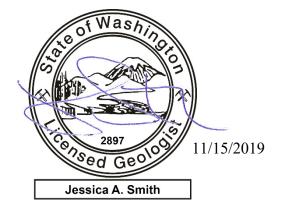
PHASE II ENVIRONMENTAL SITE ASSESSMENT NE 8th & 106th Ave Property 10605 to 10635 NE 8th Street Bellevue, Washington

Prepared for: Schnitzer West, LLC

Project No. 190298 • November 15, 2019 FINAL


PHASE II ENVIRONMENTAL SITE ASSESSMENT

NE 8th & 106th Ave Property 10605 to 10635 NE 8th Street Bellevue, Washington

Prepared for: Schnitzer West, LLC

Project No. 190298 • November 15, 2019 FINAL

Aspect Consulting, LLC

Jessica Smith, LG Associate Geologist jsmith@aspectconsulting.com

earth + water

) lacote

Dave Cook, LG, CPG Principal Geologist dcook@aspectconsulting.com

V:\190298 Schnitzer - NE 8th and 106th Development\Deliverables\Phase II ESA\NE8 Phase II ESA Report_Final.docx

Contents

Ex	xecutive Summary	ES-1
1	Introduction	1
2	Background	1
	2.1 Historical Uses	
	2.1.1 Adjacent Properties of Potential Concern	
	2.2 Previous Investigations	2
3	Phase II Environmental Site Assessment	4
	3.1 Field Program	
	3.2 Results	
	3.2.1 Geology and Hydrogeology	
	3.2.2 Chemical Analytical Results	5
	3.2.3 Aquifer Testing Results	7
4	Conclusions	8
	4.1 Investigation Findings	
	4.2 Recommendations	
Re	eferences	11
Lir	mitations	12

List of Tables

- 2 Summary of Soil Chemical Analytical Results
- 3 Summary of Groundwater Chemical Analytical Results
- 4 Hydrographs
- 5 Aquifer Hydraulic Conductivity Estimates from Slug Tests

List of Figures

- 1 Site Vicinity Map
- 2 Summary of RECs
- 3 Site Exploration Plan
- 4 Groundwater Contour Map
- 5 PCE Concentrations in Soil
- 6 PCE Concentrations in Groundwater
- 7 Cross Section A to A'
- 8 Cross Section B to B'

List of Appendices

- A Historical Analytical Data Tables
- B Boring and Well Construction Logs
- C Laboratory Reports
- D Report Limitations and Guidelines for Use

Executive Summary

Aspect Consulting, LLC (Aspect Consulting) has prepared this report to present the findings of the Phase II Environmental Site Assessment (ESA) completed on behalf of Schnitzer West, LLC (Schnitzer) for the NE 8th & 106th Ave Property located at 10605, 10629, and 10635 NE 8th Street in Bellevue, Washington (Subject Property; Figure 1). The Subject Property comprises three parcels (King County tax parcel numbers 154410-0215, -0216, and -0221) totaling approximately 1.5 acres and is currently developed with two retail complexes (circa 1958 and 1963) and a gravel parking lot. The Subject Property is currently owned by Bosa Development Washington Inc. (Bosa Properties), who purchased it in 2016 from Sterling Reality Organization (SRO).

We understand that Schnitzer is considering purchase and redevelopment of the Subject Property as an office tower with below-grade parking requiring property-wide mass excavation extending up to elevation 91 feet mean sea level (amsl) (approximately 70 feet below the ground surface). Aspect prepared a Phase I ESA for the Subject Property (Aspect, 2019), which identified Recognized Environmental Conditions (RECs) pertaining to suspect and known releases associated with the historical use of the Subject Property as an auto service station and the documented presence of chlorinated solvent contamination below the Subject Property that is emanating from an adjacent, upgradient property and/or unknown sources.

The Phase II ESA consisted of drilling and installing seven new groundwater monitoring wells and chemical analysis of soil and groundwater samples (Figure 3). The results of the Phase II ESA confirm that soil and groundwater at the Subject Property has been impacted by releases associated with the RECs identified in the Phase I ESA. The Phase II ESA is generally consistent with the results of prior sampling by others and confirms the presence of the chlorinated solvents in soil and groundwater; however, Phase II ESA data provides new information regarding lateral and vertical extent, fate and transport mechanisms, and potential sources/release areas. Key findings of the Phase II ESA are summarized below:

- 1. Confirmed Impacts from Thinker Toys Plume. As documented in prior studies by others, soil and shallow groundwater (elevation 134 to 130 feet amsl or approximately 25 to 30 feet bgs) in the western portion of the Subject Property has been impacted by the chlorinated solvent plume emanating from the north-adjacent and upgradient Thinker Toys site. Phase II ESA data indicates that the vertical extent of the chlorinated solvent-impacted area located on the Subject Property extends deeper than previously indicated in studies by others but confirms that the deeper groundwater zone below the northern portion of the Subject Property does not appear to be affected. We recommended additional drilling and soil sampling be completed before construction to attempt to delineate the southern and western extent of on-Property impacts related to the release from the Thinker Toys site.
- 2. Possible New Potential Chlorinated Solvent Source near Southern Property Boundary. The Phase II ESA data confirmed chlorinated solvent impacts to soil near

the southern Subject Property boundary, and identified chlorinated solvent impacts at both shallower and deeper depths than were previously identified in this area:

- a. In shallow soil, elevated PCE was identified at 5 feet at AMW-4S and previous studies identified PCE at 12.5 feet and 30 feet bgs in the nearby well, URS-MW-4. Soil at these depths is too shallow to be attributed to the Thinker Toys solvent plume and is likely attributable to a previously unidentified on-Property source (such as, a release into one of the nearby catch basins) or an off-site source to the south (such as the Onni/Barnes and Noble Property, where there is also a catch basin very close to the Subject Property boundary). We recommend additional drilling and soil sampling before construction in the vicinity of the on-Property catchbasins and southern Property boundary to attempt to delineate the most-likely source (catchbasin or other) of these impacts.
- b. In deeper soil, elevated PCE was identified at 60 feet bgs in AMW-4D, and in the deep zone groundwater sample obtained from AMW-4D. Based on the results of this study and the prior studies by others, it is not clear whether the source of these deep chlorinated solvent impacts is the Thinker Toys plume discussed in Finding 1 (Section 2.2 of this report's main text), or a separate on-Property source (such as localized dumping into a catch basin on the Subject Property), or an off-site source to the south (such as the Onni/Barnes and Noble Property). We recommend additional drilling and soil and groundwater sampling north of these impacts and south of the documented impacts associated with the Thinker Toys site release to attempt to identify the most-likely source of these deep impacts (borings completed for this recommendation would be dual purpose with the borings recommended under Finding 1 above).
- **3. Groundwater Implications for Redevelopment.** Groundwater is present between the Subject Property in "deep" and "shallow" zones. The deep groundwater zone is present between approximate elevations 83 feet and 80 feet amsl, which is 8 to 10 feet below the potential maximum excavation depth of elevation 91 feet amsl. Shallow groundwater appears to be present generally in the west portion of the Subject Property between approximate elevations 134 feet and 130 feet amsl but is discontinuous and may be subject to significant seasonal variation.

Aquifer testing conducted in the shallow groundwater zone indicated an average hydraulic conductivity of 0.6 feet per day, indicating that it is unlikely that significant quantities of shallow groundwater will be generated during mass excavation dewatering of the shallow groundwater zone.

Because the Phase II ESA data and prior studies show that the shallow and deep groundwater are affected by chlorinated solvent plume(s), consideration of the impact of dewatering on the chlorinated solvent plumes will be needed during dewatering/construction planning.

4. Petroleum-Contamination Associated with Former Gasoline Station.

Groundwater data obtained during the Phase II ESA did not show impacts from petroleum hydrocarbons, indicating that the petroleum-contaminated soil that remains in-place at the Subject Property does not appear to be leaching to groundwater. It should be noted that the petroleum-contaminated soil will require special handling and disposal requirements during construction, and additional sampling will be needed to confirm the lateral and vertical extents in some areas to comply with the requirements of MTCA. We do not recommend any additional pre-construction actions pertaining to this condition.

5. No Identified Impacts Associated with Corner Court Property to North-Northeast of Subject Property. Explorations intended to evaluate possible Subject Property impacts associated with the former Corner Court dry cleaner on the property located north-northeast of the Subject Property (discussed in REC 2 in Aspect's Phase I ESA) did not identify chlorinated solvents in soil and or groundwater. No additional action is recommended pertaining to this REC.

Ahead of redevelopment, additional soil and groundwater data is needed to understand the source(s) of the chlorinated solvents identified in shallow and deep soil and groundwater beneath the Subject Property. Further, additional soil characterization data will be needed prior to start of construction to support the conceptual site model per MTCA, and to obtain a Contained In Determination from Ecology to support soil disposal.

Additionally, due to the significant fluctuations in groundwater flow direction and water table elevation, particularly in the shallow aquifer, continued groundwater monitoring ahead of redevelopment is recommended to provide data to support the conceptual site model and to support construction planning. We further recommend that a groundwater monitoring program be designed and implemented during mass excavation dewatering of the Subject Property and adjacent properties (including the south-adjacent Onni/Barnes and Noble Property) to monitor dewatering impacts to groundwater elevations and possible movement of contaminated groundwater plumes in the area.

1 Introduction

Aspect Consulting, LLC (Aspect Consulting) has prepared this report to present the findings of the Phase II Environmental Site Assessment (ESA) completed on behalf of Schnitzer West, LLC (Schnitzer) for the NE 8th & 106th Ave Property located at 10605, 10629, and 10635 NE 8th Street in Bellevue, Washington (Subject Property; Figure 1). The Subject Property comprises three parcels (King County tax parcel numbers 154410-0215, -0216, and -0221) totaling approximately 1.5 acres and is currently developed with two retail complexes (circa 1958 and 1963) and a gravel parking lot. The Subject Property is currently owned by Bosa Development Washington Inc. (Bosa Properties), who purchased it in 2016 from Sterling Reality Organization (SRO).

We understand that Schnitzer is considering purchase and redevelopment of the Subject Property as an office tower with below-grade parking requiring property-wide mass excavation extending to elevation 101 to 91 feet above mean sea level (amsl) or approximately 60 to 70 feet below the ground surface (bgs). Aspect prepared a Phase I ESA for the Subject Property (Aspect, 2019), which identified Recognized Environmental Conditions (RECs) pertaining to suspect and known releases associated with the historical use of the Subject Property as an auto service station and the documented presence of chlorinated solvent contamination below the Subject Property that is emanating from an adjacent, upgradient property and/or unknown sources. This report provides an abbreviated discussion of previous investigation work conducted at the Subject Property, summarizes the RECs identified in the Phase I ESA, and describes the scope and results of the Phase II ESA.

2 Background

The information in this section summarizes key environmental findings, based on research conducted for the Phase I ESA (Aspect, 2019). For a comprehensive description of the current and historic uses of the Subject Property, as well as a review of previous investigations completed on the Subject Property, refer to the Phase I ESA and cited reports.

2.1 Historical Uses

The Subject Property is located in an area that has been commercially developed since the 1960s and in the past two decades is experiencing abundant redevelopment with mixed-use high-rise retail, commercial, and residential space.

Historical development of the western parcel of the Subject Property included two generations of a gasoline and automotive service station from 1958 to 1991, which resulted in petroleum contamination of soil at concentrations exceeding the Model Toxics Control Act (MTCA). Demolition of the service station in 1992 included remedial

excavation of most of the petroleum-contaminated soil. However, petroleumcontaminated soil was identified during later investigations and remains on the Subject Property at present. Since 1992, the parcel has been used as a gravel lot for parking.

The center and eastern lots were historically developed for residential and agricultural use before the existing multi-unit retail buildings were constructed in 1958 and 1963. Occupancy of the commercial buildings includes retail, office space, and printing services. Current occupancy includes piano and clothing retailers, fitness center, FedEx, consulting office, a pizza restaurant, nail salon, hair salon, tarot card reader, tailors, tobacco smoke house, and used piano showroom.

2.1.1 Adjacent Properties of Potential Concern

Adjacent and adjoining properties to the Subject Property have been developed with commercial uses since as early as the 1950s, and several adjacent properties have documented releases of contaminants and are known contaminated sites to the Washington State Department of Ecology (Ecology). Most pertinent to this Phase II ESA are the north-northwest adjacent Thinker Toys site and the south-adjoining Onni/Barnes and Noble Property.

The Thinker Toys site was developed as a service station in the 1950s and then subsequently operated as a dry cleaner until 2007 when the property was paved for use as a parking lot. A release of total petroleum hydrocarbons (TPH) and chlorinated solvents, including tetrachlorethylene (PCE), trichloroethylene (TCE) and other associated daughter compounds, to soil, groundwater, and soil gas occurred as a result of these former operations. The chlorinated solvent contamination has migrated to the south, across NE 8th Street to the Subject Property and is present in Subject Property soil and groundwater. The extent of the Thinker Toys Site has been defined to include at least the northwest portion of the Subject Property and extends beyond the Subject Property boundary to the west, and possibly to the south.

The Onni/Barnes and Noble Property was originally developed as a bowling alley and theater. Chlorinated solvents have been confirmed in soil and groundwater beneath the site. The source has been debated during previous studies by others, and presumed to be either attributed to the release at the upgradient Thinker Toys site (EPI, 2019) and/or an alternate PCE source located elsewhere (G-Logics, 2019).

2.2 Previous Investigations

The Subject Property has been the focus of numerous environmental investigations and studies occurring between the 1990s and 2019. Environmental investigations have identified impacts to soil by petroleum-associated constituents associated with the former auto service station on the western parcel, and to soil and groundwater by chlorinated solvent-associated constituents presumed to be related to upgradient releases at the Thinker Toys site that have migrated to beneath the Subject Property. Limited remedial actions have occurred at the Subject Property, but both petroleum-associated and chlorinated solvent-associated contamination remains in place. Historical data tables summarizing the soil and groundwater testing by others are included as Appendix A.

Aspect's Phase I ESA identified four RECs (Figure 2), as follows:

- 1. Former Service Station and Remaining Petroleum-Contaminated Soil. The historical use of the Subject Property's west parcel as a service station and documented remaining petroleum-contaminated soil represents a REC. It does not appear that the remaining petroleum in soil has leached to groundwater, but it is prudent to verify this data gap.
- 2. Solvent Plume Beneath the Subject Property from Historical Dry Cleaner (aka Thinker Toys Site). The presence of chlorinated solvents, primarily PC) and to a lesser degree trichloroethene (TCE), above MTCA Method A cleanup levels, in groundwater and saturated soil at the Subject Property are a REC. This contamination has been documented as part of the upgradient Thinker Toys Site north of NE 8th Street. The distal/downgradient end of this plume at the south boundary of the Subject Property has not been established and represents a data gap.
- 3. Historical Dry Cleaner North-Northeast of Subject Property (Corner Court Property). PCE, as well as TCE and degredation compounds, above MTCA Method A cleanup levels have been reported in soil, groundwater, and soil gas from a historical dry cleaner that historically operated at the Corner Court property, located at 10644 NE 8th Street (across the the NE 8th Street right-of-way [ROW]) and is considered a REC to the Subject Property. The historical development of a dry cleaner and a service station resulted in the release of petroleum products, as well as PCE, TCE, and associated degredation compounds at this property. Remediation and delineation of the Site is ongoing. Based on the Phase I ESA research, it was unclear if contaminant migration across NE 8th Street had occurred, and this was targeted during the Phase II ESA (Section 3).
- 4. Known Solvent-Contaminated Site with Unconfirmed Source South-Adjoining to Subject Property. Chlorinated solvents are present in soil and groundwater above MTCA Method A cleanup levels at the south-adjoining Onni/Barnes and Noble Property, which is a known contaminated site registered with Ecology. The source of the solvent contamination is being disputed between the environmental consultants for the Thinker Toys Site and Onni Property. PCE is documented along the southern Subject Property boundary that is shared with the Onni/Barnes and Noble Property, and there is insufficient groundwater and soil data to understand if this PCE is attributable to the documented solvent contamination at the south-adjoining Onni/Barnes and Noble Property or if it is a component of the Thinker Toys solvent plume. For this reason, this condition is included as a separate, standalone REC.

Based on the results of the Phase I ESA, Aspect conducted a Phase II ESA investigation to evaluate known and potential impacts to the Subject Property associated with the RECs and data gaps listed above. The investigation activities and results are described in the following sections.

3 Phase II Environmental Site Assessment

The Phase II ESA consisted of drilling and installation of seven new groundwater monitoring wells and chemical analysis of soil and groundwater samples (Figure 3). The locations and depths of each new well were designed to address the RECs identified by the Phase I ESA and to provide data that can be utilized for high-level construction planning. The implemented scope and results are presented in the following sections.

3.1 Field Program

On September 26 to 30, 2019, a total of seven new groundwater monitoring wells were constructed in soil borings drilled across the Subject Property. Two-inch-diameter wells were constructed in soil borings advanced to maximum depths of 45 feet bgs for shallow wells and 90 feet bgs for deep wells, using either hollow stem auger drilling equipment operated by Cascade Drilling of Woodinville, Washington or sonic drilling equipment operated by Anderson Environmental Contractors of Kelso, Washington. During drilling, soil samples were obtained continuously (from sonic borings) or at 2.5- to 5-foot intervals (from auger borings) for lithologic classification and field screening by an Aspect geologist. Soils observed were classified in accordance with the Unified Soil Classification System (USCS) and recorded on boring logs. Field screening methods utilized included measurement of headspace volatiles using a photoionization detector (PID), water sheen, and visual and olfactory observation. Boring and well construction logs are included in Appendix B.

Based on the results of field screening, observed lithology, and proximity to REC or data gap areas, a total of 33 soil samples were submitted to the analytical laboratory, Friedman and Bruya, Inc. of Seattle, Washington for analysis one or more of gasoline-, diesel-, and oil-range TPH and chlorinated solvents.

Newly installed and pre-existing groundwater monitoring wells were gauged and sampled using low flow sampling methods during the Phase II ESA. Pre-existing groundwater monitoring wells were sampled on August 14 and 15, 2019. Following installation and well development, each new groundwater monitoring well was sampled on September 30 or October 1, 2019. A total of 13 groundwater samples, including 8 from shallow wells and 5 from deep wells, were submitted to Friedman and Bruya, Inc. for analysis of one or more of gasoline-, diesel-, and oil-range TPH and chlorinated solvents.

Newly installed groundwater monitoring wells were surveyed relative to the pre-existing well network on October 3, 2019 and fitted with pressure transducers to allow for evaluation of groundwater flow direction. Survey and water level data, as well as construction details, are summarized on Tables 1 and 4.

On October 3 and 4, 2019, aquifer testing was conducted by an Aspect geologist in order to estimate hydraulic conductivity of the soil profile beneath the Subject Property. Wells selected for testing included B-3/MW-3 and URS-MW-1 based on the representativeness of soils in the screened intervals. Aquifer testing was conducted using slug test methods, in which water was rapidly evacuated from each well and the rate of water level rise monitored using an electronic water level indicator.

All soil cuttings, well purge water, and decontamination water generated by the investigation were placed into labeled U.S. Department of Transportation-approved drums and temporarily stored at the Subject Property as investigation-derived waste (IDW). Immediately upon receipt of the analytical results, Aspect subcontractor, DH Environmental Inc., prepared profiles, manifests, and removed the IDW to an appropriate waste facility. All IDW was removed from the Subject Property on October 10, 2019.

3.2 Results

3.2.1 Geology and Hydrogeology

Soil observed during drilling consisted primarily of imported fill material, overlying glacial till. The fill was encountered to depths ranging from 2 to 10 feet bgs and consisted primarily of sand and gravel with varying amounts of silt. The fill was underlain by glacial till observed to the maximum drilled depths of 90 feet bgs, consisting of alternating layers and interbeds of silty sands, sandy silts, and sands with varying amounts of gravel (Figures 7 and 8). Previous investigations encountered advance outwash deposits below the glacial till identified at depths ranging from 25 to 50 feet bgs in select areas (Sweet-Edwards/EMCON, 1992; URS, 2000); however, this unit was not readily observed in the boring locations for the Phase II ESA.

Groundwater was encountered in two water bearing zones (a shallow and a deep zone), which is consistent with observations from previous investigations by others (Terra, 2008; SES, 2011; URS, 2011; Aspect, 2019), shallow groundwater was encountered inconsistently in sandy layers from 22 to 45 feet bgs, corresponding to elevations of approximately 136 to 115 feet amsl. Groundwater in the deep aquifer was encountered from 71 to 73 feet bgs corresponding to elevations of 83 to 82 feet amsl. Interpreted groundwater flow in the shallow zone is to the south and in the deep zone is to the southeast (Figure 4). This is consistent with historical trends interpreted and mapped by others.

3.2.2 Chemical Analytical Results

This section summarizes the results of chemical analytical testing of soil and groundwater samples obtained during this study. Chemical analytical results are summarized in Tables 2 and 3. Full laboratory reports are included as Appendix C.

3.2.2.1 Soil Data

The chemical analytical results for soil samples were evaluated against the MTCA Method A cleanup levels for Unrestricted Land Use or, where Method A cleanup levels have not been established, data were evaluated against the Method B cleanup levels. The analytical soil results for this study are summarized on Table 2 and shown relative to current features and historical exploration locations on Figures 5, 7, and 8.

- PCE was detected in 5 of the 33 samples analyzed, at concentrations above and below the MTCA Method A cleanup level of 0.05 mg/kg. Concentrations exceeding the cleanup level are as follows:
 - In AMW-2, PCE was detected at 0.13 mg/kg in the sample obtained from 65 feet bgs (elevation 92.17 feet amsl), which exceeds the MTCA Method A

cleanup level of 0.05 mg/kg. A degradation product, cis-1,2-DCE was also detected in this sample at 0.035 mg/kg. There is no established MTCA cleanup level for this compound.

- In AMW-4D, PCE was detected at 0.12 mg/kg in the sample obtained from 63.5 feet bgs (elevation89.75 feet amsl), above the MTCA cleanup level of 0.05 mg/kg.
- PCE was detected at concentrations less than the MTCA cleanup level in the following 3 soil samples:
 - In AMW-3D, PCE was detected at 0.019 mg/kg at 45 feet bgs (elevation 92.17 feet amsl)
 - In AMW-4D, PCE was detected at 0.014 mg/kg at 60 feet bgs (elevation 93.25 feet amsl)
 - In AMW-4S, PCE was detected at 0.014 mg/kg at 5 feet bgs (elevation 148.36 feet amsl)
- Gasoline-, diesel-, and oil-range TPH were not detected in any of the 4 soil samples submitted for analysis.

Additionally, detections of methylene chloride were indicated in 8 of the 33 samples analyzed; however, the data were flagged as resulting from laboratory cross contamination, and the concentrations are not considered representative of actual occurrences of methylene chloride in soil at the Subject Property.

3.2.2.2 Groundwater Data

The chemical analytical results for groundwater samples were evaluated against the MTCA Method A cleanup levels. The analytical groundwater results are summarized on Table 3 and shown graphically on Figures 6, 7 and 8.

PCE and its degradation products were detected in 7 of the 13 groundwater samples analyzed. Of these, 6 samples were obtained from the shallow groundwater zone, and one was obtained from the deep groundwater zone, as follows:

• Shallow Groundwater Zone. PCE is the only constituent identified at concentrations that exceed the MTCA Method A cleanup level of 5 ug/L, and the exceedances were only detected in shallow groundwater samples obtained from monitoring wells B3/MW-3, MW-17, MW-18, MW-19, and URS-MW-1, at concentrations ranging from 5.8 ug/L to 58 ug/L

PCE, TCE, or cis-1,2-DCE were detected at concentrations below the MTCA Method A cleanup levels in the samples obtained from MW-17, MW-18, and MW-20.

Additionally, diesel-range TPH was detected in the sample obtained from MW-20 at 70 ug/L. The laboratory flagged the diesel-range detection as a poor match to the fuel standard and unlikely representative of a diesel release at this location.

• **Deep Groundwater Zone.** In deep groundwater, PCE was detected at a concentration below the MTCA Method A cleanup level in the sample obtained

from AMW-4D. No additional contaminants were detected in the samples analyzed.

3.2.3 Aquifer Testing Results

The Bouwer and Rice method (1976) was applied to the aquifer test data. Table 1 summarizes well construction data, Table 4 shows water level data, and Table 5 presents the field measurements and testing input parameters for each test and the associated hydraulic conductivity estimates. The resulting hydraulic conductivity estimates for the two wells tested range from 0.5 to 0.8 ft/day, with an average of 0.6 ft/day. This value represents relatively slow groundwater flow and is within the typical range for dense geologic till deposits like those below the Subject Property vicinity.

4 Conclusions

4.1 Investigation Findings

The results of the Phase II ESA confirm that soil and groundwater at the Subject Property has been impacted by releases associated with the RECs identified in the Phase I ESA (Aspect, 2019). The Phase II ESA is generally consistent with the results of prior sampling by others and confirms the presence of the chlorinated solvents in soil and groundwater; however, Phase II ESA data provides new information regarding lateral and vertical extent, fate and transport mechanisms, and potential sources/release areas. Key findings of the Phase II ESA are summarized below:

- 1. Confirmed Impacts from Thinker Toys Plume. As documented in prior studies by others, soil and shallow groundwater (elevation 134 to 130 feet amsl or approximately 25 to 30 feet bgs) in the western portion of the Subject Property has been impacted by the chlorinated solvent plume emanating from the north-adjacent and upgradient Thinker Toys site. Phase II ESA data indicates that the vertical extent of the chlorinated solvent-impacted area located on the Subject Property extends deeper than previously indicated in studies by others but confirms that the deeper groundwater zone below the Subject Property does not appear to be affected. We recommended additional drilling and soil sampling be completed before construction to attempt to delineate the southern and western extent of on-Property impacts related to the release from the Thinker Toys site.
- 2. Possible New Potential Chlorinated Solvent Source near Southern Property Boundary. The Phase II ESA data confirmed chlorinated solvent impacts to soil near the southern Subject Property boundary, and identified chlorinated solvent impacts at both shallower and deeper depths than were previously identified in this area:
 - a. In shallow soil, elevated PCE was identified at 5 feet at AMW-4S and previous studies identified PCE at 12.5 feet and 30 feet bgs in the nearby well, URS-MW-4. Soil at these depths is too shallow to be attributed to the Thinker Toys solvent plume and is likely attributable to a previously unidentified on-Property source (such as, a release into one of the nearby catch basins), or an off-site source to the south (such as the Onni/Barnes and Noble Property, where there is also a catch basin very close to the Subject Property boundary). We recommend additional drilling and soil sampling before construction in the vicinity of the on-Property catchbasins and southern Property boundary to attempt to delineate the most-likely source (catchbasin or other) of these impacts.
 - b. In deeper soil, elevated PCE was identified at 60 feet bgs in AMW-4D, and in the deep zone groundwater sample obtained from AMW-4D. Based on the results of this study and the prior studies by others, it is not clear whether the source of these deep chlorinated solvent impacts is the Thinker Toys plume discussed in Finding 1 (summarized in Section 2.2 above), or a separate on-Property source (such as localized dumping into a catch basin), or an off-site source to the south (such as the Onni/Barnes and Noble Property). We recommend additional drilling and soil and groundwater sampling north of these impacts and south of the documented impacts associated with the Thinker Toys

site release to attempt to identify the most-likely source of these deep impacts (borings completed for this recommendation would be dual purpose with the borings recommended under Finding 1 above).

- **3. Groundwater Implications for Redevelopment.** The deep groundwater zone is present between approximate elevations 83 feet and 80 feet amsl, which is 8 to 10 feet below the potential maximum excavation depth of 91 feet amsl or approximated 70 feet bgs. Shallow groundwater appears to be present generally in the west portion of the Subject Property between approximate elevations 134 feet and 130 feet amsl but is discontinuous and may be subject to significant seasonal variation. Aquifer testing indicated an average hydraulic conductivity of 0.6 feet per day for the shallow groundwater will be generated during mass excavation dewatering. Because the Phase II ESA data and prior studies show that the shallow and deep groundwater are affected by chlorinated solvent plume(s), consideration of the impact of dewatering on the chlorinated solvent plumes will be needed during dewatering/construction planning.
- 4. Petroleum-Contamination Associated with Former Gasoline Station. Groundwater data obtained during the Phase II ESA did not show impacts from petroleum hydrocarbons, indicating that the petroleum-contaminated soil that remains in-place at the Subject Property does not appear to be leaching to groundwater. It should be noted that the petroleum-contaminated soil will require special handling and disposal requirements during construction, and additional sampling will be needed to confirm the lateral and vertical extents in some areas to comply with the requirements of MTCA.
- 5. No Identified Impacts Associated with Corner Court Property to North-Northeast of Subject Property. Explorations intended to evaluate possible impacts to the Subject Property associated with the former Corner Court dry cleaner on the property located north-northeast of the Subject Property (discussed in REC 2) did not identify chlorinated solvents in soil and or groundwater.

4.2 Recommendations

Ahead of redevelopment, additional soil and groundwater data is needed to understand the source(s) of the chlorinated solvents identified in shallow and deep soil and groundwater beneath the Subject Property, specifically near the southern property boundary. Further, additional soil characterization data will be needed prior to the start of construction to support the conceptual site model per MTCA, and to obtain a Contained In Determination from Ecology to support soil disposal.

Additionally, due to the significant fluctuations in groundwater flow direction and water table elevation, particularly in the shallow aquifer, continued groundwater monitoring ahead of redevelopment is recommended to provide data to support the conceptual site model and to support construction planning. We further recommend that a monitoring program be designed and implemented during mass excavation dewatering to monitor possible movement of contaminated groundwater plumes in the area.

As stated in Section 4.1, petroleum-contaminated soil will require additional sampling at the boundaries and special handling/disposal during construction. We do not recommend any additional pre-construction actions pertaining to this condition.

References

Aspect Consulting, LLC (Aspect), 2019, Phase I Environmental Site Assessment, 10605, 10619, 10635 NE 8th Street, Bellevue, Washington, October 14, 2019

Limitations

Work for this project was performed for the Schnitzer West, LLC (Client), and this report was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

Please refer to Appendix D titled "Report Limitations and Guidelines for Use" for additional information governing the use of this report.

TABLES

Table 1. Well Construction and Groundwater Elevations

Project No. 190298, NE 8th and 106th Ave NE, Bellevue, Washington

Well ID	Date	Well Screen Interval (ft bgs)	TOC elevation (ft)	Well Screen Elevation (88)	Water Level (ft bTOC)	Groundwater Elevation (ft)
Shallow Monitori	ng Wells					
URS-MW-1	10/22/2019	20-30	157.87	137.87 - 127.87	27.26	130.61
URS-MW-2	10/22/2019	20-30	160.22	140.22 - 130.22	Dry	
URS-MW-3*	10/22/2019	20-30	153.98	133.98 - 123.98	23.25	130.73
URS-MW-4	10/22/2019	20-30	152.99	132.99 - 122.99	Dry	
B3/MW-3*	10/22/2019	20-30	158.89	138.89 - 128.89	24.94	133.95
MW-17	10/22/2019					
MW-18	10/22/2019					
MW-19	10/22/2019	20-30	156.31	146.31 - 126-31	Dry	
MW-20*	10/22/2019	15-30	152.63	137.63 - 122.63	22.69	129.94
AMW - 1	10/22/2019	35-45	170.41	135.41 - 125.41	Dry	
AMW - 3S	10/22/2019	20-40	156.61	136.61 - 116.61	39.48	117.13
AMW - 4S	10/22/2019	30-40	153.36	123.36 - 113.36	Dry	
AMW - 5	10/22/2019	30-40	154.25	124.25 - 114.25	Dry	
Deep Monitoring	Wells					
URS-MW-8*	10/22/2019	70-80	152.35	82.35 - 72.35	69.14	83.21
B1/MW-1	10/22/2019	70-90	169.63	99.63 - 79.63	87.92	81.71
B2/MW-2*	10/22/2019	70-90	159.02	89.02 - 69.02	75.78	83.24
B4/MW-4*	10/22/2019	70-90	157.06	87.06 - 67.06	76.38	80.68
AMW-2	10/22/2019	70-90	157.17	87.17 - 67.17	74.11	83.06
AMW-3D	10/22/2019	70-90	156.14	86.14 - 66.14	74.78	81.36
AMW-4D	10/22/2019	70-90	153.25	83.25 - 63.25	71.48	81.77

Notes:

Well casing elevations surveyed by Bush, Roed, and Hitchings on September 10 and November 24, 2008 AMW well casing elevations surveyed by PLS on October 3, 2019

Vertical datum based on City of Bellevue - NAVD 88

* Transducer deployed by Aspect Consulting in 3 shallow and 3 deep wells on 08/15/19

ft = feet

bTOC = below top of casing

bgs = below ground surface

Wells labeled "URS" were completed by URS Corporation

Wells labeled "B1/MW" were completed by Terra Associates

Wells labeled MW-19 and MW-20 were completed by Farallon

Table 2. Summary of Soil Chemical Analytical Results

Project No. 190298, NE 8th and 106th Ave NE, Bellevue, Washington

						Volatile	Organic C	ompounds			al Petrole drocarbo	
Boring ID	Sample ID				PCE	TCE	cDCE	Methylene Chloride	vc	GRO	DRO	MRO
					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Sample Date	Depth(ft bgs)	Elevation(ft msl)								
AMW-1	AMW-1-15.0	9/26/2019	15 ft	155.41	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U	< 5 U	< 50 U	< 250 U
	AMW-1-37.5	9/26/2019	37.5 ft	132.91	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U	< 5 U	< 50 U	< 250 U
	AMW-1-45.0	9/26/2019	45 ft	125.41			< 0.005 U	< 0.05 U	< 0.005 U	< 5 U	< 50 U	< 250 U
AMW-2	AMW-2-19	9/26/2019	19 ft	138.17		< 0.003 U		< 0.05 U	< 0.005 U	< 5 U		-
	AMW-2-54	9/26/2019	54 ft	103.17	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-2-65	9/26/2019	65 ft	92.17	0.13	< 0.003 U	0.034	< 0.05 U	< 0.005 U			
	AMW-2-72	9/26/2019	72 ft	85.17	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-2-81	9/26/2019	81 ft	76.17	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
AMW-3D	AMW-3D-35.0	9/30/2019	35 ft	121.14	< 0.005 U	< 0.003 U	< 0.005 U	0.15 J*	< 0.005 U			
	AMW-3D-45.0	9/30/2019	45 ft	111.14	0.019	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-3D-55.0	9/30/2019	55 ft	101.14	< 0.005 U	< 0.003 U	< 0.005 U	0.11 J*	< 0.005 U			
	AMW-3D-75.0	9/30/2019	75 ft	81.14	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
AMW-3S	AMW-3S-27.5	9/27/2019	27.5 ft	129.11	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-3S-35	9/27/2019	35 ft	121.61	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
AMW-4D	AMW-4D-5.5	9/27/2019	5.5 ft	147.75	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-4D-20.0	9/27/2019	20 ft	133.25	< 0.005 U	< 0.003 U	< 0.005 U	0.065 J*	< 0.005 U			
	AMW-4D-30.0	9/27/2019	30 ft	123.25	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-4D-35.0	9/27/2019	35 ft	118.25	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-4D-50.0	9/27/2019	50 ft	103.25	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-4D-55.0	9/27/2019	55 ft	98.25	< 0.005 U	< 0.003 U	< 0.005 U	0.18 J*	< 0.005 U			
	AMW-4D-60.0	9/27/2019	60 ft	93.25	0.014	< 0.003 U	< 0.005 U	0.21 J*	< 0.005 U			
	AMW-4D-63.5	9/27/2019	63.5 ft	89.75	0.12	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-4D-69.5	9/27/2019	69.5 ft	83.75	< 0.005 U	< 0.003 U	< 0.005 U	0.064 J*	< 0.005 U			
	AMW-4D-80.0	9/27/2019	80 ft	73.25	< 0.005 U	< 0.003 U	< 0.005 U	0.056 J*	< 0.005 U			
	AMW-4D-89.0	9/27/2019	89 ft	64.25	< 0.005 U	< 0.003 U	< 0.005 U	0.076 J*	< 0.005 U			
AMW-4S	AMW-4S-5.0	9/26/2019	5 ft	148.36	0.014	< 0.003 U		< 0.05 U	< 0.005 U			
	AMW-4S-10.0	9/26/2019	10 ft	143.36	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-4S-15.0	9/26/2019	15 ft	138.38	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
AMW-5	AMW-5-5	9/27/2019	5 ft	149.25	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-5-10	9/27/2019	10 ft	144.25	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-5-15	9/27/2019	15 ft	139.25			< 0.005 U	< 0.05 U	< 0.005 U			
	AMW-5-20	9/27/2019	20 ft	134.25	< 0.005 U	< 0.003 U	< 0.005 U	0.14 J*	< 0.005 U			
	AMW-5-35	9/27/2019	35 ft	119.25	< 0.005 U	< 0.003 U	< 0.005 U	< 0.05 U	< 0.005 U			
	MTCA	Method A cl	eanup Level		0.05	0.03		0.02		100	2000	2000

Notes

Bold - Analyte Detected

Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

X - Chromatographic pattern does not match fuel standard used for quantitation

* = detected concentration has been flagged by the laboratory as the result of laboratory cross contamination and

does not represent actual presence of the compound in the sample.

1. Locations surveyed on October 3, 2019 by PLC, Inc. relative to NAVD 88.

PCE - Tetrachloroethene

TCE - Trichloroethene

cDCE - cis-1,2-Dichloroethene

VC - Vinyl Chloride

GRO - Gasoline range organics

DRO - Diesel range organics

MRO - Motor oil range organics

VOCs analyzed by EPA Method 8260C. Only contaminants of concern (chlorinated VOCs) are shown on the table. See laboratory reports for full list of compounds analyzed.

Aspect Consulting

11/15/2019

V:\190298 Schnitzer - NE 8th and 106th Development\Deliverables\Phase II ESA\Tables\Table 2. Soil Table Shallow and Deep 2019_10_16 A

Table 3. Summary of Groundwater Chemical Analytical Results

Project No. 190298, NE 8th and 106th Ave NE, Bellevue, Washington

			Volatile organic compounds (VOCs)				Petroleur	n Hydrocarbo	ns (TPHs)
						Methylene			
		PCE	TCE	cDCE	vc	Chloride	GRO	DRO	ORO
Well ID	Sample Date	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Shallow Wells									
AMW-2	9/30/2019	< 1 U	< 1 U	< 1 U	< 0.2 U	< 5 U			
AMW-3S	10/3/2019	1.3*	< 1 U	< 1 U	< 0.2 U	< 5 U			
B3-MW-3	8/14/2019	33	<1U	< 1 U	< 0.2 U	< 5 U	< 100 U	< 50 U	< 250 U
MW-17	10/9/2019	41	2.5	3.3	< 0.2 U	< 5 U			
MW-18	10/9/2019	58	1.4	< 1 U	< 0.2 U	< 5 U			
MW-19	8/15/2019	5.8	<1U	< 1 U	< 0.2 U	< 5 U			
MW-20	8/15/2019	2.9	< 1 U	< 1 U	< 0.2 U	< 5 U	< 100 U	70 X	< 250 U
URS-MW-1	8/14/2019	45	< 1 U	< 1 U	< 0.2 U	< 5 U	< 100 U	< 50 U	< 250 U
URS-MW-3	8/14/2019	< 1 U	< 1 U	< 1 U	< 0.2 U	< 5 U	< 100 U	< 50 U	< 250 U
Deep Wells									
AMW-3D	10/8/2019	< 1 U	<1U	< 1 U	< 0.2 U	< 5 U			
AMW-4D	10/8/2019	1.3	<1U	< 1 U	< 0.2 U	< 5 U			
B2/MW-2	8/15/2019	< 1 U	<1U	< 1 U	< 0.2 U	< 5 U			
B4/MW-4	8/15/2019	< 1 U	<1U	< 1 U	< 0.2 U	< 5 U			
URS-MW-8	8/15/2019	< 1 U	< 1 U	< 1 U	< 0.2 U	< 5 U			
MTCA Method A	Cleanup Level	5	5		0.2	5	1000	500	500

Notes

ug/L = micrograms per liter

Bold - Analyte Detected

Blue Shaded - Detected result exceeded screening level

* - Result is likely biased low due to lab handling error of the sample and should be considered an estimate

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

X - Chromatographic pattern does not match fuel standard used for quantitation

PCE - Tetrachloroethene

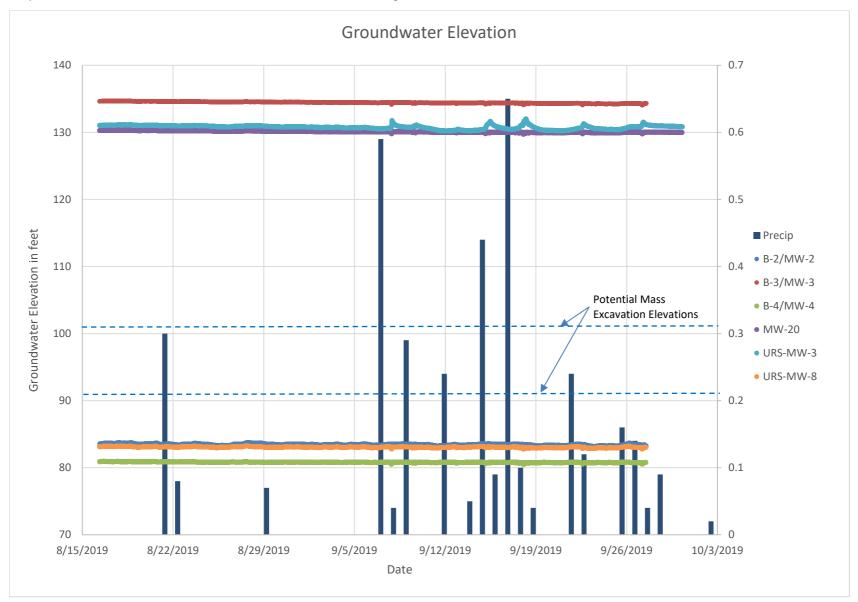
TCE - Trichloroethene

cDCE - cis-1,2-Dichloroethene

VC - Vinyl Chloride

GRO - Gasoline range organics

DRO - Diesel range organics


ORO - Oil-range organics

VOCs analyzed by EPA Method 8260C. Only contaminants of concern (chlorinated VOCs) are shown on the table. See lab reports for full list of compoun

Aspect Consulting

Table 4. Hydrographs

Project No. 190298, NE 8th and 106th Ave NE, Bellevue, Washington

Phase II ESA Page 1 of 1

Table 4

Table 5 - Aquifer Hydraulic Conductivity Estimates from Slug Tests

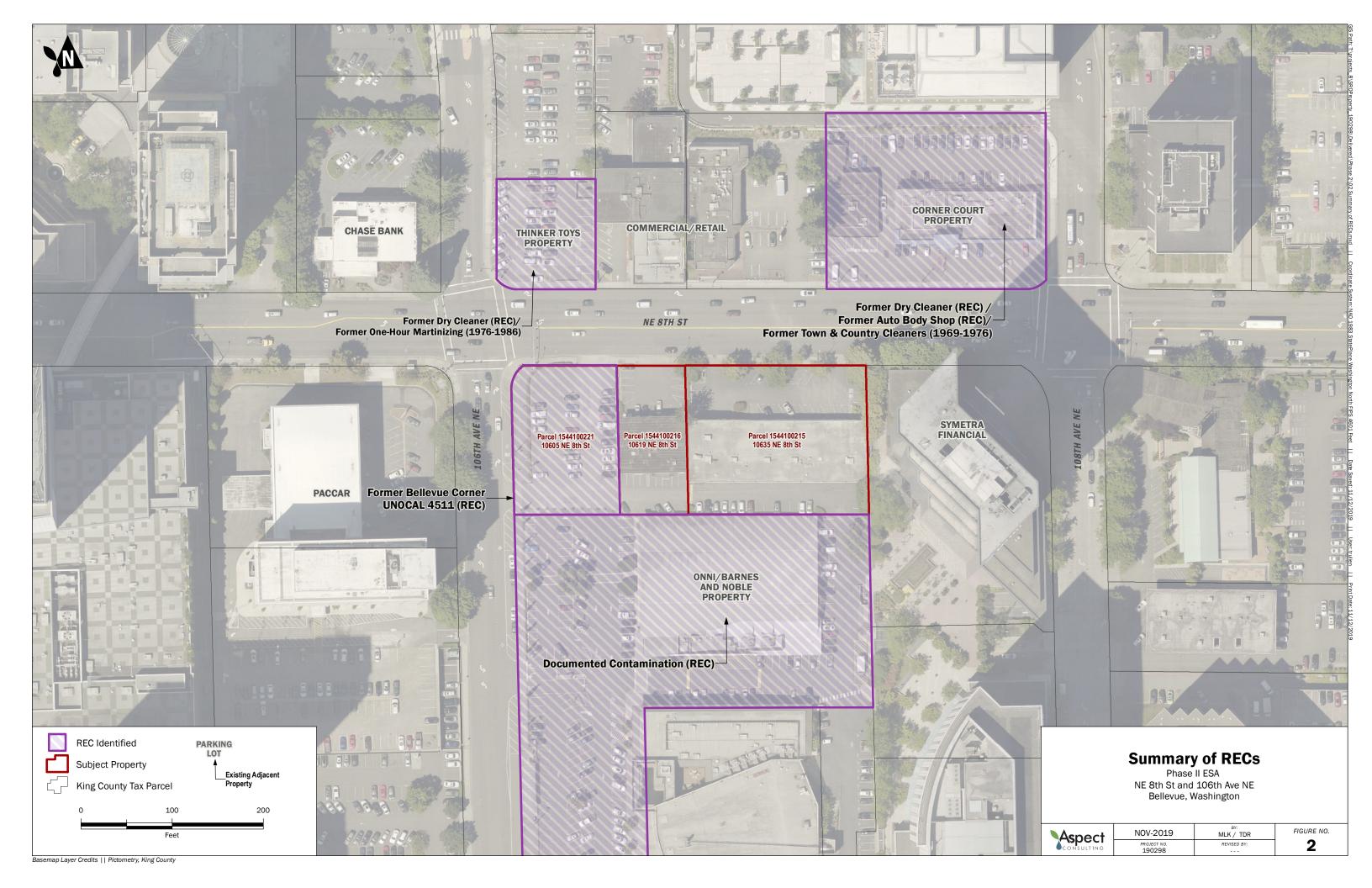
190298 NE 8th and 106th, Bellevue, Washington

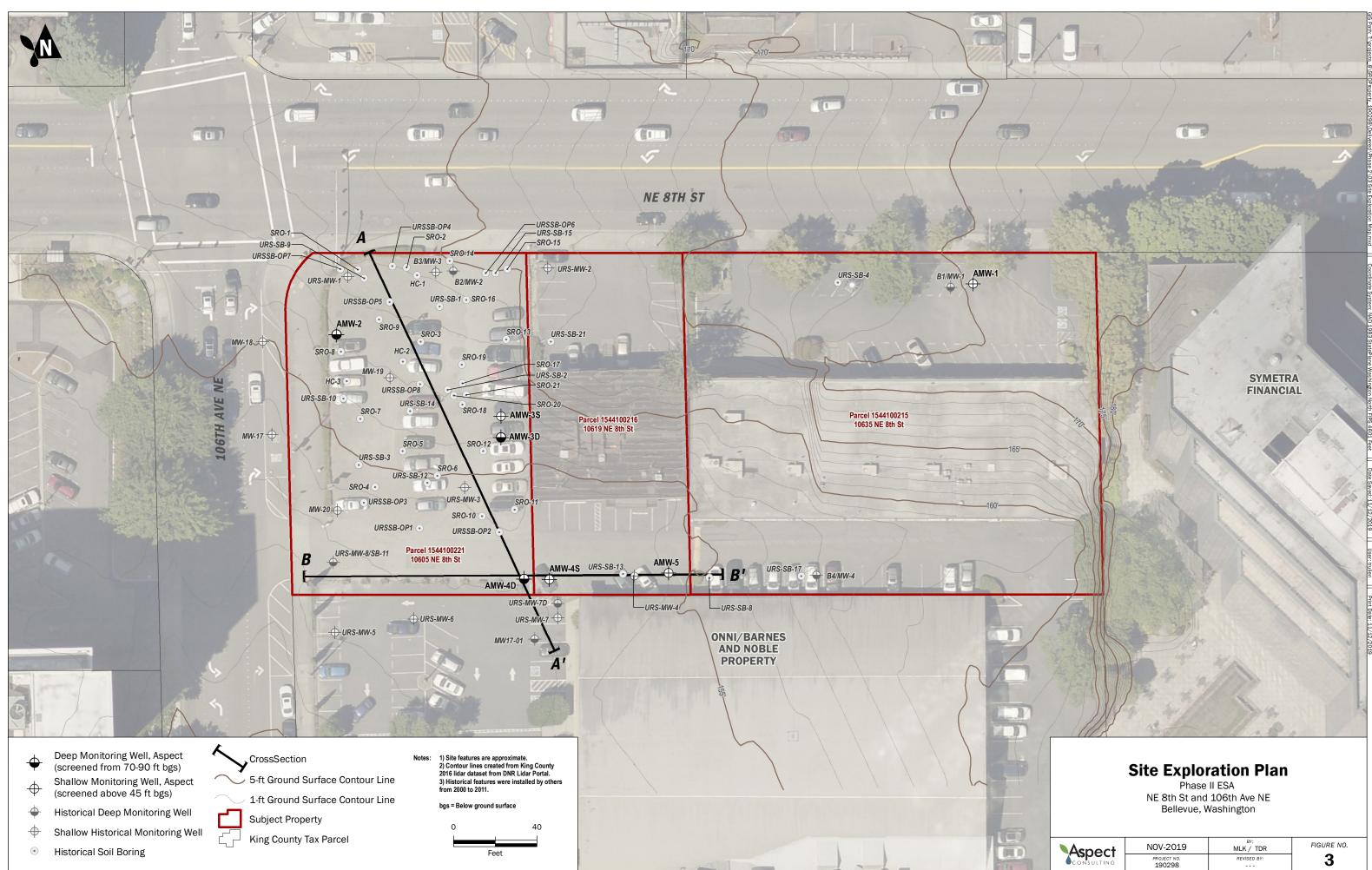
Monitoring Well		B-3/MW-3			URS-MW-1	
Well Depth in Feet		30.0			30.1	
Screen Length in Feet		10.0			10.0	
Depth to Screen in Feet		20.0			20.1	
Depth to Aquitard in Feet		35		35		
Depth to Water in Feet		24.63			26.95	
Depth to Sandpack in Feet		17.0			18.0	
Slug Displacement (Ho) in Feet	0.49	0.69	1.08	0.69	0.60	0.59
Porosity (n)		0.20			0.20	
Radius of Casing (rc) in Feet		0.08			0.08	
Radius of Borehole (rw) in Feet		0.33			0.33	
Saturated Aquifer Thickness (H) in Feet		10.4			8.1	
Saturated Well Thickness (Lw) in Feet		5.4			3.2	
Effective Radius (reff) in Feet		0.167			0.167	
Effective Screen Length (Le) in Feet		5.4		3.2		
Slug Size	1' x1"	1' x1"	3' x1"	1' x1"	1' x1"	1' x1"
Rising/Falling Head Test	Rising	Rising	Rising	Rising	Rising	Rising
Fully Submerged Sandpack	No	No	No	No	No	No
Transiently Exposed Sandpack	Yes	Yes	Yes	Yes	Yes	Yes
Transiently Exposed Screen	Yes	Yes	Yes	Yes	Yes	Yes
Partially Submerged Screen	Yes	Yes	Yes	Yes	Yes	Yes
Bouwer and Rice Analysis Parameters						
Normalized Head at t1 (y1) in Feet	0.18	0.13	0.14	0.15	0.19	0.18
Time - t1 in Seconds	60	61	60	62	66	64
Normalized Head at t2 (y2) in Feet	0.14	0.10	0.12	0.11	0.14	0.13
Time - t2 in Seconds	257	245	261	255	254	261
Le/rw		16.1		9.5		
Calculated K in cm/sec	1.9E-04	2.1E-04	1.4E-04	2.9E-04	2.9E-04	2.7E-04
Calculated K in ft/day	0.5	0.6	0.4	0.8	0.8	0.8
Geometric Mean K in ft/day	0.5 0.8					
Screened Interval Soil Type		Silty Sand			Silty Sand	
Aquifer Geometric Mean K in ft/day			0	.6		

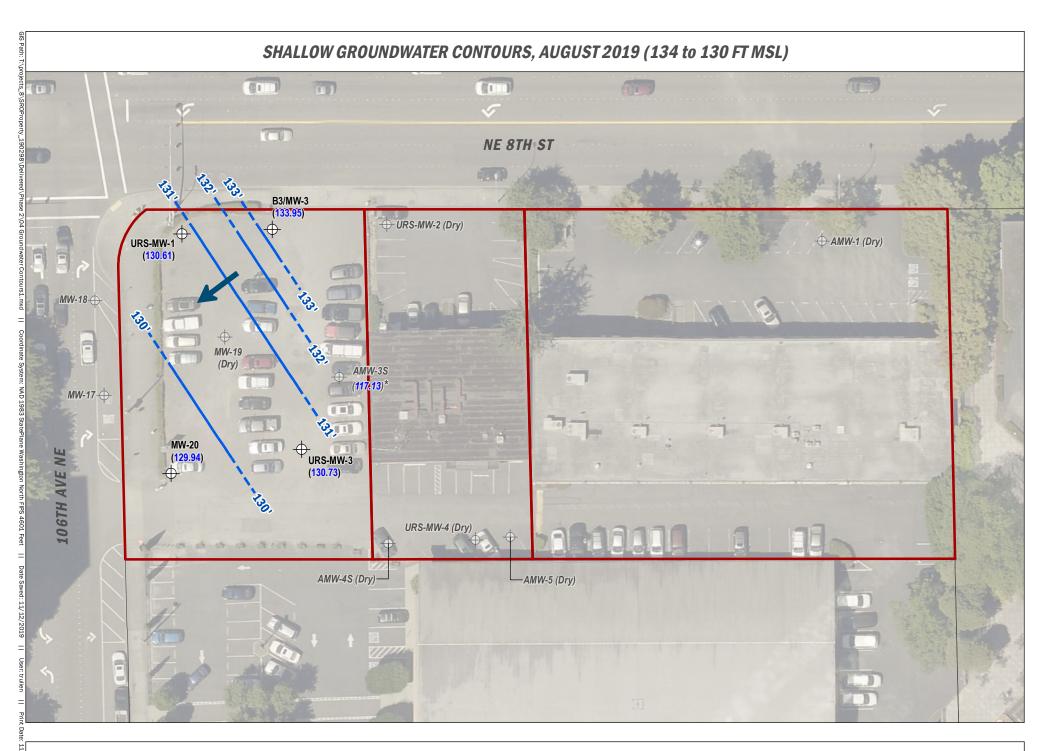
Notes

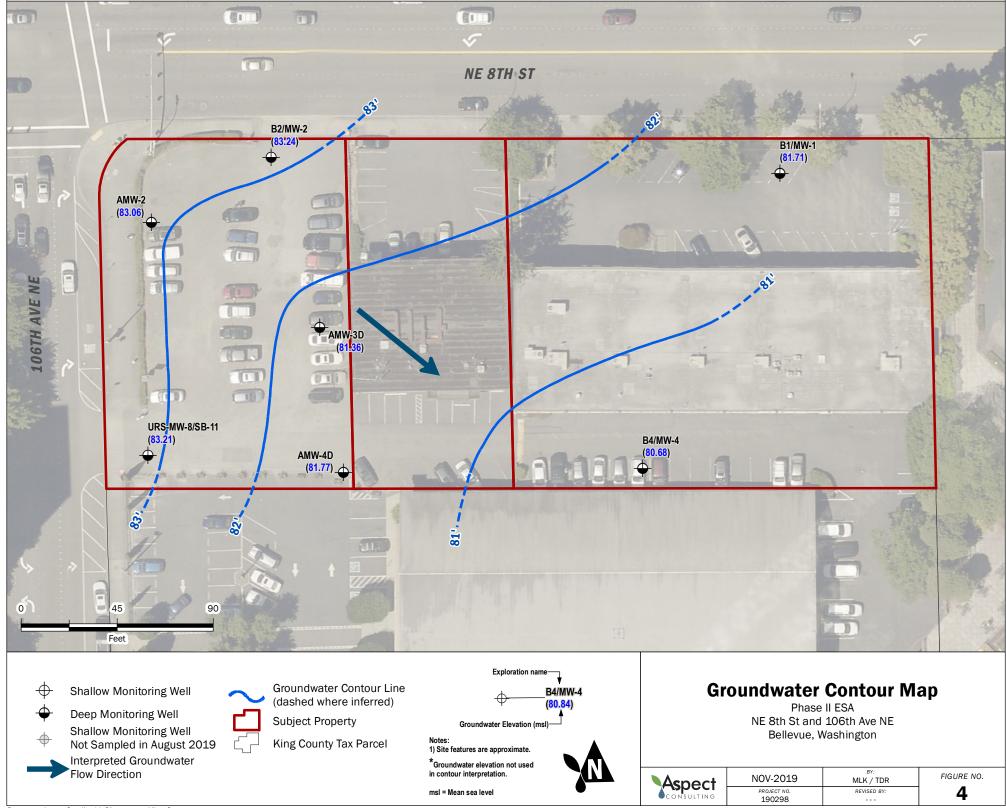
Data analysis by method of Bouwer and Rice (1976; 1989) or Springer-Gelhar (1991).

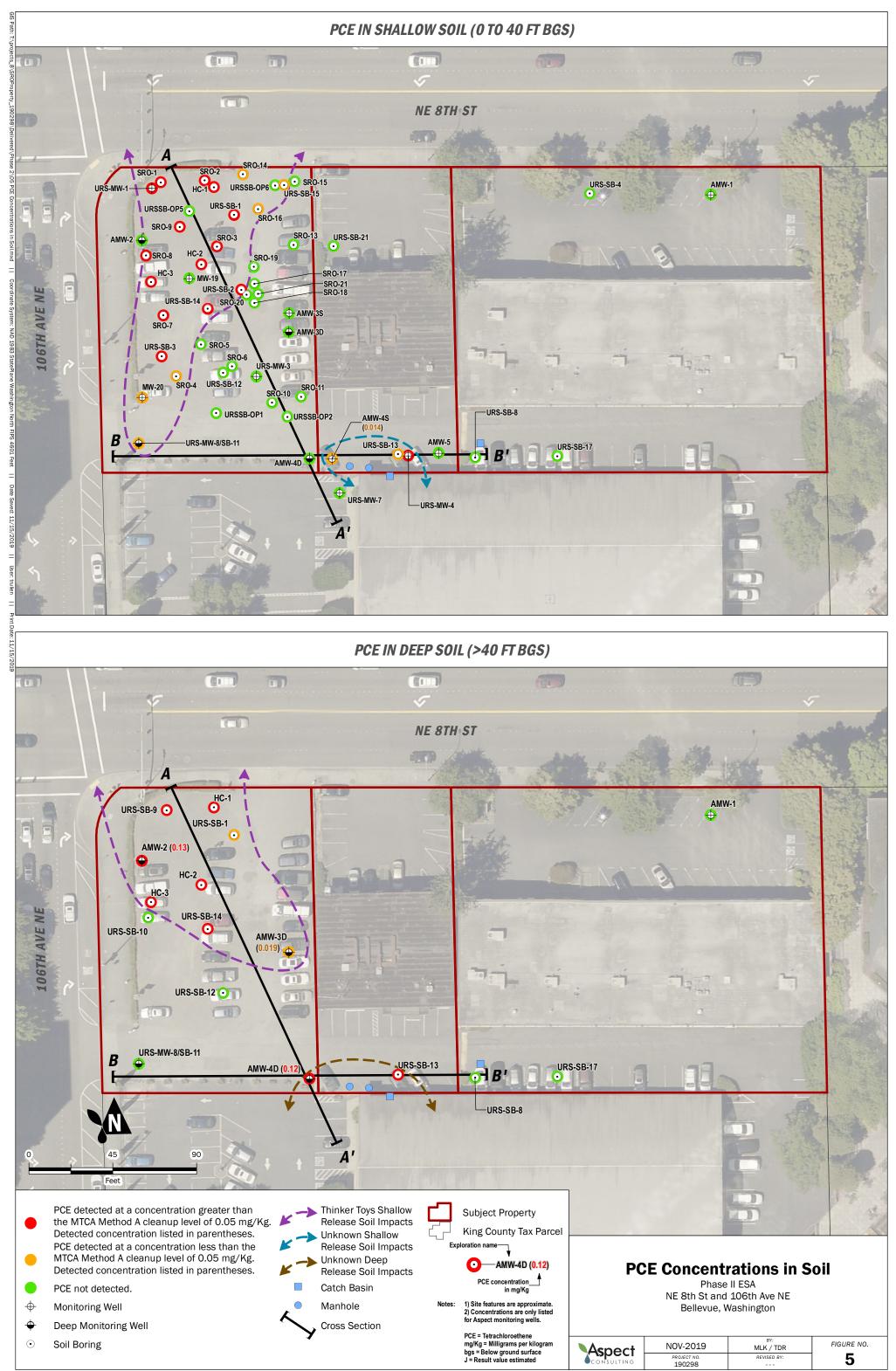
All depths are below ground surface

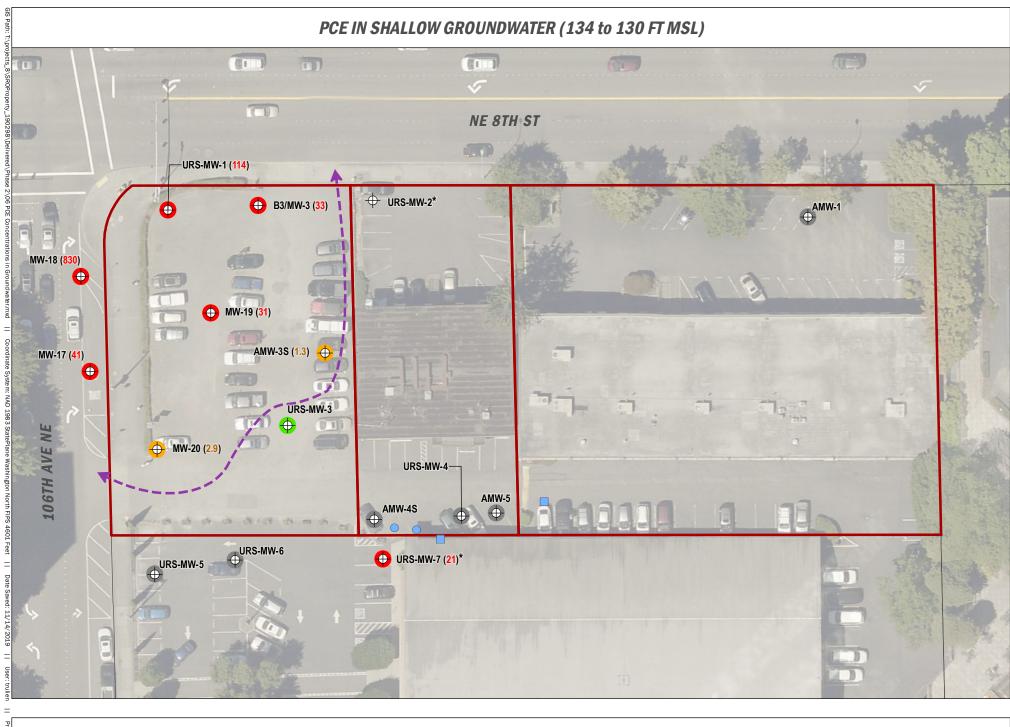

^a The Bouwer and Rice A, B, and C coefficients are calculated using regression equations of Van Rooy (1988).


^b R_e/r_w is the effective radial distance over which y is dissipated, divided by the radial distance of well development.

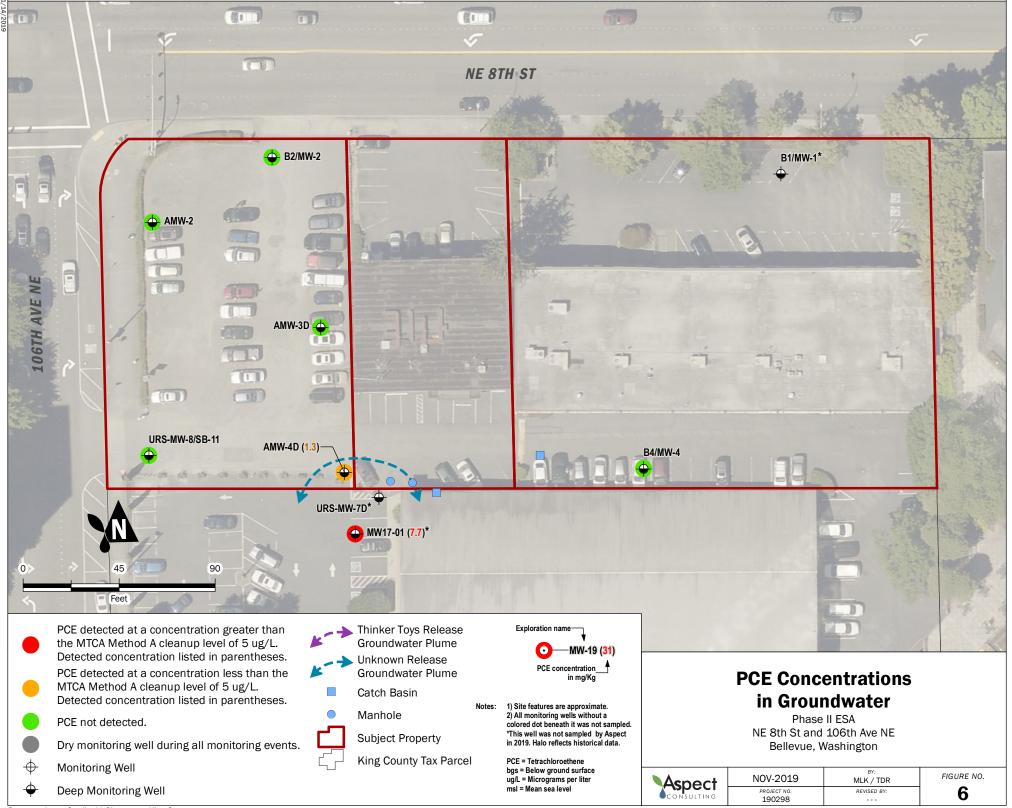

FIGURES

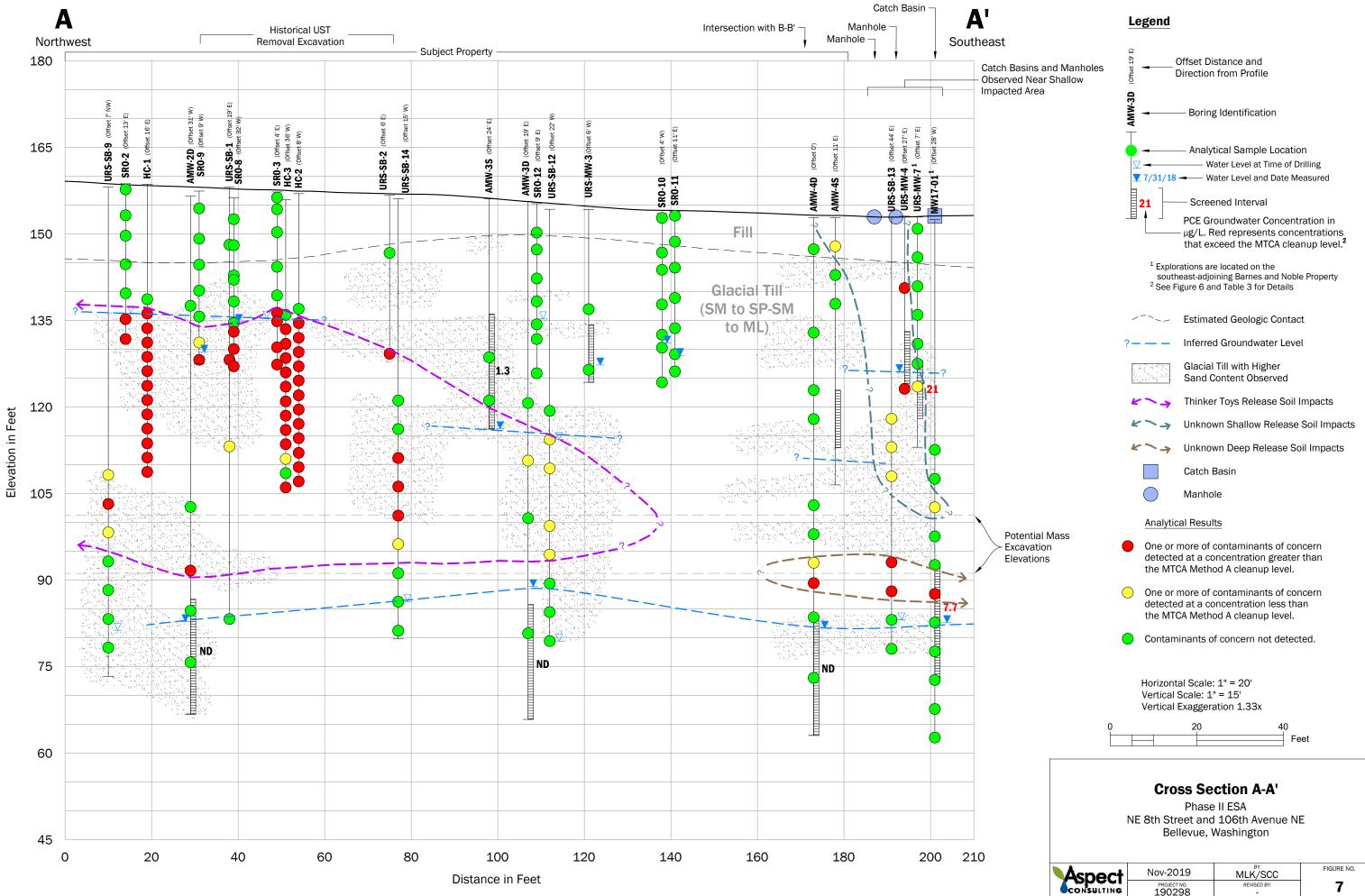

Basemap Layer Credits || Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

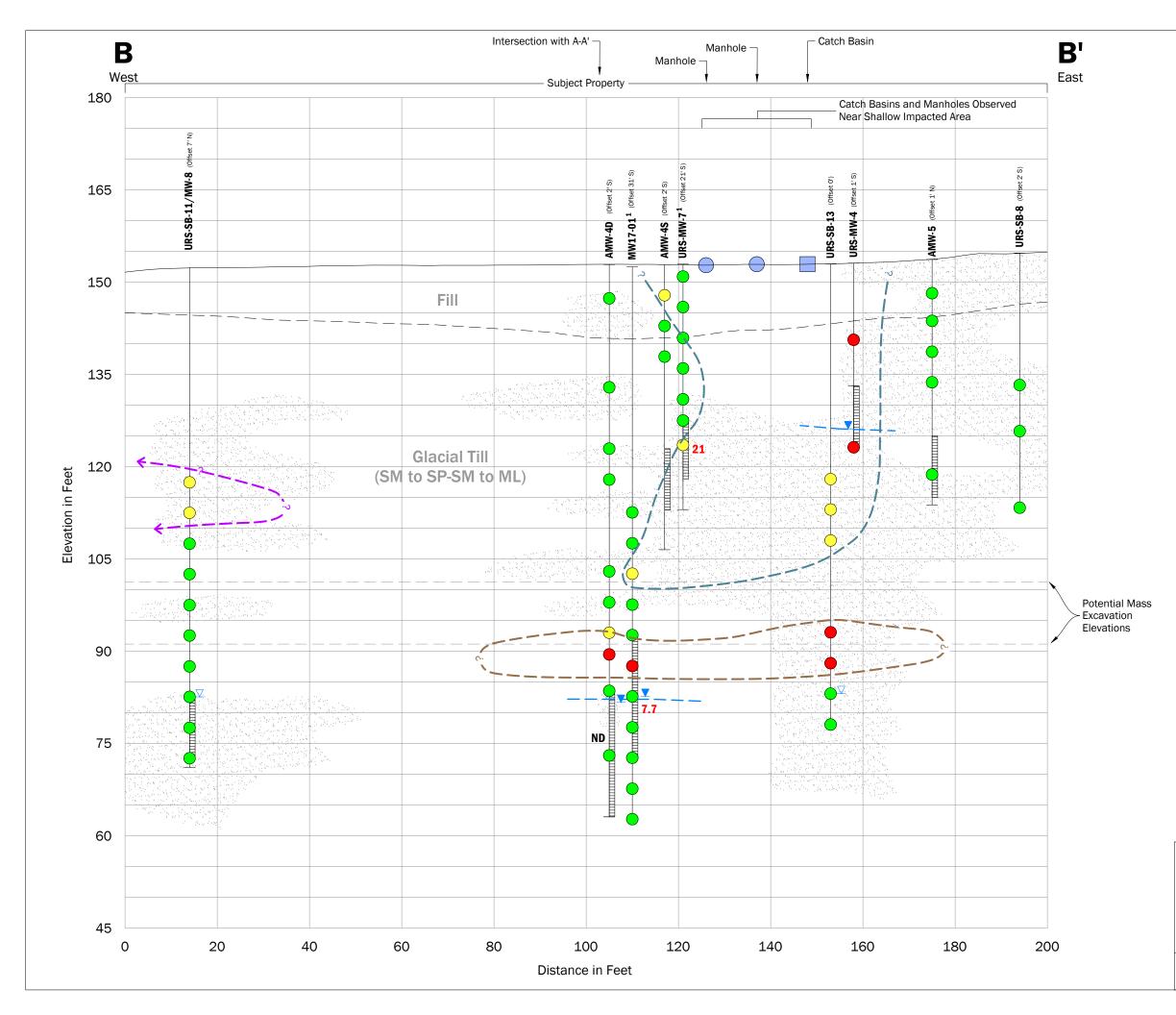




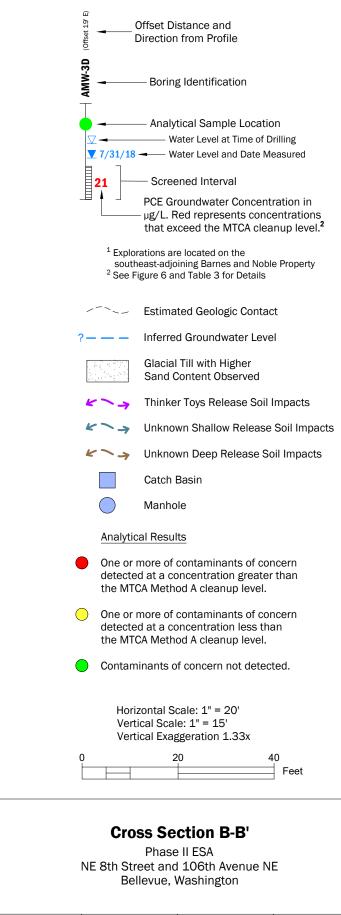
DEEP GROUNDWATER CONTOURS, AUGUST 2019 (83 to 80 FT MSL)




Basemap Layer Credits || Pictometry, King County



PCE IN DEEP GROUNDWATER (83 to 80 FT MSL)



Legend

Nov-2019 MLK/SCC FIGURE NO. PROJECT NO. 1902298 -				
	Aspect	Nov-2019	MLK/SCC	FIGURE NO.
	CONSULTING	PROJECT NO. 190298		8

APPENDIX A

Historical Analytical Data Tables

Monitoring Well Groundwater Elevation Data, 2008 - 2011 Sterling Realty Organization Property at 10605 and 10619 NE 8th Street Bellevue, Washington

SRO Property	Well Screen Interval	Top of Casing Elevation	Well Screen Elevation (feet				Gr	oundwater I	Depth (feet,	bgs)							Gro	oundwater E	levation (fe	et, msl)			
Well ID	(feet, bgs)	(feet above datum)	above datum)	6/26/08	7/7/08	9/10/08	11/21/08	3/16/10	3/17/10	5/3/10	8/23/10	10/19/11	10/21/11	6/26/08	7/7/08	9/10/08	11/21/08	3/16/10	3/17/10	5/3/10	8/23/10	10/19/2011	10/21/2011
URS-MW-1	20-30	157.87	137.87 - 127.87	NM	NM	26.41	27.21	22.50	22.66	22.49	22.95	NM	24.53	NM	NM	131.46	130.66	135.37	135.21	135.38	134.92	NM	133.34
URS-MW-2	20-30	160.22	140.22 - 130.22	NM	NM	Dry	Dry	24.64	25.05	24.45	25.89	NM	28.61	NM	NM	Dry	Dry	135.58	135.17	135.77	134.33	NM	131.61
URS-MW-3	20-30	153.98	133.98 - 123.98	NM	NM	27.36	28.75	22.28	22.54	22.40	23.24	NM	25.52	NM	NM	126.62	125.23	131.70	131.44	131.58	NM	NM	128.46
URS-MW-4	20-30	152.99	132.99 - 122.99	NM	NM	Dry	Dry	NM	29.87	29.85	30.08	NM	29.89	NM	NM	Dry	Dry	NM	123.12	123.14	122.91	NM	123.10
URS-MW-8	70-80	152.35	82.35 - 72.35	NM	NM	NM	NM	NM	NM	NM	NM	68.62	68.40	NM	NM	NM	NM	NM	NM	NM	NM	83.73	83.95
B1/MW-1	70-90	169.63	99.63 - 79.63	NM	NM	NM	NM	90.77	92.81	NM	NM	NM	85.49	NM	NM	NM	NM	78.86	76.82	NM	NM	NM	84.14
B2/MW-2	70-90	159.02	89.02 - 69.02	74.30	74.62	NM	74.95	75.90	75.97	75.69	75.50	NM	73.15	84.72	84.40	NM	84.07	83.12	83.05	83.33	83.52	NM	85.87
B3/MW-3	20-30	158.89	138.89 - 128.89	23.89	23.93	24.68	28.93	23.45	23.40	23.43	23.70	NM	23.79	135	134.96	134.21	129.96	135.44	135.49	135.46	135.19	NM	135.10
B4/MW-4	70-90	157.06	87.06-67.06	82.31	82.29	NM	79.30	76.58	76.58	76.60	76.61	NM	75.12	123.14	122.91	NM	77.76	80.48	80.48	80.46	80.45	NM	81.94
MW-19	10-30	156.31	146.31-126.31	NM	NM	NM	NM	NM	NM	NM	27.21	NM	29.18	NM	NM	NM	NM	NM	NM	NM	129.10	NM	127.13
MW-20	15-30	152.63	137.63 - 122.63	NM	NM	NM	NM	NM	NM	NM	21.93	NM	23.40	NM	NM	NM	NM	NM	NM	NM	130.70	NM	129.23
Data Source	Farallon ¹	Farallon ¹	Farallon ¹	Farallon ¹	Farallon ¹	URS ²	URS ²	URS ²	URS ²	Farallon ¹	Farallon ¹	URS ²	URS ²	Farallon ¹	Farallon ¹	URS ²	URS ²	URS ²	URS ²	Farallon ¹	Farallon ¹	URS ²	URS ²

Notes:

¹As reported (SES, 2011)

²As reported (URS, 2011B)

bgs = below ground surface

msl = mean sea level

NM = not measured

Vertical datum based on City of Bellevue - NAVD 88

Wells labeled "URS" were completed by URS Corporation.

Wells B1/MW-1, B2/MW-2, B3/MW-3, and B4/MW-4 were completed by Terra Associates.

Wells MW-19 and MW-20 were completed by Farallon.

May 3, 2010 groundwater elevations in perched zone are shown on Figure 7.

1990 Soil and Groundwater Data, Preliminary Environmental Site Assessment, Unocal Station Number 4511

Sterling Realty Organization Property at 10605 and 10619 NE 8th Street

Bellevue, Washington

Soil Quality Da	ata ¹								
Boring Number	Sample Number	Depth Collected	Benzene ²	Toluene ²	Ethyl- Benzene ²	Total Xylenes ²	TPH ³	Purgeable Halogenated Volatile Organics ⁴	Sample Jar Headspace Organic Vapor Concentrations ⁵
		(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ppm)
MW-1	MW-1, S-2	7.5	< 0.050	< 0.050	< 0.050	< 0.050	7.5	NA	25.2
MW-2	MW-2, S-1	2.5	< 0.050	< 0.050	< 0.050	0.090	810	NA	28
MW-2	MW-2, S-2	7.5	< 0.050	< 0.050	< 0.050	0.240	203	NA	20
MW-3	MW-3, S-1	2.5	< 0.050	< 0.050	< 0.050	0.900	87.9	NA	22
MW-4	MW-4, S-2	7.5	< 0.050	< 0.050	< 0.050	< 0.050	65.3	NA	169
MW-5	MW-5, S-2	7.5	< 0.050	< 0.050	< 0.050	< 0.050	95.0	< 0.05	255
MTC	A Method A Cle	eaunup Level	0.03	7	6	9	2,000	See Table 3	-

Water Quality D	Data ⁶						
Boring Well/ Number	Sample Number	Benzene ⁷	Toluene ⁷	Ethyl- Benzene ⁷	Total Xylenes ⁷	TPH ³	Well Headspace Organic Vapor Concentrations ⁵
Number		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ppm)
MW-1	U4511-79-1	< 1	< 1	< 1	< 1	< 1,000	NA ⁸
MW-2	U4511-79-2	< 1	< 1	< 1	< 1	< 1,000	
MW-3	U4511-79-3	3	< 1	15	14	< 1,000	
MW-4	U4511-79-4	< 1	< 1	< 1	< 1	< 1,000	
MW-5	Not sampled		-				
MTCA	Method A Cleaunup Level	5	1,000	700	1,000	500	

Notes:

¹Soil samples collected July 12, 13, and 17, 1990 by Sweet-Edwards/EMCON, Inc. Analyses by Sound Analytical, Tacoma, Washington.

²Analysis by EPA Method 8020.

³TPH = Total Petroleum Hydrocarbons, EPA Method 418.1.

⁴Analysis by EPA Method 8010.

⁵Volatile organic vapor concentrations measured with a photoionization detector (Photovac MP-100 microtip) calibrated to 100 ppm isobutylene.

Background reading = < 1 ppm.

⁶Water samples collected July 31, 1990 by Sweet-Edwards/EMCON, Inc. Analyses by Sound Analytical, Tacoma, Washington.

⁷Analysis by EPA Method 8020.

⁸Due to high water vapor (moisture) concentrations in the wellheads, PID measurements were not obtained.

< = Analyte Not Detected at or above the Method Reporting Limit

ft bgs = feet below the ground surface

mg/kg = milligrams per kilogram

MTCA = Model Toxics Cleanup Act

NA = Not Analyzed

ppm = parts per million

 μ g/L = micrograms per liter

Bolded value indicates analyte detected at the listed concentration.

1991-1992 Soil Analytical Data, Underground Storage Tank Closure Assessment, Unocal Station Number 4511

Sterling Realty Organization Property at 10605 and 10619 NE 8th Street

Bellevue, Washington

Sample ID	Date	Benzene ¹	Toluene ¹	Ethyl- benzene ¹	Total Xylenes ¹	TPH as Gasoline ²	TPH as Diesel ³	TPH as Other ³	TPH ⁴	Total Lead ⁵	Total PCBs ⁷	Benzo(a) pyrene ⁸	PCE	TCE	cis-1,2 DCE	trans-1,2 DCE	1,1-DCE	1,2-DCA	Vinyl Chloride	Acetone	Methylene Chloride	Sampling Location
eunpie is	Collected			Delizene	хутепез	dasonne	Diesei	other		LCau	1003	-					(VOCs)	9				
	0.40.4004	10.05	104	10.4	10.4						1	(mg/kg)	1			1		1				
GTW-N1 Comp.	6/19/1991	< 0.05	< 0.1	< 0.1	< 0.1	< 5				< 3												N wall gas tank excavation
GTW-S1 Comp. GTW-E1 Comp.	6/19/1991 6/19/1991	< 0.05 < 0.05	< 0.1 0.3	< 0.1 0.5	0.3 4.7	< 5 101				< 3 < 3									-	-		S wall gas tank excavation
GTW-E1 Comp.	6/19/1991	< 0.05	< 0.1	< 0.1	4. <i>1</i>	< 5				< 3												E wall gas tank excavation W wall gas tank excavation
GTF-TA	6/19/1991	< 0.05	< 0.1	< 0.1	< 0.1	< 5				< 3												below east tank fill
GTF-TB	6/19/1991	< 0.05	0.1	< 0.1	0.1	< 5				< 3				-								below west tank fill
ET-1	6/19/1991	< 0.05	< 0.1	< 0.1	< 0.1	< 5				< 3												E product line trench
ST-1	6/19/1991	< 0.05	< 0.1	< 0.1	< 0.1	< 5				< 3												S product line trench
NPI-1	6/20/1991	< 0.05	< 0.1	< 0.1	< 0.1	< 5				< 3												below N pump island
NUHOW-1	6/20/1991			-		< 10	< 10	17,400	35,400											-		N wall HO/WO tank excavation
EUHOW-1	6/20/1991	ND ¹¹	ND ¹¹	ND ¹¹	ND ¹¹	< 10	< 10	< 40	26													E wall HO/WO tank excavation
W/SUHOW-1	6/20/1991			-	-	< 10	< 10	< 40	90													Comp. W,S walls HO/WO exc.
UOF-1 ¹⁰	6/20/1991	< 0.05	< 0.1	< 0.1	< 0.1	< 5	< 10	< 40	< 25		< 1											below WO tank fill
																				-		
UOF-2 ¹⁰	6/20/1991	< 0.05	< 0.1	< 0.1	< 0.1	< 5	< 10	< 40	90		< 1											below WO tank fill - duplicate
HOF-1 ¹⁰	6/20/1991	ND ¹¹	ND ¹¹	ND ¹¹	ND ¹¹	< 10	< 10	< 40	< 25													below HO tank fill
DW-1 ¹⁰	6/20/1991	< 0.05	< 0.05	0.12	2.08	1,940	< 10	< 40	1,260		< 1		< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.5	< 1	< 0.5	W wall dry well excavation
DW-2 ¹⁰	6/20/1991	< 0.05	< 0.05	< 0.05	1.45	2,050	< 10	< 40	1,690		< 1		< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.5	< 1	< 0.5	base of dry well excavation
GTW-E2A	6/26/1991	< 0.05	< 0.1	< 0.1	< 0.1	< 5			< 25													N end of E wall g.t. excavation
GTW-E2B	6/26/1991	< 0.05	< 0.1	< 0.1	< 0.1	< 5			< 25													S end of E wall g.t. excavation
TP-1A	6/26/1991	<0.005	<0.005	<0.005	0.0072	< 10	< 10	< 40	< 25				< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.082	0.022	test pit S of dry well excav.
TP-1B	6/26/1991	<0.005	<0.005	<0.005	<0.005	< 10	< 10	< 40	< 25				< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.058	0.023	test pit S of dry well excav.
TP-2A	6/26/1991	<0.005	<0.005	<0.005	<0.005	< 10	< 10	< 40	< 25				< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.061	0.019	test pit SW of dry well excav.
TP-3A	6/26/1991	< 0.05	< 0.1	< 0.1	0.1	17	-		< 25													near SW corner of building
TP-3B	6/26/1991	< 0.05	< 0.1	< 0.1	< 0.1	< 5			32													near SW corner of building
TP-4A	6/26/1991	< 0.05	0.3	6.3	30.7	740			363													W end of former tank complex
TP-5A	6/26/1991	< 0.05	< 0.1	< 0.1	0.3	< 5			< 25											-		N of NW corner of building
TP-5B	6/26/1991	< 0.05	< 0.1	< 0.1	< 0.1	< 5			< 25													N of NW corner of building
TP-6A	6/26/1991	< 0.05	< 0.1	0.3	3.0	25			86										-	-		between N pump islands
TP-6B	6/26/1991	< 0.05	< 0.1	< 0.1	< 0.1	< 5			74										-			between N pump islands
U/D-SS-1 ¹⁰	6/26/1991	< 0.014	< 0.014	< 0.014	0.029	77	< 10	154	431		< 1		< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.136	0.055	stockpile sample
SS-1C	6/27/1991	0.20	7.8	5.2	55.4	996	-		616	6										-		stockpile sample
SS-2C	6/27/1991	< 0.05	0.4	0.3	10	174			307	12										-		stockpile sample
STOCKPILE #1	8/8/1991	< 0.05	< 0.05	< 0.05	0.06	< 1				7									-			stockpile sample
STOCKPILE #2	8/8/1991	0.10	0.63	2.16	18.7	406				5									-			stockpile sample
STOCKPILE #3	8/8/1991	< 0.05	< 0.05	< 0.05	0.20	5				5												stockpile sample
STOCKPILE #4	8/8/1991	5.08	110	20.2	239	3,260	-			6												stockpile sample
STOCKPILE #5	8/8/1991	< 0.05	< 0.05	0.16 4.50	0.61	130 436				7												stockpile sample
STOCKPILE #6 STOCKPILE #7	8/8/1991 8/8/1991	0.24	4.07 2.35		33.1					8												stockpile sample
STOCKPILE #7 STOCKPILE #8	8/8/1991 8/8/1991	< 0.05 < 0.05	2.35 < 0.05	3.56 < 0.05	35.9 0.06	1,350 23				8 5												stockpile sample
HYD-1	8/16/1991		< 0.05	< 0.005	< 0.005	23 < 10	< 10	< 40	< 25				< 0.005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.01	stockpile sample
HYD-1 HYD-2	8/16/1991 8/16/1991	< 0.005 < 0.5	< 0.005	< 0.005	< 0.005 9.0	< 10 394	< 10	< 40 261	< 25 495				< 0.005	< 0.005 < 0.5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05		base of hoist #1 (alignment) sidewall of hoist excavation
HYD-3A	8/19/1991	< 0.005	< 0.005	< 0.005	< 0.005	< 10	< 10	< 40	495 < 25				< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05		below E hoist (alignment)
HYD-3B	8/19/1991	< 0.005	< 0.005	< 0.005	< 0.005	< 10	< 10	< 40 < 40	< 25				< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	0.01	below E hoist (alignment)
HYD-4	8/19/1991	< 0.005	18.8	< 0.005	23.8	162	< 10	26,700	61,200				< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.5	below middle hoist
HYD-4B	8/19/1991	< 0.5	< 0.5	1.0	8.6	899	< 10	326	1,450				< 0.05	< 0.05	< 0.05	< 0.05	< 5	< 0.05	< 5	< 10	< 5	below middle hoist
HYD-6	8/19/1991	< 0.5	< 0.5 4.9	4.4	34	6,670	< 10	1,030	6,460				< 0.5	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 5	< 10	< 5	below west hoist
HYD-6B	8/19/1991	< 0.05	< 0.05	0.28	2.76	115	< 10	238	377				< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.5	< 10	< 0.5	below west hoist
MTCA Cleanup L		0.03 (A)	< 0.05 7 (A)	6 (A)	9 (A)	30 (A)			2,000 (A)	250 (A)	1.0 (A)			0.03 (A)	< 0.03			< 0.03		29 (B)	0.02 (A)	
	01013	0.03 (A)	1 (A)	U (A)	5 (M)	30 (A)	∠,000 (A)	∠,000 (A)	∠,000 (A)	200 (A)	T.0 (A)	0.1 (A)	0.03 (A)	0.03 (A)	0.010 (B)	U.70 (D)	0.001 (B)	0.0020 (B)	0.0012 (B)	23 (D)	0.02 (A)	

Sample ID	Date	Benzene ¹	Toluene ¹	Ethyl- benzene ¹	Total Xylenes ¹	TPH as Gasoline ²	TPH as Diesel ³	TPH as Other ³	TPH⁴	Total Lead ⁵	Total PCBs ⁷	Benzo(a)	PCE	TCE	cis-1,2 DCE	trans-1,2 DCE	1,1-DCE	1,2-DCA	Vinyl Chloride	Acetone	Methylene Chloride	Sampling Location
Sample ib	Collected			Delizelle	Aylelles	Gasonne	Diesei	Utilei		Leau	FCD5	pyrene (mg/kg)					(VOCs)	9				
MW-11-12.5	8/27/1991	< 0.05	< 0.05	2.03	6.31	216																sample from boring MW-11
NPUMPE ⁶	2/17/1992	< 0.05	< 0.05	< 0.05	0.06	1.0														-		E end of N pump island
NPUMPW ⁶	2/17/1992	< 0.05	< 0.05	< 0.05	< 0.05	< 1														-		W end of N pump island
0H20	2/17/1992					< 10	< 10	< 40														below oil/water separator
SS-2	2/17/1992	< 0.05	0.43	0.53	4.84	202																stockpile sample
SS-3	2/17/1992	0.19	2.63	3.91	20.6	541																stockpile sample
SS-4	2/17/1992	0.26	2.90	3.71	20.9	481					-								-			stockpile sample
SS-5	2/17/1992	1.13	11.0	7.90	26.0	900																stockpile sample
WPUMPN ⁶	2/18/1992	< 0.05	< 0.05	< 0.05	0.23	3																N end of W pump island
WPUMPS ⁶	2/18/1992	< 0.05	< 0.05	< 0.05	< 0.05	< 1		-			-											S end of W pump island
WPUMPE ⁶	2/24/1992	< 0.05	< 0.05	< 0.05	< 0.05	< 1	-													-		base of W pump island excav.
WPUMPEW ⁶	2/24/1992	< 0.05	< 0.05	< 0.05	< 0.05	< 1																E wall of W pump island excav.
BHOISE ⁶	2/28/1992					ND ¹¹	ND ¹¹	ND ¹¹														base of hoist excavation
SHOISW ⁶	2/28/1992					ND ¹¹	ND ¹¹	ND ¹¹														S wall of hoist excavation
WHOISB ⁶	3/2/1992					ND ¹¹	ND ¹¹	ND ¹¹														W wall of hoist excavation
SPILE1	3/2/1992					ND ¹¹	ND ¹¹	120			< 1	0.04							_			stockpile sample
SPILE2	3/2/1992					ND ¹¹	ND ¹¹	40			< 1	< 0.01										stockpile sample
SPILE3	3/2/1992					ND ¹¹	ND ¹¹	60			< 1	< 0.01										stockpile sample
BASE-0421-01 ⁶	4/21/1992						< 25	< 100														base of dry well excavation
WWALL13-0421-026	4/21/1992						< 25	< 100														W wall of dry well excavation
WWALL17-0421-036	4/21/1992						< 25	< 100														W wall of dry well excavation
NWALL-0421-04 ⁶	4/21/1992						< 25	< 100														N wall of dry well excavation
MTCA Cleanup L	evels	0.03 (A)	7 (A)	6 (A)	9 (A)	30 (A)	2,000 (A)	2,000 (A)	2,000 (A)	250 (A)	1.0 (A)	0.1 (A)	0.05 (A)	0.03 (A)	0.076 (B)	0.48 (B)	0.037 (B)	0.0023 (B)	0.0012 (B)	29 (B)	0.02 (A)	

Notes:

¹Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 5030/8020 or EPA Method 8240 (low level)

²Volatile fuel hydrocarbons (TPH as gasoline) by EPA Method 5030/8015 Modified

³Semi volatile fuel hydrocarbons (TPH as diesel, other) by EPA Method 3550/8015 Modified

⁴Total Petroleum Hydrocarbons (TPH) by EPA Method 418.1

⁵Total lead by EPA Method 7420

⁶Confirmation soil sample collected following soil excavation

⁷Total Polychlorinated Biphenyls (PCBs) by EPA Methods 3540/8080

⁸Polynuclear Aromatic Hydrocarbons (PAHs) by EPA Methods 3540/8310. Additional low level detections of several PAH analytes for samples SPILE 1 and SPILE 3. See lab reports for additional information.

⁹Volatile Organic Compounds (VOCs) by EPA Method 8240. Additional low level detections of several VOC analytes for sample HYD-4. See lab reports for additional information.

¹⁰Sample analyzed for Toxicity Characteristic Leaching Procedure (TCLP) by EPA Method 1311

¹¹Based on our review of the 1992 laboratory data report obtained from Ecology on-line document repository for the Site, data sheets were not available for samples shown as Non Detect (ND) in this table. ND results are from the original data table in EMCON's 1992 report. - = analyte not tested

< = Analyte not detected at or above method reporting limit</p>

mg/kg = milligrams per kilogram

MTCA = Model Toxics Control Act (WAC 173-340).

(A) = MTCA Method A Cleanup Level

(B) = MTCA Method B cleanup for the protection of groundwater. See Table 8 for information on basis for cleanup levels.

DCA = dichloroethane

DCE = dichloroethene

PCE = perchloroethene (tetrachloroethene)

TCE = trichloroethene

Bolded value indicates analyte detected at the listed concentration.

Shaded value represents concentration that exceeded the MTCA cleanup level.

Chemical Analytical Data for Soil Samples Sterling Realty Organization Property at 10605 and 10619 NE 8th Street Bellevue, Washington

															Gasoline-range	Diosol rango	0il-range	
								V	0Cs (mg/kg) ¹						Petroleum	Diesel-range Petroleum	Petroleum	
	Sample		Depth				trans-1,2		eee (g/g/	Vinyl			Ethyl-	Xylenes,	Hydrocarbons	Hydrocarbons	Hydrocarbons	Lead
Sample ID	Collected By	Sample Date	(ft bgs)	PCE	TCE	cis-1.2 DCE	DCE	1,1-DCE	1,2-DCA	Chloride	Benzene	Toluene	benzene	total	(mg/kg) ²	(mg/kg) ³	(mg/kg) ³	(mg/kg)
Soil samples colle	,	•	(10 880)			0.0 _,_ 2 0 _		_, ~ ~	_,		20				(8/8/	(8/8/	(8/8/	(8/
		3/11/2000	6					-			< 0.056	< 0.056	< 0.056	< 0.112	< 5.6	< 28	< 56	
URSSB-OP1		3/11/2000	18	< 0.056	< 0.056	< 0.056	< 0.056	< 0.056	<0.056	< 0.056	< 0.056	< 0.056	< 0.056	< 0.112	< 5.6	< 28	< 56	
URSSB-0P2		3/11/2000	12	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.108	< 5.4	< 27	< 56	
0.1002 0.12		3/11/2000	6	-							< 0.059	< 0.059	< 0.059	< 0.118	< 5.9	< 29	< 59	
URSSB-0P3		3/11/2000	18								< 0.056	< 0.056	< 0.056	< 0.112	< 5.6	< 28	< 56	
URSSB-0P4	URS	3/11/2000	8								< 0.054	< 0.054	< 0.054	< 0.108	< 5.4	< 27	< 54	
URSSB-0P5		3/11/2000	12	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	<0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.108	< 5.4	< 27	< 54	
URSSB-0P6		3/11/2000	20	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.108	< 5.4	< 27	< 54	<5.4
URSSB-OP7	1	3/11/2000	16						-	-	< 0.054	< 0.054	< 0.054	< 0.108	< 5.4	< 28	88	-
	1	3/11/2000	8								< 0.056	< 0.056	< 0.056	< 0.112	< 5.6	< 28	< 56	
URSSB-0P8		3/11/2000	18								< 0.055	< 0.055	< 0.055	< 0.112	< 5.5	< 28	< 55	<5.5
Soil samples colle	ected in 2008 (Te	-,,	-								0.000	× 0.000	× 0.000	VU.110	\$ 0.0	\$ 20	100	10.0
Son samples cone		6/23/2008	5												<22	<56	<110	
B2/MW-2	Terra	6/23/2008	15							_					<22	<55	<110	-
<i>D2/ WW 2</i>	Associates	6/23/2008	25												<22	<54	<110	
		8/25/2008	15	< 0.02	<0.03	< 0.02	<0.02	< 0.05	<0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
URS-MW-1	URS	8/25/2008	27.5	0.41	< 0.03	< 0.02	<0.02	<0.05	<0.03	<0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
		8/27/2008	15	< 0.02	< 0.03	< 0.02	< 0.02	< 0.05	<0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
URS-MW-2	URS	8/27/2008	27.5	< 0.02	< 0.03	< 0.02	<0.02	<0.05	<0.03	<0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
		8/26/2008	17.5	< 0.02	< 0.03	< 0.02	< 0.02	< 0.05	< 0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10		-	
URS-MW-3	URS	8/26/2008	27.5	< 0.02	< 0.03	< 0.02	<0.02	<0.05	< 0.03	<0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
		8/26/2008	12.5	0.17	< 0.03	< 0.02	< 0.02	< 0.05	<0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
URS-MW-4	URS	8/26/2008	30	0.12	< 0.03	< 0.02	<0.02	< 0.05	<0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
		8/25/2008	10	< 0.02	< 0.03	< 0.02	< 0.02	< 0.05	<0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
		8/25/2008	30	0.22	< 0.03	< 0.02	< 0.02	< 0.05	< 0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
URS-SB-1	URS	8/25/2008	45	0.05	< 0.03	< 0.02	< 0.02	< 0.05	< 0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
		8/25/2008	75	< 0.02	< 0.03	< 0.02	< 0.02	< 0.05	< 0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
		8/25/2008	10	< 0.02	< 0.03	< 0.02	<0.02	<0.05	<0.03	<0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
URS-SB-2	URS	8/25/2008	27.5	0.07	< 0.03	< 0.02	<0.02	<0.05	<0.03	<0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
		8/26/2008	17.5	0.05	< 0.03	< 0.02	< 0.02	< 0.05	<0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
URS-SB-3	URS	8/26/2008	22.5	0.07	< 0.03	< 0.02	< 0.02	< 0.05	< 0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
		8/27/2008	17.5	< 0.02	< 0.03	< 0.02	< 0.02	< 0.05	< 0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
URS-SB-4	URS	8/27/2008	30	< 0.02	< 0.03	< 0.02	< 0.02	< 0.05	< 0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03	<10			
		11/19/2008	21.5	< 0.02	< 0.03	< 0.02	< 0.02	< 0.05	< 0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03				
URS-SB-8	URS	11/19/2008	29	< 0.02	< 0.03	< 0.02	< 0.02	< 0.05	< 0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03				
		11/19/2008	41.5	< 0.02	< 0.03	< 0.02	< 0.02	< 0.05	< 0.03	< 0.002	< 0.02	< 0.02	< 0.03	< 0.03				
Soil samples colle	ected in 2010 (Fa	1 1	-	-		-	-				-							
		8/5/2010	4.5	<0.025	< 0.03	< 0.05	<0.05	<0.05	<0.05	<0.05								
		8/5/2010	9	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05								
MW-19	Farallon	8/5/2010	24	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.03	<0.05	< 0.05	<0.1	<2	<50	<250	
		8/5/2010	29	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05								-
МТС	A Method A or B			0.05 (A)	0.03 (A)	0.076 (B)	0.48 (B)	0.037 (B)	0.0023 (B)	0.0012 (B)	0.03 (A)	7 (A)	6 (A)	9 (A)	100 (A)	2,000 (A)	2,000 (A)	250 (A)

								V	0Cs (mg/kg) ¹						Gasoline-range Petroleum	Diesel-range Petroleum	Oil-range Petroleum	
	Sample		Depth				trans-1,2			Vinyl			Ethyl-	Xylenes,	Hydrocarbons	Hydrocarbons	Hydrocarbons	Lead
Sample ID	Collected By	Sample Date	(ft bgs)	PCE	TCE	cis-1.2 DCE	DCE	1,1-DCE	1,2-DCA	Chloride	Benzene	Toluene	benzene	total	(mg/kg) ²	(mg/kg) ³	(mg/kg) ³	(mg/kg)
campions	concetted by	8/6/2010	4.5	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	-				-			
		8/6/2010	10	<0.025	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05								
		8/6/2010	14.5	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05								
MW-20	Farallon	8/6/2010	19.5	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05								
		8/6/2010	25	0.026	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.03	< 0.05	< 0.05	<0.15	<2			
		8/6/2010	29.5	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05					-			
		8/5/2010	1	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.03	<0.05	<0.05	<0.15	6			
		8/5/2010	11	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05					-			
		8/5/2010	16	<0.025	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05								
SRO-1	Farallon	8/5/2010	20	0.28	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.03	<0.05	<0.05	<0.15	<2	<50	<250	
		8/5/2010	20	0.43	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.03	< 0.05	< 0.05	<0.15	<2	<50	<250	
		8/5/2010	26	0.25	< 0.03	< 0.05	< 0.05	<0.05	<0.05	< 0.05					-			
		8/5/2010	1	< 0.025	< 0.03	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.03	< 0.05	< 0.05	<0.15	3	67	760	
		8/5/2010	5.5	<0.025	<0.03	<0.05	< 0.05	<0.05	<0.05	< 0.05								
		8/5/2010	9 9	<0.025	<0.03	<0.05	< 0.05	<0.05	< 0.05	< 0.05								
SRO-2	Farallon	8/5/2010	9 14	<0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	<0.05					-			
360-2	Farallon						< 0.05	<0.05										
		8/5/2010	19 22 F	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05					-			
		8/5/2010	23.5	0.12	< 0.03	< 0.05			< 0.05	< 0.05	<0.03	<0.05	<0.05	<0.15	<2	<50	<250	
		8/5/2010	27	0.34	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05					-	-		
		8/5/2010	1	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.03	< 0.05	< 0.05	< 0.15	610	140	270	5.79
		8/5/2010	3	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.03	<0.05	<0.05	<0.15	<2	<50	<250	
		8/5/2010	7	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05					-			
000 0	F	8/5/2010	13	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05								
SRO-3	Farallon	8/5/2010	18	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05					-			
		8/5/2010	21	0.057	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.03	<0.05	<0.05	<0.15	<2	<50	<250	
		8/5/2010	22.5	0.06	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05						-		
		8/5/2010	27	0.17	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05						-		
		8/5/2010	30	0.16	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05						-		
		8/6/2010	6	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05								
		8/6/2010	12	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
SRO-4	Farallon	8/6/2010	17	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/6/2010	22	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2	<50	<250	
		8/6/2010	27	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/6/2010	30	0.038	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05						-		
		8/6/2010	3	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/6/2010	6	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
SRO-5	Farallon	8/6/2010	11	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	7	<50	<250	
		8/6/2010	16	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05					-			-
	1	8/6/2010	21	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05					-			
		8/6/2010	30	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05					-			
		8/6/2010	5.2	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2	<50	<250	
		8/6/2010	12	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2	<50	<250	
		8/6/2010	15	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2	<50	610	
SRO-6	Farallon	8/6/2010	17	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2	70	870	
		8/6/2010	20.5	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2	<50	<250	
		8/6/2010	25	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05					-			
		8/6/2010	30	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
мтс	CA Method A or B	Cleanup Levels		0.05 (A)	0.03 (A)	0.076 (B)	0.48 (B)	0.037 (B)	0.0023 (B)	0.0012 (B)	0.03 (A)	7 (A)	6 (A)	9 (A)	100 (A)	2,000 (A)	2,000 (A)	250 (A)

									0Cs (mg/kg) ¹						Gasoline-range	Diesel-range Petroleum	Oil-range	
	Sample		Depth				trans-1,2		ocs (ilig/ kg)	Vinyl			Ethyl-	Xylenes,	Petroleum Hydrocarbons	Hydrocarbons	Petroleum Hydrocarbons	Lead
Sample ID	Collected By	Sample Date	(ft bgs)	PCE	TCE	cis-1,2 DCE	DCE	1,1-DCE	1,2-DCA	Chloride	Benzene	Toluene	benzene	total	(mg/kg) ²	(mg/kg) ³	(mg/kg) ³	(mg/kg)
•		8/6/2010	9	<0.025	< 0.03	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.03	< 0.05	<0.05	<0.15	1,100	<50	<250	-
		8/6/2010	12.5	<0.025	<0.03	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.03	<0.05	< 0.05	<0.15	<2	<50	<250	
SRO-7	Farallon	8/6/2010	19	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
380-7	Farallon	8/6/2010	22.5	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2			
		8/6/2010	26	0.046	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05				-				
		8/6/2010	30	0.080	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05				-				
		8/6/2010	4	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/6/2010	8	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/6/2010	13.5	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	4			
		8/6/2010	14.5	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2.0	<50	<250	
SRO-8	Farallon	8/6/2010	18	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.03	< 0.05	< 0.05	< 0.15	<2.0	-	-	
		8/6/2010	22	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.03	<0.05	0.1	0.21	3	<50	<250	
		8/6/2010	23.5	0.15	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05						-		
		8/6/2010	26	0.16	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05								
		8/6/2010	29	0.19	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05					-			
		8/9/2010	3	<0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.03	< 0.05	< 0.05	< 0.15	<2	-	-	
		8/9/2010 8/9/2010	8 13	<0.025 <0.625	<0.03 <0.03	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.03	< 0.05	<0.05	<0.15	<2			
SRO-9	Farallon	8/9/2010	17.5	<0.025	< 0.03	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.03	<0.05	<0.05	<0.15	<2			
360-9	Taranon	8/9/2010	21.5	<0.025	<0.03	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.03	<0.05	< 0.05	<0.15	<2	-		
		8/9/2010	21.5	0.023	< 0.03	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.03	<0.05	< 0.05	<0.15	<2			-
		8/9/2010	29.5	0.057	< 0.03	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2			-
		8/9/2010	1	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05					-			
		8/9/2010	7	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	<0.05	< 0.05								
		8/9/2010	10	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.03	<0.05	< 0.05	<0.15	<2			
SR0-10	Farallon	8/9/2010	16	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				-				
		8/9/2010	21	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.03	< 0.05	< 0.05	<0.15	<2			
		8/9/2010	23.5	<0.025	<0.03	< 0.05	<0.05	<0.05	< 0.05	< 0.05								
		8/9/2010	29	<0.025	< 0.03	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.03	<0.05	< 0.05	<0.15	<2			
		8/9/2010	1	<0.025	< 0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/9/2010	5	<0.025	< 0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/9/2010	10	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2			
SR0-11	Farallon	8/9/2010	15	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05					-	-		
		8/9/2010	20	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2			
		8/9/2010	25	<0.025	< 0.03	<0.05	<0.05	<0.05	<0.05	<0.05				-	-			
		8/9/2010	28	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2			
		8/9/2010	5	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/9/2010	8	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2		-	
		8/9/2010	13	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05						-		
SR0-12	Farallon	8/9/2010	17	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-				-	-	-	
		8/9/2010	21	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2			
		8/9/2010	23.5	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-			-				
		8/9/2010	29.5	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.03	< 0.05	< 0.0.5	<0.15	<2		- 2 100	-
		8/9/2010	0.5	< 0.025	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.03	< 0.05	< 0.05	<0.15	<2	280	3,100	-
		8/9/2010	5.5	< 0.025	< 0.03	<0.05 <0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.03 <0.03	<0.05 <0.05	< 0.05	<0.15	<2 <2	<50	<250	
SR0-13	Earollon	8/9/2010	11	< 0.025	< 0.03		< 0.05	< 0.05	< 0.05	< 0.05			< 0.05	<0.15		<s0< td=""><td><250</td><td></td></s0<>	<250	
3K0-13	Farallon	8/9/2010	15.5	< 0.025	< 0.03	< 0.05	<0.05 <0.05	< 0.05	< 0.05	< 0.05	< 0.03	< 0.05	< 0.05	<0.15	<2	<50 <s0< td=""><td>400</td><td></td></s0<>	400	
		8/9/2010	20.5	< 0.025	< 0.03	< 0.05		< 0.05	< 0.05	< 0.05	<0.03	<0.05	<0.05	<0.15	<2		<250	
		8/9/2010 8/9/2010	24.5 29.5	<0.025 <0.025	<0.03 <0.03	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-						-	
	<u> </u>		29.0															
MTC	A Method A or B	Cleanup Levels		0.05 (A)	0.03 (A)	0.076 (B)	0.48 (B)	0.037 (B)	0.0023 (B)	0.0012 (B)	0.03 (A)	7 (A)	6 (A)	9 (A)	100 (A)	2,000 (A)	2,000 (A)	250 (A)

								V	0Cs (mg/kg) ¹						Gasoline-range Petroleum	Diesel-range Petroleum	Oil-range Petroleum	
	Sample		Depth				trans-1,2			Vinyl			Ethyl-	Xylenes,	Hydrocarbons	Hydrocarbons	Hydrocarbons	Lead
Sample ID	Collected By	Sample Date	(ft bgs)	PCE	TCE	cis-1,2 DCE	DCE	1,1-DCE	1,2-DCA	Chloride	Benzene	Toluene	benzene	total	(mg/kg) ²	(mg/kg) ³	(mg/kg) ³	(mg/kg)
		8/10/2010	1.5	<0.025	<0.03	< 0.05	<0.05	< 0.05	< 0.05	< 0.05					-			-
		8/10/2010	6.5	<0.025	< 0.03	< 0.05	<0.05	< 0.05	<0.05	< 0.05								
		8/10/2010	12	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	< 0.05								
SRO-14	Farallon	8/10/2010	17	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	< 0.05								
		8/10/2010	22	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/10/2010	25.2	0.035	<0.03	<0.05	<0.05	<0.05	<0.05	< 0.05								
		8/10/2010	29.8	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/10/2010	1	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/10/2010	5	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/10/2010	10	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
SRO-15	Farallon	8/10/2010	15	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/10/2010	20	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/10/2010	25	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/10/2010	29.5	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/10/2010	2	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/10/2010	7	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05				-				
		8/10/2010	12	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05				1				
SR0-16	Farallon	8/10/2010	17	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05				-	-			
		8/10/2010	22	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/10/2010	25.5	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05					-			-
		8/10/2010	29.5	0.039	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05						-	-	
		8/10/2010	1.8	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	0.55	0.77	2,800	130	<250	
		8/10/2010	5.5	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	2	<50	<250	
		8/10/2010	10.5	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2	<50	<250	
SR0-17	Farallon	8/10/2010	16	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2	<50	<250	
		8/10/2010	21	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2	<50	<250	
		8/10/2010	25	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.15	<2	<50	<250	
		8/10/2010	30	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
SR0-18	Farallon	8/10/2010	2	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05			-					
		8/10/2010	5.5	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
SR0-19	Farallon	8/10/2010	2	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05			-					
		8/10/2010	5.5	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
SR0-20	Farallon	8/10/2010	2	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
		8/10/2010	6	<0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
SR0-21	Farallon	8/10/2010	6.5	< 0.025	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05								
Soil samples colle	cted in 2011 (Ha			,											1		1	
HC-1-1		8/13/2011	20	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05				
HC-1-2		8/13/2011	22.5	0.092	< 0.02	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05				
HC-1-3		8/13/2011	25	0.36	< 0.02	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05				
HC-1-4		8/13/2011	27.5	0.46	< 0.02	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05				
HC-1-5		8/13/2011	30	0.43	< 0.02	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05				
HC-1-6		8/13/2011	32.5	0.74	< 0.02	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05				-
HC-1-7	Hart Crowser	8/13/2011	35	0.38	< 0.02	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05				-
HC-1-8		8/13/2011	37.5	0.92	< 0.02	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05				
HC-1-9		8/13/2011	40	1.10	< 0.02	< 0.05	< 0.05	< 0.05	<0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	<5	<20	<50	1.3
HC-1-10		8/13/2011	42.5	0.41	< 0.02	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05				
HC-1-11		8/13/2011	45	2.30	< 0.02	< 0.05	< 0.05	< 0.05	<0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05				-
HC-1-12		8/13/2011	47.5	1.80	< 0.02	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05				
HC-1-13		8/13/2011	50	0.07	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
MTCA	A Method A or B	Cleanup Levels		0.05 (A)	0.03 (A)	0.076 (B)	0.48 (B)	0.037 (B)	0.0023 (B)	0.0012 (B)	0.03 (A)	7 (A)	6 (A)	9 (A)	100 (A)	2,000 (A)	2,000 (A)	250 (A)

															Gasoline-range	Diesel-range	Oil-range	
	Sample		Depth				trans-1,2	V	OCs (mg/kg) ¹	Vinyl			Ethyl-	Xylenes,	Petroleum Hydrocarbons	Petroleum Hydrocarbons	Petroleum Hydrocarbons	Lead
Sample ID	Collected By	Sample Date	(ft bgs)	PCE	TCE	cis-1,2 DCE	DCE	1,1-DCE	1,2-DCA	Chloride	Benzene	Toluene	benzene	total	(mg/kg) ²	(mg/kg) ³	(mg/kg) ³	(mg/kg)
HC-2-1		8/13/2011	20	<0.05	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-2-2		8/13/2011	22.5	0.11	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-2-3		8/13/2011	25	0.29	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-2-4		8/13/2011	27.5	0.33	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05		-		
HC-2-5		8/13/2011	30	0.31	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-2-6		8/13/2011	32.5	0.22	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05		-		
HC-2-7	Hart Crowser	8/13/2011	35	0.23	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05		-		
HC-2-8		8/13/2011	37.5	0.46	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05	-	-		
HC-2-9		8/13/2011	40	0.60	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05	<5	<20	<50	<1
HC-2-10		8/13/2011	42.5	1.20	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05		-		
HC-2-11		8/13/2011	45	0.58	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05		-		
HC-2-12]	8/13/2011	47.5	2.00	0.044	0.061	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-2-13		8/13/2011	50	0.11	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05		-		
HC-3-1]	8/13/2011	20	<0.05	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05		-		
HC-3-2]	8/13/2011	22.5	0.13	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-3-3		8/13/2011	25	0.16	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-3-4		8/13/2011	27.5	0.061	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-3-5		8/13/2011	30	0.18	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-3-6		8/13/2011	32.5	0.13	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-3-7	Hart Crowser	8/13/2011	35	0.10	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-3-8		8/13/2011	37.5	0.37	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-3-9		8/13/2011	40	0.27	<0.02	<0.05	< 0.05	<0.05	<0.02	<0.05	< 0.02	<0.05	<0.05	<0.05	<5	<20	<50	1.3
HC-3-10		8/13/2011	42.5	0.17	<0.02	<0.05	<0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
HC-3-11		8/13/2011	45	0.05	<0.02	0.067	< 0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	< 0.05				
HC-3-12		8/13/2011	47.5	< 0.05	< 0.02	<0.05	<0.05	<0.05	<0.02	<0.05	< 0.02	<0.05	<0.05	<0.05	-			
HC-3-13		8/13/2011	50	0.91	0.087	0.059	< 0.05	<0.05	<0.02	<0.05	<0.02	<0.05	<0.05	<0.05				
		10/10/2011	50	0.0218	<0.0213	0.00217 J	< 0.0142	< 0.0355	<0.0213	< 0.00142	< 0.0142	< 0.0142	< 0.0213	<0.0284				
		10/10/2011	55	0.276	0.00624 J	0.00708 J	< 0.0139	< 0.0347	<0.0208	< 0.00139	< 0.0139	< 0.0139	<0.0208	<0.0278				
		10/10/2011	60	0.000720 J	< 0.0204	< 0.0136	< 0.0136	< 0.0340	<0.0204	< 0.00136	<0.0136	< 0.0136	< 0.0204	<0.0272				
URS-SB-9	URS	10/10/2011	65	<0.0126	<0.0189	< 0.0126	< 0.0126	< 0.0315	< 0.0189	< 0.00126	<0.0126	< 0.0126	< 0.0189	< 0.0252				
		10/10/2011	70	< 0.0143	< 0.0214	< 0.0143	< 0.0143	< 0.0357	< 0.0214	< 0.00143	< 0.0143	< 0.0143	< 0.0214	<0.0286				
		10/10/2011	75	< 0.0151	<0.0226	< 0.0151	<0.0151	< 0.0376	<0.0226	< 0.00151	<0.0151	<0.0151	< 0.0226	< 0.0302				
		10/10/2011	80	< 0.0142	< 0.0213	< 0.0142	< 0.0142	< 0.0354	<0.0213	< 0.00142	< 0.0142	< 0.0142	< 0.0213	<0.0284				
		10/11/2011	50	< 0.0117	<0.0175	<0.0117	< 0.0117	<0.0292	< 0.0175	< 0.00117	< 0.0117	<0.0117	< 0.0175	<0.0234				
		10/11/2011	55	<0.0111	< 0.0167	<0.0111	<0.0111	<0.0278	<0.0167	<0.00111	<0.0111	<0.0111	< 0.0167	<0.0222				
		10/11/2011	60	0.00160 J	< 0.00145	< 0.00967	< 0.00967	< 0.0242	< 0.00145	< 0.000967	< 0.00967	< 0.00967	< 0.00145	< 0.01934				
URS-SB-10	URS	10/11/2011	65	< 0.0142	< 0.0213	< 0.0142	< 0.0142	< 0.0355	< 0.0213	< 0.00142	< 0.0142	< 0.0142	< 0.0213	<0.0284				
		10/11/2011	70	<0.0148	<0.0221	<0.0148	< 0.0148	< 0.0369	< 0.0221	< 0.00148	0.000413 J	0.000546 J	< 0.0221	< 0.0296				
		10/11/2011	75	< 0.00952	< 0.0143	< 0.00952	< 0.00952	< 0.0238	< 0.0143	< 0.000952	< 0.00952	0.000438 J	< 0.0143	< 0.01904				
		10/12/2011	35	0.00148 J	< 0.0190	< 0.0126	< 0.0126	< 0.0316	< 0.0190	< 0.00126	< 0.0126	< 0.0126	< 0.0190	< 0.0252		-		
		10/12/2011	40	0.000383 J	< 0.0164	< 0.0109	< 0.0109	< 0.0273	< 0.0164	< 0.00109	< 0.0109	< 0.0109	< 0.0164	< 0.0218				
		10/12/2011	45	< 0.0112	< 0.0168	< 0.0112	< 0.0112	<0.0280	< 0.0168	< 0.00112	< 0.0112	< 0.0112	< 0.0168	< 0.0224				
		10/12/2011	50	<0.0124	< 0.0186	0.000497 J	<0.0124	<0.0311	<0.0186	<0.00124	< 0.0124	< 0.0124	<0.0186	<0.0248		-		
URS-MW8		10/12/2011	55	<0.0124	< 0.0186	0.000867 J	<0.0124	< 0.0310	<0.0186	<0.00124	<0.0124	< 0.0124	< 0.0186	<0.0248		-		
(SB-11)	URS	10/12/2011	60	<0.0105	< 0.0158	< 0.0105	<0.0105	< 0.0264	<0.0158	<0.00105	<0.0105	<0.0105	<0.0158	<0.021				
(00 11)		10/12/2011	65	<0.0103	<0.0156	<0.0103	<0.0103	<0.0259	<0.0156	<0.00103	< 0.0103	<0.0103	<0.0158	< 0.021		-		<u> </u>
		10/12/2011	70	<0.0104	<0.0158	<0.0104	<0.0104	<0.0263	<0.0150	<0.00104	<0.0104	<0.0104	<0.0158	<0.0208				
		10/12/2011	70	< 0.0103	<0.0158	<0.0105	<0.0103	<0.0203	<0.0138	<0.00103	< 0.0103	<0.0105	<0.0138	< 0.021				
		10/12/2011	80	<0.0138	<0.0207	<0.0138	<0.0138	<0.0345	<0.0207	<0.00138	<0.0138	<0.0138	<0.0207	<0.0276	-	-		<u> </u>
	<u> </u>	<u> </u>										1						+ <u>-</u>
MTC	A Method A or B	Cleanup Levels		0.05 (A)	0.03 (A)	0.076 (B)	0.48 (B)	0.037 (B)	0.0023 (B)	0.0012 (B)	0.03 (A)	7 (A)	6 (A)	9 (A)	100 (A)	2,000 (A)	2,000 (A)	250 (A)

															Gasoline-range	Diesel-range	0il-range	
								v	'0Cs (mg/kg) ¹						Petroleum	Petroleum	Petroleum	
	Sample		Depth				trans-1,2			Vinyl			Ethyl-	Xylenes,	Hydrocarbons	Hydrocarbons	Hydrocarbons	Lead
Sample ID	Collected By	Sample Date	(ft bgs)	PCE	TCE	cis-1,2 DCE	DCE	1,1-DCE	1,2-DCA	Chloride	Benzene	Toluene	benzene	total	(mg/kg) ²	(mg/kg) ³	(mg/kg) ³	(mg/kg)
		10/12/2011	35	<0.0129	<0.0193	<0.0129	<0.0129	<0.0322	0.000399 J	<0.00129	<0.0129	<0.0129	<0.0193	<0.0258				
		10/12/2011	40	0.00436 J	<0.0192	0.000641 J	<0.0128	<0.0321	0.000667 J	<0.00128	<0.0128	<0.0128	< 0.0192	<0.0256				-
		10/12/2011	45	0.00479 J	0.000403 J	0.000749 J	<0.0115	<0.0288	0.000645 J	<0.00115	<0.0115	<0.0115	< 0.0173	<0.023				
URS-SB-12	URS	10/12/2011	55	0.00606 J	0.000460 J	0.000393 J	<0.00667	<0.0167	<0.0100	<0.000667	<0.00667	<0.00667	<0.0100	< 0.01334		-	-	
		10/12/2011	60	0.00901 J	0.00120 J	0.00102 J	<0.00982	<0.0246	<0.0147	<0.000982	<0.00982	<0.00982	<0.0147	<0.01964		-	-	
		10/12/2011	65	< 0.0151	< 0.0227	0.00153 J	< 0.0151	< 0.0378	< 0.0227	<0.00151	< 0.0151	< 0.0151	< 0.0227	< 0.0302				
		10/12/2011	70	< 0.0159	< 0.0239	< 0.0159	< 0.0159	< 0.0398	< 0.0239	< 0.00159	< 0.0159	< 0.0159	< 0.0239	< 0.0318				
		10/12/2011	75	< 0.0156	< 0.0235	< 0.0156	< 0.0156	< 0.0391	< 0.0235	< 0.00156	< 0.0156	< 0.0156	< 0.0235	< 0.0312				
		10/13/2011	35	0.0142	< 0.0175	<0.0117	< 0.0117	< 0.0292	0.000548 J	<0.00117	< 0.0117	< 0.0117	<0.0175	< 0.0234				
		10/13/2011	40	0.0140 J 0.00347 J	<0.0210 <0.0213	<0.0140 <0.0142	<0.0140	<0.0351	0.000842 J 0.00128 J	<0.00140	<0.0140 <0.0142	<0.0140 <0.0142	<0.0210	< 0.028				
URS-SB-13	URS	10/13/2011	45 60	0.00347 J	<0.0213 0.000382 J	<0.0142	<0.0142	<0.355 <0.290	0.00128 J	<0.00142	<0.0142	<0.0142 0.000394 J	<0.0213	<0.0284	-			
010-30-13	UNG	10/13/2011 10/13/2011	60 65	0.0647	<0.0204	<0.0116	<0.0116 <0.0136	<0.290	<0.0204	<0.00116 <0.00136	<0.0116	<0.0136	<0.0174 <0.0204	<0.0232 <0.0272				
		10/13/2011	65 70	< 0.0145	<0.0204	<0.0136	< 0.0136	< 0.0364	<0.0204	<0.00136	< 0.0136	< 0.0136	<0.0204	<0.0272				
		10/13/2011	70	< 0.0145	<0.0218	<0.0145	<0.0143	<0.0364	<0.0218	<0.00143	< 0.0145	<0.0143	<0.0218	<0.029	-	-		+
		10/11/2011	35	<0.00149	<0.0223	< 0.00954	< 0.00149	<0.0239	<0.0223	< 0.000954	< 0.00149	< 0.00954	<0.0223	<0.0238				-
		10/11/2011	40	0.0541	0.000659 J	<0.00334	<0.000004	0.0279	< 0.0143	<0.000334	<0.0112	<0.00334	<0.0143	<0.01000				
		10/11/2011	45	0.0712	0.00114 J	0.00172 J	<0.0112	< 0.0213	< 0.0176	<0.00117	<0.0117	<0.0117	< 0.0176	<0.0234				
		10/11/2011	50	0.166	0.00164 J	0.00346 J	< 0.0101	< 0.0253	< 0.0152	< 0.00101	<0.0101	< 0.0101	< 0.0152	< 0.0202				
URS-SB-14	URS	10/11/2011	55	0.105	0.00119 J	0.00475 J	< 0.0126	< 0.0314	< 0.0189	< 0.00126	< 0.0126	< 0.0126	< 0.0189	< 0.0252				
		10/11/2011	60	0.000312 J	< 0.0142	< 0.00946	< 0.00946	< 0.0237	< 0.0142	< 0.000946	< 0.00946	< 0.00946	< 0.0142	< 0.01898				
		10/11/2011	65	< 0.00915	< 0.0137	< 0.00915	< 0.00915	< 0.0229	< 0.0137	< 0.00915	< 0.00915	< 0.00915	< 0.0137	< 0.0183				
		10/11/2011	70	< 0.0137	<0.0206	< 0.0137	< 0.0137	< 0.0343	<0.0206	< 0.00137	< 0.0137	< 0.0137	< 0.0206	< 0.0274				
		10/11/2011	75	< 0.0104	< 0.0156	< 0.0104	< 0.0104	<0.0260	< 0.0156	< 0.00104	< 0.0104	< 0.0104	<0.0156	<0.0208				
		10/11/2011	35	0.0331	< 0.0189	<0.0126	<0.0126	< 0.0316	<0.0189	< 0.00126	<0.0126	< 0.0126	< 0.0189	<0.0252				
		10/11/2011	40	0.00263 J	<0.0138	<0.00921	< 0.00921	<0.0230	<0.0138	< 0.000921	<0.00921	<0.00921	<0.0138	< 0.01842				
		10/11/2011	45	<0.0128	<0.0191	<0.0128	<0.0128	< 0.0319	<0.0191	<0.00128	<0.0128	<0.0128	<0.0191	<0.0256				
		10/10/2011	50	<0.0128	<0.0192	<0.0128	<0.0128	<0.0321	<0.0192	<0.00128	<0.0128	<0.0128	<0.0192	<0.0256				
URS-SB-15	URS	10/10/2011	55	<0.00851	<0.0128	<0.00851	<0.00851	<0.0213	<0.0128	<0.000851	<0.00851	<0.00851	<0.0128	< 0.01702				
		10/10/2011	60	<0.0101	<0.0151	<0.0101	<0.0101	<0.0252	<0.0151	<0.00101	<0.0101	<0.0101	<0.0151	<0.0202		-		
		10/10/2011	65	<0.0140	<0.0210	<0.0140	<0.0140	<0.0349	<0.0210	<0.00140	<0.0140	<0.0140	<0.0210	<0.028				
		10/10/2011	70	<0.0127	<0.0190	<0.0127	<0.0127	<0.0317	<0.0190	<0.00127	<0.0127	<0.0127	<0.0190	<0.0254				
		10/10/2011	75	<0.0119	<0.0179	<0.0119	<0.0119	<0.0298	<0.0179	<0.000119	<0.0119	<0.0119	<0.0179	<0.0238				
		11/15/2011	40	<0.00937	<0.0141	<0.00937	< 0.00937	<0.0234	<0.0141	<0.000937								
		11/15/2011	45	<0.00915	<0.0137	<0.00915	<0.00915		<0.0137	<0.000915								
URS-SB-17	URS	11/15/2011	65	< 0.0122	<0.0183	< 0.0122	< 0.0122	< 0.0304	<0.0183	< 0.00122							-	
		11/15/2011	70	< 0.0124	<0.0186	< 0.0124	< 0.0124	< 0.0309	<0.0186	< 0.00124								
		11/15/2011	75	< 0.0156	< 0.0234	< 0.0156	< 0.0156	< 0.0390	< 0.0234	<0.00156								
		11/17/2011	30	0.00590 J	< 0.0218	<0.0145	<0.0145	< 0.0364	< 0.0218	<0.00145						-		
		11/17/2011	35	0.00560 J	<0.0174	<0.0116	<0.0116	<0.0290	<0.0174	<0.00116						-		
		11/17/2011	40	<0.0116	<0.0174	<0.0116	<0.0116	<0.290	<0.0174	<0.00116								
		11/17/2011	45	<0.0159	<0.0238	<0.0159	<0.0159	<0.0397	<0.0238	<0.00159								
		11/17/2011 11/17/2011	50 60	<0.0157 <0.0104	<0.0235 <0.0156	<0.0157 <0.0104	<0.0157 <0.0104	<0.0392 <0.259	<0.0235 <0.0156	<0.00157 <0.00104								
URS-SB-21	URS	11/17/2011	60 65	<0.0104	< 0.0156	<0.0104	<0.0104	<0.259	< 0.0156	<0.00104								
		11/17/2011	65 70	< 0.0192	< 0.0288	<0.0192	<0.0192	<0.0480	< 0.0288	<0.00192								
		11/17/2011	70	<0.0203	< 0.0304	<0.0203	<0.0203	<0.0507	<0.0304	<0.00203								
		11/17/2011	71.5	< 0.0170	<0.0255	<0.0170	<0.0170	<0.0425	<0.0255	<0.00170								
		11/17/2011	74.5	< 0.0156	<0.0234	<0.0136	<0.0136	<0.0391	<0.0234	<0.00136								+
		11/17/2011	80	< 0.0190	<0.0234	< 0.0190	<0.0130	<0.0356	<0.0234	<0.00190							-	
MTC	A Method A or B			0.05 (A)	0.03 (A)	0.076 (B)	0.48 (B)	0.037 (B)	0.0023 (B)	0.0012 (B)	0.03 (A)	7 (A)	6 (A)	9 (A)	100 (A)	2,000 (A)	2,000 (A)	250 (A)

Notes:

Table contains data from 2000 to 2011. Chemical data from the 1990 EMCON PESA and 1992 EMCON UST Closure Report are presented in Table 2 and 3.

Compounds including methylene chloride, chloroform, chloromethane, and MTBE were analyzed for in numerous samples from the Property. These compounds either were not detected, were detected at J-flagged estimated values less than laboratory reporting limits, or detected at concentrations less than cleanup levels.

¹VOCs = Volatile organic compounds; analyzed by EPA Method 8260B.

² Gasoline-range petroleum hydrocarbons were analyzed by Ecology Method NWTPH-Gx

³ Diesel- and oil-range petroleum hydrocarbons were analyzed by Ecology Method NWTPH-Dx

-- = constituent not analyzed.

< = constituent not detected at or above the stated laboratory practical quantitation limit.</p>

1,1-DCE = 1,1-Dichloroethene

1,1,1-DCE = 1,1,1-dichloroethene

1,2-DCA = 1,2-dichloroethane

bgs = below ground surface

cis-1,2-DCE = cis-1,2-dichloroethene

J = estimated value below laboratory Practical Quantitation Limit (PQL); for purpose of this report J-flagged values are considered not detected.

mg/kg = milligrams per kilogram

MTCA = Model Toxics Control Act (WAC 173-340).

(A) = MTCA Method A Cleanup Level

(B) = MTCA Method B cleanup for the protection of groundwater. See Table 8 for information on basis for cleanup levels.

PCE = Tetrachloroethene

TCE = Trichloroethene

trans 1,2-DCE = trans-1,2-dichloroethene

VOCs = Volatile organic compounds

Bold font indicates that the constituent was detected.

Shading indicates that the concentration exceeds the MTCA cleanup level.

Chemical Analytical Data for Groundwater Samples Sterling Realty Organization Property at 10605 and 10619 NE 8th Street Bellevue, Washington

				_	-	voo	Cs (µg∕L) ¹	-			_	Gasoline-range Petroleum	Diesel-range Petroleum	Oil-range Petroleum
Sample ID	Sample Date	Depth (feet bgs)	PCE	TCE	cis-1.2-DCE	1,1,1-TCA	1,2-DCA	Benzene	Toluene	Ethyl- benzene	Xylenes, total	Hydrocarbons (µg/L) ²	Hydrocarbons (µg/L) ³	Hydrocarbons (µg/L) ³
Samples collected					0.0 1,1 001	_,_,	2,2 00/1	BollEolio	Totaono	JOILEONG	totai	(148/ =/	(198/ =/	(P8/ =/
URSSB-0P1	03/11/2000	NA	2.1	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<100	<25	<50
URSSB-0P3	03/11/2000	NA	1.7	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<100	<25	<50
Samples collected	, ,			_	-			1.0	1.0	1.0	41.0	4100	-20	400
URS-SB-3	08/27/2008	NA	21	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<100		
010-00-0	09/10/2008	NA	340	3.5	<1.0	-		<1.0	<1.0	<1.0	<1.0	<100		
	11/21/2008	NA	210	3.4	<1.0			<1.0	<1.0	<1.0	<1.0			
URS-MW-1	, ,	NA	460	22	<1.0 11			<1.0	<1.0	<1.0	-	<50		
0K3-10100-1	03/17/2010							-	-	-	<1.0			
	06/17/2010	NA	320 430	9.6 10	1.2 6.1			<1.0	<1.0	<1.0	<1.0	<50		
	08/24/2010	NA		-	-									
	03/17/2010	NA	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<50		
URS-MW-2	06/17/2010	NA	<1.0	<1.0	<1.0		-	<1.0	<1.0	<1.0	<1.0	<50		
	08/25/2010	NA	<1.0	<1.0	<1.0		-							
	09/10/2008	NA	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<100		
	11/21/2008	NA	3.9	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0			
URS-MW-3	03/17/2010	NA	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<50		
	06/17/2010	NA	<1.0	<0.2	<1.0			<1.0	<1.0	<1.0	<1.0	<50		
	08/23/2010	NA	<1.0	<0.2	<1.0									
MW-19	08/25/2010	NA	33	1.1	<1.0			<0.35	<1	<1	<3	<100	<50	<250
MW-20	08/25/2010	NA	4.6	<1.0	<1.0			<0.35	<1	<1	<3	<100	<50	<250
B1/MW1	03/17/2010	NA	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<50		
	07/07/2008	NA	<0.2	<0.2				<0.2	<0.2	<1.0	<0.6	<100	<250	<500
B-2/MW-2	11/21/2008	NA	2.0	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0			
D-2/10100-2	03/17/2010	NA	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<50		
	06/17/2010	NA	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<50		
	07/07/2008	NA	80	0.42				<0.4	<0.4	<2.0	<1.2	<100	<250	<500
	09/10/2008	NA	88	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<100		
D 0 (1011) 0	11/21/2008	NA	20	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0			
B-3/MW-3	03/17/2010	NA	68	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<50		
	06/17/2010	NA	44	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<50		
	08/23/2010	NA	50	<1.0	<1.0									
	07/07/2008	NA	<0.2	<0.2				<0.2	<0.2	<1.0	<0.6	<100	<250	<500
	11/21/2008	NA	1.9	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	-		
B-4/MW-4	03/17/2010	NA	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<50		
	06/17/2010	NA	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<50		
Samples collected	, ,	011b)	-	-				-	-	-	-			
URS-MW-1	11/22/2011	29	114	4.36	1.47	<1.0	<1.0							
URS-MW-2	11/21/2011	28.6	<1.0	<1.0	<1.0	<1.0	<1.0							
URS-MW-3	11/22/2011	28	<1.0	<1.0	<1.0	<1.0	<1.0							
	10/19/2011	73	<1.0	<1.0	<1.0	<1.0	<1.0							
	10/19/2011	77	<1.0	<1.0	<1.0	<1.0	<1.0							
URS-MW-8	11/22/2011	70	<1.0	<1.0	<1.0	<1.0	<1.0					-		
	11/22/2011	73	<1.0	<1.0	<1.0	<1.0	<1.0					_		
	11/22/2011	75.5	<1.0	<1.0	<1.0	<1.0	<1.0							
MW-19	11/22/2011	29.2	31.0	1.08	0.140 J	<1.0	<1.0							
									-					
MW-20	11/22/2011	25	1.03	0.140 J	<1.0	<1.0	<1.0	-						
B1/MW-1	11/29/2011	90	<1.0	<1.0	<1.0	<1.0	<1.0							
	11/29/2011	95	<1.0	<1.0	<1.0	<1.0	<1.0							
B2/MW-2	11/29/2011	75	<1.0	<1.0	<1.0	<1.0	<1.0							
,	11/29/2011	80	<1.0	<1.0	<1.0	<1.0	<1.0							
B3/MW-3	11/22/2011	27	23.7	<1.0	<1.0	<1.0	<1.0							
B4/MW-4	11/29/2011	75	<1.0	<1.0	<1.0	<1.0	<1.0		-					
	11/29/2011	80	<1.0	<1.0	<1.0	<1.0	<1.0							
URS-SB-9	10/10/2011	77	0.270 J	<1.0	<1.0	<1.0	<1.0							
URS-SB-154	10/10/2011	75	<1.0	<1.0	<1.0	<1.0	<1.0							
URS-SB-21	11/17/2011	74	<1.0	<1.0	<1.0	<1.0	<1.0							
MTCA Metho	od A or B Cleanup	Level	5 (A)	5 (A)	16 (B)	200 (A)	5 (A)	5 (A)	1,000 (A)	700 (A)	1,000 (A)	800 / 1,000 ⁵ (A)	500 (A)	500 (A)

Notes:

Table contains data from 2000 to 2011. Chemical data from the 1990 EMCON PESA is presented in Table 2.

¹VOCs = Volatile organic compounds; analyzed by EPA Method 8260B.

²Gasoline-range petroleum hydrocarbons were analyzed by Ecology Method NWTPH-Gx

³Diesel- and oil-range petroleum hydrocarbons were analyzed by Ecology Method NWTPH-Dx

⁴Naphthalene was detected at a trace concentration of 0.23 μg/L (J-flagged estimated value less than PQL). The cleanup level for naphthalenes is 160 μg/L.

 5 The groundwater cleanup level is 1,000 μ g/L if benzene is not present. If benzene is present, the cleanup level is 800 μ g/L.

-- = constituent not analyzed.

< = constituent not detected at or above the stated laboratory practical quantitation limit.

1,1,1-TCA = 1,1,1-trichloroethane

1,2-DCA = 1,2-dichloroethane

bgs = below ground surface

cis-1,2-DCE = cis-1,2-dichloroethene

DCE = Dichloroethene.

J = estimated value

MTCA = Model Toxics Control Act (WAC 173-340).

(A) = MTCA Method A Cleanup Level

(B) = Standard Method B cleanup levels from CLARC tables. See Table 8 for information on basis for cleanup levels.

NA = not available

PCE = Tetrachloroethene

TCE = Trichloroethene

 μ g/L = micrograms per liter

Bold font indicates that the constituent was detected.

Shading indicates that the concentration exceeds the MTCA cleanup level.

Groundwater data from the Thinker Toys (source) property shown on Figures 14 and 15 are not included in this table.

Low Level Detections–Chemical Analytical Data for Soil Samples Sterling Realty Organization Property at 10605 and 10619 NE 8th Street Bellevue, Washington

Sample ID	Sample Collected By	Sample Date	Depth (feet bgs)	Methylene Chloride (mg/kg)	Chloroform (mg/kg)	Chloromethane (mg/kg)	Methyl Tert-Butyl Eth (MTBE) (mg/kg)
		10/10/2011	50	0.00128 J	< 0.0142	< 0.0426	< 0.0355
		10/10/2011	55	0.00128 J	< 0.0139	< 0.0417	< 0.0347
		10/10/2011	60	0.00122 J	< 0.0136	< 0.0408	< 0.0340
URS-SB-9	URS	10/10/2011	65	0.000933 J	< 0.0126	< 0.0378	< 0.0315
		10/10/2011	70	0.00158 J	< 0.0143	< 0.0428	< 0.0357
		10/10/2011	75	0.00129 J	< 0.0151	< 0.0452	< 0.0376
		10/10/2011	80	0.00200 J	< 0.0142	< 0.0425	< 0.0354
		10/11/2011	50	0.000583 J	< 0.0117	0.000723 J	< 0.0292
		10/11/2011	55	0.000933 J	< 0.0111	< 0.0333	< 0.0278
		10/11/2011	60	0.000803 J	< 0.00967	< 0.0290	< 0.0242
0K2-2B-10	UKS	10/11/2011	65	0.00224 J	< 0.0142	< 0.0426	(MTBE) (mg/kg) < 0.0355
	SB-9 URS SB-10 URS SB-10 URS SB-11 URS SB-12 URS SB-13 URS SB-14 URS SB-15 URS SB-17 URS	10/11/2011	70	0.00156 J	< 0.0148	< 0.0443	< 0.0369
		10/11/2011	75	0.00106 J	< 0.00952	0.000400 J	< 0.0238
		10/12/2011	35	0.00152 J	< 0.0126	< 0.0379	< 0.0316
		10/12/2011	40	0.000765 J	< 0.0109	< 0.0328	< 0.0273
		10/12/2011	45	0.000672 J	< 0.0112	< 0.0336	< 0.0280
		10/12/2011	50	0.00116 J	< 0.0124	< 0.0373	
		10/12/2011	55	0.000892 J	< 0.0124	< 0.0372	
	URS	, ,	60		< 0.0124		
(00 11)		10/12/2011	65	0.000918 J		< 0.0316	
		10/12/2011		0.000633 J	< 0.0104	< 0.0311	
		10/12/2011	70	0.000735 J	< 0.0105	< 0.0315	
		10/12/2011	75	0.00131 J	< 0.0138	< 0.0414	
		10/12/2011	80	0.00102 J	< 0.0113	< 0.0340	
		10/12/2011	35	0.000952 J	< 0.0129	< 0.0386	< 0.0322
		10/12/2011	40	0.00126 J	< 0.0128	< 0.0385	< 0.0321
		10/12/2011	45	0.00101 J	< 0.0115	< 0.0346	< 0.0288
	LIDC	10/12/2011	55	0.000393 J	< 0.00667	< 0.0200	< 0.0167
UK3-3B-12	UKS	10/12/2011	60	0.000756 J	< 0.00982	< 0.0295	< 0.0246
		10/12/2011	65	0.00193 J	< 0.0151	< 0.0453	< 0.0378
		10/12/2011	70	0.00199 J	< 0.0159	< 0.0477	< 0.0398
		10/12/2011	75	0.00141 J	< 0.0156	< 0.0469	
		10/13/2011	35	0.00106 J	< 0.0117	< 0.0350	
		10/13/2011	40	0.00132 J		< 0.0330	
		, ,			< 0.0140		
	1150	10/13/2011	45	0.00108 J	< 0.0142	< 0.0426	
URS-SB-13	URS	10/13/2011	60	0.000834 J	< 0.0116	< 0.0348	
		10/13/2011	65	0.00121 J	< 0.0136	< 0.0407	
		10/13/2011	70	0.00156 J	< 0.0145	< 0.0436	< 0.0364
		10/13/2011	75	0.00155 J	< 0.0149	< 0.0447	< 0.0372
		10/11/2011	35	0.000783 J	< 0.00954	< 0.0286	< 0.0239
		10/11/2011	40	0.00136 J	< 0.0112	< 0.0335	< 0.0279
		10/11/2011	45	0.000468 J	< 0.0117	< 0.0351	< 0.0293
		10/11/2011	50	0.000658 J	< 0.0101	< 0.0304	< 0.0253
URS-SB-14	URS	10/11/2011	55	0.000906 J	< 0.0126	< 0.0377	< 0.0314
		10/11/2011	60	0.000662 J	< 0.00946	< 0.0284	< 0.0237
		10/11/2011	65	0.000522 J	< 0.00915	< 0.0275	< 0.0229
		10/11/2011	70	0.00152 J	< 0.0137	< 0.0411	< 0.0343
		10/11/2011	75	0.00128 J	< 0.0104	< 0.0312	
		10/11/2011	35	0.00121 J	< 0.0126	< 0.0379	
		10/11/2011	40	0.000782 J	< 0.00921	< 0.0276	
				-			
		10/11/2011	45	0.00105 J	< 0.0128	< 0.0383	
	1120	10/10/2011	50	0.00106 J	< 0.0128	< 0.0385	
UKS-SB-15	URS	10/10/2011	55	0.000706 J	< 0.00851	< 0.0255	
		10/10/2011	60	0.000806 J	< 0.0101	< 0.0302	
JRS-SB-13 JRS-SB-14 JRS-SB-15		10/10/2011	65	0.00112 J	< 0.0140	< 0.0419	
		10/10/2011	70	0.00191 J	< 0.0127	< 0.0380	< 0.0317
		10/10/2011	75	0.00344 J	< 0.0119	< 0.0358	< 0.0298
		11/15/2011	40	0.000328 J	< 0.00937	< 0.0281	-
		11/15/2011	45	0.000329 J	< 0.00915	< 0.0274	
JRS-SB-17	URS	11/15/2011	65	0.000462 J	< 0.0122	< 0.0365	-
		11/15/2011	70	0.000829 J	< 0.0124	< 0.0371	-
		11/15/2011	75	0.00136 J	< 0.0156	< 0.0468	
		11/17/2011	30	0.000393 J	< 0.0145	< 0.0436	
		11/17/2011	35	0.000290 J	0.000290 J	< 0.0348	
		11/17/2011	40	0.000766 J	0.000290 J	< 0.0348	
		11/17/2011	45	0.000461 J	0.000230 J	< 0.0348	
		11/17/2011	50	0.00113 J	< 0.0157	< 0.0470	-
URS-SB-21	URS	11/17/2011	60	0.000674 J	< 0.0104	< 0.0311	
		11/17/2011	65	0.00127 J	< 0.0192	< 0.0576	
		11/17/2011	70	0.00150 J	< 0.0203	< 0.0608	-
		11/17/2011	71.5	0.00121 J	< 0.0170	< 0.0510	
		11/17/2011	73	0.00141 J	< 0.0156	< 0.0469	
		11/17/2011	74.5	0.00192 J	< 0.0196	< 0.0588	
		11/17/2011	80	0.00117 J	< 0.0143	< 0.0428	
				0.02 (A)	0.0071(B)	none	0.1 (A)

Notes:

-- = constituent not analyzed.

< = constituent not detected at or above the stated laboratory practical quantitation limit.

bgs = below the ground surface

 ${\sf J}$ = estimated value below laboratory Practical Quantitation Limit (PQL).

mg/kg = milligrams per kilogram

MTCA = Model Toxics Control Act (WAC 173-340).

(A) = MTCA Method A Cleanup Level

(B) = MTCA Method B cleanup for the protection of groundwater. See Table 8 for information on basis for cleanup levels.

Low Level Detections–Chemical Analytical Data for Groundwater Samples Sterling Realty Organization Property at 10605 and 10619 NE 8th Street Bellevue, Washington

Sample ID	Sample Date	Depth (feet bgs)	Naphthalene (µg/L)	Methylene Chloride (µg∕L)	Chloroform (µg/L)	Chlorobenzene (µg/L)
Samples collecte	d in 2011 (URS, 20	0 11 b)				
URS-MW-1	11/22/2011	29	< 1.00	< 1.00	< 1.00	0.120 J
URS-MW-2	11/21/2011	28.6	< 1.00	< 1.00	2.38	< 1.00
URS-MW-8 ¹	11/22/2011	75.5	< 1.00	0.190 J	< 1.00	< 1.00
B3/MW-3	11/22/2011	27	< 1.00	< 1.00	0.920 J	< 1.00
URS-SB-15	10/10/2011	75	0.23 J	< 1.00	< 1.00	< 1.00
MTCA Meth	od A or B Cleanup	Level	160 (A)	5 (A)	14.1 (B)	160 (B)

Notes:

¹ Sample from URS-MW-8 on 10/19/2011 was tested for Methyl Tert-Butyl Ether (MTBE). MTBE was detected at a concentration of 1.0 μ g/L (MTCA Method A cleanup level is 20 μ g/L).

< = constituent not detected at or above the stated laboratory practical quantitation limit.

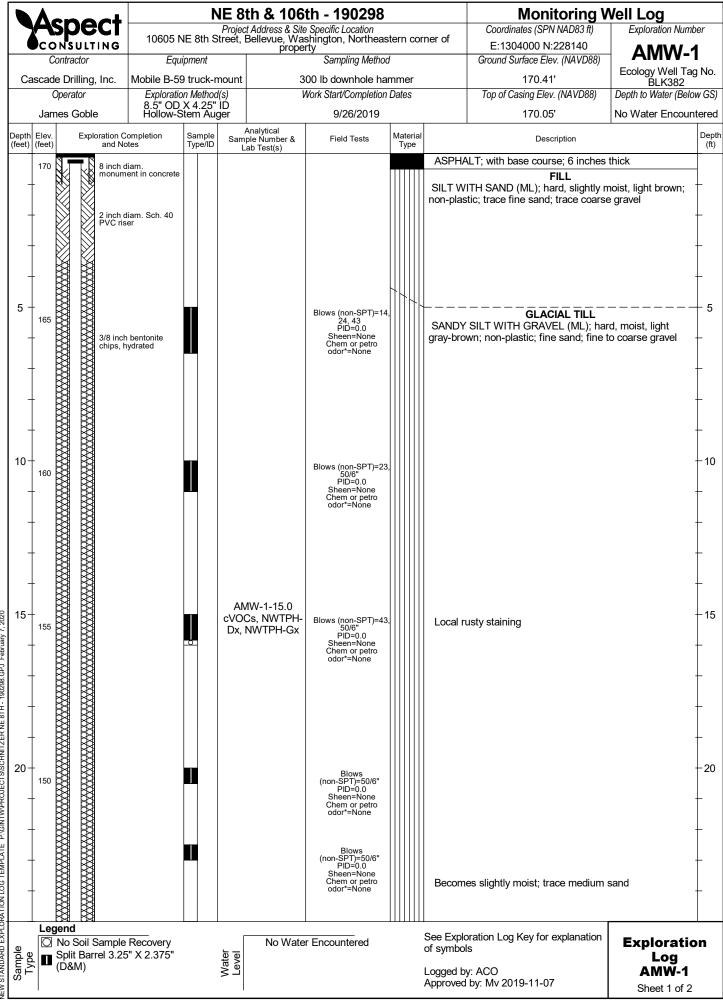
bgs = below ground surface

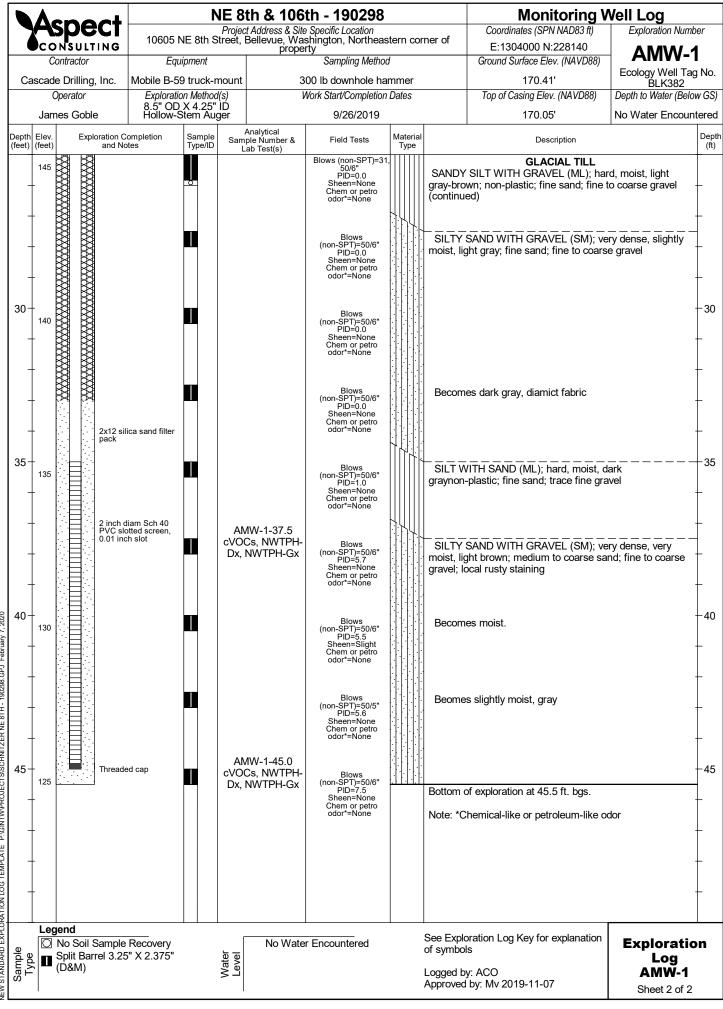
J = estimated value

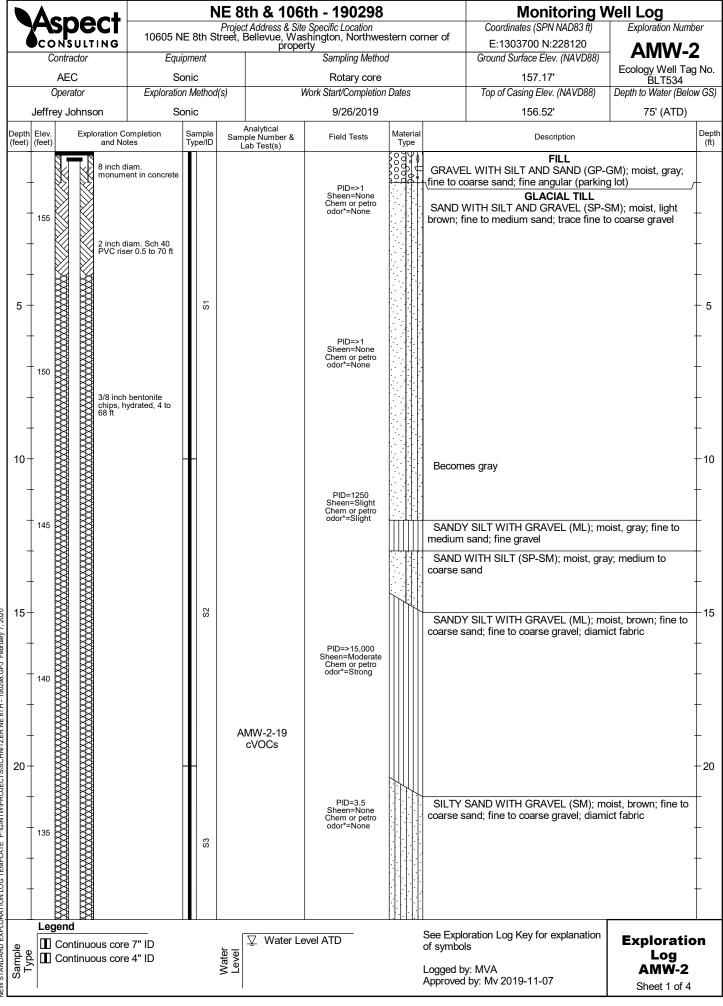
MTCA = Model Toxics Control Act (WAC 173-340).

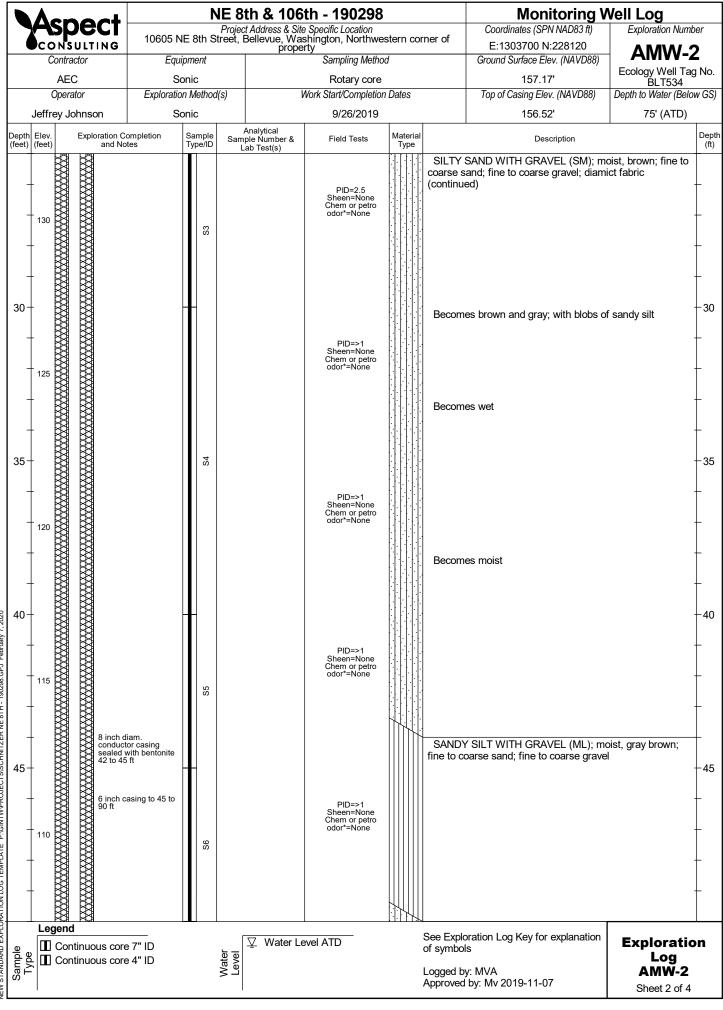
(A) = MTCA Method A Cleanup Level

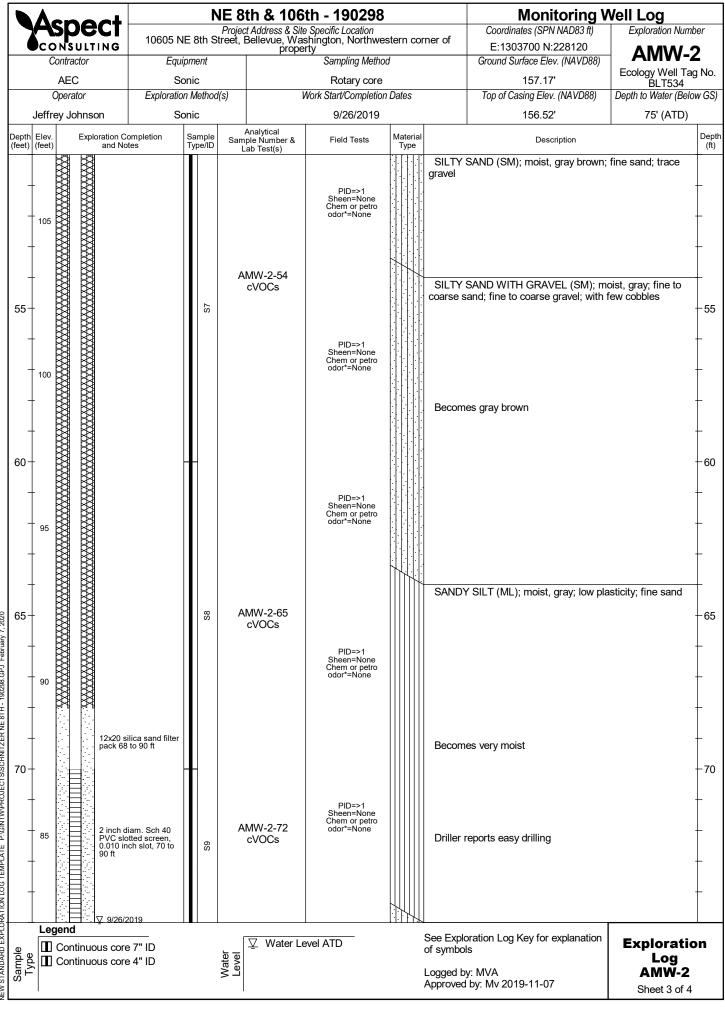
(B) = Standard Method B cleanup levels from CLARC tables. See Table 8 for information on basis for cleanup levels. $\mu g/L = micrograms$ per liter

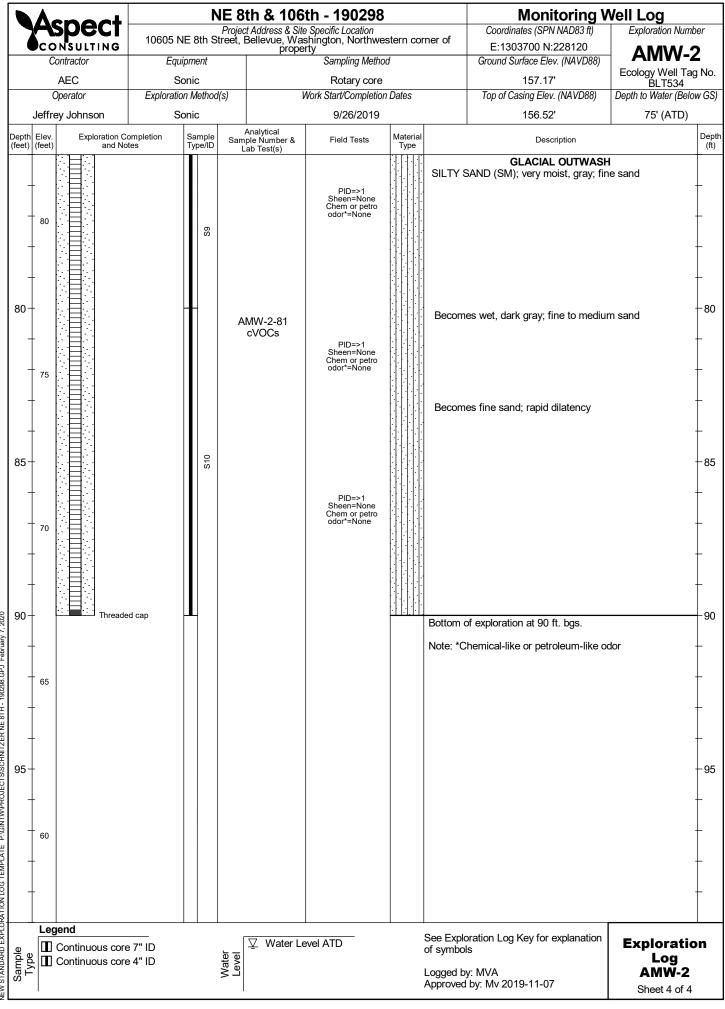

Groundwater data from the Thinker Toys (source) property shown on Figures 15 and 16 are not included in this table.

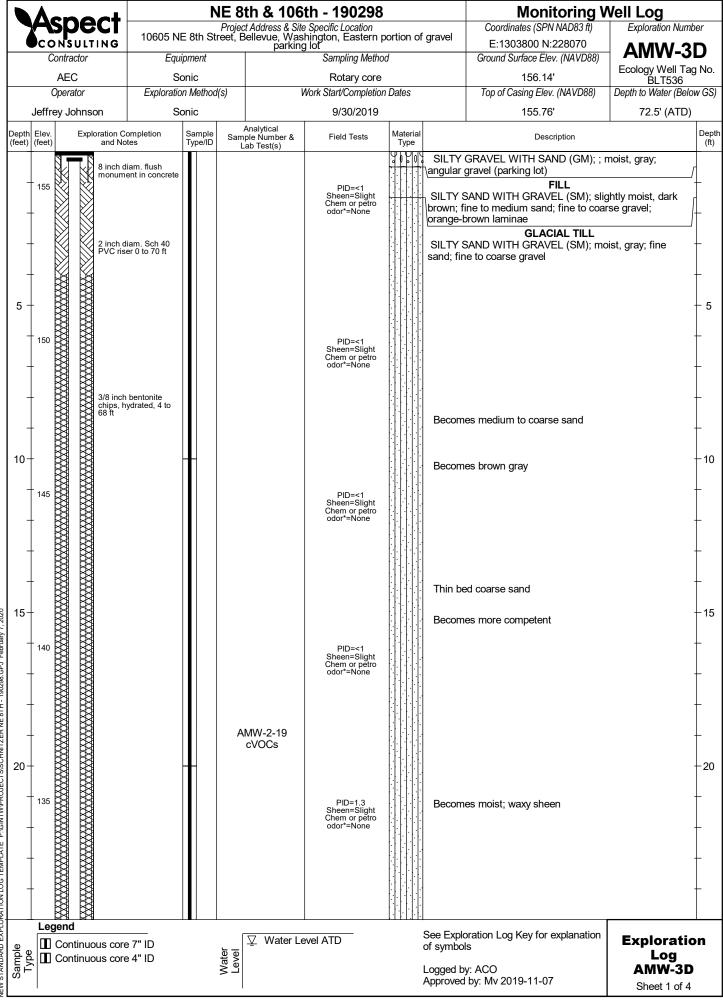


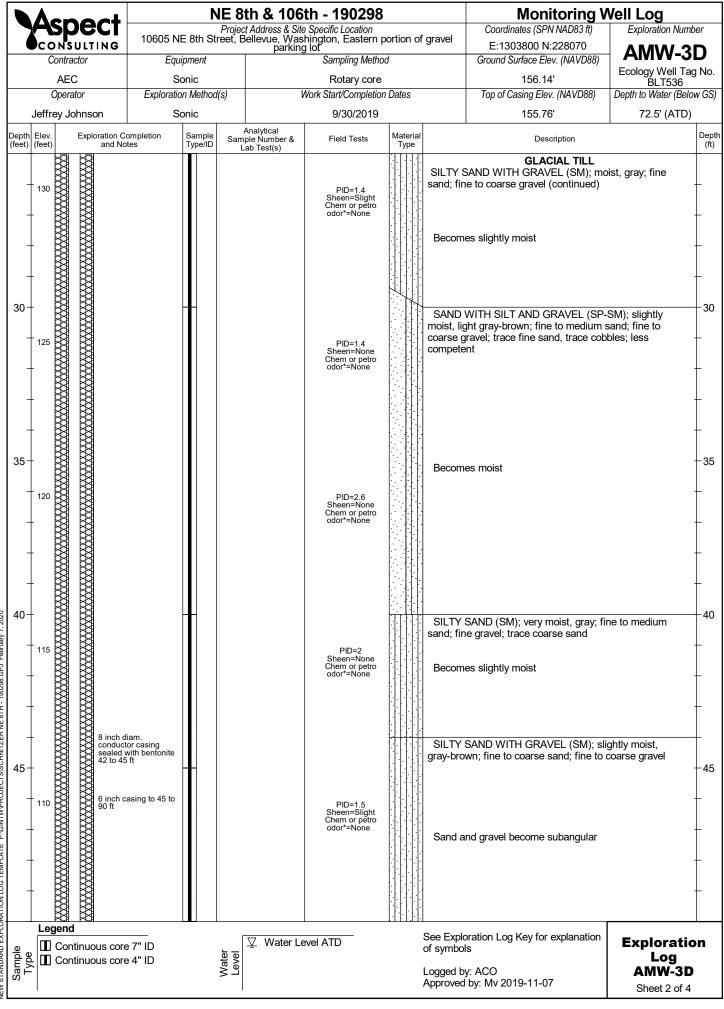

APPENDIX B

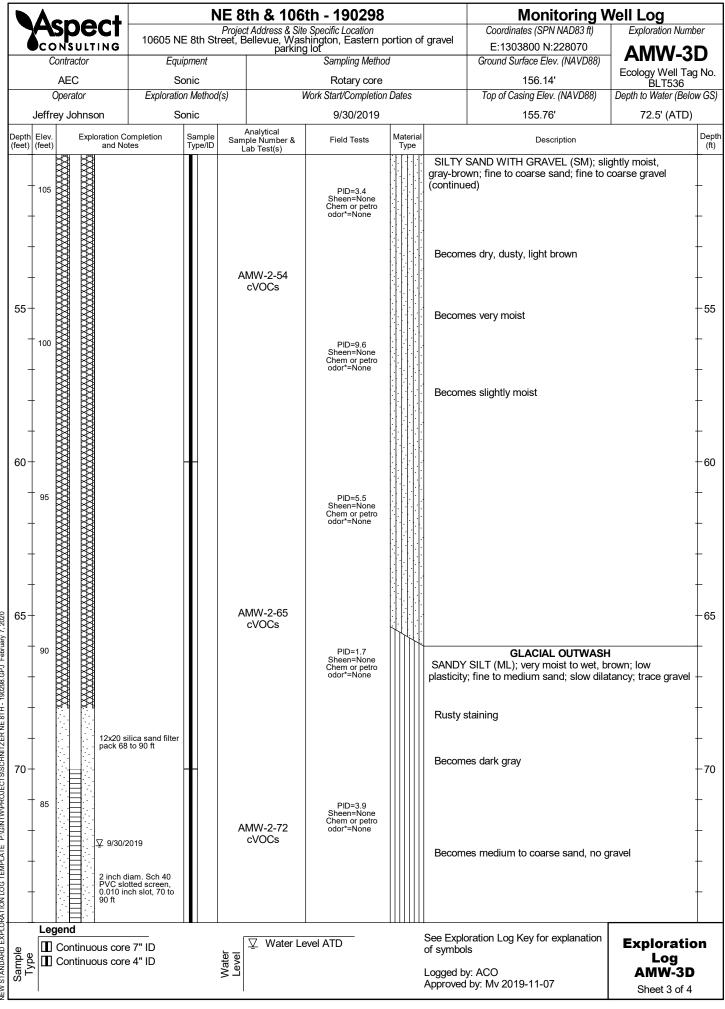

Boring and Well Construction Logs

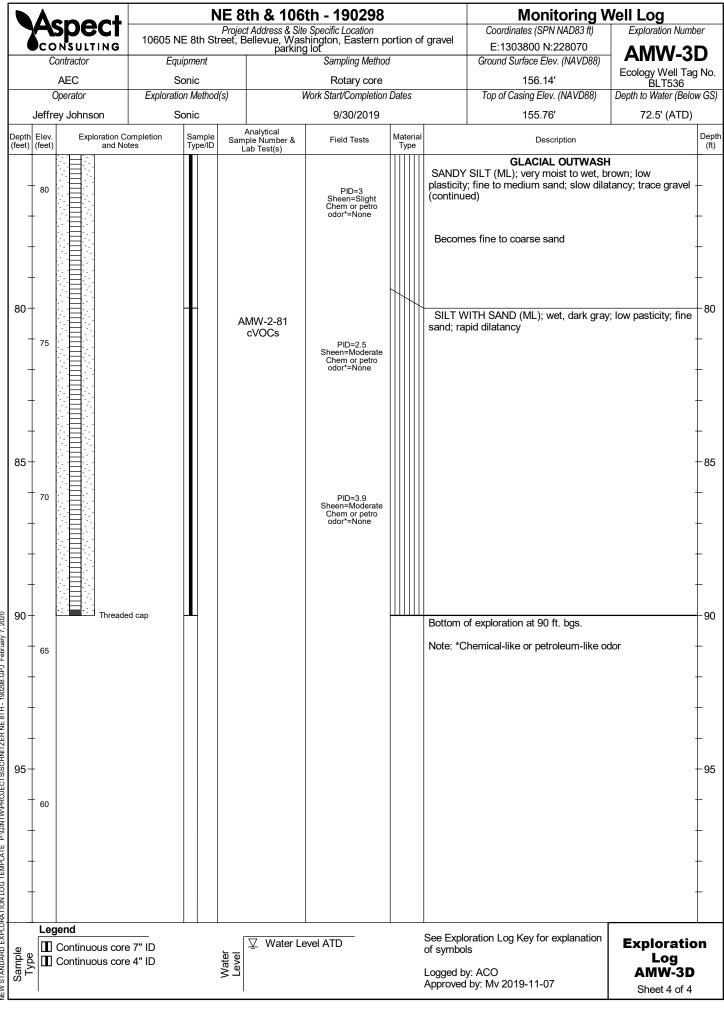

) Sieve	of Coarse Fraction Gravels - More than 50% ¹ of Coarse Fraction 4 Sieve Retained on No. 4 Sieve	U • OO U	8.8.1		Well-graded GRAVEL Well-graded GRAVEL WITH SAND Poorly-graded GRAVEL Poorly-graded GRAVEL WITH SAND	MC=Natural Moisture Content GSGEOTECHNICAL LAB TESGS=Grain Size DistributionFC=Fines Content (% < 0.075 mm)GH=Hydrometer TestAL=Atterberg LimitsC=Consolidation TestStr=Strength TestOC=Organic Content (% Loss by Ignition)					
ned on No. 200		Fines		GM	SILTY GRAVEL SILTY GRAVEL WITH SAND	Comp = Proctor Test K = Hydraulic Conductivity Test SG = Specific Gravity Test CHEMICAL LAB TESTS					
50%1 Retained on No.		<u>≥</u> 15%		GC	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND	BTEX = Benzene, Toluene, Ethylbenzene, Xylenes TPH-Dx = Diesel and Oil-Range Petroleum Hydrocarbons TPH-G = Gasoline-Range Petroleum Hydrocarbons VOCs = Volatile Organic Compounds SVOCs = Semi-Volatile Organic Compounds					
Coarse-Grained Soils - More than		Fines		sw	Well-graded SAND Well-graded SAND WITH GRAVEL	PAHs = Polycyclic Aromatic Hydrocarbon Compounds PCBs = Polychlorinated Biphenyls <u>Metals</u> RCRA8 = As, Ba, Cd, Cr, Pb, Hg, Se, Ag, (d = dissolved, t = total)					
ined Soils	e of Coars . 4 Sieve	≦5%I		SP	Poorly-graded SAND Poorly-graded SAND WITH GRAVEL	MTCA5 = As, Cd, Cr, Hg, Pb (d = dissolved, t = total) PP-13 = Ag, As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, Tl, Zn (d=dissolved, t=total) PID = Photoionization Detector FIELD TESTS					
Coarse-Grai	Sands - 50% ¹ or More Passes No.	Fines		SM	SILTY SAND SILTY SAND WITH GRAVEL	Sheen=Oil Sheen TestSPT2=Standard Penetration TestNSPT=Non-Standard Penetration TestDCPT=Dynamic Cone Penetration Test					
		≥15%		SC	CLAYEY SAND CLAYEY SAND WITH GRAVEL	Descriptive Term BouldersSize Range and Sieve Number Larger than 12 inchesCOMPONENT DEFINITIONSCobbles=3 inches to 12 inches 3 inches to 3/4 inchesComponent DEFINITIONS					
Sieve	Silts and Clays			ML	SILT SANDY or GRAVELLY SILT SILT WITH SAND SILT WITH GRAVEL	Fine Gravel = 3/4 inches to 0/4 inches Coarse Sand = 3/4 inches to No. 4 (4.75 mm) Coarse Sand = No. 4 (4.75 mm) to No. 10 (2.00 mm) Medium Sand = No. 10 (2.00 mm) to No. 40 (0.425 mm) Fine Sand = No. 40 (0.425 mm) to No. 200 (0.075 mm)					
Passes No. 200				CL	LEAN CLAY SANDY or GRAVELLY LEAN CLAY LEAN CLAY WITH SAND LEAN CLAY WITH GRAVEL	Silt and Clay = Smaller than No. 200 (0.075 mm) % by Weight Modifier % by Weight Modifier ESTIMATED ¹ <1					
ore	N -	ר בולמומ ב	· · · · · · · · · · · · · · · · · · ·		ORGANIC SILT SANDY OF GRAVELLY ORGANIC SILT ORGANIC SILT WITH SAND ORGANIC SILT WITH GRAVEL	$\begin{array}{rcl} 1 \text{ to } <5 &= & \text{Trace} & 30 \text{ to } 45 &= & \text{Some} \\ 5 \text{ to } 10 &= & \text{Few} & >50 &= & \text{Mostly} \end{array}$					
ls - 50%1 or M	Silts and Clays Liquid Limit 50% or More		МН		ELASTIC SILT SANDY or GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL	Slightly Moist=Perceptible moistureCONTENMoist=Damp but no visible waterCONTENVery Moist=Water visible but not free drainingWet=Visible free water, usually from below water table					
Fine-Grained Soils				сн	FAT CLAY SANDY or GRAVELLY FAT CLAY FAT CLAY WITH SAND FAT CLAY WITH GRAVEL	Non-Cohesive or Coarse-Grained SoilsRELATIVE DENSITYDensity³SPT² Blows/Foot $Very Loose$ Penetration with 1/2" Diameter Rod $\geq 2'$ Loose= 0 to 4 $= 5 to 10$ $\geq 2'$ $1' to 2'$					
Fine		rinhin		он	ORGANIC CLAY SANDY or GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL	Medium Dense = 11 to 30 3" to 1' Dense = 31 to 50 1" to 3" Very Dense = >50 $< 1"$					
Highly	Organic Soils			PT	PEAT and other mostly organic soils	Cohesive or Fine-Grained Soils CONSISTENCY Consistency³ SPT² Blows/Foot Manual Test Very Soft = 0 to 1 Penetrated >1" easily by thumb. Extrudes between thumb & fingers. Soft = 2 to 4 Penetrated 1/4" to 1" easily by thumb. Easily molded. Medium Stiff = 5 to 8 Penetrated >1/4" with effort by thumb. Molded with strong pressure					
name; e.g. GRAVEL" n gravel. • "\	., SP-SM • means 15 Well-grade	"SILTY" to 30% : d" mea	or "CLA sand an ns appro	YEY" me d gravel oximatel	% silt and clay, denoted by a "-" in the group ears >15% silt and clay ● "WITH SAND" or "WITH ● "SANDY" or "GRAVELLY" means >30% sand and y equal amounts of fine to coarse grain sizes ● "Poorly zes ● Group names separated by "/" means soil	Stiff = 9 to 15 Indented ~1/4" with effort by thumb. Very Stiff = 16 to 30 Indented easily by thumbnail. Hard = > 30 Indented with difficulty by thumbnail.					
contains la Soils were ASTM D24	ayers of the described 488. Where	e two so I and ide e indicat	il types; entified i ed in th	; e.g., SN in the fie ie log, sc		GEOLOGIC CONTACTS Observed and Distinct Observed and Gradual Inferred					
2. (SPT) 5	Standard	Penetra	tion Te	st (ASTN	dry weight // D1586) 199) or other field methods. See report text for details.	Exploration Log Key					

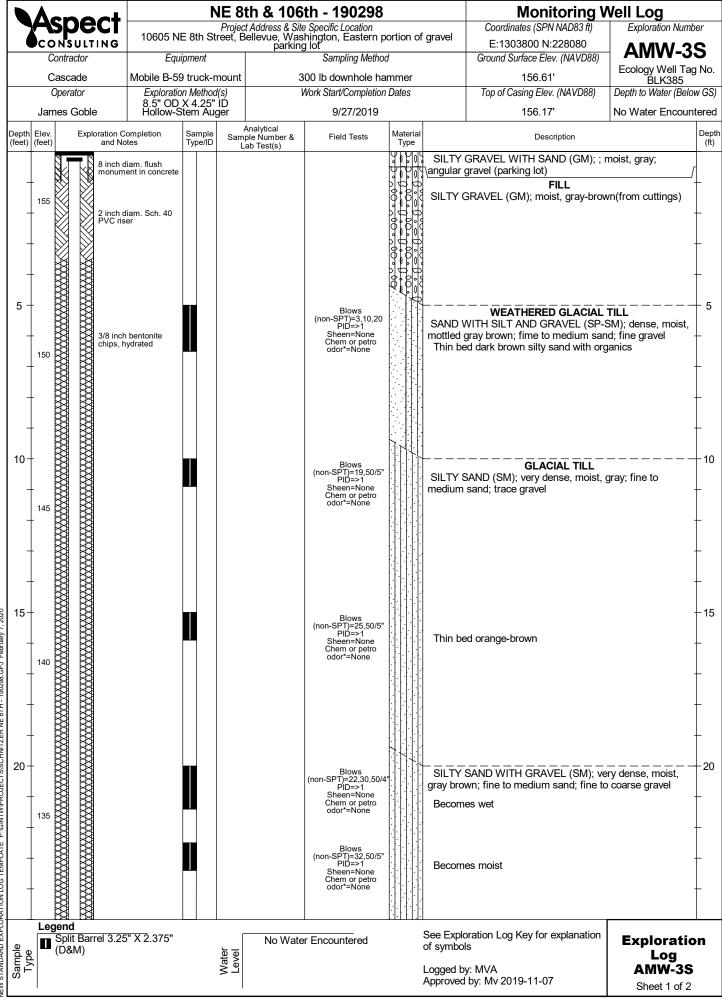


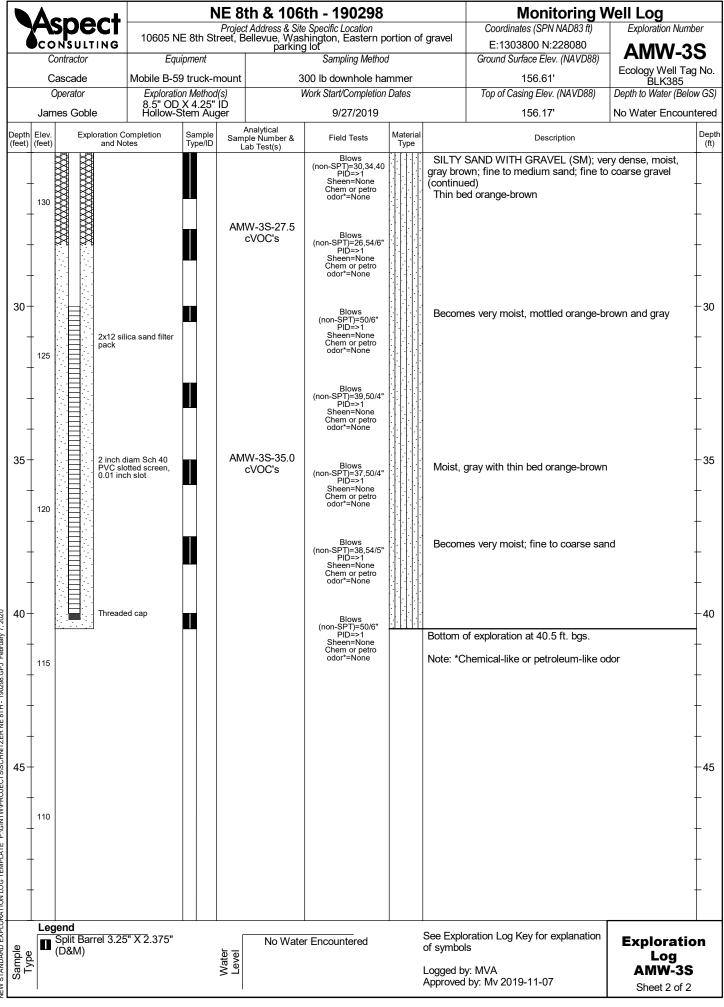


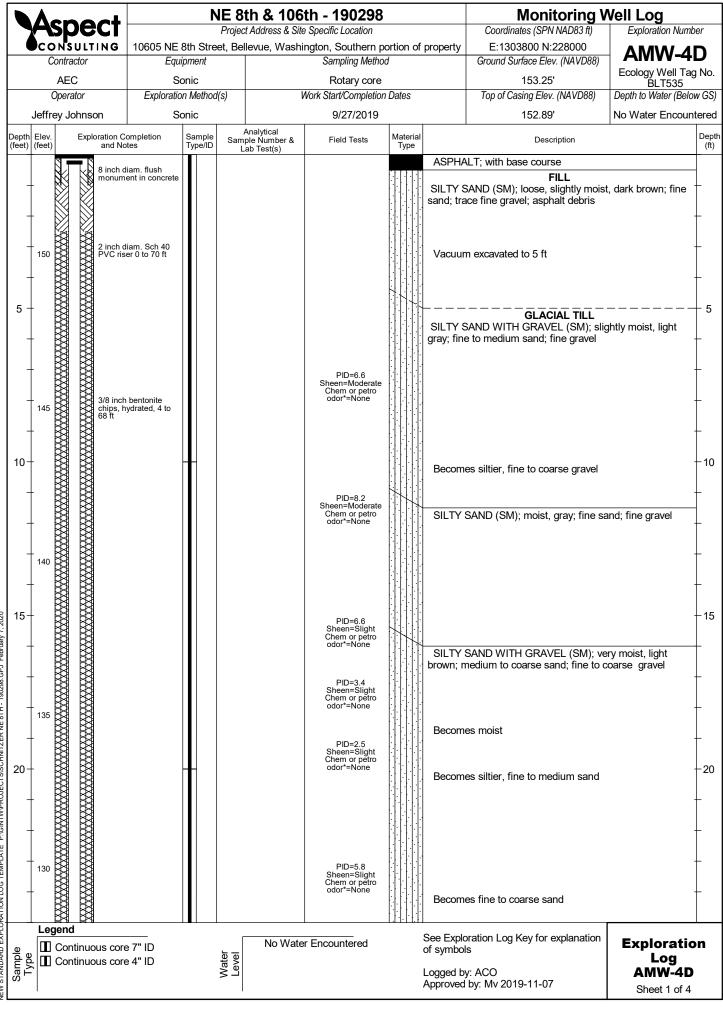


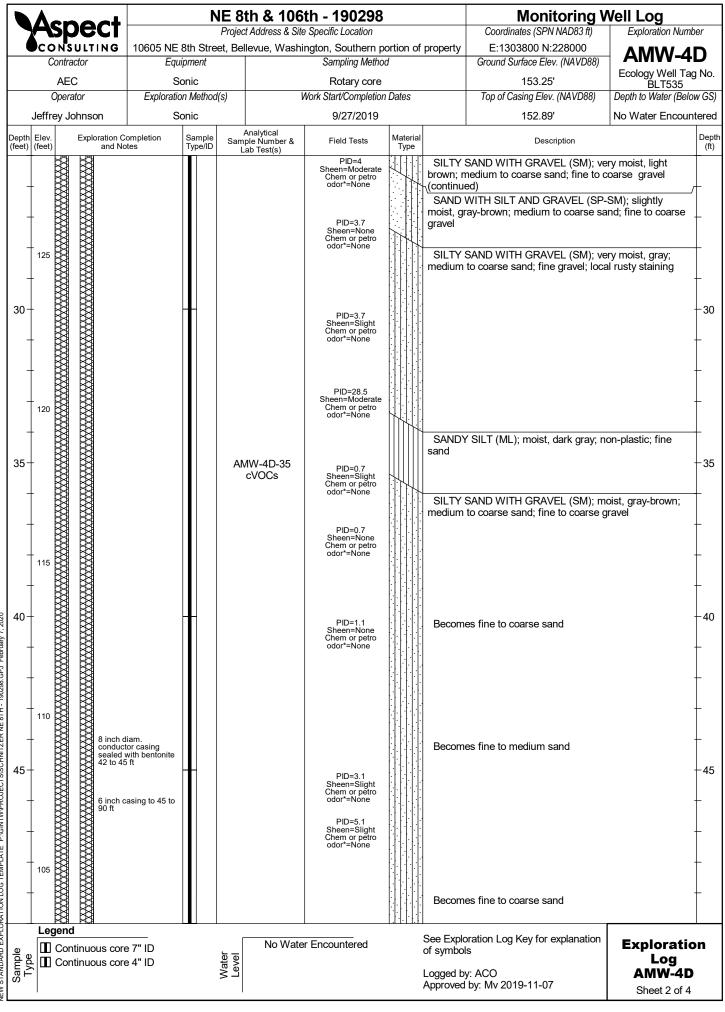


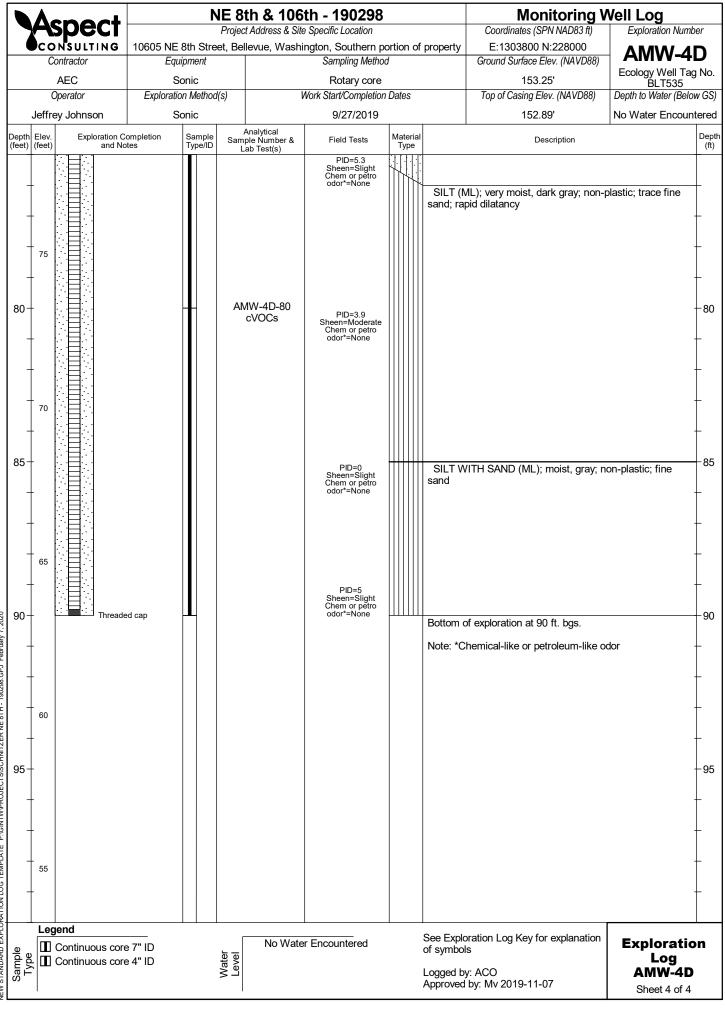


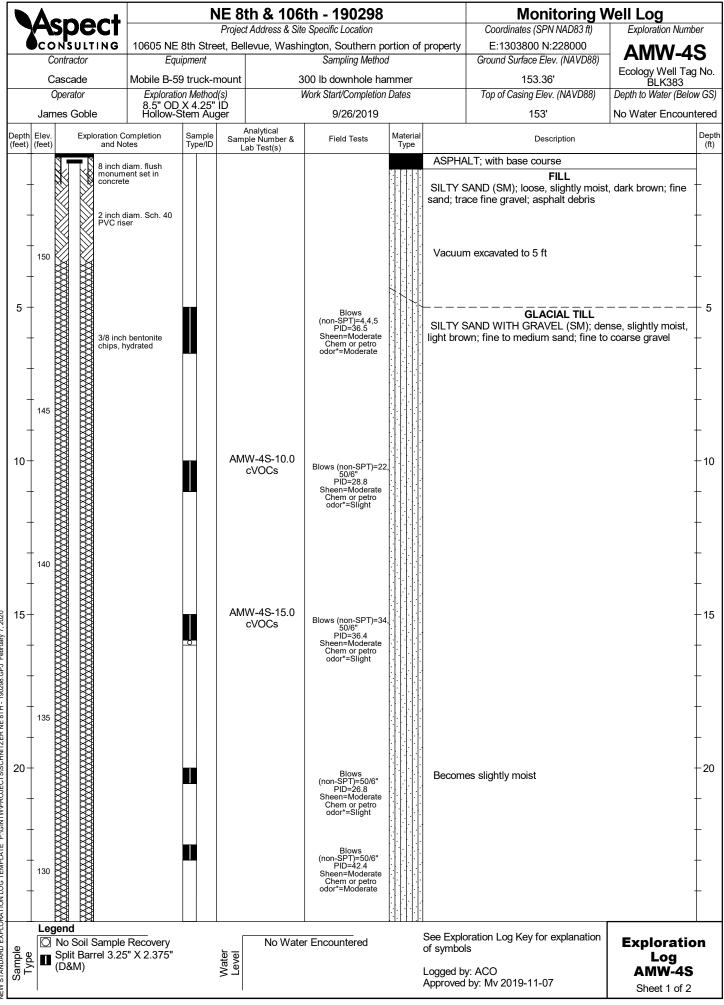


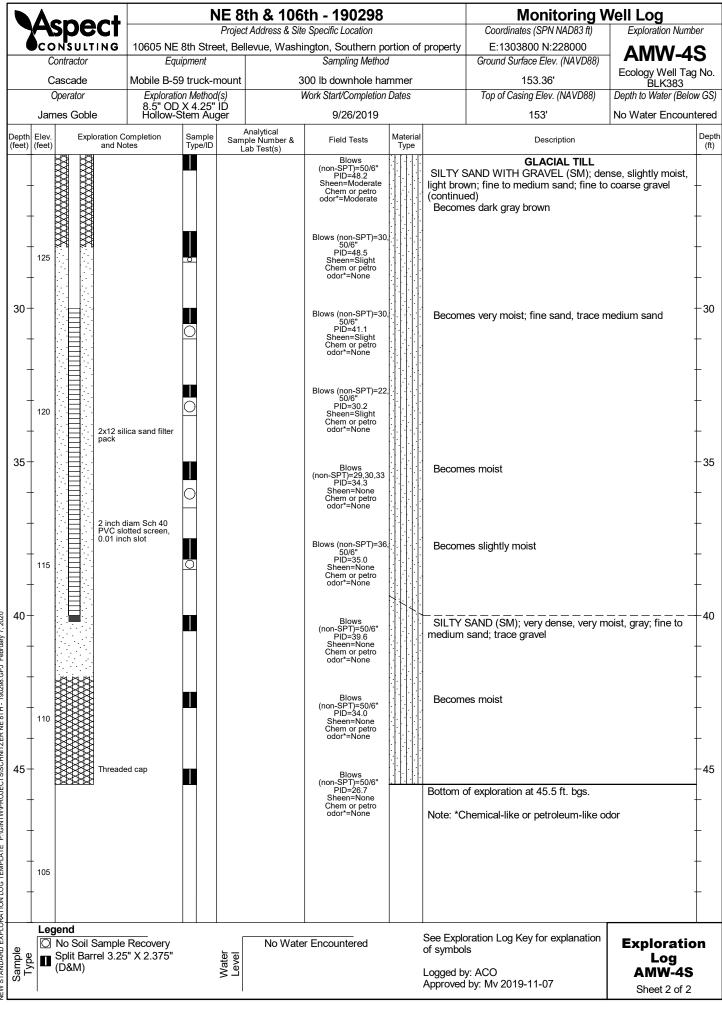


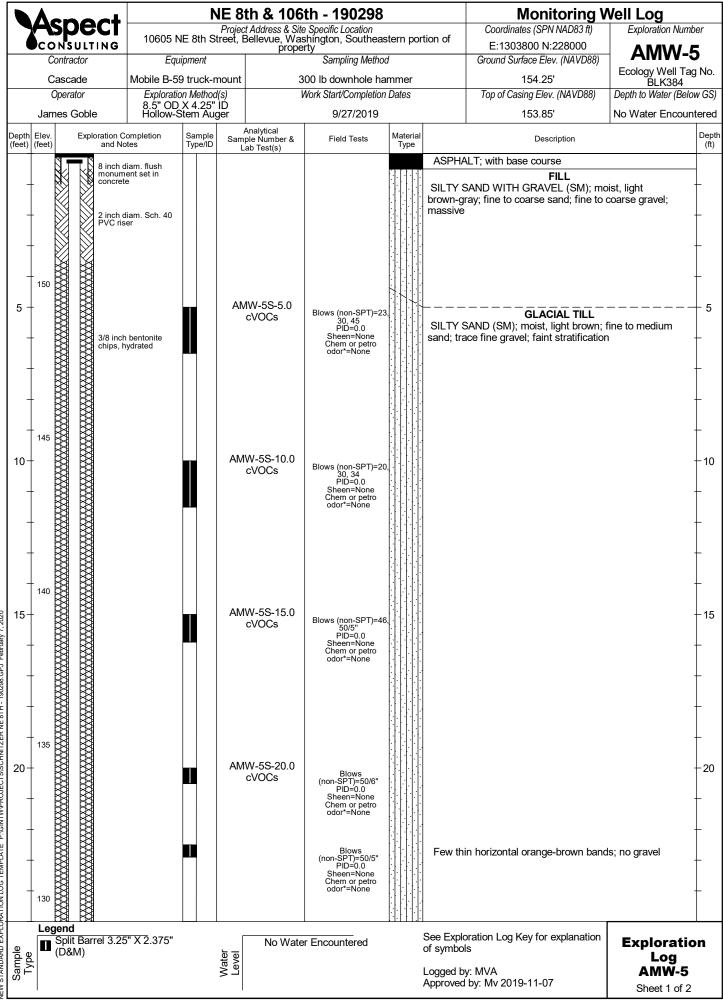


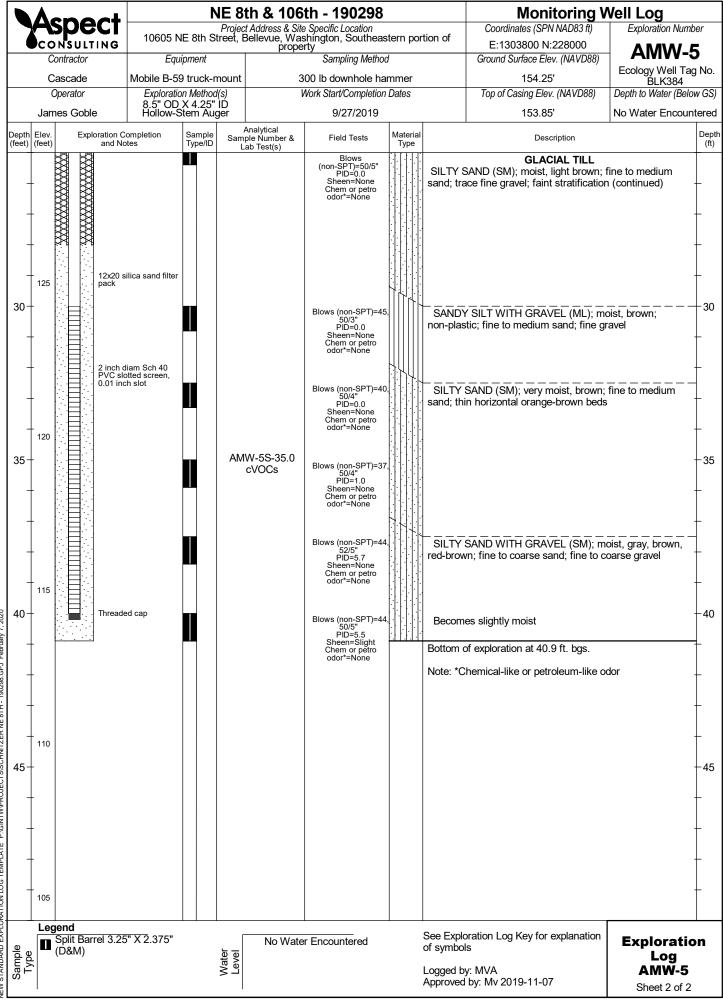











Aspect					E 8th & 106		Monitoring Well Log					
			10005 NE		Project Address & Site	•	Coordinates (SPN NAD83 ft) Exploration Number					
					605 NE 8th Street, Bellevue, Washington, Southern portion of Equipment Sampling Method					E:1303800 N:228000	- AMW-4	D
	U									Ground Surface Elev. (NAVD88)	Ecology Well Tag	
-							Rotary core	-		153.25'	BLT535	-
				Exploratio	on Method(s) N	Vork Start/Completion Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Belo		
,	Jeffre	ey John	son	S	onic		9/27/2019	1		152.89'	No Water Encour	ntere
	Elev. (feet)	Exp	oloration C and No		Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Dep (ft)
						AMW-4D-50 cVOCs	PID=5.8 Sheen=Slight Chem or petro			SAND WITH GRAVEL (SM); n to coarse sand; fine to coarse		
+							Chem or petro odor*=None					+
			\mathbf{A}						-			
			\mathbf{A}				PID=4.4 Sheen=Moderate		- -			
-	100		\mathbf{A}				Chem or petro odor*=None		•			+
	100											
+			\mathbf{A}						•			t
_			\mathbf{A}									
5+			AAA A			AMW-4D-55 cVOCs	PID=4 Sheen=Moderate		-			+5
_			₩				Chem or petro odor*=None					+
			V V							GRAVEL WITH SAND (GM); s to coarse sand; fine to coarse		
+							PID=5.7		1	SAND WITH GRAVEL (SM); n	-	+
			XXX				Sheen=None Chem or petro odor*=None			e sand; fine to coarse gravel	,, <u>.</u>	
+	95		\mathbb{A}				ouor =none					Ť
			\mathbf{A}					$ \uparrow\uparrow\rangle$				
									SILTY Sand: loc	SAND (SM); slightly moist, gra al rusty staining	y; fine to medium	
0+			\mathbb{A}			AMW-4D-60	PID=5.9			a rusty starning		+6
			₩			cVOCs	Sheen=None Chem or petro					
+			₩				odor*=None		Becom	es dark brown		t
			₩				PID=4.8 Sheen=Slight		-			
	•		\blacksquare				Chem or petro odor*=None					T
_			¥¥									Ļ
	90					AMW-4D-63.5	PID=5.3					
+			\mathbf{A}			cVOCs	Sheen=None Chem or petro		Becom	es light brown		ł
			\mathbf{A}				odor*=None		Decent			
5-			\blacksquare				PID=2.8 Sheen=Slight			′ SILT (ML); moist, dark gray; ı	non-plastic; fine	+65
			₩				Chem or petro odor*=None		sand; tra	ice gravel		L
			VVV									
+			₩ ₩				PID=5.2					+
							PID=5.2 Sheen=Slight Chem or petro					
+	85		1				odor*=None					t
			12v20 o	silica sand filter								Ĺ
T			pack 68	to 90 ft		AMW-4D-69.5		<u> </u>				Γ
0+						cVOCs	PID=5.6 Sheen=None Chem or petro		 		u	+7
							Chem or petro odor*=None			GLACIAL OUTWAS SAND (SM); moist, dark gray; f		
+	-						PID=3.5			ice coarse sand		+
							Sheen=None Chem or petro					
†							odor*=None					t
	80		2 inch d	liam. Sch 40								
4			PVC slo 0.010 in	diam. Sch 40 otted screen, nch slot, 70 to								Ļ
			90 ft									
		jend	.1			NI- 14/-4	Enquintared	+ I*	See Explo	pration Log Key for explanation	Evelovet	
2 e			ious core				Encountered		of symbol		Exploration Log	on
Type		Continu	ious core	e 4 ID		Level			Logged by		AMW-4D	
	1									by: Mv 2019-11-07		

APPENDIX C

Laboratory Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 21, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the results from the testing of material submitted on August 16, 2019 from the NE 8th & 106 PO 160298, F&BI 908335 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Meilani Lanier-Kamaha'o ASP0821R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 16, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC NE 8th & 106 PO 160298, F&BI 908335 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
908335 -01	B4/MW-4-081519
908335 -02	URS-MW-8-081519
908335 -03	MW-20-081519
908335 -04	MW-19-081519
908335 -05	B2/MW-2-081519
908335 -06	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/21/19 Date Received: 08/16/19 Project: NE 8th & 106 PO 160298, F&BI 908335 Date Extracted: 08/19/19 Date Analyzed: 08/19/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-20-081519 908335-03	<100	107
Method Blank 09-1962 MB	<100	110

ENVIRONMENTAL CHEMISTS

Date of Report: 08/21/19 Date Received: 08/16/19 Project: NE 8th & 106 PO 160298, F&BI 908335 Date Extracted: 08/19/19 Date Analyzed: 08/19/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-20-081519 908335-03	70 x	<250	106
Method Blank ^{09-2048 MB}	<50	<250	106

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B4/MW-4-0 08/16/19 08/16/19 08/16/19 Water ug/L (ppb)	81519	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L NE 8th & 106 PO 166 908335-01 081638.D GCMS4 MS/AEN	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 99 92	Lower Limit: 57 63 60	Upper Limit: 121 127 133	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane	hane er (MTBE) ethene ene ene (EDC) ine ie de	$<1 \\ <10 \\ <0.2 \\ <1 \\ <1 \\ <1 \\ <50 \\ <1 \\ <1 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Tetrachl Dibromo 1,2-Dibr Chlorobo Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich	nzene Petrachloroethane ene vlbenzene orm lbenzene enzene imethylbenzene Petrachloroethane ichloropropane otoluene	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
cis-1,3-Dichloropro Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	propene	<1 <1 <1 <1 <10	Hexachl Naphtha	ichlorobenzene orobutadiene alene ichlorobenzene	<1 <1 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	URS-MW-8 08/16/19 08/16/19 08/16/19 Water ug/L (ppb)	-081519	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L NE 8th & 106 PO 160 908335-02 081639.D GCMS4 MS/AEN	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 101 94	Lower Limit: 57 63 60	Upper Limit: 121 127 133	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropen Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ne e de de	$ \begin{array}{c} <1 \\ <10 \\ <0.2 \\ <1 \\ <1 \\ <1 \\ <50 \\ <1 \\ <1 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr	nzene Vetrachloroethane ene Vlbenzene rm Ibenzene enzene imethylbenzene Vetrachloroethane ichloropropane otoluene	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone		<1 <1 <1 <10	Naphtha	orobutadiene alene achlorobenzene	<1 <1 <1

ENVIRONMENTAL CHEMISTS

MW-20-081 08/16/19 08/16/19 08/16/19 Water ug/L (ppb)	519	Client: Project: Lab ID: Data File: Instrument: Operator:		
-d4 ene	% Recovery: 100 101 94	Lower Limit: 57 63 60	Upper Limit: 121 127 133	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
ethane hane er (MTBE) ethene ene (EDC) ne e de hane one pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobe 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexachl	loroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene e dlbenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene julbenzene imethylbenzene dotuene ylbenzene imethylbenzene imethylbenzene otoluene stoluene dotoluene stoluene stoluene dotoluene stoluene stoluene dotoluene imethylbenzene imethylbenzene imethylbenzene imethylbenzene dorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	$ \begin{array}{c} <1 \\ 2.9 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
ne	<1 <10			<1
	08/16/19 08/16/19 Water ug/L (ppb) -d4 ene thane thane hane (EDC) ne e ene (EDC) ne e hane cene	$\begin{array}{ccccccc} 08/16/19 \\ 08/16/19 \\ Water \\ ug/L (ppb) \end{array} & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

MW-19-081 08/16/19 08/16/19 08/16/19 Water ug/L (ppb)	519	Client: Project: Lab ID: Data File: Instrument: Operator:		
	% Recovery: 99 99 92	Lower Limit: 57 63 60	Upper Limit: 121 127 133	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
hane er (MTBE) ethene ene (EDC) ne e de nane one pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobe 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexachl	loroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene e dlbenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene julbenzene imethylbenzene dotuene ylbenzene imethylbenzene imethylbenzene otoluene stoluene dotoluene stoluene stoluene dotoluene stoluene stoluene dotoluene imethylbenzene imethylbenzene imethylbenzene imethylbenzene dorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	$ \begin{array}{c} <1 \\ 5.8 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
	<1 <1 <10			<1 <1
	08/16/19 08/16/19 08/16/19 Water	$\begin{array}{ccccccc} 08/16/19 \\ 08/16/19 \\ Water \\ ug/L (ppb) \end{array} & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B2/MW-2-0 08/16/19 08/16/19 08/16/19 Water ug/L (ppb)	81519	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L NE 8th & 106 PO 166 908335-05 081642.D GCMS4 MS/AEN	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 99 100 93	Lower Limit: 57 63 60	Upper Limit: 121 127 133	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,2-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentan cis-1,3-Dichloropro Toluene	hane er (MTBE) ethene ene (EDC) ne e de nane one pene	$ \begin{array}{c} <1 \\ <10 \\ <0.2 \\ <1 \\ <1 \\ <1 \\ <50 \\ <1 \\ <1 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri	nzene Cetrachloroethane ene dibenzene m imethylbenzene cetrachloroethane inethylbenzene cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene dibenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1
trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone	-	<1 <1 <10		alene ichlorobenzene	<1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 08/16/19 08/16/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L NE 8th & 106 PO 160 09-1883 mb 081625.D GCMS4 MS/AEN	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 101 95	Lower Limit: 57 63 60	Upper Limit: 121 127 133	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropar cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropar Carbon tetrachlorie Benzene Trichloroethene 1,2-Dichloropropar Bromodichloromethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ine de hane one pene	$ \begin{array}{c} <1 \\ <10 \\ <0.2 \\ <1 \\ <1 \\ <1 \\ <50 \\ <1 \\ <1 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	nzene Cetrachloroethane ene dibenzene m imethylbenzene cetrachloroethane inethylbenzene cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene dibenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1
trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone	-	<1 <1 <10	Naphtha 1,2,3-Tri	alene ichlorobenzene	<1 <1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/21/19 Date Received: 08/16/19 Project: NE 8th & 106 PO 160298, F&BI 908335

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 908315-01 (Duplicate)							
	Reporting	Samp	le Du	plicate	RPD		
Analyte	Units	Resul	lt R	esult	(Limit 20)		
Gasoline	ug/L (ppb)	<100) <	<100	nm		
Laboratory Code: Lab	oratory Contro	l Sample	Percent				
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria	_		
Gasoline	ug/L (ppb)	1,000	94	69-134	-		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/21/19 Date Received: 08/16/19 Project: NE 8th & 106 PO 160298, F&BI 908335

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	80	88	61-133	10

ENVIRONMENTAL CHEMISTS

Date of Report: 08/21/19 Date Received: 08/16/19 Project: NE 8th & 106 PO 160298, F&BI 908335

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 908315-02 (Matrix Spike)

Analyte Units Level Result Mi Dichorodifluoromethane ug/L (ppb) 50 <1 100 Chloromethane ug/L (ppb) 50 <10 100 Winyl chloride ug/L (ppb) 50 <2.111 110 Bromomethane ug/L (ppb) 50 <1 100 Drichlorofluoromethane ug/L (ppb) 50 <1 110 Acetone ug/L (ppb) 50 <1 111 Acetone ug/L (ppb) 50 <1 111 Hexane ug/L (ppb) 50 <1 111 Hexane ug/L (ppb) 50 <1 111 L-Dichorothene ug/L (ppb) 50 <1 111 1.Dichorothane ug/L (ppb) 50 <1 100 2.Dichlorothane (BCC) ug/L (ppb) 50 <1 110 1.Dichorothane ug/L (ppb) 50 <1 100 2.Dichlororothane (BCC) ug/L (ppb) 50 </th <th>cent very Acceptance</th>	cent very Acceptance
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• •
Vinyl chloride $ugL (pph)$ 50<0.2111Chloroethane $ugL (pph)$ 50<1	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Acctone ug/L (pph) 50 <10 I-Dichlorosethene ug/L (pph) 50 <1	
1,1-Dichloroethene ugL (ppb) 50 <1	
Methylene chloride ug/L (ppb) 50 <5	
$\begin{split} \text{Methyl i-butyl ether (MTEE)} & ug'L (pp) 50 < <1 & 111 \\ 1.1 Dichloroethane & ug'L (ppb) 50 < <1 & 112 \\ 1.1 Dichloroethane & ug'L (ppb) 50 < <1 & 112 \\ 2.2 Dichloropropane & ug'L (ppb) 50 < <1 & 110 \\ 2.2 Dichloropropane & ug'L (ppb) 50 < <1 & 110 \\ 2.2 Dichloropropane & ug'L (ppb) 50 < <1 & 110 \\ 2.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloroethane (BEK) & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloroethane (BCC) & ug'L (ppb) 50 < <1 & 100 \\ 1.1 Trichloroethane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloropropane & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichlorobenzene & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichlorobenzene & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichlorobenzene & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichlorobenzene & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichlorobenzene & ug'L (ppb) 50 < <1 & 100 \\ 1.2 Dichloroben$	3 52-150
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05 67-132
1.1-Dickhoroethane $ugL(pph)$ 50 <1	
2.2.Dichloropropane $u_{gL}^{T}(pb)$ 50 <1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
2-Butanone (MEK) ug/L (ppb) 250 <10	
1,2-Dickhoroethane (EDC) ug/L (ppb) 50 <1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccc} Carbon tetrachloride & ug/L (ppb) & 50 & <1 & 11.\\ Benzene & ug/L (ppb) & 50 & <0.35 & 100.\\ Trichloroethene & ug/L (ppb) & 50 & <1 & 100.\\ 1,2. Dichloropropane & ug/L (ppb) & 50 & <1 & 100.\\ Bromodichloromethane & ug/L (ppb) & 50 & <1 & 100.\\ Dibromomethane & ug/L (ppb) & 50 & <1 & 100.\\ Methyl-2.pentanone & ug/L (ppb) & 50 & <1 & 100.\\ 4. Methyl-2.pentanone & ug/L (ppb) & 50 & <1 & 100.\\ 1.2. Dichloropropene & ug/L (ppb) & 50 & <1 & 100.\\ Toluene & ug/L (ppb) & 50 & <1 & 96.\\ 1.1.2. Trichloroethane & ug/L (ppb) & 50 & <1 & 96.\\ 1.1.2. Trichloroethane & ug/L (ppb) & 50 & <1 & 96.\\ 1.2. Dichloropropane & ug/L (ppb) & 50 & <1 & 96.\\ 1.3. Dichloropropane & ug/L (ppb) & 50 & <1 & 96.\\ 1.3. Dichloropropane & ug/L (ppb) & 50 & <1 & 96.\\ 1.3. Dichloropropane & ug/L (ppb) & 50 & <1 & 97.\\ Tetrachloroethane & ug/L (ppb) & 50 & <1 & 96.\\ Chlorobenzene & ug/L (ppb) & 50 & <1 & 96.\\ Chlorobenzene & ug/L (ppb) & 50 & <1 & 99.\\ 1.1.1.2. Tetrachloroethane & ug/L (ppb) & 50 & <1 & 99.\\ 1.1.1.2. Tetrachloroethane & ug/L (ppb) & 50 & <1 & 99.\\ 1.1.1.2. Tetrachloroethane & ug/L (ppb) & 50 & <1 & 99.\\ 1.1.1.2. Tetrachloroethane & ug/L (ppb) & 50 & <1 & 99.\\ 1.1.2. Tetrachloroethane & ug/L (ppb) & 50 & <1 & 99.\\ 1.1.2. Tetrachloroethane & ug/L (ppb) & 50 & <1 & 99.\\ 1.3.5. Trimethylbenzene & ug/L (ppb) & 50 & <1 & 99.\\ 1.3.5. Trimethylbenzene & ug/L (ppb) & 50 & <1 & 99.\\ 1.3.5. Trimethylbenzene & ug/L (ppb) & 50 & <1 & 99.\\ 1.3.5. Trimethylbenzene & ug/L (ppb) & 50 & <1 & 99.\\ 1.3.5. Trimethylbenzene & ug/L (ppb) & 50 & <1 & 99.\\ 1.3.5. Trimethylbenzene & ug/L (ppb) & 50 & <1 & 99.\\ 1.3.5. Trimethylbenzene & ug/L (ppb) & 50 & <1 & 99.\\ 1.3.5. Trinotoropropane & ug/L (ppb) & 50 & <1 & 99.\\ 1.3.5. Trinothoropropane & ug/L (ppb) & 50 & <1 & 99.\\ 1.3.5. Trinothoropropane & ug/L (ppb) & 50 & <1 & 97.\\ 1.2. Dirhorobenzene & ug/L (ppb) & 50 & <1 & 97.\\ 1.3. Dichlorobenzene & ug/L (ppb) & 50 & <1 & 97.\\ 1.3. Dichlorobenzene & ug/L (ppb) & 50 & <1 & 97.\\ 1.3. Dichlorobenzene & ug/L (ppb) & 50 & <1 & 97.\\ 1.3. Dichlorobenzene & u$	
Benzene ug/L (ppb) 50 <0.35 100 Trichloropropane ug/L (ppb) 50 <1	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
1.2-Dichloropropaneug/L (ppb)50<1100Bromodichloromethaneug/L (ppb)50<1	
Bromodichloromethane yg/L (ppb) 50 <1	
4-Methyl-2-pentanoneug/L (ppb)250<10100cis.1,3-Dichloropropeneug/L (ppb)50<1	05 61-150
cis-1,3-Dichloropropeneug/L (ppb)50<1100Tolueneug/L (ppb)50<1	04 66-141
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1,1,2-Trichloroethaneug/L (ppb)50<11002-Hexanoneug/L (ppb)250<10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1,2-Dibromoethane (EDB) ug/L (ppb) 50 <1	
$\begin{array}{c c} Chlorobenzene & ug/L (ppb) & 50 & <1 & 99\\ Ethylbenzene & ug/L (ppb) & 50 & <1 & 99\\ 1,1,1,2-Tetrachloroethane & ug/L (ppb) & 50 & <1 & 100\\ m.p.Xylene & ug/L (ppb) & 50 & <1 & 100\\ styrene & ug/L (ppb) & 50 & <1 & 100\\ styrene & ug/L (ppb) & 50 & <1 & 99\\ lsopropylbenzene & ug/L (ppb) & 50 & <1 & 99\\ lsopropylbenzene & ug/L (ppb) & 50 & <1 & 99\\ lsopropylbenzene & ug/L (ppb) & 50 & <1 & 99\\ styrene & ug/L (ppb) & 50 & <1 & 99\\ stormoform & ug/L (ppb) & 50 & <1 & 99\\ 1,3,5-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 99\\ 1,3,5-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 99\\ 1,3,5-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 99\\ 1,2,3-Tricholropopane & ug/L (ppb) & 50 & <1 & 98\\ 1,1,2,2-Tetrachloroethane & ug/L (ppb) & 50 & <1 & 99\\ 1,2,3-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 4-Chlorotoluene & ug/L (ppb) & 50 & <1 & 97\\ 4-Chlorotoluene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,3-Dichlorobenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,3-Dichlorobenzene & ug/L (ppb) & 50 & <1 & 97\\ 1,2-Dichlorobenzene & ug/L (ppb) & 50 & <1 & 100\\ 1,2-Dichlorobenzene & ug/L (ppb) & 50 & <1 & 100\\ 1,2-Dichlorobenzene & ug/L $	
Ethylbenzeneug/L (ppb)50<199 $1, 1, 2$ -Tetrachloroethaneug/L (ppb)50<1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07 73-137
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 69-135
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	01 60-140
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ccccccc} tert-Butylbenzene & ug/L (ppb) & 50 & <1 & 97 \\ 1,2,4-Trimethylbenzene & ug/L (ppb) & 50 & <1 & 97 \\ sec-Butylbenzene & ug/L (ppb) & 50 & <1 & 97 \\ p-Isopropyltoluene & ug/L (ppb) & 50 & <1 & 98 \\ 1,3-Dichlorobenzene & ug/L (ppb) & 50 & <1 & 100 \\ 1,4-Dichlorobenzene & ug/L (ppb) & 50 & <1 & 100 \\ 1,2-Dichlorobenzene & ug/L (ppb) & 50 & <1 & 100 \\ 1,2-Dichloropenzene & ug/L (ppb) & 50 & <1 & 100 \\ 1,2-Dichloropenzene & ug/L (ppb) & 50 & <1 & 100 \\ 1,2-Dichloropenzene & ug/L (ppb) & 50 & <10 & 100 \\ \end{array} $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccc} p-Isopropyltoluene & ug/L (ppb) & 50 & <1 & 98 \\ 1,3-Dichlorobenzene & ug/L (ppb) & 50 & <1 & 100 \\ 1,4-Dichlorobenzene & ug/L (ppb) & 50 & <1 & 100 \\ 1,2-Dichlorobenzene & ug/L (ppb) & 50 & <1 & 100 \\ 1,2-Dichlorobenzene & ug/L (ppb) & 50 & <1 & 100 \\ 1,2-Dibromo-3-chloropropane & ug/L (ppb) & 50 & <10 & 100 \\ \end{array} $	
1.4-Dichlorobenzene ug/L (ppb) 50 <1 100 1.2-Dichlorobenzene ug/L (ppb) 50 <1	
1,2-Dichlorobenzene ug/L (ppb) 50 <1 10 1,2-Dibromo-3-chloropropane ug/L (ppb) 50 <10	
1,2-Dibromo-3-chloropropane ug/L (ppb) 50 <10 103	
1,2,4-Trichlorobenzene ug/L (ppb) 50 <1 110 Hexachlorobutadiene ug/L (ppb) 50 <1 100	
Naphthalene ug/L (ppb) 50 <1 110 1,2,3-Trichlorobenzene ug/L (ppb) 50 <1	

ENVIRONMENTAL CHEMISTS

Date of Report: 08/21/19 Date Received: 08/16/19 Project: NE 8th & 106 PO 160298, F&BI 908335

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laborator	ry Control Sample	C	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	97	97	25-158	0
Chloromethane	ug/L (ppb)	50	101	101	45-156	0
Vinyl chloride	ug/L (ppb)	50	103	107	50 - 154	4
Bromomethane	ug/L (ppb)	50	104	108	55-143	4
Chloroethane	ug/L (ppb)	50	97	101	58-146	4
Trichlorofluoromethane	ug/L (ppb)	250	108	112	50-150	4
Acetone	ug/L (ppb)	250	56	56	53-131	0
1,1-Dichloroethene	ug/L (ppb)	50	109	113	67-136	4
Hexane	ug/L (ppb)	50	97	97	57-137	0
Methylene chloride	ug/L (ppb)	50	98	100	39-148	2
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	110	111	64-147	1
trans-1,2-Dichloroethene	ug/L (ppb)	50 50	$107 \\ 104$	109 107	68-128	2 3
1,1-Dichloroethane 2,2-Dichloropropane	ug/L (ppb)	50 50	104 102	107	79-121 55-143	3 5
cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	102	107	80-123	5 4
Chloroform	ug/L (ppb) ug/L (ppb)	50	107	107	80-123	3
2-Butanone (MEK)	ug/L (ppb)	250	73	73	57-149	0
1.2-Dichloroethane (EDC)	ug/L (ppb)	50	101	104	73-132	3
1,1,1-Trichloroethane	ug/L (ppb)	50	101	109	81-125	2
1,1-Dichloropropene	ug/L (ppb)	50	106	107	77-129	1
Carbon tetrachloride	ug/L (ppb)	50	108	112	75-158	4
Benzene	ug/L (ppb)	50	100	102	69-134	2
Trichloroethene	ug/L (ppb)	50	106	108	79-113	2
1,2-Dichloropropane	ug/L (ppb)	50	101	103	77-123	2
Bromodichloromethane	ug/L (ppb)	50	105	107	81-133	2
Dibromomethane	ug/L (ppb)	50	105	108	82-125	3
4-Methyl-2-pentanone	ug/L (ppb)	250	109	111	65-138	2
cis-1,3-Dichloropropene	ug/L (ppb)	50	104	107	82-132	3
Toluene	ug/L (ppb)	50	95	97	72-122	2
trans-1,3-Dichloropropene	ug/L (ppb)	50	100	101	80-136	1
1,1,2-Trichloroethane	ug/L (ppb)	50	100	103	75-124	3
2-Hexanone	ug/L (ppb)	250 50	80 99	81 100	60-136 76-126	1
1,3-Dichloropropane Tetrachloroethene	ug/L (ppb) ug/L (ppb)	50 50	99 100	100	76-126	$\frac{1}{2}$
Dibromochloromethane	ug/L (ppb)	50 50	100	102	84-133	2
1,2-Dibromoethane (EDB)	ug/L (ppb) ug/L (ppb)	50	97	99	82-115	2
Chlorobenzene	ug/L (ppb)	50	99	100	83-114	1
Ethylbenzene	ug/L (ppb)	50	99	100	77-124	2
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	103	106	84-127	3
m,p-Xylene	ug/L (ppb)	100	99	101	81-112	2
o-Xylene	ug/L (ppb)	50	98	101	81-121	3
Styrene	ug/L (ppb)	50	101	104	84-119	3
Isopropylbenzene	ug/L (ppb)	50	100	102	80-117	2
Bromoform	ug/L (ppb)	50	106	109	74-136	3
n-Propylbenzene	ug/L (ppb)	50	100	101	74-126	1
Bromobenzene	ug/L (ppb)	50	100	101	80-121	1
1,3,5-Trimethylbenzene	ug/L (ppb)	50	99	99	78-123	0
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	101	102	66-126	1
1,2,3-Trichloropropane	ug/L (ppb)	50	96	96	67-124	0
2-Chlorotoluene	ug/L (ppb)	50	98	98	77-127	0
4-Chlorotoluene	ug/L (ppb)	$50 \\ 50$	100 97	101 99	78-128 80-123	$\frac{1}{2}$
tert-Butylbenzene 1,2,4-Trimethylbenzene	ug/L (ppb)	50 50	97 97	99 98	80-123 79-122	2
sec-Butylbenzene	ug/L (ppb) ug/L (ppb)	50 50	97 99	100	80-116	1
p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	50 50	99	100	81-123	1
1,3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50	103	105	83-113	2
1.4-Dichlorobenzene	ug/L (ppb)	50	100	100	83-107	2
1,2-Dichlorobenzene	ug/L (ppb)	50	100	102	84-112	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	100	102	57-141	2
1,2,4-Trichlorobenzene	ug/L (ppb)	50	110	112	72-130	2
Hexachlorobutadiene	ug/L (ppb)	50	98	100	53-141	2
Naphthalene	ug/L (ppb)	50	105	108	64-133	3
1,2,3-Trichlorobenzene	ug/L (ppb)	50	108	109	65-136	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

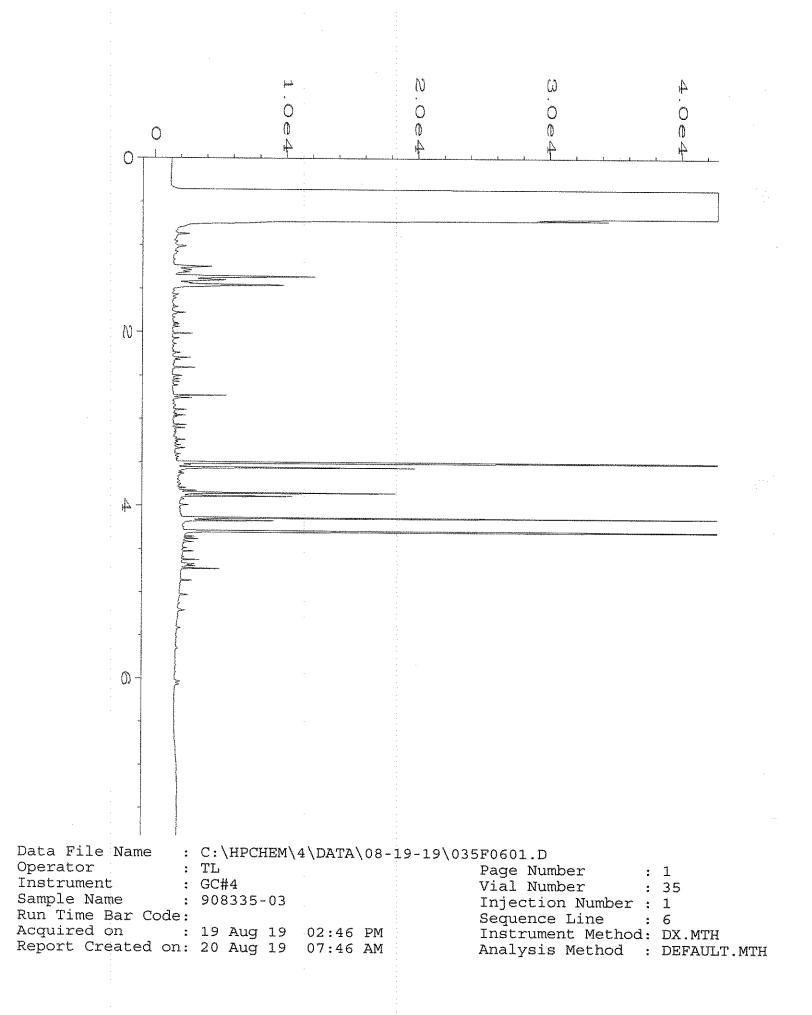
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

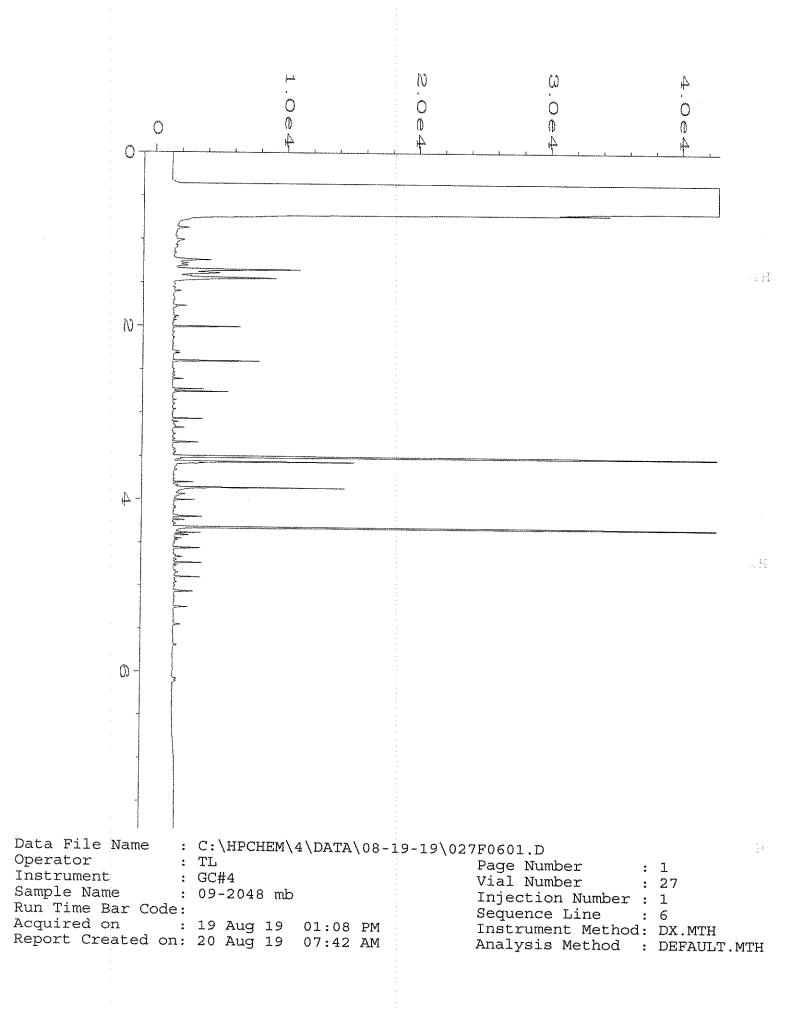
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

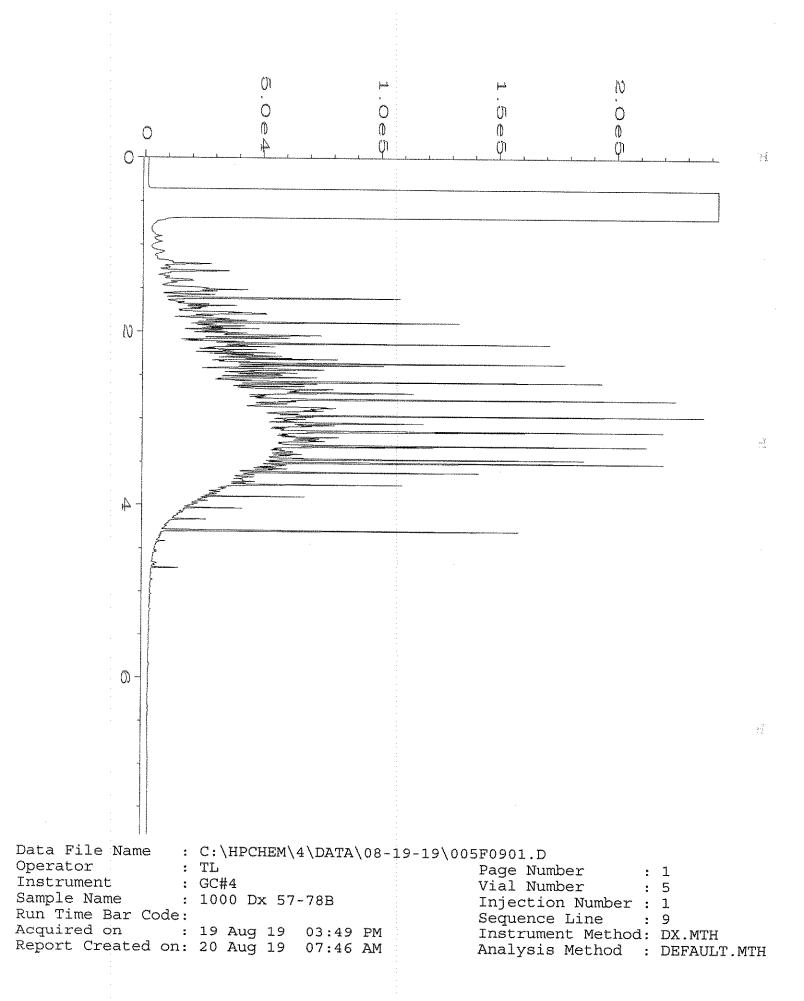
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.


pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

į.

	Ph. (206) 285-8282 Recei			Friedman & Bruna Ina Belin				TripBlank	B2 mw-2 -081519	WW-19-081519	MM-20-081519	URS-MW-8-081519	B1 B1 - 4 - 08 1519	Sample ID		PhoneEmail_	City, State, ZIP_South	Company ASPECT (Address 710 2ND	Report To Sica Suil	908335
****	Received by:	Relinquished by:	Received by:	SIG Relinouisbard hy:		*		06 A- D	OS A-C	OH A-C	03 A-G	02 A-C	01 A-C	Lab ID		Swithon ,	CNK.	ALE IS	with: Neitrai Canthe - Kanah	
		white	24	SIGNATURE									8 15 19	Date Sampled		Smithing aspections while com	Aller	Sillesso	any - King	
	·)	1650	2341	1335	1225	loyo	Time Sampled		white (0	REMARKS	·		SAMPLE CHAIN OF CUSTODY
		H3a	mil					Water					water	Sample Type		8	KS	NE 84 + 106	BAMPLERS (signature	CHAIN
		Ka	s là	PRINT NAME				4	60	S	4	3	5	# of Jars				901	ture)	OF
		Ho	5	NAM	 						X			TPH-HCID TPH-Diesel						TSUC
			R								$\overline{\times}$			TPH-Gasoline		-		÷	h	ODY
	*******		ta		 				\sum	$\overline{}$	$\langle \rangle$		$\overline{}$	BTEX by 8021B	A			~	Ń	7
			+ ~		Sam				A		Δ	A	X	VOCs by 8260 SVOCs by 8270D	ANALYSES	AP	INVC	862061	W.	-
		19	52		ples									PAHs 8270D SIM			INVOICE TO	295	3/	MM
			speer	COMPANY	 rece	··								· · · · · ·	EQUE		TO	~1		1
				ANY	Samples received at										REQUESTED		<u> </u>	र के देव	<u></u>	71/5
					 at 2			*								□ Archive Samples □ Other	SAMPLE DISPO	BRUSH <u>SDAT</u> Rush charges authorized by:	TURN	08/16/19
		71/R.	3/16	, DA	- - Å								J.			Samp	MPLE	rges au	e# RNAR(
		619	119	DATE _			Pi10113 (M)	Added					3 da			les .	SAMPLE DISPOSAL	narour ZD uthoriz	Page # of TURNAROUND TIME	N N N
		6401	640	TIME			159	\$				4	<u>イン</u>	Notes)SAL	ed by:	TIME	8
		-	0	E				E					17					A		J.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 21, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the results from the testing of material submitted on August 15, 2019 from the NE 8th Ave Bellevue 190298, F&BI 908315 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Meilani Lanier-Kamaha'o ASP0821R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 15, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC NE 8th Ave Bellevue 190298, F&BI 908315 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
908315 -01	URS-MW-1-081419
908315 -02	URS-MW-3-081419
908315 -03	B3-MW-3-081419
908315 -04	MW-100-081419

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/21/19 Date Received: 08/15/19 Project: NE 8th Ave Bellevue 190298, F&BI 908315 Date Extracted: 08/19/19 Date Analyzed: 08/19/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
URS-MW-1-081419 908315-01	<100	111
URS-MW-3-081419 908315-02	<100	109
B3-MW-3-081419 908315-03	<100	110
MW-100-081419 908315-04	<100	108
Method Blank 09-1962 MB	<100	110

ENVIRONMENTAL CHEMISTS

Date of Report: 08/21/19 Date Received: 08/15/19 Project: NE 8th Ave Bellevue 190298, F&BI 908315 Date Extracted: 08/16/19 Date Analyzed: 08/16/19 and 08/19/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL **USING METHOD NWTPH-Dx**

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
URS-MW-1-081419 908315-01	<50	<250	109
URS-MW-3-081419 908315-02	<50	<250	113
B3-MW-3-081419 ⁹⁰⁸³¹⁵⁻⁰³	<50	<250	95
MW-100-081419 908315-04	<50	<250	100
Method Blank 09-2001 MB2	<50	<250	108

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	URS-MW-1 08/15/19 08/16/19 08/16/19 Water ug/L (ppb)	-081419	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L NE 8th Ave Bellevue 908315-01 081634.D GCMS4 MS/AEN	LC 190298, F&BI 908315
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	-d4	100	57	121	
Toluene-d8		99	63	127	
4-Bromofluorobenz	ene	94	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorome	thane	<1	1.3-Dich	loropropane	<1
Chloromethane		<10		loroethene	$\overline{45}$
Vinyl chloride		< 0.2		ochloromethane	<1
Bromomethane		<1	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluoromet	hane	<1	Ethylber	nzene	<1
Acetone		<50	1,1,1,2-7	Tetrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle		<2
Hexane		<1	o-Xylene	e	<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe		<1		lbenzene	<1
trans-1,2-Dichloroe		<1	Bromoform		<1
1,1-Dichloroethane		<1	n-Propylbenzene		<1
2,2-Dichloropropan		<1	Bromobe		<1
cis-1,2-Dichloroeth	ene	<1		imethylbenzene	<1
Chloroform		<1 <10		Tetrachloroethane	<1 <1
2-Butanone (MEK) 1,2-Dichloroethane		<10 <1	2-Chlore	ichloropropane	<1
1,1,1-Trichloroetha		<1	4-Chloro		<1
1,1-Dichloropropen		<1		ylbenzene	<1
Carbon tetrachlorie		<1		imethylbenzene	<1
Benzene		< 0.35		lbenzene	<1
Trichloroethene		<1		pyltoluene	<1
1,2-Dichloropropan	ie	<1		lorobenzene	<1
Bromodichlorometl	nane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentan	one	<10	1,2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloropro	pene	<1		ichlorobenzene	<1
Toluene		<1		orobutadiene	<1
trans-1,3-Dichlorop	-	<1	Naphtha		<1
1,1,2-Trichloroetha	ne	<1	1,2,3-Tri	ichlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	URS-MW-3 08/15/19 08/16/19 08/16/19 Water ug/L (ppb)	3-081419	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L NE 8th Ave Bellevue 908315-02 081635.D GCMS4 MS/AEN	LC 190298, F&BI 908315
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	-d4	100	57	121	
Toluene-d8		101	63	127	
4-Bromofluorobenz	ene	94	60	133	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorome	ethane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10		loroethene	<1
Vinyl chloride		< 0.2		ochloromethane	<1
Bromomethane		<1		omoethane (EDB)	<1
Chloroethane		<1	Chlorob		<1
Trichlorofluoromet	hane	<1	Ethylber		<1
Acetone 1,1-Dichloroethene		<50 <1	1,1,1,2-1 m,p-Xyle	Fetrachloroethane	<1 <2
Hexane		<1	o-Xylene		<1
Methylene chloride	x	<5	Styrene		<1
Methyl t-butyl ethe		<1		vlbenzene	<1
trans-1,2-Dichloroe		<1	Bromoform		<1
1,1-Dichloroethane		<1	n-Propylbenzene		<1
2,2-Dichloropropan	ie	<1	Bromobe	enzene	<1
cis-1,2-Dichloroeth	ene	<1		imethylbenzene	<1
Chloroform		<1		Tetrachloroethane	<1
2-Butanone (MEK)		<10		ichloropropane	<1
1,2-Dichloroethane		<1 <1	2-Chloro 4-Chloro		<1 <1
1,1,1-Trichloroetha 1,1-Dichloropropen		<1		ylbenzene	<1
Carbon tetrachlorie		<1		imethylbenzene	<1
Benzene	ac	< 0.35		lbenzene	<1
Trichloroethene		<1		pyltoluene	<1
1,2-Dichloropropan	ie	<1		lorobenzene	<1
Bromodichlorometh	nane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane		<1		lorobenzene	<1
4-Methyl-2-pentan		<10		omo-3-chloropropane	<10
cis-1,3-Dichloropro	pene	<1		ichlorobenzene	<1
Toluene		<1		orobutadiene	<1
trans-1,3-Dichlorog	-	<1	Naphtha 1.2.2 Tr		<1
1,1,2-Trichloroetha 2-Hexanone	.ne	<1 <10	1,2,3-1r	ichlorobenzene	<1
2-mexamone		N10			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-MW-3-0 08/15/19 08/16/19 08/16/19 Water ug/L (ppb)	81419	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L NE 8th Ave Bellevue 908315-03 081636.D GCMS4 MS/AEN	LC 190298, F&BI 908315
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 101 94	Lower Limit: 57 63 60	Upper Limit: 121 127 133	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,2-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropropan	hane er (MTBE) ethene ene (EDC) ne e de de		Tetrach Dibromo 1,2-Dibr Chlorob Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromob 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2,4-Tr	nzene Fetrachloroethane ene e Vlbenzene orm lbenzene enzene imethylbenzene Fetrachloroethane ichloropropane otoluene	<1 33 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone		<1 <1 <10	Naphtha 1,2,3-Tr	alene ichlorobenzene	<1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-100-08 08/15/19 08/16/19 08/16/19 Water ug/L (ppb)	31419	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L NE 8th Ave Bellevue 908315-04 081637.D GCMS4 MS/AEN	LC 190298, F&BI 908315
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 100 94	Lower Limit: 57 63 60	Upper Limit: 121 127 133	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropethane 1,1-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,3-Dichloropethane	hane er (MTBE) othene e ene (EDC) ne e de de		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobo 1,3,5-Tr: 1,1,2,2-T 1,2,3-Tr: 2-Chloro 4-Chloro tert-But 1,2,4-Tr: sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr:	nzene Vetrachloroethane ene Vlbenzene rm Ibenzene enzene imethylbenzene Vetrachloroethane ichloropropane otoluene	$<1 \\ 32 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone		<1 <1 <10	Naphtha		<1 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 08/16/19 08/16/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L NE 8th Ave Bellevue 09-1883 mb 081625.D GCMS4 MS/AEN	LC 190298, F&BI 908315
Surrogates: 1,2-Dichloroethane Toluene-d8		% Recovery: 101 101	Lower Limit: 57 63	Upper Limit: 121 127	
4-Bromofluorobenz	ene	95 Concentration	60	133	Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene	er (MTBE) ethene ee ene (EDC) ne e	<10 <0.2 <1 <1 <1 <50 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty	nzene Vetrachloroethane ene Vlbenzene rm lbenzene enzene imethylbenzene Vetrachloroethane ichloropropane otoluene	<1 <1 <1 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	nane one pene oropene	<1 <1 <1 <10 <1 <1 <1 <1 <1 <10 <10	1,3-Dich 1,4-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	<1 <1 <1 <10 <1 <1 <1 <1 <1 <1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/21/19 Date Received: 08/15/19 Project: NE 8th Ave Bellevue 190298, F&BI 908315

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 908315-01 (Duplicate)								
	Reporting	Samp	le Du	plicate	RPD			
Analyte	Units	Resul	esult Result		(Limit 20)			
Gasoline	ug/L (ppb)	<100) <	<100	nm			
Laboratory Code: Laboratory Control Sample Percent								
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria	_			
Gasoline	ug/L (ppb)	1,000	94	69-134	-			

ENVIRONMENTAL CHEMISTS

Date of Report: 08/21/19 Date Received: 08/15/19 Project: NE 8th Ave Bellevue 190298, F&BI 908315

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	80	84	61-133	5

ENVIRONMENTAL CHEMISTS

Date of Report: 08/21/19 Date Received: 08/15/19 Project: NE 8th Ave Bellevue 190298, F&BI 908315

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Percent

Laboratory Code: 908315-02 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recoverv	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	107	10-172
Chloromethane	ug/L (ppb)	50	<10	109	25-166
Vinyl chloride	ug/L (ppb)	50	< 0.2	115	36-166
Bromomethane	ug/L (ppb)	50	<1	115	47-169
Chloroethane	ug/L (ppb)	50	<1	106	46-160
Trichlorofluoromethane	ug/L (ppb)	50	<1	116	44-165
Acetone	ug/L (ppb)	250	<50	56	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	118	60-136
Hexane	ug/L (ppb)	50	<1	93	52-150
Methylene chloride	ug/L (ppb)	50	<5	105	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	$50 \\ 50$	<1 <1	115	74-127
trans-1,2-Dichloroethene 1.1-Dichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1	113 109	72-129 70-128
2,2-Dichloropropane	ug/L (ppb)	50 50	<1	96	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	113	71-127
Chloroform	ug/L (ppb)	50	<1	109	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	68	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	102	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	111	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	108	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	114	56 - 152
Benzene	ug/L (ppb)	50	< 0.35	102	76-125
Trichloroethene	ug/L (ppb)	50	<1	108	66-135
1,2-Dichloropropane	ug/L (ppb)	50	<1	100	78-125
Bromodichloromethane	ug/L (ppb)	50	<1 <1	105	61-150
Dibromomethane 4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	$\frac{50}{250}$	<1 <10	$104 \\ 105$	66-141 10-185
4-Metnyi-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	250 50	<10	105	72-132
Toluene	ug/L (ppb)	50 50	<1	96	76-122
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	94	76-130
1.1.2-Trichloroethane	ug/L (ppb)	50	<1	100	68-131
2-Hexanone	ug/L (ppb)	250	<10	75	10-185
1,3-Dichloropropane	ug/L (ppb)	50	<1	97	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	101	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	103	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	96	69-134
Chlorobenzene	ug/L (ppb)	50	<1	99	77-122
Ethylbenzene	ug/L (ppb)	50	<1	99	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	$\frac{50}{100}$	<1 <2	107 100	73-137
m,p-Xylene o-Xylene	ug/L (ppb) ug/L (ppb)	50	<2 <1	100	69-135 60-140
Styrene	ug/L (ppb) ug/L (ppb)	50 50	<1	99	71-133
Isopropylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	101	65-142
Bromoform	ug/L (ppb)	50	<1	107	65-142
n-Propylbenzene	ug/L (ppb)	50	<1	98	58-144
Bromobenzene	ug/L (ppb)	50	<1	99	75-124
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	98	66-137
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	99	51 - 154
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	95	53 - 150
2-Chlorotoluene	ug/L (ppb)	50	<1	97	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	98	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	97	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	97	59-146
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	$50 \\ 50$	<1 <1	97 98	64-140 65-141
1.3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	98 104	72-123
1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	104	69-126
1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	101	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	104	32-164
1,2.4-Trichlorobenzene	ug/L (ppb)	50	<1	116	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	100	60-143
Naphthalene	ug/L (ppb)	50	<1	110	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	113	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 08/21/19 Date Received: 08/15/19 Project: NE 8th Ave Bellevue 190298, F&BI 908315

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory Code. Labora	tiony control Sample	C	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	97	97	25 - 158	0
Chloromethane	ug/L (ppb)	50	101	101	45-156	0
Vinyl chloride	ug/L (ppb)	50	103	107	50 - 154	4
Bromomethane	ug/L (ppb)	50	104	108	55-143	4
Chloroethane	ug/L (ppb)	50	97	101	58-146	4
Trichlorofluoromethane	ug/L (ppb)	$250 \\ 250$	108	112	50-150	4
Acetone 1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	250 50	$56 \\ 109$	$56 \\ 113$	$53-131 \\ 67-136$	4
Hexane	ug/L (ppb) ug/L (ppb)	50 50	97	97	57-135	4
Methylene chloride	ug/L (ppb)	50	98	100	39-148	2
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	110	100	64-147	1
trans-1,2-Dichloroethene	ug/L (ppb)	50	107	109	68-128	2
1,1-Dichloroethane	ug/L (ppb)	50	104	107	79-121	3
2,2-Dichloropropane	ug/L (ppb)	50	102	107	55 - 143	5
cis-1,2-Dichloroethene	ug/L (ppb)	50	107	111	80-123	4
Chloroform	ug/L (ppb)	50	104	107	80-121	3
2-Butanone (MEK)	ug/L (ppb)	250	73	73	57 - 149	0
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	101	104	73-132	3
1,1,1-Trichloroethane	ug/L (ppb)	50	107	109	81-125	2
1,1-Dichloropropene	ug/L (ppb)	50	106	107	77-129	1
Carbon tetrachloride	ug/L (ppb)	50	108	112	75-158	4
Benzene	ug/L (ppb)	50	100	102	69-134	2
Trichloroethene 1,2-Dichloropropane	ug/L (ppb)	50 50	106 101	108 103	79-113 77-123	2
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	101	103	81-133	2
Dibromomethane	ug/L (ppb)	50	105	107	82-125	3
4-Methyl-2-pentanone	ug/L (ppb)	250	109	100	65-138	2
cis-1,3-Dichloropropene	ug/L (ppb)	50	100	107	82-132	3
Toluene	ug/L (ppb)	50	95	97	72-122	2
trans-1,3-Dichloropropene	ug/L (ppb)	50	100	101	80-136	1
1,1,2-Trichloroethane	ug/L (ppb)	50	100	103	75-124	3
2-Hexanone	ug/L (ppb)	250	80	81	60-136	1
1,3-Dichloropropane	ug/L (ppb)	50	99	100	76-126	1
Tetrachloroethene	ug/L (ppb)	50	100	102	76-121	2
Dibromochloromethane	ug/L (ppb)	50	104	105	84-133	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	97	99	82-115	2
Chlorobenzene	ug/L (ppb)	50	99	100	83-114	1 2
Ethylbenzene	ug/L (ppb)	50 50	99 103	101 106	77-124	2
1,1,1,2-Tetrachloroethane m,p-Xylene	ug/L (ppb) ug/L (ppb)	50 100	99	106	84-127 81-112	3 2
o-Xylene	ug/L (ppb)	50	98	101	81-112	3
Styrene	ug/L (ppb)	50	101	101	84-119	3
Isopropylbenzene	ug/L (ppb)	50	101	104	80-117	2
Bromoform	ug/L (ppb)	50	106	109	74-136	3
n-Propylbenzene	ug/L (ppb)	50	100	101	74-126	1
Bromobenzene	ug/L (ppb)	50	100	101	80-121	1
1,3,5-Trimethylbenzene	ug/L (ppb)	50	99	99	78-123	0
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	101	102	66-126	1
1,2,3-Trichloropropane	ug/L (ppb)	50	96	96	67-124	0
2-Chlorotoluene	ug/L (ppb)	50	98	98	77-127	0
4-Chlorotoluene tert-Butylbenzene	ug/L (ppb)	50 50	100 97	101 99	78-128	$\frac{1}{2}$
1,2,4-Trimethylbenzene	ug/L (ppb)	50 50	97 97	99 98	80-123 79-122	2
sec-Butylbenzene	ug/L (ppb) ug/L (ppb)	50 50	97 99	100	80-116	1
p-Isopropyltoluene	ug/L (ppb)	50 50	99	100	81-123	1
1.3-Dichlorobenzene	ug/L (ppb)	50	103	105	83-113	2
1.4-Dichlorobenzene	ug/L (ppb)	50	100	100	83-107	2
1,2-Dichlorobenzene	ug/L (ppb)	50	102	103	84-112	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	100	102	57-141	2
1,2,4-Trichlorobenzene	ug/L (ppb)	50	110	112	72-130	2
Hexachlorobutadiene	ug/L (ppb)	50	98	100	53-141	2
Naphthalene	ug/L (ppb)	50	105	108	64-133	3
1,2,3-Trichlorobenzene	ug/L (ppb)	50	108	109	65-136	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

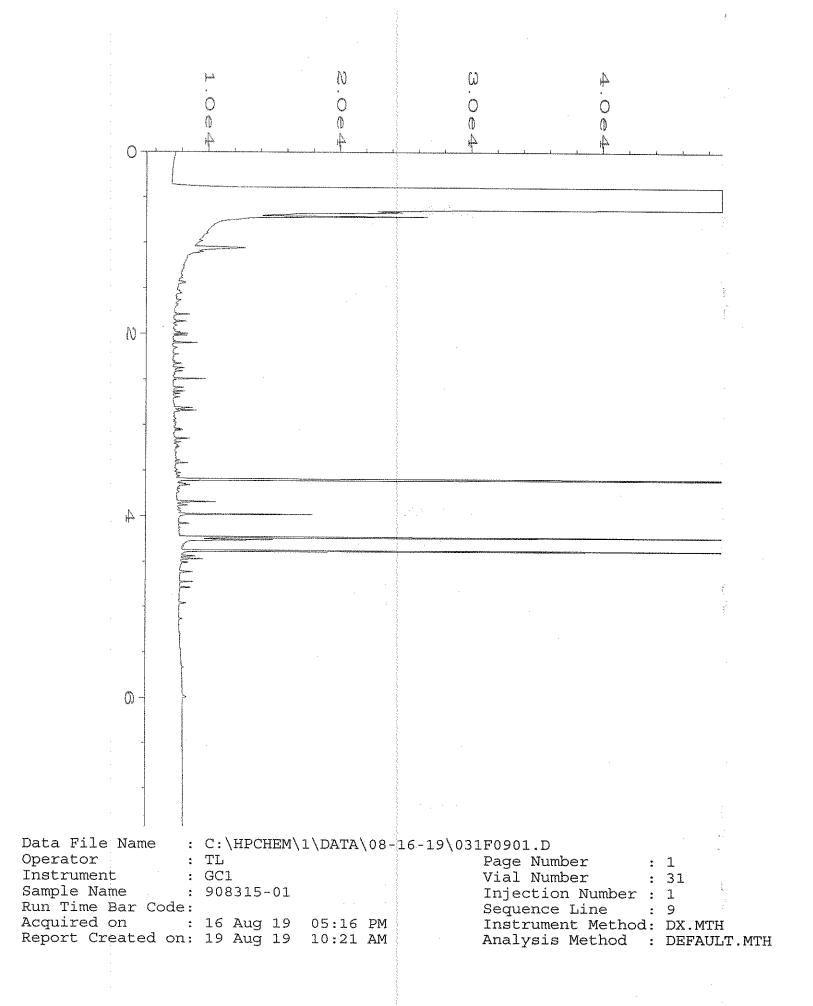
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

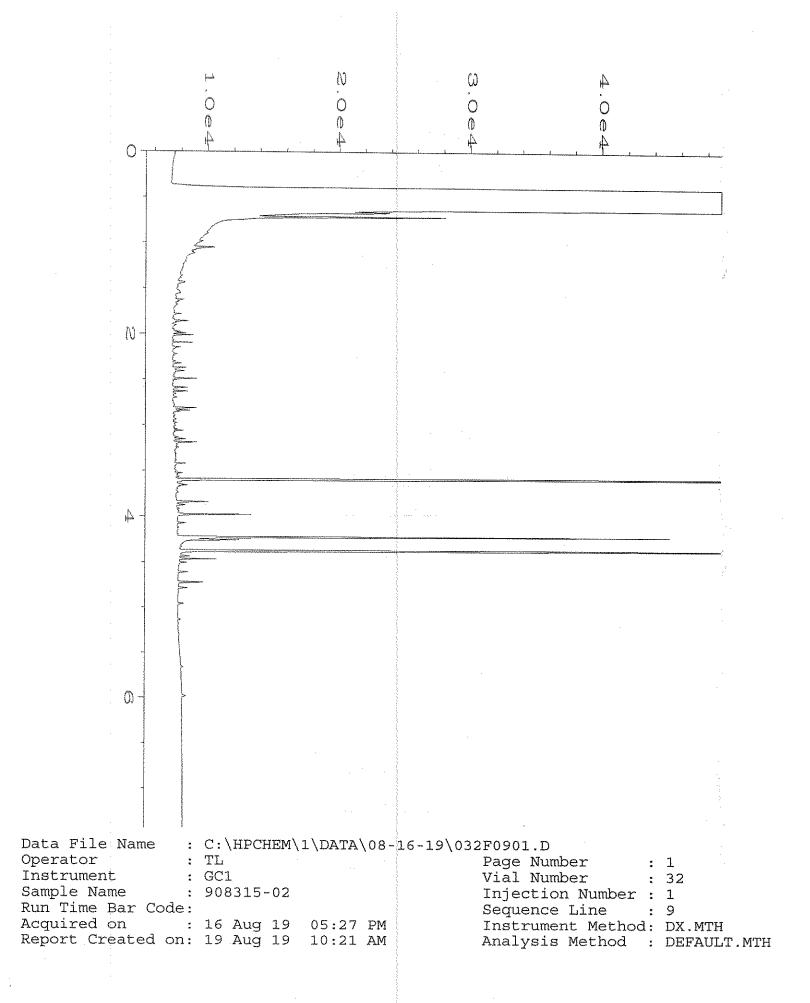
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

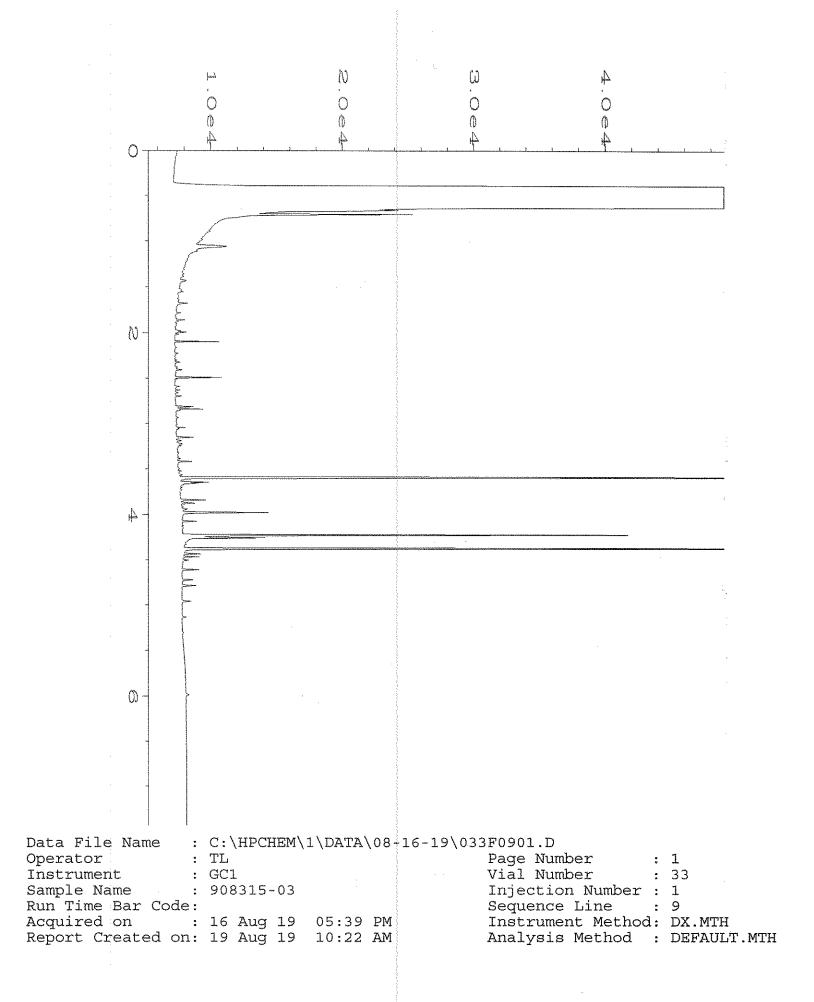
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

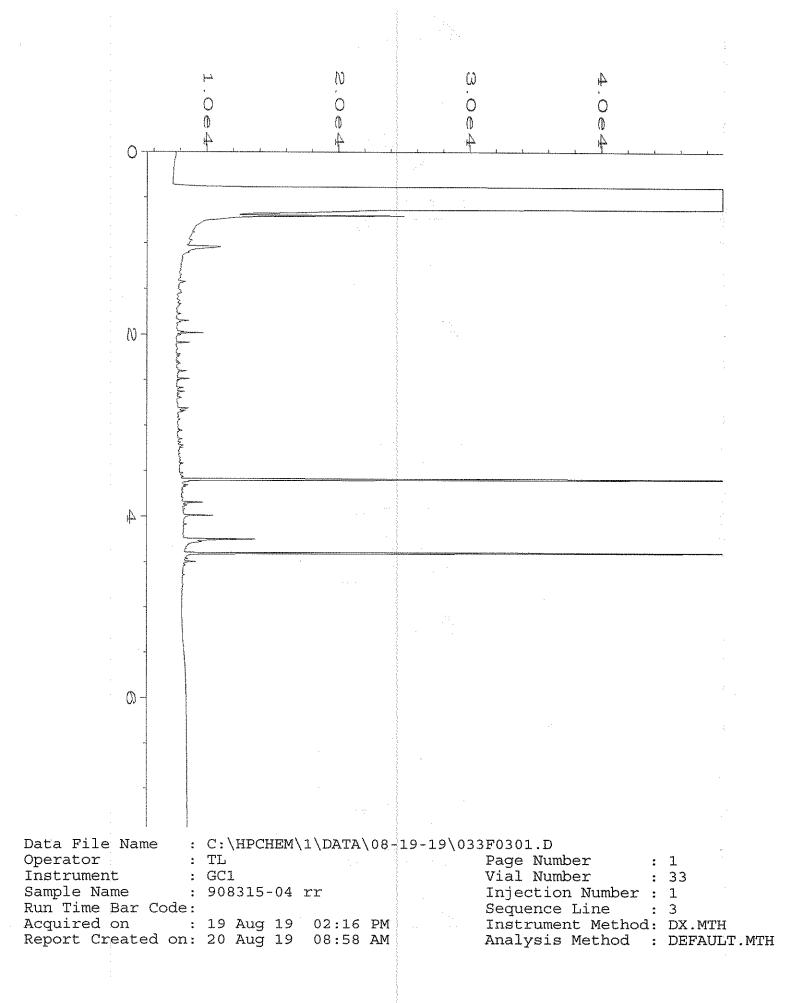
lc - The presence of the analyte is likely due to laboratory contamination.

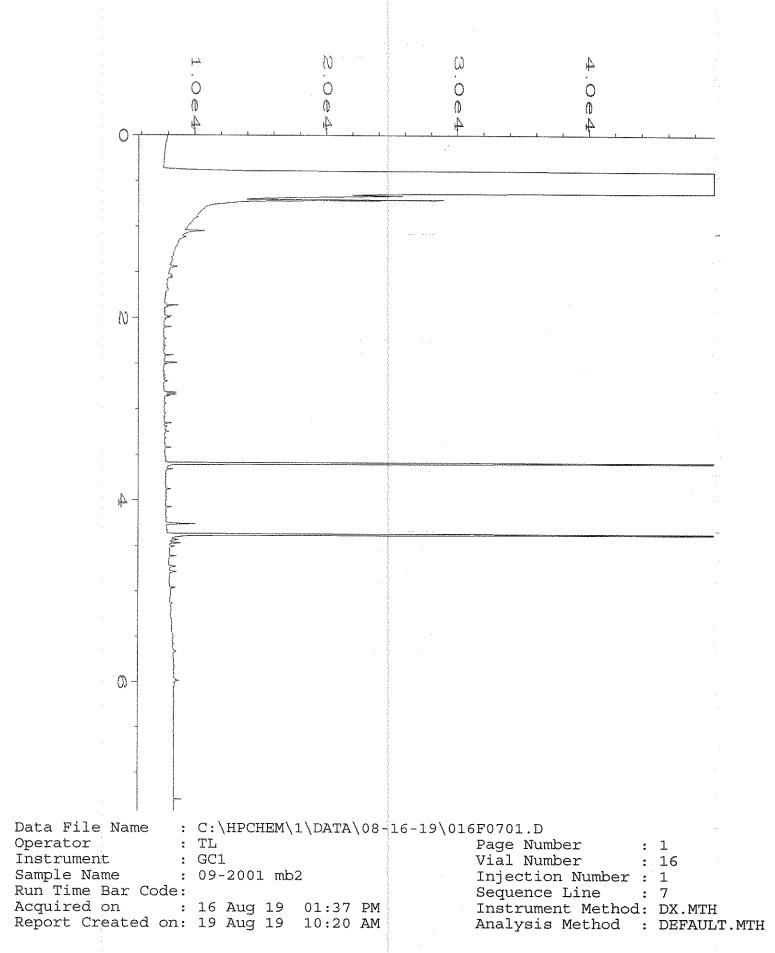
L - The reported concentration was generated from a library search.

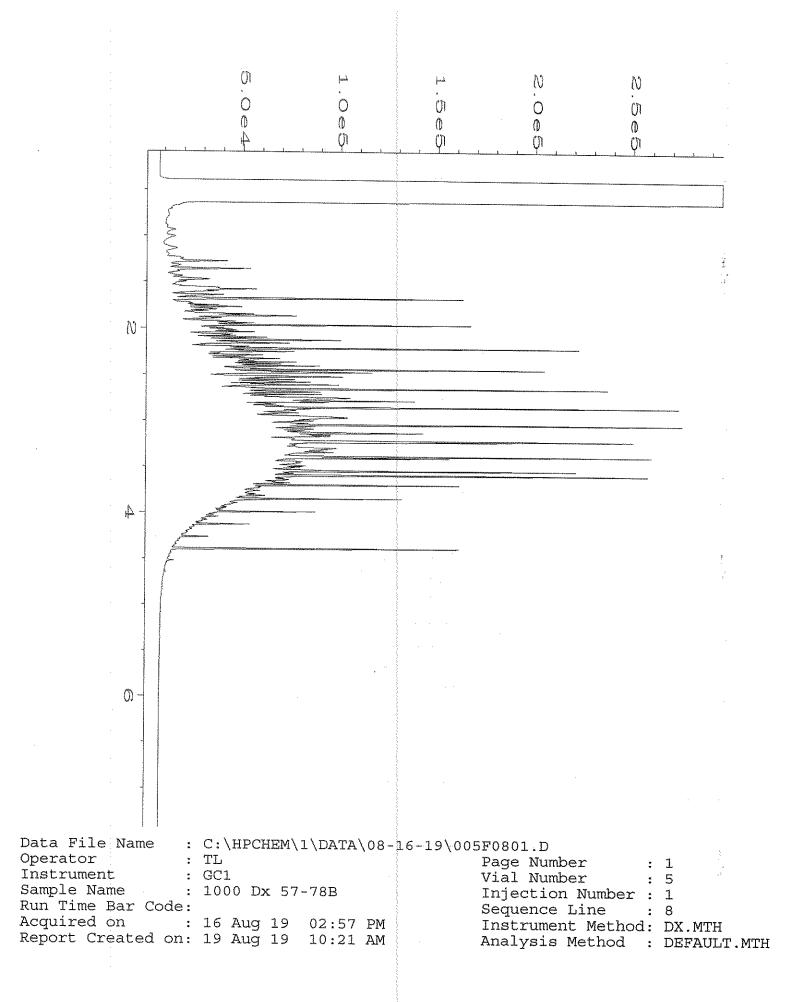

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.


pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.



Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Appentie West	Friedman & Br					CO1-MW	B3 MW - 3	MRS - MW	UKS-MW.	Sam		Phone <u>585-W</u>	City, State, Z	Address 71	Company ASpect	40×315
[; ;						-081419	B3 MW - 3 - 081419	MRS - MW - 3 - 08 1419 62	UKS-MW-1-081419 01A-5	Sample ID		Phone 585-1213-5158 Email mikaminao alspect casulting. com	City, State, ZIP Secritce WA	Address 710 2nd AVE Suite 550	Spect	908815 SAMPLE CHAIN OF
Received by:	Relinquished by:	Received by						04	20	9 63	A Co	Lab ID		is mith	WA 98	Swite 55	ALC HICHVILL	The Walten
R.L.	r d	el C	SIGNATURE					4-			11418	Date Sampled		Duspecto	98104	ð	LUNKY - 7	
		<i>P</i>						 1400	1340	1215	0955	Time Sampled		multima	REMARKS	Nt	PROJE	SAMPLI SAMPL
Liza K	WES HERRING	Amelia						ę			water	Sample Type		·CAR	KS	NE SHAVE-Beileine	PROJECT NAME	SAMPLE CHAIN OF CUSTODY
Dadfur	Ne this	ia (:	PRINT NAME					 X	X	4	+ X	TPH-HCID				E-Bei	~ (()	OF CUS
3		ades	IE					 X	XX	XX	$\frac{1}{\times}$	TPH-Diesel TPH-Gasoline BTEX by 8021B				leine		TODY
TBI	feelby	aspeci	COMPANY	Samp			 	 \times	× 	×	×	TPH-Gasoline BTEX by 8021B VOCs by 8260C SVOCs by 8270D PAHs 8270D SIM	NALYSES REQUESTED	U.P.	INVOICE TO	190298	PO#	ME OS/19
12/8	8	8		Samples received at			 				E.		STED	□ Archive Samples □ Other	SAMP	Rush charges	TURNA D Standard T	719 UL Page #_
5/19/1625	15/19/504	14/19	DATE TIME	at 1 °C	Ţ.				3 day THT	VOCs on	Plase run	Notes		mples	SAMPLE DISPOSAL	⊔ KUSH Rush charges authorized by:	TÜRNAROUND TIME	$\frac{1}{10000000000000000000000000000000000$
L		-1] [1	` _							 	5YTAT	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 10, 2019

Meilani Lanier-Kamaha'o, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Lanier-Kamaha'o:

Included are the results from the testing of material submitted on October 8, 2019 from the NE 8th Bellevue 190298, F&BI 910154 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Jessica Smith ASP1010R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 8, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC NE 8th Bellevue 190298, F&BI 910154 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
910154 -01	AMW-4D-100819
910154 -02	AMW-3D-100819
910154 -03	Decon-composite

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: 910154	AMW-4D-1 10/08/19	00819	Client: Project:	Aspect Consulting, LLC NE 8th Bellevue 190298, F&BI
Date Extracted: Date Analyzed: Matrix: Units:	10/08/19 10/09/19 Water ug/L (ppb)		Lab ID: Data File: Instrument: Operator:	910154-01 100854.D GCMS4 MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 102 103 101	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	e ethene ene (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 1.3		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: 910154	AMW-3D-1 10/08/19	00819	Client: Project:	Aspect Consulting, LLC NE 8th Bellevue 190298, F&BI
Date Extracted: Date Analyzed: Matrix: Units:	10/08/19 10/09/19 Water ug/L (ppb)		Lab ID: Data File: Instrument: Operator:	910154-02 100855.D GCMS4 MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 104 101 101	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: 910154	Decon-comj 10/08/19	posite	Client: Project:	Aspect Consulting, LLC NE 8th Bellevue 190298, F&BI
Date Extracted: Date Analyzed: Matrix: Units:	10/08/19 10/09/19 Water ug/L (ppb)		Lab ID: Data File: Instrument: Operator:	910154-03 100856.D GCMS4 MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 102 101	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: 910154	Method Bla Not Applica		Client: Project:	Aspect Consulting, LLC NE 8th Bellevue 190298, F&BI
Date Extracted: Date Analyzed:	10/08/19 10/08/19		Lab ID: Data File:	09-2447 mb 100810.D
Matrix: Units:	Water ug/L (ppb)		Instrument: Operator:	GCMS4 MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 102 101 99	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/10/19 Date Received: 10/08/19 Project: NE 8th Bellevue 190298, F&BI 910154

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 910002-01 (Matrix Spike)

· · ·	Reporting	Spike	Sample	Percent Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	110	36-166
Chloroethane	ug/L (ppb)	50	<1	113	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	110	60-136
Methylene chloride	ug/L (ppb)	50	<5	106	67 - 132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	103	72 - 129
1,1-Dichloroethane	ug/L (ppb)	50	<1	105	70 - 128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	105	71 - 127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	99	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	107	60-146
Trichloroethene	ug/L (ppb)	50	<1	97	66 - 135
Tetrachloroethene	ug/L (ppb)	50	<1	98	10-226

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	Source Dampic	<i>,</i>	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	121	126	50 - 154	4
Chloroethane	ug/L (ppb)	50	128	130	58-146	2
1,1-Dichloroethene	ug/L (ppb)	50	118	123	67-136	4
Methylene chloride	ug/L (ppb)	50	119	125	39-148	5
trans-1,2-Dichloroethene	ug/L (ppb)	50	113	118	68-128	4
1,1-Dichloroethane	ug/L (ppb)	50	110	114	79-121	4
cis-1,2-Dichloroethene	ug/L (ppb)	50	111	115	80-123	4
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	98	96	73 - 132	2
1,1,1-Trichloroethane	ug/L (ppb)	50	115	120	81 - 125	4
Trichloroethene	ug/L (ppb)	50	98	96	79-113	2
Tetrachloroethene	ug/L (ppb)	50	105	103	76-121	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Medianci Lancer Kannahalo SAMPLERS (signature) Tail Company Aspect Consult thing Teo Address TP Seet He, Ste. SSO SAMPLERS (signature) Tail City, State, ZIP Seet He, LAP, GNU The State State REMARKS City, State, ZIP Seet He, LAP, GNU Date REMARKS REMARKS Sample ID Lab ID Date Sample The State Stat	Samples received at $\frac{3}{2}$
Lanuer-Kannelvels Censcus trives SAMPLERS (signat PROJECT NAME NE Sti PROJECT NAME NE Sti NE St	
Ner-Kannahals SAMPLERS (signat NE STO Ste. S50 Ste. S50 Ste. S50 Ste. S50 Ste. S50 Ste. S50 Ste. S50 Ste. Ste. Sectific RLs NE Ste. Sectific RLs NE Ste. Sectific RLs NE Ste. Sectific RLs NE Ste. Sectific RLs Sampled Sampled Sample Sampled Sampled Type Sampled Sampled Sample Sampled Sampled Sample Sampled Sampled Sample Sampled Sampled Sample Sampled Sampled Sample	
Accus thing Secondary Accus thing Second Struct South Second Struct South Second Struct Struct Second Struct Struct Second Struct Struct Second Struct Second Sampled Sampled Sample # of Date Time Sample # of Date Jars OI A -C 10/8/14 1335 Uccter 3 O3 A - 210/8/14 1335 J 3 O3 A - 210/8/14 1335 J 4 Sample Jars	(F)
ALEY-Kannadasis SAMPLERS (signature) Second Second Second PROJECT NAME PROJECT NAME NE SAN NE	
ALLY - Kannahalo SAMPLERS (signature) PROJECT NAME PROJECT NAME NE Sta Sampled Lab ID Date Lab ID Date Date Date Sampled Date Sampled Date Sampled Sampled Date Sampled Date Sampled Sampled Date Sampled Date Sampled Date Sampled Date Sampled Date Sampled Date Sampled Date Sampled Date Sampled Date Sampled Date Sampled Date Sampled Date Sampled Date Sampled Date Sampled Date Sampled Date Sample Jars N D D D D D D D D D D D D D	
Micr-Kannahals SAMPLERS (signature) PROJECT NAME PROJECT NAME NE SAN Bellevue (9 0 2 9 % NE SAN Bellevue (9 0 2 9 % NE SAN Bellevue (9 0 2 9 % 2 4 - h Guy TAT 2 4 - h Guy TAT 2 4 - h Guy TAT Date Lab ID Date Sampled Samp	
Micr-Kamadials SAMPLERS (signature) PROJECT NAME PROJECT NAME NE Ste SSO Samuta NE Ste SSO Samuta NE Ste SSO Samuta NE Ste Sectleulue 190298 24-how TAT Project specific RLs? - Yes 1 M NE Samuled Samuled Samuled Samuled Samuled Samuled Samuled Samuled Samuled Samuled Samuled Samuled Samule Samuled Samule San	
Mux-Kamahalo SAMPLERS (signature) Steventing Jew Sampled Sample Sample Jew Sample	
nucr-Kamahal SAMPLERS (signature) PROJECT NAME PROJECT NAME NE Stanson Sampled Sample # of Date Lab ID Date Lab ID Date Sampled Sample # of OI A-C 10/8/14 1335 J 3	
anicy-Kamahala Ste SSO Somuth Ste SSO Somuth MA, 9404 nailm/Kamahal@experimentation LAA 9404 Lab ID Lab ID Date Lab ID Date Date Lab ID Date Lab ID Date Lab ID Date Lab ID Date Lab ID Date Lab ID Date Lab ID Date Lab ID Date Lab ID Date Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sample Sa	1
Anner-Kannahals SAMPLERS (signature) PROJECT NAME NE SAG Sevent NE SAG Bellevue NE SAG Bellevue NE SAG Bellevue NE SAG Bellevue (9 0 2 9 % NE SAG Bellevue (9 0 2 9 % REMARKS 2 4 - h Our TAT 2 4 - h Our TAT Date Lab ID Date Lab ID Date Date Date Date Sampled Sample # of Type Jars W NE Sample # of Type Jars W NE Sample # of H Date Time Sample # of JATS J 1 4	
Anner-Kannahals SAMPLERS (signature), Java PROJECT NAME PROJECT NAME NE SAN Bellevue NE SAN BELLEVUE N	
Report To Meilani Lanier - Kamaliah Company Aspect Conscilition Jew Address 710 2 de He, Ste Sto City, State, ZIP <u>Seu He, MA</u> <u>Alloi</u> Phone <u>CDb</u> <u>413-5408</u> Email <u>ml Kame had Ousperfices firs</u> <u>2</u> 4 - hour TAT Phone <u>CDb</u> <u>413-5408</u> Email <u>ml Kame had Ousperfices firs</u> <u>2</u> 4 - hour TAT Sample ID Lab ID Date Sampled Time Sample # of He Here Sample M	
Report To Meilani Lanier-Kamahah Company Aspect Consulting Sev Address 710 2 Ape, Ste. SSO Smith City, State, ZIP <u>Seuffle</u> , WA, 94104 Phone (26) 413-5468 Email m/Kamahad Suspections Mrs. Phone (26) 413-54	
Report To Meilani Lanier-Kamahah Company Aspect Consculting Jeo Address 710 2 Ape, Ste. 350 City, State, ZIP <u>Seuffle, WA, 94/04</u> Phone(26) 413-5468 Email m/Kamahad Oupetiens 1/2, <u>Project specific RLs? - Yes / No</u>	
Report To Meilani Lanier-Kanahah Company Aspect Consulting Sev Address 710 2 de, Ste 350 City, State, ZIP Seuffle, WA, Ulbit Phone (26) 413-5408 Email m/Kamahad Outpetiens dr. Project specific RLs? - Yes / No	F
SAMPLERS (signature)	
SAMPLERS (signature)	
SAMPLERS (signature)	1
SAMPLERS (signature)	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 24, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included is the amended report from the testing of material submitted on October 3, 2019 from the NE 8th St, F&BI 910083 project. Per your request, sample ID AMW-35-100219 was changed to AMW-3S-100219.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Meilani Lanier-Kamaha'o ASP1023R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 23, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the results from the testing of material submitted on October 3, 2019 from the NE 8th St, F&BI 910083 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Meilani Lanier-Kamaha'o ASP1023R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 3, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC NE 8th St, F&BI 910083project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
910083 -01	AMW-4D-100219
910083 -02	AMW-3D-100219
910083 -03	AMW-17-100219
910083 -04	AMW-18-100219
910083 -05	AMW-3S-100219

Upon receipt, the 40 ml VOA vials were placed in the freezer, cracking the containers. Fresh VOAs were decanted from the provided amber liter and the data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-3S-10 10/03/19 10/04/19 10/04/19 Water ug/L (ppb)	00219 pc	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th St, F&BI 910083 910083-05 100426.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8	-d4	% Recovery: 106 102	Lower Limit: 93 87	Upper Limit: 107 110
4-Bromofluorobenz	ene	106	85	112
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride	•	<0.2 <1 <1 <5		
trans-1,2-Dichloroe 1,1-Dichloroethane cis-1,2-Dichloroeth 1,2-Dichloroethane 1,1,1-Trichloroetha	ene (EDC)	<1 <1 <1 <1 <1 <1		
Trichloroethene Tetrachloroethene		<1 1.3		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 10/04/19 10/04/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th St, F&BI 910083 09-2401 mb 100418.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 106 101 112 vo	Lower Limit: 93 91 90	Upper Limit: 107 108 108
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/23/19 Date Received: 10/03/19 Project: NE 8th St, F&BI 910083

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 910032-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	106	61 - 139
Chloroethane	ug/L (ppb)	50	<1	107	55 - 149
1,1-Dichloroethene	ug/L (ppb)	50	<1	98	71 - 123
Methylene chloride	ug/L (ppb)	50	<5	72	61 - 126
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	89	72 - 122
1,1-Dichloroethane	ug/L (ppb)	50	<1	93	79 - 113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	95	63 - 126
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	101	70 - 119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	90	75 - 121
Trichloroethene	ug/L (ppb)	50	<1	93	73 - 122
Tetrachloroethene	ug/L (ppb)	50	5.5	97	40-155

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Co	nor or sumpre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	112	107	70 - 128	5
Chloroethane	ug/L (ppb)	50	113	112	66-149	1
1,1-Dichloroethene	ug/L (ppb)	50	107	109	72 - 121	2
Methylene chloride	ug/L (ppb)	50	92	94	63 - 132	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	95	94	76 - 118	1
1,1-Dichloroethane	ug/L (ppb)	50	99	98	77 - 119	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	98	96	76 - 119	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	108	107	75 - 116	1
1,1,1-Trichloroethane	ug/L (ppb)	50	96	96	80-116	0
Trichloroethene	ug/L (ppb)	50	99	98	72-119	1
Tetrachloroethene	ug/L (ppb)	50	101	102	78-109	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Samples received at 2 of	Samp			Y:	Ph. (206) 285-8282 Received by:	Ph.
			`	d by:	2029	Seat
	FBI	I		Khoi Hoans	1	301
10/03/6 1700	Aspect	Mothus M. Caris	2	ea by: ////////	ς. T	rrie
DATE TIME	COMPANY	PRINT NAME		SIGNATURE		5
1 46-10						
10/23/19 permit						
CVOCS 1-05		· ·				
X-onlyreport						
71000 NTUS			1530		AMW-35-100319 05	AM
			0440		MW-18-100319 54	Z
			1330		MW-17-100319 63	3
Xton NTUS			1210	10/3/19	W-3D-100319 07	AMIL
	· · · · · · · · · · · · · · · · · · ·	GM 6 XX X	040	A-C 10/2/19	AMW-40-100219 0(AM
Notes	SVOCs by 8270D PAHs 8270D SIM	Type Jars Jars of TPH-HCID H.Id TPH-Casoline BTEX by 8021B	Time Sampled	Lab ID Date Sampled	Sample ID L	
	ANALYSES REQUESTED	ANA				
SAMPLE DISPOSAL Dispose after 30 days Archive Samples Other	INVOICE TO	per ML 10/4/19 ME	- Hold Dx+6v	Me	City, State, ZIP PhoneEmail_Orv	City
D Standard Turnaround ARUSH 24 Kr Rush charges authorized by: JeSN co Swith	PO #	AME ST	N < 8 A S	1 ting	Company Aspect Consc Address Seattle	Cor
Page # / of / TURNAROUND TIME		SAMPLERS (signature) Malla MA La	SAMPLE	5	Report To Vessica Smi	Rej
vmi/ COS	ME 10/3/19	SAMPLE CHAIN OF CUSTODY	SAMPLE (910083	* * 16

•

•

1. A Street

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 1, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the results from the testing of material submitted on September 27, 2019 from the 190298, F&BI 909485 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Meilani Lanier-Kamaha'o ASP1001R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 27, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC 190298, F&BI 909485 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
909485 -01	AMW-2-88
909485 -02	AMW-2-81
909485 -03	AMW-2-78
909485 -04	AMW-2-72
909485 -05	AMW-2-69
909485 -06	AMW-2-65
909485 -07	AMW-2-59
909485 -08	AMW-2-54
909485 -09	AMW-2-46
909485 -10	AMW-2-43
909485 -11	AMW-2-34
909485 -12	AMW-4S-5.0
909485 -13	AMW-4S-10.0
909485 -14	AMW-4S-15.0
909485 -15	AMW-4S-20.0
909485 -16	AMW-4S-22.5
909485 -17	AMW-4S-25.0
909485 -18	AMW-4S-27.5
909485 -19	AMW-4S-30.0
909485 -20	AMW-4S-32.5
909485 -21	AMW-4S-35.0
909485 -22	AMW-4S-37.5
909485 -23	AMW-4S-40
909485 -24	AMW-4S-42.5
909485 -25	AMW-4S-45.0
909485 -26	AMW-2-37

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-2-81 09/27/19 09/30/19 09/30/19 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909485 909485-02 093013.D GCMS4 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	90	50	150
Toluene-d8		98	50	150
4-Bromofluorobenz	ene	104	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride)	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-2-72 09/27/19 09/30/19 09/30/19 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909485 909485-04 093014.D GCMS4 MS/AEN
C		0/ D	Lower	Upper
Surrogates:	14	% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	95	50	150
Toluene-d8		95	50	150
4-Bromofluorobenz	ene	$121 \mathrm{J}$	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	•	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	.ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-2-65 09/27/19 09/30/19 09/30/19 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909485 909485-06 093015.D GCMS4 MS/AEN
a i		0/ D	Lower	Upper
Surrogates:	1.4	% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	50	150
Toluene-d8		95	50	150
4-Bromofluorobenz	ene	118 J	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	•	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	0.034		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		0.13		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-2-54 09/27/19 09/30/19 09/30/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909485 909485-08 093016.D GCMS4 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	50	150
Toluene-d8		96	50	150
4-Bromofluorobenz	ene	105	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	•	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 09/30/19 09/30/19 Soil mg/kg (ppm) I	e	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909485 09-2357 mb 093010.D GCMS4 MS/AEN
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz	-d4	% Recovery: 103 98 97	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:	Cr	oncentration ng/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	< 0.005 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.003 < 0.005		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/19 Date Received: 09/27/19 Project: 190298, F&BI 909485

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 909484-07 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet wt)	Duplicate Result (Wet wt)	RPD (Limit 20)
Vinyl chloride	mg/kg (ppm)	< 0.005	< 0.005	nm
Chloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
Methylene chloride	mg/kg (ppm)	< 0.05	< 0.05	nm
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1-Dichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1,1-Trichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
Trichloroethene	mg/kg (ppm)	< 0.003	< 0.003	nm
Tetrachloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	Joint of Dampie		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	0.05	96	98	50-158	2
Chloroethane	mg/kg (ppm)	0.05	101	96	48 - 179	5
1,1-Dichloroethene	mg/kg (ppm)	0.05	98	96	63-144	2
Methylene chloride	mg/kg (ppm)	0.05	97	85	17 - 179	13
trans-1,2-Dichloroethene	mg/kg (ppm)	0.05	101	96	70-130	5
1,1-Dichloroethane	mg/kg (ppm)	0.05	98	95	70-130	3
cis-1,2-Dichloroethene	mg/kg (ppm)	0.05	98	95	70-130	3
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	96	96	69-137	0
1,1,1-Trichloroethane	mg/kg (ppm)	0.05	100	97	71-140	3
Trichloroethene	mg/kg (ppm)	0.05	96	95	70-130	1
Tetrachloroethene	mg/kg (ppm)	0.05	102	100	35 - 176	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Samples received at°C	Samples r							Received by:	Ph. (206) 285-8282	Ph. (
2011 412-21		V INT		肉			ΨΥ	Relinquished by:	<i></i>	Seat
		J. A.	- Kry		Mattu			Received by: 1	2012 16 th Avenue West Rec	2012
ANY DATE TIME	COMPANY	1 1	NAM	PRINT NAME	[d		SIGNATURE	JIS		1
					~ ~	1135		101	4MW-2-43	N P
				.,	~	1225		04	AMW-2-46	A.N
	×			<u>``\</u>	5	1240		80	*MW-7-54	ΥW
					5	1300		67	AMW-2 59	N.X
					5	1330		06	AMW-2-65	AN
				- ,	5	1335		R	AMW-2-69	Z
	×			~)	2	1400		104	W-2-72	AMW
				2		20: 1-1		03	NW-2-78	R-Mb
			<u> </u>			1-1:40		02	NW-7-81	AMW
170-00					596 5	14:45-		3.4 10	AMW-2-88	R
X - pe ML 9/17/16 Notes me	CVOCs by 8260C SVOCs by 8270D PAHs 8270D SIM	TPH-Gasoline BTEX by 8021B	TPH-HCID TPH-Diesel	Jars Hof	Sample #	Time Sampled	Date Sampled	Lab ID	Sample ID	
	ANALYSES REQUESTED	Ā								
C Archive Samples					-				one Email	Phone_
SAMPLE DISPOSAL	INVOICE TO				KS	REMARKS	C		· · ·	Cit
Rush charges authorized by:	190298						indetine 120	aspectionsu	Address JSMITLA	Ado
rd Turnaround	PO#			, ,	PROJECT NAME	PROJE(Ρ	it.	many Jussiliar	2
Page # 1 of 2		ſ,	S	$\frac{re}{N}$	SAMPLERS (signature)	SAMPL			report 10 AS pe 24	E.
	HE OP/27/19		TSD)F CI	SAMPLE CHAIN OF CUSTODY	SAMPLI			SShbab	

							•										
1		Friedman & Bruva Inc Reli			AMW - 2-37	Amw - 45 - 45.0	Mmw - 45 - 42.5	AMM-45-40	Amm - 45 - 37,5	Amw-45-35.6	Sample ID		PhoneEmail	City, State, ZIP	Address	ركعهم	Report To Jessia Suit
Received by:	Relinquished by: W/ Received by: W/ Relinquished by:	SIC SIC			26	K	Å	23	d K	2 A.E	Lab ID		Email SMithe aspect cash by can				i.
		SIGNATURE			9/26/19	-4			-	6/26/19	Date Sampled		aspecticas				
					(1110	1532	1525	5051	1628	02Hl	Time Sampled		What can	- REMARKS		PROJE	SAMPI
	In the				511	4	194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194			//RS	Sample Type		N.	łKS	NE YAR +	PROJECT NAME	SAMPLERS (signature)
	lan yan	PRINT NAME			Ŵ	Ø	গ	קש	5	6	# of Jars					. (uture)
	2 3	TNA	 				· · · · · · · · · · · · · · · · · · ·				TPH-HCID				10)th		
	JIN I	ME					•	<u></u>			TPH-Diesel					ſ	>
	FR										TPH-Gasoline					V)
											BTEX by 8021B	A				\	
		┽┥╽									VOCs by 8260C	IALY	-Th-	> INV	2		
Samples received at	1XK										SVOCs by 8270D	ANALYSES		INVOICE TO	87991	PO #	
nplé	- F	CO	 +								PAHs 8270D SIM	REC		ETC	N N	#	11
S IC	4	COMPANY										UE					
cei		YN	 +	·	<u>.</u>							REQUESTED		2	<u>छ</u>		
ved											M		□ Archiv □ Other	Dispo	ish ci	, Stand RIISI	
	12/2	╉╌┦┝											ve S _č	se af	large	lard I	Page #
M	22	DATE		60)9/27	Acto				-	T			□ Archive Samples □ Other	SAMPLE DISPOSAL ose after 30 days	Rush charges authorized by:	Standard Turnaround RIISH	Page # of
റ്	The second	E		19/2	Addoc	4				d'h	N		S:e	DISP 0 dav	thoriz	arou	ĨI.
	50 /1 D2			¥	the last					6	Notes			OSAI s	sed by	nd	of MIT
	30	TIME	1.1		-									<u>ر</u>	Y:	Ē	J ⁷

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 14, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the additional results from the testing of material submitted on September 27, 2019 from the 190298, F&BI 909492 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Meilani Lanier-Kamaha'o ASP1014R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 27, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC 190298, F&BI 909492 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
909492 -01	AMW-3S-5
909492 -02	AMW-3S-10
909492 -03	AMW-3S-15
909492 -04	AMW-3S-20
909492 -05	AMW-3S-22.5
909492 -06	AMW-3S-25
909492 -07	AMW-3S-27.5
909492 -08	AMW-3S-30
909492 -09	AMW-3S-32.5
909492 -10	AMW-3S-35
909492 -11	AMW-3S-37.5
909492 -12	AMW-3S-40
909492 -13	AMW-5-40
909492 -14	AMW-5-37.5
909492 -15	AMW-5-35
909492 -16	AMW-5-32.5
909492 -17	AMW-5-30
909492 -18	AMW-5-25
909492 -19	AMW-5-22.5
909492 -20	AMW-5-20
909492 -21	AMW-5-15
909492 -22	AMW-5-10
909492 -23	AMW-5-5
909492 -24	AMW-4D-50.0
909492 -25	AMW-4D-55.0
909492 -26	AMW-4D-60.0
909492 -27	AMW-4D-63.5
909492 -28	AMW-4D-69.5
909492 -29	AMW-4D-75.0
909492 -30	AMW-4D-80.0
909492 -31	AMW-4D-85.0
909492 -32	AMW-4D-89.0

Methylene chloride was detected in sample AMW-4D-89.0. The data were flagged as due to laboratory contamination.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-5-15 09/27/19 10/10/19 10/10/19 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-21 101027.D GCMS9 AEN/MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	99	50	150
Toluene-d8		96	50	150
4-Bromofluorobenz	ene	98	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	e e	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	· /	< 0.005		
1,1,1-Trichloroetha	ine	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-5-5 09/27/19 10/09/19 10/10/19 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-23 100965.D GCMS9 AEN/MS
		_	Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	y-d4	98	50	150
Toluene-d8		98	50	150
4-Bromofluorobenz	zene	98	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene)	< 0.005		
Methylene chloride	9	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane	9	< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	e (EDC)	< 0.005		
1,1,1-Trichloroetha	ine	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4D-89 09/27/19 10/09/19 10/10/19 Soil mg/kg (ppm	9.0) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-32 100966.D GCMS9 AEN/MS
~			Lower	Upper
Surrogates:	_	% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	96	50	150
Toluene-d8		94	50	150
4-Bromofluorobenz	ene	112	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	•	$0.076 \ lc$		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blanl Not Applicabl 10/10/19 10/10/19 Soil mg/kg (ppm)	e	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 09-2454 mb2 101024.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz	-d4	% Recovery: 102 103 90	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:	C	oncentration mg/kg (ppm)		
Vinyl chloride		<0.005		
Chloroethane		<0.05 <0.005		
1,1-Dichloroethene Methylene chloride		<0.005 <0.05		
trans-1,2-Dichloroe		< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth		< 0.005		
1,2-Dichloroethane		< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applica 10/09/19 10/10/19 Soil mg/kg (ppm)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 09-2454 mb 100959.D GCMS9 AEN/MS
C .			Lower	Upper
Surrogates:	1.4	% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	50	150
Toluene-d8		97	50	150
4-Bromofluorobenz	ene	98	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	•	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane	1	< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	.ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/14/19 Date Received: 09/27/19 Project: 190298, F&BI 909492

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 909517-07 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet wt)	Duplicate Result (Wet wt)	RPD (Limit 20)
Vinyl chloride	mg/kg (ppm)	< 0.005	< 0.005	nm
Chloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
Methylene chloride	mg/kg (ppm)	$0.13 \ lc$	< 0.05	nm
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1-Dichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1,1-Trichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
Trichloroethene	mg/kg (ppm)	< 0.003	< 0.003	nm
Tetrachloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory	control Sample		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	0.05	90	87	60-136	3
Chloroethane	mg/kg (ppm)	0.05	96	80	65 - 132	18
1,1-Dichloroethene	mg/kg (ppm)	0.05	92	87	70 - 130	6
Methylene chloride	mg/kg (ppm)	0.05	81	83	52 - 150	2
trans-1,2-Dichloroethene	mg/kg (ppm)	0.05	92	92	70 - 130	0
1,1-Dichloroethane	mg/kg (ppm)	0.05	94	95	70 - 130	1
cis-1,2-Dichloroethene	mg/kg (ppm)	0.05	91	92	70 - 130	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	92	96	70 - 130	4
1,1,1-Trichloroethane	mg/kg (ppm)	0.05	97	96	70 - 130	1
Trichloroethene	mg/kg (ppm)	0.05	94	94	70-130	0
Tetrachloroethene	mg/kg (ppm)	0.05	93	93	70-130	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.		۱ می م	- ۲ L . ۲	- 2 ()	-27.5	1.2.7	-22,5	- 73		RMW-3,5-10	X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Sample ID		Address JSMithics askitant
Received by:	Relinquished by:	Received	Relinquished by		1	8	80	07	30	Sg	04	03	50	1/4/1° = + 10	Lab ID Date Sampled		
					1335-	1315	1310	1305	1300	1250	5421	12.30	1215	1210	Time Sampled		SAMPLE CHAIN SAMPLERS (sign PROJECT NAME REMARKS
		Baci	Anel	11Ad	•									5	Sample # of Type Jars		SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) PROJECT NAME REMARKS
		1011A-	is C. Cont	DRINT NAME											TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B		CUSTODY
Sample	/	tol			X			×							VOCs by 8260C SVOCs by 8270D PAHs 3270D SIM	ANALYSES REQUESTED	ME DA/27
Samples received at		3	The A	COMPANY												IESTED	
4 °C		74/17/67	122/19	DATE TIME										Heid	Notes		USS/WY of H Pard WY TURNAROUND TIME Standard Turnaround RUSH 241/ 121 Rush charges authorized by: SAMPLE DISPOSAL Dispose after 30 days Archive Samples

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ph. (206) 285-8282	Seattle, WA 98119-2029 Rel	3012 16 th Avenue West Rec	Friedman & Bruya, Inc. Rel		-20	-22.5	-25-	250	~32,5	- 35	- 37.5	UH- S-MW	- H -	AMW-3,5-37.5	Sample ID		Repuri To Jastine Repuri To Jastine Company A sport Address <u>smither</u> City, State, ZIP Email
SAMPLE CHAIN OF CUSTODY AL DA/32/4 SAMPLE CHAIN OF CUSTODY AL DA/32/4 PROJECT NAME PROJECT NAME PROJECT NAME REMARKS NUSH REMARKS REMARKS NUSH REMARKS NUSH REMARKS REMARK	eived by	inquished by	eived by	inquished by:		7.5	19	18	12	16	15	Nel V	13	ير	11 A-E	Lab ID		trian to
SAMPLE CHAIN OF CUSTODY AU ON 31/M US / B2X PROJECT NAME IV IV IV PROJECT NAME IV IV IV </td <td></td> <td>Ø</td> <td>, i c</td> <td>V VV</td> <td>INATURE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>27/19</td> <td>Date Sampled</td> <td></td> <td>K S</td>		Ø	, i c	V VV	INATURE										27/19	Date Sampled		K S
H. OA DATE INVOICE TO Standard Turnaround Port 11/2 12/2 INVOICE TO 12/2 ANALYSES REQUESTED X SVOCs by 8270D SVOCs by 8270D 11/2 Conter Samples COMPANY 12/2 Archive Samples Notes Samples received at 4 12/2			V	5		0825	08300	0835	0855	00100	erios-	Olic	0915	1352		Time Sampled		SAMPLE SAMPLE PROJEC REMARI
H. OA DATE INVOICE TO Standard Turnaround Port 11/2 12/2 INVOICE TO 12/2 ANALYSES REQUESTED X SVOCs by 8270D SVOCs by 8270D 11/2 Conter Samples COMPANY 12/2 Archive Samples Notes Samples received at 4 12/2			ES .	-1.			 								1102			CHAIN (RS (signat) F NAME
H. OA DATE INVOICE TO Standard Turnaround Port 11/2 12/2 INVOICE TO 12/2 ANALYSES REQUESTED X SVOCs by 8270D SVOCs by 8270D 11/2 Conter Samples COMPANY 12/2 Archive Samples Notes Samples received at 4 12/2			IC I	É	PRI	-							+	+	2	# of Jars		ure)
H. OA DATE INVOICE TO Standard Turnaround Port 11/2 12/2 INVOICE TO 12/2 ANALYSES REQUESTED X SVOCs by 8270D SVOCs by 8270D 11/2 Conter Samples COMPANY 12/2 Archive Samples Notes Samples received at 4 12/2				\$	VT N											TPH-HCID		sux
H. OA DY MA WS / ROUND TIME PO# INVOICE TO ANALYSES REQUESTED ANALYSES REQUESTED X SVOCs by 8270D YOU Standard Turnaround Archive Samples COMPANY PAHs 8270D SIM YOU House YOU Standard Turnaround Notes Standard Turnaround YOU Standard Turnaround Rest charge Contract Standard Turnaround YOU Standard Turnaround Contract Standard Turnaround YOU Standard Turnaround Contract Contraction YOU PAHs 8270D SIM YOU One YOU House YOU PAHs 8270D SIM YOU House YO			N.	Per	AME				<u> </u>			<u> </u>						TOI
H. OM (J) IM Page # 2 of H PO # J. Standard Turnaround PO # J. Standard Turnaround PRUSH Standard Turnaround Rush charkes authorized by Dispose after 30 days Dother Dother Archive Samples Other Notes H. OM (J) IM Page # 2 INVOICE TO Dispose after 30 days Dother Dother Dother Archive Samples Invit darkes authorized by				A			+		_	+	+	+				1	$\left \right $	YC XC
Ord J.7 //a WS / Busin charges and for any set of the second at the se				Ň			+				$\overline{\mathbf{x}}$	+			-	BTEX by 8021B	AN	
M US / BUS Page # 2 of H TURNAROUND TIME 3 Standard Turnaround 3 RUSH Consin charges authorized by Cother OULESTED OMPANY DATE TIM A diption of the second of the		-		+		, <u>- `</u>		+		+	+		1	+	-			
M US / BUS Page # 2 _ d TURNAROUND TIME 3 Standard Turnaround 1 RUSH Rush charges authorized by Cother OULESTED OMPANY DATE TIM A dial dial dial dial Notes 1 Cother 1 Cother	Dat	2	T	The	>		+	-		1			1				ES R	#0 #0
IS / BUS Page # 22 of TURNAROUND TIME tandard Turnaround USH SAMPLE DISPOSAL spose after 30 days rchive Samples ther DATE TIM DATE TIM I TO HE Notes	nbre	5	Ę.	the second	COM		1			-							EQU	10
IS / BUS Page # 2_ of TURNAROUND TIME tandard Turnaround USH SAMPLE DISPOSAL spose after 30 days rchive Samples ther DATE TIM I TO HE Notes Notes Notes Notes Notes Notes Notes Notes Notes Notes Notes Notes	010			P	PAN												ESTE	
Notes					Y												D	
Notes		ก้. ม		-														URN URN H H H SAMI H SAMI SAMI SAMI SAMI SAMI SAMI SAMI SAMI
THE SAL SAL			127	1														AROU AROU Furna Purna ampie
THE SAL SAL		Ő	12	-5	-TE										F	z		JND Tround fround horize horize s
	-	-	17	Ē		1						-		+	. 4	tes		d by
				40	ME													

SAMPLE CHAIN OF CUSTODY ME MAPLE SAMPLERS (signature PROJECT NAME REMARKS REMARKS 24-hv TAT 1/17 VS (5 Sol) 24-hv TAT 24-hv TAT 24	Ph. (206) 285-8282	<u>ت</u>		Friedman & Bruva Inc. Re					AMW-5 CARLES	-10	AMW-5-15	Sample ID		PhoneEmail	City, State, ZIP	Address J Smith Dasp frongettin	Company Ask t	Report To Jessie St	2 25/100
SAMPLE CHAIN OF CUSTODY ME (1)27(100) SAMPLERS (signature) PROJECT NAME PROJECT NAME PO # REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS Remarks	sived by:	inquished by:	zeived by?	inquished by:					22	22	RIA-E	Lab ID				Sp clean		r.H.	فر
SAMPLE CHAIN OF CUSTODY ME MATURE SAMPLERS (signature) PROJECT NAME PROJECT NAME The Sample samp				IGNATURE							1/21/19	Date Sampled		والمحاجبة		t			
ME 01 D-7/14 VS / BCU TURNAROUND TIM Po # INVOICE TO INVOICE TO ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED Notes ANALYSES REQUESTED Archive Samples D bispose after 30 days D Archive Samples Other Notes Notes Samples received at 4 of									0805	0810	2120	Time Sampled		- CAT-)	REMAR		PROJEC	SAMPL	SAMPLE
ME 01 D-7/14 VS / BCU TURNAROUND TIM Po # INVOICE TO INVOICE TO ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED Notes ANALYSES REQUESTED Archive Samples D bispose after 30 days D Archive Samples Other Notes Notes Samples received at 4 of		Q							,		105	Sample Type			١		T NAME	ERS (signa	CHAIN
ME 01 D-7/14 VS / BCU TURNAROUND TIM Po # INVOICE TO INVOICE TO ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED Notes ANALYSES REQUESTED Archive Samples D bispose after 30 days D Archive Samples Other Notes Notes Samples received at 4 of		ħ	R	PRII							S	# of Jars						ture	OF
ME 01 D-7/14 VS / BCU TURNAROUND TIM Po # INVOICE TO INVOICE TO ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED Notes ANALYSES REQUESTED Archive Samples D bispose after 30 days D Archive Samples Other Notes Notes Samples received at 4 of		Æ	10	NTN								TPH-HCID	Π					7	cus
ME 01 D-7/14 VS / BCU TURNAROUND TIM Po # INVOICE TO INVOICE TO ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED Notes ANALYSES REQUESTED Archive Samples D bispose after 30 days D Archive Samples Other Notes Notes Samples received at 4 of				AME	 	 												ſ	TOI
ME UNDER COMPANY NOTE: A Samples received at 4 - of		\square	5-0			 		 											YC
AP/II US / CCL Page # 3 of TURNAROUND TIM B Standard Turnaround Rush charges authorized b COMPANY		1				 +		 	X	X	(\mathbf{x})	Club nha fad VOCs by 8260C	AN/					. 1	MG
AP/II US / CCL Page # 3 of TURNAROUND TIM B Standard Turnaround Rush charges authorized b COMPANY			5						<i></i>				LYS		IOAN	3	P		
Authorized b Authorized b Au	Sam	Tr	106	00				 				PAHs 8270D SIM	ES REQ		ICE TO	R	0#		tt/bi
Authorized b Authorized b Au	oles 1	-tà	Pf	MPA		 							UEST]		14
Authorized b Authorized b Au	receive			YN		 							"ED	D Other	Dispo	Rush ch	D Stand	P	221
Authorized b Authorized b Au	d at	-	510	0		 								ve Dat	AMPI se afte	larges	lard T	URNA	150
		12	611	DAT					4		Ŧ			sardn	r 30 d	autho	urnarc	ROUN	26
	å		5 -	U E					Ì		IF.	Note			3POS/ ays	rized	und		
		1	100	TIME							Y	CD CD			Ē	by:		AE 1	E

					 						+				****						
Ph. (206) 285-8282 Recei	Seattle, WA 98119-2029 Relin	3012 16th Avenue West Recei	Friedman & Bruya, Inc. Relin		Amw - 40 - 89.0	AMW - 40 - 85.0	Amm - 40 - 80.0	Annu - 40 - 75.0	Amw - 40 - 69.5	AMW - 40 - 63,5	Hmw-40-60.0	Amw-40- 55,0	AMW -40- 10 50.0247-2	Sample ID			City State ZIP	Company (AS YX CT		Report To Jestic	909492
Received by:	Relinquished by:	Reveived by:/	Relinquished by:	IS	 222	3	30	24	38	77	2	35-1	24A-E	Lab ID		Smith Paces				シデナチ	
	والمحافظ		2	SIGNATURE	*								19/27/19	Date Sampled		Email 1 Smith Caspect on suthing com . UR I'm					
					1435	52.h/	1410	1320	1315	1310	1255	1230	1215	Time Sampled		Hug. com	REMARKS	NE	PROJĚ	- SAMPL	SAMPLE CHAIN OF CUSTODY
					4								(:25	Sample Type		NAM	LKS	C SAY	PROJECT NAME	SAMPLERS (signature)	CHAIN
		K)	And	PRI	 Л	VI	5	S	N	N	N	12	5	# of Jars		•		410(Jk		ature)	VOF
	ļ	~	1	PRINT NAM										TPH-HCID	Π	ĨZ.		000		` ~	CUS
	-	5	20%	AM										TPH-Diesel		.~		of	Ľ	\mathcal{D}	STO
	1	ž		E	 L	<u> </u>		<u> </u>	ļ				ļ	TPH-Gasoline				,			DY
			i.				ļ	_	<u> </u>	ļ	ļ	ļ	ļ	BTEX by 8021B							~
			R		 X	1	\bowtie		\bowtie		$ \times$		ļ	Chlonnated VOCs by 8260C	ANALYSES	4	N	19			ME
0	4	51	6		 		_						ļ	SVOCs by 8270D	YSE.	AP	VOI	862061	PO #	1	0
am		M	Res	0	 	ļ	<u> </u>			_		ļ		PAHs 8270D SIM	S RE		INVOICE TO	28	#		12
ples	Ч	A	No.	OMI								ļ			QUI		Ó				160
rec		-		COMPANY											REQUESTED			1 77 1	30		19
Samples received at				Y											Ð	D Archiv	Disp	ush o	Standa		
d at					1				1						1	nive S	SAM ose a	charg	idard	TURN	SS
12	6	2	10	IJ	 4	+	+-	1		1			-			Archive Samples Other	PLE.	'es au	ไหนา	VARC	
T °	~	Fa	3112	DATE						\uparrow	+	+~	IZ	17		les	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	Standard Turnaround	TURNAROUND TIME	tõ
		2	<u>ر</u>										P	Notes			90SA 99	zed b	ba	O TIM	
		1X	3112	TIME													<u>t-</u>	ý:		E	+
		<u> </u>	1U	Ø		<u> </u>										Ľ		' 			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 4, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the results from the testing of material submitted on September 27, 2019 from the 190298, F&BI 909492 project. There are 16 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Meilani Lanier-Kamaha'o ASP1004R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 27, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC 190298, F&BI 909492 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
AMW-3S-5
AMW-3S-10
AMW-3S-15
AMW-3S-20
AMW-3S-22.5
AMW-3S-25
AMW-3S-27.5
AMW-3S-30
AMW-3S-32.5
AMW-3S-35
AMW-3S-37.5
AMW-3S-40
AMW-5-40
AMW-5-37.5
AMW-5-35
AMW-5-32.5
AMW-5-30
AMW-5-25
AMW-5-22.5
AMW-5-20
AMW-5-15
AMW-5-10
AMW-5-5
AMW-4D-50.0
AMW-4D-55.0
AMW-4D-60.0
AMW-4D-63.5
AMW-4D-69.5
AMW-4D-75.0
AMW-4D-80.0
AMW-4D-85.0
AMW-4D-89.0

Methylene chloride was detected in samples AMW-5-20, AMW-4D-55.0, AMW-4D-60.0, AMW-4D-69.5, and AMW-4D-80.0. The data were flagged as due to laboratory contamination.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-3S-27 09/27/19 10/02/19 10/02/19 Soil mg/kg (ppm)	.5) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-07 100216.D GCMS4 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	104	50	150
Toluene-d8		104	50	150
4-Bromofluorobenz	ene	100	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	e e e e e e e e e e e e e e e e e e e	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	ine	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-3S-35 09/27/19 10/02/19 10/02/19 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-10 100217.D GCMS4 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	106	50	150
Toluene-d8		108	50	150
4-Bromofluorobenz	ene	105	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride)	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	· /	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-5-35 09/27/19 10/02/19 10/02/19 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-15 100218.D GCMS4 MS/AEN
C		0/ D	Lower	Upper
Surrogates:	14	% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-α4	108	50	150
Toluene-d8		113	50	150
4-Bromofluorobenz	ene	110	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	e	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroethene		< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	ine	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-5-20 09/27/19 10/02/19 10/02/19 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-20 100219.D GCMS4 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	115	50	150
Toluene-d8		120	50	150
4-Bromofluorobenz	ene	114	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	<u>)</u>	0.14 lc		
trans-1,2-Dichloroe	thene	< 0.005		
1,1-Dichloroethane	1	< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	.ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-5-10 09/27/19 10/02/19 10/02/19 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-22 100225.D GCMS9 AEN/MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	94	50	150
Toluene-d8		84	50	150
4-Bromofluorobenz	ene	94	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	÷	< 0.05		
trans-1,2-Dichloroe	thene	< 0.005		
1,1-Dichloroethane	;	< 0.005		
cis-1,2-Dichloroeth		< 0.005		
1,2-Dichloroethane	. ,	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4D-50 09/27/19 10/03/19 10/03/19 Soil mg/kg (ppm).0) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-24 100269.D GCMS9 AEN/MS
a ,		0/ D	Lower	Upper
Surrogates:	1.4	% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	99	50	150
Toluene-d8		90	50	150
4-Bromofluorobenz	zene	71	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	e	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane	•	< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	e (EDC)	< 0.005		
1,1,1-Trichloroetha	ine	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4D-55 09/27/19 10/03/19 10/03/19 Soil mg/kg (ppm)	5.0) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-25 100270.D GCMS9 AEN/MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	98	50	150
Toluene-d8		65	50	150
4-Bromofluorobenz	ene	$117 \mathrm{J}$	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride)	0.18 lc		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4D-60 09/27/19 10/02/19 10/02/19 Soil mg/kg (ppm).0) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-26 100221.D GCMS4 MS/AEN
C .			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	134	50	150
Toluene-d8		135	50	150
4-Bromofluorobenz	ene	$131 \mathrm{J}$	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	9	$0.21 \ lc$		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		0.014		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4D-63 09/27/19 10/03/19 10/03/19 Soil mg/kg (ppm	3.5) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-27 100271.D GCMS9 AEN/MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	102	50	150
Toluene-d8		90	50	150
4-Bromofluorobenz	ene	82	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	e e e e e e e e e e e e e e e e e e e	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane	:	< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	ine	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		0.12		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4D-69 09/27/19 10/02/19 10/02/19 Soil mg/kg (ppm)	.5 Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-28 100226.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 88 80	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ene (EDC)	$< 0.005 \\ < 0.05 \\ < 0.005 \\ 0.064 \text{ lc} \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.003 \\ < 0.005 \end{aligned}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4D-80 09/27/19 10/02/19 10/03/19 Soil mg/kg (ppm)).0) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 909492-30 100227.D GCMS9 AEN/MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	104	50	150
Toluene-d8		92	50	150
4-Bromofluorobenz	ene	105	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride)	$0.056 \ lc$		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth		< 0.005		
1,2-Dichloroethane	· /	< 0.005		
1,1,1-Trichloroetha	.ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applica 10/02/19 10/02/19 Soil mg/kg (ppm)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 09-2393 mb 100224.D GCMS9 AEN/MS
Comparatory		0/ Decomorna	Lower Limit:	Upper Limit:
Surrogates:	14	% Recovery:		
1,2-Dichloroethane	-04	98	50	150
Toluene-d8		93	50	150
4-Bromofluorobenz	ene	85	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	•	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 10/03/19 10/03/19 Soil mg/kg (ppm		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC 190298, F&BI 909492 09-2393 mb2 100268.D GCMS9 AEN/MS
Companya		0/ D	Lower Limit:	Upper Limit:
Surrogates:	14	% Recovery:		
1,2-Dichloroethane	-04	100	50 50	150
Toluene-d8		95 70	50	150
4-Bromofluorobenz	ene	70	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	•	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	(EDC)	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/04/19 Date Received: 09/27/19 Project: 190298, F&BI 909492

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 909517-07 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet wt)	Duplicate Result (Wet wt)	RPD (Limit 20)
Vinyl chloride	mg/kg (ppm)	< 0.005	< 0.005	nm
Chloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
Methylene chloride	mg/kg (ppm)	0.13	< 0.05	nm
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1-Dichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1,1-Trichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
Trichloroethene	mg/kg (ppm)	< 0.003	< 0.003	nm
Tetrachloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	Control Dample			D (
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	0.05	90	87	60-136	3
Chloroethane	mg/kg (ppm)	0.05	96	80	65 - 132	18
1,1-Dichloroethene	mg/kg (ppm)	0.05	92	87	70 - 130	6
Methylene chloride	mg/kg (ppm)	0.05	81	83	52 - 150	2
trans-1,2-Dichloroethene	mg/kg (ppm)	0.05	92	92	70 - 130	0
1,1-Dichloroethane	mg/kg (ppm)	0.05	94	95	70 - 130	1
cis-1,2-Dichloroethene	mg/kg (ppm)	0.05	91	92	70 - 130	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	92	96	70 - 130	4
1,1,1-Trichloroethane	mg/kg (ppm)	0.05	97	96	70 - 130	1
Trichloroethene	mg/kg (ppm)	0.05	94	94	70-130	0
Tetrachloroethene	mg/kg (ppm)	0.05	93	93	70-130	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

2 SAMPLE CHAIN OF CUSTODY HE (1/2) Trans Sample Solution of Custod	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16 th Avenue West	Friedman & Bruya, Inc.	ال الري 1	- 32,5	-30	- 27.5	- 25	-22.5	- 2.0		AMW-35-10	AMU-33-5	Sample ID		PhoneEmail	City, State, ZIP	Company A. Spr at lemsul the Address 15 M. (th) a skitch such	Report To TESSIC 22 5	-0949-
SAMPLE CHAIN OF CUSTODY <i>ME 04/271/1</i> VS/ <i>bx</i> SAMPLERS (signature) <i>D</i> PROJECT NAME REMARKS REMARKS REMARKS REMARKS REMARKS INVOICE TO REMARKS REMARKS INVOICE TO INVOICE TO	Received by:	Relinquished by:	Received by	Relinquished by		8	80	07	06	28	54	03.	50		Lab ID		ail	-	Jask tominet	Sere the	
SAMPLE CHAIN OF CUSTODY ME (1/2) Point			1	ATURE	t									14	Date Sampled			C	The Land		
ME UA Page USS/RES INVOICE TO Samples INVOICE TO Samples ANALYSES REQUESTED ANALYSES REQUESTED Archive Samples ANALYSES REQUESTED Archive Samples COMPANY PAHs \$270D SIM Samples Invoice the samples COMPANY Invoice the samples COMPANY Invoice the samples Analyse Invoice the samples Company Invoice the samples Invoice the samples Invoice the samples Invoice the samples Invoice the samples					1335	1315	1310	1305	1300	1250	1245	12.30	1215	1210	Time Sampled						SAMPLE
ME UA Dask USS/Regular PO FURNAROUND FIN FURNAROUND FIN PO FURNAROUND FIN PO FURNAROUND FIN PO Standard Turnaround Rush charges authorized b Dispose after 30 days Dother Cocher ANALYSES REQUESTED Archive Samples Dother Cocher X SVOCs by 8270D SIM PAHs 8270D SIM Other X Standard First Standard X Standard First Standard <t< td=""><td></td><td></td><td><u>B</u></td><td>An</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>55-1</td><td></td><td></td><td></td><td>KS</td><td></td><td>The ALANE</td><td>CHAIN</td></t<>			<u>B</u>	An	•									55-1				KS		The ALANE	CHAIN
ME UA Dask USS/Regular PO FURNAROUND FIN FURNAROUND FIN PO FURNAROUND FIN PO FURNAROUND FIN PO Standard Turnaround Rush charges authorized b Dispose after 30 days Dother Cocher ANALYSES REQUESTED Archive Samples Dother Cocher X SVOCs by 8270D SIM PAHs 8270D SIM Other X Standard First Standard X Standard First Standard <t< td=""><td></td><td></td><td></td><td>PRIN K</td><td></td><td></td><td>+</td><td></td><td>┼</td><td></td><td></td><td></td><td>+</td><td>2</td><td># of Jars</td><td></td><td></td><td></td><td></td><td></td><td>OF</td></t<>				PRIN K			+		┼				+	2	# of Jars						OF
ME UA Dask USS/Regular PO FURNAROUND FIN FURNAROUND FIN PO FURNAROUND FIN PO FURNAROUND FIN PO Standard Turnaround Rush charges authorized b Dispose after 30 days Dother Cocher ANALYSES REQUESTED Archive Samples Dother Cocher X SVOCs by 8270D SIM PAHs 8270D SIM Other X Standard First Standard X Standard First Standard <t< td=""><td></td><td>4</td><td></td><td>S (</td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td>TPH-HCID</td><td>$\prod_{i=1}^{n}$</td><td></td><td></td><td>1</td><td>K</td><td>Suc</td></t<>		4		S (TPH-HCID	$\prod_{i=1}^{n}$			1	K	Suc
ME UA Dask USS/Regular PO FURNAROUND FIN FURNAROUND FIN PO FURNAROUND FIN PO FURNAROUND FIN PO Standard Turnaround Rush charges authorized b Dispose after 30 days Dother Cocher ANALYSES REQUESTED Archive Samples Dother Cocher X SVOCs by 8270D SIM PAHs 8270D SIM Other X Standard First Standard X Standard First Standard <t< td=""><td></td><td>۲.</td><td>ř</td><td>T MIE</td><td>i </td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>TOL</td></t<>		۲.	ř	T MIE	i						<u> </u>										TOL
ME UA 27 VS VS Po # PO # TURNAROUND TIN PO # Standard Turnaround NALYSES REQUESTED Dispose after 30 days Dother Other Notes X SVOCs by 8270D SWOCs by 8270D SAMPLE DISPOSA Dother Other Notes Other X Standard Y PAHs 8270D SIM HILD DISPOSA Notes Other X Standard Y PAHs 8270D Y PAHs 8270D Notes HILD Y PAHs 8270D Y PAHs 9270D Y PAHs 9270D Y PAHs 9270D Y PAHs 9270D Y PATE Y PATE Y PATE Y PATE Y PATE			١	Pet.				+													YC
Page# USS/RUS Page# of TURNAROUND TIN TURNAROUND TIN Standard Turnaround SRUSH 24E 121 Rush charges authorized b Dispose after 30 days Charchive Samples Charchive Samples Charchive Samples Charchive Samples Charchive Samples Charchive Samples Dother Helid Helid Charchive Samples DATE Helid Charchive Samples Charchive Samples DATE Helid Charchive Samples Charchive Samples The Standard Charchive Charchive Samples Charchive S					X			×			<u> </u>				Chloring of VOCs by 8260C	ANA		Ę			ME
Page# USS/RUS Page# of TURNAROUND TIN TURNAROUND TIN Standard Turnaround SRUSH 24E 121 Rush charges authorized b Dispose after 30 days Charchive Samples Charchive Samples Charchive Samples Charchive Samples Charchive Samples Charchive Samples Dother Helid Helid Charchive Samples DATE Helid Charchive Samples Charchive Samples DATE Helid Charchive Samples Charchive Samples The Standard Charchive Charchive Samples Charchive S	70														SVOCs by 8270D	LYSE		IOA	S.	2	04
Page# USS/RUS Page# of TURNAROUND TIN TURNAROUND TIN Standard Turnaround SRUSH 24E 121 Rush charges authorized b Dispose after 30 days Charchive Samples Charchive Samples Charchive Samples Charchive Samples Charchive Samples Charchive Samples Dother Helid Helid Charchive Samples DATE Helid Charchive Samples Charchive Samples DATE Helid Charchive Samples Charchive Samples The Standard Charchive Charchive Samples Charchive S	Sam		6	\mathbb{N}			-		ļ		<u> </u>			<u> </u>	PAHs 8270D SIM	SRE		CE T	Sh.	ŧ	Le la
$\frac{VSS}{k} + \frac{1}{Pagg} + \frac{of}{TURNAROUND TIN}$ TURNAROUND TIN and ard Turnaround USH 24L 721 sh charges authorized b sh charges authorized b rchive Samples ther ther DATE DATE DATE DATE DATE DATE	ples		5	SV		_			-		<u> </u>	1		<u> </u>		QUES		0			
HILDISPOSA authorized b s authorized b rer 30 days mples mples HILQ HILQ	recei			E CY												STED		0	Rus		1_1
HILDISPOSA authorized b s authorized b rer 30 days mples mples HILQ HILQ	ived					_	_			-	+					$\left \right $	rchive ther_	SA	USH sh cha	TU tanda	VS
POSA bized b			2	2							+						e Samj	MPLE after	246 rges a	RNAR rd Tu	# \$
	11		107	127/									.	मि			oles	30 da	uthori	<u>OUNI</u>	-22
		,	3	12-	-1			1-	+	T				E	Votes			90SAI ys	zed by) TIM nd	ور س
			250	1 00	IME									.			and the second sec	Ľ		Б	La la

Ph. (206) 285-8282	Seattle, WA 98119-2029 Reli	3012 16 th Avenue West Rece	Friedman & Bruya, Inc. Reli		-20	-72.5	-25-	-3 U	~ 3 2 , 5	- 35	- 37.5	0H- 5-MW	- <i>4O</i>	AMN-35-37.5	Sample ID			V A SOO	Report To JA SSALC	709497
Received by:	Relinquished by:	Received by:	Relinquished by:		70	19	18	12/	16	15	Nef 1	13	كمآ	11/A-E	Lab ID			LT. Marchest Emerst Frances Frances	1.1001	er (
	æ	í.	A NA	SIGNATURE										9/27/19	Date Sampled			I tan rim	5	
		L.	K		0825-	0830	0835	0855	0100	erios-	Olic	0915	1350	1340	Time Sampled		REMARKS		PROJE	SAMPLE CHAIN OF CUSTODY
		R	writte											1,00	Sample Type		KS		PROJECT NAME	MPLE CHAIN OF SAMPLERS (signature)
		K	the	PRI	-									2	# of Jars					OF (
	~		19	PRINT NAME								<u> </u>			TPH-HCID				\downarrow	l SUS,
		3	relin												TPH-Diesel					FOD
			R	•											TPH-Gasoline BTEX by 8021B	$\left \right $				N N
	: 		N.		X		-	+		X		1			voCs by 8260C	ANA	7		k	·
															SVOCs by 8270D	LYSE	IOAN	ĨĊ,	PO #	ME ON
Sam		6	terio	0				<u> </u>	_			_			PAHs 8270D SIM	IS RE	INVOICE TO	1902.18	#	te/
Samples received at	1	A	4	COMPANY		-						<u> </u>				ANALYSES REQUESTED	0	•		I A
rece		Ī		ANY	 											STED				
IVed									-		_					-	S/ Dispos Archiv Dther	sh cha	C Standa	Pau TU
	-	La La	12	+			_				+					-	SAMPLE DI Dispose after 30 Archive Samples	arges a	urd Tu	Page #
24		1 T	1274	DATE										1			SAMPLE DISPO Dispose after 30 days Archive Samples Other	author	Standard Turnaround	ROUN Y
	3	12	-5			+	+				+			.βľ	Notes		SAMPLE DISPOSAL nose after 30 days nive Samples er	Rush charges authorized by:	und	$\frac{1}{2} \int \frac{\beta^2}{\beta^2} \frac{\beta^2}{\beta^2} \frac{1}{\beta^2} $
		4	5	TIME										F			F	уу:		
		ЦČ		E] []	Ľ		

Friedman & Bruya, Inc. R. 3012 16 th Avenue West R. Seattle, WA 98119-2029 R. Ph. (206) 285-8282 R.				1	1	AMW-5-15	Sample ID		Report To Teste Jong Company Aste Jong Address Jong Hand Hand
SI Relinquished by: Received by: Relinquished by: Received by:				23	22	ZIA-F	Lab ID		all all
SIGNATURE						$\frac{1}{1}$	Date Sampled) com
				res	0810	0815	Time Sampled		SAMPLE CHAIN OF CUSTODY SAMPLERS (signature)
RD						51	Sample Type		AMPLE CHAIN OF SAMPLERS (signature) PROJECT NAME REMARKS
Melin					+	5	Jars of TPH-HCID		
NAME			+ +				TPH-Diesel TPH-Gasoline		
		-			×		BTEX by 8021B chlorided VOCs by 8260C	ANA	
Sa This							SVOCs by 8270D PAHs 8270D SIM	그되	F UM/27 PO# INVOICE TO
mples rec								EQUEST	
Spuct 9/27 Spuct 9/27 TZ-AD 9/2 Samples received at 4								ED	VSS/B Page # TURN/ TURN/ B Standard 7 B RUSH Rush charge SAMP D Dispose aff D Archive Sa D Other
1 at 4					4	1101			VSS/BOS Page # of TURNAROUND TIME TURNAROUND TIME I Standard Turnaround I RUSH Rush charges authorized by. SAMPLE DISPOSAL Dispose after 30 days I Archive Samples I Other
						T	Notes		of TIME ound orized by SPOSAL lays
Teo I	TIME								

Phone_ Report To City, State, ZIP Address_ Company_CASpect Amw - 40 -Hmw - 40 - 60.0AMW -Amus - 40 - 75.0 AMW - 40 - 63,5 3012 16th Avenue West Friedman & Bruya, Inc. ANNU - 40 Ph. (206) 285-8282 Seattle, WA 98119-2029 HMW - 40 - 01.5 AMW-HD-Amw - 40 - 89.0 Sample ID ЧD 2-V720250 0.58-0.081 55.0 Email Smith Cospections which we Relinquished by Relinquished by Received by: Received by: 25 22 28 てく 30 3 X دن دح Lab ID SIGNATURE t26 Date Sampled 4 õ SAMPLE CHAIN OF CUSTODY $M \not\in \mathcal{O}(23)$ if 1215 13/0 Time Sampled 1255 1435 1320 8 1410 521/ 315 SAMPLERS (signature) NE 84 4104 REMARKS 1.95 Sample Type Ð M 5 Jars # of R S 5 5 \mathcal{T} N JI 24 PRINT NAME TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B chlorinkd VOCs by 8260C Rit ANALYSES REQUESTED 862961 $\overleftarrow{}$ X X \succ \times INVOICE TO \succ 17 SVOCs by 8270D PO # Samples received at PAHs 8270D SIM PORT), COMPANY □ Dispose after 30 days □ Archive Samples □ Other D Standard Turnaround Rush charges authorized by TURNAROUND TIME Page # SAMPLE DISPOSAL LSS/ 4 ↓ °C 311216 3/27/10 DATE N st (K to to Notes "L 10/2/19 0-6 011/1 TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 14, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the additional results from the testing of material submitted on September 27, 2019 from the NE 8th + 106th 190298, F&BI 909484 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP1014R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 27, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC NE 8th + 106th 190298, F&BI 909484 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
909484 -01	AMW-4D-5.5
909484 -02	AMW-4D-10.0
909484 -03	AMW-4D-15.0
909484 -04	AMW-4D-20.0
909484 -05	AMW-4D-25.0
909484 -06	AMW-4D-30.0
909484 -07	AMW-4D-35.0
909484 -08	AMW-4D-40.0
909484 -09	AMW-4D-45.0

Methylene chloride was detected in sample AMW-4D-20.0. The data were flagged as due to laboratory contamination.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4D-5.5 09/27/19 10/10/19 10/10/19 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th + 106th 190298, F&BI 909484 909484-01 101026.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz	-d4	% Recovery: 96 92 99	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:	(Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ene (EDC)	$< 0.005 \\ < 0.05 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.003 \\ < 0.005 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4D-2 09/27/19 10/09/19 10/10/19 Soil mg/kg (ppn	0.0 n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th + 106th 190298, F&BI 909484 909484-04 100961.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 95 94 98	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	$\begin{array}{c} < 0.005 \\ < 0.05 \\ < 0.005 \\ 0.065 \ lc \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.003 \\ < 0.003 \\ < 0.005 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4D-3 09/27/19 10/09/19 10/10/19 Soil mg/kg (ppn	0.0 n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th + 106th 190298, F&BI 909484 909484-06 100962.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 97 98 99	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane	ethene ene (EDC)	$\begin{array}{c} < 0.005 \\ < 0.05 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \end{array}$		
1,1,1-Trichloroetha Trichloroethene Tetrachloroethene	ne	<0.005 <0.003 <0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 10/10/19 10/10/19 Soil mg/kg (ppm) D		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th + 106th 190298, F&BI 909484 09-2454 mb2 101024.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz	-d4	9 Recovery: 102 103 90	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:	Com	ncentration g/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	thene ene (EDC)	< 0.005 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.003 < 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 10/09/19 10/10/19 Soil mg/kg (ppm) D		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th + 106th 190298, F&BI 909484 09-2454 mb 100959.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz	-d4	6 Recovery: 101 97 98	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:	Com	ncentration g/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroe	thene	<0.005 <0.05 <0.005 <0.005 <0.005		
1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ene (EDC)	<0.005 <0.005 <0.005 <0.005 <0.003 <0.005		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/14/19 Date Received: 09/27/19 Project: NE 8th + 106th 190298, F&BI 909484

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 909484-04 (Duplicate)

Laboratory coue. 505404 04	(L'apricato)	Sample	Duplicate	
	Reporting Units	Result	Result	RPD
Analyte		(Wet wt)	(Wet wt)	(Limit 20)
Vinyl chloride	mg/kg (ppm)	< 0.005	< 0.005	nm
Chloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
Methylene chloride	mg/kg (ppm)	$0.059 \ lc$	0.060 lc	2
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1-Dichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1,1-Trichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
Trichloroethene	mg/kg (ppm)	< 0.003	< 0.003	nm
Tetrachloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	control Sample			D (
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	0.05	96	94	60 - 136	2
Chloroethane	mg/kg (ppm)	0.05	94	94	65 - 132	0
1,1-Dichloroethene	mg/kg (ppm)	0.05	94	95	70 - 130	1
Methylene chloride	mg/kg (ppm)	0.05	74	75	52 - 150	1
trans-1,2-Dichloroethene	mg/kg (ppm)	0.05	96	97	70 - 130	1
1,1-Dichloroethane	mg/kg (ppm)	0.05	96	97	70 - 130	1
cis-1,2-Dichloroethene	mg/kg (ppm)	0.05	95	96	70 - 130	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	91	92	70 - 130	1
1,1,1-Trichloroethane	mg/kg (ppm)	0.05	95	96	70-130	1
Trichloroethene	mg/kg (ppm)	0.05	94	92	70-130	2
Tetrachloroethene	mg/kg (ppm)	0.05	94	93	70-130	1

ENVIRONMENTAL CHEMISTS

Date of Report: 10/14/19 Date Received: 09/27/19 Project: NE 8th + 106th 190298, F&BI 909484

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 909484-04 (Duplicate)

·	Reporting Units	Sample Result	Duplicate Result	RPD
Analyte	Reporting Onits	(Wet wt)	(Wet wt)	(Limit 20)
Vinyl chloride	mg/kg (ppm)	< 0.005	< 0.005	nm
Chloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
Methylene chloride	mg/kg (ppm)	$0.059 \ lc$	0.060 lc	2
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1-Dichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1,1-Trichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
Trichloroethene	mg/kg (ppm)	< 0.003	< 0.003	nm
Tetrachloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	control Dample			D (
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	0.05	96	94	60-136	2
Chloroethane	mg/kg (ppm)	0.05	94	94	65 - 132	0
1,1-Dichloroethene	mg/kg (ppm)	0.05	94	95	70 - 130	1
Methylene chloride	mg/kg (ppm)	0.05	74	75	52 - 150	1
trans-1,2-Dichloroethene	mg/kg (ppm)	0.05	96	97	70 - 130	1
1,1-Dichloroethane	mg/kg (ppm)	0.05	96	97	70 - 130	1
cis-1,2-Dichloroethene	mg/kg (ppm)	0.05	95	96	70-130	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	91	92	70-130	1
1,1,1-Trichloroethane	mg/kg (ppm)	0.05	95	96	70 - 130	1
Trichloroethene	mg/kg (ppm)	0.05	94	92	70-130	2
Tetrachloroethene	mg/kg (ppm)	0.05	94	93	70-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Received by:	Seattle, WA 98119-2029 Relinquished by:	يز رز	7-7	AMMW-40-45.009	PMW -4D - 40.0 08	70 0.25- 04 - MWH	Amw - 40 - 30.0 06	MMW - 40 - 25.005	Amin - 40 -20.0 04	PMW - 45 - 15,0 03	AMW - 413-10.0 02	Amw-40-5.5 01			Phone Email Janvith Orspectantsetting on	City, State, ZIP	Company Aspect	909484 Report To 2853(a Smith
. Y		ed by:	SIGN	 								AB	Lab ID		with may			th
	5	Mr	SIGNATURE	th								912711	Date Sampled		rcturns			
				1040	1030	1025	0942	0930	e160	0900	0850	5420	Time Sampled		whire o	REMARKS	PROJEC	SAMPL
	K	mittacorde		4		/						Soil	Sample Type		M	RKS	NE SA	SAMPLE CHAIN OF CUSTODY
	VINA	120	PRIN	5	ליא	67	σŢ	5	5	S	UH	VI	# of Jars) F	N OF ature)
		SVO	PRINT NAME	 									TPH-HCID				1064	Cus
			ME	 									TPH-Diesel				A.	
		E.		 									TPH-Gesoline BTEX by 8021B					YC
				 		\times	\otimes		$\overline{\mathcal{N}}$			\boxtimes	- VOCs by 8260C	ANA	×	IJ	~	XE
		AS		 0									SVOCs by 8270D	LYSE	R	NOI	-po#	
	TT	5	2	 ang									PAHs 8270D SIM	SRE		INVOICE TO	\$ 6206 i	19/2
	P	-	COMPANY	 les 1										QUES		0	~~) 	L'Y
			Y	 rece i										ANALYSES REQUESTED				- 10
				 Samples received at											[] Archive [] Other	SA	tanda USH sh cha	d D
	23/6	q/					National Programming						~		I Archive Samples I Other	SAMPLE DISPO	D Standard Turnaround	BO3
		b1/20	DATE	ين 1			1944 N. 1944	6101	W I			F	1-24-2		ples	30 da	the the the	UUNI
 	1911:1			1.24 -					<u>à</u>			〕	≯-print 9/17/1s Notes			SAMPLE DISPOSAL	Standard Turnaround KUSH 14 + 741 Rush charges authorized by:	BO3/US3
	50	50 = N	TIME						Hick ?			4				-		5
•	3											<u></u>			L			J`

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 1, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the results from the testing of material submitted on September 27, 2019 from the NE 8th + 106th 190298, F&BI 909484 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Meilani Lanier-Kamaha'o ASP1001R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 27, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC NE 8th + 106th 190298, F&BI 909484 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
909484 -01	AMW-4D-5.5
909484 -02	AMW-4D-10.0
909484 -03	AMW-4D-15.0
909484 -04	AMW-4D-20.0
909484 -05	AMW-4D-25.0
909484 -06	AMW-4D-30.0
909484 -07	AMW-4D-35.0
909484 -08	AMW-4D-40.0
909484 -09	AMW-4D-45.0

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-4D-3 09/27/19 09/30/19 09/30/19 Soil mg/kg (ppn	5.0 1) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th + 106th 190298, F&BI 909484 909484-07 093011.D GCMS4 MS/AEN
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 99 98 99	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.005 <0.05		
Chloroethane 1,1-Dichloroethene		<0.05		
Methylene chloride		< 0.05		
trans-1,2-Dichloroe		< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	· /	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applicab 09/30/19 09/30/19 Soil mg/kg (ppm)	le	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th + 106th 190298, F&BI 909484 09-2357 mb 093010.D GCMS4 MS/AEN
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane	-d4	103	50	150
Toluene-d8		98	50	150
4-Bromofluorobenz	ene	97	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride		< 0.05		
trans-1,2-Dichloroe		< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth		< 0.005		
1,2-Dichloroethane	· /	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/19 Date Received: 09/27/19 Project: NE 8th + 106th 190298, F&BI 909484

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 909484-07 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet wt)	Duplicate Result (Wet wt)	RPD (Limit 20)
Vinyl chloride	mg/kg (ppm)	< 0.005	< 0.005	nm
Chloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
Methylene chloride	mg/kg (ppm)	< 0.05	< 0.05	nm
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1-Dichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1,1-Trichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
Trichloroethene	mg/kg (ppm)	< 0.003	< 0.003	nm
Tetrachloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	Joint of Dampie		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	0.05	96	98	50-158	2
Chloroethane	mg/kg (ppm)	0.05	101	96	48 - 179	5
1,1-Dichloroethene	mg/kg (ppm)	0.05	98	96	63-144	2
Methylene chloride	mg/kg (ppm)	0.05	97	85	17 - 179	13
trans-1,2-Dichloroethene	mg/kg (ppm)	0.05	101	96	70-130	5
1,1-Dichloroethane	mg/kg (ppm)	0.05	98	95	70-130	3
cis-1,2-Dichloroethene	mg/kg (ppm)	0.05	98	95	70-130	3
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	96	96	69-137	0
1,1,1-Trichloroethane	mg/kg (ppm)	0.05	100	97	71-140	3
Trichloroethene	mg/kg (ppm)	0.05	96	95	70-130	1
Tetrachloroethene	mg/kg (ppm)	0.05	102	100	35 - 176	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

0/22/6	"FB	1	XIN #		4 <u>-</u>	5	Received by:	3012 16" Avenue West Rec
bi/22/b	Aspert	orduran	mattheora	3	7	NUN	Relinquished by:	ل ي
	COMPANY	PRINT NAME	PRIN			SIGNATURE	SI	
ecceived at 3 of	Samples received		r v	T	1040	K	09	1911 - 40 - 45.0
			57		1030		80	MMN -4D - 40.0
			07	Ì	1025	· · · ·	1 40	AMW - 40 -35.0
			σ		0948		06	Amw - 40 - 30.0
			5		6930		51-	19MW - 40 - 25.0
			গ		0910		04	Amin - 40 -20.0
		• · · · · · · · · · · · · · · · · · · ·	S		0900		50	PM/W - 413 - 15,0
		-	UH		0850	-	02	ANNM - 415-10.0
t d				100	0845	9/23/11	OI A-E	AMW-40-5.5
X-print 9/27/15 Notes	VOCs by 8260C SVOCs by 8270D PAHs 8270D SIM	TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B	Sample # of Type Jars		Time Sampled	Date Sampled	Lab	Sample ID
TED	ANALYSES REQUESTED	×-						
 Duspose after 50 days Archive Samples Other 	AP			BMC	A Contraction	spection	Email Jonvith aspectantietting, on	PhoneEmail
SAMPLE DISPOSAL	INVOICE TO			REMARKS	REM			61-1-2 TT
TURNAROUND TIME □ Standard Turnaround KRUSH 24⊬t¢ť Rush charges authorized by:	190298	06th	ature 4	SAMPLERS (sign PROJECT NAME NE Str	- SAM		Smith	Report To JESS (M S Company Appelt Address

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 1, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the results from the testing of material submitted on September 26, 2019 from the NE 8th and 106th 190298, F&BI 909450 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Meilani Lanier-Kamaha'o ASP1001R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 26, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC NE 8th and 106th 190298, F&BI 909450 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
AMW-1-5.0
AMW-1-10.0
AMW-1-15.0
AMW-1-20.0
AMW-1-22.5
AMW-1-25.0
AMW-1-27.5
AMW-1-30.0
AMW-1-32.5
AMW-1-35.0
AMW-1-37.5
AMW-1-40.0
AMW-1-42.5
AMW-1-45.0
AMW-2-5
AMW-2-11
AMW-2-14
AMW-2-19
AMW-2-24
AMW-2-29

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/19 Date Received: 09/26/19 Project: NE 8th and 106th 190298, F&BI 909450 Date Extracted: 09/26/19 Date Analyzed: 09/26/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 58-139)
AMW-1-15.0 909450-03	<5	93
$\underset{909450-11}{\text{AMW-1-37.5}}$	<5	91
$\underset{909450-14}{\text{AMW-1-45.0}}$	<5	90
AMW-2-19 909450-18	<5	89
Method Blank 09-2315 MB	<5	92

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/19 Date Received: 09/26/19 Project: NE 8th and 106th 190298, F&BI 909450 Date Extracted: 09/26/19 Date Analyzed: 09/26/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
AMW-1-15.0 909450-03	<50	<250	95
$\underset{909450-11}{\text{AMW-1-}37.5}$	<50	<250	99
AMW-1-45.0 909450-14	<50	<250	94
Method Blank ^{09-2375 MB}	<50	<250	105

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-1-15.0 09/26/19 09/26/19 09/26/19 Soil mg/kg (ppm))) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th and 106th 190298 909450-03 092622.D GCMS4 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	100	50	150
Toluene-d8		96	50	150
4-Bromofluorobenz	ene	97	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	e e e e e e e e e e e e e e e e e e e	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth		< 0.005		
1,2-Dichloroethane	· · · ·	< 0.005		
1,1,1-Trichloroetha	ine	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-1-37.8 09/26/19 09/26/19 09/26/19 Soil mg/kg (ppm	5) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th and 106th 190298 909450-11 092623.D GCMS4 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	101	50	150
Toluene-d8		97	50	150
4-Bromofluorobenz	zene	97	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	e	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth		< 0.005		
1,2-Dichloroethane	· /	< 0.005		
1,1,1-Trichloroetha	ine	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-1-45.0 09/26/19 09/26/19 09/26/19 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th and 106th 190298 909450-14 092624.D GCMS4 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	50	150
Toluene-d8		98	50	150
4-Bromofluorobenz	ene	99	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride)	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth		< 0.005		
1,2-Dichloroethane	. ,	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-2-19 09/26/19 09/26/19 09/26/19 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th and 106th 190298 909450-18 092625.D GCMS4 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	98	50	150
Toluene-d8		111	50	150
4-Bromofluorobenz	ene	135	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride)	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	· /	< 0.005		
1,1,1-Trichloroetha	.ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 09/27/19 09/27/19 Soil mg/kg (ppm		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th and 106th 190298 09-2347 mb 092710.D GCMS4 MS/AEN
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	100	50	150
Toluene-d8		99	50	150
4-Bromofluorobenz	ene	99	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride	e e	< 0.05		
trans-1,2-Dichloroe	ethene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth	ene	< 0.005		
1,2-Dichloroethane	· /	< 0.005		
1,1,1-Trichloroetha	ine	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/19 Date Received: 09/26/19 Project: NE 8th and 106th 190298, F&BI 909450

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 90	9450-11 (Duplic	ate)			
		Samp	le D	uplicate	
	Reporting	Resu	lt I	Result	RPD
Analyte	Units	(Wet V	Vt) (V	Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code: La	aboratory Contro	l Sample			
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	85	61 - 153	_

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/19 Date Received: 09/26/19 Project: NE 8th and 106th 190298, F&BI 909450

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	909440-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	102	102	64-133	0
Laboratory Code: Laboratory Control Sample							
			Percent	t			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	100	58-1	147		

10

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/19 Date Received: 09/26/19 Project: NE 8th and 106th 190298, F&BI 909450

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 909450-03 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet wt)	Duplicate Result (Wet wt)	RPD (Limit 20)
Vinyl chloride	mg/kg (ppm)	< 0.005	< 0.005	nm
Chloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
Methylene chloride	mg/kg (ppm)	< 0.05	< 0.05	nm
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1-Dichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1,1-Trichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
Trichloroethene	mg/kg (ppm)	< 0.003	< 0.003	nm
Tetrachloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	control bample		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	0.05	99	89	50 - 158	11
Chloroethane	mg/kg (ppm)	0.05	99	97	48-179	2
1,1-Dichloroethene	mg/kg (ppm)	0.05	95	98	63-144	3
Methylene chloride	mg/kg (ppm)	0.05	99	97	17 - 179	2
trans-1,2-Dichloroethene	mg/kg (ppm)	0.05	96	99	70-130	3
1,1-Dichloroethane	mg/kg (ppm)	0.05	94	97	70-130	3
cis-1,2-Dichloroethene	mg/kg (ppm)	0.05	94	97	70-130	3
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	93	99	69 - 137	6
1,1,1-Trichloroethane	mg/kg (ppm)	0.05	97	100	71 - 140	3
Trichloroethene	mg/kg (ppm)	0.05	93	101	70-130	8
Tetrachloroethene	mg/kg (ppm)	0.05	98	101	35 - 176	3

ENVIRONMENTAL CHEMISTS

9

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

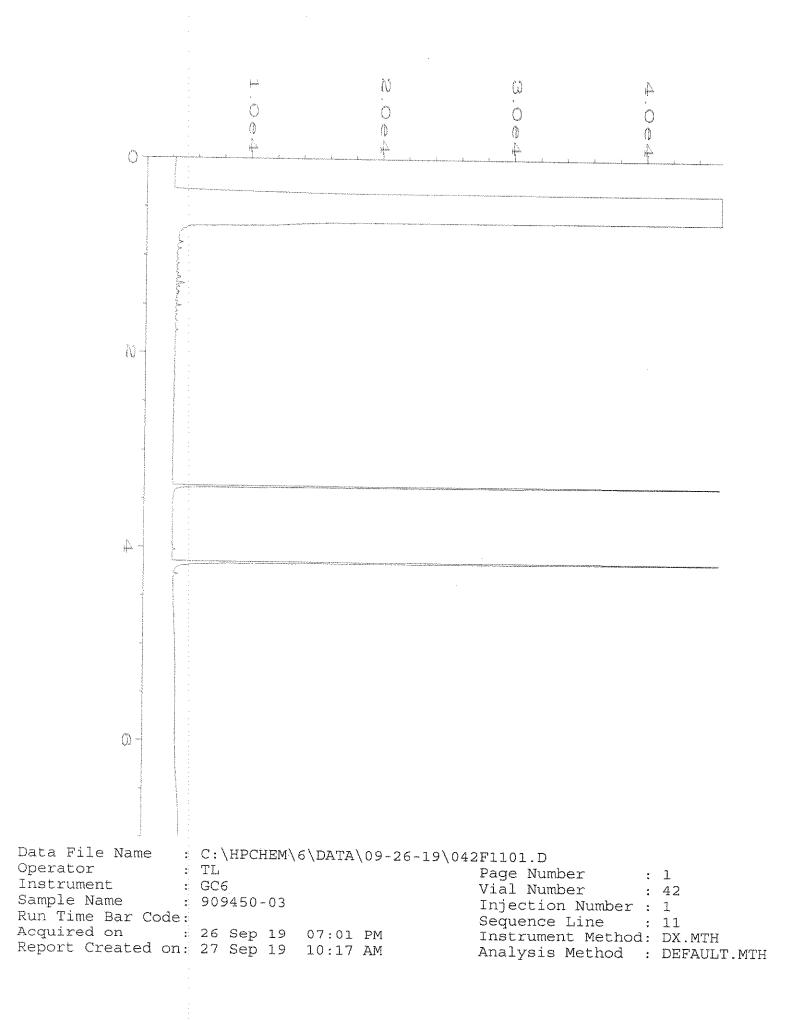
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

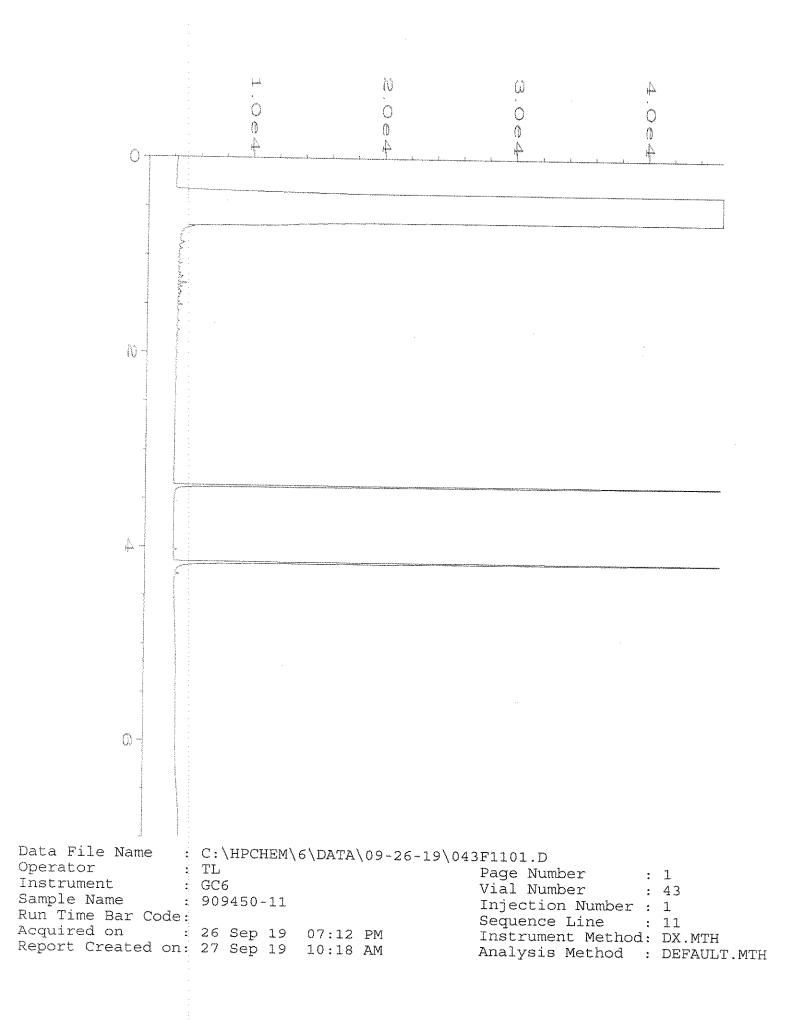
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

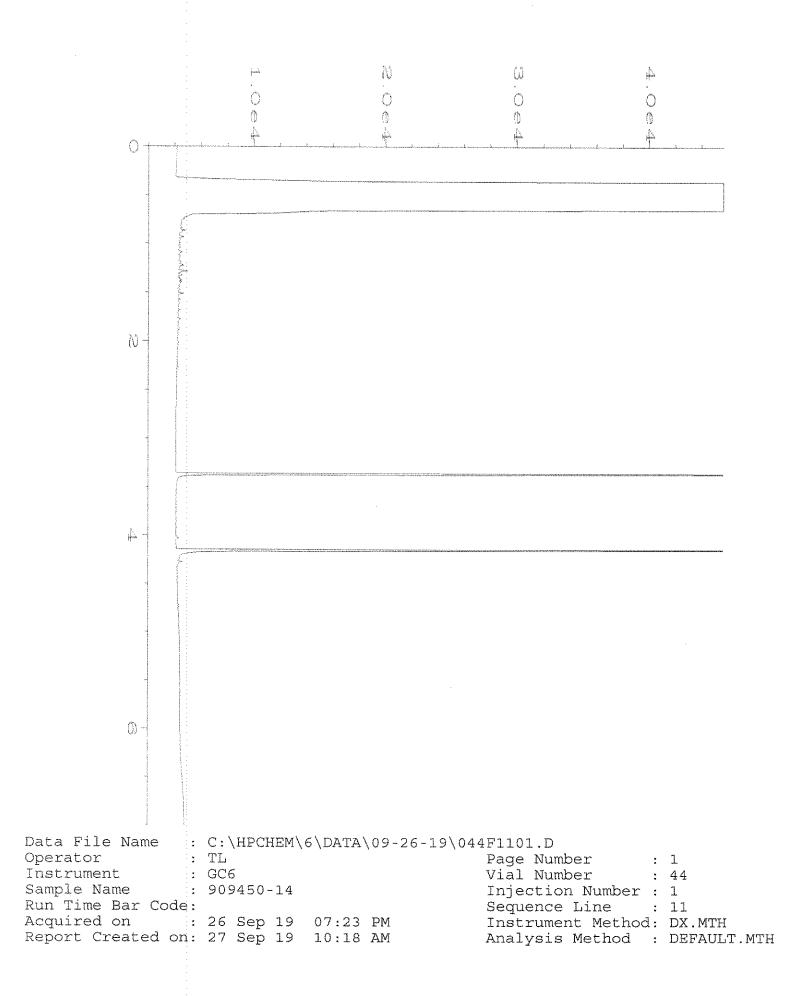
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

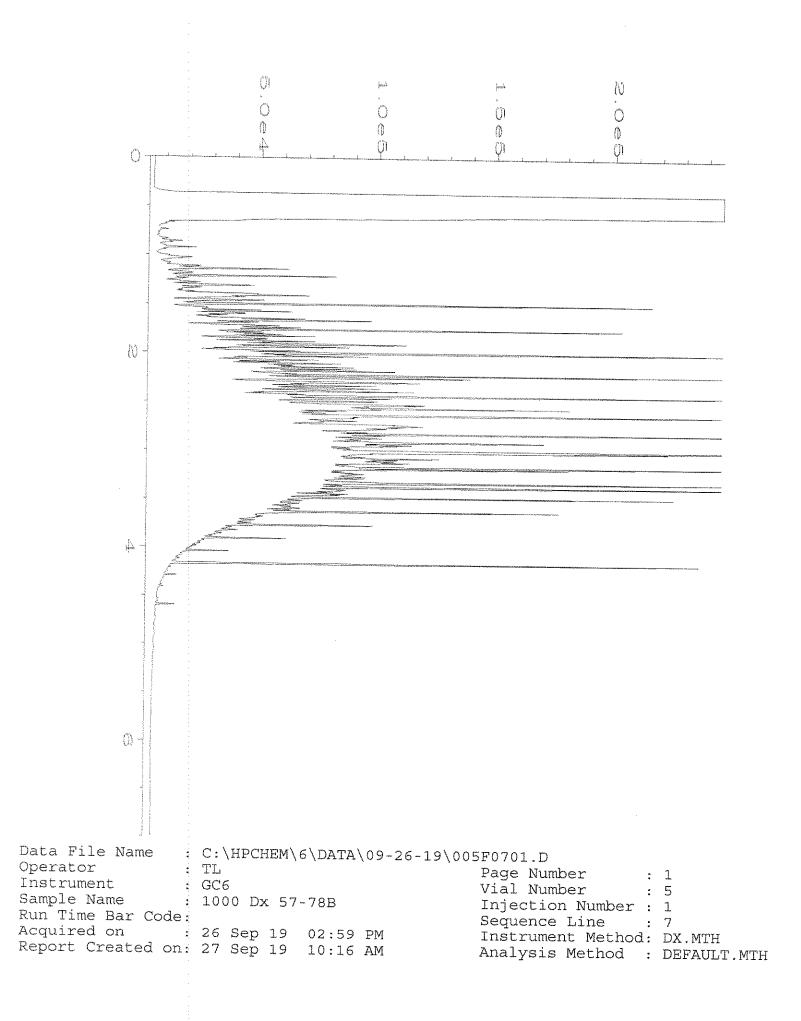
L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.


pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 24, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included is the amended report from the testing of material submitted on October 3, 2019 from the NE 8th St, F&BI 910083 project. Per your request, sample ID AMW-35-100219 was changed to AMW-3S-100219.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Meilani Lanier-Kamaha'o ASP1023R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 23, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the results from the testing of material submitted on October 3, 2019 from the NE 8th St, F&BI 910083 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Meilani Lanier-Kamaha'o ASP1023R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 3, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC NE 8th St, F&BI 910083project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
910083 -01	AMW-4D-100219
910083 -02	AMW-3D-100219
910083 -03	AMW-17-100219
910083 -04	AMW-18-100219
910083 -05	AMW-3S-100219

Upon receipt, the 40 ml VOA vials were placed in the freezer, cracking the containers. Fresh VOAs were decanted from the provided amber liter and the data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-3S-10 10/03/19 10/04/19 10/04/19 Water ug/L (ppb)	00219 pc	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th St, F&BI 910083 910083-05 100426.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 106 102 106	Lower Limit: 93 87 85	Upper Limit: 107 110 112
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	e ethene ene e (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 3		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 10/04/19 10/04/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th St, F&BI 910083 09-2401 mb 100418.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 106 101 112 vo	Lower Limit: 93 91 90	Upper Limit: 107 108 108
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/23/19 Date Received: 10/03/19 Project: NE 8th St, F&BI 910083

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 910032-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	106	61 - 139
Chloroethane	ug/L (ppb)	50	<1	107	55 - 149
1,1-Dichloroethene	ug/L (ppb)	50	<1	98	71 - 123
Methylene chloride	ug/L (ppb)	50	<5	72	61 - 126
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	89	72 - 122
1,1-Dichloroethane	ug/L (ppb)	50	<1	93	79 - 113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	95	63 - 126
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	101	70 - 119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	90	75 - 121
Trichloroethene	ug/L (ppb)	50	<1	93	73 - 122
Tetrachloroethene	ug/L (ppb)	50	5.5	97	40-155

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Co	nor or sumpro		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	112	107	70 - 128	5
Chloroethane	ug/L (ppb)	50	113	112	66-149	1
1,1-Dichloroethene	ug/L (ppb)	50	107	109	72 - 121	2
Methylene chloride	ug/L (ppb)	50	92	94	63 - 132	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	95	94	76 - 118	1
1,1-Dichloroethane	ug/L (ppb)	50	99	98	77 - 119	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	98	96	76 - 119	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	108	107	75 - 116	1
1,1,1-Trichloroethane	ug/L (ppb)	50	96	96	80-116	0
Trichloroethene	ug/L (ppb)	50	99	98	72-119	1
Tetrachloroethene	ug/L (ppb)	50	101	102	78-109	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Samples received at 2 of	Samp			Y:	Ph. (206) 285-8282 Received by:	Ph.
			`	d by:	2029	Seat
	FBI	I		Khoi Hoans	1	301
10/03/6 1700	Aspect	Mothur M. Caris	2	ea by: ////////	ς. T	rrie
DATE TIME	COMPANY	PRINT NAME		SIGNATURE		5
1 40 - 10						
10/23/19 permit						
CVOCS 1-05		· ·				
X-onlyreport						
71000 NTUS			1530		AMW-35-100319 05	AM
			0440		MW-18-100319 54	Z
			1330		MW-17-100319 63	3
Xton NTUS			1210	10/3/19	W-3D-100319 07	AMIL
	· · · · · · · · · · · · · · · · · · ·	GM 6 XX X	040	A-C 10/2/19	AMW-40-100219 0(AM
Notes	SVOCs by 8270D PAHs 8270D SIM	Type Jars Jars of TPH-HCID H.Id TPH-Casoline BTEX by 8021B	Time Sampled	Lab ID Date Sampled	Sample ID L	
	ANALYSES REQUESTED	ANA				
SAMPLE DISPOSAL Dispose after 30 days Archive Samples Other	INVOICE TO	per ML 10/4/19 ME	- Hold Dx+6v	Me	City, State, ZIP PhoneEmail_Orv	City
D Standard Turnaround ARUSH 24 Kr Rush charges authorized by: JeSN ca Swith	PO #	AME ST	N < 8 A S	1 ting	Company Aspect Consc Address Seattle	Cor
Page # / of / TURNAROUND TIME		SAMPLERS (signature) Malla MA La	SAMPLE	5	Report To Vessica Smi	Rej
vmi/ COS	ME 10/3/19	SAMPLE CHAIN OF CUSTODY	SAMPLE (910083	* * 16

•

•

1. A Street

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 23, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the results from the testing of material submitted on October 3, 2019 from the NE 8th St, F&BI 910083 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Meilani Lanier-Kamaha'o ASP1023R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 3, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC NE 8th St, F&BI 910083project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
910083 -01	AMW-4D-100219
910083 -02	AMW-3D-100219
910083 -03	AMW-17-100219
910083 -04	AMW-18-100219
910083 -05	AMW-35-100219

Upon receipt, the 40 ml VOA vials were placed in the freezer, cracking the containers. Fresh VOAs were decanted from the provided amber liter and the data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-35-10 10/03/19 10/04/19 10/04/19 Water ug/L (ppb))0219 pc	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th St, F&BI 910083 910083-05 100426.D GCMS9 AEN/MS
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
_	14	106	93	107
1,2-Dichloroethane Toluene-d8	-04	108	93 87	107
4-Bromofluorobenz		102 106	85	110
4-Dromonuorobenz	ene	106	00	112
		Concentration		
Compounds:		ug/L (ppb)		
Vinyl chloride		< 0.2		
Chloroethane		<1		
1,1-Dichloroethene		<1		
Methylene chloride	9	<5		
trans-1,2-Dichloroe	ethene	<1		
1,1-Dichloroethane		<1		
cis-1,2-Dichloroeth	ene	<1		
1,2-Dichloroethane	(EDC)	<1		
1,1,1-Trichloroetha	ine	<1		
Trichloroethene		<1		
Tetrachloroethene		1.3		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 10/04/19 10/04/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th St, F&BI 910083 09-2401 mb 100418.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 106 101 112 vo	Lower Limit: 93 91 90	Upper Limit: 107 108 108
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/23/19 Date Received: 10/03/19 Project: NE 8th St, F&BI 910083

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 910032-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	106	61 - 139
Chloroethane	ug/L (ppb)	50	<1	107	55 - 149
1,1-Dichloroethene	ug/L (ppb)	50	<1	98	71 - 123
Methylene chloride	ug/L (ppb)	50	<5	72	61 - 126
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	89	72 - 122
1,1-Dichloroethane	ug/L (ppb)	50	<1	93	79 - 113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	95	63 - 126
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	101	70 - 119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	90	75 - 121
Trichloroethene	ug/L (ppb)	50	<1	93	73 - 122
Tetrachloroethene	ug/L (ppb)	50	5.5	97	40-155

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Co	nor or sumpre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	112	107	70 - 128	5
Chloroethane	ug/L (ppb)	50	113	112	66-149	1
1,1-Dichloroethene	ug/L (ppb)	50	107	109	72 - 121	2
Methylene chloride	ug/L (ppb)	50	92	94	63 - 132	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	95	94	76 - 118	1
1,1-Dichloroethane	ug/L (ppb)	50	99	98	77 - 119	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	98	96	76 - 119	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	108	107	75 - 116	1
1,1,1-Trichloroethane	ug/L (ppb)	50	96	96	80-116	0
Trichloroethene	ug/L (ppb)	50	99	98	72-119	1
Tetrachloroethene	ug/L (ppb)	50	101	102	78-109	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Samples received at 2 of	Samp			Y:	Ph. (206) 285-8282 Received by:	Ph.
			`	d by:	2029	Seat
	FBI	I		Khoi Hoans	1	301
10/03/6 1700	Aspect	Mothus M. Caris	2	ea by: ////////	ς. T	rrie
DATE TIME	COMPANY	PRINT NAME		SIGNATURE		5
1 40 - 10						
10/23/19 permit						
CVOCS 1-05		· ·				
X-onlyreport						
71000 NTUS			1530		AMW-35-100319 05	AM
			0440		MW-18-100319 54	Z
			1330		MW-17-100319 63	3
Xton NTUS			1210	10/3/19	W-3D-100319 07	AMIL
	· · · · · · · · · · · · · · · · · · ·	GM 6 XX X	040	A-C 10/2/19	AMW-40-100219 0(AM
Notes	SVOCs by 8270D PAHs 8270D SIM	Type Jars Jars of TPH-HCID H.Id TPH-Casoline BTEX by 8021B	Time Sampled	Lab ID Date Sampled	Sample ID L	
	ANALYSES REQUESTED	ANA				
SAMPLE DISPOSAL Dispose after 30 days Archive Samples Other	INVOICE TO	per ML 10/4/19 ME	- Hold Dx+6v	Me	City, State, ZIP PhoneEmail_Orv	City
D Standard Turnaround ARUSH 24 Kr Rush charges authorized by: JeSN ca Switt	PO #	AME ST	N < 8 A S	1 ting	Company Aspect Consc Address Seattle	Cor
Page # / of / TURNAROUND TIME		SAMPLERS (signature) Malla MA La	SAMPLE	5	Report To Vessica Smi	Rej
vmi/ COS	ME 10/3/19	SAMPLE CHAIN OF CUSTODY	SAMPLE (910083	* * 16

•

•

1. A Street

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 4, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the results from the testing of material submitted on September 30, 2019 from the NE 8th+106th 190298, F&BI 909517 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP1004R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 30, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC NE 8th+106th 190298 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
AMW-3D-5.0
AMW-3D-10.0
AMW-3D-15.0
AMW-3D-20.0
AMW-3D-25.0
AMW-3D-30.0
AMW-3D-35.0
AMW-3D-40.0
AMW-3D-45.0
AMW-3D-50.0
AMW-3D-55.0
AMW-3D-57.5
AMW-3D-65.0
AMW-3D-70.0

The presence of the methylene chloride indicated in samples AMW-3D-35.0 and AMW-3D-55.0 is likely due to laboratory. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-3D-3 09/30/19 10/02/19 10/03/19 Soil mg/kg (ppn	5.0 n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th+106th 190298, F&BI 909517 909517-07 100229.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 93 88 100	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroeth 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ene (EDC)	$\begin{array}{c} < 0.005 \\ < 0.05 \\ < 0.005 \\ 0.15 \ lc \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.003 \\ < 0.005 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-3D-4 09/30/19 10/02/19 10/03/19 Soil mg/kg (ppm	5.0 1) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th+106th 190298, F&BI 909517 909517-09 100230.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 94 91 120	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride		< 0.05		
trans-1,2-Dichloroe		< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth		< 0.005		
1,2-Dichloroethane	· · · ·	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		0.019		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-3D-5 09/30/19 10/02/19 10/03/19 Soil mg/kg (ppm	5.0 1) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th+106th 190298, F&BI 909517 909517-11 100231.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 93 105	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	thene ene (EDC)	$\begin{array}{c} < 0.005 \\ < 0.05 \\ < 0.005 \\ 0.11 \ lc \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.003 \\ < 0.005 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 10/02/19 10/02/19 Soil mg/kg (ppm) I	2	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th+106th 190298, F&BI 909517 09-2393 mb 100224.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz	-d4	% Recovery: 98 93 85	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:	Con	oncentration ng/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroeth 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	thene ene (EDC)	< 0.005 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.003 < 0.003		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/04/19 Date Received: 09/30/19 Project: NE 8th+106th 190298, F&BI 909517

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 909517-07 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet wt)	Duplicate Result (Wet wt)	RPD (Limit 20)
Vinyl chloride	mg/kg (ppm)	< 0.005	< 0.005	nm
Chloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
Methylene chloride	mg/kg (ppm)	$0.13 \ lc$	< 0.05	nm
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1-Dichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1,1-Trichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
Trichloroethene	mg/kg (ppm)	< 0.003	< 0.003	nm
Tetrachloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	Control Dample			D (
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	0.05	90	87	60-136	3
Chloroethane	mg/kg (ppm)	0.05	96	80	65 - 132	18
1,1-Dichloroethene	mg/kg (ppm)	0.05	92	87	70 - 130	6
Methylene chloride	mg/kg (ppm)	0.05	81	83	52 - 150	2
trans-1,2-Dichloroethene	mg/kg (ppm)	0.05	92	92	70 - 130	0
1,1-Dichloroethane	mg/kg (ppm)	0.05	94	95	70 - 130	1
cis-1,2-Dichloroethene	mg/kg (ppm)	0.05	91	92	70 - 130	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	92	96	70 - 130	4
1,1,1-Trichloroethane	mg/kg (ppm)	0.05	97	96	70 - 130	1
Trichloroethene	mg/kg (ppm)	0.05	94	94	70-130	0
Tetrachloroethene	mg/kg (ppm)	0.05	93	93	70-130	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Received by:	Seattle, WA 98119-2029 Relinquished by	3012 16 th Avenue West Received by:	لــــــا ئ		01 0.25-22 - MMA	AWNN-30-45,0 09	RMW-30-40.0 08	ANN - 3D- 35.0 07	Amw - 30 - 30.0 06	AMN- 30 - 25.0 05	AWW - 3D - 20.0 04	AMW-30- 15.0 03	RMW-30-10.0 02	Amw-30-5.0 011	Sample ID La		PhoneEmail	City, State, ZIP		Company Asod (st	Report To JESSI Cer Smith	40951+
y:	ed by:	y:/	ed	SIGN										01A-E 9	Lab ID		ismish @ a				>	
		(60	SIGNATURE	4			~						9/30/19	Date Sampled		Spect io					
			Ŧ		1205	1025	1015	000	0925	0920	2520	040	58 80	0830	Time Sampled		aspect ionswithing . com	REMARKS	S JN	PROJE	SAMPL	SAMPLH
		FR	Anna		<i>←</i>									Soy /	Sample Type		any	KS	NE 8th + 106th	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
	/	Í K	22	PRIN	ج_									5	# of Jars				6.4		type)	OF (
		ime	Q	PRINT NAME											TPH-HCID							TSU
		5	st	ЛЕ						-					TPH-Diesel TPH-Gasoline						\sum	OD
		,	5												BTEX by 8021B	P				(Y
		 	0												VOCs by 8260C	ANALYSES REQUESTED	2	IN	16			
		7	R						<u> </u>						SVOCs by 8270D	YSES	1	INVOICE TO	862061	PO #		>
			Del	S								<u> </u>			PAHs 8270D SIM	SRE)E TO	S	#	1	ME
T.	×	M	×.	COMPANY		\times		\times	<u> </u>		<u> </u>				cVOCs	QUES		0				0
amp				ANY					ļ							STED			Ru			9
les re									 		<u> </u>				· ·		□ Archiv □ Other	/S isposi	sh ch:	standa	Pa	30-19
Samples received at $\frac{4}{10}$ C		0	10														Archive Samples Other	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	Standard Turnaround	Page # of	191
d at		12	125	DATE	0									8	-+ X-		aples	E DI	autho	urnar	ROUI	
4		1 an	6	E	ę									Ē	X-pe ML 10/2/14 Notes			SPOS lays			ND TI	
, G		N.	$\overline{\mathbf{\omega}}$	TIME											ID/2114 NOTES			AL	by:	r Ar	ME	
		乌	R	ਸ															3 F	$\frac{d}{2}$ ML $\frac{1}{2}$	 20	SN C

21560b	•+J		SAMPLE CHAIN OF CUSTO	E CHAIN	OF	CUS	TOI	DY)		Me	0	2	30	pl-	-	\mathbf{X}	7	,	\mathbf{v}	222
Report To XX SMU	7		T TATT 7C	annusis) curan muco	\mathcal{X}_{mn}				7.	,						TURN	TURNAROUND TIME	JND	TIM		2 V
Company			PROJE	PROJECT NAME						ъ	PO #			R C	□ Standa	ard [□ Standard Turnaround ∩ RHSH	trour	ıd		
Address			N Ct	Nt Str						~:	19228	00 30		Rus	h ch	arge	Rush charges authorized by:	horiz	ed by	7	
City, State, ZIP			REMARKS	KS		i				INVOICE TO	ICE	TO			sodsi	AMP e aft	SAMPLE DISPOSAL Dispose after 30 days	ISPO)SAI		[
PhoneEmail_										1 P					rchiv	e Sa	Archive Samples Other	0			L
									ANA	ANALYSES REQUESTED	ES R	EQU	EST	ΈD							
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	CVOG						N	Notes		
PMW - 30 - 55.0		9/30/19	2/2	Sq.'	5							\times					404		Ы		L
5.ES- JE - MWH	12		1230								1	*	4	of plat	ě 3 F	+		\sim			
Ammy - 30 - 65.0	13		1310									,				10/2/1A ML				ĺ	L
AMW - 30 - 70.0	14		1315	5	6		+	++						<u>├──</u> ┤		┝───┥		$\left \left\langle +\right\rangle \right $			
							+							+		+					
																					l,
							<u> </u>			ļļ					<u>++</u>						•L.
<u></u>		SIGNATURE	\mathcal{O}	Ann Ann	PRINT NAME	NT NAME	AE Verk	`\^		-10		COMPANY COMPANY	AN AN	Y		20	DATE 34/	\mathbb{D} \sim \mathbb{E}	134 134	TIME 345	┈╼┲╾┄╸╌┈┼┈┈┈╢╵┕
Ph. (206) 285-8282	Received by:											-									
																					_

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 8, 2019

Jessica Smith, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Smith:

Included are the results from the testing of material submitted on October 1, 2019 from the NE 8th+106th 190298, F&BI 910019 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP1008R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 1, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC NE 8th+106th 190298, F&BI 910019 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
910019 -01	AMW-3D-75.0
910019 -02	AMW-3D-80.0
910019 -03	AMW-3D-85.0
910019 -04	AMW-3D-90.0
910019 -05	AMW-2-093019

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-3D-75. 10/01/19 10/02/19 10/03/19 Soil mg/kg (ppm)	-	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th+106th 190298, F&BI 910019 910019-01 100232.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz	-d4	% Recovery: 104 73 106	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:	(Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride		<0.005 <0.05 <0.005 <0.05		
trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethan Trichloroethene	thene ene (EDC)	<0.005 <0.005 <0.005 <0.005 <0.005 <0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 10/02/19 10/02/19 Soil mg/kg (ppm		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th+106th 190298, F&BI 910019 09-2393 mb 100224.D GCMS9 AEN/MS
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane	-d4	98	50	150
Toluene-d8		93	50	150
4-Bromofluorobenz	ene	85	50	150
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.005		
Chloroethane		< 0.05		
1,1-Dichloroethene		< 0.005		
Methylene chloride		< 0.05		
trans-1,2-Dichloroe	thene	< 0.005		
1,1-Dichloroethane		< 0.005		
cis-1,2-Dichloroeth		< 0.005		
1,2-Dichloroethane	· · · ·	< 0.005		
1,1,1-Trichloroetha	ne	< 0.005		
Trichloroethene		< 0.003		
Tetrachloroethene		< 0.005		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-2-093 10/01/19 10/02/19 10/03/19 Water ug/L (ppb)	019	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th+106th 190298, F&BI 910019 910019-05 100257.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenze		% Recovery: 105 103 99	Lower Limit: 93 91 90	Upper Limit: 107 108 108
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	thene ene (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blat Not Applica 10/02/19 10/03/19 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC NE 8th+106th 190298, F&BI 910019 09-2392 mb 100254.D GCMS9 AEN/MS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 107 100 100	Lower Limit: 93 91 90	Upper Limit: 107 108 108
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	thene ene (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/08/19 Date Received: 10/01/19 Project: NE 8th+106th 190298, F&BI 910019

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 909517-07 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet wt)	Duplicate Result (Wet wt)	RPD (Limit 20)
Vinyl chloride	mg/kg (ppm)	< 0.005	< 0.005	nm
Chloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
Methylene chloride	mg/kg (ppm)	0.13 lc	< 0.05	nm
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1-Dichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,1,1-Trichloroethane	mg/kg (ppm)	< 0.005	< 0.005	nm
Trichloroethene	mg/kg (ppm)	< 0.003	< 0.003	nm
Tetrachloroethene	mg/kg (ppm)	< 0.005	< 0.005	nm

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	Control Dample			D (
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	0.05	90	87	60-136	3
Chloroethane	mg/kg (ppm)	0.05	96	80	65 - 132	18
1,1-Dichloroethene	mg/kg (ppm)	0.05	92	87	70 - 130	6
Methylene chloride	mg/kg (ppm)	0.05	81	83	52 - 150	2
trans-1,2-Dichloroethene	mg/kg (ppm)	0.05	92	92	70 - 130	0
1,1-Dichloroethane	mg/kg (ppm)	0.05	94	95	70 - 130	1
cis-1,2-Dichloroethene	mg/kg (ppm)	0.05	91	92	70 - 130	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	92	96	70 - 130	4
1,1,1-Trichloroethane	mg/kg (ppm)	0.05	97	96	70 - 130	1
Trichloroethene	mg/kg (ppm)	0.05	94	94	70-130	0
Tetrachloroethene	mg/kg (ppm)	0.05	93	93	70-130	0

ENVIRONMENTAL CHEMISTS

Date of Report: 10/08/19 Date Received: 10/01/19 Project: NE 8th+106th 190298, F&BI 910019

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Co	noror sampro		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	108	103	70-128	5
Chloroethane	ug/L (ppb)	50	106	102	66-149	4
1,1-Dichloroethene	ug/L (ppb)	50	117	110	72 - 121	6
Methylene chloride	ug/L (ppb)	50	103	100	63 - 132	3
trans-1,2-Dichloroethene	ug/L (ppb)	50	104	99	76 - 118	5
1,1-Dichloroethane	ug/L (ppb)	50	104	101	77-119	3
cis-1,2-Dichloroethene	ug/L (ppb)	50	104	99	76-119	5
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	105	106	75 - 116	1
1,1,1-Trichloroethane	ug/L (ppb)	50	102	101	80-116	1
Trichloroethene	ug/L (ppb)	50	98	98	72 - 119	0
Tetrachloroethene	ug/L (ppb)	50	100	100	78-109	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTORY NE reformer SAMPLE CHAIN OF CUSTORY Company Company Company Company Company Company NULL Company					,																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			 5							Amu - 2 - 0930	ANN -30-90.	AMN - 30 - 85	Amw -30-85.	PMW - 30-75.	Sample ID			City State ZIP	y C	5¢	910:019
AIN OF CUSTODY NE IC/CI/IA VS I/VAL Signature \mathcal{T} \mathcal{T} \mathcal{T} NUE \mathcal{T} \mathcal{T} \mathcal{T} NUE \mathcal{T} \mathcal{T} \mathcal{T} NUE \mathcal{T} \mathcal{T} \mathcal{T} NUE \mathcal{T} <	Received by:	Relinquished by:	Received by:	SI Salinguished here							1				Lab DD		ail jsmywa			Smith)
AIN OF CUSTODY NE IC/CI/IA VS I/VAL Signature \mathcal{T} \mathcal{T} \mathcal{T} NUE \mathcal{T} \mathcal{T} \mathcal{T} NUE \mathcal{T} \mathcal{T} \mathcal{T} NUE \mathcal{T} \mathcal{T} \mathcal{T} NUE \mathcal{T} <	$ = \mathbb{N}$	JC ()	L'A	GNATURE					-	009 30/19	4		ſ	9/36/19	Date Sampled		ospecil a			7	
AIN OF CUSTODY NE IC/CI/IA VS I/VAL Signature \mathcal{T} \mathcal{T} \mathcal{T} NUE \mathcal{T} \mathcal{T} \mathcal{T} NUE \mathcal{T} \mathcal{T} \mathcal{T} NUE \mathcal{T} \mathcal{T} \mathcal{T} NUE \mathcal{T} <		-	N.							1440	1435	1430	1335	1325	Time Sampled		sutting	REMAR			SAMPLE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	ints	113	•						Wayar	e			Soj1	Sample Type		Caus	KS	F S	UND (Signui	CHAIN
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	hay	He.		1 1				i			-			N	# of Jars				K	urei	OF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		22		VT N		·					2				TPH-HCID					$ \gamma $, cus
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PJ-	212		AME		ļ	 								TPH-Diesel		,		30		TO
$HE c /c /19 \qquad VS mu c$ $HE c /c /19 \qquad VS mu c$ $HE c /c /19 \qquad HE c /c mu c$ $HE c /c /19 \qquad HE c /c mu c$ $HE c /c /19 \qquad HE c /c mu c$ $HE c /c /19 \qquad HE c /c mu c$ $HE c /c /$	A 5	4	1							 									¥		DY
Turnaround Turnaround USH TURNAROUND TIME sh charges authorized by: Hbr sh charges authorized by: Hbr wither ther $\mathbb{SAMPLE DISPOSAL}$ SAMPLE DISPOSAL $\mathbb{SAMPLE DISPOSAL}$ ispose after 30 days \mathbb{S} - per ML 10/2/19 10/2/19 Notes m^{-} Notes m^{-} 10/2/19 $\mathbb{D}ATE$ TIME $\mathbb{D}ATE$ TIME 10/19 10/19 10/25			ر . ر												······································	A				ħ	
Turnaround Turnaround USH TURNAROUND TIME sh charges authorized by: Hbr sh charges authorized by: Hbr wither ther $\mathbb{SAMPLE DISPOSAL}$ SAMPLE DISPOSAL $\mathbb{SAMPLE DISPOSAL}$ ispose after 30 days \mathbb{S} - per ML 10/2/19 10/2/19 Notes m^{-} Notes m^{-} 10/2/19 $\mathbb{D}ATE$ TIME $\mathbb{D}ATE$ TIME 10/19 10/19 10/25		·						,								IALY	A	INV	19	X	
Turnaround Turnaround USH TURNAROUND TIME sh charges authorized by: Hbr sh charges authorized by: Hbr wither ther $\mathbb{SAMPLE DISPOSAL}$ SAMPLE DISPOSAL $\mathbb{SAMPLE DISPOSAL}$ ispose after 30 days \mathbb{S} - per ML 10/2/19 10/2/19 Notes m^{-} Notes m^{-} 10/2/19 $\mathbb{D}ATE$ TIME $\mathbb{D}ATE$ TIME 10/19 10/19 10/25	15	7	2	3		<u> </u>										SES	6	DICE			
Turnaround Turnaround USH TURNAROUND TIME sh charges authorized by: Hbr sh charges authorized by: Hbr wither ther $\mathbb{SAMPLE DISPOSAL}$ SAMPLE DISPOSAL $\mathbb{SAMPLE DISPOSAL}$ ispose after 30 days \mathbb{S} - per ML 10/2/19 10/2/19 Notes m^{-} Notes m^{-} 10/2/19 $\mathbb{D}ATE$ TIME $\mathbb{D}ATE$ TIME 10/19 10/19 10/25	J.D		14	l CO		5 S								$\overline{\langle}$		REQU		TO	R	\square	n ch
Turnaround Turnaround USH TURNAROUND TIME sh charges authorized by: Hbr sh charges authorized by: Hbr wither ther $\mathbb{SAMPLE DISPOSAL}$ SAMPLE DISPOSAL $\mathbb{SAMPLE DISPOSAL}$ ispose after 30 days \mathbb{S} - per ML 10/2/19 10/2/19 Notes m^{-} Notes m^{-} 10/2/19 $\mathbb{D}ATE$ TIME $\mathbb{D}ATE$ TIME 10/19 10/19 10/25		V	18	IPAN												JEST				<u> </u>	5
- per ML ISPOSAL ISPOSAL ISPOSAL IsposAL IsposAL Io/2/19 Notes mc Notes mc				Y		es re										B			Rush	2	1/01
- per ML ISPOSAL ISPOSAL ISPOSAL IsposAL IsposAL Io/2/19 Notes mc Notes mc						ceive	······	·								•	spose chive her	SAN	ISH_ t char	TUR	14
- per ML ISPOSAL ISPOSAL ISPOSAL IsposAL IsposAL Io/2/19 Notes mc Notes mc	G	(2)	0			dat								++-	<u> </u>		Samp	UPLE	ges an	MAR(*
		1: c		ATE		T _o								191	T V		les	DISP	thori	JUN	Z
	 	112									\mathbf{X}			Ð	ver W 10/2 Votes		, S	OSAI	zed b		
	2	L.	200	TIME											M LA P				they were	E	19
	L <u>L</u>	- <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	1-			<u>i</u>					. .]		L	L]				!\` X	ES

states

•

-

APPENDIX D

Report Limitations and Guidelines for Use

REPORT LIMITATIONS AND USE GUIDELINES

Reliance Conditions for Third Parties

This report was prepared for the exclusive use of the Client. No other party may rely on this report or the product of our services without the express written consent of Aspect Consulting, LLC (Aspect). This limitation is to provide our firm with reasonable protection against liability claims by third parties with whom there would otherwise be no contractual conditions or limitations and guidelines governing their use of the report. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and recognized standards of professionals in the same locality and involving similar conditions.

Services for Specific Purposes, Persons and Projects

Aspect has performed the services in general accordance with the scope and limitations of our Agreement. This report has been prepared for the exclusive use of the Client and their authorized third parties, approved in writing by Aspect. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

This report is not, and should not, be construed as a warranty or guarantee regarding the presence or absence of hazardous substances or petroleum products that may affect the subject property. The report is not intended to make any representation concerning title or ownership to the subject property. If real property records were reviewed, they were reviewed for the sole purpose of determining the subject property's historical uses. All findings, conclusions, and recommendations stated in this report are based on the data and information provided to Aspect, current use of the subject property, and observations and conditions that existed on the date and time of the report.

Aspect structures its services to meet the specific needs of our clients. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and subject property. This report should not be applied for any purpose or project except the purpose described in the Agreement.

This Report Is Project-Specific

Aspect considered a number of unique, project-specific factors when establishing the Scope of Work for this project and report. You should not rely on this report if it was:

- Not prepared for you
- Not prepared for the specific purpose identified in the Agreement
- Not prepared for the specific real property assessed
- Completed before important changes occurred concerning the subject property, project or governmental regulatory actions

If changes are made to the project or subject property after the date of this report, Aspect should be retained to assess the impact of the changes with respect to the conclusions contained in the report.

Geoscience Interpretations

The geoscience practices (geotechnical engineering, geology, and environmental science) require interpretation of spatial information that can make them less exact than other engineering and natural science disciplines. It is important to recognize this limitation in evaluating the content of the report. If you are unclear how these "Report Limitations and Use Guidelines" apply to your project or site, you should contact Aspect.

Discipline-Specific Reports Are Not Interchangeable

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually address any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding the subject property.

Environmental Regulations Are Not Static

Some hazardous substances or petroleum products may be present near the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or petroleum products or do not otherwise present potential liability. Changes may occur in the standards for appropriate inquiry or regulatory definitions of hazardous substance and petroleum products; therefore, this report has a limited useful life.

Property Conditions Change Over Time

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time (for example, Phase I ESA reports are applicable for 180 days), by events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, slope failure or groundwater fluctuations. If more than six months have passed since issuance of our report, or if any of the described events may have occurred following the issuance of the report, you should contact Aspect so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

Phase I ESAs – Uncertainty Remains After Completion

Aspect has performed the services in general accordance with the scope and limitations of our Agreement and the current version of the "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process", ASTM E1527, and U.S. Environmental Protection Agency (EPA)'s Federal Standard 40 CFR Part 312 "Innocent Landowners, Standards for Conducting All Appropriate Inquiries".

No ESA can wholly eliminate uncertainty regarding the potential for recognized environmental conditions in connection with subject property. Performance of an ESA study is intended to reduce, but not eliminate, uncertainty regarding the potential for environmental conditions affecting the subject property. There is always a potential that areas with contamination that were not identified during this ESA exist at the subject property or in the study area. Further evaluation of such potential would require additional research, subsurface exploration, sampling and/or testing.

Historical Information Provided by Others

Aspect has relied upon information provided by others in our description of historical conditions and in our review of regulatory databases and files. The available data does not provide definitive information with regard to all past uses, operations or incidents affecting the subject property or adjacent properties. Aspect makes no warranties or guarantees regarding the accuracy or completeness of information provided or compiled by others.

Exclusion of Mold, Fungus, Radon, Lead, and HBM

Aspect's services do not include the investigation, detection, prevention or assessment of the presence of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detection, assessment, prevention or abatement of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Aspect's services also do not include the investigation or assessment of hazardous building materials (HBM) such as asbestos, polychlorinated biphenyls (PCBs) in light ballasts, lead based paint, asbestos-containing building materials, urea-formaldehyde insulation in on-site structures or debris or any other HBMs. Aspect's services do not include an evaluation of radon or lead in drinking water, unless specifically requested.