

1631 E. Saint Andrew Place Santa Ana, California 92705 t 714.919.6500 www.montrose-env.com

January 23, 2020

Mr. Hamed Adib Eagle Canyon Capital, LLC 3223 Crow Canyon Road, Suite 300 San Ramon, CA 94583

Fourth Quarter 2019 Remediation System Status Report Site No. 3520 4200 Wheaton Way Bremerton, Washington

Dear Mr. Adib:

Montrose Environmental (Montrose), has prepared this *Fourth Quarter 2019 Remediation System Status Report* (Report) for the above-referenced site.

A soil vapor extraction (SVE) system is operated at the site to remediate fuel hydrocarbonimpacted soil. This Report summarizes remediation system operations and performance and includes the field data and analytical results collected during the period of October 1, 2019 through December 31, 2019. Laboratory data packages and field notes are attached as Appendix A and Appendix B, respectively.

Montrose appreciates the opportunity to be of service. If you have any questions or require additional information regarding this report, please do not hesitate to contact us at (714) 919-6500.

Sincerely,

Montrose Environmental

Dane Nygaard Senior Manager

luna

Laura Skow, L.G. 2882 Project Manager

SITE INFORMATION AND CONTRACTOR OVERVIEW

Site Location:	Site No. 3520 4200 Wheaton Way Bremerton, Washington
Eagle Canyon Capital, LLC Contact:	Mr. Hamed Adib
Montrose Contact:	Ms. Laura Skow
Regulatory Agency:	Ms. Glynis Carrosino Toxics Cleanup Program Washington Department of Ecology NWRO 3190 160th Avenue SE Bellevue, WA 98008-5452
File No:	VCP No. NW2340
Laboratory Contractors:	Libby Environmental, Inc. 4139 Libby Road NE Olympia, Washington 98506 WADOE Accreditation No. C855

SITE BACKGROUND

The subject site is located at 4200 Wheaton Way in Bremerton, Washington and is approximately a 0.5-acre rectangular-shaped, outparcel of commercial land located on the northeast corner of Wheaton Way and Hollis Street. The site is a fuel retail station with four underground storage tanks (USTs) and three pump islands that are located near (west of) a single-story convenience store. The USTs include one 6,000-gallon tank (diesel), two 12,000-gallon tanks (regular gasoline) and one 12,000-gallon tank (premium gasoline). The site is relatively flat, covered with asphalt and concrete, and is part of a larger retail shopping center. Surrounding land use includes commercial properties including retail shops and restaurants.

The site lies at an elevation of approximately 300 feet above mean sea level (ft amsl) on a small peninsula within Puget Sound. It is located approximately 2 miles from Port Orchard Waterway, Dyes Inlet and Sinclair Inlet, which surround the peninsula to the east, west and south, respectively. A site location map is provided as Figure 1. Pertinent site features are shown on Figure 2.

In September and October 1996, the fuel distribution system at the subject site was upgraded. During system upgrades, hydrocarbon-affected soil was encountered in the tank cavity and

450 tons of impacted soil was excavated and transported to a disposal facility in Tacoma, Washington. The release was reported to the Washington Department of Ecology (Ecology) and five verification soil samples were collected from the tank cavity for laboratory analysis. In addition, five soil samples were collected from the beneath the product lines and pump islands. The samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds and total petroleum hydrocarbons quantified as gasoline (TPH-Gx). Hydrocarbon impacts in excess of Model Toxics Cleanup Act (MTCA) Method A Cleanup Levels were identified in all ten soil samples. Specifically, the highest levels of fuel hydrocarbons were reported in a composite sample (identified as N&E Wall-8'), which was collected from the north and east sidewall of the diesel tank cavity at a depth of 8 feet. Sample N&E Wall-8' contained TPH-Gx at 7,220 milligrams per kilogram (mg/kg), benzene at 27.6 mg/kg, toluene at 191 mg/kg, ethylbenzene at 111 mg/kg and total xylenes at 626 mg/kg.

In June 1997, Clearwater conducted subsurface site assessment activities. During Clearwater's investigation, 17 soil borings (GP-1 through GP-17) were installed at various locations around the site to delineate the extent of hydrocarbon-affected soil. Borings were terminated at a depth of 17 feet bgs due to refusal. Twenty-six (26) soil samples collected from the borings were analyzed for TPH-Gx and BTEX compounds. Hydrocarbon-affected soil was detected in a majority of the soil borings. The highest concentration of TPH-Gx (1,410 mg/kg) was in a 10-foot sample from boring GP-7 located near the southwest corner of the tank cavity. Similarly, benzene was detected at a maximum level of 11.9 mg/kg in a 10-foot sample collected from GP-5 located east of the existing tank cavity.

In May 2010, Environ Strategy conducted an additional site assessment to evaluate subsurface conditions in the vicinity of the fuel distribution system (USTs and pump islands). Six soil borings (identified as SB-1 through SB-6) were advanced, of which, Borings SB-1, SB-2 and SB-3 were located near the existing tank cavity and advanced to a depth of 30 feet. Borings SB-4, SB-5 and SB-6 were drilled at the west end of the southern, central and northern pump islands, respectively, and extended to a depth of 25 feet at SB-4 and to 20 feet bgs at SB-5 and SB-6. Assessment findings are detailed in the *Focused Phase II Site Assessment Report*, dated May 30, 2010.

Based on the results of site assessment, an SVE system was designed and vapor extraction wells VE-1 through VE-4 were installed from March 29 to 31, 2011. Remediation by SVE was pilot tested at the site from April 4 to 7, 2011, and proved effective at removing hydrocarbons from subsurface soil, as detailed in the *Soil Vapor Extraction Well Installation and Pilot Test Report*, dated June 21, 2011. An application for an air discharge permit for the operation of SVE equipment at the site for the remediation of hydrocarbons in soil was submitted on June 6, 2011.

The air discharge permit for the operation of SVE equipment at the site was received from the Puget Sound Clean Air Agency on November 7, 2011, and following system installation, baseline samples were collected on February 15, 2012, to demonstrate compliance with the air discharge permit requirements.

On February 28, 2012, the SVE system began continuous operation for the remediation of hydrocarbons in subsurface soil. Environ Strategy began bi-monthly site visits for operation and maintenance (O&M) of the system.

As reported in the *Remediation System Status Report,* dated October 15, 2012, field observations and laboratory test results demonstrate that soil vapor extraction is effective at removing petroleum constituents from subsurface soil beneath the site. During the first six months of system operation an estimated total of 7,461 pounds of petroleum hydrocarbons were extracted from the site subsurface. Based on the results of the first six months of system operation, Environ Strategy recommended continued operation of the SVE system until hydrocarbon removal rates reached asymptotic levels.

In March of 2013, the thermal oxidizer system was replaced with a carbon adsorption abatement system. As of September 30, 2013, an estimated 12,179 pounds of hydrocarbons were removed from the site subsurface through SVE. Monitoring data through September 2013 showed fluctuating hydrocarbon concentrations in system influent vapor since system start-up but showed a decreasing trend as select extraction wells were opened/closed to optimize system performance. Data collected from October 2013 through January 2014 showed similar trends in concentrations; therefore, confirmation sampling was proposed to confirm remediation and/or attenuation of hydrocarbons in soil characterized during previous assessments.

In December 2016, ES Engineering conducted confirmation soil sampling to evaluate remedial progress. Four confirmation borings (CB-1 through CB-4) were installed at the site to assess soil conditions following SVE remediation activities. Analytical results of the confirmation sampling indicated that COC concentrations in soil still exceeded MTCA Method A CULs in some areas of the site. Based on the findings, installation of additional extraction wells and re-instatement of SVE remediation were recommended. Additional details regarding the confirmation soil sampling are provided in the *Confirmation Soil Sampling Report*, dated March 30, 2017.

In January 2018, three additional remediation wells (RW-1 through RW-3) were installed at the site and connected to the remediation system. Well installation activities are detailed in the *Well Installation Report*, dated March 9, 2018.

REMEDIATION ACTIVITIES PERFORMED

- In October 2019, twice weekly O&M visits were conducted to monitor the system in accordance with the Puget Sound Clean Air Agency (PSCAA) permit. Vapor flow rates, vacuum, system temperatures, and concentrations of unspeciated hydrocarbons in vapor in system influent, midpoint, effluent, and individual wells were recorded. Vapor samples were collected from the system influent, midpoint and effluent sample ports and submitted for laboratory analysis. Laboratory Analytical Reports are provided as Appendix A.
- In November 2019, Montrose requested a reduction in the system monitoring frequency to a weekly basis which was approved by the Puget Sound Clean Air Agency (PSCAA).
- On November 6, 2019, the system was found offline upon arrival and troubleshooting of the electrical panel was performed. The system was restarted and running normally upon departure.
- On November 27, 2019, Montrose visited the site to perform O&M and the system was shut off based on the elevated concentration of volatile organic carbons (VOCs) measured with the field photoionization detector (PID) in the midpoint vapor sample; effluent vapor PID readings were well below the permit requirement. The system was left offline pending collection of vapor samples for laboratory analysis to evaluate potential breakthrough for the first carbon and confirm compliance with permit limits.
- On December 9, 2019, Montrose was onsite to restart the SVE system and conduct O&M. Following restart, the system was allowed to run and the measured mid-point vapor PID reading was low. The system was left running and the midpoint VOC concentration increased after several days of operation; system influent, midpoint and effluent vapor samples were collected for laboratory analysis on December 12, 2019. Additionally, a sample of the condensate water in the main holding tank was collected for waste profiling purposes. Based on laboratory results, the mid-point vapor sample did not contain detectible TPH-Gx or BTEX concentrations and the system was left running.
- On December 19, 2019, condensate water was pumped from the main holding tank into 55-gallon Department of Transportation-approved drums and stored onsite pending waste profiling and disposal. The laboratory analytical report documenting the waste profiling is included as Appendix A.

Remediation system operational data is tabulated in Table 1. SVE individual well data is summarized in Table 2. Soil vapor sample analytical data is summarized in Table 3. Calculated recovery and emission rates are tabulated in Table 4. System destruction efficiencies are

summarized in Table 5. O&M field forms are provided in Appendix B. Historical O&M data tables and charts are presented as Appendix D.

REMEDIATION SYSTEM SUMMARY DATA

Facility:	Bremerton Food Mart (Site No. 3520)
Facility Address:	4200 Wheaton Way, Bremerton, WA
Remediation Technology:	SVE
Equipment Type:	Roots 200 cfm blower
Operation Mode:	Carbon Adsorption
Permit to Operate:	PSCAA Order of Approval No. 11837
Discharge Limits:	<10 ppmv (as measured by hexane or its equivalent)
Expiration Date:	Not Specified

SVE SYSTEM DATA (Table 1)

Fourth Quarter 2019 (October 1, 2019 – December 31, 2019)

Period Hours of Operation:	1,547*
Percent Time Operational:	75%*
TPH Recovered:	852 pounds**
Wells online:	3 (RW-1, RW-2 and RW-3) ⁽¹⁾
Wells offline:	3 (VE-1, VE-2, VE-3 and VE-4) ⁽¹⁾

*Calculated from September 16, 2019 (system restart date) to December 30, 2019 (Table 1)

**Calculated based on field PID readings (Table 1)

⁽¹⁾ Based on December 30, 2019 data; extraction wells are opened/closed to optimize system performance

Cumulative

Since Initial Startup:	February 28, 2012 – December 31, 2019
Total Hours of Operation:	15,820
Total Hydrocarbons Recovered:	13,677 pounds

COMPLIANCE SAMPLING

On October 30 and December 12, 2019, Montrose collected influent, midpoint, and effluent vapor samples from the SVE system to demonstrate compliance with air discharge conditions (Table 4). The vapor samples were collected in tedlar bags and submitted to Libby Environmental, Inc. in Olympia, Washington under chain-of-custody procedure. The vapor samples were analyzed for TPH-Gx and BTEX by EPA Method 8260. Laboratory analytical results indicate that TPH-Gx and BTEX were not present in the midpoint or effluent vapor samples.

The laboratory analytical results for the samples collected on October 30 and December 12, 2019 were used to calculate mass recovery and discharge emissions for the current reporting period (Tables 4 and 5). The estimated discharge emissions do not exceed annual emission limits for TPH-Gx and BTEX.

The laboratory analytical reports for the vapor samples are provided as Appendix A.

DISCUSSION AND CONCLUSIONS

The SVE system was restarted on September 16, 2019. During the reporting period, approximately 852 pounds of petroleum hydrocarbons in vapor phase were extracted for treatment based on field PID readings. Since remediation was initiated in February 2012, an estimated total of 13,677 pounds of petroleum hydrocarbons have been extracted from the site subsurface, treated and discharged.

Period trends in hydrocarbon concentrations in vapor, cumulative mass removed and individual well concentrations are graphically illustrated in Graphs 1 and 2. As shown in Graph 1, elevated hydrocarbon concentrations in system influent were sustained throughout the operational period. Field PID readings from the individual extraction wells show an increasing trend in hydrocarbon concentrations over the period (Graph 2). Note that well VE-3 and RW-2 share a common line to the system; when both wells are utilized for extraction a combined concentration (identified as VE-3/RW-2) is reported on Table 2 and Graph 2. In December 2019, well VW-3 was closed to focus extraction at well RW-2 and optimize operations; subsequent monitoring show elevated hydrocarbon concentrations were measured in extraction wells RW-3 and RW-2. RW-3 is located adjacent to the southernmost dispenser and RW-2 is located south of the UST cavity.

Montrose will continue to conduct weekly O&M visits to monitor the system as required by the PSCAA permit and to ensure the system is operating properly. Field PID monitoring and laboratory analytical results show effluent vapor is non-detect for TPH-Gx and BTEX constituents. Based on field PID readings, select extraction wells may be opened/closed to optimize system performance. System vapor samples will be collected and analyzed on a monthly basis to demonstrate compliance with permit discharge requirements.

Montrose is pleased to be of service to Eagle Canyon Capital. If there are questions regarding this report or if additional site information is required, please do not hesitate to contact Montrose at (714) 919-6500.

Remediation System Status Report

Site No. 3520 Bremerton, Washington

ATTACHMENTS:

FIGURES	
Figure 1:	Site Location Map
Figure 2:	Site Plan Showing Well Locations
TABLES	
Table 1:	Summary of Vapor Extraction System Operational Data
Table 2:	SVE Individual Well Data
Table 3:	Soil Vapor Sample Analytical Data
Table 4:	Subsurface Hydrocarbon Mass Calculations
Table 5:	System Destruction Efficiencies
GRAPHS	
Graph 1:	Vapor Extraction Remediation System – Mass Removal Trend
Graph 2:	Vapor Extraction Remediation System – Hydrocarbon
	Concentrations by Well
APPENDICES	
Appendix A:	Laboratory Analytical Reports
Appendix B:	Field Data Sheets
Appendix C:	Historical O&M Data Tables and Graphs

FIGURES

R: \03_Site Assessment & Remediation \Eagle Canyon (PC&F) \01-3520 - Wheaton Way, Bremerton WA (#623) \Topo, Terrain, Maps \CAD \623F1-SLM.dwg

TABLES

TABLE 1

Summary of Soil Vapor Extraction System Operational Data

Site No. 3520

Bremerton, Washington

1 of 1

Date	Hour Meter Reading	Operational Hours	# of Wells Online	Influent Vacuum (in H ₂ O or Hg) ⁽¹⁾	System Combustion Temp / GAC Inlet (°F)	Temp below cat. Bed (°F)	Temp above cat. Bed (°F)	Flow (scfm)	Influent PID Reading (ppmV)	Midpoint PID Reading (ppmV)	First carbon Destruction Efficiency (%)	Effluent PID Reading (ppmV)	Total Destruction Efficiency (%)	Cumulative Hydrocarbon Mass Removed (Ibs)	Hydrocarbon Removal Rate (Ibs/day)	Remarks
09/03/19	70,095	13,892	7	6.0	109	-		135	49.4	-	-	43.5	12%	12,740	0.1	System offline, Start up for Baseline testing then shut off system
09/03/19	70,096	13,893	7	6.5	112	-	-	135	66.0	-	-	78.1	-18%	12,740	2.55	System offline, Start up for Baseline testing then shut off system
09/03/19	70,097	13,894	7	7.0	112	-	-	135	71.0	-	-	57.0	20%	12,741	3.02	System offline, Start up for Baseline testing then shut off system
09/06/19	70,097	13,895	-	-	-	-	-	-	-	-	-	-	-	12,741	-	System offline - Carbon Change Out
09/16/19	70,100	13,897	7	6.5	109	-	-	138	53.5	-	-	0.0	100%	12,741	2.41	System Startup
09/16/19	70,101	13,899	7	6.5	110	-	-	137	495	-	-	0.3	100%	12,742	12.28	
09/17/19	70,118	13,916	7	6.5	100	-	-	138	455	-	-	1.2	100%	12,756	20.18	
09/19/19	70,123	13,921	7	-	-	-	-	-	-	-	-	-	-	12,756	-	System off upon arrival; troubleshoot and re-started
09/20/19	70,141	13,939	7	6.5	110	-	-	123	349	0.2	100%	0.0	100%	12,769	14.03	
09/23/19	70,216	14,014	7	7.0	105	-	-	127	43	0.0	100%	0.0	100%	12,795	8.13	
09/26/19	70,284	14,081	5	8.0	112	-	-	108	51	0.0	100%	0.0	100%	12,800	1.65	Vapor wells VE-2 and VE-4 off upon departure
09/26/19	70,285	14,082	5	10	130	-	-	77	131	0.0	100%	0.0	100%	12,800	2.28	
09/30/19	70,383	14,180	5	10	135	-	-	195	68	0.0	100%	0.0	100%	12,825	6.33	
10/04/19	70,475	14,273	5	8.0	72	-	-	185	240	0.0	100%	0.0	100%	12,861	9.30	
10/08/19	70,575	14,372	5	8.0	70	-	-	175	221	0.0	100%	0.0	100%	12,916	13.18	
10/10/19	70,626	14,423	5	8.0	72	-	-	178	266	0.0	100%	0.0	100%	12,946	14.16	
10/15/19	70,747	14,544	5	5.5	68	-	-	170	226	0.0	100%	0.0	100%	13,015	13.66	Closed vapor well VE-1 upon departure
10/18/19	70,811	14,609	4	12	56.0	-	-	170	297	6.0	98%	0.0	100%	13,054	0.61	
10/21/19	70,830	14,628	4	12	57.5	-	-	155	289	0.0	100%	0.0	100%	13,066	14.84	
10/24/19	70,841	14,639	4	-	-	-	-	-	-	-	-	-	-		-	
10/25/19	70,864	14,661	4	12	54.1	-	-	162	375	2.0	99%	0.0	100%	13,090	17.57	
10/28/19	70,935	14,733	4	12	50.1	-	-	170	380	5.5	99%	0.5	100%	13,153	20.97	
10/30/19	70,980	14,777	4	8	48.1	-	-	90	453	2.8	99%	0.6	100%	13,175	12.25	
11/06/19	71,018	14,815	4	8	51.7	-	-	113	163	0.3	100%	0.0	100%	13,193	11.37	System off upon arrival. Troubleshoot and restart system.
11/15/19	71,234	15,032	4	10	69.0	-	-	106	350	14.0	96%	0.5	100%	13,273	8.88	
11/21/19	71,378	15,176	4	10	79.0	-	-	129	370	40.0	89%	1.0	100%	13,364	15.17	
11/27/19	71,521	15,319	4	11	72.1	-	-	123	268	42.7	84%	1.4	99%	13,441	12.82	System shut off upon deprarture
12/09/19	71,523	15,320	4	10	45.6	-	-	143	315	5.0	98%	0.2	100%	13,442	13.62	System restarted
12/12/19	71,589	15,387	4	11	69.5	-	-	126	290	54.7	81%	1.5	99%	13,476	12.45	
12/19/19	71,758	15,555	3	10	61.5	-	-	112	305	55.0	82%	7.9	97%	13,553	10.89	
12/24/19	71,975	15,773	3	8.5	45.5	-	-	82.5	452	70.1	84%	4.5	99%	13,645	10.20	
12/24/19	71,876	15,673	3	10	-	-	-	80.1	603	60.1	90%	4.5	99%	13,588	13.81	
12/30/19	72,022	15,820	3	10	56.4	-	-	93	352	19.6	94%	4.0	99%	13,677	14.51	

Notes and abbreviations:

lbs = -

Hydrocarbon removal rate and cumulative hydrocarbon removal were calculated using the following formula:

ppmv (60 min/hr) (24 hr/day) (acfm) (86 lb/lb-mole)

(1,000,000) (379 ft³/lb-mole)

Where: ppmv = average hydrocarbon concentration in parts per million by volume

- ft3/min = velocity or flow rate in standard cubic feet per minute acfm = vapor flow rate in actual cubic feet per minute 86 lb/lb-mole = average molecular weight of gasoline
- 379 ft³/lb-mole = standard volume that 1 mole of gas occupies

(1): measurement in in. of H2O through 3/13/14 and in inches Hg begininning 9/3/19
 - : not measured
 lbs: pounds
 lbs/day: pounds per day
 PID: photo-ionization detector calibrated to hexane

91

ppmV: parts per million by volume

acfm: actual cubic feet per minute

scfm: standard cubic feet per minute

in H₂O: inches of water

in Hg: inches of mercury Temp: temperature

°F: degrees Farenheit

TABLE 2 SVE Individual Well Data Site No. 3520 Bremerton, Washington

1 of 2

	VE-1	Vac	Status	VE-2	Vac	Status	VE-3	Vac	Status	VE-4	Vac	Status
Date	(ppmv)	(in Hg)	(%)									
09/03/19	11.7	-	100%	12.9	-	100%	231	-	100%	17.9	-	100%
09/03/19	21.3	-	100%	18.2	-	100%	340	-	100%	30.3	-	100%
09/03/19	24.5	-	100%	22.4	-	100%	215	-	100%	35.0	-	100%
09/16/19	54.7	-	100%	50.2	-	100%	4,400	-	100%	34.8	-	100%
09/16/19	576	-	100%	166	-	100%	8,530	-	100%	340	-	100%
09/17/19	-	-	-	-	-	-	-	-	-	-	-	-
09/19/19	-	-	-	-	-	-	-	-	-	-	-	-
09/26/19	13.3	-	100%	-	-	0%	-	-	100%	-	-	0%
09/30/19	-	7.0	100%	-	-	0%	-	-	100%	-	-	0%
10/04/19	-	5.0	100%	-	-	0%	-	-	100%	-	-	0%
10/08/19	-	5.0	100%	-	-	0%	-	-	100%	-	-	0%
10/10/19	64.0	5.0	100%	-	-	0%	-	-	100%	-	-	0%
10/15/19	-	-	0%	-	-	0%	-	-	100%	-	-	0%
10/18/19	-	-	0%	-	-	0%	-	-	100%	-	-	0%
10/21/19	-	-	0%	-	-	0%	-	-	100%	-	-	0%
10/24/19	-	-	0%	-	-	0%	-	-	100%	-	-	0%
10/25/19	-	-	0%	-	-	0%	-	-	100%	-	-	0%
10/28/19	-	-	0%	-	-	0%	-	-	100%	-	-	0%
10/30/19	-	-	0%	-	-	0%	-	-	100%	-	-	0%
11/06/19	-	-	0%	-	-	0%	-	-	100%	-	-	0%
11/21/19	-	-	0%	-	-	0%	-	-	100%	-	-	0%
11/27/19	-	-	0%	-	-	0%	-	-	100%	-	-	0%
12/09/19	-	-	0%	-	-	0%	-	-	100%	-	-	0%
12/12/19	-	-	0%	-	-	0%	-	-	100%	-	-	0%
12/19/19	-	-	0%	-	-	0%	-	-	0%	-	-	0%
12/24/19	-	-	0%	-	-	0%	-	-	0%	-	-	0%
12/24/19	-	-	0%	-	-	0%	-	-	0%	-	-	0%
12/30/19	-	-	0%	-	-	0%	-	-	0%	-	-	0%

TABLE 2 SVE Individual Well Data Site No. 3520 Bremerton, Washington

2 of 2

	RW-1	Vac	Status	RW-2	Vac	Status	RW-3	Vac	Status	VE-3/RW-2	Vac	Status
Date	(ppmv)	(in Hg)	(%)	(ppmv)	(in Hg)	(%)	(ppmv)	(in Hg)	(%)	(ppmv)	(in Hg)	(%)
09/03/19	108	-	100%	160	-	100%	55.8	-	100%	-	-	-
09/03/19	125	-	100%	123	-	100%	54.8	-	100%	-	-	-
09/03/19	62.8	-	100%	92.8	-	100%	28.8	-	100%	-	-	-
09/16/19	296	-	100%	142	-	100%	73	-	100%	-	-	-
09/16/19	669	-	100%	1,062	-	100%	450	-	100%	-	-	-
09/17/19	-	-	-	-	-	-	-	-	-	-	-	-
09/19/19	-	-	-	-	-	-	-	-	-	-	-	-
09/26/19	17.8	-	100%	-	-	100%	8.4	-	100%	203	-	100%
09/30/19	-	7.0	100%	-	-	100%	-	7.5	100%	-	7.5	100%
10/04/19	-	5.0	100%	-	-	100%	-	5.0	100%	-	5.0	100%
10/08/19	-	5.0	100%	-	-	100%	-	5.0	100%	-	5.5	100%
10/10/19	64.7	5.0	100%	-	-	100%	45.3	5.0	100%	333	5.0	100%
10/15/19	-	-	-	-	-	100%	-	-	100%	-	-	100%
10/18/19	26.6	8.6	100%	-	-	100%	145	9.0	100%	331		100%
10/21/19	-	-	100%	-	-	100%	-	-	100%	-	-	100%
10/24/19	-	-	100%	-	-	100%	-	-	100%	-	-	100%
10/25/19	-	-	100%	-	-	100%	-	-	100%	-	-	100%
10/28/19	32.5	9	100%	-	-	100%	1,085	9.0	100%	300	8.5	100%
10/30/19	-	-	100%	-	-	100%	-	-	100%	-	-	100%
11/06/19	-	8.5	100%	-	-	100%	-	8.0	100%	-	8.0	100%
11/15/19	-	9.0	100%	-	-	100%	-	9.0	100%	-	9.5	100%
11/21/19	-	8.5	100%	-	-	100%	-	8.5	100%	-	8.5	100%
11/27/19	79.5	8.5	100%	-	-	100%	3,450	8.5	100%	1,924	9.0	100%
12/09/19	-	9.0	100%	-	-	100%	-	9	100%	-	8	100%
12/12/19	-	9.0	100%	-	-	100%	-	9	100%	-	8	100%
12/19/19	87	8.5	100%	9,999	-	100%	5,500	9	100%	-	-	0%
12/24/19	635	9.0	100%	9,999	-	100%	9,999	9	100%	-	-	0%
12/24/19	-	-	100%	-	-	100%	-	-	100%	-	-	0%
12/30/19	675	-	100%	9,999	-	100%	4,940	-	100%	-	-	0%

Notes:

Baseline Well Sampling on 9/03/19 System re-start up on 9/16/19 in Hg = inches of mercury ppmv = parts per million by volume, based on field photo-ionization detector readings acfm = actual cubic feet per minute 1% LEL = 138 ppmv (approximately) "-" = not measured %: percent Status: well status, percent open Vac: vacuum Vapor wells VE-3 and RW-2 share the common line

TABLE 3 Soil Vapor Sample Analytical Data Site No. 3520 Bremerton, Washington

1 of 1

		EPA METHOD 8260										
SAMPLE ID	Date	TPH-Gx	Benzene	Toluene	Ethylbenzene	Xylenes						
		ppmv	ppmv	ppmv	ppmv	ppmv						
INFLUENT	09/16/19	290	0.19	2.3	0.63	1.9						
	09/20/19	-	-	-	-	-						
	09/30/19	110	0.056	1.6	0.74	3.1						
	10/30/19	66	0.023	0.44	0.31	1.30						
	12/12/19	196	0.053	0.88	1.3	5.3						
MIDPOINT	09/16/19	<1.0	<0.007	<0.04	<0.05	<0.03						
	09/20/19	-	-	-	-	-						
	09/30/19	<1.0	<0.007	< 0.04	< 0.05	<0.03						
	10/30/19	<1.0	<0.007	< 0.04	< 0.05	<0.03						
	12/12/19	<1.0	<0.007	<0.04	<0.05	<0.03						
EFFLUENT	09/16/19	-	-	-	-	-						
	09/20/19	<1.0	<0.007	< 0.04	<0.05	<0.03						
	09/30/19	<1.0	<0.007	< 0.04	< 0.05	<0.03						
	10/30/19	<1.0	<0.007	< 0.04	< 0.05	<0.03						
	12/12/19	<1.0	<0.007	<0.04	<0.05	<0.03						
VE-1	09/03/19	78.24	0.018	0.080	0.078	0.322						
VE-2	09/03/19	73.35	0.023	0.101	0.041	0.198						
VE-3	09/03/19	1,589	0.153	0.478	0.299	0.598						
VE-4	09/03/19	154	0.157	0.902	0.074	0.391						
RW-1	09/03/19	538	0.500	3.18	0.668	1.91						
RW-2	09/03/19	269	<0.003	0.080	0.115	0.322						
RW-3	09/03/19	64	<0.003	0.066	0.576	0.193						

Notes:

< = not detected at listed detection limit

Baseline well sampling on 9/03/19

Sytem restarted on 09/16/19

ppmv = parts per million by volume

TPH-Gx = total petroleum hydrocarbons quantified as gasoline

- = not applicable/sampled

TABLE 4 Subsurface Hydrocarbon Mass Removal and Emission Calculations Site No. 3520 Bremerton, Washington

1 of 1

ng Ope (19) 12 (19) 12 (19) 12 (19) 12 (19) 12 (19) 12 (19) 12 (19) 12 (19) 12 (19) 12 (19) 13 (19) 12 (19) 14 (19) 14 (19) 14 (19) 14	mulative perating Hours 13,899 13,939 14,180 14,273 14,372 mulative perating Hours 13,899 13,939 14,180 14,273 14,372 14,372 ng reporting	System Flowrate (scfm) 137 123 195 185 175 System Flowrate (scfm) 137 123 195 137 123 195 185 175 185 175 185 175 105 105 105 105 105 105 105 10	Conc. (ppmv) 290 - 110 66 196 196 Conc. (ppmv) - - <1 <1 <1 <1 <1 <1 <1 tection	Periodic Removal (lbs) 0 - 82 21 31 31 Periodic Emissions (lbs) - 0.07 0.64 0.23 0.24	Removal Rate (Ibs/day) 13 - 7 5 7 7 5 7 7 7 8 8 8 (Ibs/day) - 0.04 0.06 0.06 0.06 0.06	Conc. (ppmv) 0.19 0.06 0.02 0.05 Conc. (ppmv) - <0.007 <0.007 <0.007	Periodic Removal (lbs) 0.00 - 0.04 0.01 0.01 0.01 Periodic Emissions (lbs) - 0.00 0.00 0.00 0.00	Removal Rate (lbs/day) 0.008 - 0.002 0.002 0.002 Emissions Rate (lbs/day) - 0.0003 0.0004 0.0004 0.0004	Conc. (ppmv) 0.63 - 0.74 0.31 1.30 Conc. (ppmv) - <0.05 <0.05 <0.05 <0.05	Periodic Removal (lbs) 0.00 - 0.68 0.15 0.23 Ethylbenzen Periodic Emissions (lbs) - 0.00 0.04 0.01 0.01	Removal Rate (lbs/day) 0.00 - 0.05 0.03 0.01 E Emissions Rate (lbs/day) - 0.000 0.000 0.000 0.000	Conc. (ppmv) 2.3 - 1.6 0.4 0.9 Conc. (ppmv) - - <0.04 <0.04 <0.04	Periodic Removal (Ibs) 0.0 - 1.2 0.2 0.2 0.2 Toluene Periodic Emissions (Ibs) - 0.0 0.0 0.0 0.0	Removal Rate (lbs/day) 0.0 - 0.1 0.0 0.0 0.0 Emissions Rate (lbs/day) - 0.0000 0.0000 0.0000 0.0000	Conc. (ppmv) 1.9 - 3.1 1.3 5.3 Conc. (ppmv) - <0.03 <0.03 <0.03	Periodic Removal (lbs) 0.0 - 2.3 0.3 1.3 Xylenes Periodic Emissions (lbs) - 0.0 0.0 0.0	Removal Rate (lbs/day) 0.09 - 0.20 0.13 0.19 Emissions Rate (lbs/day) - 0.001 0.002 0.002
11 12 (19) 12 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 13 (19) 13 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14	13,939 14,180 14,273 14,372 mulative perating Hours 13,899 13,939 14,180 14,273 14,372	123 195 185 175 System Flowrate (scfm) 137 123 195 185 175	- 110 66 196 Conc. (ppmv) - <1 <1 <1 <1 <1 <1 <1	- 82 21 31 Periodic Emissions (lbs) - 0.07 0.64 0.23	- 7 5 7 Emissions Rate (lbs/day) - 0.04 0.06 0.06	- 0.06 0.02 0.05 Conc. (ppmv) - <0.007 <0.007	- 0.04 0.01 0.01 Periodic Emissions (Ibs) - 0.00 0.00 0.00	- 0.003 0.002 0.002 Emissions Rate (lbs/day) - 0.0003 0.0004 0.0004	- 0.74 0.31 1.30 Conc. (ppmv) - <0.05 <0.05 <0.05	- 0.68 0.15 0.23 Ethylbenzen Periodic Emissions (lbs) - 0.00 0.04 0.01	- 0.05 0.03 0.01 Emissions Rate (Ibs/day) - 0.000 0.000 0.000	- 1.6 0.4 0.9 Conc. (ppmv) - <0.04 <0.04 <0.04	- 1.2 0.2 0.2 Toluene Periodic Emissions (lbs) - 0.0 0.0 0.0	- 0.1 0.0 0.0 Emissions Rate (lbs/day) - 0.0000 0.0000 0.0000	- 3.1 1.3 5.3 Conc. (ppmv) - <0.03 <0.03	- 2.3 0.3 1.3 Periodic Emissions (Ibs) - 0.0 0.0	- 0.20 0.13 0.19 Emissions Rate (lbs/day) - 0.001 0.002
(19) 12 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 12 (19) 13 (19) 13 (19) 13 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14	14,180 14,273 14,372 mulative perating Hours 13,899 13,939 14,180 14,273 14,372	195 185 175 System Flowrate (scfm) 137 123 195 185 175	66 196 Conc. (ppmv) - - <1 <1 <1 <1 <1 <1	21 31 Periodic Emissions (Ibs) - 0.07 0.64 0.23	5 7 Emissions Rate (lbs/day) - 0.04 0.06 0.06	0.02 0.05 Conc. (ppmv) - <0.007 <0.007	0.04 0.01 0.01 Benzene Periodic Emissions (Ibs) - - 0.00 0.00 0.00	0.003 0.002 0.002 Emissions Rate (lbs/day) - 0.0003 0.0004 0.0004	0.31 1.30 Conc. (ppmv) - <0.05 <0.05 <0.05	0.68 0.15 0.23 Ethylbenzen Periodic Emissions (lbs) - 0.00 0.04 0.01	0.03 0.01 Emissions Rate (lbs/day) - 0.000 0.000 0.000	1.6 0.4 0.9 Conc. (ppmv) - <0.04 <0.04	1.2 0.2 0.2 Toluene Periodic Emissions (Ibs) - - 0.0 0.0 0.0	0.1 0.0 Emissions Rate (lbs/day) - 0.0000 0.0000 0.0000	1.3 5.3 Conc. (ppmv) - - <0.03 <0.03	2.3 0.3 1.3 Xylenes Periodic Emissions (Ibs) - 0.0 0.0	0.13 0.19 Emissions Rate (lbs/day) - 0.001 0.002
(19) 14 (19) 14 (19) 14 Ope H (19) 13 (19) 13 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14	14,273 14,372 mulative perating Hours 13,899 13,939 14,180 14,273 14,372	185 175 System Flowrate (scfm) 137 123 195 185 175	66 196 Conc. (ppmv) - - <1 <1 <1 <1 <1 <1	21 31 Periodic Emissions (Ibs) - 0.07 0.64 0.23	5 7 Emissions Rate (lbs/day) - 0.04 0.06 0.06	0.02 0.05 Conc. (ppmv) - <0.007 <0.007	0.01 0.01 Benzene Periodic Emissions (Ibs) - - 0.00 0.00 0.00	0.002 0.002 Emissions Rate (lbs/day) - 0.0003 0.0004 0.0004	0.31 1.30 Conc. (ppmv) - <0.05 <0.05 <0.05	0.15 0.23 Ethylbenzen Periodic Emissions (lbs) - 0.00 0.04 0.01	0.03 0.01 Emissions Rate (lbs/day) - 0.000 0.000 0.000	0.4 0.9 Conc. (ppmv) - <0.04 <0.04	0.2 0.2 Periodic Emissions (Ibs) - 0.0 0.0 0.0	0.0 0.0 Emissions Rate (lbs/day) - 0.0000 0.0000 0.0000	1.3 5.3 Conc. (ppmv) - - <0.03 <0.03	0.3 1.3 Vylenes Periodic Emissions (lbs) - 0.0 0.0	0.13 0.19 Emissions Rate (lbs/day) - 0.001 0.002
19 14 ng Cum Ope H 19 13 19 14 19 14 19 14 19 14 19 14 19 14 19 14	14,372 mulative perating Hours 13,899 13,939 14,180 14,273 14,372	175 System Flowrate (scfm) 137 123 195 185 175	196 Conc. (ppmv) - <1 <1 <1 <1 <1 <1	31 TPH Periodic Emissions (Ibs) - 0.07 0.64 0.23	7 Emissions Rate (Ibs/day) - 0.04 0.06 0.06	0.05 Conc. (ppmv) - <0.007 <0.007	0.01 Benzene Periodic Emissions (lbs) - 0.00 0.00 0.00	0.002 Emissions Rate (lbs/day) - 0.0003 0.0004 0.0004	1.30 Conc. (ppmv) - <0.05 <0.05 <0.05	0.23 Ethylbenzen Periodic Emissions (lbs) - 0.00 0.04 0.01	0.01 e Emissions Rate (lbs/day) - 0.000 0.000 0.000	0.9 Conc. (ppmv) - <0.04 <0.04 <0.04	0.2 Toluene Periodic Emissions (lbs) - 0.0 0.0 0.0	0.0 Emissions Rate (Ibs/day) - 0.0000 0.0000 0.0000	5.3 Conc. (ppmv) - <0.03 <0.03	1.3 Xylenes Periodic Emissions (lbs) - 0.0 0.0	0.19 Emissions Rate (lbs/day) - 0.001 0.002
ng Cum Ope H (19 13 (19 13 (19 14) (19 15) (19	mulative perating Hours 13,899 13,939 14,180 14,273 14,372	System Flowrate (scfm) 137 123 195 185 175	Conc. (ppmv) - <1 <1 <1 <1 <1 <1 <1	TPH Periodic Emissions (Ibs) - 0.07 0.64 0.23	Emissions Rate (Ibs/day) - 0.04 0.06 0.06	Conc. (ppmv) - <0.007 <0.007 <0.007	Benzene Periodic Emissions (lbs) - 0.00 0.00 0.00	Emissions Rate (lbs/day) - 0.0003 0.0004 0.0004	Conc. (ppmv) - <0.05 <0.05 <0.05	Ethylbenzen Periodic Emissions (Ibs) - 0.00 0.04 0.01	e Emissions Rate (lbs/day) - 0.000 0.000 0.000	Conc. (ppmv) - <0.04 <0.04 <0.04	Toluene Periodic Emissions (lbs) - 0.0 0.0 0.0	Emissions Rate (lbs/day) - 0.0000 0.0000 0.0000	Conc. (ppmv) - <0.03 <0.03	Xylenes Periodic Emissions (Ibs) - 0.0 0.0	Emissions Rate (lbs/day) - 0.001 0.002
ng Ope (19) 13 (19) 13 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 Iative using 14	perating Hours 13,899 13,939 14,180 14,273 14,372	Flowrate (scfm) 137 123 195 185 175	(ppmv) - <1 <1 <1 <1 <1	Periodic Emissions (lbs) - 0.07 0.64 0.23	Rate (lbs/day) - 0.04 0.06 0.06	(ppmv) - <0.007 <0.007 <0.007	Periodic Emissions (Ibs) - 0.00 0.00 0.00	Rate (Ibs/day) - 0.0003 0.0004 0.0004	Conc. (ppmv) - <0.05 <0.05 <0.05	Periodic Emissions (Ibs) - 0.00 0.04 0.01	Emissions Rate (Ibs/day) - 0.000 0.000 0.000	(ppmv) - <0.04 <0.04 <0.04	Periodic Emissions (Ibs) - 0.0 0.0 0.0	Rate (Ibs/day) - 0.0000 0.0000 0.0000	(ppmv) - <0.03 <0.03	Periodic Emissions (Ibs) - 0.0 0.0	Rate (lbs/day) - 0.001 0.002
ng Ope (19) 13 (19) 13 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 Iative using 14	perating Hours 13,899 13,939 14,180 14,273 14,372	Flowrate (scfm) 137 123 195 185 175	(ppmv) - <1 <1 <1 <1 <1	Periodic Emissions (lbs) - 0.07 0.64 0.23	Rate (lbs/day) - 0.04 0.06 0.06	(ppmv) - <0.007 <0.007 <0.007	Periodic Emissions (Ibs) - 0.00 0.00 0.00	Rate (Ibs/day) - 0.0003 0.0004 0.0004	Conc. (ppmv) - <0.05 <0.05 <0.05	Periodic Emissions (Ibs) - 0.00 0.04 0.01	Emissions Rate (Ibs/day) - 0.000 0.000 0.000	(ppmv) - <0.04 <0.04 <0.04	Periodic Emissions (Ibs) - 0.0 0.0 0.0	Rate (Ibs/day) - 0.0000 0.0000 0.0000	(ppmv) - <0.03 <0.03	Periodic Emissions (Ibs) - 0.0 0.0	Rate (lbs/day) - 0.001 0.002
ng Ope (19) 13 (19) 13 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 Iative using 14	perating Hours 13,899 13,939 14,180 14,273 14,372	Flowrate (scfm) 137 123 195 185 175	(ppmv) - <1 <1 <1 <1 <1	Emissions (lbs) - 0.07 0.64 0.23	Rate (lbs/day) - 0.04 0.06 0.06	(ppmv) - <0.007 <0.007 <0.007	Emissions (Ibs) - 0.00 0.00 0.00	Rate (Ibs/day) - 0.0003 0.0004 0.0004	(ppmv) - <0.05 <0.05 <0.05	Emissions (lbs) - 0.00 0.04 0.01	Rate (Ibs/day) - 0.000 0.000 0.000	(ppmv) - <0.04 <0.04 <0.04	Emissions (lbs) - 0.0 0.0 0.0	Rate (Ibs/day) - 0.0000 0.0000 0.0000	(ppmv) - <0.03 <0.03	Emissions (lbs) - 0.0 0.0	Rate (lbs/day) - 0.001 0.002
H (19) 13 (19) 13 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14 (19) 14	Hours 13,899 13,939 14,180 14,273 14,372	(scfm) 137 123 195 185 175	- <1 <1 <1 <1 <1	(lbs) - 0.07 0.64 0.23	(lbs/day) - 0.04 0.06 0.06	<0.007 <0.007 <0.007	(lbs) - 0.00 0.00 0.00	(lbs/day) - 0.0003 0.0004 0.0004	- <0.05 <0.05 <0.05	(lbs) - 0.00 0.04 0.01	(lbs/day) - 0.000 0.000 0.000	- <0.04 <0.04 <0.04	(lbs) - 0.0 0.0 0.0	(lbs/day) - 0.0000 0.0000 0.0000	- <0.03 <0.03	(lbs) - 0.0 0.0	(lbs/day) - 0.001 0.002
19 13 19 13 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14	13,899 13,939 14,180 14,273 14,372	137 123 195 185 175	<1 <1 <1 <1	0.07 0.64 0.23	- 0.04 0.06 0.06	<0.007 <0.007 <0.007	- 0.00 0.00 0.00	0.0003 0.0004 0.0004	<0.05 <0.05 <0.05	- 0.00 0.04 0.01	- 0.000 0.000 0.000	<0.04 <0.04 <0.04	0.0 0.0 0.0	- 0.0000 0.0000 0.0000	<0.03 <0.03	- 0.0 0.0	- 0.001 0.002
19 13 19 12 19 12 19 12 19 12 19 12 Iative using	13,939 14,180 14,273 14,372	123 195 185 175	<1 <1 <1 <1	0.07 0.64 0.23	0.06	<0.007 <0.007 <0.007	0.00 0.00 0.00	0.0003 0.0004 0.0004	<0.05 <0.05 <0.05	0.00 0.04 0.01	0.000 0.000 0.000	<0.04 <0.04 <0.04	0.0 0.0 0.0	0.0000 0.0000	<0.03 <0.03	0.0	0.001 0.002
(19 14 (19 14 (19 14 (19 14 Iative using	14,180 14,273 14,372	195 185 175	<1 <1 <1	0.64 0.23	0.06	<0.007 <0.007	0.00 0.00	0.0004 0.0004	<0.05 <0.05	0.04 0.01	0.000	<0.04 <0.04	0.0	0.0000 0.0000	<0.03	0.0	0.002
(19 14) (19 14) lative using	14,273 14,372	185 175	<1 <1	0.23	0.06	<0.007	0.00	0.0004	<0.05	0.01	0.000	<0.04	0.0	0.0000			
19 14	14,372	175	<1												< 0.03	0.0	0.000
lative using				0.24	0.06	<0.007	0.00	0.0004	<0.05	0.01	0.000	<0.04	0.0	0.0000		0.0	0.002
0	ng reporting	limit if no de	tection									10.04	0.0	0.0000	<0.03	0.0	0.002
day ion by volun h Hydrocarb <u>TPH-G</u>	rbons	r million x cub		iinute x 60 minu			nds per lb mol	x 24 hours/da	У	_							
			1,000	0,000 x 379 cub	ic feet per lb r	mol											ľ
s <u>Benze</u>	zene parts po	er million x cu		minute x 60 mir 0,000 x 379 cub			unds per lb mo	l x 24 hours/d	ау	-							
ons Ethylb	/lbenzene pa	rts per millio					06 pounds per	lb mol x 24 h	ours/day	-							
Toluer	iene parts pe	er million x cu					ınds per lb mo	x 24 hours/d	зу	_							
			1,000	0,000 x 379 cub	ic teet per lb r	moi											
		r million x cul	bic feet per m	ninute x 60 minu	utes/hour x ho	ours x 106 po	unds per lb mo	ol x 24 hours/c	lay	_							ľ
Xylene	nes parts pe		1,000	0,00 <mark>0 x 379 cub</mark>	ic feet per lb r	mol				_							
Xylene	nes parts pe																
	Tolu	Toluene parts pe	Toluene parts per million x cu	1,000 Toluene parts per million x cubic feet per m 1,000 Xylenes parts per million x cubic feet per m	1,000,000 x 379 cub Toluene parts per million x cubic feet per minute x 60 min 1,000,000 x 379 cub Xylenes parts per million x cubic feet per minute x 60 min	1,000,000 x 379 cubic feet per lb Toluene parts per million x cubic feet per minute x 60 minutes/hour x h 1,000,000 x 379 cubic feet per lb Xylenes parts per million x cubic feet per minute x 60 minutes/hour x ho	1,000,000 x 379 cubic feet per lb mol Toluene parts per million x cubic feet per minute x 60 minutes/hour x hours x 92 pou 1,000,000 x 379 cubic feet per lb mol	1,000,000 x 379 cubic feet per lb mol Toluene parts per million x cubic feet per minute x 60 minutes/hour x hours x 92 pounds per lb mol 1,000,000 x 379 cubic feet per lb mol Xylenes parts per million x cubic feet per minute x 60 minutes/hour x hours x 106 pounds per lb mo	1,000,000 x 379 cubic feet per lb mol Toluene parts per million x cubic feet per minute x 60 minutes/hour x hours x 92 pounds per lb mol x 24 hours/d 1,000,000 x 379 cubic feet per lb mol Xylenes parts per million x cubic feet per minute x 60 minutes/hour x hours x 106 pounds per lb mol x 24 hours/d	1,000,000 x 379 cubic feet per lb mol Toluene parts per million x cubic feet per minute x 60 minutes/hour x hours x 92 pounds per lb mol x 24 hours/day 1,000,000 x 379 cubic feet per lb mol Xylenes parts per million x cubic feet per minute x 60 minutes/hour x hours x 106 pounds per lb mol x 24 hours/day	1,000,000 x 379 cubic feet per lb mol Toluene parts per million x cubic feet per minute x 60 minutes/hour x hours x 92 pounds per lb mol x 24 hours/day 1,000,000 x 379 cubic feet per lb mol Xylenes parts per million x cubic feet per minute x 60 minutes/hour x hours x 106 pounds per lb mol x 24 hours/day	1,000,000 x 379 cubic feet per lb mol Toluene parts per million x cubic feet per minute x 60 minutes/hour x hours x 92 pounds per lb mol x 24 hours/day 1,000,000 x 379 cubic feet per lb mol Xylenes parts per million x cubic feet per minute x 60 minutes/hour x hours x 106 pounds per lb mol x 24 hours/day	1,000,000 x 379 cubic feet per lb mol Toluene parts per million x cubic feet per minute x 60 minutes/hour x hours x 92 pounds per lb mol x 24 hours/day 1,000,000 x 379 cubic feet per lb mol Xylenes parts per million x cubic feet per minute x 60 minutes/hour x hours x 106 pounds per lb mol x 24 hours/day	1,000,000 x 379 cubic feet per lb mol Toluene parts per million x cubic feet per minute x 60 minutes/hour x hours x 92 pounds per lb mol x 24 hours/day 1,000,000 x 379 cubic feet per lb mol Xylenes parts per million x cubic feet per minute x 60 minutes/hour x hours x 106 pounds per lb mol x 24 hours/day	1,000,000 x 379 cubic feet per lb mol Toluene parts per million x cubic feet per minute x 60 minutes/hour x hours x 92 pounds per lb mol x 24 hours/day 1,000,000 x 379 cubic feet per lb mol Xylenes parts per million x cubic feet per minute x 60 minutes/hour x hours x 106 pounds per lb mol x 24 hours/day	1,000,000 x 379 cubic feet per lb mol Toluene parts per million x cubic feet per minute x 60 minutes/hour x hours x 92 pounds per lb mol x 24 hours/day 1,000,000 x 379 cubic feet per lb mol Xylenes parts per million x cubic feet per minute x 60 minutes/hour x hours x 106 pounds per lb mol x 24 hours/day	1,000,000 x 379 cubic feet per lb mol Toluene parts per million x cubic feet per minute x 60 minutes/hour x hours x 92 pounds per lb mol x 24 hours/day 1,000,000 x 379 cubic feet per lb mol Xylenes parts per million x cubic feet per minute x 60 minutes/hour x hours x 106 pounds per lb mol x 24 hours/day 1,000,000 x 379 cubic feet per lb mol Xylenes parts per million x cubic feet per minute x 60 minutes/hour x hours x 106 pounds per lb mol x 24 hours/day 1,000,000 x 379 cubic feet per lb mol

TABLE 5 System Destruction Efficiencies Site No. 3520 Bremerton, Washington 1 of 1

	Destruction Efficiencies											
TPH-Gx	Benzene	Toluene	Ethylbenzene	Xylenes								
99.66%	96.32%	98.26%	92.06%	98.42%								
99.09%	87.50%	97.50%	93.24%	99.03%								
99.24%	84.78%	95.45%	91.94%	98.85%								
99.74%	93.40%	97.73%	98.08%	99.72%								
	99.66% 99.09% 99.24%	99.66% 96.32% 99.09% 87.50% 99.24% 84.78%	99.66% 96.32% 98.26% 99.09% 87.50% 97.50% 99.24% 84.78% 95.45%	99.66% 96.32% 98.26% 92.06% 99.09% 87.50% 97.50% 93.24% 99.24% 84.78% 95.45% 91.94%								

Notes:

 * = Destruction efficiency was calculated with influent sample collected on 9/16/19 and effluent sample collected on 9/20/19

** = Destruction efficiency calculated with 1/2 reporting limit due to no laboratory detection

GRAPHS

GRAPH 1 Vapor Extraction System - Mass Removal Trend Site No. 3520 Bremerton, Washington

GRAPH 2 Vapor Extraction System - Hydrocarbon Concentrations by Well SiteNo. 3520 Bremerton, Washington

APPENDIX A

Laboratory Analytical Reports

Libby Environmental, Inc. 3322 South Bay Road NE • Olympia, WA 98506-2957

November 6, 2019

Laura Skow Montrose Environmental 4150 B Place NW, Suite 106 Auburn, WA 98001

Dear Ms. Skow:

Please find enclosed the analytical data report for the Site No. 3520 Project located in Bremerton, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

hz I Chu

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	ental,	Inc.		Ch	air	1 0	f Cı	ust	od	y R	ec	ord	k							www.	LibbyE	nvironme	ntal.com
4139 Libby Road NE Olympia, WA 98506	Fax:	360-352-2 360-352-4					Date):	12	9/3	0/1	9					Page	e:		1	of		1
Client: Montrose El	hurspu	enter(-	Proj	ect M	lanaç	ger:	10	iova	: 5	Kon	(
Address: 4150 B			6			_	Proj	ect N	ame	5	site	- A	10.	3	52	0							
A 1			SA Zip	9800	1	_								We			City,	Stat	e: /	Bier	nator	1, W	7
Phone: 253-656-4	856	Fax:				_				ick					/		Date	e of C	ollec	tion:	/	0/301	19
Client Project # Pc	01041	505				_	Ema	ul:															
Sample Number	Depth	Time	Sample Type	Container Type	1	28 m	ANT AND	5+ 802 5+ 802	AR IN	C.C. C.C.	5+ 77, 5	20 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10 11 21 832 11 21 832 11	2 Jd 8	10 10 10 10 10 10 10 10 10 10	5 me	12 12 12 12 12 12 12 12 12 12 12 12 12 1	hetals			Field N	lotes	
1 INFLUENT	NIA	10:00	air	Tedlar		×	4																
2 MID-POINT	-	9:55		<u> </u>		d	1																
3 EFFLUENT	V	9:50	×	, t		4	A																
4																							
5																							
6		,				-																	
8																							
9																							
10							,																
11																							
12																							
13																							
14																							
15																							
16																							
17 //																							
Relinquished by		/Time 3 55		Received by:)	0				Date /		3455		Sam	·				Rem	narks:			
Relinguished by:	/ /	/ Time		Received by:	7	6			10/	Date		0.22		l Condi	tion?		Υ	N °C					
	Date									- 410 /		-	Temp	o. s Intact	2	Y	N	°C N/A					
Relinquished by:	Date	/ Time		Received by:						Date	/ Time	9	÷ —	Numb	_	1	- N	1 11/71					
														ontaine					TA	T: 2	4HR	48HR	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay. Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law.

SITE NO. 3520 PROJECT Montrose Environmental, Inc. Bremerton, Washington Libby Project # L191030-2 Client Project # PO 1041505 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	Influent	Influent Dup	Mid-Point	Effluent
		Blank		-		
Date Sampled		N/A	10/30/19	10/30/19	10/30/19	10/30/19
Date Analyzed	PQL	11/1/19	11/1/19	11/1/19	11/1/19	11/1/19
	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv
Benzene	0.007	nd	0.023	0.024	nd	nd
Toluene	0.04	nd	0.44	0.41	nd	nd
Ethylbenzene	0.05	nd	0.31	0.31	nd	nd
Total Xylenes	0.03	nd	1.30	1.26	nd	nd
Gasoline	1.0	nd	66	67	nd	nd
Surrogate Recovery						
Dibromofluoromethane		98	93	104	98	107
1,2-Dichloroethane-d4		101	124	129	121	128
Toluene-d8		93	101	102	96	103
4-Bromofluorobenzene		97	103	105	100	102

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Vapor

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

SITE NO. 3520 PROJECT Montrose Environmental, Inc. Bremerton, Washington Libby Project # L191030-2 Client Project # PO 1041505 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Vapor

		Labo	ratory Cont	rol Sample	
	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	ug/l	ug/l	(%)	Limits (%)	
Benzene	0.25	0.26	105	80-120	
Toluene	0.25	0.26	104	80-120	
Ethylbenzene	0.25	0.25	98	80-120	
Total Xylenes	0.75	0.74	98	80-120	
Surrogate Recovery					
Dibromofluoromethane			107	65-135	
1,2-Dichloroethane-d4			122	65-135	
Toluene-d8			96	65-135	
4-Bromofluorobenzene			103	65-135	

SITE NO. 3520 PROJECT Montrose Environmental, Inc. Libby Project # L191030-2 Date Received 10/30/2019 Time Received 1:55 PM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody							
1. Is the Chain of Custody	/ complete?	\checkmark	Yes		No		
2. How was the sample de	elivered?		Hand Delivered	\checkmark	Picked Up		Shipped
<u>Log In</u>							
3. Cooler or Shipping Con	ntainer is present.		Yes	\checkmark	No		N/A
4. Cooler or Shipping Con	ntainer is in good condition.		Yes		No	\checkmark	N/A
5. Cooler or Shipping Con	ntainer has Custody Seals present.		Yes		No	\checkmark	N/A
6. Was an attempt made	to cool the samples?		Yes		No	1	N/A
7. Temperature of cooler	(0°C to 8°C recommended)		N/A	°C			
8. Temperature of sample	e(s) (0°C to 8°C recommended)		N/A	°C			
9. Did all containers arrive	e in good condition (unbroken)?	\checkmark	Yes		No		
10. Is it clear what analyse	es were requested?	1	Yes		No		
11. Did container labels m	natch Chain of Custody?	1	Yes		No		
12. Are matrices correctly	identified on Chain of Custody?	\checkmark	Yes		No		
13. Are correct containers	s used for the analysis indicated?	1	Yes		No		
14. Is there sufficient sam	ple volume for indicated analysis?	\checkmark	Yes		No		
15. Were all containers pr	roperly preserved per each analysis?	\checkmark	Yes		No		
16. Were VOA vials collect	cted correctly (no headspace)?		Yes		No	\checkmark	N/A
17. Were all holding times	s able to be met?	\checkmark	Yes		No		
Discrepancies/ Note	es						
18. Was client notified of	all discrepancies?		Yes		No	\checkmark	N/A
Person Notified:				_	Date	:	
By Whom:					Via	:	
Regarding:				_			
19. Comments.	apor samples						

3322 South Bay Road NE • Olympia, WA 98506-2957

December 19, 2019

Laura Skow Montrose Environmental 4150 B Place NW, Suite 106 Auburn, WA 98001

Dear Ms. Skow:

Please find enclosed the analytical data report for the Site No. 3520 Project located in Bremerton, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	ental,	Inc.		Cł	nair	1 0	f Cu	ist	od	y R	eco	orc	ł					www	.LibbyEn	vironmen	al.com
4139 Libby Road NE Olympia, WA 98506		360-352-2 360-352-4					Date:		1	2/12	2/19				Pa	ge:		1	of	1	
Client: Montrose Enviro	nuenta	1					Proje	ct M	anag	er:	Lac	ver	SKOW								
Address: 4150 B PI NW							Proje	ct Na	ame		site	N	0. 3520	2							
			NA Zip	: 98001									n Way		Cit	y, Sta	ate:	Birch	erton	, WA	
Phone: 2 53 656 4856													ev '			te of	Colle	ction:	12/1	2/19	
Client Project # P0 10	41505	5					Emai						10intro se -			om					
Sample Number	Depth	Time	Sample Type	Container Type	1	C 826	ATPH-S	++++	ALPH AN	CO C	5+ 10+ 5+ 10+ 5+ 0+	0+18/18/	10 10 10 2 5 5 11 20	N1CA	Netals RCRA	herals	1012	1000	Field No	otes	
1 influent	na	10:10	Vapor	Tedlar		4									d						
2 mid-point		10:05				d									d						
3 effivent		10:40		+		A			-						X			26	agslia	extra in	case
4																			rsp	tive du	n'y
5 discharge	na	10:15	Water	VOA /POly		4									+	04					
6																					
7																					
8																					
9																					
10																					
11																					
12																					
13																					
14																					
15																					
16																					
17																					
Relinquished by: Asheritan 12/		/ Time 0: 55	-	Received by:				17	[13]		/ Time	5	Sam Good Conditi		eceip Y	N	Rer	narks:			
Relinquished by:	Date	/ Time		Received by:				9	~	Date	/ Time		Temp.			°C					
Deline interation		/									1 =:		Seals Intact?	and the second se	'N	N/A					
Relinquished by:	Date	/ Time		Received by:						Date	/ Time		Total Number Container				TA	T: 2	4HR 4	18HR (-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay	Client agrees to pay the costs of collection including	ng court costs and reasonable attorney	fees to be determined by a cout of law.

Distribution: White - Lab, Yellow - File, Pink - Originator

SITE NO. 3520 PROJECT Montrose Environmental, Inc. Bremerton, Washington Libby Project # L191213-7 Client Project # PO 1041505 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	Influent	Influent Dup	Mid-Point	Effluent
		Blank				
Date Sampled		N/A	12/12/19	12/12/19	12/12/19	12/12/19
Date Analyzed	PQL	12/13/19	12/13/19	12/13/19	12/13/19	12/13/19
	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv
Benzene	0.007	nd	0.053	0.047	nd	nd
Toluene	0.04	nd	0.88	0.74	nd	nd
Ethylbenzene	0.05	nd	1.3	1.2	nd	nd
Total Xylenes	0.03	nd	5.3	4.5	nd	nd
Gasoline	1.0	nd	196	110 E	nd	nd
Surrogate Recovery						
Dibromofluoromethane		116	73	83	80	101
1,2-Dichloroethane-d4		122	103	82	84	96
Toluene-d8		89	108	99	100	99
4-Bromofluorobenzene		97	117	124	114	101

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Vapor

"E" Value above quantitation range.

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

SITE NO. 3520 PROJECT Montrose Environmental, Inc. Bremerton, Washington Libby Project # L191213-7 Client Project # PO 1041505 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Vapor

		Labo	ratory Cont	rol Sample	
	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	ug/l	ug/l	(%)	Limits (%)	0
Benzene	0.25	0.23	92	80-120	
Toluene	0.25	0.22	88	80-120	
Ethylbenzene	0.25	0.24	95	80-120	
Total Xylenes	0.75	0.71	95	80-120	
Surrogate Recovery					
Dibromofluoromethane			117	65-135	
1,2-Dichloroethane-d4			121	65-135	
Toluene-d8			94	65-135	
4-Bromofluorobenzene			104	65-135	

SITE NO. 3520 PROJECT Montrose Environmental, Inc. Bremerton, Washington Libby Project # L191213-7 Client Project # PO 1041505

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	Discharge	Discharge
		Blank	-	Dup
Date Sampled		N/A	12/12/19	12/12/19
Date Analyzed	PQL	12/13/19	12/13/19	12/13/19
	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Benzene	1.0	nd	nd	nd
Toluene	2.0	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd
Total Xylenes	2.0	nd	nd	nd
Gasoline	100	nd	nd	nd
Surrogate Recovery				
Dibromofluoromethane		116	103	107
1,2-Dichloroethane-d4		122	101	100
Toluene-d8		89	96	96
4-Bromofluorobenzene		97	100	97

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

SITE NO. 3520 PROJECT Montrose Environmental, Inc. Bremerton, Washington Libby Project # L191213-7 Client Project # PO 1041505

QA/QC for Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

	Matrix S	pike Sample Ic	lentification:	Discharge				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(µg/L)	(µg/L)	(µg/L)	(%)	(%)	(%)	(%)	-
Benzene	5.0	4.6	4.5	92	90	2.2	65-135	
Toluene	5.0	4.6	4.5	92	90	2.2	65-135	
Ethylbenzene	5.0	4.9	5.1	98	102	4.0	65-135	
Total Xylenes	15.0	15.3	14.4	102	96	6.1	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				106	99		65-135	
1,2-Dichloroethane-d4				92	87		65-135	
Toluene-d8				99	100		65-135	
4-Bromofluorobenzene				100	96		65-135	

ANALYSES PERFORMED BY: Sherry Chilcutt

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	(µg/L)	(%)	Limits (%)	
Benzene	5.0	4.6	92	80-120	
Toluene	5.0	4.4	88	80-120	
Ethylbenzene	5.0	4.8	96	80-120	
Total Xylenes	15.0	14.2	95	80-120	
Surrogate Recovery					
Dibromofluoromethane			117	65-135	
1,2-Dichloroethane-d4			121	65-135	
Toluene-d8			94	65-135	
4-Bromofluorobenzene			104	65-135	

SITE NO. 3520 PROJECT Montrose Environmental, Inc. Bremerton, Washington Libby Project # L191213-7 Client Project # PO 1041505 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Total Lead in Water by EPA 7010 Series

Date	Lead
Analyzed	$(\mu g/L)$
12/17/19	nd
12/17/19	nd
	5.0
	Analyzed 12/17/19

ANALYSES PERFORMED BY: Dirk Peterson

QA/QC for Total Lead in Water by EPA 7010 Series

Sample Number	Date Analyzed	Lead (% Recovery)		
LCS	12/17/19	94%		
L191213-6 MS	12/17/19	108%		
L191213-6 MSD	12/17/19	108%		
RPD	12/17/19	0%		

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

SITE NO. 3520 PROJECT Montrose Environmental, Inc. Libby Project # L191213-7 Date Received 12/13/2019 Time Received 10:55 AM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

<u>Chain of Custody</u>							
1. Is the Chain of Custody comp	lete?	1	Yes		No		
2. How was the sample delivered?			Hand Delivered	\checkmark	Picked Up	1	Shipped
<u>Log In</u>							
3. Cooler or Shipping Container is present.		1	Yes		No		□ N/A
4. Cooler or Shipping Container is in good condition.		\checkmark	Yes		No		□ N/A
5. Cooler or Shipping Container has Custody Seals present.			Yes	\checkmark	No		□ N/A
6. Was an attempt made to cool the samples?		1	Yes		No		□ N/A
7. Temperature of cooler (0°C to	o 8°C recommended)		0.0	-			
8. Temperature of sample(s) (0°	°C to 8°C recommended)		5.7	°C			
9. Did all containers arrive in goo	od condition (unbroken)?	\checkmark	Yes		No		
10. Is it clear what analyses wer	e requested?	1	Yes		No		
11. Did container labels match C	Chain of Custody?	1	Yes		No		
12. Are matrices correctly identit	fied on Chain of Custody?	1	Yes		No		
13. Are correct containers used	for the analysis indicated?	1	Yes		No		
14. Is there sufficient sample vo	lume for indicated analysis?	\checkmark	Yes		No		
15. Were all containers properly preserved per each analysis?		\checkmark	Yes		No		
16. Were VOA vials collected correctly (no headspace)?		1	Yes		No		□ N/A
17. Were all holding times able to be met?		1	Yes		No		
Discrepancies/ Notes							
18. Was client notified of all disc	crepancies?		Yes		No		✓ N/A
Person Notified:						Date:	
By Whom:						Via:	
Regarding:							
19. Comments. Vapor ar	nd water samples						
APPENDIX B

Field Data Sheets

Max Flow Rate:				Address:	4200 Wheaton Way Bremerton, Washington	ton Way ashington	Max. VOC Out:		W COLONIAL SANDY AND AND AND AND AND AND AND AND AND AND	1			Min Op. Temp:
Date	ц Ц Ш	# af Wells (Zones) On- line	Arriva) Status (an/off)	Departure Status (on/off)	System Hour Meter	ifluent (in. Hg)	system Flow Rate Activity SCFM	Total System Influent VGC Concentration (ppmV)	Mid-Point VDC Concentration (ppmV)	Effluent VOC Concentration (ppmV)	Post-blower flow temperature (deg. F)	Water Holding Tank Fluid Level (%)	influent temp. (of)
i0/4/i9	9:00	6	NO	NO	70475.4	8.0	185	240	0.0	0.0	72		55.01
10/8/19	12:30	Ś	N N N	Ž O	70574.8	8,0	175	221	0.0	0,0	70		52.0
10/10	16:00	Ś	0N	No	70625,5	8.0	178	266	0.0	0 0	72	0.0	56.4
									A STATE OF THE OWNER				
									A CONTRACTOR OF A CONTRACTOR O				
	-												
						Vapor Extractio	n System Mainte	Vapor Extraction System Maintenance Service Record	ard				
Date	Electric Meter Reading	Blower Amperage	Test Safety Interlock System	Replaced V- Belts	Changed Blower Oil	Greased Matar	Greased Blower	Inspect Fire Supression Device	Empty Water Holding Tank			Comments	
10/4/19	ми	24.0	Yes	NO NO	NO	Yes	Yes	20	NO	System	System Tomin normally	NOVIMGI	ilv ,
10/8/19	мК	23.8	ves	SC	SC	202	NC N	NO	No		2		
10/10/19	Mu	ММ	32	NC	2 S	res	22	tes	Na		4		na mini mang mang mang mang mang mang mang mang
Same and the second													
													aran na an a
Notes:	Notes: MM= NOT WEGS Jeck	-mersu	red										

Vapor Extraction Individual Well Data Sheet

City: Breinerton, WA Station No.: 3520

Stati	Station No.: 3520	520														· 7 .	₩	
		Vapor System	E		VE-1			VE- 2			5-31		S	VELH		- <i>I</i>	16-3 /RW-2	1-2
Da	Date Pre-Dilution				Vac (Hada) 5	Status		Vac (H ² 0")		Conc.	Vac (H ² O")	Status		Var (H ² O")	Status	Conc.	("U2L (H2O")	Status
+	(vinida)	(_O_H)	(an/att)	(ppmV)		(an/aff)	(Vmqq)		(an/off)	(Vmqq)		(an/off)	(Vmqq)	()	(on/off)	() Mdd		(go/aff)
11:45 91319	1191 Repo	arr/	11	11.7	82		12.9	¥ 2		231	ぼえ		17.9	2.2				
	9/3/19 BAD	L' L'	1.1	21.3	••••••		18.2			340			30.3				_	
H: 45	7		617	24-5			22.4			215			35.0					
14-30 916/19	16		OFF/ON 5-7.7	54.7			50.2			400			34-8					
16:30			ONION 576	576	>		166	>		\$350	\		0.to	5				
101 30 9/26/19	119		ON/ON 13.3	13.3	4	NO	OFF +		\uparrow	*			UFF-			203	Nu	20
12: 20 913019	oliq		onion nm	ž	1.0	NO	OFF -		Î	*			075-		$ \uparrow$	MU	7.5	NO
9-00 90419	भीष		MM No/NO	MM	SiC	S	OFF -		~	*			OFF		Ť	Mu	5.0	SO
12:30 10/5/19	1/14		anlow nm	hm	5.0	N N O	OFF +		ſ	*			OFF +		1	ž	5.5	NO
16:00 10/10/19	2/19		0.40 64-0	64.0	5,0	20	255 +			*			CFF .		1	333	5,0	20
																	ſ	
<u> </u>		Vapor System	Ę.		Rul-I			R. W - 2			R 119				ſ			
						-												

_		>	Vapor System	F		RW-1			Rw-2			RW - 3							
	Date	Pre-Dilution (ppmV)	Vac (H²O")	Status (on/off)	Conc. (ppmV)	Vac (H ² O")	Status (on/off)	Conc. (ppmV)	Vac (H ² O")	Status (on/off)	Conc. (ppmV)	Vac (H ² O")	Status (on/off)	Conc. (ppmV)	Vac (H²O")	Status (on/off)	Conc. (ppmV)	Vac (H ² O")	Status (on/off)
11:45	9/3/19				108	ちん		160	24		55.8	WN NN				ŀ			
12 45	9/3119	10HF/	UN 10	OFF	125			123			54.8	-							
14:45	7	T			62.8			92.8			28.8								
11:30	9116/19			077/0N 296	296			142			73								
16:30	_\$			CNION 669	669	-		1062			450	->							Ī
10:30	10-30 9/26/19			0 w/cw 17.8	17.8	→	NO	*			8.4	5	C.N						
12:20	12:20 9/30/19			onion nm	ИМ	7.0	NO	₹			MM	7.5	2S						ľ
9:00	9:00 10/4/19			MU NO NO	NW	5.0	NO	∦			MM	5,0	No						
12:30	12:30 10/3/19			MU NOINO	Mu	5.0	No	¥			ши	5,0	20						
16:00	16:00 10/10/A			0.10N 64.7	64.7	5.C	S	*	<u> </u>	-	45.3	5.0	NO						
																		· · ·	
													-						
	¥	* VE-3/RW-2 Share Common	W-2	Share	imo) .	(Pro. 1	l'we,	CONCE	live, concentration is for both wells	si no	for	thed	wells	۴ ۱-					

Station No:	o: 3250	,	æ	Project Number:	: 029RC1-123155	123155	Vapor Extract	Vapor Extraction System Data Sheet	Sheet					
Max Flow Rate:	6	1		Address:	.: 4200 Wheaton Way Bremerton, Washington	iton Way Vashington		Max, VOC Out:					Min	Min Op. Temp:
Date	Time	# af Wells (Zones) On- line	Arrival Status (on/off)	Departure Status (on/off)	System	System Influent Vacuum (in. Hg)	System Influent Temp (deg. F)	System Flow Rate (SCFM)	Total System Influent VOC Concentration (ppmV)	Mid-Point VOC Concentration (ppmV)	Effluent VOC Concentration (ppmV)	Post-blower flow temperature (deg. F)	Water Holding Tank Fluid Level (%)	Comments
10/18/19	10:05	+	na	on	0.11801	12	56.0	0110	297	6.0	0 0	75	2	
10/21/19	13:30	7	eft.	0N	70830.5	12	57.5	155	289	0.0	0.0	70	30	
10/24/19	13:45	+	affe	сл С	70840.9	ши	MM	ти	۲ ۲	MM	SW	242	30	
10/25/19	13:00	t	мо	5 O	70863.6	12	54.1	162	375	2.0	0,0	70	35	
10/28/19	12:40	7	б	ои	70935.0	12	50.1	170	380	5,5	0.5	80	35	
10/38/19	9:30	Ŧ	ФY	0 V	70979.5	8	48.1	90	453	2.8	0.6	70	40	A REAL PROPERTY AND A REAL
11 6 19	2:00	7	off	S O	71017.8	8	51.7	×113	163	C,3	0.0	72	40	na mana na manana manana manana manana na manana na mana
iv 1519	00:11	7	мо	202	71234.0	10	69.0T	106 +	350	14.0	0.5	70	50	
11/21/19	11:30	大奏	сN	not fer	12 APEN 71378.0	10	79.0 ⁺	+ 129 +	370	40.0	1.0	90	60	A RADIAL DA DA VIA VIA VIA DA VIA VIA VIA VIA VIA VIA VIA VIA VIA VI
川道川	12:30	+	cn	off.	71521.1	11	72.14	1237	268	42.7	1.4	62	85	
ŧ						Vapor E	xtraction Syster	Vapor Extraction System Maintenance Service Record	Service Record		For contract on the second s			
Date	Electric Meter Reading	Blower Amperage	Test Safety Interlock System	Replaced V- Belts	Changed Blower Oil	Greased Motor		Greased Blawer	Inspect Fire Supression Device	Empty Water Holding Tank			Comments	
10/18/19	1 nm	29	vbs'	NO VO	20	405		597	Les .	ыv				
10/21/19	NM	28	Kos	20	No	No		20	No	No			and a second	na na mana na m
10/24 19	ЧМ	NM	No	SC	sie	NC		NC	NC NC	N N	*	-		
10/25/19	ми	30	No	NO	NO	yes	F	tes	NC	NO			and a second design of the	
10/25/19	۶ ۲	28	NC NC	NC	NC	NC	-	NC	NC	2	- 195 (s. 6.1. col) - 1			And and a second se
10/30/19	۲ ۲	22	02	Na	50	45		405	yes	No	4 2011-00-00-02		n a second de la constante de l	
116 19	MN	22	Yes	Чο	No	ومك		4.5	Şerh	NO			and defined and defined and a second	
11/15/19	2 W	24.5	Ves	U N	No	yes		yes	No	R	19		and and a second s	
1/21/19	M	24,0	Yes	NO	οN	502		4es	NO	202				
11/27/19	2 M	ž	Ko S	No	NC	Ň		NC	yes	NO	- - 			
Notes	: 116/19.	SYSHA	" off u	OON EWA	Notes: 11/6/19. System off upon evenual. Troubleshanted to blown 7A	blesharte	d to by	PA LMO		240V for an 120 V transformer Replaced fixe	en v tra	15 Farmer	Replat.	al fixe
Eurol res	it outed Sy	Steme	Runnin	S NoV	end rest ented system. Running normally youn	n clep	clepartone.		- 1		$\eta_{0}(t^{1/2},t^{-},\infty,0)$			
11/15/19"+"	+	weans b	began	MPasurinz	JVINI SI	Sy Stem	flow o	in the e	whenst s	flow on the exhibit Stack, vather		than at	then at the Influent	fluent-
Filztlig R	Pipe. A150 MEasuring	SO M	eaSuri V.		ow temp	"insid	اد من ک	temp "inside of exhaust steak.	it cak	-	-			
		ho h			a L L L L L		- dila I	UN THU		int announce with any third and the second all and a second and	Ginzound	tul.		*

 $2 \mathcal{O} l^{Q}$ Vapor Extraction Individual Well Data Sheet

city: Brewentan, w.A

city: B	city: Birewertand, wA	, wh									-							
Station I	Station No.: 3520	0								(COM	(COMMON LINE)	2						
	۶ ۲	Vapor System	Ę		VE-1			VE-2	4	VE.	VE-3/RW-2	2		VE-4			RW-1	ſ
Date	Pre-Dilucion (fipmv)	("O'H	Status (on/off)	Conc. (ppmV)	Vac (H ² O")	Status (on/off)	Conc. (ppmV)	Vac (H ² 0")	Status (on/off)	Conc. (ppmV)	Vac (H2021)	Status (on/off)	Conc. (ppmV)	Vac (H ² O")	Status (on/off)	Conc. (ppmV)	Vac (HTO")	Status (on/off)
10/18/19			onlon			OFF			OFF	331	8.5	NÖ			T	26.6	8,6	NO
10/21/19			off/on			off			o th	Ч	MS	S S			0 th	MS	Niri	5
10/24/19			off lon			off			ە زر	MM	24	NO			eff.	MM	2 K K	с 2
10/25			nolno			ffe			34e	MM	2 X	- NO			950	ž	2 Z	50
10/28			on on			off			Ate.	300	8.5	1 NO			Sto	32,5	1	NO
10 30			chlori			off			off	чч	2 M	t vç			وبرل	22	24	05
116			off/on			+ off			- off	MM	80	on -			off	MK	8.5 ON	No
1115			onlon			off			aff	ми	9.5	ç		1	٥ţţ	3 2	9.0	NO
11/21			onlon	ļ		st.			9ff	พพ	8.5	40			Ĥ	2	8.5	No
11/27			CA OF			ъff			off	1924	9-0	on				79,5		20
						-						-			· · ·			
	۶ ۲	Vapor System	E.		RW-3	N N												
Date	Pre-Dijution (formv)	Le Case	Status (on/off)	Conc. (ppmV)	Vac (H10:)	Status (on/off)	Conc. (ppmV)	Vac (H ² 0")	Status (on/off)	Conc. (ppmV)	Vac (H ² D")	Status (on/off)	Conc. (ppmV)	Vac (H²O")	Status (on/off)	Conc. (ppmV)	Vac (H ² O")	Status (on/off)
10/18/19			NONO	145	9.0	No												
10/21/19			off low	nm	MM	NO												
1 olzyl A			ngthe	NM	MM	Vo												
10/25			onlon	2842	ちない													
10128			MAN INST	284	5.0	Ş												

Vapor System $\overline{M}M \cdot \overline{3}$ $\overline{M}M \cdot \overline{M}$ <th <="" colspan="11" t<="" th=""><th></th><th>T</th><th></th><th>·</th><th>1</th><th>1</th><th></th><th></th><th>T.</th><th></th><th>-</th><th></th><th></th><th></th><th> -</th></th>	<th></th> <th>T</th> <th></th> <th>·</th> <th>1</th> <th>1</th> <th></th> <th></th> <th>T.</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th> -</th>												T		·	1	1			T.		-				 -
value Spate $\widehat{Aupor System\widehat{Aupor System} \widehat{Aupor System\widehat{Aupor System} \widehat{Aupor System\widehat{Aupor System} \widehat{Aupor System} Aupor System System$													-													
Vapor System $\mathcal{R}\mathcal{U}-\mathcal{R}$ $\mathcal{Vapor System\mathcal{Vac}\mathcal{Status}\mathcal{Conc.\mathcal{M}\mathcal{U}^2\mathcal{Status}\mathcal{Conc.\mathcal{M}\mathcal{U}^2\mathcal{Status}\mathcal{Conc.\mathcal{M}\mathcal{U}^2\mathcal{Status}\mathcal{Conc.\mathcal{M}\mathcal{U}^2\mathcal{M}^2$		Vac (H ² O")													-											
Vapor System $\mathcal{R}\mathcal{W}$ -3 $\mathcal{R}\mathcal{W}$ -3 $\mathcal{R}\mathcal{M}$ -3 $\mathcal{R}\mathcal{M}^{-3}$ \mathcal{R}		Conc. (ppmV)													-											
Vapor System \mathcal{X} apor Status cont. \mathcal{V} atus status status <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																										
Vapor System $\mathcal{R}W-\mathcal{Z}$ <		Vac (H²O")																								
Vapor System $\mathcal{R}W-\mathcal{Z}$ Pre EljuktinVacVac \mathcal{H}^{C}_{1} Statusconc. \mathcal{M}^{C}_{1} Statusconc. \mathcal{M}^{C}_{1} \mathcal{M}^{C}_{1		Conc. (ppmV)											,													
Vapor System $\mathcal{R}W-\mathcal{Z}$ $\mathcal{R}W-\mathcal{Z}$ $\mathcal{R}W-\mathcal{Z}$ $\mathcal{L}WO^{11}$ $\mathcal{L}WO^{$																										
Vapor System $\mathcal{R}W-\mathcal{Z}$ Pre-SiluctionVacStatusConc.Med.Vac (H2O')StatusPre-SiluctionVacStatusConc.Vac (H2O')Ion/off)Ion/off)Pre-SiluctionIM-O'')Ion/off)Ion/off)Ion/off)Ion/off)Ion/off)Ion/off)Pre-SiluctionIM-O''ION/OFIONIM-O''Ion/off)Ion/off)Ion/off)Pre-SiluctionIM-O''INMIMMO/NIONIon/off)Ion/off)Pre-SiluctionIM-O''INMINMIONO/NIon/off)Ion/off)Pre-SiluctionINMINMINMO/NIon/off)Ion/off)Ion/off)Pre-SiluctionINMINMINMO/NIon/off)Ion/off)Ion/off)Pre-SiluctionINMINMINMO/NIon/off)Ion/off)Ion/off)Pre-SiluctionIONINMINMIonO/NIon/off)Ion/off)Pre-SiluctionIONINMIonIonIon/off)Ion/off)Ion/off)Pre-SiluctionIon/offIon/offIon/offIon/offIon/off)Ion/offIon/off)Pre-SiluctionIon/offIon/offIon/offIon/offIon/offIon/offIon/offPre-SiluctionIon/offIon/offIon/offIon/offIon/offIon/offIon/offPre-SiluctionIon/offIon/offIon/offIon/offIon/offIon/off		Vac (H ^z O")																								
Vapor System $\mathcal{R}W-\mathcal{Z}$ Rec SiluciónVac.StatusConc.MdfStatusConc.Vac.Rec SiluciónUar Conc.(an/off)(an/off)(an/off)(an/off)Vac.Vac.Rec SiluciónUar Conc.Vac.Vac.Vac.Vac.Vac.Vac.Vac.Rec SiluciónUar Conc.Vac.Vac.Vac.Vac.Vac.Vac.Vac.Rec SiluciónUar Conc.Vac.Vac.Vac.Vac.Vac.Vac.Vac.Rec SiluciónNumNumNumNumConc.Vac.Vac.Vac.Vac.Rec SiluciónNumNumNumConc.Vac.Vac.Vac.Vac.Vac.Rec SiluciónNumNumNumConc.NumConc.Vac.Vac.Vac.Vac.Rec SiluciónNumNumConc.NumConc.NumConc.Vac. <td></td> <td>Conc. (ppmV)</td> <td></td>		Conc. (ppmV)																								
Vapor System $\mathcal{R}W-\mathcal{Z}$ Pre-EljuktinVacStatusConc.Pre-EljuktinVacStatusConc.Image SignoviImage Signovi(on/off)(ppmv)Image SignoviImage Signovi(on/off)(ppmv)Image SignoviImage SignoviImage Signovi(on/off)Image Sign		Status (on/off)				1	×.																			
Vapor System RW-3 Pre-Eljuktin Vac. Status Conc. Hrf. Status Informul Wac. Status Conc. Vac. Mrf. Status Informul Wac. Status Conc. Vac. Mrf. Status Informul Wac. Status Conc. Vac. Mrf. Status Informul War Mrm. Mrm. ON ON Informul Mrm. Mrm. Mrm. ON Informul Mrm. Mrm. ON ON Informul Informul Mrm. ON ON Informul Informul Mrm. ON ON Informul Informul S.C. ON ON Informul Informul S.C. ON ON Informul Informul S.C. ON ON Informul Informul S.S. ON ON Informul Informul S.S. ON ON Informul Informul S.C. ON ON Informul Informul S.S. ON ON Informul Informul S.S. ON		a tea citation and the second																								
Vapor System Re-Dilution Vac Status Conc. Pre-Dilution Vac Vac Md Pre-Dilution Vac Vac Md Pre-Dilution Vac Md Md Pre-Dilution Vac Md Md Pre-Dilution Conc NM NM Pre-Dilution NM NM NM Conc Conc NM NM Pre-Dilution NM NM S.5 Pre-Dilution N		Conc. (ppmV)												,												
Vapor System Pre-Dijukion Vac	S	Status (on/off)	No		Vo	¢0N	NO	сı)	on	Ś	õn	cn														
Vapor System Pre-Dijukion Vac	RW-	Vac (Hele)	9.0	MM	MM	じた		MM	8.0	9.0	3.5															
Vapor System Pre-Dijukion Vac		20 C C	145	MM	MM	1285	1085			ž	ми	3450														
Vapor System	_	Status (on/off)	Nolvo	offlow	offloin	onlon	on/an	milon	off lon	onlon	on lon	Polloff														
Pre-Dijusta	apor Systen	Vac I+0"								. 1																
Date Date Date Date 11-12-12	>	Pre-Dijution (topmV)																								
		Date	10/18/19	10/21/19	10/24/19	10/25	10/28	Ic 30	116	11/15	n / 2i	1127														

			°.	z a	Ľ	2. E		4						iable		k) [±]								
	Min Op, Temp:	Comments	flow temp = 45, 6°F	·· ·· = 69.5° /	······: = 61.5°F	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2							Pruned approx 50 gallons into available		a 2 new divins			n odm.						<
	_	Water Holding Tank Fluid Level (%)	50	50	10	15	15	15					Comments	50 941	Dund.	tows int	Well R		followin	•		ne a contra c			
		Post-blawer flow temperature (deg. F)	68	68	65	50	MU	70					Y	X arpprox	in Cours	A 110 gol	Partially Closed well Rw-1		Vell RW-I						
		Effluent VOC Concentration (ppmV)	0.2	1.5	7,9	4.5	4.5	4.0					þ	- Hunne	Chrums in compound	- Prunped 110 gollows into	Partiall		closed well RW-i following od M						
		Mid-Point VOC Concentration (ppmV)	5.0	54.7	55.0	70.1	60.1	196				rd	Empty Water Holding Tank	Yes	201	Ye 5	NO	NO	No						
n Data Sheet	Mananana ng barana ana ang ang ang ang ang ang ang ang	Total System Influent VOC Concentration (ppmV)	315	290	305		603	352				 Extraction System Maintenance Service Record	Inspect Fire Supression Device	<i>kes</i>	No	NC	Yes .	NG	NO						
Vapor Extraction System Data Sheet	Max, VOC Out:	System Flow Rate (CFM)	143	126	112	82.5	80.1	93		· · · · · · · · · · · · · · · · · · ·		System Mainte	Greased Blawer	Ves	NO V	Yes	NO	NO	νφς						
	on Way ashington	Influent (in. Hg)	10	11	10	8.5	10	10				Vapor Extraction	Greased Motor	405	202	Yes	NO	NO	NO						
029RC1-123155	4200 Wheaton Way Bremerton, Washingtor	System Hour Meter	71522.8	71589.2	T.72717	71875.3	71875.8	72022.4					Changed Blower Dil	NO	20	100	NO	NO	NO				~		
Project Number:	Address:	Departure Status (on/off)	7. 0	NO	20	2. 0	No.	No No					Replaced V- Belts	NO	NO	No	NO	NO	NC				RW-3.		
ā		Arrival Status (on/off)	OFF	S N	0N	No	20	NO					Test Safety Interlock System	Yes	yes	Vé S	No	No	yes				Rw-2		
4		# of Wells (Zones) On- líne	t	4	3†	÷ m	37	3+					Blower Amperage	26.9	26.6	25.8	20.1	22.4	24-2				Rw-1		
3250		Time	15:00	9:40	11: 30	10:00	10:30	13:00	والمتعارية والمتعارية والمعارية والمعارية والمعارية والمحافظ والمحافظ		والمواولة والمحافظة المحافظة المحافظ		Electric Meter Reading	M M M	ми	144 14	นเน	ММ	MM	a that is being the second			+ weils		
Station No:	Max Flow Rate:	Date	12/9/19	12/12/19	12/19/19	12/24/19	12/24/19	12/30/19 13:00					Date	12/9/19	12/12/19	12/19/19	12/24/19	12/24/19	12/30/19				Notes:	3	

Vapor Extraction System Data Sheet

Ś

Vapor Extraction Individual Well Data Sheet

City: Bire Werton, WA Station No.: 3520

Γ	T	sn (‡	5	-7								1	1			sn (£	T	Γ		Ī								
	_) Status (on/off)		+	3	20		3				-) Status (on/off)	-	<u> </u>			ļ				 			
	RE	Vac 44	9.0	9.0	\$.5	0,6	M S	MN								Vac (H ² 0")												
		Conc. (ppmV)	MM	22	\$7.1	635	Y.Y.	675								Conc. (ppmV)												
ŀ		Status (on/off)	3FF	U.	1			off 1								Status (on/off)											<u>.</u>	
	VE - 4	Vac (H ² O")					1									Vac (H²O")	<u>.</u>								 		ъ.	
	Ş	Conc, Va (ppmV) Va														Conc. Va (ppmV)									 			
-	+		1	<u> </u> え																								
	2	f Status (on/off)	NO	20	2											") Status (on/off)			-						 			
	1 RW-2	Vac (HPD)	8	8	13		South States of									Vac (H²O")												
	VE-3	Conc. (ppmV)	чт	MA	OFF/S	-			Ì						And	Conc. (ppmV)												
		Status (on/off)	off.	, J.J.o	T	350	500	Jja							only	Status (on/off)			NO	20	Nc	No						
-	15-2	Vac (H ² O")						1			-				RW-2.	Vac (H ² O")			8.5 0	0	им	MM						
		Conc. (ppmV)													*	Conc. (ppmV)			L	V6466	MM	9997A						
		Status (on/off)	- <u>j</u> jo	Jita	S. S.	55 5	- 350	off -						ł	:	Status (on/off)	CN -	1 70										
-	1- 41	Vac (H ² 0")						Ť	·						RW-3	Vac (1200)	0	6	9	9 6	MM	M.C.						
		Conc. (ppmV)						+	÷	-					1	Conc. (ppmV)	МW	NA N	5500	999994	NM MU							
ŀ		Status C (on/off) (p	OFF/ON -	- nono	- righig	- Winno	- Nolvo	- Ind -			-					Status C (on/off) (p	OF/ON N		culon 55	enlow 199	on an k	UHPH H940						
	stem 71		9. HO	20	017	ð	20	S							stern	<u> </u>	04	10	5	NO	S	S	-	;				
0700	vapor system	LY Cal	 												Vapor System	("O"HI									 			
ή		Pre-Diluction													-	Pre-Dilution												
		Date	12/9/19	12/2/19	12 19	12 124	12/24	12/30	-				1		4	Date	12/9/19	12/2	2119	12/24	12/24	12/30						
") I.						10:00	10:30	1	I		1	<u> </u>		L			L		لـــــا		10:30	d			 	l		
						2	Š													õ	10							

A = PID OVER FRANCE

10:00

APPENDIX C

Historical O&M Data Tables and Graphs

TABLE 1 Summary of Soil Vapor Extraction System Operational Data Site 01-352 Bremerton, Washington

1 of 1

Date	Hour Meter Reading	Operational Hours	# of Wells Online	Influent Vacuum (in H ₂ O)	System Combustion Temp/ GAC Inlet (°F)	Temp below cat. Bed (°F)	Temp above cat. Bed (°F)	Flow (acfm)	Influent PID Reading (ppmV)	Effluent PID Reading (ppmV)	Hydrocarbon Mass Removed (lbs)	Hydrocarbon Removal Rate (lbs/day)	Remarks
2/28/2012	603,986		4	18	625	665	896	82	600	-	-	-	
3/14/2012	604,346	360	4	60	620	620	740	197	800	5	676	45.1	
3/30/2012	604,730	744	4	68	625	630	700	188	450	4	1,290	38.4	
4/10/2012	604,994	1,008	4	58	640	692	690	190	492	-	1,612	29.2	
5/15/2012	605,834	1,848	4	45	650	650	699	170	1,199	-	3,256	47.0	
5/30/2012	606,194	2,208	4	48	650	650	677	176	1,009	-	4,208	63.5	
6/19/2012	630,872	2,688	3	45	600	600	602	160	660	3	5,081	43.6	
6/30/2012	633,512	2,952	2	59	650	650	687	176	700	5	5,511	39.1	Wells #3 and #4 closed due to decreasing concentrations
7/17/2012	636,688	3,360	3	55	650	680	700	140	948	8.4	6,152	37.7	System found down due to power outage, storms in area
7/31/2012	636,688	3,696	2	59	650	650	687	176	400	9	6,694	38.8	
8/15/2012	637,404	4,056	3	65	650	650	699	90	1,200	-	7,047	23.5	
8/20/2012	638,122	4,176	3	48	650	650	677	176	1,678	-	7,461	82.8 0.0	System shutting down due to cat cell likely plugged
9/12/2012 9/19/2012	638,472 638,472	4,728	3	off 61	- 645	- 650	- 757	0 148	0 2.178		7,461 8,114	93.2	
9/19/2012	638,472	4,896	3	off	645	650	151	148	2,1/8	-	8,114 8,114	93.2	
10/17/2012	638,472	5,592	3	65	- 650	- 650	728	128	2,778	-	8,217	103.6	
11/19/2012	644,874	6,360	4	off	-	-	-	0	0	-	8,217	0.0	System down due to blown control fuses
11/26/2012	644,898	6,528	3	68	650	650	700	108	938	20	8,676	65.6	system down due to blown control fuses
12/13/2012	647,404	6,936	4	off	645	640	680	0	0	8	8,676	0.0	System off due water in knock out & low pressure alarm
12/21/2012	649,328	7.128	4	68	650	650	700	108	938	12	8,941	33.1	bystem on die water in knock out te iow pressure akarm
1/10/2013	64,708	7,608	4	50	650	658	690	150	680	12	9,734	39.7	
1/28/2013	64,940	8.040	4	off	-	-	-	0	0	-	9,734	0.0	System off due water in knock out /thermal couple repair
2/12/2013	64.940	8,400	3	50	650	728	700	150	480	13	10,160	28.4	
2/26/2013	65,298	8,736	3	52	904	781	781	119	540	8	10,438	19.8	System overtemp
3/19/2013	65,604	9,042	4	52	90	-	-	140	150	0	10,639	9.6	System converted to carbon abatement
3/28/2013	65,749	9,187	4	52	90	-	-	141	120	8	10,677	4.2	·
4/10/2013	66,037	9,475	3	52	90	-	-	131	110	0	10,736	4.5	
4/23/2013	66,200	9,638	3	52	90	-	-	126	115	0	10,767	2.4	
5/13/2013	66,254	9,693	3	48	72	-	-	130	112	2	10,778	0.5	System off upon arrival due to blown fuse
5/20/2013	66,257	9,695	2	65	90	-	-	131	100	-	10,779	0.1	System off upon arrival. Cause unknown
6/5/2013	66,615	10,054	2	60	64	-	-	125.5	122	2	10,847	4.3	System off upon arrival due to power interruption
6/19/2013	66,950	10,389	2	63	88	-	-	114.5	107	1.0	10,907	4.3	
7/12/2013	67,114	10,552	2	off	-	-	-	0	0	-	10,907	0.0	System off for broken vapor lines in planter
7/29/2013	67,114	10,552	2	63	81	-	-	115.5	109	-	10,907	0.0	Lines repaired system re-started
8/12/2013 8/27/2013	67,450 67,809	10,889 11,248	3	60 55	94 98	-	-	158.3 168.3	92 1.222	10 40	10,979 11,520	5.2 36.0	
8/2//2013 9/4/2013	67,809	11,248	3	55 60	98 94	-	-	168.3	1,222	40	11,520	36.0	
9/4/2013 9/30/2013	67,642	11,440	3	50	94 58	-	-	155.9	822	25	11,791 12,179	33.9	
9/30/2013	68,021	12.010	3	50	58 82	-	-	161.3	822	25	12,179	23.2	
10/8/2013	68,635	12,010	4	48	58	-	-	151.2	222	0	12,505	7.6	
11/11/2013	68,712	12,435	3	48	62	-	-	132.7	100	5	12,510	1.7	System off upon arrival due to power interruption, re-started
11/26/2013	68,798	12,510	3	70	58			146.7	0	-	12,548	0.6	Power interruption/ extreme winds, re-started
12/11/2013	69,039	12,390	4	off	-		-	0	0	-	12,548	0.0	System off due to extremely cold weather, left offline
12/23/2013	69.039	12,837	4	50	58	-	-	146.7	0	-	12,548	0.0	System of due to extend y cold weather, left offnite
1/6/2014	69,343	13,141	4	50	48	-	-	146.7	30	3	12,557	0.7	
1/23/2014	69,535	13,333	4	50	58		-	146.7	123	8	12,587	1.7	System off at arrival due to high winds and severe rain, re-started
2/11/2014	69,641	13,439	4	50	34		-	140.0	-	-	-	-	i i i i i i i i i i i i i i i i i i i
2/28/2014	69,657	13,455	4	50	48		-	140.0	148	18	12,618	0.9	
3/13/2014	70,087	13,885	4	50	78	-	-	140.0	-	-	12,740	9.3	System shut down by request

Notes and abbreviations:

lbs =

Hydrocarbon removal rate and cumulative hydrocarbon removal were calculated using the following formula:

ppmv (60 min/hr) (24 hr/day) (acfm) (86 lb/lb-mole) (1,000,000) (379 ft3/lb-mole)

ppmv = average hydrocarbon concentration in parts per million by volume ft3/min = velocity or flow rate in standard cubic feet per minute Where: acfm = voicely of nor in actual cubic feet per minute acfm = vapor flow rate in actual cubic feet per minute 86 lb/b-mole = average molecular weight of gasoline 379 ft'/lb-mole = standard volume that 1 mole of gas occupies

- : not measured - . not measured lbs: pounds lbs/day: pounds per day PID: photo-ionization detector calibrated to hexane ppmV: parts per million by volume acfm: actual cubic feet per minute in H₂O: inches of water Temp: temperature °F: degrees Farenheit

TABLE 2SVE Well DataSite 01-352Bremerton, Washington1 of 1

	#1	Vac	Status	Flow	#2	Vac	Status	Flow	#3	Vac	Status	Flow	#4	Vac	Status	Flow
Date	(ppmv)	(H ₂ O")	(%)	(acfm)	(ppmv)	(H ₂ O")	(%)	(acfm)	(ppmv)	(H ₂ O")	(%)	(acfm)	(ppmv)	(H ₂ O")	(%)	(acfm)
02/28/12	230	12	100%	-	400	10	100%	-	130	11	100%	-	278	10	100%	-
03/14/12	1,220	29	100%	60	280	30	100%	60	380	25	100%	60	227	27	100%	60
03/30/12	1,007	28	100%	55	125	29	100%	45	270	30	100%	60	200	30	100%	58
04/10/12	1,262	31	100%	-	298	30	100%	-	272	22	100%	-	325	31	100%	-
05/15/12	296	32.5	100%	45	767	26	100%	40	638	26	100%	40	1,125	28.6	100%	45
05/30/12	250	36	100%	45	600	26	100%	45	555	26	100%	45	980	30	100%	44
06/19/12	692	34	100%	45	780	35	100%	40	400	34	50%	40	-	-	0%	-
06/30/12	680	54	100%	45	230	30	50%	45	-	-	0%	-	-	-	0%	-
07/17/12	220	42	100%	40	200	38	100%	40	85	34	50%	40	-	-	0%	-
07/31/12	280	54	100%	67	230	55	100%	59	-	-	0%	-	-	-	0%	-
08/15/12	306	52.5	100%	40	445	50	100%	40	500	50	100%	40	-	-	0%	-
08/20/12	2,065	36	100%	45	802	34	100%	45	462	35	100%	45	-	-	0%	-
09/19/12	1,890	40 35	100%	4	672	36	100%	45	225	35	100%	45	-	-	0%	-
10/18/12 11/26/12	790		100%	4	790 602	45	100%	45	185 195	35	100%	45	-	-	0%	-
12/13/12	468 210	38 30	100%	45 45	270	38 28	100%	45 45	200	35 30	100%	45 45	- 88	- 32	0% 100%	-
12/13/12 12/21/12	648	30	100%	45	602	28	100%	45	195	30	100%	45	88 108	32	100%	45 45
01/10/13	350	38	100%	45 30	120	38	100%	28	248	35	100%	45 30	108	34	100%	28
02/12/13	250	35	100%	30	120	32	100%	28	300	35	100%	30	off	- 52	0%	28
02/12/13	134	40	100%	23	88	32	100%	28	555	33	100%	28	off	-	0%	-
03/19/13	135	38	100%	-	89	32	100%	-	100	33	100%	-	off	-	0%	
03/28/13	225	35	100%	-	102	30	100%	_	150	32	100%	-	off	-	0%	-
04/10/13	75	38	100%	-	99	32	100%	-	85	33	100%	-	off	-	0%	-
04/23/13	65	35	100%	-	82	30	100%	-	100	32	100%	-	off	-	0%	-
05/13/13	45	32	100%	-	78	30	100%	-	110	30	100%	-	-	-	0%	-
05/20/13	-	-	0%	-	188	45	100%	-	-	-	0%	-	80	44	100%	-
06/05/13	-	-	0%	-	80	55	100%	-	-	-	0%	-	60	54	100%	-
06/19/13	-	-	0%	-	102	45	100%	-	-	3	0%	-	70	44	100%	-
07/12/13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
07/29/13	-	-	0%	-	112	48	100%	-	-	-	0%	-	90	45	100%	-
08/12/13	50	0	100%	-	30	55	100%	-	-	-	0%	-	10	54	100%	-
08/29/13	60	0	100%	-	90	55	100%	-	-	-	0%	-	80	54	100%	-
09/04/13	60	30	100%	-	45	55	100%	-	-	-	0%	-	18	54	100%	-
09/30/13	40	30	100%	-	120	45	100%	-	-	-	0%	-	60	40	100%	-
10/08/13	90	30	100%	-	45	28	100%	-	-	-	0%	-	118	40	100%	-
10/28/13	30	30	100%	-	120	45	100%	-	20	0	100%	-	40	40	100%	-
11/11/13	110	40	100%	-	55	38	100%	-	10	45	100%	-	108	40	100%	-
11/26/13	130	30	100%	-	120	45	100%	-	10	45	100%	-	60	40	100%	-
12/11/13 12/23/13	0 130	0 30	100%	-	0 120	0 45	100%	-	- 10	- 45	0% 100%	-	0 60	0 40	100% 100%	-
01/06/14	130	30	100%	-	70	45	100%	-	10	45	100%	-	30	40	100%	-
01/06/14 01/23/14	70	30	100%	-	50	40		-	10	45	100%	-	30 50	40	100%	-
01/23/14 02/11/14	-	35	100%	-	- 50	40	100%	-	- 10	40	100%	-	- 50	40	100%	-
02/11/14	80	35	100%	-	20	40	100%	-	10	43	100%	-	50	40	100%	-
02/28/14		35	100%	-	- 20	40	100%		10	40	100%	-		40	100%	-

Notes:

System start up on 02/28/2012 H₂O" = inches of water ppmv = parts per million by volume, based on field photo-ionization detector readings acfm = actual cubic feet per minute 1% LEL = 138 ppmv (approximately) "-" = not measured %: percent Status: well status, percent open Vac: vacuum

TABLE 3 SVE Influent and Effluent Analytical Data Site 01-352 Bremerton, Washington 1 of 1

SYSTEM VAPOR					
EXTRACTION		E	PA METHOD 8	260	
INLET	TPH-Gx	Benzene	Toluene	Ethylbenzene	Xylenes
Date	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m ³
02/15/12	3,300,000	29,000	22,000	13,000	40,000
03/14/12	1,400,000	13,000	29,000	9,000	31,000
04/10/12	90,000	410	860	410	1,500
05/15/12	74,000	360	890	220	1,100
06/19/12	44,000	280	1,100	170	1,100
07/17/12	170,000	160	890	320	2,600
08/20/12	1,400,000	870	2,700	340	2,600
09/19/12	550,000	1,800	3,600	440	2,900
10/18/12	290,000	600	2,100	400	1,700
11/26/12	110,000	1,600	2,000	1,000	3,200
12/13/12	190,000	920	2,800	250	1,500
02/26/13	730	1.6	10	2.2	10
04/24/13	170	<10	<10	<10	<10
05/13/13	41,000	290	390	49	290
06/19/13	15,300	43	290	56	420
07/29/13	110,000	270	830	51	520
08/27/13	77,000	27	190	39	400
09/30/13	196,000	670	3,600	790	3,700
10/30/13	6,300	16	75	15	95
11/26/13	2,800,000	980	3,400	570	3,000
12/23/13	9,630,000	420	1,400	380	2,000
01/23/14	670,000	140	560	150	950
02/13/14	1,100,000	310	130	290	1,600

		E	PA METHOD 82	260	
OUTLET	TPH-Gx	Benzene	Toluene	Ethylbenzene	Xylenes
Date	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$
02/15/12	38,000	<100	110	<100	260
03/14/12	32,000	<100	<100	<100	<100
04/10/12	4,200	8.9	19	8.3	38
05/15/12	6,900	13	54	22	180
06/19/12	7,500	<10	<10	<10	17
07/17/12	5,100	13	22	<10	35
08/20/12	19,000	21	38	<10	37
09/19/12	30,000	63	130	18	130
10/18/12	8,400	14	48	12	46
11/26/12	7,800	31	86	14	61
12/13/12	5,400	41	110	11	68
02/26/13	31	< 0.1	0.37	<0.1	0.40
04/24/13	<10	<10	<10	<10	<10
05/13/13	2,400	< 0.1	< 0.1	< 0.1	< 0.1
06/19/13	2,100	0.4	1.5	0.3	2.8
07/29/13	5,300	0.6	2.4	< 0.1	4.8
08/27/13	11,000	< 0.1	3.5	< 0.1	1.9
09/30/13	9,600	< 0.1	40	< 0.1	86
10/30/13	1,000	< 0.1	1.6	0.16	2.0
11/26/13	140,000	<10	<10	<10	<10
12/23/13	1,200,000	<10	<10	<10	<10
01/23/14	550,000	<10	24	12	37
02/13/14	710,000	<10	22	<10	21

Notes:

<100 = not detected at listed detection limit $\mu g/m^3 = micrograms$ per cubic meter

TPH-Gx: total petroleum hydrocarbons quantified as gasoline

GRAPH 1 Vapor Extraction System - Mass Removal Trend Site 01-352 Bremerton, Washington

GRAPH 2 Vapor Extraction System - Hydrocarbon Concentrations by Well Site 01-352 Bremerton, Washington

