April 1, 2020

Mr. Paul Klansnic Touchstone SLU LLC & TB TS/RELP LLC 1425 Fourth Avenue, Suite 200 Seattle, Washington 98101

Mr. Frank Jakus Ponte Gadea Seattle LLC 270 Biscayne Boulevard Way, Suite 201 Miami, Florida 33131-2123

SUBJECT: 2019 GROUNDWATER MONITORING REPORT

> **Troy Laundry Seattle Site** Cleanup Site ID No. 11690

300 Boren Avenue North and 399 Fairview Avenue North

Seattle, Washington

Project Number: 0731-004-08

Dear Mr. Klansnic and Mr. Jakus:

SoundEarth Strategies, Inc. (SoundEarth) has prepared this report to present the results of the 2019 groundwater monitoring events that were conducted at the Troy Laundry Seattle Site (Site). The Site encompasses the property located at 399 Fairview Avenue North and 300 Boren Avenue North in Seattle, Washington (collectively, the Property), as well as the adjacent rights-of-way (ROWs) located north of the Property (Harrison Street), west of the Property (Boren Avenue North), and south of the Property (Thomas Street). The Site also extends onto the adjacent property to south, known as the Seattle Times Site, located at 1120 John Street (Cleanup Site ID 14494). The Site location is shown on Figure 1.

The groundwater monitoring events summarized below were conducted, and this report has been prepared, pursuant to Exhibit A (Scope of Work and Schedule) to the Prospective Purchaser Consent Decree (PPCD) No. 19-2-07344-6 SEA entered into by and between the Washington State Department of Ecology (Ecology) and Ponte Gadea Seattle LLC. The purpose of this report is to summarize compliance groundwater monitoring work completed during calendar year 2019, present the results of groundwater elevation measurements and laboratory analytical results, and provide a statistical trend analysis assessment of chlorinated volatile organic compounds (CVOCs) in groundwater at the Site.

2019 GROUNDWATER MONITORING EVENTS

The 2019 groundwater monitoring events were conducted during the Second and Fourth Quarters (June and December, respectively) of 2019, to assess the groundwater quality, flow direction, and gradient of groundwater beneath the Site, and to evaluate the effectiveness of the groundwater treatment program that has been implemented as part of SoundEarth's Interim Action Plan dated August 21, 2013, which was approved by Ecology on October 10, 2013.

The 2019 monitoring events included collecting groundwater data from all monitoring wells in the compliance well network as set forth in Exhibit A of the PPCD, as well as additional Site wells, consisting of the following:

The Property: MW17 through MW25, IW04, IW06, IW50, IW61, and IW91

Seattle Times Site: MW29¹, MW30¹, ONNI-MW-4², and ONNI-MW-5²

Harrison Street ROW: MW01, MW26, MW32¹, and MW33¹

Boren Avenue ROW: MW04, MW07, MW13, MW27, and MW31¹

Thomas Street ROW: MW28
 Terry Avenue North: MW15³

Additionally, supplemental groundwater sampling of select Site wells was conducted in March 2019 (replacement monitoring well MW28), and December 2019 (monitoring well MW28 and new monitoring wells MW29 through MW33).

This report presents a description of field activities performed during the 2019 groundwater monitoring events and the associated laboratory analytical results. Current and historical groundwater elevations and sample analytical results are presented in Tables 1 through 3.

FIELD ACTIVITIES

Upon arrival at the Site for the Second and Fourth Quarters monitoring events, SoundEarth personnel opened all the monitoring wells prior to sampling to collect groundwater level measurements. Water levels were permitted to equilibrate with atmospheric pressure for a minimum of 1 hour before groundwater level measurements were collected. Groundwater levels were measured relative to the top of well casing to an accuracy of 0.01 feet using an electronic water level meter.

During both monitoring events, groundwater level measurements were collected from monitoring wells MW17 through MW25 and injection wells IW91 located on the Property; monitoring well MW15 located in the Terry Avenue North ROW; monitoring wells MW01 and MW26 located in the Harrison Street ROW;

¹ Monitoring wells MW29 through MW33 were installed in September 2019 as part of the Supplemental Remedial Investigation, as described in SoundEarth's Supplemental Remedial Investigation Work Plan, dated March 20, 2019. These wells are not sampled under the PPCD but are now part of the Site monitoring well network, and results will be presented in connection with the Progress Reports to ensure that all data associated with the Site are readily available to Ecology.

² Monitoring wells ONNI-MW-4 and ONNI-MW-5 are not part of the Site monitoring well network but were sampled during the Fourth Quarter monitoring event as part of the Remedial Investigation.

³ MW15 is not sampled under the PPCD, but it is part of the Site monitoring well network, and results will be presented in connection with the Progress Reports to ensure that all data associated with the Site are readily available to Ecology.

monitoring wells MW04, MW07, MW13, and MW27 located in the Boren Avenue North ROW; and monitoring well MW28 located in the Thomas Street ROW. During the Fourth Quarter monitoring event, groundwater level measurements were also collected from monitoring wells MW29, MW30, ONNI-MW-4, and ONNI-MW-5 located on the Seattle Times Site; monitoring wells MW31 located in the Boren Avenue North ROW; and monitoring wells MW32 and MW33 located in the Harrison Street ROW.

On June 13 through 15 and December 4 through 8, 2019, groundwater samples were collected from monitoring wells MW01, MW04, MW07, MW13, MW15, MW17 through MW28, MW29 through MW33 (Fourth Quarter only), IW04, IW06, IW50, IW61, IW91, ONNI-MW-4, and ONNI-MW-5 (Fourth Quarter only) in accordance with the US Environmental Protection Agency (EPA) *Low-Flow (Minimal Drawdown) Groundwater Sampling Procedures* (April 1996). Supplemental sampling of monitoring well MW28 was conducted on March 15, 2019, and supplemental sampling of monitoring wells MW28 through MW33 was conducted on October 8 and 9, 2019.

Purging and sampling of each monitoring well was performed using a bladder pump (monitoring wells MW01, MW04, MW07, MW13, MW15, MW16, MW25 through 33, ONNI-MW-4, and ONNI-MW-5) or a peristaltic pump (monitoring wells MW17 through MW24 and injection wells IW04, IW06, IW50, IW61, and IW91), and dedicated polyethylene tubing at a maximum flow rate of 320 milliliters per minute. The tubing intake was placed approximately 2 to 3 feet below the surface of the groundwater or mid-screen in each sampled monitoring well. During purging, water quality was monitored using a YSI-brand water quality meter equipped with a flow-through cell. The water quality parameters that were monitored and recorded included temperature, pH, specific conductance, dissolved oxygen, turbidity, and oxidation-reduction potential. Each monitoring well was purged until, at a minimum, the subset of pH, specific conductance, and dissolved oxygen or turbidity had stabilized over at least three successive readings. A field duplicate sample was collected from monitoring well MW25 during Second and Fourth Quarters for quality assurance/quality control (QA/QC) purposes.

Following purging, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into clean, laboratory-prepared sample containers. Each container was labeled with a unique sample identification number, placed on ice in a cooler, and transported to one or more of the following testing laboratories under standard chain-of-custody protocols for laboratory analysis: Friedman & Bruya, Inc. of Seattle, Washington; Fremont Analytical of Seattle, Washington; and SiREM of Knoxville, Tennessee.

The groundwater samples were submitted for analysis of one or more of the following:

- Gasoline-range petroleum hydrocarbons (GRPH) by Northwest Total Petroleum Hydrocarbon (NWTPH) Method NWTPH-Gx
- Diesel-range petroleum hydrocarbons (DRPH) and oil-range petroleum hydrocarbons (ORPH) by Method NWTPH-Dx
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021B
- CVOCs, including tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), and vinyl chloride (VC) by EPA Method 8260C

Groundwater samples collected from monitoring wells MW04, MW07, MW18, MW19, MW21, MW22, MW23, MW24, MW25, MW26, MW28, IW04, IW50, and IW61 were analyzed for one or more of the following natural attenuation parameters:

- Methane, ethane, and ethene by Method RSK 175
- Sulfate, nitrate, and alkalinity by Method SM1845/SM2320B
- Total iron and manganese by EPA Method 200.8
- Ferrous iron by Method SM3500
- Total organic carbon by EPA Method 415.1
- Volatile fatty acids by EPA Methods 300.0 and 300.0 Modified

All groundwater sampling data, including results of natural attenuation parameters, will be uploaded to and available from Ecology's EIM system.

Purge water generated during the monitoring events was placed in an appropriately labeled 55-gallon steel drum and temporarily stored on the Property pending receipt of analytical data and proper disposal.

RESULTS

Groundwater levels and analytical results from the groundwater monitoring and supplemental sampling events are summarized below and presented in Tables 1 through 3. Groundwater elevation contour maps for Second and Fourth Quarters 2019 are presented in Figures 2 and 3. Groundwater analytical results for CVOCs are presented on Figure 4.

March 2019 Supplemental Sampling

Laboratory analytical results from the March 2019 supplemental sampling of monitoring well MW28 were compared to applicable Washington State Model Toxics Control Act (MTCA) Method A or B cleanup levels, as applicable, for groundwater and are summarized below (Figure 4; Table 2):

- Concentrations of PCE, cis-1,2-DCE, and VC exceeding the applicable MTCA Method A or B cleanup levels were detected in the groundwater sample collected from well MW28.
- A concentration of TCE below the MTCA Method A cleanup level was detected in the groundwater sample collected from well MW28.

Second Quarter 2019

Groundwater elevations measured on June 13, 2019, ranged from 11.88 feet North American Vertical Datum of 1988 (NAVD88; monitoring well MW21) to 17.24 feet NAVD88 (monitoring well MW15). Groundwater elevations were contoured using the water level measurements collected on June 13, 2019 (Figure 2; Table 1). The groundwater contours indicated that groundwater at the Site flowed generally to the southeast with a hydraulic gradient of 0.006 feet per foot.

Laboratory analytical results from the Second Quarter 2019 monitoring event were compared to MTCA Method A or B cleanup levels, as applicable, for groundwater and are summarized below (Figure 4; Tables 2 and 3):

- Concentrations of PCE exceeding the MTCA Method A cleanup level were detected in the groundwater samples collected from injection wells IW50 and IW61 located on the Property; monitoring well MW13 located in the Boren Avenue North ROW; and monitoring well MW28 located in the Thomas Street ROW. The concentrations of PCE in the remaining groundwater samples were below the laboratory reporting limit and/or MTCA Method A cleanup level.
- Concentrations of TCE exceeding the MTCA Method A cleanup level were detected in the groundwater samples collected from monitoring wells MW04, MW07, and MW27 in the Boren Avenue North ROW; MW15 in the Terry Avenue North ROW; MW26 in the Harrison Street ROW; and MW28 in the Thomas Street ROW. TCE concentrations were not detected above the laboratory reporting limit and/or MTCA Method A cleanup level in the groundwater samples collected from any sampled wells on the Property or in MW13 located in the Boren Avenue North ROW, or MW01 located in the Harrison Street ROW.
- Concentrations of cis-1,2-DCE exceeding the MTCA Method B cleanup level were detected in the groundwater samples collected from monitoring wells MW18, MW19, MW21, MW22, MW23, MW24, MW25, IW50, and IW61 located on the Property and monitoring well MW28 located in the Thomas Street ROW. Concentrations of cis-1,2-DCE were below the MTCA Method B cleanup level in groundwater samples collected from monitoring wells MW17, MW20, IW04, IW06, and IW91 located on the Property. Concentrations of cis-1,2-DCE in other off-Property monitoring wells were below the MTCA Method B cleanup level.
- Concentrations of VC exceeding the MTCA Method A cleanup level were detected in groundwater samples collected from monitoring wells MW18, MW19, MW21, MW22, MW23, MW24, and MW25 and injection wells IW04, IW50, and IW61 located on the Property; and monitoring well MW28 located in the Thomas Street ROW. Concentrations of VC in groundwater samples collected from the remaining on-Property and off-Property monitoring wells were below the laboratory reporting limit and/or MTCA Method A cleanup level.
- Concentrations of trans-1,2-DCE in the groundwater samples collected from all sampled monitoring wells were below the laboratory reporting limit.
- DRPH and/or ORPH concentrations exceeding the applicable MTCA Method A cleanup levels were detected in groundwater samples collected from wells MW18, MW19, MW21, MW22, MW23, MW24, and MW25 located on the Property. These samples were flagged by the laboratory as having a chromatographic pattern that does not match the fuel standard used for quantification. This was likely due to the presence of EOS PRO solution in the samples, which originated from the April–May 2016 injection event. The reported concentrations are not considered reflective of actual groundwater conditions at the Property. Concentrations of DPRH and ORPH in groundwater samples collected from the remaining on-Property and off-Property monitoring wells were below the laboratory reporting limit and/or MTCA Method A cleanup level.
- GRPH concentrations were below the laboratory reporting limit and/or MTCA Method A cleanup level in groundwater samples collected from all sampled monitoring wells.
- Concentrations of BTEX constituents in groundwater samples collected from all sampled monitoring wells were below their respective laboratory reporting limits and/or MTCA Method A cleanup levels.

October 2019 Supplemental Sampling

Laboratory analytical results from the October supplemental sampling of monitoring wells MW28 through MW33 were compared to applicable MTCA Method A or B cleanup levels for groundwater and are summarized below (Figure 4; Table 2):

- Concentrations of PCE exceeding the MTCA Method A cleanup level were detected in the groundwater samples collected from wells MW28 located in the Thomas Street ROW and MW29 located on the Seattle Times Site. The concentrations of PCE in the remaining groundwater samples were below the laboratory reporting limit.
- Concentrations of TCE exceeding the MTCA Method A cleanup level were detected in the groundwater samples collected from wells MW28 located in the Thomas Street ROW and MW29 located on the Seattle Times Site. The concentrations of TCE in the remaining groundwater samples were below the laboratory reporting limit and/or MTCA Method A cleanup level.
- Concentrations of cis-1,2-DCE exceeding the MTCA Method B cleanup level were detected in the groundwater samples collected from wells MW28 located in the Thomas Street ROW, and wells MW29 and MW30 located on the Seattle Times Site. The concentrations of cis-1,2-DCE in the remaining groundwater samples were below the laboratory reporting limit.
- Concentrations of VC exceeding the MTCA Method A cleanup level were detected in the groundwater samples collected from wells MW28 located in the Thomas Street ROW and MW29 located on the Seattle Times Site. The concentrations of VC in the remaining groundwater samples were below the laboratory reporting limit.
- Trans-1,2-DCE was not detected above the laboratory reporting limit in any of the analyzed groundwater samples.

Fourth Quarter 2019

Groundwater elevations measured on December 4, 2019, ranged from 13.19 feet NAVD88 (monitoring well MW18) to 16.89 feet NAVD88 (monitoring well MW15). Groundwater elevations were contoured using the water level measurements collected on December 4, 2019 (Figure 3; Table 1). The groundwater contours indicated that groundwater at the Site flowed generally to the southeast with a hydraulic gradient of 0.007 feet per foot.

Laboratory analytical results from the monitoring event were compared to applicable MTCA Method A or B cleanup levels for groundwater and are summarized below (Figure 4; Tables 2 and 3):

- Concentrations of PCE exceeding the MTCA Method A cleanup level were detected in the groundwater samples collected from injection well IW61 located on the Property, monitoring well MW13 located in the Boren Avenue North ROW, monitoring well MW28 located in the Thomas Street ROW, and monitoring well MW29 located on the Seattle Times Site. The concentrations of PCE in the remaining groundwater samples were below the laboratory reporting limit and/or MTCA Method A cleanup level.
- Concentrations of TCE exceeding the MTCA Method A cleanup level were detected in the groundwater samples collected from monitoring wells MW04, MW07, and MW27 in the Boren Avenue North ROW; MW26 in the Harrison Street ROW; MW28 in the Thomas Street ROW; and

MW29 on the Seattle Times Site. TCE concentrations were not detected above the laboratory reporting limit and/or MTCA Method A cleanup level in the groundwater samples collected from any sampled wells on the Property; MW13 and MW31 located in the Boren Avenue North ROW; MW01 and MW32 located in the Harrison Street ROW; or MW30 located on the Seattle Times Site.

- Concentrations of cis-1,2-DCE exceeding the MTCA Method B cleanup level were detected in the groundwater samples collected from monitoring wells MW18, MW19, MW21, MW22, MW23, MW24, MW25, IW50, and IW61 located on the Property; monitoring well MW28 located in the Thomas Street ROW; and monitoring well MW29 located on the Seattle Times Site. Concentrations of cis-1,2-DCE in the remaining groundwater samples were below the laboratory reporting limit and/or the MTCA Method B cleanup level.
- Concentrations of VC exceeding the MTCA Method A cleanup level were detected in groundwater samples collected from monitoring wells MW18, MW19, MW21, MW22, MW23, MW24, and MW25 and injection wells IW04, IW50, and IW61 located on the Property; monitoring well MW28 located in the Thomas Street ROW; and monitoring wells MW29 and ONNI-MW-5 located on the Seattle Times Site. Concentrations of VC in groundwater samples collected from the remaining on-Property and off-Property monitoring wells were below the laboratory reporting limit and/or MTCA Method A cleanup level.
- Concentrations of trans-1,2-DCE in the groundwater samples collected from all sampled monitoring wells were below the laboratory reporting limit.
- DRPH and/or ORPH concentrations exceeding the applicable MTCA Method A cleanup levels were detected in groundwater samples collected from wells MW18, MW19, MW21, MW22, MW23, and MW24 located on the Property. These samples were flagged by the laboratory as having a chromatographic pattern that does not match the fuel standard used for quantification. This was likely due to the presence of EOS PRO solution in the samples, which originated from the April—May 2016 injection event. The reported concentrations are not considered reflective of actual groundwater conditions at the Property. Concentrations of DRPH and ORPH in groundwater samples collected from the remaining on-Property and off-Property monitoring wells were below the laboratory reporting limit and/or MTCA Method A cleanup level.
- GRPH concentrations were below the laboratory reporting limit and/or MTCA Method A cleanup level in groundwater samples collected from all sampled monitoring wells.
- Concentrations of BTEX constituents in groundwater samples collected from all sampled monitoring wells were below their respective laboratory reporting limits and/or MTCA Method A cleanup levels.

DATA QUALITY REVIEW

SoundEarth performed a QA/QC review of the analytical results, which included a review of accuracy and precision of the data supplied by the laboratory. In addition, the relative percent difference (RPD) was calculated for the field duplicate samples collected by SoundEarth from monitoring well MW25. RPDs for all detected analytes were below the acceptable limit of 25 percent. Detections of DRPH and/or ORPH in samples collected from wells MW18, MW19, MW20, MW21, MW22, MW23, MW24, and MW25 during the Second and Fourth Quarter sampling events were flagged by the laboratory as having a

chromatographic pattern that does not match the fuel standard used for quantification. This was due to the presence of EOS PRO solution (a food-grade oil/water emulsion) in the samples originating from the April–May 2016 injection event, and the reported concentrations should not be considered accurate. All other quality control criteria are acceptable for the groundwater samples; therefore, no action is required, and analytical results are usable to meet the project objectives. Copies of the laboratory analytical reports are provided in Attachment A.

STATISTICAL TREND ANALYSIS OF PLUME STABILITY

Using Ecology's *Guidance on Remediation of Petroleum-Contaminated Groundwater by Natural Attenuation* dated July 2005 (Module 2), SoundEarth evaluated the stability of the contaminated groundwater plume originating from the Property. Chlorinated solvent results (PCE, TCE, cis-1,2-DCE, and VC) for groundwater samples collected between May 2015 and December 2019 (four monitoring events; Table 2) were used to evaluate the stability of the plume. The data results from the plume stability analysis are presented in Attachment B.

The stability of the CVOC groundwater plume beneath and downgradient of the Property was evaluated to assess if the plume is expanding, shrinking, or has reached steady state (stable). A shrinking or stable plume indicates that the plume is attenuating as a result of the source removal at the Property and intrinsic biodegradation, as well as groundwater treatment implemented at the Property and in the adjacent ROWs. For the purposes of this report, stability of the CVOC plume originating at the Property is evaluated separately with respect to PCE/TCE and cis-1,2-DCE/VC.

Plume Stability—PCE and TCE

Results from the PCE and TCE stability analyses were evaluated in conjunction with the current footprint of the PCE and TCE components of the CVOC plume (Figure 5) originating at the Property. The trend analyses were performed on groundwater analytical results gathered from May of 2015 to December of 2019.

The concentrations of PCE and TCE are stable off-Property in Thomas and Boren ROWs (MW13 and MW28) and are decreasing or stable on the Property (IW61). These stable conditions suggest that the extent of PCE and TCE concentrations on-Property and in the Boren and Thomas ROWs has reached steady state. Steady state indicates that there is currently a balance between the PCE and TCE in the groundwater released from edible oil substrate (EOS) and desorbed from soil grains into the dissolved phase, and the mass removal of contaminants from the groundwater by natural attenuation processes in conjunction with the groundwater treatment.

Based on trend analysis of analytical results from 2015 to 2019 for injection well IW50 and monitoring well MW22 located on the Property, the PCE and TCE concentrations in these wells are decreasing. An evaluation of a subset of the results from 2018 to 2019 shows that the PCE and TCE components are expanding. The expansion of the PCE and TCE impacts to these wells is likely the result of loss of injectate (EOS), the release of PCE and TCE formerly sequestered in the EOS back into the groundwater, or the release of PCE and TCE from less permeable aquifer material into the dissolved phase. Concentrations of PCE and TCE in injection well IW50 and monitoring well MW22 are currently below MTCA cleanup levels.

Analysis of on-Property monitoring wells (MW18 to MW25) which at one time contained groundwater concentrations of PCE and TCE above MTCA cleanup levels show that the extent of PCE and TCE impacts have shrunk between 2015 and 2019.

Plume Stability—Cis-1,2-DCE and VC

Results from the cis-1,2-DCE and VC stability analyses were evaluated in conjunction with the current footprint of the cis-1,2-DCE and VC impacts in groundwater (Figure 6). In general, the concentrations of cis-1,2-DCE and/or VC on the Property north of well MW22 are increasing as expected since PCE and TCE are degrading in the groundwater to these daughter products under reducing conditions.

To the south of on-Property well MW22, the extent of cis-1,2-DCE and the VC in groundwater is generally stable (MW23, IW61, and MW28). These findings suggest a state of equilibrium has been reached between the degradation of PCE and mineralization of cis-1,2-DCE and VC to ethene and ethane. These conditions are evident in wells MW28, MW29, and MW30 where aerobic conditions present in the groundwater are conducive to the degradation of VC and mineralization of ethene and ethane. This conclusion will be verified over time as additional results are obtained from monitoring wells MW29 and MW30 located on the Seattle Times Site, which have been sampled twice since they were installed in September 2019.

CONCLUSIONS

Groundwater monitoring events completed at the Site in the Second and Fourth quarters of 2019 were conducted pursuant to Exhibit A (Scope of Work and Schedule) to PPCD No. 19-2-07344-6 SEA entered into by and between the Ecology and Ponte Gadea Seattle LLC. Under the approved PPCD sampling schedule for the monitoring well network, monitoring wells will continue to be sampled semiannually in the Second and Fourth quarters of 2020.

Results from analysis of plume stability indicate that the footprint of PCE and TCE in on-Property groundwater decreased considerably following implementation of the groundwater treatment in 2015. As predicted, and as a result of groundwater treatment, the footprint of the cis-1,2-DCE and VC has increased as a result of PCE and TCE degradation.

Groundwater conditions on the Property remain favorable for continued degradation of the CVOC plume. The stability of the off-Property CVOC plume in the Thomas Street ROW, as well as the sampling results obtained on the Seattle Times Site (as set forth in the draft Remedial Investigation Report submitted separately) establish that the southern extent of the Troy groundwater plume has been delineated.

CLOSING

SoundEarth appreciates the opportunity to work with you on this project. Please contact the undersigned at 206-306-1900 if you have any questions or require additional information.

Respectfully,

SoundEarth Strategies, Inc.

Clare Tochilin, LG Associate Geologist

Clan Took

Logan Schumacher, LG Project Geologist

Thomas Cammarata, LG, LHG

Senior Geochemist

Attachments: Figure 1, Property Location Map

Figure 2, Groundwater Contour Map with Rose Diagram (June 13, 2019)

Figure 3, Groundwater Contour Map with Rose Diagram (December 4, 2019)

Figure 4, Groundwater Analytical Results for Chlorinated Volatile Organic Compounds Figure 5, Extent of Troy Property PCE and TCE Concentrations in Groundwater – Post-

Interim Remedial Action (Q4 2019)

Figure 6, Extent of Troy Property VC/cis-1,2-DCE Concentrations in Groundwater – Post-

Interim Remedial Action (Q4 2019–Q1 2020)

Table 1, Summary of Groundwater Elevations

Table 2, Groundwater Analytical Results for CVOCs

Table 3, Groundwater Analytical Results for TPH

A, Laboratory Analytical Reports

First Quarter 2019 Supplemental Sampling

Friedman & Bruya, Inc. #903298

Second Quarter 2019

Friedman & Bruya, Inc. #906291 amended

Friedman & Bruya, Inc. #906323 Friedman & Bruya, Inc. #906324

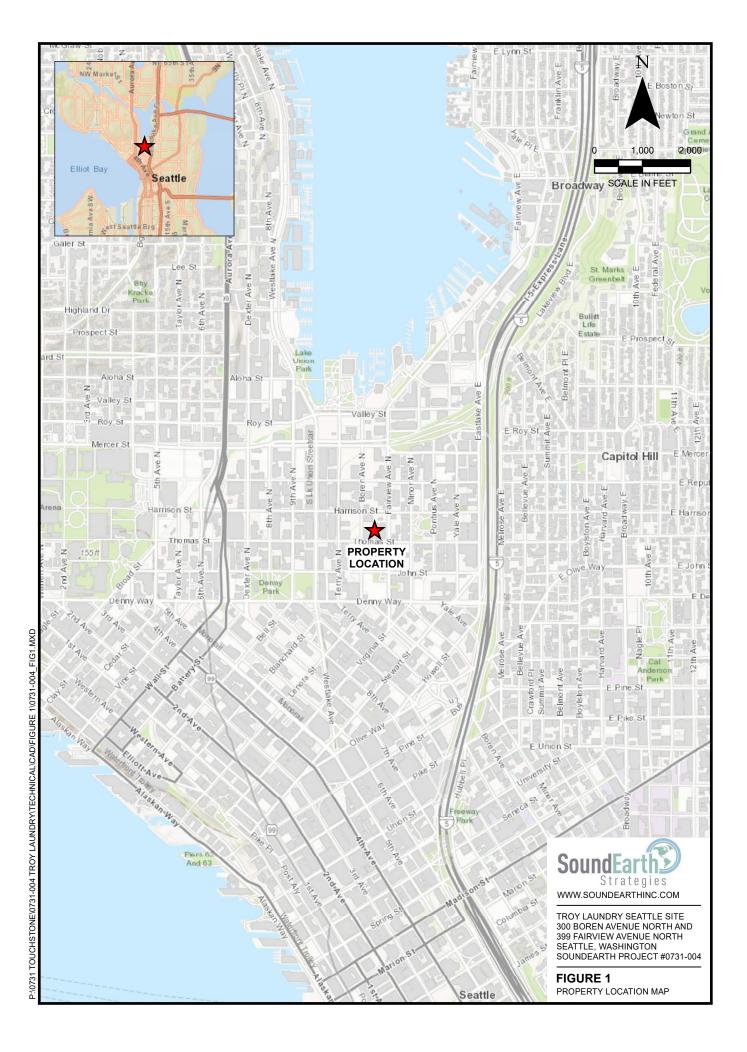
SiREM Lab, #S-5382

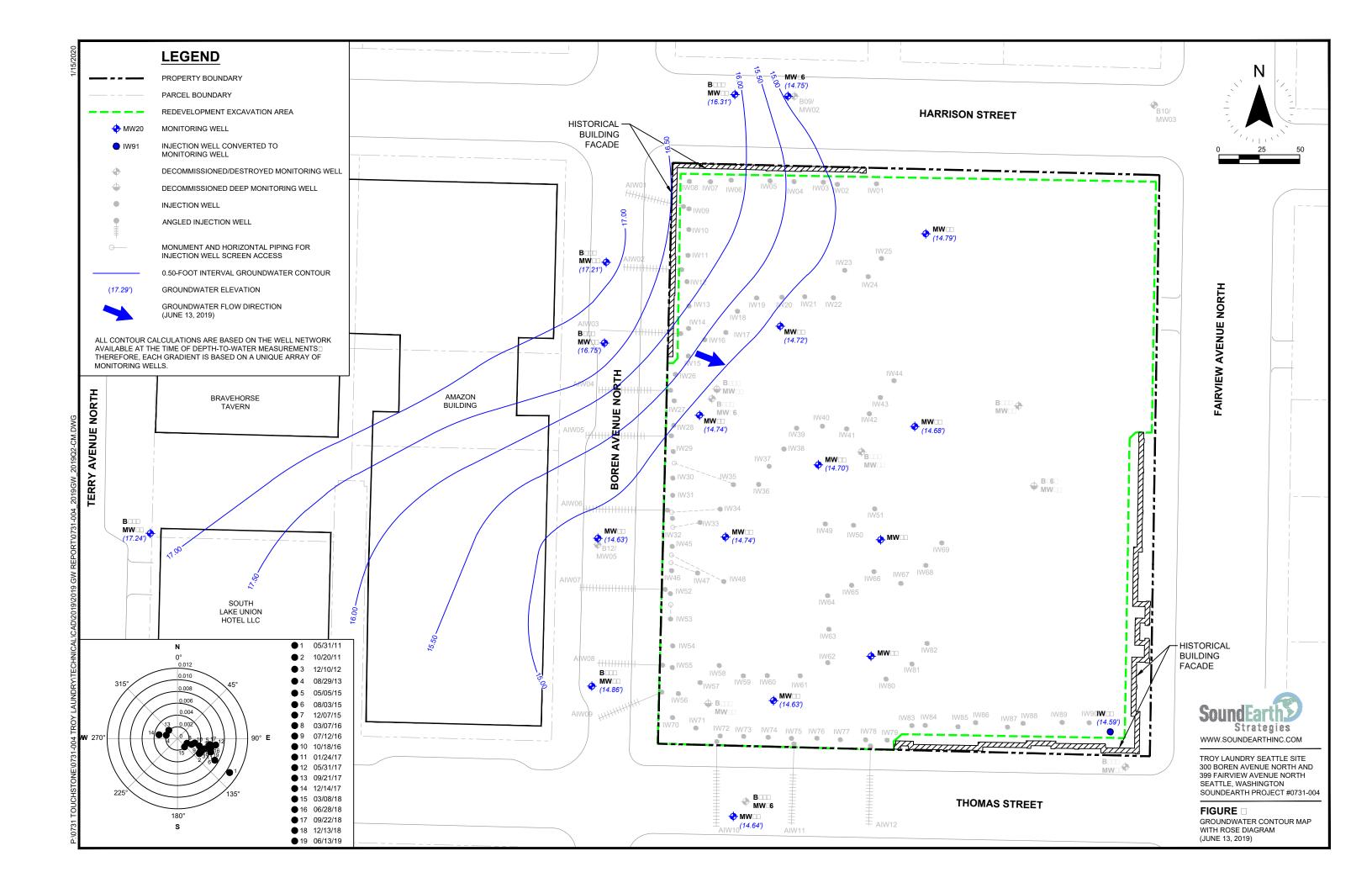
Fremont Analytical, #1906179

Fourth Quarter 2019 Supplemental Sampling

Friedman & Bruya, Inc. #910180

Fourth Quarter 2019

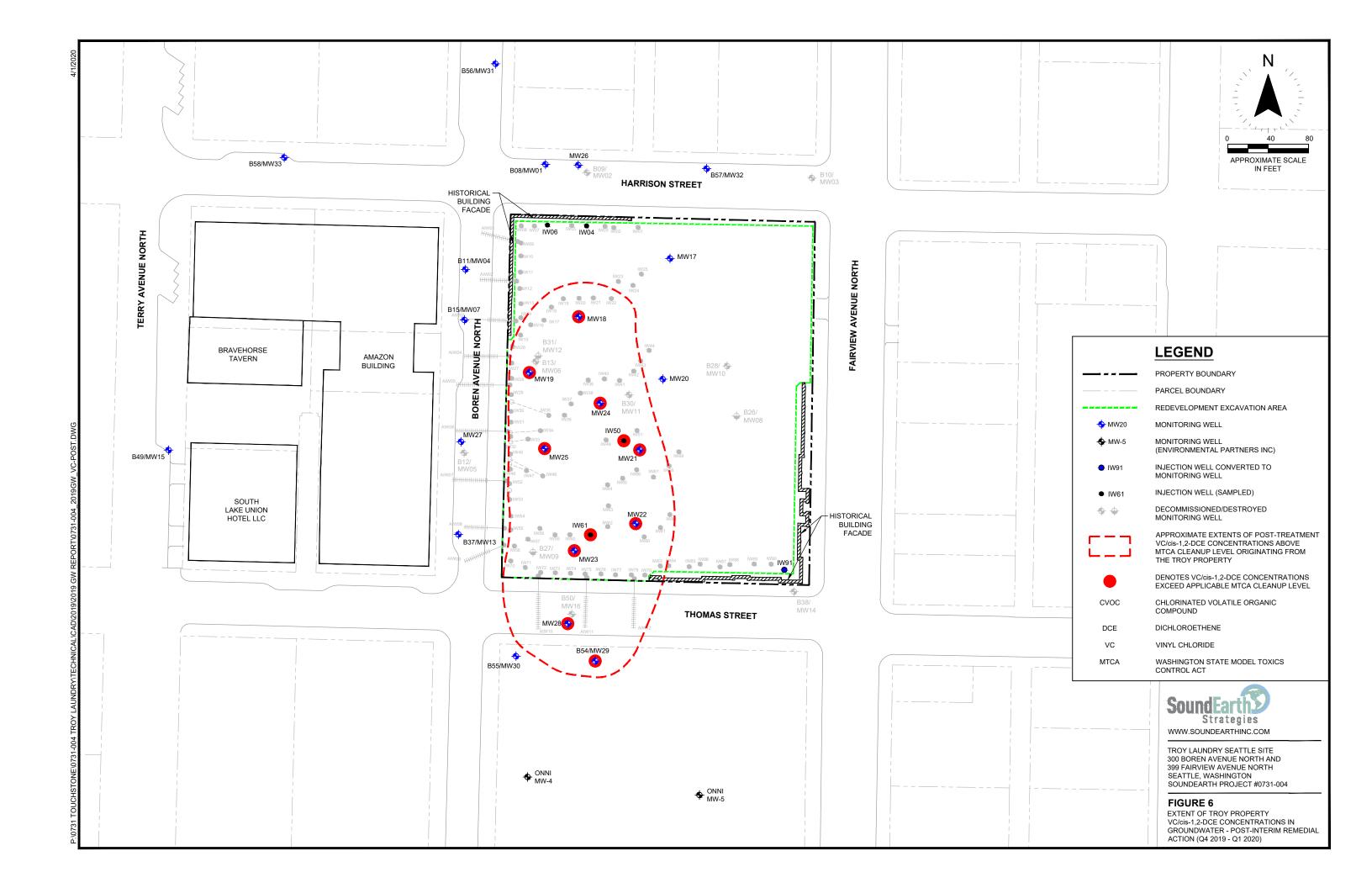

Friedman & Bruya, Inc. #912081


Friedman & Bruya, Inc. #912082 amended

Friedman & Bruya, Inc. #912134 Friedman & Bruya, Inc. #912135

SiREM Lab, #S-5638 B, Plume Stability Analysis Results

FIGURES SoundEarth Strategies, Inc.



TABLES SoundEarth Strategies, Inc.

			Doubh to	Ton	Dottom						
		Double to Ton	Depth to	Top of Well Screen	Bottom of Well Screen						
	тос	Depth to Top of Well Screen	Bottom of Well Screen	Elevation	Elevation		Donath to	Groundwater			
	Elevation ⁽¹⁾	(feet	(feet	(feet NAVD88	(feet NAVD88			Elevation			
Well	(feet)	approximate)	approximate)	approximate)	approximate)	Date		(feet NAVD88)			
vveii	(icci)	аррголіпассу		roy Laundry Prop	<u> </u>	Date	(leet below TOC)	(Teet NAV D88)			
			1			05/31/11	58.70	16.08			
MW06	74.78	60	75	15	0		 				
							 				
				DECOMMIS	SIONED 2013	55/25/25	Depth to Groundwater (feet below TOC) 58.70 58.91 58.71 60.30 77.18 78.10 77.24 78.51 77.14 77.01 78.28 72.43 72.29 73.78 58.71 59.99 25.26 24.82 25.49 24.98 24.61 23.14 20.84 22.75 25.73 25.14 23.04 22.00 21.64				
	02.00	405	440	42	47	10/20/11	77.18	15.70			
MW08	92.88	105	110	-12	-17	08/29/13	78.10	14.78			
		DECOMMISSIONED 2013									
	92.92	105	110	12	17	10/20/11	77.24	15.68			
MW09	92.92	105	110	-12	-17	08/29/13	78.51	14.41			
				DECOMMIS	SIONED 2013						
						10/20/11	77.14	15.59			
MW10	92.73	75	90	18	3	12/13/12	77.01	15.72			
1414410						Depth to Groundwater (feet below TOC) Groundwater (feet below TOC)	14.45				
				DECOMMIS	SIONED 2013						
						10/20/11	72.43	15.80			
MW11	88.23	68	83	20	5	12/13/12	72.29	15.94			
						08/29/13	73.78	14.45			
				DECOMMIS	SIONED 2013						
	74.44	95	100	-21	-26	10/20/11	58.71	15.73			
MW12						08/29/13	59.99	14.45			
		_	1	DECOMMIS	SIONED 2013		,				
							25.26				
						08/03/15	24.82	10.90			
						03/07/16	24.98	10.74			
							t				
MW17	35.72	22	37	14	-1		t				
								10.58			
								.91			
						08/29/13 73.78 14.45 3 10/20/11 58.71 15.73 08/29/13 59.99 14.45 3 05/05/15 25.26 10.46 08/03/15 24.82 10.90 12/07/15 25.49 10.23 03/07/16 24.98 10.74 07/12/16 24.61 11.11 10/18/16 23.14 12.58 01/24/17 20.84 14.88 05/31/17 22.75 12.97 09/21/17 25.73 9.99 12/14/17 25.14 10.58 03/08/18 23.04 12.68 06/28/18 22.00 13.72 09/19/18 21.64 14.08 12/13/18 21.42 14.30 06/13/19 20.93 14.79 10/09/19 21.30 14.42					
							t - t				
]		12/04/19	22.04	13.68			

Well	TOC Elevation ⁽¹⁾ (feet)	Depth to Top of Well Screen (feet approximate)	Depth to Bottom of Well Screen (feet approximate)	Top of Well Screen Elevation (feet NAVD88 approximate)	Bottom of Well Screen Elevation (feet NAVD88 approximate)	Date	Depth to Groundwater (feet below TOC)	Groundwater Elevation
vveii	(leet)	аррголіпасе)	аррголіпасе)	approximate)	аррголіпасе)	05/05/15	24.92	·
						08/03/15	24.49	
						12/07/15	25.21	
						03/07/16	24.64	
						07/12/16	24.23	
						10/18/16	22.81	
						01/24/17	20.98	
						05/31/17	22.49	
MW18	35.34	35	55	0	-20	09/21/17	25.36	
						12/14/17	24.70	
						03/08/18	22.60	
						06/28/18	21.70	
						09/19/18	21.34	
						12/13/18	21.12	
						06/13/19	20.62	
						10/09/19	20.50	
						12/04/19	22.15	
						05/05/15	27.24	
						08/03/15	26.82	
						12/07/15	27.51	
						03/07/16	26.97	
						07/12/16	26.57	
						10/18/16	25.12	
						01/24/17	22.97	14.72
						05/31/17	24.74	12.95
MW19	37.69	35	55	3	-17	09/21/17	27.60	10.09
						12/14/17	26.97	10.72
						03/08/18	24.89	12.80
						06/28/18	24.00	13.69
						09/19/18	23.65	14.04
						12/13/18	25.41	12.28
						06/13/19	22.95	14.74
						10/09/19	27.60	10.09
						12/04/19	23.33	14.36
						05/05/15	25.24	10.39
						08/03/15	24.44	11.19
						12/07/15	25.50	10.13
						03/07/16	24.94	10.69
						07/12/16	24.62	11.01
						10/18/16	23.13	12.50
						01/24/17	21.32	14.31
						05/31/17	22.70	12.93
MW20	35.63	35	55	1	-19	09/21/17	25.53	10.10
						12/14/17	24.91	10.72
						03/08/18	22.89	12.74
						06/28/18	22.01	Elevation (feet NAVD88) 10.42 10.85 10.13 10.70 11.11 12.53 14.36 12.85 9.98 10.64 12.74 13.64 14.00 14.22 14.72 14.84 13.19 10.45 10.87 10.18 10.72 11.12 12.57 14.72 12.95 10.09 10.72 12.80 13.69 14.04 12.28 14.74 10.09 14.36 10.39 11.19 10.13 10.69 11.01 12.50 14.31 12.93 10.10 10.72
						09/19/18	21.67	
						12/13/18	21.43	
						06/13/19	20.95	
						10/09/19	24.25	
						12/04/19	21.45	14.18

Well	TOC Elevation ⁽¹⁾ (feet)	Depth to Top of Well Screen (feet approximate)	Depth to Bottom of Well Screen (feet approximate)	Top of Well Screen Elevation (feet NAVD88 approximate)	Bottom of Well Screen Elevation (feet NAVD88 approximate)	Date	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet NAVD88)
WC.II	(1001)	арргохипассу	аррголинасе)	аррголинасс)	арргохипассу	05/05/15	25.21	10.37
						08/03/15	24.82	10.76
						12/07/15	25.49	10.09
						03/07/16	24.90	10.68
						03/07/10	24.56	11.02
						10/18/16	23.00	12.58
						01/24/17	21.54	14.04
						05/31/17	23.37	12.21
MW21	35.58	35	55	1	-19	09/21/17	25.96	9.62
1414421	33.30	33	33	1	13	12/14/17	25.20	10.38
						03/08/18	24.10	11.48
						06/28/18	22.89	12.69
						09/19/18		ESSIBLE
						12/13/18	22.59	12.99
						06/13/19	23.70	11.88
						10/09/19	26.52	9.06
						12/04/19	20.50	15.08
						05/05/15	25.14	10.33
						08/03/15	24.75	10.72
						12/07/15	25.41	10.06
						03/07/16	24.86	10.61
						07/12/16	24.52	10.95
						10/18/16	23.05	12.42
						01/24/17	21.68	13.79
						05/31/17	23.45	12.02
MW22	35.47	35	55	0	-20	09/21/17	26.20	9.27
						12/14/17	25.60	9.87
						03/08/18	23.65	11.82
						06/28/18	23.30	12.17
						09/19/18	INACC	ESSIBLE
						12/13/18	21.62	13.85
						06/13/19		
						10/09/19	20.73	14.74
						12/04/19	20.18	15.29
						05/05/15	25.08	10.35
						08/03/15	24.72	10.71
						12/07/15	25.34	10.09
						03/07/16	24.77	10.66
						07/12/16	24.54	10.89
						10/18/16	22.98	12.45
						01/24/17	21.06	14.37
	25.12	2.5				05/31/17	22.41	13.02
MW23	35.43	36	56	-1	-21	09/21/17	25.11	10.32
						12/14/17	24.65	10.78
						03/08/18	22.69	12.74
						06/28/18	21.03	14.40
						09/19/18	21.50	13.93
						12/13/18	21.22	14.21
						06/13/19	20.80	14.63
						10/09/19	22.03	13.40
				l .		12/04/19	21.22	14.21

Well	TOC Elevation ⁽¹⁾ (feet)	Depth to Top of Well Screen (feet approximate)	Depth to Bottom of Well Screen (feet approximate)	Top of Well Screen Elevation (feet NAVD88 approximate)	Bottom of Well Screen Elevation (feet NAVD88 approximate)	Date	Depth to Groundwater (feet below TOC)	Groundwater Elevation
weii	(leet)	approximate)	approximate)	approximate)	approximate)			•
						05/05/15 08/03/15	24.47	
							24.06	
						12/07/15	24.72 24.12	
						03/07/16 07/12/16	23.76	
						10/18/16	22.19	
						01/24/17	19.95	
						05/31/17	23.29	
MW24	34.88	35	55	0	-20	09/21/17		
	000				20	12/14/17	24.22	
						03/08/18	22.10	
						06/28/18	21.98	
						09/19/18	20.81	
						12/13/18	20.65	
						06/13/19	20.18	
						10/09/19	21.65	
						12/04/19	21.40	
						05/05/15	30.85	
						08/03/15	30.60	
						12/07/15	31.30	
						03/07/16	30.71	
						07/12/16	30.44	
						10/18/16	28.95	
						01/24/17	27.07	
						05/31/17	28.24	
MW25	41.38	35.5	55.5	6	-14	09/21/17	31.09	
						12/14/17	30.52	
						03/08/18	28.54	
						06/28/18	27.69	
						09/19/18	27.32	14.06
						12/13/18	27.12	14.26
						06/13/19	26.64	14.74
						10/09/19	27.79	13.59
						12/04/19	26.63	14.75
						05/05/15	25.56	10.26
						08/03/15	25.19	10.63
						12/07/15	25.84	Elevation (feet NAVD88) 10.41 10.82 10.16 10.76 11.12 12.69 14.93 11.59 ESSIBLE 10.66 12.78 12.90 14.07 14.23 14.70 13.23 13.48 10.53 10.78 10.08 10.67 10.94 12.43 14.31 13.14 10.29 10.86 12.84 13.69 14.06 14.26 14.74 13.59 14.75 10.26
						03/07/16	25.24	10.58
						07/12/16	24.90	10.92
						10/18/16	23.41	12.41
						01/24/17	21.61	14.21
						05/31/17	22.79	13.03
IW91	35.82	20	55	16	-19	09/21/17	25.42	10.40
						12/14/17	24.96	10.86
						03/08/18	23.08	12.74
						06/28/18	22.30	Elevation (feet NAVD88) 10.41 10.82 10.16 10.76 11.12 12.69 14.93 11.59 CESSIBLE 10.66 12.78 12.90 14.07 14.23 14.70 13.23 13.48 10.53 10.78 10.08 10.67 10.94 12.43 14.31 13.14 10.29 10.86 12.84 13.69 14.06 14.26 14.74 13.59 14.75 10.26 10.63 9.98 10.58 10.92 12.41 14.21 13.03 10.40 10.86 12.74 13.52 13.87 14.13 14.59 11.92
						09/19/18	21.95	
						12/13/18	21.69	
						06/13/19	21.23	13.03 10.40 10.86 12.74 13.52 13.87 14.13
						10/09/19	23.90	11.92
						12/04/19	21.11	14.71

			Donah to	Ton	Dottom			
		Depth to Top	Depth to Bottom	Top of Well Screen	Bottom of Well Screen			
	тос	of Well Screen	of Well Screen	Elevation	Elevation		Denth to	Groundwater
	Elevation ⁽¹⁾	(feet	(feet	(feet NAVD88	(feet NAVD88			Elevation
Well	(feet)	approximate)	approximate)	approximate)	approximate)	Date	(feet below TOC)	(feet NAVD88)
			E	oren Avenue No	rth			
						05/27/11	52.22	18.47
	70.69					10/20/11	52.82	17.87
	70.03					12/10/12	52.88	17.81
						08/29/13	57.25	13.44
						05/05/15	58.22	12.60
						08/03/15	56.87	13.95
						12/07/15	58.82	12.00
						03/07/16	59.25	11.57
						07/12/16	58.49	12.33
						10/18/16	57.02	13.80
MW04		50	65	21	6	01/24/17	54.06	16.76
						05/31/17	55.59	15.23
	70.82					09/21/17	62.08	8.74
						12/14/17	62.03	8.79
						03/08/18	57.70	13.12
						06/28/18	54.94	15.88
						09/19/18	54.38	16.44
						12/13/18	54.26	16.56
						06/13/19	53.61	17.21
						10/09/19	55.40	15.42
						12/04/19	54.04	16.78
						05/27/11	67.40	16.64
						10/20/11	67.91	16.13
	84.04	65	80	19	4	12/10/12	68.54	15.50
MW05	04.04	03	00	15	7	08/29/13	69.72	16.64 16.13 15.50 14.32 NACCESSIBLE
						05/05/15	INACC	ESSIBLE
						08/03/15	INACC	ESSIBLE
		1	1	DECOMMIS	SIONED 2015		1	
						05/31/11	56.33	18.22
	74.55					10/20/11	56.87	17.68
						12/10/12	56.96	17.59
						08/29/13	60.95	13.60
						05/05/15	62.69	11.99
						08/03/15	61.67	13.01
						12/07/15	S2.22	11.49
						07/12/16		11.86
					_	10/18/16		13.42
MW07		55	70	09/19/18 12/13/18 06/13/19 10/09/19 12/04/19 05/27/11 10/20/11 12/10/12 08/29/13 05/05/15 08/03/15 DECOMMISSIONED 2015 05/31/11 10/20/11 11/10/12 08/29/13 05/05/15 08/03/15 12/07/15 08/03/15 12/07/15 03/07/16 07/12/16 10/18/16 10/18/16 10/18/16 10/18/17 09/21/17		16.27		
	74.68							9.51
						12/14/17		
						03/08/18		
						06/28/18		
						09/19/18		1.02 13.80 1.06 16.76 1.59 15.23 1.08 8.74 1.03 8.79 1.70 13.12 1.94 15.88 1.38 16.44 1.26 16.56 1.61 17.21 1.40 15.42 1.04 16.64 1.91 16.13 1.54 15.50 1.72 14.32 1NACCESSIBLE 1NACCESSIBLE 1.09 17.59 1.09 17.59 1.09 11.49 1.22 11.46 1.82 11.86 1.22 11.46 1.82 11.86 1.26 13.42 1.41 16.27 1.90 14.78 1.17 9.51 1NACCESSIBLE 1NACCESSIBLE 1.186 1.291 1.49
						12/13/18		
						06/13/19		13.95 12.00 11.57 12.33 13.80 16.76 15.23 8.74 8.79 13.12 15.88 16.44 16.56 17.21 15.42 16.78 16.64 16.13 15.50 14.32 NACCESSIBLE NACCESSIBLE 18.22 17.68 17.59 13.60 11.99 13.01 11.49 11.46 11.86 13.42 16.27 14.78 9.51 NACCESSIBLE
						10/09/19		
		<u> </u>				12/04/19	58.38	16.30

			Depth to	Тор	Bottom			
		Depth to Top	Bottom	of Well Screen	of Well Screen			
	тос	of Well Screen	of Well Screen	Elevation	Elevation		Depth to	Groundwater
	Elevation ⁽¹⁾	(feet	(feet	(feet NAVD88	(feet NAVD88		Groundwater	Elevation
Well	(feet)	approximate)	approximate)	approximate)	approximate)	Date	(feet below TOC)	(feet NAVD88)
						10/20/11	74.69	15.97
	90.66					12/10/12	75.38	Elevation (feet NAVD88) 15.97 15.28 14.43 CESSIBLE 10.79 10.13 10.79 10.83 12.70 15.30 13.46 10.40 10.67 12.73 13.85 14.18 14.34 14.86 9.41 14.86 9.96 10.59 10.81 12.44 14.25 12.93 9.95 10.57 12.72 13.62 13.97 14.13 14.63 13.52 14.71 14.26 16.59 18.01 13.42 13.03 14.08 11.81 11.31 12.16 13.92 16.84 15.81 9.27 8.97 13.09 15.94 16.54 16.63
		_				08/29/13	76.23	
						05/05/15		Elevation (feet NAVD88) 15.97 15.28 14.43 ACCESSIBLE 10.79 10.13 10.79 10.83 12.70 15.30 13.46 10.40 10.67 12.73 13.85 14.18 14.34 14.86 9.41 14.86 9.96 10.59 10.81 12.44 14.25 12.93 9.95 10.57 12.72 13.62 13.97 14.13 14.63 13.97 14.13 14.63 13.52 14.71 14.26 16.59 18.01 13.42 13.03 14.08 11.81 11.31 12.16 13.92 16.84 15.81 9.27 8.97 13.09 15.94 16.54 16.63 17.24
						08/03/15	80.07	
						12/07/15	80.73 80.07	
MW13		70	85	21	-15			
	90.86							
								10.67
						03/08/18	78.13	
						06/28/18	77.01	13.85
						09/19/18	76.68	14.18
						07/12/16 80.03 10.83 10/18/16 78.16 12.70 01/24/17 75.56 15.30 05/31/17 77.40 13.46 09/21/17 80.46 10.40 12/14/17 80.19 10.67 03/08/18 78.13 12.73 06/28/18 77.01 13.85 09/19/18 76.68 14.18 12/13/18 76.52 14.34 06/13/19 76.00 14.86 10/09/19 81.45 9.41 12/04/19 76.00 14.86 12/07/15 73.86 9.96 03/07/16 73.23 10.59 07/12/16 73.01 10.81 10/18/16 71.38 12.44 01/24/17 69.57 14.25 05/31/17 70.89 12.93 09/21/17 73.87 9.95 12/14/17 73.25 10.57 03/08/18 71.10 12.72 06/28/18 <t< td=""></t<>		
						06/13/19	76.00	14.86
						10/09/19	81.45	9.41
		1				12/04/19	76.00	14.86
MW27	83.82	90	105	-6	-21			
1010027	03.02	30	103					
						06/13/19	69.19	
						10/09/19	70.30	13.52
						12/04/19	69.11	14.71
MW31	60.75	40	60	21	1	10/09/19	46.49	14.26
1010031	00.73	40	00	21	1	12/04/19	44.16	16.59
	ı	1	1	Terry Avenue No	rth		1	
	58.79					12/10/12	40.78	
		-				08/29/13	45.37	
						05/05/15	45.86	
						08/03/15	44.81	
						12/07/15	47.08	
						03/07/16 07/12/16	47.58 46.73	
						10/18/16	44.97	
						01/24/17	42.05	
MW15		41	56	18	3	05/31/17	43.08	
	58.89					09/21/17	49.62	
						12/14/17	49.92	
						03/08/18	45.80	10.79 10.13 10.79 10.13 10.79 10.83 12.70 15.30 13.46 10.40 10.67 12.73 13.85 14.18 14.34 14.86 9.41 14.86 9.41 14.86 10.59 10.59 10.81 12.44 14.25 12.93 9.95 10.57 12.72 13.62 13.97 14.13 14.63 13.52 14.71 14.26 16.59 18.01 13.42 13.03 14.08 11.81 11.31 12.16 13.92 16.84 15.81 9.27 8.97 13.09 15.94 16.54 16.63
						06/28/18	42.95	
						09/19/18	42.35	16.54
						12/13/18	42.26	16.63
						06/13/19	41.65	17.24
						10/09/19	41.80	17.09
						12/04/19	42.00	16.89

Well	TOC Elevation ⁽¹⁾ (feet)	Depth to Top of Well Screen (feet approximate)	Depth to Bottom of Well Screen (feet approximate)	Top of Well Screen Elevation (feet NAVD88 approximate)	Bottom of Well Screen Elevation (feet NAVD88 approximate)	Date	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet NAVD88)
				Thomas Street				
						10/20/11	88.81	15.59
MW14	104.40	90	105	14	-1	12/13/12	88.66	15.74
						08/29/13	89.99	14.41
		ı		DECOMMIS	SIONED 2013		<u> </u>	
	99.02					12/10/12	83.47	
		_				08/29/13	84.59	
						05/05/15	88.87	
						08/03/15	88.53	
						12/07/15	89.15	
				_	_	03/07/16	88.54	
MW16		91	106	8	-7	07/12/16	88.41	
	99.18					10/18/16	86.74	12.44
						01/24/17	84.71	14.47
						05/31/17	86.04	13.14
						09/21/17	88.85	10.33
						12/14/17	88.43	10.75
						03/08/18	86.51	12.67
		Т		WELL DAN	1AGED 2018			
						06/13/19	84.54	14.64
MW28	99.18	90	105	9	-6	10/08/19	84.75	14.43
						12/04/19	84.48	14.70
		T	Fa	irview Avenue No	orth			
MW-C	107.75	85	100	23	8	08/29/13	93.32	
				Harrison Street		05/05/15	97.64	10.11
				namson street		05/25/44	50.50	10.00
						05/25/11	50.59	
	68.68					10/20/11	51.03	15.59 15.74 14.41 15.55 14.43 10.31 10.65 10.03 10.64 10.77 12.44 14.47 13.14 10.33 10.75 12.67
						12/10/12	51.24	
		-				08/29/13	54.35	
						05/05/15	58.11	
	68.82					08/03/15		
						12/07/15	58.60	
		-				03/07/16	57.69	
						07/12/16	57.42	
MW01		45	60	24	9	10/18/16	55.65	
INIAAOT		45	00	24	9	01/24/17	52.27	
						05/31/17	54.69	
						09/21/17	58.91	
	69.65					12/14/17	58.14	
	68.65					03/08/18	55.84	
						06/28/18	54.20	
						09/19/18	53.93	
						12/13/18	53.05	Elevation (feet NAVD88) 15.59 15.74 14.41 15.55 14.43 10.31 10.65 10.03 10.64 10.77 12.44 14.47 13.14 10.33 10.75 12.67 14.64 14.43 14.70 14.43 10.11 18.09 17.65 17.44 14.33 10.71 ESSIBLE 10.22 11.13 11.23 13.00 16.38 13.96 9.74 10.51 12.81 14.45 14.472 15.60 16.31 12.00 15.89 16.08 15.84 15.65 14.44 ESSIBLE
						06/13/19	52.34	
						10/09/19	56.65	
						12/04/19	52.76	
						05/25/11	54.84	14.47 13.14 10.33 10.75 12.67 14.64 14.43 14.70 14.43 10.11 18.09 17.65 17.44 14.33 10.71 CESSIBLE 10.22 11.13 11.23 13.00 16.38 13.96 9.74 10.51 12.81 14.45 14.72 15.60 16.31 12.00 15.89 16.08 15.84 15.65 14.44 CESSIBLE
						10/20/11	55.08	
	70.92	55	70	16	1	12/10/12	55.27	15.74 14.41 15.55 14.43 10.31 10.65 10.03 10.64 10.77 12.44 14.47 13.14 10.33 10.75 12.67 14.64 14.43 14.70 14.43 10.11 18.09 17.65 17.44 14.33 10.71 5SIBLE 10.22 11.13 11.23 13.00 16.38 13.96 9.74 10.51 12.81 14.45 14.472 15.60 16.31 12.00 15.89 16.08 15.84 15.65 14.44 SSIBLE
MW02	-		-			08/29/13	56.48	
						05/05/15		
						08/03/15	INACC	ESSIBLE
				DECOMMIS	SIONED 2015			

Well	TOC Elevation ⁽¹⁾ (feet)	Depth to Top of Well Screen (feet approximate)	Depth to Bottom of Well Screen (feet approximate)	Top of Well Screen Elevation (feet NAVD88 approximate)	Bottom of Well Screen Elevation (feet NAVD88 approximate)	Date 05/27/11	Depth to Groundwater (feet below TOC) 68.75	Groundwater Elevation (feet NAVD88) 15.90
						10/20/11	68.97	15.68
						12/10/12	68.97	15.44
MW03	84.65	65	80	20	5	08/29/13	70.21	14.44
1010003						05/05/15		ESSIBLE
						08/03/15		ESSIBLE
		<u> </u>		DECOMMIS	SIONED 2015	08/03/13	IIVACC	LJJIDLL
				DECOIVIIVIIS	SIGNED 2013	12/07/15	60.42	10.15
						03/07/16	59.82	10.75
						07/12/16	59.52	11.05
						10/18/16	58.10	12.47
						01/24/17	56.10	14.47
						05/31/17	57.79	12.78
							60.94	9.63
MW26	70.57	75	90	-4	-19	09/21/17		
1010020	70.57	/5	30	7	13	12/14/17 03/08/18	60.11 57.79	10.46 12.78
								_
						06/28/18	56.83	13.74
						09/19/18	56.50	14.07
						12/13/18	56.34	14.23
						06/13/19	55.82	14.75
						10/09/19	57.28	13.29
						12/04/09	55.80	14.77
MW32	78.38	60	75	18	3	10/09/19	65.80	12.58
						12/04/19	62.63	15.75
MW33	56.62	31	51	26	6	10/09/19	40.30	16.32
CN 414/04	40.45	20	40	40	9	12/04/19	39.93	16.69
SMW01	49.45	30	40 40	19 19	9	08/29/13	36.78	12.67
SMW02	49.26	30		_		08/29/13	36.67	12.59
SMW06	48.63	30	40	19	9	08/29/13	36.39	12.24
SMW08	49.30	30	40 W	19 estlake Avenue N	9 Iorth	08/29/13	36.69	12.61
SMW09	48.25	30	40	18	8	08/29/13	35.84	12.41
555	.0.23			ıth-Adjoining Pro	_	55,25,25	55.5.	22.12
A414120	101 73	62				10/09/19	86.91	14.81
MW29	101.72	82	102	20	0	12/04/19	87.03	14.69
141120	101.07	0.4	404	40	2	10/09/19	87.95	14.02
MW30	101.97	84	104	18	-2	12/04/19	87.25	14.72
			Noi	rth-Adjoining Pro	perty			
SLU-MW01 ⁽²⁾	53.43	35	45	18	8	08/29/13	40.00	13.43
2FO-IMMOT				DECOMMIS	SIONED 2013			
SLU-MW02 ⁽²⁾	52.76	30	40	23	13	08/29/13	Dry	
SLU-IVIVVUZ.				DECOMMIS	SSIONED 2013			

NOTES:

NAVD88 = North American Vertical Datum of 1988

TOC = top of casing

⁽¹⁾TOC elevations surveyed relative to NAVD88.

 $^{^{(2)}} Groundwater\ elevation\ data\ compiled\ from\ reports\ on\ file\ at\ the\ Washington\ State\ Department\ of\ Ecology.$

^{-- =} not analyzed, measured, or calculated

					An	alytical Results (μ	g/L)	
Sample Location	Sample Identification	Sample Date	Sampled By	PCE ⁽¹⁾	TCE ⁽¹⁾	cis-1-2-DCE ⁽¹⁾	trans-1-2-DCE ⁽¹⁾	Vinyl Chloride ⁽¹⁾
Sample Location	Sample Identification	Sample Date		undry Property	TCE	CIS-1-2-DCE	trans-1-2-DCE	Villyi Cilioride
	MW06-20110531	05/31/11	SoundEarth	3.1	8.2	150 ^{ve}	<1	0.76
	MW06-20111012	10/12/11	SoundEarth	3.6	11	120	<1	0.76
MW06	MW06-20130909	09/09/13	SoundEarth	3.8	4.5	150	<1	0.93
				DECOMMISSION			I	
	MW08-20111013	10/13/11	SoundEarth	<1	<1	<1	<1	<0.2
MW08	MW08-20130910	09/10/13	SoundEarth	<1	<1	<1	<1	<0.2
				DECOMMISSION	IED 2013		1	
	MW09-20111013	10/13/11	SoundEarth	<1	16	22	<1	<0.2
MW09	MW09-20130910	09/10/13	SoundEarth	1.6	15	2.0	<1	<0.2
				DECOMMISSION	IED 2013	•	•	•
	MW10-20111012	10/12/11	SoundEarth	<1	<1	<1	<1	<0.2
MW10	MW10-20130909	09/09/13	SoundEarth	<1	<1	<1	<1	<0.2
				DECOMMISSION	IED 2013		•	•
	MW11-20111013	10/13/11	SoundEarth	21	2.6	5.6	<1	<0.2
MW11	MW11-20130909	09/09/13	SoundEarth	39	3.8	3.6	<1	<0.2
				DECOMMISSION	IED 2013	•	•	•
	MW12-20111017	10/17/11	SoundEarth	<1	19	1.3	<1	<0.2
MW12	MW12-20130909	09/09/13	SoundEarth	<1	20	<1	<1	<0.2
				DECOMMISSION	IED 2013	•	•	•
	MW17-20150506	05/06/15	SoundEarth	<1	2.2	<1	<1	<0.2
	MW17-20150804	08/07/15	SoundEarth	<1	1.5	<1	<1	<0.2
	MW17-20151207	12/07/15	SoundEarth	<1	1.5	<1	<1	<0.2
	MW17-20160308	03/08/16	SoundEarth	<1	<1	<1	<1	<0.2
	MW17-20160714	07/14/16	SoundEarth	<1	1.2	<1	<1	<0.2
	MW17-20161020	10/20/16	SoundEarth	<1	2.1	<1	<1	<0.2
	MW17-20170126	01/26/17	SoundEarth	<1	1.9	<1	<1	<0.2
N 41 A / 4 7	MW17-20170601	06/01/17	SoundEarth	<1	2.5	<1	<1	<0.2
MW17	MW17-20170923	09/23/17	SoundEarth	<1	2.1	1.2	<1	<0.2
	MW17-20171216	12/16/17	SoundEarth	<1	2.5	1.7	<1	<0.2
	MW17-20180310	03/10/18	SoundEarth	<1	2.6	1.5	<1	<0.2
	MW17-20180630	06/30/18	SoundEarth	<1	2.8	2.2	<1	<0.2
	MW17-20180922	09/22/18	SoundEarth	<1	2.7	2.0	<1	<0.2
	MW17-20181215	12/15/18	SoundEarth	<1	2.9	2.2	<1	<0.2
	MW17-20190615	06/15/19	SoundEarth	<1	3.4	2.2	<1	<0.2
	MW17-20191207	12/07/19	SoundEarth	<1	3.9	2.2	<1	<0.2
	MW18-20150506	05/06/15	SoundEarth	<1	46	5.2	<1	<0.2
	MW18-20150803	08/03/15	SoundEarth	<1	51	4.6	<1	<0.2
	MW18-20151208	12/08/15	SoundEarth	<1	51	9.9	<1	<0.2
	MW18-20160308	03/08/16	SoundEarth	<1	44	8.1	<1	<0.2
	MW18-20160714	07/14/16	SoundEarth	<1	3.3	1.7	<1	<0.2
	MW18-20161020	10/20/16	SoundEarth	<1	6.5	4.0	<1	<0.2
	MW18-20170126	01/26/17	SoundEarth	<1	7.7	14	<1	0.25
NA1440	MW18-20170601	06/01/17	SoundEarth	<1	3.3	14	<1	0.31
MW18	MW18-20170923	09/23/17	SoundEarth	<1	<1	22	<1	0.38
	MW18-20171216	12/16/17	SoundEarth	<1	<1	22	<1	0.24
ļ	MW18-20180310	03/10/18	SoundEarth	<1	<1	27	<1	0.40
	MW18-20180630	06/30/18	SoundEarth	<1	<1	27	<1	0.43
	MW18-20180922	09/22/18	SoundEarth	<1	<1	21	<1	0.42
ļ	MW18-20181215	12/15/18	SoundEarth	<1	<1	24	<1	0.49
	MW18-20190615	06/15/19	SoundEarth	<1	<1	28	<1	0.44
	MW18-20191207	12/07/19	SoundEarth	<1	<1	28	<1	0.55
MTCA Cleanup Leve		. , -		5 ⁽²⁾	5 ⁽²⁾	16 ⁽³⁾	160 ⁽³⁾	0.2 ⁽²⁾

					An	alytical Results (με	g/L)	
Sample Location	Sample Identification	Sample Date	Sampled By	PCE ⁽¹⁾	TCE ⁽¹⁾	cis-1-2-DCE ⁽¹⁾	trans-1-2-DCF ⁽¹⁾	Vinyl Chloride ⁽¹⁾
Sample Education	MW19-20150507	05/07/15	SoundEarth	<1	69	15		<0.2
	MW19-20150803	08/03/15	SoundEarth	<1	61	20		<0.2
	MW19-20150803	12/07/15	SoundEarth	<1	65	23		<0.2
	MW19-20160308	03/08/16	SoundEarth	<1	52	26		<0.2
	MW19-20160713	07/13/16	SoundEarth	<1	4.6	10		<0.2
	MW19-20161021	10/21/16	SoundEarth	<1	10	4.4		0.40
	MW19-20170125	01/25/17	SoundEarth	<1	5.5	3.9		0.30
MW19	MW19-20170601	06/01/17	SoundEarth	<1	5.7	3.5		0.44
25	MW19-20170923	09/23/17	SoundEarth	<1	1.7	3.4		0.97
	MW19-20170923	12/16/17	SoundEarth	<1	1.1	13		0.97
	MW19-20171210 MW19-20180310	03/10/18	SoundEarth	<1	<1	12		0.78
	MW19-20180630	06/30/18	SoundEarth	<1	<1	12		0.96
	MW19-20180030	09/22/18	SoundEarth	<1	<1	16		0.86
	MW19-20190615	06/15/19	SoundEarth	<1	<1	27		0.79
	MW19-20190013	12/07/19	SoundEarth	<1	<1	35		0.98
	MW20-20150506	05/06/15	SoundEarth	<1	<1	1.5		<0.2
		08/03/15	SoundEarth	<1	<1	1.2		<0.2
	MW20-20150803			<1	<1	<1		<0.2
	MW20-20151207 MW20-20160309	12/07/15	SoundEarth	<1	<1	<1		
		03/09/16	SoundEarth					<0.2
	MW20-20160715	07/15/16	SoundEarth	<1	<1	<1		<0.2
	MW20-20161020	10/20/16	SoundEarth	<1	<1	<1		<0.2
	MW20-20170125	01/25/17	SoundEarth SoundEarth	<1 <1	<1	4.1 1.2		<0.2 <0.2
MW20	MW20-20170601	06/01/17			<1			
	MW20-20170924	09/24/17	SoundEarth	<1	<1	9.5		<0.2
	MW20-20171216	12/16/17	SoundEarth	<1	1.3	15		0.35
	MW20-20180310	03/10/18	SoundEarth	<1	<1	11		<0.2
	MW20-20180630	06/30/18	SoundEarth	<1	<1	7		<0.2
	MW20-20180922	09/22/18	SoundEarth	<1	<1	5.3		<0.2
	MW20-20181215	12/15/18	SoundEarth	<1	<1	4.4		<0.2
	MW20-20190615	06/15/19	SoundEarth	<1	<1	3.8		<0.2
	MW20-20191207	12/07/19	SoundEarth	<1	<1	3.0		<0.2
	MW21-20150506	05/06/15	SoundEarth	5.1	1.6	7.2		<0.2
	MW21-20150804	08/04/15	SoundEarth	4.9	1.4	4.5		<0.2
	MW21-20151208	12/08/15	SoundEarth	7.3	2.0	6.7		<0.2
	MW21-20160309	03/09/16	SoundEarth	5.3	1.4	7.9		<0.2
	MW21-20160713	07/13/16	SoundEarth	<1	<1	1.2		<0.2
	MW21-20161020	10/20/16	SoundEarth	<1	<1	1.7		<0.2
	MW21-20170126	01/26/17	SoundEarth	<1	<1	2.4		<0.2
MW21	MW21-20170601	06/01/17	SoundEarth	<1	<1	2.4		<0.2
	MW21-20170923	09/23/17	SoundEarth	<1	<1	3.7		<0.2
	MW21-20171216	12/16/17	SoundEarth	<1	<1	14		0.49
	MW21-20180310	03/10/18	SoundEarth	<1	<1	14		0.43
	MW21-20180630	06/30/18	SoundEarth	<1	<1	6.0		0.29
	MW21-20180922	09/22/18	SoundEarth	<1	<1	6.9		0.30
	MW21-20181215	12/15/18	SoundEarth	<1	<1	16		0.96
	MW21-20190615	06/15/19	SoundEarth	<1	<1	29		1.1
	MW21-20191207	12/07/19	SoundEarth	<1 5 ⁽²⁾	<1 5 ⁽²⁾	34 16 ⁽³⁾		1.3 0.2 ⁽²⁾

					An	alytical Results (μ	g/L)	
Sample Location	Sample Identification	Sample Date	Sampled By	PCE ⁽¹⁾	TCE ⁽¹⁾	cis-1-2-DCE ⁽¹⁾	trans-1-2-DCE ⁽¹⁾	Vinyl Chloride ⁽¹⁾
	MW22-20150506	05/06/15	SoundEarth	11	2.2	27	<1	<0.2
	MW22-20150804	08/04/15	SoundEarth	17	3.0	34	<1	<0.2
	MW22-20151208	12/08/15	SoundEarth	19	3.7	42	<1	<0.2
	MW22-20160308	03/08/16	SoundEarth	28	4.5	52	<1	0.35
	MW22-20160713	07/13/16	SoundEarth	<1	<1	5.5	<1	<0.2
	MW22-20161020	10/20/16	SoundEarth	<1	<1	6.7	<1	0.65
	MW22-20170126	01/26/17	SoundEarth	<1	<1	8.5	<1	0.51
MW22	MW22-20170601	06/01/17	SoundEarth	<1	<1	10	<1	1.5
IVIVVZZ	MW22-20170923	09/23/17	SoundEarth	<1	<1	18	<1	1.4
	MW22-20171216	12/16/17	SoundEarth	<1	<1	22	<1	1.2
	MW22-20180310	03/10/18	SoundEarth	<1	<1	22	<1	1.3
	MW22-20180630	06/30/18	SoundEarth	<1	<1	28	<1	1.2
	MW22-20180922	09/22/18	SoundEarth	<1	<1	33	<1	0.90
	MW22-20181215	12/15/18	SoundEarth	<1	<1	37	<1	1.2
	MW22-20190615	06/15/19	SoundEarth	1.1	1.1	49	<1	1.0
	MW22-20191207	12/07/19	SoundEarth	1.3	1.3	48	<1	1.0
	MW23-20150507	05/07/15	SoundEarth	6.1	18	13	<1	<0.2
	MW23-20150804	08/04/15	SoundEarth	6.1	24	20	<1	0.20
	MW23-20151208	12/08/15	SoundEarth	3.8	16	120	<1	0.57
	MW23-20160308	03/08/16	SoundEarth	4.1	14	95	<1	0.64
	MW23-20160714	07/14/16	SoundEarth	<1	1.6	14	<1	2.2
	MW23-20161020	10/20/16	SoundEarth	<1	2.1	9.9	<1	0.48
	MW23-20170126	01/26/17	SoundEarth	<1	2.9	41	<1	1.4
MW23	MW23-20170601	06/01/17	SoundEarth	<1	2.7	23	<1	0.74
1010025	MW23-20170923	09/23/17	SoundEarth	<1	1.7	16	<1	0.50
	MW23-20171216	12/16/17	SoundEarth	<1	1.3	14	<1	0.51
	MW23-20180310	03/10/18	SoundEarth	<1	<1	20	<1	0.52
	MW23-20180630	06/30/18	SoundEarth	<1	<1	14	<1	0.53
	MW23-20180922	09/22/18	SoundEarth	<1	<1	16	<1	0.53
	MW23-20181215	12/15/18	SoundEarth	<1	<1	17	<1	<0.2
	MW23-20190615	06/15/19	SoundEarth	<1	<1	25	<1	0.72
	MW23-20191207	12/07/19	SoundEarth	<1	<1	38	<1	0.89
	MW24-20150506	05/06/15	SoundEarth	2.5	31	72	<1	0.26
	MW24-20150804	08/04/15	SoundEarth	5.5	28	75	<1	<0.2
	MW24-20151208	12/08/15	SoundEarth	11	28	54	<1	<0.2
	MW24-20160309	03/09/16	SoundEarth	11	23	45	<1	<0.2
	MW24-20160715			<1	1.7	12	<1	<0.2
	MW98-20160715 (DUP)	07/15/16	SoundEarth	<1	1.8	12	<1	<0.2
	MW24-20161020	10/20/16	SoundEarth	<1	2.7	12	<1	0.26
	MW24-20170125	01/25/17	SoundEarth	<1	3.5	20	<1	0.81
MW24	MW24-20170601	06/01/17	SoundEarth	1.1	4.8	35	41 42 43	1.0
	MW24-20170924	09/24/17	SoundEarth	<1	1.8	33		0.36
	MW24-20171216	12/16/17	SoundEarth	<1	1.3	30		0.38
	MW24-20180310	03/10/18	SoundEarth	<1	<1	25		0.36
	MW24-20180630	06/30/18	SoundEarth	1.5	1.9	41		2.1
	MW24-20180922	09/22/18	SoundEarth	<1	<1	35		0.37
	MW24-20181215	12/15/18	SoundEarth	<1	<1	43		0.51
	MW24-20190615	06/15/19	SoundEarth	<1	<1	84		1.0
	MW24-20191207	12/07/19	SoundEarth	<1	<1	83		0.94
MTCA Cleanup Leve	el			5 ⁽²⁾	5 ⁽²⁾	16 ⁽³⁾	160(3)	0.2 ⁽²⁾

					An	alytical Results (μ	g/L)	
Sample Location	Sample Identification	Sample Date	Sampled By	PCE ⁽¹⁾	TCE ⁽¹⁾	cis-1-2-DCE ⁽¹⁾	trans-1-2-DCE ⁽¹⁾	Vinyl Chloride ⁽¹⁾
	MW25-20150507			<1	68	5.2	<1	<0.2
	MW99-20150507 (DUP)	05/07/15	SoundEarth	<1	69	5.3	<1	<0.2
	MW25-20150805			3.0	75	7.9	<1	<0.2
	MW99-20150805 (DUP)	08/05/15	SoundEarth	2.9	73	7.8	<1	<0.2
	MW25-20151209			11	71	8.4	<1	<0.2
	MW99-20151209 (DUP)	12/09/15	SoundEarth	11	72	8.3	<1	<0.2
	MW25-20160308			24	50	12	<1	<0.2
	MW99-20160308(DUP)	03/08/16	SoundEarth	25	50	12	<1	<0.2
	MW25-20160713	07/13/16	SoundEarth	6.1	4.8	23	<1	0.70
	MW25-20161019			1.8	5.1	15	<1	0.96
	MW99-20161019 (DUP)	10/19/16	SoundEarth	1.7	5.0	16	<1	1.0
	MW25-20170125			1.0	3.6	44	<1	0.89
	MW99-20170125 (DUP)	01/25/17	SoundEarth	1.1	3.7	44	<1	0.92
	MW25-20170601			<1	1.2	15	<1	0.31
	MW99-20170601 (DUP)	06/01/17	SoundEarth	<1	1.3	15	<1	0.41
MW25	MW25-20170923			<1	<1	15	<1	0.40
	MW99-20170923 (DUP)	09/23/17	SoundEarth	<1	<1	15	<1	0.34
	MW25-20171216			<1	<1	23	<1	0.41
	MW99-20171216 (DUP)	12/16/17	SoundEarth	<1	<1	23	<1	0.40
	MW25-20180310			<1	<1	25	<1	0.32
	MW99-20180310 (DUP)	03/10/18	SoundEarth	<1	<1	25	<1	0.30
	MW25-20180630			<1	<1	31	<1	0.52
	MW99-20180630 (DUP)	06/30/18	SoundEarth	<1	<1	32	<1	0.49
	MW25-20180922			<1	<1	37	<1	0.46
	MW99-20180922 (DUP)	09/22/18	SoundEarth	<1	<1	36	<1	0.51
	MW25-20181215			<1	<1	40	<1	0.60
	MW99-20181215 (DUP)	12/15/18	SoundEarth	<1	<1	39	<1	0.57
	MW25-20190615			<1	<1	45	<1	0.54
	MW99-20190615 (DUP)	06/15/19	SoundEarth	<1	<1	43	<1	0.50
	MW25-20191207			<1	<1	40	<1	0.63
	MW99-20191207 (DUP)	12/07/19	SoundEarth	<1	<1	36	<1	0.58
	IW04-20150508	05/08/15	SoundEarth	<1	15	1.9	<1	<0.2
	IW04-20160309	03/09/16	SoundEarth	<1	2.5	11	<1	<0.2
	IW04-20160714	07/14/16	SoundEarth	<1	<1	<1	<1	<0.2
	IW04-20161021	10/21/16	SoundEarth	<1	<1	1.8	<1	<0.2
	IW04-20170126	01/26/17	SoundEarth	<1	1.1	4.8	<1	<0.2
	IW04-20170601	06/01/17	SoundEarth	<1	1.2	12	<1	0.21
IW04	IW04-20170923	09/23/17	SoundEarth	<1	<1	14	<1	0.22
	IW04-20171216	12/16/17	SoundEarth	<1	<1	19	<1	0.54
	IW04-20180310	03/10/18	SoundEarth	<1	<1	9.0	<1	0.65
	IW04-20180630	06/30/18	SoundEarth	<1	<1	5.3	<1	0.68
	IW04-20180922	09/22/18	SoundEarth	<1	<1	<1	<1	<0.2
	IW04-20181215	12/15/18	SoundEarth	<1	<1	1.9	<1	1.6
	IW04-20190615	06/15/19	SoundEarth	<1	<1	1.7	<1	1.0
	IW04-20191207	12/07/19	SoundEarth	<1	<1	1.4	<1	1.1
	IW06-20150507	05/07/15	SoundEarth	6.3	13	<1	<1	<0.2
	IW06-20180310	03/10/18	SoundEarth	<1	<1	1.6	<1	<0.2
IW06	IW06-20180630	06/30/18	SoundEarth	<1	<1	<1	<1	<0.2
50	IW06-20181215	12/15/18	SoundEarth	1.0	<1	<1	<1	<0.2
	IW06-20190615	06/15/19	SoundEarth	1.7	<1	<1	<1	<0.2
	IW06-20191207	12/07/19	SoundEarth	1.4	<1	<1	<1	<0.2
ITCA Cleanup Leve	el			5 ⁽²⁾	5 ⁽²⁾	16 ⁽³⁾	160 ⁽³⁾	0.2 ⁽²⁾

				Analytical Results (µg/L)					
Sample Location	Sample Identification	Sample Date	Sampled By	PCE ⁽¹⁾	TCE ⁽¹⁾	cis-1-2-DCE ⁽¹⁾	trans-1-2-DCE ⁽¹⁾	Vinyl Chloride ⁽¹	
<u> </u>	IW50-20150803	08/03/15	SoundEarth	4.1	8.1	44	<1	<0.2	
	IW50-20151208	12/08/15	SoundEarth	<1	<1	140	<1	1.8	
	IW50-20160309	03/09/16	SoundEarth	<1	<1	110	<1	1.9	
	IW50-20160715	07/15/16	SoundEarth	3.7	<1	38	<1	2.5	
	IW50-20161021	10/21/16	SoundEarth	3.7	<1	23	<1	1.0	
	IW50-20170126	01/26/17	SoundEarth	13	2.1	34	<1	0.74	
	IW50-20170602	06/02/17	SoundEarth	<1	<1	81	<1	0.95	
IW50	IW50-20170924	09/24/17	SoundEarth	<1	<1	26	<1	2.6	
	IW50-20171216	12/16/17	SoundEarth	<1	<1	15	<1	2.2	
	IW50-20180310	03/10/18	SoundEarth	<1	<1	8.0	<1	3.6	
	IW50-20180630	06/30/18	SoundEarth	<1	<1	4.5	<1	2.5	
	IW50-20180922	09/22/18	SoundEarth	<1	<1	5.1	<1	2.9	
	IW50-20181215	12/15/18	SoundEarth	1.6	<1	15	<1	4.5	
	IW50-20190615	06/15/19	SoundEarth	5.2	2.0	54	<1	7.1	
	IW50-20191207	12/07/19	SoundEarth	4.5	1.6	55	<1	7.4	
	IW61-20151208	12/08/15	SoundEarth	10	2.8	120	<1	0.86	
	IW61-20160309	03/09/16	SoundEarth	23	4.2	140	<1	1.7	
	IW61-20160714	07/14/16	SoundEarth	8.3	1.6	24	<1	1.6	
	IW61-20161021	10/21/16	SoundEarth	9.5	2.8	34	<1	0.96	
	IW61-20170126	01/26/17	SoundEarth	8.3	2.9	32	<1	0.96	
	IW61-20170602	06/02/17	SoundEarth	9.9	3.4	41	<1	1.3	
	IW61-20170923	09/23/17	SoundEarth	12	3.2	45	<1	1.2	
IW61	IW61-20171216	12/16/17	SoundEarth	15	3.2	65	<1	1.2	
	IW61-20180310	03/10/18	SoundEarth	15	2.7	71	<1	1.1	
	IW61-20180323*	03/23/18	SoundEarth	15	2.9	82	<1	1.3	
	IW61-20180630	06/30/18	SoundEarth	16	2.5	67	<1	1.7	
	IW61-20180922	09/22/18	SoundEarth	13	2.1	63	<1	1.8	
	IW61-20181215	12/15/18	SoundEarth	15	2.1	58	<1	2.0	
	IW61-20190615	06/15/19	SoundEarth	13	2.4	71	<1	2.9	
	IW61-20191207	12/07/19	SoundEarth	6.8	1.7	65	<1	4.0	
	IW91-20150506	05/06/15	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20150804	08/04/15	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20151208	12/08/15	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20160309	03/09/16	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20160714	07/14/16	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20161020	10/20/16	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20170126	01/26/17	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20170601	06/01/17	SoundEarth	<1	<1	<1	<1	<0.2	
IW91	IW91-20170923	09/23/17	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20171216	12/16/17	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20180310	03/10/18	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20180630	06/30/18	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20180922	09/22/18	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20181215	12/15/18	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20190615	06/15/19	SoundEarth	<1	<1	<1	<1	<0.2	
	IW91-20191207	12/07/19	SoundEarth	<1	<1	<1	<1	<0.2	
TCA Cleanup Leve				5 ⁽²⁾	5 ⁽²⁾	16 ⁽³⁾	160 ⁽³⁾	0.2 ⁽²⁾	

				Analytical Results (μg/L)							
Sample Location	Sample Identification	Sample Date	Sampled By	PCE ⁽¹⁾	TCE ⁽¹⁾	cis-1-2-DCE ⁽¹⁾	trans-1-2-DCE ⁽¹⁾	Vinyl Chloride ⁽¹			
				Avenue North	I	1	1				
	MW04-20110527	05/27/11	SoundEarth	<1	15	<1	<1	<0.2			
	MW04-20111012	10/12/11	SoundEarth	<1	15	<1	<1	<0.2			
	MW04-20130909	09/09/13	SoundEarth	<1	22	15	<1	<0.2			
	MW04-20150508	05/08/15	SoundEarth	1.4	13	4.2	<1	<0.2			
	MW04-20150806	08/06/15	SoundEarth	<1	6.9	1.0	<1	<0.2			
	MW04-20151209	12/09/15	SoundEarth	<1	9.2	<1	<1	<0.2			
	MW04-20160308	03/08/16	SoundEarth	<1	9.6	1.1	<1	<0.2			
	MW04-20160713	07/13/16	SoundEarth	1.0	8.9	1.3	<1	<0.2			
	MW04-20161019	10/19/16	SoundEarth	<1	5.5	<1	<1	<0.2			
MW04	MW04-20170124	01/24/17	SoundEarth	<1	9.4	<1	<1	<0.2			
	MW04-20170531	05/31/17	SoundEarth	<1	9.3	<1	<1	<0.2			
	MW04-20170921	09/21/17	SoundEarth	<1	5.7	3.2	<1	<0.2			
	MW04-20171214	12/14/17	SoundEarth	<1	8.0	2.4	<1	<0.2			
	MW04-20180309	03/09/18	SoundEarth	<1	8.6	<1	<1	<0.2			
	MW04-20180629	06/29/18	SoundEarth	<1	9.4	<1	<1	<0.2			
	MW04-20180920	09/20/18	SoundEarth	<1	9.4	<1	<1	<0.2			
	MW04-20181214	12/14/18	SoundEarth	<1	10	<1	<1	<0.2			
	MW04-20190614	06/14/19	SoundEarth	<1	11	<1	<1	<0.2			
	MW04-20191205	12/05/19	SoundEarth	<1	11	<1	<1	<0.2			
	MW05-20110527	05/27/11	SoundEarth	39	16	1.8	<1	<0.2			
MW05	MW05-20111012	10/12/11	SoundEarth	29	14	1.5	<1	<0.2			
	MW05-20130910	09/10/13	SoundEarth	21	13	1.9	<1	<0.2			
	DECOMMISSIONED 2015										
	MW07-20110531	05/31/11	SoundEarth	1.4	12	2.3	<1	<0.2			
	MW07-20111012	10/12/11	SoundEarth	2.2	11	1.8	<1	<0.2			
	MW07-20130909	09/09/13	SoundEarth	1.5	33	5.4	<1	<0.2			
	MW07-20150508	05/08/15	SoundEarth	2.5	15	4.8	<1	<0.2			
	MW07-20150805	08/05/15	SoundEarth	1.8	12	3.2	<1	<0.2			
	MW07-20151209	12/09/15	SoundEarth	2.3	14	4.1	<1	<0.2			
	MW07-20160308	03/08/16	SoundEarth	2.6	13	3.8	<1	<0.2			
	MW07-20160713	07/13/16	SoundEarth	3.0	18	5.7	<1	<0.2			
MW07	MW07-20161019	10/19/16	SoundEarth	3.5	13	2.3	<1	<0.2			
	MW07-20170124	01/24/17	SoundEarth	4.8	8.1	<1	<1	<0.2			
	MW07-20170531	05/31/17	SoundEarth	4.7	8.6	<1	<1	<0.2			
	MW07-20180308	03/08/18	SoundEarth	2.6	11	1.1	<1	<0.2			
	MW07-20180629	06/29/18	SoundEarth	3.3	7.3	<1	<1	<0.2			
	MW07-20180920	09/20/18	SoundEarth	2.8	6.0	<1	<1	<0.2			
	MW07-20181214	12/14/18	SoundEarth	3.3	6.7	<1	<1	<0.2			
	MW07-20190614	06/14/19	SoundEarth	3.9	5.9	<1	<1	<0.2			
	MW07-20191205	12/05/19	SoundEarth	3.3	5.9	<1	<1	<0.2			
MTCA Cleanup Leve	l			5 ⁽²⁾	5 ⁽²⁾	16 ⁽³⁾	160 ⁽³⁾	0.2 ⁽²⁾			

				Analytical Results (µg/L)					
Sample Location	Sample Identification	Sample Date	Sampled By	PCE ⁽¹⁾	TCE ⁽¹⁾	cis-1-2-DCE ⁽¹⁾	trans-1-2-DCE ⁽¹⁾	Vinyl Chloride ⁽¹⁾	
	MW13-20111020	10/20/11	SoundEarth	5.1	1.2	<1	<1	<0.2	
	MW13-20130910	09/10/13	SoundEarth	4.6 ^{cf}	1.4 1.7 ^{cf}	<1 <1 ^{cf}	<1 <1 ^{cf}	<0.2 <0.2 ^{cf}	
	MW13-20150511	05/11/15 08/05/15	SoundEarth SoundEarth	4.6 5.4	2.3	<1	<1	<0.2	
	MW13-20150805 MW13-20151215	12/15/15	SoundEarth	5.6	1.6	<1	<1	<0.2	
-	MW13-20160307	03/07/16	SoundEarth	6.6	1.6	<1	<1	<0.2	
	MW13-20160712	07/12/16	SoundEarth	6.5	1.6	<1	<1	<0.2	
	MW13-20161019	10/19/16	SoundEarth	10	2.2	<1	<1	<0.2	
MW13	MW13-20170124	01/24/17	SoundEarth	6.4	1.0	<1	<1	<0.2	
IVIVVI3	MW13-20170531	05/31/17	SoundEarth	10	1.5	<1	<1	<0.2	
	MW13-20170921	09/21/17	SoundEarth	8.4	1.8	<1	<1	<0.2	
	MW13-20171214	12/14/17	SoundEarth	5.2	1.4	<1	<1	<0.2	
	MW13-20180308	03/08/18	SoundEarth	8.0	1.4	<1	<1	<0.2	
	MW13-20180629	06/29/18	SoundEarth	4.4	<1	<1	<1	<0.2	
-	MW13-20180920	09/20/18	SoundEarth	6.5	1.3	<1	<1	<0.2	
-	MW13-20181214	12/14/18	SoundEarth	7.8	1.4	<1	<1	<0.2	
-	MW13-20190614	06/14/19	SoundEarth	7.0	1.1	<1	<1	<0.2	
	MW13-20191205	12/05/19	SoundEarth	7.7	1.1	<1	<1	<0.2	
	MW27-20151210	12/10/15	SoundEarth	<1	21	2.5	<1	<0.2	
	MW27-20160307	03/07/16	SoundEarth	<1 <1	21 18	3.8 4.5	<1 <1	<0.2 <0.2	
	MW27-20160713 MW27-20161019	07/13/16 10/19/16	SoundEarth SoundEarth	<1	23	4.8	<1	<0.2	
	MW27-20101019	01/24/17	SoundEarth	<1	33	13	<1	<0.2	
	MW27-20170531	05/31/17	SoundEarth	<1	18	5.5	<1	<0.2	
-	MW27-20170931	09/21/17	SoundEarth	<1	16	4.0	<1	<0.2	
MW27	MW27-20171214	12/14/17	SoundEarth	<1	81	4.4	<1	<0.2	
	MW27-20171229	12/29/17	SoundEarth	<1	60	3.5	<1	<0.2	
	MW27-20180308	03/08/18	SoundEarth	<1	13	<1	<1	<0.2	
	MW27-20180628	06/28/18	SoundEarth	<1	37	3.4	<1	<0.2	
	MW27-20180920	09/20/18	SoundEarth	<1	21	3.7	<1	<0.2	
	MW27-20181214	12/14/18	SoundEarth	<1	17	4.3	<1	<0.2	
	MW27-20190614	06/14/19	SoundEarth	<1	14	2.3	<1	<0.2	
	MW27-20191205	12/05/19	SoundEarth	<1	15	2.2	<1	<0.2	
MW31	MW31-20191009	10/09/19	SoundEarth	<1	1.8	<1	<1	<0.2	
	MW31-20191205	12/05/19	SoundEarth	<1	3.3	<1	<1	<0.2	
	NAME 20121211	42/44/42		Avenue North			T		
-	MW15-20121211	12/11/12	SoundEarth	<1	8.2	<1	<1	<0.2	
-	MW15-20121221	12/21/12	SoundEarth	<1 <1	7.2 8.6	<1 <1	<1 <1	<0.2 <0.2	
-	MW15-20130910 MW15-20150508	09/10/13 05/08/15	SoundEarth SoundEarth	<1	6.5	<1	<1	<0.2	
-	MW15-20150805	08/05/15	SoundEarth	<1	5.3	<1	<1	<0.2	
	MW15-20151209	12/09/15	SoundEarth	<1	6.8	<1	<1	<0.2	
	MW15-20160308	03/08/16	SoundEarth	<1	6.7	<1	<1	<0.2	
	MW15-20160713	07/13/16	SoundEarth	<1	5.8	<1	<1	<0.2	
	MW15-20161018	10/18/16	SoundEarth	<1	5.3	<1	<1	<0.2	
MW15	MW15-20170125	01/25/17	SoundEarth	<1	7.4	<1	<1	<0.2	
[MW15-20170531	05/31/17	SoundEarth	<1	7.9	<1	<1	<0.2	
[MW15-20170922	09/22/17	SoundEarth	<1	3.9	<1	<1	<0.2	
	MW15-20171215	12/15/17	SoundEarth	<1	3.0	<1	<1	<0.2	
	MW15-20180309	03/09/18	SoundEarth	<1	3.3	<1	<1	<0.2	
	MW15-20180629	06/29/18	SoundEarth	<1	5.1	<1	<1	<0.2	
	MW15-20180920	09/20/18	SoundEarth	<1	6.9	<1	<1	<0.2	
	MW15-20181214	12/14/18	SoundEarth	<1	7.0	<1	<1	<0.2	
	MW15-20190613	06/13/19	SoundEarth	<1	6.8	<1	<1	<0.2	
MTCA Classis I	MW15-20191205	12/05/19	SoundEarth	<1 5 ⁽²⁾	4.9 5 ⁽²⁾	<1 16 ⁽³⁾	<1 160 ⁽³⁾	<0.2 0.2 ⁽²⁾	
MTCA Cleanup Leve	ı			5` ′	j 5` ′	10,.,	100,,,	0.2` ′	

	Sample Identification	Sample Date		Analytical Results (µg/L)					
Sample Location			Sampled By	PCE ⁽¹⁾	TCE ⁽¹⁾	cis-1-2-DCE ⁽¹⁾	trans-1-2-DCE ⁽¹⁾	Vinyl Chloride ⁽¹⁾	
				omas Street	1	T	T	T	
	MW14-20111020	10/20/11	SoundEarth	<1	<1	<1	<1	<0.2	
MW14	MW14-20130911	09/11/13	SoundEarth	<1	<1	<1	<1	<0.2	
		10/11/10		DECOMMISSION	1		T .		
	MW16-20121211	12/11/12	SoundEarth	16	12	220	<1	0.69	
	MW16-20130911	09/11/13	SoundEarth	6.4	5.0	610	<1	1.9	
	MW16-20150508	05/08/15	SoundEarth	7.5	7.6	640	<1	2.8	
	MW16-20150805	08/05/15	SoundEarth	7.8	7.3	550	<1	2.4	
	MW16-20151210	12/10/15	SoundEarth	5.3	4.5	510	<1	3.2	
	MW16-20160308	03/08/16	SoundEarth	3.7	2.0	190	<1	1.3	
MW16	MW16-20160712	07/12/16	SoundEarth	<1	<1	160	<1	2.0	
	MW16-20161019	10/19/16	SoundEarth	5.0	5.4	170	<1	1.2	
	MW16-20170125	01/25/17	SoundEarth	6.4	6.8	220	<1	0.98	
	MW16-20170531	05/31/17	SoundEarth	5.7	4.4	100	<1	0.49	
	MW16-20170922	09/22/17	SoundEarth	5.4	5.2	78	<1	0.40	
	MW16-20171229	12/29/17	SoundEarth	7.2	6.4	150	<1	0.89	
	MW16-20180309	03/09/18	SoundEarth	7.3	5.5	80	<1	0.35	
	MW/20 2010021F	02/15/10	CoundForth	WELL DAMAGE	1	67	-1	0.47	
	MW28-20190315	03/15/19	SoundEarth	7.7	4.7	67	<1	0.47	
MW28	MW28-20190613	06/13/19	SoundEarth	9.0 8.7	5.7	80 72	<1	0.35	
	MW28-20191009	10/09/19	SoundEarth	8.4	6.1 4.9		<1	0.31	
	MW28-20191204	12/04/19	SoundEarth	w Avenue North	4.9	52	<1	0.27	
MW-C	MW-C-20130911	09/11/13	SoundEarth	<1	<1	<1	<1	<0.2	
IVIVV C	1V1VV C 20130311	03/11/13		rison Street	\ <u>1</u>	\1	\1	\0.2	
	MW01-20110525	05/25/11	SoundEarth	<1	<1	<1	<1	<0.2	
	MW01-20111011	10/11/11	SoundEarth	<1	<1	<1	<1	<0.2	
	MW01-20130910	09/10/13	SoundEarth	<1	1.4	<1	<1	<0.2	
	MW01-20150806	08/06/15	SoundEarth	<1	<1	<1	<1	<0.2	
	MW01-20160308	03/08/16	SoundEarth	<1	<1	<1	<1	<0.2	
	MW01-20160712	07/12/16	SoundEarth	<1	<1	<1	<1	<0.2	
	MW01-20161018	10/18/16	SoundEarth	<1	<1	<1	<1	<0.2	
NAVA (04	MW01-20170124	01/24/17	SoundEarth	<1	<1	<1	<1	<0.2	
MW01	MW01-20170531	05/31/17	SoundEarth	<1	<1	<1	<1	<0.2	
	MW01-20171214	12/14/17	SoundEarth	<1	<1	<1	<1	<0.2	
	MW01-20180309	03/09/18	SoundEarth	<1	<1	<1	<1	<0.2	
	MW01-20180628	06/28/18	SoundEarth	<1	1.1	<1	<1	<0.2	
	MW01-20180920	09/20/18	SoundEarth	<1	<1	<1	<1	<0.2	
	MW01-20181214	12/14/18	SoundEarth	<1	1.1	<1	<1	<0.2	
	MW01-20190614	06/14/19	SoundEarth	<1	<1	<1	<1	<0.2	
	MW01-20191205	12/05/19	SoundEarth	<1	<1	<1	<1	<0.2	
	MW02-20110525	05/25/11	SoundEarth	<1	5.2	<1	<1	<0.2	
MW02	MW02-20111011	10/11/11	SoundEarth	<1	3.0	<1	<1	<0.2	
IVIVVOZ	MW02-20130911	09/11/13	SoundEarth	<1	3.6	<1	<1	<0.2	
				DECOMMISSION	NED 2015				
	MW03-20110527	05/27/11	SoundEarth	<1	<1	<1	<1	<0.2	
MW03	MW03-20111011	10/11/11	SoundEarth	<1	<1	<1	<1	<0.2	
	MW03-20130911	09/11/13	SoundEarth	<1	<1	<1	<1	<0.2	
				DECOMMISSION		T	7-1	T ====	
MTCA Cleanup Leve	d			5 ⁽²⁾	5 ⁽²⁾	16 ⁽³⁾	160 ⁽³⁾	0.2 ⁽²⁾	

				Analytical Results (µg/L)					
Sample Location	Sample Identification	Sample Date	Sampled By	PCE ⁽¹⁾	TCE ⁽¹⁾	cis-1-2-DCE ⁽¹⁾	trans-1-2-DCE ⁽¹⁾	Vinyl Chloride ⁽¹⁾	
	MW26-20151210	12/10/15	SoundEarth	<1	11	<1	<1	<0.2	
	MW26-20160307	03/07/16	SoundEarth	<1	10	<1	<1	<0.2	
	MW26-20160712	07/12/16	SoundEarth	<1	12	<1	<1	<0.2	
	MW26-20161018	10/18/16	SoundEarth	<1	12	<1	<1	<0.2	
	MW26-20170124	01/24/17	SoundEarth	<1	13	<1	<1	<0.2	
	MW26-20170531	05/31/17	SoundEarth	<1	7.9	<1	<1	<0.2	
MW26	MW26-20170921	09/21/17	SoundEarth	<1	7.1	<1	<1	<0.2	
1010020	MW26-20171214	12/14/17	SoundEarth	<1	15	1.4	<1	<0.2	
	MW26-20180309	03/09/18	SoundEarth	<1	6.0	<1	<1	<0.2	
	MW26-20180628	06/28/18	SoundEarth	<1	18	<1	<1	<0.2	
	MW26-20180920	09/20/18	SoundEarth	<1	18	<1	<1	<0.2	
	MW26-20181214	12/14/18	SoundEarth	<1	20	<1	<1	<0.2	
	MW26-20190614	06/14/19	SoundEarth	<1	20	<1	<1	<0.2	
	MW26-20191205	12/05/19	SoundEarth	<1	13	<1	<1	<0.2	
MW32	MW32-20191009	10/09/19	SoundEarth	<1	<1	<1	<1	<0.2	
1010032	MW32-20191205	12/05/19	SoundEarth	<1	<1	<1	<1	<0.2	
MW33	MW33-20191009	10/09/19	SoundEarth	<1	<1	<1	<1	<0.2	
WWSS	MW33-20191205	12/05/19	SoundEarth	<1	<1	<1	<1	<0.2	
SMW06	SMW06-20130910	09/10/13	SoundEarth	<1	<1	<1	<1	<0.2	
			Westlal	ce Avenue North					
SMW09	SMW09-20130910	09/10/13	SoundEarth	<1	<1	<1	<1	<0.2	
			South-A	djoining Property					
MW29	MW29-20191008	10/08/19	SoundEarth	8.6	9.4	52	<1	0.64	
1010025	MW29-20191204	12/04/19	SoundEarth	16	12	26	<1	0.40	
MW30	MW30-20191008	10/08/19	SoundEarth	<1	3.6	24	<1	<0.2	
WWVSO	MW30-20191204	12/04/19	SoundEarth	<1	2.0	11	<1	<0.2	
ONNI-MW-4	ONNI-MW-4-20191208	12/08/19	SoundEarth	<1	<1	<1	<1	<0.2	
ONNI-MW-5	ONNI-MW-5-20191208	12/08/19	SoundEarth	<1	<1	<1	<1	0.28	
			North-A	djoining Property					
SLU-MW01	MW01-20120229	02/29/12 ⁽⁴⁾	SoundEarth	<1	<1	<1	<1	<0.2	
320 1111101				DECOMMISSION	IED 2013			,	
SLU-MW02	MW02-20120229	02/29/12 ⁽⁴⁾	SoundEarth	<1	<1	<1	<1	<0.2	
				DECOMMISSION -(2)		(3)	(3)	(2)	
MTCA Cleanup Leve	1			5 ⁽²⁾	5 ⁽²⁾	16 ⁽³⁾	160 ⁽³⁾	0.2 ⁽²⁾	

Red denotes concentrations exceeding the MTCA Method cleanup level for groundwater.

Laboratory Notes:

< = not detected at a concentration exceeding laboratory reporting limit

μg/L = micrograms per liter

CLARC = Cleanup Levels and Risk Calculations

DCE = dichloroethene

MTCA = Washington State Model Toxics Control Act

PCE = tetrachloroethene

SoundEarth = SoundEarth Strategies, Inc.

TCE = trichloroethene

WAC = Washington Administrative Code

⁽¹⁾ Analyzed by US Environmental Protection Agency Method 8260C, 8021B, or 8240.

⁽²⁾MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of WAC, revised November 2007.

⁽³⁾ MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Groundwater, Method B, Non-Carcinogen, Standard Formula CVOC = chlorinated volatile organic compound Value, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

 $^{^{(4)}}$ Sample data compiled from reports on file at the Washington State Department of Ecology.

^{cf}The sample was centrifuged prior to analysis.

 $^{^{\}mbox{\tiny ve}}\mbox{Estimated}$ concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

^{*}The sample was collected with a passive diffusion bag.

						Ana	alytical Results (με	z/L)		
							,	,		
Sample Location	Sample Identification	Sample Date	Sampled By	DRPH ⁽¹⁾	ORPH ⁽¹⁾	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾
		1	ı		undry Property			ı		ı
	MW06-20110531	05/31/11	SoundEarth	330 ^x	<250	<100	<1	<1	<1	<3
MW06	MW06-20111011	10/10/11	SoundEarth	83 ^x	<250	<100	<1	<1	<1	<3
	MW06-20130909	09/09/13	SoundEarth	150 ^x	<250	<100	<1	<1	<1	<3
		1	1		DECOMMISSIONE			1		1
	MW08-20111013	10/13/11	SoundEarth	<50	<250	<100	<1	<1	<1	<3
MW08	MW08-20130910	09/10/13	SoundEarth	120 ^X	<250	<100	<1	<1	<1	<3
			1	1	DECOMMISSIONE	D 2013			_	1
	MW09-20111013	10/13/11	SoundEarth	240 ^x	<250	1,400	<1	<1	2.7	10
MW09	MW09-20130910	09/10/13	SoundEarth	<50	<250	<100	<1	<1	<1	<3
					DECOMMISSIONE	D 2013				
	MW10-20111012	10/12/11	SoundEarth	68 ^x	<250	<100	<1	<1	<1	<3
MW10	MW10-20130909	09/09/13	SoundEarth	<50	<250	<100	<1	<1	<1	<3
					DECOMMISSIONE	D 2013				
	MW11-20111013	10/13/11	SoundEarth	110 ^x	<250	<100	<1	<1	<1	<3
MW11	MW11-20130909	09/09/13	SoundEarth	97 ^x	<250	<100	<1	<1	<1	<3
					DECOMMISSIONE	D 2013				
	MW12-20111017	10/17/11	SoundEarth	<50	<250	<100	<1	<1	<1	<3
MW12	MW12-20130909	09/09/13	SoundEarth	<50	<250	<100	<1	<1	<1	<3
					DECOMMISSIONE	D 2013				
	MW17-20150506	05/06/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW17-20150804	08/04/15	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
	MW17-20151207	12/07/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW17-20160308	03/08/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW17-20160714	07/14/16	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
	MW17-20161020	10/20/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW17-20170126	01/26/17	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
NAVA/17	MW17-20170601	06/01/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
MW17	MW17-20170923	09/23/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW17-20171216	12/16/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW17-20180310	03/10/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW17-20180630	06/30/18	SoundEarth	<60	<300	<100	<1	<1	<1	<3
	MW17-20180922	09/22/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW17-20181215	12/15/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW17-20190615	06/15/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW17-20191207	12/07/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
MTCA Cleanup Lev				500 ⁽⁴⁾	500 ⁽⁴⁾	1,000/800 ^{(4) (5)}	5 ⁽⁴⁾	1,000 ⁽⁴⁾	700 ⁽⁴⁾	1.000(4)

P\0731 Touchstone\0731-004 Troy Laundny\Technical\Tables\7019(2019 GWM Report\0731-004_GW_E-xisx

						An	alytical Results (με	g/L)		
							(2)	(2)	(3)	(2)
Sample Location	Sample Identification	Sample Date	Sampled By	DRPH ⁽¹⁾	ORPH ⁽¹⁾	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾
	MW18-20150506	05/06/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW18-20150803	08/03/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW18-20151208	12/08/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW18-20160308	03/08/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW18-20160714	07/14/16	SoundEarth	31,000 ^{x, ip}	5,100 ^{x, ip}	<100	<0.35	<1	<1	<3
	MW18-20161020	10/20/16	SoundEarth	61,000 ^{x, ip}	<8,400 ^{x, ip}	1,100 ^x	<0.35	<1	<1	<3
	MW18-20170126	01/26/17	SoundEarth	22,000 ^{x, ip}	3,500 ^{x, ip}	840	<0.35	<1	<1	<3
MW18	MW18-20170601	06/01/17	SoundEarth	77,000 ^{x, ip}	1,600 ^{x, ip}	470	<0.35	<1	<1	<3
	MW18-20170923	09/23/17	SoundEarth	34,000 ^x	<3,500	210	<0.35	<1	<1	<3
	MW18-20171216	12/16/17	SoundEarth	18,000 ^{x, ip}	<2,500 ^{ip}	380	<0.35	<1	<1	<3
	MW18-20180310	03/10/18	SoundEarth	6,000 ^x	<2,500	390	<1	1.3	<1	<3
	MW18-20180630	06/30/18	SoundEarth	12,000 ^x	1,600 ^x	230	<1	1.3	<1	12
	MW18-20180922	09/22/18	SoundEarth	1,400 ^{x, ip}	<2,500 ^{ip}	290	<1	<1	<1	6.9
	MW18-20181215	12/15/18	SoundEarth	1,600 ^x	490 ^x	<100	<1	<1	<1	<3
	MW18-20190615	06/15/19	SoundEarth	1,100 ^x	830 ^x	<100	<1	<1	<1	<3
	MW18-20191207	12/07/19	SoundEarth	830 ^x	480 ^x	<100	<1	<1	<1	<3
	MW19-20150507	05/07/15	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
	MW19-20150803	08/03/15	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
	MW19-20151207	12/07/15	SoundEarth	85 ^x	<250	<100	< 0.35	<1	<1	<3
	MW19-20160308	03/08/16	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
	MW19-20160713	07/13/16	SoundEarth	21,000 ^{x, ip}	4,100 ^{x, ip}	<100	< 0.35	<1	<1	<3
	MW19-20161021	10/21/16	SoundEarth	18,000 ^{x, ip}	2,300 ^{x, ip}	<100	<0.35	<1	<1	<3
	MW19-20170125	01/25/17	SoundEarth	29,000 ^x	4,400 ^x	210 ^x	< 0.35	<1	<1	<3
MW19	MW19-20170601	06/01/17	SoundEarth	31,000 ^{x, ip}	3,400 ^{x, ip}	180	< 0.35	<1	<1	<3
	MW19-20170923	09/23/17	SoundEarth	27,000 ^{x, ip}	<3,000 ^{ip}	150	< 0.35	<1	<1	<3
	MW19-20171216	12/16/17	SoundEarth	9,700 ^{x, ip}	<2,500 ^{ip}	470	<0.35	<1	<1	<3
	MW19-20180310	03/10/18	SoundEarth	1,600 [×]	<2,500	250	<1	<1	<1	<3
	MW19-20180630	06/30/18	SoundEarth	13,000 ^x	820 ^x	310	<1	<1	<1	9.6
	MW19-20180922	09/22/18	SoundEarth	3,300 ^{x, ip}	<2,500 ^{ip}	300	<1	<1	<1	5.0
	MW19-20190615	06/15/19	SoundEarth	650 ^x	430 ^x	<100	<1	<1	<1	<3
	MW19-20191207	12/07/19	SoundEarth	610 ^x	690 ^x	<100	<1	<1	<1	<3
MTCA Cleanup Lev	el			500 ⁽⁴⁾	500 ⁽⁴⁾	1,000/800 ^{(4) (5)}	5 ⁽⁴⁾	1,000 ⁽⁴⁾	700 ⁽⁴⁾	1,000 ⁽⁴⁾

P\0731 Touchstone\0731-004 Troy Laundry\Technical\Table\2019\02019 GWM Report\0731-004_GW_E-six

						An	alytical Results (με	g/L)		
Sample Location	Sample Identification	Sample Date	Sampled By	DRPH ⁽¹⁾	ORPH ⁽¹⁾	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾
	MW20-20150506	05/06/15	SoundEarth	120 ^x	<250	<100	<0.35	<1	<1	<3
	MW20-20150803	08/03/15	SoundEarth	140 ^x	<250	<100	<0.35	<1	<1	<3
	MW20-20151207	12/07/15	SoundEarth	84 ^x	<250	<100	<0.35	<1	<1	<3
	MW20-20160309	03/09/16	SoundEarth	130 ^x	<300	<100	<0.35	<1	<1	<3
	MW20-20160715	07/15/16	SoundEarth	150 ^x	<250	<100	<0.35	<1	<1	<3
	MW20-20161020	10/20/16	SoundEarth	110 ^x	<250	<100	<0.35	<1	<1	<3
	MW20-20170125	01/25/17	SoundEarth	64 ^x	<250	<100	<0.35	<1	<1	<3
MW20	MW20-20170601	06/01/17	SoundEarth	94 ^x	<250	<100	<0.35	<1	<1	<3
1411420	MW20-20170924	09/24/17	SoundEarth	130 ^x	<300	<100	<0.35	<1	<1	<3
	MW20-20171216	12/16/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW20-20180310	03/10/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW20-20180630	06/30/18	SoundEarth	120 ^x	<250	<100	<1	<1	<1	<3
	MW20-20180922	09/22/18	SoundEarth	100 ^x	<250	<100	<1	<1	<1	<3
	MW20-20181215	12/15/18	SoundEarth	72 ^x	<250	<100	<1	<1	<1	<3
	MW20-20190615	06/15/19	SoundEarth	140 ^x	<250	<100	<1	<1	<1	<3
	MW20-20191207	12/07/19	SoundEarth	80 ^x	<250	<100	<1	<1	<1	<3
	MW21-20150506	05/06/15	SoundEarth	160 ^x	<250	<100	<0.35	<1	<1	<3
	MW21-20150804	08/04/15	SoundEarth	150 ^x	<250	<100	<0.35	<1	<1	<3
	MW21-20151208	12/08/15	SoundEarth	110 ^x	<250	<100	< 0.35	<1	<1	<3
	MW21-20160309	03/09/16	SoundEarth	120 ^x	<250	<100	< 0.35	<1	<1	<3
	MW21-20160713	07/13/16	SoundEarth	12,000 ^x	2,700 ^x	<100	<0.35	<1	<1	<3
	MW21-20161020	10/20/16	SoundEarth	77,000 ^{x, ip}	8,600 ^{x, ip}	<100	< 0.35	<1	<1	<3
	MW21-20170126	01/26/17	SoundEarth	16,000 ^{x, ip}	10,000 ^{x, ip}	<100	<0.35	<1	<1	<3
MW21	MW21-20170601	06/01/17	SoundEarth	48,000 ^{x, ip}	18,000 ^{x, ip}	130	< 0.35	<1	<1	<3
IVIVVZI	MW21-20170923	09/23/17	SoundEarth	67,000 ^{x, ip}	7,700 ^{x, ip}	220	< 0.35	<1	<1	<3
	MW21-20171216	12/16/17	SoundEarth	27,000 ^x	<2,500	390	<0.35	<1	<1	<3
	MW21-20180310	03/10/18	SoundEarth	23,000 ^x	<2,500	130	<1	<1	<1	<3
	MW21-2018630	06/30/18	SoundEarth	65,000 ^{x, ip}	5,200 ^{x, ip}	670	<1	3.0	11	11
	MW21-20180922	09/22/18	SoundEarth	53,000 ^{x, ip}	8,600 ^{x, ip}	400	<1	<1	<1	3.4
	MW21-20181215	12/15/18	SoundEarth	47,000 ^x	2,100 [×]	180	<1	<1	<1	6.5
	MW21-20190615	06/15/19	SoundEarth	6,400 ^x	<2,500	<100	<1	<1	<1	3.8
	MW21-20191207	12/07/19	SoundEarth	21,000 [×]	2,100 [×]	300	<1	<1	<1	4.8
MTCA Cleanup Lev				500 ⁽⁴⁾	500 ⁽⁴⁾	1,000/800 ^{(4) (5)}	5 ⁽⁴⁾	1,000 ⁽⁴⁾	700 ⁽⁴⁾	1,000 ⁽⁴⁾

P\(0.731 Touchstone\(0.731-0.04 Troy \(\text{Laundry\\Technical\(\text{Table\(\text{Laundry\\Technical\(\text{Table\(\text{Laundry\Technical\(\text{Table\(\text{Laundry\Technical\(\text{Table\(\text{Laundry\Technical\(\text{Table\(\text{Laundry\Technical\(\text{Table\(\text{Laundry\Technical\(\text{Laundry\Technica

						An	alytical Results (με	g/L)		
Sample Location	Sample Identification	Sample Date	Sampled By	DRPH ⁽¹⁾	ORPH ⁽¹⁾	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾
	MW22-20150506	05/06/15	SoundEarth	97 ^x	<250	<100	<0.35	<1	<1	<3
	MW22-20150804	08/05/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW22-20151208	12/08/15	SoundEarth	69 ^x	<300	<100	<0.35	<1	<1	<3
	MW22-20160308	03/08/16	SoundEarth	110 ^x	<250	<100	<0.35	<1	<1	<3
	MW22-20160713	07/13/16	SoundEarth	8,000 ^{x, ip}	2,100 ^{x, ip}	140	<0.35	<1	<1	<3
	MW22-20161020	10/20/16	SoundEarth	29,000 ^{x, ip}	7,500 ^{x, ip}	130	<0.35	<1	<1	<3
	MW22-20170126	01/26/17	SoundEarth	13,000 ^{x, ip}	13,000 ^{x, ip}	730	< 0.35	<1	<1	<3
MW22	MW22-20170601	06/01/17	SoundEarth	59,000 ^x	8,700 ^x	660	<0.35	<1	<1	<3
IVIVVZZ	MW22-20170923	09/23/17	SoundEarth	85,000 ^{x,ip}	<2,500 ^{ip}	390	<0.35	<1	<1	<3
	MW22-20171216	12/16/17	SoundEarth	58,000 ^{x,ip}	<3,000 ^{ip}	1,800	< 0.35	<1	<1	<3
	MW22-20180310	03/10/18	SoundEarth	50,000 ^x	<2,500	530	<0.35	<1	<1	10
	MW22-20180630	06/30/18	SoundEarth	86,000 ^{x, ip}	4,500 ^{x, ip}	620	<1	<1	<1	34
	MW22-20180922	09/22/18	SoundEarth	73,000 ^{x, ip}	6,800 ^{x, ip}	320	<1	<1	<1	21
	MW22-20181215	12/15/18	SoundEarth	49,000 ^x	7,700 ^x	180	<1	<1	<1	14
	MW22-20190615	06/15/19	SoundEarth	24,000 ^x	4,600 ^x	170	<1	<1	<1	21
	MW22-20191207	12/07/19	SoundEarth	40,000 ^x	3,400 ^x	810	<1	<1	<1	74
	MW23-20150507	05/07/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW23-20150804	08/04/15	SoundEarth	520 ^x	<250	<100	< 0.35	<1	<1	<3
	MW23-20151208	12/08/15	SoundEarth	190 ^x	<300	<100	< 0.35	<1	<1	<3
	MW23-20160308	03/08/16	SoundEarth	410 ^x	<250	<100	<0.35	<1	<1	<3
	MW23-20160714	07/14/16	SoundEarth	26,000 ^{x, ip}	1,500 ^{x, ip}	190	< 0.35	<1	<1	<3
	MW23-20161020	10/20/16	SoundEarth	80,000 ^{x, ip}	<5,000 ^{ip}	350	< 0.35	<1	<1	<3
	MW23-20170126	01/26/17	SoundEarth	14,000 ^{x, ip}	5,600 ^{x, ip}	240	< 0.35	<1	<1	<3
MW23	MW23-20170601	06/01/17	SoundEarth	140,000 ^{x, ip}	4,000 ^{x, ip}	210	<0.35	<1	<1	<3
1010023	MW23-20170923	09/23/17	SoundEarth	140,000 ^x	<2,500	170	< 0.35	<1	<1	<3
	MW23-20171216	12/16/17	SoundEarth	110,000 ^{x, ip}	<2,500 ^{ip}	2,200	< 0.35	<1	<1	<3
	MW23-20180310	03/10/18	SoundEarth	11,000 ^x	<2,500	600	<1	<1	<1	4.6
	MW23-20180630	06/30/18	SoundEarth	30,000 [×]	1,000 ^x	540	<1	<1	<1	31
	MW23-20180922	09/22/18	SoundEarth	19,000 ^{x, ip}	<2,600 ^{ip}	150	<1	<1	<1	11
	MW23-20181215	12/15/18	SoundEarth	14,000 [×]	500 [×]	180	<1	<1	<1	7.1
	MW23-20190615	06/15/19	SoundEarth	3,400 ^x	<2,500	260	<1	<1	<1	7.1
	MW23-20191207	12/07/19	SoundEarth	1,400 ^x	790 ^x	<100	<1	<1	<1	<3
MTCA Cleanup Leve	el			500 ⁽⁴⁾	500 ⁽⁴⁾	1,000/800 ^{(4) (5)}	5 ⁽⁴⁾	1,000 ⁽⁴⁾	700 ⁽⁴⁾	1,000 ⁽⁴⁾

P\(0.731\) Touchstone\(0.731\) -0.04\ Troy\ Laundny\\Technical\(1\) Tables\(2.701\) 2019 GWM Repor\(1.731\) -0.04\ (W. F. xlix\)

						An	alytical Results (με	z/L)		
							(),			
Sample Location	Sample Identification	Sample Date	Sampled By	DRPH ⁽¹⁾	ORPH ⁽¹⁾	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾
	MW24-20150506	05/06/15	SoundEarth	93 ^x	<250	<100	< 0.35	<1	<1	<3
	MW24-20150804	08/04/15	SoundEarth	94 ^x	<250	<100	<0.35	<1	<1	<3
	MW24-20151208	12/08/15	SoundEarth	240 ^x	<250	<100	<0.35	<1	<1	<3
	MW24-20160309	03/09/16	SoundEarth	130 ^x	<250	<100	< 0.35	<1	<1	<3
	MW24-20160715		SoundEarth	13,000 ^{x, ip}	1,400 ^{x, ip}	<100	<0.35	<1	<1	<3
	MW98-20160715 (DUP)	07/15/16	SoundEarth	11,000 ^{x, ip}	1,900 ^{x, ip}	<100	<0.35	<1	<1	<3
	MW24-20161020	10/20/16	SoundEarth	3,200 ^{x,ip}	1,900 ^{x,ip}	<100	< 0.35	<1	<1	<3
	MW24-20170125	01/25/17	SoundEarth	12,000 ^x	2,000 ^x	<100	<0.35	<1	<1	<3
MW24	MW24-20170601	06/01/17	SoundEarth	510,000 ^{x, ip}	27,000 ^{x, ip}	<100	<0.35	<1	<1	<3
	MW24-20170601	09/24/17	SoundEarth	39,000 ^{x, ip}	<3,000 ^{ip}	250	<0.35	<1	<1	<3
	MW24-20171216	12/16/17	SoundEarth	10,000 ^x	<3,000	990	<0.35	<1	<1	<3
	MW24-20180310	03/10/18	SoundEarth	990 ^x	<2,500	460	<1	<1	<1	3.7
	MW24-20180630	06/30/18	SoundEarth	75,000 ^{x, ip}	7,700 ^{x,ip}	2,700	<1	3.6	6.5	110
	MW24-20180922	09/22/18	SoundEarth	7,800 ^{x, ip}	<2,500 ^{ip}	190	<1	<1	<1	7.5
	MW24-20181215	12/15/18	SoundEarth	20,000 ^x	2,700 ^x	<100	<1	<1	<1	<3
	MW24-20190615	06/15/19	SoundEarth	6,400 ^x	<2,500	<100	<1	<1	<1	<3
	MW24-20191207	12/07/19	SoundEarth	7,100 [×]	1,400 ^x	<100	<1	<1	<1	<3
	MW25-20150507	, ,		<50	<250	<100	<0.35	<1	<1	<3
	MW99-20150507 (DUP)	05/07/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW25-20150805			<50	<250	<100	<0.35	<1	<1	<3
	MW99-20150805 (DUP)	08/05/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW25-20151209	20,00,00		86 ^x	<250	<100	<0.35	<1	<1	<3
	MW99-20151209 (DUP)	12/09/15	SoundEarth	100 ^x	<300	<100	<0.35	<1	<1	<3
	MW25-20160308	==, ==, ==		190 ^x	<250	<100	<0.35	<1	<1	<3
	MW99-20160308(DUP)	03/08/16	SoundEarth	160 ^x	<250	<100	<0.35	<1	<1	<3
	MW25-20160713	07/13/16	SoundEarth	43,000 [×]	5,000 ^x	110	<0.35	<1	<1	<3
	MW25-20161019	0.720,20		26,000 [×]	1,500 [×]	160				
	MW99-20161019(DUP)	10/19/16	SoundEarth	29,000*	1,600*	160				
	MW25-20170125	22, 22, 20		8,200 [×]	340 ^x	120 ^x	<0.35	<1	<1	<3
	MW99-20170125(DUP)	01/25/17	SoundEarth	6,900 ^x	350 ^x	150 ^x	<0.35	<1	<1	<3
	MW25-20170601	,,		50,000 ^{x, ip}	<1,000 ^{ip}	370	<0.35	<1	<1	<3
	MW99-20170601(DUP)	06/01/17	SoundEarth	46,000 ^{x, ip}	<1,000 ^{ip}	410	<0.35	<1	<1	<3
MW25	MW25-20170923	, ,		12,000 ^{x, ip}	<2,500 ^{ip}	270	<0.35	<1	<1	<3
	MW99-20170923(DUP)	09/23/17	SoundEarth	13,000 ^{x, ip}	<2,500 ^{ip}	220	<0.35	<1	<1	<3
İ	MW25-20171216	20,20,2		4,000 ^{x, ip}	<3,000 ^{ip}	580	<0.35	<1	<1	<3
	MW99-20171216 (DUP)	12/16/17	SoundEarth	4,000 ^{x, ip}	<3,000 ^{ip}	700	<0.35	<1	<1	<3
ļ	MW25-20180310	,,		3,300 ^x	<2,500	490	<1	<1	<1	4.7
ŀ	MW99-20180310 (DUP)	03/10/18	SoundEarth	3,800 [×]	<2,500	510	<1	<1	<1	4.5
ŀ	MW25-20180630	55, 15, 15	204114241411	5.300 ^{x, ip}	630 ^{x, ip}	490	<1	<1	<1	31
ŀ	MW99-20180630 (DUP)	06/30/18	SoundEarth	5,500 ^{x, ip}	410 ^{x, ip}	340	<1	<1	<1	26
ŀ	MW25-20180922	,,		1,500 ^{x, ip}	<2,500 ^{ip}	300	<1	<1	<1	17
ŀ	MW99-20180922 (DUP)	09/22/18	SoundEarth	1,900 ^{x, ip}	<2,500 ^{ip}	160	<1	<1	<1	13
ŀ	MW25-20181215	,,		1,100 ^x	<250	<100	<1	<1	<1	<3
ľ	MW99-20181215 (DUP)	12/15/18	SoundEarth	960 ^x	<250	<100	<1	<1	<1	<3
İ	MW25-20190615			1,000 ^x	<2,500	<100	<1	<1	<1	<3
	MW99-20190615 (DUP)	06/15/19	SoundEarth	1,100 ^x	<2,500	<100	<1	<1	<1	<3
, [MW25-20191207			240 ^x	<250	<100	<1	<1	<1	<3
	MW99-20191207 (DUP)	12/07/19	SoundEarth	300 ^x	<250	<100	<1	<1	<1	<3
MTCA Cleanup Lev	<i>r</i> el			500 ⁽⁴⁾	500 ⁽⁴⁾	1,000/800(4)(5)	5 ⁽⁴⁾	1,000 ⁽⁴⁾	700 ⁽⁴⁾	1,000 ⁽⁴⁾

5 of 10

						An	alytical Results (με	g/L)		
Sample Location	Sample Identification	Sample Date	Sampled By	DRPH ⁽¹⁾	ORPH ⁽¹⁾	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽
	IW04-20150508	05/08/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
IW04	IW04-20170601	06/01/17	SoundEarth				<0.35	<1	<1	<3
IW06	IW06-20150507	05/07/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	IW50-20150803	08/03/15	SoundEarth	5,000 ^x	<250	<100	<0.35	<1	<1	<3
IW50	IW50-20160715	07/15/16	SoundEarth	39,000 [×]	1,900 ^x	640	<0.35	<1	<1	<3
	IW91-20150506	05/06/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	IW91-20150804	08/04/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	IW91-20151208	12/08/15	SoundEarth	<60	<300	<100	<0.35	<1	<1	<3
	IW91-20160309	03/09/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	IW91-20160714	07/14/16	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
	IW91-20161020	10/20/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	IW91-20170126	01/26/17	SoundEarth	200 ^x	<300	<100	<0.35	<1	<1	<3
IW91	IW91-20170601	06/01/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
10031	IW91-20170923	09/23/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	IW91-20171216	12/16/17	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
	IW91-20180310	03/10/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	IW91-20180630	06/30/18	SoundEarth	<60	<300	<100	<1	<1	<1	<3
	IW91-20180922	09/22/18	SoundEarth	<60	<300	<100	<1	<1	<1	<3
	IW91-20181215	12/15/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	IW91-20190615	06/15/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	IW91-20191207	12/07/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
				Boren	Avenue North					
	MW04-20110527	05/27/11	SoundEarth	<50	<250	<100	<1	1.3	<1	<3
	MW04-20111012	10/12/11	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW04-20130909	09/09/13	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW04-20150508	05/08/15	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
	MW04-20150806	08/06/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW04-20151209	12/09/15	SoundEarth	<60	<300	<100	<0.35	<1	<1	<3
	MW04-20160308	03/08/16	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
	MW04-20160713	07/13/16	SoundEarth	<56	<280	<100	<0.35	<1	<1	<3
	MW04-20161019	10/19/16	SoundEarth	<50	<250	<100				
MW04	MW04-20170124	01/24/17	SoundEarth	150 ^x	<250	<100	< 0.35	<1	<1	<3
	MW04-20170531	05/31/17	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
	MW04-20170921	09/21/17	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
	MW04-20171214	12/14/17	SoundEarth	<60	<300	<100	<0.35	<1	<1	<3
j	MW04-20180309	03/09/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
j	MW04-20180629	06/29/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
İ	MW04-20180920	09/20/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
İ	MW04-20181214	12/14/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
İ	MW04-20190614	06/14/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW04-20191205	12/05/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
ITCA Cleanup Lev		, , .		500 ⁽⁴⁾	500 ⁽⁴⁾	1,000/800 ^{(4) (5)}	5 ⁽⁴⁾	1.000 ⁽⁴⁾	700 ⁽⁴⁾	1,000 ⁽⁴⁾

P\(0.731 Touchstone\(0.731-0.04 Troy \(\text{Laundry\\Technical\(\text{Table\(\text{Laundry\\Technical\(\text{Table\(\text{Laundry\Technical\(\text{Table\(\text{Laundry\Technical\(\text{Table\(\text{Laundry\Technical\(\text{Table\(\text{Laundry\Technical\(\text{Table\(\text{Laundry\Technical\(\text{Laundry\Technica

						An	alytical Results (με	g/L)		
Sample Location	Sample Identification	Sample Date	Sampled By	DRPH ⁽¹⁾	ORPH ⁽¹⁾	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes
	MW05-20110527	05/27/11	SoundEarth	<50	<250	<100	<1	<1	<1	<3
MW05	MW05-20111012	10/12/11	SoundEarth	<50	<250	<100	<1	<1	<1	<3
1414403	MW05-20130910	09/10/13	SoundEarth	<50	<250	<100	<1	<1	<1	<3
					DECOMMISSIONE	2015				
	MW07-20110531	05/31/11	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW07-20111012	10/12/11	SoundEarth	240 ^x	<250	<100	<1	<1	<1	<3
	MW07-20130909	09/09/13	SoundEarth	120 ^x	<250	<100	<1	<1	<1	<3
	MW07-20150508	05/08/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW07-20150805	08/05/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW07-20151209	12/09/15	SoundEarth	<60	<300	<100	<0.35	<1	<1	<3
	MW07-20160308	03/08/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW07-20160713	07/13/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
MW07	MW07-20161019	10/19/16	SoundEarth	76 ^x	<250	<100				
	MW07-20170124	01/24/17	SoundEarth	120 ^x	<250	<100	<0.35	<1	<1	<3
	MW07-20170531	05/31/17	SoundEarth	54 ^x	<250	<100	<0.35	<1	<1	<3
	MW07-20180308	03/08/18	SoundEarth	<50	<250	<100	<1	<1	<1	<1
	MW07-20180629	06/29/18	SoundEarth	<60	<300	<100	<1	<1	<1	<3
	MW07-20180920	09/20/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW07-20181214	12/14/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW07-20190614	06/14/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW07-20191205	12/05/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW13-20111020	10/20/11	SoundEarth	150 ^x	<250	<100	<1	<1	<1	<3
	MW13-20130910	09/10/13	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW13-20150511	05/11/15	SoundEarth	<70	<350	<100	<0.35 ^{cf}	<1 ^{cf}	<1 ^{cf}	<3 ^{cf}
	MW13-20150805	08/05/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW13-20151215	12/15/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW13-20160307	03/07/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW13-20160712	07/12/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW13-20161019	10/19/16	SoundEarth	<50	<250	<100				
MW13	MW13-20170124	01/24/17	SoundEarth	<50	<250	<100	< 0.35	<1	<1	<3
1010013	MW13-20170531	05/31/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW13-20170921	09/21/17	SoundEarth	120 ^x	<300	<100	<0.35	<1	<1	<3
Ī	MW13-20171214	12/14/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
Ī	MW13-20180308	03/08/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
Ī	MW13-20180629	06/29/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
Ī	MW13-20180920	09/20/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
Ī	MW13-20181214	12/14/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
Ī	MW13-20190614	06/14/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
Ī	MW13-20191205	12/05/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
ATCA Cleanup Lev	el			500 ⁽⁴⁾	500 ⁽⁴⁾	1,000/800 ^{(4) (5)}	5 ⁽⁴⁾	1,000 ⁽⁴⁾	700 ⁽⁴⁾	1,000 ⁽⁴⁾

P\0731 Touchstone\0731-004 Troy Laundny\Technical\Tables\7019(2019 GWM Report\0731-004_GW_E-xisx

						Ana	alytical Results (με	g/L)		
				(1)	(4)	(2)	(2)	(2)	(5)	(2)
Sample Location	Sample Identification	Sample Date	Sampled By	DRPH ⁽¹⁾	ORPH ⁽¹⁾	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾
	MW27-20151210	12/10/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW27-20160307	03/07/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW27-20160713	07/13/16	SoundEarth	<52	<260	<100	<0.35	<1	<1	<3
	MW27-20161019	10/19/16	SoundEarth	<50	<250	<100				
	MW27-20170124	01/24/17	SoundEarth	<60	<300	<100	<0.35	<1	<1	<3
	MW27-20170531	05/31/17	SoundEarth	<60	<300	<100	<0.35	<1	<1	<3
MW27	MW27-20170921	09/21/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
IVIVV27	MW27-20171214	12/14/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW27-20180308	03/08/18	SoundEarth	540 ^x	<250	<100	<1	<1	<1	<3
	MW27-20180628	06/28/18	SoundEarth	<60	<300	<100	<1	<1	<1	<3
	MW27-20180920	09/20/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW27-20181214	12/14/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW27-20190614	06/14/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW27-20191205	12/05/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
				Terry A	venue North					
	MW15-20121211	12/11/12	SoundEarth			<100	<0.35	<1	<1	<3
	MW15-20130910	09/10/13	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW15-20150508	05/08/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW15-20150805	08/05/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW15-20151209	12/09/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW15-20160308	03/08/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW15-20160713	07/13/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW15-20161018	10/18/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW15-20170125	01/25/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
MW15	MW15-20170531	05/31/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW15-20170922	09/22/17	SoundEarth	<60	<300	<100	<0.35	<1	<1	<3
	MW15-20171215	12/15/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW15-20180309	03/09/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW15-20180629	06/29/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW15-20180920	09/20/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW15-20181214	12/14/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW15-20190613	06/13/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW15-20191205	12/05/19	SoundEarth	78 ^x	<250	<100	<1	<1	<1	<3
MTCA Cleanup Lev				500 ⁽⁴⁾	500 ⁽⁴⁾	1,000/800 ^{(4) (5)}	5 ⁽⁴⁾	1,000 ⁽⁴⁾	700 ⁽⁴⁾	1.000(4)

P\(0.731\) Touchstone\(0.731\) -0.04\ Troy\ Laundny\\Technical\(1\) Tables\(7.201\) 0.04\ (W. F. xlix\)

						An	alytical Results (με	g/L)		
				(4)		(2)	(2)	(5)	(2)	
Sample Location	Sample Identification	Sample Date	Sampled By	DRPH ⁽¹⁾	ORPH ⁽¹⁾	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾
		10/00/11		_	mas Street	100		1 .	Τ .	1 .
MW14	MW14-20111020 MW14-20130911	10/20/11 09/11/13	SoundEarth SoundEarth	160 ^x <50	<250 <250	<100 <100	<1 <1	<1 <1	<1 <1	<3 <3
	WW14-20130311	05/11/13	Journalaith	\30	DECOMMISSIO		\1	\ <u>1</u>	\1	\3
	MW16-20121211	12/11/12	SoundEarth	420 ^x	<250	640	<0.35	<1	<1	1.1
<u> </u>	MW16-20130911	09/11/13	SoundEarth	170 ^x	<250	110	<1	<1	<1	<3
<u> </u>	MW16-20150508	05/08/15	SoundEarth	150 ^x	<250	<100	<0.35	<1	<1	<3
F	MW16-20150805	08/05/15	SoundEarth	210 ^x	<250	<100	<0.35	<1	<1	<3
	MW16-20151210	12/10/15	SoundEarth	420 ^x	<250	110	<0.35	<1	<1	<3
F	MW16-20160308	03/08/16	SoundEarth	410 ^x	<250	140	<0.35	<1	<1	<3
	MW16-20160712	07/12/16	SoundEarth	510 ^x	<250	130	<0.35	<1	<1	<3
MW16	MW16-20161019	10/19/16	SoundEarth	310 ^x	<250	<100			-	
	MW16-20170125	01/25/17	SoundEarth	140 ^x	<250	<100	<0.35	<1	<1	<3
F	MW16-20170531	05/31/17	SoundEarth	740 ^x	<250	140	<0.35	<1	<1	<3
	MW16-20170922	09/22/17	SoundEarth	570	<250	130	<0.35	<1	<1	<3
	MW16-20171229	12/29/17	SoundEarth	160 ^x	<250	120	<0.35	<1	<1	<3
	MW16-20180309	03/09/18	SoundEarth	260 ^x	<250	120	<1	<1	<1	<3
					WELL DAMAGED	2018			•	
	MW28-20190613	06/13/19	SoundEarth	140 ^x	<250	160	<1	<1	<1	<3
MW28	MW28-20191205	12/05/19	SoundEarth	98 ^x	<250	150	<1	<1	<1	<3
				Fairview	Avenue North					
MW-C	MW-C-20130911	09/11/13	SoundEarth	<50	<250	<100	<1	<1	<1	<3
				Hari	ison Street					
	MW01-20110525	05/25/11	SoundEarth	<50	<250	<100	<1	<1	<1	<3
L	MW01-20111011	10/11/11	SoundEarth	<50	<250	<100	<1	<1	<1	<3
L	MW01-20130910	09/10/13	SoundEarth	<50	<250	<100	<1	<1	<1	<3
L	MW01-20150806	08/06/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
L	MW01-20160308	03/08/16	SoundEarth	<65	<330	<100	<0.35	<1	<1	<3
	MW01-20160712	07/12/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW01-20161018	10/18/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
MW01	MW01-20170124	01/24/17	SoundEarth	<25	<125	<100	<0.35	<1	<1	<3
1010001	MW01-20170531	05/31/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
L	MW01-20171214	12/14/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
L	MW01-20180309	03/09/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
L	MW01-20180628	06/28/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
L	MW01-20180920	09/20/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
L	MW01-20181214	12/14/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
L	MW01-20190614	06/14/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW01-20191205	12/05/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
L	MW02-20110525	05/25/11	SoundEarth	100 ^x	<250	<100	<1	<1	<1	<3
MW02	MW02-20111011	10/11/11	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW02-20130911	09/11/13	SoundEarth	<50	<250	<100	<1	<1	<1	<3
					DECOMMISSIONE		4-1			
TCA Cleanup Leve	el			500 ⁽⁴⁾	500 ⁽⁴⁾	1,000/800 ^{(4) (5)}	5 ⁽⁴⁾	1,000 ⁽⁴⁾	700 ⁽⁴⁾	1,000 ⁽⁴⁾

P\0731 Touchstone\0731-004 Troy Laundny\Technical\Tables\7019(2019 GWM Report\0731-004_GW_F.xlxx

						An	alytical Results (με	g/L)		
Complete	Completely of Control	Comple Date	Consideration	DRPH ⁽¹⁾	2221(1)	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	(3)	(3)
Sample Location	Sample Identification MW03-20110527	Sample Date	Sampled By SoundEarth	130 ^x	ORPH ⁽¹⁾ <250	<100	Senzene"	Toluene ' /	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾
⊢	MW03-20110527 MW03-20111011	05/27/11	SoundEarth	<50	<250 <250	<100				
MW03	MW03-20111011 MW03-20130911	10/11/11 09/11/13	SoundEarth	<50 <50	<250 <250	<100	<1 <1	<1 <1	<1	<3 <3
l	WW03-20130911	09/11/13	SoundEarth	<50	DECOMMISSIONE		<1	<1	<1	<3
+	MW26-20151210	12/10/15	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
l	MW26-20151210 MW26-20160307	03/07/16	SoundEarth	<50 <50	<250	<100	<0.35	<1	<1	<3
 	MW26-20160307	07/12/16	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
l	MW26-20160712 MW26-20161018	10/18/16	SoundEarth	59 ^x	<250	<100	<0.35	<1	<1	<3
 	MW26-20101018	01/24/17	SoundEarth	<60	<300	<100	<0.35	<1	<1	<3
	MW26-20170124 MW26-20170531	05/31/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
 	MW26-20170931	09/21/17	SoundEarth	130 ^x	<250	<100	<0.35	<1	<1	<3
MW26	MW26-20170321 MW26-20171214	12/14/17	SoundEarth	<50	<250	<100	<0.35	<1	<1	<3
	MW26-20171214 MW26-20180309	03/09/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW26-20180628	06/28/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
l F	MW26-20180028	09/20/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
	MW26-20180320	12/14/18	SoundEarth	<50	<250	<100	<1	<1	<1	<3
 	MW26-20190614	06/14/19	SoundEarth	<50	<250	<100	<1	<1	<1	<3
l F	MW26-20191205	12/05/19	SoundEarth	680 [×]	<250	<100	<1	<1	<1	<3
SMW06	SMW06-20130910	09/10/13	SoundEarth	130 ^x	<250	400	<1	<1	3.5	3.7
SIVIVOO	31111100 20130310	03/10/13	SouridEarth		e Avenue North	400	<u> </u>	\ <u>-</u>	3.3	3.7
SMW09	SMW09-20130910	09/10/13	SoundEarth	79 ^x	<250	<100	<1	<1	<1	<3
		,,-3			ljoining Property			· -	<u> </u>	<u></u>
	MW01-20120229	02/29/12 ⁽⁶⁾	SoundEarth	150	<250					
SLU-MW01		, -,			DECOMMISSIONE	D 2013		1	1	I
CILL MANAGO	MW02-20120229	02/29/12 ⁽⁶⁾	SoundEarth	<50	<250					
SLU-MW02					DECOMMISSIONE	D 2013			•	
MTCA Cleanup Leve	el			500 ⁽⁴⁾	500 ⁽⁴⁾	1,000/800 ⁽⁴⁾⁽⁵⁾	5 ⁽⁴⁾	1,000 ⁽⁴⁾	700 ⁽⁴⁾	1,000 ⁽⁴⁾

NOTES:

Red denotes concentrations exceeding the MTCA Method cleanup level for groundwater.

(1) Analyzed by Method NWTPH-Dx. The supply well samples collected in August 2010 were passed through a silica gel column prior to analysis to remove organic interference.

⁽²⁾Analyzed by EPA Method 418.1 or Method NWTPH-Gx.

Laboratory Notes:

-- = not analyzed, measured, or calculated

< = not detected at a concentration exceeding laboratory reporting limit

μg/L = micrograms per liter

DRPH = diesel-range petroleum hydrocarbons

EPA = US Environmental Protection Agency

GRPH = gasoline-range petroleum hydrocarbons

MTCA = Washington State Model Toxics Control Act NWTPH = Northwest Total Petroleum Hydrocarbon

ORPH = heavy oil-range petroleum hydrocarbons

SoundEarth = SoundEarth Strategies, Inc.

TPH = total petroleum hydrocarbons

WAC = Washington Administrative Code

10 of 10 P:\0731 Touchstone\0731-004 Troy Laundry\Technical\Tables\2019\2019 GWM Report\0731-004_GW_F.xlsx

⁽³⁾ Analyzed by EPA Method 8260C, 8021B or 8240.

 $^{^{(4)}}$ MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of WAC, revised November 2007.

 $^{^{(5)}}$ 1,000 $\mu g/L$ when benzene is not present and 800 $\mu g/L$ when benzene is present.

 $^{^{(6)}}$ Sample data compiled from reports on file at the Washington State Department of Ecology.

^dThe sample was centrifuged prior to analysis.

^{ip}Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

^{*}The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ATTACHMENT A LABORATORY ANALYTICAL REPORTS

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 19, 2019

Tom Cammarata, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Cammarata:

Included are the results from the testing of material submitted on March 15, 2019 from the SOU_0731-004-05_ 20190315, F&BI 903298 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher SOU0319R.DOC

FRIEDMAN & BRUYA, INC. ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 15, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0731-004-05_ 20190315, F&BI 903298 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>SoundEarth Strategies</u>

903298 -01 MW28-20190315

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	03/15/19	Client:	SoundEarth Strategies
Date Received:		Project:	SOU_0731-004-05_ 20190315
Date Extracted:	03/15/19	Lab ID:	903298-01
Date Analyzed:	03/15/19	Data File:	031544.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.47
Chloroethane	<1
1,1-Dichloroethene	1.5
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	67
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	4.7
Tetrachloroethene	7.7

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies Date Received: Not Applicable Project: SOU_0731-004-05_ 20190315 03/18/19 Lab ID: Date Extracted: 09-0569 mb Date Analyzed: 03/18/19 Data File: 031817.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	99	60	133

Concentration Compounds: ug/L (ppb) Vinyl chloride < 0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride < 5 trans-1,2-Dichloroethene <1 1.1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1 Trichloroethene <1 Tetrachloroethene <1

ENVIRONMENTAL CHEMISTS

Date of Report: 03/19/19 Date Received: 03/15/19

Project: SOU_0731-004-05_ 20190315, F&BI 903298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 903261-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	104	36-166
Chloroethane	ug/L (ppb)	50	<1	101	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	94	60-136
Methylene chloride	ug/L (ppb)	50	<5	97	67-132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	91	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	90	70-128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	92	71-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	99	69-133
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	94	60-146
Trichloroethene	ug/L (ppb)	50	<1	87	66-135
Tetrachloroethene	ug/L (ppb)	50	<1	91	10-226

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	104	105	50-154	1
Chloroethane	ug/L (ppb)	50	98	99	58-146	1
1,1-Dichloroethen e	ug/L (ppb)	50	98	101	67-136	3
Methylene chloride	ug/L (ppb)	50	98	100	39-148	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	102	105	68-128	3
1,1-Dichloroethane	ug/L (ppb)	50	104	106	79-121	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	102	105	80-123	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	106	108	73-132	2
1,1,1-Trichloroethane	ug/L (ppb)	50	110	113	83-130	3
Trichloroethene	ug/L (ppb)	50	97	97	80-120	0
Tetrachloroethene	ug/L (ppb)	50	104	105	76-121	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Send Report To Tom Cammarata cc: Logan Schumacher

Company SoundEarth Strategies

Address 2811 Fairview Ave E, Suite 2000

City, State, ZIP Seattle, WA 98102

SAMPLERS (sig. ature)

Fage #
TUR

TUR

PROJECT NAME/NO.

Property

O731-004-05

REMARKS

EIM Y

SAMPLERS (sig. ature)

Troy Laundry Property

O731-004-05

REMARKS

Page #						
rd (2 Weeks) 24 - Nov rges authorize	(3/18) d by:					
AMPLE DISPOSA	۸L					
⊗Dispose after 30 days						
Return samples Will call with instructions						
	ird (2 Weeks) 24 - Nov 5 rges authorize AMPLE DISPOSA e after 30 days samples					

Sample ID	Sample Location		Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	GRPH by NWTPH-Gx	BTEX by EPA 802/1B	DRPH/ORPH by NWTPH-Dx	cVOCs by EPA 8260C	Methane, Ethane, Ethene by RSK175	Sulfate, Ntrate, Alkalinity by SM1845/SM2320B	Total Fe and Mn by EPA 200.8	Fe 2+ by SM 3500	TOC By EPA 415.1	Notes	\$
MW28-20190315	MWZ8		A-C	3/15/19	1152	HZO	3				\prec					·		
		· · · · · · · · · · · · · · · · · · ·																······································
					- COT													
						3/12	719											,
							-4									<u> </u>	*:	
——————————————————————————————————————					•				-	=							······································	······································
,		· · ·	-			1						士						
						\											***************************************	***************************************
										- -		-						

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: (la TVI)	Clare Tochilin	SoundEarth	315/19	1235
Received by: Mhy how	Whan phan	FCBT	3/15/14	1235
Relinquished by:			~	
Received by:		Samples received	at 4	•C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 31, 2019

Tom Cammarata, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Cammarata:

Included is the amended report from the testing of material submitted on June 14, 2019 from the SOU_0731-004-05_ 20190614, F&BI 906291 project. The sample IDs were amended.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher SOU0626R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 26, 2019

Tom Cammarata, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Cammarata:

Included are the results from the testing of material submitted on June 14, 2019 from the SOU_0731-004-05_ 20190614, F&BI 906291 project. There are 22 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher

SOU0626R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 14, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0731-004-05_ 20190614, F&BI 906291 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
906291 -01	MW28-20190613
906291 -02	MW15-20190613
906291 -03	MW27-20190614
906291 -04	MW13-20190614
906291 -05	MW01-20190614
906291 -06	MW26-20190614
906291 -07	MW07-20190614
906291 -08	MW04-20190614

Samples MW28-20190613, MW26-20190614, MW07-20190614, and MW04-20190614 were sent to Fremont Analytical for nitrate, sulfate, alkalinity, dissolved gasses, and ferrous iron analysis. In addition, samples MW26-20190614 and MW07-20190614 were sent to Fremont for TOC analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19 Date Received: 06/14/19

Project: SOU_0731-004-05_ 20190614, F&BI 906291

Date Extracted: 06/17/19 Date Analyzed: 06/17/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW28-20190613	<1	<1	<1	<3	160	104
MW15-20190613 906291-02	<1	<1	<1	<3	<100	100
MW27-20190614 906291-03	<1	<1	<1	<3	<100	101
MW13-20190614 906291-04	<1	<1	<1	<3	<100	101
MW01-20190614 906291-05	<1	<1	<1	<3	<100	101
MW26-20190614 906291-06	<1	<1	<1	<3	<100	102
MW07-20190614 906291-07	<1	<1	<1	<3	<100	104
MW04-20190614 906291-08	<1	<1	<1	<3	<100	103
Method Blank _{09-1404 MB}	<1	<1	<1	<3	<100	113

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19 Date Received: 06/14/19

Project: SOU_0731-004-05_ 20190614, F&BI 906291

Date Extracted: 06/17/19 Date Analyzed: 06/17/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Cample ID	Diagal Damma	Motor Oil Dongo	Surrogate
Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$\frac{\text{Motor Oil Range}}{\text{(C}_{25}\text{-C}_{36})}$	(% Recovery) (Limit 41-152)
MW28-20190613 906291-01	140 x	<250	104
$\begin{array}{c} MW15\text{-}20190613 \\ _{906291\text{-}02} \end{array}$	<50	<250	93
$\begin{array}{c} MW27 \text{-} 20190614 \\ 906291 \text{-} 03 \end{array}$	<50	<250	93
MW13-20190614 906291-04	<50	<250	89
$\begin{array}{c} MW01\text{-}20190614 \\ 906291\text{-}05 \end{array}$	<50	<250	95
MW26-20190614 906291-06	<50	<250	101
$\begin{array}{c} MW07 \text{-} 20190614 \\ _{906291 \text{-} 07} \end{array}$	<50	<250	110
$\begin{array}{c} MW04\text{-}20190614 \\ _{906291\text{-}08} \end{array}$	<50	<250	102
Method Blank 09-1421 MB	<50	<250	98

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW28-20190613 Client: SoundEarth Strategies

Date Received: 06/14/19 Project: SOU_0731-004-05_ 20190614

 Date Extracted:
 06/18/19
 Lab ID:
 906291-01 x10

 Date Analyzed:
 06/18/19
 Data File:
 906291-01 x10.123

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Iron 1,100 Manganese 1,140

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW26-20190614 Client: SoundEarth Strategies

Date Received: 06/14/19 Project: SOU_0731-004-05_ 20190614

 Date Extracted:
 06/18/19
 Lab ID:
 906291-06

 Date Analyzed:
 06/19/19
 Data File:
 906291-06.056

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron290Manganese62.1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW07-20190614 Client: SoundEarth Strategies

Date Received: 06/14/19 Project: SOU_0731-004-05_ 20190614

 Date Extracted:
 06/18/19
 Lab ID:
 906291-07

 Date Analyzed:
 06/19/19
 Data File:
 906291-07.045

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron225Manganese9.26

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW04-20190614 Client: SoundEarth Strategies

Date Received: 06/14/19 Project: SOU_0731-004-05_ 20190614

 Date Extracted:
 06/18/19
 Lab ID:
 906291-08

 Date Analyzed:
 06/19/19
 Data File:
 906291-08.057

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron327Manganese15.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: SoundEarth Strategies

Date Received: NA Project: SOU_0731-004-05_20190614

Date Extracted: 06/18/19 Lab ID: I9-375 mb
Date Analyzed: 06/18/19 Data File: I9-375 mb.095
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW28-20190613	Client:	SoundEarth Strategies
Date Received:	06/14/19	Project:	SOU_0731-004-05_ 20190614
Date Extracted:	06/19/19	Lab ID:	906291-01
Date Analyzed:	06/19/19	Data File:	061929.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.35
Chloroethane	<1
1,1-Dichloroethene	1.5
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	80
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	5.7
Tetrachloroethene	9.0

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW15-20190613	Client:	SoundEarth Strategies
Date Received:	06/14/19	Project:	SOU_0731-004-05_ 20190614
Date Extracted:	06/19/19	Lab ID:	906291-02
Date Analyzed:	06/19/19	Data File:	061930.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	6.8
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW27-20190614	Client:	SoundEarth Strategies
Date Received:	06/14/19	Project:	SOU_0731-004-05_ 20190614
Date Extracted:	06/19/19	Lab ID:	906291-03
Date Analyzed:	06/19/19	Data File:	061931.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	2.3
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	14
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW13-20190614	Client:	SoundEarth Strategies
Date Received:	06/14/19	Project:	SOU_0731-004-05_ 20190614
Date Extracted:	06/19/19	Lab ID:	906291-04
Date Analyzed:	06/19/19	Data File:	061932.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	1.1
Tetrachloroethene	7.0

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW01-20190614	Client:	SoundEarth Strategies
Date Received:	06/14/19	Project:	SOU_0731-004-05_ 20190614
Date Extracted:	06/19/19	Lab ID:	906291-05
Date Analyzed:	06/19/19	Data File:	061933.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW26-20190614	Client:	SoundEarth Strategies
Date Received:	06/14/19	Project:	SOU_0731-004-05_ 20190614
Date Extracted:	06/19/19	Lab ID:	906291-06
Date Analyzed:	06/19/19	Data File:	061934.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	20
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW07-20190614	Client:	SoundEarth Strategies
Date Received:	06/14/19	Project:	SOU_0731-004-05_ 20190614
Date Extracted:	06/19/19	Lab ID:	906291-07
Date Analyzed:	06/19/19	Data File:	061935.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	5.9
Tetrachloroethene	3.9

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW04-20190614	Client:	SoundEarth Strategies
Date Received:	06/14/19	Project:	SOU_0731-004-05_ 20190614
Date Extracted:	06/19/19	Lab ID:	906291-08
Date Analyzed:	06/19/19	Data File:	061936.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	11
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0731-004-05_ 20190614
Date Extracted:	06/19/19	Lab ID:	09-1432 mb
Date Analyzed:	06/19/19	Data File:	061928.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19 Date Received: 06/14/19

Project: SOU_0731-004-05_ 20190614, F&BI 906291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 906291-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	160	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	108	65-118
Toluene	ug/L (ppb)	50	114	72 - 122
Ethylbenzene	ug/L (ppb)	50	112	73 - 126
Xylenes	ug/L (ppb)	150	110	74-118
Gasoline	ug/L (ppb)	1,000	82	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19 Date Received: 06/14/19

Project: SOU_0731-004-05_ 20190614, F&BI 906291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	88	100	63-142	13

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19 Date Received: 06/14/19

Project: SOU_0731-004-05_ 20190614, F&BI 906291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 906321-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	152	89	85	70-130	5
Manganese	ug/L (ppb)	20	30.6	101	95	70-130	6

			$\operatorname{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	99	85-115
Manganese	ug/L (ppb)	20	95	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19 Date Received: 06/14/19

Project: SOU_0731-004-05_ 20190614, F&BI 906291

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 906291-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	0.35	119	36-166
Chloroethane	ug/L (ppb)	50	<1	110	46-160
1,1-Dichloroethene	ug/L (ppb)	50	1.5	108	60-136
Methylene chloride	ug/L (ppb)	50	<5	109	67 - 132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	110	72 - 129
1,1-Dichloroethane	ug/L (ppb)	50	<1	105	70 - 128
cis-1,2-Dichloroethene	ug/L (ppb)	50	80	119 b	71 - 127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	96	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	110	60-146
Trichloroethene	ug/L (ppb)	50	5.7	98	66 - 135
Tetrachloroethene	ug/L (ppb)	50	9.0	101	10-226

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	113	107	50-154	5
Chloroethane	ug/L (ppb)	50	105	100	58-146	5
1,1-Dichloroethene	ug/L (ppb)	50	103	102	67-136	1
Methylene chloride	ug/L (ppb)	50	102	100	39-148	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	106	101	68-128	5
1,1-Dichloroethane	ug/L (ppb)	50	102	100	79 - 121	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	107	105	80-123	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	96	100	73 - 132	4
1,1,1-Trichloroethane	ug/L (ppb)	50	106	104	81-125	2
Trichloroethene	ug/L (ppb)	50	98	98	79-113	0
Tetrachloroethene	ug/L (ppb)	50	104	103	76 - 121	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- ${\rm d}$ The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 906291

Work Order Number: 1906196

June 24, 2019

Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 6/17/2019 for the analyses presented in the following report.

Dissolved Gases by RSK-175 Ferrous Iron by SM3500-Fe B Ion Chromatography by EPA Method 300.0 Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 06/24/2019

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 906291 **Work Order:** 1906196

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

1906196-001 MW28-20190613 06/13/2019 3:35 PM 06/17/2019 1:45 PM

Case Narrative

WO#: **1906196**Date: **6/24/2019**

CLIENT: Friedman & Bruya

Project: 906291

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 1906196

Date Reported: 6/24/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **1906196**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/13/2019 3:35:00 PM

Project: 906291

Lab ID: 1906196-001 **Matrix:** Water

Client Sample ID: MW28-20190613

Analyses	Result	RL	Qual	Units	DF	- Da	ate Analyzed
Dissolved Gases by RSK-175				Bato	ch ID:	R52203	Analyst: SG
Methane	0.0153	0.00863		mg/L	1	6/19	/2019 2:27:00 PM
Ethene	ND	0.0151		mg/L	1	6/19	/2019 2:27:00 PM
Ethane	ND	0.0162		mg/L	1	6/19	/2019 2:27:00 PM
Ion Chromatography by EPA Me	ethod 300.0			Bato	ch ID:	24947	Analyst: SS
Nitrate (as N)	ND	0.500	DH	mg/L	5	6/18	/2019 2:57:00 PM
Sulfate	2.10	1.50	D	mg/L	5	6/18	/2019 2:57:00 PM
NOTES:							
Diluted due to matrix.							
Total Alkalinity by SM 2320B				Bato	ch ID:	R52247	Analyst: WF
Alkalinity, Total (As CaCO3)	424	2.50		mg/L	1	6/21	/2019 1:25:44 PM
Ferrous Iron by SM3500-Fe B				Bato	ch ID:	R52165	Analyst: GM
Ferrous Iron	1.02	0.0500	Н	mg/L	1	6/19	/2019 5:00:00 PM

Date: 6/24/2019

1906196 Work Order:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Alkalinity by SM 2320B

Project:	906291				Tot	al Alkalinity by SM 2320B
Sample ID: MB-	R52247	SampType: MBLK		Units: mg/L	Prep Date: 6/21/2019	RunNo: 52247
Client ID: MBL	-KW	Batch ID: R52247			Analysis Date: 6/21/2019	SeqNo: 1031932
Analyte		Result	RL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Alkalinity, Total (As CaCO3)	ND	2.50			
Sample ID: LCS	-R52247	SampType: LCS		Units: mg/L	Prep Date: 6/21/2019	RunNo: 52247
Client ID: LCS	w	Batch ID: R52247			Analysis Date: 6/21/2019	SeqNo: 1031933
Analyte		Result	RL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qı
Alkalinity, Total (As CaCO3)	104	2.50	100.0	0	104	80	120				

Sample ID: 1906195-001BDUP	SampType: DUP			Units: mg/L		Prep Da	te: 6/21/20	19	RunNo: 522	247	
Client ID: BATCH	Batch ID: R52247					Analysis Da	te: 6/21/20	19	SeqNo: 103	1935	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alkalinity, Total (As CaCO3)	618	2.50						611.0	1.06	20	

Page 6 of 12 Original

Date: 6/24/2019

1906196 Work Order:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Project: 906291	•					Feri	rous Iron by SM3500	0-Fe B
Sample ID: MB-R52165	SampType: MBLK			Units: mg/L		Prep Date: 6/19/2019	RunNo: 52165	
Client ID: MBLKW	Batch ID: R52165					Analysis Date: 6/19/2019	SeqNo: 1029999	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron	ND	0.0500						
Sample ID: LCS-R52165	SampType: LCS			Units: mg/L		Prep Date: 6/19/2019	RunNo: 52165	
Client ID: LCSW	Batch ID: R52165					Analysis Date: 6/19/2019	SeqNo: 1030000	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron	0.406	0.0500	0.4000	0	101	80 120		
Sample ID: 1906196-001ADUP	SampType: DUP			Units: mg/L		Prep Date: 6/19/2019	RunNo: 52165	
Client ID: MW28-20190613	Batch ID: R52165					Analysis Date: 6/19/2019	SeqNo: 1030007	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron	0.922	0.0500				1.023	10.4 20	Н
Sample ID: 1906196-001AMS	SampType: MS			Units: mg/L		Prep Date: 6/19/2019	RunNo: 52165	
Client ID: MW28-20190613	Batch ID: R52165					Analysis Date: 6/19/2019	SeqNo: 1030008	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron NOTES: S - Outlying spike recovery(ies) of	1.29	0.0500	0.4000	1.023	66.9	80 120		SH
Sample ID: 1906196-001AMSD	SampType: MSD	ysis was per	nonneu with s	Units: mg/L	ing a puss	Prep Date: 6/19/2019	RunNo: 52165	
Client ID: MW28-20190613	Batch ID: R52165			Offits. IIIg/L		Analysis Date: 6/19/2019	SeqNo: 1030009	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
, many to	rtoouit	112	Of it value	O. I. I.O. Vai	701 NEO	2011211111 Tilgilanini Til Dittol Val	7010 TO DEIIIII	Suui

Ferrous Iron NOTES:

0.0500

0.4000

1.29

Page 7 of 12 Original

1.023

80

120

1.291

0.182

20

SH

67.5

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Work Order: 1906196

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 906291							ion Chromatogr	apny by EPA Method	a 300.
Sample ID: MB-24947	SampType: MBLK			Units: mg/L		Prep Da	ite: 6/17/2019	RunNo: 52162	
Client ID: MBLKW	Batch ID: 24947					Analysis Da	ite: 6/17/2019	SeqNo: 1029908	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Nitrate (as N)	ND	0.100							
Sulfate	ND	0.300							
Sample ID: LCS1-24947	SampType: LCS			Units: mg/L		Prep Da	ate: 6/17/2019	RunNo: 52162	
Client ID: LCSW	Batch ID: 24947					Analysis Da	ite: 6/17/2019	SeqNo: 1029909	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Nitrate (as N)	0.739	0.100	0.7500	0	98.5	90	110		
Sulfate	3.65	0.300	3.750	0	97.4	90	110		
Sample ID: LCS2-24947	SampType: LCS			Units: mg/L		Prep Da	ite: 6/17/2019	RunNo: 52162	
Client ID: LCSW	Batch ID: 24947					Analysis Da	ite: 6/18/2019	SeqNo: 1029925	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Nitrate (as N)	0.725	0.100	0.7500	0	96.7	90	110		
Sulfate	3.57	0.300	3.750	0	95.2	90	110		
Sample ID: LCS3-24947	SampType: LCS			Units: mg/L		Prep Da	ite: 6/17/2019	RunNo: 52162	
Client ID: LCSW	Batch ID: 24947					Analysis Da	ite: 6/18/2019	SeqNo: 1029926	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Nitrate (as N)	0.725	0.100	0.7500	0	96.7	90	110		
Sulfate	3.55	0.300	3.750	0	94.6	90	110		
Sample ID: LCS4-24947	SampType: LCS			Units: mg/L		Prep Da	nte: 6/17/2019	RunNo: 52162	
Client ID: LCSW	Batch ID: 24947					Analysis Da	ite: 6/18/2019	SeqNo: 1029927	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Nitrate (as N)	0.732	0.100	0.7500	0	97.6	90	110		

Original Page 8 of 12

Work Order: 1906196

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 906291							Ion Ch	romatogra	ohy by EP	A Method	300.0
Sample ID: LCS4-24947	SampType: LCS			Units: mg/L		Prep Dat	e: 6/17/2 0	19	RunNo: 52	162	
Client ID: LCSW	Batch ID: 24947					Analysis Dat	e: 6/18/20	19	SeqNo: 102	29927	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfate	3.73	0.300	3.750	0	99.4	90	110				
Sample ID: 1906195-001BDUP	SampType: DUP			Units: mg/L		Prep Dat	e: 6/17/2 0	19	RunNo: 52	162	
Client ID: BATCH	Batch ID: 24947					Analysis Dat	e: 6/18/2 0	19	SeqNo: 102	29933	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	ND	0.100						0		20	Н
Sulfate	0.749	0.300						0.7590	1.33	20	
Sample ID: 1906195-001BMS	SampType: MS			Units: mg/L		Prep Dat	e: 6/17/2 0	19	RunNo: 52	162	
Client ID: BATCH	Batch ID: 24947					Analysis Dat	e: 6/18/20	19	SeqNo: 102	29934	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	0.787	0.100	0.7500	0.09000	92.9	80	120				Н
Sulfate	4.20	0.300	3.750	0.7590	91.8	80	120				
Sample ID: 1906195-001BMSD	SampType: MSD			Units: mg/L		Prep Dat	e: 6/17/20	19	RunNo: 52 ′	162	
Client ID: BATCH	Batch ID: 24947					Analysis Dat	e: 6/18/2 0	19	SeqNo: 102	29935	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	0.784	0.100	0.7500	0.09000	92.5	80	120	0.7870	0.382	20	Н
Sulfate	4.18	0.300	3.750	0.7590	91.3	80	120	4.203	0.525	20	

Original Page 9 of 12

Date: 6/24/2019

Work Order: 1906196

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

906291

Dissolved Gases by RSK-175

Sample ID: LCS-R52203	SampType: LCS		Units: mg/L		Prep Da	te: 6/19/2019	RunNo: 52203	
Client ID: LCSW	Batch ID: R52203				Analysis Da	te: 6/19/2019	SeqNo: 1030678	
Analyte	Result R	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Methane	1,020 0.0086	3 1,000	0	102	70	130		
Ethene	976 0.015	1,000	0	97.6	70	130		
Ethane	973 0.016	1,000	0	97.3	70	130		
Sample ID: MB-R52203	SampType: MBLK		Units: mg/L		Prep Da	te: 6/19/2019	RunNo: 52203	
Client ID: MBLKW	Batch ID: R52203				Analysis Da	te: 6/19/2019	SeqNo: 1030679	
Analyte	Result R	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Methane	ND 0.0086	3						
Ethene	ND 0.015	1						
Ethane	ND 0.016	2						

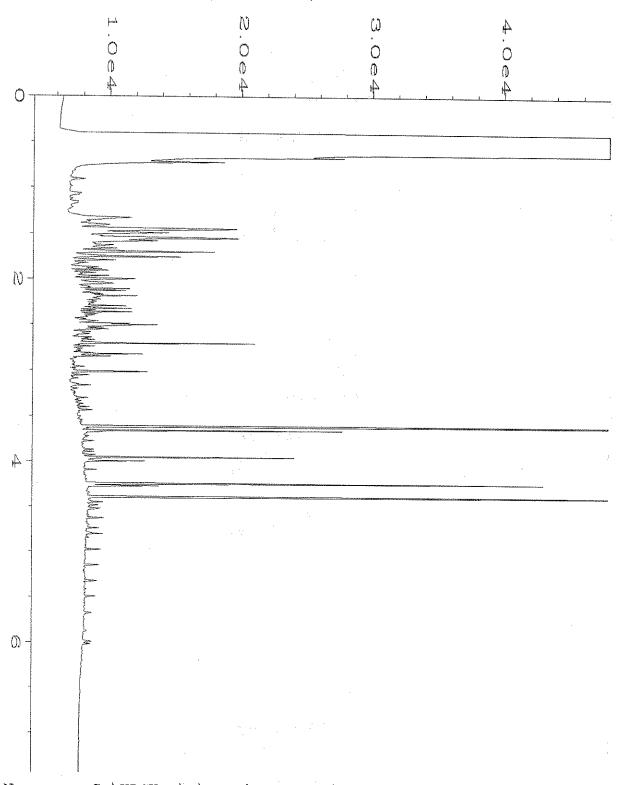
Sample ID: 1906152-001AREP	SampType: REP			Units: mg/L		Prep Da	te: 6/19/20	119	RunNo: 522	203	
Client ID: BATCH	Batch ID: R52203					Analysis Da	te: 6/19/20	19	SeqNo: 103	80653	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane	4.81	0.173						4.601	4.43	30	DE
Ethene	ND	0.303						0		30	D
Ethane	ND	0.324						0		30	D

NOTES:

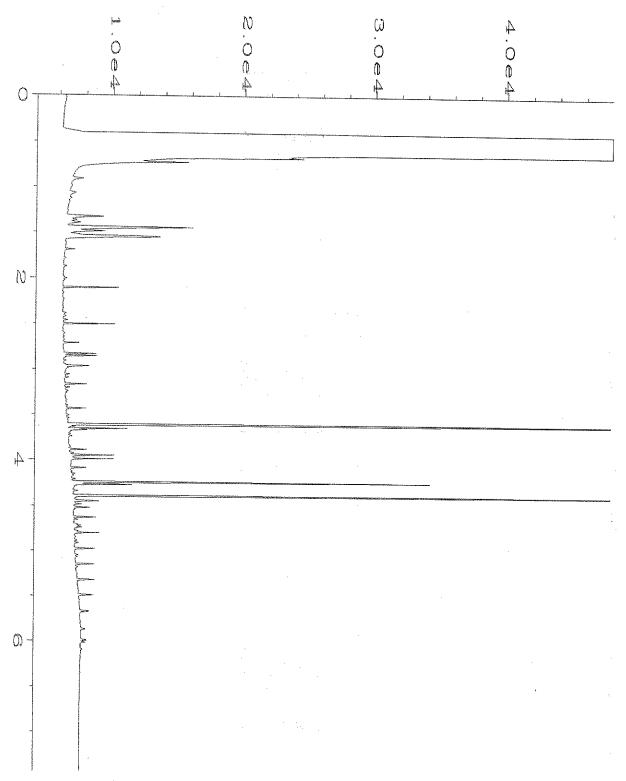
Original Page 10 of 12

E - Estimated value. The amount exceeds the linear working range of the instrument.

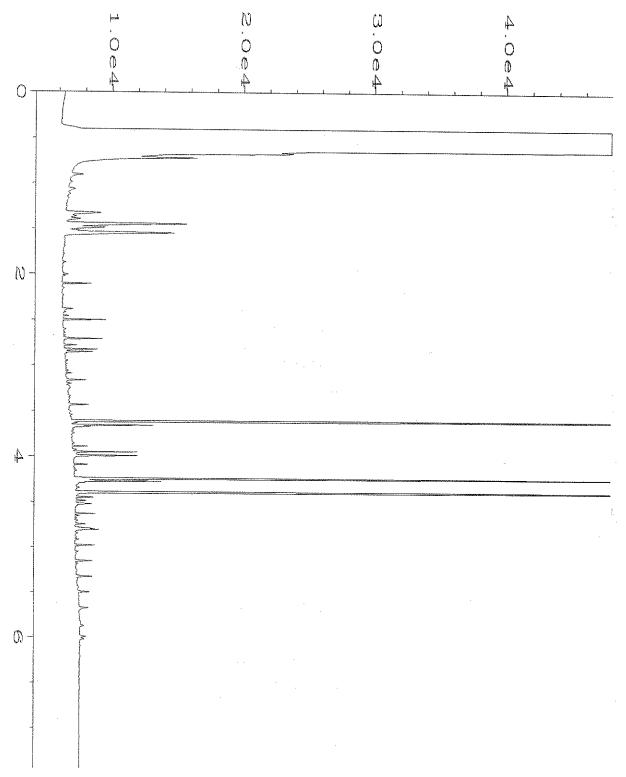
Sample Log-In Check List

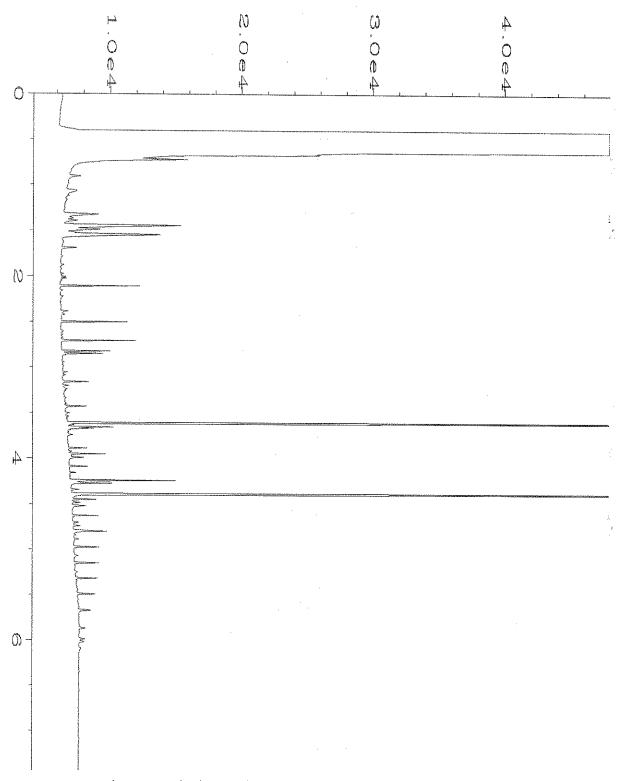

С	lient Name:	FB		Work O	rder Num	nber: 1906196		
Lo	ogged by:	Clare Griggs		Date Re	eceived:	6/17/2019	1:45:00 PM	
Cha	in of Custo	ody						
		ustody complete?		Yes	✓	No 🗌	Not Present	
2.	How was the	sample delivered?		FedE	<u> </u>			
Log	ı İn							
_	Coolers are p	resent?		Yes	✓	No 🗌	NA \square	
Э.	, , , , , , , , , , , , , , , , , , ,				_		· · · · —	
4.	Shipping cont	ainer/cooler in good condition	?	Yes	✓	No \square		
5.		s present on shipping contain ments for Custody Seals not i		Yes		No 🗹	Not Required	
6.	Was an atten	npt made to cool the samples?	?	Yes	✓	No 🗌	NA 🗆	
7.	Were all item	s received at a temperature of	>0°C to 10.0°C*	Yes	✓	No 🗆	NA 🗆	
8.	Sample(s) in	proper container(s)?		Yes	✓	No 🗆		
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No 🗆		
10.	Are samples	properly preserved?		Yes	✓	No \square		
11.	Was preserva	ative added to bottles?		Yes		No 🗸	NA 🗌	
12.	Is there head	space in the VOA vials?		Yes		No 🗸	NA 🗌	
13.	Did all sample	es containers arrive in good co	ondition(unbroken)?	Yes	✓	No 🗌		
14.	Does paperw	ork match bottle labels?		Yes	✓	No 🗌		
15.	Are matrices	correctly identified on Chain o	f Custody?	Yes	✓	No 🗌		
16.	Is it clear wha	at analyses were requested?		Yes	✓	No 🗌		
17.	Were all hold	ing times able to be met?		Yes		No 🗸		
Sne	cial Handli	ing (if applicable)						
		otified of all discrepancies with	this order?	Yes		No 🗆	NA 🗹	
10.								
	Person I By Who		Dat Via		D	hone Fax [In Person	
	Regardi		Via		Ш [] Г	none 🗌 rax [
		structions:						
19	Additional ren	P .						
	Information							
itelli	<u> </u>	Item #	Temp °C					
	Cooler		9.6					

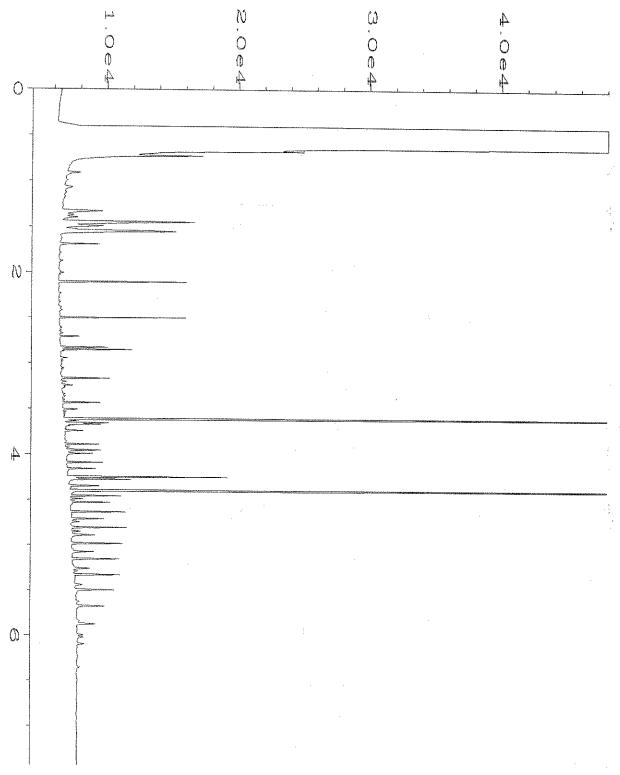
8.7

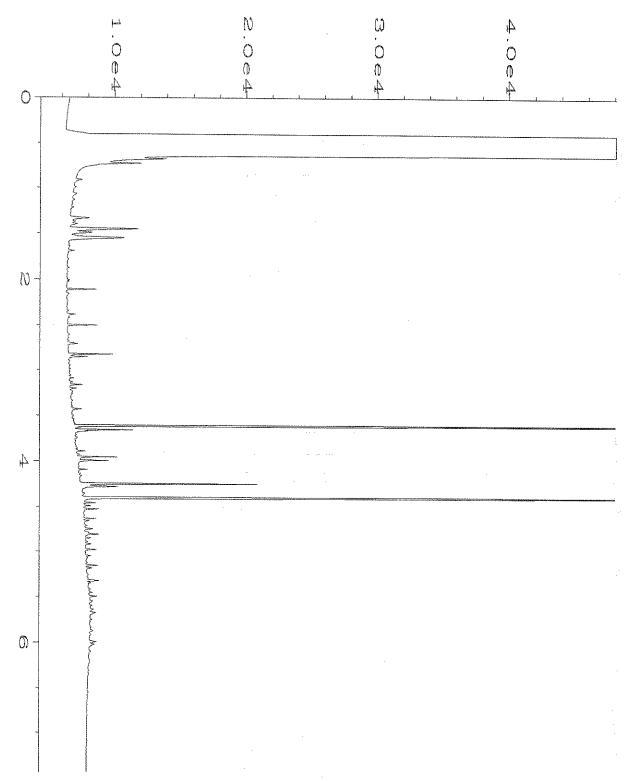

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C


SUBCONTRACT SAMPLE CHAIN OF CUSTODY 40019 1900196 SUBCONTRACTER Send Report To Michael Erdahl TURNAROUND TIME PROJECT NAME/NO. PO# ☐ Standard (2 Weeks) Friedman and Bruva. Inc. Company □ RUSH 906291 B.297 Rush charges authorized by: 3012 16th Ave W Address REMARKS SAMPLE DISPOSAL City, State, ZIP_Seattle, WA 98119 ☐ Dispose after 30 days Please Email Results ☐ Return samples Phone # (206) 285-8282 Fax # (206) 283-5044 ☐ Will call with instructions ANALYSES REQUESTED Dioxins/Furans Mother, Ether; Ferons Iron Lab # of EPH VPH Date Time Sample ID Matrix Notes ID Sampled Sampled jars 1535 X 6/13/19 H20 MW28-20190613 Friedman & Bruya, Inc. SIGNATURE PRINT NAME COMPANY DATE TIME Relinquished by: 3012 16th Avenue West Michael Erdahl Friedman & Bruya /17/19 Received by: Seattle, WA 98119-2029 Relinquished by: Ph. (206) 285-8282 Fax (206) 283-5044 Received by:

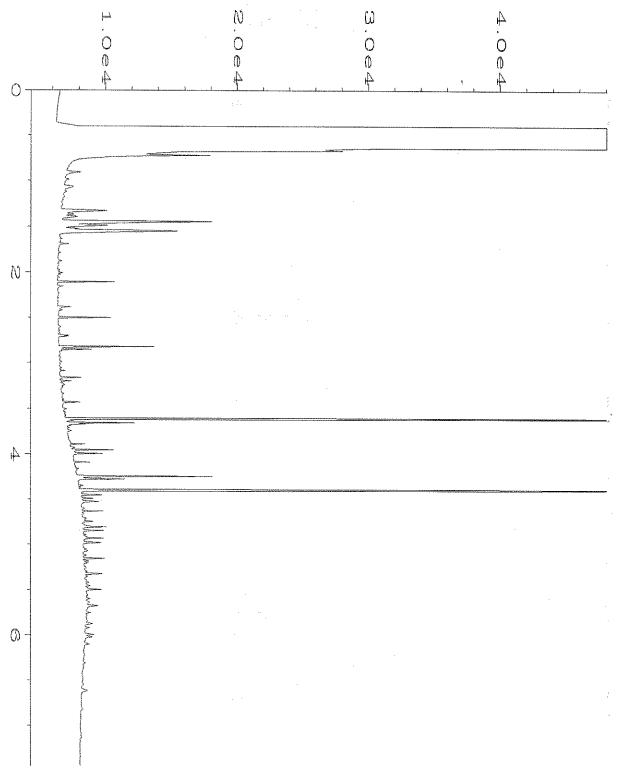

```
: C:\HPCHEM\1\DATA\06-17-19\027F0401.D
Data File Name
Operator
                  : TL
                                                    Page Number
Instrument
                  : GC1
                                                    Vial Number
                                                                      : 27
Sample Name
                  : 906291-01
                                                    Injection Number : 1
Sequence Line : 4
Run Time Bar Code:
                                                   Instrument Method: DX.MTH
Acquired on
                  : 17 Jun 19
                                01:58 PM
Report Created on: 18 Jun 19
                                07:04 AM
                                                   Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\1\DATA\06-17-19\028F0401.D
Operator
                  : TL
                                                  Page Number
                                                                    : 1
Instrument
                                                  Vial Number
                  : GC1
                                                                    : 28
Sample Name
                  : 906291-02
                                                  Injection Number: 1
Sequence Line: 4
Run Time Bar Code:
Acquired on
                 : 17 Jun 19
                                                  Instrument Method: DX.MTH
                               02:10 PM
Report Created on: 18 Jun 19
                               07:04 AM
                                                  Analysis Method : DEFAULT.MTH
```

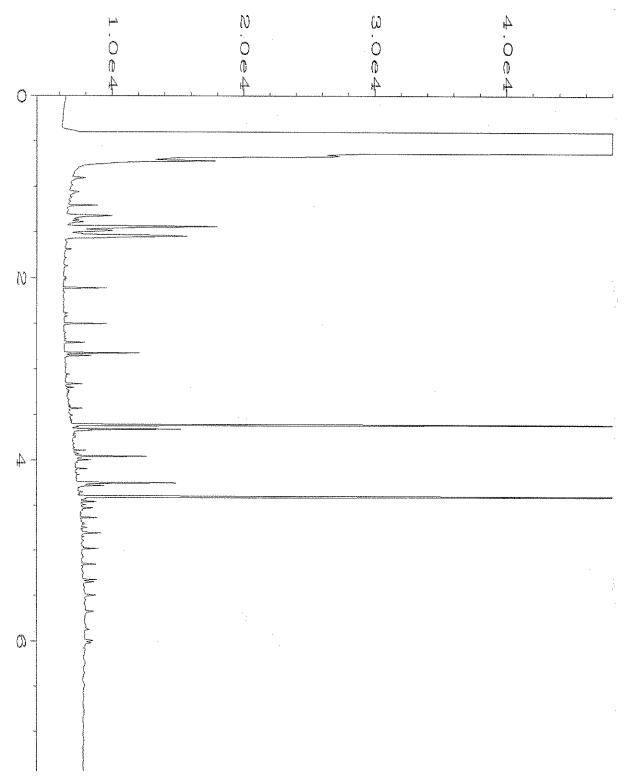


```
: C:\HPCHEM\1\DATA\06-17-19\029F0401.D
Data File Name
Operator
                                                  Page Number
Instrument
                  : GC1
                                                  Vial Number
                                                                    : 29
Sample Name
                  : 906291-03
                                                  Injection Number: 1
Sequence Line: 4
Run Time Bar Code:
Acquired on
                 : 17 Jun 19
                              02:21 PM
                                                  Instrument Method: DX.MTH
Report Created on: 18 Jun 19
                               07:04 AM
                                                  Analysis Method : DEFAULT.MTH
```



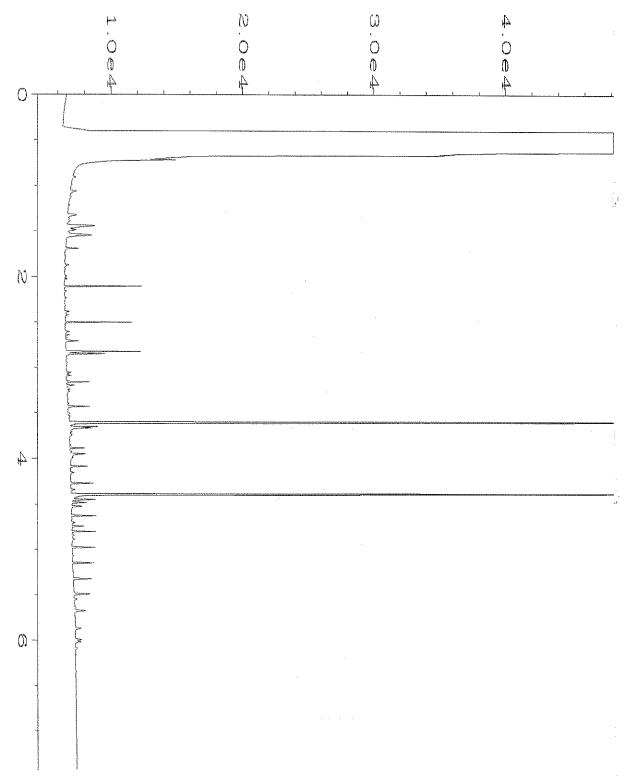
```
: C:\HPCHEM\1\DATA\06-17-19\030F0401.D
Data File Name
Operator
                : TL
                                              Page Number
                                              Vial Number
Instrument
                : GC1
                                                               : 30
Sample Name
                : 906291-04
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 4
Acquired on
                : 17 Jun 19 02:33 PM
                                              Instrument Method: DX.MTH
Report Created on: 18 Jun 19 07:05 AM
                                              Analysis Method : DEFAULT.MTH
```

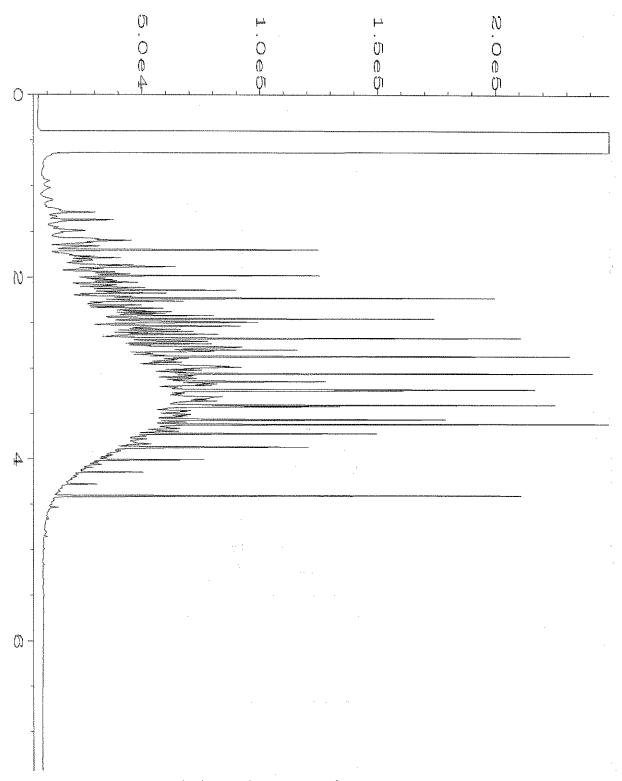



```
Data File Name
                  : C:\HPCHEM\1\DATA\06-17-19\031F0601.D
Operator
                                                  Page Number
                  : TL
                                                                     : 1
Instrument
                  : GC1
                                                  Vial Number
                                                                     : 31
Sample Name
                  : 906291-05
                                                  Injection Number: 1
Sequence Line: 6
Run Time Bar Code:
Acquired on
                                                  Instrument Method: DX.MTH
                 : 17 Jun 19
                               03:53 PM
Report Created on: 18 Jun 19
                               07:05 AM
                                                  Analysis Method : DEFAULT.MTH
```




```
: C:\HPCHEM\1\DATA\06-17-19\032F0601.D
Data File Name
Operator
                  : TL
                                                   Page Number
Instrument
                                                   Vial Number
                  : GC1
                                                                      : 32
Sample Name
                  : 906291-06
                                                   Injection Number: 1
Sequence Line: 6
Run Time Bar Code:
                                                   Instrument Method: DX.MTH
Acquired on
                  : 17 Jun 19
                                04:04 PM
Report Created on: 18 Jun 19
                                07:05 AM
                                                   Analysis Method : DEFAULT.MTH
```


ş


```
Data File Name
                 : C:\HPCHEM\1\DATA\06-17-19\033F0601.D
Operator
                                                Page Number
                 : TL
Instrument
                 : GC1
                                                Vial Number
                                                                  : 33
Sample Name
                 : 906291-07
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
                                                               : 6
                                                Instrument Method: DX.MTH
Acquired on
                 : 17 Jun 19
                              04:16 PM
Report Created on: 18 Jun 19
                              07:05 AM
                                                Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\1\DATA\06-17-19\034F0601.D
Data File Name
Operator
                                                     Page Number
                                                     Vial Number
Instrument
                   : GC1
                                                                        : 34
Sample Name
                   : 906291-08
                                                     Injection Number: 1
Run Time Bar Code: Acquired on :
                                                     Sequence Line : 6
Instrument Method: DX.MTH
                  : 17 Jun 19
                                 04:28 PM
Report Created on: 18 Jun 19
                                 07:06 AM
                                                     Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\1\DATA\06-17-19\019F0401.D
                                               Page Number
Operator
                 : TL
                                                                : 1
                                               Vial Number
Instrument
                 : GC1
                                               Injection Number: 1
Sample Name
                 : 09-1421 mb
Run Time Bar Code:
                                               Sequence Line
Acquired on
                 : 17 Jun 19 12:24 PM
                                               Instrument Method: DX.MTH
Report Created on: 18 Jun 19
                                               Analysis Method : DEFAULT.MTH
                              07:06 AM
```



```
: C:\HPCHEM\1\DATA\06-17-19\005F0501.D
Data File Name
                                               Page Number
Operator
                                               Vial Number
Instrument
                 : GC1
                                               Injection Number: 1
Sample Name
                 : 1000 Dx 57-78B
Run Time Bar Code:
                                               Sequence Line : 5
                                               Instrument Method: DX.MTH
Acquired on
                : 17 Jun 19 03:39 PM
Report Created on: 18 Jun 19 07:06 AM
                                               Analysis Method : DEFAULT.MTH
```

Send Report To Tom Cammarata cc: Logan Schumacher

Company SoundEarth Strategies

Address 2811 Fairview Ave E, Suite 2000

City, State, ZIP Seattle, WA 98102

SAMPLE CHAIN OF CUSTODY SAMPLERS (sig, rure)	ME OG	TURNAROUND TIME 805
PROJECT NAME/NO.	PO #	Standard (2 Weeks) AI S
Troy Laundry Property	0731-004-05	Rush charges authorized by:
_ REMARKS	EIM Y	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

•	Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	GRPH by NWTPH-Gx	BTEX by EPA 8021B	DRPH/ORPH by NWTPH-Dx	cVOCs by EPA 8260C	Methane, Ethane, Ethene by RSK175	Sulfate, Nitrate, Alkalinity by SM1845/SM2320B	Total Fe and Mn by EPA 200.8	Fe 2+ by SM 3500	TOC By EPA 415.1	Notes	
-	Mm38.3019(0613	MMga	<u></u>	61A-M	16/17/10	1534	\sim	17	X	χ	X	X	Х	χ	V	V			
-	MW15,20190al3	MWIS	-	02A-H	6/13/19	1640		7	Υ	Y	·Y	Χ							
-	(MW27-20190G141	MWDT	-	03/	6/14/19	0430		7	X	V	X	χ.		-					
	UMIZ-BOILARIA	MWIZ	-	04	6/14/14	085%	····	1	Y	У	×	Y							
	MW01-20190614	Muci	_	05	6/14/19	0938		7	γ	V	V	X						~~~	
	MWBC- 20190614	Mrag	_		16/14/15	0950		141	~	V	X	$\frac{1}{\lambda}$	X	1/	Χ	V	\overline{x}		<u> </u>
	MWC7-2019CCM	MNOT		07 1	CIMIN	1050		ili	$\frac{1}{\lambda}$	$\hat{}$	V	$\frac{1}{x}$	$\frac{\hat{\mathbf{x}}}{\mathbf{x}}$	- y -	V	×	\forall		
	MWOY-20140CILI.	MNOU	-		M 6/14/19	1105		15	X	$\hat{\mathbf{x}}$	$\stackrel{\sim}{\times}$	X	<u>\</u>	$\frac{\wedge}{\kappa}$	^ `x	V			
				7.1															
L								\supset											- / / /
								3m	1									4	
								Z/h	}						Sam	ples	ecei	ved at 4	°C

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

 \mathcal{C}'

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by Aug	- Sarah Welter	SES	6/14/19	1419
Received by: Relinquished by	WILSON XANGGUAS	FEDEX	6-14.19	1419
Received by: // / /				
m/m/ans	Nhan phan	FCBI	6/14/19	1456

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 26, 2019

Tom Cammarata, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Cammarata:

Included are the results from the testing of material submitted on June 17, 2019 from the SOU_0731-004-05_ 20190617, F&BI 906323 project. There are 27 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher SOU0626R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 17, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0731-004-05_ 20190617, F&BI 906323 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
906323 -01	MW25-20190615
906323 -02	MW19-20190615
906323 -03	MW18-20190615
906323 -04	MW17-20190615
906323 -05	MW24-20190615
906323 -06	MW20-20190615
906323 -07	MW21-20190615
906323 -08	MW99-20190615
906323 -09	MW22-20190615
906323 -10	MW23-20190615
906323 -11	IW91-20190615

Samples MW25-20190615, MW19-20190615, MW18-20190615, MW24-20190615, MW22-20190615, and MW23-20190615 were sent to Fremont Analytical for nitrate, sulfate, alkalinity, TOC, and ferrous iron analysis. In addition, samples MW25-20190615, MW19-20190615, MW18-20190615, MW24-20190615, MW21-20190615, MW22-20190615, and MW23-20190615 were sent to Fremont for dissolved gasses analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19

Date Received: 06/17/19 Project: SOU_0731-004-05_ 20190617, F&BI 906323

Date Extracted: 06/18/19 Date Analyzed: 06/18/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW25-20190615 906323-01	<1	<1	<1	<3	<100	103
MW19-20190615 906323-02	<1	<1	<1	<3	<100	103
MW18-20190615 906323-03	<1	<1	<1	<3	<100	102
MW17-20190615 906323-04	<1	<1	<1	<3	<100	103
MW24-20190615 906323-05	<1	<1	<1	<3	<100	102
MW20-20190615 906323-06	<1	<1	<1	<3	<100	103
MW21-20190615 906323-07	<1	<1	<1	3.8	<100	102
MW99-20190615 906323-08	<1	<1	<1	<3	<100	103
MW22-20190615 906323-09	<1	<1	<1	21	170	106
MW23-20190615 906323-10	<1	<1	<1	7.1	260	106
IW91-20190615 906323-11	<1	<1	<1	<3	<100	103
Method Blank 09-1406 MB	<1	<1	<1	<3	<100	104

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19

Date Received: 06/17/19 Project: SOU_0731-004-05_ 20190617, F&BI 906323

Date Extracted: 06/18/19

Date Analyzed: 06/18/19 and 06/21/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 47-140)
MW25-20190615 906323-01 1/10	1,000 x	<2,500	100
MW19-20190615 906323-02	650 x	430 x	83
MW18-20190615 906323-03	1,100 x	830 x	ip
MW17-20190615 906323-04	<50	<250	87
MW24-20190615 906323-05 1/10	6,400 x	<2,500	84
MW20-20190615 906323-06	140 x	<250	110
MW21-20190615 906323-07 1/10	6,400 x	<2,500	80
MW99-20190615 906323-08 1/10	1,100 x	<2,500	105
MW22-20190615 906323-09 1/10	24,000 x	4,600 x	75
MW23-20190615 906323-10 1/10	3,400 x	<2,500	ip
IW91-20190615 906323-11	<50	<250	ip
Method Blank 09-1428 MB	<50	<250	108

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW25-20190615 Client: SoundEarth Strategies

Date Received: 06/17/19 Project: SOU_0731-004-05_20190617

 Date Extracted:
 06/18/19
 Lab ID:
 906323-01 x10

 Date Analyzed:
 06/18/19
 Data File:
 906323-01 x10.111

Concentration

Analyte: ug/L (ppb)

 Iron
 12,300

 Manganese
 9,560

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW19-20190615 Client: SoundEarth Strategies

Date Received: 06/17/19 Project: SOU_0731-004-05_20190617

 Date Extracted:
 06/18/19
 Lab ID:
 906323-02 x20

 Date Analyzed:
 06/19/19
 Data File:
 906323-02 x20.039

Concentration

Analyte: ug/L (ppb)

 Iron
 10,000

 Manganese
 11,400

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW18-20190615 Client: SoundEarth Strategies

Date Received: 06/17/19 Project: SOU_0731-004-05_20190617

Date Extracted: 06/18/19 Lab ID: 906323-03 x20
Date Analyzed: 06/19/19 Data File: 906323-03 x20.040

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 Iron
 13,500

 Manganese
 10,100

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW24-20190615 Client: SoundEarth Strategies

Date Received: 06/17/19 Project: SOU_0731-004-05_20190617

 Date Extracted:
 06/18/19
 Lab ID:
 906323-05 x100

 Date Analyzed:
 06/19/19
 Data File:
 906323-05 x100.050

Concentration

Analyte: ug/L (ppb)

 Iron
 11,600

 Manganese
 21,900

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW22-20190615 Client: SoundEarth Strategies

Date Received: 06/17/19 Project: SOU_0731-004-05_20190617

 Date Extracted:
 06/18/19
 Lab ID:
 906323-09 x20

 Date Analyzed:
 06/19/19
 Data File:
 906323-09 x20.042

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 Iron
 11,200

 Manganese
 11,400

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW23-20190615 Client: SoundEarth Strategies

Date Received: 06/17/19 Project: SOU_0731-004-05_20190617

 Date Extracted:
 06/18/19
 Lab ID:
 906323-10 x100

 Date Analyzed:
 06/19/19
 Data File:
 906323-10 x100.051

Concentration

Analyte: ug/L (ppb)

 Iron
 12,300

 Manganese
 26,700

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: SoundEarth Strategies

Date Received: NA Project: SOU_0731-004-05_20190617

Lab ID: I9-375 mbDate Extracted: 06/18/19 Date Analyzed: 06/18/19 Data File: I9-375 mb.095 ICPMS2 Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW25-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906323-01
Date Analyzed:	06/19/19	Data File:	061937.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.54
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	45
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW19-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906323-02
Date Analyzed:	06/19/19	Data File:	061938.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.79
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	27
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW18-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906323-03
Date Analyzed:	06/19/19	Data File:	061939.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	95	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.44
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	28
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW17-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906323-04
Date Analyzed:	06/19/19	Data File:	061940.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	2.2
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	3.4
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW24-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906323-05
Date Analyzed:	06/19/19	Data File:	061941.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1.0
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	84
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW20-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906323-06
Date Analyzed:	06/19/19	Data File:	061942.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	3.8
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW21-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906323-07
Date Analyzed:	06/19/19	Data File:	061943.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1.1
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	29
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW99-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906323-08
Date Analyzed:	06/19/19	Data File:	061944.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.50
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	43
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW22-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906323-09
Date Analyzed:	06/19/19	Data File:	061945.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1.0
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	49
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	1.1
Tetrachloroethene	1.1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW23-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906323-10
Date Analyzed:	06/19/19	Data File:	061946.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.72
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	25
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	IW91-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906323-11
Date Analyzed:	06/19/19	Data File:	061947.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	92	63	127
4-Bromofluorobenzene	92	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	09-1432 mb
Date Analyzed:	06/19/19	Data File:	061928.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19 Date Received: 06/17/19

Project: SOU_0731-004-05_ 20190617, F&BI 906323

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 906323-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	107	65-118
Toluene	ug/L (ppb)	50	108	72 - 122
Ethylbenzene	ug/L (ppb)	50	112	73 - 126
Xylenes	ug/L (ppb)	150	110	74-118
Gasoline	ug/L (ppb)	1,000	98	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19 Date Received: 06/17/19

Project: SOU_0731-004-05_ 20190617, F&BI 906323

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	100	61-133	4

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19 Date Received: 06/17/19

Project: SOU_0731-004-05_ 20190617, F&BI 906323

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 906321-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	152	89	85	70-130	5
Manganese	ug/L (ppb)	20	30.6	101	95	70-130	6

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	99	85-115
Manganese	ug/L (ppb)	20	95	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19 Date Received: 06/17/19

Project: SOU_0731-004-05_ 20190617, F&BI 906323

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 906291-01 (Matrix Spike)

	Percent				
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	0.35	119	36-166
Chloroethane	ug/L (ppb)	50	<1	110	46-160
1,1-Dichloroethene	ug/L (ppb)	50	1.5	108	60-136
Methylene chloride	ug/L (ppb)	50	<5	109	67 - 132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	110	72 - 129
1,1-Dichloroethane	ug/L (ppb)	50	<1	105	70 - 128
cis-1,2-Dichloroethene	ug/L (ppb)	50	80	119 b	71 - 127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	96	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	110	60-146
Trichloroethene	ug/L (ppb)	50	5.7	98	66 - 135
Tetrachloroethene	ug/L (ppb)	50	9.0	101	10-226

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	113	107	50-154	5
Chloroethane	ug/L (ppb)	50	105	100	58-146	5
1,1-Dichloroethene	ug/L (ppb)	50	103	102	67-136	1
Methylene chloride	ug/L (ppb)	50	102	100	39-148	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	106	101	68-128	5
1,1-Dichloroethane	ug/L (ppb)	50	102	100	79 - 121	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	107	105	80-123	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	96	100	73 - 132	4
1,1,1-Trichloroethane	ug/L (ppb)	50	106	104	81-125	2
Trichloroethene	ug/L (ppb)	50	98	98	79-113	0
Tetrachloroethene	ug/L (ppb)	50	104	103	76 - 121	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 906323

Work Order Number: 1906197

June 24, 2019

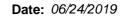
Attention Michael Erdahl:

Fremont Analytical, Inc. received 7 sample(s) on 6/17/2019 for the analyses presented in the following report.

Dissolved Gases by RSK-175
Ferrous Iron by SM3500-Fe B
Ion Chromatography by EPA Method 300.0
Total Alkalinity by SM 2320B
Total Organic Carbon by SM 5310C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 906323 **Work Order:** 1906197

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1906197-001	MW25-20190615	06/15/2019 8:18 AM	06/17/2019 1:45 PM
1906197-002	MW19-20190615	06/15/2019 8:24 AM	06/17/2019 1:45 PM
1906197-003	MW18-20190615	06/15/2019 9:35 AM	06/17/2019 1:45 PM
1906197-004	MW24-20190615	06/15/2019 11:20 AM	06/17/2019 1:45 PM
1906197-005	MW21-20190615	06/15/2019 12:32 PM	06/17/2019 1:45 PM
1906197-006	MW22-20190615	06/15/2019 1:10 PM	06/17/2019 1:45 PM
1906197-007	MW23-20190615	06/15/2019 2:10 PM	06/17/2019 1:45 PM

Case Narrative

WO#: **1906197**Date: **6/24/2019**

CLIENT: Friedman & Bruya

Project: 906323

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 1906197

Date Reported: 6/24/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1906197**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/15/2019 8:18:00 AM

Project: 906323

Lab ID: 1906197-001 **Matrix:** Water

Client Sample ID: MW25-20190615

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Dissolved Gases by RSK-175				Bato	ch ID: R5	2203	Analyst: SG
Methane	9.67	0.173	DE	mg/L	20	6/19/	'2019 5:10:00 PM
Ethene	ND	0.303	D	mg/L	20	6/19/	2019 5:10:00 PM
Ethane	ND	0.324	D	mg/L	20	6/19/	2019 5:10:00 PM
NOTES:		6.1					
E - Estimated value. The amount excee	ds the linear working	range of the	instrument.				
Ion Chromatography by EPA Me	ethod 300.0			Bato	ch ID: 24	947	Analyst: SS
Nitrate (as N)	ND	0.100	Н	mg/L	1	6/18/	'2019 4:53:00 PM
Sulfate	0.380	0.300	Н	mg/L	1	6/18/	2019 4:53:00 PM
Total Organic Carbon by SM 53	<u>10C</u>			Bato	ch ID: R5	2199	Analyst: GM
Total Organic Carbon	25.8	0.500		mg/L	1	6/18/	2019 7:49:00 PM
Total Alkalinity by SM 2320B				Bato	ch ID: R5	2247	Analyst: WF
Alkalinity, Total (As CaCO3)	575	2.50		mg/L	1	6/21/	'2019 1:25:44 PM
Ferrous Iron by SM3500-Fe B				Bato	ch ID: R5	2165	Analyst: GM
Ferrous Iron	7.60	0.500	DH	mg/L	10	6/19/	2019 5:00:00 PM

Work Order: **1906197**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/15/2019 8:24:00 AM

Project: 906323

Lab ID: 1906197-002 **Matrix:** Water

Client Sample ID: MW19-20190615

Analyses	Result	RL	Qual	Units DF		Date Analyzed
Dissolved Gases by RSK-175				Bato	ch ID: R5	2203 Analyst: SG
Methane	2.53	0.173	D	mg/L	20	6/19/2019 5:14:00 PM
Ethene	ND	0.303	D	mg/L	20	6/19/2019 5:14:00 PM
Ethane	ND	0.324	D	mg/L	20	6/19/2019 5:14:00 PM
Ion Chromatography by EPA Me	thod 300.0			Bato	ch ID: 24	947 Analyst: SS
Nitrate (as N)	ND	0.100	Н	mg/L	1	6/18/2019 5:16:00 PM
Sulfate	0.380	0.300	Н	mg/L	1	6/18/2019 5:16:00 PM
Total Alkalinity by SM 2320B				Bato	h ID: R5	2247 Analyst: WF
Alkalinity, Total (As CaCO3)	556	2.50		mg/L	1	6/21/2019 1:25:44 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID: R5	2165 Analyst: GM
Ferrous Iron	7.81	0.500	DH	mg/L	10	6/19/2019 5:00:00 PM

Work Order: **1906197**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/15/2019 9:35:00 AM

Project: 906323

Lab ID: 1906197-003 **Matrix:** Water

Client Sample ID: MW18-20190615

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Dissolved Gases by RSK-175				Bato	ch ID: R5	2203	Analyst: SG
Methane	5.29	0.432	D	mg/L	50	6/19/	2019 5:16:00 PM
Ethene	ND	0.757	D	mg/L	50	6/19/	2019 5:16:00 PM
Ethane	ND	0.809	D	mg/L	50	6/19/	2019 5:16:00 PM
Ion Chromatography by EPA M	ethod 300.0			Bato	ch ID: 24	947	Analyst: SS
Nitrate (as N)	ND	0.100	Н	mg/L	1	6/18/	2019 5:39:00 PM
Sulfate	0.422	0.300	Н	mg/L	1	6/18/	2019 5:39:00 PM
Total Organic Carbon by SM 53	310C			Bato	h ID: R5	2199	Analyst: GM
Total Organic Carbon	10.6	0.500		mg/L	1	6/18/	2019 9:05:00 PM
Total Alkalinity by SM 2320B				Bato	h ID: R5	2247	Analyst: WF
Alkalinity, Total (As CaCO3)	531	2.50		mg/L	1	6/21/	2019 1:25:44 PM
Ferrous Iron by SM3500-Fe B				Bato	ch ID: R5	2165	Analyst: GM
Ferrous Iron	8.35	0.500	DH	mg/L	10	6/19/	2019 5:00:00 PM

Work Order: **1906197**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/15/2019 11:20:00 AM

Project: 906323

Lab ID: 1906197-004 **Matrix:** Water

Client Sample ID: MW24-20190615

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Dissolved Gases by RSK-175				Bato	ch ID: R5	2203	Analyst: SG
Methane	2.66	0.432	D	mg/L	50	6/19/	2019 5:18:00 PM
Ethene	ND	0.757	D	mg/L	50	6/19/	2019 5:18:00 PM
Ethane	ND	0.809	D	mg/L	50	6/19/	2019 5:18:00 PM
Ion Chromatography by EPA M	lethod 300.0			Bato	ch ID: 24	947	Analyst: SS
Nitrate (as N)	ND	0.100	Н	mg/L	1	6/18/	2019 6:03:00 PM
Sulfate	0.348	0.300	Н	mg/L	1	6/18/	2019 6:03:00 PM
Total Organic Carbon by SM 5	310C			Bato	h ID: R5	2199	Analyst: GM
Total Organic Carbon	20.5	0.500		mg/L	1	6/18/	2019 9:24:00 PM
Total Alkalinity by SM 2320B				Bato	h ID: R5	2247	Analyst: WF
Alkalinity, Total (As CaCO3)	414	2.50		mg/L	1	6/21/	2019 1:25:44 PM
Ferrous Iron by SM3500-Fe B				Bato	ch ID: R5	2165	Analyst: GM
Ferrous Iron	11.1	0.500	DH	mg/L	10	6/19/	2019 5:00:00 PM

Work Order: **1906197**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/15/2019 12:32:00 PM

Project: 906323

Lab ID: 1906197-005 **Matrix:** Water

Client Sample ID: MW21-20190615

Analyses	Result RL Q		Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Bato	h ID: R5	52203 Analyst: SG
Methane	2.46	0.432	D	mg/L	50	6/19/2019 5:25:00 PM
Ethene	ND	0.757	D	mg/L	50	6/19/2019 5:25:00 PM
Ethane	ND	0.809	D	mg/L	50	6/19/2019 5:25:00 PM
Total Organic Carbon by SM 53100	į			Bato	h ID: R5	S2199 Analyst: GM
Total Organic Carbon	163	2.50	D	mg/L	5	6/19/2019 11:36:00 AM

Work Order: **1906197**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/15/2019 1:10:00 PM

Project: 906323

Lab ID: 1906197-006 **Matrix:** Water

Client Sample ID: MW22-20190615

Analyses	Result	RL	Qual	Units	DF	6/19/2019 5:27:00 6/19/2019 5:27:00 6/19/2019 5:27:00 947 Analyst: 6/18/2019 6:26:00 6/18/2019 6:26:00	te Analyzed
Dissolved Gases by RSK-175				Bato	ch ID: R5	2203	Analyst: SG
Methane	3.09	0.432	D	mg/L	50	6/19/	2019 5:27:00 PM
Ethene	ND	0.757	D	mg/L	50	6/19/	2019 5:27:00 PM
Ethane	ND	0.809	D	mg/L	50	6/19/	2019 5:27:00 PM
Ion Chromatography by EPA Me	thod 300.0			Bato	h ID: 24	947	Analyst: SS
Nitrate (as N)	ND	0.100	Н	mg/L	1	6/18/	2019 6:26:00 PM
Sulfate	ND	0.300	Н	mg/L	1	6/18/	2019 6:26:00 PM
Total Organic Carbon by SM 531	<u>0C</u>			Bato	h ID: R5	2199	Analyst: GM
Total Organic Carbon	286	25.0	D	mg/L	50	6/19/	2019 11:57:00 AM
Total Alkalinity by SM 2320B				Bato	h ID: R5	2247	Analyst: WF
Alkalinity, Total (As CaCO3)	273	2.50		mg/L	1	6/21/	2019 1:25:44 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID: R5	2165	Analyst: GM
Ferrous Iron	11.6	0.500	DH	mg/L	10	6/19/	2019 5:00:00 PM

Work Order: **1906197**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/15/2019 2:10:00 PM

Project: 906323

Lab ID: 1906197-007 **Matrix:** Water

Client Sample ID: MW23-20190615

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Dissolved Gases by RSK-175				Bato	ch ID: R5	2203	Analyst: SG
Methane	2.90	0.432	D	mg/L	50	6/19/	/2019 5:30:00 PM
Ethene	ND	0.757	D	mg/L	50	6/19/	/2019 5:30:00 PM
Ethane	ND	0.809	D	mg/L	50	6/19/	/2019 5:30:00 PM
Ion Chromatography by EPA M	lethod 300.0			Bato	ch ID: 24	947	Analyst: SS
Nitrate (as N)	ND	0.100	Н	mg/L	1	6/18/	/2019 6:49:00 PM
Sulfate	0.378	0.300	Н	mg/L	1	6/18/	/2019 6:49:00 PM
Total Organic Carbon by SM 5	310C			Bato	h ID: R5	2199	Analyst: GM
Total Organic Carbon	60.7	1.00	D	mg/L	2	6/19/	/2019 12:29:00 PM
Total Alkalinity by SM 2320B				Bato	h ID: R5	2247	Analyst: WF
Alkalinity, Total (As CaCO3)	639	2.50		mg/L	1	6/21/	/2019 1:25:44 PM
Ferrous Iron by SM3500-Fe B				Bato	ch ID: R5	2165	Analyst: GM
Ferrous Iron	13.0	0.500	DH	mg/L	10	6/19/	/2019 5:00:00 PM

Date: 6/24/2019

Work Order: 1906197

Alkalinity, Total (As CaCO3)

618

2.50

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Alkalinity by SM 2320B

1.06

611.0

20

Project: 906323					Total Alkalinity by SM 2320
Sample ID: MB-R52247	SampType: MBLK			Units: mg/L	Prep Date: 6/21/2019 RunNo: 52247
Client ID: MBLKW	Batch ID: R52247				Analysis Date: 6/21/2019 SeqNo: 1031932
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Alkalinity, Total (As CaCO3)	ND	2.50			
Sample ID: LCS-R52247	SampType: LCS			Units: mg/L	Prep Date: 6/21/2019 RunNo: 52247
Client ID: LCSW	Batch ID: R52247				Analysis Date: 6/21/2019 SeqNo: 1031933
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Alkalinity, Total (As CaCO3)	104	2.50	100.0	0	104 80 120
Sample ID: 1906195-001BDUP	SampType: DUP			Units: mg/L	Prep Date: 6/21/2019 RunNo: 52247
Client ID: BATCH	Batch ID: R52247				Analysis Date: 6/21/2019 SeqNo: 1031935
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua

Original Page 12 of 20

Date: 6/24/2019

Work Order: 1906197

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ferrous Iron by SM3500-Fe B

SH

20

Project: 906323						Fer	rous Iron by SM3500	0-Fe B
Sample ID: MB-R52165	SampType: MBLK			Units: mg/L		Prep Date: 6/19/2019	RunNo: 52165	
Client ID: MBLKW	Batch ID: R52165					Analysis Date: 6/19/2019	SeqNo: 1029999	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron	ND	0.0500						
Sample ID: LCS-R52165	SampType: LCS			Units: mg/L		Prep Date: 6/19/2019	RunNo: 52165	
Client ID: LCSW	Batch ID: R52165					Analysis Date: 6/19/2019	SeqNo: 1030000	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron	0.406	0.0500	0.4000	0	101	80 120		
Sample ID: 1906196-001ADUP	SampType: DUP			Units: mg/L		Prep Date: 6/19/2019	RunNo: 52165	
Client ID: BATCH	Batch ID: R52165					Analysis Date: 6/19/2019	SeqNo: 1030007	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron	0.922	0.0500				1.023	10.4 20	Н
Sample ID: 1906196-001AMS	SampType: MS			Units: mg/L		Prep Date: 6/19/2019	RunNo: 52165	
Client ID: BATCH	Batch ID: R52165					Analysis Date: 6/19/2019	SeqNo: 1030008	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron NOTES:	1.29	0.0500	0.4000	1.023	66.9	80 120		SH
S - Outlying spike recovery(ies)	· · · · · · · · · · · · · · · · · · ·	ysis was pe	rrormed with s		ing a poss			
Sample ID: 1906196-001AMSD	SampType: MSD			Units: mg/L		Prep Date: 6/19/2019	RunNo: 52165	
Client ID: BATCH	Batch ID: R52165					Analysis Date: 6/19/2019	SeqNo: 1030009	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual

Ferrous Iron NOTES:

0.4000

0.0500

1.29

Original Page 13 of 20

1.023

67.5

120

1.291

0.182

80

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Work Order: 1906197

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 906323							ion Chromatog	raphy by EPA Method	1 300.0
Sample ID: MB-24947	SampType: MBLK			Units: mg/L		Prep Date	6/17/2019	RunNo: 52162	
Client ID: MBLKW	Batch ID: 24947					Analysis Date	: 6/17/2019	SeqNo: 1029908	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Nitrate (as N) Sulfate	ND ND	0.100 0.300							
Sullate	ND	0.300							
Sample ID: LCS1-24947	SampType: LCS			Units: mg/L		Prep Date	: 6/17/2019	RunNo: 52162	
Client ID: LCSW	Batch ID: 24947					Analysis Date	6/17/2019	SeqNo: 1029909	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Nitrate (as N)	0.739	0.100	0.7500	0	98.5	90	110		
Sulfate	3.65	0.300	3.750	0	97.4	90	110		
Sample ID: LCS2-24947	SampType: LCS			Units: mg/L		Prep Date	: 6/17/2019	RunNo: 52162	
Client ID: LCSW	Batch ID: 24947					Analysis Date	6/18/2019	SeqNo: 1029925	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Nitrate (as N)	0.725	0.100	0.7500	0	96.7	90	110		
Sulfate	3.57	0.300	3.750	0	95.2	90	110		
Sample ID: LCS3-24947	SampType: LCS			Units: mg/L		Prep Date	: 6/17/2019	RunNo: 52162	
Client ID: LCSW	Batch ID: 24947					Analysis Date	6/18/2019	SeqNo: 1029926	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Nitrate (as N)	0.725	0.100	0.7500	0	96.7	90	110		
Sulfate	3.55	0.300	3.750	0	94.6	90	110		
Sample ID: LCS4-24947	SampType: LCS			Units: mg/L		Prep Date	: 6/17/2019	RunNo: 52162	
Client ID: LCSW	Batch ID: 24947					Analysis Date	6/18/2019	SeqNo: 1029927	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Nitrate (as N)	0.732	0.100	0.7500	0	97.6	90	110		

Original Page 14 of 20

Work Order: 1906197

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 906323							ion Cn	romatogra	ony by EP	A Method	300.C
Sample ID: LCS4-24947	SampType: LCS			Units: mg/L		Prep Dat	te: 6/17/2 0)19	RunNo: 52	162	
Client ID: LCSW	Batch ID: 24947					Analysis Dat	te: 6/18/2 0)19	SeqNo: 102	29927	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfate	3.73	0.300	3.750	0	99.4	90	110				
Sample ID: 1906195-001BDUP	SampType: DUP			Units: mg/L		Prep Dat	te: 6/17/2 0)19	RunNo: 52 °	162	
Client ID: BATCH	Batch ID: 24947					Analysis Dat	te: 6/18/2 0)19	SeqNo: 102	29933	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	ND	0.100						0		20	Н
Sulfate	0.749	0.300						0.7590	1.33	20	
Sample ID: 1906195-001BMS	SampType: MS			Units: mg/L		Prep Dat	te: 6/17/2 0)19	RunNo: 52 °	162	
Client ID: BATCH	Batch ID: 24947					Analysis Dat	te: 6/18/2 0)19	SeqNo: 102	29934	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	0.787	0.100	0.7500	0.09000	92.9	80	120				Н
Sulfate	4.20	0.300	3.750	0.7590	91.8	80	120				
Sample ID: 1906195-001BMSD	SampType: MSD			Units: mg/L		Prep Dat	te: 6/17/2 0)19	RunNo: 52 ′	162	
Client ID: BATCH	Batch ID: 24947					Analysis Dat	te: 6/18/2 0)19	SeqNo: 102	29935	
OHORRID: BATOR						Landiania		DDD D-(\/-I	0/ DDD		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LOWLIMIT	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
-	0.784	0.100	0.7500	0.09000	92.5	80	HighLimit 120	0.7870	0.382	RPDLimit 20	Qual

Original Page 15 of 20

Work Order: 1906197

QC SUMMARY REPORT

Friedman & Bruya **CLIENT:**

Project: 906323	•				Total Organic Carbon by SM 53100
Sample ID: MBLK-52199	SampType: MBLK			Units: mg/L	Prep Date: 6/18/2019 RunNo: 52199
Client ID: MBLKW	Batch ID: R52199				Analysis Date: 6/18/2019 SeqNo: 1030537
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organic Carbon	ND	0.500			
Sample ID: LCS-52199	SampType: LCS			Units: mg/L	Prep Date: 6/18/2019 RunNo: 52199
Client ID: LCSW	Batch ID: R52199				Analysis Date: 6/18/2019 SeqNo: 1030538
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organic Carbon	5.14	0.500	5.000	0	103 80 120
Sample ID: 1906179-001DDU	P SampType: DUP			Units: mg/L	Prep Date: 6/18/2019 RunNo: 52199
Client ID: BATCH	Batch ID: R52199				Analysis Date: 6/18/2019 SeqNo: 1030540
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organic Carbon	1.14	0.500			1.129 0.618 20
Sample ID: 1906179-001DMS	SampType: MS			Units: mg/L	Prep Date: 6/18/2019 RunNo: 52199
Client ID: BATCH	Batch ID: R52199				Analysis Date: 6/18/2019 SeqNo: 1030541
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organic Carbon	6.48	0.500	5.000	1.129	107 70 130
Sample ID: 1906179-001DMS	D SampType: MSD			Units: mg/L	Prep Date: 6/18/2019 RunNo: 52199
Client ID: BATCH	Batch ID: R52199				Analysis Date: 6/18/2019 SeqNo: 1030542
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organic Carbon	6.28	0.500	5.000	1.129	103 70 130 6.478 3.02 30

Page 16 of 20 Original

Date: 6/24/2019

Work Order: 1906197

Project:

Total Organic Carbon

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

906323

31.0

0.500

Total Organic Carbon by SM 5310C

Sample ID: 1906197-001DDUP SampType: DUP Units: mg/L Prep Date: 6/18/2019 RunNo: 52199

5.000

Client ID: MW25-20190615 Batch ID: R52199 Analysis Date: 6/18/2019 SeqNo: 1030549

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Total Organic Carbon 26.0 0.500 25.77 0.927 20

Prep Date: 6/18/2019 Sample ID: 1906197-001DMS SampType: MS Units: mg/L RunNo: 52199 Client ID: MW25-20190615 Batch ID: R52199 Analysis Date: 6/18/2019 SeqNo: 1030550 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

25.77

104

70

130

Original Page 17 of 20

Date: 6/24/2019

Work Order: 1906197

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

906323

Dissolved Gases by RSK-175

Sample ID: LCS-R52203	SampType: LCS			Units: mg/L		Prep Dat	e: 6/19/2019	RunNo: 52203	
Client ID: LCSW	Batch ID: R52203					Analysis Dat	e: 6/19/2019	SeqNo: 1030678	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Methane	1,020	0.00863	1,000	0	102	70	130		
Ethene	976	0.0151	1,000	0	97.6	70	130		
Ethane	973	0.0162	1,000	0	97.3	70	130		
Sample ID: MB-R52203	SampType: MBLK			Units: mg/L		Prep Dat	e: 6/19/2019	RunNo: 52203	
Sample ID: MB-R52203 Client ID: MBLKW	SampType: MBLK Batch ID: R52203			Units: mg/L		•	e: 6/19/2019 e: 6/19/2019	RunNo: 52203 SeqNo: 1030679	
·	. ,,	RL	SPK value	-	%REC	Analysis Dat			Qual
Client ID: MBLKW	Batch ID: R52203	RL 0.00863	SPK value	-		Analysis Dat	e: 6/19/2019	SeqNo: 1030679	Qual
Client ID: MBLKW Analyte	Batch ID: R52203 Result		SPK value	-		Analysis Dat	e: 6/19/2019	SeqNo: 1030679	Qual

Sample ID: 1906152-001AREP	SampType: REP			Units: mg/L		Prep Da	te: 6/19/2 0	19	RunNo: 522	203	
Client ID: BATCH	Batch ID: R52203					Analysis Da	te: 6/19/2 0	19	SeqNo: 103	80653	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane	4.81	0.173						4.601	4.43	30	ED
Ethene	ND	0.303						0		30	D
Ethane	ND	0.324						0		30	D

NOTES:

Original Page 18 of 20

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample Log-In Check List

С	lient Name:	FB		Work O	rder Numl	ber: 1906197		
L	ogged by:	Clare Griggs		Date Re	eceived:	6/17/2019	1:45:00 PM	
Cha	ain of Custo	<u>ody</u>						
1.	Is Chain of C	ustody complete?		Yes	✓	No 🗌	Not Present	
2.	How was the	sample delivered?		FedE	<u> </u>			
Log	ı İn							
_	Coolers are p	resent?		Yes	•	No 🗆	NA 🗆	
4.	Shipping con	tainer/cooler in good condition	?	Yes	✓	No 🗌		
5.		s present on shipping contain ments for Custody Seals not		Yes		No 🗸	Not Required	
6.	Was an atten	npt made to cool the samples'	?	Yes	✓	No 🗌	NA \square	
7.	Were all item	s received at a temperature of	f >0°C to 10.0°C*	Yes	✓	No 🗆	NA 🗆	
8.	Sample(s) in	proper container(s)?		Yes	✓	No 🗆		
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No \square		
10.	Are samples	properly preserved?		Yes	✓	No 🗌		
11.	Was preserva	ative added to bottles?		Yes		No 🗸	NA 🗆	
12.	Is there head	space in the VOA vials?		Yes		No 🗸	NA \square	
13.	Did all sample	es containers arrive in good co	ondition(unbroken)?	Yes	✓	No 🗌		
14.	Does paperw	ork match bottle labels?		Yes	✓	No 🗌		
15.	Are matrices	correctly identified on Chain of	f Custody?	Yes	✓	No 🗌		
16.	Is it clear wha	at analyses were requested?		Yes	✓	No 🗌		
17.	Were all hold	ing times able to be met?		Yes		No 🗹		
Spe	ecial Handli	ing (if applicable)						
18.	Was client no	otified of all discrepancies with	this order?	Yes		No 🗆	NA 🗹	
	Person	Notified:	Date	e: 				
	By Who	m:	Via:	ема	iil 🗌 Ph	none Fax [In Person	
	Regardi	ng:						
	Client In	structions:						
19.	Additional rer	narks:						
ltem	<u>Information</u>							
		Item #	Temp °C					
	Cooler		9.6					

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

8.7

Sample

Send Report To	Michae	l Erdahl		S	SUBCONT	RACT	ER	Suc	l.							AROUND TIME
Company	Friedm	an and Bruya	a, Inc.	P	PROJECT	NAMI					PO#			Sta	ndard (2 Weeks)
Address	3012 16	th Ave W			9	0632	23			B	-297	L .				authorized by:
City, State, ZIP_ Phone #(206) 23			06) 283-5044	R	REMARKS Please Email Results				SAMPLE DISPOS. Dispose after 30 days Return samples Will call with instruction							
									ANA	LYSE	SRE	QUES	TED	¥*		
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	ЕРН	VPH	RSK 175 Methor Ethor	Suffer, in: trate	Ferons Iran	TOC.	3	7		Notes
1W25-2019 6615		6/15/19	6/15 0818	420					X	×	X	×				
lw19-20190615		1	0824						×	×	×					
1W18-2019 0615			0935						×	x	×	X				
w24- 2019 0615		1	1120						v	v						

X

X

×

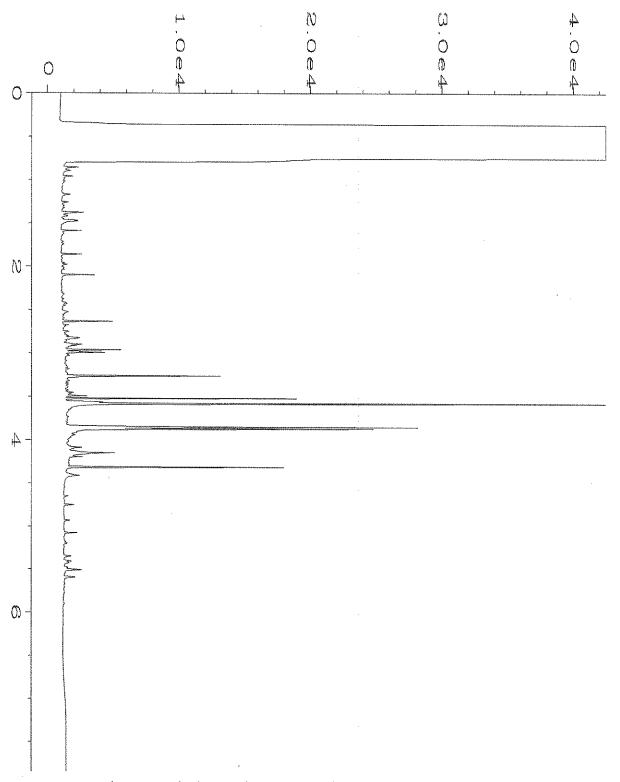
X

×

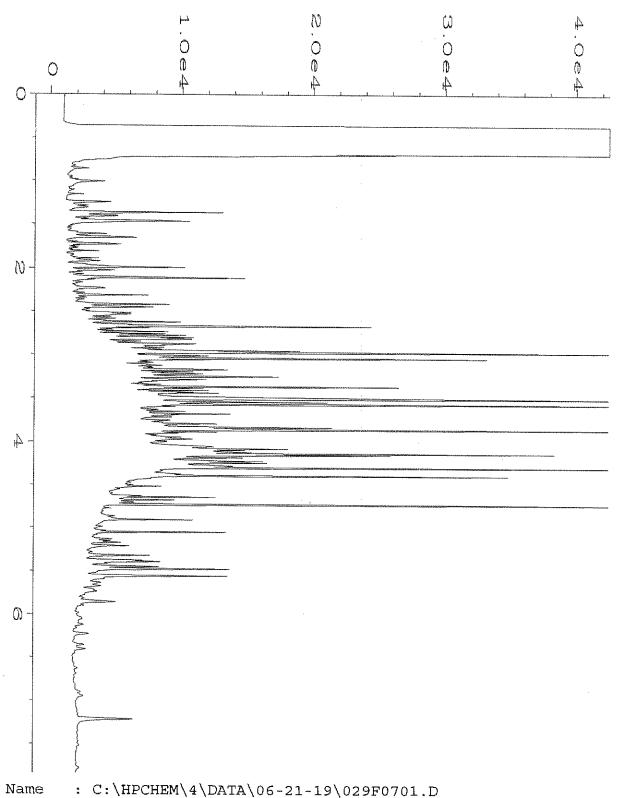
×

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282	SIGNATURE Relinquished by: Received by:	1	PRidichael Erdal	INT NAME		 OMPANY in & Bruya	DATE 6/17/19	TIME 12:10
Fax (206) 283-5044	Received by:				6		*	

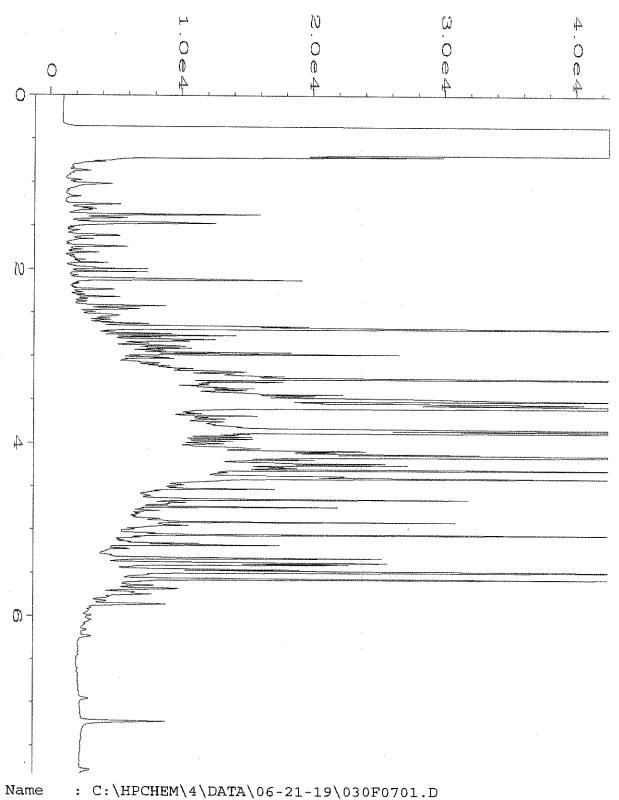
1232

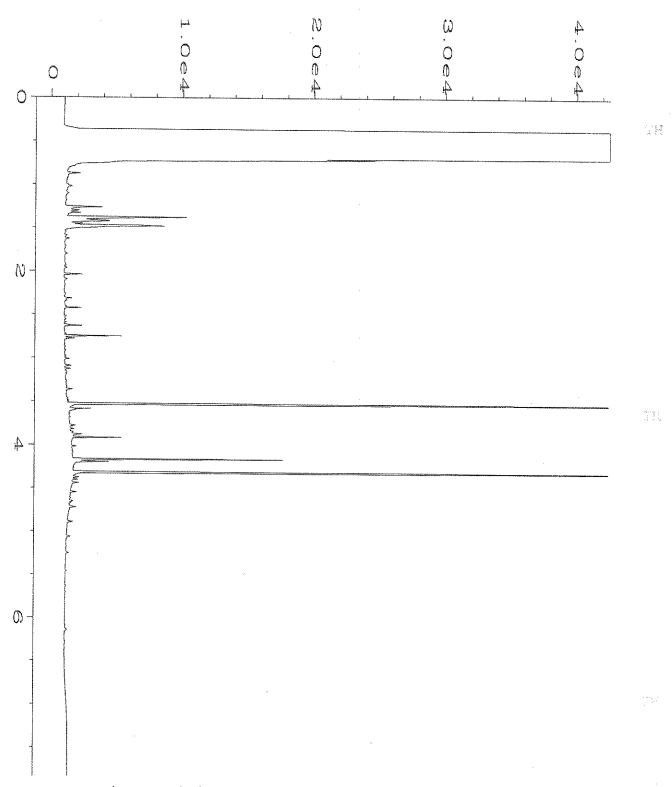

1310

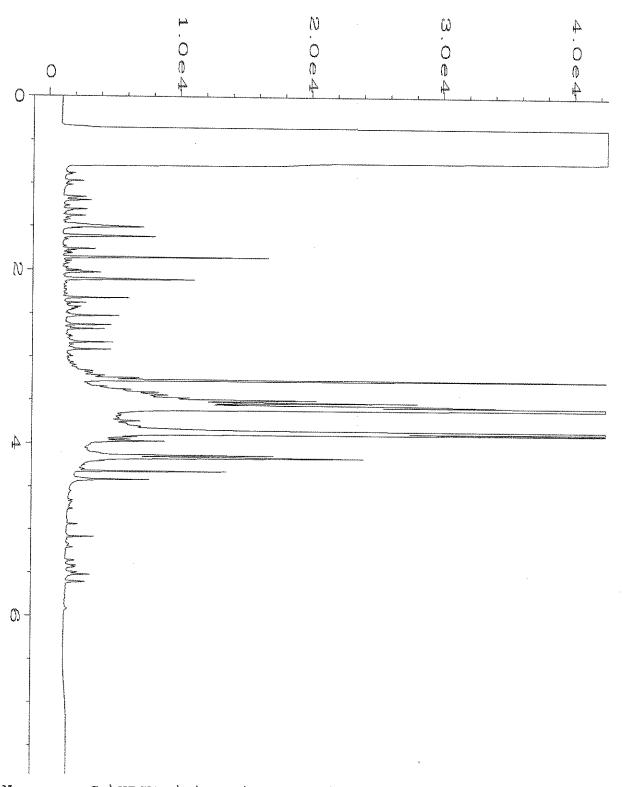
1410

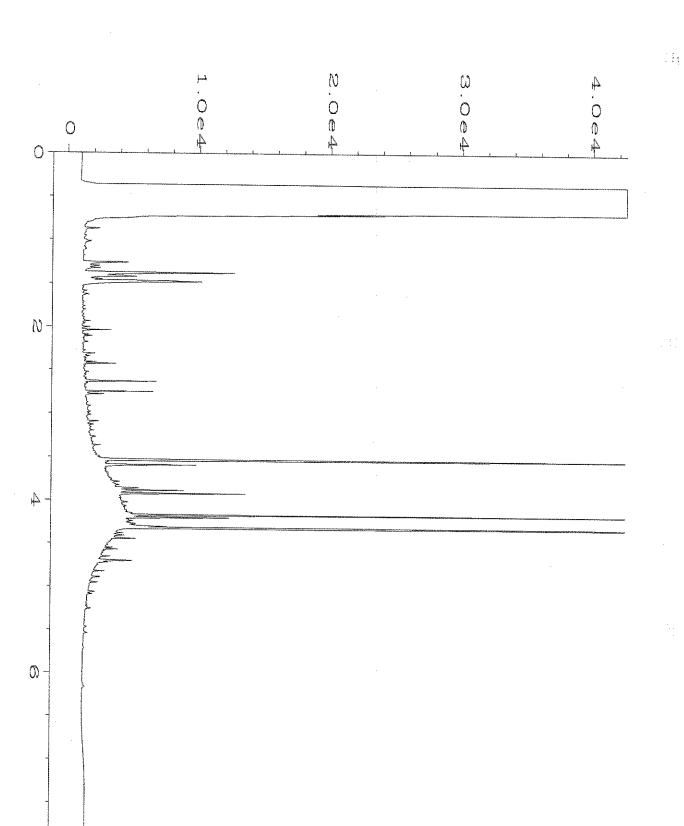

MW21- 2019 0615

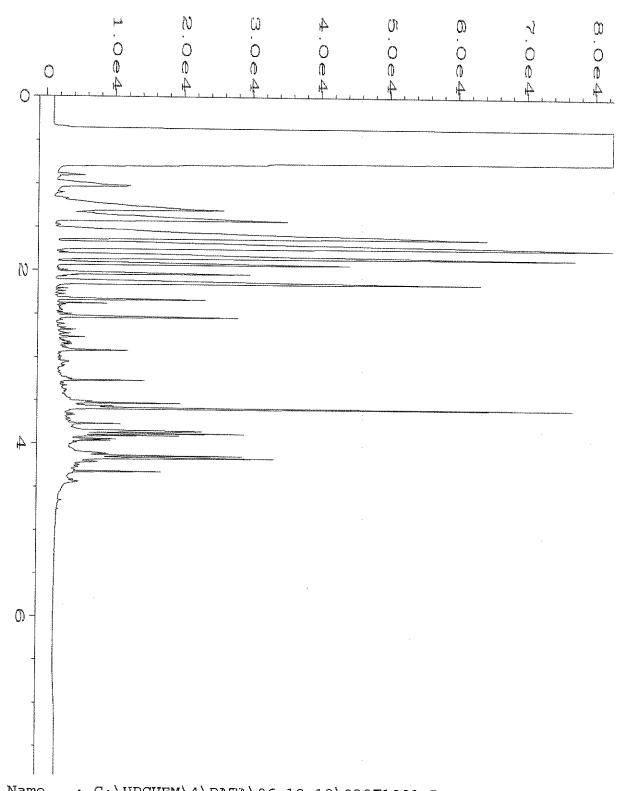
MW22-20190615

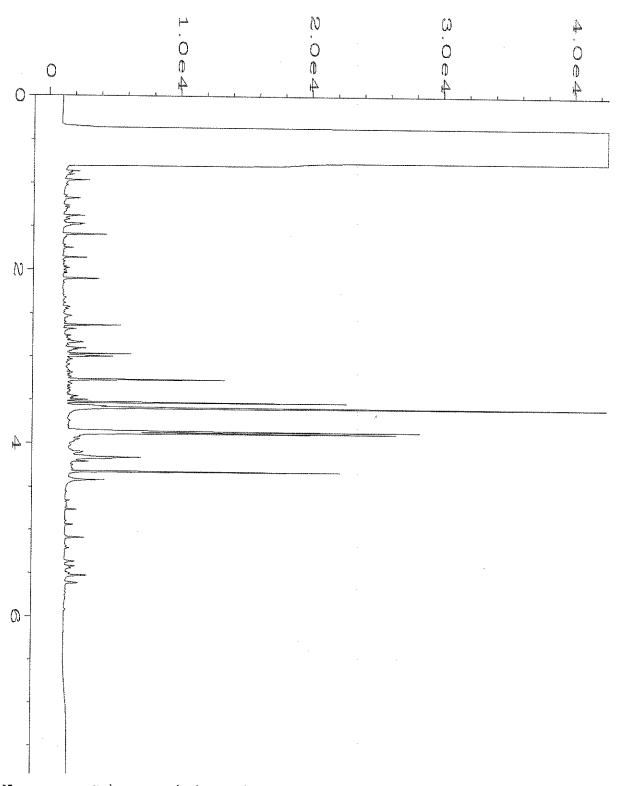

MW23-20190615.

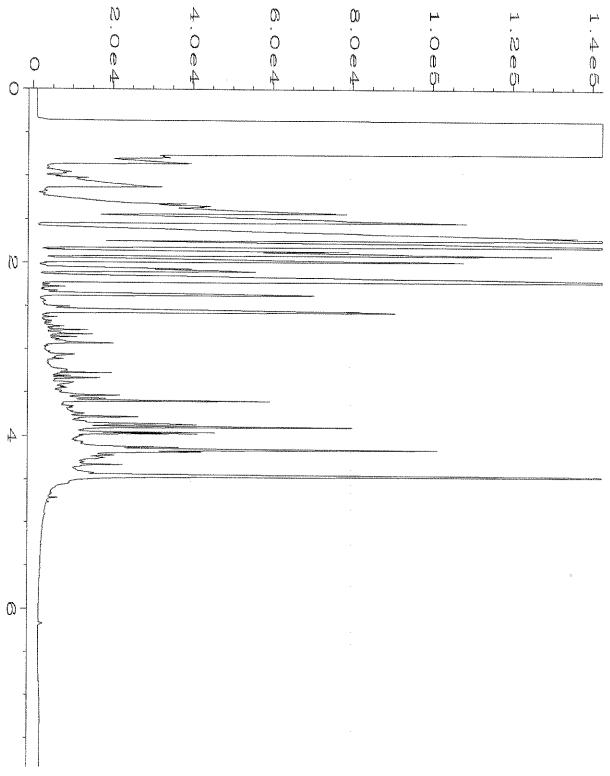

```
Data File Name
               : C:\HPCHEM\4\DATA\06-18-19\024F1001.D
                                                Page Number
Vial Number
Operator
                 : TL
Instrument
                 : GC#4
                                                                 : 24
                                                Injection Number: 1
Sample Name
                : 906323-01 1/10
Run Time Bar Code:
                                                Sequence Line : 10
Acquired on : 18 Jun 19
                                                Instrument Method: DX.MTH
                              06:32 PM
Report Created on: 19 Jun 19 09:36 AM
                                                Analysis Method : DEFAULT.MTH
```

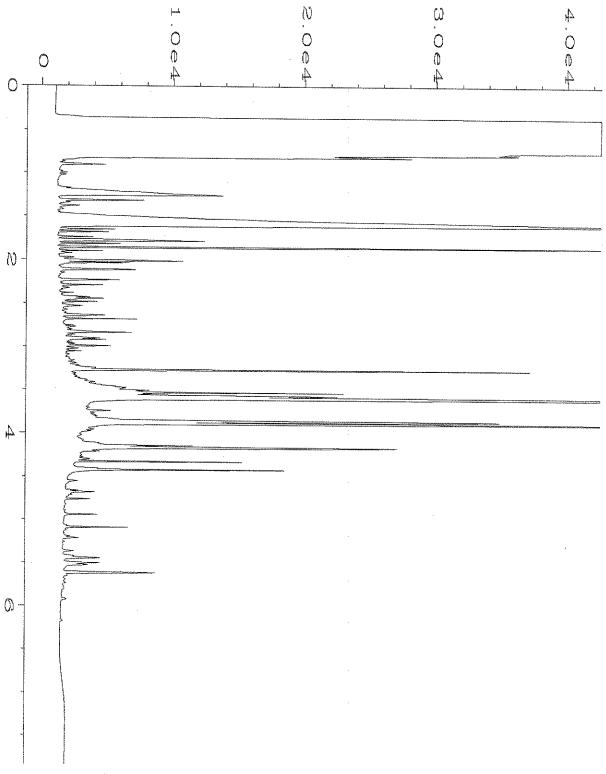


```
Data File Name
Operator
                 : TL
                                                 Page Number
Vial Number
Instrument
                 : GC#4
                                                                   : 29
Sample Name
                 : 906323-02 fs
                                                 Injection Number: 1
Run Time Bar Code:
                                                 Sequence Line
                                                                  : 7
Acquired on
                                                 Instrument Method: DX.MTH
                 : 21 Jun 19
                              04:44 PM
Report Created on: 24 Jun 19 08:29 AM
                                                 Analysis Method : DEFAULT.MTH
```

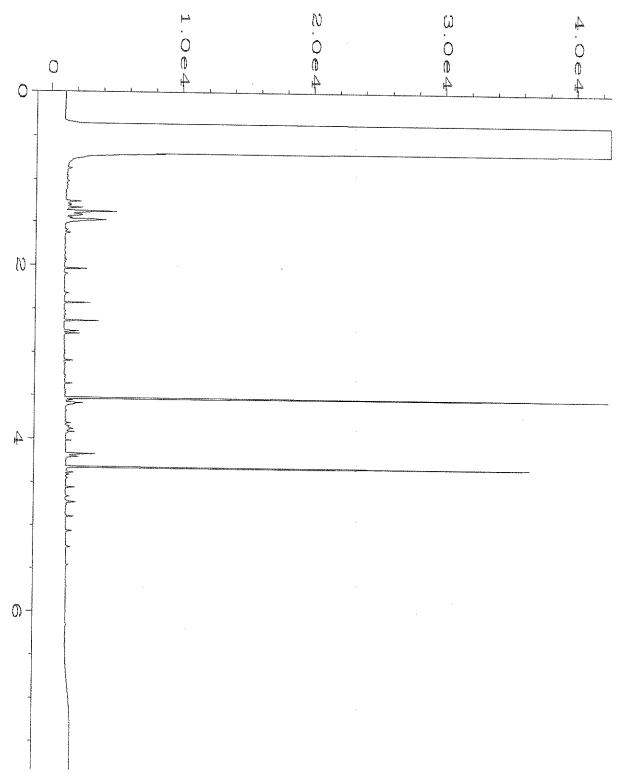


```
Data File Name
Operator
                 : TL
                                                 Page Number
Vial Number
Instrument
                 : GC#4
                                                                   : 30
Sample Name
                 : 906323-03 fs
                                                 Injection Number: 1
Run Time Bar Code:
                                                 Sequence Line
                                                                   : 7
Acquired on : 21 Jun 19
                                                 Instrument Method: DX.MTH
                              04:55 PM
Report Created on: 24 Jun 19 08:29 AM
                                                 Analysis Method : DEFAULT.MTH
```



Data File Name :	C:\HPCHEM\4\DATA\06-18-19\02'	7F1001.D
Operator :	TL	Page Number : 1
Instrument :	GC#4	Vial Number : 27
Sample Name :	906323-04	Injection Number: 1
Run Time Bar Code:		Sequence Line : 10
Acquired on :	18 Jun 19 07:09 ₽M	Instrument Method: DX.MTH
Report Created on:	19 Jun 19 09:36 AM	Analysis Method : DEFAULT.MTH

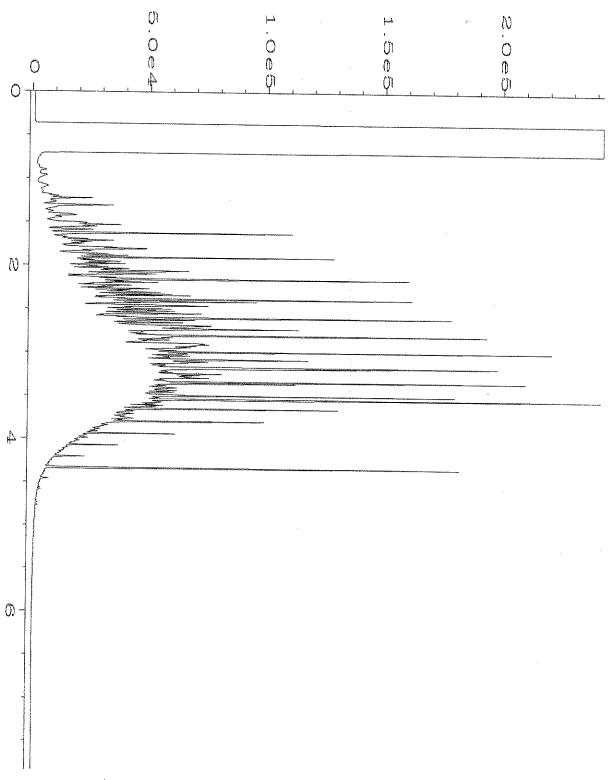

```
Data File Name : C:\HPCHEM\4\DATA\06-18-19\028F1001.D
Operator
                 : TL
                                                 Page Number
Vial Number
                                                                   : 1
Instrument
                 : GC#4
                                                                   : 28
                 : 906323-05 1/10
Sample Name
                                                 Injection Number: 1
Run Time Bar Code:
                                                 Sequence Line
                                                                  : 10
Acquired on
                 : 18 Jun 19 07:22 PM
                                                 Instrument Method: DX.MTH
Report Created on: 19 Jun 19 09:36 AM
                                                 Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\06-18-19\029F1001.D
Operator
                  : TL
                                                   Page Number
                                                                     : 1
Instrument
                  : GC#4
                                                   Vial Number
                                                                     : 29
Sample Name
                  : 906323-06
                                                   Injection Number: 1
Run Time Bar Code:
                                                  Sequence Line : 10
Instrument Method: DX.MTH
Acquired on
                 : 18 Jun 19
                               07:34 PM
Report Created on: 19 Jun 19
                               09:37 AM
                                                  Analysis Method : DEFAULT.MTH
```

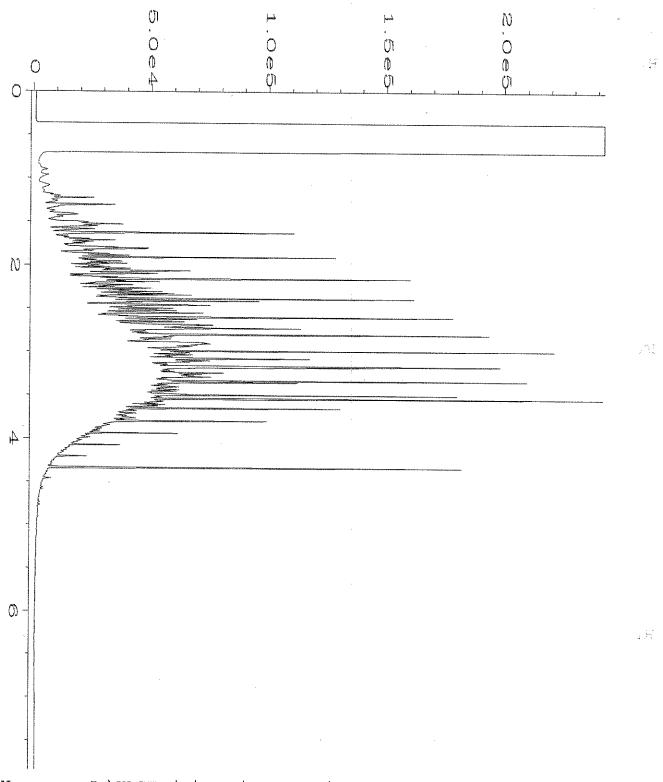


```
Data File Name
                 : C:\HPCHEM\4\DATA\06-18-19\030F1001.D
Operator
                 : TL
                                                Page Number
Instrument
                 : GC#4
                                                Vial Number
                                                                  : 30
Sample Name
                 : 906323-07 1/10
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
                                                                 : 10
Acquired on
                 : 18 Jun 19
                                                Instrument Method: DX.MTH
                              07:46 PM
Report Created on: 19 Jun 19 09:37 AM
                                                Analysis Method : DEFAULT.MTH
```




```
Data File Name : C:\HPCHEM\4\DATA\06-18-19\031F1001.D
Operator
                                              Page Number
                                                               : 1
Instrument
                : GC#4
                                              Vial Number
Sample Name
                : 906323-08 1/10
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on
                : 18 Jun 19 07:58 PM
                                              Instrument Method: DX.MTH
Report Created on: 19 Jun 19 09:37 AM
                                              Analysis Method : DEFAULT.MTH
```




```
Data File Name
                  : C:\HPCHEM\4\DATA\06-18-19\032F1001.D
Operator
Instrument
                  : TL
                                                    Page Number
                                                                      : 1
                  : GC#4
                                                   Vial Number
                                                                      : 32
Sample Name
                  : 906323-09 1/10
                                                   Injection Number: 1
Sequence Line : 10
Run Time Bar Code:
                                                                    : 10
Acquired on
                  : 18 Jun 19 08:10 PM
                                                   Instrument Method: DX.MTH
Report Created on: 19 Jun 19 09:38 AM
                                                   Analysis Method : DEFAULT.MTH
```




```
: C:\HPCHEM\4\DATA\06-18-19\034F1001.D
Data File Name
Operator
                : TL
                                              Page Number
                                                               : 1
Instrument
                : GC#4
                                              Vial Number
Sample Name
                : 906323-11
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on : 18 Jun 19
                             08:34 PM
                                              Instrument Method: DX.MTH
Report Created on: 19 Jun 19 09:38 AM
                                              Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\06-18-19\005F0501.D
Data File Name
Operator
                 : TL
                                                 Page Number
Vial Number
Instrument
                 : GC#4
Sample Name
                 : 1000 Dx 57-78B
                                                 Injection Number: 1
Run Time Bar Code:
                                                 Sequence Line
Acquired on : 18 Jun 19
                               02:55 PM
                                                 Instrument Method: DX.MTH
Report Created on: 19 Jun 19 09:35 AM
                                                 Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\06-18-19\005F0501.D
Operator
                 : TL
                                               Page Number
Instrument
                                               Vial Number
                 : GC#4
                                                                : 5
Sample Name
                 : 1000 Dx 57-78B
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on
                : 18 Jun 19
                                               Instrument Method: DX.MTH
                            02:55 PM
Report Created on: 19 Jun 19 09:35 AM
                                               Analysis Method : DEFAULT.MTH
```

. .

906323

Send Report To Tom Campacata Cc: Logan Schumacher

Company SoundEarth Strategies

Address 2811 Fairview Ave E, Suite 2000

City, State, ZIP <u>Seattle, WA 98102</u>

SAMPLE CHAIN OF CUSTODY

SAMPLERS (Sig. Lature)
SOUND WILLIAM
PROJECT NAME/NO.

Troy Laundry Property

REMARKS

Standard (2 Weeks)

PO#

0731-004-05

EIM Y

Rush charges authorized by:

SAMPLE DISPOSAL

Dispose after 30 days

Return samples

Will call with instructions

Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	GRPH by NWTPH-Gx	BTEX by EPA 8021B	DRPH/ORPH by NWTPH-Dx	cVOCs by EPA 8260C	Methane, Ethane, Ethene by RSK175	Sulfate, Nitrate, Alkalinity by SM1845/SM2320B	Total Fe and Mn by EPA 200.8	Fe 2+ by SM 3500	TOC By EPA 415.1	Notes
MWDS-20190015	MWars			6/15/19	0818	W	14	Х	γ	X	X	X	X	7	オ	X	
MW19-20190615	MW19		02 M		0824	W	13	X	<u> </u>	λ	x	x	γ	γ	Y		
MW18-2019 CK15	MW18		03 N		0935	h	14	x	x	x	k	と	ょ	\	*	V	
MW17-2019 DG15	mwi7		042	•	1030	W	フ	Υ	X	X	V						
MW24-20190615	MW24		05 A	-	1120	W	14	λ	λ	λ	λ	x	χ	x	λ	V	
MW20-20190615	Mwau	_	06 G	•	1120	W	7	Y	X	X	X			- ' '	^		
Mwd1-20190615	mwai		02 K		1232	W	11	$\sqrt{}$	V	V	Ŷ	χ				X	
MW99, 20190615	MWgg	,	08 G		1200	W	7	$\frac{y}{\lambda}$	}	$\frac{\lambda}{Y}$	W					$\stackrel{\wedge}{-}$	
MWdd-2019UGIT	MUDD	~	09 %		1310	- W	141	$\frac{\lambda}{\lambda}$	1		<i>y</i>	ا ما				X	
MW23-20190615	MW23		10 N		1410	1	14			k	*	<u> </u>	K	ょ			
IW91-20190615	IW91		11 1/6		1420	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	x	X	<i>\tau</i>	×	ス 人	x	ナ	x	<u> </u>	
			11 (X		1-140			×	*	x	×						1
												2	$\Delta \perp$:	
							t	× .				7	***		_		

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

0.00117177				_
SIGNATURE /	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: Source Tull A	Sarah Welter	SES	6/17/19	930
Polinguished h	WIGONYANIOYAS	ft) x	6-19-19	930
Received by:	Liz Webber-Brys	F?BI	6/12/19	[[00]
Received by.			× .	Y
		Samı	ples received	at OC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 26, 2019

Tom Cammarata, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Cammarata:

Included are the results from the testing of material submitted on June 17, 2019 from the SOU_0731-004-05_ 20190617, F&BI 906324 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher

SOU0626R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 17, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0731-004-05_ 20190617, F&BI 906324 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
906324 -01	IW06-20190615
906324 -02	IW04-20190615
906324 -03	IW50-20190615
906324 -04	IW61-20190615

Samples IW04-20190615, IW50-20190615, and IW61-20190615 were sent to Fremont Analytical for nitrate, sulfate, alkalinity, TOC, and ferrous iron analysis. In addition, samples IW50-20190615 and IW61-20190615 were sent to Fremont for dissolved gasses analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: IW04-20190615 Client: SoundEarth Strategies

Date Received: 06/17/19 Project: SOU_0731-004-05_20190617

Date Extracted: 06/18/19 Lab ID: 906324-02 x20
Date Analyzed: 06/19/19 Data File: 906324-02 x20.048

Concentration

Analyte: ug/L (ppb)

 Iron
 17,900

 Manganese
 12,900

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: IW50-20190615 Client: SoundEarth Strategies

Date Received: 06/17/19 Project: SOU_0731-004-05_20190617

 Date Extracted:
 06/18/19
 Lab ID:
 906324-03 x10

 Date Analyzed:
 06/18/19
 Data File:
 906324-03 x10.128

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron7,550Manganese9,670

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: IW61-20190615 Client: SoundEarth Strategies

Date Received: 06/17/19 Project: SOU_0731-004-05_20190617

 Date Extracted:
 06/18/19
 Lab ID:
 906324-04 x20

 Date Analyzed:
 06/19/19
 Data File:
 906324-04 x20.049

Concentration

Analyte: ug/L (ppb)

 Iron
 25,500

 Manganese
 11,800

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: SoundEarth Strategies

Date Received: Not Applicable Project: SOU_0731-004-05_20190617

Date Extracted: 06/18/19 Lab ID: I9-375 mb
Date Analyzed: 06/18/19 Data File: I9-375 mb.095
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	IW06-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906324-01
Date Analyzed:	06/19/19	Data File:	061948.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	1.7

ENVIRONMENTAL CHEMISTS

Client Sample ID:	IW04-20190615	Client:	SoundEarth Strategies
Date Received:	06/17/19	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	906324-02
Date Analyzed:	06/19/19	Data File:	061949.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1.0
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	1.7
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received:	IW50-20190615 06/17/19	Client: Project:	SoundEarth Strategies SOU 0731-004-05 20190617
Date Extracted:	06/19/19	Lab ID:	906324-03
Date Analyzed:	06/19/19	Data File:	061950.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	95	63	127
4-Bromofluorobenzene	94	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	7.1
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	54
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	2.0
Tetrachloroethene	5.2

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received:	IW61-20190615 06/17/19	Client: Project:	SoundEarth Strategies SOU 0731-004-05 20190617
Date Extracted:	06/19/19	Lab ID:	906324-04
Date Analyzed:	06/19/19	Data File:	061951.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN
		=	

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	118	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	2.9
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	71
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	2.4
Tetrachloroethene	13

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0731-004-05_ 20190617
Date Extracted:	06/19/19	Lab ID:	09-1429 mb
Date Analyzed:	06/19/19	Data File:	061911.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	92	60	133

	~ -
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19 Date Received: 06/17/19

Project: SOU_0731-004-05_ 20190617, F&BI 906324

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 906321-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	152	89	85	70-130	5
Manganese	ug/L (ppb)	20	30.6	101	95	70-130	6

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	99	85-115
Manganese	ug/L (ppb)	20	95	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 06/26/19 Date Received: 06/17/19

Project: SOU_0731-004-05_ 20190617, F&BI 906324

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 906324-03 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	7.1	116	36-166
Chloroethane	ug/L (ppb)	50	<1	108	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	106	60-136
Methylene chloride	ug/L (ppb)	50	<5	107	67 - 132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	109	72 - 129
1,1-Dichloroethane	ug/L (ppb)	50	<1	105	70-128
cis-1,2-Dichloroethene	ug/L (ppb)	50	54	108 b	71 - 127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	97	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	109	60-146
Trichloroethene	ug/L (ppb)	50	2.0	99	66 - 135
Tetrachloroethene	ug/L (ppb)	50	5.2	103	10-226

Laboratory Code: Laboratory Control Sample

		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
ug/L (ppb)	50	131	118	50 - 154	10
ug/L (ppb)	50	119	107	58-146	11
ug/L (ppb)	50	116	105	67-136	10
ug/L (ppb)	50	115	104	39-148	10
ug/L (ppb)	50	118	107	68-128	10
ug/L (ppb)	50	112	104	79 - 121	7
ug/L (ppb)	50	116	108	80-123	7
ug/L (ppb)	50	102	101	73 - 132	1
ug/L (ppb)	50	118	108	81-125	9
ug/L (ppb)	50	105	101	79-113	4
ug/L (ppb)	50	107	102	76-121	5
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 50 ug/L (ppb) 50	Units Level LCS ug/L (ppb) 50 131 ug/L (ppb) 50 119 ug/L (ppb) 50 116 ug/L (ppb) 50 115 ug/L (ppb) 50 118 ug/L (ppb) 50 112 ug/L (ppb) 50 116 ug/L (ppb) 50 102 ug/L (ppb) 50 118 ug/L (ppb) 50 105	Reporting Units Spike Level Recovery LCS Recovery LCSD ug/L (ppb) 50 131 118 ug/L (ppb) 50 119 107 ug/L (ppb) 50 116 105 ug/L (ppb) 50 115 104 ug/L (ppb) 50 118 107 ug/L (ppb) 50 112 104 ug/L (ppb) 50 116 108 ug/L (ppb) 50 102 101 ug/L (ppb) 50 118 108 ug/L (ppb) 50 105 101	Reporting Units Spike Level Recovery LCS Recovery LCSD Acceptance Criteria ug/L (ppb) 50 131 118 50-154 ug/L (ppb) 50 119 107 58-146 ug/L (ppb) 50 116 105 67-136 ug/L (ppb) 50 115 104 39-148 ug/L (ppb) 50 118 107 68-128 ug/L (ppb) 50 112 104 79-121 ug/L (ppb) 50 116 108 80-123 ug/L (ppb) 50 102 101 73-132 ug/L (ppb) 50 118 108 81-125 ug/L (ppb) 50 105 101 79-113

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 906324

Work Order Number: 1906195

June 24, 2019

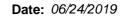
Attention Michael Erdahl:

Fremont Analytical, Inc. received 3 sample(s) on 6/17/2019 for the analyses presented in the following report.

Dissolved Gases by RSK-175
Ferrous Iron by SM3500-Fe B
Ion Chromatography by EPA Method 300.0
Total Alkalinity by SM 2320B
Total Organic Carbon by SM 5310C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 906324 **Work Order:** 1906195

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1906195-001	IW04-20190615	06/15/2019 10:17 AM	06/17/2019 1:45 PM
1906195-002	IW50-20190615	06/15/2019 12:05 PM	06/17/2019 1:45 PM
1906195-003	IW61-20190615	06/15/2019 1:25 PM	06/17/2019 1:45 PM

Case Narrative

WO#: **1906195**Date: **6/24/2019**

CLIENT: Friedman & Bruya

Project: 906324

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1906195**

Date Reported: 6/24/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: 1906195

Date Reported: 6/24/2019

Client: Friedman & Bruya Collection Date: 6/15/2019 10:17:00 AM

Project: 906324

Lab ID: 1906195-001 **Matrix:** Water

Client Sample ID: IW04-20190615

Analyses	Result	RL	Qual	Units	DF	. Da	te Analyzed
lon Chromatography by EPA Me	ethod 300.0			Bato	h ID:	24947	Analyst: SS
Nitrate (as N)	ND	0.100	Н	mg/L	1	6/18/2	2019 12:38:00 PM
Sulfate	0.759	0.300		mg/L	1	6/18/2	2019 12:38:00 PM
Total Organic Carbon by SM 53	<u>10C</u>			Bato	h ID:	R52199	Analyst: GM
Total Organic Carbon	148	2.50	D	mg/L	5	6/19/2	2019 11:14:00 AM
Total Alkalinity by SM 2320B				Bato	h ID:	R52247	Analyst: WF
Alkalinity, Total (As CaCO3)	611	2.50		mg/L	1	6/21/2	2019 1:25:44 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID:	R52165	Analyst: GM
Ferrous Iron	0.0865	0.0500	Н	mg/L	1	6/19/2	2019 5:00:00 PM

Work Order: **1906195**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/15/2019 12:05:00 PM

Project: 906324

Lab ID: 1906195-002 **Matrix:** Water

Client Sample ID: IW50-20190615

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed	
Dissolved Gases by RSK-175				Bato	ch ID: R5	2203	Analyst: SG	
Methane	3.11	0.173	D	mg/L	20	6/19/	2019 5:00:00 PM	
Ethene	ND	0.303	D	mg/L	20	6/19/	2019 5:00:00 PM	
Ethane	ND	0.324	D	mg/L	20	6/19/	2019 5:00:00 PM	
Ion Chromatography by EPA Me	ethod 300.0			Bato	ch ID: 24	947	Analyst: SS	
Nitrate (as N)	ND	0.100	Н	mg/L	1	6/18/	'2019 2:11:00 PM	
Sulfate	11.0	0.300		mg/L	1	6/18/	2019 2:11:00 PM	
Total Organic Carbon by SM 53	<u>10C</u>			Bato	h ID: R5	2199	Analyst: GM	
Total Organic Carbon	7.56	0.500		mg/L	1	6/18/	'2019 6:41:00 PM	
Total Alkalinity by SM 2320B				Bato	h ID: R5	2247	Analyst: WF	
Alkalinity, Total (As CaCO3)	299	2.50		mg/L	1	6/21/	2019 1:25:44 PM	
Ferrous Iron by SM3500-Fe B				Bato	ch ID: R5	2165	Analyst: GM	
Ferrous Iron	7.08	0.500	DH	mg/L	10	6/19/	2019 5:00:00 PM	

Work Order: **1906195**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/15/2019 1:25:00 PM

Project: 906324

Lab ID: 1906195-003 **Matrix:** Water

Client Sample ID: IW61-20190615

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Dissolved Gases by RSK-175				Bato	ch ID: R5	2203	Analyst: SG
Methane	2.44	0.173	D	mg/L	20	6/19/	2019 5:03:00 PM
Ethene	ND	0.303	D	mg/L	20	6/19/	2019 5:03:00 PM
Ethane	ND	0.324	D	mg/L	20	6/19/	2019 5:03:00 PM
Ion Chromatography by EPA M	ethod 300.0			Bato	ch ID: 24	947	Analyst: SS
Nitrate (as N)	ND	0.100	Н	mg/L	1	6/18/	2019 2:34:00 PM
Sulfate	0.338	0.300		mg/L	1	6/18/	2019 2:34:00 PM
Total Organic Carbon by SM 53	10C			Bato	h ID: R5	2199	Analyst: GM
Total Organic Carbon	140	2.50	D	mg/L	5	6/18/	2019 11:58:00 PM
Total Alkalinity by SM 2320B				Bato	h ID: R5	2247	Analyst: WF
Alkalinity, Total (As CaCO3)	429	2.50		mg/L	1	6/21/	2019 1:25:44 PM
Ferrous Iron by SM3500-Fe B				Bato	ch ID: R5	2165	Analyst: GM
Ferrous Iron	30.5	2.50	DH	mg/L	50	6/19/	2019 5:00:00 PM

Work Order: 1906195

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

906324

Total Alkalinity by SM 2320B

Qual

Sample ID: MB-R52247	SampType: MBLK			Units: mg/L		Prep Date: 6/21/2019	RunNo: 52247	
Client ID: MBLKW	Batch ID: R52247					Analysis Date: 6/21/2019	SeqNo: 1031932	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	(

Alkalinity, Total (As CaCO3) ND 2.50

Sample ID: LCS-R52247	SampType: LCS			Units: mg/L		Prep Da	te: 6/21/20	19	RunNo: 522	247	
Client ID: LCSW	Batch ID: R52247					Analysis Da	ite: 6/21/20	19	SeqNo: 103	31933	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alkalinity, Total (As CaCO3)	104	2.50	100.0	0	104	80	120				

Sample ID: 1906195-001BDUP	SampType: DUP		Units: mg/L		Prep Da	te: 6/21/20	19	RunNo: 522	<u>2</u> 47	
Client ID: IW04-20190615	Batch ID: R52247				Analysis Da	te: 6/21/20	19	SeqNo: 103	31935	
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alkalinity, Total (As CaCO3)	618	2.50					611.0	1.06	20	

Original Page 8 of 16

Work Order: 1906195

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ferrous Iron by SM3500-Fe B

SeqNo: 1030009

0.182

%RPD RPDLimit

Qual

SH

20

Project: 906324							Ferr	ous Iron b	y SM350	0-Fe E
Sample ID: MB-R52165	SampType: MBLK			Units: mg/L		Prep Date: 6/19/2019		RunNo: 521	165	
Client ID: MBLKW	Batch ID: R52165					Analysis Date: 6/19/2019		SeqNo: 102	29999	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPI	D Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	ND	0.0500								
Sample ID: LCS-R52165	SampType: LCS			Units: mg/L		Prep Date: 6/19/2019		RunNo: 521	165	
Client ID: LCSW	Batch ID: R52165					Analysis Date: 6/19/2019		SeqNo: 103	30000	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPI	D Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	0.406	0.0500	0.4000	0	101	80 120				
Sample ID: 1906196-001ADUP	SampType: DUP			Units: mg/L		Prep Date: 6/19/2019		RunNo: 521	165	
Client ID: BATCH	Batch ID: R52165					Analysis Date: 6/19/2019		SeqNo: 103	30007	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPI	D Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	0.922	0.0500					1.023	10.4	20	Н
Sample ID: 1906196-001AMS	SampType: MS			Units: mg/L		Prep Date: 6/19/2019		RunNo: 521	165	
Client ID: BATCH	Batch ID: R52165					Analysis Date: 6/19/2019		SeqNo: 103	80008	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPI	D Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron NOTES: S - Outlying spike recovery(ies) of	1.29 observed. A duplicate anal	0.0500 ysis was pe	0.4000 erformed with s	1.023 similar results indicar	66.9	80 120 sible matrix effect.				SH
Sample ID: 1906196-001AMSD	SampType: MSD			Units: mg/L		Prep Date: 6/19/2019		RunNo: 521	165	

Ferrous Iron NOTES:

Client ID:

Analyte

BATCH

0.0500

RL

R52165

Result

1.29

Batch ID:

Page 9 of 16 Original

1.023

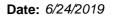
%REC

67.5

SPK value SPK Ref Val

0.4000

Analysis Date: 6/19/2019

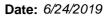

80

LowLimit HighLimit RPD Ref Val

120

1.291

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

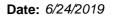

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 906324						ion Chromatogra	aphy by EPA Method 300.
Sample ID: MB-24947	SampType: MBLK			Units: mg/L		Prep Date: 6/17/2019	RunNo: 52162
Client ID: MBLKW	Batch ID: 24947					Analysis Date: 6/17/2019	SeqNo: 1029908
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate (as N)	ND	0.100					
Sulfate	ND	0.300					
Sample ID: LCS1-24947	SampType: LCS			Units: mg/L		Prep Date: 6/17/2019	RunNo: 52162
Client ID: LCSW	Batch ID: 24947					Analysis Date: 6/17/2019	SeqNo: 1029909
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate (as N)	0.739	0.100	0.7500	0	98.5	90 110	
Sulfate	3.65	0.300	3.750	0	97.4	90 110	
Sample ID: LCS2-24947	SampType: LCS			Units: mg/L		Prep Date: 6/17/2019	RunNo: 52162
Client ID: LCSW	Batch ID: 24947					Analysis Date: 6/18/2019	SeqNo: 1029925
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate (as N)	0.725	0.100	0.7500	0	96.7	90 110	
Sulfate	3.57	0.300	3.750	0	95.2	90 110	
Sample ID: LCS3-24947	SampType: LCS			Units: mg/L		Prep Date: 6/17/2019	RunNo: 52162
Client ID: LCSW	Batch ID: 24947					Analysis Date: 6/18/2019	SeqNo: 1029926
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate (as N)	0.725	0.100	0.7500	0	96.7	90 110	
Sulfate	3.55	0.300	3.750	0	94.6	90 110	
Sample ID: LCS4-24947	SampType: LCS			Units: mg/L		Prep Date: 6/17/2019	RunNo: 52162
Client ID: LCSW	Batch ID: 24947					Analysis Date: 6/18/2019	SeqNo: 1029927
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate (as N)	0.732	0.100	0.7500	0	97.6	90 110	

Original Page 10 of 16


QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 906324							ion Cn	romatogra	ony by EP	A Method	300.0
Sample ID: LCS4-24947	SampType: LCS			Units: mg/L		Prep Date	: 6/17/20	19	RunNo: 52	162	
Client ID: LCSW	Batch ID: 24947					Analysis Date	e: 6/18/20	19	SeqNo: 102	29927	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfate	3.73	0.300	3.750	0	99.4	90	110				
Sample ID: 1906195-001BDUP	SampType: DUP			Units: mg/L		Prep Date	e: 6/17/20	19	RunNo: 52 °	162	
Client ID: IW04-20190615	Batch ID: 24947					Analysis Date	e: 6/18/20	19	SeqNo: 102	29933	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	ND	0.100						0		20	Н
Sulfate	0.749	0.300						0.7590	1.33	20	
Sample ID: 1906195-001BMS	SampType: MS			Units: mg/L		Prep Date	e: 6/17/20	19	RunNo: 52	162	
Client ID: IW04-20190615	Batch ID: 24947					Analysis Date	e: 6/18/20	19	SeqNo: 102	29934	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	0.787	0.100	0.7500	0.09000	92.9	80	120				Н
Sulfate	4.20	0.300	3.750	0.7590	91.8	80	120				
Sample ID: 1906195-001BMSD	SampType: MSD			Units: mg/L		Prep Date	e: 6/17/20	19	RunNo: 52 ′	162	
Client ID: IW04-20190615	Batch ID: 24947					Analysis Date	e: 6/18/20	19	SeqNo: 102	29935	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
A.U									2 222		
Nitrate (as N)	0.784	0.100	0.7500	0.09000	92.5	80	120	0.7870	0.382	20	Н

Original Page 11 of 16

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Organic Carbon by SM 5310C

Project: 906324								Total Orga	anic Carbo	on by Sivi	5310C
Sample ID: MBLK-52199	SampType: MBLK			Units: mg/L		Prep Date:	6/18/201	9	RunNo: 52	199	
Client ID: MBLKW	Batch ID: R52199					Analysis Date:	6/18/201	9	SeqNo: 103	30537	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	ND	0.500									
Sample ID: LCS-52199	SampType: LCS			Units: mg/L		Prep Date:	6/18/201	9	RunNo: 52	199	
Client ID: LCSW	Batch ID: R52199					Analysis Date:	6/18/201	9	SeqNo: 103	30538	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	5.14	0.500	5.000	0	103	80	120				
Sample ID: 1906179-001DDUP	SampType: DUP			Units: mg/L		Prep Date:	6/18/201	9	RunNo: 52	199	
Client ID: BATCH	Batch ID: R52199					Analysis Date:	6/18/201	9	SeqNo: 103	30540	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	1.14	0.500						1.129	0.618	20	
Sample ID: 1906179-001DMS	SampType: MS			Units: mg/L		Prep Date:	6/18/201	9	RunNo: 52 °	199	
Client ID: BATCH	Batch ID: R52199					Analysis Date	6/18/201	9	SeqNo: 103	30541	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	6.48	0.500	5.000	1.129	107	70	130				
Sample ID: 1906179-001DMSD	SampType: MSD			Units: mg/L		Prep Date:	6/18/201	9	RunNo: 52 °	199	
Client ID: BATCH	Batch ID: R52199					Analysis Date	6/18/201	9	SeqNo: 103	30542	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	6.28	0.500	5.000	1.129	103	70	130	6.478	3.02	30	

Original Page 12 of 16

Work Order: 1906195

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

906324

Total Organic Carbon by SM 5310C

Sample ID: 1906197-001DDUP SampType: DUP Units: mg/L Prep Date: 6/18/2019 RunNo: 52199

Client ID: BATCH Batch ID: R52199 Analysis Date: 6/18/2019 SeqNo: 1030549

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Total Organic Carbon 26.0 0.500 25.77 0.927 20

Sample ID: 1906197-001DMS Prep Date: 6/18/2019 SampType: MS Units: mg/L RunNo: 52199 Client ID: BATCH Batch ID: R52199 Analysis Date: 6/18/2019 SeqNo: 1030550 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Total Organic Carbon 31.0 0.500 5.000 25.77 104 70 130

Original Page 13 of 16

Work Order: 1906195

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

906324

Dissolved Gases by RSK-175

Sample ID: LCS-R52203	SampType: LCS			Units: mg/L		Prep Dat	te: 6/19/201	9	RunNo: 522	203	
Client ID: LCSW	Batch ID: R52203					Analysis Da	te: 6/19/201 9	9	SeqNo: 103	30678	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Methane	1,020	0.00863	1,000	0	102	70	130				
Ethene	976	0.0151	1,000	0	97.6	70	130				
Ethane	973	0.0162	1,000	0	97.3	70	130				
						Draw Day		•	D N 500	100	
Sample ID: MB-R52203	SampType: MBLK			Units: mg/L		Prep Da	te: 6/19/201 9	9	RunNo: 522	203	
Sample ID: MB-R52203 Client ID: MBLKW	SampType: MBLK Batch ID: R52203			Units: mg/L		•	te: 6/19/2019 te: 6/19/2019		SeqNo: 103		
· '		RL	SPK value	-	%REC	Analysis Da		9			Qual
Client ID: MBLKW	Batch ID: R52203	RL 0.00863	SPK value	-		Analysis Da	te: 6/19/201	9	SeqNo: 103	30679	Qual
Client ID: MBLKW Analyte	Batch ID: R52203 Result		SPK value	-		Analysis Da	te: 6/19/201	9	SeqNo: 103	30679	Qual

Sample ID: 1906152-001AREP	SampType: REP			Units: mg/L		Prep Da	te: 6/19/2 0	19	RunNo: 522	203	
Client ID: BATCH	Batch ID: R52203					Analysis Da	te: 6/19/2 0	19	SeqNo: 103	0653	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane	4.81	0.173						4.601	4.43	30	DE
Ethene	ND	0.303						0		30	D
Ethane	ND	0.324						0		30	D

NOTES:

Original Page 14 of 16

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample Log-In Check List

C	lient Name:	FB		Work O	rder Num	nber: 1906195		
Lo	ogged by:	Clare Griggs		Date Re	eceived:	6/17/2019	1:45:00 PM	
Cha	in of Custo	ody						
1.	Is Chain of C	ustody complete?		Yes	✓	No 🗌	Not Present	
2.	How was the	sample delivered?		<u>Fedl</u>	<u> </u>			
Log	ı İn							
_	Coolers are p	resent?		Yes	✓	No 🗌	na 🗆	
O.	·							
4.	Shipping con	tainer/cooler in good condition	?	Yes	✓	No 🗆		
5.		s present on shipping contain nments for Custody Seals not		Yes		No 🗸	Not Required	
6.	Was an atten	npt made to cool the samples?)	Yes	✓	No 🗌	NA \square	
7.	Were all item	s received at a temperature of	>0°C to 10.0°C*	Yes	✓	No 🗆	na 🗆	
8.	Sample(s) in	proper container(s)?		Yes	✓	No 🗆		
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No 🗆		
10.	Are samples	properly preserved?		Yes	✓	No 🗌		
11.	Was preserva	ative added to bottles?		Yes		No 🗸	NA \square	
12.	Is there head	space in the VOA vials?		Yes		No 🗸	NA \square	
13.	Did all sample	es containers arrive in good co	ondition(unbroken)?	Yes	✓	No 🗌		
14.	Does paperw	ork match bottle labels?		Yes	✓	No 🗌		
15.	Are matrices	correctly identified on Chain o	f Custody?	Yes	✓	No 🗌		
16.	Is it clear wha	at analyses were requested?		Yes	✓	No 🗌		
17.	Were all hold	ing times able to be met?		Yes		No 🗸		
Spe	cial Handli	ing (if applicable)						
		otified of all discrepancies with	this order?	Yes		No 🗆	NA 🗸	
	Person	Notified:	Dat	te:				
	By Who	m:	Via	: eMa	ail 🗌 P	hone Fax [In Person	
	Regardi	ng:						
	Client In	structions:						
19.	Additional rer	marks:						
Item	<u>Information</u>							
		Item #	Temp °C					
	Cooler		9.6					

8.7

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Send Report <u>To</u>	Michae	el Erdahl			SUBCON	TRACT	ER	Frmo	+			1	90	Page #ofTURNAROUND TIME			
Company	Friedm	an and Bruya	, Inc.		PROJECT NAME/NO. PO#						Standard (2 Weeks)						
Address	3012 16	oth Ave W		1	906324 8-297						Rush charges authorized by:						
City, State, ZIP_ <u>\$</u>			06) 283-5044		REMARK:	S lease E	mail I	Result	ts					□ Dispo □ Retur	SAMPLE DISP ose after 30 day n samples call with instru	7S	
									ANA	LYSE	SRE	QUES	TED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Matri	# of jars	Dioxins/Furans	ЕРН	VPH	RSK 175 GHANG		Alkelinity			. 1	1	Notes	
WOY-20190615		6/15/19	1017	H20						×	*	*	*	×			
NS0 - 20190615			1205	i					×	×	×	*	>	×			
W61 - 20190615		1	1325	1				- 1	×	×	*	*	×	*			
																-	
	-	-															
	-						_	_		-							
	-				+	-	+	-		-	-						
					+	-	-	\dashv	_	_		_					
iedman & Bruya, I	Inc.		GIGNATURE		+	DI	RINT	NAME	Tr		1		MPA	NTV	Dime	l my co	
2 16th Avenue We		Relimquithed by:			Micha	el Erd		1			Frie	dman			DATE	TIME	
ttle, WA 98119-20	_	Received by	/=		()	0	1	1	+	-	-	DIA	7		6/17/19	12:06	
(206) 285-8282	I	Relinquished by:			~	9	W-W	V		,	-	VV	1		10/17/19	1345	
(206) 283-5044	F	Received by:									-						

906324
Send Report To Tom Cammarata cc: Logan Schumacher

Company SoundEarth Strategies

Address 2811 Fairview Ave E, Suite 2000

City, State, ZIP Seattle, WA 98102

SAMPLE CHAIN OF CUSTODY	m∈ 06.	-17-19 , VW3
SAMPLERS (sig rure)	g-=	TURNAROUND TIME AT 3
PROJECT NAME/NO.	PO #	(Standard (2 Weeks)
Troy Laundry Property	0731-004-05	Rush charges authorized by:
REMARKS	EIM Y	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	GRPH by NWTPH-Gx	BTEX by EPA 8021B	DRPH/ORPH by NWTPH-Dx	cVOCs by EPA 8260C	Methane, Ethane, Ethene by RSK175	Sulfate, Nitrate, Alkalinity by SM1845/SM2320B	Total Fe and Mn ty EPA 200.8	Fe 2+ try SM 3500	TOC By EPA 415.1	Notes
IWO6-20190615	Twol,	-	OIA.	de/15/19	0942	لما	3				<u> </u>						
TIMUH-2014/06/4	ZIJOY		02 A		1017	W	7				У_		γ	እ	X	У	
IWH-20140415 7W60-20190415	TWO		63 A	2	12.05	W	10				У	X	У	χ	χ	k	
IW41-20190415	7661		04 1		1325	ι _/	10				χ	<i>y</i> -	X	ኦ	Y	×	
									(Sh								
AND THE RESIDENCE OF THE PROPERTY OF THE PROPE																	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by Savan Lulla	Sagn welter	SES	6/17/19	930
Received by:	WILSON MAGUES	FORK	6-17-101	930
Relinquished D. M.R.	Liz Webber-Buyer	F?B(6/17/19	1100
Received by:		Samp	les receive	dat 4

SiREM File Reference: S-5382

Analytical Results

Client: SoundEarth Strategies

Client Project Number: 0731-004 Date Samples Received: June 18, 2019 Date Samples Analyzed: June 25, 2019

Client Sample ID	SiREM Reference ID	Client Sample	Sample dilution	Lactate	Acetate	Propionate	Formate	Butyrate	Pyruvate
Short Sample 12	OINEM Notorolloc 15	Date	factor	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
MW25-20190615	19-1594	15-Jun-19	50	< 0.39	45	1.3	<0.22	1.3	<0.69
MW18-20190615	19-1595	15-Jun-19	50	< 0.39	<0.54	<0.31	<0.22	< 0.41	<0.69
IW04-20190615	19-1596	15-Jun-19	50	< 0.39	31	6.1	<0.22	3.2	0.42
MW24-20190615	19-1597	15-Jun-19	50	< 0.39	39	5.6	<0.22	0.46	<0.69
IW50-20190615	19-1598	15-Jun-19	50	< 0.39	<0.54	<0.31	<0.22	< 0.41	<0.69
MW21-20190615	19-1599	15-Jun-19	50	< 0.39	140	66	<0.22	12	4.2
MW22-20190615	19-1600	15-Jun-19	50	< 0.39	270	150	<0.22	39	13
IW61-20190615	19-1601	15-Jun-19	50	< 0.39	88	72	<0.22	4.4	0.58
MW23-20190615	19-1602	15-Jun-19	50	<0.39	19	86	<0.22	0.42	1.8
		QL	50	0.39	0.54	0.31	0.22	0.41	0.69

0-				
CΟ	m	m	eı	าts:

Method: Ion Chromatography

QL = Quantitation limit

J = associated value is estimated; compound positively detected at concentration below the QL

< = compound analysed for but not detected, associated value is QL. Sample QL is corrected for dilution.</p>

Analyst:

Results approved:

Date:

Michael Healty

26-Jun-19

Steven Sande Michael Healey, B.Sc.
Laboratory Technician Laboratory Technician

180A Market Place BI Knoxville, TN 37! (865) 330-003/ Lab# S-5382

Project Name, Project # 0731-004							Preserv	rative		Analys	is				
Project Manager (LOGan	Schi	mach-					0					#			
Email LSCHUMAC	CHERG	SOUND	EARTH	INC. CO	om	e1870-2007	Achs					und f		December 1	
Company Sand Earth							4							Preservative Key O. None	
	ITA Du		whe d	2000			tath					centrituse		1. HCL 2. Other	
Seattle,							7					ct Vi		3. Other	
Phone # 20a-30a-19		10/00					4							4. Other 5. Other	
Sampler's Such We	11 -	Sampler's F	rinted C	arah welter			Vol					V6A		6. Other	
Client Sample ID	Lab I		Samp	oling	Matrix	# of Containers								Other Informati	nn.
			Date	Time		2	Y			-	- -	1		Other morning	-
19435-20190615 MW18-20190615			4/15/14	0935	w	2	Y			\dashv	++	2			
IWO4-20190615				1017	100	a	Y			-		3			
MWALI- 20190415				1120	W	a	Y			\dashv		4			
ZW50-20190618				1205	W	a	X		$\dashv \dashv$	\top	\top	5	1x Bus	વાહ	
MW21-2019 0415				1232	W	2	X			\neg		6			
Mh/22-20190415				1310	W	a	k					7	1x Bub	ble	
IWG1-20190415				1325	4	2	k					B			
MW 23-20140615				1410	4	2	×					9			
										\perp					
Cooler Condition: Sample Recei	ipt	P.O. #	O 731	In 1-004	voice Inform -/- 6 S			•		H.			For Lab Use Onl	у	
Cooler Temperature: 9.0 'C	ľ	Bill To:	APO	o soul	NDEA	RTHIN	C.CO	m							
Custody Seals: Yes	No 🗷	LSC	Hum.	ACHE	26500	LNDEAR	ZHT	NC. Com					فالاند		
Relinquished By:	Signature	Received By	:	Signatyre	Relinquis	hed By:	Sign	Received I	By:	Τ,	Re Signature	linquishe	d By:	Rece Signature	ived By:
Bank Mulk Smith		1. //	san	Morris		Raddlik		> `	ailtriarme.			Signature			
Printed Sarah Well-W Printed Name J. Smill		Printed 5	Usan	Thomas	Prin Nan	ne Rachel Ha	Maar	Printed Name				Printed Name			
Firm Sound Farth	Firm _ S	SIREM		Firm 5	ME	U	Firm	S.REM	,	Firm			Firm		
G/17/19 0936 Date/Time 6.18.19 0915		Date/Time	9-15	(500 Date/Time 22:1			12:10	2:10 Date/Time Date/Time			tag.or				

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 906291

Work Order Number: 1906179

June 24, 2019

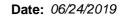
Attention Michael Erdahl:

Fremont Analytical, Inc. received 3 sample(s) on 6/14/2019 for the analyses presented in the following report.

Dissolved Gases by RSK-175
Ferrous Iron by SM3500-Fe B
Ion Chromatography by EPA Method 300.0
Total Alkalinity by SM 2320B
Total Organic Carbon by SM 5310C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 906291 **Work Order:** 1906179

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1906179-001	MW26-20190614	06/14/2019 9:50 AM	06/14/2019 4:41 PM
1906179-002	MW07-20190614	06/14/2019 10:50 AM	06/14/2019 4:41 PM
1906179-003	MW04-20190614	06/14/2019 11:05 AM	06/14/2019 4:41 PM

Case Narrative

WO#: **1906179**Date: **6/24/2019**

CLIENT: Friedman & Bruya

Project: 906291

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1906179**

Date Reported: 6/24/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1906179**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/14/2019 9:50:00 AM

Project: 906291

Lab ID: 1906179-001 **Matrix:** Water

Client Sample ID: MW26-20190614

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Dissolved Gases by RSK-175				Bato	ch ID: R	52203	Analyst: SG
Methane	4.12	0.173	D	mg/L	20	6/19/	2019 4:48:00 PM
Ethene	ND	0.303	D	mg/L	20	6/19/	2019 4:48:00 PM
Ethane	ND	0.324	D	mg/L	20	6/19/	2019 4:48:00 PM
Ion Chromatography by EPA N	lethod 300.0			Bato	ch ID: 24	1928	Analyst: SS
Nitrate (as N)	7.10	0.500	DH	mg/L	5	6/17/	2019 1:42:00 PM
Nitrate (as N)	7.86	0.100	Е	mg/L	1	6/14/	2019 6:37:00 PM
Sulfate NOTES:	45.0	1.50	D	mg/L	5	6/17/	2019 1:42:00 PM
E - Estimated value. The amount exce Total Organic Carbon by SM 5	, and the second	range or the	instrument.		h ID: R	52199	Analyst: GM
Total Organic Carbon	1.13	0.500		mg/L	1	6/18/	2019 4:27:00 PM
Total Alkalinity by SM 2320B				Bato	h ID: R	52246	Analyst: WF
Alkalinity, Total (As CaCO3)	78.0	2.50		mg/L	1	6/24/	2019 1:25:36 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID: R	52152	Analyst: GM
Ferrous Iron	0.136	0.0500		mg/L	1	6/14/	2019 4:30:00 PM

Work Order: **1906179**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/14/2019 10:50:00 AM

Project: 906291

Lab ID: 1906179-002 **Matrix:** Water

Client Sample ID: MW07-20190614

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Dissolved Gases by RSK-175				Bato	h ID: R	R52203	Analyst: SG
Methane	ND	0.00863		mg/L	1	6/19/	2019 4:51:00 PM
Ethene	ND	0.0151		mg/L	1	6/19/	2019 4:51:00 PM
Ethane	ND	0.0162		mg/L	1	6/19/	2019 4:51:00 PM
Ion Chromatography by EPA M	ethod 300.0			Bato	h ID: 2	4928	Analyst: SS
Nitrate (as N)	29.1	2.00	DH	mg/L	20	6/17/	2019 2:05:00 PM
Nitrate (as N)	32.5	0.100	Е	mg/L	1	6/14/	2019 8:09:00 PM
Sulfate	51.0	3.00	D	mg/L	10	6/17/	2019 2:28:00 PM
NOTES: E - Estimated value. The amount exceed	eds the linear workin	g range of the	instrument.				
Total Organic Carbon by SM 53	310C			Bato	h ID: R	R52199	Analyst: GM
Total Organic Carbon	0.869	0.500		mg/L	1	6/18/	2019 5:47:00 PM
Total Alkalinity by SM 2320B				Bato	h ID: R	R52246	Analyst: WF
Alkalinity, Total (As CaCO3)	23.4	2.50		mg/L	1	6/24/	2019 1:25:36 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID: R	R52152	Analyst: GM
Ferrous Iron	0.0818	0.0500		mg/L	1	6/14/	2019 4:30:00 PM

Work Order: **1906179**Date Reported: **6/24/2019**

Client: Friedman & Bruya Collection Date: 6/14/2019 11:05:00 AM

Project: 906291

Lab ID: 1906179-003 **Matrix:** Water

Client Sample ID: MW04-20190614

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Bato	h ID: R5	52203 Analyst: SG
Methane	ND	0.00863		mg/L	1	6/19/2019 4:54:00 PM
Ethene	ND	0.0151		mg/L	1	6/19/2019 4:54:00 PM
Ethane	ND	0.0162		mg/L	1	6/19/2019 4:54:00 PM
Ion Chromatography by EPA Met	hod 300.0			Bato	h ID: 24	928 Analyst: SS
Nitrate (as N)	14.8	1.00	DH	mg/L	10	6/17/2019 2:51:00 PM
Nitrate (as N)	16.4	0.100	E	mg/L	1	6/14/2019 8:32:00 PM
Sulfate	46.7	3.00	D	mg/L	10	6/17/2019 2:51:00 PM
NOTES:						
E - Estimated value. The amount exceeds	the linear workin	g range of the	instrument.			
Total Alkalinity by SM 2320B				Bato	h ID: R5	52246 Analyst: WF
Alkalinity, Total (As CaCO3)	66.3	2.50		mg/L	1	6/24/2019 1:25:36 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID: R5	52152 Analyst: GM
Ferrous Iron	0.129	0.0500		mg/L	1	6/14/2019 4:30:00 PM

Work Order: 1906179

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

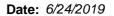
906291

Total Alkalinity by SM 2320B

Client ID: **MBLKW** Batch ID: **R52246** Analysis Date: **6/24/2019** SeqNo: **1031682**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) ND 2.50


Sample ID LCS-R52246	SampType: LCS			Units: mg/L		Prep Date	e: 6/24/2019	RunNo: 52	246	
Client ID: LCSW	Batch ID: R52246					Analysis Date	e: 6/24/2019	SeqNo: 10	31683	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	%RPD	RPDLimit	Qual

Alkalinity, Total (As CaCO3) 103 2.50 100.0 0 103 80 120

Sample ID	1906179-001BDUP	SampType: DUP			Units: mg/L		Prep Date:	6/24/2019	RunNo: 52246	6	
Client ID:	MW26-20190614	Batch ID: R52246					Analysis Date:	6/24/2019	SeqNo: 10316	685	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD R	RPDLimit	Qual

Alkalinity, Total (As CaCO3) 84.5 2.50 78.00 8.00 20

Original Page 8 of 16

QC SUMMARY REPORT

Friedman & Bruya CLIENT:

Project: 906291	ышуа				Ferrous Iron by SM3500-Fe
Sample ID MB-R52152	SampType: MBLK			Units: mg/L	Prep Date: 6/14/2019 RunNo: 52152
Client ID: MBLKW	Batch ID: R52152				Analysis Date: 6/14/2019 SeqNo: 1029748
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Ferrous Iron	ND	0.0500			
Sample ID LCS-R52152	SampType: LCS			Units: mg/L	Prep Date: 6/14/2019 RunNo: 52152
Client ID: LCSW	Batch ID: R52152				Analysis Date: 6/14/2019 SeqNo: 1029749
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Ferrous Iron	0.371	0.0500	0.4000	0	92.6 80 120
Sample ID 1906179-001ADUP	SampType: DUP			Units: mg/L	Prep Date: 6/14/2019 RunNo: 52152
Client ID: MW26-20190614	Batch ID: R52152				Analysis Date: 6/14/2019 SeqNo: 1029751
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Ferrous Iron	0.115	0.0500			0.1358 16.9 20
Sample ID 1906179-001AMS	SampType: MS			Units: mg/L	Prep Date: 6/14/2019 RunNo: 52152
Client ID: MW26-20190614	Batch ID: R52152				Analysis Date: 6/14/2019 SeqNo: 1029752
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Ferrous Iron	0.518	0.0500	0.4000	0.1358	95.6 80 120
Sample ID 1906179-001AMSD	SampType: MSD			Units: mg/L	Prep Date: 6/14/2019 RunNo: 52152
Client ID: MW26-20190614	Batch ID: R52152				Analysis Date: 6/14/2019 SeqNo: 1029753
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Ferrous Iron	0.568	0.0500	0.4000	0.1358	108 80 120 0.5184 9.08 20

Page 9 of 16 Original

Work Order: 1906179

Project:

Analyte

QC SUMMARY REPORT

%RPD RPDLimit

Qual

CLIENT: Friedman & Bruya

906291

Ion Chromatography by EPA Method 300.0

%REC LowLimit HighLimit RPD Ref Val

Sample ID	MB-24928	SampType: MBLK	Units: mg/L	Prep Date:	6/14/2019	RunNo: 52127
Client ID:	MBLKW	Batch ID: 24928		Analysis Date:	6/14/2019	SeqNo: 1029284

SPK value SPK Ref Val

 Nitrate (as N)
 ND
 0.100

 Sulfate
 ND
 0.300

Result

RL

Sample ID LCS-24928	SampType: LCS			Units: mg/L		Prep Da	te: 6/14/20	19	RunNo: 52 1	127	
Client ID: LCSW						Analysis Da	te: 6/14/20	19	SeqNo: 102	29285	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	0.717	0.100	0.7500	0	95.6	90	110				
Sulfate	3.54	0.300	3.750	0	94.5	90	110				

Sample ID 1906179-001BDUP	SampType: DUP			Units: mg/L		Prep Da	te: 6/14/2 0	119	RunNo: 52 1	127	
Client ID: MW26-20190614	Batch ID: 24928					Analysis Da	te: 6/14/2 0)19	SeqNo: 102	29287	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	7.85	0.100						7.855	0.0637	20	E
Sulfate	48.1	0.300						48.12	0.0395	20	Е
NOTES:											

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID 1906179-001BMS	SampType: MS			Units: mg/L		Prep Da	te: 6/14/20	19	RunNo: 52 1		
Client ID: MW26-20190614	Batch ID: 24928				Analysis Date: 6/14/2019				SeqNo: 1029288		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	8.69	0.100	0.7500	7.855	112	80	120				Е
Sulfate	52.2	0.300	3.750	48.12	108	80	120				Е

NOTES:

Original Page 10 of 16

E - Estimated value. The amount exceeds the linear working range of the instrument.

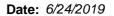
Work Order: 1906179

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

906291

Ion Chromatography by EPA Method 300.0


Sample ID 1906179-001BMSD Client ID: MW26-20190614	1 //			Units: mg/L	Prep Date: 6/14/2019 Analysis Date: 6/14/2019				RunNo: 52127 SeqNo: 1029289		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	8.70	0.100	0.7500	7.855	112	80	120	8.693	0.0575	20	Е
Sulfate	52.3	0.300	3.750	48.12	111	80	120	52.18	0.159	20	E

NOTES:

Project:

Original Page 11 of 16

E - Estimated value. The amount exceeds the linear working range of the instrument.

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Project: 906291	·						Total Org	janic Carbon by SM	5310C
Sample ID MBLK-52199	SampType: MBLK			Units: mg/L		Prep Date:	6/18/2019	RunNo: 52199	
Client ID: MBLKW	Batch ID: R52199					Analysis Date:	6/18/2019	SeqNo: 1030537	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Total Organic Carbon	ND	0.500							
Sample ID LCS-52199	SampType: LCS			Units: mg/L		Prep Date:	6/18/2019	RunNo: 52199	
Client ID: LCSW	Batch ID: R52199					Analysis Date:	6/18/2019	SeqNo: 1030538	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Total Organic Carbon	5.14	0.500	5.000	0	103	80	120		
Sample ID 1906179-001DDUP	SampType: DUP			Units: mg/L		Prep Date:	6/18/2019	RunNo: 52199	
Client ID: MW26-20190614	Batch ID: R52199					Analysis Date:	6/18/2019	SeqNo: 1030540	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Total Organic Carbon	1.14	0.500					1.129	0.618 20	
Sample ID 1906179-001DMS	SampType: MS			Units: mg/L		Prep Date:	6/18/2019	RunNo: 52199	
Client ID: MW26-20190614	Batch ID: R52199					Analysis Date:	6/18/2019	SeqNo: 1030541	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Total Organic Carbon	6.48	0.500	5.000	1.129	107	70	130		
Sample ID 1906179-001DMSD	SampType: MSD			Units: mg/L		Prep Date:	6/18/2019	RunNo: 52199	
Client ID: MW26-20190614	Batch ID: R52199					Analysis Date:	6/18/2019	SeqNo: 1030542	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Total Organic Carbon	6.28	0.500	5.000	1.129	103	70	130 6.478	3.02 30	

Page 12 of 16 Original

Work Order: 1906179

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

906291

Total Organic Carbon by SM 5310C

Sample ID 1906197-001DDUP SampType: DUP Units: mg/L Prep Date: 6/18/2019 RunNo: 52199

Client ID: **BATCH** Batch ID: **R52199** Analysis Date: **6/18/2019** SeqNo: **1030549**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Total Organic Carbon 26.0 0.500 25.77 0.927 20

Sample ID 1906197-001DMS SampType: MS Units: mg/L Prep Date: 6/18/2019 RunNo: 52199 Client ID: BATCH Batch ID: R52199 Analysis Date: 6/18/2019 SeqNo: 1030550 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Total Organic Carbon 31.0 0.500 5.000 25.77 104 70 130

Original Page 13 of 16

Work Order: 1906179

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

906291

Dissolved Gases by RSK-175

Sample ID LCS-R52203	SampType: LCS			Units: mg/L		Prep Date	e: 6/19/2 0	119	RunNo: 52203		
Client ID: LCSW	Batch ID: R52203	Batch ID: R52203				Analysis Date	e: 6/19/2 0	119	SeqNo: 10	30678	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane	1,020	0.00863	1,000	0	102	70	130				
Ethene	976	0.0151	1,000	0	97.6	70	130				
Ethane	973	0.0162	1,000	0	97.3	70	130				
Sample ID MB-R52203	SampType: MBLK			Units: mg/L		Prep Date	e: 6/19/2 0	119	RunNo: 52	203	

Sample ID MB-R52203	SampType: MBLK			Units: mg/L		Prep Date:	6/19/2019	RunNo: 522	03	
Client ID: MBLKW	Batch ID: R52203					Analysis Date:	6/19/2019	SeqNo: 103	0679	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hig	hLimit RPD Ref Val	%RPD	RPDLimit	Qual

Methane	ND	0.00863
Ethene	ND	0.0151
Ethane	ND	0.0162

Sample ID 1906152-001AREP	SampType: REP		Units: mg/L	Prep Date: 6/19/2019	RunNo: 52203
Client ID: BATCH	Batch ID: R52203			Analysis Date: 6/19/2019	SeqNo: 1030653
Analyte	Result	RL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Methane	4.81	0.173		4.60	1 4.43 30 DE
Ethene	ND	0.303			0 30 D
Ethane	ND	0.324			0 30 D

NOTES:

Original Page 14 of 16

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample Log-In Check List

C	lient Name:	FB		Work Order Nur	mber: 1906179	,	
Lo	ogged by:	Clare Griggs		Date Received:	6/14/201	9 4:41:00 PM	
Cha	in of Cust	ody					
		ustody complete?		Yes 🗸	No 🗆	Not Present	
2.	How was the	sample delivered?		<u>FedEx</u>			
1.00	ı İn						
<u>Log</u>		uracant?		Yes 🗹	No 🗆	na 🗆	
3.	Coolers are p	resent?		res 💌	NO L	NA L	
4.	Shipping con	tainer/cooler in good condition	1?	Yes 🗹	No \square		
5.		s present on shipping contain		Yes	No 🗸	Not Required	
_		nments for Custody Seals not		V	No.	NA 🗆	
6.	was an atten	npt made to cool the samples	?	Yes 🗸	No 🗀	NA L	
7.	Were all item	s received at a temperature o	f >0°C to 10.0°C*	Yes 🗹	No 🗌	NA \square	
•		·					
8.	Sample(s) in	proper container(s)?		Yes 🗸	No \square		
9.	Sufficient sar	nple volume for indicated test	(s)?	Yes 🗸	No 🗌		
10.	Are samples	properly preserved?		Yes 🗹	No 🗌		
11.	Was preserva	ative added to bottles?		Yes	No 🗸	NA 🗌	
12	Is there head	space in the VOA vials?		Yes	No 🗸	na 🗆	
		es containers arrive in good co	ondition(unbroken)?	Yes ✓	No 🗆		
_		ork match bottle labels?	,	Yes 🗸	No 🗌		
15.	Are matrices	correctly identified on Chain of	of Custody?	Yes 🗹	No 🗌		
		at analyses were requested?		Yes 🔽	No 🗌		
17.	Were all hold	ing times able to be met?		Yes 🗸	No 🗀		
Spe	cial Handl	ing (if applicable)					
		otified of all discrepancies with	this order?	Yes	No \square	NA 🗸	
10.							
	Person		Da				
	By Who		Via	ı:	Phone Fax	☐ In Person	
	Regardi						
		estructions:					
19.	Additional rer	narks:					
ltem	<u>Information</u>						
		Item #	Temp °C				
	Cooler		4.6				

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

9.0

Sample

SUBCONTRACT SAMPLE CHAIN OF CUSTODY 1906179 SUBCONTRACTER Page # Page 16 of 16 Send Report To Michael Erdahl TURNAROUND TIME PROJECT NAME/NO. PO# ☐ Standard (2 Weeks) Company Friedman and Bruya, Inc. O RUSH 906291 B-282 Rush charges authorized by: Address 3012 16th Ave W REMARKS SAMPLE DISPOSAL City, State, ZIP Seattle, WA 98119 □ Dispose after 30 days Please Email Results ☐ Return samples Phone # (206) 285-8282 Fax # (206) 283-5044 ☐ Will call with instructions ANALYSES REQUESTED Dioxins/Furans Mether, Ethere, Lab Date Time # of EPH VPH Sample ID Matrix Sampled Notes ID Sampled iars 10 6/13/14 MET - 20 190613 1535 Not received ME b MW26-20190614 0950 6/14/15 X MWG7-20190614 1050 × X MW04-20190614 1105 × Friedman & Bruya, Inc. SIGNATURE PRINT NAME COMPANY DATE TIME Relinquished by: 3012 16th Avenue West Michael Erdahl Friedman & Bruya 1501 Seattle, WA 98119-2029 Received by: EA Phoebe Autio Ph. (206) 285-8282 Relinquished by: Fax (206) 283-5044 Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 17, 2019

Tom Cammarata, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Cammarata:

Included are the results from the testing of material submitted on October 9, 2019 from the SOU_0731-004-05_ 20191009, F&BI 910180 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher

SOU1017R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 9, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0731-004-05_ 20191009, F&BI 910180 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
910180 -01	MW29-20191008
910180 -02	MW30-20191008
910180 -03	MW32-20191008
910180 -04	MW31-20191009
910180 -05	MW33-20191009
910180 -06	MW28-20191009

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW29-20191008	Client:	SoundEarth Strategies
Date Received:	10/09/19	Project:	SOU_0731-004-05_ 20191009
Date Extracted:	10/14/19	Lab ID:	910180-01
Date Analyzed:	10/14/19	Data File:	101448.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	89	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.64
Chloroethane	<1
1,1-Dichloroethene	1.6
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	52
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	9.4
Tetrachloroethene	8.6

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW30-20191008	Client:	SoundEarth Strategies
Date Received:	10/09/19	Project:	SOU_0731-004-05_ 20191009
Date Extracted:	10/14/19	Lab ID:	910180-02
Date Analyzed:	10/14/19	Data File:	101449.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	92	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	24
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	3.6
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW32-20191008	Client:	SoundEarth Strategies
Date Received:	10/09/19	Project:	SOU_0731-004-05_ 20191009
Date Extracted:	10/14/19	Lab ID:	910180-03
Date Analyzed:	10/14/19	Data File:	101450.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	104	63	127
4-Bromofluorobenzene	92	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW31-20191009	Client:	SoundEarth Strategies
Date Received:	10/09/19	Project:	SOU_0731-004-05_ 20191009
Date Extracted:	10/14/19	Lab ID:	910180-04
Date Analyzed:	10/14/19	Data File:	101451.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	104	63	127
4-Bromofluorobenzene	92	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	1.8
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW33-20191009	Client:	SoundEarth Strategies
Date Received:	10/09/19	Project:	SOU_0731-004-05_ 20191009
Date Extracted:	10/14/19	Lab ID:	910180-05
Date Analyzed:	10/14/19	Data File:	101452.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	106	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW28-20191009	Client:	SoundEarth Strategies
Date Received:	10/09/19	Project:	SOU_0731-004-05_ 20191009
Date Extracted:	10/14/19	Lab ID:	910180-06
Date Analyzed:	10/15/19	Data File:	101453.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	57	121
Toluene-d8	106	63	127
4-Bromofluorobenzene	93	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.31
Chloroethane	<1
1,1-Dichloroethene	1.4
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	72
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	6.1
Tetrachloroethene	8.7

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0731-004-05_ 20191009
Date Extracted:	10/14/19	Lab ID:	09-2463 mb
Date Analyzed:	10/14/19	Data File:	101409.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	92	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 10/17/19 Date Received: 10/09/19

Project: SOU_0731-004-05_ 20191009, F&BI 910180

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 910227-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	114	36-166
Chloroethane	ug/L (ppb)	50	<1	107	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	114	60-136
Methylene chloride	ug/L (ppb)	50	<5	110	67 - 132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	108	72 - 129
1,1-Dichloroethane	ug/L (ppb)	50	<1	108	70 - 128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	107	71 - 127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	108	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	109	60-146
Trichloroethene	ug/L (ppb)	50	<1	103	66 - 135
Tetrachloroethene	ug/L (ppb)	50	<1	92	10-226

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	108	114	50-154	5
Chloroethane	ug/L (ppb)	50	103	107	58-146	4
1,1-Dichloroethene	ug/L (ppb)	50	107	113	67-136	5
Methylene chloride	ug/L (ppb)	50	104	110	39-148	6
trans-1,2-Dichloroethene	ug/L (ppb)	50	101	107	68-128	6
1,1-Dichloroethane	ug/L (ppb)	50	101	107	79 - 121	6
cis-1,2-Dichloroethene	ug/L (ppb)	50	101	107	80-123	6
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	99	101	73 - 132	2
1,1,1-Trichloroethane	ug/L (ppb)	50	102	109	81 - 125	7
Trichloroethene	ug/L (ppb)	50	95	98	79-113	3
Tetrachloroethene	ug/L (ppb)	50	98	101	76 - 121	3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	910180
Send Report To_	Tom Cammarat

SAMPLERS (sig., ... fure) ta cc: Logan Schumacher PROJECT NAME/NO. PO # Company SoundEarth Strategies Address 2811 Fairview Ave E, Suite 2000 Troy Laundry Property 0731-004-05 REMARKS City, State, ZIP Seattle, WA 98102 EIM Y

(KU) Page # TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by: SAMPLE DISPOSAL $\otimes_{\mathsf{Dispose}}$ after 30 days Return samples Will call with instructions

Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	GRPH by NWTPH-Gx	BTEX by EPA 8021B	DRPH/ORPH by NWTPH-Dx	cVOCs by EPA 8260C	Methane, Ethane, Ethene by RSK175	Sulfate, Nitrate, Alkalinity by SM1845/SM2320B	Total Fe and Mn by EPA 200.8	Fe 2+ by SM 3500	TOC By EPA 415.1	Notes
MW29-2019/008	MWQ9		017-	10/8/19	1309	ليا	3				\times						**************************************
MW30-2019 LOOK	mwso		(2)	10/4/19	1455	سا	3				×			788-744-7			
MW32-2019/008	mw32		03	10/8/19	1610	W	3				X						
MW31-2019 1009 MW32-2019 1009 MW38-2019 1009	Musi 1		oy	10/9/19	0940	W	3				X			************************			
MU32-2019/009	MW33		os	10/9/19	1045	W	3				X						
MW28-2019 1009	Mwas		06 1	16/9/19	1142	w	3				X						
				/ /													
															,		
						$\langle 2 \rangle$,										
and the state of t	***************************************		\$1000000000000000000000000000000000000		T.	2m											
		***************************************	***************************************		······							*****					10-13-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
7-7-1-4-7-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-			*											:			

SAMPLE CHAIN OF CUSTODY

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE , ,	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Sarah Welter	SES	10/9/19	1424
Received by: mly aw	Dhan Phan	FLB-	10/4/19	1424
Relinquished by:				
Received by:		Samples received	lat 5°C	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 16, 2019

Tom Cammarata, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Cammarata:

Included are the results from the testing of material submitted on December 5, 2019 from the SOU_0731-004-08_ 20191205, F&BI 912081 project. There are 25 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher SOU1216R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 5, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0731-004-08_ 20191205, F&BI 912081 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
912081 -01	MW04-20191205
912081 -02	MW07-20191205
912081 -03	MW13-20191205
912081 -04	MW27-20191205
912081 -05	MW31-20191205
912081 -06	MW15-20191205
912081 -07	MW28-20191204
912081 -08	MW01-20191205
912081 -09	MW26-20191205
912081 -10	MW32-20191205
912081 -11	MW33-20191205

Samples MW04-20191205, MW07-20191205, MW28-20191204, and MW26-20191205 were sent to Fremont Analytical for dissolved gasses, sulfate, nitrate, alkalinity, and ferrous iron analyses. In addition, samples MW07-20191205 and MW26-20191205 were sent to Fremont for TOC analysis. The report will be forwarded to your office upon receipt.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/16/19 Date Received: 12/05/19

Project: SOU_0731-004-08_ 20191205, F&BI 912081

Date Extracted: 12/06/19 Date Analyzed: 12/06/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW04-20191205 912081-01	<1	<1	<1	<3	<100	77
MW07-20191205 912081-02	<1	<1	<1	<3	<100	76
MW13-20191205 912081-03	<1	<1	<1	<3	<100	79
MW27-20191205 912081-04	<1	<1	<1	<3	<100	77
MW15-20191205 912081-06	<1	<1	<1	<3	<100	78
MW28-20191204 912081-07	<1	<1	<1	<3	150	76
MW01-20191205 912081-08	<1	<1	<1	<3	<100	76
MW26-20191205 912081-09	<1	<1	<1	<3	<100	78
Method Blank 09-2912 MB	<1	<1	<1	<3	<100	77

ENVIRONMENTAL CHEMISTS

Date of Report: 12/16/19 Date Received: 12/05/19

Project: SOU_0731-004-08_ 20191205, F&BI 912081

Date Extracted: 12/06/19

Date Analyzed: 12/06/19 and 12/09/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
MW04-20191205 912081-01	<50	<250	99
MW07-20191205 912081-02	<50	<250	95
MW13-20191205 912081-03	<50	<250	93
MW27-20191205 912081-04	<50	<250	84
MW15-20191205 912081-06	78 x	<250	88
MW28-20191204 912081-07	98 x	<250	88
MW01-20191205 912081-08	<50	<250	88
MW26-20191205 912081-09	680 x	<250	104
Method Blank 09-2981 MB	<50	<250	90

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW04-20191205 Client: SoundEarth Strategies

Date Received: 12/05/19 Project: SOU_0731-004-08_ 20191205

 Date Extracted:
 12/06/19
 Lab ID:
 912081-01

 Date Analyzed:
 12/06/19
 Data File:
 912081-01.111

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron254Manganese7.59

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW07-20191205 Client: SoundEarth Strategies

Date Received: 12/05/19 Project: SOU_0731-004-08_20191205

 Date Extracted:
 12/06/19
 Lab ID:
 912081-02

 Date Analyzed:
 12/06/19
 Data File:
 912081-02.133

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron203Manganese5.89

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW28-20191204 Client: SoundEarth Strategies

Date Received: 12/05/19 Project: SOU_0731-004-08_20191205

 Date Extracted:
 12/06/19
 Lab ID:
 912081-07

 Date Analyzed:
 12/06/19
 Data File:
 912081-07.134

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron1,550Manganese651

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW26-20191205 Client: SoundEarth Strategies

Date Received: 12/05/19 Project: SOU_0731-004-08_ 20191205

Lab ID: 912081-09 Date Extracted: 12/06/19 Date Analyzed: 12/06/19 Data File: 912081-09.135 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Iron4,830Manganese906

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: SoundEarth Strategies

Date Received: NA Project: SOU_0731-004-08_ 20191205

Date Extracted: 12/06/19 Lab ID: I9-771 mb
Date Analyzed: 12/06/19 Data File: I9-771 mb.105
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW04-20191205	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/11/19	Lab ID:	912081-01
Date Analyzed:	12/11/19	Data File:	121157.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	104	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	11
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW07-20191205	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/11/19	Lab ID:	912081-02
Date Analyzed:	12/11/19	Data File:	121158.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	102	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	5.9
Tetrachloroethene	3.3

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW13-20191205	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/11/19	Lab ID:	912081-03
Date Analyzed:	12/11/19	Data File:	121159.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	103	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	1.1
Tetrachloroethene	7.7

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW27-20191205	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/09/19	Lab ID:	912081-04
Date Analyzed:	12/11/19	Data File:	121064.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	102	50	150

Compounds:	Concentration ug/L (ppb)
Compounds.	agil (pps)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	2.2
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	15
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW31-20191205	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/09/19	Lab ID:	912081-05
Date Analyzed:	12/11/19	Data File:	121065.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	103	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	3.3
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW15-20191205	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/09/19	Lab ID:	912081-06
Date Analyzed:	12/11/19	Data File:	121066.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	4.9
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW28-20191204	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/09/19	Lab ID:	912081-07
Date Analyzed:	12/11/19	Data File:	121067.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	100	50	150

Concentration ug/L (ppb)
0.27
<1
1.1
<5
<1
<1
52
<1
<1
4.9
8.4

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW01-20191205	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/09/19	Lab ID:	912081-08
Date Analyzed:	12/11/19	Data File:	121068.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW26-20191205	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/09/19	Lab ID:	912081-09
Date Analyzed:	12/11/19	Data File:	121069.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	13
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW32-20191205	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/09/19	Lab ID:	912081-10
Date Analyzed:	12/11/19	Data File:	121070.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW33-20191205	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/09/19	Lab ID:	912081-11
Date Analyzed:	12/11/19	Data File:	121071.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/09/19	Lab ID:	09-2995 mb
Date Analyzed:	12/10/19	Data File:	121010.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	103	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 12/16/19 Date Received: 12/05/19

Project: SOU_0731-004-08_ 20191205, F&BI 912081

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 912081-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	102	65-118			
Toluene	ug/L (ppb)	50	98	72 - 122			
Ethylbenzene	ug/L (ppb)	50	102	73-126			
Xylenes	ug/L (ppb)	150	93	74-118			
Gasoline	ug/L (ppb)	1,000	100	69-134			

ENVIRONMENTAL CHEMISTS

Date of Report: 12/16/19 Date Received: 12/05/19

Project: SOU_0731-004-08_ 20191205, F&BI 912081

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	92	104	63-142	12

ENVIRONMENTAL CHEMISTS

Date of Report: 12/16/19 Date Received: 12/05/19

Project: SOU_0731-004-08_ 20191205, F&BI 912081

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 912081-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	254	126	112	70-130	12
Manganese	ug/L (ppb)	20	7.59	101	99	70-130	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	99	85-115
Manganese	ug/L (ppb)	20	96	85-115

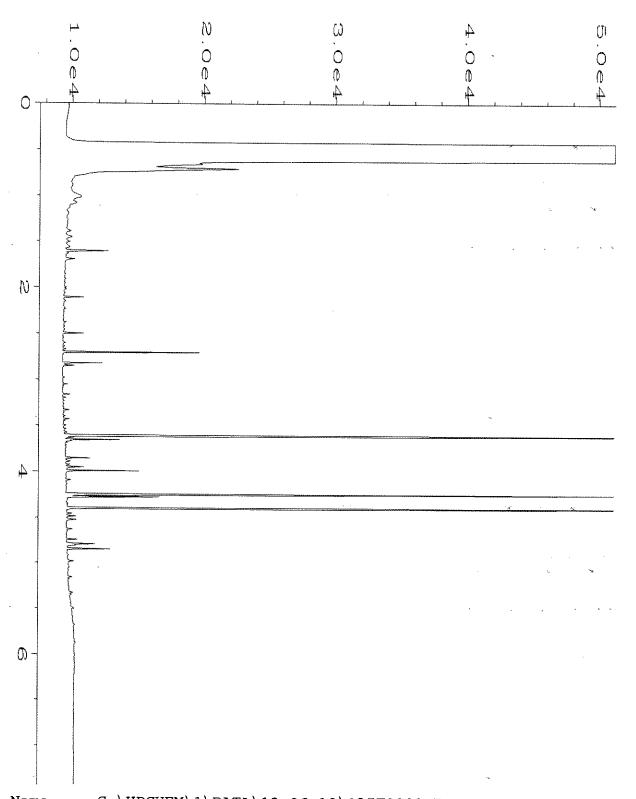
ENVIRONMENTAL CHEMISTS

Date of Report: 12/16/19 Date Received: 12/05/19

Project: SOU_0731-004-08_ 20191205, F&BI 912081

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

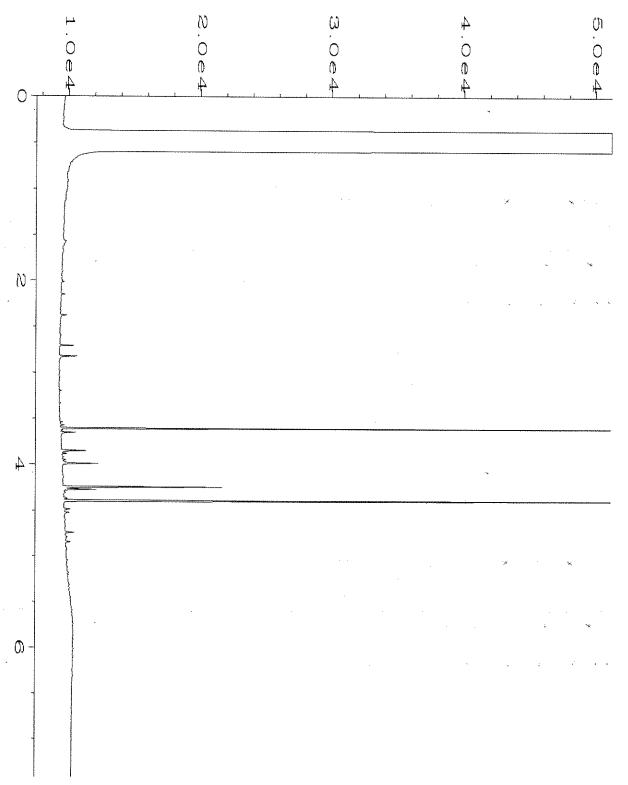
Laboratory Code: 912081-01 (Matrix Spike)


				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	102	61-139
Chloroethane	ug/L (ppb)	50	<1	100	55-149
1,1-Dichloroethene	ug/L (ppb)	50	<1	97	71 - 123
Methylene chloride	ug/L (ppb)	50	7.1	98	61-126
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	72 - 122
1,1-Dichloroethane	ug/L (ppb)	50	<1	105	79-113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	103	63-126
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	106	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	102	75 - 121
Trichloroethene	ug/L (ppb)	50	11	101 b	73 - 122
Tetrachloroethene	ug/L (ppb)	50	<1	101	40 - 155

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	101	101	70-128	0
Chloroethane	ug/L (ppb)	50	100	98	66-149	2
1,1-Dichloroethene	ug/L (ppb)	50	97	98	72 - 121	1
Methylene chloride	ug/L (ppb)	50	112	114	63-132	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	102	102	76 - 118	0
1,1-Dichloroethane	ug/L (ppb)	50	104	106	77 - 119	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	101	104	76 - 119	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	107	105	75 - 116	2
1,1,1-Trichloroethane	ug/L (ppb)	50	99	102	80-116	3
Trichloroethene	ug/L (ppb)	50	102	98	72-119	4
Tetrachloroethene	ug/L (ppb)	50	101	99	78-109	2


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Data File Name
                 : C:\HPCHEM\1\DATA\12-06-19\035F0901.D
Operator
                 : TL
                                                Page Number
Instrument
                 : GC1
                                                Vial Number
                                                                  : 35
Sample Name
                 : 912081-01
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line /
Acquired on
                 : 06 Dec 19
                                                Instrument Method: DX.MTH
                              04:56 PM
Report Created on: 09 Dec 19
                                                Analysis Method
                              09:21 AM
                                                                  : DEFAULT.MTH
```



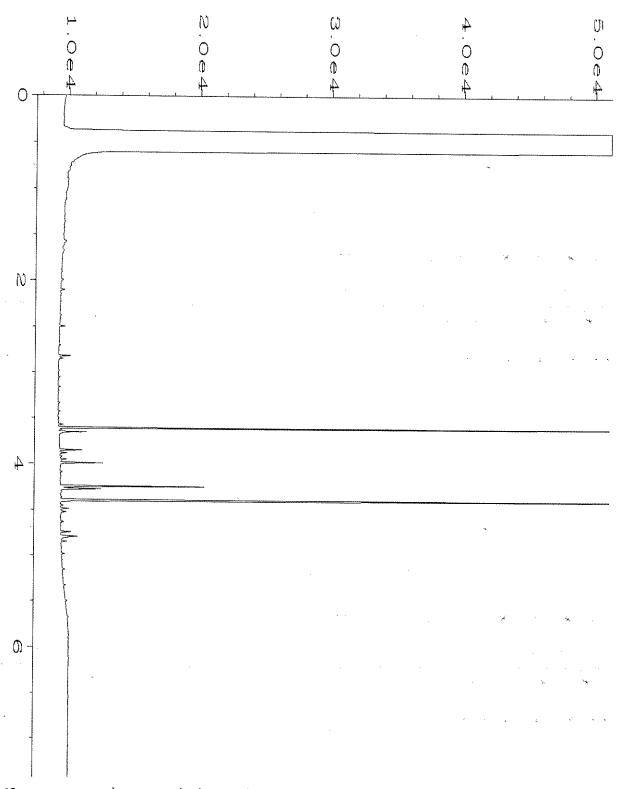
```
Operator
                 : TL
                                                  Page Number
Instrument
                                                  Vial Number : 36
Injection Number : 1
                 : GC1
                                                                    : 36
Sample Name
                 : 912081-02
Run Time Bar Code:
                                                  Sequence Line
Acquired on : 06 Dec 19
                                                  Instrument Method: DX.MTH
                               05:07 PM
Report Created on: 09 Dec 19
                               09:21 AM
                                                  Analysis Method : DEFAULT.MTH
```



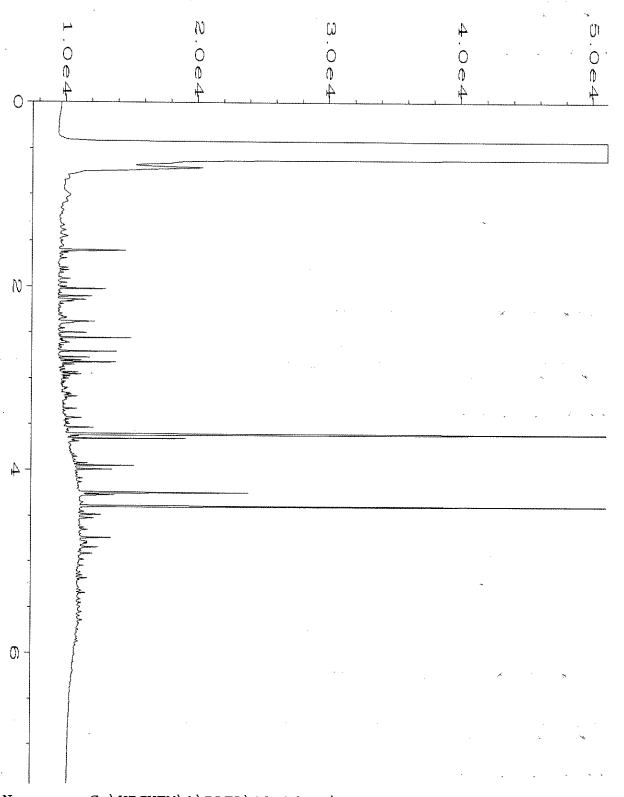
```
Data File Name : C:\HPCHEM\1\DATA\12-06-19\037F0901.D

Operator : TL Page Number : 1

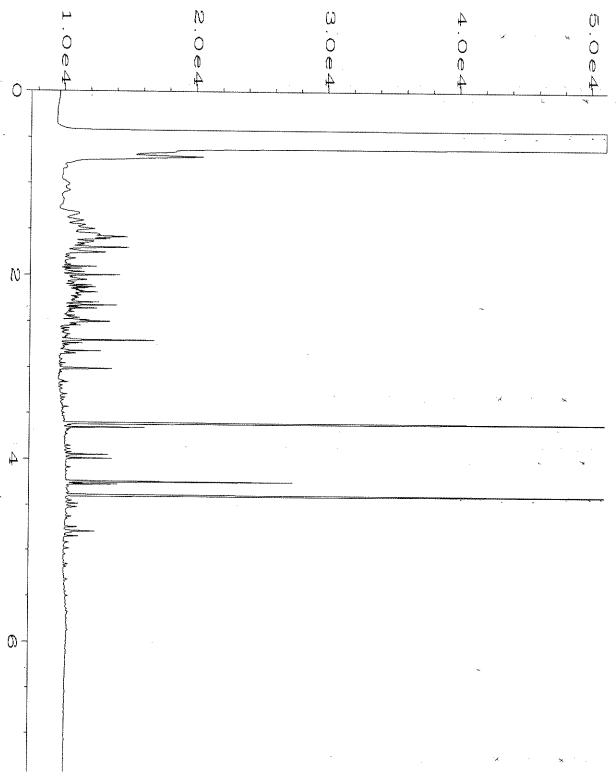
Instrument : GC1 Vial Number : 37

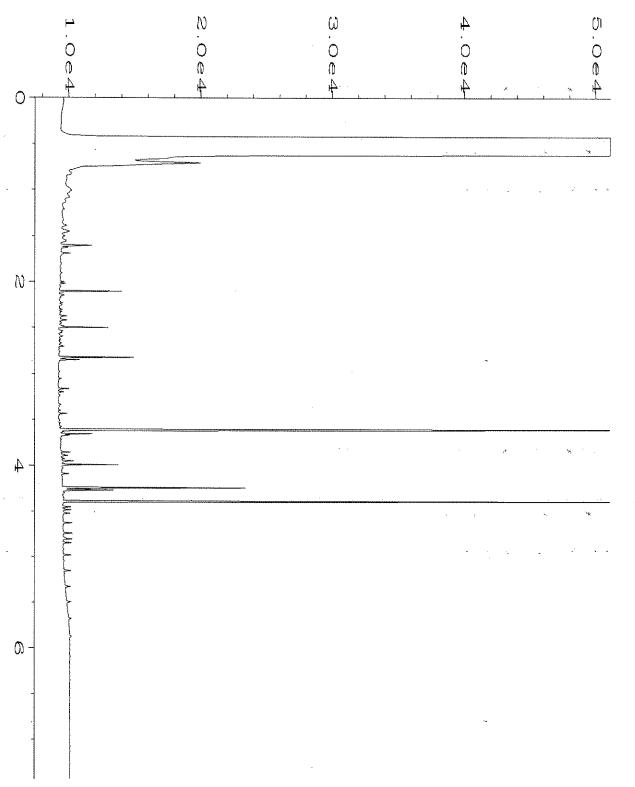

Sample Name : 912081-03 Injection Number : 1

Run Time Bar Code: Sequence Line : 9


Acquired on : 06 Dec 19 05:19 PM Instrument Method: DX.N
```

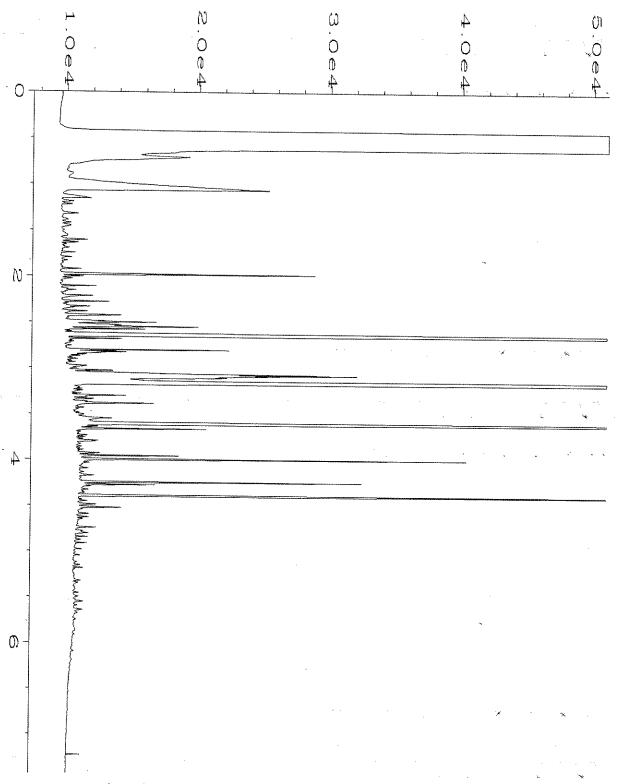
Acquired on : 06 Dec 19 05:19 PM Instrument Method: DX.MTH
Report Created on: 09 Dec 19 09:21 AM Analysis Method : DEFAULT.MTH


inalybib rectiod : DBFAGBI:RIII

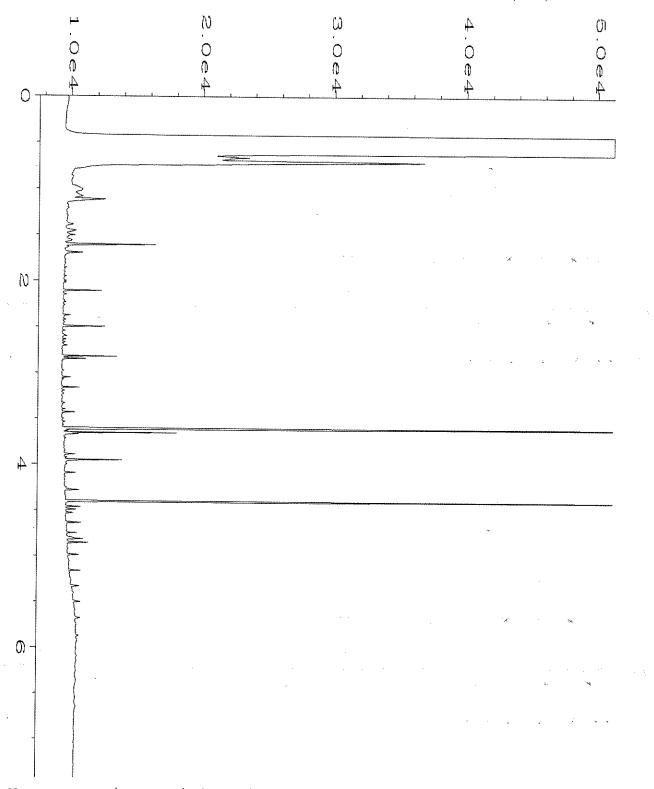

```
Data File Name
                 : C:\HPCHEM\1\DATA\12-06-19\038F0901.D
Operator
                 : TL
                                                Page Number
Instrument
                 : GC1
                                                Vial Number
                                                                 : 38
Sample Name
                 : 912081-04
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
                : 06 Dec 19
Acquired on
                              05:30 PM
                                                Instrument Method: DX.MTH
Report Created on: 09 Dec 19
                              09:21 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\1\DATA\12-06-19\039F0901.D
Operator
                 : TL
                                               Page Number
Instrument
                 : GC1
                                               Vial Number
                                                                : 39
Sample Name
                 : 912081-06
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                : 06 Dec 19
                                               Instrument Method: DX.MTH
Acquired on
                              05:42 PM
Report Created on: 09 Dec 19
                             09:21 AM
                                               Analysis Method : DEFAULT.MTH
```

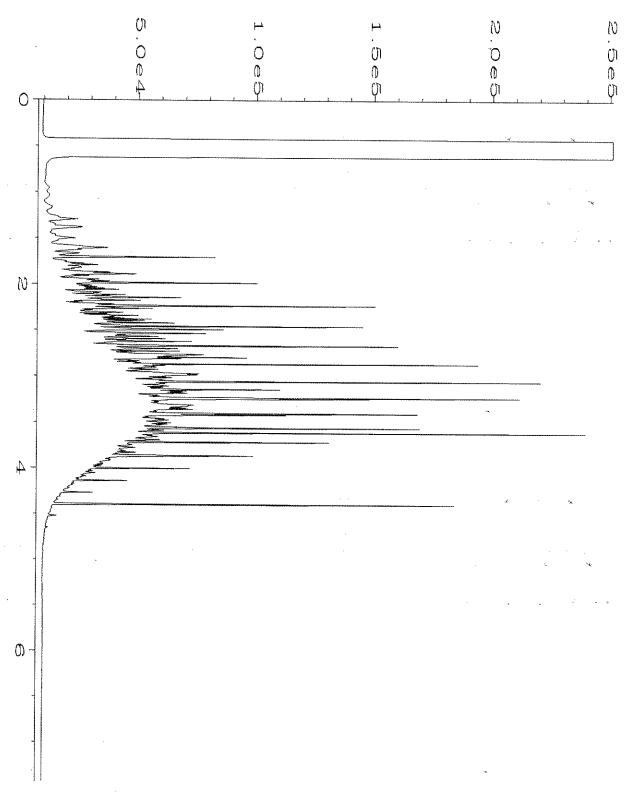



```
Data File Name
                : C:\HPCHEM\1\DATA\12-06-19\040F0901.D
Operator
                : TL
                                               Page Number
Instrument
                : GC1
                                              Vial Number
Sample Name
                : 912081-07
                                               Injection Number :
Run Time Bar Code:
                                               Sequence Line : 9:
Acquired on : 06 Dec 19
                             05:53 PM
                                               Instrument Method: DX.MTH
Report Created on: 09 Dec 19
                                              Analysis Method : DEFAULT.MTH
                             09:22 AM
```




```
Data File Name : C:\HPCHEM\1\DATA\12-06-19\041F0901.D
Operator
                                              Page Number 🕜
                : TL
Instrument
                : GC1
                                              Vial Number
                                                               : 41
Sample Name
                : 912081-08
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 9
                : 06 Dec 19
Acquired on
                             06:05 PM
                                              Instrument Method: DX.MTH
```

Report Created on: 09 Dec 19 09:22 AM Analysis Method: DEFAULT.MTH




```
Data File Name
                 : C:\HPCHEM\1\DATA\12-06-19\042F0901.D
Operator
                 : TL
                                                Page Number
Instrument
                                                Vial Number
                 : GC1
Sample Name
                 : 912081-09
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
                : 06 Dec 19
Acquired on
                              06:16 PM
                                                Instrument Method: DX.MTH
Report Created on: 09 Dec 19
                              09:22 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\1\DATA\12-06-19\032F0901.D
Operator
                 : TL
                                                Page Number
Instrument
                 : GC1
                                                Vial Number
Sample Name
                 : 09-2981 mb
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
                 : 06 Dec 19
Acquired on
                              04:22 PM
                                                Instrument Method: DX.MTH
Report Created on: 09 Dec 19
                                                Analysis Method : DEFAULT.MTH
                              09:22 AM
```

tar.


```
Data File Name
                : C:\HPCHEM\1\DATA\12-06-19\005F1201.D
Operator
                 : TL
                                               Page Number
Instrument
                                               Vial Number
                 : GC1
Sample Name
                 : 1000 Dx 58-146C
                                               Injection Number: 1
                                               Sequence Line : 12
Run Time Bar Code:
                : 06 Dec 19
Acquired on
                             08:10 PM
                                               Instrument Method: DX.MTH
Report Created on: 09 Dec 19 09:20 AM
                                               Analysis Method : DEFAULT.MTH
```

(912081	3 <i>F</i>	1
Send Report To Tom Cammarata cc: Logan Schumacher	_	
Company SoundEarth Strategies		
Address 2811 Fairview Ave E, Suite 2000		
City, State, ZIPSeattle, WA 98102		

3	AMPLE CHAIN OF CUSTODT	ME 12	-05-19 \ (\/\text{/WH}
_	SAMPLERS (Signrure)		TURNAROUND TIME AT 3
	PROJECT NAME/NO. Troy Laundry Property	PO # % 0731-004-95	Standard (2 Weeks) RUSH Rush charges authorized by:
	REMARKS On prop	EIM Y LS EIM Y (2/10/10 AC	Return samples

\$ample ID	Sample Location	Sample Depth	lab ID	Date Sampled	Time Sampled	Matrix	# of jars	GRPH by NWTPH-Gx	BTEX by EPA 8021B	DRPH/ORPH by NWTPH-Dx	cVOCs by EPA 8260C	Methane, Ethane, Ethene by RSK175	Sulfate, Nitrate, Alkalinity by SM1845/SM2320B	Total Fe and Mn by EPA 200.8	Fe 2+ by SM 3500	TOC By EPA 415.1	Notes
MW04-20191205	mway	, , , , , , , , , , , , , , , , , , ,	01 A-M	112/6/19	1141	W	1>	γ	χ	У	入	<u> Y</u>	γ	<u> </u>	X		***************************************
MW07-2019205	Mwon	-	02A-N		1240	W	14	χ	Χ	X	٧	X	X	×	X	x	
MW13-20191205	MWIS		03A~	5/a/5/19	0920	W	7	X	٧	X	X						
Mula7-2041205	MW27		146	1 / / / /	0907	W_	7	γ	<u> </u>	X	Х	.,		,			***************************************
MW31-20191205	MW31		osa-c	12/5/19	1135	W	3				X				ļ		***************************************
MW15 - 2019 1205	MWIS		3	512/5/19	1347	W	7	x .	χ	X	V			J			
MW28-20191204	mwax			x 12/4/19	1443	W	13	X	<u> </u>	<u>\(\chi \) \(\chi \) \(\chi \)</u>	<i>\\</i>	<u> </u>	X	<u> </u>	X_		
mwor 2019 1205	Mucl		7	5/2/5/1	1003	W	7	У	χ	入	V						
mwa6-20191205	Mwde		09A-1	1/2/5/19	1048	I W	14	· X	χ	<u>\</u>	*	<u>入</u>	X	K	大	X	·
MW32-20191205	musz		10A-C	12/5/19	1021	W	3				X						
MN33-20191205	MW3>			12/5/11	1340	\vee	3				<u> </u>						**************************************
															1000	aceix	ed at 3_°C
							(0)	1//		<u> </u>				sam]	Dies I	ecer.	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

	· ·		
PRINT NAME / /	COMPANY	. DATE	TIME
Garall Welter	SES	12/5/19	1515
Of VO	FeBr	12-5-19	15.15
	Sqrall Welter Of Vo		Sgran Welter SES 12/4/19

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 16, 2019

Tom Cammarata, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Cammarata:

Included is the amended report from the testing of material submitted on December 5, 2019 from the SOU_0731-004-08_ 20191205, F&BI 912082 project. Per your request, the project ID was updated.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher SOU1213R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 13, 2019

Tom Cammarata, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Cammarata:

Included are the results from the testing of material submitted on December 5, 2019 from the SOU_0731-004-08_ 20191205, F&BI 912082 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher

SOU1213R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 5, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0731-004-08_ 20191205, F&BI 912082 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
912082 -01	MW29-20191204
912082 -02	MW30-20191204

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW29-20191204	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/09/19	Lab ID:	912082-01
Date Analyzed:	12/10/19	Data File:	120958.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.40
Chloroethane	<1
1,1-Dichloroethene	1.6
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	26
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	12
Tetrachloroethene	16

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW30-20191204	Client:	SoundEarth Strategies
Date Received:	12/05/19	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/09/19	Lab ID:	912082-02
Date Analyzed:	12/10/19	Data File:	120959.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	11
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	2.0
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0731-004-08_ 20191205
Date Extracted:	12/09/19	Lab ID:	09-2967 mb
Date Analyzed:	12/09/19	Data File:	120910.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 12/13/19 Date Received: 12/05/19

Project: SOU_0731-004-08_ 20191205, F&BI 912082

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 912074-12 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	100	61-139
Chloroethane	ug/L (ppb)	50	<1	96	55-149
1,1-Dichloroethene	ug/L (ppb)	50	<1	93	71 - 123
Methylene chloride	ug/L (ppb)	50	<5	121	61-126
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	95	72 - 122
1,1-Dichloroethane	ug/L (ppb)	50	<1	97	79-113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	97	63-126
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	104	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	97	75 - 121
Trichloroethene	ug/L (ppb)	50	<1	100	73 - 122
Tetrachloroethene	ug/L (ppb)	50	<1	99	40 - 155

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	100	102	70 - 128	2
Chloroethane	ug/L (ppb)	50	100	94	66-149	6
1,1-Dichloroethene	ug/L (ppb)	50	91	91	72 - 121	0
Methylene chloride	ug/L (ppb)	50	99	99	63-132	0
trans-1,2-Dichloroethene	ug/L (ppb)	50	97	98	76 - 118	1
1,1-Dichloroethane	ug/L (ppb)	50	98	99	77-119	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	96	98	76-119	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	109	109	75 - 116	0
1,1,1-Trichloroethane	ug/L (ppb)	50	100	101	80-116	1
Trichloroethene	ug/L (ppb)	50	101	102	72 - 119	1
Tetrachloroethene	ug/L (ppb)	50	101	101	78-109	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Send Report To Tom Cammarata cc: Logan Schumacher

Company SoundEarth Strategies

Address 2811 Fairview Ave E, Suite 2000

City, State, ZIP Seattle, WA 98102

SAMPLERS (sign __rure)

PROJECT NAME/NO.

Troy Laundry Property

REMARKS

PO#

OR

O731-004-95

Return

Will co

TURNAROUND TIME

Standard (2 Weeks)

RUSH

Rush charges authorized by:

SAMPLE DISPOSAL

Dispose after 30 days

Return samples

Will call with instructions

Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	GRPH by NWTPH-Gx	BTEX by EPA 8021B	DRPHIORPH by NWTPH-Dx	cVOCs by EPA 8260C	Methane, Ethane, Ethene by RSK175	Sulfate, Nitrate, Calkalinity by SM1845/SM2320B	Total Fe and Mn by EPA 200.8	Fe 2+ by SM 3500	TOC By EPA 415.1	Notes
MW27-20191204	Mwag		DIAL	12/4/19	1367	W	3				χ						
MW30-201912041	mw30	_	02T	19/4/17	1353	V	<u> 3</u>				<u> </u>						····
			ļ					- , :									<u></u>
			1				ļ		-								
			<u> </u>			<u> </u>	ļ										

			†				(0)										
							2										
															4		
														bar	nples	rece	ived at 3 °C
						<u> </u>	<u> </u>				-,						· · · · · · · · · · · · · · · · · · ·
																ليحط	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

				•
SIGNATURE	PRINT NAME , ,	COMPANY	DATE	TIME
Relinquished by: Sound Wills	Sarah Wolfer	SE5	12/5/19	1515
Received by:	2000	Fr BZ	12-5-19	15-15
Relinquished by:				
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 17, 2019

Tom Cammarata, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Cammarata:

Included are the results from the testing of material submitted on December 9, 2019 from the SOU_0731-004-07_ 20191209, F&BI 912134 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher SOU1217R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 9, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0731-004-07_ 20191209, F&BI 912134 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
912134 -01	ONNI-MW-4-20191208
912134 -02	ONNI-MW-5-20191208

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	ONNI-MW-4-20191208	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-07_ 20191209
Date Extracted:	12/11/19	Lab ID:	912134-01
Date Analyzed:	12/12/19	Data File:	121214.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	98	60	133

Concentration ug/L (ppb)
< 0.2
<1
<1
<5
<1
<1
<1
<1
<1
<1
<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	ONNI-MW-5-20191208	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-07_ 20191209
Date Extracted:	12/11/19	Lab ID:	912134-02
Date Analyzed:	12/12/19	Data File:	121215.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	99	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.28
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0731-004-07_ 20191209
Date Extracted:	12/11/19	Lab ID:	09-3000 mb
Date Analyzed:	12/12/19	Data File:	121210.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 12/17/19 Date Received: 12/09/19

Project: SOU_0731-004-07_ 20191209, F&BI 912134

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 912135-03 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	0.98	105	36-166
Chloroethane	ug/L (ppb)	50	<1	114	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	93	60-136
Methylene chloride	ug/L (ppb)	50	<5	101	67 - 132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	102	72 - 129
1,1-Dichloroethane	ug/L (ppb)	50	<1	101	70 - 128
cis-1,2-Dichloroethene	ug/L (ppb)	50	35	91 b	71 - 127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	99	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	100	60-146
Trichloroethene	ug/L (ppb)	50	<1	90	66 - 135
Tetrachloroethene	ug/L (ppb)	50	<1	98	10-226

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	110	102	50-154	8
Chloroethane	ug/L (ppb)	50	120	110	58-146	9
1,1-Dichloroethene	ug/L (ppb)	50	101	93	67-136	8
Methylene chloride	ug/L (ppb)	50	110	103	39-148	7
trans-1,2-Dichloroethene	ug/L (ppb)	50	109	101	68-128	8
1,1-Dichloroethane	ug/L (ppb)	50	108	101	79 - 121	7
cis-1,2-Dichloroethene	ug/L (ppb)	50	104	98	80-123	6
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	107	102	73 - 132	5
1,1,1-Trichloroethane	ug/L (ppb)	50	106	99	81 - 125	7
Trichloroethene	ug/L (ppb)	50	97	92	79-113	5
Tetrachloroethene	ug/L (ppb)	50	104	101	76 - 121	3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY SAMPIZERS (sign Page # Send Report To rom Cammarata cc: Logan Schumacher TURNAROUND TIME Company SoundEarth Strategies PROJECT NAME/NO. PO# Standard (2 Weeks) RUSH 67 Address 2811 Fairview Ave E, Suite 2000 Troy Laundry Property 0731-004-05 Rush charges authorized by: EIM Y LS 12/12/19 City, State, ZIP__Seattle, WA 98102 **REMARKS** SAMPLE DISPOSAL ⊗_{Dispose} after 30 days Return samples Will call with instructions

Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Mahrix	# of jars	GRPH by NWTPH-Gx	BTEX by EPA 8021B	DRPH/ORPH by NWTPH-Dx	cVOCs by EPA 8260C	Methane, Ethane, Ethene by RSK175	Sulfate, Nitrate, Alkalinity by SM1845/SM2320B	Total Fe and Mn by EPA 200.8	Fe 2+ by SM 3500	TÓC By EPA 415.1	Notes	
ONUT-MW-4-20191208	9001-1491-4				1152	1120	7				${\mathbf X}$			2 14	,			
ONNI-MW-5-20191208	ONNI-MW-S		如仁	12/8/19	1259	HZO	7				X					ļ		
		·	ļ															·····
				^														·
					43	12/2			*									`
j's						3												
												Sa	mples	rece	iveď	at	∀ ∘ C	·
				·							*		1				 	

Cwb Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Clare Tochille	SoundEarth	124919	855
Received by:	WILSON YAMBUAG	PETOX	129.19	1755
Relinquished by:	·			
Received by: mlan and	Nhan Phan	FEBI	12/9/19	1045

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 18, 2019

Tom Cammarata, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Cammarata:

Included are the results from the testing of material submitted on December 9, 2019 from the SOU_0731-004-08_ 20191209, F&BI 912135 project. There are 36 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher SOU1218R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 9, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0731-004-08_ 20191209, F&BI 912135 project. Samples were logged in under the laboratory ID's listed below.

	SoundEarth Strategies
	IW17-20191207
	/IW18-20191207 /IW19-20191207
	IW20-20191207 IW20-20191207
912135 -05 N	IW21-20191207
912135 -06 N	IW22-20191207
	IW23-20191207
	IW24-20191207
	IW25-20191207
	W04-20191207
	W06-20191207
	W50-20191207 W61-20191207
	W91-20191207
	/W99-20191207

Samples MW18-2019120, MW19-20191207, MW22-20191207, MW23-20191207, MW24-20191207, MW25-20191207, IW04-20191207, IW50-20191207, and IW61-20191207 were sent to Fremont Analytical for sulfate, nitrate, alkalinity, and ferrous iron analyses. In addition, sample MW21-20191207 was sent to Fremont for dissolved gasses and TOC analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/18/19 Date Received: 12/09/19

Project: SOU_0731-004-08_ 20191209, F&BI 912135

Date Extracted: 12/09/19

Date Analyzed: 12/10/19 and 12/11/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW17-20191207 912135-01	<1	<1	<1	<3	<100	77
MW18-20191207 912135-02	<1	<1	<1	<3	<100	78
MW19-20191207 912135-03	<1	<1	<1	<3	<100	77
MW20-20191207 912135-04	<1	<1	<1	<3	<100	77
MW21-20191207 912135-05	<1	<1	<1	4.8	300	79
MW22-20191207 912135-06	<1	<1	<1	74	810	80
MW23-20191207 912135-07	<1	<1	<1	<3	<100	59
MW24-20191207 912135-08	<1	<1	<1	<3	<100	77
MW25-20191207 912135-09	<1	<1	<1	<3	<100	80
IW91-20191207 912135-14	<1	<1	<1	<3	<100	80

ENVIRONMENTAL CHEMISTS

Date of Report: 12/18/19 Date Received: 12/09/19

Project: SOU_0731-004-08_ 20191209, F&BI 912135

Date Extracted: 12/09/19

Date Analyzed: 12/10/19 and 12/11/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW99-20191207 912135-15	<1	<1	<1	<3	<100	79
Method Blank 09-2914 MB	<1	<1	<1	<3	<100	79

ENVIRONMENTAL CHEMISTS

Date of Report: 12/18/19 Date Received: 12/09/19

Project: SOU_0731-004-08_ 20191209, F&BI 912135

Date Extracted: 12/10/19 Date Analyzed: 12/10/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
MW17-20191207 912135-01	<50	<250	84
MW18-20191207 912135-02	830 x	480 x	ip
MW19-20191207 912135-03	610 x	690 x	86
MW20-20191207 912135-04	80 x	<250	80
MW21-20191207 912135-05	21,000 x	2,100 x	ip
MW22-20191207 912135-06	40,000 x	3,400 x	79
MW23-20191207 912135-07	1,400 x	790 x	ip
MW24-20191207 912135-08	7,100 x	1,400 x	62
MW25-20191207 912135-09	240 x	<250	89
IW91-20191207 912135-14	<50	<250	84

ENVIRONMENTAL CHEMISTS

Date of Report: 12/18/19 Date Received: 12/09/19

Project: SOU_0731-004-08_ 20191209, F&BI 912135

Date Extracted: 12/10/19 Date Analyzed: 12/10/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
MW99-20191207 912135-15	300 x	<250	85
Method Blank 09-3003 MB	<50	<250	81

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW18-20191207 Client: SoundEarth Strategies

Date Received: 12/09/19 Project: SOU_0731-004-08_20191209

 Date Extracted:
 12/10/19
 Lab ID:
 912135-02 x10

 Date Analyzed:
 12/12/19
 Data File:
 912135-02 x10.039

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Iron 13,800 Manganese 9,660

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW19-20191207 Client: SoundEarth Strategies

Date Received: 12/09/19 Project: SOU_0731-004-08_20191209

Date Extracted: 12/10/19 Lab ID: 912135-03 x10
Date Analyzed: 12/12/19 Data File: 912135-03 x10.040

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Iron 13,300 Manganese 9,030

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW22-20191207 Client: SoundEarth Strategies

Date Received: 12/09/19 Project: SOU_0731-004-08_ 20191209

 Date Extracted:
 12/10/19
 Lab ID:
 912135-06 x100

 Date Analyzed:
 12/13/19
 Data File:
 912135-06 x100.163

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Iron8,010Manganese10,900

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW23-20191207 Client: SoundEarth Strategies

Date Received: 12/09/19 Project: SOU_0731-004-08_ 20191209

 Date Extracted:
 12/10/19
 Lab ID:
 912135-07 x100

 Date Analyzed:
 12/13/19
 Data File:
 912135-07 x100.164

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 Iron
 14,600

 Manganese
 22,100

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW24-20191207 Client: SoundEarth Strategies

Date Received: 12/09/19 Project: SOU_0731-004-08_20191209

 Date Extracted:
 12/10/19
 Lab ID:
 912135-08 x100

 Date Analyzed:
 12/13/19
 Data File:
 912135-08 x100.167

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 Iron
 10,700

 Manganese
 20,700

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW25-20191207 Client: SoundEarth Strategies

Date Received: 12/09/19 Project: SOU_0731-004-08_20191209

 Date Extracted:
 12/10/19
 Lab ID:
 912135-09 x10

 Date Analyzed:
 12/12/19
 Data File:
 912135-09 x10.103

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 Iron
 13,500

 Manganese
 6,850

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: IW04-20191207 Client: SoundEarth Strategies

Date Received: 12/09/19 Project: SOU_0731-004-08_ 20191209

 Date Extracted:
 12/10/19
 Lab ID:
 912135-10 x100

 Date Analyzed:
 12/13/19
 Data File:
 912135-10 x100.168

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

 Iron
 15,600

 Manganese
 11,700

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: IW50-20191207 Client: SoundEarth Strategies

Date Received: 12/09/19 Project: SOU_0731-004-08_20191209

 Date Extracted:
 12/10/19
 Lab ID:
 912135-12 x10

 Date Analyzed:
 12/12/19
 Data File:
 912135-12 x10.105

 $\begin{array}{ccccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Iron7,170Manganese8,090

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: IW61-20191207 Client: SoundEarth Strategies

Date Received: 12/09/19 Project: SOU_0731-004-08_ 20191209

 Date Extracted:
 12/10/19
 Lab ID:
 912135-13 x100

 Date Analyzed:
 12/13/19
 Data File:
 912135-13 x100.169

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

 Iron
 22,300

 Manganese
 11,000

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: SoundEarth Strategies

Date Received: NA Project: SOU_0731-004-08_20191209

 Date Extracted:
 12/10/19
 Lab ID:
 I9-776 mb2

 Date Analyzed:
 12/10/19
 Data File:
 I9-776 mb2.094

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Iron <50 Manganese <1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW17-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-01
Date Analyzed:	12/12/19	Data File:	121216.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	2.2
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	3.9
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW18-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-02
Date Analyzed:	12/12/19	Data File:	121217.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.55
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	28
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW19-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-03
Date Analyzed:	12/12/19	Data File:	121218.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.98
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	35
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW20-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-04
Date Analyzed:	12/12/19	Data File:	121219.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	99	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	3.0
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW21-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-05
Date Analyzed:	12/12/19	Data File:	121220.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	94	60	133

_
Concentration ug/L (ppb)
1.3
<1
<1
<5
<1
<1
34
<1
<1
<1
<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW22-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-06
Date Analyzed:	12/12/19	Data File:	121221.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1.0
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	48
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	1.3
Tetrachloroethene	1.3

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW23-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-07
Date Analyzed:	12/12/19	Data File:	121222.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.89
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	38
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW24-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-08
Date Analyzed:	12/12/19	Data File:	121223.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.94
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	83
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW25-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-09
Date Analyzed:	12/12/19	Data File:	121224.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	94	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.63
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	40
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	IW04-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-10
Date Analyzed:	12/12/19	Data File:	121225.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	95	60	133

1 Diomonition of outpoint	0.0
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1.1
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	1.4
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	IW06-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-11
Date Analyzed:	12/12/19	Data File:	121226.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	1.4

ENVIRONMENTAL CHEMISTS

Client Sample ID:	IW50-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-12
Date Analyzed:	12/12/19	Data File:	121227.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	7.4
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	55
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	1.6
Tetrachloroethene	4.5

ENVIRONMENTAL CHEMISTS

Client Sample ID:	IW61-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-13
Date Analyzed:	12/12/19	Data File:	121228.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	102	60	133

Concentration ug/L (ppb)
4.0
<1
<1
<5
<1
<1
65
<1
<1
1.7
6.8

ENVIRONMENTAL CHEMISTS

Client Sample ID:	IW91-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-14
Date Analyzed:	12/12/19	Data File:	121229.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW99-20191207	Client:	SoundEarth Strategies
Date Received:	12/09/19	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	912135-15
Date Analyzed:	12/12/19	Data File:	121230.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.58
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	36
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0731-004-08_ 20191209
Date Extracted:	12/11/19	Lab ID:	09-3000 mb
Date Analyzed:	12/12/19	Data File:	121210.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 12/18/19 Date Received: 12/09/19

Project: SOU_0731-004-08_ 20191209, F&BI 912135

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 912124-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	100	65-118			
Toluene	ug/L (ppb)	50	96	72 - 122			
Ethylbenzene	ug/L (ppb)	50	100	73-126			
Xylenes	ug/L (ppb)	150	93	74-118			
Gasoline	ug/L (ppb)	1,000	99	69-134			

ENVIRONMENTAL CHEMISTS

Date of Report: 12/18/19 Date Received: 12/09/19

Project: SOU_0731-004-08_ 20191209, F&BI 912135

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	88	63-142	9

ENVIRONMENTAL CHEMISTS

Date of Report: 12/18/19 Date Received: 12/09/19

Project: SOU_0731-004-08_ 20191209, F&BI 912135

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 912133-02 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	159	106	94	70-130	12
Manganese	ug/L (ppb)	20	4.66	100	98	70-130	2

			$\operatorname{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	95	85-115
Manganese	ug/L (ppb)	20	95	85-115

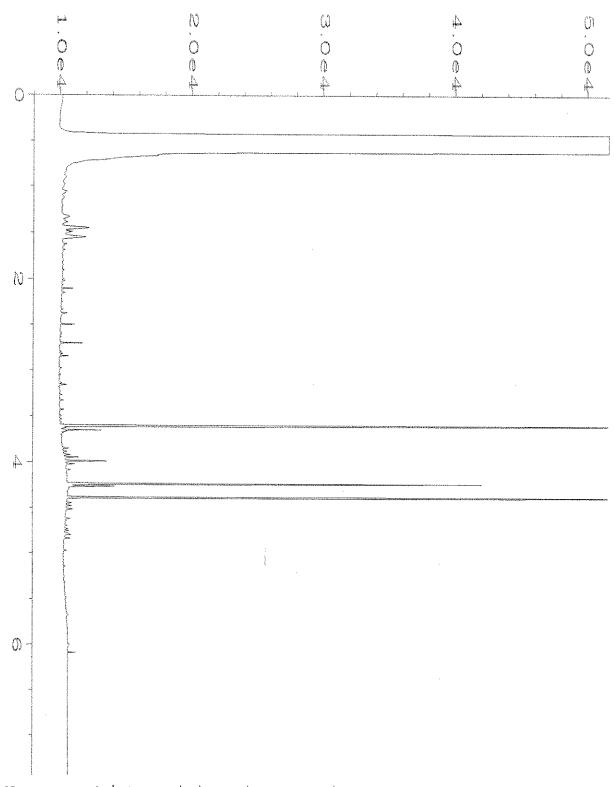
ENVIRONMENTAL CHEMISTS

Date of Report: 12/18/19 Date Received: 12/09/19

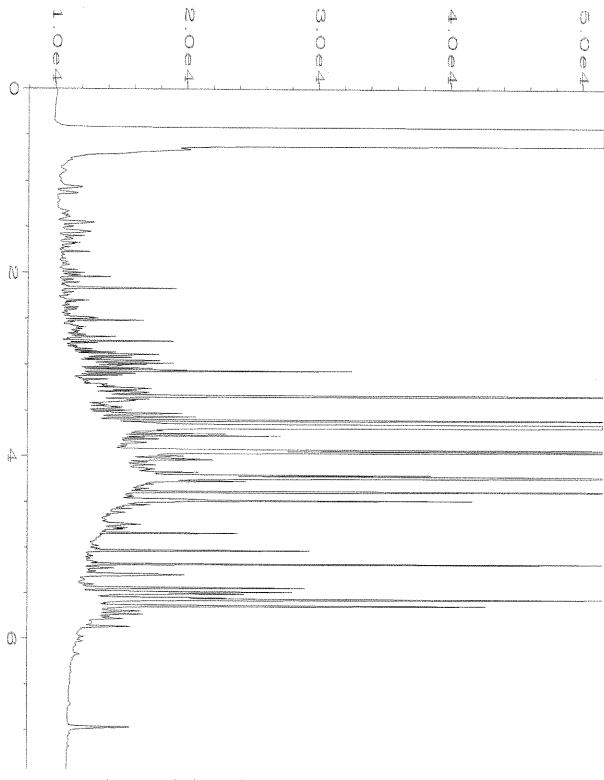
Project: SOU_0731-004-08_ 20191209, F&BI 912135

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

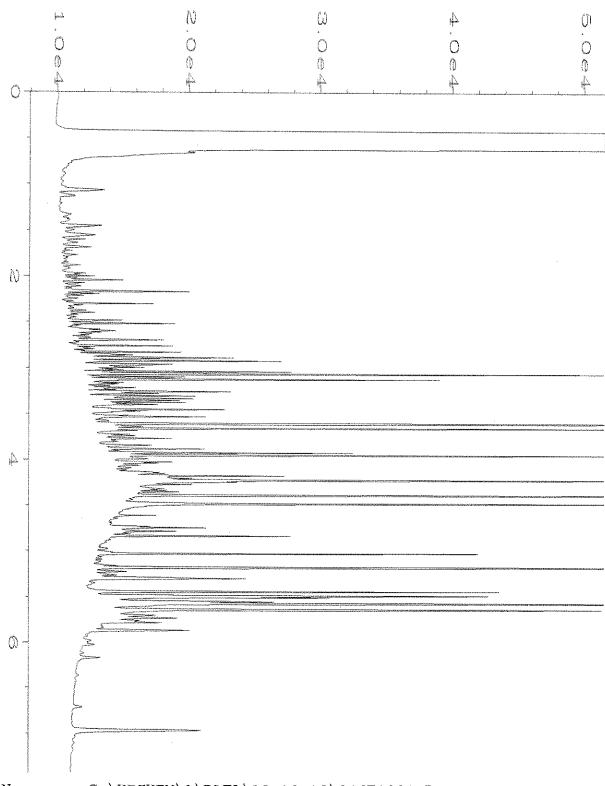
Laboratory Code: 912135-03 (Matrix Spike)

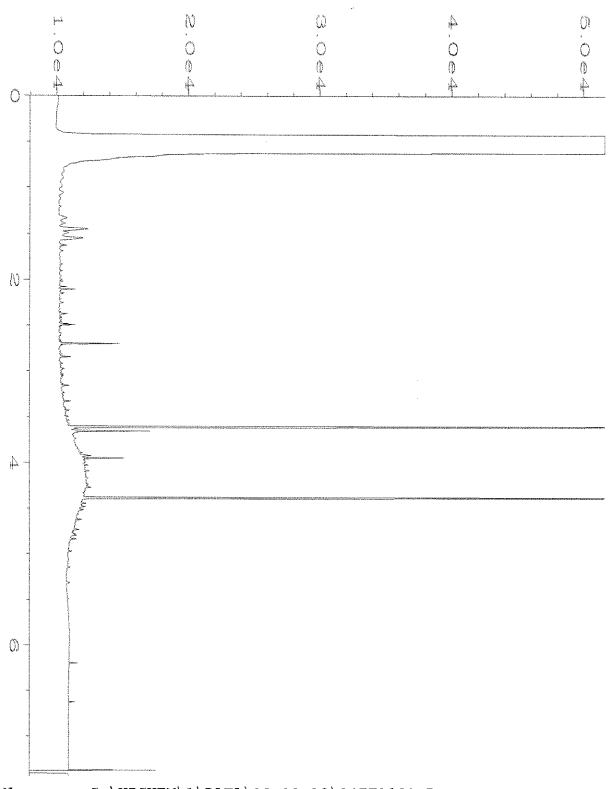

		Percent			
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	0.98	105	36-166
Chloroethane	ug/L (ppb)	50	<1	114	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	93	60-136
Methylene chloride	ug/L (ppb)	50	<5	101	67 - 132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	102	72 - 129
1,1-Dichloroethane	ug/L (ppb)	50	<1	101	70 - 128
cis-1,2-Dichloroethene	ug/L (ppb)	50	35	91 b	71 - 127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	99	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	100	60-146
Trichloroethene	ug/L (ppb)	50	<1	90	66 - 135
Tetrachloroethene	ug/L (ppb)	50	<1	98	10-226

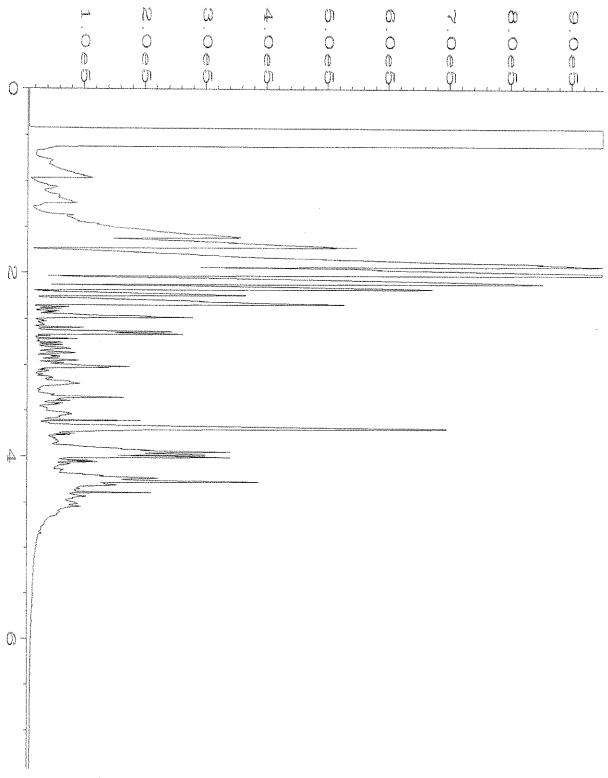
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	110	102	50-154	8
Chloroethane	ug/L (ppb)	50	120	110	58-146	9
1,1-Dichloroethene	ug/L (ppb)	50	101	93	67-136	8
Methylene chloride	ug/L (ppb)	50	110	103	39-148	7
trans-1,2-Dichloroethene	ug/L (ppb)	50	109	101	68-128	8
1,1-Dichloroethane	ug/L (ppb)	50	108	101	79 - 121	7
cis-1,2-Dichloroethene	ug/L (ppb)	50	104	98	80-123	6
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	107	102	73 - 132	5
1,1,1-Trichloroethane	ug/L (ppb)	50	106	99	81 - 125	7
Trichloroethene	ug/L (ppb)	50	97	92	79-113	5
Tetrachloroethene	ug/L (ppb)	50	104	101	76 - 121	3

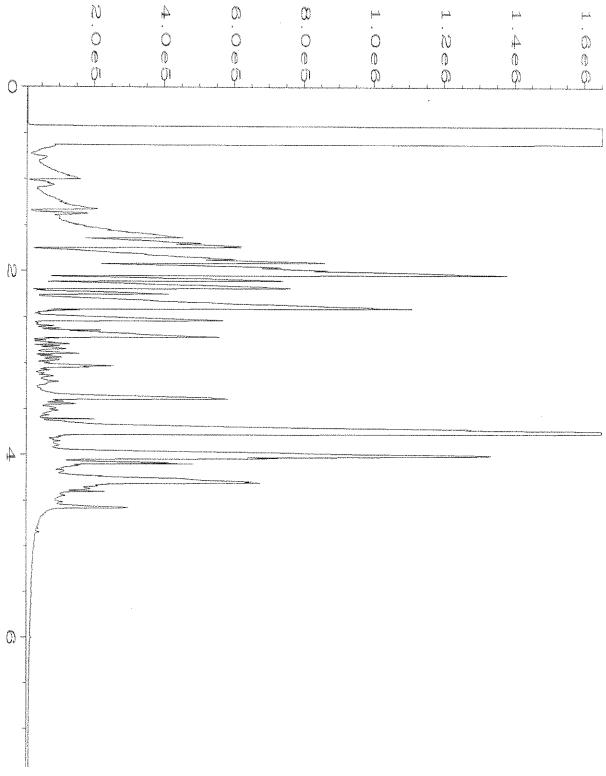

ENVIRONMENTAL CHEMISTS

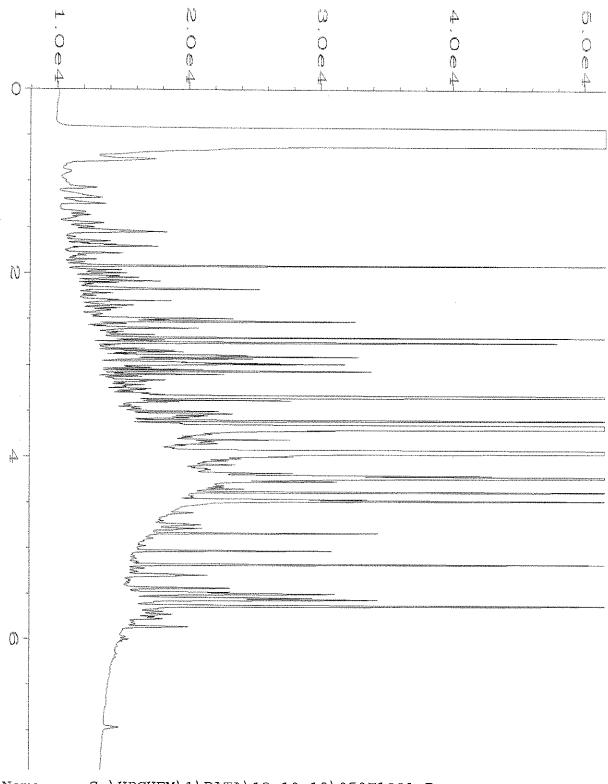
Data Qualifiers & Definitions

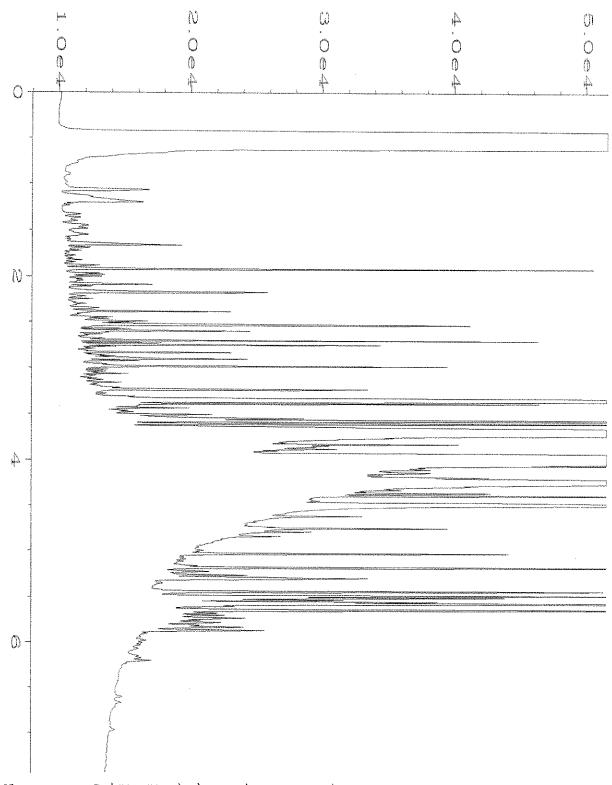

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

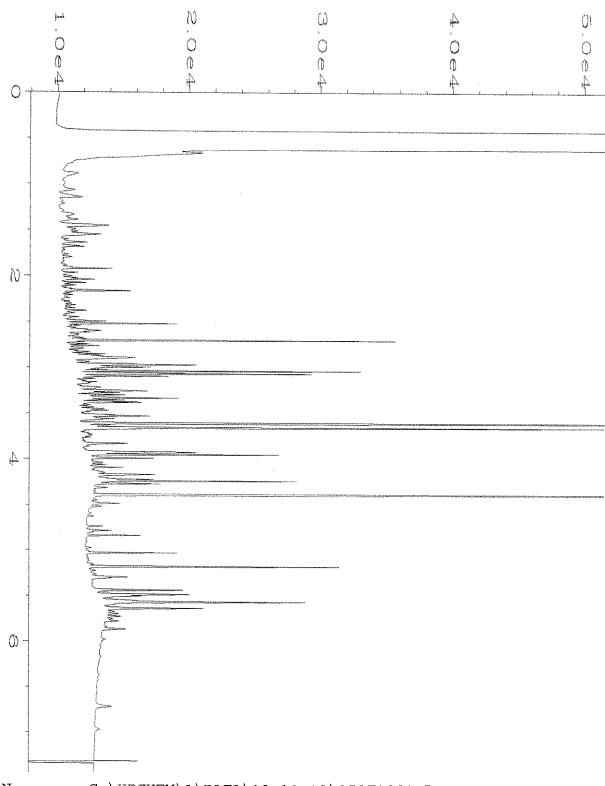

```
Data File Name : C:\HPCHEM\1\DATA\12-10-19\044F1001.D
Operator
                : TL
                                              Page Number
Instrument
                : GC1
                                              Vial Number
                                                               : 44
Sample Name
                : 912135-01
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on : 10 Dec 19 06:28 PM
                                              Instrument Method: DX.MTH
Report Created on: 11 Dec 19 09:37 AM
                                              Analysis Method : DX.MTH
```

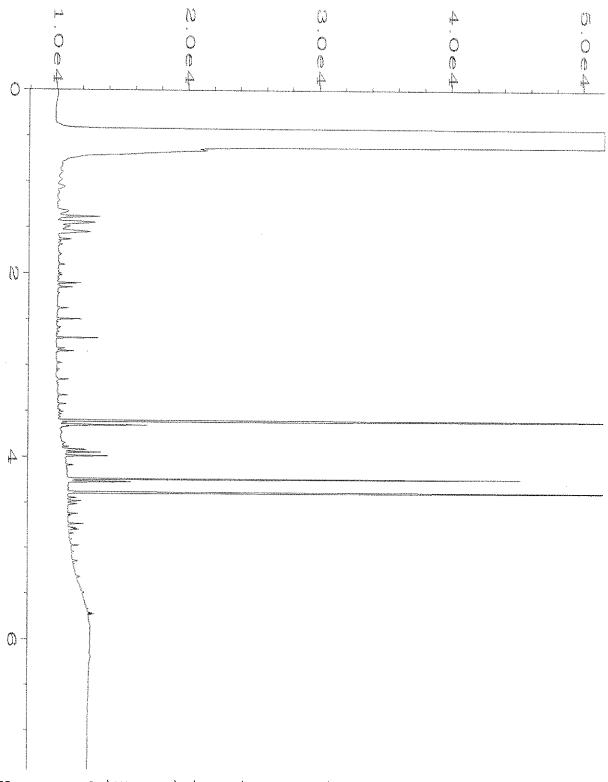


```
Data File Name
              : C:\HPCHEM\1\DATA\12-10-19\045F1001.D
Operator
                : TL
                                              Page Number
Instrument
                : GC1
                                              Vial Number
Sample Name
                : 912135-02
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on
                : 10 Dec 19 06:39 PM
                                              Instrument Method: DX.MTH
Report Created on: 11 Dec 19 09:37 AM
                                              Analysis Method : DX.MTH
```

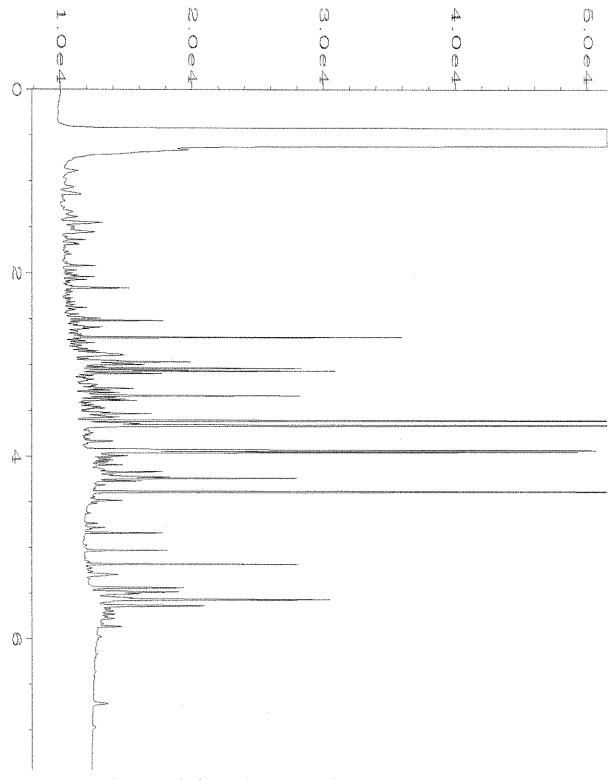


```
: C:\HPCHEM\1\DATA\12-10-19\046F1001.D
Data File Name
Operator
                : TL
                                              Page Number
                                              Vial Number
Instrument
                : GC1
Sample Name
                : 912135-03
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on : 10 Dec 19 06:50 PM
                                              Instrument Method: DX.MTH
Report Created on: 11 Dec 19 09:37 AM
                                              Analysis Method : DX.MTH
```

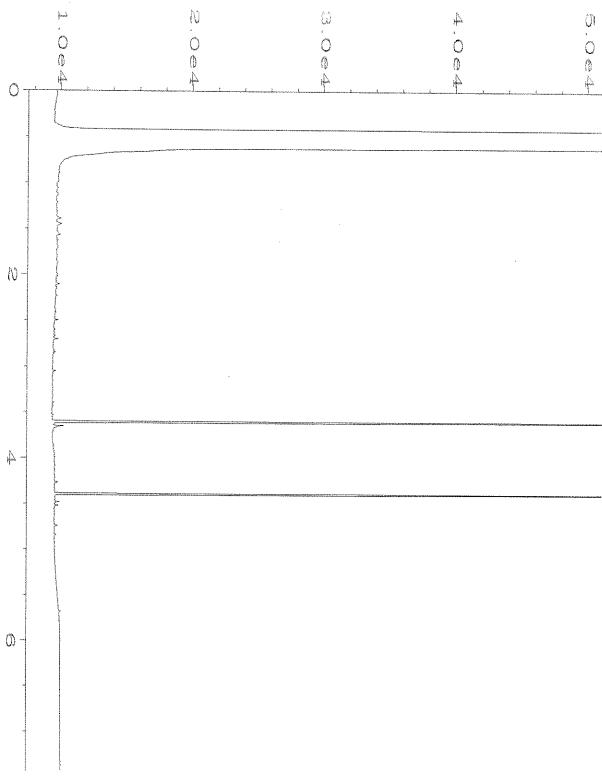


```
Data File Name
                 : C:\HPCHEM\1\DATA\12-10-19\047F1001.D
Operator
                                               Page Number
                 : TL
Instrument
                 : GC1
                                               Vial Number
                                                                : 47
                : 912135-04
Sample Name
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                             : 10
Acquired on
                : 10 Dec 19 07:02 PM
                                               Instrument Method: DX.MTH
Report Created on: 11 Dec 19 09:38 AM
                                               Analysis Method : DX.MTH
```

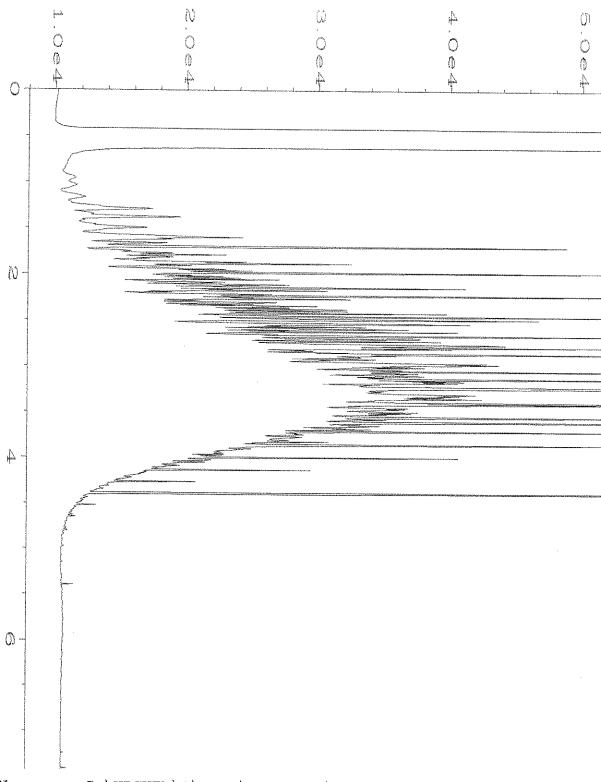


```
Data File Name
              : C:\HPCHEM\1\DATA\12-10-19\048F1001.D
Operator
                : TL
                                              Page Number
Instrument
                : GC1
                                              Vial Number
                                                               : 48
Sample Name
                : 912135-05
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on : 10 Dec 19 07:13 PM
                                              Instrument Method: DX.MTH
Report Created on: 11 Dec 19 09:38 AM
                                              Analysis Method : DX.MTH
```



```
Data File Name
               : C:\HPCHEM\1\DATA\12-10-19\049F1001.D
Operator
                : TL
                                              Page Number
Instrument
                                              Vial Number
                : GC1
Sample Name
                : 912135-06
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 10
Acquired on : 10 Dec 19 07:24 PM
                                               Instrument Method: DX.MTH
Report Created on: 11 Dec 19 09:39 AM
                                              Analysis Method : DX.MTH
```



```
: C:\HPCHEM\1\DATA\12-10-19\050F1001.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                : GC1
                                              Vial Number
Sample Name
                : 912135-07
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on : 10 Dec 19 07:36 PM
                                              Instrument Method: DX.MTH
Report Created on: 11 Dec 19 09:39 AM
                                              Analysis Method : DX.MTH
```



```
: C:\HPCHEM\1\DATA\12-10-19\051F1001.D
Data File Name
Operator
                : TL
                                              Page Number
                                              Vial Number
Instrument
                : GC1
Sample Name
                : 912135-08
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on : 10 Dec 19 07:47 PM
                                              Instrument Method: DX.MTH
Report Created on: 11 Dec 19 09:39 AM
                                              Analysis Method : DX.MTH
```



```
Data File Name
               : C:\HPCHEM\1\DATA\12-10-19\052F1001.D
Operator
                : TL
                                              Page Number
Instrument
                                              Vial Number
                : GC1
Sample Name
                : 912135-09
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
Acquired on : 10 Dec 19 07:58 PM
                                              Instrument Method: DX.MTH
Report Created on: 11 Dec 19 09:39 AM
                                              Analysis Method : DX.MTH
```



```
: C:\HPCHEM\1\DATA\12-10-19\053F1001.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                : GC1
                                              Vial Number
                                                               ; 53
Sample Name
                : 912135-14
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
Acquired on : 10 Dec 19 08:10 PM
                                              Instrument Method: DX.MTH
Report Created on: 11 Dec 19 10:05 AM
                                              Analysis Method : DX.MTH
```



```
Data File Name
                : C:\HPCHEM\1\DATA\12-10-19\054F1001.D
Operator
                : TL
                                               Page Number
Instrument
                : GC1
                                               Vial Number
                                                               : 54
Sample Name
                : 912135-15
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 10
Acquired on
                                               Instrument Method: DX.MTH
            : 10 Dec 19 08:21 PM
Report Created on: 11 Dec 19 09:40 AM
                                              Analysis Method : DX.MTH
```



```
Data File Name : C:\HPCHEM\1\DATA\12-10-19\026F0301.D
Operator
                : TL
                                            Page Number
Instrument
                                            Vial Number
               : GC1
Sample Name
              : 09-3003 mb
                                            Injection Number: 1
Run Time Bar Code:
                                            Sequence Line : 3
Acquired on : 10 Dec 19 01:35 PM
                                            Instrument Method: DX.MTH
Report Created on: 11 Dec 19 10:08 AM
                                            Analysis Method : DX.MTH
```



```
Data File Name : C:\HPCHEM\1\DATA\12-10-19\003F0901.D
Operator
                : TL
                                              Page Number
Instrument
                                              Vial Number
                : GC1
Sample Name
                : 500 Dx 58-146B
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 9
Acquired on : 10 Dec 19 05:42 PM
                                              Instrument Method: DX.MTH
Report Created on: 11 Dec 19 10:08 AM
                                              Analysis Method : DX.MTH
```


3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 912135

Work Order Number: 1912112

December 18, 2019

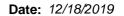
Attention Michael Erdahl:

Fremont Analytical, Inc. received 10 sample(s) on 12/9/2019 for the analyses presented in the following report.

Dissolved Gases by RSK-175
Ferrous Iron by SM3500-Fe B
Ion Chromatography by EPA Method 300.0
Total Alkalinity by SM 2320B
Total Organic Carbon by SM 5310C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 912135 **Work Order:** 1912112

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1912112-001	MW18-20191207	12/07/2019 2:37 PM	12/09/2019 1:50 PM
1912112-002	MW19-20191207	12/07/2019 4:10 PM	12/09/2019 1:50 PM
1912112-003	MW21-20191207	12/07/2019 11:42 AM	12/09/2019 1:50 PM
1912112-004	MW22-20191207	12/07/2019 9:25 AM	12/09/2019 1:50 PM
1912112-005	MW23-20191207	12/07/2019 10:45 AM	12/09/2019 1:50 PM
1912112-006	MW24-20191207	12/07/2019 1:12 PM	12/09/2019 1:50 PM
1912112-007	MW25-20191207	12/07/2019 4:55 PM	12/09/2019 1:50 PM
1912112-008	IW04-20191207	12/07/2019 2:40 PM	12/09/2019 1:50 PM
1912112-009	IW50-20191207	12/07/2019 12:05 PM	12/09/2019 1:50 PM
1912112-010	IW61-20191207	12/07/2019 10:40 AM	12/09/2019 1:50 PM

Case Narrative

WO#: **1912112**Date: **12/18/2019**

CLIENT: Friedman & Bruya

Project: 912135

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1912112**

Date Reported: 12/18/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: 1912112
Date Reported: 12/18/2019

Client: Friedman & Bruya Collection Date: 12/7/2019 2:37:00 PM

Project: 912135

Lab ID: 1912112-001 **Matrix:** Water

15.6

Client Sample ID: MW18-20191207

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Dissolved Gases by RSK-175				Bato	h ID:	R55983	Analyst: AD
Methane	2.23	0.173	D	mg/L	20	12/3/	/2020 7:17:00 PM
Ethene	ND	0.0151		mg/L	1	12/3/	/2020 6:11:00 PM
Ethane	ND	0.0162		mg/L	1	12/3/	/2020 6:11:00 PM
Ion Chromatography by EPA Me	thod 300.0			Bato	h ID:	26765	Analyst: TN
Nitrate (as N)	ND	0.100	Н	mg/L	1	12/1	0/2019 4:04:00 PM
Sulfate	ND	0.300		mg/L	1	12/1	0/2019 4:04:00 PM
Total Organic Carbon by SM 53	<u>10C</u>			Bato	h ID:	R56004	Analyst: SS
Total Organic Carbon NOTES:	9.61	0.500	В	mg/L	1	12/1:	3/2019 7:07:00 PM
B - Detection in sample is 10x greater th	an detection in Meth	nod Blank and	I CCB. No fu	urther action	requir	ed.	
Total Alkalinity by SM 2320B				Bato	h ID:	R56026	Analyst: WF
Alkalinity, Total (As CaCO3)	497	2.50		mg/L	1	12/1	6/2019 1:02:24 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID:	R55828	Analyst: SS

0.500

DH

mg/L

10

12/9/2019 3:10:20 PM

Ferrous Iron

Work Order: 1912112
Date Reported: 12/18/2019

Client: Friedman & Bruya Collection Date: 12/7/2019 4:10:00 PM

Project: 912135

Lab ID: 1912112-002 **Matrix:** Water

Client Sample ID: MW19-20191207

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Bato	h ID: R5	5983 Analyst: AD
Methane	6.52	0.863	D	mg/L	100	12/3/2020 7:20:00 PM
Ethene	ND	0.0151		mg/L	1	12/3/2020 6:14:00 PM
Ethane	ND	0.0162		mg/L	1	12/3/2020 6:14:00 PM
lon Chromatography by EPA Method 300.0				Bato	h ID: 267	765 Analyst: TN
Nitrate (as N)	ND	0.100	Н	mg/L	1	12/11/2019 1:06:00 PM
Sulfate	ND	0.300		mg/L	1	12/11/2019 1:06:00 PM
Total Alkalinity by SM 2320B				Bato	h ID: R5	6026 Analyst: WF
Alkalinity, Total (As CaCO3)	473	2.50		mg/L	1	12/16/2019 1:02:24 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID: R5	5828 Analyst: SS
Ferrous Iron	12.6	0.500	DH	mg/L	10	12/9/2019 3:10:20 PM

Work Order: 1912112
Date Reported: 12/18/2019

Client: Friedman & Bruya Collection Date: 12/7/2019 11:42:00 AM

Project: 912135

Lab ID: 1912112-003 **Matrix:** Water

Client Sample ID: MW21-20191207

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Bato	h ID: R5	5983 Analyst: AD
Methane	3.98	0.173	D	mg/L	20	12/3/2020 6:55:00 PM
Ethene	ND	0.0151		mg/L	1	12/3/2020 6:16:00 PM
Ethane	ND	0.0162		mg/L	1	12/3/2020 6:16:00 PM
Total Organic Carbon by SM 5310C				Bato	h ID: R5	6080 Analyst: SS
Total Organic Carbon	110	2.00	D	mg/L	4	12/17/2019 11:58:00 PM

Work Order: 1912112
Date Reported: 12/18/2019

Client: Friedman & Bruya Collection Date: 12/7/2019 9:25:00 AM

Project: 912135

Lab ID: 1912112-004 **Matrix:** Water

Client Sample ID: MW22-20191207

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Dissolved Gases by RSK-175				Bato	th ID: R5	5983 Analyst: AD		
Methane	5.37	0.863	D	mg/L	100	12/3/2020 7:23:00 PM		
Ethene	ND	0.0151		mg/L	1	12/3/2020 6:19:00 PM		
Ethane	ND	0.0162		mg/L	1	12/3/2020 6:19:00 PM		
Ion Chromatography by EPA M	Method 300.0			Bato	h ID: 267	765 Analyst: TN		
Nitrate (as N)	ND	0.200	HD	mg/L	2	12/10/2019 6:04:00 PM		
Sulfate	0.762	0.600	D	mg/L	2	12/10/2019 6:04:00 PM		
NOTES: Diluted due to matrix.								
Total Organic Carbon by SM 5	310C			Bato	h ID: R50	6080 Analyst: SS		
Total Organic Carbon	318	5.00	D	mg/L	10	12/18/2019 2:06:00 AM		
Total Alkalinity by SM 2320B				Bato	th ID: R50	6026 Analyst: WF		
Alkalinity, Total (As CaCO3)	283	2.50		mg/L	1	12/16/2019 1:02:24 PM		
Ferrous Iron by SM3500-Fe B				Bato	h ID: R5	5828 Analyst: SS		
Ferrous Iron	7.41	0.500	DH	mg/L	10	12/9/2019 3:10:20 PM		

Work Order: 1912112
Date Reported: 12/18/2019

Client: Friedman & Bruya Collection Date: 12/7/2019 10:45:00 AM

Project: 912135

Lab ID: 1912112-005 **Matrix:** Water

Client Sample ID: MW23-20191207

Cheft Sample ID: MW23-20191207 Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Bato	h ID: R5	5983 Analyst: AE
Methane	2.57	0.173	D	mg/L	20	12/3/2020 7:00:00 PM
Ethene	ND	0.0151		mg/L	1	12/3/2020 6:23:00 PM
Ethane	ND	0.0162		mg/L	1	12/3/2020 6:23:00 PM
Ion Chromatography by EPA Metl	nod 300.0			Bato	h ID: 26	765 Analyst: TN
Nitrate (as N)	ND	0.200	HD	mg/L	2	12/10/2019 6:27:00 F
Sulfate	0.876	0.600	D	mg/L	2	12/10/2019 6:27:00 F
NOTES: Diluted due to matrix.						
Total Organic Carbon by SM 5310	<u>IC</u>			Bato	h ID: R5	6004 Analyst: SS
Total Organic Carbon NOTES:	17.4	0.500	В	mg/L	1	12/13/2019 9:53:00 F
B - Detection in sample is 10x greater than	n detection in Met	hod Blank and	I CCB. No fi	urther action	required.	
Total Alkalinity by SM 2320B				Bato	h ID: R5	6026 Analyst: W
Alkalinity, Total (As CaCO3)	614	2.50		mg/L	1	12/16/2019 1:02:24 F
Ferrous Iron by SM3500-Fe B				Bato	h ID: R5	5828 Analyst: SS
Ferrous Iron	13.8	0.500	DH	mg/L	10	12/9/2019 3:10:20 PM

Work Order: 1912112
Date Reported: 12/18/2019

Client: Friedman & Bruya Collection Date: 12/7/2019 1:12:00 PM

Project: 912135

Lab ID: 1912112-006 **Matrix:** Water

10.6

Client Sample ID: MW24-20191207

Result	RL	Qual	Units	DF	Date Analyzed
			Batc	h ID: F	R55983 Analyst: AD
3.96	0.863	D	mg/L	100	12/3/2020 7:26:00 PM
ND	0.0151		mg/L	1	12/3/2020 6:25:00 PM
ND	0.0162		mg/L	1	12/3/2020 6:25:00 PM
d 300.0			Batc	h ID: 2	6765 Analyst: TN
ND	0.100	Н	mg/L	1	12/11/2019 1:29:00 PM
ND	0.300		mg/L	1	12/11/2019 1:29:00 PM
			Batc	h ID: F	R56004 Analyst: SS
12.6	0.500	В	mg/L	1	12/13/2019 10:25:00 PM
etection in Met	hod Blank and	CCB. No fu	rther action	required	d.
			Batc	h ID: F	R56026 Analyst: WF
434	2.50		mg/L	1	12/16/2019 1:02:24 PM
			Batc	h ID: F	R55828 Analyst: SS
	3.96 ND ND d 300.0 ND ND	3.96	3.96	Batc 3.96	Batch ID: F 3.96

0.500

DH

mg/L

10

12/9/2019 3:10:20 PM

Ferrous Iron

Work Order: 1912112
Date Reported: 12/18/2019

Client: Friedman & Bruya Collection Date: 12/7/2019 4:55:00 PM

Project: 912135

Lab ID: 1912112-007 **Matrix:** Water

Client Sample ID: MW25-20191207

Client Sample ID: MW25-2019120)7						
Analyses	Result	RL	Qual	Units	DF	Dat	e Analyzed
Dissolved Gases by RSK-175				Bato	ch ID: R5	5983	Analyst: AD
Methane	7.48	0.863	D	mg/L	100	12/3/2	020 7:28:00 PM
Ethene	ND	0.0151		mg/L	1	12/3/2	020 6:31:00 PM
Ethane	ND	0.0162		mg/L	1	12/3/2	020 6:31:00 PM
Ion Chromatography by EPA Me	thod 300.0			Bato	ch ID: 26	765	Analyst: TN
Nitrate (as N)	ND	0.100	Н	mg/L	1	12/11/	2019 1:53:00 PM
Sulfate	ND	0.300		mg/L	1	12/11/	2019 1:53:00 PM
Total Organic Carbon by SM 531	<u>10C</u>			Bato	ch ID: R5	6004	Analyst: SS
Total Organic Carbon	6.87	0.500	В	mg/L	1	12/13/	2019 10:58:00 PM
NOTES: B - Detection in sample is 10x greater th	an detection in Metl	nod Blank and	I CCB. No fu	urther action	required.		
Total Alkalinity by SM 2320B				Bato	ch ID: R5	6026	Analyst: WF
Alkalinity, Total (As CaCO3)	424	2.50		mg/L	1	12/16/	2019 1:02:24 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID: R5	5828	Analyst: SS

Ferrous Iron 13.8 0.500 DH mg/L 10 12/9/2019 3:10:20 PM

Work Order: 1912112
Date Reported: 12/18/2019

Client: Friedman & Bruya Collection Date: 12/7/2019 2:40:00 PM

Project: 912135

Lab ID: 1912112-008 **Matrix:** Water

Client Sample ID: IW04-20191207

Analyses	Result	RL	Qual	Units	DF	Date A	Analyzed
lon Chromatography by EPA Me	thod 300.0			Bato	h ID:	26765 A	nalyst: TN
Nitrate (as N) Sulfate NOTES: Diluted due to matrix.	ND 0.912	0.200 0.600	DH D	mg/L mg/L	2		9 8:23:00 PM 9 8:23:00 PM
Total Organic Carbon by SM 531	<u>10C</u>			Bato	h ID:	R56080 A	nalyst: SS
Total Organic Carbon	94.8	2.00	D	mg/L	4	12/18/201	9 1:43:00 PM
Total Alkalinity by SM 2320B				Bato	h ID:	R56026 A	nalyst: WF
Alkalinity, Total (As CaCO3)	595	2.50		mg/L	1	12/16/201	9 1:02:24 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID:	R55828 A	nalyst: SS
Ferrous Iron	ND	0.0500	Н	mg/L	1	12/9/2019	3:10:20 PM

Work Order: 1912112
Date Reported: 12/18/2019

Client: Friedman & Bruya Collection Date: 12/7/2019 12:05:00 PM

Project: 912135

Lab ID: 1912112-009 **Matrix:** Water

7.46

Client Sample ID: IW50-20191207

Client Sample ID: IW50-20191207						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Bato	ch ID: R5	5983 Analyst: AD
Methane	4.12	0.863	D	mg/L	100	12/3/2020 7:31:00 PM
Ethene	ND	0.0151		mg/L	1	12/3/2020 6:43:00 PM
Ethane	ND	0.0162		mg/L	1	12/3/2020 6:43:00 PM
Ion Chromatography by EPA Metho	od 300.0			Bato	ch ID: 26	765 Analyst: TN
Nitrate (as N)	ND	0.100	Н	mg/L	1	12/10/2019 8:46:00 PM
Sulfate	11.0	0.300		mg/L	1	12/10/2019 8:46:00 PM
Total Organic Carbon by SM 53100	2			Bato	h ID: R5	6004 Analyst: SS
Total Organic Carbon	6.72	0.500	В	mg/L	1	12/14/2019 12:13:00 AM
NOTES: B - Detection in sample is 10x greater than	detection in Met	hod Blank and	CCB. No fu	urther action	required.	
Total Alkalinity by SM 2320B				Bato	ch ID: R5	6026 Analyst: WF
Alkalinity, Total (As CaCO3)	288	2.50		mg/L	1	12/16/2019 1:02:24 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID: R5	5828 Analyst: SS

0.500

DH

mg/L

10

12/9/2019 3:10:20 PM

Ferrous Iron

Work Order: 1912112
Date Reported: 12/18/2019

Client: Friedman & Bruya Collection Date: 12/7/2019 10:40:00 AM

Project: 912135

Lab ID: 1912112-010 **Matrix:** Water

Client Sample ID: IW61-20191207

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Bato	ch ID: R5	5983 Analyst: AD
Methane	3.86	0.863	D	mg/L	100	12/3/2020 7:34:00 PM
Ethene	ND	0.0151		mg/L	1	12/3/2020 6:47:00 PM
Ethane	ND	0.0162		mg/L	1	12/3/2020 6:47:00 PM
lon Chromatography by EPA Me	thod 300.0			Bato	ch ID: 267	765 Analyst: TN
Nitrate (as N)	ND	0.100	Н	mg/L	1	12/11/2019 2:16:00 PM
Sulfate	ND	0.300		mg/L	1	12/11/2019 2:16:00 PM
Total Organic Carbon by SM 531	<u>0C</u>			Bato	ch ID: R5	6080 Analyst: SS
Total Organic Carbon	101	2.00	D	mg/L	4	12/18/2019 2:38:00 AM
Total Alkalinity by SM 2320B				Bato	h ID: R5	6026 Analyst: WF
Alkalinity, Total (As CaCO3)	444	2.50		mg/L	1	12/16/2019 1:02:24 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID: R5	5828 Analyst: SS
Ferrous Iron	24.8	1.00	DH	mg/L	20	12/9/2019 3:10:20 PM

Date: 12/18/2019

Work Order: 1912112

Friedman & Bruya

Project: 912135

CLIENT:

QC SUMMARY REPORT

Total Alkalinity by SM 2320B

Sample ID: MB-R56026 SampType: MBLK Units: mg/L Prep Date: 12/16/2019 RunNo: 56026

Client ID: **MBLKW** Batch ID: **R56026** Analysis Date: **12/16/2019** SeqNo: **1115663**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) ND 2.50

Sample ID: LCS-R56026 SampType: LCS Units: mg/L Prep Date: 12/16/2019 RunNo: 56026

Client ID: LCSW Batch ID: R56026 Analysis Date: 12/16/2019 SeqNo: 1115664

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) 101 2.50 100.0 0 101 94.3 116

Sample ID: 1912112-001DDUP SampType: DUP Units: mg/L Prep Date: 12/16/2019 RunNo: 56026

Client ID: MW18-20191207 Batch ID: R56026 Analysis Date: 12/16/2019 SeqNo: 1115666

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

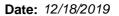
Alkalinity, Total (As CaCO3) 502 2.50 497.2 0.977 20

Original Page 15 of 24

Date: 12/18/2019

Work Order: 1912112

QC SUMMARY REPORT


CLIENT: Friedman & Bruya
Project: 912135

Ferrous Iron by SM3500-Fe B

F10ject. 912100											
Sample ID: MB-R55828	SampType: MBLK			Units: mg/L		Prep Date	12/9/20	19	RunNo: 558	328	
Client ID: MBLKW	Batch ID: R55828					Analysis Date	12/9/20	19	SeqNo: 11 1	1270	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	ND	0.0500									
Sample ID: LCS-R55828	SampType: LCS			Units: mg/L		Prep Date	12/9/20	19	RunNo: 558	328	
Client ID: LCSW	Batch ID: R55828					Analysis Date	12/9/20	19	SeqNo: 111	1271	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	0.373	0.0500	0.4000	0	93.2	85	115				
Sample ID: 1912112-001CDUP	SampType: DUP			Units: mg/L		Prep Date	: 12/9/20 ⁻	19	RunNo: 558	328	
Client ID: MW18-20191207	Batch ID: R55828					Analysis Date	12/9/20	19	SeqNo: 111	1273	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	14.4	0.500						15.63	8.29	20	DH
Sample ID: 1912112-001CMS	SampType: MS			Units: mg/L		Prep Date	: 12/9/20 ⁻	19	RunNo: 558	328	
Client ID: MW18-20191207	Batch ID: R55828					Analysis Date	12/9/20	19	SeqNo: 11 1	1274	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron	18.5	0.500	4.000	15.63	72.8	70	130				DH
Sample ID: 1912112-001CMSD	SampType: MSD			Units: mg/L		Prep Date	: 12/9/20	19	RunNo: 558	328	
Client ID: MW18-20191207	Batch ID: R55828					Analysis Date	12/9/20	19	SeqNo: 11 1	1275	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron NOTES:	18.2	0.500	4.000	15.63	63.4	70	130	18.54	2.05	20	SDH

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

Original Page 16 of 24

Work Order: 1912112

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 9°	12135							ion Cn	romatogra	ony by EP	A Method	300.0
Sample ID: MB-26765	SampTy	pe: MBLK			Units: mg/L		Prep Date	e: 12/10/2	2019	RunNo: 55 9	928	
Client ID: MBLKW	Batch ID	26765					Analysis Date	e: 12/10/2	2019	SeqNo: 11	13330	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)		ND	0.100									
Sulfate		ND	0.300									
Sample ID: LCS-2676	5 SampTy	pe: LCS			Units: mg/L		Prep Date	e: 12/10/2	2019	RunNo: 559	928	
Client ID: LCSW	Batch ID	26765					Analysis Date	e: 12/10/2	2019	SeqNo: 11	13332	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)		0.710	0.100	0.7500	0	94.7	90	110				
Sulfate		3.50	0.300	3.750	0	93.3	90	110				
Sample ID: 1912112-0	01DDUP SampTy	pe: DUP			Units: mg/L		Prep Date	e: 12/10/2	2019	RunNo: 559	928	
Client ID: MW18-201	91207 Batch ID	26765					Analysis Date	e: 12/10/2	2019	SeqNo: 11	13334	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)		ND	0.100						0		20	Н
Sulfate		ND	0.300						0		20	
Sample ID: 1912112-0	01DMS SampTy	pe: MS			Units: mg/L		Prep Date	e: 12/10/2	2019	RunNo: 559	928	
Client ID: MW18-201	91207 Batch ID	26765					Analysis Date	e: 12/10/2	2019	SeqNo: 11	13335	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)		0.699	0.100	0.7500	0.05900	85.3	80	120				Н
Sulfate		3.61	0.300	3.750	0.2530	89.5	80	120				
Sample ID: 1912112-0	01DMSD SampTy	pe: MSD			Units: mg/L		Prep Date	e: 12/10/2	2019	RunNo: 559	928	
Client ID: MW18-201	91207 Batch ID	26765					Analysis Date	e: 12/10/2	2019	SeqNo: 11	13336	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)		0.657	0.100	0.7500	0.05900	79.7	80	120	0.6990	6.19	20	SH

Original Page 17 of 24

Date: 12/18/2019

Work Order: 1912112

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

912135

Ion Chromatography by EPA Method 300.0

Sample ID: 1912112-001DMSD	SampType: MSD			Units: mg/L		Prep Da	te: 12/10/2	2019	RunNo: 559)28	
Client ID: MW18-20191207	Batch ID: 26765					Analysis Da	te: 12/10/2	2019	SeqNo: 111	3336	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfate	3.39	0.300	3.750	0.2530	83.8	80	120	3.608	6.11	20	

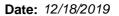
NOTES:

Project:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range (Nitrate).

Sample ID: 1912128-002ADUP	SampType: DUP			Units: mg/L		Prep Da	te: 12/10/2	2019	RunNo: 559	928	
Client ID: BATCH	Batch ID: 26765					Analysis Da	te: 12/10/2	2019	SeqNo: 111	13349	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	5.68	0.100						5.668	0.141	20	Е
Sulfate	12.5	0.300						12.47	0.144	20	

NOTES:


E - Estimated value. The amount exceeds the linear working range of the instrument.

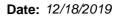
Sample ID: 1912128-002AMS	SampType: MS			Units: mg/L		Prep Da	te: 12/10/2	019	RunNo: 559	928	
Client ID: BATCH	Batch ID: 26765					Analysis Da	te: 12/10/2	019	SeqNo: 111	3350	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	6.48	0.100	0.7500	5.668	108	80	120				E
Sulfate	16.3	0.300	3.750	12.47	102	80	120				Е

NOTES:

 ${\sf E}$ - Estimated value. The amount exceeds the linear working range of the instrument.

Original Page 18 of 24

Work Order: 1912112


QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Organic Carbon by SM 5310C

Project: 912135					Total Organic Carbon by SM 531
Sample ID: MB-R56004	SampType: MBLK			Units: mg/L	Prep Date: 12/13/2019 RunNo: 56004
Client ID: MBLKW	Batch ID: R56004				Analysis Date: 12/13/2019 SeqNo: 1115168
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Total Organic Carbon	0.568	0.500			
Sample ID: LCS-R56004	SampType: LCS			Units: mg/L	Prep Date: 12/13/2019 RunNo: 56004
Client ID: LCSW	Batch ID: R56004				Analysis Date: 12/13/2019 SeqNo: 1115169
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Total Organic Carbon	5.60	0.500	5.000	0	112 88.3 117 B
Sample ID: 1912078-001CDUP	SampType: DUP			Units: mg/L	Prep Date: 12/13/2019 RunNo: 56004
Client ID: BATCH	Batch ID: R56004				Analysis Date: 12/13/2019 SeqNo: 1115171
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Total Organic Carbon	0.948	0.500			0.9470 0.106 20 B
Sample ID: 1912078-001CMS	SampType: MS			Units: mg/L	Prep Date: 12/13/2019 RunNo: 56004
Client ID: BATCH	Batch ID: R56004				Analysis Date: 12/13/2019 SeqNo: 1115172
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Total Organic Carbon	5.92	0.500	5.000	0.9470	99.5 66 142 B
Sample ID: 1912078-001CMSD	SampType: MSD			Units: mg/L	Prep Date: 12/13/2019 RunNo: 56004
Client ID: BATCH	Batch ID: R56004				Analysis Date: 12/13/2019 SeqNo: 1115173
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Total Organic Carbon	5.97	0.500	5.000	0.9470	101 66 142 5.923 0.841 30 B

Original Page 19 of 24

Work Order: 1912112

CLIENT:

QC SUMMARY REPORT

Friedman & Bruya 912135

Total Organic Carbon by SM 5310C

Project:	912135									Total Orga	anic Carbo	on by SM	5310C
Sample ID: 19	12112-010BDUP	SampType	: DUP			Units: mg/L		Prep Dat	e: 12/14/2	2019	RunNo: 560	004	
Client ID: IW	61-20191207	Batch ID:	R56004					Analysis Da	te: 12/14/2	2019	SeqNo: 11	15187	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic (NOTES: E - Estimate	Carbon d value. The amoun	t exceeds the	103 inear workin	0.500	the instrument	t.				102.7	0.0643	20	EB
Sample ID: 19	12112-010BMS	SampType	: MS			Units: mg/L		Prep Dat	e: 12/14/2	2019	RunNo: 560	004	

Sample ID: 1912112-010BMS Client ID: IW61-20191207	SampType: MS Batch ID: R56004			Units: mg/L		Prep Date: 12/14/2019 Analysis Date: 12/14/2019				RunNo: 56004 SeqNo: 1115188		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Total Organic Carbon NOTES:	108	0.500	5.000	102.7	106	66	142				EB	

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID: MB-R56080	SampType: MBLK		ι	Inits: mg/L	Prep Date	e: 12/17/2019	RunNo: 560	080	
Client ID: MBLKW	Batch ID: R56080				Analysis Date	e: 12/17/2019	SeqNo: 11	17211	
Analyte	Result	RL	SPK value SPK	Ref Val %REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	ND	0.500	_						

Sample ID: LCS-R56080	SampType: LCS			Units: mg/L		Prep Dat	te: 12/17/2	019	RunNo: 560	80	
Client ID: LCSW	Batch ID: R56080					Analysis Da	te: 12/17/2	019	SeqNo: 111	7212	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	5.45	0.500	5.000	0	109	88.3	117				

Sample ID: 1912112-003BDUP	SampType: DUP		Units: mg/L		Prep Date: 12/18	3/2019	RunNo: 560	080	
Client ID: MW21-20191207	Batch ID: R56080				Analysis Date: 12/18	3/2019	SeqNo: 111	17214	
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLim	it RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	108	2.00				110.4	1.86	20	D

Page 20 of 24 Original

Date: 12/18/2019

Work Order: 1912112

Project:

Analyte

QC SUMMARY REPORT

%RPD RPDLimit

Qual

Friedman & Bruya CLIENT:

912135

Result

RL

Total Organic Carbon by SM 5310C

Sample ID: 1912112-003BMS	SampType: MS	Units: mg/L	Prep Date:	12/18/2019	RunNo: 56080
Client ID: MW21-20101207	Ratch ID: DECOM	۸	nalveie Date:	12/18/2010	SoaNo: 111721

SeqNo: 1117215 SPK value SPK Ref Val

Total Organic Carbon 128 2.00 20.00 110.4 85.8 66 142 D

%REC LowLimit HighLimit RPD Ref Val

Sample ID: 1912112-003BMSD	SampType: MSD			Units: mg/L		Prep Da	te: 12/18/2	019	RunNo: 560	80	
Client ID: MW21-20191207	Batch ID: R56080					Analysis Da	te: 12/18/2	019	SeqNo: 111	7216	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	129	2.00	20.00	110.4	93.4	66	142	127.6	1.18	30	D

Page 21 of 24 Original

Date: 12/18/2019

Work Order: 1912112

Project:

Analyte

Ethane

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

912135

Dissolved Gases by RSK-175

%RPD RPDLimit Qual

Sample ID: MB-R55983	SampType: MBLK	Units: mg/L	Prep Date:	12/3/2020	RunNo: 55983
Client ID: MRI KW	Ratch ID: R55083		Analysis Date	12/3/2020	SeaNo: 111456

SeqNo: 1114567 SPK value SPK Ref Val

Methane ND 0.00863 ND Ethene 0.0151

Result

ND

0.0162

Sample ID: LCS-R55983	SampType: LCS			Units: mg/L		Prep Dat	e: 12/3/20	20	RunNo: 559	83	
Client ID: LCSW	Batch ID: R55983					Analysis Da	te: 12/3/20	20	SeqNo: 111	4566	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane	1,040	0.00863	1,000	0	104	70	130				
Ethene	1,050	0.0151	1,000	0	105	70	130				
Ethane	1,060	0.0162	1,000	0	106	70	130				

%REC LowLimit HighLimit RPD Ref Val

Sample ID: 1912078-001EREP	SampType: REP	Units: mg/L	Prep Date: 12/3/2020	RunNo: 55983
Client ID: BATCH	Batch ID: R55983		Analysis Date: 12/3/2020	SeqNo: 1114530
Analyte	Result RL	SPK value SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Methane	ND 0.00863		0	30
Ethene	ND 0.0151		0	30
Ethane	ND 0.0162		0	30

Page 22 of 24 Original

Sample Log-In Check List

С	Client Name: FB Work Order Number: 1912112						
L	Logged by: Carissa True		Date Received:	12/9/2019	1:50:00 PM		
Cha	in of Cust	<u>ody</u>					
1.	Is Chain of C	ustody complete?	Yes 🗸	No 🗌	Not Present		
2.	How was the	sample delivered?	<u>FedEx</u>				
Log	ıIn						
_	Coolers are p	present?	Yes 🗹	No 🗌	NA \square		
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No 🗀			
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes 📙	No 🗹	Not Required		
6.	Was an atter	npt made to cool the samples?	Yes 🗸	No 🗌	NA \square		
7.	Were all item	as received at a temperature of >0°C to 10.0°C*	Yes 🗹	No 🗆	NA \square		
8.	Sample(s) in	proper container(s)?	Yes	No 🗸			
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🗹	No \square			
10.	Are samples	properly preserved?	Yes 🗸	No \square			
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA \square		
12.	Is there head	Ispace in the VOA vials?	Yes	No 🗌	NA 🗸		
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗸	No \square			
14.	Does paperw	ork match bottle labels?	Yes 🗸	No 🗌			
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌			
16.	Is it clear wha	at analyses were requested?	Yes 🗹	No 🗌			
17.	Were all hold	ling times able to be met?	Yes 🗹	No \square			
<u>Spe</u>	ecial Handl	ing (if applicable)					
18.	Was client no	otified of all discrepancies with this order?	Yes 🗸	No 🗌	NA 🗆		
	Person	Notified: Michael Erdahl Date	e: 	12/10/2019			
	By Who	m: Carissa True Via:	☐ eMail 🗸 Ph	one 🗌 Fax [In Person		
	Regardi	ng: No amber volume for "IW04-" (sample	8), Out of hold				
	Client Ir	nstructions: Take from 250ml poly for ferrous iron,	Proceed				
19.	Additional rer	marks:					

Item Information

Item #	Temp ºC
Cooler 1	5.5
Sample 1	6.3

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

1912112

Send Report To Michael Erdahl	SUBCONTRACTER Free	hond
Company Friedman and Bruya, Inc.	PROJECT NAME/NO.	PO#
Address3012 16th Ave W	912135	A-501.
City, State, ZIP_Seattle, WA 98119_	REMARKS	
Phone #_ (206) 285-8282 Fax #_ (206) 283-5044	Please Email Results	

	Page#_	l	of_	1
	TURNAR	OUND	TIM	E
Star O RUS	idard (2 V H_	Veeks)	lue	elc.
Rush	harges at	thoriz	ed by:	
	SAMPLE	DISP	OSAL	
□ Disp	ose after	30 days	3	
	rn sample			
□ Will	call with	instruc	tione	

				-					ANA	LYSI	ES RE	QUES	STED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	ЕРН	VPH		1						Notes
MW18-20191207		12/7/19	1437	H20					×	×	X	×				-
MW19-20191207		12/7/19	1618	11/20	- 3				×	×	×					
MW21-20191207		12/7/15	1142	H20					×			×				
MW22.20191207		12/2/19	0925	4,0					×	×	×	×	`			
MW23-2019 120 7		12/7/19	1045	1					×	×	×	×		1		
MW24-20191707		1217/5	1312						K	×	>	×				
MW25 - 20191207=		12/7/19	1655						×	×	×	×				
[WO4-2019 1207		12/7/19	1440							×	×	×				
IW50.20191207		12/7/19	1205						×	X	×	×				
IW61-20191207		12/7/19	1040			-			×	×	*	×			2	
	- 51														٠	
B: 1 0 D				4								1	-			

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Pn.	(206)	285-	8282
Fax	(206)	283-	504

Received by:

Received by:

PRINT NAME	COMPANY	DATE	TIME
Echael Erdahl	Friedman & Bruya	Ja /a /	
7 /	BAR	112/9/16	12:11
	1717	14916	135
		1010	

912135	3 <i>F</i>
Send Report To Tom Cammarata cc: Logan Schumacher	-
Company SoundEarth Strategies	-
Address 2811 Fairview Ave E, Suite 2000	-
City, State, ZIPSeattle, WA 98102	

AMPLE CHAIN OF CUSTODY	ME 12/9	1/19 , VINS/ CO4/
SAMPLERS (sig.)re) WIA	······/	TURNAROUND TIME
PROJECT NAME/NO.	PO#	(Standard (2 Weeks)
Troy Laundry Property	08 0731-004-05 +1,444 54 LS	RUSH
REMARKS	EIMY MC	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	GRPH by NWTPH-Gx	BTEX by EPA 80218	DRPH/ORPH by NWTPH-Dx	cVOCs by EPA 8260C	Methans, Ethans, Ethens by RSK175	Sulfate, Nitrate, Alkalinky by SM1845/SM2320B	Total Fe and Mn by EPA 200.8	Fe 2+ by SM 3500	TOC By EPA 415.1	Notes
MW17-20191207	MWIT		016	12/7/19	1350	W	7	Y	_ <i>k</i> _	V	χ		4	o 14			
MW18-20191207	IMWI8			12/7/19	1437	<u> </u>	14	X	λ	X	λ	X	X	X	X	X	······································
MW19- 2019 1207	MWI9		03 th	18/7/19	1418	h	13	٧	x	x	X	X	x		X		***************************************
MW20- 2019/207	MWDO			12/4/19	13/0	W	7	λ	λ	k	X						**************************************
MWal- 2019 1207	MWal		05%	12/7/14	1142	W	11	X	X	X	X	X				\overline{X}	
MWD2-201912C7	EGMM	سمد	06 %	10/7/19	0925	w	14	χ	x	7	<i>x</i>	×	<i>k</i>	ャ	X	<u> </u>	·
MW23- 2019 1207	MW23	-	07.1	12/7/14	1045	W	14	λ	X	X	\ <u>\</u>	$\frac{\hat{\lambda}}{\lambda}$	X		$\frac{\alpha}{\kappa}$	- Â	
MW24-2019 1207	MV24.		OK	10/7/14	1312	W	14	\dot{x}	አ	X	<u>λ</u>	X	<u>'`</u>	x	- X -	v	L
MW25-2019/207	MW25		09/	12/4/19	1655	w	14	$\frac{\hat{\lambda}}{\lambda}$	$\hat{\mathbf{x}}$	7	7	X	$\frac{\lambda}{\lambda}$	\ \tau	<u>`</u>	*	
INOH-20191207	ZW04			12/7/19	1440	W	7				$\frac{2}{X}$. (1	×	\mathbf{x}	\sim		
IW04-2019 1207	Iwol		11#2	10/7/19	1410	W	3				$\frac{\lambda}{\lambda}$			/	Υ .	Х	
IV50-2019/207	JUSO		RAF	12/7/19	1205	Ü	10				Ŷ	X	У				
IW41- 2014/207	IWGI.		13 V	12/7/19	1040		10 10							À	χ	Â	
	1-7	L	U/ '	101/1/1	1010	الم					χ	<u> </u>	r	X	妆	Υ	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME;	COMPANY	DATE	TIME
Relinquished by: White	Sarah Welta	SES	12/4/19	85
Received by	MICON AHEURS	PUQ	129.19	AST.
Relinquished by:		Samples received	at <u>4</u> .00	100 A
Received by: / / / / / / / / / / / / / / / / / / /	Whan Phan	FUBT	12/9/19	1045

SAMPLE CHAIN OF CUSTODY SAMPLERS (sig. Send Report To Tom Cammarata cc: Logan Schumacher TURNAROUND TIME 1/WS Company SoundEarth Strategies PROJECT NAME/NO. PO # Standard (2 Weeks) RUSH 0731-004-05 Address 2811 Fairview Ave E, Suite 2000 Troy Laundry Property Rush charges authorized by: City, State, ZIP Seattle, WA 98102 REMARKS SAMPLE DISPOSAL ⊗_{Dispose} after 30 days EIM Y Return samples Will call with instructions

Sample ID	Sample Location	Sample Depth	Lab	Date Sampled	Time Sampled	Matrix	# of jars	GRPH by NWTPH-Gx	BTEX by EPA 802/18	DRPH/ORPH by NWTPH-Dx	cVOCs by EPA 8260C	Methane, Ethane, Ethene by RSK175	Sulfate, Nitrate, Alkalinity by SM1845/SM2320B	Total Fe and Mn by EPA 200.8	Fg.2+ by SM 3500	TOC By EPA 415.1	Notes	,,,,,,
IN91-00191207	Iwa1		4 tg		0940	h/	フ	χ,	Y	X	X		4	Ni.	-			··········
IW91-20191207 MW99-20191207	MW99		STG	12/7/19	1200	V	フ	x	x	k	X							
				7 /										<u> </u>	-			
															<u> </u>			
-	And the second s	~~													<u> </u>		the state of the s	
		The state of the s															······································	*
				The same of the sa	······································										<u> </u>			
		·	 		And the Control of th				+									
			<u> </u>	* ************************************			······						·					1
		** ***********************************			····		The second of the second of	73										
		······································																A-17
,										-m.m.	Carlot Carlot - Market Company		**************************************			***************************************		
							****************								<u> </u>			
					· · · · · · · · · · · · · · · · · · ·					-			ample	e rec	PIVE	1 at	<u> </u>	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

CICNIATIES.				
SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: Received by:	Sand Welter	SES	12/9/19	P\$\$5
	WILDIN AMGUAS	PEVEX	12.9.19	856
Relinquished b			**************************************	
Received by Minghi	Whan Phan	FEBI	12/9/19	1045
				7 / /

SiREM File Reference: S-5638

Date:

Analytical Results

Client: SoundEarth Strategies

Client Project Number: 0731-004

Date Samples Received: December 10, 2020 Date Samples Analyzed: January 2, 2020

Client Sample ID	SiREM Reference	Client Sample	Sample Dilution	Lactate	Acetate	Propionate	Formate	Butyrate	Pyruvate
Cheft Cample 15	ID	Date	Factor	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
MW18-20191207	19-2752	07-Dec-19	50	< 0.39	10	<0.31	<0.22	<0.41	< 0.69
MW21-20191207	19-2753	07-Dec-19	50	< 0.39	116	139	<0.22	13	12
MW22-20191207	19-2754	07-Dec-19	50	< 0.39	418	134	<0.22	42	13
MW23-20191207	19-2755	07-Dec-19	50	< 0.39	24	<0.31	2.7	< 0.41	< 0.69
MW24-20191207	19-2756	07-Dec-19	50	5.7	29	< 0.31	3.0	< 0.41	< 0.69
MW25-20191207	19-2757	07-Dec-19	50	< 0.39	21	<0.31	2.9	< 0.41	< 0.69
IW04-20191207	19-2758	07-Dec-19	50	< 0.39	25	<0.31	3.3	<0.41	< 0.69
IW50-20191207	19-2759	07-Dec-19	50	< 0.39	18	<0.31	3.3	< 0.41	< 0.69
IW61-20191207	19-2760	07-Dec-19	50	< 0.39	98	7.2	1.8	5.0	< 0.69
			T .	Ī	1	1			ī
		QL	50	0.39	0.54	0.31	0.22	0.41	0.69

$\overline{}$							
	\sim	m	n	ne	n	tc	•
$\overline{}$	u					ιo	٠.

Analyst:

Method: Ion Chromatography

QL = Quantitation limit

J = associated value is estimated; compound positively detected at concentration below the QL

< = compound analysed for but not detected, associated value is QL. Sample QL is corrected for dilution.</p>

An Sech Michael Healty 3-Jan-20

Steve Sande

Laboratory Technician

Michael Healey

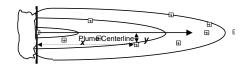
Results approved:

Treatability and SP3™ Services Coordinator

Chain-of-Custody Form

siremlab.com

180A Market Place Blvd. Knoxville, TN 37922 (865) 330-0037



Project Name I ray Launda	y Property	Project #	7731-0	red .		Prese	rvative	Ana	alysis			
Project Manager Tom	lammarata, L	odan.	5 chum	nacher								
- "	a 6 Sandeathing	/			-12	1/2		11 11				
Company Sound Farth	Strategres					1						Preservative Key 0. None
Address 2811 Farvi	on Any E 3	vite 1	2000			why						1. HCL 2. Other
Seattle, W						Fa						3. Other
Phone # 206-306-19						latil.						4. Other 5. Other
Sampler's Signature	Sampler's	Printed Sa	mhl	volte	<i>y</i>	ilele		11				6. Other
Cilent Sample ID	Lab ID	Samp		Matrix	# of	0						AN
	200.10	Date	Time		Containers	V		+				Other Information
MW18-2019 1207		12/7/14	1437	W W	2	X	+	++	-	\vdash		
MW 21- 2019 1207 MW22-2019 1207		12/7/19			2	X			\vdash	\vdash		
MWa3 -2019/207		12/19/19	1045	W		<u>У</u>			+	\vdash		
MW24-2019 12C7		12/7/19	1312	2	<u>a</u> a	X				\vdash		
		1,1	1655	W	 				-			
MWa5-2019/207		12/7/19				X			\vdash			
INO4-2019 1207		77	1440	1	a	λ						
IW50-2019/207		12/7/19	1205			X		+				
IWEL 201912CT		12/7/19	1040	W	a	Y				1	7	
	1									9	1	
Cooler Condition: Sample Recei		731-0	ci)	voice Inforn	nation						For Lab Us	e Only
Cooler Temperature: 6.6 °C	Bill To:	•										
Custody Seals: Yes	No 🖽											
Relinquished By: Signature Saum Ullub	Signature Received By	MICH	Signature	Reilnquis	hed By:	Si	Received gnature	Ву:	Signature	Relinq	ulshed By:	Received By: Signature
Printed Sarah Welter	Name Susan Th	omas	Printed Name			Prii Na	nted me		Printed Name			Printed Name
Firm SES	FIMSIREM		Firm			Firr	n		Firm			Firm
Date/Time 12/9/19 0930	12-10-19 09	40	Date/Time			Da	e/Time		Date/Time			Date/Time

ATTACHMENT B PLUME STABILITY ANALYSIS RESULTS

Module 2: Inputs: Enter Historical Ground Water Data

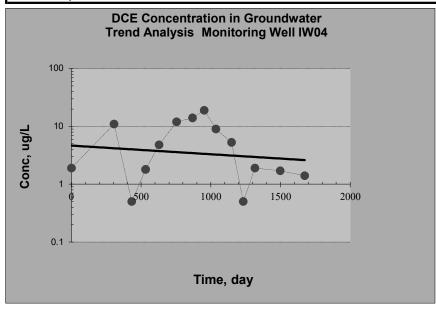
Site Name: Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Seattle. Washington
Hazardous Substance cis-1,2-DCE

1. Monitoring W	Vell information	: Contam	inant Co	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		IW04														
Dist from source, x	-direction	ft																
Off-centerline dist,		ft																
Sampling Event	Date sampled	day	Unit of o	concentra	tion is u	z/L							'				'	
#1	5/8/15	0		1.9														
#2	3/9/16	306		11														
#3	7/14/16	433		0.5														
#4	10/21/16	532		1.8														
#5	1/26/17	629		4.8														
#6	6/1/17	755		12														
#7	9/23/17	869		14														
#8	12/16/17	953		19														
#9	3/10/18	1037		9														
#10	6/30/18	1149		5.3														
#11	9/22/18	1233		0.5														
#12	12/15/18	1317		1.9														
#13	6/15/19	1499		1.7														
#14	12/7/19	1674		1.4														
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concent	tration		na	6.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	19	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

2. Groundwater Elevation:

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		306								
#3		433								
#4		532								
#5		629								
#6		755								
#7		869								
#8		953								
#9	3/10/18	1037								
#10	6/30/18	1149								
#11	9/22/18	1233								
#12	12/15/18	1317								
#13	6/15/19	1499								
#14	12/7/19	1674								
#15										
#16										
#17										
#18										
#19										
#20										

Module 2: Graphical Presentation of Historical Ground Water Data: (Well to Well Analysis)

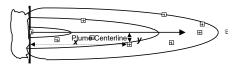

Site Name: Troy Laundry Property

Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle.Washington Hazardous Substance cis-1,2-DCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	IW04	Confidence Level (Decision C	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	35.638%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	0.126 @50% C.L.;	NA (@85% C.L.
Half Life for k_{point} , yr		5.514 @50% C.L.;	NA (@85% C.L.



2. Spatial and Temporal Trend along Overall Plume Length for Multiple Wells:

Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Module 2: Inputs: Enter Historical Ground Water Data

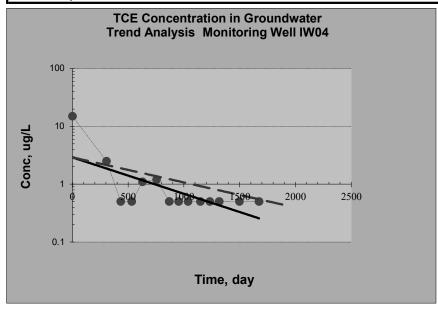
Site Name: Troy Laundry Property Site Address: 300 Boren Ave North Fairview Ave North Additional Description: Seattle.Washington Hazardous Substance TCE

1. Monitoring V	Vell information	: Contam	inant Co	ncentr	ation at	a well:			Not	e: relatio	onship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		IW04														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of c	oncentra	tion is ug	z/L												
#1	5/8/15	0		15														
#2	3/9/16	306		2.5														
#3	7/14/16	433		0.5														
#4	10/21/16	532		0.5														
#5	1/26/17	629		1.1														
#6	6/1/17	755		1.2														
#7	9/23/17	869		0.5														
#8	12/16/17	953		0.5														
#9	3/10/18	1037		0.5														
#10	6/30/18	1149		0.5														
#11	9/22/18	1233		0.5														
#12	12/15/18	1317		0.5														
#13	6/15/19	1499		0.5														
#14	12/7/19	1674		0.5														
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	Average Concentration na 1.8 N/A N/A N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Maximum Conce			NA	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	nimum Concentration		NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

2. Groundwater Elevation:

2. Groundwater Elevation.																
Well Location:																
Sampling Event	Date sampled	Day														
#1		0														
#2		306														
#3		433														
#4		532														
#5		629														
#6		755														
#7		869														
#8		953														
#9	3/10/18	1037														
#10	6/30/18	1149														
#11	9/22/18	1233														
#12	12/15/18	1317														
#13	6/15/19	1499														
#14	12/7/19	1674														
#15																
#16																
#17																
#18																
#19																
#20																

ite Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance TCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	IW04	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.526%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	0.529 @50% C.L.;	0.364	@85% C.L.
Half Life for k_{point} , yr		1.310 @50% C.L.;	1.904	@85% C.L.

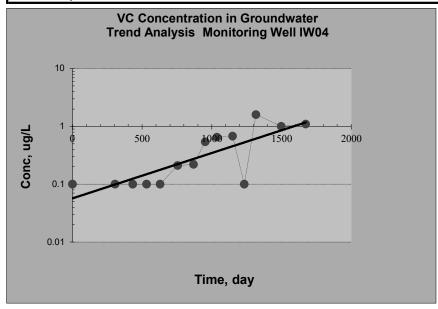
-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property
300 Boren Ave North Fairview Ave North
Additional Description: Seattle. Washington
Hazardous Substance VC

1. Monitoring V	Vell information	a well:			Not	e: relatio	onship o	f "y/x ≤	0.33" is	preferr	ed							
Well Location:		Unit		IW04														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is u	g/L												
#1	5/8/15	0		0.1														
#2	3/9/16	306		0.1														
#3	7/14/16	433		0.1														
#4	10/21/16	532		0.1														
#5	1/26/17	629		0.1														
#6	6/1/17	755		0.21														
#7	9/23/17	869		0.22														
#8	12/16/17	953		0.54														
#9	3/10/18	1037		0.65														
#10	6/30/18	1149		0.68														
#11	9/22/18	1233		0.1														
#12	12/15/18	1317		1.6														
#13	6/15/19	1499		1														
#14	12/7/19	1674		1.1														
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	1.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		NA	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		306								
#3		433								
#4		532								
#5		629								
#6		755								
#7		869								
#8		953								
#9	3/10/18	1037								
#10	6/30/18	1149								
#11	9/22/18	1233								
#12	12/15/18	1317								
#13	6/15/19	1499								
#14	12/7/19	1674								
#15										
#16										
#17										
#18										
#19										
#20										

lite Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance VC

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	IW04	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.942%		
Plume Stability?	Expanding	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	NA @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.

-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle, Washington
cis-1,2-DCE

NA

4.5

NA

NA

NA

NA

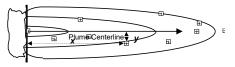
NA

NA

NA

NA

NA


NA

NA

NA

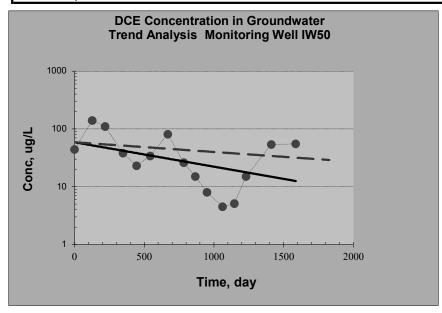
NA

NA

Hazaraous Suosia								<u> </u>	N T 4	1.0	1.	C II / ~	0.2211.		1			
1. Monitoring V	ell information		inant Co		ation at	a well:			Note	e: relatio	nsnip o	i "y/x ≤	U.33" 18	preferre	ea			
Well Location:		Unit		IW50														
Dist from source, x		ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is ug	g/L												
#1	8/3/15	0		44														
#2	12/8/15	127		140														
#3	3/9/16	219		110														
#4	7/15/16	347		38														
#5	10/21/16	445		23														
#6	1/26/17	542		34														
#7	6/2/17	669		81														
#8	9/24/17	783		26														
#9	12/16/17	866		15														
#10	3/10/18	950		8														
#11	6/30/18	1062		4.5														
#12	9/22/18	1146		5.1														
#13	12/15/18	1230		15														
#14	6/15/19	1412		54														
#15	12/7/19	1587		55														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concent	ration		na	43.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	ximum Concentration			140	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

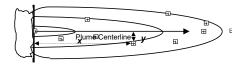
Minimum Concentration 2. Groundwater Elevation:

2. Groundwater										
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		127								
#3		219								
#4		347								
#5		445								
#6		542								
#7		669								
#8		783								
#9	12/16/17	866								
#10	3/10/18	950								
#11	6/30/18	1062								
#12	9/22/18	1146								
#13	12/15/18	1230								
#14	6/15/19	1412								
#15	12/7/19	1587								
#16										
#17										
#18										
#19										
#20										


Site Name: Troy Laundry Property

Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington Hazardous Substance cis-1,2-DCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	IW50	Confidence Level (Decision	n Criteria)? 85.0%	Ó
Confidence Level calculated with	log-linear regression is?	90.255%		
Plume Stability?	Shrinking	; Decision Criteri	ia is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	0.355 @50% C.L.;	0.141 @85% C.	L.
Half Life for k_{point} , yr		1.952 @50% C.L.;	4.912 @85% C.	.L.

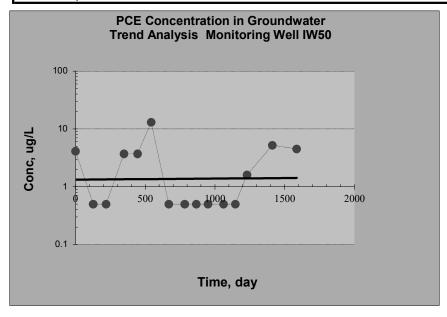
	•	O
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle, Washington
PCE

1. Monitoring V	Vell information	: Contan	ninant Co	ncentr	ation at	a well:		•	Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		IW50														
Dist from source, >	r-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of c	oncentra	tion is ug	z/L												
#1	8/3/15	0		4.1	`													
#2	12/8/15	127		0.5														
#3	3/9/16	219		0.5														
#4	7/15/16	347		3.7														
#5	10/21/16	445		3.7														
#6	1/26/17	542		13														
#7	6/2/17	669		0.5														
#8	9/24/17	783		0.5														
#9	12/16/17	866		0.5														
#10	3/10/18	950		0.5														
#11	6/30/18	1062		0.5														
#12	9/22/18	1146		0.5														
#13	12/15/18	1230		1.6														
#14	6/15/19	1412		5.2														
#15	12/7/19	1587		4.5														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	2.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	entration		NA 0.5 NA NA NA						NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

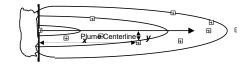
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		127								
#3		219								
#4		347								
#5		445								
#6		542								
#7		669								
#8		783								
#9	12/16/17	866								
#10	3/10/18	950								
#11	6/30/18	1062								
#12	9/22/18	1146								
#13	12/15/18	1230								
#14	6/15/19	1412								
#15	12/7/19	1587								
#16										
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance PCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	IW50	Confidence Level (Decision C	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	4.949%		
Plume Stability?	UD	; Decision Criteria	is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	NA @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.

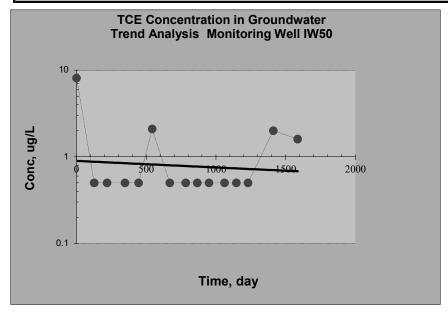
-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Hazardous Substance TCE

1. Monitoring V	Vell information	: Contan	ninant Co	ncentr	ation at	a well:			Note	e: relatio	onship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		IW50														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of c	oncentra	tion is ug	g/L												
#1	8/3/15	0		8.1														
#2	12/8/15	127		0.5														
#3	3/9/16	219		0.5														
#4	7/15/16	347		0.5														
#5	10/21/16	445		0.5														
#6	1/26/17	542		2.1														
#7	6/2/17	669		0.5														
#8	9/24/17	783		0.5														
#9	12/16/17	866		0.5														
#10	3/10/18	950		0.5														
#11	6/30/18	1062		0.5														
#12	9/22/18	1146		0.5														
#13	12/15/18	1230		0.5														
#14	6/15/19	1412		2														
#15	12/7/19	1587		1.6														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	8.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Well Location:											
Sampling Event	Date sampled	Day			'						
#1		0									
#2		127									
#3		219									
#4		347									
#5		445									
#6		542									
#7		669									
#8		783									
#9	12/16/17	866									
#10	3/10/18	950									
#11	6/30/18	1062									
#12	9/22/18	1146									
#13	12/15/18	1230									
#14	6/15/19	1412									
#15	12/7/19	1587									
#16											
#17											
#18											
#19											
#20											

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance TCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	IW50	Confidence Level (Decision C	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	27.189%		
Plume Stability?	UD	; Decision Criteria	is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	NA @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.

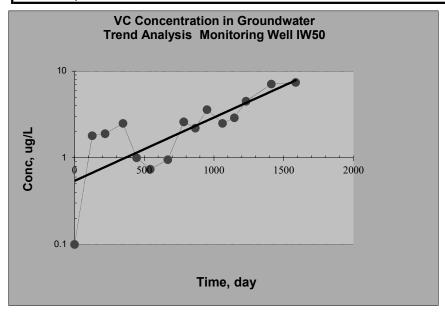
-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Hazardous Substance VC Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle, Washington

Well Location:		Unit		IW50														
Dist from source, x	-direction	ft																
Off-centerline dist,		ft																
Sampling Event	Date sampled	day	Unit of co	oncentra	tion is 110	r/I .												
#1	8/3/15	0	omi or c	0.1	tion to ug	,												
#2	12/8/15	127		1.8														
#3	3/9/16	219		1.9														
#4	7/15/16	347		2.5														
#5	10/21/16	445		1														
#6	1/26/17	542		0.74														
#7	6/2/17	669		0.95														
#8	9/24/17	783		2.6														
#9	12/16/17	866		2.2														
#10	3/10/18	950		3.6														
#11	6/30/18	1062		2.5														
#12	9/22/18	1146		2.9														
#13	12/15/18	1230		4.5														
#14	6/15/19	1412		7.1														
#15	12/7/19	1587		7.4														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	2.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	7.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	entration		NA	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

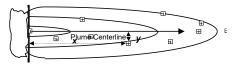
Well Location:											
Sampling Event	Date sampled	Day			'						
#1		0									
#2		127									
#3		219									
#4		347									
#5		445									
#6		542									
#7		669									
#8		783									
#9	12/16/17	866									
#10	3/10/18	950									
#11	6/30/18	1062									
#12	9/22/18	1146									
#13	12/15/18	1230									
#14	6/15/19	1412									
#15	12/7/19	1587									
#16											
#17											
#18											
#19											
#20											

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance VC


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

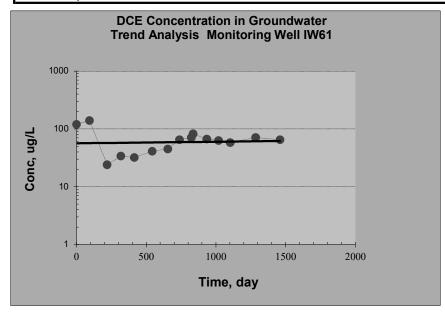
Name of Sampling Well?	IW50	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.906%		
Plume Stability?	Expanding	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	NA @50% C.L.;	NA (@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA (@85% C.L.

-	-	_
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property
Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Seattle, Washington
Hazardous Substance cis-1,2-DCE

1. Monitoring V	Vell information	: Contan	ninant Co	oncentr	ation at	a well:			Note	e: relatio	onship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		IW61														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	concentra	tion is ug	z/L												
#1	12/8/15	0		120														
#2	3/9/16	92		140														
#3	7/14/16	219		24														
#4	10/21/16	318		34														
#5	1/26/17	415		32														
#6	6/2/17	542		41														
#7	9/23/17	655		45														
#8	12/16/17	739		65														
#9	3/10/18	823		71														
#10	3/23/18	836		82														
#11	6/30/18	935		67														
#12	9/22/18	1019		63														
#13	12/15/18	1103		58														
#14	6/15/19	1285		71														
#15	12/7/19	1460		65														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	65.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	entration		NA	140	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	entration		NA	24	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

2. Groundwater										
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		92								
#3		219								
#4		318								
#5		415								
#6		542								
#7		655								
#8		739								
#9	3/10/18	823								
#10	3/23/18	836								
#11	6/30/18	935								
#12	9/22/18	1019								
#13	12/15/18	1103								
#14	6/15/19	1285								
#15	12/7/19	1460								
#16										
#17										
#18										
#19										
#20										


Site Name: Troy Laundry Property

Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington Hazardous Substance cis-1,2-DCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	IW61	Confidence Level (Decision Confidence Level (Dec	Criteria)?	85.0%
Confidence Level calculated with	og-linear regression is?	15.785%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (point), yr ⁻¹	0.023 @50% C.L.;	NA (@85% C.L.
Half Life for k_{point} , yr		30.732 @50% C.L.;	NA (@85% C.L.

-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

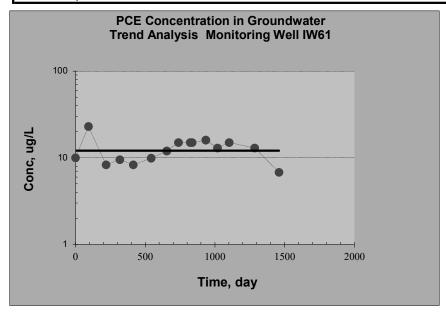
Site Name:
Site Address:
Additional Description:
Hazardous Substance

Site Name:
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle, Washington
PCE

1. Monitoring V	Vell information	: Contam	inant Co	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferre	ed			
Well Location:		Unit		IW61														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is us	z/L												
#1	12/8/15	0		10	,													
#2	3/9/16	92		23														
#3	7/14/16	219		8.3														
#4	10/21/16	318		9.5														
#5	1/26/17	415		8.3														
#6	6/2/17	542		9.9														
#7	9/23/17	655		12														
#8	12/16/17	739		15														
#9	3/10/18	823		15														
#10	3/23/18	836		15														
#11	6/30/18	935		16														
#12	9/22/18	1019		13														
#13	12/15/18	1103		15														
#14	6/15/19	1285		13														
#15	12/7/19	1460		6.8														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	12.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	entration		NA	6.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		92								
#3		219								
#4		318								
#5		415								
#6		542								
#7		655								
#8		739								
#9	3/10/18	823								
#10	3/23/18	836								
#11	6/30/18	935								
#12	9/22/18	1019								
#13	12/15/18	1103								
#14	6/15/19	1285								
#15	12/7/19	1460								
#16										
#17										
#18										
#19										
#20										

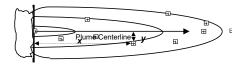
Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance PCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	IW61	Confiden	Criteria)?	85.0%	
Confidence Level calculated with	log-linear regression is?	0.12	9%		
Plume Stability?	Stable		; Decision Criteria	is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	0.000	@50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		######	@50% C.L.;	NA	@85% C.L.

		U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

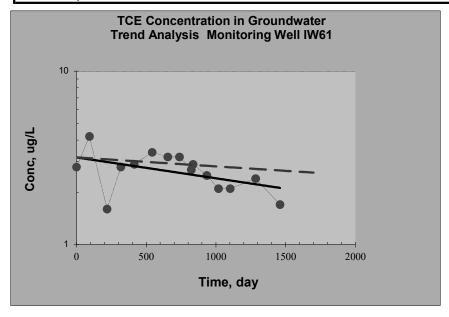
Site Name:
Site Address:
Additional Description:
Hazardous Substance

Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle, Washington
TCE

1. Monitoring V	Monitoring Well information: Contaminant Concentration at a well:								Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		IW61														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is u	z/L												
#1	12/8/15	0		2.8														
#2	3/9/16	92		4.2														
#3	7/14/16	219		1.6														
#4	10/21/16	318		2.8														
#5	1/26/17	415		2.9														
#6	6/2/17	542		3.4														
#7	9/23/17	655		3.2														
#8	12/16/17	739		3.2														
#9	3/10/18	823		2.7														
#10	3/23/18	836		2.9														
#11	6/30/18	935		2.5														
#12	9/22/18	1019		2.1														
#13	12/15/18	1103		2.1														
#14	6/15/19	1285		2.4														
#15	12/7/19	1460		1.7														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	2.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	entration		NA	4.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	entration		NA	1.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		92								
#3		219								
#4		318								
#5		415								
#6		542								
#7		655								
#8		739								
#9	3/10/18	823								
#10	3/23/18	836								
#11	6/30/18	935								
#12	9/22/18	1019								
#13	12/15/18	1103								
#14	6/15/19	1285								
#15	12/7/19	1460								
#16										
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance TCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	IW61	Confidence Level (Decision	n Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	91.783%		
Plume Stability?	Shrinking	; Decision Criteri	ia is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	0.101 @50% C.L.;	0.043 (@85% C.L.
Half Life for k_{point} , yr		6.849 @50% C.L.;	15.980 (@85% C.L.

•	•	0
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

wiodule 2. Inputs.	Eliter Historical Ground Water Data
	Troy Laundry Property
Site Address:	300 Boren Ave North Fairview Ave North
Additional Description:	Seattle, Washington
Hazardous Substance	VC

NA 0.86

NA

NA

NA

NA

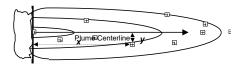
NA

NA

NA

NA

NA


NA

NA

NA

NA

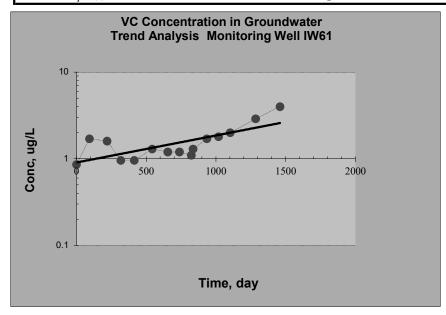
NA

1. Monitoring Well information: Contaminant Concentration at a well:							Note: relationship of " $y/x \le 0.33$ " is preferred											
Well Location:	en mior mation	Unit	mant Co	IW61	ation at	a wen.			Nou	. relatio	niship o	l y/x ≤	0.33 18	preferre	a			
Dist from source, x-	dinaction	ft		1W01														
· · · · · · · · · · · · · · · · · · ·		ft																
Off-centerline dist,	y-direction	π																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is ug	g/L												
#1	12/8/15	0		0.86														
#2	3/9/16	92		1.7														
#3	7/14/16	219		1.6														
#4	10/21/16	318		0.96														
#5	1/26/17	415		0.96														
#6	6/2/17	542		1.3														
#7	9/23/17	655		1.2														
#8	12/16/17	739		1.2														
#9	3/10/18	823		1.1														
#10	3/23/18	836		1.3														
#11	6/30/18	935		1.7														
#12	9/22/18	1019		1.8														
#13	12/15/18	1103		2														
#14	6/15/19	1285		2.9														
#15	12/7/19	1460		4														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concent	ration		na	1.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	ntration		NA	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Minimum Concentration 2. Groundwater Elevation:

								_		
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		92								
#3		219								
#4		318								
#5		415								
#6		542								
#7		655								
#8		739								
#9	3/10/18	823								
#10	3/23/18	836								
#11	6/30/18	935								
#12	9/22/18	1019								
#13	12/15/18	1103								
#14	6/15/19	1285								
#15	12/7/19	1460								
#16										
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance VC

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	IW61	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.824%		
Plume Stability?	Expanding	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	NA @50% C.L.;	NA	@85% C.L.
Half Life for k point, yr		NA @50% C.L.;	NA	@85% C.L.

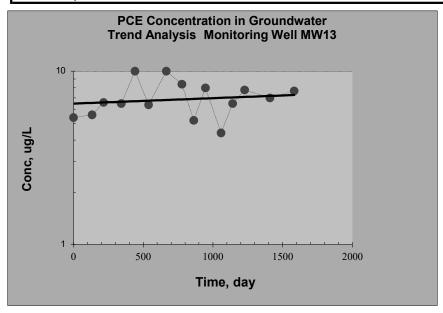
-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property
Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Seattle. Washington
Hazardous Substance PCE

1. Monitoring V	Monitoring Well information: Contaminant Concentration at a well:							Note: relationship of " $y/x \le 0.33$ " is preferred										
Well Location:		Unit		MW13														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	concentra	tion is u	g/L												
#1	8/5/15	0		5.4														
#2	12/15/15	132		5.6														
#3	3/7/16	215		6.6														
#4	7/12/16	342		6.5														
#5	10/19/16	441		10														
#6	1/24/17	538		6.4														
#7	5/31/17	665		10														
#8	9/21/17	778		8.4														
#9	12/14/17	862		5.2														
#10	3/8/18	946		8														
#11	6/29/18	1059		4.4														
#12	9/20/18	1142		6.5														
#13	12/14/18	1227		7.8														
#14	6/14/19	1409		7														
#15	12/5/19	1583		7.7														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	7.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Maximum Concentration NA 10 NA NA NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Minimum Concentration NA 4.4 NA NA NA					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		

Well Location:											
Sampling Event	Date sampled	Day			'						
#1		0									
#2		132									
#3		215									
#4		342									
#5		441									
#6		538									
#7		665									
#8		778									
#9	12/14/17	862									
#10	3/8/18	946									
#11	6/29/18	1059									
#12	9/20/18	1142									
#13	12/14/18	1227									
#14	6/14/19	1409									
#15	12/5/19	1583									
#16											
#17											
#18											
#19											
#20											

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance PCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW13	Confidence Level (Decision Confidence Level (Dec	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	40.083%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	0.026 @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		26.311 @50% C.L.;	NA	@85% C.L.

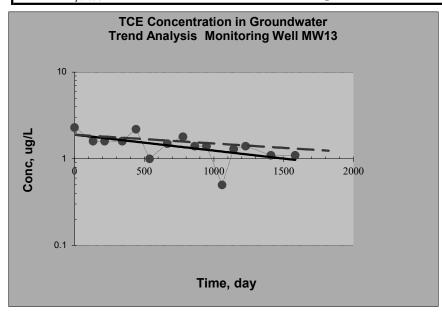
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Hazardous Substance TCE

1. Monitoring Well information: Contaminant Concentration at a well:									Not	e: relatio	onship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW13														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is u	g/L												
#1	8/5/15	0		2.3														
#2	12/15/15	132		1.6														
#3	3/7/16	215		1.6														
#4	7/12/16	342		1.6														
#5	10/19/16	441		2.2														
#6	1/24/17	538		1														
#7	5/31/17	665		1.5														
#8	9/21/17	778		1.8														
#9	12/14/17	862		1.4														
#10	3/8/18	946		1.4														
#11	6/29/18	1059		0.5														
#12	9/20/18	1142		1.3														
#13	12/14/18	1227		1.4														
#14	6/14/19	1409		1.1														
#15	12/5/19	1583		1.1														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	2.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	entration		NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

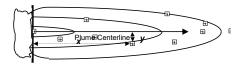
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		132								
#3		215								
#4		342								
#5		441								
#6		538								
#7		665								
#8		778								
#9	12/14/17	862								
#10	3/8/18	946								
#11	6/29/18	1059								
#12	9/20/18	1142								
#13	12/14/18	1227								
#14	6/14/19	1409								
#15	12/5/19	1583								
#16										
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance TCE

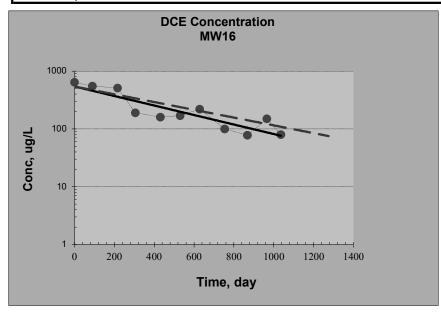

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW13	Confidence Level (Decision	n Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	96.797%		
Plume Stability?	Shrinking	; Decision Criter	ia is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	0.154 @50% C.L.;	0.085	@85% C.L.
Half Life for k_{point} , yr		4.491 @50% C.L.;	8.140	@85% C.L.

-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:	Troy Laundry Property
Site Address:	307 Fairview Ave North
Additional Description:	Seattle
Hazardous Substance	DCE

	. Monitoring Well information: Contaminant Concentration at a well:								INOU	. I Clatic	nship o	1 y/∧ ≥	0.55 18	preferr	-u			
Well Location:		Unit			MW16													
Dist from source, x		ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is ug	:/L												
#1	05/08/15	0			640													
#2	08/05/15	89			550.0													
#3	12/10/15	216			510.0													
#4	03/08/16	305			190.0													
#5	07/12/16	431			160.0													
#6	10/19/16	530			170.0													
#7	01/25/17	628			220.0													
#8	05/31/17	754			100.0													
#9	09/22/17	868			78.0													
#10	12/29/17	966			150.0													
#11	03/09/18	1036			80.0													
#12																		
#13																		
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	Average Concentration			N/A	258.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Concentration		NA	NA	640	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Minimum Concentration			NA	NA	78	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA


Well Location:			NA	NA	MW16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sampling Event	Date sampled	Day	Unit of e	elevation	is feet.													
#1	12/6/08	0		95.29	92.17	94.91	94.97											
#2	9/27/09	89		93.39	93.3	93.17	93.41											
#3	4/11/11	216		96.99	96.85	96.55	96.75											
#4	9/13/12	305		94.11	94.04	93.7	93.82											
#5	4/5/13	431		95.48	95.32	94.97	95.05											
#6		530																
#7		628																
#8		754																
#9	9/22/17	868																
#10	12/29/17	966																
#11	3/9/18	1036																
#12																		
#13																		
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		

Site Name: Troy Laundry Property
Site Address: 307 Fairview Ave North

Additional Description: Seattle Hazardous Substance DCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

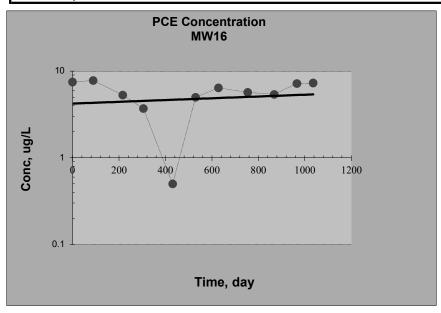
Name of Sampling Well?	MW16	Confidence Level (Decision	Criteria)? 85.0%
Confidence Level calculated with	log-linear regression is?	99.980%	
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.
Slope: Point decay rate constant	$(\boldsymbol{k}_{point}), \text{yr}^{-1}$	0.691 @50% C.L.;	0.565 @85% C.I
Half Life for k_{point} , yr		1.003 @50% C.L.;	1.226 @85% C.I

Plot #1:	Sampling date #1	L
Plot #2:	Sampling date #2	Ľ
Plot #3:	Sampling date #3	E
Plot #4:	Sampling date #4	E
Plot #5:	Sampling date #5	E
Plot #6:	Sampling date #6	Ĺ

i i chu along
1-Jan-98
6-Jun-98
8-Nov-98
10-May-99

Site Name:	Troy Laundry Property
Site Address:	307 Fairview Ave North
Additional Description:	Seattle
Hazardous Substance	PCE

1. Monitoring Well information: Contaminant Concentration at a well:									Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit			MW16													
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is ug	g/L												
#1	05/08/15	0			7.5													
#2	08/05/15	89			7.8													
#3	12/10/15	216			5.3													
#4	03/08/16	305			3.7													
#5	07/12/16	431			0.5													
#6	10/19/16	530			5.0													
#7	01/25/17	628			6.4													
#8	05/31/17	754			5.7													
#9	09/22/17	868			5.4													
#10	12/29/17	966			7.2													
#11	03/09/18	1036			7.3													
#12																		
#13																		
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concent	verage Concentration			N/A	5.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Concentration			NA	NA	7.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		NA	NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA


Well Location:			NA	NA	MW16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sampling Event	Date sampled	Day	Unit of e	elevation	is feet.													
#1	12/6/08	0		95.29	92.17	94.91	94.97											
#2	9/27/09	89		93.39	93.3	93.17	93.41											
#3	4/11/11	216		96.99	96.85	96.55	96.75											
#4	9/13/12	305		94.11	94.04	93.7	93.82											
#5	4/5/13	431		95.48	95.32	94.97	95.05											
#6		530																
#7		628																
#8		754																
#9	9/22/17	868																
#10	12/29/17	966																
#11	3/9/18	1036																
#12																		
#13																		
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		

Site Name: Troy Laundry Property
Site Address: 307 Fairview Ave North

Additional Description: Seattle Hazardous Substance PCE

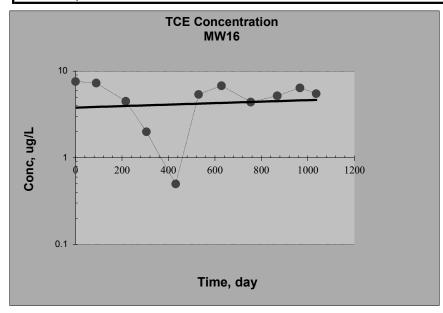
1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW16	Confidence Level (Decision Confidence Level (Dec	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	24.600%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant	(k point), yr ⁻¹	0.086 @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		8.046 @50% C.L.;	NA	@85% C.L.

Plot #1:	Sampling date #1	1-Jan-98
Plot #2:	Sampling date #2	6-Jun-98
Plot #3:	Sampling date #3	8-Nov-98
Plot #4:	Sampling date #4	10-May-99
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

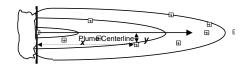
Site Name:	Troy Laundry Property
Site Address:	307 Fairview Ave North
Additional Description:	Seattle
Hazardous Substance	TCE

1. Monitoring Well information: Contaminant Concentration at a well:								Note	e: relatio	onship o	f "y/x ≤	0.33" is	preferr	ed				
Well Location:		Unit			MW16													
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is ug	ŗ/L												
#1	05/08/15	0			7.6													
#2	08/05/15	89			7.3													
#3	12/10/15	216			4.5													
#4	03/08/16	305			2.0													
#5	07/12/16	431			0.5													
#6	10/19/16	530			5.4													
#7	01/25/17	628			6.8													
#8	05/31/17	754			4.4													
#9	09/22/17	868			5.2													
#10	12/29/17	966			6.4													
#11	03/09/18	1036			5.5													
#12																		
#13																		
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concent	verage Concentration			N/A	5.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Concentration			NA	NA	7.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		NA	NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA


Well Location:			NA	NA	MW16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sampling Event	Date sampled	Day	Unit of	elevation	is feet.													
#1	12/6/08	0		95.29	92.17	94.91	94.97											
#2	9/27/09	89		93.39	93.3	93.17	93.41											
#3	4/11/11	216		96.99	96.85	96.55	96.75											
#4	9/13/12	305		94.11	94.04	93.7	93.82											
#5	4/5/13	431		95.48	95.32	94.97	95.05											
#6		530																
#7		628																
#8		754																
#9	9/22/17	868																
#10	12/29/17	966																
#11	3/9/18	1036																
#12																		
#13																		
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		

Site Name: Troy Laundry Property
Site Address: 307 Fairview Ave North

Additional Description: Seattle Hazardous Substance TCE

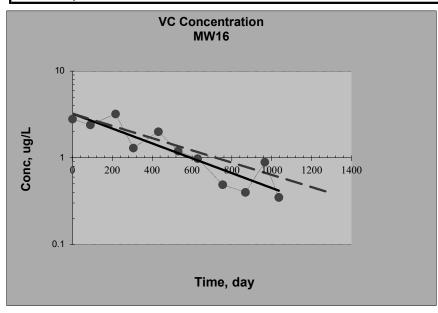

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW16	Confidence Level (Decision Confidence Level (Dec	Criteria)? 8	5.0%
Confidence Level calculated with	log-linear regression is?	20.282%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant	$(\boldsymbol{k}_{point}), \text{yr}^{-1}$	0.072 @50% C.L.;	NA @85	% C.L.
Half Life for k_{point} , yr		9.614 @50% C.L.;	NA @85	% C.L.

Plot #1:	Sampling date #1	1-Jan-98
Plot #2:	Sampling date #2	6-Jun-98
Plot #3:	Sampling date #3	8-Nov-98
Plot #4:	Sampling date #4	10-May-99
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

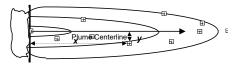
Site Name: Troy Laundry Property
Site Address: 307 Fairview Ave North
Additional Description: Seattle
Hazardous Substance VC

1. Monitoring V	Vell information	: Contam	inant Co	oncentr	ation at	a well:			Note	e: relatio	onship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit			MW16													
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is ug	ŗ/L												
#1	05/08/15	0			2.8													
#2	08/05/15	89			2.4													
#3	12/10/15	216			3.2													
#4	03/08/16	305			1.3													
#5	07/12/16	431			2.0													
#6	10/19/16	530			1.2													
#7	01/25/17	628			1.0													
#8	05/31/17	754			0.5													
#9	09/22/17	868			0.4													
#10	12/29/17	966			0.9													
#11	03/09/18	1036			0.4													
#12																		
#13																		
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	N/A	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Concentration NA NA 3.2 NA NA					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Minimum Concentration NA NA 0.35 NA NA					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		


Well Location:			NA	NA	MW16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sampling Event	Date sampled	Day	Unit of e	elevation	is feet.													
#1	12/6/08	0		95.29	92.17	94.91	94.97											
#2	9/27/09	89		93.39	93.3	93.17	93.41											
#3	4/11/11	216		96.99	96.85	96.55	96.75											
#4	9/13/12	305		94.11	94.04	93.7	93.82											
#5	4/5/13	431		95.48	95.32	94.97	95.05											
#6		530																
#7		628																
#8		754																
#9	9/22/17	868																
#10	12/29/17	966																
#11	3/9/18	1036																
#12																		
#13																		
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		

Site Name: Troy Laundry Property
Site Address: 307 Fairview Ave North

Additional Description: Seattle Hazardous Substance VC


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

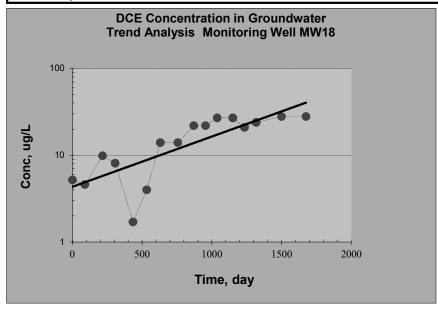
Name of Sampling Well?	MW16	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.983%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant ($(\boldsymbol{k}_{point}), \text{yr}^{-1}$	0.721 @50% C.L.;	0.593 (285% C.L.
Half Life for k_{point} , yr		0.962 @50% C.L.;	1.169 (285% C.L.

Plot #1:	Sampling date #1	1-Jan-98
Plot #2:	Sampling date #2	6-Jun-98
Plot #3:	Sampling date #3	8-Nov-98
Plot #4:	Sampling date #4	10-May-99
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle.Washington
cis-1,2-DCE

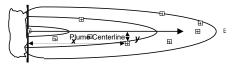
Monitoring Well information: Contaminant Concentration Well Location: Unit MW18												0 11 /						
1. Monitoring W	ell information	: Contan	inant Co	oncentr	ation at	a well:			Note	e: relatio	onship of	f "y/x ≤	0.33" 18	preferre	ed			
Well Location:		Unit		MW18														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	concentra	tion is ug	g/L												
#1	5/6/15	0		5.2														
#2	8/3/15	89		4.6														
#3	12/8/15	216		9.9														
#4	3/8/16	307		8.1														
#5	7/14/16	435		1.7														
#6	10/20/16	533		4														
#7	1/26/17	631		14														
#8	6/1/17	757		14														
#9	9/23/17	871		22														
#10	12/16/17	955		22														
#11	3/10/18	1039		27														
#12	6/30/18	1151		27														
#13	9/22/18	1235		21														
#14	12/15/18	1319		24														
#15	6/15/19	1501		28														
#16	12/7/19	1676		28														
#17																		
#18																		
#19																		
#20																		
Average Concent	tration		na	16.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				
Minimum Concentration NA 1.7 NA NA NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				

Well Location:											
Sampling Event	Date sampled	Day	1	'	-				'		
#1		0									
#2		89									
#3		216									
#4		307									
#5		435									
#6		533									
#7		631									
#8		757									
#9	9/23/17	871									
#10	12/16/17	955									
#11	3/10/18	1039									
#12	6/30/18	1151									
#13	9/22/18	1235									
#14	12/15/18	1319									
#15	6/15/19	1501									
#16	12/7/19	1676									
#17											
#18											
#19											
#20											


Site Name: Troy Laundry Property

Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle.Washington Hazardous Substance cis-1,2-DCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW18	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.971%		
Plume Stability?	Expanding	; Decision Criteria	is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	NA @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.

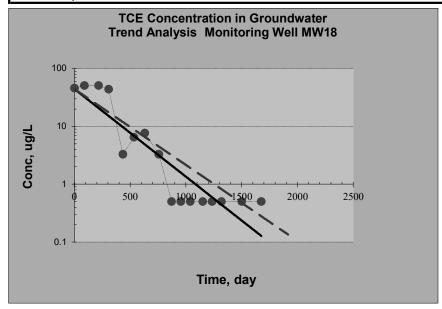
•	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property 300 Boren Ave North Fairview Ave North Site Address: Additional Description: Seattle.Washington Hazardous Substance TCE

1. Monitoring V	Vell information	: Contam	inant Co	ncentr	ation at	a well:			Not	e: relatio	onship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW18														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of c	oncentra	tion is ug	g/L		-	-		-		-			-		
#1	5/6/15	0		46														
#2	8/3/15	89		51														
#3	12/8/15	216		51														
#4	3/8/16	307		44														
#5	7/14/16	435		3.3														
#6	10/20/16	533		6.5														
#7	1/26/17	631		7.7														
#8	6/1/17	757		3.3														
#9	9/23/17	871		0.5														
#10	12/16/17	955		0.5														
#11	3/10/18	1039		0.5														
#12	6/30/18	1151		0.5														
#13	9/22/18	1235		0.5														
#14	12/15/18	1319		0.5														
#15	6/15/19	1501		0.5														
#16	12/7/19	1676		0.5														
#17																		
#18																		
#19																		
#20																		
Average Concent	tration		na	13.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	51	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Concentration NA 0.5 NA NA NA					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		

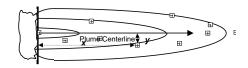
2. Groundwater										
Well Location:										
Sampling Event	Date sampled									
#1		0								
#2		89								
#3		216								
#4		307								
#5		435								
#6		533								
#7		631								
#8		757								
#9	9/23/17	871								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance TCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW18	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	100.000%			
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	1.274 @50% C.L.;	1.104 (285% C.L.
Half Life for k_{point} , yr		0.544 @50% C.L.;	0.628 (285% C.L.

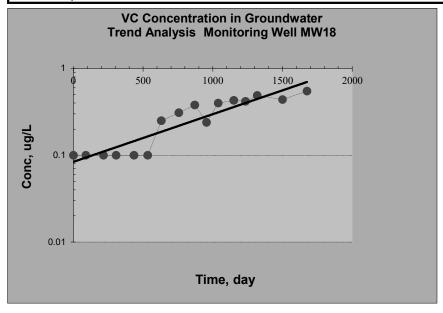
_	-	_
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property
Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Seattle.Washington
Hazardous Substance VC

1. Monitoring V			Note	e: relatio	onship o	f "y/x ≤	0.33" is	preferr	ed									
Well Location:		Unit		MW18														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of c	oncentra	tion is ug	g/L												
#1	5/6/15	0		0.1														
#2	8/3/15	89		0.1														
#3	12/8/15	216		0.1														
#4	3/8/16	307		0.1														
#5	7/14/16	435		0.1														
#6	10/20/16	533		0.1														
#7	1/26/17	631		0.25														
#8	6/1/17	757		0.31														
#9	9/23/17	871		0.38														
#10	12/16/17	955		0.24														
#11	3/10/18	1039		0.4														
#12	6/30/18	1151		0.43														
#13	9/22/18	1235		0.42														
#14	12/15/18	1319		0.49														
#15	6/15/19	1501		0.44														
#16	12/7/19	1676		0.55														
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	0.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	entration		NA	0.55	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		NA	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		89								
#3		216								
#4		307								
#5		435								
#6		533								
#7		631								
#8		757								
#9	9/23/17	871								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance VC

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW18	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	100.000%		
Plume Stability?	Expanding	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	NA @50% C.L.;	NA (@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA (@85% C.L.

-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property
Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Seattle Washington
Hazardous Substance cis-1,2-DCE

NA

3.4

NA

NA

NA

NA

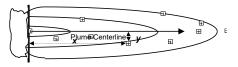
NA

NA

NA

NA

NA


NA

NA

NA

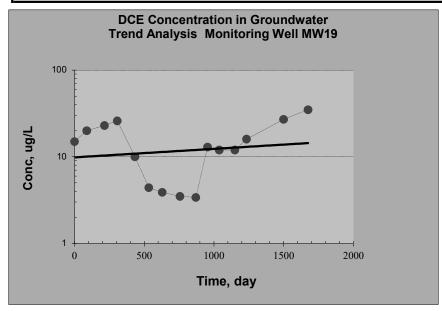
NA

NA

1. Monitoring V	Vell information	: Contam	inant Co	oncentr	ation at	a well:		•	Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferre	ed			
Well Location:		Unit		MW19														
Dist from source, x	x-direction	ft																
Off-centerline dist,	, y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is ug	g/L												
#1	5/7/15	0		15														
#2	8/3/15	88		20														
#3	12/7/15	214		23														
#4	3/8/16	306		26														
#5	7/13/16	433		10														
#6	10/21/16	533		4.4														
#7	1/25/17	629		3.9														
#8	6/1/17	756		3.5														
#9	9/23/17	870		3.4														
#10	12/16/17	954		13														
#11	3/10/18	1038		12														
#12	6/30/18	1150		12														
#13	9/22/18	1234		16														
#14	6/15/19	1500		27														
#15	12/7/19	1675		35														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen			na	14.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	entration	NA 35 NA NA NA					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

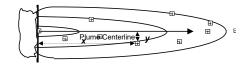
Minimum Concentration 2. Groundwater Elevation:

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		88								
#3		214								
#4		306								
#5		433								
#6		533								
#7		629								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	6/15/19	1500								
#15	12/7/19	1675								
#16										
#17										
#18										
#19										
#20										


Site Name: Troy Laundry Property

Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle.Washington Hazardous Substance cis-1,2-DCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW19	Confidence Level (Decision C	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	39.605%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	0.082 @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		8.408 @50% C.L.;	NA	@85% C.L.

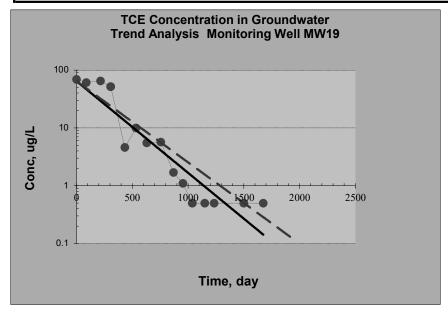
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle Washington
TCE

1. Monitoring W	Vell information	: Contam	inant C	oncentr	ation a	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW19														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of	concentra	tion is u	g/L												
#1	5/7/15	0		69	,													
#2	8/3/15	88		61														
#3	12/7/15	214		65														
#4	3/8/16	306		52														
#5	7/13/16	433		4.6														
#6	10/21/16	533		10														
#7	1/25/17	629		5.5														
#8	6/1/17	756		5.7														
#9	9/23/17	870		1.7														
#10	12/16/17	954		1.1														
#11	3/10/18	1038		0.5														
#12	6/30/18	1150		0.5														
#13	9/22/18	1234		0.5														
#14	6/15/19	1500		0.5														
#15	12/7/19	1675		0.5														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concent	tration		na	18.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	NA 69 NA NA NA					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

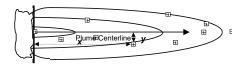
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		88								
#3		214								
#4		306								
#5		433								
#6		533								
#7		629								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	6/15/19	1500								
#15	12/7/19	1675								
#16										
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance TCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW19	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	100.000%		
Plume Stability?	Shrinking	; Decision Criteria	a is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	1.333 @50% C.L.;	1.181	@85% C.L.
Half Life for k_{point} , yr		0.520 @50% C.L.;	0.587	@85% C.L.

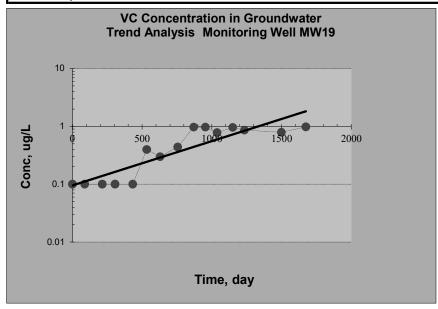
-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property
Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Seattle.Washington
Hazardous Substance VC

1. Monitoring V	Vell information	: Contam	inant C	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW19														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of	concentra	tion is ug	g/L												
#1	5/7/15	0		0.1.														
#2	8/3/15	88		0.1.														
#3	12/7/15	214		0.1.														
#4	3/8/16	306		0.1.														
#5	7/13/16	433		0.1.														
#6	10/21/16	533		0.4														
#7	1/25/17	629		0.3														
#8	6/1/17	756		0.44														
#9	9/23/17	870		0.97														
#10	12/16/17	954		0.97														
#11	3/10/18	1038		0.78														
#12	6/30/18	1150		0.96														
#13	9/22/18	1234		0.86														
#14	6/15/19	1500		0.79														
#15	12/7/19	1675		0.98														
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	0.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	entration		NA	0.98	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		NA	0.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

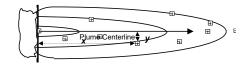
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		88								
#3		214								
#4		306								
#5		433								
#6		533								
#7		629								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	6/15/19	1500								
#15	12/7/19	1675								
#16										
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance VC


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

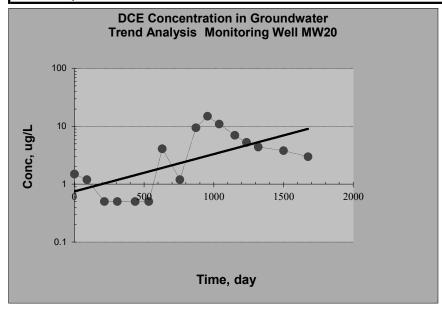
Name of Sampling Well?	MW19	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.999%		
Plume Stability?	Expanding	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	NA @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.

-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property
Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Seattle.Washington
Hazardous Substance cis-1,2-DCE

1. Monitoring W	ell information	: Contam	inant Co	ncentr	ation at	a well:			Note	e: relatio	onship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW20														
Dist from source, x-	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of c	oncentra	tion is ug	g/L												
#1	5/6/15	0		1.5														
#2	8/3/15	89		1.2														
#3	12/7/15	215		0.5														
#4	3/9/16	308		0.5														
#5	7/15/16	436		0.5														
#6	10/20/16	533		0.5														
#7	1/25/17	630		4.1														
#8	6/1/17	757		1.2														
#9	9/24/17	872		9.5														
#10	12/16/17	955		15														
#11	3/10/18	1039		11														
#12	6/30/18	1151		7														
#13	9/22/18	1235		5.3														
#14	12/15/18	1319		4.4														
#15	6/15/19	1501		3.8														
#16	12/7/19	1676		3														
#17																		
#18																		
#19																		
#20																		
Average Concent	ration		na	4.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Concer	ntration		NA	0.5										NA				

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		89								
#3		215								
#4		308								
#5		436								
#6		533								
#7		630								
#8		757								
#9	9/24/17	872								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										


Site Name: Troy Laundry Property

Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle.Washington Hazardous Substance cis-1,2-DCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW20	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.193%		
Plume Stability?	Expanding	; Decision Criteria	ı is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	NA @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.

	•	O
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle, Washington
cis-1,2-DCE

NA

1.2

NA

NA

NA

NA

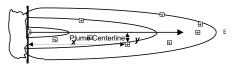
NA

NA

NA

NA

NA


NA

NA

NA

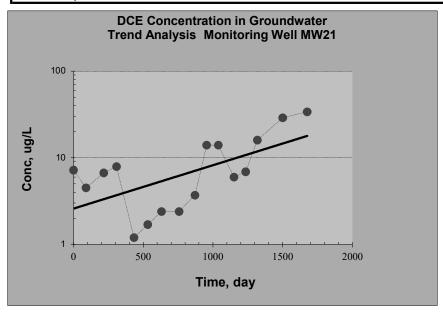
NA

NA

Hazaraous Subst	ance cis-1,2-DC	E																
1. Monitoring V	Vell information	: Contam	inant Co	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW21														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of c	concentra	tion is ug	z/L												
#1	5/6/15	0		7.2	`													
#2	8/4/15	90		4.5														
#3	12/8/15	216		6.7														
#4	3/9/16	308		7.9														
#5	7/13/16	434		1.2														
#6	10/20/16	533		1.7														
#7	1/26/17	631		2.4														
#8	6/1/17	757		2.4														
#9	9/23/17	871		3.7														
#10	12/16/17	955		14														
#11	3/10/18	1039		14														
#12	6/30/18	1151		6														
#13	9/22/18	1235		6.9														
#14	12/15/18	1319		16														
#15	6/15/19	1501		29														
#16	12/7/19	1676		34														
#17																		
#18																		
#19																		
#20																		
Average Concen			na	9.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	entration		NA	34	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Minimum Concentration 2. Groundwater Elevation:

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		216								
#4		308								
#5		434								
#6		533								
#7		631								
#8		757								
#9	9/23/17	871								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										


Site Name: Troy Laundry Property

Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington Hazardous Substance cis-1,2-DCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW21	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	98.687%		
Plume Stability?	Expanding	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	NA @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.

		U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle, Washington
PCE

NA

0.5

NA

NA

NA

NA

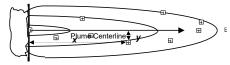
NA

NA

NA

NA

NA


NA

NA

NA

NA

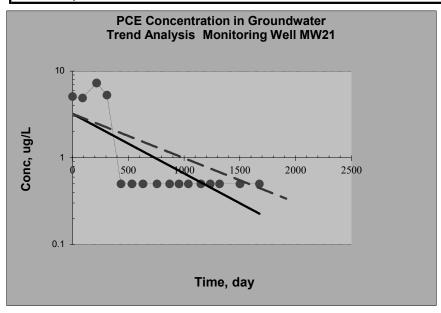
NA

	Vell information								11010		p o	- J/A =	0.00	preferre				
Well Location:		Unit		MW21														
Dist from source, x		ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of c	oncentra	tion is ug	g/L												
#1	5/6/15	0		5.1														
#2	8/4/15	90		4.9														
#3	12/8/15	216		7.3														
#4	3/9/16	308		5.3														
#5	7/13/16	434		0.5														
#6	10/20/16	533		0.5														
#7	1/26/17	631		0.5														
#8	6/1/17	757		0.5														
#9	9/23/17	871		0.5														
#10	12/16/17	955		0.5														
#11	3/10/18	1039		0.5														
#12	6/30/18	1151		0.5														
#13	9/22/18	1235		0.5														
#14	12/15/18	1319		0.5														
#15	6/15/19	1501		0.5														
#16	12/7/19	1676		0.5														
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	1.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	entration		NA	7.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Minimum Concentration 2. Groundwater Elevation:

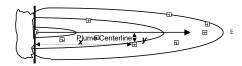
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		216								
#4		308								
#5		434								
#6		533								
#7		631								
#8		757								
#9	9/23/17	871								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance PCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW21	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.907%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	0.578 @50% C.L.;	0.429 (285% C.L.
Half Life for k_{point} , yr		1.200 @50% C.L.;	1.615 (285% C.L.

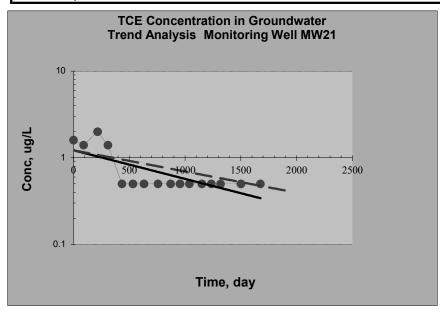
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property
Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Seattle, Washington
TCE
Troy Laundry Property
Site Name: Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laundry Property
Troy Laun

1. Monitoring V	Monitoring Well information: Contaminant Concentration at a well:								Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW21														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	concentra	tion is us	z/L												
#1	5/6/15	0	1	1.6	,													
#2	8/4/15	90		1.4														
#3	12/8/15	216		2														
#4	3/9/16	308		1.4														
#5	7/13/16	434		0.5														
#6	10/20/16	533		0.5														
#7	1/26/17	631		0.5														
#8	6/1/17	757		0.5														
#9	9/23/17	871		0.5														
#10	12/16/17	955		0.5														
#11	3/10/18	1039		0.5														
#12	6/30/18	1151		0.5														
#13	9/22/18	1235		0.5														
#14	12/15/18	1319		0.5														
#15	6/15/19	1501		0.5														
#16	12/7/19	1676		0.5														
#17																		
#18																		
#19																		
#20																		
Average Concen	Average Concentration		na	0.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	Maximum Concentration NA 2 NA NA NA			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				
Minimum Conce	entration		NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

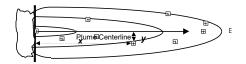
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		216								
#4		308								
#5		434								
#6		533								
#7		631								
#8		757								
#9	9/23/17	871								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance TCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW21	Confidence Level (Decision	n Criteria)? 85.0	%
Confidence Level calculated with	log-linear regression is?	99.902%		
Plume Stability?	Shrinking	; Decision Criter	ia is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	0.277 @50% C.L.;	0.205 @85% 0	C.L.
Half Life for k_{point} , yr		2.501 @50% C.L.;	3.374 @85% 0	C.L.

-	-	_
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Hazardous Substance VC Troy Laundry Property
Seattle, Washington
VC

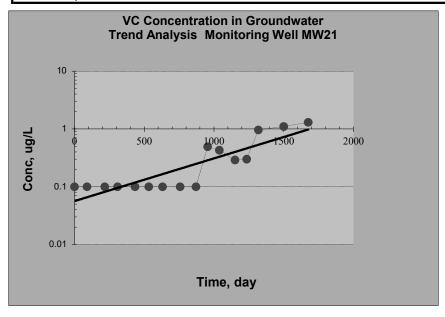
1. Monitoring Well information: Contaminant Concentration at a well:	
--	--

N	ote: re	lationship	of "y/2	$x \leq 0.3$	33" is	preferred
---	---------	------------	---------	--------------	--------	-----------

Well Location: Dist from source, x-		Unit																
Dist from source, x-		Omt		MW21														
	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	concentra	tion is u	g/L												
#1	5/6/15	0		0.1														
#2	8/4/15	90		0.1														
#3	12/8/15	216		0.1														
#4	3/9/16	308		0.1														
#5	7/13/16	434		0.1														
#6	10/20/16	533		0.1														
#7	1/26/17	631		0.1														
#8	6/1/17	757		0.1														
#9	9/23/17	871		0.1														
#10	12/16/17	955		0.49														
#11	3/10/18	1039		0.43														
#12	6/30/18	1151		0.29														
#13	9/22/18	1235		0.3														
#14	12/15/18	1319		0.96														
#15	6/15/19	1501		1.1														
#16	12/7/19	1676		1.3														
#17																		
#18																		
#19																		
#20																		
Average Concenti			na	0.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	1.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Concer	ntration		NA	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

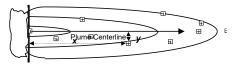
Well Location:										
	Data samulad	Davi								
Sampling Event	Date sampled	Day		_					 	
#1		0								
#2		90								
#3		216								
#4		308								
#5		434								
#6		533								
#7		631								
#8		757								
#9	9/23/17	871								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance VC


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW21	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.999%		
Plume Stability?	Expanding	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	NA @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.

•	•	0
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property
Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Seattle, Washington
Hazardous Substance cis-1,2-DCE

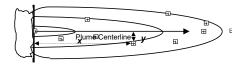
1. Monitoring V	Vell information	Contan	ninant Co	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW22														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	concentra	tion is us	z/L												
#1	5/7/15	0		13	`													
#2	8/4/15	89		20														
#3	12/8/15	215		120														
#4	3/8/16	306		95														
#5	7/14/16	434		14														
#6	10/20/16	532		9.9														
#7	1/26/17	630		41														
#8	6/1/17	756		23														
#9	9/23/17	870		16														
#10	12/16/17	954		14														
#11	3/10/18	1038		20														
#12	6/30/18	1150		14														
#13	9/22/18	1234		16														
#14	12/15/18	1318		17														
#15	6/15/19	1500		25														
#16	12/7/19	1675		38														
#17																		
#18																		
#19																		
#20																		
Average Concent	tration		na	31.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		NA	9.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

2. Groundwater										
Well Location:	·									
Sampling Event	Date sampled	Day								
#1		0								
#2		89								
#3		215								
#4		306								
#5		434								
#6		532								
#7		630								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	12/15/18	1318								
#15	6/15/19	1500								
#16	12/7/19	1675								
#17										
#18										
#19										
#20										


Site Name: Troy Laundry Property

Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington Hazardous Substance cis-1,2-DCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW22	Confidence Level (Decision Confidence Level (Dec	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	47.498%		
Plume Stability?	UD	; Decision Criteria	is 85%.	
Slope: Point decay rate constant	$(\boldsymbol{k}_{point}), \text{yr}^{-1}$	NA @50% C.L.;	NA (285% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA (e	285% C.L.

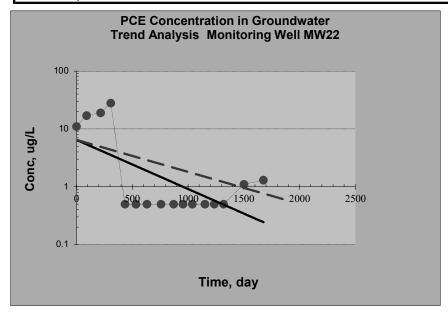
	•	O
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle, Washington
PCE

1. Monitoring V	Vell information	: Contan	ninant Co	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	s preferr	ed			
Well Location:		Unit		MW22														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	concentra	tion is u	g/L												
#1	5/6/15	0		11														
#2	8/4/15	90		17														
#3	12/8/15	216		19														
#4	3/8/16	307		28														
#5	7/13/16	434		0.5														
#6	10/20/16	533		0.5														
#7	1/26/17	631		0.5														
#8	6/1/17	757		0.5														
#9	9/23/17	871		0.5														
#10	12/16/17	955		0.5														
#11	3/10/18	1039		0.5														
#12	6/30/18	1151		0.5														
#13	9/22/18	1235		0.5														
#14	12/15/18	1319		0.5														
#15	6/15/19	1501		1.1														
#16	12/7/19	1676		1.3														
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	5.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	entration		NA	28	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	entration		NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		216								
#4		307								
#5		434								
#6		533								
#7		631								
#8		757								
#9	9/23/17	871								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance PCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW22	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.179%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	0.714 @50% C.L.;	0.465 (@85% C.L.
Half Life for k_{point} , yr		0.971 @50% C.L.;	1.491 (@85% C.L.

-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

NA

Module 2: Inputs: Enter Historical Ground Water Data

Site Name:
Site Address:
Additional Description:
Hazardous Substance
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle, Washington
TCE

NA

0.5

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

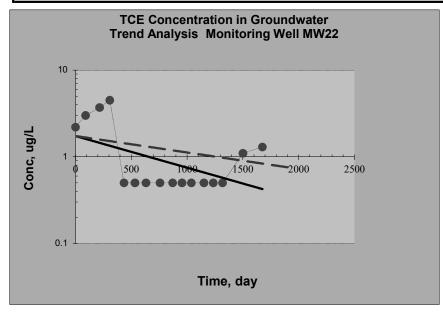
NA

Well Location:		Unit		MW22														
Dist from source, x	-direction	ft	 	22														
Off-centerline dist,		ft																
Sampling Event	Date sampled	day	Unit of o		tion is uş	g/L												
#1	5/6/15	0		2.2														
#2	8/4/15	90		3														
#3	12/8/15	216		3.7														
#4	3/8/16	307		4.5														
#5	7/13/16	434		0.5														
#6	10/20/16	533		0.5														
#7	1/26/17	631		0.5														
#8	6/1/17	757		0.5														
#9	9/23/17	871		0.5														
#10	12/16/17	955		0.5														
#11	3/10/18	1039		0.5														
#12	6/30/18	1151		0.5														
#13	9/22/18	1235		0.5														
#14	12/15/18	1319		0.5														
#15	6/15/19	1501		1.1														
#16	12/7/19	1676		1.3														
#17																		
#18																		
#19																		
#20																		
Average Concent	tration		na	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	4.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Minimum Concentration 2. Groundwater Elevation:

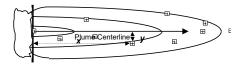
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		216								
#4		307								
#5		434								
#6		533								
#7		631								
#8		757								
#9	9/23/17	871								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance TCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW22	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	95.768%		
Plume Stability?	Shrinking	; Decision Criteria	a is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	0.307 @50% C.L.;	0.159	@85% C.L.
Half Life for k_{point} , yr		2.259 @50% C.L.;	4.348	@85% C.L.

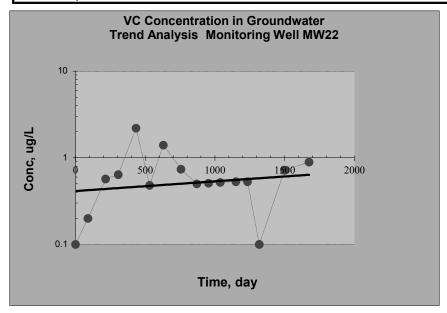
-	-	_
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Middule 2. Inputs.	Eliter Historical Ground Water Data
	Troy Laundry Property
Site Address:	300 Boren Ave North Fairview Ave North
Additional Description:	Seattle, Washington
Hazardous Substance	VC

1. Monitoring V	Vell information	: Contan	ninant C	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW22														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of	concentra	tion is u	z/L												
#1	5/7/15	0		0.1	,													
#2	8/4/15	89		0.2														
#3	12/8/15	215		0.57														
#4	3/8/16	306		0.64														
#5	7/14/16	434		2.2														
#6	10/20/16	532		0.48														
#7	1/26/17	630		1.4														
#8	6/1/17	756		0.74														
#9	9/23/17	870		0.5														
#10	12/16/17	954		0.51														
#11	3/10/18	1038		0.52														
#12	6/30/18	1150		0.53														
#13	9/22/18	1234		0.53														
#14	12/15/18	1318		0.1														
#15	6/15/19	1500		0.72														
#16	12/7/19	1675		0.89														
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	0.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	2.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	entration		NA	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		89								
#3		215								
#4		306								
#5		434								
#6		532								
#7		630								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	12/15/18	1318								
#15	6/15/19	1500								
#16	12/7/19	1675								
#17										
#18										
#19										
#20										

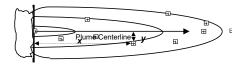
Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance VC

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW22	Confidence Level (Decision Confidence Level (Dec	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	44.840%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	0.094 @50% C.L.;	NA @	085% C.L.
Half Life for k_{point} , yr		7.366 @50% C.L.;	NA (085% C.L.

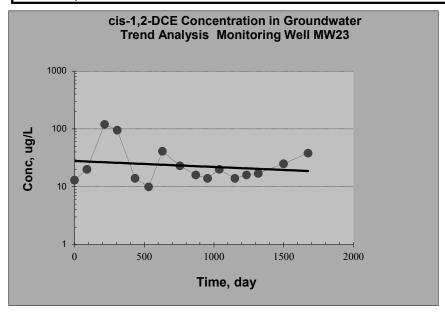
•	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance

Site Name:
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle.Washington
cis-1,2-DCE

1. Monitoring V	Vell information	Contan	ninant Co	oncentr	ation at	a well:			Note	e: relatio	onship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW23														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	concentra	tion is u	z/L												
#1	5/7/15	0		13														
#2	8/4/15	89		20														
#3	12/8/15	215		120														
#4	3/8/16	306		95														
#5	7/14/16	434		14														
#6	10/20/16	532		9.9														
#7	1/26/17	630		41														
#8	6/1/17	756		23														
#9	9/23/17	870		16														
#10	12/16/17	954		14														
#11	3/10/18	1038		20														
#12	6/30/18	1150		14														
#13	9/22/18	1234		16														
#14	12/15/18	1318		17														
#15	6/15/19	1500		25														
#16	12/7/19	1675		38														
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	31.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	entration		NA						NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		89								
#3		215								
#4		306								
#5		434								
#6		532								
#7		630								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	12/15/18	1318								
#15	6/15/19	1500								
#16	12/7/19	1675								
#17										
#18										
#19										
#20										


Site Name: Troy Laundry Property

Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle.Washington Hazardous Substance cis-1,2-DCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW23	Confidence Level (Decision C	Tritoria)?	85.0%
			Jitteria):	03.070
Confidence Level calculated with	log-linear regression is?	47.498%		
Plume Stability?	UD	; Decision Criteria	is 85%.	
Slope: Point decay rate constant	$(\boldsymbol{k}_{point}), \text{yr}^{-1}$	NA @50% C.L.;	NA (285% C.L.
Half Life for $k_{\it point}$, yr		NA @50% C.L.;	NA (285% C.L.

	•	O
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

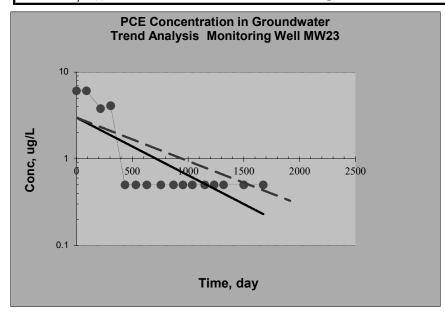
Site Name:
Site Address:
Additional Description:
Hazardous Substance

Site Name:
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle. Washington
PCE

1. Monitoring V	Vell information	: Contam	inant C	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW23														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of	concentra	tion is u	g/L												
#1	5/7/15	0	1	6.1	,													
#2	8/4/15	89		6.1														
#3	12/8/15	215		3.8														
#4	3/8/16	306		4.1														
#5	7/14/16	434		0.5														
#6	10/20/16	532		0.5														
#7	1/26/17	630		0.5														
#8	6/1/17	756		0.5														
#9	9/23/17	870		0.5														
#10	12/16/17	954		0.5														
#11	3/10/18	1038		0.5														
#12	6/30/18	1150		0.5														
#13	9/22/18	1234		0.5														
#14	12/15/18	1318		0.5														
#15	6/15/19	1500		0.5														
#16	12/7/19	1675		0.5														
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	1.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	6.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	entration		NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

27 0104114774461										
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		89								
#3		215								
#4		306								
#5		434								
#6		532								
#7		630								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	12/15/18	1318								
#15	6/15/19	1500								
#16	12/7/19	1675								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance PCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW23	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.933%		
Plume Stability?	Shrinking	; Decision Criteria	a is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	0.559 @50% C.L.;	0.421	@85% C.L.
Half Life for k_{point} , yr		1.241 @50% C.L.;	1.648	@85% C.L.

_	-	_
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle.Washington
TCE

NA

0.5

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

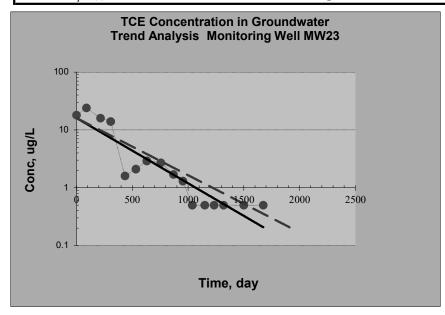
NA

Hazaraous Suosia	<u>'</u>	- C +			٠. ،			<u> </u>	N T 4	1.0	1.	C II / ~	0.2211.		1			
	Vell information		inant Co		ation at	a well:			Note	e: relatio	onship o	r "y/x ≤	0.33" 18	preferre	ea			
Well Location:		Unit		MW23														
Dist from source, x		ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is ug	g/L												
#1	5/7/15	0		18														
#2	8/4/15	89		24														
#3	12/8/15	215		16														
#4	3/8/16	306		14														
#5	7/14/16	434		1.6														
#6	10/20/16	532		2.1														
#7	1/26/17	630		2.9														
#8	6/1/17	756		2.7														
#9	9/23/17	870		1.7														
#10	12/16/17	954		1.3														
#11	3/10/18	1038		0.5														
#12	6/30/18	1150		0.5														
#13	9/22/18	1234		0.5														
#14	12/15/18	1318		0.5														
#15	6/15/19	1500		0.5														
#16	12/7/19	1675		0.5														
#17																		
#18																		
#19																		
#20																		
Average Concent	tration		na	5.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	24	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Minimum Concentration 2. Groundwater Elevation:

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		89								
#3		215								
#4		306								
#5		434								
#6		532								
#7		630								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	12/15/18	1318								
#15	6/15/19	1500								
#16	12/7/19	1675								
#17										
#18										
#19										
#20										

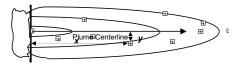
Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance TCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW23	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	100.000%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	0.949 @50% C.L.;	0.831	@85% C.L.
Half Life for k_{point} , yr		0.731 @50% C.L.;	0.834	@85% C.L.

•	•	0
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

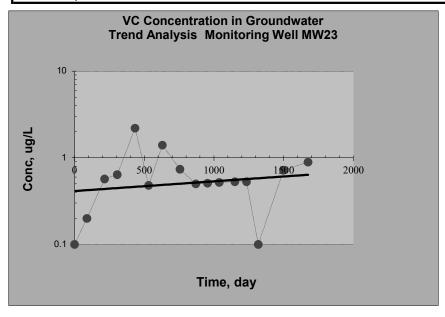
Site Name:
Site Address:
Additional Description:
Hazardous Substance

Site Name:
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle. Washington
VC

1. Monitoring V	Vell information	: Contan	inant C	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW23														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of	concentra	tion is us	z/L												
#1	5/7/15	0		0.1	,													
#2	8/4/15	89		0.2														
#3	12/8/15	215		0.57														
#4	3/8/16	306		0.64														
#5	7/14/16	434		2.2														
#6	10/20/16	532		0.48														
#7	1/26/17	630		1.4														
#8	6/1/17	756		0.74														
#9	9/23/17	870		0.5														
#10	12/16/17	954		0.51														
#11	3/10/18	1038		0.52														
#12	6/30/18	1150		0.53														
#13	9/22/18	1234		0.53														
#14	12/15/18	1318		0.1														
#15	6/15/19	1500		0.72														
#16	12/7/19	1675		0.89														
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	0.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	2.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	entration		NA										NA					

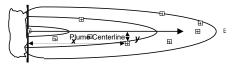
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		89								
#3		215								
#4		306								
#5		434								
#6		532								
#7		630								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	12/15/18	1318								
#15	6/15/19	1500								
#16	12/7/19	1675								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance VC


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

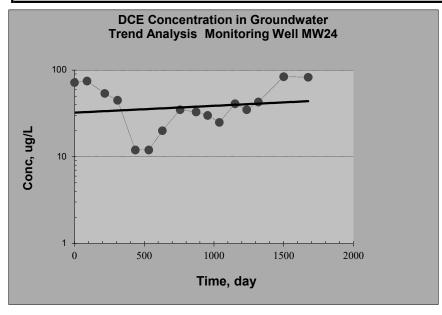
Name of Sampling Well?	MW23	Confidence Level (Decision (Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	44.840%		1 22.070
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	0.094 @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		7.366 @50% C.L.;	NA	@85% C.L.

		U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property
Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Seattle, Washington
Hazardous Substance cis-1,2-DCE

1. Monitoring W	ell information	: Contan	ninant C	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW24														
Dist from source, x-	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of	concentra	tion is u	g/L												
#1	5/6/15	0		72														
#2	8/4/15	90		75														
#3	12/8/15	216		54														
#4	3/9/16	308		45														
#5	7/15/16	436		12														
#6	10/20/16	533		12														
#7	1/25/17	630		20														
#8	6/1/17	757		35														
#9	9/24/17	872		33														
#10	12/16/17	955		30														
#11	3/10/18	1039		25														
#12	6/30/18	1151		41														
#13	9/22/18	1235		35														
#14	12/15/18	1319		43														
#15	6/15/19	1501		84														
#16	12/7/19	1676		83														
#17																		
#18																		
#19																		
#20																		
Average Concent	ration		na	43.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	84	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		NA	12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		216								
#4		308								
#5		436								
#6		533								
#7		630								
#8		757								
#9	9/24/17	872								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										


Site Name: Troy Laundry Property

Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington Hazardous Substance cis-1,2-DCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW24	Confidence Level (Decision C	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	42.295%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	0.066 @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		10.478 @50% C.L.;	NA	@85% C.L.

Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Module 2. Inputs. Enter Historical Ground Water Data												
Site Name:	Troy Laundry Property											
Site Address:	300 Boren Ave North Fairview Ave North											
Additional Description:	Seattle, Washington											
Hazardous Substance	PCE											

NA

NA

NA

NA

NA

NA

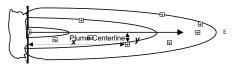
NA

NA

NA

NA

NA


NA

NA

NA

NA

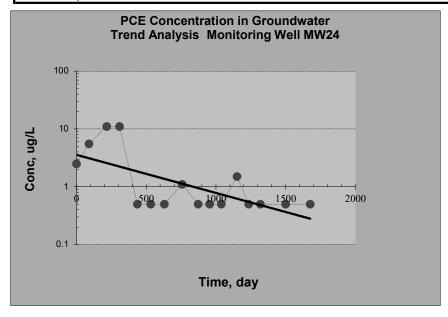
NA

	ven miormation	ant Concentration at a well: Note: relationship of " $y/x \le 0.33$ " is preferred																
Well Location: Unit				MW24														
Dist from source, x-direction ft																		
Off-centerline dist, y-direction ft																		
Sampling Event Date sampled day				oncentra	tion is ug	g/L												
#1	5/6/15	0		2.5														
#2	8/4/15	90		5.5														
#3	12/8/15	216		11														
#4	3/9/16	308		11														
#5	7/15/16	436		0.5														
#6	10/20/16	533		0.5														
#7	1/25/17	630		0.5														
#8	6/1/17	757		1.1														
#9	9/24/17	872		0.5														
#10	12/16/17	955		0.5														
#11	3/10/18	1039		0.5														
#12	6/30/18	1151		1.5														
#13	9/22/18	1235		0.5														
#14	12/15/18	1319		0.5														
#15	6/15/19	1501		0.5														
#16	12/7/19	1676		0.5														
#17																		
#18																		
#19																		
#20																		
Average Concentration			na	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Concentration			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Minimum Concentration 2. Groundwater Elevation:

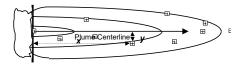
Well Location:										
Sampling Event										
#1		0								
#2		90								
#3		216								
#4		308								
#5		436								
#6		533								
#7		630								
#8		757								
#9	9/24/17	872								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance PCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW24	Confidence Level (Decision C	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	NA		
Plume Stability?	NA	; Decision Criteria	is 85%.	
Slope: Point decay rate constant	$(\boldsymbol{k}_{point}), \text{yr}^{-1}$	NA @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.

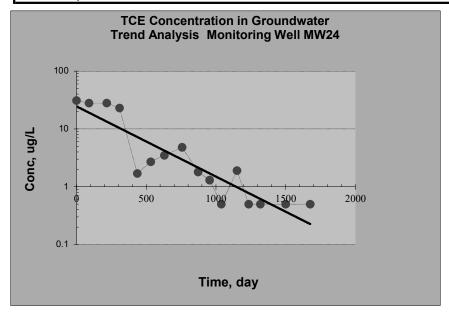
-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Module 2. Inputs.	Elitti Historical Orbunu Watti Data
Site Name:	Troy Laundry Property
Site Address:	300 Boren Ave North Fairview Ave North
Additional Description:	Seattle, Washington
Hazardous Substance	TCE

1. Monitoring V	Vell information	: Contan	ninant C	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW24														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of	concentra	tion is us	z/L												
#1	5/6/15	0		31	,													
#2	8/4/15	90		28														
#3	12/8/15	216		28														
#4	3/9/16	308		23														
#5	7/15/16	436		1.7														
#6	10/20/16	533		2.7														
#7	1/25/17	630		3.5														
#8	6/1/17	757		4.8														
#9	9/24/17	872		1.8														
#10	12/16/17	955		1.3														
#11	3/10/18	1039		0.5														
#12	6/30/18	1151		1.9														
#13	9/22/18	1235		0.5														
#14	12/15/18	1319		0.5														
#15	6/15/19	1501		0.5														
#16	12/7/19	1676		0.5														
#17																		
#18																		
#19																		
#20																		
Average Concentration na N/A N/A N/A N/A			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Maximum Concentration NA NA NA NA NA			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				
Minimum Concentration NA NA NA NA NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		216								
#4		308								
#5		436								
#6		533								
#7		630								
#8		757								
#9	9/24/17	872								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance TCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW24	Confidence Level (Decision C	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	NA NA	,	
Plume Stability?	NA	; Decision Criteria	is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	<i>NA</i> @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.

-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance

Site Name:
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle, Washington
VC

NA

0.1

NA

NA

NA

NA

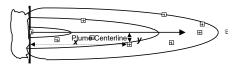
NA

NA

NA

NA

NA


NA

NA

NA

NA

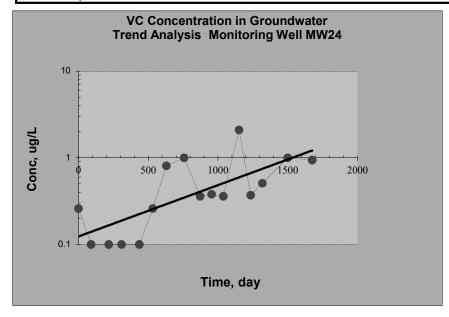
NA

1 Maritaria N	. Monitoring Well information: Contaminant Concentration a								NT-4	1 - 4	1	C 11/ <	0.2211:-	C	1			
	en information		inant Co		ation at	a wen:			Note	e: relatio	onsnip o	i "y/x ≤	U.33" IS	preferre	ea			
Well Location:		Unit		MW24														
Dist from source, x		ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	oncentra	tion is ug	g/L												
#1	5/6/15	0		0.26														
#2	8/4/15	90		0.1														
#3	12/8/15	216		0.1														
#4	3/9/16	308		0.1														
#5	7/15/16	436		0.1														
#6	10/20/16	533		0.26														
#7	1/25/17	630		0.81														
#8	6/1/17	757		1														
#9	9/24/17	872		0.36														
#10	12/16/17	955		0.38														
#11	3/10/18	1039		0.36														
#12	6/30/18	1151		2.1														
#13	9/22/18	1235		0.37														
#14	12/15/18	1319		0.51														
#15	6/15/19	1501		1														
#16	12/7/19	1676		0.94														
#17																		
#18																		
#19																		
#20																		
Average Concent	ration		na	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	2.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Minimum Concentration 2. Groundwater Elevation:

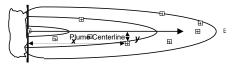
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		216								
#4		308								
#5		436								
#6		533								
#7		630								
#8		757								
#9	9/24/17	872								
#10	12/16/17	955								
#11	3/10/18	1039								
#12	6/30/18	1151								
#13	9/22/18	1235								
#14	12/15/18	1319								
#15	6/15/19	1501								
#16	12/7/19	1676								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle, Washington

Hazardous Substance VC


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

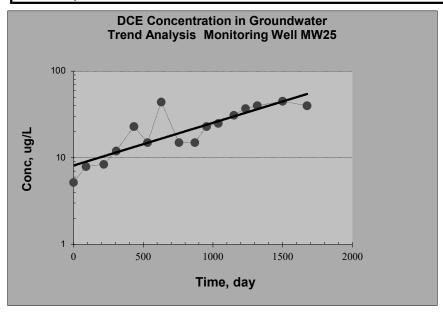
Name of Sampling Well?	MW24	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.857%		
Plume Stability?	Expanding	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	NA @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.

Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property Site Address: 300 Boren Ave North Fairview Ave North Additional Description: Seattle.Washington Hazardous Substance cis-1,2-DCE

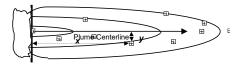
1. Monitoring V	Vell information		inant Co	oncentr	ation at	a well:			Not	e: relatio	onship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW25														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of c	oncentra	tion is ug	z/L												
#1	5/7/15	0		5.2														
#2	8/5/15	90		7.9														
#3	12/9/15	216		8.4														
#4	3/8/16	306		12														
#5	7/13/16	433		23														
#6	10/19/16	531		15														
#7	1/25/17	629		44														
#8	6/1/17	756		15														
#9	9/23/17	870		15														
#10	12/16/17	954		23														
#11	3/10/18	1038		25														
#12	6/30/18	1150		31														
#13	9/22/18	1234		37														
#14	12/15/18	1318		40														
#15	6/15/19	1500		45														
#16	12/7/19	1675		40														
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	24.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	entration		NA	NA 45 NA NA NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		NA	A 5.2 NA NA NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		216								
#4		306								
#5		433								
#6		531								
#7		629								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	12/15/18	1318								
#15	6/15/19	1500								
#16	12/7/19	1675								
#17										
#18										
#19										
#20										


Site Name: Troy Laundry Property

Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle.Washington Hazardous Substance cis-1,2-DCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW25	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.998%		
Plume Stability?	Expanding	; Decision Criteria	is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	NA @50% C.L.;	NA @	085% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA (085% C.L.

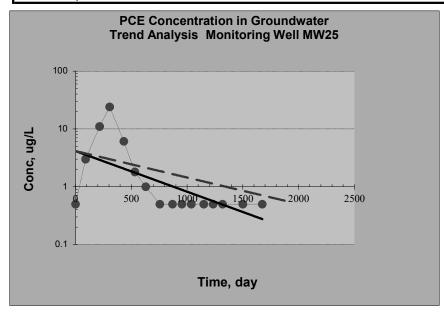
	•	O
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle.Washington
PCE

1. Monitoring W	Vell information	: Contam	inant C	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW25														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of	concentra	tion is u	g/L												
#1	5/7/15	0	1	0.5														
#2	8/5/15	90		3.0														
#3	12/9/15	216		11														
#4	3/8/16	306		24														
#5	7/13/16	433		6.1														
#6	10/19/16	531		1.8														
#7	1/25/17	629		1.0														
#8	6/1/17	756		0.5														
#9	9/23/17	870		0.5														
#10	12/16/17	954		0.5														
#11	3/10/18	1038		0.5														
#12	6/30/18	1150		0.5														
#13	9/22/18	1234		0.5														
#14	12/15/18	1318		0.5														
#15	6/15/19	1500		0.5														
#16	12/7/19	1675		0.5														
#17																		
#18																		
#19																		
#20																		
Average Concentration na 3.2 N/A N/A N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
	Maximum Concentration NA			24	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	inimum Concentration			0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

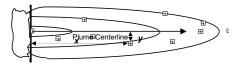
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		216								
#4		306								
#5		433								
#6		531								
#7		629								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	12/15/18	1318								
#15	6/15/19	1500								
#16	12/7/19	1675								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance PCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW25	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.184%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant ((k point), yr ⁻¹	0.590 @50% C.L.;	0.385 (@85% C.L.
Half Life for k_{point} , yr		1.174 @50% C.L.;	1.802 (@85% C.L.

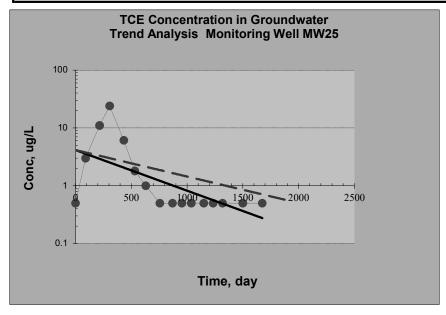
-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle.Washington
TCE

1. Monitoring V	Vell information	: Contam	inant C	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW25														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of	concentra	tion is us	z/L												
#1	5/7/15	0		0.5														
#2	8/5/15	90		3.0														
#3	12/9/15	216		11														
#4	3/8/16	306		24														
#5	7/13/16	433		6.1														
#6	10/19/16	531		1.8														
#7	1/25/17	629		1.0														
#8	6/1/17	756		0.5														
#9	9/23/17	870		0.5														
#10	12/16/17	954		0.5														
#11	3/10/18	1038		0.5														
#12	6/30/18	1150		0.5														
#13	9/22/18	1234		0.5														
#14	12/15/18	1318		0.5														
#15	6/15/19	1500		0.5														
#16	12/7/19	1675		0.5														
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	3.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Concentration NA 24 NA NA NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Minimum Conce	Tinimum Concentration NA 0.5 NA NA					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

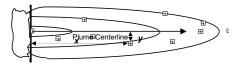
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		216								
#4		306								
#5		433								
#6		531								
#7		629								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	12/15/18	1318								
#15	6/15/19	1500								
#16	12/7/19	1675								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance TCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW25	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.184%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	0.590 @50% C.L.;	0.385	@85% C.L.
Half Life for k_{point} , yr		1.174 @50% C.L.;	1.802	@85% C.L.

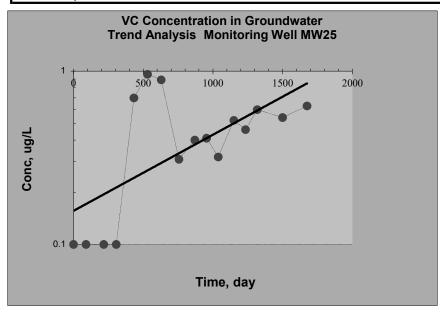
-	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property
Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Seattle.Washington
Hazardous Substance VC

1. Monitoring V	Vell information	: Contam	inant C	oncentr	ation at	a well:			Note	e: relatio	nship o	f "y/x ≤	0.33" is	preferr	ed			
Well Location:		Unit		MW25														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of	concentra	tion is u	g/L												
#1	5/7/15	0		0.1	,													
#2	8/5/15	90		0.1														
#3	12/9/15	216		0.1														
#4	3/8/16	306		0.1														
#5	7/13/16	433		0.7														
#6	10/19/16	531		0.96														
#7	1/25/17	629		0.89														
#8	6/1/17	756		0.31														
#9	9/23/17	870		0.4														
#10	12/16/17	954		0.41														
#11	3/10/18	1038		0.32														
#12	6/30/18	1150		0.52														
#13	9/22/18	1234		0.46														
#14	12/15/18	1318		0.6														
#15	6/15/19	1500		0.54														
#16	12/7/19	1675		0.63														
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	0.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	0.96	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	finimum Concentration		NA	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

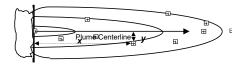
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		216								
#4		306								
#5		433								
#6		531								
#7		629								
#8		756								
#9	9/23/17	870								
#10	12/16/17	954								
#11	3/10/18	1038								
#12	6/30/18	1150								
#13	9/22/18	1234								
#14	12/15/18	1318								
#15	6/15/19	1500								
#16	12/7/19	1675								
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance VC


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

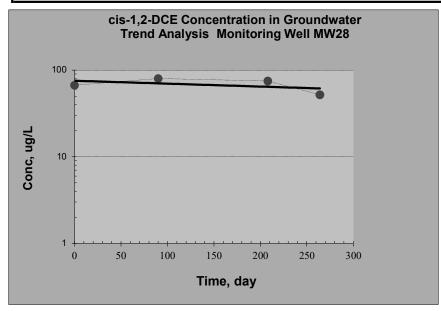
Name of Sampling Well?	MW25	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.211%		
Plume Stability?	Expanding	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	NA @50% C.L.;	NA (@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA (@85% C.L.

•	•	0
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name: Troy Laundry Property
Site Address: 300 Boren Ave North Fairview Ave North
Additional Description: Seattle Washington
Hazardous Substance cis-1,2-DCE

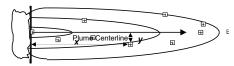
1. Monitoring Well information: Contaminant Concentration at a well:								Note: relationship of " $y/x \le 0.33$ " is preferred										
Well Location:		Unit		MW28														
Dist from source, x	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	concentra	tion is us	z/L												
#1	3/15/19	0		67	`													
#2	6/13/19	90		80														
#3	10/9/19	208		75														
#4	12/4/19	264		52														
#5																		
#6																		
#7																		
#8																		
#9																		
#10																		
#11																		
#12																		
#13																		
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	68.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce			NA	80	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	ntration		NA	52	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		208								
#4		264								
#5										
#6										
#7										
#8										
#9										
#10										
#11										
#12										
#13										
#14										
#15										
#16										
#17										
#18										
#19										
#20										


Site Name: Troy Laundry Property

Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle.Washington Hazardous Substance cis-1,2-DCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW28	Confidence Level (Decision C	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	48.395%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	0.283 @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		2.449 @50% C.L.;	NA	@85% C.L.

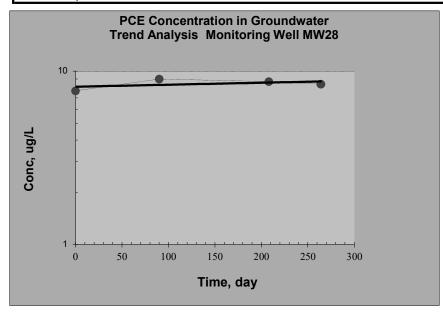
	•	O
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Middle 2. Inputs.	Elitti ilistorical Ground Water Data
Site Name:	Troy Laundry Property
Site Address:	300 Boren Ave North Fairview Ave North
Additional Description:	Seattle.Washington
Hazardous Substance	PCE

Hazaraous Substa	ance PCE							l .										
1. Monitoring W	1. Monitoring Well information: Contaminant Concentration at a well:							Note: relationship of " $y/x \le 0.33$ " is preferred										
Well Location:		Unit		MW28														
Dist from source, x-		ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of c	concentra	tion is uş	g/L												
#1	3/15/19	0		7.7														
#2	6/13/19	90		9														
#3	10/9/19	208		8.7														
#4	12/4/19	264		8.4														
#5																		
#6																		
#7																		
#8																		
#9																		
#10																		
#11														l				
#12																		
#13																		
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concent	ration		na	8.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	ntration		NA	9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Concer	ntration		NA	7.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

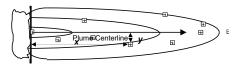
Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		208								
#4		264								
#5										
#6										
#7										
#8										
#9										
#10										
#11										
#12										
#13										
#14										
#15										
#16										
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance PCE


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW28	Confidence Level (Decision Confidence Level (Dec	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	46.619%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant	(k point), yr ⁻¹	0.096 @50% C.L.;	NA (@85% C.L.
Half Life for k_{point} , yr		7.196 @50% C.L.;	NA (@85% C.L.

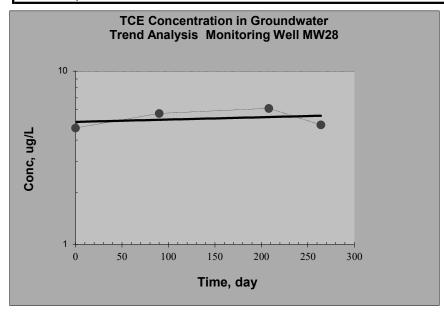
•	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

Site Name:
Site Address:
Additional Description:
Hazardous Substance
Troy Laundry Property
300 Boren Ave North Fairview Ave North
Seattle.Washington
TCE

1. Monitoring V	Vell information	: Contan	ninant C	oncentr	ation at	a well:		Note: relationship of " $y/x \le 0.33$ " is preferred										
Well Location:		Unit		MW28														
Dist from source, x	r-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of	concentra	tion is us	z/L												
#1	3/15/19	0		4.7	,													
#2	6/13/19	90		5.7														
#3	10/9/19	208		6.1														
#4	12/4/19	264		4.9														
#5																		
#6																		
#7																		
#8																		
#9																		
#10																		
#11																		
#12																		
#13																		
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concen	tration		na	5.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	entration		NA	6.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Conce	entration		NA	4.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		208								
#4		264								
#5										
#6										
#7										
#8										
#9										
#10										
#11										
#12										
#13										
#14										
#15										
#16										
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance TCE

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW28	Confidence Level (Decision Confidence Level (Dec	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	29.681%		
Plume Stability?	Stable	; Decision Criteria	is 85%.	
Slope: Point decay rate constant	(k point), yr ⁻¹	0.113 @50% C.L.;	NA (@85% C.L.
Half Life for k_{point} , yr		6.148 @50% C.L.;	NA (@85% C.L.

•	•	U
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	

wiodule 2. Inputs.	Eliter Historical Ground Water Data
Site Name:	Troy Laundry Property
Site Address:	300 Boren Ave North Fairview Ave North
Additional Description:	Seattle. Washington
Hazardous Substance	VC .

NA 0.29

NA

NA

NA

NA

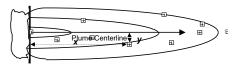
NA

NA

NA

NA

NA


NA

NA

NA

NA

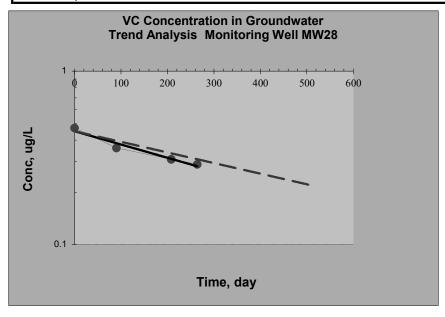
NA

Hazardous Substa	ince VC																	
1. Monitoring W	ell information	: Contam	inant Co	oncentr	ation at	a well:		Note: relationship of " $y/x \le 0.33$ " is preferred										
Well Location:		Unit		MW28														
Dist from source, x-	-direction	ft																
Off-centerline dist,	y-direction	ft																
Sampling Event	Date sampled	day	Unit of o	concentra	tion is ug	g/L												
#1	3/15/19	0		0.47														
#2	6/13/19	90		0.36														
#3	10/9/19	208		0.31														
#4	12/4/19	264		0.29														
#5																		
#6																		
#7																		
#8																		
#9																		
#10																		
#11																		
#12																		
#13																		
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
	Average Concentration na 0.4 N/A N/A N/A			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Maximum Conce	ntration		NA	0.47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Minimum Concentration 2. Groundwater Elevation:

Well Location:										
Sampling Event	Date sampled	Day								
#1		0								
#2		90								
#3		208								
#4		264								
#5										
#6										
#7										
#8										
#9										
#10										
#11										
#12										
#13										
#14										
#15										
#16										
#17										
#18										
#19										
#20										

Site Name: Troy Laundry Property


Site Address: 300 Boren Ave North Fairview Ave North

Additional Description: Seattle. Washington

Hazardous Substance VC

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW28	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	97.514%		
Plume Stability?	Shrinking	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant (k point), yr ⁻¹	0.644 @50% C.L.;	0.515 @	285% C.L.
Half Life for k_{point} , yr		1.077 @50% C.L.;	1.347 (285% C.L.

-	-	_
Plot #1:	Sampling date #1	
Plot #2:	Sampling date #2	
Plot #3:	Sampling date #3	
Plot #4:	Sampling date #4	
Plot #5:	Sampling date #5	
Plot #6:	Sampling date #6	