Groundwater Monitoring Report December 2019

Coleman Oil Company Facility 3 East Chehalis Street Wenatchee, Washington

Prepared for:
Coleman Oil Company

335 Mill Road Lewiston, Idaho 83501

March 12, 2020

Prepared by:

HydroCon, LLC 314 W 15th Street, Suite 300, Vancouver, Washington 98660 Phone: (360) 703-6079 Fax: (360) 703-6086 www.hydroconllc.net

Groundwater Monitoring Report – December 2019

Coleman Oil Company Facility 3 East Chehalis Street Wenatchee, Washington

Prepared for: Coleman Oil Company 335 Mill Road Lewiston, Idaho 83501

HydroCon Project No: 2017-074

Prepared by:

Craig Hultgren, LHG Principal Geologist Hydrogeologist 1809
CRAIG HULTGREN

Table of Contents

1.0	INTRODUCTION		
	1.1	Document Organization	1
2.0	BACKGROUND INFORMATION		2
	2.1	Site Description	2
	2.2	Site History	2
	2.3	Remedial Measures	
	2.4	Geologic & Hydrogeologic Setting	4
	2.5	Hydraulic Testing	4
	2.6	Previous Groundwater Monitoring	5
	2.7	Monitoring Well Identification	6
3.0	FIELD WORK		
	3.1	Groundwater Sampling Procedures	7
	3.2	Laboratory Analysis	8
4.0	GROUNDWATER MONITORING RESULTS		
	4.1	Groundwater Conditions	9
	4.2	Groundwater Sampling Results	9
	4.3	Field Parameters	10
	4.4	Data Quality Review	11
5.0	DISCUSSION		12
	5.1	Discussion of Laboratory Results	12
	5.2	Trends in GRPH and DRPH Concentrations in Groundwater	12
	5.3	Extent of Groundwater Contamination	14
	5.3.1	Diesel Range Petroleum Hydrocarbons	14
	5.3.2	Gasoline Range Petroleum Hydrocarbons	15
6.0	FUTU	RE MONITORING SCHEDULE	16
	6.1	Daily Columbia River Level and Water Level Measurements	16
	6.2	Weekly to Monthly Water Level and Product Thickness Measurements	16
	6.3	Planned Modification to the Remediation System	16
	6.4	Future Groundwater Sampling	16
7.0	QUAL	.IFICATIONS	17
8.0	REFE	RENCES	18
	FIGUR	ES	19

List of Figures

- Figure 1 Site Location Map
- Figure 2 Site Features Map
- Figure 3 Groundwater Elevation Contour Plot for December 19, 2019
- Figures 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h Trend Plots
- Figure 5 DRPH in Groundwater for December 2019
- Figure 6 GRPH in Groundwater for December 2019

List of Tables

- Table 1 Well Construction Details
- Table 2 Depth to Water and Groundwater Elevation
- Table 3 Summary of Groundwater Analytical Results Fuels and VOCs
- Table 4 Historical Groundwater Analytical Results PAHs
- Table 5 Summary of Groundwater Analytical Results Geochemical Parameters
- Table 6 Vertical Groundwater Gradients
- Table 7 Statistical Analysis Trends of GRPH and DRPH in Groundwater
- Table 8 List of Wells to be Sampled and Associated Laboratory Analyses

Appendices

- Appendix A Groundwater Sample Collection Forms
- Appendix B Laboratory Report and Chain-of-Custody Documentation
- Appendix C Data Quality Review Reports
- Appendix D Water Level and Product Thickness Measurements Form

Acronyms

amsl above mean sea level bgs below ground surface

BNSF Burlington Northern – Santa Fe Railroad

COC Chemical of Concern
Coleman Oil Coleman Oil Company

DRPH diesel range petroleum hydrocarbons Ecology Washington Department of Ecology

EDB 1,2-dibromoethane EDC 1,2-dichloroethane

EEC Environmental Engineering & Consulting, Inc.

EPA Environmental Protection Agency

GRPH gasoline range petroleum hydrocarbons

HydroCon Environmental LLC

μg/L micrograms per liter

LCS/LCSD Laboratory Control Sample/ Laboratory Control

Sample Duplicates

LNAPL light nonaqueous-phase liquid

MDL method detection limit

MRL method reporting limit

MTBE Methyl tert-butyl ether

MTCA Model Toxics Control Act

MNA monitored natural attenuation

ORPH oil range petroleum hydrocarbons

PAHs polynuclear aromatic hydrocarbons

PID photoionization detector

EXECUTIVE SUMMARY

This Groundwater Monitoring Report provides the scope and findings of groundwater monitoring that was performed in December 2019. This monitoring event was performed to assess groundwater quality at the Site following the completion of the Supplemental Remedial Investigation (SRI) in 2019 as well as to document the direction and gradient of groundwater flow and groundwater contaminant levels.

Routine groundwater monitoring will continue for the foreseeable future until a reduced monitoring schedule is approved by the Washington State Department of Ecology (Ecology). Groundwater monitoring included the following tasks and reporting:

- Due to freezing weather conditions, HydroCon did not turn off the pumps at the nine pumping wells (MW09R, MW10R, BH01R, MW17, MW24, MW28, MW29, MW30 and MW32) to allow water levels to equilibrate prior to sampling. This has been the standard protocol used at the site so that water levels can be measured in the aquifer under static conditions. HydroCon turned the pump off at each individual pumping well to collect a water sample and then turned the pump back on after the sample was collected. This process was repeated for each pumping well.
- As discussed above, HydroCon was unable to obtain static water level measurements. A
 round of water level measurements was collected after groundwater sampling was
 completed on December 19, 2019. These measurements were taken with the pumping
 wells being active. A groundwater elevation contour plot of this data set is included in
 Figure 3.
- Collect groundwater samples for chemical analysis at selected wells listed on Table 6.
- Review the laboratory results and perform a data validation review and summary.
- Compile the depth to water, product level information, and analytical data into summary tables and figures.
- Prepare a discussion on the laboratory results, groundwater flow direction and gradient, trends in groundwater chemistry, and the extent of gasoline range petroleum hydrocarbons (GRPH) and diesel range petroleum hydrocarbons (DRPH) contamination in groundwater at the site.
- Update the tentative schedule of future groundwater monitoring events.

1.0 INTRODUCTION

HydroCon Environmental, LLC (HydroCon), has prepared this Groundwater Monitoring Report on behalf of Coleman Oil Company (Coleman Oil) to assess groundwater quality following the 2017 release of renewable diesel (R99) fuel from leaking underground piping at the Coleman Oil fuel storage facility at 3 Chehalis Street in Wenatchee, Washington (herein referred to as the Property). This report has been prepared to meet the requirements of Exhibit B – Scope of Work and Schedule of Agreed Order No. DE 15389 entered into by Coleman Oil Company, LLC; Coleman, Services IV, LLC; and Ecology with an effective date of October 30, 2017 (Agreed Order).

The Site, as defined under the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Chapter 173-340 of the Washington Administrative Code (WAC §173-340-200), comprises the portion of the Property and adjacent properties where hazardous substances have come to be located in soil, groundwater, and surface water at concentrations suspected to exceed applicable cleanup levels as a result of releases at the Property (herein referred to as the Site).

1.1 **Document Organization**

The Groundwater Monitoring Report is organized as follows:

Section 2, Background Information, provides a description of the Site, Property ownership, and geologic and hydrogeologic setting.

Section 3, Field Work

Section 4, Groundwater Monitoring Results

Section 5, Discussion

Section 6, Future Monitoring Schedule

Section 7, Qualifications

Section 8, References

2.0 BACKGROUND INFORMATION

The following section provides a summary of the Site location and description, geologic setting, historical land use, environmental history, and contaminants and media of concern at the Site. Most of the information provided below is summarized from the Supplemental Remedial Investigation (SRI) Work Plan (HydroCon 2018a) and the Draft SRI Report (HydroCon 2018b).

2.1 Site Description

The Site is located at 3 Chehalis Street in Wenatchee, Washington. The Site is located nearly adjacent to the west side of the Columbia River. Land use near the Site is primarily industrial (Figure 1).

2.2 Site History

This section provides a brief Site history, focusing on the discovery of a release of R99 in March 2017. Additional Site history is documented in the SRI Report.

The Site was operated as a bulk fuel facility from 1921 to 2017. Coleman Oil operated the bulk fuel facility from Coleman Services IV, LLC's purchase of the Property in January 2007 until its decommissioning in 2017.

A petroleum sheen was discovered on the west side of the Columbia River approximately 300 feet north of the Site on March 17, 2017. Subsequent line tightness testing revealed that two lines could not hold pressure, and a review of Coleman Oil inventory records indicated that the release was most likely from the R99 renewable diesel fuel line. Oil storage and loading and unloading of trucks for oil distribution were terminated in 2017 except for a small underground storage tank that supplies fuels to the adjacent cardlock fueling facility.

Subsequent testing included the installation of groundwater monitoring wells, soil borings, and test pits in phases between March and September 2017 by Farallon (2017) and March and April 2018 by HydroCon (2018b) (Figure 2). This testing indicated soil and groundwater had been impacted at concentrations above MTCA Method A cleanup levels, including impacts to soil and groundwater near the location of the sheen.

2.3 Remedial Measures

Several remedial measures have taken place at the Site since the discovery of the release.

 Pads and booms have been placed in the Columbia River in the observed sheen discharge area to recover product since discovery of the release. This practice has continued along with daily reporting regarding Columbia River conditions, now reduced to daily observations but weekly reporting.

- A remedial excavation was performed at the Coleman Oil facility near the point of release. Approximately 741 tons of petroleum contaminated soil was removed for offsite disposal.
- Sumps were placed in the remedial excavation backfill. Pumps were placed in the sumps
 to recover product and maintain a cone of depression to minimize product migration. Effluent
 from the sumps was routed to an oil/water separator and settling tanks prior to treatment
 using granular activated carbon (GAC). The treated water was disposed under permit into the
 City of Wenatchee's sanitary sewer system.
- Farallon Consulting and Ecology's consultant (Environmental Partners, Inc. [EPI]) installed fifteen wells at the Site (MW-1 through MW-11, BH-1 through BH-3, and RW-1). Product recovery via skimming using a peristaltic pump and tubing and/or passive recovery using hydrophobic socks occurred in some of the wells.
- In April 2018, HydroCon performed a supplemental remedial investigation (SRI) that included the addition of fourteen new 4-inch diameter monitoring wells (MW12 through MW23, MW01S, MW03S). Three wells with persistent light nonaqueous-phase liquid (LNAPL) measurements (MW-9, MW-10, and BH-1) were fitted with pumps and connected with underground piping for pressurized air to operate the pumps, and conduit for electrical power for heat tape at each pumping well and effluent piping to collect the recovered groundwater and product. The recovered groundwater and product from these wells were routed through three oil/water separators, into storage tanks and then through filtration and GAC and into storage tanks. The treated water was analyzed prior to discharge in batches under an agreement between Coleman Oil and the City of Wenatchee into the City's sanitary sewer system. Pumping of the three wells began on May 5, 2018.
- In August 2018 nine new 4-inch diameter monitoring wells (MW24 through MW32) were installed at the Site. Two of the wells used to recover product and contaminated groundwater (MW-9 and MW-10) were deepened, completed as 4-inch diameter wells, and renamed MW09R and MW10R, respectively.
- A release of diesel and gasoline from a 55-gallon drum onto the ground surface occurred at the Site near the northeastern corner of Tank Farm A in early September 2018. In r e s p o n s e, a total of 16.83 tons of petroleum contaminated soil was removed by remedial excavation. Confirmation soil sampling results indicated that the lateral extent of contamination had been removed. However, the concentration of GRPH and DRPH in the excavation floor sample collected near the groundwater interface exceeded their respective MTCA Method A cleanup levels. No further excavation was attempted due to the proximity of the Tank Farm A containment and a massive boulder that was too large to remove using the excavation equipment. Further remedial action in this area was considered in the feasibility study that was prepared later for the Site.
- The remediation system for recovering product and treating groundwater was expanded in November 2018 to include six more recovery points (MW17, MW24, MW28, MW29, MW30, and MW32). The modified remediation system now consists of three separate zones that

pump LNAPL and contaminated groundwater into an associated OWS. These zones include the MW09R zone (MW09R, MW17, and MW32); the MW10R zone (MW10R, MW24, and MW28); and the BH-1 zone (BH01R, MW29, and MW30) with all 9 wells active. The expanded remediation system began pumping on November 2, 2018.

As of early December 31, 2018, a total of 449.34 gallons of product had been recovered (HydroCon 2018b). The majority of the product is believed to be R99 from the 2017 release. Other fuel products have been identified by forensic analysis to be present in the subsurface, including gasoline, non-R99 diesel fuel, and lubricating oil, so it is likely that some of the recovered product is something other than R99.

2.4 Geologic & Hydrogeologic Setting

The Site is located in the Wenatchee Valley approximately 150 feet west south-west of the Columbia River at an elevation of approximately 660 feet above mean sea level (Figure 1). The topography of the Site slopes very gently to the north north-east parallel to the Columbia River.

The soils beneath the Site are consistent with ice-age alluvial deposits underlain by the Chumstick Formation bedrock. The alluvium consists primarily of silt and silty sand, with layers of clay, sand, gravel, cobbles and boulders. The thickness of the alluvial deposits ranges from 6 to 31.5 feet. Boring logs and drilling observations indicate that a more massive, well cemented sandstone layer is beneath thin layers of mudstone, shale and sandstone and the sandstone appears to be acting as an aquitard in this area. The groundwater level is within a few feet of the top of the Chumstick Formation and always above the sandstone layer. An exception is at MW22 where the groundwater is approximately 15 feet above the top of the Chumstick formation. The MW22 area has been disturbed by previous excavation and has been backfilled with construction and other debris.

Contaminant transport and groundwater flow appears to follow the surface of the Chumstick formation and field observations paired with analytical data suggest that the petroleum contamination penetrates a few feet into the formation and travels laterally within the shaley sandstone and shale/siltstone/mudstone of the Chumstick formation. The groundwater flow direction and the dip of the sandstone surface are both to the north/ northeast, except in the region between the Site and the Columbia River (near the riverbank), where both are more to the east. Aquifer testing performed in February 2018 demonstrated that none of the wells tested are hydraulically connected. However, over 200 gallons of R99 (based on product recovery totals) has been recovered from the Columbia River with the apparent discharge points being west of monitoring wells BH-2 (south) to MW-10 (north).

2.5 Hydraulic Testing

Hydraulic testing of the aquifer beneath the Site has been conducted on two occasions and are briefly summarized here.

Six wells were subjected to step-drawdown testing in February 2018 (HydroCon 2018c). Three wells (RW-1, BH-2, and BH-3) could not sustain the initial step pumping rate of 0.25 gallons per minute (gpm) and dewatered after pumping approximately the amount of water stored in the well screen and surrounding sand pack. Wells BH-1, MW-9, and MW-10 sustained step flow rates of between 2.0 and

2.5 gpm before water levels reached target elevations. Drawdown was not observed in any nearby monitoring wells during the six step-drawdown tests. Analysis of the drawdown data indicated that at a pumping rate of 1.75 gpm the three wells would produce approximately 3.5 feet of drawdown in the aquifer adjacent to the pumping well and the cone of influence would extend out to approximately 100 feet as defined by a drawdown of 0.1 feet.

Slug testing or falling head testing was performed on May 21, 2018 to observe relative flow rates of select wells on the Coleman oil property to better understand contaminant flow across the Site. Slug testing included MW-7, MW-8, MW-9, MW-11, MW13, MW14, MW16, MW17, MW19, MW20, MW22, and MW23.

A falling-head test is conducted by rapidly raising the water level in the control well and subsequently measuring the falling water level. The results of the slug tests show that MW-6, MW-11, MW17 and MW22 had high flow rates; MW-8, MW14, MW16, MW20 and MW23 had medium flow rates; and MW-7, MW13, MW19, and MW21 had low flow rates. The relative flow rates are highly variable across the Site; however, there is a good correlation between wells with high flow rates and high product recovery.

Based on the testing described above, pumps were installed at monitoring wells MW-9, MW-10, and BH-1. With the exception of minor equipment problems, the wells have been in operation since May 5, 2018. It should be noted that the pumps only operate when the water level in the respective well is at the level of the pump intake. When the pumps are activated, they pump at a rate of approximately 2 gpm as determined by the hydraulic testing. The intake for the pumps in the wells are set at approximately 618 feet above mean sea level (amsl), which corresponds to the elevation of the lowest seep on the bank of the Columbia River (Figure 2). As such, the pumps achieve the goal of maintaining water levels at target depths and thereby reducing migration of free product to the river.

2.6 Previous Groundwater Monitoring

Farallon collected reconnaissance groundwater samples from push-probe borings FB-9 and FB-10 on April 7, 2017. Results of these samples indicated that GRPH, DRPH, and benzene exceeded their respective MTCA Method A cleanup level. The concentration of oil range petroleum hydrocarbons (ORPH) exceeded the MTCA Method A cleanup level in the sample collected from FB-9. The lab reported that the sample collected from FB-10 had no detection of ORPH but the laboratory method reporting limit (MRL) used in the analysis exceeded the MTCA Method A cleanup level.

Monitoring wells MW-1, MW-2, MW-4, and MW-5 were sampled on March 23, 2017 prior to the installation of new monitoring wells at the Site in April 2017. The samples were analyzed for DRPH and ORPH only. There was no detection of DRPH or ORPH in the samples collected from MW-2, MW-4, or MW-5. The sample collected from MW-1 had a concentration of DRPH slightly above the MTCA Method A cleanup level and ORPH slightly below the MTCA Method A cleanup level.

A site-wide groundwater monitoring and sampling event occurred on April 20 and 21, 2017 after the installation of wells MW-6 through MW-11, BH-1 through BH-3, and RW-1. Groundwater samples were not collected from monitoring wells MW-8 and MW-9 due to the presence of LNAPL at these locations. Monitoring well MW-2 was not sampled due to historic results of no detection of any

contaminant above the respective MRLs.

Another site-wide groundwater monitoring and sampling occurred on September 28 and 29, 2017. Groundwater samples were not collected from monitoring wells BH-1 and BH-2 due to lack of water in these wells. DRPH, ORPH, GRPH, and/or benzene were detected at concentrations exceeding their respective MTCA Method A cleanup levels in monitoring wells BH-1 through BH-3, MW-1, and MW-6 through MW-11 and in recovery well RW-1 during the April and/or September groundwater sampling events.

HydroCon performed a groundwater monitoring and sampling event in April 2018 after additional wells (MW12 through MW23 and MW01S and MW03S) were installed during the SRI. Groundwater samples were collected from monitoring wells MW01S, MW-2, MW03S, MW-4 through MW14, MW16, MW17, MW19 through MW23, BH-1, BH-2, BH-3, and RW-1. Groundwater samples were not collected from MW15 and MW18 due to a lack of water. Groundwater samples were not collected from MW-1 and MW-3 due to improper well construction.

In August 2018, HydroCon installed monitoring wells MW24 through MW32 to facilitate interim remedial actions and to fill data gaps for the SRI (HydroCon 2018d). This report includes the fifth sampling results for these wells.

The construction details for all wells, including well depth, screened intervals, screen diameters, are summarized on Table 1.

2.7 Monitoring Well Identification

HydroCon utilizes a well and boring identification convention that differentiates wells and boring installed by HydroCon verses installations by others. Wells and borings installed by others include a hyphen in the identification (e.g., MW-11, BH-1) whereas those installed or modified by HydroCon do not include a hyphen (e.g., MW12, HC01).

3.0 FIELD WORK

This section describes the sampling procedures, analytical methods, groundwater conditions, and laboratory results for wells sampled or monitored in December 2019. A data quality review is included.

3.1 Groundwater Sampling Procedures

As discussed in the Executive Summary, HydroCon did not turn off the remediation system prior to groundwater sampling to collect static water levels due to concerns about the pipes freezing. Each of the pumping wells was turned off individually to collect a groundwater sample and then immediately restarted. Water level monitoring during this sampling event was done after the sampling had been completed and with the remediation system turned on. The general groundwater flow direction is shown on Figure X using arrows.

Prior to sample collection the water level in each well was measured using a clean electronic water level indicator. Water levels were measured at the scribed reference mark (north side of the top of the polyvinyl chloride casing) at each well. The water level was documented on the Groundwater Sample Collection Forms (Attachment A).

HydroCon collected groundwater samples on December 16 through December 18, 2019 from 25 site monitoring and recovery wells (Tables 2 and 3). The following wells shown on Table 2 were not sampled for the following reasons:

- FB-9 and FB-10 are reconnaissance groundwater samples. Monitoring wells were not installed in these direct-push boreholes.
- HydroCon did not collect groundwater samples from MW-1, MW-2, MW-3, MW-4, MW-5, MW-7
 and MW22. HydroCon petitioned Ecology to cease sampling in these wells due to improper well
 construction, no detection of chemicals of concern (COCs) in the well, monitoring well MW-7
 being so close to MW23, and MW22 being located outside of the plume that originates at the
 Coleman Oil Site. This request was approved by Ecology¹.
- MW15 and MW18 were not sampled due to insufficient water in the wells.
- MW10R and MW24 were not sampled because recharge did not occur after the wells were shut off two days earlier and the pumps were not removed due to concerns about freezing weather.

Three field duplicate samples (MW301-W, MW302-W, and MW303-W) were collected from MW17, MW13R, and MW20, respectively, for quality assurance/quality control (QA/QC) purposes.

Prior to groundwater sampling, monitoring wells were purged with a low-flow peristaltic pump or bladder pump equipped with a new length of low-density polyethylene tubing attached to a new length of silicone tubing in accordance with U.S. Environmental Protection Agency (EPA) guidance for low-flow

¹ Washington State Department of Ecology. Comments on Supplemental Remedial Investigation Report. August 16, 2018.

sampling². The tubing intake was placed approximately 2 to 3 feet below the surface of the groundwater or mid-screen in each well. During purging, water quality was monitored using a Quanta Multi-parameter water quality meter equipped with a flow-through cell. The water quality parameters monitored and recorded included temperature, pH, specific conductance, dissolved oxygen, turbidity, and oxidation-reduction potential. Each well was purged until all six water quality parameters stabilized or the minimum parameter subset of pH, specific conductance, temperature, and turbidity and/or dissolved oxygen stabilized. *Groundwater Sample Collection Forms* and *Daily Field Reports* are included as Appendix A.

Following purging, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into clean, laboratory-prepared sample containers. Each container was labeled with a unique sample identification number, placed on ice in a cooler, and transported under chain-of-custody to APEX laboratory of Tigard, Oregon, for laboratory analysis.

Purge water generated during the monitoring event was collected in 5-gallon buckets and transferred to the oil water separators in the onsite treatment system for treatment and discharge to the City sanitary system.

3.2 Laboratory Analysis

The analytical protocols for the samples collected at the Property include the required testing for petroleum releases for gasoline (Table 830-1 in the MTCA Cleanup Regulations Chapter 173-340 WAC). The analytical methods include:

- GRPH using Northwest Method NWTPH-Gx
- DRPH and ORPH using Northwest Method NWTPH-Dx
- BTEX using EPA Method 8260C

² Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (April 1996). EPA/540/S-95/504

4.0 GROUNDWATER MONITORING RESULTS

4.1 Groundwater Conditions

HydroCon measured water levels at 38 wells on December 19, 2019, the day after the groundwater sampling had been completed at the site. The remediation system was active when the measurements were collected. The depth to water measurements for December 19, 2019 and calculated groundwater elevations at each well are summarized on Table 2. It should be noted that monitoring wells MW15 and MW18 were dry so no groundwater elevations for those wells could be calculated.

On December 19, 2019 the depth to water at the Site ranged from 7.95 feet bgs (MW-3) to 38.00 feet bgs (MW-5) and groundwater elevations ranged from 617.78 (MW30) to 650.31 (MW-3) feet amsl. A groundwater elevation contour plot was prepared from this data set (Figure 3). Groundwater flow across the Site was generally to the northeast with a more easterly flow in the southern portion of the Site. The groundwater gradient between MW13R, near the middle of the property, and MW31 was 0.074 ft/ft. The gradient in the southern portion of the Site between MW-2 and MW-5 is much steeper at 0.45 ft/ft.

Vertical gradients were calculated for well pairs MW-1/MW01S and MW-3/MW03S located in the southern portion of the Site. These well pairs are located within 10 horizontal feet of each other. The vertical hydraulic gradient within an aquifer (or between two aquifers separated by an aquitard) is calculated by dividing the difference in hydraulic head (or water level elevation) by the vertical (elevation) distance between the well screen midpoints. Table 6 provides the parameters and calculations for the vertical gradients of the well pairs.

The groundwater elevations for each well pair are very similar, with slightly higher elevations for the deeper wells (MW-1 and MW-3) indicating a very slight upward vertical gradient. The calculated vertical gradient for MW-1/MW01S was 0.086 ft/ft and the vertical gradient for MW-3/MW03S was 0.017 ft/ft for the August 29, 2019 measurement.

These very small vertical gradients indicate that vertical gradients do not play a significant role in contaminant distribution or transport, at least in the southern portion of the Site. The vertical gradients for MW-1/MW01S were nearly identical to the four previous groundwater monitoring measurements.

4.2 Groundwater Sampling Results

Laboratory analytical results are reported as micrograms per liter (μ g/L) or parts per billion. The results are provided on Table 3 and laboratory reports are included as Appendix B. A summary of the results for each constituent sampled is provided below.

Gasoline Range Petroleum Hydrocarbons

GRPH was detected above the laboratory's method reporting limit (MRL) in 14 wells including MW-6, MW-8, MW09R, MW-11, MW13R, MW14, MW17, MW20, MW28, MW29, MW30 BH01R, BH-2, and BH-3. The GRPH concentration ranged up to 3,960 μ g/L with the highest concentration at MW29. The MTCA Method A cleanup level for GRPH is 800 μ g/L and was exceeded in the samples collected from BH01R, MW-8, MW-11, MW14, MW17 and MW29.

Diesel Range Petroleum Hydrocarbons

DRPH was detected above the MRL in every well sampled with concentrations ranging up to 1,120,000 μ g/L. The highest DRPH concentration was detected at MW-8. The MTCA Method A cleanup level for DRPH of 500 μ g/L was exceeded in the samples collected from BH01R, BH-2, MW-6, MW-8, MW-11, MW13R, MW14, MW17, MW19, MW20, MW28, MW29 and MW30.

Oil Range Petroleum Hydrocarbons

ORPH was not detected above the MRL in any of the samples. It should be noted that the MRL in the samples collected from BH01R, MW-8 and MW29 exceeds the MTCA Method A cleanup level of 500 µg/L. HydroCon assigned an "ec" (exceeds the MTCA Method A Cleanup Level) data qualifier on those results. Therefore, it is unknown if the results comply with the cleanup standard.

Benzene

Benzene was detected above the MRL in 3 wells including MW13R, MW14 and MW17 at concentrations ranging up to 47.3 μ g/L. The highest concentration was seen in MW13R. The MTCA Method A cleanup level for benzene (5 μ g/L) was exceeded in the samples collected from MW13R and MW14.

Toluene

Toluene was not detected above the MRL in any of the samples.

Ethylbenzene

Ethylbenzene was detected in 3 wells above the MRL including MW13R, MW14 and MW17 at concentrations up to 3.10 μ g/L. None of the concentrations exceed the MTCA Method A cleanup level of 700 μ g/L.

Total Xylenes

Total xylenes were detected above the MRL in the samples collected from 2 wells including MW13R and MW14 at a concentration up to 5 μ g/L. None of the concentrations exceed the MTCA Method A cleanup level of 1,000 μ g/L.

Polynuclear Aromatic Hydrocarbons

Polynuclear aromatic hydrocarbons (PAHs) were not analyzed in any of the wells during this sampling event. Historic results are provided in Table 4.

4.3 Field Parameters

Dissolved Oxygen – The dissolved oxygen content in the samples collected from the site ranged from

0.14 to 6.08 mg/L. These low values indicate that groundwater at the site has a low oxygen content³.

Redox Potential – Redox potential is a measure with which a molecule will accept electrons. It is measured in millivolts (mV). The more positive the redox potential, the more readily a molecule can be reduced. The redox potential in the samples collected from the site ranged from -112 mV to 65.3 mV.

pH – pH is a measure of the acidity or alkalinity of a solution. The pH scale ranges from 0 to 14. A pH less than 7 is considered to be acidic. A pH greater than 7 is considered to be basic or alkaline. The pH in the samples collected at the site ranged from 6.29 to 7.36.

4.4 Data Quality Review

Laboratory testing of groundwater are included in Appendix B as APEX Work Orders A9L0812. The *Data Quality Review Report* is included in Appendix C. The review of the analytical results included the following:

- Holding Times & Sample Receipt
- Surrogate Compounds
- Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- Associated Laboratory Duplicate
- Laboratory Control Sample/ Laboratory Control Sample Duplicates (LCS/LCSD)
- Method Blank
- Field Duplicates
- Target Analyte List
- Reporting Limits (MDL and MRL)
- · Reported Results

Data were qualified by the laboratory due to matrix interference, compound identification issues, limited sample volume and/or LCS/CCV recoveries. These qualifiers resulted in validation qualifiers of estimated quantity (J). No data were rejected and completeness was 100 percent.

All results are usable for their intended purpose. Data qualifications are identified in detail in full *Data Validation Report* included in Appendix C.

³ User's Manual: Natural Attenuation Analysis Tool Package for Petroleum Contaminated Groundwater, Toxics Cleanup Program Publication No. 05-09-091A. July Ecology, July 2005.

5.0 DISCUSSION

This section provides a breakdown of results of the December 2019 groundwater monitoring event compared to prior monitoring events.

5.1 Discussion of Laboratory Results

Results of the December 2019 groundwater monitoring event indicated that 13 of the 25 wells sampled at the Site (MW-6, MW-8, MW-11, MW13R, MW14, MW17, MW19, MW20, MW28, MW29, MW30, BH01R and BH-2) have one or more COC above their respective CUL. This is a decrease of 2 wells compared to the results of the August 2019 groundwater monitoring results. However, it should be noted that monitoring wells MW15 and MW18 were dry and pumping wells MW10R and MW24 had an insufficient amount of water to sample, so no samples were collected to assess water quality in these wells. Trend plots (Figures 4A through 4H) were not prepared for the wells not sampled during this groundwater monitoring event.

5.2 Trends in GRPH and DRPH Concentrations in Groundwater

HydroCon has prepared trend plots of GRPH and DRPH the 25 wells sampled (Figures 4a, 4b, 4c, 4d, 4e, 4f, 4g, and 4h). A discussion of groundwater trends of each these wells are provided below.

BH-1/BH01R – DRPH: A significant increase began in December 2018 through March 2019 followed by significant decrease in August 2019 followed by another significant increase during this sampling event. GRPH: Minor fluctuation in this well with no apparent trend. Pumping began in this well in May 2018.

- **BH-2** DRPH appears to be fluctuating with no apparent trend. A general decreasing trend in GRPH is observed in this well.
- **BH-3** DRPH: The concentration decreased in this well through August 2018. Thereafter, an increasing trend was observed through March 2019 followed by a downward trend over the last two sampling events. GRPH: The concentration decreased significantly from its high in April 2017 to 9/2017. A fluctuating trend with some results above and below the CULhas been observed since.
- **RW-1** DRPH: A general decreasing trend has occurred from its high in April 2017 with a general flat trend since April 2019 (all below the CUL). GRPH: There's been no detection above the MRL since sampling began.
- **MW01S** DRPH & GRPH: The concentrations of DRPH & GRPH have fluctuated between non-detect to low concentrations below the CUL since sampling began.
- **MW03S** Concentrations of DRPH have fluctuated between non-detect to low concentrations below their respective CUL since sampling began
- **MW-6** DRPH: The concentrations fluctuated above the CULs since April 2017. GRPH: A decreasing trend with concentrations below the CUL except for April 2017.
- **MW-8** DRHP: A decreasing trend from September 2017 through November 2018 with a spike over 2,000 μ g/L in March 2019 then down to less than 1,200 μ g/L in December 2019. GRPH: trending down to a concentration slightly above the CUL in August and December 2019.

MW-9/MW09R –DRPH: A large spike over1,000,000 μg/L in DRPH concentration was observed in the sample collected in December 2019. GRPH fluctuated in 2018 but has remained relatively stable since, slightly above the CUL. Pumping began in this well in May 2018.

MW-10/MW10R – DRPH: The concentration fluctuated in this well (all above CUL) until pumping began in May 2018. A slightly increasing trend has been observed since pumping began at concentrations above the CUL. GRPH: The concentration has been relatively flat in this well at concentrations above the CUL. Insufficient water was present to sample in December 2019. Pumping to recover groundwater and product began in this well in May 2018.

MW-11 –DRPH: The concentration decreased in this well from September 2017 with a slight increasing trend after August 2018. The trend has been relatively flat since April 2019. GRPH fluctuates within a narrow range of concentrations that exceed the CUL.

MW12 – DRPH: The concentrations have fluctuated between non-detect to low concentrations below the CUL. GRPH: There's been no detection above the MRL since sampling began.

MW13/MW13R – DRPH: A slightly increasing trend in DRPH concentrations was observed in this well through March 2019 and then a decreasing trend afterwards. GRPH: High concentrations have been observed in this well since sampling began with a significant decrease after the remedial excavation.

MW14 – DRPH: Concentrations appear to fluctuate within a narrow range above the CUL. GRPH: Fluctuating high concentrations above the CUL are seen in this well.

MW16 – DRPH: Low concentrations below the CUL fluctuate in this well. GRPH: There has been no detection above the MRL since sampling began.

MW17 –DRPH: An increasing trend above the CUL has occurred since August 2018 with a spike observed in December 2019. GRPH: A decreasing trend has been observed through August 2019 but increased in December 2019. GRPH has always been above the CUL except in August 2019.

MW20 – DRPH and GRPH: The concentrations fluctuate in this well with a similar pattern. The concentration of DRPH is above the CUL in December 2019. The concentration of GRPH remains below the CUL.

MW21 – DRPH and GRPH: The concentrations fluctuate in this well with a similar pattern. The concentration of DRPH is below the CUL. The concentration of GRPH is below the CUL in December 2019.

MW23 – DRPH fluctuates within a narrow range. The concentration is slightly below the CUL in December 2019. GRPH: There's been no detection above the MRL since sampling began.

MW25 – DRPH: Low concentrations below the CUL have been observed with a decrease trend since April 2019. GRPH: There's been no detection above the MRL since sampling began.

MW26 – DRPH: Low concentrations have fluctuated in this well with the concentration below the CUL in December 2019. GRPH: There's been no detection above the MRL since sampling began.

MW27 – DRPH: An increasing trend of low concentrations below the CUL has been observed since November 2018 and then decreasing since August 2019. GRPH: There's been no detection

above the MRL since sampling began.

MW28 – DRPH: An increasing trend in concentrations until March 2018 followed by a decreasing trend. The concentration is above the CUL in December 2019. GRPH: Low concentrations below the CUL have remained relatively flat since November 2018.

MW29 – DRPH: Trend was flat in 2018, increased in March 2019 then spiked in December 2019 to over $100,000 \mu g/L$, above the CUL. GRPH: Low concentrations below the CUL but then spiked to nearly $4,000 \mu g/L$, above the CUL in December 2019.

MW30 – DRPH: The concentrations fluctuated within a narrow range of concentrations. A significant increase was observed in December 2019. GRPH: There's been no detection above the MRL since sampling began.

MW31 – DRPH: The first detection was observed below the CUL in December 2019. GRPH has not been detected above the MRL since sampling began.

MW32 –DRPH: Low concentrations below the CUL have increased since November 2018. GRPH has decreased to concentrations below the MRL since August 2018.

A significant increase in DRPH concentrations was observed in several wells in December 2019 including BH01R, MW09R, MW17, MW30, and MW31. Each of these wells are pumping wells. These increases are likely the result of the sampling methodology used during this sampling event. HydroCon typically turns off the remediation system prior to sampling events so that the water levels equilibrate and static water conditions can be measured and assessed. This procedure was eliminated for this sampling event due to concerns for freezing pipes. The pumps were turned off prior to sample collection in each pumping well and then immediately turned back on. The elevated concentration of contaminants in these wells is the reflection of the influent stream of water entering these wells rather than the static groundwater conditions. It is HydroCon's opinion that this information demonstrates the effectiveness of these pumping wells drawing contaminated water into the remediation system.

5.3 Extent of Groundwater Contamination

The December 2019 groundwater results for GRPH and DRPH are plotted on Figures 5 and 6 and iso-concentration contours were prepared to illustrate the magnitude and extent of each contaminant at the Site. Red colored shading was used to graphically display the plume boundary. Areas of higher concentration are shaded in darker red. The seep area (soil samples SL01 through SL04) are included on the figures since the seep water is in contact with impacted soil and shows the location of this area relative to areas of impacted groundwater.

5.3.1 Diesel Range Petroleum Hydrocarbons

The extent of DRPH contamination in groundwater is illustrated on Figure 5. A plume of DRPH impacted groundwater with DRPH levels greater than the 500 μ g/L CUL is present at the site from south of MW13R and extends northeast slightly beyond monitoring well MW24. There are three areas within the plume that have had consistent elevated DRPH concentrations above 1,000 μ g/L:

• The area encompassing monitoring wells MW17, MW09R, BH-2, MW19, MW30, MW29, and

BH01R. The concentration of DRPH ranges from 2,230 to 1,120,000 μ g/L. Each of these wells except BH-2 and MW19 is currently being used to extract product and groundwater from the Site.

- The area of monitoring wells MW-8 and MW-11. The concentration of DRPH ranges from 1,060 to 1,110 μg/L. This area is located within the 2017 remedial excavation area where sump #5 was located. Sump #5 had one of the highest amounts of recovered product at the Site.
- The area near well MW10R. Even though this well was not sampled due to insufficient water it
 has historically contained elevated DRPH concentrations. Monitoring well MW24 has DRPH
 levels above the CUL. Wells MW10R and MW24 are being used to extract product and
 groundwater from the Site.

Areas with DRPH concentrations less than $500 \mu g/L$ (Method A cleanup level) include the northern-most monitoring well monitored at the site (MW21), the area of the Property south of Tank Farm A, much of the eastern part of the Property and adjacent Worthen Street, the northwest portion of Chehalis Street, and the line of wells east of Worthen Street including and between MW25 and RW-1. This latter area is near the observed seep areas and reinforces the role of preferential pathways in the distribution of subsurface contaminants.

5.3.2 Gasoline Range Petroleum Hydrocarbons

The extent of GRPH contamination in groundwater is illustrated on Figure 6. A plume of GRPH impacted groundwater is present from the Coleman Oil facility south of MW13R and extends northwest towards monitoring well MW10R. There are five localized areas within the plume that have elevated GRPH concentrations above the MTCA Method A CUL of 800 µg/L:

- The area near monitoring well MW14. An elevated concentration of GRPH (3,450 μg/L) is present in MW14 which is located immediately downgradient of the footprint of former Tank Farm B and former Control Valve Building. A significant reduction in GRPH concentration in this area of the site is attributed to the remedial excavation that occurred in June 2019.
- The area near monitoring wells MW-11 and MW-8 have GRPH ranging from 891 to 1,020 μg/L.
 This area is located within the 2017 remedial excavation area where sump #5 was located.
 Sump #5 had one of the highest amounts of recovered product at the Site.
- The area near monitoring wells MW17 and MW09R have GRPH concentrations ranging from 1,420 to 1,470 μg/L. Both wells are currently being used to extract product and contaminated groundwater from the Site.
- The area near BH01R and MW29 have GRPH concentrations ranging from 918 to 3,960 ug/L. Both of these wells are used to extract product and contaminated groundwater from the Site.
- The area near monitoring well MW10R. Even though this well was not sampled due to insufficient water it has historically contained elevated GRPH concentrations. This well is used to extract product and contaminated groundwater from the Site. Well MW21 farther to the north has an elevated GRPH concentration of 453 µg/L that does not exceed the CUL.

6.0 FUTURE MONITORING SCHEDULE

6.1 Daily Columbia River Level and Water Level Measurements

Environmental Engineering & Consulting, Inc. (EEC) manages the containment booms on the Columbia River and recovery of groundwater and product from the current nine recovery wells at the Site, treatment of the recovered groundwater and discharge of the treated water to the City of Wenatchee sewer. EEC's daily tasks includes monitoring the water level at a surveyed reference location along the Columbia River and water and product levels in the nine recovery wells at the Site (MW09R, MW10R, BH01R, MW17, MW24, MW28, MW29, MW30, and MW32) using a clean electronic oil/water interface probe.

These measurements are recorded in spreadsheet files and are provided to Ecology, Coleman Oil, and HydroCon monthly. HydroCon will include these measurements in the Annual Operations and Maintenance (O&M) Monitoring Reports.

6.2 Weekly to Monthly Water Level and Product Thickness Measurements

EEC assists HydroCon with the collection of depth to water and product level measurements of all the Site wells on a weekly to monthly basis following the same protocol as the daily water and product level measurement task. EEC utilizes a Well Product Monitoring & Recovery spreadsheet to record these data (Appendix D). This form is provided to HydroCon so that the data can be entered into spreadsheets (i.e., Table 2). This information also is used to assess seasonal groundwater flow direction patterns and if there is correlation between groundwater levels in the aquifer and the Columbia River stage.

6.3 Planned Modification to the Remediation System

HydroCon, EEC, and a Coleman Oil representative (Mr. Jim Cach) met with Ecology in November 2019 to discuss the results of the Draft Focused Feasibility Study⁴. One of the results of the meeting was consideration and implementation of an oxygen enrichment system to increase the dissolved oxygen content in the subsurface to stimulate biologic degradation of petroleum contaminants. The system is under design and will include recirculating the recovered and treated groundwater at the site (eliminating further discharges to the City of Wenatchee's sanitary sewer system) and dosing the treated groundwater with hydrogen peroxide to increase its dissolved oxygen content. The enriched water will be applied to the uplands area at selected locations including sumps and subsurface slotted piping installed during the 2017 and 2019 remedial excavations. Further information will be provided to Ecology once the engineering design is complete.

6.4 Future Groundwater Sampling

The next groundwater monitoring event is tentatively planned for March 2020. A list of wells that will be sampled and associated laboratory analysis is provided on Table 8.

As discussed above, Ecology agreed with HydroCon that collection of groundwater samples from

⁴ HydroCon, DRAFT Focused Feasibility Study, October 28, 2019

monitoring wells MW-1 through MW-5, MW-7, and MW22 was not necessary during the December 2019 sampling event. These wells will not be included in future groundwater monitoring events unless requested by Ecology.

7.0 QUALIFICATIONS

HydroCon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. HydroCon makes no warranties, either expressed or implied, regarding the findings, conclusions or recommendations. Please note that HydroCon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report.

Findings and conclusions resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable or not present during these services, and we cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this monitoring. Subsurface conditions may vary from those encountered at specific sampling locations or during other surveys, tests, assessments, investigations, or exploratory services; the data, interpretations and findings are based solely upon data obtained at the time and within the scope of these services.

This report is intended for the sole use of **Coleman Oil Company** to meet the requirements of Exhibit B – Scope of Work and Schedule of the Agreed Order. This report may not be used or relied upon by any other party without the written consent of HydroCon. The scope of services performed in execution of this evaluation may not be appropriate to satisfy the needs of other users, and use or re-use of this document or the findings, conclusions, or recommendations is at the risk of said user.

The conclusions presented in this report are, in part, based upon subsurface sampling performed at selected locations and depths. There may be conditions between borings or samples that differ significantly from those presented in this report and which cannot be predicted by this study.

8.0 REFERENCES

Farallon, 2017. Supplemental Data Summary Report. Prepared for Coleman Oil Company. October 18.
HydroCon, LLC. 2018a. Supplemental Remedial Investigation Work Plan. Coleman Oil R99 Renewable Diesel Spill, Wenatchee, Washington. Prepared for Coleman Oil Company, LLC. March 15.
——. 2018b. Supplemental Remedial Investigation Report. Coleman Oil R99 Renewable Diesel Spill, Wenatchee, Washington. Prepared for Coleman Oil Company, LLC.
——. 2018c. Aquifer Testing at Coleman Oil Facility, Wenatchee, Washington, March 16.
——. 2018d. Quarterly Groundwater Monitoring Report – August 2018, November 12.
——. 2019a. Quarterly Groundwater Monitoring Report – November 2018, January 8.
——. 2019b. Additional Interim Actions Addendum #2 Report – January 10.
——. 2019f. Additional Interim Actions Addendum #3 – Remedial Excavation Report – July 25.
——. 2019g. Quarterly Groundwater Monitoring Report – August 2019, October 21.

FIGURE 4A TREND PLOTS

FIGURE 4B TREND PLOTS

FIGURE 4C TREND PLOTS

FIGURE 4D TREND PLOTS

FIGURE 4E TREND PLOTS

3 CHEHALIS ST. WENATCHEE, WA.

FIGURE 4F TREND PLOTS

FIGURE 4G TREND PLOTS

FIGURE 4H TREND PLOTS

Table 1Well Construction Details Coleman Oil Wenatchee, Washington

			Drilling	Total Boring Depth	Total Well Depth	Diameter	Well Construction	Slot Size	Length of Screen	Length of Bottom Cap	Screened Interval	Well Casing Elevation
Well ID	Date Installed	Installed By	Method	(feet bgs)	(feet bgs)	(inch)	Material	(inch)	(feet)	(feet)	(feet bgs)	(feet¹)
MW-1	7/7/2010	Farallon	Air Rotary	35.50	35.00	2	PVC	0.01	15	- 0.22	20-35	658.01
MW01S	3/4/2018	HydroCon	Sonic	20.00	19.99	4	PVC	0.01	15	0.23	5.37 - 20.37	657.54
MW-2	7/8/2010	Farallon	Air Rotary	40.00	40.00	2	PVC	0.01	15	-	25-40	657.76
MW-3	9/7/2010	Farallon	Air Rotary	35.30	35.00	2	PVC	0.01	10	- 0.22	25-35	658.26
MW03S	4/3/2018	HydroCon	Sonic	20.00	19.30	4	PVC	0.01	15	0.23	4.43 - 19.43	658.17
MW-4	9/8/2010	Farallon	Air Rotary	40.10	37.00	2	PVC	0.01	10	-	27-37	657.48
MW-5	9/9/2010	Farallon	Air Rotary	45.40	45.00	2	PVC	0.01	15	-	30-45	656.00
MW-6	4/12/2017	Farallon	Air Rotary	18.40	18.00	4	PVC	0.02	10	-	8-18	657.70
MW-7	4/11/2017	Farallon	Air Rotary	20.10	20.00	4	PVC	0.02	10	-	10-20	657.52
MW-8	4/11/2017	Farallon	Air Rotary	25.20	25.00	4	PVC	0.02	10	-	15-25	656.20
MW-9	4/12/2017	Farallon	Air Rotary	24.50	24.00	4	PVC	0.02	10	-	14-24	655.29
MW09R	8/15/2018	HydroCon	Sonic	35.00	32.60	4	PVC	0.01	25	0.45	8.59-33.59	653.55
MW-10	4/14/2017	Farallon	Air Rotary	30.20	30.00	2	PVC	0.02	16	-	14-30	645.80
MW10R	8/16/2018	HydroCon	Sonic	35.00	33.59	4	PVC	0.01	20	0.45	14.64-34.64	644.30
MW-11	4/14/2017	Farallon	Air Rotary	22.30	22.00	4	PVC	0.02	10	-	12-22	658.00
MW12	4/2/2018	HydroCon	Sonic	20.00	19.52	4	PVC	0.01	15	0.23	4.63 - 19.63	658.27
MW13R	7/2/2019	HydroCon	Sonic	19.00	18.46	4	PVC	0.01	14	0.23	4.23 - 18.23	656.67
MW14	3/30/2018	HydroCon	Sonic	35.00	20.02	4	PVC	0.01	15	0.23	5.23 - 20.23	657.15
MW15	4/12/2018	HydroCon	Sonic	35.10	35.10	4	PVC	0.01	25	0.23	10.33 - 35.33	654.99
MW16	4/5/2018	HydroCon	Sonic	30.00	29.15	4	PVC	0.01	20	0.23	9.28 - 29.28	656.93
MW17	4/4/2018	HydroCon	Sonic	35.00	29.41	4	PVC	0.01	20	0.23	9.52 - 29.52	655.55
MW18	4/11/2018	HydroCon	Sonic	35.00	34.65	4	PVC	0.01	20	0.23	15.86 - 35.86	654.51
MW19	4/5/2018	HydroCon	Sonic	35.00	31.48	4	PVC	0.01	20	0.23	11.66 - 31.66	653.31
MW20	4/10/2018	HydroCon	Sonic	30.00	29.50	4	PVC	0.01	20	0.23	9.79 - 29.79	650.85
MW21	4/9/2018	HydroCon	Sonic	35.00	32.10	4	PVC	0.01	20	0.23	12.30 - 32.30	643.88
MW22	4/13/2018	HydroCon	Sonic	40.00	39.10	4	PVC	0.01	25	0.23	9.19 - 34.19	641.85
MW23	3/29/2018	HydroCon	Sonic	25.00	22.04	4	PVC	0.01	15	0.23	7.13 - 22.13	656.91
MW24	8/6/2018	HydroCon	Sonic	35.00	34.25	4	PVC	0.01	20	0.45	14.17-34.17	644.38
MW25	8/7/2018	HydroCon	Sonic	35.00	32.96	4	PVC	0.01	20	0.45	12.81-32.81	645.57
MW26	8/8/2018	HydroCon	Sonic	35.00	32.52	4	PVC	0.01	20	0.45	13.54-33.54	646.65
MW27	8/9/2018	HydroCon	Sonic	40.00	38.74	4	PVC	0.01	25	0.45	13.56-38.56	649.00
MW28	8/10/2018	HydroCon	Sonic	40.00	38.74	4	PVC	0.01	25	0.45	13.62-38.62	650.64
MW29	8/13/2018	HydroCon	Sonic	40.00	39.11	4	PVC	0.01	25	0.45	14.05-39.05	652.34
MW30	8/14/2018	HydroCon	Sonic	40.00	39.79	4	PVC	0.01	25	0.45	14.67-39.67	652.83
MW31	8/15/2018	HydroCon	Sonic	40.00	39.28	4	PVC	0.01	25	0.45	14.11-39.11	653.97
MW32	8/17/2018	HydroCon	Sonic	35.00	34.02	4	PVC	0.01	25	0.45	8.95-33.95	655.83
BH01R	3/25/2017	HydroCon	Sonic	40.00	39.97	4	PVC	0.01	25	0.45	14.52-39.52	651.03
BH-2	3/25/2017	EPI	Air Rotary	35.00	35.00	2	PVC	0.01	15	-	20-35	653.77
BH-3	3/26/2017	EPI	Air Rotary	30.00	30.00	2	PVC	0.01	15	-	15-30	648.76
RW-1	4/10/2017	Farallon	Air Rotary	30.00	30.00	3	PVC	0.02	15	-	15-30	650.42

NOTES:

feet¹ = Elevation is relative to NGVD88

bgs = below ground surface

PVC = polyvinyl chloride

		Monitoring Well		Donth to Weter	Donth to NADI	INIADI	Crown december	
Well Identification	Date	Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)	
	4/17/2017			9.47			648.54	
	4/20/2017			9.63			648.38	
	4/27/2017			10.14			647.87	
	5/1/2017			10.31			647.70	
	6/8/2017			11.20			646.81	
	7/3/2017			NM				
MW-1	9/28/2017	20-35	658.01	12.36			645.65	
IAIAA-T	8/27/2018	20-55	036.01	12.17			645.84	
	8/31/2018			12.20			645.81	
	11/26/2018			11.36			646.65	
	11/30/2018			11.38			646.63	
	3/29/2019			9.68			648.33	
	8/29/2019			11.69			646.32	
	12/19/2019			11.84			646.17	
	4/25/2018			10.49			647.05	
	4/27/2018			10.62			646.92	
	8/27/2018			12.30			645.24	
	8/31/2018			12.33			645.21	
MW01S	11/26/2018	5.37 - 20.37	657.54	11.54			646.00	
	11/30/2018			11.51			646.03	
	3/29/2019			9.88			647.66	
	8/29/2019			11.81			645.73	
	12/19/2019			11.97			645.57	
	4/17/2017			9.58			648.18	
	4/20/2017			9.61			648.15	
	4/27/2017			10.19			647.57	
	5/1/2017			10.36			647.40	
	6/8/2017			11.33				
	7/3/2017			11.96			645.80	
	9/28/2017		657.76	12.65			645.11	
NANA/ 2	4/25/2018	25-40		10.50			647.26	
IVI VV-Z	4/27/2018	23-40		10.54			647.22	
	8/27/2018			12.20			645.56	
	8/31/2018			12.22			645.54	
	11/26/2018			11.43			646.33	
	11/30/2018			11.46			646.30	
	3/29/2019			9.61			648.15	
	8/29/2019			11.65			646.11	
	12/19/2019			11.96			645.80	
	4/17/2017			7.12			651.14	
	4/20/2017			7.15			651.11	
	4/27/2017			11.44			646.82	
	5/1/2017			7.90			650.36	
	6/8/2017			7.33			650.93	
	7/3/2017			7.46			650.80	
\/\\/ ₋ 2	9/28/2017	25-35	658.26	7.74			650.52	
C-44141	8/27/2018	25-35	030.20	7.75			650.51	
MW-2	8/31/2018			7.80			650.46	
	11/26/2018			7.78			650.48	
	11/30/2018			7.89			650.37	
	3/29/2019			6.42			651.84	
	8/29/2019			7.53			650.73	
	12/19/2019]		7.95			650.31	

1

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/25/2018			7.25			650.92
	4/27/2018			7.24			650.93
	8/27/2018			8.04			650.13
	8/31/2018			8.05			650.12
MW03S	11/26/2018	4.43 - 19.43	658.17	7.48			650.33
	11/30/2018			7.93			650.33
	3/29/2019			7.22			650.24
	8/29/2019			7.72			650.45
	12/19/2019			7.97			650.20
	4/17/2017			15.29			642.19
	4/20/2017			15.40			642.08
	4/27/2017			15.74			641.74
	5/1/2017			15.71			641.77
	6/8/2017			16.23			641.25
	7/3/2017			16.93			640.55
	9/28/2017			18.18			639.30
D 43 4 / 4	4/25/2018	27.27	657.40	16.22			641.26
MW-4	4/27/2018	27-37	657.48	17.59			639.89
	8/27/2018			17.25			640.23
	8/31/2018			17.28			640.20
	11/26/2018			16.55		640.94	
	11/30/2018					640.93	
	3/29/2019					642.82	
	8/29/2019	1	-	16.14			641.34
	12/19/2019	1		15.80			641.68
	4/17/2017			33.98			622.02
	4/20/2017			35.67			620.33
	4/27/2017			34.98			621.02
	5/1/2017			35.92			620.08
	6/8/2017			32.06			623.94
	7/3/2017			36.75			619.25
	9/28/2017			38.67			617.33
D 4) A / F	4/25/2018	20.45	656.00	NM			
IVI VV-5	4/27/2018	30-45	656.00	35.58			620.42
	8/27/2018]		38.21			617.79
	8/31/2018]		38.30			617.70
	11/26/2018]		38.34			617.66
	11/30/2018			38.44			617.56
	3/29/2019]		37.58			618.42
	8/29/2019	1		38.00			618.00
	12/19/2019	1		38.55			617.45

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)		
	4/17/2017			9.57			648.13		
	4/20/2017			9.40			648.30		
	4/27/2017			9.89			647.81		
	5/1/2017			9.95			647.75		
	6/8/2017			10.60	10.55	0.05	647.14		
	7/3/2017			11.10			646.60		
	9/28/2017			11.51			646.19		
NAVA C	4/25/2018	0.40	CE 7 70	10.20			647.50		
MW-6	4/27/2018	8-18	657.70	10.21			647.49		
	8/27/2018			11.28			646.42		
	8/31/2018			11.29			646.41		
	11/26/2018			10.82		trace	646.88		
	11/30/2018			10.84			646.86		
	3/29/2019			9.50		trace	648.20		
	8/29/2019			10.89			646.81		
	12/19/2019			11.08			646.62		
	4/17/2017			9.64			647.88		
	4/20/2017		-	9.71			647.81		
	4/27/2017			10.26			647.26		
	5/1/2017			10.35					
	6/8/2017			11.44			647.17 646.08		
	7/3/2017			11.91			645.61		
	9/28/2017			12.46			645.06		
	4/25/2018			10.61			646.91		
MW-7	4/27/2018	10-20	657.52	10.63			646.89		
	8/27/2018			11.96			645.56		
	8/31/2018			12.18					
	11/26/2018			11.50			645.34 646.02		
	11/20/2018			11.53			645.99		
				9.72			647.80		
	3/29/2019								
	8/29/2019		-	11.67			645.85		
	12/19/2019			11.95	14.50	2.24	645.57		
	4/13/2017			16.71	14.50	2.21	641.21		
	4/17/2017			13.47	12.05	0.01	642.73		
	4/20/2017			13.96	13.95	0.01	642.25		
	4/27/2017			17.25	14.91	2.34	640.78		
	5/1/2017			17.47	14.94	2.53	640.70		
	6/8/2017			18.02	47.04	0.07	638.18		
	7/3/2017			17.97	17.91	0.07	638.28		
	9/28/2017	45.05	656.36	18.10			638.10		
MW-8	4/25/2018	15-25	656.20	15.14			641.06		
	4/27/2018			15.12			641.08		
	8/27/2018			16.71			639.49		
	8/31/2018			16.77			639.43		
	11/26/2018			16.04			640.16		
	11/30/2018			16.07			640.13		
	3/29/2019			13.37			642.83		
	8/29/2019			15.96			640.24		
	12/19/2019			16.55			639.65		

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/17/2017			13.56			641.73
	4/20/2017			14.31			640.98
	4/27/2017			17.45	16.75	0.70	638.39
	5/1/2017			18.60	17.33	1.27	637.68
MW-9	6/8/2017	14-24	655.29	22.14			633.15
	7/3/2017			22.16			633.13
	9/28/2017			22.69			632.60
	4/25/2018			17.22			638.07
	4/27/2018			17.22			638.07
	8/27/2018			19.90			635.39
	8/31/2018			19.91			635.38
	11/26/2018			28.28			625.27
MW09R	11/30/2018	8.59-33.59	653.55	19.94			633.61
	3/29/2019			12.82			640.73
	8/29/2019			19.81			633.74
	12/19/2019			28.20			625.35
	4/17/2017			16.72			629.08
	4/20/2017			17.31			628.49
	4/27/2017			18.11			627.69
	5/1/2017			18.99			626.81
MW-10	6/8/2017	14-30	645.80	19.88			625.92
-	7/3/2017			25.06	23.62	1.44	621.86
	9/28/2017			25.70			620.10
MW-10 MW10R 1 MW10R 1 MW111	4/25/2018			21.18			624.62
	4/27/2018			20.96			624.84
	8/27/2018			24.64			619.66
	8/31/2018			25.71			618.59
	11/26/2018			27.51			616.79
MW10R	11/30/2018	14.66-34.64	644.30	26.19	25.95	0.24	618.30
	3/29/2019			18.54			625.76
	8/29/2019			NM			
	12/19/2019			27.72			616.58
	4/17/2017			13.45			644.55
	4/20/2017			13.45			644.55
	4/27/2017			13.76			644.24
	5/1/2017			13.77			644.23
	6/8/2017			14.32	14.05	0.27	643.89
ļ	7/3/2017			14.30			643.70
	9/28/2017]		14.65			643.35
N 4144 4 4	4/25/2018	42.22	650.00	13.82			644.18
IVIVV-11	4/27/2018	12-22	658.00	13.82			644.18
	8/27/2018			14.20			643.80
	8/31/2018			14.21			643.79
ļ	11/26/2018			14.11			643.89
MW-11	11/30/2018			14.11			643.89
	3/29/2019]		13.41			644.59
	8/29/2019			14.09			643.91
ļ	12/19/2019			14.29			643.71

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/25/2018			7.37			650.90
	4/27/2018			7.31			650.96
	8/27/2018			8.01			650.26
	8/31/2018			8.04			650.23
MW12	11/26/2018	4.63 - 19.63	658.27	7.88			650.39
	11/30/2018			7.93			650.34
	3/29/2019			7.13			651.14
	8/29/2019			7.70			650.57
	12/19/2019	1		8.00			650.27
	4/25/2018			7.39			649.65
	4/27/2018			7.36			649.68
	8/27/2018			8.05			648.99
N 4) A / 4 2	8/31/2018	4.04 40.04	657.04	8.15			648.89
MW13	11/26/2018	4.91 - 19.91	657.04	8.22			648.82
	11/30/2018			8.17			648.87
	3/29/2019			7.21			649.83
	8/29/2019			7.61			649.43
MW13R	12/19/2019	4.23 - 18.23	656.67	8.02			648.65
	4/25/2018			7.81			649.34
	4/27/2018			7.75			649.40
-	8/27/2018			8.35			648.80
	8/31/2018			8.40			648.75
MW14	11/26/2018	5.23 - 20.23	657.15	8.45			648.70
	11/30/2018			8.51			648.64
	3/29/2019		-	7.70			649.45
	8/29/2019			8.03			649.12
	12/19/2019			8.58			648.57
	4/25/2018			NM			
	4/27/2018			34.80			620.19
	8/27/2018			34.76			620.23
	8/31/2018	1		34.82			620.17
MW15	11/26/2018	10.33 - 35.33	654.99	dry			
	11/30/2018			dry			
	3/29/2019]		dry			
	8/29/2019]		dry			
	12/19/2019]		34.94			620.05
	4/25/2018			9.72			647.21
	4/27/2018]		9.70			647.23
	8/27/2018]		10.05			646.88
	8/31/2018]		10.18			646.75
MW16	11/26/2018	9.28 - 29.28	656.93	10.07			646.86
	11/30/2018]		9.73			647.20
ļ	3/29/2019	1		9.44			647.49
MW16	8/29/2019	1		9.89			647.04
	12/19/2019	1		9.92			647.01

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/25/2018			14.25			641.30
	4/27/2018			14.22			641.33
	8/27/2018			15.07			640.48
	8/31/2018			15.14			640.41
MW17	11/26/2018	9.52 - 29.52	655.55	14.78			640.77
-	11/30/2018			14.66			640.89
-	3/29/2019			13.38			642.17
-	8/29/2019			14.23			641.32
	12/19/2019			28.34			627.21
	4/25/2018			NM			
	4/27/2018			34.69			619.82
	8/27/2018			dry			
	8/31/2018			dry			
MW18	11/26/2018	15.86 - 35.86	654.51	dry			
	11/30/2018			dry			
	3/29/2019			dry			
-	8/29/2019			dry			
	12/19/2019	•		dry			
	4/25/2018			23.05			630.26
-	4/27/2018	-		23.15			630.16
	8/27/2018			28.63			624.68
MW19	8/31/2018	-		28.83			624.48
	11/26/2018	11.66 - 31.66	653.31	dry			
	11/30/2018	11.00 31.00		27.72			625.59
	3/29/2019			21.30			632.01
	8/29/2019			30.45			622.86
	12/19/2019			30.09			623.22
	4/25/2018			18.55			632.30
-	4/27/2018	-		18.64			632.21
	8/27/2018	-		24.97			625.88
	8/31/2018			25.24			625.61
MW20	11/26/2018	9.79 - 29.79	650.85	25.20			625.65
	11/30/2019	-		24.95			625.90
-	3/29/2019	1		13.32			637.53
-	8/29/2019	1		25.02			625.83
-	12/19/2019	1		25.98			624.87
	4/25/2018			19.40			624.48
-	4/27/2018	1		19.31			624.57
-	8/27/2018	1		20.88			623.00
-	8/31/2018	1		21.36			622.52
MW21	11/26/2018	12.30 - 32.30	643.88	20.42			623.46
	11/30/2018	1 22.33		20.71			623.17
	3/29/2019	1		19.67			624.21
-	8/29/2019	1		20.59			623.29
-	12/19/2019	1		21.79			622.09

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/25/2018			21.80			620.05
	4/27/2018			21.80			620.05
	8/27/2018	-		23.72			618.13
	8/31/2018	-		24.46			617.39
MW22	11/26/2018	9.19 - 34.19	641.85	23.49			618.36
	11/30/2018	-		24.74			617.11
	3/29/2019	=		24.90			616.95
	8/29/2019			NM			
	12/19/2019			24.49			617.36
	4/25/2018			10.28			646.63
	4/27/2018			10.30			646.61
	8/27/2018			12.16			644.75
	8/31/2018	7.13 - 22.13		11.99			644.92
MW23	11/26/2018		656.91	11.27			645.64
	11/30/2019			11.30			645.61
	3/29/2019			9.36			647.55
	8/29/2019			11.42			645.49
	12/19/2019	-		11.66			645.25
	8/27/2018			26.03			618.35
	8/31/2018	-		26.77			617.61
	11/26/2018	-		27.11			617.27
MW24	11/30/2018	14.17 - 34.17	644.38	27.05			617.33
	3/29/2019	-		24.75			619.63
	8/29/2019			26.51			617.87
	12/19/2019	-		27.90			616.48
	8/27/2018			26.01			619.56
	8/31/2018	-		26.49			619.08
	11/26/2018	-	-	24.96			620.61
MW25	11/30/2018	12.81 - 32.81	645.57	25.19			620.38
	3/29/2019			13.45			632.12
	8/29/2019	-		26.02			619.55
	12/19/2019	-		25.50			620.07
	8/27/2018			25.23			621.42
	8/31/2018	1		25.76			620.89
	11/26/2018			25.45			621.20
MW26	11/30/2018	13.54 - 33.54	646.65	25.83			620.82
	3/29/2019	1		16.35			630.30
	8/29/2019	-		26.33			620.32
	12/19/2019	1		26.16			620.49
	8/27/2018			24.87			624.13
	8/31/2018	-		25.06			623.94
	11/26/2018	-		24.92			624.08
MW27	11/30/2018	13.56 - 38.56	649.00	23.90			625.10
141442/	3/29/2019	15.50 50.50	043.00	20.04			628.96
	8/29/2019	-		23.89			625.11
	12/19/2019	-		27.06			621.94

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	8/27/2018			26.04			624.60
	8/31/2018			26.25			624.39
	11/26/2018			33.05			617.59
MW28	11/30/2018	13.62 - 38.62	650.64	25.00			625.64
	3/29/2019			20.50			630.14
	8/29/2019			24.96			625.68
	12/19/2019			28.33			622.31
	8/27/2018			34.43			617.91
	8/31/2018			34.84			617.50
	11/26/2018			34.92			617.42
MW29	11/30/2018	14.05 - 39.05	652.34	34.25			618.09
	3/29/2019			20.80			631.54
	8/29/2019			30.67	30.67	<0.01	621.67
	12/19/2019			34.99			617.35
	8/27/2018			34.73			618.10
	8/31/2018			35.01			617.82
	11/26/2018			34.91			617.92
MW30	11/30/2018	14.67 - 39.67	652.83	34.84			617.99
	3/29/2019			35.28			617.55
	8/29/2019			35.05			617.78
	12/19/2019			35.19			617.64
	8/27/2018			34.55			619.42
	8/31/2018			35.16			618.81
	11/26/2018			35.04			618.93
MW31	11/30/2019	14.11 - 39.11	653.97	34.96			619.01
	3/29/2019			32.45			621.52
	8/29/2019			34.02			619.95
	12/19/2019			36.08			617.89
	8/27/2018			12.41			643.42
	8/31/2018			12.43			643.40
	11/26/2018	-		12.28			643.55
MW32	11/30/2019	8.95 - 33.95	655.83	12.25			643.58
	3/29/2019			11.13			644.70
	8/29/2019			12.01			643.82
	12/19/2019			28.28			627.55
	4/17/2017	-		19.71			632.46
	4/20/2017	-		20.13			632.04
	4/27/2017	1		22.88			629.29
	5/1/2017			23.16			629.01
	6/8/2017	1		25.64			626.53
	7/3/2017			28.46	27.91	0.55	624.14
BH-1	9/28/2017	20-30	652.17	28.73			623.44
	4/25/2018			23.03			629.14
	4/27/2018	1		20.03			632.14
	8/27/2018	-		26.21			625.96
	8/31/2018	-		26.27			625.90
	11/26/2018	_		NM			
	11/30/2018			NM			
	3/29/2019		,_	20.30			630.73
BH01R	8/29/2019	14.52-39.52	651.03	24.64			626.39
	12/19/2019			34.33			616.70

Well Identification	Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
	4/17/2017			26.16			627.61
	4/20/2017	-		26.30			627.47
	4/27/2017	=		26.56	26.48	0.08	627.27
	5/1/2017	=		26.68	26.58	0.10	627.17
	6/8/2017			26.73			627.04
	7/3/2017			28.86			624.91
	9/28/2017	=		31.25			622.52
511.5	4/25/2018	20.25	652.77	27.68			626.09
BH-2	4/28/2017	20-35	653.77	27.53			626.24
	8/27/2018	=		28.50			625.27
	8/31/2018			28.91			624.86
	11/26/2018			28.66		trace	625.11
	11/30/2018			28.63		trace	625.14
	3/29/2019	1		27.75			626.02
	8/29/2019	1		28.51			625.26
	12/19/2019			28.60			625.17
	4/17/2017			17.47			631.29
	4/20/2017	-		17.88			630.88
	4/27/2017	-		18.70			630.06
	5/1/2017	-		19.06			629.70
	6/8/2017			21.19			627.57
	7/3/2017	-	648.76	21.70			627.06
	9/28/2017	-		23.04			625.72
	4/25/2018	1		20.06			628.70
BH-3	4/27/2018	15-30	648.76	22.36			626.40
	8/27/2018	=		22.20			626.56
	8/31/2018	-		23.68			625.08
	11/26/2018	-		24.05			624.71
	11/30/2018	-		25.29			623.47
	3/29/2019	-		18.05			630.71
	8/29/2019	-		25.43			623.33
	12/19/2019	-		24.31			624.45
	4/17/2017			16.15			634.27
	4/20/2017	1		16.34			634.08
	4/27/2017	1		17.35			633.07
	5/1/2017	1		18.55			631.87
	6/8/2017	1		22.67			627.75
	7/3/2017	1		24.19			626.23
	9/28/2017	-		26.74			623.68
	4/25/2018	1		21.19			629.23
RW-1	4/27/2018	15-30	650.42	21.21			629.21
	8/27/2018	1		25.09			625.33
RW-1 2	8/31/2018	1		25.69			624.73
	11/26/2018	-		28.81			621.61
	11/30/2018	1		25.63			624.79
	3/29/2019	1		21.12			629.30
	8/29/2019	1		26.80			623.62
	12/19/2019	-		27.42			623.00

NOTES:

¹Elevation in feet above mean sea level. Elevations based on NAVD88 vertical datum. Well survey conducted by Munson Engineers, Inc. of Wenatchee, Washington in July 2010 and April 2017.

bgs = below ground surface LNAPL = light nonaqueous-phase liquid NAPL = nonaqueous-phase liquid

Groundwater elevations in wells with LNAPL corrected for water-level elevation using typical specific gravity of R99 LNAPL of 0.78.

^{- - -} denotes no LNAPL present

				11								
			Fuels				<u> </u>	Volatiles	i I		1	
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Benzene (Non Detect	eanup for Groundwater)	800/1000 1,000 800	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Detect)		800		<u> </u>			<u> </u>					
Field ID	Date							T			1	
FB-9	4/7/2017	1,200 F	2,900	1,200	2.4	< 1.0	3.7	1.7				
FB-10	4/7/2017	2,000 F	57,000	< 4,100 ec	71	13	7.1	64				
	4/21/2017	820 F	1,900	970 N1	15	2.8	8.3	18.5				
BH-1	4/26/2018	2,140	1,390	<377	0.671	<1.00	5.55	12.5				
J	8/30/2018	591	243	<148	<0.200	<1.00	<0.500	<1.50				
	12/1/2018	1,420	5,120 F13	<151	<0.200	<1.00	0.608	<1.50				
	3/27/2019	1,130	13,600 F-13	<151	4.33	<1.00	1.15	1.78				
BH01R	8/27/2019	518	1,910 F-13	<150	0.240	<1.00	<0.500	<1.50				
	12/16/2019	918	42,800 F-13	<3,200 ec	<0.200	<1.00	<0.500	<1.50				
	4/10/2017	1,900 F	100,000	10,000	< 4.0	< 4.0	13	39				
	4/21/2017	1,500 F	2,600	630 N1	4.2	3.3	12	39				
	4/24/2018	854	9,360	<377	<0.200	<1.00	<0.500	<1.50				
DU 2	8/28/2018	639	3,300	<148	<0.200	<1.00	<0.500	<1.50				
BH-2	11/30/2018	509	7,040	<151	<0.200	<1.00	<0.500	<1.50				
	3/27/2019	354	5,310 F-13, F-15	475 F-03, F-16	<0.200	<1.00	<0.500	<1.50				
	8/27/2019	295	6,150 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	202	2,230 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	4/21/2017	1,800 F	2,400	660	1.8	<1.0	5.4	8.2				
	9/29/2017	150 O	1,200	550 N1	<1.0	<1.0	<1.0	<2.0				
	4/26/2018	172	1,130	<377	<0.200	<1.00	<0.500	<1.50				
	8/30/2018	250	276	<148	<0.200	<1.00	<0.500	<1.50				
BH-3	11/29/2018	<100	502	<151	<0.200	<1.00	<0.500	<1.50				
	3/28/2019	319	1,850 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	8/28/2019	121	816 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/18/2019	126	488 F-13	<150	<0.200	<1.00	<0.500	<1.50				

			Fuels					Volatiles	<u> </u>		_	
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A Cle	eanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect)		1,000										
Benzene (Detect)		800			_!							
ield ID	Date						•				1	
	4/21/2017	<100	840	540 N1	<1.0	<1.0	<1.0	<2.0				
	9/29/2017	<100	360	440	<1.0	<1.0	<1.0	<2.0				
	4/26/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50				
RW-1	8/30/2018	<100	327	<150	<0.200	<1.00	<0.500	<1.50				
KAA-1	11/30/2018	<100	152	<151	<0.200	<1.00	<0.500	<1.50				
	3/28/2019	<100	<74.8 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	8/28/2019	<100	116 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	12/18/2019	<100	78.7 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	3/23/2017		520	480								
-	4/21/2017	210 F	730	510	<1.0	<1.0	<1.0	<2.0				
DANA / 4	9/29/2017	200	410	<410	<1.0	<1.0	<1.0	<2.0				
MW-1	8/28/2018	449	219	<151	<0.200	<1.00	<0.500	<1.50				
-	11/27/2018	152	159	<151	<0.200	<1.00	<0.500	<1.50				
["	3/25/2019	172	126 F-11,F-20	<151	<0.200	<1.00	<0.500	<1.50				
	4/24/2018	188	<187	<374	0.42	<1.00	5.8	9.48				
[8/28/2018	268	294	<151	1.49	<1.00	1.26	<1.50				
	11/27/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
MW01S	3/25/2019	133	116 F-11, F-20	<151	<0.200	<1.00	4.18	8.97				
ļ·	8/26/2019	<100	269 F-11, F-20	<150	<0.200	<1.00	<0.500	<1.50				
ļ-	12/17/2019	<100	97.2 F-11	<154	<0.200	<1.00	<0.500	<1.50				
	3/23/2017		<260	<410								
MW-2	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
<u> </u> -	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50				

			Finale		<u> </u>			Valatila				
			Fuels		-		1	Volatiles	; 			Ι
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	leanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect Benzene (Detect)	:)	1,000 800			-		+				1	
		300			JI							<u> </u>
Field ID	Date	1	<u> </u>	<u> </u>	1		1	1				1
MW-3	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
	9/28/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50	<2.00	<1.00	< 0.500 ec	<0.400
	8/29/2018	<100	139	<151	<0.200	<1.00	<0.500	<1.50				
MW03S	11/27/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
	3/25/2019	<100	<76.2	<152	<0.200	<1.00	<0.500	<1.50				
	8/26/2019	<100	114 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	77.7 F-11	<155	<0.200	<1.00	<0.500	<1.50				
	3/23/2017		<260	<410								
MW-4	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
10100-4	9/28/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50				
	3/23/2017		<260	<410								
	4/20/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
MW-5	9/28/2017	<100	<260	<410	<1.0	<1.0	<1.0	<2.0				
	4/25/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50				
	8/28/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
	4/20/2017	880 F	1,800	480 N1	5.0	<4.0	6.2	37				
	9/28/2017	530 O	760	430 N1	<1.0	<1.0	<1.0	4.3				
	4/25/2018	643	1,620	<374	0.56	<1.00	<0.500	2.19				
	8/29/2018	376	668	<151	<0.200	<1.00	<0.500	<1.50				
MW-6	11/27/2018	499	634	<151	<0.200	<1.00	<0.500	<1.50				
	3/25/2019	398	1,010 F-13,F-20	<152	<0.200	<1.00	<0.500	<1.50				
	8/26/2019	356	1,200 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/18/2019	221	742 F-13	<154	<0.200	<1.00	<0.500	<1.50				

12/16/2019

1,420

1,120,000 F-13

<30,200 ec

Table 3 Groundwater Analytical Results - Fuels and VOCs

Coleman Oil Site Wenatchee, Washington

			Fuels	_			_	Volatiles	5		,	
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
/A MTCA Method A C	leanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect	·)	1,000										
Benzene (Detect)		800			<u> </u>							
ield ID	Date											
	4/20/2017	1,100 F	1,300	420 N1	3.2	< 1.0	15	11.4				
	9/28/2017	<100	520	<470 U1	<1.0	<1.0	<1.0	<2.0				
MW-7	4/25/2018	<100	435	<374	<0.200	<1.00	<0.500	<1.50				
	8/29/2018	<100	448	<151	<0.200	<1.00	<0.500	<1.50				
	11/28/2018	<100	283	<151	<0.200	<1.00	<0.500	<1.50				
	9/29/2017	1,300 O	2,100	690 N1	<1.0	<1.0	4.1	27.2				
	4/26/2018	720	1,300	<374	0.641	<1.00	<0.500	4.67				
	8/29/2018	774	907	<151	<0.200	<1.00	<0.500	3.42				
MW-8	11/28/2018	921	505	<151	0.214	<1.00	1.06	6.23				
	3/26/2019	768	2,220 F-13,F-20	<152	22.2	<1.00	<0.500	2.70				
	8/26/2019	899	1,320 F-13,F-20	<151	0.853	<1.00	0.504	2.17				
	12/18/2019	891	1,110 F-13	<155	<0.200	<1.00	<0.500	<1.50				
MW-9	9/29/2017	500 O	1,200	670 N1	<1.0	<1.0	<1.0	1.5				
IVIVV-9	4/26/2018	2,810	2,620	<374	2.73	<1.00	9.95	20.4				
	8/29/2018	234	654	<151	<0.200	<1.00	<0.500	<1.50				
	11/28/2018	1,300	1,850	<151	<0.200	<1.00	<0.500	<1.50				
MW-9R	3/26/2019	1,000	5,690 F-13,F-20	<151	5.64	<1.00	0.545	<1.50				
	8/27/2019	1,080	5,880 F-13	<150	<0.200	<1.00	<0.500	<1.50				
		_,,,,,	-,3 · -2									ľ

<0.200

<1.00

<0.500

<1.50

			Fuels					Volatiles				
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	leanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect)	1,000										
Benzene (Detect)		800										
Field ID	Date						_					•
	4/21/2017	1,900 F	3,800	730	3.4	< 1.0	11	12.5				
MW-10	9/29/2017	1,900 O	16,000	1,300 N1	<1.0	<1.0	13	26.7				
	4/26/2018	2,290	1,500	<377	0.219	<1.00	3.52	5.95				
	8/30/2018	1,080	838	< 150	< 0.200	< 1.00	1.22	2.42				
	11/29/2018	2,160	1,370	< 755 ec	<0.200	<1.00	3.90	5.98				
MW-10R	3/28/2019	1,020	2,960 F-13	<151	0.401	<1.00	0.837	<1.50				
	8/27/2019	1,270	3,620 F-13	<1,510 ec	<0.200	<1.00	1.44	3.06				
	12/19/2019 iw											
	4/21/2017	1,400 F	1,700	1,000 N1	28	4.1	8.2	26.1				
	9/29/2017	1,000 O	3,100	720 N1	<1.0	<1.0	1.9	12.5				
	4/26/2018	1,240	1,140	<374	<0.200	<1.00	0.56	2.27				
D 40 A / 4 4	8/29/2018	944	251	<150	<0.200	<1.00	<0.500	<1.50				
MW-11	11/27/2018	1,350	503	<151	<0.200	<1.00	<0.500	<1.50				
	3/26/2019	1,540	1,230 F-13,F-20	<150	11.6	<1.00	<0.500	2.34				
	8/26/2019	1,230	1,060 F-13, F-20	<151	<0.200	<1.00	<0.500	<1.50				
	12/18/2019	1,020	1,060 F-13	<152	<0.200	<1.00	<0.500	<1.50				
	4/25/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50				
	8/28/2018	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50				
N 41442	11/27/2018	<100	92.8	<151	<0.200	<1.00	<0.500	<1.50				
MW12	3/25/2019	<100	<76.2	<152	<0.200	<1.00	<0.500	<1.50				
	8/26/2019	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	91.0 F-11	<152	<0.200	<1.00	<0.500	<1.50				

			Fuels					Volatiles	•			
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	МТВЕ	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Dete	ect)	1,000										
Benzene (Detect)		800			<u> </u>							
Field ID	Date								,			
	4/25/2018	40,900	1,790	<377	1,500	4,710	627	3,780				
MW13	8/29/2018	39,300	2,500	<150	1,780	3,010	796	4,850	167	<50.0 ec	< 25.0 ec	<25.0 ec
WWIS	11/27/2018	22,400	3,250	<151	1,380	271	458	3,170				
	3/25/2019	28,500	4,650 F-11,F-20	<151	701	761	804	4,980				
MW13R	8/26/2019	966	2,180 F-11,F-20	<151	96.4	<1.00	8.52	28.5				
IVIVVISK	12/17/2019	292	979 F-11	<154	47.3	<1.00	2.16	5.00				
	8/29/2018	4,040	487	<150	<0.200	<1.00	<0.500	<1.50				
	4/25/2018	4,620	900	<374	13.1	<1.00	16.1	<1.50	3.21	<1.00	<0.500 ec	<0.400
MW14	11/27/2018	5,170	933	<151	15.2	<1.00	1.70	<1.50				
1010014	3/25/2019	2,650	1,070 F-11,F-20	<151	17.8	<1.00	2.04	<1.50				
	8/26/2019	3,510	1,280 F-11,F-20	<151	44.2	<10.0	5.95	<15				
	12/17/2019	3,450	671 F-11,F-20	<154	24.7	<1.00	3.00	2.69				
	4/25/2018 iw											
	8/29/20018 iw											
MW15	11/27/2018 iw											
INIMIT	3/26/2019 iw											
	8/26/2019 iw											
	12/19/19 iw											
	4/26/2018	<100	330	<374	<0.200	<1.00	<0.500	<1.50				
	8/29/2018	<100	298	<150	<0.200	<1.00	<0.500	<1.50				
MW16	11/28/2018	<100	337	<151	<0.200	<1.00	<0.500	<1.50				
IAIAATO	3/26/2019	<100	183 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	8/26/2019	<100	349 F-11	<150	<0.200	<1.00	<0.500	<1.50				
1	12/17/2019	<100	259 F-11	<154	<0.200	<1.00	<0.500	<1.50				

			Fuels					Volatiles	3			
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A (Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detec	t)	1,000										
Benzene (Detect)		800										
Field ID	Date										_	
	4/26/2018	2,800	1,630	<377	1.23	<1.00	1.62	7.66	4.72	<1.00	<0.500 ec	<0.400
	8/29/2018	1,270	986	<150	0.450	<1.00	<0.500	<1.50	5.61	<1.00	<0.500 ec	<0.500
MW17	11/28/2018	1,390	1,580	<151	0.305	<1.00	<0.500	<1.50				
IVIVV I /	3/26/2019	1,180	2,520 F-13,F-20	<151	2.91	<1.00	0.692	1.50				
	8/26/2019	655	6,730 F-13	<150	2.72	<1.00	<0.500	<1.50				
	12/16/2019	1,470	21,800 F-13	<3,050 ec	1.38	<1.00	3.10	<1.50				
	4/26/2018 iw											
	8/2920018 iw											
N 4144 O	11/27/2018 iw											
MW18	3/26/2019 iw											
	8/26/2019 iw											
	12/19/2012 iw											
	4/26/2018	280	979	<377	<0.200	<1.00	<0.500	<1.50				
	8/27/2018	<100	406	<150	<0.200	<1.00	<0.500	<1.50				
	11/30/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
MW19	3/28/2019	447	4,300 F-13	<151	0.673	<1.00	<0.500	<1.50				
	8/26/2019 iw											
	12/17/2019	<100	674 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	4/26/2018	1,270	1,320	<377	<0.200	<1.00	1.56	5.44				
	8/30/2018	320	346	<150	<0.200	<1.00	<0.500	<1.50				
	11/29/2018	674	1,280	<151	<0.200	<1.00	<0.500	<1.50				
MW20	3/28/2019	1,220	2,190 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	8/28/2019	588	870 F-11,F-20	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	553	967 F-13	<150	<0.200	<1.00	<0.500	<1.50				

			Fuels					Volatiles				
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A	Cleanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detec	et)	1,000										
Benzene (Detect)		800			<u> </u>							
Field ID	Date								<u> </u>			
	4/26/2018	991	965	<374	<0.200	<1.00	0.835	1.82				
	8/30/2018	<100	234	<150	<0.200	<1.00	<0.500	<1.50				
MW21	11/27/2018	789	992	<151	<0.200	<1.00	<0.500	<1.50				
IVIVVZI	3/28/2019	799	1,400 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	8/27/2019	453	605 F-11,F-20	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	160 F-11	<150	<0.200	<1.00	<0.500	<1.50				
MW22	4/26/2018	6,960	4,690	<377	118	28.8	102	196				
IVIVVZZ	8/30/2018	2,040	1,150	< 748 ec	30.4	5.34	30.5	55.9				
	4/25/2018	<100	419	<381	<0.200	<1.00	<0.500	<1.50				
	8/29/2018	<100	266	<150	<0.200	<1.00	<0.500	<1.50				
MW23	11/27/2018	<100	380	<151	<0.200	<1.00	<0.500	<1.50				
1010023	3/25/2019	<100	339 F-11	<152	<0.200	<1.00	<0.500	<1.50				
	8/26/2019	<100	580 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	305 F-11	<152	<0.200	<1.00	<0.500	<1.50				
	8/30/2018	<100	220	<150	<0.200	<1.00	<0.500	<1.50				
	11/29/2018	154	914	<151	<0.200	<1.00	<0.500	<1.50				
MW24	3/28/2019	<100	696 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	8/27/2019	<100	560 F-11, F-20	<150	<0.200	<1.00	<0.500	<1.50				
	12/19/2019 iw											
	8/30/2018	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50				
	11/27/2018	<100	121	<151	<0.200	<1.00	<0.500	<1.50				
MW25	3/28/2019	<100	302 F-11	<151	<0.200	<1.00	<0.500	<1.50				
	8/27/2019	<100	262 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	98.1 F-11	<150	<0.200	<1.00	<0.500	<1.50				

			Fuels					Volatiles				
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	leanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect)	1,000										
Benzene (Detect)		800		<u> </u>	<u> </u>							
Field ID	Date			1	П	T	1	T			T	<u> </u>
	8/30/2018	<100	128	<150	<0.200	<1.00	<0.500	<1.50				
	11/29/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
MW26	3/28/2019	<100	591 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	8/27/2019	<100	266 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/16/2019	<100	187 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	8/30/2018	<100	118	<150	<0.200	<1.00	<0.500	<1.50				
	11/29/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
MW27	3/28/2019	<100	185 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	8/28/2019	<100	467 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	12/18/2019	<100	264 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	8/30/2018	<100	105	<150	<0.200	<1.00	<0.500	<1.50				
	12/1/2018	385	486	<158	0.208	<1.00	<0.500	<1.50				
MW28	3/27/2019	303	1,370 F-13	<151	1.30	<1.00	<0.500	<1.50				
	8/27/2019	302	1,010 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/17/2019	<100	671 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	8/28/2018	<100	459	<150	<0.200	<1.00	<0.500	<1.50				
	11/29/2018	<100	238	809	<0.200	<1.00	<0.500	<1.50				
MW29	3/27/2019	237	2,930 F-13,F-15	928 F-16	1.64	<1.00	<0.500	<1.50				
	8/26/2019											
	12/16/2019	3,960	129,000 F-13	< 15,700 ec	<0.200	<1.00	<0.500	<1.50				
	8/28/2018	<100	193	<150	<0.200	<1.00	<0.500	<1.50				
	11/29/2018	<100	304	<151	<0.200	<1.00	<0.500	<1.50				
MW30	3/27/2019	<100	612 F-13	<150	<0.200	<1.00	<0.500	<1.50		 	 	
	8/27/2019	<100	557 F-13	<150	<0.200	<1.00	<0.500	<1.50				
	12/16/2019	238	5,410 F-13	<150	<0.200	<1.00	<0.500	<1.50				

Coleman Oil Site Wenatchee, Washington

			Fuels	1				Volatiles	<u> </u>		1	ı
		GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylene, Total	Naphthalene	MTBE	EDB	EDC
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A C	leanup for Groundwater	800/1000	500	500	5	1,000	700	1,000	160	20	0.01	5
Benzene (Non Detect)	1,000										
Benzene (Detect)		800			<u> </u>							
Field ID	Date											
	8/28/2018	<100	<74.1	<148	<0.200	<1.00	<0.500	<1.50				
	12/1/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
MW31	3/27/2019	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50				
	8/27/2019	<100	<74.8	<150	<0.200	<1.00	<0.500	<1.50				
	12/16/2019	<100	255 F-13	<151	<0.200	<1.00	<0.500	<1.50				
	8/29/2018	139	161	<148	<0.200	<1.00	<0.500	<1.50	<2.00	<1.00	<0.500 ec	<0.500
	11/28/2018	<100	<75.5	<151	<0.200	<1.00	<0.500	<1.50				
MW32	3/26/2019	<100	296 F-11	<150	<0.200	<1.00	<0.500	<1.50				
	8/26/2019	<100	302 F-11	<150	<0.200	<1.00	<0.500	<1.50				

< 2.00

<1.00

< 0.500

<1.50

Notes:

Red denotes concentration in excess of MTCA Method Cleanup Level for Groundwater.

Blue denotes concentration in excess of laboratory method reporting limit (MRL) but below the MTCA Method Cleanup Level for Groundwater.

433 F-11

MTCA Method A Cleanup Levels, WAC 173-340-720 through 173-340-760, revised Nov., 2007

GRPH (gasoline range petroleum hydrocarbons) analyzed by Method NWTPH-Gx.

DRPH (diesel range petroleum hydrocarbons) and ORPH (oil range petroleum hydrocarbons) analyzed by Method NWTPH-Dx.

<100

Volatile organic compounds (VOCs) analyzed by EPA Method 8260C Total Lead by EPA Method 6020

12/16/2019

iw = insufficient volume of water to sample

- < = less than method reporting limit shown
- --- = not analyzed. MW15 and MW18 not sampled due to lack of water in the well.
- ec = Method reporting limit exceeds Clean Up Level shown.

F and O = hydrocarbons indicative of heavier fuels are present in sample and impacting the gasoline result (Farallon 2017b)

N1 = hydrocarbons in the diesel-range are impacting the oil result (Farallon 2017b)

U1 = the practical quantitation limit is elevated due to interferences present in the sample (Farallon 2017b)

F-03 = The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.

<155

- F-11 = The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
- F-13 = The chromatographic pattern does not resemble the fuel standard used for quantitation.
- F-15 = Results for diesel are estimated due to overlap from the reported oil result.
- F-16 = Results for oil are estimated due to overlap from the reported diesel result.
- F-20 = Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.
- S-02 = Surrogate recovery cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
- S-06 = Surrogate recovery is outside of established control limits.

APPENDIX A GROUNDWATER SAMPLE COLLECTION FORMS

GROUNDWATER Hydro Con SAMPLE COLLECTION FORM

Well I.D. Number: MW-015 Project Name: Coleman Oil Wenstchee Sample I.D. MW - 15- W Time: 1005 Hydrocon Project #: 2017 - 074

Date 12/17/2019 Time: Field Duplicate I.D. Personnel: T. Haderly WELL INFORMATION Monument condition: ☐ Good ☐ Needs repair ☐ Water in Monument Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Headspace reading: Not measured ppm Odor Well diameter: 2-inch X 4-inch 6-inch Other Comments PURGING INFORMATION Total well depth 19.99 ft Bottom: Hard Soft Not measured Screen Interval(s): 5.37-20.37 Depth to product _____ ft Depth to water _____ 11.89 ft Intake Depth (BTOC) ~ 13 Begin Purging Well: 9.92 m Casing volume _____ 8.15 ft (H₂O) X _____ 0.65 gal/ft = _____ 5.3 gal. X 3 = ____ 15.9 gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other____ Water Disposal: ☐ Drummed ☒ Remediation System ☐ Other Bailer type: FIELD PARAMETERS Odor and/or Sheen:_ Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen pH Turbidity ORP Level (L/min) (°C) (mS/cm) (±10% or (NTU) (SU) (mV) <1.00 ±0.2) (BTOC) (±3%) (± 10% or =10) (± 0.1) 948 11.84 15.74 6.14 1 + 0,523 4.24 16,38 0.657 11.91 1 + 3,57 6.18 4.32 12.01 11 16.10 3.48 0.659 1+ 12.03 110.04 6.32 3.32 958 2.89 12.03 0.448 4.34 11 14.05 0,448 12.03 1+ 6.37 1001 16001 2.80 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION Preservative Bottle **Container Type** Field Filtered? Analysis Count Amber Glass NO 0.45 0.10 NWTPH-OX (NO 0.45 0.10 NWTPH-CX, BTEX HCL Clear Glas HCL No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

GROUNDWATER

Well I.D. Number: MW-03,5 Project Name: Coleman Oil Wenstchee Sample I.D. MW-038-W Time: /2/0 Hydrocon Project #: 2017-074 Field Duplicate I.D. Time: Eden Date Personnel: WELL INFORMATION Monument condition: ☐ Good ☐ Needs repair_ Good Needs repair Water in Monument
Good Replaced Needs replacement Surface Water in Well Well cap condition: Headspace reading: Not measured Odor ppm 24-inch 2-inch 6-inch Other____ Well diameter: Comments PURGING INFORMATION Total well depth 19.30 ft Bottom: Hard Soft Not measured Screen Interval(s): 4.48-19.43 Depth to product — ft Depth to water 7.97 ft Intake Depth (BTOC) 12 Begin Purging Well: 1/40 Casing volume 1/.33 ft (H₂O) X 0.65 gal/ft = 7.36 gal. X 3 = 22 gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other_____ Bailer type: Water Disposal:: ☐ Drummed ☐ Remediation System ☐ Other FIELD PARAMETERS Odor and/or Sheen: Dissolved Time Water **Purge Rate** Sp. Cond. Oxygen Temp. Turbidity pH ORP Level (L/min) (°C) (mS/cm) (±10% or (NTU) (SU) (mV) ≤1.00 ±0.2) (BTOC) (±3%) (±10% or ≤10) (±0.1) 8,20 1145 15,20 0.197 1.62 6.60 15,43 8.37 1148 1+ 0.252 0.75 6,63 1152 0.241 6.65 8.60 1+ 0,52 15.40 0,030 0.39 1155 8.84 1+ 6.69 15.41 8.97 1+ 1158 0.029 0.38 6.70 9.05 15.45 0.024 0.34 1203 1+ 6.70 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type** Analysis Count Amber Glav (No. 0.45 0.10 NWTPH- DX NWTPH-GX, BIEX Clear Glass No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

Sampling Comments:

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: MW-lo Project Name: Coleman Oil Wenatchee Time: 835 Sample I.D. MW-6-W Hydrocon Project #; 2017-074 Field Duplicate I.D. Time: Date /2/18/19 Personnel: 11 thidealy WELL INFORMATION ____ Water in Monument Monument condition: ☐ Good ☐ Needs repair_ ☑ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Well cap condition: Headspace reading: Solution Not measured _____ppm □ Odor__ 2-inch 4-inch Well diameter: 6-inch Other Comments_ PURGING INFORMATION Total well depth 18.00 ft Bottom: Hard Soft Not measured Screen Interval(s): 8-18 Depth to product Depth to product 11.08 ft Intake Depth (BTOC) 15 Begin Purging Well: 15 Casing volume 15 ft (H₂O) X 15 gal/ft = 15 gal. X 3 = 15 gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other____ Water Disposal:: ☐ Drummed 🔀 Remediation System ☐ Other Bailer type: FIELD PARAMETERS Odor and/or Sheen:_ Dissolved Time **Purge Rate** Water Temp. Sp. Cond. Oxygen Turbidity pH ORP (°C) Level (L/min) (±10% or (NTU) (mS/cm) (SU) (mV) ≤1.00 ±0.2) (± 10% or ≤10) (BTOC) (±3%) (± 0.1) 14.39 0.460 815 11.09 0.84 6.17 -105 818 1+ 11.11 15.72 0,466 0.58 6.25 -105 126 6.25 0.36 822 11.11 15,42 0.466 11 -107 828 6.24 11.12 0.30 15.56 0.461 -110 123 11,12 0.465 -112 15,67 6.25 6.25 1+ 11.13 15.68 -112 124 0,470 0.25 6.25 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION Preservative Field Filtered? **Container Type** Analysis Count NWTPH-OX, BIEX Ambor Glass No 0.45 0.10 No 0.45 0.10 Clar Glass He1 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10

ORMATION A STATE OF THE PERS SPOSAL METERS Vater Pure evel (I. TOC.) 4.49 4.49 7.04	Not measured a control of the contro	eplaced d 4-inch om: Hi ke Depth X gal/ft 1'	Needs reppm6-in ardSoft [(BTOC) 6_gal/ft "=0.04 gal/ft		Surface Wor_ ter_ ed Screen In Purging Well gal. X 3 = t 4"=0.65 gal Dedicated Bla ion System [Odor and/or pH (SU)	nterval(s):	al. gal/ft
/6155 8.5 sion Factors SPOSAL METERS Vater Purevel (1.79 6.69 7.04	ft Botto ft ft Intal ft (H ₂ O) s: 3/4"=0.02 ETHOD Centrifus Water I	ke Depth X O. gal/ft 1' gal Disposal:: Temp. (°C)	(BTOC)	Begin = 5,5 2"=0.16 gal/f Ider Non-Ide Remediat Dissolved Oxygen (±10% or	Purging Well _gal X 3 = _t 4"=0.65 gal Dedicated Bla ion System [Odor and/or pH (SU)	: 953 /6.5 ga /ft 6"= 1.47 g 	al. gal/ft Turbidity
Peristaltic METERS Vater Purevel (I. TOC) 4.69 4.89 Z.04	Centrifug Water I	Temp.	Sp. Cond.	Dissolved Oxygen (±10% or	Odor and/or PH (SU)	Other	Turbidity
Vater Purevel (L. TOC) 6.69 6.89 7.04	L/min) /+	(°C)	(mS/cm)	Oxygen (±10% or	pH (SU)	ORP	
6.69 6.89 7.04	1+	(C I)		34/00/20/21	(±0.1)	100000	(± 10% or ≤10
7.19	1+	16.25	0.633	0,94 0-29 0.20 0.16 0.15	6.36	-47 -65 -71 -79	152 138 134 129 129
1.29	1+	16,55	0.636	0.14	6.32	-82	132
					or Dissolved Ox	kygen are recorde	ed within their
VIJE	e Preservativ	e Field	Filtered?		Anal	ysis	
Count	Hel Hel	No (0.45 0.10 0.45 0.10 0.45 0.10	NWTPH NWTH-	Gx , B	TEX	
y	RMATIO	RMATION Bottle Preservative Count	RMATION Pe Bottle Preservative Field Count No	RMATION Pe Bottle Preservative Field Filtered?	RMATION Pe Bottle Count Field Filtered? No 0.45 0.10 Nw 7H-No 0.45 0.10 Nw 7H-No 0.45 0.10 Nw 7H-No 0.45 0.10 Nw 7H-No 0.45 0.10 No 0.45 0.10	### RMATION Preservative Field Filtered? Analogous	RMATION Type Bottle Preservative Field Filtered? Analysis

Hydrocon		2017	971 W			Sample I.D Field Duplica Personnel:	ite I.D.	- W	mber: MW Time: 1215 Time: -
Monumer Well cap Headspac	condition: e reading:	E X G	ot measure	eplaced d	☐ Needs re	eplacement	☐ Water in ☐ Surface \ or her	Water in Well	
Total well Depth to p Depth to w Casing vol Volume Co	roduct	2.66 3.20 .40 actors	ft Bottoftft Intalft (H ₂ O) 3/4"=0.02	ke Depth X <u>0.6</u> gal/ft 1	(BTOC) <u>2</u> <u>5</u> gal/ft "=0.04 gal/ft	Not measur 8 Begin = 2"=0.16 gal/f	n Purging We _gal. X 3 = t 4"=0.65 ga	9 l/ft 6"= 1.47	al. gal/ft
Bailer typ	e:	ere.	Water I	Disposal:	: Drumme	d 🛛 Remediat	tion System	Other	14 doctsheer
Time	ime Water Purge	ge Rate (min)	Γemp. (°C)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or \$10)	
	-			3.3	0.78	3.36	6.63	- 21-4	16.5
OLSI			-						
GISI									
GISI									
Stabilization	stabilization c	ree succ	essive measur A minimum of	ements fo six measu	r pH, Conductiv rements should	ity and Turbidity be recorded.	or Dissolved Ox	ygen are recorde	ed within their
Stabilization perspective : Purging Cor	stabilization c	riteria. /	essive measur A minimum of	ements fo six measu	r pH, Conductiv rements should	ity and Turbidity be recorded.	or Dissolved Ox	ygen are recorde	ed within their
Stabilization perspective : Purging Cor	stabilization on mments:	riteria. /	essive measur A minimum of Preservative	Six measu	r pH, Conductive rements should Filtered?	ity and Turbidity be recorded.	or Dissolved Ox Analy		ed within their

Well I.D. Number: MW1012 Project Name: Coleman 01 Wenatchee Sample I.D. MW1012 - W Time: Hydrocon Project #: 2017 - 674 Field Duplicate I.D. Time: Date 12/12/19 CO Personnel: WELL INFORMATION Monument condition: 🗷 Good 🔲 Needs repair_____ ☐ Water in Monument Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Headspace reading: 🛛 Not measured 6-inch Other Comments System group turned off 12/17, 1120 PURGING INFORMATION Total well depth 33 59 ft Bottom: Hard Soft Not measured Screen Interval(s):_____ Depth to product 27-65 ft Depth to water the property of Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other Water Disposal:: ☐ Drummed 🔀 Remediation System ☐ Other ____ Bailer type:__ FIELD PARAMETERS Odor and/or Sheen:___ Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen pH Turbidity ORP Level (L/min) (°C) (±10% or (mS/cm) (NTU) (SU) (mV) \$1.00 ±0.2) (±0.1) (BTOC) (± 10% or ≤10) Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type** Analysis Count NO 0.45 0.10 40ml VOA Hel GK, BTEX No) 0.45 0.10 16 ambel HOL No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

Well I.D. Number: MW-//

	Project #: 12/18/19	- 11.00				Field Duplica Personnel:	T. Had	ely	Time:
Monumen Well cap o Ieadspace Vell diam	condition: e reading:	Goo Solution Solutio		laced	☐ Needs re		☐ Water in ☐ Surface W or ier	Vater in Well	
Fotal well Depth to pr Depth to w Casing vol	roduct 14, ume 7.	29.71	_ft _ft Intake _ft (H₂O) X	Depth O. 6	(BTOC)	Not measur War Begin Same Same Same Same Same Same Same Same	Purging Well	15 905	al.
Pump type Bailer type	e:	altic 🗌	Centrifuga	l D sposal:	edicated Blac	ldęr □ Non- l 🏹 Remedia	Dedicated Bla tion System [dder Other_ Other_	
FIELD PA	ARAMETEI	RS					Odor and/or	Sheen:	
Time	Water Level (BTOC)	Purge (L/m	nin)	Temp.	(mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10
9:08 911 914 917 920 923	14.30 14.33 14.33 14.33 14.35	17	t 16 t 16 t 16	37	0.592 0.589 0.587 0.591 0.589 0.591	0.93 0.35 0.28 0.23 0.19 0.16	6.40 6.39 6.37 6.38 6.39	-60 -67 -70 -74 -76 -78	154 143 136 128 124 120
					r pH, Conductiv	ity and Turbidity	or Dissolved Ox	ygen are recorde	ed within their
Purging Co	mments:	200000000000000000000000000000000000000	annindar or s	ik incust	o cinema anoune	or recorded.			
SAMPLE	INFORMA'	19 CM-109	Preservative	Field	Filtered?		Amal	rata.	
Contain	er ivbe	Count	. reservative	Street,	0.45 0.10	NETE	Analy	STEX	

)ate		2017-				Field Duplicat Personnel:	Ti Had	erly	ime:
fonument Well cap co leadspace Vell diame	ondition: reading:	Good Good Not me ☐ 2-inch	Repla	ced N	leeds rep _ppm	olacement Ode		ater in Well	
otal well of Depth to pro Depth to wa Casing volu	ter	52 ft ft 5.00 ft 7.52 ft	Intake D	Depth (BTO	gal/ft =	/3 Begin	Purging Well: gal. X 3 =	terval(s): <u>4.0</u> 1037 22-5 gal /ft 6"= 1.47 g	i.
ump type ailer type			ntrifugal	☐ Dedica osal::☐ D	ted Blade rummed	der □ Non-I ☑ Remediat	ion System		
FIELD FA	RAMETE				- 1	Dissolved	Odor and/or	Sheen:	
Time	Water Level (BTOC)	Purge Rai (L/min)) (m	Cond. S/cm) ±3%)	Oxygen (±10% or ≤1,00 ±0,2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10
1040	8,22	1+			0,321	3,25	4.40	,	
1043	8.47	11			1314	2.87	6.36	/	/
1046	8105	11	15.		315	2.76	6.45	/	/
1050	8.89	1/+			31/	2.80	6.49	/	/
	0.4	17	15,		712	2.00	43	/	/
1053	9.07			0	1.312	2,79	6.55		
1053	9.07			7 0	1312	2,79	4.33		
1053 1059	9.07		measurem	ents for pll,	Conductivi	ty and Turbidity		ygen are recorde	d within their
tabilization perspective so Purging Con	9.07 achieved if the tabilization comments:	ree successive riteria. A mini	e measurem imum of six	ents for pH, measuremen	Conductivi nts should l	ty and Turbidity	or Dissolved Oxy		d within their
tabilization berspective so Purging Con	9.07 achieved if the tabilization comments:	ree successive riteria. A mini	e measurem imum of six	ents for pll,	Conductivi nts should l	ty and Turbidity			d within their
tabilization erspective so urging Cortaine	achieved if the tabilization comments: INFORMA Per Type - GAST	ree successive riteria. A mini TION Bottle Count Pres	e measurem imum of six servative	ents for pll, measurement Field Filte	Conductivints should l	ty and Turbidity	or Dissolved Oxy Analy	vsis .	d within their
tabilization erspective so urging Cortaine	9.07 achieved if the tabilization comments:	ree successive riteria. A mini TION Bottle Count	e measurem imum of six servative	ents for pll, measurement Field Filte No. 0.45 No. 0.45	Conductivitents should l	ty and Turbidity	or Dissolved Oxy Analy		d within their
tabilization perspective so Purging Container Ambie	achieved if the tabilization comments: INFORMA Per Type - GAST	ree successive riteria. A mini TION Bottle Count	e measurem imum of six	ents for pll, measurement Field Filte	Conductivitats should be red?	ty and Turbidity	or Dissolved Oxy Analy	vsis .	d within their

Well I.D. Number: Mw-13R

	Projegt #:		011 We 7-07		e		nw-13R- te I.D. MW- Ti Hade	302-W	Time: <u>1400</u> Time: <u>1420</u>		
Monument Well cap c Headspace Well diam	reading:	Go SGo No □ 2-i	od Report measured	eds repa blaced 4-inch	Needs re	eplacement Od Od	☐ Water in I ☐ Surface W or_ her _	ater in Well			
Total well Depth to pro Depth to wa Casing volu	oduct	0.46	ft Botton _ft ft Intake _ft (H _Z O) X	Depth O. U	(BTOC)	Not measur /// Begin = 4.8 2"=0.16 gal/i	n Purging Well	1300 20.4 ga	al.		
Pump type Bailer type	:	altic [Centrifuga	l □ De sposal∷	edicated Blac	dder □ Non-l d 🛭 Remedia	Dedicated Bla tion System [dder Other_ Other_			
FIELD PA	RAMETE	RS			Odor and/or Sheen:						
Time	Water Level (BTOC)			emp.	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)		
333 356 340 343 346	8.26 8.32 8.51 8.79 8.96		Tr 13	1,36 2,20 2,30 2,28	0.032	2.86 439 1.19 1.10	7.25 7.29 7.33 7.34	/	1		
1350	9,25		/ + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2.27	0.169	1,04	7.36				
perspective s Purging Cor	tabilization c nments:	riteria. /			r pH, Conductiv rements should	rity and Turbidity I be recorded.	or Dissolved Oxy	ygen are recorde	ed within their		
SAMPLE :	INFORMA er Type	Bottle	Preservative	Field	Filtered?		Analy	/sis			
Ambo Gkas Clear Glass		2 Le	HCL	No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10		NWTPH- DX NWTPH- GX, BTEX					

ate/	2/17/0	2019	01 We			Field Duplicat Personnel:	T. Hade	rly	l'ime:	
fonument Vell cap c leadspace Vell diam	ondition: reading:	⊠ Go ⊠ Go ⊠ No □ 2-i	t measured	laced	☐ Needs reppm	placement Ode	☐ Water in M ☐ Surface W or eer	ater in Well		
otal well epth to pr epth to wa	oducts aters	20.02	_ft Botton _ft _ft Intake _ft (H ₂ O) X	Depth ((BTOC) N	Not measure /// Begin =	Purging Well:	1428 22e2 ga	al.	
ump type ailer type		altic [Centrifuga	Desposal::	edicated Blad	lder 🗌 Non-I l 🔀 Remediat	Dedicated Bladion System Odor and/or	Other		
TEED 17	HOLI-IDI D					Dissolved	oddi and/or	Sileen		
Time	Water Level (BTOC)			emp. °C)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)	
1430	8.81			4.64	0,572	0.82	7.12		1	
1433	9.06	+		4.82	0,032	0.39	6.93	/	-	
1440	9.21	-	1 1	1,97	0.224	0.29	6.80	/	1	
1443	9.31			5.04	0,436	0,21	6.78	/	/	
1440	9,36		(† /	5.09	0.473	0.10	4.77			
					r pH, Conductiv	ity and Turbidity	or Dissolved Oxy	ygen are recorde	ed within their	
Purging Co.	mments:									
SAMPLE	INFORMA	TION								
Container Type		Bottle Count	Preservative	25/53445	Filtered?	Analysis				
Amber Glass		1	1161		.45 0.10	NWTPH-OX				
Clar	GIUS	3	Hc/		.45 0.10	NW/PH-	Cxy B	EX		
Clear										
Clear				No 0	45 0.10					

Sampling Comments:

GROUNDWATER

Well I.D. Number: Mil-16 Sample I.D. MW-14-W Time: /255 Project Name: Coleman Oil Wentthee Hydrocon Project #: 2017-079

Date 12/17/19 Time: Field Duplicate I.D. Personnel: T. Haderly WELL INFORMATION Monument condition: ☐ Good ☐ Needs repair ☐ Water in Monument
Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Headspace reading: Not measured Odor ppm 4-inch 6-inch 2-inch Other Well diameter: Comments PURGING INFORMATION Total well depth 18.00 ft Bottom: Hard Soft Not measured Screen Interval(s): 8-18 PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other_____ Water Disposal:: ☐ Drummed ☐ Remediation System ☐ Other Bailer type: FIELD PARAMETERS Odor and/or Sheen:_ Dissolved Sp. Cond. Oxygen Turbidity **Purge Rate** Temp. pH Time Water ORP (°C) (±10% or (NTU) (mS/cm) Level (L/min) (SU) (mV) \$1.00 ±0.2) (± 10% or \$10) (± 0.1) (BTOC) (±3%) 13.04 0.329 3.30 1235 10,17 14.42 Cilles 2.18 2.98 1239 10.44 0.669 14.50 6.76 1242 10.43 14,48 0.673 6.75 1245 10,91 1. 2,11 1248 11,14 14,52 209 0.671 14.51 0646 1.94 1252 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION Preservative Field Filtered? Bottle Analysis Container Type Count Amber Glass No 0.45 0.10 1401 1 Clear Glass No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10

Well I.D. Number: MW17

Project Name: Coleman OTI Wonatchee Hydrocon Project #: 2017 - 074 Date 12/19/19						Sample I.D. MWI7 - W Time: 1015 Field Duplicate I.D. MW301 - W Time: 1020 Personnel: W					
Monumen Well cap o Headspace Well diam	condition: reading: eter:	n: 🛛 G	ood R ot measure	eplaced d X 4-inch	☐ Needs re	och 🗆 0	Surface	Water in Well			
Fotal well Depth to pr Depth to we Casing volume Co PURGING	oductater	8-34 8-34 -67 Factors	ft Botto ft ft Intal ft (H ₂ O) : 3/4"=0.02	ke Depth X <u>© • 6</u> gal/ft 1'	(BTOC) 5gal/ft '=0.04 gal/ft	- Beg = . +o 2"=0.16 gal/	in Purging We gal. X 3 = /ft 4"=0.65 g:	= <u>Z.10</u> g al/ft 6"= 1.47	al, gal/ft		
Bailer type	RAMETI		Centrifug Water I	gal [X] De Disposal::	edicated Blac	ider ∐ Non- i 🗷 Remedia	tion System	adder Other_ Other_ or Sheen: Yes			
Time	Water Level (BTOC)		ge Rate /min)	remp.	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or <10)		
1005				3-1	,750	3.07	6.58	-50.2	16.1		
erspective s	achieved if the tabilization of tabili	criteria,	essive measur A minimum of Orange	six measur	ements should	ity and Turbidity be recorded.	or Dissolved Ox	xygen are recorde	ed within their		
AMPLE I	NFORMA										
Container Type		Bottle Count	Preservative	~	Filtered?		Anal	Analysis			
TOR PRODUCT AND	40 ml VOA		Hel		45 0.10	Gx	BTEX				
40 m		1	11.01	No 0.45 0.10		Dx					
TOR PRODUCE		1	HCI	_							
40 m		1	HCI	No 0.							

Hydrocor	Project #:	201	un 07 h 7 - 074			Sample I.D Field Duplic Personnel:_	ate 1.D		_Time: <u>092ø</u> _Time:~
Monumer Well cap Headspac	condition: e reading: neter:		ood	eplaced	☐ Needs re	eplacement 00 nch 00	Water in Surface \dor_ ther	Water in Well	
Fotal well Depth to p Depth to w Casing vol Volume Co	roduct	9.55 .93 actors	ft Botto ft ft Intak ft (H ₂ O) 1 : 3/4"=0.02 p	e Depth (1 X _ O . 65 gal/ft 1":	BTOC) <u>31</u> gal/ft =0.04 gal/ft	Not measur Begi = 60 2"=0.16 gal/	n Purging We gal. X 3 = ft 4"=0.65 ga	11: 0405 2.40 g 1/ft 6"= 1.47	gal, gal/ft
oump type Bailer type		taltic [Centrifug	al □ De isposal∷[dicated Blac Drummed	ider □ Non- i □ Remedia	tion System	Other	t oder / sha
Time	Water Level (BTOC)	Pur	ge Rate T /min)	'emp. (°C)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (Stl) (±0.1)	ORP (mV)	Turbidity (NTI) (± 10% or ≤10
5160			- 14	1.3	819,	2.11	6-60	-81	47.6
tabilization erspective s urging Cor	stabilization c	ree succ riteria. /	essive measure A minimum of s	ments for plix measure	oH, Conductivi ments should	ty and Turbidity be recorded.	or Dissolved Ox	ygen are recorde	ed within their
	INFORMA	TION							
AMPLE		Bottle	Preservative	Field Fi	State State State		Analy	sis	
Containe		Count	137W35W7		F DAG	1	X, STEX		
Containe		Z I	1401 1401	No 0.4 No 0.4 No 0.4	5 0.10 5 0.10		DX		

GROUNDWATER

SAMPLE COLLECTION FORM Well I.D. Number: MWZO Sample I.D. MV20 - W Time: 1375 Project Name: Column at Wanatchee Hydrocon Project #: 2017 - 074 Field Duplicate I.D. MW303 - W Time: 1410 Date 12/17/14 CO Personnel: WELL INFORMATION Monument condition:

☐ Good ☐ Needs repair ☐ ☐ Water in Monument Good Replaced Needs replacement Surface Water in Well
Not measured ppm Odor Well cap condition: Headspace reading: ppm 6-inch Well diameter: 2-inch ¥ 4-inch Other Comments PURGING INFORMATION Total well depth 29.50 ft Bottom: Hard Soft Not measured Screen Interval(s): 9-29' Depth to product ft
Depth to water 25.98 ft Depth to water 25.98 ft Intake Depth (BTOC) 27 Begin Purging Well: 1326
Casing volume ft (H₂O) X O 65 gal/ft = gal X 3 = gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type 🗵 Peristaltic 🗌 Centrifugal 🔲 Dedicated Bladder 🔲 Non-Dedicated Bladder Other_____ Bailer type: Water Disposal:: ☐ Drummed 🔀 Remediation System ☐ Other ____ Odor and/or Sheen: 12ht oler: no Sheen FIELD PARAMETERS Dissolved **Purge Rate** Time Water Temp. Sp. Cond. Oxygen Turbidity pH ORP (±10% or Level (°C) (L/min) (mS/cm) (NTU) (SU) (mV) \$1.00 ±0.2) (± 10% or ≤10) (±3%) (±0.1) (BTOC) 1331 26.09 -69.0 8.50 12.3 694 1.52 6.63 26.13 1334 12.5 .716 0.73 6.51 -63.2 6.05 1337 26.17 13.1 154. 0.62 6.43 -62.3 5.54 0.090 26.21 13.4 0.53 -63.7 5.26 1340 .773 6.47 1343 26.24 13.6 +724 0.49 6.47 -65-1 5.12 26.27 13.5 -66. 2 1346 .723 0.46 6.47 5.14 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
40ml VOA	3	1+01	No 0.45 0.10	GK, BTEX
1 to amober	1	1401	No 0.45 0.10	DX
, , , , , , , , , , , , , , , , , , , ,		1	No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	

Sampling Comments:

Hydrocon	Project #;	2017	0.7 Wer 2 - 074	-			MWL ate I.D	-	Time: 1245 Time: >
Monumer Well cap Headspac Well diam	FORMATI nt condition condition: re reading: neter:	GG S No	ood Ne ood Re ot measured inch	eds rep placed l 4-inch	air Needs reppm 6-ir	eplacement Oc nch Ot	☐ Water in ☐ Surface V lor her	Monument Vater in Well	
Total well Depth to p Depth to w Casing vol Volume C	roduct	2.10 - - 1. 9 actors:	ft Botto ft ft Intak ft (H ₂ O)) 3/4"=0.02 j	e Depth	(BTOC) 26	Not measur Begi = 2"=0.16 gal/	n Purging Wei	1220	
Pump typ Bailer typ	e Perist	altic [Centrifuga	al 🔲 D isposal:	edicated Blac	dder □ Non- d ☑ Remedia	tion System	dder OtherOther	
Time	Water Level (BTOC)	Purg		'emp. (°C)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or s1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1224	21.94		17	-5	-661	2.79	7-02	-to.5	724.6
1227	21 .97		13	.4	702	2.27	6.93	-1.1	12.9
1230	22.02	0.1		3.8	,702	2.15	6.90	4.1	6.51
1233	22 - 05			3 9	,700	1.99	6.89	7.1	5.00
1236	22.09	-		1.1	,700	1.98	6.89	10.0	5.29
1239	22.12	Ħ	18	1-1	.700	1,93	6.32	12,3	4.53
			Son	~~	ole () 12	45		
	stabilization c				r pH, Conductiv rements should	ity and Turbidity be recorded.	or Dissolved Ox	ygen are record	ed within their
	INFORMA								
Contain	A SUPPLIED OF STREET	Bottle Count	Preservative	1,000	Filtered?	- 6 11	Analy	/sis	
HUMI	WA	3	1401		.45 0.10	Gra, B	TEX		
1400		1	Itel		.45 0.10	Di			
				No 0	.45 0.10				
					Table 1 Text 1 T				
					.45 0.10				

GROUNDWATER

SAMPLE COLLECTION FORM Well I.D. Number: MW-23 Project Name: Colemon Oil Workthan Sample I.D. MW - 23 - W Time: /550 Hydrocon Project #; 2017-074 Field Duplicate I.D. Time: Date 12/17/19 Personnel: T. Haderly WELL INFORMATION Monument condition: Good Needs repair Water in Monument ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Well cap condition: Headspace reading: Not measured ____ppm Odor 2-inch 24-inch Well diameter: 6-inch Other Comments ___ PURGING INFORMATION Total well depth 22.04 ft Bottom: Hard Soft Not measured Screen Interval(s): 7.13-22.13 Depth to product _____ft Depth to product $\frac{1}{166}$ ft Intake Depth (BTOC) $\frac{14}{166}$ Begin Purging Well: $\frac{1528}{160}$ Casing volume $\frac{10.38}{160}$ ft (H₂O) X $\frac{14}{160}$ gal/ft = $\frac{16.7}{160}$ gal. X 3 = $\frac{1}{160}$ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other Water Disposal:: ☐ Drummed ※ Remediation System ☐ Other Bailer type: FIELD PARAMETERS Odor and/or Sheen:__ Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP Level (L/min) (°C) (mS/cm) (±10% or (NTU) (SU) (mV) \$1.00 ±0.2) (BTOC) (±3%) (±0.1) (± 10% or ≤10) 15,29 0.578 0.67 6.81 1530 11.82 15.48 1533 11.93 11 0.579 0.31 10.60 11.97 15,58 1536 0.583 0,24 11 0.59 6.55 0.588 0.20 1540 12.02 1+ 15.67 1543 15.74 6,53 12.05 0,581 0.18 1546 12,05 6.580 6.52 0,17 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION

Ambe Glas	Bottle Count	Preservative	, acam a meet cont	Analysis		
Amber Glass	1	Hel	No 0.45 0.10	NWTPH-DX		
Clear Glass	3	He/	No 0.45 0.10	NIWTPH -GX. RTEX		
	7.5	-	No 0.45 0.10	/**		
			No 0.45 0.10			
			No 0.45 0.10			

Sampling Comments:	

Hydrocon Date	Project # <u>:</u>	2/17/	7 - 074 *		Field Duplica Personnel:	te I.D	CD	Time:
Monumen Well cap o Ieadspaco Well diam	ondition: reading: eter:	G G G N	ood □ Re ot measured ∙inch ☑	eds repair_ placed	eplacement Od nch Ot	Surface V or her	Vater in Well	
otal well bepth to properly	depth_3' depth_3' oduct_ ater_23 ume_ onversion I	1.25	ft Botton	m:	Not measure Begin 2"=0.16 gal/f	ed Screen I Purging Wel _gal. X 3 = t 4"=0.65 gal	nterval(s): l:g l/ft 6"= 1.47	al. gal/ft
ump type Sailer type		taltic [☐ Centrifuga	l 🔲 Dedicated Bla sposal::[] Drumme	dder □ Non-I d 🏿 Remediat	tion System [Other	
FIELD PA	RAMETE	RS				Odor and/or	Sheen:	
Time	Water Level (BTOC)			emp. Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10
			N	5 Sow	nde			
tabilization erspective s urging Con	tabilization o	ree succ riteria. /	essive measure A minimum of s	ments for pH, Conductivix measurements should	rity and Turbidity of the recorded.	or Dissolved Oxy	gen are recordo	ed within their
AMPLE I	NFORMA	TION						
Containe	r Type	Bottle Count	Preservative	Field Filtered?		Analy	sis	
40ml b	64	3	Hei	(No) 0.45 0.10	Cex			
I L work		1	Hst	No 0.45 0.10	G.	ISTEX		
			1	No 0.45 0.10				
				No 0.45 0.10 No 0.45 0.10				
				No 0.45 0.10				

Project Nam Hydrocon P Date	Project #:_	2017.	-074			Sample I.D Field Duplica Personnel:_	ate l.D		Time: 1545 Time: -
WELL INF Monument Well cap co Headspace Well diame Comments	condition: ondition: reading: eter:	⊠ Go	od	Veeds rep Replaced ed ☑ 4-incl	oair Needs reppm n	eplacement Oc Oc nch Ot	☐ Water in ☐ Surface V lor her	Monument Water in Well	
Depth to pro Depth to wal Casing volu Volume Cor	depth 32 oduct ster 25. ume nversion Fa	.96 .50 actors:	ft Bot ft ft Inta ft (H ₂ O) 3/4"=0.02	ake Depth	(BTOC) Z	Not measur Begi 2"=0.16 gal/	n Purging We	11: 1522	
PURGING/ Pump type Bailer type: FIELD PA	Perista	altic [Centrifu			dder □ Non- d □ Remedia	tion System		
Time	Water Level (BTOC)	Purg	e Rate min)	Temp.	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1534 1534	25.66 25.72 25.79 25.67 25.96 26.03	0.	20	12.4 12.4 12.6 12.8	.685 .689 .686 .682	1.24 1.22 0.86 0.74 0.62 0.71	7.12 7.15 7.15 7.16 7.16 7.16	-42.7 -62-6 -71.4 -74.3 -74.1 -72.4	511 211 24.9 63.0
	tabilization cri				or pH, Conductiv urements should	 rity and Turbidity be recorded.		kygen are recorde	d within their
SAMPLE IN	2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TION Bottle	Preservativ	vo Field	l Filtered?		Awal	no to	
Homl b	VOA	Count	HOA 1404	No C	0.45 0.10 0.45 0.10 0.45 0.10 0.45 0.10	G	Analy L, CTEX DX	VSIS	
					0.45 0.10				

Hydrocon		201	1 Wenital 7-074			Sample I.D Field Duplic Personnel:_	ate I.D	-	Time: 1625 Time: >
Monumer Well cap Headspac Well dian	FORMATI at condition condition: e reading: leter: s	GG GG No	ood Ne ood Re oot measured inch	eds repa placed 4-inch	ir Needs re ppm 6-in	placement Oc ch Oc	☐ Water in ☐ Surface lor	n Monument Water in Well	
Fotal well Depth to p Depth to w Casing vol Volume Co	roduct	2 - 5 % - 6 - 16 Factors:	ft Bottonft ft Intake ft (H ₂ O) X : 3/4"=0.02 g	e Depth ((BTOC) 25	Begi	n Purging We	Interval(s):/ ell:1601 =gal/ft 6"= 1.47	al.
Pump type Bailer type		taltic [☐ Centrifuga				tion System	adder Other_ Other or Sheen:	
Time	Water Level (BTOC)	Purg		emp. (°C)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (S0) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10
606	26.32		11	8	. 785	0.77	6.72	-70.3	19.4
1607	26,39				108.	0.61	6.63	~54.6	12.3
1612	26.55			,4	-811	55.0	6.59	-51.1	7.38
1612	26.63			.7		0.50	6.57	-46.4	5.43
1621	26.70	-		- %	.814	0.44	6.56	-42,9	4.50
		_							
		-						+	
erspective:	stabilization c		essive measure A minimum of s				or Dissolved O	xygen are recorde	d within their
erspective: urging Cor	stabilization comments:	riteria. A	A minimum of s	ix measur	ements should		or Dissolved O	xygen are recorde	d within their
erspective ourging Con AMPLE	stabilization comments: INFORMA er Type	TION Bottle Count	A minimum of s	Field F	ements should	be recorded.	Anal	ysis	d within their
erspective: urging Cor AMPLE Contain	stabilization comments: INFORMA er Type VoA	TION Bottle Count 3	Preservative	Field F	Filtered?	be recorded.		ysis	d within their
erspective surging Con AMPLE Contain	stabilization comments: INFORMA er Type VoA	TION Bottle Count	A minimum of s	Field F	Filtered? 45 0.10 45 0.10	be recorded.	Anal	ysis	d within their
erspective urging Cor AMPLE Contain	stabilization comments: INFORMA er Type VoA	TION Bottle Count 3	Preservative	Field F	Filtered?	be recorded.	Anal	ysis	d within their

12/13	119	4-024					c _D	Time: -
nt condition condition: ce reading:	i: K G	ood Re ot measured	placed	☐ Needs re	eplacement	Surface \ lor	Water in Well	
l depth_32 product_ vater23 lume conversion I	8.74 06 Factors:	ft Botto ftft Intak ft (H ₂ O) 2 : 3/4"=0.02	e Depth	(BTOC) Z	9' Begi	n Purging We	0925	al.
e 🛛 Peris	taltic [Centrifug	al D isposal:	edicated Blac : Drumme	dder □ Non- d ☑ Remedia	tion System	Other	
Water Level (BTOC)	Purg			Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or <10)
27.26	0.	10 12	3	#12 +729 +737 -737	3,42 3,43 3.30 3.42	6.71 6.70 6.67 6.66	-25-7 -12.7 -5.2 2-0	8.63 3.89 3.04
27.40				. 1 96	3.57	6.64	14.5	4.77
stabilization c mments:	criteria. <i>I</i>	essive measure A minimum of s	ments fo ix measu	r pH, Conductiv rements should	ity and Turbidity be recorded.	or Dissolyed Ox	ygen are recorde	ed within their
er Type	Bottle	Preservative	Field	Filtered?		Analy	ysis	
VOA mber	3	Hey	No 0		Gx,	BTEX		
	IZ 13 IFORMAT of condition condition: re reading: reter: is a condition condition: reter: is a condition: reter: is a condition: reter: is a condition: reter: is a condition conversion of the	## IT	Secondition: Good Necondition: Good Recondition: Recondition: Good Recondition: Recondition: Good Recondition: Recondition: Good Recondition: Re	IZ I3 I9 IFORMATION Good Replaced Rep	IFORMATION Good Needs repair	IFORMATION	Personnel:	Personnel: Comparition Condition: Condit

Well I.D. Number: MW28 Project Name: Column O.1 Wenstone MW28-W Time: 105 Sample L.D. Hydrocon Project #: 2017 - 074

Date 12/17/19 Time: -Field Duplicate I.D. Personnel: CD WELL INFORMATION Monument condition: Good Needs repair Water in Monument Good Replaced Needs replacement Surface Water in Well Well cap condition: Headspace reading: Not measured _____ppm Odor Well diameter: 2-inch 4-inch 6-inch Other Comments Vanltod well we system pump PURGING INFORMATION Total well depth 38-74 ft Bottom: ★ Hard Soft Not measured Screen Interval(s): 13 - 38 Depth to product —
Depth to water 28.35 ft Intake Depth (BTOC) 28-38 Begin Purging Well: 1655 Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other____ Bailer type: Aransala Water Disposal: Drummed Remediation System Other_ Odor and/or Sheen: 1 wht/1 ght FIELD PARAMETERS Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP (°C) (±10% or Level (L/min) (mS/cm) (NTU) (SU) (mV) ≤1.00 ±0.2) (± 10% or ≤10) (±3%) (±0.1) (BTOC) .497 7.05 -73.1 1100 12.3 116 5.75 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded.

Purging Comments: Active System well, well not surged cultest one round parameters SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type** Analysis Count No 0.45 0.10 40ml VOA 3 1401 GX BTEX No 0.45 0.10 DX 1 L maker 144 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments: (Trab Sample

Hydrocon	Project#;	20	07 Va 014-074 6/19	natebox		Sample I.D Field Duplica Personnel:_	te I.D		Time: 1445 Time: ~
Monumer Well cap Headspac Well diam	condition: e reading: ieter:	n: ⊠ G ⊠ G ⊠ N	ood	placed 4 14-inch	Needs re	eplacement Od	Surface \	Water in Well	
Potal well Depth to p Depth to w Casing vol Volume Co	roduct	39.11 .99 1.12 Factors	ft Botto ft ft Intak ft (H ₂ O)) : 3/4"=0.02 p	e Depth ((BTOC) 25gal/ft "=0.04 gal/ft	Not measur Begin 2.69 2"=0.16 gal/l	n Purging We _gal. X 3 = t 4"=0,65 ga	11: 1425 8.04 g 11/ft 6"= 1.47	al. gal/ft
Bailer typ	e		Centrifuga Water D	ıl ⊠D isposal∷	edicated Bla	dder □ Non-l d 闰 Remedia	ion System	Other	Hadder berry
Time	Water Level (BTOC)			emp. (°C)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or <10
1435	-			1.3	- 825	2.85	6.85	-103.9	83.2
erspective:	achieved if t stabilization nments:	criteria. I	A minimum of s	ix meaşu	rements should	ity and Turbidity of be recorded.		100	ed within their
AMPLE Contain	INFORMA	TION	Preservative	Field	Filtered?		Analy	vele	
40m	WoA mber	Count 3	Her	No 0.	45 0.10 45 0.10 45 0.10 45 0.10 45 0.10	Cr	Analy NA BTEX	7913	

Hydrocon	me:. <u>Cole</u> Project # <u>;</u> 12	2017	-074	nottehe	,	Sample I.D Field Duplica Personnel:	te I.D		Time: 1400 Time: -
Monumen Well cap of Headspace Well diam	reading: eter:	: X Go	ot measured inch	4-inch	ppm	eplacement Od	or		
Total well Depth to pr Depth to wa Casing vol	oduct3 ater3 umeL	1.80	ft Botto _ft ft Intak ft (H ₂ O) >	e Depth	(BTOC)	Not measur Begin 3.12 2"=0.16 gal/i	Purging Wel	9.36 9	al,
Pump type Bailer type	<u> </u>	altic [Centrifuga	al 🛭 De	edicated Blac	dder □ Non-l d 🗷 Remedia	ion System [Other	7
FIELD PA	RAMETE	RS	- 1			Dissolved	Odor and/or	Sheen: 136	T (rght
Time	Water Level (BTOC)			emp. (°C)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or \$1.00 ±0.2)	pH (SU) (±0,1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1353			- 10	1.3	.928	6.08	6.75	-80	43.0
			-						
	tabilization o		minimum of s	ix measur	ements should	ity and Turbidity be recorded. System in	Section Control of the Control of th	· ·	ed within their
SAMPLE	NFORMA	TION							
Containe	er Type	Bottle Count	Preservative	Field	Filtered?		Analy	sis	
40 ml	UDA umber	3	Hod	No 0.	45 0.10 45 0.10 45 0.10 45 0.10		STEX		
				No 0.	45 0.10	w disposable			

Hydrocon Date	Project #:	201	7 - 014	- CONTINUE		Sample I.D Field Duplica Personnel:	ite I.D		Time: (320
Monumer Well cap Headspac Well dian	condition:	: ▼ Go	ood 🗌 Re ot measured inch 🔀	placed	Needs re	eplacement Od	Surface V	Vater in Well	
Total well Depth to p Depth to w Casing vo Volume C	roductater3 ume3. onversion F	1. 78 - 36.00 7.8 actors:	ft Botto ft ft Intak ft (H ₂ O) \(\right) \(3/4''=0.02\) \(\frac{1}{2}\)	e Depth	(BTOC) 3	Not measure Not measure Begin 2"=0.16 gal/f	Purging Wel	1200 6 4 2 ga /ft 6"= 1.47	al. gal/ft
Pump typ Bailer typ	G/DISPOS. e Perist e: ARAMETE	taltic [Centrifuga			lder □ Non-l d 🗷 Remedial	tion System [dder Other_	
Time	Water Level (BTOC)	Purg	ge Rate T	emp. (°C)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or s1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10
1315	-		- 5	1.6	.824	5.02	6. 29	-52.6	42.7
erspective		riteria. A			· pH, Conductiv ·ements should	ity and Turbidity be recorded.	or Dissolved Ox	ygen are recorde	ed within their
1156 711	INFORMA	ATM IN	Preservative	Lector	ett				
Contain	Marine Commission	Count			Filtered?		Analy	SIS	
40ml 1	her.	3	Hel	(No 0.	45 0.10 45 0.10 45 0.10		DX STEX		

Well I.D. Number: MIA Project Name: Coleman Oil Wanther MW32-W Time: 0930 Sample I.D. Hydrocon Project #: 2017 - 574 Field Duplicate I.D. Time: -Date CO Personnel: WELL INFORMATION Monument condition: A Good Needs repair Water in Monument Well cap condition: Good Replaced Needs replacement Surface Water in Well Headspace reading: Not measured ppm Odor Headspace reading: Odor ppm 2-inch Well diameter: X 4-inch 6-inch Other Comments Vaulted system WELL PURGING INFORMATION Total well depth 34.02 ft Bottom: ☐ Hard ☐ Soft Not measured Screen Interval(s): 9-34' Depth to product - ft Depth to water 23 30 ft Intake Depth (BTOC) - Begin Purging Well: Casing volume 5.72 ft (H₂O) X 0.65 gal/ft = 3.72 gal. X 3 = 11.16 gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type ☐ Peristaltic ☐ Centrifugal ☑ Dedicated Bladder ☐ Non-Dedicated Bladder Other_ Bailer type: Water Disposal: ☐ Drummed ☒ Remediation System ☐ Other FIELD PARAMETERS Odor and/or Sheen: 1-th petro odor Dissolved Water **Purge Rate** Time Temp. Sp. Cond. Oxygen Turbidity pH ORP (°C) Level (L/min) (mS/cm) (±10% or (SU) (NTU) [mV] ≤1.00 ±0.2) (BTOC) (± 10% or ≤10) (±3%) (± 0.1) 0925 13.9 -.704 3.60 6.28 65.3 63 7 Stabilization achieved If three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: 5 Suspended Stamp? SAMPLE INFORMATION Bottle Preservative **Container Type** Field Filtered? Analysis Count NO 0.45 0.10 40ml VOA HEL GY, STEX No) 0.45 0.10 1 1 6 amber HEL No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments: Sampled from Spedicated pump officent

Well I.D. Number: Bltoriz 000 Project Name: Column OT Wenatoke Sample I.D. Time: 1550 BHOIR-W Hydrocon Project #: 201手 0 キャ Field Duplicate I.D. Time: ~ Date 12/16/19 CD Personnel: WELL INFORMATION Monument condition: ☒ Good ☐ Needs repair_ ☐ Water in Monument ☑ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Well cap condition: Not measured Headspace reading: ppm Odor Vaulted will wastern pump 6-inch Other Well diameter: Comments PURGING INFORMATION Total well depth 39.97 ft Bottom: Hard Soft X Not measured Screen Interval(s): 17-39 Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type ☐ Peristaltic ☐ Centrifugal ☒ Dedicated Bladder ☐ Non-Dedicated Bladder Other_____ Bailer type: Water Disposal∷ Drummed ☒ Remediation System ☐ Other FIELD PARAMETERS Odor and/or Sheen: Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP Level (L/min) (°C) (±10% or (mS/cm) (SU) (NTU) (mV) s1.00 ±0.2) (BTOC) (±3%) (±0.1) (± 10% or ≤10) 1545 11.4 -612 7-70 6.84 -83.4 160 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded.

Purging Comments: Initial purgo water stained obungo of set bacteria; water olars up SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type** Analysis Count NO 0.45 0.10 40MI VOA 3 Hei GX, BTEX No 0.45 0.10 14 umber Hel No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments: Sampled from system pamp effluent

Well I.D. Number: BHO2 Project Name: Colonium Oil Wenutchee BHOZ-W Time: 1030 Sample I.D. Hydrocon Project #: Zo(7-074 Field Duplicate I.D. Time: -Date 12/17/19 OD Personnel: WELL INFORMATION Monument condition:

☐ Good ☐ Needs repair Water in Monument ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Well cap condition: Not measured
2-inch 4-inch Headspace reading: Odor ppm Well diameter: 6-inch Other Comments PURGING INFORMATION 4-60 Total well depth 3 ft Bottom: Hard Soft Not measured Screen Interval(s): 20 - 35 Depth to product Depth to water Begin Purging Well: 1000 Casing volume Off (H2O) X O.16 gal/ft = 300 0.96 gal. X 3 = 600 2.85 gal. 6000000 Z2.600 Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other Bailer type: Water Disposal: Drummed Remediation System Other FIELD PARAMETERS Odor and/or Sheen: Mod solor wisher Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP Level (L/min) (°C) (mS/cm) (±10% or (SU) (NTU) (mV) ≤1.00 ±0.2) (BTOC) (±3%) (± 10% or ≤10) (± 0.1) 629 -12.3 0501 -2.63 6.65 -70 126 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Capture recharge for surameters & samples Purging Comments: SAMPLE INFORMATION Bottle Preservative **Container Type** Field Filtered? Analysis Count Hel No 0.45 0.10 Homl VOA GX, BTEX 3 NO 0.45 0.10 1 Lamber HU No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

Well I.D. Number: 13 H 03

Hydrocon	Project #:	201	011 Win 7-024	pho		Sample I.D Field Duplica Personnel:	te I.D		Time:
Monumer Well cap	condition: e reading: neter:	G G G		placed	☐ Needs re	eplacement Octoor	Surface V		
Total well Depth to p Depth to w Casing vol Volume C	roduct	31 Factors:	ft Bottonft ft ft ft ft (H ₂ O) X 3/4"=0.02 g	e Depth (<u>O - 16</u> gal/ft 1"	BTOC) 7 gal/ft =0.04 gal/ft	□ Not measur 1 Begin 2"=0.16 gal/1	n Purging We _gal, X 3 = t 4"=0.65 ga	: <u>0937</u> 	al. gal/ft
Bailer typ	e:ARAMETE	10000	Water D	isposal::[Drumme	d Remedia	tion System	Other	
Time	Water Level (BTOC)			emp. (°C)	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or s1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
0241	24.73			-2	1714	0.23	6.53	-66.9	108
0744	24 - 95			.1	-724	0-65	6.39	-65.5	126
0747	24 .97	0,0			1722	0.56	6.33	-62.8	105
0853	25.23	-		.7	.7Z0	0.54	6.30	-61.3	81.3
0356	25.32			5	.H9	0.53	6-29	-60.4	73.4
		+	_						
					13==1				
	stabilization o		essive measure A minimum of s			ity and Turbidity be recorded.	or Dissolved Ox	l ygen are recorde	ed within their
	INFORMA			1-2-2					
Contain	er Type	Bottle Count	Preservative		iltered?		Analy	ysis	
Homl	VOA	3	HOL		45 0.10	Ges	GTEK		
1 1-0	mler	1	itcl		45 0.10		DX		
					45 0.10 45 0.10				
				No 0.	45 0.10				

	vame:. Co	eman Oil	Internatchee		Sample LD	RWE	Well I.D. Nu		
		2014-074			Field Duplic	ate LD.		Time:	
	12.1				Personnel:			_innet_	
		MARK TO THE REST OF THE PARK TO THE PARK T			1 statillen_				
Monume Well cap Headspa Well diar	condition:	Good [Good [Not meas	Replaced	Noods r	enlacement	Surface	Matar in Mall		
DUDCIN	IG INFORM	IATION							_
		9.60 ft	Rottom: VI L	land Catt			1.1. 10.3	(v= 7.	
Depth to	product	- ft	BOLLOITI. [X] F	iard [] Soit	☐ Not measu	red Screen	interval(s):	15 - 30	
Depth to	water_ 2	- ft 7.42 ft	Intake Depth	(BTOC) Z	.9' Bea	in Puraina W	ell: 1004		
								al	
olume (Conversion I	actors: 3/4"=0	0.02 gal/ft 1	"=0.04 gal/ft	2"=0.16 gal/	ft 4"=0.65 a	ml/ft 6"- 1.47	gal /fi	
		22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	was Burdie a	- 0.0 1 Bul/ 10	2 -0.10 gai/	n 4 -0.03 g	ai/it 0 - 1.47	gai/it	
HIRGIN	C/DISPOS	AL METHOD							
			I 🗆 n	1.01					
ump typ	be Ki Peris	taltic 🗌 Centr	ifugal 🔲 D	edicated Bla	dder 🔲 Non-	Dedicated B	ladder Other		
ailer typ	pe:	Wa	ter Disposal:	: Drumme	d Remedia	tion System	Other		
							14/5		_
TELD P	PARAMETE	RS				Odor and/o	or Sheen: N	one	
	Die Bill	A CHENNESON			Dissolved				
PROFESSION AND ADDRESS OF THE PARTY OF THE P	Water	Purge Rate	Temp.	Co Cond			400,000	37-26305	
Time	HALLEL			Sn. Cond.	Hyvven	- LI	700 000 000	Transf	
Time				Sp. Cond.	Oxygen (+10% or	pH	ORP	Turk	
Time	Level	(L/min)	(°C)	(mS/cm)	(±10% or ≤1.00 ±0.2)	(SU)	ORP (mV)	(N	TU)
TOBLE	Level (BTOC)		(°C)	(mS/cm) (±3%)	(±10% or ≤1.00 ±0.2)	(SU) (±0.1)	(mV)	(N (± 10%	TU) or≤10
009	Level (BTOC) 27 69		(°C)	(mS/cm) (±3%) .%41	(±10% or ≤1.00 ±0.2)	(SU) (±0.1)	(mV) -62.4	(N (± 10%	TU) or≲10
009	Level (BTOC) 27-69 21-76	(L/min)	(°C)	(mS/cm) (±3%) .%41	(±10% or \$1.00 ±0.2)	(SU) (±0.1) 6-29	-62.4 -67.8	(N (± 10% 14	TU) 5 or \$10 5
1009	Level (BTOC) 27 69 21 76 27 86		(°C)	(mS/cm) (±3%) .841 .251 .848	(±10% or \$1.00 ±0.2) 1.07 0.95	(SU) (±0.1) 4-29 6.86 6.25	(mV) -62.4 -54.3 -54.5	(N (±10% 14) 11 7	TU) 5 or ×10 5 3 20
100g 11014 1014	Level (BTOC) 27 69 21 76 27 86 21 97	(L/min)	(°C)	(mS/cm) (±3%) .%41 .251 .218	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95	(SU) (±0.1) 6.86 6.86 6.85	(mV) -62.4 -54.8 -54.5 -45.8	(N (±10% 14). 71. 7-	TU) 5 or <10 5 3 20
1009 1101 1101 1017	Level (BTOC) 27 69 21 .76 27 .86 21 .97 (S. 07	(L/min)	(°C) 12.9 13.3 13.4	(mS/cm) (±3%) .%41 .251 .218 .232 -218	(±10% or \$1.00 ±0.2) 1.07 0.95	(SU) (±0.1) 4-29 6.86 6.25	(mV) -62.4 -54.3 -54.5	(N (±10% 14) 11 7	TU) 5 or <10 5 3 20
1009	Level (BTOC) 27 69 21 76 27 86 21 97	(L/min)	(°C)	(mS/cm) (±3%) .%41 .251 .218	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95	(SU) (±0.1) 6.86 6.86 6.85	(mV) -62.4 -54.8 -54.5 -45.8	(N (±10% 14). 71. 7-	TU) 5 or \$10 5 20 5 1
110 110 1101 4101	Level (BTOC) 27 69 21 .76 27 .86 21 .97 (S. 07	(L/min)	(°C) 12.9 13.3 13.4	(mS/cm) (±3%) .%41 .251 .218 .232 -218	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.95 0.97	(SU) (±0.1) 6.86 6.86 6.25 6.86 6.35	(mV) -62.4 -54.8 -54.5 -45.8 -36.8	(N (±10%) 14 71 7 4	TU) 5 or \$10 5 20 5 1
110 110 1101 4101	Level (BTOC) 27 69 21 .76 27 .86 21 .97 (S. 07	(L/min)	(°C) 12.9 13.3 13.4	(mS/cm) (±3%) .%41 .251 .218 .232 -218	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.95 0.97	(SU) (±0.1) 6.86 6.86 6.25 6.86 6.35	(mV) -62.4 -54.8 -54.5 -45.8 -36.8	(N (±10%) 14 71 7 4	TU) 5 or \$10 5 20 5 1
110 110 1101 4101	Level (BTOC) 27 69 21 .76 27 .86 21 .97 (S. 07	(L/min)	(°C) 12.9 13.3 13.4	(mS/cm) (±3%) .%41 .251 .218 .232 -218	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.95 0.97	(SU) (±0.1) 6.86 6.86 6.25 6.86 6.35	(mV) -62.4 -54.8 -54.5 -45.8 -36.8	(N (±10%) 14 71 7 4	TU) 5 or \$10 5 20 5 1
1009 1011 1014 1017 1020	Level (BTOC) 27 69 21 76 27 86 21 97 (3. 07 23 16	(L/min)	(°C) 12.5 12.9 13.3 13.7 13.5	(mS/cm) (±3%) .841 .251 .848 .232 -218 .844	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.95 5.99 1.13 1.55	(SU) (±0.1) 6.86 6.85 6.85 6.85 6.85	(mV) -62.4 -54.8 -54.5 -45.8 -36.8 -28.8	(N (±10%) 14 11 14 14 14	TU) 50 r × 10 5 3 20 5 3 1
1009 1011 1014 1013 1020 1023	Level (BTOC) 27 69 21 .76 27 86 21 .97 (3. 07 28 16	(L/min)	(°C) 12.5 12.9 13.3 13.7 13.5 13.5	(mS/cm) (±3%) .% Ч1 .251 .8 Ч8 .232 -218 .844	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.95 5.99 1.13 1.55	(SU) (±0.1) 6.86 6.85 6.85 6.85 6.85	(mV) -62.4 -54.8 -54.5 -45.8 -36.8 -28.8	(N (±10%) 14 11 14 14 14	TU) 50 r × 10 5 3 20 5 3 1
1009 1011 1014 1013 1025 1023	Level (BTOC) 27 69 21 .76 27 86 21 .97 (S. 07 28 16	(L/min)	(°C) 12.5 12.9 13.3 13.7 13.5 13.5	(mS/cm) (±3%) .% Ч1 .251 .8 Ч8 .232 -218 .844	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.95 5.99 1.13 1.55	(SU) (±0.1) 6.86 6.85 6.85 6.85 6.85	(mV) -62.4 -54.8 -54.5 -45.8 -36.8 -28.8	(N (±10%) 14 11 14 14 14	TU) 507 × 10 5 7 3 20 5 3 1
1009 1011 1014 1013 1020 1023	Level (BTOC) 27 69 21 .76 27 86 21 .97 (3. 07 28 16	(L/min)	(°C) 12.5 12.9 13.3 13.7 13.5 13.5	(mS/cm) (±3%) .% Ч1 .251 .8 Ч8 .232 -218 .844	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.95 5.99 1.13 1.55	(SU) (±0.1) 6.86 6.85 6.85 6.85 6.85	(mV) -62.4 -54.8 -54.5 -45.8 -36.8 -28.8	(N (±10%) 14 11 14 14 14	TU) 500 × 10 5 3 20 5 3 1
loog lold lold lozo lozo abilization erspective urging Co	Level (BTOC) 27 69 21 .76 27 .86 21 .97 (3. 07 23 .16	(L/min) 0.105 ree successive meriteria. A minimur	(°C) 12.5 12.9 13.3 13.7 13.5 13.5	(mS/cm) (±3%) .% Ч1 .251 .8 Ч8 .232 -218 .844	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.95 5.99 1.13 1.55	(SU) (±0.1) 6.86 6.85 6.85 6.85 6.85	(mV) -62.4 -54.8 -54.5 -45.8 -36.8 -28.8	(N (±10%) 14 11 14 14 14	TU) 507 × 10 5 7 3 20 5 3 1
loog lold lold lozo lozo abilization erspective urging Co	Level (BTOC) 27 69 21 .76 27 86 21 .97 (S. 07 28 16	(L/min) 0.105 ree successive meriteria. A minimur	(°C) 12.5 12.9 13.3 13.7 13.5 13.5	(mS/cm) (±3%) .% Ч1 .251 .8 Ч8 .232 -218 .844	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.95 5.99 1.13 1.55	(SU) (±0.1) 6.86 6.85 6.85 6.85 6.85	(mV) -62.4 -54.8 -54.5 -45.8 -36.8 -28.8	(N (±10%) 14 11 14 14 14	TU) 507 × 10 5 7 3 20 5 3 1
abilization erspective urging Co	Level (BTOC) 27-69 21.76 27.86 21.97 28.07 28.16	(L/min) O.105 ree successive meriteria. A minimur	(°C) 12.5 12.9 13.3 13.4 13.5 13.5	(mS/cm) (±3%) .841 .251 .218 .232 -218 .344	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.95 5.99 1.13 1.55	(SU) (±0.1) 6. &6 6. &6 6. &5 6. &5 6. &5 6. &5 6. &5	(mv) -62.4 -54.8 -54.5 -45.8 -36.8 -28.8	(N (±10%) 14 11 14 14 14	TU) 507 × 10 5 7 3 20 5 3 1
abilization erspective arging Co	Level (BTOC) 27-67 21-76 27-86 21-97 28-07 28-16 INFORMA	(L/min) O 105 ree successive meriteria. A minimur TION Bottle Count	(°C) 12.5 12.9 13.3 13.7 13.5 13.5 asurements for of six measurements for of six measurements for not six measurem	(mS/cm) (±3%) .% 41 .251 .8 18 .233 -218 -344	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.99 1.13 1.55 ity and Turbidity be recorded.	(SU) (±0.1) 4-29 6.86 6.25 6.25 6.25 6.25 6.25 6.25	(mv) -62.4 -54.8 -54.5 -45.8 -36.8 -28.8	(N (±10%) 14 11 14 14 14	TU) 507 × 10 5 7 3 20 5 3 1
abilization erspective urging Co	Level (BTOC) 27-69 21-76 27-86 21-97 28-07 28-16 INFORMA Her Type	ree successive meriteria. A minimur TION Bottle Count 3 1400	(°C) 12.5 12.9 13.3 13.4 13.5 13.5 asurements for of six measurements for of six measurements for one of six meas	(mS/cm) (±3%) .% 41 .2 51 .2 18 .2 18 .2 18 .3 32 -2 18 .3 44 r pH, Conductivirements should	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.99 1.13 1.55 ity and Turbidity be recorded.	(SU) (±0.1) 4-29 6.86 6.25 6.25 6.25 6.25 6.25 6.25	(mv) -62.4 -54.8 -54.5 -45.8 -36.8 -28.8	(N (±10%) 14 11 14 14 14	TU) 507 × 10 5 7 3 20 5 3 1
abilization erspective urging Co	Level (BTOC) 27-67 21-76 27-86 21-97 28-07 28-16 INFORMA	(L/min) O 105 ree successive meriteria. A minimur TION Bottle Count	(°C) 12.5 12.9 13.3 13.7 13.5 13.5 asurements for n of six measurements for n of six measuremen	(mS/cm) (±3%) .% 41 .251 .218 .232 -218 .344 r pH, Conductivirements should Filtered? 45 0.10 45 0.10	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.99 1.13 1.55 ity and Turbidity be recorded.	(SU) (±0.1) 6. &6 6. &6 6. &5 6. &5 6. &5 6. &5 6. &5	(mv) -62.4 -54.8 -54.5 -45.8 -36.8 -28.8	(N (±10%) 14 11 14 14 14	TU) 50 r × 10 5 3 20 5 3 1
abilization erspective urging Co	Level (BTOC) 27-69 21-76 27-86 21-97 28-07 28-16 INFORMA Her Type	ree successive meriteria. A minimur TION Bottle Count 3 1406	(°C) 12.5 12.9 13.3 13.7 13.5 13.5 asurements for of six measurements for No. 0. No. 0.	(mS/cm) (±3%) .%41 .251 .251 .218 .232 -218 .344 r pH, Conductivi rements should Filtered? 45 0.10 45 0.10 45 0.10	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.99 1.13 1.55 ity and Turbidity be recorded.	(SU) (±0.1) 4-29 6-86 6-25 6-85 6-35 6-35 6-35 6-35	(mV) -62.4 -54.8 -54.5 -45.8 -36.8 -28.8	(N (±10%) 14 11 14 14 14	TU) 50 r × 10 5 3 20 5 3 1
abilization erspective urging Co	Level (BTOC) 27-69 21-76 27-86 21-97 28-07 28-16 INFORMA Her Type	ree successive meriteria. A minimur TION Bottle Count 3 1406	(°C) 12.5 12.9 13.3 13.7 13.5 13.5 asurements for of six measurements for No 0. No 0. No 0.	(mS/cm) (±3%) .% 41 .251 .218 .232 -218 .344 r pH, Conductivirements should Filtered? 45 0.10 45 0.10	(±10% or \$1.00 ±0.2) 1.07 0.95 0.95 0.99 1.13 1.55 ity and Turbidity be recorded.	(SU) (±0.1) 4-29 6-86 6-25 6-85 6-35 6-35 6-35 6-35	(mV) -62.4 -54.8 -54.5 -45.8 -36.8 -28.8	(N (±10%) 14 11 14 14 14	TU) 50 r × 10 5 3 20 5 3 1

APPENDIX B LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

Monday, December 30, 2019 Craig Hultgren HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

RE: A9L0812 - Coleman Wenatchee - 2017-074

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9L0812, which was received by the laboratory on 12/19/2019 at 2:47:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample reciept, unless prior arrangements have been made.

	Cooler Receip	ot Information		
	(See Cooler Receip	ot Form for details)		
Cooler #1	1.9 degC	Cooler #2	1.0 degC	
Cooler #3	0.9 degC	Cooler #4	2.9 degC	

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa A Zmenyhini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMA	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW01S-W	A9L0812-01	Water	12/17/19 10:05	12/19/19 14:47
MW03S-W	A9L0812-02	Water	12/17/19 12:10	12/19/19 14:47
MW06-W	A9L0812-03	Water	12/18/19 08:35	12/19/19 14:47
MW08-W	A9L0812-04	Water	12/18/19 10:15	12/19/19 14:47
MW09R-W	A9L0812-05	Water	12/16/19 12:15	12/19/19 14:47
MW11-W	A9L0812-06	Water	12/18/19 09:30	12/19/19 14:47
MW12-W	A9L0812-07	Water	12/17/19 11:05	12/19/19 14:47
MW13R-W	A9L0812-08	Water	12/17/19 14:00	12/19/19 14:47
MW14-W	A9L0812-09	Water	12/17/19 14:50	12/19/19 14:47
MW16-W	A9L0812-10	Water	12/17/19 12:55	12/19/19 14:47
MW17-W	A9L0812-11	Water	12/16/19 10:15	12/19/19 14:47
MW19-W	A9L0812-12	Water	12/17/19 09:20	12/19/19 14:47
MW20-W	A9L0812-13	Water	12/17/19 13:55	12/19/19 14:47
MW21-W	A9L0812-14	Water	12/17/19 12:45	12/19/19 14:47
MW23-W	A9L0812-15	Water	12/17/19 15:50	12/19/19 14:47
MW25-W	A9L0812-16	Water	12/17/19 15:45	12/19/19 14:47
MW26-W	A9L0812-17	Water	12/17/19 16:25	12/19/19 14:47
MW27-W	A9L0812-18	Water	12/18/19 09:50	12/19/19 14:47
MW28-W	A9L0812-19	Water	12/17/19 11:05	12/19/19 14:47
MW29-W	A9L0812-20	Water	12/16/19 14:45	12/19/19 14:47
MW30-W	A9L0812-21	Water	12/16/19 14:00	12/19/19 14:47
MW31-W	A9L0812-22	Water	12/16/19 13:20	12/19/19 14:47
MW32-W	A9L0812-23	Water	12/16/19 09:30	12/19/19 14:47
BH01R-W	A9L0812-24	Water	12/16/19 15:50	12/19/19 14:47
BH02-W	A9L0812-25	Water	12/17/19 10:30	12/19/19 14:47
BH03-W	A9L0812-26	Water	12/18/19 09:00	12/19/19 14:47
RW01-W	A9L0812-27	Water	12/18/19 10:30	12/19/19 14:47
MW301-W	A9L0812-28	Water	12/16/19 10:20	12/19/19 14:47
MW302-W	A9L0812-29	Water	12/17/19 14:20	12/19/19 14:47
MW303-W	A9L0812-30	Water	12/17/19 14:10	12/19/19 14:47
Trip Blank #2201	A9L0812-31	Water	12/16/19 00:00	12/19/19 14:47

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW01S-W (A9L0812-01)				Matrix: Wat	er	Batch:	9121291	
Diesel	97.2		76.9	ug/L	1	12/24/19 21:04	NWTPH-Dx	F-11
Oil	ND		154	ug/L	1	12/24/19 21:04	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 84 %	Limits: 50-150 %	6 I	12/24/19 21:04	NWTPH-Dx	
MW03S-W (A9L0812-02)				Matrix: Wat	er	Batch:	9121291	
Diesel	77.7		77.7	ug/L	1	12/24/19 21:27	NWTPH-Dx	F-11
Oil	ND		155	ug/L	1	12/24/19 21:27	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 84 %	Limits: 50-150 %	6 1	12/24/19 21:27	NWTPH-Dx	
MW06-W (A9L0812-03)				Matrix: Wat	er	Batch:	9121190	
Diesel	742		76.9	ug/L	1	12/21/19 01:47	NWTPH-Dx	F-13
Oil	ND		154	ug/L	1	12/21/19 01:47	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 73 %	Limits: 50-150 %	6 1	12/21/19 01:47	NWTPH-Dx	
				Matrix: Wat	er	Batch: 9121190		
Diesel	1110		77.7	ug/L	1	12/21/19 02:07	NWTPH-Dx	F-13
Oil	ND		155	ug/L	1	12/21/19 02:07	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 76 %	Limits: 50-150 %	6 I	12/21/19 02:07	NWTPH-Dx	
MW09R-W (A9L0812-05RE2)				Matrix: Wat	er	Batch:	9121190	
Diesel	1120000		15100	ug/L	200	12/23/19 09:45	NWTPH-Dx	F-13
Oil	ND		30200	ug/L	200	12/23/19 09:45	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Re	covery: %	Limits: 50-150 %	6 200	12/23/19 09:45	NWTPH-Dx	S-01
MW11-W (A9L0812-06)				Matrix: Wat	er	Batch:	9121190	
Diesel	1060		76.2	ug/L	1	12/21/19 02:47	NWTPH-Dx	F-13
Oil	ND		152	ug/L	1	12/21/19 02:47	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 79 %	Limits: 50-150 %	6 I	12/21/19 02:47	NWTPH-Dx	
MW12-W (A9L0812-07)				Matrix: Wat	er	Batch:	9121190	
Diesel	91.0		76.2	ug/L	1	12/21/19 03:07	NWTPH-Dx	F-11
Oil	ND		152	ug/L	1	12/21/19 03:07	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 71 %	Limits: 50-150 %	6 1	12/21/19 03:07	NWTPH-Dx	
MW13R-W (A9L0812-08)		Matrix: Water Batch: 9121190						
Diesel	979		76.9	ug/L	1	12/21/19 03:27	NWTPH-Dx	F-11

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: <u>Coleman Wenatchee</u>

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW13R-W (A9L0812-08)				Matrix: Wate	er	Batch:	9121190	
Oil	ND		154	ug/L	1	12/21/19 03:27	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 69 %	Limits: 50-150 %	6 1	12/21/19 03:27	NWTPH-Dx	
MW14-W (A9L0812-09)				Matrix: Wate	er	Batch:	9121190	
Diesel	671		76.9	ug/L	1	12/21/19 03:47	NWTPH-Dx	F-11, F-20
Oil	ND		154	ug/L	1	12/21/19 03:47	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 74 %	Limits: 50-150 %	6 I	12/21/19 03:47	NWTPH-Dx	
MW16-W (A9L0812-10)				Matrix: Wate	er	Batch:	9121190	
Diesel	259		76.2	ug/L	1	12/21/19 04:08	NWTPH-Dx	F-11
Oil	ND		152	ug/L	1	12/21/19 04:08	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50-150 %	6 I	12/21/19 04:08	NWTPH-Dx	
MW17-W (A9L0812-11RE1)				Matrix: Wate	er	Batch:	9121190	
Diesel	21800		1520	ug/L	20	12/23/19 09:25	NWTPH-Dx	F-13
Oil	ND		3050	ug/L	20	12/23/19 09:25	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Re	covery: %	Limits: 50-150 %	5 20	12/23/19 09:25	NWTPH-Dx	S-01
MW19-W (A9L0812-12)				Matrix: Wate	er	Batch:	9121190	
Diesel	674		75.5	ug/L	1	12/21/19 04:48	NWTPH-Dx	F-13
Oil	ND		151	ug/L	1	12/21/19 04:48	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50-150 %	<i>5 1</i>	12/21/19 04:48	NWTPH-Dx	
MW20-W (A9L0812-13)				Matrix: Wate	er	Batch:	9121190	
Diesel	967		74.8	ug/L	1	12/21/19 05:08	NWTPH-Dx	F-13
Oil	ND		150	ug/L	1	12/21/19 05:08	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 66 %	Limits: 50-150 %	6 I	12/21/19 05:08	NWTPH-Dx	
MW21-W (A9L0812-14)				Matrix: Wate	er	Batch:	9121291	
Diesel	160		74.8	ug/L	1	12/24/19 21:49	NWTPH-Dx	F-11
Oil	ND		150	ug/L	1	12/24/19 21:49	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50-150 %	6 1	12/24/19 21:49	NWTPH-Dx	
MW23-W (A9L0812-15)				Matrix: Wate	er	Batch:	9121291	
Diesel	305		76.2	ug/L	1	12/24/19 22:12	NWTPH-Dx	F-11
Oil	ND		152	ug/L	1	12/24/19 22:12	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074

314 W 15th Street Suite 300Project Number: 2017-074Report ID:Vancouver, WA 98660Project Manager: Craig HultgrenA9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW23-W (A9L0812-15)				Matrix: Wat	er	Batch:	9121291	
Surrogate: o-Terphenyl (Surr)		Reco	very: 78 %	Limits: 50-150 %	6 1	12/24/19 22:12	NWTPH-Dx	
MW25-W (A9L0812-16)				Matrix: Wat	er	Batch:	9121291	
Diesel	98.1		74.8	ug/L	1	12/25/19 00:05	NWTPH-Dx	F-11
Oil	ND		150	ug/L	1	12/25/19 00:05	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50-150 %	6 I	12/25/19 00:05	NWTPH-Dx	
MW26-W (A9L0812-17)				Matrix: Wat	er	Batch:	9121291	
Diesel	187		74.8	ug/L	1	12/25/19 00:28	NWTPH-Dx	F-11
Oil	ND		150	ug/L	1	12/25/19 00:28	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 75 %	Limits: 50-150 %	6 1	12/25/19 00:28	NWTPH-Dx	
MW27-W (A9L0812-18)				Matrix: Wat	er	Batch:	9121291	
Diesel	264		74.8	ug/L	1	12/25/19 00:50	NWTPH-Dx	F-11
Oil	ND		150	ug/L	1	12/25/19 00:50	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 85 %	Limits: 50-150 %	6 1	12/25/19 00:50	NWTPH-Dx	
MW28-W (A9L0812-19)				Matrix: Wat	er	Batch:	9121291	
Diesel	671		75.5	ug/L	1	12/25/19 01:13	NWTPH-Dx	F-13
Oil	ND		151	ug/L	1	12/25/19 01:13	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 85 %	Limits: 50-150 %	6 1	12/25/19 01:13	NWTPH-Dx	
MW29-W (A9L0812-20RE1)				Matrix: Wat	er	Batch:	9121291	
Diesel	129000		7840	ug/L	100	12/26/19 08:00	NWTPH-Dx	F-13
Oil	ND		15700	ug/L	100	12/26/19 08:00	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Re	covery: %	Limits: 50-150 %	6 100	12/26/19 08:00	NWTPH-Dx	S-01
MW30-W (A9L0812-21)				Matrix: Wat	er	Batch:	9121331	
Diesel	5410		76.9	ug/L	1	12/26/19 22:26	NWTPH-Dx	F-13
Oil	ND		154	ug/L	1	12/26/19 22:26	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 95 %	Limits: 50-150 %	6 1	12/26/19 22:26	NWTPH-Dx	
MW31-W (A9L0812-22)				Matrix: Wat	er	Batch:	9121331	
Diesel	255		75.5	ug/L	1	12/26/19 22:48	NWTPH-Dx	F-13
Oil	ND		151	ug/L	1	12/26/19 22:48	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Vancouver, WA 98660

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC
314 W 15th Street Suite 300

Project: <u>Coleman Wenatchee</u>

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or Oi	I Hydrocar	bons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW31-W (A9L0812-22)				Matrix: Wate	er	Batch:	9121331	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 99 %	Limits: 50-150 %	6 1	12/26/19 22:48	NWTPH-Dx	
MW32-W (A9L0812-23)				Matrix: Wate	er	Batch:	9121331	
Diesel	433		77.7	ug/L	1	12/26/19 23:11	NWTPH-Dx	F-11
Oil	ND		155	ug/L	1	12/26/19 23:11	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 90 %	Limits: 50-150 %	<i>5</i> 1	12/26/19 23:11	NWTPH-Dx	
BH01R-W (A9L0812-24RE1)				Matrix: Wate	er	Batch:	9121331	
Diesel	42800		1600	ug/L	20	12/27/19 08:53	NWTPH-Dx	F-13
Oil	ND		3200	ug/L	20	12/27/19 08:53	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Rec	overy: %	Limits: 50-150 %	5 20	12/27/19 08:53	NWTPH-Dx	S-01
BH02-W (A9L0812-25)				Matrix: Wate	er	Batch:	9121331	
Diesel	2230		75.5	ug/L	1	12/26/19 23:56	NWTPH-Dx	F-13
Oil	ND		151	ug/L	1	12/26/19 23:56	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 95 %	Limits: 50-150 %	6 I	12/26/19 23:56	NWTPH-Dx	
BH03-W (A9L0812-26)				Matrix: Wate	er	Batch:	9121331	
Diesel	488		74.8	ug/L	1	12/27/19 00:19	NWTPH-Dx	F-13
Oil	ND		150	ug/L	1	12/27/19 00:19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 90 %	Limits: 50-150 %	6 1	12/27/19 00:19	NWTPH-Dx	
RW01-W (A9L0812-27)				Matrix: Wate	er	Batch:	9121331	
Diesel	78.7		74.8	ug/L	1	12/27/19 00:41	NWTPH-Dx	F-11
Oil	ND		150	ug/L	1	12/27/19 00:41	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 92 %	Limits: 50-150 %	6 I	12/27/19 00:41	NWTPH-Dx	
MW301-W (A9L0812-28RE1)				Matrix: Wate	er	Batch:	9121331	
Diesel	16000		800	ug/L	10	12/27/19 09:16	NWTPH-Dx	F-13
Oil	ND		1600	ug/L	10	12/27/19 09:16	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 86 %	Limits: 50-150 %	5 10	12/27/19 09:16	NWTPH-Dx	S-05
MW302-W (A9L0812-29)				Matrix: Wate	er	Batch:	9121331	
Diesel	1320		77.7	ug/L	1	12/27/19 01:27	NWTPH-Dx	F-11
Oil	ND		155	ug/L	1	12/27/19 01:27	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 94%	Limits: 50-150 %	6 I	12/27/19 01:27	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
MW303-W (A9L0812-30)				Matrix: Wate	ər	Batch:	9121331				
Diesel	1060		74.8	ug/L	1	12/27/19 01:49	NWTPH-Dx	F-13			
Oil	ND		150	ug/L	1	12/27/19 01:49	NWTPH-Dx				
Surrogate: o-Terphenyl (Surr)		Reco	very: 83 %	Limits: 50-150 %	6 I	12/27/19 01:49	NWTPH-Dx				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number:
 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager:
 Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (B	enzene tl	nrough Naphth	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW01S-W (A9L0812-01)				Matrix: Wat	er	Batch	ı: 9121169	
Gasoline Range Organics	ND		100	ug/L	1	12/20/19 12:40	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 96 %	Limits: 50-150 9	% 1	12/20/19 12:40	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			111 %	50-150 %	% 1	12/20/19 12:40	NWTPH-Gx (MS)	
MW03S-W (A9L0812-02)				Matrix: Wat	er	Batch	ı: 9121169	
Gasoline Range Organics	ND		100	ug/L	1	12/20/19 13:07	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 96 %	Limits: 50-150 9	% 1	12/20/19 13:07	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			112 %	50-150 %	% 1	12/20/19 13:07	NWTPH-Gx (MS)	
MW06-W (A9L0812-03)				Matrix: Wat	er	Batch	ı: 9121169	
Gasoline Range Organics	221		100	ug/L	1	12/20/19 13:34	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 101%	Limits: 50-150 9	% 1	12/20/19 13:34	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			109 %	50-150 %	% 1	12/20/19 13:34	NWTPH-Gx (MS)	
MW08-W (A9L0812-04)				Matrix: Wat	er	Batch	ı: 9121169	
Gasoline Range Organics	891		100	ug/L	1	12/20/19 17:10	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 102 %	Limits: 50-150 9	% 1	12/20/19 17:10	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			108 %	50-150 %	% 1	12/20/19 17:10	NWTPH-Gx (MS)	
MW09R-W (A9L0812-05)				Matrix: Wat	er	Batch	ı: 9121169	
Gasoline Range Organics	1420		100	ug/L	1	12/20/19 14:01	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 107%	Limits: 50-150 9	% 1	12/20/19 14:01	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			110 %	50-150 9	% 1	12/20/19 14:01	NWTPH-Gx (MS)	
MW11-W (A9L0812-06)				Matrix: Wat	er	Batch	ı: 9121169	
Gasoline Range Organics	1020		100	ug/L	1	12/20/19 14:28	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 103 %	Limits: 50-150 9	% 1	12/20/19 14:28	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			108 %	50-150 %	% 1	12/20/19 14:28	NWTPH-Gx (MS)	
MW12-W (A9L0812-07)				Matrix: Wat	er	Batch	ı: 9121169	
Gasoline Range Organics	ND		100	ug/L	1	12/20/19 14:55	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 96 %	Limits: 50-150 9	% 1	12/20/19 14:55	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			109 %	50-150 9	% 1	12/20/19 14:55	NWTPH-Gx (MS)	
MW13R-W (A9L0812-08)				Matrix: Wat	er	Batch	ı: 9121169	_
Gasoline Range Organics	292		100	ug/L	1	12/20/19 18:04	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	ydrocarbons (Benzene th	nrough Nap	htha	lene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units		Dilution	Date Analyzed	Method Ref.	Notes
MW13R-W (A9L0812-08)				Matrix:	Water	r	Batch	: 9121169	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 93 %	Limits: 50-1.		1	12/20/19 18:04	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			105 %	30-1.	50 %	1	12/20/19 18:04	NWTPH-Gx (MS)	
MW14-W (A9L0812-09)				Matrix:	Water	r	Batch	: 9121169	
Gasoline Range Organics	3450		100	ug/L		1	12/20/19 15:22	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 99 %	Limits: 50-1.	50 %	1	12/20/19 15:22	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-1.	50 %	1	12/20/19 15:22	NWTPH-Gx (MS)	
MW16-W (A9L0812-10)				Matrix: \	Water	r	Batch	: 9121169	
Gasoline Range Organics	ND		100	ug/L		1	12/20/19 15:49	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 94%	Limits: 50-1.	50 %	1	12/20/19 15:49	NWTPH-Gx (MS)	
I,4-Difluorobenzene (Sur)			108 %	50-1.	50 %	1	12/20/19 15:49	NWTPH-Gx (MS)	
MW17-W (A9L0812-11)				Matrix:	Water	r	Batch	: 9121169	
Gasoline Range Organics	1470		100	ug/L		1	12/20/19 16:16	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 99 %	Limits: 50-1.	50 %	1	12/20/19 16:16	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-1.	50 %	1	12/20/19 16:16	NWTPH-Gx (MS)	
MW19-W (A9L0812-12)				Matrix:	Water	r	Batch	: 9121169	
Gasoline Range Organics	ND		100	ug/L		1	12/20/19 16:43	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 98 %	Limits: 50-1.	50 %	1	12/20/19 16:43	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			109 %	50-1.	50 %	1	12/20/19 16:43	NWTPH-Gx (MS)	
MW20-W (A9L0812-13)				Matrix:	Water	r	Batch	: 9121169	
Gasoline Range Organics	553		100	ug/L		1	12/20/19 19:25	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 100 %	Limits: 50-1.	50 %	1	12/20/19 19:25	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			110 %	50-1.	50 %	1	12/20/19 19:25	NWTPH-Gx (MS)	
MW21-W (A9L0812-14)				Matrix: Water		Batch: 9121169			
Gasoline Range Organics	ND		100	ug/L		1	12/20/19 19:52	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 94%	Limits: 50-1.	50 %	1	12/20/19 19:52	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			108 %	50-1.	50 %	1	12/20/19 19:52	NWTPH-Gx (MS)	
MW23-W (A9L0812-15)				Matrix:	Water	r	Batch	: 9121169	
Gasoline Range Organics	ND		100	ug/L		1	12/20/19 20:19	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting				Date		
Analyte	Result	Limit	Limit	Units		Dilution	Analyzed	Method Ref.	Note
MW23-W (A9L0812-15)				Matrix:	Wate	r	Batch	ı: 9121169	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 97%	Limits: 50-1		1	12/20/19 20:19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			109 %	50-1	50 %	I	12/20/19 20:19	NWTPH-Gx (MS)	
MW25-W (A9L0812-16)				Matrix:	Wate	r	Batch	: 9121169	
Gasoline Range Organics	ND		100	ug/L		1	12/20/19 20:46	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 95 %	Limits: 50-1		1	12/20/19 20:46	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			110 %	50-1	50 %	1	12/20/19 20:46	NWTPH-Gx (MS)	
MW26-W (A9L0812-17)				Matrix:	Wate	r	Batch	: 9121174	
Gasoline Range Organics	ND		100	ug/L		1	12/20/19 16:54	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 102 %	Limits: 50-1	50 %	1	12/20/19 16:54	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			111 %	50-1	50 %	1	12/20/19 16:54	NWTPH-Gx (MS)	
MW27-W (A9L0812-18)				Matrix:	Wate	r	Batch	ı: 9121169	
Gasoline Range Organics	ND		100	ug/L		1	12/20/19 21:13	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 96 %	Limits: 50-1	50 %	1	12/20/19 21:13	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			110 %	50-1	50 %	1	12/20/19 21:13	NWTPH-Gx (MS)	
MW28-W (A9L0812-19)				Matrix:	Wate	r	Batch	ı: 9121174	
Gasoline Range Organics	ND		100	ug/L		1	12/20/19 17:21	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 114%	Limits: 50-1	50 %	1	12/20/19 17:21	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			111 %	50-1	50 %	1	12/20/19 17:21	NWTPH-Gx (MS)	
MW29-W (A9L0812-20)				Matrix:	Wate	r	Batch	ı: 9121174	
Gasoline Range Organics	3960		100	ug/L		1	12/20/19 17:49	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 129 %	Limits: 50-1	50 %	1	12/20/19 17:49	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			105 %	50-1	50 %	1	12/20/19 17:49	NWTPH-Gx (MS)	
MW30-W (A9L0812-21)				Matrix:	Wate	r	Batch	ı: 9121174	
Gasoline Range Organics	238		100	ug/L		1	12/20/19 18:17	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 124 %	Limits: 50-1	50 %	1	12/20/19 18:17	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-1	50 %	1	12/20/19 18:17	NWTPH-Gx (MS)	
MW31-W (A9L0812-22)				Matrix:	Wate	r	Batch	ı: 9121174	
Gasoline Range Organics	ND		100	ug/L		1	12/20/19 18:45	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 117 %	Limits: 50-1	50 %	1	12/20/19 18:45	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmenighini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

	Commis	Detection	Donortino			Date		
Analyte	Sample Result	Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW31-W (A9L0812-22)				Matrix: Wate	r	Batch	: 9121174	
Surrogate: 1,4-Difluorobenzene (Sur)		Recovery	: 106%	Limits: 50-150 %	1	12/20/19 18:45	NWTPH-Gx (MS)	
MW32-W (A9L0812-23)				Matrix: Wate	r	Batch	: 9121174	
Gasoline Range Organics	ND		100	ug/L	1	12/20/19 19:12	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 111 %	Limits: 50-150 %	1	12/20/19 19:12	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			108 %	50-150 %	1	12/20/19 19:12	NWTPH-Gx (MS)	
BH01R-W (A9L0812-24)				Matrix: Wate	r	Batch: 9121174		
Gasoline Range Organics	918		100	ug/L	1	12/20/19 19:40	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 104 %	Limits: 50-150 %	1	12/20/19 19:40	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %	50-150 %	1	12/20/19 19:40	NWTPH-Gx (MS)	
BH02-W (A9L0812-25)				Matrix: Wate	r	Batch	: 9121174	
Gasoline Range Organics	202		100	ug/L	1	12/20/19 20:34	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 113 %	Limits: 50-150 %	1	12/20/19 20:34	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			105 %	50-150 %	1	12/20/19 20:34	NWTPH-Gx (MS)	
BH03-W (A9L0812-26)				Matrix: Wate	r	Batch	: 9121174	
Gasoline Range Organics	126		100	ug/L	1	12/20/19 21:01	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 112 %	Limits: 50-150 %	1	12/20/19 21:01	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			105 %	50-150 %	1	12/20/19 21:01	NWTPH-Gx (MS)	
RW01-W (A9L0812-27)				Matrix: Wate	r	Batch	: 9121174	
Gasoline Range Organics	ND		100	ug/L	1	12/20/19 21:28	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 111 %	Limits: 50-150 %	1	12/20/19 21:28	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-150 %	1	12/20/19 21:28	NWTPH-Gx (MS)	
MW301-W (A9L0812-28RE1)				Matrix: Wate	r	Batch	: 9121227	
Gasoline Range Organics	2030		100	ug/L	1	12/23/19 14:57	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 107 %	Limits: 50-150 %	1	12/23/19 14:57	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			108 %	50-150 %	1	12/23/19 14:57	NWTPH-Gx (MS)	
MW302-W (A9L0812-29RE1)				Matrix: Wate	r	Batch	: 9121227	
Gasoline Range Organics	242		100	ug/L	1	12/23/19 15:24	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 89 %	Limits: 50-150 %	1	12/23/19 15:24	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			103 %	50-150 %	1	12/23/19 15:24	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
MW303-W (A9L0812-30RE1)				Matrix: Water Batch: 9121227							
Gasoline Range Organics	589		100	ug/L	1	12/23/19 15:51	NWTPH-Gx (MS)				
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recove	ery: 103 % 108 %	Limits: 50-150 % 50-150 %		12/23/19 15:51 12/23/19 15:51	NWTPH-Gx (MS) NWTPH-Gx (MS)				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW01S-W (A9L0812-01)				Matrix: Wate	r	Batch: 9121169		
Benzene	ND		0.200	ug/L	1	12/20/19 12:40	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 12:40	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 12:40	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 12:40	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 114 %	Limits: 80-120 %	1	12/20/19 12:40	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	1	12/20/19 12:40	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	12/20/19 12:40	EPA 8260C	
MW03S-W (A9L0812-02)				Matrix: Wate	r	Batch:	9121169	
Benzene	ND		0.200	ug/L	1	12/20/19 13:07	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 13:07	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 13:07	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 13:07	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 115 %	Limits: 80-120 %	1	12/20/19 13:07	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %		12/20/19 13:07	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %		12/20/19 13:07	EPA 8260C	
MW06-W (A9L0812-03)				Matrix: Wate	r	Batch:	9121169	
Benzene	ND		0.200	ug/L	1	12/20/19 13:34	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 13:34	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 13:34	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 13:34	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 114%	Limits: 80-120 %	1	12/20/19 13:34	EPA 8260C	
Toluene-d8 (Surr)			99 %	80-120 %	1	12/20/19 13:34	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	12/20/19 13:34	EPA 8260C	
MW08-W (A9L0812-04)				Matrix: Wate	r	Batch:	9121169	
Benzene	ND		0.200	ug/L	1	12/20/19 17:10	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 17:10	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 17:10	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 17:10	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 114%	Limits: 80-120 %	1	12/20/19 17:10	EPA 8260C	
Toluene-d8 (Surr)			97%	80-120 %	1	12/20/19 17:10	EPA 8260C	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	12/20/19 17:10	EPA 8260C	
MW09R-W (A9L0812-05)				Matrix: Wate	r	Batch:	9121169	
Benzene	ND		0.200	ug/L	1	12/20/19 14:01	EPA 8260C	
				-				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goad Zmenghini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW09R-W (A9L0812-05)				Matrix: Wate	r	Batch:	9121169	
Toluene	ND		1.00	ug/L	1	12/20/19 14:01	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 14:01	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 14:01	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 113 %	Limits: 80-120 %	1	12/20/19 14:01	EPA 8260C	
Toluene-d8 (Surr)			96 %	80-120 %	1	12/20/19 14:01	EPA 8260C	
4-Bromofluorobenzene (Surr)			96 %	80-120 %	1	12/20/19 14:01	EPA 8260C	
MW11-W (A9L0812-06)				Matrix: Wate	r	Batch:	9121169	
Benzene	ND		0.200	ug/L	1	12/20/19 14:28	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 14:28	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 14:28	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 14:28	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 113 %	Limits: 80-120 %	1	12/20/19 14:28	EPA 8260C	
Toluene-d8 (Surr)			97 %	80-120 %	1	12/20/19 14:28	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	12/20/19 14:28	EPA 8260C	
MW12-W (A9L0812-07)				Matrix: Wate	r	Batch:	9121169	
Benzene	ND		0.200	ug/L	1	12/20/19 14:55	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 14:55	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 14:55	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 14:55	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 114%	Limits: 80-120 %	1	12/20/19 14:55	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	12/20/19 14:55	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	12/20/19 14:55	EPA 8260C	
MW13R-W (A9L0812-08)				Matrix: Wate	r	Batch:	9121169	
Benzene	47.3		0.200	ug/L	1	12/20/19 18:04	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 18:04	EPA 8260C	
Ethylbenzene	2.16		0.500	ug/L	1	12/20/19 18:04	EPA 8260C	
Xylenes, total	5.00		1.50	ug/L	1	12/20/19 18:04	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 111 %	Limits: 80-120 %	1	12/20/19 18:04	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	12/20/19 18:04	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	12/20/19 18:04	EPA 8260C	
MW14-W (A9L0812-09)				Matrix: Wate	r	Batch:	9121169	
Benzene	24.7		0.200	ug/L	1	12/20/19 15:22	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 15:22	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

		BTEX Con	npounds b	y EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW14-W (A9L0812-09)				Matrix: Wate	er	Batch: 9121169		
Ethylbenzene	3.00		0.500	ug/L	1	12/20/19 15:22	EPA 8260C	
Xylenes, total	2.69		1.50	ug/L	1	12/20/19 15:22	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	v: 113 %	Limits: 80-120 %	1	12/20/19 15:22	EPA 8260C	
Toluene-d8 (Surr)			105 %	80-120 %	1	12/20/19 15:22	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	12/20/19 15:22	EPA 8260C	
MW16-W (A9L0812-10)				Matrix: Wate	er	Batch:	9121169	
Benzene	ND		0.200	ug/L	1	12/20/19 15:49	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 15:49	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 15:49	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 15:49	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 115 %	Limits: 80-120 %	1	12/20/19 15:49	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	12/20/19 15:49	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	12/20/19 15:49	EPA 8260C	
MW17-W (A9L0812-11)				Matrix: Wate	er	Batch: 9121169		
Benzene	1.38		0.200	ug/L	1	12/20/19 16:16	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 16:16	EPA 8260C	
Ethylbenzene	3.10		0.500	ug/L	1	12/20/19 16:16	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 16:16	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 113 %	Limits: 80-120 %	1	12/20/19 16:16	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	1	12/20/19 16:16	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	12/20/19 16:16	EPA 8260C	
MW19-W (A9L0812-12)				Matrix: Wate	er	Batch:	9121169	
Benzene	ND		0.200	ug/L	1	12/20/19 16:43	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 16:43	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 16:43	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 16:43	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	v: 115 %	Limits: 80-120 %	1	12/20/19 16:43	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	1	12/20/19 16:43	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	12/20/19 16:43	EPA 8260C	
MW20-W (A9L0812-13)				Matrix: Wate	er	Batch:	9121169	
Benzene	ND		0.200	ug/L	1	12/20/19 19:25	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 19:25	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 19:25	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW20-W (A9L0812-13)				Matrix: Wate	er	Batch: 9121169		
Xylenes, total	ND		1.50	ug/L	1	12/20/19 19:25	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 114 %	Limits: 80-120 %	6 1	12/20/19 19:25	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	6 1	12/20/19 19:25	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	6 1	12/20/19 19:25	EPA 8260C	
MW21-W (A9L0812-14)				Matrix: Wate	er	Batch:	9121169	
Benzene	ND		0.200	ug/L	1	12/20/19 19:52	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 19:52	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 19:52	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 19:52	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 114 %	Limits: 80-120 %	6 1	12/20/19 19:52	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %	6 1	12/20/19 19:52	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	6 1	12/20/19 19:52	EPA 8260C	
MW23-W (A9L0812-15)				Matrix: Wate	ər	Batch: 9121169		
Benzene	ND		0.200	ug/L	1	12/20/19 20:19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 20:19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 20:19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 20:19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 114 %	Limits: 80-120 %	<i>5</i> 1	12/20/19 20:19	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	<i>i</i> 1	12/20/19 20:19	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	6 I	12/20/19 20:19	EPA 8260C	
MW25-W (A9L0812-16)				Matrix: Wate	er	Batch:	9121169	
Benzene	ND		0.200	ug/L	1	12/20/19 20:46	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 20:46	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 20:46	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 20:46	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 114 %	Limits: 80-120 %	5 1	12/20/19 20:46	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	6 1	12/20/19 20:46	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	5 1	12/20/19 20:46	EPA 8260C	
MW26-W (A9L0812-17)				Matrix: Wate	er	Batch:	9121174	
Benzene	ND		0.200	ug/L	1	12/20/19 16:54	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 16:54	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 16:54	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 16:54	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

		BTEX Com	pounds b	y EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW26-W (A9L0812-17)				Matrix: Wate	er	Batch:	Batch: 9121174	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 110 %	Limits: 80-120 %	1	12/20/19 16:54	EPA 8260C	
Toluene-d8 (Surr)			112 %	80-120 %	1	12/20/19 16:54	EPA 8260C	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	12/20/19 16:54	EPA 8260C	
MW27-W (A9L0812-18)				Matrix: Wate	er	Batch:	9121169	
Benzene	ND		0.200	ug/L	1	12/20/19 21:13	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 21:13	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 21:13	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 21:13	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	v: 116 %	Limits: 80-120 %	1	12/20/19 21:13	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	1	12/20/19 21:13	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	12/20/19 21:13	EPA 8260C	
MW28-W (A9L0812-19)				Matrix: Wate	er	Batch: 9121174		
Benzene	ND		0.200	ug/L	1	12/20/19 17:21	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 17:21	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 17:21	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 17:21	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 106 %	Limits: 80-120 %	1	12/20/19 17:21	EPA 8260C	
Toluene-d8 (Surr)			97 %	80-120 %	1	12/20/19 17:21	EPA 8260C	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	12/20/19 17:21	EPA 8260C	
MW29-W (A9L0812-20)				Matrix: Wate	er	Batch: 9121174		
Benzene	ND		0.200	ug/L	1	12/20/19 17:49	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 17:49	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 17:49	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 17:49	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 103 %	Limits: 80-120 %	1	12/20/19 17:49	EPA 8260C	
Toluene-d8 (Surr)		•	89 %	80-120 %	1	12/20/19 17:49	EPA 8260C	
4-Bromofluorobenzene (Surr)			105 %	80-120 %	1	12/20/19 17:49	EPA 8260C	
				Matrix: Wate	er	Batch: 9121174		
Benzene	ND		0.200	ug/L	1	12/20/19 18:17	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 18:17	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 18:17	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 18:17	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 104 %	Limits: 80-120 %	1	12/20/19 18:17	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goad Jomenyhini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

		BTEX Coi	mpounds b	y EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW30-W (A9L0812-21)				Matrix: Wate	er	Batch:	9121174	
Surrogate: Toluene-d8 (Surr)		Recov	ery: 92 %	Limits: 80-120 %	1	12/20/19 18:17	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	I	12/20/19 18:17	EPA 8260C	
MW31-W (A9L0812-22)				Matrix: Wate	er	Batch:	9121174	
Benzene	ND		0.200	ug/L	1	12/20/19 18:45	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 18:45	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 18:45	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 18:45	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 106 %	Limits: 80-120 %	1	12/20/19 18:45	EPA 8260C	
Toluene-d8 (Surr)			95 %	80-120 %	1	12/20/19 18:45	EPA 8260C	
4-Bromofluorobenzene (Surr)			96 %	80-120 %	1	12/20/19 18:45	EPA 8260C	
MW32-W (A9L0812-23)		Matrix: Water Batch: 9121174		9121174				
Benzene	ND		0.200	ug/L	1	12/20/19 19:12	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 19:12	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 19:12	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 19:12	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 105 %	Limits: 80-120 %	1	12/20/19 19:12	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	12/20/19 19:12	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	12/20/19 19:12	EPA 8260C	
BH01R-W (A9L0812-24)				Matrix: Wate	er	Batch:	9121174	
Benzene	ND		0.200	ug/L	1	12/20/19 19:40	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 19:40	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 19:40	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 19:40	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 92 %	Limits: 80-120 %	1	12/20/19 19:40	EPA 8260C	
Toluene-d8 (Surr)			95 %	80-120 %	1	12/20/19 19:40	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	12/20/19 19:40	EPA 8260C	
BH02-W (A9L0812-25)				Matrix: Wate	er	Batch:	9121174	
Benzene	ND		0.200	ug/L	1	12/20/19 20:34	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 20:34	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 20:34	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 20:34	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 105 %	Limits: 80-120 %	1	12/20/19 20:34	EPA 8260C	
Toluene-d8 (Surr)			96 %	80-120 %	1	12/20/19 20:34	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

		BTEX Com	pounds b	y EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH02-W (A9L0812-25)				Matrix: Wate	er	Batch:	9121174	
Surrogate: 4-Bromofluorobenzene (Surr)		Recovery	v: 99 %	Limits: 80-120 %	1	12/20/19 20:34	EPA 8260C	
BH03-W (A9L0812-26)				Matrix: Wate	er	Batch:	9121174	
Benzene	ND		0.200	ug/L	1	12/20/19 21:01	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 21:01	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 21:01	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 21:01	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	104 %	Limits: 80-120 %	1	12/20/19 21:01	EPA 8260C	
Toluene-d8 (Surr)			96 %	80-120 %	1	12/20/19 21:01	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	12/20/19 21:01	EPA 8260C	
RW01-W (A9L0812-27)				Matrix: Wate	er	Batch:	9121174	
Benzene	ND		0.200	ug/L	1	12/20/19 21:28	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 21:28	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 21:28	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 21:28	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	108 %	Limits: 80-120 %	5 1	12/20/19 21:28	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	12/20/19 21:28	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	5 I	12/20/19 21:28	EPA 8260C	
MW301-W (A9L0812-28RE1)				Matrix: Wate	er	Batch:	9121227	
Benzene	1.35		0.200	ug/L	1	12/23/19 14:57	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/23/19 14:57	EPA 8260C	
Ethylbenzene	2.41		0.500	ug/L	1	12/23/19 14:57	EPA 8260C	
Xylenes, total	1.59		1.50	ug/L	1	12/23/19 14:57	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	: 113 %	Limits: 80-120 %	1	12/23/19 14:57	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	1	12/23/19 14:57	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	12/23/19 14:57	EPA 8260C	
MW302-W (A9L0812-29RE1)				Matrix: Wate	er	Batch:	9121227	
Benzene	38.5		0.200	ug/L	1	12/23/19 15:24	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/23/19 15:24	EPA 8260C	
Ethylbenzene	1.87		0.500	ug/L	1	12/23/19 15:24	EPA 8260C	
Xylenes, total	3.98		1.50	ug/L	1	12/23/19 15:24	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	: 110 %	Limits: 80-120 %	5 1	12/23/19 15:24	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	12/23/19 15:24	EPA 8260C	
4-Bromofluorobenzene (Surr)			95 %	80-120 %	1	12/23/19 15:24	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

ANALYTICAL SAMPLE RESULTS

		BTEX Con	npounds b	y EPA 8260C				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW303-W (A9L0812-30RE1)				Matrix: Wate	er	Batch:	9121227	
Benzene	ND		0.200	ug/L	1	12/23/19 15:51	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/23/19 15:51	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/23/19 15:51	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/23/19 15:51	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 115 %	Limits: 80-120 %	1	12/23/19 15:51	EPA 8260C	
Toluene-d8 (Surr)			96 %	80-120 %	1	12/23/19 15:51	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	12/23/19 15:51	EPA 8260C	
Trip Blank #2201 (A9L0812-31)				Matrix: Wate	er	Batch:	9121174	
Benzene	ND		0.200	ug/L	1	12/20/19 16:25	EPA 8260C	
Toluene	ND		1.00	ug/L	1	12/20/19 16:25	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	12/20/19 16:25	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	12/20/19 16:25	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 106 %	Limits: 80-120 %	1	12/20/19 16:25	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	12/20/19 16:25	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	12/20/19 16:25	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

F

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hyd	Irocarbon	s by NWT	PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9121190 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (9121190-BLK1)		Prepared	12/20/19 11:	46 Analyz	zed: 12/20/19	9 20:48						
NWTPH-Dx												
Diesel	ND		72.7	ug/L	1							
Oil	ND		145	ug/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 90 %	Limits: 50	0-150 %	Dilı	ıtion: 1x					
LCS (9121190-BS1)		Prepared	: 12/20/19 11:	46 Analyz	zed: 12/20/19	9 21:08						
NWTPH-Dx												
Diesel	409		80.0	ug/L	1	500		82	58 - 115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 95 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS Dup (9121190-BSD1)		Prepared	: 12/20/19 11:	46 Analyz	zed: 12/20/19	9 21:28						Q-1
NWTPH-Dx												
Diesel	392		80.0	ug/L	1	500		78	58 - 115%	4	20%	
Surr: o-Terphenyl (Surr)		Reco	overy: 91 %	Limits: 50	0-150 %	Dilı	ıtion: 1x					
Batch 9121291 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (9121291-BLK1)		Prepared	: 12/24/19 11:	44 Analyz	zed: 12/24/19	9 19:56						
NWTPH-Dx												
Diesel	ND		72.7	ug/L	1							
Oil	ND		145	ug/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 94 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS (9121291-BS1)		Prepared	: 12/24/19 11:	44 Analyz	zed: 12/24/19	9 20:19						
LCS (9121291-BS1) NWTPH-Dx		Prepared	: 12/24/19 11:	44 Analyz	zed: 12/24/19	9 20:19						
	415	Prepared	80.0	44 Analyz ug/L	zed: 12/24/19	9 20:19		83	58 - 115%			
NWTPH-Dx	415				1	500	 ttion: Ix	83	58 - 115%			
<u>NWTPH-Dx</u> Diesel	415	 Recov	80.0	ug/L Limits: 50	1 9-150 %	500 Dilı		83	58 - 115%			Q-1
NWTPH-Dx Diesel Surr: o-Terphenyl (Surr)	415	 Recov	80.0 very: 102 %	ug/L Limits: 50	1 9-150 %	500 Dilı		83	58 - 115%			Q-1
NWTPH-Dx Diesel Surr: o-Terphenyl (Surr) LCS Dup (9121291-BSD1)	415	 Recov	80.0 very: 102 %	ug/L Limits: 50	1 9-150 %	500 Dilı		83	58 - 115% 58 - 115%	2	20%	Q-1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	r Oil Hyd	Irocarbor	s by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9121331 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (9121331-BLK1)		Prepared	: 12/26/19 12:	52 Analyz	zed: 12/26/1	9 21:18						
NWTPH-Dx												
Diesel	ND		72.7	ug/L	1							
Oil	ND		145	ug/L	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 94 %	Limits: 50	0-150 %	Dili	ution: 1x					
LCS (9121331-BS1)		Prepared	: 12/26/19 12:	52 Analyz	zed: 12/26/1	9 21:40						
NWTPH-Dx												
Diesel	403		80.0	ug/L	1	500		81	58 - 115%			
Surr: o-Terphenyl (Surr)		Rec	overy: 98 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS Dup (9121331-BSD1)		Prepared	: 12/26/19 12:	52 Analyz	zed: 12/26/1	9 22:03						Q-19
NWTPH-Dx												
Diesel	402		80.0	ug/L	1	500		80	58 - 115%	0.4	20%	
Surr: o-Terphenyl (Surr)		Rec	overy: 96 %	Limits: 50	0-150 %	Dili	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range I	Hydrocarbo	ons (Benz	zene thro	ugh Naph	thalene) l	by NWTF	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9121169 - EPA 5030B							Wat	er				
Blank (9121169-BLK1)		Prepared	: 12/20/19 09:	:00 Analyz	zed: 12/20/1	9 11:46						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 95 %	Limits: 50	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			110 %	50	0-150 %		"					
LCS (9121169-BS1)		Prepared	: 12/20/19 09:	:00 Analyz	zed: 12/20/1	9 10:07						
NWTPH-Gx (MS)												
Gasoline Range Organics	406		100	ug/L	1	500		81	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 96 %	Limits: 50	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			106 %	50	0-150 %		"					
Duplicate (9121169-DUP1)		Prepared	: 12/20/19 11:	23 Analyz	zed: 12/20/1	9 17:37						
QC Source Sample: MW08-W (A	9L0812-04)											
NWTPH-Gx (MS)												
Gasoline Range Organics	860		100	ug/L	1		891			3	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 99 %	Limits: 50	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			106 %	50	0-150 %		"					
Duplicate (9121169-DUP2)		Prepared	: 12/20/19 11:	23 Analyz	zed: 12/20/1	9 18:31						
QC Source Sample: MW13R-W (A9L0812-08)										
NWTPH-Gx (MS)												
Gasoline Range Organics	258		100	ug/L	1		292			12	30%	
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 93 %	Limits: 50	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			105 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range F	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene) l	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9121174 - EPA 5030B							Wat	er				
Blank (9121174-BLK1)		Prepared	: 12/20/19 08:	13 Analy	zed: 12/20/1	9 12:06						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 110 %	Limits: 5	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			109 %	5	0-150 %		"					
LCS (9121174-BS2)		Prepared	: 12/20/19 08:	13 Analy	zed: 12/20/1	9 11:38						
NWTPH-Gx (MS)												
Gasoline Range Organics	458		100	ug/L	1	500		92	30 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 101 %	Limits: 5	0-150 %	Dili	ıtion: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	0-150 %		"					
Duplicate (9121174-DUP2)		Prepared	: 12/20/19 12:	13 Analy	zed: 12/20/1	9 20:07						
QC Source Sample: BH01R-W (A	9L0812-24)											
NWTPH-Gx (MS)												
Gasoline Range Organics	1020		100	ug/L	1		918			10	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 115 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			105 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx														
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes		
Batch 9121227 - EPA 5030B							Wat	er						
Blank (9121227-BLK1)		Prepared:	12/23/19 10:	00 Analyz	zed: 12/23/19	9 11:34								
NWTPH-Gx (MS)														
Gasoline Range Organics	ND		100	ug/L	1									
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 93 %	Limits: 50	0-150 %	Dilı	ıtion: 1x							
1,4-Difluorobenzene (Sur)			110 %	50	0-150 %		"							
LCS (9121227-BS2)		Prepared:	12/23/19 10:	00 Analyz	zed: 12/23/1	9 11:07								
NWTPH-Gx (MS)														
Gasoline Range Organics	418		100	ug/L	1	500		84	80 - 120%					
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 96 %	Limits: 50	0-150 %	Dilı	ıtion: 1x							
1,4-Difluorobenzene (Sur)			103 %	50	0-150 %		"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260C	<u> </u>					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9121169 - EPA 5030B							Wat	er				
Blank (9121169-BLK1)		Prepared	: 12/20/19 09:	00 Analyz	red: 12/20/1	9 11:46						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 114 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
LCS (9121169-BS2)		Prepared	: 12/20/19 09:	00 Analyz	ed: 12/20/1	9 10:52						
EPA 8260C												
Benzene	19.6		0.200	ug/L	1	20.0		98 8	30 - 120%			
Toluene	17.4		1.00	ug/L	1	20.0		87 8	30 - 120%			
Ethylbenzene	17.5		0.500	ug/L	1	20.0		87 8	30 - 120%			
Xylenes, total	50.7		1.50	ug/L	1	60.0		85 8	30 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 109 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					
Duplicate (9121169-DUP1)		Prepared	: 12/20/19 11:	23 Analyz	ed: 12/20/1	9 17:37						
QC Source Sample: MW08-W (AS	9L0812-04)											
EPA 8260C				_								
Benzene	ND		0.200	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 113 %	Limits: 80)-120 %	Dill	ution: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
Duplicate (9121169-DUP2)		Prenarad	: 12/20/19 11:	23 Analyz	ed: 12/20/1	9 18-31						
		1 repareu	. 12/20/17 11.	25 Mialyz	cu. 12/20/1	/ 10.31						

QC Source Sample: MW13R-W (A9L0812-08)

EPA 8260C

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa A Smerighini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260C	: 					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9121169 - EPA 5030B							Wat	er				
Duplicate (9121169-DUP2)		Prepared	: 12/20/19 11:	23 Analyz	ed: 12/20/1	9 18:31						
QC Source Sample: MW13R-W (A	A9L0812-08	1)										
Benzene	43.2		0.200	ug/L	1		47.3			9	30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	1.95		0.500	ug/L	1		2.16			10	30%	
Xylenes, total	4.45		1.50	ug/L	1		5.00			12	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 112 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	1-120 %		"					
Matrix Spike (9121169-MS1)		Prepared	: 12/20/19 11:	23 Analyz	ed: 12/20/1	9 21:40						
OC Source Sample: MW27-W (ASEPA 8260C	PL0812-18)											
Benzene	21.3		0.200	ug/L	1	20.0	ND	107	79 - 120%			
Toluene	18.9		1.00	ug/L	1	20.0	ND	94	80 - 121%			
Ethylbenzene	18.7		0.500	ug/L	1	20.0	ND	94	79 - 121%			
Xylenes, total	54.4		1.50	ug/L	1	60.0	ND	91	79 - 121%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 110 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

QUALITY CONTROL (QC) SAMPLE RESULTS

			ВТЕХ	Compou	nds by E	PA 8260C						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9121174 - EPA 5030B							Wat	er				
Blank (9121174-BLK1)		Prepared:	12/20/19 08:	13 Analyz	ed: 12/20/19	9 12:06						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Гoluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 105 %	Limits: 80	-120 %	Dilu	ution: 1x				-	
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
LCS (9121174-BS1)		Prepared	12/20/19 08:	13 Analyz	ed: 12/20/19	9 11:10						
EPA 8260C												
Benzene	20.0		0.200	ug/L	1	20.0		100	80 - 120%			
Toluene	19.3		1.00	ug/L	1	20.0		96	80 - 120%			
Ethylbenzene	20.5		0.500	ug/L	1	20.0		102	80 - 120%			
Xylenes, total	65.5		1.50	ug/L	1	60.0		109	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 97 %	Limits: 80	-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			96 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
Duplicate (9121174-DUP2)		Prepared	12/20/19 12:	13 Analyz	ed: 12/20/19	9 20:07						
QC Source Sample: BH01R-W (A	9L0812-24)											
EPA 8260C				~	_						2021	
Benzene	ND		0.200	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recor	-	Limits: 80		Dilu	tion: 1x					
Toluene-d8 (Surr)			95 %		-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	-120 %		"					
Matrix Spike (9121174-MS1)		Prepared	12/20/19 12:	13 Analyz	ed: 12/20/19	9 23:17						

QC Source Sample: MW303-W (A9L0812-30)

EPA 8260C

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compo	ınds by E	PA 8260C						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REG	% REC Limits	RPD	RPD Limit	Notes
Batch 9121174 - EPA 5030B							Wat	er				
Matrix Spike (9121174-MS1)		Prepared	: 12/20/19 12:	13 Analyz	zed: 12/20/1	9 23:17						T-0
QC Source Sample: MW303-W (A	A9L0812-30)										
Benzene	211		2.00	ug/L	10	200	ND	105	79 - 120%			
Toluene	198		10.0	ug/L	10	200	ND	99	80 - 121%			
Ethylbenzene	211		5.00	ug/L	10	200	ND	105	79 - 121%			
Xylenes, total	682		15.0	ug/L	10	600	ND	114	79 - 121%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 98 %	Limits: 80	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			96 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

QUALITY CONTROL (QC) SAMPLE RESULTS

			ВТЕХ	Compou	ınds by E	PA 8260C						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9121227 - EPA 5030B							Wate	er				
Blank (9121227-BLK1)		Prepared	: 12/23/19 10:0	00 Analyz	red: 12/23/19	9 11:34						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 116 %	Limits: 80	0-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
LCS (9121227-BS1)		Prepared	: 12/23/19 10:0	00 Analyz	ed: 12/23/19	9 10:40						
EPA 8260C												
Benzene	21.0		0.200	ug/L	1	20.0		105	80 - 120%			
Toluene	18.6		1.00	ug/L	1	20.0		93	80 - 120%			
Ethylbenzene	18.3		0.500	ug/L	1	20.0		92	80 - 120%			
Xylenes, total	53.6		1.50	ug/L	1	60.0		89	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 110 %	Limits: 80	0-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			95 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

SAMPLE PREPARATION INFORMATION

		Diesel an	d/or Oil Hydrocarbon	s by NWTPH-Dx	-		
Prep: EPA 3510C (I	Fuels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9121190							
A9L0812-03	Water	NWTPH-Dx	12/18/19 08:35	12/20/19 15:58	1040mL/2mL	1000mL/2mL	0.96
A9L0812-04	Water	NWTPH-Dx	12/18/19 10:15	12/20/19 15:58	1030mL/2mL	1000mL/2mL	0.97
A9L0812-05RE2	Water	NWTPH-Dx	12/16/19 12:15	12/20/19 15:58	1060mL/2mL	1000mL/2mL	0.94
A9L0812-06	Water	NWTPH-Dx	12/18/19 09:30	12/20/19 15:58	1050mL/2mL	1000mL/2mL	0.95
A9L0812-07	Water	NWTPH-Dx	12/17/19 11:05	12/20/19 15:58	1050mL/2mL	1000mL/2mL	0.95
A9L0812-08	Water	NWTPH-Dx	12/17/19 14:00	12/20/19 15:58	1040mL/2mL	1000mL/2mL	0.96
A9L0812-09	Water	NWTPH-Dx	12/17/19 14:50	12/20/19 15:58	1040mL/2mL	1000mL/2mL	0.96
A9L0812-10	Water	NWTPH-Dx	12/17/19 12:55	12/20/19 15:58	1050mL/2mL	1000mL/2mL	0.95
A9L0812-11RE1	Water	NWTPH-Dx	12/16/19 10:15	12/20/19 15:58	1050mL/2mL	1000mL/2mL	0.95
A9L0812-12	Water	NWTPH-Dx	12/17/19 09:20	12/20/19 15:58	1060mL/2mL	1000mL/2mL	0.94
A9L0812-13	Water	NWTPH-Dx	12/17/19 13:55	12/20/19 15:58	1070 mL/2 mL	1000 mL/2 mL	0.94
Batch: 9121291							
A9L0812-01	Water	NWTPH-Dx	12/17/19 10:05	12/24/19 11:44	1040mL/2mL	1000mL/2mL	0.96
A9L0812-02	Water	NWTPH-Dx	12/17/19 12:10	12/24/19 11:44	1030mL/2mL	1000mL/2mL	0.97
A9L0812-14	Water	NWTPH-Dx	12/17/19 12:45	12/24/19 11:44	1070mL/2mL	1000mL/2mL	0.94
A9L0812-15	Water	NWTPH-Dx	12/17/19 15:50	12/24/19 11:44	1050 mL/2 mL	1000mL/2mL	0.95
A9L0812-16	Water	NWTPH-Dx	12/17/19 15:45	12/24/19 11:44	1070mL/2mL	1000mL/2mL	0.94
A9L0812-17	Water	NWTPH-Dx	12/17/19 16:25	12/24/19 11:44	1070 mL/2 mL	1000mL/2mL	0.94
A9L0812-18	Water	NWTPH-Dx	12/18/19 09:50	12/24/19 11:44	1070mL/2mL	1000mL/2mL	0.94
A9L0812-19	Water	NWTPH-Dx	12/17/19 11:05	12/24/19 11:44	1060mL/2mL	1000mL/2mL	0.94
A9L0812-20RE1	Water	NWTPH-Dx	12/16/19 14:45	12/24/19 11:46	1020 mL/2 mL	1000 mL/2 mL	0.98
Batch: 9121331							
A9L0812-21	Water	NWTPH-Dx	12/16/19 14:00	12/26/19 12:52	1040 mL/2 mL	1000 mL/2 mL	0.96
A9L0812-22	Water	NWTPH-Dx	12/16/19 13:20	12/26/19 12:52	1060mL/2mL	1000 mL/2 mL	0.94
A9L0812-23	Water	NWTPH-Dx	12/16/19 09:30	12/26/19 12:52	1030 mL/2 mL	1000 mL/2 mL	0.97
A9L0812-24RE1	Water	NWTPH-Dx	12/16/19 15:50	12/26/19 12:52	1000 mL/2 mL	1000 mL/2 mL	1.00
A9L0812-25	Water	NWTPH-Dx	12/17/19 10:30	12/26/19 12:52	1060 mL/2 mL	1000 mL/2 mL	0.94
A9L0812-26	Water	NWTPH-Dx	12/18/19 09:00	12/26/19 12:52	1070 mL/2 mL	1000 mL/2 mL	0.94
A9L0812-27	Water	NWTPH-Dx	12/18/19 10:30	12/26/19 12:52	1070 mL/2 mL	1000mL/2mL	0.94
A9L0812-28RE1	Water	NWTPH-Dx	12/16/19 10:20	12/26/19 12:52	1000 mL/2 mL	1000mL/2mL	1.00
A9L0812-29	Water	NWTPH-Dx	12/17/19 14:20	12/26/19 12:52	1030 mL/2 mL	1000 mL/2 mL	0.97
A9L0812-30	Water	NWTPH-Dx	12/17/19 14:10	12/26/19 16:57	1070 mL/2 mL	1000mL/2mL	0.94

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

SAMPLE PREPARATION INFORMATION

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx												
Prep: EPA 5030B					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 9121169												
A9L0812-01	Water	NWTPH-Gx (MS)	12/17/19 10:05	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-02	Water	NWTPH-Gx (MS)	12/17/19 12:10	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-03	Water	NWTPH-Gx (MS)	12/18/19 08:35	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-04	Water	NWTPH-Gx (MS)	12/18/19 10:15	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-05	Water	NWTPH-Gx (MS)	12/16/19 12:15	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-06	Water	NWTPH-Gx (MS)	12/18/19 09:30	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-07	Water	NWTPH-Gx (MS)	12/17/19 11:05	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-08	Water	NWTPH-Gx (MS)	12/17/19 14:00	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-09	Water	NWTPH-Gx (MS)	12/17/19 14:50	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-10	Water	NWTPH-Gx (MS)	12/17/19 12:55	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-11	Water	NWTPH-Gx (MS)	12/16/19 10:15	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-12	Water	NWTPH-Gx (MS)	12/17/19 09:20	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-13	Water	NWTPH-Gx (MS)	12/17/19 13:55	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-14	Water	NWTPH-Gx (MS)	12/17/19 12:45	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-15	Water	NWTPH-Gx (MS)	12/17/19 15:50	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-16	Water	NWTPH-Gx (MS)	12/17/19 15:45	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-18	Water	NWTPH-Gx (MS)	12/18/19 09:50	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
Batch: 9121174												
A9L0812-17	Water	NWTPH-Gx (MS)	12/17/19 16:25	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-19	Water	NWTPH-Gx (MS)	12/17/19 11:05	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-20	Water	NWTPH-Gx (MS)	12/16/19 14:45	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-21	Water	NWTPH-Gx (MS)	12/16/19 14:00	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-22	Water	NWTPH-Gx (MS)	12/16/19 13:20	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-23	Water	NWTPH-Gx (MS)	12/16/19 09:30	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-24	Water	NWTPH-Gx (MS)	12/16/19 15:50	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-25	Water	NWTPH-Gx (MS)	12/17/19 10:30	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-26	Water	NWTPH-Gx (MS)	12/18/19 09:00	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-27	Water	NWTPH-Gx (MS)	12/18/19 10:30	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
Batch: 9121227												
A9L0812-28RE1	Water	NWTPH-Gx (MS)	12/16/19 10:20	12/23/19 11:47	5mL/5mL	5mL/5mL	1.00					
A9L0812-29RE1	Water	NWTPH-Gx (MS)	12/17/19 14:20	12/23/19 11:47	5mL/5mL	5mL/5mL	1.00					
A9L0812-30RE1	Water	NWTPH-Gx (MS)	12/17/19 14:10	12/23/19 11:47	5mL/5mL	5mL/5mL	1.00					

BTEX Compounds by EPA 8260C

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

SAMPLE PREPARATION INFORMATION

BTEX Compounds by EPA 8260C												
Prep: EPA 5030B					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 9121169			•	•								
A9L0812-01	Water	EPA 8260C	12/17/19 10:05	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-02	Water	EPA 8260C	12/17/19 12:10	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-03	Water	EPA 8260C	12/18/19 08:35	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-04	Water	EPA 8260C	12/18/19 10:15	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-05	Water	EPA 8260C	12/16/19 12:15	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-06	Water	EPA 8260C	12/18/19 09:30	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-07	Water	EPA 8260C	12/17/19 11:05	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-08	Water	EPA 8260C	12/17/19 14:00	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-09	Water	EPA 8260C	12/17/19 14:50	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-10	Water	EPA 8260C	12/17/19 12:55	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-11	Water	EPA 8260C	12/16/19 10:15	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-12	Water	EPA 8260C	12/17/19 09:20	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-13	Water	EPA 8260C	12/17/19 13:55	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-14	Water	EPA 8260C	12/17/19 12:45	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-15	Water	EPA 8260C	12/17/19 15:50	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-16	Water	EPA 8260C	12/17/19 15:45	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
A9L0812-18	Water	EPA 8260C	12/18/19 09:50	12/20/19 11:23	5mL/5mL	5mL/5mL	1.00					
Batch: 9121174												
A9L0812-17	Water	EPA 8260C	12/17/19 16:25	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-19	Water	EPA 8260C	12/17/19 11:05	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-20	Water	EPA 8260C	12/16/19 14:45	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-21	Water	EPA 8260C	12/16/19 14:00	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-22	Water	EPA 8260C	12/16/19 13:20	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-23	Water	EPA 8260C	12/16/19 09:30	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-24	Water	EPA 8260C	12/16/19 15:50	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-25	Water	EPA 8260C	12/17/19 10:30	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-26	Water	EPA 8260C	12/18/19 09:00	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-27	Water	EPA 8260C	12/18/19 10:30	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
A9L0812-31	Water	EPA 8260C	12/16/19 00:00	12/20/19 12:13	5mL/5mL	5mL/5mL	1.00					
Batch: 9121227												
A9L0812-28RE1	Water	EPA 8260C	12/16/19 10:20	12/23/19 11:47	5mL/5mL	5mL/5mL	1.00					
A9L0812-29RE1	Water	EPA 8260C	12/17/19 14:20	12/23/19 11:47	5mL/5mL	5mL/5mL	1.00					
A9L0812-30RE1	Water	EPA 8260C	12/17/19 14:10	12/23/19 11:47	5mL/5mL	5mL/5mL	1.00					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

T-02

F-11	The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
F-20	Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
S-01	Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.
S-05	Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

This Batch QC sample was analyzed outside of the method specified 12 hour tune window. Results are estimated.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awas Smeinghine

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gesa A Zmenighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Jamenighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenighini

Apex Laboratories

APEX LABS

6700 SW Sandburg St., Tigard, OR 97223 Ph: 503-718-2323

314 W 15th Street Suite 300 HydroCon LLC Vancouver, WA 98660

Lab#_ A9W812

coc 1 of 3

Project Number: 2017-074

Project Manager: Craig Hultgren

Coleman Wenatchee

Report ID: A9L0812 - 12 30 19 0951

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

EPA ID: OR01039

Apex Laboratories, LLC

Company: Hydro Con		Project	мдг: С	بردرو	140	alter	w			Pro	ject N	lame:	(len	202	C	27 i	W	enatchee	Proj	ect#:	20	47-	07	1	
Address:						Phor						Ema					*3847327		4,150%	PO#						
Sampled by: Chris Daso	hel															ANAI	LYSIS	REO	UEST							
Site Location:	T				Γ								20.0000	ž.	10000								2000000			Series Series
or Way ca					SS					,eq		ist		8270 Semi-Vols Full List				3	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Hg, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Ti, V, Zn TOTAL DISS. TCLP							
AK ID					INE	A	12.30			Ň	OCs	Full I	\Hs	ols F			ls (8)	als (1	Be, Pb,	8)						
их в	#			×	# OF CONTAINERS	NWTPH-HCID	NWTPH-Dx	NWTPH-Gx	LEX	8260 RBDM VOCS	8260 Halo VOCs	8260 VOCs Full List	8270 SIM PAHS	mi-V	Bs	st	RCRA Metals (8)	Priority Metals (13)	s, Ba, la, Fe fl, K,	TCLP Metals (8)						
	CAB ID	DATE	TIME	MATRIX	FCC	VTP.	WTP	γTP	8260 BTEX	60 R	H 09	09 A	70 SI	70 Se	8082 PCBs	8081 Pest	RA	iority	Sb, A Co, C Mo, N	LP						
SAMPLE ID	13					Z	1		100	82	82	82	82	82	98	80	RC	7	7, K G. A.	Ţ						Archino
MUOIS-W		12/17/19	1005	1420	4		X	X	X												_					
MW035 -W		12/12/17	1210	4	<u> </u>		1		1										<u> </u>							
MW06-W			0835																		<u> </u>					
Mu08-W		12/8/19	1015					Ш	Ш																	
MMOGIZ-W		12/14/19					_															20000				
MWII-W		12/18/19	OP.30				Ш																			
MWIZ-W		यामाइ	1105																							
MWI312-W		12/12/19												8 S												
MW14-W		12/12/19	1450																							
MW16-W		12/14/14	1255	\forall	\forall		P	7	4									,,,,,,,,								
Normal T	ırn Arc	und Time	(TAT)	= 10 Bu	siness	Days						SPE	CIAL	INST				١.			,					
TAMB	1 Da	y	2 Day		3 Day	Ÿ									120	m	tri	5 P	ants f	tor	13	TEX	•			
TAT Requested (circle)	4 DA	_Y (5 DAY)	O	ther:																				
MAS	PI FS A	RE HELD	EOP 20	DAVE					***************************************	_																
ELINQUISHED BY:			RECEIV	ED BY				0. Walania 1860						SHE	BY:					REC	EIVEI	DBY:				
gnature:	Date:	sie: Signature.					_	Date:	lia	10		Signat	ure:						Date:	Signa	ture;			ŀ	Date:	
rinted Name;	Time	1919	Printed N	lame:				Time:	7/7	111		Printe	d Nan	ne:					Time:	Print	ed Nam	na)		- T	ime:	
Chris Daschel	141				lef f	~			141	17	_								,,,,,,,		1 1 till.			1	mic.	
Chris Daschel Ompany: HydroCon			Chwn Company A	ri.	<u> </u>							Comp	any:							Com	pany:					
HydroCon			LA	pu	r l	mb2	7																			

CHAIN OF CUSTODY

Apex Laboratories

APEX LABS

6700 SW Sandburg St., Tigard, OR 97223 Ph: 503-718-2323

HydroCon LLC

314 W 15th Street Suite 300 Vancouver, WA 98660

coc 2 of 3

Lab# 4910812

Project Number: 2017-074 Coleman Wenatchee

Project Manager: Craig Hultgren

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

EPA ID: OR01039

Apex Laboratories, LLC

Report ID: A9L0812 - 12 30 19 0951

Company: 14 yolro Con Project Mgr. Craig H							<u> </u>	h		Pro	ject N	Vame:	C	lem	247	0	2	We	natchae	Proj	ect#:	Zc)∤7.	07	ч	
Address:				,)	Phon	•					Ema								PO#			50.1150			
Sampled by: Chris Dasc	hel				20,000											ANA	LYSI	S REQ								
Site Location:														st					. 18 E.							
OR WA CA					ERS					SOC	8	1 List		Full Li			(8	(13)	b, Hg, N	6						
AK ID	#			~	NTAIN	I-HCII	I-Dx	I-Gx	EX	DM V	JO A OF	Cs Ful	M PAH	ni-Vols	Bs	<u> </u>	Metals (Metals	, Ba, Ba u, Fe, P i, K, Se DISS.	fetals (8		-				
SAMPLE ID	LAB ID	DATE	TIME	MATRIX	# OF CONTAINERS	NWTPH-HCID	NWTPH-Dx	NWTPH-Gx	8260 BTEX	8260 RBDM VOCS	8260 Halo VOCs	8260 VOCs Full List	8270 SIM PAHS	8270 Semi-Vols Full List	8082 PCBs	8081 Pest	RCRA Metals (8)	Priority Metals (13)	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Hg, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Ti, V, Zn TOTAL DISS. TCLP	TCLP Metals (8)		-				Archive
MWI7-W	1	12/6/19			4		X	X	X										A O E S E	Ť					+	
MW19-W		ध्यामा		,	1		1		,																	
MWZO-W		12/14/13	1355																							
MWZI-W		12/12/12	1245								Ç.									<u> </u>						
MW23-W		12/17/10	1																							
MW25-W		12/17/19																								
MWZ6-W		12/11/13	1625																							
MWZ7-W		12/18/19	0950																							
Mwz8-W		2/17/19	1105					T																		
MW29-W		12/16/19		P	4		D	V	\$																\top	
Normal *	Turn Are	und Time	(TAT)	- 10 Bu	siness	Days	74					SPE	ClAl	INS	TRUC											
TAT Requested (circle) 1 Day 2 Day 3 Day 4 DAY 5 DAY Othe										<u></u>						ls.	<u>·</u> w	. +.	rip bla	nk.	- ک	for	B	TEX	΄.	
SA	MPLES A	RE HELD	FOR 30	DAYS																						
RELINQUISHED BY: Signature: Date: Signature								Date:	1.	/		REL Signa	INQU ture:	ISHE	D BY:				Date:		EIVEI ature:	D BY:			Date:	
Cu D	12	19/17	My	SOV				17	/14/	13																
Printed Name:	Time	17	Printed N		, į.			Time:	ļuu	17		Print	ed Nar	ne:					Time:	Print	ted Nam	ie:			Time:	
Company:	1-75	1 +	Company	y:	fu	<u> </u>				- 1		Com	pany:							Com	npany:					
11 1 6			I A								100	İ								1						

CHAIN OF CUSTODY

Apex Laboratories

APEX LABS

6700 SW Sandburg St., Tigard, OR 97223 Ph: 503-718-2323

Lab # A9L0812

coc 3 of 3

6700 S.W. Sandburg Street Tigard, OR 97223

EPA ID: OR01039 503-718-2323 Apex Laboratories, LLC

Coleman Wenatchee

Project Manager: Craig Hultgren Project Number: 2017-074

Report ID:

Project Name: Colemna 07 2017 - 074 Daschel Sampled by: Chr:5 ANALYSIS REQUEST Site Location: 8270 Semi-Vols Full List 8082 PCBs OR (WA 8260 VOCs Full List Priority Metals (13) # OF CONTAINERS 8260 RBDM VOCs RCRA Metals (8) 8260 Halo VOCs TCLP Metals (8) 8270 SIM PAHS NWTPH-HCID AK ID NWTPH-Gx NWTPH-Dx 8260 BTEX 8081 Pest LAB ID# MATRIX DATE TIME SAMPLE ID XXX MW30-W MW31-W MW32-W BHOIR-W 13402-W BH03-W RWOI-W MW301-W MW302-W 777 Normal Turn Around Time (TAT) = 10 Business Days 4 Mw303-W SPECIAL INSTRUCTIONS 1 Day 2 Day 3 Day Run trip blanks for BTEX TAT Requested (circle) 4 DAY 5 DAY Other: SAMPLES ARE HELD FOR 30 DAYS RELINQUISHED BY: RELINQUISHED BY: RECEIVED BY: Date: Signature: Date: Printed Name: Time: Printed Name: Time: Company:

CHAIN OF CUSTODY

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> Project: <u>Coleman Wenatchee</u>

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A9L0812 - 12 30 19 0951

	APEX LABS COOLER RECEIPT FORM
Client: Hyd	<u>roCon</u> Element WO#: A9 いらん
Project/Project #:	Coleman Oil Wenntchee 2017-074
Delivery Info:	4/A@ 1447 By: CP1+
Cooler Inspection Date	tientESSFedExUPSSwift_Senvoy_SDS_Other /time inspected: 14/19/19@1614_By: CF4
Chain of Custody included	? Yes X No Custody seals? Yes No
Signed/dated by client?	Ves X No
Signed/dated by Apex?	
Signed dated by Apex:	
Temperature (°C)	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 1.9 1.0 0.9 2.9
Received on ice? (Y/N)	Δ. 1
Temp. blanks? (Y/N)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
. , ,	Ren' Ren' Rou
Condition:	and and con con
Samples Inspection: Date. All samples intact? Yes	and some out, were green dots applied to out of temperature samples? Yes/No/NA form initiated? Yes/No/NA by:
Bottle labels/COCs agree?	Yes No X Comments: Sec Form
COC/container discrepancie	es form initiated? Yes V No NA NA
Containers/volumes receive	d appropriate for analysis? Yes No Comments:
Do VOA vials have visible l	headspace? Yes No NA
Water samples: pH checked	: Yes \(No \) NA pH appropriate? Yes No \(NA \)
Comments: MW09-W	p# w7
Additional information: 7/	3#2201
Labeled by: Xoung With	Cooler Inspected by: See Project Contact Form: Y

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Water Sample: MW01S-W (A9L0812-01) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW03S-W (A9L0812-02) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW06-W (A9L0812-03) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Water Sample: MW08-W (A9L0812-04) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

T im e

Water Sample: MW09R-W (A9L0812-05)@200 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 23, 2019

 ${\sf Response}_-$

Signal: 6F122312.D\FID1A.CH

Tim e

Water Sample: MW11-W (A9L0812-06) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Tim e

Water Sample: MW12-W (A9L0812-07) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Water Sample: MW13R-W (A9L0812-08) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Water Sample: MW14-W (A9L0812-09) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Tim e

Water Sample: MW16-W (A9L0812-10) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Water Sample: MW17-W (A9L0812-11)@20 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 23, 2019

Response_

Water Sample: MW19-W (A9L0812-12) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Water Sample: MW20-W (A9L0812-13) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Water Sample: MW21-W (A9L0812-14) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW23-W (A9L0812-15) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW25-W (A9L0812-16) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW26-W (A9L0812-17) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW27-W (A9L0812-18) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW28-W (A9L0812-19) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW29-W (A9L0812-20)@100 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

 ${\tt Response}_$

Water Sample: MW30-W (A9L0812-21) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

Water Sample: MW31-W (A9L0812-22) HydroCon LLC - Coleman Wenatchee

Response_

Date Analyzed: December 26, 2019

Water Sample: MW32-W (A9L0812-23) HydroCon LLC - Coleman Wenatchee

Date Analyzed: December 26, 2019

Response_

Water Sample: BH01R-W (A9L0812-24)@20 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 27, 2019

Response_

Water Sample: BH02-W (A9L0812-25) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

Water Sample: BH03-W (A9L0812-26) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

Water Sample: RW01-W (A9L0812-27) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

Water Sample: MW301-W (A9L0812-28)@10 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 27, 2019

Response_

Water Sample: MW302-W (A9L0812-29) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

Water Sample: MW303-W (A9L0812-30) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

QC Sample: 9L24026-Rt Std

HydroCon LLC - Coleman Wenatchee

Date Analyzed: December 24, 2019

Response_

QC Sample: 9L24026-CCV1 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

QC Sample: 9L24026-CCV2 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

QC Sample: Method Blank HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

QC Sample: Method Blank DETAIL HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

QC Sample: 9L20022-Rt Std HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Signal: 6F122002.D\FID1A.CH

Tim e

QC Sample: 9L20022-CCV1 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

 ${\tt Response}_$

QC Sample: 9L20022-CCV2 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

QC Sample: Method Blank HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

QC Sample: 9L26001-Rt Std

HydroCon LLC - Coleman Wenatchee

Date Analyzed: December 26, 2019

Response_

Sgral: 1F122602D\HD1ACH

QC Sample: 9L26001-CCV HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

QC Sample: 9L26015-Rt Std

HydroCon LLC - Coleman Wenatchee

Date Analyzed: December 26, 2019

Response_

QC Sample: 9L26015-CCV1 HydroCon LLC - Coleman Wenatchee

Response_

Date Analyzed: December 26, 2019

QC Sample: 9L26015-CCV2 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

QC Sample: Method Blank HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

QC Sample: Method Blank DETAIL HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

QC Sample: 9L27001-Rt Std

HydroCon LLC - Coleman Wenatchee

Date Analyzed: December 27, 2019

Response_

QC Sample: 9L27001-CCV1 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 27, 2019

Response_

QC Sample: 9L27001-CCV2 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 27, 2019

Response_

Water Sample: MW01S-W (A9L0812-01) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW03S-W (A9L0812-02) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Water Sample: MW06-W (A9L0812-03) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Water Sample: MW08-W (A9L0812-04) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

T im e

Water Sample: MW09R-W (A9L0812-05)@200 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 23, 2019

 ${\sf Response}_-$

Signal: 6F122312.D\FID1A.CH

Tim e

Water Sample: MW11-W (A9L0812-06) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Water Sample: MW12-W (A9L0812-07) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Water Sample: MW13R-W (A9L0812-08) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Water Sample: MW14-W (A9L0812-09) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Tim e

Water Sample: MW16-W (A9L0812-10) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Water Sample: MW17-W (A9L0812-11)@20 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 23, 2019

Response_

Water Sample: MW19-W (A9L0812-12) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Water Sample: MW20-W (A9L0812-13) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Water Sample: MW21-W (A9L0812-14) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW23-W (A9L0812-15) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW25-W (A9L0812-16) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW26-W (A9L0812-17) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW27-W (A9L0812-18) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW28-W (A9L0812-19) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

Water Sample: MW29-W (A9L0812-20)@100 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

 ${\tt Response}_$

Water Sample: MW30-W (A9L0812-21) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Water Sample: MW31-W (A9L0812-22) HydroCon LLC - Coleman Wenatchee

Response_

Date Analyzed: December 26, 2019

Water Sample: MW32-W (A9L0812-23) HydroCon LLC - Coleman Wenatchee

Date Analyzed: December 26, 2019

Response_

Water Sample: BH01R-W (A9L0812-24)@20 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 27, 2019

Water Sample: BH02-W (A9L0812-25) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

Water Sample: BH03-W (A9L0812-26) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Water Sample: RW01-W (A9L0812-27) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

Water Sample: MW301-W (A9L0812-28)@10 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 27, 2019

Water Sample: MW302-W (A9L0812-29) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

Water Sample: MW303-W (A9L0812-30) HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

QC Sample: 9L24026-Rt Std

HydroCon LLC - Coleman Wenatchee

Date Analyzed: December 24, 2019

Response_

QC Sample: 9L24026-CCV1 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

QC Sample: 9L24026-CCV2 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

QC Sample: Method Blank HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

QC Sample: Method Blank DETAIL HydroCon LLC - Coleman Wenatchee Date Analyzed: December 24, 2019

Response_

QC Sample: 9L20022-Rt Std HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

Signal: 6F122002.D\FID1A.CH

Tim e

QC Sample: 9L20022-CCV1 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

 ${\tt Response}_$

QC Sample: 9L20022-CCV2 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

QC Sample: Method Blank HydroCon LLC - Coleman Wenatchee Date Analyzed: December 20, 2019

Response_

QC Sample: 9L26001-Rt Std

HydroCon LLC - Coleman Wenatchee

Date Analyzed: December 26, 2019

Response_

Sgral: 1F122602D\HD1ACH

QC Sample: 9L26001-CCV HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

QC Sample: 9L26015-Rt Std

HydroCon LLC - Coleman Wenatchee

Date Analyzed: December 26, 2019

Response_

QC Sample: 9L26015-CCV1 HydroCon LLC - Coleman Wenatchee

Response_

Date Analyzed: December 26, 2019

QC Sample: 9L26015-CCV2 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

QC Sample: Method Blank HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

QC Sample: Method Blank DETAIL HydroCon LLC - Coleman Wenatchee Date Analyzed: December 26, 2019

Response_

QC Sample: 9L27001-Rt Std

HydroCon LLC - Coleman Wenatchee

Date Analyzed: December 27, 2019

Response_

QC Sample: 9L27001-CCV1 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 27, 2019

Response_

QC Sample: 9L27001-CCV2 HydroCon LLC - Coleman Wenatchee Date Analyzed: December 27, 2019

Response_

APPENDIX C DATA QUALITY REVIEW REPORT

TO:	Robert Honsberger & Craig Hultgren (HydroCon)	
FROM:	Manon Tanner-Dave		
DATE:	January 9, 2020		
SUBJECT:	Laboratory Validation Report]
HydroCon TOC Site No.	Coleman Wenatchee – 2017-074		
Sampling Event Type:	Water Sampling	Number of Samples:	31
Laboratory Work Order:	A9L0812	Final Report Date & Time:	December 30, 2019
Analysis & Method			
☑ Diesel Range Hy☐ Diesel Range Or☐ Volatile Organic☑ BTEX (EPA 8260	Hydrocarbon (NWTPH-Gx) rdrocarbon without Silica Gel (NWTPH-ganics with Silica Gel (NWTPH-DxSG) Compounds (EPA 8260C) DC) 6020A), Organic Lead and Manganese	,	
Data Package Complet	teness:		
Data package was com	plete.		
EDD to Hardcopy Verif			
An EDD was not provide	ed.		

Technical Data Validation:

- □ Laboratory Control Sample Duplicates (LCS/LCSD)

- □ Reporting Limits (MDL and MRL)
- ⊠ Reported Results

Holding Times & Sample Receipt:

All holding times and sample receipt were acceptable.

Surrogate Compounds:

All surrogate percent recoveries (%R) were within laboratory limits, with the exceptions noted below:

Sample ID	Laboratory ID	Analysis	Surrogate %R	QC Limits	Qualifier/Comments
MW09R-2	A9L0812-05RE2	NWTPH-Dx	o-Terphenyl: 0%	50-150%	200x sample dilution - surrogate diluted out; no qualifiers applied to the results.
MW17-W	A9L0812-11RE1	NWTPH-Dx	o-Terphenyl: 0%	50-150%	20x sample dilution - surrogate diluted out; no qualifiers applied to the results.
MW29-W	A9L0812-20RE1	NWTPH-Dx	o-Terphenyl: 0%	50-150%	100x sample dilution - surrogate diluted out; no qualifiers applied to the results.
BH01R-W	A9L0812-24RE1	NWTPH-Dx	o-Terphenyl: 0%	50-150%	20x sample dilution - surrogate diluted out; no qualifiers applied to the results.

Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD):

Matrix spikes were analyzed at the appropriate frequency and all %R were within the acceptance criteria, with the following exceptions.

NWTPH-Dx: Laboratory control sample duplicate (LCSD) analyzed in place of matrix spike/duplicate samples due to limited sample amount available for analysis.

Associated Laboratory Duplicate:

Laboratory duplicates were analyzed at the appropriate frequency and all %D were within the acceptance criteria.

Laboratory Control Sample/Laboratory Control Sample Duplicates:

LCS/LCSD were analyzed at the appropriate frequency and all %R were within the acceptance criteria.

Method Blank:

Method blanks were analyzed at the appropriate frequency and were non-detect (ND) for all target analytes.

BTEX: One trip blank (Trip Blank #2201) was collected and analyzed; all results were ND for the target analytes.

Field Duplicate(s):

Three sets of parent/field duplicate samples were collected and analyzed (MW17-W/MW301-W, MW13R-W/MW302-W, and MW20-W/MW303-W); all RPDs were within control limits.

Target Analyte List:

All requested analytes were present.

Reporting Limits (MDL and MRL):

Reporting limits were within the acceptance criteria, with the following exceptions noted below:

Select samples had elevated MRLs due to sample dilution as a result of high analyte concentrations or matrix interference issues. Results were reported from the dilution analyses, as applicable.

Reported Results:

All reported results are acceptable; except for the rejected Oxygenates results.

Laboratory qualifiers for NWTPH-Dx:

- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
 - o J/UJ-Other qualify affected results.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
 - o J/UJ-Chrom qualify affected results.
- (F-20) Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.
 - o J/UJ-Mi qualify affected results.

Lab Validation Assessment

Analytical results are usable to meet the project objectives.

Data Quality Review Statement for Report

Aside from the data quality issues discussed above, the data quality review identified no concerns with respect to the quality or usability of the data presented herein.

Appendix A. Data Validation Qualifiers and Definitions

The following lists the this data validation rev	data validation qualifier codes and their definitions that were assigned to analytical results in view process.
Data Validation Qualifiers and Definitions:	\square (R) The sample result is reject due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
	□ (DNR) Do not report. A more appropriate result is reported from another analysis or dilution.

Appendix B. Data Validation Qualified Summary Table

Laboratory qualifiers:

- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
- (F-20) Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.

Validation qualifiers:

(J) The result is an estimated quantity.

Reason codes:

- Chrom = Chromatographic pattern doesn't match the pattern of the calibration standard.
- Mi = Matrix interference.
- Other = Other, described in data validation report.

Appendix B. Validator Qualified Data Summary Table

Sample	Laboratory ID	Method	Parameter Name	Result	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code
MW01S-W	A9L0812-01	NWTPH-Dx	Diesel	97.2	μg/L	F-11	J	Other
MW03S-W	A9L0812-02	NWTPH-Dx	Diesel	77.7	μg/L	F-11	J	Other
MW06-W	A9L0812-03	NWTPH-Dx	Diesel	742	μg/L	F-13	J	Chrom
MW08-W	A9L0812-04	NWTPH-Dx	Diesel	1110	μg/L	F-13	J	Chrom
MW09R-W	A9L0812-05RE2	NWTPH-Dx	Diesel	1120000	μg/L	F-13	J	Chrom
MW11-W	A9L0812-06	NWTPH-Dx	Diesel	1060	μg/L	F-13	J	Chrom
MW12-W	A9L0812-07	NWTPH-Dx	Diesel	91.0	μg/L	F-11	J	Other
MW13R-W	A9L0812-08	NWTPH-Dx	Diesel	979	μg/L	F-11	J	Other
MW14-W	A9L0812-09	NWTPH-Dx	Diesel	671	μg/L	F-11, F-20	J	Other, Mi
MW16-W	A9L0812-10	NWTPH-Dx	Diesel	259	μg/L	F-11	J	Other
MW17-W	A9L0812-11RE1	NWTPH-Dx	Diesel	21800	μg/L	F-13	J	Chrom
MW19-W	A9L0812-12	NWTPH-Dx	Diesel	674	μg/L	F-13	J	Chrom
MW20-W	A9L0812-13	NWTPH-Dx	Diesel	967	μg/L	F-13	J	Chrom
MW21-W	A9L0812-14	NWTPH-Dx	Diesel	160	μg/L	F-11	J	Other
MW23-W	A9L0812-15	NWTPH-Dx	Diesel	305	μg/L	F-11	J	Other
MW25-W	A9L0812-16	NWTPH-Dx	Diesel	98.1	μg/L	F-11	J	Other
MW26-W	A9L0812-17	NWTPH-Dx	Diesel	187	μg/L	F-11	J	Other
MW27-W	A9L0812-18	NWTPH-Dx	Diesel	264	μg/L	F-11	J	Other
MW28-W	A9L0812-19	NWTPH-Dx	Diesel	671	μg/L	F-13	J	Chrom
MW29-W	A9L0812-20RE1	NWTPH-Dx	Diesel	129000	μg/L	F-13	J	Chrom

Sample	Laboratory ID	Method	Parameter Name	Result	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code
MW30-W	A9L0812-21	NWTPH-Dx	Diesel	5410	μg/L	F-13	J	Chrom
MW31-W	A9L0812-22	NWTPH-Dx	Diesel	255	μg/L	F-13	J	Chrom
MW32-W	A9L0812-23	NWTPH-Dx	Diesel	433	μg/L	F-11	J	Other
BH01R-W	A9L0812-24RE1	NWTPH-Dx	Diesel	42800	μg/L	F-13	J	Chrom
BH02-W	A9L0812-25	NWTPH-Dx	Diesel	2230	μg/L	F-13	J	Chrom
BH03-W	A9L0812-26	NWTPH-Dx	Diesel	488	μg/L	F-13	J	Chrom
RW01-W	A9L0812-27	NWTPH-Dx	Diesel	78.7	μg/L	F-11	J	Other
MW301-W	A9L0812-28RE1	NWTPH-Dx	Diesel	16000	μg/L	F-13	J	Chrom
MW302-W	A9L0812-29	NWTPH-Dx	Diesel	1320	μg/L	F-11	J	Other
MW303-W	A9L0812-30	NWTPH-Dx	Diesel	1060	μg/L	F-13	J	Chrom

APPENDIX D WATER LEVEL AND PRODUCT THICKNESS MEASUREMENTS FORM

Depth to Water/Depth to Product Measurments

Coleman Oil Wenatchee, Washington

Date: 12/19/2019

							, , , , , ,	
Well ID	Total Well Depth (feet bgs)	Well Diameter (inch)	Screened Interval (feet bgs)	Well Casing Elevation (feet ¹)	Depth to Water (feet BTOC)	Depth to Product (feet BTOC)	Sheen Detected (Yes/No)	
MW01	35.00	2	20-35	658.01	11.84			
MW01S	19.99	4	5.37 - 20.37	657.54	11.97			
MW02	40.00	2	25-40	657.76	11.96			
MW03	35.00	2	25-35	658.26	7.95			
MW03S	19.30	4	4.43 - 19.43	658.17	7.97			
MW04	37.00	2	27-37	657.48	15.80			
MW05	45.00	2	30-45	656.00	38.55			
MW06	18.00	4	8-18	657.70	11.08			
MW07	20.00	4	10-20	657.52	11.95			
MW08	25.00	4	15-25	656.20	16.55			
MW09R	32.60	4	8.59-33.59	653.55	28.20			
MW10R	33.59	4	14.64-34.64	644.30	27.72			
MW11	22.00	4	12-22	658.00	14.29			
MW12	19.52	4	4.63 - 19.63	658.27	8.00			
MW13R	18.46	4	4.23 - 18.23	656.67	8.02			
MW14	20.02	4	5.23 - 20.23	657.15	8.58			
MW15	35.10	4	10.33 - 35.33	654.99	34.94			
MW16	29.15	4	9.28 - 29.28	656.93	9.92			
MW17	29.41	4	9.52 - 29.52	655.55	28.34			
MW18	34.65	4	15.86 - 35.86	654.51	Dry			
MW19	31.48	4	11.66 - 31.66	653.31	30.09			
MW20	29.50	4	9.79 - 29.79	650.85	25.98			
MW21	32.10	4	12.30 - 32.30	643.88	21.79			
MW22	39.10	4	9.19 - 34.19	641.85	25.49			
MW23	22.04	4	7.13 - 22.13	656.91	11.66			
MW24	34.25	4	14.17-34.17	644.38	27.90			
MW25	32.96	4	12.81-32.81	645.57	25.50			
MW26	32.52	4	13.54-33.54	646.65	26.16			
MW27	38.74	4	13.56-38.56	649.00	27.06			
MW28	38.74	4	13.62-38.62	650.64	28.33			
MW29	39.11	4	14.05-39.05	652.34	34.99			
MW30	39.79	4	14.67-39.67	652.83	35.19			
MW31	39.28	4	14.11-39.11	653.97	36.08			
MW32	34.02	4	8.95-33.95	655.83	28.88			
BH01R	39.97	4	14.52-39.52	651.03	34.33			
BH02	35.00	2	20-35	653.77	28.60			
BH03	30.00	2	15-30	648.76	24.31			
RW01	30.00	3	15-30	650.42	22.42			
NOTES:	<u></u>	<u> </u>					<u></u>	

NOTES:

feet¹ = Elevation is relative to NGVD88

bgs = below ground surface

PVC = polyvinyl chloride

BTOC = below top of casing

NR = Not Recorded

--- = not detected