

Site Characterization Report

Coldeen Property

15631 Westside Highway Southwest Vashon, Washington

Prepared for
Washington State Department of
Ecology
Toxics Cleanup Program

March 13, 2020 19500-08

Site Characterization Report

Coldeen Property 15631 Westside Highway Southwest Vashon, Washington

Prepared for
Washington State Department of Ecology
Toxics Cleanup Program

March 13, 2020 19500-08

Prepared by Hart Crowser, Inc.

Marissa K. Goodman, EITProject Environmental Engineer

Marissa Hoodmin

Marissa.Goodman@hartcrowser.com

Hydrogeologist 1165

Mike Ehlebracht

Michael W. Ehlebracht, LHG
Principal Geochemist
Mike.Ehlebracht@hartcrowser.com

Contents

1.0 INTRODUCTION	1
2.0 SITE BACKGROUND 2.1 Site Description and History	1
2.2 Geology and Hydrogeology	2
2.2.1 Geology	2
2.2.2 Hydrogeology	2
3.0 SITE CHARACTERIZATION	2
3.1 Field Investigation Activities and Observations	2
3.2 Monitoring Well Construction and Development	3
3.3 Soil Sample Chemical Analysis and Results	4
3.4 Groundwater Sample Chemical Analysis and Results	5
3.5 Soil Vapor Sample Chemical Analysis and Results	5
3.6 Indoor and Ambient Air Chemical Analysis and Results	6
3.7 Terrestrial Ecological Evaluation	7
4.0 CONCEPTUAL SITE MODEL	7
4.1 Contaminant Source and Release	7
4.1.1 Contaminants of Concern	8
4.1.2 Media of Concern	8
4.2 Fate and Transport	8
4.3 Potential Exposure Pathways	8
4.3.1 Soil	8
4.3.2 Groundwater 4.3.3 Air	9
4.4 Potential Receptors	9
4.5 Nature and Extent of Contamination	9
5.0 CLEANUP STANDARDS	10
5.1 Cleanup Levels	10
5.2 Point of Compliance	11
6.0 CONCLUSIONS AND RECOMMENDATIONS	12
7.0 LIMITATIONS	12
8.0 REFERENCES	12

ii | Contents

TABLES

1	Soil Boring and Monitoring Well Summary	3
2	Analytical Results for Soil Samples	
3	Analytical Results for Groundwater Samples	
4	Analytical Results for Soil Vapor Sample	
5	Analytical Results for Indoor and Ambient Air Samples	
6	Proposed Cleanup Levels	10

FIGURES

- 1 Vicinity Map
- 2 Site and Exploration Plan
- 3 Generalized Subsurface Cross Section A-A'
- 4 Groundwater Elevation Contour Map (April 2019)
- 5 Groundwater Elevation Contour Map (October 2019)

APPENDIX A

Soil Screening Methods and Exploration Logs

APPENDIX B

Chemical Data Quality Review and Laboratory Reports

APPENDIX C

Investigative-Derived Waste Manifests

Site Characterization Report

Coldeen Property 15631 Westside Highway Southwest Vashon, Washington

1.0 INTRODUCTION

This report presents the results of a site characterization at the Coldeen property (Site) in Vashon, Washington (Figure 1). The Site is currently defined by the Washington State Department of Ecology (Ecology) as a leaking underground storage tank (LUST) site. The primary objectives of this work were to assess Site conditions in the vicinity of the former underground storage tank (UST) and existing fuel pump and determine if supplemental cleanup is required in this area to achieve a No Further Action (NFA) determination from Ecology. The site characterization was conducted in general accordance with the Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP), dated April 10, 2019 (Hart Crowser 2019a) and updated on September 23, 2019 (Hart Crowser 2019b).

2.0 SITE BACKGROUND

2.1 Site Description and History

The Site is approximately 3,400 square feet in area and is located on the west side of Westside Highway Southwest, between Southwest 158th Street and Southwest Ober Beach Road. The surrounding area is primarily undeveloped or residential.

The Site formerly contained a general store and gasoline station that operated from the early 1920s to 1940. The station building, which is on the King County Historic Register, was then converted into an occupied residence. As part of real estate due diligence activities, a 700-gallon UST was discovered in front of the former station building. The historic fuel pump is still in place.

The gasoline UST was removed in 1994 and was found to contain approximately 100 gallons of water. No evidence of petroleum sheens was observed, and groundwater was not encountered in the excavation. However, soil samples collected from the UST excavation contained concentrations of gasoline-range hydrocarbons, benzene, and xylenes above Model Toxics Control Act (MTCA) cleanup levels. According to the Site Hazard Assessment (SHA) conducted for the Site in 2013, approximately 12 cubic yards of petroleum-contaminated soils were excavated during the 1994 UST removal but elevated concentrations of gasoline-range hydrocarbons and benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds were still observed.

Ecology received funding to conduct additional characterization at the Site to determine if supplemental cleanup is required to achieve a NFA determination. This site investigation is focused on the former UST area located east of the existing building on the property.

2.2 Geology and Hydrogeology

The area included in this site characterization is generally flat with a slight slope to the west and is mostly uncovered except for the building. A description of regional and Site subsurface geology and hydrogeology is provided below. Our understanding of the Site's geology and hydrogeology is based on our recent site characterization.

2.2.1 Geology

The Site is in the Puget Sound lowland, which is characterized by north—south trending ridges capped by Vashon till. According to the Washington Geologic Information Portal, accessed March 15, 2019, the surface geologic unit on the Site is Vashon Stade till, consisting mostly of compact diamict with subangular to rounded clasts, glacially transported and deposited.

Several soil borings from this site characterization consisted of surficial fill material generally comprising very soft to medium stiff sandy silt or organic soil, or loose to medium dense silty sand, to a depth ranging between approximately 4 and 8.5 feet. The surficial fill material, where encountered, was underlain by glacial till deposits generally consisting of stiff to hard sandy silt or lean clay, or medium dense to very dense silty or clayey sand, all with various amounts of gravel to the maximum explored depth of 20 feet below ground surface (bgs). Site lithology is presented in the generalized subsurface cross-section (Figure 3).

2.2.2 Hydrogeology

During this site characterization, perched groundwater was encountered in nine of the eleven borings at depths ranging from approximately 2 to 11 feet bgs during drilling, generally near contact between the fill and till units or within layers in the till containing higher percentages of sand and/or gravel. Not all of the explorations encountered the perched water zone, indicating it is not continuous. After monitoring well installation, development, and equilibration, groundwater depths ranged from approximately 1.5 to 3.8 feet below the top of casing in both the April and October 2019 sampling events. Well logs from near the Site found in Ecology's Well Report database indicated water levels were generally between 118 and 245 feet bgs in wells installed from 1981 to 2007. Based on surrounding area topography and our groundwater elevation contour maps (Figures 4 and 5), the groundwater flow at the Site is to the northwest toward Ober Creek and/or Puget Sound.

3.0 SITE CHARACTERIZATION

3.1 Field Investigation Activities and Observations

On April 22, 23, and 24, 2019, we advanced nine push-probe/hollow-stem auger (HSA) borings on a push-probe/HSA combination drill rig (HC-1 through HC-5, HC-7, and MW-1 through MW-3) to depths of 20 feet or refusal at the Site (Figure 2). Three of the soil borings were completed as groundwater monitoring wells (MW-1 through MW-3). We collected soil samples at 2.5-foot intervals and groundwater samples from the three monitoring wells.

On October 22, 2019, we advanced two soil borings using a hand auger (HC-8 and HC-9) to depths of approximately 4.5 to 6 feet at the Site (Figure 2). One soil boring (HC-8) was advanced at a 50-degree angle from the vertical; depths for HC-8 are measured along the axis of the boring. We collected soil samples at approximately 1 to 2.5-foot intervals and groundwater samples from the three monitoring wells. One soil vapor sample (SV-1) was collected from HC-8 at 1 foot bgs. On October 23, 2019, we collected one indoor air sample from inside the building (IA-1) and one ambient upwind air sample outside (UA-1).

Table 1 presents a summary of soil boring and monitoring well installation details.

Table 1 - Soil Boring and Monitoring Well Summary Table

Boring/Well ID	Boring Depth (feet)	Well Screen Interval (depth in feet)	Surface Elevation (feet) ^a	Top of Casing Elevation (feet) ^a
HC-1	20			
HC-2	14			
HC-3	14.5		222.7	
HC-4	15		-	
HC-5	15		222.9	
HC-7	15			
HC-8	6		-	
HC-9	4.5		-	
MW-1	14.5	4-12.5	222.0	221.47
MW-2	15	5-15	220.4	219.80
MW-3	14.5	4-10	215.8	215.18

Notes:

a. Elevations are referenced to NAVD 88.

Soil samples were field-screened using sheen tests, visual and olfactory observations, and/or a photoionization detector (PID) to detect volatile organic compounds (VOCs) in the headspace. Soil samples from borings HC-3 and MW-3 had slight sheens noted. Soil samples from borings HC-4, HC-8, HC-9, and MW-1 had slight to moderate sheens noted. Petroleum-like odors were noted in HC-4 at approximately 5.5 to 8.5 feet bgs (moderate odor) and at approximately 11 to 12.5 feet bgs (strong odor). Strong petroleum-like odors were noted in HC-8 at approximately 5.5 to 6 feet bgs, HC-9 at approximately 3 to 4.5 feet bgs, and MW-1 at approximately 7 to 8.5 feet bgs and 11 to 13 feet bgs. Soil samples collected from borings HC-3 (5 to 7.5 feet bgs), HC-4 (5 to 12.5 feet bgs), HC-8 (5.5 to 6 feet bgs), HC-9 (3 to 4.5 feet bgs), MW-1 (5 to 7.5 feet bgs and 10 to 12.5 feet bgs), and MW-3 (2.5 to 5 feet bgs) exhibited elevated PID readings. Non-aqueous phase liquid (NAPL) was not observed in any of the borings. Field screening results are shown on the exploration logs in Appendix A.

3.2 Monitoring Well Construction and Development

Three borings (MW-1 through MW-3) were completed as monitoring wells after soil screening and sampling was completed. All wells were installed and constructed in accordance with Washington

4 Coldeen Property

Administrative Code (WAC) and Revised Code of Washington (RCW) rules and regulations. Each monitoring well was constructed of a 2-inch-diameter Schedule 40 polyvinyl chloride (PVC) casing with a 6- to 10-footlong, 0.010-inch-slot screen. Clean silica sand pack (10/20 sand) was placed between the boring wall and PVC screen from the bottom of the well to approximately 0.5 to 1 foot above the screened interval. A 2- to 3.5-foot bentonite seal was placed above the sand to within 0.5 to 1 foot of the ground surface. Each well was secured with a flush-mounted, traffic-rated monument.

Each monitoring well was developed at least 24 hours after construction and sampled at least 48 hours after development, as outlined in the SAP/QAPP, dated April 10, 2019 (Hart Crowser 2019a) and updated on September 23, 2019 (Hart Crowser 2019b). On April 29 and October 22, 2019, groundwater samples were collected from the three monitoring wells (MW-1 through MW-3). After measuring the depth to groundwater, samples were collected from the wells using standard low-flow sampling techniques as outlined in the SAP/QAPP. Each well was purged until the field parameters of pH, temperature, and specific conductivity met the stability criteria (i.e., specific conductivity \pm 10 percent, pH \pm 0.1 pH units, and temperature \pm 0.1 °C). During purging, visual and olfactory observations were recorded; a petroleum-like odor was noted in MW-1 during both sampling events. Following stabilization, groundwater samples were collected for laboratory testing by directly filling pre-cleaned sample containers provided by the laboratory.

3.3 Soil Sample Chemical Analysis and Results

The soil samples were submitted to OnSite Environmental, Inc. (OnSite) in Redmond, Washington and analyzed for one or more of: gasoline-range total petroleum hydrocarbons (TPH-G), BTEX, and total lead. We selected 30 soil samples for analysis based on field screening results and sample location and depth. The soil sample analytical results are summarized in Table 2, and the laboratory reports are in Appendix B.

We compared the results with MTCA Method A soil cleanup levels for unrestricted land use. Analytical results were:

- Thirty soil samples were analyzed for TPH-G, which was detected in eight samples. Six soil samples (from borings HC-3, HC-4, HC-9, and MW-1) had concentrations ranging from 270 to 6,700 milligrams per kilogram (mg/kg), which exceed the MTCA Method A cleanup level of 30 mg/kg applicable to benzene-containing soil samples.
- Thirty soil samples were analyzed for BTEX. Benzene was detected in two samples from boring HC-4 at concentrations ranging from 0.056 to 0.33 mg/kg, exceeding the MTCA Method A cleanup level of 0.03 mg/kg. Ethylbenzene was detected in six samples, one of which (from boring HC-4) at a concentration (16 mg/kg) exceeding the MTCA Method A cleanup level of 6 mg/kg. Toluene was detected in four samples at concentrations of up to 3.3 mg/kg, below the MTCA Method A cleanup level of 7 mg/kg. Xylenes were detected in six samples, one of which (from boring HC-4) exhibited a concentration (39 mg/kg) exceeding the MTCA Method A cleanup level of 9 mg/kg.
- Twenty-seven soil samples were analyzed for lead, which was detected in three samples at concentrations ranging from 10 to 24 mg/kg. These concentrations are well below the MTCA Method

A cleanup level of 250 mg/kg and are within the range of anticipated regional background concentrations (Ecology 1994).

3.4 Groundwater Sample Chemical Analysis and Results

Groundwater samples were collected and analyzed from three monitoring wells (MW-1 through MW-3) in April 2019 and October 2019. The groundwater samples were submitted to OnSite in Redmond, Washington and analyzed for one or more of: TPH-G, BTEX, 1,2-dibromoethane (EDB), 1,2-dichloroethane (EDC), methyl tert-butyl ether (MTBE), and total and dissolved lead. The groundwater sample analytical results are summarized in Table 3, and the laboratory reports are in Appendix B.

We compared results with MTCA Method A groundwater cleanup levels. Analytical results were:

- Eight groundwater samples (MW-1 through MW-3 and a field duplicate in both the April and October 2019 sampling events) were analyzed for TPH-G, which was detected in three samples collected from MW-1 at concentrations of up to 3,500 micrograms per liter (µg/L), exceeding the MTCA Method A cleanup level of 800 µg/L applicable to groundwater with benzene present.
- Eight groundwater samples (MW-1 through MW-3 and a field duplicate in both the April and October 2019 sampling events) were analyzed for BTEX. Benzene was detected in two samples collected from MW-1 and toluene, ethylbenzene, and xylenes were detected in three samples collected from MW-1, all at concentrations below applicable MTCA Method A cleanup levels.
- Four groundwater samples (MW-1 through MW-3 and a field duplicate in the April 2019 sampling event) were analyzed for MTBE, EDB, and EDC, which were not detected at or above laboratory reporting limits in any of the samples.
- Four groundwater samples (MW-1 through MW-3 and a field duplicate in the April 2019 sampling event) were analyzed for total and dissolved lead, which were not detected at or above laboratory reporting limits in any of the samples.

3.5 Soil Vapor Sample Chemical Analysis and Results

One soil vapor sample was collected and analyzed from approximately 1 foot bgs in the angled hand-augered boring (HC-8). The soil vapor sample was submitted to Fremont Analytical, Inc. (Fremont Analytical) in Seattle, Washington and analyzed for BTEX, naphthalene, air-phase hydrocarbon (APH) petroleum fractionation, major gases (oxygen, carbon dioxide, and methane), and helium. The soil vapor sample analytical results are summarized in Table 4, and the laboratory report is in Appendix B.

We compared results with MTCA Method B sub-slab soil gas screening levels. Analytical results were:

APH petroleum fractions C5-C8 aliphatics and C9-C12 aliphatics were detected at concentrations of 4,520 micrograms per cubic meter (μg/m³) and 1,030 μg/m³, respectively. APH petroleum fractions C9-C10 aromatics were not detected at or above laboratory reporting limits. Per Ecology's

6 Coldeen Property

Implementation Memorandum No. 18, the MTCA Method B screening levels for APH petroleum fractions have been removed.

- BTEX were detected at concentrations below applicable MTCA Method B screening levels. Naphthalene was detected at a concentration (3.93 μg/m³) exceeding the MTCA Method B screening level of 2.5 μg/m³.
- Total petroleum hydrocarbons (TPH) is calculated as the summation of BTEX, naphthalene, and APH petroleum fraction concentrations. TPH was detected at a concentration of 5,588 μg/m³, which exceeds the MTCA Method B screening level of 4,700 μg/m³.
- Methane was not detected at or above the laboratory reporting limit. Carbon dioxide was detected at approximately 0.51 percent and oxygen was detected at approximately 24.4 percent.
- Helium was not detected at or above the laboratory reporting limit indicating that the surface seal during collection of the soil vapor sample was adequate and did not allow ambient air short circuiting.

3.6 Indoor and Ambient Air Chemical Analysis and Results

One indoor air sample was collected and analyzed from inside the existing building and one ambient air sample was collected and analyzed from outside and upwind of the building. The air samples were submitted to Fremont Analytical in Seattle, Washington and analyzed for BTEX, naphthalene, and APH petroleum fractionation. The air sample analytical results are summarized in Table 5, and the laboratory report is in Appendix B. The potential vapor intrusion contribution (discussed in this report as the corrected indoor air concentration) was calculated by subtracting the ambient upwind sample concentration from the indoor air measurement.

We compared the corrected results with MTCA Method B indoor air cleanup levels. Analytical results were:

- APH petroleum fractions C5-C8 aliphatics and C9-C12 aliphatics were detected at concentrations of 290.4 μg/m³ and 173.2 μg/m³, respectively. APH petroleum fractions C9-C10 aromatics were not detected at or above laboratory reporting limits. Per Ecology's Implementation Memorandum No. 18, the MTCA Method B cleanup levels for APH petroleum fractions have been removed.
- Benzene and ethylbenzene were either not detected at or above laboratory reporting limits or the concentration in the ambient upwind sample exceeded the concentration of the indoor air sample. Toluene was detected at a concentration (1.02 μg/m³) well below the MTCA Method B cleanup level of 2,300 μg/m³. Total xylenes were detected at a concentration (0.08 μg/m³) well below the MTCA Method B cleanup level of 46 μg/m³. Naphthalene was detected at a concentration (1.308 μg/m³) exceeding the MTCA Method B cleanup level of 0.074 μg/m³.
- TPH is calculated as the summation of BTEX, naphthalene, and APH petroleum fraction concentrations. TPH was detected at a concentration of 466 μg/m³, which exceeds the MTCA Method B cleanup level of 140 μg/m³.

■ TPH and naphthalene concentrations measured in the upwind ambient air sample exceed their MTCA Method B cleanup levels.

3.7 Terrestrial Ecological Evaluation

A terrestrial ecological evaluation (TEE) is required under MTCA for sites where there has been a release or threatened release of a hazardous substance that may pose a threat to human health and the environment. Many urban and residential sites like the Coldeen Property qualify for exclusions and are not required to conduct a TEE. However, the Coldeen Property does not qualify for an exclusion based on the presence of more than 1.5 acres of contiguous undeveloped land within 500 feet of the Site (WAC 173-340-7491).

The Site qualifies for a simplified TEE per WAC 173-340-7491(2), because the Site has limited quality habitat and there is a low potential for soil biota and terrestrial plants and animals to be exposed to the residual petroleum contamination. The former UST and pump area where petroleum-impacted soils occur is unpaved but is limited to a small area between the residence and the Westside Highway. Ecological exposures are anticipated to be minimal due to the limited amount of contaminated soil and the limited access due to the paved highway and residential structures surrounding the impacted area.

Based on the simplified TEE evaluation procedures outlined in WAC 173-340-7492, ecologically protective soil concentrations must be established. TPH-G concentrations for the Site currently exceed the unrestricted land use soil protective concentration of 200 mg/kg (Table 749-2), so the proposed soil cleanup level for TPH-G will be at or below this concentration to protect ecological receptors (see Section 5.1). All other hazardous substances at the Site are either not listed in Table 749-2 or were detected at concentrations below the unrestricted land use soil protective concentrations listed in Table 749-2.

4.0 CONCEPTUAL SITE MODEL

This section provides a conceptual understanding of the Site that is based on the results of historical research and subsurface investigations. The chemicals and media of concern, the fate and transport characteristics of the release of hazardous substances, and the potential exposure pathways are discussed in this section.

A conceptual site model (CSM) presents the links between contaminant sources, release mechanisms, exposure pathways and routes, and receptors to summarize the current understanding of the risk to human health and the environment. The CSM is the basis for developing technically feasible cleanup alternatives and selecting a final cleanup, and may be refined throughout the cleanup action process as additional information becomes available.

4.1 Contaminant Source and Release

The source of TPH-G and petroleum-related VOC contamination at the Site is associated with the former 700-gallon gasoline UST that was used for the previous gasoline station operations.

4.1.1 Contaminants of Concern

The site characterization indicates the contaminants of concern (COCs) at the Site are TPH-G, benzene, ethylbenzene, and xylenes in soil; TPH-G in groundwater; and naphthalene and TPH in air.

4.1.2 Media of Concern

Soil, groundwater, and air have been identified as the affected media at the Site because results of the environmental investigations to date show elevated concentrations of the COCs.

4.2 Fate and Transport

The primary physical, biological, and chemical processes that can influence contaminant concentrations and migration include:

- Adsorption to soil;
- Leaching or dissolution into groundwater;
- Biodegradation; and
- Volatilization.

In general, when petroleum is released into the subsurface, it will migrate downward through the unsaturated zone due to gravity. As it travels through the soil column, it will sorb onto soil particles. Although no NAPL has been observed in any of the borings on the Site, in general, if a sufficient quantity of NAPL is released to overcome soil capillary forces, it will migrate down to the water table and mound and spread horizontally (light NAPL). Petroleum can leach or dissolve into groundwater and migrate with groundwater flow, though there is no evidence of petroleum-contaminated groundwater migration on the Site.

Petroleum can also degrade over time through chemical or biological processes. Volatile constituents evaporate and can migrate through the unsaturated zone as soil vapor. Some vapor may escape to the atmosphere or accumulate in enclosed spaces such as buildings. Biological degradation occurs predominantly in the aqueous, residual, and vapor phases. Compounds that are the most volatile are typically the most easily biodegraded.

4.3 Potential Exposure Pathways

For a contaminant to present a risk to human health and/or the environment, the pathway from the contaminant to the receptor must be complete. The potential exposure pathways for the media of concern are summarized below.

4.3.1 Soil

- Direct ingestion;
- Dermal contact;
- Volatilization of contaminants from soil to air;
- Infiltration, percolation, or dissolution/desorption into groundwater;
- Plant uptake; and

Fugitive dust.

The direct contact pathways for human receptors (direct ingestion and dermal contact) are complete but limited to humans who come into close contact with the media. The soil-to-groundwater pathway is complete and the soil-to-air pathway is potentially complete. The fugitive dust pathway is incomplete because surface soil is not impacted; soil contamination was found at depths ranging from 4.5 to 12.5 feet bgs.

The pathways related to ecological receptors (soil biota, plants, and wildlife) are summarized below; see Section 3.7 for more details. The plant uptake pathway and direct contact pathways for wildlife receptors (direct ingestion and dermal contact) are complete.

4.3.2 Groundwater

- Direct ingestion;
- Dermal contact; and
- Volatilization of contaminants from groundwater to air.

The direct contact pathways for human receptors (direct ingestion and dermal contact) are complete but limited to humans who come into close contact with the media, for example by workers digging in soil below the water table; the groundwater is not used for drinking water. The groundwater-to-air pathway is potentially complete.

4.3.3 Air

Inhalation.

Petroleum and VOCs can volatilize in soil and groundwater, potentially leading to gas phase migration of the COCs to the surface. Inhalation of indoor air inside the building is a complete exposure pathway.

4.4 Potential Receptors

Several classes of potential human and ecological receptors have been identified. Potential human receptors include current and future residents and other incidental users such as utility workers who may be exposed to contaminated soil. Potential ecological receptors include plants and animals exposed to impacted media and secondary food chain consumers such as birds and mammals.

As noted in Sections 3.7 and 4.3, there are human and ecological receptors based on the complete exposure pathways (direct contact, plant uptake, and inhalation).

4.5 Nature and Extent of Contamination

The nature and extent of contaminated media at the Site is described in the following sections.

4.5.1 Soil

TPH-G was detected above the MTCA Method A cleanup level in boring HC-3 at 7.5 feet bgs, boring HC-4 at 7.5 and 12.5 feet bgs, boring HC-9 at 4.5 feet bgs, and boring MW-1 at 7.5 and 12.5 feet bgs. The TPH-G-

10 | Coldeen Property

contaminated soil appears to be limited to the smear zone in soil surrounding the former UST. Soil samples collected at similar depths from nearby borings had TPH-G concentrations below the MTCA Method A cleanup level. The TPH-G-impacted soil appears to be a localized, isolated hot spot bound to the north (by HC-1), east (by HC-5), south (by HC-2), and west (by HC-7). The exact extent of TPH-G-contaminated soil remaining in-place below the building is not known. Additionally, the TPH-G-contaminated soil is bound vertically by soil samples at 10 and 12.5 feet bgs in boring HC-3, 15 feet bgs in boring HC-4, and 15 feet bgs in boring MW-1.

Benzene was detected above the MTCA Method A cleanup level in boring HC-4 at 7.5 and 12.5 feet bgs. Ethylbenzene and xylenes were detected above the MTCA Method A cleanup level in boring HC-4 at 7.5 feet bgs. The VOC-contaminated soil appears to be limited to the smear zone in soil surrounding the former UST. Soil samples collected at similar depths from nearby borings had VOC concentrations below the MTCA Method A cleanup levels. The VOC-impacted soil appears to be a localized, isolated hot spot bound to the north (by HC-1), east (by HC-3), south (by MW-1), and west (by HC-7). The exact extent of VOC-contaminated soil remaining in-place below the building is not known. Additionally, the VOC-contaminated soil is bound vertically by a soil sample at 15 feet bgs in boring HC-4.

4.5.2 Groundwater

TPH-G was detected above the MTCA Method A cleanup level in monitoring well MW-1 in both the April and October 2019 sampling events. TPH-G was not detected at or above laboratory reporting limits in the groundwater samples collected from monitoring wells MW-2 and MW-3 in either the April or October 2019 sampling events. Since the contaminated perched groundwater is not mobile or part of a connected aquifer, its extent has been delineated.

4.5.3 Air

Naphthalene and TPH were detected above the MTCA Method B cleanup levels in the indoor air sample collected inside the building. Since this is the only building inside the lateral inclusion zone, the extent of air contamination has been delineated.

5.0 CLEANUP STANDARDS

Cleanup standards include cleanup levels and points of compliance (POCs) as described in WAC 173-340-700 through WAC 173-340-760. Cleanup standards must also incorporate other state and federal regulatory requirements applicable to the cleanup action and/or its location as appropriate. The following sections summarize applicable cleanup standards for the Site.

5.1 Cleanup Levels

Soil cleanup levels must protect direct contact, the soil-to-groundwater pathway, terrestrial ecological receptors, and vapor intrusion. MTCA Method A soil cleanup levels for unrestricted land use have been selected for the Site, which provide sufficient protection to all these pathways. Groundwater cleanup levels must protect direct contact and vapor intrusion. MTCA Method A groundwater cleanup levels have been selected for the Site, which provide sufficient protection to all these pathways. Air cleanup levels

must be protective of the unrestricted inhalation pathway. MTCA Method B indoor air cleanup levels have been selected for the Site, which provide sufficient protection to this pathway.

Table 6 below summarizes the specific cleanup levels for the Site COCs in all affected media.

Table 6 - Proposed Cleanup Levels

Contaminant of Concern	Soil Cleanup Level (mg/kg) ^a	Groundwater Cleanup Level (μg/L) ^b	Air Cleanup Level (μg/m³) ^c
TPH-G	30/100 ^d	800/1,000 ^e	_
Benzene	0.03	_	_
Ethylbenzene	6	_	_
Xylenes	9	-	_
Naphthalene	_	-	0.074
TPH	_	-	140

Notes: – indicates the COC is not a concern in that media (i.e., concentrations do not exceed cleanup levels).

- a. MTCA Method A soil cleanup level for unrestricted land use.
- b. MTCA Method A groundwater cleanup level.
- c. MTCA Method B indoor air cleanup level.
- d. 100 mg/kg for gasoline mixtures without benzene and for which ethylbenzene, toluene, and xylenes together are less than 1 percent of the gasoline mixture; 30 mg/kg for all other gasoline mixtures.
- e. 800 μg/L when benzene is present in groundwater; 1,000 μg/L when no detectable benzene.

5.2 Point of Compliance

Soil. The standard POC for soil contamination by direct contact and for TEE is 15 feet bgs, which is a reasonable estimate of the depth that could be accessed during normal redevelopment activities (WAC 173-340-740[6][d] and WAC 173-340-7490[4][b]). For sites with institutional controls to prevent excavation of deeper soil, a conditional POC may be set at the biologically active soil zone, which is assumed to be 6 feet bgs (WAC 173-340-7490[4][a]). The standard POC for soil for the protection from vapors is throughout the site from the ground surface to the uppermost groundwater saturated zone (WAC 173-340-740[6][c]). The standard POC for soil for the protection of groundwater is throughout the site (WAC 173-340-740[6][b]).

Groundwater. The standard POC for groundwater is throughout the site, from the uppermost level of the saturated zone extending vertically to the lowest depth which could potentially be affected (WAC 173-340-720[8][b]).

Air. The standard POC for air is ambient air throughout the site (WAC 173-340-750[6]).

6.0 CONCLUSIONS AND RECOMMENDATIONS

This investigation was focused on the former UST area and based on the results of this site characterization, we have determined that soil, groundwater, and indoor air surrounding the former UST area are impacted with TPH-G and petroleum-related VOCs. Additional site investigations are not required to develop and evaluate potential remedial alternatives for the former UST area covered in this investigation, although due to the high temporal and seasonal variability of indoor air sampling, a second round of air sampling may be useful to confirm the indoor air data. A supplemental cleanup, vapor intrusion mitigation, and/or institutional control (i.e., environmental covenant) are likely required to protect human health and the environment. We recommend conducting a feasibility study with disproportionate cost analysis to develop and evaluate potential remedial alternatives for soil, groundwater, and indoor air impacts. The feasibility study would recommend the most appropriate alternative based on chemical and physical conditions at the Site and a cost-benefit analysis.

7.0 LIMITATIONS

Work for this project was performed, and this report prepared, in accordance with generally accepted professional practices for the nature and conditions of the work completed in the same or similar localities, at the time the work was performed. This report is intended for the exclusive use of the Washington State Department of Ecology for specific application to the referenced property. This work plan is not meant to represent a legal opinion. No other warranty, express or implied, is made.

8.0 REFERENCES

Ecology 1994. Natural Background Soil Metals Concentrations in Washington State, Publication No. 94-115. Washington State Department of Ecology, Toxics Cleanup Program, October 1994.

Ecology 2013. Site Hazard Assessment, Coldeen Property Old Gas Station. Washington State Department of Ecology, August 2013.

Ecology 2018. Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings, Implementation Memorandum No. 18. Prepared by Washington State Department of Ecology, January 10, 2018.

Hart Crowser 2019a. Sampling and Analysis Plan/Quality Assurance Project Plan, Coldeen Property Site Characterization, 15631 Westside Highway SW, Vashon, WA. Prepared by Hart Crowser for Washington State Department of Ecology, Toxics Cleanup Program, April 10, 2019.

Hart Crowser 2019b. Sampling and Analysis Plan/Quality Assurance Project Plan Update, Coldeen Property Site Characterization, 15631 Westside Highway SW, Vashon, WA. Prepared by Hart Crowser for Washington State Department of Ecology, Toxics Cleanup Program, September 23, 2019.

Independent Remedial Action Report Summary. Site Name: 15631 Westside Hwy SW, Vashon Island, WA 98070. Prepared by Chris Coldeen for Washington State Department of Ecology.

TME 1994a. Coldeen property 15631 Westside Hwy. SW, Vashon Island, Wash. Prepared by TME Environmental Services, Inc. for Beneficial Finance, May 23, 1994.

TME 1994b. Letter prepared by TME Environmental Services, Inc. for Chris Coldeen, June 1, 1994.

 $\label{thm:condition} $$\sep{Shoro} \end{tikzpicture} $$\sep$ Site Characterization Rpt.docx

Table 2 - Analytical Results for Soil Samples

			Concentration in milligrams per kilogram (mg/kg)							
	Sampling	Depth in								
Sample ID	Date	Feet	Gasoline	Lead	Benzene	Ethylbenzene	Toluene	m, p-Xylene	o-Xylene	Total Xylenes
HC1-S2-5	4/22/2019	5.0	6.6 U	6 U	0.02 U	0.066 U	0.066 U	0.066 U	0.066 U	0.066 U
HC1-S3-7.5	4/22/2019	7.5	5.7 U	5.9 U	0.02 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U
HC1-S5-12.5	4/22/2019	12.5	5.4 U	5.6 U	0.02 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U
HC2-S2-5	4/22/2019	5.0	5.1 U	5.8 U	0.02 U	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U
HC2-S3-7.5	4/22/2019	7.5	6.9 U	6.2 U	0.02 U	0.069 U	0.069 U	0.069 U	0.069 U	0.069 U
HC2-S5-12.5	4/22/2019	12.5	5.6 U	5.6 U	0.02 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U
HC3-S3-7.5	4/22/2019	7.5	270	5.7 U	0.02 U	0.064	0.077	0.48	0.052 U	0.48
HC3-S4-10	4/22/2019	10.0	4.8 U	5.6 U	0.02 U	0.048 U	0.048 U	0.048 U	0.048 U	0.048 U
HC3-S5-12.5	4/22/2019	12.5	5.3 U	5.6 U	0.02 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U
HC4-S3-7.5	4/22/2019	7.5	6700	5.8 U	0.33	16	3.3	35	4	39
HC4-S5-12.5	4/22/2019	12.5	2400	10	0.056	3.2	0.39	7	0.12 U	7
HC4-S6-15	4/22/2019	15.0	5.2 U	5.6 U	0.02 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U
HC5-S2-5	4/24/2019	5.0	5.7 U	5.8 U	0.02 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U
HC5-S3-7.5	4/24/2019	7.5	5.1 U	5.6 U	0.02 U	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U
HC5-S5-12.5	4/24/2019	12.5	5.2 U	5.6 U	0.02 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U
HC7-S2-5	4/24/2019	5.0	5.2 U	5.6 U	0.02 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U
HC7-S3-7.5	4/24/2019	7.5	4.6 U	5.5 U	0.02 U	0.046 U	0.046 U	0.046 U	0.046 U	0.046 U
HC7-S5-12.5	4/24/2019	12.5	6.3 U	5.9 U	0.02 U	0.063 U	0.063 U	0.063 U	0.063 U	0.063 U
HC8-S3-6.0	10/22/2019	6 ^a	6.7		0.02 U	0.056 U	0.056 U	0.062	0.056 U	0.062
HC9-S2-3.5	10/22/2019	3.5	11		0.02 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U
HC9-S3-4.5	10/22/2019	4.5	1100		0.022 U	5.4	0.32	5.4	0.2	5.6
MW1-S3-7.5	4/23/2019	7.5	500	18	0.028 U	0.75	0.14 U	1.3	0.14 U	1.3
MW1-S5-12.5	4/23/2019	12.5	310	5.9 U	0.02 U	0.12	0.049 U	0.63	0.049 U	0.63
MW1-S6-15	4/23/2019	14.5	5.4 U	5.5 U	0.02 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U
MW2-S2-5	4/24/2019	5.0	6.3 U	24	0.02 U	0.063 U	0.063 U	0.063 U	0.063 U	0.063 U
MW2-S3-7.5	4/24/2019	7.5	5.5 U	6.1 U	0.02 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U
MW2-S5-12.5	4/24/2019	12.5	6 U	5.9 U	0.02 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U
MW3-S2-5	4/23/2019	5.0	5.9 U	5.9 U	0.02 U	0.059 U	0.059 U	0.059 U	0.059 U	0.059 U
MW3-S3-7.5	4/23/2019	7.5	5.5 U	5.9 U	0.02 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U
MW3-S5-12.5	4/23/2019	12.5	5.2 U	5.6 U	0.02 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U
MTCA Method /	A Cleanup Leve	el _p	30/100 ^c	250	0.03	6	7			9

Concentrations that exceed cleanup level are s.c. 100 mg/kg for gasoline mixtures without benzene, otherwise, 30 mg/kg.

U = Not detected at reporting limit indicated. a. HC-8 was advanced at a 50-degree angle from the vertical. The depth is measured along the axis of the boring.

Detected concentrations are bolded.

b. MTCA Method A soil cleanup level for unrestricted land use.

Table 3 - Analytical Results for Groundwater Samples

			Concentration in μg/L							
Monitoring Well ID	Sampling Date	Gasoline	Dissolved Lead	Total Lead	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Total Xylenes
MTCA Method A Cleanup			45	45	-					
Level		800/1000 ^a	15	15	5	1000	700			1000
MW-1	4/29/2019	3500	1 U	1.1 U	0.47	8.3	82	130	35	165
Duplicate	4/29/2019	3100	1 U	1.1 U	0.4	7.3	69	110	30	140
	10/22/2019	3100			1 U	8.5	75	83	35	118
MW-2	4/29/2019	100 U	1 U	1.1 U	0.2 U	1 U	0.2 U	0.4 U	0.2 U	0.4 U
	10/22/2019	100 U			1 U	1 U	1 U	1 U	1 U	1 U
Duplicate	10/22/2019	100 U			1 U	1 U	1 U	1 U	1 U	1 U
MW-3	4/29/2019	100 U	1 U	1.1 U	0.2 U	1 U	0.2 U	0.4 U	0.2 U	0.4 U
	10/22/2019	100 U			1 U	1 U	1 U	1 U	1 U	1 U

Table 3 - Analytical Results for Groundwater Samples

		Concentration in μg/L					
Monitoring Well ID	Sampling Date	Methyl t- Butyl Ether (MTBE)	1,2- Dichloroethane (EDC)	1,2- Dibromoethane (EDB)			
MTCA Method A Cleanup Level		20	5	0.01			
MW-1	4/29/2019	0.4 U	0.4 U	0.0097 U			
Duplicate	4/29/2019 10/22/2019	0.4 U	0.4 U	0.0098 U			
MW-2 Duplicate	4/29/2019 10/22/2019 10/22/2019	0.2 U	0.2 U	0.0096 U			
MW-3	4/29/2019 10/22/2019	0.2 U	0.2 U	0.0097 U			

U = Not detected at reporting limit indicated.

Detected concentrations are bolded.

Concentrations that exceed cleanup level are shaded.

a. 800 μ g/L when benzene is present in groundwater; 1000 μ g/L when benzene is not detected.

Table 4 - Analytical Results for Soil Vapor Sample

Sample ID	MTCA Method B	SV-1
Sampling Date	Sub-Slab Soil Gas Screening Level	10/22/2019
APH and VOCs by EPA TO-15 in μg/m³		
APH C5-C8 Aliphatics		4,520
APH C9-C12 Aliphatics		1,030
APH C9-C10 Aromatics		314 U
Benzene	11	1.28
Toluene	76,000	12.4
Ethylbenzene	15,000	8.3
m,p-Xylene		8.77
o-Xylene		3.28
Total Xylenes	1,500	12.05
Naphthalene	2.5	3.93
Total Petroleum Hydrocarbon ^a	4,700	5,588
Major Gases by EPA 3C in %		
Carbon Dioxide		0.514
Methane		0.1 U
Oxygen		24.4 J
Helium by GC/TCD in ppt		50 U

U = Not detected at reporting limit indicated.

Detected concentrations are bolded.

Concentrations that exceed MTCA Method B screening levels are shaded.

APH = Air-phase hydrocarbons

VOC = Volatile organic compound

μg/m³ = microgram per cubic meter

ppt = parts per thousand

a. Total petroleum hydrocarbon calculated by summing concentrations for benzene, toluene, ethylbenzene, total xylenes, naphthalene, APH C5-C8 aliphatics, APH C9-C12 aliphatics, and APH C9-C10 aromatics.

J = Estimated value.

Table 5 - Analytical Results for Indoor and Ambient Air Samples

Sample ID	MTCA Method B	UA-1	IA-1	IA-1 Corrected ^b
Sampling Date	Indoor Air Cleanup	10/23/2019	10/23/2019	10/23/2019
	Level			
APH and VOCs by EPA TO-15 in μg/m ³				
APH C5-C8 Aliphatics		91.6	382	290.4
APH C9-C12 Aliphatics		73.8	247	173.2
APH C9-C10 Aromatics		7.86 U	7.86 U	7.86 U
Benzene	0.32	0.608	0.593	N/A
Toluene	2,300	2.16	3.18	1.02
Ethylbenzene	460	0.543	0.434 U	0.434 U
m,p-Xylenes		1.21	1.29	0.08
o-Xylene		0.645	0.505	N/A
Total Xylenes	46	1.855	1.795	0.08
Naphthalene	0.074	0.852	2.16	1.308
Total Petroleum Hydrocarbon ^a	140	171.42	636.73	466

U = Not detected at reporting limit indicated.

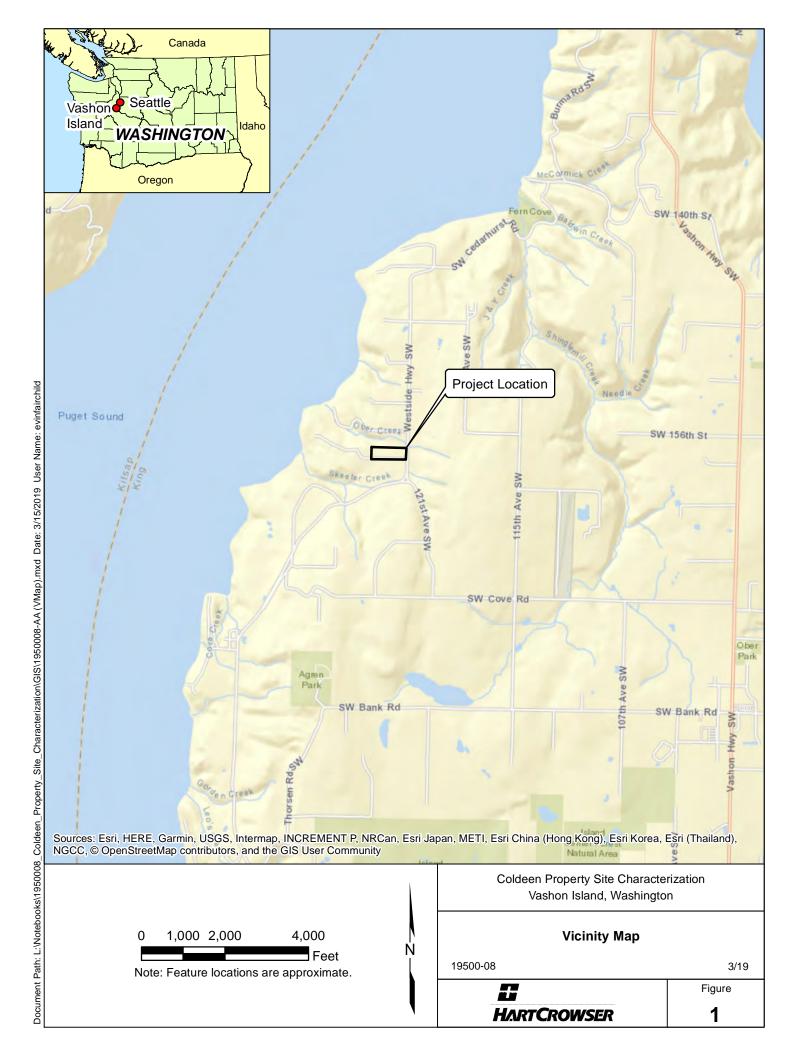
Detected concentrations are bolded.

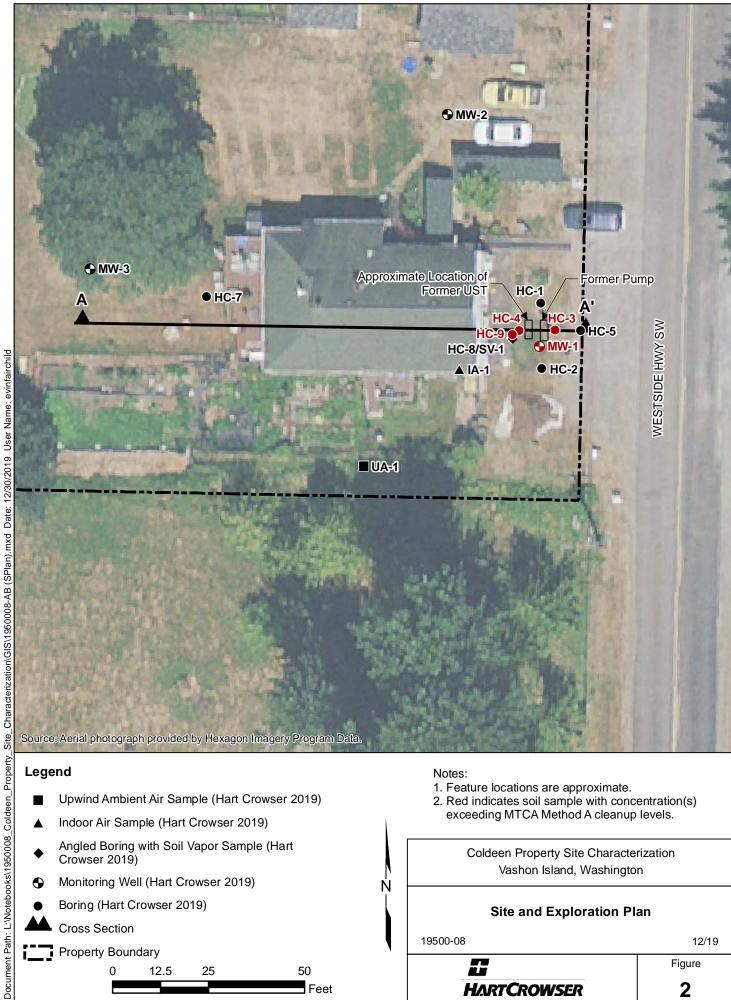
Corrected indoor air concentrations that exceed MTCA Method B cleanup levels are shaded.

N/A = Indoor air sample concentration is less than ambient upwind sample concentration; no contribution from vapor intrusion in the indoor air sample.

APH = Air-phase hydrocarbons

VOC = Volatile organic compound


 $\mu g/m^3 = microgram per cubic meter$


a. Total petroleum hydrocarbon calculated by summing concentrations for

benzene, toluene, ethylbenzene, total xylenes, naphthalene, APH C5-C8 aliphatics,

APH C9-C12 aliphatics, and APH C9-C10 aromatics.

b. Corrected concentration calculated by subtracting upwind ambient air concentration (UA-1) from indoor air sample concentration.

Legend

- Upwind Ambient Air Sample (Hart Crowser 2019)
- Indoor Air Sample (Hart Crowser 2019)
- Angled Boring with Soil Vapor Sample (Hart Crowser 2019)

12.5

- Monitoring Well (Hart Crowser 2019)
- Boring (Hart Crowser 2019)

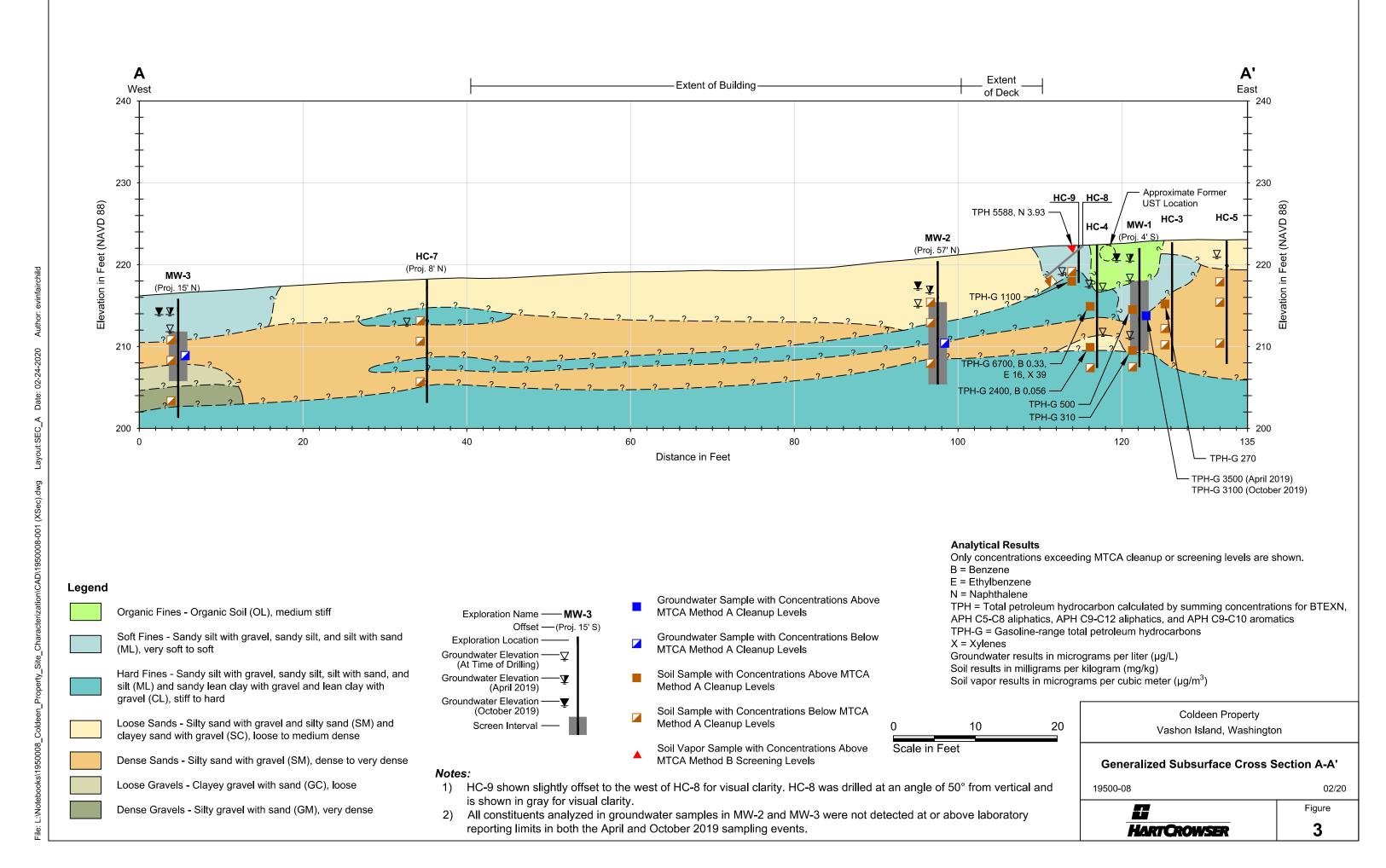
Cross Section

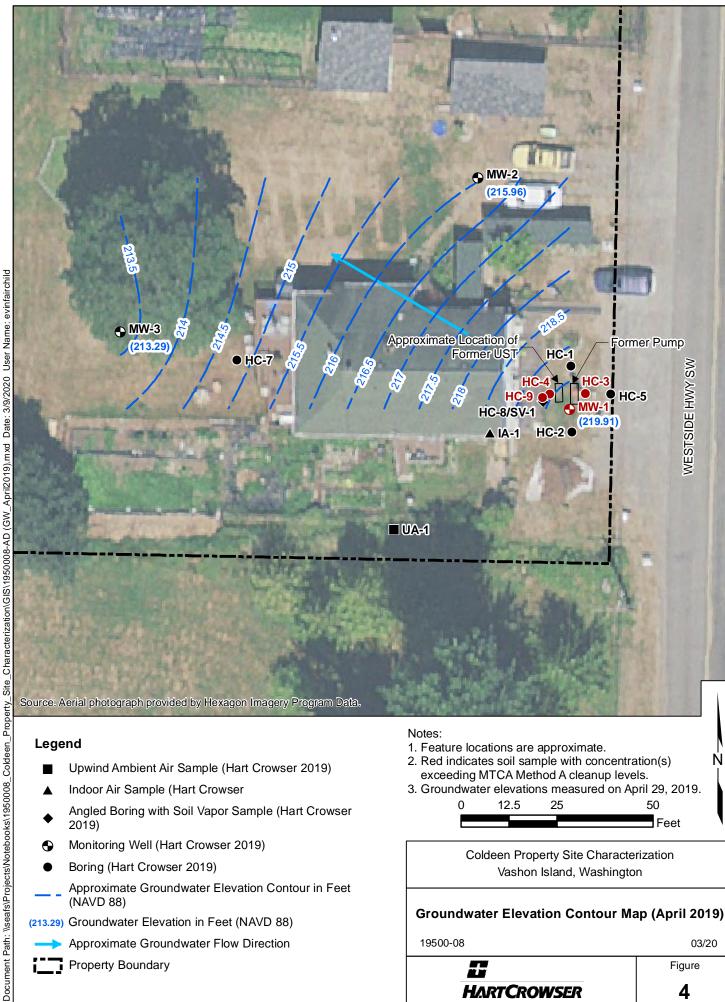
Property Boundary

50

Feet

Notes:


- 1. Feature locations are approximate.
- 2. Red indicates soil sample with concentration(s) exceeding MTCA Method A cleanup levels.

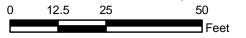

Coldeen Property Site Characterization Vashon Island, Washington

Site and Exploration Plan

19500-08

J-08	12/19
	Figure
HARTCROWSER	2

Legend


- Upwind Ambient Air Sample (Hart Crowser 2019)
- Indoor Air Sample (Hart Crowser
- Angled Boring with Soil Vapor Sample (Hart Crowser 2019)
- Monitoring Well (Hart Crowser 2019)
- Boring (Hart Crowser 2019)
- Approximate Groundwater Elevation Contour in Feet (NAVD 88)

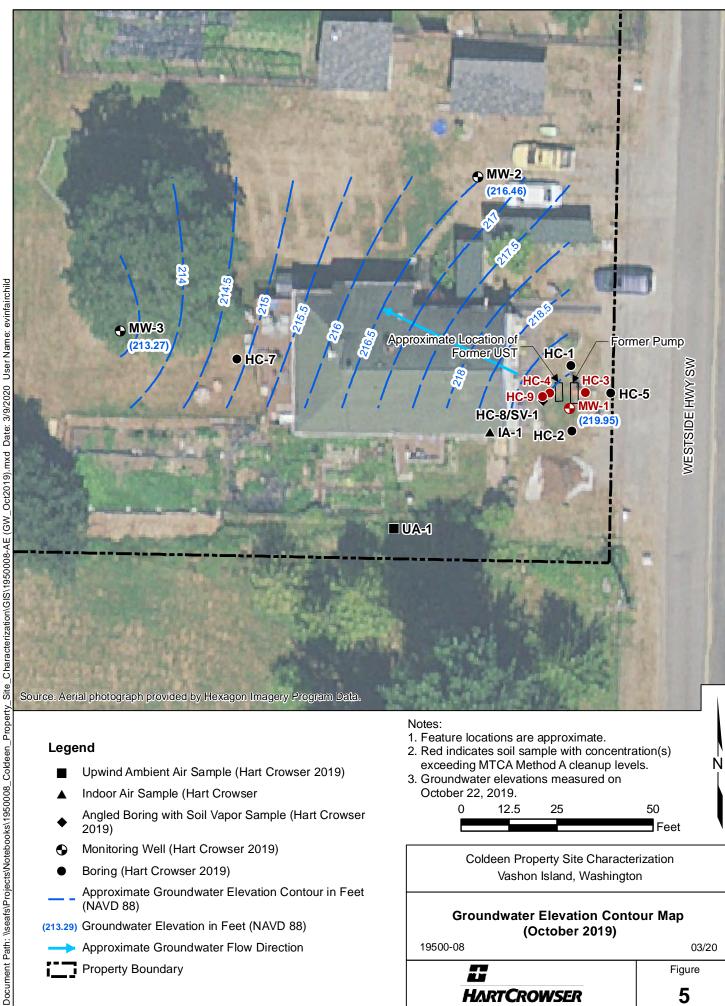
Groundwater Elevation in Feet (NAVD 88)

Approximate Groundwater Flow Direction

Property Boundary

- 1. Feature locations are approximate.
- 2. Red indicates soil sample with concentration(s) exceeding MTCA Method A cleanup levels.
- 3. Groundwater elevations measured on April 29, 2019.

Coldeen Property Site Characterization Vashon Island, Washington

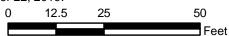

Groundwater Elevation Contour Map (April 2019)

19500-08 03/20

Figure

4

Legend


- Upwind Ambient Air Sample (Hart Crowser 2019)
- Indoor Air Sample (Hart Crowser
- Angled Boring with Soil Vapor Sample (Hart Crowser 2019)
- Monitoring Well (Hart Crowser 2019)
- Boring (Hart Crowser 2019)
- Approximate Groundwater Elevation Contour in Feet (NAVD 88)

(213.29) Groundwater Elevation in Feet (NAVD 88)

Approximate Groundwater Flow Direction

Property Boundary

- 1. Feature locations are approximate.
- 2. Red indicates soil sample with concentration(s) exceeding MTCA Method A cleanup levels.
- 3. Groundwater elevations measured on October 22, 2019.

Coldeen Property Site Characterization Vashon Island, Washington

Groundwater Elevation Contour Map (October 2019)

19500-08 03/20

Figure

5

APPENDIX A Soil Screening Methods and Exploration Logs

APPENDIX A SOIL SCREENING METHODS AND EXPLORATION LOGS

Soil Screening Methods

Field screening results were used as a general guideline to identify potential chemical constituents in soil samples. In addition, field screening results were used as a basis for selecting soil samples for chemical analysis.

Soil samples were field screened at approximately 2.5-foot depth intervals for evidence of volatile organic compounds (VOCs)-related impacts using (1) visual and olfactory observations, (2) sheen screening, and (3) headspace vapor screening using a MiniRAE photoionization detector (PID). The effectiveness of field screening varies with temperature, moisture content, organic content, soil type, and age of the constituents. Visual examination consists of inspecting the soil for evidence of discoloration, staining, and/or abnormal components. Visual screening is generally more effective when impacts are related to heavy petroleum hydrocarbons, such as motor or hydraulic oil, or when hydrocarbon concentrations are high.

We tested water sheen by placing a small volume of soil in a pan of water and observing the water surface for signs of sheen. Sheens were classified as follows:

No sheen (NS)	No visible sheen on water surface.
Slight sheen (SS)	Light colorless film, spotty to globular; spread is irregular, not rapid; areas of no sheen remain; film dissipates rapidly.
Moderate sheen (MS)	Light to heavy film, may have some color or iridescence; globular to stringy; spread is irregular to flowing; few remaining areas of no sheen on water surface.
Heavy sheen (HS)	Heavy colorful film with iridescence; stringy; spread is rapid; sheen flows off the sample; most of the water surface may be covered with sheen.

Headspace vapor screening is intended to indicate the presence of volatile organic vapors; it involves placing a soil sample in a plastic sample bag. Air is captured in the bag and the bag is shaken to expose the soil to the air trapped in the bag. The PID probe is then inserted in the bag and the instrument measures the concentration of organic vapors in the sample headspace. The highest vapor reading for each sample is then recorded on the boring log. The PID measures concentrations in parts per million (ppm), is calibrated to isobutylene, and can typically quantify organic vapor concentrations in the range of 0 to 1,000 ppm.

All field screening observations were recorded on the boring logs, and this information was used to select which samples to submit for chemical analysis. In general, samples with the highest readings were selected for analysis.

Relative Density/Consistency

Soil density/consistency in borings is related primarily to the standard penetration resistance (N). Soil density/consistency in test pits and probes is estimated based on visual observation and is presented parenthetically on

SAND or GRAVEL Relative Density	N (Blows/Foot)	SILT or CLAY Consistency	N (Blows/Foot)
Very loose	0 to 4	Very soft	0 to 1
Loose	5 to 10	Soft	2 to 4
Medium dense	11 to 30	Medium stiff	5 to 8
Dense	31 to 50	Stiff	9 to 15
Very dense	>50	Very stiff	16 to 30
•		Hard	>30

Moisture

Dry Absence of moisture, dusty, dry to the touch

Moist Damp but no visible water

Visible free water, usually soil is below water table Wet

USCS Soil Classification Chart (ASTM D 2487)

	las Distalas		Sym	bols	Typical	
Ma	ijor Divisions		Graph	USCS	Descriptions	
		Clean		GW	Well-Graded Gravel; Well-Graded Gravel with Sand	
		Gravels (<5% fines)		GP	Poorly Graded Gravel; Poorly Graded Gravel with Sand	
	Gravel and	Gravels (5-12% fines)		GW-GM	Well-Graded Gravel with Silt; Well-Graded Gravel with Silt and Sand	
	Gravelly Soils			GW-GC	Well-Graded Gravel with Clay; Well-Graded Gravel with Clay and Sand	
	More than 50% of Coarse Fraction			GP-GM	Poorly Graded Gravel with Silt; Poorly Graded Gravel with Silt and Sand	
	Retained on No. 4 Sieve			GP-GC	Poorly Graded Gravel with Clay; Poorly Graded Gravel with Clay and Sand	
Coarse		Gravels with		GM	Silty Gravel; Silty Gravel with Sand	
Grained Soils		Fines (>12% fines)		GC	Clayey Gravel; Clayey Gravel with Sand	
More than 50% of Material Retained on		Sands with few Fines (<5% fines)		SW	Well-Graded Sand; Well-Graded Sand with Gravel	
No. 200 Sieve				SP	Poorly Graded Sand; Poorly Graded Sand with Gravel	
	Sand and	Sands (5-12% fines)		SW-SM	Well-Graded Sand with Silt Well-Graded Sand with Silt and Gravel	
	Sandy Soils		• //	SW-SC	Well-Graded Sand with Clay; Well-Graded Sand with Clay and Gravel	
	More than 50% of Coarse Fraction			SP-SM	Poorly Graded Sand with Silt; Poorly Graded Sand with Silt and Gravel	
	Passing No. 4 Sieve			SP-SC	Poorly Graded Sand with Clay; Poorly Graded Sand with Clay and Grave	
		Sands with Fines		SM	Silty Sand; Silty Sand with Gravel	
		(>12% fines)		SC	Clayey Sand; Clayey Sand with Gravel	
	Silts			ML	Silt; Silt with Sand or Gravel; Sandy or Gravelly Silt	
Fine Grained Soils	Silts	•		МН	Elastic Silt; Elastic Silt with Sand or Gravel; Sandy or Gravelly Elastic Silt	
More than 50% of Material	Silty C (based on Atte		CL-ML	Silty Clay; Silty Clay with Sand or Gravel Gravelly or Sandy Silty Clay		
Passing No. 200 Sieve	Clay	-		CL	Lean Clay; Lean Clay with Sand or Gravel; Sandy or Gravelly Lean Clay	
	Clay		CH	Fat Clay; Fat Clay with Sand or Gravel; Sandy or Gravelly Fat Clay		
	Organ		OL/OH	Organic Soil; Organic Soil with Sand or Gravel; Sandy or Gravelly Organic Soil		
	Highly Organic organic materia	<i>I</i>)	ب بلد	PT	Peat - Decomposing Vegetation - Fibrous to Amorphous Texture	

Minor Constituents	Estimated Percentage
Sand, Gravel	
Trace	<5
Few	5 - 15
Cobbles, Boulders	
Trace	<5
Few	5 - 10
Little	15 - 25
Some	30 - 45

Soil Test Symbols Percent Passing No. 200 Sieve AL Atterberg Limits (%) Liquid Limit (LL) Water Content (WC) Plastic Limit (PL) CA CAUC Chemical Analysis Consolidated Anisotropic Undrained Compression Consolidated Anisotropic Undrained Extension CAUE CBR California Bearing Ratio CIDC Consolidated Drained Isotropic Triaxial Compression CIUC Consolidated Isotropic Undrained Compression CK0DC CK0DSS Consolidated Drained k0 Triaxial Compression Consolidated k0 Undrained Direct Simple Shear CKOLIC Consolidated k0 Undrained Compression CK0UE Consolidated k0 Undrained Extension **CRSCN** Constant Rate of Strain Consolidation DSS Direct Simple Shear In Situ Density Grain Size Classification DT GS HYD Hydrometer **ILCN** Incremental Load Consolidation k0 Consolidation K0CN Constant Head Permeability kc Falling Head Permeability MD Moisture Density Relationship OC Organic Content OT P Tests by Others Pressuremeter PID Photoionization Detector Reading Pocket Penetrometer SG Specific Gravity TRS Torsional Ring Shear UC **Unconfined Compression** Unconsolidated Undrained Triaxial Compression UUC VS Vane Shear

Groundwater Indicators

Water Content (%)

 $\overline{\Delta}$ Groundwater Level on Date or At Time of Drilling (ATD)

Groundwater Level on Date Measured in Piezometer

Groundwater Seepage (Test Pits)

Sample Symbols

1.5" I.D. Split Spoon

T

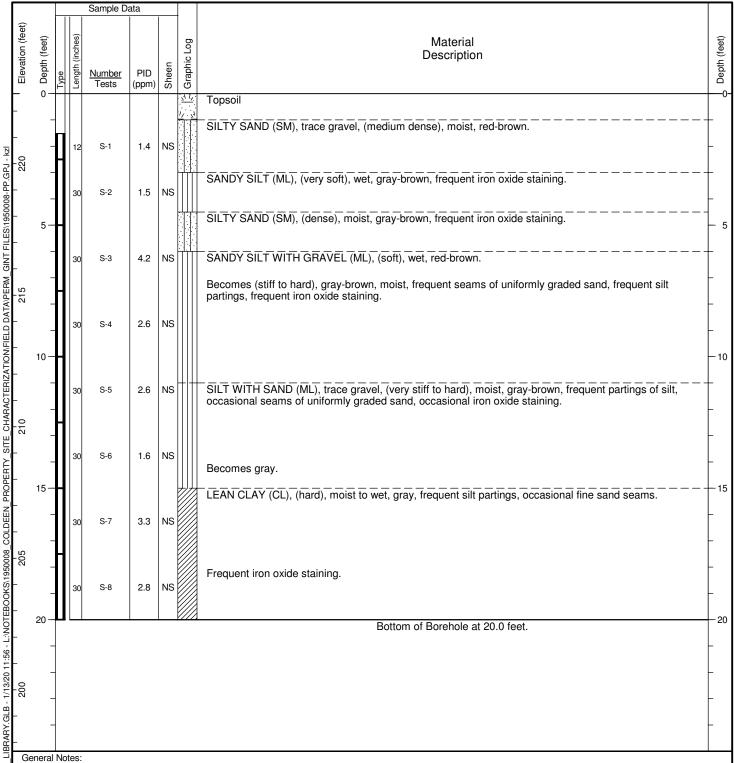
Core Run 3.25" O.D. Split Spoon

Grab Grab Sonic Core Cuttings

Thin-walled Sampler

Well Symbols Monument Surface Seal Signal Bentonite Seal Well Casing Vibrating Sand Pack Wire Piezometer Well Tip or Slotted Screen (VP) Slough

HARTCROWSER


Project: Coldeen Property Location: Vashon, WA Project No.: 19500-08

Key to **Exploration Logs** Figure **A-1**

Sheet

1 of 1

Date Started: 4/22/19	Date Completed: 4/22/19	Drilling Contractor/Crew: ESN Northwest				
Logged by: C. Kroskie	Checked by: M. Goodman	Drilling Method: Push Probe	Drilling Method: Push Probe			
Location: Lat: 47.464511 Long	: -122.492573 (WGS 84)	Rig Model/Type:	Rig Model/Type:			
Ground Surface Elevation: 222	2.6619 feet ()	Hammer Type:	Hammer Type:			
Comments:		Hammer Weight (pounds): I	Hammer Drop Height (inches):			
		Measured Hammer Efficiency (%): NA				
		Hole Diameter:	Casing Diameter: NA			
		Total Depth: 20 feet	Depth to Groundwater: Not Identified			
Sample Data						

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

Project: Coldeen Property Location: Vashon, WA Project No.: 19500-08

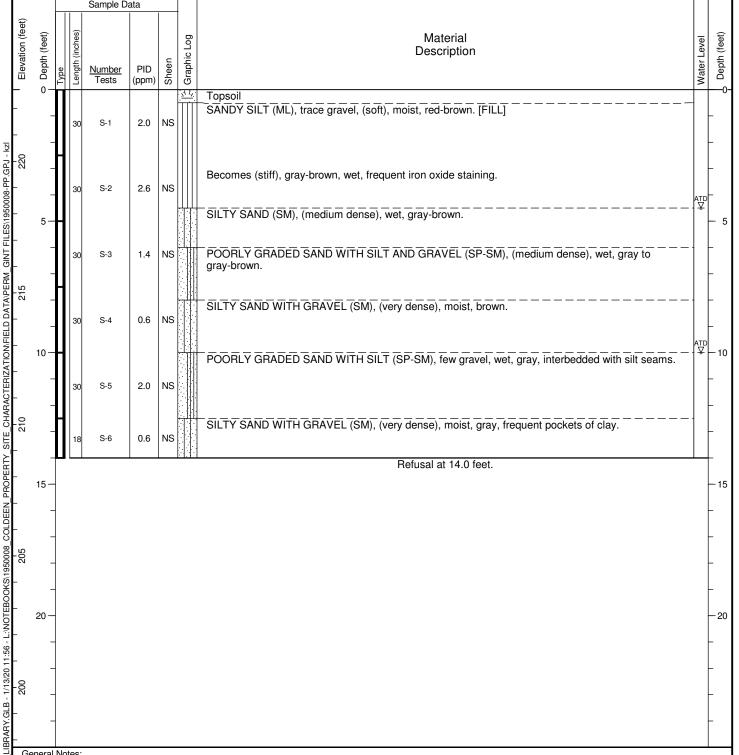

Push Probe Log

Figure **A-2** Sheet

HC-1

1 of 1

Date Started: 4/22/19 Date Completed: 4/22/19	Drilling Contractor/Crew: ESN Northwest
Logged by: C. Kroskie Checked by: M. Goodman	Drilling Method: Push Probe
Location: Lat: 47.464464 Long: -122.492571 (WGS 84)	Rig Model/Type:
Ground Surface Elevation: 222.7227 feet ()	Hammer Type:
Comments: Perched GW at 4.5 and 10 feet.	Hammer Weight (pounds): Hammer Drop Height (inches):
	Measured Hammer Efficiency (%): NA
	Hole Diameter: Casing Diameter: NA
	Total Depth: 14 feet Depth to Groundwater: 4.5 feet
Sample Data	

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.

5. Location and ground surface elevations are approximate.

Project: Coldeen Property Location: Vashon, WA Project No.: 19500-08

Push Probe Log HC-2

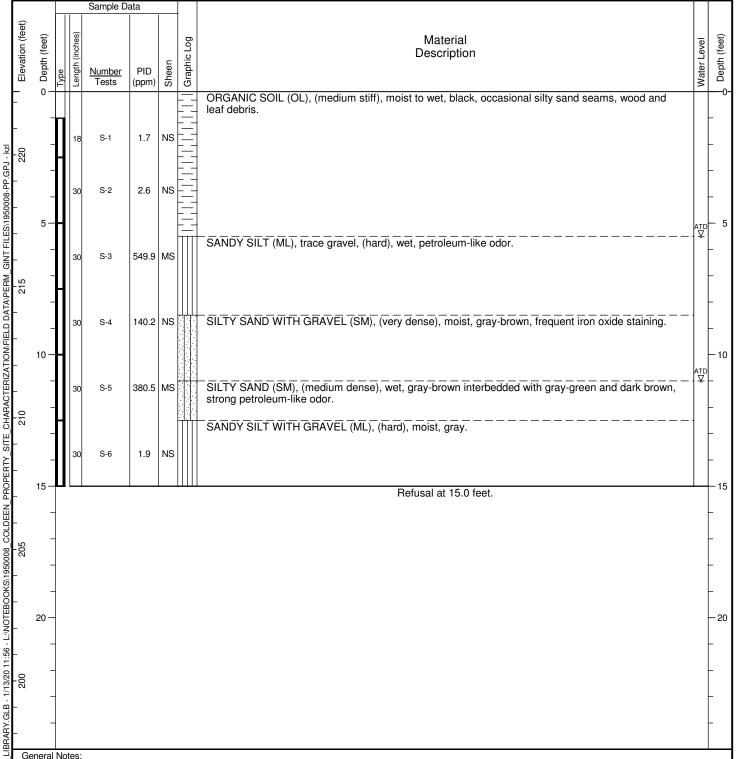
Figure **A-3** 1 of 1 Sheet

Date Started: 4/22/19 Date Completed: 4/22/19	Drilling Contractor/Crew: ESN Northwest
Logged by: C. Kroskie Checked by: M. Goodman	Drilling Method: Push Probe
Location: Lat: 47.464492 Long: -122.492557 (WGS 84)	Rig Model/Type:
Ground Surface Elevation: 222.7 feet (NAVD 88)	Hammer Type:
Comments:	Hammer Weight (pounds): Hammer Drop Height (inches):
	Measured Hammer Efficiency (%): NA
	Hole Diameter: Casing Diameter: NA
	Total Depth: 14.5 feet Depth to Groundwater: Not Identified
Sample Data	

Ī	Sample Data								
: :	Elevation (reet)	- 1⊢	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log	Material Description	, Depth (feet)
aPJ - kzl	0	T	18	s S-1	1.1	NS		SILTY SAND WITH GRAVEL (SM), (medium dense), moist, brown. [FILL] SANDY SILT (ML), few gravel, (very soft), wet, red-brown, frequent iron oxide staining, slag fragments. [FILL]	
1950008-PP.GF	5	- - - -	30) S-2	1.7	NS			- - - 5
HW GINI FILED			30	S-3	118.9	SS		SILTY SAND WITH GRAVEL (SM), (dense), wet, gray to brown, frequent layers of uniformly graded sand.	- - -
IN FIELD DATANE	<u>n</u> 10	-	30) S-4	2.7	NS		Becomes (very dense).	_ _ _ 10
ARACIERIZATIO		, 	30) S-5	1.3	NS			- - -
TERLY SILE CH	012		24	\$ S-6	1.5	NS		Becomes gray, moist. Refusal at 14.5 feet.	- -
COLDEEN PRO	15	5-						Tiolada de 14.0 foot.	- 15 - -
COCKS/1950008	502	-							-
11:56 - L:WOIEB	20) —							-20 -
LIBRAHY.GLB - 1/13/20 11:56 - L:NOTEBOOKS/1950008_COLDEEN_PHOPERTY_STIE_CHARACTERIZATION:HELD DATA/PERM_GINT FILES/1950008-PP.GPJ - KZI	200								- -
	Cono								

OG - J:\GINT\HC_

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
 Location and ground surface elevations are approximate.



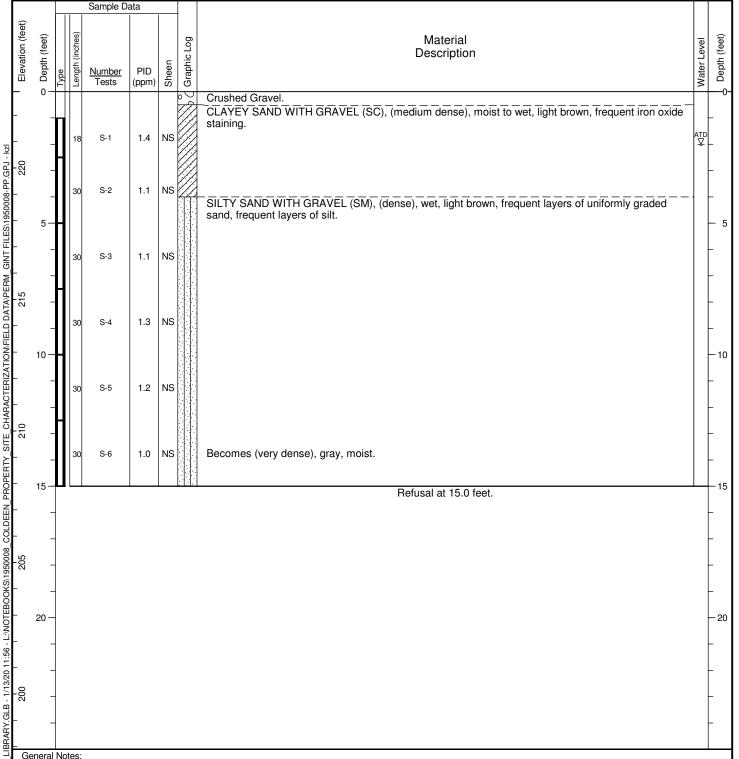
Project: Coldeen Property Location: Vashon, WA Project No.: 19500-08

Push Probe Log HC-3

A-4 Figure Sheet 1 of 1

Date Started: 4/22/19 Date Completed: 4/22/19	Drilling Contractor/Crew: ESN Northwest			
Logged by: C. Kroskie Checked by: M. Goodman	Drilling Method: Push Probe			
Location: Lat: 47.464491 Long: -122.492594 (WGS 84)	Rig Model/Type:			
Ground Surface Elevation: _222.3998 feet ()	Hammer Type:			
Comments: Perched GW at 5.5 and 11 feet.	Hammer Weight (pounds): Hammer Drop Height (inches):			
	Measured Hammer Efficiency (%): NA			
	Hole Diameter: Casing Diameter: NA			
	Total Depth: 15 feet Depth to Groundwater: 5.5 feet			
Sample Data				

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.


Project: Coldeen Property Location: Vashon, WA Project No.: 19500-08

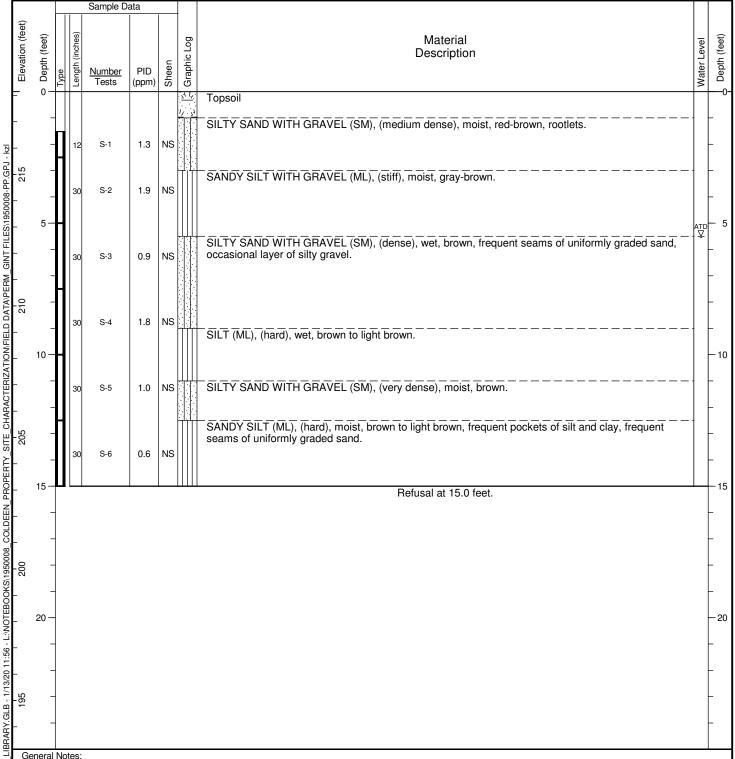
Push Probe Log HC-4

Figure Sheet

A-5 1 of 1

Date Started: 4/24/19	Date Completed: 4/24/19	Drilling Contractor/Crew: ESN Northwest	t		
Logged by: C. Kroskie	Checked by: M. Goodman	Drilling Method: Push Probe			
Location: Lat: 47.464492 Long: -122.4	492530 (WGS 84)	Rig Model/Type:			
Ground Surface Elevation: 222.9 feet	(NAVD 88)	Hammer Type:			
Comments: Perched GW at 2 feet.		Hammer Weight (pounds):	Hammer Drop Height (inches):		
		Measured Hammer Efficiency (%): NA			
		Hole Diameter:	Casing Diameter: NA		
		Total Depth: 15 feet	Depth to Groundwater: 2 feet		
Sample Data					

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.


HARTCROWSER

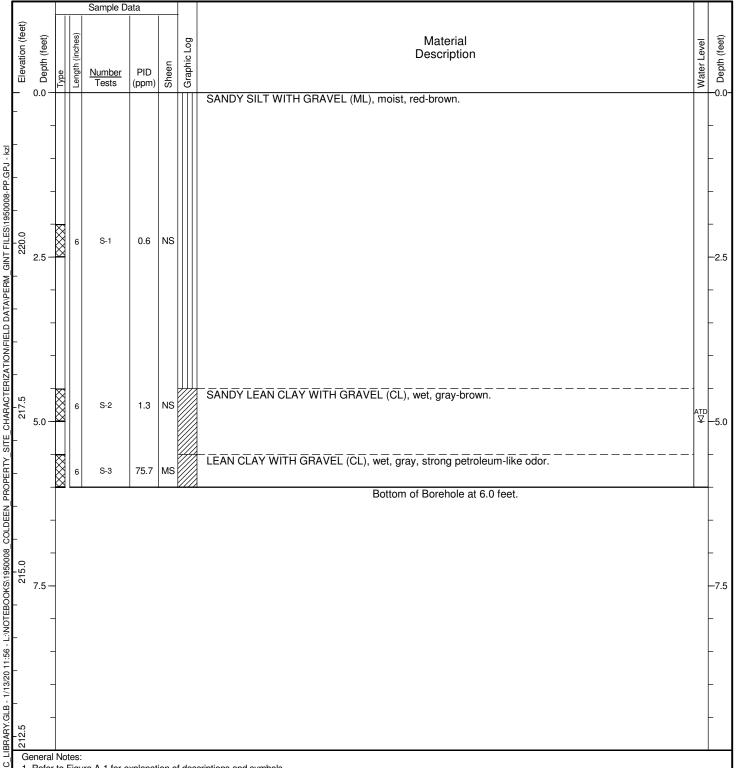
Project: Coldeen Property Location: Vashon, WA Project No.: 19500-08

Push Probe Log HC-5

A-6 Figure 1 of 1 Sheet

Date Started: 4/24/19 Date Completed: 4/24/19 Logged by: C. Kroskie Checked by: M. Goodman	Drilling Contractor/Crew: ESN Northwest Drilling Method: Push Probe			
Location: Lat: 47.464511 Long: -122.492925 (WGS 84) Rig Model/Type:				
Ground Surface Elevation: 218.1458 feet ()	Hammer Type:			
Comments: Perched GW at 5.5 feet.	Hammer Weight (pounds): Hammer Drop Height (inches):			
	Measured Hammer Efficiency (%): NA			
	Hole Diameter: Casing Diameter: NA			
	Total Depth: 15 feet Depth to Groundwater: 5.5 feet			
Sample Data (teet) (se) (be) (se) (be) (be) (be) (be) (be) (be) (be) (b	Material	le l	eet)	

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.



Project: Coldeen Property Location: Vashon, WA Project No.: 19500-08

Push Probe Log HC-7

A-7 Figure Sheet 1 of 1

Date Started: 10/22/19 Date Completed: 10/22/19	Drilling Contractor/Crew: Cascade Drilling, L.P. / James Goble
Logged by: B. Dozier Checked by: M. Goodman	Drilling Method: Hand Auger
Location: Lat: 47.464486 Long: -122.492601 (WGS 84)	Rig Model/Type: Hand Auger
Ground Surface Elevation: 222.2904 feet ()	Hammer Type:
Comments: Boring drilled at 50° angle from vertical. Depths are measured along	Hammer Weight (pounds): Hammer Drop Height (inches):
the axis of the boring. Soil vapor sample collected at 1 foot bgs.	Measured Hammer Efficiency (%): NA
	Hole Diameter: Casing Diameter: NA
	Total Depth: 6 feet Depth to Groundwater: 5 feet

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

Project: Coldeen Property Location: Vashon, WA Project No.: 19500-08

Hand-Auger Log **HC-8**

Figure A-8
Sheet 1 of 1

Loc Loc Gro	ged bation: ation: ound S	y: <u>l</u> <u>La</u> Surfa	B. D t: 4 ⁻ ace l	Elevation:	ong: -1- 222.30	22.49)29 fe	Chec 92602 eet ()	Completed: 10/22/19 Drilling Contractor/Crew: Cascade Drilling, L.P. / James Goble Drilling Method: Hand Auger (WGS 84) Rig Model/Type: Hand Auger Hammer Type: Hammer Weight (pounds): Hammer Drop Height (inches): Measured Hammer Efficiency (%): NA Hole Diameter: Casing Diameter: NA Total Depth: 4.5 feet Depth to Groundwater: 3.5 feet		
				Sample D	ata					
Elevation (feet)	o Depth (feet)	Туре	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log	Material Description SANDY SILT WITH GRAVEL (ML), moist, red-brown.	Water Level	Ö Depth (feet)
220.0	- - - 2.5 –		6	S-1	0.9	NS				_ _
	-		6	S-2	159.7	SS		SANDY LEAN CLAY WITH GRAVEL (CL), wet, gray, strong petroleum-like odor.	— · ATD ↓	_
-			6	S-3	412.2	MS				
ī.	-						<u>Y///</u>	Refusal at 4.5 feet.	!	+
217.5	5.0 -	1								-5.0
	-									_
	-									
	-									-
	-	-								-
215.0										
.,	7.5 –	İ								- 7.5
-	-	1								_
_	-									
	-	-								-
-										
212.5	-									
	eneral	Not	es:							
1.	Refer	to F	igu					riptions and symbols. actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate co	ntacto	
3.	USCS	S de	sign	nations are	based c	on vis	ual-m	anual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487). If drilling/excavation (ATD) or for date specified. Level may vary with time.	nuolo.	

HARTCROWSER

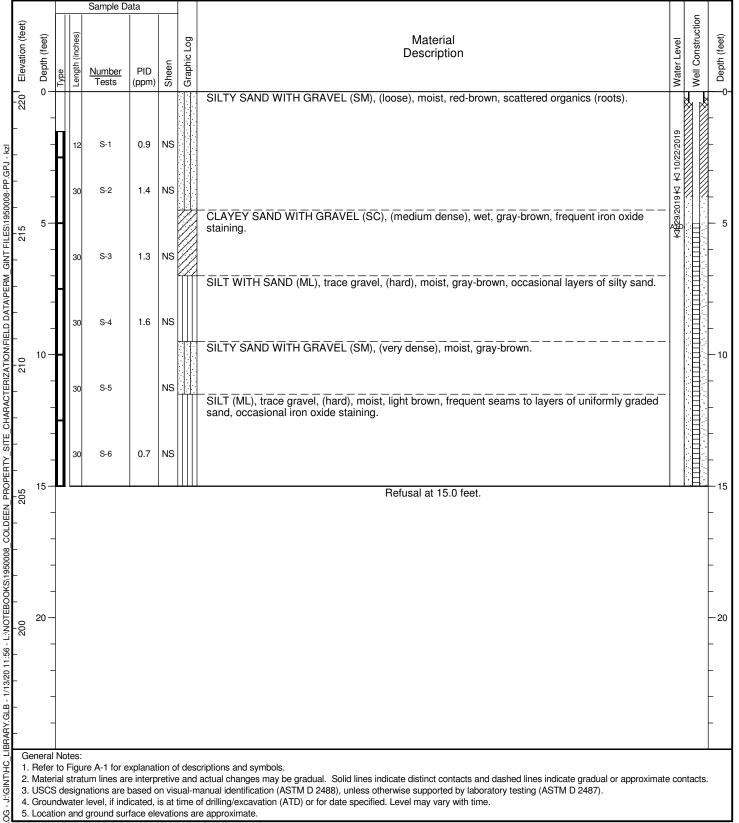
Project: Coldeen Property Location: Vashon, WA Project No.: 19500-08

Hand-Auger Log **HC-9**

Figure A-9
Sheet 1 of 1

Loca Loca Gro	ged b ation: und S	oy: <u>La</u> Surfa	C. K at: 47 ace I	roskie 7.464481 l Elevation:	_ong: -1 222 fe	22.49 et (N	Che 92570 AVD	e Completed: 4/23/19 cked by: M. Goodman 3 (WGS 84) 88) d GW at 4 and 11 feet.	Drilling Contractor/Crew: ESN Northwest Drilling Method: Push Probe Rig Model/Type: Hammer Type: Hammer Weight (pounds): Hammer Drop Height (inches):			
									Measured Hammer Efficiency (%): NA Hole Diameter: Casing Diameter: Depth to Groundwater: 4 feet			
				Sample D	ata						_	T
Elevation (feet)	Depth (feet)	Type	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log		Material Description	Water Level	Well Construction	Depth (feet)
220	-	- - -	12	S-1	1.3	ss		ORGANIC SOIL (OL), (mediun	n stiff), moist, dark brown.	4/29/2019 NCD/22/2019		
-	- 5-		30	S-2	0.8	SS		SILT WITH SAND (ML), (very s	soft), wet, brown, frequent iron oxide staining.	¬ \Z		- 5
215	-	- - - - -	30	S-3	397.5	MS		Becomes gray. Strong petroleu	um-like odor.			
-	10 —	1	30	S-4	2.0	NS		SILTY SAND WITH GRAVEL (SM), (very dense), moist, gray to brown.	ATD		- - 10
210	-	-	30	S-5	988.2	MS		Becomes (loose), gray, wet. St		- <u>Ā</u>		. - : : - : -
-	-	╽	24	S-6	2.2	NS		SANDY SILT WITH GRAVEL (ML), (stiff to hard), moist, gray.			<u> </u>
-	15 -								Refusal at 14.5 feet.			- 15
202	-											
-	-											-
_	20 —											-20
200	-											_
-	-											-
1. 2. 3. 4.	Mater USCS Grour	to l rial s S de ndw	Figu strat sign ater	um lines ar ations are level, if inc	e interp based o licated,	retive on vis is at	e and ual-n time (lines indicate distinct contacts and dashed lines indicate gradual or approxima nless otherwise supported by laboratory testing (ASTM D 2487). specified. Level may vary with time.	te co	ntacts	j.

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.


HARTCROWSER

Project: Coldeen Property Location: Vashon, WA Project No.: 19500-08

Push Probe Log **MW-1**

A-10 Figure 1 of 1 Sheet

Date Started: <u>4/24/19</u>	Date Completed: 4/24/19	Drilling Contractor/Crew: ESN No	orthwest
Logged by: C. Kroskie	Checked by: M. Goodman	Drilling Method: Push Probe	
Location: Lat: 47.464646 Long	: -122.492674 (WGS 84)	Rig Model/Type:	
Ground Surface Elevation: 220	0.4 feet (NAVD 88)	Hammer Type:	
Comments: Well Tag ID: BLC-4	146 Perched GW at 5.5 feet.	Hammer Weight (pounds):	Hammer Drop Height (inches):
		Measured Hammer Efficiency (%)	: <u>NA</u>
		Hole Diameter:	Casing Diameter:
		Total Depth: 15 feet	Depth to Groundwater: 5.5 feet
Sample Data			LO LO

General Notes:

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

Project: Coldeen Property Location: Vashon, WA Project No.: 19500-08

Push Probe Log **MW-2**

A-11 Figure 1 of 1 Sheet

Logge Locat Grour	ed by tion: nd Su	/: <u>C</u> <u>Lat</u> urfac	47.464530 e Elevation:	Long: -1 _215.8	22.4 feet	Che 9304 (NAV	c Completed: 4/23/19 cked by: M. Goodman B (WGS 84) D 88) d GW at 4 feet.	Drilling Contractor/Crew: ESN Northwood Drilling Method: Push Probe Rig Model/Type: Hammer Type: Hammer Weight (pounds): Measured Hammer Efficiency (%): Northwood Diameter: Total Depth: 14.5 feet	Hammer Drop Height (inches): A Casing Diameter:			
			Sample D	ata				·				
	Depth (feet)	Type	Number Tests	PID (ppm)	Sheen	Graphic Log		Material Description		Water Level	Well Construction	Depth (feet)
215			92 S-1 90 S-2	3.8	NS SS		Topsoil SANDY SILT (ML), (soft), moist Becomes wet. Few gravel.	t, gray-brown, frequent iron oxide s	staining.	hO를10/22/2019 년 4/29/2019		- - -
210	5 -		30 S-3	4.6	NS		SILTY SAND WITH GRAVEL (SM), (dense), wet, gray-brown.				- 5 - -
	- 10 —		80 S-4	1.9	NS		CLAYEY GRAVEL WITH SAND Becomes (dense), moist.					- - - 10
205	_		80 S-5	3.8	NS		SILTY GRAVEL WITH SAND (GM), (very dense), moist, brown.			-	-
-	-		24 S-6	1.4	NS		(,, (,,,, g,.			-	-
500	115 —							Refusal at 14.5 feet.				- 15 - - - - - 20
1. R		to Fi	gure A-1 for e				criptions and symbols.	lines indicate distinct contacts and dashe	d lines indicate gradual or approximate	o cont	noto	

- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).

 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.

 5. Location and ground surface elevations are approximate.

Project: Coldeen Property Location: Vashon, WA Project No.: 19500-08

Push Probe Log **MW-3**

A-12 Figure 1 of 1 Sheet

APPENDIX B Chemical Data Quality Review and Laboratory Reports

APPENDIX B CHEMICAL DATA QUALITY REVIEW AND LABORATORY REPORTS

Chemical Data Quality Review

On April 22, 23, and 24, 2019, 59 soil samples were collected and submitted to OnSite Environmental Inc. (OnSite) of Redmond, Washington, for analysis. Results were reported as OnSite Reference Numbers 1904-261, 1904-277, and 1904-301.

On April 29, 2019, five groundwater samples were collected and submitted to OnSite of Redmond, Washington, for analysis. Results were reported as OnSite Reference Number 1904-320.

On October 22, 2019, six soil samples and four groundwater samples were collected and submitted to OnSite of Redmond, Washington, for analysis. Results were reported as OnSite Reference Number 1910-304.

On October 22 and 23, 2019, three air samples (one soil vapor, one indoor air, and one ambient air) were collected and submitted to Fremont Analytical, Inc. (Fremont) of Seattle, Washington, for analysis. Results were reported as Fremont Work Order Number 1910429.

Selected soil samples were analyzed for one or more of:

- Gasoline-range total petroleum hydrocarbons (TPH) by Washington State Department of Ecology (Ecology) Method NWTPH-Gx;
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8021B;
- Total lead by EPA Method 6010D; and
- Percent moisture.

Selected groundwater samples were analyzed for one or more of:

- Gasoline-range TPH by Ecology Method NWTPH-Gx;
- BTEX by EPA Method 8021B;
- 1,2-Dibromoethane (EDB) by EPA Method 8011;
- Total and dissolved lead by EPA Method 200.8; and
- Volatile organic compounds (VOCs) by EPA Method 8260C.

Selected air samples were analyzed for one or more of:

- Helium by GC/TCD;
- Major gases (oxygen, carbon dioxide, and methane) by EPA Method 3C;
- Petroleum fractionation by EPA Method TO-15; and
- VOCs by EPA Method TO-15.

B-2 | Coldeen Property

The laboratory performed ongoing quality assurance/quality control (QA/QC) reviews. Hart Crowser reviewed a summary report to check that they met data quality objectives for the project.

The following criteria were evaluated during the standard data quality review process:

- Holding times,
- Reporting limits (RLs),
- Method blanks,
- Spike blank/spike blank duplicate (SB/SBD) also known as laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries,
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries,
- Laboratory duplicate relative percent difference (RPD), and
- Surrogate recoveries.

All of the data were acceptable for use with qualification. The complete laboratory reports are at the end of this appendix. The data review is summarized below.

Sample Receiving Notes

No sample receiving discrepancies were noted by the laboratory. Discrepancies from the chains of custody (COCs) are:

1904-261. Fourteen samples were placed on hold and not analyzed. Several samples were added for analysis after submittal to the laboratory. No sample results were qualified due to these discrepancies.

1904-277. Six samples were placed on hold and not analyzed. Several samples were added for analysis after submittal to the laboratory. No sample results were qualified due to these discrepancies.

1904-301. Twelve samples were placed on hold and not analyzed. No sample results were qualified due to these discrepancies.

1904-320. One sample was placed on hold and not analyzed. No sample results were qualified due to these discrepancies.

1910-304. Three samples were placed on hold and not analyzed. No sample results were qualified due to these discrepancies.

Soil Results

Gasoline-Range TPH by NWTPH-Gx

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. SB and SBD recoveries and associated RPDs were within laboratory control limits. The laboratory duplicate RPDs were not applicable because the sample and/or duplicate were below RLs.

The data are acceptable for use without qualification.

BTEX by EPA Method 8021B

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. SB and SBD recoveries and associated RPDs were within laboratory control limits. The laboratory duplicate RPDs were not applicable because the sample and/or duplicate were below RLs. The method states that there should be one MS for each analytical batch. There were no MSs analyzed with the batches in laboratory reports 1904-261, 1904-277, 1904-301, and 1910-304. Analytical results were not affected, and no samples were qualified.

The data are acceptable for use without qualification.

Total Lead by EPA Method 6010D

Holding times and reporting limits were acceptable. No method blank contamination was detected. SB recoveries were within laboratory control limits. MS and MSD recoveries and associated RPDs were within laboratory control limits. The laboratory duplicate RPDs were not applicable because the sample and/or duplicate were below RLs.

The data are acceptable for use without qualification.

Percent Moisture

Holding times and reporting limits were acceptable.

The data are acceptable for use without qualification.

Groundwater Results

Gasoline-Range TPH by NWTPH-Gx

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. The laboratory duplicate RPDs either were within laboratory control limits or were not applicable because the sample and/or duplicate were below RLs. The field duplicate RPDs either were within laboratory control limits or were not applicable because the sample and/or duplicate were below RLs.

The data are acceptable for use without qualification.

EDB by EPA Method 8011

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. SB and SBD recoveries and associated RPDs were within laboratory control limits. The field duplicate RPDs were not applicable because the sample and/or duplicate were below RLs.

The data are acceptable for use without qualification.

VOCs by EPA Method 8260C

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. SB and SBD recoveries and associated RPDs were within laboratory control limits. The field duplicate RPDs were within laboratory control limits. The method states that there should be one MS for each analytical batch. There was no MS analyzed with the batch in laboratory report 1904-320. Analytical results were not affected, and no samples were qualified.

The data are acceptable for use without qualification.

Total and Dissolved Lead by EPA Method 200.8

Holding times and reporting limits were acceptable. No method blank contamination was detected. SB recoveries were within laboratory control limits. MS and MSD recoveries and associated RPDs were within laboratory control limits. The laboratory duplicate RPDs were not applicable because the sample and/or duplicate were below RLs. The field duplicate RPDs were not applicable because the sample and/or duplicate were below RLs.

The data are acceptable for use without qualification.

BTEX by EPA Method 8021B

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. SB and SBD recoveries and associated RPDs were within laboratory control limits. The laboratory duplicate RPDs were not applicable because the sample and/or duplicate were below RLs. The field duplicate RPDs were not applicable because the sample and/or duplicate were below RLs. The method states that there should be one MS for each analytical batch. There was no MS analyzed with the batch in laboratory report 1910-304. Analytical results were not affected, and no samples were qualified.

The data are acceptable for use without qualification.

Air Results

Helium by GC/TCD

Holding times and reporting limits were acceptable. No method blank contamination was detected. LCS recoveries were within laboratory control limits. The laboratory duplicate RPDs were not applicable because the sample and/or duplicate were below RLs.

The data are acceptable for use without qualification.

Major Gases (Oxygen, Carbon Dioxide, and Methane) by EPA Method 3C

LCS recoveries were within laboratory control limits. The laboratory duplicate RPDs were within laboratory control limits.

Holding times were acceptable except the holding times for carbon dioxide, methane, and oxygen in the laboratory duplicate were qualified by the lab as H due to holding times for preparation or analysis being exceeded. The laboratory duplicate was a batch sample, sample results were not affected, and no samples were qualified.

The results for oxygen, carbon dioxide, and methane in SV-1 were flagged by the lab as D due to dilution being required with a dilution factor of 2. The D flags were removed.

The reporting limits were acceptable except the reporting limit for methane in SV-1 was twice the reporting limit goal in the Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP) due to dilution. There is no MTCA Method B screening level for methane, and no samples were qualified.

The result for oxygen in SV-1 exceeded the ambient oxygen concentration of 21%. In a follow-up email, the laboratory noted there was a possibility of ambient air contamination into the sample during dilution. The result for oxygen in SV-1 was qualified as estimated (J).

The data are acceptable for use with qualification.

Petroleum Fractionation by EPA Method TO-15

Holding times were acceptable. No method blank contamination was detected. LCS recoveries were within laboratory control limits.

The laboratory duplicate RPDs were within laboratory control limits. The results for air-phase hydrocarbon (APH) petroleum fractions C5-C8 aliphatics and C9-C12 aliphatics in two laboratory duplicates were flagged by the laboratory as E due to the results being an estimated value because they exceeded the linear working range of the instrument. The laboratory duplicates were batch samples; sample results were not affected, and no samples were qualified.

Surrogate recoveries were within laboratory control limits except one of one surrogate recoveries in the laboratory duplicate exceeded laboratory control limits and was flagged by the laboratory as S due to the outlying surrogate recovery observed. The laboratory noted a duplicate analysis was performed with similar results indicating a possible matrix effect. The surrogate recovery exceedance was in a laboratory duplicate that was a batch sample; sample results were not affected, and no samples were qualified.

Reporting limits were acceptable except the reporting limit for APH petroleum fractions C9-C10 aromatics in SV-1 was ten times the reporting limit goal in the SAP/QAPP due to elevated concentrations in the other APH petroleum fractions. There is no MTCA Method B screening level for APH petroleum fractions C9-C10 aromatics, and no samples were qualified.

B-6 Coldeen Property

The data are acceptable for use without qualification.

VOCs by EPA Method TO-15

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. LCS and LCSD recoveries and associated RPDs were within laboratory control limits. No laboratory duplicate was analyzed, though the SAP/QAPP required one laboratory duplicate analysis for every 20 or fewer samples. An LCSD was analyzed instead of a laboratory duplicate; sample results were not affected, and no samples were qualified.

The data are acceptable for use without qualification.

Laboratory Reports

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 3, 2019

Marissa Goodman Hart Crowser, Inc. 3131 Elliott Ave., Suite 600 Seattle, WA 98121

Re: Analytical Data for Project 1950008

Laboratory Reference No. 1904-261

Dear Marissa:

Enclosed are the analytical results and associated quality control data for samples submitted on April 23, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 1950008

Case Narrative

Samples were collected on April 22, 2019 and received by the laboratory on April 23, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

ome. mg/ng (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC4-S3-7.5					
Laboratory ID:	04-261-03					
Benzene	0.33	0.021	EPA 8021B	4-29-19	4-30-19	
Toluene	3.3	0.11	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	16	1.1	EPA 8021B	4-29-19	5-1-19	
m,p-Xylene	35	1.1	EPA 8021B	4-29-19	5-1-19	
o-Xylene	4.0	0.11	EPA 8021B	4-29-19	4-30-19	
Gasoline	6700	210	NWTPH-Gx	4-29-19	5-2-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	73	57-129				
Client ID:	HC4-S5-12.5					
Laboratory ID:	04-261-05					
Benzene	0.056	0.023	EPA 8021B	4-29-19	4-30-19	
Toluene	0.39	0.12	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	3.2	0.12	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	7.0	0.12	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.12	EPA 8021B	4-29-19	4-30-19	
Gasoline	2400	58	NWTPH-Gx	4-29-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	57-129				
Client ID:	HC4-S6-15					
Laboratory ID:	04-261-06					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.2	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	57-129				

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

omo: mg/ng (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC1-S2-5					
Laboratory ID:	04-261-08					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.066	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.066	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.066	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.066	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	6.6	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	57-129				
Client ID:	HC1-S3-7.5					
Laboratory ID:	04-261-09					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.057	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.057	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.057	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.057	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.7	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	57-129				
Client ID:	HC1-S5-12.5					
Laboratory ID:	04-261-11					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.054	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.054	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.054	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.054	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.4	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	57-129				

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC2-S2-5					
Laboratory ID:	04-261-16					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.051	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.051	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.051	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.051	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.1	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	57-129				
Client ID:	HC2-S3-7.5					
Laboratory ID:	04-261-17					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.069	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.069	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.069	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.069	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	6.9	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	57-129				
Client ID:	HC2-S5-12.5					
Laboratory ID:	04-261-19					
Benzene	ND	0.020	EPA 8021B	4-29-19	5-1-19	
Toluene	ND	0.056	EPA 8021B	4-29-19	5-1-19	
Ethyl Benzene	ND	0.056	EPA 8021B	4-29-19	5-1-19	
m,p-Xylene	ND	0.056	EPA 8021B	4-29-19	5-1-19	
o-Xylene	ND	0.056	EPA 8021B	4-29-19	5-1-19	
Gasoline	ND	5.6	NWTPH-Gx	4-29-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	57-129				

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

ome. mg/ng (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC3-S3-7.5					
Laboratory ID:	04-261-23					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	0.077	0.052	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	0.064	0.052	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	0.48	0.052	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
Gasoline	270	10	NWTPH-Gx	4-29-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	57-129				
Client ID:	HC3-S4-10					
Laboratory ID:	04-261-24					
Benzene	ND	0.020	EPA 8021B	4-29-19	5-1-19	
Toluene	ND	0.048	EPA 8021B	4-29-19	5-1-19	
Ethyl Benzene	ND	0.048	EPA 8021B	4-29-19	5-1-19	
m,p-Xylene	ND	0.048	EPA 8021B	4-29-19	5-1-19	
o-Xylene	ND	0.048	EPA 8021B	4-29-19	5-1-19	
Gasoline	ND	4.8	NWTPH-Gx	4-29-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	57-129				
Client ID:	HC3-S5-12.5					
Laboratory ID:	04-261-25					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.053	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.053	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.053	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.053	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.3	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	57-129				

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B METHOD BLANK QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0429S1					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-29-19	
Toluene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
Ethyl Benzene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
m,p-Xylene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
o-Xylene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
Gasoline	ND	5.0	NWTPH-Gx	4-29-19	4-29-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	57-129				
Laboratory ID:	MB0429S2					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-29-19	
Toluene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
Ethyl Benzene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
m,p-Xylene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
o-Xylene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
Gasoline	ND	5.0	NWTPH-Gx	4-29-19	4-29-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	114	57-129				

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

5 5 4 1 7					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-27	70-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	IΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						94	95	57-129			
Laboratory ID:	04-27	70-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						95	95	57-129			
SPIKE BLANKS											
Laboratory ID:	SB04	·29S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.938	0.941	1.00	1.00		94	94	69-111	0	10	
Toluene	0.979	0.982	1.00	1.00		98	98	70-114	0	11	
Ethyl Benzene	0.977	0.981	1.00	1.00		98	98	70-115	0	10	
m,p-Xylene	0.959	0.968	1.00	1.00		96	97	72-115	1	10	
o-Xylene	0.985	0.998	1.00	1.00		99	100	71-115	1	11	
Surrogate:						07	00	E7 400			
Fluorobenzene						87	88	57-129			

Project: 1950008

TOTAL LEAD EPA 6010D

Matrix: Soil

orins. Ing/Ttg (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC4-S3-7.5					
Laboratory ID:	04-261-03					
Lead	ND	5.8	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC4-S5-12.5					
Laboratory ID:	04-261-05					
Lead	10	6.0	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC4-S6-15					
Laboratory ID:	04-261-06					
Lead	ND	5.6	EPA 6010D	5-2-19	5-2-19	
		3.0	2.7.00105	0 2 10	0 2 10	
Client ID:	HC1-S2-5					
Laboratory ID:	04-261-08					
Lead	ND	6.0	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC1-S3-7.5					
Laboratory ID:	04-261-09					
Lead	ND	5.9	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC1-S5-12.5					
Laboratory ID:	04-261-11					
Lead	ND	5.6	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC2-S2-5					
Laboratory ID:	04-261-16					
Lead	ND	5.8	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC2-S3-7.5					
Laboratory ID:	04-261-17					
Lead	ND	6.2	EPA 6010D	5-2-19	5-2-19	

Project: 1950008

TOTAL LEAD EPA 6010D

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC2-S5-12.5					
Laboratory ID:	04-261-19					
Lead	ND	5.6	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC3-S3-7.5					
Laboratory ID:	04-261-23					
Lead	ND	5.7	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC3-S4-10					
Laboratory ID:	04-261-24					
Lead	ND	5.6	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC3-S5-12.5					
Laboratory ID:	04-261-25					
Lead	ND	5.6	EPA 6010D	5-2-19	5-2-19	•

Project: 1950008

TOTAL LEAD EPA 6010D QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0502SM1					
Lead	ND	5.0	EPA 6010D	5-2-19	5-2-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-26	61-17									
	ORIG	DUP									
Lead	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	04-26	61-17									
	MS	MSD	MS	MSD		MS	MSD				
Lead	230	233	250	250	ND	92	93	75-125	1	20	
SPIKE BLANK											
Laboratory ID:	SB050	02SM1									
Lead	23	37	2	50	N/A		95	80-120			

Project: 1950008

% MOISTURE

Date Analyzed: 5-2-19

Lab ID	% Moisture
04-261-03	13
04-261-05	17
04-261-06	10
04-261-08	16
04-261-09	15
04-261-11	11
04-261-16	14
04-261-17	19
04-261-19	11
04-261-23	13
04-261-24	11
04-261-25	10
	04-261-03 04-261-05 04-261-06 04-261-08 04-261-09 04-261-11 04-261-16 04-261-17 04-261-19 04-261-23 04-261-24

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit RPD - Relative Percent Difference

MW	OnSite	
	Environmental	Inc.

Chain of Custody

age of 3

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Red n working da			L	abo	rato	ory	Num	ber:	04	- 2	26	1							
Phone: (425) 883-3881 * www.onsite-env.com Company: Har + Crows Project Number: 9 50008 Project Name: Coldeen Project Manager: A cod Manager: Sampled by: C Kroskie	Same 2 Date	ys dard (7 Days) (other) Time	1 Day	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX		NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A	TOTAL LEAD	% Moisture
Lab ID Sample Identification AC4-S1-2.5	Sampled 4 22	Sampled 1323	Matrix	5	Z	Z	Ź	ź	ÿ ÿ		8 8 g	P.	ō	ō	ō	10	12	12	堂		%
2 HC4-S2-5	1144	1325	2611	1						1							1				
3 HC4-S3-7.5		1335		1		X														(8)	3
4 HCY -SY - 10		1337		Π																	
5 HC4-S5-12.5		1353				(8)														(3)	(S)
6 HC4-S6-15		1355				X														(8)	(3)
7 HC1-S1-2.5		844																			
8 HCI - 52-5		846				0														(8)	(A)
9 HCI -53-7.5		901				8														8	(3)
10 HC1- S4-10	V	903	V																		
Signature 2 1		ompany				Date			Time	uc	Comme							,	40		
Received Received Received Received Relinquished Received	Hart crowser 4/23/19 0845 ALPHA 1/23/19 10:40 ALPHA 1/23/19 10:40 ACPHA 1/23/19 12:18 OSE 4/23/19 12:18								TA)												
Received											Data Pa	ckag	e: Sta	anda	rd X	Le	vel III		Level	IV 🗆	
Reviewed/Date		Reviewed/Date								Chroma	togra	ns wi	th fin	nal rep	oort [Ele	ectron	ic Data	Deliverable	s (EDDs)	

OnSite Environmental Inc.

Chain of Custody

Page Z of 3

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		urnaround Rei (in working da			L	abo	rato	ry l	Nun	nber	: 0	4	- 2	6	1									
Projec	Phone: (425) 883-3881 • www.onsite-env.com any: Hov-t Crowser et Number: 1950008 et Name: Coldean et Manager: M. Good M2H led by: C. Kroskie	☐ 2 D		1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	1	NW I PH-Dx (Acid / SG Clean-up)	Volatiles 8260C	EDB EPA 8011 (Waters Only)	olatiles 8270D/SIM	(with low-level PAHs) PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A		OTAL LEAD	44000	sture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numt	NWT	NWT	NWTPH-Gx	MA.	Volati	EDB E	Semi	PAHs	PCBs	Organ	Organ	Chlori	Total	Total	TCLP	HEM		1	20 MA	OM %
11	HC1-55-12.5	4/22	923	Soil	5		8															6	8	6	X Moisture
12	ACI - 56 - 15	1	925	1	1																				
13	HU-57- 17.5		936		\prod																				
14	HC1-58-20		938		Ħ																				
15	ACZ-SI-2.5		1159		П																				
16	HC2-52-5		1203		Ħ		(8)															(X	1	2
17	HC2 - S3 -7.5		1215				(8)															1	XX XX	6	SX X
18			1217		T																				
19	ACZ - S5 - 12,5		1237				8															(8	6	D
20	HCZ - S6-15	V	1239	V	L																				
	Signature		Company				Date			Time		C	omme	nts/Sp	ecial	Instr	uctio	ns							
Relin	equished MWW Serv		Hart C	nowser			4/2	3/1	9	08	45		u	11		čh.	Oia	00.1		Ja C	Lus	00			
Rece	aived a Saace	n	Ac	PHO	14		1/	33/1	9	10	140	0	H)10	V	7111	an	101	1 0	10101	03	}			
Relir	nquished I saacs	1	Ak	PH	4	2	4	23/1	9	10.		?									مو حل				
Rece	aived aived		0	DE.				23/0																	
Relin	nquished	-																							
Rece	aived											Da	ita Pa	ckage	e: Sta	anda	rd 🗴	Le	vel III		Level	IV 🗆			
Revi	ewed/Date		Reviewed/Da	ate								Ch	romat	ogran	ns wi	th fin	al rep	oort [] Ele	ectron	ic Data	Delive	rables (EDDs) 🔀	

OnSite Environmental Inc.

Chain of Custody

Page 3 of 3

Phone: (425) 883-3881 · www.onsite-env.com Company: Her + Cyouser Project Number:	Same		1 Day									Π								T			
Project Name: Coldeen Project Manager: M. Goodman Sampled by: C. Kroskie	Stand	dard (7 Days)	3 Days	per of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A	TSTALLEAD		% Moisture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number	NWT	NWT	NWT	LMN	Volati	EDB	Semi (with	PAHS	PCBs	Organ	Organ	Chlor	Total	Total	TCLP	HEM	1		% Wo
21 HC3-S1-2.5	4/22	1037	Soil	5																			
22 HC3-52-5		1039																					
23 HC3-S3-7.5		1050				(2)															8		(X) (X)
		1052				(8)															8		(8)
24 AC3 - S4 - 10 25 AC3 - S5 - 12.5		1103				8															(1)		Ø
26 HC3 - 56 - 15	√	1105	V	1																			
Relinquished Received Received Received Relinquished Received Relinquished		Mart Ag	Crowse PH PH	r 4		4/	23/	19	10: 10: 12	40	, _		nts/Sp					1 0	ano T	ly.	ses-		
Received											Dat	a Pac	ckage	: Sta	andar	d X	Lev	/el III		Level	IV 🗆		
Reviewed/Date		Reviewed/Da	ite								Chr	omat	ogran	ns wi	th fina	al rep	ort [] Ele	ctroni	ic Data	Deliverabl	es (EDDs	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 3, 2019

Marissa Goodman Hart Crowser, Inc. 3131 Elliott Ave., Suite 600 Seattle, WA 98121

Re: Analytical Data for Project 1950008

Laboratory Reference No. 1904-277

Dear Marissa:

Enclosed are the analytical results and associated quality control data for samples submitted on April 24, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 1950008

Case Narrative

Samples were collected on April 23, 2019 and received by the laboratory on April 24, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

omo: mg/ng (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-S2-5					
Laboratory ID:	04-277-02					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.059	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.059	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.059	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.059	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.9	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	57-129				
Client ID:	MW3-S3-7.5					
Laboratory ID:	04-277-03					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.055	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.055	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.055	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.055	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.5	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	57-129				
Client ID:	MW3-S5-12.5					
Laboratory ID:	04-277-05					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	·
Toluene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.2	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	57-129				

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

			Date	Date	
	PQL	Method	Prepared	Analyzed	Flags
MW1-S3-7.5					
04-277-09					
ND	0.028	EPA 8021B	4-29-19	4-30-19	
ND	0.14	EPA 8021B	4-29-19	4-30-19	
0.75	0.14	EPA 8021B	4-29-19	4-30-19	
1.3	0.14	EPA 8021B	4-29-19	4-30-19	
ND	0.14	EPA 8021B	4-29-19	4-30-19	
500	14	NWTPH-Gx	4-29-19	4-30-19	
Percent Recovery	Control Limits				
77	57-129				
MW1-S5-12.5					
04-277-11					
ND	0.020	EPA 8021B	4-29-19	4-30-19	
ND	0.049	EPA 8021B	4-29-19	4-30-19	
0.12	0.049	EPA 8021B	4-29-19	4-30-19	
0.63	0.049	EPA 8021B	4-29-19	4-30-19	
ND	0.049	EPA 8021B	4-29-19	4-30-19	
310	9.8	NWTPH-Gx	4-29-19	5-1-19	
Percent Recovery	Control Limits				
80	57-129				
MW1-S6-15					
04-277-12					
ND	0.020	EPA 8021B	4-29-19	5-1-19	
ND	0.054	EPA 8021B	4-29-19	5-1-19	
ND	0.054	EPA 8021B	4-29-19	5-1-19	
ND	0.054	EPA 8021B	4-29-19	5-1-19	
ND	0.054	EPA 8021B	4-29-19	5-1-19	
ND	5.4	NWTPH-Gx	4-29-19	5-1-19	
Percent Recovery	Control Limits				
,					
	04-277-09 ND ND 0.75 1.3 ND 500 Percent Recovery 77 MW1-S5-12.5 04-277-11 ND ND 0.12 0.63 ND 310 Percent Recovery 80 MW1-S6-15 04-277-12 ND	MW1-S3-7.5 04-277-09 0.028 ND 0.14 0.75 0.14 1.3 0.14 ND 0.14 500 14 Percent Recovery T7 Control Limits 57-129 MW1-S5-12.5 04-277-11 ND 0.020 ND 0.049 0.12 0.049 0.02 0.049 ND 0.049 310 9.8 Percent Recovery 80 Control Limits 57-129 MW1-S6-15 04-277-12 ND 0.020 ND 0.054 ND 5.4	MW1-S3-7.5 04-277-09 0.028 EPA 8021B ND 0.14 EPA 8021B 0.75 0.14 EPA 8021B 1.3 0.14 EPA 8021B ND 0.14 EPA 8021B 500 14 NWTPH-Gx Percent Recovery T7 Control Limits 57-129 MW1-S5-12.5 04-277-11 ND 0.049 EPA 8021B ND 9.8 NWTPH-Gx Percent Recovery 80 Control Limits 57-129 MW1-S6-15 04-277-12 Control Limits 57-129 ND 0.054 EPA 8021B ND 0.054 EPA 8021B <t< td=""><td>Result PQL Method Prepared MW1-S3-7.5 04-277-09 0.028 EPA 8021B 4-29-19 ND 0.14 EPA 8021B 4-29-19 0.75 0.14 EPA 8021B 4-29-19 1.3 0.14 EPA 8021B 4-29-19 ND 0.14 EPA 8021B 4-29-19 500 14 NWTPH-Gx 4-29-19 Percent Recovery T7 Control Limits 57-129 TS-129 TS-129 MW1-S5-12.5 04-277-11 0.020 EPA 8021B 4-29-19 ND 0.049 EPA 8021B 4-29-19 ND 0.049 EPA 8021B 4-29-19 ND 0.049 EPA 8021B 4-29-19 ND 9.8 NWTPH-Gx 4-29-19 MW1-S6-15 04-277-12 ND 0.054 EPA 8021B 4-29-19 ND 0.054 EPA 8021B 4-29-19 ND 0.054 EPA 8021B 4-29-19</td><td>Result PQL Method Prepared Analyzed MW1-S3-7.5 04-277-09 04-277-09 4-30-19 4-30-19 ND 0.028 EPA 8021B 4-29-19 4-30-19 ND 0.14 EPA 8021B 4-29-19 4-30-19 1.3 0.14 EPA 8021B 4-29-19 4-30-19 ND 0.14 EPA 8021B 4-29-19 4-30-19 500 14 NWTPH-Gx 4-29-19 4-30-19 Percent Recovery Control Limits 77 57-129 57-129 4-30-19 MW1-S5-12.5 04-277-11 4-30-19 4-30-19 ND 0.049 EPA 8021B 4-29-19 5-1-19 Percent Recovery Control Limits 80 57-129 5-1-19 <tr< td=""></tr<></td></t<>	Result PQL Method Prepared MW1-S3-7.5 04-277-09 0.028 EPA 8021B 4-29-19 ND 0.14 EPA 8021B 4-29-19 0.75 0.14 EPA 8021B 4-29-19 1.3 0.14 EPA 8021B 4-29-19 ND 0.14 EPA 8021B 4-29-19 500 14 NWTPH-Gx 4-29-19 Percent Recovery T7 Control Limits 57-129 TS-129 TS-129 MW1-S5-12.5 04-277-11 0.020 EPA 8021B 4-29-19 ND 0.049 EPA 8021B 4-29-19 ND 0.049 EPA 8021B 4-29-19 ND 0.049 EPA 8021B 4-29-19 ND 9.8 NWTPH-Gx 4-29-19 MW1-S6-15 04-277-12 ND 0.054 EPA 8021B 4-29-19 ND 0.054 EPA 8021B 4-29-19 ND 0.054 EPA 8021B 4-29-19	Result PQL Method Prepared Analyzed MW1-S3-7.5 04-277-09 04-277-09 4-30-19 4-30-19 ND 0.028 EPA 8021B 4-29-19 4-30-19 ND 0.14 EPA 8021B 4-29-19 4-30-19 1.3 0.14 EPA 8021B 4-29-19 4-30-19 ND 0.14 EPA 8021B 4-29-19 4-30-19 500 14 NWTPH-Gx 4-29-19 4-30-19 Percent Recovery Control Limits 77 57-129 57-129 4-30-19 MW1-S5-12.5 04-277-11 4-30-19 4-30-19 ND 0.049 EPA 8021B 4-29-19 5-1-19 Percent Recovery Control Limits 80 57-129 5-1-19 <tr< td=""></tr<>

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0429S3					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-29-19	
Toluene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
Ethyl Benzene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
m,p-Xylene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
o-Xylene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
Gasoline	ND	5.0	NWTPH-Gx	4-29-19	4-29-19	
Surrogate:	Percent Recovery	Control Limits		•		

Surrogate: Percent Recovery Control Limits Fluorobenzene 98 57-129

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-27	70-03									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Toluene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Surrogate:											
Fluorobenzene						93	92	57-129			
SPIKE BLANKS											
Laboratory ID:	SB04	29S2									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.954	0.942	1.00	1.00		95	94	69-111	1	10	
Toluene	0.993	0.980	1.00	1.00		99	98	70-114	1	11	
Ethyl Benzene	0.989	0.976	1.00	1.00		99	98	70-115	1	10	
m,p-Xylene	0.976	0.962	1.00	1.00		98	96	72-115	1	10	
o-Xylene	1.00	0.991	1.00	1.00		100	99	71-115	1	11	
Surrogate:											
Fluorobenzene						89	88	57-129			

Project: 1950008

TOTAL LEAD EPA 6010D

Matrix: Soil

······································				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-S2-5					
Laboratory ID:	04-277-02					
Lead	ND	5.9	EPA 6010D	5-2-19	5-2-19	
Client ID:	MW3-S3-7.5					
Laboratory ID:	04-277-03					
Lead	ND	5.9	EPA 6010D	5-2-19	5-2-19	
Client ID:	MW3-S5-12.5					
Laboratory ID:	04-277-05					
Lead	ND	5.6	EPA 6010D	5-2-19	5-2-19	
Client ID:	MW1-S3-7.5					
Laboratory ID:	04-277-09					
Lead	18	6.5	EPA 6010D	5-2-19	5-2-19	
Client ID:	MW1-S5-12.5					
Laboratory ID:	04-277-11					
Lead	ND	5.9	EPA 6010D	5-2-19	5-2-19	
Client ID:	MW1-S6-15					
Laboratory ID:	04-277-12					
Lead	ND	5.5	EPA 6010D	5-2-19	5-2-19	

Project: 1950008

TOTAL LEAD EPA 6010D QUALITY CONTROL

Matrix: Soil

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
METHOD BLANK							
Laboratory ID:	MB0502SM1						
Lead	ND	5.0	EPA 6010D	5-2-19	5-2-19		

					Source	Percent		Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-261-17										
	ORIG	DUP									
Lead	ND	ND	NA	NA		NA		NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	04-261-17										
	MS	MSD	MS	MSD		MS	MSD				
Lead	230	233	250	250	ND	92	93	75-125	1	20	
SPIKE BLANK											
Laboratory ID:	SB0502SM1										
Lead	23	37	7 250		N/A	95		80-120			

Project: 1950008

% MOISTURE

Date Analyzed: 5-2-19

Client ID	Lab ID	% Moisture
MW3-S2-5	04-277-02	15
MW3-S3-7.5	04-277-03	15
MW3-S5-12.5	04-277-05	11
MW1-S3-7.5	04-277-09	23
MW1-S5-12.5	04-277-11	16
MW1-S6-15	04-277-12	9

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

OnSite	
Environmental	Inc.

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)					abo	rato	ry l	Num	ber:	04	4 -	27	7							
Phone: (425) 883-3881 • www.onsite-env.com Company: Project Number: Project Name: Coldeen Project Manager: M. Goodman Sampled by: C. Kroskie	Sam 2 Da		1 Day 3 Days	r of Containers	-HOID	NWTPH-Gx/BTEX	Į	-DX (Acid / Sta Clean-up)	Volatiles 8260C Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	S/UD/SIIM (IOW-level)	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	etals	and grease) 1664A	TOTAL LEAD	ure
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number of	NWTPH-HCID	NWTPH	NWTPH-Gx	IANNI I	Volatiles	EDB EF	Semivo (with lo	PCBs 8082A	Organo	Organo	Chlorina	Total RC	Total M	TCLP Metals	HEM (oil	707	% Moisture
1 MW3-SI-25	4/23	N33	Seil	5		\wedge		4		-			-	-			-			13	(0)
2 MW3-S2-5 3 MW3-S3-7.5		1135		H		(X)				+		+	É	-			-			(X)	XX
9 MW3 - S4 - 10		1149		1		(2)															
5 MW3-S5-R.5		1203				8														0	Ŕ
6 MW3-SG-15		1205		Н								_		-							
7 MWI-SI-2.5 8 MWI-S2-5		815		H			H	-		+		+		-	-	-	-				
9 MW1-S2-5 9 MW1-S3-7.5		817		\forall		Q														(8)	0
10 MW1 - SY - 10	1	831	1	V																	
Signature 4		ompany				Date			Time 070	1.7			Specia					-1			
Received Received	- (Mart (24/19 24-1	-	090		+	told	W	11	em	Sint ,	ar	aly	ses	3 (57	~)
Relinquished PD Box D		Spec				4-	24-	19	101		(X	Ad	de	ا ل	4/:	25	19	. D	301	7)
Received	_	(086	5			24/		10												
Relinquished																					
Received											Data	Packa	ige: S	tanda	ard X	Le	vel III	П	Level	IV 🗆	
Reviewed/Date		Reviewed/Da	ite								Chron	natog	rams v	ith fir	nal re	port [] Ele	ectron	ic Data	Deliverable	s (EDDs)

OnSite Environmental Inc.

Chain of Custody

Page Z of Z

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turi (ir	Turnaround Request (in working days) Laboratory Number: 04-277																						
Phone: (425) 883-3881 • www.onsite-env.com Company: Project Number: Project Name: Coldeen Project Manager: M. Goodman Sampled by: C. Kroskic	Same 2 Day Stand	/s dard (7 Days) (other)	1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C	Haiogenated Voiatiles 8260C EDB EPA 8011 (Waters Only)	semivolatiles 8270D/SIM	(with low-level PAHs) PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A		TOTALLEAD		% Moisture
Lab ID Sample Identification 11 MW - S5 - 12, 5	Sampled 4/23	Sampled	Matrix Soi \	5	_	(X))	2			0,										(Ŕ		Q
12 MW 1-SG - 15	1	851	1	1		(X																3		X
Signature	G	ompany				Date			Time			Commi	ents/S	pecial	Instr	uctio	ns							
Relinquished Musto Serv			onser				124/	19	British Colored Print	00														
Received Relinquished Received Relinquished	-	Spee	1			4-	24-	19	09	20:	2	Hold-will email analyses												
Received											0	Data Pa	ackag	e: St	anda	rd 🗶	Le	vel III		Leve	el IV [
Reviewed/Date		Reviewed/D	ate						Chromatograms with final report ☐ Electronic Data Deliverables (EDDs)				90											

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 3, 2019

Marissa Goodman Hart Crowser, Inc. 3131 Elliott Ave., Suite 600 Seattle, WA 98121

Re: Analytical Data for Project 1950008

Laboratory Reference No. 1904-301

Dear Marissa:

Enclosed are the analytical results and associated quality control data for samples submitted on April 25, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 1950008

Case Narrative

Samples were collected on April 24, 2019 and received by the laboratory on April 25, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

Units: mg/kg (ppm)

ome: mg/ng (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW2-S2-5					
Laboratory ID:	04-301-05					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.063	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.063	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.063	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.063	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	6.3	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	57-129				
Client ID:	MW2-S3-7.5					
Laboratory ID:	04-301-06					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.055	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.055	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.055	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.055	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.5	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	57-129				
Client ID:	MW2-S5-12.5					
Laboratory ID:	04-301-08					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.060	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.060	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.060	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.060	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	6.0	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	57-129				

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

Units: mg/kg (ppm)

3 3 41 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC7-S2-5					
Laboratory ID:	04-301-11					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.2	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	57-129				
Client ID:	HC7-S3-7.5					
Laboratory ID:	04-301-12					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.046	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.046	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.046	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.046	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	4.6	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	57-129				
Client ID:	HC7-S5-12.5					
Laboratory ID:	04-301-14					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.063	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.063	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.063	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.063	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	6.3	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	57-129				

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

Units: mg/kg (ppm)

onits. Hig/kg (ppiii)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC5-S2-5					
Laboratory ID:	04-301-17					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.057	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.057	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.057	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.057	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.7	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	57-129				
Client ID:	HC5-S3-7.5					
Laboratory ID:	04-301-18					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.051	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.051	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.051	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.051	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.1	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	57-129				
Client ID:	HC5-S5-12.5					
Laboratory ID:	04-301-20					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-30-19	
Toluene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
Ethyl Benzene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
m,p-Xylene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
o-Xylene	ND	0.052	EPA 8021B	4-29-19	4-30-19	
Gasoline	ND	5.2	NWTPH-Gx	4-29-19	4-30-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	57-129				

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0429S4					
Benzene	ND	0.020	EPA 8021B	4-29-19	4-29-19	_
Toluene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
Ethyl Benzene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
m,p-Xylene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
o-Xylene	ND	0.050	EPA 8021B	4-29-19	4-29-19	
Gasoline	ND	5.0	NWTPH-Gx	4-29-19	4-29-19	
Surrogate:	Percent Recovery	Control Limits	•			

Surrogate: Percent Recovery Control Limits Fluorobenzene 95 57-129

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-27	70-08									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Surrogate:											
Fluorobenzene						93	94	57-129			
SPIKE BLANKS											
Laboratory ID:	SB04	29S2									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.954	0.942	1.00	1.00		95	94	69-111	1	10	
Toluene	0.993	0.980	1.00	1.00		99	98	70-114	1	11	
Ethyl Benzene	0.989	0.976	1.00	1.00		99	98	70-115	1	10	
m,p-Xylene	0.976	0.962	1.00	1.00		98	96	72-115	1	10	
o-Xylene	1.00	0.991	1.00	1.00		100	99	71-115	1	11	
Surrogate:											
Fluorobenzene						89	88	57-129			

Project: 1950008

TOTAL LEAD EPA 6010D

Matrix: Soil

Units: mg/Kg (ppm)

omis. mg/ng (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW2-S2-5					
Laboratory ID:	04-301-05					
Lead	24	6.2	EPA 6010D	5-2-19	5-2-19	
Client ID:	MW2-S3-7.5					
Laboratory ID:	04-301-06					
	ND	6.1	EPA 6010D	F 2 10	F 2 10	
Lead	ND	0.1	EPA 6010D	5-2-19	5-2-19	
Client ID:	MW2-S5-12.5					
Laboratory ID:	04-301-08					
Lead	ND	5.9	EPA 6010D	5-2-19	5-2-19	_
Client ID:	HC7-S2-5					
Laboratory ID:	04-301-11					
Lead	ND	5.6	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC7-S3-7.5					
Laboratory ID:	04-301-12					
Lead	ND	5.5	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC7-S5-12.5					
Laboratory ID:	04-301-14					
Lead	ND	5.9	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC5-S2-5					
Laboratory ID:	04-301-17					
Lead	ND	5.8	EPA 6010D	5-2-19	5-2-19	
Client ID:	HC5-S3-7.5					
	04-301-18					
Laboratory ID:		F 6	EDA 6010D	F 2 10	F 2 10	
Lead	ND	5.6	EPA 6010D	5-2-19	5-2-19	

Project: 1950008

TOTAL LEAD EPA 6010D

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC5-S5-12.5					
Laboratory ID:	04-301-20					
Lead	ND	5.6	EPA 6010D	5-2-19	5-2-19	_

Project: 1950008

TOTAL LEAD EPA 6010D QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0502SM2					
Lead	ND	5.0	EPA 6010D	5-2-19	5-2-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-30	01-14									
	ORIG	DUP									
Lead	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	04-30	01-14									
	MS	MSD	MS	MSD		MS	MSD				
Lead	228	224	250	250	ND	91	90	75-125	2	20	
SPIKE BLANK											
Laboratory ID:	SB050	02SM2									
Lead	2	38	2	50	N/A		95	80-120			

Project: 1950008

% MOISTURE

Date Analyzed: 5-2-19

Client ID	Lab ID	% Moisture
MW2-S2-5	04-301-05	19
MW2-S3-7.5	04-301-06	18
MW2-S5-12.5	04-301-08	16
HC7-S2-5	04-301-11	10
HC7-S3-7.5	04-301-12	10
HC7-S5-12.5	04-301-14	15
HC5-S2-5	04-301-17	14
HC5-S3-7.5	04-301-18	11
HC5-S5-12.5	04-301-20	11

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

MA	OnSite Environmental Inc.	
	Environmental inc.	

	2	
Page _	of _S	

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		Turnaround Re (in working d	quest ays)		L	abo	orat	ory	Nu	ımb	er:	0	4	-:	3 0	11									
Compa	Hart Crowser	☐ Sa	(Check On	e)													MIS/Q									
	1950008	□ 2	Days	3 Days					an-nb							81B	s 827C	3151A								
	Coldeen Coldeen	X St	andard (7 Days	s)	55				Acid / SG Clean-up)		8260C	rs Only)	SIM	v-level)		cides 80	esticide	picides				1664A				
	M. Godman				Number of Containers		STEX			2	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)		Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	letals	/etals		HEM (oil and grease) 1664A				
Sampl	C- Kroskie		(other)	ar of C	1-HCI	H-Gx/E	H-Gx	1-Dx (s 826(nated	PA 801	platiles w-leve	270D/	3082A	chlori	dsoud	ated A	CRA N	TCAN	Aetals	il and	0			ture
Lab ID		Date Sample		Matrix	Numbe	NWTPH-HCID	NWTPH-Gx/BT	NWTPH-Gx	□) ×G-HdLMN	Volatiles 8260C	Haloge	EDB EF	Semivo (with lo	PAHs 8	PCBs 8082A	Organo	Organo	Chlorin	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (o	pla			% Moisture
1	IDW1	4/24	1 1234	Soil	5																					
2	IDW 2		1237																							
3	IDW3		1239																							
4	MW2-51-25		922																							
5	MW2-52-5		925		1		X																X			X
6	MW2-S3-7.5		931		Ħ		X																X			1
7	MW2-S4-10		934		T																					
8	MW2 - S5 - 12.5		949		I		X																X			X
8	MWQ - Sto - 15		951		1																					
10	HC7-S1-25	J	817	1	V																					
	Signature		Company				Date	,		Time	е		Cor	nmer	ts/Sp	ecial	Instr	uction	ns							
Relin	quished Mris Stol	_	Hart (nonse	r		41	25	119	10	0	0														
Rece	1 lend fain		Alpho				4/6	25/	19	11.	O	0														
Relin	nquished Eillen Clark		Alph.	1			4	25/	9	1:0	0															
Rece	eived		"0	DRE			4/	23	103	13	34	0														
Relin	nquished																									
Rece	pived												Data	a Pac	kage	Sta	andar	d X	Lev	vel III		Leve	I IV [
Revie	ewed/Date		Reviewed/D	ate									Chro	omate	ogram	s wit	th fina	al rep	ort [Ele	ctron	c Data	a Deliv	erables	(EDDs)	X

Page 2 of 3

	Analytical Laboratory Testing Services 14648 NE 95th Street - Redmond, WA 98052		rnaround Red n working da			L	abo	rate	ory	Nun	nbe	er:	04	-3	0	1									
Project	195008 Name: Coldeen Manager: M. Goodman	Sam 2 Da Stan		1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	H-Gx	NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C	Printed Volatiles 62000	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	oil and grease) 1664A.	0			sture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numb	NWT	NWT	NWTPH-Gx	NWTP	Volatil	golari GGT	EDBE	Semiv (with I PAHs	PCBs	Organ	Organ	Chlori	Total F	Total N	TCLP	HEM (oil	Pb			% Moisture
11	HC7-52-5	4/24	819	Soil	5		X															Χ			X
12	HC7-53-7.5		826				X															Χ			1
13	HC7-54-10		828																						
14	HC7-S5-12.5		844				X															X			X
15	HC7-S6-15		846																						
16	HC5-S1-2.5		1102																						
17	HC5-52=5		1105		П		X															X		1	X
18	HC5-S3-7.5		1117		П		X															X			1
19	HC5-SY-10		1120																						
20	HCJ-S5-12.5	V	1135	V		-	X															X		,	X
	Signature		ompany				Date			Time			Comme	nts/Sp	ecial	Instr	uction	ns							
Relinqu	nuun		Hart	CONS	ev		4/	25	9	100	2														
Receiv	allen Clau	h	Alph	19				25/		11:0	0														
Reling	Cleen Clair	_ /	7/ph	9			1/2	1/6	9	13	0														
Receiv	0	>	0	YE			412	191	9	13.	10)													
Relinq													25.030	priller.			Acre.		5.3						
	ed/Date		Reviewed/Da	ate									Data Pa	_		_	_				_	_			
, ,,,,,,,,	7777		, loviowout De	410									Chromat	ogran	ns wi	tn fin	al rep	ort L	_ Ele	ectroni	c Data	a Deliv	rerables (ED	DDs)	1

Page 3 of 3

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Req n working da			L	abo	orato	ory	Nun	nbe	r:	0	4 -	- 3	0	1										
Project	Number 950008 Name: Coldlen Manager: M. Good Man	Same 2 Day X Stand		1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX		Acid / SG Clean-up)	Volatiles 8260C		niy)		el)		Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	Aetals	il and grease) 1664A				ture	
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTP	NWTP	NWTPH-Gx	NWTP	Volatile	FDRF	COD C	Semivo (with lo	PAHs 8	PCBs 8082A	Organo	Organo	Chlorin	Total R	Total M	TCLP Metals	HEM (oil and				% Moisture	
21	HC5-S6-15	4/24	1139	Sil	5																				1		
																								+	+	+	
												-												+	+	-	
																									1		
											-													+	+	+	
	Signature		ompany				Date		-	Time			Com	nmen	ts/Sp	ecial	Instr	uctio	ns								7
	uished Mou Sn		Mart	Chowse	V		4	/ /	-	10	-)															
Recei	juished Eleen Clark		4 lph	<u>a</u> a	-		4/	25/1	9	1110	00	-															
Recei	ved 2		08	E			4	25	u	13	20	2															
	uished																										
Recei			200000000000000000000000000000000000000									-			_	_		_				_	el IV [_			
Revie	wed/Date		Reviewed/Da	ate									Chro	matc	ogran	ns wi	th fin	al rep	ort [Ele	ectron	ic Dat	a Deliv	/erables	s (EDD	Os) X	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 7, 2019

Marissa Goodman Hart Crowser, Inc. 3131 Elliott Ave., Suite 600 Seattle, WA 98121

Re: Analytical Data for Project 1950008

Laboratory Reference No. 1904-320

Dear Marissa:

Enclosed are the analytical results and associated quality control data for samples submitted on April 29, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 1950008

Case Narrative

Samples were collected on April 29, 2019 and received by the laboratory on April 29, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 1950008

DISSOLVED LEAD EPA 200.8

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	04-320-01					
Lead	ND	1.0	EPA 200.8		4-30-19	
Client ID:	MW-100					
Laboratory ID:	04-320-02					
Lead	ND	1.0	EPA 200.8		4-30-19	
Client ID:	MW-2					
Laboratory ID:	04-320-03					
Lead	ND	1.0	EPA 200.8		4-30-19	
Client ID:	MW-3					
Laboratory ID:	04-320-04					
Lead	ND	1.0	EPA 200.8		4-30-19	

Project: 1950008

DISSOLVED LEAD EPA 200.8 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0430D1					
Lead	ND	1.0	EPA 200.8		4-30-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-30	08-16									
	ORIG	DUP									
Lead	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	04-30	08-16									
	MS	MSD	MS	MSD		MS	MSD				
Lead	78.2	73.4	80.0	80.0	ND	98	92	75-125	6	20	
SPIKE BLANK											
Laboratory ID:	SB04	30D1									
Lead	81	.4	80	0.0	N/A	1	102	85-115			

Project: 1950008

TOTAL LEAD EPA 200.8

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	04-320-01					
Lead	ND	1.1	EPA 200.8	4-30-19	4-30-19	
Client ID:	MW-100					
Laboratory ID:	04-320-02					
Lead	ND	1.1	EPA 200.8	4-30-19	4-30-19	
Client ID:	MW-2					
Laboratory ID:	04-320-03					
Lead	ND	1.1	EPA 200.8	4-30-19	4-30-19	
Client ID:	MW-3					
Laboratory ID:	04-320-04					
Lead	ND	1.1	EPA 200.8	4-30-19	4-30-19	

Project: 1950008

TOTAL LEAD EPA 200.8 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0430WM1					
Lead	ND	1.1	EPA 200.8	4-30-19	4-30-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Red	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-30	08-15									
	ORIG	DUP									
Lead	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	04-30	08-15									
	MS	MSD	MS	MSD		MS	MSD				
Lead	109	112	111	111	ND	98	101	75-125	2	20	
SPIKE BLANK											
Laboratory ID:	SB043	oWM1									
Lead	1′	13	1	11	N/A		102	85-115			

Project: 1950008

GASOLINE RANGE ORGANICS NWTPH-Gx

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-1					
04-320-01					
3500	100	NWTPH-Gx	5-3-19	5-3-19	
Percent Recovery	Control Limits				
104	59-122				
MW-100					
04-320-02					
3100	100	NWTPH-Gx	5-3-19	5-3-19	
Percent Recovery	Control Limits				
103	59-122				
MW-2					
04-320-03					
ND	100	NWTPH-Gx	5-3-19	5-3-19	
Percent Recovery	Control Limits				
95	59-122				
MW-3					
04-320-04					
ND	100	NWTPH-Gx	5-3-19	5-3-19	
Percent Recovery	Control Limits				
88	59-122				
	MW-1 04-320-01 3500 Percent Recovery 104 MW-100 04-320-02 3100 Percent Recovery 103 MW-2 04-320-03 ND Percent Recovery 95 MW-3 04-320-04 ND Percent Recovery	MW-1 04-320-01 3500 100 Percent Recovery 104-320-02 Control Limits 59-122 MW-100 100 04-320-02 Control Limits 59-122 MW-2 59-122 MW-2 04-320-03 ND 100 Percent Recovery 95 Control Limits 59-122 MW-3 04-320-04 ND 100 Percent Recovery 04-320-04 Control Limits Control Limits 50-120 ND 100 Percent Recovery 04-320-04 Control Limits 50-120 ND 100 Percent Recovery 05-120 Control Limits 50-120 ND 100 Percent Recovery 05-120 Control Limits 50-120	MW-1 04-320-01 3500 100 NWTPH-Gx Percent Recovery 104 Control Limits 59-122 MW-100 100 NWTPH-Gx Percent Recovery 103 Control Limits 59-122 MW-2 04-320-03 NWTPH-Gx Percent Recovery 95 Control Limits 59-122 MW-3 04-320-04 NWTPH-Gx ND 100 NWTPH-Gx Percent Recovery 100 NWTPH-Gx Percent Recovery 100 Control Limits 50-122	Result MW-1 PQL Method Prepared MW-1 04-320-01 3500 100 NWTPH-Gx 5-3-19 Percent Recovery 104-320-02 Control Limits 59-122 MW-100 04-320-02 100 NWTPH-Gx 5-3-19 Percent Recovery 103 Control Limits 59-122 MW-2 04-320-03 ND 100 NWTPH-Gx 5-3-19 Percent Recovery 95 Control Limits 59-122 MW-3 04-320-04 ND 100 NWTPH-Gx 5-3-19 Percent Recovery Control Limits Percent Recovery Control Limits O4-320-04 ND 100 NWTPH-Gx 5-3-19	Result PQL Method Prepared Analyzed MW-1 04-320-01 04-320-01 3500 100 NWTPH-Gx 5-3-19 5-3-19 Percent Recovery 104 Control Limits 59-122 59-122 5-3-19 5-3-19 MW-100 04-320-02 100 NWTPH-Gx 5-3-19 5-3-19 Percent Recovery 04-320-03 Control Limits 95 5-3-19 5-3-19 Percent Recovery 95 Control Limits 59-122 5-3-19 5-3-19 MW-3 04-320-04 ND 100 NWTPH-Gx 5-3-19 5-3-19 Percent Recovery Percent Recovery Control Limits 5-3-19 5-3-19 5-3-19

Project: 1950008

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analvzed	Flags
METHOD BLANK	Nesuit	FQL	WELTIOU	Frepareu	Allalyzeu	ı ıays
Laboratory ID:	MB0503W1					
	ND	100	NWTPH-Gx	5-3-19	5-3-19	
Gasoline		100	INVV I PH-GX	5-3-19	5-3-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	59-122				

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	04-32	20-01								
	ORIG	DUP								
Gasoline	3500	3280	NA	NA		NA	NA	6	30	
Surrogate:										
Eluorobenzene						104 102	50-122			

59-122 Fluorobenzene 102

Project: 1950008

VOLATILE ORGANICS EPA 8260C

Matrix: Water Units: ug/L

4-Bromofluorobenzene

106

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	04-320-01					
Methyl t-Butyl Ether	ND	0.40	EPA 8260C	5-1-19	5-1-19	
Benzene	0.47	0.40	EPA 8260C	5-1-19	5-1-19	
1,2-Dichloroethane	ND	0.40	EPA 8260C	5-1-19	5-1-19	
Toluene	8.3	2.0	EPA 8260C	5-1-19	5-1-19	
Ethylbenzene	82	0.40	EPA 8260C	5-1-19	5-1-19	
m,p-Xylene	130	0.80	EPA 8260C	5-1-19	5-1-19	
o-Xylene	35	0.40	EPA 8260C	5-1-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	75-127				
Toluene-d8	102	80-127				

78-125

Project: 1950008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-100					_
Laboratory ID:	04-320-02					
Methyl t-Butyl Ether	ND	0.40	EPA 8260C	5-1-19	5-1-19	
Benzene	0.40	0.40	EPA 8260C	5-1-19	5-1-19	
1,2-Dichloroethane	ND	0.40	EPA 8260C	5-1-19	5-1-19	
Toluene	7.3	2.0	EPA 8260C	5-1-19	5-1-19	
Ethylbenzene	69	0.40	EPA 8260C	5-1-19	5-1-19	
m,p-Xylene	110	0.80	EPA 8260C	5-1-19	5-1-19	
o-Xylene	30	0.40	EPA 8260C	5-1-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	106	78-125				

Project: 1950008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2					
Laboratory ID:	04-320-03					
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	5-1-19	5-1-19	
Benzene	ND	0.20	EPA 8260C	5-1-19	5-1-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	5-1-19	5-1-19	
Toluene	ND	1.0	EPA 8260C	5-1-19	5-1-19	
Ethylbenzene	ND	0.20	EPA 8260C	5-1-19	5-1-19	
m,p-Xylene	ND	0.40	EPA 8260C	5-1-19	5-1-19	
o-Xylene	ND	0.20	EPA 8260C	5-1-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	75-127				
Toluene-d8	98	80-127				
4-Bromofluorobenzene	102	78-125				

Project: 1950008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3					
Laboratory ID:	04-320-04					
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	5-1-19	5-1-19	
Benzene	ND	0.20	EPA 8260C	5-1-19	5-1-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	5-1-19	5-1-19	
Toluene	ND	1.0	EPA 8260C	5-1-19	5-1-19	
Ethylbenzene	ND	0.20	EPA 8260C	5-1-19	5-1-19	
m,p-Xylene	ND	0.40	EPA 8260C	5-1-19	5-1-19	
o-Xylene	ND	0.20	EPA 8260C	5-1-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	107	78-125				

Project: 1950008

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0501W1					
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	5-1-19	5-1-19	
Benzene	ND	0.20	EPA 8260C	5-1-19	5-1-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	5-1-19	5-1-19	
Toluene	ND	1.0	EPA 8260C	5-1-19	5-1-19	
Ethylbenzene	ND	0.20	EPA 8260C	5-1-19	5-1-19	
m,p-Xylene	ND	0.40	EPA 8260C	5-1-19	5-1-19	
o-Xylene	ND	0.20	EPA 8260C	5-1-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	107	78-125				

Project: 1950008

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Rec	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	01W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.8	9.57	10.0	10.0	108	96	63-130	12	17	
Benzene	10.3	9.30	10.0	10.0	103	93	76-125	10	19	
Trichloroethene	10.7	9.84	10.0	10.0	107	98	76-121	8	18	
Toluene	9.80	9.19	10.0	10.0	98	92	80-124	6	18	
Chlorobenzene	10.3	9.61	10.0	10.0	103	96	75-120	7	19	
Surrogate:										
Dibromofluoromethane					98	97	75-127			
Toluene-d8					96	97	80-127			
4-Bromofluorobenzene					102	104	78-125			

Project: 1950008

1,2-DIBROMOETHANE (EDB) EPA 8011

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	04-320-01					
EDB	ND	0.0097	EPA 8011	4-30-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	103	25-143				
Client ID:	MW-100					
Laboratory ID:	04-320-02					
EDB	ND	0.0098	EPA 8011	4-30-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	121	25-143				
Client ID:	MW-2					
Laboratory ID:	04-320-03					
EDB	ND	0.0096	EPA 8011	4-30-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	97	25-143				
Client ID:	MW-3					
Laboratory ID:	04-320-04					
EDB	ND	0.0097	EPA 8011	4-30-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	104	25-143				

Project: 1950008

1,2-DIBROMOETHANE (EDB) EPA 8011 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0430W1					
EDB	ND	0.010	EPA 8011	4-30-19	5-1-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	118	25-143				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB0430W1										
	SB	SBD	SB	SBD		SB	SBD				
EDB	0.0798	0.0750	0.100	0.100	N/A	80	75	57-124	6	15	
Surrogate:											_
TCMX						96	106	25-143			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Sample Custody Record Samples Shipped to: 0051

Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600 Seattle, Washington 98121 Office: 206.324.9530 • Fax 206.328.5581

JOB 1950006 LAB NUMBER 04-320								REQUESTED ANALYSIS									8		
PROJECT	NAME COLO	seen	NOMBER			8	7	7	区	BE	B	$\tilde{\mathcal{I}}$				CONTAINERS			
HART CROWSER CONTACT M. GOODMAN								3	BTEX	3	Ti	لله	1			VINO CO	BSERVATIONS/COMMENTS/ DMPOSITING INSTRUCTIONS		
209-312-0424						Sanlord	1	甚			_		-	1		0F C	UN TENNOTONE NET NET NE		
SAMPLED	BY: B. Do	Zier				2	ofa	HALDON			108		11/2	2		NO.			
LAB NO.	SAMPLE ID	DESCRIPTI	ON DATE	TIME	MATRIX		1	_											
1	Mw-1	gw samp	he 4/29/19	0933	HaD	X	X	X	X	X	X	X				9			
2	MW-100		412919	The second second	H2D	X	X	X	X	X	X	X				9			
3	MW-2	11	4/29/19		H30	X	X	X	X	X	X	X				9			
4	MW-3	~	4/29/17	1107	HaO	X	X	X	X	X	X	X				9			
5	TOW	H=Osan	uple 4/29/19	1250	HaD								>	4		9			
								-											
RELINQUI	CHED BY	DATE	RECEIVED BY		DATE	CD	FCIAI	CIII	DNAF	NT II	AND	INC	0.0			45 101			
in S	SHED BY		NECEIVED BY	7					EQUIF			LING (:	UK			SAMPLE RECEIPT	AL NUMBER OF CONTAINERS		
SIGNATURE	05	4/29/17 TIME	ANATURE A	7	4/29/10 TIME	3										CUSTODY SEALS:			
PRINT NAM	Towa	(530)	MINISTAME													GOOD CONDITIO	N N		
COMPANY	7,000	100	COMPANY		1530											□YES □ TEMPERATURE _	□NO		
RELINQUI	SHED BY	DATE	RECEIVED BY		DATE											SHIPMENT METH	HOD: □HAND □OVERNIGHT		
						CC	OLEF	R NO	.:				STOF	RAGE LOCA	TION:	TURNAROUND	3-1-1-1-2-74-4-111		
SIGNATURE		TIME	SIGNATURE		TIME											☐ 24 HOURS	□ 1 WEEK		
PRINT NAM	E		PRINT NAME			Se	e Lab	Wo	rk Ord	der N	lo					□48 HOURS	STANDARD		
COMPANY		COMPANY			for Other Contract Requirements						ments	5			□72 HOURS	OTHER 5day - MTBE, EDB, ET			

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 31, 2019

Marissa Goodman Hart Crowser, Inc. 3131 Elliott Ave., Suite 600 Seattle, WA 98121

Re: Analytical Data for Project 1950008

Laboratory Reference No. 1910-304

Dear Marissa:

Enclosed are the analytical results and associated quality control data for samples submitted on October 23, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 1950008

Case Narrative

Samples were collected on October 22, 2019 and received by the laboratory on October 23, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC8-S3-6.0					
Laboratory ID:	10-304-03					
Benzene	ND	0.020	EPA 8021B	10-26-19	10-26-19	
Toluene	ND	0.056	EPA 8021B	10-26-19	10-26-19	
Ethyl Benzene	ND	0.056	EPA 8021B	10-26-19	10-26-19	
m,p-Xylene	0.062	0.056	EPA 8021B	10-26-19	10-26-19	
o-Xylene	ND	0.056	EPA 8021B	10-26-19	10-26-19	
Gasoline	6.7	5.6	NWTPH-Gx	10-26-19	10-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	58-129				
Client ID:	HC9-S2-3.5					
Laboratory ID:	10-304-05					
Benzene	ND	0.020	EPA 8021B	10-26-19	10-26-19	
Toluene	ND	0.047	EPA 8021B	10-26-19	10-26-19	
Ethyl Benzene	ND	0.047	EPA 8021B	10-26-19	10-26-19	
m,p-Xylene	ND	0.047	EPA 8021B	10-26-19	10-26-19	
o-Xylene	ND	0.047	EPA 8021B	10-26-19	10-26-19	
Gasoline	11	4.7	NWTPH-Gx	10-26-19	10-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	58-129				
Client ID:	HC9-S3-4.5					
Laboratory ID:	10-304-06					
Benzene	ND	0.022	EPA 8021B	10-26-19	10-26-19	
Toluene	0.32	0.11	EPA 8021B	10-26-19	10-26-19	
Ethyl Benzene	5.4	0.11	EPA 8021B	10-26-19	10-26-19	
m,p-Xylene	5.4	0.11	EPA 8021B	10-26-19	10-26-19	
o-Xylene	0.20	0.11	EPA 8021B	10-26-19	10-26-19	
Gasoline	1100	11	NWTPH-Gx	10-26-19	10-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	58-129				

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1026S2					
Benzene	ND	0.020	EPA 8021B	10-26-19	10-26-19	
Toluene	ND	0.050	EPA 8021B	10-26-19	10-26-19	
Ethyl Benzene	ND	0.050	EPA 8021B	10-26-19	10-26-19	
m,p-Xylene	ND	0.050	EPA 8021B	10-26-19	10-26-19	
o-Xylene	ND	0.050	EPA 8021B	10-26-19	10-26-19	
Gasoline	ND	5.0	NWTPH-Gx	10-26-19	10-26-19	
Surrogato:	Parcent Pacayony	Control Limits				

Surrogate: Percent Recovery Control Limits Fluorobenzene 81 58-129

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-30	00-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						88	88	58-129			
SPIKE BLANKS											
Laboratory ID:	SB10	26S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.835	0.901	1.00	1.00		84	90	69-109	8	10	
Toluene	0.883	0.950	1.00	1.00		88	95	67-112	7	10	
Ethyl Benzene	0.889	0.953	1.00	1.00		89	95	67-113	7	10	
m,p-Xylene	0.908	0.974	1.00	1.00		91	97	66-114	7	11	
o-Xylene	0.918	0.978	1.00	1.00		92	98	68-112	6	11	
Surrogate:	·										
Fluorobenzene						79	83	58-129			

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Water
Units: ug/L (ppb)

J (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-GW					
Laboratory ID:	10-304-07					
Benzene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Toluene	8.5	1.0	EPA 8021B	10-24-19	10-24-19	
Ethyl Benzene	75	1.0	EPA 8021B	10-24-19	10-24-19	
m,p-Xylene	83	5.0	EPA 8021B	10-24-19	10-24-19	
o-Xylene	35	1.0	EPA 8021B	10-24-19	10-24-19	
Gasoline	3100	100	NWTPH-Gx	10-24-19	10-24-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	59-122				
Client ID:	MW-2-GW					
Laboratory ID:	10-304-08					
Benzene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Toluene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Ethyl Benzene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
m,p-Xylene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
o-Xylene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Gasoline	ND	100	NWTPH-Gx	10-24-19	10-24-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	59-122				
Client ID:	MW-200-GW					
Laboratory ID:	10-304-09					
Benzene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Toluene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Ethyl Benzene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
m,p-Xylene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
o-Xylene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Gasoline	ND	100	NWTPH-Gx	10-24-19	10-24-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	59-122				

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-GW					
Laboratory ID:	10-304-10					
Benzene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Toluene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Ethyl Benzene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
m,p-Xylene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
o-Xylene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Gasoline	ND	100	NWTPH-Gx	10-24-19	10-24-19	

Surrogate: Percent Recovery Control Limits Fluorobenzene 95 59-122

Project: 1950008

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1024W2					
Benzene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Toluene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Ethyl Benzene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
m,p-Xylene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
o-Xylene	ND	1.0	EPA 8021B	10-24-19	10-24-19	
Gasoline	ND	100	NWTPH-Gx	10-24-19	10-24-19	
Currogata:	Paraant Pagayany	Control Limita				

Surrogate: Percent Recovery Control Limits Fluorobenzene 95 59-122

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-30	04-08									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Toluene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	۱A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	۱A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						94	94	59-122			
SPIKE BLANKS											
Laboratory ID:	SB10	24W1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	52.3	53.5	50.0	50.0		105	107	76-120	2	11	
Toluene	51.8	53.6	50.0	50.0		104	107	80-116	3	12	
Ethyl Benzene	51.7	53.5	50.0	50.0		103	107	80-116	3	12	
m,p-Xylene	52.1	53.7	50.0	50.0		104	107	76-117	3	12	
o-Xylene	52.0	53.3	50.0	50.0		104	107	79-114	2	11	
Surrogate:											
Fluorobenzene						102	100	59-122			

Project: 1950008

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
HC8-S3-6.0	10-304-03	18	10-28-19
HC9-S2-3.5	10-304-05	15	10-28-19
HC9-S3-4.5	10-304-06	17	10-28-19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page _____ of _____

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		La	boi	rator	/ Nur	nbe	r:	7	0	-3	30	4							
Project Number: Project Name: Project Manager: Sampled by:	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (other)	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C EDB EPA 8011 (Waters Only)	emivolatiles 8270D/SIM	(with low-level PAHs) PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	D/SIM	erbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A			% Moisture
Lab ID Sample Identification HC8-51-2.5	Sampled Sampled Matrix	2	Z	Z	ZZ	> :	ī W	i Ø	2 2	ď.	0	O	Ō	12	D.	F	Ī			%
2 HC8-52-5.0	1 0845 1	2	H											-						
2 HC8-52-5.0 3 HC8-53-6.0	0915	2		X																X
4 HC9-51-2.5	1030	2																		
5 HG-52-3,5	1040	2		X																X
6 HC9-53-4.5	1050 1	2		N																X
7 MW-1-6W	10/22/19/1330 420	3	1	X																
9 MW-2-6W	1 1430 1	3	1	X																
9 MW-200-6W	1500	3		χ																
10 MW-3-GW	J 1530 +	3		X																
Relinquished Signature	Company			Date	13/10	Time	11		ommer	nts/Sp	ecial	Instru	ction	ıs						
Received 11-17-1	0.11	1	_		13/19	_	315													
Relinquished	Agend	1/Z	-	le o	23-19	ich	1.21													
Received Actilly Color	A CHA	1	1	01	23/19	10	55		127											
Relinquished	UZ			- 1		10	00													
Received			1					Da	ata Pad	ckage	: Sta	andar	d 🗆	Lev	vel III		Leve	IV 🗆		
Reviewed/Date	Reviewed/Date							CI	hromat	ogran	ns wit	th fina	al rep	ort [Ele	ctroni	c Data	Deliver	ables (ED	Ds)

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Hart Crowser, Inc. Marissa Goodman 3131 Elliott Avenue, Suite 600 Seattle, WA 98121

RE: Coldeen

Work Order Number: 1910429

October 31, 2019

Attention Marissa Goodman:

Fremont Analytical, Inc. received 3 sample(s) on 10/23/2019 for the analyses presented in the following report.

Helium by GC/TCD
Major Gases by EPA Method 3C
Petroleum Fractionation by EPA Method TO-15
Volatile Organic Compounds by EPA Method TO-15

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 11/25/2019

CLIENT: Hart Crowser, Inc. Work Order Sample Summary

Project: Coldeen **Work Order:** 1910429

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1910429-001	SV-1	10/22/2019 10:14 AM	10/23/2019 1:04 PM
1910429-002	UA-1	10/23/2019 11:23 AM	10/23/2019 1:04 PM
1910429-003	IA-1	10/23/2019 11:18 AM	10/23/2019 1:04 PM

Case Narrative

WO#: **1910429**Date: **10/31/2019**

CLIENT: Hart Crowser, Inc.

Project: Coldeen

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Air samples are reported in ppbv and ug/m3. Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

11/6/19: Revision 1 includes sample ID correction.

11/25/19: Revision 2 reports Helium to the LOD.

Qualifiers & Acronyms

WO#: 1910429

Date Reported: 10/31/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **1910429**Date Reported: **10/31/2019**

Client: Hart Crowser, Inc. Collection Date: 10/22/2019 10:14:00 AM

Project: Coldeen

Lab ID: 1910429-001 **Matrix:** Air

Client Sample ID: SV-1

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Helium by GC/TCD				Bato	ch ID: R5	4936 Analyst: WC
Helium NOTES: LOD - Analyte reported to Limit of Deput = parts per thousand	ND tection (LOD)	50.0	LOD	ppt	1	10/29/2019 4:05:00 PM
Major Gases by EPA Method 3	<u>sc</u>			Bato	ch ID: R5	Analyst: WC
Carbon Dioxide	0.514	0.100	D	%	2	10/29/2019 2:54:00 PM
Methane	ND	0.100	D	%	2	10/29/2019 2:54:00 PM
Oxygen	24.4	0.100	D	%	2	10/29/2019 2:54:00 PM

Revision v2

Client: Hart Crowser, Inc.

WorkOrder: 1910429 Project: Coldeen

 Client Sample ID:
 SV-1
 Date Sampled:
 10/22/2019

 Lab ID:
 1910429-001A
 Date Received:
 10/23/2019

Sample Type: Summa Canister

Analyte	Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analy	st
Petroleum Fractionation by EPA	Method TO-15							
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Aliphatic Hydrocarbon (EC5-8)	1,190	4,520	75.0	285		EPA-TO-15	10/29/2019	IH
Aliphatic Hydrocarbon (EC9-12)	175	1,030	75.0	442		EPA-TO-15	10/29/2019	ΙH
Aromatic Hydrocarbon (EC9-10)	<62.5	<314	62.5	314		EPA-TO-15	10/29/2019	ΙH
Surr: 4-Bromofluorobenzene	98.0 %Rec		70-130			EPA-TO-15	10/29/2019	IH
Volatile Organic Compounds by	EPA Method TO	<u>-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	0.402	1.28	0.0895	0.286		EPA-TO-15	10/23/2019	ΙH
Ethylbenzene	1.91	8.30	0.400	1.74		EPA-TO-15	10/23/2019	ΙH
m,p-Xylene	2.02	8.77	0.800	3.47		EPA-TO-15	10/23/2019	ΙH
Naphthalene	0.750	3.93	0.100	0.524		EPA-TO-15	10/23/2019	ΙH
o-Xylene	0.755	3.28	0.400	1.74		EPA-TO-15	10/23/2019	IH
Toluene	3.30	12.4	0.400	1.51		EPA-TO-15	10/23/2019	IH
Surr: 4-Bromofluorobenzene	103 %Rec		70-130			EPA-TO-15	10/23/2019	ΙH

Client: Hart Crowser, Inc.

WorkOrder: 1910429 Project: Coldeen

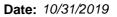
 Client Sample ID:
 UA-1
 Date Sampled:
 10/23/2019

 Lab ID:
 1910429-002A
 Date Received:
 10/23/2019

Sample Type: Summa Canister

Analyte	Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analy	st
Petroleum Fractionation by EPA	Method TO-15							
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Aliphatic Hydrocarbon (EC5-8)	24.1	91.6	1.88	7.13		EPA-TO-15	10/28/2019	ΙH
Aliphatic Hydrocarbon (EC9-12)	12.5	73.8	1.88	11.0		EPA-TO-15	10/28/2019	ΙH
Aromatic Hydrocarbon (EC9-10)	<1.56	<7.86	1.56	7.86		EPA-TO-15	10/28/2019	ΙH
Surr: 4-Bromofluorobenzene	103 %Rec		70-130			EPA-TO-15	10/28/2019	IH
Volatile Organic Compounds by	EPA Method TO	<u>-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	0.190	0.608	0.0224	0.0715		EPA-TO-15	10/31/2019	ΙH
Ethylbenzene	0.125	0.543	0.100	0.434		EPA-TO-15	10/31/2019	ΙH
m,p-Xylene	0.279	1.21	0.200	0.868		EPA-TO-15	10/31/2019	ΙH
Naphthalene	0.163	0.852	0.0250	0.131		EPA-TO-15	10/31/2019	ΙH
o-Xylene	0.149	0.645	0.100	0.434		EPA-TO-15	10/31/2019	ΙH
Toluene	0.573	2.16	0.100	0.377		EPA-TO-15	10/31/2019	ΙH
Surr: 4-Bromofluorobenzene	108 %Rec		70-130			EPA-TO-15	10/31/2019	ΙH

Client: Hart Crowser, Inc.


WorkOrder: 1910429 Project: Coldeen

 Client Sample ID:
 IA-1
 Date Sampled:
 10/23/2019

 Lab ID:
 1910429-003A
 Date Received:
 10/23/2019

Sample Type: Summa Canister

Analyte	Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analy	st
Petroleum Fractionation by EPA	Method TO-15							
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Aliphatic Hydrocarbon (EC5-8)	100	382	7.50	28.5		EPA-TO-15	10/30/2019	ΙH
Aliphatic Hydrocarbon (EC9-12)	42.0	247	7.50	44.2		EPA-TO-15	10/30/2019	ΙH
Aromatic Hydrocarbon (EC9-10)	<1.56	<7.86	1.56	7.86		EPA-TO-15	10/28/2019	ΙH
Surr: 4-Bromofluorobenzene	109 %Rec		70-130			EPA-TO-15	10/28/2019	IH
Volatile Organic Compounds by	EPA Method TC) <u>-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	0.186	0.593	0.0224	0.0715		EPA-TO-15	10/31/2019	ΙH
Ethylbenzene	<0.100	< 0.434	0.100	0.434		EPA-TO-15	10/31/2019	ΙH
m,p-Xylene	0.296	1.29	0.200	0.868		EPA-TO-15	10/31/2019	ΙH
Naphthalene	0.411	2.16	0.0250	0.131		EPA-TO-15	10/31/2019	ΙH
o-Xylene	0.116	0.505	0.100	0.434		EPA-TO-15	10/31/2019	ΙH
Toluene	0.844	3.18	0.100	0.377		EPA-TO-15	10/31/2019	ΙH
Surr: 4-Bromofluorobenzene	117 %Rec		70-130			EPA-TO-15	10/31/2019	ΙH

Work Order: 1910429

QC SUMMARY REPORT

CLIENT: Hart Crowser, Inc.

Petroleum Fractionation by EPA Method TO-15

Project: Coldeen	.,					Peti	roleum Fractionat	tion by EPA Method	TO-1
Sample ID: LCS-R54926	SampType: LCS			Units: ppbv		Prep Date	e: 10/28/2019	RunNo: 54926	
Client ID: LCSW	Batch ID: R54926					Analysis Date	e: 10/28/2019	SeqNo: 1090359	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	13.0	7.50	12.00	0	108	70	130		
Aliphatic Hydrocarbon (EC9-12)	13.4	7.50	12.00	0	112	70	130		
Aromatic Hydrocarbon (EC9-10)	11.9	6.25	10.00	0	119	70	130		
Surr: 4-Bromofluorobenzene	3.85		4.000		96.2	70	130		
Sample ID: MB-R54926	SampType: MBLK			Units: ppbv		Prep Date	e: 10/28/2019	RunNo: 54926	
Client ID: MBLKW	Batch ID: R54926					Analysis Date	e: 10/28/2019	SeqNo: 1090360	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	ND	1.88							
Aliphatic Hydrocarbon (EC9-12)	ND	1.88							
Aromatic Hydrocarbon (EC9-10)	ND	1.56							
Surr: 4-Bromofluorobenzene	0.937		1.000		93.7	70	130		
Sample ID: 1910412-001AREP	SampType: REP			Units: ppbv		Prep Date	e: 10/28/2019	RunNo: 54926	
Client ID: BATCH	Batch ID: R54926					Analysis Date	e: 10/28/2019	SeqNo: 1090364	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	44,800	75.0					42,420	5.50 30	Е
Aliphatic Hydrocarbon (EC9-12)	6,620	75.0					6,477	2.22 30	E
Aromatic Hydrocarbon (EC9-10)	151	62.5					150.5	0.433 30	
Surr: 4-Bromofluorobenzene	57.5		40.00		144	70	130	0	S

NOTES:

Page 9 of 16 Revision v2

S - Outlying surrogate recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

E - Estimated value. The amount exceeds the linear working range of the instrument.

Coldeen

Work Order: 1910429

Project:

NOTES:

QC SUMMARY REPORT

CLIENT: Hart Crowser, Inc.

Petroleum Fractionation by EPA Method TO-15

Project. Coldeen									
Sample ID: LCS-R54947	SampType: LCS			Units: ppbv		Prep Date	e: 10/29/2019	RunNo: 54947	
Client ID: LCSW	Batch ID: R54947					Analysis Date	e: 10/29/2019	SeqNo: 1090788	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	13.3	7.50	12.00	0	111	70	130		
Aliphatic Hydrocarbon (EC9-12)	13.4	7.50	12.00	0	111	70	130		
Surr: 4-Bromofluorobenzene	3.96		4.000		98.9	70	130		
Sample ID: MB-R54947	SampType: MBLK			Units: ppbv		Prep Date	e: 10/29/2019	RunNo: 54947	
Client ID: MBLKW	Batch ID: R54947					Analysis Date	e: 10/29/2019	SeqNo: 1090806	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	ND	7.50							
Aliphatic Hydrocarbon (EC9-12)	ND	7.50							
Surr: 4-Bromofluorobenzene	3.74		4.000		93.6	70	130		
Sample ID: 1910476-001AREP	SampType: REP			Units: ppbv		Prep Date	e: 10/29/2019	RunNo: 54947	
Client ID: BATCH	Batch ID: R54947					Analysis Date	e: 10/29/2019	SeqNo: 1090808	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	3,240	75.0					3,331	2.72 30	Е
Aliphatic Hydrocarbon (EC9-12)	1,690	75.0					1,730	2.35 30	Е
Surr: 4-Bromofluorobenzene	39.8		40.00		99.6	70	130	0	

E - Estimated value. The amount exceeds the linear working range of the instrument.

Revision v2 Page 10 of 16

Work Order: 1910429

QC SUMMARY REPORT

CLIENT: Hart Crowser, Inc.

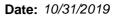
Helium by GC/TCD

Project: Coldeen							Heliu	m by GC/TCL
Sample ID: LCS-R54936	SampType: LCS			Units: ppt	Prep Date: 1	0/29/2019	RunNo: 5493 6	6
Client ID: LCSW	Batch ID: R54936				Analysis Date: 1	0/29/2019	SeqNo: 1090	537
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit High	Limit RPD Ref Val	%RPD I	RPDLimit Qual
Helium	115	100	100.0	0	115 80	120		
Sample ID: MB-R54936	SampType: MBLK			Units: ppt	Prep Date: 1	0/29/2019	RunNo: 5493	6
Client ID: MBLKW	Batch ID: R54936				Analysis Date: 1	0/29/2019	SeqNo: 1090	538
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit High	Limit RPD Ref Val	%RPD I	RPDLimit Qual
Helium	ND	100						
Sample ID: 1910429-001AREP	SampType: REP			Units: ppt	Prep Date: 1	0/29/2019	RunNo: 5493	6
Client ID: SV-1	Batch ID: R54936				Analysis Date: 1	0/29/2019	SeqNo: 1090	531
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit High	Limit RPD Ref Val	%RPD I	RPDLimit Qual
Helium	ND	100				0		30

Revision v2 Page 11 of 16

Work Order: 1910429

QC SUMMARY REPORT


CLIENT: Hart Crowser, Inc.

Major Gases by EPA Method 3C

Project: Coldeen								Major (Gases by I	EPA Meth	nod 3C
Sample ID: LCS-R54931	SampType: LCS			Units: %		Prep Dat	e: 10/29/2	2019	RunNo: 54 9	931	
Client ID: LCSW	Batch ID: R54931					Analysis Dat	e: 10/29/2	2019	SeqNo: 109	90455	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	101	0.0500	100.0	0	101	70	130				
Methane	101	0.0500	100.0	0	101	70	130				
Oxygen	106	0.0500	100.0	0	106	70	130				

Sample ID: 1910479-001AREP	SampType: REP		ι	Inits: %	Prep Da	te: 10/29/2	019	RunNo: 549	931	
Client ID: BATCH	Batch ID: R54931				Analysis Da	te: 10/29/2	019	SeqNo: 109	00451	
Analyte	Result	RL	SPK value SPK	Ref Val %REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	41.4	0.0500					41.46	0.0229	30	Н
Methane	57.1	0.0500					57.03	0.0676	30	Н
Oxygen	0.421	0.0500					0.4124	2.18	30	Н

Page 12 of 16 Revision v2

Work Order: 1910429

Surr: 4-Bromofluorobenzene

3.95

QC SUMMARY REPORT

CLIENT: Hart Crowser, Inc.

Volatile Organic Compounds by EPA Method TO-15

Project: Coldeen	,						Volatile	Organi	c Compoun	ds by EPA	Method	TO-
Sample ID: LCS-R54973	SampTyp	e: LCS			Units: ppbv		Prep Date	e: 10/23/ 2	2019	RunNo: 549	73	
Client ID: LCSW	Batch ID:	R54973					Analysis Date	e: 10/23/2	2019	SeqNo: 109	1392	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		2.25	0.0895	2.000	0	112	70	130				
Toluene		2.32	0.400	2.000	0	116	70	130				
Ethylbenzene		2.18	0.400	2.000	0	109	70	130				
m,p-Xylene		4.44	0.800	4.000	0	111	70	130				
o-Xylene		2.27	0.400	2.000	0	114	70	130				
Surr: 4-Bromofluorobenzene		3.91		4.000		97.8	70	130				
Sample ID: MB-R54973	SampTyp	e: MBLK			Units: ppbv		Prep Date	e: 10/23/ 2	2019	RunNo: 549	73	
Client ID: MBLKW	Batch ID:	R54973					Analysis Date	e: 10/23/2	2019	SeqNo: 109	1393	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		ND	0.0224									
Toluene		ND	0.100									
Ethylbenzene		ND	0.100									
m,p-Xylene		ND	0.200									
o-Xylene		ND	0.100									
Surr: 4-Bromofluorobenzene		0.892		1.000		89.2	70	130				
Sample ID: LCS-R54984	SampTyp	e: LCS			Units: ppbv		Prep Date	e: 10/31/ 2	2019	RunNo: 549	984	
Client ID: LCSW	Batch ID:	R54984					Analysis Date	e: 10/31/ 2	2019	SeqNo: 109	1832	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		1.93	0.0895	2.000	0	96.7	70	130				
Toluene		1.98	0.400	2.000	0	99.0	70	130				
Ethylbenzene		1.90	0.400	2.000	0	94.8	70	130				
m,p-Xylene		3.76	0.800	4.000	0	94.1	70	130				
o-Xylene												
. ,		1.86	0.400	2.000	0	92.9	70	130				

Page 13 of 16 Revision v2

98.7

70

130

4.000

Work Order: 1910429

Project:

QC SUMMARY REPORT

CLIENT: Hart Crowser, Inc.

Coldeen

Volatile Organic Compounds by EPA Method TO-15

Sample ID: LCSD-R54984	SampType	: LCSD			Units: ppbv		Prep Dat	e: 10/31/2	.019	RunNo: 54 9	984	
Client ID: LCSW02	Batch ID:	R54984					Analysis Dat			SeqNo: 109		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		2.11	0.0895	2.000	0	105	70	130	1.933	8.74	30	
Toluene		2.03	0.400	2.000	0	102	70	130	1.980	2.63	30	
Ethylbenzene		1.97	0.400	2.000	0	98.4	70	130	1.895	3.75	30	
m,p-Xylene		4.11	0.800	4.000	0	103	70	130	3.763	8.85	30	
o-Xylene		2.04	0.400	2.000	0	102	70	130	1.857	9.46	30	
Naphthalene		1.90	0.100	2.000	0	95.1	70	130	1.897	0.270	30	
Surr: 4-Bromofluorobenzene		3.84		4.000		96.1	70	130		0		
Sample ID: MB-R54984	SampType	: MBLK			Units: ppbv		Prep Dat	e: 10/31/2	2019	RunNo: 54 9	984	
Client ID: MBLKW	Batch ID:	R54984					Analysis Dat	e: 10/31/2	019	SeqNo: 109	91834	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		ND	0.0224									
Toluene		ND	0.100									
Ethylbenzene		ND	0.100									
m,p-Xylene		ND	0.200									
o-Xylene		ND	0.100									
Naphthalene		ND	0.0250									
Surr: 4-Bromofluorobenzene		0.875		1.000		87.5	70	130				

Revision v2 Page 14 of 16

Sample Log-In Check List

Logged by: Clare Griggs	Client Name:	: HART	Work Order Numb	per: 1910429		
1. Is Chain of Custody complete? 2. How was the sample delivered? Client	Logged by:	Clare Griggs	Date Received:	10/23/201	19 1:04:00 PM	
Log In 3. Coolers are present? 4. Shipping container/cooler in good condition? 5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >0°C to 10.0°C * 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable)	Chain of Cust	<u>istody</u>				
Accolers are present? 4. Shipping container/cooler in good condition? 5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >0°C to 10.0°C* 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable)	1. Is Chain of C	of Custody complete?	Yes 🗹	No 🗌	Not Present	
A: Samples 4. Shipping container/cooler in good condition? 5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >0°C to 10.0°C* 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable)	2. How was the	the sample delivered?	Client			
Air Samples 4. Shipping container/cooler in good condition? 5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >0°C to 10.0°C* 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Shipping containers arrive in good condition (unbroken)? 19. Special Handling (if applicable)	<u>Log In</u>					
4. Shipping container/cooler in good condition? 5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >0°C to 10.0°C* 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable)	3. Coolers are	re present?	Yes	No 🗸	NA 🗌	
5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >0°C to 10.0°C* 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable)			Air Samples			
(Refer to comments for Custody Seals not intact) 6. Was an attempt made to cool the samples? 7. Were all items received at a temperature of >0°C to 10.0°C* 8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable)	4. Shipping cor	container/cooler in good condition?	Yes 🗸	No \square		
7. Were all items received at a temperature of >0°C to 10.0°C* Yes No No NA 8. Sample(s) in proper container(s)? Yes No			Yes	No \square	Not Required 🗹	
8. Sample(s) in proper container(s)? 9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable)	6. Was an atte	ttempt made to cool the samples?	Yes	No \square	NA 🗸	
9. Sufficient sample volume for indicated test(s)? 10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable)	7. Were all iten	tems received at a temperature of >0°C to 10.0°C*	Yes	No 🗆	NA 🗹	
10. Are samples properly preserved? 11. Was preservative added to bottles? 12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable)	8. Sample(s) ir) in proper container(s)?	Yes 🗸	No 🗆		
11. Was preservative added to bottles? Yes No No NA 1. 12. Is there headspace in the VOA vials? Yes No No NA 1. 9. Sufficient sa	sample volume for indicated test(s)?	Yes 🗸	No \square			
12. Is there headspace in the VOA vials? 13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable)	10. Are samples	les properly preserved?	Yes 🗸	No 🗌		
13. Did all samples containers arrive in good condition(unbroken)? 14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable)	11. Was preserv	ervative added to bottles?	Yes	No 🗸	NA \square	
14. Does paperwork match bottle labels? 15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? 18. Ves ✓ No ☐ 19. Ves ✓ No ☐ 19. Ves ✓ No ☐ 19. Special Handling (if applicable)	12. Is there hear	eadspace in the VOA vials?	Yes	No 🗌	NA 🗸	
15. Are matrices correctly identified on Chain of Custody? 16. Is it clear what analyses were requested? 17. Were all holding times able to be met? Special Handling (if applicable)	13. Did all samp	mples containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌		
16. Is it clear what analyses were requested? Yes ✓ No □ 17. Were all holding times able to be met? Yes ✓ No □ Special Handling (if applicable)	14. Does paperv	erwork match bottle labels?	Yes 🗹	No 🗌		
16. Is it clear what analyses were requested? Yes ✓ No □ 17. Were all holding times able to be met? Yes ✓ No □ Special Handling (if applicable)	15. Are matrices	ces correctly identified on Chain of Custody?	Yes 🗹	No 🗌		
Special Handling (if applicable)			Yes 🗸	No 🗌		
	17. Were all hold	nolding times able to be met?	Yes 🗹	No 🗆		
	Special Hand	ndling (if applicable)				
	-	 	Yes	No 🗆	NA 🗸	
Person Notified: Date:	Person	son Notified: Date:				
By Whom: Via: eMail Phone Fax In Person	By Who	Vhom: Via:	eMail Ph	one Fax	☐ In Person	
Regarding:	Regard	arding:				
Client Instructions:	Client I	nt Instructions:				

19. Additional remarks:

Item Information

Revision v2

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

	100.01	3600 F	remont Ave N.			Air Ch	ain o	f Cust	od	y R	lec	ord	&	La	oor	atory	Serv	ices	Agre	emer	nt
Fre	mor	Tel:	tle, WA 98103 206-352-3790	Date:	0/23/	19		Page:	1	of:	1		Labora	tory P	roject No	(Internal):	1910	147	9		
	Analytic	Fax:	206-352-7178			(Lee	0						Specia	l Rem	iarks:						
Client: Hart Crowser	r					5000	,														
Address: 3131 Ellia	# Ave &	vite	600	Location:		hon,															
City, State, Zip: Seattle	e, NA "	78121		Collected	1	rie					*****										
Telephone: 206. 32	4.953	0		Reports to	(PM):	adr	cer	\							re dispo quested.	sed of one we	eek after re		bmitted to o		
Fax:				1		7755		radme	n &	Ph	ar	ter	ou	يهلا	et,	com					
						Internal				ī	T	Anal		T	11					Intern	al
Sample Name	Canister / Flow Reg Serial #	Sample Date & Time	Sample Type (Matrix) *	Container Type **	Fill Time / Flow Rate	Initial Evacuation Pressure (mtorr)	Field Initial Sample Pressure (" Hg)	Field Final Sample Pressure (" Hg)	TO15	VOCS TOTS SCAN LI	iloxanes TO15	ulfur TO15	Sulfur Ext. TO15	Helium	Major Gases 3C		Co	omments		Final Pressu ("Hg)	re
SV-1	5020 FID	10/22/19	501	1L	10 min	10mtorr 9/14/2019	-30 1922/19	-3	X		0.00	S	X	X		00	ly B	TE	x+	- 2 5 Ne	
'UA-1	12666 FRB-01	1939A	BOIT	6L	24 hour	10mtorr 10/9/2019	30	11	.)	X			X	2		00	131	31E	Xt	-6	
TA-1		1012319	cor	6L	24	10mtorr	30	12	2 >				X		П	on	ly F	STE	xt		7
	FR18-25	11:18			hour	10/9/2019	101249	10123/1	7	-	-		1	1	\square	, Cu	chi.	-(1		(2	#
	2-0							Sod													
	5.5																				1
* Matrix Codes: AA = Ambient	Air IA = Indoor	Air Lalas	YEII C	Cobalab /Ca	11.6	-4		-	Ш										T		4
** Container Codes: BV = 1 Liter		Air L = Lan		Subslab / So	High Pressur	e Cylinder	\F = Filter	5 = Sorbe	ent Tul	oe .	TB = 1	Tedlar	Bag							ound Time	
I represent that I am autho terms on the front and back	orized to enter int kside of this Agro	o this Agreen	nent with F											Clie	nt's ag	greement t	o each o	of the	Star		
Rose	10	123/19	13	:04		Received	h		19	1	2	e/me	[9		13	(00	7	2 D		
elinquished	D	ate/Time			THE PARTY OF THE P	Received				V	Dat	e/Time				***		1:	Same Da	t Day (specify)	

APPENDIX C Investigative-Derived Waste Manifests

Page 1/2

SHIPPING PAPER

Lading Manifest: 675302-19

		DELIVERY	DATE		JOB# 3819930	
OUUDDE	R/CUSTOMER					
- 6	Washington State Dept of Ecolo gy	POINT OF	Diane E	Scobi	do	
	15631 Westside Highway SW	PHONE #	(425)64	19-700	00	
	Tate, Zip Vashon wa 98070					
C	R/TRANSPORTER CASCADE DRILLING	PHONE #	(425)48	35-890	8	
	BURLINGTON ENVIRONMENTAL, LLC.	POINT OF	CONTACT			
ADDRES	ss 1701 East Alexander Avenue	PHONE #	(253)62	27-756	58	
	rate, zip racoma , wa 98421					
НМ	US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)		Contair No.	ners Type	Total Quantity	UON
A	MATERIAL NOT REGULATED BY DOT (NON-HAZARDOUS)		3	DM	2106	Р
В	MATERIAL NOT REGULATED BY DOT (NON-HAZARDOUS)		1	DM	400	p
С	MATERIAL NOT REGULATED BY DOT (NON-HAZARDOUS)		1	DM	150	P
D						
a) :	Handling Instruction and Additional Information: 1614312-00 - NON-HAZARDOUS WASTE SOLID (SOIL) - LF07 (1) b) 1614308-00 4308-00 - NON-HAZARDOUS WASTE LIGUID (WATER) - WATO5 (3)	- NON-HAZARDOUS	WASTE LIQUI	D (WATE	R) - WATO5 (2) c)	
Placards	Provided YESNO					
also cel	R'S CERTIFICATION: "I hereby declare that the contents of this consignment are fully a d, marked and labelled/placarded, and are in all respects in proper condition for transport rtify that all times listed above are true and correct.	nd accurately describ according to applicab	ed above by le internationa	proper sh al and nat	ipping name and are c ional governmental reg	lassified ulations.
< A	R) PRINT OR TYPE NAME On behat! SIGNATURE X R/TRANSPORTER) PRINT OR TYPE NAME SIGNATURE SIGNATURE				MONTH DAY	YEAR 19
· N	KK Jachim NEE/FACILITY) PRINT OR TYPE NAME SIGNATURE	2			12 17 MONTH DAY	19 YEAR
x L	alymoun Garan x Xu	1cm6	n		12 19	15

page 2/2

SHIPPING PAPER

675302-19

	DELIVERY DATE			JOB# 38/9930		
SHIPPER / CUSTOMER	POINT OF CONT	POINT OF CONTACT				
ADDRESS	PHONE #	PHONE #				
CITY, STATE, ZIP						
CARRIER/TRANSPORTER Steneyue Specialty waste Solutions, Inc.	PHONE #	PHONE # (6/a) 285-9865				
CONSIGNEE / FACILITY	POINT OF CONT	POINT OF CONTACT				
ADDRESS	PHONE #	PHONE #				
CITY, STATE, ZIP						
HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)			Containers No. Type		Total Quantity	
A						
В						
С						
TRANS ONLY						
D						
Special Handling Instruction and Additional Information:						
Placards Provided YESNO	e fully and accurately described a	bove by pr	oper ship	ping name	and are	classified
I also certify that all times listed above are true and correct. (SHIPPER) PRINT OR TYPE NAME SIGNATURE		cinational	and nano	MONTH	DAY	YEAR
x x	00					
(CARRIER/TRANSPORTER) PRINT OR TYPE NAME SIGNATURE	E A (Y)			MONTH	DAY	YEAR / Q
x Christine Santos x (consignee/facility) Print or type name signaturi				12 MONTH	/7	19 YEAR
(CONSIGNEE/FACILITY) PRINT OR TYPE NAME SIGNATURI X				1.0711113	-AI	100

Generator's Waste Profile 1614312-00

Printed: 12/11/2019

Status: Pending

Environmental Solutions

Starts: 2019-12-04 Expires: 2020-12-02

Generator Site Information

Washington State Dept of Ecolo 15631 Westside Highway SW VASHON, WA 98070

Phone: (425)649-7000 Contact: Diane Escobido

EPA#: EXE SIC Codes: 44711 B. Customer Address CASCADE DRILLING LP

PO Box 1184

WOODINVILLE, WA 98072 Phone: (425) 485-8908 Fax: (425) 951-1194

Waste Information

MSDS: No

Analysis: Yes

Sample: No

Waste Name: NON-HAZARDOUS WASTE SOLID (SOIL)

Process:

INVESTIGATION DERIVED WASTE FROM DRILLING ACTIVITIES AT A GAS STATION.

Unused Commercial Product: No

Spill Residue: No

Physical Characteristics of Waste

Layers **Phys States** Single Phased Top Solid

Middle N/A

Bottom N/A % Halogens:

BTU:

Colors

Brown

N/A

N/A

Odor: % Water:

None 0

PH Range: Flash Test:

4-10

Not Tested

N/A Flash Range:

None

% Ash: Pumpable:

Benzene PPM:

0

Max 100

6700

0.33

5

24

16

3.3

35

Spec Grav: 1.2

Free Lig %: No

Viscosity:

High

VOC: >500PPM

Chemical Composition of Waste

No

PCBs: No Cyanides: No Dioxins: No Herbicides: No Volatile Organic Compounds: >500PPM Chemicals: Min Soil

95 Asphalt, Gravel 0 Gasoline 0 0 0 Benzene Ethylbenzene 0 0

Phenolics: No Pesticides: 0 Total Organic Carbons: <1%

Sulfides: No Ammonia: No

> Unit % % ppm ppm ppm ppm

ppm

ppm

TOC: <1%

Metals

Lead

Toluene

Xylene

Metals Method: Generator Knowledge

Arsenic (As) <5 ppm Cadmium (Cd) <1 ppm Lead (Pb) <5 ppm Mercury Total <260 ppm Silver (Ag) <5 ppm Thallium (Ti) 120 ppm Copper (Cu) <0 ppm

Barium (Ba) Chromium (Cr) Mercury TCLP Selenium (Se) Nickel (Ni) Zinc (Zn)

<100 ppm <5 ppm <0.2 ppm <1 ppm 134 ppm <0 ppm

Regulated Organics

Organic Code Min Reg TCLP Total

Other Characteristics of Waste

Ign. Solid? No Shock Sensitive? No Radioactive? No

Oxidizer? No Water Reactive? No Explosive? N/A

Sulfide Reactive No Cyanide Reactive No Asbestos? N/A

Other Reactive? No Universal Waste? No Water > 10%? No

Medical? No

Use EPA/State Waste Identification L

Form Code:

W301 DW

TSCA: No Source Code:

SubpartCC:

No

DW/EHW:

No Debris:

CERCLA: No

EPA Regulated? No

EPA Codes:

State Regulated? No

G45

Contains Regulated Organics? Yes

State Codes: **UHC Codes:** Texas Codes:

Shipping Information

Container Type: DM

Qty to Ship Now:

Projected Volume:

150 One time

DOT Shipping Name:

MATERIAL NOT REGULATED BY DOT (NON-HAZARDOUS)

NOS:

Hazard Class: SubHazard Class:

Additional Description:

Special Handling Information

MAIL MANIFEST TO Attn: Diane Escobedo, Washington State Department of Ecology, Toxics Cleanup Program, Northwest Regional Office, 3190 160th Avenue SE, Bellevue, WA 98008 Waste Category:

GENERATOR CERTIFICATION

I hereby represent and warrant that I have personally examined and am familiar with the information contained and submitted on this waste profile and all attached documents. Based on my inquiry and personal knowledge of those individuals responsible for supplying or obtaining the information, the information contained herein is true, accurate, and complete to the best of my knowledge and belief. Furthermore, no material fact has been omitted as to make this misleading. I understand that others may rely on this representation and warranty in the handling and processing of the waste material described herein. By signing this waste profile, I am certifying that I am authorized to sign such documentation on behalf of the generator.

Burlington Environmental, LLC maintains the appropriate permits for and will accept the dangerous waste the generator is shipping as required WAC 173-303-290(8)

Signature

lane Escobedo Site Manager Printed Name

Generator's Waste Profile 1614308-00

Printed: 12/12/2019

Status: Pending

Environmental Solutions

Starts: 2019-12-04 Expires: 2020-12-02

Generator Site Information

Washington State Dept of Ecolo 15631 Westside Highway SW VASHON, WA 98070

Phone: (425)649-7000 Contact: Diane Escobido EPA#: EXE SIC Codes: 44711 B. Customer Address CASCADE DRILLING LP

PO Box 1184

WOODINVILLE, WA 98072 Phone: (425) 485-8908 Fax: (425) 951-1194

Waste Information

MSDS: No

Analysis: Yes

Sample: No

Waste Name:

NON-HAZARDOUS WASTE LIQUID (WATER)

Process:

INVESTIGATION DERIVED WASTE FROM A GAS STATION.

Colors

Brown

Unused Commercial Product: No

Spill Residue: No

Physical Characteristics of Waste

Layers **Phys States** Single Phased Top Liquid

Middle N/A Bottom N/A

% Halogens:

Odor: N/A % Water:

None 100 0

100

PH Range: Flash Test:

None

4-10 Not Tested Flash Range: N/A

VOC: <500PPM

Viscosity: Low

% Ash: Pumpable:

Chemicals:

Water

Sediment

Benzene

Gasoline

BTU:

N/A

Benzene PPM:

Spec Grav: 1.0

Free Liq %:

Sulfides: No

Ammonia: No

Chemical Composition of Waste

0

Yes

PCBs: No Cyanides: No Dioxins: No Herbicides: No Volatile Organic Compounds: <500PPM

Min

95

0

0

0

Pesticides: 0 Total Organic Carbons: <1%

Phenolics: No

Max 100 5 0.47 3.5

Unit % ppb ppm

TOC: <1%

Metals

Metals Method: Generator Knowledge

Arsenic (As) <5 ppm Cadmium (Cd) <1 ppm Lead (Pb) <5 ppm Mercury Total <260 ppm Silver (Ag) <5 ppm 120 ppm Thallium (Ti) Copper (Cu) <0 ppm

Barium (Ba) Chromium (Cr) Mercury TCLP Selenium (Se) Nickel (Ni) Zinc (Zn)

<100 ppm <5 ppm <0.2 ppm <1 ppm 134 ppm <0 ppm

Regulated Organics

Organic Code Min Reg TCLP Total

H. Other Characteristics of Waste

> Ign. Solid? No Shock Sensitive? No Radioactive? No

Oxidizer? No Water Reactive? No Explosive? N/A

TSCA:

Sulfide Reactive No Cyanide Reactive No Asbestos? N/A

Other Reactive? No Universal Waste? No Water > 10%? Yes

Use EPA/State Waste Identification

Form Code:

Medical? No

W113

No

SubpartCC:

No

DW/EHW:

DW

Source Code: G45 State Regulated? No Debris:

No Contains Regulated Organics? Yes

CERCLA:

No

EPA Regulated? No

EPA Codes:

State Codes:

UHC Codes: Texas Codes:

Shipping Information

Container Type: DM

Qty to Ship Now:

MATERIAL NOT REGULATED BY DOT (NON-HAZARDOUS)

Projected Volume:

100 One

time

DOT Shipping Name:

NOS:

J.

Hazard Class: SubHazard Class:

Additional Description:

Special Handling Information

Mail manifest to:Attn: Diane Escobedo, Washington State Department of Ecology, Toxics Cleanup Program, Northwest Regional Office, 3190 160th Avenue SE, Bellevue, WA 98008

Waste Category:

GENERATOR CERTIFICATION

I hereby represent and warrant that I have personally examined and am familiar with the information contained and submitted on this waste profile and all attached documents. Based on my inquiry and personal knowledge of those individuals responsible for supplying or obtaining the information, the information contained herein is true, accurate, and complete to the best of my knowledge and belief. Furthermore, no material fact has been omitted as to make this misleading. I understand that others may rely on this representation and warranty in the handling and processing of the waste material described herein. By signing this waste profile, I am certifying that I am authorized to sign such documentation on behalf of the generator.

I certify that I have reviewed and am familiar with the information in the application submitted for approval. I believe the information provided herein conforms to the facilities approved waste analysis plan and operating permits.

In accordance with 40 CFR 264.12(b), Republic Environmental Systems (Pennsylvania), LLC has the appropriate permits for, and will accept the waste the generator is shipping as described in this profile

Diane Escobedo Site Manager

Signature

Printed Name

Title

Date

Designation of Authorized Representative for Non-hazardous Waste Disposal Services

I hereby authorize Cascade Drilling or its designee to act as my authorized representative, to prepare and sign the documents required for transportation and disposal of non-hazardous waste generated at Washington State Dept of Ecology property located at 15631 Westside Hwy SW, Vashon, WA 98070. Services include signing the Bill of Lading/Manifest for shipments of non-hazardous waste. This authorization shall continue until June 30, 2020.

I hereby certify that I have authority to execute this letter designating Cascade Drilling to act as

my authorized representative for this matter. I understand that Washington State Dept of Ecology remains liable under Federal and State waste regulations as the generator of the waste material.

Signature:

Title:

Signature:

Diane Escobedo

Date:

| Date: | Da