53                               |
|                                         |                                      | 10/28/2019         | 26.72                           | 3.78                               |
|                                         |                                      | 11/28/2016         | 23.10                           | 8.24                               |
|                                         |                                      | 02/23/2017         | 18.89                           | 12.45                              |
| MW-4-34                                 | 31.34                                | 02/14/2018         | 22.57                           | 8.77                               |
|                                         |                                      | 02/21/2019         | 24.63                           | 6.71                               |
|                                         |                                      | 10/28/2019         | 27.07                           | 4.27                               |
|                                         |                                      | 11/28/2016         | 23.84                           | 8.26                               |
|                                         |                                      | 02/23/2017         | 19.57                           | 12.53                              |
| MW-5-35                                 | 32.10                                | 02/14/2018         | 23.28                           | 8.82                               |
|                                         |                                      | 02/21/2019         | 25.22                           | 6.88                               |
|                                         |                                      | 10/28/2019         | 27.37                           | 4.73                               |
|                                         | 22.20                                | 02/21/2019         | 26.72                           | 6.66                               |
| MW-6-30                                 | 33.38                                | 10/28/2019         | 29.46                           | 3.92                               |
| NOTES:<br>Elevation dat<br>TOC = top of | um is National Geodetic<br>casing.   | c Vertical Datum 1 | 929.                            |                                    |

# FIGURES










#### Figure 1 **Terminal 1 Location**

Port of Vancouver Vancouver, Washington





This prod for legal, e consult th

Washington Source: Taxlots obtained from Clark County GIS,

MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

luct is for informational purposes and may not have been prepared for, or be suitable engineering, or surveying purposes. Users of this information should review or se primary data and information sources to ascertain the usability of the information.

US Geological Survey (1990) 7.5-minute topographic quadrangle: Portland Section DLC51, Township 2 North, Range 1 East



Legend

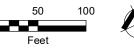
Blocks

Tax Lot

Water Level Monitoring Network Well (with Groundwater Elevation in Feet, City of Vancouver Datum)

Shallow Groundwater Elevation Contour (0.25 feet)

- Groundwater Flow Direction


Source: Aerial photograph (2016) and tax lots (2016) obtained from Clark County GIS; Monitoring well locations are approximate. (HAI. 2016. Subsurface investigation report, Port of Vancouver, USA – Terminal 1 Property. Hahn and Associates, Inc. May 18.)



This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

# Figure 2 Groundwater Elevation October 28, 2019

Port of Vancouver Vancouver, Washington





# ATTACHMENT A HAI ANALYTICAL TABLES



Port of Vancouver, USA Terminal 1 Property Vancouver, WA

|                                                  |                          |                  |                                    |                              |                                  |                               | E & E (2008 Sample) |                      |                      |                      | HAI (2015 and        | I 2016 Samples)                         |                    |                  |                     |
|--------------------------------------------------|--------------------------|------------------|------------------------------------|------------------------------|----------------------------------|-------------------------------|---------------------|----------------------|----------------------|----------------------|----------------------|-----------------------------------------|--------------------|------------------|---------------------|
|                                                  |                          |                  |                                    |                              |                                  | Well Location =>              | SB03 <sup>4</sup>   |                      | MW-1-37              |                      | MM                   | /-2-40                                  | MW-3-35            |                  |                     |
|                                                  |                          |                  |                                    |                              |                                  | Screen Interval (feet bgs) => | 24 - 29             |                      | 27 - 37              |                      |                      | ) - 40                                  |                    | 25 - 35          |                     |
|                                                  |                          |                  |                                    |                              |                                  | Sample Number =>              | GW003 (24 - 29)     | 8832-150616-102      | 8832-150616-103 (DUF | 8832-160210-105      | 8832-150617-107      | -                                       | 8832-150616-100    |                  | 8832-160209-103 (DU |
|                                                  |                          |                  |                                    |                              |                                  | Sample Number =>              | 25-Nov-08           | 16-Jun-15            | 16-Jun-15            | 10-Feb-16            | 17-Jun-15            | 10-Feb-16                               | 16-Jun-15          | 9-Feb-16         | 9-Feb-16            |
|                                                  | WA Method                |                  |                                    | WDOE Vapor                   | WDOE Vapor                       |                               | 25-1100-06          | 10-Juli-15           | 10-Jun-15            | 10-Feb-16            | 17-Jun-15            | 10-Feb-16                               | 16-Juli-15         | 9-Feb-16         | 9-Feb-10            |
|                                                  | A Cleanup                | WA Method        |                                    | Intrusion                    | Intrusion                        |                               |                     |                      |                      |                      |                      |                                         |                    |                  |                     |
|                                                  | for Benzen               |                  | B Ground                           | Screening                    | Screening                        |                               |                     |                      |                      |                      | Analytic             | al Results                              |                    |                  |                     |
|                                                  | Groundwater (Non Dete    | ect) Water Cance | r Water Non<br>Cancer <sup>2</sup> | Level<br>Cancer <sup>3</sup> | Level<br>Non Cancer <sup>3</sup> | <sup>3</sup> Units            |                     |                      |                      |                      |                      |                                         |                    |                  |                     |
|                                                  |                          |                  | Gancer                             | Gancer                       | Non Gancer                       | Units                         |                     |                      |                      |                      |                      |                                         |                    |                  |                     |
| Total and Dissolved Metals                       | by EPA Method 6020       |                  |                                    | •                            | -                                |                               |                     |                      |                      |                      |                      |                                         |                    |                  | 1                   |
| Antimony<br>Arsenic                              | -                        | 0.0593           | 6.4                                |                              |                                  | µg/L                          | U                   | 0.5 U                | -                    | 1 U                  | 0.989 J              | 1 U                                     | 0.5 U              | 1 U<br>6.56      | 1 U<br>6.44         |
| Arsenic (filtered)                               | 5                        | 0.0583           | 4.8                                |                              |                                  | μg/L<br>μg/L                  | 3.6<br>-            | 3.48                 |                      | 3.76                 | 14<br>1.22           | 2.19                                    | 4.53               | 0.00             | 4.07                |
| Beryllium                                        |                          |                  | 32                                 |                              |                                  | μg/L                          | U                   | 0.1 U                | -                    | 0.2 U                | 1.01                 | 0.2 U                                   | 0.1 U              | 0.2 U            | 0.2 U               |
| Cadmium                                          | 5                        |                  | 8                                  |                              |                                  | µg/L                          | U                   | 0.04 U               | -                    | 0.2 U                | 0.689                | 0.2 U                                   | 0.1 J              | 0.2 U            | 0.2 U               |
| Chromium (VI)                                    |                          |                  | 48                                 |                              |                                  | μg/L                          | -                   | 5 H UJ               | -                    | 5 U                  | 7                    | 5 U                                     | 5 H UJ             | 5 U              | 0.0061              |
| Chromium (III+VI)                                | 50                       |                  |                                    |                              |                                  | µg/L                          | 20.5                | 0.5 U                | -                    | 1 U                  | 319                  | 1 U                                     | 0.5 U              | 1 U              | 1 U                 |
| Chromium (III+VI) (filtered)                     | 50                       |                  |                                    |                              |                                  | μg/L                          | -                   | -                    | -                    | _                    | 0.5 U                | -                                       | -                  | -                | _                   |
| Copper                                           |                          |                  | 320                                |                              |                                  | μg/L                          | 32.2                | 0.589 J              | -                    | 1 U                  | 140                  | 4.26                                    | 1.71 J             | 1.49             | 1.89                |
| Lead                                             | 15                       |                  |                                    |                              |                                  | µg/L                          | 7.36                | 0.1 J                | -                    | 0.2 U                | 34.4                 | 0.211                                   | 0.267              | 0.211            | 0.211               |
| Lead (filtered)                                  | 15                       |                  |                                    |                              |                                  | μg/L                          | -                   | -                    | -                    | -                    | 0.1 U                | -                                       | -                  | -                | -                   |
| Mercury<br>Nickel                                | 2                        |                  | 320                                |                              | 0.89                             | µg/L                          | U<br>13             | 0.04 U<br>0.778 J    |                      | 0.08 U<br>1 U        | 0.0831<br>52         | 0.08 U<br>3.21                          | 0.04 U<br>8.91     | 0.08 U<br>7.51   | 0.08 U<br>7.84      |
| Selenium                                         | <u> </u>                 |                  | 320<br>80                          |                              |                                  | μg/L<br>μg/L                  |                     | 0.778 J<br>0.667 J   | -                    | 10                   | 2.01                 | 3.21<br>1 U                             | 8.91<br>0.978 J    | 7.51<br>1 U      | 1.84<br>1 U         |
| Silver                                           |                          |                  | 80                                 |                              | 1                                | μg/L                          | U                   | 0.1 U                | -                    | 0.2 U                | 0.233                | 0.2 U                                   | 0.1 U              | 0.2 U            | 0.2 U               |
| Thallium                                         |                          |                  | 0.16                               |                              |                                  | μg/L                          | U                   | 0.1 U                | -                    | 0.2 U                | 0.233                | 0.2 U                                   | 0.1 U              | 0.2 U            | 0.2 U               |
| Zinc                                             |                          |                  | 4,800                              |                              |                                  | μg/L                          | 76.1                | 2 U                  | -                    | 4 U                  | 103                  | 4 U                                     | 12.7               | 33.5             | 33.5                |
| Polyaromatic Hydrocarbons                        | s (PAHs) by EPA Method 8 | 270D             |                                    |                              |                                  |                               |                     |                      |                      |                      |                      |                                         |                    |                  |                     |
| 1-Methylnaphthalene                              |                          | 1.51             | 560                                |                              |                                  | µg/L                          | U                   | 0.0415 U             | -                    | 0.0860 U             | 0.0392 U             | 0.182 U                                 | 26.1               | 68.9             | 70.7                |
| 2-Methylnaphthalene                              |                          |                  | 32                                 |                              |                                  | µg/L                          | U                   | 0.0415 U             | -                    | 0.0860 U             | 0.0392 U             | 0.182 U                                 | 49.9 J             | 94.5             | 94.3                |
| Acenaphthene                                     |                          |                  | 960                                |                              |                                  | µg/L                          | U                   | 0.0166 U             | -                    | 0.0430 U<br>0.0430 U | 0.0313 U             | 0.0909 U<br>0.0909 U                    | 85.8<br>5.15       | 223<br>3.60      | 226<br>3.79         |
| Acenaphthylene<br>Anthracene                     |                          |                  | 4.800                              |                              |                                  | μg/L<br>μg/L                  | U                   | 0.0166 U<br>0.0166 U |                      | 0.0430 U             | 0.0157 U<br>0.0157 U | 0.0909 U                                | 0.866              | 2.46             | 2.24                |
| Benz(a)anthracene                                |                          | 0.12             | 4,000                              |                              |                                  | μg/L                          | U                   | 0.0166 U             | -                    | 0.0430 U             | 0.0192 J             | 0.0909 U                                | 0.333 U            | 1.63 U           | 1.34 U              |
| Benzo(a) pyrene                                  | 0.1                      | 0.012            |                                    |                              |                                  | µg/L                          | U                   | 0.0166 U             | -                    | 0.0430 U             | 0.0282 J             | 0.0909 U                                | 0.333 U            | 1.63 U           | 1.34 U              |
| Benzo(b)fluoranthene                             |                          | 0.12             |                                    |                              |                                  | µg/L                          | U                   | 0.0166 U             | -                    | 0.0430 U             | 0.0305 J             | 0.0909 U                                | 0.333 U            | 1.63 U           | 1.34 U              |
| Benzo(g,h,i)perylene                             |                          |                  |                                    |                              |                                  | µg/L                          | U                   | 0.0166 U             | -                    | 0.0430 U             | 0.0219 J             | 0.0909 U                                | 0.333 U            | 1.63 U           | 1.34 U              |
| Benzo(k)fluoranthene<br>Chrysene                 |                          | 1.2              |                                    |                              |                                  | μg/L<br>μg/L                  | UU                  | 0.0166 U<br>0.0166 U | -                    | 0.0430 U<br>0.0430 U | 0.0168 J<br>0.0258 J | 0.0909 U<br>0.0909 U                    | 0.333 U<br>0.333 U | 1.63 U<br>1.63 U | 1.34 U<br>1.34 U    |
| Dibenz(a,h)anthracene                            |                          | 0.012            |                                    |                              |                                  | μg/L                          | U U                 | 0.0166 U             | -                    | 0.0430 U             | 0.0238 J             | 0.0909 U                                | 0.333 U            | 1.63 U           | 1.34 U              |
| Dibenzofuran                                     |                          |                  | 16                                 |                              |                                  | μg/L                          | U                   | 0.0166 U             | -                    | 0.0430 U             | 0.0157 U             | 0.0909 U                                | 34.8 J             | 75.1             | 75.5                |
| Fluoranthene                                     |                          |                  | 640                                |                              |                                  | μg/L                          | U                   | 0.0166 U             | -                    | 0.0430 U             | 0.036                | 0.0995                                  | 2.71               | 10.5             | 10.8                |
| Fluorene                                         |                          |                  | 640                                |                              |                                  | µg/L                          | U                   | 0.0166 U             | -                    | 0.0430 U             | 0.0313               | 0.0909 U                                | 30.4               | 58.5             | 59.3                |
| Indeno(1,2,3-c,d)pyrene                          | 400                      | 0.12             | 400                                | 0.00                         | 407                              | µg/L                          | U                   | 0.0166 U             | -                    | 0.0430 U             | 0.0192 J             | 0.0909 U                                | 0.333 U            | 1.63 U           | 1.34 U              |
| Naphthalene<br>Phenanthrene                      | 160                      |                  | 160                                | 8.93                         | 167                              | μg/L<br>μg/L                  | UUU                 | 0.0627 J<br>0.0415 U | -                    | 0.0860 U<br>0.0430 U | 0.286<br>0.0431 J    | 0.182 U<br>0.0909 U                     | 149<br>33.2        | 464<br>79.2      | 426<br>80.0         |
| Pyrene                                           |                          |                  | 480                                |                              |                                  | μg/L                          | U                   | 0.0166 U             | -                    | 0.0430 U             | 0.0392               | 0.0988                                  | 1.28               | 5.62             | 5.88                |
| Total Carcinogenic PAH                           |                          |                  |                                    |                              |                                  |                               |                     | 0.00004              |                      | 0.0000000015         | 0.00000              | 0.400455.05                             | 0.0000             | 0.00111015       | 0 0000 4 47         |
| TEF Value 6                                      | 0.1                      |                  |                                    |                              |                                  | μg/L                          | U                   | 0.00001              | -                    | 0.000030315          | 0.00002              | 6.40845E-05                             | 0.0002             | 0.00114915       | 0.0009447           |
| Total Petroleum Hydrocarbo                       | ons by NWTPH-Dx and NW   | TPH-Gx           |                                    |                              |                                  |                               |                     |                      |                      |                      |                      |                                         |                    |                  |                     |
| Diesel Range Organics                            | 500                      |                  |                                    |                              |                                  | μg/L                          | U                   | 105 U                | 102 U                | 196 U                | 140 J                | 196 U                                   | 795 F-13           | 858 F-17         | 693 F-17            |
| Oil Range Organics                               | 500                      |                  |                                    |                              |                                  | µg/L                          | U                   | 211 U                | 204 U                | 392 U                | 194 U                | 392 U                                   | 213 U              | 435 U            | 430 U               |
| Gasoline Range Organics                          | 1,000                    |                  |                                    |                              |                                  | μg/L                          | U                   | 50 U                 | -                    | 100 U                | 50 U                 | 100 U                                   | 1,360 F-13         | 1,300 F-13       | 1,340 F-13          |
| Volatile Organic Compounds                       | Is (VOCs) by EPA Method  |                  |                                    |                              |                                  |                               |                     | 0.0511               |                      | ~ =                  | 0.05.11              | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 0.05.11            | 0.511            |                     |
| 1,1,1,2-tetrachloroethane                        | 200                      | 1.68             | 240                                | 7.4                          | 5,240                            | μg/L<br>μg/L                  | UUU                 | 0.25 U<br>0.25 U     |                      | 0.5 U<br>0.5 U       | 0.25 U<br>0.25 U     | 0.5 U<br>0.5 U                          | 0.25 U<br>0.25 U   | 0.5 U<br>0.5 U   | 0.5 U<br>0.5 U      |
| 1,1,2,2-tetrachloroethane                        | 200                      | 0.219            | 16,000                             | 6.2                          | 5,240                            | μg/L                          | U                   | 0.25 U               | -                    | 0.5 U                | 0.25 U               | 0.5 U                                   | 0.25 U             | 0.5 U            | 0.5 U               |
| 1,1,2-trichloroethane                            |                          | 0.768            | 32                                 | 7.71                         | 4.51                             | μg/L                          | U                   | 0.25 U               | -                    | 0.5 U                | 0.25 U               | 0.5 U                                   | 0.25 U             | 0.5 U            | 0.5 U               |
| 1,1-dichloroethane                               |                          | 7.68             | 1,600                              | 11.2                         |                                  | μg/L                          | U                   | 0.25 U               | -                    | 0.5 U                | 0.25 U               | 0.5 U                                   | 0.25 U             | 0.5 U            | 0.5 U               |
| 1,1-dichloroethene                               |                          |                  | 400                                |                              | 130                              | µg/L                          | U                   | 0.25 U               | -                    | 0.5 U                | 0.25 U               | 0.5 U                                   | 0.25 U             | 0.5 U            | 0.5 U               |
| 1,1-dichloropropene                              | <u> </u>                 |                  |                                    |                              |                                  | µg/L                          | U                   | 0.5 U                | -                    | 1 U                  | 0.5 U                | 10                                      | 0.5 U              | 10               | 10                  |
| 1,2,3-trichlorobenzene<br>1,2,3-trichloropropane | <u> </u>                 | 0.00146          | 32                                 |                              |                                  | μg/L<br>μg/L                  | UU                  | 1 U<br>0.5 U         | -                    | 2 U<br>1 U           | 1 U<br>0.5 U         | 2 U<br>2 U                              | 1 U<br>0.5 U       | 2 U<br>1 U       | 2 U<br>1 U          |
| 1,2,4-trichlorobenzene                           |                          | 1.51             | 80                                 | 1                            | 39.2                             | μg/L                          | U                   | 1 U                  | -                    | 2 U                  | 1 U                  | 2 U                                     | 1 U                | 2 U              | 2 U                 |
| 1,2,4-trimethylbenzene                           |                          |                  |                                    |                              | 28.4                             | μg/L                          | U                   | 0.5 U                | -                    | 1 U                  | 0.5 U                | 10                                      | 0.5 U              | 10               | 1 U                 |
| 1,2-dibromo-3-                                   |                          |                  | 1                                  | 1                            | İ                                |                               |                     |                      |                      |                      |                      |                                         |                    |                  |                     |
| chloropropane                                    |                          | 0.0547           | 1.6                                |                              |                                  | µg/L                          | U                   | 2.5 U                | -                    | 5 U                  | 2.5 U                | 5 U                                     | 2.5 U              | 5 U              | 5 U                 |
| 1,2-dibromoethane                                | 0.01                     | 0.0219           | 72                                 |                              | 0.570                            | µg/L                          | U                   | 0.25 U               | -                    | 0.5 U                | 0.25 U               | 0.5 U                                   | 0.25 U             | 0.5 U            | 0.5 U               |
| 1,2-dichlorobenzene<br>1,2-dichloroethane        | 5                        | 0.481            | 720<br>48                          | 4.2                          | 2,570<br>140                     | μg/L<br>μg/l                  | UUU                 | 0.25 U<br>0.25 U     | -                    | 0.5 U<br>0.5 U       | 0.25 U<br>0.25 U     | 0.5 U<br>0.5 U                          | 0.25 U<br>0.25 U   | 0.5 U<br>0.5 U   | 0.5 U<br>0.5 U      |
| 1,2-dichloropropane                              | <b>U</b>                 | 1.22             | 48<br>720                          | 4.2                          | 140<br>28.4                      | μg/L<br>μg/L                  | U                   | 0.25 U               | -                    | 0.5 U                | 0.25 U               | 0.5 U                                   | 0.25 U             | 0.5 U            | 0.5 U<br>0.5 U      |
|                                                  | +                        | 1.66             | 80                                 | 0.00                         | 20.4                             | μg/L                          | U                   | 0.23 U               | -                    | 1 U                  | 0.5 U                | 1 U                                     | 0.5 U              | 1 U              | 1 U                 |
| 1,3,5-trimethylbenzene                           |                          |                  |                                    |                              |                                  | uu/L                          |                     |                      |                      |                      |                      |                                         |                    |                  |                     |

Subsurface Investigation POV - Terminal 1 Property Vancouver, Washington

|                     |                                              |                              |                                                       |                       |                                 |                                                               |                               | E & E (2008 Sample) |                   |                      |                    | HAI (2015 and   | 2016 Samples)   |                 |                 |                     |  |
|---------------------|----------------------------------------------|------------------------------|-------------------------------------------------------|-----------------------|---------------------------------|---------------------------------------------------------------|-------------------------------|---------------------|-------------------|----------------------|--------------------|-----------------|-----------------|-----------------|-----------------|---------------------|--|
|                     |                                              |                              |                                                       |                       |                                 |                                                               |                               | Well Location =>    | SB03 <sup>4</sup> |                      | MW-1-37            |                 | MW              | -2-40           |                 | MW-3-35             |  |
|                     |                                              |                              |                                                       |                       |                                 |                                                               | Screen Interval (feet bgs) => | 24 - 29             |                   | 27 - 37              |                    | 30              | - 40            |                 | 25 - 35         |                     |  |
|                     |                                              |                              |                                                       |                       |                                 |                                                               | Sample Number =>              | GW003 (24 - 29)     | 8832-150616-102   | 8832-150616-103 (DUF | P) 8832-160210-105 | 8832-150617-107 | 8832-160210-104 | 8832-150616-100 | 8832-160209-102 | 8832-160209-103 (DL |  |
|                     |                                              |                              |                                                       |                       |                                 |                                                               | Sample Date =>                | 25-Nov-08           | 16-Jun-15         | 16-Jun-15            | 10-Feb-16          | 17-Jun-15       | 10-Feb-16       | 16-Jun-15       | 9-Feb-16        | 9-Feb-16            |  |
|                     | WA Method<br>A Cleanup<br>for<br>Groundwater | Benzene<br>(Non Detect)<br>1 | WA Method<br>B Ground<br>Water Cancer<br><sup>2</sup> | WA Method<br>B Ground | Intrusion<br>Screening<br>Level | r WDOE Vapor<br>Intrusion<br>Screening<br>Level<br>Non Cancer |                               |                     |                   |                      |                    | -               | al Results      |                 |                 |                     |  |
| 1,3-dichlorobenzene |                                              |                              |                                                       |                       |                                 |                                                               | μg/L                          | U                   | 0.25 U            | -                    | 0.5 U              | 0.25 U          | 0.5 U           | 0.25 U          | 0.5 U           | 0.5 U               |  |
| 1,3-dichloropropane |                                              |                              |                                                       |                       |                                 |                                                               | μg/L                          | U                   | 0.5 U             | -                    | 1 U                | 0.5 U           | 1 U             | 0.5 U           | 1 U             | 1 U                 |  |
| 1,4-dichlorobenzene |                                              |                              | 8.1                                                   | 560                   | 4.85                            | 7,810                                                         | μg/L                          | U                   | 0.25 U            | -                    | 0.5 U              | 0.25 U          | 0.5 U           | 0.25 U          | 0.5 U           | 0.5 U               |  |
| 2,2-dichloropropane |                                              |                              |                                                       |                       |                                 |                                                               | μg/L                          | U                   | 0.5 U             | -                    | 1 U                | 0.5 U           | -               | 0.5 U           | 1 U             | 1 U                 |  |
| Methyl Ethyl Ketone |                                              |                              |                                                       | 4,800                 |                                 | 1,740,000                                                     | µg/L                          | U                   | 5 U               | -                    | -                  | 5 U             | -               | 5 U             | -               | -                   |  |

|                                                     |                        |               |              |                     |                         |                         |                               | E & E (2008 Sample | )                 |                     |                 | HAI (2015 and     | 2016 Samples)   |                   |                     |                      |
|-----------------------------------------------------|------------------------|---------------|--------------|---------------------|-------------------------|-------------------------|-------------------------------|--------------------|-------------------|---------------------|-----------------|-------------------|-----------------|-------------------|---------------------|----------------------|
|                                                     |                        |               |              |                     |                         |                         | Well Location =>              | SB03 4             |                   | MW-1-37             |                 | MW-               | -2-40           |                   | MW-3-35             |                      |
|                                                     |                        |               |              |                     |                         |                         | Screen Interval (feet bgs) => | 24 - 29            |                   | 27 - 37             |                 | 30                | - 40            |                   | 25 - 35             |                      |
|                                                     |                        |               |              |                     |                         |                         |                               |                    |                   |                     | 0000 400040 405 |                   |                 | 0000 450040 400   | 000 400000 400 (DUE |                      |
|                                                     |                        |               |              |                     |                         |                         | Sample Number =>              | GW003 (24 - 29)    |                   | 832-150616-103 (DUP | ,               | 8832-150617-107   | 8832-160210-104 | -                 |                     | 3832-160209-103 (DUF |
|                                                     |                        |               |              |                     |                         |                         | Sample Date =>                | 25-Nov-08          | 16-Jun-15         | 16-Jun-15           | 10-Feb-16       | 17-Jun-15         | 10-Feb-16       | 16-Jun-15         | 9-Feb-16            | 9-Feb-16             |
|                                                     | WA Method<br>A Cleanup |               | WA Method    | WA Method           | WDOE Vapor<br>Intrusion | WDOE Vapor<br>Intrusion |                               |                    |                   |                     |                 |                   |                 |                   |                     |                      |
|                                                     | for                    | Benzene       | B Ground     | B Ground            | Screening               | Screening               |                               |                    |                   |                     |                 | Amalutiaa         | Deculto         |                   |                     |                      |
| G                                                   | Groundwater            |               | Water Cancer | Water Non           | Level                   | Level                   |                               |                    |                   |                     |                 | Analytica         | il Results      |                   |                     |                      |
|                                                     | 1                      | 1             | 2            | Cancer <sup>2</sup> | Cancer <sup>3</sup>     | Non Cancer <sup>3</sup> | Units                         |                    |                   |                     |                 |                   |                 |                   |                     |                      |
| /olatile Organic Compounds (V                       | (VOCs) by EP/          | A Method 8260 | 0B           | L                   | 1                       |                         |                               |                    |                   |                     |                 |                   |                 |                   |                     |                      |
| 2-chlorotoluene                                     |                        |               |              | 160                 |                         |                         | µg/L                          | U                  | 0.5 U             | -                   | 1 U             | 0.5 U             | 1 U             | 0.5 U             | 1 U                 | 1 U                  |
| 2-hexanone (MBK)                                    |                        |               |              |                     |                         |                         | μg/L                          | U                  | 5 U               | -                   | 10 U            | 5 U               | 10 U            | 5 U               | 10 U                | 10 U                 |
| 4-chlorotoluene                                     |                        |               |              |                     |                         |                         | µg/L                          | U                  | 0.5 U             | -                   | 10              | 0.5 U             | 10              | 0.5 U             | 10                  | 1 U                  |
| Acetone                                             |                        |               | 0.705        | 7,200               |                         | 100                     | ug/L                          | U                  | 10 U              | -                   | 20 U            | 21                | 48.4            | 10 U              | 20 U                | 20 U                 |
| Benzene<br>Bromobenzene                             | 5                      |               | 0.795        | 32                  | 2.4                     | 103                     | μg/L<br>μg/L                  | UU                 | 0.125 U<br>0.25 U | -                   | 0.2 U<br>0.5 U  | 0.125 U<br>0.25 U | 0.2 U<br>0.5 U  | 0.125 U<br>0.25 U | 0.2 U<br>0.5 U      | 0.2 U<br>0.5 U       |
| Bromochloromethane                                  |                        |               |              |                     |                         |                         | μg/L<br>μg/L                  | U                  | 0.25 U            | -                   | 1 U             | 0.25 U            | 1 U             | 0.25 U            | 1 U                 | 1 U                  |
| Bromodichloromethane                                |                        |               | 0.706        | 160                 | 1.84                    |                         | μg/L                          | U                  | 0.5 U             | -                   | 10              | 0.5 U             | 10              | 0.5 U             | 10                  | 10                   |
| Bromoform                                           |                        |               | 5.54         | 160                 | 200                     |                         | μg/L                          | U                  | 0.5 U             | -                   | 10              | 0.5 U             | 10              | 0.5 U             | 10                  | 10                   |
| Bromomethane                                        |                        |               |              | 11.2                |                         | 13                      | μg/L                          | U                  | 5 UJ              | -                   | 5 U             | 5 UJ              | 5 U             | 5 UJ              | 5 U                 | 5 U                  |
| Carbon tetrachloride                                |                        |               | 0.625        | 32                  | 0.539                   | 59.2                    | μg/L                          | U                  | 0.25 U            | -                   | 1 U             | 0.25 U            | 1 U             | 0.25 U            | 1 U                 | 1 U                  |
| Chlorobenzene                                       |                        |               |              | 160                 |                         | 286                     | µg/L                          | U                  | 0.25 U            | -                   | 0.5 U           | 0.25 U            | 0.5 U           | 0.25 U            | 0.5 U               | 0.5 U                |
| Chlorodibromomethane                                |                        |               | 0.521        | 160                 | 1.84                    |                         | μg/L                          | U                  | 0.5 U             | -                   | -               | 0.5 U             | -               | 0.5 U             | -                   | -                    |
| Chloroethane                                        |                        |               |              |                     |                         |                         | μg/L                          | U                  | 5 UJ              | -                   | 5 U             | 5 UJ              | 5 U             | 5 UJ              | 5 U                 | 5 U                  |
| Chloroform                                          |                        |               | 1.41         | 80                  | 1.2                     | 495                     | µg/L                          | U                  | 0.5 U             | -                   | 10              | 0.88 J            | 10              | 0.5 U             | 1 U                 | 1 U                  |
| Chloromethane                                       |                        |               |              | 40                  |                         | 153                     | μg/L                          | U                  | 2.5 U             | -                   | 5 U             | 2.5 U<br>0.25 U   | 5 U             | 2.5 U<br>0.25 U   | 5 U<br>0.5 U        | 5 U<br>0.5 U         |
| cis-1,2-dichloroethene<br>cis-1,3-dichloropropene   |                        |               |              | 16                  |                         |                         | μg/L<br>μg/L                  | U                  | 0.25 U<br>0.5 U   | -                   | 0.5 U<br>1 U    | 0.25 U            | 0.5 U<br>2 U    | 0.25 U            | 1 U                 | 1 U                  |
| Dibromomethane                                      |                        |               |              | 80                  |                         |                         | μg/L                          | U                  | 0.5 U             | -                   | 10              | 0.5 U             | 10              | 0.5 U             | 10                  | 10                   |
| Dichlorodifluoromethane                             |                        |               |              | 1,600               |                         | 5.66                    | μg/L                          | U                  | 0.5 U             | -                   | 10              | 0.5 U             | 10              | 0.5 U             | 10                  | 1 U                  |
| Dichloromethane                                     | 5                      |               | 21.9         | 48                  |                         |                         | μg/L                          | U                  | 2.5 U             | -                   | -               | 2.5 U             | -               | 2.5 U             | -                   | -                    |
| Ethylbenzene                                        | 700                    |               |              | 800                 |                         | 2,780                   | µg/L                          | U                  | 0.25 U            | -                   | 0.5 U           | 0.25 U            | 0.5 U           | 0.25 U            | 0.5 U               | 0.5 U                |
| Hexachlorobutadiene                                 |                        |               | 0.561        | 8                   | 0.81                    |                         | μg/L                          | U                  | 2.5 U             | -                   | 5 U             | 2.5 U             | 5 U             | 2.5 U             | 5 U                 | 5 U                  |
| Isopropylbenzene                                    |                        |               |              | 800                 |                         |                         | μg/L                          | U                  | 0.5 U             | -                   | 10              | 0.5 U             | 10              | 0.5 U             | 10                  | 1 U                  |
| MTBE                                                | 20                     |               | 24.3         |                     | 610                     | 87,000                  | µg/L                          | U                  | 0.5 U             | -                   | 10              | 0.5 U             | 10              | 0.5 U             | 10                  | 10                   |
| 4-Methyl-2-pentanol<br>Naphthalene                  | 160                    |               |              | 160                 | 8.93                    | 167                     | μg/L<br>μg/L                  | UU                 | 5 U<br>1 U        | -                   | 10 U<br>2 U     | 5 U<br>1 U        | 10 U<br>2 U     | 5 U<br>227        | 10 U<br>385         | 10 U<br>271          |
| n-butylbenzene                                      | 100                    |               |              | 400                 | 0.93                    | 107                     | μg/L<br>μg/L                  | U                  | 0.5 U             | -                   | 2 U<br>1 U      | 1 U<br>0.5 U      | 20              | 0.5 U             | 385<br>1 U          | 1 U                  |
| n-propylbenzene                                     |                        |               |              | 800                 |                         |                         | μg/L                          | U                  | 0.25 U            | -                   | 0.5 U           | 0.25 U            | 0.5 U           | 0.3 U             | 0.5 U               | 0.5 U                |
| p-isopropyltoluene                                  |                        |               |              |                     |                         |                         | μg/L                          | U                  | 0.20 U            | -                   | 1 U             | 0.5 U             | 1 U             | 0.20 U            | 1 U                 | 1 U                  |
| sec-butylbenzene                                    |                        |               | ł            | 800                 | 1                       | 1                       | μg/L                          | U                  | 0.5 U             | -                   | 10              | 0.5 U             | 10              | 0.5 U             | 10                  | 1 U                  |
| Styrene                                             |                        |               |              | 1,600               | 1                       | 8,100                   | μg/L                          | U                  | 0.5 U             | -                   | 10              | 0.5 U             | 10              | 0.5 U             | 10                  | 1 U                  |
| Trichloroethene                                     | 5                      |               | 0.54         | 4                   | 1.55                    | 3.84                    | μg/L                          | U                  | 0.25 U            | -                   | 0.5 U           | 0.25 U            | 0.5 U           | 0.25 U            | 0.5 U               | 0.5 U                |
| tert-butylbenzene                                   |                        |               |              | 800                 |                         |                         | μg/L                          | U                  | 0.5 U             | -                   | 1 U             | 0.5 U             | 1 U             | 0.5 U             | 1 U                 | 1 U                  |
| Tetrachloroethene                                   | 5                      |               | 20.8         | 48                  | 22.9                    | 43.5                    | µg/L                          | U                  | 0.25 U            | -                   | 0.5 U           | 0.25 U            | 0.5 U           | 0.25 U            | 0.5 U               | 0.5 U                |
| Toluene                                             | 1,000                  |               |              | 640                 |                         | 15,600                  | μg/L                          | 1.44               | 0.5 U             | -                   | 10              | 0.5 U             | 10              | 0.5 U             | 10                  | 10                   |
| trans-1,2-dichloroethene                            |                        |               |              | 160                 |                         |                         | μg/L                          | U                  | 0.25 U            | -                   | 0.5 U           | 0.25 U            | 0.5 U           | 0.25 U            | 0.5 U               | 0.5 U                |
| trans-1,3-dichloropropene<br>Trichlorofluoromethane |                        |               |              | 2 400               |                         | 120                     | μg/L                          | UU                 | 0.5 U             | -                   | 1 U<br>2 U      | 0.5 U             | 1 U<br>2 U      | 0.5 U<br>1 U      | 1 U<br>2 U          | 1 U<br>2 U           |
| Vinyl chloride                                      | 0.2                    |               |              | 2,400<br>24         | 0.347                   | 120<br>56.7             | μg/L<br>μg/L                  | U                  | 1 U<br>0.25 U     | -                   | 0.5 U           | 1 U<br>0.25 U     | 0.5 U           | 0.25 U            | 2 U<br>0.5 U        | 0.5 U                |
| Xylene (m & p)                                      | 0.2                    |               |              | 27                  | 0.347                   | 310                     | μg/L                          | U                  | 0.5 U             | -                   | 1 U             | 0.5 U             | 1 U             | 0.5 U             | 1 U                 | 1 U                  |
| Xylene (o)                                          |                        |               |              | 1,600               |                         | 440                     | μg/L                          | U                  | 0.25 U            | -                   | 0.5 U           | 0.25 U            | 0.5 U           | 0.25 U            | 0.5 U               | 0.5 U                |
| Xylene Total                                        | 1,000                  |               | 1            | 1,600               |                         |                         | μg/L                          | Ű                  | 0.25 U            | -                   | 0.5 U           | 0.25 U            | 0.5 U           | 0.25 U            | 0.5 U               | 0.5 U                |

| ancouver, WA                                     |                    |                         |                          |                       |                     |                         |                               | HAI (2015 and 2016 Samples) |                      |                    |                      |                              |                      |  |  |
|--------------------------------------------------|--------------------|-------------------------|--------------------------|-----------------------|---------------------|-------------------------|-------------------------------|-----------------------------|----------------------|--------------------|----------------------|------------------------------|----------------------|--|--|
|                                                  |                    |                         |                          |                       |                     |                         | Well Location =>              | MV                          | V-4-34               | MM                 | /-5-34               | Equipment Blank <sup>5</sup> | Trip Blank           |  |  |
|                                                  |                    |                         |                          |                       |                     |                         | Screen Interval (feet bgs) => | 2                           | 4 - 34               | 24                 | 4 - 34               |                              | -                    |  |  |
|                                                  |                    |                         |                          |                       |                     |                         | Sample Number =>              | 8832-150616-101             | 8832-160209-101      | 8832-150617-104    | 8832-160209-100      | 8832-150617-105              | 8832-160209-         |  |  |
|                                                  |                    |                         |                          |                       |                     |                         | Sample Date =>                | 16-Jun-15                   | 9-Feb-16             | 17-Jun-15          | 9-Feb-16             | 17-Jun-15                    | 9-Feb-16             |  |  |
|                                                  | WA Method          |                         |                          |                       | WDOE Vapor          | WDOE Vapor              | Campio Dato -                 | 10 0011 10                  | 010010               | in our ro          | 010010               |                              | 010010               |  |  |
|                                                  | A Cleanup          | Densene                 | WA Method                | WA Method             | Intrusion           | Intrusion               |                               |                             |                      |                    |                      |                              |                      |  |  |
|                                                  | for<br>Groundwater | Benzene<br>(Non Detect) | B Ground<br>Water Cancer | B Ground<br>Water Non | Screening<br>Level  | Screening<br>Level      |                               |                             |                      | Anal               | ytical Results       |                              |                      |  |  |
|                                                  | 1                  | 1                       | 2                        | Cancer <sup>2</sup>   | Cancer <sup>3</sup> | Non Cancer <sup>3</sup> | Units                         |                             |                      |                    |                      |                              |                      |  |  |
|                                                  |                    |                         | 1                        | 1                     |                     |                         | 00                            |                             |                      |                    |                      |                              |                      |  |  |
| tal and Dissolved Metals by<br>Antimony          | y EPA Method       | 6020                    | Г                        | 6.4                   |                     |                         | ug/l                          | 0.5 U                       | 1 U                  | 0.5 U              | 1 U                  | - 1                          |                      |  |  |
| Anumony<br>Arsenic                               | 5                  |                         | 0.0583                   | 4.8                   |                     |                         | μg/L<br>μg/L                  | 5.38                        | 10.8                 | 5.5                | 6.14                 | -                            | -                    |  |  |
| Arsenic (filtered)                               | 5                  |                         | 0.0583                   | 4.8                   |                     |                         | μg/L                          | 4.88                        | 9.87                 | 4.59               | 5.89                 | -                            | -                    |  |  |
| Beryllium                                        |                    |                         |                          | 32                    |                     |                         | µg/L                          | 0.1 U                       | 0.2 U                | 0.1 U              | 0.2 U                | -                            | -                    |  |  |
|                                                  | 5                  |                         |                          | 8                     |                     |                         | µg/L                          | 0.04 U                      | 0.2 U                | 0.189 J            | 0.2 U                | -                            | -                    |  |  |
| Chromium (VI)<br>Chromium (III+VI)               | 50                 |                         |                          | 48                    |                     |                         | μg/L<br>μg/L                  | 5 H UJ<br>0.856 J           | 5 U<br>1 U           | 5 U<br>2.31        | 5 U<br>1.49          | -                            | -                    |  |  |
|                                                  |                    |                         |                          |                       |                     |                         | - 194<br>                     | 0.0000                      | 10                   | 2.01               |                      |                              |                      |  |  |
| Chromium (III+VI) (filtered)                     | 50                 |                         |                          |                       |                     |                         | µg/L                          | -                           | -                    | -                  | -                    | -                            | -                    |  |  |
| Copper                                           | 4.5                |                         |                          | 320                   |                     |                         | μg/L                          | 2.03                        | 1 U                  | 4.98               | 2.37                 |                              | -                    |  |  |
| _ead<br>_ead (filtered)                          | 15<br>15           |                         |                          |                       |                     |                         | μg/L<br>μg/L                  | 1.52                        | 0.211                | 4.92               | 0.644                | -                            | -                    |  |  |
| Mercury                                          | 2                  |                         |                          |                       | <u> </u>            | 0.89                    | μg/L                          | 0.04 U                      | 0.08 U               | 0.04 U             | 0.08 U               | -                            |                      |  |  |
| Nickel                                           |                    |                         |                          | 320                   |                     |                         | µg/L                          | 3.91                        | 2.08                 | 10.9               | 1.8                  | -                            | -                    |  |  |
| Selenium                                         |                    |                         |                          | 80                    |                     |                         | µg/L                          | 0.678 J                     | 10                   | 0.5 U              | 10                   | -                            | -                    |  |  |
| Silver<br>Thallium                               |                    |                         |                          | 80<br>0.16            |                     |                         | μg/L                          | 0.1 U<br>0.1 U              | 0.2 U<br>0.2 U       | 0.1 U<br>0.1 U     | 0.2 U<br>0.2 U       | -                            | -                    |  |  |
| I nallium<br>Zinc                                |                    |                         | +                        | 4,800                 | +                   |                         | μg/L<br>μg/L                  | 8.31                        | 0.2 U<br>4 U         | 25.5               | 9.19                 | -                            | -                    |  |  |
|                                                  |                    | Made - 1 core           |                          | 1                     | 1                   | 1                       | 1.5                           | L                           | -                    |                    | 1                    | I                            |                      |  |  |
| Iyaromatic Hydrocarbons (<br>1-Methylnaphthalene | (PAHS) by EPA      | a wiethod 8270          | D<br>1.51                | 560                   | 1                   |                         | µg/L                          | 0.0433 U                    | 0.0850 U             | 0.04 U             | 0.0851 U             | 0.0395 U                     | 0.0395 U             |  |  |
| 2-Methylnaphthalene                              |                    |                         | 1.01                     | 32                    |                     |                         | μg/L                          | 0.0433 U                    | 0.0850 U             | 0.04 U             | 0.0851 U             | 0.0395 U                     | 0.0395 U             |  |  |
| Acenaphthene                                     |                    |                         |                          | 960                   |                     |                         | μg/L                          | 0.0242 J                    | 0.0340 U             | 0.016 U            | 0.0340 U             | 0.0158 U                     | 0.0158 U             |  |  |
| Acenaphthylene                                   |                    |                         |                          |                       |                     |                         | µg/L                          | 0.0173 U                    | 0.0340 U             | 0.016 U            | 0.0340 U             | 0.0158 U                     | 0.0158 U             |  |  |
|                                                  |                    |                         | 0.42                     | 4,800                 |                     |                         | µg/L                          | 0.0173 U                    | 0.0340 U             | 0.016 U<br>0.016 U | 0.0340 U<br>0.0340 U | 0.0158 U<br>0.0158 U         | 0.0158 U<br>0.0158 U |  |  |
| Benz(a)anthracene<br>Benzo(a) pyrene             | 0.1                |                         | 0.12                     |                       |                     |                         | μg/L<br>μg/L                  | 0.0173 U<br>0.0173 U        | 0.0340 U<br>0.0340 U | 0.016 U            | 0.0340 U             | 0.0158 U                     | 0.0158 U             |  |  |
| Benzo(b)fluoranthene                             | 0.1                |                         | 0.12                     |                       |                     |                         | μg/L                          | 0.0173 U                    | 0.0340 U             | 0.016 U            | 0.0340 U             | 0.0158 U                     | 0.0158 U             |  |  |
| Benzo(g,h,i)perylene                             |                    |                         |                          |                       |                     |                         | µg/L                          | 0.0173 U                    | 0.0340 U             | 0.016 U            | 0.0340 U             | 0.0158 U                     | 0.0158 U             |  |  |
| Benzo(k)fluoranthene                             |                    |                         | 1.2                      |                       |                     |                         | µg/L                          | 0.0173 U                    | 0.0340 U             | 0.016 U            | 0.0340 U             | 0.0158 U                     | 0.0158 U             |  |  |
| Chrysene<br>Dibenz(a,h)anthracene                |                    |                         | 12<br>0.012              |                       |                     |                         | μg/L<br>μg/L                  | 0.0173 U<br>0.0173 U        | 0.0340 U<br>0.0340 U | 0.016 U<br>0.016 U | 0.0340 U<br>0.0340 U | 0.0158 U<br>0.0158 U         | 0.0158 U<br>0.0158 U |  |  |
| Dibenzofuran                                     |                    |                         | 0.012                    | 16                    |                     |                         | μg/L                          | 0.0173 U                    | 0.0340 U             | 0.016 U            | 0.0340 U             | 0.0158 U                     | 0.0158 U             |  |  |
| Fluoranthene                                     |                    |                         |                          | 640                   |                     |                         | μg/L                          | 0.0173 U                    | 0.0340 U             | 0.016 U            | 0.0340 U             | 0.0158 U                     | 0.0158 U             |  |  |
| Fluorene                                         |                    |                         |                          | 640                   |                     |                         | μg/L                          | 0.0173 U                    | 0.0340 U             | 0.016 U            | 0.0340 U             | 0.0158 U                     | 0.0158 U             |  |  |
| Indeno(1,2,3-c,d)pyrene                          | 160                |                         | 0.12                     | 160                   | 8.02                | 167                     | μg/L                          | 0.0173 U<br>0.152           | 0.0340 U<br>0.133    | 0.016 U<br>0.169   | 0.0340 U<br>0.283    | 0.0158 U                     | 0.0158 U<br>0.0395 U |  |  |
| Naphthalene<br>Phenanthrene                      | 100                |                         |                          | 100                   | 8.93                | 107                     | μg/L<br>μg/L                  | 0.0433 U                    | 0.0850 U             | 0.04 U             | 0.0851 U             | 0.0395 U<br>0.0395 U         | 0.0395 U             |  |  |
| Pyrene                                           |                    |                         |                          | 480                   |                     |                         | μg/L                          | 0.0173 U                    | 0.0340 U             | 0.016 U            | 0.0340 U             | 0.0158 U                     | 0.0158 U             |  |  |
| Total Carcinogenic PAH                           | 0.1                |                         |                          |                       |                     |                         | µg/L                          | 2.08465E-05                 | 0.00002115           | 0.00001            | 0.00002115           | 0.00001                      | 0.00001              |  |  |
| TEF Value 6                                      | 0.1                |                         |                          |                       |                     |                         | µg/∟                          | 2.00403E-03                 | 0.00002115           | 0.00001            | 0.00002115           | 0.00001                      | 0.00001              |  |  |
| tal Petroleum Hydrocarbor                        |                    | Dx and NWTPI            | H-Gx                     |                       |                     |                         |                               |                             |                      |                    |                      |                              |                      |  |  |
| Diesel Range Organics                            | 500                |                         |                          |                       |                     |                         | µg/L                          | 120 J                       | 211 U, F-13          | 110 U              | 213 U                | 100 U                        | 100 U                |  |  |
| Dil Range Organics                               | 500                |                         |                          |                       |                     |                         | μg/L                          | 211 U                       | 421 U                | 220 U              | 426 U                | 200 U                        | 200 U                |  |  |
| Gasoline Range Organics                          |                    | 1,000                   |                          |                       |                     |                         | µg/L                          | 50 U                        | 100 U, F-13          | 50 U               | 100 U                | -                            | -                    |  |  |
| latile Organic Compounds                         |                    | A Mothod 920            | nB                       | •                     | •                   | •                       |                               | ·                           |                      | · ·                | a                    | I                            |                      |  |  |
| 1,1,1,2-tetrachloroethane                        |                    |                         | 1.68                     | 240                   | 7.4                 |                         | µg/L                          | 0.25 U                      | 0.5 U                | 0.25 U             | 0.5 U                | -                            | 0.5 U                |  |  |
| 1,1,1-trichloroethane                            | 200                |                         |                          | 16,000                | 1                   | 5,240                   | μg/L                          | 0.25 U                      | 0.5 U                | 0.25 U             | 0.5 U                | -                            | 0.5 U                |  |  |
| ,1,2,2-tetrachloroethane                         |                    |                         | 0.219                    | 160                   | 6.2                 |                         | µg/L                          | 0.25 U                      | 0.5 U                | 0.25 U             | 10                   | -                            | 0.5 U                |  |  |
| ,1,2-trichloroethane<br>,1-dichloroethane        |                    |                         | 0.768<br>7.68            | 32<br>1,600           | 7.71                | 4.51                    | μg/L                          | 0.25 U<br>0.25 U            | 0.5 U<br>0.5 U       | 0.25 U<br>0.25 U   | 0.5 U<br>0.5 U       | -                            | 0.5 U<br>0.5 U       |  |  |
| ,1-dichloroethene                                |                    |                         | 00.1                     | 1,600                 | 11.2                | 130                     | μg/L<br>μg/L                  | 0.25 U                      | 0.5 U                | 0.25 U             | 0.5 U                | -                            | 0.5 U                |  |  |
| ,1-dichloropropene                               |                    |                         |                          |                       | 1                   |                         | μg/L                          | 0.5 U                       | 1 U                  | 0.5 U              | 1 U                  | -                            | 1 U                  |  |  |
| ,2,3-trichlorobenzene                            |                    |                         |                          |                       |                     |                         | µg/L                          | 1 U                         | 2 U                  | 1 U                | 2 U                  | -                            | 2 U                  |  |  |
| ,2,3-trichloropropane                            |                    |                         | 0.00146                  | 32                    |                     |                         | µg/L                          | 0.5 U                       | 1 U                  | 0.5 U              | 2 U                  | -                            | 1 U                  |  |  |
| ,2,4-trichlorobenzene<br>,2,4-trimethylbenzene   |                    |                         | 1.51                     | 80                    |                     | 39.2<br>28.4            | μg/L<br>μg/l                  | 1 U<br>0.5 U                | 2 U<br>1 U           | 1 U<br>0.5 U       | 2 U<br>1 U           | -                            | 2 U<br>1 U           |  |  |
| 1,2,4-trimetnyibenzene                           |                    |                         |                          |                       | <u> </u>            | 20.4                    | µg/L                          | 0.5 0                       | 10                   | 0.5 0              | 10                   | -                            | 10                   |  |  |
| chloropropane                                    |                    |                         | 0.0547                   | 1.6                   |                     |                         | µg/L                          | 2.5 U                       | 5 U                  | 2.5 U              | 5 U                  | -                            | 5 U                  |  |  |
| 1,2-dibromoethane                                | 0.01               |                         | 0.0219                   | 72                    |                     |                         | µg/L                          | 0.25 U                      | 0.5 U                | 0.25 U             | 0.5 U                | -                            | 0.5 U                |  |  |
| 1,2-dichlorobenzene                              |                    |                         | 0.481                    | 720<br>48             | 4.2                 | 2,570                   | μg/L<br>μg/L                  | 0.25 U<br>0.25 U            | 0.5 U<br>0.5 U       | 0.25 U<br>0.25 U   | 0.5 U                | -                            | 0.5 U                |  |  |
|                                                  |                    |                         | . 0.491                  | 1 / 2                 | 47                  | 140                     | 110/1                         | 0.2511                      | 0511                 | 0.2611             | 0.5 U                | -                            | 0.5 U                |  |  |
| 1,2-dichloropthane<br>1,2-dichloroptopane        | 5                  |                         | 1.22                     | 720                   | 3.89                | 28.4                    | μg/L                          | 0.25 U                      | 0.5 U                | 0.25 U             | 0.5 U                | -                            | 0.5 U                |  |  |

|                     |                                                         |                              |          |                       |                                                                      |                                                                          |                               |                 |                 | HAI (2015 a     | and 2016 Samples) |                              |              |
|---------------------|---------------------------------------------------------|------------------------------|----------|-----------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|-----------------|-----------------|-----------------|-------------------|------------------------------|--------------|
|                     |                                                         |                              |          |                       |                                                                      |                                                                          | Well Location =>              | MW              | /-4-34          | MW              | -5-34             | Equipment Blank <sup>5</sup> | Trip Blank   |
|                     |                                                         |                              |          |                       |                                                                      |                                                                          | Screen Interval (feet bgs) => | 24              | I - 34          | 24              | - 34              | -                            | -            |
|                     |                                                         |                              |          |                       |                                                                      |                                                                          | Sample Number =>              | 8832-150616-101 | 8832-160209-101 | 8832-150617-104 | 8832-160209-100   | 8832-150617-105              | 8832-160209- |
|                     |                                                         |                              |          |                       |                                                                      |                                                                          | Sample Date =>                | 16-Jun-15       | 9-Feb-16        | 17-Jun-15       | 9-Feb-16          | 17-Jun-15                    | 9-Feb-16     |
|                     | WA Method<br>A Cleanup<br>for Ben<br>Groundwater (Non I | Benzene<br>(Non Detect)<br>1 | B Ground | WA Method<br>B Ground | WDOE Vapor<br>Intrusion<br>Screening<br>Level<br>Cancer <sup>3</sup> | WDOE Vapor<br>Intrusion<br>Screening<br>Level<br>Non Cancer <sup>3</sup> | Units                         |                 |                 | Analy           | rtical Results    |                              |              |
| 1,3-dichlorobenzene |                                                         |                              |          |                       |                                                                      |                                                                          | μg/L                          | 0.25 U          | 0.5 U           | 0.25 U          | 0.5 U             | -                            | 0.5 U        |
| 1,3-dichloropropane |                                                         |                              |          |                       |                                                                      |                                                                          | μg/L                          | 0.5 U           | 1 U             | 0.5 U           | 1 U               | -                            | 1 U          |
| 1,4-dichlorobenzene |                                                         |                              | 8.1      | 560                   | 4.85                                                                 | 7,810                                                                    | µg/L                          | 0.25 U          | 0.5 U           | 0.25 U          | 0.5 U             | -                            | 0.5 U        |
| 2,2-dichloropropane |                                                         |                              | 1        |                       |                                                                      | Ī                                                                        | µg/L                          | 0.5 U           | 1 U             | 0.5 U           | 1 U               | -                            | 1 U          |
| Methyl Ethyl Ketone |                                                         |                              |          | 4,800                 |                                                                      | 1,740,000                                                                | µg/L                          | 5 U             | -               | 5 U             | -                 | -                            | -            |

Port of Vancouver, USA Terminal 1 Property Vancouver, WA

|                           |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          |                               | HAI (2015 and 2016 Samples) |                 |                 |                 |                              |              |  |  |
|---------------------------|---------------------------------------------------|------------------------------|-------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|-----------------------------|-----------------|-----------------|-----------------|------------------------------|--------------|--|--|
|                           |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | Well Location =>              | MM                          | V-4-34          | MW              | -5-34           | Equipment Blank <sup>5</sup> | Trip Blank   |  |  |
|                           |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | Screen Interval (feet bgs) => | 24                          | 4 - 34          | 24 - 34         |                 | -                            | -            |  |  |
|                           |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | Sample Number =>              | 8832-150616-101             | 8832-160209-101 | 8832-150617-104 | 8832-160209-100 | 8832-150617-105              | 8832-160209- |  |  |
|                           |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | Sample Date =>                | 16-Jun-15                   | 9-Feb-16        | 17-Jun-15       | 9-Feb-16        | 17-Jun-15                    | 9-Feb-16     |  |  |
|                           | WA Method<br>A Cleanup<br>for<br>Groundwater<br>1 | Benzene<br>(Non Detect)<br>1 | WA Method<br>B Ground<br>Water Cancer<br><sup>2</sup> | WA Method<br>B Ground<br>Water Non<br>Cancer <sup>2</sup> | WDOE Vapor<br>Intrusion<br>Screening<br>Level<br>Cancer <sup>3</sup> | WDOE Vapor<br>Intrusion<br>Screening<br>Level<br>Non Cancer <sup>3</sup> | Units                         |                             |                 | 1               | rtical Results  |                              |              |  |  |
| olatile Organic Compound  | ls (VOCs) by EP                                   | A Method 8260                | B                                                     |                                                           | -                                                                    |                                                                          |                               | -                           |                 |                 |                 |                              |              |  |  |
| 2-chlorotoluene           |                                                   |                              |                                                       | 160                                                       |                                                                      |                                                                          | µg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| 2-hexanone (MBK)          |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | µg/L                          | 5 U                         | 10 U            | 5 U             | 10 U            | -                            | 10 U         |  |  |
| 4-chlorotoluene           |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | µg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| Acetone                   |                                                   |                              |                                                       | 7,200                                                     |                                                                      |                                                                          | ug/L                          | 10 U                        | 20 U            | 10 U            | 20 U            | -                            | 20 U         |  |  |
| Benzene                   | 5                                                 |                              | 0.795                                                 | 32                                                        | 2.4                                                                  | 103                                                                      | μg/L                          | 0.125 U                     | 0.2 U           | 0.125 U         | 0.2 U           | -                            | 0.2 U        |  |  |
| Bromobenzene              |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | μg/L                          | 0.25 U                      | 0.5 U           | 0.25 U          | 0.5             | -                            | 0.5 U        |  |  |
| Bromochloromethane        |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | μg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| Bromodichloromethane      |                                                   |                              | 0.706                                                 | 160                                                       | 1.84                                                                 |                                                                          | µg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| Bromoform                 |                                                   |                              | 5.54                                                  | 160                                                       | 200                                                                  |                                                                          | μg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| Bromomethane              |                                                   |                              |                                                       | 11.2                                                      |                                                                      | 13                                                                       | µg/L                          | 5 UJ                        | 5 U             | 5 UJ            | 5 U             | -                            | 5 U          |  |  |
| Carbon tetrachloride      |                                                   |                              | 0.625                                                 | 32                                                        | 0.539                                                                | 59.2                                                                     | µg/L                          | 0.25 U                      | 1 U             | 0.25 U          | 1 U             | -                            | 1 U          |  |  |
| Chlorobenzene             |                                                   |                              |                                                       | 160                                                       |                                                                      | 286                                                                      | µg/L                          | 0.25 U                      | 0.5 U           | 0.25 U          | 0.5 U           | -                            | 0.5 U        |  |  |
| Chlorodibromomethane      |                                                   |                              | 0.521                                                 | 160                                                       | 1.84                                                                 |                                                                          | µg/L                          | 0.5 U                       | •               | 0.5 U           | -               | -                            | -            |  |  |
| Chloroethane              |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | µg/L                          | 5 UJ                        | 5 U             | 5 UJ            | 0.5 U           | -                            | 5 U          |  |  |
| Chloroform                |                                                   |                              | 1.41                                                  | 80                                                        | 1.2                                                                  | 495                                                                      | µg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| Chloromethane             |                                                   |                              |                                                       |                                                           |                                                                      | 153                                                                      | µg/L                          | 2.5 U                       | 5 U             | 2.5 U           | 5 U             | -                            | 5 U          |  |  |
| cis-1,2-dichloroethene    |                                                   |                              |                                                       | 16                                                        |                                                                      |                                                                          | µg/L                          | 0.25 U                      | 0.5 U           | 0.25 U          | 0.5 U           | -                            | 0.5 U        |  |  |
| cis-1,3-dichloropropene   |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | µg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 2 U             | -                            | 1 U          |  |  |
| Dibromomethane            |                                                   |                              |                                                       | 80                                                        |                                                                      |                                                                          | µg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| Dichlorodifluoromethane   |                                                   |                              |                                                       | 1,600                                                     |                                                                      | 5.66                                                                     | µg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| Dichloromethane           | 5                                                 |                              | 21.9                                                  | 48                                                        |                                                                      |                                                                          | µg/L                          | 2.5 U                       | -               | 2.5 U           | 1 U             | -                            | -            |  |  |
| Ethylbenzene              | 700                                               |                              |                                                       | 800                                                       |                                                                      | 2,780                                                                    | µg/L                          | 0.25 U                      | 0.5 U           | 0.25 U          | 0.5 U           | -                            | 0.5 U        |  |  |
| Hexachlorobutadiene       |                                                   |                              | 0.561                                                 | 8                                                         | 0.81                                                                 |                                                                          | µg/L                          | 2.5 U                       | 5 U             | 2.5 U           | 5 U             | -                            | 5 U          |  |  |
| Isopropylbenzene          |                                                   |                              |                                                       | 800                                                       |                                                                      |                                                                          | µg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| MTBE                      | 20                                                |                              | 24.3                                                  |                                                           | 610                                                                  | 87,000                                                                   | µg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| 4-Methyl-2-pentanol       |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | µg/L                          | 5 U                         | 10 U            | 5 U             | 10 U            | -                            | 10 U         |  |  |
| Naphthalene               | 160                                               |                              |                                                       | 160                                                       | 8.93                                                                 | 167                                                                      | µg/L                          | 1 U                         | 2 U             | 1 U             | 2 U             | -                            | 2 U          |  |  |
| n-butylbenzene            |                                                   |                              |                                                       | 400                                                       |                                                                      |                                                                          | μg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| n-propylbenzene           |                                                   |                              |                                                       | 800                                                       |                                                                      |                                                                          | μg/L                          | 0.25 U                      | 0.5 U           | 0.25 U          | 0.5 U           | -                            | 0.5 U        |  |  |
| p-isopropyltoluene        |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | μg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| sec-butylbenzene          |                                                   |                              |                                                       | 800                                                       |                                                                      |                                                                          | μg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| Styrene                   |                                                   |                              |                                                       | 1,600                                                     |                                                                      | 8,100                                                                    | μg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| Trichloroethene           | 5                                                 |                              | 0.54                                                  | 4                                                         | 1.55                                                                 | 3.84                                                                     | μg/L                          | 0.25 U                      | 0.5 U           | 0.25 U          | 0.5 U           | -                            | 0.5 U        |  |  |
| tert-butylbenzene         |                                                   |                              |                                                       | 800                                                       |                                                                      |                                                                          | μg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| Tetrachloroethene         | 5                                                 |                              | 20.8                                                  | 48                                                        | 22.9                                                                 | 43.5                                                                     | μg/L                          | 0.25 U                      | 0.5 U           | 0.25 U          | 0.5 U           | -                            | 0.5 U        |  |  |
| Toluene                   | 1,000                                             |                              |                                                       | 640                                                       |                                                                      | 15,600                                                                   | μg/L                          | 0.5 U                       | 10              | 0.5 U           | 10              | -                            | 10           |  |  |
| trans-1,2-dichloroethene  |                                                   |                              |                                                       | 160                                                       |                                                                      |                                                                          | μg/L                          | 0.25 U                      | 0.5 U           | 0.25 U          | 0.5 U           | -                            | 0.5 U        |  |  |
| trans-1,3-dichloropropene |                                                   |                              |                                                       |                                                           |                                                                      |                                                                          | µg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| Trichlorofluoromethane    |                                                   |                              |                                                       | 2,400                                                     |                                                                      | 120                                                                      | μg/L                          | 1 U                         | 2 U             | 1 U             | 2 U             | -                            | 2 U          |  |  |
| Vinyl chloride            | 0.2                                               |                              |                                                       | 24                                                        | 0.347                                                                | 56.7                                                                     | μg/L                          | 0.25 U                      | 0.5 U           | 0.25 U          | 0.5 U           | -                            | 0.5 U        |  |  |
| Xylene (m & p)            |                                                   |                              |                                                       |                                                           |                                                                      | 310                                                                      | μg/L                          | 0.5 U                       | 1 U             | 0.5 U           | 1 U             | -                            | 1 U          |  |  |
| Xylene (o)                |                                                   |                              |                                                       | 1,600                                                     |                                                                      | 440                                                                      | µg/L                          | 0.25 U                      | 0.5 U           | 0.25 U          | 0.5 U           | -                            | 0.5 U        |  |  |
| Xylene Total              | 1,000                                             |                              |                                                       | 1,600                                                     |                                                                      |                                                                          | μg/L                          | 0.25 U                      | 0.5 U           | 0.25 U          | 0.5 U           | -                            | 0.5 U        |  |  |

Notes:

bgs = below ground surface **bold** - detected concentration Color = concentrations exceeding one or more cleanup levels. EPA = Environmental Protection Agency J - Estimated value PAHs = polyaromatic hydrocarbons TEF = Toxicity Equivalency Factor U = Not detected µg/L = micrograms per liter VOCs = volatile organic compounds

1 = MTCA Cleanup Regulation, Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised November 2007.

2 = MTCA Cleanup Regulation, Method B Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised November 2007.

3 = Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action, Review Draft October 2009, updated April 6, 2015. 4 = Ecology and Environment, Inc. November 2008 temporary well point location.

5 = Equipment blank collected upon groundwater sample collection at the MW-5-34 well location, prior to sampling MW-4-34.

6 = TEF values calculated as described in WAC 173-340-708(8); When the individual PAH concentration was reported as non-detected, then the TEF was multiplied by half the Reporting Level F-13 = The chromatographic pattern does not resemble the fuel standard used for quantitation.

F-17 = No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.

H = Sample was analyzed outside of the recommended hold time.

# ATTACHMENT B WATER FIELD SAMPLING DATA SHEETS



109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name    | Port of Vancouver | Sample Location | MW-1-37      |
|----------------|-------------------|-----------------|--------------|
| Project #      | 9085.10.12        | Sampler         | M. Pollock   |
| Project Name   | Terminal 1        | Sampling Date   | 10/28/2019   |
| Sampling Event | October 2019      | Sample Name     | MW-1-37      |
| Sub Area       |                   | Sample Depth    | 32           |
| FSDS QA:       | E. Hess 11/6/2019 | Easting         | Northing TOC |

#### Hydrology/Level Measurements

|            |      |           |            | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |             |
|------------|------|-----------|------------|---------------------|----------------|-----------------------------|-------------|
| Date       | Time | DT-Bottom | DT-Product | DT-Water            | DTP-DTW        | DTB-DTW                     | Pore Volume |
| 10/28/2019 | 8:25 | 37.01     |            | 25.12               |                | 11.89                       | 1.94        |

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

#### Water Quality Data

| Purge Method           | Time       | Purge Vol (gal) | Flowrate l/min | pН   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP   | Turbidity |
|------------------------|------------|-----------------|----------------|------|----------|----------------|-----------|-------|-----------|
| (2) Peristaltic Pump   | 3:41:00 PM | 0.1             | 0.1            | 6.79 | 16.2     | 544.1          | 5.25      | 145.1 | 4.89      |
|                        | 3:45:00 PM | 0.2             | 0.1            | 6.83 | 16.2     | 542.1          | 5.26      | 141.1 | 8.92      |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
| Final Field Parameters | 3:49:00 PM | 0.3             | 0.1            | 6.75 | 16       | 553.1          | 5.17      | 141.2 | 7.13      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

| Water | Quality | <b>Observations:</b> |
|-------|---------|----------------------|
|       |         |                      |

Cloudy, colorless, faint organic-like odor.

#### **Sample Information**

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 3:49:00 PM    | VOA-Glass                   | 3 | No       |
|                      |             |               | Amber Glass                 | 4 | No       |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              | 1 | No       |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 9 |          |

**General Sampling Comments** 

Began purging at 15:28. Water level varied from 25.38 to 25.28 feet below top of casing during purging. Water sputtering from tubing.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name    | Port of Vancouver | Sample Location | MW-2-40      |
|----------------|-------------------|-----------------|--------------|
| Project #      | 9085.10.12        | Sampler         | M. Pollock   |
| Project Name   | Terminal 1        | Sampling Date   | 10/29/2019   |
| Sampling Event | October 2019      | Sample Name     | MW-2-40      |
| Sub Area       |                   | Sample Depth    | 37           |
| FSDS QA:       | E. Hess 11/6/2019 | Easting         | Northing TOC |

#### Hydrology/Level Measurements

|            |      |           |            | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |             |
|------------|------|-----------|------------|---------------------|----------------|-----------------------------|-------------|
| Date       | Time | DT-Bottom | DT-Product | DT-Water            | DTP-DTW        | DTB-DTW                     | Pore Volume |
| 10/28/2019 | 8:27 | 39.05     |            | 28.83               |                | 10.22                       | 1.67        |

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

#### Water Quality Data

| Purge Method           | Time        | Purge Vol (gal) | Flowrate l/min | pH   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP   | Turbidity |
|------------------------|-------------|-----------------|----------------|------|----------|----------------|-----------|-------|-----------|
| (3) Disposible Bailer  | 11:06:00 AM | 0.25            |                | 6.24 | 14.6     | 1053           | 4.39      | 176.6 | 1.33      |
|                        | 11:09:00 AM | 0.75            |                | 6.37 | 14.7     | 1057           | 2.44      | 169.6 | 2.62      |
|                        |             |                 |                |      |          |                |           |       |           |
|                        |             |                 |                |      |          |                |           |       |           |
|                        |             |                 |                |      |          |                |           |       |           |
|                        |             |                 |                |      |          |                |           |       |           |
| Final Field Parameters | 11:14:00 AM | 1.5             |                | 6.42 | 15.4     | 1050           | 2         | 166.4 | 7.5       |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### Water Quality Observations: Clear, colorless.

#### **Sample Information**

| Sampling Method       | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|-----------------------|-------------|---------------|-----------------------------|---|----------|
| (3) Disposable Bailer | Groundwater | 9:45:00 AM    | VOA-Glass                   | 3 | No       |
|                       |             |               | Amber Glass                 | 2 | No       |
|                       |             |               | White Poly                  |   |          |
|                       |             |               | Yellow Poly                 |   |          |
|                       |             |               | Green Poly                  |   |          |
|                       |             |               | Red Total Poly              | 1 | No       |
|                       |             |               | Red Dissolved Poly          | 1 | Yes      |
|                       |             |               | Total Bottles               | 7 |          |

#### **General Sampling Comments**

Began bailing at 11:00 on 10/28/2019.

Took 9 bails to get dry on 10/28/2019.

Returned on 10/29/2019 to sample. Water level = 34.87' Well cap under pressure when removed on 10/28 and 10/29.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name    | Port of Vancouver | Sample Location | MW-3-35      |
|----------------|-------------------|-----------------|--------------|
| Project #      | 9085.10.12        | Sampler         | M. Pollock   |
| Project Name   | Terminal 1        | Sampling Date   | 10/28/2019   |
| Sampling Event | October 2019      | Sample Name     | MW-3-35      |
| Sub Area       |                   | Sample Depth    | 30           |
| FSDS QA:       | E. Hess 11/6/2019 | Easting         | Northing TOC |

#### Hydrology/Level Measurements

|            |      |           |            | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |             |
|------------|------|-----------|------------|---------------------|----------------|-----------------------------|-------------|
| Date       | Time | DT-Bottom | DT-Product | DT-Water            | DTP-DTW        | DTB-DTW                     | Pore Volume |
| 10/28/2019 | 8:33 | 34.82     |            | 26.72               |                | 8.1                         | 1.32        |

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

#### Water Quality Data

| Purge Method           | Time       | Purge Vol (gal) | Flowrate l/min | pH   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP   | Turbidity |
|------------------------|------------|-----------------|----------------|------|----------|----------------|-----------|-------|-----------|
| (2) Peristaltic Pump   | 8:59:00 AM | 0.13            | 0.13           | 5.55 | 11.4     | 990            | 2.85      | 193.3 | 0.88      |
|                        | 9:03:00 AM | 0.27            | 0.14           | 5.66 | 12.8     | 982            | 1.41      | 188.6 | 0.58      |
|                        | 9:07:00 AM | 0.38            | 0.11           | 5.82 | 13.2     | 979            | 0.64      | 185.9 | 0.42      |
|                        | 9:11:00 AM | 0.52            | 0.14           | 5.95 | 13.3     | 986            | 0.55      | 182.5 | 0.86      |
|                        | 9:15:00 AM | 0.66            | 0.14           | 6.1  | 13.3     | 984            | 0.43      | 179.5 | 0.93      |
|                        | 9:19:00 AM | 0.8             | 0.14           | 6.12 | 13.3     | 980            | 0.4       | 178.3 | 1.25      |
| Final Field Parameters | 9:23:00 AM | 0.94            | 0.14           | 6.2  | 13.2     | 976            | 0.34      | 176.2 | 1.38      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

### Water Quality Observations:

Clear, colorless, faint hydrocarbon-like odor.

#### **Sample Information**

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 9:23:00 AM    | VOA-Glass                   | 3 | No       |
|                      |             |               | Amber Glass                 | 4 | No       |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              | 1 | No       |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 9 |          |

**General Sampling Comments** 

Began purging at 08:55 Also collected duplicate sample MW-3-35-DUP at this location.

Water level varied from 26.91 to 26.85 feet below top of casing during purging.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name    | Port of Vancouver | Sample Location | MW-3-35      |
|----------------|-------------------|-----------------|--------------|
| Project #      | 9085.10.12        | Sampler         | M. Pollock   |
| Project Name   | Terminal 1        | Sampling Date   | 10/28/2019   |
| Sampling Event | October 2019      | Sample Name     | MW-3-35-DUP  |
| Sub Area       |                   | Sample Depth    | 30           |
| FSDS QA:       | E. Hess 11/6/2019 | Easting         | Northing TOC |

#### Hydrology/Level Measurements

|            |      |           |            | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |             |
|------------|------|-----------|------------|---------------------|----------------|-----------------------------|-------------|
| Date       | Time | DT-Bottom | DT-Product | DT-Water            | DTP-DTW        | DTB-DTW                     | Pore Volume |
| 10/28/2019 | 8:33 | 34.82     |            | 26.72               |                | 8.1                         | 1.32        |

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

#### Water Quality Data

| Purge Method           | Time       | Purge Vol (gal) | Flowrate l/min | pH   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP   | Turbidity |
|------------------------|------------|-----------------|----------------|------|----------|----------------|-----------|-------|-----------|
| (2) Peristaltic Pump   | 8:59:00 AM | 0.13            | 0.13           | 5.55 | 11.4     | 990            | 2.85      | 193.3 | 0.88      |
|                        | 9:03:00 AM | 0.27            | 0.14           | 5.66 | 12.8     | 982            | 1.41      | 188.6 | 0.58      |
|                        | 9:07:00 AM | 0.38            | 0.11           | 5.82 | 13.2     | 979            | 0.64      | 185.9 | 0.42      |
|                        | 9:11:00 AM | 0.52            | 0.14           | 5.95 | 13.3     | 986            | 0.55      | 182.5 | 0.86      |
|                        | 9:15:00 AM | 0.66            | 0.14           | 6.1  | 13.3     | 984            | 0.43      | 179.5 | 0.93      |
|                        | 9:19:00 AM | 0.8             | 0.14           | 6.12 | 13.3     | 980            | 0.4       | 178.3 | 1.25      |
| Final Field Parameters | 9:23:00 AM | 0.94            | 0.14           | 6.2  | 13.2     | 976            | 0.34      | 176.2 | 1.38      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

### Water Quality Observations:

Clear, colorless, faint hydrocarbon-like odor.

#### **Sample Information**

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 9:23:00 AM    | VOA-Glass                   | 3 | No       |
|                      |             | ,             | Amber Glass                 | 4 | No       |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              | 1 | No       |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 9 |          |

**General Sampling Comments** 

Began purging at 08:55 This is a duplicate sample of MW-3-35

Water level varied from 26.91 to 26.85 feet below top of casing during purging.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name    | Port of Vancouver | Sample Location | MW-4-34      |
|----------------|-------------------|-----------------|--------------|
| Project #      | 9085.10.12        | Sampler         | M. Pollock   |
| Project Name   | Terminal 1        | Sampling Date   | 10/29/2019   |
| Sampling Event | October 2019      | Sample Name     | MW-4-34      |
| Sub Area       |                   | Sample Depth    | 29           |
| FSDS QA:       | E. Hess 11/6/2019 | Easting         | Northing TOC |

#### Hydrology/Level Measurements

|            |      |           |            | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |             |
|------------|------|-----------|------------|---------------------|----------------|-----------------------------|-------------|
| Date       | Time | DT-Bottom | DT-Product | DT-Water            | DTP-DTW        | DTB-DTW                     | Pore Volume |
| 10/28/2019 | 8:31 | 34.34     |            | 27.07               |                | 7.27                        | 1.19        |

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

#### Water Quality Data

| Purge Method           | Time       | Purge Vol (gal) | Flowrate l/min | pH   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP   | Turbidity |
|------------------------|------------|-----------------|----------------|------|----------|----------------|-----------|-------|-----------|
| (3) Disposible Bailer  | 3:00:00 PM | 1.25            |                | 6.28 | 15.7     | 786            | 1.63      | 168.3 | 103.8     |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
| Final Field Parameters | 3:07:00 PM | 2.5             |                | 6.43 | 15.7     | 838            | 1.64      | 160.6 | 155.1     |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations: Cloudy with needle-like, sand-sized particles, colorless, faint organic-like odor.

#### **Sample Information**

| Sampling Method       | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|-----------------------|-------------|---------------|-----------------------------|---|----------|
| (3) Disposable Bailer | Groundwater | 9:05:00 AM    | VOA-Glass                   | 3 | No       |
|                       |             |               | Amber Glass                 | 4 | No       |
|                       |             |               | White Poly                  |   |          |
|                       |             |               | Yellow Poly                 |   |          |
|                       |             |               | Green Poly                  |   |          |
|                       |             |               | Red Total Poly              | 1 | No       |
|                       |             |               | Red Dissolved Poly          | 1 | Yes      |
|                       |             |               | Total Bottles               | 9 |          |

#### **General Sampling Comments**

Began puring with peristaltic pump at 14:45 on 10/28/19. Switched to bailing due to lack of flow with peristaltic pump. Began bailing at 14:55. Took 10 bails to dry on 10/28/2019. Returned on 10/29/2019 to sample. Water level = 27.15'

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name    | Port of Vancouver | Sample Location | MW-5-35      |
|----------------|-------------------|-----------------|--------------|
| Project #      | 9085.10.12        | Sampler         | M. Pollock   |
| Project Name   | Terminal 1        | Sampling Date   | 10/29/2019   |
| Sampling Event | October 2019      | Sample Name     | MW-5-35      |
| Sub Area       |                   | Sample Depth    | 30           |
| FSDS QA:       | E. Hess 11/6/2019 | Easting         | Northing TOC |

#### Hydrology/Level Measurements

|            |      |           |            | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |             |
|------------|------|-----------|------------|---------------------|----------------|-----------------------------|-------------|
| Date       | Time | DT-Bottom | DT-Product | DT-Water            | DTP-DTW        | DTB-DTW                     | Pore Volume |
| 10/28/2019 | 8:41 | 34.18     |            | 27.37               |                | 6.81                        | 1.11        |

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

#### Water Quality Data

| Purge Method           | Time       | Purge Vol (gal) | Flowrate l/min | pH   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP   | Turbidity |
|------------------------|------------|-----------------|----------------|------|----------|----------------|-----------|-------|-----------|
| (3) Disposible Bailer  | 1:56:00 PM | 1               |                | 6.22 | 14.5     | 555.9          | 1.49      | 159.2 | 6.62      |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
| Final Field Parameters | 2:18:00 PM | 2               |                | 6.4  | 14.2     | 561            | 1.62      | 150.2 | 32.9      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### Water Quality Observations: Cloudy, colorless.

#### **Sample Information**

| Sampling Method       | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|-----------------------|-------------|---------------|-----------------------------|---|----------|
| (3) Disposable Bailer | Groundwater | 8:10:00 AM    | VOA-Glass                   | 3 | No       |
|                       |             |               | Amber Glass                 | 4 | No       |
|                       |             |               | White Poly                  |   |          |
|                       |             |               | Yellow Poly                 |   |          |
|                       |             |               | Green Poly                  |   |          |
|                       |             |               | Red Total Poly              | 1 | No       |
|                       |             |               | Red Dissolved Poly          | 1 | Yes      |
|                       |             |               | Total Bottles               | 9 |          |

#### **General Sampling Comments**

Began purging with peristaltic pump at 13:15 on 10/28/2019.

Switched to bailing at 13:50 due to lack of flow with peristaltic pump. Took 10 bails to dry on 10/28/2019. Returned on 10/29/2019 to sample. Water level = 27.47'.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name    | Port of Vancouver | Sample Location | MW-6-30      |
|----------------|-------------------|-----------------|--------------|
| Project #      | 9085.10.12        | Sampler         | M. Pollock   |
| Project Name   | Terminal 1        | Sampling Date   | 10/28/2019   |
| Sampling Event | October 2019      | Sample Name     | MW-6-30      |
| Sub Area       |                   | Sample Depth    | 31           |
| FSDS QA:       | E. Hess 11/6/2019 | Easting         | Northing TOC |

#### Hydrology/Level Measurements

|            |      |           |            |          | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |
|------------|------|-----------|------------|----------|---------------------|----------------|-----------------------------|
| Date       | Time | DT-Bottom | DT-Product | DT-Water | DTP-DTW             | DTB-DTW        | Pore Volume                 |
| 10/28/2019 | 8:37 | 32.17     |            | 29.46    |                     | 2.71           | 0.44                        |

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

#### Water Quality Data

| Purge Method           | Time        | Purge Vol (gal) | Flowrate l/min | pH   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP   | Turbidity |
|------------------------|-------------|-----------------|----------------|------|----------|----------------|-----------|-------|-----------|
| (2) Peristaltic Pump   | 11:36:00 AM | 0.3             | 0.3            | 6.4  | 13.9     | 232.8          | 1.94      | 140.3 | 2.95      |
|                        | 11:40:00 AM | 0.52            | 0.22           | 6.4  | 13.9     | 238.6          | 1.32      | 137.7 | 0.39      |
|                        | 11:44:00 AM | 0.74            | 0.22           | 6.38 | 14.1     | 234.5          | 1.15      | 133.8 | 0.25      |
|                        | 11:48:00 AM | 0.96            | 0.22           | 6.32 | 14.1     | 239.2          | 1.11      | 132   | 0.22      |
|                        |             |                 |                |      |          |                |           |       |           |
|                        |             |                 |                |      |          |                |           |       |           |
| Final Field Parameters | 11:52:00 AM | 1.18            | 0.22           | 6.3  | 14.1     | 239.3          | 1.08      | 130.7 | 0.15      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### Water Quality Observations: Clear, colorless.

#### **Sample Information**

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 11:52:00 AM   | VOA-Glass                   | 3 | No       |
|                      |             |               | Amber Glass                 | 4 | No       |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              | 1 | No       |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 9 |          |

**General Sampling Comments** 

Began purging at 11:32. Water level consistently 29.55 feet below top of casing during purging.

# ATTACHMENT C

### LABORATORY ANALYTICAL REPORT





6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Wednesday, November 13, 2019

David Weatherby Maul Foster & Alongi, INC. 2001 NW 19th Ave, STE 200 Portland, OR 97209

RE: A9J1033 - POV-Terminal 1 - 9085.10.12

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9J1033, which was received by the laboratory on 10/29/2019 at 12:45:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>pnerenberg@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

|           | Cooler Receip      | t Information       |          |
|-----------|--------------------|---------------------|----------|
|           | (See Cooler Receip | t Form for details) |          |
| Cooler #1 | 0.3 degC           | Cooler #2           | 0.1 degC |
| Cooler #3 | 1.9 degC           |                     |          |

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.



Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL REPORT FOR SAMPLES

| SAMPLE INFORMATION |               |        |                |                |  |  |  |
|--------------------|---------------|--------|----------------|----------------|--|--|--|
| Client Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |  |  |  |
| MW-1-37            | A9J1033-01    | Water  | 10/28/19 15:49 | 10/29/19 12:45 |  |  |  |
| MW-2-40            | A9J1033-02    | Water  | 10/29/19 09:45 | 10/29/19 12:45 |  |  |  |
| MW-3-35            | A9J1033-03    | Water  | 10/28/19 09:23 | 10/29/19 12:45 |  |  |  |
| MW-4-34            | A9J1033-04    | Water  | 10/29/19 09:05 | 10/29/19 12:45 |  |  |  |
| MW-5-35            | A9J1033-05    | Water  | 10/29/19 08:10 | 10/29/19 12:45 |  |  |  |
| MW-6-30            | A9J1033-06    | Water  | 10/28/19 11:52 | 10/29/19 12:45 |  |  |  |
| MW-3-35-DUP        | A9J1033-07    | Water  | 10/28/19 09:23 | 10/29/19 12:45 |  |  |  |

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |
|                            |                                  |                         |

#### ANALYTICAL SAMPLE RESULTS

|                               | Die              | sei and/or Oil     | nydrocari          | bons by NWTP     | п-DX     |                  |             |       |
|-------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                       | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| MW-1-37 (A9J1033-01)          |                  |                    |                    | Matrix: Wat      | er       | Batch:           | 9101761     |       |
| Diesel                        | ND               |                    | 0.230              | mg/L             | 1        | 10/31/19 08:20   | NWTPH-Dx    |       |
| Oil                           | 0.603            |                    | 0.460              | mg/L             | 1        | 10/31/19 08:20   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recovery           | : 102 %            | Limits: 50-150 % | % I      | 10/31/19 08:20   | NWTPH-Dx    |       |
| MW-2-40 (A9J1033-02)          |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 9101761     |       |
| Diesel                        | ND               |                    | 0.303              | mg/L             | 1        | 10/31/19 08:40   | NWTPH-Dx    |       |
| Oil                           | ND               |                    | 0.606              | mg/L             | 1        | 10/31/19 08:40   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recovery           | : 108 %            | Limits: 50-150 % | 6 1      | 10/31/19 08:40   | NWTPH-Dx    |       |
|                               |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 9101761     |       |
| Diesel                        | 0.432            |                    | 0.217              | mg/L             | 1        | 10/31/19 09:00   | NWTPH-Dx    | F-17  |
| Oil                           | ND               |                    | 0.435              | mg/L             | 1        | 10/31/19 09:00   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recovery           | : 104 %            | Limits: 50-150 % | 6 1      | 10/31/19 09:00   | NWTPH-Dx    |       |
|                               |                  |                    |                    | Matrix: Wate     | er       | Batch: 9101761   |             |       |
| Diesel                        | ND               |                    | 0.204              | mg/L             | 1        | 10/31/19 09:21   | NWTPH-Dx    |       |
| Oil                           | ND               |                    | 0.408              | mg/L             | 1        | 10/31/19 09:21   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recovery           | .: 110 %           | Limits: 50-150 % | 6 1      | 10/31/19 09:21   | NWTPH-Dx    |       |
| MW-5-35 (A9J1033-05)          |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 9101761     |       |
| Diesel                        | ND               |                    | 0.202              | mg/L             | 1        | 10/31/19 09:41   | NWTPH-Dx    |       |
| Oil                           | ND               |                    | 0.404              | mg/L             | 1        | 10/31/19 09:41   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recovery           | : 109 %            | Limits: 50-150 % | 6 1      | 10/31/19 09:41   | NWTPH-Dx    |       |
| MW-6-30 (A9J1033-06)          |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 9101761     |       |
| Diesel                        | ND               |                    | 0.217              | mg/L             | 1        | 10/31/19 10:00   | NWTPH-Dx    |       |
| Oil                           | ND               |                    | 0.435              | mg/L             | 1        | 10/31/19 10:00   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recovery           | v: 113 %           | Limits: 50-150 % | % I      | 10/31/19 10:00   | NWTPH-Dx    |       |
| MW-3-35-DUP (A9J1033-07)      |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 9101761     |       |
| Diesel                        | 0.460            |                    | 0.206              | mg/L             | 1        | 10/31/19 10:20   | NWTPH-Dx    | F-17  |
| Oil                           | ND               |                    | 0.412              | mg/L             | 1        | 10/31/19 10:20   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recovery           | : 108 %            | Limits: 50-150 % | 6 1      | 10/31/19 10:20   | NWTPH-Dx    |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.   | Notes  |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|---------------|--------|
| MW-1-37 (A9J1033-01)                  | Result           | Linit              | Linin              | Matrix: Wate     |          | 2                | : 9101746     | 110103 |
| Gasoline Range Organics               | ND               |                    | 0.100              | mg/L             | 1        | 10/30/19 11:42   | NWTPH-Gx (MS) |        |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery.          | : 105 %            | Limits: 50-150 % | 1        | 10/30/19 11:42   | NWTPH-Gx (MS) |        |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 106 %              | 50-150 %         | 1        | 10/30/19 11:42   | NWTPH-Gx (MS) |        |
| -<br>MW-2-40 (A9J1033-02)             |                  |                    |                    | Matrix: Wate     | r        | Batch            | 9101746       |        |
| Gasoline Range Organics               | ND               |                    | 0.100              | mg/L             | 1        | 10/30/19 12:09   | NWTPH-Gx (MS) |        |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery.          | : 107 %            | Limits: 50-150 % | 1        | 10/30/19 12:09   | NWTPH-Gx (MS) |        |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 104 %              | 50-150 %         | Ι        | 10/30/19 12:09   | NWTPH-Gx (MS) |        |
| MW-3-35 (A9J1033-03RE1)               |                  |                    |                    | Matrix: Wate     | r        | Batch            | 9101792       |        |
| Gasoline Range Organics               | 0.267            |                    | 0.100              | mg/L             | 1        | 10/31/19 19:10   | NWTPH-Gx (MS) | F-12   |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recover            | y: 98 %            | Limits: 50-150 % | 1        | 10/31/19 19:10   | NWTPH-Gx (MS) |        |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 104 %              | 50-150 %         | 1        | 10/31/19 19:10   | NWTPH-Gx (MS) |        |
| MW-4-34 (A9J1033-04)                  |                  |                    |                    | Matrix: Wate     | r        | Batch            | 9101746       |        |
| Gasoline Range Organics               | ND               |                    | 0.100              | mg/L             | 1        | 10/30/19 12:36   | NWTPH-Gx (MS) |        |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery.          | : 105 %            | Limits: 50-150 % | 1        | 10/30/19 12:36   | NWTPH-Gx (MS) |        |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 107 %              | 50-150 %         | 1        | 10/30/19 12:36   | NWTPH-Gx (MS) |        |
| MW-5-35 (A9J1033-05)                  |                  |                    |                    | Matrix: Wate     | r        | Batch            | 9101746       |        |
| Gasoline Range Organics               | ND               |                    | 0.100              | mg/L             | 1        | 10/30/19 13:03   | NWTPH-Gx (MS) |        |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery.          | : 105 %            | Limits: 50-150 % | 1        | 10/30/19 13:03   | NWTPH-Gx (MS) |        |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 106 %              | 50-150 %         | 1        | 10/30/19 13:03   | NWTPH-Gx (MS) |        |
| MW-6-30 (A9J1033-06)                  |                  |                    |                    | Matrix: Wate     | r        | Batch            | 9101746       |        |
| Gasoline Range Organics               | ND               |                    | 0.100              | mg/L             | 1        | 10/30/19 15:18   | NWTPH-Gx (MS) |        |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery.          | : 104 %            | Limits: 50-150 % | I        | 10/30/19 15:18   | NWTPH-Gx (MS) |        |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 105 %              | 50-150 %         | 1        | 10/30/19 15:18   | NWTPH-Gx (MS) |        |
| MW-3-35-DUP (A9J1033-07RE1)           |                  |                    |                    | Matrix: Wate     | r        | Batch            | 9101792       |        |
| Gasoline Range Organics               | 0.254            |                    | 0.100              | mg/L             | 1        | 10/31/19 19:36   | NWTPH-Gx (MS) | F-12   |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recover            | v: 96 %            | Limits: 50-150 % | 1        | 10/31/19 19:36   | NWTPH-Gx (MS) |        |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 103 %              | 50-150 %         | 1        | 10/31/19 19:36   | NWTPH-Gx (MS) |        |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                             | V                | olatile Organ      | ic Compound        | ds by EPA 8 | 260C     |                  |             |      |
|-----------------------------|------------------|--------------------|--------------------|-------------|----------|------------------|-------------|------|
| Analyte                     | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution | Date<br>Analyzed | Method Ref. | Note |
| MW-1-37 (A9J1033-01)        |                  |                    |                    | Matrix: Wa  | ater     | Batch:           | 9101746     |      |
| Acetone                     | ND               |                    | 20.0               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Acrylonitrile               | ND               |                    | 2.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Benzene                     | ND               |                    | 0.200              | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Bromobenzene                | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Bromochloromethane          | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Bromodichloromethane        | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Bromoform                   | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Bromomethane                | ND               |                    | 5.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| 2-Butanone (MEK)            | ND               |                    | 10.0               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| n-Butylbenzene              | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| sec-Butylbenzene            | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| tert-Butylbenzene           | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Carbon disulfide            | ND               |                    | 10.0               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Carbon tetrachloride        | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Chlorobenzene               | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Chloroethane                | ND               |                    | 5.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Chloroform                  | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Chloromethane               | ND               |                    | 5.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| 2-Chlorotoluene             | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| 4-Chlorotoluene             | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Dibromochloromethane        | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| 1,2-Dibromo-3-chloropropane | ND               |                    | 5.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| 1,2-Dibromoethane (EDB)     | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Dibromomethane              | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| 1,2-Dichlorobenzene         | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| 1,3-Dichlorobenzene         | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| 1,4-Dichlorobenzene         | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| Dichlorodifluoromethane     | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| 1,1-Dichloroethane          | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| 1,2-Dichloroethane (EDC)    | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| 1,1-Dichloroethene          | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| cis-1,2-Dichloroethene      | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |
| trans-1,2-Dichloroethene    | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 11:42   | EPA 8260C   |      |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

| Volatile Organic Compounds by EPA 8260C |                  |                    |                    |              |          |                  |             |       |  |  |
|-----------------------------------------|------------------|--------------------|--------------------|--------------|----------|------------------|-------------|-------|--|--|
| Analyte                                 | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units        | Dilution | Date<br>Analyzed | Method Ref. | Notes |  |  |
| MW-1-37 (A9J1033-01)                    |                  |                    |                    | Matrix: W    | ater     | Batch:           | 9101746     |       |  |  |
| 1,2-Dichloropropane                     | ND               |                    | 0.500              | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 1,3-Dichloropropane                     | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 2,2-Dichloropropane                     | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 1,1-Dichloropropene                     | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| cis-1,3-Dichloropropene                 | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| trans-1,3-Dichloropropene               | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| Ethylbenzene                            | ND               |                    | 0.500              | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| Hexachlorobutadiene                     | ND               |                    | 5.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 2-Hexanone                              | ND               |                    | 10.0               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| Isopropylbenzene                        | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 4-Isopropyltoluene                      | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| Methylene chloride                      | ND               |                    | 10.0               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 4-Methyl-2-pentanone (MiBK)             | ND               |                    | 10.0               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| Methyl tert-butyl ether (MTBE)          | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| Naphthalene                             | ND               |                    | 2.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| n-Propylbenzene                         | ND               |                    | 0.500              | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| Styrene                                 | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 1,1,1,2-Tetrachloroethane               | ND               |                    | 0.400              | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 1,1,2,2-Tetrachloroethane               | ND               |                    | 0.500              | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| Tetrachloroethene (PCE)                 | ND               |                    | 0.400              | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| Toluene                                 | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 1,2,3-Trichlorobenzene                  | ND               |                    | 2.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 1,2,4-Trichlorobenzene                  | ND               |                    | 2.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 1,1,1-Trichloroethane                   | ND               |                    | 0.400              | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 1,1,2-Trichloroethane                   | ND               |                    | 0.500              | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| Trichloroethene (TCE)                   | ND               |                    | 0.400              | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| Trichlorofluoromethane                  | ND               |                    | 2.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 1,2,3-Trichloropropane                  | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 1,2,4-Trimethylbenzene                  | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| 1,3,5-Trimethylbenzene                  | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| Vinyl chloride                          | ND               |                    | 0.400              | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| m,p-Xylene                              | ND               |                    | 1.00               | ug/L         | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |
| o-Xylene                                | ND               |                    | 0.500              | ug/L<br>ug/L | 1        | 10/30/19 11:42   | EPA 8260C   |       |  |  |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Termin</b>   | <u>al 1</u>                  |
|----------------------------|------------------------------|------------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12   | <u>Report ID:</u>            |
| Portland, OR 97209         | Project Manager: David Weath | erby A9J1033 - 11 13 19 1613 |
|                            |                              |                              |

#### ANALYTICAL SAMPLE RESULTS

| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes  |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|--------|
| WW-1-37 (A9J1033-01)                  | nesun            | Linin              | Linit              | Matrix: Wate     |          |                  | 9101746     | 110105 |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recovery           | . 104 %            | Limits: 80-120 % |          | 10/30/19 11:42   | EPA 8260C   |        |
| Toluene-d8 (Surr)                     |                  | necovery           | 99%                | 80-120 %         |          | 10/30/19 11:42   | EPA 8260C   |        |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 99 %               | 80-120 %         | 1        | 10/30/19 11:42   | EPA 8260C   |        |
| /W-2-40 (A9J1033-02)                  |                  |                    |                    | Matrix: Wate     | r        | Batch: 9         | 9101746     |        |
| Acetone                               | 33.4             |                    | 20.0               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Acrylonitrile                         | ND               |                    | 2.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Benzene                               | ND               |                    | 0.200              | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Bromobenzene                          | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Bromochloromethane                    | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Bromodichloromethane                  | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Bromoform                             | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Bromomethane                          | ND               |                    | 5.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| 2-Butanone (MEK)                      | ND               |                    | 10.0               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| n-Butylbenzene                        | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| sec-Butylbenzene                      | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| tert-Butylbenzene                     | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Carbon disulfide                      | ND               |                    | 10.0               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Carbon tetrachloride                  | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Chlorobenzene                         | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Chloroethane                          | ND               |                    | 5.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Chloroform                            | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Chloromethane                         | ND               |                    | 5.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| 2-Chlorotoluene                       | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| 4-Chlorotoluene                       | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Dibromochloromethane                  | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| 1,2-Dibromo-3-chloropropane           | ND               |                    | 5.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| 1,2-Dibromoethane (EDB)               | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Dibromomethane                        | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| 1,2-Dichlorobenzene                   | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| 1,3-Dichlorobenzene                   | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| 1,4-Dichlorobenzene                   | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| Dichlorodifluoromethane               | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |
| 1,1-Dichloroethane                    | ND               |                    | 0.400              | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |        |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | Report ID:              |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                | V                | olatile Organ      | ic Compoun         | us by EPA 8 | 260C     |                  |             |      |
|--------------------------------|------------------|--------------------|--------------------|-------------|----------|------------------|-------------|------|
| Analyte                        | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution | Date<br>Analyzed | Method Ref. | Note |
| MW-2-40 (A9J1033-02)           |                  |                    |                    | Matrix: W   | ater     | Batch:           | 9101746     |      |
| 1,2-Dichloroethane (EDC)       | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 1,1-Dichloroethene             | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| cis-1,2-Dichloroethene         | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| trans-1,2-Dichloroethene       | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 1,2-Dichloropropane            | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 1,3-Dichloropropane            | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 2,2-Dichloropropane            | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 1,1-Dichloropropene            | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| cis-1,3-Dichloropropene        | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| trans-1,3-Dichloropropene      | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| Ethylbenzene                   | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| Hexachlorobutadiene            | ND               |                    | 5.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 2-Hexanone                     | ND               |                    | 10.0               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| Isopropylbenzene               | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 4-Isopropyltoluene             | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| Methylene chloride             | ND               |                    | 10.0               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 4-Methyl-2-pentanone (MiBK)    | ND               |                    | 10.0               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| Methyl tert-butyl ether (MTBE) | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| Naphthalene                    | ND               |                    | 2.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| n-Propylbenzene                | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| Styrene                        | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 1,1,1,2-Tetrachloroethane      | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 1,1,2,2-Tetrachloroethane      | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| Tetrachloroethene (PCE)        | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| Toluene                        | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 1,2,3-Trichlorobenzene         | ND               |                    | 2.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 1,2,4-Trichlorobenzene         | ND               |                    | 2.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 1,1,1-Trichloroethane          | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 1,1,2-Trichloroethane          | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| Trichloroethene (TCE)          | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| Trichlorofluoromethane         | ND               |                    | 2.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 1,2,3-Trichloropropane         | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |
| 1,2,4-Trimethylbenzene         | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:09   | EPA 8260C   |      |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                       | V                | olatile Organic    | Compou             | nds by EPA 826   | 0C       |                  |             |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| MW-2-40 (A9J1033-02)                  |                  |                    | Matrix: Wate       | r                | Batch:   | 9101746          |             |       |
| 1,3,5-Trimethylbenzene                | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |       |
| Vinyl chloride                        | ND               |                    | 0.400              | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |       |
| m,p-Xylene                            | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |       |
| o-Xylene                              | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 12:09   | EPA 8260C   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recovery           | : 103 %            | Limits: 80-120 % | 1        | 10/30/19 12:09   | EPA 8260C   |       |
| Toluene-d8 (Surr)                     |                  |                    | 98 %               | 80-120 %         | 1        | 10/30/19 12:09   | EPA 8260C   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 100 %              | 80-120 %         | 1        | 10/30/19 12:09   | EPA 8260C   |       |
| MW-3-35 (A9J1033-03RE1)               |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 9101792     |       |
| Acetone                               | ND               |                    | 20.0               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Acrylonitrile                         | ND               |                    | 2.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Benzene                               | ND               |                    | 0.200              | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Bromobenzene                          | ND               |                    | 0.500              | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Bromochloromethane                    | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Bromodichloromethane                  | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Bromoform                             | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Bromomethane                          | ND               |                    | 5.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| 2-Butanone (MEK)                      | ND               |                    | 10.0               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| n-Butylbenzene                        | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| sec-Butylbenzene                      | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| tert-Butylbenzene                     | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Carbon disulfide                      | ND               |                    | 10.0               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Carbon tetrachloride                  | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Chlorobenzene                         | ND               |                    | 0.500              | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Chloroethane                          | ND               |                    | 5.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Chloroform                            | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Chloromethane                         | ND               |                    | 5.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| 2-Chlorotoluene                       | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| 4-Chlorotoluene                       | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Dibromochloromethane                  | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| 1,2-Dibromo-3-chloropropane           | ND               |                    | 5.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| 1,2-Dibromoethane (EDB)               | ND               |                    | 0.500              | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Dibromomethane                        | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| 1,2-Dichlorobenzene                   | ND               |                    | 0.500              | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                | V                | olatile Organ      | ic Compound        | ds by EPA 8 | 260C     |                  |             |      |
|--------------------------------|------------------|--------------------|--------------------|-------------|----------|------------------|-------------|------|
| Analyte                        | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution | Date<br>Analyzed | Method Ref. | Note |
| MW-3-35 (A9J1033-03RE1)        |                  |                    |                    | Matrix: W   | ater     | Batch:           | 9101792     |      |
| 1,3-Dichlorobenzene            | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,4-Dichlorobenzene            | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| Dichlorodifluoromethane        | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,1-Dichloroethane             | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,2-Dichloroethane (EDC)       | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,1-Dichloroethene             | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| cis-1,2-Dichloroethene         | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| trans-1,2-Dichloroethene       | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,2-Dichloropropane            | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,3-Dichloropropane            | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 2,2-Dichloropropane            | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,1-Dichloropropene            | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| cis-1,3-Dichloropropene        | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| trans-1,3-Dichloropropene      | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| Ethylbenzene                   | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| Hexachlorobutadiene            | ND               |                    | 5.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 2-Hexanone                     | ND               |                    | 10.0               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| Isopropylbenzene               | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 4-Isopropyltoluene             | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| Methylene chloride             | ND               |                    | 3.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 4-Methyl-2-pentanone (MiBK)    | ND               |                    | 10.0               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| Methyl tert-butyl ether (MTBE) | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| Naphthalene                    | 105              |                    | 2.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| n-Propylbenzene                | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| Styrene                        | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,1,1,2-Tetrachloroethane      | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,1,2,2-Tetrachloroethane      | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| Tetrachloroethene (PCE)        | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| Toluene                        | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,2,3-Trichlorobenzene         | ND               |                    | 2.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,2,4-Trichlorobenzene         | ND               |                    | 2.00               | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,1,1-Trichloroethane          | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |
| 1,1,2-Trichloroethane          | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:10   | EPA 8260C   |      |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                       | V                | olatile Organic    | Compou             | nds by EPA 826   | 0C       |                  |             |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| IW-3-35 (A9J1033-03RE1)               |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 9101792     |       |
| Trichloroethene (TCE)                 | ND               |                    | 0.400              | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Trichlorofluoromethane                | ND               |                    | 2.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| 1,2,3-Trichloropropane                | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| 1,2,4-Trimethylbenzene                | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| 1,3,5-Trimethylbenzene                | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Vinyl chloride                        | ND               |                    | 0.400              | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| m,p-Xylene                            | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| o-Xylene                              | ND               |                    | 0.500              | ug/L             | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recovery:          | 106 %              | Limits: 80-120 % | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| Toluene-d8 (Surr)                     |                  |                    | 101 %              | 80-120 %         | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 98 %               | 80-120 %         | 1        | 10/31/19 19:10   | EPA 8260C   |       |
| W-4-34 (A9J1033-04)                   |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 9101746     |       |
| Acetone                               | ND               |                    | 20.0               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Acrylonitrile                         | ND               |                    | 2.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Benzene                               | ND               |                    | 0.200              | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Bromobenzene                          | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Bromochloromethane                    | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Bromodichloromethane                  | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Bromoform                             | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Bromomethane                          | ND               |                    | 5.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| 2-Butanone (MEK)                      | ND               |                    | 10.0               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| n-Butylbenzene                        | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| sec-Butylbenzene                      | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| ert-Butylbenzene                      | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Carbon disulfide                      | ND               |                    | 10.0               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Carbon tetrachloride                  | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Chlorobenzene                         | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Chloroethane                          | ND               |                    | 5.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Chloroform                            | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
|                                       |                  |                    |                    | 0                |          |                  |             |       |

1.00

1.00

1.00

ug/L

ug/L

ug/L

Dibromochloromethane Apex Laboratories

2-Chlorotoluene

4-Chlorotoluene

Philip Nevenberg

ND

ND

ND

---

---

----

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1

1

1

10/30/19 12:36

10/30/19 12:36

10/30/19 12:36

EPA 8260C

EPA 8260C

EPA 8260C



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

| l                              | V                | olatile Organ      | ic Compound        | ds by EPA 8 | 260C     |                  |             |      |
|--------------------------------|------------------|--------------------|--------------------|-------------|----------|------------------|-------------|------|
| Analyte                        | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution | Date<br>Analyzed | Method Ref. | Note |
| MW-4-34 (A9J1033-04)           |                  |                    |                    | Matrix: Wa  | ater     | Batch:           | 9101746     |      |
| 1,2-Dibromo-3-chloropropane    | ND               |                    | 5.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 1,2-Dibromoethane (EDB)        | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| Dibromomethane                 | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 1,2-Dichlorobenzene            | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 1,3-Dichlorobenzene            | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 1,4-Dichlorobenzene            | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| Dichlorodifluoromethane        | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 1,1-Dichloroethane             | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 1,2-Dichloroethane (EDC)       | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 1,1-Dichloroethene             | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| cis-1,2-Dichloroethene         | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| trans-1,2-Dichloroethene       | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 1,2-Dichloropropane            | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 1,3-Dichloropropane            | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 2,2-Dichloropropane            | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 1,1-Dichloropropene            | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| cis-1,3-Dichloropropene        | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| trans-1,3-Dichloropropene      | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| Ethylbenzene                   | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| Hexachlorobutadiene            | ND               |                    | 5.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 2-Hexanone                     | ND               |                    | 10.0               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| Isopropylbenzene               | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 4-Isopropyltoluene             | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| Methylene chloride             | ND               |                    | 10.0               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 4-Methyl-2-pentanone (MiBK)    | ND               |                    | 10.0               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| Methyl tert-butyl ether (MTBE) | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| Naphthalene                    | ND               |                    | 2.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| n-Propylbenzene                | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| Styrene                        | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 1,1,1,2-Tetrachloroethane      | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| 1,1,2,2-Tetrachloroethane      | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| Tetrachloroethene (PCE)        | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |
| Toluene                        | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 12:36   | EPA 8260C   |      |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Termina</b>   | 1                           |
|----------------------------|-------------------------------|-----------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12    | Report ID:                  |
| Portland, OR 97209         | Project Manager: David Weathe | rby A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                       | V                | olatile Organ      | ic Compou          | nds by EPA 826   | 0C       |                  |             |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| MW-4-34 (A9J1033-04)                  |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 9101746     |       |
| 1,2,3-Trichlorobenzene                | ND               |                    | 2.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| 1,2,4-Trichlorobenzene                | ND               |                    | 2.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| 1,1,1-Trichloroethane                 | ND               |                    | 0.400              | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| 1,1,2-Trichloroethane                 | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Trichloroethene (TCE)                 | ND               |                    | 0.400              | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Trichlorofluoromethane                | ND               |                    | 2.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| 1,2,3-Trichloropropane                | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| 1,2,4-Trimethylbenzene                | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| 1,3,5-Trimethylbenzene                | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Vinyl chloride                        | ND               |                    | 0.400              | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| m,p-Xylene                            | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| o-Xylene                              | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recove             | ery: 105 %         | Limits: 80-120 % | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| Toluene-d8 (Surr)                     |                  |                    | 99 %               | 80-120 %         | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 98 %               | 80-120 %         | 1        | 10/30/19 12:36   | EPA 8260C   |       |
| MW-5-35 (A9J1033-05)                  |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 9101746     |       |
| Acetone                               | ND               |                    | 20.0               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Acrylonitrile                         | ND               |                    | 2.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Benzene                               | ND               |                    | 0.200              | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Bromobenzene                          | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Bromochloromethane                    | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Bromodichloromethane                  | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Bromoform                             | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Bromomethane                          | ND               |                    | 5.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| 2-Butanone (MEK)                      | ND               |                    | 10.0               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| n-Butylbenzene                        | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| sec-Butylbenzene                      | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| tert-Butylbenzene                     | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Carbon disulfide                      | ND               |                    | 10.0               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Carbon tetrachloride                  | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Chlorobenzene                         | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Chloroethane                          | ND               |                    | 5.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Chloroform                            | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                                                                          | V  | olatile Organ | ic Compound | ds by EPA 8 | 260C |                |           |  |
|------------------------------------------------------------------------------------------|----|---------------|-------------|-------------|------|----------------|-----------|--|
| SampleDetectionReportingDateAnalyteResultLimitLimitUnitsDilutionAnalyzedMethod Ref.Notes |    |               |             |             |      |                |           |  |
| MW-5-35 (A9J1033-05)                                                                     |    |               |             | Matrix: Wa  | ater | Batch:         | 9101746   |  |
| Chloromethane                                                                            | ND |               | 5.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 2-Chlorotoluene                                                                          | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 4-Chlorotoluene                                                                          | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| Dibromochloromethane                                                                     | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 1,2-Dibromo-3-chloropropane                                                              | ND |               | 5.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 1,2-Dibromoethane (EDB)                                                                  | ND |               | 0.500       | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| Dibromomethane                                                                           | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 1,2-Dichlorobenzene                                                                      | ND |               | 0.500       | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 1,3-Dichlorobenzene                                                                      | ND |               | 0.500       | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 1,4-Dichlorobenzene                                                                      | ND |               | 0.500       | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| Dichlorodifluoromethane                                                                  | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 1,1-Dichloroethane                                                                       | ND |               | 0.400       | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 1,2-Dichloroethane (EDC)                                                                 | ND |               | 0.400       | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 1,1-Dichloroethene                                                                       | ND |               | 0.400       | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| cis-1,2-Dichloroethene                                                                   | ND |               | 0.400       | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| trans-1,2-Dichloroethene                                                                 | ND |               | 0.400       | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 1,2-Dichloropropane                                                                      | ND |               | 0.500       | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 1,3-Dichloropropane                                                                      | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 2,2-Dichloropropane                                                                      | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 1,1-Dichloropropene                                                                      | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| cis-1,3-Dichloropropene                                                                  | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| trans-1,3-Dichloropropene                                                                | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| Ethylbenzene                                                                             | ND |               | 0.500       | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| Hexachlorobutadiene                                                                      | ND |               | 5.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 2-Hexanone                                                                               | ND |               | 10.0        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| Isopropylbenzene                                                                         | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 4-Isopropyltoluene                                                                       | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| Methylene chloride                                                                       | ND |               | 10.0        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| 4-Methyl-2-pentanone (MiBK)                                                              | ND |               | 10.0        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| Methyl tert-butyl ether (MTBE)                                                           | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| Naphthalene                                                                              | ND |               | 2.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| n-Propylbenzene                                                                          | ND |               | 0.500       | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |
| Styrene                                                                                  | ND |               | 1.00        | ug/L        | 1    | 10/30/19 13:03 | EPA 8260C |  |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project:         | POV-Terminal 1  |                         |
|----------------------------|------------------|-----------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number:  | 9085.10.12      | Report ID:              |
| Portland, OR 97209         | Project Manager: | David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                       | V                | olatile Organ      | ic Compou          | nds by EPA 826   | 00       |                  |             |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| MW-5-35 (A9J1033-05)                  |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 9101746     |       |
| 1,1,1,2-Tetrachloroethane             | ND               |                    | 0.400              | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| 1,1,2,2-Tetrachloroethane             | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Tetrachloroethene (PCE)               | ND               |                    | 0.400              | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Toluene                               | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| 1,2,3-Trichlorobenzene                | ND               |                    | 2.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| 1,2,4-Trichlorobenzene                | ND               |                    | 2.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| 1,1,1-Trichloroethane                 | ND               |                    | 0.400              | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| 1,1,2-Trichloroethane                 | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Trichloroethene (TCE)                 | ND               |                    | 0.400              | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Trichlorofluoromethane                | ND               |                    | 2.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| 1,2,3-Trichloropropane                | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| 1,2,4-Trimethylbenzene                | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| 1,3,5-Trimethylbenzene                | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Vinyl chloride                        | ND               |                    | 0.400              | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| m,p-Xylene                            | ND               |                    | 1.00               | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| o-Xylene                              | ND               |                    | 0.500              | ug/L             | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recove             | ery: 105 %         | Limits: 80-120 % | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| Toluene-d8 (Surr)                     |                  |                    | 98 %               | 80-120 %         | 1        | 10/30/19 13:03   | EPA 8260C   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 98 %               | 80-120 %         | 1        | 10/30/19 13:03   | EPA 8260C   |       |

| WWW-0-30 (A931033-06) |    |           | IVIALITA. VVAL | ei | Batch.         | 9101746   |  |
|-----------------------|----|-----------|----------------|----|----------------|-----------|--|
| Acetone               | ND | <br>20.0  | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |
| Acrylonitrile         | ND | <br>2.00  | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |
| Benzene               | ND | <br>0.200 | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |
| Bromobenzene          | ND | <br>0.500 | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |
| Bromochloromethane    | ND | <br>1.00  | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |
| Bromodichloromethane  | ND | <br>1.00  | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |
| Bromoform             | ND | <br>1.00  | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |
| Bromomethane          | ND | <br>5.00  | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |
| 2-Butanone (MEK)      | ND | <br>10.0  | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |
| n-Butylbenzene        | ND | <br>1.00  | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |
| sec-Butylbenzene      | ND | <br>1.00  | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |
| tert-Butylbenzene     | ND | <br>1.00  | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |
| Carbon disulfide      | ND | <br>10.0  | ug/L           | 1  | 10/30/19 15:18 | EPA 8260C |  |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                             | V                | olatile Organ      | ic Compoun         | ds by EPA 8 | 260C     |                  |             |       |
|-----------------------------|------------------|--------------------|--------------------|-------------|----------|------------------|-------------|-------|
| Analyte                     | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| /W-6-30 (A9J1033-06)        |                  |                    |                    | Matrix: W   | ater     | Batch:           | 9101746     |       |
| Carbon tetrachloride        | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| Chlorobenzene               | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| Chloroethane                | ND               |                    | 5.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| Chloroform                  | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| Chloromethane               | ND               |                    | 5.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 2-Chlorotoluene             | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 4-Chlorotoluene             | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| Dibromochloromethane        | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 1,2-Dibromo-3-chloropropane | ND               |                    | 5.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 1,2-Dibromoethane (EDB)     | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| Dibromomethane              | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 1,2-Dichlorobenzene         | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 1,3-Dichlorobenzene         | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 1,4-Dichlorobenzene         | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| Dichlorodifluoromethane     | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 1,1-Dichloroethane          | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 1,2-Dichloroethane (EDC)    | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 1,1-Dichloroethene          | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| cis-1,2-Dichloroethene      | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| trans-1,2-Dichloroethene    | ND               |                    | 0.400              | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 1,2-Dichloropropane         | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 1,3-Dichloropropane         | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 2,2-Dichloropropane         | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 1,1-Dichloropropene         | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| cis-1,3-Dichloropropene     | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| trans-1,3-Dichloropropene   | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| Ethylbenzene                | ND               |                    | 0.500              | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| Hexachlorobutadiene         | ND               |                    | 5.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 2-Hexanone                  | ND               |                    | 10.0               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| sopropylbenzene             | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 4-Isopropyltoluene          | ND               |                    | 1.00               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| Methylene chloride          | ND               |                    | 10.0               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |
| 4-Methyl-2-pentanone (MiBK) | ND               |                    | 10.0               | ug/L        | 1        | 10/30/19 15:18   | EPA 8260C   |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                       | V      | olatile Organ | ic Compou | nds by EPA 8260  | 00       |                |             |       |
|---------------------------------------|--------|---------------|-----------|------------------|----------|----------------|-------------|-------|
|                                       | Sample | Detection     | Reporting |                  |          | Date           |             |       |
| Analyte                               | Result | Limit         | Limit     | Units            | Dilution | Analyzed       | Method Ref. | Notes |
| MW-6-30 (A9J1033-06)                  |        |               |           | Matrix: Water    | r        | Batch: 9       | 9101746     |       |
| Methyl tert-butyl ether (MTBE)        | ND     |               | 1.00      | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| Naphthalene                           | ND     |               | 2.00      | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| n-Propylbenzene                       | ND     |               | 0.500     | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| Styrene                               | ND     |               | 1.00      | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| 1,1,1,2-Tetrachloroethane             | ND     |               | 0.400     | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| 1,1,2,2-Tetrachloroethane             | ND     |               | 0.500     | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| Tetrachloroethene (PCE)               | ND     |               | 0.400     | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| Toluene                               | ND     |               | 1.00      | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| 1,2,3-Trichlorobenzene                | ND     |               | 2.00      | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| 1,2,4-Trichlorobenzene                | ND     |               | 2.00      | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| 1,1,1-Trichloroethane                 | ND     |               | 0.400     | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| 1,1,2-Trichloroethane                 | ND     |               | 0.500     | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| Trichloroethene (TCE)                 | ND     |               | 0.400     | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| Trichlorofluoromethane                | ND     |               | 2.00      | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| 1,2,3-Trichloropropane                | ND     |               | 1.00      | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| 1,2,4-Trimethylbenzene                | ND     |               | 1.00      | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| 1,3,5-Trimethylbenzene                | ND     |               | 1.00      | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| Vinyl chloride                        | ND     |               | 0.400     | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| m,p-Xylene                            | ND     |               | 1.00      | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| o-Xylene                              | ND     |               | 0.500     | ug/L             | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recove        | ry: 105 % | Limits: 80-120 % | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| Toluene-d8 (Surr)                     |        |               | 99 %      | 80-120 %         | Ι        | 10/30/19 15:18 | EPA 8260C   |       |
| 4-Bromofluorobenzene (Surr)           |        |               | 98 %      | 80-120 %         | 1        | 10/30/19 15:18 | EPA 8260C   |       |
| MW-3-35-DUP (A9J1033-07RE1)           |        |               |           | Matrix: Water    | r        | Batch: 9101792 |             |       |
| Acetone                               | ND     |               | 20.0      | ug/L             | 1        | 10/31/19 19:36 | EPA 8260C   |       |
| Acrylonitrile                         | ND     |               | 2.00      | ug/L             | 1        | 10/31/19 19:36 | EPA 8260C   |       |
| Benzene                               | ND     |               | 0.200     | ug/L             | 1        | 10/31/19 19:36 | EPA 8260C   |       |
| Bromobenzene                          | ND     |               | 0.500     | ug/L             | 1        | 10/31/19 19:36 | EPA 8260C   |       |
| Bromochloromethane                    | ND     |               | 1.00      | ug/L             | 1        | 10/31/19 19:36 | EPA 8260C   |       |
| Bromodichloromethane                  | ND     |               | 1.00      | ug/L             | 1        | 10/31/19 19:36 | EPA 8260C   |       |
| Bromoform                             | ND     |               | 1.00      | ug/L             | 1        | 10/31/19 19:36 | EPA 8260C   |       |
| Bromomethane                          | ND     |               | 5.00      | ug/L             | 1        | 10/31/19 19:36 | EPA 8260C   |       |
| 2-Butanone (MEK)                      | ND     |               | 10.0      | ug/L             | 1        | 10/31/19 19:36 | EPA 8260C   |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                             | V                | olatile Organ      | ic Compound        | ds by EPA 8 | 260C     |                  |             |       |
|-----------------------------|------------------|--------------------|--------------------|-------------|----------|------------------|-------------|-------|
| Analyte                     | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| MW-3-35-DUP (A9J1033-07RE1) |                  |                    |                    | Matrix: Wa  | ater     | Batch:           | 9101792     |       |
| n-Butylbenzene              | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| sec-Butylbenzene            | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| tert-Butylbenzene           | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Carbon disulfide            | ND               |                    | 10.0               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Carbon tetrachloride        | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Chlorobenzene               | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Chloroethane                | ND               |                    | 5.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Chloroform                  | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Chloromethane               | ND               |                    | 5.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 2-Chlorotoluene             | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 4-Chlorotoluene             | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Dibromochloromethane        | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,2-Dibromo-3-chloropropane | ND               |                    | 5.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,2-Dibromoethane (EDB)     | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Dibromomethane              | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,2-Dichlorobenzene         | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,3-Dichlorobenzene         | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,4-Dichlorobenzene         | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Dichlorodifluoromethane     | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,1-Dichloroethane          | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,2-Dichloroethane (EDC)    | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,1-Dichloroethene          | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| cis-1,2-Dichloroethene      | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| trans-1,2-Dichloroethene    | ND               |                    | 0.400              | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,2-Dichloropropane         | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,3-Dichloropropane         | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 2,2-Dichloropropane         | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,1-Dichloropropene         | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| cis-1,3-Dichloropropene     | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| trans-1,3-Dichloropropene   | ND               |                    | 1.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Ethylbenzene                | ND               |                    | 0.500              | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Hexachlorobutadiene         | ND               |                    | 5.00               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 2-Hexanone                  | ND               |                    | 10.0               | ug/L        | 1        | 10/31/19 19:36   | EPA 8260C   |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| l | Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|---|----------------------------|----------------------------------|-------------------------|
| I | 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| l | Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                       | V                | olatile Organ      | ic Compour         | nds by EPA 826   | 60C      |                  |             |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| MW-3-35-DUP (A9J1033-07RE1)           |                  |                    |                    | Matrix: Wate     | ər       | Batch: 9101792   |             |       |
| Isopropylbenzene                      | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 4-Isopropyltoluene                    | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Methylene chloride                    | ND               |                    | 3.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 4-Methyl-2-pentanone (MiBK)           | ND               |                    | 10.0               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Methyl tert-butyl ether (MTBE)        | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Naphthalene                           | 103              |                    | 2.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| n-Propylbenzene                       | ND               |                    | 0.500              | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Styrene                               | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,1,1,2-Tetrachloroethane             | ND               |                    | 0.400              | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,1,2,2-Tetrachloroethane             | ND               |                    | 0.500              | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Tetrachloroethene (PCE)               | ND               |                    | 0.400              | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Toluene                               | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,2,3-Trichlorobenzene                | ND               |                    | 2.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,2,4-Trichlorobenzene                | ND               |                    | 2.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,1,1-Trichloroethane                 | ND               |                    | 0.400              | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,1,2-Trichloroethane                 | ND               |                    | 0.500              | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Trichloroethene (TCE)                 | ND               |                    | 0.400              | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Trichlorofluoromethane                | ND               |                    | 2.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,2,3-Trichloropropane                | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,2,4-Trimethylbenzene                | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| 1,3,5-Trimethylbenzene                | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Vinyl chloride                        | ND               |                    | 0.400              | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| m,p-Xylene                            | ND               |                    | 1.00               | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| o-Xylene                              | ND               |                    | 0.500              | ug/L             | 1        | 10/31/19 19:36   | EPA 8260C   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recov              | ery: 106 %         | Limits: 80-120 % | 6 I      | 10/31/19 19:36   | EPA 8260C   |       |
| Toluene-d8 (Surr)                     |                  |                    | 102 %              | 80-120 %         |          | 10/31/19 19:36   | EPA 8260C   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 98 %               | 80-120 %         | 6 I      | 10/31/19 19:36   | EPA 8260C   |       |

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                    | Polyaro | omatic Hydro | carbons (P | AHs) by EPA 82   | 70D SIM  |                |                 |       |
|------------------------------------|---------|--------------|------------|------------------|----------|----------------|-----------------|-------|
|                                    | Sample  | Detection    | Reporting  |                  |          | Date           |                 |       |
| Analyte                            | Result  | Limit        | Limit      | Units            | Dilution | Analyzed       | Method Ref.     | Notes |
| MW-1-37 (A9J1033-01)               |         |              |            | Matrix: Wate     | ər       | Batch          | 9101758         |       |
| Acenaphthene                       | ND      |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Acenaphthylene                     | ND      |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Anthracene                         | ND      |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Benz(a)anthracene                  | 0.0446  |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Benzo(a)pyrene                     | 0.0458  |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Benzo(b)fluoranthene               | 0.0702  |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) | M-05  |
| Benzo(k)fluoranthene               | ND      |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Benzo(g,h,i)perylene               | 0.0464  |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Chrysene                           | 0.0643  |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Dibenz(a,h)anthracene              | ND      |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Dibenzofuran                       | ND      |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Fluoranthene                       | 0.0965  |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Fluorene                           | ND      |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Indeno(1,2,3-cd)pyrene             | 0.0534  |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| 1-Methylnaphthalene                | ND      |              | 0.0808     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| 2-Methylnaphthalene                | ND      |              | 0.0808     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Naphthalene                        | ND      |              | 0.0808     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Phenanthrene                       | 0.0447  |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Pyrene                             | 0.0974  |              | 0.0404     | ug/L             | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |         | Recov        | ery: 66 %  | Limits: 44-120 % | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |
| p-Terphenyl-d14 (Surr)             |         |              | 86 %       | 50-133 %         | 1        | 10/30/19 20:49 | EPA 8270D (SIM) |       |

| MW-2-40 (A9J1033-02)  |    |            | Matrix: Wat | er | Batch          | : 9101758       |  |
|-----------------------|----|------------|-------------|----|----------------|-----------------|--|
| Acenaphthene          | ND | <br>0.0506 | ug/L        | 1  | 10/30/19 21:14 | EPA 8270D (SIM) |  |
| Acenaphthylene        | ND | <br>0.0506 | ug/L        | 1  | 10/30/19 21:14 | EPA 8270D (SIM) |  |
| Anthracene            | ND | <br>0.0506 | ug/L        | 1  | 10/30/19 21:14 | EPA 8270D (SIM) |  |
| Benz(a)anthracene     | ND | <br>0.0506 | ug/L        | 1  | 10/30/19 21:14 | EPA 8270D (SIM) |  |
| Benzo(a)pyrene        | ND | <br>0.0506 | ug/L        | 1  | 10/30/19 21:14 | EPA 8270D (SIM) |  |
| Benzo(b)fluoranthene  | ND | <br>0.0506 | ug/L        | 1  | 10/30/19 21:14 | EPA 8270D (SIM) |  |
| Benzo(k)fluoranthene  | ND | <br>0.0506 | ug/L        | 1  | 10/30/19 21:14 | EPA 8270D (SIM) |  |
| Benzo(g,h,i)perylene  | ND | <br>0.0506 | ug/L        | 1  | 10/30/19 21:14 | EPA 8270D (SIM) |  |
| Chrysene              | ND | <br>0.0506 | ug/L        | 1  | 10/30/19 21:14 | EPA 8270D (SIM) |  |
| Dibenz(a,h)anthracene | ND | <br>0.0506 | ug/L        | 1  | 10/30/19 21:14 | EPA 8270D (SIM) |  |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | Report ID:              |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                    | Polyaro          | omatic Hydro       | ocarbons (PA       | AHs) by EPA 82   | 270D SIM |                  |                 |       |
|------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-----------------|-------|
| Analyte                            | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.     | Notes |
| MW-2-40 (A9J1033-02)               |                  |                    |                    | Matrix: Wate     | ər       | Batch            | 9101758         |       |
| Dibenzofuran                       | ND               |                    | 0.0506             | ug/L             | 1        | 10/30/19 21:14   | EPA 8270D (SIM) |       |
| Fluoranthene                       | ND               |                    | 0.0506             | ug/L             | 1        | 10/30/19 21:14   | EPA 8270D (SIM) |       |
| Fluorene                           | ND               |                    | 0.0506             | ug/L             | 1        | 10/30/19 21:14   | EPA 8270D (SIM) |       |
| Indeno(1,2,3-cd)pyrene             | ND               |                    | 0.0506             | ug/L             | 1        | 10/30/19 21:14   | EPA 8270D (SIM) |       |
| 1-Methylnaphthalene                | ND               |                    | 0.101              | ug/L             | 1        | 10/30/19 21:14   | EPA 8270D (SIM) |       |
| 2-Methylnaphthalene                | ND               |                    | 0.101              | ug/L             | 1        | 10/30/19 21:14   | EPA 8270D (SIM) |       |
| Naphthalene                        | ND               |                    | 0.101              | ug/L             | 1        | 10/30/19 21:14   | EPA 8270D (SIM) |       |
| Phenanthrene                       | ND               |                    | 0.0506             | ug/L             | 1        | 10/30/19 21:14   | EPA 8270D (SIM) |       |
| Pyrene                             | ND               |                    | 0.0506             | ug/L             | 1        | 10/30/19 21:14   | EPA 8270D (SIM) |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Reco               | very: 81 %         | Limits: 44-120 % | 5 1      | 10/30/19 21:14   | EPA 8270D (SIM) |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 58 %               | 50-133 %         | 5 I      | 10/30/19 21:14   | EPA 8270D (SIM) |       |

| MW-3-35 (A9J1033-03)               |      |       |            | Matrix: Water    |    | Batch          | 9101758         |
|------------------------------------|------|-------|------------|------------------|----|----------------|-----------------|
| Acenaphthene                       | 62.5 |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Acenaphthylene                     | ND   |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Anthracene                         | 1.02 |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Benz(a)anthracene                  | ND   |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Benzo(a)pyrene                     | ND   |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Benzo(b)fluoranthene               | ND   |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Benzo(k)fluoranthene               | ND   |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Benzo(g,h,i)perylene               | ND   |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Chrysene                           | ND   |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Dibenz(a,h)anthracene              | ND   |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Dibenzofuran                       | 20.0 |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Fluoranthene                       | 2.53 |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Fluorene                           | 20.8 |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Indeno(1,2,3-cd)pyrene             | ND   |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| 1-Methylnaphthalene                | 12.8 |       | 0.889      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| 2-Methylnaphthalene                | 2.03 |       | 0.889      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Naphthalene                        | 25.8 |       | 0.889      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Phenanthrene                       | 21.9 |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Pyrene                             | 1.31 |       | 0.444      | ug/L             | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |
| Surrogate: 2-Fluorobiphenyl (Surr) |      | Recov | very: 65 % | Limits: 44-120 % | 10 | 10/30/19 21:39 | EPA 8270D (SIM) |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                    | Polyaro          | omatic Hydroca  | rbons (P           | AHs) by EPA 82   | 70D SIM  |                  |                 |       |
|------------------------------------|------------------|-----------------|--------------------|------------------|----------|------------------|-----------------|-------|
| Analyte                            | Sample<br>Result | Detection Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.     | Notes |
| MW-3-35 (A9J1033-03)               |                  |                 |                    | Matrix: Wate     | ər       | Batch:           | 9101758         |       |
| Surrogate: p-Terphenyl-d14 (Surr)  |                  | Recovery        | r: 97 %            | Limits: 50-133 % | 10       | 10/30/19 21:39   | EPA 8270D (SIM) |       |
|                                    |                  |                 |                    | Matrix: Wate     | ər       | Batch:           | 9101758         |       |
| Acenaphthene                       | 0.130            |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Acenaphthylene                     | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Anthracene                         | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Benz(a)anthracene                  | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Benzo(a)pyrene                     | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Benzo(b)fluoranthene               | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Benzo(k)fluoranthene               | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Benzo(g,h,i)perylene               | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Chrysene                           | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Dibenz(a,h)anthracene              | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Dibenzofuran                       | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Fluoranthene                       | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Fluorene                           | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Indeno(1,2,3-cd)pyrene             | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| 1-Methylnaphthalene                | ND               |                 | 0.0920             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| 2-Methylnaphthalene                | ND               |                 | 0.0920             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Naphthalene                        | 0.126            |                 | 0.0920             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Phenanthrene                       | 0.0470           |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Pyrene                             | ND               |                 | 0.0460             | ug/L             | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery        | : 86 %             | Limits: 44-120 % | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| p-Terphenyl-d14 (Surr)             |                  |                 | 92 %               | 50-133 %         | 1        | 10/30/19 22:04   | EPA 8270D (SIM) |       |
| MW-5-35 (A9J1033-05)               |                  |                 |                    | Matrix: Wate     | ər       | Batch:           | 9101758         |       |
| Acenaphthene                       | ND               |                 | 0.0430             | ug/L             | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |       |
|                                    |                  |                 | 0.0420             |                  |          | 10/20/10 22 20   | ED4 9270D (SD4) |       |

| Acenaphthene         | ND | <br>0.0430 | ug/L | 1 | 10/30/19 22:29 | EPA 8270D (SIM) |  |
|----------------------|----|------------|------|---|----------------|-----------------|--|
| Acenaphthylene       | ND | <br>0.0430 | ug/L | 1 | 10/30/19 22:29 | EPA 8270D (SIM) |  |
| Anthracene           | ND | <br>0.0430 | ug/L | 1 | 10/30/19 22:29 | EPA 8270D (SIM) |  |
| Benz(a)anthracene    | ND | <br>0.0430 | ug/L | 1 | 10/30/19 22:29 | EPA 8270D (SIM) |  |
| Benzo(a)pyrene       | ND | <br>0.0430 | ug/L | 1 | 10/30/19 22:29 | EPA 8270D (SIM) |  |
| Benzo(b)fluoranthene | ND | <br>0.0430 | ug/L | 1 | 10/30/19 22:29 | EPA 8270D (SIM) |  |
| Benzo(k)fluoranthene | ND | <br>0.0430 | ug/L | 1 | 10/30/19 22:29 | EPA 8270D (SIM) |  |
| Benzo(g,h,i)perylene | ND | <br>0.0430 | ug/L | 1 | 10/30/19 22:29 | EPA 8270D (SIM) |  |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                    | Polyaro          | omatic Hydroc      | arbons (P          | AHs) by EPA 82   | 70D SIM  |                  |                 |      |
|------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-----------------|------|
| Analyte                            | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.     | Note |
| MW-5-35 (A9J1033-05)               |                  |                    |                    | Matrix: Wate     |          |                  | 9101758         |      |
| Chrysene                           | ND               |                    | 0.0430             | ug/L             | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
| Dibenz(a,h)anthracene              | ND               |                    | 0.0430             | ug/L             | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
| Dibenzofuran                       | ND               |                    | 0.0430             | ug/L             | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
| Fluoranthene                       | ND               |                    | 0.0430             | ug/L             | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
| Fluorene                           | ND               |                    | 0.0430             | ug/L             | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
| Indeno(1,2,3-cd)pyrene             | ND               |                    | 0.0430             | ug/L             | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
| 1-Methylnaphthalene                | ND               |                    | 0.0860             | ug/L             | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
| 2-Methylnaphthalene                | ND               |                    | 0.0860             | ug/L             | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
| Naphthalene                        | ND               |                    | 0.0860             | ug/L             | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
| Phenanthrene                       | ND               |                    | 0.0430             | ug/L             | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
| Pyrene                             | ND               |                    | 0.0430             | ug/L             | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recover            | ry: 79%            | Limits: 44-120 % | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
| p-Terphenyl-d14 (Surr)             |                  |                    | 72 %               | 50-133 %         | 1        | 10/30/19 22:29   | EPA 8270D (SIM) |      |
|                                    |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 9101758         |      |
| Acenaphthene                       | 0.0455           |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Acenaphthylene                     | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Anthracene                         | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Benz(a)anthracene                  | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Benzo(a)pyrene                     | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Benzo(b)fluoranthene               | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Benzo(k)fluoranthene               | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Benzo(g,h,i)perylene               | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Chrysene                           | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Dibenz(a,h)anthracene              | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Dibenzofuran                       | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Fluoranthene                       | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Fluorene                           | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Indeno(1,2,3-cd)pyrene             | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| 1-Methylnaphthalene                | ND               |                    | 0.0833             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| 2-Methylnaphthalene                | ND               |                    | 0.0833             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Naphthalene                        | ND               |                    | 0.0833             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |
| Phenanthrene                       | ND               |                    | 0.0417             | ug/L             | 1        | 11/01/19 15:32   | EPA 8270D (SIM) |      |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                                    | Polyar | omatic Hydro | carbons (P | AHs) by EPA 82   | TUD SIM  |                |                 |       |
|------------------------------------|--------|--------------|------------|------------------|----------|----------------|-----------------|-------|
|                                    | Sample | Detection    | Reporting  |                  |          | Date           |                 |       |
| Analyte                            | Result | Limit        | Limit      | Units            | Dilution | Analyzed       | Method Ref.     | Notes |
| MW-6-30 (A9J1033-06)               |        |              |            | Matrix: Wate     | r        | Batch:         | 9101758         |       |
| Pyrene                             | ND     |              | 0.0417     | ug/L             | 1        | 11/01/19 15:32 | EPA 8270D (SIM) |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |        | Reco         | very: 66 % | Limits: 44-120 % | 1        | 11/01/19 15:32 | EPA 8270D (SIM) |       |
| p-Terphenyl-d14 (Surr)             |        |              | 87 %       | 50-133 %         | 1        | 11/01/19 15:32 | EPA 8270D (SIM) |       |
|                                    |        |              |            | Matrix: Wate     | r        | Batch:         | 9101758         |       |
| Acenaphthene                       | 71.4   |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Acenaphthylene                     | ND     |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Anthracene                         | 1.04   |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Benz(a)anthracene                  | ND     |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Benzo(a)pyrene                     | ND     |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Benzo(b)fluoranthene               | ND     |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Benzo(k)fluoranthene               | ND     |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Benzo(g,h,i)perylene               | ND     |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Chrysene                           | ND     |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Dibenz(a,h)anthracene              | ND     |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Dibenzofuran                       | 23.5   |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Fluoranthene                       | 3.15   |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Fluorene                           | 24.6   |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Indeno(1,2,3-cd)pyrene             | ND     |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| 1-Methylnaphthalene                | 13.8   |              | 0.851      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| 2-Methylnaphthalene                | 2.10   |              | 0.851      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Naphthalene                        | 28.6   |              | 0.851      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Phenanthrene                       | 27.0   |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Pyrene                             | 1.64   |              | 0.426      | ug/L             | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |        | Reco         | very: 64 % | Limits: 44-120 % | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |
| p-Terphenyl-d14 (Surr)             |        |              | 94 %       | 50-133 %         | 10       | 11/01/19 15:57 | EPA 8270D (SIM) |       |

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                      |                  | Total Meta         | als by EPA 60      | 20A (ICPMS | 5)       |                  |             |       |
|----------------------|------------------|--------------------|--------------------|------------|----------|------------------|-------------|-------|
| Analyte              | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| MW-1-37 (A9J1033-01) |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Batch: 9101742       |                  |                    |                    |            |          |                  |             |       |
| Antimony             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
| Arsenic              | 11.8             |                    | 1.00               | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
| Beryllium            | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
| Cadmium              | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
| Chromium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
| Copper               | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
| Lead                 | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
| Mercury              | ND               |                    | 0.0800             | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
| Nickel               | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
| Selenium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
| Silver               | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
| Thallium             | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
| Zinc                 | ND               |                    | 4.00               | ug/L       | 1        | 10/30/19 19:14   | EPA 6020A   |       |
|                      |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Batch: 9101742       |                  |                    |                    |            |          |                  |             |       |
| Antimony             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
| Arsenic              | 3.01             |                    | 1.00               | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
| Beryllium            | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
| Cadmium              | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
| Chromium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
| Copper               | 2.11             |                    | 1.00               | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
| Lead                 | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
| Mercury              | ND               |                    | 0.0800             | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
| Nickel               | 1.08             |                    | 1.00               | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
| Selenium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
| Silver               | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
| Thallium             | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
| Zinc                 | ND               |                    | 4.00               | ug/L       | 1        | 10/30/19 19:19   | EPA 6020A   |       |
|                      |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Batch: 9101742       |                  |                    |                    |            |          |                  |             |       |
| Antimony             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

|                      |                  | Total Meta         | als by EPA 60      | 20A (ICPMS | 5)       |                  |             |       |
|----------------------|------------------|--------------------|--------------------|------------|----------|------------------|-------------|-------|
| Analyte              | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| MW-3-35 (A9J1033-03) |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Arsenic              | 3.13             |                    | 1.00               | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |
| Beryllium            | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |
| Cadmium              | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |
| Chromium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |
| Copper               | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |
| Lead                 | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |
| Mercury              | ND               |                    | 0.0800             | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |
| Nickel               | 3.49             |                    | 1.00               | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |
| Selenium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |
| Silver               | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |
| Thallium             | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |
| Zinc                 | 9.08             |                    | 4.00               | ug/L       | 1        | 10/30/19 19:24   | EPA 6020A   |       |
|                      |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Batch: 9101742       |                  |                    |                    |            |          |                  |             |       |
| Antimony             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
| Arsenic              | 7.84             |                    | 1.00               | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
| Beryllium            | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
| Cadmium              | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
| Chromium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
| Copper               | 3.47             |                    | 1.00               | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
| Lead                 | 0.400            |                    | 0.200              | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
| Mercury              | ND               |                    | 0.0800             | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
| Nickel               | 1.25             |                    | 1.00               | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
| Selenium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
| Silver               | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
| Thallium             | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
| Zinc                 | 4.35             |                    | 4.00               | ug/L       | 1        | 10/30/19 19:28   | EPA 6020A   |       |
|                      |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Batch: 9101742       |                  |                    |                    |            |          |                  |             |       |
| Antimony             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 19:42   | EPA 6020A   |       |
| Arsenic              | 7.46             |                    | 1.00               | ug/L       | 1        | 10/30/19 19:42   | EPA 6020A   |       |
| Beryllium            | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 19:42   | EPA 6020A   |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & | Alongi, INC. | Project:         | POV-Terminal 1  |                         |
|---------------|--------------|------------------|-----------------|-------------------------|
| 2001 NW 19th  | Ave, STE 200 | Project Number:  | 9085.10.12      | <u>Report ID:</u>       |
| Portland, OR  | 97209        | Project Manager: | David Weatherby | A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

| Total Metals by EPA 6020A (ICPMS) |                  |                    |                    |           |          |                  |             |       |
|-----------------------------------|------------------|--------------------|--------------------|-----------|----------|------------------|-------------|-------|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units     | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| MW-5-35 (A9J1033-05)              |                  |                    |                    | Matrix: W | ater     |                  |             |       |
| Cadmium                           | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 19:42   | EPA 6020A   |       |
| Chromium                          | 2.94             |                    | 1.00               | ug/L      | 1        | 10/30/19 19:42   | EPA 6020A   |       |
| Copper                            | 5.04             |                    | 1.00               | ug/L      | 1        | 10/30/19 19:42   | EPA 6020A   |       |
| Lead                              | 3.23             |                    | 0.200              | ug/L      | 1        | 10/30/19 19:42   | EPA 6020A   |       |
| Mercury                           | ND               |                    | 0.0800             | ug/L      | 1        | 10/30/19 19:42   | EPA 6020A   |       |
| Nickel                            | 5.26             |                    | 1.00               | ug/L      | 1        | 10/30/19 19:42   | EPA 6020A   |       |
| Selenium                          | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 19:42   | EPA 6020A   |       |
| Silver                            | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 19:42   | EPA 6020A   |       |
| Thallium                          | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 19:42   | EPA 6020A   |       |
| Zinc                              | 24.1             |                    | 4.00               | ug/L      | 1        | 10/30/19 19:42   | EPA 6020A   |       |
|                                   |                  |                    |                    | Matrix: W | ater     |                  |             |       |
| Batch: 9101742                    |                  |                    |                    |           |          |                  |             |       |
| Antimony                          | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| Arsenic                           | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| Beryllium                         | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| Cadmium                           | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| Chromium                          | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| Copper                            | 1.23             |                    | 1.00               | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| Lead                              | 0.510            |                    | 0.200              | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| Mercury                           | ND               |                    | 0.0800             | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| Nickel                            | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| Selenium                          | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| Silver                            | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| Thallium                          | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| Zinc                              | ND               |                    | 4.00               | ug/L      | 1        | 10/30/19 19:47   | EPA 6020A   |       |
| MW-3-35-DUP (A9J1033-07)          |                  |                    |                    | Matrix: W | ater     |                  |             |       |
| Batch: 9101742                    |                  |                    |                    |           |          |                  |             |       |
| Antimony                          | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 20:01   | EPA 6020A   |       |
| Arsenic                           | 3.08             |                    | 1.00               | ug/L      | 1        | 10/30/19 20:01   | EPA 6020A   |       |
| Beryllium                         | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:01   | EPA 6020A   |       |
| Cadmium                           | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:01   | EPA 6020A   |       |
| Chromium                          | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 20:01   | EPA 6020A   |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Ter</b>   | <u>minal 1</u>                   |
|----------------------------|---------------------------|----------------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.1 | 2 Report ID:                     |
| Portland, OR 97209         | Project Manager: David We | eatherby A9J1033 - 11 13 19 1613 |

#### ANALYTICAL SAMPLE RESULTS

| Total Metals by EPA 6020A (ICPMS)      |        |           |           |       |          |                |             |       |
|----------------------------------------|--------|-----------|-----------|-------|----------|----------------|-------------|-------|
|                                        | Sample | Detection | Reporting |       |          | Date           |             |       |
| Analyte                                | Result | Limit     | Limit     | Units | Dilution | Analyzed       | Method Ref. | Notes |
| MW-3-35-DUP (A9J1033-07) Matrix: Water |        |           |           |       |          |                |             |       |
| Copper                                 | ND     |           | 1.00      | ug/L  | 1        | 10/30/19 20:01 | EPA 6020A   |       |
| Lead                                   | ND     |           | 0.200     | ug/L  | 1        | 10/30/19 20:01 | EPA 6020A   |       |
| Mercury                                | ND     |           | 0.0800    | ug/L  | 1        | 10/30/19 20:01 | EPA 6020A   |       |
| Nickel                                 | 3.49   |           | 1.00      | ug/L  | 1        | 10/30/19 20:01 | EPA 6020A   |       |
| Selenium                               | ND     |           | 1.00      | ug/L  | 1        | 10/30/19 20:01 | EPA 6020A   |       |
| Silver                                 | ND     |           | 0.200     | ug/L  | 1        | 10/30/19 20:01 | EPA 6020A   |       |
| Thallium                               | ND     |           | 0.200     | ug/L  | 1        | 10/30/19 20:01 | EPA 6020A   |       |
| Zinc                                   | 9.01   |           | 4.00      | ug/L  | 1        | 10/30/19 20:01 | EPA 6020A   |       |

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

# ANALYTICAL SAMPLE RESULTS

|                      | Sample | Detection | Reporting |           |          | Date           |                  |       |
|----------------------|--------|-----------|-----------|-----------|----------|----------------|------------------|-------|
| Analyte              | Result | Limit     | Limit     | Units     | Dilution | Analyzed       | Method Ref.      | Notes |
| MW-1-37 (A9J1033-01) |        |           |           | Matrix: W | ater     |                |                  |       |
| Batch: 9101755       |        |           |           |           |          |                |                  |       |
| Antimony             | ND     |           | 1.00      | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
| Arsenic              | 9.97   |           | 1.00      | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
| Beryllium            | ND     |           | 0.200     | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
| Cadmium              | ND     |           | 0.200     | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
| Chromium             | ND     |           | 1.00      | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
| Copper               | ND     |           | 1.00      | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
| Lead                 | ND     |           | 0.200     | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
| Mercury              | ND     |           | 0.0800    | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
| Nickel               | ND     |           | 1.00      | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
| Selenium             | ND     |           | 1.00      | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
| Silver               | ND     |           | 0.200     | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
| Thallium             | ND     |           | 0.200     | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
| Zinc                 | ND     |           | 4.00      | ug/L      | 1        | 10/30/19 20:15 | EPA 6020A (Diss) |       |
|                      |        |           |           | Matrix: W | ater     |                |                  |       |
| Batch: 9101755       |        |           |           |           |          |                |                  |       |
| Antimony             | ND     |           | 1.00      | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
| Arsenic              | 4.16   |           | 1.00      | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
| Beryllium            | ND     |           | 0.200     | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
| Cadmium              | ND     |           | 0.200     | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
| Chromium             | ND     |           | 1.00      | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
| Copper               | 1.23   |           | 1.00      | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
| Lead                 | ND     |           | 0.200     | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
| Mercury              | ND     |           | 0.0800    | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
| Nickel               | 1.78   |           | 1.00      | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
| Selenium             | ND     |           | 1.00      | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
| Silver               | ND     |           | 0.200     | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
| Thallium             | ND     |           | 0.200     | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
| Zinc                 | 9.12   |           | 4.00      | ug/L      | 1        | 10/30/19 20:19 | EPA 6020A (Diss) |       |
|                      |        |           | _         | Matrix: W | ater     |                |                  |       |
| Batch: 9101755       |        |           |           |           |          |                |                  |       |
| Antimony             | ND     |           | 1.00      | ug/L      | 1        | 10/30/19 20:24 | EPA 6020A (Diss) |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

## ANALYTICAL SAMPLE RESULTS

|                       |                  |                    | etals by EPA       |           |          |                  |                  |      |
|-----------------------|------------------|--------------------|--------------------|-----------|----------|------------------|------------------|------|
| Analyte               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units     | Dilution | Date<br>Analyzed | Method Ref.      | Note |
| MW-3-35 (A9J1033-03)  |                  |                    |                    | Matrix: W | ater     |                  |                  |      |
| Arsenic               | 3.02             |                    | 1.00               | ug/L      | 1        | 10/30/19 20:24   | EPA 6020A (Diss) |      |
| Beryllium             | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:24   | EPA 6020A (Diss) |      |
| Cadmium               | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:24   | EPA 6020A (Diss) |      |
| Chromium              | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 20:24   | EPA 6020A (Diss) |      |
| Copper                | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 20:24   | EPA 6020A (Diss) |      |
| Lead                  | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:24   | EPA 6020A (Diss) |      |
| Mercury               | ND               |                    | 0.0800             | ug/L      | 1        | 10/30/19 20:24   | EPA 6020A (Diss) |      |
| Nickel                | 3.50             |                    | 1.00               | ug/L      | 1        | 10/30/19 20:24   | EPA 6020A (Diss) |      |
| Selenium              | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 20:24   | EPA 6020A (Diss) |      |
| Silver                | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:24   | EPA 6020A (Diss) |      |
| Thallium              | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:24   | EPA 6020A (Diss) |      |
| Zinc                  | 12.7             |                    | 4.00               | ug/L      | 1        | 10/30/19 20:24   | EPA 6020A (Diss) |      |
| //W-4-34 (A9J1033-04) |                  |                    |                    | Matrix: W | ater     |                  |                  |      |
| Batch: 9101755        |                  |                    |                    |           |          |                  |                  |      |
| Antimony              | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) |      |
| Arsenic               | 8.01             |                    | 1.00               | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) |      |
| Beryllium             | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) |      |
| Cadmium               | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) |      |
| Chromium              | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) |      |
| Copper                | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) | Q-42 |
| Lead                  | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) |      |
| Mercury               | ND               |                    | 0.0800             | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) |      |
| Nickel                | 1.59             |                    | 1.00               | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) |      |
| Selenium              | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) |      |
| Silver                | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) |      |
| Thallium              | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) |      |
| Zinc                  | ND               |                    | 4.00               | ug/L      | 1        | 10/30/19 20:28   | EPA 6020A (Diss) |      |
| MW-5-35 (A9J1033-05)  |                  |                    |                    | Matrix: W | ater     |                  |                  |      |
| Batch: 9101755        |                  |                    |                    |           |          |                  |                  |      |
| Antimony              | ND               |                    | 1.00               | ug/L      | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |      |
| Arsenic               | 5.63             |                    | 1.00               | ug/L      | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |      |
| Beryllium             | ND               |                    | 0.200              | ug/L      | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |      |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

## ANALYTICAL SAMPLE RESULTS

|                      |                  | Dissolved M        | etals by EPA       | 6020A (ICP | MS)      |                  |                  |       |
|----------------------|------------------|--------------------|--------------------|------------|----------|------------------|------------------|-------|
| Analyte              | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution | Date<br>Analyzed | Method Ref.      | Notes |
| MW-5-35 (A9J1033-05) |                  |                    |                    | Matrix: W  | ater     |                  |                  |       |
| Cadmium              | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |       |
| Chromium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |       |
| Copper               | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |       |
| Lead                 | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |       |
| Mercury              | ND               |                    | 0.0800             | ug/L       | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |       |
| Nickel               | 3.65             |                    | 1.00               | ug/L       | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |       |
| Selenium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |       |
| Silver               | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |       |
| Thallium             | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |       |
| Zinc                 | 10.3             |                    | 4.00               | ug/L       | 1        | 10/30/19 20:42   | EPA 6020A (Diss) |       |
| MW-6-30 (A9J1033-06) |                  |                    |                    | Matrix: W  | ater     |                  |                  |       |
| Batch: 9101755       |                  |                    |                    |            |          |                  |                  |       |
| Antimony             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
| Arsenic              | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
| Beryllium            | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
| Cadmium              | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
| Chromium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
| Copper               | 1.23             |                    | 1.00               | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
| Lead                 | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
| Mercury              | ND               |                    | 0.0800             | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
| Nickel               | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
| Selenium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
| Silver               | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
| Thallium             | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
| Zinc                 | 10.7             |                    | 4.00               | ug/L       | 1        | 10/30/19 20:56   | EPA 6020A (Diss) |       |
|                      |                  |                    |                    | Matrix: W  | ater     |                  |                  |       |
| Batch: 9101755       |                  |                    |                    |            |          |                  |                  |       |
| Antimony             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 21:01   | EPA 6020A (Diss) |       |
| Arsenic              | 3.01             |                    | 1.00               | ug/L       | 1        | 10/30/19 21:01   | EPA 6020A (Diss) |       |
| Beryllium            | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 21:01   | EPA 6020A (Diss) |       |
| Cadmium              | ND               |                    | 0.200              | ug/L       | 1        | 10/30/19 21:01   | EPA 6020A (Diss) |       |
| Chromium             | ND               |                    | 1.00               | ug/L       | 1        | 10/30/19 21:01   | EPA 6020A (Diss) |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Termin</b>   | <u>al 1</u>                  |
|----------------------------|------------------------------|------------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12   | <u>Report ID:</u>            |
| Portland, OR 97209         | Project Manager: David Weath | erby A9J1033 - 11 13 19 1613 |

## ANALYTICAL SAMPLE RESULTS

|                          |        | Dissolved M   | etals by EPA | 6020A (ICP | MS)      |                |                  |       |  |  |  |  |
|--------------------------|--------|---------------|--------------|------------|----------|----------------|------------------|-------|--|--|--|--|
|                          | Sample | Detection     | Reporting    |            |          | Date           |                  |       |  |  |  |  |
| Analyte                  | Result | Limit         | Limit        | Units      | Dilution | Analyzed       | Method Ref.      | Notes |  |  |  |  |
| MW-3-35-DUP (A9J1033-07) |        | Matrix: Water |              |            |          |                |                  |       |  |  |  |  |
| Copper                   | ND     |               | 1.00         | ug/L       | 1        | 10/30/19 21:01 | EPA 6020A (Diss) |       |  |  |  |  |
| Lead                     | ND     |               | 0.200        | ug/L       | 1        | 10/30/19 21:01 | EPA 6020A (Diss) |       |  |  |  |  |
| Mercury                  | ND     |               | 0.0800       | ug/L       | 1        | 10/30/19 21:01 | EPA 6020A (Diss) |       |  |  |  |  |
| Nickel                   | 4.14   |               | 1.00         | ug/L       | 1        | 10/30/19 21:01 | EPA 6020A (Diss) |       |  |  |  |  |
| Selenium                 | ND     |               | 1.00         | ug/L       | 1        | 10/30/19 21:01 | EPA 6020A (Diss) |       |  |  |  |  |
| Silver                   | ND     |               | 0.200        | ug/L       | 1        | 10/30/19 21:01 | EPA 6020A (Diss) |       |  |  |  |  |
| Thallium                 | ND     |               | 0.200        | ug/L       | 1        | 10/30/19 21:01 | EPA 6020A (Diss) |       |  |  |  |  |
| Zinc                     | 16.4   |               | 4.00         | ug/L       | 1        | 10/30/19 21:01 | EPA 6020A (Diss) |       |  |  |  |  |

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

# **QUALITY CONTROL (QC) SAMPLE RESULTS**

|                              |            | D                  | iesel and/o        | or Oil Hyd | lrocarbor | ns by NW1       | PH-Dx            |       |                 |     |              |       |
|------------------------------|------------|--------------------|--------------------|------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                      | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101761 - EPA 3510C (I | Fuels/Acid | Ext.)              |                    |            |           |                 | Wat              | er    |                 |     |              |       |
| Blank (9101761-BLK1)         |            |                    | Prepared           | : 10/30/19 | 12:57 Ana | lyzed: 10/31    | /19 07:20        |       |                 |     |              |       |
| NWTPH-Dx                     |            |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Diesel                       | ND         |                    | 0.182              | mg/L       | 1         |                 |                  |       |                 |     |              |       |
| Oil                          | ND         |                    | 0.364              | mg/L       | 1         |                 |                  |       |                 |     |              |       |
| Surr: o-Terphenyl (Surr)     |            | Reco               | very: 110 %        | Limits: 50 | )-150 %   | Dilt            | ution: 1x        |       |                 |     |              |       |
| LCS (9101761-BS1)            |            |                    | Prepared           | : 10/30/19 | 12:57 Ana | lyzed: 10/31    | /19 07:40        |       |                 |     |              |       |
| NWTPH-Dx                     |            |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Diesel                       | 1.03       |                    | 0.200              | mg/L       | 1         | 1.25            |                  | 82    | 58-115%         |     |              |       |
| Surr: o-Terphenyl (Surr)     |            | Reco               | very: 108 %        | Limits: 50 | )-150 %   | Dilt            | ution: 1x        |       |                 |     |              |       |
| LCS Dup (9101761-BSD1)       |            |                    | Prepared           | : 10/30/19 | 12:57 Ana | lyzed: 10/31    | /19 08:00        |       |                 |     |              | Q-19  |
| NWTPH-Dx                     |            |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Diesel                       | 1.17       |                    | 0.200              | mg/L       | 1         | 1.25            |                  | 94    | 58-115%         | 13  | 20%          |       |
| Surr: o-Terphenyl (Surr)     |            | Reco               | very: 108 %        | Limits: 50 | )-150 %   | Dili            | ution: 1x        |       |                 |     |              |       |

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

### <u>Maul Foster & Alongi, INC.</u> 2001 NW 19th Ave, STE 200 Portland, OR 97209

 Project:
 POV-Terminal 1

 Project Number:
 9085.10.12

Project Manager: David Weatherby

<u>Report ID:</u> A9J1033 - 11 13 19 1613

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

|                                  | Gasolir    | ne Range H         | lydrocarbo         | ons (Ben    | zene thro  | ugh Naph        | thalene)         | by NWTP | H-Gx            |     |              |       |
|----------------------------------|------------|--------------------|--------------------|-------------|------------|-----------------|------------------|---------|-----------------|-----|--------------|-------|
| Analyte                          | Result     | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC   | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101746 - EPA 5030B        |            |                    |                    |             |            |                 | Wat              | er      |                 |     |              |       |
| Blank (9101746-BLK1)             |            |                    | Preparec           | l: 10/30/19 | 08:00 Ana  | lyzed: 10/30    | /19 11:15        |         |                 |     |              |       |
| NWTPH-Gx (MS)                    |            |                    |                    |             |            |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | ND         |                    | 0.100              | mg/L        | , 1        |                 |                  |         |                 |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur) |            | Recov              | very: 103 %        | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |            |                    | 106 %              | 5           | 0-150 %    |                 | "                |         |                 |     |              |       |
| LCS (9101746-BS2)                |            |                    | Preparec           | l: 10/30/19 | 08:00 Ana  | yzed: 10/30     | /19 10:48        |         |                 |     |              |       |
| <u>NWTPH-Gx (MS)</u>             |            |                    |                    |             |            |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | 0.486      |                    | 0.100              | mg/L        | . 1        | 0.500           |                  | 97      | 80-120%         |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur) |            | Recov              | very: 100 %        | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |            |                    | 99 %               | 5           | 0-150 %    |                 | "                |         |                 |     |              |       |
| Duplicate (9101746-DUP1)         |            |                    | Preparec           | l: 10/30/19 | 11:16 Anal | yzed: 10/30     | /19 13:57        |         |                 |     |              |       |
| QC Source Sample: MW-3-35 (A     | 9J1033-03) |                    |                    |             |            |                 |                  |         |                 |     |              |       |
| NWTPH-Gx (MS)                    |            |                    |                    |             |            |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | ND         |                    | 0.500              | mg/L        | 5          |                 | 0.320            |         |                 | *** | 30%          |       |
| Surr: 4-Bromofluorobenzene (Sur) |            | Recov              | very: 105 %        | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |            |                    | 105 %              | 5           | 0-150 %    |                 | "                |         |                 |     |              |       |

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

## <u>Maul Foster & Alongi, INC.</u> 2001 NW 19th Ave, STE 200 Portland, OR 97209

Project: Project Number: 9085.10.12

Project Manager: David Weatherby

<u>Report ID:</u> A9J1033 - 11 13 19 1613

# **QUALITY CONTROL (QC) SAMPLE RESULTS**

|                                  | Gasolir   | ne Range H         | lydrocarbo         | ons (Benz   | ene throu  | igh Naph        | thalene) l       | by NWTP | H-Gx            |     |              |       |
|----------------------------------|-----------|--------------------|--------------------|-------------|------------|-----------------|------------------|---------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC   | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101792 - EPA 5030B        |           |                    |                    |             |            |                 | Wat              | er      |                 |     |              |       |
| Blank (9101792-BLK1)             |           |                    | Preparec           | l: 10/31/19 | 08:50 Anal | yzed: 10/31     | /19 11:25        |         |                 |     |              |       |
| NWTPH-Gx (MS)                    |           |                    |                    |             |            |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | ND        |                    | 0.100              | mg/L        | 1          |                 |                  |         |                 |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur) |           | Reco               | overy: 92 %        | Limits: 50  | )-150 %    | Dilı            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |           |                    | 102 %              | 50          | )-150 %    |                 | "                |         |                 |     |              |       |
| LCS (9101792-BS2)                |           |                    | Preparec           | l: 10/31/19 | 08:50 Anal | yzed: 10/31/    | /19 10:58        |         |                 |     |              |       |
| NWTPH-Gx (MS)                    |           |                    |                    |             |            |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | 0.464     |                    | 0.100              | mg/L        | 1          | 0.500           |                  | 93      | 80-120%         |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur) |           | Reco               | overy: 96 %        | Limits: 50  | )-150 %    | Dilı            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |           |                    | 101 %              | 50          | -150 %     |                 | "                |         |                 |     |              |       |
| Duplicate (9101792-DUP1)         |           |                    | Preparec           | l: 10/31/19 | 11:05 Anal | yzed: 10/31/    | /19 20:30        |         |                 |     |              |       |
| QC Source Sample: Non-SDG (A9    | J1093-06) |                    |                    |             |            |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | ND        |                    | 5.00               | mg/L        | 50         |                 | ND               |         |                 |     | 30%          |       |
| Surr: 4-Bromofluorobenzene (Sur) |           | Reco               | overy: 93 %        | Limits: 50  |            | Dilı            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |           |                    | 101 %              | 50          | )-150 %    |                 | "                |         |                 |     |              |       |
| Duplicate (9101792-DUP2)         |           |                    | Preparec           | l: 10/31/19 | 11:05 Anal | yzed: 10/31/    | /19 23:37        |         |                 |     |              | T-    |
| QC Source Sample: Non-SDG (A9    | J1079-04) |                    |                    |             |            |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | ND        |                    | 1.00               | mg/L        | 10         |                 | ND               |         |                 |     | 30%          |       |
| Surr: 4-Bromofluorobenzene (Sur) |           | Rece               | overy: 95 %        | Limits: 50  | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |           |                    | 103 %              | 50          | -150 %     |                 | "                |         |                 |     |              |       |

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

### **QUALITY CONTROL (QC) SAMPLE RESULTS**

| lt L             | ection<br>.imit                      | Reporting<br>Limit<br>Prepared:<br>20.0<br>2.00<br>0.200<br>0.200<br>0.500<br>1.00 | Units<br>: 10/30/19 (<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                                   | Dilution<br>08:00 Analy<br>1<br>1                                                                                                                                                                                                                                      | Spike<br>Amount<br>yzed: 10/30/1                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                    | % REC                                                                                                                                                                                                                                                                                                    | % REC<br>Limits                                                                                                                                                                                                                                                                                                | RPD                               | RPD<br>Limit                      | Notes                                                                                                                                          |
|------------------|--------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | <br><br>                             | 20.0<br>2.00<br>0.200<br>0.500                                                     | ug/L<br>ug/L<br>ug/L                                                                                                                                    | 1                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                     | /19 11:15                                                                                                                                                                                                                                                                                          | r                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  | <br><br>                             | 20.0<br>2.00<br>0.200<br>0.500                                                     | ug/L<br>ug/L<br>ug/L                                                                                                                                    | 1                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  | <br><br>                             | 2.00<br>0.200<br>0.500                                                             | ug/L<br>ug/L                                                                                                                                            |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  | <br><br>                             | 2.00<br>0.200<br>0.500                                                             | ug/L<br>ug/L                                                                                                                                            |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  | <br><br>                             | 0.200<br>0.500                                                                     | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  | <br>                                 | 0.500                                                                              | U                                                                                                                                                       |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )<br>)<br>)<br>) |                                      |                                                                                    | ug/I                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )<br>)<br>)      |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  |                                      | 5.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| `                |                                      | 10.0                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 10.0                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 0.500                                                                              | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 5.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 5.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 5.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 0.500                                                                              | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 1.00                                                                               | ug/L<br>ug/L                                                                                                                                            | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      | 0.500                                                                              | ug/L<br>ug/L                                                                                                                                            | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  |                                      | 0.500                                                                              | ug/L<br>ug/L                                                                                                                                            | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  |                                      | 0.500                                                                              | ug/L<br>ug/L                                                                                                                                            | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  |                                      | 1.00                                                                               | ug/L                                                                                                                                                    | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  |                                      | 0.400                                                                              | ug/L<br>ug/L                                                                                                                                            | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  |                                      | 0.400                                                                              | -                                                                                                                                                       | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  |                                      | 0.400                                                                              | -                                                                                                                                                       | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| )                |                                      |                                                                                    | -                                                                                                                                                       | 1                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
|                  |                                      |                                                                                    | -                                                                                                                                                       |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                   |                                   |                                                                                                                                                |
| I<br>I<br>I      | D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | D<br>D<br>D<br>D<br>D<br>D                                                         | D        0.500         D        1.00         D        0.400         D        0.400         D        0.400         D        0.400         D        0.400 | D        0.500       ug/L         D        1.00       ug/L         D        0.400       ug/L | D        0.500       ug/L       1         D        1.00       ug/L       1         D        0.400       ug/L       1 | D        0.500       ug/L       1          D        1.00       ug/L       1          D        0.400       ug/L       1 | D        0.500       ug/L       1           D        1.00       ug/L       1           D        0.400       ug/L       1 | D        0.500       ug/L       1            D        1.00       ug/L       1            D        0.400       ug/L       1 | D        0.500       ug/L       1 | D        0.500       ug/L       1 | D        0.500       ug/L       1                                                                                                            - |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Volatile Organic Compounds by EPA 8260C |        |                    |                    |              |            |                 |                  |       |                 |     |              |       |
|-----------------------------------------|--------|--------------------|--------------------|--------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                 | Result | Detection<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| 3atch 9101746 - EPA 5030B               |        |                    |                    |              |            |                 | Wate             | er    |                 |     |              |       |
| Blank (9101746-BLK1)                    |        |                    | Prepared           | : 10/30/19   | 08:00 Anal | yzed: 10/30     | /19 11:15        |       |                 |     |              |       |
| ,2-Dichloropropane                      | ND     |                    | 0.500              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,3-Dichloropropane                      | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| 2,2-Dichloropropane                     | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,1-Dichloropropene                      | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| sis-1,3-Dichloropropene                 | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| rans-1,3-Dichloropropene                | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Ethylbenzene                            | ND     |                    | 0.500              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Hexachlorobutadiene                     | ND     |                    | 5.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| 2-Hexanone                              | ND     |                    | 10.0               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| sopropylbenzene                         | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| -Isopropyltoluene                       | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Methylene chloride                      | ND     |                    | 10.0               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| -Methyl-2-pentanone (MiBK)              | ND     |                    | 10.0               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Methyl tert-butyl ether (MTBE)          | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Naphthalene                             | ND     |                    | 2.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| -Propylbenzene                          | ND     |                    | 0.500              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Styrene                                 | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,1,1,2-Tetrachloroethane                | ND     |                    | 0.400              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,1,2,2-Tetrachloroethane                | ND     |                    | 0.500              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Tetrachloroethene (PCE)                 | ND     |                    | 0.400              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Toluene                                 | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,2,3-Trichlorobenzene                   | ND     |                    | 2.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,2,4-Trichlorobenzene                   | ND     |                    | 2.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,1,1-Trichloroethane                    | ND     |                    | 0.400              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,1,2-Trichloroethane                    | ND     |                    | 0.500              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Trichloroethene (TCE)                   | ND     |                    | 0.400              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Trichlorofluoromethane                  | ND     |                    | 2.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,2,3-Trichloropropane                   | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,2,4-Trimethylbenzene                   | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,3,5-Trimethylbenzene                   | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| /inyl chloride                          | ND     |                    | 0.400              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| n,p-Xylene                              | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| p-Xylene                                | ND     |                    | 0.500              | ug/L<br>ug/L | 1          |                 |                  |       |                 |     |              |       |
| Kylenes, total                          | ND     |                    | 1.50               | ug/L<br>ug/L | 1          |                 |                  |       |                 |     |              |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| <u>Maul Foster &amp; Alongi, INC.</u><br>2001 NW 19th Ave, STE 200<br>Portland, OR 97209 |        |                    | Pro                | -          | <u>POV-Te</u><br>er: 9085.10<br>er: David V |                 |                  |       | A               | -   | <u>Report ID:</u><br>- 11 13 19 | =     |
|------------------------------------------------------------------------------------------|--------|--------------------|--------------------|------------|---------------------------------------------|-----------------|------------------|-------|-----------------|-----|---------------------------------|-------|
|                                                                                          |        | QU                 | ALITY CO           | ONTROI     | L (QC) SA                                   | MPLE R          | ESULTS           | 5     |                 |     |                                 |       |
|                                                                                          |        |                    | Volatile Org       | ganic Co   | mpounds                                     | by EPA 8        | 260C             |       |                 |     |                                 |       |
| Analyte                                                                                  | Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution                                    | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit                    | Notes |
| Batch 9101746 - EPA 5030B                                                                |        |                    |                    |            |                                             |                 | Wat              | er    |                 |     |                                 |       |
| Blank (9101746-BLK1)                                                                     |        |                    | Prepared           | : 10/30/19 | 08:00 Anal                                  | yzed: 10/30/    | /19 11:15        |       |                 |     |                                 |       |
| Surr: 1,4-Difluorobenzene (Surr)                                                         |        | Reco               | very: 104 %        | Limits: 80 | )-120 %                                     | Dilu            | tion: 1x         |       |                 |     |                                 |       |
| Toluene-d8 (Surr)                                                                        |        |                    | 100 %              | 80         | -120 %                                      |                 | "                |       |                 |     |                                 |       |
| 4-Bromofluorobenzene (Surr)                                                              |        |                    | 97 %               | 80         | )-120 %                                     |                 | "                |       |                 |     |                                 |       |
| LCS (9101746-BS1)                                                                        |        |                    | Prepared           | : 10/30/19 | 08:00 Anal                                  | yzed: 10/30/    | 19 10:21         |       |                 |     |                                 |       |
| EPA 8260C                                                                                |        |                    |                    |            |                                             |                 |                  |       |                 |     |                                 |       |
| Acetone                                                                                  | 38.6   |                    | 20.0               | ug/L       | 1                                           | 40.0            |                  | 97    | 80-120%         |     |                                 |       |
| Acrylonitrile                                                                            | 21.0   |                    | 2.00               | ug/L       | 1                                           | 20.0            |                  | 105   | 80-120%         |     |                                 |       |
| Benzene                                                                                  | 21.4   |                    | 0.200              | ug/L       | 1                                           | 20.0            |                  | 107   | 80-120%         |     |                                 |       |
| Bromobenzene                                                                             | 20.7   |                    | 0.500              | ug/L       | 1                                           | 20.0            |                  | 104   | 80-120%         |     |                                 |       |
| Bromochloromethane                                                                       | 21.4   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 107   | 80-120%         |     |                                 |       |
| Bromodichloromethane                                                                     | 21.5   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 108   | 80-120%         |     |                                 |       |
| Bromoform                                                                                | 19.3   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 97    | 80-120%         |     |                                 |       |
| Bromomethane                                                                             | 19.0   |                    | 5.00               | ug/L       | 1                                           | 20.0            |                  | 95    | 80-120%         |     |                                 |       |
| 2-Butanone (MEK)                                                                         | 43.2   |                    | 10.0               | ug/L       | 1                                           | 40.0            |                  | 108   | 80-120%         |     |                                 |       |
| n-Butylbenzene                                                                           | 23.6   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 118   | 80-120%         |     |                                 |       |
| ec-Butylbenzene                                                                          | 22.1   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 111   | 80-120%         |     |                                 |       |
| ert-Butylbenzene                                                                         | 22.3   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 112   | 80-120%         |     |                                 |       |
| Carbon disulfide                                                                         | 21.4   |                    | 10.0               | ug/L       | 1                                           | 20.0            |                  | 107   | 80-120%         |     |                                 |       |
| Carbon tetrachloride                                                                     | 23.1   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 116   | 80-120%         |     |                                 |       |
| Chlorobenzene                                                                            | 20.7   |                    | 0.500              | ug/L       | 1                                           | 20.0            |                  | 103   | 80-120%         |     |                                 |       |
| Chloroethane                                                                             | 20.1   |                    | 5.00               | ug/L       | 1                                           | 20.0            |                  | 101   | 80-120%         |     |                                 |       |
| Chloroform                                                                               | 21.2   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 106   | 80-120%         |     |                                 |       |
| Chloromethane                                                                            | 20.6   |                    | 5.00               | ug/L       | 1                                           | 20.0            |                  | 103   | 80-120%         |     |                                 |       |
| 2-Chlorotoluene                                                                          | 21.8   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 109   | 80-120%         |     |                                 |       |
| 4-Chlorotoluene                                                                          | 22.4   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 112   | 80-120%         |     |                                 |       |
| Dibromochloromethane                                                                     | 20.7   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 103   | 80-120%         |     |                                 |       |
| ,2-Dibromo-3-chloropropane                                                               | 20.0   |                    | 5.00               | ug/L       | 1                                           | 20.0            |                  | 100   | 80-120%         |     |                                 |       |
| ,2-Dibromoethane (EDB)                                                                   | 21.6   |                    | 0.500              | ug/L       | 1                                           | 20.0            |                  | 108   | 80-120%         |     |                                 |       |
| Dibromomethane                                                                           | 21.3   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 106   | 80-120%         |     |                                 |       |
| ,2-Dichlorobenzene                                                                       | 21.5   |                    | 0.500              | ug/L       | 1                                           | 20.0            |                  | 108   | 80-120%         |     |                                 |       |
| 1,3-Dichlorobenzene                                                                      | 21.7   |                    | 0.500              | ug/L       | 1                                           | 20.0            |                  | 109   | 80-120%         |     |                                 |       |
| 1,4-Dichlorobenzene                                                                      | 19.5   |                    | 0.500              | ug/L       | 1                                           | 20.0            |                  | 98    | 80-120%         |     |                                 |       |
| Dichlorodifluoromethane                                                                  | 21.8   |                    | 1.00               | ug/L       | 1                                           | 20.0            |                  | 109   | 80-120%         |     |                                 |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

### **QUALITY CONTROL (QC) SAMPLE RESULTS**

|                                |        |                    | Volatile Org       | ganic Co   | mpounds    | by EPA 8        | 260C             |       |                 |     |              |       |
|--------------------------------|--------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                        | Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101746 - EPA 5030B      |        |                    |                    |            |            |                 | Wat              | er    |                 |     |              |       |
| LCS (9101746-BS1)              |        |                    | Prepared           | : 10/30/19 | 08:00 Anal | yzed: 10/30     | /19 10:21        |       |                 |     |              |       |
| 1,1-Dichloroethane             | 20.6   |                    | 0.400              | ug/L       | 1          | 20.0            |                  | 103   | 80-120%         |     |              |       |
| 1,2-Dichloroethane (EDC)       | 20.8   |                    | 0.400              | ug/L       | 1          | 20.0            |                  | 104   | 80-120%         |     |              |       |
| 1,1-Dichloroethene             | 20.9   |                    | 0.400              | ug/L       | 1          | 20.0            |                  | 105   | 80-120%         |     |              |       |
| cis-1,2-Dichloroethene         | 21.5   |                    | 0.400              | ug/L       | 1          | 20.0            |                  | 107   | 80-120%         |     |              |       |
| trans-1,2-Dichloroethene       | 21.2   |                    | 0.400              | ug/L       | 1          | 20.0            |                  | 106   | 80-120%         |     |              |       |
| 1,2-Dichloropropane            | 20.6   |                    | 0.500              | ug/L       | 1          | 20.0            |                  | 103   | 80-120%         |     |              |       |
| 1,3-Dichloropropane            | 20.9   |                    | 1.00               | ug/L       | 1          | 20.0            |                  | 104   | 80-120%         |     |              |       |
| 2,2-Dichloropropane            | 25.0   |                    | 1.00               | ug/L       | 1          | 20.0            |                  | 125   | 80-120%         |     |              | Q-:   |
| 1,1-Dichloropropene            | 23.6   |                    | 1.00               | ug/L       | 1          | 20.0            |                  | 118   | 80-120%         |     |              |       |
| cis-1,3-Dichloropropene        | 21.3   |                    | 1.00               | ug/L       | 1          | 20.0            |                  | 107   | 80-120%         |     |              |       |
| trans-1,3-Dichloropropene      | 23.2   |                    | 1.00               | ug/L       | 1          | 20.0            |                  | 116   | 80-120%         |     |              |       |
| Ethylbenzene                   | 21.4   |                    | 0.500              | ug/L       | 1          | 20.0            |                  | 107   | 80-120%         |     |              |       |
| Hexachlorobutadiene            | 22.6   |                    | 5.00               | ug/L       | 1          | 20.0            |                  | 113   | 80-120%         |     |              |       |
| 2-Hexanone                     | 43.3   |                    | 10.0               | ug/L       | 1          | 40.0            |                  | 108   | 80-120%         |     |              |       |
| Isopropylbenzene               | 22.4   |                    | 1.00               | ug/L       | 1          | 20.0            |                  | 112   | 80-120%         |     |              |       |
| 4-Isopropyltoluene             | 22.4   |                    | 1.00               | ug/L       | 1          | 20.0            |                  | 112   | 80-120%         |     |              |       |
| Methylene chloride             | 22.1   |                    | 10.0               | ug/L       | 1          | 20.0            |                  | 110   | 80-120%         |     |              |       |
| 4-Methyl-2-pentanone (MiBK)    | 42.9   |                    | 10.0               | ug/L       | 1          | 40.0            |                  | 107   | 80-120%         |     |              |       |
| Methyl tert-butyl ether (MTBE) | 22.5   |                    | 1.00               | ug/L       | 1          | 20.0            |                  | 113   | 80-120%         |     |              |       |
| Naphthalene                    | 20.7   |                    | 2.00               | ug/L       | 1          | 20.0            |                  | 103   | 80-120%         |     |              |       |
| n-Propylbenzene                | 21.5   |                    | 0.500              | ug/L       | 1          | 20.0            |                  | 108   | 80-120%         |     |              |       |
| Styrene                        | 21.7   |                    | 1.00               | ug/L       | 1          | 20.0            |                  | 108   | 80-120%         |     |              |       |
| 1,1,1,2-Tetrachloroethane      | 21.5   |                    | 0.400              | ug/L       | 1          | 20.0            |                  | 108   | 80-120%         |     |              |       |
| 1,1,2,2-Tetrachloroethane      | 20.2   |                    | 0.500              | ug/L       | 1          | 20.0            |                  | 101   | 80-120%         |     |              |       |
| Tetrachloroethene (PCE)        | 21.2   |                    | 0.400              | ug/L       | 1          | 20.0            |                  | 106   | 80-120%         |     |              |       |
| Toluene                        | 20.0   |                    | 1.00               | ug/L       | 1          | 20.0            |                  | 100   | 80-120%         |     |              |       |
| 1,2,3-Trichlorobenzene         | 23.6   |                    | 2.00               | ug/L       | 1          | 20.0            |                  | 118   | 80-120%         |     |              |       |
| 1,2,4-Trichlorobenzene         | 22.9   |                    | 2.00               | ug/L       | 1          | 20.0            |                  | 114   | 80-120%         |     |              |       |
| 1,1,1-Trichloroethane          | 21.9   |                    | 0.400              | ug/L       | 1          | 20.0            |                  | 110   | 80-120%         |     |              |       |
| 1,1,2-Trichloroethane          | 20.9   |                    | 0.500              | ug/L       | 1          | 20.0            |                  | 105   | 80-120%         |     |              |       |
| Trichloroethene (TCE)          | 20.5   |                    | 0.400              | ug/L       | 1          | 20.0            |                  | 102   | 80-120%         |     |              |       |
| Trichlorofluoromethane         | 21.6   |                    | 2.00               | ug/L       | 1          | 20.0            |                  | 102   | 80-120%         |     |              |       |
| 1,2,3-Trichloropropane         | 20.0   |                    | 1.00               | ug/L       | 1          | 20.0            |                  | 100   | 80-120%         |     |              |       |
| 1,2,4-Trimethylbenzene         | 22.6   |                    | 1.00               | ug/L       | 1          | 20.0            |                  | 113   | 80-120%         |     |              |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| <u>Maul Foster &amp; Alongi, INC.</u><br>2001 NW 19th Ave, STE 200<br>Portland, OR 97209 |            |                    | Pro                | -           | POV-Te<br>er: 9085.10<br>er: David V |                 |                  |       | P               | - | <u>Report ID</u><br>- 11 13 19 | _     |
|------------------------------------------------------------------------------------------|------------|--------------------|--------------------|-------------|--------------------------------------|-----------------|------------------|-------|-----------------|---|--------------------------------|-------|
|                                                                                          |            | QU                 | ALITY CO           | ONTROI      | L (QC) SA                            | MPLE R          | ESULTS           | 5     |                 |   |                                |       |
|                                                                                          |            |                    | Volatile Or        | ganic Co    | mpounds                              | by EPA 8        | 3260C            |       |                 |   |                                |       |
| Analyte                                                                                  | Result     | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution                             | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits |   | RPD<br>Limit                   | Notes |
| Batch 9101746 - EPA 5030B                                                                |            |                    |                    |             |                                      |                 | Wat              | er    |                 |   |                                |       |
| LCS (9101746-BS1)                                                                        |            |                    | Prepared           | 1: 10/30/19 | 08:00 Ana                            | lyzed: 10/30    | /19 10:21        |       |                 |   |                                |       |
| 1,3,5-Trimethylbenzene                                                                   | 22.9       |                    | 1.00               | ug/L        | 1                                    | 20.0            |                  | 115   | 80-120%         |   |                                |       |
| Vinyl chloride                                                                           | 21.4       |                    | 0.400              | ug/L        | 1                                    | 20.0            |                  | 107   | 80-120%         |   |                                |       |
| m,p-Xylene                                                                               | 45.7       |                    | 1.00               | ug/L        | 1                                    | 40.0            |                  | 114   | 80-120%         |   |                                |       |
| o-Xylene                                                                                 | 23.4       |                    | 0.500              | ug/L        | 1                                    | 20.0            |                  | 117   | 80-120%         |   |                                |       |
| Xylenes, total                                                                           | 69.2       |                    | 1.50               | ug/L        | 1                                    | 60.0            |                  | 115   | 80-120%         |   |                                |       |
| Surr: 1,4-Difluorobenzene (Surr)                                                         |            | Reco               | overy: 99 %        | Limits: 80  | 0-120 %                              | Dilt            | ution: 1x        |       |                 |   |                                |       |
| Toluene-d8 (Surr)                                                                        |            |                    | 99 %               | 80          | 0-120 %                              |                 | "                |       |                 |   |                                |       |
| 4-Bromofluorobenzene (Surr)                                                              |            |                    | 99 %               | 80          | 0-120 %                              |                 | "                |       |                 |   |                                |       |
| Duplicate (9101746-DUP1)<br>OC Source Sample: MW-3-35 (A9                                | 9J1033-03) |                    | Prepared           | 1: 10/30/19 | 11:16 Ana                            | lyzed: 10/30    | /19 13:57        |       |                 |   |                                |       |
| EPA 8260C                                                                                |            |                    |                    |             |                                      |                 |                  |       |                 |   |                                |       |
| Acetone                                                                                  | ND         |                    | 100                | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| Acrylonitrile                                                                            | ND         |                    | 10.0               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| Benzene                                                                                  | ND         |                    | 1.00               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| Bromobenzene                                                                             | ND         |                    | 2.50               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| Bromochloromethane                                                                       | ND         |                    | 5.00               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| Bromodichloromethane                                                                     | ND         |                    | 5.00               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| Bromoform                                                                                | ND         |                    | 5.00               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| Bromomethane                                                                             | ND         |                    | 25.0               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| 2-Butanone (MEK)                                                                         | ND         |                    | 50.0               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| n-Butylbenzene                                                                           | ND         |                    | 5.00               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| sec-Butylbenzene                                                                         | ND         |                    | 5.00               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| tert-Butylbenzene                                                                        | ND         |                    | 5.00               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| Carbon disulfide                                                                         | ND         |                    | 50.0               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| Carbon tetrachloride                                                                     | ND         |                    | 5.00               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| Chlorobenzene                                                                            | ND         |                    | 2.50               | ug/L        |                                      |                 | ND               |       |                 |   | 30%                            |       |
| Chloroethane                                                                             | ND         |                    | 25.0               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| Chloroform                                                                               | ND         |                    | 5.00               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
| Chloromethane                                                                            | ND         |                    | 25.0               | ug/L        | 5                                    |                 | ND               |       |                 |   | 30%                            |       |
|                                                                                          | 3.00       |                    | = 00               | 17          | -                                    |                 | 3.175            |       |                 |   | 2001                           |       |

5

5

5

5

---

----

---

---

ND

ND

ND

ND

ug/L

ug/L

ug/L

ug/L

Apex Laboratories

Dibromochloromethane

1,2-Dibromo-3-chloropropane

2-Chlorotoluene

4-Chlorotoluene

Philip Nevenberg

ND

ND

ND

ND

----

---

----

----

5.00

5.00

5.00

25.0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

---

---

----

---

----

----

----

----

----

---

---

----

30%

30%

30%

30%



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Volatile Organic Compounds by EPA 8260C |           |                    |                    |            |            |                 |                  |       |                 |     |              |       |
|-----------------------------------------|-----------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                 | Result    | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101746 - EPA 5030B               |           |                    |                    |            |            |                 | Wate             | er    |                 |     |              |       |
| Duplicate (9101746-DUP1)                |           |                    | Prepared           | : 10/30/19 | 11:16 Anal | yzed: 10/30/    | /19 13:57        |       |                 |     |              |       |
| QC Source Sample: MW-3-35 (A9           | J1033-03) |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| 1,2-Dibromoethane (EDB)                 | ND        |                    | 2.50               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| Dibromomethane                          | ND        |                    | 5.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 1,2-Dichlorobenzene                     | ND        |                    | 2.50               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 1,3-Dichlorobenzene                     | ND        |                    | 2.50               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 1,4-Dichlorobenzene                     | ND        |                    | 2.50               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| Dichlorodifluoromethane                 | ND        |                    | 5.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 1,1-Dichloroethane                      | ND        |                    | 2.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 1,2-Dichloroethane (EDC)                | ND        |                    | 2.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 1,1-Dichloroethene                      | ND        |                    | 2.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| cis-1,2-Dichloroethene                  | ND        |                    | 2.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| rans-1,2-Dichloroethene                 | ND        |                    | 2.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 1,2-Dichloropropane                     | ND        |                    | 2.50               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 1,3-Dichloropropane                     | ND        |                    | 5.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 2,2-Dichloropropane                     | ND        |                    | 5.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 1,1-Dichloropropene                     | ND        |                    | 5.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| cis-1,3-Dichloropropene                 | ND        |                    | 5.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| rans-1,3-Dichloropropene                | ND        |                    | 5.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| Ethylbenzene                            | ND        |                    | 2.50               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| Hexachlorobutadiene                     | ND        |                    | 25.0               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 2-Hexanone                              | ND        |                    | 50.0               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| sopropylbenzene                         | ND        |                    | 5.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 4-Isopropyltoluene                      | ND        |                    | 5.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| Methylene chloride                      | ND        |                    | 50.0               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 4-Methyl-2-pentanone (MiBK)             | ND        |                    | 50.0               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| Methyl tert-butyl ether (MTBE)          | ND        |                    | 5.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| Naphthalene                             | 77.0      |                    | 10.0               | ug/L       | 5          |                 | 73.8             |       |                 | 4   | 30%          |       |
| n-Propylbenzene                         | ND        |                    | 2.50               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| Styrene                                 | ND        |                    | 5.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 1,1,1,2-Tetrachloroethane               | ND        |                    | 2.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 1,1,2,2-Tetrachloroethane               | ND        |                    | 2.50               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| Fetrachloroethene (PCE)                 | ND        |                    | 2.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| Foluene                                 | ND        |                    | 5.00               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |
| 1,2,3-Trichlorobenzene                  | ND        |                    | 10.0               | ug/L       | 5          |                 | ND               |       |                 |     | 30%          |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

| <u>Maul Foster &amp; Alongi, INC.</u><br>2001 NW 19th Ave, STE 200<br>Portland, OR 97209 |                                     |                    | Pro                | 5           | <u>POV-Te</u><br>er: 9085.10<br>er: David V |                 |                  |       | 1               | - | <u>Report ID</u><br>5 - 11 13 19 | _     |  |
|------------------------------------------------------------------------------------------|-------------------------------------|--------------------|--------------------|-------------|---------------------------------------------|-----------------|------------------|-------|-----------------|---|----------------------------------|-------|--|
|                                                                                          | QUALITY CONTROL (QC) SAMPLE RESULTS |                    |                    |             |                                             |                 |                  |       |                 |   |                                  |       |  |
|                                                                                          |                                     | ,                  | Volatile Or        | ganic Co    | mpounds                                     | by EPA 8        | 260C             |       |                 |   |                                  |       |  |
| Analyte                                                                                  | Result                              | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution                                    | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits |   | RPD<br>Limit                     | Notes |  |
| Batch 9101746 - EPA 5030B                                                                |                                     | Water              |                    |             |                                             |                 |                  |       |                 |   |                                  |       |  |
| Duplicate (9101746-DUP1)                                                                 |                                     |                    | Preparec           | l: 10/30/19 | 11:16 Anal                                  | yzed: 10/30/    | /19 13:57        |       |                 |   |                                  |       |  |
| QC Source Sample: MW-3-35 (AS                                                            | J1033-03)                           |                    |                    |             |                                             |                 |                  |       |                 |   |                                  |       |  |
| 1,2,4-Trichlorobenzene                                                                   | ND                                  |                    | 10.0               | ug/L        | 5                                           |                 | ND               |       |                 |   | 30%                              |       |  |
| 1,1,1-Trichloroethane                                                                    | ND                                  |                    | 2.00               | ug/L        | 5                                           |                 | ND               |       |                 |   | 30%                              |       |  |
| 1,1,2-Trichloroethane                                                                    | ND                                  |                    | 2.50               | ug/L        | 5                                           |                 | ND               |       |                 |   | 30%                              |       |  |
| Trichloroethene (TCE)                                                                    | ND                                  |                    | 2.00               | ug/L        | 5                                           |                 | ND               |       |                 |   | 30%                              |       |  |
| Trichlorofluoromethane                                                                   | ND                                  |                    | 10.0               | ug/L        | 5                                           |                 | ND               |       |                 |   | 30%                              |       |  |
| 1,2,3-Trichloropropane                                                                   | ND                                  |                    | 5.00               | ug/L        | 5                                           |                 | ND               |       |                 |   | 30%                              |       |  |
| 1,2,4-Trimethylbenzene                                                                   | ND                                  |                    | 5.00               | ug/L        | 5                                           |                 | ND               |       |                 |   | 30%                              |       |  |
| 1,3,5-Trimethylbenzene                                                                   | ND                                  |                    | 5.00               | ug/L        | 5                                           |                 | ND               |       |                 |   | 30%                              |       |  |
| Vinyl chloride                                                                           | ND                                  |                    | 2.00               | ug/L        | 5                                           |                 | ND               |       |                 |   | 30%                              |       |  |
| m,p-Xylene                                                                               | ND                                  |                    | 5.00               | ug/L        | 5                                           |                 | ND               |       |                 |   | 30%                              |       |  |
| o-Xylene                                                                                 | ND                                  |                    | 2.50               | ug/L        | 5                                           |                 | ND               |       |                 |   | 30%                              |       |  |
| Xylenes, total                                                                           | ND                                  |                    | 7.50               | ug/L        | 5                                           |                 | ND               |       |                 |   | 30%                              |       |  |
| Surr: 1,4-Difluorobenzene (Surr)                                                         |                                     | Recov              | very: 104 %        | Limits: 80  | )-120 %                                     | Dilı            | ution: 1x        |       |                 |   |                                  |       |  |
| Toluene-d8 (Surr)                                                                        |                                     |                    | 100 %              | 80          | -120 %                                      |                 | "                |       |                 |   |                                  |       |  |
| 4-Bromofluorobenzene (Surr)                                                              |                                     |                    | 98 %               | 80          | -120 %                                      |                 | "                |       |                 |   |                                  |       |  |
| Matrix Spike (9101746-MS1)                                                               |                                     |                    | Preparec           | l: 10/30/19 | 11:16 Anal                                  | yzed: 10/30/    | /19 15:45        |       |                 |   |                                  |       |  |
| QC Source Sample: MW-6-30 (AS                                                            | J1033-06)                           |                    |                    |             |                                             |                 |                  |       |                 |   |                                  |       |  |
| EPA 8260C                                                                                |                                     |                    |                    |             |                                             |                 |                  |       |                 |   |                                  |       |  |
| Acetone                                                                                  | 41.4                                |                    | 20.0               | ug/L        | 1                                           | 40.0            | ND               | 104   | 39-160%         |   |                                  |       |  |
| Acrylonitrile                                                                            | 21.9                                |                    | 2.00               | ug/L        | 1                                           | 20.0            | ND               | 109   | 63-135%         |   |                                  |       |  |
| Benzene                                                                                  | 22.9                                |                    | 0.200              | ug/L        | 1                                           | 20.0            | ND               | 114   | 79-120%         |   |                                  |       |  |

20.0

20.0

20.0

20.0

20.0

40.0

20.0

20.0

20.0

20.0

20.0

ND

Apex Laboratories

Bromobenzene

Bromoform

Bromomethane

n-Butylbenzene

sec-Butylbenzene

tert-Butylbenzene

Carbon disulfide

Carbon tetrachloride

2-Butanone (MEK)

Bromochloromethane

Bromodichloromethane

Philip Neverberg

22.1

22.2

22.6

20.2

20.0

45.0

24.8

23.4

23.6

22.7

24.8

0.500

1.00

1.00

1.00

5.00

10.0

1.00

1.00

1.00

10.0

1.00

---

----

----

----

----

---

----

----

----

----

----

ug/L

1

1

1

1

1

1

1

1

1

1

1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

110

111

113

101

100

112

124

117

118

114

124

80-120%

78-123%

79-125%

66-130%

53-141%

56-143%

75-128%

77-126%

78-124%

64-133%

72-136%

---

---

---

----

---

---

---

---

----

----

---

---

---

---

---

---

---

---

---

---

---

---



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

### **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Volatile Organic Compounds by EPA 8260C |           |                    |                    |            |            |                 |                  |       |                 |     |              |       |
|-----------------------------------------|-----------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                 | Result    | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101746 - EPA 5030B               |           |                    |                    |            |            |                 | Wate             | er    |                 |     |              |       |
| Matrix Spike (9101746-MS1)              |           |                    | Prepared           | : 10/30/19 | 11:16 Anal | yzed: 10/30     | /19 15:45        |       |                 |     |              |       |
| QC Source Sample: MW-6-30 (A9           | J1033-06) |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Chlorobenzene                           | 21.7      |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 109   | 80-120%         |     |              |       |
| Chloroethane                            | 22.8      |                    | 5.00               | ug/L       | 1          | 20.0            | ND               | 114   | 60-138%         |     |              |       |
| Chloroform                              | 22.3      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 112   | 79-124%         |     |              |       |
| Chloromethane                           | 21.2      |                    | 5.00               | ug/L       | 1          | 20.0            | ND               | 106   | 50-139%         |     |              |       |
| 2-Chlorotoluene                         | 23.2      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 116   | 79-122%         |     |              |       |
| 4-Chlorotoluene                         | 23.5      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 117   | 78-122%         |     |              |       |
| Dibromochloromethane                    | 21.4      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 107   | 74-126%         |     |              |       |
| 1,2-Dibromo-3-chloropropane             | 21.4      |                    | 5.00               | ug/L       | 1          | 20.0            | ND               | 107   | 62-128%         |     |              |       |
| 1,2-Dibromoethane (EDB)                 | 22.8      |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 114   | 77-121%         |     |              |       |
| Dibromomethane                          | 21.8      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 109   | 79-123%         |     |              |       |
| 1,2-Dichlorobenzene                     | 22.7      |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 113   | 80-120%         |     |              |       |
| 1,3-Dichlorobenzene                     | 22.9      |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 115   | 80-120%         |     |              |       |
| 1,4-Dichlorobenzene                     | 20.5      |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 102   | 79-120%         |     |              |       |
| Dichlorodifluoromethane                 | 23.1      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 115   | 32-152%         |     |              |       |
| 1,1-Dichloroethane                      | 21.9      |                    | 0.400              | ug/L       | 1          | 20.0            | ND               | 109   | 77-125%         |     |              |       |
| 1,2-Dichloroethane (EDC)                | 21.8      |                    | 0.400              | ug/L       | 1          | 20.0            | ND               | 109   | 73-128%         |     |              |       |
| 1,1-Dichloroethene                      | 22.8      |                    | 0.400              | ug/L       | 1          | 20.0            | ND               | 114   | 71-131%         |     |              |       |
| cis-1,2-Dichloroethene                  | 22.9      |                    | 0.400              | ug/L       | 1          | 20.0            | ND               | 114   | 78-123%         |     |              |       |
| trans-1,2-Dichloroethene                | 22.8      |                    | 0.400              | ug/L       | 1          | 20.0            | ND               | 114   | 75-124%         |     |              |       |
| 1,2-Dichloropropane                     | 21.7      |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 108   | 78-122%         |     |              |       |
| 1,3-Dichloropropane                     | 22.2      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 111   | 80-120%         |     |              |       |
| 2,2-Dichloropropane                     | 24.4      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 122   | 60-139%         |     |              | Q     |
| 1,1-Dichloropropene                     | 25.2      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 126   | 79-125%         |     |              | (     |
| cis-1,3-Dichloropropene                 | 20.5      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 103   | 75-124%         |     |              |       |
| trans-1,3-Dichloropropene               | 23.7      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 119   | 73-127%         |     |              |       |
| Ethylbenzene                            | 22.6      |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 113   | 79-121%         |     |              |       |
| Hexachlorobutadiene                     | 23.9      |                    | 5.00               | ug/L       | 1          | 20.0            | ND               | 119   | 66-134%         |     |              |       |
| 2-Hexanone                              | 45.6      |                    | 10.0               | ug/L       | 1          | 40.0            | ND               | 114   | 57-139%         |     |              |       |
| Isopropylbenzene                        | 24.1      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 120   | 72-131%         |     |              |       |
| 4-Isopropyltoluene                      | 23.6      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 118   | 77-127%         |     |              |       |
| Methylene chloride                      | 22.0      |                    | 10.0               | ug/L       | 1          | 20.0            | ND               | 110   | 74-124%         |     |              |       |
| 4-Methyl-2-pentanone (MiBK)             | 45.4      |                    | 10.0               | ug/L       | 1          | 40.0            | ND               | 114   | 67-130%         |     |              |       |
| Methyl tert-butyl ether (MTBE)          | 23.4      |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 117   | 71-124%         |     |              |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

٦

| atch 9101746 - EPA 5030B   |        |                                                          |                            |           |          |                 | Wate             | er    |                 |        |              |       |  |  |
|----------------------------|--------|----------------------------------------------------------|----------------------------|-----------|----------|-----------------|------------------|-------|-----------------|--------|--------------|-------|--|--|
| Analyte                    | Result | Detection<br>Limit                                       | Reporting<br>Limit         | Units     | Dilution | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD    | RPD<br>Limit | Notes |  |  |
|                            |        | -                                                        | ALITY CO<br>Volatile Org   |           | (- )     |                 |                  |       |                 |        |              |       |  |  |
|                            |        |                                                          | 1105                       | eet manag |          | , eacher by     |                  |       | A               | 931033 | - 11 15 17   | 1015  |  |  |
| Portland, OR 97209         |        | Project Manager: David Weatherby A9J1033 - 11 13 19 1613 |                            |           |          |                 |                  |       |                 |        |              |       |  |  |
| 2001 NW 19th Ave, STE 200  |        |                                                          | Project Number: 9085.10.12 |           |          |                 |                  |       | Report ID:      |        |              |       |  |  |
| Maul Foster & Alongi, INC. |        |                                                          | I                          | Project:  | POV-Te   | rminal 1        |                  |       |                 |        |              |       |  |  |

| Matrix Spike (9101746-MS1)       |           |       | Prepared    | l: 10/30/19 11 | :16 Ana | lyzed: 10/30 | /19 15:45 |     |         |      |     |
|----------------------------------|-----------|-------|-------------|----------------|---------|--------------|-----------|-----|---------|------|-----|
| QC Source Sample: MW-6-30 (A9    | J1033-06) |       |             |                |         |              |           |     |         |      |     |
| Naphthalene                      | 22.7      |       | 2.00        | ug/L           | 1       | 20.0         | ND        | 114 | 61-128% | <br> |     |
| n-Propylbenzene                  | 22.7      |       | 0.500       | ug/L           | 1       | 20.0         | ND        | 114 | 76-126% | <br> |     |
| Styrene                          | 22.6      |       | 1.00        | ug/L           | 1       | 20.0         | ND        | 113 | 78-123% | <br> |     |
| 1,1,1,2-Tetrachloroethane        | 22.9      |       | 0.400       | ug/L           | 1       | 20.0         | ND        | 115 | 78-124% | <br> |     |
| 1,1,2,2-Tetrachloroethane        | 21.1      |       | 0.500       | ug/L           | 1       | 20.0         | ND        | 106 | 71-121% | <br> |     |
| Tetrachloroethene (PCE)          | 22.8      |       | 0.400       | ug/L           | 1       | 20.0         | ND        | 114 | 74-129% | <br> |     |
| Toluene                          | 21.3      |       | 1.00        | ug/L           | 1       | 20.0         | ND        | 106 | 80-121% | <br> |     |
| 1,2,3-Trichlorobenzene           | 25.4      |       | 2.00        | ug/L           | 1       | 20.0         | ND        | 127 | 69-129% | <br> |     |
| 1,2,4-Trichlorobenzene           | 24.7      |       | 2.00        | ug/L           | 1       | 20.0         | ND        | 124 | 69-130% | <br> |     |
| 1,1,1-Trichloroethane            | 23.6      |       | 0.400       | ug/L           | 1       | 20.0         | ND        | 118 | 74-131% | <br> |     |
| 1,1,2-Trichloroethane            | 22.2      |       | 0.500       | ug/L           | 1       | 20.0         | ND        | 111 | 80-120% | <br> |     |
| Trichloroethene (TCE)            | 21.8      |       | 0.400       | ug/L           | 1       | 20.0         | ND        | 109 | 79-123% | <br> |     |
| Trichlorofluoromethane           | 23.2      |       | 2.00        | ug/L           | 1       | 20.0         | ND        | 116 | 65-141% | <br> |     |
| 1,2,3-Trichloropropane           | 20.8      |       | 1.00        | ug/L           | 1       | 20.0         | ND        | 104 | 73-122% | <br> |     |
| 1,2,4-Trimethylbenzene           | 23.9      |       | 1.00        | ug/L           | 1       | 20.0         | ND        | 119 | 76-124% | <br> |     |
| 1,3,5-Trimethylbenzene           | 24.0      |       | 1.00        | ug/L           | 1       | 20.0         | ND        | 120 | 75-124% | <br> |     |
| Vinyl chloride                   | 23.1      |       | 0.400       | ug/L           | 1       | 20.0         | ND        | 115 | 58-137% | <br> |     |
| m,p-Xylene                       | 48.1      |       | 1.00        | ug/L           | 1       | 40.0         | ND        | 120 | 80-121% | <br> |     |
| o-Xylene                         | 24.7      |       | 0.500       | ug/L           | 1       | 20.0         | ND        | 123 | 78-122% | <br> | Q-0 |
| Xylenes, total                   | 72.8      |       | 1.50        | ug/L           | 1       | 60.0         | ND        | 121 | 79-121% | <br> |     |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov | ery: 98%    | Limits: 80-1   | 20 %    | Dilı         | ution: 1x |     |         |      |     |
| Toluene-d8 (Surr)                |           |       | 98 %        | 80-1           | 20 %    |              | "         |     |         |      |     |
| 4-Bromofluorobenzene (Surr)      |           |       | <i>99 %</i> | 80-1           | 20 %    |              | "         |     |         |      |     |

| Matrix Spike (9101746-MS2 | 2)              | Prepared: | 10/30/19 11 | :16 Ana | lyzed: 10/30 | /19 20:41 |     |         |      |
|---------------------------|-----------------|-----------|-------------|---------|--------------|-----------|-----|---------|------|
| QC Source Sample: Non-SDG | (A9J0946-01RE1) |           |             |         |              |           |     |         |      |
| EPA 8260C                 |                 |           |             |         |              |           |     |         |      |
| Acetone                   | 893             | <br>400   | ug/L        | 20      | 800          | ND        | 112 | 39-160% | <br> |
| Acrylonitrile             | 404             | <br>40.0  | ug/L        | 20      | 400          | ND        | 101 | 63-135% | <br> |
| Benzene                   | 421             | <br>4.00  | ug/L        | 20      | 400          | ND        | 105 | 79-120% | <br> |
| Bromobenzene              | 407             | <br>10.0  | ug/L        | 20      | 400          | ND        | 102 | 80-120% | <br> |
| Bromochloromethane        | 415             | <br>20.0  | ug/L        | 20      | 400          | ND        | 104 | 78-123% | <br> |
| Bromodichloromethane      | 417             | <br>20.0  | ug/L        | 20      | 400          | ND        | 104 | 79-125% | <br> |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Volatile Organic Compounds by EPA 8260C |            |                    |                    |            |            |                 |                  |       |                 |     |              |       |
|-----------------------------------------|------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                 | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101746 - EPA 5030B               |            |                    |                    |            |            |                 | Wate             | ər    |                 |     |              |       |
| Matrix Spike (9101746-MS2)              |            |                    | Prepared           | : 10/30/19 | 11:16 Anal | yzed: 10/30     | /19 20:41        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A9           | J0946-01RI | E1)                |                    |            |            |                 |                  |       |                 |     |              |       |
| Bromoform                               | 375        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 94    | 66-130%         |     |              |       |
| Bromomethane                            | 363        |                    | 100                | ug/L       | 20         | 400             | ND               | 91    | 53-141%         |     |              |       |
| 2-Butanone (MEK)                        | 830        |                    | 200                | ug/L       | 20         | 800             | ND               | 104   | 56-143%         |     |              |       |
| n-Butylbenzene                          | 456        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 114   | 75-128%         |     |              |       |
| sec-Butylbenzene                        | 431        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 108   | 77-126%         |     |              |       |
| tert-Butylbenzene                       | 433        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 108   | 78-124%         |     |              |       |
| Carbon disulfide                        | 416        |                    | 200                | ug/L       | 20         | 400             | ND               | 104   | 64-133%         |     |              |       |
| Carbon tetrachloride                    | 452        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 113   | 72-136%         |     |              |       |
| Chlorobenzene                           | 401        |                    | 10.0               | ug/L       | 20         | 400             | ND               | 100   | 80-120%         |     |              |       |
| Chloroethane                            | 711        |                    | 100                | ug/L       | 20         | 400             | 329              | 96    | 60-138%         |     |              |       |
| Chloroform                              | 414        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 104   | 79-124%         |     |              |       |
| Chloromethane                           | 430        |                    | 100                | ug/L       | 20         | 400             | ND               | 108   | 50-139%         |     |              |       |
| 2-Chlorotoluene                         | 427        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 107   | 79-122%         |     |              |       |
| 4-Chlorotoluene                         | 432        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 108   | 78-122%         |     |              |       |
| Dibromochloromethane                    | 397        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 99    | 74-126%         |     |              |       |
| 1,2-Dibromo-3-chloropropane             | 391        |                    | 100                | ug/L       | 20         | 400             | ND               | 98    | 62-128%         |     |              |       |
| 1,2-Dibromoethane (EDB)                 | 421        |                    | 10.0               | ug/L       | 20         | 400             | ND               | 105   | 77-121%         |     |              |       |
| Dibromomethane                          | 408        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 102   | 79-123%         |     |              |       |
| 1,2-Dichlorobenzene                     | 421        |                    | 10.0               | ug/L       | 20         | 400             | ND               | 105   | 80-120%         |     |              |       |
| 1,3-Dichlorobenzene                     | 420        |                    | 10.0               | ug/L       | 20         | 400             | ND               | 105   | 80-120%         |     |              |       |
| 1,4-Dichlorobenzene                     | 383        |                    | 10.0               | ug/L       | 20         | 400             | ND               | 96    | 79-120%         |     |              |       |
| Dichlorodifluoromethane                 | 454        |                    | 20.0               | ug/L       | 20         | 400             | 12.8             | 110   | 32-152%         |     |              |       |
| 1,1-Dichloroethane                      | 432        |                    | 8.00               | ug/L       | 20         | 400             | 28.8             | 101   | 77-125%         |     |              |       |
| 1,2-Dichloroethane (EDC)                | 405        |                    | 8.00               | ug/L       | 20         | 400             | ND               | 101   | 73-128%         |     |              |       |
| 1,1-Dichloroethene                      | 420        |                    | 8.00               | ug/L       | 20         | 400             | ND               | 105   | 71-131%         |     |              |       |
| cis-1,2-Dichloroethene                  | 422        |                    | 8.00               | ug/L       | 20         | 400             | ND               | 106   | 78-123%         |     |              |       |
| trans-1,2-Dichloroethene                | 416        |                    | 8.00               | ug/L       | 20         | 400             | ND               | 104   | 75-124%         |     |              |       |
| 1,2-Dichloropropane                     | 400        |                    | 10.0               | ug/L       | 20         | 400             | ND               | 100   | 78-122%         |     |              |       |
| 1,3-Dichloropropane                     | 412        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 103   | 80-120%         |     |              |       |
| 2,2-Dichloropropane                     | 420        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 105   | 60-139%         |     |              | (     |
| 1,1-Dichloropropene                     | 462        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 116   | 79-125%         |     |              |       |
| cis-1,3-Dichloropropene                 | 371        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 93    | 75-124%         |     |              |       |
| trans-1,3-Dichloropropene               | 435        |                    | 20.0               | ug/L       | 20         | 400             | ND               | 109   | 73-127%         |     |              |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Volatile Organic Compounds by EPA 8260C |            |                    |                    |             |            |                 |                  |       |                 |     |              |      |
|-----------------------------------------|------------|--------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|------|
| Analyte                                 | Result     | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Note |
| Batch 9101746 - EPA 5030B               |            |                    |                    |             |            |                 | Wate             | er    |                 |     |              |      |
| Matrix Spike (9101746-MS2)              |            |                    | Preparec           | l: 10/30/19 | 11:16 Anal | yzed: 10/30/    | /19 20:41        |       |                 |     |              |      |
| QC Source Sample: Non-SDG (A9           | J0946-01RE | E <u>1)</u>        |                    |             |            |                 |                  |       |                 |     |              |      |
| Ethylbenzene                            | 417        |                    | 10.0               | ug/L        | 20         | 400             | ND               | 104   | 79-121%         |     |              |      |
| Hexachlorobutadiene                     | 443        |                    | 100                | ug/L        | 20         | 400             | ND               | 111   | 66-134%         |     |              |      |
| 2-Hexanone                              | 840        |                    | 200                | ug/L        | 20         | 800             | ND               | 105   | 57-139%         |     |              |      |
| Isopropylbenzene                        | 440        |                    | 20.0               | ug/L        | 20         | 400             | ND               | 110   | 72-131%         |     |              |      |
| 4-Isopropyltoluene                      | 433        |                    | 20.0               | ug/L        | 20         | 400             | ND               | 108   | 77-127%         |     |              |      |
| Methylene chloride                      | 426        |                    | 200                | ug/L        | 20         | 400             | ND               | 106   | 74-124%         |     |              |      |
| 4-Methyl-2-pentanone (MiBK)             | 829        |                    | 200                | ug/L        | 20         | 800             | ND               | 104   | 67-130%         |     |              |      |
| Methyl tert-butyl ether (MTBE)          | 438        |                    | 20.0               | ug/L        | 20         | 400             | ND               | 109   | 71-124%         |     |              |      |
| Naphthalene                             | 412        |                    | 40.0               | ug/L        | 20         | 400             | ND               | 103   | 61-128%         |     |              |      |
| n-Propylbenzene                         | 419        |                    | 10.0               | ug/L        | 20         | 400             | ND               | 105   | 76-126%         |     |              |      |
| Styrene                                 | 416        |                    | 20.0               | ug/L        | 20         | 400             | ND               | 104   | 78-123%         |     |              |      |
| 1,1,1,2-Tetrachloroethane               | 426        |                    | 8.00               | ug/L        | 20         | 400             | ND               | 106   | 78-124%         |     |              |      |
| 1,1,2,2-Tetrachloroethane               | 402        |                    | 10.0               | ug/L        | 20         | 400             | ND               | 100   | 71-121%         |     |              |      |
| Tetrachloroethene (PCE)                 | 416        |                    | 8.00               | ug/L        | 20         | 400             | ND               | 104   | 74-129%         |     |              |      |
| Toluene                                 | 395        |                    | 20.0               | ug/L        | 20         | 400             | ND               | 99    | 80-121%         |     |              |      |
| 1,2,3-Trichlorobenzene                  | 463        |                    | 40.0               | ug/L        | 20         | 400             | ND               | 116   | 69-129%         |     |              |      |
| 1,2,4-Trichlorobenzene                  | 451        |                    | 40.0               | ug/L        | 20         | 400             | ND               | 113   | 69-130%         |     |              |      |
| 1,1,1-Trichloroethane                   | 436        |                    | 8.00               | ug/L        | 20         | 400             | ND               | 109   | 74-131%         |     |              |      |
| 1,1,2-Trichloroethane                   | 412        |                    | 10.0               | ug/L        | 20         | 400             | ND               | 103   | 80-120%         |     |              |      |
| Trichloroethene (TCE)                   | 402        |                    | 8.00               | ug/L        | 20         | 400             | ND               | 100   | 79-123%         |     |              |      |
| Trichlorofluoromethane                  | 444        |                    | 40.0               | ug/L        | 20         | 400             | ND               | 111   | 65-141%         |     |              |      |
| 1,2,3-Trichloropropane                  | 399        |                    | 20.0               | ug/L        | 20         | 400             | ND               | 100   | 73-122%         |     |              |      |
| 1,2,4-Trimethylbenzene                  | 443        |                    | 20.0               | ug/L        | 20         | 400             | ND               | 111   | 76-124%         |     |              |      |
| 1,3,5-Trimethylbenzene                  | 450        |                    | 20.0               | ug/L        | 20         | 400             | ND               | 113   | 75-124%         |     |              |      |
| Vinyl chloride                          | 427        |                    | 8.00               | ug/L        | 20         | 400             | ND               | 107   | 58-137%         |     |              |      |
| m,p-Xylene                              | 884        |                    | 20.0               | ug/L        | 20         | 800             | ND               | 111   | 80-121%         |     |              |      |
| o-Xylene                                | 451        |                    | 10.0               | ug/L        | 20         | 400             | ND               | 113   | 78-122%         |     |              |      |
| Xylenes, total                          | 1340       |                    | 30.0               | ug/L        | 20         | 1200            | ND               | 111   | 79-121%         |     |              |      |
| Surr: 1,4-Difluorobenzene (Surr)        |            |                    | overv: 98%         | Limits: 80  | -          |                 | ution: 1x        | -     |                 |     |              |      |
| Toluene-d8 (Surr)                       |            | 100                | 98%                |             | -120 %     | 2111            | "                |       |                 |     |              |      |
| 4-Bromofluorobenzene (Surr)             |            |                    | 99%                |             | -120 %     |                 | "                |       |                 |     |              |      |

Matrix Spike Dup (9101746-MSD2)

Prepared: 10/30/19 11:16 Analyzed: 10/30/19 21:08

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

|                               |            |                    |                    | Detection Reporting Spike Source % REC RPD |            |                 |                  |       |                 |      |              |      |  |  |  |  |  |
|-------------------------------|------------|--------------------|--------------------|--------------------------------------------|------------|-----------------|------------------|-------|-----------------|------|--------------|------|--|--|--|--|--|
| Analyte                       | Result     | Detection<br>Limit | Reporting<br>Limit | Units                                      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD  | RPD<br>Limit | Note |  |  |  |  |  |
| Batch 9101746 - EPA 5030B     |            |                    |                    |                                            |            |                 | Wate             | ər    |                 |      |              |      |  |  |  |  |  |
| Matrix Spike Dup (9101746-M   | (SD2)      |                    | Prepared           | : 10/30/19                                 | 11:16 Anal | yzed: 10/30/    | /19 21:08        |       |                 |      |              |      |  |  |  |  |  |
| QC Source Sample: Non-SDG (AS | J0946-01RE | <u>.1)</u>         |                    |                                            |            |                 |                  |       |                 |      |              | _    |  |  |  |  |  |
| Acetone                       | 971        |                    | 400                | ug/L                                       | 20         | 800             | ND               | 121   | 39-160%         | 8    | 30%          |      |  |  |  |  |  |
| Acrylonitrile                 | 437        |                    | 40.0               | ug/L                                       | 20         | 400             | ND               | 109   | 63-135%         | 8    | 30%          |      |  |  |  |  |  |
| Benzene                       | 424        |                    | 4.00               | ug/L                                       | 20         | 400             | ND               | 106   | 79-120%         | 0.7  | 30%          |      |  |  |  |  |  |
| Bromobenzene                  | 404        |                    | 10.0               | ug/L                                       | 20         | 400             | ND               | 101   | 80-120%         | 0.7  | 30%          |      |  |  |  |  |  |
| Bromochloromethane            | 428        |                    | 20.0               | ug/L                                       | 20         | 400             | ND               | 107   | 78-123%         | 3    | 30%          |      |  |  |  |  |  |
| Bromodichloromethane          | 424        |                    | 20.0               | ug/L                                       | 20         | 400             | ND               | 106   | 79-125%         | 2    | 30%          |      |  |  |  |  |  |
| Bromoform                     | 378        |                    | 20.0               | ug/L                                       | 20         | 400             | ND               | 94    | 66-130%         | 0.7  | 30%          |      |  |  |  |  |  |
| Bromomethane                  | 363        |                    | 100                | ug/L                                       | 20         | 400             | ND               | 91    | 53-141%         | 0.06 | 30%          |      |  |  |  |  |  |
| 2-Butanone (MEK)              | 920        |                    | 200                | ug/L                                       | 20         | 800             | ND               | 115   | 56-143%         | 10   | 30%          |      |  |  |  |  |  |
| n-Butylbenzene                | 467        |                    | 20.0               | ug/L                                       | 20         | 400             | ND               | 117   | 75-128%         | 2    | 30%          |      |  |  |  |  |  |
| sec-Butylbenzene              | 440        |                    | 20.0               | ug/L                                       | 20         | 400             | ND               | 110   | 77-126%         | 2    | 30%          |      |  |  |  |  |  |
| tert-Butylbenzene             | 445        |                    | 20.0               | ug/L                                       | 20         | 400             | ND               | 111   | 78-124%         | 3    | 30%          |      |  |  |  |  |  |
| Carbon disulfide              | 426        |                    | 200                | ug/L                                       | 20         | 400             | ND               | 106   | 64-133%         | 2    | 30%          |      |  |  |  |  |  |
| Carbon tetrachloride          | 450        |                    | 20.0               | ug/L                                       | 20         | 400             | ND               | 113   | 72-136%         | 0.4  | 30%          |      |  |  |  |  |  |
| Chlorobenzene                 | 403        |                    | 10.0               | ug/L                                       | 20         | 400             | ND               | 101   | 80-120%         | 0.5  | 30%          |      |  |  |  |  |  |
| Chloroethane                  | 738        |                    | 100                | ug/L                                       | 20         | 400             | 329              | 102   | 60-138%         | 4    | 30%          |      |  |  |  |  |  |
| Chloroform                    | 421        |                    | 20.0               | ug/L                                       | 20         | 400             | ND               | 105   | 79-124%         | 2    | 30%          |      |  |  |  |  |  |
| Chloromethane                 | 429        |                    | 100                | ug/L                                       | 20         | 400             | ND               | 107   | 50-139%         | 0.3  | 30%          |      |  |  |  |  |  |
| 2-Chlorotoluene               | 431        |                    | 20.0               | ug/L                                       | 20         | 400             | ND               | 108   | 79-122%         | 0.8  | 30%          |      |  |  |  |  |  |
| 4-Chlorotoluene               | 449        |                    | 20.0               | ug/L                                       | 20         | 400             | ND               | 112   | 78-122%         | 4    | 30%          |      |  |  |  |  |  |
| Dibromochloromethane          | 401        |                    | 20.0               | ug/L                                       | 20         | 400             | ND               | 100   | 74-126%         | 0.9  | 30%          |      |  |  |  |  |  |
| 1,2-Dibromo-3-chloropropane   | 413        |                    | 100                | ug/L                                       | 20         | 400             | ND               | 103   | 62-128%         | 5    | 30%          |      |  |  |  |  |  |
| 1,2-Dibromoethane (EDB)       | 435        |                    | 10.0               | ug/L                                       | 20         | 400             | ND               | 109   | 77-121%         | 3    | 30%          |      |  |  |  |  |  |
| Dibromomethane                | 415        |                    | 20.0               | ug/L                                       | 20         | 400             | ND               | 104   | 79-123%         | 2    | 30%          |      |  |  |  |  |  |
| 1,2-Dichlorobenzene           | 423        |                    | 10.0               | ug/L                                       | 20         | 400             | ND               | 106   | 80-120%         | 0.5  | 30%          |      |  |  |  |  |  |
| ,3-Dichlorobenzene            | 428        |                    | 10.0               | ug/L                                       | 20         | 400             | ND               | 107   | 80-120%         | 2    | 30%          |      |  |  |  |  |  |
| ,4-Dichlorobenzene            | 383        |                    | 10.0               | ug/L                                       | 20         | 400             | ND               | 96    | 79-120%         | 0    | 30%          |      |  |  |  |  |  |
| Dichlorodifluoromethane       | 462        |                    | 20.0               | ug/L                                       | 20         | 400             | 12.8             | 112   | 32-152%         | 2    | 30%          |      |  |  |  |  |  |
| ,1-Dichloroethane             | 442        |                    | 8.00               | ug/L                                       | 20         | 400             | 28.8             | 103   | 77-125%         | 2    | 30%          |      |  |  |  |  |  |
| ,2-Dichloroethane (EDC)       | 420        |                    | 8.00               | ug/L                                       | 20         | 400             | ND               | 105   | 73-128%         | 4    | 30%          |      |  |  |  |  |  |
| ,1-Dichloroethene             | 430        |                    | 8.00               | ug/L                                       | 20         | 400             | ND               | 107   | 71-131%         | 2    | 30%          |      |  |  |  |  |  |
| eis-1,2-Dichloroethene        | 436        |                    | 8.00               | ug/L                                       | 20         | 400             | ND               | 109   | 78-123%         | 3    | 30%          |      |  |  |  |  |  |
| rans-1,2-Dichloroethene       | 425        |                    | 8.00               | ug/L                                       | 20         | 400             | ND               | 106   | 75-124%         | 2    | 30%          |      |  |  |  |  |  |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b><u>POV-Terminal 1</u></b> |                         |
|----------------------------|---------------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12            | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby      | A9J1033 - 11 13 19 1613 |

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Volatile Organic Compounds by EPA 8260C |            |                    |                    |              |            |                 |                  |       |                 |      |              |       |
|-----------------------------------------|------------|--------------------|--------------------|--------------|------------|-----------------|------------------|-------|-----------------|------|--------------|-------|
| Analyte                                 | Result     | Detection<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD  | RPD<br>Limit | Notes |
| Batch 9101746 - EPA 5030B               |            |                    |                    |              |            |                 | Wat              | er    |                 |      |              |       |
| Matrix Spike Dup (9101746-M             | SD2)       |                    | Prepared           | : 10/30/19   | 11:16 Anal | yzed: 10/30/    | /19 21:08        |       |                 |      |              |       |
| QC Source Sample: Non-SDG (A9           | J0946-01RI | E1)                |                    |              |            |                 |                  |       |                 |      |              |       |
| 1,2-Dichloropropane                     | 408        |                    | 10.0               | ug/L         | 20         | 400             | ND               | 102   | 78-122%         | 2    | 30%          |       |
| 1,3-Dichloropropane                     | 425        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 106   | 80-120%         | 3    | 30%          |       |
| 2,2-Dichloropropane                     | 424        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 106   | 60-139%         | 1    | 30%          | Q-5   |
| 1,1-Dichloropropene                     | 468        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 117   | 79-125%         | 1    | 30%          |       |
| cis-1,3-Dichloropropene                 | 384        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 96    | 75-124%         | 3    | 30%          |       |
| rans-1,3-Dichloropropene                | 451        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 113   | 73-127%         | 4    | 30%          |       |
| Ethylbenzene                            | 422        |                    | 10.0               | ug/L         | 20         | 400             | ND               | 105   | 79-121%         | 1    | 30%          |       |
| Hexachlorobutadiene                     | 424        |                    | 100                | ug/L         | 20         | 400             | ND               | 106   | 66-134%         | 4    | 30%          |       |
| 2-Hexanone                              | 924        |                    | 200                | ug/L         | 20         | 800             | ND               | 116   | 57-139%         | 10   | 30%          |       |
| Isopropylbenzene                        | 445        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 111   | 72-131%         | 1    | 30%          |       |
| 4-Isopropyltoluene                      | 438        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 110   | 77-127%         | 1    | 30%          |       |
| Methylene chloride                      | 430        |                    | 200                | ug/L         | 20         | 400             | ND               | 107   | 74-124%         | 0.9  | 30%          |       |
| 4-Methyl-2-pentanone (MiBK)             | 913        |                    | 200                | ug/L         | 20         | 800             | ND               | 114   | 67-130%         | 10   | 30%          |       |
| Methyl tert-butyl ether (MTBE)          | 452        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 113   | 71-124%         | 3    | 30%          |       |
| Naphthalene                             | 424        |                    | 40.0               | ug/L         | 20         | 400             | ND               | 106   | 61-128%         | 3    | 30%          |       |
| n-Propylbenzene                         | 427        |                    | 10.0               | ug/L         | 20         | 400             | ND               | 107   | 76-126%         | 2    | 30%          |       |
| Styrene                                 | 427        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 107   | 78-123%         | 3    | 30%          |       |
| 1,1,1,2-Tetrachloroethane               | 426        |                    | 8.00               | ug/L         | 20         | 400             | ND               | 106   | 78-124%         | 0.05 | 30%          |       |
| 1,1,2,2-Tetrachloroethane               | 419        |                    | 10.0               | ug/L         | 20         | 400             | ND               | 105   | 71-121%         | 4    | 30%          |       |
| Tetrachloroethene (PCE)                 | 411        |                    | 8.00               | ug/L         | 20         | 400             | ND               | 103   | 74-129%         | 1    | 30%          |       |
| Foluene                                 | 396        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 99    | 80-121%         | 0.4  | 30%          |       |
| 1,2,3-Trichlorobenzene                  | 462        |                    | 40.0               | ug/L         | 20         | 400             | ND               | 116   | 69-129%         | 0.2  | 30%          |       |
| 1,2,4-Trichlorobenzene                  | 458        |                    | 40.0               | ug/L         | 20         | 400             | ND               | 114   | 69-130%         | 2    | 30%          |       |
| 1,1,1-Trichloroethane                   | 435        |                    | 8.00               | ug/L         | 20         | 400             | ND               | 109   | 74-131%         | 0.1  | 30%          |       |
| 1,1,2-Trichloroethane                   | 424        |                    | 10.0               | ug/L         | 20         | 400             | ND               | 106   | 80-120%         | 3    | 30%          |       |
| Trichloroethene (TCE)                   | 394        |                    | 8.00               | ug/L         | 20         | 400             | ND               | 98    | 79-123%         | 2    | 30%          |       |
| Trichlorofluoromethane                  | 436        |                    | 40.0               | ug/L         | 20         | 400             | ND               | 109   | 65-141%         | 2    | 30%          |       |
| 1,2,3-Trichloropropane                  | 395        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 99    | 73-122%         | 0.9  | 30%          |       |
| 1,2,4-Trimethylbenzene                  | 448        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 112   | 76-124%         | 1    | 30%          |       |
| 1,3,5-Trimethylbenzene                  | 455        |                    | 20.0               | ug/L         | 20         | 400             | ND               | 114   | 75-124%         | 1    | 30%          |       |
| Vinyl chloride                          | 441        |                    | 8.00               | ug/L         | 20         | 400             | ND               | 110   | 58-137%         | 3    | 30%          |       |
| n,p-Xylene                              | 906        |                    | 20.0               | ug/L<br>ug/L | 20         | 800             | ND               | 113   | 80-121%         | 2    | 30%          |       |
| o-Xylene                                | 465        |                    | 10.0               | ug/L<br>ug/L | 20         | 400             | ND               | 115   | 78-122%         | 2    | 30%          |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC.<br>2001 NW 19th Ave, STE 200<br>Portland, OR 97209 |        |                    | Pro                | 5          | <u>POV-Te</u><br>ber: 9085.10.<br>ger: David V |                 | <u>Report ID:</u><br>A9J1033 - 11 13 19 1613 |       |                 |     |              |       |
|-------------------------------------------------------------------------------|--------|--------------------|--------------------|------------|------------------------------------------------|-----------------|----------------------------------------------|-------|-----------------|-----|--------------|-------|
|                                                                               |        | _                  | ALITY CO           |            | /                                              |                 |                                              |       |                 |     |              |       |
| Analyte                                                                       | Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution                                       | Spike<br>Amount | Source<br>Result                             | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| atch 9101746 - EPA 5030B                                                      |        |                    |                    |            |                                                |                 | Wate                                         | er    |                 |     |              |       |
| 1atrix Spike Dup (9101746-M                                                   | SD2)   |                    | Prepared           | : 10/30/19 | 11:16 Anal                                     | yzed: 10/30/    | 19 21:08                                     |       |                 |     |              |       |

| <b>QC Source Sample: Non-SDG (A9J</b> | <u>0946-01RE1)</u> |           |       |               |      |      |          |     |         |   |     |
|---------------------------------------|--------------------|-----------|-------|---------------|------|------|----------|-----|---------|---|-----|
| Xylenes, total                        | 1370               |           | 30.0  | ug/L          | 20   | 1200 | ND       | 114 | 79-121% | 3 | 30% |
| Surr: 1,4-Difluorobenzene (Surr)      |                    | Recovery. | : 97% | Limits: 80-12 | 20 % | Dilu | tion: 1x |     |         |   |     |
| Toluene-d8 (Surr)                     |                    |           | 98 %  | 80-12         | 20 % |      | "        |     |         |   |     |
| 4-Bromofluorobenzene (Surr)           |                    |           | 99 %  | 80-12         | 20 % |      | "        |     |         |   |     |

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

### **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Volatile Organic Compounds by EPA 8260C |        |                    |                    |              |            |                 |                  |       |                 |     |              |       |
|-----------------------------------------|--------|--------------------|--------------------|--------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                 | Result | Detection<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101792 - EPA 5030B               |        |                    |                    |              |            |                 | Wate             | ər    |                 |     |              |       |
| Blank (9101792-BLK1)                    | _      | _                  | Prepared:          | : 10/31/19   | 08:50 Anal | yzed: 10/31/    | /19 11:25        | _     | _               |     | _            | _     |
| EPA 8260C                               |        |                    |                    |              |            |                 |                  |       |                 |     |              |       |
| Acetone                                 | ND     |                    | 20.0               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Acrylonitrile                           | ND     |                    | 2.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Benzene                                 | ND     |                    | 0.200              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Bromobenzene                            | ND     |                    | 0.500              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Bromochloromethane                      | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Bromodichloromethane                    | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Bromoform                               | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Bromomethane                            | ND     |                    | 5.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| -Butanone (MEK)                         | ND     |                    | 10.0               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Butylbenzene                            | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ec-Butylbenzene                         | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ert-Butylbenzene                        | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Carbon disulfide                        | ND     |                    | 10.0               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Carbon tetrachloride                    | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Chlorobenzene                           | ND     |                    | 0.500              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Chloroethane                            | ND     |                    | 5.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Chloroform                              | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Chloromethane                           | ND     |                    | 5.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| -Chlorotoluene                          | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| -Chlorotoluene                          | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Dibromochloromethane                    | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,2-Dibromo-3-chloropropane              | ND     |                    | 5.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,2-Dibromoethane (EDB)                  | ND     |                    | 0.500              | ug/L<br>ug/L | 1          |                 |                  |       |                 |     |              |       |
| Dibromomethane                          | ND     |                    | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,2-Dichlorobenzene                      | ND     |                    | 0.500              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| ,3-Dichlorobenzene                      | ND     |                    | 0.500              | ug/L<br>ug/L | 1          |                 |                  |       |                 |     |              |       |
| ,4-Dichlorobenzene                      | ND     |                    | 0.500              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Dichlorodifluoromethane                 | ND     |                    | 1.00               | ug/L<br>ug/L | 1          |                 |                  |       |                 |     |              |       |
| ,1-Dichloroethane                       | ND     |                    | 0.400              | ug/L<br>ug/L | 1          |                 |                  |       |                 |     |              |       |
| ,2-Dichloroethane (EDC)                 | ND     |                    | 0.400              | ug/L<br>ug/L | 1          |                 |                  |       |                 |     |              |       |
| ,1-Dichloroethene                       | ND     |                    | 0.400              | ug/L<br>ug/L | 1          |                 |                  |       |                 |     |              |       |
| is-1,2-Dichloroethene                   | ND     |                    | 0.400              | ug/L<br>ug/L | 1          |                 |                  |       |                 |     |              |       |
| ,                                       | 110    |                    | 0.700              | ug/L         | 1          | -               | -                |       |                 |     | -            |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Volatile Organic Compounds by EPA 8260C      |          |                    |                      |                    |            |                 |                  |       |                 |     |              |       |
|----------------------------------------------|----------|--------------------|----------------------|--------------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                      | Result   | Detection<br>Limit | Reporting<br>Limit   | Units              | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101792 - EPA 5030B                    |          |                    |                      |                    |            |                 | Wat              | er    |                 |     |              |       |
| Blank (9101792-BLK1)                         |          |                    | Prepared             | : 10/31/19         | 08:50 Anal | yzed: 10/31     | /19 11:25        |       |                 |     |              |       |
| 1,2-Dichloropropane                          | ND       |                    | 0.500                | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| 1,3-Dichloropropane                          | ND       |                    | 1.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| 2,2-Dichloropropane                          | ND       |                    | 1.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| 1,1-Dichloropropene                          | ND       |                    | 1.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| cis-1,3-Dichloropropene                      | ND       |                    | 1.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| rans-1,3-Dichloropropene                     | ND       |                    | 1.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| Ethylbenzene                                 | ND       |                    | 0.500                | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| Hexachlorobutadiene                          | ND       |                    | 5.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| 2-Hexanone                                   | ND       |                    | 10.0                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| Isopropylbenzene                             | ND       |                    | 1.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| 4-Isopropyltoluene                           | ND       |                    | 1.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| Methylene chloride                           | ND       |                    | 3.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| 4-Methyl-2-pentanone (MiBK)                  | ND       |                    | 10.0                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| Methyl tert-butyl ether (MTBE)               | ND       |                    | 1.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| Naphthalene                                  | ND       |                    | 2.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| n-Propylbenzene                              | ND       |                    | 0.500                | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| Styrene                                      | ND       |                    | 1.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| 1,1,1,2-Tetrachloroethane                    | ND       |                    | 0.400                | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| 1,1,2,2-Tetrachloroethane                    | ND       |                    | 0.500                | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| Tetrachloroethene (PCE)                      | ND       |                    | 0.400                | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| Toluene                                      | ND       |                    | 1.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| 1,2,3-Trichlorobenzene                       | ND       |                    | 2.00                 | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| 1,2,4-Trichlorobenzene                       | ND       |                    | 2.00                 | ug/L<br>ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 1,1,1-Trichloroethane                        | ND       |                    | 0.400                | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| 1,1,2-Trichloroethane                        | ND       |                    | 0.500                | ug/L<br>ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Trichloroethene (TCE)                        | ND       |                    | 0.400                | ug/L               | 1          |                 |                  |       |                 |     |              |       |
| Trichlorofluoromethane                       | ND       |                    | 2.00                 | ug/L<br>ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 1,2,3-Trichloropropane                       | ND       |                    | 1.00                 | ug/L<br>ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 1,2,4-Trimethylbenzene                       | ND       |                    | 1.00                 | ug/L<br>ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 1,3,5-Trimethylbenzene                       | ND       |                    | 1.00                 | ug/L<br>ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Vinyl chloride                               | ND       |                    | 0.400                | ug/L<br>ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 2                                            | ND<br>ND |                    | 1.00                 |                    | 1          |                 |                  |       |                 |     |              |       |
| n,p-Xylene                                   |          |                    |                      | ug/L               |            |                 |                  |       |                 |     |              |       |
| D-Xylene<br>Surr: 1,4-Difluorobenzene (Surr) | ND       |                    | 0.500<br>very: 104 % | ug/L<br>Limits: 80 | 1          |                 | <br>ution: 1x    |       |                 |     |              |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| <u>Maul Foster &amp; Alongi, INC.</u><br>2001 NW 19th Ave, STE 200<br>Portland, OR 97209 |        |                    | Pro                  | 5           | <u>POV-Te</u><br>er: 9085.10<br>er: David V |                 |                  |       | P               | - | <u>Report ID</u><br>- 11 13 19 | _     |
|------------------------------------------------------------------------------------------|--------|--------------------|----------------------|-------------|---------------------------------------------|-----------------|------------------|-------|-----------------|---|--------------------------------|-------|
|                                                                                          |        | QL                 | JALITY CO            | ONTROI      | L (QC) SA                                   | MPLE R          | RESULTS          |       |                 |   |                                |       |
|                                                                                          |        |                    | Volatile Or          | ganic Co    | mpounds                                     | by EPA 8        | 3260C            |       |                 |   |                                |       |
| Analyte                                                                                  | Result | Detection<br>Limit | Reporting<br>Limit   | Units       | Dilution                                    | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits |   | RPD<br>Limit                   | Notes |
| Batch 9101792 - EPA 5030B                                                                |        |                    |                      |             |                                             |                 | Wat              | er    |                 |   |                                |       |
| Blank (9101792-BLK1)                                                                     |        |                    | Prenareo             | · 10/31/19  | 08·50 Ana                                   | lyzed: 10/31    | /19 11.25        |       |                 |   |                                |       |
| Surr: Toluene-d8 (Surr)<br>4-Bromofluorobenzene (Surr)                                   |        | Reco               | very: 104 %<br>103 % | Limits: 80  |                                             | -               | ution: 1x<br>"   |       |                 |   |                                |       |
| LCS (9101792-BS1)                                                                        |        |                    | Prepared             | l: 10/31/19 | 08:50 Ana                                   | lyzed: 10/31    | /19 10:31        |       |                 |   |                                |       |
| EPA 8260C                                                                                |        |                    |                      |             |                                             |                 |                  |       |                 |   |                                |       |
| Acetone                                                                                  | 36.7   |                    | 20.0                 | ug/L        | 1                                           | 40.0            |                  | 92    | 80-120%         |   |                                |       |
| Acrylonitrile                                                                            | 21.6   |                    | 2.00                 | ug/L        | 1                                           | 20.0            |                  | 108   | 80-120%         |   |                                |       |
| Benzene                                                                                  | 20.9   |                    | 0.200                | ug/L        | 1                                           | 20.0            |                  | 105   | 80-120%         |   |                                |       |
| Bromobenzene                                                                             | 20.4   |                    | 0.500                | ug/L        | 1                                           | 20.0            |                  | 102   | 80-120%         |   |                                |       |
| Bromochloromethane                                                                       | 23.7   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 119   | 80-120%         |   |                                |       |
| Bromodichloromethane                                                                     | 21.7   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 108   | 80-120%         |   |                                |       |
| Bromoform                                                                                | 24.8   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 124   | 80-120%         |   |                                | Q-56  |
| Bromomethane                                                                             | 26.3   |                    | 5.00                 | ug/L        | 1                                           | 20.0            |                  | 132   | 80-120%         |   |                                | Q-56  |
| 2-Butanone (MEK)                                                                         | 40.5   |                    | 10.0                 | ug/L        | 1                                           | 40.0            |                  | 101   | 80-120%         |   |                                |       |
| n-Butylbenzene                                                                           | 21.3   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 107   | 80-120%         |   |                                |       |
| sec-Butylbenzene                                                                         | 20.1   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 101   | 80-120%         |   |                                |       |
| tert-Butylbenzene                                                                        | 18.9   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 94    | 80-120%         |   |                                |       |
| Carbon disulfide                                                                         | 20.5   |                    | 10.0                 | ug/L        | 1                                           | 20.0            |                  | 102   | 80-120%         |   |                                |       |
| Carbon tetrachloride                                                                     | 20.8   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 104   | 80-120%         |   |                                |       |
| Chlorobenzene                                                                            | 20.8   |                    | 0.500                | ug/L        | 1                                           | 20.0            |                  | 104   | 80-120%         |   |                                |       |
| Chloroethane                                                                             | 20.2   |                    | 5.00                 | ug/L        | 1                                           | 20.0            |                  | 101   | 80-120%         |   |                                |       |
| Chloroform                                                                               | 21.3   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 106   | 80-120%         |   |                                |       |
| Chloromethane                                                                            | 18.8   |                    | 5.00                 | ug/L        | 1                                           | 20.0            |                  | 94    | 80-120%         |   |                                |       |
| 2-Chlorotoluene                                                                          | 19.7   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 99    | 80-120%         |   |                                |       |
| 4-Chlorotoluene                                                                          | 19.7   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 99    | 80-120%         |   |                                |       |
| Dibromochloromethane                                                                     | 25.4   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 127   | 80-120%         |   |                                | Q-56  |
| 1,2-Dibromo-3-chloropropane                                                              | 20.0   |                    | 5.00                 | ug/L        | 1                                           | 20.0            |                  | 100   | 80-120%         |   |                                |       |
| 1,2-Dibromoethane (EDB)                                                                  | 20.5   |                    | 0.500                | ug/L        | 1                                           | 20.0            |                  | 102   | 80-120%         |   |                                |       |
| Dibromomethane                                                                           | 22.1   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 111   | 80-120%         |   |                                |       |
| 1,2-Dichlorobenzene                                                                      | 20.3   |                    | 0.500                | ug/L        | 1                                           | 20.0            |                  | 102   | 80-120%         |   |                                |       |
| 1,3-Dichlorobenzene                                                                      | 20.4   |                    | 0.500                | ug/L        | 1                                           | 20.0            |                  | 102   | 80-120%         |   |                                |       |
| 1,4-Dichlorobenzene                                                                      | 20.4   |                    | 0.500                | ug/L        | 1                                           | 20.0            |                  | 102   | 80-120%         |   |                                |       |
| Dichlorodifluoromethane                                                                  | 21.2   |                    | 1.00                 | ug/L        | 1                                           | 20.0            |                  | 106   | 80-120%         |   |                                |       |
| 1,1-Dichloroethane                                                                       | 20.3   |                    | 0.400                | ug/L        | 1                                           | 20.0            |                  | 102   | 80-120%         |   |                                |       |
|                                                                                          |        |                    |                      |             |                                             |                 |                  |       |                 |   |                                |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Volatile Organic Compounds by EPA 8260C |        |                    |                    |              |            |                 |                  |       |                    |     |              |       |
|-----------------------------------------|--------|--------------------|--------------------|--------------|------------|-----------------|------------------|-------|--------------------|-----|--------------|-------|
| Analyte                                 | Result | Detection<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits    | RPD | RPD<br>Limit | Notes |
| Batch 9101792 - EPA 5030B               |        |                    |                    |              |            |                 | Wate             | ər    |                    |     |              |       |
| LCS (9101792-BS1)                       | _      | _                  | Prepared           | : 10/31/19   | 08:50 Anal | yzed: 10/31/    | /19 10:31        | _     | _                  |     | _            | _     |
| ,2-Dichloroethane (EDC)                 | 20.0   |                    | 0.400              | ug/L         | 1          | 20.0            |                  | 100   | 80-120%            |     |              |       |
| ,1-Dichloroethene                       | 20.6   |                    | 0.400              | ug/L         | 1          | 20.0            |                  | 103   | 80-120%            |     |              |       |
| is-1,2-Dichloroethene                   | 20.8   |                    | 0.400              | ug/L         | 1          | 20.0            |                  | 104   | 80-120%            |     |              |       |
| rans-1,2-Dichloroethene                 | 21.1   |                    | 0.400              | ug/L         | 1          | 20.0            |                  | 105   | 80-120%            |     |              |       |
| ,2-Dichloropropane                      | 21.0   |                    | 0.500              | ug/L         | 1          | 20.0            |                  | 105   | 80-120%            |     |              |       |
| ,3-Dichloropropane                      | 20.7   |                    | 1.00               | ug/L         | 1          | 20.0            |                  | 103   | 80-120%            |     |              |       |
| ,2-Dichloropropane                      | 18.0   |                    | 1.00               | ug/L         | 1          | 20.0            |                  | 90    | 80-120%            |     |              |       |
| ,1-Dichloropropene                      | 20.5   |                    | 1.00               | ug/L         | 1          | 20.0            |                  | 103   | 80-120%            |     |              |       |
| is-1,3-Dichloropropene                  | 20.2   |                    | 1.00               | ug/L         | 1          | 20.0            |                  | 101   | 80-120%            |     |              |       |
| rans-1,3-Dichloropropene                | 18.8   |                    | 1.00               | ug/L         | 1          | 20.0            |                  | 94    | 80-120%            |     |              |       |
| Ethylbenzene                            | 20.1   |                    | 0.500              | ug/L         | 1          | 20.0            |                  | 100   | 80-120%            |     |              |       |
| Iexachlorobutadiene                     | 19.5   |                    | 5.00               | ug/L         | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| -Hexanone                               | 39.7   |                    | 10.0               | ug/L         | 1          | 40.0            |                  |       | 80-120%            |     |              |       |
| sopropylbenzene                         | 20.4   |                    | 1.00               | ug/L         | 1          | 20.0            |                  | 102   | 80-120%            |     |              |       |
| -Isopropyltoluene                       | 20.6   |                    | 1.00               | ug/L         | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| Aethylene chloride                      | 20.2   |                    | 3.00               | ug/L         | 1          | 20.0            |                  | 101   | 80-120%            |     |              |       |
| -Methyl-2-pentanone (MiBK)              | 40.6   |                    | 10.0               | ug/L         | 1          | 40.0            |                  | 102   | 80-120%            |     |              |       |
| Aethyl tert-butyl ether (MTBE)          | 18.6   |                    | 1.00               | ug/L         | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| Japhthalene                             | 18.7   |                    | 2.00               | ug/L         | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| -Propylbenzene                          | 19.9   |                    | 0.500              | ug/L         | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| ltyrene                                 | 20.7   |                    | 1.00               | ug/L         | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| ,1,1,2-Tetrachloroethane                | 21.9   |                    | 0.400              | ug/L         | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| ,1,2,2-Tetrachloroethane                | 20.4   |                    | 0.500              | ug/L<br>ug/L | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| Tetrachloroethene (PCE)                 | 21.4   |                    | 0.400              | ug/L<br>ug/L | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| Toluene                                 | 19.9   |                    | 1.00               | ug/L<br>ug/L | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| ,2,3-Trichlorobenzene                   | 20.1   |                    | 2.00               | ug/L<br>ug/L | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| ,2,4-Trichlorobenzene                   | 19.5   |                    | 2.00               | ug/L<br>ug/L | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| ,1,1-Trichloroethane                    | 19.8   |                    | 0.400              | ug/L<br>ug/L | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| ,1,2-Trichloroethane                    | 21.4   |                    | 0.500              | ug/L<br>ug/L | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| Trichloroethene (TCE)                   | 21.4   |                    | 0.400              | ug/L<br>ug/L | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| richlorofluoromethane                   | 22.9   |                    | 2.00               | ug/L<br>ug/L | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| ,2,3-Trichloropropane                   | 20.0   |                    | 1.00               | ug/L<br>ug/L | 1          | 20.0            |                  |       | 80-120%            |     |              |       |
| ,2,4-Trimethylbenzene                   | 20.0   |                    | 1.00               | ug/L<br>ug/L | 1          | 20.0            |                  |       | 80-120%<br>80-120% |     |              |       |
| ,=, r inneurynoenzene                   | 20.7   |                    | 1.00               | ug/L         | 1          | 20.0            |                  | 105   | 50-120/0           |     |              |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| <u>Maul Foster &amp; Alongi, INC.</u><br>2001 NW 19th Ave, STE 200<br>Portland, OR 97209 |                  |                    | Pro                | •           | <u>POV-Te</u><br>er: 9085.10<br>er: David V |                 |                  |       | A               |     | <u>Report ID</u><br>- 11 13 19 | -     |
|------------------------------------------------------------------------------------------|------------------|--------------------|--------------------|-------------|---------------------------------------------|-----------------|------------------|-------|-----------------|-----|--------------------------------|-------|
|                                                                                          |                  | QUA                | LITY CO            | ONTROL      | L (QC) SA                                   | MPLE R          | RESULTS          |       |                 |     |                                |       |
|                                                                                          |                  | V                  | olatile Or         | ganic Co    | mpounds                                     | by EPA 8        | 3260C            |       |                 |     |                                |       |
| Analyte                                                                                  | Result           | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution                                    | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit                   | Notes |
| Batch 9101792 - EPA 5030B                                                                |                  |                    |                    |             |                                             |                 | Wat              | er    |                 |     |                                |       |
| LCS (9101792-BS1)                                                                        |                  |                    | Preparec           | l: 10/31/19 | 08:50 Anal                                  | yzed: 10/31     | /19 10:31        |       |                 |     |                                |       |
| Vinyl chloride                                                                           | 21.3             |                    | 0.400              | ug/L        | 1                                           | 20.0            |                  | 107   | 80-120%         |     |                                |       |
| m,p-Xylene                                                                               | 40.8             |                    | 1.00               | ug/L        | 1                                           | 40.0            |                  | 102   | 80-120%         |     |                                |       |
| o-Xylene                                                                                 | 20.1             |                    | 0.500              | ug/L        | 1                                           | 20.0            |                  | 101   | 80-120%         |     |                                |       |
| Surr: 1,4-Difluorobenzene (Surr)                                                         |                  | Recover            | y: 104 %           | Limits: 80  | )-120 %                                     | Dili            | ution: 1x        |       |                 |     |                                |       |
| Toluene-d8 (Surr)                                                                        |                  |                    | 100 %              | 80          | -120 %                                      |                 | "                |       |                 |     |                                |       |
| 4-Bromofluorobenzene (Surr)                                                              |                  |                    | 96 %               | 80          | -120 %                                      |                 | "                |       |                 |     |                                |       |
| Duplicate (9101792-DUP1)                                                                 |                  |                    | Preparec           | d: 10/31/19 | 11:05 Anal                                  | yzed: 10/31     | /19 20:30        |       |                 |     |                                |       |
| OC Source Sample: Non-SDG (A9                                                            | <u>J1093-06)</u> |                    |                    |             |                                             |                 |                  |       |                 |     |                                |       |
| Acetone                                                                                  | ND               |                    | 1000               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Acrylonitrile                                                                            | ND               |                    | 100                | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Benzene                                                                                  | ND               |                    | 10.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Bromobenzene                                                                             | ND               |                    | 25.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Bromochloromethane                                                                       | ND               |                    | 50.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Bromodichloromethane                                                                     | ND               |                    | 50.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Bromoform                                                                                | ND               |                    | 50.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Bromomethane                                                                             | ND               |                    | 250                | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| 2-Butanone (MEK)                                                                         | ND               |                    | 500                | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| n-Butylbenzene                                                                           | ND               |                    | 50.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| sec-Butylbenzene                                                                         | ND               |                    | 50.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| ert-Butylbenzene                                                                         | ND               |                    | 50.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Carbon disulfide                                                                         | ND               |                    | 500                | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Carbon tetrachloride                                                                     | ND               |                    | 50.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Chlorobenzene                                                                            | ND               |                    | 25.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Chloroethane                                                                             | ND               |                    | 250                | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Chloroform                                                                               | ND               |                    | 50.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Chloromethane                                                                            | ND               |                    | 250                | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| 2-Chlorotoluene                                                                          | ND               |                    | 50.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| 4-Chlorotoluene                                                                          | ND               |                    | 50.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Dibromochloromethane                                                                     | ND               |                    | 50.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| 1,2-Dibromo-3-chloropropane                                                              | ND               |                    | 250                | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| 1,2-Dibromoethane (EDB)                                                                  | ND               |                    | 25.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| Dibromomethane                                                                           | ND               |                    | 50.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |
| 1,2-Dichlorobenzene                                                                      | ND               |                    | 25.0               | ug/L        | 50                                          |                 | ND               |       |                 |     | 30%                            |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

### **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Volatile Organic Compounds by EPA 8260C |                  |                    |                    |            |            |                 |                  |       |                 |     |              |       |
|-----------------------------------------|------------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                 | Result           | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101792 - EPA 5030B               |                  |                    |                    |            |            |                 | Wate             | er    |                 |     |              |       |
| Duplicate (9101792-DUP1)                |                  |                    | Prepared           | : 10/31/19 | 11:05 Anal | yzed: 10/31     | /19 20:30        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A9           | <u>J1093-06)</u> |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| 1,3-Dichlorobenzene                     | ND               |                    | 25.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 1,4-Dichlorobenzene                     | ND               |                    | 25.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| Dichlorodifluoromethane                 | ND               |                    | 50.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 1,1-Dichloroethane                      | ND               |                    | 20.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 1,2-Dichloroethane (EDC)                | ND               |                    | 20.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 1,1-Dichloroethene                      | ND               |                    | 20.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| cis-1,2-Dichloroethene                  | ND               |                    | 20.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| rans-1,2-Dichloroethene                 | ND               |                    | 20.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 1,2-Dichloropropane                     | ND               |                    | 25.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 1,3-Dichloropropane                     | ND               |                    | 50.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 2,2-Dichloropropane                     | ND               |                    | 50.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 1,1-Dichloropropene                     | ND               |                    | 50.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| cis-1,3-Dichloropropene                 | ND               |                    | 50.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| rans-1,3-Dichloropropene                | ND               |                    | 50.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| Ethylbenzene                            | ND               |                    | 25.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| Hexachlorobutadiene                     | ND               |                    | 250                | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 2-Hexanone                              | ND               |                    | 500                | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| lsopropylbenzene                        | ND               |                    | 50.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 4-Isopropyltoluene                      | ND               |                    | 50.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| Methylene chloride                      | ND               |                    | 150                | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 4-Methyl-2-pentanone (MiBK)             | ND               |                    | 500                | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| Methyl tert-butyl ether (MTBE)          | ND               |                    | 50.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| Naphthalene                             | ND               |                    | 100                | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| n-Propylbenzene                         | ND               |                    | 25.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| Styrene                                 | ND               |                    | 50.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 1,1,1,2-Tetrachloroethane               | ND               |                    | 20.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 1,1,2,2-Tetrachloroethane               | ND               |                    | 25.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| Fetrachloroethene (PCE)                 | ND               |                    | 20.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| Foluene                                 | ND               |                    | 50.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| ,2,3-Trichlorobenzene                   | ND               |                    | 100                | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 1,2,4-Trichlorobenzene                  | ND               |                    | 100                | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 1,1,1-Trichloroethane                   | ND               |                    | 20.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |
| 1,1,2-Trichloroethane                   | ND               |                    | 25.0               | ug/L       | 50         |                 | ND               |       |                 |     | 30%          |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

٦

| <u>Maul Foster &amp; Alongi, INC.</u><br>2001 NW 19th Ave, STE 200<br>Portland, OR 97209 |        |                    | Pro                | 5        | <u>POV-Te</u><br>ber: 9085.10<br>ger: David V |                 |                  |       | А               | _   | <u>Report ID:</u><br>- 11 13 19 |       |
|------------------------------------------------------------------------------------------|--------|--------------------|--------------------|----------|-----------------------------------------------|-----------------|------------------|-------|-----------------|-----|---------------------------------|-------|
|                                                                                          |        | _                  | ALITY CO           |          | (- )                                          |                 |                  |       |                 |     |                                 |       |
|                                                                                          |        |                    | Volatile Org       | janic Co | ompounds                                      | by EPA 8        | 260C             |       |                 |     |                                 |       |
| Analyte                                                                                  | Result | Detection<br>Limit | Reporting<br>Limit | Units    | Dilution                                      | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit                    | Notes |

| Batch 9101792 - EPA 5030B        |           |                                                   |          |              |      |     | Wat       | er |  |  |     |
|----------------------------------|-----------|---------------------------------------------------|----------|--------------|------|-----|-----------|----|--|--|-----|
| Duplicate (9101792-DUP1)         |           | Prepared: 10/31/19 11:05 Analyzed: 10/31/19 20:30 |          |              |      |     |           |    |  |  |     |
| QC Source Sample: Non-SDG (A9.   | J1093-06) |                                                   |          |              |      |     |           |    |  |  |     |
| Trichloroethene (TCE)            | ND        |                                                   | 20.0     | ug/L         | 50   |     | ND        |    |  |  | 30% |
| Trichlorofluoromethane           | ND        |                                                   | 100      | ug/L         | 50   |     | ND        |    |  |  | 30% |
| 1,2,3-Trichloropropane           | ND        |                                                   | 50.0     | ug/L         | 50   |     | ND        |    |  |  | 30% |
| 1,2,4-Trimethylbenzene           | ND        |                                                   | 50.0     | ug/L         | 50   |     | ND        |    |  |  | 30% |
| 1,3,5-Trimethylbenzene           | ND        |                                                   | 50.0     | ug/L         | 50   |     | ND        |    |  |  | 30% |
| Vinyl chloride                   | ND        |                                                   | 20.0     | ug/L         | 50   |     | ND        |    |  |  | 30% |
| m,p-Xylene                       | ND        |                                                   | 50.0     | ug/L         | 50   |     | ND        |    |  |  | 30% |
| o-Xylene                         | ND        |                                                   | 25.0     | ug/L         | 50   |     | ND        |    |  |  | 30% |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recover                                           | v: 104 % | Limits: 80-1 | 20 % | Dil | ution: 1x |    |  |  |     |
| Toluene-d8 (Surr)                |           |                                                   | 102 %    | 80-1         | 20 % |     | "         |    |  |  |     |
| 4-Bromofluorobenzene (Surr)      |           |                                                   | 102 %    | 80-1         | 20 % |     | "         |    |  |  |     |

| Duplicate (9101792-DUP2)     |          | Prepared: | 10/31/19 11 | :05 Anal | yzed: 10/31 | /19 23:37 |      |         | T-02 |
|------------------------------|----------|-----------|-------------|----------|-------------|-----------|------|---------|------|
| QC Source Sample: Non-SDG (A | <u> </u> |           |             |          |             |           |      |         |      |
| Acetone                      | ND       | <br>200   | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Acrylonitrile                | ND       | <br>20.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Benzene                      | ND       | <br>2.00  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Bromobenzene                 | ND       | <br>5.00  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Bromochloromethane           | ND       | <br>10.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Bromodichloromethane         | ND       | <br>10.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Bromoform                    | ND       | <br>10.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Bromomethane                 | ND       | <br>50.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| 2-Butanone (MEK)             | ND       | <br>100   | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| n-Butylbenzene               | ND       | <br>10.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| sec-Butylbenzene             | ND       | <br>10.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| tert-Butylbenzene            | ND       | <br>10.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Carbon disulfide             | ND       | <br>100   | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Carbon tetrachloride         | ND       | <br>10.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Chlorobenzene                | ND       | <br>5.00  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Chloroethane                 | ND       | <br>50.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Chloroform                   | ND       | <br>10.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| Chloromethane                | ND       | <br>50.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |
| 2-Chlorotoluene              | ND       | <br>10.0  | ug/L        | 10       |             | ND        | <br> | <br>30% |      |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

### **QUALITY CONTROL (QC) SAMPLE RESULTS**

|                                |           |                    | Volatile Org       | ganic Co     | mpounds    | by EPA 8        | 3260C            |       |                 |     |              |              |
|--------------------------------|-----------|--------------------|--------------------|--------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|--------------|
| Analyte                        | Result    | Detection<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes        |
| Batch 9101792 - EPA 5030B      |           |                    |                    |              |            |                 | Wate             | er    |                 |     |              |              |
| Duplicate (9101792-DUP2)       |           |                    | Prepared           | : 10/31/19   | 11:05 Anal | yzed: 10/31     | /19 23:37        |       |                 |     |              | <b>T-0</b> 2 |
| QC Source Sample: Non-SDG (A9  | J1079-04) |                    |                    |              |            |                 |                  |       |                 |     |              |              |
| 4-Chlorotoluene                | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| Dibromochloromethane           | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,2-Dibromo-3-chloropropane    | ND        |                    | 50.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,2-Dibromoethane (EDB)        | ND        |                    | 5.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| Dibromomethane                 | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,2-Dichlorobenzene            | ND        |                    | 5.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,3-Dichlorobenzene            | ND        |                    | 5.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,4-Dichlorobenzene            | ND        |                    | 5.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| Dichlorodifluoromethane        | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,1-Dichloroethane             | ND        |                    | 4.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,2-Dichloroethane (EDC)       | ND        |                    | 4.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,1-Dichloroethene             | ND        |                    | 4.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| cis-1,2-Dichloroethene         | ND        |                    | 4.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| rans-1,2-Dichloroethene        | ND        |                    | 4.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,2-Dichloropropane            | ND        |                    | 5.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,3-Dichloropropane            | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 2,2-Dichloropropane            | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,1-Dichloropropene            | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| cis-1,3-Dichloropropene        | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| rans-1,3-Dichloropropene       | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| Ethylbenzene                   | ND        |                    | 5.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| Hexachlorobutadiene            | ND        |                    | 50.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 2-Hexanone                     | ND        |                    | 100                | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| sopropylbenzene                | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 4-Isopropyltoluene             | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| Methylene chloride             | ND        |                    | 30.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 4-Methyl-2-pentanone (MiBK)    | ND        |                    | 100                | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| Methyl tert-butyl ether (MTBE) | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| Naphthalene                    | ND        |                    | 20.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| n-Propylbenzene                | ND        |                    | 5.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| Styrene                        | ND        |                    | 10.0               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,1,1,2-Tetrachloroethane      | ND        |                    | 4.00               | ug/L         | 10         |                 | ND               |       |                 |     | 30%          |              |
| 1,1,2,2-Tetrachloroethane      | ND        |                    | 5.00               | ug/L<br>ug/L | 10         |                 | ND               |       |                 |     | 30%          |              |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

٦

| <u>Maul Foster &amp; Alongi, INC.</u><br>2001 NW 19th Ave, STE 200<br>Portland, OR 97209 |           | Project:       POV-Terminal 1         Project Number:       9085.10.12       Report ID:         Project Manager:       David Weatherby       A9J1033 - 11 13 19         QUALITY CONTROL (QC) SAMPLE RESULTS |                    |             |           |                 |                  |       |                 |     |              |       |
|------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
|                                                                                          |           | QU                                                                                                                                                                                                          | VALITY CO          |             |           |                 |                  |       |                 |     |              |       |
| Analyte                                                                                  | Result    | Detection<br>Limit                                                                                                                                                                                          | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101792 - EPA 5030B                                                                |           |                                                                                                                                                                                                             |                    |             |           |                 | Wat              | er    |                 |     |              |       |
| Duplicate (9101792-DUP2)                                                                 |           |                                                                                                                                                                                                             | Prepared           | 1: 10/31/19 | 11:05 Ana | lyzed: 10/31    | /19 23:37        |       |                 |     |              | T-02  |
| QC Source Sample: Non-SDG (A9                                                            | J1079-04) |                                                                                                                                                                                                             |                    |             |           |                 |                  |       |                 |     |              |       |
| Tetrachloroethene (PCE)                                                                  | ND        |                                                                                                                                                                                                             | 4.00               | ug/L        | 10        |                 | ND               |       |                 |     | 30%          |       |
| Toluene                                                                                  | ND        |                                                                                                                                                                                                             | 10.0               | ug/L        | 10        |                 | ND               |       |                 |     | 30%          |       |
| 1,2,3-Trichlorobenzene                                                                   | ND        |                                                                                                                                                                                                             | 20.0               | ug/L        | 10        |                 | ND               |       |                 |     | 30%          |       |
| 1,2,4-Trichlorobenzene                                                                   | ND        |                                                                                                                                                                                                             | 20.0               | ug/L        | 10        |                 | ND               |       |                 |     | 30%          |       |
| 1,1,1-Trichloroethane                                                                    | ND        |                                                                                                                                                                                                             | 4.00               | ug/L        | 10        |                 | ND               |       |                 |     | 30%          |       |
| 1,1,2-Trichloroethane                                                                    | ND        |                                                                                                                                                                                                             | 5.00               | ug/L        | 10        |                 | ND               |       |                 |     | 30%          |       |
| Trichloroethene (TCE)                                                                    | ND        |                                                                                                                                                                                                             | 4.00               | ug/L        | 10        |                 | ND               |       |                 |     | 30%          |       |
| Trichlorofluoromethane                                                                   | ND        |                                                                                                                                                                                                             | 20.0               | ug/L        | 10        |                 | ND               |       |                 |     | 30%          |       |
| 1,2,3-Trichloropropane                                                                   | ND        |                                                                                                                                                                                                             | 10.0               | ug/L        | 10        |                 | ND               |       |                 |     | 30%          |       |
| 1,2,4-Trimethylbenzene                                                                   | ND        |                                                                                                                                                                                                             | 10.0               | ug/L        | 10        |                 | ND               |       |                 |     | 30%          |       |
| 1,3,5-Trimethylbenzene                                                                   | ND        |                                                                                                                                                                                                             | 10.0               | ug/L        | 10        |                 | ND               |       |                 |     | 30%          |       |

| 1,5,5 Timentyioenzene            | 1 (D |         | 10.0     | ug/ L        | 10    |     | T(D)      |      | 5070    |
|----------------------------------|------|---------|----------|--------------|-------|-----|-----------|------|---------|
| Vinyl chloride                   | ND   |         | 4.00     | ug/L         | 10    |     | ND        | <br> | <br>30% |
| m,p-Xylene                       | ND   |         | 10.0     | ug/L         | 10    |     | ND        | <br> | <br>30% |
| o-Xylene                         | ND   |         | 5.00     | ug/L         | 10    |     | ND        | <br> | <br>30% |
| Surr: 1,4-Difluorobenzene (Surr) |      | Recover | y: 106 % | Limits: 80-1 | 120 % | Dil | ution: 1x |      |         |
| Toluene-d8 (Surr)                |      |         | 104 %    | 80-1         | 20 %  |     | "         |      |         |
| 4-Bromofluorobenzene (Surr)      |      |         | 100 %    | 80-1         | 20 %  |     | "         |      |         |

#### Prepared: 10/31/19 11:05 Analyzed: 10/31/19 15:00

| QC Source Sample: Non-SDG | (A9J1067-01) |           |      |   |      |      |     |         |      |       |
|---------------------------|--------------|-----------|------|---|------|------|-----|---------|------|-------|
| EPA 8260C                 |              |           |      |   |      |      |     |         |      |       |
| Acetone                   | 56.2         | <br>20.0  | ug/L | 1 | 40.0 | 20.0 | 91  | 39-160% | <br> |       |
| Acrylonitrile             | 22.6         | <br>2.00  | ug/L | 1 | 20.0 | ND   | 113 | 63-135% | <br> |       |
| Benzene                   | 21.8         | <br>0.200 | ug/L | 1 | 20.0 | ND   | 109 | 79-120% | <br> |       |
| Bromobenzene              | 21.1         | <br>0.500 | ug/L | 1 | 20.0 | ND   | 105 | 80-120% | <br> |       |
| Bromochloromethane        | 24.0         | <br>1.00  | ug/L | 1 | 20.0 | ND   | 120 | 78-123% | <br> |       |
| Bromodichloromethane      | 22.1         | <br>1.00  | ug/L | 1 | 20.0 | ND   | 110 | 79-125% | <br> |       |
| Bromoform                 | 24.3         | <br>1.00  | ug/L | 1 | 20.0 | ND   | 122 | 66-130% | <br> | Q-54a |
| Bromomethane              | 26.1         | <br>5.00  | ug/L | 1 | 20.0 | ND   | 130 | 53-141% | <br> | Q-54  |
| 2-Butanone (MEK)          | 43.2         | <br>10.0  | ug/L | 1 | 40.0 | ND   | 108 | 56-143% | <br> |       |
| n-Butylbenzene            | 22.4         | <br>1.00  | ug/L | 1 | 20.0 | ND   | 112 | 75-128% | <br> |       |
| sec-Butylbenzene          | 21.2         | <br>1.00  | ug/L | 1 | 20.0 | ND   | 106 | 77-126% | <br> |       |
| tert-Butylbenzene         | 20.0         | <br>1.00  | ug/L | 1 | 20.0 | ND   | 100 | 78-124% | <br> |       |

Apex Laboratories

Matrix Spike (9101792-MS1)

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

|                              |            |                    | Volatile Org       | ganic Co   | mpounds    | by EPA 8        | 3260C            |       |                 |     |              |       |
|------------------------------|------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                      | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101792 - EPA 5030B    |            |                    |                    |            |            |                 | Wat              | er    |                 |     |              |       |
| Matrix Spike (9101792-MS1)   |            |                    | Prepared           | : 10/31/19 | 11:05 Anal | lyzed: 10/31    | /19 15:00        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A | 9J1067-01) |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Carbon disulfide             | 21.0       |                    | 10.0               | ug/L       | 1          | 20.0            | ND               | 105   | 64-133%         |     |              |       |
| Carbon tetrachloride         | 22.1       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 110   | 72-136%         |     |              |       |
| Chlorobenzene                | 21.6       |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 108   | 80-120%         |     |              |       |
| Chloroethane                 | 20.2       |                    | 5.00               | ug/L       | 1          | 20.0            | ND               | 101   | 60-138%         |     |              |       |
| Chloroform                   | 22.7       |                    | 1.00               | ug/L       | 1          | 20.0            | 0.845            | 109   | 79-124%         |     |              |       |
| Chloromethane                | 19.7       |                    | 5.00               | ug/L       | 1          | 20.0            | ND               | 99    | 50-139%         |     |              |       |
| 2-Chlorotoluene              | 20.6       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 103   | 79-122%         |     |              |       |
| 4-Chlorotoluene              | 20.2       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 101   | 78-122%         |     |              |       |
| Dibromochloromethane         | 25.4       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 127   | 74-126%         |     |              | Q-54  |
| 1,2-Dibromo-3-chloropropane  | 20.3       |                    | 5.00               | ug/L       | 1          | 20.0            | ND               | 102   | 62-128%         |     |              |       |
| 1,2-Dibromoethane (EDB)      | 20.7       |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 104   | 77-121%         |     |              |       |
| Dibromomethane               | 21.9       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 109   | 79-123%         |     |              |       |
| 1,2-Dichlorobenzene          | 20.9       |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 105   | 80-120%         |     |              |       |
| 1,3-Dichlorobenzene          | 21.1       |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 106   | 80-120%         |     |              |       |
| 1,4-Dichlorobenzene          | 21.1       |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 106   | 79-120%         |     |              |       |
| Dichlorodifluoromethane      | 23.4       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 117   | 32-152%         |     |              |       |
| 1,1-Dichloroethane           | 21.2       |                    | 0.400              | ug/L       | 1          | 20.0            | ND               | 106   | 77-125%         |     |              |       |
| 1,2-Dichloroethane (EDC)     | 20.1       |                    | 0.400              | ug/L       | 1          | 20.0            | ND               | 100   | 73-128%         |     |              |       |
| 1,1-Dichloroethene           | 21.5       |                    | 0.400              | ug/L       | 1          | 20.0            | ND               | 108   | 71-131%         |     |              |       |
| cis-1,2-Dichloroethene       | 21.4       |                    | 0.400              | ug/L       | 1          | 20.0            | ND               | 107   | 78-123%         |     |              |       |
| trans-1,2-Dichloroethene     | 22.1       |                    | 0.400              | ug/L       | 1          | 20.0            | ND               | 110   | 75-124%         |     |              |       |
| 1,2-Dichloropropane          | 21.5       |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 107   | 78-122%         |     |              |       |
| 1,3-Dichloropropane          | 20.6       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 103   | 80-120%         |     |              |       |
| 2,2-Dichloropropane          | 18.7       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 93    | 60-139%         |     |              |       |
| 1,1-Dichloropropene          | 21.6       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 108   | 79-125%         |     |              |       |
| cis-1,3-Dichloropropene      | 19.0       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 95    | 75-124%         |     |              |       |
| trans-1,3-Dichloropropene    | 18.5       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 92    | 73-127%         |     |              |       |
| Ethylbenzene                 | 20.9       |                    | 0.500              | ug/L       | 1          | 20.0            | ND               | 104   | 79-121%         |     |              |       |
| Hexachlorobutadiene          | 21.7       |                    | 5.00               | ug/L       | 1          | 20.0            | ND               | 108   | 66-134%         |     |              |       |
| 2-Hexanone                   | 41.6       |                    | 10.0               | ug/L       | 1          | 40.0            | ND               | 104   | 57-139%         |     |              |       |
| Isopropylbenzene             | 21.3       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 107   | 72-131%         |     |              |       |
| 4-Isopropyltoluene           | 21.8       |                    | 1.00               | ug/L       | 1          | 20.0            | ND               | 109   | 77-127%         |     |              |       |
| Methylene chloride           | 20.4       |                    | 3.00               | ug/L       | 1          | 20.0            | ND               | 102   | 74-124%         |     |              |       |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

|                                  |                  |                    | Volatile Org       | ganic Co    | mpounds    | by EPA 8        | 260C             |       |                 |     |              |       |
|----------------------------------|------------------|--------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result           | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101792 - EPA 5030B        |                  |                    |                    |             |            |                 | Wate             | er    |                 |     |              |       |
| Matrix Spike (9101792-MS1)       |                  |                    | Prepared           | 1: 10/31/19 | 11:05 Anal | yzed: 10/31/    | /19 15:00        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A9    | <u>J1067-01)</u> |                    |                    |             |            |                 |                  |       |                 |     |              |       |
| 4-Methyl-2-pentanone (MiBK)      | 41.1             |                    | 10.0               | ug/L        | 1          | 40.0            | ND               | 103   | 67-130%         |     |              |       |
| Methyl tert-butyl ether (MTBE)   | 18.5             |                    | 1.00               | ug/L        | 1          | 20.0            | ND               | 93    | 71-124%         |     |              |       |
| Naphthalene                      | 20.2             |                    | 2.00               | ug/L        | 1          | 20.0            | ND               | 101   | 61-128%         |     |              |       |
| n-Propylbenzene                  | 20.9             |                    | 0.500              | ug/L        | 1          | 20.0            | ND               | 105   | 76-126%         |     |              |       |
| Styrene                          | 21.3             |                    | 1.00               | ug/L        | 1          | 20.0            | ND               | 106   | 78-123%         |     |              |       |
| ,1,1,2-Tetrachloroethane         | 22.2             |                    | 0.400              | ug/L        | 1          | 20.0            | ND               | 111   | 78-124%         |     |              |       |
| ,1,2,2-Tetrachloroethane         | 20.4             |                    | 0.500              | ug/L        | 1          | 20.0            | ND               | 102   | 71-121%         |     |              |       |
| Tetrachloroethene (PCE)          | 22.3             |                    | 0.400              | ug/L        | 1          | 20.0            | ND               | 112   | 74-129%         |     |              |       |
| Foluene                          | 20.7             |                    | 1.00               | ug/L        | 1          | 20.0            | ND               | 103   | 80-121%         |     |              |       |
| 1,2,3-Trichlorobenzene           | 21.5             |                    | 2.00               | ug/L        | 1          | 20.0            | ND               | 107   | 69-129%         |     |              |       |
| 1,2,4-Trichlorobenzene           | 21.1             |                    | 2.00               | ug/L        | 1          | 20.0            | ND               | 105   | 69-130%         |     |              |       |
| 1,1,1-Trichloroethane            | 20.9             |                    | 0.400              | ug/L        | 1          | 20.0            | ND               | 104   | 74-131%         |     |              |       |
| 1,1,2-Trichloroethane            | 21.4             |                    | 0.500              | ug/L        | 1          | 20.0            | ND               | 107   | 80-120%         |     |              |       |
| Trichloroethene (TCE)            | 22.8             |                    | 0.400              | ug/L        | 1          | 20.0            | ND               | 114   | 79-123%         |     |              |       |
| Trichlorofluoromethane           | 24.4             |                    | 2.00               | ug/L        | 1          | 20.0            | ND               | 122   | 65-141%         |     |              |       |
| 1,2,3-Trichloropropane           | 20.2             |                    | 1.00               | ug/L        | 1          | 20.0            | ND               | 101   | 73-122%         |     |              |       |
| 1,2,4-Trimethylbenzene           | 21.2             |                    | 1.00               | ug/L        | 1          | 20.0            | ND               | 106   | 76-124%         |     |              |       |
| 1,3,5-Trimethylbenzene           | 21.2             |                    | 1.00               | ug/L        | 1          | 20.0            | ND               | 106   | 75-124%         |     |              |       |
| Vinyl chloride                   | 23.0             |                    | 0.400              | ug/L        | 1          | 20.0            | ND               | 115   | 58-137%         |     |              |       |
| n,p-Xylene                       | 42.0             |                    | 1.00               | ug/L        | 1          | 40.0            | ND               | 105   | 80-121%         |     |              |       |
| o-Xylene                         | 20.8             |                    | 0.500              | ug/L        | 1          | 20.0            | ND               | 104   | 78-122%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |                  | Reco               | very: 105 %        | Limits: 80  | )-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |                  |                    | 99 %               | 80          | -120 %     |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |                  |                    | 96 %               | 80          | -120 %     |                 | "                |       |                 |     |              |       |

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

٦

| Maul Foster & Alongi, INC.  |        |                                                          | ]                  | Project:  | POV-Te      | erminal 1       |                  |       |                 |     |              |       |
|-----------------------------|--------|----------------------------------------------------------|--------------------|-----------|-------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| 2001 NW 19th Ave, STE 200   |        |                                                          | Pro                | ject Numb | er: 9085.10 | .12             |                  |       |                 | I   | Report ID:   |       |
| Portland, OR 97209          |        | Project Manager: David Weatherby A9J1033 - 11 13 19 1613 |                    |           |             |                 |                  |       |                 |     |              |       |
|                             |        | QU                                                       | ALITY CC           | ONTROL    | (QC) SA     | MPLE R          | ESULTS           |       |                 |     |              |       |
|                             |        | Polya                                                    | romatic Hy         | drocarbo  | ons (PAH    | s) by EPA       | 8270D S          | M     |                 |     |              |       |
| Analyte                     | Result | Detection<br>Limit                                       | Reporting<br>Limit | Units     | Dilution    | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| atch 9101758 - EPA 3510C (A |        |                                                          |                    |           |             |                 |                  |       |                 |     |              |       |

| Blank (9101758-BLK1)          |    |        | Prepared | l: 10/30/19 11 | :05 Ana | alyzed: 10/30/ | /19 19:34 |      |      |
|-------------------------------|----|--------|----------|----------------|---------|----------------|-----------|------|------|
| EPA 8270D (SIM)               |    |        |          |                |         |                |           |      |      |
| Acenaphthene                  | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Acenaphthylene                | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Anthracene                    | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Benz(a)anthracene             | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Benzo(a)pyrene                | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Benzo(b)fluoranthene          | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Benzo(k)fluoranthene          | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Benzo(g,h,i)perylene          | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Chrysene                      | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Dibenz(a,h)anthracene         | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Dibenzofuran                  | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Fluoranthene                  | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Fluorene                      | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Indeno(1,2,3-cd)pyrene        | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| 1-Methylnaphthalene           | ND |        | 0.0364   | ug/L           | 1       |                |           | <br> | <br> |
| 2-Methylnaphthalene           | ND |        | 0.0364   | ug/L           | 1       |                |           | <br> | <br> |
| Naphthalene                   | ND |        | 0.0364   | ug/L           | 1       |                |           | <br> | <br> |
| Phenanthrene                  | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Pyrene                        | ND |        | 0.0182   | ug/L           | 1       |                |           | <br> | <br> |
| Surr: 2-Fluorobiphenyl (Surr) |    | Recove | ery: 99% | Limits: 44-1   | 20 %    | Dilu           | ution: 1x |      |      |
| p-Terphenyl-d14 (Surr)        |    |        | 113 %    | 50-1.          | 33 %    |                | "         |      |      |

LCS (9101758-BS1)

Prepared: 10/30/19 11:05 Analyzed: 10/30/19 19:59

| EPA 8270D (SIM)      |      |            |      |   |      |        |         |      |
|----------------------|------|------------|------|---|------|--------|---------|------|
| Acenaphthene         | 3.52 | <br>0.0200 | ug/L | 1 | 4.00 | <br>88 | 47-122% | <br> |
| Acenaphthylene       | 3.51 | <br>0.0200 | ug/L | 1 | 4.00 | <br>88 | 41-130% | <br> |
| Anthracene           | 3.58 | <br>0.0200 | ug/L | 1 | 4.00 | <br>90 | 57-123% | <br> |
| Benz(a)anthracene    | 3.77 | <br>0.0200 | ug/L | 1 | 4.00 | <br>94 | 58-125% | <br> |
| Benzo(a)pyrene       | 3.44 | <br>0.0200 | ug/L | 1 | 4.00 | <br>86 | 54-128% | <br> |
| Benzo(b)fluoranthene | 3.68 | <br>0.0200 | ug/L | 1 | 4.00 | <br>92 | 53-131% | <br> |
| Benzo(k)fluoranthene | 3.87 | <br>0.0200 | ug/L | 1 | 4.00 | <br>97 | 57-129% | <br> |
| Benzo(g,h,i)perylene | 3.86 | <br>0.0200 | ug/L | 1 | 4.00 | <br>97 | 50-134% | <br> |
| Chrysene             | 3.81 | <br>0.0200 | ug/L | 1 | 4.00 | <br>95 | 59-123% | <br> |
|                      |      |            |      |   |      |        |         |      |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| <u>Maul Foster &amp; Alongi, INC.</u><br>2001 NW 19th Ave, STE 200<br>Portland, OR 97209 |             | QU                 | Pro                | ect Manag  | er: 9085.10<br>er: David V | Veatherby       | RESULTS          |       |                 | _ | <u>Report ID:</u><br>- 11 13 19 | -     |
|------------------------------------------------------------------------------------------|-------------|--------------------|--------------------|------------|----------------------------|-----------------|------------------|-------|-----------------|---|---------------------------------|-------|
|                                                                                          |             | Polya              | romatic Hy         | drocarbo   | ons (PAH                   | s) by EPA       | 8270D S          | IM    |                 |   |                                 |       |
| Analyte                                                                                  | Result      | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution                   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits |   | RPD<br>Limit                    | Notes |
| Batch 9101758 - EPA 3510C                                                                | (Acid Extra | ction)             |                    |            |                            |                 | Wat              | er    |                 |   |                                 |       |
| LCS (9101758-BS1)                                                                        |             |                    | Prepared           | : 10/30/19 | 11:05 Ana                  | lyzed: 10/30    | /19 19:59        |       |                 |   |                                 |       |
| Dibenz(a,h)anthracene                                                                    | 3.94        |                    | 0.0200             | ug/L       | 1                          | 4.00            |                  | 98    | 51-134%         |   |                                 |       |
| Dibenzofuran                                                                             | 3.52        |                    | 0.0200             | ug/L       | 1                          | 4.00            |                  | 88    | 53-120%         |   |                                 |       |
| Fluoranthene                                                                             | 3.54        |                    | 0.0200             | ug/L       | 1                          | 4.00            |                  | 88    | 57-128%         |   |                                 |       |
| Fluorene                                                                                 | 3.52        |                    | 0.0200             | ug/L       | 1                          | 4.00            |                  | 88    | 52-124%         |   |                                 |       |
| Indeno(1,2,3-cd)pyrene                                                                   | 3.67        |                    | 0.0200             | ug/L       | 1                          | 4.00            |                  | 92    | 52-133%         |   |                                 |       |

| Batch 9101758 - EPA 3510C (A  | Acid Extraction | on)   |           |              |         |               | Wat      | er |         |      |      |
|-------------------------------|-----------------|-------|-----------|--------------|---------|---------------|----------|----|---------|------|------|
| LCS (9101758-BS1)             |                 |       | Prepared: | 10/30/19 11  | :05 Ana | lyzed: 10/30/ | 19 19:59 |    |         |      |      |
| Dibenz(a,h)anthracene         | 3.94            |       | 0.0200    | ug/L         | 1       | 4.00          |          | 98 | 51-134% | <br> |      |
| Dibenzofuran                  | 3.52            |       | 0.0200    | ug/L         | 1       | 4.00          |          | 88 | 53-120% | <br> |      |
| Fluoranthene                  | 3.54            |       | 0.0200    | ug/L         | 1       | 4.00          |          | 88 | 57-128% | <br> |      |
| Fluorene                      | 3.52            |       | 0.0200    | ug/L         | 1       | 4.00          |          | 88 | 52-124% | <br> |      |
| Indeno(1,2,3-cd)pyrene        | 3.67            |       | 0.0200    | ug/L         | 1       | 4.00          |          | 92 | 52-133% | <br> |      |
| 1-Methylnaphthalene           | 3.15            |       | 0.0400    | ug/L         | 1       | 4.00          |          | 79 | 41-120% | <br> |      |
| 2-Methylnaphthalene           | 3.13            |       | 0.0400    | ug/L         | 1       | 4.00          |          | 78 | 40-121% | <br> |      |
| Naphthalene                   | 3.15            |       | 0.0400    | ug/L         | 1       | 4.00          |          | 79 | 40-121% | <br> |      |
| Phenanthrene                  | 3.61            |       | 0.0200    | ug/L         | 1       | 4.00          |          | 90 | 59-120% | <br> |      |
| Pyrene                        | 3.49            |       | 0.0200    | ug/L         | 1       | 4.00          |          | 87 | 57-126% | <br> |      |
| Surr: 2-Fluorobiphenyl (Surr) |                 | Recov | ery: 84 % | Limits: 44-1 | 20 %    | Dilu          | tion: 1x |    |         |      | _    |
| p-Terphenyl-d14 (Surr)        |                 |       | 97 %      | 50-1.        | 33 %    |               | "        |    |         |      |      |
| LCS Dup (9101758-BSD1)        |                 |       | Prepared: | 10/30/19 11  | :05 Ana | lyzed: 10/30/ | 19 20:24 |    |         |      | Q-19 |
| EPA 8270D (SIM)               |                 |       |           |              |         |               |          |    |         |      |      |

| EPA 8270D (SIM)        |      |            |      |   |      |        |         |     |     |
|------------------------|------|------------|------|---|------|--------|---------|-----|-----|
| Acenaphthene           | 3.56 | <br>0.0200 | ug/L | 1 | 4.00 | <br>89 | 47-122% | 1   | 30% |
| Acenaphthylene         | 3.57 | <br>0.0200 | ug/L | 1 | 4.00 | <br>89 | 41-130% | 2   | 30% |
| Anthracene             | 3.54 | <br>0.0200 | ug/L | 1 | 4.00 | <br>88 | 57-123% | 1   | 30% |
| Benz(a)anthracene      | 3.72 | <br>0.0200 | ug/L | 1 | 4.00 | <br>93 | 58-125% | 1   | 30% |
| Benzo(a)pyrene         | 3.40 | <br>0.0200 | ug/L | 1 | 4.00 | <br>85 | 54-128% | 1   | 30% |
| Benzo(b)fluoranthene   | 3.77 | <br>0.0200 | ug/L | 1 | 4.00 | <br>94 | 53-131% | 2   | 30% |
| Benzo(k)fluoranthene   | 3.74 | <br>0.0200 | ug/L | 1 | 4.00 | <br>94 | 57-129% | 3   | 30% |
| Benzo(g,h,i)perylene   | 3.74 | <br>0.0200 | ug/L | 1 | 4.00 | <br>93 | 50-134% | 3   | 30% |
| Chrysene               | 3.72 | <br>0.0200 | ug/L | 1 | 4.00 | <br>93 | 59-123% | 2   | 30% |
| Dibenz(a,h)anthracene  | 3.88 | <br>0.0200 | ug/L | 1 | 4.00 | <br>97 | 51-134% | 1   | 30% |
| Dibenzofuran           | 3.61 | <br>0.0200 | ug/L | 1 | 4.00 | <br>90 | 53-120% | 2   | 30% |
| Fluoranthene           | 3.56 | <br>0.0200 | ug/L | 1 | 4.00 | <br>89 | 57-128% | 0.7 | 30% |
| Fluorene               | 3.62 | <br>0.0200 | ug/L | 1 | 4.00 | <br>91 | 52-124% | 3   | 30% |
| Indeno(1,2,3-cd)pyrene | 3.69 | <br>0.0200 | ug/L | 1 | 4.00 | <br>92 | 52-133% | 0.6 | 30% |
| 1-Methylnaphthalene    | 3.24 | <br>0.0400 | ug/L | 1 | 4.00 | <br>81 | 41-120% | 3   | 30% |
| 2-Methylnaphthalene    | 3.20 | <br>0.0400 | ug/L | 1 | 4.00 | <br>80 | 40-121% | 2   | 30% |
| Naphthalene            | 3.22 | <br>0.0400 | ug/L | 1 | 4.00 | <br>80 | 40-121% | 2   | 30% |
| Phenanthrene           | 3.59 | <br>0.0200 | ug/L | 1 | 4.00 | <br>90 | 59-120% | 0.5 | 30% |
| Pyrene                 | 3.54 | <br>0.0200 | ug/L | 1 | 4.00 | <br>88 | 57-126% | 1   | 30% |
|                        |      |            |      |   |      |        |         |     |     |

Apex Laboratories

Philip Nevenberg



p-Terphenyl-d14 (Surr)

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

٦

| <u>Maul Foster &amp; Alongi, INC.</u><br>2001 NW 19th Ave, STE 200<br>Portland, OR 97209 |            |                    | Pro                | 5          | <u>POV-Te</u><br>ber: 9085.10<br>ger: David V |                 |                  |       | F               | -   | <u>Report ID:</u><br>5 - 11 13 19 | -     |
|------------------------------------------------------------------------------------------|------------|--------------------|--------------------|------------|-----------------------------------------------|-----------------|------------------|-------|-----------------|-----|-----------------------------------|-------|
| <b></b>                                                                                  |            | _                  | ALITY CO           |            | (- )                                          |                 |                  |       |                 |     |                                   |       |
| Analyte                                                                                  | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution                                      | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit                      | Notes |
| Batch 9101758 - EPA 3510C (                                                              | Acid Extra | ction)             |                    |            |                                               |                 | Wat              | er    |                 |     |                                   |       |
| LCS Dup (9101758-BSD1)                                                                   |            |                    | Prepared           | : 10/30/19 | 11:05 Anal                                    | yzed: 10/30/    | /19 20:24        |       |                 |     |                                   | Q-19  |
| Surr: 2-Fluorobiphenyl (Surr)                                                            |            | Rec                | overy: 83 %        | Limits: 4  | 4-120 %                                       | Dilı            | ution: 1x        |       |                 |     |                                   |       |

50-133 %

90~%

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

"



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Total Metals by EPA 6020A (ICPMS) |        |                    |                    |            |           |                 |                  |       |                 |     |              |      |
|-----------------------------------|--------|--------------------|--------------------|------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|------|
| Analyte                           | Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Note |
| Batch 9101742 - EPA 3015A         |        |                    |                    |            |           |                 | Wat              | er    |                 |     |              |      |
| Blank (9101742-BLK1)              |        |                    | Prepared           | : 10/30/19 | 08:05 Ana | lyzed: 10/30    | /19 19:05        |       |                 |     |              |      |
| EPA 6020A                         |        |                    |                    |            |           |                 |                  |       |                 |     |              |      |
| Antimony                          | ND     |                    | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| Arsenic                           | ND     |                    | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| Beryllium                         | ND     |                    | 0.200              | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| Cadmium                           | ND     |                    | 0.200              | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| Chromium                          | ND     |                    | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| Copper                            | ND     |                    | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| lead                              | ND     |                    | 0.200              | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| <i>A</i> ercury                   | ND     |                    | 0.0800             | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| Vickel                            | ND     |                    | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| Selenium                          | ND     |                    | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| ilver                             | ND     |                    | 0.200              | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| Thallium                          | ND     |                    | 0.200              | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| Zinc                              | ND     |                    | 4.00               | ug/L       | 1         |                 |                  |       |                 |     |              |      |
| LCS (9101742-BS1)                 |        |                    | Prepared           | : 10/30/19 | 08:05 Ana | lyzed: 10/30    | /19 19:10        |       |                 |     |              |      |
| <u>EPA 6020A</u>                  |        |                    |                    |            |           |                 |                  |       |                 |     |              |      |
| Antimony                          | 27.2   |                    | 1.00               | ug/L       | 1         | 27.8            |                  | 98    | 80-120%         |     |              |      |
| Arsenic                           | 52.6   |                    | 1.00               | ug/L       | 1         | 55.6            |                  | 95    | 80-120%         |     |              |      |
| Beryllium                         | 27.4   |                    | 0.200              | ug/L       | 1         | 27.8            |                  | 99    | 80-120%         |     |              |      |
| Cadmium                           | 53.0   |                    | 0.200              | ug/L       | 1         | 55.6            |                  | 95    | 80-120%         |     |              |      |
| Chromium                          | 53.9   |                    | 1.00               | ug/L       | 1         | 55.6            |                  | 97    | 80-120%         |     |              |      |
| Copper                            | 55.4   |                    | 1.00               | ug/L       | 1         | 55.6            |                  | 100   | 80-120%         |     |              |      |
| ead                               | 56.8   |                    | 0.200              | ug/L       | 1         | 55.6            |                  | 102   | 80-120%         |     |              |      |
| lercury                           | 1.13   |                    | 0.0800             | ug/L       | 1         | 1.11            |                  | 102   | 80-120%         |     |              |      |
| lickel                            | 55.9   |                    | 1.00               | ug/L       | 1         | 55.6            |                  | 101   | 80-120%         |     |              |      |
| elenium                           | 26.2   |                    | 1.00               | ug/L       | 1         | 27.8            |                  | 94    | 80-120%         |     |              |      |
| ilver                             | 29.0   |                    | 0.200              | ug/L       | 1         | 27.8            |                  |       | 80-120%         |     |              |      |
|                                   |        |                    |                    | c          |           |                 |                  |       |                 |     |              |      |

#### Duplicate (9101742-DUP1)

Prepared: 10/30/19 08:05 Analyzed: 10/30/19 19:33

1

1

27.8

55.6

ug/L

ug/L

QC Source Sample: MW-4-34 (A9J1033-04) EPA 6020A

27.8

53.5

----

----

0.200

4.00

Apex Laboratories

Thallium

Zinc

Philip Nevenberg

Philip Nerenberg, Lab Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

100

96

---

----

80-120%

80-120%

---

---

---

---



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <b>POV-Terminal 1</b>      |                         |
|----------------------------|-------------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12          | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby    | A9J1033 - 11 13 19 1613 |
|                            | QUALITY CONTROL (QC) SAMPLE RESULTS |                         |

|                              |                   |                    | Total M            | etals by     | EPA 6020   | A (ICPMS        | S)               |       |                 |     |              |       |
|------------------------------|-------------------|--------------------|--------------------|--------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                      | Result            | Detection<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101742 - EPA 3015A    |                   |                    |                    |              |            |                 | Wat              | er    |                 |     |              |       |
| Duplicate (9101742-DUP1)     |                   |                    | Prepared           | : 10/30/19   | 08:05 Anal | yzed: 10/30     | /19 19:33        |       |                 |     |              |       |
| QC Source Sample: MW-4-34 (A | <u>9J1033-04)</u> |                    |                    |              |            |                 |                  |       |                 |     |              |       |
| Antimony                     | ND                |                    | 1.00               | ug/L         | 1          |                 | ND               |       |                 |     | 20%          |       |
| Arsenic                      | 7.96              |                    | 1.00               | ug/L         | 1          |                 | 7.84             |       |                 | 1   | 20%          |       |
| Beryllium                    | ND                |                    | 0.200              | ug/L         | 1          |                 | ND               |       |                 |     | 20%          |       |
| Cadmium                      | ND                |                    | 0.200              | ug/L         | 1          |                 | ND               |       |                 |     | 20%          |       |
| Chromium                     | ND                |                    | 1.00               | ug/L         | 1          |                 | 0.834            |       |                 | *** | 20%          |       |
| Copper                       | 3.13              |                    | 1.00               | ug/L         | 1          |                 | 3.47             |       |                 | 10  | 20%          |       |
| Lead                         | 0.395             |                    | 0.200              | ug/L         | 1          |                 | 0.400            |       |                 | 1   | 20%          |       |
| Mercury                      | ND                |                    | 0.0800             | ug/L         | 1          |                 | ND               |       |                 |     | 20%          |       |
| Nickel                       | 1.36              |                    | 1.00               | ug/L         | 1          |                 | 1.25             |       |                 | 9   | 20%          |       |
| Selenium                     | ND                |                    | 1.00               | ug/L         | 1          |                 | ND               |       |                 |     | 20%          |       |
| Silver                       | ND                |                    | 0.200              | ug/L         | 1          |                 | ND               |       |                 |     | 20%          |       |
| Thallium                     | ND                |                    | 0.200              | ug/L         | 1          |                 | ND               |       |                 |     | 20%          |       |
| Zinc                         | 4.36              |                    | 4.00               | ug/L         | 1          |                 | 4.35             |       |                 | 0.2 | 20%          |       |
| Matrix Spike (9101742-MS1)   |                   |                    | Prepared           | : 10/30/19   | 08:05 Anal | yzed: 10/30     | /19 19:38        |       |                 |     |              |       |
| QC Source Sample: MW-4-34 (A | 9.J1033-04)       |                    |                    |              |            | -               |                  |       |                 |     |              |       |
| EPA 6020A                    | <u></u>           |                    |                    |              |            |                 |                  |       |                 |     |              |       |
| Antimony                     | 27.7              |                    | 1.00               | ug/L         | 1          | 27.8            | ND               | 100   | 75-125%         |     |              |       |
| Arsenic                      | 62.5              |                    | 1.00               | ug/L         | 1          | 55.6            | 7.84             |       | 75-125%         |     |              |       |
| Beryllium                    | 28.0              |                    | 0.200              | ug/L         | 1          | 27.8            | ND               |       | 75-125%         |     |              |       |
| Cadmium                      | 52.4              |                    | 0.200              | ug/L<br>ug/L | 1          | 55.6            | ND               |       | 75-125%         |     |              |       |
| Chromium                     | 54.8              |                    | 1.00               | ug/L         | 1          | 55.6            | 0.834            |       | 75-125%         |     |              |       |
| Copper                       | 57.0              |                    | 1.00               | ug/L<br>ug/L | 1          | 55.6            | 3.47             |       | 75-125%         |     |              |       |
| Lead                         | 54.3              |                    | 0.200              | ug/L         | 1          | 55.6            | 0.400            |       | 75-125%         |     |              |       |
| Mercury                      | 1.10              |                    | 0.0800             | ug/L         | 1          | 1.11            | ND               |       | 75-125%         |     |              |       |
| Vickel                       | 55.7              |                    | 1.00               | ug/L         | 1          | 55.6            | 1.25             |       | 75-125%         |     |              |       |
| Selenium                     | 28.3              |                    | 1.00               | ug/L         | 1          | 27.8            | ND               |       | 75-125%         |     |              |       |
| Silver                       | 28.6              |                    | 0.200              | ug/L<br>ug/L | 1          | 27.8            | ND               |       | 75-125%         |     |              |       |
| Thallium                     | 26.8              |                    | 0.200              | ug/L<br>ug/L | 1          | 27.8            | ND               |       | 75-125%         |     |              |       |
| Zinc                         | 55.4              |                    | 4.00               | ug/L         | 1          | 55.6            | 4.35             |       | 75-125%         |     |              |       |

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### **QUALITY CONTROL (QC) SAMPLE RESULTS**

|                             |               |                    | Dissolved          | l Metals   | by EPA 6  | 020A (ICP       | MS)              |       |                 |     |              |       |
|-----------------------------|---------------|--------------------|--------------------|------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                     | Result        | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101755 - Matrix Mate | ched Direct I | nject              |                    |            |           |                 | Wate             | er    |                 |     |              |       |
| Blank (9101755-BLK1)        |               |                    | Prepared           | : 10/30/19 | 10:41 Ana | lyzed: 10/30    | /19 20:05        |       |                 |     |              |       |
| EPA 6020A (Diss)            |               |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Antimony                    | ND            |                    | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Arsenic                     | ND            |                    | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Beryllium                   | ND            |                    | 0.200              | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Cadmium                     | ND            |                    | 0.200              | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Chromium                    | ND            |                    | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Copper                      | ND            |                    | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Lead                        | ND            |                    | 0.200              | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Mercury                     | ND            |                    | 0.0800             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Nickel                      | ND            |                    | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Selenium                    | ND            |                    | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Silver                      | ND            |                    | 0.200              | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Thallium                    | ND            |                    | 0.200              | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Zinc                        | ND            |                    | 4.00               | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| LCS (9101755-BS1)           |               |                    | Prepared           | : 10/30/19 | 10:41 Ana | lyzed: 10/30    | /19 20:10        |       |                 |     |              |       |
| <u>EPA 6020A (Diss)</u>     |               |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Antimony                    | 26.6          |                    | 1.00               | ug/L       | 1         | 27.8            |                  | 96    | 80-120%         |     |              |       |
| Arsenic                     | 50.7          |                    | 1.00               | ug/L       | 1         | 55.6            |                  | 91    | 80-120%         |     |              |       |
| Beryllium                   | 27.0          |                    | 0.200              | ug/L       | 1         | 27.8            |                  | 97    | 80-120%         |     |              |       |
| Cadmium                     | 52.4          |                    | 0.200              | ug/L       | 1         | 55.6            |                  | 94    | 80-120%         |     |              |       |
| Chromium                    | 53.3          |                    | 1.00               | ug/L       | 1         | 55.6            |                  | 96    | 80-120%         |     |              |       |
| Copper                      | 54.8          |                    | 1.00               | ug/L       | 1         | 55.6            |                  | 99    | 80-120%         |     |              |       |
| Lead                        | 53.3          |                    | 0.200              | ug/L       | 1         | 55.6            |                  | 96    | 80-120%         |     |              |       |
| Mercury                     | 1.05          |                    | 0.0800             | ug/L       | 1         | 1.11            |                  | 95    | 80-120%         |     |              |       |
| Nickel                      | 55.4          |                    | 1.00               | ug/L       | 1         | 55.6            |                  | 100   | 80-120%         |     |              |       |
| Selenium                    | 26.5          |                    | 1.00               | ug/L       | 1         | 27.8            |                  | 95    | 80-120%         |     |              |       |
| Silver                      | 28.3          |                    | 0.200              | ug/L       | 1         | 27.8            |                  | 102   | 80-120%         |     |              |       |
| Thallium                    | 26.8          |                    | 0.200              | ug/L       | 1         | 27.8            |                  | 97    | 80-120%         |     |              |       |
| Zinc                        | 53.3          |                    | 4.00               | ug/L       | 1         | 55.6            |                  | 96    | 80-120%         |     |              |       |

#### Duplicate (9101755-DUP1)

Prepared: 10/30/19 10:41 Analyzed: 10/30/19 20:33

QC Source Sample: MW-4-34 (A9J1033-04) EPA 6020A (Diss)

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>        |                         |
|----------------------------|---------------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12            | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby      | A9J1033 - 11 13 19 1613 |
|                            | QUALITY CONTROL (QC) SAMPLE RESULTS   |                         |
|                            | Dissolved Metals by EPA 6020A (ICPMS) |                         |

| Analyte                      | Result             | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
|------------------------------|--------------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Batch 9101755 - Matrix Match | ed Direct I        | nject              |                    |            |            |                 | Wat              | er    |                 |     |              |       |
| Duplicate (9101755-DUP1)     |                    |                    | Prepared           | : 10/30/19 | 10:41 Anal | yzed: 10/30/    | /19 20:33        |       |                 |     |              |       |
| QC Source Sample: MW-4-34 (A | 9J1033-04 <u>)</u> |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Antimony                     | ND                 |                    | 1.00               | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |       |
| Arsenic                      | 7.71               |                    | 1.00               | ug/L       | 1          |                 | 8.01             |       |                 | 4   | 20%          |       |
| Beryllium                    | ND                 |                    | 0.200              | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |       |
| Cadmium                      | ND                 |                    | 0.200              | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |       |
| Chromium                     | ND                 |                    | 1.00               | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |       |
| Copper                       | ND                 |                    | 1.00               | ug/L       | 1          |                 | 0.539            |       |                 | *** | 20%          | Q-05  |
| Lead                         | ND                 |                    | 0.200              | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |       |
| Mercury                      | ND                 |                    | 0.0800             | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |       |
| Nickel                       | 1.49               |                    | 1.00               | ug/L       | 1          |                 | 1.59             |       |                 | 6   | 20%          |       |
| Selenium                     | ND                 |                    | 1.00               | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |       |
| Silver                       | ND                 |                    | 0.200              | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |       |
| Thallium                     | ND                 |                    | 0.200              | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |       |
| Zinc                         | ND                 |                    | 4.00               | ug/L       | 1          |                 | 2.68             |       |                 | *** | 20%          |       |

| Matrix Spike (9101755-MS1)   |                     | Prepared:  | 10/30/19 10 | :41 Ana | lyzed: 10/30 | /19 20:38 |     |         |      |
|------------------------------|---------------------|------------|-------------|---------|--------------|-----------|-----|---------|------|
| QC Source Sample: MW-4-34 (A | <u> 49J1033-04)</u> |            |             |         |              |           |     |         |      |
| EPA 6020A (Diss)             |                     |            |             |         |              |           |     |         |      |
| Antimony                     | 27.0                | <br>1.00   | ug/L        | 1       | 27.8         | ND        | 97  | 75-125% | <br> |
| Arsenic                      | 68.9                | <br>1.00   | ug/L        | 1       | 55.6         | 8.01      | 110 | 75-125% | <br> |
| Beryllium                    | 27.7                | <br>0.200  | ug/L        | 1       | 27.8         | ND        | 100 | 75-125% | <br> |
| Cadmium                      | 52.9                | <br>0.200  | ug/L        | 1       | 55.6         | ND        | 95  | 75-125% | <br> |
| Chromium                     | 54.0                | <br>1.00   | ug/L        | 1       | 55.6         | ND        | 97  | 75-125% | <br> |
| Copper                       | 54.3                | <br>1.00   | ug/L        | 1       | 55.6         | 0.539     | 97  | 75-125% | <br> |
| Lead                         | 52.2                | <br>0.200  | ug/L        | 1       | 55.6         | ND        | 94  | 75-125% | <br> |
| Mercury                      | 1.03                | <br>0.0800 | ug/L        | 1       | 1.11         | ND        | 93  | 75-125% | <br> |
| Nickel                       | 55.8                | <br>1.00   | ug/L        | 1       | 55.6         | 1.59      | 98  | 75-125% | <br> |
| Silver                       | 27.0                | <br>0.200  | ug/L        | 1       | 27.8         | ND        | 97  | 75-125% | <br> |
| Thallium                     | 25.8                | <br>0.200  | ug/L        | 1       | 27.8         | ND        | 93  | 75-125% | <br> |
| Zinc                         | 54.1                | <br>4.00   | ug/L        | 1       | 55.6         | 2.68      | 93  | 75-125% | <br> |

#### Matrix Spike (9101755-MS2)

Prepared: 10/30/19 10:41 Analyzed: 10/30/19 21:06

QC Source Sample: MW-3-35-DUP (A9J1033-07)

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| Maul Foster & Alongi, INC. | Project: <u>POV-Terminal 1</u>   |                         |
|----------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200  | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209         | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### QUALITY CONTROL (QC) SAMPLE RESULTS

|                               |            |                    | Dissolved          | l Metals   | by EPA 6   | 020A (ICP       | MS)              |       |                 |     |              |       |
|-------------------------------|------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                       | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 9101755 - Matrix Matche | ed Direct  | Inject             |                    |            |            |                 | Wat              | er    |                 |     |              |       |
| Matrix Spike (9101755-MS2)    |            |                    | Prepared           | : 10/30/19 | 10:41 Anal | lyzed: 10/30    | /19 21:06        |       |                 |     |              |       |
| QC Source Sample: MW-3-35-DU  | P (A9J1033 | <u>-07)</u>        |                    |            |            |                 |                  |       |                 |     |              |       |
| Antimony                      | 27.6       |                    | 1.00               | ug/L       | 1          | 27.8            | ND               | 100   | 75-125%         |     |              |       |
| Arsenic                       | 61.6       |                    | 1.00               | ug/L       | 1          | 55.6            | 3.01             | 105   | 75-125%         |     |              |       |
| Beryllium                     | 27.7       |                    | 0.200              | ug/L       | 1          | 27.8            | ND               | 100   | 75-125%         |     |              |       |
| Cadmium                       | 52.4       |                    | 0.200              | ug/L       | 1          | 55.6            | ND               | 94    | 75-125%         |     |              |       |
| Chromium                      | 53.6       |                    | 1.00               | ug/L       | 1          | 55.6            | ND               | 96    | 75-125%         |     |              |       |
| Copper                        | 54.0       |                    | 1.00               | ug/L       | 1          | 55.6            | ND               | 97    | 75-125%         |     |              |       |
| Lead                          | 53.6       |                    | 0.200              | ug/L       | 1          | 55.6            | ND               | 97    | 75-125%         |     |              |       |
| Mercury                       | 1.06       |                    | 0.0800             | ug/L       | 1          | 1.11            | ND               | 95    | 75-125%         |     |              |       |
| Nickel                        | 57.6       |                    | 1.00               | ug/L       | 1          | 55.6            | 4.14             | 96    | 75-125%         |     |              |       |
| Selenium                      | 33.2       |                    | 1.00               | ug/L       | 1          | 27.8            | ND               | 119   | 75-125%         |     |              |       |
| Silver                        | 28.2       |                    | 0.200              | ug/L       | 1          | 27.8            | ND               | 102   | 75-125%         |     |              |       |
| Гhallium                      | 26.5       |                    | 0.200              | ug/L       | 1          | 27.8            | ND               | 96    | 75-125%         |     |              |       |
| Zinc                          | 68.4       |                    | 4.00               | ug/L       | 1          | 55.6            | 16.4             | 93    | 75-125%         |     |              |       |

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

| <u>Maul Foster &amp; Alongi, INC.</u> | Project: <b>POV-Terminal 1</b>   |                         |
|---------------------------------------|----------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200             | Project Number: 9085.10.12       | <u>Report ID:</u>       |
| Portland, OR 97209                    | Project Manager: David Weatherby | A9J1033 - 11 13 19 1613 |

#### SAMPLE PREPARATION INFORMATION

| Prep: EPA 3510C ( | Fuels/Acid Ext.) |          |                |                | Sample        | Default       | RL Prep |
|-------------------|------------------|----------|----------------|----------------|---------------|---------------|---------|
| Lab Number        | Matrix           | Method   | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 9101761    |                  |          |                |                |               |               |         |
| A9J1033-01        | Water            | NWTPH-Dx | 10/28/19 15:49 | 10/30/19 12:57 | 870mL/5mL     | 1000mL/5mL    | 1.15    |
| A9J1033-02        | Water            | NWTPH-Dx | 10/29/19 09:45 | 10/30/19 12:57 | 660mL/5mL     | 1000mL/5mL    | 1.52    |
| A9J1033-03        | Water            | NWTPH-Dx | 10/28/19 09:23 | 10/30/19 12:57 | 920mL/5mL     | 1000mL/5mL    | 1.09    |
| A9J1033-04        | Water            | NWTPH-Dx | 10/29/19 09:05 | 10/30/19 12:57 | 980mL/5mL     | 1000mL/5mL    | 1.02    |
| A9J1033-05        | Water            | NWTPH-Dx | 10/29/19 08:10 | 10/30/19 12:57 | 990mL/5mL     | 1000mL/5mL    | 1.01    |
| A9J1033-06        | Water            | NWTPH-Dx | 10/28/19 11:52 | 10/30/19 12:57 | 920mL/5mL     | 1000mL/5mL    | 1.09    |
| A9J1033-07        | Water            | NWTPH-Dx | 10/28/19 09:23 | 10/30/19 12:57 | 970mL/5mL     | 1000mL/5mL    | 1.03    |

| Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx |        |               |                |                |               |               |         |  |  |  |  |  |
|-----------------------------------------------------------------------|--------|---------------|----------------|----------------|---------------|---------------|---------|--|--|--|--|--|
| Prep: EPA 5030B                                                       |        |               |                |                | Sample        | Default       | RL Prep |  |  |  |  |  |
| Lab Number                                                            | Matrix | Method        | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |  |  |  |  |  |
| Batch: 9101746                                                        |        |               |                |                |               |               |         |  |  |  |  |  |
| A9J1033-01                                                            | Water  | NWTPH-Gx (MS) | 10/28/19 15:49 | 10/30/19 11:16 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |  |  |  |  |
| A9J1033-02                                                            | Water  | NWTPH-Gx (MS) | 10/29/19 09:45 | 10/30/19 11:16 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |  |  |  |  |
| A9J1033-04                                                            | Water  | NWTPH-Gx (MS) | 10/29/19 09:05 | 10/30/19 11:16 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |  |  |  |  |
| A9J1033-05                                                            | Water  | NWTPH-Gx (MS) | 10/29/19 08:10 | 10/30/19 11:16 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |  |  |  |  |
| A9J1033-06                                                            | Water  | NWTPH-Gx (MS) | 10/28/19 11:52 | 10/30/19 11:16 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |  |  |  |  |
| Batch: 9101792                                                        |        |               |                |                |               |               |         |  |  |  |  |  |
| A9J1033-03RE1                                                         | Water  | NWTPH-Gx (MS) | 10/28/19 09:23 | 10/31/19 11:05 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |  |  |  |  |
| A9J1033-07RE1                                                         | Water  | NWTPH-Gx (MS) | 10/28/19 09:23 | 10/31/19 11:05 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |  |  |  |  |

Volatile Organic Compounds by EPA 8260C

|        |                                           |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                      | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RL Prep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|-------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Matrix | Method                                    | Sampled                                                                                            | Prepared                                                                                                                                                                                                                                                                                                                                                                                             | Initial/Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial/Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                                           |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Water  | EPA 8260C                                 | 10/28/19 15:49                                                                                     | 10/30/19 11:16                                                                                                                                                                                                                                                                                                                                                                                       | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Water  | EPA 8260C                                 | 10/29/19 09:45                                                                                     | 10/30/19 11:16                                                                                                                                                                                                                                                                                                                                                                                       | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Water  | EPA 8260C                                 | 10/29/19 09:05                                                                                     | 10/30/19 11:16                                                                                                                                                                                                                                                                                                                                                                                       | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Water  | EPA 8260C                                 | 10/29/19 08:10                                                                                     | 10/30/19 11:16                                                                                                                                                                                                                                                                                                                                                                                       | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Water  | EPA 8260C                                 | 10/28/19 11:52                                                                                     | 10/30/19 11:16                                                                                                                                                                                                                                                                                                                                                                                       | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                           |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Water  | EPA 8260C                                 | 10/28/19 09:23                                                                                     | 10/31/19 11:05                                                                                                                                                                                                                                                                                                                                                                                       | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Water  | EPA 8260C                                 | 10/28/19 09:23                                                                                     | 10/31/19 11:05                                                                                                                                                                                                                                                                                                                                                                                       | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | Water<br>Water<br>Water<br>Water<br>Water | WaterEPA 8260CWaterEPA 8260CWaterEPA 8260CWaterEPA 8260CWaterEPA 8260CWaterEPA 8260CWaterEPA 8260C | Water         EPA 8260C         10/28/19 15:49           Water         EPA 8260C         10/29/19 09:45           Water         EPA 8260C         10/29/19 09:05           Water         EPA 8260C         10/29/19 08:10           Water         EPA 8260C         10/28/19 11:52           Water         EPA 8260C         10/28/19 11:52           Water         EPA 8260C         10/28/19 09:23 | Water         EPA 8260C         10/28/19 15:49         10/30/19 11:16           Water         EPA 8260C         10/29/19 09:45         10/30/19 11:16           Water         EPA 8260C         10/29/19 09:05         10/30/19 11:16           Water         EPA 8260C         10/29/19 09:05         10/30/19 11:16           Water         EPA 8260C         10/29/19 08:10         10/30/19 11:16           Water         EPA 8260C         10/28/19 11:52         10/30/19 11:16           Water         EPA 8260C         10/28/19 09:23         10/31/19 11:05 | Matrix         Method         Sampled         Prepared         Initial/Final           Water         EPA 8260C         10/28/19 15:49         10/30/19 11:16         5mL/5mL           Water         EPA 8260C         10/29/19 09:45         10/30/19 11:16         5mL/5mL           Water         EPA 8260C         10/29/19 09:05         10/30/19 11:16         5mL/5mL           Water         EPA 8260C         10/29/19 08:10         10/30/19 11:16         5mL/5mL           Water         EPA 8260C         10/28/19 11:52         10/30/19 11:16         5mL/5mL           Water         EPA 8260C         10/28/19 11:52         10/30/19 11:16         5mL/5mL           Water         EPA 8260C         10/28/19 09:23         10/31/19 11:05         5mL/5mL | Matrix         Method         Sampled         Prepared         Initial/Final         Initial/Final           Water         EPA 8260C         10/28/19 15:49         10/30/19 11:16         5mL/5mL         5mL/5mL           Water         EPA 8260C         10/29/19 09:45         10/30/19 11:16         5mL/5mL         5mL/5mL           Water         EPA 8260C         10/29/19 09:05         10/30/19 11:16         5mL/5mL         5mL/5mL           Water         EPA 8260C         10/29/19 09:05         10/30/19 11:16         5mL/5mL         5mL/5mL           Water         EPA 8260C         10/29/19 08:10         10/30/19 11:16         5mL/5mL         5mL/5mL           Water         EPA 8260C         10/28/19 11:52         10/30/19 11:16         5mL/5mL         5mL/5mL           Water         EPA 8260C         10/28/19 09:23         10/31/19 11:05         5mL/5mL         5mL/5mL |

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

| Maul Foster & Alongi, INC. |  |
|----------------------------|--|
| 2001 NW 19th Ave, STE 200  |  |
| Portland, OR 97209         |  |

Project: Project Number: 9085.10.12 Project Manager: David Weatherby

<u>Report ID:</u> A9J1033 - 11 13 19 1613

#### SAMPLE PREPARATION INFORMATION

|                                                        | Volatile Organic Compounds by EPA 8260C           |                 |                |                |               |               |         |  |
|--------------------------------------------------------|---------------------------------------------------|-----------------|----------------|----------------|---------------|---------------|---------|--|
|                                                        | Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM |                 |                |                |               |               |         |  |
| Prep: EPA 3510C (Acid Extraction) Sample Default RL Pr |                                                   |                 |                |                |               |               | RL Prep |  |
| Lab Number                                             | Matrix                                            | Method          | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |  |
| Batch: 9101758                                         |                                                   |                 |                |                |               |               |         |  |
| A9J1033-01                                             | Water                                             | EPA 8270D (SIM) | 10/28/19 15:49 | 10/30/19 11:38 | 990mL/2mL     | 1000mL/2mL    | 1.01    |  |
| A9J1033-02                                             | Water                                             | EPA 8270D (SIM) | 10/29/19 09:45 | 10/30/19 11:38 | 790mL/2mL     | 1000mL/2mL    | 1.27    |  |
| A9J1033-03                                             | Water                                             | EPA 8270D (SIM) | 10/28/19 09:23 | 10/30/19 11:38 | 900mL/2mL     | 1000mL/2mL    | 1.11    |  |
| A9J1033-04                                             | Water                                             | EPA 8270D (SIM) | 10/29/19 09:05 | 10/30/19 11:38 | 870mL/2mL     | 1000mL/2mL    | 1.15    |  |
| A9J1033-05                                             | Water                                             | EPA 8270D (SIM) | 10/29/19 08:10 | 10/30/19 11:38 | 930mL/2mL     | 1000mL/2mL    | 1.08    |  |
| A9J1033-06                                             | Water                                             | EPA 8270D (SIM) | 10/28/19 11:52 | 10/30/19 11:38 | 960mL/2mL     | 1000mL/2mL    | 1.04    |  |
| A9J1033-07                                             | Water                                             | EPA 8270D (SIM) | 10/28/19 09:23 | 10/30/19 11:38 | 940mL/2mL     | 1000mL/2mL    | 1.06    |  |

| Total Metals by EPA 6020A (ICPMS) |        |           |                |                |               |               |         |
|-----------------------------------|--------|-----------|----------------|----------------|---------------|---------------|---------|
| Prep: EPA 3015A                   |        |           |                |                | Sample        | Default       | RL Prep |
| Lab Number                        | Matrix | Method    | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 9101742                    |        |           |                |                |               |               |         |
| A9J1033-01                        | Water  | EPA 6020A | 10/28/19 15:49 | 10/30/19 08:05 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A9J1033-02                        | Water  | EPA 6020A | 10/29/19 09:45 | 10/30/19 08:05 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A9J1033-03                        | Water  | EPA 6020A | 10/28/19 09:23 | 10/30/19 08:05 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A9J1033-04                        | Water  | EPA 6020A | 10/29/19 09:05 | 10/30/19 08:05 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A9J1033-05                        | Water  | EPA 6020A | 10/29/19 08:10 | 10/30/19 08:05 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A9J1033-06                        | Water  | EPA 6020A | 10/28/19 11:52 | 10/30/19 08:05 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A9J1033-07                        | Water  | EPA 6020A | 10/28/19 09:23 | 10/30/19 08:05 | 45mL/50mL     | 45mL/50mL     | 1.00    |

Dissolved Metals by EPA 6020A (ICPMS) Prep: Matrix Matched Direct Inject RL Prep Sample Default Initial/Final Initial/Final Lab Number Matrix Method Factor Sampled Prepared Batch: 9101755 EPA 6020A (Diss) 45mL/50mL 1.00 A9J1033-01 Water 10/28/19 15:49 10/30/19 10:41 45mL/50mL A9J1033-02 Water EPA 6020A (Diss) 10/29/19 09:45 10/30/19 10:41 45mL/50mL 45mL/50mL 1.00 Water A9J1033-03 EPA 6020A (Diss) 10/28/19 09:23 10/30/19 10:41 45mL/50mL 45mL/50mL 1.00 A9J1033-04 Water EPA 6020A (Diss) 10/29/19 09:05 10/30/19 10:41 45mL/50mL 45mL/50mL 1.00 Water EPA 6020A (Diss) 45mL/50mL 45mL/50mL A9J1033-05 10/29/19 08:10 10/30/19 10:41 1.00 A9J1033-06 Water EPA 6020A (Diss) 10/28/19 11:52 10/30/19 10:41 45mL/50mL 45mL/50mL 1.00 A9J1033-07 Water EPA 6020A (Diss) 10/30/19 10:41 45mL/50mL 10/28/19 09:23 45mL/50mL 1.00

Apex Laboratories

Philip Nevenberg



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

| Maul Foster & Alongi, INC. |  |  |  |  |  |  |
|----------------------------|--|--|--|--|--|--|
| 2001 NW 19th Ave, STE 200  |  |  |  |  |  |  |
| Portland, OR 97209         |  |  |  |  |  |  |

Project: POV-Terminal 1

Project Number: **9085.10.12** Project Manager: **David Weatherby**  <u>Report ID:</u> A9J1033 - 11 13 19 1613

#### **QUALIFIER DEFINITIONS**

#### Client Sample and Quality Control (QC) Sample Qualifier Definitions:

#### **Apex Laboratories**

- F-12 The result for this hydrocarbon range is primarily due to the presence of individual analyte peaks in the quantitation range. No fuel pattern detected.
- F-17 No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
- M-05 Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
- Q-16 Reanalysis of an original Batch QC sample.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +11.7%. The results are reported as Estimated Values.
- Q-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +4.3%. The results are reported as Estimated Values.
- Q-54b Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +5.1%. The results are reported as Estimated Values.
- Q-54c Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +6.9%. The results are reported as Estimated Values.
- Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260C
- T-02 This Batch QC sample was analyzed outside of the method specified 12 hour tune window. Results are estimated.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

#### <u>Maul Foster & Alongi, INC.</u> 2001 NW 19th Ave, STE 200 Portland, OR 97209

Project: POV-Terminal 1

Project Number: 9085.10.12 Project Manager: David Weatherby <u>Report ID:</u> A9J1033 - 11 13 19 1613

#### **REPORTING NOTES AND CONVENTIONS:**

#### Abbreviations:

| DET | Analyte DETECTED at or above the detection or reporting limit.                                                            |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| ND  | Analyte NOT DETECTED at or above the detection or reporting limit.                                                        |
| NR  | Result Not Reported                                                                                                       |
| RPD | Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery. |

#### Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "\_\_\_\_ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

#### **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

#### Miscellaneous Notes:

- "---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "\*\*\* " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

#### **Blanks:**

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

#### Maul Foster & Alongi, INC. 2001 NW 19th Ave, STE 200 Portland, OR 97209

Project: POV-Terminal 1

Project Number: 9085.10.12 Project Manager: David Weatherby <u>Report ID:</u> A9J1033 - 11 13 19 1613

#### **REPORTING NOTES AND CONVENTIONS (Cont.):**

#### Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

#### **Preparation Notes:**

Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

#### **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

| Maul Foster & Alo            | ongi, INC.                                                                                                                                                                                                                                                                            | Project:                                  | POV-Terminal 1             |           |                     |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------|-----------|---------------------|--|--|--|--|
| 2001 NW 19th Ave, STE 200 Pr |                                                                                                                                                                                                                                                                                       | Project Number:                           | Number: 9085.10.12         |           | <b>Report ID:</b>   |  |  |  |  |
| Portland, OR 972             | 09                                                                                                                                                                                                                                                                                    | Project Manager:                          | David Weatherby            | A9J1      | 033 - 11 13 19 1613 |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                       |                                           |                            |           |                     |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                       | LABORATORY ACCREDI                        | TATION INFORMA             | ΓΙΟΝ      |                     |  |  |  |  |
|                              | TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039<br>All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP<br>Scope of Certification, with the <u>exception</u> of any analyte(s) listed below: |                                           |                            |           |                     |  |  |  |  |
| <u>Apex Labo</u>             | oratories                                                                                                                                                                                                                                                                             |                                           |                            |           |                     |  |  |  |  |
| Matrix                       | Analysis                                                                                                                                                                                                                                                                              | TNI_ID                                    | Analyte                    | TNI_ID    | Accreditation       |  |  |  |  |
|                              | A                                                                                                                                                                                                                                                                                     | Il reported analytes are included in Apex | Laboratories' current OREL | AP scope. |                     |  |  |  |  |

#### **Secondary Accreditations**

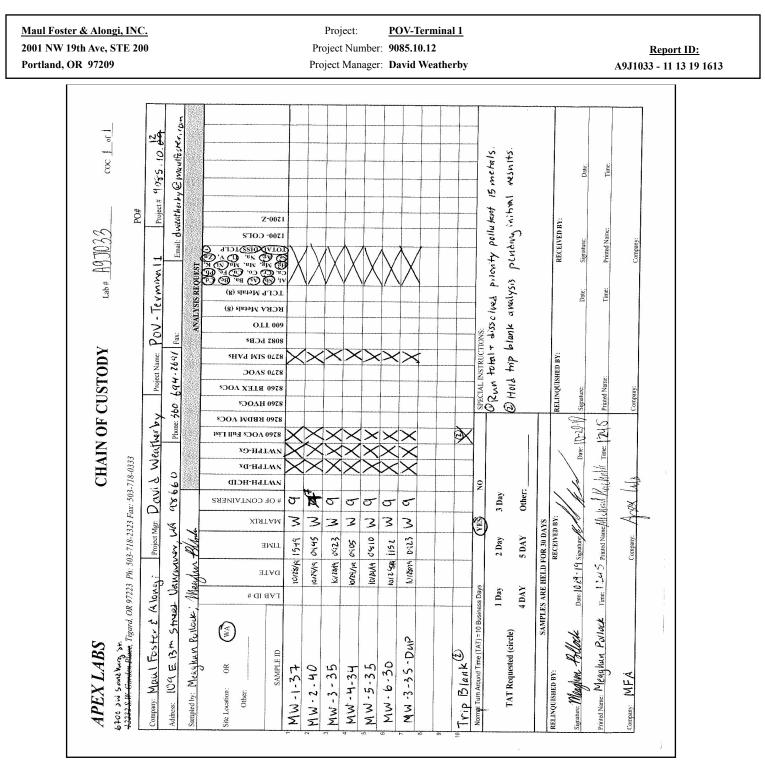
Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

#### **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

#### **Field Testing Parameters**

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.


Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>



Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

| Maul Foster & Alongi, INC.                                                                                                                                                                                                                                                                                                                                                                           | Project: <b>POV-Terminal 1</b>           |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------|
| 2001 NW 19th Ave, STE 200                                                                                                                                                                                                                                                                                                                                                                            | Project Number: 9085.10.12               | <u>Report ID:</u>       |
| Portland, OR 97209                                                                                                                                                                                                                                                                                                                                                                                   | Project Manager: David Weatherby         | A9J1033 - 11 13 19 1613 |
| Client: <u>Mail Foster + Alangi</u><br>Project/Project #: <u>POU - Termine</u><br><u>Delivery Info</u> :<br>Date/time received: <u>10-29-19</u> @<br>Delivered by: Apex X Client E                                                                                                                                                                                                                   | 0                                        |                         |
| Chain of Custody included? Yes $\lambda$                                                                                                                                                                                                                                                                                                                                                             | No Custody seals? Yes No                 |                         |
| Signed/dated by client? Yes $\times$                                                                                                                                                                                                                                                                                                                                                                 |                                          |                         |
| Signed/dated by Apex? Yes $\times$                                                                                                                                                                                                                                                                                                                                                                   | No                                       |                         |
| Temperature (°C)       0.3         Received on ice? (Ŷ/N)       1         Temp. blanks? (Ŷ/N)       1         Ice type: (Gel/Real/Other) <u>Arcal</u> Condition: <u>apped</u> Cooler out of temp? (Y/N) <u>apped</u> Coolers are in temp and some o       Out of temperature samples form initiat         Samples Inspection:       Date/time inspection:         All samples intact?       Yes X_No |                                          |                         |
| COC/container discrepancies form initia                                                                                                                                                                                                                                                                                                                                                              | ated? Yes No NA                          |                         |
| Containers/volumes received appropriate<br><u>MW-2-40</u> <u>Umited volume</u><br>Do VOA vials have visible headspace?<br>Comments                                                                                                                                                                                                                                                                   | e for analysis? Yes X No Comments:       |                         |
| Additional information:                                                                                                                                                                                                                                                                                                                                                                              |                                          |                         |
| $\frac{18 \# 217.8}{\text{Labeled by:}}$                                                                                                                                                                                                                                                                                                                                                             | Cooler Inspected by: See Project Contact | Form: Y                 |

Apex Laboratories

Philip Nevenberg

# ATTACHMENT D DATA VALIDATION MEMORANDUM



## DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 9085.10.12 | NOVEMBER 22, 2019 | PORT OF VANCOUVER

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for groundwater samples collected at the Port of Vancouver Terminal 1. The samples were collected on October 28 and 29, 2019.

Apex Laboratories, LLC (Apex) performed the analyses. Apex report A9J1033 was reviewed. The analyses performed and samples analyzed are listed below. Samples submitted on hold are also indicated.

| Analysis                                      | Reference       |
|-----------------------------------------------|-----------------|
| Diesel- and Oil-Range Hydrocarbons            | NWTPH-Dx        |
| Gasoline-Range Hydrocarbons                   | NWTPH-Gx        |
| Polycyclic Aromatic Hydrocarbons              | USEPA 8270D-SIM |
| Total and Dissolved Priority Pollutant Metals | USEPA 6020A     |
| Volatile Organic Compounds                    | USEPA 8260C     |

NWTPH = Northwest Total Petroleum Hydrocarbons. SIM = selected ion monitoring.

USEPA = U.S. Environmental Protection Agency.

| Samples Analyzed |                   |  |  |  |  |
|------------------|-------------------|--|--|--|--|
| Report A9J1033   |                   |  |  |  |  |
| MW-1-37          | MW-5-35           |  |  |  |  |
| MW-2-40          | MW-6-30           |  |  |  |  |
| MW-3-35          | MW-3-35-DUP       |  |  |  |  |
| MW-4-34          | Trip Blank (hold) |  |  |  |  |

### DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (USEPA) procedures (USEPA, 2017a,b) and appropriate laboratory and method-specific guidelines (Apex, 2018; USEPA, 1986).

In report A9J1033, all detected NWTPH-Dx diesel-range hydrocarbon results were flagged by Apex, based on chromatographic patterns that did not resemble the chromatographic patterns of the fuel standards used for quantitation. The results were reported as diesel-range hydrocarbons instead of a specific fuel; thus, qualification was not required.

In report A9J1033, Apex flagged all detected NWTPH-Gx gasoline-range hydrocarbon results, based on the presence of individual analyte peaks within the gasoline hydrocarbon quantitation R:\9085.10 Port of Vancouver\Document\12\_2019.12.27 Groundwater Monitoring Report\Attachment D - DVM\DVM\_POV\_Oct2019.docx

range. Apex noted that no fuel pattern had been detected. The results were reported as gasoline-range hydrocarbons instead of a specific fuel; thus, qualification was not required.

In report A9J1033, Apex flagged some USEPA Method 8270D-SIM results as estimated because of insufficient chromatographic peak separation. The results have been qualified by the reviewer with "J" as estimated.

| Report  | Sample  | Component            | Original Result<br>(ug/L) | Qualified Result<br>(ug/L) |
|---------|---------|----------------------|---------------------------|----------------------------|
| A9J1033 | MW-1-37 | Benzo(b)fluoranthene | 0.0702                    | 0.0702 J                   |

NOTES:

J = result is estimated. ug/L = micrograms per liter.

Total and dissolved metals results were compared. Dissolved results greater than associated total results were not qualified if the relative percent difference (RPD) was less than 20 percent. Qualification was required for the following based on dissolved metals results that were greater than the associated total metals results.

| Report  | Sample                 | Component         | Original Result<br>(ug/L) | Qualified Result<br>(ug/L) |
|---------|------------------------|-------------------|---------------------------|----------------------------|
|         |                        | Total Arsenic     | 3.01                      | 3.01 J                     |
|         |                        | Dissolved Arsenic | 4.16                      | 4.16 J                     |
|         |                        | Total Nickel      | 1.08                      | 1.08 J                     |
|         | MW-2-40                | Dissolved Nickel  | 1.78                      | 1.78 J                     |
|         |                        | Total Zinc        | 4.00 U                    | 4.00 UJ                    |
| A9J1033 |                        | Dissolved Zinc    | 9.12                      | 9.12 J                     |
| A9J1033 | MW-3-35<br>MW-3-35-DUP | Total Zinc        | 9.08                      | 9.08 J                     |
|         |                        | Dissolved Zinc    | 12.7                      | 12.7 J                     |
|         |                        | Total Zinc        | 9.01                      | 9.0 J                      |
|         |                        | Dissolved Zinc    | 16.4                      | 16.4 J                     |
|         | MW-6-30                | Total Zinc        | 4.00 U                    | 4.00 UJ                    |
|         | 10100-30               | Dissolved Zinc    | 10.7                      | 10.7 J                     |

NOTES:

J = result is estimated.

U = result is non-detect. ug/L = micrograms per liter.

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the USEPA procedures (e.g., NWTPH-Dx).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

### HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

### Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

### Preservation and Sample Storage

The samples were preserved and stored appropriately.

### BLANKS

### Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch. All laboratory method blanks were non-detect to reporting limits for all target analytes.

### Trip Blanks

Report A9J1033 states that a trip blank sample was submitted to Apex on hold. Samples could not be evaluated for trip contamination.

### Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as samples were collected with single-use equipment.

### SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples. All surrogate percent recoveries were within acceptance limits.

### MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency. Where MS/MSD analyses were not performed because of insufficient sample volume, batch precision and accuracy were evaluated with laboratory control sample (LCS)/laboratory control sample duplicate (LCSD) and/or laboratory duplicate samples.

According to report A9J1033, the USEPA Method 8260C batch 9101746 MS exceeded upper percent recovery acceptance limits for 1,1-dichloropropane and o-xylene, at 126 percent and 123 percent, respectively. The sample used to prepare the MS was non-detect; thus, qualification was not required.

According to report A9J1033, the USEPA Method 8260C batch 9101792 MS exceeded the upper percent recovery acceptance limit of 126 percent for dibromochloromethane at 127 percent. The reviewer confirmed that the MS had been prepared with a sample from an unrelated project; thus, the sample matrix may not represent the project sample matrices reported in A9J1033. No qualification was required.

All remaining MS/MSD results were within acceptance limits for percent recovery and RPDs.

### LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the reporting limit were not evaluated for precision.

In report A9J1033, Apex flagged a NWTPH-Gx and USEPA Method 8260C batch 9101792 laboratory duplicate (9101792-DUP2) because of analysis outside of the recommended 12-hour tune window. The laboratory duplicate was prepared with a sample from an unrelated project and the remaining batch quality control were analyzed within the tune window; thus, qualification was not required.

All remaining laboratory duplicate RPDs were within acceptance limits.

### LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

An LCS/LCSD is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

Report A9J1033 states that the USEPA Method 8260C batch 9101746 LCS exceeded upper percent recovery acceptance limits of 120 percent for 2,2-dichloropropane, at 125 percent. The associated sample results were non-detect; thus, qualification was not required.

Report A9J1033 states that the USEPA Method 8260C batch 9101792 LCS exceeded upper percent recovery acceptance limits of 120 percent for bromoform, bromomethane, and dibromochloromethane ranging from 124 percent to 132 percent. The associated sample results were non-detect; thus, qualification was not required.

All remaining LCS/LCSD results were within acceptance limits for percent recovery and RPD.

### FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. According to report A9J1033, one field duplicate (MW-3-35/MW-3-35-DUP) was submitted for analysis. MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the reporting limit, or 50 percent RPD for results that are greater than five times the reporting

limit. Non-detect data are not used in the evaluation of field duplicate results. All field duplicate results met the RPD acceptance criteria.

### CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. CCV results were not reported; however, Apex flagged sample results associated with CCV results that did not meet acceptance criteria. The reviewer took no action based on quality-control sample flags for CCV exceedances when quality-control results met acceptance criteria.

### **REPORTING LIMITS**

Apex used routine reporting limits for non-detect results, except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences.

### DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

In report A9J1033, Apex noted on the cooler receipt form that limited sample volume was received in the hydrochloric acid-preserved container received for sample MW-2-40. The associated NWTPH-Dx results were reported with raised reporting limits. No action was required.

According to report A9J1033, a sample collection date, matrix, and the number of containers were not provided on the chain of custody for the trip blank. The sampler was notified. No additional action was required.

No additional issues were found.

Apex. 2018. Quality systems manual. Rev. 6. Apex Laboratories, LLC, Tigard, Oregon. July 2.

USEPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III.

USEPA. 2017a. USEPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

USEPA. 2017b. USEPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.