Appendix J: Field Methods and Exploration Logs for 2019 Data Gaps Investigation (35 Sheets)

Table of Contents

List of Exhibits

Exhibit J-1	Installation Parameters
Exhibit J-2	Duplicate Sample Identification
Exhibit J-3	Soil Classification and Log Key (3 sheets)
Exhibit J-4	Boring Logs (27 sheets)

Introduction

This appendix describes Shannon & Wilson's field methods, including explorations, field testing, soil and groundwater sampling, data analysis, and the handling of investigation derived waste (IDW). The scope of the activities conducted includes the following:

- Gasoline-range petroleum hydrocarbons and associated benzene, toluene, ethylbenzene, and xylene (BTEX) compounds are present in Site soil and groundwater at concentrations exceeding cleanup levels. The concentrations of constituents in soil gas, collected on the Site and at a location adjacent to the nearest occupied property, were below indoor air exposure thresholds at the time of sampling.
- Advancement of 16 borings in and around the Site, including:
 - Eight soil borings with no installations: SB-2-19 through SB-9-19
 - Five borings completed as groundwater monitoring wells: MW-1-19 through MW-5-20
 - Two borings completed as vapor monitoring points: SG-1-19 and SG-2-19
 - One boring completed as a product recovery well: RW-1-19
- Collection of soil, groundwater, and soil vapor samples for chemical analysis.
- Analysis of groundwater levels to obtain an estimated groundwater gradient direction for the Site.
- Hydraulic conductivity (slug) tests.

Standard investigation methods, including sample collection, field screening, documentation procedures, and selected analyses, are described briefly in the following subsections. Methods and documentation were completed in accordance with Shannon & Wilson's standard operating procedures.

Pre-Sampling Activities

Prior to the field phase, public and private utility locating took place in the areas of subsurface exploration. Exploration locations were marked with white paint. Shannon & Wilson obtained a public utility locating ticket number by coordinating with the Washington State Utility Notification Center. A private utility locating company utilized electromagnetic detection and ground penetrating radar methods.

A site-specific health and safety plan for the environmental explorations and sampling was prepared for and implemented during field activities. The plan addresses worker safety and safety related to protecting the public from hazards associated with explorations and sampling. An exclusion zone was established around each exploration with safety cones to protect field personnel from parking lot hazards and to isolate the public from the work zone. Prior to the start of fieldwork each day, a tailgate safety meeting was held to identify potential job hazards and to remind personnel to be aware of their surroundings. A daily health and safety tailgate meeting sign-in sheet was completed to document field personnel were briefed on safety hazards expected for that day.

Traffic control was required during drilling and subsequent well development and groundwater sampling activities. Traffic control plans and a street use permit were acquired prior to field mobilization.

Shannon & Wilson coordinated with the Washington State Department of Transportation (WSDOT) to gain access to the property.

Boring Advancement and Logging

Prior to advancing the borings, each location was potholed to approximately 5 feet below ground surface (bgs) using pressurized air to break up the soil and vacuum out the boreholes. The borings were then advanced using sonic drilling methods with standard penetration testing (SPT) equipment and a split-spoon sampler for environmental soil sample collection.

Soil was visually described using Shannon & Wilson's soil classification procedure, which is a modified version of the Unified Soil Classification System. The soil descriptions were recorded on field logs. The boring logs are enclosed.

Installations

Four groundwater monitoring wells, one product recovery well, and two soil vapor monitoring points were installed. The following exhibit provides key parameters. The following sections describe the installation methods.

Well ID	Ecology Well Tag ID	Northing	Easting	Total Depth (feet bgs)	Screened Interval (feet bgs)	Materials	
MW-1- 19	BLU421	238209.4833	1277927.53	26.5	11.5 to 26.5	2-inch PVC, 10 slot screen	
MW-2- 19	BLT996	238165.7495	1277765.886	20.0	10.0 to 20.0	2-inch PVC, 10 slot screen	
MW-3- 19	BLT987	238,303.838	1,277,738.636	25.0	10.0 to 25.0	2-inch PVC, 10 slot screen	
MW-4- 19	BLT986	238,264.421	1,277,911.209	27.0	17.0 to 27.0	2-inch PVC, 10 slot screen	
MW-5- 19	BLU319	TBD	TBD	26.0	5.0 to 15.0	2-inch PVC, 10 slot screen	
RW-1- 19	BLU433	238267.5298	1277864.232	29.5	14.5 to 29.5	4-inch PVC, 10 slot screen	
SG-1-19	BLT997	238192.1348	1277883.769	15.0	14.5 to 15.0	¹ / ₄ -in-dia silicone tubing, 6-inch-long stainless steel monitoring point	
SG-2-19	BLT998	238186.358	1277913.121	5.0	4.5 to 5.0	¹ ⁄ ₄ -in-dia silicone tubing, 6-inch-long stainless steel monitoring point	

EXHIBIT J-1: INSTALLATION PARAMETERS

NOTES:

Coordinates are reported in State Plane, Washington North, US Feet, North American Datum of 1983 Coordinates were collected via a WSDOT surveyor, except for wells MW-3-19 and MW-4-19, which were collected via Google Earth overlay.

Elevations are reported in North American Vertical Datum of 1988.

bgs = below ground surface; dia = diameter; Ecology = Washington State Department of Ecology; ID = identification; in = inch; PVC = polyvinyl chloride

Groundwater Monitoring Wells

The groundwater monitoring wells were constructed of 2-inch-diameter, Schedule 40 polyvinyl chloride (PVC), thread-coupled, flush-joint riser pipe, and a 0.010-inch Schedule 40 slotted screen (10-slot). The wells were constructed with 1 to 2 feet of screen above the anticipated groundwater table to evaluate if free petroleum hydrocarbon product/non-aqueous phase liquid has accumulated or pooled on the water table. The annulus between the boring wall and the well screen was backfilled with clean filter sand (U.S. No. 12-20) to 2 feet above the top of the screen. The remaining annular space was filled with bentonite chips (hydrated in place) to 2 feet bgs. Each well was completed with a concrete plug and a flush-mount, traffic-rated monument.

Product Recovery Well

The product recovery well (RW-1-19) was installed with the same parameters as the groundwater monitoring wells, except the pipe was 4-inch-diameter.

Soil Vapor Monitoring Points

Two vapor monitoring points were installed such that one vapor intake (SG-1-19) was placed just above the groundwater table, at approximately 15 feet bgs, and the other (SG-2-19) just below the paved surface at approximately 5 feet bgs. Soil vapor monitoring points were completed with:

- Vapor monitoring point of ¹/₄-inch-diameter, 6-inch-long, stainless steel point with inlet perforations resting at the bottom of the boring
- Filter pack of 12/20 silica sand to 1 to 2 feet above the vapor point
- Blank tubing of ¹/₄-inch-diameter silicone from the vapor point up to the monument
- Sealed with hydrated-in-place bentonite chips to 2 to 3 feet bgs
- Concrete plug to ground surface with flush-mount, traffic-rated monuments

Field Screening

Field screening of soil samples helped evaluate for the potential presence of contamination. Based on the source of contamination and previous investigations, the most likely locations to encounter contamination are at the water table interface, in the water table smear (fluctuation) zone, at fill/native soil contacts, and at pronounced changes in permeability. However, the location of contamination, if any, is site-dependent.

Field screening methods consisted of photoionization detector (PID) measurements, visual observations, and olfactory observations.

During screening, the following items were recorded: type of measurement/observation, depth, time of measurement or observation, possible source, and description of odor (petroleum, decaying organics, creosote, cedar, etc.).

Photoionization Detector (PID) Measurements

PID measurements were collected for each sonic core and split-spoon sample to screen for volatile organic vapors such as gasoline. Typically, decaying organics can elevate PID measurements, and diesel and oil can rarely be detected with the PID. PID measurements were obtained by passing the instrument directly over the soil.

Elevated PID measurements were recorded in the boring logs and detected at RW-1-19, SB-2-19, SB-5-10, SB-6-19, SB-7-19, SB-9-19, and MW-4-19.

Visual Observation

Visual observations of soil samples were recorded in the field logbook. Indications of contamination observed included:

- Blue discolorations and sheen in soil at RW-1-19 from ground surface to 17.5 feet bgs.
- Blue discolorations in soil at SB-7-19 from 8.5 to 11.5 feet bgs.
- Sheen on soil from SB-6-19 from 15 to 22 feet bgs.

Odors

Unusual odors were recorded when noted during sampling. Soil was not intentionally smelled for contamination. Petroleum odors were observed in soil from RW-1-19, SB-3-19, SB-6-19, SB-8-19, and MW-4-19, and groundwater from SB-3-19, MW-3-19, MW-4-19, and RW-1-19.

Sample Collection

Environmental samples were collected using disposable and non-disposable sampling equipment. New nitrile gloves were worn by the sample handler during collection of each sample. Nondisposable sampling equipment, including the split-spoon sampler, was decontaminated between sample locations to reduce potential for cross-contamination. Field notes documented site conditions and sample collection activities.

Samples collected for laboratory analysis were placed into pre-cleaned, laboratory-provided glassware and containerized sequentially, with the most volatile target analyte collected first. The preferred collection order for some of the more common analytes is (1) volatile organics and petroleum, (2) semi-volatile organics, and (3) metals. The sample container labels were completed using indelible ink. The samples were sealed in plastic bags and then placed into a cooler and maintained at 4 degrees Celsius (°C) ($+ 2^{\circ}$ C) with ice.

Soil Samples

Soil samples were collected at 5-foot intervals with an SPT split-spoon sampler. Soil samples were collected from each boring except SG-2-19, because it was terminated at 5 feet bgs and was adjacent to SG-1-19, which had soil samples collected.

When a soil sample was selected for chemical analysis, the soil sample was placed into laboratorysupplied glassware using disposable, stainless-steel spoons and disposable plastic syringes.

Reconnaissance Groundwater Samples

Groundwater samples were collected from temporary 1-inch-diameter PVC wells installed where groundwater was observed in the boreholes. A peristaltic pump and disposable tubing were used to pump water into laboratory-supplied glassware. Reconnaissance groundwater samples were not collected at boreholes where monitoring wells were installed. The temporary wells were removed following sampling, and each hole was backfilled in accordance with state regulations.

Soil Vapor Samples

Before sampling, at least two days elapsed following installation of the soil vapor monitoring point to allow for construction materials to cure and the subsurface to equilibrate.

To collect the soil vapor samples, the upper end of the tubing was connected to the purging and sampling system. A vacuum was placed on the system to check for leaks. The line was purged for one minute and then the sample was collected using a laboratory-supplied, stainless-steel canister (SUMMA canister). A flow controller was attached to the sample setup to regulate the flow of soil vapor into the sample container. Helium was used as a tracer gas to check for leakage in the system.

Groundwater Samples

The groundwater sampling event included (1) well development, (2) collecting depth to free product and groundwater, (3) measuring field water quality parameters during purging, (4) and collecting groundwater samples for laboratory analysis.

Well Development

The groundwater monitoring wells were developed by field personnel using a powered Waterra and surge block method. Development was completed no sooner than 24 hours after the new wells were installed. Before development, each well was evaluated for the presence of floating free product using an oil-water interface probe. No free product was observed.

Development included surging the screen in 0.5-foot intervals followed by pumping fines from the casing. Development was considered complete when sediments had been removed from the casing, and the groundwater removed from the well became clear or had stabilized. Groundwater quality parameters, including conductivity, pH, turbidity, and temperature, were measured periodically during development.

Product and Groundwater-Level Measurements

Prior to collecting initial groundwater samples, an oil-water interface probe was used to evaluate for the presence of free product. No free product was detected.

The depth to groundwater was measured using a water-level indicator.

Well Purging

Groundwater sampling included purging the well while collecting field groundwater parameter readings followed by the collection of samples into laboratory-supplied and appropriately preserved containers.

A peristaltic pump was fitted with disposable polyethylene and silicon (at the pump head and water quality instrument connections) tubing used to purge and sample each monitoring well. At each well location, the following activities were performed:

- Pumping rates were measured with a stopwatch and container of known volume to adjust the flow rate to between 150 milliliters per minute (mL/min) and 1 liter per minute (L/min). The water level was measured, and field parameters were recorded every three to five minutes. The pumping rate was adjusted to maintain a steady water level. If possible, a drawdown of 0.3 foot or less was maintained in the well, and the water level was maintained above the intake. The pumping rate was lowered to a minimum of 150 mL/min, if necessary, to maintain the desired drawdown.
- Field groundwater quality parameters, including pH, specific conductivity, temperature, dissolved oxygen (DO), Oxidation-Reduction Potential (ORP), turbidity as nephelometric turbidity units (NTU), salinity, and total dissolved solids (TDS), were measured approximately every three to five minutes during purging. Measurements will be recorded to the following standards:
 - pH to ± 0.01 pH units,
 - Specific conductivity to ± 0.01 siemens per centimeter,
 - Temperature to ± 0.1 °C,
 - DO to ± 0.01 milligrams per liter,
 - ORP to ± 0.1 millivolt,
 - Turbidity to ± 0.01 NTU, and
 - TDS to ± 0.001 gram per liter.

- Samples were collected following parameter stabilization. Stabilization occurs when three consecutive readings are within a specified tolerance from each other. The following criteria were evaluated for stabilization:
 - pH to ± 0.1 pH units,
 - Specific conductivity to $\pm 10\%$ (readings within 10% of each other),
 - Temperature to $\pm 10\%$,
 - DO to $\pm 10\%$, and
 - Turbidity to $\pm 10\%$.
- Well purging data was recorded on a Water Sampling Log.
- If the well yield was poor and the water level dropped to the level of the intake, the pump was stopped until the water level recovered to near the pre-pumping level. The process was then repeated until the field parameters stabilized. Measured water levels and pumping rate changes were recorded on a Water Sampling Log.

Well Sampling

Upon completion of purging and parameter stabilization, samples were collected from the discharge end of the pump tubing into the laboratory-supplied containers. If the pump rate at the end of well purging was at or below 0.5 L/min, the same pump rate was used during sample collection. If the pump rate at the end of well purging was greater than 0.5 L/min, the pump rate was reduced to 0.5 L/min during sample collection. Sample containers were filled in order from most to least volatile.

Volatile organic analyte (VOA) vials were filled by allowing the sample water to pour down the inside wall of the vials without splashing onto the base. VOAs were filled to eliminate headspace and the seal/lid was secured.

Analytical Methods

The soil and groundwater samples were submitted to Onsite Laboratories of Redmond, Washington. Soil vapor samples were submitted to Freidman & Bruya, Inc. of Seattle, Washington.

Soil Samples

Soil samples were analyzed for:

- Gasoline-range petroleum hydrocarbons using Washington State Department of Ecology's (Ecology's) Northwest Total Petroleum Hydrocarbon (NWTPH) Gasoline Extended (Gx) method.
- BTEX and naphthalene by U.S. Environmental Protection Agency (EPA) 8260 Method.
- Diesel and oil-range petroleum hydrocarbons using Ecology's NWTPH Diesel Extended (Dx) Method.
- Ethylene dibromide (EDB) and ethylene dichloride (EDC) by EPA 8260 Method.
- Resource Conservation Recovery Act (RCRA) Metals by EPA Method 6010.
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270 SIM.
- Total organic carbon by EPA 9060A method.

Soil at location RW-1-19 was observed to have a relatively higher level of contamination. Additional sample analyses were performed on the samples taken from just above the groundwater table to evaluate parameters important for the Voluntary Cleanup Program, the Site conceptual model, and remedial design, including:

- Hexane by EPA 8260 Method
- Extractable petroleum hydrocarbons (EPHs) by Ecology's NWTPH-EPH Method
- Volatile petroleum hydrocarbons (VPHs) by Ecology's NWTPH-VPH Method

Reconnaissance Groundwater Samples

The reconnaissance groundwater samples were submitted to the laboratory for analyses of the primary chemicals of concern:

- Gasoline-range petroleum hydrocarbons using Ecology's NWTPH-Gx Method
- BTEX and naphthalene by EPA 8260 Method

In addition, approximately half of the reconnaissance groundwater samples were submitted to the laboratory for analyses of potential chemicals of concern:

- Diesel and oil-range petroleum hydrocarbons using Ecology's NWTPH-Dx Method
- EDB and EDC by EPA 8260 Method
- Total and dissolved RCRA Metals by EPA Method 6010/7470
- cPAHs by EPA Method 8270 SIM

Groundwater Samples from Groundwater Monitoring Wells

Following development, groundwater samples were collected from each monitoring well:

- Gasoline-range petroleum hydrocarbons using Ecology's NWTPH-Gx Method
- BTEX and naphthalene by EPA 8260 Method
- Diesel and oil-range petroleum hydrocarbons using Ecology's NWTPH-Dx Method
- EDB and EDC by EPA 8260 Method
- Total and dissolved RCRA Metals by EPA Method 6010/7470
- cPAHs by EPA Method 8270 SIM

Due to very low groundwater production encountered at MW-5-20, groundwater was limited to the following analyses:

- Gasoline-range petroleum hydrocarbons using Ecology's NWTPH-Gx Method
- BTEX and naphthalene by EPA 8260 Method

Soil Vapor Samples

Soil vapor samples were submitted to the laboratory for analyses of the following chemicals using EPA TO-15 Method:

- Air-phase hydrocarbons
- BTEX
- Naphthalene

Field and Laboratory Quality Assurance/Quality Control (QA/QC)

Field and laboratory QA/QC protocols were established so that samples could be tracked from collection through analysis to evaluate the efficiency and reproducibility of sampling procedures. Standard procedures were used for sample labeling, chain-of-custody control, and sample transportation.

QA/QC samples were collected during the fieldwork to evaluate the reproducibility of the sampling technique and the subsequent laboratory analysis. These included field duplicate samples and trip blank samples. The laboratory tested the reproducibility of their results by using matrix spike/matrix spike duplicate samples.

Field Duplicate Samples

Field duplicate samples are a second sample collected from a location. These sample were submitted to the laboratory with a different, yet distinguishable sample number as a regular sample. They were analyzed for the same suite as the original sample to allow for evaluation of the reproducibility of the sampling technique and the subsequent laboratory analysis. The field team noted in the field log where duplicate samples were collected. Field duplicate samples are provided in the following exhibit.

Sample Type	First/Source Sample ID	Duplicate Sample with Distinct Sample ID
Reconnaissance Groundwater	SB-4-19	SB-100-19
Soil	SB-3-19:10.0	SB-101-19:10.0
Soil	SB-8-19:10.0	SB-102-19:10.0
Soil	SB-7-19:15.0	SB-102-19:15.0
Soil	SB-1-19:20.0	SB-103-19:20.0
Soil	MW-1-19:15.0	MW-100-19:15.0
Groundwater	MW-4 101719	DUP 101719

EXHIBIT J-2: DUPLICATE SAMPLE IDENTIFICATION

Trip Blank Samples

One trip blank was submitted with each cooler containing samples for volatile analytes (e.g., gasoline and BTEX). The trip blanks were provided by the laboratory as vials filled with deionized water. Selected trip blank samples were analyzed for BTEX and EDC by EPA 8260 Method. The analytes were not detected above the method reporting limit.

Temperature Blank Samples

Temperature blank samples are used to evaluate whether the samples have been maintained within the appropriate temperature range. The lab also used the trip blank samples as the temperature blank samples.

Decontamination Methods

The primary objective of the decontamination process was to reduce the potential for the accidental introduction of contaminants to non-contaminated areas or samples. Soil sampling equipment was cleaned prior to and at the completion of each sample as follows:

- Remove gross contamination and particulate matter.
- Wash thoroughly with AlconoxTM or similar non-phosphate detergent plus tap water or designated decontamination water supply source.
- Rinse equipment thoroughly with distilled or deionized water.

Investigation-Derived Waste (IDW)

Soil cuttings, decontamination water, and purge water were collected as IDW into steel 55-gallon drums. Samples were collected from the drums and analyzed for waste characterization purposes. The 2019 exploration drums were temporarily stored at the WSDOT State Route (SR) 520 Construction Project Office and have since been transferred to a certified disposal facility. Two drums (one soil and one water) of IDW generated during install of MW-5-20 (2020 exploration) are currently staged at the former Montlake Gas Station and are pending transfer to a certified disposal facility.

Miscellaneous IDW consisted of used personal protective equipment (PPE), disposable sampling equipment (spoons, tubing, etc.), and other wastes that originated from site activities. This IDW was placed in doubled, heavy-duty plastic bags. The waste PPE and disposable sampling equipment were disposed of in a dumpster at Shannon & Wilson's office.

Groundwater Flow Study

WSDOT surveyed the coordinates and elevation of each well. With the survey information and water level data, a potentiometric surface map was created for the Site to estimate groundwater flow direction(s). This was completed following groundwater sampling.

Hydraulic Conductivity Testing

Falling-head/rising-head slug tests were performed by a two-person crew at two monitoring wells to evaluate hydraulic conductivity. The results of the hydraulic conductivity testing were used for evaluation of remedial design options.

Falling-head slug tests involve rapidly raising the water level within the well and recording the water level as the well returns to equilibrium. Rising-head slug tests involve rapidly dropping the water level within the well and recording the water level recovery as the well returns to equilibrium. These tests can be accomplished by adding an object of known size to the well to raise the water level. Once equilibrium has returned, the object can be removed to drop the water level.

The slug tests included the following steps:

- 1. A pressure transducer was placed within the well and set at a sufficient depth to avoid interference with the slug once it was placed. The depth to water was recorded. The datalogger was set to record several readings per second for the first two minutes with gradually increasing reading intervals over time.
- 2. The falling-head test was initiated by rapidly lowering a slug consisting of a solid or sandfilled PVC pipe into the well and placing it below the water table. The water level rose as a result of this placement, and the transducer was allowed to record as the slug came into equilibrium with the water table.
- 3. Readings were collected until the water level had returned to equilibrium.
- 4. After a period of at least 24 hours, the datalogger was reset to record several readings per second for first two minutes with gradually increasing reading intervals over time. The slug was then pulled from the well, initiating the rising-head test.
- 5. Readings were collected until the water level returned to equilibrium.

Two tests were performed within wells RW-1-19 and MW-4-19. The resulting data was analyzed using a standard method such as Bouwer and Rice to estimate the hydraulic conductivity.

Exhibit J-3 Boring Logs (27 Sheets)

Shannon & Wilson, Inc. (S&W) uses a soil classification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on these three pages. Soil descriptions are based on visual-manual procedures (ASTM D 2488-93) unless otherwise noted.

S&W CLASSIFICATION OF SOIL CONSTITUENTS

MAJOR constituents compose more than 50 percent, by weight, of the soil. Major consituents are capitalized (e.g., SAND).

Minor constituents compose 12 to 50 percent of the soil and precede the major constituents (i.e., silty SAND). Minor constituents preceded by "slightly" compose 5 to 12 percent of the soil (e.g., slightly silty SAND).

Trace constituents compose 0 to 5 percent of the soil (e.g., slightly silty SAND, trace of gravel).

Clean is similar to trace but is used when the fines content is less than 5 percent of the soil (e.g. clean SAND).

(Xxxx) Primary geologic unit interpreted from soil samples.

STANDARD PENETRATION TEST (SPT) SPECIFICATIONS

Hammer:	140 pounds with a 30-inch free fall. Rope on 6- to 10-inch-dia. cathead 2-1/4 rope turns, > 100 rpm NOTE: If automatic hammers are used, blow counts shown on boring logs should be adjusted to account for higher efficiency of hammer.						
Sampler:	18- to 30-inches long Shoe ID = 1.375 inches Barrel ID = 1.5 inches Barrel OD = 2 inches						
N-Value:	Sum blow counts for second and third of three 6-inch increments. Refusal: 50 blows for 6 inches or less; 10 blows for 0 inches.						
NOTE: Penetration resistances (N-values) shown boring logs are as recorded in the field ar have not been corrected for hammer efficiency, overburden, or other factors.							
SAMPLES-COLUMN SYMBOLS							

SAMPLES-COLUMN SYMBOLS

 3" O.D. Split Spoon Sample

 Grab Sample

 3" O.D. Pitcher Sample

 3" O.D. Pitcher Sample

 Pressuremeter Test (f=failed)

 Soil Core or Sonic Core

 Standard Penetration Test

GRAIN SIZE DEFINITION

DESCRIPTION	SIEVE NUMBER AND/OR SIZE
FINES	< #200 (0.08 mm)
SAND* - Fine - Medium - Coarse	#200 to #40 (0.08 to 0.4 mm) #40 to #10 (0.4 to 2 mm) #10 to #4 (2 to 5 mm)
GRAVEL* - Fine - Coarse	#4 to 3/4 inch (5 to 19 mm) 3/4 to 3 inches (19 to 76 mm)
COBBLES	3 to 12 inches (76 to 305 mm)
BOULDERS	> 12 inches (305 mm)

* Unless otherwise noted, sand and gravel, when present, range from fine to coarse in grain size.

RELATIVE DENSITY / CONSISTENCY

COHESION	LESS SOILS	COHESIVE SOIL	S (FINE-GRAINED)
N, SPT, <u>BLOWS/FT.</u>	RELATIVE DENSITY	N, SPT, <u>BLOWS/FT.</u>	RELATIVE CONSISTENCY
0 - 4	Very loose	Under 2	Very soft
4 - 10	Loose	2 - 4	Soft
10 - 30	0 - 30 Medium dense		Medium stiff
30 - 50	Dense	8 - 15	Stiff
Over 50	Very dense	15 - 30	Very stiff
		Over 30	Hard

WELL AND OTHER SYMBOLS

GROUNDWATER SYMBOLS

- ☑ Groundwater Level at Time of Drilling
- Groundwater Level in Well

Montlake Gas Station VCP Remedial Investigation Report Seattle, Washington

SOIL CLASSIFICATION AND LOG KEY

March 2020

21-1-22242-104

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants EXHIBIT J-3 Sheet 1 of 3

UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) (From USACE Tech Memo 3-357)								
MAJOR DIVISIONS				GRAPHIC IBOL	TYPICAL DESCRIPTION			
		Clean Gravels	GW		Well-graded gravels, gravels, gravel/sand mixtures, little or no fines			
	Gravels (more than 50%	(less than 5% fines)	GP		Poorly graded gravels, gravel-sand mixtures, little or no fines			
	of coarse fraction retained on No. 4 sieve)	Gravels with Fines	GM		Silty gravels, gravel-sand-silt mixtures			
COARSE- GRAINED SOILS		(more than 12% fines)	GC		Clayey gravels, gravel-sand-clay mixtures			
(more than 50% retained on No. 200 sieve)	Sands (50% or more of coarse fraction passes the No. 4 sieve)	Clean Sands	sw		Well-graded sands, gravelly sands, little or no fines			
		(less than 5% fines)	SP		Poorly graded sand, gravelly sands, little or no fines			
		Sands with Fines (more than 12% fines)	SM		Silty sands, sand-silt mixtures			
			SC		Clayey sands, sand-clay mixtures			
FINE-GRAINED SOILS (50% or more passes the No. 200 sieve)	Silts and Clays (liquid limit less than 50)	Incomenia	ML		Inorganic silts of low to medium plasticity, rock flour, sandy silts, gravelly silts, or clayey silts with slight plasticity			
		inorganic	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays			
		Organic	OL		Organic silts and organic silty clays of low plasticity			
	Silts and Clays (liquid limit 50 or more)	Inconceio	мн		Inorganic silts, micaceous or diatomaceous fine sands or silty soils, elastic silt			
		morganic	СН		Inorganic clays or medium to high plasticity, sandy fat clay, or gravelly fat clay			
		Organic	он		Organic clays of medium to high plasticity, organic silts			
HIGHLY- ORGANIC SOILS	Primarily organic matter, dark in color, and organic odor		PT		Peat, humus, swamp soils with high organic content (see ASTM D 4427)			

NOTE: No. 4 size = 5 mm; No. 200 size = 0.075 mm

<u>NOTES</u>

- 1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, slightly silty fine SAND) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.
- Borderline symbols (symbols separated by a slash, i.e., CL/ML, silty CLAY/clayey SILT; GW/SW, sandy GRAVEL/gravelly SAND) indicate that the soil may fall into one of two possible basic groups.

Montlake Gas Station VCP Remedial Investigation Report Seattle, Washington

SOIL CLASSIFICATION AND LOG KEY

March 2020

21-1-22242-104

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants EXHIBIT J-3 Sheet 2 of 3

OTHER GEOLOGIC TERMS AND DEFINITIONS

STRUCTURE	CRITERIA	MC CO		CRITERIA
Parting	< 1/16" (1.6 mm) thickness	Drv	v	Absence of Moisture, dusty, dry to
Seam	1/16" - 1/2" (1.6 to 12.7 mm) thickness	,)	the touch
Layer	> 1/2" (12.7 mm) thickness	Мо	oist	Damp, but no visible water
Lamination	< 1/4" (6 mm) thick, typically alternating soils or colors	We	et	Visible free water, usually from below water table
Pocket	Irregular, discontinuous zone	Г		
Clast	An individual soil fragment			ACRONYMNS AND
Bedded	Arranged in layers; stratified			ABBREVIATIONS
Interbedded	Alternating layers of different soils		*	Sample Not Recovered
Lensed	Small lenticular pockets of different soil types		ATD	At Time of Drilling
Fractured	Breaks easily along definite planes		С	Corrosion and/or Cation Exchange Tes
Slickensided	Polished, glossy, striated, fractured planes		CDF	Controlled Density Fill
Diced	Breaks into 1/4" or smaller orthogonal pieces		DM	Dames & Moore Sampler
Blocky	Breaks into orthogonal pieces larger than 1/4"		dia.	Diameter
Hackly	Uneven, jagged, angular texture		E	Environmental Sample
Sheared	Disturbed texture, mix of strengths		Elev.	Elevation
Diamict	Nonsorted, coarse grains in a fine matrix		ft L E O	Feet
Homogeneous	Uniform color, grain-size, and appearance		FeO	Iron Oxide
Mottled	Irregular patches of different color or texture			Magnesium Oxide
Weathered	Alteration of soil (e.g. discoloration, softening,			Inside Diameter
	or pitting of grains) by exposure to the		in	Inches
	atmosphere		lbs	Pounds
Contorted	Twisted, distorted		LL	Liquid Limit
Bioturbated	Disturbance or mixing by plants or animals		Mon.	Monument Cover
Dilatant	Water appears quickly on the surface during		N	Blows for 2nd & 3rd 6-inch Increments
	snaking and disappears quickly upon squeezing		NA	Not Applicable or Not Available
ODCANICS			NP	Nonplastic
URGANICS			OD	Outside Diameter
	0 - 5 percent by volume		OW	Observation Well
Scattered	5 - 15 percent by volume		PID	Photo-ionization Detector
Abundant	15 - 30 percent by volume			Plasticity Index
Organic	30 - 50 percent by volume			Plastic Limit
Peat/Wood	> 50 percent by volume			Pressuremeter Test Parts per Million
Fibric	Peat with >67% fibers		PVC	Polyvinyl Chloride
Hemic	Peat with >33% and <67% fibers		RS	Ring Shear Test
Sapric	Peat with <33% fibers		SS	Split Spoon Sampler
PARTICLE SHAPE	CRITERIA		SPT	Standard Penetration Test
Angular	Sharp edges and uppolished plane surfaces		TW	Thin-Walled Tube Sampler
Subangular	Similar to angular but with rounded edges		USCS	Unified Soil Classification System
Subrounded	Nearly plane sides with well-rounded edges		VWP	Vibrating Wire Piezometer
Bounded	Smoothly outried sides and the addres		WC	Water Content
Rounded	Smoothly curved sides and no edges		WLI	Water Level Indicator
	Particles with width/thickness ratio > 3		WOH	Weight of Hammer
Elongated	Particles with length/width ratio < 3		WOR	
	CRITERIA			Montlake Gas Station VCP
vveii-Graded	run range and even distribution of grain sizes present			Remedial Investigation Report Seattle, Washington
Poorly Graded	Narrow range of grain sizes present			
Uniformly Graded	Consists predominantly of one grain size			
Gap-Graded	Within the range of grain sizes present, one or more sizes are missing			SOIL CLASSIFICATION AND LOG KEY
			March	2020 21-1-22242-10

21-1-22242-104

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

EXHIBIT J-3 Sheet 3 of 3

Total Depth: 30.3 ft. Northing: 238,210 Top Elevation: 59.4 ft. Easting: 1,277,928 Vert. Datum: NAVD 88 Station:	ft. 8 ft.	Drillir Drillir Drill I Othe	ng M ng C Rig I r Co	lethod compa Equipr ommer	: ny: nent: nts:	Rote Hole Geo	osonic ocene l oprobe	& HQ3 Drilling 8140LC	Hole Diam.: Rod Diam.: Hammer Type Hammer ER:	6 in. 4-inch e: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground-	water	Depth, ft.	PENETRAT ▲ Hammer	TION RESIST Wt. & Drop: <u>1</u> 20	ANCE (blows/foot) 40 lbs / 30 inches 40 60
Asphalt. Brown, sandy SILT, trace of gravel; moist; slight iron-oxide staining, description based on limited grab sample from vac sidewall; (Hf) ML.	- 0.7		0	s-1 G	\$					
 Air vac clearance to 5 feet. Soft, brown and green-gray, slightly sandy SILT, trace of fine gravel; moist; scattered dark brown soil pockets, 1/2-inch-thick sandy layer with strong iron-oxide staining; (Qvrl) ML. Very stiff, marbled gray and brown and mottled, silty CLAY, trace of sand; moist; laminated, trace fine sand and silt seams, trace fine dark brown organics and fine roots, scattered iron-oxide staining; (Qvrl) 	- 5.0		0.1				5			
Medium dense, brown, slightly silty SAND, trace of gravel; moist to wet; (Qvat) SP-SM. Medium dense to dense, brown, slightly gravelly, silty SAND; moist to wet; (Qvat) SM.	- 11.5		0.1		H011712019 1€		15			
NOTES NOTES NOTES Refer to SOIL CLASSIFICATION AND LOG KEY for explanation of symbols, codes, abbreviations and definitions. Groundwater level, if indicated above, is for the date specified and may vary. Groundwater level is the highest available measurement to date. Groundwater plots contain complete data sets. USCS designation is based on visual-manual classification and selected lab						2	2625	0 Montlake Remedial I East Montlak	20 ♦ % Fines (<0.1 ● Natural Wate Gas Station Novestigation Filter Place East	40 60 075mm) er Content VCP Report c, Seattle, WA
4. Hammer ER = hammer energy ratio (efficiency) as a percentage.				M: SI Ge	arch 2	2020 NON & WILL cal and Environment	2 ² SON, INC. al Consultants	1-1-22242-104 Sheet 1 of 2		

SR520_MASTER_LOG_E_2019_21-22242.GPJ_SHAN_WIL.GDT 3/10/20 Log: RBP_Rev: SAW_Typ: LKN

3
SOIL DESCRIPTION ####################################	Total Depth: 30.3 ft. Northing: 238,210 ft. Top Elevation: 59.4 ft. Easting: 1,277,928 ft. Vert. Datum: NAVD 88 Station:	Drillin Drillin Drill R Other	ig Me ig Co Rig E Cor	ethod: ompar quipm	ny: nent: ts:	Roto Holo Geoj	osonic icene L probe	& HQ3 Drilling 8140LC	Hole Diam.: Rod Diam.: Hammer Typ Hammer ER:	6 in. 4-inch e: Automatic
Very dense, gray, fine sily SAND; moist to wet: scattered laminated silt layers; (Ovd) SM. 22.5 0<	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft. Symbol	PID, ppm	Samples	Ground-	water	Depth, ft.	PENETRAT ▲ Hammer	TION RESIST Wt. & Drop: <u>1</u> 20	ANCE (blows/foot) 40 lbs / 30 inches 40 60
Very derise, gray, signing graveliny, sing SAND; moist; slight diamict texture; (Opgt) SM. BOTTOM OF BORING COMPLETED 9/24/2019 30.3 BOTTOM OF BORING COMPLETED 9/24/2019 30.3 BOTTOM OF BORING COMPLETED 9/24/2019 30.3 0 20 40 0 20 40 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 20 50 60 0 20 20 20 20 1 1	Very dense, gray, fine silty SAND; moist to wet; scattered laminated silt layers; (Qvd) SM.	2.5	0.1 s 0 s				25			
35 36 0 20 40 60 0 % Fines (<0.075mm)	Very dense, gray, slightly gravelly, silty SAND; moist; slight diamict texture; (Qpgt) SM. BOTTOM OF BORING COMPLETED 9/24/2019	0.3	0 F 0 S	3-7 _ E			30			50/4°
0 20 40 60 0 % Fines (<0.075mm) Natural Water Content 0 % Fines (<0.075mm) Natural Water Content 1 Refer to SOIL CLASSIFICATION AND LOG KEY for explanation of symbols, codes, abbreviations and definitions. Montlake Gas Station VCP 2 Groundwater level, if indicated above, is for the date specified and may vary. Groundwater level is the highest available measurement to date. Groundwater plots contain complete data sets. Montlake Place East, Seattle, WA 3 USCS designation is based on visual-manual classification and selected lab testing. LOG OF BORING MW-1-19 4 Hammer ER = hammer energy ratio (efficiency) as a percentage. March 2020 21-1-22242-104							35			
March 2020 21-1-22242-104	NOTES 1. Refer to SOIL CLASSIFICATION AND LOG KEY for explan codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date specif Groundwater level is the highest available measurement to plots contain complete data sets. 3. USCS designation is based on visual-manual classification testing. 4. Hammer ER = hammer energy ratio (efficiency) as a perce	ination of sy fied and ma o date. Gro n and select	/mbo ay va undw	ls, ry. /ater		2	625 I	Montlake Remedial II East Montlake	20 ♦ % Fines (<0. ● Natural Wate Gas Station * nvestigation F ace Place East ORING M	40 60 075mm) 60 or Content 60 VCP 60 Report 60 x, Seattle, WA 60
	nammer Ert - nammer energy ratio (eniciency) as a perce	anaye.				Ma SH	arch 2	2020	2 [.] SON, INC.	1-1-22242-104

	Total Depth: 21.4 ft. Northing: 238,166 i. Top Elevation: 58.9 ft. Easting: 1,277,766 Vert. Datum: NAVD 88 Station:	ft	Drillir Drillir Drill F Othe	ng M ng Co Rig E r Coi	ethod: ompany Equipme mments	/: ent: s:	Roto Holo Geop	sonic cene l probe	& HQ3 Drilling 8140LC	Hole Diam.: Rod Diam.: Hammer Type Hammer ER:	4 e:Aut	6 in. -inch tomatic
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground-	water	Depth, ft.	PENETRA [™] ▲ Hammer	FION RESIST/ Wt. & Drop: <u>1</u>	ANCE 40 lbs / 3 40	(blows/foot) 8 <u>0 inches</u> 60
	Asphalt. Brown, slightly gravelly, sandy SILT to slightly gravelly, silty SAND mixed with silty CLAY; moist; clay clasts and pockets, description based on limited grab sample from vac sidewall; (Hf) ML/SM.	0.7		0.3	s-1G	x + x + x + x + x + x + x + x + x + x +	**************					
	- Air vac clearance to 5.5 feet. Loose, brown, slightly gravelly, silty SAND; moist; (Hf) SM. Loose, red-brown, slightly gravelly, sandy SILT; moist; (Hf) ML.	5.5 6.0 8.0	····	0.3	s-2			5				
	Dense, gray-brown, gravelly, silty SAND, trace of clay; moist; trace clay pockets; (Hf) SM. Dense, gray-brown, gravelly, silty SAND; moist to wet; slight diamict texture; (Qvat) SM.	9.5		0.3				10				
Rev: SAW Typ: LKN	Very dense, gray-brown, silty fine SAND to fine sandy SILT; moist to wet; 3-inch-thick laminated silty clay pockets around 16.5 feet; (Qvd) SM/ML.	15.0		0.3	^{R-2} √√√√ ^{K-4} √√			15				63.
0/20 Log: RBP	Very dense, gray, gravelly, silty SAND; moist; diamict; (Qpgt) SM.	17.5		0.3	₹-3							
SHAN_WIL.GDT 3/1	CONTINUED NEXT SHEET								0	20 ♦ % Fines (<0.0 ● Natural Wate	40 075mm) er Conten	60 It
2019 21-22242.GPJ	 Refer to SOIL CLASSIFICATION AND LOG KEY for exceeded, abbreviations and definitions. Groundwater level, if indicated above, is for the date spectrometer level is the highest available measurement plots contain complete data sets. USCS designation is based on viewal manual classifierd. 	planation ecified t to dat	on of sy and ma e. Gro	ymbo ay va oundv	ols, ry. vater		2	625	Montlake Remedial I East Montlal	Gas Station ' nvestigation F ke Place East	VCP Report , Seattle	e, WA
MASTER LOG E	 4. Hammer ER = hammer energy ratio (efficiency) as a pe 	rcentaç	je.		ม		Ма	LC arch 2	DG OF B 2020	ORING M	W-2- '	19 42-104
SR520							SH Geot	IANI technic	NON & WIL al and Environmen	SON, INC. tal Consultants	Shee	et 1 of 2 BEV 3

Total Depth: 25 ft. Northing: 238,312 ft. Top Elevation: 59.3 ft. Easting: 1,277,743 ft. Vert. Datum: NAVD 88 Station:	Drilling Method: Drilling Company: Drill Rig Equipment Other Comments:			/: _ ent: _ s: _	Rotosoni Holocene Geoprob	c & HQ3 Drilling e 8140LC	Hole Diam.: Rod Diam.: Hammer Typ Hammer ER:	6 in. 4-inch e: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground-	water Depth, ft.	PENETRA ▲ Hammer	TION RESIST Wt. & Drop: <u>1</u> 20	ANCE (blows/foot) 140 lbs / 30 inches 40 60
This boring colocated at boring H-7-17 (Installed by Innovex Environmental Management, Inc. 10/24/2017) and reemed out for monitoring well installation.						5		
					1	5		
				10/17/2019				
NOTES						U	20 ♦ % Fines (<0. ● Natural Wat	40 60 .075mm) ter Content
1. Refer to SOIL CLASSIFICATION AND LOG KEY for explana codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date specific Groundwater level is the highest available measurement to o plots contain complete data sets. 3. USCS designation is based on visual-manual classification a testing. 4. Hammer ER = hammer energy ratio (efficiency) as a percent	ation of ed and n date. Gr and sele tage.	symbo nay va roundv	ols, iry. water ab		2625 L	Montlake Remedial East Montla	e Gas Station Investigation I ke Place Eas ORING N	VCP Report t, Seattle, WA IW-3-19
				_	March SHAN Geotechr	NON & WIL	2 SON, INC. Ital Consultants	1-1-22242-104 Sheet 1 of 2

	Total Depth: 25.3 ft. Northing: 2 Top Elevation: 59 ft. Easting: 1, Vert. Datum: NAVD 88 Station:	238,253 ft. 277,930 ft.	Drillin Drillin Drill F Other	ig M ig Ci Rig E r Col	leth omp Equi mm	od: pany: ipmen ients:	 t:	Rotosonic & lolt Servic Geoprobe &	& HQ3 es 3140LC	Hole Diam.: Rod Diam.: Hammer Type Hammer ER:	7 	' in. inch omatic
	SOIL DESCRIPTION Refer to the report text for a proper understanding o subsurface materials and drilling methods. The stratification lines represent the approximate bound between material types, and the transition may be grad	f the the aries adual.	Symbol	PID, ppm	Samnlac	00110	Ground- water	Depth, ft.	PENETRAT Hammer	TION RESIST/ Wt. & Drop: <u>1</u>	ANCE (40 lbs / 30 40	blows/foot) <u>0 inches</u> 60
-	Asphalt. Very loose, gray-brown, gravelly, silty SAND; moist; (Hf) SM.	0.7		ļ	S-1 (xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx					
	- Air vac clearance to 5 feet.			0	S-2			5	•			
	 2-inch-thick organic and wood layer at 7.5 feet. 	t 10.0			R-1			10				
	Soft to medium stiff, gray, slightly fine sandy CLAY; moist; sulfur-like odor; (Hf CL.)		0.8	S-3							
	Loose to medium dense, gray-brown to gray, slightly gravelly, silty SAND, trace clay; moist to wet; scattered wet sand seams, scattered diamict pockets; (Qva	of t)			R-2							
og: JXS Rev: SAW Typ:	Medium dense to dense, gray-brown to gray, slightly gravelly, silty SAND, trace clay to slightly gravelly, sandy SILT, trace of clay; moist; scattered sand seams, scattered diamict pockets; (Qvat) SM/M - Strong petroleum odor at 16 feet.	15.0 of ce L.		257	S-4 R-3			15				
GDT 3/10/20 Lo	CONTINUED NEXT SHEET								0	20	40	60
42.GPJ SHAN_WIL.	NOTES 1. Refer to SOIL CLASSIFICATION AND LOG KEY codes, abbreviations and definitions	Y for explanation	on of sy	/mbc	ols,		–		Montlake	Sas Station	VCP	:
E_2019_21-2224	 Groundwater level, if indicated above, is for the of Groundwater level is the highest available meas plots contain complete data sets. USCS designation is based on visual-manual cla 	date specified urement to dat	and ma e. Gro	ay va undv ted la	ary. wate ab	er		2625 E	Remedial II East Montlak	nvestigation F e Place East	Report , Seattle	e, WA
ASTER LOG F	testing. 4. Hammer ER = hammer energy ratio (efficiency)	as a percentaç	ge.					LC March 2	DG OF B (2020	ORING M	W-4-1	19 12-104
SR520_M								SHANN Geotechnica	ION & WIL	SON, INC. al Consultants	Shee	t 1 of 2

Total Depth:25.3 ft.Top Elevation:59 ft.Vert. Datum:NAVD 88Horiz. Datum:NAD 83	Northing: 238,250 Easting: 1,277,93 Station:	3 ft. 30 ft.	Drillir Drillir Drill F Othe	ng Me ng Co Rig E r Cor	ethod: ompany iquipme mments	<u></u>	osonic t Servic oprobe	& HQ es 8140L	3 _C		 	Hole Rod Ham Ham	Dia Dia mei mei	am.: m.: r Typ r ER		A	7 in 4-ine utom	n. ch natic	
SOIL DESCI Refer to the report text for a pro- subsurface materials and or stratification lines represent the between material types, and the	RIPTION oper understanding of the drilling methods. The e approximate boundaries transition may be gradual	Depth, ft.	Symbol	PID, ppm	Samples	Ground- water	Depth, ft.	PE ▲	NE Har	TR/ nme	ATI er W	ON /t. & 20	RES Dro	SIST	AN 140	CE /////////	(blo <u>30 i</u>	ows inch	/ foot) <u>es</u> 60
	transition may be gradual.																	::	
- Faint petroleum odor	at 21.5 feet.			3.3 S	8-5														
Very dense, gray, trace slightly fine sandy SILT; (Qpgt) SM.	to slightly gravelly, moist; diamict;	- 23.0					25												
BOTTOM OF COMPLETED	BORING 8/24/2019	[]] 25.3	<u>k . </u>	0.5 8	5-6 <u></u> E		20											5	014
							30												
							35												
								0			2 0	20 % F Na	-ines tura	s (<0 I Wa	.075 ter C	l0 mm) conte	nt		60
 Refer to SOIL CLASSIFICA codes, abbreviations and de Groundwater level, if indicate Groundwater level is the high 	NOTES FION AND LOG KEY for e finitions. ed above, is for the date s nest available measureme	explanation pecified ent to date	on of sy and ma te. Gro	ymbo ay vai oundw	ls, ry. vater		2625	N Re East	lon me Ma	tlak dia ontl	ke G I Inv ake	Bas vest Pla	Sta igat ice	tion tion Eas	VC Rep t, S	P port eatt	le, '	WA	
plots contain complete data3. USCS designation is based testing.4. Hammer ER = hammer energy	sets. on visual-manual classific gy ratio (efficiency) as a p	ation an	d selec ge.	ted la	ab		LC	DG	0	FI	BC	RI	NC	g n	1W	-4-	-19)	
						М	arch 2	2020)					2	1-1	-222	242	-10	4
						S Ge		NON al and	8 Envi	WI ronm	LS ental	ON, Consi	IN ultant	C.		She	et 2	2 of	2

	Total Depth: 25.5 ft. Northing: ~ 238,715 Top Elevation: ~ 43 ft. Easting: ~ 1,277,690 Vert. Datum: NAVD 88 Station:	ft D ft	Drillir Drillir Drill F Othe	ng M ng C Rig E r Co	lethod: ompan Equipm mment	y: ient: s:	Rotos Holoc Geop	sonic cene L probe	& HQ3 Drilling 8140LC	Hole Diam.: Rod Diam.: Hammer Type Hammer ER:	e:	6 in. 4-inch utomatic
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground-	water	Depth, ft.	PENETRA ⁻ ▲ Hammer	TION RESISTA Wt. & Drop: <u>1</u> 20	ANCE <u>40 lbs /</u> 40	(blows/foot) <u>30 inches</u> 60
	Concrete.		A A A A			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	Gray, crushed gravel; moist; base course,	0.9										
	observation of the vac sidewall; (Hf) GP.	2.0										
	Brown, SAND; moist; base course; (Hf)	3.0		0	s-1G		×					
	Very dense, brown to gray-brown, slightly gravelly, silty SAND: moist: (Opot) SM											
	- Air vac clearance to 5 feet.			0.2	s-2			5				50/3"
					Š							
	Very dense, gray-brown, gravelly, silty SAND; moist; diamict; (Qgpt) SM.	7.0		0.3	R-1							
					Ś							
					S							
				0.3	s-3			10				50/5"
					S							
				0.2	R-2	▼						
					Ş	/29/202(
KN					Ś							
V Typ: L				0.3	s-4			15				50/5"
ev: SAM					S							
XS R				0.3	R-3							
(r :boJ					Ś							
0/20					S							
DT 3/10	CONTINUED NEXT SHEET						~~~		0	20	40	60
HAN_WIL.G										 % Fines (<0.) Natural Wate 	075mm) er Conte	ent
GPJ SF	NOTES 1. Refer to SOIL CLASSIFICATION AND LOG KEY for exit	olanatio	on of sy	ymbo	ols.	Г			Montlake	Gas Station	VCP	
1-22242.	codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date spe	cified	and ma	ay va	ary.		26	3251	Remedial I	nvestigation F	Report	le WA
2019 2	Groundwater level is the highest available measuremen plots contain complete data sets. 3. USCS designation is based on visual-manual classificat	t to dat	e. Gro	ted I	water ab	┝	20	JE J		CT IDUE LASI	, Je ail	
LOGE	 4. Hammer ER = hammer energy ratio (efficiency) as a period. 	rcentar			~~			LC	og of B		W-5	-20
ASTER		201100					Ма	rch 2	2020	2	1-1-222	242-104
R520 N							SH Geot		NON & WIL	SON, INC. tal Consultants	She	et 1 of 2
0)												REV 3

	Total Depth: 60.4 ft. Northing: Top Elevation: 60.2 ft. Easting: Vert. Datum: NAVD 88 Station: Horiz. Datum: NAD 83 Offset:	238,268 ft. 1,277,864 ft.	Drilli Drilli Drill Othe	ng M ng Co Rig E er Cor	ethod: ompany: Equipment mments:	Roto Holo :: Geop	sonic cene L probe	& HQ3 Drilling 8140LC	Hole Diam.: Rod Diam.: Hammer Type Hammer ER:	4 e:	6 in. I-inch tomatic
	SOIL DESCRIPTION Refer to the report text for a proper understandin subsurface materials and drilling methods. stratification lines represent the approximate bou between material types, and the transition may be	g of the The Indaries gradual.	Symbol	PID, ppm	Samples	Ground- water	Depth, ft.	PENETRAT ▲ Hammer	TION RESIST/ Wt. & Drop: <u>1</u> 20	ANCE 40 lbs / 3 40	(blows/foot) <u>30 inches</u> 60
	Asphalt. Loose, gray and brown mottled, slight gravelly, sandy SILT, trace of clay an cobbles; moist; strong petroleum odo ML.	ily 0.7 d r; (Hf)				*****					
	 Air vac clearance to 5 feet. Color changed to blue-gray at aroun feet. 	nd 5		56.1 S	s-1		5				
-	 Concrete piece and wood debris at feet. Medium dense, blue-gray, trace to slig gravellly, silty SAND; moist, wet below feet; strong petroleum odor; (Qvat) Slight Strong p	11.9 12.0 ghtly v 15 M.		92 S	5-2 7-2		10				
ev: SAW Typ: LKI	- Sheen observed at about 15 feet.			1070			15				
0/20 Log: RBP F	Medium dense to dense, gray, silty, gravelly SAND; moist to wet; strong petroleum odor; (Qvat) SM.	17.5	5	1000 F	R-3						
SHAN_WIL.GDT 3/1	CONTINUED NEXT SHEET							0	20 ♦ % Fines (<0.0 ● Natural Wate	40 075mm) er Conter	60 nt
019 21-22242.GPJ	 Refer to SOIL CLASSIFICATION AND LOG I codes, abbreviations and definitions. Groundwater level, if indicated above, is for th Groundwater level is the highest available me plots contain complete data sets. 	KEY for explanat ne date specified easurement to da	tion of s d and m ate. Gro	symbo ay va oundv	ols, ry. vater	2	625	Montlake Remedial I East Montlak	Gas Station ' nvestigation F ke Place East	VCP Report , Seattl	e, WA
STER_LOG_E_20	 USCS designation is based on visual-manual testing. Hammer ER = hammer energy ratio (efficience) 	l classification ar cy) as a percenta	nd seleo age.	cted la	ab	Ma	LC arch (DG OF B		W-1- '	19 42-104
SR520_MAS						SH		NON & WIL	SON, INC. tal Consultants	Shee	et 1 of 4

	Total Depth: 60.4 ft. Northing: 238,2 Top Elevation: 60.2 ft. Easting: 1,277, Vert. Datum: NAVD 88 Station:	268 ft. 864 ft.	Drillin Drillin Drill I Othe	ng Mi ng Co Rig E r Cor	ethod: ompany quipme mments	 ent:	Rotosonic d Holocene E Geoprobe 8	& HQ3 Drilling 8140LC	Hole Diam.: Rod Diam.: Hammer Typ Hammer ER:	6 ir 4-in e: Auton	n. ch natic
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradue	Depth, ft.	Symbol	PID, ppm	Samples	Ground- water	Depth, ft.	PENETRA [™] ▲ Hammer	TION RESIST Wt. & Drop: <u>1</u> 20	ANCE (ы 40 lbs / 30 40	ows/foot) i <u>nches</u> 60
	Medium dense to dense, gray, slightly gravelly, sandy SILT to slightly gravelly, silty SAND; moist to wet; petroleum odor; (Qvat) ML/SM. Dense, gray, slightly gravelly, silty SAND; wet; scattered sand seams and silt pockets, strong petroleum odor; (Qvat) SM Dense, gray, slightly gravelly, silty SAND to slightly gravelly, slightly silty SAND; wet; scattered sand seams, strong petroleum odor; (Qvd) SM/SP-SM. - Fine to coarse sand with strong	22.0		68 5			25				84
	Very dense, gray, slightly gravelly, silty SAND; moist; diamict; (Qpgt) SM.	28.0		25	₹-5						
)/20 Log: RBP Rev: SAW Typ: LKN	- Increased silt content between 35 and 40 feet.			0.1 F	3-7 		30				50/4*
DT 3/10	CONTINUED NEXT SHEET	I		1			~	0	20	40	60
J SHAN WIL.G	<u>NOTES</u>					_			 ◇ % Fines (<0. ● Natural Wate 	075mm) er Content	
21-22242.GP	 Refer to SOIL CLASSIFICATION AND LOG KEY for codes, abbreviations and definitions. Groundwater level, if indicated above, is for the date groundwater level is the biohest available measurer 	specified	on of s and mate. Gro	ymbo ay va	ıls, ry. vater		2625 8	Montlake Remedial I East Montlal	Gas Station nvestigation f ce Place East	VCP Report , Seattle,	WA
ER_LOG_E_2019	 a) USCS designation is based on visual-manual classific testing. 4. Hammer ER = hammer energy ratio (efficiency) as a 	fication an	d selec ge.	ted la	ab		LC	DG OF B	ORING R	W-1-19)
0_MAST							March 2	2020	2' SON INC	1-1-22242	-104
SR52							Geotechnica	al and Environmen	tal Consultants	Sheet	2 OT 4

	Total Depth:60.4 ft.NoTop Elevation:60.2 ft.EaVert. Datum:NAVD 88StaHoriz. Datum:NAD 83Off	rthing: <u>238,268</u> sting: <u>1,277,864</u> ttion: set:	ft. 4 ft	Drillin Drillin Drill Othe	ng M ng C Rig I r Co	leth orr Equ	hod: npany uipme ments	<u>Ro</u> ent: <u></u> Ge S:	tosonic locene L oprobe	& HQ3 Drilling 8140LC	Hole Diar Rod Dian Hammer Hammer	m.: n.: Type: ER:	6 in. 4-inch Automa	<u>tic</u>
	SOIL DESCRIPTIO Refer to the report text for a proper und subsurface materials and drilling m stratification lines represent the approxi-	N lerstanding of the lethods. The imate boundaries	Depth, ft.	Symbol	PID, ppm	-	Samples	Ground- water	Depth, ft.	PENETRA ▲ Hammer	TION RES Wt. & Drop	ISTANC 5: <u>140 lb</u> :	E (blo v s / 30 in	vs/foot) <u>ches</u>
┢	between material types, and the transition	on may be gradual.			0.3	5-8	₹⊧				20	40		50/3"
					0.4	R-8			•					
	Very dense, gray, slightly sand trace of gravel and cobbles; m scattered sand seams and silt slight diamict texture; (Qpgt) N	dy, SILT, ioist; partings, 1L.	- 45.0	<u></u>	0.2	S-9 R-9			45					50/5
.KN	- Cobbles from 50 to 55 feet.				0.1S	-10 -10			50					50/5"
)/20 Log: RBP Rev: SAW Typ: 1	Very dense, gray, trace to slig silty SAND; moist; scattered w slight diamict texture; (Qpgt) S	htly gravelly, ret seams, M.	- 55.0		0 S	2-11			55					50/3*2
DT 3/1(CONTINUED NEXT S	SHEET		ka *_ a*ka		1				0	20	40		60
PJ SHAN WIL.G		NOTES									◇ % Fines● Natural	(<0.075m Water Co	m) ntent	
019 21-22242.G	 Refer to SOIL CLASSIFICATION All codes, abbreviations and definitions Groundwater level, if indicated abov Groundwater level is the highest ava plots contain complete data sets. 	ND LOG KEY for ex e, is for the date sp illable measuremer	cplanation ecified Int to dat	on of s and m æ. Gro	ymbo ay va bundv	ols, ary. wat	ter		2625	Montlake Remedial I East Montla	Gas Stat nvestigati ke Place E	ion VCP on Repo East, Sea	ort attle, V	/A
STER_LOG_E_2(USCS designation is based on visua testing. Hammer ER = hammer energy ratio 	al-manual classifica (efficiency) as a pe	tion and ercentaç	d selec ge.	ted I	ab			LC	DG OF B	ORING	3 RW-	1-19	104
SR520_MAS								S	HANN	NON & WIL	SON, INC	2. s	heet 3	of 4

SOIL DESCRIPTION	ъ, т		Hammer ER:	e: <u>Automatic</u>
subsurface materials and drilling methods. The to be the approximate boundaries between material types, and the transition may be gradual	Groun water Depth,	PENETRA ▲ Hammer	TION RESIST • Wt. & Drop: <u>1</u> 20	ANCE (blows/foot) 40 lbs / 30 inches 40 60
BOTTOM OF BORING COMPLETED 9/26/2019				:50/5*
	65			
	70			
1 <u>90</u> . LKN	75			
Lee: Saw				
2DT 3/10/20		0	20	40 60
NOTES 1. Refer to SOIL CLASSIFICATION AND LOG KEY for explanation of symbols, codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date specified and may vary. Groundwater level is the highest available measurement to date. Groundwater plots contain complete data sets. 3. USCS designation is based on visual-manual classification and selected lab testing.	2625 L	Montlake Remedial East Montla OG OF B	 % Fines (<0. Natural Wat Gas Station Investigation ke Place Eas BORING R 	VCP Report t, Seattle, WA
	March	2020	2 SON, INC.	1-1-22242-104 Sheet 4 of 4

	Total Depth: 30.2 ft. Northing: 238,303 ft. Top Elevation: 59.6 ft. Easting: 1,277,819 Vert. Datum: NAVD 88 Station:	ft ft	Drillir Drillir Drill F Other	ng M ng C Rig E r Co	lethod: compar Equipn mmen	iy: nent: ts:	Rotosonio Holocene Geoprobe	c & HQ3 Hole Diam.: 6 in. c Drilling Rod Diam.: 4-inch c 8 140LC Hammer Type: Automatic Hammer ER: Hammer ER: Hammer ER:
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground-	water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
	Asphalt. Gray, silty, sandy GRAVEL; moist; description based on limited visual observation of vac sidewall; (Hf) GM.	0.7						
	- Air vac clearance to 5 feet. Medium dense, gray and brown, slightly gravelly, sandy SILT; moist; trace dark brown organics; (Hf) ML.	5.0		0.4	S-1		Ę	5
	Very dense, gray-brown, gravelly, silty SAND, trace of clay; moist; diamict, scattered sand lenses, blow count N-values are overstated due to driving on sledge hammer dropped in hole; (Qvat) SM.	7.5		0	s-2		10	834
Log: JXS/MJRev: SAW Typ: LKN	Very dense, brown and gray, gravelly, silty SAND; moist; blow count N-values are overstated due to driving on sledge hammer dropped in hole; (Qvat) SM. - Increased silt content below 17 feet.	14.0		0	s-3 R-3		15	5
.GDT 3/10/20	CONTINUED NEXT SHEET				Ş	₽		0 20 40 60 ◊ % Fines (<0 075mm)
3520 MASTER LOG E 2019 21-22242.GPJ SHAN WIL.	NOTES 1. Refer to SOIL CLASSIFICATION AND LOG KEY for exp codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date spe Groundwater level is the highest available measuremen plots contain complete data sets. 3. USCS designation is based on visual-manual classificat testing. 4. Hammer ER = hammer energy ratio (efficiency) as a pe	planatio ecified t to dat ion and rcentaç	on of sy and ma e. Gro d selec ge.	ymbo ay va undu ted l	ols, ary. water ab		2625 L March SHAN Geotechn	Natural Water Content Natural Water Content Montlake Gas Station VCP Remedial Investigation Report East Montlake Place East, Seattle, WA OG OF BORING SB-2-19 2020 21-1-22242-104 INON & WILSON, INC. ical and Environmental Consultants Sheet 1 of 2
S								REV 1

	Total Depth:30.2 ft.NorthingTop Elevation:59.6 ft.EastingVert. Datum:NAVD 88Station:Horiz. Datum:NAD 83Offset:	g:238,303 ft 1,277,819 ft	Drilling Method: Drilling Company: Drill Rig Equipmen Other Comments:	Rotosonic & Holocene Dr t: Geoprobe 8	HQ3 rilling 140LC	Hole Diam.: Rod Diam.: Hammer Type Hammer ER:	6 in. 4-inch e: Automatic
	SOIL DESCRIPTION Refer to the report text for a proper understa subsurface materials and drilling method stratification lines represent the approximate between material types, and the transition ma	nding of the ls. The boundaries y be gradual.	Symbol PID, ppm Samples	Ground- water Depth, ft.	PENETRAT ▲ Hammer	TION RESISTA Wt. & Drop: <u>1</u> 20	ANCE (blows/foot) 40 lbs / 30 inches 40 60
	Very dense, gray, fine sandy SILT gravel; wet; faint iron-oxide stainin ML.	, trace of 20.0 g; (Qvd) 22.0	0.5 S-4 E				724
	SAND; moist to wet; scattered san and layers, slight diamict locally, s petroleum odor; (Qpgt) SM.	d seams trong					50/6*4
		28.0	216 8-5				500
	Very dense, gray, gravelly, silty SA moist; diamict; (Qpgt) SM. BOTTOM OF BORING COMPLETED 8/24/2019	ND; 	0.4 S 6	30			50/3*2
v: SAW Typ: LKN				35 -			
/20 Log: JXS/MJ R e							
SHAN_WIL.GDT 3/10				C)	20 ◇ % Fines (<0. ● Natural Wate	40 60 075mm) er Content
19 21-22242.GPJ §	NOT 1. Refer to SOIL CLASSIFICATION AND LC codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is f Groundwater level is the highest available plots contain complete data sets.	ES OG KEY for explanati or the date specified measurement to da	ion of symbols, and may vary. te. Groundwater	2625 E	Montlake Remedial Ii ast Montlak	Gas Station nvestigation F re Place East	VCP Report , Seattle, WA
R LOG E 20	 USCS designation is based on visual-ma testing. Hammer ER = hammer energy ratio (efficiency) 	nual classification an iency) as a percenta	d selected lab ge.	LC)g of b	ORING S	B-2-19
20_MASTE				March 20	020	2 ⁻ SON, INC.	1-1-22242-104
SR5				Geotechnical	and Environment	ai Consultants	

	Total Depth: 20.8 ft. Northing: 238,211 Top Elevation: 59.2 ft. Easting: 1,277,781 Vert. Datum: NAVD 88 Station:	ft ft	Drillir Drillir Drill F Othe	ng M ng Co Rig E r Coi	ethod: ompany Equipmo mments	y: _ ent: _ s: _	Rotoson Holocen Geoprot	nic 8 ne D be 8	rillin 140	23 Ig LC			Ho Ro Ha Ha	ole E od D amm	Diam Diam Diam Diar T	п.: і.: Тур ER:	e:	Au	6 in. 4-inc itoma	h atic	
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground-	water Denth ft		PE ▲	Ha	e TF mm	RAT her \	1 01 //t. 20	N R & D	ESI)rop	ST. :_1	ANG 40 4	CE bs / 0	(blo <u>30 ir</u>	ws/fo	50t) <u>s</u> 60
-	Asphalt. Brown and mottled, trace to slightly gravelly, silty SAND, trace of clay; moist; trace light brown clay pockets, trace organics; (Hf) SM.	0.7		0.2 \$	s-1 G																
	- Air vac clearance to 5 feet. Very loose, green-gray, brown, and mottled, slightly sandy SILT, trace of clay; moist; trace light brown clay pockets, trace organics; (Hf) ML. Very loose to loose, brown, gravelly, silty SAND; moist, scattered wet seams; iron oxide staining below 12 feet; (Hf) SM.	5.0		0.3	s-2			5													
	- Petroleum odor in wet seams from 10 to 15 feet.			0.3	s-3 ×		1	10													
Typ: LKN	- Transitions to gray, sandy silt around 13 feet.	15 5					1	15 -													
0 Log: RBP Rev: SAW	Very dense, gray, gravelly, silty SAND; moist; diamict; (Qpgt) SM.			0.2	S-4																
DT 3/10/2	CONTINUED NEXT SHEET				- 1511				0		<u>.</u>		20				4	0			60
HAN_WIL.G												<	> % ● N	% Fir Natu	nes (ıral \	(<0. <i>N</i> at	075r er C	nm) onte	nt		
19 21-22242.GPJ SI	NOTES 1. Refer to SOIL CLASSIFICATION AND LOG KEY for ex codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date spe Groundwater level is the highest available measuremen plots contain complete data sets	planati ecified t to dat	on of sy and ma te. Gro	ymbo ay va oundv	ols, iry. water		262	5 E	Re as	Mor eme t M	ntla edia on	ike al Ir tlak	Ga ive e P	s S stig Plac	tatio jatic ;e E	on on l ast	VCI Rep t, Se	⊃ ort eatt	le, V	NA	
LOG E 201	 USCS designation is based on visual-manual classificat testing. Hammer ER = hammer energy ratio (efficiency) as a period. 	tion and	d selec ge.	ted la	ab		I	LC	C	i C)F	В	OF	RII	NG	6 S	B-	3-	19		
20_MASTER							March SHAI	h 2	020 0 	0 8 1	. W	/1LS	501	N. I	INC	2 ⁻	1-1-	222 Sho	242-	104	
SR5							Geotech	nica	l and	l Env	viron	ment	al Co	nsult	ants			JIIC		RE	

	Total Depth: 20.8 ft. Top Elevation: 59.2 ft. Vert. Datum: NAVD 88 Horiz. Datum: NAD 83	Northing: Easting: Station: Offset:	238,211 fi 1,277,781	<u>t.</u> ft	Drillir Drillir Drill F Othe	ng Me ng Co Rig E r Cor	ethod: ompany quipmo nments	 y: ent: s:	Rotosonic Holocene L Geoprobe	& HO Drillin 8140	Q3 ng DLC			Hole Rod Han Han	e Dia Dia nme nme	am.: m.: r Tyj r ER	pe:_ ::		6 4-ii Autoi	in. nch mati	e	
	SOIL DESCRI Refer to the report text for a prop subsurface materials and dri stratification lines represent the a	PTION er understanding lling methods. Th pproximate bour	g of the he ndaries	Depth, ft.	Symbol	PID, ppm	Samples	Ground- water	Depth, ft.	PE ▲	ENE Hai	ETR. mm	ATI er W	ON Vt. & 20	RE: Dro	SIST	ΓΑΝ 140	ICE <u>lbs</u> 40	(b / <u>30</u>	low:	s/foot) <u>hes</u> 60	
	between material types, and the tr	ansition may be g	graduai.			4	3-5				::	:::				::		-0 :	::		50/4"4	
	BOTTOM OF E COMPLETED 9	30RING /23/2019		20.8																		
									25							· · ·						
									30													ŀ
Ν																						
V Typ: LK									35													
og: RBP Rev: SAI																						
0/20 L																						
HAN_WIL.GDT 3/1										0			: \$	20 > % ● Na	Fine atura	s (<0 Il Wa).078 ater (40 ōmm Cont	ı) ent		60	
21-22242.GPJ S	 Refer to SOIL CLASSIFICATIO codes, abbreviations and defin Groundwater level, if indicated Groundwater level is the higher 	<u>NOTES</u> DN AND LOG K itions. above, is for th st available mea	EY for exp e date spe asurement	blanatic ecified a	on of s and ma e. Gro	ymbo ay var oundw	ls, ry. <i>v</i> ater		2625	Re Eas	Mor eme	ntlal edia ontl	ke (I Inv ake	Gas vest e Pla	Sta tiga ace	tion tion Eas	Re Re	CP por Seat	t ttle,	W	A	
LOG E 2015	 plots contain complete data se 3. USCS designation is based on testing. 4. Hammer ER = hammer energy 	ts. visual-manual v ratio (efficienc <u>y</u>	classificati y) as a per	ion and	l selec je.	ted la	ıb		L	COG	G C)F	BC	DR	IN	G	SB	-3	-19	9		
IASTER			•	0					March 2	202	0					2	21-1	-22	242	2-1	04	
SR520_M									SHANN Geotechnic	NOI al and	N & d Env	Wironm	ILS iental	ON Cons	, IN sultan	l C.		Sh	eet	2 c	f 2	

Total Depth: Top Elevation: Vert. Datum: Horiz. Datum:	20.4 ft. 58.7 ft. NAVD 88 NAD 83	Northing: _ Easting: _ Station: _ Offset: _	238,160	ft ht	Drillir Drillir Drill F Othe	ng Me ng Co Rig E r Cor	ethod: ompan quipm mment	y: _ ent: _ s: _	Rotoso Holoce Geopro	nic d ne E obe 8	& HQ3 Drilling 8140LC	_ H _ R _ H _ H	ole D od Di amm amm	iam.: am.: er Ty er EF	 pe: R:	Au	6 in. I-inch tomai	tic
S Refer to the repo subsurface stratification line between material	OIL DESCRI ort text for a prop materials and dri s represent the a types, and the tr	PTION per understandin lling methods. approximate boo ransition may be	ng of the The undaries e gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground-	water	Depth, ft.	PENETRA ▲ Hamme	A TIO r Wt 20	N RI . & D	ESIS [.] rop:_	TANC 140 lk	CE bs / 3	(blov 30 ind	/s/foot) <u>ches</u> 60
Asphalt. Red-brown to slightly silty S (Hf) SM.	o brown, sligl SAND, trace	ntly gravelly of cobbles;	, moist;	0.7		0.2 S	5-1 G			-								
- Air vac clea Medium dens trace to sligh SAND; moist feet; (Qvat) S	arance to 5 f se, brown to tly gravelly, s ;; iron-oxide s SP-SM.	eet. yellow-brow slightly silty staining arou	n, und 6	5.0		0.2 S	2-2 2-1			5								
Medium dens slightly grave diamict locall - Wet seams	se, gray-brov elly, silty SAN y; (Qvat) SN s from 10 to	vn, trace to ID; moist to I. 15 feet.	wet;	10.0		0.2 S				10							× · · · · · · · · · · · · · · · · · · ·	
Very dense, silty SAND; r diamict textu (Qpgt) SM.	gray-brown, s noist; locally re, trace iron	slightly grav stratified, tr -oxide stain	relly, ace ing;	15.0		0.2 S				15								50/5
Wery dense, gravelly, silty SM.	gray-brown, ⁻ SAND; mois	trace to slig st; diamict; (htly Qpgt)			0.2 F	₹-3 S E			-								
SHAN WILGDT 3/1	CONTINUED	NEXT SHEET									0	20) % Fin Natu	es (<(ral Wa	40 0.075n ater Co	0 nm) ontei	nt	60
 Refer to SOIL 0 codes, abbrevi Groundwater le groundwater le plots contain co 	CLASSIFICATIO ations and definevel, if indicated evel is the highe complete data se	DN AND LOG nitions. above, is for t st available m sts.	KEY for ex he date spe easuremen	planatio ecified t to dat	on of s and ma e. Gro	ymbo ay vai oundw	ıls, ry. vater		262	25 E	Montlak Remedial East Montla	e Ga Inve ake I	as Si estig Place	atior ation e Eas	n VCF Rep st, Se	⊃ ort eattl	e, N	/Α
3. USCS designa testing. 4. Hammer ER =	tion is based or hammer energy	n visual-manua y ratio (efficien	ll classificat cy) as a pe	tion and rcentag	d selec ge.	ted la	ab		Marc	L(DG OF I	BO	RIN	IG :	SB- 21-1-	4-' 222	19 42-1	04
SR520 MA									SHA Geotec	hnica	NON & WII al and Environme	L SO ental C	DN, I	NC.	S	Shee	et 1	of 2

	Total Depth: 20.4 ft. Top Elevation: 58.7 ft. Vert. Datum: NAVD 88 Horiz. Datum: NAD 83	Northing: _ Easting: _ Station: _ Offset: _	238,160 ft. 1,277,802 ft.	Drillir Drillir Drill I Othe	ng M ng Ce Rig E r Co	ethod: ompany Equipme mments	/: ent: s:	Rotosoni Holocene Geoprob	ic & e Dr e 81	HG illin 140	23 g LC			Ho Ro Ha Ha	ole [od E amn amn	Diai Dian ner ner	m.: n.: Typ ER	- pe:_ : _	-	6 4- Auto	in. inch oma	tic	
	SOIL DESCRI Refer to the report text for a prop subsurface materials and dri stratification lines represent the a between material types and the tr	PTION er understandir lling methods. pproximate bou	ng of the The Undaries oradual	Symbol	PID, ppm	Samples	Ground-	water Depth, ft.		PE	E NE Ha	ETF Imn	RAT her '	101 Wt. 20	N R & [ES Drop	IST	AN 140	CE <i>Ibs</i> 10	(I / 30	blov 0 in	vs/f che	oot) <u>s</u> 60
	BOTTOM OF E COMPLETED 9	80RING /23/2019	20.4		<u> </u>	S-5																50	/5"
								2	5														
								23															
								3	0														
Typ: LKN								3	5														
Log: RBP Rev: SAW																							
DT 3/10/20									C)				20					40				60
019 21-22242.GPJ SHAN_WIL.C	 Refer to SOIL CLASSIFICATIOn codes, abbreviations and defining and defining and the second structure of the secon	<u>NOTES</u> DN AND LOG itions. above, is for t st available m ts.	KEY for explanat the date specified easurement to da	ion of s and mate. Gro	ymbo ay va bundv	ols, iry. water		2625	5 E	N Re ast	Лог eme t M	ntl <i>a</i> edia	ake al lı tlak	♦ % ● 1 Ganve xe F	% Fi Nati as S estiç Plac	nes ural Stat gati ce E	(<0 Wa ion Eas	.075 ter (VC Re t, S	P Sor	tent	, V	/A	
ER_LOG_E_2	 USCS designation is based or testing. Hammer ER = hammer energy 	visual-manua / ratio (efficien	Il classification ar	id selec ige.	ted la	ab		L	-0	G	i C) F	В	O	RII	NC	3 5	SB	-4	-1	9		
SR520_MAS1								SHAN Geotechr	NN Nical	ON and	J 1 8 I Env	k N viron	/IL ment	SO al Co	N,	IN tants	2 Ç.	1-1	-22 Sh	eet	t 2	of 2	2

REV 3

	Total Depth: 20.8 ft. Northing: 238,262 Top Elevation: 58.8 ft. Easting: 1,277,78 Vert. Datum: NAVD 88 Station:	2 ft. 1 ft.	Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments:	Rotosonic & HQ3 Holocene Drilling Geoprobe 8140LC	Hole Diam.: Rod Diam.: Hammer Typ Hammer ER:	6 in. 4-inch e: Automatic
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol PID, ppm Samples Ground-	Depth, ft. 0 0	TRATION RESIST mmer Wt. & Drop: <u>1</u> 20	ANCE (blows/foot) 40 lbs / 30 inches 40 40 60
	Asphalt. Loose, brown, gravelly, silty SAND; moist; angular gravel in upper 5 feet, trace fine organics; (Hf) SM.	- 0.7				
	- Air vac clearance to 5 feet.			5		
	- Faint petroleum odor below about 7-1/2 feet.					
	Very soft, gray to gray-brown and mottled, sandy, clayey SILT, trace of gravel; wet; trace wood fragments, 1/2-inch-thick organic pockets, iron oxide staining, petroleum odor; (Hf) MH.	- 10.0	0.5 S-2 220 R-3 E Z20 R-3 E			
Log: JXS Rev: SAW Typ: LKN	Very dense, gray, slightly sandy to sandy SILT, trace of gravel; moist; diamict; (Qpgt) ML.	- 14.0	0.4 S-3 E	15		67
3/10/20	CONTINUED NEXT SHEET			0	20	40 60
SHAN_WIL.GDT	NOTES				◇ % Fines (<0.● Natural Wat	075mm) er Content
9 21-22242.GPJ	I. Refer to SOIL CLASSIFICATION AND LOG KEY for excodes, abbreviations and definitions. Groundwater level, if indicated above, is for the date sp Groundwater level is the highest available measurement plots contain complete data sets	xplanati becified nt to da	on of symbols, and may vary. te. Groundwater	Mor Reme 2625 East M	ntlake Gas Station edial Investigation I ontlake Place East	VCP Report t, Seattle, WA
CLOG E 201	 USCS designation is based on visual-manual classificatesting. Hammer ER = hammer energy ratio (efficiency) as a present state of the st	ation an	d selected lab ge.	LOG	F BORING S	B-5-19
20_MASTER			-	March 2020	2 WILSON, INC.	1-1-22242-104
SR5				Geotechnical and Env	ironmental Consultants	REV 3

	Zotal Depth: 20.8 ft. Top Elevation: 58.8 ft. Vert. Datum: NAVD 88 Horiz. Datum: NAD 83	Northing: 238,262 Easting: 1,277,781 Station:	ft ft	Drilli Drilli Drill Othe	ng Me ng Co Rig E er Cor	ethod: ompany quipmo mments	/: <u>R</u> ent: <u>G</u> s:	otosonic & olocene E eoprobe &	& HC Drillin 8140	Q3 Dg DLC			Hole Rod Han Han	e Dia I Dia nme nme	am.: am.: er Tyj er ER	pe:_ ::		6 4-ii Auto	in. nch mati	c	
	SOIL DESCRIF Refer to the report text for a prope subsurface materials and drill stratification lines represent the between material types, and the tra	PTION r understanding of the ing methods. The pproximate boundaries prosition may be gradual	Depth, ft.	Symbol	PID, ppm	Samples	Ground- water	Depth, ft.	PE ▲	ENE Hai	ETR mm	er V	I ON Vt. 8 20	RE Dro	SIST	ΓΑΝ 140	ICE <i>Ibs</i> 40	(b / 30	olow) inc	s/foot <u>hes</u> 6	t) - 0
	between material types, and the tra	nisilion may be gradual.			0.3 5	6-4				::	::	: : :		:::				::	::	50/4	-
	BOTTOM OF B COMPLETED 8/	ORING 24/2019	20.8] [⊥. ⊥															
								25			· · ·							· · ·			
								30													
~																					· · · · ·
/ Typ: LKN								35													
J: JXS Rev: SAV								-													
0/20 Log																					
HAN_WIL.GDT 3/1									0			<	20 > % ● Na	Fine atura	es (<0 al Wa).078 ater (40 5mm Cont	ı) ent		6	0
21-22242.GPJ S	 Refer to SOIL CLASSIFICATIO codes, abbreviations and defini Groundwater level, if indicated a Groundwater level is the highes 	<u>NOTES</u> IN AND LOG KEY for exp tions. above, is for the date spe st available measuremen	planatio ecified a t to dat	on of s and m e. Gre	symbo ay vai oundw	ıls, ry. vater		2625 E	ا Re Eas	Mor eme t M	ntla edia ont	ke (al In lake	Gas ves e Pla	Sta tiga ace	ation ition Eas	Re Re	P por Seat	t ttle,	, W	A	
LOG E 2015	 plots contain complete data set USCS designation is based on testing. Hammer ER = hammer energy 	s. visual-manual classificat ratio (efficiency) as a pe	ion and	d seleo ge.	cted la	ab		LC	COG	6 C)F	B	OR	IN	G	SB	-5	-19	9		1
IASTER							I	March 2	202	0					2	21-1	-22	2242	2-1	04	
SR520_N								SHANN Geotechnica	IOI al and	V & d Env	w wironn	ILS nenta		, IN sultan	IC.		Sh	eet	2 c	of 2	

	Total Depth: 25.3 ft. Northing: 238,290 Top Elevation: 59.4 ft. Easting: 1,277,903 Vert. Datum: NAVD 88 Station:	ft 3 ft	Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments:	Rotosonic & I Holocene Drii Geoprobe 81	HQ3 Hole Diam.: Illing Rod Diam.: 40LC Hammer Typ Hammer ER:	6 in. 4-inch e: Automatic
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol PID, ppm Samples	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: _ 1 20	ANCE (blows/foot) 140 lbs / 30 inches 40 60
	Asphalt. Loose, gray-brown, slightly silty, slightly gravelly SAND; moist; subrounded gravel; (Hf) SP-SM.	- 0.7	s-1 G			
	- Air vac clearance to 5 feet.		0 S-2	5		
	- Woody debris layer from 8 to 8.5 feet. Stiff, gray to yellow-brown, slightly fine sandy, silty CLAY; moist; (Qvrl) CL.	8.5		10		
KN	Medium dense, gray to gray-brown mottled with orange, slightly fine sandy SILT; moist; scattered silt and fine sand seams, trace brown organics, iron-oxide staining, strong petroleum odor; (Qvrl) ML.	- 12.0	1577R-2			
20 Log: JXS Rev: SAW Typ: I	 Medium dense, gray to dark gray, silty SAND; moist, wet seams at 19 feet; strong petroleum odor; (Qvat) SM. Faint petroleum sheen on sample at about 16 feet. Increased sand content below about 17 feet. 	- 15.0	R-3	15		
DT 3/10/2	CONTINUED NEXT SHEET			0	20	40 60
J SHAN WIL.GE	NOTES				◇ % Fines (<0.● Natural Wat	.075mm) ær Content
19 21-22242.GP.	 Refer to SOIL CLASSIFICATION ADD LOG KEY for excodes, abbreviations and definitions. Groundwater level, if indicated above, is for the date sp Groundwater level is the highest available measuremen plots contain complete data sets. 	planati ecified nt to da	on of symbols, and may vary. te. Groundwater	F 2625 Ea	Montlake Gas Station Remedial Investigation ast Montlake Place Eas	VCP Report t, Seattle, WA
ER LOG E 201	 USCS designation is based on visual-manual classifica testing. Hammer ER = hammer energy ratio (efficiency) as a period. 	tion an ercenta	d selected lab ge.	LO	g of Boring s	SB-6-19
20_MASTE				March 20	20 2 DN & WILSON. INC.	1-1-22242-104
SR52				Geotechnical a	and Environmental Consultants	Sheet 1 of 2 REV 3

Total Depth: 25.3 ft. Northing: 238,290 ft. Top Elevation: 59.4 ft. Easting: 1,277,903 ft. Vert. Datum: NAVD 88 Station:	Drilling Method: Drilling Company: Drill Rig Equipment Other Comments:	Rotosonic Holocene I Geoprobe	& HQ3 Drilling 8140LC	Hole Diam.: Rod Diam.: Hammer Typ Hammer ER:	6 in. 4-inch e: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Symbol PID, ppm Samples	vater bepth, ft.	PENETRAT ▲ Hammer	ΓΙΟΝ RESIST Wt. & Drop: <u>1</u> 20	ANCE (blows/foot) 1 <u>40 lbs / 30 inches</u> 40 60
Very dense, gray, silty SAND, trace of gravel to sandy SILT, trace of gravel; wet; strong petroleum odor; (Qpgt) SM/ML. 20.0 Very dense, gray, slightly gravelly, silty 22.0 SAND: moist: diamict: (Opgt) SM 22.0	0 357 S-5 0 				
BOTTOM OF BORING	3 B-6E	25			50/4*4
COMPLETED 8/25/2019					
		30			
		35			
NOTES			0	20	40 60 075mm) er Content
 NOTES Refer to SOIL CLASSIFICATION AND LOG KEY for explanal codes, abbreviations and definitions. Groundwater level, if indicated above, is for the date specified Groundwater level is the highest available measurement to date plots contain complete data sets. 	tion of symbols, d and may vary. ate. Groundwater	2625	Montlake Remedial I East Montlak	Gas Station nvestigation I <e east<="" place="" td=""><td>VCP Report t, Seattle, WA</td></e>	VCP Report t, Seattle, WA
 USCS designation is based on visual-manual classification at testing. Hammer ER = hammer energy ratio (efficiency) as a percentary 	nd selected lab age.	L	og of B	ORING S	\$B-6-19
		March 2	2020	2	1-1-22242-104

Total Depth: 26 ft. Northing: 238, Top Elevation: 60.2 ft. Easting: 1,277 Vert. Datum: NAVD 88 Station: 1 Horiz. Datum: NAD 83 Offset: 1	225 ft. ,832 ft.	Drilling Met Drilling Cor Drill Rig Eq Other Com	thod: mpany: juipment: ments:	Rotosonic & Holocene D Geoprobe &	& HQ3 Hole Diam.: 6 in. Drilling Rod Diam.: 4-inch B140LC Hammer Type: Automatic Hammer ER:
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradue	Depth, ft.	Symbol PID, ppm	Samples Ground-	water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
Asphalt. Very loose, brown, slightly gravelly, silty SAND; moist; rounded to angular gravel; (Hf) SM.	0.7				
 Air vac clearance to 5 feet. Piece of brick at 5.5 feet. 	9.5	0.1 S-		5	
Stiff, blue-gray and brown mottled, trace to slightly gravelly, slightly sandy, silty CLAY; moist; scattered iron-oxide staining, trace fine organics, petroleum odor; (Qvrl) CL.	11.5	8.1 S-2	2	10 -	
Medium dense, gray-brown, trace to slightly silty SAND, trace of fine gravel; moist, wet below about 14 feet; strong petroleum odor; (Qvat) SP-SM. ≩	11.5	- 1348R-2	2 ~ ↓ ↓		
Medium dense, gray-brown, slightly gravelly, silty SAND; moist to wet; brown 1/2-inch-thick brown organic pocket, strong petroleum odor; (Qvat) SM. Very dense, gray, gravelly, silty SAND; moist; slight diamict texture; (Qpgt) SM.	15.0 17.0	6.5 S≺	3 3 3 3 3	15	
CONTINUED NEXT SHEET		<u>t+++t+</u>	1611		0 20 40 60 ◊ % Fines (<0.075mm) ● Natural Water Content
 Refer to SOIL CLASSIFICATION AND LOG KEY fo codes, abbreviations and definitions. Groundwater level, if indicated above, is for the date Groundwater level is the highest available measure plots contain complete data sets. 	r explanati e specified ment to da	on of symbols and may vary te. Groundwa	s, 1. ater	2625 E	Montlake Gas Station VCP Remedial Investigation Report East Montlake Place East, Seattle, WA
 3. USCS designation is based on visual-manual classi testing. 4. Hammer ER = hammer energy ratio (efficiency) as a testing. 	fication an	d selected lab ge.)	LC March 2	DG OF BORING SB-7-19
SR520_MAS				SHANN Geotechnica	NON & WILSON, INC. al and Environmental Consultants Sheet 1 of 2

SOIL DESCRIPTION Relative to insign or understanding of the statistication increases the segment the suproversion of between minutes (person where supervises). The statistication increases the segment becomes becomes between minutes (person where supervises). The statistication increases the segment becomes becomes between minutes (person where supervises). The statistication increases the segment becomes becomes between minutes (person where supervises). The statistication increases the segment becomes becomes between minutes (person where supervises). The statistication increases the person where supervises the supervises minutes (person where supervises). The statistication increases the supervises minutes (person where supervises). The statistication increases the supervises minutes (person where supervises). The statistication is supervised by the supervises minutes (person where supervises). The supervises minutes (person where supervises) as a person supervises. The supervises minutes (person where supervises) as a person supervises. The supervises minutes (person where supervises) as a person supervises. The supervises minutes (person wher	Total Depth: 26 ft. Northing: 238,225 ft. Top Elevation: 60.2 ft. Easting: 1,277,832 ft. Vert. Datum: NAVD 88 Station:	Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments:	Rotosonic Holocene I Geoprobe	& HQ3 Drilling 8140LC	Hole Diam.: Rod Diam.: Hammer Typ Hammer ER:	6 in. 4-inch e: Automatic
Very dense, gray, silly SAND to sandy 20.0 I a solution of the so	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Symbol PID, ppm Samples	water Depth, ft.	PENETRA [®] ▲ Hammer	TION RESIST Wt. & Drop: <u>1</u> 20	ANCE (blows/foot) 40 lbs / 30 inches 40 60
BOTTOM OF BORING COMPLETED 9/27/2019 26.0	Very dense, gray, silty SAND to sandy 20.0 SILT; moist to wet; (Qpgt) SM/ML. - - Strong petroleum odor around 20 feet, but could be slough from upper unit. 23.0 Very dense, gray, silty SAND, trace of gravel to slightly silty SAND, trace of gravel: moist: (Opgt) SM/SP-SM 23.0	243 S-4				50/4*2
30 30 <td< td=""><td>BOTTOM OF BORING COMPLETED 9/27/2019</td><td>3.5 S-5 E</td><td>25</td><td></td><td></td><td>:50/6°4</td></td<>	BOTTOM OF BORING COMPLETED 9/27/2019	3.5 S-5 E	25			:50/6°4
1. Refer to SOIL CLASSIFICATION AND LOG KEY for explanation of symbols, codes, abbreviations and definitions. 0 20 40 60 2. Orcundwater level, if indicated above, is for the date specified and may vary. Groundwater level is the highest available measurement to date. Groundwater level is the highest available measuremen			30			
NOTES 1. Refer to SOL CLASSIFICATION AND LOG KEY for explanation of symbols, codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date specified and may vary. Groundwater level, if indicated above, is for the date specified and may vary. Groundwater level, if indicated above, is for the date. Groundwater plots contain complete data sets. 3. USCS designation is based on visual-manual classification and selected lab testing. 4. Hammer ER = hammer energy ratio (efficiency) as a percentage. March 2020 21-1-22242-104 Sheat Data Switcher Devicement of percentage Sheet 2 of 2						
NOTES 1. Refer to SOIL CLASSIFICATION AND LOG KEY for explanation of symbols, codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date specified and may vary. Groundwater level, if indicated above, is for the date specified and may vary. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available measurement to date. Groundwater level, is the highest available. 4. Hammer ER = hammer energy ra			35			
NOTES 1. Refer to SOIL CLASSIFICATION AND LOG KEY for explanation of symbols, codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date specified and may vary. Groundwater level, is the highest available measurement to date. Groundwater plots contain complete data sets. 3. USCS designation is based on visual-manual classification and selected lab testing. 4. Hammer ER = hammer energy ratio (efficiency) as a percentage. March 2020 21-1-22242-104 SHANNON & WILSON, INC. Sheet 2 of 2						
1. Refer to SOIL CLASSIFICATION AND LOG KEY for explanation of symbols, codes, abbreviations and definitions. Montlake Gas Station VCP Remedial Investigation Report 2. Groundwater level, if indicated above, is for the date specified and may vary. Groundwater level is the highest available measurement to date. Groundwater plots contain complete data sets. Montlake Gas Station VCP Remedial Investigation Report 3. USCS designation is based on visual-manual classification and selected lab testing. LOG OF BORING SB-7-19 4. Hammer ER = hammer energy ratio (efficiency) as a percentage. March 2020 21-1-22242-104 SHANNON & WILSON, INC. Sheet 2 of 2	NOTES			0 0	 	<u>+ + + + + + + + + + + + + + + + + + +</u>
3. USCS designation is based on visual-manual classification and selected lab testing. 4. Hammer ER = hammer energy ratio (efficiency) as a percentage. March 2020 21-1-22242-104 Shannon & Wilson, INC. Sheet 2 of 2	1. Refer to SOIL CLASSIFICATION AND LOG KEY for explanation codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date specified a Groundwater level is the highest available measurement to date plots contain complete data sets.	on of symbols, and may vary. e. Groundwater	2625	Montlake Remedial I East Montlal	Gas Station nvestigation ke Place Eas	VCP Report t, Seattle, WA
March 2020 21-1-22242-104 SHANNON & WILSON, INC. Sheet 2 of 2	 USCS designation is based on visual-manual classification and testing. Hammer ER = hammer energy ratio (efficiency) as a percentag 	l selected lab e.	L	og of e	ORING S	B-7-19
CRAMP A ROW PO CONTRACTOR			March 2	2020 NON & WIL	2 SON, INC.	1-1-22242-104 Sheet 2 of 2

Total Depth: 21.5 ft. Northing: 238,185 Top Elevation: 59 ft. Easting: 1,277,807 Vert. Datum: NAVD 88 Station:	ft. 7 ft.	Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments:	Rotosonic & HQ3 Holocene Drilling Geoprobe 8140LC	 Hole Diam.: Rod Diam.: Hammer Type Hammer ER: 	6 in. 4-inch Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol PID, ppm Samples	Deptrive variation of the second of the sec	ATION RESISTA er Wt. & Drop: <u>14</u> 20	NCE (blows/foot) 10 lbs / 30 inches 40
Asphalt. Very loose, brown, trace to slightly gravelly, silty SAND; moist; description based on limited visual observation of vac sidewall; (Hf) SM.	- 0.7				
 Air vac clearance to 5 feet. Very loose, brown, sandy SILT; moist; trace organics; iron oxide staining; (Hf) ML. 1-inch-thick layer of wood debris at 5.4 feet. Very soft, gray to gray-brown mottled with 	- 5.4 - 6.0	0 S-1	5		
orange, slightly sandy, silty CLAY, trace of fine gravel; moist; trace brown organics; (Qvrl) CL. Dense, brown, gravelly, silty SAND; wet; (Qvat) SM.	- 10.0		10		
Dense to very dense, gray, slightly gravelly, silty SAND; moist; diamict; (Qpgt) SM.	- 14.0	0.1 R-2	15		50/5*2
0/20 Log: RBP Rev: SAV		0 R-3			
CONTINUED NEXT SHEET			0	20	40 60 75mm) r Content
1. Refer to SOIL CLASSIFICATION AND LOG KEY for ex codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date sp Groundwater level is the highest available measuremer plots contain complete data sets.	planati ecified nt to da	on of symbols, and may vary. te. Groundwater	Montlak Remedial 2625 East Montla	e Gas Station V Investigation R ake Place East,	/CP eport Seattle, WA
 3. USCS designation is based on visual-manual classifica testing. 4. Hammer ER = hammer energy ratio (efficiency) as a period 	tion an ercenta	d selected lab ge.	LOG OF	BORING S	B-8-19
SR520 MA			SHANNON & WI Geotechnical and Environme	LSON, INC. ental Consultants	Sheet 1 of 2

Total Depth: 25.4 ft. Northing: 238,334 Top Elevation: 60 ft. Easting: 1,277,874 Vert. Datum: NAVD 88 Station:	ft. 4 ft.	Drillir Drillir Drill I Othe	ng M ng C Rig I r Co	lethod: compan Equipm omment	y: _ ent: _ s: _	Rotoso Holoce Geopro	nic o ne L obe d	& HQ3 Hole Diam.: 6 in. Drilling Rod Diam.: 4-inch 8140LC Hammer Type: Automatic Hammer ER: Hammer ER: Hammer ER:
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground-	water	Deptn, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 0 20 40 60
Asphalt. Brown, slightly silty, gravelly SAND; moist; metal debris locally, description based on limited visual observation of vac sidewall; (Hf) SM.	0.7							
- Air vac clearance to 5 feet. Dense, brown, silty SAND, trace of gravel; moist; trace organics; (Qvat) SM.	5.0		0	S-1			5	
Dense to very dense, gray-brown, slightly gravelly, slightly silty SAND; moist; trace silt pockets at 7.5 feet, pockets of brown laminated silt and clay below 12.5 feet; (Qvat) SP-SM.	- 7.0		0	s-2			10	
Medium dense to dense, gray to brown, silty SAND to sandy SILT, trace of gravel and clay; moist; scattered pockets of gray laminated clay and silt, diamict pocketrs below about 17 feet; (Qvat) SM/ML.	13.5		5.4	53 53			15	
Very dense, gray, silty SAND; moist, wet at 22.5 feet; slight diamict locally, strong petrolum odor, faint sheen; (Qvd) SM.	18.0		92.7	R-3				
								0 20 40 60 ◇ % Fines (<0.075mm)
NOTES 1. Refer to SOIL CLASSIFICATION AND LOG KEY for ex codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date sp Groundwater level is the highest available measurement	on of s and ma te. Gro	ymbo ay va ound	ols, ary. water		262	25 [Montlake Gas Station VCP Remedial Investigation Report East Montlake Place East, Seattle, WA	
 plots contain complete data sets. 3. USCS designation is based on visual-manual classificat testing. 4. Hammer ER = hammer energy ratio (efficiency) as a performance of the set of th	 USCS designation is based on visual-manual classification and testing. Hammer ER = hammer energy ratio (efficiency) as a percentage 						LC	OG OF BORING SB-9-19
						Marc SHA Geotec	ch 2	2020 21-1-22242-104 NON & WILSON, INC. Sheet 1 of 2

Log: JXS Rev: SAW Typ: LKN SR520 MASTER LOG E 2019 21-22242.GPJ SHAN WIL.GDT 3/10/20

SAW Rev: SXN Log: 3/10/20 GDT SHAN_WIL GPJ C7000č 2019 ш Ċ Ц MAST

	Total Depth: 15 ft. Northing: 238,192 Top Elevation: 60.4 ft. Easting: 1,277,884 Vert. Datum: NAVD 88 Station:	ft ft	Drilling Method: Drilling Company: Drill Rig Equipment Other Comments:					Rotosonic & HQ3 Holocene Drilling Geoprobe 8140LC							Hole Diam.: Rod Diam.: Hammer Type: Hammer ER:					= = -	6 in. 4-inch Automatic				
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	-	Samples	Ground-	water	Depth, ft.	Р ▲	EN H	IE Ian	TR hm	AT er \	1 0 1 //t. 20	N F & I	RE: Dro	SIS	5 7 / 1	AN <u>40</u>	CE <i>Ibs</i> 40	: (<u>/3</u>	blo <u>0 in</u>	ws/ <u>ich</u>	foot) <u>es</u> 60
	Dark brown and gray, slightly gravelly, silty SAND; moist; angular to subrounded gravel, aluminum fragments, iron-oxide staining; (Hf) SM.			0	S-1	G		****																	
	Dense, gray to gray-brown and mottled orange, slightly fine sandy SILT, trace of gravel; moist to wet; scattered wet sand seams, iron-oxide staining; (Qvat) ML.	- 4.0		0	S-2 R-1				5													V			
	Very dense, gray, slightly gravelly, silty SAND; moist; diamict; (Qpgt) SM.	- 7.5		0	S-3		served During Drilling		10															5	0/5*2
	Soil Vapor Point monitoring well installed.			0.2	R-2		None Ob																		
Rev: SAW Typ: LKN	BOTTOM OF BORING COMPLETED 9/24/2019	15.0		0	S-4	E			15															5	0/5"
3/10/20 Log: RBP										0					20						40				60
3PJ SHAN_WIL.GDT	NOTES	1	 ◇ % Fines (<0.075mm) ● Natural Water Content 																						
DG_E_2019_21-22242.0	 Codes, abbreviations and definitions. Groundwater level, if indicated above, is for the date spe Groundwater level is the highest available measuremen plots contain complete data sets. USCS designation is based on visual-manual classificat testing. 		Montlake Gas Station VCP Remedial Investigation Report 2625 East Montlake Place East, Seattle, WA											، 											
STER_LC	4. Hammer ER = hammer energy ratio (efficiency) as a pe		March 2020 21							1-1	-22	224	12-	10	4										
SR520_MA								S Ge	HANI	NO al ar	N nd E	& invir	W	ILS nenta	SO al Co	N, onsu	IN Itan	I C .							

Total Depth: 5.5 ft. Northing: 238,191 ft. Top Elevation: 59.6 ft. Easting: 1,277,913 ft. Vert. Datum: NAVD 88 Station:	 Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments: 				Rotosonic & HQ3 Holocene Drilling Geoprobe 8140LC						_ Hole Diam.: _ Rod Diam.: _ Hammer Typ _ Hammer ER:					e:	6 in. 4-inch 2 Automatic				
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification	epth, ft.	ymbol	amples	round-	vater	zpui, il.	PE ▲	NE Ha	ETF mn	RA ner	TIC • W	ON ′t. 8	RE & Di	ESIS rop:	ST	AN	CE	(blov	vs/fo	oot)
lines represent the approximate boundaries between material types, and the transition may be gradual.	ă	S S S S S S S S S S S S S S S S S S S	S	Ū		5	0	<u> </u>			2	20	<u>.</u>	<u></u>		4	10		<u>.</u>		60
Brown, slity SAND; moist; description based on limited visual observation of sidewall; (Hf) SM				14 N 14 W	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX																
This boring drilled for Soil Vapor Point monitoring well installation.																					
				Drilling	×																
				ad During		5															
BOTTOM OF BORING COMPLETED 9/24/2019	5.5			e Observe	<u></u>																
				Non																	
						10															
					1	15															· · ·
																					::
							0				2 \$	20 %	Fin	es (·	<0.	4 075	10 mm	1)			60
											•	N	atur	al V	Vat	er C	Cont	tent			
NOTES 1. Refer to SOIL CLASSIFICATION AND LOG KEY for explain codes, abbreviations and definitions.	nation of	symbo	ols,	Γ			N	/lor	ntla	ake	e G	as	St	atic	on n	VC	P	+			
 Groundwater level, if indicated above, is for the date specific Groundwater level is the highest available measurement to plots contain complete data sets. 	ied and i date. G	may va Groundv	ry. vater		262	5 E	East	t M	on	itla	ke	Pl	ace	e Ea	ast	t, S	eat	ttle	, N	/A	
 USCS designation is based on visual-manual classification testing. Hammer ER = hammer energy ratio (efficiency) as a perce 	and selent	ected la	ab		l	LC	C	i C)F	E	BC	DR	RIN	IG	S	G	-2	-1	9		
					Marc	h 2	2020)							2	1-1-	-22	224	2-1	04	
					SHA Geotech	NN nnica	ION al and	8 Env	riron	vilL	-Se	ON Con:	sulta	NC. nts	•						

Appendix K: Laboratory Reports for 2019 Data Gaps Investigation (324 Sheets)

September 6, 2019

Carole Leigh Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-102 Laboratory Reference No. 1908-301

Dear Carole:

Enclosed are the analytical results and associated quality control data for samples submitted on August 26, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 6, 2019 Samples Submitted: August 26, 2019 Laboratory Reference: 1908-301 Project: 21-1-22242-102

Case Narrative

Samples were collected on August 24, 2019 and received by the laboratory on August 26, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D (soil) Analysis

Some MTCA Method A cleanup levels are non-achievable for samples SB-2-19:25 and SB-5-19:12.5 due to the necessary dilutions of the samples.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-2-19:25					
Laboratory ID:	08-301-03					
Gasoline	37	12	NWTPH-Gx	8-27-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	58-129				
Client ID:	SB-2-19:30					
Laboratory ID:	08-301-04					
Gasoline	160	35	NWTPH-Gx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	58-129				
Client ID:	SB-5-19:12.5					
Laboratory ID:	08-301-05					
Gasoline	300	10	NWTPH-Gx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	58-129				
Client ID:	SB-5-19:16.5					
Laboratory ID:	08-301-06					
Gasoline	ND	6.6	NWTPH-Gx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	58-129				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

						Date	Date	•	
Analyte		Result	PQ	L M	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB0827S1							
Gasoline		ND	5.0	D NW	TPH-Gx	8-27-19	8-27-1	19	
Surrogate:	Pe	rcent Recovery	Control	Limits					
Fluorobenzene		80	58-1	29					
				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Lev	vel Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-3 ⁻	11-01							
	ORIG	DUP							
Gasoline	ND	ND	NA N	NA	NA	NA	NA	30	
Surrogate:									

79

76

58-129

Fluorobenzene

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

5 5 1 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-2-19:25					
Laboratory ID:	08-301-03					
Diesel Range Organics	ND	43	NWTPH-Dx	8-27-19	8-27-19	U1,M1
Lube Oil Range Organics	ND	59	NWTPH-Dx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	75	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0827S1					
Diesel Range Organics	ND	25	NWTPH-Dx	8-27-19	8-27-19	
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-30	01-03								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	U1,M1
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						75 66	50-150			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-2-19:25					
Laboratory ID:	08-301-03					
Benzene	0.39	0.068	EPA 8260D	8-27-19	8-27-19	
1,2-Dichloroethane	ND	0.068	EPA 8260D	8-27-19	8-27-19	
Toluene	0.58	0.34	EPA 8260D	8-27-19	8-27-19	
1,2-Dibromoethane	ND	0.068	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	2.2	0.068	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	9.7	0.14	EPA 8260D	8-27-19	8-27-19	
o-Xylene	3.3	0.068	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	76-131				
Toluene-d8	102	78-128				
4-Bromofluorobenzene	107	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-2-19:30					
Laboratory ID:	08-301-04					
Benzene	0.46	0.072	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	0.36	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	0.84	0.072	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	4.0	0.14	EPA 8260D	8-27-19	8-27-19	
o-Xylene	1.2	0.072	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	91	76-131				
Toluene-d8	97	78-128				
4-Bromofluorobenzene	98	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-5-19:12.5					
Laboratory ID:	08-301-05					
Benzene	0.35	0.21	EPA 8260D	8-27-19	8-28-19	
1,2-Dichloroethane	ND	0.21	EPA 8260D	8-27-19	8-28-19	
Toluene	ND	1.1	EPA 8260D	8-27-19	8-28-19	
1,2-Dibromoethane	ND	0.21	EPA 8260D	8-27-19	8-28-19	
Ethylbenzene	17	0.21	EPA 8260D	8-27-19	8-28-19	
m,p-Xylene	3.1	0.43	EPA 8260D	8-27-19	8-28-19	
o-Xylene	0.44	0.21	EPA 8260D	8-27-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	76-131				
Toluene-d8	104	78-128				
4-Bromofluorobenzene	95	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-5-19:16.5					
Laboratory ID:	08-301-06					
Benzene	0.0091	0.0010	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	0.0052	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	0.0025	0.0010	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	0.0026	0.0021	EPA 8260D	8-27-19	8-27-19	
o-Xylene	ND	0.0010	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	76-131				
Toluene-d8	99	78-128				
4-Bromofluorobenzene	99	71-130				

VOLATILE ORGANICS EPA 8260D METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0827S1					
Benzene	ND	0.0010	EPA 8260D	8-27-19	8-27-19	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	0.0050	EPA 8260D	8-27-19	8-27-19	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	ND	0.0010	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	ND	0.0020	EPA 8260D	8-27-19	8-27-19	
o-Xylene	ND	0.0010	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	76-131				
Toluene-d8	96	78-128				
4-Bromofluorobenzene	97	71-130				

VOLATILE ORGANICS EPA 8260D SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	27S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0453	0.0448	0.0500	0.0500	91	90	57-133	1	18	
Benzene	0.0449	0.0436	0.0500	0.0500	90	87	71-129	3	16	
Trichloroethene	0.0541	0.0529	0.0500	0.0500	108	106	71-122	2	16	
Toluene	0.0508	0.0495	0.0500	0.0500	102	99	74-125	3	15	
Chlorobenzene	0.0480	0.0472	0.0500	0.0500	96	94	72-120	2	14	
Surrogate:										
Dibromofluoromethane					91	91	76-131			
Toluene-d8					98	100	78-128			
4-Bromofluorobenzene					95	100	71-130			

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	08-301-07					
Benzene	ND	0.20	EPA 8260D	8-27-19	8-27-19	
1,2-Dichloroethane	ND	2.0	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	1.0	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	ND	0.20	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	ND	0.40	EPA 8260D	8-27-19	8-27-19	
o-Xylene	ND	0.20	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	98	78-125				

VOLATILE ORGANICS EPA 8260D METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Laboratory ID:	MB0827W1						
Benzene	ND	0.20	EPA 8260D	8-27-19	8-27-19		
1,2-Dichloroethane	ND	2.0	EPA 8260D	8-27-19	8-27-19		
Toluene	ND	1.0	EPA 8260D	8-27-19	8-27-19		
Ethylbenzene	ND	0.20	EPA 8260D	8-27-19	8-27-19		
m,p-Xylene	ND	0.40	EPA 8260D	8-27-19	8-27-19		
o-Xylene	ND	0.20	EPA 8260D	8-27-19	8-27-19		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	106	75-127					
Toluene-d8	108	80-127					
4-Bromofluorobenzene	98	78-125					

VOLATILE ORGANICS EPA 8260D SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB082	27W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.15	9.03	10.0	10.0	92	90	63-130	1	17	
Benzene	9.43	9.49	10.0	10.0	94	95	76-125	1	19	
Trichloroethene	9.54	9.46	10.0	10.0	95	95	76-121	1	18	
Toluene	9.01	8.83	10.0	10.0	90	88	80-124	2	18	
Chlorobenzene	10.4	10.2	10.0	10.0	104	102	75-120	2	19	
Surrogate:										
Dibromofluoromethane					107	108	75-127			
Toluene-d8					104	103	80-127			
4-Bromofluorobenzene					100	98	78-125			

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-2-19:25					
Laboratory ID:	08-301-03					
Benzo[a]anthracene	ND	0.0078	EPA 8270E/SIM	8-27-19	8-28-19	
Chrysene	ND	0.0078	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[b]fluoranthene	ND	0.0078	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo(j,k)fluoranthene	ND	0.0078	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[a]pyrene	ND	0.0078	EPA 8270E/SIM	8-27-19	8-28-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0078	EPA 8270E/SIM	8-27-19	8-28-19	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270E/SIM	8-27-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	40 - 111				
Pyrene-d10	91	40 - 110				
Terphenyl-d14	89	45 - 122				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-5-19:12.5					
Laboratory ID:	08-301-05					
Benzo[a]anthracene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Chrysene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[b]fluoranthene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo(j,k)fluoranthene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[a]pyrene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Dibenz[a,h]anthracene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	40 - 111				
Pyrene-d10	80	40 - 110				
Terphenyl-d14	79	45 - 122				

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0827S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Chrysene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	40 - 111				
Pyrene-d10	87	40 - 110				
Terphenyl-d14	91	45 - 122				

cPAHs EPA 8270D/SIM MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-30	02-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0851	0.0891	0.0833	0.0833	ND	102	107	53 - 131	5	23	
Chrysene	0.0796	0.0833	0.0833	0.0833	ND	96	100	46 - 126	5	24	
Benzo[b]fluoranthene	0.0758	0.0804	0.0833	0.0833	ND	91	97	45 - 127	6	25	
Benzo(j,k)fluoranthene	0.0817	0.0868	0.0833	0.0833	ND	98	104	52 - 122	6	21	
Benzo[a]pyrene	0.0773	0.0811	0.0833	0.0833	ND	93	97	51 - 126	5	24	
Indeno(1,2,3-c,d)pyrene	0.0742	0.0770	0.0833	0.0833	ND	89	92	48 - 127	4	23	
Dibenz[a,h]anthracene	0.0739	0.0776	0.0833	0.0833	ND	89	93	51 - 124	5	22	
Surrogate:											
2-Fluorobiphenyl						70	79	40 - 111			
Pyrene-d10						83	86	40 - 110			
Terphenyl-d14						86	86	45 - 122			

TOTAL METALS EPA 6020B/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-2-19:25					
Laboratory ID:	08-301-03					
Arsenic	ND	12	EPA 6020B	8-29-19	8-29-19	
Barium	21	5.8	EPA 6020B	8-29-19	8-29-19	
Cadmium	ND	0.58	EPA 6020B	8-29-19	8-29-19	
Chromium	16	0.58	EPA 6020B	8-29-19	8-29-19	
Lead	ND	5.8	EPA 6020B	8-29-19	8-29-19	
Mercury	ND	0.29	EPA 7471B	8-30-19	8-30-19	
Selenium	ND	12	EPA 6020B	8-29-19	8-29-19	
Silver	ND	1.2	EPA 6020B	8-29-19	8-29-19	

Client ID:	SB-5-19:12.5					
Laboratory ID:	08-301-05					
Arsenic	ND	11	EPA 6020B	8-29-19	8-29-19	
Barium	32	5.7	EPA 6020B	8-29-19	8-29-19	
Cadmium	ND	0.57	EPA 6020B	8-29-19	8-29-19	
Chromium	23	0.57	EPA 6020B	8-29-19	8-29-19	
Lead	ND	5.7	EPA 6020B	8-29-19	8-29-19	
Mercury	ND	0.28	EPA 7471B	8-30-19	8-30-19	
Selenium	ND	11	EPA 6020B	8-29-19	8-29-19	
Silver	ND	1.1	EPA 6020B	8-29-19	8-29-19	

20

TOTAL METALS EPA 6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0829SM1					
Arsenic	ND	10	EPA 6020B	8-29-19	8-29-19	
Barium	ND	5.0	EPA 6020B	8-29-19	8-29-19	
Cadmium	ND	0.50	EPA 6020B	8-29-19	8-29-19	
Chromium	ND	0.50	EPA 6020B	8-29-19	8-29-19	
Lead	ND	5.0	EPA 6020B	8-29-19	8-29-19	
Selenium	ND	10	EPA 6020B	8-29-19	8-29-19	
Silver	ND	1.0	EPA 6020B	8-29-19	8-29-19	
Laboratory ID:	MB0830S1					
Mercury	ND	0.25	EPA 7471B	8-30-19	8-30-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-3	06-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		I	NA	NA	NA	20	
Barium	27.7	25.6	NA	NA		I	NA	NA	8	20	
Cadmium	ND	ND	NA	NA		I	NA	NA	NA	20	
Chromium	17.3	16.6	NA	NA		I	NA	NA	4	20	
Lead	ND	ND	NA	NA		I	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		I	NA	NA	NA	20	
Silver	ND	ND	NA	NA			NA	NA	NA	20	
Laboratoria ID.	00.0	00.04									
Laboratory ID:	08-3	06-01									
Mercury	ND	ND	NA	NA]	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-3	06-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	97.5	97.8	100	100	ND	98	98	75-125	0	20	
Barium	130	132	100	100	27.7	103	104	75-125	1	20	
Cadmium	48.3	50.8	50.0	50.0	ND	97	102	75-125	5	20	
Chromium	121	120	100	100	17.3	103	103	75-125	0	20	
Lead	233	236	250	250	ND	93	95	75-125	1	20	
Selenium	91.3	94.5	100	100	ND	91	95	75-125	3	20	
Silver	20.1	20.0	25.0	25.0	ND	80	80	75-125	1	20	
Laboratory ID:	08-3	06-01									
Mercury	0.527	0.514	0.500	0.500	0.00640	104	102	80-120	2	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: September 6, 2019 Samples Submitted: August 26, 2019 Laboratory Reference: 1908-301 Project: 21-1-22242-102

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
SB-2-19:25	08-301-03	14	8-27-19
SB-2-19:30	08-301-04	13	8-27-19
SB-5-19:12.5	08-301-05	12	8-27-19
SB-5-19:16.5	08-301-06	12	8-27-19

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881


```
File : X:\BTEX\DARYL\DATA\D190828\0828017.D
Operator :
Acquired : 28 Aug 2019 18:39 using AcqMethod 190701B.M
Instrument : Daryl
Sample Name: 08-301-03s RR 1:100
Misc Info :
Vial Number: 17
```



```
File : X:\BTEX\DARYL\DATA\D190827\0827021.D
Operator :
Acquired : 27 Aug 2019 23:13 using AcqMethod 190701B.M
Instrument : Daryl
Sample Name: 08-301-04s 1:250
Misc Info :
Vial Number: 21
```



```
File : X:\BTEX\DARYL\DATA\D190827\0827019.D
Operator :
Acquired : 27 Aug 2019 21:57 using AcqMethod 190701B.M
Instrument : Daryl
Sample Name: 08-301-05s 1:100
Misc Info :
Vial Number: 19
```


File :X:\DIESELS\VIGO\DATA\V190827.SEC\0827-V64.D Operator : JT Acquired : 27 Aug 2019 16:19 using AcqMethod V180601F.M Instrument : Vigo Sample Name: 08-301-03 Misc Info : Vial Number: 64

September 6, 2019

Carole Leigh Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-102 Laboratory Reference No. 1908-302

Dear Carole:

Enclosed are the analytical results and associated quality control data for samples submitted on August 26, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 6, 2019 Samples Submitted: August 26, 2019 Laboratory Reference: 1908-302 Project: 21-1-22242-102

Case Narrative

Samples were collected on August 24 and 25, 2019 and received by the laboratory on August 26, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D (soil) Analysis

Some MTCA Method A cleanup levels are non-achievable for samples SB-9-19:20 and SB-6-19:16.5 due to the necessary dilutions of the samples.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-19:16.5					
Laboratory ID:	08-302-01					
Gasoline	ND	12	NWTPH-Gx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	58-129				
Client ID:	MW-4-19:26					
Laboratory ID:	08-302-02					
Gasoline	ND	4.7	NWTPH-Gx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	58-129				
Client ID:	SB-9-19:20					
Laboratory ID:	08-302-03					
Gasoline	410	63	NWTPH-Gx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	58-129				
Client ID:	SB-9-19:25					
Laboratory ID:	08-302-04					
Gasoline	ND	5.6	NWTPH-Gx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	58-129				
Client ID:	SB-6-19:16.5					
Laboratory ID:	08-302-05					
Gasoline	21	11	NWTPH-Gx	8-27-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	58-129				
Client ID:	SB-6-19:25					
Laboratory ID:	08-302-06					
Gasoline	ND	6.0	NWTPH-Gx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	58-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Date	D	ate	
Analyte	Result	PQL		Method	Prepared	Analyzed		Flags
METHOD BLANK								
Laboratory ID:	MB0827S2	2						
Gasoline	ND	5.0	N۱	VTPH-Gx	8-27-19	8-2	7-19	
Surrogate:	Percent Reco	very Control Li	mits					
Fluorobenzene	78	58-129)					
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	09 211 02							

Laboratory ID:	08-3	11-0Z								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA	N	IA	NA	NA	30	
Surrogate:										
Fluorobenzene					77	77	58-129			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-19:16.5					
Laboratory ID:	08-302-01					
Benzene	ND	0.00098	EPA 8260D	8-27-19	8-27-19	
1,2-Dichloroethane	ND	0.00098	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	0.0049	EPA 8260D	8-27-19	8-27-19	
1,2-Dibromoethane	ND	0.00098	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	0.0014	0.00098	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	ND	0.0020	EPA 8260D	8-27-19	8-27-19	
o-Xylene	ND	0.00098	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	76-131				
Toluene-d8	98	78-128				
4-Bromofluorobenzene	97	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-19:26					
Laboratory ID:	08-302-02					
Benzene	ND	0.00078	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	0.0039	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	ND	0.00078	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	ND	0.0016	EPA 8260D	8-27-19	8-27-19	
o-Xylene	ND	0.00078	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	76-131				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	95	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-9-19:20					
Laboratory ID:	08-302-03					
Benzene	ND	0.063	EPA 8260D	8-27-19	8-27-19	
1,2-Dichloroethane	ND	0.063	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	0.32	EPA 8260D	8-27-19	8-27-19	
1,2-Dibromoethane	ND	0.063	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	0.077	0.063	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	0.19	0.13	EPA 8260D	8-27-19	8-27-19	
o-Xylene	ND	0.063	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	76-131				
Toluene-d8	101	78-128				
4-Bromofluorobenzene	97	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-9-19:25					
Laboratory ID:	08-302-04					
Benzene	ND	0.0012	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	0.0060	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	ND	0.0012	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	ND	0.0024	EPA 8260D	8-27-19	8-27-19	
o-Xylene	ND	0.0012	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	76-131				
Toluene-d8	98	78-128				
4-Bromofluorobenzene	91	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-6-19:16.5					
Laboratory ID:	08-302-05					
Benzene	0.89	0.052	EPA 8260D	8-27-19	8-27-19	
1,2-Dichloroethane	ND	0.052	EPA 8260D	8-27-19	8-27-19	
Toluene	0.27	0.26	EPA 8260D	8-27-19	8-27-19	
1,2-Dibromoethane	ND	0.052	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	0.57	0.052	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	2.3	0.10	EPA 8260D	8-27-19	8-27-19	
o-Xylene	0.93	0.052	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	87	76-131				
Toluene-d8	103	78-128				
4-Bromofluorobenzene	98	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-6-19:25					
Laboratory ID:	08-302-06					
Benzene	ND	0.0011	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	0.0053	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	ND	0.0011	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	ND	0.0021	EPA 8260D	8-27-19	8-27-19	
o-Xylene	ND	0.0011	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	76-131				
Toluene-d8	94	78-128				
4-Bromofluorobenzene	86	71-130				

VOLATILE ORGANICS EPA 8260D METHOD BLANK QUALITY CONTROL

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Laboratory ID:	MB0827S1						
Benzene	ND	0.0010	EPA 8260D	8-27-19	8-27-19		
1,2-Dichloroethane	ND	0.0010	EPA 8260D	8-27-19	8-27-19		
Toluene	ND	0.0050	EPA 8260D	8-27-19	8-27-19		
1,2-Dibromoethane	ND	0.0010	EPA 8260D	8-27-19	8-27-19		
Ethylbenzene	ND	0.0010	EPA 8260D	8-27-19	8-27-19		
m,p-Xylene	ND	0.0020	EPA 8260D	8-27-19	8-27-19		
o-Xylene	ND	0.0010	EPA 8260D	8-27-19	8-27-19		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	93	76-131					
Toluene-d8	96	78-128					
4-Bromofluorobenzene	97	71-130					

VOLATILE ORGANICS EPA 8260D SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Result		Spike	Level	Reco	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	27S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0453	0.0448	0.0500	0.0500	91	90	57-133	1	18	
Benzene	0.0449	0.0436	0.0500	0.0500	90	87	71-129	3	16	
Trichloroethene	0.0541	0.0529	0.0500	0.0500	108	106	71-122	2	16	
Toluene	0.0508	0.0495	0.0500	0.0500	102	99	74-125	3	15	
Chlorobenzene	0.0480	0.0472	0.0500	0.0500	96	94	72-120	2	14	
Surrogate:										
Dibromofluoromethane					91	91	76-131			
Toluene-d8					98	100	78-128			
4-Bromofluorobenzene					95	100	71-130			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	08-302-07					
Benzene	ND	0.20	EPA 8260D	8-27-19	8-27-19	
1,2-Dichloroethane	ND	2.0	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	1.0	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	ND	0.20	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	ND	0.40	EPA 8260D	8-27-19	8-27-19	
o-Xylene	ND	0.20	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	99	78-125				

VOLATILE ORGANICS EPA 8260D METHOD BLANK QUALITY CONTROL

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Laboratory ID:	MB0827W1						
Benzene	ND	0.20	EPA 8260D	8-27-19	8-27-19		
1,2-Dichloroethane	ND	2.0	EPA 8260D	8-27-19	8-27-19		
Toluene	ND	1.0	EPA 8260D	8-27-19	8-27-19		
Ethylbenzene	ND	0.20	EPA 8260D	8-27-19	8-27-19		
m,p-Xylene	ND	0.40	EPA 8260D	8-27-19	8-27-19		
o-Xylene	ND	0.20	EPA 8260D	8-27-19	8-27-19		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	106	75-127					
Toluene-d8	108	80-127					
4-Bromofluorobenzene	98	78-125					

VOLATILE ORGANICS EPA 8260D SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Result		Spike	Level	Reco	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB082	27W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.15	9.03	10.0	10.0	92	90	63-130	1	17	
Benzene	9.43	9.49	10.0	10.0	94	95	76-125	1	19	
Trichloroethene	9.54	9.46	10.0	10.0	95	95	76-121	1	18	
Toluene	9.01	8.83	10.0	10.0	90	88	80-124	2	18	
Chlorobenzene	10.4	10.2	10.0	10.0	104	102	75-120	2	19	
Surrogate:										
Dibromofluoromethane					107	108	75-127			
Toluene-d8					104	103	80-127			
4-Bromofluorobenzene					100	98	78-125			

cPAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-19:16.5					
Laboratory ID:	08-302-01					
Benzo[a]anthracene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Chrysene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[b]fluoranthene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo(j,k)fluoranthene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[a]pyrene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Dibenz[a,h]anthracene	ND	0.0075	EPA 8270E/SIM	8-27-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	40 - 111				
Pyrene-d10	82	40 - 110				
Terphenyl-d14	88	45 - 122				

cPAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-9-19:20					
Laboratory ID:	08-302-03					
Benzo[a]anthracene	ND	0.0071	EPA 8270E/SIM	8-27-19	8-28-19	
Chrysene	ND	0.0071	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[b]fluoranthene	ND	0.0071	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo(j,k)fluoranthene	ND	0.0071	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[a]pyrene	ND	0.0071	EPA 8270E/SIM	8-27-19	8-28-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0071	EPA 8270E/SIM	8-27-19	8-28-19	
Dibenz[a,h]anthracene	ND	0.0071	EPA 8270E/SIM	8-27-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	40 - 111				
Pyrene-d10	91	40 - 110				
Terphenyl-d14	84	45 - 122				

cPAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-6-19:16.5					
Laboratory ID:	08-302-05					
Benzo[a]anthracene	ND	0.0077	EPA 8270E/SIM	8-27-19	8-28-19	
Chrysene	ND	0.0077	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[b]fluoranthene	ND	0.0077	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo(j,k)fluoranthene	ND	0.0077	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[a]pyrene	ND	0.0077	EPA 8270E/SIM	8-27-19	8-28-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0077	EPA 8270E/SIM	8-27-19	8-28-19	
Dibenz[a,h]anthracene	ND	0.0077	EPA 8270E/SIM	8-27-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	40 - 111				
Pyrene-d10	84	40 - 110				
Terphenyl-d14	88	45 - 122				

cPAHs EPA 8270E/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0827S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Chrysene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	8-27-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	40 - 111				
Pyrene-d10	87	40 - 110				
Terphenyl-d14	91	45 - 122				

cPAHs EPA 8270E/SIM MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-30	02-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0851	0.0891	0.0833	0.0833	ND	102	107	53 - 131	5	23	
Chrysene	0.0796	0.0833	0.0833	0.0833	ND	96	100	46 - 126	5	24	
Benzo[b]fluoranthene	0.0758	0.0804	0.0833	0.0833	ND	91	97	45 - 127	6	25	
Benzo(j,k)fluoranthene	0.0817	0.0868	0.0833	0.0833	ND	98	104	52 - 122	6	21	
Benzo[a]pyrene	0.0773	0.0811	0.0833	0.0833	ND	93	97	51 - 126	5	24	
Indeno(1,2,3-c,d)pyrene	0.0742	0.0770	0.0833	0.0833	ND	89	92	48 - 127	4	23	
Dibenz[a,h]anthracene	0.0739	0.0776	0.0833	0.0833	ND	89	93	51 - 124	5	22	
Surrogate:											
2-Fluorobiphenyl						70	79	40 - 111			
Pyrene-d10						83	86	40 - 110			
Terphenyl-d14						86	86	45 - 122			

TOTAL METALS EPA 6020B/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-19:16.5					
Laboratory ID:	08-302-01					
Arsenic	ND	11	EPA 6020B	8-29-19	8-29-19	
Barium	34	5.7	EPA 6020B	8-29-19	8-29-19	
Cadmium	ND	0.57	EPA 6020B	8-29-19	8-29-19	
Chromium	21	0.57	EPA 6020B	8-29-19	8-29-19	
Lead	ND	5.7	EPA 6020B	8-29-19	8-29-19	
Mercury	ND	0.28	EPA 7471B	8-30-19	8-30-19	
Selenium	ND	11	EPA 6020B	8-29-19	8-29-19	
Silver	ND	1.1	EPA 6020B	8-29-19	8-29-19	

Client ID:	SB-9-19:20					
Laboratory ID:	08-302-03					
Arsenic	ND	11	EPA 6020B	8-29-19	8-29-19	
Barium	28	5.4	EPA 6020B	8-29-19	8-29-19	
Cadmium	ND	0.54	EPA 6020B	8-29-19	8-29-19	
Chromium	20	0.54	EPA 6020B	8-29-19	8-29-19	
Lead	ND	5.4	EPA 6020B	8-29-19	8-29-19	
Mercury	ND	0.27	EPA 7471B	8-30-19	8-30-19	
Selenium	ND	11	EPA 6020B	8-29-19	8-29-19	
Silver	ND	1.1	EPA 6020B	8-29-19	8-29-19	

Client ID:	SB-6-19:16.5					
Laboratory ID:	08-302-05					
Arsenic	ND	12	EPA 6020B	8-29-19	8-29-19	
Barium	39	5.8	EPA 6020B	8-29-19	8-29-19	
Cadmium	ND	0.58	EPA 6020B	8-29-19	8-29-19	
Chromium	21	0.58	EPA 6020B	8-29-19	8-29-19	
Lead	ND	5.8	EPA 6020B	8-29-19	8-29-19	
Mercury	ND	0.29	EPA 7471B	8-30-19	8-30-19	
Selenium	ND	12	EPA 6020B	8-29-19	8-29-19	
Silver	ND	1.2	EPA 6020B	8-29-19	8-29-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

21

TOTAL METALS EPA 6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0829SM1					
Arsenic	ND	10	EPA 6020B	8-29-19	8-29-19	
Barium	ND	5.0	EPA 6020B	8-29-19	8-29-19	
Cadmium	ND	0.50	EPA 6020B	8-29-19	8-29-19	
Chromium	ND	0.50	EPA 6020B	8-29-19	8-29-19	
Lead	ND	5.0	EPA 6020B	8-29-19	8-29-19	
Selenium	ND	10	EPA 6020B	8-29-19	8-29-19	
Silver	ND	1.0	EPA 6020B	8-29-19	8-29-19	
Laboratory ID:	MB0830S1					
Mercury	ND	0.25	EPA 7471B	8-30-19	8-30-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-3	06-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		I	NA	NA	NA	20	
Barium	27.7	25.6	NA	NA		1	NA	NA	8	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	17.3	16.6	NA	NA		1	NA	NA	4	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA			NA	NA	NA	20	
Laboratory ID:	08-3	06-01									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-3	06-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	97.5	97.8	100	100	ND	98	98	75-125	0	20	
Barium	130	132	100	100	27.7	103	104	75-125	1	20	
Cadmium	48.3	50.8	50.0	50.0	ND	97	102	75-125	5	20	
Chromium	121	120	100	100	17.3	103	103	75-125	0	20	
Lead	233	236	250	250	ND	93	95	75-125	1	20	
Selenium	91.3	94.5	100	100	ND	91	95	75-125	3	20	
Silver	20.1	20.0	25.0	25.0	ND	80	80	75-125	1	20	
Laboratory ID:	08-3	06-01									
Mercury	0.527	0.514	0.500	0.500	0.00640	104	102	80-120	2	20	

M

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL ORGANIC CARBON EPA 9060A

Matrix: Soil Units: % Carbon

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-6-19:16.5					
Laboratory ID:	08-302-05					
Total Organic Carbon	ND	0.042	EPA 9060A	8-30-19	8-30-19	

TOTAL ORGANIC CARBON EPA 9060A QUALITY CONTROL

Matrix: Soil Units: % Carbon

Analista		Decult	DOI	84.	the ad	Date	Date) A d	Flore
Analyte		Result	PQL	Method		Prepared	Analyzeu		Flags
METHOD BLANK									
Laboratory ID:		MB0830S1							
Total Organic Carbon		ND	0.042	EPA	9060A	8-30-19	8-30-1	9	
				-	_	_			
				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-30	02-05							
	ORIG	DUP							
Total Organic Carbon	ND	ND	NA	NA	NA	NA	NA	20	
SPIKE BLANK									
Laboratory ID:	SB08	30S1							
	S	В	SB		SB				
Total Organic Carbon	43	3.0	42.1	NA	102	90-121	NA	NA	

Date of Report: September 6, 2019 Samples Submitted: August 26, 2019 Laboratory Reference: 1908-302 Project: 21-1-22242-102

% MOISTURE

		Date
Lab ID	% Moisture	Analyzed
08-302-01	12	8-27-19
08-302-02	11	8-27-19
08-302-03	7	8-27-19
08-302-04	8	8-27-19
08-302-05	13	8-27-19
08-302-06	5	8-27-19
	Lab ID 08-302-01 08-302-02 08-302-03 08-302-04 08-302-05 08-302-06	Lab ID % Moisture 08-302-01 12 08-302-02 11 08-302-03 7 08-302-04 8 08-302-05 13 08-302-06 5

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881


```
File : X:\BTEX\DARYL\DATA\D190827\0827023.D
Operator :
Acquired : 28 Aug 2019 00:13 using AcqMethod 190701B.M
Instrument : Daryl
Sample Name: 08-302-03s 1:500
Misc Info :
Vial Number: 23
```



```
File : X:\BTEX\DARYL\DATA\D190828\0828018.D
Operator :
Acquired : 28 Aug 2019 19:09 using AcqMethod 190701B.M
Instrument : Daryl
Sample Name: 08-302-05s RR 1:100
Misc Info :
Vial Number: 18
```


September 3, 2019

Carole Leigh Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-102 Laboratory Reference No. 1908-303

Dear Carole:

Enclosed are the analytical results and associated quality control data for samples submitted on August 26, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 3, 2019 Samples Submitted: August 26, 2019 Laboratory Reference: 1908-303 Project: 21-1-22242-102

Case Narrative

Samples were collected on August 24 and 25, 2019 and received by the laboratory on August 26, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260C Analysis

The MTCA Method A cleanup level for EDC is non-achievable for samples SB-2-19, SB-9-19, and SB-6-19 due to the necessary dilutions of the samples.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-2-19					
Laboratory ID:	08-303-01					
Gasoline	88000	5000	NWTPH-Gx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	59-122				
Client ID:	SB-9-19					
Laboratory ID:	08-303-02					
Gasoline	33000	1000	NWTPH-Gx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	59-122				
Client ID:	SB-6-19					
Laboratory ID:	08-303-03					
Gasoline	51000	5000	NWTPH-Gx	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	59-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

						Date	Date		
Analyte		Result	PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB0827W1							
Gasoline		ND	100	NW	ГРН-Gx	8-27-19	8-27-1	9	
Surrogate:	Pe	rcent Recovery	/ Control Lim	its					
Fluorobenzene		90	59-122						
				Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-30	03-02							
	ORIG	DUP							
Gasoline	32900	31400	NA NA		NA	NA	5	30	

102 93

59-122

Surrogate: Fluorobenzene

M.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

America.	Desert	DOI	Mathad	Date	Date	F lower
Analyte	Result	PQL	wiethod	Prepared	Analyzed	Flags
Client ID:	SB-2-19					
Laboratory ID:	08-303-01					
Diesel Range Organics	5.7	0.30	NWTPH-Dx	8-28-19	8-28-19	М
Lube Oil Range Organics	ND	0.48	NWTPH-Dx	8-28-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
Client ID:	SB-9-19					
Laboratory ID:	08-303-02					
Diesel Range Organics	7.4	0.25	NWTPH-Dx	8-28-19	8-28-19	М
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	8-28-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	71	50-150				
Client ID:	SB-6-19					
Laboratory ID:	08-303-03					
Diesel Range Organics	3.6	0.30	NWTPH-Dx	8-28-19	8-28-19	М
Lube Oil Range Organics	ND	0.48	NWTPH-Dx	8-28-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0828W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	8-28-19	8-28-19	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	8-28-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB08	28W1								
	ORIG	DUP								
Diesel Fuel #2	0.833	0.807	NA	NA		NA	NA	3	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						86 81	50-150			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-2-19					
Laboratory ID:	08-303-01					
Benzene	2600	30	EPA 8260D	8-27-19	8-27-19	
1,2-Dichloroethane	ND	100	EPA 8260D	8-26-19	8-26-19	
Toluene	1200	50	EPA 8260D	8-26-19	8-26-19	
Ethylbenzene	3100	30	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	13000	60	EPA 8260D	8-27-19	8-27-19	
o-Xylene	4500	30	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	96	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-9-19					
Laboratory ID:	08-303-02					
Benzene	19	4.0	EPA 8260D	8-27-19	8-27-19	
1,2-Dichloroethane	ND	40	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	20	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	140	4.0	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	350	8.0	EPA 8260D	8-27-19	8-27-19	
o-Xylene	33	4.0	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	101	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-6-19					
Laboratory ID:	08-303-03					
Benzene	3400	20	EPA 8260D	8-27-19	8-27-19	
1,2-Dichloroethane	ND	100	EPA 8260D	8-26-19	8-26-19	
Toluene	430	50	EPA 8260D	8-26-19	8-26-19	
Ethylbenzene	2000	10	EPA 8260D	8-26-19	8-26-19	
m,p-Xylene	7000	40	EPA 8260D	8-27-19	8-27-19	
o-Xylene	1800	10	EPA 8260D	8-26-19	8-26-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	97	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	08-303-04					
Benzene	ND	0.20	EPA 8260D	8-27-19	8-27-19	
1,2-Dichloroethane	ND	2.0	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	1.0	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	ND	0.20	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	ND	0.40	EPA 8260D	8-27-19	8-27-19	
o-Xylene	ND	0.20	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	97	78-125				

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0826W1					
Benzene	ND	0.20	EPA 8260D	8-26-19	8-26-19	
1,2-Dichloroethane	ND	2.0	EPA 8260D	8-26-19	8-26-19	
Toluene	ND	1.0	EPA 8260D	8-26-19	8-26-19	
Ethylbenzene	ND	0.20	EPA 8260D	8-26-19	8-26-19	
m,p-Xylene	ND	0.40	EPA 8260D	8-26-19	8-26-19	
o-Xylene	ND	0.20	EPA 8260D	8-26-19	8-26-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	96	78-125				
Laboratory ID:	MB0827W1					
Benzene	ND	0.20	EPA 8260D	8-27-19	8-27-19	
1,2-Dichloroethane	ND	2.0	EPA 8260D	8-27-19	8-27-19	
Toluene	ND	1.0	EPA 8260D	8-27-19	8-27-19	
Ethylbenzene	ND	0.20	EPA 8260D	8-27-19	8-27-19	
m,p-Xylene	ND	0.40	EPA 8260D	8-27-19	8-27-19	
o-Xylene	ND	0.20	EPA 8260D	8-27-19	8-27-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	98	78-125				

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	26W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.29	9.15	10.0	10.0	93	92	63-130	2	17	
Benzene	8.54	8.49	10.0	10.0	85	85	76-125	1	19	
Trichloroethene	9.85	9.68	10.0	10.0	99	97	76-121	2	18	
Toluene	8.93	8.67	10.0	10.0	89	87	80-124	3	18	
Chlorobenzene	10.6	10.5	10.0	10.0	106	105	75-120	1	19	
Surrogate:										
Dibromofluoromethane					100	103	75-127			
Toluene-d8					100	100	80-127			
4-Bromofluorobenzene					98	96	78-125			
Laboratory ID:	SB08	27W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.15	9.03	10.0	10.0	92	90	63-130	1	17	
Benzene	9.43	9.49	10.0	10.0	94	95	76-125	1	19	
Trichloroethene	9.54	9.46	10.0	10.0	95	95	76-121	1	18	
Toluene	9.01	8.83	10.0	10.0	90	88	80-124	2	18	
Chlorobenzene	10.4	10.2	10.0	10.0	104	102	75-120	2	19	
Surrogate:										
Dibromofluoromethane					107	108	75-127			
Toluene-d8					104	103	80-127			
4-Bromofluorobenzene					100	98	78-125			

12

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-2-19					
Laboratory ID:	08-303-01					
Benzo[a]anthracene	0.043	0.011	EPA 8270E/SIM	8-28-19	8-28-19	
Chrysene	0.031	0.011	EPA 8270E/SIM	8-28-19	8-28-19	
Benzo[b]fluoranthene	0.021	0.011	EPA 8270E/SIM	8-28-19	8-28-19	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270E/SIM	8-28-19	8-28-19	
Benzo[a]pyrene	0.027	0.011	EPA 8270E/SIM	8-28-19	8-28-19	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270E/SIM	8-28-19	8-28-19	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270E/SIM	8-28-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	61	27 - 106				
Pyrene-d10	78	35 - 98				
Terphenyl-d14	73	41 - 129				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-9-19					
Laboratory ID:	08-303-02					
Benzo[a]anthracene	ND	0.036	EPA 8270E/SIM	8-28-19	8-29-19	
Chrysene	ND	0.036	EPA 8270E/SIM	8-28-19	8-29-19	
Benzo[b]fluoranthene	ND	0.036	EPA 8270E/SIM	8-28-19	8-29-19	
Benzo(j,k)fluoranthene	ND	0.036	EPA 8270E/SIM	8-28-19	8-29-19	
Benzo[a]pyrene	ND	0.036	EPA 8270E/SIM	8-28-19	8-29-19	
Indeno(1,2,3-c,d)pyrene	ND	0.036	EPA 8270E/SIM	8-28-19	8-29-19	
Dibenz[a,h]anthracene	ND	0.036	EPA 8270E/SIM	8-28-19	8-29-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	27 - 106				
Pyrene-d10	78	35 - 98				
Terphenyl-d14	73	41 - 129				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-6-19					
Laboratory ID:	08-303-03					
Benzo[a]anthracene	ND	0.040	EPA 8270E/SIM	8-28-19	8-29-19	
Chrysene	ND	0.040	EPA 8270E/SIM	8-28-19	8-29-19	
Benzo[b]fluoranthene	ND	0.040	EPA 8270E/SIM	8-28-19	8-29-19	
Benzo(j,k)fluoranthene	ND	0.040	EPA 8270E/SIM	8-28-19	8-29-19	
Benzo[a]pyrene	ND	0.040	EPA 8270E/SIM	8-28-19	8-29-19	
Indeno(1,2,3-c,d)pyrene	ND	0.040	EPA 8270E/SIM	8-28-19	8-29-19	
Dibenz[a,h]anthracene	ND	0.040	EPA 8270E/SIM	8-28-19	8-29-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	43	27 - 106				
Pyrene-d10	59	35 - 98				
Terphenyl-d14	58	41 - 129				

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0828W1					
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	8-28-19	8-28-19	
Chrysene	ND	0.010	EPA 8270E/SIM	8-28-19	8-28-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	8-28-19	8-28-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	8-28-19	8-28-19	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	8-28-19	8-28-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	8-28-19	8-28-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	8-28-19	8-28-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	27 - 106				
Pyrene-d10	84	35 - 98				
Terphenyl-d14	91	41 - 129				

cPAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Ũ					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	28W1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.516	0.510	0.500	0.500	103	102	59 - 127	1	24	
Chrysene	0.490	0.464	0.500	0.500	98	93	57 - 122	5	24	
Benzo[b]fluoranthene	0.488	0.466	0.500	0.500	98	93	58 - 123	5	26	
Benzo(j,k)fluoranthene	0.513	0.505	0.500	0.500	103	101	60 - 123	2	22	
Benzo[a]pyrene	0.445	0.441	0.500	0.500	89	88	54 - 121	1	24	
Indeno(1,2,3-c,d)pyrene	0.463	0.443	0.500	0.500	93	89	55 - 125	4	26	
Dibenz[a,h]anthracene	0.463	0.452	0.500	0.500	93	90	57 - 127	2	25	
Surrogate:										
2-Fluorobiphenyl					62	61	27 - 106			
Pyrene-d10					88	81	35 - 98			
Terphenyl-d14					90	87	41 - 129			

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-2-19					
Laboratory ID:	08-303-01					
Arsenic	47	3.3	EPA 200.8	8-28-19	8-29-19	
Barium	1000	28	EPA 200.8	8-28-19	8-29-19	
Cadmium	ND	4.4	EPA 200.8	8-28-19	8-29-19	
Chromium	540	11	EPA 200.8	8-28-19	8-29-19	
Lead	35	1.1	EPA 200.8	8-28-19	8-29-19	
Mercury	ND	0.50	EPA 7470A	8-29-19	8-29-19	
Selenium	7.3	5.6	EPA 200.8	8-28-19	8-29-19	
Silver	ND	11	EPA 200.8	8-28-19	8-29-19	

Client ID:	SB-9-19					
Laboratory ID:	08-303-02					
Arsenic	59	3.3	EPA 200.8	8-28-19	8-29-19	
Barium	2100	28	EPA 200.8	8-28-19	8-29-19	
Cadmium	5.1	4.4	EPA 200.8	8-28-19	8-29-19	
Chromium	1100	56	EPA 200.8	8-28-19	8-29-19	
Lead	230	1.1	EPA 200.8	8-28-19	8-29-19	
Mercury	1.1	0.50	EPA 7470A	8-29-19	8-29-19	
Selenium	19	5.6	EPA 200.8	8-28-19	8-29-19	
Silver	ND	11	EPA 200.8	8-28-19	8-29-19	

Client ID:	SB-6-19					
Laboratory ID:	08-303-03					
Arsenic	75	3.3	EPA 200.8	8-28-19	8-29-19	
Barium	850	28	EPA 200.8	8-28-19	8-29-19	
Cadmium	ND	4.4	EPA 200.8	8-28-19	8-29-19	
Chromium	280	11	EPA 200.8	8-28-19	8-29-19	
Lead	30	1.1	EPA 200.8	8-28-19	8-29-19	
Mercury	ND	0.50	EPA 7470A	8-29-19	8-29-19	
Selenium	ND	5.6	EPA 200.8	8-28-19	8-29-19	
Silver	ND	11	EPA 200.8	8-28-19	8-29-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

•				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0828WM1					
Arsenic	ND	3.3	EPA 200.8	8-28-19	8-29-19	
Barium	ND	28	EPA 200.8	8-28-19	8-29-19	
Cadmium	ND	4.4	EPA 200.8	8-28-19	8-29-19	
Chromium	ND	11	EPA 200.8	8-28-19	8-29-19	
Lead	ND	1.1	EPA 200.8	8-28-19	8-29-19	
Selenium	ND	5.6	EPA 200.8	8-28-19	8-29-19	
Silver	ND	11	EPA 200.8	8-28-19	8-29-19	
Laboratory ID:	MB0829W1					
Mercury	ND	0.50	EPA 7470A	8-29-19	8-29-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-2	75-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Barium	ND	ND	NA	NA			NA	NA	NA	20	
Cadmium	ND	ND	NA	NA			NA	NA	NA	20	
Chromium	ND	ND	NA	NA			NA	NA	NA	20	
Lead	ND	ND	NA	NA			NA	NA	NA	20	
Selenium	ND	ND	NA	NA			NA	NA	NA	20	
Silver	ND	ND	NA	NA			NA	NA	NA	20	
Laboratory ID:	08-0	79-03									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-2	75-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	103	109	111	111	ND	93	99	75-125	6	20	
Barium	102	102	111	111	ND	92	92	75-125	0	20	
Cadmium	104	106	111	111	ND	93	95	75-125	2	20	

											_
Mercury	11.9	12.3	12.5	12.5	ND	95	98	75-125	3	20	
Laboratory ID:	08-0	79-03									
Silver	91.1	90.4	111	111	ND	82	82	75-125	1	20	
Selenium	100	103	111	111	ND	90	93	75-125	3	20	
Lead	97.3	98.7	111	111	ND	88	89	75-125	1	20	
Chromium	102	105	111	111	ND	92	95	75-125	3	20	
Cadmium	104	106	111	111	ND	93	95	75-125	2	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-2-19					
Laboratory ID:	08-303-01					
Arsenic	8.0	3.0	EPA 200.8	8-26-19	8-27-19	
Barium	75	25	EPA 200.8	8-26-19	8-27-19	
Cadmium	ND	4.0	EPA 200.8	8-26-19	8-27-19	
Chromium	ND	10	EPA 200.8	8-26-19	8-27-19	
Lead	ND	1.0	EPA 200.8	8-26-19	8-27-19	
Mercury	ND	0.50	EPA 7470A	8-29-19	8-29-19	
Selenium	ND	5.0	EPA 200.8	8-26-19	8-27-19	
Silver	ND	10	EPA 200.8	8-26-19	8-27-19	

Client ID:	SB-9-19					
Laboratory ID:	08-303-02					
Arsenic	5.1	3.0	EPA 200.8	8-26-19	8-27-19	
Barium	69	25	EPA 200.8	8-26-19	8-27-19	
Cadmium	ND	4.0	EPA 200.8	8-26-19	8-27-19	
Chromium	ND	10	EPA 200.8	8-26-19	8-27-19	
Lead	ND	1.0	EPA 200.8	8-26-19	8-27-19	
Mercury	ND	0.50	EPA 7470A	8-29-19	8-29-19	
Selenium	ND	5.0	EPA 200.8	8-26-19	8-27-19	
Silver	ND	10	EPA 200.8	8-26-19	8-27-19	

Client ID:	SB-6-19					
Laboratory ID:	08-303-03					
Arsenic	32	3.0	EPA 200.8	8-26-19	8-27-19	
Barium	60	25	EPA 200.8	8-26-19	8-27-19	
Cadmium	ND	4.0	EPA 200.8	8-26-19	8-27-19	
Chromium	ND	10	EPA 200.8	8-26-19	8-27-19	
Lead	ND	1.0	EPA 200.8	8-26-19	8-27-19	
Mercury	ND	0.50	EPA 7470A	8-29-19	8-29-19	
Selenium	ND	5.0	EPA 200.8	8-26-19	8-27-19	
Silver	ND	10	EPA 200.8	8-26-19	8-27-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

20

DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Chromium

Selenium

Mercury

Laboratory ID:

A

Lead

Silver

81.2

77.2

79.2

71.0

12.1

80.2

76.8

77.6

73.6

12.1

08-303-03

80.0

80.0

80.0

80.0

12.5

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0826F1					
Arsenic	ND	3.0	EPA 200.8	8-26-19	8-27-19	
Barium	ND	25	EPA 200.8	8-26-19	8-27-19	
Cadmium	ND	4.0	EPA 200.8	8-26-19	8-27-19	
Chromium	ND	10	EPA 200.8	8-26-19	8-27-19	
Lead	ND	1.0	EPA 200.8	8-26-19	8-27-19	
Selenium	ND	5.0	EPA 200.8	8-26-19	8-27-19	
Silver	ND	10	EPA 200.8	8-26-19	8-27-19	
Laboratory ID:	MB0829F1					
Mercury	ND	0.50	EPA 7470A	8-29-19	8-29-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-20	67-03									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Barium	25.4	25.0	NA	NA		I	NA	NA	2	20	
Cadmium	ND	ND	NA	NA		I	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		I	NA	NA	NA	20	
Lead	ND	ND	NA	NA		I	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		I	NA	NA	NA	20	
Silver	ND	ND	NA	NA			NA	NA	NA	20	
Laboratory ID:	08-30	03-03									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-20	67-03									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	82.2	80.6	80.0	80.0	ND	103	101	75-125	2	20	
Barium	102	100	80.0	80.0	25.4	95	93	75-125	2	20	
Cadmium	77.6	78.8	80.0	80.0	ND	97	99	75-125	2	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

80.0

80.0

80.0

80.0

12.5

ND

ND

ND

ND

ND

102

97

99

89

97

100

96

97

92

97

75-125

75-125

75-125

75-125

75-125

1

1

2

4

0

20

20

20

20

20

1,2-DIBROMOETHANE (EDB) EPA 8011

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-2-19					
Laboratory ID:	08-303-01					
EDB	ND	0.010	EPA 8011	8-28-19	8-29-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	48	25-143				
Client ID:	SB-9-19					
Laboratory ID:	08-303-02					
EDB	ND	0.010	EPA 8011	8-28-19	8-29-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	83	25-143				
Client ID:	SB-6-19					
Laboratory ID:	08-303-03					
EDB	ND	0.010	EPA 8011	8-28-19	8-29-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	48	25-143				

1,2-DIBROMOETHANE (EDB) EPA 8011 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0828W1					
EDB	ND	0.010	EPA 8011	8-28-19	8-29-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	65	25-143				
		S	ource Percen	t Recovery	RPI	h

					000100						
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB08	28W1									
	SB	SBD	SB	SBD		SB	SBD				
EDB	0.0842	0.0791	0.100	0.100	N/A	84	79	57-124	6	15	
Surrogate: TCMX						58	64	25-143			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881


```
File : X:\BTEX\HOPE\DATA\H190827\0827010.D
Operator :
Acquired : 27 Aug 2019 17:55 using AcqMethod 190730B.M
Instrument : Hope
Sample Name: 08-303-01f 1:50
Misc Info :
Vial Number: 10
```



```
File : X:\BTEX\HOPE\DATA\H190827\0827007.D
Operator :
Acquired : 27 Aug 2019 16:10 using AcqMethod 190730B.M
Instrument : Hope
Sample Name: 08-303-02f 1:10
Misc Info :
Vial Number: 7
```


File :	: X:\BTEX\HOPE\DATA\H190827\0827012.D
Operator :	
Acquired :	: 27 Aug 2019 19:11 using AcqMethod 190730B.M
Instrument :	: Hope
Sample Name:	: 08-303-03f 1:50
Misc Info :	
Vial Number:	: 12

File :X:\DIESELS\VIGO\DATA\V190828.SEC\0828-V70.D Operator : JT Acquired : 28 Aug 2019 20:50 using AcqMethod V180601F.M Instrument : Vigo Sample Name: 08-303-01 Misc Info : Vial Number: 70

File :X:\DIESELS\VIGO\DATA\V190828.SEC\0828-V71.D Operator : JT Acquired : 28 Aug 2019 21:31 using AcqMethod V180601F.M Instrument : Vigo Sample Name: 08-303-02 Misc Info : Vial Number: 71

File :X:\DIESELS\VIGO\DATA\V190828.SEC\0828-V72.D Operator : JT Acquired : 28 Aug 2019 22:12 using AcqMethod V180601F.M Instrument : Vigo Sample Name: 08-303-03 Misc Info : Vial Number: 72

September 19, 2019

Carole Leigh Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-102 Laboratory Reference No. 1909-159

Dear Carole:

Enclosed are the analytical results and associated quality control data for samples submitted on September 16, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: September 19, 2019 Samples Submitted: September 16, 2019 Laboratory Reference: 1909-159 Project: 21-1-22242-102

Case Narrative

Samples were collected on September 16, 2019 and received by the laboratory on September 16, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-691p-16:GW1					
Laboratory ID:	09-159-01					
Gasoline	ND	100	NWTPH-Gx	9-16-19	9-16-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	118	59-122				
Client ID:	H-667p-15:GW1					
Laboratory ID:	09-159-02					
Gasoline	ND	100	NWTPH-Gx	9-16-19	9-16-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	59-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Date	•	
Analyte		Result		PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK										
Laboratory ID:		MB0916W1								
Gasoline		ND		100	NW	ГРН-Gx	9-16-19	9-16-1	19	
Surrogate:	Pe	rcent Recovery	/ Con	trol Limi	its					
Fluorobenzene		119	5	9-122						
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-15	59-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						118 109	9 59-122			

M

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-691p-16:GW1					
Laboratory ID:	09-159-01					
Diesel Range Organics	ND	0.28	NWTPH-Dx	9-16-19	9-17-19	
Lube Oil Range Organics	ND	0.45	NWTPH-Dx	9-16-19	9-17-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
Client ID:	H-667p-15:GW1					
Laboratory ID:	09-159-02					
Discol Dange Organice	ND	0.26		0.16.10	0 17 10	

Diesel Range Organics	ND	0.26	NWTPH-Dx	9-16-19	9-17-19	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	9-16-19	9-17-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	9-16-19	9-17-19	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	9-16-19	9-17-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB09	16W1								
	ORIG	DUP								
Diesel Fuel #2	0.998	0.960	NA	NA		NA	NA	4	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						102 97	50-150			

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-691p-16:GW1					
Laboratory ID:	09-159-01					
Benzene	ND	0.20	EPA 8260D	9-17-19	9-17-19	
Toluene	ND	1.0	EPA 8260D	9-17-19	9-17-19	
Ethylbenzene	ND	0.20	EPA 8260D	9-17-19	9-17-19	
m,p-Xylene	ND	0.40	EPA 8260D	9-17-19	9-17-19	
o-Xylene	ND	0.20	EPA 8260D	9-17-19	9-17-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	94	78-125				

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-667p-15:GW1					
Laboratory ID:	09-159-02					
Benzene	ND	0.20	EPA 8260D	9-17-19	9-17-19	
Toluene	ND	1.0	EPA 8260D	9-17-19	9-17-19	
Ethylbenzene	ND	0.20	EPA 8260D	9-17-19	9-17-19	
m,p-Xylene	ND	0.40	EPA 8260D	9-17-19	9-17-19	
o-Xylene	ND	0.20	EPA 8260D	9-17-19	9-17-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	75-127				
Toluene-d8	117	80-127				
4-Bromofluorobenzene	102	78-125				

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TRIP BLANK					
Laboratory ID:	09-159-03					
Benzene	ND	0.20	EPA 8260D	9-17-19	9-17-19	
Toluene	ND	1.0	EPA 8260D	9-17-19	9-17-19	
Ethylbenzene	ND	0.20	EPA 8260D	9-17-19	9-17-19	
m,p-Xylene	ND	0.40	EPA 8260D	9-17-19	9-17-19	
o-Xylene	ND	0.20	EPA 8260D	9-17-19	9-17-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	95	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0917W2					
Benzene	ND	0.20	EPA 8260D	9-17-19	9-17-19	
Toluene	ND	1.0	EPA 8260D	9-17-19	9-17-19	
Ethylbenzene	ND	0.20	EPA 8260D	9-17-19	9-17-19	
m,p-Xylene	ND	0.40	EPA 8260D	9-17-19	9-17-19	
o-Xylene	ND	0.20	EPA 8260D	9-17-19	9-17-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	75-127				
Toluene-d8	114	80-127				
4-Bromofluorobenzene	100	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Result		Spike	Spike Level		overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	17W2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	8.94	8.08	10.0	10.0	89	81	63-130	10	17	
Benzene	9.62	8.89	10.0	10.0	96	89	76-125	8	19	
Trichloroethene	10.7	9.82	10.0	10.0	107	98	76-121	9	18	
Toluene	10.4	9.44	10.0	10.0	104	94	80-124	10	18	
Chlorobenzene	11.0	10.0	10.0	10.0	110	100	75-120	10	19	
Surrogate:										
Dibromofluoromethane					105	112	75-127			
Toluene-d8					107	110	80-127			
4-Bromofluorobenzene					93	101	78-125			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature				3 TEIP BLANK	2 H-667p-15:GW1	1 H-691 p-16:GWI	Lab ID Sample Identification	Sampled by: Drin / CT-C	CAROLE LIEICH	SRS20 MONTLAKE VCP	21-1-22242-102	SHANNON & WILSON Project Number	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date					S (CURE 9/16/13	1 stud chielia	Company Date	-			9/18/19 - WATUR 2	9/12/19/2/5 WARE XX	9/16/19 1020 WATER # X +	Sampled Sampled Matrix Number NWTP	(other) (other	Contain	Standard (7 Days)	2 Days 73 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days) Laboratory	Chain of Custody
Chromatograms with final report 🔲 Electronic Data Deliverables (EDDs) 🗌	Data Package: Standard 🖌 Level III 🗌 Level IV 🗌				1212	1315	Time Comments/Special Instructions				×	×		Volatil R T Halogy EDB E Semiv (with I PAHs PCBs Organ Organ Organ Chlori Total N TCLP HEM (es 8260 PA 80 ⁻¹ rolatiles 8270D/ 8082A ochlori ophosp nated / Metals oil and sture	Volatile Volatile e 8270D el PAHe SIM (Ic SIM (Ic Acid He Acid He Actals grease	8 2-60 ers Only) V/SIM i) ww-level) ticides 8 Pesticides rbicides	2 C	OD/SIM		Number: 09 - 159	Page of

October 4, 2019

Carole Leigh Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-102; SR 520 Montlake VCP Laboratory Reference No. 1909-249

Dear Carole:

Enclosed are the analytical results and associated quality control data for samples submitted on September 24, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: October 4, 2019 Samples Submitted: September 24, 2019 Laboratory Reference: 1909-249 Project: 21-1-22242-102; SR 520 Montlake VCP

Case Narrative

Samples were collected on September 23, 2019 and received by the laboratory on September 24, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-4-19:10.0					
Laboratory ID:	09-249-01					
Gasoline	ND	5.7	NWTPH-Gx	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	58-129				
Client ID:	SB-4-19:16.0					
Laboratory ID:	09-249-02					
Gasoline	ND	5.5	NWTPH-Gx	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	58-129				
Client ID:	MW-2-19:16.0					
Laboratory ID:	09-249-05					
Gasoline	ND	6.2	NWTPH-Gx	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	58-129				
Client ID:	MW-2-19:20.5					
Laboratory ID:	09-249-06					
Gasoline	ND	5.0	NWTPH-Gx	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	58-129				
Client ID:	SB-3-19:15.0					
Laboratory ID:	09-249-09					
Gasoline	ND	5.1	NWTPH-Gx	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	58-129				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

								Date	Date	•	
Analyte		Result	PC	۶L	Ме	thod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB0926S2									
Gasoline		ND	5.	.0	NWT	PH-G	х	9-26-19	9-26-1	19	
Surrogate:	Pe	rcent Recover	y Contro	l Lim	its						
Fluorobenzene		87	58-	129							
					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike Le	vel	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-27	74-02									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						86	88	58-129			

4

Date of Report: October 4, 2019 Samples Submitted: September 24, 2019 Laboratory Reference: 1909-249 Project: 21-1-22242-102; SR 520 Montlake VCP

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-4-19					
Laboratory ID:	09-249-03					
Gasoline	ND	100	NWTPH-Gx	9-25-19	9-25-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	59-122				
Client ID:	SB-100-19					
Laboratory ID:	09-249-04					
Gasoline	ND	400	NWTPH-Gx	9-25-19	9-25-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	59-122				
Client ID:	SB-3-19					
Laboratory ID:	09-249-11					
Gasoline	ND	100	NWTPH-Gx	9-25-19	9-25-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	59-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Date	•		
Analyte	Result		PQL		Method		Prepared	Analyz	ed	Flags	
METHOD BLANK											
Laboratory ID:		MB0925W1									
Gasoline		ND		100	NWT	「PH-Gx	9-25-19	9-25-2	19		
Surrogate:	Pe	rcent Recovery	/ Con	trol Limi	ts						
Fluorobenzene		106	5	9-122							
					Source	Percent	Recovery		RPD		
Analyte	Res	sult	Spike	Level	Result	Recovery	/ Limits	RPD	Limit	Flags	
DUPLICATE											
Laboratory ID:	09-24	49-03									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		NA	NA	NA	30		
Surrogate:											
Fluorobenzene						108 11	1 59-122				

6

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

5 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-3-19					
Laboratory ID:	09-249-11					
Diesel Range Organics	ND	0.25	NWTPH-Dx	9-25-19	9-26-19	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	9-25-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

Date of Report: October 4, 2019 Samples Submitted: September 24, 2019 Laboratory Reference: 1909-249 Project: 21-1-22242-102; SR 520 Montlake VCP

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0925W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	9-25-19	9-26-19	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	9-25-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB09	25W1								
	ORIG	DUP								
Diesel Fuel #2	1.06	0.962	NA	NA		NA	NA	10	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						110 102	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

8

EDB by EPA 8011

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-3-19					
Laboratory ID:	09-249-11					
EDB	ND	0.010	EPA 8011	10-3-19	10-3-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	71	25-143				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
EDB by EPA 8011 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1003W1					
EDB	ND	0.010	EPA 8011	10-3-19	10-3-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	68	25-143				

Analyte	Re	sult	Spike	Level	Source Result	Pe Rec	rcent covery	Recovery Limits	RPD	RPD Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB10	03W1									
	SB	SBD	SB	SBD		SB	SBD				
EDB	0.0763	0.0866	0.100	0.100	N/A	76	87	57-124	13	15	
Surrogate:											
TCMX						58	64	25-143			

10

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-4-19:10.0					
Laboratory ID:	09-249-01					
Benzene	ND	0.0013	EPA 8260D	9-26-19	9-26-19	
1,2-Dichloroethane	ND	0.0013	EPA 8260D	9-26-19	9-26-19	
Toluene	ND	0.0066	EPA 8260D	9-26-19	9-26-19	
1,2-Dibromoethane	ND	0.0013	EPA 8260D	9-26-19	9-26-19	
Ethylbenzene	ND	0.0013	EPA 8260D	9-26-19	9-26-19	
m,p-Xylene	ND	0.0026	EPA 8260D	9-26-19	9-26-19	
o-Xylene	ND	0.0013	EPA 8260D	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	76-131				
Toluene-d8	97	78-128				
4-Bromofluorobenzene	93	71-130				

11

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-4-19:16.0					
Laboratory ID:	09-249-02					
Benzene	ND	0.00095	EPA 8260D	9-26-19	9-26-19	
Toluene	ND	0.0047	EPA 8260D	9-26-19	9-26-19	
Ethylbenzene	ND	0.00095	EPA 8260D	9-26-19	9-26-19	
m,p-Xylene	ND	0.0019	EPA 8260D	9-26-19	9-26-19	
o-Xylene	ND	0.00095	EPA 8260D	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	76-131				
Toluene-d8	101	78-128				
4-Bromofluorobenzene	106	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-19:16.0					
Laboratory ID:	09-249-05					
Benzene	ND	0.0011	EPA 8260D	9-26-19	9-26-19	
1,2-Dichloroethane	ND	0.0011	EPA 8260D	9-26-19	9-26-19	
Toluene	ND	0.0054	EPA 8260D	9-26-19	9-26-19	
1,2-Dibromoethane	ND	0.0011	EPA 8260D	9-26-19	9-26-19	
Ethylbenzene	ND	0.0011	EPA 8260D	9-26-19	9-26-19	
m,p-Xylene	ND	0.0022	EPA 8260D	9-26-19	9-26-19	
o-Xylene	ND	0.0011	EPA 8260D	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	76-131				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	105	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-19:20.5					
Laboratory ID:	09-249-06					
Benzene	ND	0.00074	EPA 8260D	9-26-19	9-26-19	
Toluene	ND	0.0037	EPA 8260D	9-26-19	9-26-19	
Ethylbenzene	ND	0.00074	EPA 8260D	9-26-19	9-26-19	
m,p-Xylene	ND	0.0015	EPA 8260D	9-26-19	9-26-19	
o-Xylene	ND	0.00074	EPA 8260D	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	76-131				
Toluene-d8	97	78-128				
4-Bromofluorobenzene	101	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-3-19:15.0					
Laboratory ID:	09-249-09					
Benzene	ND	0.00089	EPA 8260D	9-26-19	9-26-19	
1,2-Dichloroethane	ND	0.00089	EPA 8260D	9-26-19	9-26-19	
Toluene	ND	0.0044	EPA 8260D	9-26-19	9-26-19	
1,2-Dibromoethane	ND	0.00089	EPA 8260D	9-26-19	9-26-19	
Ethylbenzene	ND	0.00089	EPA 8260D	9-26-19	9-26-19	
m,p-Xylene	ND	0.0018	EPA 8260D	9-26-19	9-26-19	
o-Xylene	ND	0.00089	EPA 8260D	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	76-131				
Toluene-d8	101	78-128				
4-Bromofluorobenzene	106	71-130				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0926S1					
Benzene	ND	0.0010	EPA 8260D	9-26-19	9-26-19	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	9-26-19	9-26-19	
Toluene	ND	0.0050	EPA 8260D	9-26-19	9-26-19	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	9-26-19	9-26-19	
Ethylbenzene	ND	0.0010	EPA 8260D	9-26-19	9-26-19	
m,p-Xylene	ND	0.0020	EPA 8260D	9-26-19	9-26-19	
o-Xylene	ND	0.0010	EPA 8260D	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	76-131				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	106	71-130				

16

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	26S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0596	0.0594	0.0500	0.0500	119	119	57-133	0	18	
Benzene	0.0420	0.0427	0.0500	0.0500	84	85	71-129	2	16	
Trichloroethene	0.0554	0.0543	0.0500	0.0500	111	109	71-122	2	16	
Toluene	0.0506	0.0489	0.0500	0.0500	101	98	74-125	3	15	
Chlorobenzene	0.0515	0.0489	0.0500	0.0500	103	98	72-120	5	14	
Surrogate:										
Dibromofluoromethane					99	100	76-131			
Toluene-d8					101	97	78-128			
4-Bromofluorobenzene					108	107	71-130			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-4-19					
Laboratory ID:	09-249-03					
Benzene	ND	0.20	EPA 8260D	9-26-19	9-26-19	
Toluene	ND	1.0	EPA 8260D	9-26-19	9-26-19	
Ethylbenzene	ND	0.20	EPA 8260D	9-26-19	9-26-19	
m,p-Xylene	ND	0.40	EPA 8260D	9-26-19	9-26-19	
o-Xylene	ND	0.20	EPA 8260D	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	75-127				
Toluene-d8	110	80-127				
4-Bromofluorobenzene	86	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-100-19					
Laboratory ID:	09-249-04					
Benzene	ND	0.20	EPA 8260D	9-26-19	9-26-19	
Toluene	ND	1.0	EPA 8260D	9-26-19	9-26-19	
Ethylbenzene	ND	0.20	EPA 8260D	9-26-19	9-26-19	
m,p-Xylene	ND	0.40	EPA 8260D	9-26-19	9-26-19	
o-Xylene	ND	0.20	EPA 8260D	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	75-127				
Toluene-d8	113	80-127				
4-Bromofluorobenzene	83	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-3-19					
Laboratory ID:	09-249-11					
Benzene	ND	0.20	EPA 8260D	9-26-19	9-26-19	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-26-19	9-26-19	
Toluene	ND	1.0	EPA 8260D	9-26-19	9-26-19	
Ethylbenzene	ND	0.20	EPA 8260D	9-26-19	9-26-19	
m,p-Xylene	ND	0.40	EPA 8260D	9-26-19	9-26-19	
o-Xylene	ND	0.20	EPA 8260D	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	119	75-127				
Toluene-d8	114	80-127				
4-Bromofluorobenzene	89	78-125				

Date of Report: October 4, 2019 Samples Submitted: September 24, 2019 Laboratory Reference: 1909-249 Project: 21-1-22242-102; SR 520 Montlake VCP

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0926W2					
Benzene	ND	0.20	EPA 8260D	9-26-19	9-26-19	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-26-19	9-26-19	
Toluene	ND	1.0	EPA 8260D	9-26-19	9-26-19	
Ethylbenzene	ND	0.20	EPA 8260D	9-26-19	9-26-19	
m,p-Xylene	ND	0.40	EPA 8260D	9-26-19	9-26-19	
o-Xylene	ND	0.20	EPA 8260D	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	75-127				
Toluene-d8	113	80-127				
4-Bromofluorobenzene	80	78-125				

21

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB092	26W2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.17	8.14	10.0	10.0	92	81	63-130	12	17	
Benzene	9.53	8.54	10.0	10.0	95	85	76-125	11	19	
Trichloroethene	10.1	9.30	10.0	10.0	101	93	76-121	8	18	
Toluene	9.79	9.07	10.0	10.0	98	91	80-124	8	18	
Chlorobenzene	11.1	10.3	10.0	10.0	111	103	75-120	7	19	
Surrogate:										
Dibromofluoromethane					118	118	75-127			
Toluene-d8					112	112	80-127			
4-Bromofluorobenzene					86	84	78-125			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-4-19:10.0					
Laboratory ID:	09-249-01					
Benzo[a]anthracene	ND	0.0078	EPA 8270E/SIM	9-25-19	9-25-19	
Chrysene	ND	0.0078	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo[b]fluoranthene	ND	0.0078	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo(j,k)fluoranthene	ND	0.0078	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo[a]pyrene	ND	0.0078	EPA 8270E/SIM	9-25-19	9-25-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0078	EPA 8270E/SIM	9-25-19	9-25-19	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270E/SIM	9-25-19	9-25-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	40 - 111				
Pyrene-d10	60	40 - 110				
Terphenyl-d14	63	45 - 122				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-19:16.0					
Laboratory ID:	09-249-05					
Benzo[a]anthracene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Chrysene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo[a]pyrene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	40 - 111				
Pyrene-d10	83	40 - 110				
Terphenyl-d14	82	45 - 122				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-3-19:15.0					
Laboratory ID:	09-249-09					
Benzo[a]anthracene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Chrysene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo[a]pyrene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270E/SIM	9-25-19	9-25-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	40 - 111				
Pyrene-d10	79	40 - 110				
Terphenyl-d14	82	45 - 122				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0925S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	9-25-19	9-25-19	
Chrysene	ND	0.0067	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	9-25-19	9-25-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	9-25-19	9-25-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	9-25-19	9-25-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	98	40 - 111				
Pyrene-d10	92	40 - 110				
Terphenyl-d14	91	45 - 122				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-24	49-05									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0804	0.0770	0.0833	0.0833	ND	97	92	53 - 131	4	23	
Chrysene	0.0804	0.0770	0.0833	0.0833	ND	97	92	46 - 126	4	24	
Benzo[b]fluoranthene	0.0771	0.0750	0.0833	0.0833	ND	93	90	45 - 127	3	25	
Benzo(j,k)fluoranthene	0.0810	0.0741	0.0833	0.0833	ND	97	89	52 - 122	9	21	
Benzo[a]pyrene	0.0770	0.0691	0.0833	0.0833	ND	92	83	51 - 126	11	24	
Indeno(1,2,3-c,d)pyrene	0.0797	0.0708	0.0833	0.0833	ND	96	85	48 - 127	12	23	
Dibenz[a,h]anthracene	0.0774	0.0725	0.0833	0.0833	ND	93	87	51 - 124	7	22	
Surrogate:											
2-Fluorobiphenyl						88	89	40 - 111			
Pyrene-d10						88	85	40 - 110			
Terphenyl-d14						88	82	45 - 122			

27

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-3-19					
Laboratory ID:	09-249-11					
Benzo[a]anthracene	ND	0.013	EPA 8270E/SIM	9-25-19	9-25-19	
Chrysene	ND	0.013	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo[b]fluoranthene	ND	0.013	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo(j,k)fluoranthene	ND	0.013	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo[a]pyrene	ND	0.013	EPA 8270E/SIM	9-25-19	9-25-19	
Indeno(1,2,3-c,d)pyrene	ND	0.013	EPA 8270E/SIM	9-25-19	9-25-19	
Dibenz[a,h]anthracene	ND	0.013	EPA 8270E/SIM	9-25-19	9-25-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	27 - 106				
Pyrene-d10	86	35 - 98				
Terphenyl-d14	92	41 - 129				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0925W1					
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	9-25-19	9-25-19	
Chrysene	ND	0.010	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	9-25-19	9-25-19	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	9-25-19	9-25-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	9-25-19	9-25-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	9-25-19	9-25-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	59	27 - 106				
Pyrene-d10	96	35 - 98				
Terphenyl-d14	98	41 - 129				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Water Units: ug/L

					Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	25W1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.499	0.533	0.500	0.500	100	107	59 - 127	7	24	
Chrysene	0.503	0.524	0.500	0.500	101	105	57 - 122	4	24	
Benzo[b]fluoranthene	0.497	0.511	0.500	0.500	99	102	58 - 123	3	26	
Benzo(j,k)fluoranthene	0.485	0.524	0.500	0.500	97	105	60 - 123	8	22	
Benzo[a]pyrene	0.467	0.509	0.500	0.500	93	102	54 - 121	9	24	
Indeno(1,2,3-c,d)pyrene	0.509	0.548	0.500	0.500	102	110	55 - 125	7	26	
Dibenz[a,h]anthracene	0.489	0.528	0.500	0.500	98	106	57 - 127	8	25	
Surrogate:										
2-Fluorobiphenyl					58	70	27 - 106			
Pyrene-d10					80	87	35 - 98			
Terphenyl-d14					85	92	41 - 129			

30

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-4-19:10.0					
Laboratory ID:	09-249-01					
Arsenic	ND	12	EPA 6010D	9-26-19	9-26-19	
Barium	46	2.9	EPA 6010D	9-26-19	9-26-19	
Cadmium	ND	0.58	EPA 6010D	9-26-19	9-26-19	
Chromium	21	0.58	EPA 6010D	9-26-19	9-26-19	
Lead	ND	5.8	EPA 6010D	9-26-19	9-26-19	
Mercury	ND	0.29	EPA 7471B	9-25-19	9-25-19	
Selenium	ND	12	EPA 6010D	9-26-19	9-26-19	
Silver	ND	1.2	EPA 6010D	9-26-19	9-26-19	

Client ID:	MW-2-19:16.0					
Laboratory ID:	09-249-05					
Arsenic	ND	12	EPA 6010D	9-26-19	9-26-19	
Barium	31	3.0	EPA 6010D	9-26-19	9-26-19	
Cadmium	ND	0.60	EPA 6010D	9-26-19	9-26-19	
Chromium	20	0.60	EPA 6010D	9-26-19	9-26-19	
Lead	ND	6.0	EPA 6010D	9-26-19	9-26-19	
Mercury	ND	0.30	EPA 7471B	9-25-19	9-25-19	
Selenium	ND	12	EPA 6010D	9-26-19	9-26-19	
Silver	ND	1.2	EPA 6010D	9-26-19	9-26-19	

Client ID:	SB-3-19:15.0					
Laboratory ID:	09-249-09					
Arsenic	ND	12	EPA 6010D	9-26-19	9-26-19	
Barium	58	3.0	EPA 6010D	9-26-19	9-26-19	
Cadmium	ND	0.60	EPA 6010D	9-26-19	9-26-19	
Chromium	27	0.60	EPA 6010D	9-26-19	9-26-19	
Lead	ND	6.0	EPA 6010D	9-26-19	9-26-19	
Mercury	ND	0.30	EPA 7471B	9-25-19	9-25-19	
Selenium	ND	12	EPA 6010D	9-26-19	9-26-19	
Silver	ND	1.2	EPA 6010D	9-26-19	9-26-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Ma

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0926SM1					
Arsenic	ND	10	EPA 6010D	9-26-19	9-26-19	
Barium	ND	2.5	EPA 6010D	9-26-19	9-26-19	
Cadmium	ND	0.50	EPA 6010D	9-26-19	9-26-19	
Chromium	ND	0.50	EPA 6010D	9-26-19	9-26-19	
Lead	ND	5.0	EPA 6010D	9-26-19	9-26-19	
Selenium	ND	10	EPA 6010D	9-26-19	9-26-19	
Silver	ND	1.0	EPA 6010D	9-26-19	9-26-19	
Laboratory ID:	MB0925S1					
Mercury	ND	0.25	EPA 7471B	9-25-19	9-25-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-2	59-06									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		I	NA	NA	NA	20	
Barium	97.8	102	NA	NA		I	NA	NA	4	20	
Cadmium	ND	ND	NA	NA		I	NA	NA	NA	20	
Chromium	15.4	17.0	NA	NA		I	NA	NA	10	20	
Lead	7.90	7.35	NA	NA		I	NA	NA	7	20	
Selenium	ND	ND	NA	NA		I	NA	NA	NA	20	
Silver	ND	ND	NA	NA		I	NA	NA	NA	20	
Laboratory ID:	09-20	60-01									
Mercury	ND	ND	NA	NA		I	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	09-2	59-06									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	97.3	96.4	100	100	ND	97	96	75-125	1	20	
Barium	196	203	100	100	97.8	99	105	75-125	3	20	
Cadmium	44 7	44 8	50.0	50.0	ND	89	90	75-125	0	20	

- OnSi	ito Environm	ontal Inc	14649 NE	05 th Str	oot Dodm	and M		52 (125) 992	2001		-
Mercury	0.531	0.487	0.500	0.500	0.00500	105	96	80-120	9	20	
Laboratory ID:	09-2	60-01									
Silver	20.9	21.2	25.0	25.0	ND	83	85	75-125	2	20	
Selenium	90.0	93.1	100	100	ND	90	93	75-125	3	20	
Lead	229	234	250	250	7.90	89	90	75-125	2	20	
Chromium	112	111	100	100	15.4	97	96	75-125	0	20	
Caumum		77.0	50.0	50.0	ND	03	30	10-120	0	20	

ite Environmental, Inc. 14648 NE 95" Street, Redmond, WA 98052 (425) 883-3881

Date of Report: October 4, 2019 Samples Submitted: September 24, 2019 Laboratory Reference: 1909-249 Project: 21-1-22242-102; SR 520 Montlake VCP

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-3-19					
Laboratory ID:	09-249-11					
Arsenic	200	3.3	EPA 200.8	9-27-19	9-27-19	
Barium	8200	28	EPA 200.8	9-27-19	9-27-19	
Cadmium	ND	4.4	EPA 200.8	9-27-19	9-27-19	
Chromium	2300	11	EPA 200.8	9-27-19	9-27-19	
Lead	230	1.1	EPA 200.8	9-27-19	9-27-19	
Mercury	0.83	0.50	EPA 7470A	9-30-19	9-30-19	
Selenium	15	5.6	EPA 200.8	9-27-19	9-27-19	
Silver	ND	11	EPA 200.8	9-27-19	9-27-19	

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

•				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0927WM1					
Arsenic	ND	3.3	EPA 200.8	9-27-19	9-27-19	
Barium	ND	28	EPA 200.8	9-27-19	9-27-19	
Cadmium	ND	4.4	EPA 200.8	9-27-19	9-27-19	
Chromium	ND	11	EPA 200.8	9-27-19	9-27-19	
Lead	ND	1.1	EPA 200.8	9-27-19	9-27-19	
Selenium	ND	5.6	EPA 200.8	9-27-19	9-27-19	
Silver	ND	11	EPA 200.8	9-27-19	9-27-19	
Laboratory ID:	MB0930W1					
Mercury	ND	0.50	EPA 7470A	9-30-19	9-30-19	

				Source	Pe	rcent	Recovery		RPD	
Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
09-09	96-06									
ORIG	DUP									
7.67	8.24	NA	NA		1	NA	NA	7	20	
41.3	42.7	NA	NA		1	NA	NA	3	20	
ND	ND	NA	NA		1	NA	NA	NA	20	
ND	ND	NA	NA		1	NA	NA	NA	20	
ND	ND	NA	NA		1	NA	NA	NA	20	
ND	ND	NA	NA		1	NA	NA	NA	20	
ND	ND	NA	NA		1	NA	NA	NA	20	
09-28	39-01									
ND	ND	NA	NA		1	NA	NA	NA	20	
09-09	96-06									
MS	MSD	MS	MSD		MS	MSD				
120	120	111	111	7.67	101	102	75-125	0	20	
142	152	111	111	41.3	90	100	75-125	7	20	
113	116	111	111	ND	102	104	75-125	2	20	
109	112	111	111	ND	98	101	75-125	2	20	
104	109	111	111	ND	93	98	75-125	5	20	
124	119	111	111	ND	112	108	75-125	4	20	
106	101	111	111	ND	95	91	75-125	5	20	
09-28	39-01									
11.6	11.6	12.5	12.5	ND	93	93	75-125	0	20	
	Re: 09-09 ORIG 7.67 41.3 ND ND ND ND 09-28 MS 120 142 113 109 104 124 106 09-28 11.6	Result 09-096-06 ORIG DUP 7.67 8.24 41.3 42.7 ND ND ND ND ND ND ND ND ND ND 09-289-01 ND 09-096-06 MS MS MSD 120 120 142 152 113 116 109 112 104 109 124 119 09-289-01 11.6	Result Spike 09-096-06 0 ORIG DUP 7.67 8.24 NA 41.3 42.7 NA ND ND NA 09-289-01 NA 09-096-06 MS MS MSD MS 120 120 111 142 152 111 109 112 111 109 112 111 109 112 111 104 109 111 106 101 111 09-289-01 111 115	Result Spike Level 09-096-06	Result Spike Level Result 09-096-06	Result Spike Level Result Rec 09-096-06 ORIG DUP	Result Spike Level Result Recovery 09-096-06	Result Spike Level Result Recovery Limits 09-096-06 ORIG DUP Image: Spike Level Na Na Na 7.67 8.24 NA NA NA NA NA 41.3 42.7 NA NA NA NA NA ND ND NA NA NA NA NA 09-289-01 ND NA NA NA NA NA 09-096-06 Image: State	Result Spike Level Result Recovery Limits RPD 09-096-06 DUP	Result Spike Level Result Recovery Limits RPD Limit 09-096-06

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: October 4, 2019 Samples Submitted: September 24, 2019 Laboratory Reference: 1909-249 Project: 21-1-22242-102; SR 520 Montlake VCP

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-3-19					
Laboratory ID:	09-249-11					
Arsenic	3.4	3.0	EPA 200.8	9-24-19	9-25-19	
Barium	29	25	EPA 200.8	9-24-19	9-25-19	
Cadmium	ND	4.0	EPA 200.8	9-24-19	9-25-19	
Chromium	ND	10	EPA 200.8	9-24-19	9-25-19	
Lead	ND	1.0	EPA 200.8	9-24-19	9-25-19	
Mercury	ND	0.50	EPA 7470A	9-24-19	9-30-19	
Selenium	ND	5.0	EPA 200.8	9-24-19	9-25-19	
Silver	ND	10	EPA 200.8	9-24-19	9-25-19	

DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

• • • •				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0924F1					
Arsenic	ND	3.0	EPA 200.8	9-24-19	9-25-19	
Barium	ND	25	EPA 200.8	9-24-19	9-25-19	
Cadmium	ND	4.0	EPA 200.8	9-24-19	9-25-19	
Chromium	ND	10	EPA 200.8	9-24-19	9-25-19	
Lead	ND	1.0	EPA 200.8	9-24-19	9-25-19	
Selenium	ND	5.0	EPA 200.8	9-24-19	9-25-19	
Silver	ND	10	EPA 200.8	9-24-19	9-25-19	
Laboratory ID:	MB0924F1					
Mercury	ND	0.50	EPA 7470A	9-24-19	9-30-19	

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-09	96-04								
	ORIG	DUP								
Arsenic	25.6	25.0	NA	NA		NA	NA	2	20	
Barium	45.2	45.0	NA	NA		NA	NA	0	20	
Cadmium	ND	ND	NA	NA		NA	NA	NA	20	
Chromium	ND	ND	NA	NA		NA	NA	NA	20	
Lead	1.34	1.32	NA	NA		NA	NA	1	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	09-24	49-11								
Mercury	ND	ND	NA	NA		NA	NA	NA	20	
MATRIX SPIKES										
Laboratory ID:	09-09	96-04								

Laboratory ID.	09-0	90-04									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	106	110	80.0	80.0	25.6	101	106	75-125	4	20	
Barium	121	125	80.0	80.0	45.2	94	100	75-125	3	20	
Cadmium	76.0	78.0	80.0	80.0	ND	95	98	75-125	3	20	
Chromium	79.0	80.6	80.0	80.0	ND	99	101	75-125	2	20	
Lead	72.2	75.2	80.0	80.0	1.34	89	92	75-125	4	20	
Selenium	81.4	84.8	80.0	80.0	ND	102	106	75-125	4	20	
Silver	69.6	71.4	80.0	80.0	ND	87	89	75-125	3	20	
Laboratory ID:	09-2	49-11									
Mercury	11.6	11.8	12.5	12.5	ND	92	94	75-125	2	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

36

% MOISTURE

		Date
Lab ID	% Moisture	Analyzed
09-249-01	14	9-25-19
09-249-05	17	9-25-19
09-249-09	17	9-25-19
	Lab ID 09-249-01 09-249-05 09-249-09	Lab ID % Moisture 09-249-01 14 09-249-05 17 09-249-09 17

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

A	OnSite	
	Environmental Inc.	

Chain of Custody

1	
1	7
Page /	of C

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days) Laboratory Number: 09-249																				
Project Project Project Sampl	Phone: (425) 883-3881 · www.onsite-env.com any: Shannon & Wilson, Inc. ENUMBER: 21-1-22242-102 Name: SA 520 Monthake VCP Manager: Carole Leigh ed by: Rec. Reference	Same	(Check One)] 1 Day] 3 Days	of Containers	HCID	.Gx/BTEX	GX Du / T Acid / SO Close uni	8260C Bitty, Edg, EAC	ated Volatiles 8260C A 8011 (Waters Only)	atiles 8270D/SIM	TOD/SIM (Igw-level)	chlorine Pesticides 8081B	phosphorus Pesticides 8270D/SiM	ited Acid Herbicides 8151A	FA Metals and dissolved	etals	and grease) 1664A		70928		ure
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Number	NWTPH	NWTPH	NWTPH	Volatiles	Halogen EDB EP	Semivol (with lov	PAHS 82 PCBS 8	Organo	Organo	Chlorine	Total RC Total M	TCLP N	HEM (o	Hold	ALE		% Moisi
1	-SB-4-10.0 05 B-4-14=10,0	9/23/4	1455	2011	5			X	X			X				X			1	X	0	p
2	58-4-19=16.0		1520	Soil	5			X												X		V
3	SB-4-19		1530	Water	5			X												X		
4	5B-100-19		1530	Water	S			X												X	13	1
5	5 MW-2-19:16.0			Soll	S			X	X			X			-	X						Ø
6	6 MW-Z-19:20,5			5041	5			X												X_		V
7	56-3-19:10.0		0940	5011	S	_											-		X		1.	
8	58-101-19:10.0		0940	Soll	5														X	_	-	10
9	5/5-3-19:15.0		0948	Soll	5			X	X			X				X						Ø
10	5B-3-19:165	V	1025	Soil	S						-		2	Linet					X			
	Signature	C	ompany	×10	la	-	Date	bul.	Time	00	GOI	nments/	specia	C I I	uction	lis P I	en 1		-	10		
Relin	inquished With A	TAKA	Skann	ion all	15an		4	24/1	9 10	02	- 4	a6 th	5 7	414	w	tor d	15501	wed	mar	ns.		
Beli	Received			ny rd.	-		9-	21-	19 10	32	- report to JXS@ shannil.com											
Rec	Received			XE	-		91	24/	19 10	32	-											
Reli	nquished			-OC-	-	_																
Rec	eived *										Dat	a Packa	ge: St	anda	rd 🗌	Level I		Leve	I IV 🗆			
Revi	Reviewed/Date Reviewed/Date Chromatograms with final report Electronic Data Deliverables							erables	EDDs)													

1	OnSite		Cha	ain o	f	Cı	IS	to	dy				r							Pa	ige _	2	of	2	2	
	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (42) 9291 • Junuar Optite and com	Turnaround Request (in working days)				L	abo	orat	ratory Number: 09 - 249																	
Project Project Project Sampl	any: Shannon & Wilson, Dic t Number: 21-1-22242-102 t Name: SRS2D Montloke VCP t Manager: Cande Leigh ed by: Ryan Poterson	Same	(Check One) Day [vs [dard (7 Days) (other)) 1 Day	er of Containers	1-HCID	1-Gx/BTEX	H-GX	H-Dx (Acid / SG Clean-up)	IS 82600 BIDY, ENG, EVC	nated Volatiles 8260C	PA 8011 (Waters Only)	vlatiles 8270D/SIM w-level PAHs)	270D/SIM(IOW-Ievel)	3082A Arhlorine Destinidae 9091 D		pprosphorus Pesticiaes 8270D/SIM		CHA Metals and al solved	ITCA Metals	vletals	oil and grease) 1664A	plo			iture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numb	NWTP	NWTP	NWTP	NWTP	Volatile	Haloge	EDB E	Semivi (with Ic	PAHs 8	PUBS	5	Organ		Total F	Total N	TCLP	HEM (P			% Moi
11	5B-3-19	9/25/09	1054	Water	13			X	Х	Х				X					X	-						
12	TB-2 (trip blank)	9/23/9	-	Water	1																		X			
	25														+			+	-	-					+	-
	La state																			_					_	
	K																									
							Det						Com	mante	1000	iall		tione								
Relin Rece Relir Rece Relir	aquished aqu	Co TENGON -	shawa Spe Spe O8	edy E	1500	2	9/ 9/ 9-1 9/	24/1	9 -19 1/1.		03	2	Comments/Special Instructions Lab to filter for dissolved metals. Report to JXS@shewwil.com													
Rece	sived												Data	Pack	age:	Star	ndard		Leve	el III		Leve	el IV []		
Revi	ewed/Date		Reviewed/Da	ate									Chromatograms with final report Electronic Data Deliverables (EDDs)													

October 14, 2019

Carole Leigh Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-102; SR 520 Montlake VCP Laboratory Reference No. 1909-249B

Dear Carole:

Enclosed are the analytical results and associated quality control data for samples submitted on September 24, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 14, 2019 Samples Submitted: September 24, 2019 Laboratory Reference: 1909-249B Project: 21-1-22242-102; SR 520 Montlake VCP

Case Narrative

Samples were collected on September 23, 2019 and received by the laboratory on September 24, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
SB-3-19:10.0					
09-249-07					
ND	4.4	NWTPH-Gx	10-9-19	10-9-19	
Percent Recovery 87	Control Limits 58-129				
	Result SB-3-19:10.0 09-249-07 ND Percent Recovery 87	Result PQL SB-3-19:10.0 09-249-07 ND 4.4 Percent Recover Control Limits 87 58-129	Result PQL Method SB-3-19:10.0 <	Date Result PQL Method Prepared SB-3-19:10.0 </td <td>Date Date Result PQL Method Prepared Analyzed SB-3-19:10.0</td>	Date Date Result PQL Method Prepared Analyzed SB-3-19:10.0

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

							Date	Date		
Analyte	Result		PQL	Met	hod	Pre	epared	Analyzed	FI	ags
METHOD BLANK										
Laboratory ID:		VB1009S1								
Gasoline		ND	5.0	NWTF	PH-Gx	1(0-9-19	10-9-19		
Surrogate:	Per	cent Recovery	Control Limits							
Fluorobenzene		87	58-129							
				Source	Perce	nt	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recov	ery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-09	98-02								
	ORIG	DUP								
Gasoline	ND	ND	NA NA		NA		NA	NA	30	
Surrogate:										
Fluorobenzene					96	94	58-129			

VOLATILE ORGANICS EPA 8260D Page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-3-19:10.0					
Laboratory ID:	09-249-07					
Dichlorodifluoromethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Chloromethane	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
Vinyl Chloride	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Bromomethane	ND	0.0012	EPA 8260D	10-9-19	10-9-19	
Chloroethane	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
Trichlorofluoromethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,1-Dichloroethene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Acetone	0.055	0.0094	EPA 8260D	10-9-19	10-9-19	
lodomethane	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
Carbon Disulfide	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Methylene Chloride	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
(trans) 1,2-Dichloroethene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Methyl t-Butyl Ether	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,1-Dichloroethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Vinyl Acetate	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
2,2-Dichloropropane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
(cis) 1,2-Dichloroethene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
2-Butanone	0.0075	0.0047	EPA 8260D	10-9-19	10-9-19	
Bromochloromethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Chloroform	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,1,1-Trichloroethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Carbon Tetrachloride	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,1-Dichloropropene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Benzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,2-Dichloroethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Trichloroethene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,2-Dichloropropane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Dibromomethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Bromodichloromethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
2-Chloroethyl Vinyl Ether	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
(cis) 1,3-Dichloropropene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Methyl Isobutyl Ketone	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
Toluene	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
(trans) 1,3-Dichloropropene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	

VOLATILE ORGANICS EPA 8260D Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-3-19:10.0					
Laboratory ID:	09-249-07					
1,1,2-Trichloroethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Tetrachloroethene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,3-Dichloropropane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
2-Hexanone	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
Dibromochloromethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,2-Dibromoethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Chlorobenzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,1,1,2-Tetrachloroethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Ethylbenzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
m,p-Xylene	ND	0.0019	EPA 8260D	10-9-19	10-9-19	
o-Xylene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Styrene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Bromoform	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
Isopropylbenzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Bromobenzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,1,2,2-Tetrachloroethane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,2,3-Trichloropropane	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
n-Propylbenzene	0.00098	0.00094	EPA 8260D	10-9-19	10-9-19	
2-Chlorotoluene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
4-Chlorotoluene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,3,5-Trimethylbenzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
tert-Butylbenzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,2,4-Trimethylbenzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
sec-Butylbenzene	0.0018	0.00094	EPA 8260D	10-9-19	10-9-19	
1,3-Dichlorobenzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
p-Isopropyltoluene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,4-Dichlorobenzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
1,2-Dichlorobenzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
n-Butylbenzene	0.00098	0.00094	EPA 8260D	10-9-19	10-9-19	
1,2-Dibromo-3-chloropropane	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
1,2,4-Trichlorobenzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Hexachlorobutadiene	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
Naphthalene	ND	0.0047	EPA 8260D	10-9-19	10-9-19	
1,2,3-Trichlorobenzene	ND	0.00094	EPA 8260D	10-9-19	10-9-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	91	76-131				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	108	71-130				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL Page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1009S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Chloromethane	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
Vinyl Chloride	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Bromomethane	ND	0.0013	EPA 8260D	10-9-19	10-9-19	
Chloroethane	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
Trichlorofluoromethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,1-Dichloroethene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Acetone	ND	0.010	EPA 8260D	10-9-19	10-9-19	
lodomethane	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
Carbon Disulfide	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Methylene Chloride	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,1-Dichloroethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Vinyl Acetate	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
2,2-Dichloropropane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
2-Butanone	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
Bromochloromethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Chloroform	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Carbon Tetrachloride	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,1-Dichloropropene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Benzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Trichloroethene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,2-Dichloropropane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Dibromomethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Bromodichloromethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
Toluene	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	

7

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1009S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Tetrachloroethene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,3-Dichloropropane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
2-Hexanone	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
Dibromochloromethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Chlorobenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Ethylbenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
m,p-Xylene	ND	0.0020	EPA 8260D	10-9-19	10-9-19	
o-Xylene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Styrene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Bromoform	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
Isopropylbenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Bromobenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
n-Propylbenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
2-Chlorotoluene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
4-Chlorotoluene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
tert-Butylbenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
sec-Butylbenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
p-Isopropyltoluene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
n-Butylbenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Hexachlorobutadiene	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
Naphthalene	ND	0.0050	EPA 8260D	10-9-19	10-9-19	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260D	10-9-19	10-9-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	76-131				
Toluene-d8	98	78-128				
4-Bromofluorobenzene	96	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

					P	ercent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	I Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	09S1								
	SB	SBD	SB	SBD	SE	SBD				
1,1-Dichloroethene	0.0381	0.0419	0.0500	0.0500	76	84	57-133	10	18	
Benzene	0.0359	0.0401	0.0500	0.0500	72	80	71-129	11	16	
Trichloroethene	0.0451	0.0452	0.0500	0.0500	90	90	71-122	0	16	
Toluene	0.0445	0.0440	0.0500	0.0500	89	88	74-125	1	15	
Chlorobenzene	0.0467	0.0462	0.0500	0.0500	93	92	72-120	1	14	
Surrogate:										
Dibromofluoromethane					80	90	76-131			
Toluene-d8					98	99	78-128			
4-Bromofluorobenzene					10	98	71-130			

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
SB-3-19:10.0	09-249-07	12	10-9-19

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Ű	OnSite		Cha	nin o	f (Cu	st	toc	ly		* *								Pag	je		of _	2		
	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turi (ir	naround Requ working day	iest (s)		La	abo	rate	ory	Num	ber:	0	9.	-2	4	9									
Compa	Phone: (425) 883-3881 • www.onsite-env.com	-	(Check One)							V					-	2		~							
	Shannon & Wilson, Inc.	Same	Day [] 1 Day					0	E C			E		10/00			2/2							
Project	Number: 21-1-22242-102	2 Day	/s	3 Days					ean-up	Re F		1	Ö		81808	128 291	1018	1550							
Project	Name: A 520 Moutlake VCP	X Stand	dard (7 Days)		LS				/ SG C	the the	irs Only	/SIM	w-level)		Icides a	esticic	bicides	his		1 CCAN	1001		SOC		
Project	Manager: Carole Leigh				ontaine		TEX] Acid	C 87	1 (Wate	8270D	SIM (19		Isay at	norus	cid Her	letals	Aetals	000040	diease		28		
Sample	dby: Ryan Peterson	1	(other)		er of Co	H-HCID	H-Gx/B	H-Gx) XO-H	ss 8260	PA 801	olatiles ow-leve	3270D/	8082A	ochlorir	dsoudo	nated A	SCRA N	ATCA N	Metals	OII allo	R	×	sture	
Lah ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTP	NWTP	NWTPI	NWTP	Volatile	EDBE	Semivo (with lo	PAHs 8	PCBs	Organ	Organ	Chlorit	Total F	Total N	TCLP	HEIM	19	Arc	% Moi	-
1	-5B-4-10,0"5B-4-19=10,0	9/23/4	1455	5011	5			X		X			X					X				-	X So		0
2	58-4-19=16.0	1	1520	Soil	5			X														1	X		4
3	58-4-19		1530	Water	5			X															X		
4	SB-100-19		1530	Water	S			X															X		-
5	MW-2-19:16.0		1145	Soll	5			X		X			X					X						2	0
6	MW-2-19:20,5		1215	5011	5			X														,	X		L
7	56-3-19:10.0		0940	5041	5			8	>												110	×(8	6	Z
8	56-101-19:10.0		0940	Soll	5																	X			
9	5B-3-19:15.0		0948	Soll	5			X		X			X					X							0
10	5B-3-19:16:5	V	1025	Soil	5																	X			
	Signature	C	ompany				Dat	te		Time		Co	mmen	ts/Sp	ecial	Instru	iction	S				-			
Relin	quished The RYJW /	ETEKS	Stran	ion \$1/1	Isa		9	1241	19	10	02	L	-46	to	fi	1+0	11	for	di	isolu	red	mot	218.		
Rece	ived and append		Sper	dy			7.	24	-19	10	DZ	N	spoi	t ·	to	J	20	0	sha	inten	1.0	Ma	94) ()		
Relin	quished In Bacco		900	edy	_		9:	127	-19	1 10	32	- /	SOC	J.d.	ed	N	10	1.0		202	1	-)		
Rece	ived	>	0	XE	_		7	124	119	3 10	32	- '		lever			10	119		νD	0	1 19			
Relin	iquished						-	-		-		_								-					_
Rec	sived "																								
Revi	ewed/Date		Reviewed/D	ate		_					-	Ch	romato	ogram	ns wit	n tina	al rep	ort	Eleo	ctronic	Data	Deliv	erables (E	EDDS) 🗌	

ĺ	OnSite		Cha	ain o	f	Cu	IS	to	dy	\$									Pa	age _	2	of	2	-	
	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turi (ir	naround Req 1 working da	uest ys)		L	abo	orat	ory	Num	ber:	0	9	-2	4	9									
Compa Project Project Project Sample	Number: 21-1-22242-102 Name: SR SZD Monttoke UCP Manager: Cande Leigh ad by: Ryan Peterson	Same	(Check One) Day [/s [dard (7 Days) (other)	1 Day	r of Containers	-HCID	I-Gx/BTEX	-Gx	I-Dx (🗌 Acid / SG Clean-up)	s 8260C STER, ENG, ENC, ENC nated Volatiles 8260C	A 8011 (Waters Only)	latiles 8270D/SIM w-level PAHs)	270D/SIM (pw-level)	082A	chlorine Pesticides 8081B	phosphorus Pesticides 8270D/SIM	ated Acid Herbicides 8151A	CRA Metals and disolved	TCA Metals	fetals	il and grease) 1664A	hu/			ture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTPH	NWTPH	NWTPH	NWTPH	Volatile	EDB EF	Semivo (with lo	PAHs 8	PCBs 8	Organo	Organo	Chlorin	Total R(Total M	TCLP N	HEM (o	K			% Mais
11	SB-3-19	9/25/4	1054	Water	13			X	X	X			X					X							
12	TB-2 (trip blank)	9/23/9	1	Water	1																	X			
	Centra de la companya																								
	Signature	Co	ompany				Dat	te		Time		Cor	nmen	its/Sp	ecial	Instr	uctio	ns				11			
Relin Rece Relin Rece Relin	ved 29000000000000000000000000000000000000	STERAON	Shawa Spe O8	edy E	1500	<u>n</u>	91 7 9- 9	24	19 1-19 1/1		00 00 32 32	R	ab	do at a	to	J	xs	e	d is Sha	un:	red lia	met	als.		
Rece	ived											Data	a Pac	kage	: St	anda	rd 🗌	Lev	vel III		Leve	el IV 🗆			
Revie	wed/Date		Reviewed/Da	ate								Chr	omate	ogran	ns wi	ith fin	al rej	oort [Ele	ectron	ic Dat	a Deliv	erables	(EDDs)	

October 3, 2019

Carole Leigh Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-102 Laboratory Reference No. 1909-276

Dear Carole:

Enclosed are the analytical results and associated quality control data for samples submitted on September 25, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: October 3, 2019 Samples Submitted: September 25, 2019 Laboratory Reference: 1909-276 Project: 21-1-22242-102

Case Narrative

Samples were collected on September 24, 2019 and received by the laboratory on September 25, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SG-1-19:5.0					
Laboratory ID:	09-276-01					
Gasoline	ND	4.1	NWTPH-Gx	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	58-129				
Client ID:	SG-1-19:15.0					
Laboratory ID:	09-276-02					
Gasoline	ND	4.3	NWTPH-Gx	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	58-129				
Client ID:	MW-1-19:15.0					
Laboratory ID:	09-276-03					
Gasoline	ND	4.5	NWTPH-Gx	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	58-129				
Client ID:	MW-1-19:30.0					
Laboratory ID:	09-276-04					
Gasoline	ND	3.6	NWTPH-Gx	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	58-129				
Client ID:	MW-100-19:15.0					
Laboratory ID:	09-276-05					
Gasoline	ND	5.3	NWTPH-Gx	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	58-129				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

								Date	Date	;	
Analyte		Result	I	PQL	Ме	ethod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB0926S2									
Gasoline		ND		5.0	NWT	PH-G	х	9-26-19	9-26-1	19	
Surrogate:	Pe	rcent Recover	y Cont	rol Lim	its						
Fluorobenzene		87	58	8-129							
					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike I	_evel	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-27	4-02									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						86	88	58-129			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SG-1-19:5.0					
Laboratory ID:	09-276-01					
Benzene	ND	0.00080	EPA 8260D	9-30-19	9-30-19	
1,2-Dichloroethane	ND	0.00080	EPA 8260D	9-30-19	9-30-19	
Toluene	ND	0.0040	EPA 8260D	9-30-19	9-30-19	
1,2-Dibromoethane	ND	0.00080	EPA 8260D	9-30-19	9-30-19	
Ethylbenzene	ND	0.00080	EPA 8260D	9-30-19	9-30-19	
m,p-Xylene	ND	0.0016	EPA 8260D	9-30-19	9-30-19	
o-Xylene	ND	0.00080	EPA 8260D	9-30-19	9-30-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	76-131				
Toluene-d8	102	78-128				
4-Bromofluorobenzene	112	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SG-1-19:15.0					
Laboratory ID:	09-276-02					
Benzene	ND	0.00070	EPA 8260D	9-30-19	9-30-19	
Toluene	ND	0.0035	EPA 8260D	9-30-19	9-30-19	
Ethylbenzene	ND	0.00070	EPA 8260D	9-30-19	9-30-19	
m,p-Xylene	ND	0.0014	EPA 8260D	9-30-19	9-30-19	
o-Xylene	ND	0.00070	EPA 8260D	9-30-19	9-30-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	76-131				
Toluene-d8	105	78-128				
4-Bromofluorobenzene	110	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-19:15.0					
Laboratory ID:	09-276-03					
Benzene	ND	0.00062	EPA 8260D	9-30-19	9-30-19	
1,2-Dichloroethane	ND	0.00062	EPA 8260D	9-30-19	9-30-19	
Toluene	ND	0.0031	EPA 8260D	9-30-19	9-30-19	
1,2-Dibromoethane	ND	0.00062	EPA 8260D	9-30-19	9-30-19	
Ethylbenzene	ND	0.00062	EPA 8260D	9-30-19	9-30-19	
m,p-Xylene	ND	0.0012	EPA 8260D	9-30-19	9-30-19	
o-Xylene	ND	0.00062	EPA 8260D	9-30-19	9-30-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	76-131				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	109	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-19:30.0					
Laboratory ID:	09-276-04					
Benzene	ND	0.00079	EPA 8260D	9-30-19	9-30-19	
Toluene	ND	0.0039	EPA 8260D	9-30-19	9-30-19	
Ethylbenzene	ND	0.00079	EPA 8260D	9-30-19	9-30-19	
m,p-Xylene	ND	0.0016	EPA 8260D	9-30-19	9-30-19	
o-Xylene	ND	0.00079	EPA 8260D	9-30-19	9-30-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	76-131				
Toluene-d8	104	78-128				
4-Bromofluorobenzene	103	71-130				

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-100-19:15.0					
Laboratory ID:	09-276-05					
Benzene	ND	0.00089	EPA 8260D	9-30-19	9-30-19	
1,2-Dichloroethane	ND	0.00089	EPA 8260D	9-30-19	9-30-19	
Toluene	ND	0.0045	EPA 8260D	9-30-19	9-30-19	
1,2-Dibromoethane	ND	0.00089	EPA 8260D	9-30-19	9-30-19	
Ethylbenzene	ND	0.00089	EPA 8260D	9-30-19	9-30-19	
m,p-Xylene	ND	0.0018	EPA 8260D	9-30-19	9-30-19	
o-Xylene	ND	0.00089	EPA 8260D	9-30-19	9-30-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	76-131				
Toluene-d8	102	78-128				
4-Bromofluorobenzene	107	71-130				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930S1					
Benzene	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
Toluene	ND	0.0050	EPA 8260D	9-30-19	9-30-19	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
Ethylbenzene	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
m,p-Xylene	ND	0.0020	EPA 8260D	9-30-19	9-30-19	
o-Xylene	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	76-131				
Toluene-d8	104	78-128				
4-Bromofluorobenzene	109	71-130				

10

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	30S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0558	0.0540	0.0500	0.0500	112	108	57-133	3	18	
Benzene	0.0371	0.0360	0.0500	0.0500	74	72	71-129	3	16	
Trichloroethene	0.0521	0.0475	0.0500	0.0500	104	95	71-122	9	16	
Toluene	0.0459	0.0436	0.0500	0.0500	92	87	74-125	5	15	
Chlorobenzene	0.0446	0.0418	0.0500	0.0500	89	84	72-120	6	14	
Surrogate:										
Dibromofluoromethane					100	102	76-131			
Toluene-d8					103	100	78-128			
4-Bromofluorobenzene					113	109	71-130			

cPAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SG-1-19:5.0					
Laboratory ID:	09-276-01					
Benzo[a]anthracene	ND	0.0075	EPA 8270E/SIM	9-26-19	9-26-19	
Chrysene	ND	0.0075	EPA 8270E/SIM	9-26-19	9-26-19	
Benzo[b]fluoranthene	ND	0.0075	EPA 8270E/SIM	9-26-19	9-26-19	
Benzo(j,k)fluoranthene	ND	0.0075	EPA 8270E/SIM	9-26-19	9-26-19	
Benzo[a]pyrene	ND	0.0075	EPA 8270E/SIM	9-26-19	9-26-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0075	EPA 8270E/SIM	9-26-19	9-26-19	
Dibenz[a,h]anthracene	ND	0.0075	EPA 8270E/SIM	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	40 - 111				
Pyrene-d10	84	40 - 110				
Terphenyl-d14	87	45 - 122				

cPAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-19:15.0					
Laboratory ID:	09-276-03					
Benzo[a]anthracene	ND	0.0079	EPA 8270E/SIM	9-26-19	9-26-19	
Chrysene	ND	0.0079	EPA 8270E/SIM	9-26-19	9-26-19	
Benzo[b]fluoranthene	ND	0.0079	EPA 8270E/SIM	9-26-19	9-26-19	
Benzo(j,k)fluoranthene	ND	0.0079	EPA 8270E/SIM	9-26-19	9-26-19	
Benzo[a]pyrene	ND	0.0079	EPA 8270E/SIM	9-26-19	9-26-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0079	EPA 8270E/SIM	9-26-19	9-26-19	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270E/SIM	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	40 - 111				
Pyrene-d10	91	40 - 110				
Terphenyl-d14	99	45 - 122				

cPAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-100-19:15.0					
Laboratory ID:	09-276-05					
Benzo[a]anthracene	ND	0.0078	EPA 8270E/SIM	9-26-19	9-26-19	
Chrysene	ND	0.0078	EPA 8270E/SIM	9-26-19	9-26-19	
Benzo[b]fluoranthene	ND	0.0078	EPA 8270E/SIM	9-26-19	9-26-19	
Benzo(j,k)fluoranthene	ND	0.0078	EPA 8270E/SIM	9-26-19	9-26-19	
Benzo[a]pyrene	ND	0.0078	EPA 8270E/SIM	9-26-19	9-26-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0078	EPA 8270E/SIM	9-26-19	9-26-19	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270E/SIM	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	93	40 - 111				
Pyrene-d10	88	40 - 110				
Terphenyl-d14	94	45 - 122				

cPAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0926S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	9-26-19	9-26-19	
Chrysene	ND	0.0067	EPA 8270E/SIM	9-26-19	9-26-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	9-26-19	9-26-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	9-26-19	9-26-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	9-26-19	9-26-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	9-26-19	9-26-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	9-26-19	9-26-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	95	40 - 111				
Pyrene-d10	92	40 - 110				
Terphenyl-d14	98	45 - 122				

15

cPAHs EPA 8270E/SIM QUALITY CONTROL

						Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	F	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB09	26S1									
	SB	SBD	SB	SBD	S	SB	SBD				
Benzo[a]anthracene	0.0892	0.0908	0.0833	0.0833	1	07	109	64 - 127	2	15	
Chrysene	0.0828	0.0859	0.0833	0.0833	ę	99	103	63 - 121	4	15	
Benzo[b]fluoranthene	0.0785	0.0815	0.0833	0.0833	ę	94	98	61 - 122	4	15	
Benzo(j,k)fluoranthene	0.0913	0.0926	0.0833	0.0833	1	10	111	64 - 123	1	15	
Benzo[a]pyrene	0.0818	0.0836	0.0833	0.0833	ę	98	100	62 - 122	2	15	
Indeno(1,2,3-c,d)pyrene	0.0777	0.0792	0.0833	0.0833	ę	93	95	59 - 124	2	15	
Dibenz[a,h]anthracene	0.0778	0.0797	0.0833	0.0833	ę	93	96	61 - 123	2	15	
Surrogate:											
2-Fluorobiphenyl					:	94	99	40 - 111			
Pyrene-d10					:	93	93	40 - 110			
Terphenyl-d14					:	96	95	45 - 122			

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SG-1-19:5.0					
Laboratory ID:	09-276-01					
Arsenic	ND	11	EPA 6010D	9-26-19	9-26-19	
Barium	41	2.8	EPA 6010D	9-26-19	9-26-19	
Cadmium	ND	0.56	EPA 6010D	9-26-19	9-26-19	
Chromium	25	0.56	EPA 6010D	9-26-19	9-26-19	
Lead	ND	5.6	EPA 6010D	9-26-19	9-26-19	
Mercury	ND	0.28	EPA 7471B	9-27-19	9-27-19	
Selenium	ND	11	EPA 6010D	9-26-19	9-26-19	
Silver	ND	1.1	EPA 6010D	9-26-19	9-26-19	

Client ID:	MW-1-19:15.0					
Laboratory ID:	09-276-03					
Arsenic	ND	12	EPA 6010D	9-26-19	9-26-19	
Barium	51	3.0	EPA 6010D	9-26-19	9-26-19	
Cadmium	ND	0.59	EPA 6010D	9-26-19	9-26-19	
Chromium	22	0.59	EPA 6010D	9-26-19	9-26-19	
Lead	ND	5.9	EPA 6010D	9-26-19	9-26-19	
Mercury	ND	0.30	EPA 7471B	9-27-19	9-27-19	
Selenium	ND	12	EPA 6010D	9-26-19	9-26-19	
Silver	ND	1.2	EPA 6010D	9-26-19	9-26-19	

Client ID:	MW-100-19:15.0					
Laboratory ID:	09-276-05					
Arsenic	ND	12	EPA 6010D	9-26-19	9-26-19	
Barium	30	2.9	EPA 6010D	9-26-19	9-26-19	
Cadmium	ND	0.58	EPA 6010D	9-26-19	9-26-19	
Chromium	14	0.58	EPA 6010D	9-26-19	9-26-19	
Lead	ND	5.8	EPA 6010D	9-26-19	9-26-19	
Mercury	ND	0.29	EPA 7471B	9-27-19	9-27-19	
Selenium	ND	12	EPA 6010D	9-26-19	9-26-19	
Silver	ND	1.2	EPA 6010D	9-26-19	9-26-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

5 5 41 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0926SM1					
Arsenic	ND	10	EPA 6010D	9-26-19	9-26-19	
Barium	ND	2.5	EPA 6010D	9-26-19	9-26-19	
Cadmium	ND	0.50	EPA 6010D	9-26-19	9-26-19	
Chromium	ND	0.50	EPA 6010D	9-26-19	9-26-19	
Lead	ND	5.0	EPA 6010D	9-26-19	9-26-19	
Selenium	ND	10	EPA 6010D	9-26-19	9-26-19	
Silver	ND	1.0	EPA 6010D	9-26-19	9-26-19	
Laboratory ID:	MB0927S1					
Mercury	ND	0.25	EPA 7471B	9-27-19	9-27-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-25	59-06									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		I	NA	NA	NA	20	
Barium	97.8	102	NA	NA		I	NA	NA	4	20	
Cadmium	ND	ND	NA	NA		I	NA	NA	NA	20	
Chromium	15.4	17.0	NA	NA		I	NA	NA	10	20	
Lead	7.90	7.35	NA	NA		I	NA	NA	7	20	
Selenium	ND	ND	NA	NA		I	NA	NA	NA	20	
Silver	ND	ND	NA	NA		I	NA	NA	NA	20	
Laboratory ID:	09-29	94-01									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES Laboratory ID:	09-25	59-06									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	97.3	96.4	100	100	ND	97	96	75-125	1	20	
Barium	196	203	100	100	97.8	99	105	75-125	3	20	

Barium	196	203	100	100	97.8	99	105	75-125	3	20	
Cadmium	44.7	44.8	50.0	50.0	ND	89	90	75-125	0	20	
Chromium	112	111	100	100	15.4	97	96	75-125	0	20	
Lead	229	234	250	250	7.90	89	90	75-125	2	20	
Selenium	90.0	93.1	100	100	ND	90	93	75-125	3	20	
Silver	20.9	21.2	25.0	25.0	ND	83	85	75-125	2	20	
Laboratory ID:	09-29	94-01									
Mercury	0.559	0.531	0.500	0.500	0.0153	109	103	80-120	5	20	
											_

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: October 3, 2019 Samples Submitted: September 25, 2019 Laboratory Reference: 1909-276 Project: 21-1-22242-102

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
SG-1-19:5.0	09-276-01	11	9-26-19
SG-1-19:15.0	09-276-02	7	9-27-19
MW-1-19:15.0	09-276-03	16	9-26-19
MW-1-19:30.0	09-276-04	11	9-27-19
MW-100-19:15.0	09-276-05	14	9-26-19

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite		Cha	ain d	of	Cı	IS	too	ły									P	age _	l	of	1	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (ii	naround Rec n working da	luest lys)		L	abo	orate	ory	Num	ber:		0.9) - (27	6				-			
Phone: (425) 883-3881 · www.onsite-env.com ompany: Shannon & Wilson, Inc, roject Number: 21-1-22242-102 roject Name: SL-520 Monthake UCP roject Manager: Caple Leigh ampled by: Ref. 2000	Same	(Check One) e Day ys dard (7 Days)	1 Day	of Containers	tciD	áx/BTEX	X	0x (Acid / SG Clean-up)	2260C 57 EX, EDB, EDC ted Volatiles 8260C	8011 (Waters Only)	iles 8270D/SIM level PAHs)	OD/SIM (ow-level)	Iorine Pesticides 8081B	osphorus Pesticides 8270D/SIM	ed Acid Herbicides 8151A	A Metals and Dissolved	A Metals	als	ind grease) 1664A		8260C	
h ID Sample Identification	Date	Time	Motrix	lumber	I-HATWI	IWTPH-(IWTPH-(IWTPH-I	/olatiles { lalogena	EDB EPA	semivolar with low-	AHs 827	Drganoch	Irganoph	Chlorinate	otal RCF	otal MTC	CLP Me	HEM (oil a	191	Kals	Moistur
SG-1-19:15:00 SG-1-19:50	9/24/14	1035	Soil	5	4	2	X	2	X		0.2	X	. 0	0		X	1		1			%
) SG-1-19:15.0	1	1110	1	5			X			-			-	-						1	X	
3 MW-1-19:15.0		1330		5			X		X			X	1	1		X						
- MW-1-19:30.0		1522		5			X								X							
5 MW-100-19:15,0		1530	d	5			X		X													
O TB-3 (trip blank)	e	-	Ho	1			-							1						X		
Za																						
E																						
(ART)																						
1																						
Signature	Go	ompany			1	Date			Time		Cor	nments	/Speci	al Ins	tructio	ons						
telinquished	TENSON (Jace Jee C	y All y All y E		on T	96	25/	19	103 16: 110 110	20	- (1	epor	* +	0 0	xs	C:	Sha i	nus	. 40.	m		
Received											Data	a Packa	age: S	Stand	ard [Le	vel III		Leve]	
Reviewed/Date		Reviewed/Date Chromatograms with final report Electronic Data Deliverables (EDDs)				EDDs)																

October 3, 2019

Carole Leigh Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-102 Laboratory Reference No. 1909-287

Dear Carole:

Enclosed are the analytical results and associated quality control data for samples submitted on September 26, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 3, 2019 Samples Submitted: September 26, 2019 Laboratory Reference: 1909-287 Project: 21-1-22242-102

Case Narrative

Samples were collected on September 25, 2019 and received by the laboratory on September 26, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-8-19:10.0					
Laboratory ID:	09-287-01					
Gasoline	ND	4.2	NWTPH-Gx	9-27-19	9-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	112	58-129				
Client ID:	SB-8-19:15.0					
Laboratory ID:	09-287-02					
Gasoline	ND	4.8	NWTPH-Gx	9-27-19	9-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	58-129				
Client ID:	SB-102-19:10.0					
Laboratory ID:	09-287-04					
Gasoline	ND	5.4	NWTPH-Gx	9-27-19	9-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	58-129				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

······							Date	Date)	
Analyte		Result		PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK										
Laboratory ID:		MB0927S2								
Gasoline		ND		5.0	NW	ГРН-Gx	9-27-19	9-27-1	19	
Surrogate:	Pe	rcent Recove	ry Co	ntrol Lim	its					
Fluorobenzene		97		58-129						
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-28	37-04								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						109 108	3 58-129			

4

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-8-19					
Laboratory ID:	09-287-03					
Gasoline	ND	400	NWTPH-Gx	9-27-19	9-27-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	59-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Date)	
Analyte		Result		PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK										
Laboratory ID:		MB0927W1								
Gasoline		ND		100	NW	ГРН-Gx	9-27-19	9-27-1	19	
Surrogate:	Pe	rcent Recove	ery Co	ontrol Lim	its					
Fluorobenzene		107	-	59-122						
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spik	e Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-29	98-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						106 103	3 59-122			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-8-19:10.0					
Laboratory ID:	09-287-01					
Benzene	ND	0.00071	EPA 8260D	10-1-19	10-1-19	
1,2-Dichloroethane	ND	0.00071	EPA 8260D	10-1-19	10-1-19	
Toluene	ND	0.0035	EPA 8260D	10-1-19	10-1-19	
1,2-Dibromoethane	ND	0.00071	EPA 8260D	10-1-19	10-1-19	
Ethylbenzene	ND	0.00071	EPA 8260D	10-1-19	10-1-19	
m,p-Xylene	ND	0.0014	EPA 8260D	10-1-19	10-1-19	
o-Xylene	ND	0.00071	EPA 8260D	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	76-131				
Toluene-d8	106	78-128				
4-Bromofluorobenzene	94	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-8-19:15.0					
Laboratory ID:	09-287-02					
Benzene	ND	0.00092	EPA 8260D	9-30-19	9-30-19	
Toluene	ND	0.0046	EPA 8260D	9-30-19	9-30-19	
Ethylbenzene	ND	0.00092	EPA 8260D	9-30-19	9-30-19	
m,p-Xylene	ND	0.0018	EPA 8260D	9-30-19	9-30-19	
o-Xylene	ND	0.00092	EPA 8260D	9-30-19	9-30-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	76-131				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	109	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-102-19:10.0					
Laboratory ID:	09-287-04					
Benzene	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
Toluene	ND	0.0052	EPA 8260D	9-30-19	9-30-19	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
Ethylbenzene	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
m,p-Xylene	ND	0.0021	EPA 8260D	9-30-19	9-30-19	
o-Xylene	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	76-131				
Toluene-d8	104	78-128				
4-Bromofluorobenzene	111	71-130				

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930S1					
Benzene	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
Toluene	ND	0.0050	EPA 8260D	9-30-19	9-30-19	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
Ethylbenzene	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
m,p-Xylene	ND	0.0020	EPA 8260D	9-30-19	9-30-19	
o-Xylene	ND	0.0010	EPA 8260D	9-30-19	9-30-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	76-131				
Toluene-d8	104	78-128				
4-Bromofluorobenzene	109	71-130				
Laboratory ID:	MB1001S1					
Benzene	ND	0.0010	EPA 8260D	10-1-19	10-1-19	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	10-1-19	10-1-19	
Toluene	ND	0.0050	EPA 8260D	10-1-19	10-1-19	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	10-1-19	10-1-19	
Ethylbenzene	ND	0.0010	EPA 8260D	10-1-19	10-1-19	
m,p-Xylene	ND	0.0020	EPA 8260D	10-1-19	10-1-19	
o-Xylene	ND	0.0010	EPA 8260D	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	76-131				
Toluene-d8	106	78-128				
4-Bromofluorobenzene	93	71-130				

10

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	30S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0558	0.0540	0.0500	0.0500	112	108	57-133	3	18	
Benzene	0.0371	0.0360	0.0500	0.0500	74	72	71-129	3	16	
Trichloroethene	0.0521	0.0475	0.0500	0.0500	104	95	71-122	9	16	
Toluene	0.0459	0.0436	0.0500	0.0500	92	87	74-125	5	15	
Chlorobenzene	0.0446	0.0418	0.0500	0.0500	89	84	72-120	6	14	
Surrogate:										
Dibromofluoromethane					100	102	76-131			
Toluene-d8					103	100	78-128			
4-Bromofluorobenzene					113	109	71-130			
Laboratory ID:	SB10	01S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0483	0.0426	0.0500	0.0500	97	85	57-133	13	18	
Benzene	0.0451	0.0428	0.0500	0.0500	90	86	71-129	5	16	
Trichloroethene	0.0555	0.0512	0.0500	0.0500	111	102	71-122	8	16	
Toluene	0.0517	0.0477	0.0500	0.0500	103	95	74-125	8	15	
Chlorobenzene	0.0540	0.0481	0.0500	0.0500	108	96	72-120	12	14	
Surrogate:										
Dibromofluoromethane					98	103	76-131			
Toluene-d8					107	107	78-128			
4-Bromofluorobenzene					92	90	71-130			

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-8-19					
Laboratory ID:	09-287-03					
Benzene	ND	0.20	EPA 8260D	9-30-19	9-30-19	
Toluene	ND	1.0	EPA 8260D	9-30-19	9-30-19	
Ethylbenzene	ND	0.20	EPA 8260D	9-30-19	9-30-19	
m,p-Xylene	ND	0.40	EPA 8260D	9-30-19	9-30-19	
o-Xylene	ND	0.20	EPA 8260D	9-30-19	9-30-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	102	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930W2					
Benzene	ND	0.20	EPA 8260D	9-30-19	9-30-19	
Toluene	ND	1.0	EPA 8260D	9-30-19	9-30-19	
Ethylbenzene	ND	0.20	EPA 8260D	9-30-19	9-30-19	
m,p-Xylene	ND	0.40	EPA 8260D	9-30-19	9-30-19	
o-Xylene	ND	0.20	EPA 8260D	9-30-19	9-30-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	103	78-125				

13

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Result		Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	30W2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.20	8.69	10.0	10.0	92	87	63-130	6	17	
Benzene	9.60	9.25	10.0	10.0	96	93	76-125	4	19	
Trichloroethene	10.4	10.1	10.0	10.0	104	101	76-121	3	18	
Toluene	9.80	9.49	10.0	10.0	98	95	80-124	3	18	
Chlorobenzene	11.1	10.4	10.0	10.0	111	104	75-120	7	19	
Surrogate:										
Dibromofluoromethane					101	101	75-127			
Toluene-d8					97	99	80-127			
4-Bromofluorobenzene					95	96	78-125			

PAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-8-19:10.0					
Laboratory ID:	09-287-01					
Benzo[a]anthracene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Chrysene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[b]fluoranthene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo(j,k)fluoranthene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[a]pyrene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Dibenz[a,h]anthracene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	63	40 - 111				
Pyrene-d10	82	40 - 110				
Terphenyl-d14	83	45 - 122				

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-102-19:10.0					
Laboratory ID:	09-287-04					
Benzo[a]anthracene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Chrysene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[b]fluoranthene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo(j,k)fluoranthene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[a]pyrene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Dibenz[a,h]anthracene	ND	0.0076	EPA 8270E/SIM	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	63	40 - 111				
Pyrene-d10	79	40 - 110				
Terphenyl-d14	84	45 - 122				

PAHs EPA 8270E/SIM QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1001S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Chrysene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	40 - 111				
Pyrene-d10	87	40 - 110				
Terphenyl-d14	88	45 - 122				

PAHs EPA 8270E/SIM QUALITY CONTROL

0 0					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-28	37-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0734	0.0732	0.0833	0.0833	ND	88	88	53 - 131	0	23	
Chrysene	0.0720	0.0701	0.0833	0.0833	ND	86	84	46 - 126	3	24	
Benzo[b]fluoranthene	0.0682	0.0719	0.0833	0.0833	ND	82	86	45 - 127	5	25	
Benzo(j,k)fluoranthene	0.0743	0.0679	0.0833	0.0833	ND	89	82	52 - 122	9	21	
Benzo[a]pyrene	0.0705	0.0696	0.0833	0.0833	ND	85	84	51 - 126	1	24	
Indeno(1,2,3-c,d)pyrene	0.0669	0.0669	0.0833	0.0833	ND	80	80	48 - 127	0	23	
Dibenz[a,h]anthracene	0.0676	0.0675	0.0833	0.0833	ND	81	81	51 - 124	0	22	
Surrogate:											
2-Fluorobiphenyl						66	72	40 - 111			
Pyrene-d10						75	74	40 - 110			
Terphenyl-d14						82	77	45 - 122			

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-8-19:10.0					
Laboratory ID:	09-287-01					
Arsenic	ND	11	EPA 6010D	9-27-19	9-27-19	
Barium	38	2.9	EPA 6010D	9-27-19	9-27-19	
Cadmium	ND	0.57	EPA 6010D	9-27-19	9-27-19	
Chromium	18	0.57	EPA 6010D	9-27-19	9-27-19	
Lead	ND	5.7	EPA 6010D	9-27-19	9-27-19	
Mercury	ND	0.29	EPA 7471B	9-27-19	9-27-19	
Selenium	ND	11	EPA 6010D	9-27-19	9-27-19	
Silver	ND	1.1	EPA 6010D	9-27-19	9-27-19	

Client ID:	SB-102-19:10.0					
Laboratory ID:	09-287-04					
Arsenic	ND	11	EPA 6010D	9-27-19	9-27-19	
Barium	43	2.8	EPA 6010D	9-27-19	9-27-19	
Cadmium	ND	0.57	EPA 6010D	9-27-19	9-27-19	
Chromium	22	0.57	EPA 6010D	9-27-19	9-27-19	
Lead	ND	5.7	EPA 6010D	9-27-19	9-27-19	
Mercury	ND	0.28	EPA 7471B	9-27-19	9-27-19	
Selenium	ND	11	EPA 6010D	9-27-19	9-27-19	
Silver	ND	1.1	EPA 6010D	9-27-19	9-27-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0927SM1					
Arsenic	ND	10	EPA 6010D	9-27-19	9-27-19	
Barium	ND	2.5	EPA 6010D	9-27-19	9-27-19	
Cadmium	ND	0.50	EPA 6010D	9-27-19	9-27-19	
Chromium	ND	0.50	EPA 6010D	9-27-19	9-27-19	
Lead	ND	5.0	EPA 6010D	9-27-19	9-27-19	
Selenium	ND	10	EPA 6010D	9-27-19	9-27-19	
Silver	ND	1.0	EPA 6010D	9-27-19	9-27-19	
Laboratory ID:	MB0927S1					
Mercury	ND	0.25	EPA 7471B	9-27-19	9-27-19	

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-2	74-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Barium	58.4	59.1	NA	NA		Ν	IA	NA	1	20	
Cadmium	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Chromium	29.1	28.2	NA	NA		Ν	IA	NA	3	20	
Lead	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Selenium	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Silver	ND	ND	NA	NA		Ν	IA	NA	NA	20	
Laboratory ID:	09-29	94-01									
Mercury	ND	ND	NA	NA		Ν	IA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	09-2	74-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	96.6	95.4	100	100	ND	97	95	75-125	1	20	
Barium	152	158	100	100	58.4	94	100	75-125	4	20	
Cadmium	45.7	45.5	50.0	50.0	ND	91	91	75-125	0	20	
Chromium	119	122	100	100	29.1	90	93	75-125	2	20	
Lead	232	230	250	250	ND	93	92	75-125	1	20	
Selenium	97.4	97.5	100	100	ND	97	98	75-125	0	20	
Silver	20.6	20.4	25.0	25.0	ND	82	81	75-125	1	20	
Laboratory ID:	09-29	94-01									
Mercury	0.559	0.531	0.500	0.500	0.0153	109	103	80-120	5	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

QUALITY CONTROL

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
SB-8-19:10.0	09-287-01	12	9-27-19
SB-8-19:15.0	09-287-02	8	9-27-19
SB-102-19:10.0	09-287-04	12	9-27-19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Ú	OnSite		Ch	ain c)f	Cı	IS	to	dy										Ρ	age _	1	of	١	
	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (i	Turnaround Request (in working days)				Laboratory Number: 09-287				7													
Project Project Project Project Sample	Number: 1-1-222242-102 Name: Stanoon & Wilson, Thc. Number: 1-1-222242-102 Name: SZO Montlake VCP Manager: Lavolo Leigh ad by: Nyan Peterson	Sam	(Check One e Day ys dard (7 Days) (other)) 1 Day 3 Days	r of Containers	1-HCID	H-Gx/BTEX	I-Gx	I-Dx (Acid / SG Clean-up)	S 8260C BIEX, EDC, EDS Call	A 8011 (Waters Only)	latiles 8270D/SIM	w-level PAHs) 270D/SIM (low-level)	082A CLATTS ONLY	chlorine Pesticides 8081B	phosphorus Pesticides 8270D/SIM	ated Acid Herbicides 8151A	CRA Metals and Asserted Dec	TCA Metals	letals	il and grease) 1664A	ld .	X 8260C	lure
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTPH	NWTPI	NWTPI	NWTPH	Volatile	EDB EF	Semivo	PAHs 8	PCBs 8	Organo	Organo	Chlorin	Total R	Total M	TCLP N	HEM (o	7	Bre	% Mois
1	58-8-19:10.0	9/25/19	1410	Soil	5			X		X			X					X						X
3	58-8-19:15.0	1	1440	501	5			X															\langle	X
3	SB-8-19		1520	Water	5			X															X	+
4	58-102-19:10.0		1610	Soil	S			X		X			X	(X						
5	TB-3 (trip blank)		-	Itzo	1																	X		
	E																							
	3																							
	A GIFF																							
	and the second s																							
	Signature	C	ompany	+11		6	Date			Time		C	ommo	ents/S	pecia	i Instr	ructio	ns					-111	
Reling	uished Arth PER	ELSON	Shannon	aun	son	, the	1	kd 1	9	100	16	-												
Relinc	nuished H 7	5	fect		2C	-	9	26	13	(0)	46	-												
Recei	ved ATTI I Sann	<	Jeal	EIT	~	-	al-	Z	14	11.	50	-												
Relinc	quished		0	l		-	1.6	101	11	110	~	-												
Recei	ved											Da	ita Pa	ackag	e: St	anda	rd 🗌	Lev	vel III		Leve	IV]	
Review	wed/Date		Reviewed/Da	ate								Chromatograms with final report C Electronic Data Deliverables (EDDs)												

October 9, 2019

Carole Leigh Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-102 Laboratory Reference No. 1909-311

Dear Carole:

Enclosed are the analytical results and associated quality control data for samples submitted on September 27, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: October 9, 2019 Samples Submitted: September 27, 2019 Laboratory Reference: 1909-311 Project: 21-1-22242-102

Case Narrative

Samples were collected on September 26 and 27, 2019 and received by the laboratory on September 27, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx (soil) Analysis

The chromatograms for samples SB-7-19:15.0 and SB-102-19:15.0 are similar to mineral spirits.

NWTPH-Gx (water) Analysis

The chromatogram for sample SB-7-19 is similar to mineral spirits.

Volatiles EPA 8260D (soil) Analysis

The MTCA Method A clean-up level of 0.030 ppm for Benzene is not achievable for sample SB-102-19:15.0 due to the necessary dilution of the sample.

PAHs EPA 8270E/SIM (water) Analysis

Sample SB-7-19 had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-1-19:20.0					
Laboratory ID:	09-311-02					
Hexane	4.5	2.6	NWTPH-VPH	10-2-19	10-2-19	
Gasoline	310	51	NWTPH-Gx	10-2-19	10-2-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	114	58-129				
Client ID:	SB-103-19:20.0					
Laboratory ID:	09-311-04					
Gasoline	100	18	NWTPH-Gx	10-2-19	10-2-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	58-129				
Client ID:	SB-1-19:35.0					
Laboratory ID:	09-311-05					
Gasoline	ND	7.1	NWTPH-Gx	10-2-19	10-7-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	58-129				
Client ID:	SB-7-19:15.0					
Laboratory ID:	09-311-09					
Gasoline	210	31	NWTPH-Gx	10-2-19	10-2-19	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	58-129				
Client ID:	SB-102-19:15.0					
Laboratory ID:	09-311-10					
Gasoline	330	38	NWTPH-Gx	10-2-19	10-2-19	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	58-129				
Client ID:	SB-7-19:25.0					
Laboratory ID:	09-311-13					
Gasoline	ND	6.2	NWTPH-Gx	10-2-19	10-7-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	58-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

Analvte	Result	PQL	Method	Date Prepared	Date Analvzed	Flags
METHOD BLANK				-		
Laboratory ID:	MB1002S1					
Hexane	ND	0.25	NWTPH-VPH	10-2-19	10-2-19	
Gasoline	ND	5.0	NWTPH-Gx	10-2-19	10-2-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	58-129				

					Source	Percen	t Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recove	ry Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-26	64-02								
	ORIG	DUP								
Hexane	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						86 8	37 58-129			

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-7-19					
Laboratory ID:	09-311-11					
Gasoline	18000	10000	NWTPH-Gx	10-2-19	10-2-19	Z
Surrogate: Fluorobenzene	Percent Recovery 98	Control Limits 59-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

								Date	Date)	
Analyte		Result		PQL	Me	ethod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB1002W3									
Gasoline		ND		100	NW	ГРН-G×	(10-2-19	10-2-2	19	
Surrogate:	Per	rcent Recov	ery Co	ontrol Lim	its						
Fluorobenzene		82		59-122							
					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spil	ke Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-32	28-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	A	NA	NA	30	
Surrogate:											
Fluorobenzene						82	84	59-122			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

0 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-7-19					
Laboratory ID:	09-311-11					
Diesel Range Organics	29	1.1	NWTPH-Dx	10-1-19	10-1-19	М
Lube Oil	7.9	1.7	NWTPH-Dx	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1001W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	10-1-19	10-1-19	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Result Spike Level Result Recove		Recovery	Limits	RPD	Limit	Flags			
DUPLICATE										
Laboratory ID:	09-30	04-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						96 103	50-150			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-1-19:20.0					
Laboratory ID:	09-311-02					
Benzene	2.2	0.051	EPA 8260D	10-1-19	10-2-19	
1,2-Dichloroethane	ND	0.051	EPA 8260D	10-1-19	10-2-19	
Toluene	ND	0.26	EPA 8260D	10-1-19	10-2-19	
1,2-Dibromoethane	ND	0.051	EPA 8260D	10-1-19	10-2-19	
Ethylbenzene	5.4	0.051	EPA 8260D	10-1-19	10-2-19	
m,p-Xylene	2.1	0.10	EPA 8260D	10-1-19	10-2-19	
o-Xylene	0.21	0.051	EPA 8260D	10-1-19	10-2-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	76-131				
Toluene-d8	103	78-128				
4-Bromofluorobenzene	92	71-130				

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-103-19:20.0					
Laboratory ID:	09-311-04					
Benzene	0.82	0.044	EPA 8260D	10-1-19	10-2-19	
1,2-Dichloroethane	ND	0.044	EPA 8260D	10-1-19	10-2-19	
Toluene	ND	0.22	EPA 8260D	10-1-19	10-2-19	
1,2-Dibromoethane	ND	0.044	EPA 8260D	10-1-19	10-2-19	
Ethylbenzene	0.77	0.044	EPA 8260D	10-1-19	10-2-19	
m,p-Xylene	0.78	0.087	EPA 8260D	10-1-19	10-2-19	
o-Xylene	0.16	0.044	EPA 8260D	10-1-19	10-2-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	76-131				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	99	71-130				

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-1-19:35.0					
Laboratory ID:	09-311-05					
Benzene	0.0090	0.0011	EPA 8260D	10-3-19	10-3-19	
Toluene	ND	0.0057	EPA 8260D	10-3-19	10-3-19	
Ethylbenzene	0.018	0.0011	EPA 8260D	10-3-19	10-3-19	
m,p-Xylene	0.011	0.0023	EPA 8260D	10-3-19	10-3-19	
o-Xylene	0.0015	0.0011	EPA 8260D	10-3-19	10-3-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	76-131				
Toluene-d8	97	78-128				
4-Bromofluorobenzene	93	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-7-19:15.0					
Laboratory ID:	09-311-09					
Benzene	0.061	0.055	EPA 8260D	10-1-19	10-2-19	
1,2-Dichloroethane	ND	0.055	EPA 8260D	10-1-19	10-2-19	
Toluene	ND	0.27	EPA 8260D	10-1-19	10-2-19	
1,2-Dibromoethane	ND	0.055	EPA 8260D	10-1-19	10-2-19	
Ethylbenzene	ND	0.055	EPA 8260D	10-1-19	10-2-19	
m,p-Xylene	ND	0.11	EPA 8260D	10-1-19	10-2-19	
o-Xylene	ND	0.055	EPA 8260D	10-1-19	10-2-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	76-131				
Toluene-d8	102	78-128				
4-Bromofluorobenzene	82	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-102-19:15.0					
Laboratory ID:	09-311-10					
Benzene	ND	0.068	EPA 8260D	10-1-19	10-2-19	
1,2-Dichloroethane	ND	0.068	EPA 8260D	10-1-19	10-2-19	
Toluene	ND	0.34	EPA 8260D	10-1-19	10-2-19	
1,2-Dibromoethane	ND	0.068	EPA 8260D	10-1-19	10-2-19	
Ethylbenzene	ND	0.068	EPA 8260D	10-1-19	10-2-19	
m,p-Xylene	ND	0.14	EPA 8260D	10-1-19	10-2-19	
o-Xylene	ND	0.068	EPA 8260D	10-1-19	10-2-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	76-131				
Toluene-d8	105	78-128				
4-Bromofluorobenzene	89	71-130				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-7-19:25.0					
Laboratory ID:	09-311-13					
Benzene	ND	0.0013	EPA 8260D	10-3-19	10-3-19	
Toluene	ND	0.0063	EPA 8260D	10-3-19	10-3-19	
Ethylbenzene	ND	0.0013	EPA 8260D	10-3-19	10-3-19	
m,p-Xylene	ND	0.0025	EPA 8260D	10-3-19	10-3-19	
o-Xylene	ND	0.0013	EPA 8260D	10-3-19	10-3-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	76-131				
Toluene-d8	96	78-128				
4-Bromofluorobenzene	89	71-130				

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1001S1					
Benzene	ND	0.0010	EPA 8260D	10-1-19	10-1-19	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	10-1-19	10-1-19	
Toluene	ND	0.0050	EPA 8260D	10-1-19	10-1-19	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	10-1-19	10-1-19	
Ethylbenzene	ND	0.0010	EPA 8260D	10-1-19	10-1-19	
m,p-Xylene	ND	0.0020	EPA 8260D	10-1-19	10-1-19	
o-Xylene	ND	0.0010	EPA 8260D	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	76-131				
Toluene-d8	106	78-128				
4-Bromofluorobenzene	93	71-130				
Laboratory ID:	MB1003S1					
Benzene	ND	0.0010	EPA 8260D	10-3-19	10-3-19	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	10-3-19	10-3-19	
Toluene	ND	0.0050	EPA 8260D	10-3-19	10-3-19	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	10-3-19	10-3-19	
Ethylbenzene	ND	0.0010	EPA 8260D	10-3-19	10-3-19	
m,p-Xylene	ND	0.0020	EPA 8260D	10-3-19	10-3-19	
o-Xylene	ND	0.0010	EPA 8260D	10-3-19	10-3-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	76-131				
Toluene-d8	98	78-128				
4-Bromofluorobenzene	93	71-130				

15

					Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	01S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0483	0.0426	0.0500	0.0500	97	85	57-133	13	18	
Benzene	0.0451	0.0428	0.0500	0.0500	90	86	71-129	5	16	
Trichloroethene	0.0555	0.0512	0.0500	0.0500	111	102	71-122	8	16	
Toluene	0.0517	0.0477	0.0500	0.0500	103	95	74-125	8	15	
Chlorobenzene	0.0540	0.0481	0.0500	0.0500	108	96	72-120	12	14	
Surrogate:										
Dibromofluoromethane					98	103	76-131			
Toluene-d8					107	107	78-128			
4-Bromofluorobenzene					92	90	71-130			
Laboratory ID:	SB10	03S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0421	0.0449	0.0500	0.0500	84	90	57-133	6	18	
Benzene	0.0451	0.0470	0.0500	0.0500	90	94	71-129	4	16	
Trichloroethene	0.0490	0.0506	0.0500	0.0500	98	101	71-122	3	16	
Toluene	0.0456	0.0468	0.0500	0.0500	91	94	74-125	3	15	
Chlorobenzene	0.0484	0.0509	0.0500	0.0500	97	102	72-120	5	14	
Surrogate:										
Dibromofluoromethane					94	96	76-131			
Toluene-d8					94	97	78-128			
4-Bromofluorobenzene					93	92	71-130			

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-7-19					
Laboratory ID:	09-311-11					
Benzene	410	4.0	EPA 8260D	10-1-19	10-1-19	
1,2-Dichloroethane	ND	4.0	EPA 8260D	10-1-19	10-1-19	
Toluene	ND	20	EPA 8260D	10-1-19	10-1-19	
Ethylbenzene	25	4.0	EPA 8260D	10-1-19	10-1-19	
m,p-Xylene	ND	8.0	EPA 8260D	10-1-19	10-1-19	
o-Xylene	ND	4.0	EPA 8260D	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	75-127				
Toluene-d8	96	80-127				
4-Bromofluorobenzene	101	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1001W1					
Benzene	ND	0.20	EPA 8260D	10-1-19	10-1-19	
1,2-Dichloroethane	ND	0.20	EPA 8260D	10-1-19	10-1-19	
Toluene	ND	1.0	EPA 8260D	10-1-19	10-1-19	
Ethylbenzene	ND	0.20	EPA 8260D	10-1-19	10-1-19	
m,p-Xylene	ND	0.40	EPA 8260D	10-1-19	10-1-19	
o-Xylene	ND	0.20	EPA 8260D	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	104	78-125				

Matrix: Water Units: ug/L

	Result				Per	cent	Recovery		RPD	
Analyte			Spike	Spike Level		Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	01W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.93	9.68	10.0	10.0	99	97	63-130	3	17	
Benzene	10.5	10.1	10.0	10.0	105	101	76-125	4	19	
Trichloroethene	9.81	9.50	10.0	10.0	98	95	76-121	3	18	
Toluene	9.72	9.33	10.0	10.0	97	93	80-124	4	18	
Chlorobenzene	10.6	10.2	10.0	10.0	106	102	75-120	4	19	
Surrogate:										
Dibromofluoromethane					108	109	75-127			
Toluene-d8					102	101	80-127			
4-Bromofluorobenzene					107	105	78-125			

1,2-DIBROMOETHANE (EDB) EPA 8011

Matrix: Water Units: ug/L (ppb)

,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-7-19					
Laboratory ID:	09-311-11					
EDB	ND	0.010	EPA 8011	10-3-19	10-3-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	68	25-143				

1,2-DIBROMOETHANE (EDB) EPA 8011 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

								Date	Date)	
Analyte		Result		PQL	M	Method		Prepared	Analyzed		Flags
METHOD BLANK											
Laboratory ID:		MB1003W1									
EDB		ND		0.010	EP.	A 801	1	10-3-19	10-3-1	9	
Surrogate:	Pe	rcent Recov	ery Cor	ntrol Limi	ts						
ТСМХ		68	i	25-143							
					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Rec	covery	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-02	25-08									
	MS	MSD	MS	MSD		MS	MSD				
EDB	0.0642	0.0608	0.100	0.100	ND	64	61	60-140	5	20	
Surrogate:											
TCMX						65	56	25-143			

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-1-19:20.0					
Laboratory ID:	09-311-02					
Benzo[a]anthracene	ND	0.0080	EPA 8270E/SIM	10-1-19	10-1-19	
Chrysene	ND	0.0080	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[a]pyrene	ND	0.0080	EPA 8270E/SIM	10-1-19	10-1-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0080	EPA 8270E/SIM	10-1-19	10-1-19	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270E/SIM	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	61	40 - 111				
Pyrene-d10	77	40 - 110				
Terphenyl-d14	72	45 - 122				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-103-19:20.0					
Laboratory ID:	09-311-04					
Benzo[a]anthracene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-1-19	
Chrysene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[b]fluoranthene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo(j,k)fluoranthene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[a]pyrene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-1-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-1-19	
Dibenz[a,h]anthracene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	40 - 111				
Pyrene-d10	75	40 - 110				
Terphenyl-d14	80	45 - 122				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-7-19:15.0					
Laboratory ID:	09-311-09					
Benzo[a]anthracene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-2-19	
Chrysene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-2-19	
Benzo[b]fluoranthene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-2-19	
Benzo(j,k)fluoranthene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-2-19	
Benzo[a]pyrene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-2-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-2-19	
Dibenz[a,h]anthracene	ND	0.0077	EPA 8270E/SIM	10-1-19	10-2-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	40 - 111				
Pyrene-d10	79	40 - 110				
Terphenyl-d14	81	45 - 122				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-102-19:15.0					
Laboratory ID:	09-311-10					
Benzo[a]anthracene	ND	0.0078	EPA 8270E/SIM	10-1-19	10-2-19	
Chrysene	ND	0.0078	EPA 8270E/SIM	10-1-19	10-2-19	
Benzo[b]fluoranthene	ND	0.0078	EPA 8270E/SIM	10-1-19	10-2-19	
Benzo(j,k)fluoranthene	ND	0.0078	EPA 8270E/SIM	10-1-19	10-2-19	
Benzo[a]pyrene	ND	0.0078	EPA 8270E/SIM	10-1-19	10-2-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0078	EPA 8270E/SIM	10-1-19	10-2-19	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270E/SIM	10-1-19	10-2-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	40 - 111				
Pyrene-d10	74	40 - 110				
Terphenyl-d14	77	45 - 122				

cPAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1001S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Chrysene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	40 - 111				
Pyrene-d10	87	40 - 110				
Terphenyl-d14	88	45 - 122				

cPAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-28	37-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0734	0.0732	0.0833	0.0833	ND	88	88	53 - 131	0	23	
Chrysene	0.0720	0.0701	0.0833	0.0833	ND	86	84	46 - 126	3	24	
Benzo[b]fluoranthene	0.0682	0.0719	0.0833	0.0833	ND	82	86	45 - 127	5	25	
Benzo(j,k)fluoranthene	0.0743	0.0679	0.0833	0.0833	ND	89	82	52 - 122	9	21	
Benzo[a]pyrene	0.0705	0.0696	0.0833	0.0833	ND	85	84	51 - 126	1	24	
Indeno(1,2,3-c,d)pyrene	0.0669	0.0669	0.0833	0.0833	ND	80	80	48 - 127	0	23	
Dibenz[a,h]anthracene	0.0676	0.0675	0.0833	0.0833	ND	81	81	51 - 124	0	22	
Surrogate:											
2-Fluorobiphenyl						66	72	40 - 111			
Pyrene-d10						75	74	40 - 110			
Terphenyl-d14						82	77	45 - 122			

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-7-19					
Laboratory ID:	09-311-11					
Benzo[a]anthracene	1.6	0.41	EPA 8270E/SIM	10-1-19	10-2-19	
Chrysene	1.8	0.41	EPA 8270E/SIM	10-1-19	10-2-19	
Benzo[b]fluoranthene	0.94	0.41	EPA 8270E/SIM	10-1-19	10-2-19	
Benzo(j,k)fluoranthene	ND	0.41	EPA 8270E/SIM	10-1-19	10-2-19	
Benzo[a]pyrene	0.74	0.41	EPA 8270E/SIM	10-1-19	10-2-19	
Indeno(1,2,3-c,d)pyrene	ND	0.41	EPA 8270E/SIM	10-1-19	10-2-19	
Dibenz[a,h]anthracene	ND	0.41	EPA 8270E/SIM	10-1-19	10-2-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	52	27 - 106				
Pyrene-d10	80	35 - 98				
Terphenyl-d14	18	41 - 129				Q

cPAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1001W1					
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	10-1-19	10-1-19	
Chrysene	ND	0.010	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	10-1-19	10-1-19	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	10-1-19	10-1-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	10-1-19	10-1-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	10-1-19	10-1-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	68	27 - 106				
Pyrene-d10	86	35 - 98				
Terphenyl-d14	97	41 - 129				

cPAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Water Units: ug/L

·					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	01W1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.445	0.413	0.500	0.500	89	83	59 - 127	7	24	
Chrysene	0.417	0.395	0.500	0.500	83	79	57 - 122	5	24	
Benzo[b]fluoranthene	0.404	0.409	0.500	0.500	81	82	58 - 123	1	26	
Benzo(j,k)fluoranthene	0.447	0.388	0.500	0.500	89	78	60 - 123	14	22	
Benzo[a]pyrene	0.381	0.364	0.500	0.500	76	73	54 - 121	5	24	
Indeno(1,2,3-c,d)pyrene	0.387	0.365	0.500	0.500	77	73	55 - 125	6	26	
Dibenz[a,h]anthracene	0.398	0.383	0.500	0.500	80	77	57 - 127	4	25	
Surrogate:										
2-Fluorobiphenyl					62	55	27 - 106			
Pyrene-d10					78	76	35 - 98			
Terphenyl-d14					92	86	41 - 129			

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-1-19:20.0					
Laboratory ID:	09-311-02					
Arsenic	ND	12	EPA 6010D	9-30-19	9-30-19	
Barium	30	3.0	EPA 6010D	9-30-19	9-30-19	
Cadmium	ND	0.60	EPA 6010D	9-30-19	9-30-19	
Chromium	23	0.60	EPA 6010D	9-30-19	9-30-19	
Lead	ND	6.0	EPA 6010D	9-30-19	9-30-19	
Mercury	ND	0.30	EPA 7471B	10-1-19	10-1-19	
Selenium	ND	12	EPA 6010D	9-30-19	9-30-19	
Silver	ND	1.2	EPA 6010D	9-30-19	9-30-19	

Client ID:	SB-103-19:20.0					
Laboratory ID:	09-311-04					
Arsenic	ND	12	EPA 6010D	9-30-19	9-30-19	
Barium	66	2.9	EPA 6010D	9-30-19	9-30-19	
Cadmium	ND	0.58	EPA 6010D	9-30-19	9-30-19	
Chromium	37	0.58	EPA 6010D	9-30-19	9-30-19	
Lead	ND	5.8	EPA 6010D	9-30-19	9-30-19	
Mercury	ND	0.29	EPA 7471B	10-1-19	10-1-19	
Selenium	ND	12	EPA 6010D	9-30-19	9-30-19	
Silver	ND	1.2	EPA 6010D	9-30-19	9-30-19	

Client ID:	SB-7-19:15.0					
Laboratory ID:	09-311-09					
Arsenic	ND	12	EPA 6010D	9-30-19	9-30-19	
Barium	49	2.9	EPA 6010D	9-30-19	9-30-19	
Cadmium	ND	0.58	EPA 6010D	9-30-19	9-30-19	
Chromium	26	0.58	EPA 6010D	9-30-19	9-30-19	
Lead	ND	5.8	EPA 6010D	9-30-19	9-30-19	
Mercury	ND	0.29	EPA 7471B	10-1-19	10-1-19	
Selenium	ND	12	EPA 6010D	9-30-19	9-30-19	
Silver	ND	1.2	EPA 6010D	9-30-19	9-30-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-102-19:15.0					
Laboratory ID:	09-311-10					
Arsenic	ND	12	EPA 6010D	9-30-19	9-30-19	
Barium	43	2.9	EPA 6010D	9-30-19	9-30-19	
Cadmium	ND	0.58	EPA 6010D	9-30-19	9-30-19	
Chromium	22	0.58	EPA 6010D	9-30-19	9-30-19	
Lead	ND	5.8	EPA 6010D	9-30-19	9-30-19	
Mercury	ND	0.29	EPA 7471B	10-1-19	10-1-19	
Selenium	ND	12	EPA 6010D	9-30-19	9-30-19	
Silver	ND	1.2	EPA 6010D	9-30-19	9-30-19	

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930SM1					
Arsenic	ND	10	EPA 6010D	9-30-19	9-30-19	
Barium	ND	2.5	EPA 6010D	9-30-19	9-30-19	
Cadmium	ND	0.50	EPA 6010D	9-30-19	9-30-19	
Chromium	ND	0.50	EPA 6010D	9-30-19	9-30-19	
Lead	ND	5.0	EPA 6010D	9-30-19	9-30-19	
Selenium	ND	10	EPA 6010D	9-30-19	9-30-19	
Silver	ND	1.0	EPA 6010D	9-30-19	9-30-19	
Laboratory ID:	MB1001S1					
Mercury	ND	0.25	EPA 7471B	10-1-19	10-1-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-32	24-03									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Barium	48.1	46.5	NA	NA			NA	NA	3	20	
Cadmium	ND	ND	NA	NA			NA	NA	NA	20	
Chromium	24.1	23.7	NA	NA			NA	NA	2	20	
Lead	ND	ND	NA	NA			NA	NA	NA	20	
Selenium	ND	ND	NA	NA			NA	NA	NA	20	
Silver	ND	ND	NA	NA			NA	NA	NA	20	
Laboratory ID:	09-3 ⁻	11-10									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES	00.3	24.03									
	09-32	24-03 MOD	MC	MOD		MC	MOD				
	1/15	NISD	100	100		1015	IVISD	75 405	0	20	
Arsenic	90.0	92.2	100	100		90	92	75-125	2	20	
Barium	147	142	100	100	48.1	33	94	15-125	3	20	

											_
Mercury	0.517	0.523	0.500	0.500	0.0200	99	101	80-120	1	20	
Laboratory ID:	09-3 ⁻	11-10									
Silver	20.5	20.4	25.0	25.0	ND	82	81	75-125	0	20	
Selenium	90.3	85.7	100	100	ND	90	86	75-125	5	20	
Lead	229	227	250	250	ND	92	91	75-125	1	20	
Chromium	115	113	100	100	24.1	91	89	75-125	1	20	
Cadmium	41.1	40.4	50.0	50.0	ND	82	81	75-125	2	20	
Barium	147	142	100	100	48.1	99	94	75-125	3	20	

M

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-7-19					
Laboratory ID:	09-311-11					
Arsenic	92	3.3	EPA 200.8	9-30-19	9-30-19	
Barium	850	28	EPA 200.8	9-30-19	9-30-19	
Cadmium	ND	4.4	EPA 200.8	9-30-19	9-30-19	
Chromium	290	11	EPA 200.8	9-30-19	9-30-19	
Lead	72	1.1	EPA 200.8	9-30-19	9-30-19	
Mercury	ND	0.50	EPA 7470A	10-2-19	10-2-19	
Selenium	ND	5.6	EPA 200.8	9-30-19	9-30-19	
Silver	ND	11	EPA 200.8	9-30-19	10-1-19	

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930WM1					
Arsenic	ND	3.3	EPA 200.8	9-30-19	9-30-19	
Barium	ND	28	EPA 200.8	9-30-19	9-30-19	
Cadmium	ND	4.4	EPA 200.8	9-30-19	9-30-19	
Chromium	ND	11	EPA 200.8	9-30-19	9-30-19	
Lead	ND	1.1	EPA 200.8	9-30-19	9-30-19	
Selenium	ND	5.6	EPA 200.8	9-30-19	9-30-19	
Silver	ND	11	EPA 200.8	9-30-19	10-1-19	
Laboratory ID:	MB1002W1					
Mercury	ND	0.50	EPA 7470A	10-2-19	10-2-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-29	90-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Barium	ND	ND	NA	NA		I	NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		I	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		I	NA	NA	NA	20	
Lead	ND	ND	NA	NA		I	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		I	NA	NA	NA	20	
Silver	ND	ND	NA	NA			NA	NA	NA	20	
Laboratory ID:	09-30	00-01									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	09-29	90-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	122	118	111	111	ND	110	106	75-125	3	20	
Barium	112	114	111	111	ND	101	102	75-125	2	20	
Cadmium	112	112	111	111	ND	101	101	75-125	0	20	
Chromium	110	107	111	111	ND	99	96	75-125	3	20	
Lead	109	112	111	111	ND	99	101	75-125	2	20	

Laboratory ID:	09-30	00-01									
Mercury	11.3	12.3	12.5	12.5	ND	90	98	75-125	8	20	 -

ND

ND

110

101

113

95

75-125

75-125

3

5

20

20

M

122

112

126

106

111

111

Selenium

Silver

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

111

111

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-7-19					
Laboratory ID:	09-311-11					
Arsenic	19	3.0	EPA 200.8	9-27-19	9-30-19	
Barium	65	25	EPA 200.8	9-27-19	9-30-19	
Cadmium	ND	4.0	EPA 200.8	9-27-19	9-30-19	
Chromium	ND	10	EPA 200.8	9-27-19	9-30-19	
Lead	ND	1.0	EPA 200.8	9-27-19	9-30-19	
Mercury	ND	0.50	EPA 7470A	9-27-19	10-2-19	
Selenium	ND	5.0	EPA 200.8	9-27-19	9-30-19	
Silver	ND	10	EPA 200.8	9-27-19	10-1-19	

DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0927F1					
Arsenic	ND	3.0	EPA 200.8	9-27-19	9-30-19	
Barium	ND	25	EPA 200.8	9-27-19	9-30-19	
Cadmium	ND	4.0	EPA 200.8	9-27-19	9-30-19	
Chromium	ND	10	EPA 200.8	9-27-19	9-30-19	
Lead	ND	1.0	EPA 200.8	9-27-19	9-30-19	
Selenium	ND	5.0	EPA 200.8	9-27-19	9-30-19	
Silver	ND	10	EPA 200.8	9-27-19	10-1-19	
Laboratory ID:	MB0927F1					
Mercury	ND	0.50	EPA 7470A	9-27-19	10-2-19	

					Source	Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-3 ⁻	11-01									
	ORIG	DUP									
Arsenic	19.1	20.4	NA	NA		1	NA	NA	7	20	
Barium	65.2	66.4	NA	NA		1	NA	NA	2	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	09-30	00-01									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	09-3 ⁻	11-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	103	101	80.0	80.0	19.1	104	102	75-125	2	20	
Barium	140	149	80.0	80.0	65.2	93	105	75-125	7	20	
Cadmium	77.2	80.0	80.0	80.0	ND	97	100	75-125	4	20	
Chromium	79.8	82.4	80.0	80.0	ND	100	103	75-125	3	20	
Lead	71.6	75.8	80.0	80.0	ND	90	95	75-125	6	20	
Selenium	83.2	89.0	80.0	80.0	ND	104	111	75-125	7	20	
Silver	75.2	75.4	80.0	80.0	ND	94	94	75-125	0	20	

Laboratory ID:	09-30	0-01									
Mercury	11.2	12.6	12.5	12.5	ND	89	100	75-125	12	20	

M

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL ORGANIC CARBON EPA 9060A

Matrix: Soil Units: % Carbon

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-1-19:20.0					
Laboratory ID:	09-311-02					
Total Organic Carbon	0.098	0.042	EPA 9060A	10-2-19	10-2-19	

TOTAL ORGANIC CARBON EPA 9060A QUALITY CONTROL

Matrix: Soil Units: % Carbon

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1002S1					
Total Organic Carbon	ND	0.042	EPA 9060A	10-2-19	10-2-19	

				Source	Percent	Recovery		RPD	
Analyte	Resul	lt	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-311-	02							
	ORIG I	DUP							
Total Organic Carbon	0.0978 0	.0980	NA	NA	NA	NA	0	20	
SPIKE BLANK									
Laboratory ID:	SB1002	S1							
	SB		SB		SB				
Total Organic Carbon	42.1		42.1	NA	100	90-121	NA	NA	

VOLATILE PETROLEUM HYDROCARBONS

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SB-1-19:20.0					
Laboratory ID:	09-311-02					
Aliphatic C5-C6	17	5.0	NWTPH-VPH	10-2-19	10-2-19	
Aliphatic C6-C8	130	5.0	NWTPH-VPH	10-2-19	10-2-19	
Aliphatic C8-C10	63	5.0	NWTPH-VPH	10-2-19	10-2-19	
Aliphatic C10-C12	25	5.0	NWTPH-VPH	10-2-19	10-2-19	
Total Aliphatic:	240		NWTPH-VPH	10-2-19	10-2-19	
Aromatic C8-C10	62	5.0	NWTPH-VPH	10-2-19	10-2-19	
Aromatic C10-C12	51	5.0	NWTPH-VPH	10-2-19	10-2-19	
Aromatic C12-C13	54	5.0	NWTPH-VPH	10-2-19	10-2-19	
Total Aromatic:	170		NWTPH-VPH	10-2-19	10-2-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	114	60-129				

VOLATILE PETROLEUM HYDROCARBONS QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1002S1					
Aliphatic C5-C6	ND	5.0	NWTPH-VPH	10-2-19	10-2-19	
Aliphatic C6-C8	ND	5.0	NWTPH-VPH	10-2-19	10-2-19	
Aliphatic C8-C10	ND	5.0	NWTPH-VPH	10-2-19	10-2-19	
Aliphatic C10-C12	ND	5.0	NWTPH-VPH	10-2-19	10-2-19	
Total Aliphatic:	NA		NWTPH-VPH	10-2-19	10-2-19	
Aromatic C8-C10	ND	5.0	NWTPH-VPH	10-2-19	10-2-19	
Aromatic C10-C12	ND	5.0	NWTPH-VPH	10-2-19	10-2-19	
Aromatic C12-C13	ND	5.0	NWTPH-VPH	10-2-19	10-2-19	
Total Aromatic:	NA		NWTPH-VPH	10-2-19	10-2-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	60-129				

VOLATILE PETROLEUM HYDROCARBONS QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-26	64-02								
	ORIG	DUP								
Aliphatic C5-C6	ND	ND	NA	NA		NA	NA	NA	30	
Aliphatic C6-C8	ND	ND	NA	NA		NA	NA	NA	30	
Aliphatic C8-C10	ND	ND	NA	NA		NA	NA	NA	30	
Aliphatic C10-C12	ND	ND	NA	NA		NA	NA	NA	30	
Total Aliphatic:	NA	NA	NA	NA		NA	NA	NA	30	
Aromatic C8-C10	ND	ND	NA	NA		NA	NA	NA	30	
Aromatic C10-C12	ND	ND	NA	NA		NA	NA	NA	30	
Aromatic C12-C13	ND	ND	NA	NA		NA	NA	NA	30	
Total Aromatic:	NA	NA	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						86 87	60-129			

Mr

Date of Report: October 9, 2019 Samples Submitted: September 27, 2019 Laboratory Reference: 1909-311 Project: 21-1-22242-102

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
SB-1-19:20.0	09-311-02	17	10-1-19
SB-103-19:20.0	09-311-04	13	10-1-19
SB-1-19:35.0	09-311-05	14	10-3-19
SB-7-19:15.0	09-311-09	14	10-1-19
SB-102-19:15.0	09-311-10	14	10-1-19
SB-7-19:25.0	09-311-13	15	10-1-19

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Z The sample chromatogram is similar to mineral spirits.

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

October 9, 2019

Mr. David Baumeister OnSite Environmental, Inc. 14648 NE 95th Street Redmond, WA 98052

Dear Mr. Baumeister,

On September 30th, 1 sample was received by our laboratory and assigned our laboratory project number EV19090223. The project was identified as your Lab Ref #09-311 / Proj #21-1-22242-102. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Rick Bagan Laboratory Director

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

CERTIFICATE OF ANALYSIS

CLIENT: CLIENT CONTACT: CLIENT PROJECT:	OnSite Environme 14648 NE 95th Str Redmond, WA 98 David Baumeister Lab Ref #09-311 /	ntal, Inc. reet 052 Proj #21-1-22242-102	D COL	DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED: LECTION DATE:	10/9/2019 EV19090223 EV19090223-01 09/30/2019 9/26/2019 8:45:00 AM		
CLIENT SAMPLE ID	SB-1-19:20.0			CCREDITATION:	C601		
		SAMPLE DAT	ARESULIS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS / DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	79	5.0	1	MG/KG	10/07/2019	EBS
>C10-C12 Aliphatics	NWEPH	69	5.0	1	MG/KG	10/07/2019	EBS
>C12-C16 Aliphatics	NWEPH	16	5.0	1	MG/KG	10/07/2019	EBS
>C16-C21 Aliphatics	NWEPH	28	5.0	1	MG/KG	10/07/2019	EBS
>C21-C34 Aliphatics	NWEPH	320	5.0	1	MG/KG	10/07/2019	EBS
>C8-C10 Aromatics	NWEPH	32	5.0	1	MG/KG	10/07/2019	EBS
>C10-C12 Aromatics	NWEPH	60	5.0	1	MG/KG	10/07/2019	EBS
>C12-C16 Aromatics	NWEPH	22	5.0	1	MG/KG	10/07/2019	EBS
>C16-C21 Aromatics	NWEPH	25	5.0	1	MG/KG	10/07/2019	EBS
>C21-C34 Aromatics	NWEPH	200	5.0	1	MG/KG	10/07/2019	EBS
SURROGATE	METHOD	%REC				ANALYSIS / DATE	ANALYSIS BY
C25	NWEPH	90.2				10/07/2019	EBS
p-Terphenyl	NWEPH	88.5				10/07/2019	EBS

Page 2 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS BIGHT PARTNER

CERTIFICATE OF ANALYSIS

CLIENT:OnSite Environmental, Inc.DATE:10/9/201914648 NE 95th StreetALS SDG#:EV19090223Redmond, WA 98052WDOE ACCREDITATION:C601CLIENT CONTACT:David BaumeisterLab Ref #09-311 / Proj #21-1-22242-102

LABORATORY BLANK RESULTS

MB-100119S - Batch 146204 - Soil by NWEPH

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
>C8-C10 Aliphatics	NWEPH	U	MG/KG	5.0	10/07/2019	EBS
>C10-C12 Aliphatics	NWEPH	U	MG/KG	5.0	10/07/2019	EBS
>C12-C16 Aliphatics	NWEPH	U	MG/KG	5.0	10/07/2019	EBS
>C16-C21 Aliphatics	NWEPH	U	MG/KG	5.0	10/07/2019	EBS
>C21-C34 Aliphatics	NWEPH	U	MG/KG	5.0	10/07/2019	EBS
>C8-C10 Aromatics	NWEPH	U	MG/KG	5.0	10/07/2019	EBS
>C10-C12 Aromatics	NWEPH	U	MG/KG	5.0	10/07/2019	EBS
>C12-C16 Aromatics	NWEPH	U	MG/KG	5.0	10/07/2019	EBS
>C16-C21 Aromatics	NWEPH	U	MG/KG	5.0	10/07/2019	EBS
>C21-C34 Aromatics	NWEPH	U	MG/KG	5.0	10/07/2019	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

Page 3
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS BIGHT PARTNER

CERTIFICATE OF ANALYSIS

CLIENT:

OnSite Environmental, Inc. 14648 NE 95th Street Redmond, WA 98052 David Baumeister

DATE: ALS SDG#: WDOE ACCREDITATION:

10/9/2019 EV19090223 C601

CLIENT CONTACT: CLIENT PROJECT: David Baumeister Lab Ref #09-311 / Proj #21-1-22242-102

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: 146204 - Soil by NWEPH

	···· ·				LIMITS		ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
>C8-C10 Aliphatics - BS	NWEPH	84.1			70	130	10/07/2019	EBS
>C8-C10 Aliphatics - BSD	NWEPH	87.9	4		70	130	10/07/2019	EBS
>C10-C12 Aliphatics - BS	NWEPH	89.4			70	130	10/07/2019	EBS
>C10-C12 Aliphatics - BSD	NWEPH	91.8	3		70	130	10/07/2019	EBS
>C12-C16 Aliphatics - BS	NWEPH	99.2			70	130	10/07/2019	EBS
>C12-C16 Aliphatics - BSD	NWEPH	98.5	1		70	130	10/07/2019	EBS
>C16-C21 Aliphatics - BS	NWEPH	103			70	130	10/07/2019	EBS
>C16-C21 Aliphatics - BSD	NWEPH	99.2	4		70	130	10/07/2019	EBS
>C21-C34 Aliphatics - BS	NWEPH	107			70	130	10/07/2019	EBS
>C21-C34 Aliphatics - BSD	NWEPH	102	4		70	130	10/07/2019	EBS
>C8-C10 Aromatics - BS	NWEPH	92.1			70	130	10/07/2019	EBS
>C8-C10 Aromatics - BSD	NWEPH	92.4	0		70	130	10/07/2019	EBS
>C10-C12 Aromatics - BS	NWEPH	90.8			70	130	10/07/2019	EBS
>C10-C12 Aromatics - BSD	NWEPH	90.0	1		70	130	10/07/2019	EBS
>C12-C16 Aromatics - BS	NWEPH	96.7			70	130	10/07/2019	EBS
>C12-C16 Aromatics - BSD	NWEPH	94.6	2		70	130	10/07/2019	EBS
>C16-C21 Aromatics - BS	NWEPH	103			70	130	10/07/2019	EBS
>C16-C21 Aromatics - BSD	NWEPH	99.3	4		70	130	10/07/2019	EBS
>C21-C34 Aromatics - BS	NWEPH	97.9			70	130	10/07/2019	EBS
>C21-C34 Aromatics - BSD	NWEPH	81.2	19		70	130	10/07/2019	EBS

APPROVED BY

Laboratory Director

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

Page 4

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881				Laboratory Reference #:	09-311
Laboratory: ALS Environmental Attention: Rick Bagan 8620 Holly Drive Everett, WA 98208	Turnaround Req 1 Day 2 Day Standard	uest 3 Day		Project Manager: email: Project Number:	David Baumeister dbaumeister@onsite-env.com 21-1-22242-102
Phone Number: (425)356-2600	Other:			Project Name:	SR-520 Montlake VCP
Lab ID Sample Identification	Date Time Sampled Sampled	Matrix	# of Cont.	Request	ed Analyses
SB-1-19:20.0	9/26/19 8:45	ω	.	Н	
Relinquished by MUM (Tall)	SE D K J Z	6-0	30 kg	Lime Commer	its/Special Instructions
Received by: Mr. And Auguran Allowed by: Mr. Park and Received by: Mr. Park and Relinquished by:	Activity	431.02	3349/2	2515 2515 MISLI	

EV19070223

Page 1 of 1

OnSite		Ch	ain c	of (Cu	IS	to	dy										P	age _	1	of	2			
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Т	urnaround Re (in working da	quest ays)		L	abo	orat	ory	Nu	mb	er:		0	9	-3	11									(HH)
Phone: (425) 883-3881 · www.onsite-env.com Company: Shannon & Wilson, Inc. Project Number: 21-1-22242-LOZ Project Name: SA520 Montlake VCf Project Manager: Carde Ledgh Sampled by: Nyan Referson and Joe Sandey	Sau 2 c Sta	(Check One me Day)ays andard (7 Days) (other)) 1 Day 3 Days	sr of Containers	1-HCID	H-Gx/BTEX	+Gx	-1-Dx (Acid / SG Clean-up)	EX, ENC, ENS outy	nated Volatiles 8260C	PA 8011 (Waters Only)	latiles 8270D/SIM w-level PAHs)	270D/SIM (low-leve) WH ouly	5082A Chlorino Dominidoo 9004 B	phosphorus Pesticides 8270D/SIM	ated Acid Herbicides 8151A	CRA Metals and discoluted a	TCA Metals	fletals	il and grease) 1664A	4	x suboc	1060	ane sub as	www.pth-EPHA + upth (m. mpH-1
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTPI	NWTPI	NWTPI	NWTP	Volatile	Haloge	EDB EI	Semivo (with lo	PAHs 8	Pueso	Organo	Chlorin	Total R	Total M	TCLP N	HEM (o	Fol	Bie	Det.	% Mois	EPH
1 TB-4 (trip black)	9/26/19	-	1+20	١																	X				
2 58-1-19:20.0	9/26/19	0825	Soil	6			Х		X				X				X						X	XX	X
3 513-1-19:16:0	1	0845	Soil	4																	X				
4 58-103-19:20.0		1025	Soil	5			X		Х				X				Х							X	3
5 58-1-19:35.0		1205	Sál	4			X															X		X	3
6 58-1-19:40.0		1300	Soil	5																	X			T	
7 58-1-19:50.0		1405	Soil	5																	X				1
8 58-1-19:60.0		1515	Soil	5																	X				1
9 58-7-19:15:0	9127/19	0855	5051	5			X		X				X				X	2			-			X	1
10 58-102-19:15.0	9/27/10	1055	Soil	S			X		X				X				X							X	1
Signature		Company				Date	-	1	Time			Com	ment	s/Spec	cial Ins	tructio	ns					-			
Relinquished	errasion	Shanno	\$ hill	Sen .	Dre	1	n	1/P	1	12:	12	Re	fort	- 4	05	tsi	Q.	sha	il	-					
Received THIT T		Derel	4 A	K	~	2	2	1/	51	2	12								wit		~				
Received	5	0	SE	10	_	9	271	18	12	25	1														
Relinquished																									
Received												Data	Pack	age:	Standa	ard 🗌	Lev	vel III		Level					1
Reviewed/Date		Reviewed/Da	ate									Chro	matog	grams	with fi	nal rep	oort [Ele	ectroni	c Data	Deliv	erable	s (EDC)s) 🗌	1

OnSite		Cha	ain c	of (Cu	ıst	:00	dy										Pa	age _	2+	M of	2+	100	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tui (i	rnaround Rec in working da	juest iys)		La	abo	rate	ory	Num	nber	1	C	9	- ;	3 1	1								
Phone: (425) 883-3881 · www.onsite-env.com Company: Shannon & Wilson, Inc Project Number: 21-1-ZZZ4Z-102 Project Name: SILSZO MONTUKE VCP Project Manager: Carole Leigh Sampled by: Ryun Potekon	□ Sam □ 2 Da ☑ Stan	(Check One te Day tys indard (7 Days) (other)) 1 Day 3 Days	r of Containers	-HCID	-Gx/BTEX	-Gx	-Dx (Acid / SG Clean-up)	SEX, EDC, EDB only	A 8011 (Waters Only)	latiles 8270D/SIM	270D/SWA (low-level)	082A	chlorine Pesticides 8081B	phosphorus Pesticides 8270D/SIM	ated Acid Herbicides 8151A	CRA Metals and dissolved	TCA Metals	letals	I and grease) 1664A	d1	X 8260 C		ure
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTPH	NWTPH	NWTPH	NWTPH	Volatile	EDB EP	Sernivo (with low	PAHs 8	PCBs 8	Organo	Organo	Chlorina	Total R(Total M	TCLP N	HEM (o	H	BTE		% Moist
11 58-7-19	9/27/19	1015	Water	13			X	X	X			X					X							
12 TB-5 (trip black)	1	-	Hzo)																	X			
13 SB-7-19:25.0		0935	Soll	5			X															X		X
14 TO-6 (trip blank)		-	420	1																	X			
120																								
Exp																			_					
er -																								
																								_
Signature	C	ompany				Date	1/		Time		Co	mmen	its/Sp	ecial	Instr	uction	ns							
Received A M K Received		Are Jee 08	Show	Jel The	1000	9/2 9/2	12-11	5/15	125	:12 ;12 1 5		Cep Lab	ant de	10	GH.	rs (a for	sha d	tuni	l. c lves	om I n	atels		
Received											Dat	ta Pac	kage	e: Sta	andai	d 🗌	Lev	/el III		Leve]		_
Devisional/Data		Paulowed/D		_							-		-							-				

October 29, 2019

Carole Leigh Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-102 Laboratory Reference No. 1910-250

Dear Carole:

Enclosed are the analytical results and associated quality control data for samples submitted on October 18, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 29, 2019 Samples Submitted: October 18, 2019 Laboratory Reference: 1910-250 Project: 21-1-22242-102

Case Narrative

Samples were collected on October 17, 2019 and received by the laboratory on October 18, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

The MTCA Method A cleanup level for 1,2-Dichloroethane is not achievable for sample RW-1-101719 due to the necessary dilution of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-101719					
Laboratory ID:	10-250-01					
Gasoline	ND	100	NWTPH-Gx	10-23-19	10-23-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	59-122				
Client ID:	MW-2-101719					
Laboratory ID:	10-250-02					
Gasoline	ND	100	NWTPH-Gx	10-23-19	10-23-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	59-122				
Client ID:	MW-3-101719					
Laboratory ID:	10-250-03					
Gasoline	1400	100	NWTPH-Gx	10-23-19	10-23-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	110	59-122				
Client ID:	MW-4-101719					
Laboratory ID:	10-250-04					
Gasoline	210	100	NWTPH-Gx	10-23-19	10-23-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	59-122				
Client ID:	RW-1-101719					
Laboratory ID:	10-250-05					
Gasoline	33000	1000	NWTPH-Gx	10-24-19	10-24-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	59-122				
Client ID:	DUP 101719					
Laboratory ID:	10-250-06					
Gasoline	190	100	NWTPH-Gx	10-23-19	10-23-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	59-122				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

• • • • •						Date	Date	•	
Analyte		Result	PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB1023W2							
Gasoline		ND	100	NW	ГРН-Gx	10-23-19	10-23-	19	
Surrogate:	Pe	rcent Recovery	Control Limi	ts					
Fluorobenzene		95	59-122						
Laboratory ID:		MB1024W1							
Gasoline		ND	100	NW	ГРН-Gx	10-24-19	10-24-	19	
Surrogate:	Pe	rcent Recovery	Control Limi	ts					
Fluorobenzene		97	59-122						
				Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	10-24	40-02							
	ORIG	DUP							
Gasoline	ND	ND	NA NA		NA	NA	NA	30	
Surrogate:									
Fluorobenzene					95 97	59-122			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-101719					
Laboratory ID:	10-250-01					
Diesel Range Organics	ND	0.27	NWTPH-Dx	10-21-19	10-21-19	
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	10-21-19	10-21-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				
Client ID:	MW-2-101719					
Laboratory ID:	10-250-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-21-19	10-21-19	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	10-21-19	10-21-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
	MW 2 101710					
Laboratory ID:	10-250-03					
Diesel Range Organics	0.63	0.26		10-21-10	10-21-19	М
Lube Oil Range Organics	0.66	0.42	NWTPH-Dx	10-21-19	10-21-19	101
Surrogate:	Percent Recovery	Control Limits				
o-Terphenvl	55	50-150				
Client ID:	MW-4-101719					
Laboratory ID:	10-250-04					
Diesel Range Organics	ND	0.28	NWTPH-Dx	10-21-19	10-21-19	
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	10-21-19	10-21-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
	DW 4 404740					
	40.250.05					
Laboratory ID.	10-250-05	0.00		10.01.10	10.01.10	N.4
Lubo Oil Bongo Organics	4.3	0.20		10-21-19	10-21-19	IVI
Surrogata:	Dereent Beeevery	0.42 Control Limito	INVITI-DX	10-21-19	10-21-19	
o Torphonyl		50 150				
0-Terphenyi	90	50-150				
Client ID:	DUP 101719					
Laboratory ID:	10-250-06					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-21-19	10-21-19	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	10-21-19	10-21-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

5

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1021W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	10-21-19	10-21-19	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	10-21-19	10-21-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-25	50-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						85 84	50-150			

6

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-101719					
Laboratory ID:	10-250-01					
Benzene	ND	0.20	EPA 8260D	10-22-19	10-22-19	
1,2-Dichloroethane	ND	1.0	EPA 8260D	10-22-19	10-22-19	
Toluene	ND	1.0	EPA 8260D	10-22-19	10-22-19	
Ethylbenzene	ND	0.20	EPA 8260D	10-22-19	10-22-19	
m,p-Xylene	ND	0.40	EPA 8260D	10-22-19	10-22-19	
o-Xylene	ND	0.20	EPA 8260D	10-22-19	10-22-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	100	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-101719					
Laboratory ID:	10-250-02					
Benzene	ND	0.20	EPA 8260D	10-22-19	10-22-19	
1,2-Dichloroethane	ND	1.0	EPA 8260D	10-22-19	10-22-19	
Toluene	ND	1.0	EPA 8260D	10-22-19	10-22-19	
Ethylbenzene	ND	0.20	EPA 8260D	10-22-19	10-22-19	
m,p-Xylene	ND	0.40	EPA 8260D	10-22-19	10-22-19	
o-Xylene	ND	0.20	EPA 8260D	10-22-19	10-22-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	107	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-101719					
Laboratory ID:	10-250-03					
Benzene	98	0.80	EPA 8260D	10-22-19	10-22-19	
1,2-Dichloroethane	ND	4.0	EPA 8260D	10-22-19	10-22-19	
Toluene	ND	4.0	EPA 8260D	10-22-19	10-22-19	
Ethylbenzene	24	0.80	EPA 8260D	10-22-19	10-22-19	
m,p-Xylene	9.3	1.6	EPA 8260D	10-22-19	10-22-19	
o-Xylene	1.1	0.80	EPA 8260D	10-22-19	10-22-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	100	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-101719					
Laboratory ID:	10-250-04					
Benzene	ND	0.20	EPA 8260D	10-22-19	10-22-19	
1,2-Dichloroethane	ND	1.0	EPA 8260D	10-22-19	10-22-19	
Toluene	ND	1.0	EPA 8260D	10-22-19	10-22-19	
Ethylbenzene	0.23	0.20	EPA 8260D	10-22-19	10-22-19	
m,p-Xylene	0.55	0.40	EPA 8260D	10-22-19	10-22-19	
o-Xylene	0.37	0.20	EPA 8260D	10-22-19	10-22-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	97	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	RW-1-101719					
Laboratory ID:	10-250-05					
Benzene	8700	100	EPA 8260D	10-22-19	10-22-19	
1,2-Dichloroethane	ND	500	EPA 8260D	10-22-19	10-22-19	
Toluene	ND	500	EPA 8260D	10-22-19	10-22-19	
Ethylbenzene	2300	100	EPA 8260D	10-22-19	10-22-19	
m,p-Xylene	3400	200	EPA 8260D	10-22-19	10-22-19	
o-Xylene	720	100	EPA 8260D	10-22-19	10-22-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	99	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DUP 101719					
Laboratory ID:	10-250-06					
Benzene	ND	0.20	EPA 8260D	10-22-19	10-22-19	
1,2-Dichloroethane	ND	1.0	EPA 8260D	10-22-19	10-22-19	
Toluene	ND	1.0	EPA 8260D	10-22-19	10-22-19	
Ethylbenzene	0.22	0.20	EPA 8260D	10-22-19	10-22-19	
m,p-Xylene	0.41	0.40	EPA 8260D	10-22-19	10-22-19	
o-Xylene	0.30	0.20	EPA 8260D	10-22-19	10-22-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	97	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1022W2					
Benzene	ND	0.20	EPA 8260D	10-22-19	10-22-19	
1,2-Dichloroethane	ND	1.0	EPA 8260D	10-22-19	10-22-19	
Toluene	ND	1.0	EPA 8260D	10-22-19	10-22-19	
Ethylbenzene	ND	0.20	EPA 8260D	10-22-19	10-22-19	
m,p-Xylene	ND	0.40	EPA 8260D	10-22-19	10-22-19	
o-Xylene	ND	0.20	EPA 8260D	10-22-19	10-22-19	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	100	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	22W2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	8.07	8.04	10.0	10.0	81	80	63-130	0	17	
Benzene	8.80	8.73	10.0	10.0	88	87	76-125	1	19	
Trichloroethene	9.34	9.27	10.0	10.0	93	93	76-121	1	18	
Toluene	9.28	9.30	10.0	10.0	93	93	80-124	0	18	
Chlorobenzene	9.90	9.73	10.0	10.0	99	97	75-120	2	19	
Surrogate:										
Dibromofluoromethane					105	104	75-127			
Toluene-d8					102	102	80-127			
4-Bromofluorobenzene					100	99	78-125			

14

1,2-DIBROMOETHANE (EDB) EPA 8011

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-101719					
Laboratory ID:	10-250-01					
EDB	ND	0.0097	EPA 8011	10-27-19	10-27-19	
Surrogate:	Percent Recovery	Control Limits				
ТСМХ	109	25-143				
Client ID:	MW-2-101719					
Laboratory ID:	10-250-02					
EDB	ND	0.0096	EPA 8011	10-27-19	10-27-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	111	25-143				
Client ID:	MW-3-101719					
Laboratory ID:	10-250-03					
EDB	ND	0.0096	EPA 8011	10-27-19	10-27-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	43	25-143				
Client ID:	MW-4-101719					
Laboratory ID:	10-250-04					
EDB	ND	0.0097	EPA 8011	10-27-19	10-27-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	85	25-143				
Client ID:	RW-1-101719					
Laboratory ID:	10-250-05					
EDB	ND	0.0095	EPA 8011	10-27-19	10-27-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	94	25-143				
Client ID:	DUP 101719					
Laboratory ID:	10-250-06					
EDB	ND	0.0097	EPA 8011	10-27-19	10-27-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	83	25-143				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

15

1,2-DIBROMOETHANE (EDB) EPA 8011 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1027W1					
EDB	ND	0.010	EPA 8011	10-27-19	10-27-19	
Surrogate:	Percent Recovery	Control Limits				
TCMX	103	25-143				

					Source	Per	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB10	27W1									
	SB	SBD	SB	SBD		SB	SBD				
EDB	0.105	0.104	0.100	0.100	N/A	105	104	57-124	1	15	
DBCP	0.125	0.121	0.100	0.100	N/A	125	121	70-127	3	15	
Surrogate:											
TCMX						113	106	25-143			

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-101719					
Laboratory ID:	10-250-01					
Benzo[a]anthracene	ND	0.0095	EPA 8270E/SIM	10-21-19	10-21-19	
Chrysene	ND	0.0095	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[a]pyrene	ND	0.0095	EPA 8270E/SIM	10-21-19	10-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270E/SIM	10-21-19	10-21-19	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270E/SIM	10-21-19	10-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	43	27 - 106				
Pyrene-d10	67	35 - 98				
Terphenyl-d14	71	41 - 129				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-101719					
Laboratory ID:	10-250-02					
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Chrysene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	48	27 - 106				
Pyrene-d10	66	35 - 98				
Terphenyl-d14	71	41 - 129				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-101719					
Laboratory ID:	10-250-03					
Benzo[a]anthracene	ND	0.011	EPA 8270E/SIM	10-21-19	10-21-19	
Chrysene	ND	0.011	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[b]fluoranthene	ND	0.011	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[a]pyrene	ND	0.011	EPA 8270E/SIM	10-21-19	10-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270E/SIM	10-21-19	10-21-19	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270E/SIM	10-21-19	10-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	37	27 - 106				
Pyrene-d10	69	35 - 98				
Terphenyl-d14	73	41 - 129				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-101719					
Laboratory ID:	10-250-04					
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Chrysene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	42	27 - 106				
Pyrene-d10	76	35 - 98				
Terphenyl-d14	83	41 - 129				

20

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	RW-1-101719					
Laboratory ID:	10-250-05					
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Chrysene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	30	27 - 106				
Pyrene-d10	50	35 - 98				
Terphenyl-d14	49	41 - 129				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DUP 101719					
Laboratory ID:	10-250-06					
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Chrysene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	40	27 - 106				
Pyrene-d10	73	35 - 98				
Terphenyl-d14	72	41 - 129				

22

PAHs EPA 8270E/SIM QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1021W1					
Benzo[a]anthracene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Chrysene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Benzo[a]pyrene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270E/SIM	10-21-19	10-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	44	27 - 106				
Pyrene-d10	67	35 - 98				
Terphenyl-d14	71	41 - 129				

PAHs EPA 8270E/SIM QUALITY CONTROL

·					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	21W2								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.352	0.400	0.500	0.500	70	80	59 - 127	13	24	
Chrysene	0.333	0.386	0.500	0.500	67	77	57 - 122	15	24	
Benzo[b]fluoranthene	0.325	0.363	0.500	0.500	65	73	58 - 123	11	26	
Benzo(j,k)fluoranthene	0.365	0.418	0.500	0.500	73	84	60 - 123	14	22	
Benzo[a]pyrene	0.335	0.381	0.500	0.500	67	76	54 - 121	13	24	
Indeno(1,2,3-c,d)pyrene	0.346	0.399	0.500	0.500	69	80	55 - 125	14	26	
Dibenz[a,h]anthracene	0.337	0.386	0.500	0.500	67	77	57 - 127	14	25	
Surrogate:										
2-Fluorobiphenyl					71	55	27 - 106			
Pyrene-d10					68	76	35 - 98			
Terphenyl-d14					71	82	41 - 129			

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

/				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-101719					
Laboratory ID:	10-250-01					
Arsenic	ND	3.3	EPA 200.8	10-23-19	10-23-19	
Barium	ND	28	EPA 200.8	10-23-19	10-23-19	
Cadmium	ND	4.4	EPA 200.8	10-23-19	10-23-19	
Chromium	ND	11	EPA 200.8	10-23-19	10-23-19	
Lead	ND	1.1	EPA 200.8	10-23-19	10-23-19	
Mercury	ND	0.50	EPA 7470A	10-22-19	10-22-19	
Selenium	ND	5.6	EPA 200.8	10-23-19	10-23-19	
Silver	ND	11	EPA 200.8	10-23-19	10-23-19	

Client ID:	MW-2-101719					
Laboratory ID:	10-250-02					
Arsenic	ND	3.3	EPA 200.8	10-23-19	10-23-19	
Barium	ND	28	EPA 200.8	10-23-19	10-23-19	
Cadmium	ND	4.4	EPA 200.8	10-23-19	10-23-19	
Chromium	ND	11	EPA 200.8	10-23-19	10-23-19	
Lead	ND	1.1	EPA 200.8	10-23-19	10-23-19	
Mercury	ND	0.50	EPA 7470A	10-22-19	10-22-19	
Selenium	ND	5.6	EPA 200.8	10-23-19	10-23-19	
Silver	ND	11	EPA 200.8	10-23-19	10-23-19	

Client ID:	MW-3-101719					
Laboratory ID:	10-250-03					
Arsenic	17	3.3	EPA 200.8	10-23-19	10-23-19	
Barium	130	28	EPA 200.8	10-23-19	10-23-19	
Cadmium	ND	4.4	EPA 200.8	10-23-19	10-23-19	
Chromium	29	11	EPA 200.8	10-23-19	10-23-19	
Lead	5.3	1.1	EPA 200.8	10-23-19	10-23-19	
Mercury	ND	0.50	EPA 7470A	10-22-19	10-22-19	
Selenium	ND	5.6	EPA 200.8	10-23-19	10-23-19	
Silver	ND	11	EPA 200.8	10-23-19	10-23-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

25

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-101719					
Laboratory ID:	10-250-04					
Arsenic	5.9	3.3	EPA 200.8	10-23-19	10-23-19	
Barium	45	28	EPA 200.8	10-23-19	10-23-19	
Cadmium	ND	4.4	EPA 200.8	10-23-19	10-23-19	
Chromium	ND	11	EPA 200.8	10-23-19	10-23-19	
Lead	ND	1.1	EPA 200.8	10-23-19	10-23-19	
Mercury	ND	0.50	EPA 7470A	10-22-19	10-22-19	
Selenium	ND	5.6	EPA 200.8	10-23-19	10-23-19	
Silver	ND	11	EPA 200.8	10-23-19	10-23-19	

Client ID:	RW-1-101719					
Laboratory ID:	10-250-05					
Arsenic	100	3.3	EPA 200.8	10-23-19	10-23-19	
Barium	120	28	EPA 200.8	10-23-19	10-23-19	
Cadmium	ND	4.4	EPA 200.8	10-23-19	10-23-19	
Chromium	ND	11	EPA 200.8	10-23-19	10-23-19	
Lead	3.1	1.1	EPA 200.8	10-23-19	10-23-19	
Mercury	ND	0.50	EPA 7470A	10-22-19	10-22-19	
Selenium	ND	5.6	EPA 200.8	10-23-19	10-23-19	
Silver	ND	11	EPA 200.8	10-23-19	10-23-19	

Client ID:	DUP 101719					
Laboratory ID:	10-250-06					
Arsenic	6.7	3.3	EPA 200.8	10-23-19	10-23-19	
Barium	44	28	EPA 200.8	10-23-19	10-23-19	
Cadmium	ND	4.4	EPA 200.8	10-23-19	10-23-19	
Chromium	ND	11	EPA 200.8	10-23-19	10-23-19	
Lead	ND	1.1	EPA 200.8	10-23-19	10-23-19	
Mercury	ND	0.50	EPA 7470A	10-22-19	10-22-19	
Selenium	ND	5.6	EPA 200.8	10-23-19	10-23-19	
Silver	ND	11	EPA 200.8	10-23-19	10-23-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1023WM1					
Arsenic	ND	3.3	EPA 200.8	10-23-19	10-23-19	
Barium	ND	28	EPA 200.8	10-23-19	10-23-19	
Cadmium	ND	4.4	EPA 200.8	10-23-19	10-23-19	
Chromium	ND	11	EPA 200.8	10-23-19	10-23-19	
Lead	ND	1.1	EPA 200.8	10-23-19	10-23-19	
Selenium	ND	5.6	EPA 200.8	10-23-19	10-23-19	
Silver	ND	11	EPA 200.8	10-23-19	10-23-19	
Laboratory ID:	MB1022W1					
Mercury	ND	0.50	EPA 7470A	10-22-19	10-22-19	

					Source	Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-21	17-10									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
Barium	ND	ND	NA	NA		1	NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	10-24	10-01									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	10-21	17-10									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	115	122	111	111	ND	103	110	75-125	6	20	
Barium	108	114	111	111	ND	97	103	75-125	5	20	
Cadmium	113	115	111	111	ND	102	104	75-125	2	20	
Chromium	111	117	111	111	ND	100	106	75-125	5	20	
Lead	98.7	104	111	111	ND	89	94	75-125	5	20	
Selenium	109	115	111	111	ND	98	104	75-125	6	20	
Silver	107	108	111	111	ND	97	97	75-125	1	20	

Laboratory ID:	10-24	0-01									
Mercury	12.0	12.4	12.5	12.5	ND	96	99	75-125	3	20	

Mr

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-101719					
Laboratory ID:	10-250-01					
Arsenic	ND	3.0	EPA 200.8	10-18-19	10-23-19	
Barium	ND	25	EPA 200.8	10-18-19	10-23-19	
Cadmium	ND	4.0	EPA 200.8	10-18-19	10-23-19	
Chromium	ND	10	EPA 200.8	10-18-19	10-23-19	
Lead	ND	1.0	EPA 200.8	10-18-19	10-23-19	
Mercury	ND	0.50	EPA 7470A	10-18-19	10-22-19	
Selenium	ND	5.0	EPA 200.8	10-18-19	10-23-19	
Silver	ND	10	EPA 200.8	10-18-19	10-23-19	

Client ID:	MW-2-101719					
Laboratory ID:	10-250-02					
Arsenic	ND	3.0	EPA 200.8	10-18-19	10-23-19	
Barium	ND	25	EPA 200.8	10-18-19	10-23-19	
Cadmium	ND	4.0	EPA 200.8	10-18-19	10-23-19	
Chromium	ND	10	EPA 200.8	10-18-19	10-23-19	
Lead	ND	1.0	EPA 200.8	10-18-19	10-23-19	
Mercury	ND	0.50	EPA 7470A	10-18-19	10-22-19	
Selenium	ND	5.0	EPA 200.8	10-18-19	10-23-19	
Silver	ND	10	EPA 200.8	10-18-19	10-23-19	

Client ID:	MW-3-101719					
Laboratory ID:	10-250-03					
Arsenic	7.4	3.0	EPA 200.8	10-18-19	10-23-19	
Barium	46	25	EPA 200.8	10-18-19	10-23-19	
Cadmium	ND	4.0	EPA 200.8	10-18-19	10-23-19	
Chromium	ND	10	EPA 200.8	10-18-19	10-23-19	
Lead	ND	1.0	EPA 200.8	10-18-19	10-23-19	
Mercury	ND	0.50	EPA 7470A	10-18-19	10-22-19	
Selenium	ND	5.0	EPA 200.8	10-18-19	10-23-19	
Silver	ND	10	EPA 200.8	10-18-19	10-23-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

28

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-101719					
Laboratory ID:	10-250-04					
Arsenic	5.1	3.0	EPA 200.8	10-18-19	10-23-19	
Barium	42	25	EPA 200.8	10-18-19	10-23-19	
Cadmium	ND	4.0	EPA 200.8	10-18-19	10-23-19	
Chromium	ND	10	EPA 200.8	10-18-19	10-23-19	
Lead	ND	1.0	EPA 200.8	10-18-19	10-23-19	
Mercury	ND	0.50	EPA 7470A	10-18-19	10-22-19	
Selenium	ND	5.0	EPA 200.8	10-18-19	10-23-19	
Silver	ND	10	EPA 200.8	10-18-19	10-23-19	

Client ID:	RW-1-101719					
Laboratory ID:	10-250-05					
Arsenic	88	3.0	EPA 200.8	10-18-19	10-23-19	
Barium	70	25	EPA 200.8	10-18-19	10-23-19	
Cadmium	ND	4.0	EPA 200.8	10-18-19	10-23-19	
Chromium	ND	10	EPA 200.8	10-18-19	10-23-19	
Lead	ND	1.0	EPA 200.8	10-18-19	10-23-19	
Mercury	ND	0.50	EPA 7470A	10-18-19	10-22-19	
Selenium	ND	5.0	EPA 200.8	10-18-19	10-23-19	
Silver	ND	10	EPA 200.8	10-18-19	10-23-19	

Client ID:	DUP 101719					
Laboratory ID:	10-250-06					
Arsenic	6.7	3.0	EPA 200.8	10-18-19	10-23-19	
Barium	40	25	EPA 200.8	10-18-19	10-23-19	
Cadmium	ND	4.0	EPA 200.8	10-18-19	10-23-19	
Chromium	ND	10	EPA 200.8	10-18-19	10-23-19	
Lead	ND	1.0	EPA 200.8	10-18-19	10-23-19	
Mercury	ND	0.50	EPA 7470A	10-18-19	10-22-19	
Selenium	ND	5.0	EPA 200.8	10-18-19	10-23-19	
Silver	ND	10	EPA 200.8	10-18-19	10-23-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

29

DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1018F1					
Arsenic	ND	3.0	EPA 200.8	10-18-19	10-23-19	
Barium	ND	25	EPA 200.8	10-18-19	10-23-19	
Cadmium	ND	4.0	EPA 200.8	10-18-19	10-23-19	
Chromium	ND	10	EPA 200.8	10-18-19	10-23-19	
Lead	ND	1.0	EPA 200.8	10-18-19	10-23-19	
Selenium	ND	5.0	EPA 200.8	10-18-19	10-23-19	
Silver	ND	10	EPA 200.8	10-18-19	10-23-19	
Laboratory ID:	MB1018F1					
Mercury	ND	0.50	EPA 7470A	10-18-19	10-22-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	nalyte Result		Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-2	50-06									
	ORIG	DUP									
Arsenic	6.72	6.64	NA	NA		1	NA	NA	1	20	
Barium	40.4	39.2	NA	NA		1	NA	NA	3	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	10-2	50-01									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	10-2	50-06									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	88.2	87.2	80.0	80.0	6.72	102	101	75-125	1	20	

	MS	MSD	MS	MSD		MS	MSD				
Arsenic	88.2	87.2	80.0	80.0	6.72	102	101	75-125	1	20	
Barium	112	112	80.0	80.0	40.4	90	89	75-125	0	20	
Cadmium	79.6	80.0	80.0	80.0	ND	100	100	75-125	1	20	
Chromium	75.4	76.8	80.0	80.0	ND	94	96	75-125	2	20	
Lead	73.4	72.6	80.0	80.0	ND	92	91	75-125	1	20	
Selenium	85.0	88.0	80.0	80.0	ND	106	110	75-125	3	20	
Silver	70.6	70.6	80.0	80.0	ND	88	88	75-125	0	20	
Laboratory ID:	10-2	50-01									
Mercury	11.8	11.8	12.5	12.5	ND	94	95	75-125	0	20	

AL

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

30

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881


```
File : X:\BTEX\HOPE\DATA\H191023\1023020.D
Operator :
Acquired : 23 Oct 2019 23:11 using AcqMethod 191022B.M
Instrument : Hope
Sample Name: 10-250-03j RR
Misc Info :
Vial Number: 20
```



```
File : X:\BTEX\HOPE\DATA\H191023\1023021.D
Operator :
Acquired : 23 Oct 2019 23:41 using AcqMethod 191022B.M
Instrument : Hope
Sample Name: 10-250-04k RR
Misc Info :
Vial Number: 21
```



```
File : X:\BTEX\HOPE\DATA\H191024\1024005.D
Operator :
Acquired : 24 Oct 2019 12:01 using AcqMethod 191022B.M
Instrument : Hope
Sample Name: 10-250-05i 1:10 RER
Misc Info :
Vial Number: 5
```



```
File : X:\BTEX\HOPE\DATA\H191023\1023022.D
Operator :
Acquired : 24 Oct 2019 00:27 using AcqMethod 191022B.M
Instrument : Hope
Sample Name: 10-250-06j RR
Misc Info :
Vial Number: 22
```


File :C:\msdchem\2\data\V191021\1021-V15.d Operator : JT Acquired : 21 Oct 2019 17:36 using AcqMethod V180601F.M Instrument : Vigo Sample Name: 10-250-03 Misc Info : Vial Number: 15

File :C:\msdchem\2\data\V191021\1021-V17.d Operator : JT Acquired : 21 Oct 2019 18:58 using AcqMethod V180601F.M Instrument : Vigo Sample Name: 10-250-05 Misc Info : Vial Number: 17

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 4, 2019

Meg Strong, Project Manager Shannon & Wilson, Inc. 400 N. 34th Street, Suite 100 Seattle, WA 98103

Dear Ms Strong:

Included are the results from the testing of material submitted on October 11, 2019 from the Montlake VCP 21-1-22242-102, F&BI 910243 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures SWI1102R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 11, 2019 by Friedman & Bruya, Inc. from the Shannon & Wilson Montlake VCP 21-1-22242-102, F&BI 910243 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Shannon & Wilson
910243 -01	SG-2-19-10112019

All quality control requirements were acceptable.
ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/19 Date Received: 10/11/19 Project: Montlake VCP 21-1-22242-102, F&BI 910243 Date Extracted: 11/01/19 Date Analyzed: 11/01/19

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
SG-2-19-10112019 910243-01	<0.6
Method Blank	<0.6

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID:	SG-2-19-1011201	9 Clier	nt:	Shannon & Wilson
Date Received:	10/11/19	Proj	ect:	Montlake VCP 21-1-22242-102
Date Collected:	10/11/19	Lab	ID:	910243-01 1/3.0
Date Analyzed:	10/24/19	Data	a File:	102336.D
Matrix:	Air	Inst	rument:	GCMS7
Units:	ug/m3	Oper	rator:	bat/MS
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	aene 110	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 140			
APH EC9-12 alipha	atics 290			
APH EC9-10 arom	atics <75			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID:	Method Blank	Client:		Shannon & Wilson
Date Received:	Not Applicable	Project:		Montlake VCP 21-1-22242-102
Date Collected:	Not Applicable	Lab ID:		09-2564 mb
Date Analyzed:	10/23/19	Data File:		102315.D
Matrix:	Air	Instrument:		GCMS7
Units:	ug/m3	Operator:		bat/MS
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 107	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics <46			
APH EC9-12 alipha	atics <35			
APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	SG-2-19-10112019	Client	t:	Shannon & Wilson
Date Received:	10/11/19	Projec	et:	Montlake VCP 21-1-22242-102
Date Collected:	10/11/19	Lab I	D:	910243-01 1/3.0
Date Analyzed:	10/24/19	Data	File:	102336.D
Matrix:	Air	Instru	ument:	GCMS7
Units:	ug/m3	Opera	ator:	bat/MS
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 111	70	130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.96	< 0.3		
Toluene	<57	<15		
Ethylbenzene	<1.3	< 0.3		
m,p-Xylene	<2.6	< 0.6		
o-Xylene	<1.3	< 0.3		
Naphthalene	< 0.79	< 0.15		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Method Blank	Clien	t:	Shannon & Wilson
Date Received:	Not Applicable	Proje	et:	Montlake VCP 21-1-22242-102
Date Collected:	Not Applicable	Lab I	D:	09-2564 mb
Date Analyzed:	10/23/19	Data	File:	102315.D
Matrix:	Air	Instru	ament:	GCMS7
Units:	ug/m3	Opera	ator:	bat/MS
		-		
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene 108	70	130	
	tration			
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	< 0.26	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/19 Date Received: 10/11/19 Project: Montlake VCP 21-1-22242-102, F&BI 910243

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code:	910243-01 (Duj	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	<0.6	<0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/19 Date Received: 10/11/19 Project: Montlake VCP 21-1-22242-102, F&BI 910243

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 910421-01 1/4.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	<210	<210	nm
APH EC9-12 aliphatics	ug/m3	930	930	0
APH EC9-10 aromatics	ug/m3	<110	<110	nm

Laboratory Code: Laboratory Control Sample

assilatory coast Bassilatory (oner or wampie				
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
APH EC5-8 aliphatics	ug/m3	23	77	70-130	
APH EC9-12 aliphatics	ug/m3	23	101	70-130	
APH EC9-10 aromatics	ug/m3	23	104	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/19 Date Received: 10/11/19 Project: Montlake VCP 21-1-22242-102, F&BI 910243

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Bassiatory could Bassiatory con	or or wampre			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ppbv	5	98	70-130
Toluene	ppbv	5	97	70-130
Ethylbenzene	ppbv	5	92	70-130
m,p-Xylene	ppbv	10	90	70-130
o-Xylene	ppbv	5	89	70-130
Naphthalene	ppbv	5	90	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	SAMPLE CHAIN OF CUSTODY	NE 10-11-19
Men Stron	SAMPLERS (sianature)	Page # f TURNAROUND TIME
Company Shunon & Wilson The	Monthake VCP	PO # XStandard 21-1-22242-102 Rush charges authorized by:
Address WOV, St. 1100 March	REMARKS	N-S-Ale Q Slamwil.com Slamwil.com
Phone O Old - of & TEmail	AN	ALYSIS REQUESTED
Lab Canister Cont	r. Date Press. Initial Press. Final Com	TO-15 BTEXN TO-15 BTEXN TO-15 EVOGe HPH, BTEX, Naphthelen
56-2-19-10112019 01 2436 250	1 10/11/2019 24.5 0845 5.0 0851	Allal al Swad al XX
EN .		AC
J.N.NO		
13		
		Samples received at <u>ZO</u> o
	PRINT NAME	COMPANY DATE TIME
3012 16th Avenue West Relinquished by:	Why render	Sherrow Shritson 14/11/2019 LOLI
Seattle, WA 98119- Ph. (206) 285-8282 Relinquished by:	ms. Nhan phan	Feb T 10/11/14 (01;
Fax (206) 283-5044 Received by:		
FORMS\COC\COCTO-15.DOC		

January 28, 2020

Meg Strong Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-102 Laboratory Reference No. 2001-195

Dear Meg:

Enclosed are the analytical results and associated quality control data for samples submitted on January 20, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 28, 2020 Samples Submitted: January 20, 2020 Laboratory Reference: 2001-195 Project: 21-1-22242-102

Case Narrative

Samples were collected on January 20, 2020 and received by the laboratory on January 20, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-20:15					
Laboratory ID:	01-195-01					
Gasoline	ND	5.8	NWTPH-Gx	1-24-20	1-24-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	58-129				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

						Date	Date		
Analyte		Result	PQL	Ме	thod	Prepared	Analyzed	k	Flags
METHOD BLANK									
Laboratory ID:		MB0124S2							
Gasoline		ND	5.0	NWT	PH-Gx	1-24-20	1-24-20		
Surrogate:	Pe	rcent Recovery	Control Limi	ts					
Fluorobenzene		85	58-129						
				Source	Percen	t Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recove	ry Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	01-2	59-03							
	ORIG	DUP							
Gasoline	262	244	NA NA		NA	NA	7	30	
Surrogate:									
Fluorobenzene					96 9	98 58-129			

VOLATILE ORGANICS EPA 8260D

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-20:15					
Laboratory ID:	01-195-01					
Benzene	ND	0.0010	EPA 8260D	1-20-20	1-20-20	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	1-20-20	1-20-20	
Toluene	ND	0.0052	EPA 8260D	1-20-20	1-20-20	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	1-20-20	1-20-20	
Ethylbenzene	ND	0.0010	EPA 8260D	1-20-20	1-20-20	
m,p-Xylene	ND	0.0021	EPA 8260D	1-20-20	1-20-20	
o-Xylene	ND	0.0010	EPA 8260D	1-20-20	1-20-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	76-131				
Toluene-d8	101	78-128				
4-Bromofluorobenzene	95	71-130				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0120S2					
Benzene	ND	0.0010	EPA 8260D	1-20-20	1-20-20	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	1-20-20	1-20-20	
Toluene	ND	0.0050	EPA 8260D	1-20-20	1-20-20	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	1-20-20	1-20-20	
Ethylbenzene	ND	0.0010	EPA 8260D	1-20-20	1-20-20	
m,p-Xylene	ND	0.0020	EPA 8260D	1-20-20	1-20-20	
o-Xylene	ND	0.0010	EPA 8260D	1-20-20	1-20-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	76-131				
Toluene-d8	101	78-128				
4-Bromofluorobenzene	101	71-130				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB01:	20S2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0439	0.0478	0.0500	0.0500	88	96	57-133	9	18	
Benzene	0.0418	0.0469	0.0500	0.0500	84	94	71-129	11	16	
Trichloroethene	0.0454	0.0483	0.0500	0.0500	91	97	71-122	6	16	
Toluene	0.0426	0.0471	0.0500	0.0500	85	94	74-125	10	15	
Chlorobenzene	0.0427	0.0475	0.0500	0.0500	85	95	72-120	11	14	
Surrogate:										
Dibromofluoromethane					102	102	76-131			
Toluene-d8					96	100	78-128			
4-Bromofluorobenzene					105	103	71-130			

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-20:15					
Laboratory ID:	01-195-01					
Naphthalene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
2-Methylnaphthalene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
1-Methylnaphthalene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Acenaphthylene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Acenaphthene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Fluorene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Phenanthrene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Anthracene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Fluoranthene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Pyrene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Benzo[a]anthracene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Chrysene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Benzo[b]fluoranthene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Benzo(j,k)fluoranthene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Benzo[a]pyrene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Dibenz[a,h]anthracene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Benzo[g,h,i]perylene	ND	0.0073	EPA 8270E/SIM	1-22-20	1-22-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	40 - 111				
Pyrene-d10	87	40 - 110				
Terphenyl-d14	88	45 - 122				

8

PAHs EPA 8270E/SIM QUALITY CONTROL

D-1-

D-1-

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0122S1					
Naphthalene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Acenaphthylene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Acenaphthene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Fluorene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Phenanthrene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Anthracene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Fluoranthene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Pyrene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Chrysene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270E/SIM	1-22-20	1-22-20	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	40 - 111				
Pyrene-d10	83	40 - 110				
Terphenyl-d14	101	45 - 122				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB01	22S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0655	0.0666	0.0833	0.0833	79	80	57 - 109	2	15	
Acenaphthylene	0.0654	0.0650	0.0833	0.0833	79	78	60 - 121	1	15	
Acenaphthene	0.0680	0.0683	0.0833	0.0833	82	82	59 - 121	0	15	
Fluorene	0.0697	0.0737	0.0833	0.0833	84	88	63 - 119	6	15	
Phenanthrene	0.0709	0.0716	0.0833	0.0833	85	86	59 - 114	1	15	
Anthracene	0.0735	0.0744	0.0833	0.0833	88	89	63 - 119	1	15	
Fluoranthene	0.0741	0.0760	0.0833	0.0833	89	91	63 - 120	3	15	
Pyrene	0.0724	0.0721	0.0833	0.0833	87	87	62 - 119	0	15	
Benzo[a]anthracene	0.0773	0.0788	0.0833	0.0833	93	95	64 - 127	2	15	
Chrysene	0.0747	0.0771	0.0833	0.0833	90	93	63 - 121	3	15	
Benzo[b]fluoranthene	0.0799	0.0830	0.0833	0.0833	96	100	61 - 122	4	15	
Benzo(j,k)fluoranthene	0.0738	0.0743	0.0833	0.0833	89	89	64 - 123	1	15	
Benzo[a]pyrene	0.0738	0.0757	0.0833	0.0833	89	91	62 - 122	3	15	
Indeno(1,2,3-c,d)pyrene	0.0741	0.0746	0.0833	0.0833	89	90	59 - 124	1	15	
Dibenz[a,h]anthracene	0.0670	0.0686	0.0833	0.0833	80	82	61 - 123	2	15	
Benzo[g,h,i]perylene	0.0743	0.0765	0.0833	0.0833	89	92	61 - 119	3	15	
Surrogate:										
2-Fluorobiphenyl					81	81	40 - 111			
Pyrene-d10					84	85	40 - 110			
Terphenyl-d14					97	97	45 - 122			

TOTAL METALS EPA 6020B/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-20:15					
Laboratory ID:	01-195-01					
Arsenic	ND	11	EPA 6020B	1-24-20	1-27-20	
Barium	46	2.7	EPA 6020B	1-24-20	1-27-20	
Cadmium	ND	0.55	EPA 6020B	1-24-20	1-27-20	
Chromium	38	0.68	EPA 6020B	1-24-20	1-27-20	
Lead	ND	5.5	EPA 6020B	1-24-20	1-27-20	
Mercury	ND	0.27	EPA 7471B	1-24-20	1-24-20	
Selenium	ND	11	EPA 6020B	1-24-20	1-27-20	
Silver	ND	1.1	EPA 6020B	1-24-20	1-27-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6020B/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0124SM2					
Arsenic	ND	10	EPA 6020B	1-24-20	1-27-20	
Barium	ND	2.5	EPA 6020B	1-24-20	1-27-20	
Cadmium	ND	0.50	EPA 6020B	1-24-20	1-27-20	
Chromium	ND	0.63	EPA 6020B	1-24-20	1-27-20	
Lead	ND	5.0	EPA 6020B	1-24-20	1-27-20	
Selenium	ND	10	EPA 6020B	1-24-20	1-27-20	
Silver	ND	1.0	EPA 6020B	1-24-20	1-27-20	
Laboratory ID:	MB0124S1					
Mercury	ND	0.25	EPA 7471B	1-24-20	1-24-20	

					Source	Perce	ent l	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Recov	/ery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	01-1	76-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		NA	1	NA	NA	20	
Barium	54.6	53.5	NA	NA		NA	۱	NA	2	20	
Cadmium	ND	ND	NA	NA		NA	۱	NA	NA	20	
Chromium	26.5	30.9	NA	NA		NA	۱	NA	15	20	
Lead	11.0	9.74	NA	NA		NA	۱	NA	13	20	
Selenium	ND	ND	NA	NA		NA	۱	NA	NA	20	
Silver	ND	ND	NA	NA		NA	۱.	NA	NA	20	
Laboratory ID:	01-1	76-02									
Mercury	ND	ND	NA	NA		NA	N N	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	01-1	76-02									
	MS	MSD	MS	MSD		MS N	MSD				
Araonio	09.5	06.9	100	100		00	07	75 195	2	20	

	MS	MSD	MS	MSD		MS	MSD				
Arsenic	98.5	96.8	100	100	ND	99	97	75-125	2	20	
Barium	156	148	100	100	54.6	101	93	75-125	5	20	
Cadmium	44.8	46.3	50.0	50.0	ND	90	93	75-125	3	20	
Chromium	127	128	100	100	26.5	101	101	75-125	0	20	
Lead	236	238	250	250	11.0	90	91	75-125	1	20	
Selenium	97.5	98.8	100	100	ND	98	99	75-125	1	20	
Silver	20.9	21.3	25.0	25.0	ND	84	85	75-125	2	20	
Laboratory ID:	01-1	76-02									
Mercury	0.537	0.518	0.500	0.500	0.0229	103	99	80-120	4	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
MW-5-20:15	01-195-01	9	1-20-20
		='	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received MMUM 1 DBUL	Relinquished	Signature	Lab ID Sample Identification	14648 NE 95th Street - Redmond, WA 98062 Phone: (425) 883-3881 • www.onsite-env.com Company: Project Number: 21 - 1 - 222 4 2 - 18 2 Project Name: Wind N. K. VCP Project Manager: Sampled by: Sampled by:	Analytical Laboratory Testing Services	Environmental Inc
Reviewed/Date					W OSE	Shannon & Wil	Company	Date Time Sampled Sampled Matrix 1/2.6 10:35 5. X	(theck One) (Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (other)	Turnaround Request	Chain o
				-	1120/ac 145	Shi ozh vos	Date Time	Image: Second	H-HCID H-Gx/BTEX H-Gx H-Dx (□ Acid / SG Clean-up) es 8260C BTEX + EPB + EJL inated Volatiles 8260C	I aboratory Num	f Custody
Chromatograms with final report Electronic Data	Data Package: Standard Data Package: Standard Data Package: Standard Data Level				õ	0	Comments/Special Instructions	Image: Constraint of the second se	PA 8011 (Waters Only) Datiles 8270D/SIM w-level PAHs) 3270D/SIM (low-level) 3082A Dechlorine Pesticides 8081B Dephosphorus Pesticides 8270D/SIM mated Acid Herbicides 8151A CRA Metals ITCA Metals Metals Dil and grease) 1664A	her: 01-195	Page 1
Deliverables (EDDs)	N							X Hol	sture		of

February 4, 2020

Joe Sawdey Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-22242-102 Laboratory Reference No. 2001-320

Dear Joe:

Enclosed are the analytical results and associated quality control data for samples submitted on January 30, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: February 4, 2020 Samples Submitted: January 30, 2020 Laboratory Reference: 2001-320 Project: 21-1-22242-102

Case Narrative

Samples were collected on January 29, 2020 and received by the laboratory on January 30, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-012920					
Laboratory ID:	01-320-01					
Gasoline	ND	100	NWTPH-Gx	1-30-20	1-30-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	59-122				

3

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

		Result PQL					Date	Date ed Analyzed		
Analyte				Me	ethod	Prepared	Flags			
METHOD BLANK										
Laboratory ID:		MB0130W1								
Gasoline		ND		100	NW	TPH-Gx	1-30-20	1-30-2	20	
Surrogate:	Pe	rcent Recove	ery Co	ontrol Lim	its					
Fluorobenzene		99		59-122						
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spik	e Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	01-32	20-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						99 100	59-122			

4

VOLATILE ORGANICS EPA 8260D

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-012920					
Laboratory ID:	01-320-01					
Benzene	ND	0.20	EPA 8260D	2-3-20	2-3-20	
Toluene	ND	1.0	EPA 8260D	2-3-20	2-3-20	
Ethylbenzene	ND	0.20	EPA 8260D	2-3-20	2-3-20	
m,p-Xylene	ND	0.40	EPA 8260D	2-3-20	2-3-20	
o-Xylene	ND	0.20	EPA 8260D	2-3-20	2-3-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	98	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0203W1					
Benzene	ND	0.20	EPA 8260D	2-3-20	2-3-20	
Toluene	ND	1.0	EPA 8260D	2-3-20	2-3-20	
Ethylbenzene	ND	0.20	EPA 8260D	2-3-20	2-3-20	
m,p-Xylene	ND	0.40	EPA 8260D	2-3-20	2-3-20	
o-Xylene	ND	0.20	EPA 8260D	2-3-20	2-3-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	99	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

	Result				Per	Percent			RPD	
Analyte			Spike	Spike Level		Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB02	03W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.2	9.91	10.0	10.0	102	99	63-130	3	17	
Benzene	9.81	9.58	10.0	10.0	98	96	76-125	2	19	
Trichloroethene	10.3	9.82	10.0	10.0	103	98	76-121	5	18	
Toluene	9.76	9.28	10.0	10.0	98	93	80-124	5	18	
Chlorobenzene	9.78	9.43	10.0	10.0	98	94	75-120	4	19	
Surrogate:										
Dibromofluoromethane					103	101	75-127			
Toluene-d8					103	101	80-127			
4-Bromofluorobenzene					102	98	78-125			

7

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Appendix L: Aqtesolv® Plots and Solutions (10 Sheets)

Kz/Kr = 1.

Appendix M: Simplified Terrestrial Ecological Evaluation (7 Sheets)

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

Title: Biologist

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to <u>https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation</u>.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: Montlake Gas Station

Facility/Site Address: 2625 East Montlake Place East

Facility/Site No: 47724816

VCP Project No.:

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name:	Per	Johnson
-------	-----	---------

Organization: Shannon & Wilson, Inc.

Mailing address: 400 N	. 34 th Street,	Suite	100
------------------------	----------------------------	-------	-----

City: Seattle		Sta	te: WA	Zip code: 98103
Phone: 206-632-8020	Fax:		E-mail: pcj@	shanwil.com

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS					
A. Exclus	A. Exclusion from further evaluation.				
1. Does t	1. Does the Site qualify for an exclusion from further evaluation?				
	Yes	If you answered "YES," then answer Question 2.			
	⊠ No or Jnknown	If you answered "NO" or "UNKNOWN," then skip to Step 3B of this form.			
2. What i	is the bas	sis for the exclusion? Check all that apply. Then skip to Step 4 of this form.			
Point c	of Compli	ance: WAC 173-340-7491(1)(a)			
	All	soil contamination is, or will be,* at least 15 feet below the surface.			
	All dep ren	soil contamination is, or will be,* at least 6 feet below the surface (or alternative oth if approved by Ecology), and institutional controls are used to manage naining contamination.			
Barrier	rs to Expo	osure: WAC 173-340-7491(1)(b)			
	All pav are	contaminated soil, is or will be,* covered by physical barriers (such as buildings or ved roads) that prevent exposure to plants and wildlife, and institutional controls used to manage remaining contamination.			
Undev	eloped L	and: WAC 173-340-7491(1)(c)			
	The of a dio end tox	ere is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet any area of the Site and any of the following chemicals is present: chlorinated xins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, dosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, aphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.			
	☐ For acr	r sites not containing any of the chemicals mentioned above, there is less than 1.5 res of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.			
Backgr	round Co	oncentrations: WAC 173-340-7491(1)(d)			
	Col as	ncentrations of hazardous substances in soil do not exceed natural background levels described in WAC 173-340-200 and 173-340-709.			
* An exclus acceptable [±] "Undevel prevent wild # "Contigue highways, o by wildlife.	sion based to Ecolog loped land ldlife from ous" unde extensive	d on future land use must have a completion date for future development that is ly. " is land that is not covered by building, roads, paved areas, or other barriers that would feeding on plants, earthworms, insects, or other food in or on the soil. veloped land is an area of undeveloped land that is not divided into smaller areas of paving, or similar structures that are likely to reduce the potential use of the overall area			

B	3. Simplified evaluation.			
1.	1. Does the Site qualify for a simplified evaluation?			
	X Y	es If you answered "YES," then answer Question 2 below.		
	☐ N Unkn	o or <i>If you answered "NO" or "UNKNOWN," then skip to Step 3C of this form.</i>		
2.	Did you co	onduct a simplified evaluation?		
	🛛 Y	es If you answered "YES," then answer Question 3 below.		
	🗌 N	o If you answered " NO ," then skip to Step 3C of this form.		
3.	Was furthe	er evaluation necessary?		
	□ Y	es If you answered "YES," then answer Question 4 below.		
	🖂 N	o If you answered " NO, " then answer Question 5 below.		
4.	lf further e	valuation was necessary, what did you do?		
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.		
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.		
5.	If no furthe to Step 4 o	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.		
	Exposure A	Analysis: WAC 173-340-7492(2)(a)		
		Area of soil contamination at the Site is not more than 350 square feet.		
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.		
	Pathway A	nalysis: WAC 173-340-7492(2)(b)		
	\boxtimes	No potential exposure pathways from soil contamination to ecological receptors.		
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)		
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.		
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.		
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.		
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.		

 C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. See WAC 173-340-7493(1)(c). 1. Was there a problem? See WAC 173-340-7493(2). Yes If you answered "YES," then answer Question 2 below. If you answered "NO," then identify the reason here and then skip to Question 3 below: No No below: While issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wiidlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was no problem. Yes If so, please identify the Ecology staff who approved those steps: 						
1. Was there a problem? See WAC 173-340-7493(2). □ Yes If you answered "YES," then answer Question 2 below. □ No If you answered "NO," then identify the reason here and then skip to Question 3 below. □ No While issues were identified during the problem formulation step. □ While issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. □ Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). □ Literature surveys. □ Soil bioassays. □ Wildlife exposure model. □ Biomarkers. □ Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? □ Confirmed there was no problem. □ Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? □ Yes	C.	Site-specif the problem require con	ic evaluation. A site-specific evaluation process consists of two parts: (1) formulating , and (2) selecting the methods for addressing the identified problem. Both steps sultation with and approval by Ecology. See WAC 173-340-7493(1)(c).			
Yes If you answered "YES," then answer Question 2 below. No If you answered "NO," then identify the reason here and then skip to Question 3 below. No No issues were identified during the problem formulation step. While issues were identified during the problem formulation step. While issues were identified during the problem formulation step. While issues were identified during the problem formulation step. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your p	1.	Was there	a problem? See WAC 173-340-7493(2).			
If you answered "NO," then identify the reason here and then skip to Question 3 below: Image: No Im		□ Ye	es If you answered "YES," then answer Question 2 below.			
No issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. Image: the state of the state of the problem? See WAC 173-340-7493(3). Image: the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Image: the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Image: the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Image: the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Image: the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Image: the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Image: the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Image: the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Image: the concentration steps? Image: the concentration steps? Image: the concentration steps? Image: the concentration steps? Image: the so, please identify the Ecology staff who approved those steps:			If you answered " NO ," then identify the reason here and then skip to Question 5 below:			
While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:			No issues were identified during the problem formulation step.			
2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:			While issues were identified, those issues were addressed by the cleanup actions for protecting human health.			
Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:	2.	What did y	ou do to resolve the problem? See WAC 173-340-7493(3).			
Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:			Used the concentrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to Question 5 below.</i>			
3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:			Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer</i> Questions 3 and 4 below.			
 Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 	3.	If you conc Check all th	ucted further site-specific evaluations, what methods did you use? at apply. See WAC 173-340-7493(3).			
 Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Literature surveys.			
 Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Soil bioassays.			
 Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Wildlife exposure model.			
 Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Biomarkers.			
 Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Site-specific field studies.			
 Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Weight of evidence.			
 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Other methods approved by Ecology. If so, please specify:			
 Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 	4.	4. What was the result of those evaluations?				
 Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Confirmed there was no problem.			
 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 			Confirmed there was a problem and established site-specific cleanup levels.			
Yes If so, please identify the Ecology staff who approved those steps:	5.	5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?				
			If so, please identify the Ecology staff who approved those steps:			
□ No						
	-					

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. People with hearing loss can call 711 for Washington Relay Service. People with a speech disability can call 877-833-6341.

Table 4.2: Simplified Terrestrial Ecological Evaluation - Exposure Analysis Procedures*

Estimate the area of contiguous (connected) undeveloped land on or within 500 feet of any area of the contaminated soil to the nearest ½ acre (1/4 acre if the area is less than 0.5 acre). "Undeveloped land" means land that is not covered by existing buildings, roads, paved areas or other barriers that will prevent wildfire from feeding on plants, earthworms, insects or other food in or on the soil.

1) From the table below, find the number of points corresponding to the area and enter t	his number in the t	box to the	right.
	Area (acres)	Points	-7
	0.25 or less	4	
	0.5	5	
	1.0	6	
	1.5	7	F
	2.0	8	С
	2.5	9	
	3.0	10	
	3.5	11	
	4.0 or more	12	
 Is this an industrial or commercial property? See the definition in WAC 173-340-200 of 3 in the box to the right. If no, enter a score of 1.). If yes, enter a sc	ore	3
3) Enter a score in the box to the right for the habitat quality of the contaminated soil and using the rating system shown below ^b . (High = 1, Intermediate = 2, Low = 3)	d surrounding area	2	3
4) Is the undeveloped land likely to attract wildlife? If yes, enter a score of 1 in the box a score of 2 ^c .	to the right. If no,	enter	2
5) Are there any of the following soil hazardous substances present: Chlorinated dioxin: DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, benzene he hexachlorobenzene, pentachlorophenol, or pentachlorobenzene? If yes, enter a score of 1 If no, enter a score of 4.	s/furans, PCB mix exachloride, toxapl l in the box to the	tures, hene, right.	4
Add the numbers in the boxes on lines 2 through 5 and enter this number to the right. If than the number in the box on line 1, the simplified TEE may be ended under WAC 173-	this number is larg 340-7292(2) (a) (i	er i).	12

Footnotes:

- It is expected that this habitat evaluation will be undertaken by an experienced field biologist. If this is not the case, enter a conservative score (1) for questions 3 and 4.
- Habitat rating system. Rate the quality of the habitat as high, intermediate, or low based on your professional judgment as a field biologist. The following are suggested factors to consider in making this evaluation:
 - Low: Early successional vegetative stands; vegetation predominantly noxious, non-native, exotic plant species or weeds. Areas severely disturbed by human activity, including intensively cultivated croplands. Areas isolated from other habitat used by wildlife.
 - High: Area is ecologically significant for one or more of the following reasons: Late successional native plant
 communities present; relatively high species diversity; used by an uncommon or rare species; priority habitat (as
 defined by the Washington Department of Fish and Wildlife); part of a larger area of habitat where size or
 fragmentation may be important for the retention of some species.
 - Intermediate: Area does not rate as either high or low.

Indicate "yes" if the area attracts wildlife or is likely to do so. Examples:

- Birds frequently visit the area to feed
- Evidence of high use by mammals (tracks, scat, etc...)
- Habitat "island" in an industrial area
- Unusual features of an area that make it important for feeding animals
- Heavy use during seasonal migrations
- Areas adjacent to wildlife corridors (i.e. greenbelts and waterways)

Appendix N: Important Information About Your Environmental Site Assessment/Evaluation Report (2 Sheets)

ENVIRONMENTAL SITE ASSESSMENTS/EVALUATIONS ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

This report was prepared to meet the needs you specified with respect to your specific site and your risk management preferences. Unless indicated otherwise, we prepared your report expressly for you and for the purposes you indicated. No one other than you should use this report for any purpose without first conferring with us. No one is authorized to use this report for any purpose other than that originally contemplated without our prior written consent.

The findings and conclusions documented in this site assessment/evaluation have been prepared for specific application to this project and have been developed in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in this area. The conclusions presented are based on interpretation of information currently available to us and are made within the operational scope, budget, and schedule constraints of this project. No warranty, express or implied, is made.

OUR REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

Our environmental site assessment is based on several factors and may include (but not be limited to) reviewing public documents to chronicle site ownership for the past 30, 40, or more years; investigating the site's regulatory history to learn about permits granted or citations issued; determining prior uses of the site and those adjacent to it; reviewing available topographic and real estate maps, historical aerial photos, geologic information, and hydrologic data; reviewing readily available published information about surface and subsurface conditions; reviewing federal and state lists of known and potentially contaminated sites; evaluating the potential for naturally occurring hazards; and interviewing public officials, owners/operators, and/or adjacent owners with respect to local concerns and environmental conditions.

Except as noted within the text of the report, no sampling or quantitative laboratory testing was performed by us as part of this site assessment. Where such analyses were conducted by an outside laboratory, Shannon & Wilson relied upon the data provided and did not conduct an independent evaluation regarding the reliability of the data.

CONDITIONS CAN CHANGE.

Site conditions, both surface and subsurface, may be affected as a result of natural processes or human influence. An environmental site assessment/evaluation is based on conditions that existed at the time of the evaluation. Because so many aspects of a historical review rely on third-party information, most consultants will refuse to certify (warrant) that a site is free of contaminants, as it is impossible to know with absolute certainty if such a condition exists. Contaminants may be present in areas that were not surveyed or sampled or may migrate to areas that showed no signs of contamination at the time they were studied.

Unless your consultant indicates otherwise, your report should not be construed to represent geotechnical subsurface conditions at or adjacent to the site and does not provide sufficient information for construction-related activities. Your report also should not be used following floods, earthquakes, or other acts of nature; if the size or configuration of the site is altered; if the location of the site is modified; or if there is a change of ownership and/or use of the property.

INCIDENTAL DAMAGE MAY OCCUR DURING SAMPLING ACTIVITIES.

Incidental damage to a facility may occur during sampling activities. Asbestos and lead-based paint sampling often require destructive sampling of pipe insulation, floor tile, walls, doors, ceiling tile, roofing, and other building materials. Shannon & Wilson does not provide for paint repair. Limited repair of asbestos sample locations is provided. However, Shannon & Wilson neither warranties repairs made by our field personnel, nor are we held liable for injuries or damages as a result of those repairs. If you desire a specific form of repair, such as those provided by a licensed roofing contractor, you need to request the specific repair at the time of the proposal. The owner is responsible for repair methods that are not specified in the proposal.

READ RESPONSIBILITY CLAUSES CAREFULLY.

Environmental site assessments/evaluations are less exact than other design disciplines because they are based extensively on judgment and opinion and there may not have been any (or very limited) investigation of actual subsurface conditions. Wholly unwarranted claims have been lodged against consultants. To limit this exposure, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses may appear in this report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

Consultants cannot accept responsibility for problems that may develop if they are not consulted after factors considered in their reports have changed or conditions at the site have changed. Therefore, it is incumbent upon you to notify your consultant of any factors that may have changed prior to submission of the final assessment/evaluation.

An assessment/evaluation of a site helps reduce your risk but does not eliminate it. Even the most rigorous professional assessment may fail to identify all existing conditions.

ONE OF THE OBLIGATIONS OF YOUR CONSULTANT IS TO PROTECT THE SAFETY, HEALTH, PROPERTY, AND WELFARE OF THE PUBLIC.

If our environmental site assessment/evaluation discloses the existence of conditions that may endanger the safety, health, property, or welfare of the public, we may be obligated under rules of professional conduct, statutory law, or common law to notify you and others of these conditions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland