

January 28, 2008

Mr. Stephen Tan, Esq. Cascadia Law Group 1201 Third Avenue, Suite 320 Seattle, WA 98101

Re: Results of Direct-Push Groundwater Assessment Support Terminals Operating Partners (STOP) LP Vancouver Terminal 5420 Fruit Valley Road, Vancouver, Washington 1126-02

Dear Stephen:

This letter summarizes the results of the direct-push groundwater assessment completed in June 2007 at the STOP Vancouver Terminal (the Terminal). Ash Creek Associates completed the direct-push groundwater assessment to determine whether Terminal-derived constituents, potentially susceptible to pumping-induced migration to the proposed Clark Public Utilities (CPU) Fruit Valley well field, are present in deep groundwater. The proposed Fruit Valley well field is located just northwest of the Terminal (Figure 1), less than 500 feet at its closest point.

Background

CPU has proposed installing and operating a domestic water supply well field on land currently owned by the Washington Department of Fish and Wildlife (WDFW). The proposed well field has conceptually been designed to consist of four extraction wells each pumping at 3,500 gallons per minute (gpm) for a total of 20 million gallons per day (MGD; Pacific Groundwater Group [PGG], 2001). The wells would be installed and screened within the Pleistocene Alluvial Aquifer (PAA), with anticipated depths of approximately 170 feet and screened intervals from 70 to 170 feet below grade.

CPU had previously described plans to conduct a three- to seven-day constant-rate aquifer test to better assess the transmissivity of the PAA. On Thursday, June 7, 2007, Ash Creek Associates was notified that CPU intended to begin this test on Tuesday, June 12, 2007. Based on this schedule, Ash Creek Associates developed and implemented the direct-push groundwater assessment.

9615 Southwest Allen Boulevard, Suite 106 Portland, Oregon 97005-4814 (503) 924-4704 Portland (360) 567-3977 Vancouver (503) 924-4707 Fax www.ashcreekassociates.com

Sampling Locations, Intervals, and Methods

Two direct-push explorations (GP-1 and GP-2) were completed at the Terminal on June 11, 2007. The locations of the explorations are shown on Figure 2. The direct-push explorations were completed by ESN Northwest in Lacey, Washington, under subcontract to Ash Creek Associates.

Sampling Locations

Historical site assessment information available for the Terminal indicates petroleum hydrocarbons are present in subsurface soil and shallow groundwater in the vicinity of the truck loading rack and the vapor recovery unit. The location for GP-1 was chosen because it was directly north of the vapor recovery unit and the truck loading rack. This location was selected to assess hypothetical near-source conditions should the well field influence conditions at the Terminal. The location for GP-2, near the Terminal property boundary, was chosen because it represents the closest point on the Terminal to the proposed well field and is in the anticipated regional downgradient groundwater flow direction from the on-site source area.

Sampling Intervals

Based on a previous investigation at the Terminal (AMEC, 2002) and lithologic logs from the CPU well field (PGG, 2003), the lithology at the Terminal is reported to consist of:

- Silty, fine sand or sandy silt to a depth of approximately 10 feet, and fine- to medium-grained sand to approximately 50 to 60 feet below grade (referred to as the Recent Alluvial Aquifer [RAA]); and
- Below the RAA, sand and/or gravel layers of varying thicknesses were reported (total depth not explored). This unit is referred to as the PAA.

The depth to groundwater is approximately 25 feet below grade across most of the site.

Since the proposed CPU well field will utilize wells screened approximately from between 70 to 170 feet below grade, the top of the PAA was the targeted interval for the direct-push groundwater assessment. Groundwater samples were collected from 70 feet below grade in GP-1 and 64 feet below grade in GP-2. Please note that each exploration was completed within a containment area of the Terminal, which is approximately 10 feet below the surrounding grade (thus, actual intervals are approximately 10 feet deeper when compared to average vicinity grade).

Sampling and Analytical Methods

Depth-discrete groundwater samples were collected using direct-push equipment. The sampling device was driven to the desired depth using a truck-mounted direct-push rig, and the casing was retracted, exposing a 2-foot-long groundwater sampling attachment. Groundwater samples were collected from the sampling attachment using a combination of a check-valve and peristaltic pump. The probing conditions were very difficult at deeper depths due to apparent dense sands and gravels. GP-1 was logged in detail to a depth of 52 feet below grade, until the field geologist could conclude with reasonable certainty that the PAA was encountered. GP-2 was not logged due to time constraints resulting from difficult drilling conditions. Exploration logs are included in Attachment A.

Groundwater samples were delivered under chain-of-custody to TestAmerica in Beaverton, Oregon. All groundwater samples were submitted for analysis of:

- Gasoline-range total petroleum hydrocarbons (TPHg) using NW Method TPH-Gx;
- Diesel- and oil-range hydrocarbons (TPHd) using NW Method TPH-Dx;
- Polynuclear aromatic hydrocarbons (PAHs) using EPA 8270 SIM; and
- Select volatile organic compounds (VOCs) using EPA Method 8260.

The select VOC list included hydrocarbon VOC constituents, and oxygenates.

<u>Results</u>

Tables 1 and 2 summarize the chemical analytical results. Except for methyl tert-butyl ether (MTBE), detected at a concentration of 13.7 micrograms per liter (μ g/L) at location GP-1, no other VOCs, TPH, or PAHs were detected in the direct-push explorations. The groundwater sample from GP-1 was collected from 70 feet below grade, north of the vapor recovery unit area.

These results support that Terminal-derived constituents are currently contained within the boundaries of the Terminal. Under static conditions, degradation and a naturally flat groundwater gradient will likely continue to prevent the extent of dissolved-phase constituents from increasing in size. Based on the results of the April 2007 migration evaluation prepared by Ash Creek Associates, there is real potential that outside stresses from the well field could mobilize water from beneath the Terminal and spread Terminal-derived constituents. As subsequent well field tests are completed, or the well field comes on-line, groundwater quality at the Terminal should continue to be assessed for possible changes induced by the well field.

Please do not hesitate to call if you have any questions or need further assistance.

Sincerely,

John P. Foxwell, L.H.G. Senior Associate

Amanda L. Spencer Principal Hydrogeologist

Attachments:

Table 1 – Direct-Push Groundwater Assessment Results:Total Petroleum HydrocarbonsTable 2 – Direct-Push Groundwater Assessment Results:VOCs and Fuel Oxygenates

Figure 1 – Site Location Map Figure 2 – Site Plan Showing Push-Probe Locations

Attachment A – Exploration Logs Attachment B – Analytical Laboratory Data

cc: Mr. Joe Aldridge, NuStar Energy LP (electronic deliverable)

Table 1 Direct-Push Groundwater Assessment Results: Total Petroleum Hydrocarbons Support Terminal Operating Partnership (STOP), LP Vancouver Terminal Vancouver, Washington

		Concentration in µg/L (ppb)							
Sample Location	Sample Date	TPHg	TPHd	TPHho	All PAHs				
GP-1-1	06/11/07	<80	<238	<476	ND				
GP-2-1	06/11/07	<80	<238	<476	ND				
Washington DOE MTCA M	ethod A cleanup level	800 ^{7.}	500	500	NA				

Notes:

1. TPHg = Total petroleum hydrocarbons in the gasoline carbon range by NW-TPH-Gx method.

2. TPHd = Total petroleum hydrocarbons in the diesel carbon range by NW-TPH-Dx method with silica gel cleanup.

3. TPHho = Total petroleum hydrocarbons in the heavy oil carbon range by NW-TPH-Dx method with silica gel cleanup.

4. PAHs = Polynuclear Aromatic Hydrocarbons by EPA 8270 SIM.

5. < = Not detected at or above the specified laboratory method reporting limit (MRL).

6. µg/L (ppb) = micrograms per liter (parts per billion).

7. TPHg cleanup level dependent on presence of benzene in groundwater. Cleanup level = $800 \mu g/L$ if benzene is present and $1,000 \mu g/L$ if benzene is not present.

8. Washington DOE MTCA = Washington Department of Ecology Model Toxics Control Act.

9. ND = Not detected at or above the specified laboratory MRL.

10. NA = Not Applicable.

Concentration in µg/L (ppb)																		
Sample Location	Sample Date	Benzene	Toluene	Ethylbenzene	Xylenes	1,2- Dibromoethane	1,2- Dichloroethane	Ethanol	tert-Butyl alcohol	Ethyl tert-Butyl Ether (ETBE)	Diisopropyl Ether (DIPE)	Methyl tert-butyl ether (MTBE)	Tert-Amyl Methyl Ether (TAME)	Naphthalene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Isopropylbenzene	n-Propylbenzene
GP-1-1	06/11/07	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<150	<25.0	<1.0	<1.0	13.7	<1.0	<2.0	<1.0	<1.0	<2.0	<1.0
GP-2-1	06/11/07	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<150	<25.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<2.0	<1.0
Washington DOE MTCA	A Method A cleanup level	5.0	1,000	700	1,000	NA	5	NA	NA	NA	NA	20	NA	160	NA	NA	NA	NA

Notes:

1. BTEX (Benzene, toluene, ethylbenzene, and xylenes) and fuel oxygenates by EPA Method 8260B. Results reported in micrograms per liter.

2. µg/L = micrograms per liter.

3. Boldface value represents detected concentrations of listed analyte.

4. < = Not detected at or above the specified laboratory method reporting limit (MRL).

5. Detected concentration is estimated based on presence of analyte in blank.

6. NA = Cleanup level not available.

7. Washington DOE MTCA Method A cleanup level = Washington Department of Ecology Model Toxics Control Act Method A cleanup level.

Attachment A

Exploration Logs

Sample Descriptions

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, and grain size, and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT with additional remarks.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and Geoprobe[®] explorations is estimated based on visual observation and is presented parenthetically on test pit and Geoprobe[®] exploration logs.

	Standard		Standard	Approximate	
SAND and GRAVEL	Penetration	SILT or CLAY	Penetration	Shear	
	Resistance		Resistance	Strength	
<u>Density</u>	in Blows/Foot	<u>Density</u>	in Blows/Foot	<u>in TSF</u>	
Very loose	0 - 1	Very soft	0 - 2	<0.125	
	4 10	Soft	2 - 4	0.125 - 0.25	
LOUSE Madium danaa	4 - 10	Medium stiff	4 - 8	0.25 - 0.5	
Medium dense	10 - 30	Stiff	8 - 15	0.5 - 1.0	
Dense	30 - 50	Very Stiff	15 - 30	1.0 - 2.0	
Very dense	>50	Hard	>30	>2.0	

Moist	ure	Minor Constituents	Estimated Percentage
Dry	Little perceptible moisture.	Not identified in description	0 - 5
Damp	Some perceptible moisture, probably below optimum.	Slightly (clayey, silty, etc.)	5 - 12
Moist	Probably near optimum moisture content.	Clayey, silty, sandy, gravelly	12 - 30
Wet	Much perceptible moisture, probably above optimum.	Very (clayey, silty, etc.)	30 - 50

Legends

Sampling Symbols

BORING AND GEOPROBE[®] SYMBOLS

- Split Spoon
 - Tube (Shelby, Geoprobe[®])
 - Cuttings
- Core Run
- Temporarily Screened Interval
- N Standard Penetration Resistance
- * No Sample Recovery
- P Tube Pushed, Not Driven
- PID Photoionization Detector Reading
- W Water Sample
- Sample Submitted for Chemical Analysis

TEST PIT SOIL SAMPLES

- Bag
- Shelby Tube

Groundwater Observations and Monitoring Well Construction

Key to Exploration Logs

Direct-Push Groundwater Assessment Support Terminal Operating Partners - Vancouver Terminal #2 Vancouver, Washington

Ash Creek Associates Inc	Project Number	1126-02	Figure
Environmental and Geotechnical Consultants	July	2007	Key

A	Ash C	Creek	Ass	ociat	es, In	c. ST Servíces - Vancouver Annex	Log Of Well Num	per GP-1
En	wironmental	and Geo	technical (Consultants		Vancouver, Washington	Project Number	1126-02
Boring Lo	cation:	See	Figu	re 2			Surface Elevation: Not Sur	veyed
Drilling C	Contracto	or: Er	viron	men	tal Se	ervices Network	Date Started: 6/11/07	
Drilling A	Aethod:	4 Fo	ot Pi	ush F	robe	(Acetate Lined)	Date Finished: 6/11/07	
Drilling E	quipmer	nt: St	ratap	robe			Logged By: A. Schmidt	
0	ΓT						Depth to Water (ATD), 26	0'
t								.0
fee	\square	<u> </u>		_				
Ę	e le	du	Š	ee	\Box			
ept	Ĕ	Sar	e G	Ş	Р			
\Box	Š					Material Description		
								Remarks
						GRAVEL Fill.		
						SII T: brown moist trace sand (medium stiff)	–	
				No	<5			
		$ \rangle $						
		$ \rangle$					-	
		\square					_	
_		ΝI			_	Silty SAND; brown, moist, fine-grained,	_	
5—	1			INO	<>	poorly sorted, (loose).	S	
		$ \rangle $					L	
		$ \rangle $		No	<5			
		$ $		140				
_		\square					-	
_							_	
10				No	<5		10	
10	1	$ \rangle $					— 10	
		$ \rangle $					_	
		\						
	1					SAND: brown moist fine- to medium-grained		
						nearly corted (medium dense)	_	
				No	<5	poorty sorted, (medium dense).		
		$ \rangle $						
15—		$ \rangle $					— 15	
		N I		No	<5			
				INU		SAND: grav to black maist modium grained	-	
		$ \rangle $		NI	-	SAND, gray to black, moist, medium-grained,	_	
		$ \rangle $		INO	<>	poorly sorted, no grading, trace slits, (medium dense).		
	1	$ \rangle$						
20—		H					—20	
-		Λ						
				No	<5			
		$ \rangle $					-	
_								
	1	\square						
25—				No	<5		-25	
_								
				No	<5		\vdash	
_		Щ					\vdash	
				INO	<5			
30—		$ \rangle $					— 30	
		$ \rangle $		No	-5			
		$ $		INU				
							-	
				No	<5		_	
3.5								
		[]						
		\square						
				No	<5		⊨ ∣	
-				No	<5		F	
								Page 1/2

A A	Ash C	Ireek	Ass	ocíat	es, In	c. ST Servíces - Vancouver Annex	Log Of Well Numbe	er GP-1
F	wironmental	and Geo	technical (Consultants		Vancouver, Washington	Project Number	1126-02
Boring Lo	cation:	See	Figu	re 2			Surface Elevation: Not Surve	eyed
Drilling C	Contracto	or: En	viron	men	tal Se	ervices Network	Date Started: 6/11/07	
Drilling A	Aethod:	4 Fo	ot Pi	ush F	robe	(Acetate Lined)	Date Finished: 6/11/07	
Drilling E	quipmer	nt: Sti	ratap	robe			Logged By: A. Schmidt	
							Depth to Water (ATD): 26.0	'
epth, feet	ample ID	Sample	ceovery	Sheen	PID			
	S					Material Description		Remarks:
						No recovery. Crushed liner.		
-								
-		$ \rangle $						
						No recovery.		
45	1						-45	
-		$ \rangle $						
_								
	1							
-				No	<5			
50		$ \rangle $					— 50	
				No	<5			
-	1					No samples collected from 52.0 to 72.0 feet		
_						No samples collected from 52.0 to 72.0 leet.		
_								
55—							— 55	
_								
_								
-								
60							60	
	1							
-								
65							65	
Co							CO	
-								
-							\vdash	
_								
	1							
70-							-70	
								GP-1-1
_								
_								
-						Boring Terminated at 72.0' BGS.		
-							\vdash	
75							75	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							15	
-							F	
_								
_							L	
				•	•		•	Page 2/2

A A	Ash C	Creek	Ass	ocíat	es, In	c. ST Servíces - Vancouver Annex	Log Of Well Numb	er GP-2
	vironmental	and Geo	technical C	Consultant	5	Vancouver, Washington	Project Number	1126-02
Doring Lo	cation:	500	rigu	re Z	tal 0	r isos Natural		eyeu
Drilling C	ontract		viron	men	tal Se	rvices Network	Date Started: 6/11/07	
Drilling A	Aethod:	4 ⊢c	ot Pu	ush F	robe	(Acetate Lined)	Date Finished: 6/11/07	
Drilling E	quipmer	nt: Sti	ratap	robe			Logged By: A. Schmidt	
							Depth to Water (ATD):	
cet	\Box	υ	≥					
ц Т	le	ldu	S S	eer	\Box			
ept	dm	Sar	e C	S	Р			
	Š					Material Description		
						1		Kemarks:
						No soil logging. Groundwater sample only.		
_							F	
5—								
10							10	
15								
1.5								
-								
20-							-20	
25—							-25	
—								
30—								
-							\vdash	
_								
75							75	
د								
-								
_								
			I	I				Dawa 1/2
								rade 1/7

Vancouver, Washington Project Number 11: Boring Location See Figure 2 Surface Elevation Not Surveyed Dailing Connector Environmental Services Network Date Started 6/11/07 Date Finished 6/11/07 Dilling Connector Environmental Services Network Date Finished 6/11/07 Date Finished 6/11/07 Dilling Connector Environmental Services Network Date Finished 6/11/07 Date Finished 6/11/07 Dilling Connector Environmental Services Network Date Finished 6/11/07 Date Finished 6/11/07 Dilling Connector Environmental Services Network Date Finished 6/11/07 Date Finished 6/11/07 Dilling Connector Environmental Services Network Date Finished 6/11/07 Date Finished 6/11/07 Dilling Connector Environmental Services Network Date Finished 6/11/07 Date Finished 6/11/07 Dilling Connector Environmental Services Network Material Description Deph to Water (ATD) - 45 - - - 45 - - - 50 - - - 51 - - - 52 - - -	P-2	umber GP -	Log Of Well Num	Vancouver Annex	ST Services -	Ash Creek Associates, Inc. ST S						
Brong Location See Figure 2 Surface Flexibion Startace Flexibion Data Startace 6/11/07 Durling Contractor Environmental Services Network Date Startace 6/11/07 Date Startace 1/10/7 Durling Geodyneer. Stratace Flexibion Dephoto (Accetate Lined) Date Finded 6/11/07 Durling Geodyneer. Stratace Flexibion Dephoto (Accetate Lined) Dephoto (Accetate Lined) Diring Geodyneer. Stratace Flexibion Material Description Dephoto Water (ATD) 45 - - - - 45 - - - - 50 - - - - 50 - - - - 50 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	26-02	1126	Project Number	, Washington	Boring Location: See Figure 2							
Dalling Contractor. Environmental Services Network Date Started 6/11/07 Dulling Method 4 Foot Push Probe (Acetate Lined) Date Finished 6/11/07 Dulling Equipment: Strataprobe Logged by A. Schmidt Ugged by A. Schmidt Depth to Water (ATD): ¹		Surveyed	Surface Elevation: Not Sur					re 2	e Figu	: See	ocation:	Boring Lo
Duling Method 4 Foot Push Probe (Acetate Lined) Date Enside (d11107 Drilling Equipment: Strateprobe Logged by A. Schmidt ¹			Date Started: 6/11/07			rvices Network	al Se	ment	viron	ctor: En	Contrac	Drilling (
Dolling Equipment Straterobe Logged By: A. Schmidt 1		7	Date Finished: 6/11/07			(Acetate Lined)	robe	ush P	oot Pu	d: 4 Fc	Nethoo	Drilling /
tag t		idt	Logged By: A. Schmidt					robe	ratap	ient: St	quipme	Drilling E
131 140 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>		:	Depth to Water (ATD):									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pomorla	D			Description	Material	DID	Sheen	Recovery	Sample	Sample ID	Depth, feet
	INCITIAL NS				•							
			60 								-	
		Ē										
65 GP-2-1		GP-2-1	-65								1	65—
Boring Terminated at 66.0' BGS.					inated at 66.0' BGS.	Boring Term					-	
			70								-	70—
			75								-	
			L									

Attachment B

Analytical Laboratory Data

June 27, 2007

John Foxwell Ash Creek Associates, Inc. 9615 SW Allen Blvd. Suite 106 Beaverton, OR 97005

RE: Nustar Vancouver Annex

Enclosed are the results of analyses for samples received by the laboratory on 06/12/07 09:05. The following list is a summary of the Work Orders contained in this report, generated on 06/27/07 10:55.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PQF0408	Nustar Vancouver Annex	1126-02

TestAmerica - Portland, OR

el W. Am h

Darrell Auvil, Project Manager

9615 SW Allen Blvd. Suite 106 Beaverton, OR 97005

Project Name: Project Number: Project Manager:

Nustar Vancouver Annex 1126-02 John Foxwell

Report Created: 06/27/07 10:55

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP-1-1	PQF0408-01	Water	06/11/07 17:50	06/12/07 09:05
GP-2-1	PQF0408-02	Water	06/11/07 02:20	06/12/07 09:05

TestAmerica - Portland, OR

Darrell Auvil, Project Manager

9615 SW Allen Blvd. Suite 106

Beaverton, OR 97005

Project Name: Project Number: Project Manager: John Foxwell

Nustar Vancouver Annex 1126-02

Report Created: 06/27/07 10:55

	Gasoline Hydrocarbons per NW TPH-Gx Method TestAmerica - Portland, OR										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
PQF0408-01 (GP-1-1) Water Sampled: 06/11/07 17:50											
Gasoline Range Hydrocarbons	NW TPH-Gx	ND		80.0	ug/l	1x	7060469	06/12/07 10:52	06/12/07 23:45		
Surrogate(s): 4-BFB			93.0%		50 - 150 %	"			"		
PQF0408-02 (GP-2-1)	PQF0408-02 (GP-2-1) Water Sampled: 06/11/07 02:20										
Gasoline Range Hydrocarbons	NW TPH-Gx	ND		80.0	ug/l	1x	7060469	06/12/07 10:52	06/13/07 00:11		
Surrogate(s): 4-BFB			89.2%		50 - 150 %	"			"		

TestAmerica - Portland, OR

Darrell Auvil, Project Manager

Ash Creek Associates, Inc.	Project Name:	Nustar Vancouver Annex	
9615 SW Allen Blvd. Suite 106	Project Number:	1126-02	Report Created:
Beaverton, OR 97005	Project Manager:	John Foxwell	06/27/07 10:55

Diesel and Heavy Range Hydrocarbons per NWTPH-Dx Method with Acid/Silica Gel Cleanup TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQF0408-01 (GP-1-1)		Wa	ter		Sample	ed: 06/1	1/07 17:50			
Diesel Range Organics	NWTPH-Dx	ND		0.238	mg/l	1x	7060663	06/15/07 12:45	06/16/07 09:24	
Heavy Oil Range Hydrocarbons	"	ND		0.476		"		"		
Surrogate(s): 1-Chlorooctadecane			84.6%		50 - 150 %	"			"	
PQF0408-02 (GP-2-1)		Wa	ter		Sample	ed: 06/1	1/07 02:20			
Diesel Range Organics	NWTPH-Dx	ND		0.238	mg/l	1x	7060663	06/15/07 12:45	06/16/07 09:43	
Heavy Oil Range Hydrocarbons	"	ND		0.476		"		"		
Surrogate(s): 1-Chlorooctadecane			82.2%		50 - 150 %	"			"	

Surrogate(s): 1-Chlorooctadecane

82.2%

TestAmerica - Portland, OR

Quel W. Amil

Darrell Auvil, Project Manager

9615 SW Allen Blvd. Suite 106

Beaverton, OR 97005

Project Name:	nustar van
Project Number:	1126-02
Project Manager:	John Foxwell

Nustar Vancouver Annex

Report Created: 06/27/07 10:55

	Volati	le Organic T	Compou estAmerica	i nds pe a - Portla	er EPA and, OR	Metho	d 8260B			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQF0408-01 (GP-1-1)		Wa	ater		Sam	pled: 06/1	1/07 17:50			
Acetone	EPA 8260B	ND		25.0	ug/l	1x	7060607	06/15/07 10:58	06/15/07 16:15	
Benzene	"	ND		1.00		"			"	
Bromobenzene	"	ND		1.00		"			"	
Bromochloromethane	"	ND		1.00		"			"	
Bromodichloromethane	"	ND		1.00		"			"	
Bromoform	"	ND		1.00		"			"	
Bromomethane	"	ND		5.00		"			"	
2-Butanone (MEK)	"	ND		10.0		"			"	
n-Butylbenzene	"	ND		5.00		"			"	
sec-Butylbenzene	"	ND		1.00		"	"	"	"	
tert-Butylbenzene	"	ND		1.00		"	"		"	
Carbon disulfide	"	ND		10.0		"	"		"	
Carbon tetrachloride	"	ND		1.00		"	"		"	
Chlorobenzene	"	ND		1.00		"			"	
Chloroethane	"	ND		1.00		"	"		"	
Chloroform	"	ND		1.00		"			"	
Chloromethane		ND		5.00		"			"	
2-Chlorotoluene	"	ND		1.00		"			"	
4-Chlorotoluene	"	ND		1.00		"			"	
1.2-Dibromo-3-chloropropane	"	ND		5.00		"			"	
Dibromochloromethane	"	ND		1.00		"			"	
1.2-Dibromoethane		ND		1.00		"			"	
Dibromomethane	"	ND		1.00		"	"		"	
1 2-Dichlorobenzene	"	ND		1.00		"			"	
1.3-Dichlorobenzene	"	ND		1.00		"			"	
1 4-Dichlorobenzene	"	ND		1.00		"			"	
Dichlorodifluoromethane	"	ND		5.00		"			"	
1 1-Dichloroethane	"	ND		1.00		"	"		"	
1 2-Dichloroethane	"	ND		1.00		"	"		"	
1 1-Dichloroethene		ND		1.00		"			"	
cis-1 2-Dichloroethene	"	ND		1.00		"			"	
trans-1 2-Dichloroethene	"	ND		1.00		"			"	
1 2-Dichloropropane	"	ND		1.00		"	"		"	
1 3-Dichloropropane	"	ND		1.00		"	"		"	
2 2-Dichloropropane	"	ND		1.00		"			"	
1 1-Dichloropropene	"	ND		1.00		"	"		"	
cis-1 3-Dichloropropene	"	ND		1.00		"			"	
trans-1 3-Dichloropropene	"	ND		1.00		"			"	
Ethylbenzene	"	ND		1.00		"			"	
Hexachlorobutadiene	"	ND		4 00		"			"	
2-Hexanone		ND		10.0		"			"	
Isopronylbenzene	"	ND		2.00		"			"	
100prop idenzene										

TestAmerica - Portland, OR

p-Isopropyltoluene

Charle W. Amil

..

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

ND

"

2.00

"

"

9615 SW Allen Blvd. Suite 106

Beaverton, OR 97005

Project Name: Project Number: 1126-02 Project Manager: John Foxwell

Nustar Vancouver Annex

Report Created: 06/27/07 10:55

Volatile Organic Compounds per EPA Method 8260B TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQF0408-01 ((GP-1-1)			Sample	ed: 06/1	1/07 17:50					
4-Methyl-2-pentanon	ne	EPA 8260B	ND		5.00	ug/l	1x	7060607	06/15/07 10:58	06/15/07 16:15	
Methyl tert-butyl et	ther		13.7		1.00	"		"			
Methylene chloride		"	ND		5.00			"		"	
Naphthalene		"	ND		2.00			"		"	
n-Propylbenzene		"	ND		1.00			"		"	
Styrene		"	ND		1.00	"		"		"	
1,1,1,2-Tetrachloroe	thane	"	ND		1.00			"		"	
1,1,2,2-Tetrachloroe	thane	"	ND		1.00			"		"	
Tetrachloroethene		"	ND		1.00			"		"	
Toluene		"	ND		1.00			"		"	
1,2,3-Trichlorobenze	ene	"	ND		1.00	"	"	"		"	
1,2,4-Trichlorobenze	ene	"	ND		1.00			"		"	
1,1,1-Trichloroethan	ne	"	ND		1.00			"		"	
1,1,2-Trichloroethan	ne	"	ND		1.00			"		"	
Trichloroethene			ND		1.00	"		"			
Trichlorofluorometh	ane	"	ND		1.00	"		"		"	
1,2,3-Trichloropropa	ane	"	ND		1.00			"		"	
1,2,4-Trimethylbenz	ene	"	ND		1.00	"		"		"	
1,3,5-Trimethylbenz	zene	"	ND		1.00			"		"	
Vinyl chloride		"	ND		1.00	"	"	"		"	
o-Xylene		"	ND		1.00	"		"		"	
m,p-Xylene		"	ND		2.00		"		"	"	
Surrogate(s):	4-BFB			102%		80 - 120 %	"			"	
	1,2-DCA-d4			97.5%		80 - 120 %	"			"	
	Dibromofluoromethane			99.0%		80 - 120 %	"			"	
	Toluene-d8			100%		80 - 120 %	"			"	

PQF0408-02 (GP-2-1)	Wat		Samj	pled: 06/1	1/07 02:20					
Acetone	EPA 8260B	ND		25.0	ug/l	1x	7060607	06/15/07 10:58	06/15/07 16:42	
Benzene	"	ND		1.00	"		"		"	
Bromobenzene	"	ND		1.00	"		"		"	
Bromochloromethane	"	ND		1.00	"	"	"		"	
Bromodichloromethane	"	ND		1.00	"		"		"	
Bromoform	"	ND		1.00	"		"		"	
Bromomethane	"	ND		5.00	"	"	"		"	
2-Butanone (MEK)	"	ND		10.0	"	"	"		"	
n-Butylbenzene	"	ND		5.00	"		"		"	
sec-Butylbenzene	"	ND		1.00	"	"	"		"	
tert-Butylbenzene	"	ND		1.00	"		"		"	
Carbon disulfide	"	ND		10.0	"		"		"	
Carbon tetrachloride	"	ND		1.00	"		"		"	
Chlorobenzene	"	ND		1.00	"	"			"	

TestAmerica - Portland, OR

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

9615 SW Allen Blvd. Suite 106 Beaverton, OR 97005 Project Name:Nustar VanoProject Number:1126-02Project Manager:John Foxwell

Nustar Vancouver Annex

Report Created: 06/27/07 10:55

Volatile Organic Compounds per EPA Method 8260B TestAmerica - Portland, OR										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQF0408-02 (GP-2-1)		Wa	ater		Sam	pled: 06/1	1/07 02:20			
Chloroethane	EPA 8260B	ND		1.00	ug/l	1x	7060607	06/15/07 10:58	06/15/07 16:42	
Chloroform	"	ND		1.00		"	"	"	"	
Chloromethane	"	ND		5.00		"	"	"	"	
2-Chlorotoluene	"	ND		1.00		"	"		"	
4-Chlorotoluene	"	ND		1.00		"	"		"	
1,2-Dibromo-3-chloropropane	"	ND		5.00		"	"		"	
Dibromochloromethane	"	ND		1.00		"	"		"	
1,2-Dibromoethane	"	ND		1.00		"	"		"	
Dibromomethane	"	ND		1.00		"	"	"	"	
1,2-Dichlorobenzene	"	ND		1.00		"	"		"	
1,3-Dichlorobenzene	"	ND		1.00		"	"		"	
1,4-Dichlorobenzene	"	ND		1.00		"	"		"	
Dichlorodifluoromethane	"	ND		5.00		"	"	"	"	
1,1-Dichloroethane	"	ND		1.00		"	"	"	"	
1,2-Dichloroethane	"	ND		1.00		"	"	"	"	
1,1-Dichloroethene	"	ND		1.00		"	"	"	"	
cis-1,2-Dichloroethene	"	ND		1.00		"	"		"	
trans-1,2-Dichloroethene	"	ND		1.00		"	"	"	"	
1,2-Dichloropropane	"	ND		1.00		"	"	"	"	
1,3-Dichloropropane	"	ND		1.00		"	"	"	"	
2,2-Dichloropropane	"	ND		1.00		"	"	"	"	
1,1-Dichloropropene	"	ND		1.00		"	"	"	"	
cis-1,3-Dichloropropene	"	ND		1.00		"	"	"	"	
trans-1,3-Dichloropropene	"	ND		1.00		"	"	"	"	
Ethylbenzene	"	ND		1.00		"	"	"	"	
Hexachlorobutadiene	"	ND		4.00		"	"	"	"	
2-Hexanone	"	ND		10.0		"	"		"	
Isopropylbenzene	"	ND		2.00		"	"	"	"	
p-Isopropyltoluene	"	ND		2.00		"	"	"	"	
4-Methyl-2-pentanone	"	ND		5.00		"	"		"	
Methyl tert-butyl ether	"	ND		1.00		"	"		"	
Methylene chloride	"	ND		5.00		"	"	"	"	
Naphthalene	"	ND		2.00		"	"	"	"	
n-Propylbenzene	"	ND		1.00		"	"		"	
Styrene	"	ND		1.00		"	"	"	"	
1,1,1,2-Tetrachloroethane	"	ND		1.00		"	"		"	
1,1,2,2-Tetrachloroethane	"	ND		1.00		"	"	"	"	
Tetrachloroethene	"	ND		1.00		"	"	"	"	
Toluene	"	ND		1.00		"	"		"	
1,2,3-Trichlorobenzene	"	ND		1.00		"	"		"	
1,2,4-Trichlorobenzene	"	ND		1.00		"	"		"	
1,1,1-Trichloroethane	"	ND		1.00		"	"		"	

TestAmerica - Portland, OR

1,1,2-Trichloroethane

Samel W. Amil

..

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain $\label{eq:charge}$

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

ND

1.00

..

.,

"

9615 SW Allen Blvd. Suite 106 Beaverton, OR 97005

Project Name: Project Number: 1126-02 Project Manager: John Foxwell

Nustar Vancouver Annex

Report Created: 06/27/07 10:55

Volatile Organic Compounds per EPA Method 8260B TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQF0408-02 (GP-2-1)		Wa	iter		Sampl	ed: 06/1	1/07 02:20			
Trichloroethene	EPA 8260B	ND		1.00	ug/l	1x	7060607	06/15/07 10:58	06/15/07 16:42	
Trichlorofluoromethane	"	ND		1.00		"	"		"	
1,2,3-Trichloropropane	"	ND		1.00		"	"	"	"	
1,2,4-Trimethylbenzene	"	ND		1.00		"	"		"	
1,3,5-Trimethylbenzene	"	ND		1.00		"	"		"	
Vinyl chloride	"	ND		1.00		"	"	"	"	
o-Xylene	"	ND		1.00		"	"		"	
m,p-Xylene	"	ND		2.00		"	"	"	"	
Surrogate(s): 4-BFB			99.5%		80 - 120 %	"			"	
1,2-DCA-d4			98.5%		80 - 120 %	"			"	
Dibromofluoromethar	пе		98.0%		80 - 120 %	"			"	
Toluene-d8			98.0%		80 - 120 %	"			"	

TestAmerica - Portland, OR

Darrell Auvil, Project Manager

Ash Creek Associates, Inc.	Project Name:	Nustar Vancouver Annex
9615 SW Allen Blvd. Suite 106	Project Number:	1126-02

Beaverton, OR 97005

ojec Project Manager: John Foxwell

Report Created: 06/27/07 10:55

Oxygenates by EPA 8260B TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQF0408-01	(GP-1-1)		Wa	iter		Sample	ed: 06/1	1/07 17:50			
Ethanol		SW846 8260B	ND		150	ug/L	1x	7060525	06/13/07 10:04	06/13/07 18:09	
tert-Butyl alcohol		"	ND		25.0	"		"		"	
Ethyl tert-Butyl Eth	ner (ETBE)	"	ND		1.00	"		"			
Diisopropyl Ether (DIPE)	"	ND		1.00	"		"		"	
Methyl tert-butyl	ether	"	12.2		2.00	"		"	"	"	
Tert-Amyl Methyl	Ether	"	ND		1.00			"	"		
Surrogate(s):	1,2-DCA-d4			92%		80 - 120 %	"			"	
0 0	Dibromofluorom	ethane		103%		80 - 120 %	"			"	
	Toluene-d8			99%		80 - 120 %	"			"	
	4-BFB			106%		80 - 120 %	"			"	
PQF0408-02	(GP-2-1)		Wa	nter		Sampl	ed: 06/1	1/07 02:20			
Ethanol		SW846 8260B	ND		150	ug/L	1x	7060525	06/13/07 10:04	06/13/07 18:34	
tert-Butyl alcohol		"	ND		25.0	"		"		"	
Ethyl tert-Butyl Eth	ner (ETBE)	"	ND		1.00	"		"		"	
Diisopropyl Ether (DIPE)	"	ND		1.00	"		"			
Methyl tert-butyl et	ther	"	ND		2.00	"		"			
Tert-Amyl Methyl	Ether	"	ND		1.00		"		"		
Surrogate(s):	1,2-DCA-d4			94%		80 - 120 %	"			"	
	Dibromofluorom	ethane		101%		80 - 120 %	"			"	
	Toluene-d8			100%		80 - 120 %	"			"	

110%

"

80 - 120 %

Toluene-d8 4-BFB

TestAmerica - Portland, OR

Chandle W. Amil

Darrell Auvil, Project Manager

9615 SW Allen Blvd. Suite 106 Beaverton, OR 97005

Project Name: Project Number: Project Manager:

Nustar Vancouver Annex

1126-02

John Foxwell

Report Created: 06/27/07 10:55

Polynuclear Aromatic Compounds per EPA 8270M-SIM TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PQF0408-01	(GP-1-1)		Wa	ter		Sampl	Sampled: 06/11/07 17:50				
Acenaphthene		EPA 8270m	ND		0.0962	ug/l	1x	7060591	06/14/07 17:15	06/22/07 05:19	
Acenaphthylene		"	ND		0.0962		"	"			
Anthracene		"	ND		0.0962		"	"		"	
Benzo (a) anthracen	e	"	ND		0.0962		"	"			
Benzo (a) pyrene		"	ND		0.0962		"	"	"	"	
Benzo (b) fluoranthe	ene	"	ND		0.0962		"	"			
Benzo (ghi) perylen	e	"	ND		0.0962		"	"	"	"	
Benzo (k) fluoranthe	ene	"	ND		0.0962		"	"	"	"	
Chrysene		"	ND		0.0962		"	"			
Dibenzo (a,h) anthra	acene	"	ND		0.192		"	"			
Fluoranthene		"	ND		0.0962		"	"	"	"	
Fluorene		"	ND		0.0962		"	"		"	
Indeno (1,2,3-cd) py	/rene	"	ND		0.0962		"	"	"	"	
Naphthalene		"	ND		0.0962		"	"	"	"	
Phenanthrene		"	ND		0.0962		"	"			
Pyrene			ND		0.0962	"	"	"	"	"	
Surrogate(s):	Fluorene-d10			67.5%		25 - 125 %	"			"	
	Pyrene-d10			51.2%		23 - 150 %	"			"	
	Benzo (a) pyrene-d12			26.7%		10 - 125 %	"			"	

PQF0408-02 ((GP-2-1)		Wa	ter		Sample	ed: 06/1	1/07 02:20		
Acenaphthene		EPA 8270m	ND		0.0962	ug/l	1x	7060591	06/14/07 17:15	06/23/07 00:12
Acenaphthylene		"	ND		0.0962		"	"	"	"
Anthracene		"	ND		0.0962	"	"	"	"	"
Benzo (a) anthracene	e	"	ND		0.0962		"	"	"	"
Benzo (a) pyrene		"	ND		0.0962		"	"	"	"
Benzo (b) fluoranthe	ene	"	ND		0.0962		"	"	"	"
Benzo (ghi) perylene	e	"	ND		0.0962		"	"	"	"
Benzo (k) fluoranthe	ene	"	ND		0.0962		"	"	"	"
Chrysene		"	ND		0.0962		"	"	"	"
Dibenzo (a,h) anthra	icene	"	ND		0.192	"	"	"	"	"
Fluoranthene		"	ND		0.0962	"	"	"	"	
Fluorene		"	ND		0.0962		"	"	"	"
Indeno (1,2,3-cd) py	rene	"	ND		0.0962	"	"	"	"	"
Naphthalene		"	ND		0.0962	"	"	"	"	"
Phenanthrene		"	ND		0.0962	"	"	"	"	"
Pyrene		"	ND		0.0962		"	"		"
Surrogate(s):	Fluorene-d10			70.4%		25 - 125 %	"			"
	Pyrene-d10			54.2%		23 - 150 %	"			"
	Benzo (a) pyrene-d12			24.5%		10 - 125 %	"			"

TestAmerica - Portland, OR

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Ash Creek Associates, Inc.				Project Na	me:	Nustar	Vancou	ver Ar	nnex					
9615 SW Allen Blvd. Suite 106	5			Project Nu	mber:	1126-02							Report Create	d:
Beaverton, OR 97005				Project Ma	mager:	John For	xwell						06/27/07 10:	55
	Gasoline Hy	drocarbor	is per NW T	TPH-Gx	Method - Portland	- Labor d, OR	atory Q	uality	Contro	ol Resul	ts			
QC Batch: 7060469	Water	Preparation	n Method:	EPA 5030	В									
Analyte	Method	Result	MDI	L* MRL	Units	Dil	Source Result	Spiko Amt	e % REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (7060469-BLK1)								Ext	racted:	06/12/07 10):52			
Gasoline Range Hydrocarbons	NW TPH-Gx	ND		80.0	ug/l	1x							06/12/07 13:39	
Surrogate(s): 4-BFB		Recovery:	96.4%	L	imits: 50-1.	50% "							06/12/07 13:39	
LCS (7060469-BS2)								Ext	racted:	06/12/07 10):52			
Gasoline Range Hydrocarbons	NW TPH-Gx	412		80.0	ug/l	1x		500	82.4%	(70-130)			06/12/07 12:21	
Surrogate(s): 4-BFB		Recovery:	100%	L	imits: 50-1.	50% "							06/12/07 12:21	
LCS Dup (7060469-BSD2)								Ext	racted:	06/12/07 10):52			
Gasoline Range Hydrocarbons	NW TPH-Gx	433		80.0	ug/l	1x		500	86.6%	(70-130)	4.97%	6 (35)	06/12/07 12:47	
Surrogate(s): 4-BFB		Recovery:	102%	L	imits: 50-1.	50% "							06/12/07 12:47	
Duplicate (7060469-DUP1)				QC Source	e: PQF034	6-06RE1		Ext	racted:	06/12/07 10):52			
Gasoline Range Hydrocarbons	NW TPH-Gx	18700		800	ug/l	10x	3290				140%	6 (35)	06/12/07 15:08	R3
Surrogate(s): 4-BFB		Recovery:	164%	L	imits: 50-1.	50% 1x							06/12/07 15:08	ZX
Duplicate (7060469-DUP2)				QC Source	e: PQF037	79-05RE1		Ext	racted:	06/12/07 10):52			
Gasoline Range Hydrocarbons	NW TPH-Gx	9340		1600	ug/l	20x	8540				8.95%	6 (35)	06/12/07 19:51	
Surrogate(s): 4-BFB		Recovery:	91.2%	L	imits: 50-1.	50% 1x							06/12/07 19:51	

TestAmerica - Portland, OR

Darrell Auvil, Project Manager

Ash Creek Associates, Inc.				Project Nar	ne:	Nustar	Vancou	ver Ar	inex						
9615 SW Allen Blvd. Suite 106	6			Project Nur	nber:	1126-02							Report Create	ed:	
Beaverton, OR 97005				Project Mar	nager:	John Foxwell 06/27/07 10:55									
Diesel and Heavy Ran	ge Hydrocar	bons per l	NWTPH-D	x Method	with Ac	id/Silica	Gel Clea	anup ·	- Lab	oratory	Quali	ty Con	trol Results		
			Te	estAmerica -	Portland	, OR									
QC Batch: 7060663	Water I	Preparation	n Method:	EPA 3510 I	Fuels										
Analyte	Method	Result	MDL	* MRL	Units	Dil	Source Result	Spiko Amt	e % REC	(Limits)	% RPD	(Limits) Analyzed	Notes	
Blank (7060663-BLK1)								Ext	racted:	06/15/07 12	:45				
Diesel Range Organics	NWTPH-Dx	ND		0.250	mg/l	1x							06/15/07 18:42		
Heavy Oil Range Hydrocarbons		ND		0.500	"										
Surrogate(s): 1-Chlorooctadecane		Recovery:	81.4%	Lii	mits: 50-15	0% "							06/15/07 18:42		
LCS (7060663-BS1)								Ext	racted:	06/15/07 12	:45				
Diesel Range Organics	NWTPH-Dx	2.57		0.250	mg/l	1x		2.58	99.6%	(50-150)			06/15/07 19:00		
Heavy Oil Range Hydrocarbons		1.71		0.500	"			1.56	110%						
Surrogate(s): 1-Chlorooctadecane		Recovery:	69.3%	Lii	mits: 50-15	0% "							06/15/07 19:00		
LCS Dup (7060663-BSD1)								Ext	racted:	06/15/07 12	:45				
Diesel Range Organics	NWTPH-Dx	2.57		0.250	mg/l	1x		2.58	99.6%	(50-150)	0.00%	5 (50)	06/15/07 19:34		
Heavy Oil Range Hydrocarbons	"	1.69		0.500	"			1.56	108%	"	1.18%	. "			
Surrogate(s): 1-Chlorooctadecane		Recovery:	68.6%	Lii	mits: 50-15	0% "							06/15/07 19:34		

TestAmerica - Portland, OR

Darrell Auvil, Project Manager

9615 SW Allen Blvd. Suite 106

Beaverton, OR 97005

Project Name: Project Number: Project Manager:

Nustar Vancouver Annex 1126-02

John Foxwell

Report Created: 06/27/07 10:55

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results TestAmerica - Portland, OR QC Batch: 7060607 Water Preparation Method: EPA 5030B Spike Source 0/ Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes (Limits) RPD REC Result Amt Blank (7060607-BLK1) Extracted: 06/15/07 09:58 06/15/07 13:06 EPA 8260B 25.0 Acetone ND --ug/l 1x ------ND 1.00 Benzene ---.. ND 1.00 ... Bromobenzene -----------.. ... Bromochloromethane ND 1.00 -----------------... Bromodichloromethane ND 1.00 ------------.. Bromoform ND 1.00 Bromomethane ND 5.00 --------2-Butanone (MEK) ND 10.0 ---------------n-Butylbenzene ND 5.00 ____ ----sec-Butylbenzene ND 1.00 --tert-Butylbenzene ND 1.00 -----------Carbon disulfide ND 10.0 -----------------Carbon tetrachloride ND ____ 1.00 ___ ___ ___ ---Chlorobenzene ND 1.00 ---Chloroethane ND 1.00 -----------Chloroform ND 1.00 ____ ------Chloromethane ND 5.00 --------2-Chlorotoluene ND 1.00 ------------------4-Chlorotoluene ND 1.00 ---------1,2-Dibromo-3-chloropropane ND 5.00 ---____ Dibromochloromethane ND 1.00 ------1.00 1.2-Dibromoethane ND ____ --------------Dibromomethane ND 1.00 ---1,2-Dichlorobenzene ND 1.00 ---1.3-Dichlorobenzene ND 1.00 ---------------1,4-Dichlorobenzene ND ---1.00 -------------Dichlorodifluoromethane ND 5.00 ------1,1-Dichloroethane ND 1.00 1.00 1,2-Dichloroethane ND ----------------1,1-Dichloroethene ND 1.00 --___ --------cis-1,2-Dichloroethene ND 1.00 --trans-1.2-Dichloroethene ND 1.00 ---------------____ 1,2-Dichloropropane ND ---1.00 ---------------1,3-Dichloropropane ND 1.00 ____ ____ ------ND 2,2-Dichloropropane 1.00 ---ND 1.00 1.1-Dichloropropene ------------

TestAmerica - Portland, OR

cis-1,3-Dichloropropene

Ethylbenzene

trans-1,3-Dichloropropene

handle W. Amil

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain

-- --

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

1.00

1.00

1.00

ND

ND

ND

9615 SW Allen Blvd. Suite 106

Beaverton, OR 97005

Project Name: Project Number: Project Manager:

Nustar Vancouver Annex 1126-02

John Foxwell

Report Created: 06/27/07 10:55

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results TestAmerica - Portland, OR QC Batch: 7060607 Water Preparation Method: EPA 5030B Spike Source 0/ % RPD Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed Notes REC Result Amt Blank (7060607-BLK1) Extracted: 06/15/07 09:58 EPA 8260B 06/15/07 13:06 Hexachlorobutadiene ND 4.00 --ug/l 1x ---_ ---___ ---2-Hexanone ND 10.0 .. ------.. ... Isopropylbenzene ND 2.00 ------------p-Isopropyltoluene ND 2.00 -----------------.. 4-Methyl-2-pentanone ND 5.00 ------------.. Methyl tert-butyl ether ND 1.00 ... Methylene chloride ND 5.00 -----------Naphthalene ND 2.00 -------------n-Propylbenzene ND 1.00 --------ND 1.00 ---Styrene 1,1,1,2-Tetrachloroethane ---ND 1.00 --------1,1,2,2-Tetrachloroethane ND 1.00 ------------------Tetrachloroethene ND ___ 1.00 ---___ ------------Toluene ND 1.00 ---1.00 1 2 3-Trichlorobenzene ND ----------------1,2,4-Trichlorobenzene ND 1.00 ------____ ---ND 1.00 1,1,1-Trichloroethane ------------ND 1.00 .. 1.1.2-Trichloroethane -----------------.. 1.00 Trichloroethene ND ---------------Trichlorofluoromethane ND 1.00 ---------

Vinyl chloride 1.00 ND ---1.00 ND --o-Xylene --------------2.00 m,p-Xylene ND ------------------06/15/07 13.06 Surrogate(s): 4-BFB Recovery: 96.5% Limits: 80-120% " 1,2-DCA-d4 96.0% 80-120% " 80-120% " Dibromofluoromethane 95.0% . " Toluene-d898.5% 80-120%

1.00

1.00

1.00

ND

ND

ND

TestAmerica - Portland, OR

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

--

-- --

9615 SW Allen Blvd. Suite 106

Beaverton, OR 97005

Project Name: Project Number: Project Manager: John Foxwell

Nustar Vancouver Annex 1126-02

Report Created: 06/27/07 10:55

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results TestAmerica - Portland, OR QC Batch: 7060607 Water Preparation Method: EPA 5030B Source Spike 0/ % RPD Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed Notes REC Result Amt LCS (7060607-BS1) Extracted: 06/15/07 09:58 EPA 8260B 22.0 06/15/07 10:48 1.00 20.0 110% Benzene --ug/l 1x ---(80-120) ---Chlorobenzene .. 21.5 1.00 108% (80-124) ____ ---.. 20.2 1.00 1,1-Dichloroethene 101% (78-120) -----.. 21.2 1.00 ... Toluene 106% (80-124) ------------.. .. Trichloroethene 20.4 1.00 ------102% (80-132) ------Surrogate(s): 4-BFB Recovery: 100% Limits: 80-120% 06/15/07 10:48 1.2-DCA-d4 96.5% 80-120% Dibromofluoromethane 100% 80-120% " Toluene-d8 97.0% 80-120% QC Source: PQF0490-01 Matrix Spike (7060607-MS1) Extracted: 06/15/07 09:58 Benzene EPA 8260B 20.8 1.00 ug/l 1x 0.100 20.0 104% (80-124) 06/15/07 11:18 ---Chlorobenzene .. 20.6 1.00 .. ND ., 103% (72.9-134)1,1-Dichloroethene 18.7 1.00 ND 93.5% (79.3-127)------Toluene 20.7 1.00 0 170 103% (79.7-131)------Trichloroethene 184 1.00 ND 92.0% (68.4-130) ---4-BFB 100% Limits: 80-120% 06/15/07 11:18 Surrogate(s): Recovery: 1.2-DCA-d4 95 5% 80-120% Dibromofluoromethane 98.5% 80-120% Toluene-d8 100% 80-120% Matrix Spike Dup (7060607-MSD1) QC Source: PQF0490-01 Extracted: 06/15/07 09:58 Benzene EPA 8260B 20.3 1.00 ug/l $1 \mathbf{x}$ 0.100 20.0 101% (80-124) 2.43% (25) 06/15/07 11:45 Chlorobenzene .. 19.9 1.00 ND ., 99.5% (72.9-134) 3.46% ---.. ... 1.1-Dichloroethene 18.6 1.00 ND 93.0% (79.3-127) 0.536% ---., Toluene 19.8 ----1.00 0.170 98.2% (79.7-131) 4.44% " Trichloroethene " 18.1 ____ 1.00 " .. ND ., 90.5% (68.4-130) 1.64% " .. 06/15/07 11:45 4-BFB Limits: 80-120% " Surrogate(s): 96.0% Recovery: 1,2-DCA-d4 93.5% 80-120% Dibromofluoromethane 95.0% 80-120%

80-120%

"

TestAmerica - Portland, OR

Jule W. Amil Darrell Auvil, Project Manager

Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

93.5%

9615 SW Allen Blvd. Suite 106

Beaverton, OR 97005

 Project Name:
 Nustar Van

 Project Number:
 1126-02

 Project Manager:
 John Foxwell

Nustar Vancouver Annex

Report Created: 06/27/07 10:55

		(Oxygenates	by EPA 82 Test	60B - La tAmerica -	aboratory Portland, Ol	Qual i R	ity Contr	ol Res	ults					
QC Batcl	1: 7060525	Water	Preparation	Method: E	PA 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (706052	5-BLK1)								Extr	acted:	06/13/07 10):04			
1,2-Dibromoethane		SW846 8260B	ND		0.500	ug/L	1x							06/13/07 13:38	
1,2-Dichloroethane			ND		0.500	"	"							"	
Ethanol			ND		150	"	"								
tert-Butyl alcohol		"	ND		25.0	"	"								
Ethyl tert-Butyl Ethe	r (ETBE)	"	ND		1.00	"	"								
Diisopropyl Ether (D	IPE)	"	ND		1.00	"	"								
Methyl tert-butyl ethe	er	"	ND		2.00	"	"								
Tert-Amyl Methyl Et	her	"	ND		1.00	"	"								
Benzene		"	ND		0.200	"	"								
Toluene		"	ND		0.500	"	"								
Ethylbenzene		"	ND		0.500	"	"								
Xylenes (total)		"	ND		1.00	"									
Naphthalene		"	ND		2.00	"									
1,2,4-Trimethylbenze	ene	"	ND		1.00	"									
1,3,5-Trimethylbenze	ene	"	ND		0.500	"									
Isopropylbenzene		"	ND		2.00	"	"								
n-Propylbenzene		"	ND		0.500	"	"							"	
Surrogate(s):	1,2-DCA-d4		Recovery:	92%	Lin	nits: 80-120%	"							06/13/07 13:38	
0 ()	Dibromofluoromethane		-	97%		80-120%	"							"	
	Toluene-d8			98%		80-120%	"							"	
	4-BFB			112%		80-120%	"							"	
LCS (7060525	-BS1)								Extr	acted:	06/13/07 10):04			
1,2-Dibromoethane		SW846 8260B	18.8		0.500	ug/L	1x		20.0	94%	(80-140)			06/13/07 11:34	
1,2-Dichloroethane		"	17.4		0.500	"	"		"	87%	(80-130)				
Ethanol		"	162		150	"			200	81%	(70-130)				
tert-Butyl alcohol		"	176		25.0	"	"		"	88%	"				
Ethyl tert-Butyl Ethe	r (ETBE)	"	16.4		1.00	"			20.0	82%	"				
Diisopropyl Ether (D	IPE)	"	16.3		1.00	"			"	82%	"				
Methyl tert-butyl etho	er	"	31.8		2.00	"			40.0	80%	(80-135)				
Tert-Amyl Methyl Et	her		18.5		1.00	"			20.0	92%	(70-130)				
Benzene		"	19.1		0.200	"			"	96%	(80-125)				
Toluene		"	19.5		0.500	"			"	98%	(80-120)				
Ethylbenzene		"	21.4		0.500	"	"		"	107%	(80-130)				
Xylenes (total)		"	66.8		1.00				60.0	111%	"				
Naphthalene		"	20.3		2.00				20.0	102%	(70-150)				
1,2,4-Trimethylbenze	ene	"	22.0		1.00				"	110%	(75-125)				
1,3,5-Trimethylbenze	ene	"	22.8		0.500				"	114%	(70-140)				

TestAmerica - Portland, OR

Isopropylbenzene

And W. Amil

"

22.0

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

-- --

without the written approval of the laboratory.

2.00

..

"

110% (80-130)

Ash Creek Associates, Inc. **Nustar Vancouver Annex** Project Name: 1126-02 9615 SW Allen Blvd. Suite 106 Project Number: Report Created: Beaverton, OR 97005 Project Manager: John Foxwell 06/27/07 10:55 **Oxygenates by EPA 8260B** - Laboratory Quality Control Results TestAmerica - Portland, OR QC Batch: 7060525 Water Preparation Method: EPA 5030B Source Spike 0/ Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed Notes RPD REC Result Amt LCS (7060525-BS1) Extracted: 06/13/07 10:04 SW846 21.9 0 500 06/13/07 11:34 1x ---20.0 110% n-Propylbenzene --ug/L (80-130) --8260B 1.2-DCA-d4 90% Limits: 80-120% 06/13/07 11:34 Surrogate(s): Recovery: Dibromofluoromethane 97% 80-120% Toluene-d8 100% 80-120% 4-BFB 108% 80-120% Matrix Spike (7060525-MS1) QC Source: PQF0310-04 Extracted: 06/13/07 10:04 19.2 SW846 0.500 ug/L (80-125) 06/13/07 11:59 1.2-Dibromoethane 1x ND 20.0 96% --------8260B 176 1 2-Dichloroethane ---0.500 ND 88% (75 - 120)---Ethanol 165 150 ND 200 82% (70-130) ____ ---" tert-Butyl alcohol 173 25.0 ND 86% Ethyl tert-Butyl Ether (ETBE) 16.9 1.00 ND 84% 20.0 ------Diisopropyl Ether (DIPE) 17.0 ---1.00 ND 85% ------Methyl tert-butyl ether 32.6 2.00 ND 40.0 82% (75-130) Tert-Amyl Methyl Ether 19.0 1.00 ND 20.0 95% (70-130) Benzene 22.0 0.200 2.42 98% (75 - 125)Toluene 199 0 500 ND 100% (80-120) Ethylbenzene 22.8 0.500 0.200 ., 113% (75-125) Xylenes (total) 71.1 1.00 ND 118% (70-130) 60.0 Naphthalene 20.7 2.00 ND 20.0 104% (65 - 150)1,2,4-Trimethylbenzene 233 1.00 ND 116% (85-135) 24.2 0.500 ND 1,3,5-Trimethylbenzene 121% (70-140) 24.2 2.00 Isopropylbenzene 0.640 118% (80-130) --------n-Propylbenzene 24.2 0.500 1.03 116% Surrogate(s): 1,2-DCA-d4 90% Limits: 80-120% 06/13/07 11:59 Recovery. " 100% Dibromofluoromethane 80-120% 100% 80-120% Toluene-d8 4-BFB 110% 80-120% QC Source: PQF0310-04 Extracted: 06/13/07 10:04 Matrix Spike Dup (7060525-MSD1) SW846 5% 1,2-Dibromoethane 20.1 0.500 ug/L 1x ND 20.0 100% (80-125) (25) 06/13/07 12:24 8260B 1,2-Dichloroethane 18.4 0.500 ND 92% (75 - 120)4% .. Ethanol 169 150 ND 200 84% (70-130) 2% ., ... tert-Butyl alcohol 200 25.0 ND 100% 14% Ethyl tert-Butyl Ether (ETBE) 174 ---1.00 ND 20.0 87% 3% Diisopropyl Ether (DIPE) 17.5 ____ 1.00 ND 88% 3% Methyl tert-butyl ether 34.4 2.00 ... ND 40.0 86% (75 - 130)5% ---19.8 1.00 Tert-Amvl Methyl Ether ---ND 20.0 99% (70 - 130)4% Benzene 223 ---0.200 2 4 2 99% (75-125) 1%

TestAmerica - Portland, OR

Danel W. Amil

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

9615 SW Allen Blvd. Suite 106

Beaverton, OR 97005

Project Name: Project Number: Project Manager: John Foxwell

Nustar Vancouver Annex 1126-02

Report Created: 06/27/07 10:55

Oxygenates by EPA 8260B - Laboratory Quality Control Results TestAmerica - Portland, OR																
QC Batcl	n: 7060525	Water	Preparation N	lethod: EI	PA 5030B											
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes	
Matrix Spike D	Aatrix Spike Dup (7060525-MSD1) QC Source: PQF0310-04							Extracted: 06/13/07 10:04								
Toluene		SW846 8260B	19.9		0.500	ug/L	1x	ND	20.0	100%	(80-120)	0%	(25)	06/13/07 12:24		
Ethylbenzene		"	22.8		0.500	"	"	0.200	"	113%	(75-125)	0%	"			
Xylenes (total)		"	70.3		1.00	"		ND	60.0	117%	(70-130)	1%	"	"		
Naphthalene		"	21.6		2.00			ND	20.0	108%	(65-150)	4%	"			
1,2,4-Trimethylbenze	ene	"	22.7		1.00			ND	"	114%	(85-135)	3%	"			
1,3,5-Trimethylbenze	ene	"	24.0		0.500			ND	"	120%	(70-140)	0.8%	"			
Isopropylbenzene		"	23.8		2.00			0.640	"	116%	(80-130)	2%	"			
n-Propylbenzene		"	24.0		0.500	"	"	1.03	"	115%		0.8%	"	"		
Surrogate(s):	1,2-DCA-d4		Recovery:	95%	Lin	nits: 80-120%	"						-	06/13/07 12:24		
	Dibromofluoromethane			99%		80-120%	"							"		
	Toluene-d8		1	00%		80-120%	"							"		
	4-BFB		1	12%		80-120%	"							"		

TestAmerica - Portland, OR

Darrell Auvil, Project Manager

9615 SW Allen Blvd. Suite 106

Beaverton, OR 97005

Project Name: Project Number: Project Manager:

Nustar Vancouver Annex 1126-02

John Foxwell

Report Created: 06/27/07 10:55

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results TestAmerica - Portland, OR

QC Batc	h: 7060591	Water l	Preparation	n Method: 35	20B Liq-	Liq													
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes				
Blank (706059	91-BLK1)								Extracted: 06/14/07 17:15										
Acenaphthene		EPA 8270m	ND		0.100	ug/l	1x							06/22/07 19:03					
Acenaphthylene			ND		0.100	"								"					
Anthracene			ND		0.100	"								"					
Benzo (a) anthracene	e		ND		0.100	"								"					
Benzo (a) pyrene			ND		0.100	"													
Benzo (b) fluoranthe	ne		ND		0.100	"													
Benzo (ghi) perylene			ND		0.100	"													
Benzo (k) fluoranthe	me		ND		0.100	"													
Chrysene			ND		0.100	"													
Dibenzo (a,h) anthra	cene		ND		0.200	"													
Fluoranthene			ND		0.100	"								"					
Fluorene			ND		0.100	"								"					
Indeno (1,2,3-cd) py	rene		ND		0.100	"								"					
Naphthalene			ND		0.100	"													
Phenanthrene			ND		0.100	"													
Pyrene		"	ND		0.100		"												
Surrogate(s):	Fluorene-d10		Recovery:	71.6%	Lin	nits: 25-1259	% "							06/22/07 19:03	!				
	Pyrene-d10			80.0%		23-150	% "							"					
	Benzo (a) pyrene-d12			76.8%		10-125	% "							"					
LCS (7060591	-BS1)								Ext	acted:	06/14/07 17	:15							
Acenaphthene		EPA 8270m	1.81		0.100	ug/l	1x		2.50	72.4%	(26-135)			06/22/07 19:38					
Benzo (a) pyrene			2.06		0.100	"			"	82.4%	(38-137)								
Pyrene		"	1.92		0.100	"	"		"	76.8%	(33-133)			"					
Surrogate(s):	Fluorene-d10		Recovery:	72.4%	Lin	nits: 25-1259	% "							06/22/07 19:38	2				
	Pyrene-a10 Benzo (a) pyrene-d12			72.8%		23-130 10-125	% % "							"					
LCS Dup (700	60591-BSD1)								Ext	acted:	06/14/07 17	:15							
Acenaphthene		EPA 8270m	1.87		0.100	ug/l	1x		2.50	74.8%	(26-135)	3.26%	6 (60)	06/22/07 20:14					
Benzo (a) pyrene			2.04		0.100	"			"	81.6%	(38-137)	0.9769	% "	"					
Pyrene		"	1.98		0.100	"	"		"	79.2%	(33-133)	3.08%	6 "						
Surrogate(s):	Fluorene-d10		Recovery:	72.8%	Lin	nits: 25-1259	% "							06/22/07 20:14	!				
	Pyrene-d10			78.8%		23-150	% "							"					
	Benzo (a) pyrene-d12			78.4%		10-125	% "							"					

TestAmerica - Portland, OR

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Ash Cree	k A	ssociates, Inc.	Project Name:	Nustar Vancouver Annex	
9615 SW	Alle	n Blvd. Suite 106	Project Number:	1126-02	Report Created:
Beavertor	n, OF	R 97005	Project Manager:	John Foxwell	06/27/07 10:55
		Ν	lotes and Definit	ions	
Report S	peci	fic Notes:			
R3	-	The RPD exceeded the acceptance limit due to sample	ple matrix effects.		
ZX	-	Due to sample matrix effects, the surrogate recovery	y was outside the acc	eptance limits.	
	_				
Laborato	ry R	Leporting Conventions:			
DET	-	Analyte DETECTED at or above the Reporting Limit.	. Qualitative Analyse	es only.	
ND	-	Analyte NOT DETECTED at or above the reporting la	imit (MDL or MRL,	as appropriate).	
NR/NA	-	Not Reported / Not Available			
dry	-	Sample results reported on a Dry Weight Basis. Resu	lts and Reporting Lir	nits have been corrected for Percent Dry Weight.	
wet	-	Sample results and reporting limits reported on a Wet on a Wet Weight Basis.	Weight Basis (as rec	eived). Results with neither 'wet' nor 'dry' are reported	1
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs calcul	lated using Results, n	ot Percent Recoveries).	
MRL	-	METHOD REPORTING LIMIT. Reporting Level at,	, or above, the lowest	level standard of the Calibration Table.	
MDL*	-	METHOD DETECTION LIMIT. Reporting Level at, *MDLs are listed on the report only if the data has been as Estimated Results.	, or above, the statisti en evaluated below th	cally derived limit based on 40CFR, Part 136, Append ne MRL. Results between the MDL and MRL are repo	lix B. orted
Dil	-	Dilutions are calculated based on deviations from the found on the analytical raw data.	standard dilution per	formed for an analysis, and may not represent the dilut	tion

- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic
 Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

 Signature
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Portland, OR

Chandle W. Amil Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

www.testamericainc.com

Test/Merica ANALYTICAL TESTING CORPORATION

11720 North Creek Pkwy N Suite 400, Bothell. WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 425-420-9200
 FAX 420-9210

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 907-563-9200
 FAX 563-9210

ANAL	TICAL IESTING	5 CURPORAIN	Л															$-\Omega \sim$		~~
	DDY REPORT										Work Order #: 147443									
CLIENT: ASH CHE	Sr.					INVOICE TO:									TURNAROUND REQUEST					
REPORT TO: Bons 6	- valen					s -								in Business Days *						
ADDRESS: 9615 20	Aum BI	ve, Suitcle	.			ンチャモ									Organic & Inorganic Analyses					
Beautin,	or 9700	5																		
PHONE 33 764. 7704	FAX: 503.C	104,4107												510.	Petroleum	Hydrocarbon /	Analyses	ı İ		
PROJECT NAME: VANCOUN	CTNAME: VANCOWER Anno (Mistro)						PRESERVATIVE									길 (土)	3 2	<1]	
PROJECT NUMBER: 1124 Here Here						Hue		DEOLIEG		ALVERS							TUED			
						1	<	REQUES	IED AN	ALYSES			T	1	T	* Turnarouna	Requests la	Specify:	may incur R	ush Charges
SAMPLED BY: 4.5ch	neon			主日	n #	1 4	- 7	Í£ ≱									incynesis ie			
CLIENT SAMPLE IDENTIFICATION	SAM DATH	PLING E/TIME	128	5×0	F	Half 2	5.50	NA P								MATRIX (W, S, O)	# OF CONT.	LOCAT COMM	FION / ENTS	TA WO ID
G1P-1-1	6/1102	1750	×	R	ø	حر	£	x								Ŵ	8	TPH	7	
GP-2-1	6/1/07	2020	8	~	ø	R		X			_					Ŵ	8	19/511	4	
3		3	_															ch	anyo	
-																				
4																				
5														ļ						
6															-					
7																				
8																				+
9																				
10 A S Find			Į	İ	İ	1.5.77	6117	101-		BLOUNT	N 10	<u> </u>	<u> </u>	11	n			i	DATE	
	~	FIRM: A.		.le		TIME		<		PRINT NAP	ан // ў	114	1.10			FIRM	I A	ĩ	TIME.	1 00
RELEASED BY:			MOM			DATE	<u> </u>	دي /		RECEIVED	BY: U		\hookrightarrow	 (41.		/ #1	-1	DATE:	
PRINT NAME:		FIRM:				TIME	1			PRINT NA	ME:					FIRM	:		TIME:	
ADDITIONAL REMARKS:																		I S	PAGE	OF
VOC KEV 09/2004							à											190	1	

	Tes	tAmerica Sample I	Receipt Checklist
Received by:	Unpacked by:	Logged-in by:	Work Order No. PGFC408
*(section A)	*(section B)		Client: ASH CICERE
Date: <u>U-12</u>	Date: UTL	Date: 6-12	Project: NUSTAV-VANCOVEN
Time $\underline{(4, 1)^{c}}$	Initials:	Initials:	XIMMS
Initials:			Temperature out of range:
I \	-		No ice ice Melted
***ESI Clients (see Section C)		0.	
	Cooler Temperature	(IR): <u>-4-</u> C plastic (plass NA (oil/air samples, ESI client)
A Custody Seals: (#)		В
			Sample Status:
Signature: Y N Dated:	Receive	ed from:	(If N circled, see NOD)
None		TA Courier	General:
Container Type:			Intact? $(Y) = N$
#Cooler(s))		# Containers Match COC2
#Box(s)		K Fed Ex M	# containers watch coc?
None (#Other:)	K Client	IDs Match COC? Y N
Coolect Turci		TDP	For Analyses Requested:
<u>coolant Type</u> .		DHL	Correct Type & Preservation?
		SDS	Adequate Volume?
		Mid-Valley	Within Hold Time? N
		GS/TA	<u>Volatiles</u> :
Packing Material:		GS/Senvoy	VOAs Free of Headspace?
Bubble Ba	gs	Other:	TB on COC? (not provided Y N NA
Styrofoam	Cubbies		Metals:
None (_Other:)		HNO3 Preserved? Y N NA
C ***ESI Clients Only:	- · · · · · · · · · · · · · · · · · · ·		Army Corp: Geiger (ticks/min):
Temperature Blank:	°C not provided		Temperatures (IR) [·] °C °C °C °C
All preserved bot	ttles checked Y N	NA (voas/soils/all unp.)	(left) (middle) (right) (air)
All preserved acc	cordingly? Y N (see N	IOD) NA (voas/soils/all unp.)	
Comments		Project	Managers:
Comments		PM Reviewed:	(Initial/Data)
		· · · · · · · · · · · · · · · · · · ·	