

PHASE I REMEDIAL INVESTIGATION REPORT

March Point (Whitmarsh) Landfill Skagit County, Washington

Prepared for:

Whitmarsh Landfill PLP Group

Prepared by:

AMEC Geomatrix, Inc.

600 University Street, Suite 1020 Seattle, Washington 98101 (206) 342-1760

April 2010

Project No. 0141590000.00004

Page

ABBREVIATIONS AND ACRONYMS					
1.0	INTRC 1.1 1.2	DUCTION Objectives and Scope Organization of the Phase I Remedial Investigation Report	1 1 1		
2.0	SITE [2.1 2.2	DESCRIPTION LOCATION AND ENVIRONMENTAL SETTING HISTORICAL AND CURRENT USE 2.2.1 Ownership 2.2.2 Landfill History 2.2.3 Current Property Use and Site Operations	3 3 3 3		
	2.3 2.4	 REGULATORY AND COMPLIANCE HISTORY PREVIOUS ENVIRONMENTAL CHARACTERIZATION/SAMPLING INVESTIGATIONS 2.4.1 Preliminary Assessment (Ecology, 1985)	5 5 6 7 7		
	2.5	PREVIOUS NEARBY ENVIRONMENTAL INVESTIGATIONS	8 8 9		
3.0	PHAS	E I RI ACTIVITIES	.11		
	3.1	GEOLOGIC RECONNAISSANCE	11		
	3.2		12		
	3.3	MONITORING WELL INSTALLATION AND DEVELOPMENT	12		
		3.3.2 Analyses	13		
	3.4	SEDIMENT INVESTIGATIONS	.14		
		3.4.1 Methodology	14		
		3.4.2 Analyses	16		
	3.5	LANDFILL TEST PITTING INVESTIGATION	17		
		3.5.1 Methodology	17		
	26		19		
	3.0	3.6.1 Methodology	20		
		3.6.2 Analyses	21		
	3.7	SURFACE WATER INVESTIGATIONS	21		
		3.7.1 Methodology	22		
		3.7.2 Analyses	22		
4.0	IDENTIFICATION OF PRELIMINARY CONTAMINANTS OF POTENTIAL				
	CONC	ERN AND PRELIMINARY SCREENING LEVELS	23		
	4.1	MTCA CLEANUP LEVELS	23		
	4.2	CONTAMINANTS OF POTENTIAL CONCERN	24		
	4.3	PRELIMINARY SCREENING LEVELS	25		

(Continued)

		4.3.1	Preliminary Screening Levels for Soil	.25
		4.3.2	Preliminary Screening Levels for Groundwater	.27
		4.3.3	Preliminary Screening Levels for Surface Water	28
5.0	NATU	RE AND	DEXTENT OF CONTAMINATION	.29
	5.1	GEOPH	IVSICAL INVESTIGATION RESULTS	.29
	5.2	SEDIME	ENT RESULTS	.29
	5.3	SOIL S	AMPLE RESULTS	.30
		5.3.1	Monitoring Well Soil Sample Results	.30
			5.3.1.1 Metals	.31
			5.3.1.2 TPH	.32
			5.3.1.3 VOCs	.32
			5.3.1.4 Pesticides and PCBs	.32
			5.3.1.5 Summary	.33
		5.3.2	Test Pit Soil Sample Results	.33
			5.3.2.1 Metals	.33
			5.3.2.2 TPH	.34
			5.3.2.3 SVOCs	.35
			5.3.2.4 VOCs	.35
			5.3.2.5 Pesticides and PCBs	.35
			5.3.2.6 Summarv	.36
	5.4	GROUN	NDWATER/SEEP RESULTS	.37
		5.4.1	Groundwater Results	.37
			5.4.1.1 Metals	.37
			5.4.1.2 Total Petroleum Hydrocarbons	.38
			5.4.1.3 SVOCs and PAHs.	.38
			5.4.1.4 VOCs	.39
			5.4.1.5 Organochlorine Pesticides	.39
			5.4.1.6 PCBs	.39
			5.4.1.7 Summary	.40
		5.4.2	Seep Results	.40
			5.4.2.1 Total and Dissolved Metals	.40
			5.4.2.2 SVOCs and PAHs	.41
			5.4.2.3 Total Petroleum Hydrocarbons	.42
			5.4.2.4 VOCs	.42
			5.4.2.5 Organochlorine Pesticides	.42
			5.4.2.6 PCBs	.43
			5.4.2.7 Summary	.43
	5.5	SURFACE WATER RESULTS		
		5.5.1	Total and Dissolved Metals	43
		5.5.2	TPH	.45
		5.5.3	SVOCs and PAHs	45
		5.5.4	VOCs	46
		5.5.5	Organochlorine Pesticides	47
		5.5.6	PCBs	.47
		5.5.7	Summary	.47

(Continued)

6.0	CONCEPTUAL SITE MODEL		
	6.1	CONCEPTUAL SITE MODEL	49
	6.2	PROPOSED PHASE II SCOPE OF WORK	53
7.0	RFF	FRENCES	57

TABLES

- Table 1
 Results of Field Water Quality Parameter Measurements
- Table 2 Preliminary COPCs for Uplands Site
- Table 3
 Summary of Soil Screening Levels
- Table 4
 Summary of Groundwater and Surface Water Screening Levels
- Table 5
 Test Results for the 10-Day Acute Toxicity Test with Ampelisca Abdita
- Table 6
 Test Results for the Larval Test with Dendraster Excentricus
- Table 7
 Test Results for the Microtox Bioassay
- Table 8
 Summary of Preliminary Bioassay Test Results for Sediment Samples
- Table 9
 Analytical Test Results for Swale Sediment Samples
- Table 10Summary of Detected Analytes for Monitoring Well and Test Pit Soil Samples,
October and November 2008
- Table 11Summary of Test Results for Monitoring Well, Seep, and Surface Water
Samples, October and December 2008 and April and July 2009

FIGURES

- Figure 1 Upland Investigation Area
- Figure 2 Historical Sample Locations
- Figure 3 Site Plan and Parcel Boundaries
- Figure 4 Phase I Sediment Sample Locations
- Figure 5 Phase I Uplands Sample Locations
- Figure 6 Geophysical Investigation Results
- Figure 7 Phase I Bioassay Results for Padilla Bay Lagoon Stations
- Figure 8 Phase I Sediment Investigation Results (Chemistry Exceedances)
- Figure 9 Phase I Uplands Summary of Exceedances in Soil
- Figure 10 Phase I Uplands Summary of Exceedances in Groundwater and Seep Samples
- Figure 11 Phase I Uplands Summary of Exceedances in Surface Water Samples
- Figure 12 Geologic Cross Section A-A'
- Figure 13 Geologic Cross Section B-B'
- Figure 14 Areas of Seeps

(Continued)

APPENDICES

- Appendix A Summary Pages from Historical Investigations
- Appendix B Geophysical Report
- Appendix C Field Notes
- Appendix D Sediment Logs
- Appendix E Site Photographs
- Appendix F Test Pit Logs and Boring Logs
- Appendix G Bioassay Report
- Appendix H Archaeological Report and Recommendations

ACRONYMS AND ABBREVIATIONS

2LAET	Second Lowest Apparent Effects Threshold
ACM	asbestos-containing material
Agreed Order	Agreed Order DE-08TCPHQ-5999
AMEC	AMEC Geomatrix, Inc.
ARI	Analytical Resources, Inc.
bgs	below ground surface
BNSF	Burlington Northern Santa Fe
°C	degrees Celsius
CLARC	Ecology's Cleanup Levels and Risk Calculations
cm	centimeter
COCs	constituents of concern
COPCs	contaminants of potential concern
DGPS	differential global positioning system
DNR	Washington State Department of Natural Resources
Ecology	Washington State Department of Ecology
EM	electromagnetic
EPA	U.S. Environmental Protection Agency
FS	feasibility study
Herrera	Herrera Environmental Consultants
LAET	Lowest Apparent Effects Threshold
MAG	magnetic survey
MCE	mixed cellulose ester
MDL	method detection limit
ua/ka	micrograms per kilogram
ua/L	micrograms per liter
um	micrometers
ma/ka	milligrams per kilogram
ma/L	milligrams per liter
MĽLW	mean lower low water
MSW	municipal solid waste
MTCA	Washington Model Toxics Control Act
NAD83	North American Datum of 1983
NAVD88	North American Vertical Datum of 1988
NGA	Northwest Geophysical Associates, Inc.
OC	organochlorine
PA	preliminary assessment
PAHs	polycyclic aromatic hydrocarbons
PCBs	polychlorinated biphenyls
PID	photoionization detector
PLPs	potentially liable parties
ppb	parts per billion
ppt	parts per thousand
PQLs	practical quantitation limits
PSI	Puget Sound Initiative
PSLs	preliminary screening levels

ACRONYMS AND ABBREVIATIONS

(Continued)

QAPP	Quality Assurance Project Plan (Appendix B to the RI/FS Work Plan [AMEC, 2008a])
Report	Phase I Remedial Investigation Report
RI	remedial investigation
RI/FS	remedial investigation/feasibility study
RI/FS Work Plan	Remedial Investigation/Feasibility Study Work Plan (AMEC, 2008a)
SAP	Uplands Sampling and Analysis Plan (an appendix to the Draft
	RI/FS Work Plan [AMEC, 2008a])
Sediment Work Plan	Sediment Investigation Work Plan (AMEC, 2008b)
SHA	site hazard assessment
SI	site inspection
SMS	Washington State Sediment Management Standards
SPCS	Washington State Plane Coordinate System
SQS	Washington Sediment Quality Standard
SVOCs	semivolatile organic compounds
VOCs	volatile organic compounds
TCP	Ecology Toxic Cleanup Program
TEE	terrestrial ecological evaluation
the site	the former March Point (Whitmarsh) Landfill, located on the west
	side of March Point at 9663 South March Point Road in Anacortes,
	Washington
TPH	total petroleum hydrocarbons
TPH-D	total petroleum hydrocarbons as diesel
TPH-G	total petroleum hydrocarbons as gasoline
TPH-Oil	total petroleum hydrocarbons in the heavy oil range
WAC	Washington Administrative Code
WQC	water quality criteria

PHASE I REMEDIAL INVESTIGATION REPORT

March Point (Whitmarsh) Landfill Skagit County, Washington

1.0 INTRODUCTION

On behalf of the participating March Point (Whitmarsh) Landfill Potentially Liable Parties (PLPs; at this time consisting of Shell Oil Company, Skagit County, Texaco, Inc., and the State of Washington, Department of Natural Resources) and in accordance with Agreed Order DE-08TCPHQ-5999 (the Agreed Order), AMEC Geomatrix, Inc. (AMEC), has prepared this Phase I Remedial Investigation Report (Report) for the former March Point (Whitmarsh) Landfill (the site), located on the east side of March Point at 9663 South March Point Road in Anacortes, Washington (Figure 1). The site is listed on the Washington State Department of Ecology (Ecology) Hazardous Sites List as Facility Site ID 2662. This Report presents the Phase I investigational approach, the nature and extent of contamination based on the Phase I investigation, and a current conceptual site model. This Report was prepared for submittal to Ecology in accordance with Section VII.A of the Agreed Order. The former March Point (Whitmarsh) Landfill is one of about eight or nine sites on Padilla Bay and nearby Fidalgo Bay that will be investigated and cleaned up as part of the Puget Sound Initiative (PSI).

1.1 OBJECTIVES AND SCOPE

The goals of the Phase I remedial investigation (RI) were to:

- Evaluate data gaps that remained from previous investigations;
- Collect data required to complete the RI and define the nature and extent of soil, groundwater, surface water, and/or sediment contamination at the site;
- Present data collected during the Phase I investigation and discuss findings; and
- Update the preliminary conceptual model to include elements from the Phase I investigation.

1.2 ORGANIZATION OF THE PHASE I REMEDIAL INVESTIGATION REPORT

This Report is divided into seven sections. The content of each section is described briefly below.

• Section 1 – Describes the objectives of the RI and the organization of this Report.

- Section 2 Provides background information about the site, including location, historical and current use, site ownership, regulatory and compliance history, and previous environmental investigations conducted at or near the site.
- Section 3 Describes the components of the Phase I investigation, including geophysical investigation, monitoring well installation, test pit investigation, groundwater/seep/surface water sampling, and sediment sampling.
- Section 4 Provides information regarding the development of site-specific preliminary screening levels (PSLs).
- Section 5 Presents and discusses the findings from the Phase I investigation, including a comparison of analytical data to PSLs.
- Section 6 Presents the current conceptual site model for the site and a summary of the proposed Phase II Scope of Work.
- Section 7 Provides a list of references for materials cited in this Report.

2.0 SITE DESCRIPTION

This section presents a brief description of the property, site operational history, site regulatory and compliance history, and a brief summary of previous investigations and cleanup actions that have been conducted for the site.

2.1 LOCATION AND ENVIRONMENTAL SETTING

The former landfill is located north of South March Point Road at the base of a bluff in the tidelands area of Padilla Bay (Figure 1). The former landfill is bounded by South March Point Road to the south, the Burlington Northern Santa Fe (BNSF) railroad and Padilla Bay to the north and northeast, and the Swinomish Indian Reservation to the east and southeast. State Highway 20 runs about 800 feet southeast of the site beyond South March Point Road.

The elevation of the former landfill generally ranges from 6 to 25 feet above mean lower low water (MLLW) (North American Vertical Datum of 1988 [NAVD88]). It is relatively flat across the top with higher elevations on the north end. The former landfill slopes down to tidelands on the northeast and east sides and to drainage channels along the north and south sides. The tidelands on the northeast and east sides consist of the inner lagoon and outer lagoon, with an estuarine stream running along the eastern boundary continuing out toward Padilla Bay (Figure 2).

Padilla Bay is part of an ancient delta of the Skagit River that was abandoned by the river and currently has no substantial freshwater stream input. Water depths in Padilla Bay are shallow, with the bottom generally at an elevation of less than 12 feet below MLLW. Tidal fluctuation within Padilla Bay averages 8 feet and can vary from -3 feet to +12 feet MLLW.

2.2 HISTORICAL AND CURRENT USE

This section presents a brief history of landfill operation and ownership. Figures depicting changes in parcel boundary and landfill extent through time are included in the Remedial Investigation/Feasibility Study (RI/FS) Work Plan (RI/FS Work Plan) (AMEC, 2008a).

2.2.1 Ownership

According to the Skagit County Assessor's Office, the former landfill area currently includes five tax parcel numbers (P19676, P19684, P19707, P19713, and P19761). A map showing parcel numbers and boundaries is provided in Figure 3. Ownership of the five parcels is as follows.

• The Snow Mountain Land Company, LLC, owns parcels P19713;

- Based on current information, it appears Parcel P19676 has split ownership. Snow Mountain Land Company, LLC, owns land on this parcel above the 1890 high tide meander line. The State of Washington owns the portion of the parcel below the meander line;
- Charles and Margaret Ellen Moon own parcel P19684;
- The State of Washington owns parcel P19707; and
- Ralph Hillestead owns parcel P19761.

2.2.2 Landfill History

Prior to the 1950s, the property consisted of undeveloped tidelands lying between the main Mount Vernon-Anacortes highway and the Burlington Northern railroad.

Landfilling began in the 1950s when the site was used by the public as a convenient, unregulated dump site. In 1961, Skagit County applied for and received a lease from the state to operate the landfill. The County operated the landfill as a "burn dump" and burned waste regularly until 1969 (Skagit County Health Department, 1990). In 1969 or 1970, the County converted the facility to a "sanitary landfill." From 1969 through 1973, the Landfill was the primary solid waste disposal facility in Skagit County (Skagit County Health Department, 1990). Skagit County Public Works records of waste accepted from 1970 onward indicate that waste originated from the cities of Anacortes, Burlington, La Conner, Mount Vernon, and Sedro-Woolley; rural Skagit County; Whidbey Island; and the Shell and Texaco refineries, among many others (GeoEngineers, 2007).

Historical documents from the early 1970s indicate that a dike was proposed to be built along the southeastern margin of the landfill apparently to better contain waste within the landfill. Aerial photographs from this same time period show a linear feature extending along the current southeastern margin of the landfill that resembles a dike. These documents indicate that a dike may have been constructed along the current southeastern margin of the landfill.

Limited records are available regarding the composition and quantity of any potentially hazardous substances dumped at the landfill. According to the Skagit County Health Department (Ecology, 1986), powdered vanadium catalysts were dumped at the landfill. Other industrial wastes, including drummed wastes, are also alleged to have been dumped at the landfill. In 1973 Skagit County opened the Inman Landfill and closed the Whitmarsh facility. Closure appears to have consisted of grading the waste and covering it with 2 to 3 feet of soil.

2.2.3 Current Property Use and Site Operations

The northern two-thirds of the former landfill is now occupied by a cedar log mill, which has operated in this location since the late 1980s. The mill area contains buildings, equipment, and stored logs. The southern third of the former landfill is unoccupied and covered with light forest and grass.

2.3 REGULATORY AND COMPLIANCE HISTORY

As stated above, the landfill was operated by Skagit County from 1961 until 1973. It appears that the landfill was closed by covering the waste with soil. In 2003, the Skagit County Health Department published the Site Hazard Assessment (SHA) for the former landfill as required under the Washington Model Toxics Control Act (MTCA), and ranked the site on the state's hazard ranking. On this scale, a ranking of 1 represents the highest relative risk and a ranking of 5 represents the lowest relative risk. The County estimated that the site's hazard ranking, an indication of the potential threat to human health and/or the environment, was a 2. In the SHA, surface water environmental toxicity was evaluated based on bioassay data rather than toxicity data, due to a single sample with a toxicity of 100 percent collected from a location adjacent to the BNSF railway. The SHA noted that this sample may have been impacted by spills from the railway. The SHA also stated that no groundwater was likely to move into the bay by seeps or tidal movement. The assessment concluded that groundwater contamination was unlikely to travel to any mainland well locations.

2.4 PREVIOUS ENVIRONMENTAL CHARACTERIZATION/SAMPLING INVESTIGATIONS

Previous investigations have included testing surface water and seeps, sometimes as part of studies that included sampling of sediments and/or biota. No soil or groundwater sampling had been conducted at the site prior to the Phase I RI. The approximate locations of samples collected during previous investigations are presented in Figure 2. Results from seep and surface water analyses conducted during those investigations are summarized in the RI/FS Work Plan (AMEC, 2008a). Summary pages from selected historical reports are presented in Appendix A.

2.4.1 Preliminary Assessment (Ecology, 1985)

The landfill was identified as a medium priority site based on a Preliminary Assessment (PA) conducted by Ecology and the U.S. Environmental Protection Agency (EPA) in November 1984. Several potential hazards, both to human health and the environment, were identified. These potential hazards included potentially contaminated groundwater, tidal incursions into the landfill, and groundwater seeps surfacing on the eastern landfill boundary.

The PA recommended sampling and analysis of seeps for priority pollutants and, if necessary, installation and sampling of groundwater monitoring wells. Further recommendations included collection of historical data regarding industrial activities and waste disposal practices for industries operating in the vicinity of March Point. It is unclear if such information was ever collected (GeoEngineers, 2007).

2.4.2 Site Inspection (Ecology, 1986)

Following the PA, Ecology conducted a site inspection (SI) at the landfill in December 1985. Three water samples and one seep sample were collected, consisting of:

- Background water sample from a borrow pit located 40 feet southwest of the landfill (NCT091);
- Estuarial stream sample on the southeast edge of the landfill (NCT092) The sample map indicates the sample was obtained on the southeast side of the outer lagoon;
- Marine surface water sample collected at high tide on the northeast side of the landfill (NCT094) in the inner lagoon;
- Seep sample collected from water displaying iron staining that was seeping through the dike within the inner lagoon on the northeast side of the landfill (NCT095).

As reported by GeoEngineers (2007), the samples were analyzed for dissolved metals, volatile organic compounds (VOCs), and phenolics. Based on the analytical results Ecology concluded that:

The sampling data do not show a significant problem at this landfill to warrant further sampling or remedial actions. There is no conclusive indication that hazardous materials are leaching from this landfill into Padilla Bay or its surrounding estuarial area. It is recommended that no further hazardous waste sampling or remedial actions be required at this site. (Ecology, 1986)

2.4.3 Analysis of Groundwater Seeps from Whitmarsh Landfill (1988)

GeoEngineers (2007) reported that in June 1988 Ecology obtained and analyzed a grab sample of groundwater seeping from the northeast corner of the landfill (Ecology, 1989, cited in GeoEngineers, 2007). The sample was analyzed for priority pollutant metals. Ecology (1989) concluded that the results were "an indication of heavy metals problem at the Whitmarsh Landfill which will require further study." Cadmium, copper, lead, nickel, and zinc were determined to exceed marine water quality criteria.

2.4.4 Skagit County Health Department Sampling (Skagit County, 1996)

Due to the Swinomish Indian Tribal Community's concern regarding potential contaminant releases from the landfill into Padilla Bay, Skagit County collected two groundwater seep samples at the landfill in October 1996. The Skagit County report (1996) reads "sample locations were selected based largely on discolored surface water emanating from the concrete rip-rap wall at points where it discharged to the adjacent mudflats. Two such discharge points were identified."

The samples were obtained from the northeast corner of the landfill within the inner lagoon and were analyzed for priority pollutants. The County concluded, "Based on the sample results from our investigation and Ecology's [1986] investigation, we agree with Ecology's findings and conclude that further investigation using county resources is not warranted at this time."

2.4.5 Ecology Investigation of Chemical Contamination at Whitmarsh Landfill and Padilla Bay Lagoon (Ecology, 1999)

Ecology collected two groundwater seep samples near the northeast corner of the landfill in June 1998. The sample locations appear similar to those sampled by Skagit County in October 1996 (Figure 2). The samples were collected to identify contaminants of potential concern to human health and the environment and to determine if additional sampling in Padilla Bay Lagoon would be necessary. The samples were collected from the two most prominent seeps from the landfill, and they were analyzed for metals, trace elements, cyanide, petroleum hydrocarbons, VOCs, polycyclic aromatic hydrocarbons (PAHs), phenols, chlorinated benzenes, phthalate esters, semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), organotin compounds, pesticides, and herbicides.

Based on the sample results, Ecology concluded:

The concentrations in seepage were generally low, in most cases, beneath thresholds of toxicity. Iron and the higher concentrations of the insecticide carbaryl (Sevin) were potentially toxic until further diluted. PCB 1242 approached the chronic water quality criterion of 0.03 μ g/L [micrograms per liter] for marine waters.

Chemicals analyzed but not detected in the seepage were priority pollutant metals, cyanide, organophosphorus pesticides, organochlorine pesticides, and herbicides. Previous investigations by Skagit County and others have also shown that metals, cyanide, and pesticides are not important contaminants in seepage. (Ecology, 1999)

The report acknowledged that the analyses for this study included a wider range of compounds and lower detection limits than had been done previously (Ecology, 1999). However, some of the detection limits were still greater than the respective cleanup levels; therefore, the presence of these compounds was not precluded.

The tables in the report summarized the analyses conducted and showed that total petroleum hydrocarbons (TPH) in the diesel range (TPH-D) was detected in seep samples at concentrations ranging from 470 μ g/L to 850 μ g/L. While there were no detections of priority pollutant metals, among the trace elements, manganese was detected at concentrations ranging from 127 μ g/L to 234 μ g/L, exceeding the human health marine clean water criterion of 100 μ g/L.

Ecology (1999) also reported that the Swinomish Indian Tribal Community collected a water sample from the inner lagoon near the landfill in September 1997. Ecology reported that "no organic compounds were detected and metals concentrations were low."

Ecology (1999) also noted, in reference to the June 1988 Ecology investigation, that "cadmium, copper, lead, nickel and zinc substantially exceeded marine water quality criteria, prompting a recommendation for further study. This finding has not been confirmed by other sampling at Whitmarsh" (Ecology, 1989). The cause of the higher metals concentrations, compared to other sampling events, was not addressed. In our opinion, the cause was likely the presence of particulates in the samples analyzed by the laboratory. Metals are naturally occurring constituents in soil and sediment. If particulates containing metals are present in the analytical sample, then they will be extracted during sample preparation, and the sample results will be artificially high.

2.5 PREVIOUS NEARBY ENVIRONMENTAL INVESTIGATIONS

This section presents information with regards to previous environmental investigations near the site and is presented as a general overview of other environmental investigations in the vicinity of the site. The location and specific information regarding each individual investigation is presented in more detail below.

2.5.1 Burlington Northern Whitmarsh Rail Siding (2004)

The Whitmarsh Rail Siding facility is located approximately 850 feet northwest of the landfill, along the Padilla Bay shoreline north of South March Point Road. Operations at the siding facility over the last 70 years have included loading hazardous materials for shipment to appropriate facilities for treatment, disposal, and/or storage. The siding has been used by

various companies, including Northwest Petrochemical, Tecnal Corporation, General Chemical Corporation, and Allied Chemical (Herrera, 2004).

A chemical spill and fire took place at the Burlington Northern Whitmarsh Rail Siding site on July 31, 1991. Following the spill, approximately 23 55-gallon drums of contaminated soil were excavated and removed from the site. No confirmation soil samples were collected during the removal, and the cleanup was limited to the area between the two sets of railroad tracks (Herrera, 2004). Two samples from the drummed soil were analyzed for PAHs. Analytical data from the drum samples indicated high concentrations of several PAHs, phenols, cresols, phenyl mercaptans, and cresyl mercaptans.

Ecology inspected the site in 1992 and found pieces of yellow material between several railroad ties (Ecology, 1992). It remains unclear whether this material has been removed. No samples have been collected in the spill area to confirm that soil concentrations are below MTCA cleanup levels (Herrera, 2004). Most of the site, including the spill area, drains directly into Padilla Bay. Based on information in the Herrera report, the site has been assigned a site status of "Awaiting Remedial Action" by the Ecology Toxics Cleanup Program (TCP) (Herrera, 2004).

2.5.2 KAW Transport Spill

A spill occurred at the intersection of Highway 20 and South March Point Road on September 7, 1989, when 2,500 pounds of hazardous waste solids were released. A Form 2, Notification of Dangerous Waste Activities, was filed with Ecology on September 21, 1989. The Form 2 indicated that the spill included both D-listed (arsenic, lead, and chromium) and WP-listed (halogenated hydrocarbon) wastes. Further, the Form 2 indicated the spill was completely cleaned up on September 8, 1989. KAW Transport, the responsible party for the release, filed a subsequent Form 2 to cancel the site listing on October 24, 1989.

There are no historical records of any confirmation sampling taken (soil or surface water) to ensure that all wastes were properly cleaned up. The spill location is upgradient and to the southeast of the landfill.

This page intentionally left blank.

3.0 PHASE I RI ACTIVITIES

During the Phase I RI field work completed in October 2008 through July 2009, numerous field activities were conducted at the site, including a geologic reconnaissance, geophysical survey, monitoring well installation, a sediment investigation, four rounds of water sampling (groundwater, seeps, surface water), test pit excavation, and site surveying. All field work was performed in accordance with the Uplands Sampling and Analysis Plan (SAP) that was included as an appendix to the Draft RI/FS Work Plan (AMEC, 2008a) and in accordance with the Sediment Investigation Work Plan (AMEC, 2008b) (Sediment Work Plan). Sediment sample locations are presented on Figure 4, and uplands sample locations are presented on Figure 5.

The Phase I RI field work scope and methodology are discussed in more detail in this section. Results of the Phase I RI activities are discussed in Section 5.

3.1 GEOLOGIC RECONNAISSANCE

On October 2 and 3, 2008, AMEC staff conducted geologic reconnaissance in the vicinity of the site to verify the geologic conditions presented in previous reports, as discussed in the RI/FS Work Plan (AMEC, 2008a). The geologic reconnaissance included:

- hiking and observing conditions in the wooded areas adjacent to the site where access was allowed;
- observation and assessment from South March Point Road and from along the perimeter of the property lines;
- observation and evaluation from a distance of the exposed hillside on the industrial property to the southwest of the site;
- observations while walking along the shoreline at the north and northwest margin of the site; and
- observation and assessment of the Highway 20 road cut south of the site.

As discussed in Sections 3.1 and 3.2 in the RI/FS Work Plan (AMEC, 2008a), the local geology was generally found to be dominated by (1) sand and gravel deposits laid down during the retreat of the latest glaciation in the region and (2) more recent landslide deposits. Much of the site itself is likely underlain by dense silt and clay consistent with Padilla Bay tidelands.

The exposed hillside southwest of the site appears to consist of alternating layers of glacial deposits, such as sands and gravel. Four different units are visible from the road below the

AMEC Geomatrix, Inc.

current topsoil layer. It appears that these layers are two thinner, predominantly gravel units, and two thicker, predominantly sand units. The observations from the geological reconnaissance were incorporated into the conceptual site model discussed in Section 6.1.

3.2 GEOPHYSICAL INVESTIGATION

A geophysical investigation was conducted on September 11 through 14, 2008, to attempt to characterize the landfill material and to locate any subsurface magnetic anomalies (e.g., buried drums) within the landfill. The investigation was conducted in accordance with Section 2.2 of the SAP.

Prior to the geophysical survey, the southern part of the site was cleared of any brush by a local brush-clearing contractor utilizing a track-mounted brush cutter. The brush-clearing contractor was unable to clear some areas with trees and very heavy blackberry brambles, and these areas were excluded from the geophysical survey. Only the southern two-thirds of the site was investigated, as the operating lumber mill and abundant surface metallic litter from mill activities (e.g., buildings, crane, metallic pipes and cables, export containers) present in the northern one-third of the site precluded the interpretation of any geophysical data collected in that area for the presence of subsurface magnetic anomalies.

The geophysical investigation included an electromagnetic (EM) survey utilizing the Geonics EM31 terrain conductivity meter and a magnetic (MAG) survey utilizing the Geometrics G858G magnetometer/gradiometer. The EM survey instrument recorded both quadrature-phase (apparent conductivity) and in-phase data at 0.2-second intervals, corresponding to a distance of approximately 1 foot. The MAG survey instrument was run in "continuous" sampling mode, recording the magnetic field at 0.2-second intervals (approximately 1 foot). Two magnetic sensors spaced 0.5 meter apart, one above the other, were used to obtain the vertical magnetic gradient. Both the MAG and EM surveys were conducted on 10-foot line spacing. A 10-foot line spacing is sufficient to detect drums, washers, water tanks, and other metallic objects of similar size.

The geophysical site investigation report is presented in Appendix B.

3.3 MONITORING WELL INSTALLATION AND DEVELOPMENT

From October 7 to October 9, 2008, AMEC staff and Cascade Drilling installed three monitoring wells upgradient and cross-gradient from the site. The monitoring wells were installed in accordance with Section 2.5 of the SAP (AMEC, 2008a). The RI/FS Work Plan had proposed four monitoring wells to be installed, with three wells in the upper aquifer and one well in a lower aquifer. However, only an upper aquifer was encountered during drilling to AMEC Geomatrix, Inc.

a total depth of 70 feet below grade. Monitoring well boring locations are presented on Figure 5.

3.3.1 Methodology

Well locations MW-01 through MW-04 were drilled from October 7 to October 9 at locations as shown on Figure 5. MW-01 and MW-02 were drilled in adjacent locations, southwest and upgradient from the site. MW-02 was drilled to a total depth of 20 feet below ground surface (bgs) and screened from 8 to 18 feet bgs. MW-03 was drilled next to the entrance to the lumber mill to a total depth of 20.5 feet bgs and screened from 5 to 15 feet bgs. MW-04 was drilled upgradient and southeast from the site along March Point Road to a total depth of 38.5 feet bgs and screened from 15 to 25 feet bgs. MW-02 and MW-04 were completed as flush-mount wells in the shoulder in the east-bound lane of March Point Road. MW-03 was completed as an aboveground well with three protective bollards to protect the well from forklift operations in the area.

Soil boring samples were collected from the borings at monitoring well locations MW-01, MW-03, and MW-04 during well installation. A well was not installed at MW-01 (drilled to a total depth of 70 feet) because a second deeper aquifer was not encountered; however, soil samples were collected and submitted for analysis. Samples were not submitted from MW-02 as it was co-located with MW-01. Samples were collected at depths of 11.5, 20.5, and 37 feet bgs at MW-01. One sample was collected at MW-03 at a depth of 11.5 feet bgs, and two samples were collected at MW-04 at depths of 8.5 and 19 feet bgs.

AMEC staff returned to the site on October 13, 2008, to develop the wells, assisted by Cascade Drilling. All wells were developed by submersible pumps as outlined in Section 2.5.3 in the SAP. The wells were continuously pumped until water quality parameters had stabilized and the pumped water had no visible turbidity. Results of field water quality parameter measurements are presented in Table 1. Copies of field notes are provided in Appendix C. Approximately 95 gallons of groundwater was removed from MW-02, 115 gallons from MW-03, and 165 gallons from MW-04. Purge water was disposed of in accordance with applicable regulations.

3.3.2 Analyses

Monitoring well soil samples were submitted to Analytical Resources, Inc. (ARI) under chainof-custody procedures for analysis of metals, TPH as gasoline (TPH-G), VOCs, PCBs, and organochlorine pesticides. Results are discussed in Section 5.3.1.

3.4 SEDIMENT INVESTIGATIONS

Sediment samples were collected by AMEC staff from August 26 to 28, 2008. A total of 13 samples were collected from the inner lagoon area adjacent to the site, and 3 samples were collected in the swale running south of the site. The sediment sampling is discussed in more detail below.

The objectives of the Phase I sediment investigation were to:

- determine if sediments within and adjacent to the inner lagoon adjacent to the former landfill meet Washington State Sediment Management Standards (SMS; Washington Administrative Code [WAC] 173-204) biological criteria; and
- determine if sediments in the drainage swale south of the former landfill have concentrations of constituents of concern (COCs) above the SMS cleanup criteria.

The data from the sediment portion of the Phase I remedial investigation was used to determine if sediments adjacent to the former landfill within the inner lagoon or in the drainage swale at the site pose an adverse risk to human health and the environment.

3.4.1 Methodology

Sediment sampling and analysis were performed as proposed in the Sediment Work Plan (AMEC, 2008b), submitted to and approved by Ecology, with the differences noted below.

- Section 3.4 of the Sediment Work Plan, Sample Compositing, indicates that sediments for pore water extraction for the Microtox[®] bioassay were to be placed directly from the sampler into the 16-ounce glass sample jar to minimize disturbance and possible volatilization of potential contaminants. Sediments from the first three stations sampled (MP-2, MP-3, and MP-4) were inadvertently homogenized by hand before the sediments for the Microtox bioassay were collected. Homogenization prior to extraction of the pore water could result in minor volatilization of potential contaminants but is unlikely to substantially affect the results of the Microtox biossay. Remaining sediment samples were placed directly into the sample jar, as specified in the Sediment Work Plan.
- Sampling location MP-3 was located in the middle of an approximately 30-foot-wide drainage channel. Soft sediments within the channel would have made collection of the cores very difficult. The station was relocated to an area with similarly soft sediments, but which was accessible from a vegetated area that provided firmer support. The relocated station was moved approximately 16.5 feet from the original proposed station.

The location of the hand cores (top 10 centimeters [cm]) collected during this investigation are shown on Figure 4. Sample locations were determined using a differential global positioning

system (DGPS), with coordinates in the Washington State Plane Coordinate System (SPCS), North Zone, referenced to the North American Datum of 1983 (NAD83).

Samples were collected from the inner lagoon using the procedures specified in the Sediment Work Plan. Sampling was conducted during low tides when the sediment surface was exposed. Sampling was conducted in the drainage channels away from areas with vegetation and extensive root mats. Sample locations were adjusted as necessary to allow personnel access and limit disturbance to the softer sediments in the drainage channels. All of the inner lagoon sample locations were within 10 feet of the proposed location, except for sample location MP-3, as noted above.

Hand core samples were also collected from the drainage swale on the south side of the landfill. Samples were collected in areas accessible from the road or the sawmill property. Samples were collected from open areas with limited vegetation that showed signs of waterlogged soils or that had standing water. A syringe type pore water sampler was used to collect a sample of pore water for salinity measurements. Salinity was measured using a temperature-compensated refractometer.

Sample processing followed the approved Sediment Work Plan (AMEC, 2008b) and the health and safety requirements specified in the Site-Specific Health and Safety Plan (Appendix C to the RI/FS Work Plan; AMEC, 2008a), except for the minor differences noted above. The exposed sediment surface at each sampling location was photo-documented prior to sampling. The hand cores were inserted into the sediment to a depth of 10 cm. A stainless steel plate was inserted across the bottom of the sampler, and the sampler, was removed from the substrate. Two hand cores were required at each lagoon sampling location to provide the necessary volume of sediment required for the analyses to be conducted. A single hand core was collected at three locations in the swale.

Sample processing was performed as follows.

- At the field processing area the retention plate was removed from the hand core, and the sediment was extruded into a stainless steel bowl.
- The sample was logged and described in the field log by an experienced field geologist.
- Sediments were collected for Microtox pore water bioassay from one of the cores from stations in the inner lagoon (except as noted above).

- The remaining material was homogenized and bottled for conventional analyses and for amphipod and sediment larval bioassays.
- Additional material was bottled and archived.

Qualitative sample characteristic logs describing the sediment types are provided in Appendix D; and photographs of sediment sampling locations are shown in Appendix E. Sample IDs for each station are also provided in Appendix D.

3.4.2 Analyses

Samples for chemical analysis and bioassay testing were transferred to Columbia Analytical Services, ARI, NewFields, and Nautilus Environmental using chain-of-custody procedures. Samples for bioassay testing and conventional parameters were chilled with "Blue Ice" refrigeration packs and held in the dark until transferred to the respective laboratories. Archived sample material was frozen at -18 degrees Celsius (°C) and stored by the analytical laboratory. Bioassay sediments were held at 4°C and stored in the dark at the bioassay laboratory until used.

Samples for mercury analysis from the inner lagoon and the swale locations were frozen until digested and analyzed within the 28-day holding time. Sediments for conventional analyses (grain size, total organic carbon, total volatile solids, total solids, and bulk ammonia) were refrigerated before being analyzed within the specified holding times.

Archived sediments were analyzed for bulk sulfides at the request of Mr. Peter Adolphson, Ecology project manager for the sediment investigation. The sediments analyzed for bulk sulfides exceeded the recommended holding times and were frozen prior to analysis. The remaining samples from the inner lagoon were archived and are being held pending final results of the biological testing.

The sediments from the swale samples were analyzed for the SMS list of COCs and total organic carbon. Samples for total organic carbon, mercury, and the remaining COCs were analyzed within the specified holding times.

Bioassay testing was conducted within the recommended holding times. Reference sediments were collected by NewFields personnel from Sequim Bay and Carr Inlet. Reference sediments were matched to the test sediments on the basis of the percent fines (particle size less than 63 micrometers [µm]). The amphipod bioassay was conducted using *Ampelisca abdita* after consultation with Ecology. The sediment larval test was conducted using the sand

dollar *Dendraster excentricus*. Test sediments were exposed to full spectrum lighting. The bioassay results were compared to the SMS criteria as discussed in Section 5.2.

3.5 LANDFILL TEST PITTING INVESTIGATION

AMEC staff and PSC (excavation subcontractor) mobilized to the site on October 29, 2008, to prepare for test pit excavation within the landfill footprint. A total of 11 test pits (G1 through G11) were excavated from October 30 to November 2, 2008. The test pit locations were selected based on anomalies found during the geophysical investigation and are presented on Figure 5. Test pit logs are presented in Appendix F.

3.5.1 Methodology

Due to the unknown nature of the waste, a rigorous health and safety protocol was prepared and implemented during test pit excavation. These health and safety protocols are discussed in more detail in the Site-Specific Health and Safety Plan (Appendix C of the RI/FS Work Plan [AMEC, 2008a]).

Prior to excavation, an exclusion zone boundary was established, and the excavator was staged upwind from the proposed excavation location. Site personnel, except the excavator operator who was using supplied air, were kept outside the exclusion zone boundary until the exclusion zone had been properly cleared for dangerous environments by the AMEC site health and safety officer. Once the exclusion zone had been cleared, personnel entered the exclusion zone to characterize excavated soils, log the test pit excavation, collect samples, and take photographs. Some of the health and safety monitoring equipment used are listed below.

- Suma Canisters (monitoring VOCs): Suma canisters were deployed inside the cab of the excavator to monitor air breathed by the operator and in the downwind exclusion zone boundary to assess potential migration of VOCs outside of the exclusion zone.
- Mixed cellulose ester (MCE) filters (monitoring metal and asbestos): The MCE filters were attached to standard industrial hygiene sampling pumps and deployed inside the cab of the excavator to monitor air breathed by the operator breathing and in the downwind exclusion zone boundary to assess potential migration of metals and asbestos as fugitive dust outside the exclusion zone.
- Aerosol Monitor (monitoring fugitive dust): The aerosol monitor was continually deployed at the downwind exclusion zone boundary to assess the potential migration of fugitive dust outside the exclusion zone.

- Radiation Meter (monitoring alpha, beta, and gamma radiation): The radiation meter was used to screen excavated soil from each test pit location to assess the presence of radioactive materials and wastes.
- Four-gas meter (monitoring for hydrogen sulfide, carbon monoxide, oxygen, and lower-explosive limit): The four-gas meter, in conjunction with the photoionization meter, was used to clear the exclusion zone during excavation in order for AMEC personnel to be able to examine the excavated soils and to collect samples.
- Photoionization detector (PID) (real-time monitoring for VOCs): The PID was used with the four-gas meter as described above.

A preliminary review of the health and safety monitoring data indicate that no site workers were exposed to hazardous environments during the test pit excavation investigation. The monitoring information will be used going forward to ensure site worker safety if additional site earthwork is deemed necessary.

Per the RI/FS Work Plan, the goal of the soil sampling portion of the test pit investigation was to collect 5 to 10 samples from the soil cap, fill, and native layers in areas identified as anomalies during the geophysical investigation of the southern portion of the landfill where refuse was not reportedly burned. (The northern portion of the landfill will be investigated during the Phase II RI.) Following the criteria described in the RI/FS Work Plan, a total of four samples were collected from the soil cap, eight samples were collected from the fill, and two samples were collected from the native soil layer from test pits G1, G3, G4, G5, G6, G10, and G11.

Samples of the soil cover were collected from test pits G1, G3, G4, and G5 to provide spatial coverage. All samples were collected from a depth of 1 foot bgs.

Eight samples of soil fill material were collected from test pits G1, G3, G4, G5, G6, and G10. Samples were collected from G1, G3, G4, G6, and G10 at depths of 5.5 feet, 8 feet, 5 feet, 6 feet, and 8 feet bgs, respectively. Samples of the fill material were collected from depths of 5 and 9 feet bgs from test pit GP-5. Samples were collected from test pits G1, G3, G4, and G5 to provide spatial coverage of the southern landfill area. Further, a soil sample was collected at test pit G6 due to odor observed during excavation, and a sample was collected at test pit G10 in soil in contact with unearthed, partially crushed drums. A field duplicate sample was also collected from test pit G6 at 6 feet bgs.

According to the RI/FS Work Plan, native soil samples were to be collected from test pits to provide spatial coverage of the southern portion of the landfill in areas where the native soils

were not saturated with groundwater or in which the presence of asbestos-containing material (ACM) in the fill did not cause the test pit to be abandoned. Groundwater was encountered before reaching the native layer in test pits G2, G5, G6, G8, G9, and G10, and ACM was encountered in test pit G1. Consequently, native soil samples were not encountered in these test pits and samples were not collected. In addition, a concrete pad and large cobbles were encountered at a depth of 6 feet bgs in test pit G4, which precluded the collection of a native soil sample at this location.

Native soil was encountered in test pits G3, G7, and G11. In test pit G3, a sand layer was encountered at a depth of 9 feet bgs that extended to a depth of approximately 12 feet bgs. Native clay was encountered beneath the sand at a depth of 12 feet bgs and a sample of the native clay was collected. Native clay was encountered at a depth of approximately 11 feet in test pit G11, where a sample was also collected. In addition, native clay was also encountered at a depth of approximately 8 feet bgs in test pit G7; however, it was decided in the field not to collect a sample of native soil from this test pit due to its proximity to test pits G3 and G11. Consequently, samples of the native soil were collected only from test pits G3 and G11 at depths of 12 feet and 11 feet bgs, respectively.

The samples were collected in accordance with methods outlined in Section 2.4.3 of the SAP. Samples were recorded on a chain-of-custody form and kept on ice until delivered to the analytical laboratory.

After the proposed depth had been reached, or if groundwater entered the excavation and obscured visibility, all waste was backfilled into the excavation and the test pit was abandoned. Before leaving each location, the test pit location was staked with a survey marker for subsequent surveying.

3.5.2 Analyses

Samples were sent to ARI and analyzed for the following constituents: metals, TPH, SVOCs, VOCs, PCBs, and organochlorine pesticides. Results are discussed in Section 5.3.2.

3.6 GROUNDWATER/SEEP INVESTIGATIONS

Groundwater and seep water samples were collected at four approximately quarterly intervals during the Phase I field investigation in 2008 and 2009. Results of field water quality parameter measurements are presented in Table 1. Copies of field notes are provided in Appendix C. The first two sampling events were intended to provide a baseline assessment of chemical concentrations in groundwater and seep water during both dry season and wet season regimes. The third sampling event was intended to provide additional quarterly data to AMEC Geomatrix, Inc.

assess site conditions during the transition from the wet season to the dry season. The fourth sampling event was intended to collect additional dry season data.

The first round of groundwater, seep, and surface water samples was collected from October 14 to 15, 2008, and the second round of samples was collected from December 17 to 19, 2008. The October samples were collected during dry conditions before the fall and winter rains, and the December samples were collected during the winter rainy period during wet conditions. The third round of sampling was conducted on April 28 and 29, 2009. The fourth round of sampling was conducted on July 23 and 24, 2009. A total of three monitoring well locations (MW-02, MW-03, and MW-04) and three seep locations (SP-1, SP-2, and SP-3) were sampled during each of the four sampling events. The seep sample locations were selected based on field observations on October 14, 2008, during a site walk with Skagit County. All three seep locations are located along the western-most boundary of the site between the inner lagoon and the landfill. No seeps were observed further south or to the east along the inner lagoon/landfill boundary. Sample locations are shown on Figure 5.

3.6.1 Methodology

All three monitoring wells (MW-02, MW-03, and MW-04) were purged and analytical samples collected via low-flow sampling techniques utilizing a peristaltic pump and dedicated, polyethylene disposable tubing in accordance with methods outlined in Section 2.6 of the SAP. Water quality parameters were monitored using a properly calibrated Horiba U-22 water quality monitoring instrument, utilizing a flow-through cell, until water quality parameters had stabilized (per the SAP) indicating that formation water was being extracted from the well and a sample could be collected. In addition, a field duplicate from MW-03 and an equipment blank were collected for quality control purposes during each of the sampling events.

Samples were collected in precleaned, laboratory-supplied bottles and placed on ice immediately after collection. The samples were labeled following procedures outlined in the project-specific Quality Assurance Project Plan (QAPP) (Appendix B to the RI/FS Work Plan [AMEC, 2008a] and recorded on chain-of-custody logs pending delivery to the analytical laboratory.

Seep samples were collected in accordance with methods outlined in Section 2.7 of the SAP, unless noted differently below. During the October sampling event, samples collected at SP-01 and SP-03 were collected by gently submerging a polyethylene tube into the seep. Water was collected using a peristaltic pump due to low flow volumes from the seep. The sample collected at SP-02 was obtained by gently submerging precleaned, laboratory-supplied bottles into the seep water.

AMEC Geomatrix, Inc.

During the December sampling event, samples at SP-02 and SP-03 were collected by peristaltic pump due to low flow volumes from the seeps. The sample at SP-01 was collected by gently submerging precleaned, laboratory-supplied bottles into the seep water. During the April and July sampling events, all three seep samples were collected by peristaltic pump due to low flow volumes from the seeps.

Prior to seep sampling, water quality parameters were recorded, and a qualitative description of turbidity was noted on the field sheets per the procedures in the SAP. Samples were recorded on a chain-of-custody form and kept on ice until delivered to the analytical laboratory under standard chain-of-custody procedures.

3.6.2 Analyses

Samples were analyzed by ARI in Tukwila, Washington, in accordance with Table 1 in the SAP except for the analysis of diethyl ether, which was subcontracted to Columbia Analytical Services in Kelso, Washington. Samples were analyzed for metals (total and dissolved), TPH, SVOCs, PAHs, VOCs, organochlorine (OC) pesticides, and PCBs. These results are discussed in Sections 5.4.1 and 5.4.2.

3.7 SURFACE WATER INVESTIGATIONS

Surface water samples were collected concurrently with groundwater and seep samples during the four sampling events in 2008 and 2009. Results of field water quality parameter measurements are presented in Table 1. Copies of field notes are provided in Appendix C.

A total of five surface water locations (SW-01, SW-03, SW-04, SW-05, and SW-06) were sampled during the October 2008 sampling event. All of these locations were also sampled during the December 2008 and April and July 2009 events. An additional surface water location, SW-07, was sampled during the December 2008 and April 2009 events. The location for SW-01 was chosen because it represents stormwater upgradient of the landfill. The locations for SW-02 through SW-04 were chosen because they represent storm water that collects on the southern boundary of the site. The location for SW-05 was chosen because this area collects surface water flowing from the southeast toward the inner lagoon. The location for SW-06 was chosen to represent surface water along the northern boundary of the landfill along the BNSF right-of-way. No surface water was flowing at location SW-07 during the dry season sampling events in October 2008 and July 2009; consequently, samples were not collected at SW-07 during these sampling events. Sample locations are shown on Figure 5.

3.7.1 Methodology

All samples were collected by gently submerging precleaned, laboratory-supplied sample bottles into surface water at each sampling location, except for the sample collected at SW-07 during the December and April sampling events. Those samples were collected by peristaltic pump due to low flow conditions.

After sampling during the October 2008 event, each surface water sampling location was staked using a survey marker for subsequent surveying. Samples collected during the December 2008 and April and July 2009 sampling events were collected at previously staked locations (all stakes were still present). The new location (SW-07) was not staked in December due to deep snow. Instead, the distance of SW-07 from SP-01 along a specified bearing was measured so that the location could be located at a later time if additional sampling is warranted.

3.7.2 Analyses

Samples were analyzed in accordance with Table 1 in the SAP by ARI except for the analysis of diethyl ether, which was subcontracted to Columbia Analytical Services in Kelso, Washington. All samples were analyzed for metals (total and dissolved), SVOCs, PAHs, VOCs, OC pesticides, and PCBs. The results are discussed in Section 5.5.

4.0 IDENTIFICATION OF PRELIMINARY CONTAMINANTS OF POTENTIAL CONCERN AND PRELIMINARY SCREENING LEVELS

This section describes preliminary contaminants of potential concern (COPCs) and preliminary screening levels for soil, groundwater, and surface water, as presented previously and discussed in the RI/FS Work Plan (AMEC, 2008a).

4.1 MTCA CLEANUP LEVELS

Cleanup levels under MTCA are categorized as Methods A, B, or C (WAC 173-340-700). Method A cleanup levels for soil, groundwater, and surface water media are intended to be used for routine site cleanups. Cleanup levels under Method A are available for only about 25 of the chemicals more commonly found in the environment. Tables of the MTCA Method A cleanup levels are available for potable groundwater, soil for unrestricted land use (includes residential), and soil for industrial land use. Method A cleanup levels for these media must be at least as stringent as concentrations established under applicable state and federal laws. In addition, Method A soil cleanup levels must also be protective of terrestrial ecological receptors. Method A groundwater cleanup levels must be protective of surface water beneficial uses (if the pathway for groundwater to surface water is complete). Unlike for groundwater and soil, MTCA regulations do not provide a table of Method A cleanup levels for surface water. Surface water Method A cleanup levels must be at least as stringent as concentrations established under applicable state and other requirements (see WAC 173-340-730(2)).

MTCA Method B may be used at any site and is the most common method for setting cleanup levels when sites are contaminated with substances not listed under Method A. Cleanup levels under Method B are established using applicable state and federal laws and the risk assessment equations and other requirements specified in the MTCA Rule for each medium. In addition to accounting for human health impacts, Method B cleanup levels must account for any potential terrestrial or aquatic ecological impacts (unless it can be demonstrated that such impacts are not a concern at the site). Ecology's Cleanup Levels and Risk Calculations (CLARC) database contains hundreds of precalculated/established levels for hazardous substances in air, groundwater, surface water, and soil media (Ecology, 2008). The Method B cleanup levels in the CLARC database are provided as a service to the public. The CLARC database does not contain cleanup levels for all exposure pathways, such as soil concentrations protective of groundwater and/or surface water.

In contrast to Method B, Method C cleanup levels are intended for industrial sites where exposure to potential contaminants is limited and controllable. As under Method B, potential

terrestrial and aquatic ecological impacts must be considered in addition to human health impacts when establishing Method C cleanup levels.

Potential terrestrial impacts are addressed by the completion of a Terrestrial Ecological Evaluation (TEE). A review of the requirements in WAC 173-340-7491(1) indicates that the site will not qualify for an exclusion from conducting a TEE. Upland parcels that make up the site are currently zoned HM- Heavy Manufacturing based on City of Anacortes zoning and are considered "zoned for industrial use" under MTCA (WAC 173-340). Under WAC 173-340-7490(3)(b), industrial properties need to be evaluated for wildlife protection. Therefore, a simplified or site-specific TEE is most appropriate for the site and will be conducted as part of the Phase II RI, and cleanup levels will be established for industrial and public access land uses on or adjacent to the site. Simplified TEE evaluation procedures are described in WAC 173-340-7492. A simplified TEE is intended to identify sites that do not have a substantial potential for posing a threat of significant adverse effects to terrestrial ecological receptors and may be removed from further ecological consideration. The simplified TEE procedures include (1) exposure analysis, (2) pathway analysis, and (3) contaminant analysis.

Site-specific TEE procedures are described in WAC 173-340-7493. The first step is problem formulation, which identifies (1) COPCs, (2) complete potential exposure pathways for plants or animals to COPCs, and (3) current or potential future terrestrial groups reasonably likely to live or feed at the site. Ecological receptors for which complete pathways exist for exposure to COPCs are subsequently evaluated in a toxicological assessment. A variety of approaches are allowed under MTCA cleanup regulations for completing this step to evaluate the potential for adverse effects to ecological receptors (WAC 173-340-7493 (3)). The problem formulation and method selection steps will be completed as part of the Phase II RI in consultation with Ecology.

4.2 CONTAMINANTS OF POTENTIAL CONCERN

The preliminary COPCs for the uplands are listed in Table 2. This table includes chemicals that have been found or are suspected to be present at the site based on historical analytical results for surface water and seep samples. No soils or groundwater data are available, but the presence of elevated levels of toxic metals in water samples indicates the potential for a contaminant source in refuse, site soils, or both.

Certain constituents in the historical analytical data set (such as TPH-G and total petroleum hydrocarbons in the heavy oil range [TPH-Oil], OC pesticides, asbestos, and vanadium) have not necessarily previously been detected in soil or seep samples at the uplands portion of the site, but are included as uplands COPCs because (a) they are typical of industrial and AMEC Geomatrix, Inc.

municipal waste streams that may have been landfilled during this time period, or (b) they have been previously detected in some sediments near the landfill.

4.3 PRELIMINARY SCREENING LEVELS

PSLs were developed to provide a mechanism to evaluate analytical data results. In order to encompass a full range of potentially applicable standards, PSLs have been developed using conservative assumptions that may or may not apply to the site. The PSLs in this report are to be used for screening purposes only and are not intended to represent proposed or final cleanup levels. Final cleanup levels will be determined during the feasibility study (FS) process that follows from this RI. Cleanup standards will be developed in the FS in accordance with MTCA.

4.3.1 Preliminary Screening Levels for Soil

Either MTCA Method A or Method B cleanup levels for soil are available for many contaminants. However, some contaminants have both Method A and Method B cleanup levels. Method B cleanup levels are broken down further into levels for individual exposure pathways, such as a Method B cleanup level for protection of direct human contact versus a different Method B cleanup level for protection of groundwater as marine surface water. The lowest of the MTCA Method A or Method B cleanup levels will be used for screening analytical results for soil in the RI, unless regional background levels or available analytical practical quantitation limits (PQLs) are higher.

Concentrations of COPCs in soil protective of groundwater as marine surface water were estimated using the MTCA fixed-parameter three-phase partitioning model in accordance with WAC 174-340-747(4) (Table 3). Because groundwater at the site is not a current or future source of drinking water, and because it likely migrates to marine surface water, concentrations of COPCs in marine surface water protective of human health and aquatic organisms developed in accordance with WAC 174-340-730 were used in the calculations in place of COPC levels in groundwater. Accordingly, the three-phase model provides a conservative estimate of the concentration of a contaminant in soil that is protective of groundwater as marine surface water. Estimated concentrations of COPCs in soil that are protective of groundwater as marine surface water are shown in Table 3.

Soil cleanup levels for metals may be adjusted to no less than natural background concentrations, in accordance with WAC 173-340-740(5)(c). With the exception of chromium, statewide background metals concentrations were obtained from a state background soil metals study conducted by Ecology (1994) for comparison with MTCA Method A and

Method B cleanup levels for the site. According to the Ecology study, background total chromium levels in Northern Skagit and Whatcom Counties are elevated compared to the rest of the state. Because elevated background levels of total chromium are expected, and because the site is located outside of the four main regional areas selected by Ecology for the calculation of soil background concentrations, a site-specific total chromium background concentration for the Anacortes area was calculated.

Data for the calculation were obtained from the Ecology (1994) report for 10 sample locations closest to Anacortes. Ecology's MTCAStat program was used to calculate the 90th percentile concentration and four times the 50th percentile concentration for total chromium. WAC 173-340-709(3)(c) defines background concentration as the lower of the two values for lognormally distributed data sets. The lower value (four times the 50th percentile concentration) was determined to be the appropriate background concentration for the Anacortes area. The background total chromium concentration calculated using this method is117 milligrams per kilogram (mg/kg). The PSL for chromium was adjusted upward to this value to reflect elevated chromium background concentrations present in the area. MTCAStat output for background calculation was provided as Appendix D in the RI/FS Work Plan (AMEC, 2008a).

TEE soil cleanup levels for industrial sites (WAC 173-340-900, Table 749-2) have also been used to develop the PSLs in Table 3.

Candidates for soil PSLs based on values available in the CLARC database for all constituents detected during previous upland analyses are presented in Table 3.

Soil reference levels were identified using the following sources:

- MTCA Method A soil cleanup levels (unrestricted land use);
- MTCA Method B soil cleanup levels (direct contact) (carcinogen and noncarcinogen);
- MTCA Method B soil cleanup level for protection of groundwater as marine surface water;
- MTCA Terrestrial Ecological Evaluation (TEE) soil cleanup level for industrial or commercial sites from WAC 173-340-900 (Table 479-2 of MTCA cleanup regulations); and
- State background soil metals study conducted by Ecology (1994).

The target reporting limits (practical quantitation limits [PQLs]) shown in Table 3 are the lowest soil reference levels for each analyte, when available. For analytes with no soil reference levels, standard laboratory reporting limits are included in Table 3.

Where possible, the analytical methods shown in Table 3 were chosen to provide a method detection limit (MDL) lower by a factor of 5 to 10 than the target reporting limit (i.e., lowest concentration of interest).

4.3.2 Preliminary Screening Levels for Groundwater

Preliminary screening levels for groundwater are based on protection of marine surface water. Analytical results for groundwater presented in Section 5.4 were compared to marine surface water criteria, rather than MTCA Method A or Method B drinking water criteria because groundwater will not be used for drinking water, appears to be discharging to marine surface water, and the marine surface water criteria are more conservative for many COPCs.

Although MTCA Method C (industrial) cleanup levels for groundwater exist, Ecology places severe restrictions on their use for industrial sites. Given the proximity of the site to Padilla Bay, it is unlikely that Method C cleanup levels for groundwater would apply to this site.

Candidates for groundwater PSLs based on values available in the CLARC database are presented in Table 4 for all constituents detected during previous upland analyses.

Groundwater reference levels were identified using the following sources:

- MTCA Method A and Method B (carcinogen and noncarcinogen) cleanup levels;
- Aquatic marine chronic water quality criteria (WQC) published in WAC 173-201A;
- Aquatic marine chronic and human health (fish ingestion) WQC published in Section 304 of the Clean Water Act;
- Aquatic marine chronic and human health (fish ingestion) WQC published in the National Toxics Rule, 40 CFR 131;
- MTCA Method B surface water cleanup levels (carcinogen and noncarcinogen).

The target reporting limits (PQLs) in Table 4 are the lowest groundwater reference levels for each analyte, when available. For analytes with no groundwater reference levels, standard laboratory reporting limits are included in Table 4.

Where possible, methods were chosen to provide an MDL lower by a factor of 5 to 10 than the target reporting limit (i.e., lowest concentration of interest).

4.3.3 Preliminary Screening Levels for Surface Water

Preliminary screening levels for surface water based on protection of marine surface water are shown in Table 4. Although MTCA Method C (industrial) cleanup levels for surface water exist, Ecology places severe restrictions on their use for industrial sites. Given the proximity of the site to Padilla Bay, it is unlikely that Method C cleanup levels for surface water would apply to this site.

Candidates for surface water PSLs based on values available in the CLARC database are presented in Table 4 for all constituents detected during previous upland analyses.

Surface water reference levels were identified using the following sources:

- MTCA Method A and Method B (carcinogen and noncarcinogen) cleanup levels;
- Aquatic marine chronic WQC published in WAC 173-201A;
- Aquatic marine chronic and human health (fish ingestion) WQC published in Section 304 of the Clean Water Act;
- Aquatic marine chronic and human health (fish ingestion) WQC published in the National Toxics Rule, 40 CFR 131;
- MTCA Method B surface water cleanup levels (carcinogen and noncarcinogen).

The target reporting limits (PQLs) in Table 4 are the lowest surface water reference levels for each analyte, when available. For analytes with no surface water reference levels, standard laboratory reporting limits are included in Table 4.

Where possible, methods were chosen to provide an MDL lower by a factor of 5 to 10 than the target reporting limit (i.e., the lowest concentration of interest).

5.0 NATURE AND EXTENT OF CONTAMINATION

This section presents the data gathered during Phase I of the RI and discusses the nature and extent of detected levels of contamination. The discussion below is organized by medium sampled or investigated, and then by class of COPCs.

5.1 **GEOPHYSICAL INVESTIGATION RESULTS**

Field data were post-processed as described in the Geophysical Investigation Report prepared by Northwest Geophysical Associates, Inc. (NGA) (NGA, 2008), and included as Appendix B. The geophysical survey data indicated 11 anomalies of interest (G1 through G11; Figure 2 in Appendix B). Anomalies of interest G1 through G8 were selected from MAG data (primarily from analytical signal data) and represent targets that exhibited a magnetic signature across two or more transect lines. Anomalies exhibiting signatures across two or more transect survey lines are more likely to be concentrations of metallic debris in the subsurface than are single source items. Anomalies of interest G9 through G11 were selected from EM data (primarily from the in-phase data) and represent anomalies that exhibited EM signatures consistent with those of metallic conductive bodies.

Metal debris potentially responsible for the anomalies encountered during the geophysical investigation was encountered at all test pit locations (Figure 6). One partially crushed steel drum was unearthed at test pit location G9. The drum contained fiberglass material and solidified resin. No external markings or labels were present on this drum. Five to six partially crushed steel drums were unearthed at test pit location G10. One of those steel drums contained one plastic drum inside the outer steel drum. Several markings were found on these drums, including "Amoco 543," "Nalco," and "UOP Polymerization Catalyst." Representative photographs of the unearthed drums are included in Appendix E. The other metal debris encountered included old appliances, auto parts, sinks, pressure vessels, and an armored air hose. One clip of old ammunition was unearthed at G5. Excavation at location G1 was terminated prior to reaching the proposed depth and prior to groundwater being encountered due to the presence of suspected asbestos-containing material. This material was sent for asbestos analysis at NVL Labs in Seattle, Washington. Analytical results confirmed that the material contained 23 percent crysotile, a common form of asbestos.

5.2 SEDIMENT RESULTS

Sediments within the inner lagoon were screened for toxicity using a suite of three bioassays: a 10-day amphipod bioassay using *Ampelisca abdita* (Table 5), a 48- to 96-hour sediment larval test using *Dendraster excentricus* (Table 6), and a saline pore water Microtox bioassay (Table 7). A summary of the results is presented in Table 8. The complete bioassay report is

provided in Appendix G. None of the results of the amphipod or sediment larval tests exceeded the sediment quality standards (SQS) criteria. Test results for seven locations within the Inner Lagoon exceeded the SQS for the Microtox pore water bioassay only (Table 8; Figure 7).

Based on discussions with Ecology, there may have been factors other than SMS COC chemistry that contributed to the SQS exceedances for the Microtox bioassay. Factors that may have contributed to the negative response of the organisms include (1) holding times, (2) total sulfides/dissolved sulfides, (3) ammonia, and (4) potential impact of sulfur. Consequently, the Microtox bioassay is currently being repeated at the seven locations that exceeded the SQS. The standard 20-day *Neanthes arenaceodentata* growth and survival test is also being run to provide additional information. A supplemental sampling and analysis plan has been submitted to and approved by Ecology that describes the testing procedures that will be used for the bioassay retesting.

A single sediment sample was collected at each of three sample locations in the drainage swale on the south side of the landfill. Pore water extracted from the sediments or from saturated soils along the swale showed a salinity gradient. Salinity ranged from 17 parts per thousand (ppt) near the mouth of the swale, where it discharges into the inner lagoon (MPS-3), to 0 ppt at the upper station (MPS-1) (Table 8). Chemistry results indicate that total organic carbon levels ranged from 11.8 to 16.6 percent. The total organic carbon levels were above values for which carbon normalization is considered appropriate. Consequently, the SMS list of COCs was compared to the SMS dry-weight equivalents (Table 9). The SQS dry-weight equivalent is the Lowest Apparent Effects Threshold (LAET). The Cleanup Screening Level dry-weight equivalent is the Second Lowest Apparent Effects Threshold (2LAET). The comparison of results indicates that a single analyte (phenol at 1,900 parts per billion [ppb]) exceeded the 2LAET value (Figure 8). No other analytes exceeded the SQS or the cleanup screening level dry-weight equivalents in the swale samples.

5.3 SOIL SAMPLE RESULTS

Soil samples were collected during the monitoring well installation and during the landfill test pit investigation. The data from those samples are discussed in more detail below by analyte type. Analytical results for analytes that exceeded PSLs in soil are shown on Figure 9.

5.3.1 Monitoring Well Soil Sample Results

Analytical data for monitoring well soil samples are presented in Table 10. MW-01 and MW-04 were determined to be hydraulically upgradient from the landfill and most likely represent soils

unaffected by the landfill. MW-03 was advanced through and screened in fill materials and may be hydraulically connected to landfilled wastes. Monitoring well boring logs are provided in Appendix F.

5.3.1.1 Metals

Metals were detected in all soil samples collected at all depth intervals for MW-01. Copper, molybdenum, nickel, and strontium were detected in at least one sample at concentrations exceeding the PSL. Copper was detected at concentrations ranging from 18.1 mg/kg to 61 mg/kg. Only the sample collected at 37 feet bgs, with a copper concentration of 61 mg/kg, exceeded the PSL and background concentration of 36 mg/kg. Molybdenum was detected at concentrations ranging from 1 to 3 mg/kg, exceeding the PSL of 0.5 mg/kg. Nickel was detected at concentrations ranging from 56 mg/kg to 99 mg/kg, exceeding the PSL of 48 mg/kg. Strontium was detected at concentrations ranging from 19.4 mg/kg to 72 mg/kg, exceeding the PSL of 0.1 mg/kg; no Washington State Background concentration has been established for strontium. Other metals detected in the samples from MW-01 included aluminum, arsenic, barium, beryllium, chromium, iron, lead, manganese, mercury, titanium, vanadium, and zinc. Concentrations of all of these additional metals were less than the PSLs.

Metals were detected in both samples submitted for MW-04, with arsenic, copper, molybdenum, nickel, and strontium detected at concentrations greater than the PSL in at least one sample. In the sample collected from 8.5 feet bgs, arsenic was detected at a concentration of 14 mg/kg, which is greater than the PSL and background concentration of 7 mg/kg. Copper was detected at a concentration of 44.6 mg/kg, which is greater than the PSL of 36 mg/kg. Molybdenum was detected at a concentration of 2.7 mg/kg, which is greater than the PSL of 0.5 mg/kg. Nickel was detected at a concentration of 83 mg/kg, which is greater than the PSL and background concentrations of 48 mg/kg. Strontium was detected at a concentration of 35.9 mg/kg, which is greater than the PSL 0.1 mg/kg. The following metals were detected at concentrations that were less than the PSL: aluminum, barium, beryllium, cadmium, chromium, iron, lead, manganese, mercury, titanium, vanadium, and zinc.

Thirteen of the 17 metals detected in the sample collected at 8.5 feet bgs from MW-04 were also detected in the sample collected at 19 feet bgs. However, only molybdenum, nickel, and strontium were detected at concentrations greater than the PSL. Molybdenum was detected at a concentration of 2.3 mg/kg (PSL of 0.5 mg/kg). Nickel was detected at a concentration of 60 mg/kg (PSL and background concentrations of 48 mg/kg). Strontium was detected at a concentration of 33.2 mg/kg (PSL of 0.1 mg/kg).

In the sample submitted for MW-03, which was drilled through fill material, copper, molybdenum, nickel, strontium, and zinc were detected at concentrations exceeding the PSL. Copper was detected at a concentration of 373 mg/kg (compared to a PSL of 36), molybdenum was detected at a concentration of 4 mg/kg (PSL of 0.5 mg/kg), nickel was detected at a concentration of 80 mg/kg (PSL of 48 mg/kg), strontium was detected at a concentration of 29.3 mg/kg (PSL of 0.1 mg/kg), and zinc was detected at a concentration of 282 mg/kg (PSL of 100.8 mg/kg). These concentrations also exceeded Washington State background concentrations for those metals with established background concentrations. Metals that were detected at concentrations below the PSL include aluminum detected at a concentration of 11,500 mg/kg (less than the PSL of 32,600 mg/kg), arsenic at an estimated concentration of 6.8 mg/kg (less than the PSL of 7 mg/kg), barium at a concentration of 117 mg/kg (less than the PSL of 1,320 mg/kg), cadmium at a concentration of 0.8 mg/kg (less than the PSL of 1.214 mg/kg), chromium at a concentration of 55 mg/kg (less than the PSL of 135 mg/kg), iron at a concentration of 39,900 mg/kg (less than the PSL of 58,700 mg/kg), lead at a concentration of 171 mg/kg (less than the PSL of 220 mg/kg), manganese at a concentration of 400 mg/kg (less than the PSL of 1,200 mg/kg), and vanadium at a concentration of 45.1 mg/kg (less than the PSL of 560 mg/kg).

5.3.1.2 TPH

TPH-G was not detected in any soil sample submitted for sample locations MW-01, MW-03, and MW-04.

5.3.1.3 VOCs

Several VOCs were detected at all depths in the soil samples submitted for MW-01, MW-03, and MW-04; however, no concentrations of VOCs exceeded the associated PSLs. Most notably, acetone (a common laboratory contaminant) was detected in every sample at concentrations ranging from 11 micrograms per kilogram (μ g/kg) to an estimated concentration of 95 μ g/kg. These detections are lower than the PSL of 8,000,000 μ g/kg. Further, carbon disulfide was detected in MW-01 and MW-03; methylene chloride in MW-01, MW-03, and MW-04; and 2-butanone in MW-04. All those detections were below the individual PSLs.

5.3.1.4 Pesticides and PCBs

Pesticides were not detected in any of the soil samples collected from the monitoring well borings. Two PCBs, Aroclor 1248 and Aroclor 1254, were detected in the sample from a depth of 11.5 feet in MW-03 only. Aroclor 1248 was detected at a concentration of 28 μ g/kg. No PSL has been established for Aroclor 1248. Aroclor 1254 was detected at a concentration of 27 μ g/kg, which is greater than the PSL of 4 μ g/kg. Total PCBs were calculated using one-

half the reporting limit for non-detected values. The resulting concentration of 66.7 μ g/kg is greater than the PSL of 28 μ g/kg. No PCBs were detected in the soil samples from borings MW-2 or MW-4.

5.3.1.5 Summary

In summary, all monitoring well soil samples had several total and dissolved metals concentrations above the PSL. In addition, one sample (at MW-03) exceeded the PSL for Aroclor 1254 and total PCBs. Additional PCBs congeners (at MW-03 only) and some VOCs were detected in the other monitoring well soil samples, but none was found exceeding the PSL. No TPH, VOC, or SVOC was detected in any of the borings above its respective PSL.

5.3.2 Test Pit Soil Sample Results

Analytical results for test pit soil samples are discussed in this section and presented in Table 10. Test pit soil samples were collected from soil horizons in the test pits dug in the landfill to characterize metallic objects. In general, the samples were collected from soil adjacent to metallic objects or where there were other indications (staining, etc.) that soil may have been impacted by wastes per the RI/FS Work Plan. During the test pit investigation, an archaeologist was present to screen soils for historical artifacts in or below the refuse. The archaeological summary is provided in Appendix H.

5.3.2.1 Metals

Arsenic was detected at concentrations greater than the PSL and background concentrations of 7 mg/kg in 2 of 14 test pit soil samples. The concentration in the sample from 12 feet bgs from G3 was 8.8 mg/kg, and the concentration in the sample from 11 feet bgs from G11 was 13 mg/kg. Concentrations of arsenic in the remaining samples ranged from 2.3 mg/kg to 5.1 mg/kg.

Cadmium was detected at concentrations greater than the PSL of 1.214 mg/kg and the background concentration of 1 mg/kg in 2 of 14 samples. The concentration in the sample from 5.5 feet bgs from G1 was 2.6 mg/kg, and the concentration in the sample from 5 feet bgs from G4 was 2.7 mg/kg. Detected concentrations of cadmium in the remaining samples ranged from 0.3 to 0.7 mg/kg.

Copper was detected at concentrations greater than the PSL of 36 mg/kg in five samples at concentrations ranging from 36.4 mg/kg in the sample from 9 feet bgs from G5 to 76 mg/kg in the samples from 5.5 feet bgs from G1 and 8 feet bgs from G3. The remaining sample concentrations ranged from 21.6 mg/kg to 33.3 mg/kg.

Lead was detected in all samples, except those from locations G10 and G11. Only one sample contained lead at a concentration greater than the PSL of 220 mg/kg: lead was detected in the sample from 5 feet bgs from G4 at a concentration of 238 mg/kg. The remaining sample concentrations ranged from 2 mg/kg to 112 mg/kg.

Mercury was detected in 7 of the 14 samples at concentrations ranging from 0.07 mg/kg in the sample from a depth of 5 feet bgs from G5 and the field duplicate from 6 feet bgs from G6, to 6.9 mg/kg in the sample from 5.5 feet bgs from G1. Five of these detections are greater than the PSL of 0.07 mg/kg, while the remaining two detections are equal to the PSL.

Molybdenum was detected in all samples at concentrations greater than the PSL of 0.5 mg/kg, with results ranging from 1.6 to 6 mg/kg. No background concentration has been established for molybdenum.

Nickel was detected in all of the samples at concentrations ranging from 34 to 90 mg/kg. Concentrations in 12 of the 14 samples exceed the PSL and background concentrations of 48 mg/kg. The concentrations from samples from 12 feet bgs from G3 and from 11 feet bgs from G11 did not exceed the PSL.

Strontium was detected in all samples at concentrations ranging from 26.7 mg/kg in the sample from 6 feet bgs from G6 to 64.1 mg/kg in the sample from 11 feet bgs from G11, all exceeding the PSL of 0.1 mg/kg. No background concentration has been established for strontium.

Zinc was detected in 8 of the 14 samples at concentrations greater than the PSL of 100.8 mg/kg and the background concentration of 85 mg/kg. Concentrations exceeding the PSL ranged from 174 mg/kg in the sample from 8 feet bgs from G3 to 381 mg/kg in the sample from 5.5 feet bgs from G1.

Metals detected in the test pit samples that were below the associated PSL include aluminum, barium, beryllium, chromium, iron, manganese, titanium (no PSL has been established for titanium), and vanadium.

5.3.2.2 TPH

The test pit samples were analyzed for TPH as diesel (TPH-D), TPH-G, and TPH-Oil. TPH-G was detected in the samples from 5 and 9 feet bgs from G5, at concentrations of 6.5 mg/kg and 310 mg/kg, respectively. The concentrations in the sample from 9 feet bgs exceeds the PSL of 30 mg/kg. TPH-D was detected at low levels in all of the samples except for the

samples from 1 feet bgs from G4 and G5 and the sample from G11. Concentrations ranged from 6.1 mg/kg in the sample from 8 feet bgs from G10 to 280 mg/kg in the sample from 9 feet bgs from G5. In addition, TPH-Oil was detected at low levels in all of the samples except for the samples from 1 feet bgs from G5 and the sample from G11. Detected concentrations ranged from 16 mg/kg in the sample from 8 feet bgs from G10 to 670 mg/kg in the sample from 9 feet bgs from 9 feet bgs from G5. Detected concentrations of both TPH-D and TPH-Oil were less than the PSL of 2,000 mg/kg.

5.3.2.3 SVOCs

SVOCs detected in test pit samples were found primarily in the samples from G1 at 5.5 feet bgs and G5 at 9 feet bgs. Bis(2-ethylhexyl) phthalate, naphthalene, and phenanthrene were also detected in samples from other test pits; however, the results were below the associated PSLs. No other SVOCs were detected in samples collected from the test pits.

Twelve SVOCs were detected in the sample collected at a depth of 5.5 feet bgs at G1, with three compounds detected at concentrations greater than the associated PSLs. Benzo(a)anthracene was detected at a concentration of 270 μ g/kg (PSL of 129.7 μ g/kg); benzo(a)pyrene was detected at a concentration of 240 μ g/kg (PSL of 100 μ g/kg); and chrysene was detected at a concentration of 320 μ g/kg (PSL of 144.1 μ g/kg).

Fourteen SVOCs were detected in the sample collected at a depth of 9 feet bgs at G5, with four compounds detected at concentrations greater than the associated PSLs. Benzo(a)anthracene was detected at a concentration of 130 μ g/kg (PSL of 129.7 μ g/kg); benzo(a)pyrene was detected at a concentration of 120 μ g/kg (PSL of 100 μ g/kg); bis(2-ethylhexyl) phthalate was detected at a concentration of 6,000 μ g/kg (PSL of 4,849 μ g/kg); and chrysene was detected at a concentration of 180 μ g/kg (PSL of 144.1 μ g/kg).

5.3.2.4 VOCs

Several VOC compounds were detected at low levels in all 14 test pit samples, with most of the detections in the samples from 8 and 12 feet bgs from G3, 9 feet bgs from G5, and from G11. None of the compounds detected exceeded the associated PSLs.

5.3.2.5 Pesticides and PCBs

Pesticides were detected in samples submitted from test pit locations G3, G4, G5, and G6. Delta-BHC was detected in the samples collected at 1 and 8 feet bgs from G3 and in the sample collected at 6 feet bgs from G6 at concentrations ranging from 2.8 μ g/kg to 120 μ g/kg.

These concentrations are greater than the PSL of 1.7 μ g/kg. Dieldrin was detected in the sample from 8 feet bgs from G3 and in the sample from 9 feet bgs from G5 at concentrations of 24 μ g/kg and 210 μ g/kg, respectively, which are greater than the PSL of 3.3 μ g/kg. Finally, methoxychlor was detected in the sample from 1 feet bgs from G4 at a concentration of 71 μ g/kg, which is greater than the PSL of 48.12 μ g/kg. The only other pesticide detected in the sample from 9 feet bgs from G5 at a concentration of 390 μ g/kg, which is greater than the PSL of 1.7 μ g/kg. No other pesticides were detected in test pit soil samples.

PCBs were detected in samples collected from test pit locations G1 at 5.5 feet bgs, G3 at 8 feet bgs, G4 at 5 feet bgs, G5 at 9 feet bgs, and G6 at 6 feet bgs. Aroclor 1254 was detected at concentrations ranging from 22 μ g/kg in the sample from 8 feet bgs at test pit G3 to 240 μ g/kg in the sample from 5 feet bgs at test pit G4, all greater than the PSL of 4 μ g/kg. Aroclor 1260 was detected in three samples, at concentrations ranging from 9.9 μ g/kg in the duplicate sample from 6 feet bgs at test pit G6 to 360 μ g/kg in the sample from 5.5 feet bgs at test pit G1. All of the concentrations are less than the PSL of 492.1 μ g/kg. Finally, Aroclor 1248 was detected in the sample from 8 feet bgs at G3 at a concentration of 20 μ g/kg. No PSL has been established for Aroclor 1248. Total PCBs were calculated by summing the concentrations of individual aroclors. One-half of the reporting limit was assigned for non-detected aroclors. Total PCBs ranged from 50.4 μ g/kg in the field duplicate sample from G6 to 28 μ g/kg.

5.3.2.6 Summary

In summary, all test pit soil samples had several metals concentrations above the PSL (Figure 9). In addition, one sample (at location G5) exceeded the PSL for TPH-G and two samples (at locations G1 and G5) had a few SVOCs detected above PSLs. PCBs (total and/or individual congeners) exceeded PSLs in six samples located at five different locations G1, G3, G4, G5, and G6. The following pesticides were detected above their respective PSLs in one or more test pit soil samples; aldrin (at location G5), delta-BHC (at location G3 and location G6), dieldrin (at location G3 and location G5), and methoxychlor (at location G4). Other TPH, PCB, SVOC, and VOC analytes were detected in the test pit soil samples, but did not exceed the respective PSL.

5.4 GROUNDWATER/SEEP RESULTS

Analytical data for groundwater and seep samples are presented in Table 11. Analytical results for analytes that exceeded PSLs in groundwater and seep samples are shown on Figure 10.

5.4.1 Groundwater Results

Monitoring well samples collected during the October and December 2008 and April and July 2009 sampling events included samples from monitoring well locations MW-02, MW-03, and MW-04. The samples were analyzed for the analytes noted in Section 3.6.2. Analytical results are discussed below.

5.4.1.1 Metals

Total and dissolved metals were detected in all of the samples collected in October, December, April, and July. In the October sampling event, dissolved arsenic was detected in samples from locations MW-02 through MW-04 at concentrations ranging from 1.9 μ g/L to 4.6 μ g/L. In the December sampling event, dissolved arsenic was detected in samples from locations MW-02 through MW-04 at concentrations ranging from 0.4 μ g/L to 4.4 μ g/L. In the April sampling event, dissolved arsenic was detected in samples from MW-02 through MW-04 at concentrations ranging from 0.5 μ g/L to 5.5 μ g/L. In the July sampling event, dissolved arsenic was detected in samples from MW-02 through MW-04 at concentrations ranging from 2.5 μ g/L to 5.9 μ g/L. These concentrations were all greater than the PSL of 0.2 μ g/L. The total and dissolved arsenic concentrations in MW-02 and MW-04 remained consistent during all four sampling events. The concentrations in samples from location MW-03 decreased during the December and April sampling events.

Total lead was detected in the sample from MW-03 during the October sampling event at a concentration of 16 μ g/L, greater than the PSL of 8.1 μ g/L. A blind field duplicate was collected at this location, and total lead was detected at a significantly lower concentration of 2 μ g/L. Total lead was not detected in the samples from MW-03 during the remaining three sampling events, nor was total or dissolved lead detected in any of the other monitoring wells sampled in October, December, April, or July.

Total and dissolved manganese were detected in samples collected from locations MW-03 and MW-04 during the four sampling events. The concentrations of dissolved manganese in samples from these two wells during all four events ranged from 121 μ g/L to 336 μ g/L, and the concentration of total manganese ranged from 124 μ g/L to 350 μ g/L in all four sampling events. All of the concentrations detected in samples from these two wells during the four

sampling events were greater than the PSL of 100 μ g/L. Total and dissolved manganese were also detected in samples from location MW-02 during all four sampling events at concentrations ranging from 21 μ g/L to 45 μ g/L for dissolved manganese and 46 μ g/L to 64 μ g/L for total manganese. All of the detections of total and dissolved manganese in MW-02 were less than the PSL of 100 μ g/L.

Total copper was detected in the sample collected from location MW-03 during the October sampling event at a concentration of 3 μ g/L, slightly greater than the PSL of 2.4 μ g/L. Total zinc was also detected in sample MW-03 during the October sampling event, at a concentration of 30 μ g/L, less than the PSL of 81 μ g/L. Total copper and zinc were not detected in the samples from MW-03 during the December, April, or July sampling events, nor were they detected in the field duplicate collected at location MW-03 during any of the four sampling events. Total and dissolved copper and zinc were not detected in any of the other samples during the four sampling events.

The only other total and dissolved metal with an associated PSL detected in the monitoring well samples during the October, December, April, and July sampling events is nickel, which was detected at dissolved concentrations ranging from 0.5 μ g/L to 4.1 μ g/L and total concentrations ranging from 0.5 μ g/L to 5.4 μ g/L. All of the total and dissolved nickel concentrations detected during the four sampling events were less than the PSL of 8.2 μ g/L.

Other total and dissolved metals detected in the monitoring well samples during the October, December, April, and July sampling events that do not have an associated PSL are aluminum, barium, iron, molybdenum, strontium, titanium, and vanadium.

5.4.1.2 Total Petroleum Hydrocarbons

No TPH compounds were detected in any of the samples collected from locations MW-02, MW-03, and MW-04 during the October, December, April, or July sampling events.

5.4.1.3 SVOCs and PAHs

Monitoring well samples were analyzed for SVOCs and PAHs. The select ion monitoring method was used for selected analytes as shown in Table 4 to achieve lower detection limits. No SVOC compounds were detected in the monitoring well samples collected during the October, December, or July sampling events. One compound, bis(2-ethylhexyl) phthalate, was detected in the sample collected from MW-03 during the April sampling event at a concentration of 1.2 μ g/L, less than the PSL of 2.2 μ g/L.

The only PAH compound consistently detected in groundwater samples was acenaphthene, detected in the sample collected from MW-03 during all four sampling events at concentrations ranging from 0.012 μ g/L in the July sampling event to 0.032 μ g/L in the October sampling event. All of the detections in the samples from MW-03 and field duplicates from MW-03 are significantly lower than the associated PSL of 640 μ g/L.

5.4.1.4 VOCs

Acetone, a known laboratory contaminant, was detected in samples collected from locations MW-02 and MW-03 during the October sampling event at concentrations ranging from 3.1 μ g/L to 4.6 μ g/L. Acetone was not detected in the samples collected during the remaining three sampling events. No PSL is associated with acetone, and the detections are well below the MTCA Method B cleanup level of 800 μ g/L. Chloromethane was detected in the sample from MW-02 during the October sampling event at a concentration of 0.4 μ g/L, and in the duplicate sample from MW-03 during the December sampling event at an estimated concentration of 0.5 μ g/L. These concentrations are well below the PSL of 130 μ g/L. Benzene and toluene were detected in the sample collected from MW-04 during the April sampling event at concentrations of 0.2 μ g/L and 0.3 μ g/L, respectively. Both of these detections were below the associated PSLs. No other VOC was detected in the monitoring well samples during the four sampling events.

5.4.1.5 Organochlorine Pesticides

Alpha-BHC was detected in the sample from location MW-03 during all four sampling events at concentrations ranging from 0.015 μ g/L in October to 0.041 μ g/L in April. These levels exceed the PSL of 0.0049 μ g/L. In addition, 4,4'-DDD was detected in the sample from location MW-03 during the December, April, and July sampling events at consistent concentrations ranging from an estimated concentration of 0.0056 μ g/L in December to 0.0082 μ g/L in July. These detections also exceed the PSL of 0.00166 μ g/L. Beta-BHC, delta-BHC, and gamma-BHC (Lindane) were also detected in well MW-03 during all four sampling events, but the concentrations were well below their associated PSLs. Pesticides were not detected in either well MW-02 or MW-04.

5.4.1.6 PCBs

Aroclor 1232 was detected in December and April in well MW-03, and Aroclor 1242 was detected in October and December in well MW-03. These aroclor detections did not exceed their respective PSLs. Total PCBs (calculated using one-half the reporting limit) in MW-03 did not exceed PSLs during the April, October, or July sampling events. There were no detections

of PCBs in MW-03 during the July sampling event, and PCBs were not detected in MW-02 or MW-04 during any of the four sampling events.

5.4.1.7 Summary

In summary, all groundwater sample locations had several total and dissolved metals concentrations greater than the PSL (Figure 10). PCBs did not exceed PSLs in any of the groundwater samples. SVOCs, PAHs, and VOCs were detected during all four sampling events, but none of the analytes exceeded the applicable PSL. Alpha-BHC was detected in one well (MW-03) during all four sampling events, and 4,4'-DDD was detected in the same well during three of the four sampling events, both at concentrations exceeding the PSLs.

5.4.2 Seep Results

Seep samples collected during the October, December, April, and July sampling events included samples from locations SP-01, SP-02, and SP-03. The samples were analyzed for the analytes listed in Section 3.6.2. Analytical results are discussed below. Analytical results for analytes that exceeded PSLs in seep samples are shown on Figure 10.

5.4.2.1 Total and Dissolved Metals

Total and dissolved metals were detected in all of the samples collected in October, December, April, and July. The dissolved arsenic concentrations detected at location SP-01 in October, April, and July ranged from 0.4 μ g/L to 1.2 μ g/L. At location SP-02 the dissolved arsenic concentrations ranged from 0.7 μ g/L in April to 1.1 μ g/L in July. At location SP-03 the dissolved arsenic concentrations from October, April, and July ranged from 0.6 μ g/L to 0.8 μ g/L. The total arsenic concentrations ranged from a low of 0.8 μ g/L detected during the July sampling event at location SP-03 to a high of 2.4 μ g/L also detected during the July sampling event at location SP-02. The total and dissolved concentrations detected during all four sampling events are greater than the PSL of 0.2 μ g/L.

Total and dissolved manganese were detected in samples collected from locations SP-01, SP-02, and SP-03 during all four sampling events. The concentrations of dissolved manganese at all three locations ranged from 126 μ g/L to 545 μ g/L, and total concentrations ranged from 85 μ g/L to 570 μ g/L. All of the concentrations detected in all locations during the four sampling events were greater than the PSL of 100 μ g/L, with the exception of the concentration of 85 μ g/L detected at location SP-02 during the October sampling event.

Total copper was detected in the sample collected from location SP-02 during the December sampling event at a concentration of 5 μ g/L, greater than the PSL of 2.4 μ g/L. Total copper

was also detected at location SP-02 during the April and July sampling events at a concentration of 2 μ g/L. Total and dissolved copper were not detected in any of the other seep locations during the four sampling events.

Total lead was detected in the sample from SP-02 during the December sampling event at a concentration of 1 μ g/L, less than the PSL of 8.1 μ g/L. Total lead was not detected in the samples from SP-02 during the October, April, or July sampling events, nor was total or dissolved lead detected in any of the other seep locations during the four sampling events.

In the October sampling event, total and dissolved silver were detected in the sample from SP-02 at concentrations of 8 μ g/L and 11 μ g/L, respectively. Total zinc was detected in the sample from SP-03 at a concentration of 20 μ g/L. Neither metal was detected in these locations during the December, April, or July sampling events, and neither was detected in any of the other seep samples collected during the four sampling events. The silver and zinc concentrations detected are less than the associated PSLs of 26,000 μ g/L and 81 μ g/L, respectively.

The only other total and dissolved metals with an associated PSL detected in the seep samples during the four sampling events are nickel and selenium. Nickel was detected at dissolved concentrations ranging from 0.6 μ g/L to 7 μ g/L and total concentrations ranging from 0.8 μ g/L to 8 μ g/L. All of the total and dissolved nickel concentrations detected during the four sampling events are less than the PSL of 8.2 μ g/L. Dissolved selenium was detected in SP-03 during the July sampling event at a concentration of 50 μ g/L, less than the PSL of 71 μ g/L. Total and dissolved selenium were not detected in any other seep samples during the four sampling events.

Other total and dissolved metals detected in the seep samples during the October, December, April, and July sampling events that do not have an associated PSL are aluminum, barium, iron, molybdenum, strontium, titanium, and vanadium.

5.4.2.2 SVOCs and PAHs

Two SVOCs were detected in samples from SP-01: 4-chloro-3-methylphenol detected in the sample collected in December at an estimated concentration of 7.8 μ g/L and carbaryl detected in all four sampling events at concentrations ranging from 1.9 μ g/L during the October sampling event to 11 μ g/L during the July sampling event. There are no associated PSLs for these compounds; however, the concentration of carbaryl is well below the MTCA Method B cleanup level for noncarcinogen in groundwater of 1,600 μ g/L.

N-Nitrosodiphenylamine was detected in samples from SP-02 during three sampling events at concentrations of 1.4 μ g/L and 1.2 μ g/L, which are less than the PSL of 6 μ g/L. No other SVOC was detected in SP-02 during the four sampling events.

At SP-03, the SVOCs 1- and 2-methylnaphthalene were detected during the four sampling events at concentrations ranging from 2.9 μ g/L to 5.3 μ g/L. There is no associated PSL for these compounds. Acenaphthene was detected during all four sampling events at concentrations ranging from 1.0 μ g/L in October to 1.3 μ g/L in December. The compound 2,4-dimethylphenol was detected during the December, April, and July sampling events at concentrations of 57 μ g/L, 13 μ g/L, and 1.9 μ g/L, respectively. These concentrations were substantially less than the associated PSLs of 640 μ g/L for acenapthene and 550 μ g/L for 2,4-dimethylphenol. The only other compound detected in location SP-03 was diethyl phthalate during the December sampling event at a concentration of 1.4 μ g/L, less than the PSL of 28,000 μ g/L.

Several PAH compounds were detected in all three seep locations during the October, December, April, and July sampling events. The concentrations were all at low levels, orders of magnitude below the associated PSLs.

5.4.2.3 Total Petroleum Hydrocarbons

The samples were analyzed for TPH as gasoline (TPH-G) and diesel (TPH-D) as well as hydrocarbon identification. The only detections in the seep samples were low-level diesel detections during the four sampling events. The detections ranged from 0.31 milligrams per liter (mg/L) in SP-02 during the December sampling event to 0.76 mg/L in SP-03 during the July sampling event. There are no PSLs established for TPH compounds; however, the detections of TPH-D in SP-01 and SP-03 during the December, April, and July sampling events ranging from a low of 0.55 mg/L to a high of 0.76 mg/L, and the July detection of 0.51 mg/L in SP-02, all exceeded the MTCA Method A cleanup level of 0.5 mg/L.

5.4.2.4 VOCs

Several VOC compounds were detected at low levels in all three seep locations during the October, December, April, and July sampling events. None of the detected concentrations exceeded the associated PSLs.

5.4.2.5 Organochlorine Pesticides

Pesticides were not detected in seep samples during the October, December, April, or July sampling events.

5.4.2.6 PCBs

Aroclor 1232 was detected in the December and April samples from SP-03, and Aroclors 1232 and 1242 were detected in samples collected in October and December from SP-03. Additionally, Aroclor 1232 was detected in the April sample from SP-02. Concentrations of total PCBs in SP-03 in the December and April samples were calculated as 0.14 μ g/L and 0.121 μ g/L, respectively, exceeding the PSL of 0.07 μ g/L. The concentration of total PCBs in SP-02 in the April sample was calculated at 0.058 μ g/L, less than the PSL. PCBs were not detected in SP-01, nor were PCBs detected in any of the seep samples during the July sampling event.

5.4.2.7 Summary

In summary, all seep sample locations had several total and dissolved metals concentrations greater than the PSL. The concentrations of total PCBs exceeded the PSL in the sample collected at SP-03 during December and April. TPH-D and several PAHs, SVOCs, and VOCs were detected in seep samples collected during the four sampling events, but none exceeded the applicable PSL.

5.5 SURFACE WATER RESULTS

Surface water samples collected during the October, December, April, and July sampling events included samples from locations SW-01, SW-03, SW-04, SW-05, and SW-06. A sample was collected from SW-07 only during the December and April sampling events. Proposed location SW-02 was not sampled during any of the sampling events. Location SW-02 was dry during the first sampling event in October 2008. It was decided in the field not to change the sample nomenclature for the subsequent samples collected during the October 2008 event in case surface water samples could be collected at SW-02 during the next monitoring event. No surface water sample has been collected at SW-02 during any of the four monitoring events due to the sampling location being dry. We will continue to observe the conditions at location SW-02 during future monitoring events, and if surface water is present a sample will be collected.

Surface water samples were analyzed for the analytes listed in Section 3.7.2. Analytical results are discussed in this section, and data are presented in Table 11. A summary of analytes that exceed the PSLs is presented in Figure 11.

5.5.1 Total and Dissolved Metals

Total and dissolved metals were detected in all of the surface water samples collected during the four sampling events. Dissolved arsenic was detected in most samples during the four

sampling events at concentrations ranging from 0.5 μ g/L in SW-07 during the December sampling event to 5.1 μ g/L in SW-01 during the July sampling event. Total arsenic was also detected in all but one of the samples collected during the four sampling events at concentrations ranging from 0.8 μ g/L in SW-05 in December to 21.3 μ g/L in SW-01 in July. All of the detected concentrations of total and dissolved arsenic are greater than the PSL of 0.2 μ g/L.

Total and dissolved manganese were detected in all of the surface water samples collected during the four sampling events. The dissolved manganese concentrations exceeded the PSL of 100 μ g/L in all samples during all four events, with the exception of the samples collected from SW-01 in October and December, the October and July samples collected from SW-04 and SW-06, and the July sample collected from SW-05. The dissolved manganese concentrations in excess of the PSL ranged from 132 μ g/L to 795 μ g/L. The total manganese concentrations also exceeded the PSL, with the exception of the October samples collected from SW-01, the July sample from location SW-05, and the October and July samples from SW-06. The total manganese concentrations in excess of the PSL ranged from 102 μ g/L.

Total nickel was detected at concentrations that exceeded the PSL of 8.2 μ g/L in the December and April samples collected from SW-03 and the December sample collected from SW-04. The total nickel concentrations of 11 μ g/L and 10 μ g/L, detected in the December and July samples collected from SW-06, also exceeded the PSL. Total nickel was detected in SW-01 during the July sampling event at a concentration of 72.2 μ g/L, exceeding the PSL. Dissolved nickel concentrations exceeded the PSL of 8.2 μ g/L in the December samples from SW-03 (9 μ g/L) and SW-04 (11 μ g/L). Total and dissolved nickel were detected in other samples during the four sampling events, but the concentrations were less than the PSL.

Total mercury was detected in surface water samples from only one location, SW-01, during the December and July sampling events at concentrations of 0.0284 μ g/L and 0.0649 μ g/L, both of which exceed the PSL of 0.025 μ g/L. Neither total nor dissolved mercury was not detected in any of the remaining surface water samples during the four sampling event.

Dissolved copper was detected sporadically in SW-03 through SW-06 during the December, April, and July sampling events. Of the 11 detections of dissolved copper in these locations, 9 exceeded the PSL of 2.4 μ g/L at concentrations ranging from 3 μ g/L to 6 μ g/L. Total copper was also detected in the same surface water locations at concentrations ranging from 3 μ g/L to 38 μ g/L.

Total lead was detected in samples from SW-01 during the December and July sampling events, SW-03 during the April sampling event, and SW-04 during the October sampling event, and SW-07 during the December sampling event. The detected concentration in the sample from SW-01 during the July sampling event exceeded the PSL of 8.1 μ g/L at a concentration of 24 μ g/L. All other detections were lower than the PSL, with concentrations ranging from 1 μ g/L to 3 μ g/L.

Total zinc was detected sporadically in samples from SW-01, SW-03, SW-04, SW-05, and SW-07 during the four sampling events. Of the eight detections of total zinc at these locations, only the detection at SW-01 during the July sampling event exceeded the PSL of 81 μ g/L at a concentration of 150 μ g/L. The remaining detected concentrations ranged from 10 μ g/L to 40 μ g/L.

The following other total and dissolved metals were detected in one or more surface water samples, but the concentrations did not exceed the PSLs: total and dissolved aluminum, total and dissolved barium, total chromium, total and dissolved iron, total and dissolved molybdenum, total silver, total and dissolved strontium, total and dissolved titanium, total and dissolved vanadium, and dissolved zinc.

5.5.2 TPH

No TPH analytes were detected in any of the surface water samples collected from locations SW-01, SW-03, SW-04, SW-05, SW-06, and SW-07 during the October, December, April, or July sampling events.

5.5.3 SVOCs and PAHs

Surface water samples were analyzed for SVOCs, with PAHs analyzed using select ion monitoring to achieve lower detection limits.

No SVOCs were detected in locations SW-03, SW-04, or SW-06 during the October, December, April, or July sampling events. One compound, bis(2-ethylhexyl) phthalate, was detected in the sample collected at SW-01 during the December sampling event at a concentration of 1.6 μ g/L, which is less than the PSL of 2.2 μ g/L. The compound bis(2-ethylhexyl) phthalate was not detected in any other samples during the four sampling events. Carbaryl was detected in the samples collected at SW-07 during the December and April sampling events at concentrations of 1.8 μ g/L and 1.2 μ g/L, respectively. There is no associated PSL for carbaryl, and this compound was not detected in any of the other surface water samples during the four sampling events. Nine SVOCs were detected in the surface

AMEC Geomatrix, Inc.

associated PSL. The most notable detections were benzoic acid at 5,500 μ g/L and benzyl alcohol at 600 μ g/L. These compounds do not have an associated PSL. No SVOCs were detected in the samples collected at SW-05 in December, April, or July.

No PAH compounds were detected in samples collected during the four sampling events at locations SW-03 and SW-04. However, PAHs were detected at SW-01, SW-05, SW-06, and SW-07. PAH compounds were not detected in sample SW-01 until the July sampling event, during which five PAH compounds were detected. None of the PAHs detected were at a concentration greater than the associated PSL. One PAH compound, acenaphthene, was detected in the sample collected at SW-05 during the October, December, and April sampling events at concentrations ranging from 0.014 μ g/L in October to 0.064 μ g/L in April. Acenaphthene was also detected in the sample from SW-06 during the April sampling event at a concentration of 0.01 μ g/L. These concentrations are several orders of magnitude less than the PSL of 640 μ g/L. Acenaphthene was not detected in SW-05 or SW-06 during the July sampling event. Nine PAH compounds were detected in sample SW-07 during the December sampling event, and six PAH compounds were detected during the April sampling event. None of the PAHs was detected at a concentration greater than the associated PSL.

5.5.4 VOCs

During the October sampling event, the only VOC detected was acetone, a known laboratory contaminant; it was detected in a sample from location SW-03 at a concentration of 3.1 µg/L. There is no associated PSL for acetone, and it was not detected in any other samples during the four sampling events. Toluene was detected in samples collected from SW-01, SW-05, and SW-07 in December at concentrations ranging from 0.2 μ g/L to 0.8 μ g/L. Toluene was detected at SW-04 and SW-07 at concentrations of 0.2 µg/L and 1.4 µg/L, respectively, during the April sampling event, and in SW-01 at 32 μ g/L during the July sampling event. These concentrations are all several orders of magnitude less than the PSL of 15,000 µg/L for toluene. During the December sampling event, 1,2,4-trimethylbenzene, benzene, m,p-xylene, and o-xylene were detected in the sample from SW-07. Of these detected VOCs, only benzene has an associated PSL, and the benzene concentration of 2.2 µg/L in SW-07 is less than the PSL of 23 µg/L. During the July sampling event, bromoform was detected at concentrations ranging from 12 μ g/L to 17 μ g/L, and dibromochloromethane was detected at a concentration of 0.3 µg/L in samples SW-03, SW-04, SW-05, and SW-06. These concentrations are below the PSLs of 140 μ g/L for bromoform and 13 μ g/L for dibromochloromethane. Carbon disulfide was detected in the samples from SW-03 during the April sampling event and in the samples from SW-01 and SW-04 during the July sampling

event at concentrations ranging from 0.2 μ g/L to 4.1 μ g/L. Carbon disulfide does not have an associated PSL.

5.5.5 Organochlorine Pesticides

The only pesticide detected in any of the surface water samples during the four sampling events was 4,4'-DDD. It was detected in SW-06 in December at an estimated concentration of 0.0019 μ g/L, which is slightly greater than the PSL (0.00166 μ g/L).

5.5.6 PCBs

PCBs were not detected in any surface water samples.

5.5.7 Summary

In summary, all surface water sample locations had several total and dissolved metals concentrations greater than the PSLs including arsenic, manganese, copper, lead, mercury, nickel, and zinc. In addition, in one sample the concentration of 4,4'-DDD exceeded the PSL during the December sampling event. However, 4,4'-DDD was not detected at the same location during the October, April, or July sampling events. SVOCs, PAHs, and VOCs were detected during the four sampling events, but none of the detected concentrations exceeded the associated PSL.

This page intentionally left blank.

6.0 CONCEPTUAL SITE MODEL

This section describes the current conceptual site model developed based on the Phase I remedial investigation.

6.1 CONCEPTUAL SITE MODEL

A preliminary conceptual site model was developed based on the Phase I investigation and historical data. Based on the boring logs and test pits, the local geology is interpreted as follows.

- Silt to Peat Unit: This unit is found at MW-04 only and consists of silt with various amounts of peat. The unit is up to 16 feet thick and is likely a continuation of the Bay Mud discovered in test pits below the landfill.
- Silty Sand Unit (fill): This unit is found at MW-03 and consists of silty sand with a few glass pieces. This fill unit is up to 18.5 feet thick and is likely associated with either rail or road construction or possibly a fill unit associated with the former landfill activity.
- Poorly Graded Sand Unit: This unit is found at MW-02 and MW-04 and consists of poorly graded sand with little or no fines. This unit is up to 31 feet thick (as evident from the boring log for MW-01).
- Padilla Bay Mud Unit: This unit is found in the bottom of three test pits (G-3, G-7, and G-11) below the landfill and consists of silt with various amounts of clay and peat-like material. The thickness of this unit is unknown as it was not encountered in any of the monitoring well borings and the test pits within the landfill footprint were terminated when bay mud was encountered.
- Lean Clay Unit (till): This unit is found in all locations at various elevations. This unit is very stiff, lean clay with occasional trace fine sand laminations and is not fully penetrated in any boring.

Lithologic data from monitoring wells (presented in cross section in Figures 12 and 13) suggest that the landfill material is underlain by native bay mud of unknown thickness. The native bay mud is underlain by deeper native glacial sand units. The native bay mud likely acts as an aquitard, separating shallow groundwater in the landfill material from lower water-bearing zones. This hypothesis is supported by the apparent lack of a deeper water-bearing zone beneath the site. One Phase I boring (MW-01) drilled to a total depth of 70 feet bgs encountered groundwater only in a shallow water-bearing zone from approximately 4 to 31 feet below ground surface. The lack of a deeper water-bearing zone within the upper 70 feet of ground surface suggests that the shallow groundwater zone encountered in the

monitoring wells has minimal connectivity to any deeper water-bearing zones that may be present.

Groundwater elevations measured in the three monitoring wells are significantly higher than groundwater observed in landfill excavations during the test pit investigation. This observation suggests that the upgradient shallow groundwater zone between MW-02 and MW-04 may be hydraulically disconnected from the shallow groundwater zone within the landfill footprint. This supposition is supported by observations of flow in the swale southwest of the site along South March Point Road, which would act as a common discharge zone for upgradient groundwater and the groundwater in the waste if there was hydraulic connectivity between these two waterbearing zones. The swale is tidally influenced. At high tide, water in the swale has been observed to extend almost all the way up to monitoring well MW-02, suggesting that groundwater at MW-04 and as far north as MW-02 might be disconnected from groundwater within the landfill.

Location MW-03 is not separated from the landfill by a swale. Fill material was encountered in the MW-03 boring during installation, suggesting that this area may be connected to the groundwater in the landfill. However, the well location is likely downgradient only of the northernmost tip of the landfill. Our interpretation, based on local topography, is that a groundwater divide may occur just north of the sawmill buildings. Groundwater north of this suspected divide may radiate in both north and east directions toward Padilla Bay. Groundwater south of this suspected divide either flows directly east toward seeps SP-01, SP-02, and SP-03, or south toward the swale. As outlined in Figure 14, the middle and southern part of the swale may receive discharge from both upgradient groundwater on the west and southwest side of March Point Road and from groundwater beneath and within the landfill. The swale ultimately flows into the inner lagoon south of the landfill boundary.

No seeps were observed along the southern landfill shoreline or the inner lagoon (Figure 14). This area is the approximate location of a linear dike-like feature observed along the eastern extent of the landfill area in historical aerial photographs from 1971. If present, this dike would act as a hydraulic barrier at the site, diverting groundwater flow to the southern or southwestern edge of the site, and could explain the absence of seeps along this part of the landfill. Seeps observed at the northern end of the landfill enter the inner lagoon and are encountered in approximately the same location as seeps referred to in historical reports (Figures 2 and 14). In addition, surface water observed at location SW-07 was similar in color and odor to seep water encountered at location SP-01 during the December 2008 sampling event. These observations may suggest that a dike does not extend north to this part of the landfill boundary. Aerial photography also indicates that this northern boundary was created AMEC Geomatrix, Inc.

as landfill material was being deposited and later armored with large concrete debris (visible today) when landfill operations ended.

This conceptual site model suggests that there are limited areas along the landfill boundary where leachate is seeping, or has the potential to seep, into surface water. These areas are predominantly in the eastern part of the swale south of the site and the northeastern landfill boundary within the inner lagoon. Further, the landfill refuse may extend northwesterly, at least to the location of MW-03, based on fill material (possibly related to the refuse) found in that boring. Soil samples collected from the test pits dug within the landfill footprint indicate elevated levels (above PSLs) for metals, TPH-G, SVOCs, PCBs, and pesticides.

However, of the more than 9,000 individual analyses conducted as part of the Phase I RI, 87.6 percent resulted in analytes not detected at the method detection limits. Furthermore, only results from only 225 analyses (approximately 2.5 percent) consisting of 10 analytes exceeded the PSLs developed for this site, and concentrations of only two analytes (arsenic and copper) exceeded the PSLs by more than a factor of 10. These higher levels of both arsenic and copper were found in water samples from all sampling locations, including upgradient wells and upstream surface water stations.

Metals were found above detection limits and above the PSLs more than any other group of analytes. Metals are naturally occurring elements, and the differences between total and dissolved concentrations often indicate that particulates entrained in the samples may be affecting the results. Concentrations of total metals were usually higher than concentrations of dissolved metals, and in some cases, concentrations of total metals were substantially higher than concentrations of dissolved metals.

Metals concentrations exceeded PSLs for arsenic, copper, lead, manganese, mercury, and nickel. However, the only metals to exceed PSLs in the two upgradient monitoring wells (MW-02 and MW-04) were arsenic and manganese, and manganese was detected greater than the PSL only in MW-04. The upstream surface water samples (SW-01) also exceeded the PSLs for arsenic, copper, lead, manganese, mercury, nickel, and zinc. Mercury only exceeded the PSL in the upstream surface water sample. Nickel, lead, and zinc in that same upstream sample were detected at 72.2 μ g/L, 24 μ g/L, and 150 μ g/L, respectively, all greater than the associated PSL. The PSL for lead was only exceeded in one other sample, in the primary sample at MW-03; however, it was below the PSL in the duplicate sample from the same well.

Both VOCs and SVOCs were rarely detected in the samples, and no analytes in these groups exceeded the PSLs. While PAHs were detected more often than VOCs and SVOCs, no analytes in that group exceeded their respective PSLs either.

There were no TPH compounds detected in either groundwater or surface water. However, TPH-D was consistently detected at low levels (0.31 mg/L to 0.76 mg/L) in all three seep samples. While no PSLs were established for TPH-D in the RI/FS Work Plan, of the 11 detections of TPH-D in seep samples, four were less than the MTCA Method A Groundwater Cleanup Level of 0.5 mg/L (Note: there is no surface water cleanup level for TPH-D).

PCBs were detected at only 3 of 12 locations (MW-03, SP-02 and SP-03), and the concentrations exceeded the PSLs in only one location (SP-03 in December 2008 and April 2009). PCBs were detected in the primary and duplicate sample from MW-03 during the October, December, and April sampling events, but the concentrations of total PCBs, calculated using one-half of the reporting limit for non-detect values, were less than the PSL of 0.07 μ g/L. The concentration of total PCBs in the duplicate December 2008 sample from MW-03 was equal to, but did not exceed, the PSL. During April 2009, PCBs were detected at SP-02, but the concentration of total PCBs was less than the PSL, and PCBs were not detected during the remaining three sampling events. At SP-03, the concentration of total PCBs in October was less than the PSL, but concentrations in the December 2008 and April 2009 samples, at 0.14 μ g/L and 0.121 μ g/L, respectively, exceeded the PSL. PCBs were not detected in any of the samples during the July sampling event.

Likewise, pesticides were detected in only two locations, monitoring well MW-03 and surface water station SW-06. Pesticides including 4,4'-DDD, alpha-BHC, beta-BHC, delta-BHC, and gamma-BHC (Lindane) were detected in well MW-03. However, only concentrations of alpha-BHC (detected during all four sampling events) and 4,4'-DDD (detected in December, April and July) exceeded their respective PSLs. The only pesticide detected in SW-06 was 4,4'-DDD in December, which at a concentration of 0.0019 μ g/L was slightly greater than the PSL of 0.00166 μ g/L.

In summary, large numbers of drums or other sources of hazardous or dangerous waste were not identified within the landfill. Most of the test pit anomalies were identified as benign waste including a large number of washing machines. Drums were identified in only two of the test pits. Additionally, the Phase I sediment bioassays completed to date do not suggest that discharges from the landfill are impairing the adjacent ecosystem. The conceptual site model also suggests that the landfill is somewhat isolated from groundwater by the tide flat deposits and may not be in a position to affect potable groundwater resources.

AMEC Geomatrix, Inc.

The locations of greatest concern are MW-03, the monitoring well completed in fill directly north of the landfill, and SP-03, the southernmost seep location that discharges to the Padilla Bay Inner Lagoon. Both of these locations have several analytes that exceed project PSLs. However, the upstream surface water location SW-01 is of nearly equal concern because it has the highest concentrations of manganese and mercury found in any of the groundwater, seep, or surface water samples. Surface water at SW-01 flows beneath South March Point Road in a culvert and feeds into the swale directly west of the landfill. This same swale then continues southeast past stations SW-03, SW-04, and SW-05 as it joins the Padilla Bay inner lagoon.

Additional investigations and ongoing monitoring, outlined in Section 6.2, will be completed during the Phase II RI to evaluate whether the conceptual site model and the conclusions based on the conceptual site model are accurate.

6.2 PROPOSED PHASE II SCOPE OF WORK

The Phase II investigation is intended to fill data gaps, confirm the Phase I conceptual site model, and provide sufficient information for the FS to develop and evaluate remedial measures. Based on the conceptual site model developed from the Phase I investigation (Figures 12 through 14), we propose the following additional work to be carried out at the site as part of the Phase II RI. A detailed Phase II RI/FS sampling and analysis plan will be developed for Ecology's review and approval.

- **Test Pits** Additional test pit excavations are needed to fully delineate the extent of landfill waste at the landfill edges and further investigate the area around the sawmill. In addition, the southern boundary area along the swale, the area along the northwest boundary adjacent to monitoring well MW-03, and the BNSF right-of-way need further investigation. Soil samples from the test pits associated with suspicious or industrial waste will be collected and analyzed for the same analytical suite used for Phase I soil samples.
- **Geoprobe Borings** It is anticipated that the test pits will be excavated to groundwater which is expected at approximately 10 feet bgs. If the depth to the original Bay Mud horizon at these locations exceeds this depth, then geoprobe borings will be advanced at the test pit locations to evaluate the presence of and depth to the original Bay Mud horizon. This horizon is believed to be an aquitard unit underlying the entirety of the site, and its depth is important in estimating the costs for containment options to be evaluated in the FS. Selected soil samples from the Bay Mud horizon will be analyzed for the same analytical suite used for Phase I soil samples.
- **Monitoring Wells in Waste** Five new monitoring wells will be installed within the landfill as part of the Phase II investigation. These new monitoring wells will be

sampled over several seasons and analyzed for the same analytical suite used for Phase I water samples. Several of the borings for these monitoring wells will be drilled through the Bay Mud layer so that its thickness can be determined. To minimize cross-contamination, these borings will be advanced inside a largediameter, conductor casing sealed at the top of the mud. After the bottom of the mud has been reached, the boring will be sealed, the conductor casing will be withdrawn, and the screens installed in the waste above the mud.

Soil samples will be collected from test pits and geoprobe borings for soil classification. Selected soil samples will be submitted to a laboratory for geotechnical testing. Soil gradation, moisture content, hydraulic conductivity and/or triaxial permeability, and Atterberg limits testing are proposed for the Phase II investigation.

- **Piezometer Installation** Piezometers will be installed in waste at the site. The piezometers and monitoring wells will be used to obtain groundwater level data to evaluate the groundwater flow regime in the landfilled materials. Depending on site conditions, the piezometers will be advanced using a direct-push method and installed with pre-packed screens or through conventional hollow-stem auger drilling and standard well construction methods. Monthly groundwater elevation data will be collected from the piezometers and the several monitoring wells for a period of 1 year.
- **Bay Mud Testing** Bay Mud samples will be collected from within the inner lagoon in the vicinity of the seep sample locations and/or the monitoring well borings drilled through the mud using a Shelby tube. Several samples will be tested to determine shear strength, triaxial permeability, as well as conventional physical parameters. These data can be used to evaluate the hydraulic properties of the Bay Mud underlying the site, which is presumed to serve as the aquitard beneath the landfill.
- Soil Sample Archives In addition to the soil samples collected and analyzed as discussed above, one soil sample from each soil testing location will be frozen and archived for possible future analytical testing.
- **Dike-like Feature Investigation** Historical aerial photographs indicate the presence of a dike-like feature along the eastern extent of the landfill area. We believe that this feature was built prior to placement of the waste in the southern half of the landfill. Test pits will be excavated along the feature to evaluate its presence and to collect samples for geotechnical testing: gradation, moisture content, Atterberg Limits, shear strength, and hydraulic conductivity.
- Native Sand Monitoring Well In addition to continued monitoring of groundwater from seeps and monitoring wells in waste, two monitoring wells will be installed along and within the above-mentioned dike structure. This well will be screened in the native sands below the Bay Mud by first installing and sealing a large-diameter conductor casing in the mud, then advancing a smaller diameter boring, and finally installing the well to avoid potential cross-contamination. These

new monitoring wells will be sampled several seasons and analyzed for the same analytical suites used for Phase I water samples.

- **Tidal Influence Testing** Following the investigation of the dike, the piezometer installation, and monitoring well installation, an investigation of tidal effects on groundwater in the waste will be necessary. The scope of this investigation will be determined after these additional data are collected and the results have been evaluated.
- Sediment Testing —Sediment samples will be analyzed for bioaccumulative parameters during the Phase II investigation.
- Sampling of Existing Monitoring Wells In addition to the proposed Phase II scope discussed above, and based on quarterly analytical data collected since October 2008, we propose to alter the current groundwater (MW-01, MW-03 and MW-04), seep, and surface water analytical suite by eliminating all classes of analytes where PSLs have not been exceeded during the first year of monitoring. Existing monitoring wells will be sampled at similar intervals as the monitoring wells located within the waste.
- A Simplified or Site-Specific TEE Potential terrestrial impacts will be addressed during the Phase II investigation by completion of a TEE based on the requirements in WAC 173-340-7491(1). The problem formulation and method selection steps will be completed as part of the Phase II RI in consultation with Ecology.

This page intentionally left blank.

7.0 REFERENCES

- AMEC (AMEC Geomatrix, Inc.), 2008a, Draft Uplands Remedial Investigation/Feasibility Study Work Plan, March Point (Whitmarsh) Landfill, Skagit County, Washington: Prepared for Skagit County Public Works, Mount Vernon, Washington, October.
- AMEC, 2008b, Sediment Investigation Work Plan, March Point (Whitmarsh) Landfill, Skagit County, Washington: Prepared for Skagit County Public Works, Mount Vernon, Washington, July.
- Ecology (Washington State Department of Ecology), 2008, Cleanup Levels and Risk Calculations (CLARC) website, https://fortress.wa.gov/ecy/clarc, Accessed July 7 and 8.
- Ecology, 1999, Investigation of Chemical Contamination at Whitmarsh Landfill and Padilla Bay Lagoon, Publication No. 99-306, February.
- Ecology, 1994, Natural Background Soil Metals Concentrations in Washington State, Ecology Publ. 94-115, October.
- Ecology, 1992, Personal communication (letter from Norm Peck to Mike Gallagher), Department of Ecology, Northwest Regional Office, Bellevue, Washington, February 26.
- Ecology, 1986, Site Inspection Report, March Point Landfill, Anacortes, Washington: Ecology, Lacey, March.
- Ecology, 1985, Letter from Michael Spencer, Hazardous Waste Remedial Action Section, Ecology to Director, Environmental Health, Skagit County Health Department, January 8.
- GeoEngineers, 2007, Summary of Existing Information and Identification of Upland Data Gaps, March Point (aka Whitmarsh) Landfill, Anacortes, Washington, File No. 0504-037-00: Prepared for Washington State Department of Ecology, Lacey.
- Herrera (Herrera Environmental Consultants), 2004, Preliminary Assessment, Whitmarsh Rail Siding Site, Skagit County, Washington: Prepared for U.S. Environmental Protection Agency, Region 10, July.
- NGA (Northwest Geophysical Associates, Inc.), 2008, Geophysical Site Investigation, Whitmarsh Landfill, Anacortes, Washington, October 3.
- Skagit County, 1996, Letter from Ken Willis, Environmental Health Specialist, Skagit county Health Department, to Lauren Rich, Swinomish Indian Tribal Community, regarding Whitmarsh Landfill Sample Data Results, December 6.
- Skagit County Health Department, 1990, A Century of Garbage, The Evolution of Skagit County's Sold Waste Disposal Sites, 1910-2010 with Management Recommendations: Skagit County Health Department.

This page intentionally left blank.

RESULTS OF FIELD WATER QUALITY PARAMETER MEASUREMENTS March Point (Whitmarsh) Landfill Skagit County, Washington

					Water Qu	ality Paramet	ers	
		Sampling	рН	Conductivity ^{2,3}	Temperature	Turbidity	Dissolved Oxygen	Depth to Water
Station	Sampling Event	Method ¹	(unitless)	(S/cm)	(°c)	(NTU)	(mg/L)	(ft below MP)
	Oct 2008		7.32	0.22	11.8	10	0	5
	Dec 2008		7.05	0.589	9.6	213	1.01	7.83
	Apr 2009		6.97	0.623	10.43	37	0	7.56
	Jul 2009		6.36	0.0999+	12.2	10.2	0	8.2
	Oct 2008		7.87	0.156	14.6	7.7	0	9.9
N///	Dec 2008		10.9	0.418	7.9	4.7	0.18	8.02
	Apr 2009		6.94	0.643	9.4	0.1	0	7.86
	Jul 2009		7.15	0.162	15.7	11.6	8.48	9.4
	Oct 2008		8.09	0.186	11.1	35	0	3.8
	Dec 2008		9.89	0.464	9.2	0	1.01	3.37
	Apr 2009		7.26	0.513	10.52	0	0	2.95
	Jul 2009		7.33	0.103	12.6	2.8	8.87	3.05
	Oct 2008	peri	8.08	0.0192	10.9	100	3.68	NA
20-02	Dec 2008	sub	8.66	0.000997	0.5	113	9.42	NA
5	Apr 2009	peri	7.31	0.00749	13.61	13.7	5.45	NA
	Jul 2009	peri	7.37	0.00308	16	14	12.9	NA
	Oct 2008	sub	7.51	0.0344	13.4	43	8.9	NA
с0-О2	Dec 2008	peri	10.02	0.0000123	0.1	78	6.92	NA
01-02	Apr 2009	peri	6.99	0.132	13.84	6	7.6	NA
	Jul 2009	peri	7.26	0.00152	18	55	11.63	NA
	Oct 2008	peri	7.75	0.00193	13.2	395	12.15	NA
с <u>р</u> -03	Dec 2008	peri	10.15	0.0000043	0.3	363	11.95	NA
5	Apr 2009	peri	6.95	0.129	14.31	145	5.48	NA
	Jul 2009	peri	686	0.00206	19.3	45	11.65	NA
	Oct 2008	sub	6.34	0.00234	10.9	12.8	11.85	NA
SWI-01	Dec 2008	sub	7.45	0.000214	0.9	26.7	8.41	NA
	Apr 2009	sub	6.97	0.046	10.56	4.1	8.76	NA
	Jul 2009	sub	6.81	0.0025	16	0	7.72	NA
	Oct 2008	sub	9.2	0.0034	6.3	50	11.63	NA
SUV-03	Dec 2008	sub	6.83	0.0000135	1.9	125	8.99	NA
	Apr 2009	sub	7.82	0.00221	16.34	15	14.09	NA
	Jul 2009	sub	6.79	0.0999+	17.4	20	1.52	NA

AMEC Geomatrix, Inc. Page 1 of 2

RESULTS OF FIELD WATER QUALITY PARAMETER MEASUREMENTS March Point (Whitmarsh) Landfill

Skagit County, Washington

					Water Qu	ality Paramet	ers		
		Sampling	рН	Conductivity ^{2,3}	Temperature	Turbidity	Dissolved Oxygen	Depth to Water	-
Station	Sampling Event	Method ¹	(unitless)	(S/cm)	(0°C)	(NTU)	(mg/L)	(ft below MP)	1
	Oct 2008	ans	8	0.00417	4.4	220	11.45	NA	_
C/V/ 04	Dec 2008	qns	6.8	0.0000003	1.8	198	8.99	NA	
+0-110	Apr 2009	qns	6.74	0.00755	12.49	17.2	7.52	NA	
	Jul 2009	qns	8.27	6660'0	22.7	45.7	2.59	NA	
	Oct 2008	qns	8.07	0.0308	5.1	107	9.37	NA	
CVV OF	Dec 2008	qns	6.78	0.00000791	2.2	133	9.03	NA	
00-000	Apr 2009	qns	7.54	0.00682	16.47	11	10.55	NA	
	Jul 2009	qns	8.66	0.0313	26.4	12.3	4.18	NA	
	Oct 2008	qns	7.93	0.0361	6.7	29	8.68	NA	
SWIDE	Dec 2008	qns	6.51	0.0215	6.0	43	9.1	NA	
00-00	Apr 2009	qns	7.41	0.0183	16.81	14	13.85	NA	
	Jul 2009	aus	7.62	0.04	23.5	27	3.76	NA	
	Oct 2008		SN	SN	SN	SN	SN	NS	
C/M/ 07	Dec 2008	peri	8.2	0.000606	3.8	91.3	10.08	NA	
	Apr 2009		NS	SN	SN	NS	NS	NS	
	Jul 2009		NS	SN	SN	NS	NS	NS	
									1

Notes

- peri = sample collected using peristaltic pump.
- sub = sample collected by submerging precleaned laboratory-supplied sampling bottle.
- 2. For monitoring wells, values represent stabilized values following purging and recorded immediatedly prior to sampling. Values for suface water and seeps are nonstabilized, instantaneous readings recorded prior to sampling.
 - 3. Plus symbol (+) indicates parameter exceeded calibration range of the instrument.

Abbreviations

NA = not applicable	NS = not sampled	NTU = nephelometric turbidity unit	s/cm = siemens per centimeter
°C = degrees celsius	tt = feet	mg/L = milligrams per liter	<pre>MP = measuring point</pre>

PRELIMINARY COPCs FOR UPLANDS SITE

March Point (Whitmarsh) Landfill Skagit County, Washington

	Previously Detected in Surface Water/Seep	Previously Detected in
Analyte'	Samples	Sediments
Metals		
Aluminum	Х	Х
Arsenic	Х	Х
Barium	Х	Х
Beryllium	Х	Х
Cadmium	Х	Х
Chromium	Х	Х
Copper	Х	Х
Lead	Х	Х
Manganese	Х	Х
Mercury	Х	Х
Molybdenum	Х	Х
Nickel	Х	Х
Selenium	Х	Х
Silver	Х	Х
Strontium	Х	Х
Thallium	Х	
Titanium		Х
Vanadium		Х
Zinc	Х	Х
Petroleum Hydrocarbons		
TPH-Diesel range	Х	Х
TPH-Heavy oil range		Х
TPH- Gasoline range		
VOCs		
1,2,4-Trimethylbenzene	Х	Х
1.2-Dichlorobenzene	Х	
1,3,5-Trimethylbenzene	Х	Х
1,3-Dichlorobenzene	Х	
1,4-Dichlorobenzene	Х	
2-Butanone		Х
4-Methyl-2-pentanone		Х
Acetone		Х
Benzene	Х	Х
Carbon disulfide		Х
Chlorobenzene	X	
Diethyl ether	X	
Ethylbenzene	X	X
Isopropylbenzene (cumene)	X	X
m,p-Xylenes	X	Χ
Methylene chloride		X
o-Xylene	Х	X
Toluene	X	X

PRELIMINARY COPCs FOR UPLANDS SITE

March Point (Whitmarsh) Landfill Skagit County, Washington

	Previously Detected in Surface Water/Seep	Previously Detected in
Analyte ¹	Samples	Sediments
SVOCs		
1-Methylnaphthalene	Х	Х
2,4-Dimethylphenol	Х	Х
2-Methylnaphthalene	Х	Х
2-Methylphenol	Х	Х
4-Methylphenol (p-cresol)	Х	Х
Acenaphthene	Х	Х
Anthracene	Х	Х
Benzo(a)anthracene	Х	Х
Benzo(a)pyrene		Х
Benzo(b)fluoranthene		Х
Benzo(k)fluoranthene		Х
Benzoic acid		Х
Bis(2-chloroethyl) ether		Х
Bis(2-ethylhexyl) phthalate	Х	Х
Butyl benzyl phthalate		Х
Carbazole	Х	Х
Chrysene	Х	Х
Dibenzo(a,h)anthracene		Х
Dibenzofuran	Х	Х
Diethyl phthalate	Х	Х
di-n-Butyl phthalate		Х
Fluoranthene	Х	Х
Fluorene	Х	Х
Indeno(1,2,3-cd)pyrene		Х
Naphthalene	Х	Х
N-Nitrosodiphenylamine	Х	
Phenol	Х	Х
Pyrene	Х	Х
Other		
Dioxins and furans (PCDD and PCDF)		Х
Carbaryl	X	
Ammonia	X	
Phosphorus		

<u>Notes</u>

1. Shaded cells indicate compound not detected (or not analyzed) at the site but suspected at site based on industries that reportedly used landfill.

Abbreviations

COPCs = contaminants of potential concern

PCDD = polychlorinated dibenzo-p-dioxins

PCDF = polychlorinated dibenzofurans

SVOCs = semivolatile organic compounds

VOCs = volatile organic compounds

SUMMARY OF SOIL SCREENING LEVELS

March Point (Whitmarsh) Landfill Skagit County, Washington

concentrations in milligrams per kilogram (mg/kg)

				МТСА			MTCA Method B	Sites that Qualify for	Puget Sound	
			Target	Mothod A	МТСА	МТСА	Protective of	Simplified TEF -	Soil Natural	
		Analytical	Reporting	Internou A,	Method B	Method B	Groundwater as	Industrial or	Background	
Analyte ^{1,2}		Method ³	$I imit (POI)^4$	l and lleo	Carcinogen	Noncarcinogon	Marino Surfaco Wator ⁵	Commercial Site ⁶	$(Ecology, 1994)^7$	D QI ⁸
Analyte	CAS NO.	Wethou		Lanu Use	Carcinogen	Noncarcinogen	Warme Sunace Water	Commercial Site	(Ecology, 1994)	FJL
				0			10	1		
Aluminum	7429-90-5	EPA 6010B	5.0	9			N/A ¹⁰		32,600.00	32,600.00
Antimony	7440-36-0	EPA 6010B	5.0			32.00	578.60			32.00
Arsenic	7440-38-2	EPA 7060A	0.10	20.00	0.67	24.00	0.06	20 ¹¹	7.00	7.00
Barium	7440-39-3	EPA 6010B	0.30			16,000.00	N/A	1,320.00		1,320.00
Beryllium	7440-41-7	EPA 6010B	0.1			160.00	4,267.00		0.60	160.00
Cadmium	7440-43-9	EPA 6010B	0.2	2.00		80.00	1.21	36.00	1.00	1.21
Chromium	7440-47-3	EPA 6010B	0.5	2,000.00		120,000.00	960.00	135.00	117***	135.00
Copper	7440-50-8	EPA 6010B	0.2			3,000.00	1.07	550.00	36.00	36.00
Iron	7439-89-6	EPA 6010B	5.0				N/A		58,700.00	58,700.00
Lead	7439-92-1	EPA 6010B	2.0	250.00			1,620.00	220.00	24.00	220.00
Manganese	7439-96-5	EPA 6010B	0.1			11,000.00	0.40	23,500.00	1,200.00	1,200.00
Mercury	7439-97-6	EPA 7471A	0.05	2.00		24.00	0.03	0.7 ¹²	0.07	0.07
Molybdenum	7439-98-7	EPA 6010B	0.5			400.00	0.02	71.00		0.50
Nickel	7440-02-0	EPA 6010B	1.0			1,600.00	10.69	1,850.00	48.00	48.00
Selenium	7782-49-2	EPA 6010B	5.0			400.00	7.38	0.80		5.00
Silver	7440-22-4	EPA 6010B	0.3			400.00	4,420.00			400.00
Strontium	7440-24-6	EPA 6010B	0.1			48,000.00	0.004			0.10
Thallium	7440-28-0	EPA 6010B	5.0			5.60	0.67			5.00
Titanium	7440-32-6	EPA 6010B	0.5				No CLARC ¹³			
Vanadium	7440-62-2	EPA 6010B	0.3			560.00	N/A			560.00
Zinc	7440-66-6	EPA 6010B	1.0			24,000.00	100.80	570.00	85.00	100.80
ТРН										
TPH - Hydrocarbon identification	NA	Ecology NWTPH-HCID	100							
TPH - Diesel range	NA	Ecology NWTPH-Dx	5	2,000.00			N/A	15,000.00		2,000.00
TPH - Heavy oil range	NA	Ecology NWTPH-Dx	10	2,000.00			N/A			2,000.00
TPH - Gasoline range	NA	Ecology NWTPH-Gx	5	30.00			N/A	12,000.00		30.00
SVOCs										
1-Methylnaphthalene	90-12-0	EPA 8270D	0.067			24.00	N/A			24.00
2,4,5-Trichlorophenol	95-95-4	EPA 8270D	0.33			8,000.00	129.60			129.60
2,4,6-Trichlorophenol	88-06-2	EPA 8270D	0.33		91.00		0.03			0.33
2,4-Dichlorophenol	120-83-2	EPA 8270D	0.33			240.00	1.33			1.33
2,4-Dimethylphenol	105-67-9	EPA 8270D	0.067			1,600.00	2.20			2.20
2,4-Dinitrophenol	51-28-5	EPA 8270D	0.67			160.00	14.00			14.00
2,4-Dinitrotoluene	121-14-2	EPA 8270D	0.33			160.00	0.02			0.33
2,6-Dinitrotoluene	606-20-2	EPA 8270D	0.33			80.00	N/A			80.00
2-Chloronaphthalene	91-58-7	EPA 8270D	0.067				4.00			4.00

SUMMARY OF SOIL SCREENING LEVELS

March Point (Whitmarsh) Landfill Skagit County, Washington

concentrations in milligrams per kilogram (mg/kg)

			Target	MTCA Method A	МТСА	МТСА	MTCA Method B Protective of	Sites that Qualify for Simplified TEE -	Puget Sound Soil Natural	
		Analytical	Reporting	Unrestricted	Method B	Method B	Groundwater as	Industrial or	Background	
Analyte ^{1,2}	CAS No.	Method ³	Limit (PQL) ⁴	Land Use	Carcinogen	Noncarcinogen	Marine Surface Water ⁵	Commercial Site ⁶	(Ecology, 1994) ⁷	PSL ⁸
SVOCs (Continued)	•	•	•		•			·		
2-Chlorophenol	95-57-8	EPA 8270D	0.067			400.00	38,150.00			400.00
2-Methylnaphthalene	91-57-6	EPA 8270D	0.067			320.00	N/A			320.00
2-Methylphenol	95-48-7	EPA 8270D	0.067			4,000.00	N/A			4,000.00
2-Nitroaniline	88-74-4	EPA 8270D	0.33				N/A			
2-Nitrophenol	88-75-5	EPA 8270D	0.33				No CLARC			
3-Nitroaniline	99-09-2	EPA 8270D	0.33				No CLARC			
3,3'-Dichlorobenzidine	91-94-1	EPA 8270D	0.33		2.20		0.0005152			0.33
4,6-Dinitro-2-methylphenol	534-52-1	EPA 8270D	0.67				No CLARC			
4-Bromophenyl phenyl ether	101-55-3	EPA 8270D	0.067				No CLARC			
4-Chloro-3-methylphenol	59-50-7	EPA 8270D	0.33				No CLARC			
4-Chloroaniline	106-47-8	EPA 8270D	0.33			320.00	N/A			320.00
4-Chlorophenyl phenyl ether	7005-72-3	EPA 8270D	0.067				No CLARC			
4-Methylphenol (p-cresol)	106-44-5	EPA 8270D	0.067			400.00	N/A			400.00
4-Nitroaniline	100-01-6	EPA 8270D	0.33				No CLARC			
4-Nitrophenol	100-02-7	EPA 8270D	0.33				No CLARC			
Acenaphthene	83-32-9	EPA 8270-SIM	0.067			4,800.00	65.29			65.29
Acenaphthylene	208-96-8	EPA 8270-SIM	0.067				N/A			
Aniline	62-53-3	EPA 8270D	0.067		180.00		N/A			180.00
Anthracene	120-12-7	EPA 8270-SIM	0.067			24,000.00	133,700.00			24,000.00
Benzidine	92-87-5	EPA 8270D	0.67		0.0043	240.00	0.000008			0.67
Benzo(a)anthracene	56-55-3	EPA 8270-SIM	0.067				0.13			0.13
Benzo(a)pyrene	50-32-8	EPA 8270-SIM	0.067	0.10	0.14		0.35	300.00		0.10
Benzo(b)fluoranthene	205-99-2	EPA 8270-SIM	0.067				0.58			0.58
Benzo(ghi)perylene	191-24-2	EPA 8270-SIM	0.067				N/A			
Benzo(k)fluoranthene	207-08-9	EPA 8270-SIM	0.067				0.43			0.43
Benzoic acid	65-85-0	EPA 8270D	0.67			320,000.00	N/A			320,000.00
Benzyl alcohol	100-51-6	EPA 8270D	0.33			24,000.00	N/A			24,000.00
Bis(2-chloroethoxy)methane	111-91-1	EPA 8270D	0.067				No CLARC			
Bis-(2-chloroethyl) ether	111-44-4	EPA 8270D	0.067		0.91		0.002926			0.07
Bis(2-chloroisopropyl) ether	108-60-1		0.067			3 200 00	169.00			169.00
[2,2'-oxybis(1-chloropropane)]	100-00-1	LFA 0270D	0.007			3,200.00	108.00			108.00
Bis(2-ethylhexyl) phthalate	117-81-7	EPA 8270D	0.067		71.00	1,600.00	4.85			4.85
Butyl benzyl phthalate	85-68-7	EPA 8270D	0.067			16,000.00	369.20			369.20
Carbaryl	63-25-2	EPA 8270D	0.4			8,000.00	N/A			8,000.00
Carbazole	86-74-8	EPA 8270D	0.067		50.00		N/A			50.00
Chrysene	218-01-9	EPA 8270-SIM	0.067				0.14			0.14
Dibenzo(a,h)anthracene	53-70-3	EPA 8270-SIM	0.067				0.65			0.65
Dibenzofuran	132-64-9	EPA 8270D	0.067			160.00	N/A			160.00

SUMMARY OF SOIL SCREENING LEVELS

March Point (Whitmarsh) Landfill Skagit County, Washington

concentrations in milligrams per kilogram (mg/kg)

					<u> </u>					
Analyte ^{1,2}	CAS No.	Analytical Method ³	Target Reporting Limit (PQL) ⁴	MTCA Method A, Unrestricted Land Use	MTCA Method B, Carcinogen	MTCA Method B, Noncarcinogen	MTCA Method B Protective of Groundwater as Marine Surface Water ⁵	Sites that Qualify for Simplified TEE - Industrial or Commercial Site ⁶	Puget Sound Soil Natural Background (Ecology, 1994) ⁷	PSL ⁸
SVOCs (Continued)	-		-	•	-	-	•	·		•
Diethyl phthalate	84-66-2	EPA 8270D	0.067			64,000.00	157.90			157.90
Dimethyl phthalate	131-11-3	EPA 8270D	0.067			80.000.00	288.00			288.00
Di-n-butyl phthalate	84-74-2	EPA 8270D	0.067			8,000.00	104.40			104.40
Di-n-octyl phthalate	117-84-0	EPA 8270D	0.067			1,600.00	N/A			1,600.00
Fluoranthene	206-44-0	EPA 8270-SIM	0.067			3,200.00	88.56			88.56
Fluorene	86-73-7	EPA 8270-SIM	0.067			3,200.00	553.00			553.00
Hexachlorobenzene	118-74-1	EPA 8270D	0.067		0.63	64.00	0.0004652	31.00		0.07
Hexachlorobutadiene	87-58-3	EPA 8270D	0.067		13.00	16.00	No CLARC			13.00
Hexachlorocyclopentadiene	77-47-4	EPA 8270D	0.33			480.00	4,406.00			480.00
Hexachloroethane	67-72-1	EPA 8270D	0.067		71.00	80.00	0.13			0.13
Indeno(1,2,3-cd)pyrene	193-39-5	EPA 8270-SIM	0.067				1.26			1.26
Isophorone	78-59-1	EPA 8270D	0.067		1,100.00	16,000.00	2.41			2.41
Naphthalene	91-20-3	EPA 8270-SIM	0.067	5.00		1,600.00	137.40			5.00
Nitrobenzene	98-95-3	EPA 8270D	0.067			40.00	2.88			2.88
N-Nitrosodimethylamine	62-75-9	EPA 8270D	0.33				0.01			0.33
N-Nitrosodi-n-propylamine	621-64-7	EPA 8270D	0.330		0.14		0.002285			0.33
N-Nitrosodiphenylamine	86-30-6	EPA 8270D	0.33		200.00		0.18			0.33
Pentachlorophenol	87-86-5	EPA 8270D	0.33		8.30	2,400.00	0.05	11.00		0.33
Phenanthrene	85-01-8	EPA 8270-SIM	0.067				N/A			
Phenol	108-95-2	EPA 8270D	0.067			48,000.00	5,038.00			5,038.00
Pyrene	129-00-0	EPA 8270-SIM	0.067			2,400.00	3,546.00			2,400.00
Pyridine	110-86-1	EPA 8270D	0.33			80.00	N/A			80.00
VOCs	-	•	-	•	-	-	•	·		•
1,1,1,2-Tetrachloroethane	630-20-6	EPA 8260B	0.001		38.00	2,400.00	0.02			0.02
1,1,1-Trichloroethane	71-55-6	EPA 8260B	0.001	2.00		72,000.00	148.500.00			2.00
1,1,2,2-Tetrachloroethane	79-34-5	EPA 8260B	0.001		5.00		0.02			0.02
1,1,2-Trichloro-1,2,2-	70.40.4		0.000			0 400 000 00				
trifluoroethane	76-13-1	EPA 8260B	0.002			2,400,000.00	N/A			2,400,000.00
1,1,2-Trichloroethane	79-00-5	EPA 8260B	0.001		18.00	320.00	0.09			0.09
1,1-Dichloroethane	75-34-3	EPA 8260B	0.001			8,000.00	0.02			0.02
1,1-Dichloroethene	75-35-4	EPA 8260B	0.001			4,000.00	N/A			4,000.00
1,2,3-Trichlorobenzene	87-61-6	EPA 8260B	0.005				No CLARC			
1,2,3-Trichloropropane	96-18-4	EPA 8260B	0.002		0.14	480.00	N/A			0.14
1,2,4-Trichlorobenzene	120-82-1	EPA 8260B	0.005			800.00	2.67			2.67
1,2,4-Trimethylbenzene	95-63-6	EPA 8260B	0.001			4,000.00	N/A			4,000.00
1,2-Dibromo-3-chloropropane	96-12-8	EPA 8260B	0.005		0.71		N/A			0.71
1,2-Dibromoethane	106-93-4	EPA 8260B	0.001	0.01	0.01		N/A			0.01
1,2-Dichlorobenzene	95-50-1	EPA 8260B	0.001			7,200.00	15.26			15.26

SUMMARY OF SOIL SCREENING LEVELS

March Point (Whitmarsh) Landfill Skagit County, Washington

concentrations in milligrams per kilogram (mg/kg)

l) PSL°
0.18
0.08
4,000.00
3.85
0.08
48,000.00
6,400.00
8,000.00
0.01
0.03
0.09
0.93
4.49
8,000.00
0.01
13.86
350.00
1.49
0.54
800.00
0.07
16.000.00
6.00
13.00
8.000.00
9.00
0.10
0.02
1,600.00
160.000.00

SUMMARY OF SOIL SCREENING LEVELS

March Point (Whitmarsh) Landfill Skagit County, Washington

concentrations in milligrams per kilogram (mg/kg)

				МТСА			MTCA Method B	Sites that Qualify for	Puget Sound	1
			Target	Method A,	МТСА	МТСА	Protective of	Simplified TEE -	Soil Natural	1
		Analytical	Reporting	Unrestricted	Method B,	Method B,	Groundwater as	Industrial or	Background	1
Analyte ^{1,2}	CAS No.	Method ³	Limit (PQL) ⁴	Land Use	Carcinogen	Noncarcinogen	Marine Surface Water ⁵	Commercial Site ⁶	(Ecology, 1994) ⁷	PSL ⁸
VOCs (Continued)										
p-Isopropyltoluene	99-87-6	EPA 8260B	0.001				No CLARC			
sec-Butylbenzene	135-98-8	EPA 8260B	0.001				N/A			
Styrene	100-42-5	EPA 8260B	0.001		33.00	16,000.00	N/A			33.00
tert-Butylbenzene	98-06-6	EPA 8260B	0.001				N/A			
Tetrachloroethene	127-18-4	EPA 8260B	0.001	0.05	1.90	800.00	0.004173			0.004173
Toluene	108-88-3	EPA 8260B	0.001	7.00		6,400.00	190.00			7.00
trans-1,2-Dichloroethene	156-60-5	EPA 8260B	0.001			1,600.00	54.36			54.36
trans-1,3-Dichloropropene	10061-02-6	EPA 8260B	0.001				No CLARC			
Trichloroethene	79-01-6	EPA 8260B	0.001	0.03	2.50	24.00	0.01			0.01
Trichlorofluoromethane	75-69-4	EPA 8260B	0.001			24,000.00	N/A			24,000.00
Vinyl chloride	75-01-4	EPA 8260B	0.001		0.67	240.00	0.02			0.02
PCBs										-
Aroclor 1016	12674-11-2	EPA 8082 low level	0.004			5.60	0.01			0.01
Aroclor 1221	11104-28-2	EPA 8082 low level	0.004				No CLARC			
Aroclor 1232	11141-16-5	EPA 8082 low level	0.004				No CLARC			
Aroclor 1242	53469-21-9	EPA 8082 low level	0.004				No CLARC			
Aroclor 1248	12672-29-6	EPA 8082 low level	0.004				No CLARC			
Aroclor 1254	11097-69-1	EPA 8082 low level	0.004			1.60	0.000068			0.0040
Aroclor 1260	11096-82-5	EPA 8082 low level	0.004				0.49			0.49
Total polychlorinated biphenyls	1336-36-3	EPA 8082 low level	0.028	1.00	0.50		0.000397	2.00		0.03
Pesticides (Organochlorine)										
Aldrin	309-00-2	EPA 8081	0.0017		0.06	2.40	0.0000492	0.17		0.0017
Chlordane	57-74-9	EPA 8081	0.0017		2.90	40.00	0.0006042	7.00		0.0017
4,4'-DDD	72-54-8	EPA 8081	0.0033		4.20		0.0002864	1.00		0.0033
4,4'-DDE	72-55-9	EPA 8081	0.0033		2.90		0.0003793	1.00		0.0033
4,4'-DDT	50-29-3	EPA 8081	0.0033	3.00	2.90	40.00	0.0029930	1.00		0.0033
Dieldrin	60-57-1	EPA 8081	0.0033		0.06	4.00	0.0000283	0.17		0.0033
Endosulfan I	959-98-8	EPA 8081	0.0017				No CLARC			
Endosulfan II	33213-65-9	EPA 8081	0.0033				No CLARC			
Endosulfan sulfate	1031-07-8	EPA 8081	0.0033				No CLARC			
Endrin	72-20-8	EPA 8081	0.0033			24.00	0.0005152	0.40		0.0033
Endrin aldehyde	7421-93-4	EPA 8081	0.0033				No CLARC			
Endrin ketone	53494-70-5	EPA 8081	0.0033				No CLARC			<u> </u>
Heptachlor	76-44-8	EPA 8081	0.0017		0.22	40.00	0.0000153			0.0017
Heptachlor epoxide	1024-57-3	EPA 8081	0.0017		0.11	1.00	0.0027010	0.60		0.0027
a-Hexachlorocyclohexane	319-84-6	EPA 8081	0.0017		0.16		0.0001960			0.0017
b-Hexachlorocyclohexane	319-85-7	EPA 8081	0.0017		0.56		0.0007820			0.0017
c-Hexachlorocyclohexane	319-86-8	EPA 8081	0.0017				0.0001640			0.0017

SUMMARY OF SOIL SCREENING LEVELS

March Point (Whitmarsh) Landfill Skagit County, Washington

concentrations in milligrams per kilogram (mg/kg)

Analyte ^{1,2}	CAS No.	Analytical Method ³	Target Reporting Limit (PQL) ⁴	MTCA Method A, Unrestricted Land Use	MTCA Method B, Carcinogen	MTCA Method B, Noncarcinogen	MTCA Method B Protective of Groundwater as Marine Surface Water ⁵	Sites that Qualify for Simplified TEE - Industrial or Commercial Site ⁶	Puget Sound Soil Natural Background (Ecology, 1994) ⁷	PSL ⁸
Pesticides (Organochlorine) (Cor	ntinued)									
Lindane	58-89-9	EPA 8081	0.0017	0.01	0.77	24.00	0.0012160	10.00		0.0017
Methoxylchlor	72-43-5	EPA 8081	0.017			400.00	0.0481200			0.05
Toxaphene	8001-35-2	EPA 8081	0.17		0.91		0.0003848			0.17
Other										
Ammonia	7664-41-7	SM 4500-NH3 D-97	0.1				0.14			0.14
Phosphorus	7723-14-0	EPA 365.2/ SM 4500-PB	0.4			1.60	0.0004			0.40

Notes

1. Shaded analytes have been previously detected at/around the site.

2. Analytes that have been detected at the site that are not listed in this table include chloride, sulfate, ferrous iron, DOC, total organic carbon, total suspended solids, total dissolved solids, calcium, magnesium, potassium, sodium, tellurium, and dibenzothiophene.

3. Method numbers refer to EPA SW-846 Analytical Methods, Washington State Department of Ecology (Ecology) recommended analytical methods, or Standard Methods (SM) for the Examination of Water and Wastewater.

4. Reporting limits based on wet weight and will be slightly higher on a dry weight basis, including matrix interference.

5. Calculated using fixed-parameter three-phase partitioning model, WAC 173-340-747(4).

6. TEE values are from Table 479-2 of the MTCA regulations (WAC 173-340-900).

7. *** Background level for chromium is level calculated for the Custom Plywood site.

8. PSL was chosen as the lower of the MTCA Method A cleanup levels, MTCA Method B cleanup levels, and TEE cleanup level for industrial and commercial sites, unless natural background concentration and/or available laboratory PQL values were higher. In those cases, PSL was set to the natural background concentration or the PQL. The PSL shown is the screening level used in Table 10.

9. -- = No value available.

10. N/A = No surface water screening levels in CLARC database (Ecology, 2008); no soil screening level calculated.

11. TEE values are for speciated arsenic; the lower value for arsenic (III) is used. The arsenic (V) value is 95 mg/kg.

12. TEE value is for organic mercury; inorganic mercury value is 9 mg/kg.

13. No CLARC = Analyte not listed in CLARC database.

Abbreviations

- CAS = Chemical Abstracts Service
- CLARC = Cleanup Levels and Risk Calculations
- DOC = dissolved organic carbon
- EPA = U.S. Environmental Protection Agency
- MTCA = Model Toxics Control Act
- PCBs = polychlorinated biphenyls
- PQL = practical quantitation limit.
- PSL = preliminary screening level
- SIM = selective ion monitoring
- SVOCs = semivolatile organic compounds
- TEE = terrestrial ecological evaluation
- TPH = total petroleum hydrocarbons
- VOCs = volatile organic compounds
- WAC = Washington Administrative Code

SUMMARY OF GROUNDWATER AND SURFACE WATER SCREENING LEVELS

Concentrations in micrograms per liter (µg/L)	

		-		-	0			g/L)				-		
Analyte ^{1,2}	CAS No.	Analytical Method ³	Target Reporting Limit (PQL)	Groundwater MTCA Method A	Groundwater MTCA Method B, Carcinogen	Groundwater MTCA Method B, Non-Carcinogen	Aquatic Life - Marine/Chronic - Ch.173-201A WAC	Aquatic Life - Marine/Chronic - Clean Water Act 304	Aquatic Life - Marine/Chronic - National Toxics Rule 40 CFR 131	Human Health - Marine - Clean Water Act 304	Human Health - Marine - National Toxics Rule, 40 CFR 131	Surface Water MTCA Method B, Carcinogen	Surface Water MTCA Method B, Non-Carcinogen	PSL ⁴
				5	1					T				
Aluminum	7429-90-5	EPA 6010B	50	°										
Antimony	7440-36-0	EPA 6010B	50			6.40				640.00	4,300.00		1,000.00	640.00
Arsenic	7440-38-2	EPA 6020	0.2	5	0.06	4.80	36.00	36.00	36.00	0.14	0.14	0.10	18.00	0.20
Barium	7440-39-3	EPA 6010B	3.0			3,200.00								
Beryllium	7440-41-7	EPA 6010B	1.0			32.00							270.00	270.00
Cadmium	7440-43-9	EPA 6010B	2.0	5		8.00	9.30	8.80	9.30				20.00	8.80
Chromium	7440-47-3	EPA 6010B	5.0	50		24,000.00							240,000.00	240,000.00
Copper	7440-50-8	EPA 6010B	2.0			590.00	3.10	3.10	2.40				2,700.00	2.40
Iron	7439-89-6	EPA 6010B	50											
Lead	7439-92-1	EPA 7421	1.0	15			8.10	8.10	8.10					8.10
Manganese	7439-96-5	EPA 6010B	1.0			2,200.00				100.00				100.00
Mercury	7439-97-6	EPA 7470A - Low level	0.02	2		4.80	0.03	0.94	0.03	0.30	0.15			0.03
Molybdenum	7439-98-7	EPA 6010B	5			80.00								
Nickel	7440-02-0	EPA 6020	0.5			320.00	8.20	8.20	8.20	4,600.00	4,600.00		1,100.00	8.20
Selenium	7782-49-2	EPA 6010B	50			80.00	71.00	71.00	71.00	4,200.00			2,700.00	71.00
Silver	7440-22-4	EPA 6010B	3.0			80.00							26,000.00	26,000.00
Strontium	7440-24-6	EPA 6010B	1.0			9,600.00								
Thallium	7440-28-0	EPA 7841	0.2			1.10				0.47	6.30		1.60	0.47
Titanium	7440-32-6	EA 6010B	5.0											
Vanadium	7440-62-2	EPA 6010B	3.0			110.00								
Zinc	7440-66-6	EPA 6010B	10			4,800.00	81.00	81.00	81.00	26,000.00			17,000.00	81.00
ТРН														
TPH - Hydrocarbon Identification	NA	Ecology NWTPH-HCID	630											
TPH - Diesel range	NA	Ecology NWTPH-Dx	250	500										
TPH - Heavy oil range	NA	Ecology NWTPH-Dx	500	500										
TPH - Gasoline	NA	Ecology NWTPH-Gx	250	800										
SVOCs		200.03)		000	1							1		
1 Mathulaanhthalana	00.12.0		1.0			2.40				[
	90-12-0		5.0			2.40				2 600 00				2 600 00
2,4,5-Thchlorophenol	95-95-4		5.0			600.00				3,600.00				3,600.00
2,4,0-Thchlorophenol	120 92 2		5.0		4.00	24.00				2.40	0.00	3.90		5.00
2,4-Dichlorophenol	120-63-2		5.0			24.00				290.00	790.00		190.00	190.00
2,4-Dimetryphenol	F1 29 5		10.0			22.00				5 200 00			2 500.00	2 500.00
2,4-Dinitrophenol	51-20-5 101 14 0		10.0			32.00				5,300.00	14,000.00		3,500.00	3,500.00
2,4-Dinitrotoluono	606 20 2		5.0			32.00				3.40	9.10		1,400.00	5.00
2,0-Dimitololuene	01 59 7		5.0			16.00								
2-Chloronaphthalene	91-36-7		1.0			640.00				1,600.00			1,000.00	1,000.00
2-Chilorophenol	93-37-6		1.0			40.00							97.00	97.00
2-Methylnaphtnaiene	91-57-6	EPA 0270D	1.0			32.00								
2-Methylphenol	90-46-7		1.0			400.00								
	00-14-4		5.0											
	C-C1-00		5.0											
3-INITIOANIIINE	99-09-2		5.0											
3,3-DICNIORODENZIGINE	91-94-1	EPA 8270D	5.0		0.19					0.03	0.08	0.05		5.00
	534-52-1		10.0											
4-Bromophenyi phenyi ether	101-55-3	EPA 8270D	1.0											
4-Unioro-3-metnyiphenoi	59-50-7		5.0											
	106-47-8		5.0			32.00								
4-Chlorophenyl phenyl ether	7005-72-3	EPA 8270D	1.0											

SUMMARY OF GROUNDWATER AND SURFACE WATER SCREENING LEVELS

• • • •						
Concentrations	ın	micrograms	per	liter	(ua/L)	i.

							0 1 (16	, ,						
Analyte ^{1,2}	CAS No.	Analytical Method ³	Target Reporting Limit (PQL)	Groundwater MTCA Method A	Groundwater MTCA Method B, Carcinogen	Groundwater MTCA Method B, Non-Carcinogen	Aquatic Life - Marine/Chronic - Ch.173-201A WAC	Aquatic Life - Marine/Chronic - Clean Water Act 304	Aquatic Life - Marine/Chronic - National Toxics Rule 40 CFR 131	Human Health - Marine - Clean Water Act 304	Human Health - Marine - National Toxics Rule, 40 CFR 131	Surface Water MTCA Method B, Carcinogen	Surface Water MTCA Method B, Non-Carcinogen	PSL⁴
SVOCs (Continued)														
4-Methylphenol (p-cresol)	106-44-5	EPA 8270D	1.0			40.00								
4-Nitroaniline	100-01-6	EPA 8270D	5.0											
4-Nitrophenol	100-02-7	EPA 8270D	5.0											
Acenaphthene	83-32-9	EPA 8270-SIM	0.01			960.00				990.00			640.00	640.00
Acenaphthylene	208-96-8	EPA 8270-SIM	0.01											
Aniline	62-53-3	EPA 8270D	1.0		7.70									
Anthracene	120-12-7	EPA 8270-SIM	0.01			4,800.00				40,000.00	110,000.00		26,000.00	26,000.00
Benzidine	92-87-5	EPA 8270D	10.0		0.00	48.00				0.00	0.00	0.00	89.00	10.00
Benzo(a)anthracene	56-55-3	EPA 8270-SIM	0.01							0.02	0.03			0.02
Benzo(a)pyrene	50-32-8	EPA 8270-SIM	0.01	0.1	0.01					0.02	0.03	0.03		0.02
Benzo(b)fluoranthene	205-99-2	EPA 8270-SIM	0.01							0.02	0.03			0.02
Benzo(ghi)perylene	191-24-2	EPA 8270-SIM	0.01											
Benzo(k)fluoranthene	207-08-9	EPA 8270-SIM	0.01							0.02	0.03			0.02
Benzoic acid	65-85-0	EPA 8270D	10.0			64,000.00								
Benzyl alcohol	100-51-6	EPA 8270D	5.0			2,400.00								
Bis(2-chloroethoxy)methane	111-91-1	EPA 8270D	1.0											
Bis(2-chloroethyl) ether	111-44-4	EPA 8270D	1.0		0.04					0.53	1.40	0.85		1.00
Bis(2-chloroisopropyl) ether														
[2,2'-oxybis(1-chloropropane)]	108-60-1	EPA 8270D	1.0			320.00				65,000.00	170,000.00		42,000.00	42,000.00
Bis(2-ethylhexyl) phthalate	117-81-7	EPA 8270D	1.0		6.30	320.00				2.20	5.90	3.60	400.00	2.20
Butyl benzyl phthalate	85-68-7	EPA 8270D	1.0			3,200.00				1,900.00			1,300.00	1,300.00
Carbaryl	63-25-2	EPA 8270D	20			1,600.00								
Carbazole	86-74-8	EPA 8270D	1.0		4.40									
Chrysene	218-01-9	EPA 8270-SIM	0.01							0.02	0.03			0.02
Dibenzo(a,h)anthracene	53-70-3	EPA 8270-SIM	0.01							0.02	0.03			0.02
Dibenzofuran	132-64-9	EPA 8270D	1.0			32.00								
Diethyl phthalate	84-66-2	EPA 8270D	1.0			13,000.00				44,000.00	120,000.00		28,000.00	28,000.00
Dimethyl phthalate	131-11-3	EPA 8270D	1.0			16,000.00				1,100,000.00	2,900,000.00		72,000.00	72,000.00
Di-n-butyl phthalate	84-74-2	EPA 8270D	1.0			1,600.00				4,500.00	12,000.00		2,900.00	2,900.00
Di-n-octyl phthalate	117-84-0	EPA 8270D	1.0			320.00								
Fluoranthene	206-44-0	EPA 8270-SIM	0.01			640.00				140.00	370.00		90.00	90.00
Fluorene	86-73-7	EPA 8270-SIM	0.01			640.00				5,300.00	14,000.00		3,500.00	3,500.00
Hexachlorobenzene	118-74-1	EPA 8270D	1.0		0.06	13.00				0.00	0.00	0.00	0.24	1.00
Hexachlorobutadiene	87-58-3	EPA 8270D	1.0							18.00	50.00	30.00	190.00	18.00
Hexachlorocyclopentadiene	77-47-4	EPA 8270D	5.0			48.00				1,100.00	17,000.00		3,600.00	1,100.00
Hexachloroethane	67-72-1	EPA 8270D	1.0		3.10	8.00				3.30	8.90	5.30	30.00	3.30
Indeno(1,2,3-cd)pyrene	193-39-5	EPA 8270-SIM	0.01							0.02	0.03			0.02
Isophorone	78-59-1	EPA 8270D	1.0		46.00	1,600.00				960.00	600.00	1,600.00	120,000.00	600.00
Naphthalene	91-20-3	EPA 8270-SIM	0.01	160		160.00							4,900.00	4,900.00
Nitrobenzene	98-95-3	EPA 8270D	1.0			4.00				690.00	1,900.00		450.00	450.00
N-Nitrosodimethylamine	62-75-9	EPA 8270D	5.0		0.00					3.00	8.10	4.90		5.00
N-Nitrosodi-n-propylamine	621-64-7	EPA 8270D	5.0							0.51	10.00	0.82		5.00
N-Nitrosodiphenylamine	86-30-6	EPA 8270D	1.0							6.00	16.00	9.70		6.00
Pentachiorophenol	87-86-5	EPA 8270D	5.0		0.73	480.00	7.90	7.90	7.90	3.00	8.20	4.90	7,100.00	5.00
Phenanthrene	85-01-8	EPA 8270-SIM	0.01											
Phenol	108-95-2	EPA 8270D	1.0			4,800.00				1,700,000.00	4,600,000.00		1,100,000.00	1,100,000.00
Pyrene	129-00-0	EPA 8270-SIM	0.01			480.00				4,000.00	11,000.00		2,600.00	2,600.00
Pyridine	110-86-1	EPA 8270D	5.0			8.00								

SUMMARY OF GROUNDWATER AND SURFACE WATER SCREENING LEVELS

Concentrations	in	micrograms	per	liter	$(\mu g/L)$

Analyte ^{1,2}	CAS No.	Analytical Method ³	Target Reporting Limit (PQL)	Groundwater MTCA Method A	Groundwater MTCA Method B, Carcinogen	Groundwater MTCA Method B, Non-Carcinogen	Aquatic Life - Marine/Chronic - Ch.173-201A WAC	Aquatic Life - Marine/Chronic - Clean Water Act 304	Aquatic Life - - Marine/Chronic - National Toxics Rule 40 CFR 131	Human Health - Marine - Clean Water Act 304	Human Health - Marine - National Toxics Rule, 40 CFR 131	Surface Water MTCA Method B, Carcinogen	Surface Water MTCA Method B, Non-Carcinogen	PSL ⁴
VOCs														-
1,1,1,2-Tetrachloroethane	630-20-6	EPA 8260B 10 mL purge	0.2		1.70	240.00				4.00	11.00	6.50		4.00
1,1,1-Trichloroethane	71-55-6	EPA 8260B 10 mL purge	0.2	200		7,200.00							420,000.00	420,000.00
1,1,2,2-Tetrachloroethane	79-34-5	EPA 8260B 10 mL purge	0.2		0.22					4.00	11.00	6.50		4.00
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	EPA 8260B 10 mL purge	0.2			240,000.00								
1,1,2-Trichloroethane	79-00-5	EPA 8260B 10 mL purge	0.2		0.77	32.00				16.00	42.00	25.00	2,300.00	16.00
1,1-Dichloroethane	75-34-3	EPA 8260B 10 mL purge	0.2			800.00				7,100.00	3.20		23,000.00	3.20
1,1-Dichloroethene	75-35-4	EPA 8260B 10 mL purge	0.2			400.00								
1,2,3-Trichlorobenzene	87-61-6	EPA 8260B 10 mL purge	0.5											
1,2,3-Trichloropropane	96-18-4	EPA 8260B 10 mL purge	0.5		0.01	48.00								
1,2,4-Trichlorobenzene	120-82-1	EPA 8260B 10 mL purge	0.5			80.00				70.00			230.00	70.00
1,2,4-Trimethylbenzene	95-63-6	EPA 8260B 10 mL purge	0.2			400.00								
1,2-Dibromo-3-chloropropane	96-12-8	EPA 8260B 10 mL purge	0.5		0.03									
1,2-Dibromoethane	106-93-4	EPA 8260B 10 mL purge	0.2	0.01	0.00									
1,2-Dichlorobenzene	95-50-1	EPA 8260B 10 mL purge	0.2			720.00				1,300.00	17,000.00		4,200.00	1,300.00
1,2-Dichloroethane	107-06-2	EPA 8260B 10 mL purge	0.2	5	0.48	160.00				37.00	99.00	59.00	43,000.00	37.00
1,2-Dichloropropane	78-87-5	EPA 8260B 10 mL purge	0.2		0.64					15.00		23.00		15.00
1,3,5-Trimethylbenzene	108-67-8	EPA 8260B 10 mL purge	0.2			400.00								
1,3-Dichlorobenzene	541-73-1	EPA 8260B 10 mL purge	0.2							960.00	2,600.00			960.00
1,4-Dichlorobenzene	106-46-7	EPA 8260B 10 mL purge	0.2		1.80					190.00	2,600.00	4.90		4.90
2-Butanone	78-93-3	EPA 8260B 10 mL purge	2.5			4,800.00								
2-Chloroethyl vinyl ether	110-75-8	EPA 8260B 10 mL purge	1.0											
2-Hexanone	591-78-6	EPA 8260B 10 mL purge	2.5											
4-Chlorotoluene	106-43-4	EPA 8260B 10 mL purge	0.2											
4-Methyl-2-pentanone	108-10-1	EPA 8260B 10 mL purge	2.5			640.00								
Acetone	67-64-1	EPA 8260B 10 mL purge	2.5			800.00								
Acrylonitrile	107-13-1	EPA 8260B 10 mL purge	1.0		0.08	8.00				0.25	0.66	0.40	86.00	1.00
Benzene	71-43-2	EPA 8260B 10 mL purge	0.2	5	0.80	32.00				51.00	71.00	23.00	2,000.00	23.00
Bromobenzene	108-86-1	EPA 8260B 10 mL purge	0.2											
Bromodichloromethane	75-27-4	EPA 8260B 10 mL purae	0.2		0.71	160.00				17.00	22.00	28.00	14,000.00	17.00
Bromoform	75-25-2	EPA 8260B 10 mL purge	0.2		5.50	160.00				140.00	360.00	220.00	14,000.00	140.00
Bromomethane	74-83-9	EPA 8260B 10 mL purge	0.5			11.00				1,500.00	4,000.00		970.00	970.00
Carbon disulfide	75-15-0	EPA 8260B 10 mL purge	0.2			800.00								
Carbon tetrachloride	56-23-5	EPA 8260B 10 mL purge	0.2		0.34	5.60				1.60	4.40	2.70	97.00	1.60
Chlorobenzene	108-90-7	EPA 8260B 10 mL purge	0.2			160.00				1,600.00	21,000.00		5,000.00	1,600.00
Chloroethane	75-00-3	EPA 8260B 10 mL purge	0.2		15.00	3,200.00								
Chloroform	67-66-3	EPA 8260B 10 mL purge	0.2		7.20	80.00				470.00	470.00	280.00	6,900.00	280.00
Chloromethane	74-87-3	EPA 8260B 10 mL purge	0.2		3.40							130.00		130.00
cis-1,2-Dichloroethene	156-59-2	EPA 8260B 10 mL purge	0.2			80.00								
cis-1,3-Dichloropropene	10061-01-5	EPA 8260B 10 mL purge	0.2											
Dibromochloromethane	124-48-1	EPA 8260B 10 mL purge	0.2		0.52	160.00				13.00	34.00	21.00	14,000.00	13.00
Dichlorodifluoromethane	75-71-8	EPA 8260B 10 mL purae	0.2			1,600.00								
Diethyl ether	60-29-7					1,600.00								
Ethylbenzene	100-41-4	EPA 8260B 10 mL purge	0.2	700		800.00				2,100.00	29,000.00		6,900.00	2,100.00

SUMMARY OF GROUNDWATER AND SURFACE WATER SCREENING LEVELS

Concentrations	in	microarams	ner	litor	(und/l)	

					00			, _)			-	-		
	CAS No	Analytical	Target Reporting Limit	Groundwater MTCA	Groundwater MTCA Method B,	Groundwater MTCA Method B,	Aquatic Life - Marine/Chronic - Ch.173-201A	Aquatic Life - Marine/Chronic - Clean Water	Aquatic Life - Marine/Chronic - National Toxics	Human Health - Marine - Clean Water	Human Health - Marine - National Toxics Rule,	Surface Water MTCA Method B,	Surface Water MTCA Method B,	Del ⁴
	CAS NO.	Wethod		Wethou A	Carcinogen	Non-Carcinogen	WAC	ACI 304	Rule 40 CFR 131	ACI 304	40 CFR 131	Carcinogen	Non-Carcinogen	FOL
			<u> </u>				1		1					
Hexachlorobutadiene	87-68-3	EPA 8260B 10 mL purge	0.5		0.56	1.60				18.00	50.00	30.00	190.00	18.00
Isopropylbenzene (cumene)	98-82-8	EPA 8260B 10 mL purge	0.2			800.00								
m,p-Xylenes	1330-20-7	EPA 8260B 10 mL purge	0.4	1,000		1,600.00								
Methyl tert-butyl ether	1634-04-4	EPA 8260B 10 mL purge	0.5	20	24.00	6,900.00								
Methylene chloride	75-09-2	EPA 8260B 10 mL purge	0.5	5	5.80	480.00				590.00	1,600.00	960.00	170,000.00	590.00
n-Butylbenzene	104-51-8	EPA 8260B 10 mL purge	0.2											
n-Propylbenzene	103-65-1	EPA 8260B 10 mL purge	0.2											
o-Chlorotoluene	95-49-8	EPA 8260B 10 mL purge	0.2			160.00								
o-Xylene	95-47-6	EPA 8260B 10 mL purge	0.2			16,000.00								
p-Isopropyltoluene	99-87-6	EPA 8260B 10 mL purge	0.2											
sec-Butylbenzene	135-98-8	EPA 8260B 10 mL purge	0.2											
Styrene	100-42-5	EPA 8260B 10 mL purge	0.2		1.50	1,600.00								
tert-Butylbenzene	98-06-6	EPA 8260B 10 mL purge	0.2											
Tetrachloroethene	127-18-4	EPA 8260B 10 mL purge	0.2	5	0.08	80.00				3.30	8.90	0.39	840.00	0.39
Toluene	108-88-3	EPA 8260B 10 mL purge	0.2	1,000		640.00				15,000.00	200,000.00		19,000.00	15,000.00
trans-1,2-Dichloroethene	156-60-5	EPA 8260B 10 mL purge	0.2			160.00				10,000.00			33,000.00	10,000.00
trans-1,3-Dichloropropene	10061-02-6	EPA 8260B 10 mL purge	0.2											
Trichloroethene	79-01-6	EPA 8260B 10 mL purge	0.2	5	0.11	2.40				30.00	81.00	1.50	71.00	1.50
Trichlorofluoromethane	75-69-4	EPA 8260B 10 mL purge	0.2			2.400.00								
Vinvl chloride	75-01-4	EPA 8260B 10 mL purge	0.2	0.2	0.03	24.00				2.40	530.00	3.70	6.600.00	2.40
PCBs			•											
Aroclor 1016	12674-11-2	EPA 8082 low level	0.01			1.10			0.03				0.01	0.01
Aroclor 1221	11104-28-2	EPA 8082 low level	0.01											
Aroclor 1232	11141-16-5	EPA 8082 low level	0.01											
Aroclor 1242	53469-21-9	EPA 8082 low level	0.01											
Aroclor 1248	12672-29-6	EPA 8082 low level	0.01											
Aroclor 1254	11097-69-1	EPA 8082 low level	0.01			0.32			0.03				0.00	0.01
Aroclor 1260	11096-82-5	EPA 8082 low level	0.01						0.03					0.03
Total polychlorinated biphenyls (PCBs)	1336-36-3	EPA 8082 low level	0.07	0.1	0.04		0.03	0.03	0.03	0.00	0.00	0.00		0.07
Pesticides (Organochlorine)									1					
Aldrin	309-00-2	EPA 8081 - Manchester	0.00083		0.00	0.24	0.00			0.00	0.00	0.00	0.02	0.00
	57-74-9	EPA 8081 - Manchester	0.00083		0.25	8.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.00
4,4-DDD 4.4' DDE	72-34-0	EPA 6061 - Manchester	0.00166		0.36		0.00			0.00	0.00	0.00		0.00
4,4-DDL 4.4'-DDT	50-29-3	EPA 8081 - Manchester	0.00166	0.3	0.20	8.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00
Dieldrin	60-57-1	EPA 8081 - Manchester	0.00166		0.01	0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00
Endosulfan I	959-98-8	EPA 8081 - Manchester	0.00083											
Endosulfan II	33213-65-9	EPA 8081 - Manchester	0.00166											
Endosulfan sulfate	1031-07-8	EPA 8081 - Manchester	0.00166											
Endrin	72-20-8	EPA 8081 - Manchester	0.00166			4.80	0.00	0.00	0.00	0.06	0.81		0.20	0.00
Endrin aldehyde	7421-93-4	EPA 8081 - Manchester	0.00166											
Endrin ketone	53494-70-5	EPA 8081 - Manchester	0.00166											
Heptachlor	76-44-8	EPA 8081 - Manchester	0.00083		0.02	8.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.00
Heptachlor epoxide	1024-57-3	EPA 8081 - Manchester	0.00083		0.00	0.10		0.00	0.00	0.00	0.00	0.00	0.00	0.00
a-Hexachlorocyclohexane	319-84-6	EPA 8081 - Manchester	0.00083		0.01					0.00	0.01	0.01		0.00
	319-85-7	EPA 8081 - Manchester	0.00083		0.05					0.02	0.05	0.03		0.02
	58_20 0	EPA 8081 - Manchester	0.00083			4.80				1.04			 6.00	0.04
Methoxylchlor	72-43-5	EPA 8081 - Manchester	0.00003		0.07	4.00 80.00		0.03		1.00	0.00	0.04	8.40	0.04
Toxaphene	8001-35-2	FPA 8081	5.00		0.08		0.00	0.03	0.00	0.00	0.00	0.00	0.40	5.00
. exaptione	3001002	L: /: 0001	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	-	0.00

SUMMARY OF GROUNDWATER AND SURFACE WATER SCREENING LEVELS

March Point (Whitmarsh) Landfill Skagit County, Washington

Skagit County, Washington

						Co	oncentrations in micro	ograms per liter (μ	g/L)						
	Analyte ^{1,2}	CAS No.	Analytical Method ³	Target Reporting Limit (PQL)	Groundwater MTCA Method A	Groundwater MTCA Method B, Carcinogen	Groundwater MTCA Method B, Non-Carcinogen	Aquatic Life - Marine/Chronic - Ch.173-201A WAC	Aquatic Life - Marine/Chronic - Clean Water Act 304	Aquatic Life - Marine/Chronic - National Toxics Rule 40 CFR 131	Human Health - Marine - Clean Water Act 304	Human Health - Marine - National Toxics Rule, 40 CFR 131	Surface Water MTCA Method B, Carcinogen	Surface Water MTCA Method B, Non-Carcinogen	PSL ⁴
Other															
Ammonia		7664-41-7	SM 4500-NH3 D-97	10				35.00							35.00
Phosphorus		7723-14-0	EPA 365.2/SM 4500-PB	16			0.16		0.10						16.00

Notes

1. Shaded analytes have been previously detected at/around the site.

2. Analytes that have been detected at the site that are not listed in this table include chloride, sulfate, ferrous iron, DOC, total organic carbon, total suspended solids, total dissolved solids, calcium, magnesium, potassium, sodium, tellurium, and dibenzothiophene.

3. Method numbers refer to EPA SW-846 Analytical Methods, Washington State Department of Ecology (Ecology) recommended analytical methods, or Standard Methods (SM) for the Examination of Water and Wastewater.

4. PSL was chosen as the lower of the aquatic marine chronic WQC published in WAC 173-201A, aquatic marine chronic and human health (fish ingestion) WQC published in Section 304 of the Clean Water Act, aquatic marine chronic and human health (fish ingestion) WQC published in the National Toxics Rule (40 CFR 131), and MTCA Method B surface water cleanup levels (carcinogen and noncarcinogen). The PSL is the screening level used in Table 11.

5. -- = No value available.

Abbreviations

CAS = Chemical Abstracts Service CFR = Code of Federal Regulations DOC = dissolved organic carbon EPA = U.S. Environmental Protection Agency mL = milliliters MTCA = Model Toxics Control Act NA = not applicable PCBs = polychlorinated biphenyls PQL = practical quantitation limit PSL = preliminary screening level SIM = selective ion monitoring SVOCs = semivolatile organic compounds TPH = total petroleum hydrocarbons VOCs = volatile organic compounds WAC = Washington Administrative Code WQC = water quality criteria

TEST RESULTS FOR THE 10-DAY ACUTE TOXICITY TEST WITH AMPELISCA ABDITA

	Percent				Number		Mean
	Fines		Number	Number	Missing	Percentage	Percentage
Treatment	(% ≤ 63 µ) ¹	Replicate	Initiated	Surviving	or Dead	Survival	Survival ²
		1	20	18	2	90	
		2	20	18	2	90	
Control		3	20	17	3	85	
		4	20	18	2	90	
		5	20	20	0	100	91 ± 5.5
		1	20	17	3	85	
		2	20	15	5	75	
CR-1	60%	3	20	20	0	100	
		4	20	17	3	85	
		5	20	16	4	80	85 ± 9.4
		1	20	14	6	70	
		2	20	14	6	70	
MP-3	67%	3	20	15	5	75	
		4	20	18	2	90	
		5	20	15	5	75	76 ± 8.2
		1	20	14	6	70	
		2	20	15	5	75	
MP-5	66%	3	20	14	6	70	
		4	20	14	6	70	
		5	20	14	6	70	71 ± 2.2
		1	20	17	3	85	
		2	20	20	0	100	
MP-6	61%	3	20	18	2	90	
		4	20	18	2	90	
		5	20	15	5	75	88 ± 9.1
		1	20	18	2	90	
		2	20	18	2	90	
MP-8	60%	3	20	17	3	85	
		4	20	18	2	90	
		5	20	17	3	85	88 ± 2.7
		1	20	12	8	60	
		2	20	13	7	65	
SBREF-80	80%	3	20	19	1	95	
		4	20	17	3	85	
		5	20	20	0	100	81 ± 17.8

TEST RESULTS FOR THE 10-DAY ACUTE TOXICITY TEST WITH AMPELISCA ABDITA

	Percent				Number		Mean
	Fines		Number	Number	Missing	Percentage	Percentage
Treatment	(% ≤ 63 µ) ¹	Replicate	Initiated	Surviving	or Dead	Survival	Survival ²
		1	20	18	2	90	
		2	20	18	2	90	
MP-1	83%	3	20	14	6	70	
		4	20	16	4	80	
		5	20	16	4	80	82 ± 8.4
		1	20	17	3	85	
		2	20	19	1	95	
MP-2	81%	3	20	19	1	95	
		4	20	17	3	85	
		5	20	18	2	90	90 ± 5.0
		1	20	14	6	70	
		2	20	15	5	75	
MP-4	77%	3	20	15	5	75	
		4	20	15	5	75	
		5	20	14	6	70	73 ± 2.7
		1	20	15	5	75	
		2	20	10	10	50	
MP-7	70%	3	20	15	5	75	
		4	20	16	4	80	
		5	20	18	2	90	74 ± 14.7
		1	20	18	2	90	
		2	20	16	4	80	
MP-9	78%	3	20	18	2	90	
		4	20	16	4	80	
		5	20	7	13	35	75 ± 22.9
		1	20	20	0	100	
		2	20	16	4	80	
MP-10	74%	3	20	15	5	75	
		4	20	16	4	80	
		5	20	17	3	85	84 ± 9.6
		1	20	20	0	100	
		2	20	18	2	90	
MP-11	84%	3	20	18	2	90	
		4	20	16	4	80	
		5	20	11	9	55	83 ± 17.2

TEST RESULTS FOR THE 10-DAY ACUTE TOXICITY TEST WITH AMPELISCA ABDITA

Treatment	Percent Fines (% ≤ 63 μ) ¹	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Survival	Mean Percentage Survival ²
		1	20	18	2	90	
		2	20	11	9	55	
MP-12	80%	3	20	15	5	75	
		4	20	17	3	85	
		5	20	16	4	80	77 ± 13.5
		1	20	15	5	75	
		2	20	9	11	45	
MP-13	76%	3	20	14	6	70	
		4	20	16	4	80	
		5	20	18	2	90	72 ± 16.8

March Point (Whitmarsh) Landfill Skagit County, Washington

<u>Notes</u>

1. Percentage of sediment grains with diameter less than 63 $\mu m.$

2. Test results were evaluated relative to Washington SMS, based on criteria presented in the Sediment Investigation Work Plan (AMEC, 2008b).

Abbreviations

 $\mu m = micrometers$

SMS = Sediment Management Standards

TEST RESULTS FOR THE LARVAL TEST WITH DENDRASTER EXCENTRICUS

	Percent					Mean
	Fines					Normal
Treatment	(% ≤ 63 µ) ¹	Replicate	Normal	Abnormal	Total	Survival (%) ²
		1			218	
Initial Stocking		2			213	
Density		3			255	
Density		4			280	
		5			247	
		1	194	7	201	
		2	211	4	215	
Seawater Control		3	230	4	234	
		4	232	3	235	
		5	213	4	217	89 ± 6.4
		1	233	2	235	
		2	213	4	217	
Sediment Control		3	237	1	238	
		4	216	4	220	
		5	197	0	197	N/A
		1	191	7	198	
		2	204	5	209	
CR-1	60%	3	191	5	196	
		4	237	5	242	
CR-1		5	141	4	145	87.3 ± 13.2
		1	207	6	213	
		2	175	2	177	
MP-3	67%	3	205	3	208	
		4	204	3	207	
		5	213	13	226	93 ± 6.9
		1	197	5	202	
		2	219	1	220	
MP-5	66%	3	153	6	159	
		4	190	10	200	
		5	187	10	197	87.3 ± 10.6
		1	210	6	216	
		2	245	2	247	
MP-6	61%	3	227	4	231	
		4	252	6	258	
		5	248	2	250	99.4 ± 1.2
		1	216	8	224	
		2	199	7	206	
MP-8	60%	3	185	3	188	
		4	212	4	216	
		5	205	2	207	94.2 ± 5.6

TEST RESULTS FOR THE LARVAL TEST WITH DENDRASTER EXCENTRICUS

	Percent					Mean
	Fines					Normal
Treatment	(% ≤ 63 µ) ¹	Replicate	Normal	Abnormal	Total	Survival (%) ²
		1	233	5	238	
		2	202	1	203	
SBREF80	80%	3	214	7	221	
		4	204	7	211	
		5	178	11	189	93.9 ± 7.0
		1	208	4	212	
		2	201	7	208	
MP-1	83%	3	233	7	240	
		4	227	5	232	
		5	221	5	226	97.9 ± 3.1
		1	236	6	242	
		2	198	0	198	
MP-2	81%	3	215	5	220	
		4	196	5	201	
		5	233	7	240	96.4 ± 4.7
		1	225	3	228	
		2	208	2	210	
MP-4	77%	3	199	3	202	
MP-4 MP-7		4	189	9	198	
		5	176	12	188	91.5 ± 7.3
		1	205	5	210	
		2	218	5	223	
	70%	3	211	4	215	
		4	209	7	216	
		5	219	2	221	97.9 ± 2.2
		1	235	1	236	
		2	228	4	232	
MP-9	78%	3	213	6	219	
		4	212	2	214	
		5	183	2	185	96.3 ± 6.5
		1	206	8	214	
		2	192	1	193	
MP-10	74%	3	220	5	225	
		4	202	4	206	
		5	213	9	222	95.3 ± 4.4
		1	233	4	237	
		2	234	1	235	
MP-11	84%	3	195	4	199	
		4	265	5	270	
		5	222	6	228	98.1 ± 4.3

TEST RESULTS FOR THE LARVAL TEST WITH DENDRASTER EXCENTRICUS

March Point (Whitmarsh) Landfill Skagit County, Washington

	Percent Fines					Mean Normal
Treatment	(% ≤ 63 µ) ¹	Replicate	Normal	Abnormal	Total	Survival (%) ²
		1	194	3	197	
		2	220	6	226	
MP-12	80%	3	220	5	225	
		4	192	5	197	
		5	217	5	222	95.7 ± 5.8
		1	230	4	234	
		2	221	5	226	
MP-13	76%	3	204	2	206	
		4	200	7	207	
		5	195	4	199	95.5 ± 4.4

<u>Notes</u>

- 1. Percentage of sediment grains with diameter less than 63 $\mu m.$
- 2. Test results were evaluated relative to Washington SMS, based on criteria presented in the Sediment Investigation Work Plan (AMEC, 2008b).

Abbreviations

µm = micrometers

N/A = not applicable

SMS = Sediment Management Standards

TEST RESULTS FOR THE MICROTOX BIOASSAY

March Point (Whitmarsh) Landfill Skagit County, Washington

		Change in Lig	ght Reading Fro	om I ₍₀₎ to I ₍₁₅₎		
			_			Mean %
Test	Replicate 1	Replicate 2	Replicate 3	Replicate 4	Replicate 5	Output ¹
Test 1 ²						
Control	0.82	0.81	0.83	0.83	0.86	83 ± 2
SBREF80	0.68	0.65	0.68	0.68	0.69	67 ± 2
MP-1	0.65	0.70	0.72	0.72	0.74	70 ± 3
MP-2	0.95	1.04	0.97	0.99	0.96	98 ± 3
MP-4	0.65	0.61	0.60	0.62	0.61	62 ± 2
MP-7	0.63	0.74	0.72	0.74	0.66	70 ± 5
Test 2 ²						
Control	0.86	0.94	0.96	0.92	0.96	93 ± 4
SBREF80	0.67	0.62	0.73	0.70	0.66	68 ± 4
MP-9	0.84	0.68	0.69	0.62	0.73	71 ± 8
MP-10	0.73	0.73	0.73	0.71	0.69	72 ± 2
MP-11	0.63	0.67	0.66	0.57	0.65	63 ± 4
MP-12	1.15	1.20	1.18	1.28	1.25	121 ± 5
Test 3 ²						
Control	0.99	0.93	1.05	1.02	0.94	99 ± 5
SBREF80	0.91	0.81	0.71	0.75	0.73	76 ± 4
MP-13	0.45	0.47	0.46	0.49	0.47	46 ± 2
Test 4						
Control	0.86	0.82	0.83	0.79	0.73	81 ± 5
CR-1	0.94	0.94	0.87	0.89	0.93	91 ± 3
MP-3	0.97	0.95	0.95	0.90	0.95	94 ± 3
MP-5	0.78	0.70	0.77	0.68	0.69	72 ± 4
MP-6	0.89	0.91	0.88	0.97	0.84	90 ± 5
MP-8	0.77	0.70	0.60	0.62	0.66	67 ± 7

Notes

1. Test results were evaluated relative to Washington SMS, based on criteria presented in the Sediment Investigation Work Plan (AMEC, 2008b).

2. Poor performance of reference sediment SBREF80. Test sediments were instead compared to control sediment.

Abbreviations

 $I_{(0)}$ = Initial light reading

 $I_{(15)}$ = Light reading after 15 minutes.

SMS = Sediment Management Standards

SUMMARY OF PRELIMINARY BIOASSAY TEST RESULTS FOR SEDIMENT SAMPLES March Point (Whitmarsh) Landfill

Skagit County, Washington

			Propose(Loca	d Sample ation	Actual Locá	Sample ation												
			(SPCS W	A N [4601]	(SPCS W/	A N [4601]											:	
			NAD83 Fe	Survey et)	NAD83 Fe	Survey et)	TVS	TS	Ammonia	Sulfides	TOC	Fines (< 63 µm)	Salinity	Microtox ¹	Ampl	hipod ¹	Lar	ment val ¹
Station	Date	Time	Northing	Easting	Northing	Easting	(%)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(ppt)	SQS	SQS	CSL	sos	CSL
Inner Lago	on Samples																	
MP-1	8/28/2008	0809	537990	1229338	537993	1229337	6.2	44.4	55.1	309	2.05	83%		Pass	Pass	Pass	Pass	Pass
MP-2	8/26/2008	1145	538146	1229108	538148	1229111	6.18	47.2	12.7	513	2.02	81%		Pass	Pass	Pass	Pass	Pass
$MP-2D^2$	8/26/2008	1205	538146	1229108	538148	1229111												
MP-3	8/26/2008	1100	538316	1228883	538328	1228894	9.61	35.2	19.8	8180	3.26	67%		Pass	Pass	Pass	Pass	Pass
MP-4	8/27/2008	0800	538517	1228856	538518	1228857	10.6	33.7	18.5	4160	3.06	77%		Fail	Pass	Pass	Pass	Pass
$MP-4D^{2}$	8/27/2008	0810	538517	1228856	538518	1228857												
MP-5	8/27/2008	0836	538415	1229185	538415	1229185	8.49	40.8	9.3	370	2.85	66%		Fail	Pass	Pass	Pass	Pass
MP-6	8/28/2008	0823	538192	1229437	538196	1229438	9.21	49.7	1.5	916	2.93	61%		Pass	Pass	Pass	Pass	Pass
$MP-6D^2$	8/28/2008	0827	538192	1229437	538196	1229438												
MP-7	8/27/2008	1311	538004	1229645	538004	1229643	7.81	38.5	14.6	239	2.44	70%		Pass	Pass	Pass	Pass	Pass
MP-8	8/27/2008	1242	537906	1229900	537905	1229900	8.24	46.5	4.6	31.6	4.61	60%		Fail	Pass	Pass	Pass	Pass
MP-9	8/27/2008	1048	537731	1229997	537728	1229997	7.68	46.1	5	52.7	2.82	78%		Fail	Pass	Pass	Pass	Pass
$MP-9D^2$	8/27/2008	1048	537731	1229997	537728	1229997												
MP-10	8/27/2008	1009	537525	1230054	537525	1230055	6.58	42.3	5.4	157	2.03	74%		Fail	Pass	Pass	Pass	Pass
MP-11	8/27/2008	1128	537291	1229984	537293	1229979	7.46	40.3	5.1	102	2.39	84%		Fail	Pass	Pass	Pass	Pass
MP-12	8/27/2008	0912	538436	1229011	538441	1229010	6.4	41.8	13.1	210	1.94	80%		Pass	Pass	Pass	Pass	Pass
MP-13	8/27/2008	1348	538248	1229262	538248	1229261	7.58	43.3	14	276	2.29	76%		Fail	Pass	Pass	Pass	Pass
Swale Sam	ples																	
MPS-1	8/28/2008	1122			538006	1228723					16.6		0					
MPS-2	8/28/2008	1000			537849	1228833					13.9		7					
MPS-3	8/28/2008	1020			537533	1229226					11.8		17					

Notes

1. Test results were evaluated relative to Washington SMS, based on criteria presented in the Sediment Investigation Work Plan (AMEC, 2008b).

2. D indicates duplicate sample.

ע ווטונמופט טעטוויטור אמוווטוס.

<u>Abbreviations</u> µm = micrometers CSL = cleanup screening levels mg/kg = milligrams per kilogram NAD83 = North American Datum of 1983

ppt = parts per thousand SMS = Sediment Management Standards SPCS = State Plane Coordinate System SQS = Sediment Quality Standards

TOC = total organic carbon TS = total solids TVS = total volatile solids

ANALYTICAL TEST RESULTS FOR SWALE SEDIMENT SAMPLES^{1, 2}

		SI	NS	SMS Dry Weigh	t Equivalents ³	Ana	Analytical Re		
Parameter	CAS Number	SQS	CSL	Dry Weight "SQS" 4	Dry Weight "CSL" 5	MPS-1	MPS-2	MPS-3	
Conventionals		•							
Total Organic Carbon (%)						16.6	14	11.8	
Metals		ppm	ppm	maa	maa	nnm	nnm	nnm	
Arsonic	7440-38-2	57	03	57	03	30	2011	20 11	
Cadmium	7440-30-2	51	67	51	67	0.9	0.9	0.9	
Chromium	7440-47-3	260	270	260	270	63	52	58	
Copper	7440-50-8	390	390	390	390	67.2	51	54.3	
Lead	7439-92-1	450	530	450	530	37	19	21	
Mercury	7439-97-6	0.41	0.59	0.41	0.59	0.2 U	0.2 U	0.1 U	
Silver	7440-22-4	6.1	6.1	6.1	6.1	1 U	1 U	1 U	
Zinc	7440-66-6	410	960	410	960	199	131	194	
Organics	•								
LPAHs		ppm-OC	ppm-OC	daa	dad	daa	ppb	ppb	
Naphthalene	91-20-3	99	170	2,100	2,100	20 U	20 U	20 U	
Acenaphthylene	208-96-8	66	66	1.300	1.300	20 U	20 U	20 U	
Acenaphthene	83-32-9	16	57	500	500	20 U	20 U	20 U	
Fluorene	86-73-7	23	79	540	540	20 U	20 U	20 U	
Phenanthrene	85-01-8	100	480	1,500	1,500	20 U	20 U	20 U	
Anthracene	120-12-7	220	1,200	960	960	20 U	20 U	20 U	
2-Methylnaphthalene	91-57-6	38	64	670	670	20 U	20 U	20 U	
Total LPAH		370	780	5,200	5,200	20 U	20 U	20 U	
HPAHs		ppm-OC	ppm-OC	ppb	ppb	ppb	ppb	ppb	
Fluoranthene	206-44-0	160	1,200	1,700	2,500	20 U	20 U	20 U	
Pyrene	129-00-0	1,000	1,400	2,600	3,300	20 U	20 U	20 U	
Benzo(a)anthracene	56-55-3	110	270	1,300	1,600	20 U	20 U	20 U	
Chrysene	218-01-9	110	460	1,400	2,800	20 U	20 U	20 U	
Total Benzofluoranthenes		230	450	3,200	3,600	20 U	20 U	20 U	
Benzo(b)fluoranthene	205-99-2					20 U	20 U	20 U	
Benzo(k)fluoranthene	207-08-9					20 U	20 U	20 U	
Benzo(a)pyrene	50-32-8	99	210	1,600	1,600	20 U	20 U	20 U	
Indeno(1,2,3-cd)pyrene	193-39-5	34	88	600	690	20 U	20 U	20 U	
Dibenz(a,h)anthracene	53-70-3	12	33	230	230	20 U	20 U	20 U	
Benzo(g,h,i)perylene	191-24-2	31	78	670	720	20 U	20 U	20 U	
Total HPAH		960	5,300	12,000	17,000	20 U	20 U	20 U	
Chlorinated Benzenes		ppm-OC	ppm-OC	ppb	ppb	ppb	ppb	ppb	
1,4-Dichlorobenzene	106-46-7	3.1	9	110	110	4.6 U	4.1 U	4.2 U	
1,2-Dichlorobenzene	95-50-1	2.3	2.3	35	50	20 U	20 U	20 U	
1,2,4-Trichlorobenzene	120-82-1	0.81	1.8	31	51	20 U	20 U	20 U	
Hexachlorobenzene	118-74-1	0.38	2.3	22	70	0.99 U	1.8	10	
Phthalates	101.11.0	ppm-OC	ppm-OC	ррб	ppb	ppb	ppb	ppb	
Dimethyl phthalate	131-11-3	53	53	71	160	20 U	20 U	20 U	
Diethyl phthalate	84-66-2	61	110	200	1,200	20 U	20 U	20 U	
Di-n-Butyl phthalate	84-74-2	220	1,700	1,400	5,100	20 0	20 U	20 U	
Butyl benzyl phthalate	85-68-7	4.9	64 70	63	900	20 0	31 UY	26 UY	
Dis(2-Ethylnexyl) phinalate	117-81-7	47	18	1,300	3,100	20.0	20.0	33	
Di-n-Octyl philialate	117-04-0	00 00	4,500	0,200 nnh	0,200 nnh	20 0	20 U	20.0	
Hexapherabutadiana	97 69 2	20		hhn	120	0 00 11	111	1 I	
N Nitrogodiphonylaming	01-00-3	3.9 11	0.2	11	120	0.99 0	20.111	20 111	
Dibonzofuron	122 64 0	15	59	28	40	20 UJ	20 UJ	20 UJ	
	132-04-9			040 nnh	040 nnh	20 0	20 U	20 U	
Aradar 1016	10674 44 0	phu-oc	phil-OC	αqγ	aqy	aqu	add D	aqy	
Aroclor 1221	120/4-11-2					20 0	20.0	20 0	
Arodor 1221	11104-28-2					20 0	20 0	20 U	
Arodor 1232	52460.24.0					20 0	20 0	20 0	
Aroclor 1242	12672 20 6					20 0	20.0	20 0	
Aroclor 1240	11007 60 4					20 0	20 0	20 0	
Aroclor 1260	11097-09-1					20 0	20 0	20 0	
Total PCB	11030-02-3		65	130	1000	20.0	20.0	20 0	
	1			100	1000	200	200	200	

ANALYTICAL TEST RESULTS FOR SWALE SEDIMENT SAMPLES^{1, 2}

March Point (Whitmarsh) Landfill

Skagit County, Washington

		SI	NS	SMS Dry Weigh	t Equivalents 3	Analytical Results			
Parameter	CAS Number	SQS	CSL	Dry Weight "SQS" 4	Dry Weight "CSL" 5	MPS-1	MPS-2	MPS-3	
Organics (Continued)									
Phenols		ppb	ppb	ppb	ppb	ppb	ppb	ppb	
Phenol	108-95-2	420	1200	420	1,200	23	46	1,900	
2-Methylphenol	95-48-7	63	63	63	63	20 U	20 U	20 U	
4-Methylphenol	106-44-5	670	670	670	670	20 U	20 U	20 U	
2,4-Dimethylphenol	105-67-9	29	29	29	29	20 U	20 U	20 U	
Pentachlorophenol	87-86-5	360	690	360	690	99 U	100 U	100 U	
Miscellaneous Extractables		ppb	ppb	ppb	ppb	ppb	ppb	ppb	
Benzyl Alcohol 100-51-6		57	73	57	73	20 U	20 U	20 U	
Benzoic Acid	65-85-0	650	650	650	650	200 U	200 U	200 U	

Notes

1. Shaded cells indicate sample results above the SMS CSL.

2. Data qualifiers are as follows:

U = Undetected at the reporting limit

UY = Analyte is not detected at the raised reporting limit

UJ = Analyte is not detected. The associated reporting limit is an estimate and may be inaccurate or imprecise.

- 3. The Sediment Management Standards for most nonionizable organic compounds are expressed as a carbon-normalized value. But the nonionizable organic compounds values are usually not carbon-normalized in sediments with TOC values above 4%. The dry weight equivalent values are used instead following consultation with Ecology. The nonionizable organic compounds in the table are the ones for which the SQS and CSL criteria are expressed in units of ppm-OC.
- 4. Dry Weight "SQS": Lowest Apparent Effects Threshold, dry weight equivalent of the SMS "SQS."
- 5. Dry Weight "CSL": Second Lowest Apparent Effects Threshold (2LAET), dry weight equivalent of the SMS "CSL." Not all the CSL dry weight equivalents are the same as the 2LAET. Some of the chemicals have the CSL dry weight equivalents set to the HAET or the LAET. A majority of the chemicals are set at the 2LAET but there are exceptions.

Abbreviations

CAS = Chemical Abstracts Service

CSL = cleanup screening levels

HAET = highest apparent effects threshold

HPAH = high-molecular weight polycyclic aromatic hydrocarbons

LAET = lowest apparent effects threshold

2LAET = second lowest apparent effects threshold

LPAH = low-molecular weight polycyclic aromatic hydrocarbons

PCBs = polychlorinated biphenyls

ppb = parts per billion

ppm = parts per million

ppm-OC = parts per million of organic carbon

SMS = Sediment Management Standards

SQS = Sediment Quality Standards

TOC = total organic carbon

SUMMARY OF DETECTED ANALYTES FOR MONITORING WELL AND TEST PIT SOIL SAMPLES

OCTOBER AND NOVEMBER 2008^{1,2,3}

	Sample ID		MW-01		MW-03	MV	V-04	G	i1 ⁶		G3 ⁶		Ģ	64 ⁶		G5 ⁶		Ģ	6 6 ⁶	G10 ⁶	G11 ⁶
	Depth (ft bgs)	11.5	20.5	37	11.5	8.5	19	1	5.5	1	8	12	1	5	1	5	9	6	field dup.	8	11
	Sample Date		10/7/200	8	10/9/2008	10/8	/2009	11/1	/2008		10/31/200	8	10/3 ⁻	1/2008		11/2/200	8	11/1	/2008	11/1/2008	10/31/2008
	PSL ^{4,5}																				
Metals (mg/kg)																					<u></u>
Aluminum	32,600	11,900	12,300	29,900	11,500	17,100	11,200	18,600	18,800	16,800	15,200	20,200	17,200	17,700	16,200	16,000	18,500	13,400	14,200	14,300	21,500
Antimony	32										5 J								11 J		
Arsenic	7	1.4 J	5.1 J	2.7 J	6.8 J	14 J	4.9 J	3.2	4.3	2.3	3	8.8	2.6	4.7	2.4	2.9	4.7	5.1	4.6	4.1	13
Barium	1,320	40.3	40.1	239	117	82.6	47	95.4	115	77.2	74.1	47.3	78.3	259	73.3	85.5	93.8	60.2	69.9	65.0	43
Beryllium	160	0.1	0.2	0.4		0.2		0.3	0.4	0.3	0.2	0.4	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2	
Cadmium	1.214				0.8	0.5		0.5	2.6	0.3	0.5	0.5	0.4	2.7	0.4	0.7	0.7	0.5	0.6	0.3	
Chromium	135	32.4	28.4	53	55	57.7	33.1	41.2	67	34.6	32.8	54.8	45.8	47.2	35.9	38.6	33.3	39.4	39.3	30.1	58
Copper	36	18.1	21.4	61.0	373	44.6	15.8	23.6	76	23.2	76.0	33.3	26.7	49.3	21.6	29.5	36.4	50.0	70.8	21.8	23.4
Iron	58,700	19,100	21,900	42,600	39,900	27,100	16,700	23,700	34,400	21,900	24,800	30,300	23,800	26,500	22,300	26,800	29,800	28,300	23,200	18,200	38,500
Lead	220	2		7	171	6		13	112	4	33	6	3	238	2	31	58	18	49		
Manganese	1,200	245	315	771	400	352	208	596	431	280	340	301	318	345	303	351	508	292	253	210	336
Mercury	0.07			0.06		0.06			6.9		0.10	0.08		0.08		0.07	0.26		0.07		
Molybdenum	0.5	1.0	1.4	3	4	2.7	2.3	2.1	6	1.6	2.0	3.9	1.8	2.7	1.8	2.7	2.4	3.7	4.6	1.9	5
Nickel	48	99	81	56	80	83	60	76	90	63	60	45	76	75	62	65	62	69	69	67	34
Strontium	0.1	24.4	19.4	72.0	29.3	35.9	33.2	33.6	33.3	47.0	29.2	58.0	46.6	48.0	47.7	32.1	31.4	26.7	30.9	32.8	64.1
Titanium	NA	956	1,070	1,200	949	1,210	911	1,370	1,160	1,070	960	1,450	1,350	1,240	1,330	1,070	878	975	1,110	1,120	1,340
Vanadium	560	44.1	57.1	86	45.1	63.9	43.8	60.3	53.8	55.3	55.0	67.4	58.9	59.1	60.6	51.9	61.7	52.7	55.6	53.6	77
Zinc	100.8	43	39	99	282	84	40	81	381	63	174	82	79	311	187	225	187	175	345	59	73
TPH (mg/kg)																					
Gasoline-Range Organics (TPH-G)	30															6.5	310 J				
Diesel-Range Organics (TPH-D)	2,000			-				12	61	17	21	11		64		120	280	11	14	6.1	
Lube Oil (TPH-Oil)	2,000							49	330	39	75	45	20	380		480	670	55	48	16	
SVOCs (µg/kg)																					
1-Methylnaphthalene	24,000																130				
2-Methylnaphthalene	320,000																140				
4-Methylphenol	400,000																180				
Acenaphthylene	NA								63												
Anthracene	24,000,000								85												
Benzo(a)anthracene	129.7								270								130				
Benzo(a)pyrene	100								240								120				
Benzo(b)fluoranthene	575.6								160								100				
Benzo(g,h,i)perylene	NA								71												
Benzo(k)fluoranthene	432.1								210								110				
bis(2-Ethylhexyl) phthalate	4,849								180			97		490		230	6,000		170		
Chrysene	144.1								320								180				
Fluoranthene	88,560								500								200				
Fluorene	553,000																72				
Naphthalene	5,000																280			68	
Phenanthrene	NA								510							120	300				
Pyrene	2,400,000								530								230				

SUMMARY OF DETECTED ANALYTES FOR MONITORING WELL AND TEST PIT SOIL SAMPLES

OCTOBER AND NOVEMBER 2008^{1,2,3}

March Point (Whitmarsh) Landfill

Skagit County, Washington

	Sample ID		MW-01		MW-03	MV	V-04	G	i1 ⁶		G3 ⁶		G	4 ⁶		G5 ⁶		(36 ⁶	G10 ⁶	G11 ⁶
	Depth (ft bgs)	11.5	20.5	37	11.5	8.5	19	1	5.5	1	8	12	1	5	1	5	9	6	field dup.	8	11
	Sample Date		10/7/200	8	10/9/2008	10/8	/2009	11/1	/2008		10/31/200	8	10/31	/2008		11/2/200	8	11/1	/2008	11/1/2008	10/31/2008
	PSL ^{4,5}																				
VOCs (µg/kg)																					
1,2,4-Trimethylbenzene	4,000,000										10	30					690				42
1,2-Dichlorobenzene	15,260			-											-		15 J				
1,3,5-Trimethylbenzene	4,000,000			-							3	18			-		240 J				8.3
1,4-Dichlorobenzene	81.21			-							4.9				-	1.3	20 J				
2-Butanone	48,000,000	-		-		23 J		41	43	14	22	40	220	540 J	-	18	37 J	22	14	17	12
4-Isopropyltoluene	NA	1		1							8.9	26			-	1	61 J	4	2.7		7.2
4-Methyl-2-Pentanone (MIBK)	6,400,000	1		1					41				150	440 J	-	1		-			
Acetone	8,000,000	16	11	19	36 J	95 J	11	360	110	160	120	240	240	440 J	37	110	190 J	130	100	130	90
Benzene	30	-		-	5.5 J							11			-	-	14 J				
Carbon Disulfide	8,000,000	1	1.4	1	9.1 J							21		2.5 J	-	29	20 J	1.7		2.2	5
Chlorobenzene	13,860			-								3.5					39 J			6.3	
Dichlorodifluoromethane	16,000,000	-		-											-	-	2.1 J				
Ethylbenzene	6,000	-		-							1.4	3.6			-	-	33 J				23
Isopropylbenzene	8,000,000	1		1							1.7	8.9			-	1	69 J	-			7.3
m,p-Xylene	9,000			-					2.6		2.8	12	1.8	2.3 J			120 J				23
Methylene Chloride	20	-	2.4		3.4 J		2.2								2.2	-		2.5			
n-Butylbenzene	NA	-		-							1.2				-	-	79 J				
n-Propylbenzene	NA	1		1							1.5	4.6			-	1	100 J	-			4.1
o-Xylene	160,000,000	-		-							1.4	5.3			-	-	64 J	-			8.4
sec-Butylbenzene	NA	-		-								4.9			-	-	59 J				3.1
tert-Butylbenzene	NA	-		-											-	-	19 J				
Tetrachloroethene	4.173	-		-				1.5	3						-	-					
Toluene	7,000				1.8 J				9.5		9.9	2.3	61	120 J		1	19 J	8	4.7		1.9
PCBs (µg/kg)																					
Aroclor 1248	NA			-	28						20										
Aroclor 1254	4	-		-	27						22			240	-	-	110 J	76	31		
Aroclor 1260	492.1			-					360		13								9.9		
Total PCBs ⁷	28				66.7				690		62.6			373		-	267.5	133	50.4		
Pesticides (µg/kg)																					
Aldrin	1.7																390				
delta-BHC	1.7									9.8	120							2.8	3.1		
Dieldrin	3.3										24						210				
Methoxychlor	48.12												71								

Notes

- 2. Data qualifiers are as follows:
- J = Reported value is an approximation.
- 3. -- = Analyte not detected.
- 4. NA = PSL not established, or background concentration not available.
- 5. The detection limits reported by the laboratory were equal to or less than the PSLs, except for samples that required dilution due to matrix interference.
- 6. Locations G1 through G11 are test pits.
- 7. One-half of the reporting limit was used for non-detected Aroclors to calculate total PCBs.

Abbreviations

bgs = below ground surface ft = feet µg/kg = micrograms per kilogram mg/kg = milligrams per kilogram

PCBs = polychlorinated biphenyls

- PSL = preliminary screening levels
- SVOCs = semivolatile organic compounds
- TPH = total petroleum hydrocarbon
- VOCs = volatile organic compounds

^{1.} Results in bold indicate exceedance of preliminary screening level.

SUMMARY OF TEST RESULTS FOR MONITORING WELL, SEEP, AND SURFACE WATER SAMPLES OCTOBER AND DECEMBER 2008 AND APRIL AND JULY 2009^{1,2,3}

March Point (Whitmarsh) Landfill

	Sample ID		MW-0	2			MW	-03			MW-03 (d	uplicate)			MW-	04	
	Sample Date	10/14/2008	12/18/2008	4/29/2009	7/23/2009	10/14/2008	12/18/2008	4/28/2009	7/23/2009	10/14/2008	12/18/2008	4/28/2009	7/23/2009	10/14/2008	12/19/2008	4/29/2009	7/23/2009
	PSL ^{4,5}																
Dissolved Metals ⁶ (µg/L)							-	•				-		-	·		
Aluminum	NA																
Arsenic	0.2	1.9	2.2	2.3 J-	2.5	4.1	0.5	0.5 J-	4.1	4.0	0.4	0.5 J-	4.1	4.6	4.4	5.5 J-	5.9
Barium	NA	20	12	9 J-	10	50	35	50 J-	92	50	36	52 J-	94	66	59	63 J-	89
Copper	2.4																
Iron	NA					11,800		370 J-	13,400	12,000		1,360 J-	13,600	620			740
Manganese	100	41	45	21 J-	25	332	227	276 J-	319	336	226	284 J-	327	127	121	124 J-	125
Molybdenum	NA	11	16	6 J-	6	9	10			9	10			7	8		
Nickel	8.2	4.1	4	3.7 J-	4	1.1	0.6	0.8 J-	0.6	1.1	0.6	0.8 J-	0.9	0.6	0.7	0.5 J-	
Silver	26,000																
Selenium	71																
Strontium	NA	154	191	154 J-	137	208	156	186 J-	210	210	159	186 J-	215	121	127	119 J-	122
Titanium	NA																
Vanadium	NA	4		3 J-	4												
Zinc	81																
Total Metals [®] (μg/L)				-		-				-							
Aluminum	NA			80	50	460 J				50 J				160			
Arsenic	0.2	2.0	2.2	2.3	2.8	4.9	2.7	2.8	4.1	4.4	2.8	2.7	4	4.1	4.8	5.6	5.6
Barium	NA	23	12	9	10	60	63	82	87	53	66	76	90	69	84	88	90
Chromium	240,000																
Copper	2.4					3											
Iron	NA 0.1	60		70	80	13,400	12,200	14,600	12,500	12,400	12,300	13,300	12,900	870	800	770	770
Lead	0.1					10 J 250				∠ J 240	250				120		107
Marcury	0.025	40	40	47	04		234	301		343	230	202	510	130	125	124	127
Molybdenum	NA	12	15	6	6	8	9			q	9			7	8		
Nickel	8.2	4.7	3.4	4.4	5.4	2.8 J	0.6	0.8	0.9	1.3 J	0.5	0.9	0.8	1.0			
Silver	26,000																
Strontium	NA	163	195	155	130	214	168	196	193	218	172	186	198	125	133	117	119
Titanium	NA			6	7	27 J								11			5
Vanadium	NA	4		4	4												
Zinc	81					30 J											
TPH (mg/L)																	
Diesel-Range Organics (TPH-D	D) NA																
SVOCs (µg/L)																	
1-Methylnaphthalene	NA																
2,4-Dimethylphenol	550																
2-Methylnaphthalene	NA																
2-Methylphenol	NA																
4-Chioro-3-methylphenol	NA																
4-Methylphenol	NA 640																
Acenaphthene Ropzoio opid	640 NA																
Benzyl alcohol	NA																
bis(2-Ethylbexyl) phthalate	22							12									
Butyl benzyl phthalate	1.300																
Carbaryl (Sevin)	NA																
Diethyl phthalate	28,000																
Di-n-Butyl phthalate	2,900																
Naphthalene	4,900																
N-Nitrosodiphenylamine	6																
Phenol	1,100,000																

SUMMARY OF TEST RESULTS FOR MONITORING WELL, SEEP, AND SURFACE WATER SAMPLES OCTOBER AND DECEMBER 2008 AND APRIL AND JULY 2009^{1,2,3}

	Sample ID	NW-02			I	MW.	.03		I	MW-03 (d	unlicate)			MW-	.04		
	Sample ID	10/14/2008	12/18/2008	1/20/2000	7/23/2000	10/14/2008	12/18/2008	4/28/2000	7/23/2000	10/14/2008	12/18/2008	1/28/2000	7/23/2000	10/14/2008	12/10/2008	1/20/2000	7/22/2000
		10/14/2008	12/10/2000	4/25/2005	1123/2009	10/14/2000	12/10/2000	4/20/2009	1123/2009	10/14/2000	12/10/2000	4/20/2009	1/23/2009	10/14/2008	12/19/2000	4/25/2005	1/23/2009
	PSL																<u> </u>
PAHs (µg/L)																	
1-Methylnaphthalene	NA														0.018		
2-Methylnaphthalene	NA														0.017		
Acenaphthene	640					0.032	0.017 J	0.012	0.024	0.032	0.017 J	0.013	0.028				
Acenaphthylene	NA																
Anthracene	26,000																
Benzo(g,h,i)perylene	NA																
Chrysene	0.02																
Dibenzofuran	NA																
Fluoranthene	90																
Fluorene	3,500																
Naphthalene	4,900																
Phenanthrene	NA																
Pyrene	2,600																
VOCs (µg/L)																	
1,2,4-Trimethylbenzene	NA																
1,3,5-Trimethylbenzene	NA																
1,2-Dichlorobenzene	1,300																
1,4-Dichlorobenzene	4.9																
2-Butanone	NA																
Acetone	NA	4.6				3.1				3.8							
Benzene	23															0.2	
Bromoform	140																
Carbon Disulfide	NA																
Chlorobenzene	1,600																
Chloroethane	NA																
Chloroform	280																
Chloromethane	130	0.4									0.5 J						
Dibromochloromethane	13																
Diethyl ether	NA																
Isopropylbenzene	NA																
m, p-Xylene	NA																
Methylene chloride	590																
o-Xylene	NA																
sec-Butylbenzene	NA																
Toluene	15,000															0.3	
PCBs (µg/L)																	
Aroclor 1232	NA						0.029 J	0.019			0.031 J	0.022					
Aroclor 1242	NA					0.03	0.013 J			0.031	0.014 J						
Total PCBs ⁷	0.07					0.06	0.0695	0.049		0.061	0.07	0.052					
Pesticides (uc/L)	0.0.		1	1		0.00	0.0000	0.0.0	1		0.0.	0.002	1		1	1	<u>.</u>
	0.00166			I			0.0056	0.0059	0.0075		0.0061	0.0061	0.0092				
	0.00100						0.0000 J	0.0030	0.0075		0.0001 J	0.0001	0.0002				
	0.0049					0.013	0.031 J	0.041	0.010	0.013	0.030 J	0.039	0.010				
	0.017					0.0074	0.0075 J	0.0076	0.0041	0.0070	0.0070 J	0.0070	0.0047				
	0.041						0.0019 J	0.0012			0.0010 J	0.0012					
gamma-BHC (Lindane)	0.04							0.00096				0.0011					

SUMMARY OF TEST RESULTS FOR MONITORING WELL, SEEP, AND SURFACE WATER SAMPLES OCTOBER AND DECEMBER 2008 AND APRIL AND JULY 2009^{1,2,3}

March Point (Whitmarsh) Landfill

	Sample ID		SP-(01			SP-02				SP	-03			SV	V-01			SW	-03	
	Sample Date	10/15/2008	12/17/2008	4/28/2009	7/23/2009	10/15/2008	12/18/2008	4/28/2009	7/23/2009	10/15/2008	12/15/2008	4/28/2009	7/24/2009	10/14/2008	12/14/2008	4/28/2009	7/24/2009	10/15/2008	12/17/2008	4/29/2009	7/24/2009
	PSL ^{4,5}																				í
Dissolved Metals ⁶ (µg/L)			•		·	-	•		•			-	-		-		•	-	•		
Aluminum	NA	60																70			
Arsenic	0.2	0.4		0.4 J-	1.2			0.7 J-	1.1	0.8		0.6 J-	0.8	3.2	2.4	2.9 J-	5.1	1.1		1.8 J-	1.8
Barium	NA	201	181	181 J-	267	76	134	89 J-	160	63	61	72 J-	104	9	6	8 J-	18.0		26	10 J-	5
Copper	2.4																		3		2
Iron	NA				12.300			70 J-	18.200			3.940 J-	25.800		120		320	530	60	370 J-	370
Manganese	100	154	233	225 J-	173	126	364	332 J-	321	434	477	545 J-	444	13	22	391 J-	150	203	335	159 J-	180
Molybdenum	NA	31	23	20 J-	16	40	13			17	12			15	6			15	20	6 J-	
Nickel	8.2	0.6	0.6	0.7 J-		7	3.5	0.8 J-		2.4	2.7	0.6 J-	0.6	4.5	3.4	5.8 J-	3.6	3.0	9	5.1 J-	3.8
Silver	26,000					11															
Selenium	71												50								
Strontium	NA	319	398	315 J-	326	3,060	692	383 J-	397	414	582	408 J-	474	196	92	154 J-	196	263	2,770	351 J-	800
Titanium	NA														5				9		7.0
Vanadium	NA																3				
Zinc	81																				
Total Metals ⁶ (μg/L)																					
Aluminum	NA	60	150			270	2230	680	900	580	50		80	170	650	440	13,200	290	100	3,080	140
Arsenic	0.2	1.4	1.4	1.3	1.3		1.4	1.7	2.4	1.3		1.1	0.8	4.8	5.8	5.0	21.3 J	2.2		3.0	2.5 J
Barium	NA	300	279	251	258	63	188	178	185	206	89	165	100	12	13	15	86	7.0	27	31	7
Chromium	240,000																31			8	
Copper	2.4						5	2	2						5	2	38		4	10	3
Iron	NA	15,900	22,100	15,500	12,100	5,890	21,400	25,100	26,400	55,300	19,800	41,100	25,400	800	1,610	890	16,500	1,790	650	7,920	1,360
Lead	8.1						1								2		24			3	ı
Manganese	100	173	251	238	163	85	409	373	314	557	495	570	395	50	660	414	313	230	353	276	195
Mercury	0.025														0.0284		0.0649				
Molybdenum	NA	21	24	20		40	14			8	13			10	6		9.0	7	22	6	ı
Nickel	8.2	1.9	1.0	0.8		8	5.4	2.4	2.7	3.2	1.2	0.9	1	5.2	8.1	7.4	72.2 J	4.2	9	12.6	4.6 J
Silver	26,000					8															
Strontium	NA	332	419	320	296	3,830	787	407	377	452	603	424	407	196	100	164	217	265	2,900	381	820
litanium	NA		14	5	5	20	128	41	54	31	7	8	11	10	44	28	777	19	18	156	16
	NA 01						1	5	5	8		3		5	5	4	76			11	3
	81									20					10		150			20	
IPH (mg/L)		0.44	0.50	0.05	0.74	1			0.54	0.40	0.55	0.04	0.70	1	1	1	1	1	1	1	i
Diesel-Range Organics (TPH-D)	NA	0.44	0.56	0.65	0.74		0.31	0.33	0.51	0.40	0.55	0.64	0.76								
SVOCs (µg/L)								1	1						1			r	1 <u> </u>		
1-Methylnaphthalene	NA									4.0	5.2	5.3	3.6								
2,4-Dimetnyiphenoi	550										57	13	1.9								
2-Wethylnaphunalene	NA NA									2.9	4.4	4.2	3.0								
2-ivietnyiphenoi	NA NA		701																		
4-Onioro-3-methylphenol	NA NA		7.0 J																		
	640									1.0	1.2	1.2	1 1								
Benzoic acid	040 ΝΔ									1.0	1.5	1.2	1.1								
Benzyl alcohol	ΝA																				
his(2-Ethylhexyl) nhthalate	22													<u> </u>	1.6						
Butyl benzyl phthalate	1.300																				
Carbaryl (Sevin)	NA	1.9	35.1	2.6	11																
Diethyl phthalate	28,000										14										
Di-n-Butyl phthalate	2.900																				·
Naphthalene	4.900																				
N-Nitrosodiphenvlamine	6						1.4 J	1.2	1.2												
Phenol	1,100,000																				

SUMMARY OF TEST RESULTS FOR MONITORING WELL, SEEP, AND SURFACE WATER SAMPLES OCTOBER AND DECEMBER 2008 AND APRIL AND JULY 2009^{1,2,3}

March Point (Whitmarsh) Landfill

	Sample ID		1	SP-02				SD	-03			SW	/_01			SW	.03]			
	Sample Date	10/15/2008	12/17/2008	1/28/2000	7/23/2000	10/15/2008	12/18/2008	1/28/2000	7/23/2000	10/15/2008	12/15/2008	4/28/2000	7/24/2009	10/1//2008	12/14/2008	1/28/2009	7/24/2009	10/15/2008	12/17/2008	1/20/2000	7/24/2009
		10/13/2000	12/11/2000	4/20/2003	1123/2003	10/13/2000	12/10/2000	4/20/2003	1123/2003	10/13/2000	12/13/2000	4/20/2003	1124/2003	10/14/2000	12/14/2000	4/20/2003	1124/2003	10/13/2000	12/11/2000	4/23/2003	1124/2003
	POL																				<u> </u>
ΓΑΠS (μg/L)	ΝΑ		0.20 1	1	0.22	ľ	0.000 1	1 1	0.11		201	1	20				1		1		
2 Mothylnaphthalana	NA NA		0.36 J		0.32		0.066 J		0.11		2.8 J		2.0								
2-Methylhaphthape	NA 640		0.36 J		0.20		0.024 J		0.030		2.8 J		2.5								
Acenaphthylopo	040 NA	0.32	0.37 J	0.30	0.30	0.061	0.16 J	0.16	0.14	0.00	0.09 J		0.91								
Acenaphiniyiene	1NA 26.000		0.020.1							0.029	0.020 J	0.022 J	0.0213								
Antinacene Bonzo(a h.i)pondono	20,000	0.024	0.029 J	0.022	0.020					0.044	0.059 J	0.047	0.040								
Chrysopo	0.02																0.022				
Dibonzofuran	0.02		0.12		0.12		0.030 1		0.021		031		0.31				0.014				
Elucranthono	00	0.028	0.12 J	0.036	0.12		0.039 J	0.021	0.031	0.064	0.33	0.087	0.064				0.011				
Fluorene	3 500	0.020	0.037 5	0.030	0.035	0.058	0.020 J	0.021	0.020	0.004	0.07 J	0.007	0.004				0.011				
Nanhthalene	4,900	0.10	0.57	0.21	0.2	0.000	0.12.0	0.10	0.000	0.01	0.02.0	0.01	0.43								
Phenanthrene	4,300 NA	0.23	0.11	0.02	0.20	0.019	0.035 J	0.026	0.032	0.40	0.113	0.10	0.43				0.011				
Pyrene	2 600	0.024	0.113	0.13	0.21	0.019	0.0333	0.020	0.032	0.40	0.42 J	0.52	0.45				0.011				
	2,000	0.024	0.0310	0.020	0.05	0.012	0.03 3	0.024	0.020	0.00	0.001 0	0.007	0.040				0.015				
1 2 4-Trimethylbenzene	ΝΔ	0.8	0.4	0.5	11			<u> </u>													
1.3.5-Trimethylbenzene	NA				0.3			1													
1.2-Dichlorobenzene	1 300	0.3	0.4	0.4	0.3.1					0.3	0.3	0.3	0.3.1								
1 4-Dichlorobenzene	4.9	0.7	0.8	0.6	06.1		0.3	0.2	03.1	1.7	2.0	1.8	16.								
2-Butanone	NA			5.9				3.5													
Acetone	NA	4.7				6.9				12								3.1			
Benzene	23	2.6	2.4	1.9	2.2	0.4		0.3	0.2	0.8	0.8	0.8	0.6								
Bromoform	140																				17
Carbon Disulfide	NA																4.1			0.2	
Chlorobenzene	1,600	7.6	8.2	5.7	6.8	0.3	0.7	0.6	0.8	4.1	4.5	4.0	3.9								
Chloroethane	NA									0.4	0.4	0.3									
Chloroform	280																				
Chloromethane	130										0.2										
Dibromochloromethane	13																				0.3
Diethyl ether	NA	0.14 J		0.14 J	0.15 J	0.20 J		0.42 J	0.56 J	0.84 J		0.87 J	0.79 J								
Isopropylbenzene	NA	0.2			0.2																
m, p-Xylene	NA	1.9	1.5	1.2	2.2																
Methylene chloride	590																				
o-Xylene	NA	2.7	1.7	1.6	3.1																
sec-Butylbenzene	NA									0.2		0.2	0.2								
Toluene	15,000	1.8	1.4	1.3	1.7			0.3				0.3			0.4		32				
PCBs (μg/L)																					
Aroclor 1232	NA							0.028			0.086 J	0.091									
Aroclor 1242	NA									0.035 J	0.029 J										
Total PCBs ⁷	0.07							0.058		0.065	0.14	0.121									
Pesticides (μg/L)																					
4,4'-DDD	0.00166																				
alpha-BHC	0.0049																				
beta-BHC	0.017																				
delta-BHC	0.041																				
gamma-BHC (Lindane)	0.04]

SUMMARY OF TEST RESULTS FOR MONITORING WELL, SEEP, AND SURFACE WATER SAMPLES OCTOBER AND DECEMBER 2008 AND APRIL AND JULY 2009^{1,2,3}

March Point (Whitmarsh) Landfill

	Sample ID		SW	-04			SW	·05			SW-0)6		SW	/-07
	Sample Date	10/15/2008	12/18/2008	4/29/2009	7/24/2009	10/15/2008	12/17/2008	4/29/2009	7/24/2009	10/15/2008	12/17/2008	4/29/2009	7/23/2009	12/17/2008	4/28/2009
	PSL ^{4,5}														
Dissolved Metals ⁶ (µg/L)															-
Aluminum	NA														T
Arsenic	0.2	2		2 J-	3			1.7 J-	3	3		4 J-	5	0.5 J	0.6 J-
Barium	NA	4	33	11 J-	12	13	18	22 J-	20	11	18	14 J-	12	43	71 J-
Copper	2.4		5	3 J-	3		3	2 J-	4		3	3 J-	6		
Iron	NA	280		170 J-	180		300		70						
Manganese	100	68	246	164 J-	55	345	227	795 J-	75	80	132	289 J-	32	229	169 J-
Molvbdenum	NA	13	40	7 J-		21	13		5	40	20	8 J-		24	19 J-
Nickel	8.2	2.6	11	5 J-	5.0	5.8	3	4 J-	6.0	8	7	6 J-	7	4	1.7 J-
Silver	26.000									8					
Selenium	71														
Strontium	NA	425	3,750	802 J-	1,740	1.340	729	621 J-	2 480	3 630	2 470	1 860 J-	3 650	280	327 J-
Titanium	NA				7				6		7	7.1-	10.0		
Vanadium	NA			3	4				4			4 J-			
Zinc	81						20								
	01	N												<u>#</u>	
	NΛ	1 570	4 240	440	1.000	120	400	100	00		2 250	370		110	T
Arconic	0.2	1,570	4,240	440	1,090	120	400	150	30		2,230	370	51	17	1.4
Borium	0.2	2.0	o	12	4.0 J	1.5	10	1.0	4 J	3	3	15	5 J 14	1.7	1.4
Chromium	240.000	12	49	13	10	15	10	24	20	14	20	15	14	92	115
Chromium	240,000	5	10												
Copper	2.4	4	12	4	b		4	3	4		8	4	7	3	
Iron	NA 0.1	3,490	7,580	1,020	2,440	1,700	1,080	2,010	720	490	4,620	1,370	500	18,000	12,800
Leau	0.1	125		476										262	
Marganese	100	120	302	170	107	300	243	/02	09	90	239	300	- 30	202	197
Makikalaasiaa	0.025														
Niekel	NA 8.2	8	40	6		22	13		5	40	20	8		20	18
Nickel	0.2	0.0	17	5	73	0.9	4.0	4.1	7 J	0	11	0	10 3	4.7	2.0
Strentium	26,000					3				7			2 620		
Strontlum	NA	431	3,970	805	1,790	1,400	738	606	2,320	3,700	2,530	1,790	3,630	299	347
l Itanium	NA	83	250	29	79	6	21	12	14		142	21	20	11	
	NA 04	7	9	5	1				4		1	0	6		
	81	20				20	20	20						40	
IPH (mg/L)			-	-	-							r	-		
Diesel-Range Organics (TPH-I	D) NA														
SVOCs (µg/L)															
1-Methylnaphthalene	NA														
2,4-Dimethylphenol	550														
2-Methylnaphthalene	NA														
2-Methylphenol	NA					37 J									
4-Chloro-3-methylphenol	NA														
4-Methylphenol	NA					55									
Acenaphthene	640														
Benzoic acid	NA					5,500									
Benzyl alcohol	NA					600									
bis(2-Ethylhexyl) phthalate	2.2														
Butyl benzyl phthalate	1,300					23									
Carbaryl (Sevin)	NA													1.8	1.2
Diethyl phthalate	28,000					1.9 J									
Di-n-Butyl phthalate	2,900					2.8									
Naphthalene	4,900					1.9 J									
N-Nitrosodiphenylamine	6														
Phenol	1,100,000					50									

SUMMARY OF TEST RESULTS FOR MONITORING WELL, SEEP, AND SURFACE WATER SAMPLES OCTOBER AND DECEMBER 2008 AND APRIL AND JULY 2009^{1,2,3}

March Point (Whitmarsh) Landfill

Skagit County, Washington

	Sample ID SV Sample Date 10/15/2008 12/18/200		SW	04		SW-05						06		SW-07	
	Sample Date	10/15/2008	12/18/2008	4/29/2009	7/24/2009	10/15/2008	12/17/2008	4/29/2009	7/24/2009	10/15/2008	12/17/2008	4/29/2009	7/23/2009	12/17/2008	4/28/2009
	PSI 4,5							.,_0,_000			,			,	
PAHs (ug/L)							1		1	8	1			<u>.</u>	<u> </u>
1-Methylnaphthalene	NA													0.15.1	T
2-Methylnaphthalene	NA													0.061.J	
Acenaphthene	640					0.014	0.016.1	0.064				0.010		0.37.1	0.40
Acenaphthylene	NA														
Anthracene	26.000														
Benzo(a,h,i)pervlene	NA														
Chrysene	0.02														
Dibenzofuran	NA													0.065 J	
Fluoranthene	90													0.015 J	0.018
Fluorene	3.500													0.15 J	0.13
Naphthalene	4.900													0.097 J	0.11
Phenanthrene	NA													0.059 J	0.062
Pvrene	2.600													0.01 J	0.011
VOCs (µɑ/L)	_,		•				1	1	1		1	•			
1.2.4-Trimethylbenzene	NA													0.2	0.8
1.3.5-Trimethylbenzene	NA														0.2
1.2-Dichlorobenzene	1.300														
1.4-Dichlorobenzene	4.9														
2-Butanone	NA														
Acetone	NA														
Benzene	23													2.2	3.6
Bromoform	140				12				15				12		
Carbon Disulfide	NA				0.2										
Chlorobenzene	1,600														
Chloroethane	NA														
Chloroform	280														
Chloromethane	130														
Dibromochloromethane	13				0.3				0.3				0.3		
Diethyl ether	NA											0.40 J	0.27 J		0.14 J
Isopropylbenzene	NA														
m, p-Xylene	NA													0.6	1.6
Methylene chloride	590														
o-Xylene	NA													0.9	2.2
sec-Butylbenzene	NA														
Toluene	15,000			0.2			0.2							0.8	1.4
PCBs (µg/L)															
Aroclor 1232	NA														
Aroclor 1242	NA														
Total PCBs ⁷	0.07														
Pesticides (µg/L)															
4,4'-DDD	0.00166										0.0019 J				
alpha-BHC	0.0049														
beta-BHC	0.017														
delta-BHC	0.041														
gamma-BHC (Lindane)	0.04														

<u>Notes</u> 1. Results in **bold** indicate exceedance of preliminary screening level.

2. Flags:

- J = Reported value is an approximation. J- = Value is an approximation with a low bias.
- 3. -- Not detected.
- 4. NA = PSL not established.
- 5. The detection limits reported by the laboratory were equal to or less than the PSLs, except for samples that required dilution due to matrix interference.
- 6. The following metals were detected in the total fraction of some samples but were not detected in the dissolved fraction: chromium, lead, and, mercury.
- 7. One-half of the reporting limit was used for non-detected Aroclors to calculate total PCBs.

<u>Abbreviations</u> µg/L = micrograms per liter

mg/L = milligrams per liter

PCBs = polychlorinated biphenyls PAHs = polyaromatic hydrocarbon

PCBs = polychlorinated biphenyls

SVOCs = semivolatile organic compounds

TPH = total petroleum hydrocarbon

VOCs = volatile organic compounds

VOCs = volatile organic compounds

FIGURES

Plot Date: 09/08/09 - 3:39m, Plotted by: adam.stenberg Draving Path: 24159/006_MPRN, Drawing Name: Whitmarsh_Phase1ActualSedSamp_090809.dwg

Plot Date: 09/08/09 - 3:29pm, Plotted by: adam:stenberg Drawing Path: S:\14159\006_MPR\, Drawing Name: Whitmarsh_GeophysicalInvestigation

File path: I:/Project/Skagit County/14159 - Skagit Whitmarsh Landfill/1000 BACKGROUND/Field Mobilization/Bioassay Results.mxd

Plot Date: 09/08/09 - 4:42pm, Plotted by: adam.stenberg Drawing Path: 2:114159/006_MPR1, Drawing Name: Whitmarsh_Data-Sediment_090809.dwg

09.dwd

r.						
				PHA	SE I RI SAMPLE	S
				MW-03		
ľ	MW-03			····· ··· ··· ··· ··· ··· ··· ··· ···		L / BORING LOCATION
I	MW-03 PSL 10/14/2008 12	2/18/2008 4/28/20	09 7/23/2009	SP-01 @	SEEP SAMPLING L	OCATION
I	Dissolved Arsenic 0.2 4.1	0.5 0.5 J	- 4.1	NOTES:		
	Dissolved Manganese100332Total Arsenic0.24.9	<u>227 276 J</u> 2.7 2.8	- 319 4.1	1. J:VALUE	IS ESTIMATED.	
	Total Copper2.43	NE NE	NE	3 NE PSL N	IS AN ESTIMATE WITH A	A POSSIBLE LOW BIAS.
	Total Lead 8.1 16 J	NE NE	NE	4. ALL RESU	JLTS ARE MICROGRAMS	S PER LITER (µg/L)
I	4,4'-DDD 0.00166 NE	0.0056 J 0.005	8 0.0075			
I	alpha-BHC 0.0049 0.015	0.031 J 0.041	0.016			
I		HI THE	and the second s	and a start and	PADILLA BAY	
			123 . C. Mar	and the second	, , DIEB , D, II	
			SP	-01		- BNSF
	SP-01 PSL 10/15/2008 12/17 Dissolved Amonia 0.2 0.4 N	7/2008 4/28/2009	7/23/2009	and the second second		RAILROAD
I	Dissolved Alsenic 0.2 0.4 N Dissolved Manganese 100 154 2	33 225 J-	173		All Constants	
I	Total Arsenic 0.2 1.4 1 Total Arsenic 100 170 0	.4 1.3	1.3	SP-02	and and a second	
I	Total Manganese 100 173 2	51 238	163			
I	MW-01		WX I		the the	6312118-301-301
I	40 MW-02	Election	A AND A A	SP-03		the second
			El F			All and a second
I	MW-02 PSL 10/14/2	008 12/18/2008	4/29/2009 7/23/2	2009		the second
	Dissolved Arsenic 0.2 1.9	2.2	2.3 J- 2.5	5		LABAY
I	Total Arsenic 0.2 2.0	2.2	2.3 2.3	8	INNER	LAGOON
I			Ser alle and		/ /	
	60 SP.02		0/15/2008 12/15/	2008 4/28/2000	0000/12/12	Sold and all
I	Dissolved Arsenic	0.2	0.8 NE	0.6 J-	0.8	1 March - March
	Dissolved Manganes	e 100	434 47	7 545 J-	444	
ł	Total Arsenic Total Manganese	0.2	1.3 NE	<u> </u>	0.8	MARCE BACK
	Diesel-Range Organi	cs 500	NE 550	0 640	760	268 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I	Total PCBs	0.07	NE 0.1	4 0.121	NE	
I	15)			State Manuala		
I		11111		1. Contraction		
I		SP-02		PSL 10/15/2	008 12/18/2008 4/28/	/2009 7/23/2009
I		Dissolve	ed Arsenic	0.2 NE 100 126	NE 0.7 364 333	7 J- 1.1 2.1- 321
		Total Ar	senic	0.2 NE	1.4 1	.7 2.4
		Total Co	opper	2.4 NE	5 N	IE NE
I		TOLATINA	anganese		409 3	13 314
I			S			
I				MARC		Carlos I. C. C.
		12.2		CHP	Portest and the	
				VINT	Tiezer a	NEE STATE
				NOAN		
I	STATISTICS STATISTICS			0		
	MW-04	PSL	10/14/2008 12/19	9/2008 4/29/2009	7/23/2009	
I	Dissolved Arsenic	0.2	4.6 4	4.4 5.5 J-	5.9	a l'Anna
	Total Arsenic	0.2	4.1 4	4.8 5.6	5.6	
	Total Manganese	100	136 1	29 124	127	
	Contract the second			25, 70 1		
	HWY			No. of the	MW-04 🕁	\$\$
	.<0	102 1 1 1 1 1 2	a to the second		1 Buch and	1
	Aerial Photo Courtesy of USDA/FSA Aerial Photog	raphy			PHASE I UPLAN	os
	Field office (2006) and Skagit County (2008)			SUMMA	RY OF EXCEED	ANCES IN
I	aerial photo, 2008. Vertical datum: MLLW	r i ∕i		GROUNDV	VATER AND SEE	P SAMPLES
	Note: No monitoring well was installed at MW-01			March	Point (Whitmarsh	n) Landfill
	since deep groundwater was not encountered.			Ska	git County, Wash	ington
	EXPLANATION	I		ADS	Data: 00/15/00	Project No. 14150
		0 100	200 By:	APS	Date: 09/15/09	Project No. 14159
1			200	AMEC Ge	omatrix	Figure 10
1		APPROXIMATE SCA	JEINFEET I '			• •

Plot Date: 09/08/09 - 3:08pm, Plotted by: adam stenberg Drawing Path: S:14159/006_MPR\, Drawing Name: Whitmarsh_Data-SW

60/80/60

Plot Date: 09/09/09 - 10:59am, Plotted by: adam:stenberg Drawing Path: S:\14159\006_MPR\, Drawing Name: Whitmarsh_CrossSectB_0

APPENDIX A

Summary pages from Historical Investigations

were noted entering this feature from under S March Point Road. Wetland vegetation was observed in various locations within this stream; most notably red alder, willow, creeping buttercup and skunk cabbage. A portion of the stream between the site and S March Point Road is tidally influenced and could be considered estuarine habitat. The stream enters the tideland south of the side, turns north and flows along the eastern edge of the landfill into Padilla Bay Lagoon (Figure 4, Photographs 3 and 4). Several unidentified species of juvenile fish were noted within the stream channel on the eastern edge of the landfill from the Swinomish Indian Reservation.

On-site upland habitat is minimal because of the active sawmill operations. The extreme edges of the landfill as well as a relatively undisturbed 2 to 3 acre area along the southeast portion of the site contain the only notable upland habitat. Invasive blackberry and scotch broom were the most dominant upland species of vegetation noted on-site. Other upland species observed mostly within the southern portion included red alder, big-leaf maple, bitter cherry and possibly black hawthorn. The vegetation within this area (to the south) was not completely inventoried during the field reconnaissance.

3.0 PREVIOUS INVESTIGATIONS - UPLAND

This section discusses previous investigations where leachate and surface water sampling and testing were conducted at the landfill. Note that some of these studies also included sediment and/or biota sampling and testing but no soil or groundwater sampling has been completed at the site. These results are summarized in the Sediment Data Gaps report (SAIC, 2007). According to Ecology, the Swinomish Tribe collected a water (surface water or leachate) sample in 1997 (Ecology, 1999). The analytical results for this sample were not provided to us and have not been reviewed.

The approximate location of previous leachate/surface water samples are shown on Figure 5. The analytical data associated with these samples are included in this work plan as Tables 2 through 5. Note that the surface water criteria have changed (in general, some criteria have become more stringent) since the studies outlined below have been completed. In Sections 3.1 through 3.6, we have reiterated the conclusions of six environmental studies (primarily related to leachate sampling and testing) that have been completed at the site. We have also compared the detected leachate concentrations to current surface water criteria are being used in this report for screening purposes, and are not intended to represent proposed or final cleanup levels.

3.1 PRELIMINARY ASSESSMENT (ECOLOGY, 1985)

Ecology and EPA conducted a Preliminary Assessment (PA) of the landfill in November 1984 and identified the site as a medium priority. The PA identified potentially contaminated groundwater, tidal incursion into the landfill, and leachate surfacing on the eastern landfill boundary as potential hazards to human health or the environment. The PA identified concerns regarding industries (i.e., Shell and Texaco refineries, Allied Chemical Sulfuric Acid Plant, and the Northwest Petrochemical Company) that were present in the local area at the time of unregulated dumping. Texaco, in a 103(c) notification, called March Point Landfill their "off-site No. 2," which has been interpreted as an offsite disposal facility for Texaco. The PA recommended analyzing leachate for priority pollutants and, if necessary, follow-up sampling including the installation and sampling of groundwater monitoring wells. The PA also recommended that historical data on industrial activities and waste dumping practices should be obtained from industries operating on March Point. However, we do not know if the historical data were obtained.

3.2 SITE INSPECTION (ECOLOGY, 1986)

Based on the results of the 1984 PA, Ecology conducted a site inspection (SI) at the March Point Landfill in December 1985. Ecology collected three surface water samples (NCT091, NCT092, and NCT094), one leachate sample (NCT095), and two sediment samples (surface water and leachate sample locations are shown on Figure 5). The surface water samples were collected at the following locations: 1) borrow pit upgradient of the landfill (NCT091), 2) estuarial stream southeast of landfill (NCT092), and 3) Padilla Bay lagoon surface water at the northeast side of landfill (NCT094). The location where sample NCT092 was collected is not clear. The SI report states that "sample NCT092 was taken from an estuarial stream on the southeast edge of the landfill." However, the sample location figure in the SI report (Figure 1) shows the NCT092 sample location approximately 2,500 feet southeast of the landfill (Ecology, 1986). Figure 5 shows both potential NCT092 sample locations. The leachate sample was collected at the northeast side of landfill. The surface water and leachate samples were analyzed for EPA priority pollutant metals and volatile organic compounds (VOCs). At the time that the report was produced, Ecology concluded that "sampling data do not show a significant problem at this landfill to warrant further sampling or remedial actions."

Based on a review of the 1985 sample results compared to current surface water criteria: arsenic, copper, mercury, and nickel were detected in at least two water samples at concentrations greater than their respective aquatic life or human health surface water criteria (Table 2).

3.3 ANALYSIS OF LEACHATE FROM WHITMARSH LANDFILL (ECOLOGY, 1989)

Ecology collected a grab sample of leachate (sample 88-257426) from the northeast corner of the landfill in June 1988 (Figure 5). The sample was analyzed for priority pollutant metals. The letter concluded that the results were "an indication of a heavy metals problem at Whitmarsh which will require further study."

Based on our review of the 1989 sample results as compared to current surface water criteria: arsenic, cadmium, chromium, copper, lead, nickel, thallium, and zinc were detected at concentrations greater than their respective surface water criteria (Table 3).

3.4 SKAGIT COUNTY DEPARTMENT OF HEALTH SAMPLING (SKAGIT COUNTY, 1996)

Based on Swinomish Indian Tribal Community concerns regarding potential contaminant releases from the March Point Landfill (referred to as the Whitmarsh Landfill in this 1996 letter) into Padilla Bay, the Skagit County Department of Health collected surface water and sediment samples near the landfill in October 1996. Two water sample locations were identified based on the presence of discolored water emanating from the concrete rip-rap wall along the northeast side of the landfill (Figure 5). A leachate and sediment sample were collected at each location (leachate sample numbers WMW-1 and WMW-2; see the Sediment Data Gaps report [SAIC, 2007] for sediment sample information). Samples were analyzed for VOCs, semivolatile organic compounds (SVOCs), pesticides/polychlorinated biphenyls (PCBs), and metals. No analytes were detected at concentrations greater than their respective surface water criteria (Table 4). The report concluded that "further investigation using county resources is not warranted at this time."

Based on a review of the 1996 sample results as compared to current surface water criteria, although there were detected concentrations of VOCs and SVOCs and phenols, none of the chemicals exceeded their respective surface water criteria.

TABLE 2

1986 ECOLOGY SITE INSPECTION REPORT - WATER SAMPLES¹ MARCH POINT LANDFILL ANACORTES, WASHINGTON

		Samı	ole ID		<u></u>		
	NCT091 (Surface Water)	NCT092 (Surface Water)	NCT094 (Surface Water)	NCT095 (Leachate)	Surfac	e Water Criteria ²	
Analytes	Figure 9 - Location 1A	Figure 9 - Location 1B	Figure 9 - Location 1C	Figure 9 - Location 1D	Aquatic Life Marine/Chronic ³	Human Health Marine ⁴	MICA Method B ⁵
Dissolved Metals	EPA Method Not	Known (µg/L)				0.40	4000
Antimony	<1	<1	<1	<1		640	1000
Arsenic	5	<1	74	2	36	0.14	0.098
Bervilium	<0.1	<0.1	14.2	<0.1		**	270
Cadmium	<0.2	<0.2	<0.2	<0.2	8.8	**	20
Chromium	<1	<1	<1	<1	50		490
Conner	7	11	2	1	2.4		2700
	<1	<1	<1	<1	8.1		
Marcula	0.06	0.06	< 0.06	<u><0.06</u>	0.025	0.15	
Nercury	5	100	40	6	8.2	4600	1100
Nickei	2	<1	62	5	71	4200	2700
Selenium	<01	<0.1	<0.1	<0.1			26000
Silver		<1	24	3			
		32	3	22	81	26000	17000
	Albert Not Known	(mall)	†				1
Phenolics - EPA N	10thou Not Known	0.005	0.010	0.020			
Phenolics	0.030	SUUUU	<u>, 0.010</u>	. 0.020		:	
Volatile Organic C	ompounds EPA	Methou NOt Known	1/µ9/⊏/	13		51	23
Benzene	<1	: <1	< <u>}</u>	10			

Notes:

¹Ecology, 1986

²Surface water criteria identified in WAC 173-340-730(3)(b)(i). The surface water criteria are being used in this report for screening purposes, and are not intended to represent proposed or final cleanup levels.

³Lowest available aquatic life marine chronic criteria from Chapter 173-201A, Clean Water Act Section 304, and National Toxics Rule (40 CFR 131) ⁴Lowest available human health marine criteria from Clean Water Act Section 304 and National Toxics Rule (40 CFR 131)

⁵MTCA Method B surface water cleanup level [WAC 173-340-730(3)(b)(iii)]

-- = not available

nd = not detected

n/a = not analyzed or not applicable

bold indicates a detected concentration

underline indicates that detection limit is greater than at least one surface water criteria

shading indicates that detected concentration is greater than at least one surface water criteria

SEA10105040371001FINALS1050403700HISTORICAL DATA TABLES.XLS

TABLE 3 1989 ECOLOGY LETTER - LEACHATE SAMPLES1 MARCH POINT LANDFILL ANACORTES, WASHINGTON

	Sample ID 88-257426	Surface Water Criteria ²					
Analytes	Figure 9 - Location 2	Aquatic Life Marine/Chronic ³	Human Health Marine ⁴	MTCA Method B ⁵			
Metals - EPA Method I	Jnknown (µg/L)						
Antimony ⁶	10	ي مع م	640	1,000			
Arsenic	91	36	0.14	0.098			
Bervilium	8.5	-		270			
Cadmium ⁷	9.9	8.8		20			
Chromium ⁷	324	50		490			
Copper'	357	2.4		2,700			
Lead ^{\$}	126	8.1					
Mercury ⁶		0.025	0.15				
Nickel	959	8.2	4,600	1,100			
Selenium	10	71	4,200	2,700			
Silver ⁶	2.2		~~	26,000			
Thallium	1.8		0.47				
Zinc'	779	81	26,000	17,000			

Notes:

1Ecology, 1989

²Surface water criteria identified in WAC 173-340-730(3)(b)(i). The surface water criteria are being used in this report for screening purposes, and are not intended to represent proposed or final cleanup levels.

³Lowest available aquatic life marine chronic criteria from Chapter 173-201A, Clean Water Act Section 304, and National Toxics Rule (40 CFR 131)

Lowest available human health marine criteria from Clean Water Act Section 304 and National Toxics Rule (40 CFR 131)

⁵MTCA Method B surface water cleanup level [WAC 173-340-730(3)(b)(iii)]

M TCA Method B surface water cleanul
 -- ≈ not available
 nd = not detected
 n/a = not analyzed or not applicable
 bold indicates a detected concentration

shading indicates that detected concentration is greater than at least one surface water criteria SEAV0/050403700/FINALS:050403700/HISTORICAL DATA TABLES.XLS

SKAGIT COUNTY DEPARTMENT OF HEALTH

SKAGIT COUNTY ADMINISTRATION BLDG., ROOM 301 700 SOUTH 2ND STREET MOUNT VERNON, WASHINGTON 98273-3864 PHONE: (360) 336-9380 FAX: (360) 336-9401 ANACORTES TOLL-FREE: (360) 293-9508

December 6, 1996

Lauren Rich Swinomish Indian Tribal Community P.O. Box 817 La Conner, WA 98257

Re: Whitmarsh Landfill Sample Data Results

Dear Lauren:

The Skagit County Health Department received a complaint from you regarding potential contaminant releases from the Whitmarsh Landfill into Padilla Bay. In response to that complaint, Gary Sorensen of the Skagit County Public Works conducted a site visit with you and Kenneth Edwards to survey the site. Based on that visit it was agreed that Skagit County would conduct some surface water and sediment sampling from sites of suspected contamination.

On October 24, 1996 Britt Pfaff, Gary Sorensen, and I met you at the site to determine sample locations and conduct sampling of surface water and marine sediment. Sample locations were selected based largely on discolored surface water emanating from the concrete rip-rap wall at points where it discharged to the adjacent mudflats. Two such discharge points were identified (see attached map). At each discharge point a surface water sample and a sediment sample were collected. A full priority pollutant analysis was conducted on each of the two surface water and sediment samples.

A summary sheet of the data results is enclosed along with a copy of the full laboratory report. Generally, only a few organic compounds and metals were detected within the surface water sample. Those that were detected were at very low levels. Several organic compounds and metal species were detected within the sediment samples. However, these too were detected at extremely low concentration levels, and many parameters were flagged as estimated values detected below the laboratory reporting limits. The Washington State Department of Ecology conducted a site inspection (Site Inspection Report March Point Landfill, Anacortes, Washington, March 1986). A copy of that report is enclosed for your information. Two of their samples (leachate sample NCT095 and sediment sample NCT096) appear to be similar to the water and sediment samples collected as part of this investigation and from a similar area.

Observed concentration levels from Ecology's sediment sample NCT096 does show some correlation with the two sediment samples we For example, acetone and methylene chloride were collected. detected in NCT096 and both sediment samples we collected. However, they concluded both compounds were laboratory contaminants and not within the sediments because both compounds were detected in the transport blank. Neither compound was detected in the transport blank submitted with our samples. This would indicate that both compounds were in the sediment samples and not due to laboratory contamination. Additionally, toluene and fluoranthene were detected in NCT096 and one (WM-1) of the two sediment samples we collected. Observed concentration levels for all four compounds in NCT096 ranged from slightly above to significantly above the respective levels observed in the sediment samples we collected.

Ecology concluded from their sampling that it could not be determined whether the slight contamination detected resulted directly from the landfill contents or from other non-point sources in the area (such as fuel spills).

Ecology also concluded that the presence of flouranthene and toluene are not unexpected in the offshore marine sediment samples for such a highly industrialized area. They further concluded that their sampling data did not show a significant problem with the landfill to warrant further sampling or remedial actions, and there was no conclusive indication that hazardous materials were leaching from the landfill into Padilla Bay or its surrounding estuarial area.

Based on the sample results from our investigation and Ecology's investigation, we agree with Ecology's findings and conclude that further investigation using county resources is not warranted at this time. However, we would be pleased to cooperate with any further investigation the Swinomish Tribe may pursue regarding this site.

After your review of the data, we would be happy to meet with you and your representatives to discuss the data results and our findings. If you would like to meet, please contact either Britt Pfaff or me to arrange such a meeting.

٠.

Sincerely,

Kn Ken Willis Environmental Health Specialist

Attachments

cc: Gary Sorensen, Public Works Britt Pfaff, Heath Department Paul Reilley, Civil Litigator Dave Fleming, Risk Manager

PISTIC

Whitmarsh Landfill

Samples Collected: October 24, 1996

	Weter	Water	Sediment	Sediment
PARAMETER	WMW-1	WMW-2	WM-1	WM-2
8260 Method	ug/L	ug/L	mg/kg	mg/kg
Benzene	6			
Chloropenzene	15	1J		
m n-Xvlenes	3	1J	0.005J	0.008J
ni,p-Ayleries	3			
			0.52	0.7
Carbon Disulfide			0.03	0.05
			0.014J	0.016J
2 Butenope			0.17	0.19
4 Methyl-2-pentanone			0.1	
Teluene			L800.0	0.011J
			0.038J	0.036J
2-Nexanone				
2070 Method	110/1	ug/L	mg/kg	ma/ka
2.4 Dimethylobenol	3	- 37		
			<u> </u>	
Naprinalene		<u> </u>		
2-Metnyinaphtnaiene	- ` _		1	
		1	01	0.44
Bis(2-ethylnexyl)phthalate		· · ·	0.0461	
Pluoranthene	<u> </u>		0.044	
Pyrene			0.004	<u> </u>
Benzo(a)anthracene		<u> </u>	0.084	
			0.048.	
Benzo(b)iluorantherie			0.03.1	
Benzo(k)fluoranthene				1
	NID	ND	ND	ND
		1.00/1	ma/ka	ma/ka
Metals		1 ug/L 211	111	211
Antimony	511	50	12	11
Arsenic	101	1011	0.4811	0.6411
Beryllium	100	100	1 2	1.9
Cadmium	100	100	1.3	40
Chromium	100	100	44	20
Copper		100	4/	0 6611
Cyanide	50	50	0.230	0.000
Lead		000	20	- 21
Mercury	0.20	0.20	- U.10	U.3
Nickel	200	200	50	0.011
Selenium	50	50	0.8	0.20
Silver	100	100	0.910	1.30
Thallium	10	10	0.20	0.4
Total Phenol	10	50	2.2	1.70
Total Solids	NT	NT	55.7	33.1
Zinc	26	31	85	110

Note:

1) "J" indicates the analyte of interest was detected below the routine reporting limit.

This value should be regarded as an estimate.

2) "U" indicates the analyte of interest was not detected, to the limit of detection indicated.

3) "ND" indicates the analytes of interest were not detected, to the limit of the detection indicated.

4) "NT" indicates the analyte was not tested.

Investigation of Chemical Contamination at Whitmarsh Landfill and Padilla Bay Lagoon

February 1999 Publication No. 99-306

Printed on Recycled Paper

÷

Summary

In response to concerns of the Swinomish Tribal Community, the Washington State Department of Ecology conducted an investigation to determine the extent to which Padilla Bay Lagoon has been degraded by discharges from the Whitmarsh Landfill. The abandoned fill is located at the head of Padilla Bay on tidelands at the west end of the lagoon. It was used as an unregulated public dump from the 1950s until 1973. Previous investigations had concluded the level of chemical contamination in the lagoon was low and not readily traceable to the fill. Results of toxicity tests on the sediments seemed to contradict these findings.

An extensive chemical screening was first conducted on two samples each of seepage and intertidal sediments collected at the base of the landfill on June 11, 1998. The analyses included a wider range of compounds and lower detection limits than had been done previously.

The contaminants detected in Whitmarsh seepage and their concentration ranges (parts per billion) are listed below. A number of additional benzenes, phenols, and polyaromatic hydrocarbons (PAH) were also tentatively identified

Chemical Contaminant	Whitmarsh Seepage
(number of compounds)	(ug/L)
iron	5,600 - 16,600
diesel	470 - 850
benzenes (5)	0.1 - 2.5
chlorinated benzenes (4)	0.01 - 0.92
xylenes (3)	0.14 - 1.3
toluene	0.15 - 0.86
ethylether	0.51
polyaromatic hydrocarbons (14)	0.02 - 0.84
phenol and methylphenols (4)	0.08 - 0.52
chloromethylphenol	0.52
diethylphthalate	0.14 - 0.19
nitrosodiphenylamine	0.41 - 1.5
dibenzofuran	0.08 - 0.16
carbazole	0.05
PCB-1242	0.011 - 0.028
carbaryl	0.012 - 5.8

The concentrations in seepage were generally low and, in most cases, beneath thresholds of toxicity. Iron and the higher concentrations of the insecticide carbaryl (Sevin) were potentially toxic until further diluted. PCB-1242 approached the chronic water quality criterion of 0.03 ug/L for marine waters.

. . . .

-11-2561-11-1-

÷

£.

Chemicals analyzed but not detected in the seepage were priority pollutants metals, cyanide, organophosphorus pesticides, organochlorine pesticides, and herbicides. Previous investigations by Skagit County and others have also shown that metals, cyanide, and pesticides are not important contaminants in the seepage.

Results from screening the Whitmarsh sediment samples showed elevations in a range of chemicals including, but not limited to, iron, PAH, phenols, phthalates, and 2,3,7,8-TCDD (dioxin). Methylphenols exceeded Ecology's Sediment Management Standards (SMS) Chemicals analyzed but not detected in the sediments were PCBs, organophosphorus pesticides, organochlorine pesticides, and herbicides Organotins were at background levels.

The screening results were consistent with past studies indicating there was a low potential for the landfill to cause toxicity in the lagoon water column. Sediment contamination, however, appeared to be a greater concern than had previously been appreciated. A wider sediment quality survey was therefore conducted in the lagoon.

The objectives of the sediment survey were to:

- Determine the occurrence of chemicals of potential concern
- Determine the extent of contamination
- Assess compliance with SMS chemical and biological criteria
- Evaluate the significance of contamination by non-SMS chemicals
- Draw conclusions about probable sources of contamination

Samples for the expanded sediment survey were collected August 7, 1998 and included three sites farther out in the lagoon (#3, #4, and #5), one site outside the lagoon (#6), and an established reference area nine miles to the north in Samish Bay Sediments in the reference area are known to have a low level of chemical contamination and no significant toxicity. The samples were analyzed for a subset of the screening survey chemicals and tested for acute toxicity to amphipod crustaceans (*Ampelisca abdita*), sea urchins (*Stongylocentrotus purpuratus*), and chronic toxicity to juvenile polychaete worms (*Neanthes arenaceodentata*).

The major findings from Ecology's 1998 investigation on sediment quality in Padilla Bay Lagoon can be summarized as follows:

2-Methylphenol, 4-methylphenol, and 2,4-dimethylphenol in the inner lagoon exceed SMS Cleanup Screening Levels (CSL). A station cluster of potential concern (sites #1, #2, and #3) exists for these compounds, making it a priority for evaluation as a cleanup site

. 1914

13 AND ALL A

Site	2-Methylphenol	4-Methylphenol	2,4-Dimethylphenol
#1	180	545	288
#2	121	238	118
#3	1740	7950	5580
CSL =	63	670	29

ug/Kg, dry; parts per billion

Except for phenol at inner lagoon site #3, all other SMS chemicals were within Sediment Quality Standards (SQS). Chemicals meeting the SQS are not expected to cause adverse effects on biological resources.

Chemicals, in addition to phenols, that are substantially elevated in the lagoon and appear to be associated with Whitmarsh Landfill include iron, low molecular weight PAH, high molecular weight PAH, bis(2-ethylhexyl)phthalate, di-n-butylphthalate, coprostanol (an indicator of fecal matter), dibenzofuran, retene, and 2,3,7,8-TCDD Sources other than Whitmarsh Landfill are indicated for higher weight PAH in the outer lagoon and outside the lagoon

In terms of equivalent concentrations of 2,3,7,8-TCDD, the levels of polychlorinated dioxin and -furan compounds in the lagoon (up to 5 7 ng/Kg; parts per trillion) are comparable to some industrialized embayments in Puget Sound. EPA has concluded that this level of sediment contamination poses a low risk to fish and wildlife.

Among the chemicals analyzed in the sediments, but either not detected or not substantially elevated, were total petroleum hydrocarbons (except site #3), priority pollutant metals, volatile organic compounds (except #3), and PCBs.

Site #3 is located on the north side of the inner lagoon, approximately 200 yards east of the landfill. It has extremely high levels of petroleum (5,300 mg/Kg diesel; 4,000 mg/Kg lube oil; parts per million) and, as noted above, phenols. The sediments are black, viscous, and have a strong petroleum odor. The hydrocarbons were extremely weathered and do not match any pattern of common petroleum products. All bioassay test organisms died on exposure to this sample. Given its distance from the landfill, the source of this material may be a spill from the adjacent railroad tracks. Alternately, it could be that historical discharge of a dense product from the landfill followed the lagoon drainage channel that passes through this site

The percentage of abnormal larvae in the sea urchin bioassay exceeded CSLs both inside and outside the lagoon. A station cluster of potential concern (sites #3, #4, #5, and #6) exists for this bioassay, making it a priority for cleanup evaluation. The chemical data furnish no clues to the reason for the toxicity seen at sites #4, #5, and #6 1.1

4 F SUBSER

Site	Amphipod % Survival	Sea Urchin % Normal	Polychaete % Survival	Polychaete Biomass (g)
Lab Control	90	82	100	11.3
Reference Area	95	77	100	10.9
#6	91	32*	100	9.3*
#5	95	35*	88	9.6*
#4	83	36*	96	11.5
#3	. 0*	0*	0*	

*significantly less (p < 05) than reference sediments

The amphipod and polychaete bioassays showed no acute toxicity at any location other than site #3. There was slightly less growth of polychaetes for outer lagoon site #5 and outside the lagoon at site #6, suggesting a low level of chronic toxicity to this species. The two bioassay "hits" at sites #5 and #6 are considered an exceedance of CSLs

Bioassays were not conducted at sites #1 and #2 adjacent to Whitmarsh, but historical data show toxicity to the amphipod *Rhepoxynius abronius* The historical data also indicate there is some toxicity in sediments outside the lagoon

ŧ

400 404 4

.

ŝ

Site Number: Date: Sample Number:	1 11-Jun 248005	2 11-Jun 248006
Salinity (ppt)	0.0	0.0
Conductivity (umhos/cm)	1240	1020
nH (lab)	8.0	8.0
Total Suspended Solids (mg/L)	25	30
Turbidity (NTU)	26	190
Ammonia (mg/L)	3.2	6.8
Nitrite-Nitrate (mg/L)	0.01 U	0.01 U
Phosphorus (mg/L)	0.17	0.25
Total Organic Carbon (mg/L)	12	9.3

÷

.

11.1 JUS - -

÷

Table 5. Water Quality of Whitmarsh Intertidal Seepage Collected June 11, 1998

U = Not detected at or above reported value (i.e., less than)

Table 6. Chemicals Detected in Whitmarsh Intertidal Samples Collected June 11, 1998

[Volatiles, semivolatiles, and pesticides show detected compounds only.]

Sample Type:	Seepag	e	Sediment		
Site Number:	1	2	1		2
Sample Number:	248005	248006	248007		248008
Priority Pollutant Metals (ug/L	or mg/Kg, dry)				
Antimony	30 UJ	30 U	3	UJ	3 UJ
Arsenic	30 U	30 U	11		12
Bervllium	1 U	1 U	039		0.40 U
Cadmium	4 U	4 U	0 5	U	0.5 U
Chromium	5 U	5 U	65		59
Conner	5 U	5 U	44		39
Lead	20 U	20 U	13		13
Mercury	0 05 U	0.05 U	0.082		0.076
Nickel	15 U	15 U	51		42
Selenium	40 U	40 U	0.50		0.42
Silver	4 U	4 U	0.4	U	0.4 U
Thallium	50 U	50 U	0.3	U	0.3 U
Zinc	5 U	5 U	98		93
Mise Trace Elements (ug/L or	mg/Kg. drv)				
Aluminum	106	39	19900		19200
Barium	103	162	50		50
Calcium	43400	54500	6680		7240
Cobalt	5 U	5 U	8.8		9.1
Iron	5660	16200	47000		47500
Magnesium	37300	31400	13900		14000
Manganese	127	234	311		296
Malyhdenum	7.4	5 U	3.1		3.1
Potassium	17400	15500	.3380		3400
Sodium	137000	86200	20800		21300
Strontium	402	369	79	J	94 J
Titonium	5 U	5 U	1120		1170
Vanadium	5 11	5 U	68		66
y anatium	50	2 2			
Cvanide (ug/L)	5 U	5 U			

Note: Detections indicated in bold.

U = Not detected at or above reported value (i.e., less than)

J = The analyte was positively identified; associated numerical value is an estimated.

-- = Not analyzed.

÷

Sample Type	Seepa	2e	Se	dimen	ıt
Site Number:	1	2	1		2
Sample Number:	248005	248006	248007		248008
Total Petroleum Hydrocarbons (u	ıg/L or mg/Kg, dr	y)			
#2 Diesel	850	470	70	U	44 U
Lube Oil	80 U	80 U	180	U	190×
Gasoline	120 U	120 U	34	U	38 U
Volatile Organic Compounds (ug	′L)				
Benzene	2.5	1.6			~ ~
Ethylbenzene	0.10 J	1.0 U			
Isopropylbenzene	0.15 J	0.29 J			
Chlorobenzene	055	0.92 J			
1,2-Dichlorobenzene	0.33 J	0.28 J			
1,4-Dichlorobenzene	0.52 J	0.42 J			
1,2,4-Trimethylbenzene	0.79 J	1 U			~ -
1,3,5-Trimethylbenzene	0.14 J	1 U			
Toluene	0.86 J	0.15 J			
m & p-Xylene	1.2 J	0.41 J			~ ~
o-Xylene	1.3 J	0.14 J			
Naphthalene	2.1	1 U			
Ethylether	1 U	0.51 J			
Low Molecular Weight Polyarom	atic Hydrocarbo	ns (ug/L or ug/K	g, dry)		
Naphthalene	0.84	0.09 J	66	J	44 J
1-Methylnaphthalene	0.49	0.52	50	1	.32 J
2-Methylnaphthalene	039	0.28	87	J	60 I
2,6-DimethyInaphthalene	0.10 J	0.15	352		219
1,6,7-Trimethylnaphthalene	0.12 U	0.02 J	179	U	37 J
Acenaphthene	0.42	0.24	35	J	115 U
Flourene	0.26	0.16	52	J	29 J
Phenanthrene	0.24	0.06 J	198		112 J
1-Methylphenanthrene	0:12 U	0.02 J	287		234
2-Methylphenanthrene	0.04 J	0.02 J	61	J	26 J
Anthracene	0.04 J	0.03 J	64	J	27

-

:

Table 6. Whitmarsh June 1998 Chemicals (continued)

*Concentration was below quantitation limit (160 mg/Kg) in a duplicate analysis of this sample.

Sample Type:	Seepag	ze	Sec	timent	
Site Number:	1	2	1	2	
Sample Number:	248005	248006	248007	248008	
High Molecular Weight Polyarom:	atic Hydrocarbo	ons (ug/L or ug/K	g, dry)		
Fluoranthene	0.07 J	0.02 J	332	161	L
Pyrene	0.04 J	0.04 J	311	146	5
Benzo(a)anthracene	0.03 J	0.12 U	123	J 60	j
Chrysene	0 12 U	0.12 U	240	112	2 J
Benzo(b)fluoranthene	0.12 U	0.12 U	283	138	3
Benzo(k)fluoranthene	0.25 U	0.25 U	79	J 40) J
Benzo(e)pyrene	0.12 U	0 12 U	127	i 72	21
Benzo(a)pyrene	0 25 U	0.25 U	103	J 35	5 J
Pervlene	0.12 U	012 U	263	123	\$
Indeno(1.2.3-cd)pyrene	0.62 U	0.62 U	229	J 576	5 U
Benzo(g,h,i)perylene	0.12 U	0.12 U	192	110	5
Phenols (ug/L or ug/Kg, dry)					
Phenol	0.08 J	0.12 U	178	J 271	l
2-Methylphenol	0.16	0.25 U	180	12	l
4-Methylphenol	0.30	0.10 J	545	238	3
2,4-Dimethylphenol	0.12 U	0 12 U	288	118	3
4-Chloro-3-methylphenol	0.52	0.12 U	179	U 115	5 U
Chlorinated Benzenes (ug/L or ug/l	Kg, dry)				
1,2-Dichlorobenzene	0.18	0.13	179	U 115	5 U
1,3-Dichlorobenzene	0.01 J	0.25 U	359	U 23	ιU
1,4-Dichlorobenzene	034	0.24	179	U 115	5 U
Phthalate Esters (ug/L or ug/Kg, dr	y)				
Diethylphthalate	0.19 J	0.14 J	25	3 576	5 U
Di-n-butylphthalate	0.12 U	0.12 U	1380	698	\$
Bis(2-ethylhexyl)phthalate	0.12 U	0 25 U	1630	42	[,]
Miscellaneous Semivolatiles (ug/L	or ug/Kg, dry)				
N-Nitrosodiphenylamine	0.41	1.5	179	U II:	5 U
Dibenzofuran	0.16	0.08 J	53	J 31]]
Carbazole	0.18	0.18	179	U 11:	5 U
Dibenzothiophene	0 12 U	0.05 J	179	U 11:	5 U
3B-Coprostanol	0 62 U	0 62 U	3370	2530)
Retene	0.25 U	0.25 U	184	7:	51

Table 6. Whitmarsh June 1998 Chemicals (continued)

And the second states and second

And the second s

Sample Type:	Seepage		Sediment			
Site Number:	1	2	1	2		
Sample Number:	248005	248006	248007		248008	
Polychlorinated Biphenyls (ug/L c	n ug/Kg, dry)					
PCB-1016	0.033 UJ	0.034 UJ	59	U		12 U
PCB-1221	0.033 UJ	0.034 UJ	59	U		12 U
PCB-1232	0.033 UJ	0.034 UJ	59	U		12 U
PCB-1242	0.028 J	0.011 J	59	U		12 U
PCB-1248	0.033 UJ	0.034 UJ	59	U		12 U
PCB-1254	0.033 UJ	0 034 UJ	59	U		12 U
PCB-1260	0.033 UJ	0.034 UJ	59	U		12 U
Organotins (ug/Kg, dty)						_
fributyltin chloride			3.8	3	3.6	J
Dibutyltin chloride			.3.9	J	3.9	J
Monobutyltin chloride			55	Ţ	44	J
Nitrogen-Containing Pesticides (u	ig/L or ug/Kg, dry)	nd		!	nd
Carbaryl	4.5 J	0.13 J				
Organophosphorous Pesticides	nd	nd	nđ		1	nd
Organochlorine Pesticides	nd	nd	nd		1	nd
Carbamate Pesticides						
Carbaryl	5.8 J	0.12 J				
Herbicides	nd	nd	nd			nđ

ŧ

÷

÷

Table 6. Whitmarsh June 1998 Chemicals (continued)

nd = None detected

Sample Type:	Seepa	nge	Se	dime	nt
Site Number:	1	2	1		2
Sample Number:	248005	248006	248007		248008
Polychlorinated Dioxins (ng/Kg, c	dry)				
2,3,7,8-TCDD			0.23	NJ	0.22 J
1,2,3,7,8-PeCDD			1.2	l	0.83 J
1,2,3,4,7,8-HxCDD		* *	2.0	J	1.4 J
1,2,3,6,7,8-HxCDD			6.0		4.9 J
1,2,3,7,8,9-HxCDD			5.8		4.5 J
1,2,3,4,6,7,8-HpCDD			75		68
OCDD	* ~		579		490
Polychlorinated Furans (ng/Kg, c	try)				
2,3,7,8-TCDF			1.8		1.9
1,2,3,7,8-PeCDF			0.79	J	0.52 J
2,3,4,7,8-PeCDF			1.3	ł	0.78 J
1,2,3,4,7,8-HxCDF		···	2.1	J	1.5 J
1,2,3,6,7,8-HxCDF			1.1	J	0.73 J
2,3,4,6,7,8-HxCDF			1.6	J	1.2 J
1.2.3.7.8.9-HxCDF			0.2	U	0.2 U
1.2.3.4.6.7.8-HpCDF			14		12
1.2.3.4.7.8.9-HpCDF			1.0	J	0.89 J
OCDF			35		30

Table 6. Whitmarsh June 1998 Chemicals (continued)

NJ = There is evidence that analyte may be present; associated numerical value is an estimate.

:

24142

and any en

Location:	Inn	er Lagoon		Outer La	goon 3	Outside Lagoon	Samish Bay
Site Number:	1	2	3	4	- 5	6 l	Ref Area
Date:	11-Jun	11-Jun	7-Aug	7-Aug	7-Aug	7-Aug	7-Aug
Sample Number:	248007	248008	328004	328003	328002	328001	328000
Ancillary Parameters (%)	·····		·				
Gravel			6	4	0	1	0
Sand			21	6	78	24	64
Silt			50	59	15	53	22
Clay			23	31	7	22	13
Total Organic Carbon	3.8	3.6	9.8	3.7	1.3	2.7	0.9
Priority Pollutant Metals							
Zinc	98	93	111	80	48	68	42
Chromium	65	59	44	54	35	46	22
Nickel	51	42	40	46	31	41	26
Copper	44	39	35	38	21	33	12
Lead	13	13	.34	12	6.6	50	5.8
Arsenic	11	12	9.8	11	6.7	8.9	4.8
Beryllium	0.39	0.40	0.30	0.38	0.23	3.0	0.25
Silver	0.4 U	0.4 U	070 J	0.54 I	0.47 J	0.56 J	04 U
Selenium	0.50	0.42	0.40	0.35	0.33	03 U	0.3 U
Cadmium	0.5 U	0.5 U	0.48	04 U	04 U	0.4 U	0.4 U
Mercury	0.082	0.076	0.095 J	0.081 J	0.047 I	0.078 J	0.048 J
Antimony	3 UJ	3 UJ	3 UJ	3 UI	3 UJ	3 UJ	3 UJ
Thallium	0.3 U	03 U	0.3 UJ	0.3 UI	0.3 UJ	0.3 UJ	0.3 UJ
Other Metals							
Iron	47000	47500	28300	26400	19500	25200	15100
Aluminum	19900	19200	14200	17600	10800	14100	8930

AURIAL OF

...

Table 7. Chemicals Detected in Padilla Bay Lagoon Sediment Samples in 1998

[Volatiles and semivolatiles show detected compounds only. Metals concentrations are in mg/Kg; organics are in ug/Kg, except ng/Kg for dioxins & furans; all on a dry weight basis]

Note: Detections indicated in **bold**.

- - = Not analyzed.

U = Not detected at or above reported value (i.e., less than)

J = The analyte was positively identified; associated numerical value is an estimated.

UJ = The analyte was not detected at or above the reported estimated result

							(Outside		Samish
Location:	I	nner Lago	oon	Outer	Lag	goon]	Lagoon		Bay
Site Number:	1	2	3	4		5		6	J	Ref. Area
Date:	11-Inn	11-Jun	7-Aug	7-Aug		7-Aug		7-Aug		7-Aug
Sample Number:	248007	248008	328004	328003		328002		328001		328000
Sumpto rankour										
Total Petroleum Hydrocarb	ons (mg/	/L or mg/K	.g, dry)							
#2 Diesel	70	U 44	U 5300 I	56	U	25	U	73	U	31 U
Lube Oil	180	U 190	4000 J	140	U	63	U	180	U	77 U
Volatile Organic Compound	s								_	
Carbon disulfide			16 J	56	J	2.4	J	7.8	J	5 U
2-Butanone		~ -	31	77	U	6	U	28	U	50
Benzene			10	38	U	3	U	3.3	U	2.5 U
Toluene			160	61		0.61	J	3.3	U	1.1 J
Ethylbenzene			260 J	3.8	U	3	U	3.3	U	2.5 U
m & p-Xylene			2070	7.7	U	6	U	67	U	50
o-Xylene			350 J	3.8	U	3	U	3.3	U	2.5 U
Isopropylbenzene			34	38	U	3	U	3.3	U	2.5 U
n-Propylbenzene			223 J	3.8	U	3	U	3.3		2.5 U
1,3,5-Trimethylbenzene			130 J	38	U	3	U	3.3		2.5 U
1,2,4-Trimethylbenzene			506	3.8	U	3	U	3.3		250
Sec-Butylbenzene			. 46	3.8	U	3	U	3.3		2.5 U
p-Isopropyltoluene			. 78	38	υ	3	U	33		2.5 U
n-Butylbenzene			123	.3.8	U	3	U	3.3		2.5 U
Naphthalene			131	3.8	U	3	U	33	U	2.5 U
Low Molecular Weight Poly	/aromat	ic Hydroc	arbons	0 7	r	11	ī	71	ľ	841
Naphthalene	66	J 44	1 .580	ð., 1 (() T	-70	у ХТ	1. 4 A 6	ī	711
1-Methylnaphthalene	50	J 32	; J 986	0.0 11) T	10	U T		Ŧ	7.1 J 86 I
2-Methylnaphthalene	87	J 60	1120	14) T	9.3 A K	J	20	J E	61 I
2,6-Dimethylnaphthalene	352	219		14	J TT	4.5) TT	49 50	, TT	571
1,6,7-Trimethylnaphthalene	179	U 37	(J 515	10	U 1	/0	U T	21	ĩ	441
Acenaphthene	35	J 115	5U 144 J	4.2	J	4.0	J T	71	, T	
Fluorene	52	1 29) 140 J	/./ 1	j T	3.0 1.0	J T	2.0	.J .T	14.) 71.i
Acenaphthylene	179	U 115	SU 254 C	J 0.4	j	4.0	J	3.9 40	Ţ	181
Phenanthrene	198	112	CJ 390		.) 11	10 -70	ा जन्म	40 दा	TT	65
I-Methylphenanthrene	287	234	1 254 U	J 61	U	/ð 70	U ET	52		53
2-Methylphenanthrene	61	1 26) 254 L	J 61	U	18	U r	32 11	ι U τ	ンジ つち I
Anthracene	64	.J <u>27</u>	$\frac{7}{5} = \frac{254}{5}$	بر ب ال	,	0.1	-	112		205
Total LPAH	1252	820) 5011	98	i	62		113		505

Table 7. Chemicals in Lagoon Sediments (continued)

i

.

		<u> </u>				Outside	Samish
Location:	In	ner Lagoon		Outer L	agoon	Lagoon	Bay
Site Number:	1	2	3	4	5	6	Ref Area
Date:	11-Jun	11-Jun	7-Aug	7-Aug	7-Aug	7-Aug	7-Aug
Sample Number:	248007	248008	328004	328003	328002	328001	328000
High Molecular Weight Pol	lyaromatio	e Hydrocarb	ons				10.5
Fluoranthene	332	161	254 U	53 J	38 J	119	125
Pyrene	311	146	254 U	51 J	33	94	110
Benzo(a)anthracene	123 J	66 J	254 U	61 U	78 U	32.1	.45
Chrysene	240	112 J	151 J	121 U	22 J	49 J	40
Benzo(b)fluoranthene	283	138	1270 U	45 J	40 J	52 1	54 J
Benzo(k)fluoranthene	79 J	40 J	254 U	14 J	83 J	14.3	17 J
Benzo(e)pyrene	127	72 J	254 U	16 J	13)	20 1	20)
Benzo(a)pyrene	103 J	35 J	254 U	17 5	13 J	18 J	43 22 I
Perylene	263	123	254 U	46 J	38 J	42 1	32 J
Indeno(1,2,3-cd)pyrene	229 J	576 U	1270 U	17 J	9.7 J	11 J	27 J
Dibenzo(a,h,)anthracene	359 U	J 231 U	254 U	61 U	78 U) 28 J	22)
Benzo(g,h,i)perylene	192	116	<u>1270</u> U	<u>12</u> J	<u> </u>	<u> </u>	25)
Iotal HPAH	2282	1009	151	271	215	486	560
Phenols							0.000
Phenol	178	1 271	820	61 U	78 1	U 52 U	I 35 U
2-Methylphenol	180	121	1740	61 U	78 L) 52 U	35 U
4-Methylphenol	545	238	7950	16 J	44	J 17J	5.9 J
2,4-Dimethylphenol	288	118	5580	161 U	78 1	U 52 U	35 U
4-Nitrophenol	897 U	J 576 U	570 I	605 U	784 1	U 516 L	349 0
Phthalate Esters							70 11
Bis(2-ethylhexyl)phthalate	1630	421 J	771 U	119 J	157	U 63J	/UU/
Di-n-butylphthalate	1380	698	254 U	61 U	83	U 52 U	J /1U
Butylbenzylphthalate	897 U	U 576 U	2970 J	303 U	392	U 258 L) 1/4 Ú
Diethylphthalate	25	I 576 U	1270 U	303 U	392	U 258 L) 174 U

.

Table 7. Chemicals in Lagoon Sediments (continued)

							Outer	. Y		(Outside		Samish
Location:		Inr	ier Lago	on				Ĺ	agoon		Lagoon		Bay
Site Number:	1		2		3		4		5		0		Ker. Area
Date:	11-Jun		11-Jun		7-Aug		7-Aug		/-Aug		/-Aug		/-Aug
Sample Number:	248007		248008		328004		328003		328002		328001		328000
Miscellaneous Semivolatile	6												
3B-Coprostanol	3370		2530		5090	U	731	l	432	J	297	J	188 J
Dibenzofuran	53	J	30	J	81	J	8.1	J	5.9	ł	6.2	J	6.4 J
Retene	184		75	J	254	U	22	J	16	J	18	J	13 1
Dibenzothiophene	179	U	115	U	145	Ţ	61	U	78	U	52	U	35 U
Carbazole	179	U	115	U	254	U	61	U	78	U	52	U	9.8 J
1.1'-Biphenyl	179	U	115	U	254	U	61	U	78	U	52	U	6.5 J
Bis(2-chloroethyl)ether	359	U	231	U	254	U	61	U	78	U	25	J	35 U
Polychlorinated Biphenyls													
PCB-1016	59	U	12	U	1.6	UJ	1.3	U	1.3	U	16	U	1.1 U
PCB-1221	59	U	12	U	1.6	UJ	13	U	1.3	U	1.6	U	1.1.0
PCB-1232	59	U	12	U	22	UI	1.3	U	1.3	U	1.6	U	110
PCB-1242	59	U	12	U	2100	UJ	1.3	U	13	U	1.6	U	LU
PCB-1248	59	U	12	U	63	UJ	1.3	U	1.3	U	1.6	U	1.1.0
PCB-1254	59	U	12	U	490	UJ	1.3	U	1.3	U	1.6	U	
PCB-1260	59	U	12	U	7.9	UJ	1.3	U	1.3	U	16	U	L1 U
Polychlorinated Dioxins													
2,3,7,8-TCDD	0.23	NJ	0.22	J	0.29	U	1.4	U	0 12	U	0.13	0	0.2 0
1,2,3,7,8-PeCDD	1.2	J	0.83	J	0.46	Ì	2.0	Ĵ	0.97	U	0.25	U	0.19 U
1,2,3,4,7,8-HxCDD	2.0	Ĵ	1.4	J	0.91	J	2.6	J	0.26	J	0.22	0	0.47 U
1,2,3,6,7,8-HxCDD	6.0		4.9	ſ	2.2	J	8.1		038	J	0 38	U	0.36 U
1,2,3,7,8,9-HxCDD	5.8		4.5	J	1.2	ļ	4.0	J	0.29	U	0 32	U	020
1,2,3,4,6,7,8-HpCDD	75		68	i	36		120		7.6		14	U	2.8 J
OCDD	579		490	i	270		670		77		12		18 3
Polychlorinated Furans													~ ~ · · ·
2,3,7,8-TCDF	1.8		19)	0.86	J	0.83	J	0.25	U	0.2	U	03 U
1,2,3,7,8-PeCDF	0.79	J	0.52	Ĵ	1.4	U	1.1	J	0.49	U	0.1	U	0.15 U
2,3,4,7,8-PeCDF	1.3	J	0.78	J	036	J	2.3	U	0 15	U	0.14	U	0.22 U
1,2,3,4,7,8-HxCDF	21	J	1.5	; J	0.43	U	3.6	J	0.62	U	0.17	U	0.36 /*
1.2.3.6.7.8-HxCDF	1.1	J	0.73	Ţ	0.61	J	2.3	J	0.24	U	0.1	U	0.22 J

Table 7. Chemicals in Lagoon Sediments (continued)

NJ = There is evidence that analyte may be present; associated numerical value is an estimate.

*Not detected in a duplicate analysis of this sample

......

1

Location:	I	nner Lagoon	ł	Outer L	agoon	Outside Lagoon	Samish Bay
Site Number:	1	2	3	4	5	6	Ref Area
Date:	11-Jun	11-Jun	7-Aug	7-Aug	7-Aug	7-Aug	7-Aug
Sample Number:	248007	248008	328004	328003	328002	328001	328000
Polychlorinated Furans (co	ontinued)	. <u></u>					
2,3,4,6,7,8-HxCDF	1.6	J 1.2 J	0.89 J	3.7 J	043 U	0.3 U	0.40 J*
1,2,3,7,8,9-HxCDF	0.2	U 0.2 U	0 21 U	0.93 U	0.42 U	0.2 U	0 18 U
1,2,3,4,6,7,8-HpCDF	14.0	11.9	20 U	24	7.3 U	1 U	0.55 J
1,2,3,4,7,8,9-HpCDF	1.0	J 0.89 J	0.71 U	2.0 J	0 78 U	0 29 U	0.24 U
OCDF	35		12	38	<u>4.5</u> J	<u> </u>	<u>0.91</u> J*
IEQ**	5.1	4.0	17	5.7	0.22	0.012	0.15

÷

i

. . . .

1 1-1319-11-11

and a state of

-

Table 7. Chemicals in Lagoon Sediments (continued)

*Not detected in a duplicate analysis of this sample.

**2,3,7,8-TCDD Equivalence (summed for all dioxin and furan congeners)

And a second			Amphipe	od - 10 day	Polychaet	.e - 20 day	Sea Urchin - 4 day
Location	Site No.	Sample No.	% Survival	% Emergence	% Survival	Biomass (mg)	% Normal
Laboratory Control	T. B	J	90 +/- 4	10 +/- 5	100 +/- 0	11.3 +/- 1.3	82 +/- 7
Samish Bay	Ref. Area	32800	92 +/- 6	12 +/- 9	100 +/- 0	0.1 -/+ 6.01	77 +/- 13
Outside Lagoon Entrance	9	328001	91 +/- 10	12 +/- 5	100 +/- 0	9.3 +/- 1.3*	32 +/- 15*
Outer Lagoon, E. End	Ŷ	328002	92 +/- 6	12 +/- 5	88 +/- 27	9.6 +/- 0.7*	35 +/- 18*
Outer Lagoon, W. End	\	328003	83 +/- 20	S +/- 4	6 -/+ 96	11.5 +/- 1.1	36 +/- 19*
Inner Lagoon, N. Side	m	328004	0 +/- 0*	73 +/- 5*	0 +/- 0*	NA	0 +/- 0*

*Significantly less than reference area (t test, p<.05) NA = Not applicable due to zero percent survival i

1

ning exterior on the process of indiation of states -

Table 8. Results of Bioassays on Sediments Collected from Padilla Bay Lagoon and Vicinity on August 7, 1998 [Mean of 5 replicates each; +/- 1 standard deviation]

	Location:	Inne	ar Ľagoon		Outer La	goon	Outside Lagoon	Samish Bay	Sediment Quality	Cleanup Screening
	Site Number:	1	5	ε	4	5	6	Ref. Area	Standard	Level
Metals (mg/K	g, dry weight)									
Arsenic		11	12	9.8	11	6.7	8.9	4.8	57	93
Cadmium		0.5 U	0.5 U	0.48	0.4 U	0.4 U	0.4 U	0.4 U	5.1	6.7
Chromium		65	59	44	54	35	46	22	260	270
Copper		44	39	35	38	21	33	12	390	390
Lead		13	13	34	12	6.6	50	5.8	450	530
Mercury		0.082	0.076	0.95	0.081	0.047	0.078	0.048	0.41	0.59
Silver		0.4 U	0.4 U	0.70	0.54	0.47	0.56	0.4 U	6.1	6.1
Zinc		98	93	111	80	48	68	42	410	960
Nonionizable	Organic Compe	ounds (mg/F	(g TOC)							
Polyaromati	ic Hydrocarbons									
Total LPAI	H ²	11	5.9	11	1.8	3.7	2.7	18	370	780
Naphthaler	Je	1.7	1.2	3.9	0.2	0.8	0.3	0.9	66	170
Acenaphth	ylene	4.7 U	3.2 U	2.6 U	0.2	0.2	0.1	0.8	66	66
Acenaphth	ene	0.9	3.2 U	1.5	0.1	0.3	0.1	0.5	16	57
Fluorene		1.4	0.8	1.4	0.2	0.4	0.3	1.6	23	6L
Phenanthre	sne	5.2	3.1	4.0	0.8	1.4	1.5	11	100	480
Anthracent	4۵	1.7	0.8	2.6 U	0.2	0.5	0.4	2.8	220	1200
2-Methylm	aphthalene	2.3	1.7	14	0.3	0.7	0.2	1.0	38	64

Table 9. Padilla Bay Lagoon Sediment Chemistry Compared to Ecology Marine Sediment Management Standards

Note: Detections indicated in bold

U = Not detected at or above reported value (i.e. less than)

 $\ ^{a} naph that ene+ace naph thy lene+ace naph thene+fluor ene+phenant hrene+anth tracene end of the trac$

Page 49

services and the second s

learning and a second second second

Location	i: Inne	er Lagoon		Outer Lag	O I C	hutside agoon	Samısh Bay	Sediment Quality	Cleanup Screening
Site Number		2	3	4	5	6	ef. Area	Standard	Level
Nonionizable Organic Com	month (mg/k	(g TOC)							
Polyaromatic Hydrocarbo	SU	•							
Total HPAH ^b	53	25	1.5	6.1	14	16	56	960	5300
Fluoranthene	8.7	すい	2.6 U	1.4	2.9	4.4	14	160	1200
Pyrene	8.2	4,1	2.6 U	1.4	2.5	3.5	12	1000	i400
Benzo[a]anthracene	3.2	1.8	2.6 U	1.6 U	6.0 U	1.2	5.0	1.10	270
Chrysene	6.3	3.1	1.5	3.3 U	1.7	1.8	4.4	110	460
Tot. Benzofluoranthenes	9.5	4.9	16 U	1.6	3.7	2.4	7.9	230	450
Bénzo[a]pyrene	2.7	1.0	2.6 U	0.5	1.0	0.7	4.8	66	210
Indeno[1,2,3-c,d]pyrene	6.0	16 U	13 U	0.5	0.7	0.4	3.0	34	88
Dibenzo[a,h]anthracene	9.4 U	6.4 U	2.6 U	1.6 U	6.0 U	1.0	2.4	12	33
Benzo[g,h,i]perylene	5.1	3.2	13 U	0.3	30 U	0.3	2.8	31	78
Chlorinated Benzenes									
1,2-Dichlorobenzene	4.7 U	3.2 U	.2.6 U	1.6 U	6.0 U	U 6.1	3.9 U	2.3	2.3
I.4-Dichlorobenzene	9.4 U	6.4 U	2.6 U	1.6 U	6.0 U	1.9 U	3.9 U	3.1	6
1,2,4-Trichlorobenzene	4.7 U	3.2 U	2.6 U	1.6 U	6.0 U	U 0.1	3.9 U	0.81	1.8
Hexachlorobenzene	4.7 U	3.2 U	2.6 U	1.6 U	6.0 U	1.9 U	3.9 U	0.38	2.3

Table 9. Comparison to Sediment Management Standards (continued)

Page 50

indeno[1,2,3-c,d] pyrenc+dibenzo[a,h] anthracene+benzo[g,h,i] perylene

11011-124 - 12
City Manual Control of								,	
She Number		7	Ś	4	Ś	9	Ref. Area	Standard	Level
Vonionizable Organic Com	ounds (mg/l	kg TOC)							-
Phthalate Esters)	J							
Dimethyl phthalate	4.7 U	3.2 U	2.6 U	1.6 U	6.0 U	1.9 U	3.9 U	53	53
Diethyl phthalate	0.7	16 U	13 U	8.2 U	30 U	9.6 U	19 U	61	110
Di-N-butyl phthalate	36.	19	2.6 U	1.6 U	6.4 U	1.9 U	0 6.7	220	1700
Butylbenzyl phthalate	24 U	16 U	30	8.2 U	30 U	9.6 U	19 U	4.9	64
Bis(2-ethylhexyl)phthalate	43	12	0 <i>6.1</i>	3.2	12 U	2.3	7.8 U	47	78
Di-N-Octyl phthalate	9.4 U	6.4 U	13 U	8.2 U	30 U	9.6 U	19 U	58	4500
Viiscellaneous Dibenzefinee	,	8 U	8 U	6.0	0 Z	0.7	07	¥ -	58
Diversol utal	†	0'0	0.0	0. 4	6. 0	7.0	· •	CI +	0,
Hexachlorobutadiene	4.7 U	3.2 U	2.6 U	1.6 U	6.0 U	U 6.I	3.9 U	3.9	6.2
N-Nitrosodiphenylamine	4.7 U	3.2 U	2.6 U	I.6 U	6.0 U	I.9 U	3.9 U	44 44	
Poychlorinated Biphenyls									
Total PCBs	11 C	2.3 U	27 U	0.2 U	0.7 U	0.4 U	0.9 U	12	65
onizable Organic Compour	nds (ug/Kg, c	iry weight)							
Phenol	178	271	820	61 U	78 U	52 U	35 U	420	1200
2-Methylphenol	180		1740	61 U	78 U	52 U	35 U	63	63
4-Methylphenol	545	238	7950	16	44	17	5.9	670	670
2,4-Dimethylphenol	288	118	5580	161 U	78 U	52 U	35 U	29	29
Pentachlorophenol	0 798	<u>576</u> U	1270 U	303 U	392 U	258 U	174 U	360	690
Benzyl alcohol	179 U	115 U	254 U	0 I O	78 U	52 U	35 U	57	73
Benzoic acid	REJ	REJ	REJ	REJ	REJ	REJ	REJ	650	650

Table 9. Comparison to Sediment Management Standards (continued)

۱

- -----

÷

Table 10. Chemicals Exceeding or Approaching Sediment Standards in Padilla Bay Lagoon [Concentrations in ug/Kg, dry; except BEHP in mg/Kg TOC]

Chemical Parameter	Site	Concentration	Standard Exceeded / Factor
Phenol	#3	820	MC / 2.0
2-Methylphenol	#1	180	CSL / 2.8
n	#2	121	CSL / 1 9
11	#3	1740	CSL / 28
4-Methylphenol	#3	7950	CSL / 12
2.4-Dimethylphenol	#1	288	CSL / 10
"	#2	118	CSL / 4.1
"	#3	5580	CSL / 192
Bis(2-ethylhexyl)phthalate	#1	43	MC / 0.9

MC = Marine Criteria

CSL = Cleanup Screening Level

.....

1

	Concentration Range (ug/Kg, dry)	Location of Maximum	Lowest AET	Highest AET
Metals (mg/Kg, drv)			······································	
Antimony	3 UJ - 15 UJ	nd	200	
Bervllium	0.5 U - 3.0	#6	0.36	
Nickel	26 - 51	#1	>140	>140
Selenium	0.3 U - 0 40	#3	1.0	
Thallium	0.3 UJ - 25 U	nd	0.24	0.40
Organics (ug/Kg, dry)				
Ethylbenzene	2.5 U - <u>260 J</u>	#3	10	37
Total Xylene	2 5 U - <u>2420 J</u>	#3	40	120
Isopropyltoluene	2.5 U - 34	#3	600	2800
I-Methylphenanthene	52 U - 287 J	#1	370	1300
2-Methylphenanthrene	52 U - 61 J	#1	470	1500
Dibenzothiophene	35 U - 145 J	#3	240	950
Carbazole	52 U - 9.8 J	ref area	970	3600
Coprostanol	<u>188 - 3370</u>	#1/#2	140	160
Biphenyl	52 U - 6.5 J	ref. area	260	310
Retene	13 J - 184	#1	1700	2000

:

:

videnael e come

A LOUISIAN AS ...

÷

:....

Table 11. AETs for Non-SMS Chemicals Detected in Padilla Bay Lagoon and Reference Area

Sources: PTI (1989) except antimony and nickel from PTI (1988b)

AET = Apparent Effects Threshold

U = Not detected at or above reported value (i e, less than)

J = The analyte was positively identified; associated numerical value is an estimated.

Table 12. Dioxin TEQs in Northern Puget Sound Sediments [ng/Kg, dry]

	Т	EQ*		
Location	median	range	N =	Reference
Reference Areas				
Dungeness Bay	0.02	0 - 0 12	3	Ecology & Environment (1998)
Samish Bay	0.04	0.034 - 0.044	2	CH2M Hill (1992a,b)
н н	0.15		T	present study
Urban/Industrial Areas				
Padilla Bay, outside lagoon	0.012		1	present study
Outer Port Angeles Harbor	0.23	0.13 - 2.91	4	Ecology & Environment (1998)
March Point, Shell outfall	0.34	0 29 - 0.39	2	CH2M Hill (1992a)
March Point, Texaco outfall	0.32	0.28 - 0.36	2	CH2M Hill (1992b)
Inner Port Angeles Harbor	3.3	0 63 - 4.67	6	Ecology & Environment (1998)
Duwamish Waterway	3.6	1.22 - 4.39	3	Ecology (unpublished)**
Padilla Bay Lagoon	4.0	0.22 - 5 7	5	present study
Bellingham Bay, near pulp mill outfall	83		t	Golding (1994)
Everett Harbor, near pulp mill outfall	110		1	Anderson & Jones (1997)

*2,3,7,8-TCDD Equivalence

**Data provided by Bill Yake

:

a seatanning and a se

- por estate a

-

APPENDIX B

Geophysical Report

1600 SW Western Boulevard, Suite 200 PO Box 1063, Corvallis, OR 97339-1063 Phone: (541) 757-7231 FAX: (541) 757-7331 www.nga.com

> October 3, 2008 NGA Ref: 683

Mr. David Haddock CC: Mr. Niklas Bacher Mr. John Luttinger Mr. Koorus Tahghighi AMEC Geomatrix 600 University Street, Suite 1020 Seattle, WA 98101

Re:

Geophysical Site Investigation Whitmarsh Landfill Anacortes, Washington

Dear Mr. Haddock:

This letter presents the results of the geophysical site investigation that Northwest Geophysical Associates, Inc. (NGA) performed at the Whitmarsh Landfill, Anacortes, Washington (see Figure 1 – Site Location Map). The field work was performed September 11-14, 2008. The purpose of the investigation was to characterize the fill material with the primary objective of identifying anomalies that could be consistent with concentrations of steel drums within the landfill footprint. An interpreted anomaly map is presented in this report as Figure 2.

Scope of Services

NGA conducted a geophysical site investigation, as described below, primarily on the central and southern section of the Whitmarsh Landfill site, measuring approximately 10 acres (Figure 1). The northern portion of the site is currently an active cedar mill and timber storage yard while the southern portion of the site is unoccupied. Northern portions of the site that included substantial surface metallic objects and/or litter (buildings, crane, metallic pipes and cables, export containers) were excluded from the geophysical investigation in consultation with AMEC Geomatrix, Inc. (AMEC) geophysicist, John Luttinger.

Field Methodology

The geophysical investigation included an electromagnetic (EM) survey utilizing the Geonics EM31 terrain conductivity meter and a magnetic (MAG) survey utilizing a Geometrics G858G magnetometer/gradiometer. Basic principles of these techniques are described in Attachment B, *Geophysical Detection of Buried Objects*.

Geophysical Investigation, Mill Operations, and Brush Clearance

Geophysical survey activities were coordinated with mill operations and brush clearance activities throughout the duration of the four survey days. NGA collected geophysical data over the mill and timber storage yard portions of the site during the first few days of the investigation which enabled mill equipment operators to move material stock piles (e.g. log stacks, bark material piles) during the last several days of the investigation. Movement of the material piles allowed NGA to complete the investigation of the site by collecting data in the areas previously covered by the material stock piles.

Also during the first day of the geophysical investigation, the southern third of the site was cleared of brush (e.g. blackberry brambles) which would have prevented the collection of geophysical data. Brush clearance was performed by track mounted, bladed heavy equipment operated by an AMEC subcontractor. NGA collected geophysical data in this area. Some areas with trees and blackberry brambles were left uncleared by the AMEC subcontractor; these were excluded from the geophysical survey.

Magnetic Data Acquisition

The MAG survey was conducted using a Geometrics G858G cesium magnetometer/gradiometer. This instrument was run in the "continuous" sampling mode, recording the magnetic field at 0.2 second intervals (approximately 1 foot). Two magnetic sensors spaced 0.5 meters apart, one above the other, were used to obtain the vertical magnetic gradient. Line spacing for the MAG survey was 10 feet. Magnetic survey lines are shown on Figures 3-5.

Electromagnetic Data Acquisition

EM data were acquired using a Geonics EM-31 terrain conductivity meter. Both quadrature-phase (apparent conductivity) and in-phase data were recorded. Data were recorded at a 0.2 second interval, corresponding to a distance of approximately 1 foot. Data were recorded on an Allegro handheld ruggedized field computer (Windows CE/DOS) running NAV31 software from Geomar of Mississauga, Ontario. EM data points are shown on Figures 6 and 7.

Survey Positioning

Both MAG and EM readings were positioned using individual Trimble AG132 GPS systems. The AG 132 GPS system is a real time differential GPS system using the

Geophysical Site Investigation Whitmarsh Landfill, Skagit County, Washington October 3, 2008

Omnistar satellite subscription service for the differential correction. The GPS system has "sub-meter" accuracy; hence positions are generally good to $\pm 1-2$ feet, but may be off by 2-3 feet. Positioning data are reported in the UTM zone 10N projection using the WGS 84 datum with units of US survey feet.

Survey Control

Several survey control reference points were located using a Trimble ProXRS DGPS (sub-meter accuracy) system. These Geophysical Survey Reference Points (Table 1 below) were marked in the field with survey lath, and are noted on Figures 1-7.

Easting	Northing	Geophysical Survey Point
1754372.58	17611200.98	GSP-A
1754215.73	17611108.50	GSP-B
1754825.63	17610762.47	GSP-C
1754882.84	17610607.38	GSP-D
1754927.41	17610460.49	GSP-E
1754718.67	17610638.82	GSP-F
1754525.14	17611089.43	GSP-G
1754304.33	17610943.66	GSP-H

Table 1 – Geophysical Survey Reference Points (UTM zone 10N, WGS84, US Survey foot)

Data Processing

Magnetic (MAG) and electromagnetic (EM) data were gridded and contoured using the Geosoft Oasis Montaj Data Processing and Analysis software system.

Magnetic Field Data

Magnetic data are displayed on three figures, one plot of the analytic signal (Figure 3), the total magnetic signal (Figure 4), and the magnetic vertical gradient (Figure 5). The analytic signal is our preferred presentation as it provides a simplified signature and better resolution of the anomalous areas than unprocessed field data. A high in the analytic signal occurs directly over the magnetic "source." The analytic signal is described below.

The total magnetic field plot shows the data from the top sensor of the G858, which was also used to calculate the analytic signal. The vertical gradient is obtained by taking the difference in the magnetic field as measured by two sensors spaced 0.5 meters apart, one above the other. Anomalies will have both high and low values associated with them.

Geophysical Site Investigation Whitmarsh Landfill, Skagit County, Washington October 3, 2008

Analytic Signal

The analytic signal is derived from the total magnetic field data. It is presented here as a more concise display of that data set. On the color contour plot (Figure 3) values of the analytic signal below a threshold value are not colored (i.e., are white) and represent areas where little or no metallic material may be present. Higher amplitude anomalies generally indicate "stronger" source objects. A "stronger" source object may be more magnetic (generally a larger mass of steel), or it may be closer to the surface, or both. The amplitudes of the anomalies also depend upon the orientation of the source objects in the earth's magnetic field. This is especially true for elongate bodies such as pipes and cables.

The analytic signal is defined as the amplitude of the gradient vector of the total magnetic field data. The gradient (rate of change) of the total magnetic field is a vector field. The analytic signal is the magnitude of that vector, or the rate of change in the direction of maximum rate of change. The color contour plot shows the amplitude of the gradient.

Mathematically, the analytic signal can be expressed as:

$$\mathbf{A} = \left[\left[\frac{\partial \mathbf{M}}{\partial \mathbf{x}} \right]^2 + \left[\frac{\partial \mathbf{M}}{\partial \mathbf{y}} \right]^2 + \left[\frac{\partial \mathbf{M}}{\partial \mathbf{z}} \right]^2 \right]^{\frac{1}{2}}$$

where:

А	is	the	analytic	signal.
	10		anarytic	Jignai,

M is the observed total magnetic field, and

 ∂ is the partial derivative operator.

Derivatives are calculated in the frequency domain, from the gridded total field data.

Further discussion of the concept of the analytic signal can be found in the following publication:

Roest, W.R., Verhoef, J., and Pilkington, M., 1992, "Magnetic interpretation using the 3-D analytic signal:" Geophysics, vol.57(1); p.116-125.

Electromagnetic Data

Both quadrature phase (conductivity) and in-phase EM data were recorded in the field. Appendix B includes a discussion of these two measured parameters of the EM response. Plots of both data sets are presented on Figures 6 and 7.

Generally, the ground conductivity was moderate, 40-50 millisiemen/meter (mS/m). Hence, any deviation, positive or negative, from that background likely indicates the presence of a metallic conductor or anomalous ground. Likewise the background in-phase response is +5.0 to +6.0 and any deviation, positive or negative, from that background likely indicates the presence of a metallic conductor.

RESULTS AND INTERPRETATION

Electromagnetic and magnetic data plots are presented on Figures 3-7. The interpretation of those data, in terms of possible locations of buried objects is summarized in Figure 2 and discussed below.

Electromagnetic Interpretation - Apparent Conductivity Trend

Electromagnetic data plots are presented on Figures 6 and 7. Three noticeable zones of apparent conductivity are present across the site, divided by two fairly abrupt transition zones. It is likely that these trends can be attributed to past activities at the site (e.g. landfill activities); however, it is just as likely that these trends are the result of more recent activities at the site (e.g. mill activities). Higher apparent conductivity values appearing in the southwest corner of the site may be related to the presence of a drainage ditch (and its contents) adjacent to the western edge of the survey area. Several EM anomalies likely indicative of metallic bodies appear throughout Conductivity Zone B.

Conductivity Zone A:

Figure 6 shows gridded quadrature phase (apparent conductivity) EM data. The northern portion of the site exhibits higher apparent conductivity values, averaging 50 mS/m. This area has been labeled Conductivity Zone A on Figures 2 and 6.

Conductivity Zone B:

An apparent conductivity transition appears in the southern third of the surveyed area where apparent conductivities are lower, averaging 25 mS/m. Both conductivity and in-phase readings are somewhat chaotic through this area, showing considerable small scale variations. This signature is indicative of concentrations of buried debris or landfill deposits. The area of lower apparent conductivity values is labeled as Conductivity Zone B on Figures 2 and 6. Conductivity Zone C:

Another transition occurs in the southeast corner of the surveyed area, leaving an area of high conductivities, 90 mS/m and higher. The area of high apparent conductivity values is labeled as Conductivity Zone C on Figures 2 and 6.

Magnetic Anomalies

Magnetic Anomalies appear throughout the site, and are concentrated largely in the southern third of the surveyed area. Magnetic data plots are presented on figures 3-5. It is NGA's preference to select anomalies of interest from the analytic signal data, and magnetic anomalies discussed below have been selected from the analytic signal data with consideration being given to the total field and vertical magnetic gradient data.

Small (single source) Magnetic Anomalies:

Individual magnetic anomalies likely indicative of smaller single source bodies appear in abundance throughout the southern end of the site and are likely attributable to near surface landfill materials (e.g. appliances).

Large Magnetic Anomalies:

Several larger magnetic anomalies, displaying magnetic signature across two or more survey transect lines, also appear in this southern section of the site. These are likely attributable to concentrations of landfill materials/metallic items in the near subsurface.

Linear MAG/EM Anomaly:

A long linear anomaly appears in the magnetic analytic signal between GSP-H and the western property survey marker. This anomaly also appears in the conductivity data, and may indicate the presence of a deeper steel pipe, and/or perhaps a reinforced concrete pipe. The anomaly is not consistent with MAG or EM data signatures exhibited by buried drums; such anomalies exhibit much stronger and more chaotic MAG and EM readings than those observed from this linear pipe-like anomaly.

Anomalies of Interest

NGA selected eleven Anomalies of Interest from the MAG and EM geophysical data. The anomalies are listed in Table 2 and discussed below.

TargetID	Easting X	Northing Y	Туре
G1	1754679.3	17610635.4	MAG
G2	1754774.4	17610551.6	MAG
G3	1754906.4	17610810.4	MAG
G4	1754869.6	17610593.8	MAG
G5	1754754.7	17610895.9	MAG
G6	1754582.2	17610924.6	MAG
G7	1754924.2	17610532.9	MAG
G8	1754696.4	17610909.1	MAG
G9	1754576.9	17610997.9	EM
G10	1754288.8	17611033.2	EM
G11	1754842.7	17610724.9	EM

Table 2 – Anomalies of Interest Locations (UTM zone 10N, WGS84, US Survey foot)

Targets G1-G8 were selected from MAG data (primarily from analytic signal data), and are targets which exhibited a magnetic signature across two or more transect survey lines. Anomalies exhibiting signatures across two or more transect survey lines are more likely to be concentrations of metallic debris in the subsurface than single source items. Anomalies G9-G11 were selected from EM data (primarily from the in-phase data), and are anomalies which exhibited EM signatures across two or more data transects, and were consistent with anomalies exhibited by metallic conductive bodies.

Geophysical Site Investigation Whitmarsh Landfill, Skagit County, Washington October 3, 2008

Closure

Northwest Geophysical Associates, Inc. performed this work in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. No warranty, express or implied, beyond exercise of reasonable care and professional diligence, is made. This report is intended for use only in accordance with the purposes of the study described within.

Please feel free to contact us if you have any questions or comments regarding this information, or if you require further assistance. We appreciated the opportunity to work with you on this project.

Sincerely,

Northwest Geophysical Associates, Inc.

Ci man

Neil McKay Project Geophysicist

Attachments:

Figures 1-7 Attachment B: Geophysical Detection of Buried Objects

File: Whitmarsh LF_rpt03.doc NGA Project: 683

FILE: Fig1_SiteMap.DWG NGA PROJECT #: 683

Geophysical Site Investigation Whitmarsh Landfill Skagit County, Washington

> Attachment B NGA Technical Note

Geophysical Detection of Buried Objects

Environmental • Groundwater • Geotechnical

TECHNICAL NOTE

Ground Penetrating Radar

Geophysical Detection of Buried Objects

Electromagnetics *EM31*

Magnetics

Electromagnetics - *EM61-MK2*

COVER rev.4, JUNE 2006

Northwest Geophysical Associates, Inc. P.O. Box 1063, Corvallis, OR 97339-1063 (541) 757-7231 Fax: (541) 757-7331 www.nga.com info@nga.com

@ 2001 Northwest Geophysical Associates, Inc.

GEOPHYSICAL DETECTION

OF BURIED OBJECTS

Revision June 2006

INTRODUCTION

Several geophysical techniques are used for locating buried objects such as underground storage tanks, pipes, utilities, drums and other debris. These techniques are used routinely, and are often recommended or required by state agencies, funding institutions and/or the EPA, particularly on sites where underground burial of steel drums or other debris may have occurred or where underground storage tanks are suspected.

Geophysics is generally used in the early reconnaissance phase of these investigations as a guide to sampling, excavation and/or placement of monitoring wells. In this paper we discribe three of the most common geophysical techniques, electromagnetics (EM), magnetics (MAG) and ground penetrating radar (GPR).

UTILITY OF GEOPHYSICS:

First, a few words about "geophysics" as used for environmental and geotechnical engineering applications. Surface geophysical techniques probe subsurface materials (soils and rock) using surface instruments. This is done by measuring physical signals which have interacted with the earth materials. These signals may be electrical, magnetic, acoustic (seismic) or electromagnetic.

Surface geophysics offers several advantages over other exploration techniques:

1) Surface geophysical methods are "nonintrusive" in that they do not disturb the ground surface, or stir up any contaminants which might be in the soil. 2) Geophysical methods *measure earth properties over a large volume*. Whereas drilling only samples the earth at the point of the borehole, the measured geophysical response is affected by earth materials several feet, or tens of feet, away from the instrument sensor. This allows broad areas to be effectively "screened" with a series of surface measurements.

3) Most geophysical equipment used in environmental and geotechnical applications *can be hand carried*. Geophysical surveys do not require vehicular access, but only a walking path, clear of brush and obstacles.

4) Geophysical surveys are relatively *inexpensive* and can be performed quickly.

TYPICAL OBJECTIVES:

Geophysics may be used in either the reconnaissance mode, or in a detailed survey mode. In the reconnaissance mode, geophysics is used to "screen" large areas to determine the presence or absence of buried objects. In more detailed surveys, the location and extent of the object is mapped in greater detail. This facilitates the efficient excavation of tanks or debris, aids the effective placement of monitoring wells, or improves the design of a sampling program.

The techniques discussed here are also useful for objectives other than identifying buried objects. Electromagnetic induction (EM) is especially useful in mapping changes in soil (e.g. sand or gravel channels), mapping clay aquitards and mapping contaminant leachate plumes in groundwater. GPR can be used to map shallow stratigraphy or to map zones of disturbed soils.

GEOPHYSICAL METHODS:

Three geophysical methods are commonly used in the search for buried objects: 1) electromagnetic induction (EM), 2) magnetics (MAG), and 3) ground penetrating radar (GPR). EM and magnetics are complementary methods, most effective in the reconnaissance mode but also useful for more detailed work. GPR is most effective for detailed work, but may also be used in reconnaissance surveys.

Electromagnetic Methods:

The electromagnetic induction (EM) technique measures the electrical conductivity of the earth by inducing a time varying electric current in the earth. This is shown schematically in Figure 1. The EM technique was developed to measure natural soil conductivity to aid in identifying soil types and to measure rock conductivity in order to identify zones of conductive mineralization.

Man-made metallic objects are generally orders of magnitude more conductive than natural soils. Thus, the electric currents induced in the ground by EM instruments will be dramatically affected by the presence of any man-made metallic object. Examples include pipes, tanks, cables, concrete reinforcing steel, or steel drums. By looking for anomalous signals which cannot be attributed to natural soils, buried metallic objects can readily be identified.

Frequency-domain EM - EM31

Frequency domain EM systems transmit a sinusoidal waveform at a fixed frequency, or multiple frequencies. The resulting secondary magnetic field may be phase shifted, depending on the nature of the target. Both the in-phase component (in phase with the primary magnetic field) and the quadrature phase component (shifted 90° from the primary field) can be measured to provide the phase shift information.

The Geonics EM-31 is a common frequency domain EM instrument, often used for buried object detection. The upper left photo on the cover shows the EM-31 in a field situation. A transmitter coil is in one end of the boom and a receiver coil in the other end. Depth of investigation is generally 10-15 feet, but the EM-31 may detect large metal objects at a somewhat greater distance. The instrument can quickly cover a wide area, mapping anomalous areas (metallic object locations) as well as changes in the soil character.

Figure 2 shows some sample data over a disposal site where 55 gallon steel drums had been dumped on the edge of a bluff and then covered with soil, extending the bluff for tens of feet (cross hatched block in Figure 2). The noisy and/or negative "apparent" conductivity is a clear indicator of metallic objects. The EM-31 also records an "in-phase response" which aids in identifying metallic conductors. Data in Figure 2 indicate the zone of burial extends from 560 feet to 940 feet along the line of the profile.

Northwest Geophysical Associates, Inc. Revision: June 2006

Time-domain EM - EM61

Time-domain EM systems transmit a magnetic pulse, with a duration in the order of 10s of micro-seconds (μ s). That magnetic pulse induces electric currents in the ground as well as in any metallic object which is buried (or on the surface) within its range of influence. Currents induced in metallic conductors decay at a much

slower rate than currents induced in the ground. Hence, metallic conductors can be easily identified.

The EM61-MK2 is a time domain metal detector manufactured by Geonics, Ltd., of Toronto, Canada. The EM61-MK2 instrument consists of two horizontal air cored coils, 1.0 meter by 0.5 meters in size. The bottom coil acts as a receiver and transmitter and the top coil as a The top coil is receiver. mounted 28 centimeters above the bottom coil. The instrument weighs about 75 lbs. and is pulled by one operator.

The Geonics EM61-MKII has 4 time gates, to measure the rate of decay of the signal, and two receiver coils, to measure the field gradient. The rate of decay is dependant on the size, shape, and orientation of the metallic object. Generally, they are used to estimate gross target parameters, but can be used for more detailed discrimination of targets, particularly in identifying unexploded ordnance (UXO) materials.

The two receiver coils are very helpful in the recognition of near surface objects from deeper objects. Since the amplitude of the response is highly dependent on the distance between the coil assembly and target, small near surface targets often produce a

response orders of magnitude larger than targets having greater size at deeper depths. This masking effect form the near surface materials is drastically reduced by processing output of the two coils, essentially subtracting the bottom coil data from the top coil data. This is referred to as the differential mode or the differential signal. Figure 3 shows some sample data over a 55 gallon steel drums partially buried, essentially flush with the surface of the ground. The response from the top and bottom coils is

indicative of a substantial metallic presence. The relatively weak differential response is indicative of a shallow target.

Magnetic Methods:

Magnetic methods measure disturbances in the earth's natural magnetic field. These disturbances are caused by magnetic materials, either magnetic rocks, or man made objects containing iron or steel. This is shown schematically in Figure 4. Most soils have negligible magnetization (both induced and remanent). Thus, most magnetic disturbances from shallow sources can be attributed to iron or steel objects which have been placed there by man's activities.

Magnetometers used for buried object detection usually measure the gradient of the magnetic field. This is done by measuring the difference between the magnetic field at two sensors separated vertically by two or three feet. This configuration is more sensitive to nearby disturbances, and is less effected by disturbances caused by distant objects or shallow bedrock.

The upper right photo on the cover shows a magnetometer/gradiometer. This instrument can also cover wide areas quickly, providing complementary data to the EM. Figure 2 includes total magnetic field data and gradiometer data over the barrel disposal area. The large deviations in both total field and gradient are indicative of steel objects in close proximity.

Ground Penetrating Radar:

Ground penetrating radar (GPR), like other radar techniques. sends out an electromagnetic pulse (radio wave or microwave) which is reflected off a "target" and returns to the receiver. GPR operates at lower frequencies (80-500 MHz) than other radar to obtain better penetration in the earth materials. The antenna is pulled slowly along the ground surface to produce a continuous subsurface profile.

The lower photo on the cover shows a GPR unit in operation. The 500 MHz antenna shown is being pulled along the sidewalk. The control and recording unit, on the tailgate of the truck, is powered by a 12 volt automobile battery.

Figure 4 is an example GPR profile over a shallow pipe. The vertical scale is a time scale, giving the time for the radar pulse to travel down to the reflector and return to the receiver.

Knowing the pulse velocity in the soils, we can convert this to depth. The horizontal scale corresponds to distance along the surface. Fiducial time marks on the record are placed at ten foot intervals. The pipe reflector shown appears as a hyperbola on the record. The pipe produces a strong reflection with a characteristic ringing of the electronics, which appears as a dark band below the first arrival from the pipe.

GPR is a tool for looking at selected areas in detail. Its continuous subsurface profiles give a graphic portrayal of subsurface conditions, and often provide an excellent means of accurately locating pipes and tanks. However, the GPR depth of exploration is strongly dependent on soil conductivity and subsurface conditions. In dry, sandy soils useful data may be obtained from depths down to 15 feet, whereas in conductive clay soils, investigation depth is often limited to two or three feet.

Northwest Geophysical Associates, Inc. Revision: June 2006

DISCUSSION:

As we have stressed, EM and magnetics are effective in screening large areas quickly to identify areas where buried objects may be present. Often these techniques can provide a rough estimate of the size and depth of the object causing the anomalous readings.

The choice of frequency domain EM (i.e. EM31) versus time-domain EM (i.e. EM61) depends on the objectives and the site. The EM61 is very effective at identifying small pieces of metal (e.g. unexploded ordnance), and offers some depth and discrimination capability. It is also less sensitive to cultural noise (e.g. buildings, vehicles, etc.) than the EM31. The EM61 can often resolve anomalies which are close together, where the EM31 could not. However, the EM61 requires a tight line spacing, typically 1 meter, to assure the area is covered. Also, the wheeled cart is difficult or impossible to operate on some sites (the EM61 can also be carried on a shoulder harness but is verv awkward).

The EM31 is favored over the EM61 on more open sites where the objective is to locate underground tanks, drums, or collections of debris. The broader sphere of influence of the EM31 allows it to be run on a coarser line spacing, typically 5-20 feet depending on the target.

A major limitation of both EM and MAG is their sensitivity to "cultural noise". Buildings, fences, metallic surface debris, and vehicles all create cultural noise. The EM and magnetic instruments respond to any metallic objects, whether buried or in plain view above ground. Thus, areas within 20 to 40 feet of buildings, vehicles or pipelines will be masked by the strong response from those objects. EM and magnetics will not be able to definitively identify other buried objects within that masked zone.

GPR on the other hand is fairly immune to those forms of cultural noise. The radar signal is confined to a broad beam, spreading at roughly a 45° angle, beneath the antenna. Most antennas are well shielded with little upward propagation of the pulse. Thus GPR can be run next to buildings, fences and parked vehicles. GPR may be run inside buildings and even over reinforced concrete.

Because the GPR beam is directional, it does not have the same utility as a reconnaissance tool as the EM and magnetics. Whereas the latter techniques would readily detect a large tank 10 or 20 feet off the survey line, GPR would not detect the tank unless the survey line passed directly over the tank.

CONCLUSIONS

No geophysical technique should be used without some form of "ground truth" by drilling, excavation, or some other form of sampling. The geophysical signature of an underground storage tank may be very similar to that of a buried automobile. However, geophysics can eliminate random drilling or extensive excavation when searching for underground tank or other materials.

To conclude, EM, magnetic and GPR techniques are effective, complimentary techniques used in the detection and delineation of subsurface metallic objects. The choice of technique or techniques depends very much on both site conditions and the survey objective.

FURTHER READING:

- Benson, R.C., Glaccum, R.A., and Noel, M.R., 1982, Geophysical techniques for sensing buried wastes and waste migration: Report prepared by TECHNOS, Inc. for EPA, Advanced Monitoring Systems Division, Las Vegas, pp.235.
- Evans, R.B., 1982, Currently avail-able geophysical methods for use in hazardous waste site investigations: from Risk Assessment at Hazardous Waste Sites, ACS symposium series No.204, p.93-115.
- French, R.B., Williams, T.R., and Foster, A.R., 1988, Geophysical surveys at a superfund site, Western Processing, Washington: Proc. of SAGEEP, March 1988, Golden, Colorado, p.747-753.

- McNeill, J.D., 1990, Use of electro-magnetic methods for groundwater studies: in Geotechnical and Environmental Geophysics, ed.: S.H.Ward, SEG, IG#5, p.191:218.
- Romig, Phillip, 1992, Engineering and Environmental Geophysics Get Top Billing at SAGEEP.: The Leading Edge Vol. 11, No. 11, P.36-37.

Steeples, Don, 1991, Uses and Techniques of Environmental Geophysics: The Leading Edge, Vol.10, no.9, P.30-31.

DISCUSSION OF GEOPHYSICAL TECHNIQUES

GEOPHYSICAL DETECTION OF BURIED OBJECTS

Northwest Geophysical Associates, Inc. P.O. Box 1063 Corvallis, Oregon 97339 http://www.nga.com phone: (541) 757-7231 Rowland B. French, PhD, R.G. Senior Geophysicist

> Revision: June 2006 copyright 2006, NGA, Inc. Printed :July 14, 2006 File: b_b_teq_2006B.doc

APPENDIX C

Field Notes

•	Geo	A omatri>		-		A	ND/C	WE DR DE	LL S Vel	SAMPL OPME	ING NT REC	ORD		
	Well ID:	- MW	1-0	2				lı	nitial D	epth to Wa	iter: 5	· · · · · · · · · · · · · · · · · · ·		
-	Sample	ID:	-	Duplica	ate I	D:		C)epth te	o Water aft	er Sampling	g:		
	Sample	Depth:	218	1				т	otal De	epth to We	II:			
	Project	and Task	No.:					v	Vell Dia	meter:	2"			
	Project	Name:	Whit	May	5	h		1	Casin	g/Borehole	Volume:			
	Date:	10/10	108	~				(0	Circle o	one)				
	Sampled	і ву: 📥	$^{\circ}B$					4	Casing	g/Borehole	Volumes:			
	Method	of Purgin	g: <u>Por</u>	GST	<u>cal</u>	tic.		י) ד			L			
	Method	of Sampli	ing: <u>``</u>	•		1	1	v	otal Ca	s Removed	noie J:			
,	Time	Intake Depth	Rate (gpm)	чин Сил Vol	1. .)	Temp. (°C)	pH (units	Spo Elec Condu	ecific strical uctance Vcm)	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	(color, turt	Remarks bidity, and se	edimen
Goolla	41157 .	18	2530)	0.1		11.12	7.18	- 9.0	<u>୍</u> କ	6.0	700	130		
Account	1767		200	air	-	11-1	(a.77	1.58	1	11 99	198	(00		
	1210			0.7		111	1/ 9"	2 7	1/17	$\begin{bmatrix} \mathbf{a}_{r} \\ r \end{bmatrix}$	189	50		
	1213			n 74	7	117	108	- 1.8	5		187	UU UU	····	
	12.110			1 26	-	117	716	$\frac{1}{5}$ 1.3	57	0.00	170	25		
	17 12			2.7		11-1	17.7	7 C	úz	0,00	11.7	71	<u> </u>	
	1777			177	2	117	7-7		-7	0.00	IL P	20		
	1775			1771	1	117	17	10) (11 (1	0.00	155	71		
	1772		· · · · · ·	071	ŧ	11-7	170	202	25	000	105	19		
¥ * .	1731			170		117	$\frac{1}{1}$	$\frac{1}{10}$) ?	0.00	17-27	1.1		<u> </u>
	17.20			nZ		$\frac{1}{11}$	121	$\frac{1}{0}$	<u>20</u>	0.00	137	15	·	
	1727			3.7	\neg	11.7	17.21	012	<u>,</u> E	0.00	176	12/11		-#
			DH			ON (cho	Dose two				Model or	Unit No :		
	Buffer Sol	ution.	an the second	- <u>1999-1</u>	pHa	4.0	nH 7.0	nH ·	10.0	e dan berdari. T	11-7-	7_		
	Field Tem	perature ^o	 2°								NC			
	Instrumen	t Reading									1.40	inba		
		SPECIF	IC ELEC	TRICAL	COI			CALIBR/	ATION		Model or	Unit No.:		
٩.	KCL Soluti	on (µS/cm	ı=μmhos	/cm)		1413 at	25°C	12880 at 2	25°C	nter in the solution				
· · · ·	Field Temp	erature °	C								4			
	Instrument	Reading												
	R	EDOX CA	LIBRAT	ION		DISS	OLVED	OXYGEN		BRATION	Notes:			<u> </u>
	Standard S	Solution	4	68 mV		Salinity	/%			<u>anteri pali attika wa a</u>	· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>
F	Field Tem	perature °	с			Altitude	э				1			<u> </u>
ŀ	Instrument	Reading				Instrum	nent Rea	ding						······
ŀ	Model or L	Jnit No.:				Model	or Unit N	lo.:	1,			······		
	Ag/AgCI E	lectrode (SSCE)					,						
L	G:\FORMATS\	WELL SAM	PL Rec-DO.	doc				·						

Time gallons temp pH cond Do ORP 1240 3.5 3.7 tarb 11.7 11.7 7,3/ 0,24 7,3/ 0,22 7,32 5,22 1243 3,06 123 10 1246 120 0.00 10 11,8 118 0.00 10 ÷.,

Geo	X omatri>				A	ND/	W Or e	VELL 9 DEVEL	SAMPL OPME	ING NT REC	ORD
Well ID:	MUL	-3						Initial D	epth to Wa	iter: <u>9</u> _0	1
Sample	ID:		_ Duplic	ate I	D:			Depth te	o Water aft	er Sampling];
Sample	Depth:	<u>_15</u> _	<u>b</u> fi	V				Total De	epth to We	II;	·
Project	and Task	No.:	1415	59	4			Well Dia	ameter: <u>7</u>	<u></u>	3
Project	Name:	$\underline{\mathbf{W}}$	itme	wz.	4			1 Casin	g/Borehole	Volume:	······
Date:		1011	410	<u>8</u> 12				A Casin		Volumor	
Sample	d By:		<u>(·</u>	$\frac{D}{D}$	0 i -			(Circle d	one)	volumes.	
Method Method	of Purgin of Sampli	g: ing:	pen-	210	<u>un</u> -1	<u> </u>		Total Ca Volume	asing/Borel s Removed	hole i:	
Time	Intake Depth	Rate (gpm) Cur Vo (gal	n. I. I.)	Temp. (°C)	p⊦ (uni≬	l l (s) Co	Specific Electrical nductance (S/cm)	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sedimen
15:45	あ	200	02		143	7.94	, 9	3.01	0,00	-130	190
1548			0,4		14.5	7.9	OF	03	0.00	-143	333
1551			1.0		14.5	7.8	62	2.06	0.00	-154	193
1554			1.3		14,5	7.8	6 1	15	0.00	-158	170
1557			1,75		14.4	7.8	50	421	0.00	+161	106
1600			2.2		14.4	7.8	50	.314	0,00	-163	67
1403			2.4		14,4	7.81	50	793	0.0O	-164	59
1606			2.5		14.5	7.8	0	261	0.00	-166	55
1609			2.6	/	4,5	7.81	50	225	000	-167	35
1612			2.7	5	14.5	7.3	6 0.	212	0,00	-168	32
1615			2.9	1	14.5	7.80	, O	.196	0.00	-169	20
\$619	- Settlerda eta	uran karana	3.2	-	14,4	1.87	<u>+ 0,</u>	180	0.00	-169	16
		pł		RATI	ON (cho	ose tv	/o)			Model or	Unit No.:
Buffer Sol	lution			pН	4.0	pH 7.0) р	H 10.0			
Field Tem	perature '	°C								-	
Instrumen	t Reading	allow the second states of	د د بریزید دربه دارم	Sides Sides	tana de Filologia terr	in an an an Ar	k. (dittation of the	Marcan and a final at 1 to 1 to			
	SPECIF		ETRICAL	CO		NCE -	CALIE	BRATION		Model or	Unit No.:
KCL Soluti	on (µS/cn	n=µmho	s/cm)		1413 at	25°C	12880	at 25°C			
Field Temp	perature °	C				. <u> </u>					
Instrument	Reading		tonini tini ta sa			a avata ta seda kar					
R	EDOX CA	LIBRAT	ION	en de la composition Présente de la composition de la composit La composition de la comp	DISSO	OLVED	OXYG		BRATION	Notes:	
Standard	Solution	4	168 mV		Salinity	/%			· · · · · · · · · · · · · · · · · · ·		
Field Tem	perature °				Altitude	9 		.			
Instrumen	Reading				Instrum	nent Re	ading				·····
Model or L	Jnit No.;			ĺ	Model	or Unit	No.:				
Ag/AgCI E	lectrode (SSCE)									

G:\FORMATS\WELL SAMPL Rec-DO.doc

Time	gallous	pH	cond	tusb	DO	temp	OSP	
1621	3.3	7.86	0.176	10.7	(0,0)	14.4	1+2	
1624	3.5	7.87	175	9.0	O.O.	14.4	-175	
1627	3.75	7.87	,169	U(T		tss f	-176	
1430	4.2	7.87	156	7.7	ð0	14.4		

jer - The

Geo	omatrix			i A	ND/OI	WELL R DEVE	SAMPL LOPME	ING NT REG	CORD	
Weil ID:	MN	-04			·····	Initial	Depth to Wa	ater: <u>3</u>	8'	
Sample	ID:	, 	Duplicate	ID:		Depth	to Water af	ter Samplin	g: <u> </u>	»5 [′]
Sample	Depth:	Btm				Total	Depth to We	ll:		
Project	and Task	No.:				Well [Diameter:		······································	
Project	Name: <u> </u>	Nh.t	marsh			1 Cas	ing/Borehole	e Volume: _		
Date:	10/14	108					e onej iz z/Darakali	•.• • • • • • • • • • • • •		
Sample	d By:	<u>Gg</u>) :		4 Cas — (Circle	ing/Borenoie e one)	e volumes:		
Method	of Purgin	g: <u>101</u>	<u>e 5191</u>	TIC		— Total	Casing/Bore	hole 🎼	4	. 1
Method	of Sampli	ng:				Volun	nes Remove	d:		101
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrica Conductan (US/cm)	l Dissolved Ce Oxygen (mg/l)	Redox Potential (mV; SSCE)	(color, tur	Remarks bldity, and sedim
1358	fitm	200	0	11.4	3.05	1.68	7.86	140	lac	2 <u>2 5</u> 2 5
1401			0.2	11.2	8.64		0.00	44	10	<u>-<u>-</u><u>-</u><u>-</u><u>-</u><u>-</u><u>-</u><u>-</u><u>-</u><u>-</u><u>-</u><u>-</u><u>-</u></u>
1404			0.4	111.2	Bick		6.00	-10	(07	
MO7			ale	11.7	8.07	5.23	6,00	-24	70	
14(0			0.8	11.7	8.08	375	6.00	-70	UL	1.8
1413			1.0	11.7	8.1	1107	0.06	-73	LICI	<u> </u>
1416			1.7	11.2	81	1,3	0.00	-9(0	(0)	0.6
1419			4.5	11.7	8.09	0.542	- 0.00	-103	63	0.7
1422		~	12.0	117	8,09	0, 374	0.00	-111	60	0.7
1425			12,5	N.I	8,09	0,37	16.00	-114	47	0.2
1428		¥	12.8	11.1	8.09	0.287	10.00	-116	37	01
1431			3.	11.1	8,10	01728	0,00	-118	35	Cal
i sana ang s		₽	CALIBRA	TION (cho	ose two)			Model or	Unit No.:	
Buffer Sol	ution		р	H 4.0	pH 7.0	pH 10.0		7		
Field Tem	perature °	°C						7		
Instrumen	t Reading							-		
	SPECIF	C ELECT		ONDUCTA	NCE - C	LIBRATIO	N	Model or	Unit No.:	
CL Soluti	on (µS/cm	ı=µmhos/	cm)	1413 at 2	25°C 12	880 at 25°C	1	-		
ield Temp	perature °(C						-		
nstrument	Reading									1-
्रे 🖓 🖪 RI	EDOX CA	LIBRATI	DN	DISSO			IBRATION	Notes: (and	potito
Standard S	Solution	46	8 mV	Salinity	%			weig	$\frac{1}{\sqrt{1-\frac{1}{2}}}$	<u>acting</u>
ield Tem	perature °	с		Altitude)		·		<u> </u>	
nstrument	Reading			Instrum	ent Readi	ng				······
Aodel or L	Jnit No.:	k		Model	or Unit No	.:		1		
								1		

time yoil pH cond twib Dotemp Sal ORP 1434 3.3 8.09 ,184 35 0.00 11.1 0.1 -119
Ge	omatrix				¢	ND/	V	VELL S Devel	SAMPL OPME	ING NT REC	4 pizs CORD
Well ID	: <u> </u>	ØI						Initial D	epth to Wa	ter:	
Sample	e ID:		_ Dup	licate	ID:			Depth to	o Water aft	er Sampling	g:
Sample	Depth:		140	<u> </u>				Total De	epth to Wel	l:	
Project	and lask	NO.:			0.01.		<u> </u>	Well Dia	meter:		
Project Date:	10[15]0	4	<u> </u>	<u> vu</u>	<u>W3 U</u>	· · · <u></u>		1 Casing (Circle d	g/Borehole one)	Volume: _	
Sample	d By:	N	BILB					4 Casing	g/Borehole	Volumes:	
Method	of Purgin	a:						(Circle c	one)		
Method	of Sampli	ing: _{	lenista	altic	into	Shel	low	Total Ca Volumes	sing/Borel Removed	hole I:	
Time	Turb Intake Depth N	Sal Rati (gpn	+ C + V 1) (g	um. /ol. jal.)	Temp. (°C)-	pł (uni	+ ts) ^{C(}	Specific Electrical onductance (µS/cm)	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sedimen
1100	100	1.2			10.9	8.0	08 1	929m	3.65	53	glighting yelley
								*			clearish
								*			
						-					
	·										

								·			
		P.	H CALI	BRAT	ION (ch	oose tv	vo)			Model or	Unit No.:
Buffer So	olution			p⊦	14.0	pH 7.0	0 1	oH 10.0		1	
Field Ter	nperature ^c	°C							<u>, , , , , , , , , , , , , , , , , , , </u>		
Instrume	nt Reading)									
	SPECIF	IC ELĘ	CTRIC	AL CO	NDUCT	ANCE	- CALI	BRATION		Model or	Unit No.:
KCL Solu	tion (µS/cm	n=μmho	os/cm)		1413 at	25°C	12880	at 25°C		1	
Field Tem	perature °	С									
Instrumen	t Reading		<u></u>		1				· · · · · · · · · · · · · · · · · · ·	-	
R. and R	EDOX CA	TION	ON		OLVED	οχγα		BRATION	Notes:		
Standard	Solution	468 m∖	/	Salinit	y %	-		<u></u>	1		
Field Ten	perature °			Altitud	е						
Instrumer	nt Reading			Instru	ment Re	eading					
Model or	Unit No.:				Model	or Unit	No.:				
Ag/AgCl E	Electrode (SSCE)									

•

Ge	omatri>					AND/	OR	WELL S	SAMPL .OPME	ING NT REC	CORD					
Well ID	: <u> </u>	-0"	2					Initial D	epth to Wa	iter:						
Sample	e ID:		Dupl	icate I	D:			Depth to	o Water aft	er Sampling	g:					
Sample	e Depth:					· ·· · · · ·· ·		Total De	epth to We	II:						
Project	and Task	No.: _	14	159		1		_ Well Dia	ameter:	·····						
Project	Name:		Wh	itu	revel	И		_ 1 Casin	g/Borehole	Volume: _						
Date: _	16/15	5/0 -	8		· · · · · · · · · · · · · · · · · · ·			(Circle o	one)							
Sample	ed By:							4 Casin — (Circle d	- (Circle one)							
Method Method	l of Purgin I of Sampli	g: ing:						Total Ca Volume	sing/Bore	hole I:	<u> </u>					
Time	Tur-6 Intake Depth	S.d Rat (gph	C V M) (9	um. ′ol. ¡al.)	Temp. pl (°C) (un		H (ts)	Specific Electrical Conductance (µS/cm)	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sediment					
	43	2.1			13.6	1 2.	51	3.44 5/m	8.90	-5						
					<u></u>			,								
								·····								
<u> .</u>								· · · · · · · · · · · · · · · · · · ·								
																
HALFED LADES		1720-10-04	an ann an stair an stair an stair an stàir an s	an estat a com	ala taja shigi	339. A.S.S.MARIA	ASSA POLIS	1								
		P P	DH CALI	BRATI	ON (c	hoose t	vo)			Model or	Unit No.:					
Buffer Sc	olution			рH	4.0	pH 7.	0	pH 10.0								
Field Ter	nperature °	°C		[_						
Instrume	nt Reading									•						
	SPECIF		CTRICA		NDUC	TANCE	-CAI	IBRATION		Model or	Unit No.:					
KCL Solu	tion (µS/cm	n=µmho	os/cm)		1413 :	at 25°C	128	80 at 25°C		-						
Field Tem	perature °(С														
Instrumen	t Reading									-						
R	EDOX CA	LIBRA	TION		DIS	SOLVED) OX		BRATION	Notes:						
Standard	Solution	468 mV		Salin	ity %	99-03-09-0	<u>197,8590,914,9595,950</u>	adan gan jinga din								
Field Tem	perature °		_	Altitu	Ide											
Instrumer	nt Reading			Instru	ument Re	eadin	g									
Model or	Unit No.:				Mode	el or Unit	No	<u> </u>			- 					
Ag/AgCLP	Electrode (
. gingoi t		550L)														

Geo	omatrix				4	AND/	OR	WELL S DEVEL	OPME	ING NT REC	CORD				
Well ID:	: <u>-5P-</u> j	83						Initial De	epth to Wa	ter:	2"				
Sample	ID:	. <u></u>	Dupli	cate I	D:			Depth to	Water aft	er Sampling	g:				
Sample	Depth:	. ,						Total De	pth to Wel	l:					
Project	and Task	No.:	1416	59	á			Well Dia	meter:						
Project	Name:	<i>V</i>	Vhi	hu	cr12/4			1 Casing	g/Borehole	Volume:	······································				
Date:	11/15/0	З						(Circle o	one)						
Sample	d By:							4 Casing (Circle o	4 Casing/Borehole Volumes: - (Circle one)						
Method	of Purgin	g:						— Total Ca	- Total Casing/Borehole						
Method	of Sampli	ng:						Volumes	s Removed	l:					
Time	Turb Istake Depth	Srd Rate (gpm)	Сı V (g	ım. ol. al.)	Temp (°C)	5. p (un	H its)	Specific Electrical Conductance (µS/cm)	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sediment				
1240	395	0,1			13.2	17	75	0.1935m	12.15	-64 -64	orange clard				
											floce uling many				
											M make al				
					·		·								
		Pez pu	per rgn	c F 1g.	ni]ea	à, sc	124	21 000	sed	chunny	•				
		nH		RAT	ON (c	hoose t	wo)		l Scialaíth	Model or	Unit No :				
Buffer Sc	olution			nH	4 0	nH 7	0	nH 10.0		moderor	omeno				
Field Ten	nperature	 °C				- p. r r		pri 10.0		-					
Instrume	nt Reading									.					
	SPECIE				NDUC	TANCE				Model or					
KCL Solut	tion (uS/cn				1413	at 25°C	12	880 at 25°C		Model of	omeno.				
Field Tom										-					
	Field Temperature °C									-					
							Netzer								
Standard Solution 468 mV Sal						nity %	رن ب			NOLES:	· · · · · · · · · · · · · · · · · · ·				
Field Terr					Altitu										
Instrumer	t Reading	<u> </u>			Inetr	ument D	aadi				· · · · · · · · · · · · · · · · · · ·				
Model or	Unit No ·			· · · · · · ·	Mod			<u>.</u>							
							a ind.	••							
Agiagore	ziectrode (330E)													

Geo	omatrix					AND)/ O I	WE R DE	ll s Vel	OPME	ING NT REC	ORD	
Well ID:	SW-	-01			· · · ·			In	itial De	epth to Wa	iter:		
Sample	ID:		Dupl	icate I	D:			De	epth to	Water aft	er Samplind	1:	14 martine - 16 mart
Sample	Depth:		- '		- <u> </u>			To	tal De	oth to Wei	ll:		
Project	and Task	No.:	141	159				w	ell Dia	meter:			
Project	Name:	W	in	rev-s	5			1 (Casino	/Borehole	Volume:		
Date:	10/10	105		0911)			(C	ircle o	ine)			
Sample	d By:	<u>`</u> C	BN	В				4	Casing	g/Borehole	Volumes: _		
Method	of Purgin	g:i	none,					— та			holo	•	
Method	of Sampli	ng:	Subn	renge	<u>_ b</u>	ottle	<u>ه</u>	Vo	lumes	sing/bore	d:	••••••	
Time	Turb ntake Depth NTV	Rate (gpm	, Ci v i) (g	um. ′ol. al.)	Tem (°C)	p. (u	pH nits)	Spe Elect Condu (μS/	cific trical ctance cm)	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	R (color, turbi	emarks dity, and sediment
0910	12.8				1().0	16.	.34	0.234	5/m	11.85	1910		
													те ^н
			•	\mathbf{F}									
<i>t</i> .				Nott	n.	ìs	0	iear.	3	catter	d sm	all	
				itt	Je	sefa	In	n i	seta	ls fi	oatna	(mille	$\left(\begin{array}{c} 0 \end{array} \right)$
					Ň	3					2	2	
													······································
								12		c			
													<u> </u>
								· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
								· ·					χ.
		P	H CALI	BRATI	ON (c	hoose	two)				Model or	Unit No.:	78% ···
Buffer So	lution			рН	4.0	pH	7.0	pH 1	0.0	<u>n an an an Align Maria</u> M			
Field Terr	perature °	°C									-		
Instrumer	nt Reading												
	SPECIE	IC ELE	CTRIC/		NDÜC	TANCE	- C		TION		Model or	Unit No :	, , , , , , , , , , , , , , , , ,
KCL Solut	ion (uS/cm	i=umhc	os/cm)	ana an	1413	at 25°C	12	2880 at 2	5°C	्रिम् सिर्वे अन्युद्धि सम्बद्धः सन्दर्भ			
Field Tem	perature °	<u>, </u>									-		
Instrument	Reading	-									4		
R	EDOX CA	LIBRA	TION		DIS	SOI VI	-D.0	XYGEN		RATION	Notes:		
Standard	Solution	1.000	468 m∖	<u>:::::::::::::::::::::::::::::::::::::</u>	Salir	nitv %	1722 51.17				inotes.		
Field Tem	perature °	с			Altitu								
Instrumen	t Reading				Instr	ument	Read	ling					
Model or l	Jnit No.:	l			Mod	el or Ur	nit No).:		· · · · ·		· · · · · ·	
Ag/AaCl F	ectrode (SSCF					-						
)										·····	

.

. .

Geo	omatrix				Þ	ND/0	DR	WELL S DEVEL	SAMPL	ING NT REC	ORD			
Well ID:	SW.	-\$3						Initial D	epth to Wa	ter:				
Sample	ID:		_ Dupl	licate I	D:			Depth to	o Water aft	er Sampling	j:			
Sample	Depth:							_ Total De	epth to Wel	l:				
Project	and Task	No.:	14	159				_ Well Dia	ameter:					
Project	Name:	$-\omega$	hite	Nev	\mathcal{M}_{-}			1 Casin	g/Borehole	Volume:				
Date:	10/15/1	03				- 1 ⁻¹ 1		(Circle o	one)					
Sample	d By:				F_{ij}	1		4 Casing/Borehole Volumes:						
Method	of Purgin	g:	<u> </u>	A						-				
Method	of Sampli	ing:	supm	enje	bottl	e		Volume	s Removed	101e :				
Time	Turb Intake	Salin Rate (gpm	why d		Temp (°C)	. pH (unit	L (3)	Specific Electrical Conductance (uS/cm)	Dissolved Oxygen	Redox Potential (mV; SSCE)	l (color, turb	Remarks lidity, and sedimen		
0940	50	0.2			6.3	9.3	20 1	7. 340 m	11.63	47	slight	rolling		
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· *	Law	bours		
											(DA	- The C		
								<u> </u>			Circles	materia		
											FUCUM	is aland.		
· · · · · · · · · · · · · · · · · · ·														
						·		<u></u>						
									 	Model or	Unit No.			
Buffer So	lution	r se K								intodel of	Unit NO			
Field Tom		•C		pri	4.0	pn 7.0		pri 10.0		-				
										. .				
Instrumer	nt Reading	einebaaiitea]	and the second secon	(+15) Action	مى ئىچىرى ئۇتۇرىيە		iteria dalar	etradia di Maraka da T	an a			; 		
的形式	SPECIE	IC ELE	GTRIC	AL CO	NDUCT	ANCE	CAL	IBRATION		Model or	Unit No.:			
KCL Solut	ion (µS/cn	n=µmho	os/cm)		1413 a	t 25°C	1288	0 at 25°C		_				
Field Tem	perature °	С		·			ļ		-	_				
Instrumen	t Reading		ta un contra					·			<u> </u>			
	EDOX CA	TION		DISS	SOLVED	OXY	GEN CALI	BRATION	Notes:					
Standard	itandard Solution 468 mV													
Field Tem	ield Temperature °C													
Instrumen	nstrument Reading In						eading	3						
Model or I	lodel or Unit No.:						No.:	.		·				
Ag/AgCI E	Electrode ((SSCE)												
	·	,												

Geo	omatri>				A	ND/OI	WELL S R DEVEL	SAMPL OPME	ING NT REC	ORD
Well ID:	<u></u> SW	-ø-1			· · ·		Initial D	epth 🎉 Wa	ter: <u>3</u> `	
Sample	ID:		_ Dupi	icate I	D:		Depth t	o Water aft	er Sampling	j:
Sample	Depth:						Total Do	epth to Wel	l:	······································
Project	and Task	No.:	14	159	esente in i Eti n iaren		Well Dia	ameter:		
Project Date:	Name:	108	Ulit	ma	rsh		1 Casin (Circle o	g/Borehole one)	Volume:	
Sample	d By:	NB	,CB				4 Casin	g/Borehole	Volumes:	
Method	of Purgin	g:	Na	ne	· · ·		(Circle o	one)		an a
Method	of Sampli	ing:	Supr	neny	e bo	Hle.	Total Ca Volume	s Removed	nole I:	·
Time	Turb Intake Deput	Salm Rati	بلو بر ۱) /(و	um. /ol. jal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sedimen
6800	220	0. 27	7		4.4	800	0,4175/	11.45	143	Very light born
									Fer	usual pieces
										of on
										Floating. to
								,		water is clear
										Hough
										<u> </u>
							-			
										· · ·
								1		
		, , , , , , , , , , , , , , , , , , , ,	HCAL	BRAT	ION (cho	ose two)			Model or	Unit No.:
Buffer Sc	lution			p⊦	14.0	pH 7.0	pH 10.0			
Field Ten	nperature	°C							-	
Instrume	nt Reading	3							-	
t⊷i Pētien vienu. Sauntost sonat	SPECIF	IC ELE	GTRIC	AL CO			ALIBRATION		Model or	Unit No.:
KCL Solu	tion (µS/cr	n=umh	os/cm)	(Berchman - S	1413 at	25°C 1	2880 at 25°C	prika ili dilak sita.		
Field Tem	perature °	Ċ							-	
Instrumen	t Reading	-				·····			-	
R	EDOX CA	LIBRA	TION		DISS	OLVED C		BRATION	Notes:	
Standard	Solution		468 m [\]	J	Salinity	/ %		<u></u>	-	
Field Tem	nperature '	°C			Altitude	Э		<u> </u>	<u> </u>	
Instrumer	nt Reading	1			Instrun	nent Read	ding		1	
Model or	Unit No.:				Model	or Unit N	o.:			
Ag/AgCI [Electrode ((SSCE)								

872		7.1967XI	en ser
調	and in	1	
	£ 5		×
G	eoi	ma	trix

WELL SAMPLING AND/OR DEVELOPMENT RECORD

000	Well ID:5										
Well ID:	- GV	V-Ø5						Initial C	epth to Wa	ter:ら	; (L
Sample	ID:	. <u></u>	Duplie	cate II	D:			_ Depth t	o Water aft	er Sampling];
Sample	Depth:	· · · · · · · · · · · · · · · · · · ·						Total D	epth to Wel	I:	······································
Project a	and Task	No.:	14	159				Well Dia	ameter:		
Project I	Name:	$ \mathcal{W}$	hit	mir	3M			1 Casin	g/Borehole	Volume:	
Date:	10/15/	08 .						(Circle	one)		
Sampleo	l By:	NBC	B		·			4 Casin — (Circle	g/Borehole one)	Volumes: _	
Method	of Purgin	g:						Total C	asing/Borel	hole	
Method	of Sampli	ing: <u>- 31</u>	ibn	inge	60	He.		Volume	s Removed	l:	
Time	Turb Intake Depth NTU	Sal Rate (gpm)	Cu Va Jga	m si. si.)	Temp (°C)). _(unii	l ts)	Specific Electrical Conductance (µS/cm)	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sediment
6432	107	1.7			5,1	\$.0	7	\$ 3,08 5/m	9.37	97	clear slight vellar
											tint.
			1						-		
			-								· · ·
							-+				
								· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · ·									
·			·		<u> </u>						
latin and a state of the second state of the s		ĎН		BRATI	ON (cl	100se tw	/o)			Model or	Unit No ·
Buffer Sol	ution	an na an a		<u>e e se e</u> Ha	4.0	oH 7.(pH 10.0	an contractives. I		
Field Tem	perature '	°C									
Instrumen	t Reading										
	SPECIE			I ^{II} CO	NDUCT		 	IBRATION	tan ing kanalari Atan ing kanalari	Model or	Unit No :
KCI. Soluti	on (uS/cn	n=umhos	/cm)	erifikeer eg	1413 a	at 25°C	128	80 at 25°C	<u>karan maran</u>		
Field Temp	perature °	C								-	
Instrument	Reading						<u> </u>			_	
Ri Ri	EDOX CA		DIS	SOLVED) OX		BRATION	Notes:	· · · · · ·		
Standard Standard	<u>ar ni sa</u> t	Salin	ity %	4736 ge 74 7	<u>रावत इंटल्टले भेगले थे</u> है। 						
Field Tem		Altitu	 de					a to the the second			
Instrument Reading						ument Re	eadir	ng			
Model or L	 Jnit No.:	I			Model or Unit No.:						
Aa/AaCI F	lectrode (SSCF)									

Ge	2 eomatri>					AND/(OR	WELL S	SAMPL OPME	ING NT REC	ORD
Well I	p:5₩	-\$6				4+4+H-4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+		Initial D	epth 🐙 Wa	ter:	1011
Sampl	e ID:	-	Dupli	cate II	D:			Depth t	o Water aft	er Sampling]:
Sampl	e Depth:							_ Total De	epth to Wei	I:	
Projec	t and Task	No.:	1410	51				Well Dia	ameter:		
Projec	t Name:		Wh	fm	wzs 4			_ 1 Casin	g/Borehole	Volume:	
Date: _	<u> </u>	5/08			<u> </u>			(Circle o	one)		
Sampl	ed By:	NB,C	B					4 Casin — (Circle d	g/Borehole one)	Volumes:	
Metho Metho	d of Purgin d of Sampli	g: ing: <u></u> _	nbine	enge	60	Hle		Total Ca Volume	sing/Borel s Removed	hole I:	
Time	Turb Intake Depth	Sal Rate (gom)		иля. 61. al.)	Temp (°C)	o. pH (unit	l ts)	Specific Electrical Conductance (µS/cm)	Dissolved Oxygen (prg/l)	Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sediment
0900	29.0	2.3			6.7	. 7.9	13	3.61 S/m	8.68	76	11par live
								`			wined to
								· · · · · · · · · · · · · · · · · · ·	99 4 4 9 6 6 9 6 9 6 9 6 9 6 9 6 9 6 6 6 6		Water mality
											parameters
		} 									
			_				<u>i i i</u>		• • · • · · ·		
	· .				<u>.</u>						
	-				,						
					<u> </u>		Sil Sa	avst Newton and	 		
Buffer C		r se pr		SKAL		nooseitw	vo) 		2011년 - 1912년 1913년 1911년 - 1912년 1913년 1911년 - 1912년 1913년		Unit No.:
				рн	4.0	рн 7.0		рн 10.0	<u>.</u>	_	
	mperature										
Instrum			द्वव्यक्त <u>्</u> रत्वकृत्वकृत			Soffer and the		NAMES AND S ET	Natati si sa		
	SPECIF			L CO			- CA	LIBRATION		Model or	Unit No.:
KCL Soli	ution (µS/cr	n=µmho:	s/cm)		1413 :	at 25°C	128	80 at 25°C	· · · · ·		
Field Ter	nperature °	С		.						-	
Instrume	nt Reading	-	المحركية والمحركية و	ut constit	ېلې کې د د د د د د د د د د د د د د د د د د	· ·		-			
		LIBRAT	ION		DIS	SOLVED) OX		BRATION	Notes:	
Standar	Solution		168 mV		Salin	ity %					
	mperature '										
Madel	ent Reading				Instru	ument Re	eadin	ng			······································
IVIODEI OI					Mode	ei or Unit	No.:		. *		
Ag/AgCl	Electrode (SSCE)									······································

611amol Diss. Met ust Rilbad corelying har ADDITIONAL COMMENTS Geomatrix to V. Het. Q Saumiles •240 4.54 eattion 1211 -----ايو. خوب 5 ara. Marina 55464 4227 GOYOT 5 0 % Ч SUCCEPTION PAHS, etc. Ϋ́ΕS 3 NO <u>y</u> \mathcal{D} $\tilde{\geq}$ 70 S \geq 20 50 Q 124 No. of Containers 20 1940) 1940) HILLY IN Pr off PAGE **GSW/SW** SEA OAPP belooD Fillered Please Preservative Type <u>v</u> 200 0 0 N 5 0 N/N 50 0 5 -24 102 0 REPORTING REQUIREMENTS: SITE SPECIFIC GLOBAL ID'NO 0 den . \bigcirc -Ì One Union Square, 600 University Street, Suite 1020 Filtered Tel 206.342.1760 Fax 206.342.1761 GEOTRACKER REQUIRED Soil (S), Water (W), Vapor (V), or Other (O) 1 Mark Haris N 2 N 2 3 TRU'S N 3 ~ 3 3 field 2 Seattle, Washington 98101-4107 N.S. ないない 题 **LYPE AND SIZE** DATE: CONTAINER Miss, Metals NOT TOTAL NUMBER OF CONTAINERS: stoutine with VATIOUS 10 ma/11 565 10 11 -1 --------------.... 4 -------SAMPLING COMMENTS: 562 Count 2004 1 XII \mathbf{X} × . Jeres \mathbf{S} × 2 × 2 × 88/11 110 × X X × \times >cX X 2 4407 5124211 12401 X DATE TIME \geq × CLIENT INFORMATION X × X 2 X 3 क्रम्() × 30 Z. X × \succ 10/12 No. H01 X × X × X ANALYSES XD Hð × X \geq X HAL G 24 × $\mathbf{\dot{z}}$ × \times 1116 × 34 × 4 > × >14141 × 1ST 2440 X)Q × X × \times \sim × × \sim 3 Su A × × X \$97d × × × 24 X 30 RECEIVED BY: LABORATORY ADDRESS: 505 The kunker 2HA9 × × × × X X X LABORATORY NAME: X 5 X PRINTED NAME: PRINTED NAME: PRINTED NAME SIGNATURE: Slonghy 2 X × 2 \geq 2 X SIGNATURE: Y LABORATORY COMPANY: COMPANY: \times × DOAS × × \geq Y \times 30 × m. × 1 \geq L-and R-1 SJON X X \times × × > 2 2 × X \times X \geq DATE TIME 7 NOOX 1008 SW- 03-1888 20 MW-103-1005 5W-04-1008 59-02-1008 \$\$P.8 NW-02-1008 MW-BU-1070 S MW- 62-1005 TR- 61-1078 50-01-10-05 5W-61-1008 SAMPLERS (SIGNATURE): Whit wearsh Š NUMBER 12 SAMPLE 58-03-10 CHAIN-OF-CUSTODY RECORD 5 E8-01-1 SW- 06-Ellon 021 SW- BS Bacher Standard delivered towww NNN 5 1415 S N X PRINTED NAME: DA CLUEZ RELINQUISHED BY 1240 SAMPLE SHIPMENT METHOD: 0832 1520 0101 094 N NO ISING I I OD TIME 1455 0.600 10 15 08 1200. K lick 0910 1250 CIT 09100 **PROJECT NAME:** MEC TURNAROUND TIME: SIGNATURE PROJECT NUMBER: PRINTED NAME: PRINTED NAME: Maria 1011510SY 15/0% (01:1510%) 01408 10 1 14 105 0X 10/14/168 1011105 25 SIGNATURE: IOI III D & SIGNATURE: 200 RESULTS TO: COMPANY: COMPANY: COMPANY: DATE 1015 ý Ň 0 0 9

		· · · · · · · · · · · · · · · · · · ·							
Well ID:	MW-	<u>Ø2</u>				Initial Depth to	o Water:	7.	63'
Sample I	D: <u>MW-02</u>	-1205Du	plicate ID:			Depth to Wate	r after S	ampling:	
Sample I	Depth:					Total Depth to	Well:		
Project a	nd Task N	o.: <u> </u>	1159			Well Diameter	:		
Project N	lame: <u>M</u>	1hme	wigh 1	_F_		1 Casing/Bore (Circle one)	hole Vol	ume:	
Date:	12/18/	100	R			3 Casing/Bore	hole Vo	lumes:	
Sampled	By:	NO, C	1 to log			(Circle one)			
Method o	of Purging:	: <u>pen</u>	simil			Total Casing/E	Borehole	,	
Method	of Samplin	g:	= n-sim	AVC_		Volumes Rem	oved:	E	
Time	Turb Intake Depth	ORP Bete (gpm) MV	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (<u>µS/cm</u>) کمپر	DO	DTW color, tur	Remarks bidity, and sediment)
0955	179	251	0.15	6.4	5.60	67.8	3,71	7.89	clear
1000	163	244	0,65	8.7	6.32	61.6	2,52	7.89	clear
1005	211	250	0.9	9.6	7,31	60.2	1,94	7.88	citeer
10055	199	261	1.2	10.0	7.0	655.7	1,66	7.588	clear.
1011	221	266	1.5	10.0	7,03	58.2	1.5	7,88	clear
1014	220	271	1.9	10.1	7.03	58.2	139	7.58	Chear.
1017	221	276	2.2	10.0	7.05	58.1	1.26	7.58	clear
1024	218	278	2,8	10.0	7.01	58.7	1.09	7.58	clear
1027	200	274	3.0	9.9	7,03	59.1	1.02	7.588	clear.
1030	213	273	3.2	9.9	7,05	589	1.01	7.98	clear.
						•			
	pH (CALIBRAT	ION (choo	se two)		Model or L	Jnit No.:	ъ. б	
Buffer Sc	olution	pH 4.	0 pH 7.	0 pH 10).0		1	1	1
Tempera	ture C			r		- Sar	Me	- tr	m 1040
Instrume	nt Reading	3					1		(
SPECIF	IC ELECT	RICAL CO	NDUCTAN	ICE – CAL	IBRATION	Model or L	Jnit No.:		
KCL Solu	ition (μS/cr	n=µmhos/ci	m)						
Tempera	ture C								
Instrume	nt Reading]		<i>u</i> .					
Notes:				δ		·····		<u>.</u>	
	Wat	er is	rea	thy a	lear.	turb	Me	ter	wight
	be s	fouled	5 	1		3		····-	J
		. <u>.</u>							
								-	
	. <u>.</u> .								

	1							
Well ID:	MW	-03				Initial Depth to	Water	: 8,02
Sample	ID: <u>MW-03</u>	1.1208 Du	plicate ID:	MW-10	3-1208	Depth to Wate	r after	Sampling:
Sample	Depth:					Total Depth to	Well:	
Project a	and Task N	o.: <u>14</u>	159			Well Diameter	:	
Project I	Name: <u>1</u>	NHITY	norsh	LF		1 Casing/Bore	hole V	olume:
Date:	12 15	80					h a fa M	
Samplec	l By:	MB	, <u>(B</u>			(Circle one)	noie vi	biumes:
Method	of Purging:	: <u></u>				Total Casing/E	Borehol	le
Method	of Samplin	g:	····			Volumes Rem	oved: _	
Time	Ty The Intake Depth ND	OKP Batter (APPA) MV	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm) ^{WS/} /M	00 mg/L	Remarks (color, turbidity, and sediment)
1252	40.2	-3	Ø	7.4	9.31	43.2	4,66	clear
1255	46.0	-16	0.25	7.6	10.12	43.3	3,12	clear
1258	47.3	-32	0.5	7.5	9.91	43.5	2.48	clear
1301	47,9	-47	0.75	7.6	9.83	42.7	1.20	clear
1304	34,5	-54		7.9	9.94	42.7	0-84	clear
1307	37.8	-62	1.3	7.3	10.11	42.8	6.54	clear
1310	26.6	-68	1,53	7.8	10.41	42.5	0.33	clear
1313	16.1	-72	1.9	4.8	10.65	412.6	6.34	clear
1316	9.6	-76	2,2	7.9	10.89	42.6	0,20	C ear
1319	99	-7+	2:5	7.9	10.91	41.9	0'.14	clear
1322	4,7	- 78	2.8	7,9	10.90	L/1.8	0.17	Clear
								-
Duffer C	pH C		ION (choo	se two)		Model or L	Init No.	.:
Buffer Sc		рн 4.	0 рн 7.	о рн т	J.0	-6-		1.01320
Inotrumo	nt Pooding					_ IM	np	
SPECIE						Model or l	Init No	•
KCL Solu	tion (uS/cn	n=umhos/cr	n)]	a 1348
Tempera	ture C		·			- mp	W	C
Instrume	nt Readinc	1			- · · · · · · · · · · · · · · · · · · ·	V		- -
Notes:			I			l		
				<u>.</u>				·
							·	· · · · · · · · · · · · · · · · · · ·
				·				

Sandman, motel 8 regent inn

AME	C Ce	omat	rix)	AND/0	WELL OR DEVE	SAMF LOPM	PLING IENT RI	ECORD)
Well ID: _	MU	N-02(Initial Depth to	o Water:	3.37		
Sample II	D: <u>hw-</u>	<u>6~(-100</u> 8DL	iplicate ID	:		Depth to Wate	r after Sa	ampling:		
Sample D	Depth:					Total Depth to	Well:			
Project a	nd Task N	o.:	1159	A		Well Diameter	•			
Project N	lame:	Whi	tor	44		1 Casing/Bore	hole Vol	ume:		
Date:	<u> </u>	12/10	168			3 Casing/Pore	hole Vol	umes'		
Sampled	Ву:		MS, CE	>		(Circle one)		unico		
Method o Method o	of Purging: of Samplin	: g:	Pen	3 Julton	2 N2.	Total Casing/I Volumes Rem	Borehole oved:			-
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance [∯\$/cm)	tuch	$r_{color, turbid}$	emarks ity, and se	diment)
1037			6,4	8.5	8.87	U8.1	27	4.06	274	-
1040			0.5	87	9.15	46.6	6.0	351	275	
1043			0.7	9.0	9.37	44.1	00	3.24	261	
Inula			0.9	9.0	9.38	46.1	0.0	3.23	257	<u> </u>
1049			1 <u>.</u> 1	9.1	9.47	45.9	0,0	314	241	
1057-			1.4	9.1	920	45.8	0.0	2.76	雨江	
ICEE			14	97.	9.46	45.8	00	2.37	109	
ichs			2.0	97	9.65	47.2	00	2.12	63	
1101			2.2	93	9.73	463	0,0	1.84	18	
100			2.5	93	9.74	44.7	0.0	1.81	Ť	
lint			27	9.3	970	U7.1	0.0	1.64	-8	

O, O $^{\circ}O$ $\Pi \cap$ -31 7.3 0,0 1.32 Model or Unit No.: pH CALIBRATION (choose two) Horiba U-22 pH 10.0 **Buffer Solution** pH 4.0 pH 7.0 Temperature C Instrument Reading Model or Unit No.: SPECIFIC ELECTRICAL CONDUCTANCE - CALIBRATION KCL Solution (µS/cm=µmhos/cm) Temperature C Instrument Reading Notes:

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc

1113 2031 9.76 46.7 0.0 1.15 9.3 -41	OXP	temp	99	turb	cond	PH	Val	
	-41	9.3	1,15	0,0	46.7	9.74	763.	1113
116 3.3 9.84 46.3 0.0 1.08 9.2 49	-49	9.2	1.08	0,0	46.3	9.34	3.3	1116
1119 3.5 7.87 44.4 0.0 1.05 7.2 -51	-51	9.7	1,05	0,0 0,0	44.4	7.87	3.5	1119
1122 3.7 7.88 46.4 0.0 1.01 7.2 -54	-54	9.2	1,01	0,0	<i>ч</i> ,ч ч,ч	7.88	3.7-	1122

· · ·

WELL SAMPLING AND/OR DEVELOPMENT RECORD

	CR-	CK I					
Well ID:	$\frac{\gamma}{1}$	d1 1205	/			Initial Depth to	o Water:
Sample	ID:	- <u>1217</u>	iplicate ID			Depth to Wate	r after Sampling:
Sample	Depth:	. 1	LICA			Total Depth to	Well:
Project	and lask N	$\sqrt{\Lambda}$	Daarie	. 15	-	Well Diameter	
Project	Name:	210%	, course	u lt		1 Casing/Bore (Circle one)	hole Volume:
Date:	16/1	7108 A 172	R			3 Casing/Bore	hole Volumes.
Sample	а ву:	NDI				(Circle one)	
Method	of Samplin		huser	o ha	Hle	Total Casing/E	Borehole
Methou			- 200 CVA	<u>e 50</u>		Volumes Rem	oved:
Time	Intake Depth NTU	Rate (gpm) ws L	Vol.	Temp. (°C)	pH (units)	Specific Electrical Conductance (µ S/cm)	Remarks (color, turbidity, and sediment)
1150	9392	9.42	83	0.5	8.66	99.7	orange cloudy (slight)
	113						
1							
							· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · ·			
	pH C	ALIBRATI	ON (choo	se two)	I I	Model or U	nit No.:
Buffer So	olution	pH 4.	0 pH 7.	0 pH 10	0.0		
Tempera	iture C					- thm	nba U-22
Instrume	ent Reading						
SPECII	FIC ELECT	RICAL CO	NDUCTAN	CE – CAL	IBRATION	Model or U	nit No.:
KCL Solu	ution (µS/cn	n=µmhos/cn	n)				
Tempera	ture C						
Instrume	nt Reading						
Notes:					L	1	
		· .					
		ampl	e C	2 (1	155		
		V					
		·					
						**	

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc

60 42						
Well ID: <u><u><u>7</u></u><u>7</u><u>7</u><u>7</u><u>7</u><u>7</u><u>7</u></u>				Initial Depth to	Water:	
Sample ID: <u>97-92-120</u>	Dy Duplicate ID			Depth to Wate	r after Sampling:	
Sample Depth:	11159			Total Depth to	Well:	
Project and Task No.: _	- 19151	15	· · · · · · · · · · · · · · ·	Well Diameter:		······································
Project Name: <u>WV</u>	utmans n			1 Casing/Borel (Circle one)	hole Volume:	
Date: 12	118 00	5		3 Casing/Borel	hole Volumes	
Sampled By:	123,05			(Circle one)		
Method of Purging:	/	-7		Total Casing/B	Sorehole	
Method of Sampling:	pensrui	nc		Volumes Remo	oved:	
Time Depth (gr	ate Vol. pm) (gall/	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm) ₩	R S/m ^{(color, turbic}	emarks lity, and sediment)
1555 78 6	.92 73	0.1	10.02	1.23	slighth	cloudy
					5.1	
						· · · · · · · · · · · · · · · · · · ·
					· · · · · · ·	
pH CALI	BRATION (choo	se two)	1	Model or U	nit No.:	
Buffer Solution	pH 4.0 pH 7	0 pH 10).0			
Temperature C		·				
Instrument Reading						
SPECIFIC ELECTRICA		ICE – CAL	IBRATION	Model or U	nit No.:	
KCL Solution (µS/cm=µm	nhos/cm)					
Temperature C						
Instrument Reading						
Notes:		I	I			
	and	\square	1/	m		
	undlice	ÜĽ	- 16			
	V					

Well ID:	<u>SP-Ø</u>	3				Initial Depth to	Water:	
Sample II	D:5P-Ø3-	1208 Dup	licate ID:			Depth to Water	r after Sampling: _	
Sample D	epth:					Total Depth to	Well:	
Project a	nd Task No	o.:	14159	<u> </u>		Well Diameter:		
Project N	ame:	whi?	ma	364 L	F	1 Casing/Bore	hole Volume:	
Date:		12 18	08		· · · · · · · · · · · · · · · · · · ·		holo Volumes	
Sampled	Ву:	'NE	S, CB			3 Casing/Bore (Circle one)	noie volumes.	
Method o	of Purging:			· · · · · · · · · · · · · · · · · · ·		Total Casing/E	Borehole	
Method o	of Sampling	g: <u>pe</u>	n3h	1HZ		Volumes Rem	oved:	
Time	Turg Intake Depttr	Do Rate (gpm) wg/L	Cum. Vol. (galv	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm) V	nSm (color, turk	Remarks vidity, and sediment)
1640	363	11.95	95	0.3	10.15	0.43	Blighto	orange.
	0-1						J	<u> </u>
	, рН		ION (cho	ose two)		Model or	Unit No.:	
Buffer S	olution	pH 4	.0 pH 7	7.0 pH 1	0.0			
Tempera	ature C							
Instrum	ent Readin	g					ν	
SPEC	IFIC ELEC			NCE – CA	LIBRATIC	N Model or	Unit No.:	
KCL So	lution (µS/c	:m=µmhos/c	:m)					
Temper	ature C							
Instrum	ent Readir	ng						
Notes:		<u> </u>						
		6				Irue	<u> </u>	
		5(M)red	Q	101.	<u>ر</u>	
			<u> </u>					
1								

	A						
Well ID:	SW-1					Initial Depth to	o Water:
Sample I	D: <u>SW-ØI-</u>	-1208 Du	plicate ID:			Depth to Wate	r after Sampling:
Sample I	Depth:					Total Depth to	Well:
Project a	nd Task N	o.:	1159			Well Diameter	
Project N	lame:	White	nach	LF		1 Casing/Bore	hole Volume:
Date:	<u> </u>	2/17/	08			(Circle one)	
Sampled	Ву:	N	B, CP	>		3 Casing/Bore (Circle one)	hole Volumes:
Method o	of Purging:					Total Casing/F	Borehole
Method o	of Samplin	g: <u>Su</u>	15 men	yny '	auttle	Volumes Rem	oved:
Time	Tutb Intake	DO Rete (gpm)	Gum. Vol. (gat.)/	Temp. (°C)	pH (units)	Specific Electrical Conductance (45/cm) • •	Remarks (color, turbidity, and sediment)
1300	26.7	841	147	0.9	7.45	21.4	clear some floeting
.300	24.1		1 1 6		,,		manage in the
					1	Model or l	
Buffor S	pric			0 nH 1			
Tompore			.o pn/				
Inction	nt Poodice						
SPECI	FIC ELECT					Model or I	Jnit No.:
KCL Solu	ution (uS/cr	n=umhos/c	m)				
Tempera	ture C						
Instrume	ent Reading]					
Notes:			l	<u></u> l	l		
			•				
		5	anah	76	@	1255	
		0	wwy	1 re	C		

Well ID:	5W.3	>				Initial Depth to	o Water:	
Sample I	D: <u>Sw-Ø3</u>	. 1208 Du	plicate ID:			Depth to Wate	r after Sampling:	
Sample I	Depth:					Total Depth to	Well:	
Project a	and Task N	lo.:	4159			Well Diameter	:	
Project N	Name:	Whin	narsh	LF		1 Casing/Bore	hole Volume:	
Date:	12	117-109	8				L. L. Malancara	
Sampled	l By:	NB,	CB	*****		3 Casing/Bore (Circle one)	nole Volumes:	
Method o	of Purging	:				Total Casing/E	Borehole	
Method o	of Samplin	g: <u>Sul</u>	meng	ed b	ottle	Volumes Rem	oved:	
Time	Turs Intake Depth NTV	Do Rate (gpm) Mg L	Qum. Vot. (gat.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (pS/cm)	Remarks \$/(color, turbidity, and sedir	nent)
1515	125	8.99	163	1.9	6.83	1. 35	slighty brown	
							1	
	pH	CALIBRAT	ION (choo	se two)		Model or l	Jnit No.:	
Buffer So	olution	pH 4.	.0 pH 7	.0 pH 10	D.O			
Tempera	ture C							
Instrume	nt Readin	g						
SPECI	FIC ELECT	RICAL CO	NDUCTAN		IBRATION	Model or U	Jnit No.:	
KCL Solu	ution (µS/c	m=µmhos/ci	m)					
Tempera	ture C							
Instrume	nt Readin	g						
Notes:	<u> </u>							
	<u></u>	ſ						
			nly	P	15	7		
			<u>M'c</u>	Ľ			<u></u>	
			~					· · · · · · · · · · · · · · · · · · ·

WELL SAMPLING AND/OR DEVELOPMENT RECORD

Well ID:	<u> </u>	øч				Initial Depth to	o Water:	
Sample	D: <u>SW-Ø4</u>	-1208 Du	plicate ID:	L		Depth to Wate	er after Sampling: _	
Sample	Depth:		· · · · · ·	<u> </u>		Total Depth to	o Well:	
Project a	Ind Task N	0.:	14150	[Well Diameter	·	
Project N	lame:	Mut	man	U LI		1 Casing/Bore	hole Volume:	
Date:			12/18	108		(Circle one)		
Sampled	Ву:		CBN	5		3 Casing/Bore (Circle one)	hole Volumes:	
Method o	of Purging:			A (Total Casing/E	Borehole	
Method o	of Samplin	g: <u> </u>	smenje	ed bu	Hle.	Volumes Rem	oved:	
Time	Ty have Intake Depth	DO Rate (gpm) Ma L	Gen. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (ب اع/cm) س	(color, turbi	Remarks idity, and sediment)
1570	198	8.99	163	1.8	6.8	0.903	slightly	bran
		ł					.]/	
						1		
	pH C	ALIBRATI	ON (choos	se two)		Model or L	Jnit No.:	
Buffer So	lution	pH 4.	0 pH 7.	0 pH 10).0			
Temperat	ure C							
Instrume	nt Reading							
SPECIF	IC ELECTI	RICAL CO	NDUCTAN	CE – CAL	IBRATION	Model or L	Init No.:	
KCL Solu	tion (µS/cm	n=µmhos/cn	n)					
Temperat	ure C							
Instrumer	nt Reading							
Notes:						I		
		-						
		A	M	d	\mathcal{O}	1515		·
<u>.</u>				(

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc

1								
Well ID:	5w-	ø5				Initial Depth to	o Water:	
Sample I	DSW-99	5-1208 Du	plicate ID:			Depth to Wate	r after Sampling:	
Sample I	, Depth:					Total Depth to	Well:	
Project a	nd Task N	o.:I	4159			Well Diameter	·	
Project N	lame:	White	nach	LF		1 Casing/Bore	hole Volume:	
Date:		12/17	108			(Circle one)		
Sampled	Ву:	N	B, CB			3 Casing/Bore (Circle one)	hole Volumes:	
Method o	of Purging		/			Total Casing/F	Borehole	
Method o	of Samplin	g: <u></u>	merge	6041	<u>e</u>	Volumes Rem	oved:	
Time	Tury Intake Depth NP	DO Rate (gpm) MalL	Gum. Vot: (gat)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm) V	Rer (color, turbidit	narks y, and sediment)
1505	133	9.03	175	2.2	6.78	0.791	slightly	yellow
								1
								······
						· · · · · · · · · · · · · · · · · · ·		
								<u></u>
	DH (ION (choo	se two)	<u> </u>	Model or l	Jnit No.:	
Buffer So	olution	рН 4.	.7 Hα 0	, 10 Ha	0.0			
Tempera	ture C	1						
Instrume	nt Reading	a						
SPECIF	IC ELECT	RICAL CO		ICE – CAL		Model or l	Unit No.:	<u></u>
KCL Solu	ution (µS/cr	m=µmhos/cr	n)					
Tempera	ture C	<u>.</u>						
Instrume	nt Reading	g						
Notes:				I				
		1						
		4	\cap	\frown	15	12		
		Ja	MUL	e C		010	<u>.</u>	
			U					

	(.). A	6					
Well ID:	<u>500-10</u>	10 1011 01				Initial Depth to	o Water:
Sample I	D: <u>SW-Ø6</u>	-1208 Du	plicate ID:			Depth to Wate	r after Sampling:
Sample [Depth:			<u> </u>		Total Depth to	Well:
Project a	nd Task N	o.:	(415)	1		Well Diameter	:
Project N	lame:	White	mar	A LF		1 Casing/Bore	hole Volume:
Date:		12/17	08			3 Casing/Roro	hole Volumes.
Sampled	Ву:	CB,	MS			(Circle one)	
Method o	of Purging:					Total Casing/E	Borehole
Method o	of Samplin	g:бИ	Suren	jeer b	offle	Volumes Rem	oved:
Time	Turb. Intake Depth 2	OO Rate (gpm) Wg_L	Gum. Vol. (get)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm) S	Remarks (color, turbidity, and sediment)
1910	43	9.10	206	0.9	6.57	2.15	clear.
					:		
	pH (CALIBRAT	ION (choo	se two)		Model or l	Jnit No.:
Buffer So	olution	pH 4.	.0 pH 7	.0 pH 10	D.0		
Tempera	ture C						
Instrume	nt Reading	3					
SPECIF	IC ELECT	RICAL CO	NDUCTAN	ICE - CAL	IBRATION	Model or l	Jnit No.:
KCL Solu	ution (µS/cr	n≃µmhos/c	m)				
Tempera	ture C						
Instrume	nt Reading]					
Notes:				·			
							_
			In	rd ($\overline{\partial}$	54E	·
		20				915	

Well ID:	SW-	ø7				Initial Depth to	o Water:
Sample	1D:SW-Ø7	<u>- 120 %</u> Du	plicate ID:			Depth to Wate	r after Sampling:
Sample	Depth:					Total Depth to	Well:
Project a	and Task N	o.: 10	1159			Well Diameter	:
Project I	Name:	whit	margh	LF		1 Casing/Bore	hole Volume:
Date:	(;	2 17/0	8	••••		(Circle one)	
Samplec	l By:	NB	, CB			3 Casing/Bore	hole Volumes:
Method	of Purging:		NA			Total Casing/F	Borehole
Method	of Samplin	g:ę	en3b	Uhz		Volumes Rem	oved:
Time	Turs . Intake Depth NV	Po Rate (gpm) ws/L		Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)• w	Remarks (color, turbidity, and sediment)
1240	91.3	10.08	108	3.8	8.20	60.6	slightly orange
		· · · · · ·					
	pH C	ALIBRAT	ION (choo	se two)		Model or l	Jnit No.:
Buffer Se	olution	pH 4.	0 pH 7	.0 pH 1	0.0		
Tempera	ture C						
Instrume	nt Reading	1					
SPECI	FIC ELECT	RICAL CO	NDUCTAN	ICE - CAI	IBRATION	Model or U	Jnit No.:
KCL Solu	ution (µS/cr	n=µmhos/ci	m)				
Tempera	ture C						
Instrume	nt Reading]			-		
Notes:						<u> </u>	
		\sim	<u>۱</u>	.		121	
		\leq	am	ple	C	1695	
		0		Ü			

Chain of Custody Recor	d & Laborat	ory Analys	sis Requ	lest									
ARI Assigned Number:	Turn-around Rec	Juested: Staw dura	0		Page:	محييته	of	art.	7		A	Analytical	Resources, Incorporate
ARI Client Company:	Ph Latrix	one: 206 - 34	941-21		Date:		lce Present?		ja Tay	P		Analytical (4611 South Fulsuits W	Chemists and Consultan ۱ 134th Place, Suite 100 ۸۸ ۱۹۲۵ ۵
Client Contact: Nick Ba	cher				No. of Coolers:		Cooler Temps:					206-695-62	200 206-695-6201 (fax)
Client Project Name:	L'al l'al		-				Anal	lysis Requ	ested				Notes/Comments
Client Project #:	Samplers: Nizk Be	cher, Cl	nd zw	LINX	5		(Hall) (Hall) (Hall)	XQ X9	-tel- Net-	992L	Ŕ	National States	
Sample ID	Date	Time Ma	trix No. C	ontainers	20/15	PCB4	a124 81 70	-HGT	0.124.1	Ha	وعديهم	na international and an and an	
57-1-1208	1 30/4/21	155 H2	0 2	5	XXV	X	XX	XX	XX			te mayoutry	
3071-F-NG	1 30/21/21	245 H2	0 2	15	XXX	XX	><	el procession	\times		\sim	2. tavijanenistis	
SW-1-1208	1 ×0/+1/21	355 H12	2 07	5		\mathbb{X}	- And					S. ANALONIZATIONY	
5W-5-1208	51/20/41/20	70 H2	0 2	N S								in contractions	
SW-3-1208	51 3-0/21/21	12H 02.	0	10	K X X							ie - mini-Jacoperane	
SW-6-1208	12/17/05/15	SHS H2	0 2	5	$\langle X \rangle$	XX		4 2449.8m2 (242)44				21 10/27 + Link (0.47	
NW-02-1208	17/18/05/1	010	20 2	5 2	X	X	<u>></u>	X					
WW-03-1208	1 20/21/	330 Hz	2 0	6			XX					n inut veitgenstel	
NNV-103-1208	718/0× 1:	540 H	2 0,	N S			X	XX	$ \times $		Þ	e 1150-210-2140	
8021-120 S	1 80/21/	S 5 H,	0	251		XX			XX	X	\geq	5. Blacky provid	
Comments/Special Instructions	Relinquishêd by: (Signature)	2 June	Receiv	ed by:		- 	Relind	uished by:	· ·	1	Her	cefved by:	
	Printed Name:		Printêd	Name:	V CV V V		Printer	d Name:			(Cig	gnature) oted Name:	
	Nick	Bacher		MIM	i Ne	5						יונבת ואמווובי	
	Company: MMEZ	GMX	Compa	t C I		N.	Сощр	any:			Col	mpany:	
	Date & Time: $\frac{2}{\sqrt{2}}/ \hat{a} _{0}$	155	Z Date &	тіте: 7 1 Q1 / ,	99	1523	Date 8	k Time:			Dat	te & Time:	
Limits of Liability: ARI will perform al	l requested service	s in accordance	with appropr	iate metho	odology folic	owing ARI St	andard Op	erating Pro	cedures	and the AF	RI Quality	Assurance	Prooram. This prooram

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Recor	d & Labo	ratory A	nalysis F	lequest									
ARI Assigned Number:	Turn-around	Bequested:	Las		Page:	- Lander Lander	of	6				Analytic	cal Resources, Incorporated
ARI Client Company:	XU	Phone: 206-3	E1-24	60	Date:	105	lce Present?					4611 Sc Tirkwila	al Chemisis and Consultants buth 134th Place, Suite 100 W/A 9816.8
Client Contact: Nick B	acher-				No. of Coolers:		Cooler Temps:)	206-69	5-6200 206-695-6201 (fax)
Client Project Name:	A A Charles	V BV		Ē		-	An	alysis Rec	quested				Notes/Comments
Client Project #: Client Project #:	Samplers	C Bach	er, Chw	6 Barr		510 510	1947 <u>)</u> 54- •	X9 X9	-tom	- Fel	5		
Sample ID	Date	Time	Matrix	No. Containers	2015 2015	1924 1149 11497	8 20	Hell	0.181	-Ha	au au	tubee universitieristaan	
5 7-02-1208	7151.05	1600	H20	25	XXX	XXX	XX	XIXD		XD	XXX	65 mi estatut	
58.03-1208	718/08	640/	A2 0	25	XXI	ďX Ν	1X Ÿ		IX)	XX	X		
2021-40-MM	17/ N/DO	т. 17 17	H20	25	XXX	(IXIV	XX	XX X	X	$\frac{\times}{\times}$	\mathbf{X}	ing at 2 Line and 2 Minutes	
EB-1208	Zalat	15215	420	25	XXX	XXV	XX		X	X	$\frac{\times}{\times}$	tweeza-triven	
Trin Blowle			H-20	(mar and a start and a start a	X	t. L	1 The State of States	Freisikkerer			me rowstina	an a	
m er	ý		,		terapana propri	agasenda ayaagda da		ant creaters	sotumente	1774 THEORY &	the form of the	1	
and an and a state of the	and the second second		A MARCH MARCH MARCH		umsterGe+Aur	- 2010-00000 - 540000	2002207-84	- Parajarén 756 BAPIK	antidare	engenerationente		1.213238049	
N. N			and the second		"Orberts" kirds	arturtsmartsii.	artane-eller raj	1 PE-1871-4712-74	2 37725442744×0	i dorta suara k	e ministration offic	h Ziviz-czónusał)ó	
and the second se		and the second second		an constant of the second	. 1979 Sin December	. arjanian'i 201		. 755376261_637_0131	9 WIRENGL/GDUNKET	e antoin de nais	1 1 2400 220 4	n arisenterstande	
and the second se	5 87 9 - 1	~ ~		1	and an and the state of the	C3.249 (6.2010)	a di di Santa da Santa da	ADM AT FORM	naniajy wett d	S INSPECTION IN CONTRACTOR	e me <u>uniter</u> titer	1 1071-10.04 ⁻⁰ 10.	
Comments/Special Instructions	Relinquished/by: (Signature)	1 Barl	3	Received by: (Signature)	- 5	CO WU	Freli (Sig	inquished by: jnature)	7.9	29	æ.	Received by: (Signature)	
	Printed Name:	Je Bac	her	Printed Name:	- 71 - 71	tall	Prin	ited Name:				Printed Name	
	Company:	NG 7	×	Company:		-	Ö	npany:				Company:	
	Date & Time;	9/05	1553	Date & Time:	08	155	Dati	e & Time:				Date & Time:	
Limits of Liability: ARI will perform a meets standards for the industry. The said services. The acceptance by the c signed agreement between ARI and the	Il requested se total liability of client of a prop e Client.	rvices in acco ARI, its office osal for servic	rdance with a rs, agents, en es by ARI rele	ppropriate me pployees, or su ase ARI from	thodology fol iccessors, ari any liability ii	lowing ARI ising out of n excess the	Standard C or in conne ereof, not w	Dperating I ection with vithstandin	Procedur the requing any pro-	es and th ested se ovision to	ne ARI Qu rvices, sha the contr	ality Assura all not excee ary in any co	nce Program. This program of the Invoiced amount for ontract, purchase order or co-

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

_	-						·····		
Project N	ame: <u>S</u>	kagit Whit	<u>marsh Landfi</u>	<u>II</u>			Data: 4/19	ha	
Project M	umber 1	4159			We	ather Cor	ditions:	<u>~ /</u>	
Location:	Anacorte	es. WA							
Sampler:	Chris Bro	own & Nik	Bacher		Wir	nd Speed/	Direction:		
oumprom						•			
				WELL	INFOR	MATION	1		
Casing Di	iameter (i	in):	2		4	Groundw	ater Elevation ((ft):	
Top of Ca	ising Elev	vation (ft):		,	1	Depth of	Well Casing (ft)):	
Initial Dep Wollboard	oth to Wa Conditio	ter (ft):	<u>1.20</u>	·•		Actual Pu	irge volume (g	ai);	
YYEIIIEdu	Conditio		4						
			PU	RGING	MEAS	UREME	NTS		
		рН							
WL (ft	Time	(std.	SC (m/s/am)	Temp.	ORP	(mo/l.)	(NTUS)	Notes	
<u> 100)</u>		7/.5	27:11	12 00	115	7 IIU	15		
	1150	7 44 6		11 65	1201	128			
	1152	4.37	0.100	10.77	140	6,77	11		
	1156	7.23	m3/m 84.1	10.72	130	0.03	15		
	1159	7.13	13.9	10.54	142	0,39	15		
	1703	7.05	710	10,44	146	0,24	16		
	12.06	7.02	68,5	10.42	146	0.14	22		
	1210	6.99	Cole 7	10.46	147	0.02	2+		
	1213	4.99	63.2	10.50	147	0.00	31	· · · · · · · · · · · · · · · · · · ·	
	1214	K.97	63.2	0.33	146	0.00	36		
	1219	6.9.F	62.7	10.52	140	0.00	37		
·	1272	6.7.T_	06.3	10,43	<u>14</u>)	0.00	51		
							1		
			L	<u> </u>	<u>}</u>				
Sample II	D No.:		-						
Water Le	vel Ind. N	lodel & No		· · · · ·					
ORP/DO Purge Eg	Meter Mo winment	del & No.: Hseri	Horiba U-2	2					
Sampling	Equipm	ent Used:							
Purge Sta	art Time:		1145			Sample	Collection Tim	e: 1230	
Purge Co	mpletion	Time:				Purging	Method:		
Average	Purge Ra	te (mL/mii	ı):			Sample	Containers Us	ed:	
Analytica	I Lap:		, <u>, ,</u>			Gnemic	ai Anaiyses:		
	Id Obcor	vations							

MONITORING WELL/PIEZOMETER NUMBER MW-03

Project N	ame: <u>Sl</u>	<u>kagit Whit</u>	marsh Landfi	<u>ill</u>				1-01-0	
Project N Location: Sampler:	umber: <u>1</u> 4 <u>Anacorte</u> <u>Chris Bro</u>	1159 es, WA own & Nik	Bacher		Wea Win	ather Cor d Speed/	Date: nditions: Direction: _	126109 Deast 50's	
Casing D Top of Ca Initial De Wellhead	iameter (i asing Elev pth to Wat I Conditio	n): ration (ft): ter (ft): n: <u>\V_</u>	2'' 7.86	WELL	INFORI ([/	MATION Groundwa Depth of Notual Pu	l ater Elevatio Well Casing rge Volume	on (ft): (ft): (gal):	
			PU	RGING	MEAS	JREME	NTS		
WL (ft btoc)	Time	pH (std. units)	SC (ms/gm)	Temp. (°C)	ORP (mv)	DO (mg/L)	Turbidity (NTUs)	Notes	
7.87	914	7.39	84.2	11.20	-127	3.67	19.4		
7.88	917	7.23	71.2	10.09	-124	0.23	12:0		
7.87	920	7.09 (: 09	65.9	9.01	-179	0.00	19		
7.88	926	697	64.8	9.41	-130	0,00	27.32.	p	
7.89	929	6.94	64.3	<u>Ġ,ù</u> ċ	-137	0.00	0,1		
	1	1	1	1	1	1	1		
						-			

Sample ID No.: MW-03-0409, MW-103-0409

ORP/DO Meter Model & No.: Purge Equipment Used: Sampling Equipment Used:	Horiba U-22		
Purge Start Time: Purge Completion Time: Average Purge Rate (mL/min): Analytical Lab:	913	Sample Collection Time: Purging Method: Sample Containers Used: Chemical Analyses:	9:30/1020 Para flattic
Other Field Observations:	uplicate collec	eted	

rojectiv	lame: <u>S</u>	<u>kagit Whit</u>	marsh Landf	<u>ill</u>			Datas 111	19/09	
Project N	lumbor 1	4159			Wo	ather Cor	ditions: \mathcal{P}	Sumar 50'S	
ocation	: Anacorte	es. WA			110			Danny Je J	
Sampler:	Chris Bro	own & Nik	Bacher		Wir	nd Speed	/Direction:		
•							-		
			0:1	WELL	INFOR	MATION	Į		
Casing D	iameter (i	n):	_2		(Groundw	ater Elevatio	on (ft):	
fop of Ca nitial Do	asing Elev	<pre>vation (ft): tor (ft):</pre>	<u> </u>		• 1	Depth of '	Well Casing	(ft):	<u>.</u>
Nellhead	i Conditio	n: accd	<u> </u>	<u> </u>	"	Actual Fu	nge volume	(gai).	
		7			84E A CI		NTC		
			PU	KGING	INEAS		сти 		~~~
VALL (64		PH (std	er	Tomp		00	Turbidity		
btoc)	Time	units)	(ms/gm)	(°C)	(mv)	(mg/L)	(NTUs)	Notes	
	8410	7,54	51.6	10.15	24	3,47	0		1
	849	7.30	51.8	10,25	-80	0.00	O		
	852	7.22	51.7	10.32	-95	0.00			_
	855	7.20	51.6	10.40	-101	0.00	0'		_
	850	7.26	515	10,45	-107	0.00	0	-	_
;	901	7.24	51.3	10.5	-11.2	0.00	ð		
· · · · · · · · · · · · · · · · · · ·		ミレッパ	2 01 2	10 57	-111	0.06			
· · · · · · · · · · · · · · · · · · ·	904	Till	51.2	10,00	<u> </u>	1×			
· · · · · · · · · · · · · · · · · · ·	904	Till	51.2	0,02					
	904	<u> </u>	51.2						
	9`04		51.2						
	904								
	904								

ORP/DO Meter Model & No.: Horiba U-22 Purge Equipment Used:	
Sampling Equipment Used:	
Purge Start Time: 845 Purge Completion Time:	Sample Collection Time: <u>940-920</u> Purging Method: Sample Containers Used: Chemical Analyses:
Other Field Observations:	

.

AMEC Geomatrix

•.•

Page _ 1_ of ____

MONITORING WELL/PIEZOMETER NUMBER SP-0(

Project Name: Skagit Whitmarsh Landfill

	Date:	
Project Number: <u>14159</u>	Weather Conditions:	
Location: Anacortes, WA		
Sampler: Chris Brown & Nik Bacher	Wind Speed/Direction:	
WELL	INFORMATION	
Cooling Diamotor (in):	Groundwater Elevation (ft):	
Casing Diameter (m).	Dopth of Well Casing (ff):	
Top of Casing Elevation (it):	Depth of wen casing (it).	
Initial Depth to Water (ft): / / / /	Actual Purge Volume (gal):	
Wellhead Condition:	J.	

WL (ft btoc)	Time	pH (std. units)	SC (ms/cm)	Temp. (°C)	ORP (mv)	DO (mg/L)	Turbidity (NTUs)	Notes
	1315	7.31	74.9	13,61	-71	5:45	13.7	
					γ			
	<u>{</u>				, ,			
					· · · · · · · · · · · · · · · · · · ·			
) 	

DRP/DO Meter Model & No.: <u>Horiba U-22</u> Purge Equipment Used: <u>N/A</u>	· · · · · · · · · · · · · · · · · · ·
Purge Start Time: Purge Completion Time: Average Purge Rate (mL/min): Analytical Lab:	Sample Collection Time: <u>1315</u> Purging Method: Sample Containers Used: Chemical Analyses:
Other Field Observations:	

MONITORING	WELL/PIEZOMETER	NUMBER	SP-07_
alona orano	T T has been been f T . I have been to first have to been to the		

Project Name: Skagit Whitmarsh Landfill

Project Number: 14159

....

Date: ______
Weather Conditions: _____

Location: <u>Anacortes, WA</u> Sampler: <u>Chris Brown & Nik Bacher</u>

Wind Speed/Direction: _____

WELL INFORMATION

Casing Diameter (in):	Δ
Top of Casing Elevation (ft):	
Initial Depth to Water (ft):	NT
Wellhead Condition:	

Groundwater Elevation (ft): _____ Depth of Well Casing (ft): _____ Actual Purge Volume (gal): _____

PURGING MEASUREMENTS

WL (ft btoc)	Time	pH (std. units)	SC (¢#s/cm)	Temp. (°C)	ORP (mv)	DO (mg/L)	Turbidity (NTUs)	Notes
	1405	6,99	0,132	13.84	-86	7.60	9.0	
				1				
						<u> </u>		
								· · · · · · · · · · · · · · · · · · ·
] 							

.

ORP/DO Meter Model & No.:	Horiba U-22	
Purge Equipment Used:		
Sampling Equipment Used:		
Purge Start Time:	1405	Sample Collection Time: 415
Purge Completion Time:	-+	Purging Method:
Average Purge Rate (mL/mir	ı):	Sample Containers Used:
Analytical Lah	· · · · · · · · · · · · · · · · · · ·	Chemical Analyses:

MONITORING WELL/PIEZO	METER NUMBER 37-03		
Project Name: Skagit Whitmarsh Landfill			
	Date: <u>4/28/09</u>		
Project Number: <u>14159</u>	Weather Conditions: P.Sunnu (00)		
Location: Anacortes, WA			
Sampler: Chris Brown & Nik Bacher	Wind Speed/Direction:		
WELL INF	ORMATION		
Casing Diameter (in): Top of Casing Elevation (ft): Initial Depth to Water (ft): Wellhead Condition:	Groundwater Elevation (ft): Depth of Well Casing (ft): Actual Purge Volume (gal):		

WL (ft btoc)	Time	pH (std. units)	SC (∯s/cm)	Temp. (°C)	ORP (mv)	DO (mg/L)	Turbidity (NTUs)	Notes
	1509	10.95	0129	14.31	-(06	5.45	145	

ORP/DO Meter Model & No.: Purae Equipment Used:	Horiba U-22	
Sampling Equipment Used:		
Purge Start Time:	1510	Sample Collection Time: <u>1520</u>
Purge Completion Time:		Purging Method:
Average Purge Rate (mL/min)	*	Sample Containers Used:
Analytical Lab: HRI		Chemical Analyses:

MONITORING	WELL/PIEZOMETER NUMBER	SW-ØI

Project Name: Skagit Whitmarsh Landfill

Project Number: <u>14159</u> Location: Anacortes, WA

Date: Weather Conditions:

4128 overzast 505

 \mathbf{O}

Wind Speed/Direction:

WELL INFORMATION

Casing Diameter (in):	NA
Top of Casing Elevation (ft):	MA
Initial Depth to Water (ft):	ΝĤ
Wellhead Condition:	MA

Sampler: Chris Brown & Nik Bacher

Groundwater Elevation (ft):	NA+
Depth of Well Casing (ft):	NA
Actual Purge Volume (gal):	NA

WL (ft btoc)	Time	pH (std. units)	SC (ms/cm)	Temp. (°C)	ORP (mv)	DO (mg/L)	Turbidity (NTUs)	Notes
	1020	6.97	46.0	10.56	- 76	5-76	4.1	clear,
								some algae
								in water
				ļ		ļ		
						<u> </u>		

ORP/DO Meter Model & No.: Horiba U-22	
Purge Equipment Used:	
Sampling Equipment Used:	
Purge Start Time:	Sample Collection Time: 1000
Purge Completion Time:	Purging Method:
Average Purge Rate (mL/min):	Sample Containers Used:
Analytical Lab:	Chemical Analyses:
· · · · · · · · · · · · · · · · · · ·	
Other Field Observations:	

÷e

GROUNDWATER SAMPLING LOG Low Flow Sampling

	ame: <u>SI</u>	kagit Whit	marsh Landf	<u>ill</u>			Date: 4 (29/09
Project N	umber: <u>14</u>	159			We	ather Con	ditions:	
Location: Sampler:	Chris Bro	wn & Nik	Bacher		Win	d Speed/	Direction:	
			Δ	WELLI	NFOR	VIATION	l	
Casing D	iameter (ii	n): ation (ff):	XHA		(1	Groundwa Jenth of M	ater Elevation Nell Casing (f	(ft):
Initial De	pth to Wal	ter (ft):	+1/1		/	Actual Pu	rge Volume (gal):
Weilhead	Conditio	n:						······································
			PU	IRGING	MEAS	JREME	NTS	
WL (ft btoc)	Time	pH (std. units)	SC (gas/gm)	Temp. (°C)	ORP (mv)	DO (mg/L)	Turbidity (NTUs)	Notes
, ,	1004	7.32	0.721	16.3	.90	14.09	15	
			•					
							1	

Sample ID No.:	
Water Level Ind. Model & No.:	
ORP/DO Meter Model & No.: Horiba U-22	
Purge Equipment Used:	
Sampling Equipment Used:	
Purge Start Time:	Sample Collection Time: 1020
Purge Completion Time:	Purging Method: dunk
Average Purge Rate (mL/min):	Sample Containers Used:
Analytical Lab:	Chemical Analyses:
Other Field Observations: Stag Mart	water w/ foam é oily sheen
on surface.	

	MONITORING WELL/PI	EZOMETER NUMBER $\underline{SW-O4}$
Project Name:	Skagit Whitmarsh Landfill	, //
-		Date: <u>4/29/09</u>
Project Number	: 14159	Weather Conditions:
Location: Anaco	ortes, WA	
Sampler: Chris	Brown & Nik Bacher	Wind Speed/Direction:
	WELL	. INFORMATION

Casing Diameter (in):	
Top of Casing Elevation (ft):	
Initial Depth to Water (ft):	
Wellhead Condition:	

Groundwater Elevation (ft): _____ Depth of Well Casing (ft): _____ Actual Purge Volume (gal): _____

WL (ft btoc)	Time	pH (std. units) _;	SC (#sløm)	Temp. (°C)	ORP (mv)	DO (mg/L)	Turbidity (NTUs)	Notes
	923	(0, 74)	, +35	12.49	64	7,52	17.2	
		<u>.</u>						
				<u> </u>				
				<u>_</u>				
~								
					<u> </u>		[
]	[_`			

ORP/DO Meter Model & No.:	Horiba U-22		
' Purge Equipment Used:			
Samping Equipment Used.	t		Q ₁₁
Purge Start Time:		Sample Collection Time:	
Purge Completion Time:		Purging Method:	
Average Purge Rate (mL/min):	Sample Containers Used:	
Analytical Lab:		Chemical Analyses:	

	MONITORING WELL/PIE	EZOMETER NUMBER $\underline{SW.05}$
Project Name:	Skagit Whitmarsh Landfill	
		Date: 4129109
Project Number	: 14159	Weather Conditions:
Location: Anaco	ortes, WA	
Sampler: Chris	Brown & Nik Bacher	Wind Speed/Direction:
	3 # / #*** 3 - 1	NEODMATION

WELL INFORMATION

Casing Diameter (in):	
Top of Casing Elevation (ft):	
Initial Depth to Water (ft):	
Wellhead Condition:	

Groundwater Elevation (ft): _____ Depth of Well Casing (ft): _____ Actual Purge Volume (gal): _____

WL (ft btoc)	Time	pH (std. units)	SC (#fs/#m)	Temp. (°C)	ORP (mv)	DO (mg/L)	Turbidity (NTUs)	Notes
	(04/	-1.5q	1687	16.4.7	95	10,55	<u> (</u>	

ORP/DO Meter Model & No.: <u>Horiba U-22</u> Purge Equipment Used:	
Sampling Equipment Used:	
Purge Start Time:	Sample Collection Time:
Purge Completion Time:	Purging Method:
Average Purge Rate (mL/min):	Sample Containers Used:
Analytical Lab:	Chemical Analyses:

				CINI-06
MONITORING	WELL	PIEZOMETER	NUMBER	$\overline{\bigcirc}$

Project Name: Skagit Whitmarsh Landfill

Project Number: 14159

Weather Conditions:

Date:

τ

Location: <u>Anacortes, WA</u> Sampler: <u>Chris Brown & Nik Bacher</u>

Wind Speed/Direction: _____

WELL INFORMATION

Casing Diameter (in):	
Top of Casing Elevation (ft):	<u></u>
Initial Depth to Water (ft):	
Wellhead Condition:	

Groundwater Elevation (ft): _____ Depth of Well Casing (ft): _____ Actual Purge Volume (gal): _____

WL (ft btoc)	Time	рН (std. units)	SC (Øgs/øm)	Temp. (°C)	ORP (mv)	DO (mg/L)	Turbidity (NTUs)	Notes
	1053	7,41	1.83	16.81	115	(385	14	
			·····					
	1							

ORP/DO Meter Model & No.: Horiba U-22	
Purge Equipment Used: Sampling Equipment Used:	
Purge Start Time:	Sample Collection Time:
Average Purge Rate (mL/min):	Sample Containers Used:
Analytical Lab:	Chemical Analyses:

WELL SAMPLING AND/OR DEVELOPMENT RECORD

	<u> </u>	7							
Well ID:	MIN	-06				Initial Depth to Water: 8.20			
Sample	1D: <u>MW-7</u>	-0.10 DI	uplicate ID	:		_ Depth to Water after Sampling: <u> </u>			
Sample	Depth:	<u></u> 01	m			Total Depth to Well:			
Project	and Task ۱	No.: 141	<u>54</u>		Well Diameter: Z ¹¹				
Project Name: THE Whitmontsh						1 Casing/Borehole Volume:			
Date:						3 Casing/Porcholo Volumos:			
Sampled By: C C						(Circle one)			
Method of Purging: <u>Tou a Stear Tic</u>						Total Casing/Borehole			
Method of Sampling:						Volumes Rem	oved:		
Time	Intake Depth	Rate . <u>(gpm)</u> , ML/miv	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (gS/gm)	Remarks (color, turbidity, and sediment)		
849	bitm	200	0	11.8	672	1.1/1	25 8,86 781		
852			0.7	11.8	6.61	over	13 0.0 200		
855			0.4	11.8	650	over	11 0.0 210		
858			0.7	11.8	6.47.	over	11 0.0 210		
901			1.0	11.8	6.40	over	9.70.0 711		
904			1.3	12,5	6.39	over	14700720		
907			I.T	12.1	6.38	over	13.2010 209		
912			1.9	1211	6.37	over	13.3 00 209		
915			2.1	1211	6.36	over	11,5 0,0 207		
919			2.3	12.2	636	over	10,200 206		
			a.		· · ·				
	pH C	ALIBRAT	ION (choo	se two)		Model or U	Jnit No.:		
Buffer Sc	lution	pH 4.	0 pH 7.	0 pH 10	.0				
Temperat	ture C								
Instrume	nt Reading)							
SPECIF	IC ELECT	RICAL CO	NDUCTAN	ICE – CALI	BRATION	Model or U	Init No.:		
KCL Solu	tion (μS/cπ	n=µmhos/cn	n)						
Temperat	ure C								
Instrumer	nt Reading	 _							
Notes: S	beeme	; the	Cor	duct	inity	is not	MOCKING COLLOCAL		
Cu	gain,	and	is c	outo	of Ro	incrp. Dec	alibration efforts		
0	idnt	hel	<u>p.</u>	w		J-J			
Sar	nple C	ollecte	1C9	20					
	<u> </u>			· · ·					
	<u> </u>								

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc
Sector Sector			
		1.	
S			1.12
San Lall		[-] 1 🕅	P. 33
			Sectore.
		5年1年6月1日年1日	
	and a second	AND REPORT OF THE PARTY OF THE	and the set of the set

WELL SAMPLING AND/OR DEVELOPMENT RECORD

		B 6 1 1 1								257-5-	
10	Well ID	: <u>MW</u>	-00	~			Initial Depth	to Water: "	7.40	10230	
Somple	Sample	ID. MW-	03.06	uplicate I	D: <u>MW-</u>	03-070	9 Depth to Wat	er after Sa	mpling:		
1805	Sample	Depth:					Total Depth to Well: 17-52				
	Project	and Task	No.: 141	59			Well Diameter: 2" -78 12'				
Dup	Project	Name: <u></u>	Whith	rargl	h		1 Casing/Borehole Volume:				
1915	Date:	+1231	<u>99</u>				(Circle one)				
	Sample	d By: <u>С</u> 、	<u>B. 7</u>	\overline{O} .			3 Casing/Borehole Volumes:				
	Method	of Purging	: Port	asta	Hic						
	Method	of Samplir	ng:				Volumes Rem	Borenole			
	Time	Intake Depth	Rate (gpm) ML/min	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (42S/c#5)	7. (co	Ri lor, turbid	emarks lity, and sedim	nent)
1730	4640-	btm	200	0,1	1/0.5	8.2		NL	\underline{DO}	<u>-057</u>	
17	1733			0,15	16.0	7.09	agat	10	210		
, '	1737			0.2	16.0	7.11	9.40	4.0	7 811	-100	
	1741			0.5	16.0	7.11	4 38	73	8.78	-123	
	1744			0.6	15.9	7.11	3.70	8.5	851	-137	
ļ	1747			0.8	15.9	717	2.07.	8.0	BINI	- 1///	
	1451			1.1	15.8	7.12	1.51	85	8.67	-117	
	1-154			1.4	15.8	7.14	1.18	92	P. Col	-157	
-	1758			17	15.8 7.14 0,30 10.3 8.54 -150						
ļ	120			2.0	15.7	7.15	0.162	11.6	8,48	-160	
. –											
-			·								
-		pH C	ALIBRATI	DN (choo	se two)	·····	Model or U	nit No.:			· · · · · · · · · · · · · · · · · · ·
-	Buffer Sol	ution	pH 4.0	pH 7.	.0 pH 10	.0				•	
-	Temperati	ure C									
-	Instrumen	t Reading				<u> </u>			· ·		
	SPECIFI	C ELECTR		DUCTAN	CE – CALI	BRATION	Model or U	nit No.:			
	KCL Solut	ion (μS/cm	=µmhos/cm)							
ļ.	emperatu										алан 1947 - Саран
	nstrument	Reading									
1	votes: H.	tier	reco	libr	ating	inst	nment	we	Coin	not ad	et
		nd. S	Sense	t te	$> w \sigma'$	KK.C	ight, mo	iy b.t	2 da	maged.	
		ryse	Samp	Ne CC	21 lette	$l \in 181$	25, Dup.	Zollec	ed C.	1915.	
					<u> </u>		1	- <u></u>		<u></u>	
						<u> </u>					
	f3)nninfir	ODIATO			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
10	r> hhinRice⊅/h	ORMA 12/WE	LL SAMPLINC	i Record.doc						· · · · · · · · · · · · · · · · · · ·	

AMEC Geomatrix

WELL SAMPLING AND/OR DEVELOPMENT RECORD

<u> </u>							2			
Well ID:	-M.W-	04				Initial Depth to Water: 3,05				
Sample	ID: M111-0	<u>4-0709</u> DI	uplicate IE):		Depth to Water after Sampling: <u>3.07</u>				
Sample	Depth:	2				Total Depth to Well:				
Project a	and Task N	No.: 141	<u>59</u>			Well Diameter	r:			
Project	Name: 1	hitma	vsh			1 Casing/Bore	ehole Volu	me:		
Date:	<u>12910</u>	1								
Sampled	і Ву: <u>С</u>	<u>5,10</u>	<u>i</u> i(),			(Circle one)	enole volu	mes:		
Method	of Purging	: <u>tens</u>	taltic.			Total Casing/I	Borehole		м	
Method	of Samplin	ig:				Volumes Rem	oved:			<u> </u>
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (¢S/øm)	Remarks (color, turbidity, and sediment)			
10:47				14.0	7,20	73; D"5/m	4.2	9,58	193.	
10:50				13.6	7.26	0.350	3.3	9,43	176	
10:54				13.2	7.30	40.5.90	3.7	7.44	129	
10:57				13,2	7.31	4.05	2.6	7,72	IDO	
11:01				13.D	7.31	3,55	2.6	8.0	79	
11:04				13,1	7.29	2.43	2.6	18.15	44	
11:07		-		13.1	7,33	2,43	3.3	18,12	13	
11:10				13.1	7,33	1.55	3.4	8.37	-14	
11:14				12.9	7.32	0,93	2.8	8.61	-42	
11:18				12.8	7.33	Ó.17	2.9	8.82	-52	
11:21				12.7	7.33	0.128	2.8	8.87	-64	
11:24				12.6	7.33	0,103	2.8	8.87	-69	
	pH C	ALIBRATI	ON (choos	se two)		Model or U	nit No.:		· · · · · · · · · · · · · · · · · · ·	
Buffer Sol	ution	pH 4.0) pH 7.	0 pH 10	.0					
Temperati	ure C								- -	
Instrumen	t Reading								• .	
SPECIFI	C ELECTE	RICAL CON	DUCTAN	CE – CALI	BRATION	Model or U	nit No.:			
KCL Solut	ion (μS/cm	=µmhos/cm)							ļ
Temperatu	ire C									
Instrumen	t Reading									
Notes: S	ample	Collec	ted (211:2	30.					\neg
	1			-						
			— <u>.</u>				····· ··· ···			
· · · · · · · · · · · · · · · · · · ·										
·····					<u> </u>	· · ·				
				· · · · · · · · · · · · · · · · · · ·						
\\sf3\ppingree\$\F	ORMATS	LL SAMPI IN	G Record doc						· · · · · · · · · · · · · · · · · · ·	

FC Geomatrix	WELL SAMPLING
	AND/OR DEVELOPMENT RECORD

Well ID: SP-01 Initial Depth to Water: 🛷 Sample ID:<u>SP-01-0709</u> Duplicate ID: _____ Depth to Water after Sampling: Sample Depth: _____ Total Depth to Well: Project and Task No.: 14159 Well Diameter: Project Name: Whitmarsh 1 Casing/Borehole Volume: Date: 7/24/09 (Circle one) Sampled By: <u>CB</u>, TD 3 Casing/Borehole Volumes: _____ (Circle one) Method of Purging: Peristaltic Total Casing/Borehole Method of Sampling: __ (L 14 Volumes Removed: Specific Cum. Intake Electrical Rate Temp. pН Remarks Vol. Time Depth (gpm) Conductance (color, turbidity, and sediment) (units) (°C) (gal.) (aS/om) 13:58 0,308 2.90 7.37 110.0 133 pH CALIBRATION (choose two) Model or Unit No.: **Buffer Solution** pH 4.0 pH 7.0 pH 10.0 Temperature C Instrument Reading SPECIFIC ELECTRICAL CONDUCTANCE - CALIBRATION Model or Unit No.: KCL Solution (µS/cm=µmhos/cm) **Temperature C** Instrument Reading 101/11/100 - 14:00. Notes: Sample ъ

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc

and the state of the state of the state of		
Here and the second second second		the second s
and the second se		
	A THE R. LOW COMPLEX AND A DESCRIPTION OF A DESCRIPTION O	Contraction and the second of the
Being and a state of the state of the second	rident's the state of the state of the state	CALL DAMAGE CONTRACTOR OF CONTRACTOR
and the state of the second		and the second of the second second second second
	ere of a statement of the second of the second state and	and a surface with the second state of the sec

WELL SAMPLING AND/OR DEVELOPMENT RECORD

Well ID:	57-0	2				Initial Danth 4	- 18/- 4				
Sample	ID: SP-02	-0.709DI	Inficate ID	•		Dopth to Water:					
Sample	Depth: -1	5	iphoate ib	•	<u>.</u>	Total Dopth to	er anter Sampling:				
Project a	and Task N	10.: 1415	j9			Well Diameter					
Project I	Name;	white	Maria			1 Coning/Perchale Volume:					
Date:	7/24	109				(Circle one)					
Sampleo	іву: С	TO				3 Casing/Borehole Volumes: (Circle one) Total Casing/Borehole Volumes Removed:					
Method	of Purging	: Paris	Halti	 []							
Method	of Samplin	g: <u>1\</u>		Ĭı							
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (uS/gm)					
	1555			18.0	7.26	0.152	55 11.63 51				
				·····							
-											
Buffer Sol	ution			se two)		Model or U	Init No.:				
Temperati		рп 4.0	рп 7.0	рн 10.	.0						
Instrumen	t Reading		_								
SPECIEI											
KCL Solut					BRATION	Model or U	nit No.:				
Temperati		-µinnos/cm)								
Instrumon	t Roading										
Notes:		0.1				<u> </u>					
	Kun PK	<u></u>	CATION	n o	1600						
			· · · · · · · · · · · · · · · · · · ·		·······						
							·				
				<u></u>	- 1						
					7						
lef3)ppinger	OBMATON	11.0.1.									

AMEC Geomatrix

WELL SAMPLING AND/OR DEVELOPMENT RECORD

			i i								
Well ID:	SR-0	3				Initial Depth to Water:					
Sample	10: <u>59-03</u>	-0709 DI	plicate ID	:		Depth to Wate	er after Sampling:				
Sample	Depth: 👲					Total Depth to	o Well:				
Project	and Task N	10.: 1419	59		مەر مەر 1	Well Diamete	r:				
Project I	Name: 🔟	<u>Dhitma</u>	irsh	Reverse .	P	1 Casing/Bore	ehole Volume:				
Date:	7/24/0	79				(Circle one)					
Sampleo	I By:́	3, TO				3 Casing/Borehole Volumes: - (Circle one)					
Method	of Purging	Peris	staltic	_							
Method	of Samplin	g:(Ų		· · · · · · · · · ·	I otal Casing/Borehole Volumes Removed:					
Time '	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Remarks Conductance (color, turbidity, and sediment)					
15:05				19.3	6.86	0.206	45.0 /11.15/41				
				··.							
]		·					
		· · ·				· ·	· · · · · · · · · · · · · · · · · · ·				
				•		·					
							· · · · · · · · · · · · · · · · · · ·				
			-			•					
	nH C				1	Medel and					
Buffer So	lution						JAIT NO.:				
Tomporat			, hu .								
Instrument							à.				
Instrumer						-=					
SPECIF		RICAL CO		CE – CAL	IBRATION	Model or U	Jnit No.:				
KCL Solu	tion (μS/cm	=µmhos/cm	n)								
Temperat	ure C			`							
Instrumen	t Reading					· .					
Notes: 🧲	Sample	colle	teda	15:11	D						
t	۲ .	•									
·							-				
		* . 									
						<u> </u>					
\\sf3\ppingree\$\	FORMATS	ELL SAMPLIN	G Record doc				· · · · · · · · · · · · · · · · · · ·				

	-1-50 A-18 (200-53)									
AM	ECGe	omat	xiri		AND	WELL OR DEVE	SAMPLING LOPMENT RECORD			
Well ID:	56-	31								
Sample	ID:SW-DI	-17707 D	unlicate IF).	·····	_ Initial Depth to Water:				
Sample	Denth [.]	<u>-0.101</u> D	upincate in	,		Depth to Water after Sampling:				
Project	and Task N	n. 141	59	••••••••••••••••••••••••••••••••••••••		Total Depth to	o Well:			
Project	Name: 1	Initing	VSIA			Well Diameter	r:			
Date:	1730	<u>VII-11/10</u> \9	1 711			1 Casing/Bore (Circle one)	ehole Volume:			
Sampled		Processi in				3 Casing/Bore	ahole Volumes.			
Method	of Durging	ditta	V DIK	1_	· · · · ·	(Circle one)				
Method of	of Sampling	g: dun	K	\		Total Casing/I	Borehole			
				1	······	Volumes Rem	loved:			
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)			
10:34			· · · ·	16.0	6.81	0.250*	57, ONTH 7.72-11 405			
							-71mV			
			j.							
			· · ·							
		14. 14.								
						-				
	pH C	LIBRATI	ON (choos	se two)	I	Model or U	nit No.:			
Buffer Sol	ution	pH 4.0) pH 7.0	0 pH 10.	D					
Temperatu	ire C									
Instrumen	t Reading									
SPECIFI	C ELECTR	ICAL CON	IDUCTAN	CE – CALIE	BRATION	Model or U	nit No.:			
KCL Soluti	on (μS/cm=	-µmhos/cm)							
Temperatu	re C	£			+					
nstrument	Reading				- <u>-</u>	-				
Notes:	******		I	• <u>•_</u> •	_1					
* 3/m						······································				
Sample	collec	ted C	10:35	1						
<u>. </u>										

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc

AMEC Geomatrix

WELL SAMPLING AND/OR DEVELOPMENT RECORD

Well ID	: <u>_SW-1</u>) 3				Initial Depth to Water:					
Sample	ID: <u>SW-0</u>	<u>3-010</u> 7Di	uplicate IE):		_ Depth to Water after Sampling:					
Sample	Depth:	· · · · ·				Total Depth t	o Well:				
Project	and Task N	10.: 419	59			Well Diameter:					
Project	Name:	hitm	arsh			1 Casing/Borehole Volume: (Circle one) 3 Casing/Borehole Volumes:					
Date:	7/23/0	9									
Sample	d By: <u> </u>	TO									
Method	of Purging	: <u>NA</u>				 (Circle one) Total Casing/Borehole Volumes Removed:					
Method	of Samplin	g: Dun	<u>k</u>								
Time	Intake ·Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (tS/tm) Electrical Conductance (color, turbidity, and sediment)					
11:25				17.4	6,79	9,997	20,0 1.52	137			
								· · · · ·	· · ·		
				·	<u> </u>						
				ļ							
	· · · · ·										
					· · · ·						
									· · · ·		
								•			
								· · · · · · · · · · · · · · · · · · ·			
					•			· · · · · · · · · · · · · · · · · · ·	<u> </u>		
				•					······································		
	pH C	ALIBRATI	ON (choo	se two)	L	Model or U	Jnit No.:				
Buffer So	lution	pH 4.0) pH 7.	0 pH 10	0.0						
Temperat	ure C			_							
Instrume	nt Reading								ţ		
SPECIF	IC ELECTR			CE – CAL	IBRATION	Model or U	Init No ·				
KCL Solu	tion (µS/cm	=µmhos/cm)	1		_					
Temperat	ure C		·								
Instrumer	nt Reading	u									
Notes:	Sample	Collect	AC.	11:30.	·····			2	······		
	1										
<u></u>											
									······································		
							· · · · · · · · · · · · · · · · · · ·				
•·					·						
\sf3	FORMATSUNT	11.04101.01	<u></u>								

AMECGeomatifix WELL SAMPLING AND/OR DEVELOPMENT RECORD AND/OR DEVELOPMENT RECORD Well ID: __SW-64 Initial Depth to Water: Sample ID: <u>SW-646-6769</u> Duplicate ID: _____

Sample	Depth:		•			Total Depth to Well:				
Project	and Task N	$10 \cdot 1415$	9			Wall Diamatary				
Project	Name: 1	ohitma	irsh			1 Cosing/Por	holo Velumer			
Date	7123109	?	<u>v 3</u> , 1			(Circle one)				
Sampleo	By: <u>C</u>	3, TD				3 Casing/Borehole Volumes:				
Method	of Purging:	N&				Total Casing/Perebolo				
Method	of Samplin	g: <u>Diun</u>	<u> </u>			Volumes Rem	oved:			
Time	ime Intake Rate Cum. Depth (gpm) (gal.) (°C) (units)				pH (units)	Specific Electrical Conductance (¢ 6/ ⊄ m)	Remarks (color, turbidity, and sediment)			
15:15				22.7	8,27	9,99	90.4 2.59 57mV 4,0%			
							45.7			
							<			
	pH C	ALIBRATIO	DN (choos	se two)		Model or L	Init No.:			
Buffer So	lution	pH 4.0	pH 7.	0 _pH 10	.0					
Temperat	ure C									
Instrume	nt Reading						•			
SPECIF	IC ELECTE	RICAL CON	DUCTAN	CE – CALI	BRATION	Model or L	Init No.:			
KCL Solu	tion (µS/cm	=µmhos/cm)							
Temperat	ure C									
Instrumer	strument Reading									
Notes:	otes: Sample (ollected C 15:20									
	.: <u>.</u>									
	•									
ante <u>e</u>							· · · · · · · · · · · · · · · · · · ·			

AMEC Geomatrix

WELL SAMPLING AND/OR DEVELOPMENT RECORD

			I. <u></u>								
Well ID:	<u>SW-0</u>	5				Initial Depth to Water:					
Sample	10: <u>5W/05</u>	<i>-070</i> 9 Du	plicate ID:	. <u> </u>		Depth to Water after Sampling:					
Sample	Depth:					Total Depth to Well:					
Project a	and Task N	10.: 1413	59			Well Diameter:					
Project N	Name:)hitma	ursh	-		1 Casing/Borehole Volume:					
Date: 🗧	123/09	İ				(Circle one)					
Sampled	By: UB	TO				3 Casing/Borehole Volumes: (Circle one)					
Method	of Purging	NA									
Method	of Samplin	g: <u>Diyn</u>	k			Total Casing/E Volumes Rem	Borehole oved:				
Time Intake Rate Cum. Depth (gpm) (gal.) (°C) (units)						Specific Electrical Conductance (color, turbidity, and sediment)					
14:38				26.4	8.66	6.9.18	12.3	4.18	7411	4.072	
						3.13				· · · · · · · · · · · · · · · · · · ·	
					A	1					
								<u></u>			
										· ·	
										· · ·	
	 D Η α		ON (choo	se two)		Model or I	Init No :				
Buffer So	lution	pH 4	0 pH 7	0 pH 10			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Temperat	ure C										
Instrume	nt Reading								•		
SPECIF	IC ELECT	RICAL CO	NDUCTAN	CE - CAL	IBRATION	Model or L	Jnit No.:			and the second sec	
KCL Solu	tion (µS/cn	n=μmhos/cn	n)								
Temperat	ure C										
Instrumer	nt Reading										
Notes: 6	Samol	e inili	offed a	0				· · · · · ·			
	<u> </u>					······································	<u> </u>				
										** / ** ···	

	*,										
	·····		·······								
\\sf3\ppingree\$	FORMATSIN	TTI SAMPID	NG Record doc	***					*****	. <u>.</u>	

AMEC Geomatrix

WELL SAMPLING AND/OR DEVELOPMENT RECORD

	<u></u>							···			
Well ID:	<u>-5VV - C</u>					Initial Depth to Water:					
Sample	ID: <u>DW-0</u>	6-0+07 DI	plicate ID	:		Depth to Wate	r after Sa	mpling: _		<u> </u>	
Sample	Depth:	11116	- a		······································	Total Depth to Well:					
Project	and Task N	10.: <u>1913</u>	57	· · · · · · · · · · · · · · · · · · ·		Well Diameter:					
Project	Name: <u>U</u> Ligo Log	<u>)NiTMO</u>	<u>UVSN</u>			1 Casing/Borehole Volume: (Circle one)					
Date:	1125107	2 - 5				3 Casing/Borehole Volumes:					
Sampleo	i By:	5,10			· · · · · · · · · · · · · · · · · · ·	(Circle one)		ines			
Method	of Purging	: <u>NA</u>	a .			Total Casing/Borehole					
Method	of Samplin	g: Dun	IK			Volumes Removed:					
Time	TimeIntake DepthRate (gpm)Cum. Vol. (gal.)Temp. (°C)pH (units)						Specific Electrical Remarks Conductance (color, turbidity, and sediment) (sS/sm) Thick (color, turbidity, and sediment)				
14:00				23.5	7.62	9.994.0	27	B	13.76mg/L	150	
								•			
									· · ·		
								•			
	pH C	ALIBRAT	ION (choo	se two)		Model or U	Init No.:				
Buffer So	olution	pH 4.	0 pH 7.	.0 pH 10).0						
Tempera	ture C					· .					
Instrume	nt Reading	1							•		
SPECIF	IC ELECT	RICAL CO	NDUCTAN	ICE – CAL	IBRATION	Model or U	Init No.:				
KCL Solu	ution (μS/cm	n=µmhos/cr	n)								
Tempera	ture C				-						
Instrume	nt Reading)									
Notes:	Sample	2 (01)	ected (a 14:0	5						
	(
										-	
					·····•						
				-							
					<u>.</u>			••••••••••••••••••••••••••••••••••••••		······································	

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc

Chain of Custody Record	d & Labor	ratory Ar	alysis R	equest								
ARI Assigned Number:	Turn-around	Requested:	WAAVE		Page:	-	of N				Analytical Res Analytical Che	ources, Incorporated mists and Consultants
ARI Client Company: SNV X	χ. ΙΜζ.	Phone: 2.0(0-342-	00) E1	ユ Date: ユ 2 ビ	901	ce ⁵ resent?				4611 South-13 Tukwila, (WA ⁹ 5	4th Place, Suite 100 18168
Client Contact: Ni K// A S BV	Wher	~			No. of Coolers:		Cooler Femps:			XX	206-695-6200	206-695-6201 (fax)
Client Project Name:		-	**		-		Analys	sis-Reguester	1 18 N	مرکن المستخدين	NO NO CON	Notes/Comments
WINNIN	arsh 1	ANDAN	192349 ²		NON	(2	No and				
Client Project #;	CMVIS BV	<u>(OLON (CE</u>), Tri Mi Q	ISON (TO)		<u> </u>	式 原间	DX DX	0	oH oH	S	
Sample ID	Date	Time	Matrix	No. Containers	DASHNI KOC	to a	10401 8097	- Hal - Hal	124- 124- 124-	144	<u> </u>	
SW-01-0709	F1/23/09	10:35	YMY	16	Δ	XX	<u>WX</u>	XX			K K	6,4,7
- 5W- 03-0709	7123/09		N.	9	$\langle \rangle$	XX	XX	XX		N.D	⟨N]₄,	6,7
5W-06-0703	7125101	-T41:05	Ś	8		XX	JXX	\times		\leq	XX 4,	6,7
5W- 05- 0709	P0/22/F	Qh;h]	N	18	\mathbf{X}	\mathbb{X}		\leq	عر.		()4,4	at a
FOFO-PO-WS	FALES/F	(S:20	M	8	$\hat{\mathbb{X}}$		NX	(]		<u>N</u>	QX 4.	6.7
WW- 03 - 07 09	F0/82/F	30:81	N	210	$\widehat{\mathbf{X}}$	XV		ХXX	\mathbb{X}	X	w K	t.
POF0-201-WM	F0/65/F	19:0S	M	26	\mathbb{R}	XX	N.X		Ň	X	(N 3,	t. O
60 E0 -20 - MM	F0/124/107	9:20	N	20	X	ХX	K K I	XIXXX	X	\mathbb{R}		2.6.7
borg - ho - MW	F124107	11:30	M	26	\mathbb{X}	XX	\mathbb{X}	XXXX	Â	X	N 2	6,4,3
6010-25-111-10-10-10-10-10-10-10-10-10-10-10-10	POLIPS/F	00; 17	Ŵ	26		\leq	X X	XXXX		A X	(W Z	6,7,3
Comments/Special Instructions	Relinquished by:	tri M	2	Received by: (Signature)	Jest V	-206	Signati	lisheď by: ure)	** •	u : € , 	Received by: Signature)	• ****,
2-Total Ha, Samp, Needs Tres, M. B-Diss Med. = Fidd - Filtered	Actinted Name:	1 2150	5	Printed Name:	thow	Iver H	Printed	Name:			Printed Name:	
4-DISS Het. = Not field-fillered	Company:	, 6 MX		Company:			Сотра	:Au		0	Company:	14 1
10-Diss R= Notfickl-addened. 3-Sub out distry ether and	Date & Time:	109 8:	21	Date & Time:	109	810	Date &	Time:			Jate & Time:	
Limits of Liability: ARI will perform a	all requested se	rvices in accc	ordance with £	appropriate me	∋thodology fol	llowing ARI S	standard Ope	erating Proce	dures and the .	ARI Quali	ty Assurance Pi	ogram. This program

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-said services. signed agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record	d & Laboratory	Analysis R	equest					
ARI Assigned Number:	Turn-around Requeste	a: Standar	-0	Page: 7 c	of Z		Analytical Resources, Incorporate Analytical Chemists and Consultan	ts a
ARI Client Company: AMEC GLOMATY	N, N.C.	206-342	OMEN-	Albate: Parter International Parter P	ce Present?		4611 South 134th Place, Suite 100 Tukwila, WA 98168	
Client Contact:	NNNY			Coolers:	Cooler 🔨 Temps: 🔨	9% 1 1	206-695-6200 206-695-6201 (fax	_ [
Client Project Name:		form a for		N.	Analysis Requested	STUDIE S	Notes/Comments	F T
WNITWR	VSN LAWAT	111111111111		141	A: E	- 12 - 12 - 12		
Client Project #;	Samplers:	Q		M I	IOH SQU XQ	51 0110 141 9		
Sample ID	Date	Matrix	No. Containers	13-93-13-13-13-13-13-13-13-13-13-13-13-13-13	809 888 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-#97 अन्ते २३:0		1
60E9-20-d5	I ISI BOINZIE	M 0	26	XXXXX	XXXXXX	XXXXX	3,6,7	 -
EVEN-SV-IMME	O:EI WINGE	S W	2	XXXXXXX		XXXXX	1, 4, 6, 7	Ī
EVEN-UN-AS	J:011 LUMDULE	N Q	26	XXXX		XXXX	2, 6, 7,3	
TVID BMAKS		X	5 7/055210-6557 500-730400.420	X	атараарыналага 1925 1926 1926 1926 1926 1926 1926 1926 1926	antine to and	-	T
				Stationsystem	ъ- 	, 14		١
				5. 17.19.19.60-274			A STATE OF A	
				a animatikit				
				stanov (c) interest				
				e indestantes				
Comments/Special Instructions	Relinquished by: V (Signature)	: na	Received by: (Signature)	Sal tak	Relinquished by: (Signature)	-	Received by: (Signature)	
2-Th, He Sample Needs Trock.	Printed Name:	ANY A	Printed Name:	MANN INDA HE	Printed Name:		Printed Name:	
4. Diss. Med NA field-filtwa	Company: Company:	MAHNX	Company:		Company:		Company:	
6-Diss, Hi = Natsield filtera	Similar Martines	017	Date & Time: 7 / 25 / (018 610	Date & Time:	In Dist	Date & Time:	1
Limits of Liability: ARI will perform	all requested services in	accordance with	appropriate me	ethodology following API &	Standard Operating Proceed	dures and the ARI Qua	lity Assurance Program. This program It not exceed the Invoiced amount for	
meets standards for the industry. The said services. The acceptance by the	e total liability of ARI, its • client of a proposal for • • he Client	otticers, agents, e services by ARI re	lease ARI from	any liability in excess the	reof, not withstanding any	provision to the contra	ry in any contract, purchase order or c	4

,e.⁰

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

-

APPENDIX D

Sediment Logs

Page ____ of ____

Coordinate Da	tum	Date (mm/dd/yy)	Project Location	Sample Identification
SPC WA N NAD 1983		08/28/08	March Pt	MP-1
	Coordinator		. Malar Daath	
North		Fast	Depth Unit Re	n Gear
5 37993	122	- 9337		Gokie 0809
Penetration 2] Surficial We		
Depth Unit Initials	Weather	Contact Poi	nts	
	OVERCAST			X 5 =%
Surficial sediment characteristics	:			
Biological:	_% Debris:	%	Oil Sheen: None	Trace (<5%)%
Moisture Very Wet Wet	Moist Damp	o Dry		
Color Light Medium	Dark	(Circle majo Olive Gray	or & underline modifyin Brown- Black	g) Other
Major Constituent Fine Medium	Coarse	(Circle majo Gravel Sand	or & underline modifyin	g) y
Minor Constituent with trace Fine Medium	Coarse	Gravel Sand	Silt Cla	у
Subsurface sediment characteris	tics:			
Density / Consistency				
Sand / Gravel - Very	Loose Loose	e Medium Den	ise Dense	Very Dense
Silt / Clay - Very	Soft Soft	Medium Stiff	Stiff	Very Stiff Hard
Moisture Very Wet Wet (Moist Damp	o Dry		
Color Light Medium	Dark	(Circle majo Olive Gray	or & underline modifyin Brown Black	g) Other
Major Constituent Fine Medium	Coarse	(Circle majo Gravel Sand	or & underline modifyin Silt Cla	g) ıy
Minor Constituent with trace	Control	Orașuel	0.111	
Fine Medium	Coarse	Gravel Sand	Silt Cla	
Biological:	_% Debris:	%	Oil Sheen: None	Trace (<5%)%
Comments:		1 1 1		、 <i>/</i>
_ then a	lark Gra	I to better	IUST Below	surface
chunts	_ [1 to'3 1.	h) of wood a	on surface	ot core
			- AMEC Geor	natriv -
			— MP-1	
			Description For	rm _
·			Initials: <u>R44</u>	-
			Date: <u>8/28/</u>	08 Time: 0809

Page 2_ of 20

Coordinate Datum	Date (mm/dd/yy)	Project Location	Sample Identification
SPC WA N NAD 1983	8/26/08	March Pt	MP-2A
Coordinator		Water Death	
North	Fast	Depth Unit Boo	Goar
5 38 148 12	29111		Confirm 1145
			00000 1175
Penetration Image: Constraint of the second seco	Surficial Wo	od Estimate: nts	X 5 =%
Surficial sediment characteristics:			
Biological: 160 % Debris:	%	Oil Sheen: None	Trace (<5%)%
Moisture Very Wet Wet Moist D	amp Dry		
Color Light Medium Dark	(Circle major Olive Gray	r & underline modifying Brown Black) Other <u>Greenish bin</u>
Major Constituent Fine Medium Coarse	(Circle major Gravel Sand	& underline modifying)
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	¹ Silt Clay	
Subsurface sediment characteristics:			
Density / Consistency	Ţ		
Sand / Gravel - Very Loose Lo	oose Medium Dens	e Dense	Very Dense
Silt / Clay - Very Soft	Medium Stiff	Stiff	Verv Stiff Hard
Moisture Very Wet Wet Moist D	amp Dry		
Color Light Medium Dark	(Circle major Olive Gray	r & underline modifying Brown Black) Other
Major Constituent Fine Medium Coarse	(Circle major Gravel Sand	* & underline modifying)
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay	
Biological:% Debris:	%	Oil Sheen: None	Trace (<5%)%
Comments: AMEC Geomatrix MP-2D Description Form Initials:	Plan	7 Material	d Trace

4

Page <u>3</u> of <u>20</u>

PC WA N NAD 1983	atum	(1	Date mm/dd/yy)		Project Lo	ocation		Sample Identi Numbe	fication r
		81	26/08	Ma	rch Pt			MP-:	20
	Occardiactor	i	/				1	T	
	Coordinates				Water L	Depth			Time
E 2 0 140		East			Depth	Unit	Rep	Gear	1
57'000	/-	227111			\mathcal{D}	ft		Lookie	1205
Penetration		So	Surficial W	ood	Estimate:				
Depth Unit Initials	Weather	(%)	Contact Po	ints					
10 cm RHG 0	OVERCAST					-		X5 =	%
Inficial sediment characteristic	s:								
Biological:	% Debris:		%	Oil	Sheen:	No	ne	Trace (<5%)	%
Maiatura	_								
Verv Wet Wet	Moist [Damo D	rv						
Color	Dark	Olivo	(Circle maj	or &	underline	modi	fying)	Other (
Light	Dark	Olive	Gray	DIO	wn	ыаск		Other <u>Carce</u>	enish Dra
Major Constituent	_	_	(Circle maj	or &	underline	modi	fying)		
Fine Medium	Coarse	Grave	el Sand		Silt		Clay		
Minor Constituent with trace									
Fine Medium	Coarse	Grave	el Sand		Silt		Clay		
ubsurface sediment characteris	stics:							an a	
Sand / Gravel - Very	Loose L	oose	Medium Der	nse	De	nse		Very Dense	
Silt / Clay - Very	Soft	Soft	Medium Stif	f	Sti	ff		Very Stiff	Hard
Moisture Very Wet Wet	Moist 🖊	Damp Di	ry						
0.1	<u> </u>								
Light Medium	Dark	Olive	(Circle maje	Bro	underline	Black	fying)	Other	
	Constitution Addresses (m	A CONTROL OF	City	010		DIAGK			
Major Constituent	0	0	(Circle maj	or &	underline	modi	fying)		
	Coarse	Grave	a Sand		SIL		Clay	•••••	
Minor Constituent with trace									
	Coarse	Grave	el Sand		Silt		Clay		
Fine Medium			0/	Oil	Sheen:	No	ne	Trace (<5%)	%
Fine Medium Biological:	_% Debris:		%						
Fine Medium Biological:	% Debris:		%						
Fine Medium Biological: Comments:	% Debris:		%						
Fine Medium Biological: Comments: AMEC Geomatrix	% Debris:		%	17	Ma	ter	ial	\$ Tra	<i>ce</i>
Fine Medium Biological: Comments: AMEC Geomatrix MP-2	% Debris:		%	rt ly	Ma aebb	ter	1a	\$ Tra	<u>.</u>
Fine Medium Biological: Comments: AMEC Geomatrix MP-2 Description Form	_% Debris:		% % %	nt ly	Ma Clebk	+er 15	ia [ŧ tra	<i>ce</i>
Fine Medium Biological: Comments: AMEC Geomatrix MP-2 Description Form Initials: <u>Kw</u>	% Debris:		%	ut ly	Ma ctebb	<i>4er</i>	1a	\$ Tra	<u></u>

Page <u>4</u> of <u>20</u>

Coordinate Datum	Date (mm/dd/vv)	Project Location	Sample Identification	
SPC WA N NAD 1983	8/26/08	March Pt	MP-2A	
	10/20/00			
Coordinates		Water Depth	Time	
North	East	Depth Unit Rep	o Gear	
538 328 122 8	399		Cookie 1100	
Penetration $\stackrel{0}{\text{pin}}$ $\stackrel{0}{\text{pin}}$ $\stackrel{0}{\text{voltration}}$ $\stackrel{0}{\text{voltration}}$ $\stackrel{0}{\text{voltration}}$ DepthUnitInitials $\stackrel{0}{\text{order}}$ $\stackrel{0}{\text{voltration}}$ $\stackrel{0}{\text{voltration}}$ $\stackrel{0}{\text{voltration}}$ $/\mathcal{O}$ cm \mathcal{C} 4/4 \mathcal{O} \mathcal{O} \mathcal{O}	Surficial Wo Contact Poi	ood Estimate: nts	X5 =	%
Surficial sodiment characteristics:				
Biological: $\underline{Ma4}$ 100 % Debris:	%	Oil Sheen: None	Trace (<5%)	_%
Moisture Very Wet Wet Moist Damp	Dry			
Color Light Medium Dark	(Circle majo Olive Gray	or & underline modifyin Brown Black	g) Other <u>Greenish</u>	bro
Major Constituent Fine Medium Coarse	(Circle majo Gravel Sand	or & underline modifyin	g) у	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Cla	у	
Subsurface sediment characteristics:				
Density / Consistency			\$	
Sand / Gravel - Very Loose Loose	Medium Den	se Dense	Very Dense	
Silt / Clay - Very Soft Soft	Medium Stiff	Stiff	Very Stiff Harc	ł
Moisture Very Wet Wet Moist Damp	Dry			
Color Light Medium Dark	(Circle majo Olive Gray	or & underline modifyin Brown Black	g) Other	
Major Constituent Fine Medium Coarse	(Circle majo Gravel Sand	or & underline modifyin Silt Cla	g) y	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Cla	у	
Biological:% Debris:	%	Oil Sheen: None	Trace (<5%)	_ %
Comments: Significant plan;	1 materia	1 & trace -	wood	
		AMEC MP-3 Descripti	Geomatrix	_
		Initials: Date:	<u>8/26/08</u> Time: \	00

Coordinate Datum		Date (mm/dd/yy)	Project Location	Sample Iden	tification er
PC WA N NAD 1983		5/27/08	March Pt	MP-4	
			T		
Coc	ordinates		Water Depth		Time
North		East	Depth Unit	Rep Gear	
338310	122 0	1831		Cookie	0800
Penetration Penetration Depth Unit Initials 0 Initials 0	reather Section (%)	Surficial Woo Contact Point	d Estimate: ts	X 5 =	%
urficial sediment characteristics:					
Biological:%	Debris:	% 0	Dil Sheen: No	ne Trace (<5%)%
Moisture Very Wet Wet Mo	bist Damp	Dry			
Color Light Medium Da	ark	(Circle major Olive Gray E	& underline modif Brown Black	fying) Gra Other <u>Gra</u>	ay to Dive
Major Constituent Fine Medium Co	parse	(Circle major Gravel Sand	& underline modif	fying) Clay	
Minor Constituent with trace Fine Medium Co	parse	Gravel Sand	Silt	Clay	
Density / Consistency					
Sand / Gravel - Very Loos	se Loose	Medium Dense	e Dense	Very Dense	
Silt / Clay - Very Soft	> Soft	Medium Stiff	Sliff	Very Stiff	Hard
Moisture Very Wet Wet Mo	bist Damp	Dry			
Color Light Medium De	irk	(Circle major Olive Gray E	& underline modif Brown Black	fying) Other	
Major Constituent	barse	(Circle major Gravel Sand	& underline modif	f ying) Clay	
Minor Constituent with trace Fine Medium Co	arse	Gravel Sand	Silt	Clay	
Biological:%	Debris:	% 0	Dil Sheen: No	ne Trace (<5%))%
Comments: Trace of	plant nat	terial			
			– AMEC Ge – MP-4	eomatrix	
			 Description 	Form	
·			Initiala	101111	Ť

Page <u>5</u> of <u>20</u>

5

10

	1		5	1
Page	0	of	2	\mathcal{C}
· - 9		· · ·		-

Coordinate Datum	Date (mm/dd/yy)	Project Location	Sample Identification Number	
SPC WA N NAD 1983	8/27/08 Ma	arch Pt	MP-4D	
Coordinates		Water Depth		ne
North	East	Depth Unit Rep	Gear	
538518 1228	857	O f t	Cookie 08	10
Penetration pupped Point Point <th>Surficial Wood Contact Points</th> <th>Estimate:</th> <th>X 5 =</th> <th>%</th>	Surficial Wood Contact Points	Estimate:	X 5 =	%
Surficial sediment characteristics:				
Biological:% Debris:	% Oi	I Sheen: None	Trace (<5%)	%
Moisture Very Wet Wet Moist Damp	Dry			
Color Light Medium Dark	(Circle major & Olive Gray Bro	underline modifying own Black) Other <u>mottle</u>	el
Major Constituent Fine Medium Coarse	(Circle major & Gravel Sand	underline modifying Silt Clay)	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay		
Density / Consistency Sand / Gravel - Very Loose Loose	Medium Dense	Dense	Very Dense	
Silt / Clay - Very Soft Soft	Medium Stiff	Stiff	Very Stiff H	ard
Moisture Very Wet Wet Moist Damp	Dry			
Color Light Medium Dark	(Circle major & Olive Gray Bro	underline modifying own Black) Other	
Major Constituent Fine Medium Coarse	(Circle major & Gravel Sand	underline modifying Silt Clay)	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay		
Biological:% Debris:	% Oi	I Sheen: None	Trace (<5%)	%
Comments: Trace of pla	nt mate	erial		
		MP-4D Description I Initials: <u>e4</u> Date: <u>e/27</u>	omatrix Form G OB Time: C	810

Page 7 of 20

Coordinate Datum		Date (mm/dd/yy)	Project L	ocation	Sample Identit Number	fication
SPC WA N NAD 1983		8/27/09	March Pt		MP-5	
Coordin	ates		Water I	Depth		Time
North		East	Depth	Unit Re	p Gear	
538415	122 9	195	0	ft	Cookie	0836
Penetration Depth Unit Initials	Hines (%)	Surficial Wo Contact Poi	ood Estimate nts	:	¥5 -	9/
Surficial sediment characteristics:	- 10 1				X0	/0
Biological:%	Debris:	%	Oil Sheen:	None	Trace (<5%)	%
Moisture Very Wet Wet Moist	Damp	Dry				
Color Light Medium Dark	((Circle majo Olive Gray	or & underline Brown	e modifyin Black	g) Other	
Major Constituent Fine Medium Coarse	е	(Circle majo Gravel Sand	or & underline	e modifyin Cla	g) у	
Minor Constituent with trace Fine Medium Coarse	e	Gravel Sand	Silt	Cla	у	
Subsurface sediment characteristics:						<u></u>
Density / Consistency						
Sand / Gravel - Very Loose	Loose	Medium Den	ise De	ense	Very Dense	
Silt / Clay - Very Soft	Soft 7	Ho Medium Stiff) si	iff	Very Stiff	Hard
Moisture Very Wet Wet Moist	Damp	Dry				
Color Light Medium Dark	-	(Circle majo Olive Gray	or & underline Brown	e modifyin Black	g) Other	
Major Constituent Fine Medium Coarse	e	(Circle majo Gravel Sand	or & underline Silt	e modifyin Cla	g) y	
Minor Constituent with trace Fine Medium Coarse	e	Gravel Sand	Silt	Cla	у	
Biological:%	Debris:	%	Oil Sheen:	None	Trace (<5%)	%
Comments: 1/2 to 1 c Lighter 1/2 to 1 c trace	m laye Plant	r on su materia	inface	the	n darle	gray
		AME MP-5 Descri Initials	EC Geom iption Forr s: <u>PG</u>	atrix n	-	
		Date:_	8/27/0	78 Ti	me: 0836	

QUAL	ITATIVE SAM	IPLE CHARAC	TERISTICS		P بر	age <u>8</u> of <u>20</u>
Coordinate Datum		Date (mm/dd/yy)	Project Locatio	n	Sample Identif Number	ication
SPC WA N NAD 1983		08/28/02	March Pt		MP-6	
Coordin	ates		Water Depth		T	Timo
North	4100	Fast	Denth Unit	- Ren	Gear	Time
5 38 19%	12294	2 8			Carling	0823
				•	Lebrere	0020
Penetration Depth Unit Initials Depth Depth Unit Initials Depth Depth Unit Initials Depth Depth Unit Initials Depth Depth	ner (%)	Surficial Woo Contact Poin	od Estimate: ts 		X5 = _	%
Surficial sediment characteristics:						
Biological:%	Debris:	%	Oil Sheen: N	one	Trace (<5%)	%
Moisture Very Wet Wet Moist	Damp	Dry				
Color Light Medium Dark	<u>c</u>	(Circle major Olive Gray	& underline mod Brown Black	lifying) ‹	Other	
Major Constituent Fine Medium Coarse	e ((Circle major Gravel Sand	& underline mod	l ifying) Clay		
Minor Constituent with trace Fine Medium Coarse	e (Gravel Sand	Silt	Clay		
Subsurface sediment characteristics:						
Density / Consistency						
bensity roomsistency						
Sand / Gravel - Very Loose	Loose	Medium Dens	e Dense		Very Dense	
Silt / Clay - Very Soft	Soft	Medium Stiff	(Stiff)	t_{Δ}	Very Stiff	Hard
Moisture Verv Wet Wet Moist	Damp	Dov		10	· · · · · · · · · · · · · · · · · · ·	
		2.9				
Color Light Medium Dark	((Circle major Olive Gray	& underline mod Brown Black	lifying) <	Other	
Major Constituent	e ((Circle major Gravel Sand	& underline mod	lifying) Clay		-
Minor Constituent with trace						
Fine Medium Coarse	е (Gravel Sand	Silt	Clay	1 <u></u>	<u> </u>
Biological:%	Debris:	%	Oil Sheen: N	lone	Trace (<5%)	%
Comments:						
Thin (1/2 CM	orless)	black	sulfide	sta	ince	layer
just below	Surfer	- c mediu	m brown	lay	ler	
polkets a	+ red	OXIdized	SILT G	roun	d wor	nlanma
burrows					omotrix	7
			AME	U Ge	omatrix	
······································		ne n	MP-6	intion	Form	
) 			Initial	s' PI		
			Date:	8/28	708	Гіте: <u>3:37</u>

/

Coordinate Datum	Date (mm/dd/yy)	Project Location	Sample Identification Number
SPC WA N NAD 1983	8/28/08 Ma	arch Pt	MP-60
Coordinates	*****	Water Depth	Time
North	East	Depth Unit Rep	Gear
538196 1220	7438		Cookie 0827
Penetration Depth Unit Initials	Surficial Wood Contact Points	Estimate:	
10 CM RHG OVERCAST			X 5 =%
Surficial sediment characteristics:			
Biological:% Debris:	% Oi	I Sheen: None	Trace (<5%)%
Moisture Very Wet Wet Moist Damp	Dry		
Color Light Medium Dark	(Circle major & Olive Gray Br	underline modifying) own Black	Other
Major Constituent Fine Medium Coarse	(Circle major & Gravel Sand	underline modifying) Silt Clay	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay	
Subsurface sediment characteristics:	A-W-W		
Density / Consistency			
Sand / Gravel - Very Loose Loose	Medium Dense	Dense	Very Dense
Silt / Clay - Very Soft Soft	Medium Stiff	Stiff +0	Very Stiff Hard
Moisture Very Wet Wet Moist Damp	Dry		
Color Light Medium Dark	(Circle major 8 Olive Gray Br	underline modifying)	Other
Major Constituent Fine Medium Coarse	(Circle major 8 Gravel Sand	underline modifying)	
Minor Constituent with trace	Croupl Food	Silt Clou	
Pine Medium Coalse			
	% U	II Sneen: None	Trace (<5%)%
Comments: Same as MP-6			
		AMEC Geor MP-6D Description Fo Initials: <u>KAA</u> Date: 8-2	matrix prm <u>8 - 08 Time: 8-' 37</u>

Page <u>10</u> of <u>20</u>

Coordinate Datum		Date (mm/dd/yy)	F	Project Location			Sample Identification Number		
SPC WA N NAD 1983		8/27/09	Mar				MP-7		
Coordii	nates			Water [Depth		1	Time	
North		East		Depth	Unit	Rep	Gear		
538004	1229	643		$\overline{\mathcal{O}}$	ft		Cookie	1311	
Penetration	s S	Surficial W	ood E	stimate					
Depth Unit Initials 5 0 Weat	her 🗓 🛞	Contact Po	ints						
() cm RHG OVER	A57						X5 = -		
Surficial sediment characteristics:									
Biological: 100 %	Debris:	%	Oil	Sheen:	No	ne	Trace (<5%)	9	
Moisture									
Very Wet Wet Moist	Damp	Dry							
Color		(Circle maj	or & ι	Inderline	e modif	ying)			
Light Medium Dark	, <	Olive Gray	Brov	wn	Black	,	Other		
Major Constituent		(Circle maj	or & ι	Inderline	e modif	ying)			
Fine Medium Coars	е	Gravel Sand	1	Silt		Clay			
Minor Constituent with trace									
Fine Medium Coars	e	Gravel Sand	1	Silt		Clay			
Subsurface sediment characteristics: Density / Consistency									
Subsurface sediment characteristics: Density / Consistency Sand / Gravel - Very Loose	Loose	Medium De	nse	De	ense		Very Dense		
Subsurface sediment characteristics: Density / Consistency Sand / Gravel - Very Loose Silt / Clay - Very Soft	Loose	Medium De Medium Slif	nse ff	De	nse		Very Dense Very Stiff	Hard	
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose <u>Silt / Clay -</u> Very Soft Moisture Very Wet <u>Wet</u> 6 Moist	Loose Soft	Medium De Medium Slif Dry	nse ff	De Sti	nse ff		Very Dense Very Stiff	Hard	
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose <u>Silt / Clay -</u> Very Soft <u>Moisture</u> Very Wet <u>Wet 6</u> <u>Moist</u> Color	Loose Soft	Medium De Medium Stif Dry (Circle maj	nse ff or & u	De Sti Inderline	ense ff e modil	ying)	Very Dense Very Stiff	Hard	
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose <u>Silt / Clay -</u> Very Soft <u>Moisture</u> Very Wet <u>Wet</u> 6 Moist Color Light Medium Dark	Loose Soft Damp	Medium Der Medium Stif Dry Clive <u>Gray</u>	nse ff or & u Brov	De Sti underline wn (ense ff e modil Black	ying)	Very Dense Very Stiff Other	Hard	
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose <u>Silt / Clay -</u> Very Soft <u>Moisture</u> Very Wet <u>Wet of Moist</u> <u>Color</u> Light Medium Dark <u>Major Constituent</u> Fine Medium Coars	Loose Soft Damp	Medium Der Medium Stif Dry (Circle maj Olive <u>Gray</u> (Circle maj Gravel Sand	nse ff or & u Brov or & u	De Sti underline wn Cunderline	ff e modif Black e modif	ying) Vi ying) Clay	Very Dense Very Stiff Other	Hard	
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose <u>Silt / Clay -</u> Very Soft <u>Moisture</u> Very Wet <u>Wet of Moist</u> <u>Color</u> Light Medium Dark <u>Major Constituent</u> Fine Medium Coars <u>Minor Constituent with trace</u> <u>Fine Medium</u>	Loose Soft Damp	Medium Der Medium Stif Dry (Circle maj Olive <u>Gray</u> (Circle maj Gravel Sand	nse ff or & u Brov or & u	De Sti underline wn (underline Silt)	ense ff Black e modif	fying) Clay	Very Dense Very Stiff Other	Hard	
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose <u>Silt / Clay -</u> Very Soft <u>Moisture</u> Very Wet <u>Wet</u> Out <u>Color</u> Light Medium Dark <u>Major Constituent</u> Fine Medium Coars <u>Minor Constituent with trace</u> Fine Medium Coars	Loose Soft Damp	Medium Der Medium Slif Dry Olive <u>Gray</u> (Circle maj Gravel Sand Gravel Sand	nse ff or & u Brow or & u	De Sti underline vn (Silt Silt	ense ff Black e modif	'ying) 'ying) Clay Clay	Very Dense Very Stiff Other	Hard	
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose <u>Silt / Clay -</u> Very Soft <u>Moisture</u> Very Wet <u>Wet</u> 6 Moist <u>Color</u> Light Medium Dark <u>Major Constituent</u> Fine Medium Coars <u>Minor Constituent with trace</u> Fine Medium Coars <u>Biological:%</u>	Loose Soft Damp ee ee Debris:	Medium De Medium Stif Dry (Circle maj Olive <u>Gray</u> (Circle maj Gravel Sand Gravel Sand	nse ff or & u Brow or & u d Oil 3	De Sti underline vn Silt Silt Silt	nse ff Black e modif	ying) Clay Clay Clay	Very Dense Very Stiff Other Trace (<5%)	Hard	
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose <u>Silt / Clay -</u> Very Soft <u>Moisture</u> Very Wet <u>Wet</u> fo Moist <u>Color</u> Light Medium Dark <u>Major Constituent</u> Fine Medium Coars <u>Minor Constituent with trace</u> Fine Medium Coars <u>Biological: %</u> <u>Comments:</u> <u>Large 1//2 x 1</u>	Loose Soft Damp	Medium Der Medium Stif Dry Olive <u>Gray</u> (Circle maj Gravel Sand Gravel Sand Gravel Sand	nse ff or & L Brow or & L	De Sti underline vn Silt Silt Sheen:	nse ff Black e modif No	ying) Clay Clay ne	Very Dense Very Stiff Other Trace (<5%)	Hard	
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose <u>Silt / Clay -</u> Very Soft <u>Moisture</u> Very Wet <u>Wet /o</u> <u>Moist</u> <u>Color</u> Light Medium Dark <u>Major Constituent</u> <u>Fine</u> Medium Coars <u>Minor Constituent with trace</u> Fine Medium Coars <u>Biological:%</u> <u>Comments:</u> <u>Large 1/2 x</u> <u>Strong Hos</u>	Loose Soft Damp Debris:	Medium De Medium Stif Dry (Circle maj Olive <u>Gray</u> (Circle maj Gravel Sand Gravel Sand Gravel Sand	nse ff or & u Brov or & u	De Sti underline wn Silt Silt Sheen:	mse ff Black a modif	ying) Clay Clay ne	Very Dense Very Stiff Other Trace (<5%)	Hard	
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose <u>Silt / Clay -</u> Very Soft Moisture Very Wet <u>Wet /o</u> Moist Color Light Medium Dark Major Constituent Fine Medium Coars Minor Constituent with trace Fine Medium Coars Biological:% Comments: <u>Large 11/2 x 1</u> <u>Strong Hos</u>	Loose Soft Damp Debris:	Medium Der Medium Stif Dry (Circle maj Olive <u>Gray</u> (Circle maj Gravel Sand Gravel Sand Gravel Sand Marce	nse ff or & u Brov or & u l Oil 3	De Sti Inderline Silt Silt Sheen:	mse ff Black modif No EC (fying) Clay Clay Clay DieO1	Very Dense Very Stiff Other Trace (<5%)	Hard	
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose <u>Silt / Clay -</u> Very Soft Moisture Very Wet <u>Wet</u> / Moist Color Light Medium Dark Major Constituent Fine Medium Coars Minor Constituent with trace Fine Medium Coars Biological:% Comments: <u>Large 1//2 x 1</u> <u>Strong Hos</u>	Loose Soft Damp Debris:	Medium De Medium Stif Dry (Circle maj Olive <u>Gray</u> (Circle maj Gravel Sand Gravel Sand Gravel Sand Mon Drcce	nse ff or & L Brow or & L	De Sti underline vn Silt Silt Sheen:	mse ff Black modif No C d EC (7	iying) Clay Clay Clay DeO1	Very Dense Very Stiff Other Trace (<5%) matrix	Hard	
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose <u>Silt / Clay -</u> Very Soft <u>Moisture</u> Very Wet <u>Wet /o</u> <u>Moist</u> <u>Color</u> Light Medium Dark <u>Major Constituent</u> <u>Fine</u> Medium Coars <u>Minor Constituent with trace</u> Fine Medium Coars <u>Biological:</u> % <u>Comments:</u> <u>Large 11/2 X</u> <u>Sfrong Hos</u> <u>Uppe2 meco</u> <u>axidizent to</u>	Loose Soft Damp Debris:	Medium De Medium Stif Dry (Circle maj Olive <u>Gray</u> (Circle maj Gravel Sand Gravel Sand Gravel Sand M DICCE	nse ff or & u Brov or & u	De Sti Inderline Mn (Inderline Silt Silt Sheen: - AM - MP- - Desc - Initiz	mse ff Black modif No EC (7 criptio	rying) Clay Clay Clay Deon Geon n Fo	Very Dense Very Stiff Other Trace (<5%) matrix rm	Hard	

Page <u>11</u> of <u>20</u>

Coordinate Datum	Date (mm/dd/yy)	Project Location	Sample Identification Number
SPC WA N NAD 1983	08/27/08 M	arch Pt	MP-8
Coordinates		Water Depth	Time
527 905 122 9	East		Gear 12 (12)
	100		10010191072
	Surficial Wood	Estimate:	
Depth Unit Initials ぷ> Weather 注診	Contact Points	;	N.F. N
10 CIIII ICHIS DVERCATT		1 	x 5 =%
Surficial sediment characteristics:			
Biological: 100 % Debris:	% Oi	il Sheen: None	Trace (<5%) %
	and the second se		
Moisture Very Wet Wet Moist Damo	Dry		
The second s	Uly		
Color	(Circle major &	underline modifying	
Light Wieddin Dark	Olive Gray DI	OWN DIACK	Other
Major Constituent	(Circle major 8	underline modifying	
Fine Medium Coarse	Gravel Sand	Silt Clay	
Minor Constituent with trace	%		
Fine Medium Coarse	Gravel Sand	Silt Clay	
Sand / Gravel - Very Loose Loose	Medium Dense	Dense	Very Dense
Silt / Clay - Very Soft Soft	Medium Stiff	∠ Stiff	Very Stiff Hard
Moleture			
Very Wet Wet Moist Damp	Dry		
Calar	(O)	1.17	
Light Medium Dark	Olive Gray Br	own Black	Other staining
			anna a sea ann an an ann an ann an ann an ann an
Major Constituent	(Circle major 8 Gravel Sand	Silt Clay	
Minor Constituent with trace	Gravel Sand	Silt Clay	
	Shaver Sand	Sht Oldy	
Biological:% Debris:	% Oi	il Sheen: None	Trace (<5%)%
Comments:			
Sediment has a black	E sultide la	100 1/2. CM	thick or thinner
areas (worm and an	inal tube	s and sca	Hered lences
of rust calored s	comment	AMEC (Geomatrix
		—— MP-8	
· / ·		Descriptio	n Form
37		Initials:	HA
2 ⁵		Date: <u>%/</u>	<u>7/08</u> Time: <u>/2:4</u> 2

No.

1

Page 12 of 20

Coordinate Datum	Coordinate Datum (mm/dd/vv) Project Location			Sample Identifi Number	Sample Identification Number		
SPC WA N NAD 1983	AD 1983 8/27/08 March Pt			MP-9			
Coordinates		Water D	epth		Time		
North	East	Depth	Unit Rep	Gear	Timo		
537728 12290	797	0	ft	Cokie	1048		
Penetration 0	Surficial Wo	od Estimate:					
Depth Unit Initials	Contact Poir	nts					
10 CM RHG OVERCAST				X 5 =	%		
Surficial sediment characteristics:							
Biological:% Debris:	%	Oil Sheen:	None	Trace (<5%)	%		
Moisture							
Very Wet Wet Moist Damp	Dry						
Color	(Circle majo	r & underline	modifying	a)			
Light Medium Dark	Olive Gray	Brown	Black	Other			
Major Constituent	(Circle majo	r & underline	modifying	g)			
Fine Medium Coarse	Gravel Sand	Silt	Cla	у			
Minor Constituent with trace		0.11					
Fine Medium Coarse	Gravel Sand	Silt	Cla	у			
Subsurface sediment characteristics:							
Density / Consistency							
Sand / Gravel - Very Loose Loose	Medium Den	se De	nse	Very Dense			
Silt / Clay - Very Soft Soft	A Medium Stiff	Sti	ff	Very Stiff	Hard		
<u>ontrondy</u> very cont				very Still	Tatu		
Moisture Very Wet Wet Moist Damp	Dry						
Color	(Circle majo	r & underline	modifying	g)			
Light Medium Dark	Olive Gray	Brown	Black	Other			
Major Constituent	(Circle majo	r & underline	modifyin	g)			
Eine Medium Coarse	Gravel Sand	Silt	Cla	<u>y</u>			
Minor Constituent with trace	Contract Contract	0.11	01-	round	rel 1/2in		
Fine Medium, Coarse	Gravel Sand	Silt	Cla	у			
Biological:% Debris:	%	Oil Sheen:	None	Trace (<5%)	%		
Comments:	/ /			1 1			
No apparent rec	Lox lays	er sc	num.	patche	5		
worms		1	-				
			C Geon	natrix	-		
		<u> </u>	1. D				
		— Descrij — Initiale	puon Foi	111	-		
		Date:	8/27/	08 Time:	10:48 -		

Page <u>#3</u>of 20

Coordinate Datum	Date (mm/dd/yy)	Project Locatio	n	Sample Identification Number		
SPC WA N NAD 1983		08/27/08	March Pt		MP-9D	
Coord	inales	, ,	Water Depth			Time
North		Fast	Depth Unit	Ren	Gear	Time
537728	12.20	7997			Cipkie	1048
		1 1 1 1		· 1		10 10
Penetration	ues ()	Surficial Wo	od Estimate:			
Depth Unit Initials $\vec{o} \ge$ Wea	ither 토한	Contact Poin	nts		V 5 -	0/
Surficial sediment characteristics:					×5	%
Biological: %	Debris:	0/	Oil Sheen:	one	Trace (<5%)	0/
		78	on sheen.	one	Hace (<5%)	70
Moisture Very Wet Wet Mois	Damp	Dry				
Color		(Circle majo	r & underline mod	lifying)		
Light Medium Dark	C	Olive Gray	Brown Black	K	Other	••••••••••••••••••••••••••••••••••••••
Major Constituent	se	(Circle majo Gravel Sand	r & underline moo	l ifying) Clay		
Minor Constituent with trace						
Fine Medium Coar	se	Gravel Sand	Silt	Clay		
Subsurface sediment characteristics:						
Density / Consistency						
Sand / Gravel - Very Loose	Loose	Medium Den	se Dense		Very Dense	
Silt / Clay - Very Soft	Soft	Medium Stiff	Stiff		Very Stiff	Hard
Moisture Very Wet Wet Mois	Damp	Dry				
Color		(Circle majo	r & underline mod	lifying)	Other	
	~		BIOWIT BIOC	•		
Major Constituent Fine Medium Coar	se	(Circle majo Gravel Sand	r & underline moo Silt	lifying) Clay		
Minor Constituent with trace						
Fine Medium Coar	se	Gravel Sand	Silt	Clay		
Biological:%	Debris:	%	Oil Sheen: N	one	Trace (<5%)	%
Comments: 1 cm thick 1	ayeran a	arent rea	dow ser	t i esi	ont da	rkenc
below her	izen wit	h solfide	staining	C		
trace of	plant m	Gteriel	AMEC	Geoi	matrix	
	har an in single and a second second		MP-9D	on E	\rm	*
			Descripti	VAP		
			Date: 8	127	-108 Tin	ne: 10.'48
	-	-		1	<i>i</i> — — — — — — — — — — — — — — — — — — —	

Page $\underline{14}$ of $\underline{20}$

Coordinate Datum	Date Sample Identification Coordinate Datum (mm/dd/yy) Project Location Number					
SPC WA N NAD 1983	8/27/08	March Pt		MP-1	0	
North	Fast	Depth	epth	n Goor	Time	
537525 12300	55		f f	p Geal	10.00	
			<u>, I (I</u>	CUGICIC	10 07	
Penetration	Surficial Wo	od Estimate:				
Depth Unit Initials $\vec{o} \ge$ Weather $\vec{i} = \hat{\varepsilon}$	Contact Poin	nts		N.F.		
10 C III & AC) UDERCAST				X 5 =	%	
Surficial sediment characteristics:						
Biological: Trace % Debris:	%	Oil Sheen:	None	Trace (<5%)	0/_	
		en oncen.	Home	11200 (1070)	/0	
Moisture Very Wet Wet Moist Damp	Dry					
Color Light Medium Dark	(Circle majo Olive Gray	r & underline n Brown B	modifyin Black	g) Other		
Major Constituent Fine Medium Coarse	(Circle majo Gravel Sand	r & underline n Silt	nodifyin Cla	g) _{ay}		
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt	Cla	y		
Subsurface sediment characteristics:						
Density / Consistency						
Sand / Gravel - Very Loose Loose	Medium Den	se Dens	se	Very Dense		
Silt / Clay - Very Soft Soft	to Medium Stiff) Stiff		Very Stiff	Hard	
Very Wet Wet Moist Damp	Dry					
Color Light Medium Dark	(Circle majo Olive Gray	r&underlinen Brown ∔∌B	nodifyin Black	g) Other		
Major Constituent Fine Medium Coarse	(Circle majo Gravel Sand	r & underline n	nodifyin Cla	g)		
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt	Cla	Gravel Sand	to coarse 1/din to Smal	
Biological:% Debris:	%	Oil Sheen:	None	Trace (<5%)	%	
Comments: No apparent R	edex 1a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
er mattling as	+ deptn"	<u></u>	5 - M C	s 3/a/h	<u></u>	
Layer of gravell	rounded -	to sub a	angu	lar at	210cm	
Piece of glass		AMEC C	Geoma	atrix		
//2×2		MP-10				
		Description	n Forn	ı		
		Initials: K	(AA)	4		
		Date: <u>8/</u> 2	27/08	3Time:/	0.07	

Page 15 of 20

Coordinate Datum	Date (mm/dd/vy)	Project Location	Sample Identification
SPC WA N NAD 1983	08/27/65	March Pt	MP-11
Coordinates		Water Depth	Time
North	East	Depth Unit Re	p Gear
537 293 122 9	979	Øft	Cokie 1128
Penetration Depth Unit Initials S > Weather $\stackrel{\text{Solution}}{\overset{\text{UL}}{\overset{UL}}{\overset{UL}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}{\overset{UL}}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}{\overset{UL}}}{\overset{UL}}{\overset{UL}}{\overset{UL}}}{$	Surficial Wo Contact Poir	od Estimate: nts	X 5 = %
Surficial sediment characteristics:			
Biological:% Debris:	%	Oil Sheen: None	Trace (<5%)%
Moisture Very Wet Wet Moist Damp	Dry		
Color Light Medium Dark	(Circle majo Olive Gray	r & underline modifyir Brown Black	99) Other
Major Constituent Fine Medium Coarse	(Circle majo Gravel Sand	r & underline modifyir	ig) ay
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Cla	ау
Subsurface sediment characteristics:			
Density / Consistency			
Sand / Gravel - Very Loose Loose	Medium Dens	se Dense	Very Dense
Silt / Clay - Very Soft Soft	Medium Stiff	Stiff	Very Stiff Hard
Moisture Very Wet Wet Moist Damp	Dry		
Color Light Medium Dark	(Circle majo Olive Gray	r & underline modifyir Brown Black	ig) Other
Major Constituent Fine Medium Coarse	(Circle majo Gravel Sand	r & underline modifyir	ig) ay
Minor Constituent with trace	Gravel Sand	Silt Cl	2
Biological: % Debris:	w	Oil Sheen: None	Trace (<5%) %
	/0	Un oneen. None	nace (<5%) %
1/2 int Macama na	sofa		
Na concept scal	ning line	offerel)	
Trace plant mate	eret and	bark.	
		AMEC (Beomatrix
		— MP-11 — Descriptio	n Form
		Initials:	<i>6</i>
		Date: 8/	27/08 Time: 11 28

Page 16 of 20

		-10.000-11.000		<u> </u>				T		
	Coordinate Datum			Da (mm/c	ite Id/yy)	Project Lo	ocation	Sample Identification Number		
SPC WA N NAD 1	PC WA N NAD 1983			8/27	108 1	March Pt		MP-12		
		Coordinator				Water F)onth		 T:	
	North		,	East	<u>- 15 - 16 - 16</u>	Depth	Unit Re	en Gear	Time	
5384	41		122 9	1010			ft	Cookie	0912	
Penetration	9			ę.,,	ficial Wee	d Eatimate				
Depth Unit		Weather	-ines %)	Sui	ntact Poin	te				
16 c m	R.44	Overcus	≠	00	indect offi			X 5 =	%	
Surficial sedimen	t characterist	tics:								
<i>P</i> ielegies!:	Iga I wa	-4 9/ Del	rian		0/ /		Mana	Turne ((50()	0/	
Biological:	100	% Der	ons:		% (Jil Sneen:	None	Trace (<5%)	%	
Moisture Verv Wet	Wet	Moist	Damp	Drv						
0.1				,						
Light	Medium	Dark	((Ci	rcle major Gray E	& underline Brown	e modifyii Black	ng) Other		
Major Constitu	iont			(0)	-	9 underline				
Fine	Medium	Coarse		Gravel	Sand	Silt	e moanyn Cl	ay		
Minor Constitu	uent with trac	e						22		
Fine	Medium	Coarse		Gravel	Sand	Silt	CI	ay		
Subsurface sedin	nent characte	ristics:								
Density / Cons	sistency									
Density / Cons	sistency									
Sand / C	Gravel - Ve	ery Loose	Loose	Me	dium Dens	e De	nse	Very Dense		
Silt	/ Clay - Ve	ery Soft	Soft	Me	dium Stiff	Sti	ff	Very Stiff	Hard	
Moisture										
Very Wet	Wet	Moist	Damp	Dry						
Color				(Ci	rcle major	& underline	e modifyiı	ng)		
Light	Medium	(Dark)		Olive C	Gray) E	Brown	Black	Other		
Major Constitu	uent Modium	Coores		(Ci	rcle major	& underline	e modifyii	ng)		
FILLE	Weulum	Coarse		Graver	Sand	SIL		ay		
Minor Constitu Fine	uent with trac Medium	e Coarse		Gravel	Sand	Silt	CI	av		
	modulin			Claver	Gana	Ont	0			
Biological:		% Del	oris:		% (Oil Sheen:	None	Trace (<5%)	%	
Comments:	1/ ,	/		1	7	/			1.	
	Gray	to ble	alk .	d Su moti	176.00	dine.	<u>er 7</u> n 7	they day		
	Stron	ig Hz.	5 ode	~						
······································						Al	MEC C	Geomatrix		
						MI	P-12	P		
-						De	scriptio	n Form		
						Da	ite Q	<u>чту</u> 127/08 т	ime 0917	
						Da	<u></u>	1		

.

Page 17 of 20

Coordinate Datum	Date (mm/dd/yy)	Project Location	Sample Identification Number	
PC WA N NAD 1983	8/27/08	8/27/08 March Pt MP-		
Coordinates		Water Depth	Time	
North	East	Depth Unit Rep	Gear	
538248 122	9261	0 f t	Cookie 1348	
	Surficial Wo	od Estimate:		
Depth Unit Initials \overrightarrow{o} Weather \overrightarrow{iL}	Contact Poir	nts	X 5 = 9	
urficial sediment characteristics:				
Hight Mat Biological: 100 % Debris:	%	Oil Sheen: None	Trace (<5%) %	
Moisture Very Wet Wet Moist Damp	Dry			
Color Light Medium Dark	(Circle majo Olive Gray	r & underline modifying Brown Black	9) Other	
Major Constituent Fine Medium Coarse	(Circle majo Gravel Sand	r & underline modifying Silt Clay	a) /	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay	/	
Sand / Gravel - Very Loose Loose	Medium Den	se Dense	Very Dense	
Silt / Clay - Very Soft Soft	Medium Stiff	Stiff	Very Stiff Hard	
Moisture Very Wet Wet Moist Damp	Dry			
Color Light Medium Dark	(Circle majo Olive Gray	r & underline modifying Brown Black	i) Other	
Major Constituent Fine Medium Coarse	(Circle majo Gravel Sand	r & underline modifying Silt Clay	3) /	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay	,	
Biological:% Debris:	%	Oil Sheen: None	Trace (<5%)%	
Comments:	-La corre	5 / <i>7</i>	/	
No apparent Reel	ex jayer	DEIGN DUR	Tuce	
		AMEC Ge MP-13 Description	eomatrix Form	
		—— Initials: 60 —— Date: 8/27	<u>708</u> <u>708</u> Time: <u>/348</u>	

Page <u>18</u> of <u>20</u>

		1										
	Coordir	nate D	atum		Da	ite Id(w)		Project Lo	cation		Sample Identif	ication
SPC WA N NAD	1983		atam		8/28	108	Marc	ch Pt	Gation		MPS-	,
			Coordin	ates			-	Water D	epth			Time
520				100	East			Depth	Unit	Rep	Gear	1123
2 ª Ø	006			1220	3123			0	ft		CODEIO	1920
Penetration	1Ed o	A		es	Sur	ficial Wo	ood E	stimate:				
Depth Unit	Initials 0	<u>88</u>	Weath	ner 댪 🏵	Co	ntact Poi	nts					
	1249		Overci	454				_			X5 = -	%
Surficial sedime	nt charact	eristic	s:									
Biological:			%	Debris:		%	Oil S	Sheen:	No	ne	Trace (<5%)	%
Maiatura											. ,	
Very Wet	Wet		Moist	Damp	Dry							
Color					(0)	unin mata				c		
Light	Medium		Dark		Olive	Gray (Brow	vn 2	Black	rying)	Other	
Major Consti	tuant				(0)					.		
Fine	Medium		Coarse	е	Gravel	Sand	or & u	Silt	moar	Clay		
Minor Consti	tuont with	+										
Fine	Medium	liace	Coarse	е	Gravel	Sand		Silt		Clay		
Subsurface codi	montohar	antori	otion									
Subsullace seul	ment char	acterr	51105.									
Density / Cor	sistency											
<u>Sand /</u>	Gravel -	Very	/ Loose	Loose	Med	dium Den	ise	De	nse		Very Dense	
Sil	t/Clav-	Ven	/ Soft	Soft	Me	dium Stiff		Sti	f		Vory Stiff	Hord
<u></u>	tr oluj	101		001			_	. 01			very Still	naiu
Moisture Verv Wet	Wet		Moist	> Damp	Dry							
				Bamp	Diy							
Color Light	Medium		Dark		(Cir Olive	rcle majo Grav	Brow	Inderline	modi Black	fying)	Other	
Light	modiam		Count		Give			VII	DIACK			
Major Consti Fine	tuent Medium		Coars	0	(Cir Gravel	rcle majo	or&u	nderline	modi	fying)		
Cine	Wealdin		00013	0	Oldvei	Janu	<	اللا		Clay		
Minor Consti	tuent with	trace	Coare	9	Gravel	Sond		C:II		Class		
1 IIIC	Medium		Coarse		Glaver	Sanu		Siit		Clay		
Biological: _			%	Debris:		%	Oil S	Sheen:	* No	ne	Trace (<5%)	%
Comments:			- 17-4		••••••	7	••••••	7	/	••••••		••••••
5	alini	ty	0%	o trom	pore 4	water		extic	1000	1		
	eta,	105	1 E	S (whi)	EBRIC	+roue +h	rou	72 T 25 1 01	14		210	
••••••••••••••••			2					AM	ECC	leon	natrix	
								MPS	-1			
								Desc	riptio	n Foi	rm	
								Initia	ls: L	AA		1122
·								Date:	8-1	8-0	8 Tim	e: 4.40

S...

Occurding to Defune	Date	Designal Langeling	Sample Identification
SPC WA N NAD 1983	(min/dd/yy)	Project Location	MPS-7
SPC WAININAD 1965	-0/20/08 IMA		1113-2
Coordinates		Water Depth	Time
North	East	Depth Unit Rep	Gear
537849 1228	833	0,1 f t	Cookie 10 00
Penetration 2	Surficial Wood	Estimate:	
Depth Unit Initials	Contact Points		
0 cm RHG Overcast			X 5 =%
Surficial sediment characteristics:			
Biological:% Debris:	% Oi	Sheen: None	Trace (<5%)%
Moisture Very Wet Wet Moist Damp	Dry		
Color	(Cirolo maior P	underline medifying	A
Light Medium Dark	Olive Gray Br	bwn Black	Other
Maior Constituent	(Circle major &	underline modifying)
Fine Medium Coarse	Gravel Sand	Silt Clay	······································
Minor Constituent with trace			
Fine Medium Coarse	Gravel Sand	Silt Clay	
Subsurface sediment characteristics:			
Density / Consistency			
Sand / Gravel - Very Loose Loose	Medium Dense	Dense	Very Dense
Silt / Clay - Very Soft Soft	Medium Stiff	Stiff	Very Stiff Hard
Moisture Very Wet Wet Moist Damp	Dry		
Color Light Medium Dark	(Circle major & Olive Gray Br	underline modifying own Black) Other
Major Constituent Fine Medium Coarse	(Circle major & Gravel Sand	underline modifying))
Minor Constituent with trace			
Fine Medium Coarse	Gravel Sand	Silt Clay	
Biological:% Debris:	% Oi	I Sheen: None	Trace (<5%)%
Comments: Salmity 7 ppf	slight c	urrent in	1 channel
Large amenito	+ plant in	aterial q	wood debris
	*	ب	
		AMEC Ge	omatrix
		— MPS-2	P
		Description	Form
· · · · · · · · · · · · · · · · · · ·		Deter 2	1-08 Time WING
			11me;/0.0e

「「おいい」

N.

Page 20 of 20

A R A

. E.S.

-William

Coordinate Datum	Coordinate Datum (mm/dd/w) Project Location				Sample Identification Number		
SPC WA N NAD 1983	8/28/08	March Pt	farch Pt			,	
Coordinates		Mater D	opth		1	Time	
North	East	Depth	Unit	Rep	Gear	Time	
537533 122.	9226	0	ft		Cookie	1020	
Penetration	Surficial Wo	od Estimate:					
DepthUnitInitials $\overline{\mathfrak{G}}$ \mathfrak{S} Weather $\overline{\mathfrak{I}}$ \mathfrak{S} 1 0cm $\mathcal{I} \in \mathcal{H}_{\mathcal{S}}$ 00 </td <td>Contact Poi</td> <td>nts ——</td> <td>10172-2</td> <td></td> <td>X 5 = _</td> <td>%</td>	Contact Poi	nts ——	10172-2		X 5 = _	%	
Surficial sediment characteristics:							
Biological:% Debris:	%	Oil Sheen:	Noi	ne	Trace (<5%)	%	
Moisture Very Wet Wet Moist Damp	Dry						
Color Light Medium Dark	(Circle majo Olive Gray	Brown	modif Black	ying)	Other		
Major Constituent Fine Medium Coarse	(Circle majo Gravel Sand	or & underline	modif	ying) Clay			
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt		Clay			
Subsurface sediment characteristics:							
Density / Consistency							
Sand / Gravel - Very Loose Loose	Medium Den	se De	nse		Very Dense		
Silt / Clay - Very Soft Soft	Medium Stiff	Stif	f		Very Stiff	Hard	
Moisture Very Wet Wet Moist Damp	Dry						
Color Light Medium Dark	(Circle majo Olive Gray (Brown	modif Black	ying)	Other		
Major Constituent Fine Medium Coarse	(Circle majo Gravel Sand	or & underline	modif	ying) Clay		143	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt		Clay			
Biological:% Debris:	%	Oil Sheen:	No	ne	Trace (<5%)	%	
Comments: Salinity 17900 Large dungant of y Same pockets of	Fueus S Fibrous D sulfide	and and a	amp	ship Fe	rads y	present	
		— AME	C Ge	0m	atriv		
		MP	25-	3	au IX	-	
· · · · · · · · · · · · · · · · · · ·		- Dese	rip	710	n	-	
		Date s	R41 3/20	5	Ø		
			100	102	Ime:	1020	

APPENDIX E

Site Photographs

APPENDIX E1

SEDIMENT PHOTOGRAPHS

March Point (Whitmarsh) Landfill Skagit County, Washington

APPENDIX E1

SEDIMENT PHOTOGRAPHS

March Point (Whitmarsh) Landfill Skagit County, Washington

AMEC Geomatrix, Inc.

SEDIMENT PHOTOGRAPHS

March Point (Whitmarsh) Landfill Skagit County, Washington

SEDIMENT PHOTOGRAPHS

March Point (Whitmarsh) Landfill Skagit County, Washington

SEDIMENT PHOTOGRAPHS

March Point (Whitmarsh) Landfill Skagit County, Washington

SEDIMENT PHOTOGRAPHS

March Point (Whitmarsh) Landfill Skagit County, Washington

Photograph 12 MP-12

SEDIMENT PHOTOGRAPHS

March Point (Whitmarsh) Landfill Skagit County, Washington

Photograph 14 MPS-1

SEDIMENT PHOTOGRAPHS

March Point (Whitmarsh) Landfill Skagit County, Washington

WASTE PHOTOGRAPHS

March Point (Whitmarsh) Landfill Skagit County, Washington

R:\14159 - Skagit Whitmarsh Landfill\021\App E - Site Photographs\E2 - Waste Photos.doc

WASTE PHOTOGRAPHS

March Point (Whitmarsh) Landfill Skagit County, Washington

R:\14159 - Skagit Whitmarsh Landfill\021\App E - Site Photographs\E2 - Waste Photos.doc

WASTE PHOTOGRAPHS

March Point (Whitmarsh) Landfill Skagit County, Washington

R:\14159 - Skagit Whitmarsh Landfill\021\App E - Site Photographs\E2 - Waste Photos.doc

WASTE PHOTOGRAPHS

March Point (Whitmarsh) Landfill Skagit County, Washington

Photograph 8 Metal siding at TP-G-5.

APPENDIX F

Test Pit Logs and Boring Logs

PROJECT:	JECT: Skagit Whitmarsh Landfill Anacortes, Washington							Log of Well No. MW-01										
BORING LC	CATIO	N:	Not N	leas	ured						GROUN	ID SU	JRFACE	ELEVAT	ION	I AND D	ATUM:	
DRILLING C	CONTRA	ACTO	DR: (Caso	cade Dril	ling, Inc).				DATE S	TAR 3	TED:			DATE F 10/7/08	NISHED:	
	METHO	D:	Hollov	v-ste	em augei	r (Limite	ed Acce	ess)			TOTAL 70.0	DEP	TH (ft.):		:	SCREEI NA	N INTERVAL (ft.):	
DRILLING E	EQUIPM	IENT	: CN	VE 7	75						DEPTH TO FIRST COMPL. CASING: WATER: 9.5 NA NA							
SAMPLING	METHO	DD:	Dame	s &	Moore (1	1.5' x 3.	25")				LOGGE N. Bac	D BY her	':					
HAMMER V	VEIGHT	: 30	0			DROP	: 30"	•			RESPONSIBLE PROFESSIONAL:REG. NO.N. BacherL.G. 2528							
DEPTH (feet) ample	DEPTH (feet) No. No. No. No. No. No. No. No. No. No.				NAME (USCS): c cem	Color, mo entation	DESCRIP oist, % by n, react. w	TION / wt., plast. //HCl, geo. i	density, struc inter.	ture,			WEI Al	LL C ND/(ONSTRI OR DRILI	JCTION DETAILS LING REMARKS	
Ŭ Ū	<u>т</u> П		<u> </u>		Postbolc	d throw	Surface	Elevation	n: NM	w ground					W	ell MW-()1 was not	
	/				surface.	ea throug	gn road	Dase to 4		w ground		-	-		со	nstructe	d. Borehole	
	X											-	4		us	ed to log	lithology for	ſ
	\square														ad	jacent w	ell MW-02.	
	Λ																	
2	X												1					
	$ \rangle$											-	1					
3	\square											-	1					
	X											-	1					
4	$\left[\right]$	17	ł		POORI	Y GRAF	OFD SA	ND with	SII T (SP-	SM): olive		- -	-					
		30	brown (2.5Y 4/3), dry, 80% fine sand, 10% non-plast							с	-	-						
5			-	Т	fines, ox	idized m	nottling					-	-					
		12		¥	no mott	ling						-	-					
6		21 24										-	-					
			ł): gravish	brown (10V	D		-					
7		20 21			5/2), m	oist, 95%	% fine s	and, 5%	non-plasti	c fines		-	-					
		24	ł		WELL G	GRADED) SANE) with GF	RAVEL (SV	V): light gra	у	_ -	1					
8					(10R 7/1	1), mois	it, 80% ⁻	fine to co	barse sand	, 20% fine g	ravel	-						
		23	Ī		POORL	Y GRAE	DED SA	ND (SP): grayish	brown (10Y	R]					
9		21			5/2), mo	oist, 95% 2010 (פ	6 fine sa	and, 5%	non-plastic	c fines, oxidiz	zed	-	1					
			-	Ţ	SILTY	SAND (S	SM)					-	1					
بي 10		24 27		•	wet							-	1					
-10-11	2	22										-	-					
11												-	+					
_ ≥	50	0/6"										-	-					
12	/											-	-					
	X											_	-					
	\square											_						
	$\left \right $																	
	$ \rangle $																	
14												-	1					
	50	24 D/6"										-	1					
15																	OAKWELLV (REV. 9/200	07)
	AM	EC	Geo	m	atrix							Pr	oject No	. 14159.0	00.0	2	Page 1 of 5	

Anacortes, Washington	Log o	f Well No. M	IW-01 (cont'd)
SCI) AWAN Reading Read	DESCRIPTION SCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.		WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS
Image: Section of the section of th	GRADED SAND with GRAVEL (SP): gravish YR 5/2), wet, 80% medium sand, 15% fine r gravel, 5% non-plastic fines ium to coarse sand, 15% fine gravel, 5% : fines ium to coarse sand, 20% fine gravel, 5% : fines xADED GRAVELS (GW)		DRILLING REMARKS
AMEC Geometrix		Project No. 1415	OAKWELLV (REV. 9/2007) 59.000.0 Page 2 of 5

PROJE	ECT: S A	kagit W nacorte	hitmars s, Was	sh Landfill shington	Log of W	Vell No. I	MW-01 (c	ont'd)		
DEPTH (feet)	Sample No.	Blows/ Blows/ Blows/ Blows/	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, g	ast. density, structure, eo. inter.		WELL C DET/ DRILL	ONSTRUCTION AILS AND/OR NG REMARKS		
33		50/6"		LEAN CLAY (CL): bluish gray (10B 5/	1), wet, 100%					
34-		4								
-										
35		50/6"								
-	35.5-37	17 22 25								
36	MW-01-3	25								
37-		10								
		15 20								
38-		\backslash								
-		19 24								
39-		25								
		10								
40		14 25								
41		\setminus								
		12								
42		50/6"		wet, 95% fines, 5% fine sand, non-plas	tic					
-		10								
43										
44-		50/6"								
-		14								
45	\	24								
-										
46		16 20 22								
47-		\setminus								
		18								
48-		30								
-		\backslash								
49		16 22 25								
		10								
51		18						OAKWELLV (REV. 9/2007)		
	AMEC Geomatrix Project No. 14159.000.0 Page 3 of 5									

PROJE	ECT: S A	Skagit V Anacort	/hitmars es, Wa	sh Landfill shington	Log of Well No. MW-01 (cont'd)					
DEPTH (feet)	Sample No.	Sample Sample Blows/ Sample	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, g	ast. density, structure, eo. inter.		WELL C DET DRILL	CONSTRUCTION AILS AND/OR ING REMARKS		
51		27		LEAN CLAY (CL): cont'd.		_				
52		12				_				
-		23		fine sand laminations		_				
53						_				
] [10 19 26								
- 34				fine sand laminations		_				
55		12				_				
-		25				_				
56		12				_				
57		21 28				_				
-				fine sand laminations		_				
58-		16				-				
						_				
59		12				_				
60-	\	18				_				
-		\backslash				_				
61		12 20 26				_				
62						_				
-		14				_				
63-		27				_				
-		18								
64		20				_				
65				fine sand laminations		_				
-		12				_				
66] `	26								
67		16								
-		20				_				
68-	$\left \right $					-				
-		13 20								
69	!		•					OAKWELLV (REV. 9/2007)		
		AME	C Ge	omatrix		Project No. 14	159.000.0	Page 4 of 5		

PROJE	ECT:	Ska Ana	git WI acorte	hitmarsh s, Wash	Landfill hington	Log of V	Vell No.	MW-01 (c	ont'd)
DEPTH (feet)	Sample No.	Sample 🗄	Blows/ Sa Foot	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, ge	st. density, structure, eo. inter.		WELL C DET/ DRILL	CONSTRUCTION AILS AND/OR ING REMARKS
69			22		LEAN CLAY (CL): cont'd.				
70-									
-	-				Bottom of Boring at 70 feet. Shallow w 4 feet east of MW-01.	ell MW-02 installed			
71-	-								
-	-								
72	-								
_									
73									
74	-								
-	-								
75	-						-		
-	-								
76									
77-									
-									
78-	-								
-	-						-		
79									
-									
80									
81-									
-									
82	-						-		
-	-								
83									
04-									
- 04									
85	-								
-									
86-	-								
-									
87				*					OAKWELLV (REV. 9/2007)
		A	MEC	C Geo	matrix		Project No. 1	4159.000.0	Page 5 of 5

PROJE	OJECT: Skagit Whitmarsh Landfill Anacortes, Washington						Log of Well No. MW-02				
BORIN	IG LO	CAT	ION:	N: 53	38427.9; E: 1228251.8	GROUND	GROUND SURFACE ELEVATION AND DATUM: Ground Surface				
DRILLI	NG C	ONT	RACT	OR:	Cascade Drilling, Inc.	DATE ST	DATE STARTED: DATE FINISHED: 10/8/08 10/8/08				
DRILLI	NG M	ETH	OD:	Hollov	w-stem auger (Limited Access)	TOTAL D	DEPTH (ft.): 8-18				
DRILLI	NG E	QUIF	PMEN	T: C	CME 75	DEPTH T WATER:	DEPTH TO FIRST COMPL. CASING: WATER: 9.5 NA 2" Sch. 40 PVC				
SAMPL	_ING I	MET	HOD:	Dame	es & Moore (1.5' x 3.25")	LOGGED N. Bache	D BY:				
HAMM	ER W	EIG	HT: 3	00	DROP: 30"	RESPON N. Bach	RESPONSIBLE PROFESSIONAL:REG. NO.N. BacherL.G. 2528				
N COVM eading				OVM teading	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, str cementation, react. w/HCl, geo. inter.	ucture,	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS				
	Se	ŝ	<u> </u>	<u> </u>	Surface Elevation: 28.04 feet MLLW						
_	-				See boring log for MW-01 for lithology.		COVM = Photovac 2020 calibrated to 100 ppm				
1							isobutylene standard				
-	-						Basalite Concrete				
2-											
-	-										
3-	-										
-	-										
4											
-							Medium bentonite chip				
5							(Pure Gold) seal				
-	-										
6	-										
-											
7-	-						Cemex 2/12 Lapis Lustre				
-											
8-	-										
-	-										
9-											
-											
10							2" diameter Schedule 40				
-	-										
11											
-											
12							8.25" diameter bore hole				
-											
13											
-											
14											
-											
15					1		OAKWELLV (REV. 9/2007)				
	AMEC Geomatrix Project No. 14159.000.0 Page 1 of 2										

PROJE	OJECT: Skagit Whitmarsh Landfill Anacortes, Washington				h Landfill shington	Log of Well No. MW-02 (cont'd)						
DEPTH (feet)	Sample No.	Sample <u>H</u>	Blows/ Foot	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, gr	ist. density, structure, eo. inter.	WELL (DET DRILL	CONSTRUCTION AILS AND/OR ING REMARKS				
15 16 ⁻ - 17 ⁻ -	-						Schedule Screen with and 0.010	40 PVC well th 2" diameter " slot				
18 ⁻ - 19 ⁻ - 20 ⁻	-				Bottom of boring at 20.2 feet.		2" diamete PVC end	er Schedule 40 cap				
21 22 23	-						- - - -					
24 25 26	-						-					
27 28 29	-						-					
30 ⁻ 31 ⁻	-						-					
32- 	-	AI	MEC	Geo	omatrix	 P	Project No. 14159.000.0	OAKWELLV (REV. 9/2007) Page 2 of 2				

PROJECT: Skagit Anacor	Nhitmars tes, Was	h Landfill shington		Log of Well No. MW-03				
BORING LOCATION	: N: 53	38979.1; E: 1228187.2	GROUND	GROUND SURFACE ELEVATION AND DATUM: Ground Surface				
DRILLING CONTRA	CTOR:	Cascade Drilling, Inc.	DATE ST	ARTED:	DATE FINISHED:			
DRILLING METHOD	: Hollov	w-stem auger (Limited Access)	TOTAL D	EPTH (ft.):	SCREEN INTERVAL (ft.): 5-15			
DRILLING EQUIPME	ENT: C	ME 75	DEPTH T WATER:	DEPTH TO FIRST COMPL. CASING: WATER: 6 ft NA 2"Sch 40 DVC				
SAMPLING METHO	D: Dame	es & Moore (1.5' x 3.25")	LOGGED	BY: er				
HAMMER WEIGHT:	300	DROP: 30"	RESPON	PONSIBLE PROFESSIONAL: REG. NO.				
EPTH EPTH Sample	oot OVM eading	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density cementation, react. w/HCl, geo. inter.	, structure,		CONSTRUCTION DETAILS D/OR DRILLING REMARKS			
	r ° Å	Surface Elevation: 23.76 feet ML	LW					
		Postholed through roadbase to 4 feet below groun surface.	nd		* OVM = Photovac 2020 calibrated to 100 ppm			
					Basalite Concrete			
2								
					Medium bentonite chip			
					Pure Gold) seal			
4	, . ; ;;	SILTY SAND with GRAVEL (SM): brown (10YF	R 4/3),					
5		gravel, 15% non-plastic fines, oxidized mottling	aea					
					Cemex 2/12 Lapis Lustre			
		vet vet			Sand liner pack			
7-								
8 4					2" diameter Schedule 40 PVC casing			
9		SILTY SAND (SM): black (N 2.5/), wet, 70% m sand, 20% non-plastic fines, 10% fine gravel, wo	iedium od					
		fragments, glass decreasing wood content						
					3.25" diameter bore hole			
		omatrix		Project No. 14159.000	OAKWELLV (REV. 9/2007)			
				1. 10/001110. 14103.000				

PROJE	OJECT: Skagit Whitmarsh Landfill Anacortes, Washington					Log of V	Vell No	o. MW-03 (cont'd)					
DEPTH (feet)	Sample No. Sample	Blows/ Foot	OVM Reading		DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, ge	st. density, structure, o. inter.		WEL DI DRI	L CONSTRUCTION ETAILS AND/OR LLING REMARKS					
15		11			SILTY SAND (SM): cont'd.			< 2" diam	eter Schedule 40					
				Ţ	increasing wood content, glass fragmen	nts		PVC er	nd cap					
16		5		•				10% W	000					
		2												
17		\backslash		Ţ	wet, 75% fine sand, 25% non-plastic fin	es		15% W	'ood					
		4 7		T I	wet, 50% fine to medium sand, 25% no	n-plastic fines,								
18	$ \rangle$	/ 7			10% fine subrounded gravel									
-		\backslash	-		LEAN CLAY (CL): dark bluish gray (58	3 3/1), wet, 95%	- -							
19	\vdash	50/6"			non-plastic fines, 5% fine gravel, very st	iff								
-	$ \rangle$	/			-									
20		\backslash			fine sand laminations									
			-		Bottom of boring at 20.5 feet.		_							
21					-									
-														
22														
-														
23														
24														
25														
26														
27														
-														
28														
-														
29							-							
-														
30							-							
31														
32														
-														
33				1			· _/		OAKWELLV (REV. 9/2007)					
	Α	ME	C Ge	om	AMEC Geomatrix Project No. 14159.000.0 Page 2 of 2									

PROJECT: Skagit Whitmarsh Landfill Anacortes, Washington		Log of Well No. MW-04				
BORING LOCATION: N: 537393.7; E:	1229202.5	GROUND SURFACE ELEV	ATION AND DATUM:			
	rilling Inc	DATE STARTED:	DATE FINISHED:			
DRILLING CONTRACTOR. Cascade D	ning, inc.	7/16/08	7/16/08			
DRILLING METHOD: Hollow-stem aug	er (Limited Access)	38.5 15-25				
DRILLING EQUIPMENT: CME 75		DEPTH TO FIRST COMPL. CASING: WATER: 15.5 NA 2" Sch. 40 PVC				
SAMPLING METHOD: Dames & Moore	(1.5' x 3.25")	LOGGED BY: N. Bacher				
HAMMER WEIGHT: 300	DROP: 30"	RESPONSIBLE PROFESSIONAL: REG. NO. N. Bacher L.G. 2528				
Maple Sadding Saturation Sat	DESCRIPTION E (USCS): color, moist, % by wt., plast. density, struc cementation, react. w/HCl, geo. inter.	ure, V	VELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS			
	Surface Elevation: 20.6 feet MLLW					
0 Posth	oled through roadbase to 4 feet below ground		* OVM = Photovac 2020			
	e.		isobutylene standard			
			Rasalita Concreto			
			— Modium bontonito chin			
			(Pure Gold) seal			
	SAND (SM): olive brown (2.5Y 4/3), dry, 80%	fine				
sand, :	20% non-plastic fines					
5						
SILT (ML): gray (10YR 5/1), dry to moist, 90% fines,		 Cemex 2/12 Lapis Lustre Sand filter pack 			
6 10% fi	ine sand, non-plastic, contains metallic flecks					
	ansas light brown, contains motallis flocks					
			 — 2" diameter Schedule 40 PVC casing 			
			T VO casing			
9 19 50/6"						
	⁻ (PT), dark brown					
browr	nish gray, 20% peat fragments, contains metallic					
12 50/6" flecks			8.25" diameter bore hole			
13 12 gray,	contains metallic flecks, fine sand laminations					
			OAKWELLV (REV. 9/2007)			
AMEC Geomatrix	κ	Project No. 14159	9.000.0 Page 1 of 3			

PROJECT: Skagit Whitmarsh Landfill Anacortes, Washington		Log of Well No. MW-04 (cont'd)					
VN COVM Reading Reading Reading Reading Cover Sample Sampl	DESCRIPTION AME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, ge	st. density, structure, o. inter.	WELL C DET DRILL	CONSTRUCTION AILS AND/OR ING REMARKS			
33 - 34 - 35 - 36 - - - - - - - - - - - - -	ORLY GRADED SAND (SP): cont'd		Cemex 2/ Sand filter	12 Lapis Lustre pack			
37 - 19 50/6" LEA 38 - 50/6" Bo	AN CLAY (CL): bluish black (10B 2. s, trace fine gravel, non-plastic, very ttom of boring at 38.5 feet	5/1), wet, 100% stiff					
40 41		· · · ·					
42 ⁻ - 43 ⁻ - 44 ⁻			-				
45 46		· · · · · · · · · · · · · · · · · · ·					
47 ⁻ - 48 ⁻ - 49 ⁻							
				OAKWELLV (REV. 9/2007)			
AMEC Geomatr	rix	P	roject No. 14159.000.0	Page 3 of 3			

PROJE	CT:	Ska Ana	agit \ acor	Nhitmars tes, Wasł	sh Lai hingto	ndfill on		Tes	t Pit L	-0	g No. TF	P-G-1
TEST F	PIT LO	CAT	ION:	N: 53	87747	7.4; E: 1229054.8	EL 1	LEVATION AN 5.57 feet M	ID DATUN	1:		
EXCAV	'ATION	1 CC	NTR	ACTOR:	Ph	ilip Services Corporation	D/ 1	ATE STARTEI	D:		DATE FINISI 11/1/08	HED:
OPERA	ATOR:		J	ohn Rodi	rique	Z	т(5.	OTAL DEPTH . 5	(ft):		MEASURING	G POINT: urface
EXCAV	'ATIOI	I EC	UIPM	IENT: (CAT	320C	DE	EPTH TO /ATER:	FIRST ND		NA	
EXCAV	'ATION	N BU	CKE	T DIMENSIO	ONS:	1.5 Cubic Yard Bucket	LC K	OGGED BY: Tahghigh	i			
SAMPL	ING N	1ETH	HOD:	Grab			RI K	ESPONSIBLE	PROFES	SIO	NAL:	REG. NO. P.E. 32240
DEPTH (feet)	SAI No.	ample	ES	OVM EADING (ppm)		DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.					RE	MARKS
	ő	လိ		R		Surface Elevation: 15.	57 fee	et				
- 1-	1 0							: to)	_			
2-	TP-G					HOUSEHOLD GARBAGE: plastics, cans, bc cardboard with interbedded soil	ottles,	paper,		$\left - \right $		
3-						nieces of ashestos containing insulation pres	ent					
-	800				•	proces of debested containing includion proc	one			$\left - \right $	50-70% Gai	rbage
4-	9-1-4-1										Soil sample	TP-G-1-4-108
5-	TP-($\left - \right $		5 % ciysotile.
- 6-						Bottom of test pit at 5.5 feet. Terminated due	to as	sbestos				
										$\left - \right $		
7-										$\left - \right $		
8-												
-										$\left - \right $		
9-												
10-										$\left - \right $		
- 11-												
-										-		
12-												
13-										$\left - \right $		
 14-												
-										$\left - \right $		
15-	I	I		1	I			i			OA	KTESTPIT (REV. 6/03)
						AMEC Geomatrix		Proje	ct No. 141	59.0	000.0 F	Page 1 of 1

PROJECT: Skagit Whitmarsh Landfill Anacortes, Washington								Test Pit Log No. TP-G-2					
TEST F	PIT LO	CAT	ION:	N: 53	661.3; E: 12291	48.8		ELEVATION AND DATUM: 15.37 feet MLLW					
EXCAV	ATION	1 CO	NTRA	ACTOR:	Philip Services	Corporation		DATE START 10/30/08	ED:		DATE FINIS 10/30/08	SHED:	
OPERA	TOR:		J	ohn Rodr	quez			TOTAL DEPT 8.0	H (ft):	MEASURING POINT: Ground Surface			
EXCAV	ATION	I EQ	UIPM	IENT: (AT 320C			DEPTH TO WATER:	FIRST	r NA			
EXCAV	ATION	I BU	CKET	T DIMENSIO	NS: 1.5 Cubic	Yard Bucket		LOGGED BY: K. Tahghig	hi				
SAMPL	ING N	IETH	iod:	Grab				RESPONSIBL	.E PROFES hi	SIO	NAL:	REG. NO. P.E. 32240	
DEPTH (feet)	SAN No.	ample I	ES	OVM EADING (ppm)	NAME (USC	DESCRIPTIC CS): color, moist, % by w cementation, react. w/H	ON /t., plast. densi Cl, geo. inter.	ity, structure,			RE	EMARKS	
	S	Š		R		Surface Elevation:	15.37	feet		$\left \right $			
					COVER SOIL light brown (7 non-plastic fin	: POORLY GRADED 7.5YR 6/3), moist, 90% es, roots, garbage, 3	9 SAND with % fine to coa appliances (SILT (SP-SM rse sand, 10 (e.g. washer)	1): %	_ _ _ _	Layer thick from 2 feet 3 feet on th	ness increased on the north to le south.	
3- _ 4-					HOUSEHOLE and metal pier concrete foun) GARBAGE: soil inte ces dation with I-beam; a	ppliances pr	h bottles, plas	stics, south		20-30% Ga	arbage	
5-					sidewali					- - -			
6- - 7-					CONTAINER/ tank at 6 feet	TANK: approximately below ground surface	/ 30 gallon ca e	apacity perfo	ated	_			
-					wet					_			
o- _					Bottom of test entering test p	t pit at 8.0 feet. Termi bit.	inated due to	o groundwate	r				
9-										_			
10-										_			
11-										_			
12-													
13-													
– 14–													
_										$\left - \right $			
15-				I							0	AKTESTPIT (REV. 6/03)	
					AMEC Ge	omatrix		Pro	ject No. 141	159.0	0.000	Page 1 of 1	

PROJECT: Skagit Whitmarsh Landfill Anacortes, Washington							Test Pit Log No. TP-G-3				
TEST F	PIT LO	CATI	ON:	N: 53	7903.6; E: 1229285.1	ELEVATIO	ON AND DATUN	1:			
EXCAV	/ATION	1 CO	NTRA	ACTOR:	Philip Services Corporation	DATE ST/ 10/31/0	ARTED: 8	DATE 10/3	E FINISHED: 31/08		
OPERA	ATOR:		Jo	ohn Rodi	riquez	TOTAL D	EPTH (ft):	MEA Gro	SURING POINT: und Surface		
EXCAV	ATION	I EQ	UIPM	ient: (CAT 320C	DEPTH TO WATER:	O FIRST 11.5	NA			
EXCAV	ATION	I BU	CKET	DIMENSI	DNS: 1.5 Cubic Yard Bucket	LOGGED K. Tahg	BY: Ihighi				
SAMPL	ING M	1ETH	IOD:	Grab		RESPON: K. Tahg	SIBLE PROFES Ihighi	SIONAL:	REG. NO. P.E. 32240		
JEPTH (feet)	SAI No le	MPLE addu	ES	OVM EADING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. densi cementation, react. w/HCl, geo. inter.	ity, structure	е,		REMARKS		
	- Sa	Sa		RE	Surface Elevation: 17.87	feet					
- 1- - 2-					COVER SOIL: WELL GRADED SAND (SW): 4/3), moist, 90% fine to medium sand, < 5% fine non-plastic fines, roots, metal sink, plate, lawn r	brown (1 e gravel, < nower	oyr < 5%	 			
					tub in south side wall with white fibrous material	below	metanic	– White – exten – wall t – pit. F	e fibrous material Ided from the south o the north side of test Possible dry wall.		
	-1008				Greater concentration of garbage on the north s	side of tes	st pit.	_			
5-	3-3-5.0				SANDY SILT (ML): moist, bluish gray (10B 6/1)	, petroleu	m odor				
6-	TP-(plastic sheeting with other miscellaneous waste			_			
-											
/ - _	g										
8-	8.0-10(_			
-	P-G-3-							-			
9-	F				WELL GRADED SAND (SW): light bluish gray	(5B 7/1)	, moist,				
10-	-					o non-pia.		_			
-								_			
11-											
- 12-					LEAN CLAY (CL): light bluish gray (5B 7/1), m	oist, 90%	fines, <				
-					Bottom of test pit at 12.0 feet. Terminated in na	ative depo	sit.	_			
13-								-			
- 								-			
14-											
15-											
					AMEC Geomatrix		Project No. 141	59.000.0	Page 1 of 1		

PROJECT: Skagit Whitmarsh Landfill Anacortes, Washington							Test Pit Log No. TP-G-4					
TEST F	PIT LO	CATIO	DN: N:5	537696.	3; E: 1229236.7		ELEVATION A 15.27 feet N	ND DATUN	IM:			
EXCAV	ATION	I CON	TRACTOR:	Phi	lip Services Corporation		DATE STARTE 10/31/08	ED:		DATE FINIS 10/31/08	SHED:	
OPERA	TOR:		John Ro	driquez	·		TOTAL DEPTH	H (ft):		MEASURIN Ground S	IG POINT: Surface	
EXCAV	ATION	I EQU	IPMENT:	CAT 3	320C		DEPTH TO WATER:	FIRST ND		NA		
EXCAV	ATION	I BUC	KET DIMENS	SIONS:	1.5 Cubic Yard Bucket	t	LOGGED BY: K. Tahghigh					
SAMPL			D: Gra	b			K. Tahghigi	E PROFES: ni		NAL:	P.E. 32240	
DEPTH (feet)	No.				DES NAME (USCS): color, moist cementation, re	CRIPTION , % by wt., plast. densi , act. w/HCl, geo. inter.	ity, structure,			RI	EMARKS	
	Sa	Sa	R		Surface Elev	ation: 15.27	feet					
	4-1.0-1008				COVER SOIL: WELL GRAI 4/3), moist, 95% fine to med appliance	DED SAND (SW): lium sand, < 5% no	brown (10YR n-plastic fines	3	_			
-	TP-G-				HOUSEHOLD GARBAGE: metallic pieces, plastics, clot	soil interbedded wit thes	h bottles, can	S,				
2-									_			
3-									_	70-80% Ga	arbage	
4-	-1008											
5-	-G-4-4.(_			
-	ЦЦ Ц			\ \	washing machine drum				_			
6-					CONCRETE PAD - COBBL	.ES			$\left - \right $			
					Bottom of test pit at 6.0 feet est pit.	. Terminated due to	o concrete pao	d in				
-									_			
8-									_			
9-									_			
- 10-												
-									$\left - \right $			
11- _												
12-									$\left -\right $			
13-												
-									$\left - \right $			
14-												
15-										C	AKTESTPIT (REV. 6/03)	
					AMEC Geomatrix		Proj	ect No. 141	59.0	0.000	Page 1 of 1	
-												

PROJECT: Skagit Whitmarsh Landfill Anacortes, Washington							Test Pit Log No. TP-G-5				
TEST F	PIT LO	CATIC	DN:	N: 53	8006.3; E: 1229133.7	ELEVATIC 16.87 fe	N AND DATUN	N:			
EXCAV	ATION	I CON	ITRA	CTOR:	Philip Services Corporation	DATE STA 11/2/08	RTED:		DATE FINISHED: 11/2/08		
OPERA	TOR:		Jo	hn Rodr	iquez	TOTAL DE	EPTH (ft):		MEASURING POINT: Ground Surface		
EXCAV	ATION	I EQU	IIPME	ENT: (CAT 320C	DEPTH TO WATER:	FIRST		NA		
EXCAV	'ATION	I BUC	KET	DIMENSIC	DNS: 1.5 Cubic Yard Bucket	LOGGED K. Tahg	BY: highi				
SAMPL	ING N	IETHC	DD:	Grab	RESPONSIBLE PROFES				NAL: REG. NO. P.E. 32240		
DEPTH (feet)	(feet) MDle DOVM ADIN OVM ADIN OVM				DESCRIPTION NAME (USCS): color, moist, % by wt., plast. den cementation, react. w/HCl, geo. inter	,		REMARKS			
	Se	ŝ		R	Surface Elevation: 16.8						
	TP-G-5-1.0-1008				LOG BARK WELL GRADED SAND (SW): brown (10YR fine to coarse sand, <10% fine to coarse grave fines, garbage including an appliance (refridge and bed frame	4/3), moist el, < 5% no erator), meta	, 85% n-plastic al siding,				
3- 4- 5-	-1008				HOUSEHOLD GARBAGE: bottles, rags, pipe	s mixed with	n soil	_			
	TP-G-5-5.0				three pieces of rounded wood chunks (from p	ower poles'	?)	_	Discovered a clip of blank bullets with powder on belt. Bullets were marked <i>1969</i> <i>Lake City</i> .		
- 8-	8										
-	-8.5-100							$\left - \right $			
9-	TP-G-5				Bottom of test pit at 9.0 feet. Terminated due entering test pit.	to groundw	ater				
10-											
11-								$\left - \right $			
- 12-											
- 13-											
								$\left - \right $			
14- _											
15-									OAKTESTPIT (REV. 6/03)		
					AMEC Geomatrix		Project No. 141	159.0	000.0 Page 1 of 1		

PROJECT: Skagit Whitmarsh Landfill Anacortes, Washington								Test Pit Log No. TP-G-6					
TEST F	PIT LO	CAT	ION:	N: 53	803	2.9; E: 1228965.4	ELEVATIC	N AN		1:			
EXCAV	'ATION	1 CO	NTRA	ACTOR:	P	hilip Services Corporation	DATE STA 11/1/08	ARTED):		DATE FIN	ISHED:	
OPERA	TOR:		Jo	ohn Rodr	ique	Z	TOTAL DE	EPTH	(ft):	MEASURING POINT: Ground Surface			
EXCAV	'ATION	I EQ	UIPM	IENT: (САТ	320C	DEPTH TO WATER:	C	FIRST		NA		
EXCAV	'ATION	N BU	CKET	DIMENSIO	ONS:	1.5 Cubic Yard Bucket	LOGGED K. Tahq	BY: hiahi	10.0				
SAMPL	ING N	1ETH	IOD:	Grab		RESPONSIBLE K. Tabobiobi				SIO	NAL:	REG. NO. P.E. 32240	
DEPTH (feet)	SAI Vo.	MPLE aldu	LES O DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.							F	REMARKS		
	Sa	Sa		RE		Surface Elevation: 18.87	feet						
-						LOG BARK				$\left - \right $			
1-										$\left - \right $			
2-													
-													
3-										-			
-										$\left - \right $			
4-						WELL GRADED SAND with SILT (SW-SM): li (10B 7/1) moist 90% fine to coarse sand 10%	ght bluish	gray	29				
5-						with household garbage (plastics, metal debris,	bottles, w	ood),		$\left - \right $			
-	008					peroleuritorganic ouor				_			
6-	3-6.0-1									$\left - \right $			
7-	TP-G-(
– [–]													
8-					Ţ	burnt material with 50-100 foot industrial air hos	se			_			
-										$\left - \right $			
9-											Excavate	d 5.0 feet on the	
10-						Pottom of toot nit at 10.0 foot Terminated due	to ground	wator		$\left - \right $	perpendic	cular to the pit to	
-						entering test pit.	to ground	water		$\left - \right $	objects. I	Vetal plate found	
11-										$\left - \right $	diameter.		
12-													
-										$\left - \right $			
13-										$\left - \right $			
-										$\left - \right $			
15-												OAKTESTPIT (REV. 6/03)	
						AMEC Geomatrix		Projec	ct No. 141	59.0	0.000	Page 1 of 1	

TEST PIT LOCATION: N: 537638.4; E: 1229297.3 EXCAVATION CONTRACTOR: Philip Services Corporation OPERATOR: John Rodriquez EXCAVATION EQUIPMENT: CAT 320C EXCAVATION BUCKET DIMENSIONS: 1.5 Cubic Yard Bucket SAMPLING METHOD: Grab Excavation model F Excavation model F SAMPLING METHOD: Grab Excavation, react. w/HCl, geo. inter. NAME (USCS): color, moist, % by wt., plast. density cementation, react. w/HCl, geo. inter.	ELEVATION AND I 14.57 feet MLL DATE STARTED: 10/30/08 TOTAL DEPTH (ft) 8.0 DEPTH TO F WATER:	DATUM: W	DATE FINIS				
EXCAVATION CONTRACTOR: Philip Services Corporation I OPERATOR: John Rodriquez I EXCAVATION EQUIPMENT: CAT 320C I EXCAVATION BUCKET DIMENSIONS: 1.5 Cubic Yard Bucket I SAMPLING METHOD: Grab F Excavation graph Samples Samples Excavation graph Image: Complexity of the second	DATE STARTED: 10/30/08 TOTAL DEPTH (ft) 8.0 DEPTH TO F WATER: N		DATE FINIS				
OPERATOR: John Rodriquez 1 EXCAVATION EQUIPMENT: CAT 320C 1 EXCAVATION BUCKET DIMENSIONS: 1.5 Cubic Yard Bucket 1 SAMPLING METHOD: Grab F Excavation bucket Image: Comparison of the second of	TOTAL DEPTH (ft) 3.0 DEPTH TO F WATER: N OGGED BY:		DATE STARTED: DATE FINISHE 10/30/08 10/30/08				
EXCAVATION EQUIPMENT: CAT 320C I EXCAVATION BUCKET DIMENSIONS: 1.5 Cubic Yard Bucket I SAMPLING METHOD: Grab F H SAMPLES V ESCRIPTION Mage Image Image Image DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density cementation, react. w/HCl, geo. inter. Image Image		TPQT	TOTAL DEPTH (ft): MEASURING POI 8.0 Ground Surfa				
EXCAVATION BUCKET DIMENSIONS: 1.5 Cubic Yard Bucket Image: Cubic Yard Bucket SAMPLING METHOD: Grab F Marcoline Marcoline F	OGGED BY:	ND	NA				
SAMPLING METHOD: Grab F SAMPLES U SAMPLES U U <td>K. Tahghighi</td> <td></td> <td></td> <td></td>	K. Tahghighi						
SAMPLES O DESCRIPTION H + + + Image:	RESPONSIBLE PF K. Tahghighi	ROFESSIC	NAL:	REG. NO. P.E. 32240			
	v, structure,		RE	MARKS			
Surface Elevation: 14.57 fe	eet						
COVER SOIL: WELL GRADED SAND WITH SII brown (10YR 4/3), moist, 90% fine to coarse sar non-plastic fines, appliance	LT (SW-SM): nd, 10%	_					
POORLY GRADED SAND (SP) interbedded with garbage (bottles, metal pieces, rags, automotive	h household parts, wood,						
		_	30-50% Ga	rbage			
		_					
		_					
		_					
		_					
6-		_					
		_					
LEAN CLAY (CL): gray (10YR 6/1), moist, 95%	fines, < 5%	_					
8 – sand, trace organics, low plasticity, native Bottom of test pit at 8.0 feet. Terminated in native	e deposit.						
9-		_					
		-					
		_					
		-					
		-					
		-					
		-					
		_					
			AO	KTESTPIT (REV. 6/03)			
AMEC Geomatrix	Project N	No. 14159.	.000.0 F	age 1 of 1			

PROJECT: Skagit Whitmarsh Landfill Anacortes, Washington	Test Pit Log No. TP-G-8				
TEST PIT LOCATION: N: 538017.9; E: 1229080.9	ELEVATION AND DATUM: 16.97 feet MLLW				
EXCAVATION CONTRACTOR: Philip Services Corporation	DATE STARTED: DATE FINISHED: 11/2/08 11/2/08				
OPERATOR: John Rodriquez	TOTAL DEPTH (ft): MEASURING POINT: 8.0 Ground Surface				
EXCAVATION EQUIPMENT: CAT 320C	DEPTH TO FIRST WATER: 8.0 NA				
EXCAVATION BUCKET DIMENSIONS: 1.5 Cubic Yard Bucket	LOGGED BY: K. Tahghighi				
SAMPLING METHOD: Grab	RESPONSIBLE PROFESSIONAL:REG. NO.K. TahghighiP.E. 32240				
SAMPLES O DESCRIPTION Image: Sample in the	density, structure, REMARKS nter.				
Surface Elevation: 16	6.97 feet				
	_				
1- WELL GRADED SAND with SILT (SP-SM) - 6/3), moist, 85% fine to coarse sand, 10% r): light brown (7.5YR non-plastic fines, < 5% —				
2- fine gravel, automotive bumper and front en COMMERCIAL WOODWASTE: cellulose t	hd				
	_				
5-	-				
6 −	-				
	-				
	_				
8- Bottom of test pit at 8.0 feet. Terminated de	ue to groundwater				
9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -	-				
	-				
	-				
15					
AMEC Geomatrix	Project No. 14159.000.0 Page 1 of 1				

PROJECT: Skagit Whitmarsh Landfill Anacortes, Washington							Test Pit Log No. TP-G-9					
TEST F	PIT LO	CATI	ON:	N: 53	8110.8; E: 1228962.5	ELEVATION 19.07 feet	AND DATUM:					
EXCAV	/ATION	1 CO	NTRA	ACTOR:	Philip Services Corporation	DATE START 11/2/08	red:	DATE FIN 11/2/08	IISHED:			
OPERA	TOR:		Jo	ohn Rodr	iquez	TOTAL DEPT 9.5	ГН (ft):	MEASUR Ground	ING POINT: Surface			
EXCAV	ATION	I EQ	UIPM	IENT: (CAT 320C	DEPTH TO WATER:	FIRST 9.5	NA				
EXCAV	'ATION	I BU	CKET	DIMENSIO	DNS: 1.5 Cubic Yard Bucket	LOGGED BY K. Tahghig	: ghi					
SAMPLING METHOD: Grat				Grab		LE PROFESS ghi	SIONAL:	REG. NO. P.E. 32240				
EPTH (feet)	SAI e g u g	uple adm	<u>s</u>	ADING ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. dens cementation, react. w/HCl, geo. inter	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation. react. w/HCI. geo. inter.						
	Sai	Sai		RE (Surface Elevation: 19.07	' feet						
_					LOG BARK			_				
1- 2- 3- 4- 5- 6-	TP-G-9-4-1008				WELL GRADED SAND with GRAVEL (SW): moist, 75% fine to coarse sand, 20% fine to co non-plastic fines miscellaneous trash including a tire, wood, and partially crushed drum containing fiberglass an chemical odor	brown (10YF arse gravel, < I metal pieces d solidified re:	₹ 4/3), < 5% sin		nple -1008 collected n.			
 7- 8- 	1008				WOODWASTE: plywood and lumber, chemica	al odor, sheer	1					
9- 10- 11-	TP-G-9-9-				Bottom of test pit at 9.5 feet. Terminated due t entering test pit.	to groundwate	er					
12- - 13-								_ _ _				
 14								_				
15-					1			_	OAKTESTPIT (REV. 6/03)			
					AMEC Geomatrix	Pro	oject No. 1415	59.000.0	Page 1 of 1			
-												

PROJE	CT:	Ska Ana	agit V acort	Whitmarsl es, Wash	h Landfill nington	Test Pit Log No. TP-G-10					
TEST F	PIT LO	CATI	ON:	N: 53	8156.1; E: 1228669.9	ELEVATION A 22.57 feet N					
EXCAV	'ATIOI	1 CO	NTRA	ACTOR:	Philip Services Corporation	DATE STARTE 11/1/08	ED:	DATE FI 11/1/08	NISHED: 3		
OPERA	TOR:		Jo	ohn Rodr	iquez	TOTAL DEPTH 9.0	H (ft):	MEASU Groun	RING POINT: d Surface		
EXCAV	'ATIOI	N EQ	UIPM	IENT: C	CAT 320C	DEPTH TO WATER:	FIRST 9.0	NA			
EXCAV	'ATIOI	N BU	CKET	DIMENSIC	DNS: 1.5 Cubic Yard Bucket	LOGGED BY: K. Tahghigh	ni		550.00		
SAMPL	ING N	1ETH	IOD:	Grab		K. Tahghigh	E PROFESS 1i	IONAL:	P.E. 32240		
DEPTH (feet)	SAI No.		-5	OVM EADING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. dens cementation, react. w/HCl, geo. inter.	sity, structure,			REMARKS		
	ů_	Š		R	Surface Elevation: 22.57	' feet		-			
- 1- -							-	-			
2-							-	-			
3-							-	_			
4-							-	-			
5-							-	-			
- 6-				-	SILTY SAND (SM): light bluish gray (10B 7/1 to coarse sand, 15% non-plastic fines, odor), moist, 85% fi	ne	-			
				-	MISCELANEOUS WASTE: woodwaste, 5 to 6	crushed drum	ıs,	- - Steel dri	ims. One poly		
-	1008						-	_ inside st	eel drum. oels included		
8-	G-8-8.5-						-	- Amoco & _ Polymer	543, Nalco, UOP ization Catalyst		
9-	Ľ,			-	rust colored oxidation in groundwater			-			
- 10-					Bottom of test pit at 9.0 feet. Terminated due tentering test pit.	to groundwater	-	-			
- 11-							-	-			
-							-	-			
12-							-	_			
13-							-	_			
14-							-	-			
15-							-	-			
					AMEC Geomatrix	Proj	ect No. 1415	9.000.0	Page 1 of 1		

PROJE	CT:	Ska Ana	igit V acort	Nhitmars tes, Wasł	h Landfill nington	Test Pit Log No. TP-G-11					
TEST F	PIT LOO	CATI	ON:	N: 53	7826.2; E: 1229212.9	ELEVATION A 18.27 feet I	ND DATUM:				
EXCAV	ATION	I CO	NTR/	ACTOR:	Philip Services Corporation	DATE STARTI 10/31/08	ED:	DATE FINISHED: 10/31/08			
OPERA	ATOR:		J	ohn Rodı	iquez	TOTAL DEPT	H (ft):	MEASU Groun	RING POINT: d Surface		
EXCAV	ATION	IEQ	UIPN	IENT: (CAT 320C	DEPTH TO WATER:	FIRST 10.5	NA			
EXCAV	ATION	I BU	CKEI	T DIMENSIO	DNS: 1.5 Cubic Yard Bucket	LOGGED BY: K. Tahghig	hi				
SAMPL	ING M	ETH	IOD:	Grab		RESPONSIBL	E PROFESS	IONAL:	REG. NO. P.E. 32240		
DEPTH (feet)	SAN No.	APLE amble	ES	OVM EADING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. densi cementation, react. w/HCl, geo. inter.	ity, structure,			REMARKS		
	°S_	ŝ		12 12	Surface Elevation: 18.27	feet		_			
- 1-					WELL GRADED SAND (SW): brown (10YR 4 fine to medium sand, < 5% gravel, < 5% non-pla garbage	4/3), moist, 85 astic fines, < {	5% 	_			
-							-	-			
2-							-	_			
3-					POORLY GRADED SAND (SP) interbedded w	ith household	-	_			
4-					AUTOMOTIVE DEBRIS: automotive parts inclu	iding car hood	d.	-			
					from 4 to 6 feet below ground surface	-	-	-			
- 6-							-	_			
					POORLY GRADED SAND (SP): brown (10YF fine to medium sand, < 5% gravel, < 5% non-pla interbedded garbage	R 4/3), moist, astic fines,	90%	-			
-					SILT with SAND (ML): bluish gray (10B 6/1), d fines, 15% fine to coarse sand, moderate plastic	dry to moist, 8 city, stiff,	5%	_			
8-					petroleum odor MISCELANEOUS GARBAGE: soil interbedded garbage and woodwaste	I with burned	-	_			
9-					garbage and woodwaste		-	-			
10-							-	_			
- 11-					LEAN CLAY (CL): gray (10YR 5/1), moist, 90% sand, < 5% roots/organics, moderate plasticity,	% fines, < 5% native	fine	_			
-					Bottom of test pit at 11.0 feet. Terminated in na	ative deposit.		-			
12- _							-	_			
13-							-	-			
14-							-	_			
-							-	-			
15-	I			1	L	1			OAKTESTPIT (REV. 6/03)		
					AMEC Geomatrix	Pro	ject No. 1415	9.000.0	Page 1 of 1		

APPENDIX G

Bioassay Report

BIOLOGICAL TESTING OF SEDIMENT FOR MARCH POINT (WHITMARSH) LANDFILL ANACORTES, WASHINGTON

NOVEMBER 2008

PREPARED FOR: AMEC GEOMATRIX, INC. 600 University, Suite 1020 Seattle, Washington 98101

PREPARED BY: NEWFIELDS PO Box 216 4729 View Drive Port Gamble, Washington 98364

1.0 INTRODUCTION

NewFields conducted toxicity tests with sediment samples collected by AMEC Geomatrix at the March Point Landfill in Padilla Bay. Biological effects were evaluated relative to the biological criteria defined in the Sediment Management Standards (SMS). This report presents the results for the toxicity testing portion of the March Point Landfill sediment investigation.

2.0 METHODS

This section summarizes the test methods that were followed for this biological characterization. Test methods followed guidance provided by the Puget Sound Estuary Program (PSEP 1995), the WDOE Sampling and Analysis Plan Appendix (SAPA; Ecology 2008), the various updates presented during the Annual Sediment Management Review meetings (SMARM), and the Sediment Investigation Work Plan March Point (Whitmarsh) Landfill Skagit County, Washington prepared by AMEC Geomatrix (AMEC 2008). Sediment toxicity was evaluated using three standard PSEP bioassays, the 10-day amphipod test, the 48 to 96-hour benthic larval test, and the Microtox[®] porewater test. NewFields performed the amphipod and benthic larval tests, the Microtox[®] test was performed by Nautilus Environmental LLC. The amphipod test species, *Ampelisca abdita*, was selected by the Ecology based on the predominant grain size distribution of the test sediments.

2.1 SAMPLE AND ANIMAL RECEIPT

Thirteen test sediments were received by NewFields on August 29, 2008. Reference sediment was collected from Carr Inlet on September 12, 2008 and from Sequim Bay on September 16, 2008 by NewFields. Sediment samples were stored in a walk-in cold room at $4 \pm 2^{\circ}$ C in the dark. Test sediment was not sieved prior to testing. All tests were conducted within the eight week holding time.

Amphipods (*Ampelisca abdita*) were supplied by Brezina and Associates in Dillon Beach, California. Animals were held in native sediment at 20°C prior to test initiation. *Dendraster excentricus* (sand dollar) broodstock was collected by NewFields staff from Hood Canal, Washington. Broodstock were held in unfiltered seawater from Hood Canal prior to spawning.

Native *Ampelisca* sediment from Dillon Beach, California was also provided by Brezina and Associates for use as control sediment for the amphipod test.

2.2 ULTRA-VIOLET LIGHT EXPOSURE

Test sediment samples were exposed to ultra-violet (UV) light during the entire test exposure. The UV light regime followed guidance provided by Sub-Appendix D (Ecology 2008) and in consultation with Ecology. UV light was provided by fluorescent light ballast containing one Duro-Test Vita-Lite® (40W, 5500°K, 91 CRI) fluorescent bulb and one standard fluorescent bulb (Phillips F40CW). The UV bulbs were placed within 12" above the sediment surface. All test chambers in the UV exposures were left uncovered to prevent any UV loss. Tests were conducted on water-tables to ensure that the additional lighting did not alter water temperatures in the test chambers. In all other respects, the methods followed the standard testing protocols are summarized below.

2.3 10-DAY AMPHIPOD BIOASSAY

The 10-day acute toxicity test with *A. abdita* was initiated on September 23, 2008. To prepare the test exposures, approximately 175 mL of sediment was placed in clean, acid and solvent-

rinsed 1-L glass jars, which were then filled with 775 mL of 0.45- μ m filtered seawater at 28 ppt. Seven replicate chambers were prepared for each test treatment, the two reference sediments, and the native control sediment. The control and reference sediments were tested with the test treatments. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial surrogate chambers. One surrogate chamber was sacrificed at test initiation to measure porewater and overlying ammonia and sulfides. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as porewater and overlying ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/4000V Spectrophotometer.

Test chambers were placed in randomly assigned positions in a 20°C water bath and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured in the surrogate chamber for each treatment. Dissolved oxygen (DO), temperature, pH, and salinity were then monitored in the surrogate chambers daily until test termination. Target test parameters were:

Dissolved Oxygen:	≥4.6 mg/L
pH:	7.8 ± 0.5 units
Temperature:	20 ± 1°C
Salinity:	28 ± 1‰

The tests were initiated by randomly allocating 20 *A. abdita* into each test chamber, ensuring that each of the amphipods successfully buried into the sediment. Amphipods that did not bury within approximately one hour were replaced with healthy amphipods. The 10-day amphipod bioassay was conducted as a static test with no feeding during the exposure period. At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered amphipods transferred into a Petri dish. The number of surviving and dead amphipods was recorded. A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests, using cadmium chloride. The cadmium reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests.

2.4 LARVAL DEVELOPMENTAL BIOASSAY

Test sediment was evaluated using the larval benthic toxicity test with the sand dollar, *D. excentricus*. The sand dollar larval test was initiated on September 24, 2008. A sea water control and the two reference sediments were tested with the test treatments. To prepare the test exposures, 18 g (\pm 1 g) of test sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled to 900 mL with 0.45-µm of filtered seawater. Six replicate chambers were prepared for each test treatment, reference sediment, and the native sediment control treatment. Five of the replicates were used to evaluate the test; the sixth replicate was used as a water quality surrogate. Each chamber was shaken for 10 seconds and then placed in predetermined randomly-assigned positions in a water bath at 15°C.

To collect gametes for each test, spawning was induced by injecting 0.5 mL of 0.5M KCl into the coelomic cavity of the sand dollar. Spawning males and females were placed aboral surface down into a beaker with clean seawater. Gametes from at least two males and two females were used to initiate the test. Once sufficient eggs and sperm had been collected, the eggs were rinsed to remove any detritus or feces and a homogenized sperm solution was added to the egg solutions. Egg-sperm solutions were periodically homogenized with a perforated plunger during the fertilization process. Approximately 60 minutes after fertilization, embryo

solutions were checked for fertilization rate. Only those embryo stocks with >90% fertilization were used to initiate the tests. Embryo solutions were rinsed free of excess sperm and then combined to create one embryo stock solution. Density of the embryo stock solution was determined by counting the number of embryos in a sub sample of stock solution. This was used to determine the volume of embryo stock solution to deliver approximately 27,000 embryos to each test chamber. The tests were initiated by randomly allocating an aliquot of the embryo stock solution into each test chamber four hours after sediments were shaken and within two hours of egg fertilization. Embryos were held in suspension during initiation using a perforated plunger.

Dissolved oxygen, temperature, pH, and salinity were monitored in water quality surrogates to prevent loss or transfer of larvae by adhesion to water-quality probes. Overlying water ammonia and sulfides were measured on Day 0 and Day 3. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/4000V Spectrophotometer. Target test parameters were as follows:

Dissolved Oxygen:	≥4.8 mg/L
pH:	7.8 ± 0.5 units
Temperature:	15 ± 1°C
Salinity:	28 ± 1‰

The larval developmental tests were terminated approximately 71 hours after initiation when approximately 90% of the control larvae had achieved the pluteus stage. To terminate the test, the overlying seawater was decanted into a clean 1-L jar and mixed with a perforated plunger. From this container, a 10 mL sub sample was transferred to a scintillation vial and preserved in 5% buffered formalin. The number of normal and abnormal larvae was enumerated on an inverted microscope. Normal larvae included all pluteus stage larvae. Abnormal larvae included abnormally shaped pluteus larvae and all early stage larvae. A 72-h water-only reference-toxicant test with copper sulfate was conducted concurrently with each test.

2.5 MICROTOX[®] TEST

The Microtox[®] test was performed by Nautilus Environmental LLC. A complete report on the test is included as Appendix A.

2.6 DATA ANALYSIS AND QA/QC

All water quality and endpoint data were entered into Excel spreadsheets. Water quality parameters were summarized by calculating the mean, minimum, and maximum values for each test treatment. Endpoint data were calculated for each replicate and mean values and standard deviations were determined for each test treatment.

All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting were reviewed for errors. Review counts were conducted on any apparent outliers.

For the larval test, the normalized combined mortality and abnormality endpoint was used to evaluate the test sediment. This was based on the number of normal larvae in the treatment and reference divided by the number of normal larvae in the control, as defined in Ecology (2005).

For SMS suitability determinations, comparisons were made according to SAPA and Fox et al. (1998). Data reported as percent mortality or survival was transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Wilk-

Shapiro test and equality of variance using Levene's test. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. A comparison of the larval endpoint, relative to the reference was made using an alpha level of 0.10. For samples failing to meet assumptions of normality, a Mann-Whitney test was conducted to determine significance. For those samples failing to meet the assumptions of normality and equality of variance, a t-test on rankits was used.

3.0 RESULTS

The results of the sediment testing, including a summary of test results and water quality observations are presented in this section. Data for each of the replicates, as well as laboratory bench sheets are provided Appendix B and statistical analyses are provided in Appendix C.

3.1 10-DAY AMPHIPOD BIOASSAY

A summary of test conditions is shown in Table 1, *A. abdita* survival is presented in Table 2, and a summary of water quality observations is presented in Table 3. Mean percent survival in the control was 91%, above the 90% acceptance criterion. This indicates that the test conditions were suitable for adequate amphipod survival.

Initial observations on the SBREF-80 samples showed high numbers of amphipods emerging from the sediment and mortalities. Initial sulfide measurements on the interstitial water for this sample were 13.1 mg/L S^{2-} and likely contributed to the amphipod response. To determine if the sulfides were responsible for the mortality, a second set of samples was set up and allowed to acclimate for three days while measuring ammonia and sulfides before initiating the test with amphipods. The acclimated sediment showed an acceptable reference sediment response and the results from this test were used for comparisons. This deviation was discussed with the AMEC project manager prior to initiating the test. A general discussion regarding acclimation of test sediments prior to testing was discussed with Department of Ecology.

The LC₅₀ for the cadmium reference-toxicant test was 0.58 mg Cd/L, which is within the control chart limits (0.12 to 1.14 mg Cd/L), indicating that the test organisms used in this study were of similar sensitivity of those previously tested at NewFields. Temperature and dissolved oxygen measurements were within acceptable limits throughout the test. Salinity was recorded above the recommended limit in the control sample and the Carr Inlet reference (CR-1), likely due to higher interstitial salinities in the sediments. The salinities in these two samples were constant throughout the tests and do not appear to have impaired survival which was acceptable at 90% for the Control and 85% for the CR-1 reference sample. The measurements of pH was just above the recommended range at the end of the test for several samples, but all measurements were 8.6 or below. This was within the tolerance range for this species and would not be expected to affect the test results. Initial and final interstitial ammonia concentrations were all below the threshold concentration of 30 mg/L total ammonia (Barton 2002). Initial and final interstitial sulfide concentrations were below 5 mg/L with the exception of the initial reading of 13.1 mg/L for sample SBREF-80 as discussed previously.

Mean mortality in the reference treatments were 15% (CR-1) and 19% (SBREF-80) which met the SMS (<25% mortality) performance criteria and indicated that the reference sediment was acceptable for suitability determination. Mean percentage mortality in the test treatments ranged between 71% and 90% (Table 2).

Test Conditions: PSEP A. abdita (SMS)						
Sample Identification	MP-1 to MP-13, Reference CR-1,	SBREF-80				
Data compled	8/26 – 8/28/2008 test samples; 9/12/2008 CR-1;					
Date sampled	9/16/2008 SBREF-80					
Date received at NewFields Northwest	8/29/2008; 9/12/2008; 9/17/2008					
Sample storage conditions	4°C, dark					
Weeks of holding	4 weeks					
Source of control sediment	Brezina and Associates (Dillon Be	each)				
Test Species	A. abdita					
Supplier	Brezina and Associates					
Date acquired	9/17/2008					
Acclimation/holding time	6 days					
Age class	Adult					
Test Procedures	PSEP 1995 with SMARM revision	S				
Regulatory Program	SMS					
Test location	NewFields Northwest Laboratory					
Test type/duration	10-Day static					
Test dates	9/23/08 - 10/3/08 ; 10/1/08-10/10/	08 acclimated SBREF-80				
Control water	North Hood Canal, sand filtered					
Test temperature	Recommended: 20 ± 1 °C	Achieved: 19.6 – 20.8 °C				
Test Salinity	Recommended: 28 ± 2 ppt	Achieved: 28-29 ppt test sediments, 29-31 Control and Reference sediments				
Test dissolved oxygen	Recommended: > 4.6 mg/L	Achieved: 5.6-8.9 mg/L				
Test pH	Recommended: 7.8 ± 0.5	Achieved: 7.4-8.6				
SMS control performance standard	Recommended: Control < 10% mortality	Achieved: 9%				
SMS reference performance standard	Recommended: Reference mortality < 25%	Achieved: 15% CR-1; 19% SBREF-80				
SMS pass/fail SQS	Treatment – Reference < 25% mortality = PASS	All Pass				
SMS pass/fail CSL	Treatment – Reference < 30% mortality = PASS	All Pass				
Reference Toxicant LC50	0.59 mg/L cadmium					
Acceptable Range	0.12 to 1.14 mg/L cadmium					
Test Lighting	Continuous UV exposure					
Test chamber	1-Liter Glass Chamber					
Replicates/treatment	5 + 2 surrogates (one that is used for WQ measurements throughout the test)					
Organisms/replicate	20					
Exposure volume	175 mL sediment/ 950 mL water					
Feeding	None					
Water renewal	None					
Deviations from Test Protocol	High salinities in Control and Refe pH above 8.3 on last days of test	erence samples in several samples				

Table 1. Test Condition Summary for Ampelisca abdita	а.
--	----

Sample ID	Mean survival (%)	Standard Deviation
Control	91	5.5
CR-1	85	9.4
SBREF-80	81	17.8
MP-1	82	8.4
MP-2	90	5.0
MP-3	76	8.2
MP-4	73	2.7
MP-5	71	2.2
MP-6	88	9.1
MP-7	74	14.7
MP-8	88	2.7
MP-9	75	22.9
MP-10	84	9.6
MP-11	83	17.2
MP-12	77	13.5
MP-13	72	16.8

Table 2. Test Results for Ampelisca abdita.

Table 3. Water Quality Summary for Ampelisca abdita.

Treatment	Dissolved Oxygen (mg/L)			Temperature (°C)			pH (units)			Salinity (ppt)		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.4	6.8	7.7	20.4	20.0	20.7	8.0	7.8	8.3	30.3	30.0	31.0
CR-1	7.4	6.8	7.7	20.3	20.0	20.6	8.0	7.7	8.3	30.1	29.0	31.0
SBREF-80	7.6	6.9	8.9	20.0	19.4	20.3	8.0	7.3	8.2	28.5	27.0	30.0
MP-1	7.3	6.6	7.7	20.3	20.0	20.7	7.9	7.7	8.2	26.9	26.0	28.0
MP-2	7.3	6.8	7.7	20.4	20.0	20.8	8.2	7.7	8.6	28.1	27.0	29.0
MP-3	7.0	6.0	7.6	20.0	19.6	20.5	8.1	7.5	8.5	27.9	27.0	29.0
MP-4	7.4	6.9	7.7	20.3	19.8	20.7	8.0	7.7	8.3	27.3	26.0	28.0
MP-5	7.4	6.8	7.7	20.3	20.0	20.7	8.1	7.7	8.3	28.1	27.0	29.0
MP-6	7.4	6.7	7.6	20.4	20.1	20.7	7.8	7.4	8.3	28.0	27.0	29.0
MP-7	7.4	7.0	7.6	20.4	20.0	20.7	8.2	7.9	8.6	28.3	28.0	29.0
MP-8	7.0	5.6	7.6	20.2	19.9	20.6	7.8	7.5	8.1	28.2	28.0	29.0
MP-9	7.3	6.8	7.6	20.1	19.8	20.6	7.9	7.6	8.2	28.1	27.0	29.0
MP-10	7.2	6.7	7.6	20.3	19.9	20.7	8.0	7.6	8.3	28.2	28.0	29.0
MP-11	7.5	7.0	7.8	20.3	19.8	20.6	8.1	7.7	8.4	28.5	28.0	30.0
MP-12	7.5	6.9	7.7	20.3	19.9	20.7	8.1	7.8	8.4	28.2	27.0	29.0
MP-13	7.5	7.0	7.8	20.4	20.0	20.7	8.3	7.8	8.6	28.4	28.0	29.0

3.2 LARVAL DEVELOPMENT BIOASSAY

Test conditions for the larval development bioassay are shown in Table 4, a summary of the test results from the *D. excentricus* test is presented in Table 5 and a summary of water quality observations is shown in Table 6. The larval test was validated by 11% mean combined mortality in the control treatment, within the acceptability criteria of <30%. Water quality parameters pH and salinity remained within the target limits throughout the 70-hour test. Dissolved oxygen below the recommended range was observed in one test chamber on Day 1 of the test, aeration was applied to the sample to increase the dissolved oxygen. Temperature observations were slightly above the recommended range on the last day of the test in several chambers. The deviations did not exceed 0.5 °C. Neither of these deviations were large enough to invalidate the test and did not appear to affect larval development.

Ammonia values detected in the test chambers were below the NOEC values for *D. excentricus*. The EC₅₀ for the copper reference-toxicant test for proportion normal was 12.5 μ g Cu/L, within the control chart limits (5.4 to 16.7 μ g Cu/L). The results of the reference-toxicant test indicate that the test organisms used in this study were similar in sensitivity to those previously tested at NewFields. Mean control-normalized normal survival in the reference sediments were 87.3% (CR-1) and 93.9% (SB Ref-80); mean normal survival in the test treatments ranged from 87.3% to 99.4%.

Test Conditions: PSEP D. excentricus (SMS)						
Sample Identification	MP-1 to MP-13, Reference CR-1, SBREF-	80				
Date sampled	8/26 – 8/28/2008 test samples; 9/12/2008 (9/16/2008 SBREF-80	CR-1;				
Date received at NewFields Northwest	8/29/2008; 9/12/2008; 9/17/2008					
Sample storage conditions	4°C, dark					
Weeks of holding	4 weeks					
Test Species	D. excentricus					
Supplier	Field collected (north Hood Canal)					
Date acquired	9/23/2008					
Acclimation/holding time	1 dav					
Age class	<2-h old embryos					
Test Procedures	PSEP 1995 with SMARM revisions					
Regulatory Program	SMS					
Test location	NewFields Northwest Laboratory					
Test type/duration	48-96 Hour static test					
Test dates	9/24/08-9/27/08 – 70 hours					
Control water	Sand-filtered North Hood Canal sea water					
Test temperature	Recommended: 15 \pm 1 °C	Achieved: 14.3-16.5 °C				
Test Salinity	Recommended: 28 ± 2 ppt	Achieved: 28-30 ppt				
Test dissolved oxygen	Recommended: > 4.8 mg/L	Achieved: 4.2-8.4 mg/L				
Test pH	Recommended: 7.8 ± 0.5	Achieved: 7.3-7.9				
Stocking Density	Recommended: 20 – 30 embryos/mL	Achieved: 24 embryos/mL				
SMS control performance standard	Recommended:	Achieved: 89%				
	Control normal survival <u>></u> 70%					
SMS reference performance standard	Recommended: Reference survival/Control survival > 65%	Achieved: CR-1 87% SB Ref-80 94%				
SMS pass/fail SQS	(Treatment normal/Control Normal)/ (Reference normal/ Control Normal) > 0.85 = PASS	All pass				
SMS pass/fail CSL	(Treatment normal/Control Normal)/ (Reference normal/ Control Normal) > 0.70 = PASS	All pass				
Reference Toxicant LC50	12.5 mg/L copper					
Acceptable Range	5.4 to 16.7 mg/L copper					
Test Lighting	Continuous UV Exposure					
Test chamber	1-Liter Glass Chamber					
Replicates/treatment	5 + 1 surrogate (used for WQ measurements throughout the test)					
Exposure volume	18 g sediment/ 900 mL water					
Feeding	none					
Water renewal	none					
Deviations from Test Protocol	Low DO in one sample, aeration applied. Temperature above recommended range on last day of test in several samples.					

Table 4. Test Condition Summary for Dendraster excentricus.

Treatment	Mean Normal Survival (%) ¹	Standard Deviation
Control	89.0	6.4
CR-1	87.3	13.2
SBREF-80	93.9	7.0
MP-1	97.9	3.1
MP-2	96.4	4.7
MP-3	93.0	6.9
MP-4	91.5	7.3
MP-5	87.3	10.6
MP-6	99.4	1.2
MP-7	97.9	2.2
MP-8	94.2	5.6
MP-9	96.3	6.5
MP-10	95.3	4.4
MP-11	98.1	4.3
MP-12	95.7	5.8
MP-13	95.5	4.4

Table 5. Test Results for Dendraster excentricus.

¹ Reference and treatment normal survivals are normalized to Control normal survival.

Treatment	Dissolved Oxygen (mg/L)		Temperature (°C)			pH (units)			Salinity (ppt)			
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.6	7.2	7.9	15.7	15.3	16.0	7.7	7.4	7.8	29.0	29.0	29.0
CR-1	6.9	6.0	7.7	15.8	15.1	16.1	7.7	7.6	7.8	29.0	29.0	29.0
SBREF-80	6.8	4.2	8.6	15.4	14.4	16.2	7.8	7.7	7.8	28.8	28.0	29.0
MP-1	5.8	5.2	6.6	15.5	14.7	16.0	7.5	7.3	7.8	28.8	28.0	29.0
MP-2	6.1	5.5	6.6	15.6	15.1	15.9	7.7	7.5	7.8	28.8	28.0	29.0
MP-3	8.2	8.0	8.4	14.9	14.3	15.4	7.8	7.7	7.9	28.8	28.0	29.0
MP-4	8.0	7.5	8.2	14.9	14.3	15.6	7.6	7.4	7.7	28.8	28.0	29.0
MP-5	6.1	5.2	7.0	15.6	15.0	16.5	7.6	7.4	7.7	29.0	29.0	29.0
MP-6	6.3	5.6	7.2	16.0	15.2	16.4	7.6	7.4	7.8	29.3	29.0	30.0
MP-7	5.9	5.4	6.6	15.5	15.0	15.8	7.6	7.5	7.8	29.0	29.0	29.0
MP-8	6.2	5.5	6.8	15.5	15.2	16.2	7.5	7.3	7.7	29.0	29.0	29.0
MP-9	6.1	5.5	7.0	15.7	14.9	16.2	7.6	7.4	7.8	29.3	29.0	30.0
MP-10	5.8	5.2	6.9	15.6	14.8	16.3	7.6	7.4	7.8	29.3	29.0	30.0
MP-11	6.5	5.7	7.3	15.8	15.5	16.2	7.7	7.4	7.8	29.0	29.0	29.0
MP-12	6.8	6.5	7.0	15.6	15.0	16.1	7.7	7.6	7.8	28.8	28.0	29.0
MP-13	6.0	5.6	6.5	15.6	15.1	16.0	7.7	7.5	7.8	29.0	29.0	29.0

 Table 6. Water Quality Summary for Dendraster excentricus.

4.0 DISCUSSION

Sediments were evaluated based on Sediment Management Standards (SMS) criteria. The biological criteria are based on both statistical significance (a statistical comparison) and the degree of biological response (a numerical comparison). The SMS criteria are derived from the Washington Department of Ecology Sampling and Analysis Plan Appendix (WDOE 2008). Comparisons were made for each treatment against each of the reference sample. Two numerical comparisons were made under SMS, the Sediment Quality Standards (SQS) and the Cleanup Standards Limit (CSL).

4.1 AMPHIPOD TEST SUITABILITY DETERMINATION

Under the SMS program, a test treatment will fail SQS if mean mortality in the test is >25% more than the mean mortality in the appropriate reference sediment and the difference is statistically significant ($p \le 0.05$). Treatments fail the CSL if mean mortality in the test treatment >30%, relative to the reference sediment and the difference is statistically significant.

Test treatment MP-5 showed significantly higher mortality than the CR-1 reference sediment, but the mortality relative to the reference did not exceed the numerical criteria, therefore all test treatments meet the SQS and CSL for *A. abdita* (Table 7).

Treatment	Mean Mortality (%)	Estimated Percent Fines*	Reference Comparison**	Statistically More than Reference?	M _T -M _R	Fails SQS?	Fails CSL?
Control	9						
CR-1	15	60%					
SBREF-80	19	80%					
MP-1	18	83%	SBREF-80	No	-1	No	No
MP-2	10	81%	SBREF-80	No	-9	No	No
MP-3	24	67%	CR-1	No	9	No	No
MP-4	27	77%	SBREF-80	No	8	No	No
MP-5	29	66%	CR-1	Yes	14	No	No
MP-6	12	61%	CR-1	No	-3	No	No
MP-7	26	70%	SBREF-80	No	7	No	No
MP-8	12	60%	CR-1	No	-3	No	No
MP-9	25	78%	SBREF-80	No	6	No	No
MP-10	16	74%	SBREF-80	No	-3	No	No
MP-11	17	84%	SBREF-80	No	-2	No	No
MP-12	23	80%	SBREF-80	No	4	No	No
MP-13	28	76%	SBREF-80	No	9	No	No

Table 7. SMS Comparison for Ampelisca abdita.

SQS: Statistical Significance and M_T - M_R >25%

CSL: Statistical Significance and MT-MR >30%

* Percent fines for reference samples determined in the field. Percent fines for test treatments supplied by client (AMEC)

** Reference sediment pairings with test sediment based on similarity of percent fines and were approved by Pete Adolphson of Ecology.

4.2 LARVAL TEST SUITABILITY DETERMINATION

Larval test treatments fail SQS criteria if the percentage of normal larvae in the test treatment is significantly lower than that of the reference and if the normal larval development in the test

treatment is less than 85% of the normal development in the reference. Treatments fail CSL criteria if the normal development is less than 70% of the response observed in the reference.

All test treatments met the SQS and CSL criteria (Table 8).

Treatment	Mean Normal Survival (%)	Estimated Percent Fines*	Reference Comparison**	Statistically Less than Associated Reference?	Normal Survival Comparison to Reference (N _T /N _C)/(N _R /N _C)	Fails SQS?	Fails CSL?
Control	89.0						
CR-1	87.3	60%					
SBREF80	93.9	80%					
MP-1	97.9	83%	SBREF-80	No	1.04	No	No
MP-2	96.4	81%	SBREF-80	No	1.03	No	No
MP-3	93.0	67%	CR-1	No	1.06	No	No
MP-4	91.5	77%	SBREF-80	No	0.97	No	No
MP-5	87.3	66%	CR-1	No	1.00	No	No
MP-6	99.4	61%	CR-1	No	1.14	No	No
MP-7	97.9	70%	SBREF-80	No	1.04	No	No
MP-8	94.2	60%	CR-1	No	1.08	No	No
MP-9	96.3	78%	SBREF-80	No	1.03	No	No
MP-10	95.3	74%	SBREF-80	No	1.01	No	No
MP-11	98.1	84%	SBREF-80	No	1.04	No	No
MP-12	95.7	80%	SBREF-80	No	1.02	No	No
MP-13	95.5	76%	SBREF-80	No	1.02	No	No

 Table 8. SMS Comparison for Dendraster excentricus.

SQS: Statistical Significance and $M_T/M_R < 0.85$

CSL: Statistical Significance and $M_T/M_R < 0.70$

* Percent fines for reference samples supplied by NewFields. Percent fines for test treatments supplied by client (AMEC)

** Reference sediment pairings with test sediment based on similarity of percent fines were approved by Pete Adolphson of Ecology

4.3 MICROTOX TEST SUITABILITY DETERMINATION

The SMS program criteria state that a test sediment fails the SQS criteria when the mean light output of the highest concentration of the test sediment is less than 80% of the mean light output of the reference sediment and the two means are statistically different ($p \le 0.05$). No criteria exist for the Microtox test for CSL.

The SBREF-80 reference sample performed poorly in the Microtox test; therefore in the test batches using this reference sample, the test treatments were compared to the Control sample (deviation approved by Pete Adolphson of Ecology via email to Nautilus). Treatments MP-4, MP-9, MP-10, MP-11, and MP-13 fail SQS criteria compared to the Control; treatments MP-5 and MP-8 fail SQS compared to reference CR-1 (Table 9).

	5-n	ninute reading	15 m					
Treatment	Mean % output	Statistically Less than Reference and > 20% Difference?	Mean % output	Statistically Less than Reference and > 20% Difference?	Fails SQS?			
Test 1 ¹								
Control	96 ± 2		83 ± 2					
SBREF-80	76 ± 3		67 ± 2					
MP-1	76 ± 5		70 ± 3					
MP-2	102 ± 3		98 ± 3					
MP-4	67 ± 3	Yes	62 ± 2	Yes	Yes			
MP-7	93 ± 3		70 ± 5					
Test 2 ¹								
Control	98 ± 2		93 ± 4					
SBREF-80	66 ± 1		68 ± 4					
MP-9	71 ± 4	Yes	71 ± 8	Yes	Yes			
MP-10	74 ± 3	Yes	72 ± 2	Yes	Yes			
MP-11	66 ± 3	Yes	63 ± 4	Yes	Yes			
MP-12	112 ± 3		121 ± 5					
Test 3 ¹								
Control	96 ± 3		99 ± 5					
SBREF-80	72 ± 5		76 ± 4					
MP-13	43 ± 2	Yes	46 ± 2	Yes	Yes			
Test 4								
Control	92 ± 2		81 ± 5					
CR-1	102 ± 2		91 ± 3					
MP-3	104 ± 2		94 ± 3					
MP-5	73 ± 6	Yes	72 ± 4	Yes	Yes			
MP-6	97 ± 1		90 ± 5					
MP-8	74 ± 11	Yes	67 ± 7	Yes	Yes			
¹ Reference sample was significantly less than Control; test treatments compared to the Control. SQS: > 20% difference and statistically significant difference (p<0.05) relative to the reference.								

Table 9. SMS Comparison for Microtox®.

5.0 REFERENCES

- AMEC, 2008. Sediment Investigation Work Plan March Point (Whitmarsh) Landfill Skagit County, Washington. Submitted to Skagit County Public Works, Mount Vernon, Washington by AMEC Geomatrix, Inc. Lynwood, Washington.
- Barton, J, 2002. DMMP/SMS Clarification Paper: Ammonia and Amphipod Toxicity Testing. Presented at the 14th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Ecology 2005. DMMP/SMS Clarification Paper: Interpreting Sediment Toxicity Tests: Consistency between Regulatory Programs. Presented at the 17th Annual Sediment Management Annual Review Meeting by Tom Gries, Toxics Cleanup Program/Sediment Management Unit, Washington Department of Ecology, Olympia, Washington.
- Ecology 2008. Sediment Sampling and Analysis Plan Appendix: Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards (Chapter 173-204 WAC), Sediment Management Unit, Department of Ecology, Bellevue, Washington. Revised February 2008.
- Fox, D, DA Gustafson, and TC Shaw. 1998. Biostat Software for the Analysis of DMP/SMS. Presented at the 10th Annual Sediment Management Annual Review Meeting.
- Kendall, D, 1996. DMMP/SMS Clarification Paper: Neanthes 20-Day Growth Bioassay Further Clarification on Negative Control Growth Standard, Initial Size and Feeding Protocol. Presented at the 9th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Kendall, D, and Barton, J, 2004. DMMP/SMS Clarification Paper: Ammonia and Sulfide Guidance Relative to Neanthes Growth Bioassay. Presented at the 16th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- PSEP 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Puget Sound Water Quality Authority, Olympia, Washington.
- PSEP. 1995. Puget Sound Protocols and Guidelines. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- PSEP 1997. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.

BIOLOGICAL TESTING OF SEDIMENT FOR MARCH POINT (WHITMARSH) LANDFILL ANACORTES, WASHINGTON

APPENDIX A

MICROTOX REPORT

Toxicological Evaluation of Sediment March Point Landfill

Microtox

Report date: November 7, 2008

Submitted to:

NEWFIELDS NORTHWEST Port Gamble, WA

Washington Laboratory 5009 Pacific Hwy East Suite 2 Tacoma, WA 98424

TABLE OF CONTENTS

Page

TAI	BLE OF CONTENTS I
SIG	NATURE PAGE
1.0	INTRODUCTION1
2.0	METHODS
3.0	RESULTS
4.0	DISCUSSION
5.0	REFERENCES

LIST OF TABLES

Table 1.	Summary of methods for the Microtox test,
Table 2.	Results of Microtox tests showing change in light output of samples as a percentage
	of change in light output of control after 5 and 15 minute of exposure 4
Table 3.	Statistical analyses of Microtox results. Shaded data indicates > 20% difference and
T-1.1. 4	statistically significant difference ($p<0.05$) relative to the control or reference5
Table 4.	Reference toxicant test results

LIST OF APPENDICES

APPENDIX A – Results Summaries

APPENDIX B - Laboratory Bench Sheets

APPENDIX C - Water Quality Results

APPENDIX D - Reference Toxicant Tests

APPENDIX E - Chain-of Custody Forms

SIGNATURE PAGE

Ein Talleps

Eric Tollefson Project Manager

٩,

Mary Ann Rempel-Hester Laboratory Manager

This report has been prepared based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party.

Toxicity Evaluation For NewFields March Point Landfill Microtox Tests September 2008

1.0 INTRODUCTION

Sediment samples were collected and evaluated for toxicity as part of a project being conducted by NewFields Northwest. Sediment samples were tested for toxicity using Microtox tests.

2.0 METHODS

2.1 Samples

Thirteen sediment and two reference site subsamples were collected by NewFields personnel on August 26, 27, 28, 2008 and September 17, 2008 and were delivered on September 3 and September 18 to the Nautilus Environmental laboratory in Tacoma, WA. The condition of the sample containers were inspected upon receipt and the identities compared with the information provided on the chain-of-custody forms. The samples were stored at $4\pm2^{\circ}$ C in the dark prior to test initiation.

2.2 Test Procedures

The luminescent marine bacterium *Vibrio fischeri* was used as the test organism for the Microtox test. The bacteria were exposed to porewater extracted from sediment samples and light readings were measured after 5 minutes and 15 minutes of exposure. Test equipment included the Microtox Model 500 Analyzer, which measures light output and is equipped with a 15°C chamber to maintain test temperature in the samples and a 4°C chamber to keep the rehydrated bacteria chilled.

Vials of freeze-dried bacteria (Microtox® Acute Reagent Lot # 8E1080, Expiration date 8/2010) were obtained from Strategic Diagnostics, Inc. and stored at -20°C until use. On the day of the test, a vial was rehydrated with 1.0 ml of Microtox Reconstitution Solution, mixed thoroughly, and allowed to equilibrate for 30 minutes at 4°C. The bacteria were used within 2 hours of rehydration.

The tests were conducted in accordance with WDOE (2008) test protocol. These methods are summarized in Table 1. Approximately 50 ml of porewater was extracted from each sample by centrifuging for 30 minutes at 4500 G. The DO in each sample was between 50 and 100 percent

saturation and, as a result, the samples did not require aeration. The pH was adjusted to 7.8 to 8.2 using NaOH or HCl, if necessary. The control was deionized water adjusted to 20 ppt with artificial seasalt. Each porewater was tested within 3 hours of extraction.

Tests were conducted using five replicates. Disposable glass cuvettes were placed in the Microtox test wells and 1 ml of salinity adjusted porewater was added. The rehydrated bacteria (reagent) were thoroughly mixed and 10 μ l was added to each test cuvette. After an initial incubation period of 5 minutes, the control cuvette was placed in the read chamber of the Microtox Analyzer to set the instrument. Initial light readings (I₀) were then taken by placing each cuvette in the read chamber of the Microtox Analyzer and measurements were recorded on a data sheet. Light output was measured in each cuvette after an additional 5 minutes (I₅) and 15 minutes (I₁₅) of exposure.

Test acceptability criterion was final mean control light output greater than or equal to 80 percent of initial control mean output. The reference sample acceptability criterion was a final mean output greater than or equal to 80 percent of control final mean output. The data were evaluated statistically by conducting one-tailed t-tests (or Man-Whitney U tests for non-normal distributed data) on the change in output over time for porewater extracts compared to the reference. Where the reference did not meet acceptability criteria, comparisons were made against the control.

A reference toxicant test using phenol was conducted in conjunction with the soil tests to ensure that the sensitivity of the test was within the acceptable range of historical values determined in this laboratory.

Test date	September 22, 25, October 2, 2008
Test organism source	Strategic Diagnostics
Batch number and expiration date	Lot#8E1080, Expiry 8/2010
Control	Saltwater (20 ppt) prepared with Crystal Sea artificial seasalt
Sample preparation	Centrifugation at 4500 G for 30 minutes: salinity adjustment to
	20 ppt using Crystal Sea salt; pH adjustment to 7 8-8 2 ppt
Test chamber	Glass cuvette
Test volume	1 mL
Volume of inoculum/replicate	10 μL
Number of replicates/sample	5
Test temperature	15 ± 1°C
Aeration	None
Reference toxicant	Phenol

Table 1.Summary of methods for the Microtox test.

3.0 **RESULTS**

The results of toxicity tests conducted using Microtox are provided in Tables 2 and 3.

Table 2.Results of Microtox tests showing change in light output of samples as a
percentage of change in light output of control after 5 and 15 minute of
exposure.

Cample	Change in light output as a % of Control	Change in light output as a % of Control
Sample	(5 minutes)	(15 minutes)
Test #1		
SBREF80	79	81
MP-1	80	85
MP-2	107	118
MP-4	70	74
MP-7	98	84
Test #2		
SBREF80	67	73
MP-9	72	77
MP-10	75	78
MP-11	67	68
MP-12	113	131
Test #3		
SBREF80	74	77
MP-13	45	47
Test #4		
CR-1	110	114
MP-3	113	117
MP-5	79	90
MP-6	105	111
MP-8	80	83

Toxicity Evaluation For NewFields March Point Landfill Microtox Tests September 2008

····	5-minute	reading	15 minute	e reading
Sample	Mean % change	Statistical	Mean % change	Statistical
	in light output	Comparison To	in light output	Comparison To
<u>Test 1</u>				
Control	96 ± 2	-	83 ± 2	
SBRef80	76 ± 3		67 ± 2	
MP-1	76 ± 5	Control	70 ± 3	Reference
MP-2	102 ± 3	Control	98 ± 3	Reference
MP-4	67 ± 3	Control	62±2	Reference
MP-7	93 ± 3	Control	70 ± 5	Reference
<u>Test 2</u>				
Control	98 ± 2		93 ± 4	
SBRef80	66 ± 1		68 ± 4	
MP-9	71 ± 4	Control	71±8	Control
MP-10	74 ± 3	Control	72 ± 2	Control
MP-11	66 ± 3	Control	.63 ± 4	Control
MP-12	112 ± 4	Control	121 ± 5	Control
<u>Test 3</u>				
Control	96 ± 3		99 ± 5	
SBREF80	72 ± 5		76 ± 4	*
MP-13	43±2	Control	46 ± 2	Control
<u>Test 4</u>				
Control	92 ± 2		81 ± 5	
CR-1	102 ± 2		91 ± 3	
MP-3	104 ± 2	Reference	94 ± 3	Reference
MP-5	73±6	Reference	72 ± 4	Reference
MP-6	97 ± 1	Reference	90 ± 5	Reference
MP-8	74 ± 11	Reference	67 ± 7	Reference

Table 3. Statistical analyses of Microtox results. Shaded data indicates > 20% difference and
statistically significant difference (p<0.05) relative to the control or reference</th>

3.1 QA/QC

The Microtox tests met control acceptance criteria and there were no deviations from protocol. There was no correlation between turbidity and initial light output ($R^2 \ge 0.01$) therefore it is unlikely there was interference with the reading.

Results of reference toxicant tests conducted in conjunction with this testing program are provided in Table 4. The results of these test fell within the range of mean \pm two standard deviations of historical results for *Vibrio fischeri*, indicating that the sensitivity of the test organisms was appropriate.

Exposure Duration	Test date	Toxicant	EC50	Acceptable Range	CV (%)
5 Minutes	Sontombor 22, 2008	Dis a se a l	35.8 mg/L	18.8-49.8	22.6
15 Minutes	September 22, 2006	Phenoi	49.5 mg/L	27.8-50.9	14.6
5 Minutes	Sontombor 25, 2000	D11	28.3 mg/L	18.9-49.8	22.5
15 Minutes	September 25, 2008	Frienol	33.7 mg/L	27.8-50.9	14.7
5 Minutes	October 2 2008	T 011	33.6 mg/L	19.2-49.9	22.2
15 Minutes	October 2, 2008	Pnenol	42.1 mg/L	30.3-50.0	12.2

Table 4.Reference toxicant test results.

4.0 DISCUSSION

Samples MP-4, MP-5, MP-8, MP-9, MP-10, MP-11, and MP-13 exceeded sediment quality standards for microtox analysis per WDOE 2008 guidelines.

5.0 REFERENCES

- American Society of Testing and Materials (ASTM). 2000. Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. ASTM Designation E 1706-00.
- U.S. Environmental Protection Agency (USEPA). 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA/600/R-99/064.
- Washington Department of Ecology (WDOE). 2008. Sediment Sampling and Analysis Plan Appendix: Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards Publication No. 03-09-043. Revised February 2008.

APPENDIX A – Results Summaries

Site				Light F	Reading				T _(moan) /	Quality Co Change in control light readings compared to initial control	ntrol Steps Evaluation of initial light output in site sediments
	Reading	1	2	3	4	5	Mean	St.Dev.	C _(mean)	F _{c{mean}} /I _{c{mean}}	(0)T(mean)/((0)C(mean)
	1 ₀₀₁	95	97	99	105	106	100			ig interest in the	
	I ₍₅₎	92	91	92	104	101	96		107 (C. S.)	0.96	
CON	(15)	78	79	82	87	91	83			0,83	
	C ₍₅₎	0.97	0.94	0.93	0,99	0.95	0.96	0.02			
	C(15)	0.82	0.81	0.83	0.83	0.86	0.83	0.02			
	, l ₍₀₎	85	76	78	76	76	78				0.78
	l _(S)	79	71	78	75	78	76		advisi palist 19. stanic - As		
SBREF80	l ₍₁₅₎	68	65	68	68	69	68				
	T ₍₅₎	0.79	0.71	0.78	0.75	0.78	0.76	0.03	0,79		1. S.
	T ₍₁₅₎	0.68	0.65	0.68	0.68	0.69	0.67	0.02	0.81		
	l ₍₀₎	77	80	77	77	76	77				0.77
	ا ₍₅₎	70	81	80	74	78	77				
MP-1	l ₍₁₅₎	65	70	72	72	74	71				
	T ₍₅₎	0.70	0.81	0.80	0.74	0.78	0,76	0.05	0.80		
	T ₍₁₅₎	0.65	0.70	0.72	0.72	0.74	0,70	0.03	0.85		an a
	l _{ton}	80	85	78	77	83	81				0,80
	ا ₍₅₁	81	92	78	78	84	83				
MP-2	l ₍₁₆₎	76	88	76	76	80	79				
	T(8)	1.01	1.08	1.00	1.01	1.01	1.02	0.03	1.07		
	T ₍₁₅₎	0.95	1.04	0.97	0.99	0.96	0.98	0.03	1.18	a series and the series of the	
	1 ₍₀₎	73	67	66	70	63	68			1 deservations	0.68
	1(5)	70	66	66	71	65	68				Salas As tra
MP-4	I(15)	65	61	60	62	61	62				
	T ₁₅₁	0.70	0.66	0.66	0.71	0.65	0.67	0.03	0.70	n i se de sel sinj Transforme	200 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
	T ₍₁₅₎	0.65	0.61	0.60	0.62	0.61	0.62	0.02	0,74		
	I ₍₀₎	83	87	86	86	88	86		An est al l		0,86
	1 ₍₅₎	74	82	82	83	81	80				
MP-7	(15)	52	64	62	64	58	60				
	T ₍₅₁	0.89	0.94	0.95	0.97	0,92	0.93	0.03	0.98		
	T ₍₁₅₎	0.63	0.74	0.72	0.74	0.66	0.70	0,05	0.84		and an

Appendix Table A. Microtox 100 Percent Sediment Porewater Test Sites SBREF80,MP-1,MP-2,MP-4,MP-7 NewFields Northwest Test Date: October 2, 2008

 $I_{(0)}$ is the light reading after the initial five minute incubation period

 $I_{(5)}$ is the light reading five minutes after $I_{(0)}$

 $I_{(15)}$ is the light reading fifteen minutes after $I_{(0)}$

 $C_{(0)}$, $R_{(0)}$, and $T_{(0)}$ are the changes in light readings from the initial reading in each sample container for the control, reference sediment

Quality Control Steps:

1. Is control final mean output greater than or equal to 80% control initial mean output?

$I_{(5)}$: $F_{c(ms)}$	_{an)} /l _{c(me}	96%	YES	
I - E	//	-	0.00/	

YES: Control results are acceptable and can be used for statistical analyses.

NO: Control results are unacceptable (retest required).

2. Are test initial mean values greater than or equal to 80% of control initial mean values?

S1	T(mean)/IC(mean):	78%	NO
S2	I _{T(mean)} /I _{C(mean}):	77%	NO
S3	t _{T(mean)} /i _{C(mean}):	80%	YES
\$ 4	i _{T(mean)} /i _{C(mean}):	68%	NO

S5 I_{T(mean)}/I_{C(mean}): 86% YES

YES: Use initial site values to calculate change in final light readings

Appendix Table A. Microtox 100 Percent Sediment Porewater Test Sites SBREF80, MP-9, MP-10, MP-11, MP-12 NewFields Northwest Test Date: September 22, 2008

									y	····	
		,,,, <u></u> ,,,, - ,		Light R	eading					Quality Co Change in control light readings	ntrol Steps Evaluation of initial light
									. .	compared to	output in site sediments
Site				Replicate_		<u> </u>	Mean	St.Dev.	T _(mean) /	Formerny lormerny	(R)Timean) ⁽¹ (0)Cimean
	Reading	1	<u>∠</u>			91	91		<u>*(mean)</u>		
CON	(0)	96	00 90	31 04	371 RQ	92	90			0.98	
	1(5)	92	00 93	31 87	84 84	87	85			0.93	anga si asi
CON	(15)	0.00	<u></u>	1.00	n 08	1.01	0.98	0.02			
	C(5)	0.95	0,90	1.00	0.90	0.96	0.93	0.04			
	C(15)	0.00	 	61	61	60	61			ar starting pr	0,66
	101	64	55	61	62	60	61			and the second	
SBREF80	4(5) 	10	57	67	64	60	62				
	·(15)	0.67	0.65	0.67	0.68	0.66	0.66	0.01	0.67	Section of the last	C. See 8
	1(5) Tuo	0.67	0.62	0.73	0.70	0,66	0.68	0.04	0.73		
	- (15)	70	62	65	59	63	64				0.70
	'(0) 	69	64	68	59	66	65		1075-67	ala di tan	Paris -
MP-9	451	77	62	63	57	67	65				Sec. Sec. 3
	Tus	0.75	0.70	0.74	0.65	0.72	0.71	0.04	0.72		
	τ(15)	0,84	0.68	0.69	0.62	0.73	0.71	0.08	0.77		
	I _m	68	70	67	66	62	67				0.73
	₁₅₁	70	71	65	66	64	67			tes mer se de la	
MP-10	l ₍₁₅₎	67	67	67	66	63	66		DES SE		
	T(5)	0.77	0.78	0,71	0.72	0.70	0,74	0.03	0.75		
	T ₍₁₅₎	0,73	0,73	0.73	0.71	0.69	0,72	0.02	0,78		
	l _{to)}	56	58	63	54	61	58			and the second	0.64
	1 ₍₅₎	61	61	62	55	61	60				
MP-11	I ₍₁₅₎	58	61	60	52	59	58		1999	4	
	T ₍₅₎	0.67	0.67	0.68	D.60	0.67	0.66	0.03	0.67		
	T ₍₁₅₎	0.63	0.67	0.66	0.57	0.65	0.63	0.04	0.68		
	L _{ren}	72	74	72	79	80	75				8 0,62
1	I _(S)	81	79	78	91	92	84				
MP-12	I ₍₁₅₎	83	89	85	101	100	92			-	
	T ₍₅₎	1,13	1.07	1.08	1.15	1.15	1.12	0.04	1.13	1. A.	A Shering
1	Tos	1.15	1.20	1.16	1.28	1.25	1.21	0.05	1.31	制度的。在这个主	

 $I_{(0)}$ is the light reading after the initial five minute incubation period

 $l_{(5)}$ is the light reading five minutes after $l_{(0)}$

 $I_{(15)}$ is the light reading fifteen minutes after $I_{(0)}$

C₀, R₀, and T₀ are the changes in light readings from the initial reading in each sample container for the control, reference sediment

Quality Control Steps:

1. Is control final mean output greater than or equal to 80% control initial mean output?

I ₍₅₎ :F _{c(mean)} /I _{c(mean)} :	98%	YES
Insti-Fermean/Informean):	93%	YES

 I(15):Fc(mean)/lc(mean):
 93%
 YES

 YES: Control results are acceptable and can be used for statistical analyses.

NO: Control results are unacceptable (retest required).

2. Are test initial mean values greater than or equal to 80% of control initial mean values?

St	I _{T(mean)} /I _{C(mean}):	66%	NO
S 2	IT(mean)/IC(mean):	70%	NO
S 3	I _{T(mean)} /I _{C(mean}):	73%	NO
S4	(_{T(mean)} /l _{C(mean}):	64%	NO
S5	IT(mean)/IC(mean):	82%	YES

YES: Use initial site values to catculate change in final light readings

Appendix Table A. Microtox 100 Percent Sediment Porewater Test Sites SBREF80, MP-13 NewFields Northwest Test Date: September 22, 2008

				Light F	₹eading					Quality Co Change in control light readings compared to	ntrol Steps Evaluation of initial light output in site
Site	Boading			Replicate			T		T _(mean) /	Initial control	sediments
·	Reading	<u>_</u>	2	3	4	<u> </u>	Mean	St.Dev.	C(mean)	F _{c(mean)} /I _{c(mean)}	(0)T(mean) ^{/I} (0)C(mean)
	1(0)	92	95	95	94	95	94				$\{0,0\}$
	1 ₍₅₎	92	92	94	86	90	91			0.96	
CON	l ₍₁₅₎	91	88	100	96	89	93		- 13. 35	0.99	
	C ₍₅₎	1.00	0.97	0.99	0.91	0.95	0.96	0.03			
	C ₍₁₅₎	0.99	0.93	1.05	1.02	0.94	0.99	0.05	Sec. As		
	1(0)	74	69	64	63	61	66				0.70
l	1 ₍₅₎	74	72	64	64	64	68				and the second
SBREF80	I ₍₁₅₎	76	76	67	71	69	72				
	Т(5)	0.79	0.76	0.68	0.68	0.68	0.72	0.05	0.74		
	T ₍₁₅₎	0.81	0.81	0.71	0.75	0.73	0.76	0.04	0.77		
	1 ₍₀₎	38	41	39	41	40	40				0.42
	1 ₍₆₎	38	42	40	42	41	41				
MP-13	I ₍₁₅₎	42	44	43	46	44	44				
	T ₍₆₎	0.40	0.45	0.42	0.45	0.44	0.43	0.02	0.45		
i	Τ ₍₁₅₎	0.45	0,47	0.46	0.49	0.47	0.46	0.02	0.47		

 $I_{\left(0\right)}$ is the light reading after the initial five minute incubation period

 $I_{(5)}$ is the light reading five minutes after $I_{(0)}$

 $I_{(15)}$ is the light reading fifteen minutes after $I_{(0)}$

C₍₀, R₀, and T₀ are the changes in light readings from the intial reading in each sample container for the control, reference sediment

Quality Control Steps:

1. Is control final mean output greater than or equal to 80% control initial mean output?

l ₍₅₎ :F _{c(mean)} /i _{c(mean)} :	96%	YE\$
$I_{(15)}$: $F_{c(mean)}/I_{c(mean)}$:	99%	YES

YES: Control results are acceptable and can be used for statistical analyses.

NO: Control results are unacceptable (retest required).

2. Are test initial mean values greater than or equal to 80% of control initial mean values?

70%	NO
	70%

\$2	I _{T(mean)} /I _{C(mean}):	42%	NO
	-) (incan); "C(incan),"		

YES: Use initial site values to calculate change in final light readings

Appendix Table A. Microtox 100 Percent Sediment Porewater Test Sites CR-1, MP-3, MP-5, MP-6, MP-8 NewFields Northwest Test Date: September 25, 2008

				1000	54101 00					*	3
0 1				Light Replicate	eading		-		т	Quality Co Change in control light readings compared to initial control	ntrol Steps Evaluation of initial light output in site sediments
Site	Reading	1	2	3	4	5	Mean	St.Dev.	·(mean) C(mean)	F _{e{mean}} /I _{c(mean)}	(8)T(mean)/(0)C(mean
	lin	90	95	93	92	99	94				
	1(0)	84	86	85	87	91	87		i an tha said a Tha said an tha	0,92	
CON	(5)	77	78	77	73	72	75			0.80	
	Can	0.93	0,91	0.91	0.95	0.92	0.92	0.02	in the		
	C(15)	0.86	0.62	0.63	0.79	0.73	0.81	0.05	54.52	ante contrat	
	Las	87	77	78	74	73	78				0.83
	100	88	79	80	73	76	79				
CR-1		82	72	68	66	68	71	-			narian'i Alexion Ny INSEE dia mampiasa dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia
	T ₍₅₎	1.01	1.03	1.03	0,99	1.04	1.02	0.02	1.10		
	T ₍₁₅₎	0.94	0.94	0.87	0,89	0.93	0,91	0.03	1.14		
	1,01	76	79	74	73	75	75		Section 2.		0.80
	t si	81	81	76	76	79	79				
MP-3	l ₁₁₅₀	74	75	70	66	71	71		2014		
	T ₍₅₎	1,07	1.03	1.03	1.04	1.05	1.04	0.02	1.13		
	T ₍₁₅₎	0.97	0.95	0.95	0.90	0.95	0,94	0.03	1.17		Maria Artes
	L ^(D)	78	73	74	67	69	72		2.278 2.42 2.75		0.77
	1(5)	74	67	74	62	66	69		194		
MP-5	l ₍₁₉₎	73	66	72	64	65	68				
	T ₍₅₎	0.79	0.71	0.79	0,66	0.70	0.73	0.06	0.79	A. A. W. Mart	
	T ₍₁₅₎	0,78	0.70	0.77	0.68	0.69	0.72	0.04	0.90	20.2251.024	
	l ₍₀₎	81	76	74	75	81	77				0.83
	1 ₍₅₎	80	73	71	74	78	75				
MP-6	l ₍₁₅₎	72	69	65	73	68	69		0.946		
1	T ₍₅₎	0.99	0.96	0.96	0.99	0,96	0.97	0.01	1,05		
	T ₍₁₅₎	0.89	0.91	0.88	0.97	0.84	0.90	0.05	1.11		
	L ^{to1}	87	81	67	64	71	74		Sec. 16.		0.79
1	I(6)	85	74	62	60	64	69				Transfer of
MP-8	I ₍₁₅₎	72	66	56	58	62	63				
	T ₍₅₎	0.91	0.79	0.66	0.64	0.68	0.74	0.11	0.60		
1	Trus	0.77	0.70	0,60	0,62	0.66	0.67	0.07	0.83	10.526.205.515	

 $I_{(0)}$ is the light reading after the initial five minute incubation period

 $I_{(5)}$ is the light reading five minutes after $I_{(0)}$

 $I_{(15)}$ is the light reading fifteen minutes after $I_{(0)}$

C₀, R₀, and T₀ are the changes in light readings from the intial reading in each sample container for the control, reference sediment

Quality Control Steps:

1. is control final mean output greater than or equal to 80% control initial mean output?

I ₍₅₎ :F _{c(mean)} /I _{c(mean):}	92%	YES
lus Farman Internasi	80%	YES

 $I_{(15)}:F_{c(mean)}/I_{c(mean)}: 80\% \text{ YES}$ YES: Control results are acceptable and can be used for statistical analyses.

NO: Control results are unacceptable (retest required).

2. Are test initial mean values greater than or equal to 80% of control initial mean values?

2.130100	ie tentendet titteratie tentender Broosen			
S1	I _{T(mean)} /I _{C(mean}):	83%	YES	
S2	I _{⊤(mean)} /I _{⊂(mean});	80%	YES	
S3	l _{T(mean)} /I _{C(mean}):	77%	NO	
S4	IT(mean)/Ic(mean):	83%	YES	

S5 (_{T(mean)}/I_{C(mean}): 79% NO

YES: Use initial site values to calculate change in final light readings

_

Sample:	xt
Samp ID:	MP-1
Alias:	5 minute reading
Replicates:	5
Mean:	0.766
SD:	0.046
Tr Mean:	5.019
Trans SD:	0.151

Ref Samp:	x2
Ref ID:	Control
Alias:	5 minute reading
Replicates:	5
Mean:	0.956
SD:	0.024
Tr Mean:	5.611
Trans SD:	0.071

Shapiro-Wilk Results:		Levene's Results;		Test Results:
Residual Mean: 0)	Test Residual Mean:	0.122	Statistic: Approximate t
Residual SD: 0).077	Test Residual SD:	0.065	Balanced Design: Yes
SS: 0	0.111	Ref. Residual Mean:	0.056	Transformation: ArcSin
κ: 5	5	Ref. Residual SD:	0.032	
b: 0).325	Deg. of Freedom:	8	· · ·
		-		Experimental Hypothesis
Alpha Level: 0	0.05	Alpha Level:	0.1	Null: x1 >= x2
Calculated Value: 0	0.9523	Calculated Value:	2.0036	Alternate: x1 < x2
Critical Value: <	<= 0,842	Critical Value:	>= 1.860	
Normally		Variances		Degrees of Freedom: 6
Distributed:	Ves	Homogeneous:	No	Experimental Alpha Level: 0.05
Distributed.	100			Calculated Value: 7.9315
Override Option: N	N/A			Critical Value: >= 1.943
				Accept Null Hypothesis: No
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.7	4.799	0.97	5.652	0.22	0.041			-0.22
2	0.81	5.164	0.94	5.564	0.144	0.047			-0.084
3	0.8	5.132	0.93	5.534	0.112	0.077			-0.077
4	0.74	4.935	0,99	5.71	0.084	0.1			-0.047
5	0.78	5.067	0.95	5.593	0.048	0.017			-0.017
6									0.041
7									0.048
8									0.1
9									0.112
10									0.144
1									
1									

Ref Samp:	x2
Sample: x1 Ref ID:	Control
Samp ID: MP-4	5 minute reading
Alias: 5 minute reading Replicates:	5
Replicates: 5	0.056
Mean: 0.676	0.950
SD: 0.027	0.024
Tr Mean: 4.715 Tr Mean:	5.611
Trans SD: 0.094 Trans SD:	0.071

Shapiro-Wilk Results:	Levene's Results:	Test Results:
Residual Mean: 0 Residual SD: 0.05 SS: 0.05 K: 5 b: 0.22 Alpha Level: 0.05 Caiculated Value: 0.88	Test Residual Mean: 0.07 4 Test Residual SD: 0.07 55 Ref. Residual Mean: 0.0 65 Ref. Residual Mean: 0.0 71 Deg. of Freedom: 8 75 Alpha Level: 0.1 76 Alpha Level: 0.1 77 Calculated Value: 1.3 78 Critical Value: 2.5	81 Statistic: Student's t 26 Balanced Design: Yes 56 Transformation: ArcSin 32 Experimental Hypothesis Null: x1 >= x2 Alternate: x1 < x2
Critical Value: <= 0 Normally Distributed: Yes Override Option: N/A	0.842 Critical Value: >= Variances Homogeneous: Ye	Degrees of Freedom: 8 Experimental Alpha Level: 0.05 Calculated Value: 16.9985 Critical Value: >= 1.860 Accept Nul! Hypothesis: No Power: Min. Difference for Power:

······				Trans.	Levene's	Levene's	Mann-		Snipiro-
Replicate	Test	Trans	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuats	Ranks	Rankits	Residuals
1	0.7	4.799	0.97	5.652	0.084	0.041			-0.091
	0.66	4.66	0.94	5.564	0.056	0.047			-0.077
3	0.66	4,66	0.93	5.534	0.056	0.077			-0.056
4	0.71	4.834	0.99	5.71	0.118	0.1			-0.056
5	0.65	4.624	0.95	5.593	0.091	0.017			-0.047
6									-0.017
7									0.041
8									0.064
9									0.1
10									0.110
ł									
1									
1									

ſ	Sample:	x1	Ref Samp:	x2
1	Samp ID:	MP-4	Ref ID:	SPRef80
1	Alias:	15-minute reading	Alias:	15-minute reading
	Replicates:	5	Replicates:	5
	Mean:	0.618	Mean:	0.676
	SD:	0.019	SD:	0.015
	Tr Mean:	4.508	Tr Mean:	4.716
	Trans SD:	0.07	Trans SD:	0.053

Shapiro-Wilk Results:		Levene's Results:		Test Results:		
Residual Mean: 0	o	Test Residual Mean:	0.049	Statistic:	Student's t	
Residual SD: 0	0.04	Test Residual SD:	0.043	Balanced Design:	Yes	
ss: 0	0.031	Ref. Residual Mean:	0.037	Transformation:	ArcSin	
K: 5	5	Ref. Residual SD:	0.034			
b; (0.172	Deg. of Freedom:	8			
				Experiment	al Hypothesis	
Alpha Level: (0.05	Alpha Level:	0.1	Null:	x1 >= x2	
Calculated Value: (0.9535	Calculated Value:	0.5257	Alternate:	x1 < x2	
Critical Value:	<= 0.842	Critical Value:	>= 1.860			
Normaliv		Variances		Degrees	of Freedom:	8
Distributed:	Yes	Homogeneous:	Yes	Experimenta	Alpha Level:	0.05
		, i i i i i i i i i i i i i i i i i i i		Calc	ulated Value:	5.2795
Override Option:	N/A				Critical Value:	>= 1.860
				Accept Nu	ll Hypothesis:	No
					Power:	
				Min. Differen	ice for Power:	

Replicate Number Test Data Trans. Test Data Reference Data Reference Data Test Data Data Residuals Reference Residuals Wilk Ranks Rankits Residuals Residuals 1 0.65 4.624 0.68 4.73 0.116 0.014 -0.092 2 0.61 4.479 0.65 4.624 0.029 0.092 -0.066 3 0.6 4.443 0.68 4.73 0.066 0.014 -0.029 4 0.62 4.516 0.68 4.73 0.008 0.014 -0.029 5 0.61 4.479 0.69 4.765 0.029 0.049		•			Trans.	Levene's	Levene's	Mann-		Shipiro-
Number Data Test Data Data Residuals Residuals Ranks Rankits Residuals 1 0.65 4.624 0.68 4.73 0.116 0.014 -0.092 2 0.61 4.479 0.65 4.624 0.029 0.092 -0.066 3 0.6 4.443 0.68 4.73 0.066 0.014 -0.029 4 0.62 4.516 0.68 4.73 0.008 0.014 -0.029 5 0.61 4.479 0.69 4.765 0.029 0.049 -0.014 6 7 7 7 7 7 7 7 7 7 6 7	Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
1 0.65 4.624 0.68 4.73 0.116 0.014 -0.092 2 0.61 4.479 0.65 4.624 0.029 0.092 -0.066 3 0.6 4.443 0.68 4.73 0.066 0.014 -0.029 4 0.62 4.516 0.68 4.73 0.008 0.014 -0.029 5 0.61 4.479 0.69 4.765 0.029 0.049 0.008 6 0.61 4.479 0.69 4.765 0.029 0.049 0.008 6 0.61 4.479 0.69 4.765 0.029 0.049 0.014 9 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.11	Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
2 0.61 4.479 0.65 4.624 0.029 0.092 -0.065 3 0.6 4.443 0.68 4.73 0.066 0.014 -0.029 4 0.62 4.516 0.68 4.73 0.008 0.014 -0.029 5 0.61 4.479 0.69 4.765 0.029 0.049 0.008 6 0.61 4.479 0.69 4.765 0.029 0.049 0.014 7 0.61 4.479 0.69 4.765 0.029 0.049 0.014 9 0.014 0.014 0.014 0.014 0.049 0.049 0.049 0.049 0.049 0.116	1	0.65	4.624	0.68	4.73	0.116	0.014			-0.092
3 0.6 4.443 0.68 4.73 0.066 0.014 -0.029 4 0.62 4.516 0.68 4.73 0.008 0.014 -0.029 5 0.61 4.479 0.69 4.765 0.029 0.049 0.008 6 7 0.69 4.765 0.029 0.049 0.014 7 8 0.014 0.014 0.014 0.014 9 0.049 0.049 0.049 0.049 0.049 0.049 10 <	2	0.61	4,479	0.65	4.624	0.029	0.092			-0.066
4 0.62 4.516 0.68 4.73 0.008 0.014 -0.029 5 0.61 4.479 0.69 4.765 0.029 0.049 0.008 6	3	0.6	4.443	0.68	4.73	0.066	0.014			-0.029
5 0.61 4.479 0.69 4.765 0.029 0.049 0.008 6 0.014 7 0.014 9 0.049 10 0.116	4	0.62	4.516	0.68	4.73	0.008	0.014			-0.029
6 0.014 7 0.014 8 0.014 9 0.049 10 0.116	5	0.61	4.479	0.69	4.765	0.029	0.049			800.0
7 0.014 8 0.014 9 0.049 10 0.116	6									0.014
8 0.014 9 0.049 10 0.116	7									0.014
9 10 0.049 0.116	8									0.014
10 0.116	9									0.049
	10									0.116
	ļ									
	1									

.

Sample:	x1
Samp ID:	MP-7
Alias:	5-minute reading
Replicates:	5
Mean:	0.934
SD:	0.03
Tr Mean:	5.545
Trans SD:	0.091

Ref Samp:	x2
Ref ID:	Control
Alias:	5-minute reading
Replicates:	5
Mean:	0.956
SD:	0.024
Tr Mean:	5.611
Trans SD:	0.071

Shapiro-Wilk Results:	Levene's Results:		Test (deute)
Residual Mean: 0 Residual SD: 0 SS: 0 K: 5 b: 0 Alpha Level: 0 Calculated Value: 0 Critical Value: 4	Test Residual Mear.053Test Residual SI.053Ref. Residual Mear.053Ref. Residual Mear.227Deg. of Freedom.05Alpha Leve.9681Calculated Valu:= 0.842Critical Valu	n: 0.069): 0.048 n: 0.056): 0.032 n: 8 st: 0.1 e: 0.5009 e: >= 1.860	Statistic: Student's t Balanced Design: Yes Transformation: ArcSin Experimental Hypothesis Null: x1 >= x2 Alternate: x1 < x2
Normally Distributed: Override Option:	Variances Yes Homogeneol N/A	ıs: Yes	Degrees of Freedom: 8 Experimental Alpha Level: 0.05 Calculated Value: 1.2676 Critical Value: >= 1.860 Accept Null Hypothesis: Yes
			Power: Min, Difference for Power:

Replicate Number	Test Data	Trans. Test Data	Reference Data	Trans. Reference Data	Levene's Test Residuals	Levene's Reference Residuals	Mann- Whitney Ranks	Rankits	Wilk Residuals -0.132
1	0.89	5.413	0.97	5.652	0.132	0.041			-0.077
2	0.94	5.564	0.94	5.564	0.018	0.047			-0.047
3	0.95	5.593	0.93	5.534	0.048	0.01			-0.041
4	0.97	5.652	0.99	5.71	0.107	0.17			-0.017
5	0.92	5.504	0.95	5.593	0.041	0.017			0.018
6									0.041
7									0.048
8									0.1
9									0.107
10									

					D (Dente			
	Sample:	x1	1		Ret Samp:	X2		
	Samp ID:	MP-9			Ref ID:	Control		
	Alias:	5 minute	1		Alias:	5 minute		
	Replicates:	5			Replicates:	5		
	Mean:	0.712			Mean:	0.986		
	SD:	0.04	Ì		SD:	0.019		
	Tr Mean:	4.839			Tr Mean:	5.698		
	Trans SD:	0.136			Trans SD:	0.057		
Sh	apiro-Wilk Results:		Levene's Results:		Test Result	3 :		
	•							
	Residual Mean:	0	Test Residual Mean:	0.102		Statistic:	Student's t	
1	Residual SD:	0.068	Test Residual SD:	0.075	Bala	anced Design:	Yes	
	SS:	0.087	Ref. Residual Mean:	0.044	Tr	ansformation:	ArcSin	
1	К:	5	Ref. Residual SD:	0.028				
	b:	0.286	Deg. of Freedom:	8	1			
	-		Ť			Experiment	al Hypothesis	
1	Alpha Level:	0.05	Alpha Level:	0.1		Nuli:	x1 >= x2	
	Colculated Value:	0.9392	Calculated Value:	1.6032		Alternate:	x1 < x2	
	Critical Value:	<= 0.842	Critical Value:	>= 1.860				
	Ontidat Value.	- 0.044						
	Normally		Variances			Degrees	of Freedom:	8
	Dietributed:	Vac	Homogeneous:	Yes		Experimental	Alpha Level:	0.05
		, çə		• -	1	Calc	ulated Value:	13.0242
	Querride Ontion	NI/A				C	Critical Value:	>= 1.860
	overside Option.	IVO.				Accept Nu	II Hypothesis:	No

Replicate Number	Test Data	Trans. Test Data	Reference Data	Trans. Reference Data	Levene's Test Residuals	Levene's Reference Residuals	Mann- Whitney Ranks	Rankits	Shipiro- Wilk Residuals
1	0.75	4.968	0,96	5.623	0.129	0.076			-0.215
2	0.7	4.799	0.98	5.681	0.04	0.017			-0.076
3	0.74	4,935	1	5.739	0.096	0.041			-0.04
4	0.65	4.624	0.98	5.681	0.215	0.017			-0.017
5	0.72	4,868	1.01	5.768	0.029	0.069			-0.017
6									0.029
7									0.041
8									0.069
9									0.096
10									0.129

Power:

Min. Difference for Power:

			······································					
	Sample:	x1			Ref Samp:	x2		
	Samp ID:	MP-9			Ref ID:	Control		
	Alias:	15 minutes			Alias:	15 minute		
	Replicates:	5			Replicates:	5		
	Mean:	0.712			Mean:	0.928		
	SD:	0.082			SD:	0.041	-	
	Tr Mean:	4.834			Tr Mean:	5.527		
	Trans SD	0 275			Trans SD:	0.125		
	Trans orb.	0.270						
ſ	Shapiro-Wilk Results:		Levene's Results:		Test Results	s:		
	onapho transition		1					
I	Residual Mean:	0	Test Residual Mean:	0.197		Statistic:	Student's t	
1	Residual SD:	0.138	Test Residual SD:	0.164	Bata	anced Design:	Yes	
	SS	0.364	Ref. Residual Mean:	0.091	[Tr	ansformation:	ArcSin	
ł	к. К.	5	Ref. Residual SD:	0.072				
	h:	0.587	Deg. of Freedom:	8				
	<i>.</i>	0.001				Experiment	at Hypothesis	
	Aloha Lovel:	0.05	Alpha Level:	0.1		Null:	x1 >= x2	
	Celevisted Velue:	0.00	Calculated Value:	1,3091		Alternate:	x1 < x2	
	Calculated Value.	V-0.947	Critical Value:	>= 1.860				
	Ghiidai Value.	<= V.042	Circlet Verder					
	N a sec et the		Variances			Degrees	of Freedom:	8
	Normany Distribute d	Vee	Homogeneous:	Yes		Experimental	Alpha Level:	0.05
	Distributed:	163	i lamogeneous.		1	Calc	ulated Value:	5.1339
		. NI/A				(Critical Value:	>= 1.860
	Override Option:	N/A			1	A	دهذه مخلف مدرا	Mo

Accept Null Hypothesis: No Power: Min. Difference for Power:

Replicate Number	Test Data	Trans. Test Data	Reference Data	Trans. Reference Data	Levene's Test Residuals	Levene's Reference Residuals	Mann- Whitney Ranks	Rankits	Shipiro- Wilk Residuals
1	0.84	5,259	0.86	5.321	0.424	0.206			-0.318
2	0.68	4.73	0.94	5.564	0.104	0.037			-0.206
2	0.69	4,765	0.96	5.623	0.069	0.096			-0.104
4	0.62	4 516	0.92	5.504	0.318	0.023			-0.069
- -	0.02	4 901	0.96	5.623	0.067	0.096			-0.023
5	0.10	4.001							0.037
0 7									0.067
,									0.096
8									0.096
9									0.424
10									

	Sample:	x1	Ref Sa	mp:	x2
	Samp ID:	MP-10	Ref	ID:	Control
	Alias:	5 minute	A	ias:	5 minute
	Replicates:	5	Replica	tes:	5
	Mean:	0.736	Me	an;	0.986
	SD:	0.036		SD:	0.019
1	Tr Mean:	4.92	Tr Me	an:	5.698
	Trans SD:	0.122	Trans	SD:	0.057

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean: (0	Test Residual Mean:	0.104	Statistic: Approximate t	
Residual SD: (0.062	Test Residual SD:	0.036	Balanced Design: Yes	
SS: 0	0.072	Ref. Residual Mean:	0.044	Transformation: ArcSin	
K: I	5	Ref. Residual SD:	0.028		
b; (0.262	Deg. of Freedom:	8		
		_		Experimental Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1 >= x2	
Calculated Value:	0.9515	Calculated Value:	2.967	Alternate: x1 < x2	
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees of Freedom: 6	
Distributed:	Yes	Hornogeneous:	No	Experimental Alpha Level: 0.05	
Distributed.	100			Calculated Value: 12.95	57
Override Ontion:	N/A			Critical Value: >= 1.9	43
overnee option:				Accept Null Hypothesis: No	
				Power:	
		l l		Min. Difference for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.77	5.034	0.96	5.623	0.114	0.076			-0.121
2	0.78	5.067	0.98	5.681	0.147	0.017			-0.087
3	0.71	4.834	1	5.739	0.087	0.041			-0.076
4	0.72	4.868	0.98	5.681	0.053	0.017			-0.053
5	0.7	4.799	1.01	5.768	0.121	0.069			-0.017
6									-0.017
7									0.041
8									0.069
9									0.114
10									0.147
1									
L								·····	

.
r

Discussion for		7	
Sample:	X1	Ref Samp: x	2
Samp ID:	MP-10	Ref ID: 0	Control
Alias:	15 minute	Alias: 1	5 minute
Replicates:	5	Replicates: 5	i
Mean:	0.718	Mean: 0	.928
SD:	0.018	SD: 0	.041
Tr Mean:	4.86	Tr Mean: 5	.527
Trans SD:	0.061	Trans SD: 0	.125

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean; Residual SD; SS; K; b;	0 0.064 0.078 5 0.259	Test Residual Mean: Test Residual SD; Ref. Residual Mean: Ref. Residual SD; Deg. of Freedom;	0.049 0.027 0.091 0.072 8	Statistic: Student's t Balanced Design: Yes Transformation: ArcSin
Alpha Level; Calculated Value: Critical Value:	0.05 0.8631 <= 0.842	Alpha Level; Calculated Value; Critical Value;	0.1 1.2339 >= 1.860	Experimental Hypothesis Null: x1 >= x2 Alternate: x1 < x2
Normally Distributed: Override Option:	Yes N/A	Variances Homogeneous:	Yes	Degrees of Freedom: 8 Experimental Alpha Level: 0.05 Calculated Value: 10.7027 Critical Value: >= 1.860 Accept Null Hypothesis: No
·····				Power: Min. Difference for Power:

				Trans,	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.73	4.901	0.86	5.321	0.041	0.206			-0.206
2	0.73	4.901	0.94	5.564	0.041	0.037			-0.096
3	0.73	4.901	0.96	5.623	0.041	0.096			-0.027
4	0.71	4.834	0.92	5.504	0.027	0.023			-0.023
5	0.69	4.765	0.96	5.623	0.096	0.096			0.037
6									0.041
7									0.041
8									0.041
9									0.096
10									0.096
· ·									0.000
1									

Sample: x1 Ref Samp	x2 Control	
1	Control	
Samp ID: MP-11 Ref IE	CONTROL	
Alias: 5 minute Alias	5 minute	
Replicates: 5 Replicates	5	
Mean: 0.658 Mean	0.986	
SD: 0.033 SE	0.019	
Tr Mean: N/A Tr Mean	N/A	
Trans SD: N/A Trans SE	N/A	

Shapiro-Wilk Results:		Levene's Results:		Test Results:		
Residual Mean:	0	Test Residual Mean:	0.084	Statistic:	Mann-Whitne	y
Residual SD:	0.06	Test Residual SD:	0.072	Balanced Design:	Yes	
SS:	0.068	Ref. Residual Mean:	0.044	Transformation:	rank-order	
К:	5	Ref. Residual SD:	0.028			
b:	0.233	Deg. of Freedom:	8			
				Experimenta	l Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2	
Calculated Value:	0.7966	Calculated Value:	1.1507	Alternate:	x1 < x2	
Critical Value;	<= 0.842	Critical Value:	>= 1.860			
				Mann-V	Whitney N1:	5
				Mann-V	Whitney N2:	5
Normally		Variances		Degrees of	of Freedom:	
Distributed:	No	Homogeneous:	Yes	Experimental A	Alpha Level:	0.05
				Calcul	lated Value:	25
Override Option:	Not Invoked			Cr	itical Value:	>= 21.000
				Accept Null	Hypothesis:	No
					Power:	
				Min. Difference	e for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.67	3	0.96	6	0.044	0.076	1		-0.209
2	0.67	3	0.98	7.5	0.044	0.017	3		-0.076
3	0.68	5	1	9	0.079	0.041	3		-0.017
4	0.6	1	0.98	7.5	0.209	0.017	3		-0.017
5	0.67	3	1.01	10	0.044	0.069	5		0.041
6							6		0.044
7							7.5		0.044
8							7.5		0.044
9							9		0.069
10							10		0.079
1									

Sample:	x1
Samp ID:	MP-11
Alias:	15 minutes
Replicates:	5
Mean:	0.636
SD:	0.04
Tr Mean:	N/A
Trans SD:	N/A

Ref Samp:	x2
Ref ID:	Control
Alias:	15 minute
Replicates:	5
Mean:	0.928
SD:	0.041
Tr Mean:	N/A
Trans SD:	N/A

Shapiro-Wilk Results:	······································	Levene's Results:		Test Results:
Residual Mean: Residual SD: SS: K: b:	0 0.088 0.147 5 0.348	Test Residual Mean: Test Residual SD: Ref. Residual Mean: Ref. Residual SD: Deg. of Freedom:	0.105 0.086 0.091 0.072 8	Statistic: Mann-Whitney Batanced Design: Yes Transformation: rank-order Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	$\Delta \text{Iternate: } x1 < x2$
Calculated Value:	0.8227	Calculated Value:	0.2070 >= 1.860	Alternate. Al TAL
Critical value:	<= 0.042			Mann-Whitney N1: 5 Mann-Whitney N2: 5
Normally		Variances		Degrees of Freedom:
Distributed:	No	Homogeneous:	Yes	Calculated Value: 25
Override Option:	Not Invoked			Accept Null Hypothesis: No
				Power:
				Min. Difference for Power:

.

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		VVIK D. sisterate
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.63	2	0.86	6	0.02	0.206	1		-0.242
2	0.67	5	0.94	8	0.123	0.037	2		-0.206
3	0.66	4	0.96	9.5	0.088	0.096	3		-0.023
4	0.57	1	0.92	7	0.242	0.023	4		-0.02
	0.65	3	0.96	9.5	0.052	0.096	5		0.037
	0.00	Ŭ					6		0.052
							7		0.088
							8		0,096
							9.5		0.096
9							9.5		0.123
10									
1									
:									

Sample: x1Ref Samp: x2Samp ID: MP-13Ref ID: ControlAlias: 5 minuteAlias: 5 minuteReplicates: 5Replicates: 5Mean: 0.432Mean: 0.964				
Samp ID:MP-13Ref ID:ControlAlias:5 minuteAlias:5 minuteReplicates:5Replicates:5Mean:0.432Mean:0.964	Sample:	x1	Ref Samp:	x2
Alias: 5 minute Alias: 5 minute Replicates: 5 Replicates: 5 Mean: 0.432 Mean: 0.964	Samp ID:	MP-13	Ref ID:	Control
Replicates: 5 Replicates: 5 Mean: 0.432 Mean: 0.964	Alias:	5 minute	Alias:	5 minute
Mean: 0.432 Mean: 0.964	Replicates:	5	Replicates:	5
	Mean:	0.432	Mean:	0.964
SD: 0.022 SD: 0.036	SD:	0.022	SD:	0.036
Tr Mean: 3.768 Tr Mean: 5.634	Tr Mean:	3.768	Tr Mean:	5.634
Trans SD: 0.095 Trans SD: 0.105	Trans SD:	0.095	Trans SD:	0.105

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	0.077	Statistic: Student's t	
Residual SD:	0.065	Test Residual SD:	0.04	Balanced Design: Yes	
SS:	0.081	Ref. Residual Mean;	0.08	Transformation: ArcSin	
κ:	5	Ref. Residual SD:	0.056		
b:	0.268	Deg. of Freedom:	8		
		-		Experimental Hypothesis	1
Alpha Levei:	0.05	Alpha Level:	0.1	Null: x1 >= x2	
Calculated Value:	0.8859	Calculated Value:	0.0898	Alternate: x1 < x2	
Critical Value:	<= 0.842	Critical Value;	>= 1.860		
Normaliy		Variances		Degrees of Freedom:	8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha Level:	0.05
				Calculated Value:	29.3488
Override Option:	N/A			Critical Value:	>= 1.860
				Accept Null Hypothesis:	No
				Power:	
				Min. Difference for Power:	

.

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.4	3.626	1	5.739	0.141	0.105			-0.16
2	0.45	3.846	0.97	5.652	0.079	0.018			-0.141
3	0.42	3.716	0.99	5,71	0.052	0.077			-0.052
4	0.45	3.846	0.91	5.474	0.079	0.16			-0.04
5	0.44	3.803	0.95	5.593	0.036	0.04			0.018
6									0.036
7									0.077
8									0.079
9									0.079
10									0.105

Sample:	x1	Ref Samp:	x2
Samp ID:	MP-13	Ref ID:	Control
Alias:	15 minute	Alias:	15minute
Replicates:	5	Replicates:	5
Mean:	0.468	Mean:	0.986
SD:	0.015	SD:	0.051
Tr Mean:	3 922	Tr Mean:	5.697
Trans SD:	0.062	Trans SD:	0.149

Shapiro-Wilk Results:	Levene's Results:	-	Test Results:
Residual Mean: 0	Test Residual Mean:	0.044	Statistic: Approximate t
Residual SD: 0.0	074 Test Residual SD:	0.038	Balanced Design: Yes
SS 0.	104 Ref. Residual Mean:	0.119	Transformation: ArcSin
К: 5	Ref. Residual SD;	0.067	
h 0:	318 Deg. of Freedom:	8	
			Experimental Hypothesis
Alpha Level: 0	05 Alpha Level:	0.1	Null: $x1 \ge x2$
Calculated Value: 0	971 Calculated Value:	2.1682	Alternate: x1 < x2
Critical Value: <=	= 0.842 Critical Value:	>= 1.860	
Na ma alla	Variances		Dearees of Freedom: 5
Normany Distributed X	Homogeneous:	No	Experimental Alpha Level: 0.05
Distributed: 10	es nomogeneous.		Calculated Value: 24,6344
Outputide Options N	110		Critical Value: >= 2.015
			Accept Null Hypothesis: No
			Power:
1			Min, Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.45	3.846	0.99	5.71	0.076	0.013			-0.163
2	0.47	3.931	0.93	5.534	0.009	0.163			-0.133
3	0.46	3.889	1.05	5.881	0.033	0.184			-0.076
4	0.49	4.014	1.02	5.796	0.092	0.099			-0.033
5	0.47	3.931	0.94	5.564	0.009	0.133			0.009
6									0.009
7									0.013
8									0.092
9									0.099
10									0.184
1									
1									
1									
L									

Sample:	x1	Ref Samp:	×2
Samp ID:	MP-5	Ref ID:	CR-1
Alías:	5 minute	Alias	5 minute
Replicates:	5	Replicates:	5
Mean:	0.73	Mean	1.02
SD:	0.058	SD:	0.02
Tr Mean:	4.898	Tr Mean:	5.796
Trans SD:	0.195	Trans SD:	0.057

Shapiro-Wilk Results:	Levene's Results:	Test Results:
Residual Mean: 0 Residual SD: 0.093 SS: 0.165 K: 5 b: 0.395	Test Residual Mean:0.1613Test Residual SD:0.0755Ref. Residual Mean:0.046Ref. Residual SD:0.0265Deg. of Freedom:8	Statistic: Approximate t Balariced Design: Yes Transformation: ArcSin
Alpha Level: 0.05 Calculated Value: 0.948 Critical Value: <= 0.	Alpha Level: 0.1 33 Calculated Value: 3.2591 842 Critical Value: >= 1.8	Experimental Hypothesis Null: x1 >= x2 Alternate: x1 < x2
Normally Distributed: Yes Override Option: N/A	Variances Homogeneous: No	Degrees of Freedom: 5 Experimental Alpha Level: 0.05 Calculated Value: 9.8951 Critical Value: >= 2.015 Accept Null Hypothesis; No
		Power; Min. Difference for Power:

	-	_		Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.79	5.099	1.01	5.768	0.201	0.028			-0.238
2	0.71	4.834	1.03	5.825	0.065	0.029			-0.099
3	0.79	5.099	1.03	5.825	0.201	0.029			-0.086
4	0.66	4.66	0.99	5.71	0.238	0.086			-0.065
5	0.7	4.799	1.04	5.853	0.099	0.057			-0.028
6									n n29
7									0.029
8									0.057
9									0.201
10									0.201
i i									0.201
1									
]									
1									
			•						

Sample:	x1	Ref Samp:	x2
Samp ID:	MP-5	Ref ID:	CR-1
Alias:	15 minute	Alias:	15 minute
Replicates:	5	Replicates:	5
Mean:	0.724	Mean:	0.914
SD:	0.047	SD:	0.032
Tr Mean:	4.879	Tr Mean:	5.485
Trans SD:	0.159	Trans SD:	0.097

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	0.137	Statistic: Approximate t
Residual SD:	0.085	Test Residual SD:	0.041	Balanced Design: Yes
SS:	0.139	Ref. Residual Mean:	0.082	Transformation: ArcSin
ĸ	5	Ref. Residual SD:	0.031	
b:	0.354	Deg. of Freedom:	8	
		-		Experimental Hypothesis
Alpha Level:	0.05	Alpha Level;	0.1	Null: $x_1 \ge x_2$
Calculated Value:	0.9025	Calculated Value:	2.3739	Alternate: x1 < x2
Critical Value;	<= 0.842	Critical Value:	>= 1.860	
Normally		Variances		Degrees of Freedom: 7
Distributed:	Yes	Homogeneous;	No	Experimental Alpha Level: 0.05
				Calculated Value: 7 2847
Override Option:	N/A			Critical Value: >= 1 895
				Accept Null Hypothesis: No
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.78	5.067	0.94	5.564	0.188	0.078			-0.149
2	0.7	4.799	0.94	5.564	0.08	0.078			-0.133
3	0.77	5.034	0,87	5.352	0.155	0.133			-0.114
4	0.68	4.73	0.89	5.413	0.149	0.072			-0.08
5	0.69	4.765	0.93	5.534	0.114	0.049			-0.072
6									0.049
7									0.078
8									0.078
9									0.155
10									0.188
1									
									1
1									
1									

Sample:	x1
Samp ID:	MP-6
Alias:	5 min
Replicates:	5
Mean:	0.972
SD:	0.016
Tr Mean:	5.658
Trans SD:	0.048

Ref Samp:	x2
Ref ID:	CR-1
Atias:	5 minute
Replicates:	5
Mean:	1.02
SD:	0.02
Tr Mean:	5.796
Trans SD:	0.057

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean: Residual SD: SS: K: b: Alpha Level: Calculated Value: Critical Value:	0 0.034 0.022 5 0.14 0.05 0.8754 <= 0.842	Test Residual Mean: Test Residual SD: Ref. Residual Mean: Ref. Residual SD: Deg. of Freedom: Alpha Level: Calculated Value: Critical Value:	0.042 0.01 0.046 0.026 8 0.1 0.3053 >= 1.860	Statistic: Student's t Balanced Design: Yes Transformation: ArcSin Experimental Hypothesis Null: x1 >= x2 Alternate: x1 < x2
Normally Distributed: Override Option:	Yes N/A	Variances Homogeneous:	: Yes	Degrees of Freedom: 8 Experimental Alpha Level: 0.05 Calculated Value: 4.1492 Critical Value: >= 1.860 Accept Null Hypothesis: No Power: Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Snipiro-
Bonlicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.99	5.71	1.01	5.768	0.052	0.028			-0.086
2	0.00	5.623	1.03	5.825	0.035	0.029			-0.035
2	0.00	5.623	1.03	5.825	0.035	0.029			-0.035
3	0,00	5.71	0.99	5.71	0.052	0.086			-0.035
-	0.00	5 623	1.04	5.853	0.035	0.057			-0.028
	0.50	0.020							0.029
7									0.029
									0.052
Ô									0.052
9									0.057
10									
ł									
1									
1									

Sample:	x1	Ref Samp:	x2
Samp ID:	MP-6	Ref ID:	CR-1
Alias:	15 minute	Alias:	15 minute
Replicates:	5	Replicates:	5
Mean:	0.898	Mean:	0.914
SD:	0.048	SD:	0.032
Tr Mean:	5.436	Tr Mean;	5.485
Trans SD:	0.144	Trans SD:	0.097

......

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	0.102	Statistic: Student's t	
Residual SD:	0.08	Test Residual SD:	0.089	Balanced Design: Yes	
SS:	0.121	Ref, Residual Mean:	0.082	Transformation: ArcSin	
К:	5	Ref. Residual SD:	0.031		
b:	0.343	Deg. of Freedom:	8		
1				Experimental Hypothesis	
Alpha Levei:	0.05	Alpha Level:	0.1	Null: x1 >= x2	
Calculated Value:	0.9735	Calculated Value:	0.4604	Alternate: x1 < x2	
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees of Freedom:	8
Dietributed	Ves	Homogeneous:	Yes	Experimental Alpha Level:	0.05
Distributed.	100	nemegonooda,	100	Calculated Value:	0.6336
Override Option:	N/A			Critical Value:	>= 1.860
				Accept Null Hypothesis:	Yes
				Power:	
				Min. Difference for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wak
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.89	5.413	0.94	5.564	0.023	0.078			-0.178
2	0.91	5.474	0.94	5.564	0.038	0.078			-0.133
3	0.88	5.383	0.87	5.352	0.053	0.133			-0.072
4	0.97	5.652	0.89	5.413	0.216	0.072			-0.053
5	0.84	5.259	0.93	5.534	0.178	0.049			-0.023
6									0.038
7									0.049
8									0.078
9									0.078
10									0.216

Sample:	x1	Ref Samp:	x2
Samp ID:	MP-8	Ref ID:	CR-1
Alias:	5 minute	Alias:	5 minute
Replicates:	5	Replicates:	5
Mean:	0.736	Mean:	1.02
SD:	0.113	SD:	0.02
Tr Mean:	4.91	Tr Mean:	5.796
Trans SD:	0.372	Trans SD:	0.057

.................

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean: 0	נ	Test Residual Mean:	0.301	Statistic: Approximate t
Residual SD: 0	0.172	Test Residual SD:	0.157	Balanced Design: Yes
SS: 0	0.565	Ref. Residual Mean:	0.046	Transformation: ArcSin
К: 5	5	Ref. Residual SD:	0.026	
ь: с	0.72	Deg. of Freedom:	8	
		Ť		Experimental Hypothesis
Alpha Level: 0	0.05	Alpha Level:	0.1	Null: $x1 \ge x2$
Calculated Value: 0	0.9168	Calculated Value:	3.5798	Alternate: x1 < x2
Critical Value: <	<= 0.842	Critical Value:	>≂ 1.860	
Normally		Variances		Degrees of Freedom; 4
Distributed:	Yes	Homogeneous:	No	Experimental Alpha Level: 0.05
				Calculated Value: 5.2696
Override Option: 1	N/A			Critical Value: >= 2.132
				Accept Null Hypothesis: No
				Power:
		1		Min, Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.91	5.474	1.01	5.768	0.564	0.028			-0.322
2	0.79	5.099	1.03	5.825	0.189	0.029			-0.25
3	0.66	4.66	1.03	5.825	0.25	0.029			-0.18
4	0.64	4.589	0.99	5.71	0.322	0.086			-0.086
5	0.68	4.73	1.04	5.853	0.18	0.057			-0.028
6									0.029
7									0.029
8									0.057
9									0.189
10									0.564
L									

Sample:	x1	Ref Samp:	x2
Samp ID:	MP-8	Ref ID:	CR-1
Alias:	15 minute	Alias:	15 minute
Replicates:	5	Replicates:	5
Mean:	0.67	Mean:	0.914
SD:	0.068	SD:	0.032
Tr Mean:	4.69	Tr Mean:	5.485
Trans SD:	0.236	Trans SD:	0.097

Shapiro-Wilk Results:		Levene's Results:		Test Results:		
Residual Mean: Residual SD: SS: K:	0 0.117 0.26 5	Test Residual Mean: Test Residual SD: Ref. Residual Mean: Ref. Residual SD:	0.181 0.121 0.082 0.031	Statistic: Student's t Balanced Design: Yes Transformation: ArcSin		
b:	0.5	Deg. of Freedom:	8			
Alpha Level: Calculated Value: Critical Value:	0.05 0.9586 <= 0.842	Alpha Level: Calculated Value: Critical Value:	0.1 1.7659 >= 1.860	Experimental Hypothesis Null: x1 >= x2 Alternate: x1 < x2	3	
Normally Distributed: Override Option:	Yes N/A	Variances Homogeneous:	Yes	Degrees of Freedom: Experimental Alpha Level: Calculated Value: Critical Value: Accept Null Hypothesis:	8 0.05 6.9669 >= 1.860 No	
				Power: Min. Difference for Power:		

Replicate	Teet	Trane	Reference	Trans.	Levene's	Levene's	Mann-		Shipiro-
Number	Data	Test Date	Dete	Dete	lest	Reference	whitney	_	Wilk
	0.77		Data	Data	Residuais	Residuals	Ranks	Rankits	Residuals
	0.77	5.034	0.94	5.564	0.344	0.078			-0.248
2	0.7	4.799	0.94	5.564	0.109	0.078			-0.174
3	0.6	4.443	0.87	5.352	0.248	0.133			-0.133
4	0.62	4.516	0.89	5.413	0.174	0.072			-0.072
5	0.66	4.66	0.93	5.534	0.031	0.049			-0.031
6									0.049
7									0.078
8									0.078
9									0.070
10									0.103
									0.344
-									
L									

APPENDIX B – Laboratory Bench Sheets

.

Raw Data Sheet Microtox 100% Sediment Porewater Toxicity

Nautilus Environmental
Washington Laboratory
5009 Pacific Hwy. E., Suite 2
Tacoma, WA 98424

Client	Name:
--------	-------

Test Date: 10/2/08

Sample ID:

Newfields

SBREF80, MP-1, MP-2, MP-4, MP-7 Test No.: 0809-T062-T068

Replicate Light 5 1 3 4 Time Reading Site 106 99 105 95 97 5 min $\mathbf{I}_{(0)}$ 10 104 92 92 91 10min $\mathbf{I}_{(5)}$ 91 87 78 79 82 20 min $I_{(15)}$ CON 76 76 78 85 76 5 min I₍₀₎ 78 75 78 79 71 10min $I_{(5)}$ 69 68 68 68 65 20 min I(15) SBREF80 76 90 77 5 min $\mathbf{I}_{(0)}$ 78 80 81 4 70 10min $I_{(5)}$ 74 72 Ĵ 70 сS 20 min MP-1 I(15) 83 <u>85</u> 92 78 77 80 5 min $\mathbf{I}_{(0)}$ 84 78 78 81 10min I<u>(5)</u> 80 76 88 76 76 20 min MP-2 $I_{(15)}$ 63 70 66 67 73 5 min $\mathbf{I}_{(0)}$ 65 66 66 71 70 10min $I_{(5)}$ 61 62 60 61 65 MP-4 20 min $I_{(15)}$ $\{\mathbf{y}_i\}_{i \in \mathcal{N}}$ 1. S. A. 1. A 96 88 87 86 83 5 min **I**(0) 81 83 82 82 74 10min $I_{(5)}$ 58 64 64 62 MP-7 52 20 min

Comments:

 $I_{(15)}$

Raw Data Sheet Microtox 100% Sediment Porewater Toxicity

Client Name:	Newfields.	_ Test Date: _ 9/22/08
Sample ID:	March Paint Landfill	Test No.: 0809-T067-T070

	Light				Replicate		
Site	Reading	Time	1. 注	2	3	4	5
	I ₍₀₎	5 min	96	88	91	91	91
	L_(5)	10min	92	86	91	89	92
CON	I ₍₁₅₎	20 min	83	83	87	84	87
	and the second						
508- 076 0t	I ₍₀₎	5 min	6	59	61	61	60
041	I ₍₅₎	10min	61	59	61	62	60
SBREF80	I ₍₁₅₎	20 min	61	57	67	64	60
508-084	L _(o)	5 min	70	62	65	59	63
	I(5)	10min	69	64	68	59	66
MP-9	I ₍₁₅₎	20 min	77	62	63	57	67
							Maran Para
S08-085	I(0)	5 min	68	70	67	66	62
	I_(5)	10min	70		65	66	64
MP-10	I ₍₁₅₎	20 min	67	67	67	65	_63
	terre de la contraction de						
508-086	I ₍₀₎	5 min	56	<u>58</u>	63	_54	61
	I ₍₅₎	10min	61	6	62	55	61
MP-11	I ₍₁₅₎	20 min	58	61	60	52	59
CON 007				-71			200 E
500-081	1 (0)	5 min	10	<u> 14</u>	12	<u> </u>	<u> </u>
	L ₍₅₎	10min		<u> </u>	18	<u> </u>	72
/14	I ₍₁₅₎	20 min	22	87	<u> </u>	101	100

Comments:

Raw Data Sheet Microtox 100% Sediment Porewater Toxicity

Client Name:	Neufielde	Test Date:	9/22/08	
Sample ID:	March Point, Landfill	Test No.:	0809-7071	

	Light				Replicate	an based and the state of the s	
Site	Reading	Time		* 2	3	4	5
	I ₍₀₎	5 min	92	95	95	94	9.5
CON	I(5)	10min	92	92	94	86	90
_	I ₍₁₅₎	20 min	91	88	100	96	89
508-091	I (0)	5 min	74	69	64	63	61
	I ₍₅₎	10min	74	72	64	64	64
5BREF80	I ₍₁₅₎	20 min	76	76	67	71	69
							Press.
508-088	I ₍₀₎	5 min	38	41	39	41	40
	I ₍₅₎	10min	38	42	40	42	<u> </u>
MP-13	I ₍₁₅₎	20 min	42	44	43	46	44
	I	5 min					•
	I(5)	10min				ļ	
	I ₍₁₅₎	20 min	and the state of			A STATE OF A DESCRIPTION OF A DESCRIPTIO	
							a de la caractería de la c Na caractería de la br>Transmisión de la caractería
	I (0)	5 min					
	I ₍₅₎	10min					ļ
	I ₍₁₅₎	20 min				ENTER OF ALLEY A DOUBLE AND A	A
		T			i i na seconda de la composición de la El composición de la c		ie gezalizaciji T
	I(0)	5 min					<u> </u>
	I ₍₅₎	10min					
	I ₍₁₅₎	20 min			i .		

Comments:

Raw Data Sheet Microtox **100% Sediment Porewater Toxicity**

Client	Name:
--------	-------

Newfields

Test Date: 9/25/08

Sample ID:

<u>CR-1, MP-3, MP-5, MP-6, MP-8</u> Test No.: 0809-7072-7076

	Light			- The Very Martin Street - 1	Replicate		4 4-6 11 B 2100 11 14
Site	Reading	Time	1.30	2	3	4	5
	I ₍₀₎	5 min	90	95	93	92	99
	I ₍₅₎	10min	84	86	85	87	91
CON	I ₍₁₅₎	20 min	77	78	77	73	72
	AL ST						
508-090	I ₍₀₎	5 min	87	77	78	74	73
	I ₍₅₎	10min	88	79	80	73	76
CR-1	I ₍₁₅₎	20 min	82	7a	68	66	68
508-078	I(0)	5 min	76	79	74	73	75
	I ₍₅₎	10min	81	81	76	76	79
MP-3	I ₍₁₅₎	20 min	74	75	70	66	[7]
508-080	L ₍₀₎	5 min	78	73	74	67	69
	I(5)	10min	74	67	74	62	66
MP-5	J ₍₁₅₎	20 min	73	66	72	64	65
	line and the second						
508-081	I ₍₀₎	5 min	8	76	74	75	81
	I_(5)	10min	80	73	71	74	18
MP-6	I ₍₁₅₎	20 min	72_	169	65	73	<u> 68</u>
		i san an a					<u>1</u> , i
508-083	<u>I(0)</u>	5 min	87	81	61	67	
	I ₍₅₎	10min	85	14	62	60	64
4P-8	I ₍₁₅₎	20 min	72	66	56	58	62

Comments:

APPENDIX C - Water Quality Results

.

_

Physical and Chemical Measurements of Porewaters Sediment Bioassays

Client:

Newfielde 0809-T062-T068

Test Date: 9/22/08

et

Analyst:

Test Type: Microtox 100% Porewater Toxicity Test

Test No:

Test Species: Vibrio fischeri

s and a second	Salinity	Final Salinity	D.O.	Final D.O	Initial pH	Adjusted	NaOH or HCl	Final	
508-091		<u>(1990)</u>	(mg/L)	(mg/L));	. Solie terri		Vol, Used	Conc.	Ammonia
SBREF80	32.4	32.4	5.8	5.8	7.49	7.92	30ML	Gag	117
Mb-1	3.6	20.8	6.8	6.8	723	790	180 ML	602	01.0
508-077			1		1.00		ON No OH	19.5	43.7
MP-2	25.7	25.7	6.9	6.9	7.27	791	225/16	99,1	255
508-079 MD4	ר רו	194		CI			ISOUL		
508-082		<u>''.</u>	0,1	6.1	1.42	7.97	O.INALOH	99.4	14.3
MP-7	27.2	27.2	6,5	6.5	7.46	798	150/LL	<u>694</u>	112
508-084							U.TIVILOH		11. 0
MP-9	26.7	26.7	6.7	6.7	7.12	7.95	300ML	988	150
500-085	2-1	27/1					JOHN NOLI		<u>U.C.I</u>
MP-10	27.4	21.4	6.7	6.7	7.09	7.94	O.I.N.N.LOH	98.8	13.6

Sample Description:

_____ _____ _____

Comments:

QA Check:

Physical and Chemical Measurements of Porewaters Sediment Bioassays

Analyst: <u>V</u>

Client :

Neufilde

Test Date: 9/22/08

Test Type: Microtox 100% Porewater Toxicity Test

Test No:

0809-7069-7071

Test Species: Vibrio fischeri

	 Initial Salinity 	Final Salinity	Initial D:O.	Finat : .D.O	Unitial pH	Adjusted pH	NaOH or HCl	Final Porewater	
Site	(ppt)	(ppt)	(mg/L)	(mg/L)			Vol. Used	Conc.	Ammonia
500-000		777	~u	СЦ	717	70.	300ML	0	
MP-11	91.2	91.5	6,7	6.7	1.10	1.43	O.IN MOH		17,5
508-081	207	00.7	177	C7			75ML		
MP-12	20.1	a8,1	6.1	6.(1.60	7.92	O. IN Abolt	99.7	22.7
508-088				0.0			375.UL		
MP-13	29.0	29.0	6.8	6.8	7.22	7,91	O.IN NOH	98.5	26.7
CON	20.1	20.1	7.0	7.0	8.95	8.16	90,UL 0.1 N Hci	99.6	

Sample Description:

Comments:

QA Check:

Physical and Chemical Measurements of Porewaters Sediment Bioassays

Analyst:	<u>et</u>	
----------	-----------	--

Client : Newfulds

Test Date: ______

Test Type: Microtox 100% Porewater Toxicity Test

Test No:

0809-7072-7076

Test Species: Vibrio fischeri

....

	Initial Salinity	Einal Salinity	Initial D.O.	Final D.O	Initial pH	Adjusted pH	NaOH or HCl	Final Porewater	
Site	(ppt)	😳 (ppt)	<u>(mg/L)</u>	(mg/L)	an sharan na Carlon - Carlon I. Carlon - Carlon I.		Vol. Used	Cone.	Ammonia
508-090							0.1 <i>N N</i> 40H		
CR-1	30.8	30.8	6.7	6.7	7,35	7.90	KOGUL.	99.6	27.2
508-079							O.INMOH		
MP-3	<u>a</u> 8.5	28.5	6.5	, 6.5	7.65	7.91	100/11	79.6	37.8
508-080				_			O.INMOH		
MP-5	26.4	26.4	6.8	, 6.8	7.40	7.96	100/11	99.6	22.5
508-081			1				O.IN Naolt		
MP-6	27.9	27.9	6.1	6.7	7.07	7.90	200/11	99.2	8.5
508-083							O.I.N. M.O.H	_	
MP-8	26.9	26.9	6.8	6.8	7.29	8.17	200/1L	99.2	8.9
	_						O. TN HCI		
CON	19.2	19.2	6.8	6.8	9.20	8.18	100UL	99.6	
							,		

Sample Description:

Comments: _____

QA Check: Mag

Physical and Chemical Measurements of Porewaters Sediment Bioassays

Analyst:	<u>tt</u>	
----------	-----------	--

Client :

Newfielda

Test Date: 0/2/08

Test Type: Microtox 100% Porewater Toxicity Test

Test No:

Test Species: Vibrio fischeri

	Initial : Sulinity	Final Salinity	Initial D.O.	Final D.O	Initial pH	Adjusted pH	NaOH or HCl Vol. Used	Final Porewater Conc.	Ammonia
Site	19.2	19.2	6.7	6.7	8.99	8.18	GOML O.INHCI	99.8	
CON	32.5	32.5	6.3	6.3	7.44	7.98	150/11. 0.1/1 160H	99.4	22.9
<u>> BRC730</u>	μ.ς.	20.6	6.3	6.3	7,54	8.00	150/11. 0.1 N Nr014	99.4	45.2
40.0	256	256	6.5	6.5	7.37	7.91	200/11 0.1 N 1401	99.2	26.2
Mr- 4	176	19.2	6.6	6.6	7.36	8.11	2.50/11. 0.1 N /60/1	99.0	17.4
MP-7	27.5	27.5	6.7	G. 7	7.29	8.19	250/UL O.INNHON	99.0	16,3
	- 1.0								

Sample Description:

Comments: _____

QA Check: _____

Turbidity Measurements

.....

Client: Newfields Date: 9/22/08 Analyst: 04

*	La Consurement (NTU)
1. ID	497
Sample ID	500
Standard 0-10	481
Standard 0-100	0.79
Standard 0-1000	L 43
DI	<u> </u>
CON CONEESO	13.1
508-91 5BRCF00	91.6
508-76 MT-1	168
508-77 MF-5	277
508-79 MP-1	19.3
508-82 MP-1	29.1
508-84 MP-4	38.3
508-85 MP-10	53.0
508-86 MP-11	414
508-87 MP-12	414
508-88 MP-13	490
STANDARD 0-10	<u> </u>
STANDARD 0-100	<u> </u>
STANDARD 0-1000	
DT	0.63
Standard 0-10	
Standard 0-100	
Standard 0-1000	
DI	

Measure standards and DI at beginning and end of analysis.

Turbidity Measurements

- -- ---

Client: Neufulda Date: 9/25/08 Analyst: 94

Sample ID	Measurement (NTU)
Standard 0-10	5.02
Standard 0-100	49.7
Standard 0-1000	493
DI	0.47
CON	0.62
508-090 CR-1	31.2
508-078 MP-3	67.9
508-080 MP-5	24.3
508-081 MP-6	38.4
508-083 MP-8	16.4
	· · · · · · · · · · · · · · · · · · ·
······	
Standard 0-10	6749, 4.94
Standard 0-100	49.6
Standard 0-1000	485
DI	0.55

Measure standards and DI at beginning and end of analysis.

Turbidity Measurements

Client: Newfulds Date: 10/2/08 Analyst: 84

Measurement (NTU)
4.92
49.8
484
0.40
41.7
50.8
30,5
248
17.6
4.99
49.6
484
0.4/

Measure standards and DI at beginning and end of analysis.

APPENDIX D - Reference Toxicant Tests

Reference Toxicant Control Chart Microtox 5-Minute Exposure

Data	Time	EC50 %	EC50 mg/L	Mean	StDev	-2 SD	+2 SD
Date				34.3	7.8	18.8	49.8
9/22/2007	1044	27.4	27.9	34.3	7.8	18.8	49.8
10/23/2007	830	29.4	30.0	34 3	7.8	18.8	49.8
10/24/2007	1114	24.2	24.7	34.3	78	18.8	49.8
12/12/2007	1316	38.0	38.8	34.5	7.8	18.8	49.8
12/16/2007	1140	29.3	29.9	34.5	78	18.8	49.8
1/11/2008	1015	34.9	35.6	34.3	78	18.8	49.8
2/14/2008	1239	29.5	30.1	34.3	7.8	18.8	49.8
3/12/2008	1245	27.0	27.6	34.3	7.0	18.8	49.8
4/11/2008	928	38.0	38,8	34.3	7.0	18.8	49.8
5/9/2008	1002	29.7	30.3	34.3	7.0	18.8	49.8
6/12/2008	1314	28.2	2.8.8	34.3	7.0	18.8	49.8
6/16/2008	1249	27.3	27.8	34.3	1,0	18.8	49.8
7/19/2008	1335	33.7	34.4	34.3	1 7.0	18.8	49.8
8/4/2008	1352	33.8	34.5	34.3	1.0	18.8	49.8
8/22/2008	856	43.8	44.7	34.3	/.0	18.8	49.8
8/22/2008	1108	58.6	59.8	34.3	1.8	19.0	49.8
8/25/2008	1343	37.1	37.8	34.3		18.8	49.8
9/2/2008	1327	32.3	32.9	34.3	/.8	10.0	49.8
0/15/2000	843	35.9	36.6	34.3	1.8	10.0	10.0 AQ R
9/22/2008	1246	35.1	35.8	34.3		10.0	1 43.0

a - Highest concentration of Phenol is 102 mg/L

Reference Toxicant Control Chart Microtox 15-Minute Exposure

·····			EC50 mg/L	 Mean	StDev	-2 SD	+2 SD
Date	Ţime	EC50 %	Phenol [®]	39.4	5.8	27.8	50.9
10/23/2007	830	33.2	33.8	39.4	5.8	27.8	50.9
10/24/2007	1114	25.8	20.3	20.7	5.8	27.8	50.9
11/9/2007	1337	39.3	40.1	20.4	58	27.8	50.9
12/12/2007	1316	40.2	41.0	35.4 20.4	5.0	27.8	50.9
12/16/2007	1140	35.6	36.3	39.4	5.5	27.8	50.9
1/11/2008	1015	35.4	36.1	39.4	5.0	27.8	50.9
2/14/2008	1239	31.0	31.6	39.4	5.0	27.8	50.9
3/12/2008	1245	37.7	38.5	39.4	5.0	27.8	50.9
4/11/2008	928	45.9	46.8	39.4	5.8	27.8	50.9
5/9/2008	1002	35.6	36.3	39.4	5.5	27.8	50.9
6/12/2008	1314	37.3	38.0	39.4	5.0	27.8	50.9
6/16/2008	1249	34.8	35.5	39.4	5.0	27.8	50.9
7/19/2008	1335	41.2	42.0	39.4	5.0	27.8	50.9
8/4/2008	1352	39.1	39.9	39.4	0.0 K R	27.8	50.9
8/22/2008	856	50.2	51.2	39.4	9.0	27.8	50.9
8/22/2008	1108	39.6	40.4	39.4	8.0	27.8	50.9
8/25/2008	1343	40.8	41.6	39.4	5.0	27.8	50.9
9/2/2008	1327	39.3	40.1	39.4	5.0	27.8	50.9
9/15/2008	843	41.6	42.4	39.4	5,5	27.8	50.9
9/22/2008	1246	48.5	49.5	39.4	1 3.0		

a - Highest concentration of Phenol is 102 mg/L

MicrotoxOmni Test Report

Date: 09/22/2008 12:46 PM

Test Protocol: Basic Test Sample: 102mg/L Phenol Toxicant: 102mg/L Phenol Reagent Lot no.: 8E1080 Test description: Reference Toxicant Test name: RT092208VF Database file: \\Fif-ws3\alldata\Nautilus\former staff Folders\Karen\Microtox\MicrotoxOmni\Edge Analytical.mdb

		5 Mins Data	a :	15 Mins Dat	a:
Conc	Io	lt Gamma	% effect	It Gamma	% effect
0.000	101.43	94.59 0.9326 #		76.45 0.7537 #	
0.000	107.59	102.500.9527 #		82.58 0.7675 #	
5.625	103.21	83.64 0.1632 #	14.03%	75.91 0.0341 *	3.305%
5.625	102.05	83.06 0.1581 #	13.65%	74.08 0.0478 *	4.564%
11.25	102.25	71.31 0.3516 #	26.01%	67.05 0.1600 #	13.79%
11.25	98.11	68.48 0.3505 #	25.95%	63.51 0.1750 #	14.90%
22.50	103.20	59.85 0.6254 #	38.48%	56.34 0.3933 #	28.23%
22.50	107.61	60.08 0.6884 #	40.77%	55.79 0.4671 #	31.84%
45,00	104.86	44.51 1.221#	54.97%	42.53 0.8754 #	46.68%
45.00	109.25	45.96 1.241#	55.37%	44.55 0.8653 #	46.39%
	Conc 0.000 5.625 5.625 11.25 11.25 22.50 22.50 45.00	ConcIo0.000101.430.000107.595.625103.215.625102.0511.25102.2511.2598.1122.50103.2022.50107.6145.00104.8645.00109.25	5 Mins Data Conc Io It Gamma 0.000 101.43 94.59 0.9326 # 0.000 107.59 102.50 0.9527 # 5.625 103.21 83.64 0.1632 # 5.625 102.25 71.31 0.3516 # 11.25 98.11 68.48 0.3505 # 22.50 103.20 59.85 0.6254 # 22.50 107.61 60.08 0.6884 # 45.00 104.86 44.51 1.221 # 45.00 109.25 45.96 1.241 #	S Mins Data: Conc Io It Gamma % effect 0.000 101.43 94.59 0.9326 # 94.59 9326 # 0.000 107.59 102.50 0.9527 # 95.625 103.21 83.64 0.1632 # 14.03% 5.625 102.05 83.06 0.1581 # 13.65% 11.25 102.25 71.31 0.3516 # 26.01% 11.25 98.11 68.48 0.3505 # 25.95% 22.50 103.20 59.85 0.6254 # 38.48% 22.50 107.61 60.08 0.6884 # 40.77% 45.00 104.86 44.51 1.221 # 54.97% 45.00 109.25 45.96 1.241 # 55.37%	5 Mins Data: 15 Mins Data Conc Io It Gamma % effect It Gamma 0.000 101.43 94.59 0.9326 # 76.45 0.7537 # 0.000 107.59 102.500.9527 # 82.58 0.7675 # 5.625 103.21 83.64 0.1632 # 14.03% 75.91 0.0341 * 5.625 102.25 71.31 0.3516 # 26.01% 67.05 0.1600 # 11.25 98.11 68.48 0.3505 # 25.95% 63.51 0.1750 # 22.50 103.20 59.85 0.6254 # 38.48% 56.34 0.3933 # 22.50 107.61 60.08 0.6884 # 40.77% 55.79 0.4671 # 45.00 109.25 45.96 1.241 # 55.37% 44.55 0.8653 #

- used in calculation; * - invalid data; D - deleted from calcs.

Calculations on 5 Mins data: EC50 Concentration:35.11% (95% confidence range: 32.66 to 37.75) 95% Confidence Factor: 1.075 Estimating Equation:LOG C =1.025 x LOG G +1.545 Coeff. of Determination (R²):0.9957 Slope: 0.9715 Correction Factor: 0.9426

Calculations on 15 Mins data: EC50 Concentration:48.45% (95% confidence range: 41.54 to 56.50) 95% Confidence Factor: 1.166 EC50 value was calculated from extrapolated data. Estimating Equation:LOG C =0.8294 x LOG G +1.685 Coeff. of Determination (\mathbb{R}^2):0.9866 Slope: 1.189 Correction Factor: 0.7606

Reference Toxicant Control Chart Microtox 5-Minute Exposure

Date	Time	EC50 %	EC50 mg/L Phenol *	Mean	StDev	-2 SD	+2 SD
10/23/2007	830	29.4	30.0	34.3	7.7	18.9	49.8
10/24/2007	1114	24.2	24.7	34.3	7.7	18.9	49.8
12/12/2007	1316	38.0	38.8	34.3	7.7	18.9	49.8
12/16/2007	1140	29.3	29.9	34.3	7.7	18.9	49.8
1/11/2008	1015	34.9	35.6	34.3	7.7	18.9	49.8
2/14/2008	1239	29.5	30.1	34.3	7.7	18.9	49.8
3/12/2008	1245	27.0	27.6	34.3	7.7	18.9	49.8
4/11/2008	928	38.0	38.8	34.3	7.7	18.9	49.8
5/9/2008	1002	29.7	30.3	34.3	7.7	18.9	49.8
6/12/2000	1314	28.2	28.8	34.3	7.7	18.9	49.8
6/16/2008	1249	27.3	27.8	34.3	7.7	18.9	49.8
7/10/2000	1335	33.7	34,4	34.3	7.7	18.9	49.8
8/4/2008	1352	33.8	34.5	34.3	7.7	18.9	49.8
8/22/2008	856	43.8	44.7	34.3	7.7	18.9	49.8
8/22/2000	1108	58.6	59.8	34,3	7.7	18.9	49.8
9/25/2000	1343	37.1	37.8	34.3	7.7	18.9	49.8
0/20/2000	1997	32.3	32.9	34.3	7.7	18.9	49.8
9/2/2000	9/2	35.0	36.6	34.3	7.7	18.9	49.8
9/10/2000	1248	25.1	35.8	34.3	7.7	18.9	49.8
9/22/2008	1323	27.7	28.3	34.3	7.7	18.9	49.8

a - Highest concentration of Phenol is 102 mg/L

Reference Toxicant Control Chart Microtox 15-Minute Exposure

Date	Time	EC50 %	EC50 mg/L Phenol *	Mean	StDev	-2 SD	+2 SD
10/24/2007	1114	25.8	26.3	39.4	5.8	27.8	50,9
11/9/2007	1337	39.3	40.1	39.4	5.8	27.8	50.9
12/12/2007	1316	40.2	41.0	39.4	5.8	27.8	50.9
12/16/2007	1140	35.6	36.3	39.4	5.8	27.8	50.9
1/11/2008	1015	35.4	36.1	39.4	5.8	27.8	50.9
2/14/2008	1239	31.0	31.6	39.4	5.8	27.8	50.9
3/12/2008	1245	37.7	38.5	39.4	5.8	27.8	50.9
4/11/2008	928	45.9	46.8	39.4	5.8	27.8	50.9
5/9/2008	1002	35.6	36.3	39.4	5.8	27.8	50.9
6/12/2008	1314	37.3	38.0	39.4	5.8	27.8	50.9
6/16/2008	1249	34.8	35.5	39.4	5.8	27.8	50.9
7/19/2008	1335	41.2	42.0	39.4	5.8	27.8	50.9
8/4/2008	1352	39.1	39,9	39.4	5.8	27.8	50.9
8/22/2008	856	50.2	51.2	39.4	5.8	27.8	50.9
8/22/2008	1108	39.6	40.4	39.4	5.8	27.8	50.9
8/25/2008	1343	40.8	41.6	39.4	5.8	27.8	50.9
9/2/2008	1327	39.3	40.1	39.4	5.8	27.8	50.9
9/15/2008	843	41.6	42.4	39.4	5.8	27.8	50.9
9/22/2008	1246	48.5	49.5	39.4	5.8	27.8	50,9
9/25/2008	1323	33	33.7	39.4	5.8	27.8	50.9

a - Highest concentration of Phenol is 102 mg/L

MicrotoxOmni Test Report

Date: 09/25/2008 01:23 PM

Test Protocol: Basic Test Sample: 102mg/L Phenol Toxicant: 102mg/L Phenol Reagent Lot no.: 8E1080 Test description: Reference Toxicnat Test name: RT092508VF#3 Database file: C:\Program Files\MicrotoxOmni\Edge Analytical.mdb

			5	Mins Data	1:	14	5 Mins Dat	a:
Sample	Conc	Io	It	Gamma	% effect	It	Gamma	% effect
Control	0.000	95.51	65.67	0.6876 #		60.83	0.6369 #	
Control	0.000	96.37	66.62	0.6913 #		62.72	0.6508 #	
1	5.625	103.19	50.39	0.4118	29.17%	48.17	0.3793	27 50%
2	5.625	111.04	56.59	0.3528	26.08%	55.50	0.2882	22.37%
3	11.25	104.69	47.73	0.5122	33.87%	46.64	0.4452	30.81%
4	11.25	108.42	60.72	0.2310	18.77%	60.99	0.1446	12.63%
5	22.50	110.34	39.93	0.9051 #	47.51%	39.72	0.7886 #	44.09%
6	22.50	108.84	39.08	0.9201 #	47.92%	39.18	0.7886 #	44.09%
7	45.00	119.30	36.10	1.278 #	56.11%	34.42	1.232 #	55 19%
8	45.00	112.23	35.04	1.208 #	54.71%	33.00	1.190 #	54.33%

- used in calculation; * - invalid data; D - deleted from calcs. Autocalc has been used.

Calculations on 5 Mins data: EC50 Concentration:27.70% (95% confidence range: 23.80 to 32.24) 95% Confidence Factor: 1.164 Estimating Equation:LOG C =2.205 x LOG G +1.442 Coeff. of Determination (R²):0.9822 Slope: 0.4455 Correction Factor: 0.6894

Calculations on 15 Mins data: EC50 Concentration:33.03% (95% confidence range: 31.09 to 35.09) 95% Confidence Factor: 1.062 Estimating Equation:LOG C =1.612 x LOG G +1.519 Coeff. of Determination (R²):0.9967 Slope: 0.6182 Correction Factor: 0.6439

Reference Toxicant Control Chart Microtox 5-Minute Exposure

Date	Time	EC50 %	EC50 mg/L Phenol *	Mean	StDev	-2 SD	+2 SD
10/24/2007	1114	24.2	24.7	34.5	7.7	19.2	49.9
12/12/2007	1316	38.0	38.8	34.5	7.7	19.2	49.9
12/16/2007	1140	29.3	29.9	34.5	7.7	19.2	49.9
1/11/2008	1015	34.9	35.6	34.5	7.7	19.2	49.9
2/14/2008	1239	29.5	30.1	34.5	7.7	19.2	49.9
3/12/2008	1245	27.0	27.6	34.5	7.7	19.2	49,9
4/11/2008	928	38.0	38.8	34.5	7.7	19.2	49.9
5/9/2008	1002	29.7	30.3	34.5	7.7	19.2	49.9
6/12/2008	1314	28.2	28.8	34.5	7.7	19.2	49.9
6/16/2008	1249	27.3	27.8	34.5	7.7	19.2	49.9
7/19/2008	1335	33.7	34.4	34.5	7.7	19.2	4 9. 9
8/4/2008	1352	33.8	34.5	34,5	7.7	19.2	49.9
8/22/2008	856	43.8	44.7	34.5	7.7	19.2	49.9
8/22/2008	1108	58.6	59.8	34.5	7.7	19.2	49.9
8/25/2008	1343	37.1	37.8	34.5	7.7	19.2	49.9
9/2/2008	1327	32.3	32.9	34.5	7.7	19.2	49.9
9/15/2008	843	35.9	36.6	34.5	7.7	19.2	49.9
9/22/2008	1246	35.1	35.8	34.5	7.7	19.2	49.9
9/25/2008	1323	27.7	28.3	34.5	7.7	1 9 .2	49.9
10/2/2008	1237	19.8	33.6	34.5	7.7	19.2	49.9

a - Highest concentration of Phenol is 170 mg/L as of 10/1/08

Reference "	Foxicant Control Chart
Microtox	15-Minute Exposure

Date	Time	EC50 %	EC50 mg/L Phenol *	Mean	StDev	-2 SD	+2 SD
11/9/2007	1337	39.3	40.1	40.2	49	1 30.2	F0.0
12/12/2007	1316	40.2	41.0	40.2	4.0	30.3	50.0
12/16/2007	1140	35.6	36.3	40.2	4.0	30.3	50.0
1/11/2008	1015	35.4	36.1	40.2	4.9	30.3	50.0
2/14/2008	1239	31.0	31.6	40.2		30.3	50.0
3/12/2008	1245	37.7	38.5	40.2	4.5	30.3	50.0
4/11/2008	928	45.9	46.8	40.2	4.5	30.3	50.0
5/9/2008	1002	35.6	36.3	40.2	4.5	30.3	50.0
6/12/2008	1314	37.3	38.0	40.2	4.9	30.3	50.0
6/16/2008	1249	34.8	35.5	40.2	4.9	30.3	50.0
7/19/2008	1335	41.2	42.0	40.2	4.9	30.3	50.0
8/4/2008	1352	39.1	300	40.2	4.9	30,3	50.0
8/22/2008	856	50.2	51.2	40.2	4.9	30.3	50.0
8/22/2008	1108	39.6	40.4	40.2	4.9	30.3	50.0
8/25/2008	1343	40.8	41.6	40.2	4.9	30.3	50.0
9/2/2008	1327	39.3	40.1	40,2	4.9	30.3	50.0
9/15/2008	843	416	42.4	40.2	4.9	30.3	50.0
9/22/2008	1246	48.5	42.4	40.2	4.9	30.3	50.0
9/25/2008	1323	33	49.0	40.2	4.9	30.3	50.0
10/2/2008	1020	24.70	33.7	40.2	4.9	30.3	50.0
	12.07	24.79	42.1	40.2	4.9	30.3	50.0

a - Highest concentration of Phenol is 170 mg/L as of 10/1/08

MicrotoxOmni Test Report

Date: 10/02/2008 12:37 PM

Test Protocol: Basic Test Sample: Phenol Toxicant: Phenol Reagent Lot no.: 8E1080 Test description: Reference Toxicant Test name: RT100208VF Database file: \\Fif-ws3\alldata\Nautilus\former staff Folders\Karen\Microtox\MicrotoxOmni\Edge Analytical.mdb

Sam. 1-	~		5 Mins Data	a;	15 Mins Data:		
Saupie	Conc	lo	It Gamma	% effect	It Gamma	0/ affeat	
Control	0.000	99.31	95.92.0.9659 #			70 eneci	
Control	0.000	104 17	101 570 0760 #		//.04 0.//58 #		
1	5.000	104.17	101.010.9730#		81.70 0.7843 #		
1	5.625	109.47	78.18 0.3589 #	26.41%	716001926#	16 159/	
2	5.625	111.63	84.73 0.2786 #	21 70%	70.00 0.1520 #	10.13%	
3	11.25	110.04	63 75 0 4761 #	41.7570	70.00 0.2439 #	19.61%	
4	11.00	110,04	05.75 0.0751 #	40.30%	56.29 0.5249 #	34.42%	
4	11,25	110.67	66.02 0.6268 #	38.53%	58 09 0 4861 #	22 710/	
5	22.50	120.67	51.10 1.292 #	56 2694	46.04 1.040 "	52.1170	
6	22.50	112.07	59.03 1 100 //	30.3070	45.94 1.049#	51.19%	
7	22.00	113.07	52.02 1.109#	52.59%	45.78 0.9265 #	48 09%	
/	45.00	109.98	36.35 1,936 #	65 94%	32 04 1 677 4	60.6504	
8	45.00	113 14	38 75 1 822 #	64 710/	32.04 1.077#	02.00%	
			50.75 1.055#	04.71%	34.69 1.544 #	60.69%	

- used in calculation; * - invalid data; D - deleted from calcs.

Calculations on 5 Mins data: EC50 Concentration: 19.79% (95% confidence range: 17.51 to 22.36) 95% Confidence Factor: 1.130 Estimating Equation:LOG C =1.135 x LOG G +1.296 Coeff. of Determination (R²):0.9769 Slope: 0.8605 Correction Factor: 0.9705

Calculations on 15 Mins data: EC50 Concentration:24.79% (95% confidence range: 21.64 to 28.39) 95% Confidence Factor: 1.145 Estimating Equation:LOG C =1.013 x LOG G +1.394 Coeff. of Determination (R²):0.9770 Slope: 0.9642 Correction Factor: 0.7800

1

APPENDIX E - Chain-of Custody Forms
EWHELDS Native procession 1323 The WHELDS The State of the State	ļ		NewFields Shinning:	s Northwa 4729 NE V	est, LLC. Tew Dr.	CHA	IN OF C	USTODY
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	WFIELDS		Mailin Port Ga	g: P.O. Box mble, WA.	(216 98364			13293
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Sample Originator: 🔥	Tel: (360) 297-6	040, Fax: (;	560)/297-7/268 Roport Results To: N/e~ 5.2	125	Phone:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	autilitys	Contact Name: A.C.	ar Hester		Contact Name: Brian H	estr	Fax:	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(3)06	Address:	s above		Address.		Emailt	
Point Two functions Activity	trand	Phone:			Analysis	Invoicing To: V	enFields	
Time Time <th< td=""><td>Birt Landtill</td><td>Fax:</td><td></td><td>7</td><td></td><td>Comments or Special I</td><td>nstructions:</td><td></td></th<>	Birt Landtill	Fax:		7		Comments or Special I	nstructions:	
Sample ID Matrix Restandation Transmotion Transmotion Team		E-mail bhesteren	entields.com	01000			T of the second s	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample ID	Matrix No. & Type of Container	Date & Time	:4		Preservation	Upon Receipt	LABID
R SS 1-16-7 Pladits 11-5 R S 1-16-7 Pladits 11-5 S 1-16-5 S		55 1-164	8/26/08 0809			Joh	3.2	508-076
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G	55 1- 1607	8/24/08 1145	X		-	4.2	508-077
H 55 [1] (Lot [] apter 655 57 50%-0 55 [1-1606 [] apter 653 5 [1-1606 53 55 7 55 [1-1606 [] apter 63 55 50%-0 7 55 [1-1606 [] apter 63 55 50%-0 7 55 [1-1606 [] apter 55 50%-0 7 55 [1-1606 [] apter 55 50%-0 55 [1-1606 [] apter 60% 52 50%-0 55 [1-1606 [] apter 71	3	55 1-1602	0011 90/7e/g	\times			2 C	SOK-07K
5 1-1664 8134(8) 956 5 5 1-16.05 8134(8) 55 5	5	55 [-1602	6/24/08 0600	\times		-	N J	501-019
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	55 1-1607	8/24/08 0826	<u> </u>			5	S08-02D
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		22 - 11 6(3)	a) B/28/08 0837	\times			38	180-205
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	55 1-1602	8/24/06 1311				4.2	806-08
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	55 1-1602	. The softeld	\times		-	2.8	50Y-085
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		55 1-1602	< 8401 80/tela				بن	SOK-084
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · ·	55 1-1602	Barlos 10001	×			Sa	SDY-DXS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2091-1 55	0/22/06 1128	X			s 2	SOE-0 V.
55 [-1]Lv 9/37/(8 [346 X X X SS SOE.0 adimulshed by: Received by: Reinquished by: Reinquished by: Reinquished by: Received by: Re	~	55 [-1602	deplos one	X			S:S	508-081
All and the sector of the s		55 [-162	8/22/08 1348	X		>	l?	S08-088
Allinguished by: Recieved by: Reinquished by: Reinquished by: Reinquished by: Allinguished by: Reinquished by: Reinquished by: Reinquished by: Reinquished by: Allinguished by: Reinquished by: Reinquished by: Reinquished by: Reinquished by: Allinguished by: Reinquished by: Reinquished by: Reinquished by: Reinquished by: Allinguished by: Reinquished by: Reinquished by: Reinquished by: Reinquished by: Allinguished by: Reinquished by: Reinquished by: Reinquished by: Reinquished by: Allinguished by: Reinquished by: Reinquished by: Reinquished by: Reinquished by: Allinguon: Signature: Signature: Signature: Signature: Allinguon: Date/Inte Signature: Signature: Signature:				-				
Tellinquished by: Recieved by: Recieved by: Recieved by: Thirt Name Print Name Print Name Horte Signature: Signature: Signature: Signature: Signature: Z/d 5 Artiliation: Date/Time								
Horte Recieved by: Relinquished by: Relinquished by: Recieved by: Horte Print Name: Relinquished by: Print Name: Relinquished by: Horte Standore Print Name: Relinquished by: Relinquished by: Horte Standore Print Name: Recieved by: Relinquished by: Horte Standore Relinquished by: Relinquished by: Recieved by: Horte Standore Relinquished by: Relinquished by: Relinquished by: Relinquished Relinquished by: Relinquished by: Relinquished by: Relinquished by: Relinquished Relinquished Relinquished by: Relinquished by: Relinquished by:								
Recieved by: Recieved by: Recieved by: Print Name Print Name Print Name Print Name Print Name Recieved by: Print Name Reinquished by: Print Name Recieved by: Print Name Signature: Signature: Signature: Signature: Signature: Print Name Signature: Print Name Signature: Signature: Signature: Signature: Signature: Signature: Signature: Signature: Dater Time: <								
Recieved by: Recieved by: Recieved by: Horth Print Name: Recieved by: Horth Print Name: Recieved by: Addition: Signature: Signature: Signature: Signature: Signature: Adfiliation: Adfiliation: Date/Time:				-				
Recieved by: Recieved by: Recieved by: High Print Name: Print Name: High Print Name: Recieved by: Affiliation: Signature: Signature: Ed Signature: Signature: Affiliation: Date Time Date Time:								
lailinquished by: Recieved by: Recieved by: Recieved by: Print Name: Neuropean by: Neu							Barianad hv	Matrix Co.
Hoster Zhoure: Signature: Signatu	telinquished by:	Print Name?	P P	rint Name:	Reitinguismenug.	Print Name:		FW = Fresh Water
2d5 Signature: Signatu	Hester	ZA			,	Stonobino.		VAW = Viaste Viate
$c/d5$ Affiliation: Affiliation: Affiliation: Affiliation: c_{15} affiliation: c_{15} c_{15} c_{17} c	N.	Sibration Am	Kard-Hert	ignature: /		oldiracare:		SS = Soil & Sedmen
a n/u C DaterTime DaterTime DaterTime DaterTime	2015	Affiliation:	Y.	filiation:		Affiliation:		TS ≈ piant & Arrmal CT ≂ 0tone
	2470 8	Date/Time. / 7 / 70	(7°)	ate/Time:		Date/Time:		

WHITE ... (etum to origination * YELLOW -... ab • FINK - retained by origination

ODΥ		308					between	icct seds	LABID	25 790	8-091															7		Matrix Codes	FW a Fresh Water hvvv a Water Water	SB = Sait & Brackish Water	SS = Soil & Sedument YS ≐ plan; & Animal Tissue	01 = Other	
N OF CUST	С т	л Т	hone:		Hail:	en Felds	ructions: L COILE ATION	Cond by a not pro	ipon Receipt	$rac{1}{2}$	1.9 50														/			ecieved by:					
CHAI			<u>45</u>	576	<u>.</u>	Invoicing To: N	Comments or Special Inst	Ret Static	Preservation	400	->													/					Print Name:	Signature:	Affiliation:	Doto:Time:	
ij		7268	IN TO NEWFICK	· Bin He		sis		, <u>, , , , , , , , , , , , , , , , </u>													1	A						hed by:					
Northwest, LL	729 NE VIEW DT. P.O. Box 216	ble, WA. 98364 40, Fax: (360)297-:	Report Res.	Contact Nar	Address:	Analy					4									/	/					 		Relinquist	Name:	iture:	lion:		lime:
NewFields N	Shipping: 4. Mailine:	Port Gaml Port Gaml	lds	ester	port			Adres tot	te & Time	7 00 1	χ $\frac{1}{2}$								/										DULL Print	Signa	Affilial		CRAP UNITED
			iginator: NarFic	ne Brian F	see A		•	stell nenti	o. & Type of Da Container	11-10 9/1	311-6 9/1						/	/			,500	\ \ \						Recieved by:	the Kana	the in the		Svillert	18108
	71		Sample Ori	Contact Nat	Address:	Phone:	Fax	E-mail Dhe	Matrix	55 1						/				4	<i>ference</i>								Print Name	Signature	Affiliation.	11/1	
	TEL DO		· 5			Point	l out	-	le ID		(1,2))			/				~ _ /	HLONH -	10-16							od by:	IESTER		11	a >	Dec C
			MLAD: NOUTIN	n Contact:	9/18/08 nd-Time	March	2) Los Hav	ģ	Samp	<u>1-8:</u>	, BREFBO								UV IV	1/18252	- Land	1-6-1-6						Relincuishe	ne ACIAN H			Nerlin	€
			Destinati	Destinatio	Date: Turn-Arou	Project N		Contract/	Ň	+-	2	/ [4	5	-9	2	8	0	10	Ŧ	5	÷	14	1 2	1 6	\$ ₽ ₽	.	22	Print Nar	Signature	Affiliation	!	Date/Tim

BIOLOGICAL TESTING OF SEDIMENT FOR MARCH POINT (WHITMARSH) LANDFILL ANACORTES, WASHINGTON

APPENDIX B

LABORATORY DOCUMENTS

BIOLOGICAL TESTING OF SEDIMENT FOR MARCH POINT (WHITMARSH) LANDFILL ANACORTES, WASHINGTON

CHAIN OF CUSTODY

AMEC Geomatrix, Inc 3500 – 188" Street SW, Suite 600 Lynnwood, WA 98037 (425) 921-4000

CHAIN OF CUSTODY

.

					Re	que	este	d Ar	naly	sis				
Place COC Form Number Label Here or write in seq. number below		SMS List of COCs	Mercury (digest and ho		roc/tvs/ts	Grainsize	VH4		Bioassay	Microtox			Archive	New Fields Checked by:
AMEC Geomatrix MP-12 COC Form Initials: $\underline{PH_1}$ Date: $\underline{S/21/08}$ Time: $\underline{O9/2}$	Date: Time:	-	-				-		2	1			2	Number of containers
AMEC Geomatrix MP-13 COC Form Initials: RES Date: 8/27/08 Time: /348	Date:								2	,				Number of containers
MP-8 COC Form Initials: \underline{KAA} Date: $\underline{8/27/08}$ Time: $\underline{/2:42}$ AMEC Geomatrix	Date: Time:								2	1				Number of containers
MP-9 COC Form Initials: <u>LAA</u> Date: <u>8/27/08</u> Time: <u>/0.'48</u>	Time:								2	1				Number of containers
MP-1 COC Form Initials: <u>RHG</u> Date: <u>3/29/08</u> Time: <u>0609</u>	Date: Time:								2	1				Number of containers
AMEC Geomatrix MP-6 COC Form Initials: <u><i>R44</i></u> Date: <u><i>8</i>/28/08</u> Time: <u>8:37</u>	Date: Time:	-							ス	1				Number of containers
Place Sample ID Label Here or Write ID Number Here	Date: Time:													Number of containers
Laboratory/Analysis Comments AMEC Geomatrix Project 14159.000 Dave Heddock Project Manager 206-342-1787 Cell 425-246-7409 AMEC Geomatrix Contact Rob Gilmour 425-921-4003 Cell 206-940-7635 or Cliff Whitmus 425-921-4023			Nami Date: Time	R P		uist 1972	100 E	ly rn	2	Tra	nspo	betro	By	Received B, Name Date: 8/29/08 Time: 082.5
			Name Date: Time:	0										Name Dale: Tima:

AMEC Geomatrix, Inc 3500 – 188" Street SW, Suite 600 Lynnwood, WA 98037 (425) 921-4000

а., <u>с</u>

CHAIN OF CUSTODY

ъ

					Re	que	ste	d Ar	naly	sis					
Place COC Form Number Label Here or write in seq. number below.		MS List of COCs	lercury (digest and ho		OC/TVS/TS	rainsize	H4		ioassay	icrotox			rchive	New Field	15
AMEC Geometrix	Date:	S	Σ	-	Ŧ	υ	z	_	B	Σ			Ā		
MP-3 COC Form Initials: $\checkmark \omega$ Date: $\$/z6/0$ Time: 100	Time:	-							XX 2	<i>x</i>				Number of containers	
AMEC Goometrix	Date:	+	\vdash	-		-	-	-	×		_		_		
MP-2 COC Form	Time:								£ 2	× 1				Number of containers	
Data: 4/2//04 Time: 1145														3	
AMEC Geomatrix MP-4	Date:												_		
COC Form Initials: <u>~46</u> Date: <u>0/27/08</u> Time: <u>0800</u>	Time:								Z	1				Number of containers	
AMEC Geomatrix MP-10 COC Form	Date:								2	,				Number of containers	
Date: <u>\$/17/08</u> Time: <u>10:09</u>			8						1					3	
AMEC Geomatrix MP-5 COC Form Initials: <u><i>CC</i></u> Date: <u>C8/47/08</u> Time: <u>0836</u>	Date: Time:								2	J				Number of containers	
AMEC Geomatrix	Data	-							_				_	-	
MP-7 COC Form Initials: $/\langle A/I / 08$ Time: $/3.11$	Time:								2	1				Number of containers	
AMEC Geomatrix MP-11	Date:												_		
COC Form Initials: <u>MG</u> Date: <u>8/27/08</u> Time: <u>//28</u>	Time:								2	1				Number of containers	
Laboratory/Analysis Comments				Ŕ	telina	uish	ed E	y		Tra	nspo	orted	By	Received By	
IAMEC Geomatrix Project 14159.000 Dave Haddock Project Manager 206-342-1787 Cell 425-246-7409 AMEC Geomatrix Conlact Rob Gilmour 425-921-4003 Cell 206-940-7635 or Cliff Whitmus 425-921-4023			Namy Date: Time Name	e C	2	9 J 8 J	100 100 2.0	2 2 2 2					_	Nome Date: 8/23/08 Time: 0825 Name:	
,			Date Time											Dele:	

ſ	
	S I
1	
1	
	TTT I

NewFields N Jwest, LLC. Shipping: 4729 NE View Dr. Mailing: P.O. Box 216 Port Gamble, WA. 98364

CHAIN OF CUSTC Y

ļ

HIGHL

13306

	Phone:	Fax.	Email:		nstructions:	Samila Tamn	Upon Receipt																					Recieved by: Matrix Codes	FW = Frèsh Water WW = Waste Water	SB = Salt & Bracksh Water SS = Sold & Soldment	TS = plant & Animal Tissue	OT = Ohus
				Invoicing To:	Comments or Special I		Preservation																					Dates Names	Print Name:	Signature:	Affiliation:	
ие, үү.А. 2000 4 Ю, Fax: (360)297-7268	Report Results To:	Contact Name:	Address:	Analysis													1											Relinquished by:	Name:	ture:	tion:	
Tel: (360) 297-604	Sample Originator:	Contact Name:	Address:	Phone:	Fax: E-mail		Matrix No. & Type of Date & Time Container	Sed 5 gal/bug 2/12/88 (200	1 1 1 1 1 1305																			Recieved by:	Print Name: Bris Hoster	Signature: Signature	Affiliation: A.C. R. I.C. Affilia	/ mained
	estination Lab: No. J. Field <	estination Contact Brien Hector	ate: 9/12/28 un-Around-Time WA	roject Name	ontracuPO:		to. Sample ID	1 CR-7 (53% fires)	2 CR-22 / 15 %, fins)	<u>ه</u>	4	0	6	7	8	0	10	11	12	13	14	15	16	17	18	19	20	Relinquished by:	rint Name Tary Word	ignature: Jun - Jun - of	filiation:	N.a. Iraid 5

.

sтс_Y 13307							LAB ID																		Matrix Codes	FW = Fresh Water WW = Water	SB = Salt & Brackish Water SS = Soil & Sediment	TS = plant & Animal Tissue Off = Other		
IN OF CU	Phone:	Fax:	Email:		structions:	Cample Teme	Upon Receipt																		Recieved by:					
CHAI				Invoicing To:	Comments or Special In		Preservation																			Frint Name:	Signature:	Affiliation:	Date/Time:	
tt, LLC. w Dr. 16 3364	aport Results To:	ontact Name,	ldress.	Analysis																					elinquished by:					NK - retained by originator
ds N wes ig: 4729 NE Vie ling: P.O. Box 2 Samble, WA. 98	Re	ö	Ac			hossi	aaq	7	>																2	Print Name:	Signature:	Affiliation:	Date/Time:	KELLOW-Isb FI
NewFiel Sluppir Mai Port C	Sample Originator: M IN Ph. D.	Contact Name:	Address. nulticity	Phone: 297- 10166	Fax.	t-mail	latrix No. & Type of Date & Time Container	d. 5921/Ppg 9/10/08 10:53	d Egal / Eby glighes 10:53	>>															Recieved by:	Name BRIAN HESTERS	ature:	ationNerFields	19/16/08 1055	WHITE - return to originator
NEWFIELDS	stingtion Latric 1/18	suitation Contact Histyl	te: 0	ject Name / / / _	elicies section collection	artiset/PO.	o. Sample ID Mi	1 50let 80 SA	2 5BREF 35 84		4 u	 2	60	6	0	 2	5	14	12	16	21	8	6	50	Relinquished by:	Mill Kinza	Signer VILO	Affile Alther Affile	stertines up to the ID:53 Date	· · · · · · · · · · · · · · · · · · ·

BIOLOGICAL TESTING OF SEDIMENT FOR MARCH POINT (WHITMARSH) LANDFILL ANACORTES, WASHINGTON

ORGANISM RECIEPT LOGS

ORGANISM RECEIPT LOG

Date:		Time:			NewFields E	Batch No.
9/17/08		1345			JB 91	73
Organism:			Source:	I	^	
Ampelisco	a		Brez	ina	& Asso	\sim .
Address:					Invoi	ce Attached
On Fi	لو				Yes	No
Phone:			Contact:			
on til	e		On	tile		
No. Ordered:		No. Received:			Source Batc Field (h: ollected
Condition of Organ	nisms:		Approxin	nate Siz	ze or Age:	
Good						
Shipper:			B of L (Tr	acking	No.)	_
Fedtx			8663	+ b	88.8 9	(+3)
Condition of Conta	uiner:		Received	By:		
Oood			MW	D		
Confirmation of ID	of Organism:		\ \		Technician (Initials):
		Yes No)		MMPS	
Notes:						
pH (Units)	Temp. (°C)	D. (m)	.O. g/L)	Cond S (Inclu	luctivity or alinity ude Units)	Technician (Initials)
6.6	17.5	7 20	0.0	29	ppt	MMB
Notes:	M.					

ORGANISM RECEIPT LOG

Date:		Time:			NewFields E	Batch No.
9/23/08		0900			De 092	308
Organism: Dendraster	excentricus		Source:	d		
Address:				-1	Invoi	ce Attached
N	A				Yes	No
Phone:		· · · · · · · · · · · · · · · · · · ·	Contact:			
No. Ordered: 2 <i>0</i> 0		No. Received:			Source Batc	h:
Condition of Organ	nisms:		Approxin	nate Si	ize or Age:	
Shipper:			B of L (Tr	acking	g No.)	*
NF courier				A](A	
Condition of Conta	liner:		Received	By:		
600	od		1 a	2		
Confirmation of ID	of Organism:	Yes No	>		Technician (I	nitials):
lotes:				I		
На	Temp.	D	0	Cond	Juctivity or	Taskaisa
(Units)	(°C)	(mg	g/L)	S (Incl	Salinity ude Units)	(Initials)
X Re	ce'ived	dry -			\rightarrow	CK
lotes:		/			l.	4

BIOLOGICAL TESTING OF SEDIMENT FOR MARCH POINT (WHITMARSH) LANDFILL ANACORTES, WASHINGTON

AMPHIPOD TEST

NE	WFIELDS					10-DAY SOL	ID PHASE TES	T OBSERVAT	ION DATA					
CLIER	VT AMEC - Geon	natrix		PROJECT March	Point	NEWFIELDS JOB 1437-001-86	NO. PROJECT	r MAN. M. Pinza	NEWFIELDS LAB	DRATOR PROTOC ath 4	COL PSEP 1995	SPECIES	Ampelisca abdida	
#E= }	Emergence te ol sediment, swittming in water							ENDPOINT [DATA & OBSERVA	TIONS			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	*
#M= D=Nc	n, or floating on surface) Number of Mortality 5 Air Flow (DO?)	INITIA	NISMS	DATE DATE	DATE	DATE Q17 L	C2/6	DATE 9/2&	DATE 9/29	PATE 9 (30	DATE 1 0 1	DATE 10/2	DATE	5
G=G G=G	ormai rowth it, algal, or bacterial mats)			TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	
[20	7-	E	G	8	Z	A	ĸ	ł		язами
	CLIENTY NEWFIELDS ID	Đ	¥•	· OBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	NASERVNS	OBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	IN
		-	39	Z	2	2	11	2	ථ	Ŀ	Ċ	マ		00
		2	73	-	-		2		S			_		2
	Control /	6	48						0			_		5
		4	45		-				9					8]
		ŝ	66		-				ى	>	-77	>		96
		-	22 22						2	2.	2	Ņ		5
		2	e						_			-		$\overline{\mathcal{N}}$
	CR-11.	e	80											30
		4	16								\rightarrow			5
		5	85	2	>		À	>			უტ	>		16
		-	59	ILÉ	2	2	2	2			2	Z		0
		2	р 1	DE	40	12E	SE JV	ЧC						0
	SBREF-80 / .	e	6	Z	2	N	-Z	z						0
		4	55 2010/101	3E	48	6E	qM	2		1				~
		5	87	2	2	N	2	2E	2	2	Ð	>		0
		۲	30	2	2	N	0	0	ى	P	Ş	G		\sim
		2	68		Ì	ථ			_		>	_		\simeq
	MP-1/.	e	21		2	ى			_					5
		4	92		હ	S								16
		S	47	E	ઝ	Ľ	4	¥	>	Z	<i>.</i>	>		16

Ľ,

÷

H
_ ک
Δ
7
2
¥.
5
<
2
<u>66</u>
<u>u</u>
20
<u>m</u>
0
₩
in -
ш
H
113
5
- E
Ť.
ā.
-
<u> </u>
الي ا
0
S .
بر

6
- I.
2
· ·

4

VEWFIELDS				SU ISIGNER	LIOB NO.	PROJECT M	AN.	VEWFIELDS LABC	SRATOR PROTOC	OL PSEP 1995	SPECIES	Ampelisca abdida	
SLIENT Goom	atrix	PROJECT	March Point	1437-0	001-860-1		Pinza ENDPOINT D	ATA & OBSERVA	TIONS				
AMEC - COM				of the state of the							DATE	DATE	
#E= Eliforgreenter (surface of sediment, avianting in vater column, or finating on surface) H= Number of Mortality	INITIAL # OF	DATE /	U PATE	5 PATE	DATE /2	AD C	9/28	929 929	DATE 930 TECHNICIAN	1 0 1 TECHNICIAN	102 TECHNICIAN	TECHNICIAN	BVIJA
N=Normal N=Cowth G=Growth Fungal, aigal, or bacterial mats)		TECHNICK	AN TECHNICIAN	A TECHNICIAN	N TECHNIK	C T	CAL	শ্ব	A CREEPUNS	OBSERVNS	OBSERVNS	OBSERVNS	язамои
OI GOTTALMAN ILMATTO		wmw • OBSEF	ZVNS OBSERV	INS OBSER	VNS OBS	SERVNS	OBSERVNS	OBSERVNS		2	m/		Ľ
	1 37	2	6	0		-9	0	9	g-	-	2		5
	24	2	6	C				+	-				16
			6	0				_					C
MP-2/.			2	0									18
	4 , 0 2 2		2	2			_		_	_	-		2 7
	8 0		. 、								_	-	171
	1 91	>	ષ્ટ										ţ
	2 95	ڻ ا	9			-							S
. / E-dM	3 56	<	5	0		-							18
ł	4 70		5	ى ۲		-							$\overline{\nabla}$
	5		2	E	0	_			-	-			7
	1 94			9	-0								15
	2 11				. N	-		+	-				12
MP-41.	3			2	7	-	-		-				5
	4 84		U		-		+						14
	s 6(6	0				t				14
	ۍ و	4	4	7	0		+						Š
	7 6	6			0								エ
MP-5/.	8	4			0								7-
	5	8			0-	è	->	^		13	2		5
	10	6	2	0	2	>	_	-	-				

Page 2 of 4

	ar.
1 2 1	1
mi	1
	B.
- F	8
	1
	14
	H
Ш	Р
17	h
	19
1	ß

10-DAY SOLID PHASE TEST OBSERVATION DATA

-

NEWLIELDO								T MAN	INEWFIELDS LAB	ORATOR PROTOCO	or	SPECIES	a traditione a bulleto	
1 IENT			PR	ROJECT		NEWFIELDS JOB	NO. PROJEC	M. Pinza	Port Gamble E	Bath 4	PSEP 1995	-	Ampelisca applied	
AMEC - Geo	omatrix		+	March	h Point	0-100-1041		ENDPOINT	DATA & OBSERVA	ATIONS			4-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	T
#E= Emergence Isurtace of sediment, swinning in water					AND ST	V W 1	THE OWNER					DATE	DATE	
column, or floating on surface) #M= Number of Mortality D=No Air Flow (DO?)	INI	TIAL # OF GANISMS	ă	are olo u	DATE 9 25	DATE Q/26	9 9 1 7 1 7 7 7	04TE &	9129	рате 9/30	10/ 1	10/2 TECHNICIAN	TECHNICIAN	JVE.
N=Normal G=Growth			1	ECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	1 ECHNICIAN	7		14 AB
(Fungal, algal, or bacterial mots)				Z	Ŕ	Z	z	z	Che	P	CORSERVING	OBSERVNS	OBSERVNS	IBMUN
CUENTI NEWTIELOS ID	Đ	•	Į •	OBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	DBSERVNS	OBSERVNS	OBSERVING		,		Ī
	-	첲		1	2	2	ى	٩	.0	9	ى	5		1
	c	08 08		2 -	3	ر د		_		_	_	-		20
	•	8		_	5-									18
MP-6/.	e	40		_	2	2 4	-					_		18
	4	32			P	5				2	2	A		R
	5	33			ઝ	Z	>	,		+)			U.
	-	83		-	2		2	2	N	S	3	o-		
	~	14							_	-	J			2
	4	: 8									2			2
MP-71.	8	2									P			16
	4	81			_		í	2			¢	->		8
	\$	56			≥	,	> <	<	c			JV V		ΪĞ
	-	87			Ð	J	.0.	Ð	9-	9	ŋ.	2 -		
	~	8			è	2				-				1
MP-8/.	63	53		Allenan	2	٩								- 0
	4	4 79)	کی	0		_						1 1 %
		5 41		1E	2	৩	٢)	> <	7				
	-	1 77		N	_	0	ى	٢	-0	9		2	-	110
		2 57	1			2	2	2	Z					00
. / 6-4W	11	84	o				2	2	2			_		12
		4	07	>			9	9	-D.		-			7 1
	1	2		1	À	>	٩	9	Ą	}	7	7		-
	-		VIII	N N										

	_
	10 T.
	_
	113
н.	-
а.	Ĭ
	1.1
а.	<u> </u>
а.	5
	0
	0
1	2.4
	11
1	the state of the s
я.	7
н.	-
я.	1. 1.

10-DAY SOLID PHASE TEST OBSERVATION DATA

-		
7	ŀ	
	ł	
ŝ	ì	
5	2	
2	1	
Ľ	ł	
	ALL MILL	ILW FILL

Ĩ

CLIENT			PROJECT		NEWFIELDS JOB	NO. PROJEC	ST MAN.	NEWFIELDS LAB	SORATOR PROTOC	OL DCED 1995	SPECIES	Ampelisca abdida	
AMEC - Geol	matrix		Marc	h Point	1437-001-86	6-1	M. PIII28 ENDPOINT L	DATA & OBSERV	ATIONS				
#E= Emergence (Surface of sediment, swimming in vralee			1000		a james					I wante to	1.1	N JI WAR	
column, or floating on surface) #M= Number of Mortality D=No Air Flow (DO?) N=Normal	INITI/	AL # OF	DATE 9/2,U	DATE 9 25	DATE 0/26	DATE DATE	DATE 9129	9/201	date 9(30	date 10(1	DATE 10/2	DATE	э
G=Growth (Fungat, algat, or bacterial mats)			TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN		TECHNICIAN				TECHNICIAN	\เา∀ ย
			3	ŀς	5	5	5	Z	2	()	\$		38WN
CLIENT? NEWFICLES ID	ş	٩.	OBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	N
	-	35	N	P	9	ى	J	ං	P	ঙ	S		20
	2	88	14	(s	0			_	-	-	_		16
MP-10/.	m	68	N Y	5	0				_		-		R
	4	4	25	G	(2								16
	2	22	2	Ś	e								5
	-	2	<u>ں</u>	P	9								20
	2	74	<u>ح</u>	9	C								18
MP-11/.	e	g	2	Z	0								8)
	4	05	<u>ی</u>	5	ر								16
	Ð	2	2	2	ro	2							2
	٣	42)	ν1	ථ							18
	2	43				<u>ې</u>							Ξ
MP-12/.	e	72				W1							N
	4	31				0							5
	ŝ	8		>	R	ى							16
	77 0	86		3	Ð	9							S
	2	65		٩	0	-							2
MP-13/.	m	æ		2	0						_		14
	4	38		6	0	V	_	-			9		90
	5	25		6	٢	>	∢	>	£)	>		18

NEWFIELDS

AMEC - Geomi	atrix	PRO	JECT March	Point	NEWFIELDS JOE 1437-001-B	5 NO. PROJE	ECT MAN. M. Pinza	NEWFIELDS LAB Port Gamble I	ORATOR PROTO Bath 4	COL PSEP 1995	SPECIES	Ampelisca abdida	
							ENDPOINT	DATA & OBSERVI	VTIONS				
L swimming in water in surface)					in longer inter	10,000				The West			
(DO?)	INITIAL # OF ORGANISMS	C DATE	1/1	DATE 10 2	DATE 16/3	DATE 1014	DATE 0 5	میر مر	DATE 10/7	DATE O 8	DATE 10(9	DATE 10/10	:
clerial mats)	2	TECH	INICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	ירואפ
		۹ ٦	F	4	f	AWM	MMB	SMM	Ł	SIM	ĸ	9	A, 938
DI POLICIO ID	REP JAR	•	 BSERVNS	DBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	OBSERVNS	OBSERVINS	OBSERVNS	OBSERVNS		awion
	1 38		2	N	Н	2	2	2	2	z	2	5	12
	2 73		-	~)			-	_	_	_	_	ñ
EF-80 /	69 84			_	_							_	6
	45		_		/ \								Ψ
	5 99		-	>	9	>	<i>→</i>	3	->	Þ	>	>	30

Į.

I	M	
	Q	
l	1	
I	Щ	
	IT.	
I	Б	
	P	
I	щ	

	13.5		-	_													
ECIES Ampelisca abdida	ART DATE 23-Sep-2008	D DATE 3-Oct-2008		Initials & Date		Date	9/23	4/24	9/25	9176	ALL 6	82/6	9/29	0510	10/1	10/2	10/3
TEST SPI	TEST ST/	TEST EN			1.212		CE	Ch	۴	ř	S	3	3	۴	۴	4	MPP
	ATCH 2208.01	*		4 (pH units) 7.8 ± 0.5	μd	unit	7.8	8,0	9.F	80 17	8.1	8.	8.1		8.1	2.1	\$.3
	FSW092	CDR./HOB		đ		meter	1	_	M	M		_	-	- ~		m	-
	DILUTION	TEMP. RE		LINITY (ppt) 28 ± 1	SALINITY	ppt	283	30	30	30	31	2	30	30	30	14	30
	ME	ATORY ble/Bath 4		SAL	U)	meter	4	~	d	لم				~		2	
	START TIME/ END TI	NEWFIELDS LABOR/ Port Gamb	ER QUALITY DATA	Temp°C 20±1	TEMP	°c	1.02	205	20.2	20.3	7.06	20.0	20.6	20. G	30.3	5.02	20.3
			WATE			meter	Ъ	J	(a)	3	5	স	J	7	J	к	4
	T March Point	T MANAGER M. Pinza		DO (mg/L) > 4.6	D.O.	mg/L	7.6	7.5	6.8	0 t	7,5	7.7	7.7	たた	2.E	7.1	76
	PROJEC	PROJEC.				meter	J	t	<i>a</i> z	5	5	4	Ъ	τ	J	~	4
					IAR #		ъ.	51	51	51	5	51	5	51	51	51	51
					RFP		Surr	Surr	Surr	Surr	Surr	Surr	Surr	Sur	Surr	Surr	Surr
	somatrix	-860-1		litions	DAY		•	-	2	60	4	ŝ	9	7	æ	თ	10
	CLIENT AMEC - Ge	NEWFIELDS JOB NUMBER 1437-001		Test Con	CLIENT/NEWFIELDS ID		Control /	Control /	Control /	Control /	Control /	Control /	Control /	Cantrol /	Control /	Control /	Centrol /

040 (R 9/23

Page 1 of 16

ſ	TO	1
	Õ	1
I	F	
I	Щ	
	Ē	Ē
	ш	į.
	7	Ê

TEST SPECIES	Ampelisca abdida
 -	-

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IEC - Ger	omatrix			PROJECT	March Point		START TIME/ END TI	ME		ION WATER E FSW09	ATCH 2208.01	TEST STA	KRT DATE 23-Sep-2008	(315	
WATER CUMUTY DATA WATER CUMUTY DATA Teleformition WATER CUMUTY DATA Teleformition MATER CUMUTY DATA SOD DOTAGE WATER CUMUTY DATA SOD DOTAGE MATER CUMUTY DATA SOD DOTAGE MATER CUMUTY DATA TOTA MATER CUMUTY DATA SOUTH DATA TOTA MATER CUMUTY DATA TOTA TOTA MATER CUMUTY DATA TOTA TOTA MATER CUMUTY DATA TOTA TOTA TOTA TOTA MATER CUMUTY DATA TOTA MATER CUMUTY DATA TOTA MATER MATER TOTA MATER MATER MATER TOTA TOTA TOTA TOTA <th col<="" td=""><td>ER 1437-001-{</td><td>860-1</td><td></td><td></td><td>PROJECT</td><td>- MANAGER M. Pinza</td><td></td><td>NEWFIELDS LABOR Port Gam</td><td>ATORY ble/Bath 4</td><td>TEMP</td><td>RECOR./HOE</td><td>ð</td><td>TEST ENC</td><td>DATE 3-Oct-2008</td><td>5)</td></th>	<td>ER 1437-001-{</td> <td>860-1</td> <td></td> <td></td> <td>PROJECT</td> <td>- MANAGER M. Pinza</td> <td></td> <td>NEWFIELDS LABOR Port Gam</td> <td>ATORY ble/Bath 4</td> <td>TEMP</td> <td>RECOR./HOE</td> <td>ð</td> <td>TEST ENC</td> <td>DATE 3-Oct-2008</td> <td>5)</td>	ER 1437-001-{	860-1			PROJECT	- MANAGER M. Pinza		NEWFIELDS LABOR Port Gam	ATORY ble/Bath 4	TEMP	RECOR./HOE	ð	TEST ENC	DATE 3-Oct-2008	5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							WAT	ER QUALITY DATA								
OAV REP JARS DOI TECH DATE TECH Date 1 Surr 46 4 7.4 4 20.2 1 22 1 7.7 42 $4/233$ 2 Surr 46 4 7.6 4 20.2 2 32 3.9 7 $4/233$ 3 Surr 46 4 7.6 4 20.2 2 3.20 3 3.9 7 $4/233$ 3 Surr 46 4 7.6 4 20.2 2 3.20 3 3.9 7 $4/23$ 4 Surr 46 4 7.6 4 20.6 7 3 3.2 3 3.9 7 $4/253$ 5 Surr 46 4 7.6 4 20.6 7 4 $2/2$ 6 Surr 46 4	Test Cond.	itions				DO (mg/L) > 4.6		Temp°C 20±1	ŝ	ALINITY (ppt) 28 ± 1	<u> </u>	H (pH units) 7 8 ± 0.5	_	Initials & Date		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DI SO	DAY	а В Е Б	14R #		D.O.		TEMP		SALINITY		pH				
0 Sur 46 4 7.4 4 20.2 1 29 1 7.7 62 4^{2} 7.5 4^{2} 20.2 1 30^{2} 4^{2} 4^{2} 4^{2} 4^{2} 4^{2} 4^{2} 4^{2} 4^{2} 4^{2} 4^{2} 4^{2} 4^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 4^{2} 4^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 4^{2} 3^{2} 3^{2} 3^{2} 3^{2} 3^{2} 3^{2}					meter	mg/L	meter	ç	meter	ppt	meter	unit	H H H	Date		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	Surr	46	Ц	7.4	Ч	202	_	29		7.7	Z	9/23		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		- -	Surr	46	۲ ر	7.6	5	20.4		30		0,8	3	9/24		
3 Surt 46 3 7.2 3 30.3 P 30 3 7.9 7 9/21 4 Surt 46 4 7.1 4 20.6 1 31 1 8/1 6/2 5 Surt 46 4 7.7 4 20.0 1 31 1 8/1 6/2 7 Surt 46 4 7.6 4 20.0 1 30 1 8/1 6/2 9/28 7 Surt 46 4 7.6 4 20.6 1 30 1 8/1 7/2 9/30 8 Surt 46 4 7.6 4 20.5 1 30 1 8/1 7/2 9/30 9 Surt 46 4 30.5 1 30 1 8/2 6/1 7/2 10/1 10 Surt 46 4 20.5 1 30 1 8/2 6/1 1/2 10 Surt 4 <t< td=""><td></td><td>7</td><td>Sur</td><td>46</td><td>M</td><td>6.8</td><td>N</td><td>e.02</td><td>al</td><td>30</td><td>m</td><td>5.5</td><td>ĸ</td><td>9 25</td><td></td></t<>		7	Sur	46	M	6.8	N	e.02	al	30	m	5.5	ĸ	9 25		
4 Lut 4 $7:L$ 4 $20:O$ 1 $3I$ $4:L$ $7:I$ $4:L$ $7:I$ $4:L$ $7:I$ $4:L$ $7:L$ $4:L$ $20:O$ 1 $3:L$ 1 $8:O$ $4:L$ $4/2$ $7:C$ $4:L$ $2:O,O$ 1 $3:C$ $1<$ $8:O$ $4:L$ $4/2$ $7:C$ $4:L$ $2:O,O$ 1 $3:O$ $1<$ $8:L$ $7:C$ $4/2$ $2/2G$ 7 $3ur 4:S 4 7:L 4 2:O,O 1 8:L 7:C 2/2G 7:C 2/2G 7:C 2/2G 7:C 7/2G 10/1 2/2G 10:C 2/2G 10:C 2/2G 10:C 2/2G 10:C 2/2G 10:C 2/2G 10:C 2/2G 2/2G 10:$		Ð	Surt	46	3	2.E	η	20.3	2	8	M	۰. ۲۲	۲ų.	9/26		
5 sur 46 H 7.7 H 20.0 I 31 I 8.0 Q_{2} Q_{2} Q_{2} 6 sur 46 H 7.6 H 20.0 I 30 I 8.1 Q_{1} Q_{12} 7 sur 46 H 7.6 H 20.5 I 30 I 8.1 T Q_{12} 8 sur 46 H 7.6 H 20.3 I 30 I 8.1 T Q_{12} 9 sur 46 H 7.6 H 20.3 I 30 I 8.2 D_1 Q_12 10 sur 46 H 7.6 H 20.3 I 8.0 I Q_12 9 sur 46 H 7.6 H 20.3 I 8.3 MP^{0} $I_{0}/1$ 10 sur 45 H 7.6 H 30.3 I 30 I 8.3 MP^{0} $I_{0}/2$		4	Surr	46	Ч	J.L	4	20.6		<u>1</u> 2		4, -	E	typ		
e surt 46 L 7.6 L 20.6 L 3.0 L 8.1 4.2 7.7 9.1 7.6 1.2 20.6 L 3.0 L 8.1 7.6 9.7 9.2 1.6 3.0 L 8.1 7.6 9.7 9.2 7.6 1.2 3.0 1.2 8.1 7.7 9.7 9 surt 46 2.7 2.7 1.2 3.0 1.2 8.2 7.7 $10/1$ 10 surt 46 2.7 2.5 2.7 2.7 2.7 $10/1$ 10 surt 46 2.7 2.7 2.7 2.7 $10/1$ 10 surt 46 2.7 2.7 2.7 2.7 $10/1$ $10/3$ 10 surt 46 2.7 2.7 2.7 2.7 $10/1$ $10/3$		u)	Surr	46	Ч	1.7	L.	20.0		2		8.0	E	9/28		
7 sur 46 4 7 4 20.6 1 30 1 8.1 7 9(30) 8 sur 46 4 7.6 4 20.3 1 30 1 8.1 75 9(30) 9 sur 46 3 7.6 4 20.3 1 30 1 8.2 75 10/1 10 sur 46 3 7.1 3 2.6 7 75 10/1 10 sur 46 4 7.6 4 30.3 1 30 1 8.3 M.P 10/3		ھ	Surr	46	Ъ	7.6	T	20.6		20		130	8	9/29		
8 Surr 46 4 7.6 4 20.3 1 30 1 8.2 75 $10/1$ 9 Surr 46 2 7.1 3 20.3 1 30 1 8.2 75 $10/1$ 10 Surr 46 4 7.6 4 30.3 1 30 1 8.3 MR^{0} $10/3$		7	Sur	46	J	7. L	ر د	20.6	-	30	-		ĸ	9130		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	Sur	46	7	9.E	т	20.3		8	-	2	۲.	1/01		
10 Sur 45 4 7.6 4 20.3 1 30 1 8.3 MPP 10/3		o	Surr	46	2	1.7	2	20.3	7	30	m	23	8	10/2		
		10	Surr	46	Ц	うた	Ц	20.3~		30		8.3	MRP	10/3		

Page 2 of 16

ł	m.	Ì
	O	
I	H	
ł	Щ	1
l	IT.	
l	H	
L	2	1
l	Щ	
L	7	1

135

												TEST SPI	ECIES Ampelisca abdida	
CLIENT AMEC - Ge	omatrix			PROJEC	T March Point		START TIME/ END T	IME _	DIFICULO	N WATER I FSW0	3ATCH 32208.01	TEST STA	NRT DATE 23-Sep-2008	
NEWFIELDS JOB NUMBER 1437-001	-860-1			PROJEC.	T MANAGER M. Pinza		NEWFIELDS LABOR Port Gam	ATORY ble/Bath 4	TEMP, R	ECDR./HOI	30#	TEST ENG	D DATE 3-Oct-2008	
						WAT	ER QUALITY DATA							
Test Conc	ditions				DO (mg/L) > 4,6		Temp°C 20±1	rs	ALINITY (ppt) 28 ± 1		0H (pH units) 7.8 ± 0.5		Initials & Date	
CLIENT/NEWFIELDS ID	DΑΥ	REP	JAR #		D.O.		TEMP		SALINITY		Hd	1027	t	1
				meter	mg/L	meter	သ	meter	ppt	meter	unit		Uate	
SBREF-80 / ,	0	Surr	50	τ	Ś	c(20.2		28		7.9	CE	9123	
SBREF-80 / .	۲	Surr	50	£	2,5	5	20.4	_	29	_	8.0	z	9/24	
SBREF-801.	2	Surr	50	Ю	(o.8	η	6. 08	R.	24	Ю	6.4	K	9125	
SBREF-80 / .	ę	Surr	50	3	÷.	З	80.3	æ	a8	m	۲, ۲	P	9126	
SBREF-80 / .	4	Sur	50	Ч	2.5	7	For		2	-	2	3	10/0	
SBREF-801.	Q	Sur	50	Ţ	7.6	rl L	20,1		Cr Cr	-	2,00	3	9/28	
SBREF-80 /.	9	Surr	50	J	7.6	Г	20.6	_	29		8,3	R	9129	
SBREF-80 / .	7	Surr	50	4	7.6	Ц	4.08	-	29	_	s S	F	9130	
SBREF-80 / .	æ	Surr	50	- ד	J, S	ד	20.3	-	96		ж Э	15	1/01	
SBREF-80 / .	6	Sur	60	er	7.1	0	20.5	2	30	Μ	8.3	X	2(9)	
SBREF-801 *	10	Surr	22	4	Sit	Т	20.3		29	-	8.4	mpp	10/3	

Page 3 of 16

1		4
I	S	
	Q	
	H	
	IT.	1
	A	ł
I	Ĩ	
	Z	

ę,

		2151	•													
ECIES	Ampelisca abdida	ART DATE 23-Sep-2008	D DATE 3-Oct-2008		Initials & Date		Date	9/22	9/24	9125	4 26	4010	9128	9129	9130	10/1
TEST SP		TEST ST/	TEST EN				ËCH	(R	3	۲	F	3	3	12	P	F
		1ATCH 02208.01	30#		oH (pH units) 7.8 ± 0.5	Hd	unit	7.7	08	8.4	8, t	0.8	8 0	5.1	P.F 2-80	8.0
		I WATER E FSW09	CDR./HOE				meter		-	m	m	-		_		-
		DILUTION	TEMP, RE		LINITY (ppt) 28 ± 1	SALINITY	ppt	28	82	28	26	30	28	26	Oara	978
		₩.	ATORY ole/Bath 4		SA		meter	-	-	d	직	-		-		
		START TIME/ END TI	NEWFIELDS LABOR Port Gami	ER QUALITY DATA	Temp°C 20±1	TEMP	ွ	1.02	4.02	20.2	20.9	4.02	20.0	20.6	20.5	20.2
				WAT			meter	J	3	- M	M	*	J	J	t	٦
		T March Point	T MANAGER M. Pinza		00 (mg/L) > 4.6	D.O.	mg/L	7.7	7.4	6.9	ч. 9	5.7	7.5	Z.S	t. t	7.5
		PROJEC	PROJEC				meter	5	Ъ	Μ	3	5	F	J	٦	ד
						.IAR #		7	7	7	~	7	2	2	2	7
						REP		Surr	Sur	Surt	Surr	Surr	Surr	Sur	Surr	Surr
		somatrix	-860-1		ditions	DAY		•	-	2	ŝ	4	ŝ	ø	7	w
		CLIENT AMEC - G	NEWFIELDS JOB NUMBER 1437-001		Test Con	CLIENT/NEWFIELDS ID		. / h-qM	MP-1/ .	MP-17.	MP-1 / .	MP-11.	MP-1/.	MP-1/.	MP-1 / .	MP-1 / .

U WE 9/30/08 75

10/3

Y

m

26

V

20.1

5 m

4 4

wI

~ ~

Sur

MP-1/_

e 5

36

K

Page 4 of 16

ſ	10	
l	0	
ł	9	
ł	H	
I	Щ	
ł	-	
l	μų.	
I		
	TTT .	
	-	
	1	

												TEST SP	ECIES Amoelisca ahdida
CLIENT AMEC - Ge	somatrix			PROJEC	T March Point		START TIME/ END TH	ME	סורתנוסו	N WATER I	3ATCH 92208.01	TEST ST	ART DATE 23-Sep-2008
VEWFIELDS JOB NUMBER 1437-001	-860-1			PROJEC'	T MANAGER M. Pinza		NEWFIELDS LABOR/ Port Gamb	ATORY le/Bath 4	TEMP. R	ECDR./HO	30#	TEST EN	D DATE 3-Oct-2008
						WAT	TER QUALITY DATA					-	
Test Con	dítions				DO (mg/L) > 4.6		Temp°C 20±1	Ś	VLINITY (ppt) 28 ± 1		oH (pH units) 7.8 + 0.5		Initials & Date
CLIENT/NEWFIELDS ID	DAY	REP	JAR #		D.O.		TEMP		SALINITY		ΡH	1 L	40
				meter	mg/L	meter	°c	meter	ppt	meter	unit		Date
MP-2 <i>1</i> .	•	Sur	11	Ц	7.6	4	20.2		28	_	L.7	CP	9/23
MP-21.	5	Surr	71	5	7.S	Ч	20.5	~	28	-	7,8	Z	4/24
MP-2 <i>1</i> .	7	Surr	11	3	4.9	N)	5.00	R	28	M	8,4	¥	9125
MP-2 / ,	ę	Surr	11	3	6.9	60	20.3	d	28	M	6.t	k	9/26
MP-21.	4	Surr	71	ţ	8. D	5	2.0C	_	50	-	<u>ي: ا</u>	CP	telb
MP-2 / .	G	Surr	71	4	7.2	Ч	20.02	-	29		8.1	ER .	9/28
MP-2/.	œ	Sur	71	4	7.S	J	20.7	_	27		8,4	E	9129
MP-2 /	7	Sur	12	·	t, t	t -	20 J		28	-	8.6	F	glan
MP-2/	æ	Sur	14	τ	י. לי	5	ac. 3	-	38	-	6.5	p	1/01
MP-2 /	6	Surr	71	3	7.1	3	20.3	2	28	3	8.5	7	2/0
MP-2/.	10	Surr	71	t	9.4	4	20.4	~	28	<u> </u>	8.5	00100	11/3

8.5

20.4

1315

ſ	to	1
	0	
	E	
	Щ	1
	H	l
	H	1
		1
I	Щ	1
	7	1

	1315	1	1	—
TEST SPECIES Ampelisca abdida	TEST START DATE 23-Sep-2008	TEST END DATE 3-Oct-2008		Initials & Date
	WATER BATCH FSW092208.01	CDR./HOBO#		pH (pH units) 7.8 ±0.5
		th 4 TEMP. REC		SALINITY (ppt) 28 ± 1
	START TIME/ END TIME	NEWFIELDS LABORATOR Port Gamble/Bai	WATER QUALITY DATA	Temp ° C 20 ± 1

March Point

PROJECT

AMEC - Geomatrix

CLIENT

-

													0001 400 01
NEWFIELDS JOB NUMBER	1 000			PROJEC	T MANAGER		NEWFIELDS LABOR	ATORY	TEMP, R	ECDR./HOI	#08	TEST EN	ID DATE
00-1041	1-000-				M. Pinza		Port Gam	ble/Bath 4					3-Oct-2008
						WAT	TER QUALITY DATA						
Test Con	ditions				DO (mg/L) > 4.6		Temp°C 20±1	លី	ALINITY (ppt) 28 ± 1	_	oH (pH units) 7.8 ± 0.5		Initíals & Date
CLIENT/NEWFIELDS ID	DAY	RFP	14R #		D.O.		TEMP		SALINITY		Ha		
				meter	_1∕0ш	meter	°c	meter	þpt	meter	unit	H H H H	Date
MP-37.	•	Surr	2	5	7.S	5	9.6		28		7.6	3	9/23
MP-3 /	-	Surr	2	7	7.1	J	9.6	_	28	_	27	3	9/24
MP-31.	5	Sur	2	5	6.4	η	6.61	d	28	M	8.0	r	9/25
MP-37.	m	Surr	9	Ю	6.6	З	20.0	X	28	3	۱۴ م'	٤	9126
MP-3 / ;	4	Surr	2	>	27	3	20.5		50		<u>%</u> .1	3	4016
MP-3/.	ъ	Surr	2	5	6.0	Ч	19,7		29	-	8,2	25	9/28
MP-3/.	ų	Sur	8	7	7.3	Ц	20.2		27)	8.4	2	9129
. / E-9M	~	Sur	2	τ	3.S	т	20.4	-	t ø	-	8 Ž	p	9(30
MP-3 / .	80	Surr	8	J	0 8.5 7.5	J	20.0	-	ц Ц	-	7.8	¥	1/01
MP-37.	6	Surr	2	an	6.21	3	19.9	X	26	(4)	8.4	7	10/2
MP-3/.	5	Surr	2	T	7.6	Ч	19.61	•	28		8.3	mer	10/3
	e v	t											/

J WE 10/108 B

4

Page 6 of 16

Г		0	
	0	2	ł
	6	2	1
	1	j.	
	1	÷.	
	5	2	
	í i		
I.	H	-	1
Ł	E	3	
L	5		
Ŀ	÷	1	1
	7	1	1
	1	4	1

1315

sPECIES Ampelisca abdida	START DATE 23-Sep-2008	END DATE 3-Oct-2008		Initials & Date		. Date	- 9/23	9/24	9125	9(26	telle -	9/28	9129	9130	101
TESTS	TESTS	TESTE					Ce	3	Ľ	Ϋ́	8	3	B	F	k
	8ATCH 2208.01	30#		0H (pH units) 7.8 ± 0.5	Hd	unit	7.7	0 0	ر مد الب	6.t	8.1	0,0	80	- 8	1-8
	I WATER E FSW09	CDR./HOE		Ľ		meter		_	M	ω	_	~		-	
	DILUTION	TEMP. RE		LINITY (ppt) 28 ± 1	SALINITY'	ppt	28	28	28	te	86	28	26	36	ťζ
	щ	ATORY ble/Bath 4		SA		meter		~	N	Ø		_	-		
	START TIME/ END TII	NEWFIELDS LABOR	ER QUALITY DATA	Temp°C 20±1	TEMP	° C	20.1	402	e 02	20.2	40.7	9,8	20.5	20.6	20.2
			WAT			meter	7	5	Ø	6)	ч	4	4	د[د	لر
	rt March Point	:T MANAGER M. Pinza		DO (mg/L) > 4,6	D.O.	mg/L	7.4	7,5	t	رہ _' م	7.5	7.7	7.6	t. t	t'E
	PROJEC	PROJEC				meter	J	7	Ы	М	۲	3-	Ч	. .	٦
					JAR#		30	50	20	20	20	20	20	50	50
					REP		Surr	Surr	Surr	Surr	Surr	Surr	Sur	Sur	Surr
1	omatrix	-860-1		ditions	DAY		•	-	ч	m	4	ŝ	Ð	2	œ
	CLIENT AMEC - Ge	NEWFIELDS JOB NUMBER 1437-001-		Test Conc	CLIENT/NEWFIELDS ID		MP-47.	MP-4/.	MP-47.	MP-47.	MP-41.	MP-41.	MP-41.	MP-4 / .	MP-41.

10/21

10/3

A

8.1

2 4 2

20.2

7.5

M

2

2.02

NIZ

w 7

ន ន

Surr

MP-41. MP-41.

ۍ م

Page 7 of 16

Г		
L	Q,	L
Ŀ	0	Ľ
L		1
ŀ	ET)	r.
	-	
	ÚL.	
	2	
	3	1
	TT	1
	<u> </u>	
	2	
	1	i

-		1215		_	_												.0.			
PECIES	Ampelisca abdida	TART DATE 23-Sep-2008	ND DATE 3-Oct-2008		Initials & Date			9/23	9/24	9175	9126	4/24	9/28	9/29	9/20	10/1	16/2			
TEST S		TESTS	TEST E			1011	5	3	S	p	۴	3	3	3	F	ľŕ	7			
		ATCH 2208.01	#0		H (pH units) 7.8 ± 0.5	Hq	unit	LL	8.0	6.t	۲. م'	8.1	8.1	8.1	8.2	8	2'5			
		I WATER E FSW09	CDR./HOE		Ĺ		meter			10	M	_	_	-	-		m			
		DIFUTION	TEMP. RE		LINITY (ppt) 28 ± 1	SALINITY	ppt	28	28	28	t c	60	29	28	2 K	8¢	28			
		ME	ATORY ole/Bath 4		SA		meter		_	N	ø	_		(_	2			
		START TIME/ END TI	NEWFIELDS LABOR Port Gami	NEWFIELDS LABURY Port Gamb ER QUALITY DATA	NEWFIELUS LABUR Port Gam ER QUALITY DATA	NEWFIELDS LABO	TER QUALITY DATA	Temp°C 20±1	TEMP	°c	20.1	P.02	20,1	20.2	4.00	20.02	20.5	20.4	20.2	1.02
		CT March Point S1		WATE			meter	÷	Ŀ	ξ	M	ד	Ŧ	71	7	Т	δ			
			:T MANAGER M. Pinza	M, Pinza	DD (mg/L) > 4.6	D.O.	mg/L.	7,5	ZZ	6.9	6.8	45	7.7	7.7	4.6	t.F	7.1			
		PROJEC	PROJEC				meter	F	J	Ŋ	Ю	7	4	Ţ	ד	٦	~			
						JAR #		73	12	12	12	12	12	12	12	12	12			
						REP		Surr	Surr	Surr	Surr	Surr	Surr	Sur	Surr	Sur	Surr			
		somatrix	-860-1		ditions	DAY		•	-	2	ю	4	Ω	g	7	æ	on			
		CLIENT AMEC - Ge	NEWFIELDS JOB NUMBER 1437-001		Test Con	CLIENT/NEWFIELDS ID		MP-51.	MP-5/.	MP-5/.	MP-5 <i>1</i> .	MP-51.	MP-5/	MP-5/.	MP-51.	MP-57.	MP-5 /.			

10/3

MPP

8.3

28

20.2

7

7.6

7

4

Sur

10

MP-5 / ..

Page 8 of 16

ſ		1
l	S	I
	D	I
	H	I
	Щ	I
	T	l
	L.	I
		I
I	Ш	I
	5	1

CLIENT

10 DAY SOLID PHASE TEST WATER QUALITY DATA

	TEST SPECIES	Ampelisca abdida	TEST START DATE	23-Sep-2008	TEST END DATE	3-Oct-2008			
			IN WATER BATCH	FSW092208.01	RECDR./HOBO#			DH (pH units)	7.8 ± 0.5
					VTORY TEMP.R	le/Bath 4		SALINITY (ppt)	28 ± 1
			START TIME/ END TI	1	NEWFIELDS LABOR/	Port Gamb	WATER QUALITY DATA	Temp ° C	20 ± 1
			PROJECT	March Point	PROJECT MANAGER	M. Pinza		DO (mg/L)	> 4.6
2				- Geomatrix		-001-860-1		Conditions	

(3,5

-	-		_	_	_												
T START DATE 23-Sep-2008	T END DATE 3-Oct-2008		Initials & Date		CH. Date	2 9/23	e 9/24	5 9/25	5 9/26	ttlb T	2 9/28	2 9179	A 9/30	1/01	7 10/2-	R 10/3	1.
TES	TES				-	2	2	1-	F		0	2		F		R.	
BATCH 92208.01	BO#		pH (pH units) 7,8 ± 0,5	На	unit	7.6	7.8	N.4	ד. ד	7.9	9.2	0.8	8.1	8.0	かだ	8,3	
FON WATER	RECDR./HO				meter		~	64	N	_	~		-	-	M	~	
DIFUT	TEMP		ALINITY (ppt) 28 ± 1	SALINITY	ppt	23	28	3e	tα	bt	62	27	a8	28	26	28	
1	RATORY Ible/Bath 4		vi vi		meter		_	DJ.	X		-				2		
	NEWFIELDS LABOF Port Garr	ER QUALITY DATA	Temp ° C 20 ± 1	TEMP	°c	20.1	20.5	20°3	au.3	4.02	1.02	20.6	20.7	ao. 4	Zd.3	20.3	
		WATH			meter	Ъ	Ц	Ъ	Ю	5	Ĺ	Г	7	7	2	4	
March Point	T MANAGER M. Pinza		DO (mg/L) > 4.6	D.O.	mg/L	۲.۲	7.3	(e, 1	6.9	7.4	7.6	7.6	7. V	9'E	2.2	7.6	
	PROJEC				meter	J	ъ	М	Ю	Y	4	-1-	Τ	٦	er	t	
				. AR #		63	83	63	63	63	63	63	63	63	63	63	
				RFP		Surr	Surr	Surr	Surr	Sur	Surr	Surr	Surr	Surr	Sur	Ъл	
somatrix	-860-1		ditions	DAY		٥	-	2	m	4	'n	ω	7	80	5	9	
AMEC - G	NEWFIELDS JOB NUMBER 1437-001		Test Con	CLIENT/NEWFIELDS ID		MP-6/.	MP-6 / .	MP-67.	MP-67.	MP-6/.	MP-6 / .	MP-67.	MP-6/.	MP-6/.	MP-6 / .	MP-6 / .	

Page 9 of 16

ſ	10	1
ł	(III)	
	\square	
L		
	-	
F	Щ	
L	-	
	IT.	
ł	Personal Personal	
	53	
Ŀ	-	
١	11	
	-	

CLIENT

10 DAY SOLID PHASE TEST WATER QUALITY DATA

PROJECT START TIME/ END TIME DILUTION WATER March Point FSW PROJECT MANAGER NEWFIELDS LABORATORY
PROJECT March Point START TIME/ END TIME March Point I I PROJECT MANAGER NEWFIELDS LABORATORY
PROJECT March Point PROJECT MANAGER

to sum out														
AMEC - Geo	matrix			PROJECT	March Point		START TIME/ END T	ime /	סורתנוכ	DN WATER I FSW0:	BATCH 92208.01	TEST ST	ART DATE 23-Sep-2008	215
IEWFIELDS JOB NUMBER 1437-001-8	360-1			PROJECT	MANAGER M. Pinza		NEWFIELDS LABOR Port Gami	tATORY ble/Bath 4	TEMP.F	RECDR./HO	BO#	TESTEN	ID DATE 3-Oct-2008) }
						WAT	ER QUALITY DATA							_
Test Condi	ítions				DO (mg/L) > 4,6		Temp ° C 20 ± 1	ŝ	ALINITY (ppt) 28 ± 1		pH (pH units) 7.8 ± 0.5		Initials & Date	Delawara
CLIENT/NEWFIELDS ID	DAY	REP	JAR #		D.O.		TEMP		SALINITY		Hd			
		2		meter	mg/L	meter	°c	meter	ppt	meter	unit	5	Date	
. <i>1 -</i> - dW	•	Sur	55	t	2.6	5	20.1	_	28		7.9	3	9/23	
MP-7 / .	÷	Surr	55	- 3-	7.5	5	20.5		82		8.1	3	9/24	
MP-7 / .	7	Surr	55	3	l't	ы	6.0X	,st	28	M	e t	P	9/25	
MP-71.	e.	Surr	55	3	0 ' t	3	20.3	ď	28	η	6-t	٣	9/26	
мр- <i>7 I</i>	4	Sur	55	÷	4 19	5	20.7	_	be	-	5.3	E	#016	
MP-71.	so	Sur	55	L.	7,5	Ŀ	0.02		29	-	1.8	3	9128	
MP-7 / .	6	Surr	55	3	7 4	5	9.02		28	-	2.8	3	9/29	
MP-7 / -	7	Surr	55	र	3.t	ਿ	5.0E	-	28	_	66	٣	9(30	
<i>~1 ∠</i> -dW	8	Surr	55	'ব	e †	F	ao. 3	-	8e	~	8.3	r	1/01	
MP-7 /	o	Sur	55	3	2.2	3	20.3	2	62	~	5.5	X	10/2/	
MP-7 f .	10	Surr	55	4	7.4	4	20.3	—	38		8.6	PAR	03	

Page 10 of 16

ſ		1
ł	CO.	ł
H	0	l
1	_	ł
1	-	I
II.	Щ	ł
		H
	Ц	l
ł	b>	I
1	1	l
l	T	l
ł.	1	I
	4	I
II.	A	I

Г

	TEST SPECIES	
	Ampelisca abdida	
TER BATCH	TEST START DATE	-
SW092208.01	23-Sep-2008	13,5
"/HOBO#	TEST END DATE	- T-
	3-Oct-2008	

														_
CLIENT AMEC - G	eomatrix			PROJEC	T March Point		START TIME/ END T	WI	DIFUTIO	N WATER E FSW09	SATCH 2208.01	TEST ST	ART DATE 23-Sep-2008	
NEWFIELDS JOB NUMBER 1437-001	-860-1			PROJEC	T MANAGER M. Pinza		NEWFIELDS LABOR Port Gam	tATORY ble/Bath 4	TEMP. R	ECDR./HOE	#00	TEST EN	D DATE 3-Oct-2008	<u> </u>
						WAT	ER QUALITY DATA							- 10
Test Con	ditions				DO (mg/L) > 4.6		Тетпр°С 20±1	SA	ALINITY (ppt) 28 ± 1		H (pH units) 7.8 ± 0.5		Initials & Date	
CLIENT/NEWFIELDS ID	DAY	В Н Н Н	# AAL.		D.O.		TEMP		SALINITY		Hd			-
				meter	mg/L	meter	°C	meter	ppt	meter	unit		Late	-
MP-8/.	•	Surr	cı	t	7.3	Ъ	20.0	~	28	1	7.5	CE	9/23	
MP-8/.	-	Sur	LO.	5	6.6	17	20.3	2	28	~	2.6	F	4124	
MP-87	2	Surr	2	M	5. G	С	20.2	2	28	61	7.S	¥	9/25	
MP-87.	e	Surr	'n	3	6.1	З	80.9	Ы	28	М	5 +	Ъ Ы	9/26	
MP-8/.	4	Surr	ŝ	~	4:3	F	20.6	-	29	-	7.9	CR	4012	-
MP-87.	ŝ	Surr	u)	5-	7.4	7	19.9	1	201	~	7,8	R	82/6	-
MP-8 / .	ø	Sur	ŝ	3	2,5	3	20.5	_	28		7.9	CR	9(29	_
MP-8/.	2	Sur	va	5	9.t	۲	20.5		28	-	8.1	¥	9/30	_
MP-81.	ø	Surr	ŝ	J	S.t	ゴ	20.1	Ţ	28	-	6. O	ĸ	1/01	
MP-8/.	σ	Surr	ŝ	m	7.0	m	1.02	2	28	M	8.0	F	2/01	-
MP-87.	10	Surr	υĵ	7	7.5	J	20.0		38	1	8.1	MEP	10/3	-
						•×							1	ε.

Page 11 of 16

r	14 m 14 m	ĩ
	S	I
	9	I
I	Ξ	I
	E	I
I	M	l
I	ш	I
	Z	

	1515	-	-	_	_					
ECIES Ampelisca abdida	ART DATE 23-Sep-2008	D DATE 3-Oct-2008		Initials & Date	ŝ	Date	9/23	4/24	9/25	9 26
TEST SP	TEST ST	TEST EN					CC	Che Che	4	P
	ATCH 2208.01	*0		H (pH units) 7.8 ± 0,5	Hq	unit	7.6	1,7	~ ~	н. Н.
	WATER B	CDR./HOB	WATER QUALITY DATA) Hd		meter			м	Ю
	DILUTION	TEMP. RE		NITY (ppt) 28 ± 1	ALINITY	ppt	28	23	28	28
	ш	TORY e/Bath 4		SALINIT 28:	ŝ	meter			2	4
	START TIME/ END TIN /	NEWFIELDS LABORA Port Gambi		Temp ° C 20 ± 1	TEMP	°C	19.9	1.02	20 °C	20.1
				۲ ۲		meter	т	¢	M	Ю
	March Point	· MANAGER M. Pinza		DO (mg/L) > 4.6	D.O.	mg/l.	7.3	7,5	6.8	0't
	PROJECT	PROJECT				meter	4	Ц	a	Ъ
					JAR#		4	4	4	4
					RFP		Surr	Surr	Surr	Sur

DAY

CLIENT/NEWFIELDS ID

Test Conditions

0 + N N + 0 0

MP-9 / .

MP-97.

. / 8-9M

. / 6-4W

AMEC - Geomatrix NEWFIELDS JOB NUMBER 1437-001-860-1

CLIENT

4616

Cp

8.0

662

20.6

7

4.7.

I THE

4 4

Surr Surr Surr Surr

MP-9 / .

MP-97. MP-97. MP-97.

, VP-9 /

6.61

3 5

15:02

S

Γ

J

4

9128

Z

7.9

1/01

2 00 00

FF

929

S

8.2

27

20.5

7

9. t

5

च च च च

~

10/2

\$

-|m|

240

Ž

19.8

5

7

5

Surr

MP-97.

л. 6 1.0

~

기

Sur Sur

8 o Q

8e

20. 1

JN

10/3

MAP

8. 7 X

Page 12 of 16

	OS	1000
Constant of the	ELI	
The state	FI	No.
	ME	
	Z	

NALI		
יייי		
5		

												TEST SPE	CIES Ampelisca abdida	
CLIENT AMEC - G	teomatrix			PROJEC	T March Point		START TIME/ END '	rime '		ON WATER FSW0	BATCH 92208.01	TESTSTA	RT DATE 23-Sep-2008	1315
NEWFIELDS JOB NUMBER 1437-00	1-860-1			PROJEC	T MANAGER M. Pinza		NEWFIELDS LABO	RATORY nble/Bath 4	TEMP.	RECDRJHO	BO#	TEST END	DATE 3-Oct-2008	
						NAN	FER QUALITY DATA							-
Test Cor	ditions				DO (mg/L) > 4.6		Temp*C 20±1	ŝ	ALINITY (ppt) 28 ± 1		pH (pH units) 7.8 ± 0.5		Initials & Date	_
CLIENT/NEWFIELDS ID	DAY	REP	.)AR #		D.O.		TEMP		SALINITY		Hq	HOT		
				meter	mg/L	meter	ပ	meter	ppt.	meter	unit		nate	
MP-40/.	•	Sur	ø	5	7,4	Ŧ	20.1		28	-	9.2	R	90/22/08	
MP-10/.		Surr	ġ	5	7. (J	<i>Ъ02</i>		28	-	7.7	Z	4124	,
MP-10/.	61	Surr	۵	(b)	6.8	b (1)	20.2	d	28	M	ц ц	p	9/25	
MP-10 / .	m	Surr	ø	Ю	é.	М	20.2	ସ	2 8	3	00. T+	P	9/26	
MP-10/.	4	Surr	و	5	t.t	Ъ	tat		60		8.1	Ce C	9177	
MP-10/.	a	Sun	φ	4	7.3	ч	19.9		29	-	8.1	3	9128	
MP-10/.	e	Sur	ه	5	7.S	1	20.5	-	200		2'8	E	9129	
MP-10/.	2	Surr	ø	ァ	و +	r I	20.6	1	28		2.00	7	9/30	
MP-107.	æ	Surr	ę	ゴ	J.L	4	20.1	-	28	_	8, 2	ĸ	1/01	
MP-107.	σ	Sur	g	~	1.t	3	20.1	S	28	ſ~	5.2	4	10/2	
MP-107.	9	г г	g	£	9.4 9	7	20.2	1	28	1	8.3	MEP	10/3	
													1	

Page 13 of 16

	To	1
distant.	D I	
1000	H	
100	H	
0.0		
18	Щ	B

TEST SPECIES	Ampelisca abdida	TEST START DATE	23-Sep-2008	
		DILUTION WATER BATCH	FSW092208.01	TOBOLI DECOL
		START TIME/ END TIME	1	
		PROJECT	March Point,	DDO IEOT MANAOED

	13:5		-		_												
	IART DATE 23-Sep-2008	VD DATE 3-Oct-2008		Initials & Date		Late	9123	4/24	9/25	9 ZC	197	9/28	9/28	9/30	1/01	10/2	10/3
	TEST SI	TESTER			1000		Z	3	F	p	Ł	3	3	7	۲	Y	MRP
	ATCH 2208.01	*0		H (pH units) 7.8 ± 0.5	Н	unit	7.7	0,8	0, 8	ь. т	۲. ۲.	0	2.2	2:8	80	8.3	8.4
	N WATER B. FSW09;	ECDR./HOB		۵.		meter	1	~	60	m	1		_	,	_	\sim	
	DILUTIO	TEMP. R		NITY (ppt) 28 ± 1	ALINITY	ppt	28	28	5 2 8	28	29	29	28	28	29	30	29
	JE	vTORY le/Bath 4		SALI	SF	meter			d	ما	-	1	-		-	S	
	START TIME/ END TIN	VEWFIELDS LABORA Port Gambi	R QUALITY DATA	Temp°C 20±1	TEMP	°c	20.2	2@,4	20.2	20.2	20.6	19.8	20.5	20.6	30.1	20.2	20.3
			WATE			meter	7	L L	-10	Ю	J	t	۲.	Ч	ד	Μ	7
	March Point,	MANAGER M. Pinza		DO (mg/L) >4.6	D.O.	mg/L	7.5	7.6	7.0	7.2	4	7.8	7.7	ť.	t,t	7.3	7.6
	PROJECT	PROJECT				meter	J	J	20	60	ر	3	J	7	Ъ	m	7
					.IAR #		27	27	27	27	27	27	27	27	27	27	27
					RFP		Surr	Surr	Surr	Sur	Surr	Surr	Surr	Surr	Sur	Sur	Sur
	eomatrix	1-860-1		ditions	DAY		•	-	2	6	শ	۵	g	~	8	6	9
CI IENT	AMEC - G	NEWFIELDS JOB NUMBER 1437-00:		Test Con	CLIENT/NEWFIELDS ID		MP-117.	MP-11/.	MP-11/.	MP-111.	MP-11/.	MP-11/.	MP-11/.	MP-11/.	MP-11/.	MP-11 / .	MP-11/->

Page 14 of 16

100 C 100

ſ			1
1	1	n	2
1	4	극	3
ł	ĉ	IJ	4
l	i	-	
1	1	-	
I	1	3	1
	Ļ	ц	
l	2	4	

	1315) }	_												
ECIES Ampelisca abdida	ART DATE 23-Sep-2008	D DATE 3-Oct-2008		Initials & Date		Date	9/23	9124	9-12	9 (26	4127	9/28	9/29	9/20	
TEST SPI	TEST ST/	TEST EN(L		TECH.	Ch	9	۲¥	. Ľ	E	CR.	Z	P	-
	ATCH 2208.01	5		H (pH units) 78+05	Ha	unit	7.9	8.0	4 e'	8.0	8.1	100	2.8	8.2	
	WATER B. FSW09	CDR./HOB				meter		-	M	M)			-	-	-
	DICUTION	TEMP. RE		(NITY (ppt) 28 ± 1	ALINITY	ppt	28	28	28	м 4	be	29	28	SC.	2
	fe	rTORY le/Bath 4		SAL	S	meter		-	2	d		-		_	
	START TIME/ END TIN	NEWFIELDS LABORA Port Gamb	ER QUALITY DATA	Temp°C 20±1	TEMP	°c	20.1	20.4	20.9 20.9	20.02	5.4	19,9	20.6	20.5	
			WATE			meter	4	τ	η	m	3	3	3	t	
	r March Point	F MANAGER M., Pinza		DO (mg/L) > 4.6	0.0.	mg/L,	7.6	26	6.9	0.t	7.6	7.7	7,7	- 1- -	
	PROJECT	PROJECT				meter	Ţ	ש	М	3	Ъ	5	ţ	ł	
					# 201	-	18	18	18	18	48	18	18	18	
					d 1 N	!	Sur	Sur	Surr	Surr	Sur	Surr	Surr	Surr	
1	eomatrix	-860-1		ditions	DAV		•	۲	2	Ð	4	ŝ	ø	2	
	SLIENT AMEC - Ge	IEWFIELDS JOB NUMBER 1437-001		Test Con	CLIENT/NEWFIELDS ID		MP-127.	MP-127.	MP-12/.	MP-127.	MP-12/.	MP-121.	MP-127.	MP-12 <i>1</i> .	

2/01

8.4

 \mathbb{Z}

- 2

20.3

NJ

2.4

e 7

t 82 138

MP-12/ *

9

MP-127.

1/01

12-10

8.3

00 70

20,2

7

Ę.

ᠵ

18

Surr Surr

∞ on

3

0

MRP

29

Page 15 of 16

I	TO	1
ł	0	
I		
l	Ξ	
I	E	
	IL.	Đ
l		1
	in	
I	F	
l	4	

	1315	•
TEST SPECIES Ampelisca abdida	TEST START DATE 23-Sep-2008	TEST END DATE 3-Oct-2008
	DILUTION WATER BATCH FSW092208.01	TEMP. RECDR./HOBO#
	START TIME/ END TIME	NEWFIELDS LABORATORY Port Gamble/Bath 4

PROJECT

CLIENT

AMEC - G	somatrix			שמחבר	March Point			E La	DILUTION	V WATER E FSW09	3ATCH	TEST ST/	RT DATE 23-Sen-2008	
NEWFIELDS JOB NUMBER 1437-001	-860-1			PROJEC	T MANAGER M. Pinza		NEWFIELDS LABOR Port Gamt	ATORY ble/Bath 4	TEMP. RE	ECDR./HOE	#O8	TEST EN	DATE 3-Date 3-Date	
						WAT	ER QUALITY DATA							
Test Con	ditions				DO (mg/L) > 4.6		Temp°C 20±1	SA	LINITY (ppt) 28 ± 1		M (pH units) 7.8 ± 0.5		Initials & Date	_
CLIENT/NEWFIELDS ID	DAY	RHP	"IAR #		D.O.		TEMP		SALINITY		На			1
				meter	mg/L	meter	ွ	meter	ppt	meter	unit	LECH.	Date	
MP-13/*	•	Sur	75	t	7.7	1	20.2	1	28	_	7.8	CP-	9/23	
MP-13/.	-	Surr	75	3-	7.6	J	20.5		28	-	8.1	Ce	9/24	
MP-13/.	~	Surr	75	Ŋ	0.4	Ю	20.3	A.	28	- M	8.0	×	9125	1
MP-13 / .	•	Sur	75	M	4. 6.	60	20, 3	শ	21	М	8.0	F	9/26	-
MP-13/.	4	Surr	75	3	4.4	Ч	20.7	-	60		8.3	2	4019	
MP-13/.	ŝ	Surr	75	ত	7.6	ų	0.02		29		2.8	Z	82/6	-
MP-13/.	ø	Surr	75	7	7.7	4	20.7		28	-	84	25	9/29	
MP-13/.	2	Surr	75	Ĺ,	7.7	لر	20.0	. –	28		* 12	P	9130	_
MP-13/.	BCI	Surr	75	Ъ	8.t	Ч	ao. 3	1	æ 8	-	J. 00	۲	10/0	-
MP-137.	σι	Surr	75	2	2.2	2	20.3	0	52	5	5 20	X	19/2	-
MP-13/.	9	Surr	75	,T	7.6	t,	20.4	1	28		8.6	MPP	10/3	-

Page 16 of 16

ľ	ro	1
H	on	1
a	0	4
ł	1	1
1	TTT	1
ł	-	ł
1	TT.	1
l	PH-	1
I	R	ł
I		1
I	щ	1
H	7	1
ł	1	4

10 DAY SOLID PHASE TEST WATER QUALITY DATA

<u> </u>	1	1	٦.	_	-	-		_	<u> </u>			-	r	1	r	-
icries Ampelisca abdida	RT DATE 30-Sep-2008) DATE 10-Oct-2008	10-Oct-2008	Initials & Date	244 24	Date	40/1- 9/30	until	10/2	10/3	+101	00	1016	10/7	10/8	10/4
TEST SPE	TEST STA	TEST END			T U U I		p	þ	4	MEP	MMR	SWW V	MMK	۴	NMR	K
	ATCH 1908.01	社〇		H (pH units) 7.8±0.5	μġ	unit	7.6	ר <u>י</u> רד	0 83	8.3	6.00	3	00		- :00	0.8
	WATER B/ FSW092	CDRJHOB		à		meter)	-	(10)			-		-	m	~
	DILUTION	TEMP. RE		INITY (ppt) 28 ± 1	ALINITY	ppt	28	te	82	38	8 C	80	44	29	30	30
	ų	TORY e/Bath 4	M. Pinza Port Gamble/Bath 4. WATER QUALITY DATA	SAL	S	meter			N		-		R	-	Ľ	-
	START TIME/ END TH	VEWFIELDS LABORA		Temp°C 20±1	TEMP	°c	20.l	90°7	20.0	20.1	Bo.3	30.2	30.3	19.4	19.9	19.7
						meter	Ľ	7	3	4	f	£	f	ጉ	3	7
	March Point	MANAGER M. Pinza		DO (mg/L) > 4.6	0.0.	mg/L	6.8	2.4	2.1	7-6	9.4	7. 7	с. с	3.F	4.4	ېب ب
	PROJECT	PROJECT				meter	- -	ح .	3	4	ł	4	ナ	Ч	2	7
					JAR #		51	51	51	51	51	51	51	51	51	5
					REP		Sur	Surt	Surr	Sur	Sur	Surr	Surr	Sur	Surr	Surr
	eomatrix	-860-1	1437-001-860-1	ditions	DAY		•	۲	8	63	4	s	ω	7	ß	o
	CLIENT AMEC - G	NEWFIELDS JOB NUMBER 1437-00'		Test Con	CLIENT/NEWFIELDS ID		SBREF-80 /	SBREF-80/	SBREF-80 /	SBREF-80 /	SBREF-80 /	SBREF-80 /	SBREF-80 /	\$BREF-80 /	SBREF-80 /	SBREF-80 /

-

01/01

Ľ

0.8 3

> Ų Ā

30 3

ц Ц 0

7 \mathcal{O}

5 5

Surr Sur

6 9

SBREF-80 /

Ś

Γ 0

3

Page 1 of 1

Page _____of ____

Ammonia Analysis Total Ammonia (mg/L)

Client/Project:	Organism:	NewFields Test ID:	Test Duration (days):
March Point	Ampelisca		(0
PRETEST	UNITIAL / FINAL / OTH	ER (circle one) DAY o EWATER (PW) (circle o	f TEST: <u>Ø</u> ne)
Calibr	ation Standards Temperati	ire Sample	temperature should be
Date:	Temp	erature: within	±1°C of standards
9/23/08	19.4	S°C tempera	ture at time and date of
		analysis	

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sulf. mg/L
Control	SULV	9/23/08CR	2.21	19.5	9/23/08 CR	N			0.012
CR-1			40.5			1			0.017
SB Ref			0.845						0.653
MP-1			3.46						0.005
MP-2			1.67						0.004
MP-3			1.69						0.005
MP-4			1.11						0.003
MP-5			1.36						0.008
MP-6			1.23						0.015
MP-X7			1,17						0.076
MP-8			2.49						0.004
MP-9			0.662			1			0.007
MP-10			1.40						0037
MP-11			1.06						0.02/0
MP-12			1.24						0.060
MP-13	l	V	1.02		V	V			0.019

\\Fspwa01\projects\BIOASSAY FILES\Lab Logs & Forms\Ammonia Analysis Record.doc Last printed 9/23/2008 1:48:00 PM

Page l of l

Ammonia Analysis Total Ammonia (mg/L)

Client/Project:	Organism:	NewFields Test ID:	Test Duration (days):
Geomatrix/ March Point	Amps		10

PRETEST (INITIAL / FINAL / OTHER (circle onc) DAY of TEST: X OVERLYING (OV) (COREWATER (PW) (circle one)

Calibration Standa	Sample temperature should be	
Date:	Temperature:	within $\pm 1^{\circ}$ C of standards
23 September 2008	19.5	temperature at time and date of analysis.

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sulf. mg/L
Control	Surr.	9/23/08 MMB	3.20	20.0	9/23/08/R	N	7.5	30	0.060
CR-1	Surr.		1.85			N	7.4	29	0.088
SBREF-80	Surr.		4.03			N	7.3	30	13.1
MP-1	Surr.		5.39			N	7.2	27	0.059
MP-2	Surr.		3.02			N	7.2	28	0.047
MP-3	Surr.		4.55			N	7.4	28	0.041
MP-4	Surr.		2.62			N	7.2	26	0.032
MP-5	Surr.		2.17			N	7.2	25	0.116
MP-6	Surr.		1.47			N	7.0	28	0.026
MP-7	Surr.		2.30			N	7.2	28	0.034
MP-8	Surr.		3.18			N	7.1	28	0.059
MP-9	Surr.		1.33			N	7.1	28	0.086
MP-10	Surr.		3.02			N	7.1	28	4.06
MP-11	Surr.		2.11			Ν	7.2	28	1.96
MP-12	Surr.		2.46			N	7.2	28	0.023
MP-13	Surr.	0L	2.90		V	Ν	73	29	0.035

\\Fspwa01\projects\Log Haul Out- Geoengineers\Eoh Ammonia Analysis Record.doc Last printed 9/23/2008 2:41:00 PM
Page | of |

Ammonia Analysis Total Ammonia (mg/L)

Client/Project:	Organism:	NewFields Test ID:	Test Duration (days):
Geomatrix Marchpoint	Amps		25-10d

PRETEST / INITIAL / KINAL / OTHER (circle one) DAY of TEST: _____ OVERLYING (OV) / POREWATER (PW) (circle one)

Calibration Stan	Calibration Standards Temperature		
Date:	Temperature:	within $\pm 1^{\circ}$ C of standards	
10/3/08	0.06	temperature at time and date of analysis.	

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sulf. mg/L
Ø	Surr	TS 10/3/08	20.5	19.0	7 10/3/08	N	NA-	7	3.008
CR-1 Ref			<0.5		1	1	C		0.01
53 Pef 80			2.51						0.007
mp-1			20.5						0.005
2			40.5						0.007
3			2.02						0.010
4			<0.5						0.005
5			20.5				/		0.005
6			20.5				(0.005
7			20.5						0.007
8			×0.5						0.00%
9			×0.5						0.010
10			40.5						0.014
Į.			40.5					7	0.012
[2-			20.5					/	0.006
13	V	V	20.5		V	V	1	J	0.004

Page ____ [|] of

Ammonia Analysis Total Ammonia (mg/L)

Client/Project:	Organism:	NewFields Test ID:	Test Duration (days):
Geomatrix Marchpi	H Amps		IUd

PRETEST / INITIAL / RINAL / OTHER (circle one) DAY of TEST: ______ OVERLYING (OV) / POREWATER (PW) (circle one)

Calibration Standards Temperature				
Temperature:	within $\pm 1^{\circ}$ C of standards			
20.0	temperature at time and date of			
18	analysis.			
	ds Temperature Temperature: 20.0] 8			

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pH	Sal (ppt)	Sulf. mg/L
Ø	Sur	13 10/3/08	40.5	20.3	B 10/3/08	N	7.6	31	0.105
(p-1 pef			20.5	20.3		1	7.5	32	0.082
58 Ref 80			2.02	20.3			7.2	30	0-072
MP-1			0.97	20.4			7.2	26	0.053
2			0.52	20.3			7.2	27	0.030
3			3.41	20.3			7.4	27	0.070
4			0.69	a0.3			7.0	,26	0.034
5			0.96	20.4			7.0	2,	0,053
6			20.5	20.5			6.9	28	0.036
1			20.5	20.5			7.0	28	0.033
8			Not Available before me	e- sam	its taken.				
۹			40.5	20.3			7.1	28	0.070
10			0.65	20.4			7.1	28	0.042
1			40.5	20.5			7.1	29	0.049
12_			60.5	20.5			7.4	28	0.037
13	\downarrow	V	405	20,3	\checkmark	11	7.4	28	0.038

Reading taken

Ammonia Analysis Total Ammonia (mg/L)

Client/Project:	Organism:	NewFields Test ID:	Test Duration (days):
Marchpoint 1582	fso Anipelisca		100

PRETEST / INITIAL (FINAD / OTHER (circle one) DAY of TEST: 14 OVERLYING (OV) / POREWATER (PW) (circle one)

Calibration Star	idards Temperature	Sample temperature should be
Date:	Temperature:	within $\pm 1^{\circ}$ C of standards
10/14/08	18.0	temperature at time and date of

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sulf. mg/L
5BRef 80	Surr	TS 10/14/08	20.5	18.0	TS 10/14/08	N	NA-		.015
rewan	\checkmark	V	< 0.5		ľ	N	7.2	30	.075
				-					

Page _____of ____

Ammonia Analysis Total Ammonia (mg/L)

Organism:	NewFields T	'est ID:	Test Duration (days)		
Ampelisco.			20		
VITIAL/FINAL/OTH VERLYING (OV) / POI	ER (circle one) REWATER (PV	DAY of ' W) circle one	TEST:		
Date: Temper		within ±1	°C of standards		
208 20	.0	temperatu	temperature at time and date of analysis.		
	Organism: Ampelizze. NITIAL/FINAL/OTH VERLYING (OV) / POP on Standards Temperat Temp 2/08 2.0	Organism: Ampelizie. NewFields T NewFields T NewFields T NewFields T NewFields T NewFields T NewFields T POREWATER (PV Don Standards Temperature Temperature: DOS 20.0	Organism: NewFields Test ID: Ampelitic: DAY of ' VERLYING (OV) / POREWATER (PW) (circle one) DAY of ' on Standards Temperature Sample temperature: 000 2.0.0 2.0.0		

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pH	Sal (ppt)	Sulf. mg/L
58Ref 80-1	Acetimat	d 159/29/08	Overli	eña "	Sample	N	NA-		0.027
ų		V	porei	hater	sample	N	V	30	0.202
58 Ref 80 - 1	Acc	T 9/30/08	20.51 ()	19.5	overlying	N			
И		V	0.929	19.5	monuter	N			
					1				

() WE 9/30/08 T)

Analyst:

CETIS	Analysis	Detail

. 125

- 127

 Comparisons:
 Page 1 of 1

 Report Date:
 04 Nov-08 1:38 PM

 Analysis:
 10-7763-5230

			1440						Ana	lysis:		10-7763-523
Reference T	oxicant 96-h Ac	ute Surviv	al Test									NewFields
Endpoint		Ana	lysis Type		Sample I	_ink	Contro	ol Link	Date A	nalyzed	Version	
Proportion St	urvived	Cor	nparison		03-2847-	7880	03-284	17-7880	04 Nov	-08 1:38 F	M CETISV	1.1.2
Method		Alt	H Data.	Transform	Zeta	NOE	L	LOEL	Toxic	Units	ChV	PM\$D
Dunnett's Mu	Itiple Compariso	n C>	T Angul	ar (Corrected)	0.25		0.5	400		0.35355	22.57%
Group Comp	parisons		1. Aka									
Control	vs Conc-m	g/L	Statistic	Critical	P-Value	M	ISD		Decisio	n(0.05)		
Dilution Wate	er 0.125		1.70338	2.46559	0.1605	0	.29419		Non-Sig	nificant Eff	ect	
	0.25		1.70338	2.46559	0.1605	0	.29419		Non-Sig	nificant Eff	ect	
	0.5		4.39995	2.46559	0.0022	0	.29419		Significa	nt Effect		
	1		6.87533	2.46559	0.0001	0	.29419		Significa	nt Effect		
ANOVA Tabl	e		- 143									
Source	Sum of	Squares	Mean Squ	are DF	F Statist	ic P	-Value		Decisio	n(0.05)		
Between	1.25229	1	0.3130727	4	14.66	0.	.00035		Significa	nt Effect		
Error	0.21355	37	0.0213554	10								
Total	1.46584	442	0.3344281	14								
ANOVA Assu	mptions		5									
Attribute	Test		3	Statistic	Critical	P	-Value		Decisior	n(0.01)		
Variances	Modified	Levene		6.01492	5.99434	0.	00989		Unequal	Variances		
Distribution	Shapiro	-Wilk W		0.88543		0.	05723		Normal (Distribution		
Data Summa	ry			Origi	nal Data					Transfo	rmed Data	
Conc-mg/L	Control Type	Count	Mean	Minimum	Maximum	SD		Mear	1 N	linimum	Maximum	SD
0	Dilution Water	3	0.93333	0.80000	1.00000	0.11	547	1.310	039 1	.10715	1.41202	0.17602
0.125		3	0.80000	0.80000	0.80000	0.00	020	1.107	715 1	.10715	1.10715	0.00027
0.25		3	0.80000	0.80000	0.80000	0.00	020	1.107	'15 1	.10715	1.10715	0.00027
0.5		3	0.50000	0.30000	0.70000	0.20	000	0.785	540 0	.57964	0.99116	0.20576
1		3	0.23333	0.10000	0.40000	0.15	275	0.490	04 0	.32175	0.68472	0.18292
Data Detail												
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4 F	Rep 5	Re	р 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Dilution Water	1.00000	1.00000	0.80000								
0.125		0.80000	0.80000	0.80000								
0.25		0.80000	0.80000	0.80000								
1		0.20000	0.30000	0.50000								
Graphics		0.20000	0.40000	0,10000								
Graphics												
1.0	I					0	.25			÷		/
0.9	Ĭ					0	.20			1	• /•	
0.8	۰ I	٥				0	.15					
2 0.7-			1	Reject Null		a g o	.10				•/•	
5 0.6			1			rr. Au	.05-			1/		
0.5			4			08 0	.00					
a 0.4			1.2	1		-0	.05		•/			
0.3						-0	.10					
0.2				î		-0.	.15	/	•			
0.1-				1		-0.	.20	/.	7.			
0.0 L	0 0.126	0.00				-0,	25			1	-1, 1	-3.
	0.125	Conc-ma/	0.5 L	1			~Z.O	-1.5 -1	.U -0.5	0.0 0.5	1.0 1.5	2.0
									Ra	initites		

CETIS Analysis Detail

isi isi

1 33

 1^{11}

Linear Regression:Page 1 of 2Report Date:04 Nov-08 1:40 PM

Analysis:

18-3138-3652

Reference	Toxicant 96-h A	cute Surviv	al Test	121							NewFields
Endpoint		Ana	lysis Ty	pe	Sample I	_ink Co	ntrol Link	Date Ana	alvzed	Version	
Proportion	Survived	Line	ar Regre	ession	03-2847-	7880 03-:	2847-7880	04 Nov-0	8 1:40 PM	CETISvt	.1.2
Linear Reg	gression Options	5		. 6							
Model Fur	iction		Th	reshold Option	Threshold	Thresho	id Opt R	eweighted	d Pooled	Groups	Het Corr
Log-Norma	I [NED=A+B*log()	X)]	Co	ntrol Threshold	0.06666667	Yes	Y	es 🗸	No		No
Regressio	n Summary		1	- 32							
Iters	Log Likelihood	Mu	Sigm	a G	Chi-Sa	Critica	I P-Va	lue De	ecision(0.05	3	
19	-60.16584	1.60851	0.275	77 0.16348	9.01521	22.362	03 0.771	79 No	on-Significan	t Heteroge	neity
Point Estir	nates										
% Effect	Conc-mg/L	95% LCL	95	% UCL							
10	0.2611648	0.1168286	0.3	380091							
15	0.3051479	0.1504196	0.4	28295							
20	0.3453291	0.1835419	0.4	717972							
25	0.3839925	0.2173257	0.5	5135376							
40	0.5017188	0.3288402	0.6	432288							
50	0.5892849	0.4163774	0.7	46276							
Regression	n Parameters										
Parameter	Estimate	Std Er	ror	95% LCL	95% UCL	t Statist	ic P-Val	ue De	cision(0.05)	
Threshold	0.1276308	0.0446	5401	0.04010889	0.2151526	2.858	0.013	44 Si	gnificant		
Slope	3.626239	0.7480	43	2.160074	5.092403	4.848	0.000	32 Sig	gnificant		
Intercept	5.832855	0,2190	61	5.403496	6.262215	26.627	0.000	00 Sig	gnificant		
Residual A	nalysis										
Attribute	Method	I		Statistic	Critical	P-Val	ue l	Decision(C).05)		
Variances	Modified	Levene		33.60804	3.47805	0.000	01 l	Jnequal Va	ariances		
Distribution	Shapiro	-Wilk W		0.8640122		0.027	59 I	Non-norma	I Distribution	ı	
Data Sumn	nary	22		Calcu	lated Variate(A/B)					
Conc-mg/	Control Type	Count	Mean	Minimum	Maximum	SE	SD	Α	в		
0	Dilution Water	3	0.93333	0.80000	1.00000	0.02357	0.11547	28	30		
0.125		3 (0.80000	0.80000	0.80000	0.00004	0.00020	24	30		
0.25		3 (0.80000	0.80000	0.80000	0.00004	0.00020	24	30		
0.5		3 (0.50000	0.30000	0.70000	0.04082	0.20000	15	30		
1		3 4	0.23333	0.10000	0.40000	0.03118	0.15275	7	30		
2		3 (00000.0	0.00000	0.00000	0.00000	0.00000	o	30		
				11							

1 300

and the second
Analyst:_____

Approvai:_

Cadmium Reference Toxicant Test Survival Data Sheet for Eohs

	na	Inc	1505					SPECIES		A	mpelis	ica abd	ida		
AMEC - Geomatrix	x	PRC	March P	oint	NE	NFIELDS JOI 1437-00	в NO. 1-860-1	PROJEC M.	T MANAGI Pinza	ER	NEWFIE	LDS LABO	RATORY Bath 4	PROTO	COL
				SURV	/IVAL	& BEH	AVIOR	DAT	A		1.0	t Gamble	5 Datil 4	1 -3	.r 1995
OBSERVAT	ION KEY				DAC			DAY 2			bay).			DAT 4	
LOE = Loss of equili	muid			DATE			DATE		4	DATE			DATE		
Q = Quiescent				9/	74		9	25		9/	26		9	127	
DC = Discoloration	C	RGAN	ISMS	TECHNIC	- /		TECHNICI) — — — — — — — — — — — — — — — — — — —		TECHNIC	:IAN		TECHNIC	TAN	
RB = No body F = Floating on surfa	ce	10			0		1.7.0.110.74	~			2		/	1	
CLIENT/ NEWFIELDS ID	CONC.	REP	INITIAL		1-						K		u		
	value [units		NUMBER	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	08S	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	08
D / T		,		10	0	<u>I Ņ</u>	10	Ø	15	16	0	N	10	0	N
Ref.Tox cadmium	0 mg/L	2		10	0		10	Ø	N	10	Ø	N	10	D	N
		3		10	0		10	Ø	35	9	1	15	8	1	35
		1		10	0		9	1	25	9	0	15	8	1	M
Ref. I ox cadmium	0.125 mg/L	2		10	0		10	Ø	15	9		Iς	8]	15
		3		10	Ø		9	1138	N	9	l	N	8		N
		1		10	0	V	10	ø	Z 5	Đ	0	2\$	B	2	N
Ref.Tox cadmium	0.25 mg/L	2		8	1	INB	9	IFB	N	9	0	15	8	1.	15
		3	_	10	0	N	9	1	-15	8		15	8	\mathcal{O}	N
		1		10	0	DC	10	Ø	15	8	Ż	15		1	N
Ref.Tox cadmium	0.5 mg/L	2		10	6	<u>r</u> x	5	3,2N	83S	S	0	N	3	2	15
		3		10	0	R	10	φ	75	7	3	5	5	2	I N
		1		10	0	DC,Q	ନ	1	25	8]	15	2	6	N
Ref.Tox cadmium	1 mg/L	2		10	0	Q	9	([5	6	3	15	Ч	2	N
		3		10	0	le	9	1	25	6	3	25	1	5	N
		1		10	Ð	4F	4	6	Q		3	25	0	1	N
Ref.Tox cadmium	2 mg/L	2		10	0	2F	6	4	45	3	3	25	Ø	3	N
		3	V	9	1	IF	8	(250	2	5	25	0	З	AI

Owe or 9/24 correct entry: N

1

with the second s

NEW. ALDS	ů Č	dmiu	а Б	efere	nce	Tox	icant	Те)Wat	erQ	uality	Data She	eet for Eohs	
CLIENT	٩.	ROJECT					SPECIE	s					NEWFIELDS LABORATORY	PROTOCOL
AMEC - Geomatri	×		Mar	ch Po	int				Am	pelisca	abdida		Port Gamble Bath 4	PSEP 199
NEWFIELDS JOB NUMBER	<u>.</u>	ROJECT M	ANAGER					QUANT	ITY OF STOC	о Ба Х		IANTITY OF DILUEN	T: 1500mL	
1437-001-860-1			M.	. Pin:	a N		ACTI	IAL:	0	300	¥	CTUAL: /	500.0 DATE PREP	9123/08
PO80418.15	<u>⊐</u>	۲ ۳	20	5101	5		TESTS	TART DA	1 26JUI08	202	ац — —	the mp	ST END DATE 9/37/08 	THE K
							WATER	s QU		DATA				
DILTIN,WAT.BATCH	_	TEN	MP REC	#		REFER	ENCE TO	X. MAT	ERIAL	Ľ	CEFERENC	E TOXXICANT		
\$ FSW072608.01			M			S	dmium o	chloric	e	\vdash	Cac	Imium		
TEST C	ONDITIC	SNO			DO (n	19/L)	15 + 1	6 -	SAL (ppt 28 + 1		PH 5 0 + 0 5	TECHNICIAN		
	CONCENTR	NOILE		Number of the	Ö	Ċ	TEMP.		SALINITY		- H			
CLIENT/ NEWFIELDS ID	value	units	DAY	REP	meter	лубш	meter	E	eter ppt	Ē	er unit	WQ TECH	Date	
			0	Stock	7	5	× 28	Q	1 24		7.6	Y	912.20%	
			٢		4 7	9	4 19	8	1 29		75	3	0/24	
Ref.Toxcadmium	0	ng/L	3		3 6	8	3 20		29	41	1 1 0	K	9/25	
			3		2	1.0	3 20	۰.	R 29	(7)	4.8	R	9/26	のないないない
		_	4		<u> </u> h	Ņ	4 20	1-	20		7.7	R	9/27	
222 L & L L V L Low T	1172	2.4.7	0	Stock	たか	4	¥ 20.		1 2.6	44	42	Y	9123/08	in the second seco
			-		4 7	Ņ	4 20	7	20	~	1.7	3	9/24	
Ref. Toxcadmium	0. <i>12</i> 5 r		2		36	S.	3 20.	R	2 29	(1)	7.6	r	9/25	
			e		4 6	Q	3 20.	a B	129	3	7.8	م	9/26	And Rev And
			4		2 h	4	1 20.	7	29	-	17.7	ch	6127	
			0	Stock	4	4	¥ 20.) (26	<u> </u>	ささ	7	9/23/08	
			-		4 7	S	4 20.	4 1	29	-	2.8	Z	9/24	
Ref.Toxcadmium	n 26.0		2		3 6	Ŷ	3 20.	3	PL 29	R	£.4	14	9125	
			e		5	0	3 20.	10	2 21	З	8.t	P	9/26	
			4		517	5	i boi	7 1	29	_	7.8	F	9127	
		0	L'M	1dilee	GH1									
and a mprise with the amprise		g												Page 1 of 2

38

Page 1 of 2

CLIENT AMEC - Geomatrix NewFieLDS JOB NUMBER NEWFIELDS JOB NUMBER 1437-001-860-1 FROJECT MAN 1437-001-860-1 LOT#: COT#: COT#: COT#: COT#: COT#: CONDITIONS CLIENT/ NEWFIELDS ID Value units D	March P Mager M. Pin M. Pin PREC#	oint C C REFERE Cad	SPECIES	Ampel	isca abdida		NEWFIELDS LABORATORY	PROTOCOL DISED 1005
AMEC - Geomatrix PROJECT MANN NEWFIELDS JOB NUMBER 1437-001-860-1 FESTID 768.041.8.1.5 Conter: Conter: FSW072608.01 FSW072608.01 FSW072608.01 FSW072608.01 CONDITIONS TEST CONDITIONS	March P. MGER M. Pin K. STO T C. STO T PREC#	oint -C REFERE cad	QUAN	Ampel	isca abdida			D.SED 1005
NEWFIELDS JOB NUMBER 1437-001-860-1 TEST ID 708 04 13 .15 PROJECT MANU LOT #: 0 PROJECT MANU LOT #: 0 COT #: 0 0 0 0 0 0 0 0 0 0 0 0 0	M. Pin M. Pin GSTOT PREC#	C C C C C C C C C C C C C C C C C C C	QUAN				Port Gamble Bath 4	
1437-001-860-1 Lot #: TEST ID Lot #: 708 04 18 .1 5 Lot #: DILTIN.WAT.BATCH TEMP FSW072608.01 N FST CONDITIONS N CLIENT' NEWFIELDS ID Value	M. Pin 65701 PREC#	C C C C C C C C C C C C C C C C C C C		TITY OF STOCK : (1.3 mL QUA	WITTY OF DILUENT	: 1500mL INIT	
TESTID 7080413.15 PILTIN.WAT.BATCH FSW072608.01 TEST CONDITIONS TEST CONDITIONS CLIENT/ NEWFIELDS ID Value units D	P REC#	C REFERE	ACTUAL:	0.306	AC	TUAL: /	SOO. O DATE PREP 9	123/08
DILTIN.WAT.BATCH TEMP FSW072608.01 N TEST CONDITIONS CLIENT/ NEWFIELDS ID Value Units D	P REC#	REFERE	TEST START C	04TE 9/23/09 26Jul08		it's mg	it end date 127/08	TIME 1600
DILTIN.WAT.BATCH TEMP FSW072608.01 N FSW072608.01 N CLIENT/ NEWFIELDS ID CONCENTRATION CLIENT/ NEWFIELDS ID Value Units	P REC#	REFEREI cad	VATER QL	JALITY DA	TA			
FSW072608.01 N TEST CONDITIONS CLIENT/ NEWFIELDS ID value units D	- AN	cad	NCE TOX. MA	VTERIAL	REFERENCE	E TOXXICANT		
TEST CONDITIONS CLIENT/ NEWFIELDS ID value units D		DO LOCH	mium chlori	ide	cadr	mium		
CLIENT/ NEWFIELDS ID value units D		הט (חושיב)	TEMP(C)	SAL (ppt)	Hq	TT OLUMPIC T		
CLIENT/ NEWFIELDS ID value units D		≥ 5.0	15 ± 1	28 ± 1	8.0 ± 0.5	- IECHNICIAN		The second second
CLIEN IN NEWFIELDS ID value units D		D.O.	TEMP.	SALINITY	Hq			
	DAY REP	meter mg/L m	eter °C I	meter ppt	meter unit	WQ TECH	Date	
	0 Stock	47.74	5.02 2	1 28	1 28	Y	30/22/6	
	1	4 75 4	1 205	1 29	1 7.8	CC	9/24	
Ref. Toxcadmium 0.5 mg/L	2	3 6.6 3	3 20.3	R 29	5.F E	F	9 25	「「「「「」」
	3	3 7.0 3	3 20.3	PL 29	3 7.8	ST.	9126	State of the state
	4	1 22 H	120.7	129	17.8	K	9/27	
5 2.2 1 1 + 6 97 1 6, 2 4 / + 1 & card	0 Stock	それが	4 20.3	82 1	52 J	Y	9/22/08	
		4 7,5 V	502 1	1 29	P.7.9	Z	h2/6	
Ref. Toxcadmium 1 mg/L	8	3 6.6 3	3 20.3	R 29	3 7.8	Þ	9 25	
	8	3 6.7 3	ao.3	5 29	3 7.8	£	9/26	
7	4	4 7.3 H	20.7	1 201	1 7.9	CR.	9/27	
	0 Stock	かんさか	2.02	82 1	5.7 Z	Y	9/23/08	がない。日本にあ
	-	47.6 4	20.5	62 1	17,9	CC	glzy	
Ref.Toxcadmium 2 mg/L 2	8	3 6.5 3	20.3	Pc 29	3 1.7	Ł	9/25	
		B 6.7 B	30.3	R 21	3 7.8	مر	4[27	
4	4	4 7.4 4	20.7	62 1	179	R	9/27	

9/23/2008 MP 10d amphipod Cd RTWQ

Page 2 of 2

BIOLOGICAL TESTING OF SEDIMENT FOR MARCH POINT (WHITMARSH) LANDFILL ANACORTES, WASHINGTON

LARVAL TEST

NEWFIELDS				-						
	PROIECT			S	Dend	raster exce	ntricus			7
AMEC Geomatrix	Marc	h Point	1437-001-	-860	M. Pi	NAGER NZA	NEWFIELDS L Port Gar	AB / LOCATION nble / Bath 7	PROTOCOL PSEP (1995)	
		LA		ERVATIO	N DAT	A				
CUENT/ NEWFIELDS ID	REP	NORMA	R 1	ABNORMAL		DATE	TECHNICIAN	0	OMMENTS]
	1			218						
	2	$ \rangle$	(0	213						
STOCKING DENSITY	3	\downarrow		255						
	4			280						
	5		i	247]
	1	194		7					101	1
	2	211		4						1
Control /	3	230		4						1
	4	232	/	3						1
	5	213		4						1
	1	233		2						1
	2	213		4						
Sediment Control /	3	237		1						
	4	216		4						1
	5	197		Ø						1
	1	191		7						1
	2	204		5						1
CR-1 /	3	191		5						
	4	237		5						
	5	[4]		4]
	1	233	5	5	10	80/1/08	BWE			2====20
	2	2046	202) -	7 ⁰ (D,	0/7/08	por			27-
SBREF80 /	3	+786	14 7	4°G	Ð	5/7/08	poz			28
	4	204		7						29
	5	178	1	1						30

1 W.E. BWD- 10/7/08

QA/QC TS 10/27/08

11.000

NEWFIELDS		4 4 4 M			species Der	draste	rexcen	tricus			_
	PROJECT	Deiet	JOB NUMBER	04.000	PROJECT	MANAGER	- CAUCH	NEWFIE	LDS LAB /	LOCATION P	ROTOCOL
AIMEC Geomatrix	Warch			BSERVATI		TA		Po	rt Gamble	e / Bath 7	PSEP (1995)
CLIENT/ NEWFIELDS ID	REP	NUME		NUMBER		D.	ATE	TECH	NICIAN	cc	MMENTS
	1	ZO	8	ABNORMA		11	4		/		
	2	20	Į.	7				,			
MP-1 /	3	23	3	7							
	4	22	.7	5							
	5	22		5				\square			
	1	236		6		_		\vdash			
MP-2 /	3	198	-	<u> </u>				\square	_		
	4	191		<u> </u>		-					
	5	232	,	7				$\left \right $			-
	1	207	-	6							
	2	175	-	Z	Q						
MP-3 /	3	20	5	3							
	4	207	4	3							
	5	213		/3							
	1	229	5	3					-		
-100 <u>0</u> -100	2	208		<u></u>							
MP-4 /	3	197		کر		_					
	4	107									
	1	176	0	12		-		\rightarrow			
	2	7,9									
MP-5 /	3	157		 				+			
	4	190		10			$\left \right $				
	5	18	7	10				V			

QAIQC T 100%

		ELARVA	FOUSD			ATE 0		e te	27		D.	Alac 1	009
[New Press of all	DIVALV		C 303F		TUCUL	AICT	-1143		51		TS	11/5/0	8
NEWFIELDS					species Dond	raster e	excent	ricus					
AMEC Geomatrix	PROJECT March	Point	JOB NUMBER 1437	7-001-860	PROJECT M/ M. Pi	NAGER NZA		NEWFIELD Port	Gamble /	Bath 7	OTOCOL PSEP (1995)	
				OBSERVATIO	ON DAT	A						_	
CLIENT/ NEWFIELDS ID	REP	NOR	MAL	AENORMA	ι	DAT	E	TECHNIC	IAN	COM	MENTS		
	1	210	5	6		1/4		H					
	2	. 24	5	2		1							
MP-6 /	3	. 22	7	4									
	4	25	2	6									
	5	24	8	2									
	1	20	5	5									
	2	. 21	8	5									
MP-7 /	3	21	1	4			ļ						
	4	20	9	7									
	5	21	9	2									
	1	211	e	8									
	2	199	î	7									
MP-8 /	3	18	5	3									
	4	21	2	4									
	5	20	5	2									
	1	23	5	1									
	2	22	8	4									
MP-97	3	21	3	6									
	4	21.	2	2									
	5	18-	3	2									
	1	20	6	8									
	2	192	2	1									
MP-10 /	3	22	0	5									
	4	20	2	4									
	5	21	3	9		V		V					

5.000

NEWFIELDS		R. C. Swinger			SPECIES Der	draster excen	tricus		
	PROJECT	Daint	JOB NUMBER	001 860	PROJECT	MANAGER	NEWFIELDS LAB	/LOCATION	PROTOCOL
AIVIEC Geomatrix	Iviarco	Point	1437	-001-860		TA	Port Gamt	ole / Bath 7	PSEP (1995)
CLIENT/ NEWFIELDS ID	REP	NUS	IBER RMAL	NUMBER		DATE	TECHNICIAN	с	OMMENTS
	1	23:	3	4		11/4	4		
	2	23	4	1					
MP-11 /	3	195	5	4					
	4	26	5	5					
	5	22	2	6					
	1	22	5-194	3-4	- @(-			
	2	22	0	6					
MP-12 /	3	22	20	5					
	4	19	2	5					
	5	21	7	5					
	1	23	0	4					
	2	22	-1	5					
MP-13 /	3	20	¥	Z					
	4	200	2	7					
	5	19	5	4					

@ 12 11/4/08+

0+1QC 100 % TS 1/5/08

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT			POG IFON														
AMEC Geon	natrix		N	larch P	oint	λ	ectes	Dend	raster ex	centri	cus	N		Briloc	ation le / Bath 7	<u>e</u> 11	котосоц SEP (1995)
JOB NUMBER 1437-001-{	860		PROJECT MAN	ager M. Pin	23	31	ST START DA	re 24Sep	808		TIME 2030	F		14	08		ME 1930
- Day 3 observations needed only I	lf developmen	t endpoint not me	t by day 2			WA	TER QU	ALITY	/ DATA			1		1		1	
CO	TEST VDITIONS			X	r (mg/L) >4.8	ř.	етр{°С) 15±1	vi	af (ppt) 26 ± 1		PM 7,8±0.5	Am	nonis		Suffide NA	Ľ	
CLIENT/ NEWFIELDS ID	DAY	Random #	REP	meter	D.O.	matar	TEMP.	S S4	ALINITY		Hq	AMA	IONIA		SULFIDE	1. TECI	JTAQ
Control /	•	0	WQ Surr		29		110		5		28	I ACUIL!	id/r (coal)	A Techn.	ug/L (Total)	ž	u cla
Control /	-	ç	100 0.01	-		-					<u>,</u>					Ś,	1. 1.
Control /	-	₽	WQ SUL	7	7.5	7	N.S.	-	50	_	7.7					3	ghs
Control /	ы	10	WQ Surr	3	9.t	З	15.3	d	29	M	ц. Г.					Ŕ	9 /26
Control /	e	10	WQ Surr	5	7.2	ц ц	16.8		29		4 H			E	0000	3	9/27-
Control /	4	10	WQ Surr														
Sediment Control /	0	67	WQ Surr		8.0		16.0		٩٩		8:2.8			PA	00017	BH	4/ar
Sediment Control /	-	67	WQ Surr	-ر	7.4	7	IS,S		29	~	7.7					E	22/6
Sediment Control /	N	67	WQ Surr	М	. 5	3	15.5	¢	Å	\mathcal{M}	t, L					P	9 26
Sediment Control /	ы	67	WQ Surr	7	lize	÷	1.1		29	-	140			¥	0.000	CR	telle
Sediment Control /	4	67	WQ Surr												H		
CR-1 /	0	84	WQ Surr		7.7		19.1		29		7.6			¥	0.050	R	play
CR-1 /	-	84	WQ Surr	F	S.G	5	5.8		29		7.7					8	9/25
CR-1/	3	84	WQ`Surr	3	0.0	б	15.1	d	29	M	7. 2.					p	9/24
CR-1 /	e	84	WQ Surr	7	3.2	2	llo.0		29		8:t			Ł	10.0	Z	421
CR-1 /	4	84	WQ Surr														
	$\tilde{\Theta}$	NP CA	+616-							1	1		1	1]	

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT			PBO IECT			100	0100					ľ					
AMEC Geor	matrix		Ŵ	arch P	oint	5		Dendi	raster ex	centrí	cus			Gamble	rion : / Bath 7	žă	отосоі. SEP (1995)
JOB NUMBER			PROJECT MANA	GER		TE	ST START DAT	μ			TIME		TEST END DA	TE		1	Æ
1437-001-	-860		-	M. Pin;	za		. 4	24Sep	08								
 Day 3 observations needed only 	r If developmen	it endpoint not met	2 yeb ya			WA.	TER QU	ALITY	DATA	1							
CO	TEST			б) (mg/L) >4.8	Te.	mp(°C) 15±1	0, ⁽¹	af (ppt) 28 ± 1		pH 7.8±0.5	An	nmania NA	ю́	uiride NA	H	ja
CLIENT/ NEWFIELDS ID	DAY	Random #	REP		D.O.		TEMP.	AS -	TINITY		Hd	AM	MONIA	S	LFIDE	(DBT	itaa
				meter	шâуг	meter	ő	meter	ppt	meter	unit	Techn.	mg/L (total)	Techa.	ug/L (Total)		
SBREF80 /	•	94	WQ Surr		50		15.9		99		7.8				101.0		
SBREF80 /	~	94	WQ Surr	3	4.2	J	16.2		29	/	7.7	Ξ.				3	32S
SBREF80 /	7	94	WQ Surr	3	9.8	3	ાન. ધ	2	28	3	4 1					μ	9/26
SBREF80 /	e	94	WQ Surr	÷	8.4	5	15.0	_	29		7.8				10.0	Z	9127
SBREF80 /	4	94	WQ Surr													5	
MP-1 /	0	45	WQ Surr		6.6		16.0		29		9. t				9058		
MP-1 /	-	45	WQ Surr	5	5.6	7	5.2		29		7.5	Bran				4	9/25
MP-1 /	2	45	WQ Surr	3	5.2	3	14.7 1	N	28	3	M Tť					F	9/24
MP-1 /	3	45	WQ Surr	4	5.7	-	0°. N]		be		5.1				top/p	3	tele
MP-1 /	4	45	WQ Surr														
MP-2 /	0	77	WQ Surr		99		15.9		59		5.8 7.8				2051		
MP-2/	-	77	WQ Surr	-t-	5.7	Ч	15.6		50		7.6					2	7/25
MP-2 /	2	77	WQ Surr	3	5,5	3	15,1	2	- 6 6	M	5.2					P	3/26
MP-2/	ę	77	WQ Surr	3	1.0	3	15.2	-	19		7.7			0	0000	3	4616
MP-2 /	4	77	WQ Surr		<u>.</u>												
O Sample a	erated	1 9/25	er er							1	1						

Page 2 of 6

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

1

atrix PROJECT Atrix PROJECT M	PROJECT M	PROJECT PROJECT MI	Σx	arch F	aint	щ sb	ECIES ST START DA	Denc	draster ex	centr	ic <i>us</i> Time	<u> -</u>	FORT C	ke / LocAT Samble E	ion / Bath 7		ютосог SEP (1995 ME
001-8	80	-11- 11111111111		M, Pin	za		TCD OIL	24Se	p08								
ž ľ	development TSST	t endpoint not met	by day 2	20	(from)	MA	IEK OU		Y DAIA			ľ					
CON	DITIONS			Ś	-4.6	2	emp (~~/ 15 ± 1	4.	oal (ppu 28 ± 1		ри 7,8±0.5	¥	NA	<i>.</i> ,	nfide NA	н	31
	DAY	Random #	REP		D.O.		TEMP,	ŝ	SALINITY		Ηq	AM	MONIA	Ins	LFIDE	231	LAO
1				meter	μĝ	meter	ပံ	meter	ppt	meter	unit	Techn.	mg/L (total)	Techn.	ug/L (Total)		
	0	95	WQ Surr		iet oit		hSI		29		7.9			9	5.022		
	-	95	WQ Surr	t	2.2	Ъ	14.7		29	1	7.7					X	9/25
	8	95	WQ Surr	N	8.2	ŝ	14.3	2	28	Ю	Ъ.Т					R	9/24
	e	95	WQ Surr	Ч	8.ų	Ъ	15.0	}	29	-	8.5				0.000	Z	9/27
	4	95	WQ Surr														
	0	48	WQ Surr		1.t		15.6		٩٩		hit				190.0		
	-	48	WQ Surr	Ц	8.a 7S	Ъ]S.	_	29	_	7.5					8	2246
	2	48	WQ Surr	60	8.2	3	N. 3	2	28	δ	34					P	9/24
	ო	48	WQ Surr	ų	8.1	μ	4.7		29	_	4.4			-	100.0	3	6127
	4	48	WQ Surr														
	0	34	WQ Surr		6.6		15.5		39		tit				3128		
	-	34	WQ Surr	τ	5.7	٦	IS.S		29	-	7.7					8	345
	2	34	WQ Surr	3	5.2	20	15.0	2	65	3	h.t					A	3/26
	ñ	34	WQ Surr	2	7.0	3	le S	-	29	1	4.4			0	300.	X	4010
	4	34	WQ Surr														

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT			PROJECT			SPI	ECIES						NEWFICI DS 1.2	00118	NOIL	a	UTOCOL
AMEC Geon	natrix		Σ	larch P	oint			Dend	fraster exi	centri	icus		Port	Sambl	e / Bath 7	<u> </u>	SEP (1995)
JOB NUMBER 1437-001-5	360		PROJECT MAN	AGER M. Pin:	5	Э́Г	ST START DAT	TE 24Sep	508		TIME		TEST END DAT	ш		<u>F</u>	ЯE
 Day 3 observations needed only # 	d development	endpoint not met	by day 2			WA'	TER QU	ALITY	Y DATA					L			
CON	TEST			Da	2 (mg/L) >4.8	Te	mp (°C) I5 ± 1	w.	Sal (ppt) 28 ± 1		PH 7.3±0.5	A	mmonia NA	45	Suifide NA	ŀ	-
CLIENT! NEWFIELDS ID	DAY	Random #	EP		0.0		EMP.	S	ALINITY		Н	Ā	AIMONIA	S.	ULFIDE	IDBT	ITAG
			!	meter	mg/L.	meter	ç	meter	ppt	meter	ųuų	Techn.	mg/L (total)	Techn.	ug/L (Total)		
MP-6/	0	92	WQ Surr		7.2		16.1		56		7.8				1901		
MP-6/	-	92	WQ Surr	t	6.0	Ţ	6.2	-	29		7.6					E	9/25
MP-6 /	2	92	WQ Surr	3	5.4	3	15.2	2	30	M	h-t					Þ	9 24
MP-6 /	3	92	WQ Surr	Ъ	6.2	Ч	ከ- ስነ		29	-	t.t				0.00	3	9/27
MP-6 /	4	92	WQ Surr														
MP-7 /	0	54	WQ Surr		9-9		15. đ		6-		3.8		~		0,058		
/ 7-4M	-	54	WQ Surr	Ч	S.H	Т	6.5	-	29	_	7.6					3	9/25
MP-7 /	2	54	WQ Surr	З	5.4	Э	15.0	ď	54	3	Sit					p	9/24
MP-7 /	e	54	WQ Surr	5	6.1	μ	15.6	1	29		7.0				8000	Z	4127
MP-7 /	4	54	WQ Surr														
MP-8 /	0	35	WQ Surr		6.9		15.3		29		7.7				0.09)		
MP-8 /	-	35	WQ Surr	4	5.9	1	15,2	-	29	-	2.7					3	22/2
MP-8/	8	35	WQ Surr	3	5.5	23	15.3	a	53	3	1,3					F	9/26
MP-8 /	ы	35	WQ Surr	÷	62	3-	1.0.7	~	39		みん				taro	A	FEIF
MP-8 /	4	35	WQ Surr														

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

OLIENT			PROJECT			SP	ECIES						NEWFIELDS U	AB / LOC	ATION	Ē	ROTOCOL
AMEC Geor	natrix		Σ	arch F	oint			Denc	draster ex	centr	icus		Port (Sambl	e / Bath 7		SEP (1995)
JOB NUMBER 1437-001-5	360		PROJECT MAN	AGER M Pin:	a	E	ST START DA	те 24 С.	80		TIME		TEST END DAT	μ		-	IME
- Oav 3 obtaanceboors name(ad Andri H	and the second se	and the standard				-VM	TED OIL		VDATA								
	TEST	Tall tools tillood and to	z fan far		1 January 1	YAA		Į	AIN I								
CON	DITIONS			5	>4.8	¥ 1	emp (°U) 15 ± 1		Sat (ppt) 28 ± 1		pH 7.8±0.5	`	ummonia NA	44	Suffide NA	н	Э
CLIENT/ NEWFIELDS ID	DAY	Random #	REP		D.O.		TEMP.	ŝ	ALINITY		Ħ	×	MMONIA	60	ULFIDE	JEC	TAQ
				meter	тgл	meter	ç	meter	ppt	meter	unit	Techn.	mg/L (total)	Techn.	ug/L [Total]	_	
MP-9 /	0	68	WQ Surr		0:E		15.8		29		8:£				hel:0		
/ 6-dW	-	68	WQ Surr	T	5.7	J	<u>S</u> 8		29	1	7.7					9	9/25
MP-9 /	2	68	WQ Surr	. 60	5.5	3	14.9	Ч	30	З	わせ					Р	9/26
/ 8-4M	3	89	WQ Surr	4	6.1	Ч	16.2	~	29		9:4				9100	8	4(27
MP-9 /	4	89	WQ Surr														
MP-10/	0	60	WQ Surr		59		t:51		50		3.8				5510		
MP-10/	-	60	WQ Surr	7	S.W	Ъ	15,7	~	29		7.6					3	9/25
MP-10 /	2	60	WQ Surr	5	5.2	3	14.8	æ	30	2	4.U					X	9/24
MP-10/	n	60	WQ Surr	ţ	U. I	-	le.3	_	be	1	のた				0.014	4	ttlb
MP-10 /	4	60	WQ Surr														
MP-11 /	0	12	WQ Surr		7.3		15.8		39		2.8				4800		
MP-11/	~	12	WQ Surr	T,	6.2	7	15.6		29	~	7.7					3	22/6
MP-11 /	8	12	WQ Surr	3	5,4	3	15.5	ď	21	3	h.t					X	9/26
MP-11 /	n	12	WQ Surr	÷	م ا	3	14.2		29	-	7.7				000	CS	4c/6
MP-11 /	4	12	WQ Surr														

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

			PROJECT			SP	ECIES					Z	EWFIELDS L	AB / LOCATI	NOI	PR	OTOCOL
AMEC Geom	natrix		Ŵ	arch P	oint			Denc	draster ex	centr	cus		Port (Samble	/ Bath 7	ă	SEP (1995)
ER			PROJECT MANA	GER		¥	ST START DA'	l H			TIME	H	EST END DAT	2		Ē	ų
1437-001-8	360		ų	M. Pin:	za			24Se	p08								
 Day 3 observations needed only H 	development	and point not met	by day 2			WA.	TER QU	ALIT	Y DATA								
CON	DITIONS			ba	2 (mg/L.) >4.8	٣	emp (°C) 15 ± 1		Sal (ppt) 28 ± 1		pH 7.8±0.5	Am	nonia MA	N. C	ufficie VA	н	•
LIENT! NEWFIELDS ID	DAY	Random #	REP		D.O.		TEMP.	ŝ	ALINITY		Hd	AMA	NINA	SUL	FIDE	DECI	ITAQ
				meter	mg/L	theter	°C	meter	ppt	meter	unit	Techn.	ng/L (total)	Techn.	ug/L (Total)		
MP-12 /	0	2	WQ Surr		8.9		15.7		29		7.8				Etoc		
MP-12 /	-	2	WQ Surr	t	7.0	Ц	IS.4	/	29	1	7.6					4	3125
MP-12 /	8	2	WQ Surr	3	6.5	3	15.0	d	ವಿಕಿ	3	した					p	9/26
MP-12 /	e	2	WQ Surr	ł	(e.7	Ч	1.01	1	29		4.6			0	9001	2	9/27
MP-12/	4	2	WQ Surr														
MP-13 /	0	19	WQ Surr		6.2		16.0		29		3.8			2	850%		
MP-13 /	-	19	WQ Surr		85.6	Ц	15.3		29	-	7.7					A	9/25
MP-13 /	7	19	WQ Surr	К	5.6	m	151	d	29	3	N.N.					F	9/26
MP-13 /	ы	19	WQ Surr	7	6.5	ح	[G.9]		29	1	4.4			0	tooi		-
MP-13 /	4	19	WQ Surr														
				1		1	1	1					1				

OMC UR 9/25

Page 6 of 6

Page ____of ____

Ammonia Analysis Total Ammonia (mg/L)

Client/Project:	Organism:	NewFields Test ID:	Test Duration (days):
March Point	Dendraster		

PRETEST / KITLAL / FINAL / OTHER (circle one) DAY of TEST: _____ OVERLYING (OV) / POREWATER (PW) (circle one)

Calibration Stand	dards Temperature	Sample temperature should be
Date:	Temperature:	within $\pm 1^{\circ}$ C of standards
10/1/08	19.5	temperature at time and date of
		analysis.

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pH	Sal (ppt)	Sulf. mg/L
Ø			000	20	10/1/08 +	У	NA	NA	NÆ
Sed 4			0.00	20		1	1)	1
SBREF 80			0.0233	20					
MP-1			0.797	20					
mp-2			0.0449	20					
mp-3			0.217	20					
mp-4			0.00	20					
MP-5			0,00	20					
mple			0,00	20					
mP-7			0.00	20					
MP-8			0.0687	20					
MP-9			0.00	20					
MP-10			0.00	20					
MP-11			0.00	20					
m.P-12			0.00	20					
mpug			60.0	20		6		\checkmark	V

\\Fspwa01\projects\BIOASSAY FILES\Lab Logs & Forms\Ammonia Analysis Record.doc Last printed 10/1/2008 12:21:00 PM

Page ____of ____

Ammonia Analysis Total Ammonia (mg/L)

Client/Project:	Organism:	NewFields Test ID:	Test Duration (days):
March Point	Dendraster		

PRETEST / INITIAL / FINAL / OTHER (circle one) DAY of TEST: _____ OVERLYING (OV) / POREWATER (PW) (circle onc)

Calibration Stands	ards Temperature	Sample temperature should be
Date:	Temperature:	within $\pm 1^{\circ}$ C of standards
10/1/08	19.5	temperature at time and date of analysis.

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sulf. mg/L
Ø		9/27/08 BH	0.00	20	10/1/08 ×	У	NA	NA	NA
Sed Ø)	0.00	20	(1	1	1
SBREF 80			0.00	20					
MP-1			0.178	20					
mp-z			0.00	20					
mp-3			0.0730	20					
mp-4			0.00	20					
MP-5			0.00	20					
mp-le			5.00	26					
MP-7			ల.ంర	20					
mp-8			0.00	20					
mp-9			0.00	20					
mP-10			0.00	20					
mp-11			0.00	26					
MP-12			0.00	20					
mP-13			0.00	20	V	6	t	1	J

CET	IS C	QC Ch	art		1.47m						R	eport Date:	04 Nov	Page 1 of 1 v-08 4:22 PM
Echin	oid Er	nbryo-Lar	val Si	urvival and	Developm	ent Test						•		NewFields
Test 1 Proto	lype: col:	Developm PSEP (19	ent-S 95)	urvival	Orga End	anism: De point: Pro	ndras portic	ter excentricus on Normal	(Sand D	Dollar)	Material: Source:	Copper sulfate Reference To>	kicant-REF	
	ECSO	18 16 14 12 10 8 6 4 90-des 55	27 Con-Mi-	23 May-07-	31 Jul-02-	-20-InC TE	19 Sep-07-	25 Oct-07-	30 Oct-07-	22 Ju-08-	25 Jui-08-	31 Jui-08-	24 Sep-08J	
		Mea Sig	an: ma:	9.47709	Count: CV:	12 32.57%		-1s Warning +1s Warning	Limit: Limit:	7.1485 12.564	1 -2s / 2 +2s /	Action Limit: Action Limit:	5.39208 16.6569	
Qualit	y Cont	trol Data												
Point	Year	Month	Day	Data	Delta	Sigma	War	ning Action	Test L	.ink	Analysis			
1 2 3	2006 2007	Sep May	25 27 23	6.66180 7.56297 13.89896	-2.81529 -1.91412 4.42187	-1.25008 -0.80012 1.35806	(-) (+)		15-912 12-050 01-429	24 -4449 08-6315 96-4787	12-6731-0 07-3739-8 05-7613-5	558 798 311		
4 5 6		Sep	31 31 19	12.85222 12.33174 12.73121	3.37513 2.85465 3.25412	1.08039 0.93378 1.04684	(+) (+)		13-915 02-735 09-851	51-2777 52-2736 13-0350	12-8049-9 12-1169-5 13-2299-3	522 876 806		
7 8 9	2008	Oct	25 30 22	10.57427 9.52576 6.93340	1.09718 0.04867 -2 54369	0.38850 0.01817	4		12-756 12-164	6-1317 47-2406	15-3106-2 05-3030-1	890 7 3 1		
10 11	2000	Jui	25 31	6.99766 10.75282	-2.47942 1.27573	-1.07564 0.44789	(-) (-)		20-176 10-777 21-004	79-9263 16-3420	09-2506-4 08-3277-4	021 650 745		
12 13		Sep	2 24	7.06949 12.50536	-2.40760 3.02827	-1.03942 0.98336	(-)		06-541 09-458	17-1326 34-1077	03-5415-0 <u>10-5577</u> -6	783 876		

Analyst:____

CETIS Analysis Detail

Endpoint

Echinoid Embryo-Larval Survival and Development Test

Analysis Type

Linear Regression:Page 1 of 2Report Date:04 Nov-08 4:21 PM

 Analysis:
 10-5577-6876

 NewFields

 Sample Link
 Control Link
 Date Analyzed
 Version

 09-4584-1077
 09-4584-1077
 04 Nov-08 4:21 PM
 CETISv1.1.2

Proportion	Normal	Lin/	ear Regre	ession		09-4584-	1077 09-4	4584-10	177 04 No	ov-08 4:21 F	PM CETISV1	1.1.2
Linear Reg	gression Options	3										
Model Fur	nction		Th	reshol	d Option	Threshold	Thresho	ld Opt	Reweigt	nted Po	oled Groups	Het Corr
Log-Norma	al [NED=A+B*log()	X)]	Cor	ntrol Th	nreshold	0.0356564	Yes		Yes	No		No
Regressio	on Summary		et.	4								
Iters	Log Likelihood	Mu	Sigm	.a	G	Chi-Sq	Critical	I P	-Value	Decision((0.05)	
7	-520.87280	-0.39152	0.141	11	0.00835	19.71630	22.362(03 0	.10251	Non-Signi	ficant Heteroge	eneîty
Point Estin	mates											
% Effect	Conc-µg/L	95% LCL	95	5% UCI	L							
10	8.246143	7.802433	8.6	349971	1							
15	8.929775	8.502647	9.3	320782	2							
20	9.513303	9.100245	9.8	394595	ذ							
25	10.04421	9.642841	10	.41868	\$							
40	11.51715	11.13445	11	.89072	2							
50	12.50536	12.11667	12	.90023	<u>،</u>							
Regressio	n Parameters											
Parameter	Estimate	Std E	rror	95% L		95% UCL	t Statisti	ic P	-Value	Decision(0.05)	
Threshold	0.0319507	0.0040	092 542	0.023	92932	0.03997209	7.807	0.	.00000	Significant	1	
Slope	7.086457	0.330	3912	6.438/	89	7.734024	21.449	0	.00000	Significant	1	
Intercept	-2.774524	0.3641	1613	-3.488	328	-2.060768	-7.619	0.	.00000	Significant	i	
Residual A	Analysis											
Attribute	Method	11		S	tatistic	Critical	P-Val	ue	Decisio	n(0.05)		
Variances	Bartlett			18	8.79718	9.48773	0.000/	86	Unequa	Variances		
Distribution	Shapiro	-Wilk W		0.	9486683		0.503	73	Normal	Distribution	ì	
Data Sumr	mary				Calcu	lated Variate(A/B)					
Conc-µg/L	Control Type	Count	Mean	М	linimum	Maximum	SE	SD	Α	в		
0	Dilution Water	3	0.96444	Q.	.95122	0.98020	0.00299	0.014	66 595	617	r —	
2.5		3	0.97531	0.0	.96729	0.98190	0.00151	0.007	41 634	650	I	
5		3	0.96023	0.1	.94907	0.97753	0.00310	0.015	19 653	679	J	
10		3	0.72847	0.4	.67429	0.81159	0.01492	0.0730	09 435	595	,	
20		3	0.07332	0.1	.04569	0.08917	0.00490	0.0240	02 39	542	:	
40		3	0.00000	0 ./	00000	0.00000	0.00000	0.000	00 0	570	ļ.	

Analyst:

Approval:_

CETIS Analysis Detail

 Comparisons:
 Page 1 of 1

 Report Date:
 04 Nov-08 4:21 PM

 Analysis:
 10-6638-2953

id Embryo-Larval Survival and Development Test

Echinola Em	bryo-Larvai Su	rvival and	Developmen	tTest						NewFields
Endpoint		Апа	lysis Type		Sample Li	nk Contro	Link D	ate Analyzed	Versior	1
Proportion No	imal	Corr	nparison		09-4584-10	09-458	4-1077 0	4 Nov-08 4:21	PM CETISV	(1.1.2
Method		Alt	H Data T	ransform	Zeta	NOFI		Toxic Lloits	Сру	DMSD
Dunnett's Mul	tiple Compariso	n C>	T Angula	ar (Corrected))	15	10 ;	20	7.07107	4.89%
			1.747		H					
Group Comp	arisons		9,000							
Control	vs Conc-µg	<u> </u> /L	Statistic .	Critical	P-Value	MSD	Dee	cision(0.05)		
Dilution vvater	í ∠.5 5		-0.7086	2.46559	0.9485	0.10488	Nor	n-Significant Et	fect	
	5 10		0.20455 9.43347	2.400000	0.7047	0.10488	Nor	n-Significant ⊟⊓	fect	
	20		26 1531	2.40559	0.0000	0.10466	aig. Sia	nificant Effect		
						0.10100				
ANOVA Table	3									
Source	Sum of	Squares	Mean Squar	re DF	F Statistic	P-Value	Dec	cision(0.05)		
Between	2.83637	7	0.7090942	4	261.27	0.00000	Sig	nificant Effect		
Total	0.02714	03	0.0027140	10	_					
Това	2.00331	692	U.7 110002	14						
ANOVA Assu	mptions									
Attribute	Test			Statistic	Critical	P-Value	Der	cision(0.01)		
Variances	Bartlett		1	2.73241	13.27670	0.60356	Equ	ual Variances		
Distribution	Shapiro	-Wilk W	(0.95546		0.61417	Nor	rmal Distribution	л	
Data Summar	rv			Origi	nal Data			Transfe	armed Data	
Conc-ug/L	Control Type	ہ۔ Count	Mean	Minimum	Maximum	<u>80</u>	Mean	Minimum	Maximum	en
0	Dilution Water	3	0.96444	0.95122	0.98020	0.01466	1.38402	1.34810	1 42961	0.04161
2.5	_	3	0.97531	0.96729	0.98190	0.00741	1.41416	1.38894	1.43585	0.02366
5		3	0.96023	0.94907	0.97753	0.01519	1.37278	1.34317	1.42032	0.04159
10		3	0.72847	0.67429	0.81159	0.07309	1.02529	0.96342	1.12180	0.08469
20		3	0.07332	0.04569	0.08917	0.02402	0.27156	0.21540	0.30324	0.04877
Data Detail										
Conc-ug/L	Control Type	Rep 1	Rep 2	Rep 3	Ren 4 Re	en 5 Rei	n 6 Re	m 7 Rep 8	Ren 9	Rep 10
0	Dilution Water	0.96190	0.95122	0.98020	1000	he we		h) iche	TOP 0	
2.5		0.98190	0.97674	0.96729						
5		0.97753	0.94907	0.95408						
10		0.69953	0.81159	0.67429						
20		0.04569	0.08917	0.08511						

LARVAL DEVELOPMENT TEST COPPER REF TOX OBSERVATION SHEET

						species Dendraster e	xcentricus		
CLIENT	D	PROJE	т ()	JOB NUM	BER	PROJECT MANAGER	NEWFIELD	S LAB / LOCATION	PROTOCOL
Geoengineers		Port of	Port of Anacortes - Log Haul Out		×	B. Hester	Port G	amble / Incubator	PSEP (1995)
HMEC-GEDINF	HRIX	INHIA	CH PT. LA	RVAL	OBSERV	TION DATA			
CLIENT/ NEWFIELDS ID	Value	INC.	VIAL NUMBER	REP	NUMBER	NUMBER ABNORMAL	DATE	TECHNICIAN	COMMENTS
				1	202	8	10/22/08	Sw	
Ref.Tox Copper	0	µg/L		2	195	10	1	1	
				3	198	4			
				1	217	4			
Ref.Tox Copper	2.5	µg/L		2	210	5			
				3	207	7			
				1	261	6			
Ref.Tox Copper	5	µg/L		2	205	11			
				3	187	9			
				1	149	64			
Ref.Tox Copper	10	µg/L		2	168	39			
				3	118	57			
				1	14	143			
Ref.Tox Copper	20	µg/L		2	16	172			
				3	9	188			
				1	Ø	188			
Ref.Tox Copper	40	µg/L		2	ø	(77			
				3	Ø	205	\checkmark	¥	
		E			(
				1		245	10/11/08	A.	
STOCKING DEN	SITY			2		266	<u> </u>	ľ.	
				3		236	d		

I Some batch of organisms used for both projects, one set of Reftox tests SW

BIOLOGICAL TESTING OF SEDIMENT FOR MARCH POINT (WHITMARSH) LANDFILL ANACORTES, WASHINGTON

APPENDIX C

STATISTICAL COMPARISONS

	Probability Probability		Test		
Freatment Com	parison Normal Homogeneous	Test Type P	robability S	Significant?	One-Tail Comparison
CR-1 Cont	trol 0.003 0.657	Mann-Whitney	0.098		Treatment >= Comparisor
MP-1 CR-	1 0.074 0.399	T-test Equal Var	0.251		Treatment >= Comparisor
MP-11 CR-	1 0.322 0.669	T-test Equal Var	0.469		Treatment >= Comparison
MP-12 CR-	1 0.735 0.69	T-test Equal Var	0.144		Treatment >= Comparison
MP-13 CR-	1 0.798 0.879	T-test Equal Var	0.085		Treatment >= Comparison
MP-2 CR-	1 0.052 0.267	T-test Equal Var	0.66		Treatment >= Comparison
MP-7 CR-	1 0.683 0.646	T-test Equal Var	0.099		Treatment >= Comparison
MP-9 CR-	1 0.868 0.742	T-test Equal Var	0.175		Treatment >= Comparison
MP-10 CR-	1 0.002 0.951	Mann-Whitney	0.417		Treatment >= Comparison
MP-3 CR-	1 0.015 0.325	Mann-Whitney	0.085		Treatment >= Comparison
MP-6 CR-	1 0.03 0.84	Mann-Whitney	0.731		Treatment >= Comparison
MP-8 CR-1	0.008 0.107	Mann-Whitney	0.848		Treatment >= Comparison
MP-4 CR-1	0.005 0.083	Rankit Equal Var	0.004	Yes	Treatment < Comparison
MP-5 CR-1	0.004 0.067	Rankit Equal Var	0.001	Yes	Treatment < Comparison
	0 1 90	T toot Eaual Vor	0 205		Trootmont v = Comparing
			C22.0		
MP-1 SBREF	-80 0.856 0.085	I-test Unequal Var	0.386		I reatment >= Comparisor
MP-10 SBREF	80 0.258 0.43	T-test Equal Var	0.545		Treatment >= Comparisor
MP-11 SBREF	80 0.622 0.728	T-test Equal Var	0.544		Treatment >= Comparisor
MP-12 SBREF	-80 0.614 0.198	T-test Equal Var	0.255		Treatment >= Comparisor
MP-13 SBREF	-80 0.607 0.313	T-test Equal Var	0.168		Treatment >= Comparison
MP-2 SBREF	80 0.835 0.053	T-test Unequal Var	0.699		Treatment >= Comparison
MP-3 SBREF	-80 0.639 0.072	T-test Unequal Var	0.213		Treatment >= Comparison
MP-4 SBREF-	80 0.281 0.017	T-test Unequal Var	0.142		Treatment >= Comparisor
MP-5 SBREF-	80 0.157 0.014	T-test Unequal Var	0.115		Treatment >= Comparison
MP-6 SBREF	-80 0.482 0.309	T-test Equal Var	0.681		Treatment >= Comparison
MP-7 SBRE		T-test Equal Var	0.193		Treatment >= Comparison
MP-8 SBREF	au u.54 u.zuj	T-test Unequal Var	0.604		Treatment >= Comparison
MP-9 SBREF	-80 0.397 0.021 -		0000		Treatment >= Comparisor

15, 2008				Maximum	1.5708	1.5708				
October				Minimum	1.1731	0.8861				
56 Wednesday,	30			Std Err	0.0697	0.1275 0 1453				
10:	tment=SBREF-			Upper CL Std Dev	0.448	0.8193 0.4402	ч ч ч ч		Pr > t	0.4493 0.4557
ison result sult	rvival Trea			Std Dev	0.1559	0.2851 0.2298	0		t Value	0.80 0.80
cal Compar: a 2-tailed 1-tail Res	centage Su:	cedure	Ø	Lower CL Std Dev	0.0934	0.1708	7 7 7 7		DF	8 6.2
oint Statisti lts, This is mary Page for	Endpoint=Per	The TTEST Pro	Statistic	Upper CL Mean	1.4918	1.5366 0 4507		T-Tests	Variances	Equal Unequal
March Po T-test Resu See Sum	isca abdita			Mean	1.2982	1.1826 0 1156			thod	oled tterthwaite
	0-day Ampel			Lower CL Mean	1.1046	0.8286 -0 219			iable Me	ult Po ult Sa
	Test=1			N	ы	വ			Var	resi
				group	Control	Reference Diff (1-2)				
				Variable	result	result result				

Equality of Variances

Pr > F	0.2691
F Value	3.34
Den DF	4
Num DF	4
Method	Folded F
Variable	result

-- Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=CR-1 --

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable result Classified by Variable group

Mean	Score	ffffffff	6.90	4.10
Std Dev	Under HO	<i>`ffffffffffffffffffffff</i>	4.654747	4.654747
Expected	Under HO	ffffffffffffffffff	27.50	27.50
Sum of	Scores	<i>`fffffffffffffffffff</i>	34.50	20.50
	N	fffffffffff	വ	Ŋ
	dnoid	fffffffffffffff	Control	Reference

Average scores were used for ties.

Wilcoxon Two-Sample Test

34.5000	n 1.3964 0.0813 0.1626	0.0980 0.1961
Statistic	Normal Approximatio Z One-Sided Pr > Z Two-Sided Pr > Z	t Approximation One-Sided Pr > Z Two-Sided Pr > Z

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

2.2615	1	0.1326
Chi-Square	DF	Pr > Chi-Square

			Maximum	1.5708	1.249				
			Minimum	1.0472	0.9912				
			Std Err	0.0922	0.049	0.1044			
eatment=MP-1			Upper CL Std Dev	0.5922	0.3151	0.3162		Pr > t	0.5011 0.5071
Survival Tre			Std Dev	0.2061	0.1096	0.1651		t Value	0.70 0.70
ercentage S	cedure	Ũ	Lower CL Std Dev	0.1235	0.0657	0.1115		DF	6.1
a Endpoint=P	he TTEST Pro	Statistic	Upper CL Mean	1.4702	1.2769	0.3143	T-Tests	Variances	Equal Unequal
elisca abdit	E		Mean	1.2143	1.1407	0.0736		thod	oled tterthwaite
=10-day Ampe			Lower CL Mean	0.9584	1.0046	-0.167		iable Met	ult Poo ult Sat
Test:			N	ъ	ъ			Var	Resi Resi
			dnozb	CR-1	Test	Diff (1-2)			
			Variable	Result	Result	Result			

m

10:56 Wednesday, October 15, 2008

March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result

Equality of Variances

Pr > F	0.2491
F Value	3.53
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

			Maximum	1.5708	1.5708			
			Minimum	1.0472	0.8355			
			Std Err	0.0922	0.1191 0.1506			
atment=MP-11			Upper CL Std Dev	0.5922	0.7654 0.4562		Pr > t	0.9386 0.9388
urvival Trea			Std Dev	0.2061	0.2663 0.2381		t Value	0.08 0.08
rcentage Su	cedure	το	Lower CL Std Dev	0.1235	0.1596 0.1608		DF	8 7.53
∣ Endpoint=Pe	he TTEST Pro	Statistic	Upper CL Mean	1.4702	1.533 0.3593	T-Tests	Variances	Equal Unequal
lisca abdita	H		Mean	1.2143	1.2023 0.012		chod	oled cterthwaite
0-day Ampel			Lower CL Mean	0.9584	0.8716 -0.335		able Met	lt Poo lt Sat
Test=1			N	ъ	Ъ		Vari	Resu Resu
			droup	CR-1	Test Diff (1-2)			
			Variable	Result	Result Result			
	Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-11	Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-11 The TTEST Procedure		Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-11	Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-11The TTEST ProcedureThe TTEST ProcedureStatisticsVariablegroupNLower CL MeanUpper CL MeanLower CL Std DevStd Dev Std DevUpper CL Std DevStd Err Std DevMinimuResultCR-150.95841.21431.47020.12350.20610.59220.09221.04721.5708	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-11The TTEST ProcedureThe TTEST ProcedureThe TTEST ProcedureStatisticsVariablegroupNLower CLUpper CLLower CLNMinimumResultCR-150.95841.21431.47020.12350.20610.59220.09221.64721.5708ResultTest0.01230.16080.23810.15560.26630.15060.15060.15061.5708ResultTest0.01230.16080.23810.15060.23630.15060.15060.15061.5708ResultTest1.47221.57080.15060.23810.1506 </td <td>Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-11The TTEST ProcedureThe TTEST ProcedureThe TTEST ProcedureThe TTEST ProcedureStatisticsStatisticsVariablegroupNLower CLUpper CLLower CLNomerNariableNMeanWeanVariableStd DevStd DevStd BrMinimuResultCB-150.87161.21431.47020.11350.26630.09221.04721.5708ResultTest1.20331.5330.15960.26630.26630.09221.04721.5708ResultTest0.17640.11910.83550.167630.167620.11910.83551.5708ResultTest0.16080.23610.26630.26630.15060.167620.119120.83551.5708ResultTestTTTTTTVariableMethodVariancesDtValNNNN</td>	Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-11The TTEST ProcedureThe TTEST ProcedureThe TTEST ProcedureThe TTEST ProcedureStatisticsStatisticsVariablegroupNLower CLUpper CLLower CLNomerNariableNMeanWeanVariableStd DevStd DevStd BrMinimuResultCB-150.87161.21431.47020.11350.26630.09221.04721.5708ResultTest1.20331.5330.15960.26630.26630.09221.04721.5708ResultTest0.17640.11910.83550.167630.167620.11910.83551.5708ResultTest0.16080.23610.26630.26630.15060.167620.119120.83551.5708ResultTestTTTTTTVariableMethodVariancesDtValNNNN

4

Equality of Variances

Pr > F	0.6314
F Value	1.67
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

			Maximum	1.5708	1.249				
			Minimum	1.0472	0.8355				
			Std Err	0.0922	0.0703	0.1159			
atment=MP-12			Upper CL Std Dev	0.5922	0.4517	0.3511		Pr > t	0.2882 0.2904
urvival Tre			Std Dev	0.2061	0.1572	0.1833		t Value	1.14 1.14
rcentage Sı	cedure	70	Lower CL Std Dev	0.1235	0.0942	0.1238		DF	8 7.48
Endpoint=Pe	he TTEST Proc	Statistics	Upper CL I Mean	1.4702	1.2776	0.3992	T-Tests	Variances	Equal Unequal
lisca abdita	E		Mean	1.2143	1.0824	0.1319		thod	oled tterthwaite
-day Ampel			ower CL Mean	0.9584	0.8872	-0.135		ble Met	t Sat
Test=10			ц В	Ð	D			Varia	Resul Resul
			dnozb	CR-1	Test	Diff (1-2)			
			Variable	Result	Result	Result			

Equality of Variances

March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result

പ
9									
5, 2008				Maximum	1.5708	1.249			
October 1				Minimum	1.0472	0.7353			
6 Wednesday,				Std Err I	0.0922	0.0844 0.125			
10:5	atment=MP-13			Upper CL Std Dev	0.5922	0.5424 0.3786		Pr > [t]	0.1703 0.1706
.son result sult	urvival Trea			Std Dev	0.2061	0.1887 0.1976		t Value	1.51 1.51
cal Compari a 2-tailed 1-tail Res	rcentage Su	cedure	Ũ	Lower CL Std Dev	0.1235	0.1131 0.1335		DF	8 7.94
int Statisti ts, This is a mary Page for	Endpoint=Pe:	he TTEST Pro	Statistic	Upper CL Mean	1.4702	1.2603 0.4765	T-Tests	Variances	Equal Unequal
March Pc T-test Resul See Summ	lisca abdita	F		Mean	1.2143	1.026 0.1883		thod	oled tterthwaite
-	0-day Ampe			Lower CL Mean	0.9584	0.7916 -0.1		able Me	lt Sa
	Test=1			N	Ŋ	Ð		Vari	Resu Resu
				dnozb	CR-1	Test Diff (1-2)			
				Variable	Result	Result Result			

Pr > F 0.8688

F Value

Den DF

Num DF

Variable Result

Equality of Variances

1.19

4

4

Folded F Method

5									
-5, 2008				Maximum	1.5708	1.3453			
October]				Minimum	1.0472	1.1731			
6 Wednesday,				Std Err	0.0922	0.0386 0.0999			
10:5	eatment=MP-2			Upper CL Std Dev	0.5922	0.2477 0.3026		Pr > t	0.6790 0.6844
.son result wlt	urvival Tre			Std Dev	0.2061	0.0862 0.158		t Value	-0.43 -0.43
cal Compari a 2-tailed 1-tail Res	ercentage S	edure	10	ower CL Std Dev	0.1235	0.0517 0.1067		DF	5.36
int Statistic ts, This is a ary Page for	a Endpoint=P€	he TTEST Proc	Statistics	Upper CL I Mean	1.4702	1.3642 0.1875	T-Tests	Variances	Equal Unequal
March Po T-test Resul See Summ	elisca abdit	E		Mean	1.2143	1.2572 -0.043		thod	oled tterthwaite
	.0-day Amp			JOWER CL Mean	0.9584	1.1501 -0.273		able Me	t Sai
	Test=1			I N	ъ	D		Varia	Resul Resul
				dnozb	CR-1	Test Diff (1-2)			
				Variable	Result	Result Result			

Pr > F	0.1199
F Value	5.71
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

			Maximum	1.5708 1.249	1	
			Minimum	1.0472 0.7854	•	
			Std Err	0.0922	0.1189	
atment=MP-7			Upper CL Std Dev	0.5922 0.4827	0.3602	
Survival Tre			Std Dev	0.2061 0.168	0.188	
Percentage	ocedure	S	Lower CL Std Dev	0.1235	0.127	ß
ta Endpoint=	The TTEST Pr	Statisti	Upper CL Mean	1.4702 1.2558	0.4413	T-Test
elisca abdi			Mean	1.2143	0.1671	
=10-day Amp			Lower CL Mean	0.9584 0.8386	-0.107	
Test			N	ى ى)	
			droup	CR-1 Test	Diff (1-2)	
			Variable	Result Result	Result	

∞

10:56 Wednesday, October 15, 2008

March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result

Equality of Variances

0.1976 0.1991

1.411.41

8 7.69

Equal Unequal

Pooled Satterthwaite

Result Result

Pr > |t|

t Value

DF

Variances

Method

Variable

Ът > F	0.7017
F Value	1.51
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

atistical Comparison	iis is a 2-tailed result	ige for 1-tail Result
Sti	Ê	Paç
March Point	T-test Results,	See Summary

-- Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-9 -

The TTEST Procedure

Statistics

					טרמרדטרי	C D					
Variable	group	N	Lower CL Mean	Mean	Upper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err	Minimum	Maximum
Result	CR-1	Ŋ	0.9584	1.2143	1.4702	0.1235	0.2061	0.5922	0.0922	1.0472	1.5708
Result Pesult	Test Diff (1_2)	ഹ	0.7539 -0 102	1.0691 0 1452	1.3843 0 4824	0.1521	0.2539	0.7295	0.1135	0.6331	1.249
) + - 			
					T-Test	Ŋ					
		Var	iable Me	thod	Variance	DF	t Value	Pr > t			

0.3499 0.3511

0.99 0.99

8 7.68

Equal Unequal

Pooled Satterthwaite

Result Result

Pr > F 0.6960

F Value

Den DF

Num DF

Variable Result

Equality of Variances

1.52

4

4

Folded F Method

-- Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-10 --

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

Mean	Score	ffffffffff	5.80	5.20
Std Dev	Under HO	ffffffffffffffffffffff	4.639804	4.639804
Expected	Under HO	ffffffffffffffffff	27.50	27.50
Sum of	Scores	fffffffffffffff	29.0	26.0
	N	fffffffffff.	പ	5
	dnoıb	ffffffff	CR-1	Test

Average scores were used for ties.

Wilcoxon Two-Sample Test

roximation	29.0000
ed Pr > Z	
d Pr > Z imation	0.8
d Pr > Z	0.41
d Pr > Z	0.834

Z includes a continuity correction of 0.5.

0.1045	1	0.7465
Chi-Square	DF	Pr > Chi-Square

-- Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-3 --

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

Mean	Score	fffffffff	7.0	4.0	
Std Dev	Under HO	fffffffffffffffffff	4.699291	4.699291	
Expected	Under HO	ffffffffffffffffff	27.50	27.50	
Sum of	Scores	ffffffffffffff	35.0	20.0	
	N	ffffffffff	D	D	
	droup	ffffffff	CR-1	Test	

Average scores were used for ties.

Wilcoxon Two-Sample Test

stic	35.0000
Approximation	1.4896
ded Pr > Z	0.0682
ded Pr > Z	0.1363
uximation	
led Pr > Z	0.0853
led Pr > Z	0.1705

Z includes a continuity correction of 0.5.

2.5472	1	0.1105
Chi-Square	DF	Pr > Chi-Square

-- Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-6 --

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

Mean	Score	ffffffffff	4.80	6.20	
Std Dev	Under HO	ffffffffffffffffffffff	4.684490	4.684490	
Expected	Under H0	ffffffffffffffffff	27.50	27.50	
Sum of	Scores	ffffffffffffff	24.0	31.0	
	N	fffffffffff.	ഹ	Ð	
	dnoıb	ffffffff	CR-1	Test	

Average scores were used for ties.

Wilcoxon Two-Sample Test

ic	24.0000
Approximation	-0.6404
id Pr < Z	0.2610
d Pr > Z	0.5219
imation	
d Pr < Z	0.2689
d Pr > Z	0.5379

Z includes a continuity correction of 0.5.

0.5582	Ч	0.4550
Chi-Square	DF	Pr > Chi-Square

-- Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-8 --

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

Mean	Score	ffffffffff	4.40	6.60	
Std Dev	Under HO	fffffffffffffffffffff	4.579544	4.579544	
Expected	Under H0	fffffffffffffffff	27.50	27.50	
Sum of	Scores	ffffffffffffff	22.0	33.0	
	N	ffffffffff	പ	5	
	group	ffffffff	CR-1	Test	

Average scores were used for ties.

Wilcoxon Two-Sample Test

-
nal Approximatio
-Sided Pr < Z
Sided Pr > Z
proximation
Sided Pr < Z
-Sided Pr > Z

Z includes a continuity correction of 0.5.

1.4424	1	0.2298
Chi-Square	DF	Pr > Chi-Square

14										
, 2008				Maximum	1.5466	-0.258				
15				4						
October				Minimum	-0.258	-1.274				
dnesday ,				Err	2971	2488	3876			
6 We				Std	0	00				
10:1	atment=MP-4			Upper CL Std Dev	1.9091	1.5988	1.1739		Pr > t	0.0090 0.0094
lson cailed resul sult	Survival Tre			Std Dev	0.6644	0.5564	0.6128		t Value	3.43 3.43
cal Compari is is a 2-t 1-tail Res	ercentage S	cedure	Ø	Lower CL Std Dev	0.3981	0.3334	0.4139		DF	8 7.76
int Statisti Rankits, Th ary Page for	a Endpoint=P	he TTEST Pro	Statistic	Upper CL Mean	1.489	0.0268	2.2218	T-Tests	Variances	Equal Unequal
March Po t Results on See Summ	elisca abdit	H		Mean	0.6641	-0.664	1.3281		thod	oled tterthwaite
T-tes	0-day Amp			ower CL Mean	-0.161	-1.355	0.4344		ble Me	t Sa
	Test=1			Г И	ъ	Ŋ			Varia	ranki ranki
				dno.	CR-1	Test	Diff (1-2)			
				Variable	rankit	rankit	rankit			
	1.1									

Pr > F	0.7394
F Value	1.43
Den DF	4
Num DF	4
Method	Folded F
Variable	rankit

			Maximum	1.5466	73E-18				
			Minimum	73E-18	-0.895				
			Std Err	0.2592	0.1789	0.3149			
eatment=MP-5			Upper CL Std Dev	1.6655	1.1495	0.954		Pr > t	0.0019 0.0026
survival Tre			Std Dev	0.5796	0.4	0.498		t Value	4.54 4.54
ercentage S	cedure	70	Lower CL Std Dev	0.3472	0.2397	0.3364		DF	8 7.11
a Endpoint=P(he TTEST Pro	Statistics	Upper CL Mean	1.4352	-0.219	2.1575	T-Tests	Variances	Equal Unequal
elisca abdit	н		Mean	0.7156	-0.716	1.4312		chod	oled cterthwaite
10-day Amp€			Lower CL Mean	-0.004	-1.212	0.7049		able Met	it Poo it Sat
Test=			N	ъ	D			Vari	rank rank
			group	CR-1	Test	Diff (1-2)			
			Variable	rankit	rankit	rankit			

10:56 Wednesday, October 15, 2008

March Point Statistical Comparison T-test Results on Rankits, This is a 2-tailed result See Summary Page for 1-tail Result

Pr > F	0.4903
F Value	2.10
Den DF	4
Num DF	4
Method	Folded F
Variable	rankit

			Maximum	1.5708	1.249				
			Minimum	0.8861	0.9912				
			Std Err	0.1275	0.049	0.1366			
eatment=MP-1			Upper CL Std Dev	0.8193	0.3151	0.4138		Pr > t	0.7669 0.7711
Survival Tre			Std Dev	0.2851	0.1096	0.216		t Value	0.31 0.31
ercentage S	cedure	Ø	Lower CL Std Dev	0.1708	0.0657	0.1459		DF	8 5.16
a Endpoint=P	he TTEST Pro	Statistic	Upper CL Mean	1.5366	1.2769	0.3569	T-Tests	Variances	Equal Unequal
elisca abdit	H		Mean	1.1826	1.1407	0.0419		chod	oled cterthwaite
10-day Amp€			Lower CL Mean	0.8286	1.0046	-0.273		able Met	lt Poo lt Sat
Test=			Z	വ	ъ			Varia	Resu
			droup	SBREF-80	Test	Diff (1-2)			
			Variable	Result	Result	Result			

10:56 Wednesday, October 15, 2008

March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result

Pr > F	0.0911
F Value	6.76
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

			Maximum	1.5708	1.5708				
			Minimum	0.8861	1.0472				
			Std Err	0.1275	0.0946	0.1587			
atment=MP-10			Upper CL Std Dev	0.8193	0.6075	0.4808		Pr > t	0.9102 0.9104
urvival Trea			Std Dev	0.2851	0.2114	0.251		t Value	-0.12 -0.12
rcentage Su	sedure	70	Lower CL Std Dev	0.1708	0.1267	0.1695		DF	8 7.38
Endpoint=Pe1	he TTEST Proc	Statistics	Upper CL I Mean	1.5366	1.4636	0.3476	T-Tests	Variances	Equal Unequal
lisca abdita	F		Mean	1.1826	1.2011	-0.018		chod	oled cterthwaite
-day Ampel			ower CL Mean	0.8286	0.9386	-0.385		ble Met	t Sat
Test=10			L N	ъ	ß			Varia	Resul Resul
			dnox6	SBREF-80	Test	Diff (1-2)			
			Variable	Result	Result	Result			

10:56 Wednesday, October 15, 2008 17

March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result

Pr > F	0.5767
F Value	1.82
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

18									
2008				laximum	1.5708	1.5708			
15,				2					
October				Minimum	0.8861	0.8355			
56 Wednesday,				Std Err	0.1275	0.1191 0.1745			
10:5	atment=MP-11			Upper CL Std Dev	0.8193	0.7654 0.5285		Pr > t	0.9129 0.9129
ison result sult	urvival Tre			Std Dev	0.2851	0.2663 0.2759		t Value	-0.11 -0.11
cal Compar: a 2-tailed 1-tail Res	rcentage Su	cedure	Ø	Lower CL Std Dev	0.1708	0.1596 0.1863		DF	8 7.96
oint Statisti Lts, This is nary Page for	a Endpoint=Pe	rhe TTEST Pro	Statistic	Upper CL Mean	1.5366	1.533 0.3827	а + С Е - Е	Variances	Equal Unequal
March Po T-test Resul See Summ	elisca abdite			Mean	1.1826	1.2023 -0.02		thod	ooled itterthwaite
	10-day Ampe			Lower CL Mean	0.8286	0.8716 -0.422		iable Me	ult Pc ult Sa
	Test=			Ν	Ы	D		Var	Resi Resi
				group	SBREF-80	Test Diff (1-2)			
				Variable	Result	Result Result			

Pr > F	0.8983
F Value	1.15
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

19										
, 2008				Maximum	1.5708	1.249				
к 12										
Octobe				Minimum	0.8861	0.8355				
iday ,										
ednes				d Err	.1275	.0703	.1456			
56 W				Sto	0	0	0			
10:	MP-12			CL	193	517	441		ц	108 161
	lent=]			pper Std	0.8	0.4	0		^ л	0.5
	reatn								щ	
ilt	ral T			l Dev	2851	1572	2302		/alue	0.69 0.69
ison resu sult	urviv			Sto	0.	0.	0.		с С	
ompar ailed il Re	age S	0		CL	708	942	555		DF	.23
al Co 2-ta 1-ta:	centa	edure		ower Std I	0.17	0.0	0.1			9
.stic is a for	:=Per	Proc	stics	Ч				ests	Ices	a l
Statj This Page	point	TEST	tatis	r CL Mean	5366	2776	4359	T-T€	ariar	qua l nequa
oint lts, mary	a End	The T	S	Uppe	ч.	ч.	.0		>	ЫD
ch Po Resu Sum	bdita			Ę	9	4	7			aite
Mar cest See	sca			Mea	1.182	1.082	0.100		ğ	ed erthw
Ц Т	pelis						0		Metho	Pool(Satte
	ay Am			er CL Mean	.8286	.8872	0.236		0	
	10-da			LOWE	0	0	-		iable	ult ult
	Test=			Z	പ	പ			Var	Res Res
					80		1-2)			
				roup	BREF-	est	iff (
				ġ	S	Ĥ	Q			
				able	lt	lt	lt			
				Vari	Resu	Resu	Resu			
	- i -									

Pr > F 0.2753

F Value

Den DF

Num DF

Variable

Equality of Variances

3.29

4

4

Folded F Method

Result

			Maximum	1.5708	1.249				
			Minimum	0.8861	0.7353				
			Std Err	0.1275	0.0844	0.1529			
tment=MP-13			Upper CL Std Dev	0.8193	0.5424	0.4632		Pr > t	0.3357 0.3401
urvival Trea			Std Dev	0.2851	0.1887	0.2418		t Value	1.02 1.02
rcentage Su	cedure	το	Lower CL Std Dev	0.1708	0.1131	0.1633		DF	8 6.94
Endpoint=Pe:	he TTEST Pro	Statistic	Upper CL Mean	1.5366	1.2603	0.5092	T-Tests	Variances	Equal Unequal
lisca abdita	E		Mean	1.1826	1.026	0.1566		thod	oled tterthwaite
10-day Ampe			Lower CL Mean	0.8286	0.7916	-0.196		riable Met	sult Poo sult Sat
Test=			N	ъ	ഹ			Var	Res Res
			dnoı	SBREF-80	Test	Diff (1-2)			
			Variable	Result	Result	Result			

Equality of Variances

Pr > F	0.4439
F Value	2.28
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

10:56 Wednesday, October 15, 2008 20

March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result

			Maximum	1.5708	1.3453				
			Minimum	0.8861	1.1731				
			Std Err	0.1275	0.0386	0.1332			
atment=MP-2			Upper CL Std Dev	0.8193	0.2477	0.4035		Pr > t	0.5910 0.6011
urvival Tre			Std Dev	0.2851	0.0862	0.2106		t Value	-0.56 -0.56
ercentage S	tedure		ower CL Std Dev	0.1708	0.0517	0.1423		DF	8 4.73
. Endpoint=P∈	e TTEST Proc	Statistics	pper CL I Mean	1.5366	1.3642	0.2326	T-Tests	Variances	Equal Unequal
lisca abdita	믑		U Mean	1.1826	1.2572	-0.075		hod	led terthwaite
.0-day Ampe			lower CL Mean	0.8286	1.1501	-0.382		able Met	t Poo t Sat
Test=1			I	ŋ	ъ			Varia	Resu Resu
			group	SBREF-80	Test	Diff (1-2)			
			Variable	Result	Result	Result			

10:56 Wednesday, October 15, 2008

March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result

Γu	98
Pr >	0.03
F Value	10.94
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

			Maximum	1.5708	1.249				
			Minimum	0.8861	0.9912				
			Std Err	0.1275	0.0477	0.1361			
eatment=MP-3			Upper CL Std Dev	0.8193	0.3062	0.4123		Pr > t	0.4133 0.4269
survival Tre			Std Dev	0.2851	0.1066	0.2152		t Value	0.86 0.86
ercentage S	cedure	ß	Lower CL Std Dev	0.1708	0.0638	0.1454		DF	5.1 8
a Endpoint=P	he TTEST Pro	Statistic	Upper CL Mean	1.5366	1.1975	0.4313	T-Tests	Variances	Equal Unequal
elisca abdit	F		Mean	1.1826	1.0652	0.1174		thod	oled tterthwaite
=10-day Amp			Lower CL Mean	0.8286	0.9329	-0.196		iable Me	ult Poo ult Sa
Test			N	ъ	Ð			Var	Res Res
			dnozb	SBREF-80	Test	Diff (1-2)			
			Variable	Result	Result	Result			

Equality of Variances

10:56 Wednesday, October 15, 2008 22

March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result

			Maximum	1.5708	1.0472				
			Minimum	0.8861	0.9912				
			Std Err	0.1275	0.0137	0.1282			
eatment=MP-4			Upper CL Std Dev	0.8193	0.0882	0.3884		Pr > t	0.2534 0.2845
Survival Tre			Std Dev	0.2851	0.0307	0.2028		t Value	1.23 1.23
ercentage S	cedure	Ø	Lower CL Std Dev	0.1708	0.0184	0.137		DF	8 4.09
a Endpoint=P	the TTEST Pro	Statistic	Upper CL Mean	1.5366	1.0629	0.4535	T-Tests	Variances	Equal Unequal
elisca abdit			Mean	1.1826	1.0248	0.1578		thod	oled tterthwaite
10-day Amp			Lower CL Mean	0.8286	0.9867	-0.138		able Mei	lt Poo lt Sai
Test=			Ν	വ	Ð			Vari	Resu Resu
			dnozb	SBREF-80	Test	Diff (1-2)			
			Variable	Result	Result	Result			

10:56 Wednesday, October 15, 2008

March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result

년 < 19	0.0008
F Value	86.27
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

			Maximum	1.5708	1.0472				
			Minimum	0.8861	0.9912				
			Std Err	0.1275	0.0112	0.128			
eatment=MP-5			Upper CL Std Dev	0.8193	0.072	0.3877		Pr > t	0.1967 0.2308
urvival Tre			Std Dev	0.2851	0.0251	0.2024		t Value	1.41 1.41
ercentage S	cedure	70	Lower CL Std Dev	0.1708	0.015	0.1367		DF	4.06
a Endpoint=Pe	le TTEST Proc	Statistics	Jpper CL I Mean	1.5366	1.0335	0.4754	T-Tests	Variances	Equal Unequal
elisca abdita	F		Mean	1.1826	1.0024	0.1802		chod	oled cterthwaite
=10-day Ampe			Lower CL Mean	0.8286	0.9712	-0.115		iable Met	ult Poo ult Sat
Test			И	IJ	Ð			Var	Res Res
			droup	SBREF-80	Test	Diff (1-2)			
			Variable	Result	Result	Result			

Equality of Variances

Pr > F	0.0004
F Value	129.41
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result

		Maximum	1.5708	1.5708				
		Minimum	0.8861	1.0472				
		Std Err	0.1275	0.0865	0.1541			
		Upper CL Std Dev	0.8193	0.5558	0.4667		Pr > t	0.6384 0.6402
		Std Dev	0.2851	0.1934	0.2436		t Value	-0.49 -0.49
cedure	70	Lower CL Std Dev	0.1708	0.1159	0.1646		DF	8 7.04
le TTEST Proc	Statistics	Jpper CL I Mean	1.5366	1.498	0.2801	T-Tests	Variances	Equal Unequal
Ŧ		l Mean	1.1826	1.2578	-0.075		thod	bled tterthwaite
		lower CL Mean	0.8286	1.0177	-0.431		uble Met	.t Sat
		И	ъ	ъ			Varia	Resu Resu
		dnozb	SBREF-80	Test	Diff (1-2)			
		Variable	Result	Result	Result			
	The TTEST Procedure	The TTEST Procedure Statistics	Variable group N Mean Mean Mean Std Dev Std	The TTEST Procedure The TTEST Procedure Statistics Upper CL Lower CL Variable group N Mean Upper CL Lower CL Std Dev 0.8861 1.5708 Result SBREF-80 5 0.8286 1.1826 0.1708 0.2851 0.8861 1.5708	The TTEST ProcedureThe TTEST ProcedureStatisticsLower CLLower CLLower CLVariablegroupNMeanUpper CLLower CLNUpper CLNatisticsStd DevStd DevStd DevStd BevStd BevStd Bev1.5708ResultSBREF-8050.82861.18261.53660.17080.28510.81930.12750.88611.5708ResultTest51.01771.25780.11590.19340.55580.08651.04721.5708	The TTEST ProcedureTrest ProcedureVariablegroupNLower CLStatisticsVariablegroupNMeanUpper CLIower CLNumer CLNatisticsNMeanWeanStd DevStd DevStd ErrMinimunResultSBREF-8050.82861.18261.53660.17080.28510.81930.12750.88611.5708ResultTest0.04171.25781.4980.11590.19340.55580.086611.5708ResultDiff (1-2)50.04310.016460.24360.19750.18750.18750.18750.18751.5708	The TTEST ProcedureThe TTEST ProcedureVariablegroupNVariablegroupNMeanUpper CLLower CLStatisticsUpper CLSecultStd DevStd DevStd DevStd DevStd DevStd DevStd DevStd Dev0.11731.25781.53660.11751.25781.01771.25781.18261.53660.11590.19340.28510.88611.61771.25781.61771.25781.61771.25781.61770.28010.11590.19340.15580.08651.61770.28010.16460.24360.16460.12750.16460.15781.5708Test0.16460.15410.15410.15580.16651.6770.15411.5708	The TEST ProcedureStatisticsStatisticsStatisticsStatisticsStatisticsStatisticsVariablegroupNLower CLNUpper CLLower CLNNMaximumResultSERF-8050.82861.18261.53660.17080.28510.81930.12750.88611.5708ResultTest1.01771.25781.53660.117080.24360.12750.88611.5708ResultTest1.01771.21780.28610.16460.25580.08651.04721.5708ResultDiff (1-2)50.82861.61770.28110.16460.24360.16470.16411.5708ResultDiff (1-2)50.82861.18260.16460.16460.12750.88611.5708ResultDiff (1-2)51.01771.22780.16460.12760.18711.5708ResultDiff (1-2)51.01771.21780.16460.12750.88611.5708ResultDiff (1-2)51.01771.21780.16460.12750.18711.5708TestTestTestTestVariableMethodVariancesDValueDI<

Equality of Variances

Pr > F	0.4708
F Value	2.17
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

10:56 Wednesday, October 15, 2008 25

March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result

			Maximum	1.5708	1.249				
			Minimum	0.8861	0.7854				
			Std Err	0.1275	0.0751	0.148			
eatment=MP-7			Upper CL Std Dev	0.8193	0.4827	0.4483		Pr > t	0.3870 0.3930
Survival Tre			Std Dev	0.2851	0.168	0.234		t Value	0.91 0.91
ercentage S	cedure	το	Lower CL Std Dev	0.1708	0.1006	0.158		DF	8 6.48
a Endpoint=P	he TTEST Pro	Statistic	Upper CL Mean	1.5366	1.2558	0.4767	T-Tests	Variances	Equal Unequal
elisca abdit	H		Mean	1.1826	1.0472	0.1354		thod	oled tterthwaite
10-day Ampe			Lower CL Mean	0.8286	0.8386	-0.206		able Met	lt Poo lt Sat
Test=			Z	D	ъ			Varia	Resu Resu
			droup	SBREF-80	Test	Diff (1-2)			
			Variable	Result	Result	Result			

10:56 Wednesday, October 15, 2008

March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result

Pr > F	0.3300
F Value	2.88
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

10:56 Wednesday, October 15, 2008 27	eatment=MP-8	
March Point Statistical Comparison T-test Results, This is a 2-tailed result See Summary Page for 1-tail Result	Test=10-day Ampelisca abdita Endpoint=Percentage Survival Tr	The TTEST Procedure

Statistics

Variable	group	N	Lower CL Mean	Mean	Upper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err	Minimum	Maximum
Result Result Result	SBREF-80 Test Diff (1-2)	വ വ	0.8286 1.167 -0.333	1.1826 1.2187 -0.036	1.5366 1.2703 0.2611	0.1708 0.0249 0.1376	0.2851 0.0416 0.2037	0.8193 0.1195 0.3903	0.1275 0.0186 0.1289	0.8861 1.1731	1.5708 1.249
					T-Tes	ß					

Equality of Variances

0.7866 0.7929

-0.28 -0.28

8 4.17

Pooled Equal Satterthwaite Unequal

Result Result

Pr > |t|

t Value

DF

Variances

Method

Variable

Pr > F	0.0026
F Value	46.97
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

al Comparison	2-tailed result	1-tail Result
stic	1s a	for
Stati	This	Page
March Point	T-test Results,	See Summary

-- Test=10-day Ampelisca abdita Endpoint=Percentage Survival Treatment=MP-9 --

The TTEST Procedure

Statistics

					טרמרדטר.	C D					
Variable	dnoıb	Z	Lower CL Mean	Mean	Upper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err	MuminiM	Maximum
Result Result Result	SBREF-80 Test Diff (1-2)	ى ى	0.8286 0.7539 -0.28	1.1826 1.0691 0.1135	1.5366 1.3843 0.5072	0.1708 0.1521 0.1823	0.2851 0.2539 0.2699	0.8193 0.7295 0.5171	0.1275 0.1135 0.1707	0.8861 0.6331	1.5708 1.249
					T-Test	ŭ					
		Var	tiable Met	thod	Variance	SS DF	t Value	Pr > t			

Equality of Variances

0.5248 0.5251

0.66 0.66

8 7.89

Equal Unequal

Pooled Satterthwaite

Result Result

Pr > F	0.8275
F Value	1.26
Den DF	4
Num DF	4
Method	Folded F
Variable	Result

		D 1 1-114		F		
omparison	Probability Normal	Probability Homogeneous	Test Type	Test Probability	Significant?	One-Tail Comparison
Control	0.672	0.339	T-test Equal Var	0.547		Treatment <= Comparison
Control	0.724	0.387	T-test Equal Var	0.898		Treatment <= Comparison
CR-1	0.742	0.532	T-test Equal Var	0.952		Treatment <= Comparison
CR-1	0.906	0.484	T-test Equal Var	0.843		Treatment <= Comparison
CR-1	0.131	0.503	T-test Equal Var	0.964		Treatment <= Comparison
CR-1	0.679	0.946	T-test Equal Var	0.897		Treatment <= Comparison
CR-1	0.947	0.757	T-test Equal Var	0.866		Treatment <= Comparison
CR-1	0.938	0.765	T-test Equal Var	0.908		Treatment <= Comparison
:R-1	0.703	0.358	T-test Equal Var	0.704		Treatment <= Comparison
R-1	0.834	0.74	T-test Equal Var	0.663		Treatment <= Comparison
R-1	0.288	0.839	T-test Equal Var	0.478		Treatment <= Comparison
R-1	0.201	0.18	T-test Equal Var	0.984		Treatment <= Comparison
۲-1	0.698	0.364	T-test Equal Var	0.944		Treatment <= Comparison
۲-1	0.939	0.577	T-test Equal Var	0.794		Treatment <= Comparison
۲-1	0.547	0.601	T-test Equal Var	0.907		Treatment <= Comparison
EF-80	0.514	0.735	T-test Equal Var	0.868		Treatment <= Comparison
EF-80	0.764	0.645	T-test Equal Var	0.575		Treatment <= Comparison
EF-80	0.156	0.674	T-test Equal Var	0.908		Treatment <= Comparison
EF-80	0.092	0.447	T-test Equal Var	0.734		Treatment <= Comparison
EF-80	0.382	0.867	T-test Equal Var	0.644		Treatment <= Comparison
REF-80	0.412	0.855	T-test Equal Var	0.748		Treatment <= Comparison
REF-80	0.682	0.436	T-test Equal Var	0.326		Treatment <= Comparison
EF-80	0.836	0.965	T-test Equal Var	0.319		Treatment <= Comparison
EF-80	0.603	0.892	T-test Equal Var	0.179		Treatment <= Comparison
REF-80	0.706	0.143	T-test Equal Var	0.966		Treatment <= Comparison
REF-80	0.612	0.423	T-test Equal Var	0.839		Treatment <= Comparison
REF-80	0.660	0.798	T-test Equal Var	0.490		Treatment <= Comparison
REF-80	0.400	0.814	T-test Equal Var	0.750		Treatment <= Comparison

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=CR-1 -----

The TTEST Procedure

Variable: result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	0.3261	0.1054	0.0471	0.2106	0.4641	
	Refe	rence	5	0.3125	0.2272	0.1016	0	0.6301	
	Diff	(1-2)		0.0137	0.1771	0.1120			
group		Method		Mean	95% CI	_ Mean	Std Dev	95% CL S [.]	td Dev
Control				0.3261	0.1953	0.4570	0.1054	0.0631	0.3029
Reference	е			0.3125	0.0303	0.5946	0.2272	0.1361	0.6529
Diff (1-2	2)	Pooled		0.0137	-0.2446	0.2720	0.1771	0.1196	0.3393
Diff (1-2	2)	Satterth	waite	0.0137	-0.2647	0.2920			
		Metho	d	Variance	es [DF t Value	Pr > t		

Pooled	Equal	8	0.12	0.9060
Satterthwaite	Unequal	5.6452	0.12	0.9072

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	4.65	0.1659

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=SBREF80 -----

The TTEST Procedure

Variable: result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	0.3261	0.1054	0.0471	0.2106	0.4641	
	Refe	rence	5	0.2049	0.1655	0.0740	0	0.4328	
	Diff	(1-2)		0.1212	0.1387	0.0877			
group		Method		Mean	95% CI	L Mean	Std Dev	95% CL (Std Dev
Control				0.3261	0.1953	0.4570	0.1054	0.0631	0.3029
Reference	е			0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Diff (1-	2)	Pooled		0.1212	-0.0811	0.3236	0.1387	0.0937	0.2658
Diff (1-	2)	Satterthw	aite	0.1212	-0.0876	0.3300			
		Method		Varian	ces l	DF t Valu	e Pr > t		

Pooled	Equal	8	1.38	0.2045
Satterthwaite	Unequal	6.7862	1.38	0.2109

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.47	0.4034

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-1 -----

The TTEST Procedure

Variable: Result

	grou	1 c	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 1	Ę	5	0.3125	0.2272	0.1016	0	0.6301	
	Test	Ę	5	0.0921	0.1287	0.0575	0	0.2667	
	Diff	(1-2)		0.2204	0.1846	0.1168			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR - 1				0.3125	0.0303	0.5946	0.2272	0.1361	0.6529
Test				0.0921	-0.0677	0.2518	0.1287	0.0771	0.3698
Diff (1-	2)	Pooled		0.2204	-0.0489	0.4897	0.1846	0.1247	0.3537
Diff (1-	2)	Satterthwa	ite	0.2204	-0.0618	0.5026			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	1.89	0.0958
Satterthwaite	Unequal	6.3266	1.89	0.1055

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.12	0.2966

10:48 Wednesday, November 5, 2008

4

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-10 -----

The TTEST Procedure

Variable: Result

	grou	o N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 1	5	0.3125	0.2272	0.1016	0	0.6301	
	Test	5	0.1864	0.1313	0.0587	0	0.3398	
	Diff	(1-2)	0.1260	0.1855	0.1174			
group		Method	Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR - 1			0.3125	0.0303	0.5946	0.2272	0.1361	0.6529
Test			0.1864	0.0235	0.3494	0.1313	0.0786	0.3772
Diff (1-	2)	Pooled	0.1260	-0.1446	0.3966	0.1855	0.1253	0.3555
Diff (1-	2)	Satterthwait	e 0.1260	-0.1568	0.4089			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	1.07	0.3142
Satterthwaite	Unequal	6.4024	1.07	0.3217

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.00	0.3130

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-11 ------

The TTEST Procedure

Variable: Result

	grou	p N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 1	5	0.3125	0.2272	0.1016	0	0.6301	
	Test	5	0.0634	0.1418	0.0634	0	0.3171	
	Diff	(1-2)	0.2491	0.1894	0.1198			
group		Method	Mean	95% CL	_ Mean	Std Dev	95% CL St	td Dev
CR - 1			0.3125	0.0303	0.5946	0.2272	0.1361	0.6529
Test			0.0634	-0.1127	0.2395	0.1418	0.0850	0.4075
Diff (1-	-2)	Pooled	0.2491	-0.0272	0.5253	0.1894	0.1279	0.3628
Diff (1·	-2)	Satterthwait	e 0.2491	-0.0367	0.5348			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	2.08	0.0712
Satterthwaite	Unequal	6.7056	2.08	0.0779

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.57	0.3834

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-12 -----

The TTEST Procedure

Variable: Result

	grou	o N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 1	5	0.3125	0.2272	0.1016	0	0.6301	
	Test	5	0.1329	0.1821	0.0814	0	0.3398	
	Diff	(1-2)	0.1795	0.2059	0.1302			
group		Method	Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR - 1			0.3125	0.0303	0.5946	0.2272	0.1361	0.6529
Test			0.1329	-0.0932	0.3590	0.1821	0.1091	0.5233
Diff (1·	-2)	Pooled	0.1795	-0.1208	0.4798	0.2059	0.1391	0.3945
Diff (1·	-2)	Satterthwait	e 0.1795	-0.1233	0.4823			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	1.38	0.2053
Satterthwaite	Unequal	7.6377	1.38	0.2070

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.56	0.6785

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-13 -----

The TTEST Procedure

Variable: Result

	grou	p N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 1	5	0.3125	0.2272	0.1016	0	0.6301	
	Test	5	0.1661	0.1542	0.0690	0	0.3171	
	Diff	(1-2)	0.1463	0.1942	0.1228			
group		Method	Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR - 1			0.3125	0.0303	0.5946	0.2272	0.1361	0.6529
Test			0.1661	-0.0254	0.3576	0.1542	0.0924	0.4432
Diff (1	-2)	Pooled	0.1463	-0.1369	0.4295	0.1942	0.1312	0.3720
Diff (1	-2)	Satterthwait	e 0.1463	-0.1437	0.4364			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	1.19	0.2676
Satterthwaite	Unequal	7.0403	1.19	0.2720

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.17	0.4714

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-2 -----

The TTEST Procedure

Variable: Result

	grou	o N	Mean	Std Dev	Std Err	Minimum	Maximun	1
	CR - 1	5	0.3125	0.2272	0.1016	0	0.6301	
	Test	5	0.1340	0.1551	0.0693	0	0.3092	2
	Diff	(1-2)	0.1784	0.1945	0.1230			
group		Method	Ме	an 95%	GCL Mean	Std Dev	95% CL	Std Dev
CR - 1			0.31	25 0.03	03 0.5946	0.2272	0.1361	0.6529
Test			0.13	40 -0.05	85 0.3266	0.1551	0.0929	0.4456
Diff (1-	2)	Pooled	0.17	84 -0.10	0.4621	0.1945	0.1314	0.3726
Diff (1-	2)	Satterthwait	e 0.17	84 -0.11	19 0.4688			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	1.45	0.1850
Satterthwaite	Unequal	7.0618	1.45	0.1898

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.15	0.4775

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-3 -----

The TTEST Procedure

Variable: Result

	grou	p N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 1	5	0.3125	0.2272	0.1016	0	0.6301	
	Test	5	0.2480	0.1228	0.0549	0.1181	0.4508	
	Diff	(1-2)	0.0645	0.1826	0.1155			
group		Method	Mean	95% CL	Mean	Std Dev	95% CL St	d Dev
CR - 1			0.3125	0.0303	0.5946	0.2272	0.1361	0.6529
Test			0.2480	0.0955	0.4005	0.1228	0.0736	0.3528
Diff (1-	-2)	Pooled	0.0645	-0.2019	0.3308	0.1826	0.1234	0.3499
Diff (1·	-2)	Satterthwaite	e 0.0645	-0.2165	0.3454			

Method	Variances	DF	t Value	Pr > t	
Pooled	Equal	8	0.56	0.5921	
Satterthwaite	Unequal	6.1527	0.56	0.5965	

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.42	0.2603

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-4 -----

The TTEST Procedure

Variable: Result

g	Iroup	D N	Mean	Std Dev	Std Err	Minimum	Maximum	
C	R - 1	5	0.3125	0.2272	0.1016	0	0.6301	
Т	est	5	0.2568	0.1710	0.0765	0	0.4449	
D)iff	(1-2)	0.0556	0.2011	0.1272			
group		Method	Mean	95% CL	Mean	Std Dev	95% CL Std D)ev
CR - 1			0.3125	0.0303	0.5946	0.2272	0.1361 0.6	529
Test			0.2568	0.0445	0.4692	0.1710	0.1025 0.4	914
Diff (1-2)		Pooled	0.0556	-0.2377	0.3489	0.2011	0.1358 0.3	3852
Diff (1-2)		Satterthwaite	0.0556	-0.2416	0.3529			
		Method	Variance	s D	F t Value	Pr > t		

Me crioù	var fanoco	Di	t varae	11 2 121
Pooled	Equal	8	0.44	0.6734
Satterthwaite	Unequal	7.431	0.44	0.6743

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.77	0.5955

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-5 -----

The TTEST Procedure

Variable: Result

	group	D	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 1		5	0.3125	0.2272	0.1016	0	0.6301	
	Test		5	0.3202	0.2060	0.0921	0	0.5705	
	Diff	(1-2)		-0.00775	0.2169	0.1372			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR - 1				0.3125	0.0303	0.5946	0.2272	0.1361	0.6529
Test				0.3202	0.0644	0.5760	0.2060	0.1234	0.5919
Diff (1-2	2)	Pooled		-0.00775	-0.3240	0.3085	0.2169	0.1465	0.4155
Diff (1-2	2)	Satterthwa	aite	-0.00775	-0.3246	0.3091			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	-0.06	0.9563
Satterthwaite	Unequal	7.9243	-0.06	0.9564

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.22	0.8538

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-6 -----

The TTEST Procedure

Variable: Result

	grou	o N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 1	5	0.3125	0.2272	0.1016	0	0.6301	
	Test	5	0.0335	0.0749	0.0335	0	0.1674	
	Diff	(1-2)	0.2790	0.1692	0.1070			
group		Method	Mean	95% CL	Mean	Std Dev	95% CL S [.]	td Dev
CR - 1			0.3125	0.0303	0.5946	0.2272	0.1361	0.6529
Test			0.0335	-0.0595	0.1265	0.0749	0.0449	0.2152
Diff (1-	-2)	Pooled	0.2790	0.0323	0.5257	0.1692	0.1143	0.3241
Diff (1·	-2)	Satterthwaite	0.2790	0.00153	0.5564			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	2.61	0.0313
Satterthwaite	Unequal	4.8588	2.61	0.0492

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	9.21	0.0538
10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-7 -----

The TTEST Procedure

Variable: Result

	grou	o N	Mea	an Std De	ev Std	Err Minimu	um Maximu	m
	CR - 1	5	0.312	25 0.227	72 0.1	016	0 0.630	1
	Test	5	0.112	0.10	59 0.0	474	0 0.227	6
	Diff	(1-2)	0.200	0.177	73 0.1	121		
group		Method	N	lean 95	5% CL Mean	Std Dev	v 95% CL	Std Dev
CR - 1			0.3	3125 0.0	0303 0.59	0.2272	2 0.1361	0.6529
Test			0.1	123 -0.0	0.24 0.24	38 0.1059	9 0.0635	0.3044
Diff (1·	-2)	Pooled	0.2	2002 -0.0	0.45	.177	3 0.1197	0.3396
Diff (1	-2)	Satterthwait	te 0.2	-0.0	0782 0.47	'86		

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	1.79	0.1120
Satterthwaite	Unequal	5.6602	1.79	0.1274

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	4.60	0.1685

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-8 -----

The TTEST Procedure

Variable: Result

	grou	o N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 1	5	0.3125	0.2272	0.1016	0	0.6301	
	Test	5	0.2074	0.1476	0.0660	0	0.3885	
	Diff	(1-2)	0.1051	0.1916	0.1212			
group		Method	Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR - 1			0.3125	0.0303	0.5946	0.2272	0.1361	0.6529
Test			0.2074	0.0241	0.3907	0.1476	0.0885	0.4242
Diff (1	-2)	Pooled	0.1051	-0.1744	0.3845	0.1916	0.1294	0.3671
Diff (1	-2)	Satterthwaite	e 0.1051	-0.1826	0.3927			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	0.87	0.4112
Satterthwaite	Unequal	6.8665	0.87	0.4152

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.37	0.4241

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-9 -----

The TTEST Procedure

Variable: Result

	grou	p N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 1	5	0.3125	0.2272	0.1016	0	0.6301	
	Test	5	0.1312	0.1641	0.0734	0	0.4016	
	Diff	(1-2)	0.1812	0.1982	0.1253			
group		Method	Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR - 1			0.3125	0.0303	0.5946	0.2272	0.1361	0.6529
Test			0.1312	-0.0725	0.3350	0.1641	0.0983	0.4716
Diff (1-	-2)	Pooled	0.1812	-0.1078	0.4703	0.1982	0.1339	0.3797
Diff (1-	2)	Satterthwaite	0.1812	-0.1129	0.4753			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	1.45	0.1862
Satterthwaite	Unequal	7.2806	1.45	0.1899

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.92	0.5440

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-1 -----

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBRE	F-80	5	0.2049	0.1655	0.0740	0	0.4328	
	Test		5	0.0921	0.1287	0.0575	0	0.2667	
	Diff	(1-2)		0.1128	0.1482	0.0938			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
SBREF-80	C			0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Test				0.0921	-0.0677	0.2518	0.1287	0.0771	0.3698
Diff (1-	-2)	Pooled		0.1128	-0.1034	0.3290	0.1482	0.1001	0.2840
Diff (1-	-2)	Satterthw	aite	0.1128	-0.1057	0.3314			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	1.20	0.2631
Satterthwaite	Unequal	7.5419	1.20	0.2651

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.65	0.6378

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-10 -----

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBREI	F-80	5	0.2049	0.1655	0.0740	0	0.4328	
	Test		5	0.1864	0.1313	0.0587	0	0.3398	
	Diff	(1-2)		0.0185	0.1494	0.0945			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL 8	Std Dev
SBREF-80				0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Test				0.1864	0.0235	0.3494	0.1313	0.0786	0.3772
Diff (1-	2)	Pooled		0.0185	-0.1994	0.2363	0.1494	0.1009	0.2862
Diff (1-	2)	Satterthw	aite	0.0185	-0.2014	0.2383			
		Mathad		Vaniano		E + Volu			

метпоа	variances	DF	τ value	Pr > t
Pooled	Equal	8	0.20	0.8499
Satterthwaite	Unequal	7.6057	0.20	0.8502

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.59	0.6644

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-11 -----

The TTEST Procedure

Variable: Result

	grou	p	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBREI	F-80	5	0.2049	0.1655	0.0740	0	0.4328	
	Test		5	0.0634	0.1418	0.0634	0	0.3171	
	Diff	(1-2)		0.1415	0.1541	0.0975			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL 8	Std Dev
SBREF-80)			0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Test				0.0634	-0.1127	0.2395	0.1418	0.0850	0.4075
Diff (1-	2)	Pooled		0.1415	-0.0833	0.3663	0.1541	0.1041	0.2952
Diff (1-	2)	Satterth	waite	0.1415	-0.0842	0.3672			
		Notho	d	Vanian		F + Volu		I.	

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	1.45	0.1846
Satterthwaite	Unequal	7.8164	1.45	0.1855

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.36	0.7719

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-12 -----

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBRE	F-80	5	0.2049	0.1655	0.0740	0	0.4328	
	Test		5	0.1329	0.1821	0.0814	0	0.3398	
	Diff	(1-2)		0.0720	0.1740	0.1100			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL	Std Dev
SBREF-80				0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Test				0.1329	-0.0932	0.3590	0.1821	0.1091	0.5233
Diff (1-	2)	Pooled		0.0720	-0.1818	0.3257	0.1740	0.1175	0.3333
Diff (1-	2)	Satterthw	aite	0.0720	-0.1822	0.3261			
		Method	I	Varianc	es D	F t Valu	e Pr>ltl		

		2.		
Pooled	Equal	8	0.65	0.5314
Satterthwaite	Unequal	7.928	0.65	0.5316

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.21	0.8575

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-13 -----

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBRE	F-80	5	0.2049	0.1655	0.0740	0	0.4328	
	Test		5	0.1661	0.1542	0.0690	0	0.3171	
	Diff	(1-2)		0.0388	0.1600	0.1012			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
SBREF-80				0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Test				0.1661	-0.0254	0.3576	0.1542	0.0924	0.4432
Diff (1-	2)	Pooled		0.0388	-0.1945	0.2721	0.1600	0.1080	0.3064
Diff (1-	2)	Satterthw	aite	0.0388	-0.1947	0.2723			
		Method		Variance	es D	F t Value	Pr > t		

Pooled	Equal	8	0.38	0.7115
Satterthwaite	Unequal	7.9605	0.38	0.7115

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.15	0.8945

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-2 -----

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBRE	F-80	5	0.2049	0.1655	0.0740	0	0.4328	
	Test		5	0.1340	0.1551	0.0693	0	0.3092	
	Diff	(1-2)		0.0709	0.1604	0.1014			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
SBREF-80				0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Test				0.1340	-0.0585	0.3266	0.1551	0.0929	0.4456
Diff (1-	2)	Pooled		0.0709	-0.1630	0.3048	0.1604	0.1083	0.3072
Diff (1-	2)	Satterthw	aite	0.0709	-0.1632	0.3049			
		Method		Variance	es Di	F t Value	Pr > t		

Pooled	Equal	8	0.70	0.5044
Satterthwaite	Unequal	7.9663	0.70	0.5045

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.14	0.9026

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-3 -----

The TTEST Procedure

Variable: Result

	group)	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBREF	- 80	5	0.2049	0.1655	0.0740	0	0.4328	
	Test		5	0.2480	0.1228	0.0549	0.1181	0.4508	
	Diff	(1-2)		-0.0431	0.1457	0.0922			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
SBREF-80				0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Test				0.2480	0.0955	0.4005	0.1228	0.0736	0.3528
Diff (1-2	2)	Pooled		-0.0431	-0.2556	0.1694	0.1457	0.0984	0.2792
Diff (1-2	2)	Satterthwa	aite	-0.0431	-0.2588	0.1726			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	-0.47	0.6525
Satterthwaite	Unequal	7.3796	-0.47	0.6535

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.82	0.5773

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-4

The TTEST Procedure

Variable: Result

	group	D	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBREF	- 80	5	0.2049	0.1655	0.0740	0	0.4328	
	Test		5	0.2568	0.1710	0.0765	0	0.4449	
	Diff	(1-2)		-0.0519	0.1683	0.1064			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
SBREF-80				0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Test				0.2568	0.0445	0.4692	0.1710	0.1025	0.4914
Diff (1-2	2)	Pooled		-0.0519	-0.2974	0.1935	0.1683	0.1137	0.3224
Diff (1-2	2)	Satterthwa	aite	-0.0519	-0.2974	0.1935			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	-0.49	0.6387
Satterthwaite	Unequal	7.9914	-0.49	0.6387

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.07	0.9508

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-5

The TTEST Procedure

Variable: Result

	group)	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBREF	- 80	5	0.2049	0.1655	0.0740	0	0.4328	
	Test		5	0.3202	0.2060	0.0921	0	0.5705	
	Diff	(1-2)		-0.1153	0.1868	0.1182			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S1	td Dev
SBREF-80				0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Test				0.3202	0.0644	0.5760	0.2060	0.1234	0.5919
Diff (1-2	2)	Pooled		-0.1153	-0.3878	0.1572	0.1868	0.1262	0.3580
Diff (1-2	2)	Satterthwa	aite	-0.1153	-0.3900	0.1594			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	-0.98	0.3578
Satterthwaite	Unequal	7.6452	-0.98	0.3590

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.55	0.6818

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-6

The TTEST Procedure

Variable: Result

	grou	o	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBREI	F-80	5	0.2049	0.1655	0.0740	0	0.4328	
	Test		5	0.0335	0.0749	0.0335	0	0.1674	
	Diff	(1-2)		0.1714	0.1284	0.0812			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
SBREF-80				0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Test				0.0335	-0.0595	0.1265	0.0749	0.0449	0.2152
Diff (1-2	2)	Pooled		0.1714	-0.0159	0.3588	0.1284	0.0868	0.2461
Diff (1-	2)	Satterthw	aite	0.1714	-0.0311	0.3740			
		Method		Variance	es D	F t Value	Pr > t		

Pooled	Equal	8	2.11	0.0679
Satterthwaite	Unequal	5.572	2.11	0.0829

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	4.88	0.1537

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-7 -----

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBRE	F-80	5	0.2049	0.1655	0.0740	0	0.4328	
	Test		5	0.1123	0.1059	0.0474	0	0.2276	
	Diff	(1-2)		0.0926	0.1389	0.0879			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
SBREF-80				0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Test				0.1123	-0.0192	0.2438	0.1059	0.0635	0.3044
Diff (1-	2)	Pooled		0.0926	-0.1100	0.2953	0.1389	0.0938	0.2662
Diff (1-	2)	Satterthw	aite	0.0926	-0.1164	0.3016			
		Methor	ı	Varianc		F tValu	p Prsl+l		

Method	variances	DF	t varue	PF > [1]
Pooled	Equal	8	1.05	0.3226
Satterthwaite	Unequal	6.8062	1.05	0.3278

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.44	0.4085

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-8 -----

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBREI Test	F-80	5 5	0.2049	0.1655 0.1476	0.0740	0	0.4328	
	Diff	(1-2)	Ū	-0.00249	0.1568	0.0992	Ũ	010000	
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S1	td Dev
SBREF-80 Test Diff (1-2 Diff (1-2	2) 2)	Pooled Satterthw	aite	0.2049 0.2074 -0.00249 -0.00249	-0.00058 0.0241 -0.2312 -0.2317	0.4104 0.3907 0.2262 0.2267	0.1655 0.1476 0.1568	0.0992 0.0885 0.1059	0.4756 0.4242 0.3004

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	-0.03	0.9805
Satterthwaite	Unequal	7.8978	-0.03	0.9806

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.26	0.8301

10:48 Wednesday, November 5, 2008

----- Test=Larval Endpoint=Percent Combined Mortality Treatment=MP-9 -----

The TTEST Procedure

Variable: Result

	grou	o	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	SBRE	- 80	5	0.2049	0.1655	0.0740	0	0.4328	
	Test		5	0.1312	0.1641	0.0734	0	0.4016	
	Diff	(1-2)		0.0737	0.1648	0.1042			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
SBREF-80				0.2049	-0.00058	0.4104	0.1655	0.0992	0.4756
Test				0.1312	-0.0725	0.3350	0.1641	0.0983	0.4716
Diff (1-	2)	Pooled		0.0737	-0.1667	0.3140	0.1648	0.1113	0.3157
Diff (1-	2)	Satterth	vaite	0.0737	-0.1667	0.3140			
		Maddaa	J	Manian		F +) (-]			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	0.71	0.4998
Satterthwaite	Unequal	7.9994	0.71	0.4998

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.02	0.9873

APPENDIX H

Archaeological Report and Recommendations

February 20, 2009 8-915-16558-0

AMEC E&E Geomatrix One Union Square, Suite 1020 600 University Street Seattle, Washington 98101-4107

Attention: Dave Haddock

Subject: Archaeological Monitoring of RIFS Sampling in the Whitmarsh Landfill, Skagit County, Washington

Dear Dave:

AMEC-Geomatrix conducted subsurface investigations for an Uplands Remedial Investigation/Feasibility Study (RIFS) at the March Point (Whitmarsh) Landfill in Anacortes, Washington, between October 29 and November 2, 2008. In a letter to you dated October 16, 2008, I reviewed the potential for RIFS activities to affect archaeological resources that might underlie or exist at the surface adjacent to the project area. I stated my finding as follows:

"It is my professional opinion that there is a low potential for archaeological resources in the tide flat beneath the waste deposits. Although that is the case, I advise that a qualified archaeologist should be present during the test pitting to ensure that no unanticipated effects occur to archaeological resources. The observations of the monitoring archaeologist will also serve as an archaeological survey of the landfill area itself."

AMEC-Geomatrix followed that recommendation. Emily Gantz from the Bothell office of AMEC Earth & Environmental, Inc. monitored the excavations at the landfill site at all times and kept a daily record of her monitoring activities and observations (Attachment A). Her observations are summarized below.

Monitoring Observations.

Eleven test pits, numbered G-1 through G-11, were opened using an excavator. Each pit was excavated into native tide flat sediments or to the water table, whichever was encountered first. All pits contained an upper deposit of soil mixed with residential and industrial waste (Attachment B, Photos 1 and 2). Nine of the eleven pits reached groundwater before encountering native tide-flat sediments. Only pits G-7 and G-11 encountered native sediments. Native sediments were encountered at 8 to 10 feet (ft) below ground surface in G-7 (Photo 2)

and in G-11 at approximately 8 ft. Sediments consisted of a poorly sorted mix of gravel, sand, and mud reduced to a gray color. No shells or archaeological material of any kind was observed in either of the pits.

Conclusion and Recommendations

Results of archaeological monitoring show that no archaeological resources were affected by RIFS activities at the Whitmarsh Landfill. Because the RIFS excavations reached native sediments at only two points, however, these results cannot be considered to be a full archaeological survey of the underlying landform. They provide no information about the land adjacent to the tide flat, which has a much higher potential for archaeological resources. Therefore, I recommend that to alleviate the concerns of the Suquamish and Swinomish tribes about possible archaeological impacts of later remediation efforts, two actions should be taken.

- An archaeological survey should be conducted along the historic western shoreline of Padilla Bay at the edge of the landfill deposit to identify and document any sites that might be affected by remediation activities. Cost of this activity would be approximately \$7,500.
- AMEC-Geomatrix should consider including an archaeological monitor during at least the initial stages of any remediation that entailed removal of landfill material to the contact with natural tide flats. This monitoring would be intended to complete the equivalent of archaeological survey under the landfill deposits and establish with confidence that no archaeological resources are being affected by excavation of contaminated materials. Costs would be dependent on the scale and duration of excavation activities.

If these actions are taken, it is my professional opinion that no significant cultural resources will be affected by remediation activities.

Please feel free to contact me if you have any additional questions.

Sincerely,

AMEC Earth & Environmental, Inc.

James C. Chatters, Ph.D., R.P.A. Senior Associate Archaeologist

Attachments: Attachment A – Archaeological Monitoring Logs Attachment B – Photographs

ATTACHMENT A

Archaeological Monitoring Logs

Monitor's Name/Initials: Fruily Scott Date <u>10 /29/08</u>

Whrte . Work area # <u>MARSH</u> (note location of today's monitoring areas on the attached site map)

Description of abatement/demolition work being done (also note time of day, weather conditions, work performed by construction crew)

Met Nik BACHER (AMET Geomatrix) At the site a little before Ipm. Went over site recess And SAFETY with PSC personal ((?) or PCS). Computed a walk over of the test pit locations and measured test pits based from GRS points prevenusly taken. hours: 5. 5 hrs (including drive time) Total Photographic Documentation: roll # ______

Description of sediments and cultural resources (if any)

Surface sediments included a trick area of woods test-pit locations G. 6 G. 8, G. 9, and 6.10). The other test-pit locations consisted of do duransly disturbed & Surface garbage Fill and lot

Visual survey of the site baundary reavest Padilla. : No cultural motencies noticed Chesides moden he project, area is located on a menmade bad The prod 5280 the project area were taken. Lety Officer, Tim Reinhardt, and 8 rout

Date 10/30/08 Monitor's Name/Initials: Emily Scott-

Work area # Whilmun (note location of today's monitoring areas on the attached site map)

G.2,G-7

Description of abatement/demolition work being done (also note time of day, weather conditions, work performed by construction crew)

8 km Wond 3410 Nadu. Total hours: 9.5 hrs

Photographic Documentation: roll # ______

Description of sediments and cultural resources (if any)

Ton sedment WAS rW bal mont CANAO benno CALANO -

cance were observed Terin (1) altinal Tho Man

Monitor's Name/Initials: Engly Scatt-Date 10/31/08

Work area # (Ulubruansh(note location of today's monitoring areas on the attached site map)

6-4,611,6-3

Description of abatement/demolition work being done (also note time of day, weather conditions, work performed by construction crew)

crea prior to 8 mil for safety meeting. test pit excavation and said sampling TOTAL HOURS : 9 hrs

Photographic Documentation: roll # ______

Description of sediments and cultural resources (if any)

nttod a 4 hrow ediment Can cind & l

d 6-3. Material nal ill material dreir the nabre Aments

Monitor's Name/Initials: Emily Soft Date 1/1/08

Work area # [] Work areas on the attached site map)

6-1,6-6,6-10

Description of abatement/demolition work being done (also note time of day, weather conditions, work performed by construction crew)

Met project crew prior to 8 ton for safety neeting Total Hours: 10 hrs

Photographic Documentation: roll # _______

Description of sediments and cultural resources (if any)

med brain to dark brown & 11 sediment Consist : Top sedemente at hearing anaha alfural an bonn Sedimon innar DNY Ron no stel cont were epth. Drums!

milicant cultural materials were deserved Tidal Alat thei tran the native nateral

Monitor's Name/Initials: Enuily Soft Date <u>11/2/08</u>

Work area # [Lhumash(note location of today's monitoring areas on the attached site map)

G.5,6.8,6.9

Description of abatement/demolition work being done (also note time of day, weather conditions, work performed by construction crew)

crew prior to Tim for safety meeting. test pit excavations.

Photographic Documentation: roll # _______

Description of sediments and cultural resources (if any)

consisted of wood debris, then med brown to dark S: Ta sedmonto - dultural resources a samitican level 6-5 Same "

6:8 G-9: " same G. Sand 26.81mg drun encontened

icant cultural malinals were deserved ne maritaring of 6-9, 6-8 and 6-5. the monstoring of G-9 edments due than the native al flat consistor u naterial

ATTACHMENT B

Photographs

Photo 1. An example of landfill deposits excavated at Whitmarsh Landfill.

Photo 2. Native tide-flats exposed beneath landfill material in test pit G-7 (arrow).