

JOHN'S AUTO WRECKING 411 93RD AVENUE SOUTHEAST, OLYMPIA, WASHINGTON SUPLIMENTAL REMEDIAL INVESTIGATION/CLEANUP ACTION (VCP Project No. SW1613) May 15, 2020

by

Max T. Wills, LHG Associate Hydrogeologist

www.robinson-noble.com

17625 130th Avenue NE, Suite 102 Woodinville, Washington 98072 P: 425.488.0599 | F: 425.488.2330

JOHN'S AUTO WRECKING 411 93rd AVENUE SOUTHEAST, OLYMPIA, WASHINGTON SUPLEMENTAL REMEDIAL INVESTIGATION/CLEANUP ACTION (VCP Project No. SW1613) May 2020

1.0 Introduction	1
2.0 Site Description	2
2.1 GENERAL	2
2.2 GEOLOGY AND HYDROGEOLOGY	3
3.0 Site History	4
3.1 Previous Investigations and Cleanup Actions	4
3.2 CURRENT SCOPE OF WORK	5
4.0 Current Field Investigation and Remediation	6
4.1 GENERAL FIELD, SAMPLING, AND ANALYTICAL PROCEDURES	6
4.2 FINAL DEBRIS REMOVAL AND ASSOCIATED SOIL SAMPLING (TASKS 2, 3, AND 4)	7
4.2.1 AOC-10 (Area of Existing Buildings)	8
4.2.2 AOC-11 (Tire Berm)	. 10
4.2.3 AUC-12 (Possible Creosote-Treated Timber and Fill Material)	.11
4.2.4 AUC-13 (Entrance-Gale Debris File)	. 13 11
	. т 4 1 Л
4.5 QUARTERLY GROUNDWATER MONITORING (TASK 5)	. 14 15
5.0 Wetlands Delineation and Terrestrial Ecological Evaluation (Task 6)	.15
5.1 PRELIMINARY CHEMICAL ANALYSES	.15
5.2 VETLANDS DELINEATION	. 17
5.3.1 Remedial Excavation	18
5.3.2 Final Site-Specific Terrestrial Ecological Evaluation	. 21
6.0 FIM Preparation and Submission (Task 7)	.21
7.0 Summary and Findings	21
80 Becommendations	22
0.0 References	. <u></u> 22
3.0 11616161068	.23

<u>TABLES</u>

Table 1	Key Regulatory Information
TABLE 2	Parcel Information
Table 3	PRIMARY ANALYTES AND ANALYTICAL METHODS
TABLE 4	SOIL ANALYTICAL RESULTS FOR TOTAL METALS IN AOC-10
TABLE 5	SOIL ANALYTICAL RESULTS FOR TOTAL METALS IN AOC-11
TABLE 6	SOIL ANALYTICAL RESULTS FOR TOTAL METALS IN AOC-12
TABLE 7	SOIL ANALYTICAL RESULTS FOR TOTAL METALS IN AOC-13

- TABLE 8GROUNDWATER ANALYTICAL RESULTS FOR TOTAL METALS IN MW-1
- TABLE 9 2013 RI; SOIL ANALYTICAL RESULTS FOR TOTAL METALS IN THE WETLANDS AREA
- TABLE 10 2013 RI; SELECT SOIL ANALYTICAL RESULTS FOR PAHS IN THE WETLANDS AREA
- TABLE 11
 SOIL ANALYTICAL RESULTS FOR LEAD IN ADDITIONAL WETLANDS DELINEATION SAMPLES
- TABLE 12
 SOIL ANALYTICAL RESULTS FOR REMEDIAL EXCAVATION CONFIRMATIONS SAMPLES

FIGURES

- FIGURE 1 VICINITY MAP
- FIGURE 2 2000 AERIAL MAP OF THE SITE
- FIGURE 3 2018 AERIAL MAP OF THE SITE
- FIGURE 4 PARCEL MAP
- FIGURE 5 WETLANDS MAP
- FIGURE 6 HIGH GROUNDWATER HAZARD MAP
- FIGURE 7 FLOOD ZONE MAP
- FIGURE 8 POTENTIOMETRIC SURFACE MAP
- FIGURE 9 AREA OF CONCERN (AOC) LOCATION MAP
- FIGURE 10 TEST PIT LOCATION MAP
- FIGURE 11 GEOLOGIC LOGS OF TEST PITS TP12 THROUGH TP30
- FIGURE 12 WETLANDS SAMPLE LOCATION MAP
- FIGURE 13 REMEDIAL EXCAVATION LOCATION MAP
- FIGURE 14 NORTH REMEDIAL EXCAVATION
- FIGURE 15 SOUTH REMEDIAL EXCAVATION #1
- FIGURE 16 SOUTH REMEDIAL EXCAVATION #2
- FIGURE 17 POND-AREA REMEDIAL EXCAVATION

APPENDICES

- APPENDIX A GENERAL REGULATORY INFORMATION
- APPENDIX B WORK PLANS AND PREVIOUS REPORTS
- APPENDIX C PARCEL INFORMATION
- APPENDIX D LABORATORY REPORTS-INITIAL SOIL INVESTIGATION
- APPENDIX E LABORATORY REPORTS-GROUNDWATER MONITORING
- APPENDIX F ANALYTICAL SUMMARY TABLES
- APPENDIX G GROUNDWATER MONITORING DATA SHEETS
- APPENDIX H WETLAND SURVEY AND WETLAND DELINEATION REPORT
- APPENDIX I SITE-SPECIFIC TERRESTRIAL ECOLOGICAL EVALUATION
- APPENDIX J WETLAND EXCAVATION PERMITS
- APPENDIX K LABORATORY REPORTS-WETLAND DELINEATION AND REMEDIAL EXCAVATION

JOHN'S AUTO WRECKING 411 93RD AVENUE SOUTHEAST, OLYMPIA, WASHINGTON SUPLEMENTAL REMEDIAL INVESTIGATION/CLEANUP ACTION (VCP Project No. SW1613) May 2020

1.0 Introduction

Havens Estate Investments, LLC (Havens) contracted with Robinson Noble to provide environmental consulting services to investigate and address documented soil and groundwater contamination at the former John's Auto Wrecking yard (site). The site is located at 411 93rd Avenue Southeast in unincorporated Thurston County, Washington. A vicinity map of the site is presented as Figure 1. Currently, the site is largely vacant and undeveloped. Previously, however, it was occupied by an extensive auto-wrecking business (John's Auto Wrecking), which was operated by the now deceased owner (John Havens) up until his death in around 2001. Figure 2 presents an aerial photograph (aerial) of the site taken in 2000, which reflects the conditions of the site when it was still an active wrecking yard. Figure 3 presents a 2018 aerial, which shows the current vacant condition of the site.

The site is listed with the Washington State Department of Ecology (Ecology) as having confirmed or suspected soil and/or groundwater contamination (arsenic, lead, other priority pollutant metals, unspecified petroleum products, and polycyclic aromatic hydrocarbons). The site is identified by Ecology Facility/Site No. 57665495. Site investigations and remediation are currently being addressed through the auspices of Ecology's Voluntary Cleanup Program (VCP) and is assigned VCP Project No. SW1613 (note, earlier cleanup work was completed for the law office of Alan Wertjes under now closed VCP Project No. SW1127). Table 1 summarizes key regulatory information for the site. Pertinent regulatory information is provided in Appendix A.

Site Name	John's Auto W	John's Auto Wrecking							
АКА	Havens Estate	Investments, LLC							
Site Address	411 93 rd Avenu	ie SE, Olympia, Washingto	n 98501-9701 (T	hurston County)					
Facility/Site No.	57665495								
VCP Project No.	SW1613 (previ	ious work completed for Al	an Wertjes unde	er SW1127)					
	Contact Information								
Nar	ne	Address	Phone #	Email					
Timothy Mullin, Ecology, SWRO	Site Manager	er 300 Desmond Drive SE (360) Lacey, WA 407-6265 98504		Timothy.Mullin@ ecy.wa.gov					
Judith Wirth, Havens Estate Investments, LLC	Property Owner's Representative, VCP Client	5023 8 th Ave. NE Seattle, WA 98105-3602	(206) 632-1924	JudithWirth206@ gmail.com					
Max Wills, Robinson Noble	Consultant, Project Manager	17625 130 th Ave. SE, Suite 102 Woodinville, WA 98072	(425) 488-0599	MWills@ robinson-noble.com					

|--|

The supplemental remedial investigation/cleanup action documented in this report represents the culmination of cleanup work that has been ongoing at the site since 2008. Initial assess-

ment and remediation work is documented in Robinson Noble's 2013 comprehensive remedial investigation (RI) that addressed the various issues of concern cited by Ecology in previous opinion letters. Following their review of the 2013 RI, Ecology noted that most of the previously cited issues had been satisfactorily addressed, but agreed with our findings that several are-as/issues at the site still posed regulatory and environmental concerns and would need to be addressed further. These additional concerns (which have now all been addressed) are the subject of this report. A description of previously completed remediation work is presented in Section 3.1 and a detailed scope of work for the current remedial investigation/cleanup action is presented in Section 3.2. Robinson Noble's 2013 RI is on file with Ecology and is included in Appendix B of this report for reference.

Havens is specifically seeking regulatory closure for the site through the issuance of a nofurther-action (NFA) determination through Ecology's VCP. Based on the information provided in this report, the 2013 RI, and Robinson Noble's first-hand involvement with the remedial actions that have been completed to date, it is our opinion that the issuance of a NFA is appropriate at this time.

2.0 Site Description

2.1 General

The John's Auto Wrecking site is located in unincorporated Thurston County just south of the incorporated limits of the city of Tumwater. As shown on Figure 1, the site is bounded on the north by 93rd Avenue Southeast and is situated between Tilley Road Southeast to the west and Hart Road Southeast to the east. The address assigned to the site by the Thurston County Assessor is 411 93rd Avenue Southeast, Olympia, Washington 98501. The site is located within Section 23 of Township 17 North, Range 2 West, relative to the Willamette Meridian.

The site is comprised of six contiguous tax parcels identified by Thurston County Assessor records as parcel numbers 12723210000, 12723210100, 12723210400, 12723210401, 12723210700, and 12723220200. A parcel location map is presented as Figure 4, and parcel information from Thurston County Assessor records is presented in Appendix C. The total land area of the site is approximately 16.04 acres as outlined below in Table 2.

Parcel Number	Area (acres)
12723210000	5.18
12723210100	1.62
12723210400	2.09
12723210401	1.95
12723210700	5.01
12723220200	0.19
Total Site Area	16.04

Table 2. Parcel Information

As discussed above, the site is largely vacant and undeveloped but was previously occupied by an extensive auto-wrecking yard (see Figures 2 and 3). The surface elevation ranges from approximately 202 feet above mean sea level (MSL) at the north end of the site to 195 feet above MSL at the south end of the site. The overall topography is generally flat with a slight slope to the south. The southern half of the site is designated by Thurston County as wetlands and wetlands buffer (Figure 5). As shown on Figure 1, the wetlands on the site are part of the headwa-

ter area of the Salmon Creek drainage. Salmon Creek proper is located approximately ¼ mile south of the site at its closest point. Surface water from Salmon Creek flows generally west-ward to the Black River, which then flows to the Chehalis River, and then into Grays Harbor on the coast.

As shown on Figure 5, Hopkins Ditch traverses the wetlands at the southern end of the site from approximately east to west. Hopkins Ditch, and the small pond located just to the north of the ditch, are both manmade features. Hopkins Ditch was likely excavated through the wetland area by the previous owner (John Havens) to enhance drainage during the wet season. The purpose of creating the small pond to the north of Hopkins Ditch is unclear, but, as discussed below in Section 4.2.2, our investigation found that the northern side of the pond was created in part with a tire-berm, which was dismantled and removed as part of the current site remediation. Hopkins Ditch and the wetland area only contain surface water during the wetter portions of the year. When there is water in the ditch, it does not appear to flow and is, in fact, more akin to a linear series of small disconnected ponds rather than a ditch.

2.2 Geology and Hydrogeology

Noble and Wallace (1966) and Drost and others (1998) both map the surface geology in the area of the site as Vashon recessional outwash (Qvr). They describe the Qvr as consisting of a mix of poorly sorted silt, sand, and gravel, and note that the average thickness in the area of the site is approximately 25 feet. The standard sequence of Vashon glacial deposits is Qvr, underlain by Vashon till (Qvt) and then Vashon advance outwash (Qva). The Qvt generally consists of a random mixture of clay, silt, sand, and gravel. This unit is also typically compact and has a relatively low permeability, at least as compared with the Qvr and Qva deposits. The Qva deposits, similar to the Qvr, are generally comprised of silty sands and gravels, but often show better sorting than the Qvr. Qvr and Qva deposits, when saturated, generally form aquifers. Qvt deposits tend to form an aquitard. Mapping by Drost and others (1998) indicates that both the Qvt and Qva are present below the Qvr in the area of the site. Their maps indicate that the thickness of the Qvt is probably at least 25 feet in the area around the site and would, therefore, provide a relatively competent confining unit between the Qvr and Qva.

Drilling and excavation activities associated with this investigation reached a maximum depth of 20 feet. The materials encountered were consistent with the descriptions of the Qvr provided by Noble and Wallace (1966) and Drost and others (1998). None of the borings or excavations completed during this project extended deep enough to penetrate into the Qvt.

Soils in the area of the site are classified by the United States Department of Agriculture (Soil Survey for the Thurston County, Washington Area, 1990) as Nisqually loamy fine sand, 0 to 3% slopes (covering approximately the northern three quarters of the site) and Norma fine sandy loam (covering approximately the southern quarter of the site). The Nisqually loamy fine sand is described as having developed on glacial outwash plains and as being somewhat excessively well drained. The Norma fine sandy loam is described as having developed on alluvial deposits and as being poorly drained.

Groundwater monitoring conducted throughout this investigation (see Section 4.3) indicates that groundwater at the site is relatively shallow, ranging from approximately ten feet below ground surface (bgs) at the northern end of the site to near land surface at the southern end of the site in the wetlands area (Figure 5). Geographic information system (GIS) data obtained from the Thurston County Assessor-Treasurer's website also shows that the portions of the

site are classified as a high groundwater hazard area (Figure 6) and much of the southern portion of the property as a flood zone (Figure 7).

Noble and Wallace (1966) determined that the regional flow direction of the shallowest groundwater (water table) in the area of the site is to the northwest. The water table is presumed to reflect conditions within the Qvr aquifer. Similarly, the numerical groundwater model of northern Thurston County compiled by Drost and others (1999) indicates that the regional groundwater flow direction within the Qva and deeper aquifers is also to the northwest. Drost and others (1999) did not specifically model flow directions within the Qvr, but based on Noble and Wallace (1966) and observations made during this investigation, flow directions within the Qvr aquifer appear to be consistent with those in deeper systems.

Figure 8 presents a groundwater flow (potentiometric surface) map for the Qvr aquifer, constructed from the water levels measured in shallow monitoring wells at the site. As shown, shallow groundwater below the northern half of the site flows primarily toward the northwest, consistent with the regional flow direction determined by other workers. The potentiometric surface map, however, also shows that there is localized flow on the southern portion of the site towards Hopkins Ditch. The potentiometric surface map presented in Figure 8, however, reflects conditions during the wetter portion of the year (late February) and this apparent draw of groundwater toward the ditch suggest that there is at least a minor amount of flow through the ditch during this period. It is presumed that this localized effect is diminished or absent during warmer periods of the year when water in the ditch is lower or absent and groundwater flow for the entire property is northwesterly.

3.0 Site History

As described above in Section 1.0, the site was formally occupied by a relatively large autowrecking operation which involved the majority of the 16-acre site (see Figure 2). Ecology and Thurston County Health Department (TCHD) records indicate that site was used as a wrecking yard since approximately 1982. There are no records indicating that the site was developed prior to 1982. The operation of the wrecking yard ceased in 2001 upon the death of the former owner, John Havens, and there has been no subsequent use of the site for any other purposes since that time. Most of the equipment, materials, and miscellaneous debris associated with the former wrecking yard (old automobiles and parts, various machinery, and dilapidated structures) were removed from the site between 2008 and 2009 (see Figure 3), and a number of remedial investigations and cleanup actions have been completed since that time.

3.1 Previous Investigations and Cleanup Actions

Robinson Noble first became involved with site remediation in 2008 working for the law office of Alan Wertjes, the State-assigned attorney for the estate of John Havens. In 2008, Robinson Noble (dba Robinson, Noble & Saltbush, Inc.) completed a review of available records and documents on file with Ecology and the TCHD. This review found that the site was listed on Ecology's Hazardous Site List with a Site Hazard Assessment (SHA) ranking of "1" (see Appendix A). Sites with SHA rankings of "1" or "2" are loosely defined by Ecology as posing a risk to human health and the environment and as having the highest priority for cleanup. Our review also found that the site had previously been enrolled in Ecology's VCP to address the issues associated with the SHA ranking but had been removed from the program due to inactivity.

Limited investigations completed while the site was previously enrolled in the VCP (prior to Robinson Noble's involvement in 2008) identified nine areas of concern (AOCs). These AOCs were defined based on observations made at that time by the TCHD (Mr. Patrick Soderberg)

and by the specific types of reported past uses within each AOC. Upon Robinson Noble becoming involved with the cleanup efforts in 2008, the site was reenrolled in the VCP under VCP project No. SW1127 with Alan Wertjes as the VCP client (Table 1 and Appendix A). Subsequent investigation and remediation work completed by Robinson Noble focused on resolving the specific issues within each of the previously designated AOCs. The majority of these issues were resolved, and the results of this effort are documented in our 2013 RI (Appendix B).

Following the completion of the 2013 RI, and with direct input from Ecology, Robinson Noble compiled a work plan in October 2014 outlining the scope of work for the current project. This current scope of work is discussed in greater detail below in Section 3.2. The remediation effort for the current scope of work was started under Alan Wertjes and VCP Project No. SW1127 in early 2015. However, ownership of the site and oversight of the cleanup effort were transferred to Havens in 2017. As such, VCP Project No. SW1127 was terminated and the site was reassigned to VCP Project No. SW1613. The remaining remediation work was completed by Havens under this new VCP project number. Copies of the VCP termination and acceptance letters are included in Appendix A.

3.2 Current Scope of Work

The work completed for this supplemental remedial investigation/cleanup action is based on our 2013 work plan. The work plan was derived from the findings presented in our 2013 RI and direct input from Ecology following their formal review of the RI and concurrent site inspection conducted on June 25, 2013 (see Ecology's June 2013 email and Section 4.0 of the 2013 RI in Appendix B). Robinson Noble compiled a draft work plan (dated October 16, 2013) based on these findings and input and then submitted it to Ecology for review and comment. Ecology reviewed and approved the draft work plan via email on January 31, 2014. Ecology did not recommend any changes to the draft work plan, so the draft work plan was adopted as final. Copies of the 2013 work plan and Ecology's January 2014 email approving the plan are included in Appendix B for reference.

The approved work plan includes eight specific tasks to be completed for the supplemental remedial investigation/clean up action:

- Task 1: Completion of the final work plan following Ecology review
- Task 2: Final debris removal and associated soil sampling
- Task 3: Investigation of possible polychlorinated biphenyl (PCB) containing transformers
- Task 4: Investigation of possible imported fill
- Task 5: Quarterly groundwater sampling of monitoring well MW-1
- Task 6: Wetland delineation and site-specific terrestrial ecological evaluation (TEE)
- Task 7: EIM preparation and upload
- Task 8: Report preparation

As discussed above, Ecology did not recommend any changes to the draft work plan so it was adopted as the final work plan (Task 1). Tasks 2 through 5 are discussed below in Section 4. Tasks 6 and 7 are discussed in Sections 5 and 6, respectively. Task 8 is this supplemental remedial investigation/cleanup action report.

4.0 Current Field Investigation and Remediation

The additional remedial investigation (Tasks 2, 3 and 4) began in October 2014 with a site reconnaissance to evaluate the logistics for the debris removal and the additional soil sampling. Debris removal and associated soil sampling then commenced in November 2014. The completion of Tasks 2, 3 and 4 is described below in Section 4.2. In October 2014, we also initiated quarterly groundwater monitoring (Task 5), which was conducted through August 2015. Groundwater monitoring is discussed below in Section 4.3.

4.1 General Field, Sampling, and Analytical Procedures

During the completion of all field activities, specific field-assessment and sample-collection procedures were adhered to to help ensure that as accurate and reliable data as possible was generated. In addition to field and sampling procedures, this also included the use of qualified laboratories to perform all chemical analyses.

To assess relative levels of soil contamination, Robinson Noble personnel utilized standard field screening methods throughout this project. This included the use of visual and olfactory indicators, as well as use of a hand-held photoionization detector (PID). Where applicable, the results of field screening were used to select samples for additional laboratory analyses. It was, however, often necessary to submit soil samples for laboratory analyses regardless of field screening results, and it should be noted that field screening was never used as a final means of determining contamination levels in critical areas such as the final margins of remedial excavations. Field screening was used only as a general assessment tool during this project.

For soil sample collection, samples were collected into appropriate, pre-cleaned, laboratory supplied sample containers and immediately placed in a cooler containing Blue Ice[®] and maintained at temperatures below 4° Celsius pending delivery to the laboratory. All soil samples were delivered to the laboratory and analyzed within prescribed holding times. Some laboratory analyses were performed by an on-site mobile laboratory. For these analyses, samples were again collected into appropriate, pre-cleaned, laboratory supplied containers and delivered directly to the on-site mobile laboratory for immediate handling and, in most cases, same-day analyses.

For groundwater sampling, monitoring wells were purged prior to sample collection and then sampled using a bladder pump and Ecology prescribed low-flow sampling protocols. New pump tubing and bladders were used for each sampling location, and the pump was decontaminated using an Alconox[®] wash and a double-distilled water rinse between sampling locations. During the purging process, various field parameters, including pH, temperature, conductivity, total dissolved solids, dissolved oxygen, and oxidation-reduction potential (ORP), were monitored and recorded on individual field-data sheets. Groundwater samples were obtained after the measured field parameters reached stabilization or a minimum of three well volumes had been purged. On occasion, more than three well volumes were purged to try to reach better stabilization or clear turbidity. Groundwater samples were collected into appropriate pre-cleaned, laboratory supplied sample containers and immediately placed in a cooler containing Blue Ice[®] and maintained at temperatures below 4° Celsius pending delivery to the laboratory. All groundwater samples were delivered to the laboratory and analyzed within prescribed holding times.

Throughout this project, Libby Environmental, Inc. (Libby) was the primary laboratory utilized to conduct chemical analyses. Libby provided all on-site mobile laboratory services as well. On occasion, Libby subcontracted with other laboratories to perform particular analyses, but all sam-

ples and chain of custodies for this project were processed through Libby as the primary analytical contractor. Libby and their subcontracted laboratories are all accredited with the State of Washington to perform the various analyses conducted for this project. The additional laboratories subcontracted by Libby include Spectra Laborites, Inc. (Spectra) and Fremont Analytical, Inc. (Fremont).

The primary analyses used during this project, and the analytical methods utilized to conduct each, are summarized below in Table 3. Additional analytical methodologies for less frequently utilized analyses are provided in the individual reports supplied by the various laboratories. The complete laboratory reports for the initial soil investigation analyses (Section 4.2) and the groundwater monitoring analyses (Section 4.3) are provided in Appendices D and E, respective-ly. These reports also provide narratives and the analytical data for required quality assurance/quality control (QA/QC). Our review of the QA/QC data provided in the various laboratory reports did not identify any discrepancies that would significantly alter our interpretations of the analytical data provided. Summary tables of analytical results are provided in Appendix F.

Analyte	Analytical Method
Gasoline-Range Hydrocarbons	Ecology NWTPH-Gx
Diesel- through Oil-Range Hydrocarbons	Ecology NWTPH-Dx/Dx Extended
Volatile Organic Compounds (VOCs)	EPA Method 8260C
Total Lead, Cadmium, Chromium, Arsenic, Copper, Zinc	EPA Method 7010 Series
Total Mercury	EPA Method 7471
Total Nickel, TCLP-Lead	EPA Method SW846 6010C
Hexavalent Chromium	EPA Method 7196A
Polycyclic Aromatic Hydrocarbons (PAHs)	EPA Method 8270 (SIM)
Polychlorinated Biphenyls (PCBs)	EPA Method 8082

 Table 3. Primary Analytes and Analytical Methods

4.2 Final Debris Removal and Associated Soil Sampling (Tasks 2, 3, and 4)

As described above in Section 3.0, the preponderance of the debris and other materials associated with the former wrecking yard were removed in around 2008. However, as described in Task 2 of the 2013 work plan (Appendix B), minor miscellaneous materials (tires, car parts, and building materials) remained, scattered across various areas of the site. In November 2014, Langseth Environmental, Inc. (Langseth) began the process of removing the final site debris per Task 2 of the work plan. Because the site is heavily vegetated, debris removal was conducted during the winter when most of the underbrush is dormant and it was easier to find and remove the scattered materials. Debris removal was completed manually for the most part, placing the various materials into the scoop of a rubber-tired backhoe and then transferring it to stockpiles near the northeast entrance of the site. From there, the debris was loaded into trucks and removed from the site to be recycled or disposed of as appropriate.

As per Task 2 of the work plan, following debris removal in specific areas of the site, Robinson Noble personnel conducted additional soil testing to evaluate potential impacts. These specific areas of concern are designated as AOC-10 through AOC-13, adding to and, in some cases, expanding the AOCs from the 2013 RI (see Figure 9 of the 2013 RI in Appendix B). The locations of these new AOCs are shown on Figure 9 of this report, and include the following:

- AOC-10; The two existing buildings located at the northwest corner of the site and the debris pile (building materials) from the demolished building adjacent to the south of the two existing buildings.
- AOC-11; A suspected tire-berm located along the northern side of the small pond on the southern half of the site.
- AOC-12; A large timber, potentially treated with creosote, in the wetland area at the south end of the site. This AOC also designates the area investigated for possible fill material described under Task 4 of the 2013 work plan.
- AOC-13; The debris pile located just outside the main gate at the northeast corner of the site.

As discussed under Task 3 of the 2013 work plan (Appendix B), AOC-14 was designated for the area around a power pole with possible PCB-containing transformers near the center of the site (Figure 9). As discussed under Task 4 of the 2013 work plan, possible fill materials were investigated in the southeast corner of the site in the area designated as AOC-12 (described above).

4.2.1 AOC-10 (Area of Existing Buildings)

On November 5, 2014, a Robinson Noble geologist and a crew from Langseth were on site to investigate potential soil impacts in the area of the buildings at the northwest corner of the site (see AOC-10 on Figure 9). Prior to this, Langseth had removed the building debris from a previously demolished building adjacent to the south of the two existing buildings.

Upon inspecting the interior areas of the two buildings, both were found to be empty with the exception of some wooden shelves and a minor amount of miscellaneous building materials (primarily lumber and insulation) in the easternmost of the two buildings. Both buildings were constructed on concrete slab foundations, and at the time of our investigation, we did not note any obvious staining or other indications of previous spills or leaks. The concrete slabs in both buildings were also noted to generally be in good condition with no major cracks. No floor drains or other plumbing was observed in either building.

The subsurface investigation of AOC-10 began in the easternmost of the two buildings with Langseth's crew cutting holes through the concrete slab to access the underling soils. Three test pits, designated as TP12, TP13, and TP14, were then either hand dug with shovels or excavated with a backhoe, depending on accessibility. Langseth's crew then cut holes through the slab of the westernmost building and excavated test pits TP15 and TP16 using a backhoe. Two additional test pits, designated as TP17 and TP18, were excavated in the area of the former debris pile adjacent to the south of the two buildings. Test pit locations are shown on Figure 10. Logs of the materials encountered in each test pit are presented in Figure 11.

During test pit excavation, our on-site geologist field screened the materials encountered for signs of potential impact using the procedures described above in Section 4.1. Field screening results are summarized in Table F-1 of Appendix F. As shown in Table F-1 from that appendix, field screening did not indicate the presence of any soil impacts in any of the test pits from AOC-10.

Our on-site geologist collected representative soil samples from each of the test pits, following the sampling procedures and protocols described above in Section 4.1, and then submitted them to Libby for various chemical analyses. For AOC-10, these analyses included gasoline-through oil-range hydrocarbons, volatile organic compounds (VOCs), MTCA-5 metals (lead,

cadmium, chromium, arsenic, and mercury) plus copper, zinc and nickel, carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and polychlorinated biphenyls (PCBs). Select detected analytes are presented below in Table 4. The complete laboratory reports for these analyses are presented in Appendix D and are summarized in Table F1 of Appendix F.

		Γ	MTCA-5 Metals	S		Connor	Zino	Niekol
Sample #1	Lead (mg/kg)	Cadmium (mg/kg)	Chromium ³ (mg/kg)	Arsenic (mg/kg)	Mercury (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
TP12-1	13	<1	27	7	<0.5	15	<5	24
TP12-3	<5	<1	34	9	<0.5	12	9	23
TP13-1	13	<1	8	7	<0.5	10	<5	24
TP13-3	7	<1	13	8	<0.5	13	7	23
TP14-1.5	5,552	<1	116	8	<0.5	3,113	<5	26
TP14-3	21	<1	23	7	<0.5	15	<5	23
TP15-1	7	<1	9	7	<0.5	10	<5	16
TP15-3	<5	<1	46	9	<0.5	12	<5	20
TP16-1	17	<1	39	7	<0.5	10	<5	21
TP16-3	<5	<1	25	8	<0.5	12	<5	23
TP17-1	<5	<1	85	8	<0.5	12	<5	20
TP17-3	<5	<1	15	7	<0.5	10	<5	19
TP18-1	<5	<1	57	7	<0.5	11	<5	20
TP18-3	<5	<1	11	7	<0.5	20	6	21
MTCA	250 ²	2 ²	2,000/194	20 ²	2 ²	3,2005	24,0005	1,600⁵

Table 4. Soil Analytical Results for Total Metals in AOC-10

1: Sample # indicates test pit number and sample depth (i.e. TP12-1 was collected from test pit 12 at a depth of 1')

2: MTCA Method A soil cleanup level for unrestricted land uses

3: Concentration of total chromium (includes both Chromium III and Chromium VI)

4: The MTCA Method A soil cleanup level for unrestricted land uses is 2,000 mg/kg for Chromium III and 19 mg/kg for Chromium VI (hexavalent chromium)

5: MTCA Method B non-cancerous soil cleanup level

Red bolded values indicate results that exceed the applicable MTCA cleanup level

As shown in Table F1 in Appendix F, analyses did not detect the presence of VOCs or cPAHs above applicable laboratory detection limits in any of the samples from AOC-10. Analyses also did not detect the presence of gasoline- through oil-range hydrocarbons or PCBs in any of the samples from AOC-10 with the exception of sample TP14-1.5. Analyses did detect the presence of oil-range hydrocarbons and PCBs above laboratory detection limits in soil sample TP14-1.5, but as show in Table F1, both were below the applicable MTCA Method A cleanup limits for unrestricted land uses.

As shown above in Table 4, analyses also indicate the presence of various metals above applicable laboratory detection limits within AOC-10. These include lead, chromium, arsenic, copper, zinc, and nickel. Analyses did not detect the presence of cadmium or mercury above laboratory detection limits in any of the samples. With the exception of lead in sample TP14-1.5 and the chromium levels in several of the other soil samples, all metal analyses indicated concentrations below applicable cleanup levels. The elevated lead concentration indicated for the soils in the area of sample TP14-1.5 was later addressed through remedial excavation, which is discussed in more detail below in Section 5.3.1. With regards to chromium, the results presented above in Table 4 represent total chromium concentrations, which include both Chromium III and Chromium VI (hexavalent chromium). The MTCA Method A cleanup levels for unrestricted land uses for Chromium III and Chromium VI are 2,000 mg/kg and 19 mg/kg, respectively. As shown in Table 4, several of the soil samples from AOC-10, which were analyzed for total chromium, are in excess of the 19 mg/kg hexavalent chromium cleanup level. Additional analyses of select soil samples with relatively high total chromium concentrations were conducted specifically for hexavalent chromium. These include soil samples TP12-3, TP14-1.5, TP15-3, TP16-1, TP17-1, and TP18-1. Analysis did not indicate the presence of hexavalent chromium above laboratory detection limits in any of these soil samples. This indicates that hexavalent chromium is not prevalent at the site and that the preponderance of the total chromium are, therefore, well below the applicable cleanup level. Laboratory analyses for hexavalent chromium are presented in the individual laboratory reports in Appendix D and are summarized on Table F1 in Appendix F.

4.2.2 AOC-11 (Tire Berm)

In early November 2014, Langseth unearthed and then dismantled the tire berm on the southern half of the site (see AOC-11 on Figures 9 and 10). During Ecology's 2013 site inspection, when the berm was first discovered, only a few tires were visible above the ground surface and the full extent of the berm was unknown. As Langseth unearthed the berm, it was found to extend to depths of up to six feet in some areas and laterally from the pond area approximately 200 feet to the west. The berm was also found to be constructed with a mix of both stacked tires and lumber. As with the other site debris, Langseth used a rubber-tire backhoe to transport the tires and lumber from the berm to the area near the northeast entrance gate, where it was stockpiled for later removal.

On November 7, after the tire berm had been removed, a Robinson Noble geologist was on site with a crew from Langseth to evaluate the soil conditions below the area of the berm. This was accomplished by excavating a series of shallow test pits along the trace of the former berm and analyzing select soil samples from each pit. The locations of the tire-berm test pits, which are designated as TP26 through TP30, are shown on Figure 10. Logs of the materials encountered in each are presented in Figure 11.

During test pit excavation, our geologist field screened the materials for signs of potential impact using the procedures described above in Section 4.1. Field screening results are summarized in Table F-1 of Appendix F. As shown in Table F-1, field screening did not indicate the presence of any soil impacts in any of the test pits from AOC-11.

Our geologist collected representative soil samples from each of the test pits, following the sampling procedures and protocols described above in Section 4.1, and then submitted them to Libby for various chemical analyses. For AOC-11, these analyses included gasoline- through oil-range hydrocarbons, VOCs, MTCA-5 metals plus copper, zinc, and nickel, polycyclic aromatic hydrocarbons (PAHs; which also includes all cPAHs) semi-volatile organic compounds (semi-VOCs), and PCBs. Detected analytes are presented below in Table 5. The complete laboratory reports are presented in Appendix D and are summarized in Table F1 of Appendix F.

As shown in Table F1 in Appendix F, analyses did not detect the presence of gasoline- through oil-range hydrocarbons, VOCs, PAHs or PCBs above applicable laboratory detection limits in any of the samples from AOC-11. Analyses did detect the presence of some semi-VOCs above applicable laboratory detection limits in soil sample TP26-2, but as indicated in Table F1, the detected concentrations were negligible and below all applicable cleanup limits.

As shown below in Table 5, analyses also indicate the presence of various metals above the laboratory detection limits within AOC-11. These include lead, chromium, and nickel. None of the detected metal concentrations, however, exceed the applicable cleanup limits for any of the soil samples. Analyses did not detect the presence of cadmium, arsenic, mercury, copper, or zinc above laboratory detection limits in any of the samples from AOC-11.

Sample #1		Ν	Connor	Zino	Niekol			
	Lead (mg/kg)	Cadmium (mg/kg)	Chromium ³ (mg/kg)	Arsenic (mg/kg)	Mercury (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
TP26-2	8	<1	8	<5	<0.5	<5	<5	4
TP27-2	<5	<1	11	<5	<0.5	<5	<5	9
TP28-2	<5	<1	10	<5	<0.5	<5	<5	15
TP29-2	<5	<1	11	<5	<0.5	<5	<5	8
TP30-2	<5	<1	11	<5	<0.5	<5	<5	15
MTCA	250 ²	2 ²	2,000/194	20 ²	2 ²	3,2005	24,0005	1,6005

Table 5. Soil Analytical Results for Total Metals in AOC-11

1: Sample # indicates test pit number and sample depth (i.e. TP26-2 was collected from test pit 26 at a depth of 2')

2: MTCA Method A soil cleanup level for unrestricted land uses

3: Concentration of total chromium (includes both Chromium III and Chromium VI)

4: The MTCA Method A soil cleanup level for unrestricted land uses is 2,000 mg/kg for Chromium III and 19 mg/kg for Chromium VI (hexavalent chromium)

5: MTCA Method B non-cancerous soil cleanup level

4.2.3 AOC-12 (Possible Creosote-Treated Timber and Fill Material)

During the 2013 site inspection, Ecology personnel noted a large timber (approximately 4"x12" x 20') in the southeast corner of the site (see AOC-12 on Figures 9 and 10). Ecology noted that the timber was potentially treated with creosote and recommended that it be removed and the soils below it be subsequently tested. During the site inspection, Ecology personnel also noted that some of the ground in this same generally area appeared to have been imported or reworked (fill). The Robinson Noble hydrogeologist accompanying Ecology during the site inspection did not concur with Ecology's assessment of the possible creosote or the fill material, but agreed that additional subsurface investigation would be completed to further address these potential issues. It should be noted that Robinson Noble has not identified fill material in any of the borings or test pits completed during past investigations (see Robinson Noble's 2013 RI in Appendix B).

AOC-12 was investigated by excavating a series of test pits, which are designated as TP22 through TP25. The locations of these test pits are shown on Figure 10 and logs of the materials encountered in each are presented in Figure 11. TP22 through TP24 were used specifically to evaluate the possible presence of fill. This was accomplished by examining the soil/sediment profile in the sides of each test pit. Our examination of the soil/sediment profiles did not indicate that the soils in this area were reworked and/or imported (fill). Chemical analyses were also conducted so that if the materials were imported, the analyses would determine whether or not the materials were impacted. Following the removal of the large timber, test pit TP25 was excavated to evaluate potential impacts from possible leaching of creosote.

During test pit excavation, our geologist field screened the materials for signs of potential impact using the procedures described above in Section 4.1. Field screening results are summarized in Table F-1 of Appendix F. As shown in Table F-1, field screening did not indicate the presence of any soil impacts in any of the test pits from AOC-12. Our geologist collected representative soil samples from each of the test pits, following the sampling procedures and protocols described above in Section 4.1, and then submitted them to Libby for various chemical analyses. For the test pits in AOC-12, these analyses included gaso-line- through oil-range hydrocarbons, VOCs, MTCA-5 metals plus copper, zinc, and nickel, cPAHs, and PCBs. Detected analytes are presented below in Table 6. The complete laboratory reports are presented in Appendix D and are summarized in Table F1 of Appendix F.

As shown in Table F1 in Appendix F, analyses did not detect the presence of gasoline- through oil-range hydrocarbons, VOCs, cPAHs or PCBs above applicable laboratory detection limits in any of the samples from AOC-12. As shown below in Table 6, analyses did indicate the presence of various metals above laboratory detection limits. These include lead, chromium, arsenic, copper, zinc, and nickel. However, none of the detected metal concentrations exceed the applicable cleanup limits for any of the soil samples. Analyses did not detect cadmium or mercury above laboratory detection limits in any of the samples from AOC-12.

		Ν	Connor	Zina	Niekol			
Sample # ¹	Lead	Cadmium	Chromium ³	Arsenic	Mercury	(mg/kg)	(mg/kg)	(mg/kg)
TP22-1	5, (iiig/kg/	(iiig/kg/ ~1	59	رiiig/kg/ ۲		5	9	18
	5		00	5	<0.0	5	5	10
TP22-3	<5	<1	9	7	<0.5	<5	<5	20
TP23-1	<5	<1	34	5	<0.5	6	<5	16
TP23-4	<5	<1	37	7	<0.5	6	7	18
TP24-1	<5	<1	53	5	<0.5	7	<5	16
TP24-3	<5	<1	23	<5	<0.5	8	<5	22
TP25-1	16	<1	19	7	<0.5	13	<5	24
TP25-3	<5	<1	83	7	<0.5	7	<5	26
MTCA	250 ²	2 ²	2,000/19 ⁴	20 ²	2 ²	3,2005	24,0005	1,6005

Table 6. Soil Analytical Results for Total Metals in AOC-12

1: Sample # indicates test pit number and sample depth (i.e. TP22-1 was collected from test pit 22 at a depth of 1')

2: MTCA Method A soil cleanup level for unrestricted land uses

3: Concentration of total chromium (includes both Chromium III and Chromium VI)

4: The MTCA Method A soil cleanup level for unrestricted land uses is 2,000 mg/kg for Chromium III and 19 mg/kg for Chromium VI (hexavalent chromium)

5: MTCA Method B non-cancerous soil cleanup level

The chromium results presented above in Table 6 represent total chromium concentrations, which, as previously mentioned, include both Chromium III and Chromium VI (hexavalent chromium). The MTCA Method A cleanup levels for unrestricted land uses for Chromium III and Chromium VI are 2,000 mg/kg and 19 mg/kg, respectively. As shown in Table 6, several of the soil samples from AOC-12 exceed the 19 mg/kg cleanup level for hexavalent chromium. Additional analyses of select soil samples with relatively high total chromium concentrations were conducted specifically for hexavalent chromium. These included samples TP22-1, TP23-4, TP24-1, and TP25-3. Analysis did not indicate the presence of hexavalent chromium above laboratory detection limits in any of these samples. This again indicates that hexavalent chromium is not prevalent at the site and that the total chromium detections are comprised largely, if not entirely, of chromium III (see chromium discussion above in Section 4.2.1). The detected concentrations of total chromium are, therefore, well below the applicable cleanup level. Laboratory analyses for hexavalent chromium are presented in the individual laboratory reports in Appendix D and are summarized on Table F1 in Appendix F.

4.2.4 AOC-13 (Entrance-Gate Debris Pile)

During the 2013 site inspection, it was noted that illegal dumping was occurring in the area near the northeast entrance gate. Havens expanded the fence in this area to try to dissuade further dumping. At the start of the current project, Langseth removed the debris, which consisted largely of household trash and old furniture, from this area. Following debris removal, the underlying soils were evaluated through the excavation and testing of a single test pit, designated as TP21. The location of TP21 is shown on Figure 10 and the log of the materials encountered is shown on Figure 11.

During test pit excavation, our geologist field screened the materials for signs of potential impact using the procedures described above in Section 4.1. As shown in Table F-1 (Appendix F), field screening did not indicate the presence of any soil impacts in TP21. Representative soil samples were collected from TP21, again following the sampling procedures described above in Section 4.1, and were submitted to Libby for analysis of gasoline- through oil-range hydrocarbons, VOCs, MTCA-5 metals plus copper, zinc, and nickel, cPAHs, and PCBs. Detected analytes are presented below in Table 7. The complete laboratory reports are presented in Appendix D and are summarized in Table F1.

As shown in Table F1 (Appendix F), analyses did not detect the presence of gasoline- through oil-range hydrocarbons, VOCs, cPAHs or PCBs above applicable laboratory detection limits in any of the samples from TP21 (AOC-13). As shown below in Table 7, analyses did indicate the presence of various metals above the laboratory detection limits. These include chromium, arsenic, copper, and nickel. However, none of the detected metal concentrations exceed the applicable cleanup limits for any of the soil samples. Analyses did not detect lead, cadmium, mercury, or zinc above laboratory detection limits in any of the samples from AOC-13.

Sample #1		Ν	Connor	Zino	Niekol			
	Lead (mg/kg)	Cadmium (mg/kg)	Chromium ³ (mg/kg)	Arsenic (mg/kg)	Mercury (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
TP21-1	<5	<1	56	8	<0.5	11	<5	19
TP21-3	<5	<1	72	8	<0.5	12	<5	23
MTCA	250 ²	2 ²	2,000/19 ⁴	20 ²	2 ²	3,200 ⁵	24,0005	1,6005

 Table 7. Soil Analytical Results for Total Metals in AOC-13

1: Sample # indicates test pit number and sample depth (i.e. TP21-1 was collected from test pit 21 at a depth of 1')

2: MTCA Method A soil cleanup level for unrestricted land uses

3: Concentration of total chromium (includes both Chromium III and Chromium VI)

4: The MTCA Method A soil cleanup level for unrestricted land uses is 2,000 mg/kg for Chromium III and 19 mg/kg for Chromium VI (hexavalent chromium)

5: MTCA Method B non-cancerous soil cleanup level

The total chromium results presented above in Table 7 represent total chromium concentrations, which include both Chromium III and Chromium VI (hexavalent chromium), and exceed the 19 mg/kg cleanup level for hexavalent chromium. Additional analysis of sample TP21-3 (which has the higher of the two total chromium results) for hexavalent chromium did not indicate the presence of hexavalent chromium. This again indicates that hexavalent chromium is not prevalent at the site and that the total chromium detections are comprised largely, if not entirely, of chromium III (see chromium discussion above in Sections 4.2.1 and 4.2.3). The detected concentrations of total chromium are, therefore, well below the applicable cleanup level. Laboratory analyses for hexavalent chromium are presented in the individual laboratory reports in Appendix D and are summarized on Table F1 in Appendix F.

4.2.5 AOC-14 (Possible PCB-Containing Transformers)

During the 2013 site inspection, Ecology personnel noted a power pole near the center of the site that was equipped with two electrical transformers. Ecology noted that the transformers could potentially contain PCB-containing dielectric fluids and, that if there had been previous leaks, this could have impacted the soils in the area below the transformers. For this project, Robinson Noble tried to identify additional electrical transformers on the site, but no other power poles or transformers were identified on or near the site. Possible impacts to the soils below the two identified transformers were investigating by excavating two test pits directly below the power pole and analyzing the soils from each. The locations of these two test pits, which are designated as TP19 and TP20, are shown on Figure 10. Logs of the materials encountered in each test pit are present on Figure 11.

During test pit excavation, materials from both test pits were field screened for signs of potential impact using the procedures described above in Section 4.1. As shown in Table F-1 (Appendix F), field screening did not indicate the presence of any soil impacts in either of the two test pits. Representative soil samples were collected from both test pits, again following the sampling procedures described above in Section 4.1, and submitted to Libby for analysis of mineral oil and PCBs. Mineral oil is the predominant dielectric fluid used in electrical transformers. Libby also inadvertently analyzed the soil samples from test pits TP19 and TP20 for cPAHs. The complete laboratory reports for these analyses are presented in Appendix D and summarized in Table F1. As shown in Table F1, analyses did not indicate the presence of mineral oil, PCBs, or cPAHs above the applicable laboratory detection limits in any of the samples from TP19 or TP20.

4.3 Quarterly Groundwater Monitoring (Task 5)

As noted in the 2013 RI, previous laboratory analyses indicated a possible intermittent issue with low levels of arsenic in the groundwater in the area of MW-1 (see Section 4.0 of the 2013 RI; Appendix B). MW-1 is located in the southeast portion of the site and is one of five monitoring wells that is still currently installed at the site. The locations of existing monitoring wells, designated as MW-1 through MW-5, are shown on Figure 8. As noted in the 2013 RI, most of the metal detections that were recorded during our investigations appeared to be the result of high suspended solids (turbid samples) collected through temporary wells in borings and/or monitoring wells that had not been sufficiently purged or developed. To resolve this potential issue, Ecology recommended conducting four consecutive quarters of groundwater monitoring at MW-1 and testing for MTCA-5 metals (lead, cadmium, chromium, arsenic, and mercury) plus copper, zinc, and nickel (see Task 5 of the 2013 work plan in Appendix B). Initial laboratory analyses were to be for total metals, but if there were issues with turbidity, subsequent analyses for dissolved metals would be conducted for analytical comparison.

Quarterly monitoring of MW-1 commenced on October 9, 2014. Three additional monitoring events were conducted on January 8, May 5, and August 12, 2015. During each of the four quarterly monitoring events, MW-1 was purged and sampled following the procedures and protocols described above in Section 4.1. The water quality parameters measured during the purging process for each monitoring event were recorded on individual field data sheets, which are included in Appendix G. Following collection, all groundwater samples were submitted to Libby for analyses of MTCA-5 metals plus copper, zinc, and nickel. The complete laboratory reports for each groundwater monitoring event are presented in Appendix E and summarized below in Table 8.

As shown in Table 8, with the exception of lead during the 4th quarter of monitoring and zinc during the 1st, 3rd, and 4th quarters of monitoring, all of the analytical results were below laboratory detection limits. The detected zinc values are also well below the applicable cleanup limit. The lead analyses for the 4th quarter of monitoring (the August 2015 monitoring event) showed a lead concentration of 16 μ g/L, which is just above the MTCA Method A cleanup limit of 15 μ g/L; the duplicate QA/QC value for this sample indicates a lead concentration of 15 mg/L, which is at the cleanup level (see full laboratory reports in Appendix E).

Monitoring Event		Γ	Connor	Zina	Niekol			
	Lead (µg/L)	Cadmium (µg/L)	Chromium (µg/L)	Arsenic (µg/L)	Mercury (μg/L)	copper (μg/L)	μg/L)	(μg/L)
October 2014	<5	<0.5	<5	<3	<0.5	<5	48	<15
January 2015	<5	<0.5	<5	<3	<0.5	<5	<5	<0.5
May 2015	<5	<0.5	<5	<3	<0.5	<5	6	<15
August 2015	16 ¹	<1	<5	<5	<0.5	<5	16	<15
MTCA	15²	5²	50 ²	5 ²	2 ²	640 ³	4,800 ³	320 ³

Table 8. Groundwater Analytical Results for Total Metals in MW-1

1: The duplicate QA/QC analytical value for this sample is 15 μ g/L (see Appendix E)

2: MTCA Method A groundwater cleanup level

3: MTCA Method B non-cancerous groundwater cleanup level

Red bolded values indicate results that exceed the applicable MTCA cleanup level

A review of the field data sheets (Appendix G) shows that the groundwater sample for the August 2015 monitoring event had elevated turbidity that could not be cleared, which likely biased the lead results high. Subsequent analyses for dissolved lead indicated a concentration of 7 μ g/L, which is below the applicable cleanup level for lead. Given that there have been no previous lead detections in this well (either during this or any previous investigations), the fact that the August 2015 sample had high turbidity and the dissolved metal result was below the cleanup level, and the fact that the duplicate result does not exceed the current cleanup level, we do not consider this detection as a significant issue. Additional groundwater monitoring is not recommended for the site.

5.0 Wetlands Delineation and Terrestrial Ecological Evaluation (Task 6)

The southern portion of the site is occupied by wetlands (see Sections 2.1 and 2.2) that support a variety of wildlife and plant species. These represent potential ecological receptors of contamination that may be present at the site. No exclusionary criteria from performing a terrestrial ecological evaluation (TEE) listed under MTCA; WAC 173-340-7491(1) apply to the site, and a site-specific TEE is required to be completed by the criteria listed under WAC 173-340-7491(2).

5.1 Preliminary Chemical Analyses

Data collection to assist with the process of completing a site-specific TEE was initiated during the completion of the 2013 RI (Appendix B). This included the collection and analysis of a number of grab samples from the wetlands area. The locations of these samples, designated as PS1, SS2 through SS5, and WS6 through WS8, are shown on Figure 12.

The initial wetland samples were all submitted to Libby for analysis of gasoline-through oilrange hydrocarbons, MTCA-5 metals plus copper, zinc, and nickel, and PAHs. As reported in the 2013 RI, these analyses did not detect gasoline-through oil-range hydrocarbons above laboratory detection limits in any of the samples. Select metals, including lead, chromium, copper, zinc, and nickel were detected in each of the samples. Cadmium, arsenic, or mercury were not detected. The sample analyses also detected various PAHs in samples PS1, WS6, and WS8, but did not detect PAHs above laboratory detection limits in any of the other samples. The results of the metal analyses and select PAHs, as reported in the 2013 RI, are summarized below in Tables 9 and 10, respectively. The full laboratory reports for these previous analyses are provided in Appendix C of the 2013 RI (see Appendix B of this report).

		Ν	Connor	Zina	Niekol			
Sample #	Lead	Cadmium	Chromium ²	Arsenic	Mercury	(mg/kg)	(mg/kg)	(mg/kg)
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
PS1	34	<1	<5	<5	<0.5	11	40	10
SS2	40	<1	<5	<5	<0.5	8	47	12
SS3	25	<1	<5	<5	<0.5	<5	<5	8
SS4	6	<1	<5	<5	<0.5	<5	<5	5
SS5	22	<1	<5	<5	<0.5	<5	6	3
WS6	1,230	<1	10	<5	<0.5	68	8	12
WS7	53	<1	<5	<5	<0.5	12	<5	13
WS8	525	<1	<5	<5	<0.5	40	156	18
MTCA	250 ¹	2 ¹	2,000/19 ³	20 ¹	2 ¹	3,200 ⁴	24,000 ⁴	1,6004

Table 9. 2013 RI; Soil Analytical Results for Total Metals in the Wetlands Area

1: MTCA Method A soil cleanup level for unrestricted land uses

2: Concentration of total chromium (includes both Chromium III and Chromium VI)

3: The MTCA Method A soil cleanup level for unrestricted land uses is 2,000 mg/kg for Chromium III and 19 mg/kg for Chromium VI (hexavalent chromium)

4: MTCA Method B non-cancerous soil cleanup level

Red bolded values indicate results that exceed the applicable MTCA cleanup level

Table 10. 2013 RI; Select Soil Analytical Results for PAHs in the Wetlands Area

PAH Analyte (mg/kg)	PS1	WS6	WS8	MTCA
Phenanthrene	0.252	nd	0.104	na²
Fluoranthene	0.528	nd	0.216	3,200 ³
Pyrene	0.416	nd	0.185	2,400 ³
Benzo(a)anthracene ¹	0.187	nd	0.092	1.44
Chrysene ¹	0.212	nd	0.100	140 ⁴
Benzo(b)fluoranthene ¹	0.349	0.093	0.153	1.44
Benzo(k)fluoranthene ¹	0.103	nd	nd	14 ⁴
Benzo(a)pyrene ¹	0.202	nd	0.085	0.1 ⁵
Indeno(1,2,3-cd)pyrene ¹	0.135	nd	nd	1.44
TTEC for benzo(a)pyrene	0.282	nd	0.110	0.1 ⁵
Benzo(g,h,i)perylene	0.115	nd	nd	na²

1: cPAH analytes used to calculate total toxic equivalent concentration (TTEC) for benzo(a)pyrene

2: No applicable cleanup level has been established for this analyte

3: MTCA Method B non-carcinogenic cleanup level

4: MTCA Method B carcinogenic cleanup level

5: MTCA Method A soil cleanup level for unrestricted land uses

"nd" indicates the analyte was not detected above applicable laboratory detection limits

Red bolded values indicate results that exceed the applicable MTCA cleanup level

As shown above in Table 9, laboratory analyses indicated that, in 2013, lead was present at concentrations above the MTCA Method A cleanup level for unrestricted land uses in samples

WS6 and WS8. As shown in Table 10, the 2013 analyses also indicated the presence of PAHs in samples PS1, WS6, and WS8. Although most of the PAH concentrations that were detected in these three samples were below applicable cleanup levels, the concentration of benzo(a)pyrene exceeded the MTCA Method A cleanup level for unrestricted land uses in sample PS1. The total toxic equivalent concentration (TTEC) for benzo(a)pyrene (calculated from individual cPAH concentrations per WAC 173-340-708(8)), also exceeded the MTCA Method A cleanup level for unrestricted land uses in samples PS1 and WS8.

5.2 Wetlands Delineation

To facilitate the completion of a site-specific TEE, and as per Ecology's recommendations following the completion of the 2013 RI, Alan Wertjes (on behalf of Havens Estate under now closed VCP Project No. SW1127) subcontracted with Normandeau Associates, Inc. (Normandeau) to conduct a wetland survey and a wetlands delineation of the site. A copy of both the wetland survey and the wetland delineation report are included in Appendix H.

Normandeau's wetland delineation identified two surface water bodies at the site (Hopkins Ditch and the small pond just to the north of it) and three individual wetlands that they designate as Wetlands A, B, and C. In their report, Normandeau confirms Robinson Noble's findings that Hopkins Ditch does not actually flow and is not a ditch, per se, but rather a series of small disconnected pools. Normandeau also confirmed that there is only the one pond north of Hopkins Ditch located on the site; the additional pond previously identified by Ecology during their 2013 site inspection (see first bullet of Ecology's June 26, 2013 email; Appendix B) is actually located on the property to the south of the site.

Normandeau describes Wetland A as a palustrine forested and emergent wetland that occurs along the banks of Hopkins Ditch. Wetland A, which is the largest of the three wetlands, extends well beyond the boundaries of the site. Wetland A covers a total area of approximately 50 acres (3.8 acres on the site). Wetland B is described as a palustrine emergent depressional wetland located on the southeast portion of the site. Wetland B is relatively small, covering an area of approximately 0.06 acres. Wetland B is partially contiguous with Wetland A. Normandeau describes Wetland C as a depression emergent wetland that occupies a steep-sided depression in the southeast corner of the site. Wetland C covers an area of approximately 0.15 acres and is not connected to Wetland A or B. Full details of each wetland, including maps and photographs, are included in Normandeau's wetland delineation report in Appendix H.

5.3 Site-Specific Terrestrial Ecological Evaluation

Following the completion of the wetlands delineation (Section 5.2), Havens subcontracted with Coho Environmental, Inc. (Coho) to complete a site-specific TEE. Coho coordinated this effort with Robinson Noble and began their investigation by conducting a reconnaissance inspection of the site with Robinson Noble and reviewing the analytical data that Robinson Noble had collected to date. After completing a majority of the TEE evaluation, Coho concluded that the high lead levels found in AOC-10 (see sample TP14-1.5 in Table 4 of Section 4.2.1) and the elevated lead and PAH levels present in the wetlands area (see samples PS1, WS6, and WS8 in Table 9 of Section 5.1) represented chemicals of ecological concern (COEC) under current MTCA guide-lines.

Because the soil contamination in these areas appeared to be relatively shallow, Coho recommended that Robinson Noble attempt to remove the impacted soils using remedial excavation. Once the soil contamination had been successfully remediated, Coho would then complete the final site-specific TEE. These soil impacts were successfully removed through remedial excavation, which is discussed below in Section 5.3.1. The completion of the final site-specific TEE is described below in Section 5.3.2. A copy of Coho's final TEE report is provided in Appendix I.

5.3.1 Remedial Excavation

Because the planned remedial excavation work was to be conducted in a designated wetland, specific State and County permits were required before the remediation effort could proceed. This included obtaining a Critical Area Review Permit (CARP) from Thurston County and the completion of a State Environmental Policy Act (SEPA) checklist. Following their review of the SEPA checklist, Thurston County (the lead agency) issued a determination of nonsignificance (DNS) for the planned remediation work. Other required permits for this project included coverage under the State of Washington's construction stormwater general permit (CSWGP). All of the requirements stipulated by Ecology for CSWGP coverage were strictly adhered to during the completion of this project. Applicable permits and associated documents for conducting remediation within the site wetlands are included in Appendix J.

Prior to conducting remedial excavation, additional samples were collected from the wetlands area. These samples were collected both to provide better statistical data for the final TEE (Section 5.3.2) and to better delineate the extent of the contamination present in the areas of samples WS6 and WS8 (see Table 9 of Section 5.1). Each of the additional samples were collected as a composite soil sample from depths between ground surface and one foot bgs. The locations of these additional samples, which are designated as WS10 through WS24, are shown on Figure 12. All of the additional delineation samples were collected following the procedures and protocols described above in Section 4.1 and submitted to Libby for analysis of total lead. The analytical results are summarized below in Table 11. The complete laboratory reports are presented in Appendix K.

Sample #	Lead (mg/kg)
WS10	165
WS11	67
WS12	21
WS13	47
WS14	17
WS15	9
WS16	8
WS17	8
WS18	386
WS19	11
WS20	43
WS21	123
WS22	15
WS23	13
WS24	85
МТСА	250 ¹

Table 11. Soil Analytical Results for Lead in Additional Wetlands Delineation Samples

1: MTCA Method A soil cleanup level for unrestricted land uses

Red bolded values indicate results that exceed the applicable MTCA cleanup level

As shown above in Table 11, analyses indicate the presence of lead above the laboratory detection limit in each of the additional wetland delineation samples. However, with the exception of soil sample WS18, all of the detected concentration are below the MTCA Method A soil clean-up level for unrestricted land uses. The analysis of sample WS18 indicates a lead concentration of 386 mg/kg, which is above the 250 mg/kg cleanup level. However, as shown on Figure 12, sample WS18 was collected near sample WS6, which also exhibited a high lead concentration (see Table 9 in Section 5.1). This further confirms the presence of lead in the shallow soils in this particular area.

In all, soil contamination at the site was (prior to remedial excavation) limited to four distinct areas, which included lead in the area of TP14 in AOC-10 (see Table 4 in Section 4.2.1), lead in the area of samples WS6 and WS 18 (see Table 9 in Section 5.1), lead and PAHs in the area of sample WS8 (see Tables 9 and 10 in Section 5.1), and PAHs in the area of PS1 (see Table 10 in Section 5.1). Remediation of these four areas was accomplished by excavating the soils and then transporting them from the site to an appropriate disposal facility. Figure 13 shows the locations of the four remedial excavation areas, which are designated as the North Excavation (the area around TP14 in AOC-10), South Excavation #1 (the area around samples WS6 and WS18), South Excavation #2 (the area around sample WS8), and the Pond-area Excavation (the area around sample PS1). The extent of each remedial excavation and sample collection locations are shown on Figures 14 through 17.

In August 2019, personnel from Robinson Noble, working with Langseth, completed the above described remedial excavations. Remedial excavation was specifically conducted in late summer when conditions in the wetlands area of the site were at their driest. During the completion of all remedial excavations, no surface water was present at the site. This included the wetlands area, Hopkins Ditch, and the small pond to the north of Hopkins Ditch. Prior to conducting the remedial excavation, Havens had the west end of the easternmost building in AOC-10 (the area of TP14; see Section 4.2.1) razed and the underlying concrete slab removed so that the underling soils could be accessed.

Remediation began with the North Remedial Excavation (Figure 14), then proceeded to the two South Remedial Excavations (Figures 15 and 16), and concluded at the Pond-area Remedial Excavation (Figure 17). Excavation in each area generally began near the location of the initial investigative samples and then worked outward. Field screening, as described above in Section 4.1, was conducted during all remedial excavations. Field screening did not indicate any signs of impact in any of the excavated soils. However, considering that the primary COC in most of the remediated areas was metals (specifically lead), field screening was not expected to be effective for assessing potential impacts. In the two areas where PAHs were possibly present (South Remedial Excavation #2 and the Pond-area Remedial Excavation), field screening was expected to be at least somewhat effective if impacts were present. Field screening, again however, did not indicate any signs of impact in any of the remediated areas, including those with possible PAH impacts.

Because field screening is generally not effective at identifying metal impacts (the primary COC in most of the remediated areas), remedial excavation proceeded well beyond the anticipated areas of impact to make sure that sufficient materials were removed during the initial remediation effort. Confirmation soil samples were then obtained from the margins of each remedial excavation for subsequent laboratory analysis. The approximate collection locations of final soil

confirmation samples are shown on the respective diagrams for each of the four remediated areas (Figures 14 through 17).

In the case of the North Excavation and South Excavations #1 and #2 (see Figures 14, 15, and 16), following the collection of the final confirmation samples, each excavation was expanded laterally several additional feet in all directions and vertically approximately an additional foot to make sure that all potentially impacted materials were adequately removed. The final North Excavation covered an area of approximately 350 square feet and was excavated to a final depth of three feet. This equates to a volume of just under 39 cubic yards. South Excavation #1 covered an area of approximately 340 square feet and was excavated to a final depth of three feet, which equates to a volume of just under 38 cubic yards. For South Excavation #2 (Figure 16), the final excavation covered an area of 280 cubic feet and extended to a depth of three feet. This equates to a volume of proximately 31 cubic yards. The materials encountered in these three excavations consisted primarily of brown silt and sand, consistent with the materials encountered in any of these three excavations.

During the remedial excavation of the pond area (Figure 17), no surface water was present. The materials lining the base and sides of the pond-depression consisted of a ½- to one-foot thick layer of loose sediment and organic materials (sticks, leaves, and other decomposed vegetation). This is consistent with the material that was previously dredged and sampled during the preliminary assessment of the wetlands area (Section 5.1). This material was underlain by brown and gray sandy silts. During remedial excavation, the upper layer of loose organic material was removed, along with approximately another ½- to one-foot of the underlying materials. In total, two single-bed dump truck loads of material, which equates to approximately 30 cubic yards, was excavated from this area and removed from the site. No groundwater was observed in the pond-area excavation.

Soil confirmation samples from each of the excavated areas were collected following the sampling procedures described above in Section 4.1. The confirmation samples were then submitted to Libby for analysis of lead and/or cPAHs, as applicable. The analytical results for all confirmation samples are summarized below in Table 12. The complete laboratory reports are provided in Appendix K.

As shown in Table 12, analyses did not indicate the presence of lead or cPAHs above applicable laboratory detection limits in any of the confirmation samples from the four remediation areas. These data demonstrate that remedial excavation was successful at removing the impacted soils from these four areas.

Following remedial excavation, the North Excavation and South Excavation #1 and #2 were backfilled with clean, imported sand and gravel, per Ecology's recommendations. No backfill was placed in the pond area. All of the BMPs (i.e. silt fences) were then removed from the site, and a request to terminate coverage under the States CSWGP was submitted to Ecology. A copy of Ecology's CSWGP Notice of Termination is provided in Appendix J.

Sample #1	Lead (mg/kg)	cPAHs		
North Remedial Excavation				
NEX1-2	<5	-		
NEX2—2	<5	-		
NEX3-2	<5	-		
South Remedial Excavation #1				
S-EX#1-1-2	<5	-		
S-EX#1-2-2	<5	-		
South Remedial Excavation #2				
S-EX#2-1-2	<5	nd		
S-EX#2-2-2	<5	nd		
Pond-area Remedial Excavation				
PS-2-1	-	nd		
PS-3-1	-	nd		
MTCA	250 ²	variable		

Table 12. Soil Analytical Results for Remedial Excavation Confirmation Samples

1: Sample # indicates sample location and sample depth (i.e. NEX1-2 is the first sample collected from the North Excavation at a depth of 2')

2: MTCA Method A soil cleanup level for unrestricted land uses

"-" indicates analyte was not analyzed for specified compound

"nd" indicates the analyte was not detected above applicable laboratory detection limits

5.3.2 Final Site-Specific Terrestrial Ecological Evaluation

Following the completion of the remedial excavations discussed above in Section 5.3.1, Coho proceeded to complete the final site-specific TEE. Coho's final TEE included both pre- and post-remediation screening of various chemicals of ecological concern (COEC) based on the entirety of the soil chemistry data that has been collected to date for the site. This screening did not find any post-remediation COECs. Coho concluded that, although there may be potential exposure pathways and ecological receptors (based on Normandeau's wetland delineation; see Section 5.2 and Appendix H), no toxicological assessment or additional TEE analysis is warranted based on the lack of COECs at the site. A copy of the final TEE is provided in Appendix I.

6.0 EIM Preparation and Submission (Task 7)

For VCP projects, Ecology requires that all analytical data be submitted via their Electronic Information Management (EIM) portal prior to issuance of any closure determination. All analytical data collected during this project was uploaded to Ecology via the EIM portal at the time it was generated.

7.0 Summary and Findings

The former John's Auto Wrecking yard (site) is located at 411 93rd Avenue Southeast in unincorporated Thurston County, Washington and occupies an area of just over 16 acres (Figure 1). The site was previously occupied by an extensive auto-wrecking business (John's Auto Wrecking) that operated up until the owner's death (John Havens) in 2001. Most of the equipment and materials associated with the auto-wrecking business (Figure 2) were removed in around 2008 and the majority of the site now consists of undeveloped woodlands (Figure 3). The site is currently listed as having confirmed or suspected soil and/or groundwater contamination (arsenic, lead, other priority pollutant metals, unspecified petroleum products, and polycyclic aromatic hydrocarbons) associated with the former auto-wrecking business and is identified by Ecology Facility/Site No. 57665495. The site is currently enrolled in Ecology's VCP under VCP Project No. SW1613, and the current owner (Havens Estate Investments, LLC) is seeking a NFA determination through this program.

The supplemental remedial investigation/cleanup action documented in this report represents the culmination of cleanup work that has been ongoing at the site since 2008. The cleanup work documented in this report was specifically conducted to address discrepancies and data gaps noted in our earlier remedial investigation (RI), completed in 2013, and additional issues noted by Ecology following their review of the 2013 RI (see Section 3.2). The specific cleanup tasks for this project were formalized with Ecology's review and comment in our 2013 work plan, and include the following:

- Task 2: Final debris removal and associated soil sampling
- Task 3: Investigation of possible polychlorinated biphenyl (PCB) containing transformers
- Task 4: Investigation of possible imported fill
- Task 5: Quarterly groundwater sampling of monitoring well MW-1
- Task 6: Wetland delineation and site-specific terrestrial ecological evaluation (TEE)

Through the completion of the 2013 RI and Tasks 2, 3, and 4 of the current investigation (see Section 4.2), shallow soils in four limited areas of the site were identified that contained lead and/or PAH concentrations above applicable cleanup levels. These four areas, which are shown on Figure 13 as the North Excavation, South Excavation #1, South Excavation #2, and the Pond Excavation, were successfully remediated by excavating impacted soil and removing it from the site (see Section 5.3.1). The investigations associated with Tasks 2, 3, and 4 did not identify any other areas of concern.

Task 5 (Section 4.3) included four consecutive quarters of groundwater monitoring for metals (lead, cadmium, chromium, arsenic, mercury, copper, zinc, and nickel) at MW-1 (Figure 8). With the exception of lead during the fourth quarter of monitoring, groundwater analyses did not detect any metals above applicable laboratory detection limits. During the fourth quarter, analysis indicated a total lead concentration of 16 μ g/L (15 μ g/L for the duplicate sample), which just above (and at) the 15 μ g/L cleanup level. The fourth quarter sample, however, had high turbidity and subsequent analysis for dissolved lead indicated a concentration of 7 μ g/L. Considering there have been no previous metal detections in this or the other wells at the site (during this or any of the previous investigations) and the fact that the sample was turbid and the dissolved lead result was below the cleanup level, the fourth quarter lead detection does not appear to represent a significant issue. Additional groundwater monitoring is not warranted.

Following the remedial excavation of shallow soil impacts at the site (Section 5.3.1), Coho Environmental, Inc., completed a site-specific TEE (Task 6). Coho's post-remediation screening did not identify any chemicals of ecological concern (COEC) and no toxicological assessment or additional TEE analysis is warranted for the site (Section 5.3.2).

8.0 Recommendations

The cleanup work completed to date at the John's Auto Wrecking site and documented in Robinson Noble's 2013 Remedial Investigation (Appendix B) and this Supplemental Remedial Investigation/Cleanup Action report, meet the substantive requirements of MTCA. Based on the information provided in our 2013 RI and this report, and our first-hand involvement with the remedial actions that have been completed to date at the site, it is our opinion that the issuance of a no-further-action (NFA) determination for the John's Auto Wrecking site (Facility/Site No. 57665495; VCP Project No. SW1613) is appropriate at this time.

9.0 References

- Drost, B.W., Turney, G.L, Dion, N.P., and Jones, M.A., 1998; *Hydrology and quality of ground water in northern Thurston County, Washington*; U.S. Geological Survey Water-Resources Investigation Report: 92-4109 (Revised), 230 p.
- Drost, B.W., Ely, D.M., and Lum II, W.E., 1999; Conceptual model and numerical simulation of the ground-water-flow system in the unconsolidated sediments of Thurston County, Washington: U.S. Geological Survey Water-Resources Investigations Report 99-4165, 254 p.
- Noble, J.B. and Wallace. E.F., 1966; *Geology and ground-water resources of Thurston County, Washington, Volume 2*; U.S. Geological Survey Water-Resources Water-Supply Bulletin 10, 141 p.
- Robinson, Noble, & Saltbush, Inc., letter report April 21, 2009; *Site investigation/Characterization, Havens Property (aka) Johns Auto Wrecking, 411 93rd Avenue SE, Olympia, Washington*
- Robinson, Noble, & Saltbush, Inc., letter report December 10, 2009; *Site remediation of the Havens Property (aka Johns Auto Wrecking) 411 93rd Avenue SE, Olympia, Washington*
- Robinson Noble, July 2013; John's Auto Wrecking, 411 93rd Avenue Southeast, Olympia, Washington, Facility/Site No. 57665495, VCP Project No. SW1127, Remedial Investigation
- Thurston County Assessor-Treasure's GIS data base available online at http://www.geodata.org/website/cadastral/viewer.htm
- U. S. Department of Agriculture Soil Survey of Thurston County, Washington, 1990
- Washington State Department of Ecology, 2013, *Model Toxics Control Act statute and regulation*, compiled by the Washington State Department of Ecology Toxics Cleanup Program, Publication No. 94-06
- Washington State Department of Ecology, Cleanup levels and risk calculations–database of cleanup levels for chemicals and respective media, available online at https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx
- Washington State Department of Ecology, Water well log database, available online at http://apps.ecy.wa.gov/welllog/

The statements, conclusions, and recommendations provided in this report are to be exclusively used within the context of this document. They are based upon generally accepted hydrogeologic and environmental practices and are the result of analysis by Robinson Noble, Inc. staff. This report, and any attachments to it, is for the exclusive use of Havens Estate Investments, LLC. Unless specifically stated in the document, no warranty, expressed or implied, is made.

FIGURES

			2, -, O,	3, 2, -, 0, ,	3, 2, 1, 0, I I I I
			TP26	TP21	TP16
ROBINSON NOBLE	PM: MTW May 2020 2491-001G	Thurston County T 17 N/R 02 W - 23	Joh	Geolog n's Auto Wrecking, Supplemental Rer	Figure 11 gic Logs for TP12 through TP30 medial Investigation/Cleanup Action

Legend

North Excavation (See Figure 14)

Legend

Existing Access Road

Silt Fence

Hopkins Ditch

Excavation Area

Havens Parcel Boundary

Pond Excavation (See Figure 17)

South Excavation #2 (See Figure 16)

Emergency Tank (Approximate Location)

South Excavation #1 (See Figure 15)

ROBINSON NOBLE

Note: Image from PM: MTW Thurston County GIS 2018 Aerials May 2020 2491-001G

Thurston County T 17 N/R 02 W - 23 Scale 1" = 140'

Figure 13 **Remedial Excavation Location Map** John's Auto Wrecking, Supplemental Remedial Investigation/Cleanup Action

APPENDIX A

CSID ZIZO

WORKSHEET 1 SUMMARY SCORE SHEET

Site Name/Location (Street, City, County, Section/Township/Range, TCP ID Number): 574665495 John's Auto Wrecking 411 93rd Ave SE Olympia, WA 98501 Thurston County, 23S/17TN/2RW Tax Parcel #: 12723210000 Facility ID: 57665495 Date scored: January 27, 2004

Site Description (Include management areas, substances of concern, and quantities):

John's Auto Wrecking has been operating as a wrecking yard supporting towing operations and related businesses for approximately 22 years. Years of vehicle crushing operations and the improper handling and storage of wrecked cars have been the source of suspected contamination. The business encompasses approximately 15 acres located south of Tumwater, Washington. The site is situated at an elevation of between 188 and 194 feet above mean sea level. The ground surface of the property is essentially flat, though it slopes slightly to the southwest. Shallow groundwater is anticipated to fluctuate seasonally between periods above the surface from November to April, to as much as eight feet below ground surface during August and September. There is a ditch (Hopkins Ditch) that runs through the south end of the property, where the areas of concern (AOC) are located. The groundwater flow is to the southwest into Salmon Creek.

On October 18, 2001 the Thurston County Environmental Health Department conducted a technical assistance visit to this facility. The county identified several waste streams associated with the auto recycling facility. The facility was out of compliance for hazardous waste storage. The owner was given a reasonable timeline to bring the facility into compliance.

On February 6, 2002, officers of the Thurston County Environmental Health Department, the Washington State Patrol and other agencies inspected the property. During this inspection the Health Department discovered other improper storage practices, located in the south end of the property, which had resulted in the release of gasoline and other petroleum products to the soil and surface water. A notice of violation - Order to Correct was issued to the owner on March 1, 2002.

A contractor was retained in May by the owner to identify the AOC's. During a preliminary site investigation by the contractor, four AOC's were located on the southern part of the property near the ditch. Area 1 was the site where a previous gasoline release had occurred. Areas 2, 3 and 4 are sites where past automobile crushers had been placed.

In June, 2002 a soil sample was obtained from area 1 for a preliminary assessment of contamination. The results showed gasoline and xylenes above MTCA method A cleanup levels. Further sampling in August of 2002 showed elevated levels of Trimethylbenzene and Naphthalene. These levels did not exceed MTCA cleanup standards. Some limited work was conducted on the site, but no report was ever filed. The owner has not paid the contractor and the contractor left the project. The site was listed on August 16, 2002.

Special Considerations (Include limitations in site file data or data which cannot be accommodated in the model, but which are important in evaluating the risk associated with the site, or any other factor(s) over-riding a decision of no further action for the site):

The site has been closed down by the Washington State Patrol. There has been no official cleanup at this site. It cannot be easily determined at the present time the lateral or vertical extent of contamination. Many vehicles are still present on site.

ROUTE SCORES:

Surface Water/Human Health: 36.3 Surface Water/Environ.: 23.8

Air/Human Health:15.5

Air/Environmental: 32.4

Ground Water/Human Health: 56.6

OVERALL RANK: 1

WORKSHEET 2 ROUTE DOCUMENTATION

1. SURFACE WATER ROUTE

List those substances to be <u>considered</u> for scoring. Source: <u>1,2</u> Naphthalene, Xylenes, WTPH-Gas and Trimethylbenzene

Explain basis for choice of substance(s) to be <u>used</u> in scoring. Analytical results show WTPH-Gas and Xylene above Method A cleanup levels and the rest of the compounds nearing Method A cleanup levels.

List those management units to be <u>considered</u> for scoring. Source: <u>1,2</u> Contaminated on-site surface and subsurface soils.

Explain basis for choice of unit to be <u>used</u> in scoring. Chemical analyses of on-site soils.

2. AIR ROUTE

List those substances to be <u>considered</u> for scoring. Naphthalene, Xylenes, WTPH-Gas and Trimethylbenzene Source: 1,2

Explain basis for choice of substance(s) to be <u>used</u> in scoring. Analytical results show WTPH-Gas and Xylene above Method A cleanup levels and the rest of the compounds nearing Method A cleanup levels.

List those management units to be <u>considered</u> for scoring. Source: <u>1,2</u> Contaminated on-site surface and subsurface soils.

Explain basis for choice of unit to be <u>used</u> in scoring. Chemical analyses of on-site soils with no vapor collection system.

3. GROUND WATER ROUTE

List those substances to be <u>considered</u> for scoring. Source: <u>1,2</u> Naphthalene, Xylenes, WTPH-Gas and Trimethylbenzene

Explain basis for choice of substance(s) to be <u>used</u> in scoring. Analytical results show WTPH-Gas and Xylene above Method A cleanup levels and the rest of the compounds nearing Method A cleanup levels.

List those management units to be <u>considered</u> for scoring. Source: <u>1,2</u> Contaminated on-site surface and subsurface soils.

Explain basis for choice of unit to be <u>used</u> in scoring. Analytical Results of on-site soils.

WORKSHEET 3 (If Required) SUBSTANCE CHARACTERISTICS WORKSHEET FOR MULTIPLE UNIT/SUBSTANCE SITES

Unit:

	Combination 1	Combination 2	Combination 3
1. SURFACE WATER ROUTE Substance(s):			
Human Toxicity Value:			
Environ. Toxicity Value:			
Containment Value:		•	
Rationale:			
Surface Water Human Subscore:	(+3) (+1) = () () =	(+3) (+1) = () () =	(+3) (+1) = () () =
Surface Water Environ. Subscore:	(+3)(+1)= ()() =	(+3)(+1)= ()() =	(+3)(+1)= ()() =
2. AIR ROUTE Substance(s):			
Human Toxicity/Mobility Value:			
Containment Value:			
Rationale:			
Air Human Subscore:	(+3)(+1)= ()() =	(+3)(+1)= ()() =	(+3) (+1) = ()() =
Air Environ. Subscore:	(+3) (+1) = () () =	(+3) (+1) = () () =	(+3) (+1) = () () =
3. GROUND WATER ROUTE Substance(s):			
Human Toxicity Value:			
Containment Value:			
Rationale:			
Ground Water Subscore:	(+3)(+1)= ()() =	(+3) (+1) = () () =	(+3) (+1) = () () =

Based on their respective highest scoring toxicity/containment combinations, the following management units will be used for route scoring:

Surface Water -Air -Ground Water -

WORKSHEET 4 SURFACE WATER ROUTE

1.0 SUBSTANCE CHARACTERISTICS

1.1 Human Toxicity

	Drinkin Water Standar	a, a	Acute Toxicity		Chronic Toxicity		Carc	inogen	icity
Substance	µg/L	Val.	mg/kg-bw	Val.	Mg/kg/day	Val.	WOE	PF*	Val.
1. WTPH-Gas	5	8	3306	3	-	-	A	1	5
2. Xylenes	10,000	2	50	10	2	3		-	
3. Trimethylbenzene	-	-	8970	1	-	-	-	-	-
4. Naphthalene	20	6	490	5	0.004	5	-	-	-
5.	,								
PF*= Potency Factor					·	Sou	irce:	1,2,	3

Highest Value: 10 (Max.=10) +2 Bonus Points? _____Final Toxicity Value: 12

1.2 Environmental Toxicity

Substance	(X) Fre () Mar Acute W Quality	Non-human Mammalian Acute Toxicity		
	(ug/1)	Value	(mg/kg)	Value
1. WTPH-Gas	5300	2		-
2. Xylenes	-		-	
3. Trimethylbenzene	-	-		-
4. Naphtalene	2300	2	-	-
5.				
	Source: 1	,2,3 Value	: 2 (Max	c. =10)

Source: 1 Value: 1 (Max. =10)

1.3 Substance Quantity:

Explain basis: unknown

2.0 MIGRATION POTENTIAL

2.1	Containment : Spill, discharge or contamianted soil at the surfac	Source: 1 e with no run	Value: 10 -on/runoff	(Max. =10) control
2.2	Surface Soil Permeability Nisqually loamy fine sand	Source: 1,5	Value: 3	(Max. =7)
2.3	Total Annual Precipitation (inches) 51 inches	Source: 6	Value: 4	(Max. =5)
2.4	Max. 2-yr/24-hr precipitation (inch 2.5 inches	es) Source: 4	Value: 3	(Max. =5)
2.5	Flood Plain 100 year flood	Source: 5	Value: 2	(Max. =2)
2.6	Terrain Slope (%) 0 to 3% slope	Source: 5	Value: 2	(Max. =5)
3.0	TARGETS	•		
3.1	Distance to Surface Water	Source: 5	Value: 10	(Max. =10)

- 3.2 Population Served within 2 miles **Source: 5 Value: 0 (Max. =75)** See WARM Scoring Manual Regarding Direction pop. = x = n None
- 3.3 Area Irrigated within 2 miles Source: 5 Value: 3 (Max. =30)
 See WARM Scoring Manual Regarding Direction
 0.75 # of acres = n 20 acres
 0.75 x = 0.75(y) = n .75/20= 3
- 3.4 Distance to Nearest Fishery Resource Source: 1,5 Value: 0 (Max. =12) ephermal stream not fishery resource
- 3.5Distance to and Names of Nearest Sensitive Environments
200 feet to wetlandSource: 1,5Value: 12 (Max. =12)

4.0 RELEASE

Explain the basis for scoring a release to surface water Photographs showing discolored plume/Sheen Source: 7 Value: 5 (Max.=5) WORKSHEET 5 AIR ROUTE

1.0 SUBSTANCE CHARACTERISTICS

1.1 Introduction (WARM Scoring Manual) - Please review before scoring

1.2 Human Toxicity

Substance	Air Standard		Acute Toxicity		Chronic Tox	Carcinogenicity			
	(ug/m ³)	Val.	(mg/m ³)	Val.	(mg/kg/day)	Val.	WOE	PF	Val.
1. WTPH-Gas	0.12	10	31947	3	-	-	A	.029	5
2. Xylene	1448.6	1	21714	3	0.085	1	-		-
3. Trimethylbenzene	416.3	4	-	-	-	-	-	-	-,
4. Naphthalene	166.5	4	- ·	-	-		-	-	-
5.			_						

Source: 1,3 Value: 10 (Max. =10) +2 Bonus Points?

4 (Max. = 4)

Final Toxicity Value: 10

Source: 3 Value:

1.3 Mobility

(Use numbers to refer to above listed substances)

1.3.1 Gaseous Mobility Vapor Pressures (mmHg) 1. 9.5E+01 = 4 2. 1.0E+01 = 4 3. -----4. 8.2E-02 = 3 5.

1.3.2 Particulate Mobility Soil Type: Erodibility: Climactic Factor:

1.4 Highest Human Health Toxicity/Mobility Matrix Value (from Table A-7) Equals Final Matrix Value Source: 3 Value: 20 (Max. =24)

1.5 Environmental Toxicity/Mobility

Source: 3 Value: 6 (Max. =24)

Source: Value: NS (Max. =4)

Non-human Mammalian Acute (Table A-7)

Substance	Inhalation Toxicity (mg/m ³)	Value	Mobility (mmHg)	Value	Matrix Value
1. WTPH-Gas	31947 rat	-3	9.5E+01	4	6
2. Xylenes	21714 rat	3	1.0E+01	3	5
3.				-	-
4.	-	-		-	
5.					

Highest Environmental Toxicity/Mobility Matrix Value (From Table A-7) equals Final Matrix Value: 6 1.6 Substance Quantity:

Source: 1 Value: 1 (Max. =10)

Explain basis: unknown

2.0 MIGRATION POTENTIAL

2.1 Containment: Source: 4 Value: 10 (Max. =10)
Cover <2 feet thick or suface spill/dischare and no vapor collection system
3.0 TARGETS</pre>

- 3.1 Nearest Population Source: 5 Value: 10 (Max. =10) < 1000 feet
- 3.2 Distance to and Names of Nearest Sensitive Environments Wetlands surrounding Hopkins Ditch <1000 feet **Source: 1,5 Value: 7 (Max. =7)**
- 3.3 Population within 0.5 miles: Source: 5 Value: 8 (Max. =75) pop. = 70 = n
- 4.0 RELEASE
 Explain basis for scoring a release to air:
 No documented release Source: 1 Value:

(Max. =5)

0

WORKSHEET 6 GROUND WATER ROUTE

1.0 SUBSTANCE CHARACTERISTICS

1.1 Human Toxicity

Substance	Drinking Water Standard		Acute Toxicity		Chronic Toxicity		Carcinogenicity		
	(ug/m^3)	Val	(mg/kg/bw)	Val	(mg/kg/day)	Val	WOE	PF	Val
1. TPH-Gasoline	5	8	3306	3	-	-	A	.029	5
2. Trimethylbenzene	-	-	8970	1	-	-	-	-	-
3. Xylenes	10,000	2	50	10	2	3	-	-	-
4. Naphthalene	20	6	490	5	0.004	5	-	-	-
5.									

Source: 1,2,3 Value: 10 (Max. =10)

Source: 3 Value: 3 (Max. =3)

+2 Bonus Points? 2

Final Toxicity Value: 12

1.2 Mobility

(Use numbers to	refer to	ahove	listed	substance	2g)		
Cations/Anions	ICICI CC		110000	Source:	Value:	(Max.	=12)
1.							
2.							
3.							

4. 5.

OR Solubility 1. 1800 = 3 2. -3. 200 = 2 4. 30 = 1 5.

1.3 Substance Quantity Source: 1 Value: 1 (Max. =10) Unknown Explain basis:

2.0 MIGRATION POTENTIAL

2.1	Containment	Source: 1	Value: <u>10</u> (Max. =10)
	Explain Basis: Spills		
2.2	Net Precipitation (inches):	Source: 6	Value: 3 (Max. =5)
	27.06″		
2.3	Subsurface Hydraulic Conductivity:	Source: 1	Value: <u>4</u> (Max. =4)
	1.4×10^{-3}		
2.4	Vertical Depth to Ground Water:	Source: 1	Value: <u>8</u> (Max. =8)
	8 feet		````````````````````````````````

3.0 Targets

 3.1
 Ground Water Usage:
 Source: 5
 Value: 5
 (Max. =10)

 Private supply, no alt. Source available

- 3.2 Distance to Nearest Drinking Well (ft): Source: 1,5 Value: 3 (Max. =5) 1,340 feet
- 3.3 Population Served within 2 miles: Source: 5 Value: 62 (Max. =100) 3,800 people
- pop. = x = n3.4 Area irrigated by Wells within 2 miles: Source: 5 Value: 8 (Max. =50) 100 acres 0.75 100 of acres = n 0.75 x = 0.75(y) = n
- 4.0 RELEASE Source: 1 Value: 0 (Max. =5) Explain basis for scoring a release to ground water: No documented release

SOURCES USED IN SCORING

- 1. Remedial Investigation and cleanup Workplan, John's Auto Wrecking & Towing, Olympia, Washington, July 2002.
- 2. Soil Sampling Summary, John's Auto Wrecking, Olympia, Washington, August 2002.
- 3. Washington Department of Ecology, Toxicology Database for Use in Washington, Ranking Method Scoring, January 1992.
- 4. Washington Department of Ecology, WARM Scoring Manual, April 1992.
- 5. Thurston County Geodata Center, maps and figures 2004.
- 6. Thurston County Climatic Data, National Weather Service, Olympia Station, January 1983 through December 1997.
- 7. Numerous site visits by Patrick Soderberg, TCHD, October 2001 to present.

Cleanup Site Details

Cleanup Site ID: 2120

Cleanup Site ID: 2120 Facility/Site ID: 57665495 UST ID: N/A						<u>Si</u>	te Page	Site Docu	ments	View Map										
Cleanup Site Name	: JOHNS AUTO V	VRECKING a	aka Havens Estat	te Investments,	LLC					<u>Glossary</u>										
Alternate Names:	Havens Estate Inve	estments, LL	C, JOHNS AUTO	WRECKING,		AUTO WRE	CKING ak	a Havens E	state Inve	estments, LLC										
LOCATION																				
Address: 411 93R	D AVE SE			City: OLYMP	IA	Zip Coo	le: 98501	Coun	ty: Thur	ston										
Latitude: 46.95249	Longitude: -	122.90180	WRIA: 23	Legislative D	strict:	35 Con	gressiona	I District:	10 TRS	3: 17N 2W 23										
DETAIL																				
Status: Cleanup	Started	NFA	Received?	No			Is PSI :	site?	No											
Statute: MTCA		NFA	Date:	N/A			Curren	t VCP?	es Pa	st VCP? Yes										
Site Rank: 1 - Highe	est Assessed Risk	NFA	Reason:	N/A			Brown	field?	No											
Site Manager: Mull	lin, Tim	Resp	oonsible Unit:	Southwest			Active	Institution	al Contro	No No										
CLEANUP UNITS																				
Cleanup U	nit Name	Unit Type	Unit S	tatus	Resp Unit	Unit Ma	anager	c	Current P	rocess										
JOHNS AUTO WRE Havens Estate Inves	CKING aka stments, Inc.	Upland	Cleanup	Started	SW	Mullin	ı, Tim	Volunt	ary Clear	nup Program										
Johns Auto Wrecking	g Sediments	Sediment	Awaiting (Cleanup	SW	Mullin	ı, Tim		No Pro	cess										
ACTIVE INSTITUTIONAL CONTROLS																				
Instrument Type	Restriction Media	Rest	rictions/Require	ements	D	Date Recordin Numbe		g Reco Cou	rding unty	Tax Parcel										
There are no current	t Institutional Contro	ols in effect f	or this site.							There are no current Institutional Controls in effect for this site.										
AFFECTED MEDIA	& CONTAMINANT	ſS																		
AFFECTED MEDIA	& CONTAMINANT	ſS					MEDIA													
AFFECTED MEDIA Contaminant	& CONTAMINANT	ſS	Soil	Ground	water	Surface W	MEDIA /ater Se	ediment	Air	Bedrock										
AFFECTED MEDIA Contaminant Arsenic	& CONTAMINANT	rs	Soil	Ground C	water	Surface W	MEDIA /ater Se	ediment	Air	Bedrock										
AFFECTED MEDIA Contaminant Arsenic Lead	& CONTAMINANT	rs	Soil	Ground C	water	Surface W C	MEDIA /ater Se	ediment S	Air	Bedrock										
AFFECTED MEDIA Contaminant Arsenic Lead Metals - Other	& CONTAMINANT	rs	Soil	Ground C C	water	Surface W	MEDIA /ater Se	ediment S	Air	Bedrock										
AFFECTED MEDIA Contaminant Arsenic Lead Metals - Other Metals Priority Pollut	& CONTAMINANT	rs	Soil Soil	Ground C C S S	water	Surface W	MEDIA Vater Se	ediment S	Air	Bedrock										
AFFECTED MEDIA Contaminant Arsenic Lead Metals - Other Metals Priority Pollut Petroleum Products-	& CONTAMINANT	rs	Soil Soil	Ground C C C S S S	water	Surface W	MEDIA /ater Se	ediment S	Air	Bedrock										
AFFECTED MEDIA Contaminant Arsenic Lead Metals - Other Metals Priority Pollut Petroleum Products- Polycyclic Aromatic I	& CONTAMINANT	rs	Soil Soil S S C C	Ground C C C S S S S	water	Surface W	MEDIA /ater Se	ediment S	Air	Bedrock										
AFFECTED MEDIA Contaminant Arsenic Lead Metals - Other Metals Priority Pollut Petroleum Products- Polycyclic Aromatic I Key: B - Below Cleanup L S - Suspected	& CONTAMINANT tants Unspecified Hydrocarbons .evel C - Cor R - Rer	rs	Soil Soil S S C C C ve Cleanup Level	Ground C C C S S S S RA - Rem RB - Rem	water	Surface W C Above Below	MEDIA /ater Se	ediment S	Air	Bedrock										
AFFECTED MEDIA Contaminant Arsenic Lead Metals - Other Metals Priority Pollut Petroleum Products- Polycyclic Aromatic I Key: B - Below Cleanup L S - Suspected SITE ACTIVITIES	& CONTAMINANT & CONTAMINANT tants Unspecified Hydrocarbons .evel C - Cor R - Rer	r S	Soil Soil S S C C C ve Cleanup Level	Ground C C C S S S S S RA - Rem RB - Rem	water ediated-	Surface W C Above Below	MEDIA Vater Se	ediment S	Air	Bedrock										
AFFECTED MEDIA Contaminant Arsenic Lead Metals - Other Metals Priority Pollut Petroleum Products- Polycyclic Aromatic I Key: B - Below Cleanup L S - Suspected SITE ACTIVITIES Activity	& CONTAMINANT tants Unspecified Hydrocarbons evel C - Cor R - Ren	rs	Soil Soil S S C C C ve Cleanup Level	Ground C C C S S S S RA - Rem RB - Rem	water	Surface W C Above Below Status	MEDIA /ater Se	ediment 2 S	Air	Bedrock Bedrock End Date/ npletion Date										
AFFECTED MEDIA Contaminant Arsenic Lead Metals - Other Metals Priority Pollut Petroleum Products- Polycyclic Aromatic I Key: B - Below Cleanup L S - Suspected SITE ACTIVITIES Activity Initial Investigation /	& CONTAMINANT tants Unspecified Hydrocarbons evel C - Cor R - Ren Federal Preliminar	r S	nt	Ground C C C S S S S S RA - Rem RB - Rem	water	Surface W C Above Below Status ompleted	MEDIA Vater Se	ediment S	Air	Bedrock Bedrock Bedrock SINTALSSING										
AFFECTED MEDIA Contaminant Arsenic Lead Metals - Other Metals Priority Pollut Petroleum Products- Polycyclic Aromatic I Key: B - Below Cleanup L S - Suspected SITE ACTIVITIES Activity Initial Investigation / Early Notice Letter(s	& CONTAMINANT & CONTAMINANT tants Unspecified Hydrocarbons .evel C - Cor R - Rer Federal Preliminar	rs 	nt	Ground C C C S S S S S RA - Rem RB - Rem	water	Surface W C C Above Below Status ompleted ompleted	MEDIA /ater Se 	ediment S S 4 art Date	Air	Bedrock Bedrock Image: Second										
AFFECTED MEDIA Contaminant Arsenic Lead Metals - Other Metals Priority Pollut Petroleum Products- Polycyclic Aromatic I Key: B - Below Cleanup L S - Suspected SITE ACTIVITIES Activity Initial Investigation / Early Notice Letter(s Site Hazard Assession	& CONTAMINANT tants Unspecified Hydrocarbons evel C - Cor R - Rer Federal Preliminar	r S	soil Soil Soil Soil Soil Soil Soil Soil S	Ground C C C S S S S RA - Rem RB - Rem	water 	Surface W C C Above Below Status ompleted ompleted	MEDIA /ater Se 	ediment 2 S 2 int Date 2 225/2003	Air	Bedrock Bedrock Image: Second Sec										

Toxics Cleanup Program

Report Generated: 3/30/2020

Cleanup Site Details

SITE ACTIVITIES									
Activity	Status	Start Date	End Date/ Completion Date						
Hazardous Sites Listing/NPL	Completed		2/4/2004						
VCP Opinion on Remedial Investigation	Completed	11/28/2005	2/23/2006						
VCP Receipt of Plan or Report	Completed		8/27/2010						
VCP Opinion on Remedial Investigation	Completed	8/27/2010	8/23/2011						
VCP Opinion on Remedial Investigation Work Plan	Completed	4/16/2012	6/28/2012						
VCP Opinion on Site Cleanup	Completed	9/3/2013	9/25/2013						

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY PO Box 47775 • Olympia, Washington 98504-7775 • (360) 407-6300 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

November 16, 2017

Electronic Copy

Judith M. Wirth LLC Member Havens Estate Investments, LLC 5023 8th Avenue NE Seattle, WA 98105

Re: Acceptance of VCP Application for the following Contaminated Site:

- Site Name: Johns Auto Wrecking aka Havens Estate Investments, LLC
- Site Address: 411 93rd Ave SE Olympia, 98501-9701 Thurston
- Cleanup Site ID: 2120
- Facility/Site ID: 57665495
- VCP Project ID: SW1613

Dear Ms. Wirth:

The Department of Ecology (Ecology) has accepted your Voluntary Cleanup Program (VCP) application for Havens Estate Investments facility (Site). We applaud your initiative and welcome your interest in the VCP. This letter confirms your entry into the VCP and provides important information on how we will manage the VCP Cleanup Project (Project) and the Site.

Agreement

Ecology has completed and signed the VCP Agreement governing the Project on September 13, 2017. This is the effective date of the Agreement. Enclosure A includes a copy of the Agreement. Please review it carefully.

Identification

Ecology has assigned a unique name and number to the **Site**. We have also assigned a unique number to your **Project** at the Site. You can find this information in the box at the bottom of the first page of the Agreement. When contacting us, please use this information to identify your Project.

Ms. Judith Wirth November 16, 2017 Page 2

Designated Managers

Please direct communications between Ecology and Havens Estate Investments, LLC through the designated managers to the maximum extent possible.

• Ecology

We have designated the following site manager to respond to your requests:

Timothy Mullin

Department of Ecology Toxic Cleanup Program, Southwest Regional Office 300 Desmond Drive SE Lacey, WA 98504 Phone: 360-407-6265 E-mail: <u>Timothy.Mullin@ecy.wa.gov</u>

• Havens Estate Investments, LLC

The application designated you, Judith Wirth as the project manager for Havens Estate Investments, LLC. We will therefore respond only to your requests. If someone replaces you as the project manager or your contact information changes, please submit a Change of Contact Form. You can download the Form from our VCP web site: www.ecy.wa.gov/programs/tcp/vcp/vcpmain.htm.

Requests for Written Opinions

As the cleanup of the Site progresses, you may request written opinions on your planned or completed remedial actions by submitting to Ecology the following:

- Request for Opinion Form, which you can download from our VCP web site: <u>www.ecy.wa.gov/programs/tcp/vcp/vcpmain.htm</u>.
- Plans or reports documenting the remedial action

Ms. Judith Wirth November 16, 2017 Page 3

Reporting Requirements

When requesting written opinions on planned or completed remedial actions, please comply with the following reporting requirements:

- Licensing. You must submit documents containing geologic, hydrologic, or engineering work under the seal of an appropriately licensed professional, as required by Chapters 18.43 and 18.220 RCW.
- **Data Submittal.** You must submit environmental sampling data in both a printed form and an electronic form capable of being transferred into our Environmental Information Management (EIM) system. For an overview of data submittal requirements, please refer to **Enclosure B**, which includes a copy of Toxics Cleanup Program Policy 840. For instructions on how to submit data, please refer to the following web site: www.ecy.wa.gov/programs/tcp/data_submittal/data_requirements.htm.

Failure to comply with these requirements may result in unnecessary delays.

Payment

Ecology will send monthly invoices to the billing contact designated in the Application Form. If someone replaces the billing contact or their contact information changes, please submit a Change of Contact Form. You can find the Form on the VCP web site.

The invoice will include a summary of the costs incurred, payments received, identity of staff involved, and the amount of time spent on the Project during the previous month. Payment is due within thirty days of the invoice date. For more information on the billing system, please refer to the VCP web site.

Ms. Judith Wirth November 16, 2017 Page 4

Contact Information

We are committed to working with you to accomplish the prompt and effective cleanup of the Site. Again, if you have any questions about the VCP or your Project, please contact Timothy Mullin at 360-407-6265.

Sincerely,

Nicholas M. ahlam

Nicholas Acklam VCP Unit Manager Toxics Cleanup Program, Southwest Regional Office

NA: kb

Enclosures (2): A – Copy of VCP Agreement B – Toxics Cleanup Program Policy 840: Data Submittal Requirements

By certified mail: [91 7199 9991 7037 7462 2156]

cc: Max Wills, Robinson-Noble, Inc. Nicholas Acklam, Ecology Stephanie Bussell, Ecology Tim Mullin, Ecology **Enclosure** A

VCP Agreement

VCP AGREEMENT

INSTRUCTIONS: Submit this Agreement (original) to Ecology as part of your Application. Before submitting, enter the Customer's name and the Site's address on the first page and sign the Agreement on the second page. If your Application is accepted, then Ecology will do the following: 1) identify the Site and VCP project in the box below; 2) sign the Agreement; and 3) send you a copy of the completed Agreement.

This document constitutes an Agreement between the State of Washington Department of Ecology (Ecology) and <u>Havens Estate Investments, LLC</u>

(Customer) to provide informal site-specific technical consultations under the Voluntary Cleanup Program (VCP) for the Site identified below and associated with the following address: 411 - 93rd Ave SE, Olympia, WA 98501

The purpose of this Agreement is to facilitate independent remedial action at the Site. Ecology is entering into this Agreement under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC. If a term in this Agreement is defined in MTCA or Chapter 173-340 WAC, then that definition shall govern.

Services Provided by Ecology

Upon request, Ecology agrees to provide the Customer informal site-specific technical consultations on the independent remedial actions proposed for or performed at the Site consistent with WAC 173-340-515(5). Those consultations may include assistance in identifying applicable regulatory requirements and opinions on whether the remedial actions proposed for or conducted at the Site meet those requirements.

Ecology may use any appropriate resource to provide the Customer with the requested consultative services. Those resources may include, but shall not be limited to, those of Ecology and the Office of the Attorney General. However, Ecology shall not use independent contractors unless the Customer provides Ecology with prior written authorization.

In accordance with RCW 70.105D.030(1)(i), any opinions provided by Ecology under this Agreement are advisory only and not binding on Ecology. Ecology, the state, and officers and employees of the state are immune from all liability. Furthermore, no cause of action of any nature may arise from any act or omission in providing, or failing to provide, informal advice and assistance under the VCP.

Payment for Services by Customer

The Customer agrees to pay all costs incurred by Ecology in providing the informal site-specific technical consultations requested by the Customer consistent with WAC 173-340-515(6) and 173-340-550(6). Those costs may include the costs incurred by attorneys or independent contractors used by Ecology to provide the requested consultative services. Ecology's hourly costs shall be determined based on the method in WAC 173-340-550(2).

Ecology shall mail the Customer a monthly itemized statement of costs (invoice) by the tenth day of each month (invoice date) that there is a balance on the account. The invoice shall include a summary of the costs incurred, payments received, identity of staff involved, and amount of time staff spent on the project.

The Customer shall pay the required amount by the due date, which shall be thirty (30) calendar days after the invoice date. If payment has not been received by the due date, then Ecology shall withhold

FOR COMPLETION BY ECOLOGY ONLY	Facility / Site Name: Havens Estate 1	nvestments, UC
	Facility / Site No .: 57665495	RECEIVED
	VCP Project No.: SW11/13	SEP 132017

ECY 070-324 (revised July 2008)

WA State Department of Ecology (SWRO) any requested opinions and notify the Customer by certified mail that the debt is past due. If payment has not been received within sixty (60) calendar days of the invoice date, then Ecology shall stop all work under the Agreement and may, as appropriate, assign the debt to a collection agency under Chapter 19.16 RCW. The Customer agrees to pay the collection agency fee incurred by Ecology in the course of debt collection.

Reservation of Rights / No Settlement

This Agreement does not constitute a settlement of liability to the state under MTCA. This Agreement also does not protect a liable person from contribution claims by third parties for matters addressed by the Agreement. The state does not have the authority to settle with any person potentially liable under MTCA except in accordance with RCW 70.105D.040(4). Ecology's signature on this Agreement in no way constitutes a covenant not to sue or a compromise of any Ecology rights or authority.

Ecology reserves all rights under MTCA, including the right to require additional or different remedial actions at the Site should it deem such actions necessary to protect human health and the environment, and to issue orders requiring such remedial actions. Ecology also reserves all rights regarding the injury to, destruction of, or loss of natural resources resulting from the release or threatened release of hazardous substances at the Site.

Effective Date, Modifications, and Severability

The effective date of this Agreement shall be the date on which this Agreement is signed by the Toxics Cleanup Program's Section Manager or delegated representative. This Agreement may be amended by mutual agreement of Ecology and the Customer. Amendments shall be in writing and shall be effective when signed by the Toxics Cleanup Program's Section Manager or delegated representative. If any provision of this Agreement proves to be void, it shall in no way invalidate any other provision of this Agreement.

Termination of Agreement

Either party may terminate this Agreement without cause by sending written notice by U.S. mail to the other party. The effective date of termination shall be the date Ecology sends notice to the Customer or the date Ecology receives notice from the Customer, whichever occurs first. Unless otherwise directed, issuance of a No Further Action opinion, either for the Site as a whole or for a portion of the real property located within the Site, shall constitute notice of termination by Ecology.

Under this Agreement, the Customer is only responsible for costs incurred by Ecology before the effective date of termination. However, termination of this Agreement shall not affect any right Ecology may have to recover its costs under MTCA or any other provision of law.

Representations and Signatures

The undersigned representative of the Customer hereby certifies that he or she is fully authorized to enter into this Agreement and to execute and legally bind the Customer to comply with the Agreement.

STATE OF WASHINGTON	
DEPARTMENT OF ECOLOGY	
111 - 9	
Kaline S. Lawca	
Alle also Annac	
Signature	
PORCIM C I A	
NEWER D. LITUSAN	
Printed Name	
C. Pr	
Section Manager, _ 5 1040	
Toxics Cleanup Program	Section
0/2/	
Date: 9/13/2017	

Havens Estate Investments, LLC Name of Customer

m-le

Sigrfature

Judith M. Wirth, Personal Representative Printed Name of Signatory

Member

Title of Signatory 3 Date:

If you need this document in an alternative format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

ECY 070-324 (revised July 2008)

Enclosure B

Toxics Cleanup Program Policy 840 Data Submittal Requirements

Interclemmplater and

Policy 840: Data Submittal Requirements

Established:	August 1, 2005	· • *	•	•
Revised.	April 12, 2016	• •	•	•
• Contact:	Policy & Technical Support	Unit, Hea	idquat	ters
Purpose:	This Policy provides guidar	ice on the	submi	issic tiga

e: This Policy provides guidance on the submission of environmental monitoring data generated or collected during the investigation or cleanup of contaminated sites under the Model Toxics Control Act.

References:

WAC 173-340-840 (5)

Chapter 173-204 WAC Environmental Information Management System Database Sediment Cleanup Users Manual II

Attachments: A - Mode

A - Model Grant and Permit Condition,

Disclaimer;

This Policy is intended solely for the guidance of Ecology staff. It is not intended, and cannot be relied on, to create rights, substantive or procedural, enforceable by any party in litigation with the state of Washington. Ecology may act at variance with this Policy depending on site-specific circumstances, or modify or withdraw this Policy at any time.

Approved by:

Aprical for

James J. Pendowski, Program Manager Toxics Cleanup Program

Accommodation Requests: To request ADA accommodation, including materials in a format for the visually impaired, call Ecology's Toxics Cleanup Program at 360-407-7170. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

Revised: April 12, 2016

Toxics Cleanup Program Policy 840

Purpose and Applicability

1.

The investigation and cleanup of contaminated sites generate a large volume of environmental monitoring data that need to be properly managed to facilitäte regulatory decisions. The data also need to be accessible by Ecology staff, site owners, consultants, and the general public.

This Policy describes the requirements for submitting environmental monitoring data generated or collected during the investigation and cleanup of contaminated sites under Chapter 70.105D RCW, Model Toxics Control Act (MTCA).

This Policy applies to Ecology staff and any person who investigates or cleans up contaminated sites and submits related environmental sampling data to Ecology, including potentially liable persons, Voluntary Cleanup Program (VCP) customers, prospective purchasers, government agencies, and Ecology contractors.

Unless otherwise specified by Ecology, all environmental monitoring data generated during contaminated site investigations and cleanups are required to be submitted to Ecology in both written format and electronically through EIM.

Environmental monitoring data include biological, chemical, physical, and radiological data generated during site investigations and cleanups under the Model Toxics Control Act Cleanup Regulation (Chapter 173-340 WAC) and the Sediment Management Standards (Chapter 173-204 WAC).

The Environmental Information Management System (EIM) is a searchable database that contains data collected by Ecology (or by environmental contractors on behalf of Ecology), and by Ecology grant recipients, local governments, the regulated community, and volunteers.

Under this Policy, data are considered to be "environmental monitoring data" if generated or collected during:

a. Site investigations and cleanups conducted under an order, agreed order or consent decree, permit, grant, loan, contract, interagency agreement, memorandum of understanding; or

b. An independent remedial action.

Under this Policy, data are <u>not</u> considered to be environmental monitoring data if generated or collected for the following studies. This means that entering data into EIM, while encouraged, is optional for:

Non site-specific studies;

b. Site hazard assessments that result in no further action; and

All initial site investigations.

Ċ,

2.

Toxics Cleanup Program Policy 840

Orders, agreed orders, consent decrees, or permits must include a condition that site-specific environmental sampling data be submitted in compliance with this Policy.

For those reports prepared and submitted for review under an order, agreed order, consent decree, or permit, the environmental sampling data must be entered into EIM at the time of report submitted. If reports for such work do not include documentation that data was submitted in compliance with this Policy, the reports shall be deemed incomplete and a notice will be provided to the submitter.

Generally, Ecology should not review such reports until that documentation is provided. The assistant attorney general assigned to the site should be consulted for an appropriate response when Ecology's review is delayed due to failure of data entry into EIM.

Site-specific environmental sampling data must be entered into EIM before Ecology will review independent remedial action reports under the Voluntary Cleanup Program.

For independent remedial action reports prepared and submitted under Ecology's Voluntary Cleanup Program (VCP), environmental sampling data must be entered into EIM at the time any report is submitted requesting an opinion on the sufficiency of the action under the VCP.

However, Ecology may establish an alternate deadline for entering data into EIM if this Policy creates undue hardship on the VCP customer and Ecology does not need the data in EIM to begin the review.¹ But in no case will Ecology issue a No Further Action (NFA) opinion letter under the VCP—either for the whole site or a property located within the site—until the data has been entered into EIM.

If sampling data has not been entered into EIM, Ecology may still review the report for the limited purpose of determining whether it contains sufficient information to provide an opinion. If the report is incomplete, Ecology may also respond to the VCP customer's request for an opinion by issuing an administrative letter rejecting the report and requesting additional information.

¹ For example, when a site has multiple groundwater sampling events over time, it may be more efficient to enter the data into EIM at one time after monitoring is completed, rather than for each monitoring event. Another example would be where a VCP consultant is using EIM for the first time and needs additional time to learn how to use the system.

Toxics Cleanup Program Policy 840

Grants, contracts, interagency agreements or memoranda of understanding issued after the effective date of this Policy must include a condition that sitespecific data be submitted in compliance with this Policy.

Reports on such, work will not be accepted as complete until the data have been submitted in compliance with this Policy. If a payment or transfer of funds is involved in the transaction, the relevant payment or transfer shall be withheld until this requirement has been met. Attachment A contains example language to include in these documents.

5. Data generated during <u>upland</u> investigations and cleanups must be submitted electronically using Ecology's EIM.

The Environmental Information Management System is Ecology's main database for environmental monitoring data. Proper submission of data through this system meets the requirement of submitting such data in an electronic format.

Additional information about EIM, including instructions for data submittal, can be found on Ecology's EIM website at <u>http://www.ecy.wa.gov/eim/</u>. The Toxic Cleanup'Program's (TCP) EIM Coordinator can also provide technical assistance to site managers and consultants who use EIM.

Data generated during <u>sediment</u> investigations and cleanups must be submitted electronically using Ecology's EIM.

Effective March 1, 2008, EIM is Ecology's data management system for sediment-related data. Proper submission of data through EIM meets the requirement of submitting such data in an electronic format. Electronic data must be submitted to Ecology simultaneously with the accompanying report.

For additional information on sediment sampling and analysis plan requirements, see Ecology's Sediment Cleamup Users Manual (SCUM II) Publication No. 12-09-057, available at: <u>https://fortress.wa.gov/ecy/publications/summarypages/1209057.html</u>

The Sediment Data Coordinator in TCP's Aquatic Land Cleanup Unit (ALCU) can also provide technical assistance with EIM.

Data submitted electronically using EIM must be checked by the Toxics Cleanup Program's EIM Coordinator before the data will be officially loaded into EIM.

Normally, TCP's EIM Coordinator will receive a notice that data have been submitted through EIM. Upon receipt of the notice, the EIM Coordinator should notify the Cleanup Project Manager. The EIM Coordinator then reviews the submittal for quality control and officially loads the data into the system.

б,

1.

Page 4

ъ. л.

TATOU:

Attachment A

Model Grant and Permit Condition

This page left intentionally blank.

Toxics Cleanup Program Policy 840

Publication Number 16_00 ASA

nia J. -1
Washington State Department of Ecology

Toxics Cleanup Program Policy 840

Model Grant and Permit Condition

The following condition is to be inserted in grants, loans, contracts, interagency agreements, and memoranda of understandings where site-specific environmental monitoring data is expected to be generated:

All sampling data shall be submitted to Ecology in both printed and electronic formats in accordance with WAC 173-340-840(5) and Ecology Toxics Cleanup Program Policy 840: Data Submittal Requirements. Electronic submittal of data is not required for site hazard assessments that result in no further action and initial site investigations. (FOR GRANTS, AND LOANS ADD: Failure to properly submit sampling data will result in Ecology withholding payment and could jeopardize future funding.)

Attachment A-1

This page left intentionally blank.

Publication Number: 16-09-050

Attachment A-2 ·

Revised: April 12, 2016

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY PO Box 47775 • Olympia, Washington 98504-7775 • (360) 407-6300 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

November 15, 2017

Electronic Copy

Mr. Alan J. Wertjes, Attorney at Law Personal Representative of the Estate of John Havens 1800 Cooper Point Rd, SW Ste 3 Olympia, WA 98502

Re: Termination of VCP Agreement for the following Site:

- Site Name: John's Auto Wrecking
- Site Address: 411 93rd Ave SE, Olympia, Thurston County, WA 98501
- Facility/Site No.: 57665495
- Cleanup Site No.: 2120
- VCP Project No.: SW1127

Dear Mr. Wertjes:

The Department of Ecology (Ecology) is terminating the Voluntary Cleanup Program (VCP) Agreement governing project No. SW1127, John's Auto Wrecking (Site). The effective date of termination is the date of this letter. We are providing this notice in accordance with the terms of the VCP Agreement (attached as Enclosure A).

Per Thurston County Quit Claim Deed (Enclosure B) as recorded on September 13, 2017, parcels comprising the Property located at 411 93rd Ave SE, Olympia, Thurston County, Washington, have transferred to Havens Estate Investments, LLC. It is Ecology's understanding that Havens Estate Investments, LLC, has assumed responsibility for the cleanup related to the John's Auto Wrecking Site.

Termination from VCP does not constitute a determination of substantial equivalence. Though SW1127 is terminated from VCP, Ecology does not give up any of its powers, as listed in Chapter 70.105D.030 RCW. The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this termination.

Mr. Alan J. Wertjes November 15, 2017 Page 2

Contact Information

If you have any questions about this notice, please contact me at 360-407-6241.

Sincerely,

Lawson Si

Rebecca S. Lawson, P.E., LHG Section Manager Toxics Cleanup Program, SWRO

Enclosures (2): A – Signed VCP Agreement B – Copy of Thurston County Quit Claim Deed

By Certified Mail: [91 7199 9991 7037 7462 2125]

cc: Judith Wirth, Havens Estate Investments, LLC Max Wills, Robinson-Noble Patrick Soderberg, Thurston County Environmental Health Stephanie Bussell, Ecology Tim Mullin, Ecology

Enclosure A

Signed VCP Agreement

RECEIVED

ALLS 1 CAUSE

MOP/ACREEMENT

CTECCIOCIY (SWRO)

INSTRUCTIONS: Submit this Agreement (original) to Ecology as part of your Application. Before submitting, enter the Customer's name and the Site's address on the first page and sign the Agreement on the second page. If your Application is accepted, then Ecology will do the following: 1) identify the Site and VCP project in the box below; 2) sign the Agreement; and 3) send you a copy of the completed Agreement.

This document constitutes an Agreement between the State of Washington Department of Ecology (Ecology) and <u>Alan J. Wertjes, Personal Representative of the Estate of John Havens Sr.</u> (Customer) to provide informal site-specific technical consultations under the Voluntary Cleanup Program (VCP) for the Site identified below and associated with the following address: <u>411 93rd Ave SE, Olympia, WA 98501-9701</u>.

The purpose of this Agreement is to facilitate independent remedial action at the Site. Ecology is entering into this Agreement under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC. If a term in this Agreement is defined in MTCA or Chapter 173-340 WAC, then that definition shall govern.

Services Provided by Ecology

Upon request, Ecology agrees to provide the Customer informal site-specific technical consultations on the independent remedial actions proposed for or performed at the Site consistent with WAC 173-340-515(5). Those consultations may include assistance in identifying applicable regulatory requirements and opinions on whether the remedial actions proposed for or conducted at the Site meet those requirements.

Ecology may use any appropriate resource to provide the Customer with the requested consultative services. Those resources may include, but shall not be limited to, those of Ecology and the Office of the Attorney General. However, Ecology shall not use independent contractors unless the Customer provides Ecology with prior written authorization.

In accordance with RCW 70.105D.030(1)(i), any opinions provided by Ecology under this Agreement are advisory only and not binding on Ecology. Ecology, the state, and officers and employees of the state are immune from all liability. Furthermore, no cause of action of any nature may arise from any act or omission in providing, or failing to provide, informal advice and assistance under the VCP.

Payment for Services by Customer

The Customer agrees to pay all costs incurred by Ecology in providing the informal site-specific technical consultations requested by the Customer consistent with WAC 173-340-515(6) and 173-340-550(6). Those costs may include the costs incurred by attorneys or independent contractors used by Ecology to provide the requested consultative services. Ecology's hourly costs shall be determined based on the method in WAC 173-340-550(2).

Ecology shall mail the Customer a monthly itemized statement of costs (invoice) by the tenth day of each month (invoice date) that there is a balance on the account. The invoice shall include a summary of the costs incurred, payments received, identity of staff involved, and amount of time staff spent on the project.

The Customer shall pay the required amount by the due date, which shall be thirty (30) calendar days after the invoice date. If payment has not been received by the due date, then Ecology shall withhold

FOR COMPLETION BY ECOLOGY ONLY	Facility / Site Name:	\$ 76654	95)	Λ	
	Facility / Site No.:	Ę	Johns	Futo	Wrecking
	VCP Project No.:	SINIZT		,,	. 4

ECY 070-324 (revised July 2008)

any requested opinions and notify the Customer by certified mail that the debt is past due. If payment has not been received within sixty (60) calendar days of the invoice date, then Ecology shall stop all work under the Agreement and may, as appropriate, assign the debt to a collection agency under Chapter 19.16 RCW. The Customer agrees to pay the collection agency fee incurred by Ecology in the course of debt collection.

Reservation of Rights / No Settlement

This Agreement does not constitute a settlement of liability to the state under MTCA. This Agreement also does not protect a liable person from contribution claims by third parties for matters addressed by the Agreement. The state does not have the authority to settle with any person potentially liable under MTCA except in accordance with RCW 70.105D.040(4). Ecology's signature on this Agreement in no way constitutes a covenant not to sue or a compromise of any Ecology rights or authority.

Ecology reserves all rights under MTCA, including the right to require additional or different remedial actions at the Site should it deem such actions necessary to protect human health and the environment, and to issue orders requiring such remedial actions. Ecology also reserves all rights regarding the injury to, destruction of, or loss of natural resources resulting from the release or threatened release of hazardous substances at the Site.

Effective Date, Modifications, and Severability

The effective date of this Agreement shall be the date on which this Agreement is signed by the Toxics Cleanup Program's Section Manager or delegated representative. This Agreement may be amended by mutual agreement of Ecology and the Customer. Amendments shall be in writing and shall be effective when signed by the Toxics Cleanup Program's Section Manager or delegated representative. If any provision of this Agreement proves to be void, it shall in no way invalidate any other provision of this Agreement.

Termination of Agreement

Either party may terminate this Agreement without cause by sending written notice by U.S. mail to the other party. The effective date of termination shall be the date Ecology sends notice to the Customer or the date Ecology receives notice from the Customer, whichever occurs first. Unless otherwise directed, issuance of a No Further Action opinion, either for the Site as a whole or for a portion of the real property located within the Site, shall constitute notice of termination by Ecology.

Under this Agreement, the Customer is only responsible for costs incurred by Ecology before the effective date of termination. However, termination of this Agreement shall not affect any right Ecology may have to recover its costs under MTCA or any other provision of law.

Representations and Signatures

The undersigned representative of the Customer hereby certifies that he or she is fully authorized to enter into this Agreement and to execute and legally bind the Customer to comply with the Agreement.

STATE OF WASHINGTON	Alan J. Wertjes
DEPARTMENT OF ECOLOGY	Name of Customer
Relecca Lawson	
Signature REBELCA LAWSON	Signature Alan J. Wertjes
Printed Name	Printed Name of Signatory
Section Manager, <u>SWR0</u>	Customer/Personal Representative/Attorney
Toxics Cleanyp Program Section	Tille of Signatory
Date:の / 27 / 10	Date: <u>August 18, 2010</u>

If you need this document in an alternative format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

ECY 070-324 (revised July 2008)

· .

Enclosure B

Copy of Thurston County Quit Claim Deed

.

When Recorded Return to:

William L. Fleming Keller Rohrback L.L.P. 1201 Third Avenue, Suite 3200 Seattle, WA 98101

Thurston County Treasurer

Real Estate Excise Tax Paid MML By HUM MUW Beputy

Pages: 3

QUIT CLAIM DEED

Grantor:

- Wertjes, Alan J., Personal Representative of Estate of John J. Havens, Sr., Deceased
- (2) Wirth, Judith M., Personal Representative of Estate of Sarah K. Havens, Deceased

Grantee:

Havens Estate Investments, LLC, a Washington limited liability company

Abbreviated Legal: Pors. 23-17-2W

Complete legal description on pgs. 1-2

APN:

12723210000, 12723210100, 12723210400, 12723210401, 12723210700, 12723220200

THE GRANTORS, ALAN J. WERTJES, Personal Representative of the Estate of John J. Havens, Sr., Deceased, acting with nonintervention powers granted by orders entered on October 20, 2006, and June 26, 2007, in the Superior Court of the State of Washington for Thurston County, Case No. 06-4-00444-7, and JUDITH M. WIRTH, Personal Representative of the Estate of SARAH K. HAVENS, Deceased, acting with nonintervention powers granted by order entered on December 29, 2011, in the Superior Court of the State of Washington for Thurston County, Case No. 11-4-00753-1, and not in their individual capacities, in consideration of transfer to a limited liability company of which the Grantors are all of the members, and for no monetary consideration, hereby convey and quit claim to HAVENS ESTATE INVESTMENTS, LLC, a Washington limited liability company, all right, title and interest of the Grantors in the following described real estate, situated in Thurston County, State of Washington, together with all afteracquired title of the Grantors therein:

Parcel A

The North 208.5 feet of the West 417.5 feet of the West half of the Northeast quarter of the Northwest quarter of Section 23, Township 17 North, Range 2 West, W.M.;

2017 19:51 AM Deed on County Washington CK. KELLER LLP

EXCEPT the West 90.75 feet;

.

AND EXCEPT county road known as 93rd Avenue on the North.

Parcel B

The South 195.5 feet of the North 405 feet of the West 417.5 feet of the West half of the Northeast quarter of the Northwest quarter of Section 23, Township 17 North, Range 2 West, W.M.

Parcel C

The East 54.25 feet of the North 330 feet of the Northwest quarter of the Northwest quarter of Section 23, Township 17 North, Range 2 West, W.M.;

EXCEPT the North 200 feet thereof.

Parcel D

The West half of the Northeast quarter of the Northwest quarter of Section 23, Township 17 North, Range 2 West, W.M.;

EXCEPT the North 405 feet;

AND EXCEPT that portion of the West 210 feet of the above described property lying Northerly of the South 150 feet thereof;

AND EXCEPT the East 238 feet.

DATED Sat 13 , 2017.

ALAN J. WERTJES Personal Representative of the Estate of John J. Havens, Sr., Deceased

DATED <u>Sept 13</u>, 2017.

M. WINT

JDDITH M. WIRTH Personal Representative of the Estate of Sarah K. Havens, Deceased

STATE OF WASHINGTON)) ss.

COUNTY OF THURSTON)

I certify that I know or have satisfactory evidence that ALAN J. WERTJES is the person who appeared before me, and said person acknowledged that he signed this instrument and acknowledged it to be his free and voluntary act as Personal Representative of the Estate of John J. Havens, Sr., Deceased, in the Superior Court of the State of Washington for Thurston County, Case No. 06-4-00444-7, for the uses and purposes mentioned in the instrument, and on oath stated that he was authorized to execute the instrument as such Personal Representative.

Notary Public

Print Name: <u>Enic M. G. Hert</u> My appointment expires: <u>11-11-2019</u>

STATE OF WASHINGTON) *THURSTOAL*) ss. COUNTY OF <u>KING</u>)

I certify that I know or have satisfactory evidence that JUDITH M. WIRTH is the person who appeared before me, and said person acknowledged that she signed this instrument and acknowledged it to be her free and voluntary act as Personal Representative of the Estate of Sarah K. Havens, Deceased, in the Superior Court of the State of Washington for Thurston County, Case No. 11-4-00753-1, for the uses and purposes mentioned in the instrument, and on oath stated that she was authorized to execute the instrument as such Personal Representative,

Print Name: <u>Frick(Sriller/</u> My appointment expires: <u>11-11-2019</u>

3

APPENDIX B

Max Wills

From:	Radcliff, Eugene (ECY) <erad461@ecy.wa.gov></erad461@ecy.wa.gov>
Sent:	Friday, January 31, 2014 1:42 PM
To:	Max Wills
Cc:	Alan Wertjes; Rose, Scott (ECY)
Subject:	John's Auto Wrecking: Draft work plan for supplemental remedial investigation and limited soil remediation - SW1127
Attachments:	FW: Ecology Submittal Requirements

Max:

I have had a chance to review the draft work plan for a supplemental remedial investigation (RI) and limited soil remediation for the John's Auto Wrecking facility (Site), located at 411 93rd Avenue Southeast in Olympia, Washington. The draft work plan appears to be based on the findings and recommendations presented in the July 2013 remedial investigation report and as well as issues we discussed in our meeting of September 24, 2013.

The draft work plan was is divided into eight separate tasks and I will add my comments as a separate sub-bullet to the bulleted task.

- Task 1: Completion of the final work plan following Ecology review will incorporate any recommended changes into a final work.
 - On-going.
- Task 2: Final debris removal and associated soil sampling.
 - This plan appears to have identified areas of concern and sufficient to the task.
- Task 3: Investigation of possible PCB-containing transformers.
 - This plan appears to have identified areas of concern and sufficient to the task.
- Task 4: Investigation of possible imported fill.
 - This plan appears to have identified areas of concern and sufficient to the task.
- Task 5: Quarterly groundwater sampling at MW-1.
 - This plan appears to have identified areas of concern and sufficient to the task.
 - If total metals analysis remains problematic and TDS is remains high, dissolved metals may help resolve this is, but should be used only after discussion with Ecology.
- Task 6: Wetland delineation and site-specific terrestrial ecologic evaluation (TEE).
 - This plan appears to have identified areas of concern and sufficient to the task.
 - Please include the actual wetland delineation report in an appendix.
- Task 7: EIM preparation and upload.
 - This plan appears to have identified areas of concern and sufficient to the task.
- Task 8: Report preparation.
 - This plan appears to have identified areas of concern and sufficient to the task.
 - Please review the attached enclosure for report and submittal requirements.

If you have any questions or comments please contact me.

Thanks you,

Eugene

Eugene Radcliff, L.G. Toxic Cleanup Program-Voluntary Cleanup Program <u>Washington Department of Ecology</u> (360) 407-7404 <u>erad461@ecy.wa.gov</u>

Max Wills

From:	Radcliff, Eugene (ECY) [erad461@ECY.WA.GOV]
Sent:	Wednesday, June 26, 2013 4:50 PM
To:	Max Wills
Cc:	Alan Wertjes; Callender, Alexander (ECY); Gerald Tousley; Rose, Scott (ECY)
Subject:	John's Auto Wrecking - SW1127: Site Visit

Max:

Thank you for meeting with us (Eugene Radcliff - VCP and Alex Callender (WQ)) at the Havens Auto Wrecking facility (Site) in Tumwater yesterday. My general impression was that the Site's appearance had dramatically improved in some areas (northeast corner of the Site), while observing little progress in other areas (pond and upper building area). Based on my Site visit yesterday, Ecology has some recommendations for you to consider when conducting further evaluation of the Site:

- Evaluate sediments and surface water samples in pond southern pond along property line. Sediment COCs: TPH-HCID*, metals, PAHs, PCBs, VOCs, semi-VOCs.
- Remove tires, wheels, and all other debris from water bodies. Removal of material should by least invasive, least destructive methods (e.g. by hand)
- Evaluate the pond banks to ascertain whether tires have been buried into the bank along north shoreline of pond.
- Review the electric pole transformer history; sample soils beneath the transformer for PCBs as warranted.
- Remove large "creosote" timber near southern property line (and any other treated lumber found) and sample soil for PAHs, pentachlorophenol, and metals.
- Segregate/remove debris pile from the northern portion of the Site and transport to appropriate off-Site disposal facilities, do not store debris piles on Site for extended periods of time. Ecology views the debris piles as a potential pollutant source, it may necessitate additional sample analyses as well as added cleanup costs if these piles remain on-Site. Items identified in the debris pile included fluorescent light ballasts, insulation, treated wood, a portion of a chimney, galvanized metals, and oil storage containers.
- BMPs should be used when storing debris piles on the Site. The county has primacy on solid waste storage issues and there may be permitting requirements for this type of storage activity. Please contact the Thurston County Health Department for additional guidance on solid waste issues
- Further investigation, based on historic maps and aerial imagery plus the appearance of the area soils being reworked south of the Hopkins Ditch, may be warranted.
- Small collections of metal, tires, and other debris remain scattered throughout the Site and should be removed.
- A Terrestrial Ecological Evaluation (TEE) should be conducted for the Site.
- We discussed the value of having a wetland delineation completed for the Site, this could be useful to help you complete a TEE.

The County has zoned the Site, consisting of five parcels, with two zoning classifications:

Zoned LIGHT INDUSTRIAL DISTRICT (LI)* (northern three parcels)

Subject to the provisions of this title, the following uses are permitted in the light industrial district:

3. Processing and Storage.

g.Junk, rags, paper, or metal salvage, storage, recycling or processing;

Zoned RURAL—ONE DWELLING UNIT PER TEN ACRES (R 1/10) (southern two parcels)

Primary uses.

Subject to the provisions of this title, the following uses are permitted in this district:

1. Single-family dwellings (limited to one primary residential structure per lot);

2.Agriculture;

3. Forest practices and forest management activities; and

4. Outdoor recreation.

Any additional investigation/feasibility study should take these zoning criteria into consideration as potential future uses.

Per our discussion at the Site, Ecology would not be receptive to providing a No Further Action Opinion fort a Site where re-contamination was possible. That is why the removal of any potential Site contamination, and its sources, is essential to moving forward in any future cleanup activities.

Ecology's Southwest Regional Office Water Quality Section may have some additional comments for you at a later date. I will forward to you if I receive any comments.

I would be happy to meet with you and your client to discuss future remedial actions at the Site if you would like.

If you have any questions or comments, please contact me.

Sincerely,

Eugene

Eugene Radcliff, L.G. Toxic Cleanup Program-Voluntary Cleanup Program <u>Washington Department of Ecology</u> (360) 407-7404 <u>erad461@ecy.wa.gov</u>

* TPH-HCID should be collected at selected locations, if the analysis indicated TPH-D or TPH-O then the samples should be NWTPH-Dx using without the silica gel/acid cleanup preparation.

JOHN'S AUTO WRECKING 411 93RD AVENUE SOUTHEAST OLYMPIA, WASHINGTON FACILITY/SITE NO. 57665495 VCP PROJECT NO. SW1127 REMEDIAL INVESTIGATION

JULY 2013

by

Max T. Wills, LHG Senior Hydrogeologist

3011 South Huson Street, Suite A Tacoma, Washington 98409 P: 253.475.7711 | F: 253.472.5846

www.robinson-noble.com

17625 130th Avenue NE, Suite 102 Woodinville, Washington 98072 P: 425.488.0599 | F: 425.488.2330

JOHN'S AUTO WRECKING 411 93rd Avenue Southeast, Olympia, Washington Facility/Site No. 57665495; VCP Project No. SW1127 Remedial Investigation July 2013

1.0 Introduction	1
1.1 PURPOSE	1
1.2 SITE DESCRIPTION AND PHYSICAL SETTING	2
2.0 Background	3
2.1 Site History	3
2.2 Previous Work	4
3.0 Current Work	5
3.1 General Procedures	5
3.2 AOC 1 (BODY SHOP AND AUTO REPAIR)	6
3.3 AOC 2 (BATTERY STORAGE AND REPAIR)	7
3.4 AOC 3 (Radiator Shop and Auto Repair)	8
3.5 AOC 4 (Hazardous Material Storage)	10
3.6 AOC 5 (BATTERY REPAIR AND STORAGE SHED)	10
3.7 AOC 6 (HAZARDOUS MATERIAL STORAGE BUNKER)	11
3.8 AOC 7&8 (Petroleum Storage, Car Crushing Area)	12
3.9 AOC 9A (Car Crushing Area)	14
3.10 AOC 9B (Car Crushing Area)	15
3.11 HOPKINS DITCH, POND, AND WETLAND AREAS	16
4.0 Conclusions and Recommendations	18
4.1 JUNE 25 [™] SITE VISIT WITH ECOLOGY	19
4.2 INITIAL EVALUATION OF POTENTIAL EXPOSURE PATHWAYS	20
4.3 RECOMMENDATIONS	21
5.0 References	22

TABLES

TABLE 1	PROJECT CONTACTS
TABLE 2	ANALYTES AND ANALYTICAL METHODS
TABLE 3	SELECT ANALYTICAL RESULTS FOR METALS IN SOIL SAMPLES FROM AOC 2
TABLE 4	SELECT ANALYTICAL RESULTS FOR METALS IN SOIL SAMPLES FROM AOC 3
TABLE 5	SELECT ANALYTICAL RESULTS FOR METALS IN GROUNDWATER SAMPLES FROM AOC 3
TABLE 6	SELECT ANALYTICAL RESULTS FOR METALS IN THE GROUNDWATER SAMPLE FROM AOC 6
TABLE 7	SELECT ANALYTICAL RESULTS FOR METALS IN SOIL SAMPLES FROM AOC 7&8
TABLE 8	SELECT ANALYTICAL RESULTS FOR METALS IN GROUNDWATER SAMPLES FROM AOC 7&8
TABLE 9	SELECT ANALYTICAL RESULTS FOR METALS IN SOIL SAMPLES FROM AOC 9A
TABLE 10	SELECT ANALYTICAL RESULTS FOR METALS IN GROUNDWATER SAMPLES FROM AOC 9A
TABLE 11	SELECT ANALYTICAL RESULTS FOR METALS IN SOIL SAMPLES FROM AOC 9B
TABLE 12	SELECT ANALYTICAL RESULTS FOR METALS IN GROUNDWATER SAMPLES FROM AOC 9B
TABLE 13	SELECT ANALYTICAL RESULTS FOR METALS IN SEDIMENT SAMPLES
TABLE 14	Select Analytical Results for PAHs in Sediment Samples

FIGURES

- FIGURE 1 VICINITY MAP
- FIGURE 2 SITE CONDITIONS IN 2000
- FIGURE 3 PARCEL MAP
- FIGURE 4 WETLANDS MAP
- FIGURE 5 HIGH GROUNDWATER HAZARD MAP
- FIGURE 6 FLOOD ZONES MAP
- FIGURE 7 POTENTIOMETRIC SURFACE MAP
- FIGURE 8 PREVIOUS INVESTIGATIONS AND REMEDIATION WORK
- FIGURE 9 AREAS OF CONCERN AND CURRENT INVESTIGATION WORK
- FIGURE 10 GEOLOGIC LOGS FOR DIRECT-PUSH BOREHOLES B12 THROUGH B14
- FIGURE 11 GEOLOGIC LOGS FOR DIRECT-PUSH BOREHOLES B15 THROUGH B17
- FIGURE 12 GEOLOGIC LOGS FOR DIRECT-PUSH BOREHOLES B18 THROUGH B20
- FIGURE 13 GEOLOGIC LOGS FOR DIRECT-PUSH BOREHOLES B21 THROUGH B23
- FIGURE 14 GEOLOGIC LOGS FOR DIRECT-PUSH BOREHOLES B24 AND B25
- FIGURE 15 CONSTRUCTION DETAIL AND GEOLOGIC LOG FOR MONITOR WELL MW-4
- FIGURE 16 CONSTRUCTION DETAIL AND GEOLOGIC LOG FOR MONITOR WELL MW-5

APPENDICES

- APPENDIX A PREVIOUS REPORTS
- APPENDIX B ECOLOGY OPINION LETTER (DATED 8-23-11), ROBINSON NOBLE DRAFT WORK PLAN, ECOLOGY'S EMAIL RESPONSE REGARDING WORK PLAN REVIEW (DATED 6-28-12)
- APPENDIX C LABORATORY REPORTS
- APPENDIX D ECOLOGY'S EMAIL FOLLOWING JUNE 25[™] SITE VISIT (DATED 6-26-13)

JOHN'S AUTO WRECKING 411 93rd Avenue Southeast, Olympia, Washington Facility/Site No. 57665495; VCP Project No. SW1127 Remedial Investigation July 2013

1.0 Introduction

The John's Auto Wrecking site (site) is located at 411 93rd Avenue Southeast in Olympia, Washington. Figure 1 shows the location of the site, and Figures 2 and 3 show its general configuration. The site is currently enrolled in the Washington State Department of Ecology's (Ecology) Voluntary Cleanup Program (VCP) and is being investigated and/or remediated under the auspices of the same. The site is assigned Facility/Site No. 57665495 and VCP Project No. SW1127. The owner of the site, John Havens, is deceased, and the site is in probate pending final regulatory closure. Table 1, below, summarizes the project contacts for the site.

Law Office of	Estato Roprosoptativo	Alan Wertjes, (260) 570 74				
Alan Wertjes		Attorney at Law	(300) 370-7400			
Robinson Noble, Inc.	Consultant Representative	Max Wills, LHG, Senior Hydrogeologist, Project Manager	(425) 488-0599			
Department of Ecology, Southwest Regional Office	VCP Site Manager	Eugene Radcliff, LG, Toxic Cleanup Program- Voluntary Cleanup Program	(360) 407-7404			

Table 1. Project Contacts

The site is not currently being utilized for any specific purpose. When it was active, the site was occupied by a fairly extensive automobile wrecking-yard operation. Figure 2 shows an aerial of the site prior to the removal of most of the old cars and generally reflects conditions when the site was an active wrecking yard. Most of the wrecked cars, miscellaneous auto parts, and equipment associated with the wrecking-yard operation have been removed from the site. Many of the buildings and shacks have also been dismantled and much of the associated debris removed. However, there are still a few vacant buildings and shacks present, primarily at the north end of the site, along with piles of wood and other debris from demolished structures. There are also minor amounts of automobile debris (i.e., tires, auto-body parts, etc.) scattered across various areas of the site, but the preponderance has been removed. Over the past several years, a fence with a locking gate was also erected around the site, which has helped to dissuade illegal dumping. Much of the site is overgrown with Scotch broom and other invasive vegetation. The current conditions of the site are generally reflected in Figure 3, which is presented using a more recent aerial photograph.

1.1 Purpose

The purpose of this Remedial Investigation (RI) report is to present a summary of previous investigation and remediation work completed at the site. This RI report also provides a compilation of our recent investigative data and a discussion based on our professional interpretation of these data. Finally, this RI presents a summary of findings made during a recent site visit with personnel from Ecology and a discussion of work that will still need to be completed to achieve eventual regulatory closure for the site.

1.2 Site Description and Physical Setting

The address of the site is 411 93rd Avenue Southeast, and it is specifically located within Section 23 of Township 17 north, Range 2 west, relative to the Willamette Meridian. Figure 1 shows the location of the site. As shown on Figures 2 and 3, the site is comprised of six contiguous parcels identified by Thurston County Assessor-Treasurer records as parcel numbers 12723210100, 12723220200, 12723210400, 12723210401, 12723210700, and 12723210000. Thurston County Assessor-Treasurer records indicate these six parcels cover an area of approximately 15 acres. The topography at the site is relatively flat with a gentle slope to the south toward Hopkins Ditch (see Figures 2 and 3). Land surface elevations range from 202 feet above mean sea level (MSL) at the northern end of the site, to 195 feet MSL near the south end of the site along Hopkins Ditch.

The site and surrounding area are located on a broad glacial outwash plain. Noble and Wallace (1966) and Drost and others (1998) both map the surface geology in this area as Vashon recessional outwash (Qvr). They describe the Qvr as consisting of a mix of poorly sorted silt, sand, and gravel, and note that the average thickness in the area of the site is approximately 25 feet. The standard sequence of Vashon glacial deposits is Qvr, underlain by till (Qvt), which is in turn underlain by advance outwash from the Vashon glaciation (Qva). The Qvt generally consists of a random mixture of clay, silt, sand, and gravel. This unit is also typically compact and has a relatively low permeability, at least as compared with that of the Qvr and Qva deposits. The Qva deposits, similar to the Qvr, are generally comprised of silty sands and gravels, but are often better sorted than the Qvr. Qvr and Qva deposits, when saturated generally form aquifers. Qvt deposits tend to form an aquitard. Mapping by Drost and others (1998) indicates that both the Qvt and Qva are present below the Qvr in the area of the site. Their maps indicate that the thickness of the Qvt is probably at least 25 feet in the area around the site and would, therefore, provide a relatively competent confining unit between the Qvr and Qva.

Drilling and excavation activities associated with our investigation of the site reached a maximum depth of 20 feet. The materials encountered were consistent with the descriptions of the Qvr provided by Noble and Wallace (1966) and Drost and others (1998). None of the borings or excavations completed during this project extended deep enough to penetrate the Qvt.

Soils in the area of the site have been classified by the United States Department of Agriculture (Soil Survey for the Thurston County Washington Area, 1990) as Nisqually loamy, fine sand (covering approximately the northern three quarters of the site) and Norma fine, sandy loam (covering approximately the southern quarter of the site). These soils are described as having developed on glacial outwash plains and on alluvial deposits, respectively. Both of these soils are described as having relatively high infiltration rates ranging from 1.98 to 5.98 inches per hour.

Surface water present on the site includes Hopkins Ditch, which is a small seasonal stream that traverses the southern portion of the site from east to west. There is also a small pond present on the southern half of parcel 12723210700, just north of Hopkins Ditch (Figures 2 and 3). Hopkins Ditch typically only has water in it during the wetter portions of the year and is often nearly dry in the late summer. When there is water in the ditch it does not appear to flow and the ditch is, in fact, more akin to a linear series of small disconnected ponds. The head of Hopkins Ditch is located just east of the site, and the site itself lies within the headwater-area of the Salmon Creek drainage basin. Maps of this area show that Hopkins Ditch becomes Salmon Creek approximately two miles west of the site (near Little Creek Road). Salmon Creek then flows into the Black River approximately three miles further west. The Black River eventually flows into the Chehalis River, which then flows to the sea at Grays Harbor.

Groundwater at the site is relatively shallow, ranging from approximately ten feet below ground surface (bgs) at the northern end of the site, to near land surface at the southern end of the site. Figure 4 shows the locations of designated wetlands and wetland buffer zones at the site. These data, which were obtained from the geographic information system (GIS) database on the Thurston County Assessor-Treasurer's website, show that wetland areas are prominent across the southern part of the site where groundwater is highest. These wetland areas also generally correspond with the area along Hopkins Ditch. GIS data obtained from the Thurston County Assessor-Treasurer's website also shows that several areas of the site are classified as both high groundwater hazard areas and flood zones. Figure 5 shows the designated high groundwater hazard areas on the site and the adjoining buffer zones. Figure 6 shows the designated flood zones, which again occur primarily on the southern portion of the site and generally parallel the corridor of Hopkins Ditch.

Noble and Wallace (1966) determined that the regional flow direction of the water table in the area of the site is to the northwest. The water table is presumed to reflect conditions within the Qvr aquifer. Similarly, the numerical groundwater model of Northern Thurston County compiled by Drost and others (1999) indicates that the regional groundwater flow direction within the Qva and deeper aquifers is also to the northwest. Drost and others (1999) did not specifically model flow directions within the Qvr, but based on Noble and Wallace (1966) and observations made during our investigation, flow directions within the Qvr aquifer appear to be consistent with those in deeper systems.

Figure 7 presents a potentiometric (water table) surface map for the Qvr aquifer, constructed from the water levels measured in shallow monitoring wells at the site. As shown, shallow groundwater below the site (the Qvr aquifer) flows primarily toward the northwest, consistent with the regional flow direction determined by other workers. The potentiometric surface map, however, also shows that there is localized flow toward Hopkins Ditch. The potentiometric surface map presented in Figure 7 reflects conditions during the wetter portion of the year (late February) and this apparent draw of groundwater toward the ditch suggest that there is at least a minor amount of flow through the ditch during this period. It is presumed that this localized effect is diminished or absent during warmer periods of the year when water in the ditch is lower or absent.

A query of the GIS data compiled on the Thurston County Assessor-Treasurer's website indicates that there is one PUD-owned water system located approximately 1,800 feet west of the site (on parcel 12722110801). However, no specific information for this water system was available, and parcel information indicates it is located on private land. A further review of Ecology's well log database did not reveal any additional information for this particular system. Our review of Ecology's well log database found a number of logs for single domestic-type wells in the area around the site, but no logs for larger water systems (Group A or B). Additionally, GIS data on the Thurston County Assessor-Treasurer's website did not indicate any other PUDowned water systems located within one mile of the site.

2.0 Background

2.1 Site History

As described above in Section 1.0, the site was formally occupied by a relatively large autowrecking operation, which involved the majority of the 15-acre site (see Figure 2). There are no records indicating that the site was previously developed for any other purposes. The site has been inactive since the death of the former owner, John Havens, and most of the material associated with the former wrecking yard (old automobiles, various machinery, and several structures) was cleared from the site between 2008 and 2009 (see Figure 3).

2.2 Previous Work

Robinson Noble first became involved with the site in 2008. At that time, Robinson Noble (dba Robinson, Noble, & Saltbush, Inc.) completed a review of available records and documents on file with Ecology and the Thurston County Health Department (TCHD). This review found that the site was listed on Ecology's Hazardous Site List with a Site Hazard Assessment (SHA) ranking of "1." Sites with SHA rankings of "1" or "2" are loosely defined by Ecology as posing a risk to human health and the environment and as having the highest priority for cleanup. Our review also found that the owners of the site had previously enrolled the site in Ecology's VCP to address the SHA ranking. However, the site was subsequently removed from the VCP due to inactivity.

Limited investigations completed while the site was previously enrolled in the VCP (prior to Robinson Noble's involvement at the site) identified nine areas of concern (AOCs). These AOCs were based on observations made at that time by a representative of TCHD (Mr. Patrick Soderberg), as well as specific types of reported past uses in these areas when the site was an active wrecking yard. Upon Robinson Noble becoming involved at the site, it was reenrolled in the VCP, and much of the subsequent investigation and remediation work completed has been focused on addressing the specific issues within each of the previously designated AOCs. Figure 8 presents a map that shows the location of each AOC, along with a description of previous uses associated with each. Figure 8 also shows the locations of various borings, wells, and test pits previously completed by Robinson Noble to investigate the various AOCs.

Previous work completed by Robinson Noble is documented in the following listed letter reports. Copies of the complete letter reports are included in Appendix A of this report.

2.2.1 Site Investigation/characterization letter report, Havens Property (aka) Johns Auto Wrecking, 411 93rd Avenue SE, Olympia, Washington, April 21, 2009

In February 2009, Robinson Noble conducted a subsurface investigation to evaluate the presence of potential contaminants associated with the former wrecking yard. This investigation included an evaluation of both soil and groundwater in the nine AOCs and was accomplished through the sampling of numerous borings and test pits (see Figure 8). In general, analytical results identified oil-range petroleum hydrocarbons and metals in excess of applicable Model Toxic Control Act (MTCA) Method A cleanup levels in several surface and near surface soil samples. These samples were all collected in areas with visible ground staining. Soil analyses did not detect any contamination at depth. Analyses of groundwater indicated several samples contained metal concentrations in excess of applicable MTCA Method A cleanup levels. However, groundwater samples during this phase of work were obtained through temporary wells set in direct-push soil borings, and the groundwater samples with higher detected levels were notably turbid. As such, the elevated metal concentrations in these samples were attributed to the sampled water having high amounts of suspended solids.

2.2.2 Site Remediation of the Havens Property (aka Johns Auto Wrecking) 411 93rd Avenue SE letter report, Olympia, Washington, December 10, 2009

In August 2009, Robinson Noble conducted further investigations and remediation based on the results of our previous site investigation/characterization. During this second effort, impacted soils identified during our earlier characterization were excavated and removed from the site for disposal. At this time, additional sources of contamination (i.e., drums and tanks containing oil,

automotive batteries, etc.) were also removed and transported to an appropriate disposal facility. Confirmation sampling conducted at the conclusion of this effort did not indicate the presence of any remaining contamination and verified that the remediated impacts were constrained to the near surface.

Three monitoring wells, MW-1, MW-2, and MW-3 (see Figure 8), were also installed during this second effort. These wells, which were completed in the shallowest groundwater system (Qvr), were used to establish a groundwater gradient for the site and to reevaluate potential metal impacts to the groundwater. The groundwater gradient was determined from these wells to be westerly to northwesterly across the site. Metal analyses of groundwater samples obtained from these wells did not detect the presence of metals in any of the samples, verifying our previous conclusion that metal detections in the groundwater samples collected from direct-push borings were an artifact of the samples having high turbidity.

3.0 Current Work

Following the completion of our initial investigation and remediation work (described above in Section 2.0), Ecology conducted a review of the work and provided a formal opinion. Ecology's formal opinion is presented in their letter dated August 23, 2011 (see Appendix B). As noted in the letter, Ecology identified several areas it felt required additional efforts to fully characterize potential contamination at the site.

Subsequently, Robinson Noble prepared a draft work plan to address the site characterization issues noted by Ecology in their opinion letter. The draft work plan is dated February 2012, and a copy is also provided in Appendix B. In our work plan, we contested some of the issues raised by Ecology and provided clarification and/or alternative investigative approaches to fully characterize the site. The work plan was then submitted to Ecology for review. Ecology responded via an email (dated June 28, 2012) and either accepted each of the Tasks outlined in the work plan or offered suggestions on how to modify or approach addressing specific issues of concern. A copy of Ecology's email response is also provided in Appendix B. Our draft work plan, together with Ecology's suggested modifications were then used as the basis for executing the current phase of work.

3.1 General Procedures

Field work for the current phase of work was completed in February and March 2013. Field work included soil and groundwater sampling from direct-push borings (groundwater samples were collected through temporary screens set in each boring), soil samples from hand borings, installation and sampling of new monitoring wells, collection of near surface grab samples from the wetland area at the south end of the site, and sediment sampling of Hopkins Ditch and the nearby pond. Figure 9 shows the locations where various borings and monitoring wells were installed and where samples were collected. Figures 10 through 14 present geologic logs of the direct-push borings. Figures 15 and 16 show geologic logs and construction details for monitoring wells MW-4 and MW-5, respectively. Geologic logs of previously completed borings and monitoring wells (i.e., MW-1 through MW-3) are presented in our previous reports (see Appendix A).

During field work, a Robinson Noble geologist was on site to field screen soils from each of the borings for signs of potential contamination. Field screening was accomplished using visual and olfactory cues and a hand-held photo ionization detector (PID). Field screening, as applicable, was used in a general way to guide the collection of soil samples to try to insure that worst-case soil samples were collected and subsequently analyzed. An on-site mobile laboratory was also utilized during most of the field work for analysis of petroleum hydrocarbons. On-site pe-

troleum hydrocarbon analysis was, in effect, used as an additional screening tool. Analyses were performed using Ecology analytical method NWTPH-HCID to determine the presence or absence of gasoline- through heavy oil-range petroleum hydrocarbons. In the event that petroleum hydrocarbons were detected, monitoring wells were set to better assess conditions, and additional analyses performed to quantify the detected petroleum hydrocarbon and/or to assess other potential analytes such as polycyclic aromatic hydrocarbons (PAHs).

All other analyses completed during this project were conducted at fixed-site laboratories. All samples were collected in appropriate laboratory supplied containers and, in most cases, delivered directly to the on-site mobile laboratory for proper storage and preservation pending final analysis. On other occasions when the mobile laboratory was not on site, collected samples were immediately placed in a cooler containing blue ice[®] and maintained at temperatures below 4° Celsius pending delivery to the laboratory. Appropriate chain-of-custody procedures were adhered to throughout this project and no discrepancies were noted. Additionally, all samples were submitted and analyzed within prescribed holding times for the particular analyses being performed. The various laboratories used during this project are each accredited for the particular analyses that they performed, and each laboratory provided results for required QA/QC analyses. A review of these QA/QC analyses did not reveal any discrepancies.

Analytical Method	AOC(s)
NWTPH-HCID	1, 2, 3, 5, 6, 7&8, 9A, 9B, Stream and wetland
EPA Method 8260C	1, 3, 6
EPA Method 8270 (SIM)	Stream and wetland
EPA Method 7010 Series	2, 3, 5, 6, 7&8, 9A, 9B, Stream and wetland
EPA Method 7471	2, 3, 6, 7&8, 9A, 9B, Stream and wetland
EPA Method SW846 6010B	2, 3, 6, 7&8, 9A, 9B, Stream and wetland
EPA Method 200.7	2, 3, 6, 7&8, 9A, 9B, Stream and wetland
EPA Method SW846 6010B	Stream and wetland
GC-FID	3
EPA Method 8082	5, 6
	Analytical Method NWTPH-HCID EPA Method 8260C EPA Method 8270 (SIM) EPA Method 7010 Series EPA Method 7471 EPA Method SW846 6010B EPA Method SW846 6010B GC-FID EPA Method 8082

Table 2. Analytes and Analytical Methods

The complete laboratory reports for all of the analyses performed during this project are provided in Appendix C. Table 2 lists all of the various analytical methods used during this project and provides a list of the various areas where each analysis was employed. A detailed discussion of the work completed for each AOC or area, along with a discussion of the pertinent analytical results, is provided in the following sections.

3.2 AOC 1 (Body Shop and Auto Repair)

When the site was active, this AOC was reportedly used for limited body-shop work and general auto repair. There are currently two structures located within this AOC: a garage-like structure with an attached office and smaller outbuilding located approximately 50 feet to the west of the larger building. Both of these buildings are locked and boarded shut and were not accessible during site work. There is also a large pile of building and other debris (lumber, glass, brick, metal, etc.) located approximately 50 feet south of the two structures where a third structure appears to have been demolished. Although unsightly, only minor hazardous (source) materials were observed in this debris pile (i.e., lumber preserved with creosote, florescent light fixtures, etc.).

During our previous investigations, we observed numerous five-gallon buckets containing waste oil in the area between the two existing structures. We also observed a small area of surface staining and distressed vegetation in this same area. Limited surface staining was also observed in the area south of the two structures (in the area of the current debris pile). Following the removal of the oil buckets and excavating the soils in the areas of observed surface staining, we collected both soil and groundwater samples and analyzed them for volatile organic compounds (VOCs), gasoline- through oil-range hydrocarbons, and metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel). Laboratory analyses did not indicate the presence of any of the analytes above applicable cleanup levels (see previous reports in Appendix A and draft work plan in Appendix B).

For the current investigation, and with Ecology's concurrence, three additional borings were completed in this AOC. As shown on Figure 9, borings B12, B13, and B14 were completed respectively on the south side of the small outbuilding, in the area between the two structures, and in the area just south of the building-material debris pile. Geologic logs of the material encountered in each of these borings are presented in Figure 10. Field screening did not indicate the presence of contamination in any of these borings. Soil and groundwater samples collected from each of these three borings were initially analyzed for petroleum-hydrocarbon identification via the mobile laboratory. This initial laboratory screening did not indicate the presence of petroleum hydrocarbons in any of the samples. Therefore, no additional analyses for petroleum-hydrocarbon related compounds (i.e., PAHs) were conducted, and monitoring wells were not completed.

Additional analyses for VOCs were conducted for both the soil and groundwater samples. VOC analysis indicated the presence of tetrachloroethen (PCE) at a concentration of 1.90 μ g/L in the groundwater sample collected from B13 (sample number B13-W, see Appendix C). This is below the MTCA Method A cleanup level for PCE of 5.0 μ g/L. VOC analyses did not detect the presence of any other VOCs in any of the other samples collected from AOC 1.

3.3 AOC 2 (Battery Storage and Repair)

This AOC was reportedly used as a battery storage and repair area. The specific location where batteries were stored within this AOC has never been definitively determined. Our initial investigations in this area focused primarily on areas with distressed vegetation. Initial soil and groundwater samples collected from one boring (B2), along with soil samples collected from a test pit (TP2A) southeast of the current AOC (see Figure 8), were analyzed for VOCs, gasoline-through oil-range hydrocarbons, and metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel). Laboratory analyses of a near-surface soil sample indicated low levels of nickel (well below applicable cleanup levels). Laboratory analyses did not detect the presence of any other analytes above applicable laboratory detection limits in any of the other samples. Further assessment of this AOC using aerial photographs shows that the areas of distressed vegetation were previously covered with piles of cars, and therefore, may not have been the actual battery storage location. The only place near this AOC not previously covered with cars is a small, tree-covered area located slightly to the northwest (see Figures 2, 8, and 9, and previous reports in Appendix A).

To better characterize this AOC, again with Ecology's concurrence, we completed two hand borings (HB1 and HB2) and installed a new monitoring well (MW-4). As shown in Figure 9, the borings and monitoring well were completed in the northwestern portion of the previously defined AOC, in the area below the large trees. A geologic log and construction details for MW-4 are presented in Figure 15. Standard field screening did not indicate the presence of contamination in either of the hand borings or the boring for the monitoring well. Because this area is a suspected storage area for batteries, additional field screening for pH was also conducted. The pH levels measured in this area were all within a reasonably normal range (i.e., 6.5 to 7.5). Soil samples collected from the two hand borings and the boring for MW-4 were initially analyzed for petroleum hydrocarbon identification via the mobile laboratory. This initial laboratory screening did not indicate the presence of petroleum hydrocarbons in any of the soil samples. Subsequent laboratory analysis of a water sample collected from MW-4 also did not indicate the presence of petroleum hydrocarbons. Therefore, no additional analyses for petroleumhydrocarbon related compounds were conducted in this AOC.

Analyses of metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel) were conducted for both soil and groundwater samples collected from this AOC. As shown in Table 3 below, laboratory analyses indicated the presence of specific metals in a shallow soil sample collected from the boring for MW-4 (sample MW4-3) and the shallow soil samples collected from the two hand borings (samples HB1-3 and HB2-3). All of these detections, however, were below applicable cleanup levels. Additionally, zinc was detected at a concentration of 6 μ g/L in the groundwater sample collected from MW-4, which is well below the applicable cleanup level of 4,800 μ g/L. Laboratory analyses did not detect the presence of any other metals in any of the samples collected from AOC 2 (see Appendix C).

Sample Number	Arsenic (mg/Kg)	Chromium ² (<i>mg/Kg</i>)	Zinc (mg/Kg)	Copper (mg/Kg)	Nickel (mg/Kg)
MW4-3	8	7	nd	12	21
HB1-3	9	8	25	12	20
HB2-3	8	8	nd	13	19
MTCA	20 ¹	19/2,000 ³	24,000 ⁴	3,200 ⁴	1,600 ⁴

Table 3. Select Analytical Results for Metals in Soil Samples from AOC 2

Notes: "nd" indicates not detected above applicable laboratory detection limits

1 - MTCA Method A soil cleanup level for unrestricted land use

2 - Total concentration of hexavalent chromium (chromium VI) and chromium III

3 - MTCA Method A cleanup level for chromium VI and III, respectively

4 - MTCA Method B non-carcinogenic cleanup level

3.4 AOC 3 (Radiator Shop and Auto Repair)

A garage structure within this AOC was reportedly used as a radiator shop and for general auto repair. This was also reported as the entry point for cars entering the wrecking yard. During our previous investigations, surface staining was observed on the gravel area east of the garage. Analyses of grab samples from this area detected oil-range petroleum hydrocarbons at a concentration of 500 mg/Kg (below the MTCA Method A cleanup level of 2,000 mg/Kg) and lead at a concentration of 230 mg/Kg (just below the MTCA Method A cleanup level of 250 mg/Kg). Minor detections (below applicable cleanup levels) of zinc, copper, and nickel were also detected in the shallow soils. Deeper soil samples and a groundwater samples collected from a boring placed in this AOC (see Figure 8) were analyzed for gasoline- through oil-range hydrocarbons, VOCs, and metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel). The groundwater sample was also analyzed for glycols. Laboratory analyses did not detect any of these analytes in any of the deeper soil samples or the groundwater sample. During subsequent field work, areas of surface staining were excavated and removed from the site. Addi-

tionally, two trenches were excavated along the southern and western edges of the garage, and soils from the trenches were field screened for signs of possible contamination. Field screening did not indicate that soils were impacted (see previous reports in Appendix A and our draft work plan in Appendix B).

The garage structure has since been removed from this area, and currently all that remains is the concrete slab. During the current investigation, with Ecology's concurrence, three additional borings were completed in AOC 3. As shown on Figure 9, borings B15 and B16 were completed respectively on the western and southern edges of the slab. Boring B17 was installed through a seam in the center of the slab area. Geologic logs of the material encountered in each of these borings are presented in Figure 11. Field screening did not indicate the presence of contamination in any of these borings. Soil and groundwater samples collected from each of these three borings were initially analyzed for petroleum-hydrocarbon identification via the mobile laboratory. This initial laboratory screening did not indicate the presence of petroleum hydrocarbons in any of the samples. Therefore, no additional analyses for petroleum hydrocarbon-related compounds were conducted, and monitoring wells were not completed.

Soil and groundwater samples from the three borings were submitted to the laboratory for VOC and glycol analyses. Laboratory analyses did not detect VOCs or glycols in any of the samples. Soil and groundwater samples were also submitted for analysis of metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel). As shown in Table 4, laboratory analyses indicated the presence of specific metals in the shallow soil samples collected from each of the three borings and metals in a deeper sample collected from boring B17. All of these detections, however, are below applicable cleanup levels. Laboratory analyses did not detect the presence of any other metals in any of the soil samples collected from AOC 3 (Appendix C).

Sample Number	Arsenic (mg/Kg)	Chromium ² (mg/Kg)	Zinc (mg/Kg)	Copper (mg/Kg)	Nickel (mg/Kg)
B15-3	9	nd	nd	13	21
B16-3	9	8	5	14	22
B17-3	10	nd	nd	12	20
B17-9	nd	14	16	20	22
MTCA	20 ¹	19/2,000 ³	24,000 ⁴	3,200 ⁴	1,600 ⁴

Table 4. Select Analytical Results for Metals in Soil Samples from AOC 3

Notes: "nd" indicates not detected above applicable laboratory detection limits

1 - MTCA Method A soil cleanup level for unrestricted land use

2 - Total concentration of hexavalent chromium (chromium VI) and chromium III

3 - MTCA Method A cleanup level for chromium VI and III, respectively

4 - MTCA Method B non-carcinogenic cleanup level

As shown below in Table 5, laboratory analyses also indicated the presence of specific metals in the groundwater samples collected from each of the three borings installed at AOC 3. The results presented in Table 5 represent total metal concentrations for each analyte, and as shown, exceed applicable cleanup levels for arsenic, chromium, lead, copper, and nickel. However, each of these samples was collected through a temporary well set in a direct-push boring, and the groundwater in these wells at the time of collection was notably turbid. As discussed previously in Section 2.2, the elevated metal concentrations in each of these groundwater samples are likely attributable to the sample containing high amounts of suspended solids. Following the initial analyses for total metals, each groundwater sample found to exceed cleanup levels was reanalyzed for dissolved metals. These subsequent analyses did not detect the presence of any dissolved metals above laboratory detection limits in any of the groundwater samples (Appendix C).

Sample	Arsenic	Cadmium	Chromium	Lead	Zinc	Copper	Nickel
Number	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
B15-W	136	2	65	30	90	1,160	852
B16-W	59	1	79	20	81	297	789
B17-W	17	nd	60	14	115	126	382
MTCA	5 ¹	5 ¹	501	15 ¹	4,800 ²	640 ²	320 ²
Notes: "nd"	Jotes: "nd" indicates not detected above applicable laboratory detection limits						

Table 5. Select Analytical Results for Metals in Groundwater Samples from AUC	able 5. Select Ana	lytical Results for N	Aetals in Groundwate	r Samples from A	70C 3
---	--------------------	-----------------------	----------------------	------------------	-------

"nd" indicates not detected above applicable laboratory detection limits Bolded values indicate concentrations exceed applicable cleanup levels

Bolded values indicate concentrations exceed applicable cleanup 1 - MTCA Method A cleanup level for groundwater

2 - MTCA Method B non-carcinogenic cleanup level

3.5 AOC 4 (Hazardous Material Storage)

This AOC is relatively small, covering the area where a small shed was previously located. Personnel from TCHD reported that this shed covered an area approximately 8 feet by 12 feet and was used to store various hazardous materials. During our previous investigation, a test pit was excavated in the area of the former shed (see Figure 8). Soil samples from near surface to a depth of approximately four feet were collected and submitted for analyses of gasolinethrough oil-range hydrocarbons, VOCs, and metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel). The only analyte detected was nickel in one of the shallow samples at a concentration of 20 mg/Kg, well below the cleanup level of 1,600 mg/Kg (see previous reports in Appendix A and the draft work plan in Appendix B).

Considering the size of this AOC and the work that has already been accomplished in this area, our draft work plan did not recommend any additional work for this AOC. Ecology conceded to this on the condition that other work being accomplished down gradient from AOC 4 did not suggest potential groundwater concerns (see Appendix B). As described previously in Section 1.2, shallow groundwater below the site flows toward the northwest, and therefore, other work completed down gradient from AOC 4 includes the work previously described for AOCs 1, 2, and 3 in Sections 3.2, 3.3, and 3.4, respectively. As described for each of these three AOCs, no impacts to either soil or groundwater were found, and therefore, no additional work was accomplished for AOC 4. As noted by Ecology, and as shown on Figure 5, AOC 4 lies within a designated high groundwater hazard area. However, because no contamination has been found in this AOC, this is not considered a major concern.

3.6 AOC 5 (Battery Repair and Storage Shed)

This AOC is similar to AOC 4 in that most of the original source materials were contained within a small wooden shed. This shed is still present at the site, but all the original source materials have been removed. Personnel from TCHD reported that the shed was previously used primarily for storage and repair of automotive batteries. The current structure has three walls (is open to the east) and has an exposed dirt floor.

Previous work in this AOC included the excavation of test pits and the installation of a directpush boring (see Figure 8). Soil samples collected from the test pits and the boring and an additional groundwater sample collected from the boring, were each analyzed for VOCs, gasolinethrough oil-range hydrocarbons, metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel), and polychlorinated biphenyls (PCBs). Laboratory analyses found low-level oilrange hydrocarbons and select metals in one near-surface soil sample and low levels of lead and copper in the groundwater sample. The laboratory analyses did not indicate the presence of any analyte above applicable cleanup levels in any of the samples (see previous reports in Appendix A and draft work plan in Appendix B).
Following their review of our draft work plan, Ecology concurred with our recommendation to install an additional direct-push boring in this AOC but recommended that it be completed on the down-gradient side of the shed (see Appendix B). As such, boring B18 was completed adjacent to the west side of the shed, approximately midway along the west wall so that it was located just slightly south of the boring installed during our previous work (see Figures 8 and 9). A geologic log of the materials encountered in B18 is presented in Figure 12. Standard field screening did not indicate the presence of any contamination. Additional field screening for pH was also conducted (because the area was used for battery storage) but found that all levels were within a reasonably normal range (6.5 to 7.5). The soil and groundwater samples collected from B18 were also initially analyzed for petroleum hydrocarbon identification via the mobile laboratory. This initial screening did not indicate the presence of petroleum hydrocarbon related compounds were conducted in this AOC, and a monitoring well was not completed.

Additional laboratory analyses of both soil and groundwater were conducted for lead and PCBs. These analyses did not detect the presence of lead in any of the soil samples or PCBs in the groundwater sample. However, lead was detected in the groundwater sample at a concentration of 18 μ g/L, which is just above the cleanup level of 15 μ g/L. As discussed previously (Sections 2.2 and 3.4), the elevated lead concentration found in the groundwater sample from B15 is likely attributable to the fact that it was obtained through a temporary well set in a direct-push boring (and therefore had high turbidity). Subsequent analysis for dissolved lead did not detect lead above laboratory detection limits in this sample (Appendix C).

3.7 AOC 6 (Hazardous Material Storage Bunker)

This AOC is the site of a former storage building/bunker reportedly used for the storage of various hazardous materials. Currently, the only portion of the structure that is remaining is the concrete base which consists of a fairly massive floor slab with partial concrete walls. All previously stored source materials have been removed. Previous work in this area included remedial excavations to remove observed petroleum staining on the east side of the structure and a make-shift sump (reportedly constructed with a cut-down 55-gallon drum) on the northwest side of the structure. A direct-push boring with a temporary well for groundwater sampling was also completed on the east side of the structure (see boring B6 on Figure 8). Confirmation soil samples collected from the margins of the remedial excavations and soil and groundwater samples collected from the boring were analyzed for a variety of analytes including VOCs, gasoline- through oil-range hydrocarbons, metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel), PCBs, and carcinogenic polycyclic aromatic hydrocarbons (cPAHs). Copper and zinc were detected in several of the soil samples at concentrations well below applicable cleanup levels. Laboratory analyses did not detect any of the other analytes in any of the other samples (see previous reports in Appendix A and the draft work plan in Appendix B).

Ecology concluded in their formal opinion letter (Appendix B) that the soil boring (B6) was not located appropriately to evaluate potential groundwater impacts in this AOC. With Ecology's concurrence, our draft work plan proposed installation of an additional soil boring to collect a groundwater sample in the area of the former sump (see TP6C on Figure 8). A boring at this location would also be located on the down-gradient side of the AOC, in a good position to evaluate potential groundwater impacts within the AOC as a whole.

For the current phase of work, boring B19 was installed near the northwest end of the bunker (Figure 9). A geologic log of the materials encountered in this boring are presented in Figure 12. Field screening of the soils from B19 did not indicate the presence of contamination. The groundwater sample collected from B19 was initially analyzed for petroleum-hydrocarbon iden-

tification via the mobile laboratory, which did not indicate the presence of petroleum hydrocarbons. Therefore, no additional analyses for petroleum hydrocarbon-related compounds were conducted, and a monitoring well was not completed.

The groundwater sample was submitted to the laboratory for additional analyses, which included VOCs, metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel), and PCBs. Laboratory analyses did not detect the presence of any VOCs or PCBs. However, as shown below in Table 6, select metals were detected in the groundwater sample, and the analyses indicated that arsenic, chromium, and lead were present at concentrations in excess of the applicable cleanup levels. However, as with previous metal analyses (see Sections 2.2, 3.4, and 3.6), the elevated metal concentrations are likely the result of high turbidity in the groundwater sample. Subsequent analyses of dissolved arsenic, chromium, and lead did not detect the presence of any of these analytes above the applicable laboratory detection limits (see Appendix C).

Sample	Arsenic	Cadmium	Chromium	Lead	Zinc	Copper	Nickel
Number	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
B19-W	111	nd	83	33	119	285	199
MTCA	5 ¹	5 ¹	501	15 ¹	4,800 ²	640 ²	320 ²
votes: "nd" indicates not detected above applicable laboratory detection limits							

Table 6. Select Analytical Results for Metals in the Groundwater Sample from AOC 6

"nd" indicates not detected above applicable laboratory detection limits

Bolded values indicate concentrations exceed applicable cleanup levels

1 - MTCA Method A cleanup level for groundwater

2 - MTCA Method B non-carcinogenic cleanup level

3.8 AOC 7&8 (Petroleum Storage, Car Crushing Area)

AOC 7&8 is the consolidated area of two formerly separated but adjacent AOCs. This AOC was reportedly the site of ongoing car-crushing activities, and TCHD suggested that previous soil sampling in this area identified petroleum contamination. However, official documentation substantiating these findings has never been located. Work completed during our previous investigations focused primarily on areas where car crushing was reported to have occurred and in areas with distressed vegetation.

Our previous investigations involved the excavation of several test pits and the drilling of one direct-push boring (see Figure 8). Soil and groundwater samples collected from the test pits and the boring were analyzed for VOCs, gasoline- through oil-range hydrocarbons, and metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel). Laboratory analyses indicated low levels of oil-range hydrocarbons and various metals in several of the near surface soil samples, but none of the analytes detected exceeded applicable cleanup levels and no other analytes (i.e., VOCs, gasoline-range hydrocarbons) were detected in any of the samples. Laboratory analyses of the groundwater sample collected from the direct-push boring detected concentrations of several metals above cleanup levels, but as discussed previously, these detections were attributed to high turbidity in the sample. A monitoring well (MW-1) was subsequently installed in this AOC specifically for assessing potential metals in the shallow groundwater. Laboratory analyses of a groundwater sample from this monitoring well did not detect any metals above laboratory detection limits (see previous reports in Appendix A).

In their formal opinion letter, Ecology concluded (Appendix B) that, given the size of this AOC, an insufficient number of borings had been completed to properly characterize the area. With Ecology's concurrence, our draft work plan proposed completion and sampling of three additional direct-push borings and four hand borings. These were completed as borings B20 through B22 and HB3 through HB6 (see Figure 9). Figures 12 and 13 present logs of the materials encountered in B20 through B22. Field screening conducted during the completion of

these borings did not indicate the presence of any contamination. Soil and groundwater samples collected from each of the new borings were also analyzed for petroleum-hydrocarbon identification via the mobile laboratory. This initial screening did not indicate the presence of petroleum hydrocarbons in any of the samples, so no additional analyses for petroleum hydrocarbon-related compounds were conducted.

Soil and groundwater samples from each of the new borings were also analyzed for metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel). As shown below in Table 7, laboratory analyses indicated the presence of low levels of specific metals in soils from all of the borings, except HB6. All of these detections, however, are below applicable cleanup levels.

Sample Number	Arsenic (mg/Kg)	Chromium ² (<i>mg/Kg</i>)	Lead (mg/Kg)	Zinc (mg/Kg)	Copper (<i>mg/Kg</i>)	Nickel (mg/Kg)
B20-6	nd	nd	nd	nd	6	16
B21-2	8	9	6	6	6	20
B21-5	nd	13	nd	12	6	8
B22-6	7	7	nd	nd	7	12
HB3-3	6	8	nd	nd	11	20
HB4-3	nd	8	nd	nd	nd	10
HB5-1	nd	nd	nd	nd	nd	16
HB6-1	nd	nd	nd	nd	nd	nd
MTCA	20 ¹	19/2,000 ³	250 ¹	24,000 ⁴	3,2004	1,6004

Table 7. Select Analytical Results for Metals in Soil Samples from AOC 7&8

Notes: "nd" indicates not detected above applicable laboratory detection limits

1 - MTCA Method A soil cleanup level for unrestricted land use

 $\mathbf 2$ - Total concentration of hexavalent chromium (chromium VI) and chromium III

3 - MTCA Method A cleanup level for chromium VI and III, respectively

4 - MTCA Method B non-carcinogenic cleanup level

As shown below in Table 8, laboratory analyses also indicated the presence of specific metals in the groundwater samples collected from each of the three direct-push borings. Initial analyses indicate that total metal concentrations from these borings exceed applicable cleanup levels for arsenic, cadmium, chromium, lead, copper, and nickel. However, each of these samples was notably turbid, and elevated metal concentrations in the majority of these samples are attributable to the sampled groundwater containing high amounts of suspended solids. With the exception of the groundwater sample from boring B22 (sample number B22-W), subsequent analyses for dissolved metals did not indicate the presence of any metals above laboratory detection limits in the remaining samples (Appendix C). Dissolved lead was detected in sample B22-W at a concentration of 6 μ g/L, which is below the cleanup level of 15 μ g/L. However, dissolved arsenic was detected in this same sample at a concentration of 8 µg/L, which is just above the cleanup level of 5 μ g/L (see Appendix C). To try to verify this result, an additional groundwater sample collected at MW-1 (which is near B22) was submitted for analysis of total and dissolved arsenic. Laboratory analyses of this sample indicated a total arsenic concentration of 5 μ g/L, which is the same as the cleanup level. The laboratory analysis did not detect dissolved arsenic in this sample. These results, together with the results from our previous investigations, suggest that there may be intermediate issues with low levels of arsenic in the groundwater in this area.

Sample	Arsenic	Cadmium	Chromium	Lead	Zinc	Copper	Nickel
Number	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
B20-W	9	nd	105	24	64	233	201
B21-W	114	1	93	106	110	136	422
B22-W	112	6	116	158	28	4,450	1,270
MW-1	5	-	-	-	-	-	-
MTCA	5 ¹	51	50 ¹	15 ¹	4,800 ²	640 ²	320 ²

Tahla 8	Salact Analy	utical Result	e for Mota	le in Grou	ndwater Sam	nlas from A	
Table 0.	Select Allan	yucai nesuu	IS IOI IVIELA	15 III GIOU		ipies nom A	00 100

Notes: "nd" indicates not detected above applicable laboratory detection limits

Bolded values indicate concentrations exceed applicable cleanup levels

1 - MTCA Method A cleanup level for groundwater

"-" indicates the sample was not analyzed for this analyte

2 - MTCA Method B non-carcinogenic cleanup level

3.9 AOC 9A (Car Crushing Area)

AOC 9A (previously AOC 9) was originally thought to be the site of car-crushing activities. However, additional information provided by TCHD and Ecology suggests that car-crushing activities thought to have occurred in this area actually took place further to the south in the area designated as AOC 9B (see Figure 9). AOC 9B is discussed below in Section 3.10.

Our previous investigations in AOC 9A included the excavation of one test pit and the drilling of one direct-push boring (see Figure 8). Soil and groundwater samples collected from the test pit and boring were analyzed for VOCs, gasoline- through oil-range hydrocarbons, and metals (ar-senic, cadmium, chromium, lead, zinc, copper, mercury, and nickel). Laboratory analyses indicated low levels of nickel in both the soil and groundwater samples, but each well below the applicable cleanup levels. Analyses did not detect any other analytes above laboratory detection limits in any of the samples (see previous reports in Appendix A).

In their formal opinion letter, Ecology concluded (Appendix B) that, given the size of this AOC, an insufficient number of borings had been completed to properly characterize the area. With Ecology's concurrence, our draft work plan proposed completion and sampling of one additional direct-push boring, two hand borings, and an additional monitoring well. These were completed as boring B23, HB7 and HB8, and MW-5, respectively (see Figure 9). Figure 13 presents a log of the materials encountered in B23, and Figure 16 presents a log of the materials and construction details for MW-5. Field screening conducted during the completion of the new borings did not indicate the presence of any contamination. Soil and groundwater samples collected from each of the new borings were also analyzed for petroleum-hydrocarbon identification via the mobile laboratory. This initial screening did not indicate the presence of petroleum hydrocarbons in any of the samples, so no additional analyses for petroleum-hydrocarbon related compounds were conducted.

Soil and groundwater samples from each of the borings and monitoring well were also analyzed for metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel). As shown below in Table 9, laboratory analyses indicated the presence of low levels of specific metals in the soils from each of the borings. All of the detections, however, are below applicable cleanup levels.

Sample Number	Arsenic (ma/Ka)	Chromium ² (ma/Ka)	Lead (ma/Ka)	Zinc (ma/Ka)	Copper (ma/Ka)	Nickel (ma/Ka)
MW5-3	9	13	nd	20	23	22
MW5-6	7	17	nd	20	34	21
B23-2	8	7	nd	nd	10	7
HB7-2	7	9	nd	nd	10	15
HB8-3	6	8	nd	nd	13	22
MTCA	20 ¹	19/2,000 ³	250 ¹	24,000 ⁴	3,2004	1,6004

T			C N A .		^ '	c .	~ ~ ~ .
Table 9	Select Analy	vtical Result	s tor Mleta	als in Soil	Samples	$trom \Delta($	$(\dot{Q}\Delta)$
10010 0.	0010017 (1101	y tiour ricourt			oumpios	1101117.0	000/1

Notes: "nd" indicates not detected above applicable laboratory detection limits

1 - MTCA Method A soil cleanup level for unrestricted land use

2 - Total concentration of hexavalent chromium (chromium VI) and chromium III

3 - MTCA Method A cleanup level for chromium VI and III, respectively

4 - MTCA Method B non-carcinogenic cleanup level

As shown below in Table 10, laboratory analyses also indicated the presence of specific metals in the groundwater samples collected from the direct-push boring and MW-5. Although none of the analyses indicate total metal concentrations above applicable cleanup levels, the higher metal concentrations indicated for B23 (in comparison to those in MW-5) are again likely attributable to the sampled groundwater containing high amounts of suspended solids.

10010 10.00								
Sample	Arsenic	Cadmium	Chromium	Lead	Zinc	Copper	Nickel	
Number	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
MW-5 (w)	nd	nd	nd	11	8	5	nd	
B23-W	nd	nd	20	13	70	23	54	
MTCA	51	51	501	15 ¹	4,800 ²	640 ²	320 ²	
Notes: "nd"	Jotes: "nd" indicates not detected above applicable laboratory detection limits							

Table 10 Select Analytical Results for Metals in Groundwater Samples from AOC 9A

"nd" indicates not detected above applicable laboratory detection limits

1 - MTCA Method A cleanup level for groundwater

2 - MTCA Method B non-carcinogenic cleanup level

3.10 AOC 9B (Car Crushing Area)

As described above in Section 3.9, AOC 9B is an expansion of the original AOC 9 and is intended to cover a second potential area were car-crushing activities may have occurred. Our previous investigations in this AOC included the excavation of two test pits and drilling of two directpush borings. Two monitoring wells (MW-2 and MW-3) were also installed in this general area (see Figure 8). Soil and groundwater samples collected from the test pit and borings were analyzed for VOCs, gasoline- through oil-range hydrocarbons, and metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel). Laboratory analyses indicated low levels of zinc and nickel in the soil samples, but well below applicable cleanup levels. Analyses indicated metal concentrations above cleanup levels in the groundwater sample from the direct-push boring, but as before, this was attributed to high-turbidity levels in the sample. Subsequent analyses of groundwater samples collected from the two nearby monitoring wells did not detect any metals in either of samples. Analyses also did not detect any other analytes (i.e., VOCs, petroleum hydrocarbons, etc.) in any of the other soil or groundwater samples (see previous reports in Appendix A).

Similar to AOC 9A, Ecology concluded in their formal opinion letter (Appendix B) that, given the size of AOC 9B, an insufficient number of borings had been completed to properly characterize the area. With Ecology's concurrence, our draft work plan proposed completing and sampling of two additional direct-push borings and two hand borings. These were completed as borings B24 and B25 and HB9 and HB10 (see Figure 9). Figure 14 presents logs of the material encountered in B24 and B25. Field screening conducted during the completion of the new borings did not indicate the presence of any contamination. Soil and groundwater samples collected from

each of the new borings were also analyzed for petroleum-hydrocarbon identification via the mobile laboratory. This initial screening did not indicate the presence of petroleum hydrocarbons in any of the samples, so no additional analyses for petroleum hydrocarbon-related compounds were conducted.

Soil and groundwater samples from each of the borings were also analyzed for metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel). As shown below in Table 11, laboratory analyses indicated the presence of low levels of specific metals in the soils from each of the borings. All of the detections, however, are below applicable cleanup levels.

Sample Number	Arsenic (mg/Kg)	Chromium ² (<i>mg/Kg</i>)	Lead (mg/Kg)	Zinc (mg/Kg)	Copper (<i>mg/Kg</i>)	Nickel (mg/Kg)			
B24-1	7	9	nd	6	6	15			
B25-2	nd	8	nd	6	nd	nd			
HB9-1	nd	nd	nd	nd	nd	209			
HB10-1	6	6	43	nd	6	nd			
MTCA	20 ¹	19/2,000 ³	250 ¹	24,000 ⁴	3,200 ⁴	1,600 ⁴			

Table 11	Select Analy	vtical Results	for Metals in	n Soil Samı	ples from AOC 9B
	SCICCL ANU	y libur ribburto		n oon oann	

Notes: "nd" indicates not detected above applicable laboratory detection limits

1 - MTCA Method A soil cleanup level for unrestricted land use

2 - Total concentration of hexavalent chromium (chromium VI) and chromium III

3 - MTCA Method A cleanup level for chromium VI and III, respectively

4 - MTCA Method B non-carcinogenic cleanup level

As shown below in Table 12, laboratory analyses also indicated the presence of specific metals in the groundwater samples collected from both of the direct-push borings. Initial analyses indicate that total metal concentrations from these borings exceed applicable cleanup levels for arsenic, chromium, lead, copper, and nickel. However, each of these samples was notably turbid, and elevated metal concentrations are attributable to the sampled groundwater containing high levels of suspended solids. Subsequent analyses for dissolved metals did not indicate the presence of any metals above laboratory detection limits in the either sample (Appendix C).

Sample	Arsenic	Cadmium	Chromium	Lead	Zinc	Copper	Nickel
Number	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
B24-W	24	2	42	98	106	868	639
B25-W	nd	nd	50	17	124	89	174
MTCA	5 ¹	51	50 ¹	15 ¹	4,800 ²	640 ²	320 ²

Table 12. Select Analytical Results for Metals in Groundwater Sam	ples from AOC 9B
---	------------------

Notes: "nd" indicates not detected above applicable laboratory detection limits

Bolded values indicate concentrations exceed applicable cleanup levels

1 - MTCA Method A cleanup level for groundwater

2 - MTCA Method B non-carcinogenic cleanup level

3.11 Hopkins Ditch, Pond, and Wetland Areas

The southern portion of the site is occupied by wetlands (see Figure 4) that currently support a variety of wildlife and plant species (see Section 4.1 below). No exclusionary criteria listed under MTCA (WAC 173-340-7491) apply to the site, so MTCA (WAC 173-340-7490) requires that either a simplified or site-specific terrestrial ecological evaluation (TEE) be completed. To better evaluate the need for either a simplified TEE (as defined in WAC 173-340-7492) or a site-specific TEE (as defined in WAC 173-340-7493), sediment samples were collected in the areas of Hopkins Ditch and the adjacent wetlands and submitted to a laboratory for various chemical analyses. As requested by Ecology in their email response following their review of our draft work plan (see Appendix B), we also collected and analyzed a sediment sample from the bed of

the small pond located just north of Hopkins Ditch on the southern portion of parcel 12723210700 (Figure 3).

Sediment sample locations for the area of Hopkins Ditch and the adjacent wetlands are shown on Figure 9 as white triangles with a red circle. These samples are numbered 1 through 8 and are designated as either samples of pond sediments (PS), stream sediments (SS), or wetland sediments (WS). Sediment samples from the base of the pond (PS1) and the base of Hopkins Ditch (SS2 through SS5) were collected using a dredge tool attached to the end of pole and then transferred into laboratory-supplied containers. This dredge tool was appropriately decontaminated between each use. Sediment samples from the wetland areas (WS6 through WS8) were collected directly into laboratory-supplied containers as surface grab samples. All of the sediment samples were submitted to a laboratory for analysis of gasoline- through oil-range petroleum hydrocarbon identification, metals (arsenic, cadmium, chromium, lead, zinc, copper, mercury, and nickel), and PAHs.

Laboratory analyses did not indicate the presence of gasoline- through oil-range hydrocarbons or the presence of cadmium, arsenic, or mercury in any of the samples (Appendix C). A number of metals were detected in various samples and are summarized below in Table 13. As shown, most of the detected metal concentrations are below the applicable clean levels, but relatively high levels of lead (in excess of the cleanup level) were detected in samples WS6 and WS8. Subsequent analyses of these samples using the Toxicity Characteristic Leaching Procedure (TCLP) indicated TCLP-lead concentrations of 9.67 mg/L in WS6 and 0.25 mg/L in WS8. While both of these results indicate relatively low potential for leachability, the TCLP results of 9.67 mg/L in WS6 exceeds the 5.0 mg/L RCRA designation criteria for hazardous wastes.

Sample Number	Chromium ¹ (<i>mg/Kg</i>)	Lead (mg/Kg)	Zinc (mg/Kg)	Copper (mg/Kg)	Nickel (mg/Kg)
PS1	nd	34	40	11	10
SS2	nd	40	47	8	12
SS3	nd	25	nd	nd	8
SS4	nd	6	nd	nd	5
SS5	nd	22	6	nd	3
WS6	10	1,230	8	68	12
WS7	nd	53	nd	12	13
WS8	nd	525	156	40	18
MTCA	19/2,000 ²	250 ³	24,000 ⁴	3,200 ⁴	1,600 ⁴

|--|

Notes: "nd" indicates not detected above applicable laboratory detection limits

1 - Total concentration of hexavalent chromium (chromium VI) and chromium III

2 - MTCA Method A cleanup level for chromium VI and III, respectively

Bolded values indicate concentrations exceed applicable cleanup levels

3 - MTCA Method A soil cleanup level for unrestricted land use

4 - MTCA Method B non-carcinogenic cleanup level

Laboratory analyses did not indicate the presence of PAHs in sediment samples SS2, SS3, SS4, SS5, or WS7 (see Appendix C). However, various PAHs were detected in samples PS1, WS6, and WS8 (Table 14). As shown, most of the PAH concentrations that were detected were below applicable cleanup levels. However, the concentration of benzo(a)pyrene exceeds the MTCA Method A cleanup level in sample PS1. Additionally, the total toxic equivalent concentration (TTEC) for benzo(a)pyrene, calculated from individual cPAH concentrations in each sample (per WAC 173-340-708(8)), exceeds the MTCA Method A cleanup level in samples PS1 and WS8.

Analyte (<i>mg/Kg</i>)	PS1	WS6	WS8	MTCA
Naphthalene	nd	nd	nd	5 ²
2-Methylnaphthalene	nd	nd	nd	320 ³
1-Methylnaphthalene	nd	nd	nd	3.5 ⁴
Acenaphthylene	nd	nd	nd	na⁵
Acenaphthene	nd	nd	nd	4,800 ³
Fluorene	nd	nd	nd	3,200 ³
Phenanthrene	0.252	nd	0.104	na⁵
Anthracene	nd	nd	nd	24,000 ³
Fluoranthene	0.528	nd	0.216	3,200 ³
Pyrene	0.416	nd	0.185	2,400 ³
Benzo(a)anthracene1	0.187	nd	0.092	1.44
Chrysene1	0.212	nd	0.100	140 ⁴
Benzo(b)fluoranthene1	0.349	0.093	0.153	1.44
Benzo(k)fluoranthene1	0.103	nd	nd	144
Benzo(a)pyrene1	0.202	nd	0.085	0.1 ²
Indeno(1,2,3-cd)pyrene1	0.135	nd	nd	1.44
Dibenzo(a,h)anthracene1	nd	nd	nd	0.144
TTEC for benzo(a)pyrene	0.282	nd	0.110	0.1 ²
Benzo(g,h,i)perylene	0.115	nd	nd	na⁵

Table 14. Select Analytical Results for PAHs in Sediment Samples

Notes: 1 - cPAH used to calculate total toxic equivalent concentration (TTEC) for benzo(a)pyrene "nd" indicates not detected above applicable laboratory detection limits

Bolded values indicate concentrations exceed applicable cleanup levels

2 - MTCA Method A soil cleanup level for unrestricted land use

3 - MTCA Method B non-carcinogenic cleanup level

4 - MTCA Method B carcinogenic cleanup level

5 - no applicable cleanup level has been established

4.0 Conclusions and Recommendations

The analytical data compiled during this investigation (summarized in Section 3.0), together with data from our previous studies (summarized in Section 2.0), has been compiled to characterize conditions within specific AOCs (shown on Figures 8 and 9). The analytical data collected to date in AOCs 1, 2, 3, 4, 5, 6, 9A, and 9B does not show any indications of impact from the activities associated with the former automobile-wrecking yard (John's Auto Wrecking). The laboratory analyses of all of the soil and groundwater samples collected from these AOCs indicates that contaminants of concern (COCs) are either not present at concentrations above applicable laboratory detection limits, or if present, are below applicable cleanup levels. One reoccurring issue during this and previous investigations was the detection of high-metal concentrations in turbid groundwater samples collected from direct-push borings. In each case, with the exception of those noted below for AOC 7&8, subsequent analyses of dissolved metals indicated that the previously detected metal (detected through total metal analyses) was not present at concentrations above laboratory detection levels. This shows that the initial total metal detections were related to and the result of high suspended solids in each of these samples.

The analytical data for each of the groundwater samples collected from direct-push borings in AOC 7&8 similarly showed high concentrations for total metals. Subsequent analyses for dissolved metals in all but one of the samples (B22-W collected from boring B22) did not indicate the presence of metals above laboratory detection limits. The initial analysis of total arsenic and the subsequent analysis of dissolved arsenic in sample B22-W indicated respective concentrations of 112 and 8 μ g/L which are above the cleanup level of 5 μ g/L. Laboratory analyses of an additional groundwater sample collected from nearby monitoring well MW-1 (see Figure 9) indi-

cated a total arsenic concentration of 5 μ g/L, but did not detect dissolved arsenic above laboratory detection limits. These results suggest there may be a minor issue with low levels of arsenic in the groundwater in this area. Laboratory analyses of all other COCs in AOC 7&8 were either not present at concentrations above applicable laboratory detection limits, or if present, were below applicable cleanup levels.

Laboratory analysis of two sediment samples (WS-6 and WS-8) collected from the wetland area adjacent to Hopkins Ditch (see Figure 9) indicate the presence of lead at respective concentrations of 1,230 and 525 mg/Kg. These values exceed the MTCA Method A cleanup level of 250 mg/Kg. Subsequent TCLP analyses indicated respective TCLP-lead concentrations of 9.67 and 0.25 mg/Kg. Both these results indicate that the lead present in these samples has relatively low mobility. However, the TCLP-lead result of 9.67 mg/Kg exceeds RCRA hazardous waste exclusion limits. Therefore, if soils are excavated for remediation, some soils may require disposal in a RCRA subtitle c (hazardous waste) landfill. Laboratory analysis for PAHs indicated the presence of benzo(a)pyrene at a concentration of 0.202 mg/Kg in the sediment sample (PS-1) collected from the base of the pond located just north of Hopkins Ditch (see Figure 9). Additionally, the TTECs of benzo(a)pyrene calculated for this same sample and one of the wetland sediment samples (WS-8) is 0.282 and 0.110 mg/Kg, respectively. All of these PAH values exceed applicable cleanup levels (the MTCA Method A cleanup level for both benzo(a)pyrene and the TTEC of benzo(a)pyrene is 0.1 mg/Kg). Laboratory analyses of all other COCs in the wetland and stream areas are either not present at concentrations above applicable laboratory detection limits, or are below applicable cleanup levels. These results indicate that there are isolated areas with minor PAH (and possibly lead) impacts in the wetland and stream areas at the south end of the site, and that additional characterization may be warranted.

4.1 June 25th Site Visit with Ecology

On June 25, 2013, following the completion of all currently contracted field work, we conducted a site visit with personnel from Ecology (Eugene Radcliff, the current VCP site manager, and Alexander Callender, Ecology's wetlands specialist for Thurston County). During this site visit, we discussed work completed to date and the results of the various laboratory analyses. We also completed a thorough walk of the site to inspect current conditions, and to conduct a reconnaissance-level assessment of the wetland area. During the site visit, Ecology made a number of assessments and noted several concerns. Following the site visit, Mr. Radcliff submitted an email documenting their observations and outlining their specific concerns. A copy of this email (dated June 26, 2013) is included in Appendix D of this report.

Ecology's primary observations and concerns for the site include the following:

- In addition to our previous observations of various wildlife species in the wetland area (including a significant population of amphibians (frogs), small unidentified black-colored fish, Gerridae (pond skaters), and various non-waterfowl-type birds), Ecology found signs of significant beaver activity (numerous freshly-chiseled logs) near the pond just north of Hopkins Ditch. Ecology's preliminary qualitative assessment of the wetland area, based on this and other observations of various vegetation types, was that it probably represents an intermediate-quality wetland. Ecology also concurred that a site-specific TEE would need to be completed to fully assess potential impacts and exposure pathways in this area of the site, and that formal wetland delineation would need to be completed to accommodate completion of the TEE.
- Ecology recommended that additional samples be collected in the pond and wetland areas to better characterize potential contamination. This includes the collection of additional sed-

iment samples and surface water samples from the pond north of Hopkins Ditch and surface water samples from Hopkins Ditch where it enters and exits the property.

- Ecology noted that there is still a significant amount of debris associated with the former wrecking yard in various areas of the site. Of particular concern were numerous tires and wheels in the wetland area around, but also specifically in, Hopkins Ditch and the adjacent pond. They also noted that there is a berm-like feature on the north side of the pond area that appears to be comprised of buried tires. In their email response (Appendix D), Ecology also noted several other specific areas containing miscellaneous debris that would need to be removed and subsequently evaluated. These include a large creosote timber near the southern edge of the property and the debris pile associated with a demolished building near the northwest corner of the site (in AOC 1). Ecology indicated that the debris still present at the site represents source material and would need to be removed in order for the site to be considered for a no-further-action (NFA) determination. Ecology specifically stated that the site could not be considered for an NFA determination if there was still source material present to potentially re-contaminate the site.
- During the site visit, Ecology noted a second pond area in the woods south of Hopkins Ditch and recommended that sediment and surface water in this area be evaluated. Based on property line flagging observed during our site visit, this pond appears to straddle the property line. Before completing any work in this area, it is recommended that the southern extent of the property be clearly defined to insure that this pond is not actually located on the adjacent property to the south.
- Ecology noted there appears to be illegal dumping occurring in the northeast corner of the site, just outside the current gate, and that measures should be taken to try to dissuade this (i.e., placement of ecology blocks or installing a chain across the access road).
- In discussing the results of metal analyses, particularly with regards to the apparent arsenic detected at MW-1, Ecology indicated that groundwater monitoring would need to be accomplished at this location (AOC 7&8) and that four consecutive quarters with results below cleanup levels would need to be accomplished before the site could be considered for an NFA determination. The requirement of "four quarters of clean results" is not specifically codified but is usually required to appropriately evaluate the effects of seasonal variation.

4.2 Initial Evaluation of Potential Exposure Pathways

Because the analytical data do not indicate impacts in AOCs 1, 2, 3, 4, 5, 6, 9A, and 9B, there are no potential exposure pathways to evaluate in these AOCs. Potential impacts from arsenic in the groundwater in AOC 7&8 and the detected lead and PAH impacts in shallow sediment samples from the pond and wetland area (described in the preceding section) have potential to affect both human and ecological receptors. However, as the site is not permanently occupied and is fenced and locked, there is only minimal opportunity for exposure to human receptors (currently only the occasional site worker, who being aware of potential issues, can take appropriate precautions to protect themselves). Furthermore, arsenic levels in the groundwater in AOC 7&8 are very low, and TCLP-lead results for discrete samples from the wetland area show low potential for leachability, both of which indicate minimal risk for exposure.

Of the various contaminants detected at the site, the PAHs found in the shallow sediment samples from the pond and the wetland areas have the highest potential for exposure. As described above, the site is not currently occupied and access to the public is limited. Therefore, the potential exposure of humane receptors is extremely minimal. However, as described in the previous section, the wetland area on the southern portion of site (where PAHs were de-

tected) potentially supports a relatively robust ecological system. The fact that PAHs were detected near surface, together with the fact that the specific PAHs detected in excess of cleanup levels are classified as carcinogenic, suggests there may be fairly significant potential exposure to ecological receptors at the site.

4.3 Recommendations

Based on the results of both our previous and current investigations (see Sections 2.0 and 3.0) and the suggestions/recommendations provided by Ecology during our recent site visit (see Section 4.1 and Appendix D), we have compiled the following list of recommendations with the ultimate goal of reaching final regulatory closure for the site.

- Undertake a program to remove all of the debris associated with the former auto-wrecking
 operation. In our opinion, the presence of this potential source material is currently the single largest obstacle to achieving an NFA determination and final regulatory closure for the
 site. In fact, the prolonged presence of this material on site poses a risk of the site being
 permanently dropped from the VCP, which would incur greater costs to achieve final closure. Therefore, implementing a final debris removal program should be a primary emphasis
 during the next phase of work. This program should include the following specific tasks:
 - 1. Removal of all tires, wheels, and other auto debris from the areas of Hopkins Ditch, the pond and surrounding area to the north of the ditch, and the wetland areas around the ditch. Debris removal should be accomplished using the least invasive method possible to minimize disturbance and further impacts to the wetland area (i.e., debris removal in this area should be accomplished largely by hand).
 - 2. Removal of the large creosote timber identified by Ecology in the wooded area to the south of Hopkins Ditch (and other lumber if found) followed by appropriate sampling to evaluate potential impacts to soils in this area. Laboratory analyses should include testing for PAHs, metals, and pentachlorophenol.
 - 3. Investigation and removal, if applicable, of the possible tire berm along the north edge of the pond north of Hopkins Ditch, followed by applicable testing.
 - 4. Removal of all other miscellaneous debris associated with the former auto-wrecking operation. This includes tires, wheels, auto-body parts, and other miscellaneous automotive parts and old fluid containers strewn across the various areas of the site. Because much of this debris is widely disbursed, removal is likely going to involve significant manpower to manually remove individual pieces of debris by hand. One approach to accomplishing this task may be the employment of volunteer organizations such as the Boy Scouts or other groups such as the Ecology Youth Corps (which would have some costs associated with their work).
 - 5. Removal of the large debris pile in AOC 1 associated with the demolished structure in this area. Much of this debris can be removed in bulk using heavy equipment (i.e., a back hoe and dump truck). Following the complete removal of all of the debris in this area, appropriate testing of the underlying soils should be completed including, but not limited to, the evaluation of PCBs, PAHs, metals, and petroleum hydrocarbons.
 - 6. Removal of any debris dumped outside the fence near the northeast corner of the site. Some type of obstruction (i.e., ecology blocks or a chain across the access road) should then be installed to dissuade further dumping.

- Conduct additional sediment and surface water testing in the area of the pond north of Hopkins Ditch, and in Hopkins Ditch itself, to better characterize potential contamination in these areas. These data will be used to assess potential exposure pathways and the completion of a site-specific TEE. Laboratory analyses should include testing for petroleum hydrocarbons, metals, PAHs, PCBs, VOCs, and semi VOCs. This additional characterization will also assist in determining appropriate remediation methods.
- Determine (possibly through a land survey) the southern boundary of the site to establish whether or not the pond in the wooded area south of Hopkins Ditch is actually located on the property. If it is found to be located on the property, it should be included in the additional characterization task described in the previous bullet and the wetland delineation/TEE described in the following bullet.
- Complete a formal wetland delineation and study for the southern portion of the site to determine the extent and quality of the wetland area and to determine the particular species of viable plants and animals that are supported. Then complete a site-specific TEE based on the wetland delineation/study to evaluate potential impacts to ecological receptors.
- Conduct groundwater monitoring for total metals at select monitoring wells for at least four consecutive quarters.
- Survey the site for existing transformers on power poles, and then review transformer history through the power company for any potential use of PCBs. Test the underlying soils near each identified transformer for PCBs, if warranted.
- Access the interior areas of the two structures in AOC 1 to determine if there are any hazardous materials present or indications of potential impact. If hazardous materials are present, they should be appropriately removed from the site. If there are any indications of impact, they should be evaluated and addressed accordingly.
- Review historical data, including topographic maps and aerial photographs, to specifically try to determined whether or not areas of the site have received extensive fill and/or been extensively reworked. Of particular concern is the area south of Hopkins Ditch. Several test pits should be excavated in this area to characterize the soils.
- To the degree possible, conduct remedial excavation of any identified soil impacts at the site.

5.0 References

- Drost, Turney, Dion, and Jones, 1998, Hydrology and quality of ground water in northern Thurston County, Washington; USGS Water-Resources Investigation Report: 92-4109
- Drost, B.W., Ely, D.M., and Lum II, W.E., 1999, Conceptual model and numerical simulation of the ground-water-flow system in the unconsolidated sediments of Thurston County, Washington: U.S. Geological Survey Water-Resources Investigations Report 99-4165, 254 p.
- Noble and Wallace, 1966, The geological map of Thurston County, Washington, USGS Water-Supply Bulletin 10
- Robinson, Noble, & Saltbush, Inc., letter report April 21, 2009, Site investigation/Characterization, Havens Property (aka) Johns Auto Wrecking, 411 93rd Avenue SE, Olympia, Washington
- Robinson, Noble, & Saltbush, Inc., letter report December 10, 2009, Site remediation of the Havens Property (aka Johns Auto Wrecking) 411 93rd Avenue SE, Olympia, Washington

- Thurston County Assessor-Treasure's GIS data base available online at http://www.geodata.org/website/cadastral/viewer.htm
- U. S. Department of Agriculture *Soil Survey of Thurston County, Washington, 1990*
- Washington State Department of Ecology, 2007, Model Toxics Control Act statute and regulation, compiled by the Washington State Department of Ecology Toxics Cleanup Program, Publication No. 94-06
- Washington State Department of Ecology, Cleanup levels and risk calculations–database of cleanup levels for chemicals and respective media, available online at https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx
- Washington State Department of Ecology, Water well log database, available online at http://apps.ecy.wa.gov/welllog/

The statements, conclusions, and recommendations provided in this report are to be exclusively used within the context of this document. They are based upon generally accepted hydrogeologic and environmental practices and are the result of analysis by Robinson Noble, Inc. staff. This report, and any attachments to it, is for the exclusive use of the Law Office of Alan J. Wertjes and the Estate of John Havens. Unless specifically stated in the document, no warranty, expressed or implied, is made.

FIGURES

s for Direct-Push Boreholes B24 And B2 John's Auto Wrecking: Remedial Investigatic	Geologic Log			T 17 N/R 02 W - 23 Scale 1" = 4.0'	July 2013 2754-001E	ROBINSON
Figure				The sector of th	DM: MTW	
	Ι	16'-		16'-		
σ,		1 4'	σ,	14 1 		
		12'-				
SAND, WET		10'-				
		8.	BROWN GRAVEL WITH SILTY SAND, WET			
7,7		٥, -				
BROWN TO GRAY SILT WITH SAND, WET		∼ 4	BROWN TO GRAY SILT SAND, WET			
2' -		2'-	GRAY GRAVEL, MOIST	2'- 2'- 2'-		
DARK BROWN SILT WITH ORGANICS, MOIST		итн 0'-	DARK BROWN SILT WI	0'-		
<u>.</u> OG	GEOLOGIC L B25		LOG	GEOLOGIC B24		

APPENDIX A

April 21, 2009

Alan J. Wertjes Attorney at Law 1800 Cooper Pt. Rd. SW, Bldg. 3 Olympia, WA 98502

Subject: Site Investigation/characterization, Havens Property (aka) Johns Auto Wrecking, 411 93rd Avenue SE, Olympia, Washington

Dear Mr. Wertjes:

Robinson, Noble & Saltbush is pleased to present this letter report detailing our recent subsurface investigation of the Havens property. The site activities included the advancement of a total of 11 borings and excavation of 17 test pits. A series of soil and groundwater samples were collected and analyzed for potential contaminates associated with auto wrecking yard activities. The observations made during the subsurface work and the results of the laboratory analysis are presented below.

Site Location and History

The subject site is located within Township 17N, Range 02W, Section 23. The property is comprised of six parcels identified by Thurston County Assessor-Treasurer's records as parcels 12723210100, 12723220200, 12723210400, 12723210401, 12723210700, and 12723211000. The address assigned to these parcels is 411 93rd Avenue SE, Washington 98501 (Figure 1). These parcels are contiguous. The subject consists of approximately 15 acres.

In November 2008, Robinson, Noble and Saltbush completed a file review for the Havens property of available documents contained within the Washington State Department of Ecology (Ecology) and Thurston County Health Department records. Information within the department of Ecology records indicate the site is listed on the Department of Ecology's Hazardous Sites List. The site was ranked a "1" following the completion of a site-hazard assessment. Sites receiving a rank of 1 or 2 are generally considered the highest priority for cleanup by Ecology. Ecology loosely defines these sites as posing a risk to human health and the environment.

To address the site ranking, the property owners enrolled the site in the Ecology Voluntary Cleanup Program (VCP), but the site has since been removed from the VCP due to inactivity. During the site's enrollment within the VCP, a limited effort was made by the property owner to characterize the subject site. Eventually, activity ceased and no official reports were generated.

During the property owner's preliminary investigation, areas of concern were identified which we present below. Soil samples were collected with the assistance of Thurston County Health during the initial investigation. During this initial site work, Patrick Soderberg of Thurston County Health reportedly observed drums overflowing during a rainstorm event and releasing unknown quantities of petroleum hydrocarbons. Also, at the time of the initial investigation, the site contained a large number if automobiles and stored automotive parts and pieces. Since those initial site activities, the site has been cleared of nearly all the vehicles and many of the stored automotive pieces.

As part of the limited investigations completed while the site was enrolled in the VCP with Ecology, nine areas of concern were identified. A site diagram has been attached as Figure 2 which indicates the general areas of concern presented in the previous work. The nine areas were collaboratively identified following discussions with the property owner's previous consultant and representatives of Thurston County Health. The areas were identified as points of concern based upon on-site observations and discussions identifying specific types of past use.

Site Geology/Hydrology

The subject lies in a relatively flat, glacial outwash plain at an elevation approximately 200 feet above sea level. The site is within the Salmon Creek drainage basin and is prone to flooding during periods of heavy precipitation.

Soils in the area of the subject have been classified by the United States Department of Agriculture, published in the *Soil Survey for the Thurston County Washington Area* (1990), as predominantly two distinct soil types: Nisqually loamy, fine sand and Norma fine, sandy loam. These soils developed on glacial outwash plains and alluvium, respectively. Nearly three quarters of the property extending southward from the northern property boundary, are mapped as the Nisqually loamy, fine sand. The majority of the remaining property is mapped as Norma fine, sandy loam. Both of theses soils have high infiltration rates ranging from 1.98 to 5.98 in/hr. These descriptions are consistent with conditions observed during the drilling on site.

Surface water is present; Hopkins ditch bisects the southern quarter of the property, flowing from the eastern boundary to the southwestern corner of the property. A small pond/wetland is mapped on the southern half of parcel 12723210700. An additional wetland is mapped in the southeast corner of parcel 12723211000. The ditch, pond, and wetlands are believed to be a reflection of shallow ground water.

The subject property and surrounding area are located within a glacial outwash plain. The geological map of Thurston County, Washington, (USGS Water-Supply Bulletin 10 by Noble and Wallace, 1966) has mapped the area as recessional outwash (Qvr1). That report describes the sediments "as glaciofluvial materials deposited during recession of the Vashon glacier. Qvr [is] gravel

and sand poorly sorted, usually above the water table but excellent aquifer where below the water table... Usually overlies till or recessional gravel."

Noble and Wallace (1966) report that this sandy outwash averages 25 feet thick but is much thicker to the north near Ward and Hewitt Lakes, approximately 2.5 miles away. Drost and others (1998) indicate the recessional outwash in the vicinity of the subject property ranges from 0 to 25 feet thick and may thicken to the west of the property. The recessional material, as mapped by Drost, appears to be absent approximately 1 mile southeast of the subject site.

In the normal sequence of glacial sediments in the Puget Sound area, Vashon till (Qvt) exists beneath the Vashon recessional outwash. Till is a compact mixture of clay, silt, sand, and gravel that typically has a relatively low permeability. Mapping by Drost and others (1998) indicate till is present at the property and has a thickness of 25 to 50 feet. Beneath the till is the Vashon advance outwash (Qva). The Qva is described by Drost as a coarse, sand and gravel aquifer.

The data obtained from drilling and excavation activities indicate the shallow geology below the subject property is composed of a heterogeneous mix of glacial recessional outwash deposits. The recessional sediments are a range of brown silts, sands, and gravel to silty, fine sands. These materials correlate closely with the description of the Qvr unit described by Drost. An increase in gravel size and distribution was noted in borings and test pits completed in the southern quarter of the property. Similar sediments were observed in all of the borings and excavated test pits. Shallow ground water was encountered in the borings at a depth of seven to nine feet below ground surface (bgs).

Shallow ground water beneath the subject site appears to be perched on the underlying compact till. The shallow groundwater gradient is presumed to trend toward Hopkins ditch. According to a Pacific Ground Water Group report¹, shallow ground water beneath the subject site flows toward Hopkins ditch. Since Hopkins ditch bisects a portion of the property, the gradient in areas north of the ditch trends to the southeast while areas south of the ditch trends toward the northwest. Shallow groundwater flow ultimately is controlled by the topographic surface of the underlying till material.

Site Activities

On February 15, 2009, site work for the Havens property began with a site walk completed by Robinson, Noble & Saltbush personnel and accompanied by a representative of APS, a private utility locating company. During the site walk, the boring and test pit locations were identified. Taking into account the nine areas of concern previously identified, additional field observations were used to determine the final locations of the 10 borings and test pits drilled or excavated for the current study (Figure 3). Observations made during the site inspections identified several potential contamination sources including partially filled steel drums, 24 five-gallon

¹ Pacific Ground Water Group, (2001) *Salmon Creek Drainage Basin Conceptual Model* prepared for URS Corp and Thurston County Water and Waste Management.

buckets (waste oil), two large industrial batteries, and a pile of old lighting fixtures. These remaining potential contamination sources should be collected and secured to prevent release of additional contamination into the environment.

Following the site walk, APS cleared each of the boring and test pit locations (Figure 3). Once the utility locate was completed, Northwest Probe, Inc., of Puyallup, Washington mobilized a direct-push drilling rig over the first boring location. A second contractor, Langseth Environmental Services of Tacoma, Washington began test pit excavation utilizing a rubber-tired backhoe. Field work was completed in one day.

Field screening was conducted during drilling and excavation operations using visual and olfactory observations. A total of 36 soil samples were collected from the test pits and 12 soil samples from the borings. Each of the soil samples were logged into the laboratory chain-ofcustody; however, some of the deeper samples were held to be run following the results of soil samples taken from shallower depths within adjacent test pits. Soil and water samples not analyzed in the field were submitted to Libby Environmental for fixed laboratory (off-site) additional analysis (presented below). The complete analytical results of all the soil and groundwater submittals are attached in Appendix D and are summarized below.

A series of ten soil borings (Figures 4-6) were completed to depths ranging from 12 to 16 feet below ground surface (bgs). A series of 16 test pits were completed. The test pits were generally excavated to a depth of five feet bgs. The test pits were located in close proximity to the soil borings (Figure 3). At some locations, a second test pit at each boring location was incorporated into the work plan to allow for a more detailed site characterization. Two test pits were completed where staining, distressed vegetations, and or significant material storage were identified. Second test pits were completed at boring locations B1, B2, B3, B5, B6, and B9.

Each test pit and boring was logged and subjected to field screening. Field screening of samples from the borings did not suggest the presence of the target compounds. However, field screening for several of the test pit samples did. Target compounds include petroleum hydrocarbons, metals, PCB's, Chlorinated Solvents, and glycols. Selected soil samples were collected from the test pit and submitted for on-site laboratory analysis using a mobile laboratory provided by Libby Environmental, LLC. Soil samples were collected using EPA Method 5035A for volatile organic compound analysis (VOC). Samples were collected in standard four-ounce soil jars filled using stainless steel spoons. On-site analysis was completed for gasoline-, diesel-, and oil-range petroleum hydrocarbons. A water sample and selected soil samples were collected from each boring and submitted for additional on-site laboratory analysis.

Laboratory Results

Target analytes included petroleum hydrocarbons (gasoline NWTPH-Gx, diesel, and oil-range NWTPH-DxExt.), metals, PCBs, chlorinated solvents (8270), and glycols. The metals of concern have been subdivided into two separate categories: the five metals (lead, arsenic, cadmium,

chromium, mercury) commonly associated with contaminated sites and three additional metals (nickel, zinc, copper). The three additional metals were requested by Ecology in an opinion letter dated February 23, 2006 and have been targeted for areas where cars were crushed or repaired. Analysis for PCBs was completed for selected samples containing elevated levels of heavy oils. The table below presents the contaminates of concern for each of the nine areas of concern.

Contaminates of Concern	Areas of Concern	Media	
Petroleum Hydrocarbons	All	Soil and Ground water	
Metals (lead, arsenic, cadmium,	A 11	Soil and Ground water	
chromium, mercury)			
Metals (nickel, zinc, copper)	1, 2, 3, 5, 8, 9	Soil and Ground water	
PCBs	Lab dependant*	Soil and Ground water	
Chlorinated Solvents	All	Soil and Ground water	
Glycols	1, 3, 8, 9	Ground water	

Table 1. Laboratory Breakdown

* Samples with heavy oil concentrations above MTCA Method A cleanup levels were run for PCBs

All samples analyzed for VOC's, gasoline-range hydrocarbons, and glycols were determined to have concentrations of theses contaminates below laboratory detection levels. However, as shown on the attached analytical reports, concentrations of oil-range petroleum hydrocarbons and metals were detected in soil and groundwater samples. Laboratory results exceeding cleanup levels are discussed in detail in the following sections.

Soil concentrations of oil were identified in soil samples collected from six of the 16 test pits. The following table outlines the analytes and concentrations (above laboratory detection limits) detected in soil samples. Surface samples were collected from areas with observed soil staining and or distressed vegetation.

Table 2: Analytical Concentrations of NWTPH Dx/DX Ext. in Soil above Laboratory Detection Limits

Sample ID	Diesel	Mineral Oil	Oil
	(mg/kg)	(mg/kg)	(mg/kg)
TP1-Surf A	nd	nd	66,700
TP1-1'A	nd	nd	140
TP3-Surf B	nd	nd	500
TP5-Surf B	nd	nd	340
TP6-0.5'A	nd	nd	61,900
TP9-Surf A	nd	nd	320
Method A Limit	2,000	4,000	2,000

Bold denotes reported sample concentration exceeds MTCA Method A Limit; nd denotes analyte not detected above laboratory detection limit.
April 21, 2009 Page 6

Sample TP1-SurfA was collected from soil near an overturned, five-gallon bucket. Surprisingly, the initial results (mobile lab) for sample TP1-SurfA did not reveal elevated levels of oil. Considering the nature of the soil sample location, the lab was asked to re-analyze the sample. Libby completed the analysis at their fixed laboratory and a high oil concentration was identified. The bucket is believed to have been used to contain waste oil. Visual observations of the bucket indicate the bucket was approximately 80 percent full, suggesting a maximum release of one gallon of waste oil. The area surrounding TP1A was littered with 24 waste-oil buckets, many were observed to be full of oil. The remaining buckets appeared upright and intact.

Sample TP6-0.5'A was collected just below the surface near concrete bunkers along the western edge of the property in an area described as hazardous material storage. Several partially filled drums were observed within the concrete bunkers. The contents of the drums are unknown.

Samples from TP3B, TP5B, TP6A, and TP9A were analyzed for PCBs. As stated above, the initial laboratory results for TP1-SurfA did not reveal a detection of oil. Therefore, at the time the selection of soil samples by the lab to be analyzed for PCBs (as per the work plan), TP1-SurfA was not selected for anaylsis. Once the discrepancy was identified, the samples had been disposed of. None of the soil samples analyzed for PCBs were determined to exceed the MTCA Method A cleanup levels of 1.0 mg/kg. Analytical results for sample TP6-0.5A indicate a level of Aroclor 1260 of 0.9 mg/kg. Aroclor 1260 is one of a number of common PCB blends generally associated with electrical equipment. No oil or PCBs were detected in any of the groundwater samples collected.

The laboratory results from the metals analysis for the soil samples identified several samples with elevated levels of metals. As previously discussed, MTCA five metals (lead, cadmium, arsenic, and mercury), as well as, copper, zinc, and nickel were analyzed for selected soil and groundwater samples. No soil samples were found to exceed the respective MTCA Method A cleanup level. However, analysis of a soil sample collected from TP1-1'B revealed an elevated level of nickel of 115 mg/kg. The MTCA Priority Contaminates of Ecological Concern Table 749-2 presented in Model Toxics Control Act WAC 173-340, indicates a maximum soil concentration for unrestricted land use of nickel is 100 mg/kg. Depending on the designed end use of the property, these levels may be more restrictive then necessary. However, since additional soil remediation is recommended for the area surrounding TP1, it may be prudent to remove the all known impacted soils and include nickel in the confirmation sampling. Additional discussion concerning recommended remediation efforts is presented below.

The laboratory results from the metal's analysis on selected groundwater samples identified five borings with detected analytes. Of the ten borings completed, all but B4 and B10 were run for zinc, copper, and nickel. These borings were not selected because the presumed former site activities at these locations did not involve activities likely to generate the target compounds in

April 21, 2009 Page 7

question. Borings B5, B8, B9, B10, and B11 were each found to contain metals above detection levels. The analytical results are presented in Table 3 below.

Sample	Lead	Cadmium	Chromium	Arsenic	Mercury	Zinc	Copper	Nickel
ID	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/1)	(ug/l)
B5	11	nd	nd	nd	nd	nd	22	nd
B8	25	nd	30	14	nd	113	196	nd
B9	113	2.0	34	32	nd	560	1400	807
B10	72	nd	54	7	nd	nd	nd	n/a
B11	nd	nd	nd	nd	nd	nd	nd	239
Method								
A Limit	15	5.0	50/100*	5.0	2.0			
Method						-		1 400 a/
B Limit						4,800	590	160c**

Table 3: Analytical Concentrations of Metals in Water above Laboratory Detection Limits

Bold denotes reported sample concentration exceeds reported cleanup limit; nd denotes analyte not detected above laboratory detection limit; n/a denotes not analyzed.

* MTCA Method A Cleanup Level 50 ug/l when Chromium VI present and 100 ug/l when absent

** National Toxic Rule, EPA 40 CFR part 131, fresh water 1400a (acute exposure)/160c (chronic exposure) limits

Given the lack of a published MTCA Method A or calculated Method B clean up for nickel, we have chosen to present the National Toxic Rules exposure limits for fresh water bodies. These exposure limits are likely to be applied to any water in direct connection with the surrounding creek and wetlands.

Discussion

The initial phase of this investigation revealed some contamination from petroleum hydrocarbons has impacted soil beneath the site. Laboratory analyses of soil samples collected indicate the presence of petroleum contamination in excess of current MTCA Method A cleanup levels in areas observed to have surface staining.

The two samples identified as exceeding MTCA cleanup levels were located at TP1A and TP6A, both where surface staining was observed. The high levels of oils were detected in shallow soil samples, collected at or near the ground surface. Additional soil samples, collected at deeper levels were found to have concentrations below cleanup levels. Laboratory analyses of ground-water samples collected from each of the ten borings did not indicate the presence of petroleum hydrocarbons above practical quantitative laboratory detection levels. The nature of the observed soil impacts, and the lack of groundwater impacts, suggests a targeted removal of the stained material should suffice to remediate the petroleum hydrocarbon contamination. With the collection of confirmation samples, the remediation will generate an estimated five to ten cubic yards of material. Confirmation sampling should include analysis for oil, cPAH, and PCBs.

Groundwater sampling identified concentrations of lead, chromium, and arsenic above the respective MTCA Method A cleanup levels. The metals were identified in three borings located within the southern third of the property. Shallow soil samples collected from these areas revealed soil concentrations of the targeted metals to be below MTCA Method A cleanup levels. Soil samples collected from borings B8, B9, and B10 were all well below applicable clean up levels for the target metals.

Chromium concentrations in boring B10 revealed levels exceeding MTCA Method A clean up for chromium when hexavalent chromium is present. Following the initial laboratory results, sample B10 was delivered to Spectra Laboratories of Tacoma, Washington for additional investigation. The sample was analyzed for the presence of hexavalent chromium. The laboratory results indicate levels of hexavalent chromium were below 0.01 mg/l. However, the sample was two days outside the allowable holding time for groundwater samples and, as such, the results are not definitive. Discussions with Libby Environmental suggest that exceeding the holding should not change the results, and it is therefore unlikely that any hexavalent chromium is impacting the ground water beneath the site.

Additional target compounds zinc, copper, and nickel were analyzed for the collected groundwater samples. Samples from B9 and B11 were determined to have copper and nickel concentrations exceeding published clean up levels. B11 is in the central portion of the property.

The groundwater samples were collected from direct-push soil borings through a temporary screen placed in the open borehole. While this method allows for adequate water entry and sample collection, the temporary nature of the screen set prevents adequate well development and purging. Groundwater samples collected from direct-push soil borings are generally turbid, containing high amounts of suspended and colloidal solids. It is likely, given the nature of the groundwater sampling completed during this initial investigation, that the metals levels identified in the ground water are artificially high. Prior to initiating a remedial effort, an additional round of groundwater samples should be collected from properly developed, monitoring wells.

Recommendations

Additional site work should include:

- Entry into Ecology's Voluntary Cleanup Program (VCP) should be made in order to assure that assessment and remedial action tasks are completed to the satisfaction of Ecology. As part of the site entry into the VCP, a Terrestrial Ecological Evaluation should be completed (due to the site proximity to mapped wetlands).
- Excavation and removal of identified contaminated soil surrounding test pits TP1A and TP6A coupled with conformational sampling.

April 21, 2009 Page 9

- Confirmation sampling following the removal of petroleum impacted soils should include testing for cPAH and PCBs.
- Characterization and removal of all remaining sources of contamination including steel drums, five-gallon buckets, batteries, and old electrical fixtures.
- Installation of three monitoring wells to allow for proper development and low-flow sampling. The monitoring wells should be installed within close proximity the locations of B8, B9, and B10. The monitoring wells should be designed to sample shallow ground water, screened form ~7- to 20-feet bgs depending on anticipated seasonal water level fluctuations. The monitoring wells, once developed, will be sampled for lead, cadmium, chromium, arsenic, mercury, copper, zinc, and nickel.

Summary

It is our opinion that the contaminants identified are the result of historic site activities associated with the operation of an auto wrecking yard. Given the recent removal of a majority of the sources of contamination, removal of the impacted soils and remaining potential sources scattered across the site will alleviate much of the need for future remedial activities. It is also our opinion that properly constructed and developed monitoring wells will provide a more accurate representation of the ground water beneath the subject site. Our experience has shown properly developed and sampled wells have generally provided lower concentrations of metals within sampled ground water previously identified with elevated metals concentrations. Provided this assumption proves out, additional site characterization concerning groundwater contamination (including plume delineation) and additional remedial efforts may not be necessary.

We appreciate this opportunity to be of service. Please do not hesitate to contact me if you have any questions.

Very truly yours,

Robinson, Noble & Saltbush, Inc.

Richard A. Bieber, LG Project Hydrogeologist, Project Manager

attachments

John F. Hildenbrand Associate Environmental Scientist Environmental Services Manager

GROUNDWATER & ENVIRONMENTAL SCIENTISTS

2491-001B Havens Property: 93rd Ave SE, Oly/Site Characterization

2491-001B Havens Property: 93rd Ave SE, Oly/Site Characterization

GROUNDWATER & ENVIRONMENTAL SCIENTISTS

 ROBINSON
 PM: RAB
 Figure 6

 NOBLE SALTBUSH
 May 2009
 Boring Logs

 GROUNDWATER & ENVIRONMENTAL SCIENTISTS
 2491-001B
 Havens Property: 93rd Ave SE, Oly/Site Characterization

Libby Environmental, Inc.

4139 Libby Road N.E., Olympia, WA 98506-2518

March 13, 2009

Rick Bieber Robinson, Noble & Saltbush, Inc. 3011 Huson Street South Suite A Tacoma, WA 98409

Dear Mr. Bieber:

Please find enclosed the analytical data report for the Havens Project located in Tumwater, Washington. Mobile Lab Services were conducted on February 18, 2009. Soil and water samples were received and analyzed for Volatile Organic Compounds by EPA Method 8260B. Additional samples were analyzed off site for Gasoline by NWTPH-Gx, Diesel & Oil NWTPH-Dx/Dx Extended, Metals by EPA Method 7000 Series, and Glycols.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed. All soil samples are reported on a dry weight basis.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

My I WA

Sherry L. Chilcutt President Libby Environmental, Inc.

Phone (360) 352-2110 * Fax (360) 352-4154 * libbyenv@aol.com

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN SOIL

Sample Description		Method	TP1	TP1-1'B	TP2-1' A	TP2-1' B	TP4-1'
		Blank	Surf A				
Date Extracted	Reporting	N/A	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09
Date Analyzed	Limits	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09
·	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride *	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.02	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.02	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
Total Xylenes	0.03	nd	nd	nd	nd	nd	nd
Styrenes	0.02	nd	nd	nd	nd	nd	nd

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN SOIL

Sample Description		Method	TP1	TP1-1'B	TP2-1' A	TP2-1' B	TP4-1'
		Blank	Surf A				
Date Extracted	Reporting	N/A	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09
Date Analyzed	Limits	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.02	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.08	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.02	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.02	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.02	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
Isopropyltoluene	0.02	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.03	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalene	0.03	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		125	128	131	110	132	111
1,2-Dichloroethane-d4		84	75.7	128	92.1	84.8	86.5
Toluene-d8		117	118	117	119	117	117
4-Bromofluorobenzene		112	117	108	100	121	103

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

QA/QC Data - EPA 8260B Analyses

Sample Identification: TP1-1'B											
		Matrix Spik	te	Matr	ix Spike Dupl	icate	RPD				
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)					
1,1-Dichloroethene	1.00	0.68	68	1.00	0.84	84	21.1				
Benzene	1.00	0.80	80	1.00	0.98	98	20.2				
Toluene	1.00	0.78	78	1.00	1.00	100	24.7				
Chlorobenzene	1.00	1.03	103	1.00	1.29	129	22.4				
Trichloroethene (TCE)	1.00	0.67	67	1.00	0.84	84	22.5				
Surrogate Recovery											
Dibromofluoromethane			132			128					
1,2-Dichloroethane-d4			88.8			90.2					
Toluene-d8			117			117					
4-Bromofluorobenzene			110			111					

	Laborator	y Control Sa	imple
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)
1 1-Dichloroethene	1.00	0.72	72
Benzene	1.00	0.88	88
Toluene	1.00	0.88	88
Chlorobenzene	1.00	0.74	74
Trichloroethene (TCE)	1.00	0.71	71
Surrogate Recovery	····-		
Dibromofluoromethane			127
1,2-Dichloroethane-d4			91
Toluene-d8			115
4-Bromofluorobenzene			126

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN SOIL

Sample Description		Method	TP5-0.5' A	TP5	TP6-0.5' A	TP6	TP8-3'
		Blank		Surf B		Surf B	
Date Extracted	Reporting	N/A	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09
Date Analyzed	Limits	2/22/09	2/22/09	2/22/09	2/22/09	2/22/09	2/22/09
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
· · · · · · · · · · · · · · · · · · ·							
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride *	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.02	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.02	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
Total Xylenes	0.03	nd	nd	nd	nd	nd	nd
Styrenes	0.02	nd	nd	nd	nd	nd	nd

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN SOIL

Sample Description		Method	TP5-0.5' A	TP5	TP6-0.5' A	TP6	TP8-3'
		Blank		Surf B		Surf B	
Date Extracted	Reporting	N/A	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09
Date Analyzed	Limits	2/22/09	2/22/09	2/22/09	2/22/09	2/22/09	2/22/09
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.02	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.08	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.02	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.02	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.02	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
Isopropyltoluene	0.02	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.03	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalene	0.03	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		128	97.1	132	125	123	131
1,2-Dichloroethane-d4		87.1	90.8	80.6	117	120	73.3
Toluene-d8		112	111	113	119	114	121
4-Bromofluorobenzene		115	93.1	116	108	108	120

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN SOIL

0 1 D 1 1							
Sample Description		TP9	TP9	TP9	TP9-1' B	TP10-1'	TP3-1A
		Surf A	Surt A Dup	Surf B	an a		
Date Extracted	Reporting	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09
Date Analyzed	Limits	2/22/09	2/22/09	2/22/09	2/22/09	2/22/09	2/22/09
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride *	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.02	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.02	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
Total Xylenes	0.03	nd	nd	nd	nd	nd	nd
Styrenes	0.02	nd	nd	nd	nd	nd	nd

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN SOIL

Sample Description		TP9	TP9	TP9	TP9-1' B	TP10-1'	TP3-1A
		Surf A	Surf A Dup	Surf B			
Date Extracted	Reporting	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09
Date Analyzed	Limits	2/22/09	2/22/09	2/22/09	2/22/09	2/22/09	2/22/09
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
				· · · · · · · · · · · · · · · · · · ·			
Bromoform	0.02	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.08	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.02	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.02	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.02	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
Isopropyltoluene	0.02	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	e 0.03	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalene	0.03	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		103	131	128	127	132	101
1,2-Dichloroethane-d4		79.1	78.5	75.8	77.7	96.4	99.3
Toluene-d8		112	120	125	117	114	130
4-Bromofluorobenzene		94	112	121	109	112	99.0

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN SOIL

Sample Description		TP3	TP11-1'
-		Surf B	
Date Extracted	Reporting	2/18/09	2/18/09
Date Analyzed	Limits	2/22/09	2/22/09
·	(mg/kg)	(mg/kg)	(mg/kg)
		<u> </u>	
Dichlorodifluoromethane	0.06	nd	nd
Chloromethane	0.06	nd	nd
Vinyl chloride *	0.02	nd	nd
Bromomethane	0.09	nd	nd
Chloroethane	0.06	nd	nđ
Trichlorofluoromethane	0.05	nd	nd
1.1-Dichloroethene	0.05	nd	nd
Methylene chloride	0.02	nd	nd
trans -1.2-Dichloroethene	0.02	nd	nd
1 1-Dichloroethane	0.02	nd	nd
2 2-Dichloropropage	0.02	nd	nd
<i>cis</i> 1 2-Dichloroethene	0.03	nd	nd
Chloroform	0.02	nd	nd
1.1.1 Trichloroothone (TCA)	0.02	nd	nd
Carbon totrachlorida	0.02	nd	nu
	0.02	nd a	nu nd
T,T-Dicinoropropene	0.02	IIU 	na
1 2 Dishlarasthara (DDC)	0.02	na	11 0
Triabless at an (TCD)	0.03	na	na
1 nonioroetnene (ICE)	0.03	na 1	na
1,2-Dicnioropropane	0.02	na	nd
Dibromomethane	0.04	nd	nd
Bromodichloromethane	0.02	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd
Toluene	0.02	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd
1,3-Dichloropropane	0.05	nd	nd
Dibromochloromethane	0.03	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd
Chlorobenzene	0.02	nd	nd
1,1,1,2-Tetrachloroethane	0.03	nd	nd
Ethylbenzene	0.03	nd	nd
Total Xylenes	0.03	nd	nd
Styrenes	0.02	nd	nd

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN SOIL

Sample Description		TP3	TP11-1'	
		Surf B		
Date Extracted	Reporting	2/18/09	2/18/09	
Date Analyzed	Limits	2/22/09	2/22/09	
	(mg/kg)	(mg/kg)	(mg/kg)	
Bromoform	0.02	nd	nd	
Isopropylbenzene	0.08	nd	nd	
1,2,3-Trichloropropane	0.02	nd	nd	
Bromobenzene	0.03	nd	nd	
1,1,2,2-Tetrachloroethane	0.02	nd	nd	
n-Propylbenzene	0.02	nd	nd	
2-Chlorotoluene	0.02	nd	nd	
4-Chlorotoluene	0.02	nd	nd	
1,3.5-Trimethylbenzene	0.02	nd	nd	
tert-Butylbenzene	0.02	nd	nd	
1,2,4-Trimethylbenzene	0.02	nd	nd	
sec-Butylbenzene	0.02	nd	nd	
1,3-Dichlorobenzene	0.02	nd	nd	
Isopropyltoluene	0.02	nd	nd	
1,4-Dichlorobenzene	0.02	nd	nđ	
1,2-Dichlorobenzene	0.02	nd	nd	
n-Butylbenzene	0.02	nd	nd	
1,2-Dibromo-3-Chloropropane	e 0.03	nd	nd	
1,2,4-Trichlorolbenzene	0.05	nd	nd	
Hexachloro-1,3-butadiene	0.10	nd	nd	
Naphthalene	0.03	nd	nd	
1,2,3-Trichlorobenzene	1.0	nd	nd	
Surrogate Recovery				
Dibromofluoromethane		125	123	
1,2-Dichloroethane-d4		115	110	
Toluene-d8		116	112	
4-Bromofluorobenzene		102	101	
"nd" Indicates not detected at	listed detection	on limit.		
"int" Indicates that interference	e prevents de	termination.		

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

QA/QC Data - EPA 8260B Analyses

		Sample Ide	ntification:	TP10-1'			
		Matrix Spik	te	Matr	ix Spike Dupl	icate	RPD
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	
1,1-Dichloroethene	1.00	1.27	127	1.00	1.03	103	20.9
Benzene	1.00	0.97	97	1.00	1.27	127	26.8
Toluene	1.00	1.13	113	1.00	1.24	124	9.3
Chlorobenzene	1.00	1.20	120	1.00	0.91	91	27.5
Trichloroethene (TCE)	1.00	0.78	78	1.00	0.98	98	22.7
Surrogate Recovery	i			<i>,</i>		a - Linge Andrea	
Dibromofluoromethane			134			132	
1,2-Dichloroethane-d4			80.4			89.0	
Toluene-d8			115			116	
4-Bromofluorobenzene			113			119	

•******	Laborator	y Control Sa	imple
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)
1 1-Dichloroethene	1.00	0.85	85
Benzene	1.00	1.24	124
Toluene	1.00	1.35	135
Chlorobenzene	1.00	0.75	75
Trichloroethene (TCE)	1.00	1.00	100
Surrogate Recovery	81-117 -1181-134-14-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
Dibromofluoromethane		,	131
1,2-Dichloroethane-d4			89.5
Toluene-d8			117
4-Bromofluorobenzene			116

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

VOLATILE	URGANI	C COMPC	JUNDS BY	EPA METH	IOD 8260B I	N WATER	
Sample Description		Method	B1	B2	B2	B3	B4
		Blank			Dup		
Date Sampled	Reporting	N/A	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09
Date Analyzed	Limits	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09
	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Dichlorodifluoromethane	2.0	nd	nd	nd	nd	nd	nd
Chloromethane	2.0	nd	nd	nd	nd	nd	nd
Vinyl chloride *	0.2	nd	nd	nd	nd	nd	nd
Bromomethane	2.0	nd	nd	nd	nd	nd	nd
Chloroethane	2.0	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	2.0	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	2.0	nd	nd	nd	nd	nd	nd
Methylene chloride	1.0	nd	nd	nd	nd	nd	nd
MTBE	1.0	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	1.0	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	2.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Chloroform	1.0	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	1.0	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	1.0	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	1.0	nd	nd	nd	nd	nd	nd
Benzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	1.0	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	1.0	nd	nd	nd	nd	nd	nd
Dibromomethane	1.0	nd	nd	nd	nd	nd	nd
Bromodichloromethane	1.0	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	nd
Toluene	1.0	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	1.0	nd	nd	nd	nd	nd	nd
Dibromochloromethane	1.0	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd	nd	nd
Chlorobenzene	1.0	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
Total Xylenes	1.0	nd	nd	nd	nd	nd	nd
Styrenes	1.0	nd	nd	nd	nd	nd	nd

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN WATER

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

VOLATILE	VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN WATER						
Sample Description		Method	B1	B2	B2	B3	B4
		Blank			Dup		
Date Extracted	Reporting	N/A	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09
Date Analyzed	Limits	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09
	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Isopropylbenzene	4.0	nd	nd	nd	nd	nd	nd
1.2.3-Trichloronronane	1.0	nd	nd	nd	nd	nd	nd
Bromohenzene	1.0	nd	nd	nd	nd	nd	nd
1 1 2 2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	nd
n-Pronylbenzene	1.0	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	1.0	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	1.0	nd	nd	nd	nd	nd	nd
1.3.5-Trimethylbenzene	1.0	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	1.0	nd	nd	nd	nd	nd	nd
1.2.4-Trimethylbenzene	1.0	nd	nd	nd	nd	nd	nd
sec Butulbenzene	1.0	nd	nd	nd	nd	nd	nd
1.3 Dichlorohanzana	1.0	nd	nd	nd	nd	nd	nd
Isopropultaluana	1.0	nd	nd	nd	nd	nd	nd
1.4 Dichlorohonzono	1.0	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nu nd	nu ma	DII 	nu d	nd	nd
1,2-Dichlorobenzene	1.0	na	nd 	na 	nd	nd	na
n-Butylbenzene	1.0	na	na	na	nd	nd	na
1,2-Dibromo-3-Chloropropane	e 1.0	na	na	nd	nd	nd	nd
1,2,4-1richlorolbenzene	2.0	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	5.0	nd	nd	nd	nd	nd	nd
Naphthalene	5.0	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	5.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		125	133	86.7	127	128	127
1,2-Dichloroethane-d4		84	122	66.8	72.4	80.2	103
Toluene-d8		117	121	108	118	109	117
4-Bromofluorobenzene		112	108	86.6	110	113	100
"nd" Indicates not detected at	listed detection	on limit.					

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HAVENS PROPERTY PROJECT

Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

QA/QC Data - EPA 8260B Analyses

Sample Identification: B1							
		Matrix Spil	ke	Matr	Matrix Spike Duplicate		
	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)	
1,1-Dichloroethene	30	24.0	80	30	32.9	110	31.3
Benzene	30	28.9	96	30	37.7	126	26.4
Toluene	30	27.6	92	30	37.2	124	29.6
Chlorobenzene	30	28.6	95	30	26.2	87	8.8
Trichloroethene (TCE)	30	24.4	81	30	32.6	109	28.8
Surrogate Recovery							
Dibromofluoromethane			133			127	
1,2-Dichloroethane-d4		87				78	
Toluene-d8			118	115			
4-Bromofluorobenzene			112			116	

	Laborator	y Control S	ample
	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)
1,1-Dichloroethene	20	14.3	72
Benzene	20	17.6	88
Toluene	20	17.6	88
Chlorobenzene	20	14.9	75
Trichloroethene (TCE)	20	14.2	71
Surrogate Recovery			
Dibromofluoromethane			127
1,2-Dichloroethane-d4			91
Toluene-d8			115
4-Bromofluorobenzene			126

.

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN WATER

Sample Description		B6	B8	B9	B10	B11	
Date Sampled	Reporting	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09	
Date Analyzed	Limits	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09	
	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
Dichlorodifluoromethane	2.0	nd	nd	nd	nd	nd	
Chloromethane	2.0	nd	nd	nd	nd	nd	
Vinyl chloride *	0.2	nd	nd	nd	nd	nd	
Bromomethane	2.0	nd	nd	nd	nd	nd	
Chloroethane	2.0	nd	nd	nd	nd	nd	
Trichlorofluoromethane	2.0	nd	nd	nd	nd	nd	
1,1-Dichloroethene	2.0	nd	nd	nd	nd	nd	
Methylene chloride	1.0	nd	nd	nd	nd	nd	
MTBE	1.0	nd	nd	nd	nd	nd	
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
1,1-Dichloroethane	1.0	nd	nd	nd	nd	nd	
2,2-Dichloropropane	2.0	nd	nd	nd	nd	nd	
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
Chloroform	1.0	nd	nd	nd	nd	nd	
1,1,1-Trichloroethane (TCA)	1.0	nd	nd	nd	nd	nd	
Carbon tetrachloride	1.0	nd	nd	nd	nd	nd	
1,1-Dichloropropene	1.0	nd	nd	nd	nd	nd	
Benzene	1.0	nd	nd	nd	nd	nd	
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd	
Trichloroethene (TCE)	1.0	nd	nd	nd	nd	nd	
1,2-Dichloropropane	1.0	nd	nd	nd	nd	nd	
Dibromomethane	1.0	nd	nd	nd	nd	nd	
Bromodichloromethane	1.0	nd	nd	nd	nd	nd	
cis-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	
Toluene	1.0	nd	nd	nd	nd	nd	
Trans-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	
1,1,2-Trichloroethane	1.0	nd	nd	nd	nd	nd	
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	
1,3-Dichloropropane	1.0	nd	nd	nd	nd	nd	
Dibromochloromethane	1.0	nd	nd	nd	nd	nd	
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd	nd	
Chlorobenzene	1.0	nd	nd	nd	nd	nd	
1,1,1,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	
Ethylbenzene	1.0	nd	nd	nd	nd	nd	
Total Xylenes	1.0	nd	nd	nd	nd	nd	
Styrenes	1.0	nd	nd	nd	nd	nd	

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN WATER

Sample Description		B6	B8	B9	B10	B11	
Date Extracted	Reporting	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09	
Date Analyzed	Limits	2/18/09	2/18/09	2/18/09	2/18/09	2/18/09	
-	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
		_	_				
Isopropylbenzene	4.0	nd	nd	nd	nd	nd	
1,2,3-Trichloropropane	1.0	nd	nd	nd	nd	nd	
Bromobenzene	1.0	nd	nd	nd	nd	nd	
1,1,2,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	
n-Propylbenzene	1.0	nd	nd	nd	nd	nd	
2-Chlorotoluene	1.0	nd	nd	nd	nd	nd	
4-Chlorotoluene	1.0	nd	nd	nd	nd	nd	
1,3,5-Trimethylbenzene	1.0	nd	nd	nd	nd	nd	
tert-Butylbenzene	1.0	nd	nd	nd	nd	nd	
1,2,4-Trimethylbenzene	1.0	nd	nd	nd	nd	nd	
sec-Butylbenzene	1.0	nd	nd	nd	nd	nd	
1,3-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	
Isopropyltoluene	1.0	nd	nd	nd	nd	nd	
1,4-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	
1,2-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	
n-Butylbenzene	1.0	nd	nd	nd	nd	nd	
1,2-Dibromo-3-Chloropropane	1.0	nd	nd	nd	nd	nd	
1,2,4-Trichlorolbenzene	2.0	nd	nd	nd	nd	nd	
Hexachloro-1,3-butadiene	5.0	nd	nd	nd	nd	nd	
Naphthalene	5.0	nd	nd	nd	nd	nd	
1,2,3-Trichlorobenzene	5.0	nd	nd	nd	nd	nd	
Surrogate Recovery						nda an danan sa din dina 'i Bibl' nya ta filo an dina dina dina a	
Dibromofluoromethane		99.3	97.3	110	120	133	
1,2-Dichloroethane-d4		73.1	72.1	93.5	101	129	
Toluene-d8		114	111	108	115	119	
4-Bromofluorobenzene		102	88.5	92.2	100	109	
"nd" Indicates not detected at	listed detection	on limit.	and a state of the same of				

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HAVENS PROPERTY PROJECT

Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

Analyses of Gasoline (NWTPH-Gx) in Water

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(ug/l)
Method Blank	2/18/09	90	nd
B1	2/18/09	98	nd
B2	2/18/09	88	nd
B2 Dup	2/18/09	94	nd
B3	2/18/09	67	nd
B4	2/18/09	112	nd
B5	2/18/09	90	nd
B6	2/18/09	71	nd
B8	2/18/09	101	nd
B9	2/18/09	111	nd
B10	2/18/09	86	nd
B11	2/18/09	85	nd
Practical Quantitation Limit	t		100

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc.

Libby Env.Project No.L090218-10

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Mineral Oil	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	2/20/09	111	nd	nd	nd
TP2-1' A	2/20/09	104	nd	nd	nd
TP2-1' B	2/20/09	88	nd	nd	nd
TP1-Surf A	2/20/09	110	nd	nd	nd
TP1-1' B	2/20/09	98	nd	nd	nd
TP4-1'	2/20/09	85	nd	nd	nd
TP5-0.5A	2/20/09	79	nd	nd	nd
TP5-Surf B	2/20/09	105	nd	nd	340
TP6-0.5A	2/20/09	int	nd	nd	61900
TP6-Surf B	2/20/09	110	nd	nd	nd
TP6-Surf B Dup	2/20/09	109	nd	nd	nd
TP8-3'	2/20/09	110	nd	nd	nd
TP9-Surf A	2/20/09	110	nd	nd	320
TP9-1' B	2/20/09	95	nd	nd	nd
TP9- Surf B	2/20/09	90	nd	nd	nd
TP10-1'	2/20/09	105	nd	nd	nd
TP11-1'	2/20/09	85	nd	nd	nd
TP11-1' Dup	2/20/09	135	nd	nd	nd
TP3-1'A	2/20/09	83	nd	nd	nd
TP3-Surf B	2/20/09	100	nd	nd	500
Practical Quantitat	ion Limit		25	40	40

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Athanasius

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Mineral Oil	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	2/25/09	110	nd	nd	nd
TP1-Surf A	2/25/09	int	nd	nd	66700
TP1-Surf A Dup	2/25/09	int	nd	nd	65700
TP1-1' B	2/25/09	90	nd	nd	140
TP6-0.5'A	2/25/09	int	nd	nd	38600
TP6-4.0' A	2/25/09	90	nd	nd	nd
TP6-4.0' A Dup	2/25/09	89	nd	nd	nd
Practical Quantitat	ion Limit		25	40	40

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Athanasius

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc.

Libby Env.Project No.L090218-10

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

Sample	Date	Surrogate	Diesel	Mineral Oil	Oil
Number	Analyzed	Recovery (%)	(ug/l)	(ug/l)	(ug/l)
Method Blank	2/19/09	105	nd	nd	nd
B1	2/19/09	100	nd	nd	nd
B2	2/19/09	65	nd	nd	nd
B3	2/19/09	101	nd	nd	nd
B4	2/19/09	106	nd	nd	nd
B5	2/19/09	116	nd	nd	nd
B6	2/19/09	81	nd	nd	nd
B8	2/20/09	100	nd	nd	nd
B9	2/20/09	72	nd	nd	nd
B9 DUP	2/20/09	110	nd	nd	nd
B10	2/20/09	113	nd	nd	nd
B11	2/20/09	118	nd	nd	nd
Practical Quantita	ation Limit		200	400	400

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Gautam Dutta

HAVENS PROPERTY PROJECT Tumwater, Washington

Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	2/18/09	90	nd
TP1-Surf A	2/18/09	70	nd
TP1-1' B	2/18/09	71	nd
TP2-1' A	2/18/09	68	nd
TP2-1' B	2/18/09	69	nd
TP4-1'	2/18/09	79	nd
TP4-1' Dup	2/18/09	87	nd
Practical Quantitation 1	Limit		10

Analyses of Gasoline (NWTPH-Gx) in Soil

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

HAVENS PROPERTY PROJECT

Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

Analyses of Gasoline (NWTPH-Gx) in Soil

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	2/19/09	121	nd
TP3-1'A	2/19/09	118	nd
TP3-Surf B	2/19/09	100	nd
TP5-0.5A	2/19/09	105	nd
TP5-Surf B	2/19/09	112	nd
TP6-0.5A	2/19/09	91	nd
TP6-Surf B	2/20/09	82	nd
TP8-3'	2/20/09	89	nd
TP9-Surf A	2/20/09	104	nd
TP9-1' B	2/19/09	110	nd
TP9- Surf B	2/19/09	93	nd
TP10-1'	2/19/09	75	nd
TP11-1'	2/20/09	87	nd
TP11-1' DUP	2/20/09	66	nd
Practical Quantitation L	10		

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

ANALYSES PERFORMED BY: Gautam Dutta

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

Analyses of Metals in Soil by EPA Method 7000 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic	Mercury
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	2/20/09	nd	nd	nd	nd	nd
TP1-Surf A	2/20/09	25	nd	nd	nd	nd
TP1-1' B	2/20/09	26	nd	nd	nd	nd
TP2-1' A	2/20/09	nd	nd	nd	nd	nd
TP2-1' B	2/20/09	nd	nd	nd	nd	nd
TP4-1'	2/20/09	nd	nd	nd	nd	nd
TP3-1'A	2/20/09	nd	nd	nd	nd	nd
TP3-Surf B	2/20/09	230	nd	nd	nd	nd
TP5-0.5A	2/20/09	nd	nd	nd	nd	nd
TP5-Surf B	2/20/09	27	nd	nd	nd	nd
TP6-0.5A	2/20/09	8	nd	nd	nd	nd
TP6-Surf B	2/20/09	nd	nd	nd	nd	nd
TP8-3'	2/20/09	nd	nd	nd	nd	nd
TP9-Surf A	2/20/09	25	nd	nd	nd	nd
TP9-1' B	2/20/09	6	nd	nd	nd	nd
TP9- Surf B	2/20/09	nd	nd	nd	nd	nd
TP10-1'	2/20/09	nd	nd	nd	nd	nd
TP11-1'	2/20/09	nd	nd	nd	nd	nd
TP11-1' DUP	2/20/09	nd	nd	nd	nd	nd
Practical Quant	itation Limit	5.0	1.0	5.0	5.0	0.5

"nd" Indicates not detected at the listed detection limits.

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

QA/QC for Metals in Soil by EPA Method 7000 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic	Mercury
Number	Analyzed	(% Recovery)				
LCS	2/20/09	101%	122%	101%	114%	88%
TP11-1' MS	2/20/09	127%	97%	73%	101%	93%
TP11-1' MSD	2/20/09	125%	98%	80%	98%	93%
RPD	2/20/09	2%	1%	9%	3%	0%
Practical Quant	itation Limit	5.0	1.0	5.0	5.0	0.5

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

Analyses of Metals in Soil by EPA Method 7000 Series

Sample	Date	Copper	Zinc	Nickel
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	2/24/09	nd	nd	nd
TP1-Surf A	2/24/09	7	16	19
TP1-1' B	2/24/09	11	23	115 -
TP2-1' A	2/24/09	nd	nd	21
TP2-1' B	2/24/09	nd	nd	25
TP3-1'A	2/24/09	nd	nd	20
TP3-Surf B	2/24/09	20	19	32
TP5-0.5A	2/24/09	nd	11	27
TP5-Surf B	2/24/09	nd	9	nd
TP8-3'	2/24/09	nd	nd	13
TP9-Surf A	2/24/09	5	17	30
TP9-1' B	2/24/09	nd	nd	35
TP9- Surf B	2/24/09	nd	13	40
TP11-1'	2/24/09	nd	nd	23
TP11-1' DUP	2/24/09	nd	nd	
Practical Quantitation Limit		5.0	1.0	5.0

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Sherry Chilcutt & Zoe (DAL)

1

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

QA/QC for Metals in Soil by EPA Method 7000 Series

Sample	Date	Copper	Zinc	Nickel
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)
LCS	2/24/09	96%	71%	98%
TP11-1' MS	2/24/09	92%	108%	106%
TP11-1' MSD	2/24/09	93%	114%	106%
RPD	2/24/09	1%	5%	0%
Practical Quant	itation Limit	5.0	1.0	5.0

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt & Zoe (DAL)
HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

Analyses of Metals in Soil by EPA Method 7000 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic	Mercury
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	3/1/09	nd	nd	nd	nd	nd
B8-2.5'	3/1/09	nd	nd	nd	nd	nd
B9-8.5'	3/1/09	nd	nd	nd	nd	nd
B10-4.5'	3/1/09	nd	nd	nd	nd	nd
B10-4.5' Dup	3/1/09	nd	nd	nd	nd	nd
Practical Quant	itation Limit	5.0	1.0	5.0	5.0	0.5

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Sherry Chilcutt

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

QA/QC for Metals in Soil by EPA Method 7000 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic	Mercury
Number	Analyzed	(% Recovery)				
LCS	3/1/09	105%	96%	100%	100%	90%
B10-4.5' MS	3/1/09	102%	85%	int	109%	94%
B10-4.5' MSD	3/1/09	114%	80%	int	99%	86%
RPD	3/1/09	11%	6%		10%	9%
Practical Quant	itation Limit	5.0	1.0	5.0	5.0	0.5

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt

HAVENS PROPERTY PROJECT Tumwater, Washington

Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

Analyses of Metals in Soil by EPA Method 7000 Series

Sample	Date	Copper	Zinc	Nickel
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	3/1/09	nd	nd	nd
B8-2.5'	3/1/09	nd	3.1	12
B9-8.5'	3/1/09	nd	10.2	20
B10-4.5'	3/1/09	nd	3.4	20
B10-4.5' Dup	3/1/09	nd	3.2	
Practical Quant	itation Limit	5.0	1.0	5.0

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Sherry Chilcutt & Spectra Labs

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

QA/QC for Metals in Soil by EPA Method 7000 Series

Sample	Date	Copper	Zinc	Nickel
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)
LCS	3/1/09	105%	100%	
B10-4.5' MS	3/1/09	int	int	
B10-4.5' MSD	3/1/09	int	int	
RPD	3/1/09			
Practical Quant	itation Limit	5.0	1.0	5.0

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt & Spectra Labs

HAVENS PROPERTY PROJECT

Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

Analyses of Metals in Water by EPA Method 7000 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic	Mercury
Number	Analyzed	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Method Blank	2/20/09	nd	nd	nd	nd	nd
B1	2/20/09	nd	nd	nd	nd	nd
B2	2/20/09	nd	nd	nd	nd	nd
B3	2/20/09	nd	nd	nd	nd	nd
B4	2/20/09	nd	nd	nd	nd	nd
B5	2/20/09	11	nd	nd	nd	nd
B6	2/20/09	nd	nd	nd	nd	nd
B8	2/20/09	25	nd	30	14	nd
B9	2/20/09	113	2.0	34	32	nd
B10	2/20/09	72	nd	54	7.0	nd
B11	2/20/09	nd	nd	nd	nd	nd
B11 Dup	2/20/09	nd	nd	nd	nd	nd
Practical Quanti	tation Limit	5.0	1.0	10.0	3.0	1.0

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Sherry Chilcutt

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

QA/QC for Metals in Water by EPA Method 7000 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic	Mercury
Number	Analyzed	(% Recovery)				
LCS	2/20/09	100%	97%	127%	94%	93%
B11 MS	2/20/09	106%	108%	128%	86%	83%
B11 MSD	2/20/09	101%	107%	127%	81%	97%
RPD	2/20/09	4.8	0.9	0.8	6.0	16
Practical Quan	titation Limit	5.0	1.0	10.0	3.0	1.0

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

Analyses of Metals in Water by EPA Method 7000 Series

Sample	Date	Copper	Zinc	Nickel
Number	Analyzed	(ug/l)	(ug/l)	(ug/l)
Method Blank	2/24/09	nd	nd	nd
B1	2/24/09	nd	nd	nd
B2	2/24/09	nd	nd	nd
B3	2/24/09	nd	nd	nd
B5	2/24/09	22	nd	nd
B8	2/24/09	196	113	nd
B9	2/24/09	1400	560	807
B11	2/24/09	nd	nd	239
B11 Dup	2/24/09	nd	nd	
Practical Quanti	tation Limit	5.0	10.0	50.0

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Sherry Chilcutt & Zoe (DAL)

HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Libby Env.Project No.L090218-10

QA/QC for Metals in Water by EPA Method 7000 Series

.

Sample	Date	Copper	Zinc	Nickel
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)
LCS	2/24/09	99%	99%	98%
B11 MS	2/24/09	118%	102%	104%
B11 MSD	2/24/09	111%	100%	98%
RPD	2/24/09	6.1	2.0	5.9
Practical Quar	titation Limit	5.0	10.0	5.0

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt & Zoe (DAL)

- 2221 Ross Way Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com

03/10/2009

Libby Environ 4139 Libby R Olympia, WA Attn: Sherry	nmental, LLC d NE 98506 Chilcutt	Projec Date F Spectr	t: H Received: 02 ra Project: 20	avens 2/27/2009 209020488	8	
<u>Client ID</u>	Spectra # Analyte	Result	Units	Method	Matrix	Date Sampled
B10	1 Hexavalent Chromium	< 0.01	mg L	SM3500-CR-D	Water	02/18/26/9

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a8 sej

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 •

www.spectra-lab.com

03/06/2009

Libby Environmental, LLC 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: Havens Sample Matrix: Water Date Sampled: 02/18/2009 Date Received: 02/19/2009 Spectra Project: 2009020318

Client ID	Spectra #	Analyte	Result	Units	Method
B1	1	Ethylene Glycol	<10	mg/L	GC-FID
B1	1	Propylene Glycol	<10	mg/L	GC-FID
B3	2	Ethylene Glycol	<10	mg/L	GC-FID
В3	2	Propylene Glycol	<10	mg/L	GC-FID
B8	3	Ethylene Glycol	<10	mg/L	GC-FID
B8	3	Propylene Glycol	<10	mg/L	GC-FID
B9	4	Ethylene Glycol	<10	mg/L	GC-FID
B9	4	Propylene Glycol	<10	mg/L	GC-FID

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager

a7/sgh

Page 1 of 1

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Attn: Sherry Chilcutt 4139 Libby Road NE Olympia, WA 98506

RE: Haven Fremont Project No: CHM090225-2

February 27th, 2009

Sherry:

Enclosed are the analytical results for the *Haven* soil samples received by Fremont Analytical on Wednesday February 25th, 2009.

The samples were received in good condition – in the proper containers (4 oz soil jars), properly sealed, labeled and within holding time. The samples were extracted, analyzed and then stored in a refrigeration unit at the USEPA-recommended temperature of $4^{\circ}C \pm 2^{\circ}C$. There were no sample receipt or sample analysis issues to report.

Examination of these samples was conducted for the presence of the following:

• PCB's (Polychlorinated Biphenyls) in Soil by EPA 8082

This application was performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

Please contact the laboratory if you should have any questions about the report.

Thank you for using Fremont Analytical!

Sincerely,

Hon

Michael Dee Sr. Chemist / Principal mikedee@fremontanalytical.com

www.fremontanalytical.com

T: 206.352.3790 F: 206.352.7178 Email: info@fremontanalytical.com

Analysis of PCB's (Polychlorinated Biphenyls) in Soil by EPA 8082

Project: Haven Client: Libby Environmental Client Project #: N/A Lab Project #: CHM090225-2

					Duplicate	
EPA 8082 (mg/kg)	MRL	Method Blank	LCS	TP 5-Surface B	TP 5-Surface B	TP 6-0.5A
Date Extracted		2/26/09	2/26/09	2/26/09	2/26/09	2/26/09
Date Analyzed		2/26/09	2/26/09	2/26/09	2/26/09	2/26/09
Matrix				Soil	Soil	Soil
Ann - I 4040					_	
Arocior 1016	0.5	nd		nd	nd	nd
Aroclor 1221	0.5	nd		nd	nd	nd
Aroclor 1232	0.5	nd		nd	nd	nd
Aroclor 1242	0.5	nd		nd	nd	nd
Aroclor 1248	0.5	nd		nd	nd	nd
Aroclor 1254	0.5	nd		nd	nd	nd
Aroclor 1260	0.5	nd	96%	nd	nd	0.9
Surrogate Recovery						
Surr 1 (TCMX)		100%	97%	88%	81%	70%
Surr 2 (DCBP)		99%	112%	105%	82%	108%

"nd" Indicates no detection at the listed reporting limits

"int" Indicates that interference prevents determination

"C" Indicates coelution with Sample Peaks

"J" Indicates estimated value

"MRL" Indicates Method Reporting Limit

"LCS" Indicates Laboratory Control Sample

"MS" Indicates Matrix Spike

"MSD" Indicates Matrix Spike Duplicate

"RPD" Indicates Relative Percent Difference

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

Surrogates = 65% to 135%

LCS, LCSD, MS, MSD = 65% to 135%

Surrogates Concentration = 25 µg/L Spike Concentration = 1.0 mg/kg

CONFIDENTIAL

T: 206.352.3790 F: 206.352.7178 Email: info@fremontanalytical.com

Analysis of PCB's (Polychlorinated Biphenyls) in Soil by EPA 8082

Project: Haven Client: Libby Environmental Client Project #: N/A Lab Project #: CHM090225-2

				MS
EPA 8082 (mg/kg)	MRL	TP 9-Surface A	TP 3-Surface B	TP 5-Surface B
Date Extracted		2/26/09	2/26/09	2/26/09
Date Analyzed		2/26/09	2/26/09	2/26/09
Matrix		Soil	Soil	Soil
Aroclor 1016	0.5	nd	nd	
Aroclor 1221	0.5	nd	nd	
Aroclor 1232	0.5	nd	nd	
Aroclor 1242	0.5	nd	nd	
Aroclor 1248	0.5	nd	nd	
Aroclor 1254	0.5	nd	nd	
Aroclor 1260	0.5	nd	nd	99%
Surrogate Recovery				
Surr 1 (TCMX)		79%	85%	81%
Surr 2 (DCBP)		82%	88%	91%

"nd" Indicates no detection at the listed reporting limi-

"int" Indicates that interference prevents determination

"C" Indicates coelution with Sample Peaks

"J" Indicates estimated value

"MRL" Indicates Method Reporting Limit

"LCS" Indicates Laboratory Control Sample

"MS" Indicates Matrix Spike

"MSD" Indicates Matrix Spike Duplicate

"RPD" Indicates Relative Percent Difference

Acceptable RPD is determined to be less than 30% <u>Acceptable Recovery Limits:</u> Surrogates = 65% to 135%

LCS, LCSD, MS, MSD = 65% to 135% Surrogates Concentration = $25 \mu g/L$

Spike Concentration = 1.0 mg/kg

A CONTRACTOR											
Libby Environn	nental, Inc.		Chai	n of Cust	ody Rec	ord					
4139 Libby Road NE Olympia, WA 98506	Ph: 360-352- Fax: 360-352-	2110 4154		Date:	2-18-0	6		Page:	-united and a first and a first	of Z	M
Client: RNS				Project Ma	anager:	R B.	ber-				
Address:				Project Na	ime:	avene	22	, s e f c			
Phone: $7 < 3 - 475$	7 711 Fax:	253.	477 5816	Location.	T w w	1 2 4 1 1 2	W 45	N al	0 1-1		
Client Project #				Collector.	S. Wallow	R R.	1 Date Date	e of Colle	ection: 2	-18.0	~
2 2											
					100					,	
tý					000			N. C.	>		
	· .			000000000	o of to of	to to	Cor News	N V			
	F	Sample	Container	10, 00, 40	ALL ALLAND	ALA AL	A A A	Ś		Calotac (H) of	2
1 1 D 7 1 A		adk-									0
2 707-4 4	1, 0 8 CL C	10	102 V 31	××				2	1010		
34 12 44 8 2	3530	3	Ambs 1614	>	í X		XX	K		- - -	
4 RANA - 7.	7 10400	N.	Z NU	×	×			C	1010		
5782-2115	0,00	~	NW I H	×			XX	2			2
6 + 02 - 41 3	0050 Y	n			р			~	~		
7 124	1249	~	A MULL VOA	×	X	X	×	1			1
8 BU-58'	128 0431	~	402 VOA		M	Ka	. KA	4	14010		
97P1-54r6A	SW-6 10425	5			- *		Ý [X	C4			
10 7 P 1 - 3,5 A	3.5 0440	<	1	×	 		× × ×	64	14010		
11 TPI- N'A	11 0445	\sim	4	- X	- - 		X	2	1011	0	
12701-46	H 1010		1					3	4010		20
13 701-10	1 1 1005	S,	17	X	×		XX	4			
14 P.1-7.5	7.5 100C	n	11 -	×	×.) × ×	(<u> </u>)	1401	-	
15 BI	1001	(M	A who for the	X		- X	X X	ň X			
16 T P4 -1	1 1030	~	4h2 UNA	·×	×		X	2			
17 7 Rug - 4.5	4.51025	S	4					2	10 +1	V	
18 R 5 - W.S	L.S 1033	~	2		í K	×	XX	2	1011	٠ ١	
Regimentished by: #	Date/ Time	З	Received by	I Church	Date / Time	Sample	Receipt:	Re	marks:		,
Relinquished by:	/ Date / Time		Received by		Date / Time	Good Cond	tion?		,		
						Cold?					
Relinquished by:	Date / Time		Received by		Date / Time	Seals Intact	\$				
			ŝ			Total Numb	er of Containers	TA	T 24HR	48HR 5-	-Day
Distribution White - Lab, Yellow - File, Pi	ink - Originator		\ 	5	•.						

205

-

4139 Libby Road NE Olympia, WA 98506	Ph: 360-0								,
	Fax: 360-3	52-4154		Date	L = (8 - 0)	9		Page: 2 of	<u>b</u>
Client: K N >				Project Ma	nager: R	P_{2}	545		
Address:				Project Na	me: 140.0	ees P	r olci		
Phone:	Fa	:×		Location:	to want or	(N) a	She affect		
Client Project #				Collector:	S WW LONE	L R	<u>(V C V</u> Date	of Collection: $2 - l$	605
					The second				
		((201 10 201 2010 201 10 201 2010	201 851 0 201 85	in the second	Sterars Coo	A CONTRACT	
Sample Number	Depth Tin	te Type	e Container Type	102 102 102	AND AND AND	AT PRICE	2 C C C C	Field Note/# C	ontainers
1 10 5	0	33 10	Od Value	X .	XIX		XX	and a second sec	
2 B 6	01	56 0	11, 4	X	XXX			6	
3 Blo-55	0	s ll s	42 DUA	×	×××××××××××××××××××××××××××××××××××××××			Z Hova	
4 TP5-0,51	104.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	入	× -/		×××	5	
57PS-5.5A	105	0 5	11	244				Z HOW	
6 TDS-SWIFB		5 5			メ ア フ		X	24	
7-705-10-2		0		þa				2 Held	
8 TUS-4 B	11.	SS						2 140101	
9 B	2)11	7 (Y)	Mar 1 100	×	××	-	XX	()	~
10 BIL-5.0		-+ - ->	402 UUN	×	× ×		X	2 Hold	
11 TP6-0.5A	517	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	17	×	X X X		×	2	
12 7 PL: 4.0 A	511	0 5	11					2 14210	
13 DS - 2.5	S III	5	1		×		X X	2 14019	
14 h 8	511	- H	Poly a wear	X	× × ×			× د	
15 TP6 - Suit NO	120		403 VOA		×			2	
16 1 V/A - 4 NO	2	2,	2 A					DIOH Z	
18-106-31		A V							Ň
Relinguished by.	Date/ Time		Received by		Date / Time	Sample R	eceipt:	Remarks;	
1 HEO	2/18/05 3	00-	MM	J WWH	2-18-09	-	-		
Relinquished by	(Date / Time		Received/by		Date / Time	Good Conditi	on?		
						Cold?	-	-	
Relinquished by:	Date / Time		Received by		Date / Time	Seals Intact?			
			1 Junior Martin			Total Number	of Containers	TAT 24HR 48	IR 5-Day

ŝŔ.

. And and Annual Contraction of the Contraction of

	Libby Environm	ental, Inc.		Ċ	lain of Cu	stody Re	scord						
	4139 Libby Road NE	Ph: 360-352	-2110			,					5-	N	× / <
	Olympia, WA 98506	Fax: 360-352	-4154		Date:			04	å	age:	∑ of	T A	
	Client:	NS			Project	: Manager:	N	6.1615					August -
	Address:				Project	: Name:	NAKN	S Pruir					
	Phone:	Fax:			Locatio	n: ر در ا	1200	er, W.	محكمت	<i>a</i> (1)			¥
	Client Project #				Collect	Or: S MAR	ðu	RB. We	Date of	Collection:	2-18-1	- 50	
•						A REAL							2
						CT C	\backslash	43					
			Sample	Container	61108 4 61108 4	101 10 10 10 10 10 10 10 10 10 10 10 10	to to	tory of the second	Le la		•		
	Sample Number	Depth Time	Type	Type U J		er white	in the	0 00 4V			Note/# Cont	ainers	
	2 15.10	1721	13	PN 1 Ander	×	/	 ×			A	2		
	3 64	1336	R				()		X	3 54			
	4 69 1.5	1336	ر م	402-U0A			•			.~	1-0101		. in
	5 TPG-Surf A	1335	v.	14 J	×		X	××		- Solar			4- -
	6 7P9 - 4' A	(340	5	11			~			2 14	- <i>J</i> W		
	7 TP9- SWE B	1355	2		×.	<u>}</u>	7			4			
A way	\$ 8 TP4- 1.5	0041	- - ~	1	×	+	r X	\sim \times		2			
4	9 TP9-4'B	1405	S.	11						11 - 71	13 \ d		
A.	10 TP10-1	1326	S	1	×	×	X	X		2			
	11 TP 10-5'	1324	~			-		<		1 2	1010		
	12 TP3-1A	1410	S	11	×	7	×	×		2			
	13 TP 3- HN	21415	V	1						2 11	10101		- labele
	03-42	100 100	2	1						7	1 old		1.05 m 3
	15 163			7	×;	×,	×.			+-		Vac	willy water
	12 +04			-			X	×.		14			ે ગે
4.2504	18 10 B 3 5. 46	111	n v		7	>	2			2	4019		
inter	Relinquished by: A (Date / Time		Received by		Date / Tim	e Se	ample Receip		Remarks:			
- Martinese	PHA P	2/18/09 3:	00	, twy.	TRANS T	7-12-0							
all and	Relinquished by:	Date' / Time		Received by		Date / Tim	ê e	od Condition?				,	
				e de la compañía de l		and a second	CO	d?					
	Relinquished by:	Date / Time		Received by		Date / Tim	e Sei	als Intact?					
	من Distribution White - Lab, Yellow - File, Pink -	. Originator					Tot	al Number of Con	tainers	TAT 24H	IR 48HR	5-Day	

÷

Ķ'

夢

An Anna

Libby Environm	ental. Inc		C	hain	of Cust	odv Re	cord			ì			
)		- 		5			۰.			
Olympia, WA 98506	гл. 300-3; Fax: 360-3 {	52-4154			Date:	ý	18-0			Page	t :	of	1
Client: K NS				,	Project Ma	anager.		Bick	2002	.			
Address:					Project Ne	ame:	大百以	105					×.
Phone:	Fax				Location:								
Client Project #					Collector:	R 131	eber	SMal	M CDat	e of Col	lection:	2-18-	06
										K			
-						EUO.							
					A A A		たた	4.4	Sieles Sieles				
	- - -	Sample	Container	08 40	100 100 A	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		8 8 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	AN 540				
Sample Number	Depth Tim	e Type	Type	707	307-00	1 mm	N/N	500			Field No	te/# Contai	iners
1712-4.15	143	2	412W	N						f e	2 H	210	
2703-116	143	N N	412 VAN								1 . 2	40101	2
3													
4												×.	
2													
9													
2													
¢¢*										, 1 ⁴			
6												-	
10			*										
11													
12												,	
13													
14													
2							•						-
16								2					
		1	بند										
Kelinquished by. I	Date / Time 2/1 x/09) -	S.	Received by	2 M	A:	Date / Time 2 - 18 - 1) 9 San	iple Rec	eipt:	Re	emarks:		
Relinquished by:	Daté / Time		Received by	90		Date / Time	Good	Condition?					
						1	Cold?						
Relinquished by:	Date / Time		Received by	4		Date / Time	Seals	Intact?					,
u - 18							Total	Number of (Containers	TA	T 24HR	48HR	5-Day
Disfribution White - Lab, Yellow - File, Pink - I	Originator			×.		· ·							

2 ŝ

· la

Por

. I want the balance of the state

December 10, 2009

Alan J. Wertjes Attorney at Law 1800 Cooper Pt. Rd. SW, Bldg. 3 Olympia, WA 98502

Subject: Site Remediation of the Havens Property (aka Johns Auto Wrecking) 411 93rd Avenue SE, Olympia, Washington

Dear Mr. Wertjes:

Robinson & Noble is pleased to present this letter report detailing our recent remediation activities at the Havens property site. Previous site activities identified impacted areas associated with the historic auto wrecking yard activities as discussed in our April 2009¹ report. The current remediation activities included the placement of three monitoring wells, collection and removal of the remaining sources of potential contamination, and the removal and disposal of identified impacted soils. This letter details these site activities and the results of the completed laboratory analysis.

Site Location and History

The subject site is located within Township 17N, Range 02W, Section 23. The property is comprised of six parcels identified by Thurston County Assessor-Treasurer's records as parcels 12723210100, 12723220200, 12723210400, 12723210401, 12723210700, and 12723211000. These parcels are contiguous. The address assigned to these parcels is 411 93rd Avenue SE, Washington 98501 (Figure 1). The subject consists of approximately 15 acres.

In November 2008, Robinson & Noble completed a file review of available documents contained within the Washington State Department of Ecology (Ecology) and Thurston County Health Department records for the Havens property. The Department of Ecology records indicate the site is listed on Ecology's Hazardous Sites List. The site was ranked a "1" following the completion of a site-hazard assessment. Sites receiving a rank of 1 or 2 are generally considered the highest priority for cleanup by Ecology. Ecology loosely defines these sites as posing a risk to human health and the environment.

To address the site ranking, the property owners enrolled the site in the Ecology Voluntary Cleanup Program (VCP). During the site's enrollment within the VCP, a limited effort was made by the property owner to characterize the subject site. Eventually, activity ceased and no official reports were generated. The site was subsequently removed from the VCP due to inac-

¹ Robinson, Noble & Saltbush, Inc., April 2009, Site Investigation/characterization, Havens Property (aka) Johns Auto Wrecking, 411 93rd Avenue SE, Olympia, Washington, as published for the Havens Estate

December 10, 2009 Page 2

tivity. In 2008, Robinson & Noble was contracted to complete a file review and prepare a work plan to conduct a remedial investigation of the site.

Site work for the Havens property started in February 2009. Robinson & Noble, with the assistance of Pacific Northwest Probe & Drilling and Langseth Environmental, completed a series of ten soil borings ranging from 12 to 16 feet below ground surface (bgs) and 16 test pits excavated to depths ranging from five to 12 feet bgs. Soil borings were completed near identified areas of concern. The test pits were located in close proximity to the soil borings. At some locations, a second test pit at each boring location was incorporated into the work plan to allow for a more detailed characterization. Two test pits were completed where staining, distressed vegetation, and/or significant material storage were identified. Laboratory results for the collected soil samples identified contaminated soil surrounding test pits TP1A and TP6A. Additionally, groundwater samples collected from borings B8, B9, B10, and B11 identified elevated levels of target metals (Robinson, Noble & Saltbush, April 2009).

Site Activities

On August 13, 2009, remediation activities began with the collection and removal of the unsecured sources of potential contamination documented during the February 2009 field work. Langseth Environmental, with the assistance of ProVac Services, collected all of the loose buckets and drums of waste oil. Once collected, the waste oil from the buckets was field screened for chlorinated solvents. Buckets and drums determined to be free of chlorinated solvents were purged of their contents using a Vactor truck. The emptied buckets were wiped clean and crushed for disposal at a solid waste landfill. Field characterization identified one drum, which contained an unknown quantity of chlorinated solvents. This drum was secured and stored under cover on a concrete floor in one of the remaining structures on site. The drum was later sampled, characterized, and properly disposed of by PSC transportation group. Table 1 presents the material removed from the site. Shipping manifest and weigh tickets for all disposal activities are attached.

Quantity	Description	Quantity	Description
800 gallons	Used Oil	1	275-gallon tank
3 tons	Sludge	1	500-gallon tank
~ 50	5 gallon buckets	1	1,300-gallon tank
13	55-gallon drums	2	Large industrial batteries
1	250-gallon tank	4	Automobile batteries

Table 1. Removed sources of contamination

Once the site was secured of the remaining sources of contamination, the focus of the remediation activities shifted to the excavation of identified impacted soils. On August 14, Langseth Environmental mobilized a rubber tire back hoe to complete the excavation of impacted soils. Initial excavations were completed in the areas surrounding TP6A and TP1A (Figure 2). Following the removal of the impacted soils, confirmation samples were collected and submitted to an onDecember 10, 2009 Page 3

site mobile lab for analysis. As with previous efforts, laboratory analysis was provided by Libby Environmental, Inc. Two additional sites were identified as potentially impacted areas: a sump within the floor of the concrete bunker near TP6A and an area of oil staining (TP1C) in the garage/shed located south of TP1A (Figure 2). Soils were removed at each location. Once field screening determined that impacted soil had been removed, confirmation soil samples were collected. Target analytes included gasoline-, diesel-, and oil-range petroleum hydrocarbons (analyzed with methods NWTPH-Gx and NWTPH-Dx/DxExtended). Additional analytes tested were lead, arsenic, cadmium, chromium, copper, zinc, mercury, nickel, PCBs, and carcinogenic polyaromatic hydrocarbons (cPAHs). In addition to those listed above, soil collected from TP6C was also analyzed for benzene; toluene; ethyl benzene; xylene, commonly referred to as BTEX (method VOA 8021B); and chlorinated solvents (method 8270).

Laboratory results of the collected confirmation samples indicate concentrations of copper, zinc and nickel were identified at TP1B and TP6C. These concentrations were below published MTCA Method B (unrestricted land use) cleanup levels of 2,960 and 24,000 mg/kg for copper and zinc. The MTCA Priority Contaminates of Ecological Concern Table 749-2 presented in Model Toxics Control Act WAC 173-340, indicates a maximum soil concentration for unrestricted land use of nickel is 100 mg/kg. Test Pit TP1B was also identified as having a concentration of mineral oil in the soil of 1,020 mg/kg. The MTCA Method A cleanup level for mineral oil in the soil is 4,000 mg/kg. These results indicate that each location has been successfully remediated. A complete list of analytical results is attached. A total of 4.8 tons of contaminated soils were removed from the site.

Monitoring Well Installation

To further quantify the soil and groundwater impacts, we supervised the placement of three monitoring wells on August 20, 2009. All of the wells were constructed with two-inch diameter, schedule 40 PVC blank risers and two-inch diameter, schedule 40 PVC 0.020-inch slot (20-slot) screens coupled with flush-threaded joints and installed with caps screwed to the bottom of the assemblies. Specific screen and riser lengths were adjusted as appropriate for the material encountered at each drilling location. The screens were packed in Colorado Silica Sand Products 10×20 sand. Typically, the filter packs extended from the bottom of each boring to approximately one foot above the screens. The remaining annular spaces above the pack were filled with hydrated bentonite chips to within three feet of the surface. Above ground monuments and bollards were set in concrete pads at each location. Well logs and construction diagrams are presented in Figure 3.

Each monitoring well was logged and sampled material was subjected to field screening. Field screening did not indicate the presence of any contamination. Well drilling encountered varying mixtures of brown, silty sands and gravels. The wells that were completed in the first groundwater zone encountered a medium-grained sand and gravel. Water levels measured after the completion of the monitoring wells indicate a general groundwater depth of approximately 7.5 bgs. The local groundwater flow direction appears to be to the west northwest.

December 10, 2009 Page 4

Once the wells were completed, each well was developed using a DC-submersible pump, surge block, and water bailer. Following the development, we collected a water sample from each well and submitted them to an off-site laboratory for analysis. The groundwater samples were analyzed for lead, arsenic, cadmium, chromium, copper, zinc, mercury, and nickel.

As presented in our April 2009 letter, elevated levels of metals were detected in groundwater samples collected from several of the direct push borings completed on the southern half of the property. At that time, we suggested that the elevated levels of metals observed in the groundwater samples were a result of turbid water being sampled from the direct-push borings. We recommended that the placement and sampling of properly developed monitoring wells would produce a groundwater sample more reflective of actual conditions beneath the site. The laboratory results from the metals analysis in the monitoring wells did not indicate any analytes above laboratory detection limits. We believe these samples represent current groundwater quality at the subject. Additional sampling is not recommended at this time.

Summary

It is our opinion that the contaminants identified are the result of historic site activities associated with the operation of an auto wrecking yard. We have supervised the collection and disposal of the identified potential sources of contamination. In addition we have directed the excavation and disposal of identified impacted soils. We have also determined that previously identified metals within the groundwater were not reflective of actual conditions beneath the site. Following the site's re-entry into the VCP, we anticipate the site be granted a no-furtheraction designation reflecting the completion of the subsurface investigation and subsequent remedial activities.

We appreciate this opportunity to be of service. Please contact us if you have any questions.

Very truly yours, Robinson & Noble Inc

Richard A. Bieber, LG Project Hydrogeologist, Project Manager

cc: Patrick Soderberg

attachments

FIGURES

Detail	Geologic Log MW-3	
TOP OF MONUMENT, 2.38' ABOVE GROUND SURFACE		
CASING STICKUP 2.13' AGS		
CONCRETE 1.5' BGS		BROWN SILTY SAND
2-INCH PVC RISER TO +2.15'-7' HYDRATED BENTONITE		AND GRAVEL, DRY
1.5'-5'		
SWL = 10.83' BTOC	<u> </u>	
FILTER PACK 5'-17' (SEE NOTE)		BROWN SAND AND GRAVEL, WET
SCREEN WITH END CAP 6–16' (SEE NOTE)		BOULDER
<u></u>	L 17'	
		Eiguro 2
		i iguie J

Construction Detail and Geologic Log for Monitor Wells 1 - 3 Havens Property: 93rd Ave SE, Olympia/Site Remediation

SAMPLING RESULTS

scale: 1 square= notes August 29 2009 mwi 34 4 2491-0014 Dampling him 1 w/ picksian. using a graduated bucket. Dru broc 2-inch 8.84 noted column 15 9.94' (x 0.163) = Samples stored In a conte with Blue Ice purged before same Volumo Mag - 3:75 gakons 1,62 gallors (x3) = 4,86 gallors to be removed. water is coming out clear w/ very little to no particles 13:ps - well has reached state lization Sampling & 13:10

Time min)	Tim (actual)	Flow Rati	Cum Volumy	Тетр С	Cond	Cond	TPS	DO myk	pt Eh mV
5	12:30	0008	0,5	12,73	0.116	0.081	0.075	4.97	
10	12:35		0.75	12.64°	0,115	0.088	0.075	1.89	6.01 50
5	12:40		[12.70	0.114	0.087	0,074	4.84	
0	12:45	0.0	1,5	12.73	0.113	0.087	0,077	4,80	6.11 45
58-	12:50	0,10	2	12,66	0,413	0.086	0,073	4,78	
30	12:55	0.05	2.75	12,51	0,112	0.085	0.073	4.78	6.08 46
35-	13:00	D,90	2.75	12,63	6.111	0,085	0,072	4.77	6.03 49
40	17:03	0.18	3.75	12, 3°C	0.111	0 084	0.072	4.7.7	6.07 47
	· · · · ·					-			
•									

scale: 1 square=

35

Tuesday, August 25, 2009 MW-2 notes Pump used: perestaltic pump used: perestaltic Total Well Depto: 18-24 DTW: No ater Column: 9.90 Stor & 20 X 0,168 = 1.61 an llos	36
Pump used: persotaltic pump used: persotaltic " " " " " " " " " " " " " " " " " " "	
For pump used: perestalities pump used: perestalities pump used: graduated bucket 14:20 Three well volumes removed. Total Well Depty: 18-24 DTW: 8:34 water Column: 9.90 ft of dzo X O.168 = 1.61 applies	•
Total Well Depto: 18-24 DTW: vater Column: 9.90 ft of drop drop drop drop drop drop drop drop	
Total Well Depty: 18.24 DTW: 8.34 water Ophium: 9.90 Stop H_2O $\times 0.168 = 1.61$ and loss	
DTW: $y_a ter Q_b lumm:$ 9.90 ft of H_2Q $\times 0.168 = 1.61 ap lloss$	
water Ophium: 9.90 ft of H_20 × $0.168 = 1.61$ applies	
x 0, 168 = 1, 61 ab ab	
× B = 4, 84 gallors (three volumes)	
Screened Interval - S. 11-15. 01 693	
13:20 primping from well	
water is coming out of the	
well what brown filinge no ->	
	errer Ki-Hiddelard
Mw-Z	
Time Fime Elow Cum Timp Cond. Spec - TDS DO pH EA	
(actual) (mn) Rate Volume at Cond	
13:25 5 0.1 0.28 15.04 0.099 0.080 0.965 0.68	
13:40 10 0.1 0.75 14.21 0.00 0.080 0.065 0.42 6.10 46	
13:45 15 0.08 1 13.87 0.02 0.080 0.066 0.24 6.13 43	
13:50 20 0.11 1.5 13.75 0.101 0.080 0.266 0.80 6.11 45	
13:55 25 81 2 13,94 0,01 8,050 0.066 0.27 6.13 44	
14:00 30 01 25 13,83 0,101 0.080 0.066 0,26 6,12 44	
14:05 35 611 3 13 39 0.00 00.78 0.065 0.23 6.11 45	•
14:10 40 01 3.5 13.68 0.100 0.073 0.065 0.27 6.22 39	
8 14:15 45 0.5 4.25 13.81 0.00 0.079 0.045 0.21 6.49 40	
14:20 50 0.15 5 13,81 0 100 0.078 0.065 0.20 6.20 40	
Square state stat	
	37

	·		r				T		T	1	T	T			1		1	1		SECULATION OF		1	The second s	1
-	T	resd	en -	A	ani.	+	25	20	27		No	fes	for	<u>n</u>	hus	-3						2491	-00	14
					- -,		 				'-					· · · ·								
	. P	unp	use	d :	pe-rx	sta.	He						15 :	15		The	24	6.24	<u>N. v</u>	ølч	Mur S	ren	ore	
	f	ura	C n	eff	sé	g	Nde	a tr	6 .	nes	A					<u>Sa</u>	mpli	ha.	Mn	3.				
	11	p+a.	. w	e11.	dip:	th :		7.9	9	Toc	 									• • • •				
)	\$₩W		 1			10	2.82	\$ 	TOC.													· · · ·	
		ban	<u> </u>	hi	201			7.16	(-)	of	Ho													
			<u> </u>	0,1	(3=		1.	17	. 34	llons														
		3.0	ell v	e he s	res		3	50	?!	llan	¢													
	14:	30		pun	pli	4	en a v	he	la si	7. <i>1</i> 1	sn : i								:					
												,	-							• • • •				
				wa	ter:	has.	.9.1	\$ lig	ht.	100	1br	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							•			.		
				ζ,,	¢																			
							<u> </u>					uoonanie zee				<u> </u>			I				1	
ją:	द्ध जोग	ور مربع ومربعه	(Balina)	an a	a ng sing sing sing sing sing sing sing s	de al fonte d	a distant	elasiera.		1999 - 19	nginin tep	al la const	and a star		anter elett	n an	nikesseke	uiiyaan v	inan filipina ta	and the second	enterstjonejo		arreitische inser	و شیر دو در ش
¥¢	R ah	m	-3 -3	in the second	1	den	1 	n (militaria	••••	a ni iste	ener op		and A rates			n an		01-310-50- 1		anterio e con	teriteriteriteriteriteriteriteriteriteri		an a	
₩¥	tin Tin lact	mi K	-3 TSM	ny hy	Fl	ens te	Cu	27. 	Tu	<u>v</u> e	<u> </u>	σΛC		Se	el		TP	s 	Đ)	P.	<u> </u> +	Eł	
	T in (act	mi (()	3 Tin Gant	ч h)	Fl	ens fe	Cur	-7 u #26	Tu-	<u>v</u>	C	σΛC		S	el Cond		TA D. O	s 	D	oneseitereden D	P -	H	El	
<u>بارد</u>	Tin (act 14: 14:	m. 4. 40. 15	-3 Tim (m) 10	ч h)	Fli Ra Oi	ens fe	Cur Vil	17. ume 5	Ter •1	2 1 1 1	. <u>C</u>	on c 0.977		5	ec Cond 279		TD 0 10	s (3 n 2	D [.3	2	P :	4	E	
	Tim (act) 14: 14:	m (() () () () () () () () () () () () (-3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -	4 24 22	Fli Ra Oi	fe fe	Cur V+1 0:	27 ume 5	Ta •1 .15: 14.	V 11 61 39	0.11 0.11	on c 017 01		Se 0.1	el Conc 79 77		TD 0 10 0.0	s (3 (2)	D [.3 0.7	2	P 5.	92	E/ 55	
	Tin (act 14: 14: 14: 14:	m (() () () () () () () () () () () () (- 3 Tin (m) 10 10	24 22	Fl. Ra 01 0.	te	Cur V-1 15	7. umre 5	.15. 14. 14.	P 11 61 39	0.11 0.1	017 017 01	5	Se 0.0	el Cond 79 077 076		TD 0 10 0.0 0.0	s 63 82	D [.3] 0.0	2	P. 5. 5.	92	55 55	
- -	Tim (act 14: 14: 14: 14: 14: 14:	mi 4) 40 45 55	3 -3 Tim 10 10 23	•	Fl Ra 0, 0, 0,	te be	Cur V-1 10		Ter 15: 14: 14: 14:	2 11 61 39 55	0.11 0.1 0.	01 01 01 01		Sf 0.1 0,1 0,1	077 076 076		T D. 0.0 0.0 0.0 0.0	5 (3 (2) (1)	D. L. 3. 0. 7 0. 6 0. 6)) 2 8 55 1 7	. P . 5. 5. 5.	92	55 55 56	
	Tim (act) 14: 14: 14: 14: 14: 14: 15:	An 4 40 45 55 60 65		() ()	Fl. Ra 0, 0, 0, 0, 0,		Curr V-1 15 2 2	27 ume 5 5 25 2.5	Ter 	VP 11 61 39 55 58	C O. III O. O. III O. III O. III O. III O. III O. III O. III O. III O. III O. III	01 01 01 01 01 01 01 01 01 01 01 01 01 0	5	S.f 0.1 0.1 0.1 0.1	077 076 076 076		 ▼ A 0 .0 	s (3 (2) (2) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	D. 1.3. 0.7 0.6 0.6 7.5) 2 8 55 1 2	. P. 5. 1 5. 1 5. 9	4 92 3 1	E/ 55 55 56 50	
	Tim (act 14: 14: 14: 14: 14: 15: 15: 15:	Mu 1. 10 10 10 10 10		v.(Fl. Ra 0, 1 0, 1 0, 0 0, 0		Cur VI 01 15 2 2. 2.	7. ume 5 75 75	Те • 15. 14, 14, 14, 14, 14, 14,	11 11 11 12 13 19 15 15 15 15 15 15 12 17	0.11 0.11 0.2 0.11 0.11 0.11 0.11 0.11 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	5	Se 0.1 0.1 0.1 0.1 0.1	074 074 076 076 076		TP. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 (3 62 (1 (1) (1) (1) (1) (1) (1) (1) (1) (1)	D. 0.7 0.6 0.6 0.5 0.5	д 2 2 7 7 5 4	P. 5.1 5.1 5.1 5.1 5.1	1 92 3 1 1 1 5	E/ 55 56 56 56 56	
	Tim (act) 14: 14: 14: 14: 14: 15: 15: 15:	Mu 4 40 40 55 60 65 10		v ())	Fl. Ra 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	05 1	Cur V 0 1 1 2 2 3 1 2 3	7 ume 5 5 75 75	.15. 14. 14. 14. 14. 14. 14.	19 11 11 12 11 12 12 12 12 12 12 12	0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10	01 09 09 09 09 09 09 09 09 09 09 09	5	5. 0. 0. 0. 0.	074 074 076 076 076 076		T 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 (3) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	De 1.32 0.7 0.6 0.6 0.6 0.5 0.6	2 8 5 7 7 5 4	P. 5. 5. 5. 5. 5. 5. 5. 5.	92 3 1 5 89	55 55 56 50 54	
	Tim lack 14: 14: 14: 14: 15: 15: 15: 15:	Mu 4 40 555 60 05 10	-3-3 [(m) [0] 10 10 10 10 10 10 10 10 10 10 10 10 10	v. n) 0	Fl. Ra 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	05 1	Cur V 0 1 1 2 2 3 1 2 3 1 2	77. ume 5 5 75 75	Те 15. 14. 14. 14. 14. 14. 14.	29 11 61 55 52 27 27 22	0.11 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	01 01 01 01 01 01 01 01 01 01 01 01 01 0	5	St 0.1 0. 0. 0. 0. 0.	074 074 074 076 076 076 076 076		 ▼ P 0 .0 	5 63 62 61 60 60	D. D. 0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5) 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	P. 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.	1 1 1 5 89	55 55 56 56 56 56	
	Tin (act) 14: 14: 14: 14: 15: 15:	mi 4. 40. 45 555 60 65 10 55		24 m)	Fl. Ra 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	05 1	Cur VI 0, 1 2, 2, 3,12 3,12	7 ume 5 5 75 75 8	Те 15. 14. 14. 14. 14. 14.	29 11 61 55 67 52 27 27	0.11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	01 01 01 01 01 01 01 01 01 01 01 01 01 0	5	Sec. 0.1	074 074 074 074 074 074	5 5	▼ A 0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5 (3 82 61 61 860 860 860	D. 1.3. 0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	2 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7	P 5. 5. 5. 5. 5. 5. 5. 5. 5.	H 92 3 1 1 5 89	55 55 56 50 57 57	
	Tim [act 14: 14: 14: 14: 14: 15: 15: 15:	Mu 4 4 10 15 55 60 05 10 55	-3 -3 -3 -3 -3 -3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -3 -2 -3 -2 -3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	v. m) 0	El Ra 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		Cur V-1 2 3,12 3,12 3,12	7. ume 5 75 75	Те.	29 11 61 39 55 67 52 27 27	0.11 0. 0. 0. 0. 0. 0. 0. 0. 0.	01 C 09 09 09 09 09 09 09 09 09 09 09 09 09		Sec. 0.1	074 077 076 076 076 076 076		T D .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0	5 (3 82 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (D. (1.3) 0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5) 2 8 55 1 2 7 7 5 4 1 2 7	P. 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1	4 92 3 1 1 1 5 89	55 55 56 56 54 55	
	Tim (act) 14: 14: 14: 14: 15: 15:	Mu (() () () () () () () () ()	-3-3 [(m) 10 10 10 10 10 10 10 10 10 10 10 10 10	v.(n) €	Fl Ra 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	1 1 1 1 1 1 1 1 1	Cur VI 01 15 2 3,12 3,12	77. ume 5 5 75 75	Те 15. 14. 14. 14. 14. 14. 14.	29 11 61 55 67 52 27 27 22	0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10	01 09 09 09 09 09 09 09 09 09 09 09 09 09	5	S.(0.1 0. 0. 0. 0. 0.	0776 0776 0776 076 076 076 076 0776 077		 ▼ A 0 (0 0,0 0,0	5 63 62 61 60 60	D. [.3] 0,7 0,6 0.6 0.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2 8 5 7 7 7 7 7 7 7 7 7 7 7	P 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	1 1 1 5 89	55 55 56 56 50 57	
	Tim lack 14: 14: 14: 14: 15: 15: 15:	Mu 4 40 555 60 65 10 55	3 	24 m)	Fl. Ra 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	05	Cur V 1 2 2 3 1 2 3 1 2	7. ume 5 75 75	Те. 	2 11 61 39 55 57 27 27 27	0 0 0 0 0 0 0 0 0 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	5	Sec. 0.1	077 076 077 076 076 076 076		▼ P 0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5 53 82 61 61 60 600	D. 1.3. 0.7 0.6 0.6 0.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2 8 55 1 2 7 7 7 7 7 7 9 4 9	P 5.1 5.2 5.4 5.4	H 92 3 1 1 5 8 9	55 55 56 50 57	
	Tin (act 14: 14: 14: 15: 15: 15:	Mu 4 10 15 00 05 10 55		v. m) 0	El Ra 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	1 0 0 5 1	Cur VI 01 1 2 312 312	7. ume 5 75 75	Те.	29 11 61 55 63 52 27 27	0.11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	01 01 01 01 01 01 01 01 01 01 01 01 01 0		Sec. 0.1	074 074 074 074 074		7 A 0 .0 0	5 5 63 62 61 61 60 60 60	D. 1.3 0.7 0.6 0.6 0.5 0.6 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	2 8 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	P 5. 5. 5. 5. 5. 5. 5.	4 92 3 7 1 7 5 8 9	55 55 56 56 57	

ς.

1

ī

LABORATORY RESULTS

Libby Environmental, Inc.

4139 Libby Road N.E., Olympia, WA 98506-2518

September 4, 2009

Rick Bieber Robinson, Noble & Saltbush, Inc. 3011 Huson Street South Suite A Tacoma, WA 98409

Dear Mr. Bieber:

Please find enclosed the analytical data report for the Havens Property 411 93RD Project located in Tumwater, Washington. Mobile Lab Services were conducted on August 14, 2009. Soil samples were received and analyzed for VOC's by EPA Method 8260B, Gasoline by NWTPH-Gx, Diesel & Oil by NWTPH-Dx/Dx Extended, PCB's by EPA Method 8082, and MTCA 5 Metals by EPA Method 7000 Series.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed. All soil samples are reported on a dry weight basis.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt President Libby Environmental, Inc.

Phone (360) 352-2110 * Fax (360) 352-4154 * libbyenv@aol.com

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Env.Project No.L090814-30

VOLATILE	GORGANI		OUNDS BY	EPA METHOD 8260B IN SOIL
Sample Description		Diamic	CIPOC	
	<u> </u>	Blank	0/11/00	
Date Extracted	Reporting	N/A	8/14/09	
Date Analyzed	Limits	8/17/09	8/17/09	
	(mg/kg)	(mg/kg)	(mg/kg)	
	0.07	1	1	
Dichlorodifluoromethane	0.06	nd	nd	
Chloromethane	0.06	nd	nd	
Vinyl chloride *	0.02	nd	nd	
Bromomethane	0.09	nd	nd	
Chloroethane	0.06	nd	nd	
Trichlorofluoromethane	0.05	nd	nd	
1,1-Dichloroethene	0.05	nd	nd	
Methylene chloride	0.02	nd	nd	
Methyl <i>tert</i> -Butyl Ether (MTBE)	0.02	nd	nd	
trans -1,2-Dichloroethene	0.02	nd	nd	
1,1-Dichloroethane	0.02	nd	nd	
2,2-Dichloropropane	0.05	nd	nd	
cis-1,2-Dichloroethene	0.02	nd	nd	
Chloroform	0.02	nd	nd	
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	
Carbon tetrachloride	0.02	nd	nd	
1,1-Dichloropropene	0.02	nd	nd	
Benzene	0.02	nd	nd	
1,2-Dichloroethane (EDC)	0.03	nd	nd	
Trichloroethene (TCE)	0.03	nd	nd	
1,2-Dichloropropane	0.02	nd	nd	
Dibromomethane	0.04	nd	nd	
Bromodichloromethane	0.02	nd	nd	
cis-1,3-Dichloropropene	0.02	nd	nd	
Toluene	0.02	nd	nd	
Trans-1,3-Dichloropropene	0.03	nd	nd	
1,1,2-Trichloroethane	0.03	nd	nd	
Tetrachloroethene (PCE)	0.02	nd	nd	
1.3-Dichloropropane	0.05	nd	nd	
Dibromochloromethane	0.03	nd	nd	
1.2-Dibromoethane (EDB) *	0.005	nd	nd	
Chlorobenzene	0.02	nd	nd	
1 1 1 2-Tetrachloroethane	0.03	nd	nd	
Ethylbenzene	0.03	nd	nd	
Total Xylenes	0.03	nd	nd	
Styrenes	0.02	nd	nd	

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Env.Project No.L090814-30

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN SOIL

Sample Description		Method	CTP6C				
		Blank			 	 	
Date Extracted	Reporting	N/A	8/14/09				
Date Analyzed	Limits	8/17/09	8/17/09				
	(mg/kg)	(mg/kg)	(mg/kg)		 	 	
~ ^	0.00	. 1					
Bromotorm	0.02	na	na				
Isopropylbenzene	0.08	na	na		•		
1,2,3-Irichloropropane	0.02	nd	na				
Bromobenzene	0.03	nd	nd				
1,1,2,2-Tetrachloroethane	0.02	nd	nd				
n-Propylbenzene	0.02	nd	nd				
2-Chlorotoluene	0.02	nd	nd				
4-Chlorotoluene	0.02	nd	nd				
1,3,5-Trimethylbenzene	0.02	nd	nd				
tert-Butylbenzene	0.02	nd	nd				
1,2,4-Trimethylbenzene	0.02	nd	nd				
sec-Butylbenzene	0.02	nd	nd				
1,3-Dichlorobenzene	0.02	nd	nd				
Isopropyltoluene	0.02	nd	nd				
1,4-Dichlorobenzene	0.02	nd	nd				
1,2-Dichlorobenzene	0.02	nd	nd				
n-Butylbenzene	0.02	nd	nd				
1,2-Dibromo-3-Chloropropane	0.03	nd	nd				
1,2,4-Trichlorolbenzene	0.05	nd	nd				
Hexachloro-1,3-butadiene	0.10	nd	nd				
Naphthalene	0.03	nd	nd				
1,2,3-Trichlorobenzene	1.0	nd	nd				
Surrogate Recovery				 			
Dibromofluoromethane		108	108				
1,2-Dichloroethane-d4		100	116				
Toluene-d8		92.7	95.7				
4-Bromofluorobenzene		102	98.2	 			
"nd" Indicates not detected at li	sted detection	limit.		 			

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Deanna M. Donovan

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Env.Project No.L090814-30 QA/QC Data - EPA 8260B Analyses

· · · · · · · · · · · · · · · · · · ·		Sample Ide	ntification:	L090814-2		
· · · · · · · · · · · · · · · · · · ·		Matrix Spik	ie			
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	· .		
1,1-Dichloroethene	0.50	0.50	100			
Benzene	0.50	0.54	108			
Toluene	0.50	0.57	114			
Chlorobenzene	0.50	0.49	98			
Trichloroethene (TCE)	0.50	0.55	110			
Surrogate Recovery			. <u></u>		 	
Dibromofluoromethane			105			
1,2-Dichloroethane-d4			96.1			
Toluene-d8			94.9			
4-Bromofluorobenzene			99.3			

	Laboratory Control Sample						
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)				
1.1 Dishlamathana	0.50	0.40	0.0				
1,1-Dichloroethene	0.50	0.49	70				
Benzene	0.50	0.51	101				
Toluene	0.50	0.51	101				
Chlorobenzene	0.50	0.48	96				
Trichloroethene (TCE)	0.50	0.51	102				
Surrogate Recovery							
Dibromofluoromethane			104				
1,2-Dichloroethane-d4			99.0				
Toluene-d8			95.4				
4-Bromofluorobenzene			95.3				

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Deanna M. Donovan

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Project No.L090814-30

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B) in Soil

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	8/17/09	nd	nd	nd	nd	nd	109
LCS	8/17/09	105%	104%	یں۔ ایک ایک کار ایک کار کار			101
CTP6C	8/17/09	nd	nd	nd	nd	nd	109
MS L090814-2	8/17/09	112%	109%				109
Practical Quantit	etion Limit	0.02	0.10	0.05	0.15	10	
Flactical Quality		0.02	0.10	0.05	0.15	10	

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

ANALYSES PERFORMED BY: Deanna M. Donovan
Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Project No.L090814-30

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Mineral Oil	Oil (ma/ka)
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(ing/kg)
Method Blank	8/14/2009	116	nd	nd	nd
Method Blank	8/17/2009	98.3	nd	nd	nd
CTP6A	8/14/2009	99.8	nd	nd	nd
CTP6A dup	8/14/2009	116	nd	nd	nd
CTP1A	8/14/2009	89.6	nd	nd	nd
CTP1B	8/17/2009	127	nd	1020	nd
CTP1C	8/14/2009	110	nd	nd	nd
CTP6C	8/14/2009	119	nd	nd	nd
Practical Quantitation	on Limit		25	40	40

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Deanna M. Donovan

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Project No.L090814-30

Analyses of Mercury in Soil by EPA Method 7471

Sample	Date	Mercury	
Number	Analyzed	(mg/kg)	
Method Blank	8/18/09	nd	
CTP1B	8/18/09	nd	
CTP6C	8/18/09	nd	
CTP6C Dup	8/18/09	nd	
Practical Quantitation	Limit	0.5	

"nd" Indicates not detected at the listed detection limits.

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Project No.L090814-30

QA/QC for Mercury by EPA Method 7471

Sample	Date	Mercury	
Number	Analyzed	(mg/kg)	
LCS	8/18/09	108%	-
MS	8/18/09	116%	
MSD	8/18/09	111%	
RPD	8/18/09	4%	
Practical Quantitati	ion Limit	0.5	

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Project No.L090814-30

aldi	Date	Lead	Cadmium	Chromium	Arsenic	Copper	Zinc
nber	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
thod Blank	8/18/09	pu	pu	pu	pu	pu	pu
PIB	8/18/09	pu	pu	pu	pu	6	35
P6C	8/18/09	pu	pu	nd	pu	11	42
P6C Dup	8/18/09	pu	pu	nd	pu	11	47
ctical Quantitatic	n Limit	5.0	1.0	5.0	5.0	5.0	5.0
P6C Dup ctical Quantitatic	8/18/09 n Limit	nd 5.0	nd 1.0	nd 5.0		nd 5.0	nd 11 5.0 5.0

Analyses of Metals in Soil by EPA Method 7000 Series

"nd" Indicates not detected at the listed detection limits.

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Project No.L090814-30 QA/QC for Metals in Soil by EPA Method 7000 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic	Copper	Zinc
Number	Analyzed	(% Recovery)					
LCS	8/18/09	106%	88%	104%	97%	122%	111%
MS	8/18/09	116%	106%	106%	112%	int	int
MSD	8/18/09	118%	106%	121%	108%	int	int
RPD	8/18/09	2%	%0	13%	4%	int	int
Practical Quantitation	ıLimit	5.0	1.0	5.0	5.0	5.0	5.0

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Project No.L090814-30

Analyses of	PCB (Polych	lorinated]	Biphenyls) in Soil b	y EPA Me	ethod 8082	2
Sample Description		Method	LCS	CTP6A	CTP1A	CTP1C	CTP6C
	PQL	Blank					
Date Extracted		N/A	8/25/09	8/25/09	8/25/09	8/25/09	8/25/09
Date Analyzed		8/25/09	8/25/09	8/25/09	8/25/09	8/25/09	8/25/09
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor 1016	0.05	nd	106%	nd	nd	nd	nd
Aroclor 1221	0.05	nd		nd	nd	nd	nd
Aroclor 1232	0.05	nd		nd	nd	nd	nd
Aroclor 1242	0.05	nd		nd	nd	nd	nd
Aroclor 1248	0.05	nd		nd	nd	nd	nd
Aroclor 1254	0.05	nd		nd	nd	nd	nd
Aroclor 1260	0.05	nd	108%	nd	nd	nd	nd
			•				
Surrogate Recovery		•					
TCMX		95	108	10	125	128	131
DCBP		98	95	98	99	104	79
"nd" Indicates not detected	ed at listed detec	ction limit.					
ии т 1	· · · · · · · · · · · · · · · · · · ·	1.4					

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Project No.L090814-30

Analyses of	PCB (Polych	lorinated]	Biphenyls) in Soil by	7 EPA M	ethod 8082	
Sample Description		CTP6C	CTP6C	CTP6C			
	PQL	Dup	MS	MSD			
Date Extracted		8/25/09	8/25/09	8/25/09			
Date Analyzed		8/25/09	8/25/09	8/25/09			
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
·				-			
Aroclor 1016	0.05	nd	104%	111%			
Aroclor 1221	0.05	nd					
Aroclor 1232	0.05	nd					
Aroclor 1242	0.05	nd					
Aroclor 1248	0.05	nd					
Aroclor 1254	0.05	nd					
Aroclor 1260	0.05	nd	112%	121%			,
Surrogate Recovery							
TCMX		106	107	123			
DCBP		108	125	131			i.
"nd" Indicates not detecte	d at listed detec	ction limit.					
"int" Indicates that interfe	erence prevents	determinatio	n.				
A COEDTA DI E DECOVI	DVINATO D		7 ATE 650/	TO 125%			

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Attn: Sherry Chilcutt 4139 Libby Road NE Olympia, WA 98506

RE: Haven's Property Fremont Project No: CHM090819-3

August 24th, 2009

Sherry:

Enclosed are the analytical results for the *Haven's Property* soil samples received by Fremont Analytical on August 19th, 2009.

The samples were received in good condition – in the proper containers (5 – 4oz soil jars) properly sealed, labeled and within holding time. The samples were received in a cooler with gel ice with a cooler temperature of 8.5°C, which is within the laboratory recommended cooler temperature range (<4°C - 10°C). The samples were extracted, analyzed then stored in refrigeration units at the USEPA-recommended temperature of 4°C ± 2°C. There were no sample receipt or sample analysis issues to report.

Examination of these samples was conducted for the presence of the following:

Polyaromatic Hydrocarbons in Soil by EPA Method 8270C

This application was performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied. Please contact the laboratory if you should have any questions about the report.

Thank you for using Fremont Analytical!

Sincerely,

Michael Dee Sr. Chemist / Principal mikedee@fremontanalytical.com

www.fremontanalytical.com

2930 Westlake Ave. N., Suite 100 Seattle, WA 98103

T: 206.352.3790 F: 206.352.7178 email: info@fremontanalytical.com

Analysis of Polyaromatic Hydrocarbons in Soil by EPA Method 8270C

Project: Haven's Property Client: Libby Environmental Client Project #: N/A Lab Project #: CHM090819-3

		· .						Duplicate	
EPA 8270C (SIM) (mg/kg)	MRL	Method Blank	LCS	CTP6A	CTP1A	CTP1C	CTP1B	CTP1B	CTP6C
Date Extracted		8/19/09	8/19/09	8/19/09	8/19/09	8/19/09	8/19/09	8/19/09	8/19/09
Date Analyzed		8/19/09	8/19/09	8/20/09	8/20/09	8/20/09	8/20/09	8/20/09	8/20/09
Matrix				Soil	Soil	Soil	Soil	Soil	Soil
Acenaphthene	0.05	nd	108%						
Pyrene	0.05	nd	100%						
Benzo(a)anthracene	0.05	nd	10070	nd	nd	nd	nd	nd	nd
Chrysene	0.05	nd		nd	nd	nd	nd	nd	nd
Benzo(b)fluoranthene	0.05	nd		nd	nd	nd	nd	nd	nd
Benzo(k)fluoranthene	0.05	nd		nd	nd	nd	nd	nd	nd
Benzo(a)pyrene	0.05	nd		nd	nd	nd	nd	nd	nd
Indeno(1.2.3-cd)pyrene	0.05	nd		nd	nd	nd	nd	nd	nd
Dibenzo(a.h)anthracene	0.05	nd		nd	nd	nd	nd	nd	nd
Benzo(g,h,i)perylene	0.05	nd		nd	nd	nd	nd	nd	nd
Total PAH Carcinogens				0.0	0.0	0.0	0.0	0.0	0.0
Total PAH Carcinogens Defined as: Benzo(a)anthracene, Chrysene, Benzo(b)fluorant Benzo(k)fluoranthene, Benzo(a)pyrene, Ideno(1,2,3-cd)pyrene & Dibenzo(a,h)anthracene	hene,								
Surrogate Recovery									
(Surr 1) 2-Fluorobiphenyl		79%	74%	86%	82%	93%	93%	90%	87%
(Surr 2) p-Terphenyl		86%	81%	87%	90%	89%	90%	92%	95%
"nd" Indicates not detected at listed reporting lim "int" Indicates that interference prevents determin "J" Indicates estimated value "MRL" Indicates Method Reporting Limit "LCS" Indicates Laboratory Control Sample "MS" indicates Matrix Spike	its nation						<u> </u>		
"MSD" Indicates Matrix Spike Duplicate "RPD" Indicates Relative Percent Difference									
Acceptable RPD is determined to be less than 30 Acceptable Recovery Limits:	1%								

LCS, LCSD, MS, MSD = 50% to 150% Surrogate Concentration = 0.5 mg/kg

Spike Concentration = 1.0 mg/kg

1

T: 206.352.3790 F: 206.352.7178 email: info@fremontanalytical.com

Analysis of Polyaromatic Hydrocarbons in Soil by EPA Method 8270C

Project: Haven's Property Client: Libby Environmental Client Project #: N/A Lab Project #: CHM090819-3

-		MS	MSD	
EPA 8270C (SIM)	MRL	Batch	Batch	RPD
(mg/kg)		090817-1-1	090817-1-1	%
Date Extracted		8/19/09	8/19/09	
Date Analyzed		8/20/09	8/20/09	
Matrix		Soil	Soil	
· · · ·				1
Acenaphthene	0.05	135%	129%	5%
Pyrene	0.05	123%	123%	0%
Benzo(a)anthracene	0.05			
Chrysene	0.05			
Benzo(b)fluoranthene	0.05		•	-
Benzo(k)fluoranthene	0.05			
Benzo(a)pyrene	0.05			
Indeno(1,2,3-cd)pyrene	0.05			
Dibenzo(a,h)anthracene	0.05			
Benzo(g,h,i)perylene	0.05			
Total PAH Carcinogens				
Total PAH Carcinogens Defined as: Benzo(a)anthracene, Chrysene, Benzo(b)fluorant Benzo(k)fluoranthene, Benzo(a)pyrene, Ideno(1,2,3-cd)pyrene & Dibenzo(a,h)anthracene	hene,			
Surrogate Recovery				
(Surr 1) 2-Fluorobiphenyl		101%	104%	
(Surr 2) p-Terphenyl		96%	98%	
"nd" Indicates not detected at listed reporting limi "int" Indicates that interference prevents determin "J" Indicates estimated value "MRL" Indicates Method Reporting Limit "LCS" Indicates Laboratory Control Sample "MS" Indicates Matrix Spike "MSD" Indicates Matrix Spike "RDD" Indicates Relative Percent Difference	ts nation			
Acceptable RPD is determined to be less than 30 Acceptable Recovery Limits: Surrogates = 65% to 135% LCS, LCSD, MS, MSD = 50% to 150% Surrogate Concentration = 0.5 mg/kg	%			

Surrogate Concentration = 0.5 mg/k Spike Concentration = 1.0 mg/kg

2

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

08/25/2009

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Haven's Property Project: Sample Matrix: Soil 08/14/2009 Date Sampled: 08/18/2009 Date Received: Spectra Project: 2009080290

Client ID	Spectra #	Analyte	Result	Units	Method
CTP1B	1	Total Nickel	25	mg/Kg	SW846 6010B
CTP6C	2	Total Nickel	21	mg/Kg	SW846 6010B

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a7/scj

Distribution White - Lab, Yellow - File, Pink - Originato

Libby Environmental, Inc.

4139 Libby Road N.E., Olympia, WA 98506-2518

September 4, 2009

Rick Bieber Robinson, Noble & Saltbush, Inc. 3011 Huson Street South Suite A Tacoma, WA 98409

Dear Mr. Bieber:

Please find enclosed the analytical data report for the Havens Property 411 93RD Project located in Tumwater, Washington. Water samples were received and analyzed for MTCA 5 Metals by EPA Method 7000 Series on August 30, 2009.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry V. Chilcutt President Libby Environmental, Inc.

Phone (360) 352-2110 * Fax (360) 352-4154 * libbyenv@aol.com

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Project No.L090825-4

(l/gu) 10.0 Zinc nd nd nd nd nd Copper (l/gu) 5.0nd nd nd nd nd Arsenic (l/gu) 3.0 pu nd nd nd nd Chromium (l/gu) 10.0pu nd nd nd nd "nd" Indicates not detected at the listed detection limits. Cadmium (l/gu) 0.5 pu nd nd nd nd (l/gu) Lead 5.0 nd pu nd nd nd **Practical Quantitation Lin** Analyzed 8/30/09 8/30/09 8/30/09 8/30/09 8/30/09 Date Method Blan MW-3 Dup Sample Number **MW-3 MW-2** MW-1

Analyses of Total Metals in Water by EPA Method 7000 Series

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C QA/QC for Metals in Water by EPA Method 7000 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic	Copper	Zinc
Number	Analyzed	(% Recovery)					
LCS	8/30/09	119%	107%	107%	102%	116%	127%
MW-3 MS	8/30/09	95%	106%	102%	95%	120%	74%
MW-3 MSD	8/30/09	100%	%66	108%	89%	119%	78%
RPD	8/30/09	5.1	6.8	5.7	6.5	0.8	5.3

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Analyses of Dissolved Metals in Water by EPA Method 7000 Series

(l/gu) 10.0 Zinc pu nd pu nd nd Copper (l/gu) 5.0 nd nd nd nd nd Arsenic (l/gu) 3.0 pu nd nd nd nd Chromium (l/gu)10.0pu nd nd nd pu "nd" Indicates not detected at the listed detection limits. Cadmium (l/gu) 0.5 nd nd nd nd nd Jead (l/gu)5.0 pu pu pu nd nd Practical Quantitation Lin Analyzed 8/30/09 8/30/09 8/30/09 8/30/09 8/30/09 Date Method Blan MW-3 Dup Sample Number MW-3 MW-1 **MW-2**

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C Libby Project No.L090825-4

Analyses of Total Mercury in Water by EPA Method 7471

Sample	Date	Mercury
Number	Analyzed	(ug/l)
Method Blank	8/30/09	nd
MW-1	8/30/09	nd
MW-2	8/30/09	nd
MW-3	8/30/09	nd
MW-3 Dup	8/30/09	nd
Practical Quantitation Limit		0.5

"nd" Indicates not detected at the listed detection limits.

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C

QA/QC for Mercury by EPA Method 7471

Sample	Date	Mercury
Number	Analyzed	Percent Recovery
LCS	8/30/09	103%
MW-3 MS	8/30/09	95%
MW-3 MSD	8/30/09	105%
RPD	8/30/09	10

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

Haven's Property PROJECT Tumawater, WA Robinson, Noble & Saltbush Client Project #2491-001C

Analyses of Dissolved Mercury in Water by EPA Method 7471

Sample	Date	Mercury
Number	Analyzed	(ug/l)
Method Blank	8/30/09	nd
MW-1	8/30/09	nd
MW-2	8/30/09	nd
MW-3	8/30/09	nd
MW-3 Dup	8/30/09	nd
Practical Quantitation Limit		0.5

"nd" Indicates not detected at the listed detection limits.

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

1.

1

08/31/2009

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project:	Sertjes-Haven's Property
Sample Matrix:	Water
Date Sampled:	08/25/2009
Date Received:	08/27/2009
Spectra Project:	2009080465

Client ID	Spectra #	Analyte	Result	Units	Method
MW-1	1	Dissolved Nickel	< 0.015	mg/L	EPA 200.7
MW-1	1	Nickel	< 0.015	mg/L	EPA 200.7
MW-2	2	Dissolved Nickel	< 0.015	mg/L	EPA 200.7
MW-2	2	Nickel	< 0.015	mg/L	EPA 200.7
MW-3	3	Dissolved Nickel	< 0.015	mg/L	EPA 200.7
MW-3	3	Nickel	< 0.015	mg/L	EPA 200.7

SPECTRA/LABORATORIES

Steve Hibbs, Laboratory Manager a7/scj

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	360-352-110 Date: 8-25-09 Page 360-352-4154 Project Manager: R-46 Page A Tacome, WA 76409 Project Manager: R46 Fax. (253) 472-57846 Location: Hauers Collector: Jacuers Project Manager: Sample Container Ner Fies - Hauers Sample Container Ner Fies - Hauers Time Tume Project Manager:
Coloring Line Dept Manager Frage And St. St. A Tercana, U.M. 7 PH of Project Name, M.M. 74: - H. a.e., Proper 4. Dill S. Man, St. St. A Tercana, U.M. 7 PH of Dill St. Frage And St. St. A Tercana, U.M. 7 Photon And Dill St. 75: 74: 0000000000000000000000000000000000	Callbush Project Manager: F46 It A Taceme, WA 76409 Project Manager: F46 Fax: (253) 472-57846 Location: Hawers Property Tum water Project Name: Collector: JJJ Date of C Sample Container 000 00 00 00 00 00 00 00 00 00 00 00 00
et 1. S. Hum. St. St. A. Tarcentr, w.M. 7. Fift & Project Name. Wer Yis H. a. er. Progr. Fur. 1917 5: 73-41 East [2:3] 473-5-5244 Location. Actuary. Progr. Actual for (2) 4 1917 5: 73-41 East [2:3] 473-5-5244 Location. Actual for (2) 4 1912 5: 10 East [2:0] 2012 5: 10 East [2:0]	Ke H Taceme, Wh 78469 Project Name: Wertics - Havers Proper Property Tum wat to the test of test of the test of
S1) H75 - 73 et l Fax. (253) H73 - 7 et yeb. Location Hat users Property and a conjection Date of collection c1# 24 H1 - CO1A Collector. JJJS Date of collection JJS Date of collection c1 Time Sample Container JJS JJS JJS JJS JJS e1 Time Sample Container JJS JJS JJS JJS JJS a Mutber Time Sample Container JJS JJS JJS JJS a Mutber Time Sample Container JJS JJS JJS JJS a Mutber Dapth Time Sample Container JJS JJS JJS a Mutber Dapth Time Sample Container JJS JJS JJS a Mutber Dapth Time Sample Container JJS JJS JJS a Mutber Dapth Time Sample Container JJS JJS a Mutber Time Time Sample Date of Container JJS JS a Mutber Time Time	Fax: (25-3) 472 - 5-846 Location: Hawens Property Tum wat Collector: JJB Date of C Collector: JJB Date of C Sample Container 000 00 00 00 00 00 00 00 00 00 00 00 0
cr#	Collector: JJS Date of C Date of C Date of C Date of C Sample Container 000 00 00 00 00 00 00 00 00 00 00 00 00
Number Depth Time Sample Container Sample	Time Two And
Number Depth Time Sample Container Set 0.0 % <	Time Type Type 207 50 50 50 50 50 50 50 50 50 50 50 50 50
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rilo KO 250 mc
3 Instity M M M M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>14:20 1 Poly</td></t<>	14:20 1 Poly
Ministry Ministry Ministry Ministry Ministry Ministry	
Mining Mining Bale / Time Bal	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
9: 9: 1 1 1 1 1 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	
With the second by Date / Time Received by Cold? With the second by Date / Time Sample Receipt: Remarks: With the second by Date / Time Sample Receipt: Remarks: With the second by Date / Time Sample Receipt: Remarks:	
No. Date / Time Received by Date / Time Sample Receipt: Remarks: No. Date / Time Received by Date / Time Sample Receipt: Remarks: No. Date / Time Received by Date / Time Sample Receipt: Remarks:	
Other Date / Time Amount Amount Amount Amount Over Date / Time Received by Sample Receipt: Remarks: Over Date / Time Received by Date / Time Sample Receipt: Remarks: Oute / Time Received by Date / Time Date / Time Sample Receipt: Remarks: Oute / Time Date / Time Received by Date / Time Sample Receipt: Remarks: Oute / Time Received by Date / Time Sample Receipt: Remarks:	
Note	
N: Date / Time Received by Date / Time Remarks: N: Date / Time Received by Date / Time Sample Receipt: Remarks: N: Date / Time Received by Date / Time Sample Receipt: Remarks: N: Date / Time Received by Date / Time Sample Receipt: Remarks: N: Date / Time Received by Date / Time Sample Receipt: Remarks: N: Date / Time Received by Date / Time Sample Receipt: Remarks:	
With Control Date / Time Received by Date / Time Remarks: With Control Date / Time Received by Date / Time Sample Receipt: Remarks: With Control Date / Time Received by Date / Time Sample Receipt: Remarks: With Control Date / Time Received by Date / Time Sample Receipt: Remarks: With Control Date / Time Received by Date / Time Sample Receipt: Remarks: With Control Date / Time Received by Date / Time Sample Receipt: Remarks: With Control Date / Time Received by Date / Time Scool Condition? Cold?	
W: Date / Time Received by Date / Time Sample Receipt: Remarks: W: Date / Time Cold? Date / Time Sample Receipt: Remarks: W: Date / Time Date / Time Sample Receipt: Remarks: W: Date / Time Cold? Cold? Cold?	
Operation Date / Time Received by Date / Time Remarks: N: Date / Time Received by Date / Time Sample Receipt: Remarks: N: Date / Time Received by Date / Time Sood Condition? Cold? N: Date / Time Received by Date / Time Sood Condition? Remarks:	
Out Date / Time Received by 0y: Date / Time Sample Receipt: 0y: Date / Time Sample Receipt: 0y: Date / Time Sold Condition? 0y: Date / Time Cold?	
Date / Time Received by Date / Time Sample Receipt: Remarks: N Bate / Time Sample Receipt: Remarks: N Date / Time Cold? Cold? N: Date / Time Cold? Cold?	
by: Date / Time Received by Date / Time Sample Receipt: Remarks: by: Of Date / Time Received by Date / Time Good Condition? Remarks: Date / Time Good Condition? Date / Time Good Condition? Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Sample Received by Date / Time Sample Receipt: Remarks: Date / Time Received by Date / Time Sample Receipt: Remarks: Date / Time Received by Date / Time Sample Receipt: Remarks: Date / Time Received by Date / Time Receipt: Remarks: Date / Time Received by Date / Time Receipt: Remarks: Date / Time Received by Date / Time Receipt: Remarks: Date / Time Received by Date / Time Remarks: Date / Time Remarks: Date / Time Received by Date / Time Remarks: Date / Time Remarks:	
Bate / Time Received by Date / Time Sample Receipt: Remarks: Muth R-75-09 16:00 Muth Luth Received by Date / Time Sood Condition? Remarks: by: 01 Date / Time Received by Date / Time Cold? Cold? Date / Time	
by: Uf U Date / Time Received by Date / Time Good Condition? Cold? Dv: Date / Time Seals Interd?	Time Received by Date/Time Sample Receipt:
by: Date / Time Received by Date / Time Seals Intant?	/ Time Received by Date / Time Good Condition? Cold?
	/ Time Received by Date / Time Seals Intact?
Total Number of Containers TAT 24HR	Total Number of Containers

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 •

www.spectra-lab.com

08/31/2009

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: Sertjes-Havens Property Sample Matrix: Water 08/25/2009 Date Sampled: Date Received: 08/27/2009 Spectra Project: 2009080465

Client ID	Spectra #	Analyte	Result	Units	Method
MW-1	1	Dissolved Nickel	< 0.015	mg/L	EPA 200.7
MW-1	1	Nickel	< 0.015	mg/L	EPA 200.7
MW-2	2	Dissolved Nickel	< 0.015	mg/L	EPA 200.7
MW-2	2	Nickel	< 0.015	mg/L	EPA 200.7
MW-3	3	Dissolved Nickel	< 0.015	mg/L	EPA 200.7
MW-3	3	Nickel	< 0.015	mg/L	EPA 200.7

SPECTRA/LABORATORIES

Steve Hibbs, Laboratory Manager a7/scj

bby Environme	ental, Inc.	Chain of Custody	Record	
39 Libby Road NE	Ph: 360-352-2110 250-350-352-4154	Date:	26/29	Dage
ent:	rax. 300-332-4134	Project Manager	1 Sherry Chulo	
dress:	1 accalme	Project Name: V	Nerties - Havens Pro	They's
one:	Fax:	Location:	0	1
ent Project #		Collector:	Date of	Collection:
		Nuc		
		a a a a a a	() (3) + + + + + + + + + + + + + + + + + + +	
, <u>, , , , , , , , , , , , , , , , , , </u>	Sample	intainer 20 20 20 20 20 20 20 20 20 20 20 20 20	Control of	
Sample Number	Depth Time Type	Type 1-2-1-2-1-5-1-4	1 2 4 10 10 4 4 4 4	Field Note/# Containers
CC- CT W				
	2			
-				
~				
4		2		
		2		
	*			
8 7 5				990 990
Elinquished by:	STDD/G	1 1 8 2 6 2 6 1 8 9 Da	tte / Time Sample Receipt:	Remarks
elinquished by	Date / Time	perved by A. I. R-20a	te / Time / Good Condition?	
I / I / I / elinnuished bv:	Date / Time Rec	ceived by Da	te / Time Seals Intact?	
· (a policiaki ilio				

WASTE DISPOSAL DOCUMENTS

Libby Environmental, Inc.

4139 Libby Road N.E., Olympia, WA 98506-2518

September 29, 2009

Rick Bieber Robinson, Noble & Saltbush, Inc. 3011 Huson Street South Suite A Tacoma, WA 98409

Dear Mr. Bieber:

Please find enclosed the analytical data report for the Wertjes: Havens Property Project located in Tumwater, Washington. A product sample was analyzed for Selected Volatile Organic Compounds by EPA Method 8260b, PCB's by EPA Method 8082b, TCLP RCRA8 Metals by EPA method 1311/6010b, Specific Gravity, Flashpoint and pH.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work was sent to Alan Wertjes, Attorney at Law.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

XIN

Sherry L. Chilcutt President Libby Environmental, Inc.

Phone (360) 352-2110 * Fax (360) 352-4154 * libbyenv@aol.com

WERTJES: HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Client Project #2491-001A Libby Env.Project No.L090922-5

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B IN PRODUCT

Sample Description		Method	D-1	
		Blank		
Date Sampled	Reporting	N/A	9/22/09	
Date Analyzed	Limits	9/23/09	9/23/09	
	(ug/l)	(ug/l)	(ug/l)	
Dichlorodifluoromethane	200	nd	nd	
Chloromethane	200	nd	nd	
Vinyl chloride	20	nd	nd	
Bromomethane	200	nd	nd	
Chloroethane	200	nd	nd	
Trichlorofluoromethane	200	nd	nd	
1,1-Dichloroethene	200	nd	nd	
Methylene chloride	100	nd	nd	
Methyl tert-Butyl Ether (MTBE	500	nd	nd	
trans-1,2-Dichloroethene	100	nd	nd	
1,1-Dichloroethane	100	nd	nd	
2,2-Dichloropropane	200	nd	nd	
cis-1,2-Dichloroethene	100	nd	nd	
Chloroform	100	nd	nd	
1,1,1-Trichloroethane (TCA)	100	nd	nd	
Carbon tetrachloride	100	nd	nd	
1,1-Dichloropropene	100	nd	nd	
Benzene	100	nd	115,000	
1,2-Dichloroethane (EDC)	100	nd	nd	
Trichloroethene (TCE)	100	nd	nd	
1,2-Dichloropropane	100	nd	nd	
Dibromomethane	100	nd	nd	
Bromodichloromethane	100	nd	nd	
cis-1,3-Dichloropropene	100	nd	nd	
Toluene	100	nd	1,300,000	
Trans-1,3-Dichloropropene	100	nd	nd	
1,1,2-Trichloroethane	100	nd	nd	
Tetrachloroethene (PCE)	100	nd	nd	
1,3-Dichloropropane	100	nd	nd	
Dibromochloromethane	100	nd	nd	
1,2-Dibromoethane (EDB) *	1.0	nd	nd	
Chlorobenzene	100	nd	nd	
1,1,1,2-Tetrachloroethane	100	nd	nd	
Ethylbenzene	100	nd	380,000	
Total Xylenes	200	nd	2,770,000	
Styrenes	100	nd	nd	

WERTJES: HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Client Project #2491-001A Libby Env.Project No.L090922-5

Sample Description		Method	D-1	
· · · · · · · · · · · · · · · · · · ·		Blank		
Date Extracted	Reporting	N/A	9/22/09	· · · · · · · · · · · · · · · · · · ·
Date Analyzed	Limits	9/23/09	9/23/09	
	(ug/l)	(ug/l)	(ug/l)	
Bromoform	100	nd	nd	
Isopropylbenzene	400	nd	39,900	
1,2,3-Trichloropropane	100	nd	nd	
Bromobenzene	100	nd	nd	
1,1,2,2-Tetrachloroethane	100	nd	nd	
n-Propylbenzene	100	nd	153,000	
2-Chlorotoluene	100	nd	nd	
4-Chlorotoluene	100	nd	nd	
1,3,5-Trimethylbenzene	100	nd	359,000	
tert-Butylbenzene	100	nd	151,000	
1,2,4-Trimethylbenzene	100	nd	1,270,000	
sec-Butylbenzene	100	nd	28,600	
1,3-Dichlorobenzene	100	nd	nd	
Isopropyltoluene	100	nd	18,100	
1,4-Dichlorobenzene	100	nd	nd	
1,2-Dichlorobenzene	100	nd	nd	
n-Butylbenzene	100	nd	nd	
1,2-Dibromo-3-Chloropropane	100	nd	nd	
1,2,4-Trichlorolbenzene	200	nd	nd	
Hexachloro-1,3-butadiene	500	nd	nd	
Naphthalene	500	nd	670,000	
1,2,3-Trichlorobenzene	500	nd	nd	
Surrogate Recovery				
Dibromofluoromethane		96.2	101	
1,2-Dichloroethane-d4		93.7	110	
Toluene-d8		93.7	98	
4-Bromofluorobenzene		86.0	103	
"nd" Indicates not detected at 1	isted detection	limit.		
"int" Indicates that interference	e prevents dete	rmination.		

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

WERTJES: HAVENS PROPERTY PROJECT Tumwater, Washington Robinson, Noble & Saltbush, Inc. Client Project #2491-001A Libby Env.Project No.L090922-5

QA/QC Data - EPA 8260B Analyses

	Laboratory Control Sample				
	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)		
1.1-Dichloroethene	10	7.3	73		
Benzene	10	7.6	76		
Toluene	10	7.5	75		
Chlorobenzene	10	8.6	86		
Trichloroethene (TCE)	10	7.8	78		
Surrogate Recovery					
Dibromofluoromethane			103		
1,2-Dichloroethane-d4			117		
Toluene-d8			97		
4-Bromofluorobenzene			96		

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

09/25/2009

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

P.O.#: 2491-001A Project: Wertjes-Havens Property Client ID: D-1 Sample Matrix: Oil Date Sampled: 09/22/2009 Date Received: 09/22/2009 Spectra Project: 2009090450 Spectra Number: 1

Analyte	Result	<u>Units</u>	Method
Specific Gravity at 60 °F	0.8911		ASTM D-287
Flashpoint (PMCC)	> 210	°F	ASTM D-93
TCLP Arsenic	< 0.05	mg/L	SW846 6010B
TCLP Barium	0.030	mg/L	SW846 6010B
TCLP Cadmium	0.021	mg/L	SW846 6010B
TCLP Chromium	< 0.007	mg/L	SW846 6010B
TCLP Lead	0.05	mg/L	SW846 6010B
TCLP Selenium	< 0.08	mg/L	SW846 6010B
TCLP Silver	< 0.007	mg/L	SW846 6010B
TCLP Mercury	< 0.0002	mg/L	SW846 7470A
pH	6.37	pH Units	SW846 9045

SPECTRA LABORATORIES でて:

Steve Hibbs, Laboratory Manager a5/snb

and the second

裔

Ŵ

Western Region

PLEASE REMIT TO PSC ENVIRONMENTAL SERVICES LLC P.O. BOX 3069 Houston, TX 77253-3069

Page # 1

Invoice # 22000131734

Invoice Date 10/30/2009 Customer 56766 Terms Net 30 days

SITE ADDRESS: WERTJES 411 93RD AVE TUMWATER, WA 98501

ATTN.: TOM SMITH ROBINSON, NOBEL AND SALTBUSH 3011 S HUSON STREET, SUITE A TACOMA, WA 98409

ORDER 1042631 WERTJES

Thank you for your business.

10/19/2009

Intra-State	Transportation :	
-------------	------------------	--

	LTL T	RANSPORTATIC	N MINIMUM	1.00 @ 100.000 / E	\$100.00
10/19/2009	Doc No.	154203-09	Manifest 005605557JJK	Waste Receipt KNT-7141P	•

 1
 427104-00 - NON REGULATED OIL
 1.00 @ 167.000 / DM55

 2
 428047-00 - EMPTY DRUMS
 1.00 @ 30.000 / E

 Sub Total Energy Charge

INVOICE TOTAL

\$167.00

\$30.00

\$297.00

\$43.07

\$340.07

Seattle Office (800) 228-7872 Fax (425) 204-7164 Furtiand Office (800) 547-2488 Fax (800) 800 8	ce (800) 547-2436 Fax (360) 835-8872
---	--------------------------------------

We have the show merchant ords for navment. Please contact our local PSC hilling office for payment instructions.

Please print or	tv <u>pe. (F</u> orm design	ed for use on elite (12-pi	itch) typewriter.)						Form	Approved.	ONIR NO	. 2050
	HAZARDOUS	1. Generator ID Number		2. Page	1 of 3. Em	ergency Response	Phone	4. Manifest		555	7.1	.IK
5. Generato	r's Name and Mailing	Address	<u>G</u>	I	Genera	(877) tor's Site Address	(if different th	an mailing addre	ess)			
) EANT	NOM NONC 1	CALTDINCU THE			WC C	TICC						
1001 7411	CONTU LEICON	CHLIDUON, INL CHTTC A			#1	QTEN ANF						
Generator	anorn nuaun, Anoma ya 9946	9 (253)475-7711	•			WATER WA 99	5 81 (25 3	1475-7711				
6. Transport	er 1 Company Name					•		U.S. EPA ID	Number			
BUF	LINGTON E	NVIRONMENTA	L.C.					WARE	666661	743		
7. Iransport	er 2 Company Name		-					U.S. EPAIDI	Number			
8 Designate	d Facility Name and	Site Address						U.S. EPAID	Number			
DIE	TECTAL CHIDA	RECEITAL LIF FCM	AT CAPILITY	•								
7474	5 77TH AVFHIF	Same con co	** ********									
Facility's Ph	one: XENT. KA	98832 (253) 872-	-8830					WAL) 991281	1767		
9a, 9b.	U.S. DOT Description	(including Proper Shipping	Name, Hazard Class, ID	Number,		10. Contair	iers	11. Total	12. Unit	12 1	Nasta Cad	
HM and	Packing Group (if an	y))				No.	Туре	Quantity	Wt./Vol.	13.1		es
	MATERIAL NO	t regualted by do	IT					10				í.
						1	DM	45	6			+
u	0247797777	-							┼┼			+
5	TRIEKIAL KO	I REGULATED BY DO	1			-	ъĦ	7.				
						L		20	F			
3.		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					1			1
	i.										1 X Marin Davies and Sector to Alibadians	+
		· •		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								
4.												-
										·		ł
												-
14. Special I	Handling Instructions 】 4271度4-68 -	and Additional Information	(L (2) 428847-88	a – Empty Dr	IUAS							
14. Special H (1 15. GENEF marked Exporte	Handling Instructions 4271億4-器 - RATOR'S/OFFEROR' and labeled/placarde r, I certify that the coo	and Additional Information NON REGULATED DI 'S CERTIFICATION: I herel ad, and are in all respects in ntents of this consignment c	L (2) 428847-84 by declare that the conter proper condition for trans- conform to the terms of the	- EMPTY IN - EMPTY IN - Empty - Empty	NITS nent are fully applicable into knowledgmer	and accurately des rnational and national t of Consent.	scribed above	by the proper sh ental regulations	nipping name, . If export ship	and are clas	sified, pack am the Prin	kageo
14. Special H	Handling Instructions 4271億4-器會一 RATOR'S/OFFEROR and labeled/placarde r, I certify that the cont that the waster minim	and Additional Information NON REGULATED DI S CERTIFICATION: I here ad, and are in all respects in intents of this consignment c ization statement identified	L (2) 428847-66 by declare that the conter proper condition for trans onform to the terms of the in 40 CFR 262.27(a) (if 1	- EMPTY DR ints of this consignm sport according to a le attached EPA Ack am a large quantity	NINS nent are fully applicable into knowledgmer y generator o	and accurately des rnational and nation t of Consent. (b) (#Lam a sma	scribed above anal governm I quantity ge	by the proper sh ental regulations erator) is true.	nipping name, . If export ship	and are class oment and I a	sified, pack am the Prin	kaged
14. Special H (1 15. GENER marked Exporte I certify Generatore//	Handling Instructions 4271億4-部一 RATOR'S/OFFEROR and labeled/placarde or, I certify that the cou that the waste minim Differor's Printed/Type	and Additional Information NON REGULATED DI S CERTIFICATION: I herel ed, and are in all respects in theths of this consignment c ization statement identified Name	L (2) 428847-84 by declare that the conter proper condition for trans conform to the terms of the in 40 CFR 262.27(a) (if I	Ints of this consignments of this consignments according to a line attached EPA Ack am a large quantity	NUMS nent are fully applicable intr knowledgmer y generator) o Signature	and accurately des ernational and natii t of Consent. (b) (#F am a sma	scribed above onal governm Liquantity ge	by the proper st ental regulations erator) is true.	nipping name, If export ship	and are class oment and I a Mon	sified, pack am the Prin th Day	kaged
14. Special H (1 15. GENEF marked Exporte I certify Generators//	ATOR'S/OFFEROR' ATOR'S/OFFEROR' and labeled/placarde r, I certify that the contrast the waste minim Offeror's Printed/Type CEINI (and Additional Information NON REGULATED DI S CERTIFICATION: I herel ad, and are in all respects in intents of this consignment c ization statement identified Name	(L (2) 428847-84 by declare that the conter proper condition for trans conform to the terms of the in 40 CFR 262.27(a) (if 1	- EMPTY IN -	nent are fully applicable into knowledgmer y generator) o Signature	and accurately des rnational and nativ t <u>of Conse</u> nt. (b) Aft am a sma 2000 g	scribed above onal governm Il quantity ge	by the proper st ental regulations erator) is true.	nipping name, . If export ship	and are clas ment and I a Mon	sified, pack am the Prin th Day	kaged
14. Special H (1) 15. GENEF marked Exporte I certify Generators/C	Handling Instructions 4271段4-部一 ATOR S/OFFEROR and labeled/placarde r, I certify that the cont that the waster minim Differor's Printed/Type でれれていたいで、 Printed/Type でれれていたいで、 Printed/Type でれれていたいで、 Printed/Type でれれていたいで、 Printed/Type	and Additional Information NON REGULATED DI S CERTIFICATION: I herel ad, and are in all respects in intents of this consignment c ization statement identified Name C G L Import to U.S onlul	L (2) 428847-84 by declare that the conter proper condition for trans onform to the terms of the in 40 CFR 262.27(a) (if 1	I - EMPTY IR Ints of this consignm Isport according to a the attached EPA Ack am a large quantity Export for	NINS nent are fully applicable inte knowledgmer y generator) o Signature m U.S.	and accurately des rnational and national to f Consent. (b) (#T am a sma Wti(W) Port of end Date leavin	scribed above nal governm Lquantity ge	by the proper st ental regulations erator) is true.	nipping name, . If export ship	and are classoment and I a	sified, pack am the Prin th Day 7 9	kaged nary
14. Special H (1) 15. GENER marked Exporte I certify Generators// 16. Internation Transporter 17. Transport	Handling Instructions 4271億4-部一 RATOR'S/OFFEROR and labeled/placarde r, I certify that the con- that the waster minim Differor's Printed/Type でまれていて、 rial Shipments signature (for exports er Acknowledoment of	and Additional Information NON REGULATED DI CS CERTIFICATION: I herel ed, and are in all respects in ization statement identified Name Name Import to US- only): f Receipt of Materials	L (2) 428647-64 by declare that the conter proper condition for trans conform to the terms of the in 40 CFR 262.27(a) (if I		NINS nent are fully applicable int knowledgmer y generator) o Signature om U.S.	and accurately dee ernational and nativ t of Consent. (b) (#1 am a sma 2000 professional pare leavin Date leavin	scribed above onal governm Lquantity ge ry/exit: g U.S.:	by the proper sh ental regulations reator) is true.	nipping name, if export ship	and are clas oment and I a Mon	sified, pack am the Prin th Day 7 9	kaged hary
14. Special H (1 15. GENEF Marked Exporte I certify Generators/ Generators/ Transporter 17. Transport Transporter	Handling Instructions 4271億4-倍音 AATOR'S/OFFEROR' and labeled/placarde and labeled/	and Additional Information NON REGULATED DI S CERTIFICATION: I herel ad, and are in all respects in intents of this consignment c ization statement identified Name Construction Import to D.S only): f Receipt of Materials	(L (2) 428847-84 by declare that the conter proper condition for trans conform to the terms of the in 40 CFR 262.27(a) (if 1		nent are fully applicable int knowledgmer y generator) o Signature om U.S.	and accurately des emational and nativ t of Consent. (b) (H1 am a sma with Con of end Date leavin	scribed above onal governm Ll quantity ge ry/exit: ig U.S.:	by the proper si ental regulations prator) is true.	nipping name, . If export ship	and are clas ment and I a Mon	sified, pack am the Prin th Day	kaged hary
14. Special H 14. Special H 15. GENEF marked Exporter 16. Infernation Transporter 1 17. Transporter 1 10. Transporter 1 10. Transporter 1	tandling Instructions 4271段4-磁音 - AATOR'S/OFFEROR and labeled/placarde or, I certify that the con- that the waste minim Offeror's Printed/Type で れいして たい ral Shipments signature (for exports er Acknowledgment o Printed/Typed Name	and Additional Information NON REGULATED DI S CERTIFICATION: I herel ad, and are in all respects in intents of this consignment c ization statement identified i Name S Name Import to U.S- only): if Receipt of Materials	IL (2) 428847-84 by declare that the conter proper condition for trans onform to the terms of the in 40 CFR 262.27(a) (if 1 GCC man		NUMS nent are fully applicable inte knowledgmer y generator) o Signature om U.S. Signature	and accurately des mational and nativ tof consent. (b) (#1 am a sma aution Date leavin Date leavin	scribed above anal governm Lquantity ge ry/exit: ng U.S.:	by the proper st ental regulations prator) is true.	nipping name, , If export ship	and are class ment and 1 a Mon 2 Mon /	sified, pack am the Prin th Day	kaged hary
14. Special H (11) 15. GENER marked Exporte I certify Generatore/ 16. Internation Transporter 1 17. Transporter 1 Transporter 2	Handling Instructions 4271億4-部一 RATOR S/OFFEROR and labeled/placarde r, I certify that the con- that the waster minim Differor's Printed/Type 「ビルン」」 ではいい」 reaction and Shipments signature (for exports reacknowledgment of Printed/Typed Name	and Additional Information NON REGULATED DI S CERTIFICATION: I herel ed, and are in all respects in nitents of this consignment c ization statement identified Name US Import to US- only): f Receipt of Materials	L (2) 428847-84 by declare that the conter proper condition for trans conform to the terms of the in 40 CFR 262.27(a) (if 1 Clean		INFS nent are fully applicable int knowledgmer y generator) o Signature om U.S. Signature Signature	and accurately deservational and natii to f Consent. (b) (iff am a sma util) Rot of end Date leavin State St	scribed above onal governm Ll.quantity ge pylexit: ng U.S.:	by the proper st ental regulations reator) is true.	nipping name, . If export ship	and are clas ment and I a Mon [2 Mon	sified, pack am the Prin th Day 7 19	kaged hary
14. Special H (1 15. GENEF Exporte Lecritiy Generatore// Generatore/ Transporter 1 Transporter 1 Transporter 2	Aandling Instructions 4271億4-倍音 AATOR'S/OFFEROR and labeled/placarde r, I certify that the cont that the waste minim Differor's Printed/Type それいくくいい、 Signature (for exports er Acknowledgment of Printed/Typed Name	and Additional Information NON REGULATED DI S CERTIFICATION: I herel ad, and are in all respects in itents of this consignment c ization statement identified Name G Name G Import to U.S only): of Receipt of Materials	IL (2) 428647-84 by declare that the conterproper condition for transpondent on the terms of the in 40 CFR 262.27(a) (if 1) GCC max		NUMS nent are fully applicable int knowledgmer y generator o Signature Signature Signature	and accurately des arrational and natii to <u>f</u> Consent. (b) (#f arr a sma wting Date leavin Date leavin	scribed above onal governm IL quantity ge pylexit: ng U.S.:	by the proper st ental regulations rator) is true.	nipping name, . If export ship	and are classment and I a Mon	sified, pack am the Prin th Day 2 19 19 th Day th Day	kaged hary
14. Special H (1 15. GENEF marked Exporte 1 certify Generators// 16. Internation Transporter 1 17. Transporter 1 Transporter 1 Transporter 2 18. Discrepan	tandling Instructions 4271段4-部一 AATOR'S/OFFEROR and labeled/placarde or, I certify that the cont that the waste minim Differor's Printed/Type でまれていて、 rinal Shipments signature (for exports er Acknowledgment o Printed/Typed Name	and Additional Information NON REGULATED DI S CERTIFICATION: I hered ad, and are in all respects in intents of this consignment c ization statement identified Name Construction Import to U.S only): If Receipt of Materials	IL (2) 428847-84 by declare that the conterproper condition for transonform to the terms of the in 40 CFR 262.27(a) (if 1)		NINS nent are fully applicable inte knowledgmer y generator) o Signature mn U.S. Signature	and accurately des renational and national to f Consent. (b) off am a sma with tam a sma with tam a sma Date leavin Date leavin State of the state of the state Date leavin	scribed above onal governm Liquantity ge ry/exit: ig U.S.:	by the proper st ental regulations reator) is true.	hipping name, . If export ship	and are class ment and I a Mon [2 Mon 	sified, pack am the Prim th Day th Day th Day	kaged hary
14. Special H 14. Special H 15. GENET marked Exporte I certify Generator-/// Generator-// 16. Internation Transporter 1 17. Transporter 1 17. Transporter 2 18. Discrepan 18. Discrepan	ATOR S/OFFEROR ATOR S/OFFEROR and labeled/placarde r, I certify that the con- that the waster minim Offeror's Printed/Type TETTE (for exports er Acknowledgment o Printed/Typed Name Printed/Typed Name	and Additional Information NON RESULATED DI S CERTIFICATION: I herel ed, and are in all respects in intents of this consignment c ization statement identified Name Import to U.S. only): of Receipt of Materials Output: D Quantity	IL (2) 428847-84 by declare that the conterproper condition for transionform to the terms of the in 40 CFR 262.27(a) (if 1) CLC and the conterproper condition for transition for the terms of the in 40 CFR 262.27(a) (if 1)		nent are fully applicable int knowledgmer y generator) o Signature om U.S. Signature Signature	and accurately desernational and natii t of Consent. (b) (iff am a sma 2000 of end Date leavin Date leavin According According Residue	scribed above onal governm ILquantity ge pyfexit: ng U.S.:	by the proper st ental regulations erator) is true.	nipping name, . If export ship	and are clas ment and I a Mon I I C Mon	sified, pack am the Prin th Day 2 1 9 th Day th Day	kaged hary
14. Special H (1 15. GENEF Exporte Learlify Generatore// Generatore/ Transporter 1 17. Transporter 1 Transporter 1 18. Discrepa 18a. Discrepa	Aandling Instructions 4271度4-磁動 AATOR'S/OFFEROR and labeled/placarde and labeled/p	and Additional Information NON REGULATED DI S CERTIFICATION: I herel ad, and are in all respects in itents of this consignment c ization statement identified a Name b	IL (2) 428647-84 by declare that the conterproper condition for transpondent of the terms of the in 40 CFR 262.27(a) (if 1) Gamma Gamma		IUMS nent are fully applicable intr knowledgmer y generator) o Signature m U.S. Signature Signature	and accurately des rational and natii of Consent. (b) (#1 am a sma with the analysis control of end Date leavin Date leavin Residue	Ecribed above onal governm IL quantity ge Py/exit: Ig U.S.:	by the proper st ental regulations ralor) is true.	nipping name, . If export ship	and are classment and I a Mon	sified, pack am the Prin th Day 2 19 th Day th Day th Day	kaged hary
14. Special H (11) 15. GENEF marked Exporte I certify Generators// Generators// Generators// Transporter 17. Transporter 17. Transporter 1 Transporter 2 18. Discrepa 18. Discrepa	tandling Instructions 4271段4-部一 AATOR'S/OFFEROR and labeled/placarde or, I certify that the cont that the waste minim Differor's Printed/Type で エンンンン mal Shipments signature (for exports er Acknowledgment o Printed/Typed Name Printed/Typed Name Cy ancy Indication Space	and Additional Information NON REGULATED DI S CERTIFICATION: I hered ad, and are in all respects in intents of this consignment c ization statement identified Mame G Import to U.S only): f Receipt of Materials G Quantity or)	IL (2) 428847-84 by declare that the conterproper condition for transpondent of the terms of the in 40 CFR 262.27(a) (if 1) CCcmm In 40 CFR 262.27(a) (if 1)		IIIIIS nent are fully applicable int knowledgmer y generator) o Signature m U.S. Signature Signature	and accurately des rmational and native t of Consent. (b) off am a sma www. Con of end Date leavin Date leavin Residue anifest Reference	Scribed above onal governm Il quantity ge Fy/exit: Ig U.S.: 	by the proper si ental regulations reator) is true.	nipping name, . If export ship jection	and are class ment and I a Mon / 2 Mon . /	sified, paclam the Print th Day	kaged hary
14. Special H 15. GENEF 15. GENEF 16. International 17. Transporter 17. Transporter 18. Discrepan	ATOR S/OFFEROR ATOR S/OFFEROR and labeled/placarde r, I certify that the contrast the waster minim Offeror's Printed/Type TETTIC	and Additional Information NON REGULATED DI S CERTIFICATION: I hered ad, and are in all respects in intents of this consignment c ization statement identified i Name Complete	IL (2) 428847-84 by declare that the conter proper condition for transionform to the terms of the in 40 CFR 262.27(a) (if 1 Chema		ILINS nent are fully applicable inte knowledgmer y generator) o Signature om U.S. Signature Signature	and accurately des rnational and national to f Consent. (b) 4H am a sma www. Poor of end Date leavin Date leavin Residue anifest Reference	Scribed above anal governm Lquantity ge Py/exit: Ig U.S.:	by the proper st ental regulations grator) is true.	hipping name, . If export ship jection	and are class ment and 1 a Mon 2 Mon 	sified, pack am the Prin th Day 7 9 th Day 1 (1 th Day 1 (1 th Day	kaged hary
14. Special H 14. Special H 15. GENER marked Exporte 15. GENER I (1) Generators// Generators// 16. Infernation Transporter 1 17. Transporter 1 Transporter 2 18. Discrepa 18. Discrepa 18. Atternate Facility's Phone	ATOR'S/OFFEROR ATOR'S/OFFEROR and labeled/placarde r, I certify that the con- that the waster minim Offeror's Printed/Type TETTE (For exports er Acknowledgment of Printed/Typed Name Printed/Typed Name Cop ancy Indication Space	and Additional Information NON RESULATED DI S CERTIFICATION: I herel ed, and are in all respects in intents of this consignment c ization statement identified Name Import to U.S. only): of Receipt of Materials Cuantity Or)	IL (2) 428847-88 by declare that the conterproper condition for transionform to the terms of terms		ILINS nent are fully applicable int knowledgmer y generator) o Signature om U.S. Signature	and accurately desernational and natii to fConsent. (b) 4#f am a sma 2000 of end Date leavin Date leavin According Back and according Date leavin Date leavin Date leavin Date leavin Date leavin	scribed above onal governm ILquantity ge pylexit: ng U.S.:	by the proper st ental regulations reator) is true.	nipping name, . If export ship jection	and are classoment and I a monotonic design of the second	th Day	saged hary
14. Special H 15. GENEF Export 15. GENEF 16. Internation 17. Transporter 17. Transporter 18. Discrepa	ATOR S/OFFEROR ATOR S/OFFEROR and labeled/placarde r, I certify that the contrast the waste minim Offeror's Printed/Type CETTOR Contrast signature (for exports er Acknowledgment of Printed/Typed Name Printed/Typed Name Printed/Typed Name Printed/Typed Name contrast for the space ancy Indication Space e Facility (or Generate ne: e of Alternate Facility	and Additional Information NON REGULATED DI S CERTIFICATION: I hered ad, and are in all respects in iteration statement identified a Name add are in all respects in iteration statement identified a Name add are in all respects in iteration statement identified a Name add are in all respects in additional interval additinterval additional interval additionadditinterval additionadditin	(L (2) 428847-84 by declare that the conterproper condition for transpondent of the terms of the in 40 CFR 262.27(a) (if 1) CCC mm Image: Content of the information of the inform of the information of the inform of the inf		NUMS Inent are fully applicable int knowledgmer y generator) o Signature mn U.S. Signature Signature	and accurately des emational and native t of Consent. (b) (#1 am a sma www. Con of end Date leavin Date leavin Residue anifest Reference	scribed above onal governm Il quantity ge ry/exit: ng U.S.: Number:	by the proper sf ental regulations rator) is true.	nipping name, . If export ship jection	and are classment and I a Mon	sified, paclam the Print th Day	kaged hary
14. Special H 15. GENEF marked Exporte 1 certify Generatoria/it 16. Internation Transporter 17. Transporter 18. Discrepa 18. Discrepa 18. Discrepa 18. Conservation 18. Discrepa 18. Signatur 18. Signatur	ATOR'S/OFFEROR ATOR'S/OFFEROR and labeled/placarde or, I certify that the contrast the waste minim Differor's Printed/Type TETTIC Contrast signature (for exports er Acknowledgment on Printed/Typed Name Printed/Typed Name ancy Indication Space e Facility (or Generate ne: e of Alternate Facility	and Additional Information NON REGULATED DI S CERTIFICATION: I hered ad, and are in all respects in intents of this consignment c ization statement identified i Name Construction Import to U.S only): If Receipt of Materials Construction	IL (2) 428847-84 by declare that the conterproper condition for transonform to the terms of the in 40 CFR 262.27(a) (if 1) Carra In 40 CFR 262.27(a) (if 1)		ILINS Inent are fully applicable int knowledgmer y generator) o Signature m U.S. Signature Signature	and accurately des rmational and native t of Consent. (b) off am a sma www. Port of end Date leavin Date leavin Residue anifest Reference	scribed above onal governm Il quantity ge ry/exit: g U.S.: Number:	by the proper si ental regulations reator) is true.	nipping name, . If export ship jection	and are class ment and I a Mon { 2 Mon 	sified, pack am the Prim th Day 7 9 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	kaged hary
14. Special H 14. Special H (11 15. GENEF marked Exporter I certify Generatoris/ Generatoris/ Transporter 1 16. Infernation Transporter 1 17. Transporter 1 18. Discrepan 18a. Discrepan 18b. Atternatorial Facility's Pho 18c. Signatur 19. Hazardou	ATOR S/OFFEROR ATOR S/OFFEROR and labeled/placarde r, I certify that the con- that the waster minim Offeror's Printed/Type TING (for exports er Acknowledgment o Printed/Typed Name Printed/Typed Name Report Indication Space e Facility (or Generate ne: e of Alternate Facility is Waste Report Man	and Additional Information NON REGULATED DI S CERTIFICATION: I herel ed, and are in all respects in intents of this consignment c ization statement identified Name Import to U.S. only): Interel G Quantity Or (or Generator) agement Method Codes (i.e	IL (2) 428847-84 by declare that the conterproper condition for transonform to the terms of the in 40 CFR 262.27(a) (if 1 and 10 CFR 262.27(a)) Gamma Gamma In 40 CFR 262.27(a)		ILINS nent are fully applicable inter knowledgmer y generator) of Signature om U.S. Signature Signature	and accurately desernational and natii to f Consent. (b) (#f am a sma www. Pot of end Date leavin Date leavin Residue anifest Reference	scribed above onal governm IL quantity ge pylexit: ng U.S.:	by the proper st ental regulations reator) is true.	nipping name, If export ship jection	and are classoment and I a monotonic design of the second	sified, pack am the Prin th Day 2 9 th Day th Day 1	xaged hary
14. Special H 14. Special H 15. GENEF marked Exporte 1 certify Generatoris/ Generatoris/ 16. Internation Transporter 1 17. Transporter 1 18. Discrepan 18a. Discrepan 18b. Alternator 18c. Signatur 19. Hazardou 1.	ATOR S/OFFEROR ATOR S/OFFEROR and labeled/placarde r, I certify that the contrast the waster minim Offeror's Printed/Type TITIC Contrast signature (for exports er Acknowledgment of Printed/Typed Name Printed/Typed Name Printed/Typed Name Printed/Typed Name contrast e Facility (or Generate ne: e of Alternate Facility is Waste Report Man	and Additional Information NON REGULATED DI S CERTIFICATION: I herel ad, and are in all respects in itation statement identified a Name a a a a a a a a a a a a a a a a a a a	IL (2) 428647-84 by declare that the conterproper condition for transpondent of the terms of the in 40 CFR 262.27(a) (if 1) CCC max In 40 CFR 262.27(a) (if 1) CCC max In 40 CFR 262.27(a) (if 1)		NUMS nent are fully applicable inte knowledgmer y generator) o Signature m U.S. Signature Signature []] posal, and re] 3.	and accurately designational and native to Consent. (b) (#1 am a smaller of Consent. (b) (#1 am a smaller of consent. (c) of of end Date leavin Date leavin Accurately designation (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	Ecribed above onal governm IL quantity ge Py/exit: Ig U.S.: Number:	by the proper st ental regulations erator) is true.	ippling name, . If export ship jection	and are classment and I a Mon	sified, pack am the Prin th Day 2 19 th Day th Day th Day	kaged hary
14. Special H 14. Special H 15. GENEF Total Special H 15. GENEF 15. GENEF 16. Internationation 17. Transporter 17. Transporter 18. Discrepa 19. Hazardou 1.	ATOR'S/OFFEROR ATOR'S/OFFEROR and labeled/placarde or, I certify that the contrast the waste minim Differor's Printed/Type TETTIC Contrast isignature (for exports er Acknowledgment of Printed/Typed Name Printed/Typed Name Contrast Printed/Typed Name Contrast Printed/Typed Name Contrast Cont	and Additional Information NON REGULATED DI S CERTIFICATION: I hered ad, and are in all respects in intents of this consignment c ization statement identified i Name G G G G G G G G G G G G G G G G G G G	IL (2) 428847-84 by declare that the conterproper condition for transpondent of the terms of the in 40 CFR 262.27(a) (if 1) CCC mm Image: Content of the information		NUMS nent are fully applicable int knowledgmer y generator) o Signature mu.S. Signature Signature [and accurately des armational and native t of Consent. (b) off am a sma www. Con of end Date leavin Date leavin Residue anifest Reference cycling systems)	scribed above onal governm Il quantity ge ry/exit: ig U.S.: Number:	by the proper sf ental regulations rator) is true.	nipping name, if export ship jection	and are class ment and I a Mon [2 Mon 	sified, paclam the Print th Day	kaged hary
14. Special H 14. Special H 15. GENEF marked Exporte 1 certify Generatoria/ 16. Internatio Transporter 17. Transporter 18. Discrepai 18a. Discrepai 18b. Atternate Facility's Pho 18. Ciscrepai 18. Discrepai 19. Hazardou 1. 20. Designatu	ATOR S/OFFEROR ATOR S/OFFEROR and labeled/placarde r, I certify that the contrast the waster minim Offeror's Printed/Type TINE (for exports signature (for exports er Acknowledgment of Printed/Typed Name Printed/Typed Name Reprinted/Typed Name ancy Indication Space e Facility (or Generate ne: e of Alternate Facility us Waste Report Man	and Additional Information NON REGULATED DI S CERTIFICATION: I herel ed, and are in all respects in intents of this consignment c ization statement identified i Name Control Import to U.S. only): If Receipt of Materials Control Quantity Or) Quantity or) (or Generator) agement Method Codes (i.e 2. Diperator: Certification of rec	IL (2) 428847-84 by declare that the conter proper condition for trans- conform to the terms of the in 40 CFR 262.27(a) (if 1 CLC mm , codes for hazardous wateria , codes for hazardous materia		ILINS nent are fully applicable inte knowledgmer y generator) o Signature m U.S. Signature Signature N posal, and re 3. manifest exce Signature	and accurately des rmational and national to f Consent. (b) off am a sma www. Con of end Date leavin Date leavin Residue anifest Reference cycling systems)	scribed above onal governm Liquantity ge ry/exit: g U.S.: Number: Number:	by the proper st ental regulations reator) is true.	hipping name, . If export ship jection Number	and are class ment and 1 a Mon I 2 Mon I 2 Mon Mon Mon Mon	sified, pack am the Prin th Day ? 9 (th Day th Day full Re nth Da	xaged hary
14. Special H (1 15. GENEF marked Exporte I certify Generator 6/ Generator 6/ 16. Internation Transporter 1 17. Transporter 1 18. Discrepan 18a. Discrepan 18a. Discrepan 18b. Atternator 18b. Atternator 19. Hazardoo 1. 20. Designatur Printed/Typer	ATOR S/OFFEROR ATOR S/OFFEROR and labeled/placarde r, I certify that the con- that the waster minim Offeror's Printed/Type Tertify that the con- that the waster minim Offeror's Printed/Type and Shipments signature (for exports er Acknowledgment o Printed/Typed Name Printed/Typed Name Printed/Typed Name Printed/Typed Name con- the construction Space ancy Indication Space ne: e of Alternate Facility is Waste Report Man ed Facility Owner or Construction Name	and Additional Information NON RESULATED DI S CERTIFICATION: I herel ed, and are in all respects in intents of this consignment c ization statement identified Name Import to U.S. only): of Receipt of Materials Output Quantity or) (or Generator) agement Method Codes (i.e 2. Dperator: Certification of rec	IL (2) 428847-84 by declare that the conterproper condition for transionform to the terms of the in 40 CFR 262.27(a) (if 1 and 10 CFR 262.27(a) (if 1 and 10 CFR 262.27(a)) CCC and and an analysis CCC and and an analysis a., codes for hazardous material tept of hazardous material TOT D	A - EMPTY BR ints of this consignmisport according to a le attached EPA Ack am a large quantity Export for Type vaste treatment, diss als covered by the r	IUMS nent are fully applicable inte knowledgmer yeeportor) o Signature om U.S. Signature Signature I	and accurately desernational and natii to f Consent. (b) (HT am a sma 2000 of end Date leavin Date leavin Residue anifest Reference cycling systems) pt as noted in Item	Indiana povernim	by the proper stental regulations reator) is true.	nipping name, If export ship jection	and are classoment and I a monotonic formation of the second seco	sified, pack am the Prin th Day 2 19 th Day th Day 1 1 Full Res	xaged hary

'09 DCT 19 PM1:2

	\$*-					
		RECOVERY 1629 East Alexande	r Ave., Tacoma WA 98	421 (253) 383-30	44 D II	
	BEI PUGET S	SOUND 1629 East Alexander Ave	., Tacoma WA 98421 ((253) 383-3044	DIL	L OF LADING
PNW - ESG - TRANSPORTATION GROU	JP		•		с., 1	
		n an				•
DATE				ON DUTY		(AM)
10-19-09 DDIVED NAME			1272		11.05	PM
Steve C	bun	287	7300			AM PM
VEHICLE NO.		TRAILER NO. BOX NO	D. <u>CC</u>		SHIPPERS NO.	ORDER NO.
SHIPPER / ORIGIN		WEIG		N .	154203	1042631
NAME Wertjes		GROSS	3		FOR OF	FICE USE ONLY
ADDRESS 411 93rd	Ave.	TARE		· · ·	CONTAINER	RATE FREIGHT
OITY TUM Water	STATE WA	- ZIP 98501 NET				
QUANTITY	E					
2pr Der m	an fest	# 154203		·		
		· .	54 			
					THIS AMOUNT	
This is to certify that the above r	named materials are	e properly classified, describe	ed, packaged,			
marked and labeled, and are in regulations of the Department o	proper condition for f-Transportation.	r transportation, according to	the applicable			
	$\overline{\boldsymbol{\lambda}}$	in.	elast in r a			
K Jecenny/	\rightarrow	DATE (U	-19-09			
1 4	DESTINA	TION				
Bit Vout	f 1			· · · ·		
NAME (J.C. J.C. M.		RECEIPT #			1 E. Alexander Ave., Taco	ma, WA 98421 (253) 627-7568
ADDRESS Vo. +		TATE LANA TID	AROZI	(360) 835-8	- 625 South 32nd St. (P.O. 594	. Box 229) Washougal, WA 9607 1
			<u>Flatter</u>	KENT 20245	77th Ave. S., Kent, WA 980	032 (253) 872-7859
	I RAILER NO.					
ECADED	<u> </u>		<u> </u>			
ARRIVAL TIME:	AM		UNLOAD TIME:		AM	
START:	PM	HRS. FREE TIME	START:	<u></u>	PM	HRS.FREE TIME
FINISH:	AM PM	HRS. CHARGEABLE	FINISH:		PM	HRS. CHARGEABLE
			BEASON FOR L	OAD DELAY:		45r
MEASON FOR LOAD DELAT.						
	\sim \sim		SIGNATURE FO	B DELAY:		
SIGNATURE FOR DELAY:	and St	ny John Star		.2*		
		· · · · · · · · · · · · · · · · · · ·	- I			
COMMENTS:						
		·				· · · · · · · · · · · · · · · · · · ·
			N			
		-			· · · · · · · · · · · · · · · · · · ·	·

Philip Services, Corporation	^		10/	D 671	40740			Page	
Starts: 05 OCT 2009	Ger	nerator's	waste	rofile	42710	14-00		Status : PENDIN	G
Expires: 31 OCT 2010						Sales Re	p 0040.	Jason R. Collins	
Printed: 07 OCT 2009			· .			Acct Mn	gr 035 i	Brenda Smithson	
A: GENERATOR (137439) SITE		DN		В	: CUSTO	MER (5742) INFO	RMATION	finale:Veliny
WERTJES		EPA	CESOG		ROBINS	ON. NOBLE 8	SALTBUS	SH. INC	
411 93RD AVE		SIC	562998	N	3011 SC	UTH HUSON	SUITE A		
TUMWATER, WA 98501					TACOM	A, WA 98409			
> Contact JEREMY BUSH		Phor	ne (253) 475-7	711					
C: WASTE INFORMATION		On File >	MSDS No	Analysis	Yes	Sample No			
Waste Name NON REGULATE	ED OIL	,							
Process SITE CLEANOUT	Γ				•				
D: PHYSICAL CHARACTERISTI	CS OF WAST					P	H Range	6-7	
Phys States L-Liq Top Co	Ior VARIES		Odor	Mild c	pil	F	ree Liq %	100	
Mid Co	lor		Layers	Single Pha	ased	F	lash Test	Closed Cup	
Bot Col	lor		Spec Grav	<1		F	lash Rnge	>210F	
E: CHEMICAL COMPOSITION C	F WASTE		Information	Provided E	By Gene	rator			
OIL	(100 %)						
PCB's NS Cyanides	NS P	henolics NS	Su	l fides NS	•	TOC >	10%	VOC <500	PPM
F: METALS METHOD Gen Knowle	edge C	admium <1	Ch	romium <5		Silver <	5	Zinc	
Arsenic	<5 N	lerc TCLP <0	.2 Se l	enium <1		Nickel		Copper	
Barium	<100 L	ead <5	Me	rc Tot		Thallium		Chrome-6	
G: OTHER CHARACTERISTICS	OF WASTE					*	•	•	
Ign. Solid No Oxidizer	No E	xplosive No	Shock Ser	nsitive No	W	ater Reactive	No	Reactive	No
H: EPA / STATE WASTE IDENTI	FICATION D	angerous / Ha	zardous	No		TSC	A No	Universal Waste	No
Form W206 Source G19	Origin 1 S	ubPart CC No	NESHAPS	No CEI	RCLA NO	Debi	is No	Waste Water	No
EPA Codes								•	
State Codes									
: SHIPPING INFORMATION	Marine	Pollutant No	Dangerou	sWet No	In	halation Haza	rd No	Poison	No
Containers DM Metal Drum	DF Fib	per Drum	Qty to Shi	p Now		Projected	l Volume	Seasonal	
DOT Descrip MATERIAL NOT	REGUALTED E	BY DOT							·
J: SPECIAL HANDLING INFORI	MATION	***************************************	*	<u>.</u>	1			La La La Mandel Como fin Standard angle i si	
CESQG: WOULD NOT OTHERW	ISE BE REGUL	ATED;							
Waste Categs AF01									
GENERATOR CERTIFICATIO	N								

I hereby certify, as an authorized representative of the Generator named above, that PSC Environmental, LLC has been fully informed of all information known about this waste, including but not limited to, the waste's generation process, composition, and physical characteristics, necessary to identify proper treatment and disposal of waste and this information is true and accurate.

If this is an existing profile which is being renewed, I hereby certify that there have been no changes in this waste, chemical, physical, or regulatory designation since full characterization by sample testing.

Signature

BIRLAL Richald

Project MARAL Title Date

PSC Environmental, LLC maintains the appropriate permits for and will accept the dangerous waste the generator is shipping as required by WAC 173-303-290(3).

August 18, 2009

Alan J. Wertjes 1800 Cooper Point Road, Bldg 3 Olympia, WA 98502

RE: Havens Property 411 – 93rd Ave SE, Tumwater, WA

Dear Mr. Wertjes:

Enclosed is the invoice for the recently completed remediation project at the Havens site in Tumwater, WA.

Billing for this project is based on the estimate letter dated June 4, 2009.

August 13, 2009

Mobilize labor and equipment to the Havens site in Tumwater, WA. Pump and dispose of numerous containers of used oil located throughout the site. Load +/-50-5 gallon containers, 13-55 gallon drums, 1-500 gallon tank, 1-250 gallon tank, 1-275 gallon tank, $1-6' \times 6'$ open top fuel tank (1300 gallons), 6 vehicle batteries, and 2 – large commercial fork lift type batteries for cleaning and disposal. The 6' X 6' open top tank appeared to have been utilized as a storage unit for contaminated soil from the site. The tank was full of oily water and approximately 2.5' - 3' of sludge/soil material. All containers and tanks required to be cleaned prior to disposal. Due to the overgrown vegetation and required access needed to get vac truck close to containers requiring pumping, an excavator was required. This dense material was very difficult to pump and this in turn is the explanation for the excess hours billed for the vac truck and site supervisor.

Mob to site	\$ 300.00
8 hrs excavator/operator @ \$125/hr	1000.00
8 hrs 5 yd dump truck (load & haul debris) @ \$95/hr	760.00
8 hrs service truck (load & haul debris) @ \$65/hr	520.00
8 hrs supervisor/foreman @ \$95/hr	760.00

7517 Portland Avenue, Suite A, Tacoma, WA 98404 • Phone: (253) 536-6961 • Fax: (253) 548-0201 E-Mail: Langsethes@email.com
2 hrs supervisor/foreman @ \$142.50/hr	285.00
8 hrs 2 – laborers @ \$45/hr	720.00
8 hrs Vac truck @ \$135/hr	1080.00
3 hrs Vac truck @ \$202.50	607.50
800 gallons used oil for disposal @ .50/gal	400.00
3 tons sludge/soil for disposal @ \$105/ton	315.00
Load, haul, dispose of +/- 50 - 5 gallons containers	380.00
Dispose 13 – 55 gallon drums @ \$15/each	195.00
Dispose 1 – 250, 1 – 275, 1 – 500 gallon tanks	850.00
Dispose 1 – 1300 gallon tank	500.00
Dispose 2 – large commercial batteries & 4 small	250.00

August 14, 2009

On site to excavate, load, haul, and dispose of petroleum contaminated soil at the direction of Rick Bieber LG, Robinson & Noble Project Hydrogeologist.

6 hrs excavator @ \$125/hr	750.00
6 hrs dump truck @ \$130/hr	780.00
6 hrs supervisor @ \$95/hr	570.00
6 hrs laborer @ \$45/hr	270.00
PCS disposal @ \$105/ton (4.8 tons)	504.00
Mob out	300.00
Total	\$ 12,096.50

Thank you for the opportunity to work with you on this project. Please give me a call if I can answer any questions regarding this or any future projects.

Singerely,

Tom Langseth / J Langseth Environmental Services, Inc. THURSTON CO PUBLIC WORKS WARC 2404-A1 HERITAGE CT SW Olympia, WA 98502 (360)709-3076

Bill Acct:001226 LANGSETH ENVIRONMENTAL SVS INC Haul Acct:

SITE:WA WARC	Facility
DATE:08/14/09	TICKET#:4117107
TIME IN:12:56	ID IN: AK
TIME OUT:13:02	ID OUT: MK
TURNAROUND	TIME: б
TRUCK:101326	
PO:	
100	MONG

	LBD	TONS
GROSS:	30840	15.42
TARE:	21240	10.62
NET:	9600	4.80

0

VOL:

MATERIAL:

16 in

ē

NOTE:

B.O.L. # 16446 SHIPPING PAPER

÷

6622 112th Street East								
Puyallup, WA 98373	ſ		BY DATE		JOB #			
		R.I	ZMC	3	960	BIT	- 00	6
SHIPPER / CUSTOMER		POINT	OF CONTA	СТ				
Lowseth		DUONE						
ULL STUD ALL SE		PHONE	#	•				
CITY, STATE, ZIP						T		
TIDIM WRITER WM.								
CARRIER		PHONE	# (/``	5.1123	Â			
		255 POINT C	DF CONTA	<u> </u>	0			
Pas		G,	Suni	14				
ADDRESS		PHONE	# 207.	2 11150	0			
CITY STATE ZIP		295	20	>-41/_	>			
10,000 1,11A 98421								
HM LIS DOT Description (including Proper Shipping Name, Hazard Class, and ID Number)		Contair	hers	Total		иом	CHLOR	рH
		No.	Турө	Quantity				
Mater lat not regulated by tot								
	C	21	T .	1600		G		
writer O(L		- •						
В								
							<u></u>	
D								
	· .							
			<u> </u>			l		
Special Handling Instruction and Additional Information:								
)								
Placards Provided YESNO/								
SHIPPER'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurate	tely des	cribed ab	ove by pro	per shipping na rnational and na	ne and a tional go	are classi overnmen	ied, packe regulation	ed, ns.
(SHIPPER) PRINT OR TYPE NAME SIGNATURE	1 ,	1 - do			MOI	итн П	DAY Y	EAR
VTALL SEFERTIN VARAL	, t	El)			6	3 17	3 b'	9.1
CABRIER/TRANSPORTER) PRINT OR TYPE NAME SIGNATURE	+	$\frac{-}{n}$			MOI		DAY Y	EAR
THE AND OF ANY	VE	1/2.	d/1			3 [30	9
CONSIGNEE/FACILITY) PRINT OR TYPE NAME SIGNATURE	بكريكي	<u>~ 1/1/2-1</u>	<u>۲ ۲</u>		MON	<i>ਜ</i> ਸ C	AY Y	EAR
Y X								

	(SITE TICKET / SI	GRID
PCRCD,LLC dba LRI	51 349643	JO I
17925 MERIDIAN ST E	DATE IN DATE OUT	TIME IN TIME OUT VEHICLE ROLL OFF
PUYALLUP, WA 98375	100 C	
	08/14/09 08/14/0	9 15:21 15:34
000985 LANGSETH ENVIRO SVCS, INC. 7517 PORTLAND AVE.E. TACOMA WA 98404		ORIGIN

					•
Se	cale 1 Gr	oss Wt.	10020	LB	:
Sc	cale 2 Ta	ire Wt.	9240	LB	
. Ne	et Weight	:	780	LB	
QTY	UNIT	[DESCRIP	TIÓN	
0.39	TON	07 REGUI	AR DEMOLIT	IO	
	· ·			•	
		·			
				1. A.	
		F 4CDW 7	davia a woo		

Operating hours 8AM to 5:45PM 7 days a week. Hidden Valley Transfer Station

SIGNATURE.

Inbound - Charge ticket

TO REORDER CONTACT NORTH STAR FORMS, LLC (677) 499-0492 12.TS

249948 **PICK UP MEMO**

P.O. Box 90906 Long Beach, CA 90809-0906

ł

DATE

TO: LANGSER FAUTRO

0TV	οσοριστίονι
GIY	DESCRIPTION
2	STeelCATE
4	AUTO BATTERS
	·····
······································	
•	
-	
	2/2//L
	HAZARDOUS MATERIAL LICENSE #131148
	Batteries Disposed of at RSR, 720 S. 7th Ave., City of Industry, CA 91764, EPA #CAD066233966 or Exide. 2700 S. Indiana, Los Anaeles, CA 90023, EPA #CAD097854541
	BATTERIES, WET, FILLED WITH ACID CLASS 8 • 1.D. NO. UN2794, PG111 EMERGENCY PHONE NUMBER (800) 424-9300 CHEMTREC
	Penasus Press (310) 615-0177

PRS Group, Inc 3003 Taylor Way Tacoma, WA 98421 Phone #253 383-4175

Langseth Environmental 7517 Portland Ave. Suite A Tacoma, WA 98404

PRS Job #	P.O. No.		Entry Log #
	Pro Vac		31496

item	Quantity	Description		
Oily Water Sludge	800 3	Gallons Ton(s)		
		Haven's Site 930	NE E	
		Ull		

APPENDIX B

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY PO Box 47775 • Olympia, Washington 98504-7775 • (360) 407-6300

August 23, 2011

Mr. Alan J. Wertjes 1800 Cooper Point Road, Building 3 Olympia, Washington 98502

Re: Further Action at the following Site:

- Site Name: John's Auto Wrecking
- Site Address: 411 93rd Avenue Southeast, Olympia, Washington 98501-9701
- Facility/Site No.: 57665495
- VCP Project No.: SW1127

Dear Mr. Wertjes:

The Washington State Department of Ecology (Ecology) received your request for an opinion on your independent cleanup of the John's Auto Wrecking facility (Site). This letter provides our opinion. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW.

Issue Presented and Opinion

Is further remedial action necessary to clean up contamination at the Site?

YES. Ecology has determined that further remedial action is necessary to clean up contamination at the Site.

This opinion is based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided below.

Description of the Site

This opinion applies only to the Site described below. The Site is defined by the nature and extent of contamination associated with the following releases:

- Total petroleum hydrocarbons (TPH) in the oil-range (TPH-O) into the Soil.
- Volatile Organic Compounds into the Soil.
- Glycol into the Soil.
- Polychlorinated Biphenyls (PCBs) into the Soil.

- Metals into the Soil.
- Petroleum Hydrocarbons into the Groundwater.
- Volatile Organic Compounds into the Groundwater.
- Glycol into the Groundwater.
- Metals into the Groundwater.

Enclosure A includes a detailed description and diagram of the Site, as currently known to Ecology.

Please note a parcel of real property can be affected by multiple sites. At this time, we have no information that the parcel(s) associated with this Site are affected by other sites.

4.

Basis for the Opinion

This opinion is based on the information contained in the following documents:

- Robinson Noble Saltbush, Inc., Site Remediation of the Havens Property (aka Johns Auto Wrecking), 411 93rd Avenue SE, Olympia, Washington, dated December 10, 2009.
- Robinson Noble Saltbush, Inc., Site Investigation/characterization, Havens Property (aka) Johns Auto Wrecking, 411 93rd Avenue SE, Olympia, Washington, dated April 21, 2009.
- Department of Ecology Response Letter, Site Investigation Work Plan Johns Auto Wrecking, 411 93rd Avenue SE, Olympia, Washington prepared by Associated Environmental Group, LLC, dated June 15, 2006, dated June 26, 2006.
- 4. Associated Environmental Group, LLC, Site Investigation Work Plan Johns Auto Wrecking, 411 93rd Avenue SE, Olympia, Washington, dated June 15, 2006.
- 5. Department of Ecology Opinion Letter, Opinion Pursuant to WAC 173-340-515(5) on Proposed Remedial Action for the following Hazardous Waste Site: John's Auto Wrecking, dated February 23, 2006.
- Associated Environmental Group, LLC, Site Investigation Work Plan Johns Auto Wrecking, 411 93rd Avenue SE, Olympia, Washington, dated June 15, 2005.
- 7. EarthSafe Environmental, Sampling and Analysis Plan, Johns Auto Wrecking and Towing, received June 7, 2002.

Those documents are kept in the Central Files of the Southwest Regional Office of Ecology (SWRO) for review by appointment only. You can make an appointment by calling the SWRO resource contact at (360) 407-6365.

This opinion is void if any of the information contained in those documents is materially false or misleading.

Analysis of the Cleanup

Ecology has concluded that **further remedial action** is necessary to clean up contamination at the Site. That conclusion is based on the following analysis:

1. Characterization of the Site.

Ecology has determined your characterization of the Site is not sufficient to establish cleanup standards and select a cleanup action. The Site is described above and in **Enclosure A.**

The Site is located at 411 93rd Avenue SE in Olympia, Washington approximately 0.5 miles southeast of the Olympia Regional Airport. The 15-acre Site is comprised of six tax parcels, and operated as an automobile wrecking yard for approximately 22 years until its closure sometime in the early 2000s. A perennial creek named Hopkins Ditch (Salmon Creek) runs across the southern portion of the Site. Almost half the Site lies within the 300-foot High Groundwater Buffer, the Hopkins Ditch Wetland, or wetland buffer identified on the Thurston County GeoData Center Website. The Site has a shallow groundwater table and two areas of the Site are identified as High Groundwater Hazards, one in the southwest corner of parcel 12723210000 and the other in the southeast corner of parcel 12723210400 and the northeast corner of parcel 12723210700. Approximately 50 percent of the parcels were located within the High Groundwater Hazards buffer area. Groundwater hazard areas have a history of flooding events and impacting groundwater.

In March 2002, Thurston County Environmental Health Department (TCEH) issued a *Notice of Violation - Order to Correct* Letter to John's Auto Wrecking for several hazardous materials and state-regulated dangerous waste storage issues. TCEH subsequently performed a Site Hazard Assessment (SHA) and the Site was determined to have a ranking of 1 in February 2004. In June 2004, EarthSafe Environmental produced a remedial investigation and cleanup work plan, identifying six major areas of concern (AOCs). The Site was entered into the Voluntary Cleanup Program (VCP) under VCP account number SW0652 in March 2005. In June 2005, Associated Environmental

> Group LLC (AEG) provided a Site characterization work plan for Ecology review. In February 2006, Ecology provided a Further Action Opinion Letter detailing deficiencies in the AEG work plan. In June 2006, AEG submitted another work plan for review. Also in June 2006, Ecology reviewed the plan and provided additional comments detailing the lack of response to Ecology's earlier 2006 comments. In September 2007, Ecology terminated the VCP agreement due to lack of activity.

> Sometime around 2007, the Site was cleared of most of the wrecked vehicles, batteries, tires, hazardous material, dangerous waste, and other associated debris that resulted in the original 2002 TCEH complaint.

In April 2009, Robinson, Noble and Saltbush, Inc. (Robinson) conducted Site investigation activities. Robinson identified a total of nine AOCs based on the past locations of major Site operations. TPH-O soil contamination above the applicable MTCA Method A Soil Cleanup Level (CUL) for unrestricted land uses was identified in two areas: AOC 1 and AOC 6 (see Figure 2). Robinson also advanced 11 borings, B-1 through B-11. Borings B-2, B-4, B-8, and B-10 did not appear to be associated with any of the previously identified AOCs and no specific rationale was provided in the report to explain why those specific locations were selected.

In August 2009, Robinson conducted remediation activities at the Site. Robinson documented the removal of 800 gallons of "used" oil, 3 tons of sludge, two large industrial lead-acid batteries, four automotive batteries, and several empty containers ranging in volume from a 1,300-gallon steel above-ground storage tank to plastic 5-gallon buckets. The "used" oil and sludge were stored in these various containers around the Site. The wastes were characterized then disposed of at the appropriate disposal facilities. Robinson also excavated and removed petroleum-contaminated soil (PCS) exceeding the applicable MTCA Method A CULs from two locations on the Site. A total of 4.8 tons of PCS was excavated and transported to the Thurston County Public Works Waste and Recovery Center in Olympia, Washington. Robinson collected a soil confirmation sample from each location; however, the confirmation samples were not linked to any specific contaminated sample and the relationship to the original contaminated sample was ambiguous. The size of the excavation areas was not discussed and the number of samples collected may not have been adequate to delineating the PCS area.

In July 2010, the Estate of John Havens (former owner of John's Auto Wrecking) received a *Resolution of Notice of Violation* Letter from TCEH acknowledging the 2002 violations had been satisfactorily resolved. The Site was re-entered into the VCP in August 2010 and the two interim investigation reports by Robinson describing the

February 2011 and August 2010 remedial investigation activities were submitted to Ecology for review. Ecology understands that there is no current business or remedial activity of any kind occurring at the Site.

Based on a review of the available information, Ecology has the following comments:

1. Ecology has determined previous investigations were insufficient in determining the extent of potential contamination associated with the AOCs identified at the Site. The nature of the auto salvage operations, the longevity of those operations, the hazardous materials used and dangerous wastes generated by salvage activities, and the typical effects of those operations on the physical and environmental Site conditions requires a more comprehensive evaluation of all Site media. The approach used by Robinson to evaluate the Site appeared to be a focused environmental investigation of the 15-acre Site, with emphasis on smaller AOCs within the Site. Aerial imagery over a period of 14 years indicated extensive areas of each of the parcels on the Site had some aspect of automobile salvage or storage. Previous Site visits by Ecology personnel have documented extensive soil staining from fluids leaking out of salvage vehicles or containers and dangerous waste storage issues throughout the Site. During a Site visit in December 2010, the Ecology Site manager observed extensive dark soil staining across the Site, smaller piles of tires, several piles that included debris, empty propane cylinders, and rusting metal, partial salvaged car bodies, open surface water with no storm water runoff controls, two piles, one for creosoted timbers and one for galvanized metals, and oil-stained concrete floors and pads. These potential sources of contamination should be evaluated and removed. A comprehensive Site history needs to be developed for the Site to include activity, waste products and amounts generated, history of waste handling and storage practices, longevity of that operation at that location, spills, and types of activities and practices of previous owners. Ecology does not believe the Site has been sufficiently delineated to rule out possible contamination within the AOCs or at other areas of the Site. Ecology recommends that sufficient samples be collected to delineate the Site. The United States Environmental Protection Agency (EPA) recommends automobile salvage yard processes should be evaluated for the following compounds: acetylene gas, common solvents, rubber, compressed oxygen, automotive fluids, degreasing agents, gasoline, hydraulic oils, fuel additives, diesel fuels, common lubricants, asbestos, lead, and sulfuric acid. In areas where waste oil storage and burning of debris was known or suspected to have occurred, the soil should be evaluated for the presence of polycyclic aromatic hydrocarbons (PAHs). If the evaluation indicates the salvage processes used or produced one or more of the compounds listed above, then those compounds should be analyzed for during the Site characterization. Unless documentation can be provided to a disqualify specific constituents of concern

(COCs) from further evaluation, specific laboratory analysis should be run for the following COCs: cyanide, priority pollutant organic (volatiles, semi-volatiles, pesticide/PCBs), TPH, fuel additives, heavy metals (antimony, arsenic, beryllium, cadmium, chromium [hexavalent & total], copper, lead, mercury, nickel, selenium, silver, thallium, and zinc). Ecology recommends analysis of TPH for diesel and oil range hydrocarbons be conducted and reported to conform to *Technical Memoranda* #4, Determining Compliance with Method A Cleanup Levels for Diesel and Heavy Oil, which can be found at

http://www.ecy.wa.gov/programs/tcp/policies/tcppoly.html.

- 2. According to the monitoring well logs in the December 2010 Robinson report, monitoring wells MW-1 and MW-2 were improperly screened to identify petroleum hydrocarbon contamination on the groundwater surface. The static water level was measured above the top of the well screens. Ecology recommends the well screen interval be corrected or the wells abandoned and re-installed with the correct well screen intervals.
- 3. Groundwater was sampled from all borings. Borings B-1 and B-6 analytical results indicated there was no groundwater contamination caused by the evaluated COCs; however, these two borings were not collocated with the contaminated locations (Test Pit TP1A and TP6A) where PCS above the applicable MTCA Method A Soil CULs was found. Ecology does not consider those groundwater analytical results representative of groundwater at those PCS locations (Please note that no logs or other details of the test pit investigations were provided for Ecology review). Ecology recommends that the groundwater at previous PCS locations TP1A and TP6A be evaluated.
- 4. Given the shallow groundwater table and concerns for potential impacts, Ecology recommends a minimum of six groundwater monitoring wells in addition to the three monitoring wells already on the Site. According to Ecology's *Guidance on Sampling and Data Analysis Methods* (Publication No. 94-49) "Ecology expects that a hydrogeological investigation will be conducted at any site where (1) soil contamination is found within 10 feet of the groundwater table and there is permeable soil, or (2) when a soil contaminant is potentially mobile considering the site's geological setting, particularly if there is a high concentration of contamination relative to the groundwater standard". As stated in comment 3 above, one well each should be installed at TP1A and TP6A. Ecology also recommends one well each for AOC 3, AOC 5, and AOC 9, and one well located on the east property boundary between parcels 12723210400 and 12723210700 in the identified High Groundwater Hazard area (MW-4). Groundwater should be evaluated via temporary monitoring wells or probes at AOC 2, AOC 4, AOC 7, and AOC 8.

> 5. AOC numbers 3 and 4 have not been adequately delineated. During a Site visit in December 2010, Ecology personnel observed a partially enclosed, lean-to shed attached to a dilapidated building that housed the former radiator repair and auto shop in AOC 3 and the former hazardous material storage area in AOC 4. While the interior condition of the former radiator repair and auto shop could not be observed, the shed area was open to inspection. The concrete floor of the shed was heavily stained with oils and the staining continued to the edges of the concrete pad. Discussions with other Ecology Waste 2 Resources personnel concerning the condition of the interior of the building provided anecdotal information describing the floor as being in poor condition and heavily stained. Ecology recommends a more detailed study in these two areas to include the soils on the perimeter of the concrete slabs floors and within the floors where conditions indicate a possible pathway to the soil underneath the slabs. Because these areas lie within the designated High Groundwater Hazards buffer, groundwater should be evaluated by at least two groundwater monitoring wells (one well in AOC 3 and the other at the MW-4 location).

Also, Ecology does not believe AOC 1, AOC 2, AOC 5, AOC 7, AOC 8, and AOC 9 have been adequately investigated. Due to the size of those identified AOCs and the lack of details or information provided concerning the AOCs, Ecology determined the investigation was insufficient for Ecology to properly evaluate and make a determination on the environmental condition of those areas.

- 6. There is an intermittent pond on parcel 12723210700. In December 2010, Ecology personnel observed the pond and noticed indications that surface water flowed into the pond depression from the surrounding area. The pond had several pieces of metal and rubber debris protruding from the water surface and scattered around the perimeter of the pond. Ecology recommends this feature be evaluated for connectivity to groundwater as well as the surface water runoff pathway; the soil, sediment, and surface water associated this feature should be collected and analyzed for COCs listed in comment 1. Hopkins Ditch was not observed during the Site visit; however, if similar conditions exist at the stream channel, then the soil, sediments, and surface water should also be evaluated at that location.
- 7. In general, the Ecology reviewer had difficulty identifying the locations where individual soil samples were collected from with any great accuracy within any of the AOCs. The scale at which these areas were mapped and the description of the local conditions of a sample location was not sufficient to allow for a determination to be made on the rationale to choose a particular location versus another location as representative of the AOC. A Site conceptual model should be developed and potential vulnerable receptors be identified for the Site. For this Site, Ecology

recommends that two cross-sections be developed for the Site; one depicting the north-south orientation of the Site to include AOC 1, AOC 5, AOC 9, the shallow pond, AOC 9, and Hopkins Ditch. The other cross-section should be a east-west cross-section from MW-4 through AOC 5 to AOC 6. Furthermore, based on the size of the identified AOCs on Figure 2, the AOCs needed to be evaluated by more than just one or two soil samples. A greater level of map detail of the sampling areas is needed to properly evaluate the soil confirmation sample location and validity. Ecology recommends when conducting a focused investigation that the individual AOCs are presented at a sufficient level of detail with a greater resolution than of the Site Map scale. Please include all soil boring and test pit logs. A review of *Chapter 173-340-840 WAC – General Submittal Requirements* and Appendix A of Ecology's *Draft Guidance for Remediation of Petroleum Contaminated Sites* (Publication No. 10-09-057) may be helpful.

- 8. All sample analytical data should be provided in summary tables. Confirmation samples should be readily and easily linked to the sample they are supposed to validate, both on an applicable map and summary table. All groundwater data should be presented in a format that will allow for an easy review and comparison to all previous groundwater sampling events.
- 9. In February 2006, Ecology provided an Opinion Letter stating Ecology had determined the June 15, 2005 proposed work plan by AEG was not likely sufficient to meet the substantive requirements of MTCA. Ecology provided additional recommendations to address the sufficiency issues. Ecology has no record of a revised work plan being submitted for review and approval. Furthermore, the two latest Robinson reports did not implement those recommendations. Ecology recommends that the February 23, 2006 Opinion Letter (letter is attached in Enclosure A) be reviewed and those applicable comments implemented into a new work plan as necessary, in addition to the recommendations listed in this letter. Please provide Ecology with an updated work plan for the remedial activities identified above for review and approval to ensure that the proposed activities will likely meet the substantive requirements of MTCA.
- 10. In accordance with WAC 173-340-7490, a Terrestrial Ecological Evaluation (TEE) needs to be completed for the Site. Please fill out the TEE form and submit it (along with supporting information, as appropriate) to Ecology for review. The form can be found on our website at http://www.ecy.wa.gov/biblio/ecy090300.html.
- In accordance with WAC 173-340-840(5) and Ecology Toxics Cleanup Program Policy 840 (Data Submittal Requirements), all data generated for Independent Remedial Actions shall be submitted <u>simultaneously</u> in both a written and electronic

format. For additional information regarding electronic format requirements, see the website http://www.ecy.wa.gov/eim. Be advised that according to the policy, any reports containing sampling data that are submitted for Ecology review are considered incomplete until the electronic data has been entered. Please ensure that data generated during on-site activities is submitted pursuant to this policy. **Data must be submitted to Ecology in this format for Ecology to issue a No Further Action determination.** Please be sure to submit all soil and groundwater data collected to date, as well as any future data, in this format. Data collected prior to August 2005 (effective date of this policy) is not required to be submitted; however, you are encouraged to do so if it is available. Be advised that Ecology requires up to two weeks to process the data once it is received.

2. Establishment of cleanup standards.

Ecology has determined the cleanup levels and points of compliance you established for the Site do not meet the substantive requirements of MTCA.

Method A CULs for soil and groundwater are being used to characterize the Site. If sediment and/or surface water data are collected, the applicable or relevant and appropriate requirements (such as sediment management standards and surface water criteria) should be used to establish CULs.

Standard points of compliance are being used for the Site. The point of compliance for protection of groundwater will be established in the soils throughout the Site. For soil cleanup levels based on human exposure via direct contact or other exposure pathways where contact with the soil is required to complete the pathway, the point of compliance shall be established in the soils throughout the Site from the ground surface to 15 feet below ground surface. In addition, the point of compliance for the groundwater is established throughout the Site from the uppermost level of the saturated zone extending vertically to the lowest most depth that could potentially be affected by the Site.

3. Selection of cleanup action.

Ecology has determined the cleanup action you selected for the Site does not meet the substantive requirements of MTCA.

The affected Site media must be fully characterized prior to conducting any final cleanup action. For a Site cleanup action to qualify for a no further action opinion, it must meet one or more of the minimum cleanup requirements in WAC 173-340-360(2). Once the full extent of the contamination has been defined, it will be necessary to develop a feasibility study based on the information collected in the characterization phase. The

feasibility study should include all practicable methods of treatment in addressing the Site cleanup. Please note that monitored natural attenuation is a cleanup alternative that must be approved by Ecology before implementation.

4. Cleanup.

Ecology has determined the cleanup you performed does not meet any cleanup standards at the Site.

Ecology has determined cleanup actions at the Site are insufficient due to the inadequacy of the Site characterization. While much of the salvage material and some PCS have been removed from the Site, some material still remains. Visual observations suggest PCS in excess of the applicable MTCA CULs may still remain in place beneath several areas of the Site and there are many debris piles, some salvage vehicles, and salvage debris visible in the pond that may still contribute to on-going environmental contamination.

Limitations of the Opinion

1. Opinion does not settle liability with the state.

Liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion **does not**:

- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70.105D.040(4).

2. Opinion does not constitute a determination of substantial equivalence.

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you performed is substantially equivalent. Courts make that determination. *See* RCW 70.105D.080 and WAC 173-340-545.

3. State is immune from liability.

The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. *See* RCW 70.105D.030(1)(i).

Contact Information

Thank you for choosing to clean up the Site under the Voluntary Cleanup Program (VCP). After you have addressed our concerns, you may request another review of your cleanup. Please do not hesitate to request additional services as your cleanup progresses. We look forward to working with you.

For more information about the VCP and the cleanup process, please visit our web site: <u>www.</u> <u>ecy.wa.gov/programs/tcp/vcp/vcpmain.htm</u>. If you have any questions about this opinion, please contact me by phone at (360) 407-7404 or e-mail at erad461@ecy.wa.gov.

Sincerely,

Eugene Radcliff, L.G. Site Manager SWRO Toxics Cleanup Program

GER/ksc:Johns Auto Wrecking Site FA

Enclosures (4): A – Description and Diagrams of the Site

Figure 1 Vicinity Map

Figure 2 Aerial Photo and Identified Areas of Concern

Figure 3 Test Pits and Boring Locations Photo

Figure 2 Monitoring Well and Previous Test Pit and Boring Location Map

Letter Department of Ecology Opinion Letter

By certified mail: (7010 1670 0002 4158 8967)

cc: Mr. Richard A. Bieber, Robinson Noble Saltbush, Inc.
Mr. Patrick Soderberg, Thurston County Environmental Health Division
Scott Rose – Ecology
Dolores Mitchell – Ecology (without enclosures)

Enclosure A

Description and Diagrams of the Site

Site Description

Media of Concern: Soil and Groundwater

The John's Auto Wrecking (Site) is located at 411 93rd Avenue Southeast, Olympia, Thurston County, Washington (see Figure 1). The Site has been zoned for light industrial purposes and was as an auto salvage yard for approximately 22 years. The parcel on which the facility is located encompasses approximately 16 acres. The northern most area of the property contains five buildings used in the various salvage operations. In the middle portion of the Site, there was a large accumulation of tires taken from the salvage vehicles and a pond just to the southeast of the tires. Various other salvage operation areas were inadequately defined and scattered about the Site. A stream runs roughly east to west across the southern portion of the Site. The Site is bordered on the north by 93rd Avenue Southeast, on the east by undeveloped residential and light industrial properties, on the south by undeveloped residential properties, and on the West by residential and undeveloped light industrial properties. The Thurston County Assessor's office notes the John's Auto Wrecking Site has assigned tax parcel numbers of 12723210100, 12723210400, 12723210401, 12723210700, and 12723210000.

The Site lies in a glacial outwash plain about 0.5 miles southeast of the Olympia Regional Airport. The Site is located in the Upper Chehalis Watershed and is in the Salmon Creek sub-watershed. The Site soils are described as Nisqually loam soil that is typified by 0-3 percent slopes. The groundwater is reported to be less than 10 feet below ground surface and the Site is located in an identified high groundwater hazard area that is prone to flooding. Contaminated surface soil located at the above areas of concern has the potential to impact shallow groundwater beneath the Site.

The Site is currently not in use but still has some potential contamination sources present in the salvage yard. Previous investigations, that have been very limited in scope, have found petroleum contamination in the soil that exceeds the state cleanup standard and those areas of soil contamination have been reported to have been removed. Potential sources of contamination are easily observed when walking about the Site and those areas have not been reported as being subject to any environmental investigation. The eastern and southern boundary areas of the Site have not been adequately investigated to determine if contamination has left the salvage yard parcels.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY PO Box 47775 • Olympia, Washington 98504-7775 • (360) 407-6300

CERTIFIED MAIL

February 23, 2006

Mr. John Havens 8118 Spurgeon Creek Road Olympia, WA 98513

Re: Opinion pursuant to WAC 173-340-515(5) on Proposed Remedial Action for the following Hazardous Waste Site:

- Name: John's Auto Wrecking
- Address: 411 93rd Avenue SE, Olympia, WA
- Facility/Site No.: 57665495
- VCP No.: SWO652

Dear Mr. Havens:

Thank you for submitting documents regarding your proposed remedial action for John's Auto Wrecking (Site) for review by the Washington State Department of Ecology (Ecology) under the Voluntary Cleanup Program (VCP). Ecology appreciates your initiative in pursuing this administrative option for cleaning up hazardous waste sites under the Model Toxics Control Act (MTCA), Chapter 70.105D RCW.

This letter constitutes an advisory opinion regarding whether your proposed remedial action is likely to be sufficient to meet the specific substantive requirements of MTCA and its implementing regulations, Chapter 70.105D RCW and Chapter 173-340 WAC, for characterizing and addressing the following release(s) at the Site:

- Petroleum Hydrocarbons in Soil
- Volatile Organic Compounds in Soil
- Glycol in Soil
- Polychlorinated Biphenyls in Soil
- Metals in Soil
- Petroleum Hydrocarbons in Groundwater
- Volatile Organic Compounds in Groundwater
- Glycol in Groundwater
- Metals in Groundwater

regulations, Chapter 70.105D RCW and Chapter 173-340 WAC, for characterizing and addressing the following release(s) at the Site:

- Petroleum Hydrocarbons in Soil
- Volatile Organic Compounds in Soil
- Glycol in Soil
- Polychlorinated Biphenyls in Soil
- Metals in Soil
- Petroleum Hydrocarbons in Groundwater
- Volatile Organic Compounds in Groundwater
- Glycol in Groundwater
- Metals in Groundwater

Ecology requires determination of the lateral and vertical extent of contaminants in soil and groundwater in excess of the MTCA Cleanup Level. The Site Characterization Work Plan lacks adequate detail to achieve this requirement. Please submit a revised plan that also addresses the following comments:

- a) The locations and number of samples are not sufficient to characterize the above 11 Areas of Concern (AOC). Constituents of concern (COCs) should be developed for each AOC and a summary table prepared that details the AOC; sample number, COCs, analyses methods selected for each sample, sample depths, sample collection method (e.g. hand auger, direct-push, etc.).
- b) Soil samples should be collected using a grid system within each AOC. The density of the grid spacing should be appropriate to adequately characterize each of the AOCs. It is recognized that different grid spacing will probably be appropriate (e.g. crusher areas will require a denser grid than AOC-11 car storage area).
- c) Additional detail describing sample depths and the rationale for the depths chosen is necessary.

 Soil sample, groundwater sample, and monitoring well locations should be shown on a map of the site. Sample locations within buildings should also be shown on detail maps.

e) Boring logs should be prepared for all borings (including hand auger borings).

Ecology is providing this advisory opinion under the specific authority of RCW 70.105D.030(1)(i) and WAC 173-340-515(5).

This opinion does not resolve a person's liability to the state under MTCA or protect a person from contribution claims by third parties for matters addressed by the opinion. The state does not have the authority to settle with any person potentially liable under MTCA except in accordance with RCW 70.105D.040(4). The opinion is advisory only and not binding on Ecology.

a de transférico de como de com Ecology's Toxics Cleanup Program has reviewed the following information regarding your proposed remedial action(s): the Alexandre Sector also the

1. June 15, 2005, Associated Environmental Group, LLC. Site Characterization Work Plan, John's Auto Wrecking, 437 93rd Avenue SE, Olympia, Washington.

The reports listed above will be kept in the Central Files of the Southwest Regional Office of Ecology (SWRO) for review by appointment only. Appointments can be made by calling the SWRO resource contact, Leslie Koziara, at (360) 407-6365.

The Site is defined by the extent of contamination caused by the following release(s):

- Petroleum Hydrocarbons in Soil
- Volatile Organic Compounds in Soil
- Glycol in Soil and a family and a set of the set of t
- Polychlorinated Biphenyls in Soil and the second state of the se
- Metals in Soil 2019 Constant the second state of the second stat
- Petroleum Hydrocarbons in Groundwater
- Volatile Organic Compounds in Groundwater
- Glycol in Groundwater ø
- Metals in Groundwater

The Site is more particularly described in Enclosure A to this letter which includes a detailed Site diagram. The description of the Site is based solely on the information contained in the referenced documents.

Based on a review of your proposed remedial action and supporting documentation listed above, Ecology has determined that the proposed remedial action is not likely to be sufficient to meet the specific substantive requirements contained in MTCA and its implementing

opinion under the VCP. This letter also does not provide an opinion regarding the sufficiency of any other remedial action proposed for or conducted at the Site.

Please note that this opinion is based solely on the information contained in the documents listed above. Therefore, if any of the information contained in those documents is materially false or misleading, then this opinion will automatically be rendered null and void.

The state, Ecology, and its officers and employees make no guarantees or assurances by providing this opinion, and no cause of action against the state, Ecology, its officers or employees may arise from any act or omission in providing this opinion.

Again, Ecology appreciates your initiative in conducting independent remedial action and requesting technical consultation under the VCP. As the cleanup of the Site progresses, you may request additional consultative services under the VCP, including assistance in identifying applicable regulatory requirements and opinions regarding whether remedial actions proposed for or conducted at the Site meet those requirements.

If you have any questions regarding this opinion, please contact me at (360) 407-6247 or via email at <u>stee461@ecy.wa.gov</u>.

a presente en la présente de la seconda

gent en gritte findet in state og sto

Sincerely,

35 Celler marine the standard of a second to be standard of the standard of the standard of the standard of the

Steve Teel, LHG Hydrogeologist Toxics Cleanup Program Southwest Regional Office

ST/ksc:SW0652 Opinion on Proposed RA

Cc: Michael S. Chun, General Manager/Principal, Associated Environmental Group LLC Patrick Soderberg, Thurston County Health Department, Environmental Health Division Gerald Tousley, Thurston County Health Department, Environmental Health Division Chuck Cline – Ecology Robert Warren – Ecology Trish Akana – Ecology (SW0652)

- f) It is recommended that soil samples for volatile organic compound analyses be collected and prepared using EPA Method 5035A.
- g) Detail needs to be added discussing how wash/decontamination water will be disposed of.
- h) Additional detail needs to be provided on how hand auger samples will be collected and transferred from the auger to the sample container.
- i) How will permanent monitoring wells be surveyed? How many monitoring wells will be installed? What is the rationale for determining the location and number of monitoring wells?
- j) The sampling plan only lists benzene, toluene, ethylbenzene, and total xylenes (BTEX), naphthalene and methyl tertiary butyl ether (MTBE) as constituents analyzed by EPA Method 8260. Because the site was used for car repairs, which could have utilized solvents, it will be necessary to include the full VOC constituent list in the sampling plan, particularly for the car repair and crusher areas. Glycol compounds need to also be added to the constituent list at any location suspected to contain radiator or brake fluids.
- k) Metals analyses should include lead, arsenic, cadmium, chromium, mercury, nickel, zinc, and copper. Mercury was widely used in automobile convenience lighting switches from the early 1970s to 2002.
- 1) The site address in the title is incorrect and should be changed to "411" from "437".

In accordance with WAC 173-340-840(5) and Ecology Toxics Cleanup Program Policy 840 (Data Submittal Requirements), data generated for Independent Remedial Actions shall be submitted in both a written and electronic format. Additional information regarding electronic format requirements, see the website <u>http://www.ecy.wa.gov/eim</u>. All laboratory analyses shall be performed by the State of Washington Certified Laboratory for each analytical method used.

This opinion does not represent a determination by Ecology that the proposed remedial action will be sufficient to characterize and address the specified contamination at the Site or that no further remedial action will be required at the Site upon completion of the proposed remedial action. To obtain either of these opinions, you must submit an independent remedial action report to Ecology upon completion of the remedial action and request such an

ENCLOSURE A

The 15-acre site is located south of Tumwater and has been used as a wrecking yard supporting towing operations and related businesses for about 24 years. Site buildings/areas include a body/repair shop, possible battery storage area, former radiator shop, hazardous materials storage area, battery refurbishing shed, car crusher areas, and the car storage yard. A ditch (Hopkins Ditch) and a wetland are located in the southern portion of the property.

An inspection of the facility by Thurston County Environmental Health Division (TCEHD) in October 2001 concluded that the facility was out of compliance due to improper hazardous waste storage and improper disposal of solid waste. During a follow-up visit by TCEHD in February 2002, junk cars were observed in areas of standing water in the wetlands/ditch area. Drums containing crushing fluids (oil, gasoline, and hydraulic fluids) were also overflowing (from rain water) and discharging to the ground. A Site Hazard Assessment (SHA) was completed for the site and the ranking was determined to be a $\underline{1}$.

The following environmental concerns are present at the site:

Soil Contamination from Junkyard Past Practices: Limited June 2002 soil sampling results from a gasoline spill area showed gasoline and total xylenes concentrations above the MTCA Method A Cleanup Level for Unrestricted Uses. Based on observations from TCEHD staff and Ecology's review, 11 areas of concern are identified at the site: 1) body shop/repair area; 2) potential battery storage area; 3) old radiator shop/current repair area; 4) hazardous materials storage area "A"; 5) battery refurbishing/storage shed; 6) hazardous materials storage area "B"; 7) gasoline spill area; 8) former crusher area; 9) recent crusher area; 10) car storage area in the ditch/wetland; and, 11) general car storage area (north of the ditch/wetland).

Groundwater: Contaminated surface soil located at the above areas of concern has the potential to have impacted shallow groundwater beneath the site. Shallow groundwater is estimated to fluctuate seasonally from above the ground surface to less than ten feet below ground surface.

ATTACHMENTS (from consultant report) "Proposed Work" Figure

statistican and statistican compared is straight and

HAVENS PROPERTY (aka) JOHNS AUTO WRECKING SITE 411 93RD AVENUE SE, OLYMPIA, WASHINGTON DRAFT WORK PLAN FOR SUPPLEMENTAL SITE INVESTIGATION

FEBRUARY 2012

by

Kichard A. Bieber, LG Senior Project Geologist

HAVENS PROPERTY (aka) JOHNS AUTO WRECKING SITE 411 93RD AVENUE SE, OLYMPIA, WASHINGTON DRAFT WORK PLAN FOR SUPPLEMENTAL SITE INVESTIGATION February 2012

Overview of Site and Purpose of Work Plan	1
Task 1 Preconstruction Meeting and Site Clearing Support	1
Task 2 Site Characterization	2
General Field Procedures	2
Area of Concern Determinations	3
Area of Concern 1 – Body Shop/Auto Repair	3
Area of Concern 2 – Battery Storage	4
Area of Concern 3 – Radiator Shop/Auto Repair	4
Area of Concern 4 - Hazardous Waste Storage	5
Area of Concern 5 – Battery Storage Shed	5
Area of Concern 6 – Hazardous Material Storage (Bunker)	6
Area of Concern 7 and 8 - Petroleum Storage and Car Crushing	7
Area of Concern 9 - Car Crushing	7
Terrestrial Ecological Evaluation (TEE) – Data Considerations	8
Task 3 Meeting and Report	8
Task 4 VCP Support and EIM Submission	8
HAVENS PROPERTY (aka) JOHNS AUTO WRECKING SITE 411 93RD AVENUE SE, OLYMPIA, WASHINGTON DRAFT WORK PLAN FOR SUPPLEMENTAL SITE INVESTIGATION February 2012

Overview of Site and Purpose of Work Plan

The purpose of this document is to respond to the Washington State Department of Ecology's (Ecology) opinion letter dated August 23, 2011 concerning further cleanup actions at the subject site and also to propose a work plan for satisfying Ecology's requirements for supplemental site investigation and clean up.

The 15-acre subject site, which served as a wrecking yard and supported towing operations for approximately 22 years, was inspected by the Thurston County Environmental Health Division (County) in October 2001. The County identified nine distinct Areas of Concern (AOCs) for the site (Figure 1). A site hazard assessment was completed by the County, and the site was ranked as a "top priority" site. In 2005, the "Johns Auto Wrecking" site was listed in Ecology's Voluntary Cleanup Program (VCP) database as VCP Number SW1127. Figure 1 is a site plan layout showing the AOC and general site features.

The site has been characterized and sampled several times since 2001. To date, the only confirmed contaminant releases are TPH and PCBs in soil and several metals in both soil and groundwater. Other potential contaminants have not been detected in soil or groundwater. Souls previously identified with concentrations of target analytes which exceeded respective cleanup limits have been removed from the site. This work plan will be consistent with MTCA requirements (i.e., WAC 173-340-900 and Table 830-1) required testing for petroleum releases, but in light of the fact that considerable work has already been completed at the site, we are recommending a streamlined, abbreviated approach emphasizing known contaminants and the presence or absence of key "indicator" chemicals of concern. This plan also emphasizes further characterization of only a portion of the nine AOCs cited above.

The following discussion describes what tasks are being proposed for the site including each of the site AOC. Every effort has been made to streamline and combine tasks or AOCs where possible to eliminate unnecessary expenditure of cost or effort.

Task 1: Preconstruction Meeting and Site Clearing Support

Prior to initiation of drilling activities, we advise a project status or pre-construction meeting to include Ecology. It is our recommendation, given the site's history within the VCP program, that we allow time for Ecology to provide comments regarding the plan as proposed. Depending on the input from Ecology, adjustments to the drilling and sampling may need to be addressed. Having a pre-construction meeting will allow a chance for those changes to be discussed, finalized, and incorporated. The goal of this work plan is to set a strong baseline of understanding at the site to provide a clear pathway to regulatory closure.

To facilitate the proposed investigation, it is recommended the site be cleared of most of the standing invasive vegetation (Himalayan blackberry and scotch broom). In addition, it is recom-

mended the remaining miscellaneous debris noted during our recent site visit be removed. It is anticipated that much, if not all, of the identified debris is considered solid waste rather than hazardous waste. As such, these removal activities can be performed by any suitable clearing and hauling company. While this material should be removed from the site, in general, it is not likely a source material. Special care should be taken to remove all debris, including timbers, metal roofing, and fencing, from the intermittent stream and wetland buffer. These materials, if left in place, could contribute to potential degradation of the stream and wetland ecosystems.

Ecology has requested that soil and groundwater samples be collected within the footprint of the main garage area on the northeast corner of the property. Therefore, it is recommended that the remaining structures on site be demolished and removed from the site. The buildings cover a large portion of the property that should be incorporated into the next phase of the investigation. While, in some cases, samples can be collected with the buildings in place, standing buildings will slow work progress and, in some cases, necessitate additional borings to be drilled to assess covered or inaccessible areas. Additionally, the buildings provide access and cover for the illegal dumping of material at the subject site. These illegal dumping activities have contributed several piles of solid waste and abandoned vehicle hulks in the northern portion of the property. It will be necessary, whether or not the buildings are removed, to better secure the site to prevent additional illegal dumping.

Task 2: Site Characterization

General Field Procedures

Field work described in this work plan should be completed in multiple phases or "tiers" to allow for a review of collected analytical data, thus allowing for more streamlined data collection for the remainder of the investigation. Given the nature of the sediments previously observed at the site, we plan to use a direct-push drilling rig for the advancement of soil borings, setting of temporary screens, and where proposed, the completion of monitoring wells. Given the relatively shallow nature of groundwater in the area, we propose that wells be completed with oneto two-inch PVC pre-packed screens. These screens will allow for proper well development and groundwater sample collection. Well screen diameter and length will be determined in the field depending on observed conditions and the capabilities of the drilling rig at each location. During groundwater sampling, field parameters including conductivity, DO, ORP, and pH will be measured using a field meter.

The direct-push drilling rig will provide a nearly continuous core of material encountered in each well bore. Soil sampling will generally be accomplished by selecting two soil samples from each bore hole. A shallow (near surface) sample above the vadose zone and a deeper sample from the top of the groundwater interface will be collected at each boring. Additional soil samples will be collected as and where field screening necessitates. Analysis of the samples will, in general, begin with analysis of the shallow sample, and depending on laboratory results, the deeper sample may or may not be analyzed. Again, this general plan will be adjusted where actual field conditions suggest running both is necessary for proper screening.

As a cost-savings measure going forward, we plan to use NWTPH-HCID as a semi-quantitative screening method for the presence or absence of petroleum hydrocarbons (PHCs) on site. This test will be employed prior to the completion and selection of either NWTPH Gx or NWTPH Dx. Depending on the results of the initial screening, additional analysis will or will not be necessary. We also plan to utilize a mobile laboratory for near real-time in-field analysis. Results col-

lected while in the field can be used to refine the drilling and sampling plan should unexpected material be identified. Additionally, considering a majority of the proposed target analytes are petroleum hydrocarbons, there is a laboratory cost savings using a mobile laboratory. Location-specific changes to this general sampling and analysis plan are presented below.

Area of Concern Determinations

In response to Ecology's August 2011 response letter, we have reviewed the project file, including data collected to date, and propose the following series of investigations. Each of the following subtasks are associated with specific areas of concern as previously identified in our initial scope of work developed in 2008. Prior to our joining the investigation team, previous site activities included a site visit and collection of soil samples in 2002. According to Thurston County Health Department (TCHD) documents at that time, a series of four areas of concern were developed by another contractor in collaboration with TCHD personnel. The information presented in a January 27, 2004 TCHD worksheet (identified in Ecology files) suggests these areas were located on the southern half of the property near active car-crushing activities. It was suggested by TCHD that soil samples collected from the vicinity of these AOCs revealed elevated levels of gasoline-range hydrocarbons and gasoline additives. However, no report was ever submitted, and therefore, this work cannot be referenced or reviewed. Personal correspondence with Patrick Soderberg of TCHD identified these areas as AOCs 7 and 8 as shown in Figure 2 (attached).

Additional AOCs 1-6 and 9 (Figure 2) are located based on a review of previous work completed by AEG in 2006, the TCHD worksheet, and personal correspondence with Mr. Soderberg. During our initial site investigation, we adjusted the locations of some of the soil borings and test pits based on field observations and further discussions on site with Mr. Soderberg. For the purposes of this work plan, we will present the rationale for inclusion or removal of each AOC and subsequent target analytes on a case-by-case basis.

Area of Concern 1 – Body Shop/Auto Repair

Our review of available documents suggests this area was utilized for general auto repair and limited body shop activities. During our initial site walk and subsequent source removal activities, we observed numerous five-gallon buckets with lids (used to store waste oil) stacked along a small area between the house and garage (or outbuilding). A small area of soil staining and distressed vegetation was observed near the location of an overturned bucket. Following the removal of these miscellaneous buckets, we completed a test pit (TP1A) in the area of observed soil staining. At that time, site logistics and overhead utilities prevented us from mobilizing the drill rig to this location for the collection of a water sample. A soil boring (B1) was advanced to the southeast of the observed soil staining on the opposite side of the outbuilding in an area of distressed vegetation. A second test pit was completed in the vicinity of AOC 1 at TP1B in an apparent burn pile area.

From these three sampling locations, four soil samples and one groundwater sample were analyzed for volatile organics, gasoline- and diesel-range hydrocarbons, and metals (arsenic, mercury, cadmium, chromium, lead, nickel, copper and zinc). Only the surface sample collected from TP1A indicated any target analytes above MTCA Method A cleanup limits. Oil was measured in the TP1A surface of 66,700 mg/kg, which is well above MTCA guidelines. A sample collected at the same location at a depth of one foot indicated an oil concentration of 140 mg/kg, which is below the respective MTCA cleanup limit. A second mobilization to the site was scheduled to remove the indentified impacted soils from the TP1A area. During this field effort, a second ar-

ea of stained soil was identified on the south side of the outbuilding and subsequently removed. Two confirmation samples were collected from the base of each excavation area. Laboratory results indicated that impacted soils had been successfully removed.

In their opinion letter, Ecology suggested additional investigation in this area. Specifically, they have requested that a monitoring well be completed at the TP-1A area. We have proposed that at least three additional soil borings be advanced in the area mapped as AOC 1. Two borings will be completed at the locations of the minor soil excavations. These borings will be advanced to groundwater. Two soil and a single groundwater sample will be collected at each location. The groundwater sample will be collected through a temporary screen set in one of the boreholes. A third boring is proposed for the area within the adjacent garage where concrete staining was observed. Depending on the status of the building at the time of the investigation, this boring may or may not be advanced. Target analytes at this location will be limited to volatile organics (due to potential body work completed at this location), gasoline- and diesel-range petroleum hydrocarbons, and BTEX (from vehicle repair). Should diesel-range petroleum hydrocarbons be identified, we will submit the sample for cPAH analysis, a commonly occurring toxic by-product of petroleum combustion. Should any groundwater impacts be observed, a monitoring well will be recommended at that specific location.

Area of Concern 2 – Battery Storage

Area of Concern 2 has been previously identified as a potential battery storage area. The first reference to this area as being utilized for battery storage is a copy of a faxed document dated December 5, 2005 between Patrick Soderberg (TCHD) and Mike Blum (Ecology). The fax appears to be a series of notations made by Mr. Soderberg to Mr. Blum regarding the proposed AOCs and suspected site uses. This specific AOC is listed as "*Battery Storage?*". Discussions with Mr. Soderberg during our initial site walk did not specifically locate the battery storage area. Therefore, during our initial site investigation, TP2A and B2 were completed near observed distressed vegetation and areas where visual observations suggested a former structure may have stood.

Ecology suggests this area has not been fully characterized. Additionally, they request a groundwater monitoring well be advanced at AOC 2. A further review of historic aerial photos suggests that much of the area identified as AOC 2, as previously described, was covered in cars except for a tree-covered portion along the northern boundary of the AOC. Limiting the AOC to this area reduces its overall size. Therefore, we propose a soil boring be advanced in this tree-covered area, extending to groundwater and two hand augers be advanced to three feet. Two soil samples will be collected at each location with field screening for pH conducted in the field. We propose completing the boring as a two-inch, PVC, pre-packed groundwater monitoring well. Following well development, a groundwater sample will be collected. Target analytes for AOC 2 are limited to a standard suite of metals common to wrecking yard activities (lead, arsenic, cadmium, chromium, mercury, zinc, copper, and nickel) and pH. This well will also provide a greater level of detail for subsequent groundwater flow discussions.

Area of Concern 3 – Radiator Shop/Auto Repair

AOC 3 was previously identified as an "old" radiator shop and auto repair area. During our research, it was determined that this location, and its associated garage structure, was the entry point for many of the cars to the wrecking yard. The area was also used for miscellaneous vehicle repair. Our initial investigation identified areas of suspected petroleum staining on the gravel area east of the associated garage. A surface sample (TP3 surf B) collected from the stained area revealed an oil concentration of 500 mg/kg, below the MTCA cleanup level of 2,000 mg/kg. Lead was detected in this sample at a concentration of 230 mg/kg. The MTCA cleanup levels for lead in soil are 250 mg/kg. Minor detections of zinc, copper, and nickel were also detected. A groundwater sample was collected from a temporary screen set in boring B3 at the location of TP 3B. Analytical results yielded no evidence of the target analytes above laboratory detection limits. Soil samples were analyzed for gasoline- and diesel-range hydrocarbons, metals, and volatile organics. In addition to the list above, the groundwater sample was analyzed for glycols.

Following our initial investigation, a separate field effort was conducted to remove the observed stained soils (even where identified concentrations did not exceed cleanup limits). During this second mobilization, shallow-stained soils were removed from AOC 3. Additionally, two trenches were completed along the edge of the western and southern edges of the concrete floor, beneath the garage structure. Field screening completed during the trench excavation did not identify any stained soils or petroleum odors associated with a potential release. During these excavations, a representative of TCHD was on site to observe the underlying site conditions. We did not collect a soil sample at this location due to an absence of field screening or other evidence of a suspected release to the observed soils.

Ecology requested additional soil samples be collected in response to observed stained concrete in the garage. Ecology requested at least one (preferably more) soil samples be collected beneath the concrete slab. Additionally, Ecology requests a monitoring well be completed at this location.

At this time, we recommend a series of three additional soil borings be advanced: the first to be advanced on the south side of the concrete floor, the second on the west side, and the third directly through the center of the floor. Depending on the status of the structure, this may not be possible until the building is demolished or stabilized. Two soil samples will be collected from each boring. Groundwater samples will be collected from each boring through temporary screens. Soil samples will be analyzed for gasoline- and diesel-range hydrocarbons, metals, and volatile organics. Groundwater samples will be analyzed for gasoline- and diesel-range hydrocarbons be identified, we will submit the sample for cPAH analysis. A well will be recommended if any of the target analytes are found to exceed MTCA Method A cleanup limits in groundwater.

Area of Concern 4 – Hazardous Waste Storage

Area of Concern 4 formerly contained a small shed used to store hazardous materials. Information provided by Mr. Soderberg estimated the actual area covered by the shed was approximately 96 square feet (shed footprint 8 by 12 feet). Test pit TP3A was completed within the footprint of the former shed. Two soil samples were collected at this location at one and fourfeet below ground surface. The soil samples were analyzed for gasoline- and diesel-range hydrocarbons, metals, and volatile organics. The only observed concentration which exceeded the laboratory detection limit was for nickel at 20 mg/kg. Considering the size of this AOC and the testing already completed, we do not recommend additional investigation at this location.

Area of Concern 5 – Battery Storage Shed

Area of Concern 5 is similar in area to AOC4 with a majority of the potential source material located within a small wooden shed or outbuilding. We conducted two test pits and a soil boring at this location. One test pit was completed on the back side of the shed near two large industrial lead acid batteries. The second was completed beneath the shed itself (the shed was accessible through one open side). The soil samples were analyzed for gasoline- and diesel-range hydrocarbons, metals, volatile organics, and PCBs. None of the analyzed samples were found to contain levels of target analytes above the respective cleanup limits. A surface soil sample collected at TP 5B was found to contain oil at a concentration of 340 mg/kg, below the applicable MTCA cleanup level. The sample was also analyzed for PCBs and results were below laboratory detection limits. The laboratory results from the groundwater sample collected from boring B5 did not contain any target analytes above applicable cleanup limits. Detections of lead and copper were found in the water at concentrations of 11 and 20 μ g/L, respectively.

Ecology requests a monitoring well be placed at this location. However, considering the actual size of the potential source area and the results from the previous investigation, we do not consider the addition of a monitoring well at this location to be necessary. We propose that a single boring be advanced to groundwater on the east side of the existing shed for the collection of single soil and groundwater samples. The groundwater sample will be collected through a temporary screen. The soil and groundwater samples will be analyzed for diesel-range petro-leum hydrocarbons, PCBs, and lead. Should diesel-range petroleum hydrocarbons be identified, we will submit the sample for cPAH analysis. As with AOC 2, we propose to collect soil pH values in the field during the drilling observations and field screening. If field screening suggests the presence of any target compounds or if laboratory results from an onsite mobile laboratory indicate the presence of target compounds the boring will be completed at a monitoring well. If field conditions and mobile laboratory results are not available and impacts are identified at this location a second mobilization and installation of a monitoring well may be necessary.

Area of Concern 6 – Hazardous Material Storage (Bunker)

Area of Concern 6 formerly contained what appears to be a former covered outbuilding that was used to store hazardous materials. The concrete building foundations are all that remain at the location. During our investigation, we completed two test pits and borings on the east side of the concrete slab. The northern, southern, and western foundation walls were intact with the eastern side missing, presumably to allow access. Sampling was conducted on the east side, assuming any runoff would have infiltrated the ground at this location. Soil sampling completed at test pit TP6A detected both oil and PCBs at concentrations of 61,900 and 0.9 mg/kg, respectively. A deeper sample collected at four feet from this same test pit did not detect oil at concentrations exceeding the laboratory detection limits. Soil samples were analyzed for gasoline-and diesel-range hydrocarbons, metals, volatile organics, and PCBs. A groundwater sample was collected from boring B6 completed adjacent to TP6A. The groundwater results did not indicate any target analytes above laboratory detection limits. Groundwater samples were analyzed for gasoline-and diesel-range hydrocarbons, metals, and volatile organics. The groundwater samples were analyzed for gasoline-any target analytes above laboratory detection limits. Groundwater samples were analyzed for gasoline-any target analytes dore process.

A second mobilization was completed to remove identified soil hot spots. While soil was being removed from test pit TP6A, a small sump was found in the floor of the concrete bunker. The sump contained a 55-gallon drum cut down to approximately three-quarters size. The drum was used presumably to collect runoff from the concrete slab. Using a backhoe, the excavation contractor removed the drum and approximately one and a half feet of stained "suspect" soil for disposal. Once field screening indicated the suspect impacted material had been removed, a confirmation soil sample was collected from both the sump area (TP6C) and the TP6A locations. The soil sample from TP6A was analyzed for diesel-range petroleum hydrocarbons, PCBs, and cPAHs. There were no detections from the TP6A confirmation sample. The soil sample from the sump area was analyzed for gasoline- and diesel-range hydrocarbons, metals, cPAHs,

PCBs, and volatile organics. The only target analytes detected above laboratory detection limits were copper and zinc, both well below applicable cleanup levels.

Ecology contends the soil boring completed at B6 is not at the same location as the material identified in TP6A. The boring was not completed in the excavation footprint of TP6A, but was completed between TP6A and TP6B which were 15 feet apart. We contend that the boring was as close as field conditions would allow. We do, however, propose that an additional groundwater sample be collected from the "sump" location at TP6C. We propose to field screen the observed soils and collect a groundwater sample from a temporary screen. The groundwater sample will be analyzed for gasoline- and diesel-range hydrocarbons, metals, PCBs, and volatile organics. Should diesel-range petroleum hydrocarbons be identified, we will submit the sample for cPAH analysis.

Area of Concern 7 and 8 – Petroleum Storage and Car Crushing

AOCs 7 and 8 were initially identified as areas with ongoing car-crushing activities and observed oil staining. Information provided by TCHD suggests soil sampling completed in the area identified that a release of petroleum hydrocarbons had occurred somewhere in the vicinity of AOCs 7 and 8. Our sampling in this area was limited to areas identified as potential locations for the car-crushing equipment areas where we observed distressed vegetation. Our initial investigation of the area identified potential metals contamination, and ultimately, a monitoring well was completed at the location of AOC 8. The well was installed and designed to assess metals contamination, as no other target analytes were identified at this location.

Ecology requests that additional soil and groundwater samples be collected from both AOC 7 and AOC 8. Considering the size of the AOCs as drawn, we concur. We propose that a series of three soil borings be completed as drawn on Figure 1. Two soil samples and a groundwater sample will be collected from each location. In addition to the three proposed borings, we propose that a series of four additional near-surface soil samples be collected using a hand auger. The depth of hand-auger drilling will be approximately three feet. Should the hand-auger samples from a particular location reveal target compounds exceeding applicable MTCA cleanup limits, a soil boring and or monitoring well will be completed at that location. Target compounds for these AOCs are gasoline- and diesel-range hydrocarbons and metals for both soil and groundwater. Should diesel-range petroleum hydrocarbons be identified, we will submit the sample for cPAH analysis.

Area of Concern 9 – Car Crushing

Area of Concern 9 was originally thought to be a site used for car-crushing activities. During our initial site walk, we thought evidence of these activities was readily observable. Our investigation was limited to one test pit and one soil boring at this location. Now additional information provided by TCHD records and Ecology files suggests that car-crushing activities may not have actually taken place at this location, but actually occurred further to the southwest. We have, therefore, adjusted the AOC to reflect this new information. Since there is still anecdotal evidence of car crushing at the original AOC 9 location, we have kept this site in the AOC. The AOC now contains two separate areas, which have been designated AOC 9A and AOC 9B.

Ecology requests that additional soil and groundwater samples be collected from this AOC. Considering the new size of AOC9 (A and B), and the numerous possible locations for the car crusher, we concur. We propose a series of four soil borings be completed as drawn on Figure 1, with at least one of the borings from AOC 9A being completed as a monitoring well. Two soil samples and a groundwater sample will be collected from each location. In addition to the four proposed borings, we propose that a series of four additional near-surface soil samples be collected using a hand auger. Should the hand-auger samples from a particular location reveal target compounds exceeding applicable cleanup limits, a soil boring or monitoring well will be completed at that location. Target compounds for this AOC are gasoline- and diesel-range hydrocarbons and metals for both soil and groundwater. Should diesel-range petroleum hydrocarbons be identified, we will submit the sample for cPAH analysis. The monitoring well will provide an additional monitoring point for the site-specific TEE investigation discussed below.

Terrestrial Ecological Evaluation – Data Considerations

MTCA requires that a Terrestrial Ecological Evaluation (TEE) be conducted at the site to evaluate the potential for contaminant exposure and risk associated with terrestrial wildlife and avian (bird) receptors. Based on our understanding of the site, we believe that a site-specific TEE will be required to satisfy Ecology's requirements due to the fact that each of the 9 AOCs are independent, and some of these areas represent a higher potential for toxicity or risk than others. The supplemental data collection proposed in this work plan has focused on the types of environmental data we will need to complete a site-specific TEE. We will address the AOCs discussed in this work plan with more emphasis on areas of specific concern to ecological receptors. The southernmost portion of the property supports higher quality habitat, including a mapped intermittent stream, a small pond, a wetland area and associated wetland buffer, and a wooded area. Other portions of the site also support some high-quality ecological habitat.

The site-specific TEE will emphasize potential ecological exposure pathways occurring in the upper few inches of stream/wetland sediment and terrestrial soils. Thus we recommend that four stream and four wetland sediment samples (total of eight) be collected in the southern portion of the site using a hand-held (Ponar or Ekman) dredge which will sample the upper six inches or so of sediments. Specific locations will be shown on sampling maps in the final work plan. The streams and wetland area is the site of greatest potential ecological concern.

Regarding chemicals of concern, we recommend that long-lived persistent contaminants such as PAHs, TPH, and metals be emphasized rather than less persistent chemicals (e.g., VOCs or glycols), which are less likely to cause exposure and potential hazard to receptors.

When key indicator chemicals are found on site, we will characterize the specific areas where they are found in a more detailed manner to understand nature and extent of contamination and the potential for ecological exposures to occur. Findings and conclusions from the site-specific TEE will be valuable in identifying whether any further investigation or follow up will be required, or whether the site had been adequately characterized and/or remediated.

Task 3: Meeting and Report

Upon completion of the site characterization, we recommend a project status meeting (potentially including Ecology) for the purpose of presenting our findings and recommendations toward a path forward. Following this meeting, we will provide a technical report detailing findings and conclusions from the data collected (as specified in this work plan) and planned future work (if necessary).

Task 4: VCP Support and EIM Submission

Following the completion of each round of data gathering, we will provide guidance for data submissions within VCP including uploading all collected data to Ecology's Electronic Information Management system (EIM). As part of VCP, Ecology requires that all data collected on

site be submitted via their EIM portal prior to issuance of any closure determination. It is our recommendation to enter all data into EIM as it is collected, from this point forward. This will help prevent any lengthy delays or fees.

The statements, conclusions, and recommendations provided in this report are to be exclusively used within the context of this document. They are based upon generally accepted hydrogeologic and environmental practices and are the result of analysis by Robinson Noble, Inc. staff. This report, and any attachments to it, is for the exclusive use of the Havens Estate. Unless specifically stated in the document, no warranty, expressed or implied, is made.

Scale 1" = ~200'

2491-001D

NOBLE

Areas of Concern and Proposed Drilling Locations Havens Property: 93rd Ave SE, Olympia/Site Characterization

From: Radcliff, Eugene (ECY) [mailto:erad461@ECY.WA.GOV]
Sent: Thursday, June 28, 2012 4:15 PM
To: John F. Hildenbrand
Cc: Rose, Scott (ECY)
Subject: Havens Property Work Plan for Supplemental Investigation - SW1127

John:

Thank you for submitting the Havens Property (aka) Johns Auto Wrecking Site Draft Work Plan (Plan) dated February 2012 for Ecology review.

I have finished my review of the Plan and as per our telephone conversation, here are my comments. In general, I think the Plan will address most of Ecology's concerns outlined in the August 23, 2011 Further Action Opinion Letter. Here are my comments for the Plan:

- Task 1 Accepted without comment.
- Task 2 Accepted with the following comments:
- AOC 4 Ecology accepts the Robinson Noble, Inc. recommendation to not further characterize this area *unles s* new information from downgradient locations would suggest potential groundwater concerns from that area. It should be noted that this area is in a recognized *High Ground Water Hazard* area.
- AOC 5 Ecology would recommend the proposed soil/groundwater sample be collected from a downgradient location at the Battery Storage Shed.
- TEE accepted when characterization of pond (see attached photo) between AOC 9A and AOCs 7 and 8 is considered for evaluation.
- Task 3 Ecology would welcome the opportunity to provide Ecology's perspective (and comments as needed) for any future planning session concerning additional remedial work need at the Site.
- Task 4 Accepted without comment.

If you have any questions or comments, please contact me.

Sincerely,

Eugene Radcliff, L.G. Toxic Cleanup Program-Voluntary Cleanup Program <u>Washington Department of Ecology</u> (360) 407-7404 <u>erad461@ecy.wa.gov</u>

APPENDIX C

4139 Libby Road NE • Olympia, WA 98506-2518

April 19, 2013

Max Wills Robinson Noble 17625 130th Avenue NE, Suite 102 Woodinville, WA 98072

Dear Mr. Wills:

Please find enclosed the analytical data report for the John Havens Estate Project located in Olympia, Washington. Soil and water samples were analyzed for Hydrocarbon Identification by NWTPH-HCID, Volatile Organic Compounds by EPA Method 8260C, Total & Dissolved Metals Arsenic, Cadmium, Chromium, Lead, Zinc and Copper by EPA Method 7010 Series and Mercury by EPA Method 7471, Ethylene & Propylene Glycol by Method GC-FID, Total Nickel by EPA Method SW846 6010B, Dissolved Nickel by EPA Method 200.7, PCB (Polychlorinated Biphenyls) by EPA Method 8082, TCLP Lead by EPA Method SW846 6010B and Polyaromatic Hydrocarbons (PAH) by EPA Method 8270 from February 25 - April 18, 2013.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. All soil samples are reported on a dry weight basis. An invoice for this analytical work has been sent to Alan Wertjes.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Tomie L Deyman

Jamie L. Deyman President Libby Environmental, Inc.

Phone (360) 352-2110 • Fax (360) 352-4154 • libbyenv@aol.com

www.LibbyEnvironmental.com

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L130329-11 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Gasoline	Diesel	Mineral Oil	Heavy Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	4/1/13	111	nd	nd	nd	nd
PS1	4/1/13	129	nd	nd	nd	nd
SS2	4/1/13	105	nd	nd	nd	nd
SS3	4/1/13	117	nd	nd	nd	nd
SS4	4/1/13	102	nd	nd	nd	nd
SS5	4/1/13	105	nd	nd	nd	nd
WS6	4/1/13	93	nd	nd	nd	nd
WS7	4/1/13	130	nd	nd	nd	nd
WS8	4/1/13	95	nd	nd	nd	nd
WS8 Dup	4/1/13	121	nd	nd	nd	nd
Practical Quantitation I	Limit		20	50	100	100

Hydrocarbon Identification by NWTPH-HCID for Soil

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Kyle Williams

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L130329-11 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	4/2/13	nd	nd	nd	nd
PS1	4/2/13	34	nd	nd	nd
SS2	4/2/13	40	nd	nd	nd
SS3	4/2/13	25	nd	nd	nd
SS4	4/2/13	6.2	nd	nd	nd
SS5	4/2/13	22	nd	nd	nd
WS6	4/2/13	1230	nd	9.7	nd
WS7	4/2/13	53	nd	nd	nd
WS8	4/2/13	525	nd	nd	nd
WS8 Dup	4/2/13	443	nd	nd	nd
Practical Quantitat	ion Limit	5.0	1.0	5.0	5.0

Analyses of Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L130329-11 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead	Cadmium	Chromium	Arconio
Sumple N 1	Duit	Lead	Caumum	Cintonnum	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS	4/2/13	109%	100%	116%	103%
WS8 MS	4/2/13	int	109%	int	111%
WS8 MSD	4/2/13	int	117%	int	117%
Post-Spike	4/2/13	97%	n/a	118%	n/a
RPD	4/2/13	int	7%	int	5%

QA/QC for Metals in Soil by EPA Method 7010 Series

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RECOVERY LIMITS FOR POST-DIGESTION SPIKES: 80%-120% ACCEPTABLE RESULT FOR 1/5 DILUTION: 90%-110% of expected value

ACCEPTABLE RPD IS 20%

"int" indicates an interference which requires the additional QC samples of a post-digestion spike and a 1/5 dilution

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L130329-11 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Method Blank	4/2/13	nd
PS1	4/2/13	nd
SS2	4/2/13	nd
SS3	4/2/13	nd
SS4	4/2/13	nd
SS5	4/2/13	nd
WS6	4/2/13	nd
WS7	4/2/13	nd
WS8	4/2/13	nd
WS8 Dup	4/2/13	nd
Practical Quantitation Limit		0.5

Analyses of Mercury in Soil by EPA Method 7471

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Jamie Deyman & Ramses Osorio

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L130329-11 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Mercury	' by EP	PA Method 7471
-------------------	---------	----------------

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	4/2/13	115%
WS8 MS	4/2/13	115%
WS8 MSD	4/2/13	115%
RPD	4/2/13	0%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Jamie Deyman & Ramses Osorio

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L130329-11 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Copper	Zinc
Number	Analyzed	(mg/kg)	(mg/kg)
Method Blank	4/2/13	nd	nd
PS1	4/2/13	11	40
SS2	4/2/13	8	47
SS3	4/2/13	nd	nd
SS4	4/2/13	nd	nd
SS5	4/2/13	nd	5.6
WS6	4/2/13	68	7.6
WS7	4/2/13	12	nd
WS8	4/2/13	40	156
WS8 Dup	4/2/13	35	141
Practical Quantitation Limit		5.0	5.0

Analyses of Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L130329-11 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	4/2/13	93%	118%
WS8 MS	4/2/13	int	int
WS8 MSD	4/2/13	int	int
Post-Spike	4/2/13	97%	108%
RPD	4/2/13	int	int

QA/QC for Metals in Soil by EPA Method 7010 Series

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L130329-11 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Arsenic in Water by EPA Method 7010

Sample	Date	Arsenic
Number	Analyzed	μg/L
Method Blank	4/2/13	nd
MW1	4/2/13	5.2
MW1 Dup	4/2/13	5.4
Practical Quantitation Limit		5.0

"nd" Indicates not detected at the listed detection limits.

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L130329-11 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Arsenic in Water by EPA Method 7010

Sample	Date	Arsenic
Number	Analyzed	(% Recovery)
LCS	4/2/13	106%
MW1 MS	4/2/13	104%
MW1 MSD	4/2/13	108%
RPD	4/2/13	4%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L130329-11 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Dissolved Arsenic in Water by EPA Method 7010

Sample	Date	Arsenic
Number	Analyzed	μg/L
Method Blank	4/11/13	nd
MW1	4/11/13	nd
MW1 Dup	4/11/13	nd
Practical Quantitation Limit		5.0

"nd" Indicates not detected at the listed detection limits.

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

04/09/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project:	Havens
Sample Matrix:	Soil
Date Sampled:	03/29/2013
Date Received:	04/02/2013
Spectra Project:	2013040063

Client ID	Spectra #	Analyte	Result	Units	Method
PS-1	1	Total Nickel	10.0	mg/Kg	SW846 6010B
SS-2	2	Total Nickel	11.8	mg/Kg	SW846 6010B
SS-3	3	Total Nickel	7.6	mg/Kg	SW846 6010B
SS-4	4	Total Nickel	4.6	mg/Kg	SW846 6010B
SS-5	5	Total Nickel	2.6	mg/Kg	SW846 6010B
WS-6	6	Total Nickel	12.1	mg/Kg	SW846 6010B
WS-7	7	Total Nickel	12.5	mg/Kg	SW846 6010B
WS-8	8	Total Nickel	18.1	mg/Kg	SW846 6010B

Date Analyzed: 4-8-13 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a7/scj

SPECTRA Laboratories 2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com 4/8/2013 Libby Environmental Units: mg/L 4139 Libby Rd. NE Spectra Project: 2013040063 Olympia, WA 98506 Applies to Spectra #'s 1 thru 8 **QUALITY CONTROL RESULTS** ICP Metals SW846 6010B - Soil/Solid Method Blank Date Digested: 4/8/2013 Date Analyzed: 4/8/2013 Element Blank Result Nickel < 0.015 Blank Spike (LCS) Date Digested: 4/8/2013 Date Analyzed: 4/8/2013 Spike LCS LCS Conc. Element Added %Rec Nickel 2.0 1.881 94.1

LCS Recovery limits 80-120%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)										
Date Digested:	4/8/2013				Date Analyz	ed:	4/8/2013			
Sample Spiked:	2013040063-1									
		Sample	Spike	MS	MS	MSD	MSD			
Element	_	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD		
Nickel		0.259	2.0	2.153	94.7	2.151	94.6	0.1		
Recovery Limits	75-125%									

RPD Limit 20

SPECTRA LABORATORIES

Steven G. Hibbs Laboratory Manager

243	www.LibbyEnvironmental.com	of	ç		state:	of Collection:																				Remarks:	LT C)		Distribution: White - Lab, Yellow - File, Phys. Originated
2013040	ord	Page:	Emile Deymo	vens d	City, S	Date c			101 101 100 000 100 100 100 100 100 100			×	X	×	×>	<>										Sample Receipt:	Good Condition?	Cold?	Seals Intact? Total Number of Containers	
	n of Custody Rec	Date: $U/I/I$	Project Manáger: To	Project Name: HG	Location:	Collector:	Email:	2010 101 101 101 101 101 101 101 101 101	112 12 12 12 12 12 12 12 12 12 12 12 12																	Date / Time	Date / Time	Date / Time		easonable attorney fees to be determined by a court of law
	Chair	10 154 - +	fal, LNC.		Zip:				Sample Container	Soil yez, JAR																A Marie by:	Received by:	Received by:		s to pay the costs of collection including court casts and r
	onmental, Inc.	Ph: 360-352-21 Fax: 360-352-41	Environ men		State:	Fax:	a de se a constante de la const		r Denth Time																ii	- 4/2/13 1:20ph	Date / Time	Date / Time		default of payment and/or failure to pay, Client agree
	Libby Envir	4139 Libby Road NE Olympia, WA 98506	Client: L b b u	Address:	City:	Phone:	Client Project #		Sample Numbe	1 - SG 1	2 55 - 2	355-3	4 SS - 4	5 55 - 2	6 (w)5-le	X-S(1) 8	6	10	11	12	13	14	15	16	17	Relinquished by:	Relinquished by	Relinauished bv:		LEGAL ACTION CLAUSE: In the event of

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Jamie Deyman 4139 Libby Rd. NE Olympia, Washington 98506

RE: Havens Lab ID: 1304024

April 09, 2013

Attention Jamie Deyman:

Fremont Analytical, Inc. received 8 sample(s) on 4/3/2013 for the analyses presented in the following report.

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

MGR

Michael Dee Sr. Chemist / Principal

CLIENT: Project: Lab Order:	Libby Environmental Havens 1304024	Work Order Sample Summary						
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received					
1304024-001	PS1	03/29/2013 12:00 AM	04/03/2013 2:00 PM					
1304024-002	SS2	03/29/2013 12:00 AM	04/03/2013 2:00 PM					
1304024-003	SS3	03/29/2013 12:00 AM	04/03/2013 2:00 PM					
1304024-004	SS4	03/29/2013 12:00 AM	04/03/2013 2:00 PM					
1304024-005	SS5	03/29/2013 12:00 AM	04/03/2013 2:00 PM					
1304024-006	WS6	03/29/2013 12:00 AM	04/03/2013 2:00 PM					
1304024-007	WS7	03/29/2013 12:00 AM	04/03/2013 2:00 PM					
1304024-008	WS8	03/29/2013 12:00 AM	04/03/2013 2:00 PM					

Case Narrative

WO#: **1304024** Date: **4/9/2013**

CLIENT: Libby Environmental Project: Havens

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: 1304024 Date Reported: 4/9/2013

Client: Libby Environmental				Collection	Date: 3/	29/2013
Project: Havens						
Lab ID: 1304024-001				Matrix: Sc	sil	
Client Sample ID: PS1				Matrix. St	Л	
		-	. .			_
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batcl	n ID: 4373	3 Analyst: PH
						,
Naphthalene	ND	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
2-Methylnaphthalene	ND	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
1-Methylnaphthalene	ND	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Acenaphthylene	ND	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Acenaphthene	ND	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Fluorene	ND	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Phenanthrene	252	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Anthracene	ND	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Fluoranthene	528	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Pyrene	416	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Benz(a)anthracene	187	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Chrysene	212	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Benzo(b)fluoranthene	349	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Benzo(k)fluoranthene	103	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Benzo(a)pyrene	202	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Indeno(1,2,3-cd)pyrene	135	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Dibenz(a,h)anthracene	ND	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Benzo(g,h,i)perylene	115	85.7		µg/Kg-dry	1	4/6/2013 6:54:00 PM
Surr: 2-Fluorobiphenyl	91.2	50.4-142		%REC	1	4/6/2013 6:54:00 PM
Surr: Terphenyl-d14 (surr)	105	48.8-157		%REC	1	4/6/2013 6:54:00 PM
Sample Moisture (Percent Moist	ure)			Batch	1D: R79	91 Analyst: JS
Percent Moisture	45.9			wt%	1	4/4/2013 9:15:02 AM

Qualifiers: B Analyte detected in the associated Method Blank

Value above quantitation range Е

- Analyte detected below quantitation limits J
- RL Reporting Limit

- Dilution was required D
- Holding times for preparation or analysis exceeded н

ND Not detected at the Reporting Limit

WO#: 1304024 Date Reported: 4/9/2013

Client: Libby Environmental				Collection	Date: 3	3/29/2013
Project: Havens						
Lab ID: 1304024-002				Matrix: Sc	sil	
Client Sample ID: SS2				Matrix. Ot		
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	270 (SIM)		Batch	n ID: 437	73 Analyst: PH
Nonhthologo		•• •				
Naphinaiene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
2-Methylnaphthalene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Acenaphthylene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Acenaphinene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Fluorene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Phenanthrene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Anthracene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Fluoranthene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Pyrene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Benz(a)anthracene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Chrysene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Benzo(b)fluoranthene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Benzo(k)fluoranthene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Benzo(a)pyrene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Indeno(1,2,3-cd)pyrene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Dibenz(a,h)anthracene	ND	88.4		µg/Kg-dry	1	4/6/2013 7:17:00 PM
Benzo(g,h,i)perylene	ND	88.4		ua/Ka-drv	1	4/6/2013 7:17:00 PM
Surr: 2-Fluorobiphenyl	75.0	50.4-142		%REC	1	4/6/2013 7:17:00 PM
Surr: Terphenyl-d14 (surr)	73.4	48.8-157		%REC	1	4/6/2013 7:17:00 PM
Sample Moisture (Percent Moist	ure)			Batch	1D: R79	991 Analyst: JS
Percent Moisture	46.0			wt%	1	4/4/2013 9:15:02 AM

Analyte detected in the associated Method Blank Value above quantitation range

RL Reporting Limit

Analyte detected below quantitation limits

D Dilution was required

> Н Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

Qualifiers: B Е

J

WO#: **1304024** Date Reported: **4/9/2013**

Client: Libby Environmental				Collection	Date	3/29/2013
Project: Havens						
Lab ID: 1304024-003				Matrix: Sc	, il	
Client Sample ID: SS3				Matrix. St	211	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by E	EPA Method 8	270 (SIM)		Batch	ו ID: 4	373 Analyst: PH
Nanhtholong	ND					
A Mothulaente	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
1 Methylnaphthalene	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Acenaphthono	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Eluorono	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Phononthrono	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Anthroppen	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Pluorantilene	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Pyrene	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Benz(a)anthracene	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Chrysene	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Benzo(b)fluoranthene	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Benzo(k)fluoranthene	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Benzo(a)pyrene	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Indeno(1,2,3-cd)pyrene	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Dibenz(a,h)anthracene	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Benzo(g,h,i)perylene	ND	90.6		µg/Kg-dry	1	4/6/2013 7:41:00 PM
Surr: 2-Fluorobiphenyl	84.1	50.4-142		%REC	1	4/6/2013 7:41:00 PM
Surr: Terphenyl-d14 (surr)	83.4	48.8-157		%REC	1	4/6/2013 7:41:00 PM
Sample Moisture (Percent Moistu	<u>ıre)</u>			Batch	ID: R	7991 Analyst: JS
Percent Moisture	45.4			wt%	1	4/4/2013 9:15:02 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1304024** Date Reported: **4/9/2013**

Client: Libby Environmental				Collection	Date:	3/29/2013
Project: Havens						
I ah ID : 1304024-004				Motrix: C.		
				Matrix: 50	DII	
Cheft Sample ID: 554						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	270 (SIM)		Batch	ו ID: 43	73 Analyst: PH
Naphthalene	ND	107		µg/Kg-dry	1	4/6/2013 8:04:00 PM
2-Methylnaphthalene	ND	107		µg/Kg-dry	1	4/6/2013 8:04:00 PM
1-Methylnaphthalene	ND	107		µg/Kg-dry	1	4/6/2013 8:04:00 PM
Acenaphthylene	ND	107		µg/Kg-dry	1	4/6/2013 8:04:00 PM
Acenaphthene	ND	107		µg/Kg-dry	1	4/6/2013 8:04:00 PM
Fluorene	ND	107		µg/Kg-dry	1	4/6/2013 8:04:00 PM
Phenanthrene	ND	107		µg/Kg-dry	1	4/6/2013 8:04:00 PM
Anthracene	ND	107		µg/Kg-dry	1	4/6/2013 8:04:00 PM
Fluoranthene	ND	107		µg/Kg-dry	1	4/6/2013 8:04:00 PM
Pyrene	ND	107		µg/Kg-dry	1	4/6/2013 8:04:00 PM
Benz(a)anthracene	ND	107		µg/Kg-drv	1	4/6/2013 8:04:00 PM
Chrysene	ND	107		ua/Ka-drv	1	4/6/2013 8:04:00 PM
Benzo(b)fluoranthene	ND	107		ua/Ka-drv	1	4/6/2013 8:04:00 PM
Benzo(k)fluoranthene	ND	107		ug/Ka-drv	1	4/6/2013 8:04:00 PM
Benzo(a)pyrene	ND	107		ua/Ka-drv	1	4/6/2013 8:04:00 PM
Indeno(1,2,3-cd)pyrene	ND	107		µg/Ka-drv	1	4/6/2013 8:04:00 PM
Dibenz(a,h)anthracene	ND	107		ua/Ka-drv	1	4/6/2013 8:04:00 PM
Benzo(g,h,i)perylene	ND	107		µg/Kg-drv	1	4/6/2013 8:04:00 PM
Surr: 2-Fluorobiphenyl	89.2	50.4-142		%REC	1	4/6/2013 8:04:00 PM
Surr: Terphenyl-d14 (surr)	101	48.8-157		%REC	1	4/6/2013 8:04:00 PM
Sample Moisture (Percent Moist	ure)			Batch	1D: R7	991 Analyst: JS
Percent Moisture	53.8			wt%	1	4/4/2013 9:15:02 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1304024** Date Reported: **4/9/2013**

Client: Libby Environmental				Collection	Date: 3/2	29/2013
Proiect: Havens						
Lab ID: 1304024-005				Matrix: C		
Client Sample ID: SS5				Watrix. St	ווע	
Analyses	D <i>K</i>		. .			
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EDA Mothod 9	270 (0184)		Dete	- ID: 4070	
- offaromatic rigurocarbons by	EFA Method d	270 (SIN)		Batch	11D: 4373	Analyst: PH
Naphthalene	ND	378		ua/Ka-drv	1	4/6/2013 8·27·00 PM
2-Methylnaphthalene	ND	378		ua/Ka-drv	1	4/6/2013 8:27:00 PM
1-Methylnaphthalene	ND	378		ua/Ka-drv	1	4/6/2013 8:27:00 PM
Acenaphthylene	ND	378		ua/Ka-drv	1	4/6/2013 8:27:00 PM
Acenaphthene	ND	378		ua/Ka-drv	1	4/6/2013 8:27:00 PM
Fluorene	ND	378		ua/Ka-drv	1	4/6/2013 8:27:00 PM
Phenanthrene	ND	378		µg/Ka-drv	1	4/6/2013 8:27:00 PM
Anthracene	ND	378		µg/Kg-dry	1	4/6/2013 8:27:00 PM
Fluoranthene	ND	378		µg/Kg-dry	1	4/6/2013 8:27:00 PM
Pyrene	ND	378		µg/Kg-dry	1	4/6/2013 8:27:00 PM
Benz(a)anthracene	ND	378		µg/Kg-dry	1	4/6/2013 8:27:00 PM
Chrysene	ND	378		µg/Kg-dry	1	4/6/2013 8:27:00 PM
Benzo(b)fluoranthene	ND	378		µg/Kg-dry	1	4/6/2013 8:27:00 PM
Benzo(k)fluoranthene	ND	378		µg/Kg-dry	1	4/6/2013 8:27:00 PM
Benzo(a)pyrene	ND	378		µg/Kg-dry	1	4/6/2013 8:27:00 PM
Indeno(1,2,3-cd)pyrene	ND	378		µg/Kg-dry	1	4/6/2013 8:27:00 PM
Dibenz(a,h)anthracene	ND	378		µg/Kg-dry	1	4/6/2013 8:27:00 PM
Benzo(g,h,i)perylene	ND	378		µg/Kg-dry	1	4/6/2013 8:27:00 PM
Surr: 2-Fluorobiphenyl	73.2	50.4-142		%REC	1	4/6/2013 8:27:00 PM
Surr: Terphenyl-d14 (surr)	90.3	48.8-157		%REC	1	4/6/2013 8:27:00 PM
Sample Moisture (Percent Moist	ure)			Batch	1D: R799	1 Analyst: JS
Percent Moisture	86.9			wt%	1	4/4/2013 9:15:02 AM

Qualifiers: B Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1304024** Date Reported: **4/9/2013**

Client: Libby Environmental				Collection	Date:	3/29/2013
Project: Havens						
Lab ID: 1304024-006				Matrix: Sc	, il	
Client Sample ID: WS6					<i>.</i>	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	270 (SIM)		Batch	ו ID: 43	373 Analyst: PH
Naphthalene	ND	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
2-Methylnaphthalene	ND	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
1-Methylnaphthalene	ND	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
Acenaphthylene	ND	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
Acenaphthene	ND	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
Fluorene	ND	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
Phenanthrene	ND	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
Anthracene	ND	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
Fluoranthene	ND	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
Pyrene	ND	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
Benz(a)anthracene	ND	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
Chrysene	ND	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
Benzo(b)fluoranthene	92.5	81.5		µg/Kg-dry	1	4/6/2013 8:51:00 PM
Benzo(k)fluoranthene	ND	81.5		ug/Kg-drv	1	4/6/2013 8:51:00 PM
Benzo(a)pyrene	ND	81.5		µg/Kg-drv	1	4/6/2013 8:51:00 PM
Indeno(1,2,3-cd)pyrene	ND	81.5		µg/Kg-drv	1	4/6/2013 8:51:00 PM
Dibenz(a,h)anthracene	ND	81.5		µg/Kg-drv	1	4/6/2013 8:51:00 PM
Benzo(g,h,i)perylene	ND	81.5		ua/Ka-drv	1	4/6/2013 8:51:00 PM
Surr: 2-Fluorobiphenyl	86.7	50.4-142		%REC	1	4/6/2013 8:51:00 PM
Surr: Terphenyl-d14 (surr)	95.5	48.8-157		%REC	1	4/6/2013 8:51:00 PM
Sample Moisture (Percent Moist	ure)			Batch	ID: R	7991 Analyst: JS
Percent Moisture	41.2			wt%	1	4/4/2013 9:15:02 AM

Qualifiers: B Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Analytical Report

WO#: **1304024** Date Reported: **4/9/2013**

Client: Libby Environmental				Collection	Date	e: 3/29/2013
Proiect: Havens						
Lab ID: 1304024-007				Matrix: Sc	, it	
Client Sample ID: WS7				Watrix. St	Л	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	270 (SIM)		Batch	ו ID:	4373 Analyst: PH
Naphthalene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
2-Methylnaphthalene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
1-Methylnaphthalene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Acenaphthylene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Acenaphthene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Fluorene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Phenanthrene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Anthracene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Fluoranthene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Pyrene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Benz(a)anthracene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Chrysene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Benzo(b)fluoranthene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Benzo(k)fluoranthene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Benzo(a)pyrene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Indeno(1,2,3-cd)pyrene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Dibenz(a,h)anthracene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Benzo(g,h,i)perylene	ND	76.8		µg/Kg-dry	1	4/6/2013 9:14:00 PM
Surr: 2-Fluorobiphenyl	89.4	50.4-142		%REC	1	4/6/2013 9:14:00 PM
Surr: Terphenyl-d14 (surr)	101	48.8-157		%REC	1	4/6/2013 9:14:00 PM
Sample Moisture (Percent Moist	ure)			Batch	n ID:	R7991 Analyst: JS
Percent Moisture	35.3			wt%	1	4/4/2013 9:15:02 AM

Qualifiers: B Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Analytical Report

WO#: **1304024** Date Reported: **4/9/2013**

Client: Libby Environmental				Collection	Date: 3/	29/2013
Proiect: Havens						
Lab ID: 1304024-008				Matrix: Sc	sil	
Client Sample ID: WS9				Watny, St	ш	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	270 (SIM)		Batch	n ID: 4373	Analyst: PH
Nonhthologo	ND	70.0				
2 Mothylpophthologo	ND	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
2-Methylnaphthalene	ND	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
	ND	72.3		µg/Kg-ary	1	4/6/2013 10:24:00 PM
		72.3		µg/Kg-ary	1	4/6/2013 10:24:00 PM
Fluorene		72.3		µg/Kg-ary	1	4/6/2013 10:24:00 PM
Phenanthrene	104	72.3		µg/Kg-ary	1	4/6/2013 10:24:00 PM
Anthracono	104	72.3		µg/Kg-ary	1	4/6/2013 10:24:00 PM
Elugranthono	ND 240	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
Pirone	216	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
	185	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
Benz(a)anthracene	91.5	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
	99.6	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
Benzo(b)fluoranthene	153	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
Benzo(k)fluoranthene	ND	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
Benzo(a)pyrene	85.0	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
Indeno(1,2,3-cd)pyrene	ND	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
Dibenz(a,h)anthracene	ND	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
Benzo(g,h,i)perylene	ND	72.3		µg/Kg-dry	1	4/6/2013 10:24:00 PM
Surr: 2-Fluorobiphenyl	83.3	50.4-142		%REC	1	4/6/2013 10:24:00 PM
Surr: Terphenyl-d14 (surr)	93.9	48.8-157		%REC	1	4/6/2013 10:24:00 PM
Sample Moisture (Percent Moist	ure)			Batch	1D: R799	1 Analyst: JS
Percent Moisture	39.0			wt%	1	4/4/2013 9:15:02 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

	JRT	CIMIS				Jual																							ual						ſ
Date : 4/9/2013	UMMARY REPO	EDA Mathad 0270 /	ELA IMELINOU 02/0 (RunNo: 8033	SeqNo: 160065	%RPD RPDLimit 0																					RunNo: 8033	SeqNo: 160066	%RPD RPDLimit Q				ge	g Limit	oted recovery limits
	QC S	matic Hydrocarhone hy	illiatic nyurocarpolis py	ep Date: 4/5/2013	sis Date: 4/6/2013	.imit HighLimit RPD Ref Val																			50.4 142	ł8.8 157	p Date: 4/5/2013	is Date: 4/6/2013	imit HighLimit RPD Ref Val	4.3 115	2.9 120	4.1 116	E Value above quantitation ran	ND Not detected at the Reporting	S Spike recovery outside accep
		Dolyaro	ruiyaiu	Pre	Analys	%REC LowL																			81.0 5	92.7 4	Pre	Analysi	%REC LowLi	98.9 7.	87.3 7.	102 7.			
				Units: µg/Kg		SPK Ref Val																					Units: µg/Kg		SPK Ref Val	0	0	0	required	cted below quantitation limits	nit
						SPK value																			500.0	500.0			SPK value	1,000	1,000	1,000	D Dilution was	J Analyte detec	Reporting Lin
						RL	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0					RL	50.0	50.0	50.0			μ
lont		Ironmental		SampType: MBLK	Batch ID: 4373	Result	QN	DN	QN	QN	DN	ΠN	DN	QN	QN	QN	ΠN	QN	QN	QN	QN	DN	ND	QN	405	463	SampType: LCS	Batch ID: 4373	Result	686	873	1,020	n the associated Method Blank	preparation or analysis exceeded	pted recovery limits
Fren	Work Order: 1304024	CLIENT: LIDDY ENV	Project: Havens	Sample ID: MB-4373	Client ID: MBLKS	Analyte	Naphthalene	2-Methylnaphthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene	Surr: 2-Fluorobiphenyl	Surr: Terphenyl-d14 (surr)	Sample ID: LCS-4373	Client ID: LCSS	Analyte	Naphthalene	2-Methylnaphthalene	1-Methylnaphthalene	Qualifiers: B Analyte detected in	H Holding times for J	R RPD outside acce

Page 12 of 17

Drk Urder:	1 304024	lotromon						ÖÖ	SUMMARY	REPORT
oject:	Havens					Po	lyaromatic	Hydrocarbons b	y EPA Method	8270 (SIM)
nple ID: LCS-4	373	SampType: LCS			Units: µg/Kg		Prep Date:	4/5/2013	RunNo: 8033	
nt ID: LCSS		Batch ID: 4373			1		Analysis Date:	4/6/2013	SeqNo: 160066	
lyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPI	OLimit Qual
naphthylene		950	50.0	1,000	0	95.0	69.8	123		
aphthene		1,010	50.0	1,000	0	101	66.4	125		
rene		982	50.0	1,000	0	98.2	64.7	122		
nanthrene		1,000	50.0	1,000	0	100	67.2	123		
Iracene		1,020	50.0	1,000	0	102	65.5	127		
ranthene		1,030	50.0	1,000	0	103	57.6	131		
ne		1,070	50.0	1,000	0	107	58.1	131		
z(a)anthracene		936	50.0	1,000	0	93.6	46.5	143		
sene		1,010	50.0	1,000	0	101	63	125		
co(b)fluoranthe	ne	805	50.0	1,000	0	80.5	47.7	139		
co(k)fluoranthe	ne	1,050	50.0	1,000	0	105	60.7	136		
o(a)pyrene		802	50.0	1,000	0	80.2	50.6	133		
10(1,2,3-cd)py	rene	840	50.0	1,000	0	84.0	57.9	133		
וz(a,h)anthrac	ene	827	50.0	1,000	0	82.7	52.8	135		
o(g,h,i)perylen	e	946	50.0	1,000	0	94.6	55	132		
ırr: 2-Fluorobip	henyl	474		500.0		94.7	50.4	142		
ırr: Terphenyl-	d14 (surr)	482		500.0		96.3	48.8	157		
ple ID: 13031	93-003BDUP	SampType: DUP			Units: µg/Kg-	Jry	Prep Date:	4/5/2013	RunNo: 8033	
It ID: BATC	Ŧ	Batch ID: 4373					Analysis Date:	4/6/2013	SeqNo: 160068	
yte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ighLimit RPD Ref Val	%RPD RPC	lLimit Qual
thalene		Q	50.8					0	0	30
sthylnaphthaler	e	QN	50.8					0	0	30
thylnaphthaler	je	DN	50.8					0	0	30
aphthylene		QN	50.8					0	0	30
aphthene		QN	50.8					0	0	30
ene		DN	50.8					0	0	30
lifiers: ^B	Analyte detected in	the associated Method Blank		D Dilution was	s required			E Value above quantitation re	ange	
Ξ	Lobing times for no	behavior of a sector of the se		the Analysis I	all a statistication in the state of the sta					
	היי איז איז איז איז	sharamon or amarkers exceeded		 Alialyte dete 	scied below quantitation lin	UICS	Z	D Not detected at the Report	ing Limit	

ork Order:	1304024											
LIENT:	Libby Envir	onmental							-) ブ			
roject:	Havens					Pol	lyaromati	ic Hydrod	carbons b	y EPA Metho	od 8270	(NIS)
imple ID: 130319;	3-003BDUP	SampType: DUP			Units: Jug/Kg-	dry	Prep Dat	e: 4/5/2013		RunNo: 8033		
ient ID: BATCH		Batch ID: 4373					Analysis Date	e: 4/6/2013		SeqNo: 16006	80	
laiyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD R	PDLimit	Qual
lenanthrene		62.3	50.8						58.76	5.93	30	
thracene		QN	50.8						0	O	30	
loranthene		100	50.8						94.85	5.73	30	
rene		107	50.8						107.7	0.946	30	
inz(a)anthracene		DN	50.8						52.07	200	30	
Irysene		69.2	50.8						75.30	8.49	30	
nzo(b)fluoranthen	(J)	70.1	50.8						70.10	0.0249	30	
inzo(k)fluoranthene	0	QN	50.8						0	0	30	
inzo(a)pyrene		QN	50.8						0	0	30	
teno(1,2,3-cd)pyre	ine	QN	50.8						0	0	30	
benz(a,h)anthracer	ЭС	QN	50.8						0	0	30	
nzo(g,h,i)perylene		QN	50.8						0	0	30	
Surr: 2-Fluorobiph	enyl	454		508.1		89.4	50.4	142		0		
Surr: Terphenyl-d	14 (surr)	509		508.1		100	48.8	157		0		
acoto: 10, 1201025	0040MC	ComoTomo: MC										
						ury		4/0/2013		KUNNO: 8033		
ent ID: BAICH		Batch IU: 43/3					Analysis Date	4/6/2013		SeqNo: 160072	~	
alyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD RI	PDLimit	Qual
phthalene		946	53.2	1,064	108.6	78.7	42.9	138				
Viethylnaphthalene		920	53.2	1,064	45.47	82.2	42.8	151				
Viethylnaphthalene		1,040	53.2	1,064	28.83	94.7	41.6	148				
enaphthylene		1,190	53.2	1,064	94.82	103	32.6	160				
enaphthene		1,060	53.2	1,064	24.48	96.9	46.3	142				
lorene		1,090	53.2	1,064	32.21	99.8	43.4	153				
enanthrene		1,340	53.2	1,064	286.0	99.2	45.5	140				
thracene		1,180	53.2	1,064	86.22	103	32.6	160				
loranthene		1,660	53.2	1,064	467.3	112	44.6	161				
alifiers: ^B /	Analyte detected in t	he associated Method Blank		D Dilution was	s required			E Value ab	pove quantitation ra	nge		
Ξ	Holding times for pre	paration or analysis exceeded		J Analyte dete	ected below quantitation lir	mits		ND Not dete	cted at the Reporti	ng Limit		

C
A B
XR
W
, Am 1
500000000000000000000000000000000000000
17254
S2557

Date: 4/9/2013

Work Order:	1304024							00 5	SUMMARY REPORT
CLIENT:	Libby Envir	onmental				1	_		
Project:	Havens					01	lyaroma	tic Hydrocarbons by	r EPA Method 8270 (SIM)
Sample ID: 1304025	-001BMS	SampType: MS			Units: µg/Kç	j-dry	Prep Da	ate: 4/5/2013	RunNo: 8033
Client ID: BATCH		Batch ID: 4373					Analysis Da	ate: 4/6/2013	SeqNo: 160072
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Pyrene		1,780	53.2	1,064	600.3	110	48.3	158	
Benz(a)anthracene		1,430	53.2	1,064	277.6	108	57.5	169	
Chrysene		1,250	53.2	1,064	274.1	91.9	45.2	146	
Benzo(b)fluoranthene	~	1,610	53.2	1,064	388.6	114	42.2	168	
Benzo(k)fluoranthene		1,240	53.2	1,064	131.2	104	48	161	
Benzo(a)pyrene		1,400	53.2	1,064	329.5	100	34.4	179	
Indeno(1,2,3-cd)pyrei	ne	1,350	53.2	1,064	213.7	107	41.1	165	
Dibenz(a,h)anthracen	le	1,240	53.2	1,064	40.04	113	38.1	166	
Benzo(g,h,i)perylene		1,170	53.2	1,064	220.0	89.1	45.6	157	
Surr: 2-Fluorobiph	enyl	334		532.0		62.8	50.4	142	
Surr: Terphenyl-d1	4 (surr)	542		532.0		102	48.8	157	

Value above quantitation range	Not detected at the Reporting Limit	Spike recovery outside accepted recovery limits
ш	QN	S
Dilution was required	Analyte detected below quantitation limits	. Reporting Limit
۵	- 7	RL
Analyte detected in the associated Method Blank	Holding times for preparation or analysis exceeded	RPD outside accepted recovery limits
ш	т	œ

Qualifiers:

Sample Log-In Check List

Clier	nt Name: LIBBY	Work Order Number	1304024	
Logg	ged by: Clare Griggs	Date Received:	4/3/2013 2:0	00:00 PM
<u>Ch</u>	ain of Custody			
1.	Were custodial seals present?	Yes 🖌	No 🗌	Not Required
2.	Is Chain of Custody complete?	Yes	No 🗹	Not Present
3.	How was the sample delivered?	<u>UPS</u>		
Loc	<u>a In</u>			
4.	Coolers are present?	Yes 🖌	No 🗌	
5.	Was an attempt made to cool the samples?	Yes 🔽	No 🗌	
6.	Were all coolers received at a temperature of $>0^{\circ}$ C to 10.0° C	Yes 🔽	No 🗌	
7.	Sample(s) in proper container(s)?	Yes 🗹	No 🗌	
8.	Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌	
9.	Are samples properly preserved?	Yes 🗹	No 🗌	
10.	Was preservative added to bottles?	Yes	No 🗹	NA 🗌
11.	Is there headspace present in VOA vials?	Yes	No 🗌	NA 🔽
12.	Did all sample containers arrive in good condition?(unbroken)	Yes 🗹	No 🗌	
13.	Does paperwork match bottle labels?	Yes 🗹	No 🗌	
14.	Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
15.	Is it clear what analyses were requested?	Yes 🗹	No 🗌	
16.	Were all holding times able to be met?	Yes 🗹	No 🗌	
<u>Spe</u>	ecial Handling (if applicable)			
17.	Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
	Person Notified: Data By Whom: Via: Regarding: Client Instructions:	e: eMail Pho	ne 📄 Fax [

18. Additional remarks/Disrepancies

Pulled sample dates from sample label, not noted on COC.

Item Information

Cooler	9.6	Good
Item #	Temp °C	Condition

www.LibbyEnvironmental.com	******			State:	of Callection:		Field Notes																Remarks:	Ŧ	2		TAT: 24HR 48HR 6-DAY Carburer Mate-Lati Velow File, Hell 705 mate	
ord 12ndno4		Tamie Nau	Jens 1	City.	Date		10000000000000000000000000000000000000		×	×		×	×	×	7								Sample Receipt:	Good Condition?		Seals Intact?	Trotal Number of Cantamers	
1 of Custody Rec	U/I/	Project Manager,	Project Name: Hav	Location:	Collector	Email	2011 2017 2017 2017 2017 2017 2017 2017																-4+3/13 2:00PM	Cate (Time			drasonežne autornege ženas irožno dortomovené žej a cicař ce ho	
Chair		al Inc.		Zp;			ple Container Type	4 a Jarl															Received by:		Rectalized by	the an and as a transmission of	des coste al cultaritari recluzing conti coste 20 d	
mental, Inc.	Ph: 360-352-2110 Fav: 360-352-2110	NUICONNERTE		State:	Ě		Depth Time Tyr																243 Bate/Time	Date / Time	nates / Tites a	Nov 566 6 6 4	in process and in fadients in page. Chees agreem to in y f	
Libby Environ	4139 Libby Road NE	Client: I , bour E	Address; ()	City	Phone:	Client Project #	Sample Number	1031	2 \$5 A	3 SS 3	T SS €	22%	0 CVS 6	1 10 24	° WS &	8		12	2	10	16	***	Relinquished by: total - 41	Reinquished by:	de alla de la bart hv.		1. Lista, Activity C. Albe, A. No. week as before at 1	7

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 •

www.spectra-lab.com

04/18/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: Haven Client ID: WS6 Sample Matrix: Soil Date Sampled: 03/29/2013 Date Received: 04/11/2013 Spectra Project: 2013040360 Spectra Number: 1

Analyte	Result	Units	Method
TCLP Lead	9.67	mg/L	SW846 6010B

Date Analyzed: 4-18-13 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a6/scj

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 •

www.spectra-lab.com

04/18/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: Haven Client ID: WS8 Sample Matrix: Soil Date Sampled: 03/29/2013 Date Received: 04/11/2013 Spectra Project: 2013040360 Spectra Number: 2

Analyte	Result	Units	Method
TCLP Lead	0.25	mg/L	SW846 6010B

Date Analyzed: 4-18-13 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager

a6/scj

2221 Ro	oss Way • Tacon	na, WA 98421	• (253) 2	72-4850 •	Fax (253) 57	2-9838 • v	www.spectra-lab.co	m
4/18/2013								
I ihby Environmental	Inc				TT *.		· .	
4139 Libby Rd NF	, mc				Units:	4-	mg/L	
Olympia, WA 98506	5				Applies to S	ect: pectra #'s	2013040360 1 and 2	
								· .
		QUAI	LITY CON	FROL RE	SULTS			
		ICP M	letals SW84	46 6010B -	TCLP			:
Date Digested:	4/18/2013		Metho	i Blank	Date Analyz	ed:	4/18/2013	
		Element			Result			
		Lead			< 0.04	~		
			Blank Sp	ike (LCS)				
Date Digested:	4/18/2013				Date Analyze	ed:	4/18/2013	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec	· · ·	
		Lead		1.0	1.027	102.7		
CS Recovery limits	80-120%							
	N	Aatrix Spike	/Matrix Spi	ke Duplica	ate (MS/MSD)		
Sample Spiked:	4/18/2013 2013040360-1				Date Analyze	ed:	4/18/2013	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPL
Lead		9.668	1.0	10.480	81.2	10.520	85.2	4.8

SPECTRA LABORATORIES

Steven G. Hibbs Laboratory Manager

	www.LibbyEnvironmental.com		le:] of /	euman		State: Olvan Dia 1.11 4	e of Collection: $3 - 29 - 13$		010	0	Field Motes																	Remarks: Stander		and the los to	These I as picked	TAT: 24HR 48HR 5-DAY Distribution: White - Lab, Yellow - File, Pink - Onginator	-
1360	Record	-	11 - 13 Pag	Tamie D	Haven	City	Date			CO CO TO TO CO DO MORE	AN AN ON CONCOMP																	Time Sample Receipt:	Time Good Condition?	Cold?	Ilme Seals Intact?	Total Number of Containers	
40C107	Chain of Custody F		Date: 7-	Project Manager:	Project Name:	Location:	Collector:	Email:	ALLO Y	A LA CALLAR AND CALLAR	105 105 105 105 105 105 105 105 105 105																	4/11/13 @	U Date /		Uate /	urf costs and reasonable attorney lees to tis thichnesed \mathbf{b}_f a	
	, Inc.	360-352-2110	360-352-4154	siranmental, The	abar)	State: Zip:	Fax:				Time Type Type	1350 Suil Jar	1420 Soil Jar															12:03pm	Time Received by:	Time Donotined htt		to pay. Glient agrees to pay the costs of collection including c	
	Libby Environmental	1139 Libby Road NE Ph:	Olympia, WA 98506 Fax:	Client: Libby In	Address: (Sec.	City:	² hone:	Client Project #		7 division and the second seco	Sample Number Depth	1 WSG	2 WS B Ø	0	4	Q	6	7	ω	G	0	 2	3	4	5	9	7	telinquished by: Acre 4/11/13	telinquished by: V Date	alinanishad hv. Data /		CAL ACTION CLAUSE: In the event of default of payment antifor feven	

Image: Constraint of the second condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition? Image: Condition?	Date / Time			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Received by:	Date / Time	Relinguished by:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $	Date / Time	Received by:	Date / Time	Relinquished by:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32413 15:2	402	27-13 15:05	ann for 3-2
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	Date / Time	Received by:	Date / Time	Relinquished by:
All the second s				17
All the set of the set			2	16
ATTICLE AND A CONTRACT OF A CO				15
ALL				14
AND A CALL A CAL				13
AND A CALL				12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				11
ALL				10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X	۶ س	0 1420	0 2 3 V
AND	X	9 1960-1996-042 1	00 1Y00	8 VUS V
ATTEND AND AND AND AND AND AND AND AND AND A	*		Q 1350	7 W25 6
Antipit of the second s	×		335	6
CT DT DT LTT. CT DT LTT	×	- 00%20ag	208 6	5
ANTIGET OF	×	- 2009 M Loc La	2 1250	4 55 3
	×		6 1240	3 5.5 2
GT DT CT: CT THE		SEN YOR	\$ 122a 1	$2 \rho_{S}$
		WTR RUCY	1320 6	1 MW /
	10/ 10/ 10/ 00/ 20/ 20/ 20	Type Type	Depth Time	Sample Number
	2 453 12 12 12 12 12 12 12 12 12 12 12 12 12	Sample Container	1 1 · · · · ·	HANNER LA
				VIB A
OROBIN SUN-MOBER, COM	<u>Email: ارمن رالم (</u>		-00/E	Client Project # 2 4 9 /
$/A_{\perp}\gamma$ Date of Collection: $\frac{3}{2}\frac{9}{3}$	Collector: MTw		7 <i>7//</i> Fax:	Phone: (253)475.
JAJESE City, State: OLYM DIA CUA	Location: $G// G_{3}$	Zip:98400	State:w)	City: TACOMA
1625	Project Name: HAJ	50,7% A	5.2 57	Address: 3 // 5, #
MX WILLS	Project Manager: A		N NORCE	Client: KOD 1250
20/3 Page: of	Date: 3/29/2	54	Fax: 360-352-41	Olympia, WA 98506
www.LibbyEnvironmental.com	hain of Custody Rec	, C	iental, Inc.	Libby Environm

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Gasoline	Diesel	Light Oil	Heavy Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	2/26/13	103	nd	nd	nd	nd
Method Blank	2/27/13	90	nd	nd	nd	nd
B18-3	2/26/13	111	nd	nd	nd	nd
B18-6	2/26/13	93	nd	nd	nd	nd
B18-6 Dup	2/26/13	89	nd	nd	nd	nd
B20-6	2/26/13	114	nd	nd	nd	nd
B20-6 Dup	2/26/13	96	nd	nd	nd	nd
B21-2	2/26/13	123	nd	nd	nd	nd
B21-5	2/26/13	108	nd	nd	nd	nd
B22-6	2/26/13	104	nd	nd	nd	nd
MW-5-3	2/26/13	99	nd	nd	nd	nd
MW-5-6	2/26/13	87	nd	nd	nd	nd
MW-5-6 Dup	2/26/13	102	nd	nd	nd	nd
B23-2	2/27/13	90	nd	nd	nd	nd
B23-4	2/27/13	85	nd	nd	nd	nd
B23-4 Dup	2/27/13	92	nd	nd	nd	nd
Practical Quantitation 1	Limit		20	50	100	100

Hydrocarbon Identification by NWTPH-HCID for Soil

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke & Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description	PQL	Method	LCS	B18-3	B18-3	B18-6	B18-6 MS
		Blank			Dup		
Date Sampled		N/A	2/26/13	2/26/13	2/26/13	2/26/13	2/26/13
Date Analyzed		2/28/13	2/28/13	2/28/13	2/28/13	2/28/13	2/28/13
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
							<u> </u>
Aroclor 1016	0.02	nd	85%	nd	nd	nd	86%
Aroclor 1221	0.02	nd		nd	nd	nd	
Aroclor 1232	0.02	nd		nd	nd	nd	
Aroclor 1242	0.02	nd		nd	nd	nd	
Aroclor 1248	0.02	nd		nd	nd	nd	
Aroclor 1254	0.02	nd		nd	nd	nd	
Aroclor 1260	0.02	nd	80%	nd	nd	nd	106%
Surrogate Recovery							
TCMX		100	90	74	80	80	101
DCBP		100	90	108	86	106	95
"nd" Indicates not dete	cted at liste	d detection l	imit.		P. 18. 1		

Analyses of PCB (Polychlorinated Biphenyls) in Soil by EPA Method 8082

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Kyle Williams

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	3/2/13	nd	nd	nd	nd
B20-6	3/2/13	nd	nd	nd	nd
B21-2	3/2/13	5.5	nd	8.7	8.1
B21-5	3/17/13	nd	nd	13.2	nd
B22-6	3/2/13	nd	nd	7.2	6.6
MW5-3	3/2/13	nd	nd	13	8.6
MW5-6	3/17/13	nd	nd	17.4	6.7
MW5-6 Dup	3/17/13	nd	nd	18.6	6.4
B23-2	3/2/13	nd	nd	6.6	7.8
Practical Quantitat	tion Limit	5.0	1.0	5.0	5.0

Analyses of Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS	3/2/13	92%	101%	99%	88%
L130225-10 MS	3/2/13	86%	96%	101%	86%
L130225-10 MSD	3/2/13	96%	99%	89%	83%
RPD	3/2/13	11%	3%	13%	3%
LCS	3/17/13	109%	103%	92%	103%
MW5-6 MS	3/17/13	105%	90%	92%	86%
MW5-6 MSD	3/17/13	94%	93%	85%	92%
RPD	3/17/13	11%	3%	8%	7%

QA/QC for Metals in Soil by EPA Method 7010 Series

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Method Blank	2/27/13	nd
B20-6	2/27/13	nd
B21-2	2/27/13	nd
B22-6	2/27/13	nd
MW5-3	2/27/13	nd
B23-2	3/4/13	nd
B21-5	3/19/13	nd
MW5-6	3/19/13	nd
Practical Quantitation Limit		0.5

Analyses of Mercury in Soil by EPA Method 7471

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	2/27/13	112%
L130225-10 MS	2/27/13	103%
L130225-10 MSD	2/27/13	103%
RPD	2/27/13	0%
LCS	3/4/13	112%
L130227-1 MS	3/4/13	103%
L130227-1 MSD	3/4/13	103%
RPD	3/4/13	0%
LCS	3/19/13	106%
L130315-6 MS	3/19/13	106%
L130315-6 MSD	3/19/13	106%
RPD	3/19/13	0%

QA/QC for Mercury by EPA Method 7471

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Copper	Zinc
Number	Analyzed	(mg/kg)	(mg/kg)
Method Blank	3/2/13	nd	nd
B20-6	3/2/13	5.9	nd
B21-2	3/2/13	6.1	5.8
B21-5	3/17/13	6.0	12
B22-6	3/2/13	6.9	nd
MW5-3	3/2/13	23	20
MW5-6	3/17/13	34	20
MW5-6 Dup	3/17/13	33	19
B23-2	3/2/13	9.6	nd
Practical Quantitation Limit		5.0	5.0

Analyses of Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	3/2/13	95%	89%
L130225-10 MS	3/2/13	91%	92%
L130225-10 MSD	3/2/13	92%	99%
RPD	3/2/13	1%	8%
LCS	3/17/13	106%	116%
MW5-6 MS	3/17/13	95%	85%
MW5-6 MSD	3/17/13	85%	91%
RPD	3/17/13	11%	7%

QA/QC for Metals in Soil by EPA Method 7010 Series

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Lead in Soil by EPA Method 7421

Sample	Date	Lead
Number	Analyzed	(mg/kg)
Method Blank	3/2/13	nd
B18-3	3/2/13	nd
B18-6	3/2/13	nd
Practical Quantitation Limit		5.0

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Date	Lead
Analyzed	(% Recovery)
3/2/13	92%
3/2/13	103%
3/2/13	111%
3/2/13	8%
	Date Analyzed 3/2/13 3/2/13 3/2/13 3/2/13

QA/QC for Lead by EPA Method 7421

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Gasoline	Diesel	Mineral Oil	Heavy Oil
Number	Analyzed	Recovery (%)	$(\mu g/l)$	(µg/l)	(µg/l)	$(\mu g/l)$
Method Blank	2/26/13	103	nd	nd	nd	nd
Method Blank	2/27/13	84	nd	nd	nd	nd
B18-W	2/26/13	101	nd	nd	nd	nd
B19-W	2/26/13	106	nd	nd	nd	nd
B19-W Dup	2/26/13	87	nd	nd	nd	nd
B20-W	2/26/13	93	nd	nd	nd	nd
B20-W Dup	2/26/13	112	nd	nd	nd	nd
B21-W	2/26/13	123	nd	nd	nd	nd
B22-W	2/26/13	110	nd	nd	nd	nd
B23-W	2/27/13	98	nd	nd	nd	nd
B23-W Dup	2/27/13	96	nd	nd	nd	nd
Practical Quantitation	Limit		200	500	500	500

Hydrocarbon Identification by NWTPH-HCID for Water

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke & Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Volatile Organic Compounds by EPA Method 8260C in Water

Sample Description	<u></u>	Method	B19-W	
		Blank	217 11	
Date Sampled	Reporting	N/A	2/26/13	
Date Analyzed	Limits	2/28/13	2/28/13	
	(µg/l)	(µg/l)	(µg/l)	
Dichlorodifluoromethane	2.0	nd	nd	
Chloromethane	2.0	nd	nd	
Vinyl chloride	0.2	nd	nd	
Bromomethane	2.0	nd	nd	
Chloroethane	2.0	nd	nd	
Trichlorofluoromethane	2.0	nd	nd	
1,1-Dichloroethene	2.0	nd	nd	
Methylene chloride	1.0	nd	nd	
Methyl tert-Butyl Ether (MTBE)	5.0	nd	nd	
trans -1,2-Dichloroethene	1.0	nd	nd	
1,1-Dichloroethane	1.0	nd	nd	
2,2-Dichloropropane	2.0	nd	nd	
cis-1,2-Dichloroethene	1.0	nd	nd	
Chloroform	1.0	nd	nd	
1,1,1-Trichloroethane (TCA)	1.0	nd	nd	
Carbon tetrachloride	1.0	nd	nd	
1,1-Dichloropropene	1.0	nd	nd	
Benzene	1.0	nd	nd	
1,2-Dichloroethane (EDC)	1.0	nd	nd	
Trichloroethene (TCE)	1.0	nd	nd	
1,2-Dichloropropane	1.0	nd	nd	
Dibromomethane	1.0	nd	nd	
Bromodichloromethane	1.0	nd	nd	
cis-1,3-Dichloropropene	1.0	nd	nd	
Toluene	1.0	nd	nd	
Trans-1,3-Dichloropropene	1.0	nd	nd	
1,1,2-Trichloroethane	1.0	nd	nd	
Tetrachloroethene (PCE)	1.0	nd	nd	
1,3-Dichloropropane	1.0	nd	nd	
Dibromochloromethane	1.0	nd	nd	
1,2-Dibromoethane (EDB) *	0.01	nd	nd	
Chlorobenzene	1.0	nd	nd	
1,1,1,2-Tetrachloroethane	1.0	nd	nd	
Ethylbenzene	1.0	nd	nd	
Total Xylenes	2.0	nd	nd	
Styrene	1.0	nd	nd	

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	B19-W	
I I I I I I I I I I		Blank		
Date Sampled	Reporting	N/A	2/26/13	
Date Analyzed	Limits	2/28/13	2/28/13	
	(µg/l)	(µg/l)	(µg/l)	
Description	1.0	1	1	
Bromotorm	1.0	nd	nd	
Isopropyibenzene	4.0	nd	nd	
1,2,3-Irichloropropane	1.0	nd	nd	
Bromobenzene	1.0	nd	nd	
1,1,2,2-Tetrachloroethane	1.0	nd	nd	
n-Propylbenzene	1.0	nd	nd	
2-Chlorotoluene	1.0	nd	nd	
4-Chlorotoluene	1.0	nd	nd	
1,3,5-Trimethylbenzene	1.0	nd	nd	
tert-Butylbenzene	1.0	nd	nd	
1,2,4-Trimethylbenzene	1.0	nd	nd	
sec-Butylbenzene	1.0	nd	nd	
1,3-Dichlorobenzene	1.0	nd	nd	
Isopropyltoluene	1.0	nd	nd	
1,4-Dichlorobenzene	1.0	nd	nd	
1,2-Dichlorobenzene	1.0	nd	nd	
n-Butylbenzene	1.0	nd	nd	
1,2-Dibromo-3-Chloropropane	1.0	nd	nd	
1,2,4-Trichlorolbenzene	2.0	nd	nd	
Hexachloro-1,3-butadiene	5.0	nd	nd	
Naphthalenes	5.0	nd	nd	
1,2,3-Trichlorobenzene	5.0	nd	nd	
Surrogate Recovery				
Dibromofluoromethane		104	117	
1,2-Dichloroethane-d4		121	122	
Toluene-d8		97	91	
4-Bromofluorobenzene		97	99	
"nd" Indicates not detected at "int" Indicates that interferen	t listed detection	n limit.		

Volatile Organic Compounds by EPA Method 8260C in Water

int Indicates that interference prevents determination.

*** INSTRUMENT DETECTION LIMIT**

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Kyle Williams

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E

Sample Identification: L130226-3 Matrix Spike Matrix Spike Duplicate RPD Spiked Measured Spike Spiked Measured Spike Conc. Conc. Recovery Conc. Conc. Recovery $(\mu g/l)$ $(\mu g/l)$ (%) $(\mu g/l)$ $(\mu g/l)$ (%) (%) 1,1-Dichloroethene 10 7.5 75 10 7.7 77 2.4 Benzene 10 9.4 94 10 9.3 93 1.8 Toluene 10 8.1 81 10 8.4 84 3.3 Chlorobenzene 10 8.6 86 10 8.7 87 1.7 Trichloroethene (TCE) 10 9.0 90 10 8.8 88 2.5 Surrogate Recovery Dibromofluoromethane 107 110 1,2-Dichloroethane-d4 122 125 95 Toluene-d8 99 4-Bromofluorobenzene 91 95

QA/QC Data -	- EPA	8260C	Analyses
--------------	-------	-------	----------

	Laboratory Control Sample				
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)		
Benzene	10	9.4	94		
Toluene	10	8.9	89		
Chlorobenzene	10	9.0	90		
Trichloroethene (TCE)	10	9.5	95		
Surrogate Recovery					
Dibromofluoromethane			101		
1,2-Dichloroethane-d4			110		
Toluene-d8			105		
4-Bromofluorobenzene			96		

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Kyle Williams

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description	PQL	Method	LCS	B18-W	B18-W	B19-W	B19-W MS
	-	Blank			Dup		
Date Sampled		N/A	2/26/13	2/26/13	2/26/13	2/26/13	2/26/13
Date Analyzed		2/28/13	2/28/13	2/28/13	2/28/13	2/28/13	2/28/13
	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Aroclor 1016	0.02	nd	85%	nd	nd	nd	83%
Aroclor 1221	0.02	nd		nd	nd	nd	
Aroclor 1232	0.02	nd		nd	nd	nd	
Aroclor 1242	0.02	nd		nd	nd	nd	
Aroclor 1248	0.02	nd		nd	nd	nd	
Aroclor 1254	0.02	nd		nd	nd	nd	
Aroclor 1260	0.02	nd	80%	nd	nd	nd	108%
Surrogate Recovery							
TCMX		100	90	80	89	87	100
DCBP		100	90	98	83	99	108
"nd" Indicates not detec	cted at liste	d detection l	imit.		<u></u>		
"int" Indicates that inte	rference pr	events deterr	nination.				

Analyses of PCB (Polychlorinated Biphenyls) in Water by EPA Method 8082

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Kyle Williams

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	μg/L	μg/L	μg/L	µg/L
Method Blank	3/2/13	nd	nd	nd	nd
B19-W	3/2/13	33	nd	83	111
B20-W	3/2/13	24	nd	105	8.7
B21-W	3/2/13	106	0.6	93	114
B22-W	3/2/13	158	5.8	116	112
B23-W	3/2/13	13	nd	20	nd
Practical Quantita	tion Limit	5.0	0.5	10.0	3.0

Analyses of Metals in Water by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Dirk Peterson & Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS	3/2/13	103%	101%	99%	95%
L130301-9 MS	3/2/13	102%	92%	89%	93%
L130301-9 MSD	3/2/13	107%	94%	77%	97%
RPD	3/2/13	5%	2%	14%	4%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson & Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	μg/L
Method Blank	3/4/13	nd
B19-W	3/4/13	nd
B20-W	3/4/13	nd
B21-W	3/4/13	nd
B22-W	3/4/13	nd
B23-W	3/4/13	nd
Practical Quantitation Limit		0.5

Analyses of Mercury in Water by EPA Method 7470

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	3/4/13	112%
L130227-30 MS	3/4/13	94%
L130227-30 MSD	3/4/13	94%
RPD	3/4/13	0%

QA/QC for Mercury by EPA Method 7470

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Copper	Zinc
Number	Analyzed	μg/L	μg/L
Method Blank	3/2/13	nd	nd
B19-W	3/2/13	285	119
B20-W	3/2/13	233	64
B21-W	3/2/13	136	110
B22-W	3/2/13	4450	28
B23-W	3/2/13	23	70
Practical Quantitation Limit		5.0	5.0

Analyses of Metals in Water by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Analyzed	(% Recovery)	Zinc (% Recovery)
3/2/13	106%	100%
3/2/13	111%	106%
3/2/13	119%	112%
3/2/13	7%	6%
	Analyzed 3/2/13 3/2/13 3/2/13 3/2/13	Analyzed Copper 3/2/13 106% 3/2/13 111% 3/2/13 119% 3/2/13 7%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Lead in Water by EPA Method 7421

Sample	Date	Lead
Number	Analyzed	μg/L
Method Blank	3/2/13	nd
B18-W	3/2/13	18
Practical Quantitation Limit		5.0
"nd" Indicates not detected at the l	isted detection limits.	

ANALYSES PERFORMED BY: Dirk Peterson & Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead
Number	Analyzed	(% Recovery)
LCS	3/2/13	103%
L130301-9 MS	3/2/13	102%
L130301-9 MSD	3/2/13	107%
RPD	3/2/13	5%
RPD	3/2/13 3/2/13	107%o 5%

QA/QC for Lead by EPA Method 7421

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson & Jamie Deyman
JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130226-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead	Cadmium	Chromium	Arsenic	Copper
Number	Analyzed	μg/L	μg/L	μg/L	μg/L	μĝ/L
Method Blank	3/17/13	nd	nd	nd	nd	nd
LCS	3/17/13	115%	99%	107%	119%	106%
B18-W	3/17/13	nd	-	-	-	-
B19-W	3/17/13	nd	-	nd	nd	-
B20-W	3/17/13	nd	-	nd	nd	-
B21-W	3/17/13	nd	-	nd	nd	-
B22-W	3/17/13	6	nd	nd	8.0	69
Practical Quanti	tation Limit	5.0	0.5	10.0	3.0	5.0

Analyses of Dissolved Metals in Water by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

03/06/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: John Havens Estate Sample Matrix: Soil Date Sampled: 02/26/2013 Date Received: 02/28/2013 Spectra Project: 2013020625

Client ID	Spectra #	Analyte	Result	Units	Method
B20-6	1	Total Nickel	16	mg/Kg	SW846 6010B
B21-2	2	Total Nickel	20.1	mg/Kg	SW846 6010B
B22-6	3	Total Nickel	11.7	mg/Kg	SW846 6010B
MW-5-3	4	Total Nickel	21.7	mg/Kg	SW846 6010B
B20-W	5	Nickel	0.201	mg/L	SW846 6010B
B19-W	6	Nickel	0.199	mg/L	SW846 6010B
B21-W	7	Nickel	0.422	mg/L	SW846 6010B
B22-W	8	Nickel	1.27	mg/L	SW846 6010B
B23-W	9	Nickel	0.054	mg/L	SW846 6010B

Date Analyzed - 3-5-13 SCJ

SPECTRA LABORATORIES

1 Ross Way	• Tacoma, V	VA 98421	• (253)	272-4850	• Fax ((253) 572-9	9838 • wv	ww.spectra-	lab.com
3/5/2013									
Libby Environm	ental				Units:		mg/L		
4139 Libby Rd.	NE				Spectra Proj	ject:	2013020625		
Olympia, WA 9	8506				Applies to S	Spectra #'s	1 thru 4		
			QUALITY	CONTRO	L RESULTS	5			
]	CP Metals	SW846 601	0B - Soil/Sol	id			
			r	Method Bla	ınk				
Date Digested:	3/5/2013				Date Analyz	zed:	3/5/2013		
			Floment		Diani D (
			Nickel	-	< 0.015	τ -			
			Bla	nk Spike (LCS)				
Date Digested:	3/5/2013				Date Analyz	ed:	3/5/2013		
				Spike	LCS	LCS			
		Element		Added	Conc.	%Rec			
		IVICKEI		2.0	2.098	104.9			
LCS Recovery lir	nits 80-120%	Matrix Snil	a/Matrix S	niko Dunk		D \			,
Date Digested:	3/5/2013	State in Ohi	5001au1x 0j	pine Dupti	Date Analyz	ed:	3/5/2013		
Sample Spiked:	2013030045-1				2 are i maryz		51512015		
		Sample	Spike	MS	MS	MSD	MSD		
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD	
Nickel		0.156	2.0	2.008	92.6	1.994	91.9	0.8	
Pacouan Limite	75 1050/								
RPD Limit 20	15-12570								

Steven G. Hibbs Laboratory Manager

2221 Ross Way	• Tacoma, WA	A 98421 •	(253) 27	2-4850	• Fax (25	3) 572-983	8 • www.s	pectra-lab.com
3/5/2013								
Libby Environmenta	ıl, Inc				Units:		mg/L	
4139 Libby Rd. NE					Spectra Pr	oject:	2013020625	
Olympia, WA 9850	6				Applies to	Spectra #'s	5 thru 9	
		QUALI	TY CONT	ROL RES	SULTS			
······································		ICP Metals	s SW846 60	10B - Wa	ter/Liquid			
			Method	Blank				
Date Digested:	3/5/2013				Date Analy	zed:	3/5/2013	
		Element			Result			
		Nickel	-		< 0.015			
Date Digested:	3/5/2013		Blank Spil	ke (LCS)	Date Analy	vzed.	3/5/2013	
-					2 410 1 1141	Jeu.	5/5/2015	
				Spike	LCS	LCS		
		Element	-	Added	Conc.	%Rec		
		Nickel		1.0	0.963	96.3		
LCS Recovery limits	80-120%							
	М	atrix Spike/N	Aatrix Spik	e Duplica	te (MS/MSI))		
Date Digested:	3/5/2013				Date Analy	zed:	3/5/2013	
Sample Spiked:	2013030044-1							
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Nickel		0.047	1.0	0.956	90.9	0.949	90.2	0.8

Spectra Laboratories

Steven G. Hibbs Laboratory Manager

				2013030626		
Libby Environm	ental, Inc	ö	Chai	n of Custody Recor	q	www.LibbyEnvironmental.com
4139 Libby Road NE Olympia, WA 98506	Ph: 360-3 Fax: 360-3	52-2110 52-4154		Date: 2 - 2 / - / ろ	Page:	l of l
Client: Lubby Envir	connental	JA		Project Manager: ブムw	NE Dey man	
Address: SEE AV	OVE			Project Name: John H	tavens estate	
City:	State	Z	:d	Location:	City, St	ate:
Phone:	Fax	U		Collector:	Date of	Collection: 2 -26-13
Client Project #				Email:		
				1287 (354) 956 (354)	110 2013 5 1 1 C	
Sample Number	Depth Tim	Sample e Type	Container Type	2 (20 02 100 100 100 00 00 100 100 100 100	10 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0	Field Notes
1 320-6		Soil	4 oz JAR		+	
2 821-2		Seil	402 JAR			
3 B 22-6		Soul	402 JAR			
4 MW-5-3		541	4°Z JAR			
5 B20-W		1420	1921			
6 B19-W		1420	Poly			
7 BZ1-W		Hzo	Poly			
8 B22-W		420	Poly			
9 B23-W		Hza	Poly		*	
10						
Relinquished by:	Date / Time 27-13 i C	1.30 AM	Received by:	V 2/28/13 0/00	Sample Receipt:	Remarks: Record pH here:
Relinquished by:	Date / Time		Received by:	/ / Date / Time	Good Condition?	
Relinquished by:	Date / Time		Received by:	Date / Time	Cold? Seals Intact?	ş
					Total Number of Containers	CLIS
LECAL ACTION CLAUSE. In the event of default of pe	ymeni and/or faiture to pay, O	ient agrees to pay the co	sts of collection including court costs a	nd reacceated afternay feas to be delemaned by a could of NW.	Δ	istribution: White - Lab, Yellow - File, Pink - Originator

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 •

www.spectra-lab.com

03/07/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: John Havens Estate Client ID: B23-2 Sample Matrix: Soil Date Sampled: 02/26/2013 Date Received: 03/01/2013 Spectra Project: 2013030009 Spectra Number: 1

Analyte	Result	Units	Method
Total Nickel	7.1	mg/Kg	SW846 6010B

Date Analyzed: 3-5-13 SCJ

SPEC/TRA/LABORATORIES

Steve Hibbs, Laboratory Manager a6/mlh

21 Ross Way	• Tacoma, V	VA 98421	• (253)	272-4850	• Fax ((253) 572-9	9838 • wv	vw.spectra-lab.	com
3/5/2013									
Libber Engline									
4130 Libby Rd	NE				Units:		mg/L		
Olympia, WA 9	NE 18506				Spectra Pro	ject:	2013030009		
· · · · · · · · · · · · · · · · · · ·					Applies to 8	spectra #'s	I thru 4		
			QUALITY	CONTRO	L RESULTS	5			
		-	ICP Metals	SW846 601	0B - Soil/Sol	id			
			ľ	Method Bla	nk			a a an	
Date Digested:	3/5/2013				Date Analyz	zed:	3/5/2013		
			Element		Blank Resul	t			
			Nickel		< 0.015				
				-h (h - 1) - (
Date Digested:	3/5/2013		Bla	nk Spike (LCS) Date Analyz	ed.	3/5/2013		
_					2 ato 1 mary2		5/5/2015		
				Spike	LCS	LCS			
		Element		Added	Conc.	%Rec			
		Nickel		2.0	2.098	104.9			
LCS Recovery lin	nits 80-120%	Matrix Spi	ke/Matrix Si	nike Dunli	ate (MS/MS	 ח)			
Date Digested:	3/5/2013	r -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Date Analyz	ed:	3/5/2013		
Sample Spiked:	2013030045-1				<i>y</i> -				
		Sample	Spike	MS	MS	MSD	MSD		
Element		Conc.	Conc,	Conc.	%Rec	Conc	%Rec	RPD	
Nickel		0.156	2.0	2.008	92.6	1.994	91.9	0.8	
Recovery Limits '	75-125%								
RPD Limit 20									

Inhon

Steven GHibbs Laboratory Manager

2221 Ross Way	Tacoma, WA	98421 •	(253) 27	2-4850	• Fax (25	3) 572-983	8 • www.s	pectra-lab.cor
3/5/2013								-
Libby Environmental,	Inc				Units:		mg/L	
4139 Libby Rd. NE					Spectra Pre	oject:	2013030009	
Olympia, WA 98506					Applies to	Spectra #'s	5 and 6	
		QUALI	TY CONT	ROL RES	SULTS			
		ICP Metals	SW846 60	10 B - Wa	ter/Liquid			
Data Digast-J	2/5/0010		Method	Blank				
Date Digested:	3/5/2013				Date Analy	zed:	3/5/2013	
		Element			Result			
	-	Nickel	-		< 0.015			
			Blank Snil	ce (LCS)				
Date Digested:	3/5/2013		biunik Spir	(DC5)	Date Analy	zed:	3/5/2013	
				Spike	LCS	LCS		
	-	Element		Added	Conc.	%Rec		
		Nickel		1.0	0.963	96.3		
LCS Recovery limits 8	0-120%							
	Ma	trix Spike/N	1atrix Spik	ke Duplica	te (MS/MSI))		
Date Digested:	3/5/2013				Date Analy	zed:	3/5/2013	
Sample Spiked:	2013030044-1							
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Nickel		0.047	1.0	0.956	90.9	0.949	90.2	0.8

Recovery Limits 75-125% RPD Limit 20

Spectra Laboratories

~ Steven G. Hibbs 1

Laboratory Manager

	www.LibbyEnvironmental.com	l of /			late:	f Collection: ン/24い3 - 2/27/13		Field Notes											Remarks: Record pH here:	1	SDAY	513	Distribution: White - Lab, Yellow - File, Pink - Originator
30009	ord '	Page:	I'ME DEYMON	Havas Estate	City, S	Date of		A THE SECOND STREET	7					-*					Sample Receipt:	Good Condition?	Cold?	Seals Intact?	Total Number of Containers
201303	in of Custody Reco	Date: 2 - 28 - 13	Project Manager: To	Project Name: John	Location:	Collector:	Email:	32 1.110 (11 1.11 1.12 1.25 2.0)											3/1/13 @ 1000	L / Date / Time	Date (Time		and reasonable attorney lees to be determinant by a cost of law
	Chai				Zip:			mple Container Type	16 402 JAR	í ľ	11	ر م	o Pely	9					Receivering	Received by:		veceived by.	by the scenes of cashestian including coart coals
	nental, Inc.	Ph: 360-352-2110 Fax: 360-352-4154	minon mental	RE ABOVE	State:	Fax:		Depth Time T	So	20	50	Ŝ	142	Ŧ					20/13 q:30	Date / Time	Doto (Timo		ટ્રથાપ્રાજ્યના કન્યર્સન વિદ્યાપ્ટ to pay, Caera agrees to p
	Libby Environr	4139 Libby Road NE Olympia, WA 98506	Client: Libby E	Address: J SF	City:	Phone:	Client Project #	Sample Number	212615 1 B23-2	2 B 24-1	3 1325-2	4 4-187-2	5 13 24 - W	6 B25-W	7	ω	თ	10	Relinquished by:	Relinduished by:	Dollars the day have	reiniquistied by.	LEGAL ACTION CLAUSE: In the survey of default or

03/21/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: John Havens Estate Date Received: 03/15/2013 Spectra Project: 2013030343

Client ID	Spectra #	<u> Analyte</u>	Result	Units	Method	<u>Matrix</u>	Date Sampled
B21-W	1	Dissolved Nickel	< 0.015	mg/L	EPA 200.7	Water	02/26/2013
B22-W	2	Dissolved Nickel	< 0.015	mg/L	EPA 200.7	Water	02/26/2013
B21-5	3	Total Nickel	8.3	mg/Kg	SW846 6010B	Soil	02/26/2013
MW5-6	4	Total Nickel	21.4	mg/Kg	SW846 6010B	Soil	02/26/2013

Dated analyzed: 3-20-13 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a8/scj

		Initial Calibrati	on Verification (ICV)		
Date Digested:	3/20/2013			Date Anal	yzed:	3/20/2013
			ICV	ICV	ICV	
		Element	Conc.	Result	%Rec	
		Nickel	1.0	0.973	97.3	

ICV Recovery limits 95-105%

Spectra Laboratories

Steve Hibbs Laboratory Manager

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

3/20/2013

Libby EnvironmentalUnits:mg/L4139 Libby Rd. NESpectra Project:2013030343Olympia, WA 98506Applies to Spectra #s3 and 4

QUALITY CONTROL RESULTS

		ICP Metals SW84	6 6010B - Soil/Solid		
		Metho	d Blank	, , , , , , , , , , , , , , , , , , ,	
Date Digested:	3/20/2013	¢	Date Analyzed:	3/20/2013	
		Element	Blank Result		
		Nickel	< 0.015		

			Blank Spike (L	CS)		
Date Digested:	3/20/2013			Date Analyz	ed:	3/20/2013
			Spike	LCS	LCS	
		Element	Added	Conc.	%Rec	
		Nickel	2.0	1.965	98.3	

LCS Recovery limits 80-120%

		Matrix Spil	ke/Matrix S	pike Dupl	icate (MS/MS	D)		
Date Digested: Sample Spiked:	3/20/2013 2013030386-1				Date Analyz	ed:	3/20/2013	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Nickel		0.462	2.0	2.206	87.2	2.185	86.2	1.2

Recovery Limits 75-125% RPD Limit 20

SPECTRA LABORATORIES

Steven G. Hibbs Laboratory Manager

A 1	ntal, Inc. Ph: 360-352-2110	Chair	n of Custody Rec	sord	www.LibbyEnvironmental.com
Fax: 360-352-4154			Date: 3-14	- 13 Page:	of
vironmental,	ורו	Enc,	Project Manager:	Jamie Dei	ym an
erbare)			Project Name:	John Havens	Estate
State: Zip:	Zip:		Location:	City, St	ate: Olympia, WA
Fax:			Collector:	Date of	Collection: Z-26-13
			Email:		
			10120 - 100	2	er Hi
Depth Time Type C	0 0	Container Type	2 20 20 00 00 1 1 1 1 1 1 1 1 1 1 1 1 1	Children Control and	Field Notes
- 1400 Hz0		Poly			
2H OHH -		Pa,		X	
5 1350 Sail	-	Jar			
6 1540 Sail	_	Jir		×	
	_				
	_				
	-				
	_				
Date/Time		Nedrov:		Sample Receipt:	Remarks:
Date / Time		eived by:///	Date / Time	Good Condition?	Stander
	-	^	•	Cold?	
Date / Time Re	Re	ceived by:	Date / Time	Seals Intact?	
ant and/or failures to pay, Client agrees to pay the costs of co	costs of col	iection including court casts and	resortablo d'annay ferra to be delermaned by a court of	Total Number of Containers	TAT: 24HR 48HR 5-DAV

7 N20202 U2

Distribution: White - Lab, Yellow - File, Pink - Originator		Relinquished by: Date / Time Received by:		Relinquished by: // // Date / Time // PREceived by:	anon 2 2-260 1624 / 1200 15 10 10	Relinquished by: Date / Time Received by:	18 BZZ-W - 1615 WTK AND PAT	17 R23 - 4 4 1605 Sole 4.2	16 B23-2 2 1600 Ser 4-2	15 Mris-6 6 1540 Sole 4.2	14 MWS-3 3 1530 Sole 4.2	13 B22- und - 1440 with Anallow	12 mar and a first first and a state and a	11 822-6 6 1430 524 42	10- B21- m - Itoo with AMR/Rey	9 621-5 5 1350 2014 4.2	8-321-2 2 1345 Sak 402	7 820 - W - 1200 WTA AMA/POLY	6 work mining with a supersonal resonance and a superson and a supersonal and a super	5 B20-6 6 1150 501 4.2	4 SIG-W - 1050 WTX AND/BUTWA	3 B1 3 1000 WTR AMB	2 B13-6 6 950 Soin you	1 &18-3 3 940 Save 402	Sample Number Depth Time Type Type	Client Project # $2\sqrt{9}/-00/1$	Phone: (2.53) 475-77 // Fax: (Address: 30/1 - HUSON - SUITE A TACCAA	Client: KOSINSON & NUGCE	Olympia, WA 98506 Fax: 360-352-4154	4139 Libby Road NE Ph: 360-352-2110	likky Environmental Inc
	· ·	Date / Time		Date / Time	1-2-26-15 16:24	Date/Time		· · · · · · · · · · · · · · · · · · ·		×	X		noralise distancemente insertion municipation developments developments distanting the second s	X	X	×			CONTRACT COMPANYING AND	X							Location: 7/1 93rd	A Project Name: Xatta	Project Manager:	Date: 2/26 / 13		hain of Custody Record
	otal Number of Containers We need ELM	Seals Intact?	Sold?	Bood Condition?	STU TURN	Sample Receipt: Remarks:		XX HOCNFULME TALS		XX) Hotors Hatter	IXX I Oux Metals	X X $ X Ph, Cd, Cr, As, cu, N; -Dis$	and the standight fragely with free and the standight and the standight and the standight fragely a standard and the standight fragely and the standard	XX	X X (x) Pb, Cr, As, N; - Diss	XXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX		XXXX X Pb. Cr. As - Dies	man the area way have a serie and many and and a series	XX	XXX X X Pb, Cr, As - Diss	XVX XX Pb - Diss	X X		the service of the se	Date of Collection; 2/2 6 / 13	AJESE City: OLYMPIA	HAUFNS 12STATE	X WILLS	Page: J of T		

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Gasolino	Diagal	Min anal Oil	Hearny O'l
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	2/27/13	90	nd	nd	nd	nd
B24-1	2/27/13	91	nd	nd	nd	nd
B24-2	2/27/13	92	nd	nd	nd	nd
B24-2 Dup	2/27/13	91	nd	nd	nd	nd
B25-2	2/27/13	93	nd	nd	nd	nd
HB7-2	2/27/13	95	nd	nd	nd	nd
Practical Quantitati	ion Limit		20	50	100	100

Hydrocarbon Identification by NWTPH-HCID for Soil

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Metals in Soil by EPA Method 7010 Series

Sample Number	Date Analyzed	Lead (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Arsenic (mg/kg)
Method Blank	3/2/13	nd	nd	nd	nd
B24-1	3/2/13	nd	nd	9.0	6.5
B25-2	3/2/13	nd	nd	7.9	nd
HB7-2	3/2/13	nd	nd	9.2	6.5
Practical Quantita	tion Limit	5.0	1.0	5.0	5.0

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS	3/2/13	92%	101%	99%	88%
L130225-10 MS	3/2/13	86%	96%	101%	86%
L130225-10 MSD	3/2/13	96%	99%	89%	83%
RPD	3/2/13	11%	3%	13%	3%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Mercury in Soil by EPA Method 7471

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Method Blank	3/4/13	nd
B24-1	3/4/13	nd
B25-2	3/4/13	nd
HB7-2	3/4/13	nd
Practical Quantitation Limit		0.5

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E

Date	Mercury
Analyzed	(% Recovery)
3/4/13	112%
3/4/13	103%
3/4/13	103%
3/4/13	0%
	Date Analyzed 3/4/13 3/4/13 3/4/13 3/4/13

QA/QC for Mercury by EPA Method 7471

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Metals in Soil by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	(mg/kg)	(mg/kg)
Method Blank	3/2/13	nd	nd
B24-1	3/2/13	6.3	6.3
B25-2	3/2/13	nd	6.1
HB7-2	3/2/13	10	nd
Practical Quantitation Limit		5.0	5.0

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	3/2/13	95%	89%
L130225-10 MS	3/2/13	91%	92%
L130225-10 MSD	3/2/13	92%	99%
RPD	3/2/13	1%	8%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Hydrocarbon Identification by NWTPH-HCID for Water

Sample	Date	Surrogate	Gasoline	Diesel	Mineral Oil	Heavy Oil
Number	Analyzed	Recovery (%)	(µg/l)	$(\mu g/l)$	(µg/l)	(µg/l)
Method Blank	2/27/13	84	nd	nd	nd	nd
B24-W	2/27/13	97	nd	nd	nd	nd
B25-W	2/27/13	97	nd	nd	nd	nd
Practical Quantitation	on Limit		200	500	500	500

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	μg/L	μg/L	μg/L	μg/L
Method Blank	3/2/13	nd	nd	nd	nd
B24-W	3/2/13	98	2.4	42	24
B25-W	3/2/13	17	nd	50	nd
Practical Quantita	ation Limit	5.0	0.5	10.0	3.0

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Dirk Peterson & Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E

QA/QC for Metals in Water by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS	3/2/13	103%	101%	99%	95%
L130301-9 MS	3/2/13	102%	92%	89%	93%
L130301-9 MSD	3/2/13	107%	94%	77%	97%
RPD	3/2/13	5%	2%	14%	4%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson & Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Mercury in Water by EPA Method 7470

Sample	Date	Mercury
Number	Analyzed	μg/L
Method Blank	3/4/13	nd
B24-W	3/4/13	nd
B25-W	3/4/13	nd
B25-W Dup	3/4/13	nd
Practical Quantitation Limit		0.5

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Number	Date Analyzed	Mercury (% Recovery)	
LCS	3/4/13	112%	
B25-W MS	3/4/13	94%	
B25-W MSD	3/4/13	94%	
RPD	3/4/13	0%	

QA/QC for Mercury by EPA Method 7470

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	μg/L	μg/L
Method Blank	3/2/13	nd	nd
B24-W	3/2/13	868	106
B25-W	3/2/13	89	124
Practical Quantitation Limit		5.0	5.0
Practical Quantitation Limit		5.0	5.0

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	3/2/13	106%	100%
L130301-9 MS	3/2/13	111%	106%
L130301-9 MSD	3/2/13	119%	112%
RPD	3/2/13	7%	6%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-30 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Dissolved Metals in Water by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic	Copper
Number	Analyzed	μg/L	μg/L	μg/L	μg/L	μg/L
Method Blank	3/17/13	nd	nd	nd	nd	nd
LCS	3/17/13	115%	99%	107%	119%	106%
B24-W	3/17/13	nd	-	-	nd	nd
B25-W	3/17/13	nd	-	nd	-	-
Practical Quanti	tation Limit	5.0	0.5	10.0	3.0	5.0

"nd" Indicates not detected at the listed detection limits.

03/08/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: John Havens Estate Client ID: B24-1 Sample Matrix: Soil Date Sampled: 02/27/2013 Date Received: 03/01/2013 Spectra Project: 2013030009 Spectra Number: 2

Analyte	Result	Units	Method
Total Nickel	15.4	mg/Kg	SW846 6010B

Date Analyzed: 3-5-13 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a6/mlh

Page 2 of 6

03/08/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: John Havens Estate Client ID: B25-2 Sample Matrix: Soil Date Sampled: 02/27/2013 Date Received: 03/01/2013 Spectra Project: 2013030009 Spectra Number: 3

Analyte	Result	Units	Method
Total Nickel	< 1.5	mg/Kg	SW846 6010B

Date Analyzed: 3-5-13 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a6 mlh

03/08/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: John Havens Estate Client ID: HB7-2 Sample Matrix: Soil Date Sampled: 02/27/2013 Date Received: 03/01/2013 Spectra Project: 2013030009 Spectra Number: 4

Analyte	Result	Units	Method
Total Nickel	15	mg/Kg	SW846 6010B

Date Analyzed: 3-5-13 SCJ

SPECTRA LABORATORIES

2210 1

Steve Hibbs, Laboratory Manager a6/mlh

Page 4 of 6

03/08/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: John Havens Estate Client ID: B24-W Sample Matrix: Water Date Sampled: 02/27/2013 Date Received: 03/01/2013 Spectra Project: 2013030009 Spectra Number: 5

Analyte	Result	Units	Method
Nickel	0.639	mg/L	EPA 200.7

Date Analyzed: 3-5-13 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a6/mlh

03/08/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: John Havens Estate Client ID: B25-W Sample Matrix: Water Date Sampled: 02/27/2013 Date Received: 03/01/2013 Spectra Project: 2013030009 Spectra Number: 6

Analyte	Result	Units	Method	
Nickel	0.174	mg/L	EPA 200.7	

Date Analyzed: 3-5-13 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a6/mlh

SPECTRA Laboratories 2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com 3/5/2013 Libby Environmental Units: mg/L 4139 Libby Rd. NE Spectra Project: 2013030009 Olympia, WA 98506 Applies to Spectra #'s 1 thru 4 QUALITY CONTROL RESULTS ICP Metals SW846 6010B - Soil/Solid **Method Blank** Date Digested: 3/5/2013 Date Analyzed: 3/5/2013 Element Blank Result Nickel < 0.015 Blank Spike (LCS) Date Digested: 3/5/2013 Date Analyzed: 3/5/2013 Spike LCS LCS Element Added Conc. %Rec Nickel 2.0 2.098 104.9 LCS Recovery limits 80-120% Matrix Spike/Matrix Spike Duplicate (MS/MSD) Date Digested: 3/5/2013 Date Analyzed: 3/5/2013 Sample Spiked: 2013030045-1 Sample Spike MS MS MSD MSD Element Conc. Conc. Conc. %Rec Conc %Rec RPD Nickel 0.156 2.0 2.008 92.6 1.994 91.9 0.8 Recovery Limits 75-125% **RPD Limit 20** SPECTRA LABORATORIES

Jon Jon Steven GHibbs

Laboratory Manager

2221 Ross Way	2-4850	• Fax (253) 572-9838 • www.spectra-lab.cor						
3/5/2013								
Libby Environmental, Inc				Units:		mg/L		
4139 Libby Rd. NE				Spectra Pr	oject:	2013030009		
Olympia, WA 98506					Applies to Spectra #'s 5 and 6			
		QUAL	ITY CONT	ROL RES	SULTS			
		ICP Metal	s SW846 6(010 B - Wa	ter/Liquid			
			Method	Blank				
Date Digested:	3/5/2013				Date Analyzed: Result		3/5/2013	
		Element						
	-	Nickel	_		< 0.015			
	and a stage stage in the state of the state		Blank Spil	ke (LCS)				
Date Digested:	3/5/2013		• p		Date Analyzed:		3/5/2013	
				Spike	LCS	LCS		
	_	Element	-	Added	Conc.	%Rec		
		Nickel		1.0	0.963	96.3		
LCS Recovery limits 8	0-120%				······································			
	Ma	trix Spike/N	Matrix Spil	ke Duplica	te (MS/MSI))		
Date Digested:	3/5/2013				Date Analyzed:		3/5/2013	
Sample Spiked:	2013030044-1							
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
NT: -11		0.047	1.0	0.956	90.9	0 949	00.7	0.0

Recovery Limits 75-125% RPD Limit 20

Spectra Laboratories

Steven G. Hibbs Laboratory Manager
	www.LibbyEnvironmental.com	l of /			tate:	f Collection: 212413 - 21271			Field Notes											Remarks: Record pH here:		S AH	513	Distribution: White - Lab, Yellow - File, Pink - Originator
30009	ord	Page:	I'ME DEYMON	Havens' Estate	City, S	Date o		1000 1000 1000 1000 1000 1000 1000 100	A LANGE CO CALL	7					-8					Sample Receipt:	Good Condition?	Cold?	Seals Intact?	I otal Number of Containers
301303	ain of Custody Reco	Date: 2 - 28 - 13	Project Manager:	Project Name: ΌοηΝ	Location:	Collector:	Email:	200 200 200	22 1.43 03 145 145 153 209											3/1/13 @ 1000	L / Date / Time			is and reasonable atomey fees to be determined by a cret of law.
	Cha	110 154			Zip:				Sample Container Type Type	Soil 402 JAR	Soit 1	Sal	Soil 4	HLO Poly	H20 6					K Receivering	Received by:		received by:	જ to pay the stasts of costerizion induding creat cost
	nmental, Inc.	Ph: 360-352-2 Fax: 360-352-4	Environ menta	SER ABOVE	State:	Fax:			Depth Time											2/20/13 q:30	Date / Time	:E7C		aue of improvement સ્વસંદેખ સિલ્હાન to pay, Ciene agree
	Libby Enviro	4139 Libby Road NE Olympia, WA 98506	Client: Libby	Address:	City:	Phone:	Client Project #		Sample Number	212615 1 B23-2	2 B 24-1	3 13-5-2	4 1+137-2	5 324-W	6 B25-W	7	8	6	10	Relinquished by:	Relinduished by:		venuidaisuea by.	LEGAL ACTION CLAISE: In the survey of det

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

03/21/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: John Havens Estate Client ID: B24-W Sample Matrix: Water 02/27/2013 Date Sampled: Date Received: 03/15/2013 Spectra Project: 2013030344 Spectra Number: 1

Analyte	Result	Units	Method
Dissolved Nickel	< 0.015	mg/L	EPA 200.7

Dated analyzed: 3-20-13 SCJ

SPECTRA/LABORATORIES For

Steve Hibbs, Laboratory Manager a6/scj

Page 1 of 1

Element Nickel

Result

< 0.015

Initial Calibration Verification (ICV) Date Digested: 3/20/2013 Date Analyzed: 3/20/2013 ICV ICV ICV Element Conc. Result %Rec Nickel 1.0 0.973 97.3

ICV Recovery limits 95-105%

Spectra Laboratories

Steve Hjobs Laboratory Manager

<i>ľ</i>	www.LibbyEnvironmental.com	ge: L of	Man	Estate	v, State: Olv. M. N. A. (.) A	te of Collection: 72.7-13				10 - C - C - C - C - C - C - C - C - C -	Eiald Notes																		Remarks:	Jand ed			Distribution: White - Lab, Yellow - File, Pink, Brighter
0/R 0,3 034L	ord	- 13 Pa	Jamie Deu	ohn Havens	Ö	Dai		11111		1.01 1.01 0.00 meas	AN NY CO LOC NY																		Sample Receipt:	Good Condition?	Cold?	Seals Intact?	Total Number of Containers
7/L	in of Custody Reco	Date: 3 - 14	Project Manager:	Project Name: 7.0	Location:	Collector:	Email:		in other	201, 201, 201, 201, 201, 201, 201, 201,	00 00 00 00 00 00 00 00																		3/15/13.00 Date / Time	/ / Date / Time		Date / Time	nd reasinablo attorney tees to be determined by a covid of law.
	Cha	10 54	then Inc.		Zip:							Hed Oaly																	Received by	Received by:		Received by:	to pay the costs of collection metucing enum custs .
	mental, Inc.	Ph: 360-352-211 Fax: 360-352-41	Environmen	(social above)	State:	Fax:					Depth Time	- 930																	Date / Time	Date / Time		Date / Time	of payment and/or failure to pay, Client agress t
	Libby Environ	4139 Libby Road NE Olympia, WA 98506	Client: L'bby	Address:	City:	Phone:	Client Project #			TAX NAMNOO	Sample Number	1 B24-W	2	3	4	5	6	7	8	6	10	11	12 .	13	14	15	16	17	Relinquished by:	Relinquished by:		Relinquished by:	EGAL ACTION CLAUSE: In the event of default .

NER I	Date / Time Good Condition?					
	L L & L & JEWE BURG	0	Received by:		Date / Time	telinquished by: \mathcal{U}
apt.	Dample Low	Doumer 2/2	Amurat		27-13	aconon- Lovery 2
int: Remarks	Date / Time Sample Parce		Received by: //		Date / Time	Relinquished by:
-						
						n +
						2
					a. Augustation	11
						10
					÷	9
					,	8
X	x		402	s sil	2 13,	7 HB7-2
XXX Ph. C.			AMB POUT	20 WTR	10	6 B25-W
and the present and the second	Xamu and a second as	Carl manuation of the second sec	and an and a superior	annow and All Andrewson	and the second state of th	5-13-2-5-
×			402	10 5016	2 10	4 825-2
X 🐼 Ph. A.	X		AM& POLY	SO WITH	e la companya de la compa	3 524-2
			7 ° 7	20 Souce	2	2624 - 2
×	X		402	14 30/C	1	1 524-1
North Start Field	AN AN AN AN AN AN AN A AN	10× 10× 10× 10× 10×	Container Type	ne⊸ Sample Type	Depth Tir	Sample Number
A CAN AND AND AND AND AND AND AND AND AND A		a a a a a a a a a a a a a a a a a a a			ноососос с со	
Ser - NO Ser. 5	MILLS & KUSIN.	Email: N			1001E	Client Project # 279
Date of Collection:	Acr	Collector:		3X:	77/1 Fa	Phone: (253) 77-
City, State: OC 7	411 93- JAJESE	Location:	<u>, 04 8 6 :di</u>	ew A Z	Stat	City: TACOMA
IS ESTATE	AME: JUHN HAUTEN	Project Na		JITA A	HUSON S.	Address: 3a // S
S	anager: MAX W/CC	Project Ma		N	NUBCI	Client: Rus, NSUN
Page:	X + Fr - JX	Date:		352-4154	Fax: 360-	Olympia, WA 98506
. Y .	2, 47, 13		. 2	352-2110	Ph: 360-	4139 I ibby Road NE

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-1 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Gasoline	Diesel	Mineral Oil	Heavy Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	3/4/13	101	nd	nd	nd	nd
HB8-3	3/4/13	103	nd	nd	nd	nd
HB1-3	3/4/13	117	nd	nd	nd	nd
HB2-3	3/4/13	96	nd	nd	nd	nd
HB4-3	3/4/13	113	nd	nd	nd	nd
HB3-3	3/4/13	97	nd	nd	nd	nd
HB3-3 Dup	3/4/13	118	nd	nd	nd	nd
Practical Quantitation I	Limit		20	50	100	100

Hydrocarbon Identification by NWTPH-HCID for Soil

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-1 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

<u> </u>					
Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	3/2/13	nd	nd	nd	nd
HB8-3	3/2/13	nd	nd	7.9	6.3
HB1-3	3/2/13	nd	nd	8.0	8.9
HB2-3	3/2/13	nd	nd	8.4	8.2
HB4-3	3/2/13	nd	nd	7.6	nd
HB3-3	3/2/13	nd	nd	7.7	6.1
HB3-3 Dup	3/2/13	nd	nd	7.8	5.9
Practical Quantitat	ion Limit	5.0	1.0	5.0	5.0

Analyses of Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-1 Client Project # 2491-001E

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS	3/2/13	92%	101%	99%	88%
HB3-3 MS	3/2/13	103%	98%	88%	114%
HB3-3 MSD	3/2/13	111%	99%	89%	99%
RPD	3/2/13	8%	1%	1%	14%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-1 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Method Blank	3/4/13	nd
HB8-3	3/4/13	nd
HB1-3	3/4/13	nd
HB2-3	3/4/13	nd
HB4-3	3/4/13	nd
HB3-3	3/4/13	nd
HB3-3 Dup	3/4/13	nd
Practical Quantitation Limit		0.5

Analyses of Mercury in Soil by EPA Method 7471

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-1 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	3/4/13	112%
HB3-3 MS	3/4/13	103%
HB3-3 MSD	3/4/13	103%
RPD	3/4/13	0%

QA/QC for Mercury by EPA Method 7471

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-1 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Copper	Zinc
Number	Analyzed	(mg/kg)	(mg/kg)
Method Blank	3/2/13	nd	nd
HB8-3	3/2/13	13	nd
HB1-3	3/2/13	12	25
HB2-3	3/2/13	13	nd
HB4-3	3/2/13	nd	nd
HB3-3	3/2/13	11	nd
HB3-3 Dup	3/2/13	10	nd
Practical Quantitation Limit		5.0	5.0

Analyses of Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130227-1 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	3/2/13	95%	89%
HB3-3 MS	3/2/13	93%	90%
HB3-3 MSD	3/2/13	82%	97%
RPD	3/2/13	13%	8%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

03/07/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: John Havens Estate Sample Matrix: Soil 02/27/2013 Date Sampled: Date Received: 03/01/2013 Spectra Project: 2013030010

Client ID	Spectra #	Analyte	Result	Units	Method
HB8-3	1	Total Nickel	22.2	mg/Kg	SW846 6010B
HB1-3	2	Total Nickel	20.0	mg/Kg	SW846 6010B
HB2-3	3	Total Nickel	18.6	mg/Kg	SW846 6010B
HB4-3	4	Total Nickel	9.5	mg/Kg	SW846 6010B
HB3-3	5	Total Nickel	19.9	mg/Kg	SW846 6010B

Date Analyzed - 3-5-13 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a7/scj

SPECTRA Laboratories 2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com 3/5/2013 Libby Environmental Units: mg/L 4139 Libby Rd. NE Spectra Project: 2013030010 Olympia, WA 98506 Applies to Spectra #'s 1 thru 5 QUALITY CONTROL RESULTS ICP Metals SW846 6010B - Soil/Solid **Method Blank** Date Digested: 3/5/2013 Date Analyzed: 3/5/2013 Element Blank Result Nickel < 0.015 Blank Spike (LCS) Date Digested: 3/5/2013 Date Analyzed: 3/5/2013 Spike LCS LCS Element %Rec Added Conc. Nickel 2.0 2.098 104.9 LCS Recovery limits 80-120% Matrix Spike/Matrix Spike Duplicate (MS/MSD) Date Digested: 3/5/2013 Date Analyzed: 3/5/2013 Sample Spiked: 2013030045-1 Sample Spike MS MS MSD MSD Element Conc. Conc. Conc. %Rec Conc %Rec RPD Nickel 0.156 2.0 2.008 92.6 1.994 0.8 91.9 Recovery Limits 75-125% RPD Limit 20

SPECTRA LABORATORIES

Steven G. Hibbs Laboratory Manager

	www.LibbyEnvironmental.com	Page: 1 of /	amie Deuman	Havens Estate	City, State: C)	Date of Collection:	CI 17 - 7		A Constant of the second of th	Print of the second sec	×		×	X	.X											iample Receipt: Remarks:	ood Condition?	old?	
2015 030010 Chain of Clistody Record		Date: 2-2&-13	Project Manager.	Project Name: Jahn	Location:	Collector:	Email:		201 201 202 202 202 202 202 202 202 202	trainer 10 20 20 50 50 40 40 40 40 40																orby: M 3/// Date / Time S	sd by:// Date / Time G		a by: Date / Hime St
mental Inc	Ph: 360-352-2110	Fax: 360-352-4154	Enviranmental, Inc	(see above)	State: Zip:	Fax:				Depth Time Type Type	3 1410 Soil Ja	3 1445 1	3 1500	3 1530	3 1545 \$										(12813 9:30 Neceiver	Date / Time Receive		Dale / IIIIE
l ibby Environ	4139 Libby Road NE	Olympia, WA 98506	Client: Lìbby	Address:	City:	Phone:	Client Project #	v1BP		Sample Number	1 H & 8-3	2 HB1-3	3 HBZ-3	4 HB4-3	5 HB 3-3	1 0.	0	0 0	10	11	12	13	14	15	10	Relinquished by:	Relinquished by:	Dollars: 1-1-1-1.	Lelliquisited by.

Distribution: White - Lab, Yellow - File, Pink Originator		sts and reasonable attorney fees to be determined by a cout of law.	ay the costs of collection including court co	ire to pay, Client agrees to p	ault of payment and/or failu	LEGAL ACTION CLAUSE: In the event of defa
TAT: 24HR 48HR A-DAV	Total Number of Containers					
	Seals Intact?	Date / Time	Received by:	/ Time	Date	Relinquished by:
	Cold?					*
TT + M I MAN		Date / Time	Received by:	/ Time	Date	Relinguished b
	vanipie Neceipt.	2.21-12-12	Sec.	N:SI	2-27-10	Anne Sury
, Remarks	Sample Deceint:	Date / Time	Received by:	/ Time	Date	Relinquished by:
				مر		17
						16
		e				15
N _g						14
						13
						12
						10
				-		9
						8
						7
						6
	XX	×	4	12451	6	5 HB3-3
84	XX			15 30	w	4 484-3
	X X			1500	3	3 4182-3
~ <u>k</u>	XX	8		Sh hi	V	2 MB1-3
	XX	×	20 H 1:0	5 01 41	J.	5-39 H L
Field Notes	A SAT SO TO TO THE	10/ 10/ 10/ 50 20 20 20 20 4	ype Type	Time T	Depth	Sample Number
	107 107 107 107 107 107 107 107 107 107		mple	S S S S S S S S S S S S S S S S S S S		AND
/////	/////				-	
	Sun-hoble . cok	Email: m wills @ cobin.		m	1-001	Client Project # 24
of Collection: 2-27-13	Date	Collector: ACY		Fax:	-7711	Phone: 253-475
State: 01 in dia	ese City,	Location: 4/1 J3-J Av	Zip: 98409	State: WA		City: Tacobac
	lavens Estete	Project Name: John H		¢Ą	woon Suit	Address: 3011 S H
	Wills	Project Manager: MAX			Noble	Client: Robinson
Of or other	Page	Date: 2-27-13		360-352-2110 :: 360-352-4154	Ph: Fax	4139 Libby Road NE Olympia, WA 98506
www.LibbyEnvironmental.com	ġ	ain of Custody Recor	Ch	l, Inc.	nmenta	Libby Enviro
لىلىدىدىيە بىرىكى كەركىيە كەركىيە كەركىيە كەركىيە بىكى كەركىيە كەركىيە كەركىيە كەركىيە كەركىيە بىلىغىدىغىدىغىد ئىلىدىيە بىرىكى كەركىيە	ىلىغىنى مەرەپىيە بىلىغىنىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغ مەرەپ مەرەپ مەرەپ بىلىغانىيە بىلىغانىيە بىلىغان بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانى	مىيە بىرىمىيە بىرىمى مىيە بىرىمىيە	and the set of the set		and the second secon	a de la companya de l La companya de la comp

Sandan Salar

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130228-3 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

				101		
Sample	Date	Surrogate	Gasoline	Diesel	Mineral Oil	Heavy Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	3/5/13	100	nd	nd	nd	nd
HB5-1	3/5/13	92	nd	nd	nd	nd
HB6-1	3/5/13	80	nd	nd	nd	nd
HB9-1	3/5/13	92	nd	nd	nd	nd
HB10-1	3/5/13	87	nd	nd	nd	nd
HB10-1 Dup	3/5/13	93	nd	nd	nd	nd
Practical Quantitation	ı Limit		20	50	100	100

Hydrocarbon Identification by NWTPH-HCID for Soil

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130228-3 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Number	Date Analyzed	Lead (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Arsenic (mg/kg)
Method Blank	3/2/13	nd	nd	nd	nd
HB5-1	3/2/13	nd	nd	nd	nd
HB6-1	3/2/13	nd	nd	nd	nd
HB9-1	3/2/13	nd	nd	nd	nd
HB10-1	3/2/13	43	nd	6.1	5.6
Practical Quantita	tion Limit	5.0	1.0	5.0	5.0

Analyses of Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130228-3 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS	3/2/13	92%	101%	99%	88%
L130225-10 MS	3/2/13	86%	96%	101%	86%
L130225-10 MSD	3/2/13	96%	99%	89%	83%
RPD	3/2/13	11%	3%	13%	3%
RPD	3/2/13	11%	3%	13%	3%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130228-3 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Method Blank	3/4/13	nd
HB5-1	3/4/13	nd
HB6-1	3/4/13	nd
HB9-1	3/4/13	nd
HB10-1	3/4/13	nd
Practical Quantitation Limit		0.5

Analyses of Mercury in Soil by EPA Method 7471

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130228-3 Client Project # 2491-001E

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	3/4/13	112%
L130227-1 MS	3/4/13	103%
L130227-1 MSD	3/4/13	103%
RPD	3/4/13	0%

QA/QC for Mercury by EPA Method 7471

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130228-3 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Copper	Zinc
Number	Analyzed	(mg/kg)	(mg/kg)
Method Blank	3/2/13	nd	nd
HB5-1	3/2/13	nd	nd
HB6-1	3/2/13	nd	nd
HB9-1	3/2/13	nd	nd
HB10-1	3/2/13	5.5	nd
Practical Quantitation Limit		5.0	5.0

Analyses of Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130228-3 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample Number	Date Analyzed	Copper (% Recovery)	Zinc (% Recovery)
LCS	3/2/13	95%	89%
L130225-10 MS	3/2/13	91%	92%
L130225-10 MSD	3/2/13	92%	99%
RPD	3/2/13	1%	8%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

03/06/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

John Havens Estate
Soil
02/28/2013
03/01/2013
2013030012

Client ID	Spectra #	Analyte	Result	Units	Method
HB5-1	1	Total Nickel	15.7	mg/Kg	SW846 6010B
HB6-1	2	Total Nickel	< 1.5	mg/Kg	SW846 6010B
HB9-1	3	Total Nickel	209	mg/Kg	SW846 6010B
HB10-1	4	Total Nickel	< 1.5	mg/Kg	SW846 6010B

Date analyzed: 3-5-13 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a7/scj

21 Ross Way	• Tacoma, W	A 98421	• (253)	272-4850	• Fax ((253) 572-	9838 • ww	w.spectra-lab.c	com
3/5/2013									
Libby Environm	ental				Units:		mg/L		
4139 Libby Rd. 1	NE				Spectra Proj	ect:	2013030012		
Olympia, WA 9	8506				Applies to S	pectra #'s	1 thru 4		
			OUALITY	CONTRO	I. DESULTS	2			
		1	CP Metals S	SW846 601	IOR - Soil/Sol	, 14			
			N	fethod Bla	ink				
Date Digested:	3/5/2013				Date Analyz	zed:	3/5/2013		
			Element		Blank Resul	t			
			Nickel	-	< 0.015	-			
Date Digested:	3/5/2013	Blank Spike (LCS)			3/5/2013				
					2				
				Spike	LCS	LCS			
		Element		Added	Conc.	%Rec	-		
		Nickel		2.0	2.098	104.9			
LCS Recovery lin	mits 80-120%								
Date Digested	3/5/2013	Matrix Spil	ke/Matrix S _I	oike Dupli	cate (MS/MS	D)	215100		
Sample Spiked:	2013030045-1				Date Analyz	ed:	3/5/2013		
		Sample	Spike	MS	MS	MSD	MSD		
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD	
Nickel		0.156	2.0	2.008	92.6	1.994	91.9	0.8	

SPECTRA LABORATORIES

to Am v

Steven G. Hibbs Laboratory Manager

~	www.LibbyEnvironmental.com	of	IMGU	Estate	State: Olumn 1'x. 11/4	of Collection: 2 - 2 &-13				Field Notes															Remarks:				TAT: 24HR 48HR 5-DAY
2013030010	y Record	3 - 1 - 13 Page	ger. Jamie Ner	John Havens,	City, 5	Date		1/ 4/ 0 1/ 4/ 0 1/ 4/ 0 1/ 4/ 0 1/ 4/ 0 1/ 0 1/ 0 1/ 0 1/ 0 1/ 0 1/ 0 1/ 0 1																	ate / Time Sample Receipt:	Date / Time Good Condition?	Cold?	Jate / Time Seals Intact?	Total Number of Containers
	Chain of Custod	Date:	True Project Manag	Project Name	Location:	Collector:	Email:	ALLO CALLER	Container	2 / 5 / 7 / Addi			→												3/1/13 3/1/13	abelver HV:		aceived by:	collection including court cosis and reasonable attorney leas (o be determ
	nmental, Inc.	Ph: 360-352-2110 Fax: 360-352-4154	Environmental	(see Above)	State: Zip:	Fax:			Douth Time Tune	and ann mile indea	1 9 45 1	1 10 45	1 1100												3h Date / Time Bate / Time	Date / Time			uit of payment endor feiture to pay. Client agrees to pay the costs of
	Libby Envirol	4139 Libby Road NE Olympia, WA 98506	Client: Libby	Address:	City:	Phone:	Client Project #		Somnlo Number	1 HB 5-1	2 HB6-1	3 H B9-1	4 HB10-1	5	9	∞ α	0	10	12	13	14	15	16	17	Relinquished by:	Relinquished by:	Dolinarijahad h	remiquismed by.	LEGAL ACTION CLAUSE: In the event of defai

Relinquished by:		Relinquished by U	ann your 2-28-13	Relinquished by:	17	16	15	14 7	13	12	11	10	9	8	7	6	IJ.	4 HB10-1 1	3 HB9-1	2 HB6-1 1	1 HB 5-1	Sample-Number De	R AL AL	Client Project # 24 9/ - 00/	Phone: 253-475-7711	City: Tacoma	Address: 3011 South Huson	Client: Robinson Noble	Olympia, WA 98506	4139 Libby Environmen
Date / Time		Date / Time		Date / Time														11:00 4	10.42	1 3:42	9:07 Soi	pth Time Ty	N N N		Fax:	State:WA	, Shite A	()	Fax: 360-352-4154	Ph: 360-352-2110
Received by:		Received by:	542	Received by:														4	9Cala		1 4 oz	pe Type				Zip: 98409				ç
Date / Time Seals Intact? Total Number of Cont	Cold?	Date / Time Good Condition?	- 2-28-13 414 Jun	Date / Time Sample Receip:															X	X		102 200 400 100 100 100 100 100 100 100 100 1	\$61, 18 B B I I I O M D M D M D M D M D M D M D M D M D M	Email:	Collector: ACY	Location: 411 g3rd Ave SE	Project Name: John Havens Estate	Project Manager: MAx Wills	Date: 2 - 28-13	ain of Custody Record
ainers TAT: 24HR 48HR 5-DAY			EIM Please	ti Remarks:		с. 													7			Field Notes	Walass T. U.L.		Date of Collection: 2-28-13	City, State: Olympia			Page: of	www.LibbyEnvironmental.cc

. 1 - 2 C A D + Company

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130301-9 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Hydrocarbon Identification by NWTPH-HCID for Water

Sample	Date	Surrogate	Gasoline	Diesel	Mineral Oil	Heavy Oil
Number	Analyzed	Recovery (%)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	(µg/l)
Method Blank	3/4/13	101	nd	nd	nd	nd
MW-5	3/4/13	98	nd	nd	nd	nd
MW-4	3/4/13	106	nd	nd	nd	nd
Practical Quantitati	on Limit		200	500	500	500

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130301-9 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Metals in Water by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	μg/L	μg/L	μg/L	μg/L
Method Blank	3/2/13	nd	nd	nd	nd
MW-5	3/2/13	11	nd	nd	nd
MW-4	3/2/13	nd	nd	nd	nd
MW-4 Dup	3/2/13	nd	nd	nd	nd
Practical Quantita	ation Limit	5.0	0.5	10.0	3.0

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Dirk Peterson & Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130301-9 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS	3/2/13	103%	101%	99%	95%
MW-4 MS	3/2/13	102%	92%	89%	93%
MW-4 MSD	3/2/13	107%	94%	77%	97%
RPD	3/2/13	5%	2%	14%	4%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson & Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130301-9 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Mercury in Water by EPA Method 7470

Sample	Date	Mercury
Number	Analyzed	μg/L
Method Blank	3/6/13	nd
MW-5	3/6/13	nd
MW-4	3/6/13	nd
Practical Quantitation Limit		0.5
"nd" Indicates not detected at the li	sted detection limits.	

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130301-9 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Number	Date Analyzed	Mercury (% Recovery)
LCS	3/6/13	113%
L130225-10 MS	3/6/13	113%
L130225-10 MSD	3/6/13	113%
RPD	3/6/13	0%

QA/QC for Mercury by EPA Method 7470

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130301-9 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	μĝ/L	μg/L
Method Blank	3/2/13	nd	nd
MW-5	3/2/13	5.1	7.9
MW-4	3/2/13	nd	5.9
MW-4 Dup	3/2/13	nd	6.0
Practical Quantitation Limit		5.0	5.0

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130301-9 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	3/2/13	106%	100%
MW-4 MS	3/2/13	111%	106%
MW-4 MSD	3/2/13	119%	112%
RPD	3/2/13	7%	6%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

03/11/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project:	John Havens Estate
Sample Matrix:	Water
Date Sampled:	03/01/2013
Date Received:	03/05/2013
Spectra Project:	2013030074

Client ID	Spectra #	Analyte	Result	Units	Method
MW-5	1	Nickel	< 0.015	mg/L	EPA 200.7
MW-4	2	Nickel	< 0.015	mg/L	EPA 200.7

Date Anaylzed: 3-11-13 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a7/scj

2221 Ross Way March 11, 2013	y • Tacoma, Wa	A 98421 ●	(253) 272-4	•	Fax (253) 57	72-9838 •	www.spectr	a-lab.com
Libby Environmental	l, Inc.				I Inite		ma	л
4139 Libby Rd NE					Spectra Pi	roiect:	201303	1L 80074
Olympia, WA 98506	5				Applies to	Spectra #'s	201505 1 an	d 2
						•		
		QUALI	TY CONTRO	DL RESU	LTS			· .
		ICP Metal	S - EPA Metho Method Bl	od 200.7 -	Water			
Date Digested:	3/11/2013		methou Di	анк	Date Anal	yzed:	3/11/2013	
			Element		Result			
			Nickel		< 0.015			
			Rlank Sniko		99.5° (* 472. –			
Date Digested:	3/11/2013		DIALK SPIKE	LCS	Date Anal	yzed:	3/11/2013	
				Sniko	LCS	LCS		
		Element		Added	Conc	KRec		
	-	Nickel	-	1.0	1.011	101.1	•	
LCS Recovery limits	85-115%							
- 1,000	Mat	rix Spike/M	atrix Spike I	Duplicate	(MS/MSD)	t tanka ang ang ang ang ang ang ang ang ang an		
Date Digested:	3/11/2013	-	- T x		Date Analy	yzed:	3/11/2013	
Sample Spiked:	2013030077-1							
		Sample	Spike	MS	MS	MSD	MSD	
Element	<u></u>	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Nickel	_	0.072	1.0	0.840	76.8	0.833	76.1	0.9

Spectra Laboratories

Steve Hibbs Laboratory Manager
www.LibbvEnvironmental.com	Page: l of		s Estate	City, State: Olument's 1.1.4	Date of Collection: 3 - 1 - 1 3	2.		100 - 100 -	Field Notes																	eipt: Remarks:			
3 <i>CO</i> 74		Jamie	John Haven					COLUMN COLUMN	100 00 10 10																	ne Sample Rec	ne Good Condition?	Cold?	Total Number of
<i>20/303</i> Nain of Custody Re	Cul 9/6 :Date: 3/6	Project Manager:	Project Name:	Location:	Collector:	Email:	07 510 + 212 707	101 101 100 100 100 100 100 100 100 100	10 10 10 cm 24 24																	Abel J. 3-5-13 2	Date / Tin		Date / Tin
C		Inc.		Zip:				nple Container	pe Type	paly																Received by:	Received by:	/	Kecelved by:
nental, Inc.	Ph: 360-352-2110 Fax: 360-352-4154	Environmental,	(see above)	State:	Fax:			San	Depth Time Ty	1 04:41																Date / Time 3/5/13 2:30pm	Date / Time		Date / Ilme
Libby Environn	4139 Libby Road NE Olympia, WA 98506	Client: <i>Libby</i>	Address:	City:	Phone:	Client Project #	A B LA	A VIII	Sample Number	2 MW-4	e	4	5	6	7	8	0	10	11	12	13	14	15	16	17	Relinquished by:	Relinquished by:		Keiinquisnea by:

TAT: 24HR 48HR \5-D	Total Number of Containers	7			· · · · · · · · · · · · · · · · · · ·	
	Seals Intact?	Date / Time	Received by:	le	Date / Tim	Relinquished by:
	Sold?					
1	Good Condition?	Date / Time	Received by:	lē	Date / Tim	Relinquished by
E M please	Sample Receipt:	3-1 13 1536		30	31-13 15	Relinquisited by.
			Dessiond by:	_		17 Delinguished by:
						16
						5
						4 4
		/				
						1 2
						19
			-			10
						9
					\$	8
	3					7
				Sec.		6
			1	<u></u> ,		5
						4
				× \.		З
	XX	R		into 4		2 mw - 4
	XX	X	lamber y poly	Jarvin 54.		1 mw - 5
Field Notes	1.1274 1.1274	COP OF CONTRACTOR CONT	Container Type	ime Type	Depth	Sample Number
	11111	Email:			11-001 E	Client Project # 24
f Collection: 3-1-13	Date of	Collector: ACT		-ax:		Phone: 253-475-
tate: Olympicy	Vec SE City, St	Location: 4/1 93rd A): 98409	ite: ₩A Zij	Sta	City: Tacomen
	nvens	Project Name: John H		wite A -	tuson Street, S	Address: JOH South 1
	Wills	Project Manager: MAX			oble	Client: Robinson No
of	Page:	Date: 3-1-13)-352-4154	Fax: 360	Olympia, WA 98506
)-352-2110	Ph: 360	4139 I ibhy Road NE
	.				III EILAI, II	

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Gasoline	Diesel	Light Oil	Heavy Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	2/25/13	100	nd	nd	nd	nd
B12-3	2/25/13	101	nd	nd	nd	nd
B12-8	2/25/13	98	nd	nd	nd	nd
B13-3	2/25/13	100	nd	nd	nd	nd
B13-8	2/25/13	96	nd	nd	nd	nd
B14-3	2/25/13	100	nd	nd	nd	nd
B14-3 Dup	2/25/13	112	nd	nd	nd	nd
B14-8	2/25/13	92	nd	nd	nd	nd
MW-4-3	2/25/13	102	nd	nd	nd	nd
MW-4-9	2/25/13	100	nd	nd	nd	nd
B15-3	2/25/13	88	nd	nd	nd	nd
B15-10	2/25/13	99	nd	nd	nd	nd
B16-3	2/25/13	106	nd	nd	nd	nd
B16-10	2/25/13	89	nd	nd	nd	nd
B17-3	2/25/13	91	nd	nd	nd	nd
B17-9	2/25/13	91	nd	nd	nd	nd
B17-9 Dup	2/25/13	94	nd	nd	nd	nd
Practical Quantitation	Limit		20	50	100	100

Hydrocarbon Identification by NWTPH-HCID for Soil

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method Blank	B12-3	B12-3 Dup	B12-8	B13-3	B13-8
Date Sampled	Reporting	N/A	2/25/13	2/25/13	2/25/13	2/25/12	2/25/12
Date Analyzed	Limits	2/27/13	2/23/13	2/27/13	2/23/13	2/23/13	2/23/13
y	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	$(m\sigma/k\sigma)$	$\frac{2}{2}/\frac{2}{13}$
	(88)	(***8)	((116/116)	(IIIg/Kg)	(mg/kg)	(IIIg/Kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	0.02	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.02	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.02	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
Total Xylenes	0.03	nd	nd	nd	nd	nd	nd
Styrene	0.02	nd	nd	nd	nd	nd	nd

Volatile Organic Compounds by EPA Method 8260C in Soil

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	B12-3	B12-3 Dup	B12-8	B13-3	B13-8
		Blank		21 2 0 D up	0120	D 19 9	D15*0
Date Sampled	Reporting	N/A	2/25/13	2/25/13	2/25/13	2/25/13	2/25/13
Date Analyzed	Limits	2/27/13	2/27/13	2/27/13	2/27/13	2/23/13	2/23/13
-	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.02	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.08	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.02	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.02	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.02	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
Isopropyltoluene	0.02	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.03	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalenes	0.03	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		102	106	105	104	103	100
1,2-Dichloroethane-d4		111	112	112	114	117	108
Toluene-d8		109	107	103	102	100	100
4-Bromofluorobenzene		101	96	100	100	97	99

Volatile Organic Compounds by EPA Method 8260C in Soil

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

*** INSTRUMENT DETECTION LIMIT**

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Kyle Williams

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		B14-3	B14-8	B15-3	B15-10	B16-3	B16-10
Date Sampled	Donorting	2/25/12	2/25/12	2/25/12	0/05/10	0/05/10	0/0-1/10
Date Analyzed	Timita	2/25/15	2/25/13	2/25/13	2/25/13	2/25/13	2/25/13
Date Analyzed	Linnes (mg/kg)	$\frac{2}{2}/\frac{1}{13}$	2/2//13	2/2//13	2/2//13	2/27/13	2/27/13
	(ing/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
Methyl <i>tert</i> -Butyl Ether (MTBE)	0.02	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.02	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.02	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
Total Xylenes	0.03	nd	nd	nd	nd	nd	nd
Styrene	0.02	nd	nd	nd	nd	nd	nd

Volatile Organic Compounds by EPA Method 8260C in Soil

nd

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		B14-3	B14-8	B15-3	B15-10	B16-3	B16.10
A I		2110	DITU	D15 5	D 10 10	D10-5	D10-10
Date Sampled	Reporting	2/25/13	2/25/13	2/25/13	2/25/13	2/25/13	2/25/13
Date Analyzed	Limits	2/27/13	2/27/13	2/27/13	2/27/13	2/27/13	2/27/13
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.02	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.08	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.02	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.02	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.02	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
Isopropyltoluene	0.02	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.02	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.03	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalenes	0.03	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery	1000000						
Dibromofluoromethane		106	108	110	105	107	103
1,2-Dichloroethane-d4		116	122	123	118	118	109
Toluene-d8		106	102	104	97	97	96
4-Bromofluorobenzene	·····	96	<u>98</u>	98	99	100	95

Volatile Organic Compounds by EPA Method 8260C in Soil

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Kyle Williams

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Comple Dani di					
Sample Description		B17-3	B17-9	B17-9 Dup	
Date Sampled	Reporting	2/25/13	2/25/13	2/25/13	
Date Analyzed	Limits	2/25/13	2/23/13	2/23/13	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
	(8)	((116/16)	(ing/kg)	
Dichlorodifluoromethane	0.06	nd	nd	nd	
Chloromethane	0.06	nd	nd	nd	
Vinyl chloride	0.02	nd	nd	nd	
Bromomethane	0.09	nd	nd	nd	
Chloroethane	0.06	nd	nd	nd	
Trichlorofluoromethane	0.05	nd	nd	nd	
1,1-Dichloroethene	0.05	nd	nd	nd	
Methylene chloride	0.02	nd	nd	nd	
Methyl tert-Butyl Ether (MTBE)	0.02	nd	nd	nd	
trans -1,2-Dichloroethene	0.02	nd	nd	nd	
1,1-Dichloroethane	0.02	nd	nd	nd	
2,2-Dichloropropane	0.05	nd	nd	nd	
cis-1,2-Dichloroethene	0.02	nd	nd	nd	
Chloroform	0.02	nd	nd	nd	
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	
Carbon tetrachloride	0.02	nd	nd	nd	
1,1-Dichloropropene	0.02	nd	nd	nd	
Benzene	0.02	nd	nd	nd	
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	
Trichloroethene (TCE)	0.03	nd	nd	nd	
1,2-Dichloropropane	0.02	nd	nd	nd	
Dibromomethane	0.04	nd	nd	nd	
Bromodichloromethane	0.02	nd	nd	nd	
cis-1,3-Dichloropropene	0.02	nd	nd	nd	
Toluene	0.02	nd	nd	nd	
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	
1,1,2-Trichloroethane	0.03	nd	nd	nd	
Tetrachloroethene (PCE)	0.02	nd	nd	nd	
1,3-Dichloropropane	0.05	nd	nd	nd	
Dibromochloromethane	0.03	nd	nd	nd	
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	
Chlorobenzene	0.02	nd	nd	nd	
1,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	
Ethylbenzene	0.03	nd	nd	nd	
Total Xylenes	0.03	nd	nd	nd	
	···-			A.A. 107	

Volatile Organic Compounds by EPA Method 8260C in Soil

nd

nd

nd

0.02

Styrene

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		B17-3	B17-9	B17-9 Dup	
		D17 5	DIT	D17-9 Dup	
Date Sampled	Reporting	2/25/13	2/25/13	2/25/13	
Date Analyzed	Limits	2/27/13	2/27/13	2/27/13	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Bromoform	0.02	nd	nd	nd	
Isopropylbenzene	0.08	nd	nd	nd	
1,2,3-Trichloropropane	0.02	nd	nd	nd	
Bromobenzene	0.03	nd	nd	nd	
1,1,2,2-Tetrachloroethane	0.02	nd	nd	nd	
n-Propylbenzene	0.02	nd	nd	nd	
2-Chlorotoluene	0.02	nd	nd	nd	
4-Chlorotoluene	0.02	nd	nd	nd	
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	
tert-Butylbenzene	0.02	nd	nd	nd	
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	
sec-Butylbenzene	0.02	nd	nd	nd	
1,3-Dichlorobenzene	0.02	nd	nd	nd	
Isopropyltoluene	0.02	nd	nd	nd	
1,4-Dichlorobenzene	0.02	nd	nd	nd	
1,2-Dichlorobenzene	0.02	nd	nd	nd	
n-Butylbenzene	0.02	nd	nd	nd	
1,2-Dibromo-3-Chloropropane	0.03	nd	nd	nd	
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	
Naphthalenes	0.03	nd	nd	nd	
1,2,3-Trichlorobenzene	1.0	nd	nd	nd	
Surrogate Recovery					
Dibromofluoromethane		108	102	106	
1,2-Dichloroethane-d4		123	113	115	
Toluene-d8		98	97	97	
4-Bromofluorobenzene		99	100	98	
"nd" Indicates not detected at	listed detection	n limit.			

Volatile Organic Compounds by EPA Method 8260C in Soil

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Kyle Williams

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E

1,1-Dichloroethene

Chlorobenzene

Benzene

Toluene

QA/QC Data - EPA 8260C Analyses Sample Identification: B12-8 Matrix Spike Matrix Spike Duplicate RPD Spiked Measured Spike Spiked Measured Spike Conc. Conc. Recovery Conc. Conc. Recovery (mg/kg) (mg/kg) (%) $(\mu g/l)$ $(\mu g/l)$ (%) 0.50 0.439 88 0.50 0.4 89 1.8 0.50 0.5 107 0.50 0.5 110 3.0 0.50 0.5 101 0.50 0.5 103 2.4 0.50 0.5 97 0.50 0.5 98 0.8

Trichloroethene (TCE)	0.50	0.5	102	0.50	0.5	105	2.9
Surrogate Recovery						······································	diter and a second
Dibromofluoromethane			101			106	
1,2-Dichloroethane-d4			105			125	
Toluene-d8			101			105	
4-Bromofluorobenzene		-	93			97	

	Laboratory	Control Samp	ole
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)
1,1-Dichloroethene	0.50	0.4	88
Benzene	0.50	0.5	98
Toluene	0.50	0.5	94
Chlorobenzene	0.50	0.4	90
Trichloroethene (TCE)	0.50	0.5	98
Surrogate Recovery			
Dibromofluoromethane			97
1,2-Dichloroethane-d4			98
Toluene-d8			107
4-Bromofluorobenzene			98

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Kyle Williams

Page 7 of 7

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead	Cadmium	Chromium	Arsenic
number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	3/2/13	nd	nd	nd	nd
MW-4-3	3/2/13	nd	nd	7.3	8.3
B15-3	3/2/13	nd	nd	nd	8.8
B16-3	3/2/13	nd	nd	7.6	8.6
B17-3	3/2/13	nd	nd	nd	9.7
B17-3 Dup	3/2/13	nd	nd	nd	9.9
B17-9	3/17/13	nd	nd	14.1	nd
Practical Quantita	tion Limit	5.0	1.0	5.0	5.0

Analyses of Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS	3/2/13	92%	101%	99%	88%
B17-3 MS	3/2/13	86%	96%	101%	86%
B17-3 MSD	3/2/13	96%	99%	89%	83%
RPD	3/2/13	11%	3%	13%	3%
LCS	3/17/13	109%	103%	92%	103%
L130226-30 MS	3/17/13	105%	90%	92%	86%
L130226-30 MSD	3/17/13	94%	93%	85%	92%
RPD	3/17/13	11%	3%	8%	7%

QA/QC for Metals in Soil by EPA Method 7010 Series

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Method Blank	2/27/13	nd
MW-4-3	2/27/13	nd
B15-3	2/27/13	nd
B16-3	2/27/13	nd
B17-3	2/27/13	nd
B17-3 Dup	2/27/13	nd
B17-9	3/19/13	nd
Practical Quantitation Limit		0.5

Analyses of Mercury in Soil by EPA Method 7471

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	2/27/13	112%
B17-3 MS	2/27/13	103%
B17-3 MSD	2/27/13	103%
RPD	2/27/13	0%
LCS	3/19/13	106%
B17-3 MS	3/19/13	106%
B17-3 MSD	3/19/13	106%
RPD	3/19/13	0%

QA/QC for Mercury by EPA Method 7471

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Copper	Zinc
Number	Analyzed	(mg/kg)	(mg/kg)
Method Blank	3/2/13	nd	nd
MW-4-3	3/2/13	12	nd
B15-3	3/2/13	13	nd
B16-3	3/2/13	14	5.3
B17-3	3/2/13	12	nd
B17-3 Dup	3/2/13	12	nd
B17-9	3/17/13	20	16
Practical Quantitation Limit		5.0	5.0

Analyses of Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	3/2/13	95%	89%
B17-3 MS	3/2/13	91%	92%
B17-3 MSD	3/2/13	92%	99%
RPD	3/2/13	1%	8%
LCS	3/17/13	116%	106%
L130226-30 MS	3/17/13	85%	95%
L130226-30 MSD	3/17/13	91%	85%
RPD	3/17/13	7%	11%

QA/QC for Metals in Soil by EPA Method 7010 Series

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Gasoline	Diesel	Mineral Oil	Heavy Oil
Number	Analyzed	Recovery (%)	$(\mu g/l)$	(µg/l)	(µg/l)	(µg/l)
Method Blank	2/25/13	100	nd	nd	nd	nd
B12-W	2/25/13	103	nd	nd	nd	nd
B13-W	2/25/13	93	nd	nd	nd	nd
B14-W	2/25/13	93	nd	nd	nd	nd
B14-W Dup	2/25/13	109	nd	nd	nd	nd
B15-W	2/25/13	98	nd	nd	nd	nd
B16-W	2/25/13	106	nd	nd	nd	nd
B16-W Dup	2/25/13	89	nd	nd	nd	nd
B17-W	2/25/13	101	nd	nd	nd	nd
Practical Quantitation	Limit		200	500	500	500

Hydrocarbon Identification by NWTPH-HCID for Water

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Degenintien			DIA W				
Sample Description		Method	B12-W	B12-W	B13-W	B 14-W	B15-W
		Blank		Dup			
Date Sampled	Reporting	N/A	2/25/13	2/25/13	2/25/13	2/25/13	2/25/13
Date Analyzed	Limits	2/27/13	2/27/13	2/27/13	2/27/13	2/27/13	2/27/13
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
Dichlorodifluoromothene	2.0		1	1	1	,	
Chloromothono	2.0	nd	nd	nd	nd	nd	nd
Vinyl phonida	2.0	na	nd	nd	nd	nd	nd
V Inyi chioride	0.2	nd	nd	nd	nd	nd	nd
Chlanathana	2.0	nd	nd	nd	nd	nd	nd
Chloroethane	2.0	nd	nd	nd	nd	nd	nd
Irichlorofluoromethane	2.0	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	2.0	nd	nd	nd	nd	nd	nd
Methylene chloride	1.0	nd	nd	nd	nd	nd	nd
Methyl <i>tert</i> - Butyl Ether (MTBE)	5.0	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	1.0	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	2.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Chloroform	1.0	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	1.0	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	1.0	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	1.0	nd	nd	nd	nd	nd	nd
Benzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	1.0	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	1.0	nd	nd	nd	nd	nd	nd
Dibromomethane	1.0	nd	nd	nd	nd	nd	nd
Bromodichloromethane	1.0	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	nd
Toluene	1.0	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	1.90	nd	nd
1.3-Dichloropropane	1.0	nd	nd	nd	nd	nd	nd
Dibromochloromethane	1.0	nd	nd	nd	nd	nd	nd
1.2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd	nd	nd
Chlorobenzene	1.0	nd	nd	nd	nđ	nd	nd
1.1.1.2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
Total Xylenes	2.0	nd	nd	nd	nd	nd	nd
Styrene	1.0	nd	nd	nd	nd	nd	nd

Volatile Organic Compounds by EPA Method 8260C in Water

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	B12-W	B12-W	B13-W	B14 W	D15 W
1		Blank	D12 W	Dun	D 1 J - W	D14- W	D13-w
Date Sampled	Reporting	N/A	2/25/13	$\frac{Dup}{2/25/12}$	2/25/12	2/25/12	2/25/12
Date Analyzed	Limits	2/27/13	2/23/13 2/27/13	2/23/13	2/23/13	2/23/13	2/23/13
Date P mary Ded	$(\mu \sigma/l)$	(µg/l)	$(\mu \sigma/l)$	$(u\sigma/l)$	$\frac{2}{2}/\frac{2}{13}$	$\frac{2}{2}/\frac{2}{13}$	$\frac{2}{2}/\frac{13}{13}$
	(µ81)	(µg/1)	(µg/1)	(µg/1)	(µg/1)	(µg/I)	(µg/1)
Bromoform	1.0	nd	nd	nd	nd	nd	nd
Isopropylbenzene	4.0	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	1.0	nd	nd	nd	nd	nd	nd
Bromobenzene	1.0	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	nd
n-Propylbenzene	1.0	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	1.0	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	1.0	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	1.0	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	1.0	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	1.0	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	1.0	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
Isopropyltoluene	1.0	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
n-Butylbenzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	2.0	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	5.0	nd	nd	nd	nd	nd	nd
Naphthalenes	5.0	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	5.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery			· · · · · · · · · · · · · · · · · · ·				
Dibromofluoromethane		99	100	98	97	97	94
1,2-Dichloroethane-d4		95	107	107	103	110	108
Toluene-d8		103	103	102	103	103	102
4-Bromofluorobenzene		104	104	105	106	101	105

Volatile Organic Compounds by EPA Method 8260C in Water

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

*** INSTRUMENT DETECTION LIMIT**

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Kyle Williams

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		B16-W	B17-W	 	
		2.0 11	211 11		
Date Sampled	Reporting	2/25/13	2/25/13	 	
Date Analyzed	Limits	2/27/13	2/27/13		
	(µg/l)	(µg/l)	(µg/l)		
Dichlorodifluoromethane	2.0	nd	nd		
Chloromethano	2.0	nd	nu d		
Vinul ablarida	2.0	na	na		
Promomethane	0.2	na	na 1		
Chloroothana	2.0	na	nd		
Tricklone fluene wether a	2.0	nd	nd		
	2.0	nd	nd		
1,1-Dichloroethene	2.0	nd	nd		
Method and Dated Ed. (1977)	1.0	nd	nd		
Methyl <i>tert</i> -Butyl Ether (MTBE)	5.0	nd	nd		
trans -1,2-Dichloroethene	1.0	nd	nd		
1,1-Dichloroethane	1.0	nd	nd		
2,2-Dichloropropane	2.0	nd	nd		
cis -1,2-Dichloroethene	1.0	nd	nd		
Chloroform	1.0	nd	nd		
1,1,1-Trichloroethane (TCA)	1.0	nd	nd		
Carbon tetrachloride	1.0	nd	nd		
1,1-Dichloropropene	1.0	nd	nd		
Benzene	1.0	nd	nd		
1,2-Dichloroethane (EDC)	1.0	nd	nd		
Trichloroethene (TCE)	1.0	nd	nd		
1,2-Dichloropropane	1.0	nd	nd		
Dibromomethane	1.0	nd	nd		
Bromodichloromethane	1.0	nd	nd		
cis-1,3-Dichloropropene	1.0	nd	nd		
Toluene	1.0	nd	nd		
Trans-1,3-Dichloropropene	1.0	nd	nd		
1,1,2-Trichloroethane	1.0	nd	nd		
Tetrachloroethene (PCE)	1.0	nd	nd		
1.3-Dichloropropane	1.0	nd	nd		
Dibromochloromethane	1.0	nd	nd		
1.2-Dibromoethane (EDB) *	0.01	nd	nd		
Chlorobenzene	1.0	nd	nd		
1.1.1.2-Tetrachloroethane	1.0	nd	nd		
Fthylbenzene	1.0	nd	nd		
Total Xylenes	2.0	nd	nd		
Sturene	1.0	nd	nd		
Styrone	1.0	nu	nu		

Volatile Organic Compounds by EPA Method 8260C in Water

JOHN HAVENS ESTATE PROJECT **Robinson Noble** Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		B16-W	B17-W	
1			D 17- W	
Date Sampled	Reporting	2/25/13	2/25/13	
Date Analyzed	Limits	2/27/13	2/27/13	
-	(µg/l)	(µg/l)	(µg/l)	
Bromoform	1.0	nd	nd	
Isopropylbenzene	4.0	nd	nd	
1,2,3-Trichloropropane	1.0	nd	nd	
Bromobenzene	1.0	nd	nd	
1,1,2,2-Tetrachloroethane	1.0	nd	nd	
n-Propylbenzene	1.0	nd	nd	
2-Chlorotoluene	1.0	nd	nd	
4-Chlorotoluene	1.0	nd	nd	
1,3,5-Trimethylbenzene	1.0	nd	nd	
tert-Butylbenzene	1.0	nd	nd	
1,2,4-Trimethylbenzene	1.0	nd	nd	
sec-Butylbenzene	1.0	nd	nd	
1,3-Dichlorobenzene	1.0	nd	nd	
Isopropyltoluene	1.0	nd	nd	
1,4-Dichlorobenzene	1.0	nd	nd	
1,2-Dichlorobenzene	1.0	nd	nd	
n-Butylbenzene	1.0	nd	nd	
1,2-Dibromo-3-Chloropropane	1.0	nd	nd	
1,2,4-Trichlorolbenzene	2.0	nd	nd	
Hexachloro-1,3-butadiene	5.0	nd	nd	
Naphthalenes	5.0	nd	nd	
1,2,3-Trichlorobenzene	5.0	nd	nd	
Surrogate Recovery		****		
Dibromofluoromethane		97	95	
1,2-Dichloroethane-d4		111	106	
Toluene-d8		104	102	
4-Bromofluorobenzene		105	104	
"nd" Indicates not detected at "int" Indicates that interference	listed detection	n limit. ermination.		

Volatile Organic Compounds by EPA Method 8260C in Water

*** INSTRUMENT DETECTION LIMIT**

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Kyle Williams

JOHN HAVENS ESTATE PROJECT **Robinson Noble** Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E

Sample Identification: B13-W Matrix Spike Matrix Spike Duplicate RPD Spiked Measured Spike Spiked Measured Spike Conc. Conc. Recovery Conc. Conc. Recovery $(\mu g/l)$ $(\mu g/l)$ (%) $(\mu g/l)$ $(\mu g/l)$ (%) (%) 1,1-Dichloroethene 10 8.0 80 10 7.8 78 2.4 Benzene 10 9.5 95 10 9.2 92 3.0 Toluene 10 9.6 96 10 9.3 93 3.3 Chlorobenzene 10 8.5 85 10 8.3 83 2.9 Trichloroethene (TCE) 10 9.1 91 10 8.8 88 3.3 Surrogate Recovery Dibromofluoromethane 99 96 1.2-Dichloroethane-d4 111 111 Toluene-d8 104 103 4-Bromofluorobenzene 101 104

QA/QC Data	-	EPA	8260C	Analyses
------------	---	-----	-------	----------

	Laboratory Control Sample					
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)			
Benzene	10	9.4	94			
Toluene	10	9.5	95			
Chlorobenzene	10	8.6	86			
Trichloroethene (TCE)	10	9.1	91			
Surrogate Recovery			·····			
Dibromofluoromethane		1 <u>21</u> . /	99			
1,2-Dichloroethane-d4			105			
Toluene-d8			104			
4-Bromofluorobenzene			104			

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% **ACCEPTABLE RPD IS 35%**

ANALYSES PERFORMED BY: Kyle Williams

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E

Analyses of Metals in Water by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	μg/L	μg/L	μg/L	μg/L
Method Blank	3/2/13	nd	nd	nd	nd
B15-W	3/2/13	30	1.5	65	136
B16-W	3/2/13	20	0.8	79	59
B17-W	3/2/13	14	nd	60	17
Practical Quantita	ation Limit	5.0	0.5	10.0	3.0

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Dirk Peterson & Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS	3/2/13	103%	101%	99%	95%
L130301-9 MS	3/2/13	102%	92%	89%	93%
L130301-9 MSD	3/2/13	107%	94%	77%	97%
RPD	3/2/13	5%	2%	14%	4%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson & Jamie Deyman

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	μg/L
Method Blank	3/6/13	nd
B15-W	3/6/13	nd
B16-W	3/6/13	nd
B16-W Dup	3/6/13	nd
B17-W	3/6/13	nd
Practical Quantitation Limit		0.5

Analyses of Mercury in Water by EPA Method 7470

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	3/6/13	113%
B16-W MS	3/6/13	113%
B16-W MSD	3/6/13	113%
RPD	3/6/13	0%

QA/QC for Mercury by EPA Method 7470

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E

Analyses of Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	μg/L	μg/L
Method Blank	3/2/13	nd	nd
B15-W	3/2/13	1160	90
B16-W	3/2/13	297	81
B17-W	3/2/13	126	115
Practical Quantitation Limit		5.0	5.0

"nd" Indicates not detected at the listed detection limits.

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	3/2/13	106%	100%
L130301-9 MS	3/2/13	111%	106%
L130301-9 MSD	3/2/13	119%	112%
RPD	3/2/13	7%	6%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

JOHN HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L130225-10 Client Project # 2491-001E 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Dissolved Metals in Water by EPA Method 7010 Series

Sample	Date	Lead	Chromium	Copper	Arsenic
Number	Analyzed	μg/L	μg/L	μg/L	μg/L
Method Blank	3/17/13	nd	nd	nd	nd
LCS	3/17/13	115%	107%	106%	119%
B15-W	3/17/13	nd	nd	nd	nd
B16-W	3/17/13	nd	nd	-	nd
B17-W	3/17/13	-	nd	-	nd
Practical Quantita	tion Limit	5.0	10.0	5.0	3.0

"nd" Indicates not detected at the listed detection limits.

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

03/11/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project:	John Havens Estate
Sample Matrix:	Water
Date Sampled:	02/25/2013
Date Received:	02/27/2013
Spectra Project:	2013020577

Client ID	Spectra #	Analyte	Result	Units	Method
B15-W	1	Ethylene Glycol	<10	mg/L	GC-FID
B15-W	1	Propylene Glycol	<10	mg/L	GC-FID
B16-W	2	Ethylene Glycol	<10	mg/L	GC-FID
B16-W	2	Propylene Glycol	<10	mg/L	GC-FID
B17-W	3	Ethylene Glycol	<10	mg/L	GC-FID
B17-W	3	Propylene Glycol	<10	mg/L	GC-FID

Analyzed on 03/08/13 by JJB.

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a7/mlh

	6		T	1	T	T	1	1		T	T	r		1	T	T	r	r						
	www.LibbyEnvironmental.com	l of l			ate:	Collection: 2/25/13			Field Notes											Remarks: Record pH here:		- Sunt		istribution: White - Lab, Yellow - File, Pink - Originator
L	rd	Page:	IF DETMEN	Havens Estate	City, St	Date of		Strong Constant	10 10 CO CO CO			*								Sample Receipt:	Good Condition?	Cold?	Seals Intact? Total Number of Containare	
201302057	n of Custody Reco	Date: 2/26/3	Project Manager: JCM	Project Name: John	Location:	Collector:	Email:	1000 CONTON CONTON	100 (32 / 12 / 12 / 20 / 20 / 20 / 20 / 20 / 2											2/27/13 @ 1999	/ / Date / Time	Date / Time		ର୍ଷ reason the attorney lees to be delemined by a coಚ ଥ lee.
	Chai	0 4			Zip:			amnla Container		120 Ambere		\$									Redeived by:	Received hv) हम्मे (सिन्न Costs की कार्यसंडाहरून कार्यसंक्रीम टाफ्सा Costs क
	mental, Inc.	Ph: 360-352-2110 Fax: 360-352-415	onmental INC	ABOVE	State:	Fax:			Depth Time	H)										Date/Time	Date / Time	Date / Time		iif psymant and/s failure to pay, Client agrees to
	Libby Environ	4139 Libby Road NE Olympia, WA 98506	Client: Libby Englin	Address: JEE	City:	Phone:	Client Project #	A - 70-12 JUE	Sample Number	1 B15-W	2 B16-W	3 B17-W	4	5	9	7	8	თ	10	Relinquished by:	Relinquished by:	Relinquished hvr		LECAL ACTION CLAUSE: In the event of default :

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

03/07/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: John Havens Estate Sample Matrix: Water Date Sampled: 02/25/2013 Date Received: 02/27/2013 Spectra Project: 2013020578

Client ID	Spectra #	Analyte	Result	Units	Method
B-15-W	1	Nickel	0.852	mg/L	SW846 6010B
B-16-W	2	Nickel	0.789	mg/L	SW846 6010B
B-17-W	3	Nickel	0.382	mg/L	SW846 6010B
MW-4-3	4	Total Nickel	20.8	mg/Kg	SW846 6010B
B15-3	5	Total Nickel	20.8	mg/Kg	SW846 6010B
B16-3	6	Total Nickel	22.4	mg/Kg	SW846 6010B
B17-3	7	Total Nickel	20	mg/Kg	SW846 6010B

Date Analyzed - 3-5-13 SCJ

SPEQTRA/LABORATORIES

Steve Hibbs, Laboratory Manager a7/mlh

3/5/2013			(2-4000	• Гах (2.	5)572-96	56 - WWW.S	pectra-lab.con
Libby Environmental, Inc					Units:		mg/L	
4139 Libby Rd. NE					Spectra Pr	oject:	2013020578	
Olympia, WA 98506					Applies to	Spectra #'s	1 thru 3	
		QUALI	TY CONT	ROL RES	SULTS			
······································		ICP Metals	s SW846 60	010 B - Wa	ter/Liquid			
			Method	Blank				
Date Digested: 3/5	/2013				Date Analy	yzed:	3/5/2013	
		Element			Result			
		Nickel	-		< 0.015			
Date Digested: 3/5	/2013		Blank Spil	ke (LCS)	Date Analy	vzed:	3/5/2013	
						200	5,5,2015	
				Spike	LCS	LCS		
	_	Element	-	Added	Conc.	%Rec		
		Nickel		1.0	0.963	96.3		
CS Recovery limits 80-120)%							
	Mat	trix Spike/M	latrix Spil	ce Duplica	te (MS/MSI))		
Date Digested: 3/5	/2013				Date Analy	zed:	3/5/2013	
Sample Spiked: 201	3030044-1							
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD

Recovery Limits 75-125% RPD Limit 20

Spectra Laboratories

5 Steven G. Hibbs

Laboratory Manager

SPECTRA Laboratories 2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com 3/5/2013 Libby Environmental Units: mg/L 4139 Libby Rd. NE Spectra Project: 2013020578 Olympia, WA 98506 Applies to Spectra #'s 4 thru 7 QUALITY CONTROL RESULTS ICP Metals SW846 6010B - Soil/Solid Method Blank Date Digested: 3/5/2013 Date Analyzed: 3/5/2013 Element Blank Result Nickel < 0.015 Blank Spike (LCS) Date Digested: 3/5/2013 Date Analyzed: 3/5/2013 Spike LCS LCS Element Added Conc. %Rec Nickel 2.0 2.098 104.9 LCS Recovery limits 80-120% Matrix Spike/Matrix Spike Duplicate (MS/MSD) Date Digested: 3/5/2013 Date Analyzed: 3/5/2013 Sample Spiked: 2013030045-1 Sample Spike MS MS MSD MSD Element Conc. Conc. Conc. %Rec Conc %Rec RPD Nickel 0.156 2.0 2.008 92.6 1.994 91.9 0.8 Recovery Limits 75-125% **RPD Limit 20**

SPECTRA LABORATORIES

Steven G Hibbs

Laboratory Manager

	www.LibbyEnvironmental.com	/ of /			tate:	f Collection: ェ/25//ろ			Field Notes											Remarks: Record pH here:	V V V		Distribution: While - Lab, Yellow - File, Pink - Originator
		Page:	E DEY Man	wens Estate	City, St	Date of		STITUTES CONTRACTOR	100 00 101 A.C.	×						f§				Sample Receipt:	sood Condition?		eals Intact? otal Number of Containers
2013020578	ain of Custody Recorc	Date: 2/26/13	Project Manager: Jown	Project Name: John Ho	Location:	Collector:	Email:	200 1000 1000 1000 1000 1000 1000 1000	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2											2/27/13 Date/Time	C Date / Time	Cate / Time	
	C	10 54	2		Zip:				Sample Container Type Type	H20 poly			Soll 412 JAR			*				Received by:	/ Received by:	Received by:	ر s to pay the cowis of coefection #:choding court
	mental, Inc.	Ph: 360-352-21 Fax: 360-352-41	ironmental In	E ABOVE	State:	Fax:			Depth Time											Date/Time ストロレトコ リバイシ	Date / Time	Date / Time	ર્જ ક્ષણવાસનાં andter askue to pay, Cheni agree
	Libby Environ	4139 Libby Road NE Olympia, WA 98506	Client: Lubby Env	Address: 5E	City:	Phone:	Client Project #		Sample Number	1 B-15-W	2 B-16-W	3 B-17-W	4 MW-1-3	5 B15-3	6 B16-3	7 B17-3	ω	б	10	Relinquished by:	Relinquished by:	Relinouished by:	LÉGAL ACTION CLAUSE: in the event of chérait

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

03/21/2013

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Sherry Chilcutt

Project: John Havens Estate Date Received: 03/15/2013 Spectra Project: 2013030335

Client ID	Spectra #	Analyte	Result	Units	Method	Matrix	Date Sampled
B15-W	1	Dissolved Nickel	< 0.015	mg/L	EPA 200.7	Water	02/25/2013
B16-W	2	Dissolved Nickel	< 0.015	mg/L	EPA 200.7	Water	02/25/2013
B17-W	3	Dissolved Nickel	< 0.015	mg/L	EPA 200.7	Water	02/25/2013
B17-9	4	Total Nickel	22.2	mg/Kg	SW846 6010B	Soil	02/25/2013

Steve Hibbs, Laboratory Manager a8/scj

ICV Recovery limits 95-105%

Spectra Laboratories

Steve Hilpos Laboratory Manager

21 Ross Way	 Tacoma, W 	VA 98421	• (253)	272-4850	• Fax ((253) 572-9	9838 • wv	vw.spectra	-lab.co
3/21/2013									
Libby Environm	ental				Units:		mg/L		
4139 Libby Rd.	NE				Spectra Proj	ject:	2013030335		
Olympia, wA 9	18506				Applies to S	Spectra #'s	4		
			OUALITY	CONTRO		-			
			QUALITY ICP Metals S	CONTRU SW846-601	IL RESULTS	5 64			
			N N	fethod Bla	ink				
Date Digested:	3/21/2013				Date Analyz	zed:	3/21/2013		
			Element		Blank Resul	t			
			Nickel	-	< 0.015	_			
			Bla	nk Spike (LCS)				
Date Digested:	3/21/2013				Date Analyz	zed:	3/21/2013		
				Spike	LCS	LCS			
		Element	-	Added	Conc.	%Rec	-		
		Nickel		2.0	2.004	100.2			
LCS Recovery li	mits 80-120%	Matrix Sp	ike/Matrix Si	nike Dunli	cate (MS/MS				
Date Digested:	3/20/2013			Date Analyz	red:	3/20/2013		
Sample Spiked:	2013030386-1								
		Sample	Spike	MS	MS	MSD	MSD		
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD	
Nickel		0.462	2.0	2.206	87.2	2.185	86.2	1.2	

SPECTRA LABORATORIES

£

Steven G. Hibbs Laboratory Manager

)(べ)) べって	www.LibbyEnvironmental.com	je:) of /	JM CN	tate	", State: Olympia, WA	e of Collection: Z - Z5-13		AN AN	Field Notes																		Remarks:	DErneue		TAT: 24HR 48HR 5-DAV Distribution: White - Lab, Yellow - File, Filh - Originator
$\mathcal{I}(\mathcal{I})$	cord	H-13 Pag	Jamie Nei	ohn Havens Est	City	Date		(c)	A A A A A A A A A A A A A A A A A A A			X	X														Bample Receipt:	Good Condition?	te Seals Intact?	Total Number of Containers
	in of Custody Re	Date:	Project Manager:	Project Name: Jo	Location:	Collector:	Email:	00175-00-00-00-00-00-00-00-00-00-00-00-00-00	102 102 102 00 000 101 101 101																		3/15/13 000	Tim Date / Tim	Date / Tim	nd reasonable attorney fews to be determined by a cour
	Cha	0 4	al, Inc.		Zip:				ample Container /	H20 PONY	Hzo Poly	HzO Poly	50,1 Jar														Repeived by:	Received by	Received by:) pay the costs of co®+ction including court costs a
	mental, Inc.	Ph: 360-352-211 Fax: 360-352-415	Environment	(See about)	State:	Fax:			Depth Time S	1 1425	- 1545	- 1700	9 1645															Date / Time	Date / Time	of payment and/or failure to pay. Client agrees t
	Libby Environ	4139 Libby Road NE Olympia, WA 98506	Client: Libby	Address:	City:	Phone:	Client Project #		Sample Number	1 B15-W	2 B 16-W	3 B17-W	4 B17-9	5	6	7	8	6	10	11	12	13	14	15	16	17	Relinguished by:	Relinduished by:	Relinquished by:	LEGAL ACTION CLAUSE: In the event of defaut

$\begin{array}{c} (1) \\ (2) \\$		402/00A 402/00A 402/00A 402/00A 402/00A 402/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A	1:00 w174 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:40 5:1	Date / TI Date / TI	quished by: quished by:	Relin
$\begin{array}{c} C_{1}^{C_{1}} \\ C_{2}^{C_{1}} \\ C_{2}^{$		402/00A 402/00A 402/00A 402/00A 402/00A 702/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A	1:00 with 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 200 50:1 1:400 5	Date / Ti	quished by:	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		402/00A 402/00A 402/00A 402/00A 402/00A 402/00A 702/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A	1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 200 50:1 200 50:1 100 50:1 14:00 50:1 14:00 50:1 14:00 50:1 14:00 50:1 5:55 50:1 5:55 50:1 5:55 50:1 5:55 50:1 5:55 50:1	Date / TI	quished by:	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	$\sum_{n=1}^{\infty} x + x + x + x + x + x + x + x + x + x$	402/00A 402/00A 402/00A 402/00A 402/00A 402/00A 702/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A	1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 200 5:1 1:45 5:1 200 5:1 4:00 5:1 5:1 4:00 5:1 5:1 4:00 5:1 5:1 5:1 5:1 5:1 5:1 5:1 5:1	Date / Ti		Relin
$\begin{array}{c} (0,0) \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	402/00A 402/00A 402/00A 402/00A 402/00A 702/00A 3402/00A 3402/00A 3402/00A 3402/00A 3402/00A	1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 200 50:1 200 50:1 1:400 50:1 1:400 50:1 1:400 50:1 1:400 50:1 1:400 50:1 1:400 50:1 1:400 50:1 1:400 50:1 1:45 5	Date / Ti		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$		402/00A 402/00A 402/00A 402/00A 402/00A 702 702 702 702 702 702 702 702 702 702	1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 200 50:1 205 WTRP 205 Suic 205 Suic 525 Suic 525 Suic		iquished by:	Relin
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		402/ VOA 402/ VOA 402/ VOA 402/ VOA 402/ VOA 402/ VOA 702 702 702 702 702 702 702 702 702 702	1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 200 50:1 205 WTRP 205 Suit 205 Suit 400 Suit 400 Suit 400 Suit 515 Suit	1 2 - 11.	516 - w	17
Strand and the second s		402/ VOA 402/ VOA 402/ VOA 402/ VOA 402/ VOA 402/ VOA 702/ VOA 3402/ VOA 3402/ VOA 3402/ VOA	1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 205 WTR 255 Suit 205 Suit 406 Suit 406 Suit 406 Suit 406 Suit		516-10	16
Strain and the permit of the strain of the s		402/ VOA 402/ VOA 402/ VOA 402/ VOA 402/ VOA 702 702 702 702 702 702 702 702 702 702	1:45 5:11 1:45 5:11 1:45 5:11 1:45 5:11 200 50:1 205 WTRR 205 Sute 205 Sute 205 Sute 205 Sute 205 Sute 205 Sute 205 Sute 205 Sute 205 Sute 205 Sute	3 1	B16-3	15
Solution of the second	*× ×××××××	402/ VOA 402/ VOA 402/ VOA 402/ VOA 402/ VOA 402/ VOA 402/ VOA 702 702 702 702 702	1:45 5:1 1:45 5:1 1:45 5:1 1:45 5:1 200 50:1 205 WTR 205 Soit 400 50:1	· · · · · · · · · · · · · · · · · · ·	B15-w	14
Status and a permitted with the status of th		402/VOA 402/VOA 402/VOA 402/VOA 402/VOA 402/VOA 702 702 702	1:45 5:11 1:45 5:11 1:45 5:11 200 50:1 205 WTRR 255 Sute 255 Sute 205 Sute	10 1	-B15-10	13
Statistics of the state of the		402 VOA 402 VOA 402 VOA 402 VOA H02 VOA AMR AMR Y02 Y02	1:45 5:11 1:45 5:11 1:45 5:11 200 50:1 205 WTRP 205 WTRP 205 Sole	~	815-3	12
Structure in the second		402/VOA 402/VOA 402/VOA 402/VOA 402/VOA 402/VOA	1:45 5:11 1:45 5:11 1:45 5:11 200 50:1 205 WTMP 255 Sute	2	M. W- 4-9	1
Structure and the second secon		402 VOA 402 VOA AMR 402 VOA H02 VOA AMR	1:45 5:11 1:45 5:11 1:45 5:11 200 50:1	W	MN-4-3	10
Structure and the second metals		402/ VOA 402/ VOA 402/ VOA 402/ VOA	1:45 501 1:45 501 200 501		B14-W	6
STUDIES		402 VOA AMR AVZ VOA	1:42 24:11 1:42 24:11	8	B14-8	ω
Structure in the second	×××××	402 /VOA 402 /VOA AMR	1:00 with	3	B14-3.	7
STUDIO STUDIO		402/VOA 402/VOA	0.00 0.01	stronge	\$13-w	ရ
STIC S	× × ×	402/VOA	(8 10	\$ 13 - 8	G
STUDIO STUDIO	××	1 1 1 1 1 1	0:40 5015	3 1	313-3	4
STIC STIC		AND VOG	0'00 WTR	//	\$12-w	ω
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		4 52 /00A	1:50 5016	00	612-8	N
OTHER AND AND AND AND ACTION ACTION AND AND AND AND AND AND AND AND ACTION ACTION AND AND AND AND AND AND AND AND AND AN	×	402/004	1:45 5014	3	RS 812-3	
OTHER OF OT OT OF ALL AND ALL	102 105 100 100 100	Container Type	Time Type	Depth	Sample Number	u.
	A A A A A A A A A A A A A A A A A A A					
E. W. E/ / / / / / / / / / / / / / /						
mulics o Rosinsin- Nober Com	Email: M			11-0011	ent Project # 24	Clie
ACT Date of Collection: 2 / 2 5 / 1/3	Collector:		Fax:		one:	Ph
411 93rd City, State: OLYMPIA wh	Location:	57536 id	itate: wA ZI	S	1: TACOMA	Cit
ame: John Havens Estate	Project Na	AT	SU17杯	HUSON	dress: ک <u>ن // ک</u>	Ado
anager: $M, A \times , w/L(S)$	Project Ma			NOAU	ent: Rubinson	Clie
/25/13 Page: 1 of 2	Date: 2		60-352-2110 60-352-4154	Ph: 34 Fax: 36	9 Libby Road NE mpia, WA 98506	413 Oly
ody Record www.LibbyEnvironmental.com	ain of Custo	Ch	Inc.	nental,	bby Environn	

LEGAL ACT	Relinqu	1 cm qu	Relinni	Relinqu	17	16	15	14	3 3	12	11	10	9	ω	7	6	თ	4	ω	Ν						Clier	Phor	City:	Addr	Clier	4139 Olym	L
TION CLAUSE: In the event of defau	ished by:	haired by.	lished hv	uished by:	6 16 m wy	516-10	416-3	515- 2			1 man T. G	and a straight of the	BH-W	50 1 20		1 - C - S - S - S - S - S - S - S - S - S		مىيە بارىخى بارىخى تەرىخى تەرىخى	812-12	\$11 - B		Sample Number	ALL ALLAND		a a	t Project #	1 C :	MW2 7 VI	ess: 30// -5	It: RUBINSON	Libby Road NE pia, WA 98506	by Enviror
" It of payment and/or failu	Date	Date	Date	Date	icola N	10	5	. terihitana			- Server	in a		90	2	di terres de	çò.	VA	Kater, K	÷ ¢¢	4. J	Depth				141-00			+ + + + 5 + + + + + + + + + + + + + + +	NC V	Ph: Fax	Imental
re to pay, Client ag	/ Time		/ Time	/ Time	15.	1225	1215	1425		a s	1 1 1	14 14 14 14	500	1200		1:00	/::	10 : Vo	10:00	9:50		Time	į			Re	Fax:	State: •	·	C 12	360-352-	, Inc.
rrees to pay the co:					en la	5-1-5	1.5	N. 60		€. 4. 	v 1. 1	5.14	N THO	50 50 11 11	5 4 E	212		2016	14 T.A.	5014	210	Sample Type				t Mariagan Internet Maria Maria		Z N	1772	*	2110 4154	. +
sts of collection including cour	Received by:	incontrol by.	Received hv.	Received by:/	the Thealdy	3302 / 8010	3902/0-4	and the second	2 10 2 V V	1. Sa 9. W	162	× 7	NN 2	402 / VOK	4-21 UMA	AMR	Suz Non	4. 7. Juca	An/2/ 4. 2	1. A. J	y wh juw	Container Type						p: 95469	and the second sec		89	C
t costs and reason		1	ار ای منطق کار می معمد. از این منطق کار می موجد.		<u>~</u>			19. v.	,													407.00	2								••	hain c
able attornev fees			Summer and	***********	~	X	×	jæ.	×				\times	×	×	×	×	×	×	×	×	01010	78 278 8			Email:	Collecto	Location	Project	Project	Date:	of Cus
to be determined	Date		Date	່ Date	×	×	×	* × -	34	~	×	×	\prec	~	\sim	*	Х,	×	×	×	×	STAT S		100 × 100	N. Contraction of the second s	1 60 Not	or: Ac	n: 44	Name:	Manager	A J	stody
by a cout of law.	e / Time		Time	e / Time																		444	ACT OF		$\overline{\ }$	0 53	-(422	10/3	1.	5 /	Reco
Total Nun	Seals Inta	Good Cor Cold?)	Sample								-										AND A PLAN	54		\langle	2.5		-		N× 1	Ŵ	đ
ther of Co	ict?	ndition?	5	9 Rece	×	X	X	×	X	X	×	X										CO'SO	2 Co	? \	\backslash	- NU S = NU			Nen	er IL		
ontainers				ipt:	XX	× 		\times		an and the	X	×										A A	Metals	\backslash	\backslash	1. 20	Da	Cit	C.	5	Ра	
					X			X	2011													K.	Ś		\backslash	10562	te of C	y, Stat	540		ge:	
TAT:	-	and the second		Remar	66/01			2.99														E E	Z				ollectic	9: C	- de		Tranger.	Ŵ
24HR Vhite - Lab,	بر		0	ks:	- A-			ۍ د او د			4											eld Not	Via	X		503	m 2	~.~. Å				vw.Libby
48H	, tov	5	ter file	ta E., yeree	N: ~		,	6.6.														es	(e ann ac	A CA	1,25		257	4			of	/Enviro
e. Pink - Or		÷			20050	4-1-1-		N 15															i. V	Der re			1.4.1	N SA			(and a second	nmental
DAY					1-6-5																		ŝ	× * *	हु.सी - -							.com

Parket.

stancia a di unativo substancia da autorizza della additi dale di unativo della di unativo della di un

Consider a strategy of the set of

an bar andala and a concernent of the line of the lin

	Distribution: White - Lab, Yellow - File, Pink - Originator		reasonable attorney fees to be determined by a cout of law.	the costs of collection including court costs and I	ure to pay, Client agrees to pay	ault of payment and/or fails	CLAUSE: In the event of defa	LEGAL ACTION
	TAT: 24HR 48HR 5-DAY	Total Number of Containers						
		Seals Intact?	Date / Time	Received by:	/ Time	Date	ned by:	Relinquis
	Turn Criston	Gold?	· · · · · · · · · · · · · · · · · · ·	·				
	I T	Good Condition?	Date / Time	Received by:	/ Time	C/ Date	ned by: V	Relinquis
		0	Junp-2-25-13 ".5	Harry 1	- In :30	~ 2.25	m for	2a
	Remarks: need EIM	Sample Receipt:	Dafe / Time	Received by:	/ Time	Date	ned by:	Relinquis
				2				17
								16
								15
								14
		•						13
								12
								11
						-		10
								9
				n de la companya de				ω
		-						7
								6
								сл
				-				4
	(3) C. C. As N: - Dissolved	XXX		A POLT/JOA AMP	1700 WT	, the second	31712	ယ
	theto we have Run Metals	R K	X	4 34.2/Vot	1645 200		317-9	2
		XXX	××	(3 Yor/VUA -	1630 501	~.	5-410	1
5	Field Notes metals pure	ALL ALL CARDON ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	102 00 00 00 00 00 00 00 00 00 00	pe Container	Time Ty	Depth	Imple Number	S
	W Via Email. STD	10 100 100 10 10 10	2 + 0 × 10 + 0 00 00 00 00 00 00 00 00 00 00 00 0	1	:		ALL NALL	
	at added per Mar							
	1. COM	1 - Loberton - Nobe	Email: Munch S C R			100-101	roject # スソ	Client I
	$\frac{1}{2}$ of Collection: $\frac{2}{2}$ $\frac{2}{5}$ $\frac{1}{3}$	Date	Collector: $A < \gamma$		Fax:	15-27/1	(253) 4.	Phone:
	, State: OCTM/A WA	City	Location: 4/1 93~1	Zip: 98469	State: LA		TALSON A	City:
	STATIC	HAUTUS F	Project Name: ブッ _H ル	A	5-175	Sittusin	s: 30/1 5	Addres
		x wirrs	Project Manager: M A x		BCR	N NU	Rugins	Client:
	e: X of X	Pag	Date: 2/25/13		0 360-352-4154	Fax	, WA 98506	Olympia
)				360-352-2110	Ph:	bby Road NE	4139 Li
	www.LibbyEnvironmental.com	d	of Custody Record	Chain	l, Inc.	nmenta	y Enviro	Libb
he su delsan	งประเทศีร ส.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ	sede. La trass define le de carde de c	and and a starting of the Manuel and and the same free same before a barrier of the same	१९९९ जिल्ला जेले अन्त्रे के देखे जिल्ला क्यों के क्यों के बिल्ला के क्यों के क्यों के क्यों के क्यों के क्यों के कि	manantinerselö fikkendis är äkken kanne	te de stadentement Chinese an	are a little the state to be been also also	alatickan in

-

TAT: 24HR 48HR 5-DAY	Total Number of Containers	- reasonable attorney fees to be determined by a cout of law.	ts of collection including court costs and i	o pay, Client agrees to pay the cos	ment and/or failure to	EGAL ACTION CLAUSE: In the event of default of pay
	Seals Intact?	Date / Time	Received by:	ime	Date / T	Relinquished by:
- - - - - -	Cold?					
	Coord Coordition o	Date / Time	Received by:	ime	Date / T	Relinquished by:
Remarks: where the M	Sample Receipt: 0		Received by:	ime	Date / T	Relinquished by:
						17
						16
						15
						14
	-					13
						12
					-	
						10
				e aut		9
						8
						7
						6
						IJ
ماليهم			я.			4
	9 X X X	×	Pur Juna IAma	MA WAR		3 低リアー・ハ
and the second of the second		×	3402 / Vat	1645 5014		2 (1) - 1
	XX		3 Yor / Not	100 - 100 -	€-2	1 0
Field Notes	01 01 01 01 00 00 00 00 00 00 00 00 00 0	102 102 102 102 102 102 102 102 102 102	Container Type	Time Type	Depth	Sample Number
A A A A A A A A A A A A A A A A A A A				. P. Mark	and the second	VIBAL
	C Kjun Jam - NO 66 6	Email: Marcos C K		nya ka	-0011	Client Project # 2791
of Collection: 2/3 5//3	Date c	Collector: A C T		Fax:		Phone: (353) 775
State: OCTAPA -UA	City, S	Location: 4// 63+3	10: 95% 9	State: Z		City: TALLANA
2. C. S. L.	1 HAUSTS	Project Name: Junio	and a second sec	Sand & S S A	the is a seal	Address: 30// 5
	XWICKS	Project Manager: 101 / 2 >		£ 22	NUS	Client: Kuiz/~ 5.N
of f	Page:	Date: 2 / 5 < / 13	ne ∰a	360-352-2110 360-352-4154	Ph: 3 Fax: 3	4139 Libby Road NE Olympia, WA 98506
www.LibbyEnvironmental.com	đ	h of Custody Record	Chair	Inc.	iental,	Libby Environm
	÷					

Contraction of the

orden i i norden i

APPENDIX D

Max Wills

From:	Radcliff, Eugene (ECY) [erad461@ECY.WA.GOV]
Sent:	Wednesday, June 26, 2013 4:50 PM
To:	Max Wills
Cc:	Alan Wertjes; Callender, Alexander (ECY); Gerald Tousley; Rose, Scott (ECY)
Subject:	John's Auto Wrecking - SW1127: Site Visit

Max:

Thank you for meeting with us (Eugene Radcliff - VCP and Alex Callender (WQ)) at the Havens Auto Wrecking facility (Site) in Tumwater yesterday. My general impression was that the Site's appearance had dramatically improved in some areas (northeast corner of the Site), while observing little progress in other areas (pond and upper building area). Based on my Site visit yesterday, Ecology has some recommendations for you to consider when conducting further evaluation of the Site:

- Evaluate sediments and surface water samples in pond southern pond along property line. Sediment COCs: TPH-HCID*, metals, PAHs, PCBs, VOCs, semi-VOCs.
- Remove tires, wheels, and all other debris from water bodies. Removal of material should by least invasive, least destructive methods (e.g. by hand)
- Evaluate the pond banks to ascertain whether tires have been buried into the bank along north shoreline of pond.
- Review the electric pole transformer history; sample soils beneath the transformer for PCBs as warranted.
- Remove large "creosote" timber near southern property line (and any other treated lumber found) and sample soil for PAHs, pentachlorophenol, and metals.
- Segregate/remove debris pile from the northern portion of the Site and transport to appropriate off-Site disposal facilities, do not store debris piles on Site for extended periods of time. Ecology views the debris piles as a potential pollutant source, it may necessitate additional sample analyses as well as added cleanup costs if these piles remain on-Site. Items identified in the debris pile included fluorescent light ballasts, insulation, treated wood, a portion of a chimney, galvanized metals, and oil storage containers.
- BMPs should be used when storing debris piles on the Site. The county has primacy on solid waste storage issues and there may be permitting requirements for this type of storage activity. Please contact the Thurston County Health Department for additional guidance on solid waste issues
- Further investigation, based on historic maps and aerial imagery plus the appearance of the area soils being reworked south of the Hopkins Ditch, may be warranted.
- Small collections of metal, tires, and other debris remain scattered throughout the Site and should be removed.
- A Terrestrial Ecological Evaluation (TEE) should be conducted for the Site.
- We discussed the value of having a wetland delineation completed for the Site, this could be useful to help you complete a TEE.

The County has zoned the Site, consisting of five parcels, with two zoning classifications:

Zoned LIGHT INDUSTRIAL DISTRICT (LI)* (northern three parcels)

Subject to the provisions of this title, the following uses are permitted in the light industrial district:

3. Processing and Storage.

g.Junk, rags, paper, or metal salvage, storage, recycling or processing;

Zoned RURAL—ONE DWELLING UNIT PER TEN ACRES (R 1/10) (southern two parcels)

Primary uses.

Subject to the provisions of this title, the following uses are permitted in this district:

1. Single-family dwellings (limited to one primary residential structure per lot);

2.Agriculture;

3.Forest practices and forest management activities; and

4. Outdoor recreation.

Any additional investigation/feasibility study should take these zoning criteria into consideration as potential future uses.

Per our discussion at the Site, Ecology would not be receptive to providing a No Further Action Opinion fort a Site where re-contamination was possible. That is why the removal of any potential Site contamination, and its sources, is essential to moving forward in any future cleanup activities.

Ecology's Southwest Regional Office Water Quality Section may have some additional comments for you at a later date. I will forward to you if I receive any comments.

I would be happy to meet with you and your client to discuss future remedial actions at the Site if you would like.

If you have any questions or comments, please contact me.

Sincerely,

Eugene

Eugene Radcliff, L.G. Toxic Cleanup Program-Voluntary Cleanup Program <u>Washington Department of Ecology</u> (360) 407-7404 <u>erad461@ecy.wa.gov</u>

* TPH-HCID should be collected at selected locations, if the analysis indicated TPH-D or TPH-O then the samples should be NWTPH-Dx using without the silica gel/acid cleanup preparation.

October 16, 2013

Alan Wertjes Attorney at Law 1800 Cooper Point Road, Building 3 Olympia, WA 98502

Subject: Draft work plan for supplemental remedial investigation and limited soil remediation, John's Auto Wrecking (Facility/Site No. 57665495; VCP Project No. SW1127) (Exhibit A)

Dear Alan,

Robinson Noble, Inc. is pleased to present this proposed (draft) work plan for a supplemental remedial investigation (RI) and limited soil remediation at the John's Auto Wrecking site (site), located at 411 93rd Avenue Southeast in Olympia, Washington. Complete details pertaining to site characterization and previous work are presented in our recent remedial investigation (*John's Auto Wrecking, 411 93rd Avenue Southeast, Olympia, Washington, Facility/Site No. 57665495; VCP Project No. SW1127, Remedial Investigation*) dated July 2013. This draft work plan is based directly on the findings and recommendations presented in the July 2013 remedial investigation report, as well as specific issues discussed in our recent meeting together (September 24) with Eugene Radcliff from the Washington State Department of Ecology (Ecology). For the purpose of organization, the draft work plan is divided into eight separate tasks, which include the following:

- Task 1: Completion of the final work plan following Ecology review
- Task 2: Final debris removal and associated soil sampling
- Task 3: Investigation of possible PCB-containing transformers
- Task 4: Investigation of possible imported fill
- Task 5: Quarterly groundwater sampling at MW-1
- Task 6: Wetland delineation and site-specific terrestrial ecologic evaluation (TEE)
- Task 7: EIM preparation and upload
- Task 8: Report preparation

The following sections provide a description of each of the tasks to be completed under the proposed work plan.

Task 1: Completion of the final work plan following Ecology review

As discussed in our September 24 meeting, this draft work plan is being concurrently submitted to Eugene Radcliff (the current Ecology site manager) for review and comment. Once we receive comments back from Ecology, we will incorporate any recommended changes into a final work plan. This final work plan will then be used as the guiding document for all subsequent work completed at the site.

www.robinson-noble.com

John's Auto Wrecking October 16, 2013 Page 2

Task 2: Final debris removal and associated soil sampling

The preponderance of the source material (i.e., auto-wrecking equipment, cars, various auto parts, etc.) has already been removed from the site. However, there are a number of specific areas where a significant amount of debris is still present, and generally there is still random debris strewn across the entire site. Under this task, all of this material will be removed from the site and disposed of in an appropriate manor. A contractor will be hired by the estate of John Havens (represented by Alan Wertjes) to complete the actual debris removal. Robinson Noble will act as a client representative and will oversee the debris-removal process. Debris removal should be completed during the winter months (January and February) when vegetation is sparse and debris is easier to locate. Much of the debris scattered about the site or in wetland areas will need to be removed by hand. As discussed in our meeting, the Ecology Conservation Corps, or an equivalent organization, could be utilized for this purpose.

Robinson Noble will conduct regular site visits during the debris-removal process to assist the contractor with identification of material to be removed. We will also advise the contractor and/or the client on issues pertaining to appropriate disposal of regulated waste. During the debris-removal process, Robinson Noble personnel will be on site to inspect underlying areas and collect soil samples as appropriate. We will also complete limited soil remediation as needed, followed by appropriate confirmation sampling. In addition to general site-wide debris removal, the following specific areas have been identified for debris removal followed by applicable sampling and/or soil remediation as needed:

- The numerous structures located on the northwest corner of the site. The interiors of these structures will need to be accessed to determine whether or not hazardous material is present inside and then removed if present. Sampling/remediation may be necessary depending on the specific conditions found within the buildings.
- The debris piles located to the south of the structures on the northwest corner of the site. This is a former structure that was demolished. Once all of the debris in this area has been removed, sampling and analyses will be conducted for petroleum hydrocarbons (gas- through oil-range), volatile organic compounds (VOC), metals (lead, cadmium, chromium, arsenic, mercury, copper, zinc, and nickel), polychlorinated biphenyls (PCB), and carcinogenic poly aromatic hydrocarbons (cPAHs).
- A possible berm of buried tires located to the north of the small pond at the south end of the site. Appropriate sampling and analyses will be determined in the field depending on the presence (if any) and type of source materials.
- The large creosote-treated timber located in the wetland at the south end of the site. Following removal, the underlying soils will be analyzed for metals, and semi-volatile organics including cPAHs and chlorinated phenols.
- Wheels, tires, and other debris present within Hopkins Ditch. Debris removal in this area will be accomplished almost exclusively by hand to minimize disturbance to the wetlands. Subsequent sampling to characterize this area will be accomplished during the completion of the TEE described below under Task 6.
- Debris located in the northeast corner of the site, just outside the gate. Once debris has been removed from this area, and any appropriate testing completed, Ecology blocks or other similar blockade devices should be utilized in this area to dissuade further illegal dumping.

John's Auto Wrecking October 16, 2013 Page 3

Task 3: Investigation of possible PCB-containing transformers

Robinson Noble will conduct a review of power company records to try to determine if any of the pole-mounted transformers located on the site currently or previously used oil-containing PCBs. If power-company records show that non-PCB transformer oil has generally been utilized, no other action is required. However, if records cannot be found or show that transformer-oil containing PCBs was used, near-surface soil sampling will be completed in the area of each power pole to establish whether or not soils are impacted with PCBs.

Task 4: Investigation of possible imported fill

To investigate the possible use of imported fill material or significant reworking of site soils, Robinson Noble will review historical aerial photos, topographic maps, and other applicable geographic sources for signs of changes in topography and/or surface conditions. Robinson Noble will then direct the excavation of several test pits at key locations across the site to evaluate the possible presence of fill material. The test pits will be excavated primarily on the southern half of the site. A significant number of borings have already been completed across the northern half of the site and have not penetrated fill material. Therefore, only a few additional test pits will be excavated in select areas on the northern half of the site for this purpose unless review of historical data shows an area or areas that warrant additional investigation.

Task 5: Quarterly groundwater sampling at MW-1

During our previous investigation, laboratory analyses indicated a possible intermittent issue with low levels of arsenic in the groundwater in the area around monitoring well MW-1 (located in the southeast portion of the site). To resolve this issue, Robinson Noble will complete four consecutive quarters of groundwater sampling in this area utilizing MW-1. During each quarterly sampling event, we will use standard low-flow sampling techniques to obtain groundwater samples from this well and submit the samples to an accredited laboratory for analysis of total metals (lead, cadmium, chromium, arsenic, mercury, copper, zinc, and nickel). Analytical results will be compared to Model Toxic Control Act (MTCA) Method A cleanup levels, or other appropriate criteria, to evaluate compliance. If, after four quarters of sampling, levels of total metals are found to be out of compliance, additional sampling may be required. Options for additional monitoring and/or possible remediation will be evaluated at that time within the context of other findings for the area around Hopkins Ditch and the surrounding wetlands.

Task 6: Wetland delineation and site-specific terrestrial ecologic evaluation (TEE)

Robinson Noble will subcontract with Normandeau Associates, Inc. (Normandeau), who specializes in habitat evaluation and restoration, to complete formal wetland delineation at the site. This will specifically include the southern half of the site in the area around Hopkins Ditch but will also incorporate any other area of the site determined to be a wetland. Prior to conducting the wetland delineation, Robinson Noble will confirm property boundaries in the field, particularly at the southern end of the site, so that all appropriate areas are included in the delineation. This will be accomplished using either previously generated survey data (if available) or by having a new survey completed.

Following the completion of the wetland delineation (and after all debris has been removed from the site), Robinson Noble will work with Normandeau to complete a site-specific terrestrial ecological evaluation (TEE). The TEE will be used to evaluate potential pathways between any identified contamination and both human receptors and ecological receptors identified through the wetland John's Auto Wrecking October 16, 2013 Page 4

delineation. Completion of the TEE will require the collection and analyses of additional samples in Hopkins Ditch and the surrounding wetland area. This will include surface water samples from Hopkins Ditch where it enters and exits the site, as well as various areas along its course, and surface water samples from the ponds located to the north and south of Hopkins Ditch. Additional, soil and sediment samples will also be collected throughout the wetland area in sufficient quantity to characterize potential contamination. Currently, we anticipate collecting up to 20 additional soil and sediment samples in the wetland area. These samples will be analyzed for petroleum hydrocarbons and metals (lead, cadmium, chromium, arsenic, mercury, copper, zinc, and nickel), and select samples will be analyzed for cPAHs.

Task 7: Input data into Ecology's EIM database

In order to qualify for final no-further-action (NFA) status under Ecology's Voluntary Cleanup Program (VCP), all analytical and appropriate geographical data collected during the course of investigating (and remediating if applicable) the site will need to be uploaded to Ecology's Environmental Information Management (EIM) database system. EIM data has been generated for all of the analytical data collected to date. For this task, we will continue to generate EIM data sets and upload the files to Ecology as they are compiled.

Task 8: Reporting

Upon completion of Tasks 1 through 6 described above, Robinson Noble will compile a final remedial investigation (RI) report summarizing our previous work and documenting the new work described in the final work plan. Ecology is currently conducting a formal review of our July 2013 RI, and our final RI will incorporate or address any issues raised by Ecology in that review. The final RI will also provide recommendations for additional investigative work or remediation as appropriate. If applicable, the final RI report will also provide a discussion of possible remediation options and a cost analysis for each recommended approach.

We will forward a cost estimate under separate cover. If you have questions or need additional information, please contact us at your convenience. It is our pleasure to provide continued service to you and the John Havens Estate on this project.

Respectfully submitted, **Robinson Noble, Inc.**

May 7 N

Max Ŵills, LHG Senior Hydrogeologist

cc Eugene Radcliff

APPENDIX C

Parcel Number: 12723210000

Date: 4/3/2020

Situs Address:	413 SE 93RD AVE	Sect/Town/Range:	23 17 2W
Owner: Address:	HAVENS ESTATE INVESTMENTS LLC 5023 8TH AVE NE SEATTLE, WA 98105	Size: UseCode: TCA Number:	5.18 Acres 91 Undeveloped Land 465
Taxpayer: Address:	HAVENS ESTATE INVESTMENTS LLC 5023 8TH AVE NE SEATTLE, WA 98105	Neighborhood: Property Type: Taxable: Active Exemptions:	15K1 LND YES None
Abbreviated Legal:	23-17-2W W2-NE-NW LYING E OF W 210F LESS N 405F ALSO S 150F	Fire District: School District:	FIRE DISTRICT #06 TUMWATER S.D. #33

			м	arket Va	lues					
Tax Year Assessment Year	2020 2019	2019 2018	2018 2017	2017 2016	2016 2015	2015 2014	2014 2013	2013 2012	2012 2011	2011 2010
Market Value Land Market Value Buildings	\$43,700	\$35,300	\$35,600	\$32,550	\$31,150	\$37,550	\$35,550	\$30,450	\$35,600	\$106,850 \$8,400
Market Value Total	\$43,700	\$35,300	\$35,600	\$32,550	\$31,150	\$37,550	\$35,550	\$30,450	\$35,600	\$115,250

	Land Chara	cteristics	
Land Flag	9150	Land Influence(s)	FR-FAIR NBHD APPEAL
Lot Square Footage	Not Listed		W2-20%-WETLAND
Lot Acreage	5.18		CN-CONTAMINATION
Effective Frontage	Not Listed		
Effective Depth	Not Listed		
Water Source	Not Listed		
Sewer Source	Not Listed		

	Sa	les	
Sale Date:	09/13/2017	09/13/2017	12/19/1988
Price:			
Excise:	534706	535760	535759
Sale Type:	QUIT CLAIM DEED	QUIT CLAIM DEED	QUIT CLAIM DEED
Recording Number:	4585799	4603413	4603412
Seller:	HAVENS SARAH		
Buyer:	HAVENS ESTATE INVESTMENTS LLC	HAVENS ESTATE INVESTMENTS LLC	HAVENS ESTATE INVESTMENTS LLC
Multiple Parcel Sale:	Y	Y	Y

The Assessor's Office maintains property records on approximately 112,000 parcels in Thurston County for tax purposes. Though records are updated regularly, the accuracy and timeliness of published data cannot be guaranteed. Any person or entity that relies on information obtained from this website does so at his or her own risk. Neither Thurston County nor the Assessor will be held liable for damage or losses caused by use of this information. **All critical information should be independently verified**.

Office of the Assessor

Steven J. Drew, Assessor

2000 Lakeridge Drive SW - Olympia, WA 98502

Customer Service (360)867-2200 -- Fax (360)867-2201 -- TDD (360)754-2933

Thurston County A+ Parcel Search: 12723210100

Thurston County Assessor

Parcel Number: 12723210100

Date: 4/3/2020

Situs Address:	411 SE 93RD AVE	Sect/Town/Range:	23 17 2W
Owner: Address:	HAVENS ESTATE INVESTMENTS LLC 5023 8TH AVE NE SEATTLE, WA 98105	Size: UseCode: TCA Number:	1.62 Acres 69 Warehouse 465
Taxpayer: Address:	HAVENS ESTATE INVESTMENTS LLC 5023 8TH AVE NE SEATTLE, WA 98105	Neignbornood: Property Type: Taxable: Active Exemptions:	6WKE WHS YES None
Abbreviated Legal:	23-17-2W NE NW COM NW COR E 417.5 F S 208.5F N 208.5F	Fire District: School District:	FIRE DISTRICT #06 TUMWATER S.D. #33

Market Values										
Tax Year Assessment Year	2020 2019	2019 2018	2018 2017	2017 2016	2016 2015	2015 2014	2014 2013	2013 2012	2012 2011	2011 2010
Market Value Land Market Value Buildings Market Value Total	\$146,200 \$10,500 \$156,700	\$117,600 \$9,200 \$126,800	\$118,400 \$9,400 \$127,800	\$103,750 \$103,750	\$93,350 \$93,350	\$93,350 \$93,350	\$94,450 \$94,450	\$87,900 \$87,900	\$87,900 \$87,900	\$258,200 \$26,900 \$285,100

Commercial Structures Square Feet Building Year Built Floor No. Floors Total Sq. Ft. Quality Condition STORAGE-WHSE 1978 1800 1 1800 FAIR POOR 1 -----1800

		Detach	ed Structures		
Structure	Year Bu	iilt	Square Feet	Quality	Condition
FENCE-CHLK-6	2	014	480	AVERAGE	AVERAGE
		Land Cl	naracteristics		
Land Flag		8010	Land Influence(s)	NS-NO SI	TE IMPRV
Lot Square Footage		70567		CT-CONTI	GUOUS
Lot Acreage		1.62		CN-CONT/ MT-MOD-1	AMINATION FRAFFIC
Effective Frontage		Not Listed			
Effective Depth		Not Listed			
Water Source		Not Listed			
Sewer Source		Not Listed			
-			Sales		
Sale Date:	09/13/2017		09/13/2017	12/19/1988	
Price:					
Excise:	534706		535760	535759	

Sale Type: **Recording Number:** Seller: Buyer: Multiple Parcel Sale:

QUIT CLAIM DEED 4585799 HAVENS SARAH HAVENS ESTATE INVESTMENTS LLC

Y

QUIT CLAIM DEED

HAVENS ESTATE INVESTMENTS LLC

4603413

QUIT CLAIM DEED 4603412

Y

HAVENS ESTATE INVESTMENTS LLC

The Assessor's Office maintains property records on approximately 112,000 parcels in Thurston County for tax purposes. Though records are updated regularly, the accuracy and timeliness of published data cannot be guaranteed. Any person or entity that relies on information obtained from this website does so at his or her own risk. Neither Thurston County nor the Assessor will be held liable for damage or losses caused by use of this information. **All critical information should be independently verified.**

Office of the Assessor Steven J. Drew, Assessor

2000 Lakeridge Drive SW - Olympia, WA 98502

Customer Service (360)867-2200 -- Fax (360)867-2201 -- TDD (360)754-2933

Y

Parcel Number: 12723210400

Date: 4/3/2020

Situs Address:	437 SE 93RD AVE	Sect/Town/Range:	23 17 2W
Owner:	HAVENS ESTATE INVESTMENTS LLC	Size:	2.09 Acres
Address:	5023 8TH AVE NE	UseCode:	91 Undeveloped Land
	SEATTLE, WA 98105	TCA Number:	465
		Neighborhood:	OLKE
Taxpayer:	HAVENS ESTATE INVESTMENTS LLC	Property Type:	LND
Address:	5023 8TH AVE NE	Taxable:	YES
	SEATTLE, WA 98105	Active Exemptions:	None
		Fire District:	FIRE DISTRICT #06
Abbreviated Legal:	23-17-2W W2 NE NW E242.5F OF N405F LESS RD	School District:	TUMWATER S.D. #33

Market Values										
Tax Year Assessment Year	2020 2019	2019 2018	2018 2017	2017 2016	2016 2015	2015 2014	2014 2013	2013 2012	2012 2011	2011 2010
Market Value Land Market Value Buildings Market Value Total	\$146,000 \$146,000	\$160,800 \$160,800	\$168,200 \$168,200	\$147,400 \$147,400	\$144,350 \$144,350	\$135,650 \$135,650	\$130,450 \$130,450	\$121,750 \$121,750	\$130,450 \$130,450	\$253,100 \$14,700 \$267,800

	Detach	ed Structures		
Structure	Year Built	Square Feet	Quality	Condition
GEN-PUR-BLDG	1979	1584	LOW-COST	POOR
,	Land Cl	haracteristics		
Land Flag	8010	Land Influence(s)	NS-NO SIT	'E IMPRV
Lot Square Footage	91040		CN-CONTA	MINATION
Lot Acreage	2.09		MT-MOD-TH	RAFFIC
Effective Frontage	Not Listed			
Effective Depth	Not Listed			
Water Source	Not Listed			
Sewer Source	Not Listed			
,		Sales		
Sale Date: Price:	09/13/2017		09/13/2017	
Excise:	534706		535760	
Sale Type:	QUIT CLAIM DEED		QUIT CLAIM DEED	
Recording Number:	4585799		4603413	
Seller:				10
Multiple Parcel Sale	HAVENS ESTATE INVEST	MENTS LLC	NAVENS ESTATE INVESTMENTS L	LL
	Ť		1	

The Assessor's Office maintains property records on approximately 112,000 parcels in Thurston County for tax purposes. Though records are updated regularly, the accuracy and timeliness of published data cannot be guaranteed. Any person or entity that relies on information obtained from this website does so at his or her own risk. Neither Thurston County nor the Assessor will be held liable for damage or losses caused by use of this information. *All critical information should be independently verified.*

Office of the Assessor

Steven J. Drew, Assessor

2000 Lakeridge Drive SW - Olympia, WA 98502 Customer Service (360)867-2200 -- Fax (360)867-2201 -- TDD (360)754-2933

Parcel Number: 12723210401

Date: 4/3/2020

Situs Address:		Sect/Town/Range:	23 17 2W
Owner:	HAVENS ESTATE INVESTMENTS LLC	Size:	1.95 Acres
Address:	5023 8TH AVE NE	UseCode:	91 Undeveloped Land
	SEATTLE, WA 98105	TCA Number:	465
		Neighborhood:	0LKE
Taxpayer:	HAVENS ESTATE INVESTMENTS LLC	Property Type:	LND
Address:	5023 8TH AVE NE	Taxable:	YES
	SEATTLE, WA 98105	Active Exemptions:	None
Abbreviated Legal:	23-17-2W W2 NE NW N405F EXC N208.5F OF W417.5F EXC E	Fire District: School District:	FIRE DISTRICT #06 TUMWATER S.D. #33

.

. ...

Market Values										
Tax Year Assessment Year	2020 2019	2019 2018	2018 2017	2017 2016	2016 2015	2015 2014	2014 2013	2013 2012	2012 2011	2011 2010
Market Value Land Market Value Buildings	\$54,800	\$57,000	\$50,700	\$44,550	\$37,900	\$35,600	\$34,250	\$31,950	\$34,250	\$136,450 \$2,800
Market Value Total	\$54,800	\$57,000	\$50,700	\$44,550	\$37,900	\$35,600	\$34,250	\$31,950	\$34,250	\$139,250

. . . .

	Land Characteristics						
Land Flag	8010	Land Influence(s)	NS-NO SITE IMPRV				
Lot Square Footage	84942		CT-CONTIGUOUS				
Lot Acreage	1.95		LT-LIGHT TRAFFIC				
Effective Frontage	Not Listed		PE-PR EXPOSURE				
Effective Depth	Not Listed		PA-POOR ACCESS				
Water Source	Not Listed						
Sewer Source	Not Listed						

Sales								
Sale Date:	09/13/2017	09/13/2017	12/19/1988					
Price:								
Excise:	534706	535760	535759					
Sale Type:	QUIT CLAIM DEED	QUIT CLAIM DEED	QUIT CLAIM DEED					
Recording Number:	4585799	4603413	4603412					
Seller:	HAVENS SARAH							
Buyer:	HAVENS ESTATE INVESTMENTS LLC	HAVENS ESTATE INVESTMENTS LLC	HAVENS ESTATE INVESTMENTS LLC					
Multiple Parcel Sale:	Y	Y	Y					

The Assessor's Office maintains property records on approximately 112,000 parcels in Thurston County for tax purposes. Though records are updated regularly, the accuracy and timeliness of published data cannot be guaranteed. Any person or entity that relies on information obtained from this website does so at his or her own risk. Neither Thurston County nor the Assessor will be held liable for damage or losses caused by use of this information. **All critical information should be independently verified**.

Office of the Assessor

Steven J. Drew, Assessor

2000 Lakeridge Drive SW - Olympia, WA 98502

Customer Service (360)867-2200 -- Fax (360)867-2201 -- TDD (360)754-2933

Parcel Number: 12723210700

Date: 4/3/2020

Situs Address:	443 SE 93RD AVE	Sect/Town/Range:	23 17 2W
Owner: Address:	HAVENS ESTATE INVESTMENTS LLC 5023 8TH AVE NE SEATTLE, WA 98105	Size: UseCode: TCA Number:	5.01 Acres 91 Undeveloped Land 465
Taxpayer: Address:	HAVENS ESTATE INVESTMENTS LLC 5023 8TH AVE NE SEATTLE, WA 98105	Neighborhood: Property Type: Taxable: Active Exemptions:	15K1 LND YES None
Abbreviated Legal:	23-17-2W W2 NE NW E238F LESS N405F	Fire District: School District:	FIRE DISTRICT #06 TUMWATER S.D. #33

Market Values										
Tax Year Assessment Year	2020 2019	2019 2018	2018 2017	2017 2016	2016 2015	2015 2014	2014 2013	2013 2012	2012 2011	2011 2010
Market Value Land Market Value Buildings	\$43,100	\$34,800	\$35,100	\$32,100	\$30,700	\$37,000	\$35,050	\$30,200	\$35,300	\$150,000 \$6,300
Market Value Total	\$43,100	\$34,800	\$35,100	\$32,100	\$30,700	\$37,000	\$35,050	\$30,200	\$35,300	\$156,300

Land Characteristics							
Land Flag	9150	Land Influence(s)	CN-CONTAMINATION				
Lot Square Footage	Not Listed		FR-FAIR NBHD APPEAL				
Lot Acreage	5.01		W2-20%-WEILAND				
Effective Frontage	Not Listed						
Effective Depth	Not Listed						
Water Source	Not Listed						
Sewer Source	Not Listed						

	Sales	
Sale Date:	09/13/2017	09/13/2017
Price:		
Excise:	534706	535760
Sale Type:	QUIT CLAIM DEED	QUIT CLAIM DEED
Recording Number:	4585799	4603413
Seller:	HAVENS SARAH	
Buyer:	HAVENS ESTATE INVESTMENTS LLC	HAVENS ESTATE INVESTMENTS LLC
Multiple Parcel Sale:	Y	Y

The Assessor's Office maintains property records on approximately 112,000 parcels in Thurston County for tax purposes. Though records are updated regularly, the accuracy and timeliness of published data cannot be guaranteed. Any person or entity that relies on information obtained from this website does so at his or her own risk. Neither Thurston County nor the Assessor will be held liable for damage or losses caused by use of this information. **All critical information should be independently verified**.

Office of the Assessor

Steven J. Drew, Assessor 2000 Lakeridge Drive SW - Olympia, WA 98502 Customer Service (360)867-2200 -- Fax (360)867-2201 -- TDD (360)754-2933

Parcel Number: 12723220200

Date: 4/3/2020

Situs Address:	429 SE 93RD AVE	Sect/Town/Range:	23 17 2W
Owner:	HAVENS ESTATE INVESTMENTS LLC	Size:	0.19 Acres
Address:	5023 8TH AVE NE	UseCode:	91 Undeveloped Land
	SEATTLE, WA 98105	TCA Number:	465
		Neighborhood:	OLKE
Taxpayer:	HAVENS ESTATE INVESTMENTS LLC	Property Type:	LND
Address:	5023 8TH AVE NE	Taxable:	YES
	SEATTLE, WA 98105	Active Exemptions:	None
		Fire District:	FIRE DISTRICT #06
Abbreviated Legal:	23-17-2W E 54.25F OF N 330F OF NW NW LESS N 200F	School District:	TUMWATER S.D. #33

			м	larket Va	lues					
Tax Year Assessment Year	2020 2019	2019 2018	2018 2017	2017 2016	2016 2015	2015 2014	2014 2013	2013 2012	2012 2011	2011 2010
Market Value Land Market Value Buildings	\$12,400	\$14,200	\$12,200	\$10,800	\$11,850	\$11,100	\$10,700	\$10,000	\$10,700	\$7,250
Market Value Total	\$12,400	\$14,200	\$12,200	\$10,800	\$11,850	\$11,100	\$10,700	\$10,000	\$10,700	\$7,250

	Land Chara	cteristics	
Land Flag Lot Square Footage Lot Acreage Effective Frontage	8010 8276 0.19 Not Listed	Land Influence(s)	PE-PR EXPOSURE FA-FAIR ACCESS NS-NO SITE IMPRV CT-CONTIGUOUS CN-CONTAMINATION
Effective Depth Water Source Sewer Source	Not Listed Not Listed Not Listed		LT-LIGHT TRAFFIC

	Sa	ales	
Sale Date: Price:	09/13/2017	09/13/2017	12/19/1988
Excise:	534706	535760	535759
Sale Type: Recording Number:	QUIT CLAIM DEED 4585799	QUIT CLAIM DEED 4603413	QUIT CLAIM DEED 4603412
Seller:	HAVENS SARAH		
Buyer: Multiple Parcel Sale:	HAVENS ESTATE INVESTMENTS LLC Y	HAVENS ESTATE INVESTMENTS LLC Y	HAVENS ESTATE INVESTMENTS LLC Y

The Assessor's Office maintains property records on approximately 112,000 parcels in Thurston County for tax purposes. Though records are updated regularly, the accuracy and timeliness of published data cannot be guaranteed. Any person or entity that relies on information obtained from this website does so at his or her own risk. Neither Thurston County nor the Assessor will be held liable for damage or losses caused by use of this information. **All critical information should be independently verified**.

Office of the Assessor

Steven J. Drew, Assessor

2000 Lakeridge Drive SW - Olympia, WA 98502

Customer Service (360)867-2200 -- Fax (360)867-2201 -- TDD (360)754-2933

APPENDIX D

4139 Libby Road NE · Olympia, WA 98506-2518

December 8, 2014

Max Wills Robinson Noble 17625 130th Avenue NE, Suite 102 Woodinville, WA 98072

Dear Mr. Wills:

Please find enclosed the analytical data report for the Havens Estate Project located in Olympia, Washington. Soil samples were analyzed for Volatile Organic Compounds by EPA Method 8260C, Gasoline by NWTPH-Gx, Diesel & Oil by NWTPH-Dx/Dx Extended, Mineral Oil by NWTPH-Dx/Dx Extended, Metals Arsenic, Cadmium, Chromium, Copper, Lead, and Zinc by EPA Method 7010 Series, Mercury by EPA Method 7471, Total Nickel and TCLP Lead by EPA Method SW846 6010C, Hexavalent Chromium by EPA Method 7196A, Polyaromatic Hydrocarbons by EPA Method 8270 (SIM), and PCB (Polychlorinated Biphenyls) by EPA Method 8082.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. All soil samples are reported on a dry weight basis. An invoice for this analytical work is included and has been emailed to the Tacoma office.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Kurt Johnson Senior Chemist Libby Environmental, Inc.

Phone (360) 352-2110 • Fax (360) 352-4154 • libbyenv@aol.com

www.LibbyEnvironmental.com

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method Blank	TP12-1	TP12-3	TP13-1	TP13-3	TP14-1.5
Date Sampled	Reporting	N/A	11/5/14	11/5/14	11/5/14	11/5/14	11/5/14
Date Analyzed	Limits	11/6/14	11/6/14	11/6/14	11/6/14	11/6/14	11/6/14
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.03	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
Total Xylenes	0.03	nd	nd	nd	nd	nd	nd
Styrene	0.02	nd	nd	nd	nd	nd	nd

Volatile Organic Compounds by EPA Method 8260C in Soil

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method Blank	TP12-1	TP12-3	TP13-1	TP13-3	TP14-1.5
Date Sampled	Reporting	N/A	11/5/14	11/5/14	11/5/14	11/5/14	11/5/14
Date Analyzed	Limits	11/6/14	11/6/14	11/6/14	11/6/14	11/6/14	11/6/14
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.03	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.08	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.03	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.02	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
Isopropyltoluene	0.02	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalenes	0.05	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.1	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		108	114	110	114	109	94
1,2-Dichloroethane-d4		121	135	127	123	128	100
Toluene-d8		90	92	90	91	88	74
4-Bromofluorobenzene		97	94	95	96	90	94

Volatile Organic Compounds by EPA Method 8260C in Soil

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		TP14-1.5	TP14-3	TP16-1	TP16-3	TP15-1	TP15-3
		Dup					
Date Sampled	Reporting	11/5/14	11/5/14	11/5/14	11/5/14	11/5/14	11/5/14
Date Analyzed	Limits	11/6/14	11/6/14	11/6/14	11/6/14	11/6/14	11/6/14
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Foluene	0.03	nd	nd	nd	nd	nd	nd
Frans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Fetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
Total Xylenes	0.03	nd	nd	nd	nd	nd	nd
styrene	0.02	nd	nd	nd	nd	nd	nd

Volatile Organic Compounds by EPA Method 8260C in Soil

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		TP14-1.5	TP14-3	TP16-1	TP16-3	TP15-1	TP15-3
		Dup					
Date Sampled	Reporting	11/5/14	11/5/14	11/5/14	11/5/14	11/5/14	11/5/14
Date Analyzed	Limits	11/6/14	11/6/14	11/6/14	11/6/14	11/6/14	11/6/14
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.03	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.08	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.03	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.02	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
Isopropyltoluene	0.02	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalenes	0.05	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.1	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		95	116	104	96	111	113
1,2-Dichloroethane-d4		88	131	132	120	126	129
Foluene-d8		80	89	77	75	90	80
4-Bromofluorobenzene		85	84	98	84	92	95

Volatile Organic Compounds by EPA Method 8260C in Soil

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		TP17-1	TP17-3	TP18-1	TP18-3	TP18-3
						Dup
Date Sampled	Reporting	11/5/14	11/5/14	11/5/14	11/5/14	11/5/14
Date Analyzed	Limits	11/6/14	11/6/14	11/6/14	11/6/14	11/6/14
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd
cis -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd
Foluene	0.03	nd	nd	nd	nd	nd
Frans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd
Fetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd
,3-Dichloropropane	0.05	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd
,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd
,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd
otal Xylenes	0.03	nd	nd	nd	nd	nd
Styrene	0.02	nd	nd	nd	nd	nd

Volatile Organic Compounds by EPA Method 8260C in Soil

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		TP17-1	TP17-3	TP18-1	TP18-3	TP18-3
						Dup
Date Sampled	Reporting	11/5/14	11/5/14	11/5/14	11/5/14	11/5/14
Date Analyzed	Limits	11/6/14	11/6/14	11/6/14	11/6/14	11/6/14
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.03	nd	nd	nd	nd	nd
Isopropylbenzene	0.08	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.03	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd
n-Propylbenzene	0.02	nd	nd	nd	nd	nd
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	nd	nd
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	nd	nd
sec-Butylbenzene	0.02	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	nd
Isopropyltoluene	0.02	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.03	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.03	nd	nd	nd	nd	nd
n-Butylbenzene	0.02	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd
Naphthalenes	0.05	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.1	nd	nd	nd	nd	nd
Surrogate Recovery						
Dibromofluoromethane		110	113	107	91	116
1,2-Dichloroethane-d4		133	121	125	116	134
Foluene-d8		84	90	73	76	81
4-Bromofluorobenzene		96	96	89	100	96

Volatile Organic Compounds by EPA Method 8260C in Soil

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Identification: TP13-3									
		Matrix Spike		Matr	RPD				
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)			
1,1-Dichloroethene	0.50	0.47	94	0.50	0.46	92	2.2		
Benzene	0.50	0.54	108	0.50	0.56	112	3.6		
Toluene	0.50	0.52	104	0.50	0.49	98	5.9		
Chlorobenzene	0.50	0.58	116	0.50	0.53	106	9.0		
Trichloroethene (TCE)	0.50	0.56	112	0.50	0.60	120	6.9		
Surrogate Recovery									
Dibromofluoromethane			93			121			
1,2-Dichloroethane-d4			105			130			
Toluene-d8			75			103			
4-Bromofluorobenzene			82			119			

QA/QC Data - EPA 8260C Analyses

		and and y search and pro-				
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)			
1,1-Dichloroethene	0.50	0.43	86			
Benzene	0.50	0.47	94			
Toluene	0.50	0.44	88			
Chlorobenzene	0.50	0.46	92			
Trichloroethene (TCE)	0.50	0.46	92			
Surrogate Recovery						
Dibromofluoromethane			112			
1,2-Dichloroethane-d4			118			
Toluene-d8			90			
4-Bromofluorobenzene			94			

Laboratory Control Sample

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	TP21-1	TP21-3	TP22-1	TP22-3	TP23-1
		Blank					
Date Sampled	Reporting	N/A	11/6/14	11/6/14	11/6/14	11/6/14	11/6/14
Date Analyzed	Limits	11/7/14	11/6/14	11/7/14	11/7/14	11/7/14	11/7/14
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.03	nd	nd	nd	nd	nd	nd
Frans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Fetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
Total Xylenes	0.03	nd	nd	nd	nd	nd	nd
Styrene	0.02	nd	nd	nd	nd	nd	nd

Volatile Organic Compounds by EPA Method 8260C in Soil

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	TP21-1	TP21-3	TP22-1	TP22-3	TP23-1
		Blank					
Date Sampled	Reporting	N/A	11/6/14	11/6/14	11/6/14	11/6/14	11/6/14
Date Analyzed	Limits	11/7/14	11/6/14	11/7/14	11/7/14	11/7/14	11/7/14
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.03	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.08	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.03	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.02	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
Isopropyltoluene	0.02	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalenes	0.05	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.1	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		114	121	111	106	108	106
1,2-Dichloroethane-d4		125	123	133	122	133	135
Toluene-d8		89	83	80	75	82	89
4-Bromofluorobenzene		92	99	93	90	91	92

Volatile Organic Compounds by EPA Method 8260C in Soil

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Volatile Organic Compounds by EPA Method 8260C in Soil

Sample Description		TP23-1	TP23-4	
		Dup		
Date Sampled	Reporting	11/6/14	11/6/14	
Date Analyzed	Limits	11/7/14	11/7/14	
	(mg/kg)	(mg/kg)	(mg/kg)	
Dichlorodifluoromethane	0.06	nd	nd	
Chloromethane	0.06	nd	nd	
Vinvl chloride	0.02	nd	nd	
Bromomethane	0.09	nd	nd	
Chloroethane	0.06	nd	nd	
Trichlorofluoromethane	0.05	nd	nd	
1,1-Dichloroethene	0.05	nd	nd	
Methylene chloride	0.02	nd	nd	
Methyl tert-Butyl Ether (MTBE)	0.05	nd	nd	
trans -1,2-Dichloroethene	0.02	nd	nd	
1,1-Dichloroethane	0.03	nd	nd	
2,2-Dichloropropane	0.05	nd	nd	
cis -1,2-Dichloroethene	0.02	nd	nd	
Chloroform	0.02	nd	nd	
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	
Carbon tetrachloride	0.03	nd	nd	
1,1-Dichloropropene	0.02	nd	nd	
Benzene	0.02	nd	nd	
1,2-Dichloroethane (EDC)	0.03	nd	nd	
Trichloroethene (TCE)	0.03	nd	nd	
1,2-Dichloropropane	0.02	nd	nd	
Dibromomethane	0.04	nd	nd	
Bromodichloromethane	0.02	nd	nd	
cis-1,3-Dichloropropene	0.02	nd	nd	
Toluene	0.03	nd	nd	
Frans-1,3-Dichloropropene	0.03	nd	nd	
,1,2-Trichloroethane	0.03	nd	nd	
fetrachloroethene (PCE)	0.02	nd	nd	
,3-Dichloropropane	0.05	nd	nd	
Dibromochloromethane	0.03	nd	nd	
,2-Dibromoethane (EDB) *	0.005	nd	nd	
Chlorobenzene	0.02	nd	nd	
,1,1,2-Tetrachloroethane	0.03	nd	nd	
Ethylbenzene	0.03	nd	nd	
Total Xylenes	0.03	nd	nd	
styrene	0.02	nd	nd	

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Volatile Organic Compounds by EPA Method 8260C in Soil

Sample Description		TP23-1	TP23-4	
		Dup		
Date Sampled	Reporting	11/6/14	11/6/14	
Date Analyzed	Limits	11/7/14	11/7/14	
5.7 8	(mg/kg)	(mg/kg)	(mg/kg)	
Bromoform	0.03	nd	nd	
Isopropylbenzene	0.08	nd	nd	
1,2,3-Trichloropropane	0.03	nd	nd	
Bromobenzene	0.03	nd	nd	
1,1,2,2-Tetrachloroethane	0.03	nd	nd	
n-Propylbenzene	0.02	nd	nd	
2-Chlorotoluene	0.02	nd	nd	
4-Chlorotoluene	0.02	nd	nd	
1,3,5-Trimethylbenzene	0.02	nd	nd	
tert-Butylbenzene	0.02	nd	nd	
1,2,4-Trimethylbenzene	0.02	nd	nd	
sec-Butylbenzene	0.02	nd	nd	
1,3-Dichlorobenzene	0.03	nd	nd	
sopropyltoluene	0.02	nd	nd	
1,4-Dichlorobenzene	0.03	nd	nd	
1,2-Dichlorobenzene	0.03	nd	nd	
n-Butylbenzene	0.02	nd	nd	
,2-Dibromo-3-Chloropropane	0.05	nd	nd	
,2,4-Trichlorolbenzene	0.05	nd	nd	
lexachloro-1,3-butadiene	0.10	nd	nd	
Naphthalenes	0.05	nd	nd	
1,2,3-Trichlorobenzene	0.1	nd	nd	
Surrogate Recovery				
Dibromofluoromethane		93	111	
,2-Dichloroethane-d4		104	132	
Foluene-d8		79	89	
4-Bromofluorobenzene		84	91	

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F

1,1-Dichloroethene

Benzene

Toluene

FAX: (360) 352-4154 Email: libbyenv@aol.com Sample Identification: TP23-4 Matrix Spike Duplicate Matrix Spike RPD Measured Spike Spiked Measured Spike Conc. Recovery Conc. Conc. Recovery

(mg/kg)

0.44

0.47

0.45

(%)

88

94

90

4.7

2.2

2.2

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110

QA/QC Data - EPA 8260C Analyses

(%)

84

92

88

(mg/kg)

0.50

0.50

0.50

Chlorobenzene	0.50	0.46	92	0.50	0.47	94	2.2
Trichloroethene (TCE)	0.50	0.48	96	0.50	0.49	98	2.1
Surrogate Recovery							
Dibromofluoromethane			102			112	
1,2-Dichloroethane-d4			111			132	
Toluene-d8			90			87	
4-Bromofluorobenzene			75			88	

	Laboratory	Laboratory Control Sample					
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)				
1,1-Dichloroethene	0.50	0.41	82				
Benzene	0.50	0.47	94				
Toluene	0.50	0.45	90				
Chlorobenzene	0.50	0.46	92				
Trichloroethene (TCE)	0.50	0.46	92				
Surrogate Recovery							
Dibromofluoromethane			114				
1,2-Dichloroethane-d4			128				
Toluene-d8			91				
4-Bromofluorobenzene			92				

Spiked

Conc.

(mg/kg)

0.50

0.50

0.50

(mg/kg)

0.42

0.46

0.44

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	11/6/14	90	nd
TP12-1	11/6/14	92	nd
TP12-3	11/6/14	90	nd
TP13-1	11/6/14	91	nd
TP13-3	11/6/14	88	nd
TP14-1.5	11/6/14	74	nd
TP14-1.5 Dup	11/6/14	80	nd
TP14-3	11/6/14	89	nd
TP16-1	11/6/14	77	nd
TP16-3	11/6/14	75	nd
TP15-1	11/6/14	90	nd
TP15-3	11/6/14	80	nd
TP17-1	11/6/14	84	nd
TP17-3	11/6/14	90	nd
TP18-1	11/6/14	73	nd
TP18-3	11/6/14	76	nd
TP18-3 Dup	11/6/14	81	nd
Practical Quantitation Limit			10

Analyses of Gasoline (NWTPH-Gx) in Soil

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%
HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Number	Date Analyzed	Surrogate Recovery (%)	Gasoline (mg/kg)
Method Blank	11/7/14	89	nd
TP21-1	11/6/14	83	nd
TP21-3	11/6/14	80	nd
TP22-1	11/7/14	75	nd
TP22-3	11/7/14	82	nd
TP23-1	11/7/14	89	nd
TP23-1 Dup	11/7/14	79	nd
TP23-4	11/7/14	89	nd
Practical Quantitation Limit			10

Analyses of Gasoline (NWTPH-Gx) in Soil

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	11/6/14	105	nd	nd
TP12-1	11/6/14	96	nd	nd
TP12-3	11/6/14	119	nd	nd
TP13-1	11/6/14	104	nd	nd
TP13-3	11/6/14	115	nd	nd
TP14-1.5	11/6/14	106	nd	416
TP14-3	11/6/14	int	nd	nd
TP16-1	11/6/14	106	nd	nd
TP16-1 Dup	11/6/14	101	nd	nd
TP16-3	11/6/14	128	nd	nd
TP16-3 Dup	11/6/14	122	nd	nd
TP15-1	11/6/14	102	nd	nd
TP15-3	11/6/14	126	nd	nd
TP17-1	11/6/14	104	nd	nd
TP17-3	11/6/14	106	nd	nd
TP18-1	11/6/14	99	nd	nd
TP18-3	11/6/14	128	nd	nd
Practical Quantitation	Limit		50	200

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Number	Date Analyzed	Surrogate Recovery (%)	Diesel (mg/kg)	Oil (mg/kg)
Method Blank	11/6/14	105	nd	nd
TP21-1	11/6/14	81	nd	nd
TP21-3	11/6/14	108	nd	nd
TP22-1	11/7/14	77	nd	nd
TP22-3	11/7/14	100	nd	nd
ГР23-1	11/7/14	79	nd	nd
ГР23-4	11/7/14	98	nd	nd
TP23-4 Dup	11/7/14	103	nd	nd
Practical Quantitation Limi	t		50	200

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4140 Libby Road NE Olympia, WA 98507 Phone: (360) 352-2111 FAX: (360) 352-4155 Email: libbyenv@aol.com

Sample Number	Date	Surrogate Recovery (%)	Min Oil
Method Blank	11/6/14	105	(ling/kg)
TP19-1	11/6/14	106	nd
TP19-3	11/6/14	122	nd
TP20-1	11/7/14	86	nd
TP20-3	11/7/14	119	nd
Practical Quantitation Limit			100

Analyses of Mineral Oil by (NWTPH-Dx/Dx Extended) in Soil

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Number	Date Analyzed	Lead (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Arsenic (mg/kg)
Method Blank	11/9/14	nd	nd	nd	nd
TP12-1	11/9/14	13	nd	27	7.0
TP12-3	11/9/14	nd	nd	34	8.9
TP13-1	11/9/14	13	nd	7.6	6.5
TP13-3	11/9/14	6.9	nd	13	8.0
TP14-1.5	11/9/14	5552	nd	116	7.6
TP14-3	11/9/14	21	nd	23	7.0
TP16-1	11/9/14	17	nd	39	7.3
TP16-3	11/9/14	nd	nd	25	7.9
TP15-1	11/9/14	6.5	nd	9.4	7.1
TP15-3	11/9/14	nd	nd	46	8.9
TP17-1	11/9/14	nd	nd	85	7.7
TP17-3	11/9/14	nd	nd	15	7.0
TP18-1	11/9/14	nd	nd	57	6.9
ГР18-3	11/12/14	nd	nd	11	7.0
Practical Quantita	tion Limit	5.0	1.0	5.0	5.0

Analyses of Total Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Number	Date Analyzed	Lead (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Arsenic (mg/kg)
Method Blank	11/9/14	nd	nd	nd	nd
TP21-1	11/9/14	nd	nd	56	8.3
TP21-3	11/9/14	nd	nd	72	7.9
TP22-1	11/9/14	5.4	nd	59	5.0
TP22-3	11/9/14	nd	nd	9.4	6.8
TP23-1	11/9/14	6.6	nd	34	5.2
TP23-4	11/9/14	nd	nd	37	6.7
TP23-4 Dup	11/9/14	nd	nd	39	7.1
Practical Quantita	tion Limit	5.0	1.0	5.0	5.0

Analyses of Total Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample Number	Date Analyzed	Lead (% Recovery)	Cadmium (% Recovery)	Chromium (% Recovery)	Arsenic (% Recovery)
LCS	11/9/14	99%	86%	87%	91%
TP23-4 MS	11/9/14	88%	87%	89%	92%
TP23-4 MSD	11/9/14	96%	88%	92%	99%
RPD	11/9/14	9%	1%	3%	7%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample Number	Date Analyzed	Lead (% Recovery)	Cadmium (% Recovery)	Chromium (% Recovery)	Arsenic (% Recovery)
LCS	11/12/14	108%	91%	106%	112%
L141111-2 MS	11/12/14	112%	82%	113%	118%
L141111-2 MSD	11/12/14	103%	85%	110%	112%
RPD	11/12/14	9%	4%	3%	5%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Method Blank	11/13/14	nd
TP12-1	11/13/14	nd
TP12-3	11/13/14	nd
TP13-1	11/18/14	nd
TP13-3	11/13/14	nd
TP14-1.5	11/13/14	nd
TP14-3	11/13/14	nd
TP16-1	11/13/14	nd
TP16-3	11/13/14	nd
TP15-1	11/13/14	nd
TP15-3	11/13/14	nd
TP15-3 Dup	11/13/14	nd
TP17-1	11/13/14	nd
TP17-3	11/13/14	nd
TP18-1	11/18/14	nd
TP18-3	11/13/14	nd
Practical Quantitation Limit		0.5

Analyses of Total Mercury in Soil by EPA Method 7471

"nd" Indicates not detected at the listed detection limits.

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Method Blank	11/13/14	nd
TP21-1	11/13/14	nd
TP21-3	11/13/14	nd
TP22-1	11/13/14	nd
TP22-3	11/13/14	nd
TP23-1	11/13/14	nd
TP23-4	11/13/14	nd
TP23-4 Dup	11/13/14	nd
Practical Quantitation Limit		0.5

Analyses of Total Mercury in Soil by EPA Method 7471

"nd" Indicates not detected at the listed detection limits.

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	11/13/14	98%
TP23-4 MS	11/13/14	98%
TP23-4 MSD	11/13/14	98%
RPD	11/13/14	0%

QA/QC for Mercury by EPA Method 7471

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Mercury by EPA Method 7471

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	11/18/14	91%
L141118-1 MS	11/18/14	91%
L141118-1 MSD	11/18/14	91%
RPD	11/18/14	0%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Copper	Zinc
Number	Analyzed	(mg/kg)	(mg/kg)
Method Blank	11/9/14	nd	nd
TP12-1	11/9/14	15	nd
TP12-3	11/9/14	12	9.2
TP13-1	11/9/14	9.8	nd
TP13-3	11/9/14	13	7.1
TP14-1.5	11/9/14	3113	nd
TP14-3	11/9/14	15	nd
TP16-1	11/9/14	10	nd
TP16-3	11/9/14	12	nd
TP15-1	11/9/14	9.9	nd
TP15-3	11/9/14	12	nd
TP17-1	11/9/14	12	nd
TP17-3	11/9/14	10	nd
TP18-1	11/9/14	11	nd
TP18-3	11/12/14	20	5.7
Practical Quantitation Limit		5.0	5.0

Analyses of Total Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Copper	Zinc
Number	Analyzed	(mg/kg)	(mg/kg)
Method Blank	11/9/14	nd	nd
TP21-1	11/9/14	11	nd
TP21-3	11/9/14	12	nd
TP22-1	11/9/14	5.2	9.2
TP22-3	11/9/14	nd	nd
TP23-1	11/9/14	5.7	nd
TP23-4	11/9/14	6.2	7.4
TP23-4 Dup	11/9/14	5.8	7.6
Practical Quantitation Limit		5.0	5.0

Analyses of Total Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	11/9/14	100%	117%
TP23-4 MS	11/9/14	97%	92%
TP23-4 MSD	11/9/14	88%	84%
RPD	11/9/14	10%	9%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141106-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample Number	Date Analyzed	Copper (% Recovery)	Zinc (% Recovery)
LCS	11/12/14	106%	100%
L141111-2 MS	11/12/14	95%	89%
L141111-2 MSD	11/12/14	93%	86%
RPD	11/12/14	3%	4%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

11/26/2014

Libby Environmental, Inc.Project:Havens Estate4139 Libby Rd NESample Matrix:SoilOlympia, WA 98506Date Sampled:11/05/2014Attn: Jamie DeymanSpectra Project:2014110260

Client ID	Spectra #	Analyte	Result	Units	Method
TP 12-1	1	Total Nickel	24.4	malka	SWRAC COLOC
TP 12-3	2	Total Nickel	23.4	mg/Kg	SW846 6010C
TP 12-3	2	Hexavalent Chromium	<1.0	mg/Kg	SW846 0010C
TP 13-1	3	Total Nickel	74.2	mg/Kg	SW846 /196A
TP 13-3	4	Total Nickel	23.0	mg/Kg	SW846 6010C
TP 14-1.5	5	TCLPLead	3.42	mg/Kg	SW846 6010C
TP 14-1.5	5	Total Nickel	3.42	mg/L	SW846 6010C
TP 14-1.5	5	Hexaumlant Chromine	26.4	mg/Kg	SW846 6010C
TP 14-3	5	Texavalent Chromium	<1.0	mg/Kg	SW846 7196A
TP 16 1	0	Total Nickel	22.8	mg/Kg	SW846 6010C
TP 16 1	7	Total Nickel	21.1	mg/Kg	SW846 6010C
TP 10-1	7	Hexavalent Chromium	<1.0	mg/Kg	SW846 7196A
TP 16-3	8	Total Nickel	22.7	mg/Kg	SW846 6010C
TP 15-1	9	Total Nickel	15.9	mg/Kg	SW846 6010C
TP 15-3	10	Total Nickel	19.8	ma/Ka	SW846 6010C
TP 15-3	10	Hexavalent Chromium	<1.0	malka	SW846 71064
TP 17-1	11	Total Nickel	19.6	ma/Ka	SW846 60100
TP 17-1	11	Hexavalent Chromium	<10	mg/Kg	SW840 0010C
TP 17-3	12	Total Nickel	10.4	mg/Kg	SW840 /196A
TP 18-1	13	Total Nickel	19.4	mg/Kg	SW846 6010C
TP 18-1	13	I Gial Nickel	20.4	mg/Kg	SW846 6010C
TP 18-3	13	Hexavalent Chromium	<1.0	mg/Kg	SW846 7196A
TD 21 1	14	Total Nickel	21.1	mg/Kg	SW846 6010C
TP 21-1	19	Total Nickel	18.9	mg/Kg	SW846 6010C
11 21-3	20	Total Nickel	22.6	mg/Kg	SW846 6010C

ICP analysis: 11-12-14 SCJ Additional TCLP analysis by ICP: 11-26-14 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a7/scj

SPECTRA Laboratories

2221 Ross Way * Tacoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 * www.spectra-lab.com

11/26/2014

Libby Environmental, Inc.	Project: Sample Matrix:	Havens Estate Soil
4139 Libby Rd NE	Date Sampled:	11/06/2014
Olympia, WA 98506	Date Received:	11/11/2014
Attn: Jamie Deyman	Spectra Project:	2014110260

Client ID	Spectra #	Analyte	Result	Units	Method
TP 21-3	20	Hexavalent Chromium	<1.0	mo/Ko	SW846 71964
TP 22-1	21	Total Nickel	17.5	mg/Kg	SW846 6010C
TP 22-1	21	Hexavalent Chromium	<1.0	mg/Kg	SW846 7196A
TP 22-3	22	Total Nickel	20.2	mg/Kg	SW846 6010C
TP 23-1	23	Total Nickel	16.2	mg/Kg	SW846 6010C
TP 23-4	24	Total Nickel	18.2	mg/Kg	SW846 6010C
TP 23-4	24	Hexavalent Chromium	<0.5	mg/Kg	SW846 7196A

ICP analysis: 11-12-14 SCJ Additional TCLP analysis by ICP: 11-26-14 SCJ

SPECTRA LABORATORIES -

-

Steve Hibbs, Laboratory Manager a7/scj

SPECTRA Laboratories

2221 Ross Way * Tacoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 * www.spectra-lab.com

11/26/2014

Libby Environmental, Inc 4139 Libby Rd. NE Olympia, WA 98506

Units: mg/L Spectra Project: 2014110260 Applies to Spectra #'s 5

QUALITY CONTROL RESULTS ICP Motale SW846 6010C - TCI P

		ICT IV	ietais Syrc	40 0010C ·	- ICLP			
			Metho	d Blank				
Date Digested:	11/26/2014				Date Analy	zed:	11/26/2014	
		Element			Result			
		Lead			< 0.04	-		
		1	Blank Sp	ike (LCS)				
Date Digested:	11/26/2014				Date Analy	zed:	11/26/2014	
				Spike	LCS	LCS		
	-	Element		Added	Conc.	%Rec		
		Lead		1.0	1.114	111.4		
LCS Recovery limit	ts 80-120%							
	Ma	atrix Spike/	Matrix Sp	ike Duplica	ate (MS/MS	D)		
Date Digested:	11/25/2014				Date Analyz	red:	11/25/2014	
Sample Spiked:	2014110542-	-1						
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Lead		0.000	1.0	0.932	93.2	0.964	96.4	3.4
Recovery Limits 75-	-125%							
2PD Limit 20								

SPECTRA LABORATORIES

Steven G. Hibbs Laboratory Manager

2221 Ross Way	 Tacoma, 	WA 98421	• (253) 272-48	850 °	Fax (253) 572-9	9838 • www.sp	pectra-lab.com
November 26, 2014								
Libby Environmental	6				Units:		malka	
4139 Libby Rd NE					Spectra	a Project:	2014110460	h
Olympia, WA 98506					Applies	to Spectra #'s	1.5.7.10.11.13.20	21.24
					Analyst	:	BJN	
		01		CONTROL	DECUN			
н	lexavalent Ch	romium in	n Soll/S	olid - Meth	od SM 3	500 Cr-D/ SWA	46 7196A	
			N	ethod Blan	nk	00010/0110	AST ISUA	_
Date Extracted:	11/26/2014				Date Ar	nalyzed:	11/26/2014	
					Method	Blank		
1.176.1 1.176.1	and the second se		Blan	k Spike (L	CS)			
Date Extracted:	11/26/2014				Date An	alyzed:	11/26/2014	
				Spike	LCS	LCS		
	141200	1949 A.		Added	Conc.	%Rec		
	Hexav	alent Chr	omium	0.1	0.090	90.0		
LCS Recovery limits 7	5-120%							
20031030 0.00	Ma	atrix Spik	e/Matrix	Spike Du	plicate (N	AS/MSD)		
Date Extracted:	11/10/2014				Date Ana	alyzed:	11/11/2014	
Sample Spiked:	2014110179-1							
		Sample	Spike	MS	MS	MSD	MSD	
		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
lexavalent Chromium		0.569	0.10	0.660	91.0	0.667	98.0	7.4
Recovery Limite 75 40	594							
PO Limit 20	576							

1 1

Steven G. Hibbs Laboratory Manager

2221 Ro	oss Way • Tac	oma, WA 98	3421 • (25	53) 272-485	0 • Fax (2	253) 572-9838	• www.spectra-	lab.com
11/12/2014								
					Units:		mg/L	
Libby Environm	nental				Spectra Pro	oject:	2014110260	
4139 Libby Rd.	NE				Applies to	Spectra #'s	1-14 19,20	
Olympia, WA 9	98506							
		(QUALITY	CONTRO	OL RESULT	TS		
		ICF	P Metals SV	V846 6010	C - Soil/Sol	id		
S 5507 1			M	lethod Bl	ank			
Date Digested:	11/12/2014				Date Analy	zed:	11/12/2014	
			Element		Blank Rest	ılt		
			Nickel		< 0.015			
			Blank	Spike (I	CS)			
Date Digested:	11/12/2014				Date Analy	zed:	11/12/2014	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Nickel		2.0	2.067	103.4		
LCS Recovery li	imits 80-120%							
		Matrix Sp	oike/Matrix	Spike D	plicate (MS	S/MSD)		
Date Digested:	11/12/2014				Date Analy	zed:	11/12/2014	
Sample Spiked:	2014110260-1							
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Nickel		0.488	2.0	2.436	97.4	2.466	98.9	1.5
Recovery Limits	75-125%							
RPD Limit 20								

Steven G. Hibbs Laboratory Manager

2221 Ros	s Way • Tao	coma, WA 984	421 • (25	3) 272-485	0 • Fax (2:	53) 572-9838	• www.spectra-la	ib.com
11/12/2014								
					Units:		mg/L	
Libby Environme	ental				Spectra Pro	ject:	2014110260	
4139 Libby Rd. 1	NE				Applies to 2	Spectra #'s	21-24	
Olympia, WA 9	8506							
		Q	UALITY (CONTRO	L RESULT	s		
		ICP	Metals SW	846 6010	C - Soil/Sol	d		
D (D) ()	11/10/2014		M	lethod Bla	Date Analy	zed.	11/12/2014	
Date Digested:	11/12/2014				Date rulary	2002.		
			Element		Blank Resu	lt		
		1	Nickel		< 0.015			
					-			
D (Di mul	11/12/2014		Blank	c Spike (I	CS) Date Analy	zed.	11/12/2014	
Date Digested:	11/12/2014				Date Analy	200.	11/12/2011	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Nickel		2.0	1.883	94.2		
CS Recovery li	mits 80-120%							
deb Receivery in		Matrix Sp	oike/Matrix	Spike D	uplicate (MS	S/MSD)		
Date Digested:	11/12/2014	1			Date Analy	zed:	11/12/2014	
Sample Spiked:	2014110260-	21						
							1.000	
		Sample	Spike	MS	MS	MSD	MSD	DDI
Element	-	Conc.	Conc.	Conc.	%Rec	2 205	%Rec	0.0
Nickel		0.350	2.0	2.205	92.0	2.203	92.0	0.0
Recovery Limits	75-125%							
RPD Limit 20								

~

Steven G. Hibbs Laboratory Manager

							Π					Τ		Γ		Γ	Γ		Γ	Ι			Γ			Γ		Ι	Τ					
600		1 of Z	q		Numoia WA	Collection:	1111	161	//	/	Field Notes																			Remarks:		570		
1 2 MILLIND	1 1/1 0	7 Page:	amie Henma	s Estate V	City: (Date of (11111	/////	1/1/1	1 20 100 000 100 100 100 100 100 100 100	Cherles (all			×		×	×	×	×	×	×	×	×	×	X					Sample Receipt	Good Condition?	Cold?	Seals Intact?	Fotal Number of Containers
f Custody Record	1-2-11	Date: 11 - 1 - 1	Project Manager:	Project Name: Haven	Location:	Collector:	11111	1/00/	1 150 100/00/	2 12 12 10 1 2 1 5 1 5 1 5	5 10 6 6 5 1 2 6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1																			Date / Time	Date / Tima		Date / Time	
Chain o		1	Zne							100	Type Top	Jar	_												*					Acceived by: LA DS	Received by Kind	Alut Row III UNI	Received by:	
Inc.	360-352-2110	360-352-4154	enmental,		Fax:						Time Type	1046 501	1 1201	11 HS	11 45	1330	13.35	1235	1237	1215	1210	14 25	1420	1437	1435 👆					Time 11/&7/14	Tink 1 1	1	1 me	
nental,	Ë.	Fax:	FUUN								Depth	.1	3'	1.	3'	15	3'		.2	, 1	3'	, 1	3'	. 1	3					C Date /	Date /	2	Uate /	 Otherafine
Libby Environn	4139 Libby Road NE	Olympia, WA 98506	Client: Lubby	Address:	Phone;	Client Project #	A B A	A LAN	TI	A BUNNEY	Sample Number	1 TP 12-1	2 TP 12-3	3 TP 13-1	4 TP 13-3	5 TP 14-1.5	6 TP 14-3	7 TP 16-1	8 TP 16-3	9 TP15-1	10 TP 15-3	11 TP 17-1	12 TP 17-3	13 TP18-1	14 TP18-3	15	16	17	18	Relinquished by.	Relinquished by:	U.L.	Kellhquished by.	Methodien Mélia-Leh Valous Féo Dro

Libby Environm	ental, I	nc.		C	ain of Custod	y Record	2014	F(102	Car		
4139 Libby Road NE	Ph: 36	0-352-21	10		Date:			Page:	2	of	2
Client: Libby	Envi	wva	ental	INC.	Project Manag	ler: J	amic	Deyman	6		
Address:					Project Name:	Have	NS ES	tate			
Phone:		Fax:			Location:			City: (24mpia	MA	
Client Project #					Collector:			Date of	Collection:	11-6	-14
A - TVIA					01 001 001 001			All and a second		\mathbf{X}	
Sample Number	Depth	Time	Sample Type	Container	107 107 10 1 2 1 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2	AN AN AN AN		A	Field No	otes	
1 TP 19-1		152	Soil	Jar					HOTO		
2 TP 19-3	2	958	-	-					HOLD		
3 TP20-1		HOOI	-			_			HOLD		
4 TP20-3	3'	1006	-	-					HOLD		
5 TP21-1	-	059	-	-				X			
6 TP21-3	3,	1103	-	+			+	X			
7 TP 22-1	-	1345	-	_				×			
8 TP22-3	5'	1360	-	+				X			
9 TP 23-1	,1	1405	-	_				×			
10 TP 23-4	5'	1415	-	*				X			
11											
12											
13											
14											
15											
16											
17											
18						_	-	-			
Relinquished by.	Date /	1-14		Received by.	COI	Date / Time	Sample Re	sceipt	Remarks:		
Relinguished by.	Date /	Time		Received by:	1 1	Date / Time	Good Condition	12 12		2	
3	2			Kane	Dirdler 1	NUL IN TOU	Cold?		л С	2	
Relinquished by	Date /	Time		Received by:		Date / Time	Seals Intact?				
Distribution: While - Lets, Yellow - File, Pink	 Onginalor 						Total Number	of Containers			

Mainterenting Aussingendenting Deuter Pin 300-324 110 Deuter Deuter Deuter Deuter Deuter <thdeuter< th=""> Deuter <thdeu< th=""><th>Libby Environ</th><th>mental</th><th>, Inc.</th><th></th><th>Ö</th><th>nain of Custody</th><th>/ Recor</th><th>d 2014</th><th>110260</th><th></th></thdeu<></thdeuter<>	Libby Environ	mental	, Inc.		Ö	nain of Custody	/ Recor	d 2014	110260	
Dielet Dielet Anterest Fait Anterest Enter Anter	4139 Libby Road NE Olympia, WA 98506	Ph: Fax:	360-352-3	2110		Date:	- 2 - 1	[4]	Page:	1 of 2
Motions: Experiment Experiment Prime: Factor Cartor Cartor Prime: Factor Cartor Cartor Cartor Prime: Factor Cartor Cartor Cartor Cartor Prime: Factor Cartor Cartor Cartor Cartor Cartor Prime: Prim: Prime: Prime: <td< th=""><th>Client: La biou</th><th>Envir</th><th>WARAS .</th><th>witzel -</th><th>A AM</th><th>Project Manage</th><th>er:</th><th>N. Chine</th><th>Dewman</th><th>and the second se</th></td<>	Client: La biou	Envir	WARAS .	witzel -	A AM	Project Manage	er:	N. Chine	Dewman	and the second se
Induction and Control Optimize	Address:		1			Project Name:	Haver	S. Esta	54 V	
Collection Collection Collection Collection Image: Contrained in the contrained in	Phone:		Fax:			Location:			City:	Montalia WA
Image: State of the state o	Client Project #					Collector:			Date of	Collection:
Sample Number Darth Type Container Sample Container Sample <	A THEND					A CALLER CONTRACTION OF CONTRACTICON OF CO				Les Color
1 1	Sample Number	Depth	Time	Sample Type	Container Type	105 105 105 00 10 100	A A A A A A A A A A A A A A A A A A A	1000 100 100 100 100 100 100 100 100 10	and and	Field Notes
2 1	1 [PJ24]	- 4. C	Districtly.	1.5	310					11-25-14 added
3 3 1	2 TR 12.43	- 3.	10.6.7		1 1 1				8	Hercher Torp Ph
4 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	3 7 2 1 3 - 1	1	11-11-2	-					X	Der Emila via email
5 1 <th1< th=""> 1 1 1 1<td>4 TP 13-5</td><td>2</td><td>(FUES)</td><td>1</td><td></td><td></td><td></td><td></td><td>X</td><td>Stundend TAT</td></th1<>	4 TP 13-5	2	(FUES)	1					X	Stundend TAT
6 1 1 1 1 1 1 1 1 1 1 1 1 7 8 9 9 9 9 9 9 9 9 8 9 9 9 9 9 9 9 9 9 10 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 13 1 1 1 1 1 1 1 1 1 14 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 17 1 1 1 1	5 TP HALS	1.6	1234	4					XX	Salar
7 7 <td>6 119 14 3</td> <td>12</td> <td>1335</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td>	6 119 14 3	12	1335	-					X	
8 9 1 1 1 1 1 1 1 9 10 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 13 1 1 1 1 1 1 1 1 14 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 17 18 1 1 1 1 1 1 18 18 1 1 1 1 1 1 18 18 1 1 1 1 1 1 18 18 1 1 1 1 1 1 19 1 1 1 1 1 1 1 10 1 1 1 1 1 1 11 1 1	7 71 10-1	1	12.25	1					X	
9 9 1 <td>8 TP 14 - 5</td> <td>1.5</td> <td>42.17</td> <td></td> <td>der ter finde</td> <td></td> <td></td> <td></td> <td>×</td> <td></td>	8 TP 14 - 5	1.5	42.17		der ter finde				×	
10 11 <	9 112 1444		. Factor		1				×	
11 <	10 72 15 3		1240						8	
12 <	11 78 12-1	1	14 25		1				×	
13 13 14 15 17 <	12 7017-3	25	1420		-				X	
14 14 14 14 14 14 14 15 15 15 15 16 <	13 7.216 1	New Bar	12.5H	1					X	
15 15 16 17 17 17 <th< td=""><td>14 7.015-3</td><td>3</td><td>14.35</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	14 7.015-3	3	14.35	-						
16 16 17<	15									
17 18 18 19 10 <	16									
18 18 18 Relinquished by: Date / Time Received by: Date / Time Sample Receipt: Remarks: Relinquished by: Date / Time Date / Time Sample Receipt: Remarks: Relinquished by: Date / Time Date / Time Sample Receipt: Remarks: Relinquished by: Date / Time Cold? Cold? Note / Time Relinquished by: Date / Time Seals intact? Intact?	17									
Relinquisited by Date / Time Remarks: A. A. Date / Time Sample Receipt: Remarks: Relinquished by Date / Time Good Condition? Cold? Relinquished by Date / Time Good Condition? STO Relinquished by Date / Time Received by Date / Time Seals intact?	18				and the second					
Relinquished by Date / Time Received by Relinquished by Date / Time Good Condition? Relinquished by Date / Time Seals intact? Relinquished by Date / Time Seals intact?	Relinquished by	v2 Date	s/Time	14	Received by:	1. Ox	Date / Time	Sample Rec	eipt	Remarks:
Relinquished by: Date / Time Date / Time Bood Condition? Date / Time Good Condition? Cold? Cold? STO Relinquished by: Date / Time Date / Time Seals intact? Date / Time Cold? STO Relinquished by: Date / Time Cold? Store Date / Time Cold? Store Date / Time Cold?	C Pro &	1	金/11	1 101 1		(AF)	and the second se			
Relinquished by Date / Time Received by: Date / Time Seals intact?	Relinquished by	25 Date	e/Time	-	Received by.		Date / Time	Good Condition?		CIS
Total Number of Containers	Relinquished by:	Date	/Time	-	Received by:		Date / Time	Seals intact?		2
								Total Number of	Containers	

Libby Environn	nental	, Inc.		C	nain of Custo	dy Recoi	rd 201	4110260	
4139 Libby Road NE Olympia, WA 98506	Ph: Fax:	360-352-	2110		Date:			Page:	Z of 2
Client: L. b.b.	En	A Labor In	Anthon .	dine.	Project Man	ager:	bearing a	Dayma	121
Address:					Project Nam	e:	645 6	that it.	
Phone:		Fax:			Location:		and the second	City:	OLMD. C. W.S.
Client Project #					Collector:			Date o	f Collection: // - (+ - //
A B LA					100		11		1/2/
· TVZ			14		a lat	100000	14	1000	los l
Sample Number	Depth	Time	Sample Tvpe	Container Type	100 00 100 100	CHARLEN WE	CAL OF A	1 2 2 2 2 V	Edd Netro
1 10 19-1	F	7.54	500	Nar.					
2 70 11 2	3	946	1						Real O
3 1820-1	13	Pool							No. N
4 522-1		100%							HERE
5 7 1 2 2 - 1	- de	12.24						X	1-25-14 added
6 TRAN	3	2112						X	Harfbarr and Fil
7 39220	1.	1 346	1						
8 3822-1	1	1,560	1					X	Standard Solan TAT
9 TP 55 -1		No. 20 St.						×	1.1.1 Anna Completion
10 7.2 2.5 - 4	1	24.45	4	*				0	
11								2	
12									
13									
14									
15									
16			and a second						
17									
18	1 mm	- Action							
Relinquished by	Date 11-	7-14		Received by.	P5	Date / Time	Sample Re	sceipt	Remarks:
Relinquished by:	Date	/Time	1	Received by:		Date / Time	Good Conditio	12	
2	2		/				Cold?		010
Keilnquished by:	Date	/Time		Received by:		Date / Time	Seals Intact?		
Distribution: White+Lats Yellow - File, Ph	k - Originator						Total Number	of Containers	

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Jamie Deyman 4139 Libby Rd. NE Olympia, WA 98506

RE: Havens Estate Lab ID: 1411107

November 19, 2014

Attention Jamie Deyman:

Fremont Analytical, Inc. received 24 sample(s) on 11/11/2014 for the analyses presented in the following report.

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

CLIENT: Project: Lab Order:	Libby Environmental Havens Estate 1411107	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1411107-001	TP 12-1	11/05/2014 10:46 AM	11/11/2014 3:17 PM
1411107-002	TP 12-3	11/05/2014 10:57 AM	11/11/2014 3:17 PM
1411107-003	TP 13-1	11/05/2014 11:45 AM	11/11/2014 3:17 PM
1411107-004	TP 13-3	11/05/2014 11:45 AM	11/11/2014 3:17 PM
1411107-005	TP 14-1.5	11/05/2014 1:30 PM	11/11/2014 3:17 PM
1411107-006	TP 14-3	11/05/2014 1:35 PM	11/11/2014 3:17 PM
1411107-007	TP 16-1	11/05/2014 12:35 PM	11/11/2014 3:17 PM
1411107-008	TP 16-3	11/05/2014 12:37 PM	11/11/2014 3:17 PM
1411107-009	TP 15-1	11/05/2014 12:15 PM	11/11/2014 3:17 PM
1411107-010	TP 15-3	11/05/2014 12:10 PM	11/11/2014 3:17 PM
1411107-011	TP 17-1	11/05/2014 2:25 PM	11/11/2014 3:17 PM
1411107-012	TP 17-3	11/05/2014 2:20 PM	11/11/2014 3:17 PM
1411107-013	TP 18-1	11/05/2014 2:37 PM	11/11/2014 3:17 PM
1411107-014	TP 18-3	11/05/2014 2:35 PM	11/11/2014 3:17 PM
1411107-015	TP 19-1	11/06/2014 9:52 AM	11/11/2014 3:17 PM
1411107-016	TP 19-3	11/06/2014 9:58 AM	11/11/2014 3:17 PM
1411107-017	TP 20-1	11/06/2014 10:04 AM	11/11/2014 3:17 PM
1411107-018	TP 20-3	11/06/2014 10:06 AM	11/11/2014 3:17 PM
1411107-019	TP 21-1	11/06/2014 10:59 AM	11/11/2014 3:17 PM
1411107-020	TP 21-3	11/06/2014 11:03 AM	11/11/2014 3:17 PM
1411107-021	TP 22-1	11/06/2014 1:45 PM	11/11/2014 3:17 PM
1411107-022	TP 22-3	11/06/2014 1:50 PM	11/11/2014 3:17 PM
1411107-023	TP 23-1	11/06/2014 2:05 PM	11/11/2014 3:17 PM
1411107-024	TP 23-4	11/06/2014 2:15 PM	11/11/2014 3:17 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: 1411107 Date: 11/19/2014

CLIENT: Libby Environmental Project: Havens Estate

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental				Collection	Date	e: 11/5/20	14 1:30:00 PM	
Project: Havens Estate								
Lab ID: 1411107-005				Matrix: So	bil			
Client Sample ID: TP 14-1.5								
Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed	
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID: 1	9285	Analyst: NG	
Benz(a)anthracene	ND	53.9		µg/Kg-dry	1	11/1	7/2014 3:38:00 AM	
Chrysene	ND	53.9		µg/Kg-dry	1	11/17	//2014 3:38:00 AM	
Benzo(b)fluoranthene	ND	53.9		µg/Kg-dry	1	11/17	//2014 3:38:00 AM	
Benzo(k)fluoranthene	ND	53.9		µg/Kg-dry	1	11/17	//2014 3:38:00 AM	
Benzo(a)pyrene	ND	53.9		µg/Kg-dry	1	11/17	/2014 3:38:00 AM	
Indeno(1,2,3-cd)pyrene	ND	53.9		µg/Kg-dry	1	11/17	/2014 3:38:00 AM	
Dibenz(a,h)anthracene	ND	53.9		µg/Kg-dry	1	11/17	/2014 3:38:00 AM	
Surr: 2-Fluorobiphenyl	109	42.7-132		%REC	1	11/17	/2014 3:38:00 AM	
Surr: Terphenyl-d14 (surr)	133	48.8-157		%REC	1	11/17	/2014 3:38:00 AM	
Sample Moisture (Percent Moist	ure)			Batch	n ID: F	R18008	Analyst: KZ	
Percent Moisture	11.3			wt%	1	11/13	/2014 2:15:33 PM	

Qualifiers:	в	Analyte detected in the associated Method Blank	D	Dilution was required
	Е	Value above quantitation range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not detected at the Reporting Limit
	100		112.12	

S Spike recovery outside accepted recovery limits

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental				Collection	Date:	11/5/20	14 1:35:00 PM
Project: Havens Estate							
Lab ID: 1411107-006				Matrix: So	lic		
Client Sample ID: TP 14-3							
Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID: 92	285	Analyst: NG
Benz(a)anthracene	ND	55.3		µg/Kg-dry	1	11/17	7/2014 4:01:00 AM
Chrysene	ND	55.3		µg/Kg-dry	1	11/17	/2014 4:01:00 AM
Benzo(b)fluoranthene	ND	55.3		µg/Kg-dry	1	11/17	/2014 4.01:00 AM
Benzo(k)fluoranthene	ND	55.3		µg/Kg-dry	1	11/17	/2014 4:01:00 AM
Benzo(a)pyrene	ND	55.3		µg/Kg-dry	1	11/17	/2014 4:01:00 AM
Indeno(1,2,3-cd)pyrene	ND	55.3		µg/Kg-dry	1	11/17	/2014 4:01:00 AM
Dibenz(a,h)anthracene	ND	55.3		µg/Kg-dry	1	11/17	/2014 4:01:00 AM
Surr: 2-Fluorobiphenyl	111	42.7-132		%REC	1	11/17	/2014 4:01:00 AM
Surr: Terphenyl-d14 (surr)	122	48.8-157		%REC	1	11/17	//2014 4:01:00 AM
Sample Moisture (Percent Moist	ture)			Batc	h ID: R1	8008	Analyst: KZ
Percent Moisture	11.1			wt%	1	11/13	/2014 2:15:33 PM

Qualifiers:	в	Analyte detected in the associated Method Blank	D	Dilution was required
	Е	Value above quantitation range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not detected at the Reporting Limit
	RL	Reporting Limit	S	Spike recovery outside accepted recovery limits

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental				Collection	Date:	11/5/20	14 12:15:00 PM
Project: Havens Estate							
Lab ID: 1411107-009				Matrix: So	bil		
Client Sample ID: TP 15-1							
Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID: 92	285	Analyst: NG
Benz(a)anthracene	ND	55.9		µg/Kg-dry	1	11/1	7/2014 4:23:00 AM
Chrysene	ND	55.9		µg/Kg-dry	1	11/1	7/2014 4:23:00 AM
Benzo(b)fluoranthene	ND	55.9		µg/Kg-dry	1	11/1	7/2014 4:23:00 AM
Benzo(k)fluoranthene	ND	55.9		µg/Kg-dry	1	11/1	7/2014 4:23:00 AM
Benzo(a)pyrene	ND	55.9		µg/Kg-dry	1	11/1	7/2014 4:23:00 AM
Indeno(1,2,3-cd)pyrene	ND	55.9		µg/Kg-dry	1	11/1	/2014 4:23:00 AM
Dibenz(a,h)anthracene	ND	55.9		µg/Kg-dry	1	11/12	/2014 4:23:00 AM
Surr: 2-Fluorobiphenyl	111	42.7-132		%REC	1	11/17	7/2014 4:23:00 AM
Surr: Terphenyl-d14 (surr)	127	48.8-157		%REC	1	11/17	//2014 4:23:00 AM
Sample Moisture (Percent Moist	ture)			Batch	h ID: R1	18008	Analyst: KZ
Percent Moisture	14.6			wt%	1	11/13	/2014 2:15:33 PM

Qualifiers:	в	Analyte detected in the associated Method Blank	D	Dilution was required
	E	Value above quantitation range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not detected at the Reporting Limit
	RL	Reporting Limit	S	Spike recovery outside accepted recovery limits

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental				Collection	Date:	11/5/2014 12:10:00 PM	٨
Project: Havens Estate							
Lab ID: 1411107-010				Matrix: So	bil		
Client Sample ID: TP 15-3							
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID: 92	85 Analyst: NG	
Benz(a)anthracene	ND	61.0		µg/Kg-dry	1	11/17/2014 4:46:00 AM	
Chrysene	ND	61.0		µg/Kg-dry	1	11/17/2014 4:46:00 AM	
Benzo(b)fluoranthene	ND	61.0		µg/Kg-dry	1	11/17/2014 4:46:00 AM	
Benzo(k)fluoranthene	ND	61.0		µg/Kg-dry	1	11/17/2014 4:46:00 AM	
Benzo(a)pyrene	ND	61.0		µg/Kg-dry	1	11/17/2014 4:46:00 AM	
Indeno(1,2,3-cd)pyrene	ND	61.0		µg/Kg-dry	1	11/17/2014 4:46:00 AM	
Dibenz(a,h)anthracene	ND	61.0		µg/Kg-dry	1	11/17/2014 4:46:00 AM	
Surr: 2-Fluorobiphenyl	98.8	42.7-132		%REC	1	11/17/2014 4:46:00 AM	
Surr: Terphenyl-d14 (surr)	108	48.8-157		%REC	1	11/17/2014 4:46:00 AM	
Sample Moisture (Percent Mois	ture)			Batch	h ID: R1	8008 Analyst: KZ	
Percent Moisture	19.8			w1%	1	11/13/2014 2:15:33 PM	

Qualifiers:	В	Analyte detected in the associated Method Blank	
-------------	---	---	--

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental		Collection Date: 11/5/2014 2:25:00 PM						
Project: Havens Estate								
Lab ID: 1411107-011	Matrix: Soil							
Client Sample ID: TP 17-1								
Analyses	Result	RL	Qual	Units DF Date Analyzed				
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID:	9285	Analyst: NG	
Benz(a)anthracene	ND	64.0		µg/Kg-dry	1	11/	17/2014 5:08:00 AM	
Chrysene	ND	64.0		µg/Kg-dry	1	11/1	17/2014 5:08:00 AM	
Benzo(b)fluoranthene	ND	64.0		µg/Kg-dry	1	11/1	7/2014 5:08:00 AM	
Benzo(k)fluoranthene	ND	64.0		µg/Kg-dry	1	11/1	7/2014 5:08:00 AM	
Benzo(a)pyrene	ND	64.0		µg/Kg-dry	1	11/1	7/2014 5:08:00 AM	
Indeno(1,2,3-cd)pyrene	ND	64.0		µg/Kg-dry	1	11/1	7/2014 5:08:00 AM	
Dibenz(a,h)anthracene	ND	64.0		µg/Kg-dry	1	11/1	7/2014 5:08:00 AM	
Surr: 2-Fluorobiphenyl	97.1	42.7-132		%REC	1	11/1	7/2014 5:08:00 AM	
Surr: Terphenyl-d14 (surr)	108	48.8-157		%REC	1	11/1	7/2014 5:08:00 AM	
Sample Moisture (Percent Moist	ure)			Batc	h ID:	R18008	Analyst: KZ	
Percent Moisture	21.9			wt% 1 11/13/2014 2:15		3/2014 2:15:33 PM		

Qualifiers:	В	Analyte detected in the associated Method Blank	
-------------	---	---	--

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental		Collection Date: 11/5/2014 2:20:00 PM					
Project: Havens Estate							
Lab ID: 1411107-012	Matrix: Soil						
Client Sample ID: TP 17-3							
Analyses	Result	RL	RL Qual Units DF Date Analyzed			e Analyzed	
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID: 9	9285	Analyst: NG
Benz(a)anthracene	ND	61.3		µg/Kg-dry	1	11/17/	2014 5:31:00 AM
Chrysene	ND	61.3		µg/Kg-dry	1	11/17/	2014 5:31:00 AM
Benzo(b)fluoranthene	ND	61.3		µg/Kg-dry	1	11/17/	2014 5:31:00 AM
Benzo(k)fluoranthene	ND	61.3		µg/Kg-dry	1	11/17/	2014 5:31:00 AM
Benzo(a)pyrene	ND	61.3		µg/Kg-dry	1	11/17/	2014 5:31:00 AM
Indeno(1,2,3-cd)pyrene	ND	61.3		µg/Kg-dry	1	11/17/	2014 5:31:00 AM
Dibenz(a,h)anthracene	ND	61.3		µg/Kg-dry	1	11/17/	2014 5:31:00 AM
Surr: 2-Fluorobiphenyl	105	42.7-132		%REC	1	11/17/	2014 5:31:00 AM
Surr: Terphenyl-d14 (surr)	118	48.8-157		%REC	1	11/17/	2014 5:31:00 AM
Sample Moisture (Percent Moist	ture)			Batc	h ID: F	R18008	Analyst: KZ
Percent Moisture	19.9			wt% 1 11/13/2014 2:1		2014 2:15:33 PM	

Qualifiers:	в	Analyte detected in the associated Method Blank	D	Dilution was required
	E	Value above quantitation range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

RL Reporting Limit

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental		Collection Date: 11/5/2014 2:37:00 PM					
Project: Havens Estate							
Lab ID: 1411107-013		Matrix: Soil					
Client Sample ID: TP 18-1							
Analyses	Result	RL	Qual	ual Units DF Date Analyz		Date Analyzed	ed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID: 92	285 Analyst: NG	
Benz(a)anthracene	ND	59.2		µg/Kg-dry	1	11/17/2014 5:53:00 AM	
Chrysene	ND	59.2		µg/Kg-dry	1	11/17/2014 5:53:00 AM	
Benzo(b)fluoranthene	ND	59.2		µg/Kg-dry	1	11/17/2014 5:53:00 AM	
Benzo(k)fluoranthene	ND	59.2		µg/Kg-dry	1	11/17/2014 5:53:00 AM	
Benzo(a)pyrene	ND	59.2		µg/Kg-dry	1	11/17/2014 5:53:00 AM	
Indeno(1,2,3-cd)pyrene	ND	59.2		µg/Kg-dry	1	11/17/2014 5:53:00 AM	
Dibenz(a,h)anthracene	ND	59.2		µg/Kg-dry	1	11/17/2014 5:53:00 AM	
Surr: 2-Fluorobiphenyl	103	42.7-132		%REC	1	11/17/2014 5:53:00 AM	
Surr: Terphenyl-d14 (surr)	116	48.8-157		%REC	1	11/17/2014 5:53:00 AM	
Sample Moisture (Percent Mois	ture)			Batc	h ID: R1	18008 Analyst: KZ	
Percent Moisture	18.7			wt% 1 11/13/2014 2:		11/13/2014 2:15:33 PM	

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental				Collection Date: 11/5/2014 2:35:00 PM				
Project: Havens Estate								
Lab ID: 1411107-014				Matrix: So	bil			
Client Sample ID: TP 18-3								
Analyses	Result	RL	Qual	Units	DF	= D	ate Analyzed	
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID	9285	Analyst: NG	
Benz(a)anthracene	ND	60.8		µg/Kg-dry	1	11/1	7/2014 6:16:00 AM	
Chrysene	ND	60.8		µg/Kg-dry	1	11/1	7/2014 6:16:00 AM	
Benzo(b)fluoranthene	ND	60.8		µg/Kg-dry	1	11/1	7/2014 6:16:00 AM	
Benzo(k)fluoranthene	ND	60.8		µg/Kg-dry	1	11/1	7/2014 6:16:00 AM	
Benzo(a)pyrene	ND	60 8		µg/Kg-dry	1	11/1	7/2014 6:16:00 AM	
Indeno(1,2,3-cd)pyrene	ND	60.8		µg/Kg-dry	1	11/1	7/2014 6:16:00 AM	
Dibenz(a,h)anthracene	ND	60.8		µg/Kg-dry	1	11/1	7/2014 6:16:00 AM	
Surr: 2-Fluorobiphenyl	88.1	42.7-132		%REC	1	11/1	7/2014 6:16:00 AM	
Surr: Terphenyl-d14 (surr)	101	48.8-157		%REC	1	11/1	7/2014 6:16:00 AM	
Sample Moisture (Percent Moist	ure)			Batch	h ID	R18008	Analyst: KZ	
Percent Moisture	19.5			wt%	1	11/1	3/2014 2:15.33 PM	

Qualifiers:	в	Analyte detected in the associated Method Blank	D	Dilution was required
	Е	Value above quantitation range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not detected at the Reporting Limit
	RL	Reporting Limit	S	Spike recovery outside accepted recovery limits

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental				Collection Date: 11/6/2014 9:52:00 AM					
Project: Havens Estate									
Lab ID: 1411107-015				Collection Date: 11/6/2014 9:52:00 AM Matrix: Soil Matrix: Soil ual Units DF Date Analyzed Batch ID: 9285 Analyst: NG µg/Kg-dry 1 11/17/2014 6:39:00 AM µg/Kg-dry 1 11/17/2014 6:39:00 AM					
Client Sample ID: TP 19-1									
Analyses	Result	RL	Qual	Units	DF	= D	ate Analyzed		
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID	9285	Analyst: NG		
Benz(a)anthracene	ND	61.1		µg/Kg-dry	1	11/	17/2014 6:39:00 AM		
Chrysene	ND	61.1		µg/Kg-dry	1	11/	17/2014 6:39:00 AM		
Benzo(b)fluoranthene	ND	61.1		µg/Kg-dry	1	11/	17/2014 6:39:00 AM		
Benzo(k)fluoranthene	ND	61.1		µg/Kg-dry	1	11/	17/2014 6:39:00 AM		
Benzo(a)pyrene	ND	61.1		µg/Kg-dry	1	11/	17/2014 6:39:00 AM		
Indeno(1,2,3-cd)pyrene	ND	61.1		µg/Kg-dry	1	11/	17/2014 6:39:00 AM		
Dibenz(a,h)anthracene	ND	61.1		µg/Kg-dry	1	11/	17/2014 6:39:00 AM		
Surr: 2-Fluorobiphenyl	88.4	42.7-132		%REC	1	11/	17/2014 6:39:00 AM		
Surr: Terphenyl-d14 (surr)	104	48.8-157		%REC	1	11/	17/2014 6:39:00 AM		
Sample Moisture (Percent Mois	ture)			Batc	h ID:	R18008	Analyst: KZ		
Percent Moisture	18.1			wt%	1	11/1	13/2014 2:15:33 PM		

Qualifiers:	в	Analyte detected in the associated Method Blank	D	Dilution was required
	E	Value above quantitation range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not detected at the Reporting Limit

RL Reporting Limit

imit

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental				Collection Date: 11/6/2014 9:58:00 AM			
Project: Havens Estate							
Lab ID: 1411107-016				Matrix: So	lic		
Client Sample ID: TP 19-3							
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID: 928	5 Analyst: NG	
Benz(a)anthracene	ND	60.6		µg/Kg-dry	1	11/17/2014 7:01:00 AM	
Chrysene	ND	60.6		µg/Kg-dry	1	11/17/2014 7:01:00 AM	
Benzo(b)fluoranthene	ND	60.6		µg/Kg-dry	1	11/17/2014 7:01:00 AM	
Benzo(k)fluoranthene	ND	60.6		µg/Kg-dry	1	11/17/2014 7:01:00 AM	
Benzo(a)pyrene	ND	60.6		µg/Kg-dry	1	11/17/2014 7:01:00 AM	
Indeno(1,2,3-cd)pyrene	ND	60.6		µg/Kg-dry	1	11/17/2014 7:01:00 AM	
Dibenz(a,h)anthracene	ND	60.6		µg/Kg-dry	1	11/17/2014 7:01:00 AM	
Surr: 2-Fluorobiphenyl	89.8	42.7-132		%REC	1	11/17/2014 7:01:00 AM	
Surr: Terphenyl-d14 (surr)	107	48.8-157		%REC	1	11/17/2014 7:01:00 AM	
Sample Moisture (Percent Mois	ture)			Batc	h ID: R18	008 Analyst: KZ	
Percent Moisture	18.5			wt%	1	11/13/2014 2:15:33 PM	

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental	11/6/20	14 10:04:00 AM					
Project: Havens Estate							
Lab ID: 1411107-017				Matrix: So	lic		
Client Sample ID: TP 20-1							
Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID: 92	285	Analyst: NG
Benz(a)anthracene	ND	62.9		µg/Kg-dry	1	11/17	/2014 7:23:00 AM
Chrysene	ND	62.9		µg/Kg-dry	1	11/17	/2014 7:23:00 AM
Benzo(b)fluoranthene	ND	62.9		µg/Kg-dry	1	11/17	/2014 7:23:00 AM
Benzo(k)fluoranthene	ND	62.9		µg/Kg-dry	1	11/17	/2014 7:23:00 AM
Benzo(a)pyrene	ND	62.9		µg/Kg-dry	1	11/17	/2014 7:23:00 AM
Indeno(1,2,3-cd)pyrene	ND	62.9		µg/Kg-dry	1	11/17	/2014 7:23:00 AM
Dibenz(a,h)anthracene	ND	62.9		µg/Kg-dry	1	11/17	/2014 7:23:00 AM
Surr: 2-Fluorobiphenyl	110	42.7-132		%REC	1	11/17	/2014 7:23:00 AM
Surr: Terphenyl-d14 (surr)	112	48.8-157		%REC	1	11/17	/2014 7:23:00 AM
Sample Moisture (Percent Moist	ture)			Batc	h ID: R	18008	Analyst: KZ
Percent Moisture	17.5			wt%	1	11/13	/2014 2:15:33 PM

Qualifiers:	в	Analyte detected in the associated Method Blank	D	Dilution was required
	E	Value above quantitation range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not detected at the Reporting Limit
	RL	Reporting Limit	S	Spike recovery outside accepted recovery limits

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental			Collection Date: 11/6/2014 10:06:00 AM						
Project: Havens Estate									
Lab ID: 1411107-018				Batch ID. 9285 Analyst: NG µg/Kg-dry 1 11/17/2014 7:45:00 AM µg/Kg-dry 1 11/17/2014 7:45:00 AM					
Client Sample ID: TP 20-3									
Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed	i	
Polyaromatic Hydrocarbons by	EPA Method 8	8270 (SIM)		Batc	h ID. 1	9285	Analyst: N	G	
Benz(a)anthracene	ND	64.1		µg/Kg-dry	1	11/17	/2014 7:45:00 /	MA	
Chrysene	ND	64.1		µg/Kg-dry	1	11/17	/2014 7:45:00 /	MA	
Benzo(b)fluoranthene	ND	64.1		µg/Kg-dry	1	11/17	/2014 7:45:00 /	MA	
Benzo(k)fluoranthene	ND	64.1		µg/Kg-dry	1	11/17	/2014 7:45:00 /	MA	
Benzo(a)pyrene	ND	64.1		µg/Kg-dry	1	11/17	/2014 7:45:00 /	MA	
Indeno(1,2,3-cd)pyrene	ND	64.1		µg/Kg-dry	1	11/17	/2014 7:45:00 /	MA	
Dibenz(a,h)anthracene	ND	64.1		µg/Kg-dry	1	11/17	/2014 7:45:00 /	MA	
Surr. 2-Fluorobiphenyl	96.2	42.7-132		%REC	1	11/17	/2014 7:45:00 /	MA	
Surr: Terphenyl-d14 (surr)	104	48.8-157		%REC	1	11/17	/2014 7:45:00 /	M	
Sample Moisture (Percent Mois	sture)			Batch	h ID: F	R18008	Analyst: K	Z	
Percent Moisture	18.3			wt%	1	11/13	/2014 2:15:33 F	PM	

Qualifiers:	в	Analyte detected in the associated Method Blank	

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental				Collection Date: 11/6/2014 10:59:00 AM				
Project: Havens Estate								
Lab ID: 1411107-019				Matrix: So	lic			
Client Sample ID: TP 21-1								
Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID: 92	285 Analyst: NG		
Benz(a)anthracene	ND	60.8		µg/Kg-dry	1	11/17/2014 8:08:00 AM		
Chrysene	ND	60.8		µg/Kg-dry	1	11/17/2014 8:08:00 AM		
Benzo(b)fluoranthene	ND	60.8		µg/Kg-dry	1	11/17/2014 8:08:00 AM		
Benzo(k)fluoranthene	ND	60.8		µg/Kg-dry	1	11/17/2014 8:08:00 AM		
Benzo(a)pyrene	ND	60.8		µg/Kg-dry	1	11/17/2014 8:08:00 AM		
Indeno(1,2,3-cd)pyrene	ND	60.8		µg/Kg-dry	1	11/17/2014 8:08:00 AM		
Dibenz(a,h)anthracene	ND	60.8		µg/Kg-dry	1	11/17/2014 8:08:00 AM		
Surr: 2-Fluorobiphenyl	112	42.7-132		%REC	1	11/17/2014 8:08:00 AM		
Surr: Terphenyl-d14 (surr)	121	48.8-157		%REC	1	11/17/2014 8.08:00 AM		
Sample Moisture (Percent Mois	ture)			Batc	h ID: R	18008 Analyst: KZ		
Percent Moisture	16.0			wt%	1	11/13/2014 2:15:33 PM		

	_			
Qualifiers:	в	Analyte detected in the associated Method Blank	D	Dilution was required
	E	Value above quantitation range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not detected at the Reporting Limit
	RL	Reporting Limit	S	Spike recovery outside accepted recovery limits

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental				Collection Date: 11/6/2014 11:03:00 AM					
Project: Havens Estate									
Lab ID: 1411107-020				Matrix: So	bil		76/2014 11:03:00 AM Date Analyzed Analyst: MD 11/17/2014 9:15:00 AM 11/17/2014 9:15:00 AM 11/17/2014 9:15:00 AM 11/17/2014 9:15:00 AM 11/17/2014 9:15:00 AM 11/17/2014 9:15:00 AM 11/17/2014 9:15:00 AM		
Client Sample ID: TP 21-3									
Analyses	Result	RL	Qual	Units	DF	1	Date Analyzed		
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID:	9286	Analyst: MD		
Benz(a)anthracene	ND	61.8		µg/Kg-dry	1	11	/17/2014 9:15:00 AM		
Chrysene	ND	61.8		µg/Kg-dry	1	11	/17/2014 9:15:00 AM		
Benzo(b)fluoranthene	ND	61.8		µg/Kg-dry	1	11	/17/2014 9:15:00 AM		
Benzo(k)fluoranthene	ND	61.8		µg/Kg-dry	1	11	/17/2014 9:15:00 AM		
Benzo(a)pyrene	ND	61.8		µg/Kg-dry	1	11	/17/2014 9:15:00 AM		
Indeno(1,2,3-cd)pyrene	ND	61.8		µg/Kg-dry	1	11	/17/2014 9:15:00 AM		
Dibenz(a,h)anthracene	ND	61.8		µg/Kg-dry	1	11	/17/2014 9:15:00 AM		
Surr: 2-Fluorobiphenyl	84.5	42.7-132		%REC	1	11	/17/2014 9:15:00 AM		
Surr: Terphenyl-d14 (surr)	85.8	48.8-157		%REC	1	11	/17/2014 9:15:00 AM		
Sample Moisture (Percent Mois	ture)			Batc	h ID:	R18008	Analyst: KZ		
Percent Moisture	19.0			wt%	1	11	/13/2014 2:15:33 PM		

Qualifiers:	в	Analyte detected in the associated Method Blank
-------------	---	---

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental				Collection	Date	: 11/6/2014 1:45:00 PM
Project: Havens Estate						
Lab ID: 1411107-021				Matrix: So	Dil	
Client Sample ID: TP 22-1						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID: 9	286 Analyst: MD
Benz(a)anthracene	ND	59.8		µg/Kg-dry	1	11/17/2014 10:00:00 AM
Chrysene	ND	59.8		µg/Kg-dry	1	11/17/2014 10:00:00 AM
Benzo(b)fluoranthene	ND	59.8		µg/Kg-dry	1	11/17/2014 10:00:00 AM
Benzo(k)fluoranthene	ND	59.8		µg/Kg-dry	1	11/17/2014 10:00:00 AM
Benzo(a)pyrene	ND	59.8		µg/Kg-dry	1	11/17/2014 10:00:00 AM
Indeno(1,2,3-cd)pyrene	ND	59.8		µg/Kg-dry	1	11/17/2014 10:00:00 AM
Dibenz(a,h)anthracene	ND	59.8		µg/Kg-dry	1	11/17/2014 10:00:00 AM
Surr: 2-Fluorobiphenyl	99.0	42.7-132		%REC	1	11/17/2014 10:00:00 AM
Surr: Terphenyl-d14 (surr)	99.9	48.8-157		%REC	1	11/17/2014 10:00:00 AM
Sample Moisture (Percent Mois	iture)			Batc	h ID: R	18008 Analyst: KZ
Percent Moisture	16.4			wt%	1	11/13/2014 2:15:33 PM

Qualifiers:	в	Analyte detected in the associated Method Blank	D	Dilution was required
	E	Value above quantitation range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not detected at the Reporting Limit
	-			

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental				Collection	Da	te: 11/6/2	014 2:05:00 PM
Project: Havens Estate							
Lab ID: 1411107-023				Matrix: So	lic		
Client Sample ID: TP 23-1							
Analyses	Result	RL	Qual	Units	DF	D	ate Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID:	9286	Analyst: MD
Benz(a)anthracene	ND	66.7		µg/Kg-dry	1	11/1	7/2014 11:29:00 AM
Chrysene	ND	66.7		µg/Kg-dry	1	11/1	7/2014 11:29:00 AM
Benzo(b)fluoranthene	ND	66.7		µg/Kg-dry	1	11/1	7/2014 11:29:00 AM
Benzo(k)fluoranthene	ND	66.7		µg/Kg-dry	1	11/1	7/2014 11:29:00 AM
Benzo(a)pyrene	ND	66.7		µg/Kg-dry	1	11/1	7/2014 11:29:00 AM
Indeno(1,2,3-cd)pyrene	ND	66.7		µg/Kg-dry	1	11/1	7/2014 11:29:00 AM
Dibenz(a,h)anthracene	ND	66.7		µg/Kg-dry	1	11/1	7/2014 11:29:00 AM
Surr: 2-Fluorobiphenyl	94.2	42.7-132		%REC	1	11/1	7/2014 11:29:00 AM
Surr: Terphenyl-d14 (surr)	92.0	48.8-157		%REC	1	11/1	7/2014 11:29:00 AM
Sample Moisture (Percent Moist	ture)			Batc	h ID:	R18008	Analyst: KZ
Percent Moisture	25.0			wt%	1	11/1	3/2014 2:15:33 PM

Qualifiers:	в	Analyte detected in the associated Method Blank	D	Dilution v
	Е	Value above quantitation range	н	Holding I

J Analyte detected below quantitation limits

RL. Reporting Limit

- was required
- times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: 1411107 Date Reported: 11/19/2014

Client: Libby Environmental				Collection	Date:	11/6/2014 2:15:00 PM
Project: Havens Estate						
Lab ID: 1411107-024				Matrix: So	lic	
Client Sample ID: TP 23-4						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batc	h ID: 92	86 Analyst: MD
Benz(a)anthracene	ND	61.8		µg/Kg-dry	1	11/17/2014 11:52:00 AM
Chrysene	ND	61.8		µg/Kg-dry	1	11/17/2014 11:52:00 AM
Benzo(b)fluoranthene	ND	61.8		µg/Kg-dry	1	11/17/2014 11:52:00 AM
Benzo(k)fluoranthene	ND	61.8		µg/Kg-dry	1	11/17/2014 11:52:00 AM
Benzo(a)pyrene	ND	61.8		µg/Kg-dry	1	11/17/2014 11:52:00 AM
Indeno(1,2,3-cd)pyrene	ND	61.8		µg/Kg-dry	1	11/17/2014 11:52:00 AM
Dibenz(a,h)anthracene	ND	61.8		µg/Kg-dry	1	11/17/2014 11:52:00 AM
Surr: 2-Fluorobiphenyl	98.7	42.7-132		%REC	1	11/17/2014 11:52:00 AM
Surr: Terphenyl-d14 (surr)	97.2	48.8-157		%REC	1	11/17/2014 11:52:00 AM
Sample Moisture (Percent Mois	sture)			Batch	h ID: R1	8008 Analyst: KZ
Percent Moisture	19.1			wt%	1	11/13/2014 2:15:33 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

- J Analyte detected below quantitation limits
- RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Fren	nont							Date: 11/19/2014	
Work Order: 1411107									H
CLIENT: Libby Env	vironmental							SUMIMARY KEP	UKI
Project: Havens E	state				Po	lyaromatic	: Hydrocarbons b	y EPA Method 827((NIS) (
Sample ID: MB-9285	SampType: MBLK			Units: pg/Kg		Prep Date	11/13/2014	RunNo: 18076	Γ
Client ID: MBLKS	Batch ID: 9285					Analysis Date	11/16/2014	SeqNo: 360374	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit 1	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benz(a)anthracene	QN	50.0							
Chrysene	QN	50.0							
Benzo(b)fluoranthene	QN	50.0							
Benzo(k)fluoranthene	QN	50.0							
Benzo(a)pyrene	Q	50.0							
Indeno(1.2.3-cd)pyrene	QN	50.0							
Dibenz(a,h)anthracene	Q	50.0							
Surr: 2-Fluorobiphenyl	522		500.0		104	42.7	132		
Surr: Terphenyl-d14 (surr)	465		500.0		93.0	48.8	157		
Sample ID: LCS-9285	SampType: LCS			Units: µg/Kg		Prep Date	11/13/2014	RunNo: 18076	
Client ID: LCSS	Batch ID: 9285					Analysis Date	11/16/2014	SeqNo: 360375	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit 1	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benz(a)anthracene	1,110	50.0	1,000	0	111	41.9	136		
Chrysene	1,210	50.0	1,000	0	121	51.4	135		
Benzo(b)fluoranthene	787	50.0	1,000	0	78.7	39.7	137		
Benzo(k)fluoranthene	1.020	50.0	1.000	0	102	45.7	138		
Benzo(a)pyrene	1,400	50.0	1,000	0	140	40.9	141		
Indeno(1,2,3-cd)pyrene	889	50.0	1.000	0	88.9	45.4	137		
Dibenz(a,h)anthracene	879	50.0	1,000	0	87.9	37.6	140		
Surr: 2-Fluorobiphenyl	574		500.0		115	42.7	132		
Surr: Terphenyl-d14 (surr)	518		500.0		104	48.8	157		
Analda Analda Charles	to the necessary blacks that a								
Qualifiers: a mining territor	In the associated memora tstank		ew uptinipo 0	is required			E Value above quantitation r	ange	

Page 21 of 27

- Spike recovery outside accepted recovery limits E Value above quantitation range ND Not detected at the Reporting Limit S Spike recovery outside accepted reci
- D Diution was required J Analyte detected below quantitation tents RL Reporting Limit

Holding times for preparation or analysis exceeded

τα

RPD outside accepted recovery limits

	H H	ŝ	Г		1452	1																					
	POR	IIS) 0.			Qual												Qual										
3/2014	Y REI	od 827		~	RDLimit	30	30	30	30	30	30	30				0	RPDLimit										
11/11 :	AAR'	Metho	18076	36037	RPD F		27.4						0	0	18076	36037	RPD F										
Date	NMU	EPA	RunNo	SeqNo	9%										RunNo	SeqNo	1%										
	QC S	(d suo			tef Val	6	119.8	0	0	0	0	0					Ref Val										
		ocarb	2014	2014	RPD F										2014	2014	RPD F										
		Hydr	11/13/2	11/16/2	lighLimit								132	157	11/13/2	11/16/2	lighLimit	169	146	168	161	179	165	166	132	157	
		omatic	ep Date:	sis Date	Limit F								42.7	48.8	ep Date	sis Date:	Limit F	57.5	45.2	42.2	48	34.4	41.1	38.1	42.7	48.8	
		olyarc	P	Analys	Low										Pr	Analys	: Low	100.0									
		٩.	dry	i.	%REC								80.7	132	dry		%REC	125	106	147	78.9	145	130	133	110	112	
			hg/Kg-		Val										-6X/Brt		/al	0	0	0	0	94	0	0			
			Units:		SPK Ref										Units:		SPK Ref					29					
					value								558.7	558.7			value	1,238	1.238	1,238	1,238	1,238	1.238	1,238	618.9	618.9	
					SPK												SPK										
					RL	55.9	55.9	55.9	55.9	55.9	55.9	55.9					RL	61.9	61.9	61.9	61.9	61.9	61.9	61.9			
			UP	285	tilt	9	58	DZ	9	9	9	P	51	.37	s	285	tut	50	10	120	22	990	00	40	80	91	
	a	5	Type: D	0: 0	Res		-	-	-	-		-	4	L	Type: M	ID: 9	Res	1.5	1.3	1,8	Ø	1,8	1,6	1,6	9	Ø	
O	hamno	ate	Samp	Batch											Samp	Batch											
	1107 v Envin	ens Est	ADUP											(E	AMS											Ē	
2	141 Libb	Hav	100-002	H		e		ene	ene		iyrene	scene	iphenyl	t-d14 (su	100-004	н		8		ene	ene		iyrene	Icene	phenyl	l-d14 (su	
	Order: T:		D: 1411	BAT		nthracen		fluoranth	fluoranth	pyrene	,2,3-cd)p	(,h)anthra	2-Fluorob	repheny	0: 1411	BAT		nthracen		fluoranth	fluoranth	pyrene	.2.3-cd)p	(h)anthra	C-Fluorop	[erpheny	
<i>Q</i> =	Work	Projec	Sample I	Client ID	Analyte	Benz(a)a	Chrysen	Benzo(b)	Benzo(k)	Benzo(a)	Indeno(1	Dibenz(a	Surr:	Surr:	Sample I	Client ID	Analyte	Benz(a)a	Chrysen	Benzo(b)	Benzo(k)	Benzo(a)	Indeno(1	Dibenz(a	Surr	Surr	

Analyte detected below quantitation limits
RL Reporting Limit

H Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits

- Not detected at the Reporting Limit S Spike recovery outside accepted recovery limits

Page 22 of 27

	rem	nont								Date: 11.	19/2014	
Work Order:	1411107								00	A AAAA I		H
CLIENT:	Libby Envir	onmental							2	NIMINIA	KKEP	UKI
Project:	Havens Es	tate				Po	lyaromatic	: Hydroca	rbons b	y EPA Met	hod 8270	(NIS)
Sample ID: MB-92	386	SampType: MBLK			Units: µg/Kg		Prep Date:	11/13/2014		RunNo: 181	24	Γ
Client ID: MBLK	S	Batch ID: 9286					Analysis Date	11/17/2014		SeqNo: 361	419	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit h	fighLimit RP	D Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene		QN	50.0]
Chrysene		QN	50.0									
Benzo(b)fluoranthe	ne	QN	50.0									
Benzo(k)fluoranther	Je	QN	50.0									
Benzo(a)pyrene		QN	50.0									
Indeno(1,2,3-cd)pyr	rene	QN	50.0									
Dibenz(a,h)anthrac	ene	Q	50.0									
Surr: 2-Fluorobip	henyl	594		500.0		119	42.7	132				
Surr: Terphenyl-	d14 (surr)	563		500.0		113	48.8	157				
Sample ID: 14111	07-020ADUP	SampType: DUP			Units: µg/Kg	-dry	Prep Date	11/13/2014		RunNo. 181	24	
Client ID: TP 21-	5	Batch ID: 9286					Analysis Date	11/17/2014		SeqNo: 361	422	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit 1	HighLimit RP	D Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene		QN	61.8						0		30	
Chrysene		QN	61.8								2	
Benzo(b)fluoranthe	пе	QN	61.8						0		30	
Benzo(k)fluoranthei	he	QN	61.8						0		30	
Benzo(a)pyrene		QN	61.8						0		30	
Indeno(1,2,3-cd)pyr	rene	Q	61.8						0		8	
Dibenz(a,h)anthrac	ene	QN	61.8						0		30	
Surr: 2-Fluorobip	henyl	627		617.6		101	42.7	132		0		
Surr: Terphenyl-	d14 (surr)	623		617.6		101	48.8	157		0		
Qualifiers: B	Analyte detected in	the associated Method Blank		Dilution wi	peunbeu se			E Value above	a quantitation ra	age		
I	Holding times for p	reparation or analysis exceeded		J Analyte de	tected below quantitation	Imits		ND Not detecter	d at the Report	ng Limit		
۲	RPD outside accept	ned recovery limits		RL Reporting	Limit			S Spike recov	ery outside acc	epled recovery limit		

Page 23 of 27

LIENT: Libby Environmental Project: Havens Estate Image: SampType: MS Ample 1411107-021AMS SampType: Ample TP 22-1 Batch ID: Amalyte Result Result 1.360 Amysene 1.200	ā								
Project: Havens Estate ample ID: 141107-021AMS SampType: MS client ID: TP 22-1 Batch ID: 9286 unalyte Result Result kenz(a)anthracene 1,360 chysene 1,200	ā					ð	SUMMA	RY REP	ORT
ample ID: 1411107-021AMS SampType: MS lient ID: TP 22-1 Batch ID: 9286 unalyte Result tenz(a)anthracene 1.360 chrysene 1,200	ā			Po	lyaromatic	: Hydrocarbons	by EPA Me	thod 8270	WIS)
lient ID: TP 22-1 Batch ID: 9286 malyte Result fenz(a)anthracene 1,360 chrysene 1,200	ā		Units: pg/Kg-	dry	Prep Date:	11/13/2014	RunNo: 18	1124	
inalyte Result Ienz(a)anthracene 1,360 Shrysene 1,200	ä				Analysis Date:	11/17/2014	SeqNo. 36	51426	
enz(a)anthracene 1.360 thrysene 1,200		SPK value	SPK Ref Val	%REC	LowLimit F	lighLimit RPD Ref Vi	al %RPD	RPDLimit	Qual
thrysene 1,200	59.8	1,197	0	114	57.5	169			
	59.8	1,197	0	100	45.2	146			
lenzo(b)fluoranthene 1.330	59.8	1,197	0	111	42.2	168			
henzo(k)fluoranthene 1,090	59.8	1,197	0	90.8	48	161			
ienzo(a)pyrene 1,230	59.8	1,197	0	103	34.4	179			
1,320 1,2,3-cd)pyrene	59.8	1,197	0	110	41.1	165			
libenz(a,h)anthracene 1,340	59.8	1,197	0	112	38.1	166			
Surr: 2-Fluorobiphenyl 585		598.4		97.7	42.7	132			
Surr: Terphenyl-d14 (surr) 591		598.4		98.8	48.8	157			
ample ID: LCS-9286 SampType: LCS			Units: µg/Kg		Prep Date:	11/13/2014	RunNo: 18	124	
Sient ID: LCSS Batch ID: 9286					Analysis Date:	11/17/2014	SeqNo: 36	1549	
nalyte	RL	SPK value	SPK Ref Val	%REC	LowLimit F	tighLimit RPD Ref Vi	al %RPD	RPDLimit	Qual
enz(a)anthracene 1,410	50.0	1,000	0	141	41.9	136			5
thrysene 1,230	50.0	1,000	0	123	51.4	135			6
enzo(b)fluoranthene 1,100	50.0	1,000	0	110	39.7	137			
lenzo(k)fluoranthene 1.320	50.0	1,000	0	132	45.7	138			
lenzo(a)pyrene 1,260	50.0	1,000	0	126	40.9	141			
1,450 1,2,3-cd)pyrene 1,450	50.0	1,000	0	145	45.4	137			S
Nibenz(a,h)anthracene 1,430	50.0	1,000	0	143	37.6	140			S
Surr: 2-Fluorobiphenyl 503		500.0		101	42.7	132			
Surr: TerphenyHd14 (surr) 473		500.0		94.5	48.8	157			
NOTES:	12	ALC: NO	0 0000 0						
3 - Uuilying spike recovery(les) observed - High Blas. Th	lere were no detec	tions in the sa	imples. No further a	ction is requ	uired.				

Page 24 of 27

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

r n

Reporting Limit

D Dilution was required J Analyte detected below quantitation limits RI. Reponing Limit

Spike recovery outside accepted recovery limits

E Value above quantitation range ND Not detected at the Reporting Limit S Spike recovery outside accepted rect

Sample Log-In Check List

(lient Name:	LIBBY	Work O	rder Number:	14	11107		
L	ogged by:	Erica Silva	Date Re	ceived:	11	/11/20	14 3:17:00 PM	
Ch	ain of Cust	lody						
1.	Is Chain of C	ustody complete?	Yes	\checkmark	No		Not Present	
2.	How was the	sample delivered?	UPS					
Lo	<u>a In</u>							
3.	Coolers are p	resent?	Yes		No		NA	
4.	Shipping con	tainer/cooler in good condition?	Yes		No			
5.	Custody seal	s intact on shipping container/cooler?	Yes		No		Not Required	•
6.	Was an atten	npt made to cool the samples?	Yes	×	No		NA	
7.	Were all cool	ers received at a temperature of >0°C to 10.0°C	Yes		No		NA	
		Ple	ase refer to	item inform	natio	n		
8.	Sample(s) in	proper container(s)?	Yes	~	No			
9.	Sufficient san	nple volume for indicated test(s)?	Yes		No			
10	Are samples	properly preserved?	Yes	•	No			
11	Was preserva	ative added to bottles?	Yes		No		NA	
12	Is the headsp	ace in the VOA vials?	Yes		No		NA	~
13	Did all sample	es containers arrive in good condition(unbroken)?	Yes	~	No			
14	Does paperw	ork match bottle labels?	Yes	•	No			
15	Are matrices	correctly identified on Chain of Custody?	Yes	×	No			
16	Is it clear what	t analyses were requested?	Yes		No			
17	Were all holdi	ng times able to be met?	Yes	V	No			
Spe	cial Handl	ing (if applicable)						
18	Was client no	tified of all discrepancies with this order?	Yes		No		NA	1
	Person I By Who Regardir Client In	Notified: Date m: Via: ng: Structions:	: 🗍 eMai	Phone		Fax	🗌 In Person	•

Item Information

Item #	Temp °C	Condition
Cooler	12.1	
Sample	11.5	

えん		272	O C IN	1 V 055	Ronlee Ln, O) (360) 866	ympia, WA 98 5-0543	502	5	2		2	AN.	
			Hazardous	Waste, Micro Mob	tiology, NPDI	ES, Potable an Intal Laboratory	d Non-potable	Water				A. B.C.	
Libby Environmental, Inc.								Pro	ect Name:	Havens Esta	ite		
4139 Libby Road NE								P.	roject No .:	L141106-40	222.0		
Olympia, WA 98506									P.O. No.:	n/a			
								Date	Collected:	11/5/2014: 1	0.46 to 11/6	/2014; 14:15	
sampled By: Unknown								Date	Received:	11/20/2014:	12:17		
							Tem	perature Rec	peived (°C):	n/a			
DAL Project No.: 141120-05								Re	sport Date:	11/25/2014			
Preparation Method: US EPA 3550C									1 India-	1			
Analytical Method: US EPA 8082A									Matrix	Soil			
Date Prepared: 11/20/2014								Repor	ting Limits:	Standard			
Date Analyzed: 11/20/2014								Injecti	on Volume:	2 uL			
Analyst: TM								Ins	trument ID:	Agilent 9074			
Data Reviewed By:								لع	o Data File:	14112001			
				AN	PCB'	s RESULTS							
Sample Identification CAS	MRL	Method					TP 14-1.5						
PCB Aroclor 1016 12674-11-2	0.50	nd	nd	nd	nd	nd	nd	nd a	nd	nd in	ord IT	11.11.1	17 17-3
PCB Aroclor 1221 1104-28-2	0.50	nd	nd	Ы	nd	Ы	Ы	2	a i	n i	2.1	a i	2 3
PCB Aroclor 1232 11141-16-5	0.50	Ы	nd	nd	n	Ы	В	DC.	D.	n	nd i	n	z i
PCB Aroclor 1242 53469-21-9	0.50	Ы	Ы	nd	nd	Ы	nd	Ы	a	n	a i	n	R i
PCB Aroclor 1248 12672-29-6	0.50	Ы	Ы	Ы	nd	Ы	Ы	nd	2	nd	R i	a i	3
PCB Aroclor 1254 11097-69-1	0.50	bu	Ы	pd	nd	bu	nd	nd	nd	nd	n i	nd	а i
PCB Aroclor 1260 11096-82-5	0.50	Ы	a	Dd	đ	0.46 J	0.50	a	æ	bu	nd	a i	2
Percent Solids (%)	10000		84.7	87.2	87.5	95.3	95.3	89.2	83.6	83.1	79.1	77.0	78.6
Dilution Factor Data Flags			10	10	10	43	43	10	10	10	10	10	10

L141106-40 page 1 of 3

えい			DRA	GON	ANA	Ronlee Ln, Oly (360) 866	MALL 0543	ABO	RATO	NRY		2	22	
				Hazardous	Waste, Micro Mob	le Environmer	S. Potable an Val Laborator	nd Non-potable Y	Water				No. of	
libby Environmental, Inc.								8.4	Pro	lect Name.	Havens Esta	ate		
139 Libby Road NE									TP	roject No.:	L141106-40			
Olympia, WA 98506										P.O. No.:	n/a			
									Date	Collected:	11/5/2014: 1	10:46 to 11/6	/2014, 14:15	
Sampled By: Unknown									Date	Received:	11/20/2014:	12:17		
								Temp	perature Rec	beived ("C):	n/a			
DAL Project No.: 141120-0	5								R	eport Date:	11/25/2014			
Preparation Method:	US EPA 35500									I India:				
Analytical Method:	US EPA 8082A									Matrix	Soil			
Date Prepared:	11/20/2014								Repo	ting Limits:	Standard			
Date Analyzed:	11/20/2014								Injecti	on Volume:	2 uL			
Analyst: Data Reviewed By:	IM								Ins	trument ID:	Agilent 9074			
					AN	ALYTICAL F	RESULTS							
	0.00													
Sample Identification	No.	MRL	TP 18-1	TP 18-3	TP 19-1	TP 19-3	TP 20-1	TP 20-3	TP 21-1	TP 21-3	TP 22-1	TP 23-1	TP 23-4	TP 23-4 Dup.
CB Aroclor 1016	12674-11-2	0.50	ы	nd	nd	nd	nd	B	bu	bn	nd	nd	B	nd
CB Aroclor 1221	1104-28-2	0.50	nd	nd	nd	Ы	nd	nd	Ы	Ы	Ы	Ы	Ы	Ы
CB Aroclor 1232	11141-16-5	0.50	Ы	nd	Ы	nd	nd	D.	nd	nd	Ы	nd	Ы	n.
CB Aroclor 1242	53469-21-9	0.50	bu	nd	nd	Ы	nd	nd	nd	Ы	Ы	nd	Ъ	Ы
⁹ CB Aroclor 1248	12672-29-6	0.50	nd	nd	nd	nd	nd	Ы	Ы	Ы	Я	n	nd	a
^a CB Aroclor 1254	11097-69-1	0.50	Ы	nd	Ы	Ы	nd	Ы	Ы	nd	Ы	a	Ы	Ы
CB Aroclor 1260	11096-82-5	0.50	ра	nd	nd	Ы	nd	ы	nd	nd	a	a	Z	Ы
Percent Solids (%)			80.1	79.3	80.9	79.9	80.4	80.9	83.2	84.4	80.2	77.4	80.3	80.3
Dilution Factor			10	10	10	10	10	10	30	10	10	10	10	10
Jata Flags													3	3

.

.

L141106-40 page 2 of 3

DAL Project No.: 141120-05 Libby Environmental, Inc.

DRAGON ANALYTICAL LABORATORY 530 A1 Fomilee Ln. Olympis, WA 98502 (360) 866-0543

Hazardous Waste, Microbiology, NPDES, Potable and Non-potable Water Mobile Environmental Laboratory

Project Name: Havens Estate

Project No.: L141106-40

PCB's QUALITY CONTROL RESULTS

SURROGATE RECOVERY

TCMX 30-150 DCBP 30-150	Surrogate Limits (%)	TCMX 30-150 DCBP 30-150	Surrogate Limits (%)
97.1 99.9	TP 18-1	97.8 102	Method Blank
98.4 101	TP 18-3	97.3 101	TP 12-1
99.8 102	TP 19-1	96.9 99.1	TP 13-1
99.4 103	TP 19-3	97.3 98.7	TP 13-3
102 105	TP 20-1	108 101	TP 14-1.5
106 108	TP 20-3	97.7 98.2	TP 14-1.5 Dup.
104	TP 21-1	98.8 99.9	TP 14-3
101	TP 21-3	93.7 96.3	TP 16-1
101	TP 22-1	97.4 101	TP 15-1
115 95.8	TP 23-1	103 104	TP 15-3
114	TP 23-4	98.2 100	TP 17-1
99.3 103	TP 23-4 Dup.	101 104	TP 17-3

LABORATORT CONTROL SAMPLE AND MATRIX SPIKE

2C Batch ID: 141120-PCB				MS	S/MSD Samp	le ID: 14112	0-PCB MS/N	ISD				LCS Samp	le ID: 14112	0-PCB L
Analyte	MS/MSD Limits (%)	MS/MSD/ LCS Level (mg/kg)	Sample Conc. (mg/kg)	MS Recovery (mg/kg)	MS Percent Recovery	MSD Recovery (mg/kg)	MSD Percent Recovery	MS/MSD RPD Limits	RPD	LCS Limits	LCS Recovery (mg/kg)	LCS Percent Recovery	LCSD Recovery (ma/ka)	LCSD Percer Recove
Arochlor 1016	29-135	400	nd	406	101%	389	97.3%	\$ 22%	2.0	50-120	418	105%	393	98.3%
Arochlor 1260	29-135	400	Ы	363	90.8%	351	87.8%	s 15%	1.7	50-120	423	106%	362	90.49

Comments and Explanations: None.

Sample results based on dry weight. "n/a" indicates not applicable

L141105-40 page 3 of 3

JIMI. 2400 4000 3-UAY Distribution: White - Lab, Yellow - File, Phys. Originator	12	ontaine	Der of C	a NUT	Inde	cout of law	mmed by a	to be dote	attorney fee	reasonable	f costs and	of collection including cour	reat is pay the costs o	re to pay. Clent ag	symperic and/or fails	AUSE. In the event of delauit of pa	EGAL ACTION CL	=
			42	Is Intac	Sea	Time	Date /					Received by:		/ Time	Date	a by:	veiinquisneo	-
STAMEN			and a second	17	Culo								1					
T NDAFY &	-		dition?	d Con	GO	Time	Date /	-	1			Received by:	1/2	/ Time	Date	d by:	Relinquished	70
Remarks: ML		aipt:	Rece	mple	Sa	Time	Date /	hy	6	11	ent	Pull L	8	4 10:1	11/6/1	Pok.	Venilensie	1 7
						\square			H	1		1			2		17	
	-	-		1	+	-			-								16	
	+	-		1	-				-							2	15	
		X	×		7	V	×		\geq					14:35	S	P18-3	14 T	-
	$\hat{\mathbf{x}}$	X	×			X	X		\times					H:37	1	1-810	13 TI	
370	1	X	X			X	Х		\sim	×				14.20	U	12 :3	12 TP	1.
her Mas via email	× x)	×	X		~	V	X		\wedge	V				14:25	1	17-1	11 TP	
Heachron TELO PL	2	X	×			×	X		7					12:10	U)	15 - 8	10 TY	1.1
11-25-14 added	2	X	×			X	X		2	~		*	14	51:01	1	15-1	9 TP	1
LIGLE PRASA COAHS		K	×			×	×		~					12:37	×	6-3	8 TP1	-
HOLD CPAHS .	2	\leq	\times		\sim	~	×		2					12:35	1	16-1	7 TP	-
		X	×		\sim		×		7					13:25	(N	14 - 33	6 TP.	1
	হ	X	×	8			×		~					13:30	1.5	4-1.5	5701	0
HOLD CPAHS .	\sim	\times	×			~	X,							11:45	ω	0-0	4 + 91	E
HULD CPAHS	6		×				×							11:45	14	1-0	3 7P 1	-
HALD OCKET CPAHS	R	$\stackrel{\scriptstyle }{\rightarrow}$	×	1	~		X							10:57	:5,	2-22-	2 + 121	-
WHAT S PARA		X	×			~	X		Ž				Soil	10:46	. 11-	12-1	1TP	1
Field Notes	Ì	PC	MIC	RAL	May	May	1 hr	SER	407	200	40	Туре	Туре	Time	Depth	ple Number	Sam	-
1 Car	1/2	SMela	Real	200	Not	a lo	of the	100	0270	80270		Container	Sample			RONMENT	IN	
1000	(È	1	+	(2	3	(a)	2								• •	_
111	Co	/	\mathbb{N}	/	/	/	1	Zan								IB AL	2	
s the	Can	No.	-nc	isan	chi	3	cun a	KHI	mail:	Im	11			212	1-00	ject# 249	Client Pro	115
Collection: 11/5/14	ate of			S	allo	·t	Kai	or:	ollect	10	46	85-26	122-4	Fax:	111	153-475.	Phone:	1-
ate: Oryanola Jula	ity, Sta		754	TI	Ruce	310	111 9	in: c	ocatic			810	LIA Zip:	State:		a contra	City:	
		5	sta	111	HS.	ave	H	Name	roject	l m			Ste A	ts we	Husi	3011 S.	Address:	12
			115	Rui-	ax	N	iger:	Mana	roject	1-72				e	Mald	Kolansan	Client:	10
of 7	age:	П					14	116)ate:				4154	360-352-	Fax	VA 98506	Olympia, V	-
man clocy componing ran com		ł			-				1	1.04			2110	360-352-	Ph	Road NE	4139 Libby	•
www.lihhvEnvironmental.com		17			ord	ecc	IV R	stoc	Cu	of	nair	0		, Inc.	lental	Environm	Libby	-
															1			1

delived ceived ceived	Project Manager: MAX Project Name: MAX Collector: Manager: MAX Email: MAX Em
-----------------------	---

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

December 11, 2014

Max Wills Robinson Noble 17625 130th Avenue NE, Suite 102 Woodinville, WA 98072

Dear Mr. Wills:

Please find enclosed the analytical data report for the Havens Estate Project located in Olympia, Washington. Soil samples were analyzed for Volatile Organic Compounds by EPA Method 8260C, Gasoline by NWTPH-Gx, Diesel & Oil by NWTPH-Dx/Dx Extended, Metals Arsenic, Cadmium, Chromium, Copper, Lead, and Zinc by EPA Method 7010 Series, Mercury by EPA Method 7471, Total Nickel by EPA Method SW846 6010C, Hexavalent Chromium by EPA Method 7196A, Polyaromatic Hydrocarbons by EPA Method 8270 (SIM), Semi-Volatile Organic Compounds by EPA Method 8270, and PCB (Polychlorinated Biphenyls) by EPA Method 8082.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. All soil samples are reported on a dry weight basis. An invoice for this analytical work is included and has been emailed to the Tacoma office.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Kurt Johnson Senior Chemist Libby Environmental, Inc.

Phone (360) 352-2110 • Fax (360) 352-4154 • libbyenv@aol.com

www.LibbyEnvironmental.com

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141107-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	TP24-1	TP24-3	TP25-1	TP25-3
Data Samplad	Departing	Blank	11/7/14	11/7/14	11/7/14	11/2/14
Date Applyzed	Limite	11/7/14	11/7/14	11/7/14	11/7/14	11/7/14
Date Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd
1.1.1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd
1.1-Dichloropropene	0.02	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd
1.2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd
1.2-Dichloropropane	0.02	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd
cis-1 3-Dichloropropene	0.02	nd	nd	nd	nd	nd
Toluene	0.03	nd	nd	nd	nd	nd
Trans-1 3-Dichloropropene	0.03	nd	nd	nd	nd	nd
1 1.2-Trichloroethane	0.03	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd
1.3 Dichloropropage	0.02	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd
2-Dibromoethens (EDB) *	0.005	nd	nd	nd	nd	nd
Chlorobanzena	0.005	nd	nd	nd	nd	nd
L 1 2 Tatraaklassethans	0.02	nd	nd	nd	nd	nd
Cthe the arrange	0.03	nd	nd	nd	nd	na
Emyloenzene	0.03	nd	nd	na	na	nd
I otal Xylenes	0.03	nd	nd	nd	nd	nd

Volatile Organic Compounds by EPA Method 8260C in Soil

nd

nd

nd

nd

nd

0.02

Styrene

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141107-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method Blank	TP24-1	TP24-3	TP25-1	TP25-3	
Date Sampled	Reporting	N/A	11/7/14	11/7/14	11/7/14	11/7/14	
Date Analyzed	Limits	11/7/14	11/7/14	11/7/14	11/7/14	11/7/14	
52. N	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Bromoform	0.03	nd	nd	nd	nd	nd	
Isopropylbenzene	0.08	nd	nd	nd	nd	nd	
1,2,3-Trichloropropane	0.03	nd	nd	nd	nd	nd	
Bromobenzene	0.03	nd	nd	nd	nd	nd	
1,1,2,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	
n-Propylbenzene	0.02	nd	nd	nd	nd	nd	
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd	
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd	
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd	
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	
sec-Butylbenzene	0.02	nd	nd	nd	nd	nd	
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	
Isopropyltoluene	0.02	nd	nd	nd	nd	nd	
1,4-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	
1,2-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	
n-Butylbenzene	0.02	nd	nd	nd	nd	nd	
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	
Naphthalenes	0.05	nd	nd	nd	nd	nd	
1,2,3-Trichlorobenzene	0.1	nd	nd	nd	nd	nd	
Surrogate Recovery							
Dibromofluoromethane		114	111	115	108	111	
1,2-Dichloroethane-d4		125	132	125	123	125	
Toluene-d8		89	89	89	75	90	
4-Bromofluorobenzene		92	89	88	91	96	

Volatile Organic Compounds by EPA Method 8260C in Soil

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141107-40 Client Project # 2491-001F

Sample Identification: L141107-40 Matrix Spike Matrix Spike Duplicate RPD Spiked Measured Spike Spiked Measured Spike Conc. Conc. Recovery Conc. Conc. Recovery (mg/kg) (mg/kg) (%) (mg/kg) (mg/kg) (%) 1,1-Dichloroethene 0.50 0.42 84 0.50 0.44 88 4.7 Benzene 0.50 0.46 92 0.50 0.47 94 22 Toluene 0.50 0.44 88 0.50 90 0.45 2.2 Chlorobenzene 0.50 0.46 92 0.50 0.47 94 2.2 Trichloroethene (TCE) 0.50 0.48 96 0.50 0.49 98 2.1 Surrogate Recovery Dibromofluoromethane 102 112 1,2-Dichloroethane-d4 111 132 90 Toluene-d8 87 4-Bromofluorobenzene 75 88

QA/QC Data	- EPA 8260C	Analyses
------------	-------------	----------

	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)
1,1-Dichloroethene	0.50	0.41	82
Benzene	0.50	0.47	94
Toluene	0.50	0.45	90
Chlorobenzene	0.50	0.46	92
Trichloroethene (TCE)	0.50	0.46	92
Surrogate Recovery			
Dibromofluoromethane			114
1,2-Dichloroethane-d4			128
Toluene-d8			91
4-Bromofluorobenzene			92

Laboratory Control Sample

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141107-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	11/7/14	89	nd
TP24-1	11/7/14	89	nd
TP24-3	11/7/14	89	nd
TP25-1	11/7/14	75	nd
TP25-3	11/7/14	90	nd
Practical Quantitation Limit			10

Analyses of Gasoline (NWTPH-Gx) in Soil

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141107-40 Client Project # 2491-001F

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	11/7/14	95	nd	nd
ГР24-1	11/7/14	87	nd	nd
TP24-3	11/7/14	85	nd	nd
ГР25-1	11/7/14	100	nd	nd
ГР25-3	11/7/14	81	nd	nd
ГР25-3 Dup	11/7/14	97	nd	nd
Practical Quantitation Lim	it		50	200

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141107-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	11/9/14	nd	nd	nd	nd
TP24-1	11/9/14	nd	nd	53	5.4
TP24-3	11/9/14	nd	nd	23	nd
TP25-1	11/9/14	16	nd	19	6.6
TP25-3	11/9/14	nd	nd	83	6.7
TP26-2	11/9/14	7.7	nd	8.3	nd
TP26-2 Dup	11/9/14	7.5	nd	10	nd
Practical Quantita	tion Limit	5.0	1.0	5.0	5.0

Analyses of Total Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Dirk Peterson

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141107-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC fo	or Metals in	Soil by EPA	Method '	7010 Series
----------	--------------	-------------	----------	-------------

Sample Number	Date Analyzed	Lead (% Recovery)	Cadmium (% Recovery)	Chromium (% Recovery)	Arsenic (% Recovery)
LCS	11/9/14	99%	86%	87%	91%
TP26-2 MS	11/9/14	106%	90%	95%	112%
TP26-2 MSD	11/9/14	117%	88%	92%	118%
RPD	11/9/14	9%	2%	4%	5%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141107-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Method Blank	11/13/14	nd
TP24-1	11/13/14	nd
TP24-3	11/13/14	nd
TP25-1	11/13/14	nd
TP25-3	11/13/14	nd
TP26-2	11/13/14	nd
Practical Quantitation Limit		0.5

Analyses of Total Mercury in Soil by EPA Method 7471

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Ramses Osorio

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141107-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for	Mercury	by EPA	Method	7471
-----------	---------	--------	--------	------

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	11/13/14	98%
L141111-2 MS	11/13/14	98%
L141111-2 MSD	11/13/14	98%
RPD	11/13/14	0%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141107-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Copper	Zinc
Indiliber	Analyzeu	(mg/kg)	(mg/kg)
Method Blank	11/9/14	nd	nd
TP24-1	11/9/14	6.6	nd
TP24-3	11/9/14	7.5	nd
TP25-1	11/9/14	13	nd
TP25-3	11/9/14	7.1	nd
TP26-2	11/9/14	nd	nd
TP26-2 Dup	11/9/14	nd	nd
Practical Quantitation Limit		5.0	5.0

Analyses of Total Metals in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Dirk Peterson

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141107-40 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	11/9/14	100%	117%
TP26-2 MS	11/9/14	110%	92%
TP26-2 MSD	11/9/14	103%	92%
RPD	11/9/14	6%	1%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

11/26/2014

	Project:	Havens Estate
Libby Environmental, Inc.	Sample Matrix:	Soil
4139 Libby Rd NE	Date Sampled:	11/07/2014
Olympia, WA 98506	Date Received:	11/11/2014
Attn: Jamie Deyman	Spectra Project:	2014110261

Client ID	Spectra #	Analyte	Result	Units	Method
TP 24-1	1	Total Nickel	16.2	mg/Kg	SW846 6010C
TP 24-1	1	Hexavalent Chromium	<1.0	mg/Kg	SW846 7196A
TP 24-3	2	Total Nickel	22.4	mg/Kg	SW846 6010C
TP 25-1	3	Total Nickel	24.4	mg/Kg	SW846 6010C
TP 25-3	4	Total Nickel	25.6	mg/Kg	SW846 6010C
TP 25-3	4	Hexavalent Chromium	<0.5	mg/Kg	SW846 7196A
TP 26-2	6	Total Nickel	3.9	mg/Kg	SW846 6010C

ICP analysis: 11-12-14 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a7/bjn

2221 R	toss Way • "	lacoma, WA	98421 • (253) 272-4	850 • Fa	x (253) 572-9838	• www.spectra	lah com
11/12/2014								-140.000
Libby Environ 4139 Libby Rd Olympia, WA	nental . NE 98506				Units: Spectra I Applies	Project: to Spectra #'s	mg/L 2014110261 1-4 6	
			QUALITY	CONTR	OL RESUL	TS		
		IC	P Metals S	W846 601	0C - Soil/S	olid		
D			N	dethod B	lank			
Date Digested:	11/12/2014				Date Ana	lyzed:	11/12/2014	
			Element		Blank Re	sult		
			Nickel		< 0.015	-		
			Blan	k Spike (1	.CS)			
Date Digested: 11/12/2014					Date Anal	yzed:	11/12/2014	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		NICKEI		2.0	1.883	94.2		
LCS Recovery lin	nits 80-120%							
Data Dianata I		Matrix Sp	ike/Matrix	Spike Du	plicate (M	S/MSD)		
Sample Spiked:	2014110260-2	21			Date Analy	zed:	11/12/2014	
		Sample	Spike	MS	MS	MSD	MSD	
Element	-	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Nickel		0.350	2.0	2.205	92.8	2.205	92.8	0.0
ecovery Limits 7	5-125%							
PD Limit 20								

Steven G. Hibbs Laboratory Manager
2221 Ross Way	 Tacoma, W 	VA 98421	• (2:	53) 272-48	50 • 1	⁷ ax (253) 572-983	8 • www.spec	ctra-lab.com
November 26, 2014								
Libby Environmental					Units:		ma/Ka	
4139 Libby Rd NE					Spectra	Project:	2014110461	
Olympia, WA 98506					Applies	to Spectra #'s :	1,4	
					Analyst	8	BJN	
		QL	JALITY C	ONTROL	RESULT	s		
H	lexavalent Chr	omium li	n Soil/So	lid - Meth	od SM 35	00 Cr-D/ SW846	7196A	
Date Extracted	11/00/0044		Me	thod Blan	nk	10000		
Date Extracted:	11/26/2014				Date An	alyzed:	11/26/2014	
					Method	Blank		
		Hexay	valent Ch	romium	< 0.1			
			Blank	6-11 /I	001			
Date Extracted:	11/26/2014		Blan	k Spike (L	CS)	abood	11/00/0044	
					Date An	alyzed,	11/26/2014	
				Spike	LCS	LCS		
				Added	Conc.	%Rec		
	Hexav	alent Chr	omium	0.1	0.090	90.0		
LCS Recovery limits 7	5-120%							
	Ма	trix Spik	e/Matrix	Spike Du	plicate (N	IS/MSD)		
Date Extracted:	11/10/2014				Date Ana	lyzed:	11/11/2014	
Sample Spiked:	2014110179-1							
		Sample	Spike	MS	MS	MSD	MSD	
		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
lexavalent Chromium		0.569	0.10	0.660	91.0	0.667	98.0	7.4
tecovery Limits 75-12	5%							
RPD Limit 20								

Steven G. Hibbs Laboratory Manager

7	4139 Libby Road NE Olympia, WA 98506 Client: Address: City: Phone: Client Project # Client Project # Sample Number 1 2 3 3 5	Ph: 360-355 Fax: 360-355 Fax: 360-355 Fax: 5 Fax: Fax: Fax:	22110 24154 Zahi Li Sample Type	Container	Date: 11/11/1 Project Manager: Project Name: 11/11/1 Location: Collector: Email: Email: Solution	Page Page City City Date City City City City City City City City	State: of Collection: Field Notes Hex Chrom pe Emily via email
3	1 TP24-1 2 TP24-3	1 141 ×	5 3001	Ter		X	X 11-25-14 added Hex Chrom Der
4 4 4 4 5 5 5 5 5 5 6 7 6 7 <th7< th=""> 7 <th7< th=""> <th7< th=""></th7<></th7<></th7<>	1 + 52 dt	1 145.0				X	Emily via email
6	5 TO 25-3	14 14 14 14 14 14 14 14 14 14 14 14 14 1				X	X × STanda
7 7 8 1 9 1 10 1 11 1 12 1 13 1 13 1 14 1 15 1 16 1 17 14 18 14 19 15 11 16 16 1 17 16 18 16 19 14 10 14 11 16 16 1 17 16 18 16 19 16 10 16 11 17 18 16 19 16 10 16 11 17 18 18 19 19 10 10 11 10 12 11 14 16	6 10.10-2	21-11-1	-	-		~ ~	Can Can C
8 9 0	7			-		2	
9 9 10 10 11 11 12 11 12 11 13 11 14 11 15 11 16 11 16 11 17 11 18 11 19 11 11 11 12 11 13 11 14 11 15 11 16 11 17 11 17 11 17 11 17 11 17 11 17 11 18 11 19 11 10 11 117 11 118 11 119 11 110 11 111 11 112 11 113 11 114 11 115 11	8						
10 10 10 10 10 10 11 <td< td=""><td>9</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	9						
11 11 11 12 12 12 13 14 14 14 14 14 14 14 14 15 16 14 14 14 14 16 16 16 16 16 16 16 17 Date / Time Received by: Date / Time Date / Time Sample Receipt: Remarks: 17 Date / Time Received by: Date / Time Codd? Codd? Codd? Relinquished by: Date / Time Received by: Date / Time Sais Intact? Codd?	10						
12 12 1	11						
13 13 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 16 15 16 17 17 17 17 17 16 16 16 16 16 16 16 17 <td< td=""><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	12						
International International 15 International 16 International 17 International 17 International 17 International 18 International 19 International 117 Int	13						
16 Image: Constraint of the state of the st	15						
17 17 17 Relinquished by: Date / Time Received by: Date / Time Sample Receipt: Remarks: Relinquished by: Date / Time Received by: Date / Time Good Condition? Add / Add	16						
Relinquished by: Date / Time Received by: Date / Time Sample Receipt: Remarks: Relinquished by: Date / Time Received by: Date / Time Good Condition? A Relinquished by: Date / Time Received by: Date / Time Good Condition? A Relinquished by: Date / Time Received by: Date / Time Seals Intact? A	17						
Relinquished by: Date / Time Received by: Date / Time Good Condition? Relinquished by: Date / Time Received by: Date / Time Cold? Relinquished by: Date / Time Received by: Date / Time Seals Intact?	Reinquished by:	Date / Time	4	Received by:	Date / Time	sample Receipt:	Remarks:
Relinquished by: Date / Time Received by: Date / Time Seals Intact?	Relinquished by:	Daté / Tirre	1	Received by:	Date / Time	Sood Condition?	Jtenstern A AT
	Relinguished by:	Dats / Time		Received by:	Date / Time	eals Intact?	

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Jamie Deyman 4139 Libby Rd. NE Olympia, WA 98506

RE: Havens Estate Lab ID: 1411104

November 19, 2014

Attention Jamie Deyman:

Fremont Analytical, Inc. received 6 sample(s) on 11/11/2014 for the analyses presented in the following report.

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Sample Moisture (Percent Moisture) Semi-Volatile Organic Compounds by EPA Method 8270

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

CLIENT: Project: Lab Order:	Libby Environmental Havens Estate 1411104	Work Order	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1411104-001	TP 24-1	11/07/2014 2:05 PM	11/11/2014 11:05 AM
1411104-002	TP 24-3	11/07/2014 2:15 PM	11/11/2014 11:05 AM
1411104-003	TP 25-1	11/07/2014 2:25 PM	11/11/2014 11:05 AM
1411104-004	TP 25-3	11/07/2014 2:30 PM	11/11/2014 11:05 AM
1411104-005	TP 26-1	11/07/2014 2:41 PM	11/11/2014 11:05 AM
1411104-006	TP 26-2	11/07/2014 2:45 PM	11/11/2014 11:05 AM

Case Narrative

WO#: 1411104 Date: 11/19/2014

CLIENT:	Libby Environmental
Project:	Havens Estate

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: 1411104 Date Reported: 11/19/2014

Client: Libby Environmental				Collection	Date: 11	/7/2014 2:05:00 PM
Project: Havens Estate						
Lab ID: 1411104-001				Matrix: So	lic	
Client Sample ID: TP 24-1						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID: 9286	Analyst: MD
Benz(a)anthracene	ND	61.6		µg/Kg-dry	1	11/17/2014 12:14:00 PM
Chrysene	ND	61.6		µg/Kg-dry	1	11/17/2014 12:14:00 PM
Benzo(b)fluoranthene	ND	61.6		µg/Kg-dry	1	11/17/2014 12:14:00 PM
Benzo(k)fluoranthene	ND	61.6		µg/Kg-dry	1	11/17/2014 12:14:00 PM
Benzo(a)pyrene	ND	61.6		µg/Kg-dry	1	11/17/2014 12:14:00 PM
Indeno(1,2,3-cd)pyrene	ND	61.6		µg/Kg-dry	1	11/17/2014 12:14:00 PM
Dibenz(a,h)anthracene	ND	61.6		µg/Kg-dry	1	11/17/2014 12:14:00 PM
Surr: 2-Fluorobiphenyl	103	42.7-132		%REC	1	11/17/2014 12:14:00 PM
Surr: Terphenyl-d14 (surr)	104	48.8-157		%REC	1	11/17/2014 12:14:00 PM
Sample Moisture (Percent Mois	<u>ture)</u>			Batc	h ID: R179	Analyst: SL
Percent Moisture	18.8			wt%	1	11/12/2014 2:19:27 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: 1411104 Date Reported: 11/19/2014

Client: Libby Environmental				Collection	Date: 1	1/7/2014 2:25:00 PM
Project: Havens Estate						
Lab ID: 1411104-003				Matrix: So	lic	
Client Sample ID: TP 25-1						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batc	h ID: 928	6 Analyst: MD
Benz(a)anthracene	ND	56.8		µg/Kg-dry	1	11/17/2014 12:37:00 PM
Chrysene	ND	56.8		µg/Kg-dry	1	11/17/2014 12:37:00 PM
Benzo(b)fluoranthene	ND	56.8		µg/Kg-dry	1	11/17/2014 12:37:00 PM
Benzo(k)fluoranthene	ND	56.8		µg/Kg-dry	1	11/17/2014 12:37:00 PM
Benzo(a)pyrene	ND	56.8		µg/Kg-dry	1	11/17/2014 12:37:00 PM
Indeno(1,2,3-cd)pyrene	ND	56.8		µg/Kg-dry	1	11/17/2014 12:37:00 PM
Dibenz(a,h)anthracene	ND	56.8		µg/Kg-dry	1	11/17/2014 12:37:00 PM
Surr: 2-Fluorobiphenyl	111	42.7-132		%REC	1	11/17/2014 12:37:00 PM
Surr: Terphenyl-d14 (surr)	117	48.8-157		%REC	1	11/17/2014 12:37:00 PM
Sample Moisture (Percent Moi	<u>sture)</u>			Batc	h ID: R17	989 Analyst: SL
Percent Moisture	12.0			wt%	1	11/12/2014 2:19:27 PM

Qualifiers:	в	Analyte detected in the associated Method Blank	
	144	· 이 같이 같이 많이 있는 것 같은 것 같이 있는 것 같은 것 같은 것 같이 있는 것 같은 것 같이 가지 않는 것 같이 가지 않는 것 같이 있다. 것 같은 것 같은 것 같이 있는 것 같은 것 같은 것	

- E Value above quantitation range
- J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1411104 Date Reported: 11/19/2014

Client: Libby Environmental				Collection	Date: 1	1/7/2014 2:30:00 PM
Project: Havens Estate						
Lab ID: 1411104-004				Matrix: So	lio	
Client Sample ID: TP 25-3						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID: 928	6 Analyst: MD
Benz(a)anthracene	ND	61.5		µg/Kg-dry	1	11/17/2014 12:59:00 PM
Chrysene	ND	61.5		µg/Kg-dry	1	11/17/2014 12:59:00 PM
Benzo(b)fluoranthene	ND	61.5		µg/Kg-dry	1	11/17/2014 12:59:00 PM
Benzo(k)fluoranthene	ND	61.5		µg/Kg-dry	1	11/17/2014 12:59:00 PM
Benzo(a)pyrene	ND	61.5		µg/Kg-dry	1	11/17/2014 12:59:00 PM
Indeno(1,2,3-cd)pyrene	ND	61.5		µg/Kg-dry	1	11/17/2014 12:59:00 PM
Dibenz(a,h)anthracene	ND	61.5		µg/Kg-dry	1	11/17/2014 12:59:00 PM
Surr: 2-Fluorobiphenyl	104	42.7-132		%REC	1	11/17/2014 12:59:00 PM
Surr: Terphenyl-d14 (surr)	104	48.8-157		%REC	1	11/17/2014 12:59:00 PM
Sample Moisture (Percent Mois	ture)			Batc	h ID: R17	'989 Analyst: SL
Percent Moisture	18.8			wt%	1	11/12/2014 2:19:27 PM

Qualifiers: B Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1411104 Date Reported: 11/19/2014

Client: Libby Environmental				Collection	Date: 11	/7/2014 2:45:00 PM
Project: Havens Estate						
Lab ID: 1411104-006				Matrix: So	lic	
Client Sample ID: TP 26-2						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compound	nds by EPA Met	hod 8270		Batc	h ID: 9285	Analyst: NG
Phenol	ND	360		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Bis(2-chloroethyl) ether	ND	360		µg/Kg-dry	1	11/18/2014 10:40:00 AM
2-Chlorophenol	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
1,3-Dichlorobenzene	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
1.4-Dichlorobenzene	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
1,2-Dichlorobenzene	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Benzyl alcohol	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
2-Methylphenol (o-cresol)	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Hexachloroethane	ND	180		µg/Kg-dry	1	11/18/2014 10.40:00 AM
N-Nitrosodi-n-propylamine	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Nitrobenzene	ND	360		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Isophorone	ND	180		ug/Kg-dry	1	11/18/2014 10:40:00 AM
4-Methylphenol (p-cresol)	ND	180		ug/Kg-dry	1	11/18/2014 10:40:00 AM
2-Nitrophenol	ND	360		µa/Ka-drv	1	11/18/2014 10:40:00 AM
2.4-Dimethylphenol	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Bis(2-chloroethoxy)methane	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
2,4-Dichlorophenol	ND	360		µg/Kg-dry	1	11/18/2014 10:40:00 AM
1,2,4-Trichlorobenzene	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Naphthalene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
4-Chloroaniline	ND	900		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Hexachlorobutadiene	ND	180		µa/Ka-dry	1	11/18/2014 10:40:00 AM
4-Chloro-3-methylphenol	ND	900		ua/Ka-dry	1	11/18/2014 10:40:00 AM
2-Methylnaphthalene	ND	144		ua/Ka-drv	1	11/18/2014 10:40:00 AM
1-Methylnaphthalene	ND	144		ua/Ka-drv	1	11/18/2014 10:40:00 AM
Hexachlorocyclopentadiene	ND	180		ua/Ka-drv	1	11/18/2014 10:40:00 AM
2.4.6-Trichlorophenol	ND	360		ua/Ka-drv	1	11/18/2014 10:40:00 AM
2.4.5-Trichlorophenol	ND	360		ug/Kg-dry	1	11/18/2014 10:40:00 AM
2-Chloronaphthalene	ND	180		ug/Kg-dry	1	11/18/2014 10:40:00 AM
2-Nitroaniline	ND	900		ug/Kg-dry	1	11/18/2014 10:40:00 AM
Acenaphthene	ND	144		ug/Kg-dry	1	11/18/2014 10:40:00 AM
Dimethylphthalate	ND	180		ug/Kg-dry	1	11/18/2014 10:40:00 AM
2.6-Dinitrotoluene	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Acenaphthylene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
2.4-Dinitrophenol	ND	360		µa/Ka-drv	1	11/18/2014 10:40:00 AM
Dibenzofuran	ND	180		ug/Kg-day	1	11/18/2014 10:40:00 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: 1411104 Date Reported: 11/19/2014

Client: Libby Environmental				Collection	Date: 11	/7/2014 2:45:00 PM
Project: Havens Estate						
Lab ID: 1411104-006				Matrix: So	lic	
Client Sample ID: TP 26-2						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compour	ids by EPA M	ethod 8270		Batc	h ID: 9285	Analyst: NG
2,4-Dinitrotoluene	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
4-Nitrophenol	ND	900		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Fluorene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
4-Chlorophenyl phenyl ether	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Diethylphthalate	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
4,6-Dinitro-2-methylphenol	ND	360		µg/Kg-dry	1	11/18/2014 10:40:00 AM
4-Bromophenyl phenyl ether	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Hexachlorobenzene	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Pentachlorophenol	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Phenanthrene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Anthracene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Carbazole	ND	900		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Di-n-butylphthalate	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Fluoranthene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Pyrene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Butyl Benzylphthalate	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
bis(2-Ethylhexyl)adipate	253	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Benz (a) anthracene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Chrysene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
bis (2-Ethylhexyl) phthalate	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Di-n-octyl phthalate	ND	180		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Benzo (b) fluoranthene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Benzo (k) fluoranthene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Benzo (a) pyrene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Indeno (1,2,3-cd) pyrene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Dibenz (a,h) anthracene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Benzo (g.h.l) perylene	ND	144		µg/Kg-dry	1	11/18/2014 10:40:00 AM
Surr: 2,4,6-Tribromophenol	139	14-136	s	%REC	1	11/18/2014 10:40:00 AM
Surr: 2-Fluorobiphenyl	88.0	27.3-158		%REC	1	11/18/2014 10:40:00 AM
Surr: Nitrobenzene-d5	93.4	21.9-141		%REC	1	11/18/2014 10:40:00 AM
Surr: Phenol-d6	128	18.4-144		%REC	1	11/18/2014 10:40:00 AM
Surr: p-Terphenyl	137	33.3-149		%REC	1	11/18/2014 10:40:00 AM

NOTES:

S - Outlying surrogate recovery observed. The LCS was within range.

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

D Dilution was required

WO#: 1411104 Date Reported: 11/19/2014

Client:	Libby Environmental				Collectio	n Date:	11/7/20	14 2:45:00 PM	
Project:	Havens Estate								
Lab ID:	1411104-006				Matrix: S	oil			
Client S	ample ID: TP 26-2								
Analyse	s	Result	RL	Qual	Units	DF	Da	te Analyzed	
Sample	Moisture (Percent Moist	ure)			Bate	ch ID: R1	8008	Analyst KZ	
Percent	Moisture	46.3			wt%	1	11/13	2014 2:15:33 PM	

Qualifiers: B Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Fren	non	- 4								Date: 11	/19/2014	
Work Order: 1411104 CLIENT: Libby En	vironmental								oc oc	SUMMAI	REP	ORT
Project: Havens E	Estate					Po	lyaromat	ic Hydro	carbons b	y EPA Met	hod 8270	(NIS)
Sample ID: MB-9286	SampType	MBLK			Units: µg/Kg		Prep Dat	e: 11/13/20	14	RunNo: 181	24	
Client ID: MBLKS	Batch ID:	9286					Analysis Dat	e: 11/17/20	14	SeqNo: 361	419	
Analyte	_	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene		QN	50.0									
Chrysene		QN	50.0									
Benzo(b)fluoranthene		QN	50.0									
Benzo(k)fluoranthene		QN	50.0									
Benzo(a)pyrene		Q	50.0									
Indeno(1,2.3-cd)pyrene		Q	50.0									
Dibenz(a,h)anthracene		QN	50.0									
Surr: 2-Fluorobiphenyl		594		500.0		119	42.7	132				
Surr: Terphenyl-d14 (surr)		563		500.0		113	48.8	157				
Sample ID: 1411107-020ADUP	SampType	e DUP			Units: µg/Kg-c	trit	Prep Dat	e: 11/13/20	14	RunNo: 181	24	
Client ID: BATCH	Batch ID:	9286					Analysis Dat	le: 11/17/20	114	SeqNo: 361	422	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene		QN	61.8						0		30	
Chrysene		Q	61.8						0		30	
Benzo(b)fluoranthene		QN	61.8						0		30	
Benzo(k)fluoranthene		Q	61.8						0		30	
Benzo(a)pyrene		Q	61.8						0		30	
Indeno(1,2,3-cd)pyrene		QN	61.8						0		30	
Dibenz(a,h)anthracene		Q	61.8						0		30	
Surr: 2-Fluorobiphenyl		627		617.6		101	42.7	132		0		
Surr: Terphenyl-d14 (surr)		623		617.6		101	48.8	157		0		

Page 10 of 26

Spike recovery outside accepted recovery limits Not detected at the Reporting Limit E Value above quantitation range ND Noi detected at the Reporting Lim S Spike recovery outside accepted

Reporting Limit

Holding times for preparation or analysis exceeded Analyte detected in the associated Method Blank

ωτα

Qualifiers:

RPD outside accepted recovery limits

o - d

Analyte detected below quantitation limits

Dilution was required

	2
-	a tar
0	INL
Ē	E
5	1
Ð	No.
L	Contract of the local division of the local
	60.0

1411104

Work Order:

Date: 11/19/2014

QC SUMMARY REPORT

		_	_	-										_	_	_									
UKI //	(MIC)			Qual												Qual	s					s	s		
KY KEP	170 noi	24	426	RPDLimit										24	549	RPDLimit									
		RunNo: 1813	SeqNo: 3614	%RPD										RunNo: 181	SeqNo: 361	%RPD									
arhone hv		*	*	RD Ref Val										4	4	RPD Ref Val									
Hudroc	nindi	11/13/201	11/17/201	ighLimit R	169	146	168	161	179	165	166	132	157	11/13/201	11/17/201	ighLimit F	136	135	137	138	141	137	140	132	157
varomatic		Prep Date:	Analysis Date:	LowLimit H	57.5	45.2	42.2	48	34.4	41.1	38.1	42.7	48.8	Prep Date:	Analysis Date:	LowLimit H	41.9	51.4	39.7	45.7	40.9	45.4	37.6	42.7	48.8
Polo	5	Iry	~	%REC	114	100	111	90.8	103	110	112	97.7	98.8			%REC	141	123	110	132	126	145	143	101	94.5
		Units: µg/Kg-d		SPK Ref Val	0	0	0	0	0	0	0			Units: µg/Kg		SPK Ref Val	0	0	0	0	0	0	0		
				SPK value	1,197	1,197	1,197	1,197	1,197	1,197	1,197	598.4	598.4			SPK value	1,000	1.000	1.000	1,000	1,000	1,000	1,000	500.0	500.0
				RL	59.8	59.8	59.8	59.8	59.8	59,8	59.8					RL	50.0	50.0	50.0	50.0	50.0	50.0	50.0		
		WS	9286	tinse	,360	1,200	1,330	060'1	1,230	1.320	1,340	585	591	rcs	9286	esult	1,410	1,230	1,100	1,320	1,260	1,450	1,430	503	473
onmental	ate	SampType:	Batch ID:	æ										SampType:	Batch ID:	æ			0.00						
Libby Envir	Havens Est	1411107-021AMS	BATCH		acene		ranthene	ranthene	ane	-cd)pyrene	nthracene	iorobiphenyl	henyl-d14 (surr)	LCS-9286	LCSS		acene		ranthene	ranthene	ane	-cd)pyrene	nthracene	lorobiphenyl	henyl-d14 (surr)
CLIENT:	Project:	Sample ID:	Client ID:	Analyte	Benz(a)anthr	Chrysene	Benzo(b)fluo	Benzo(k)fluoi	Benzo(a)pyre	Indeno(1,2,3-	Dibenz(a,h)a	Surr: 2-Flu	Surr: Terp	Sample ID: 1	Client ID:	Analyte	Benz(a)anthr.	Chrysene	Benzo(b)fluo	Benzo(k)fluoi	Benzo(a)pyre	Indeno(1,2,3-	Dibenz(a,h)a.	Surr: 2-Fku	Surr: Terp.

NOTES: S - Outlying spike recovery(ies) observed - High Blas. There were no detections in the samples. No further action is required.

thod Blank
ocusted Me
in the asso
to detected
Araly
80
Qualifiers:

- Holding times for preparation or analysis exceeded ıκ
 - RPD outside accepted recovery limits
- Analyte detected below quantitation limits Reporting Limit 0 7 2

Dilution was required

Not detected at the Reporting Limit m Q so

Value above quantitation range

Spike recovery outside accepted recovery limits

ť	[2(2)]
Q	#1.78 8.11 H
Ten	

Libby Environmental Torject: Libby Environmental Torject: Havens Estate ample ID: MB-3385 SampType: MBLK ilent ID: MB-453 SampType: MBLK ilent ID: MB-453 SampType: MBLK ilent ID: MB-453 SampType: MBLK ist2-chloroethend ND ND ND chlorobenzene ND ND ND ND chlorobenzene ND ND ND ND deltryphenol (o-cresol) ND ND ND ND Methyphenol (o-cresol) ND ND ND ND Methyphenol (o-cresol) ND ND ND ND Methyphenol (o-cresol) ND ND ND ND ND Methyphenol (o-cresol) ND ND ND ND ND ND ND<	RL SP 200 200 100 100 100 100 100 100	Units: µg/Kg	Semi-Vo	olatile Or	ganic Compou	SUMMARY REF nds by EPA Metho	0R1 18270
Project: Havens Estate Sample ID: MB-3385 SampType: MBLK Sample ID: MB-3385 SampType: MBLK Simple ID: MBLKS SampType: MBLK Simple ID: MBLKS SampType: MBLK Simple ID: MBLKS SampType: MBLK View MBLKS ND ND Schland ND ND ND Schlandoholenol ND ND	RL SP 200 200 100 100 100 100 100 100 100 100	Units: Jug/Kg Cvalue SPK Ref Val	Semi-Vo	olatile Or	ganic Compou	nds by EPA Metho	1 8270
Sample ID: MBLKS SampType: MBLK Client ID: MBLKS Batch ID: 9285 Analyte Result Result Phenol ND ND Phenol ND ND Bis(2-chloroethyl) ether ND ND 2-Chlorophenol ND ND 35(2-chloroethyl) ether ND ND 2-Chlorobenzene ND ND 36(2-chlorobenzene ND ND 36nzyl alcohol ND ND 36nzyl alcohol ND ND 36nzyl alcohol ND ND 4-Nitrosodi-n-propylamine ND ND 4-Nitrosodi-n-propylamine ND ND 4-Nitrophenol (p-cresol) ND ND 2-Trichlorobenzene ND ND 36phorone ND ND 36phorone ND ND 36st2-chloroethane ND ND 36st2-chloroethowy ND <td< th=""><th>RL SP 200 200 100 100 100 100 100</th><th>Units: µg/Kg</th><th>0</th><th>Contraction of the second seco</th><th></th><th></th><th></th></td<>	RL SP 200 200 100 100 100 100 100	Units: µg/Kg	0	Contraction of the second seco			
Client ID: MBLKS Batch ID: 238 Vnalyte Result Result Thenol ND ND Thenol ND ND Thenol ND ND Sis(2-chloroethyl) ether ND ND 3.5/Dichlorobenzene ND ND 2.Dichlorobenzene ND ND 3.Dichlorobenzene ND ND 4-Dichlorobenzene ND ND 4-Nitrosodi-n-propytamine ND ND 5-4-Directhoroethoxy(methane ND ND 6-	RL SP 200 200 100 100 100 100 100	C value SPK Ref Val		rep Date: 11	1/19/2014	RunNo: 18144	
matyte Result thenol ND thenol ND is(2-chloroethyl) ether ND -Chlorophenol ND 3-Dichlorobenzene ND 3-Dichlorobenzene ND 3-Dichlorobenzene ND 2-Dichlorobenzene ND 2-Dichlorobenzene ND 2-Dichlorobenzene ND 2-Dichlorobenzene ND Methylphenol (o-cresol) ND Itrobenzene ND Methylphenol (o-cresol) ND Methylphenol (o-cresol) ND Methylphenol (o-cresol) ND Jezothoroethane ND Methylphenol ND Methylphenol ND Jeroethoroethane ND Jezothoroethane ND Voltrophenol ND </th <th>RL SP 200 200 200 200 200 200 200 100 100 100</th> <th>value SPK Ref Val</th> <th>Analy</th> <th>sis Date: 11</th> <th>1/19/2014</th> <th>SeqNo: 361951</th> <th></th>	RL SP 200 200 200 200 200 200 200 100 100 100	value SPK Ref Val	Analy	sis Date: 11	1/19/2014	SeqNo: 361951	
Thenol ND 161(2-chloroethyl) ether ND -Chlorophenol ND -Chlorobenzene ND -J-Dichlorobenzene ND -4-Dichlorobenzene ND 2-Dichlorobenzene ND 2-Dichlorobenzene ND 2-Dichlorobenzene ND 2-Dichlorobenzene ND 2-Dichlorobenzene ND Methylphenol (o-cresol) ND Itrobenzene ND -Methylphenol (p-cresol) ND -Methylphenol ND -Methylphenol ND -Methylphenol ND 2-Linrethylphenol ND 3phitnalene ND 2-Larrichlorobenzene ND 2-Larrichlorobenzene ND 2-L-Trichlorobenzene ND 2-L-Trichlorobenzene ND 2-L-Trichlorobenzene ND 2-L-Trichlorobenzene ND	200 200 100 100 100 100 100		%REC Low	Limit High	Limit RPD Ref Val	%RPD RPDLimit	Qual
IIS(2-chloroethyl) ether ND -Chlorophenol ND -Chlorobenzene ND -Chlorobenzene ND -Chlorobenzene ND -Chlorobenzene ND -Chlorobenzene ND -Methylphenol (o-cresol) ND -Methylphenol (o-cresol) ND -Methylphenol (o-cresol) ND -Mitrosodi-n-propylamine ND -Mitrobhenol (p-cresol) ND -Methylphenol (p-cresol) ND -Methylp	200 100 100 100 100						
-Chlorophenol ND -Chlorophenol ND 3-Dichkorobenzene ND A-Dichkorobenzene ND 2-Dichkorobenzene ND Methydphenol (o-cresol) ND Iexachloroethane ND -Nitrosodi-n-progylamine ND Itrobenzene ND Methydphenol (p-cresol) ND Mitrophenol (p-cresol) ND -Mitrophenol (p-cresol) ND A-Dimethydphenol (p-cresol) ND A-Dimethydphenol ND A-DImeth	100 100 100 100 100 100						
3-Dichlorobenzene ND 4-Dichlorobenzene ND 2-Dichlorobenzene ND 2-Dichlorobenzene ND Methylphenol (o-cresol) ND Methylphenol (o-cresol) ND Itrobenzene ND Mitrophenol (p-cresol) ND Mitrophenol (p-cresol) ND Mitrophenol (p-cresol) ND Altrophenol (p-cresol) ND Mitrophenol (p-cresol) ND Altrophenol (p-cresol) ND Mitrophenol (p-cresol	100 100 100 100 100 100						
4-Dichlorobenzene ND 2-Dichlorobenzene ND enzyl alcohol ND Methylphenol (o-cresol) ND Methylphenol (o-cresol) ND Nitrosodi-n-propylamine ND Nitrosodi-n-propylamine ND Methylphenol ND Methylphenol ND Methylphenol ND Methylphenol ND Methylphenol ND A-Dimethylphenol ND ADimethylphenol ND	100 100 100 100						
2-Dichlorobenzene ND enzyl alcohol ND Methylphenol (o-cresol) ND Nitrosodi-n-propylamine ND Nitrobenzene ND trobenzene ND ND Methylphenol (p-cresol) ND Methylphenol (p-cresol) ND Nitrophenol (p-cresol) ND Nitrophenol 2.4-Trichlorobenzene ND aphthalene ND	100 100 100						
enzyl alcohol ND Methylphenol (o-cresol) ND Methylphenol (o-cresol) ND ND NI ritrobenzene ND ND Nitrobenzene ND ND Nitrophenol (p-cresol) ND Nitrophenol S(2-chloroethoxy)methane ND 2.4-Trichlorobhenzene ND aphthalene ND	100 100 100						
Methylphenol (o-cresol) ND exachloroethane ND -Nitrosodi-n-propylamine ND Itrobenzene ND ophorone ND Methylphenol (p-cresol) ND Nitrophenol NI A-Dimethylphenol ND S(2-chloroethoxy)methane ND 4-Dimethylphenol ND 2.4-Trichlorobhenol ND 2.4-Trichlorobhenol ND	100 100						
exachloroethane ND Mitrosodi-n-propylamine ND trobenzene ND ophorone ND Methylphenol (p-cresol) ND Nitrophenol ND 4-Dimethylphenol ND s(2-chlorophenol ND 2.4-Trichlorobenzene ND aphthalene ND	100 100						
-Nitrosodi-n-propytamine ND Itrobenzene ND ophorone ND Methylphenol (p-cresot) ND Nitrophenol (p-cresot) ND Nitrophenol ND 4-Dimethylphenol ND 4-Dichlorophenol ND 2.4-Trichlorobenzene ND 2.4-Trichlorobenzene ND	100						
Itrobenzene ND ophorone ND Methylphenol (p-cresol) ND Nitrophenol (p-cresol) ND 4-Dimethylphenol ND 4-Dichloroethoxy/methane ND 2.4-Trichlorobenzene ND aphthalene ND							
ophorone ND Methylphenol (p-cresol) ND Nitrophenol (p-cresol) ND A-Dimethylphenol ND 4-Dimethylphenol ND 2.4-Trichlorobhenol ND 2.4-Trichlorobenzene ND aphthalene ND	200						
Methylphenol (p-cresol) ND Nitrophenol (p-cresol) ND A-Dimethylphenol ND s(2-chloroethowy)methane ND 4-Dichlorophenol ND 2.4-Trichlorobenzene ND aphthalene ND	100						
Nitrophenol ND 4-Dimethylphenol ND s(2-chloroethoxy)methane ND 4-Dichlorophenol ND 2.4-Trichlorobenzene ND aphthalene ND	100						
4-Dimethylphenol ND s(2-chloroethoxy)methane ND 4-Dichlorophenol ND 2.4-Trichlorobenzene ND aphthalene ND	200						
s(2-chloroethoxy)methane ND 4-Dichlorophenol ND 2.4-Trichlorobenzene ND aphthalene ND	100						
4-Dichlorophenol ND 2.4-Trichlorobenzene ND sphthalene ND	100						
2.4-Trichlorobenzene ND sphthalene ND	200						
aphthalene ND	100						
	80.0						
Chloroaniline ND	500						
exachlorobutadiene ND	100						
Chloro-3-methylphenol ND	500						
Methylnaphthalene ND	80.0						
Methylnaphthalene	80.0						
exachlorocyclopentadiene ND	100						
4.6-Trichlorophenol ND	200						
4.5-Trichkorophenol ND	200						
Chloronaphthalene	100						
Nitroanline ND	500						
ualifiers: 8 Analyte detected in the associated Method Blank	٥	Diution was required		ш	Value above quantitation r	mge	
H Holding times for preparation or analysis exceeded	٦	makyte detected below quantitation him	a	QN	Not detected at the Report	ng Limit	
R RPD outside accepted recovery limits	RL	Reporting Limit		¢)	Spike recovery outside act	epted recovery limits	

2	110
NO	TATATA
Ē	ANTIG
9	Contraction of the local division of the loc
L	

Work Order: 1	411104								00	A DADA		HUC
CLIENT: L	ibby Environmental								n n		KY KE	OKI
Project: F	Havens Estate					Ser	ni-Volatil	e Orgar	nic Compou	nds by EP	A Metho	d 8270
Sample ID: MB-9385	SampTy	vpe: MBLI	×		Units: µg/Kg		Prep Dat	e: 11/19/	2014	RunNo: 181	144	Γ
Client ID: MBLKS	Batch II	D: 9285					Analysis Dal	e: 11/19/	2014	SeqNo: 361	1951	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene		QN	80.0]
Dimethylphthalate		QN	100									
2.6-Dinitrotoluene		QN	100									
Acenaphthylene		QN	80.0									
2,4-Dinitrophenol		QN	200									
Dibenzofuran		Q	100									
2,4-Dinitrotoluene		QN	100									
4-Nitrophenol		QN	500									
Fluorene		QN	80.0									
4-Chlorophenyl phenyl	ether	Q	100									
Diethylphthalate		QN	100									
4,6-Dinitro-2-methylphi	enal	QN	200									
4-Bromophenyl phenyl	ether	Q	100									
Hexachlorobenzene		Q	100									
Pentachlorophenol		QN	100									
Phenanthrene		Q	80.0									
Anthracene		QN	80.0									
Carbazole		QN	500									
Di-n-buty/phthalate		QN	100									
Fluoranthene		QN	80.0									
Pyrene		QN	80.0									
Butyl Benzylphthalate		Q	100									
bis(2-Ethylhexyl)adipal	B	QN	100									
Benz (a) anthracene		Q	80.0									
Chrysene		QN	80.0									
bis (2-Ethylhexyl) phthi	alate	QN	100									
Di-n-octyl phthalate		Q	100									
Benzo (b) fluoranthene		QN	80.0									
Benzo (k) fluoranthene		QN	80.0									

Page 13 of 26

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits

Iα

B Analyte detected in the associated Method Blank

Qualifiers:

a n la

Analyte detected below quantitation limits. Reporting Limit

Dilution was required

Spike recovery outside accepted recovery limits Not detected at the Reporting Limit w g w

Value above quantitation range

Int	ELINIES.
d	1111
G	4
Ľ	The second

1411104

Work Order:

Date: 11/19/2014

T		
	RT	-
11	0	1
	REP	
	5	1
	Ř	1
	MA	1
	ž	
11		•
11	S	
	g	

CLIENT: Libby Er Project: Havens	nvironmental Estate				Sen	ni-Volatile	Organic Compo	ounds by EP4	A Method	8270
Sample ID: MB-9385	SampType: MBLK			Units: µg/Kg		Prep Date:	11/19/2014	RunNo: 1814	1	
Client ID: MBLKS	Batch ID: 9285					Analysis Date:	11/19/2014	SeqNo: 3619	151	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Va	al %RPD	RPDLimit	Qual
Benzo (a) pyrene	QN	80.0								
Indeno (1,2,3-cd) pyrene	QN	80.0								
Dibenz (a,h) anthracene	QN	80.0								
Benzo (g,h,l) perylene	QN	80.0								
Surr: 2,4,6-Tribromophenol	415		1,000		41.5	44	136			
Surr. 2-Fluorobiphenyl	397		500.0		79.4	27.3	158			
Surr: Nitrobenzene-d5	440		500.0		88.0	21.9	141			
Surr; Phenol-dő	1,200		1.000		120	18.4	144			
Surr: p-Terphenyl	445		500.0		89.0	33.3	149			
Sample ID: LCS-9385	SampType: LCS			Units: µg/Kg		Prep Date:	11/19/2014	RunNo: 1814	2	
Client ID: LCSS	Batch ID: 9285					Analysis Date:	11/19/2014	SeqNo: 3619	152	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Vi	al %RPD	RPDLimit	Qual
Phenol	1,150	200	1,000	0	115	41.8	138			
Bis(2-chloroethyl) ether	1,070	200	1,000	0	107	65	116			
2-Chlorophenol	1,120	100	1.000	0	112	49.3	132			
1,3-Dichlorobenzene	986	100	1,000	0	98.6	69.8	116			
1,4-Dichlorobenzene	978	100	1,000	0	97.9	51.3	133			
1.2-Dichlorobenzene	1,090	100	1.000	0	109	54.2	129			
Benzyl alcohol	1,190	100	1,000	0	119	42.4	131			
2-Methylphenol (o-cresol)	1,190	100	1.000	0	119	68	128			
Hexachloroethane	1,150	100	1,000	0	115	48.9	133			
N-Nitrosodi-n-propylamine	1,150	100	1,000	0	115	39.8	135			
Nitrobenzene	1,190	200	1.000	0	119	62.3	126			
Isophorone	1,200	100	1.000	0	120	62.7	131			
4-Methylphenol (p-cresol)	1,160	100	1,000	0	116	66.1	126			
2-Nitrophenol	1,080	200	1,000	0	108	46.1	117			
Qualifiers: 8 Analyte detect	ded in the associated Method Blank	a	Dilubon wa	required			E Value above quantitati	on range		
H Holding times	s for preparation or analysis exceeded		Analyte deb	ected below quantitation lim	11		ND Not detected at the Re	porting Limit		
R RPD outside a	accepted recovery limits	R	Reporting	md			S Soike recovery outside	Arrantad monany limite	12	

Page 14 of 26

Spike recovery outside accepted recovery limits

Reporting Lend

1 and
La la
U M
0
È.
8

Work Order: 1411104

Date: 11/19/2014

QC SUMMARY REPORT

CLIENT: Project:	Libby Envi Havens Es	ironmental state					Sen	ni-Volatile	Organi	c Compour	ids by EP	A Method	8270
Sample ID: LCS	-9385	SampType:	LCS			Units: Jug/Kg		Prep Date:	11/19/20	114	RunNo: 181	44	
Client ID: LCS	s	Batch ID:	9285					Analysis Date	11/19/20	114	SeqNo: 361	952	_
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit 1	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2.4-Dimethylphen	loi		1,030	100	1,000	0	103	57.8	121]
Bis(2-chloroethox	y)methane		1,070	100	1,000	0	107	67.5	124				
2.4-Dichlorophen	0		1,170	200	1.000	0	117	57.1	128				
1.2.4-Trichlorobe	nzene		1,020	100	1.000	0	102	36.2	140				
Naphthalene			993	80.0	1.000	0	99.3	56.8	130				
4-Chloroaniline			1,120	500	1.000	0	112	56.1	128				
Hexachlorobutadi	ene		1,020	100	1,000	0	102	55.9	131				
4-Chloro-3-methy	(phenol		1,120	500	1,000	0	112	49.4	138				
2-Methylnaphthal	ene		1.070	80.0	1,000	0	107	68.3	121				
1-Methylnaphthal	ene		1,060	80.0	1,000	0	106	73	120				
Hexachlorocyclop	nentadiene		1,060	100	1.000	0	106	36.7	128				
2,4,6-Trichloroph	enol		1,040	200	1.000	0	104	63.2	121				
2.4,5-Trichloroph	enol		1,050	200	1,000	0	105	52.3	128				
2-Chloronaphthal	ene		1,060	100	1,000	0	106	67.1	123				
2-Nitroaniline			1,150	500	1.000	0	115	43.9	135				
Acenaphthene			1.090	80.0	1,000	0	109	49.2	127				
Dimelhylphthalate			1,110	100	1,000	0	111	62.4	130				
2,6-Dinitrotoluene			1,100	100	1.000	0	110	54.6	127				
Acenaphthylene			1,130	80.0	1.000	0	113	64.8	127				
2,4-Dinitrophenol			676	200	1,000	0	67.6	7.9	119				
Dibenzofuran			1,010	100	1,000	0	101	67.5	123				
2,4-Dinitrotoluene			1,100	100	1,000	0	110	21.9	136				
4-Nitrophenol			998	500	1.000	0	93,8	31.1	131				
Fluorene			1,170	80.0	1,000	0	117	64.8	126				
4-Chlorophenyl p	henyl ether		1.030	100	1,000	0	103	66.6	124				
Diethylphthalate			1,330	100	1,000	0	133	42.9	132				s
4,6-Dinitro-2-met	hylphenol		942	200	1,000	0	94.2	12.9	110				
4-Bromophenyl p	henyl ether		1,110	100	1,000	0	111	61.8	128				
Hexachlorobenze	ne		983	100	1,000	0	98.3	6.63	124				
Qualifiers: 8	Analyte detected a	in the associated Mett	hod Blank	5	Dilution war	s required			E Value	above quantitation ra-	nge		
T	Holding times for	preparation or analysi	is exceeded		J Analyte det	ected below quantitation lie	nds		ND NOt de	riected at the Reports	og Limit		
æ	RPD outside acce	spled recovery limits.		5	IL Reporting L	mit			S Spike	recovery outside acce	spled recovery limit	25	

Page 15 of 26

nt	
O	
E	
9	
E	

1411104

Work Order:

Date: 11/19/2014

OC SUMMARY REPORT

CLIENT: Libby Envi Project: Havens Es	ronmental tate					Serr	i-Volatil	e Organ	ic Compour	nds by EP	A Method	8270
Sample ID: LCS-9385	SampType	LCS			Units: ua/Ka		Prep Dat	e: 11/19/2	014	RunNo: 18	144	
Client ID: LCSS	Batch ID:	9285))		Analysis Dal	e: 11/19/2	014	SeqNo: 36	1952	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol		499	100	1,000	0	49.9	21.4	135				
Phenanthrene		946	80.0	1,000	0	94.6	72.2	118				
Anthracene		1.120	80.0	1,000	0	112	68.9	122				
Carbazole		844	500	1.000	0	84.4	64.5	135				
Di-n-buty/phthalate		1.100	100	1,000	0	110	50.6	130				
Fluoranthene		1.130	80.0	1,000	0	113	99	129				
Pyrene		1.110	80.0	1.000	0	111	45.4	140				
Butyl Benzylphthalate		1.370	100	1,000	0	137	30,4	138				
bis(2-Ethylhexyl)adipate		1,030	100	1,000	0	103	34.9	141				
Benz (a) anthracene		1,060	80.0	1,000	0	106	44	150				
Chrysene		983	80.0	1.000	0	98.3	65.8	128				
bis (2-Ethythexyt) phthalate		1,030	100	1,000	0	103	40.1	127				
Di-n-octyl phthalate		971	100	1.000	0	97.1	37.2	135				
Benzo (b) fluoranthene		914	80.0	1,000	0	91.4	45.6	146				
Benzo (k) fluoranthene		952	80.0	1,000	0	95.2	65.2	134				
Benzo (a) pyrene		1,100	80.0	1,000	0	110	49.2	137				
Indeno (1,2,3-cd) pyrene		852	80.0	1,000	0	85.2	44.2	146				
Dibenz (a,h) anthracene		606	80.0	1,000	0	90.9	37.5	152				
Benzo (g.h.l) perylene		964	80.0	1.000	0	96.4	24.1	156				
Surr: 2,4,6-Tribromophenol		1,110		1.000		111	14	136				
Surr: 2-Fluorobiphenyl		449		500.0		89.7	27.3	158				
Surr: Nitrobenzene-d5		521		500.0		104	21.9	141				
Surr: Phenol-d6		1,180		1,000		118	18.4	144				
Surr: p-Terphenyl		481		500.0		96.2	33.3	149				
NOTES:							1000					

S - Outlying spike recovery observed for Diethyl phthalate (Biased High). There were no detections in the samples. No further action is required.

Analyte detected in the associated Method Blank ۵ Qualifiers:

Holding times for preparation or analysis exceeded π α

RPD outside accepted recovery limits

Analyte detected below quantitation limits Reporting Limit 0 7 2

Dilution was required

Page 16 of 26

Spike recovery outside accepted recovery limits Not detected at the Reporting Limit Value above quantitation range

w ♀ ∽

1	
THEF	
D	
U	
Ĕ	

Work Order	: 1411104									000	T A BARA I		ł
CLIENT:	Libby Envir	ronmental								2		AT KEP	CKI
Project:	Havens Est	tate					Sen	ni-Volatile	Organic	Compour	Ids by EP/	A Method	8270
Sample ID: 141	1100-004AMS	SampType:	SM 3			Units: µg/Kg	Yub-I	Prep Date:	11/13/2014		RunNo 1814	14	
Client ID: BA	гсн	Batch ID:	9285					Analysis Date:	11/19/2014		SeqNo: 3619	954	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Phenol			1,080	248	1,238	0	87.5	29.2	146				
Bis(2-chloroethy	() ether		1.060	248	1,238	0	86.0	65.4	115				
2-Chlorophenol			1,280	124	1,238	0	103	44	134				
1,3-Dichlorobenz	tene		913	124	1,238	0	73.8	69.1	117				
1.4-Dichlorobena	tene		944	124	1,238	0	76.3	44.5	134				
1,2-Dichlorobenz	tene		984	124	1,238	0	79.5	35	131				
Benzyl alcohol			1,470	124	1,238	0	119	30.8	159				
2-Methylphenol (o-cresol)		1,390	124	1,238	0	112	57.7	125				
Hexachloroethan	ę		983	124	1.238	0	79.4	67.1	118				
N-Nitrosodi-n-pri	opylamine		1,350	124	1,238	0	109	26.4	151				
Nitrobenzene			1,300	248	1,238	0	105	61.4	130				
Isophorone			1,430	124	1,238	0	116	61.8	132				
4-Methylphenol (p-cresol)		1,390	124	1.238	0	113	65.5	127				
2-Nitrophenol			1.450	248	1,238	81.16	111	46.3	118				
2,4-Dimethylphe	not		1.420	124	1,238	0	114	46	158				
Bis(2-chloroetho.	xy)methane		1.220	124	1.238	0	98.8	66.8	124				
2,4-Dichloropher	lor		1,480	248	1,238	0	120	56.2	128				
1,2,4-Trichlorobe	anzene		1.090	124	1.238	0	87.8	29.2	140				
Naphthalene			1.120	99.0	1.238	0	90.9	44.4	136				
4-Chloroaniline			1,450	619	1.238	0	117	27	126				
Hexachlorobutad	liene		1,030	124	1,238	0	83.2	38.2	138				
4-Chloro-3-meth	ytphenol		1,500	619	1,238	0	121	36.8	159				
2-Methylnaphtha	lene		1,260	99.0	1,238	0	102	51.7	138				
1-Methylnaphtha	lene		1,270	99.0	1,238	0	102	70.4	124				
Hexachlorocyclo	pentadiene		733	124	1,238	0	59.2	37.5	129				
2,4,6-Trichloroph	lonar		1,440	248	1,238	0	116	62.7	122				
2,4,5-Trichloroph	lonar		1.460	248	1,238	0	118	54.7	127				
2-Chloronaphtha	lene		1,280	124	1,238	0	103	69.8	126				
2-Nitroaniline			1,520	619	1.238	0	123	39.3	145				
Qualifiers:	3 Analyte detected in	n the associated Meth	hod Blank		D Dilution wa	ts required			E Value abo	ve quantitation rar	.0e		
	Holding times for pr	preparation or analysi	is exceeded	245	J Analyte del	tected below quantitation	Ilmits		VD Not detect	led at the Reportin	g Limit		
all."	RPD outside accept	pled recovery limits		5	Reporting [Limit			S Spike reck	overy outside acce	pted recovery limits		

C III
2
LL I
81.
-
57

Work Order:	1411104												
CLIENT:	Libby Envir	ronmental								go	UMMAF	XY REP	ORT
Project:	Havens Es	tate					Sen	ni-Volatile	Organic	: Compour	nds by EP	A Method	8270
Sample ID: 141	1100-004AMS	SampType:	MS			Units: µg/K	y-dry	Prep Date:	11/13/20	14	RunNo: 181	44	Γ
Client ID: BAT	CH	Batch ID:	9285					Analysis Date:	11/19/20	14	SeqNo: 361	954	
Analyte		R	tesuit	RL	SPK value	SPK Ref Val	%REC	LowLimit P	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene		1	1,270	99.0	1,238	0	103	49.6	129				
Dimethylphthalat	æ		1,410	124	1.238	0	114	61.5	131				
2,6-Dinitrotoluent	0		1,410	124	1.238	0	114	56.8	137				
Acenaphthylene			1,410	99.0	1.238	0	114	64	128				
2,4-Dinitrophenol		1	1,480	248	1,238	0	120	35.3	144				
Dibenzofuran		*	1,180	124	1.238	0	95.5	64.7	131				
2,4-Dinitrotoluent	8		1.350	124	1,238	0	109	30.9	139				
4-Nitrophenol			1,620	619	1.238	0	131	48.6	137				
Fluorene			1,430	0.99.0	1.238	0	115	64.2	127				
4-Chlorophenyl p	thenyl ether		1,220	124	1.238	0	98.7	70.9	128				
Diethylphthalate			1.560	124	1,238	0	126	61.7	129				
4,6-Dinitro-2-met	hylphenol		559	248	1,238	0	45.2	21.9	143				
4-Bromophenyl p	henyl ether		1.310	124	1,238	0	106	69.69	136				
Hexachlorobenze	ane		1.140	124	1.238	0	92.1	66.5	123				
Pentachlorophen	ol		856	124	1.238	0	69.1	28.2	156				
Phenanthrene		57.)	1,100	99.0	1,238	0	89.1	57	134				
Anthracene			1,370	99.0	1,238	0	110	68.2	123				
Carbazole			1,310	619	1.238	0	106	64.1	152				
Di-n-butylphthala	te		1,660	124	1.238	54.10	129	52.4	130				
Fluoranthene		**	.540	99.0	1.238	0	124	46.5	165				
Pyrene		-	1,520	99.0	1,238	0	122	31.4	151				
Butyl Benzylphth	alate	4	1,520	124	1,238	0	365	30.4	138				s
bis(2-Ethylhexyl)a	adipate	14	2,640	124	1,238	192.2	198	32	136				0
Benz (a) anthract	one		1,880	99.0	1,238	0	152	43.9	151				0
Chrysene		1	1,050	0.99	1,238	0	84.9	71.1	126				Ē
bis (2-Ethylhexyl)	phthalate	14	2,370	124	1,238	101.9	184	40.8	170				ŝ
Di-n-octyl phthala	ste	47	5,120	124	1.238	38.28	411	34.6	142				s
Benzo (b) fluoran	thene	CI.	2.260	0.66	1,238	0	182	52.1	136				S
Benzo (k) fluoran	thene		1,300	0'66	1.238	0	105	64.5	135				
Qualifiers: 8	Analyte detected in	The associated Methe	od Btank		D Dhutton wa	paunbas s			E Value a	bove quantitation ra	ađu		
t	I Holding times for p.	reparation or analysis	exceeded		J Analyte del	ected below quantitation	A limits		ND Not det	acted at the Reports	ig Limit		
æ	RPD outside accept	oled recovery limits			RL Reporting L	tunt			S Spiken	scovery outside acce	splad recovery limit		

Page 18 of 26

Fremont

JRT 8270			Dual	s		ŝ	ß								
Y REPC		1	RPDLimit (
UMMAR'	RunNo: 18144	SeqNo: 36195	%RPD												
QC SI	2	14	RPD Ref Val												
Organic	11/13/201	11/19/201	HighLimit	137	143	152	157	136	158	141	144	149			
i-Volatile	Prep Date:	Analysis Date:	LowLimit 1	50.5	49.7	40.7	34	14	27.3	21.9	18.4	33.3		ole (LCS).	
Sem	dry		%REC	172	123	155	105	128	87.6	91.3	129	114		Control Samp	
	Units: µg/Kg-		SPK Ref Val	0	0	0	0							t by the Laboratory (
			SPK value	1,238	1.238	1.238	1.238	1,238	618.9	618.9	1,236	618.9		rol as indicated	
			RL	0.99	0.99.0	0.66	99.0							nod is in contr	
	WS	9285	Result	2,130	1,520	1.910	1,300	1,580	542	565	1,590	703		ect. The meth	ion.
onmental ate	SampType:	Batch ID:												sible matrix effe	ComeTune
r: 1411104 Libby Envir Havens Esti	11100-004AMS	NTCH		e	d) pyrene	thracene	anylene	ribromophenol	obiphenyl	nzene-d5	d6	henyl		overy indicates a pos-	V.0395
Work Orde CLIENT: Project:	Sample ID: 14	Client ID: BA	Analyte	Benzo (a) pyrer	Indeno (1,2,3-0	Dibenz (a.h) an	Benzo (g.h.l) pt	Surr: 2,4,6-T	Surr: 2-Fluon	Surr: Nitrobe	Surr: Phenol-	Surr. p-Terpt	NOTES:	S - Spike rec	Cample IC: CC

Sample ID: CCV-9	385	SampType: ICV			Units: µg/L		Prep Dat	2 11/19/2	014	RunNo: 181	44	
Client ID: ICV		Batch ID: 9285					Analysis Dat	11/19/2	014	SeqNo: 361	955	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol		1,170	200	1.000	0	117	70	130				
Bis(2-chloroethyl) ell	her	1,060	200	1,000	0	106	70	130				
2-Chlorophenol		1,090	100	1,000	0	109	70	130				
1.3-Dichlorobenzene		1.020	100	1,000	0	102	70	130				
1.4-Dichlorobenzene		1.030	100	1,000	0	103	70	130				
1,2-Dichlorobenzene		1,120	100	1,000	0	112	70	130				
Benzyl alcohol		1,160	100	1.000	0	116	20	130				
2-Methylphenol (o-ci	(losa)	1,120	100	1,000	0	112	20	130				
Hexachloroethane		1,210	100	1.000	0	121	70	130				
N-Nitrosodi-n-propyl	amine	1,130	100	1,000	0	113	70	130				
Nitrobenzene		1,190	200	1,000	0	119	70	130				
Isophorone		1,190	100	1,000	0	119	70	130				
4-Methylphenol (p-ci	esol)	1,120	100	1,000	0	112	70	130				
Qualifiers: B	Analyte detected in the a	ssociated Method Blank	٩	Dilution was	pauribau 1			E Valu	e above quantitation m	nge		
I	Holding times for prepart	abon of analysis exceeded	2	Analyte det	ected below quantitation li	mits		ND Not o	letected at the Reports	ng Limit		
œ	RPD outside accepted re	scovery limits	RL	Reporting L	mit			S Spiki	s recovery outside apo	epted recovery limit	1	

1 21
E
0
6
- 12

Work Order: 1411104

Date: 11/19/2014

OC SIMMARY DEDOT

CLIENT: Project:	Libby Envii Havens Es	ronmental tate				Ser	ni-Volatile	Organic Comp	ounds by EPA Meth	INO 8270
Sample ID: CCV-9	385	SampType: ICV			Units: pg/L		Prep Date	11/19/2014	RunNo: 18144	
Client ID: ICV		Batch ID: 9285					Analysis Date	× 11/19/2014	SeqNo: 361955	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref V	/al %RPD RPDLin	hit Qual
2-Nitrophenol		1,080	200	1,000	0	108	70	130		
2,4-Dimethylphenol		1,120	100	1,000	0	112	20	130		
Bis(2-chloroethoxy):	methane	1,070	100	1,000	0	107	70	130		
2.4-Dichlorophenol		1,120	200	1.000	0	112	20	130		
1,2,4-Trichlorobenz	ene	1.040	100	1,000	0	104	70	130		
Naphthalene		1.010	80.0	1,000	0	101	70	130		
4-Chloroaniline		1,130	500	1,000	0	113	20	130		
Hexachlorobutadien	ę	1,020	100	1,000	0	102	20	130		
4-Chloro-3-methylpl	henol	1,070	500	1,000	0	107	70	130		
2-Methylnaphthalen	9	1,070	80.0	1,000	0	107	70	130		
1-Methylnaphthalen	9	1,060	80.0	1,000	0	106	70	130		
Hexachlorocycloper	Itadiene	1,090	100	1,000	0	109	70	130		
2,4,6-Trichlorophen	0	1,010	200	1.000	0	101	70	130		
2,4,5-Trichlorophen	0	1.020	200	1.000	0	102	20	130		
2-Chloronaphthalen	0	1,070	100	1,000	0	107	70	130		
2-Nitroaniline		1,100	500	1.000	0	110	70	130		
Acenaphthene		1,070	80.0	1,000	0	107	70	130		
Dimethylphthalate		1,080	100	1.000	0	108	70	130		
2,6-Dinitrotoluene		1,100	100	1,000	0	110	70	130		
Acenaphthylene		1.140	80.0	1.000	0	114	70	130		
2,4-Dinitrophenol		1,120	200	1,000	0	112	70	130		
Dibenzofuran		1,010	100	1,000	0	101	70	130		
2,4-Dinitrotoluene		1,080	100	1,000	0	108	70	130		
4-Nitrophenol		1,080	200	1.000	0	108	70	130		
Fluorene		1,160	80.0	1,000	0	116	70	130		
4-Chlorophenyl phe	nyl ether	1.070	100	1.000	0	107	70	130		
Diethylphthalate		1,960	100	1,000	0	196	70	130		S
4,6-Dinitro-2-methyl	phenol	1.120	200	1,000	0	112	70	130		is.
4-Bromophenyl phe	nyl ether	1,070	100	1.000	0	107	20	130		
Qualifiers: B	Analyte detected it	n the associated Melhod Blank		D Dilution wa	is required			E Value above quantita	tion range	
I	Holding times for p	reparation or analysis exceeds	p	J Analyte det	tected below quantitation l	mits		ND Not detected at the R	eporting Limit	
æ	RPD outside accep	pled recovery limits		RL Reporting (Dend			S Spike recovery outsic	le accepted recovery limits.	

Page 20 of 26

S Spike recovery outside accepted recovery limits

	1
OB	
	and an
	and a second
a	
LL	
E	'n
-	
St.	

1411104

Work Order:

Date: 11/19/2014

QC SUMMARY REPORT

CLIENT: Libby Envi	ronmental							n c		KY KEF	ORI
Project: Havens Es	tate				Sen	ni-Volatil	e Organ	ic Compou	nds by EP	A Method	1 8270
Sample ID: CCV-9385	SampType: ICV			Units: µg/L		Prep Da	te: 11/19/2	014	RunNo: 181	144	
Client ID: ICV	Batch ID: 9285					Analysis Da	te: 11/19/2	014	SeqNo: 361	1955	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexachlorobenzene	385	100	1,000	0	99.5	70	130				
Pentachlorophenol	1,020	100	1.000	٥	102	02	130				
Phenanthrene	1.020	80.0	1.000	0	102	20	130				
Anthracene	1,180	80.0	1.000	0	118	20	130				
Carbazole	1,100	500	1,000	0	110	70	130				
Di-n-butylphthalate	1,040	100	1.000	0	104	70	130				
Fluoranthene	1,150	80.0	1,000	0	115	20	130				
Pyrene	1,180	80.0	1,000	0	118	20	130				
Butyl Benzylphthalate	1,250	100	1,000	0	125	20	130				
bis(2-Ethylhexyl)adipate	1,040	100	1,000	0	104	20	130				
Benz (a) anthracene	1,050	80.0	1.000	0	105	70	130				
Chrysene	1,080	80.0	1,000	0	108	70	130				
bis (2-Ethylhexyl) phthalate	884	100	1,000	0	99.4	20	130				
Di-n-octyl phthalate	1,030	100	1,000	0	103	20	130				
Benzo (b) fluoranthene	961	80.0	1,000	0	96.1	70	130				
Benzo (k) fluoranthene	971	80.0	1,000	0	97.1	70	130				
Benzo (a) pyrene	1,060	80.0	1,000	0	106	20	130				
Indeno (1,2,3-cd) pyrene	1,020	80.0	1,000	0	102	20	130				
Dibenz (a,h) anthracene	1,230	80.0	1,000	0	123	20	130				
Benzo (g.h.l) perylene	993	80.0	1.000	0	99.3	70	130				
Surr. 2,4,6-Tribromophenol	1,150		1,000		115	44	136				
Surr: 2-Fluorabiphenyl	590		500.0		118	42.6	139				
Surr: Nitrobenzene-d5	661		500.0		132	45.1	149				
Surr. Phenol-d6	1.380		1,000		138	48.2	143				
Surr. p-Terphenyl	670		500.0		134	33.3	149				

B Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits Ια

o - il

Dilution was required

Analyte detected below quantitation limits Reporting Limit

Spike recovery outside accepted recovery limits E Value above quantitation range ND Not detected at the Reporting Limit S Spike recovery outside accepted reco

Page 21 of 26

nont	And a
Ĕ	

1 1

Work Order:	1411104										INIMAE		Tao
CLIENT:	Libby Envin	onmental								2023			
Project:	Havens Est	tate					Semi-Vo	olatile Or	ganic Con	punodu	s by EP	A Method	8270
Sample ID: 141	1100-002ADUP	SampType:	DUP			Units: µg/Kg-dry	đ	ep Date: 11	1/13/2014		RunNo: 181	2	Γ
Client ID: BAT	CH	Batch ID:	9285				Analy	sis Date: 11	1/19/2014	0,	SeqNo: 362	348	
Analyte		æ	Result	RL	SPK value	SPK Ref Val %F	REC LOW	Limit High	Limit RPD R	ef Val	%RPD	RPDLimit	Qual
Phenol			QN	223						0		20]
Bis(2-chloroethyl)) ether		QN	223						0		20	
2-Chlorophenol			QN	112						0		20	
1,3-Dichlorobenz	ene		QN	112						0		209	
1,4-Dichlorobenz	ene		QN	112						0		50	
1.2-Dichlorobenz	ene		QN	112						0		50	
Benzyl alcohol			QN	112						0		20	
2-Methylphenol (i	o-cresol)		QN	112						0		50	
Hexachloroethan	e		QN	112						0		20	
N-Nitrosodi-n-pro	pylamine	18	2,590	112						1.999	25.6	20	
Nitrobenzene			QN	223						0	0.222220	50	
Isophorone		100	7.370	112						5.197	34.5	50	
4-Methylphenol ()	p-cresol)		QN	112						0		20	
2-Nitrophenol			QN	223						0		20	
2,4-Dimethylpher	lot		2,500	112						1,610	43.2	50	
Bis(2-chloroethox	cy)methane		QN	112						0		50	
2,4-Dichlorophen	101		QN	223						0		50	
1,2,4-Trichlorobe	anzene		Q	112						0		50	
Naphthalene			QN	89.4						0		50	
4-Chloroanilne			QN	559						0		50	
Hexachlorobutad	iene		QN	112						0		50	
4-Chloro-3-methy	Aphenol		QN	559						0		50	
2-Methylnaphthal	lene	2	6,900	89.4					-	8.750	35.8	20	ω
1-Methylnaphthal	lene	21	6,700	89.4					-	8,270	37.7	50	W
Hexachlorocyclop	pentadiene		QN	112						0		50	
2,4,6-Trichloroph	ienol		QN	223						0		50	
2,4,5-Trichloroph	henol		QN	223						0		50	
2-Chloronaphthal	lene		ND	112						0		50	
2-Nitroaniline			Q	559						0		50	
Qualifiers: B	Analyte detected in	the associated Meth	od Blank		Dilution wa	pauroau s		w	Value above dua	nhlation range			
T	Holding times for pr	reparation or analysis	bebeeces a		Analyte del	ected below quantitation limits.		Q	Not detected at 1	he Reporting L	tim		
9 6	RPD outside accept	blod recovery limits		æ	L Reporting t	imit		ŝ	Spike recovery or	utside accepte	d recovery limits		

Page 22 of 26

International Libby Environmental Havans Estation Control cont											
Lubby Evintmential Harvense Escalasi Semi-Jolattie Organic Compounds NETA Method 370 Harvense Escalasi Semi-Jolattie Organic Compounds Net 1112014 Runks: 1144 Harvense Escalasi Bach ID: 245 Amalysis Date: 1112014 Runks: 1144 Antonia Runk Runks: 1112014 Runks: 1144 Runks: 1141 Antonia Runk Runk Runks: 11470314 Runks: 1141 Runks: 1141 Antonia Runk Runk Runks: 11470314 Runks: 11410314 Runks: 1141 Antonia Runk Runk Runk Runks: 11470314 Runks: 11410314 Antonia Runk Runk Runks: 11470314 Runks: 11410314 Runks: 1141 Antonia Runk Runk Runks: 11410314 Runks: 1141 Runks: 1141 Runk Runk Runk Runks: 11410314 Runks: 1141 Runks: 1141 Runk Runk Runk Runks: 11410314 Runks: 11410314 Runks: 11410314 Runk Runk Runk Runks: 11410314 Runks: 11410314 Runks: 11410314	der:	1411104						oc	SUMMAR	Y REP	ORT
Introduction but the survey of the		Havens Est	onmental ate			S	emi-Volatile (Organic Compo	unds by EPA	Method	8270
All for the state of	14111	00-002ADUP	SampType: DUP			Linite: uniKrudini	Dran Data:	PEUCICEITE	DunMor 4844		
Realf R. SPX value SPK Reif Val SGEC Low/Line High Line RPD Line Line <thline< thr=""> Line Line</thline<>	BATC	Ŧ	Batch ID: 9285				Analysis Date:	11/19/2014	SeqNo: 36234	. 92	
0 00 </td <td></td> <td></td> <td>Result</td> <td>RL</td> <td>SPK value</td> <td>SPK Ref Val %RE</td> <td>C LowLimit H</td> <td>ighLimit RPD Ref Val</td> <td>%RPD</td> <td>RPDLimit</td> <td>Qual</td>			Result	RL	SPK value	SPK Ref Val %RE	C LowLimit H	ighLimit RPD Ref Val	%RPD	RPDLimit	Qual
diffe ND 112 0 12 0	e		QN	89.4				0		50	
Une ND 112 0 20	alate		QN	112				0		50	
end N0 834 90 9	luene		QN	112				0		50	
mol NI 223 NI 223 NI 230 NI 200	ene		QN	89.4				0		50	
1 51 112 0 200 00 100 112 0 112 0 00<	lenol		QN	223				0		50	
Interfact ND 112 0 12 0 Interfact ND 112 ND 112 ND 12 ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E		517	112				0	200	50	
I N0 58 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0	luene		QN	112				0		50	
5,80 80.4 1.2 5.180 12,1 5.0 of phony ether ND 112 0	-		QN	559				0		50	
My Phony lether ND 112 0 lete ND 112 0 <td></td> <td></td> <td>5,860</td> <td>89.4</td> <td></td> <td></td> <td></td> <td>5,189</td> <td>12.1</td> <td>50</td> <td></td>			5,860	89.4				5,189	12.1	50	
ltte ND 112 D 12 D 12 D 12 D 12 D 12 0 12 0 12 0 12 0 12 0 12 0	nyl phe	myl ether	QN	112				0	10.401	50	
Inditivity/honol NI 223 0	late		QN	112				0		50	
My Phenvil ether ND 112 D excent ND 112 0<	-methy	Iphenol	QN	223				0		50	
Interface ND 112 0 12 0 Indicate ND 88 112 112 112 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12	nyl phe	inyl ether	QN	112				0		50	
Interfol ND 112 2.807 2.8.8 50 e 3,750 89.4 2.807 2.8.8 50 ND 89.4 559 2.812 50 50 halate ND 89.4 64 50 50 50 halate ND 89.4 7 644.9 312 50 halate ND 812 80.4 112 659.3 23.7 50 woldbalate 878 112 674.0 26.2 50 50 woldbalate 878 112 1.246 33.5 50 50 woldbalate 878 112 1.246 33.5 50 50 woldbalate 878 112 1.246 50 <	enzent		QN	112				0		50	
e 3,750 88,4 50 50 NID 539 0 53 0 50	ohenol		QN	112				0		50	
ND 88.4 0 55 0 55 Intalate ND 558 0 5	ø		3,750	89.4				2,807	28.8	50	
ND 559 0 50 Inialate ND 112 0 50 Inialate ND 112 0 50 Inialate ND 112 0 50 Inialate ND 53.4 29.7 50 Initialitie 754 89.4 1.12 29.7 50 Initialitie 878 112 2.9.7 50 50 Initialitie 878 112 2.9.7 50 50 50 Initialitie 878 112 2.0.7 50 50 50 Initialitie 1.12 2.0.7 50 50 50 50 Initialitie 1.12 2.0.7 50 <td< td=""><td></td><td></td><td>QN</td><td>89.4</td><td></td><td></td><td></td><td>0</td><td>10-12.200 I</td><td>50</td><td></td></td<>			QN	89.4				0	10-12.200 I	50	
Indiale ND 112 50 3 678 89.4 31.2 50 754 89.4 754 89.4 31.2 50 whihalate 754 89.4 31.2 50 50 whihalate 754 89.4 31.2 50 50 whihalate 878 112 1.246 33.5 50 whihalate 878 112 50.5 50 50 whihalate ND 89.4 20.6 66 74.0 26.2 50 whihalate ND 89.4 20.6 200 50 50 whihalate 1.280 112 205.9 200 50 50 thalate ND 89.4 21.280 112 50			QN	559				0		50	
3 678 88.4 112 559.3 21.7 50 754 89.4 754 89.4 1.246 55 50 50 xy1)adiate 878 112 559.3 26.7 50 50 xy1)adiate 878 112 1.246 56 50 50 xy1)adiate 878 112 1.246 56 50 50 xy1)adiate 112 1.280 112 50 50 50 thalate 1.280 112 205.9 200 50 50 thalate 1.280 112 205.9 200 50 50 thalate 1.280 112 1.096 15.6 50 50 thalate ND 89.4 12 1.096 15.6 50 50 thalate ND 89.4 12 1.096 15.6 50 50 thalate ND 89.4 1.280	thalate		QN	112				0		50	
754 89.4 7.24 59.7 50 phthalate 888 112 1.246 33.5 50 exy1)adipate 878 112 674.0 26.2 50 exy1 89.4 2.65 26.2 50 50 tracene ND 89.4 20.7 50 50 exy1 112 2.65 2.62 50 50 utacene ND 89.4 2.00 50 50 50 exy1 112 2.65 2.62 50 50 50 utacene ND 89.4 2.00 50 50 50	-		678	89.4				494.9	31.2	50	
Dhthalate 88 112 50 50 exy1)adipate 878 112 674.0 26.2 50 exy1)adipate ND 89.4 0 26.2 50 tracene ND 89.4 0 26.2 50 50 exy1)phthalate 1.280 112 0 205.9 200 50 50 exy1 112 0 112 0 5			754	89.4				559.3	29.7	50	
exyl)adipate 878 112 674.0 26.2 50 hracene ND 89.4 0 50 50 50 hracene ND 89.4 0 205.9 200 50 50 evyl) phhalate 1.280 112 205.9 200 50 50 evyl phhalate 1.280 112 205.9 200 50 50 evyl phhalate 1.280 112 205.9 200 50 50 evyl phhalate ND 89.4 200 50 50 50 contathere ND 89.4 200 50 50 50 contathere ND 89.4 200 50 </td <td>phthals</td> <td>te</td> <td>888</td> <td>112</td> <td></td> <td></td> <td></td> <td>1,246</td> <td>33.5</td> <td>50</td> <td></td>	phthals	te	888	112				1,246	33.5	50	
Indecend ND 89.4 50 50 50 50 exy() phhalate 1.280 112 2.05.9 2.00 50 7 7 7 7 7 50 7 </td <td>exyl)ad</td> <td>ipate</td> <td>878</td> <td>112</td> <td></td> <td></td> <td></td> <td>674.0</td> <td>26.2</td> <td>50</td> <td></td>	exyl)ad	ipate	878	112				674.0	26.2	50	
ND 89.4 205.9 200 50 R exyl) prhalate 1,280 112 1,096 15.6 50 R thalate ND 112 0 0 50 50 50 coanthene ND 89.4 0 10 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 70 70 70 70 70 70 70 70 70 70 70 70	hracen	0	QN	89.4				0		50	
exyl) phthalate 1,280 112 1,096 15.6 50 thalate ND 112 0 50 50 50 50 50 50 50 50 50 50 50 50 50 70 50 50 50 50 50 70 50 50 70 70 50 70 50 70 50 70 <			QN	89.4				205.9	200	50	R
Ithalate ND 112 50 Incrementation ND 89.4 210.8 200 50 Incrementation ND 89.4 0 50 50 Incrementation ND 89.4 0 50 50 Incrementation ND 89.4 0 50 50 Incrementation ND ND ND ND ND ND	exyl) p	hthalate	1,280	112				1,096	15.6	50	
Octanthene ND 89.4 210.8 200 50 R oranthene ND 89.4 0 50 8 50 8 B Analytic detected in the associated Method Blank D Division was required E Value above quantitation range 50 8 H Molding times for preparation or analytics exceeded J Analytic detected times ND Not detected at the Reporting Limit ND Not detected at the Reporting Limit ND Not detected at the Reporting Limit ND	thalate		QN	112				0	14204	50	
Oranithene ND 89.4 0 50 B Analytic detected in the associated Method Blank D D/Mixing and anotation was required E Value above quantitation range H Molding times for preparation or analytiss exceeded J Analytic detected block quantitation timets ND Not detected at the Reporting Limit	oranth	ene	QN	89.4				210.8	200	50	Ľ
B Analytic detected in the associated Method Blank D Dilution was required E Value above quantitation range H Holding times for preparation or analytes exceeded J Analyte detocted below quantitation timits ND Not detocted at the Reporting Limit	oranth	ene	QN	89.4				0		50	
M Molding times for preparation or analytics exceeded J Analytic detocted below quantitation limits ND Not detected at the Reporting Limit	83	Analyte detected in	the associated Method Blank		D Diuson wa	is required		E Value above quantitation	n range		
	I	Holding times for pr	entration or analysis averaginet		Carl a contraction of the contra	the state of the low of the state of the low of the law.					

QC SUMMARY REPORT

Work Order: 1411104 CLIENT: Libby Envi	ronmental							ac s	UMMA	RY REF	ORT
Project: Havens Es	state				Sen	ni-Volatil	e Organ	ic Compour	ids by EP	A Method	1 8270
Sample ID: 1411100-002ADUP	SampType: DUP			Units: µg/Ki	Arb-B	Prep Da	te: 11/13/2	014	RunNo: 181	144	
Client ID: BATCH	Batch ID: 9285					Analysis Da	te: 11/19/2	014	SeqNo: 362	2348	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo (a) pyrene	Q	89.4						0		50	
Indeno (1,2,3-cd) pyrene	QN	89.4						0		20	
Dibenz (a,h) anthracene	QN	89.4						0		50	
Benzo (g.h.l) perylene	ND	89.4						0		50	
Surr: 2,4,6-Tribromophenol	1.730		1,117		155	14	136		0		s
Surr: 2-Fluorobiphenyl	670		558.7		120	27.3	158		0		
Surr: Nitrobenzene-d5	2,210		558.7		396	21.9	141		0		S
Surr: Phenol-d6	1,950		1,117		174	18.4	144		0		S
Surr: p-Terphenyl	819		558.7		147	33.3	149		0		
NOTES:											
R - High RPD indicates possible	s matrix interference. The	e method is in cor	trol as indicate	ed by the laboratory	control sam	ole (LCS).					

Analyte detected in the associated Method Blank 80 Qualifiers:

- Holding times for preparation or analysis exceeded Iα
- RPD outside accepted recovery limits
- Analyte detected below quantitation limits

o - d

Dilution was required

Reporting Limit

Spike recovery outside accepted recovery limits Not detected at the Reporting Limit w ₽ ∞

Value above quantitation range

Sample Log-In Check List

Client Name:	LIBBY		Work Or	rder Number	C 141	11104	ke internet	
Logged by:	Erica Si	lva	Date Re	ceived:	11/	11/20	014 11:05:00 AM	
Chain of Cu	stody					_		
1. Is Chain o	Custody cor	nplete?	Yes	2	No		Not Present	
2. How was t	he sample de	livered?	UPS					
Log In								
3. Coolers ar	e present?		Yes	\checkmark	No		NA	
4. Shipping c	ontainer/cool	er in good condition?	Yes	•	No			
5. Custody s	eals intact on	shipping container/cooler?	Yes	<u>[]</u>	No	-	Not Required	
6. Was an at	lempt made t	o cool the samples?	Yes		No		NA	
7. Were all c	oolers receive	d at a temperature of >0°C to 10.0°C	Yes	2	No		NA	C
8. Sample(s)	in proper cor	tainer(s)?	Yes		No			
9. Sufficient	sample volum	e for indicated test(s)?	Yes		No			
10. Are sample	es properly pr	eserved?	Yes		No			
11. Was prese	ervative addee	to bottles?	Yes		No	•	NA	
12. Is the head	Ispace in the	VOA vials?	Yes	[]	No		NA	•
13. Did all sam	ples containe	ers arrive in good condition(unbroken)?	Yes	\checkmark	No	0		
14. Does pape	rwork match	bottle labels?	Yes	$\mathbf{\mathbf{v}}$	No			
15 Are matrice	es correctly id	lentified on Chain of Custody?	Yes	~	No			
16. Is it clear v	hat analyses	were requested?	Yes		No			
17. Were all he	olding times a	ble to be met?	Yes	V	No			
Special Han	dling (if a	pplicable)						
18. Was client	notified of all	discrepancies with this order?	Yes	\mathbf{Z}	No	[]	NA	
Perso	n Notified:	Jamie Deyman Date	e:	1	1/11/2	014		
By W	hom:	Erica Silva Via:	🖌 eMai	I Phon	e 🗌	Fax	In Person	

19. Additional remarks:

Communication with client coordinated with Hilary Lewis (Libby) and Michael Ridgeway (FAI) - instructions to test sample "TP 26-2" for full SVOC list only.

Item Information

Item #	Temp °C	Condition
Cooler	6.0	Good
Sample	4.9	Good

Dana Alt	t)		i Annienn	nional	1411104	www.LibbyElivironmenta
98506	Fax.	360-352-4	154		Da	ite: 11,	41/01	Page:	l of l
Yadi-	En	MUNOU	enter	Inc	ď	o,ect Manager:	P.	amic Der	man
	(See	aque	(7		P	oject Name:	Javens	Estate U	
		State:	Zip:		Lo	cation:		City. S	state: Di. a. Di. a. Di.
		Fax:			8	flector:		Date o	of Collection
#					<u>ل</u>	ail: 1, bby e	nu@ aul.	Co.	
Number	Depth	Time	Sample Type	Container Type	8100 401-	01-01-01-01-01-01-01-01-01-01-01-01-01-0	City City City City City City City City	1000 000000000000000000000000000000000	East Notes
4 -)	-	1405	Suit	Tar			X		
1-3	3	1415	_	-					HALA
1-1	1	22 41	-		_		×		2
3	6	1430					X		
1-1	-	-++(_						HOL A AN
2-0	2	145	*	+		X	*	*	Total H. Lewis 11/12/14 3
									-
2	Date /	Time 11/10/17	-	Scewed by:		Date	Tarre Samp	de Receipt.	Remarks:
5	PS Date /	Time /	- 14	BOCHWEADST DILLA	WILL	Date /	Time Good C	oridition?	- Standard
	Date /	Time	æ	opeived m.		1 24401	Time Seals In	(act)	``

Agilent 9074 14112001	Instrument ID: Lab Data File	Analyst: TM Data Reviewed By
Standard 2 ul	Reporting Limits: Injection Volume:	Date Prepared: 11/20/2014 Date Analyzed: 11/20/2014
Soil	Matrix	Analytical Method: US EPA 8082A
mg/kg	Units:	Preparation Method: US EPA 3550C
11/25/2014	Report Date:	DAL Project No.: 141120-05
n/a	Temperature Received (°C):	
11/20/2014; 12:17	Date Received:	Sampled By: Unknown
11/7/2014; 14:05 to 14:30	Date Collected:	
n/a	P.O. No.:	Olympia, WA 98506
L141107-40	Project No.:	4139 Libby Road NE
Havens Estate	Project Name:	Libby Environmental, Inc.
~	Hazardous Waste, Microbiology, NPDES, Potable and Non-potable Water Mobile Environmental Laboratory	and the second
and a second	DRAGON ANALYTICAL LABORATORY 530 A1 Ronflet Ln. Olympia, WA 98502 (390) 666-0543	N.

PCB's ANALYTICAL RESULTS

	CAS		Method				TP 25-3
sample identification	No.	MIRL	Blank	TP 24-1	TP 25-1	TP 25-3	Dup.
PCB Aroclor 1016	12674-11-2	0.50	Ы	nd	nd	Ы	n
PCB Aroclor 1221	1104-28-2	0.50	Ы	nd	nd	Ы	Ы
PCB Aroclor 1232	11141-16-5	0.50	nd	Ы	R	Ы	2
PCB Aroclor 1242	53469-21-9	0.50	Ы	Ы	Ы	Ы	R
PCB Aroclor 1248	12672-29-6	0.50	рд	Ы	nd	nd	DC
PCB Aroclor 1254	11097-69-1	0.50	nd	nd	nd	nd	nd
PCB Aroclor 1260	11096-82-5	0.50	nd	З	a	nd	ы
Percent Solids (%)				81.0	89.5	51.2	63.2
Dilution Factor				10	10	10	10
Data Flags							

L141107-40 page 1 of 2

Libby Environmental, Inc. DAL Project No.: 141120-05

DRAGON ANALYTICAL LABORATORY 530 A1 Roniee Ln. Olympia, WA 98502 (360) 866-0543

Hazardous Waste. Microbiology, NPDES, Potable and Non-potable Water Mobile Environmental Lahoratory

Yest.

Project Name: Havens Estate Project No.: L141107-40

QUALITY CONTROL RESULTS PCB's

SURROGATE RECOVERY

DCBP	TCMX	10		
		Surrogate		
30-150	30-150	Limits (%)		
102	97.8	Blank	Method	
106	101	TP 24-1		
100	99.1	TP 25-1		
106	108	TP 25-3		
99.1	97.4	Dup.	TP 25-3	

LABORATORY CONTROL SAMPLE AND MATRIX SPIKE

QC Batch ID: 141120-PCB				MS	MSD Samp	le ID: 14112	0-PCB MS/N	ASD				LCS Samp	le ID: 14112	D-PCB LCS
Analyte	MS/MSD Limits (%)	MS/MSD/ LCS Level (mg/kg)	Sample Conc. (mg/kg)	MS Recovery (mg/kg)	MS Percent Recovery	MSD Recovery (mg/kg)	MSD Percent Recovery	MS/MSD RPD Limits	RPD	LCS Limits (%)	LCS Recovery (mg/kg)	LCS Percent Recovery	LCSD Recovery (mg/kg)	LCSD Percent Recovery
Arochlor 1016	29-135	400	ы	406	101%	389	97.3%	s 22%	2.0	50-120	418	105%	393	98.3%
Arochlor 1260	29-135	400	nd	363	90.8%	351	87.8%	s 15%	1.7	50-120	423	106%	362	90.4%

WA-DOE-Laboratory Certification No.: C890

"nd" indicates the analyte was not detected at or above the listed Method Reporting Limit.

"n/a" indicates not applicable

Sample results based on dry weight.

Comments and Explanations: None.

L141107-40 page 2 of 2

Relinquished by: Date / Time	Date / Time	Deline John Line	Relinquished by: Date / Time	16	15	14	13 14 15	12 13 14 15	11 12 13 14 15	10 11 12 13 14 15	9 10 11 12 13 14 15	8 9 10 11 12 13 14 15	7 8 9 10 11 12 13 14 15	67 <i>P</i> 7 <i>Ve</i> 2 7 8 9 10 11 11 12 13 13	5 TP2 G - 1 1 IHH1 So 6 TP2 G - 2 2 IH4S So 7 3 14 So 9 3 4 5 10 4 5 14 11 5 5 14 14 12 14 14 14 14 15 15 14 14 15	4 1/2/5 - 3 3 1430 50 5 7/2/6 - 2 2 1/44/1 50 6 1/2/6 - 2 2 1/44/1 50 7 3 1/44/1 50 8 3 1/45 50 10 4 1/2 1/45 50 11 11 11 11 11 11 12 14 4 14 14 14 15 15 14 14 14 14	3 TV2S - 1 1 14 25 50 4 1/2S - 3 3 1420 50 5 TV2G - 1 1 1441 50 6 TV2G - 2 3 1441 50 7 3 1445 50 8 3 1445 50 9 3 1445 50 10 3 1445 50 11 3 3 12 3 3 14 3 3 15 3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Image: Sample Number Depth Time T 1 TP24-1 1 140.5 5 2 TP24-3 3 3 141.5 5 3 TP25-1 1 140.5 5 5 5 TP26-3 3 144.5 5 5 6 TP26-3 3 144.5 5 5 9 10 1 142.5 5 5 11 14 14 14 5 5 12 14 14 14 14 14 13 14 14 14 14 14	Client Project #	Phone: $-4 - 1 - 2 - 7 + 1$ Fax: 25 Client Project # $-4 - 1 - 0 - 1 - 1$ Sample Number Depth Time T Sample Number Depth Time T H H H H H H Sa 2 T 1 H Sa H Sa H Sa H Sa Sa Sa Sa H Sa Sa Sa H Sa	City: Turonc State: Up Phone: -415-771 Fax: 25 Client Project # Up Depth Time Sa Sample Number Depth Time 1 1405 5 1 1772.4-3 3 1415 5 <t< th=""><th>Address: OIL S ILLSON State: WP Phone: </th><th>Client: Robuston Mode. Address: $3011 \le 11456a \le 14456a \le 14566a \le 145666a \le 14566a \le 14566a \le 14566a \le 14566a \le 14566a \le 1$</th><th>4139 Libby Road NE Ph: $360.352.2110$ Olympia. WA 98506 Fax: $360.352.4154$ Client: K Obs. Son Moule Address: OIL State: W/V Phone: -47.5 Hus.on Fax: $350.352.4154$ Client: Fold Fax: $360.352.4154$ Client: Value State: W/V Phone: -47.5 Dupth Fax: 2.5 Client Project # Upper Inne T 1 HQ.5 3 HQ.5 3 2 3 1 HQ.5 5 2 3 1 HQ.5 5 2 3 1 HQ.5 5 3 1 1 HQ.5 5 6 1/2 1 HQ.5 5 7 3 1/2 5 5 5 9 9 1 1/2 1/2 5 10 1 1/2 1/2 1/2 1/2 1/2 12 1 <th1 2<="" th=""> 1/2</th1></th></t<>	Address: OIL S ILLSON State: WP Phone:	Client: Robuston Mode. Address: $3011 \le 11456a \le 14456a \le 14566a \le 145666a \le 14566a \le 14566a \le 14566a \le 14566a \le 14566a \le 1$	4139 Libby Road NE Ph: $360.352.2110$ Olympia. WA 98506 Fax: $360.352.4154$ Client: K Obs. Son Moule Address: OIL State: W/V Phone: -47.5 Hus.on Fax: $350.352.4154$ Client: Fold Fax: $360.352.4154$ Client: Value State: W/V Phone: -47.5 Dupth Fax: 2.5 Client Project # Upper Inne T 1 HQ.5 3 HQ.5 3 2 3 1 HQ.5 5 2 3 1 HQ.5 5 2 3 1 HQ.5 5 3 1 1 HQ.5 5 6 1/2 1 HQ.5 5 7 3 1/2 5 5 5 9 9 1 1/2 1/2 5 10 1 1/2 1/2 1/2 1/2 1/2 12 1 <th1 2<="" th=""> 1/2</th1>
Received by:	Received by:	A WS MAN	Renaided hur											S soit Jas	Soit Jass Soit Jas	C Sail Jars S Sail Jars S Sail Jars	s soil yrs o Soil yrs soil Jars Soil Jars Soil Jars	s sait Jars s sait Jars S sait Jars S sait Jars	s soit he s soit he s soit he soit hes soit hes soit hes	ne Type Container Type Type Type Jorgon Soul Jun Soul Jun Soul Jun Soul Juns Soul Juns	sample Container Type Type Type Soll Jac Soll Jac Soll Jac Soll Jac	IX: 253-472-0153/0 Ime Type Container Type Type Type 4040 Soll Vrs Soll	e: WYY Zip: 98409 IX: 253-472-46586 Type Container Type Type Type Yor 980 Sould Yrs Sould Yrs	e: WT Zip: 9/8409 ix: 253-472-46836 sample Container Type Type Type Soll Vr Soll Vr Sol	St Ste A e: WIT Zip: 0/8409 ix: 253-472-4/58/0 Type Type Type 408/0 S Soll Vrs S S S Soll Vrs S S S Soll Vrs S S S S S S S S S S S S S S S S S S S	352-2110 352-4154 St Ste A e: WVT Zip: 9/8409 ix: 2:53-472-0/58/0 ix: 2:53-472-0 ix: 3:53-472-0 ix: 3:54-0 ix:
Date / Time	Date / Time	1/1/1/14 1607	Data / Timo																	Correction of the second secon	Statistics of the statistics o	Collector: Email: Collector: Email: Constant Solution Sol	Location: Collector: Email: Collector: Collector: Email: Collector:	Project Name: Location: Collector: Email: Email: Solution: Solutio: Solution: Solution: Solution: Solution: Solution: Solution	Project Manager: Project Name: Location: Collector: Email: State of the state	Date: 11/7/14 Project Manager: Project Name: H_A Location: Collector: Email: or of the set of
Seals Intact?	Good Condition?	7 Sample Receipt:																		27 17 17 17 17 17 17 17 17 17 1		Date PT DT	City	State of the state	Date Strate	Pag
Ī	+ M +	Remarks:		N. N.										HULP ALC	HOLD ALL	X HOLD ALL	Max via email ST	Hex Chron per Max via email ST HIGLD ALL	X 11-25-14 added Hex Chronn per Max via email ST VIULD ALL VIULD ALL	Field Notes Field Notes Hex Chrom per Max Via email ST	Field Notes	te of Collection: 11-7-14	r, State: Olympica te of Collection: 11-7-14 Field Notes Field Notes Hex Onom per Max via email ST	v. State: Olympic te of Collection: 11-7-14 Field Notes Field Notes Hex Ohrem per Max via email ST	v. State: Olympic te of Collection: 11-7-14 Field Notes Field Notes Hex Onom per Max via email ST	y. State: Oly on pick te of Collection: 11-7-14 Field Notes Field Notes Hex Onom per Max via email ST

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

December 11, 2014

Max Wills Robinson Noble 17625 130th Avenue NE, Suite 102 Woodinville, WA 98072

Dear Mr. Wills:

Please find enclosed the analytical data report for the Havens Estate Project located in Olympia, Washington. Soil samples were analyzed for Volatile Organic Compounds by EPA Method 8260C, Gasoline by NWTPH-Gx, Diesel & Oil by NWTPH-Dx/Dx Extended, Metals Arsenic, Cadmium, Chromium, Copper, Lead, and Zinc by EPA Method 7010 Series, Mercury by EPA Method 7471, Total Nickel by EPA Method SW846 6010C, Polyaromatic Hydrocarbons by EPA Method 8270 (SIM), and PCB (Polychlorinated Biphenyls) by EPA Method 8082.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. All soil samples are reported on a dry weight basis. An invoice for this analytical work is included and has been emailed to the Tacoma office.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Kurt Johnson Senior Chemist Libby Environmental, Inc.

Phone (360) 352-2110 • Fax (360) 352-4154 • libbyenv@aol.com

www.LibbyEnvironmental.com

Libby Environmental, Inc.

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141111-2 Client Project # 2491-001F

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method Blank	TP27-2	TP28-2	TP29-2	TP30-2	
Date Sampled	Reporting	N/A	11/11/14	11/11/14	11/11/14	11/11/14	
Date Analyzed	Limits	11/12/14	11/12/14	11/12/14	11/12/14	11/12/14	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	
Chloromethane	0.06	nd	nd	nd	nd	nd	
Vinyl chloride	0.02	nd	nd	nd	nd	nd	
Bromomethane	0.09	nd	nd	nd	nd	nd	
Chloroethane	0.06	nd	nd	nd	nd	nd	
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	
Methylene chloride	0.02	nd	nd	nd	nd	nd	
Methyl tert- Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd	
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	
Chloroform	0.02	nd	nd	nd	nd	nd	
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd	
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	
Benzene	0.02	nd	nd	nd	nd	nd	
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	
Trichloroethene (TCE)	0.03	nd	nd	nd	nd	nd	
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	
Dibromomethane	0.04	nd	nd	nd	nd	nd	
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	
Toluene	0.03	nd	nd	nd	nd	nd	
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	
Chlorobenzene	0.02	nd	nd	nd	nd	nd	
1,1,1,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	
Ethylbenzene	0.03	nd	nd	nd	nd	nd	
Total Xylenes	0.03	nd	nd	nd	nd	nd	
Styrene	0.02	nd	nd	nd	nd	nd	

Volatile Organic Compounds by EPA Method 8260C in Soil

Libby Environmental, Inc.

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141111-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method Blank	TP27-2	TP28-2	TP29-2	TP30-2	
Date Sampled	Reporting	N/A	11/11/14	11/11/14	11/11/14	11/11/14	
Date Analyzed	Limits	11/12/14	11/12/14	11/12/14	11/12/14	11/12/14	
150	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Bromoform	0.03	nd	nd	nd	nd	nd	
Isopropylbenzene	0.08	nd	nd	nd	nd	nd	
1,2,3-Trichloropropane	0.03	nd	nd	nd	nd	nd	
Bromobenzene	0.03	nd	nd	nd	nd	nd	
1,1,2,2-Tetrachloroethane	0.03	nd	nd	nd	nd	nd	
n-Propylbenzene	0.02	nd	nd	nd	nd	nd	
2-Chlorotoluene	0.02	nd	nd	nd	nd	nd	
4-Chlorotoluene	0.02	nd	nd	nd	nd	nd	
1,3,5-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	
tert-Butylbenzene	0.02	nd	nd	nd	nd	nd	
1,2,4-Trimethylbenzene	0.02	nd	nd	nd	nd	nd	
sec-Butylbenzene	0.02	nd	nd	nd	nd	nd	
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	
Isopropyltoluene	0.02	nd	nd	nd	nd	nd	
1,4-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	
1,2-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	
n-Butylbenzene	0.02	nd	nd	nd	nd	nd	
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	
Naphthalenes	0.05	nd	nd	nd	nd	nd	
1,2,3-Trichlorobenzene	0.1	nd	nd	nd	nd	nd	
Surrogate Recovery							
Dibromofluoromethane		118	102	100	98	98	
1,2-Dichloroethane-d4		115	111	106	106	103	
Toluene-d8		91	93	85	85	84	
4-Bromofluorobenzene		96	92	92	90	0.89	

Volatile Organic Compounds by EPA Method 8260C in Soil

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

Libby Environmental, Inc.

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141111-2 Client Project # 2491-001F

L141110-30 Sample Identification: RPD Matrix Spike Duplicate Matrix Spike Spiked Measured Spike Spiked Measured Spike Conc. Recovery Conc. Conc. Recovery Conc. (mg/kg) (mg/kg) (%) (mg/kg) (mg/kg) (%) 1.1-Dichloroethene 0.50 0.35 70 0.50 0.38 76 8.2 Benzene 0.50 0.42 84 0.50 0.45 90 6.9 84 Toluene 0.50 0.38 76 0.50 0.42 10.0 88 Chlorobenzene 0.50 0.42 84 0.50 0.44 4.7 82 86 Trichloroethene (TCE) 0.41 0.50 0.43 0.50 4.8 Surrogate Recovery 101 105 Dibromofluoromethane 108 1,2-Dichloroethane-d4 116 87 92 Toluene-d8 99 4-Bromofluorobenzene 97

QA/QC Data	- EPA 8	260C Anal	yses
------------	---------	-----------	------

	Eucoratory	control outin	
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)
1,1-Dichloroethene	0.50	0.37	74
Benzene	0.50	0.41	82
Toluene	0.50	0.39	78
Chlorobenzene	0.50	0.42	84
Trichloroethene (TCE)	0.50	0.41	82
Surrogate Recovery			
Dibromofluoromethane			115
1,2-Dichloroethane-d4			130
Toluene-d8			77
4-Bromofluorobenzene			98

Laboratory Control Sample

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Paul Burke

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com
HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141111-2 Client Project # 2491-001F

Sample Number	Date Analyzed	Surrogate Recovery (%)	Gasoline (mg/kg)
Method Blank	11/12/14	91	nd
TP27-2	11/12/14	83	nd
TP28-2	11/12/14	95	nd
TP29-2	11/12/14	85	nd
TP30-2	11/12/14	84	nd
Practical Quantitation Limit			10

Analyses of Gasoline (NWTPH-Gx) in Soil

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141111-2 Client Project # 2491-001F

Sample Number	Date Analyzed	Surrogate Recovery (%)	Diesel (mg/kg)	Oil (mg/kg)
Method Blank	11/12/14	103	nd	nd
TP27-2	11/12/14	117	nd	nd
TP28-2	11/12/14	115	nd	nd
TP29-2	11/12/14	119	nd	nd
TP30-2	11/12/14	116	nd	nd
Practical Quantitation	Limit		50	250

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141111-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Metals in Soil by EPA Method 7010 Series

Sample Number	Date Analyzed	Lead (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Arsenic (mg/kg)
Method Blank	11/12/14	nd	nd	nd	nd
TP27-2	11/12/14	nd	nd	11	nd
TP28-2	11/12/14	nd	nd	10	nd
TP29-2	11/12/14	13	nd	11	nd
TP30-2	11/12/14	nd	nd	11	nd
TP30-2 Dup	11/12/14	nd	nd	10	nd
Practical Quantita	tion Limit	5.0	1.0	5.0	5.0

"nd" Indicates not detected at the listed detection limits.

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141111-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample Number	Date Analyzed	Lead (% Recovery)	Cadmium (% Recovery)	Chromium (% Recovery)	Arsenic (% Recovery)
LCS	11/12/14	108%	91%	106%	112%
TP30-2 MS	11/12/14	112%	82%	113%	118%
TP30-2 MSD	11/12/14	103%	85%	110%	112%
RPD	11/12/14	9%	4%	3%	5%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141111-2 Client Project # 2491-001F

Analyses of Total Mercury	in Soil by	EPA	Method	7471
---------------------------	------------	-----	--------	------

Sample	Date	Mercury
Number	Analyzed	(mg/kg)
Method Blank	11/13/14	nd
TP27-2	11/13/14	nd
TP28-2	11/13/14	nd
TP29-2	11/13/14	nd
TP30-2	11/13/14	nd
TP30-2 Dup	11/13/14	nd
Practical Quantitation Limit		0.5

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Ramses Osorio

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141111-2 Client Project # 2491-001F

QA/QC for Mercury by EPA Method 7471

Sample	Date	Mercury (% Recovery)
LCS	11/13/14	98%
TP30-2 MS	11/13/14	98%
TP30-2 MSD	11/13/14	98%
RPD	11/13/14	0%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141111-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total N	EPA Method 7010 Ser	ies	
and the second second	Data	Copper	7

Sample	Date	Copper	Zinc
Number	Analyzed	(mg/kg)	(mg/kg)
Method Blank	11/12/14	nd	nd
TP27-2	11/12/14	nd	nd
TP28-2	11/12/14	nd	nd
TP29-2	11/12/14	nd	nd
TP30-2	11/12/14	nd	nd
TP30-2 Dup	11/12/14	nd	nd
Practical Quantitation Limit		5.0	5.0

"nd" Indicates not detected at the listed detection limits.

HAVEN'S ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141111-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Soil by EPA Method 7010 Series

Sample Number	Date Analyzed	Copper (% Recovery)	Zinc (% Recovery)
LCS	11/12/14	106%	100%
TP30-2 MS	11/12/14	95%	89%
TP30-2 MSD	11/12/14	93%	86%
RPD	11/12/14	3%	4%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

11/14/2014

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Jamie Deyman

Sample Matrix:	Soil
Date Sampled:	11/11/2014
Date Received:	11/12/2014
Spectra Project:	2014110305

Client ID	Spectra #	Analyte	Result	Units	Method
TP27-2	1	Total Nickel	8.7	mg/Kg	SW846 6010C
TP28-2	2	Total Nickel	14.8	mg/Kg	SW846 6010C
TP29-2	3	Total Nickel	8.0	mg/Kg	SW846 6010C
TP30-2	4	Total Nickel	15.2	mg/Kg	SW846 6010C

ICP analysis: 11-14-14 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

11/14/2014

					Units:		mg/L	
Libby Environn	nental				Spectra Pr	oject:	2014110305	
4139 Libby Rd.	NE				Applies to	Spectra #'s	1-4	
Olympia, WA	98506							
			QUALITY	CONTRO	DL RESULT	rs		
		ICI	P Metals SV	V846 601	C - Soil/Sol	lid		
			M	lethod Bl	ank			C-114
Date Digested:	11/14/2014				Date Analy	yzed:	11/14/2014	
			Element		Blank Rest	ult		
			Nickel		< 0.015			
			Blank	Spike (I	.CS)			
Date Digested:	11/14/2014				Date Analy	zed:	11/14/2014	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Nickel		2.0	1.874	93.7		
LCS Recovery li	mits 80-120%							
		Matrix Sp	oike/Matrix	Spike Du	plicate (MS	S/MSD)		
Date Digested:	11/12/2014				Date Analy	zed:	11/12/2014	
Sample Spiked:	2014110260-	21						
		Sample	Spike	MS	MS	MSD	MSD	
Element	-	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Nickel		0.350	2.0	2.205	92.8	2.205	92.8	0.0
Recovery Limits	75-125%							
RPD Limit 20								

SPECTRA LABORATORIES

Steven G. Hibbs Laboratory Manager

Libby Enviro	onmental, I	nc.		U	nain of Custo	ody Reco	rd 761L4	10225	www.LibbyB	Environmental.com
4139 Libby Road NE	Ph: 36	30-352-21	110			1 1	1			-
Olympia, WA 98506	Fax: 36	30-352-41	5		Date: 11	112/14		Page:	1 0	1 1
Client Libby	ENVIRONME	いたい	_		Project Ma	anager. Jan	ME Dey	Man		
Address:	SEE AR	BOVE			Project Na	ime:				
City:	ß	late:	ZIp		Location:			City, Stat	e:	
Phone:		Fax:			Collector:			Date of C	collection: VI/I	77
Client Project #					Email:					
Sample Number	Deot		Sample	Container Type	102 102 102 102 102 102 102 102 102 102	Constant of the second	AST CONTRACTOR	2005 2005 2005 2005 2005 2005 2005 2005		
2-424 1	0	134	Soil	Viez JAR		12/2/2			LIEID NOTE:	0
2 7928-2	III.	00:						-		
3 TP29-2	11	01:10								
4 7030-2	11	51:	>	>				>		
5								•		
6										
7										
8										
6										
10										
11										
12										
13										
14										
15										
16										
17				-						
Relinquished by:	Date / Tir	em em		Received by:	dind -	Cate / Time	Sample Re	ceipt:	Remarks:	
Relinquished by:	Date / Tir	ame and and and and and and and and and and	me	CA WORL	いたこ	111 L 2! 2	2			
							Good Condition	2		
Relinquished by:	Date / Tir	em		Received by		Date / Time	Cold?			
		Č.					Seals Intact?	Contraction of the second s	TAT. DALL	Contraction of the second
LEGAL ACTION CLAUSE: In the event of a	default of payment and/or failure to p	pay, Client Agree	to to say the coats	of collection wolkeling cou	f onth and reasonable althmey feet to be	a determinent by a court of law		Oer	Thrution: White - Lab, Ye	How - File, Pith-Orginate

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Jamie Deyman 4139 Libby Rd. NE Olympia, WA 98506

RE: Havens Estate Lab ID: 1411166

November 24, 2014

Attention Jamie Deyman:

Fremont Analytical, Inc. received 4 sample(s) on 11/17/2014 for the analyses presented in the following report.

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

CLIENT: Project: Lab Order:	Libby Environmental Havens Estate 1411166	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1411166-001	TP27-2	11/11/2014 10:54 AM	11/17/2014 3:15 PM
1411166-002	TP28-2	11/11/2014 11:00 AM	11/17/2014 3:15 PM
1411166-003	TP29-2	11/11/2014 11:10 AM	11/17/2014 3:15 PM
1411166-004	TP30-2	11/11/2014 11:15 AM	11/17/2014 3:15 PM

Case Narrative

WO#: 1411166 Date: 11/24/2014

CLIENT: Libby Environmental Project: Havens Estate

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: 1411166 Date Reported: 11/24/2014

Client: Libby Environmental				Collection	Date:	11/11/2014 10:54:00 AM
Project: Havens Estate						
Lab ID: 1411166-001				Matrix: So	lic	
Client Sample ID: TP27-2						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method	8270 (SIM)		Batc	h ID: 94	102 Analyst: NG
Naphthalene	ND	82.4		ua/Ka-drv	1	11/24/2014 1:27:00 PM
2-Methylnaphthalene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
1-Methylnaphthalene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Acenaphthylene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Acenaphthene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Fluorene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Phenanthrene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Anthracene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Fluoranthene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Pyrene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Benz(a)anthracene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Chrysene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Benzo(b)fluoranthene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Benzo(k)fluoranthene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Benzo(a)pyrene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Indeno(1,2,3-cd)pyrene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Dibenz(a,h)anthracene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Benzo(g,h,i)perylene	ND	82.4		µg/Kg-dry	1	11/24/2014 1:27:00 PM
Surr: 2-Fluorobiphenyl	75.1	42.7-132		%REC	1	11/24/2014 1:27:00 PM
Surr: Terphenyl-d14 (surr)	104	48.8-157		%REC	1	11/24/2014 1:27:00 PM
Sample Moisture (Percent Mois	sture)			Batch	ID: R1	8097 Analyst: SB
Percent Moisture	39.6			wt%	1	11/18/2014 12:23:24 PM

Qualifiers: B Analyte detected in the associated Meth	ethod Blank
---	-------------

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: 1411166 Date Reported: 11/24/2014

Client: Libby Environmental				Collection	Da	te: 11/11/2014 11:00:00 AN	I
Project: Havens Estate							
Lab ID: 1411166-002				Matrix: So	bil		
Client Sample ID: TP28-2				21000000000000000000000000000000000000	2.2		
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Polyaromatic Hydrocarbons b	V EPA Method	3270 (SIM)		Batcl	h ID:	9402 Analyst: NG	
Naphthalene	ND	64.6		ua/Ka-drv	1	11/24/2014 1:51:00 PM	
2-Methylnaphthalene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
1-Methylnaphthalene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Acenaphthylene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Acenaphthene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Fluorene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Phenanthrene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Anthracene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Fluoranthene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Pyrene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Benz(a)anthracene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Chrysene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Benzo(b)fluoranthene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Benzo(k)fluoranthene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Benzo(a)pyrene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
indeno(1,2,3-cd)pyrene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Dibenz(a,h)anthracene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Benzo(g,h,i)perylene	ND	64.6		µg/Kg-dry	1	11/24/2014 1:51:00 PM	
Surr: 2-Fluorobiphenyl	67.7	42.7-132		%REC	1	11/24/2014 1:51:00 PM	
Surr: Terphenyl-d14 (surr)	98.2	48.8-157		%REC	1	11/24/2014 1:51:00 PM	
Sample Moisture (Percent Moi	sture)			Batch	ID:	R18097 Analyst: SB	
Percent Moisture	25.3			wt%	1	11/18/2014 12:23:24 PM	

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: 1411166 Date Reported: 11/24/2014

Client: Libby Environmental				Collection	Dat	te: 11/1	1/2014	11:10:00	AM
Project: Havens Estate									
Lab ID: 1411166-003				Matrix: So	lic				
Client Sample ID: TP29-2				0.0000000000					
Analyses	Result	RL	Qual	Units	DF	-	Date /	Analyzed	_
Polyaromatic Hydrocarbons b	y EPA Method	8270 (SIM)		Batch	h ID:	9402	A	nalyst: NG	
Naphthalene	ND	75.3		µg/Kg-dry	1		11/24/201	4 2:15:00 PM	1
2-Methylnaphthalene	ND	75.3		µg/Kg-dry	1		11/24/201	4 2:15:00 PM	1
1-Methylnaphthalene	ND	75.3		µg/Kg-dry	1		11/24/201	4 2:15:00 PM	1
Acenaphthylene	ND	75.3		µg/Kg-dry	1		11/24/201	4 2:15:00 PM	1
Acenaphthene	ND	75.3		µg/Kg-dry	1		11/24/201	4 2:15:00 PM	1
Fluorene	ND	75.3		µg/Kg-dry	1		11/24/201	4 2:15:00 PM	1
Phenanthrene	ND	75.3		µg/Kg-dry	1		11/24/201	4 2:15:00 PM	1
Anthracene	ND	75.3		µg/Kg-dry	1		1/24/201	4 2:15:00 PM	1
Fluoranthene	ND	75.3		µg/Kg-dry	1		1/24/201	4 2:15:00 PM	1
Pyrene	ND	75.3		µg/Kg-dry	1	1	1/24/201	4 2:15:00 PM	÷
Benz(a)anthracene	ND	75.3		µg/Kg-dry	1		1/24/201	4 2:15:00 PM	i -
Chrysene	ND	75.3		µg/Kg-dry	1	20	1/24/201	4 2:15:00 PM	1
Benzo(b)fluoranthene	ND	75.3		µg/Kg-dry	1	19	1/24/201	4 2:15:00 PM	Ē
Benzo(k)fluoranthene	ND	75.3		µg/Kg-dry	1		1/24/201	4 2:15:00 PM	6 -
Benzo(a)pyrene	ND	75.3		µg/Kg-dry	1	া	1/24/201	4 2:15:00 PM	6
Indeno(1,2,3-cd)pyrene	ND	75.3		µg/Kg-dry	1	21	1/24/201	4 2:15:00 PM	Ē.
Dibenz(a,h)anthracene	ND	75.3		µg/Kg-dry	1	3	1/24/201	4 2:15:00 PM	È.
Benzo(g,h,i)perylene	ND	75.3		µg/Kg-dry	1	1	1/24/201	4 2:15:00 PM	Ê.
Surr: 2-Fluorobiphenyl	56.4	42.7-132		%REC	1	1	1/24/201	4 2:15:00 PM	6
Surr: Terphenyl-d14 (surr)	80.9	48.8-157		%REC	1	1	1/24/201	4 2:15:00 PM	
Sample Moisture (Percent Mois	sture)			Batch	ID:	R1809	7 A	nalyst: SB	
Percent Moisture	34,7			wt%	1	1	1/18/201	4 12:23:24 PM	и

Qualifiers:	в	Analyte detected in the associated Method Blank	
-------------	---	---	--

- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1411166 Date Reported: 11/24/2014

Client: Libby Environmental				Collection	Da	te: 11/11/2014 11:15:00 AM
Project: Havens Estate Lab ID: 1411166-004				Matrix: So	lic	
Client Sample ID: TP30-2						
Analyses	Result	RL	Qual	Units	D	F Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method	8270 (SIM)		Batc	h ID	9402 Analyst: NG
Naphthalene	ND	61.9		µa/Ka-dry	1	11/24/2014 2:39:00 PM
2-Methylnaphthalene	ND	61.9		ug/Kg-dry	1	11/24/2014 2:39:00 PM
1-Methylnaphthalene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Acenaphthylene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Acenaphthene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Fluorene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Phenanthrene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Anthracene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Fluoranthene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Pyrene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Benz(a)anthracene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Chrysene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Benzo(b)fluoranthene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Benzo(k)fluoranthene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Benzo(a)pyrene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Indeno(1.2,3-cd)pyrene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Dibenz(a,h)anthracene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Benzo(g,h,i)perylene	ND	61.9		µg/Kg-dry	1	11/24/2014 2:39:00 PM
Surr: 2-Fluorobiphenyl	74.3	42.7-132		%REC	1	11/24/2014 2:39:00 PM
Surr: Terphenyl-d14 (surr)	94.0	48.8-157		%REC	1	11/24/2014 2:39:00 PM
Sample Moisture (Percent Mois	ture)			Batch	ID:	R18097 Analyst: SB
Percent Moisture	23.9			wt%	1	11/18/2014 12:23:24 PM

Qualifiers:	в	Analyte detected in the associated Method Blank	
-------------	---	---	--

E Value above quantitation range

- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Q								
nvironmental						OC 3	SUMMARY REP	ORT
Estate				Pol	yaromatic	Hydrocarbons by	y EPA Method 8270	(SIM)
SampType: LC	s		Units: µg/Kg		Prep Date:	11/21/2014	RunNo: 18267	
Batch ID: 94	02				Analysis Date:	11/24/2014	SeqNo: 364432	
Resu	A RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
87.	7 50.0	1,000	0	87.7	61.6	125		
87.	2 50.0	1,000	0	87.2	58.2	129		
87	1 50.0	1,000	0	87.1	56.4	132		
86	0 50.0	1,000	0	86.0	52.2	133		
84	9 50.0	1,000	0	84.9	54	131		
88	5 50.0	1,000	0	88.5	53.4	131		
84	1 50.0	1,000	0	84.1	55.6	128		
88	4 50.0	1,000	0	88.4	51	132		
85.	2 50.0	1,000	0	85.2	48.4	134		
85	1 50.0	1.000	0	85.1	48.6	135		
85	0 50.0	1,000	0	85.0	41.9	136		
88	7 50.0	1,000	0	89.7	51.4	135		
90	6 50.0	1,000	0	90.6	39.7	137		
79	7 50.0	1,000	0	1.61	45.7	138		
88	5 50.0	1,000	0	88.5	40.9	141		
06	1 50.0	1,000	0	90.1	45.4	137		
94	0 50.0	1.000	0	94.0	37.6	140		
87.	2 50.0	1,000	0	87.2	45	134		
45	0	500.0		89.9	42.7	132		
47	0	500.0		93.9	48.8	157		
SampType: ME	BLK		Units: µg/Kg		Prep Date:	11/21/2014	RunNo: 18267	
Batch ID: 94	02				Analysis Date:	11/24/2014	SeqNo: 364433	
Resu	at RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
N	D 50.0							
N	D 50.0							
Z	D 50.0							
the associated Method B	llank	D Dduton wa	ts required			E Value above quantitation r	ange	
reparation of anarysis swi	eeded	J Analyte aci	tected below quantitation and	hits		ND Not detected at the Report	ting Limit	
accepted recovery limits		RL Reporting (Limit			S Spike recovery outside act	cepted recovery limits	

Fremont	ALTERING ALTERNA

Date: 11/24/2014

Work Order:	1411166										T INANA T		E C	1
CLIENT:	Libby Envir	onmental								ני	NIMIA	XY KEF	OKI	
Project:	Havens Est	ate					Po	lyaromatic	: Hydro	carbons by	/ EPA Met	hod 8270	(SIM)	
Sample ID: MB-940	12	SampType:	MBLK			Units: µg/Kg		Prep Date	11/21/2	014	RunNo: 182	67		
Client ID: MBLKS		Batch ID:	9402					Analysis Date	11/24/2	014	SeqNo: 364	433		_
Analyte		æ	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Acenaphthylene			QN	50.0										-
Acenaphthene			QN	50.0										
Fluorene			QN	50.0										
Phenanthrene			QN	50.0										
Anthracene			QN	50.0										
Fluoranthene			QN	50.0										
Pyrene			QN	50.0										
Benz(a)anthracene			QN	50.0										
Chrysene			QN	50.0										
Benzo(b)fluoranthen	8		QN	50.0										
Benzo(k)fluoranthen	8		QN	50.0										
Benzo(a)pyrene			QN	50.0										
Indeno(1,2,3-cd)pyre	ane		QN	50.0										
Dibenz(a,h)anthrace	Пе		QN	50.0										
Benzo(g,h,i)perylene	1		QN	50.0										
Surr: 2-Fluorobiph	henyl		428		500.0		85.7	42.7	132					
Surr: Terphenyl-d	14 (surr)		445		500.0		89.0	48.8	157					
Sample ID: 141116	6-001ADUP	SampType	DUP			Units: µg/Kg-	dry	Prep Date	11/21/2	014	RunNo: 182	57		
Client ID: TP27-2		Batch ID:	9402					Analysis Date	11/24/2	014	SeqNo. 364	584		-
Analyte		u.	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Naphthalene			QN	80.3						0		30		
2-Methylnaphthalene			QN	80.3						0		30		
1-Methylnaphthalene			QN	80.3						0		30		
Acenaphthylene			QN	80.3						0		OE		
Acenaphthene			QN	80.3						0		90		
Fluorene			Q	80.3						0		30		

Page 9 of 13

Spike recovery outside accepted recovery limits Not detected at the Reporting Limit Value above quantitation range

w g 69

Analyte detected below quantitation limits

Reporting Limit

R 7

Dilution was required

0

Holding times for preparation or analysis exceeded Analyte detected in the associated Method Blank

. Iα

Qualifiers:

RPD outside accepted recovery limits

ork Order:	1411166 Libby Envir	Internation								oc o	SUMMAR	Y REP	ORT
oject:	Havens Est	tate					Pol	lyaromatic	: Hydrocal	rbons by	V EPA Meth	od 8270	(NIS)
nple ID: 1411	166-001ADUP	SampType:	DUP			Units: µg/Kg	I-dry	Prep Date:	11/21/2014		RunNo: 1826	-	
nt ID: TP27	-2	Batch ID:	9402					Analysis Date.	11/24/2014		SeqNo: 3645	84	
iyte		Ж	tesult	RL	SPK value	SPK Ref Val	%REC	LowLimit 1	HighLimit RP.	D Ref Val	%RPD	RPDLimit	Qual
nanthrene			QN	80.3						0		30	
Iracene			QN	80.3						0		30	
pranthene			QN	80.3						0		30	
ane			QN	80.3						0		30	
z(a)anthracen	ø		Q	80.3						0		30	
ysene			QN	80.3						0		30	
zo(b)fluoranth	ene		QN	80.3						0		30	
zo(k)fluoranth	ene		QN	80.3						0		30	
zo(a)pyrene			QN	80.3						0		30	
eno(1,2.3-cd)p	yrene		QN	80.3						0		30	
enz(a,h)anthra	Icene		Q	80.3						0		30	
zo(g.h.i)peryle	ane		QN	80.3						0		30	
urr: 2-Fluorob	iphenyl		350		803.2		43.6	42.7	132		0		
urr: Terpheny	I-d14 (surr)		760		803.2		94.6	48.8	157		0		
nple ID: 1411	166-002AMS	SampType:	WS			Units: µg/Kg	-dry	Prep Date:	11/21/2014		RunNo: 1826	2	
nt ID: TP26	1-2	Batch ID:	9402					Analysis Date.	11/24/2014		SeqNo: 3645	85	
ilyte		Я	tesult	RL	SPK value	SPK Ref Val	%REC	LowLimit 1	HighLimit RP	D Ref Val	%RPD	RPDLimit	Qual
ohthalene			1,070	61.3	1.225	0	86.9	42.9	138				
lethylnaphthalt	ane	-	1,180	61.3	1,225	0	96.2	42.8	151				
lethylnaphthal	ane		1,140	61.3	1,225	0	92.7	41.6	148				
naphthylene			1,130	61.3	1,225	0	92.5	32.6	160				
naphthene			1,130	61.3	1,225	0	92.1	46.3	142				
orene			1,160	61.3	1,225	0	95.0	43.4	153				
nanthrene			1,060	61.3	1,225	0	86.4	45.5	140				
hracene			1,160	61.3	1,225	0	94.5	32.6	160				
oranthene			1,080	61.3	1,225	0	88.5	44.6	161				
alifiers: B	Ansiye delected in	I the associated Meth	tod Blank		D Dilution w	painbai se			E Value abov	e quantitation n	ange		
I	Holding times for p	reparation or analysis	c excended		- Analytication	and a find that have a second that have a second se	and the second se		NAME AND ADDRESS				
					in addressed in	DICCICCI OCION COMPUTINION	Spinnin C		ND NOT OBJOCK	ed at the Report	ang Limit		

H	12113
ō	PAGE 1
E	J'EFT
9	South States
LL	

1411166

Work Order:

Date: 11/24/2014

QC SUMMARY REPORT

(SIM)
8270
Method
EPA
by
Hydrocarbons
Polyaromatic

CLIENT:	Libby Envir	ronmental								20	UNINIA	KY KEF	OKI
Project:	Havens Es	tate					Po	lyaromat	tic Hydro	carbons by	EPA Met	thod 8270	(SIM)
Sample ID: 14111	66-002AMS	SampType:	MS			Units: µg/Kg	H-dry	Prep Da	te: 11/21/2	014	RunNo: 18	267	
Client ID: TP28-	2	Batch ID:	9402					Analysis Da	te: 11/24/2	014	SeqNo: 36	4585	
Analyte		u	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyrene			1,090	61.3	1,225	0	89.1	48.3	158				
Benz(a)anthracene	1025	11	1,100	61.3	1,225	0	89.6	57.5	169				
Chrysene		25	1,190	61.3	1,225	0	97.0	45.2	146				
Benzo(b)fluoranthe	ne		1,270	61.3	1,225	0	104	42.2	168				
Benzo(k)fluoranthe	ne		1,010	61.3	1,225	0	82.4	48	161				
Benzo(a)pyrene			1,200	61.3	1,225	0	7.78	34.4	179				
Indeno(1,2,3-cd)py	rene		1,210	61.3	1,225	0	99.0	41.1	165				
Dibenz(a,h)anthrac	ene		1,260	61.3	1,225	0	103	38.1	166				
Benzo(g,h,i)perylen	je je		1,160	61.3	1,225	0	95.1	45.6	157				
Surr: 2-Fluorobip	henyl		377		612.7		61.6	42.7	132				
Surr: Terphenyl-	d14 (surr)		595		612.7		97.0	48.8	157				

Analyte detected in the associated Method Bitank 8 Qualifiers:

- Holding times for preparation or analysis exceeded I ¤
 - RPD outside accepted recovery limits
- Dilution was required 0 7 2
- Analyte detected below quantitation limits Reporting Limit
- Spike recovery outside accepted recovery limits Not detected at the Reporting Limit E Value shove quantitation range ND Not detected at the Reporting Lim S Spike recovery outside accepted

Sample Log-In Check List

C	lient Name:	LIBBY	Work O	der Nurr	nber: 1411166	i	
L	ogged by:	Erica Silva	Date Re	ceived:	11/17/20	014 3:15:00 PM	
Chi	ain of Cust	ody			1000 m		
1.	Is Chain of C	ustody complete?	Yes	V	No 🗌	Not Present	
2.	How was the	sample delivered?	UPS				
Loc	<u>In</u>						
3.	Coolers are p	resent?	Yes		No 🗌	NA	
4.	Shipping con	tainer/cooler in good condition?	Yes	•	No 🗌		
5.	Custody seal	s intact on shipping container/cooler?	Yes		No 🗹	Not Required	
6.	Was an atten	npt made to cool the samples?	Yes	$\boldsymbol{\boldsymbol{\forall}}$	No 🗌	NA [
7.	Were all cool	ers received at a temperature of >0°C to 10.0°C	Yes		No 🗌	NA [
8	Sample(s) in	proper container(s)?	Yes	-	No 🗌		
9.	Sufficient san	nple volume for indicated test(s)?	Yes		No 🗔		
10	Are samples	properly preserved?	Yes		No 🗌		
11	Was preserva	ative added to bottles?	Yes		No 🗹	NA [
12	Is the headsp	ace in the VOA vials?	Yes		No 🗌	NA 5	1
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes	2	No 🗌		
14.	Does paperw	ork match bottle labels?	Yes		No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes	2	No 🗆		
16.	Is it clear what	t analyses were requested?	Yes	\checkmark	No 🗆		
17.	Were all hold	ing times able to be met?	Yes	~	No 🗌		
Spe	cial Handl	ing (if applicable)					
18.	Was client no	tified of all discrepancies with this order?	Yes		No 🗌	NA 🖻	
	Person	Notified: D	ate:				
	By Who	m: V	a: 📋 eMai		hone 🗌 Fax	In Person	
	Regardi	ng: J					
	Client In	structions:					

Item Information

Item #	Temp °C	Condition
Cooler	9.2	Good
Sample	7.1	Good

TAT 24HR 48HR 5-DAY		Coolarbers	the second secon	And the Art of the Art	And And And			a statute a statute	And the second s
	CAN NO	Total Number of	Date Time	sy.	Rocowee I		al Intie	060	Reproduction by
	V NI NIA	Country and							
	YN	Good Condition?	Date Time	V 13	Received I		11:0 C	11314	Recognished by Jaka I
Remarks	teceipt	Sample R	Vi limit		V.W.		-		C C A
			Wester Winner		Distances	-	Times	1	17
						t	T	1	9,
						T			ŝ
						T			4
								-	13
									12
									-* -*
									0
									9
									80
									7
									6
									5
					+	*	11:15	2	4 TP 30-2
							11:10	2	3 To 29.2
						_	11.00	N	2 TP 28.2
			X		JAZ	Soit	10:51	Z	2-EZ41 1
Field Notes	CCAN S LIGHTS	44 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27. 37 27. 37 27. 37 28. 37 29. 47 29. 47	ner Lacking	e Contai Type	Sampi Type	Time	Depth	Sample Numper
			mail		C				Client Project #
collection: 11.11.14	Date of C		Collector:				Fax:		Phone
E. OINMPIAWA	City, Stat		ocation		Zip.		State:		City:
		ESTATE	Project Name: HAVENS					Se .	Address Str. ABON
		* Devento	Project Manager: JAYM	1.17			NTAL	RENTI	Client: LIBBY ENV
- of -	Page:)ate: 11, 13, 14	In		2110	360-352-	Ph Fax	4139 Libby Road NE Olympia, WA 98506
www.LibbyEnvironmental.com	1100	Ē	Custody Record	Chain of			Inc.	nental	Libby Environn
3									

Z.			DRA	GON	ANA	Ronlee LA, Oly (360) 866	MALE L	ABORATORY	35.
				Hazardous	Waste, Micro Mob	biology, NPDE	S. Potable an Ital Laboratory	id Non-potable Water y	
Libby Environmental, Inc.								Project Name:	Havens Estate
4139 Libby Road NE								Project No.:	L141111-2
Olympia, WA 98506								P.O. No.:	n/a
								Date Collected:	11/11/2014, 10:54 to 11:15
Sampled By: Unknown								Date Received:	11/20/2014; 12:17
								Temperature Received (°C):	n/a
DAL Project No.: 141120-0	5							Report Date:	11/25/2014
Prenaration Method-	115 EDA 35500								
Analytical Method:	US EPA 80824							Matrix	Soil
Date Prepared:	11/20/2014							Reporting Limits:	Slandard
Date Analyzed:	11/20/2014							Injection Volume:	2 uL
Analyst	TM							Instrument ID:	Agilent 9074
Data Reviewed By:	2.5							Lab Data File:	14112001
					AN	PCB's	S SECTION TO		
Sample Identification	CAS	MRL	Method Blank	TP 27-2	TP 28-2	TP 29-2	TP 30-2	TP 30-2 Dup.	
PCB Aroclor 1016	12674-11-2	0.50	ы	nd	nd	B	nd	nd	
PCB Aroclor 1221	1104-28-2	0.50	nd	nd	nd	nd	nd	nd	
PCB Aroclor 1232	11141-16-5	0.50	Ы	nd	Ы	nd	nd	nd	
PCB Aroclor 1242	53469-21-9	0.50	Ы	nd	Ы	Ы	Ы	nd	
PCB Aroclor 1248	12672-29-6	0.50	nd	nd	Ы	Ы	Ы	nd	
PCB Aroclor 1254	11097-69-1	0.50	Ы	nd	Ы	nd	Ы	nd	
PCB Aroclor 1260	11096-82-5	0.50	Ы	n	a	đ	Я	nd	
Percent Solids (%)				63.2	73.4	64.4	77.1	85.5	
Dilution Factor				10	10	10	10	10	
Data Flags									

L141111-2 page 1 of 2

Z.			DRA	GON	ANA	Ronlee (n, Oh (360) 866	YMPIA, WA 98	ABOF	RATO	NRY			S.	- r
				Hazardous	Waste, Micro Mob	biology, NPDE tie Environme	ES, Potable ar ntal Laborator	id Non-potable y	Water				1	
Libby Environmental, Inc. DAL Project No.: 141120-0	5							Pro	roject Name:	Havens Es L141111-2	late			
					QUAL	PCB'	s OL RESULT	ŝ						
					SUP	ROGATE R	RECOVERY							
Surrogale	Limits (%)		Method	TP 27-2	TP 28-2	TP 29-2	TP 30-2	TP 30-2						
TCMX	30-150		97.8	105	102	102	105	104						
	00-100		201	1 AROS		IU4		TUT	n					
QC Balch ID: 141120-PCB				MS	/MSD Samp	le ID: 14112	0-PCB MS/N	ISD				LCS Samp	ole ID: 14112	0-PCB LCS
	MS/MSD Limits	MS/MSD/ LCS Level	Sample Conc.	MS	MS	MSD	MSD	MS/MSD RPD		LICS	LCS	LCS	LCSD	LCSD
Analyte	(%)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery	(mg/kg)	Recovery	Limits	RPD	(%)	(mg/kg)	Recovery	(mg/kg)	Recovery
Arochlor 1260	29-135	400	23	363	90.8%	351	87.8%	s 15%	1.7	50-120	423	106%	362	90.4%
WA-DOE-Laboratory Certifi "nd" indicates the analyte w "n/a" indicates not applicabl Sample results based on dr	cation No.: C as not detec le y weight,	890 led at or abov	e the listed	Method Repo	orting Limit.									
Comments and Explanation	is: None.													

L141111-2 page 2 of 2

Image: Price Source	TAT: 24HR 48HR	ainers 0	r of Conta	lumber	Fotal N	-	cout of h	nmed by a	be determ	v Aeros to	die storne	of reasons	n costs av	ction including cou	the costs of colle	fied of sand	to pay, Clent	nere and/or feium	LAUSE In the event of detaut of pay	EGAL ACTION C
Image: France State: Mark The source Mark <td></td> <td></td> <td></td> <td>ntact?</td> <td>Seals I</td> <td>-</td> <td>Time</td> <td>Date /</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>sived by:</td> <td>Rece</td> <td></td> <td>Time</td> <td>Date /</td> <td>d by:</td> <td>Relinquishe</td>				ntact?	Seals I	-	Time	Date /						sived by:	Rece		Time	Date /	d by:	Relinquishe
Image: Price and sectors Pricode and sectors Price and sectors Price	STANDATE	-	on?	Conditio	Good C	0.10		Date						and ut.	- parte		1 1110		. to a	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	EIM					00	13.0	-	1	-				the A	Ban	0	Time	CILLI	d hv:	Relinquishe
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Remarks:		eceipt:	ple R	Samp		Time	Date /	-	-				sived by:	Reco	2	Time	Date /	d by:	Relinquishe
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			_																	17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																				16
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																				15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																				14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																				13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_															12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																	X			11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1																	10
Information of the source																				9
Important Ph: 380-352-2110 Date: 11/11/14 Page: 1 of 6 Fax: 380-352-4154 Date: 11/11/14 Page: 1 of A State: W/ Zip: 4/8/4/01 Project Manager: Max Wills Project Manager: Max Wills Project Manager: Max Wills A State: W/ Zip: 4/8/4/01 Collector: $haz 1 + haw Mis = Fslate:$ Collecto				_																8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																				7
Itel Ph: 300-352-2110 Date: $ Page: I of String State: Page: I of Project Manager: Max International State: Max Internate: Max $				_		_														6
IE Ph: 360-352-210 Date: $ $ Page: I of State: Value Zip: Page: I of State: Value Zip: Page: I of Project Manager: Max Dite: IIIIII Page: I of Project Manager: Max Dite: IIIIIII Page: I of Project Manager: Max Dite: IIIIIII Page: I of Project Manager: Max Location: Hi and this Fish te Dite: I of Ups: Tax: 753-4171 - #SE446 Collector: Ha this Fish te Dite: Oils Ups: Tax: Tax: Tax: Tax: Tax: Dite: Oils Dite: I of Ups: Time Type Type Sample Container Sample				_																თ
Itel Ph: 380-352-110 Date: $ 1 $ Page: 1 of State: Value Zip: 48400 Project Manager: Max Max List Page: 1 of Value State: Value Zip: 48400 Project Manager: Max List Page: 1 of Value State: Value Zip: 48400 Project Manager: Max List Page: 1 of Value State: Value Zip: 48400 Project Manager: Max List Page: 1 of Value Fax: 253-477 - 45400 Container Hi 432400 Fall Hi This Date Oligit			+	+	+	F		+			t			t	1	F	11:15	2	20-2	4 TP
IE Ph: 360-352-2110 Date: II/II/I Page: I of 6 Fax: 360-352-4154 Date: II/II/I Page: I of State: UN Zip: 48-40-51 Container Froject Manager: $Ha \times III/I$ Page: I of Y1 x x x x x x x x x x x x x x x x x x x					-	-											01:10	2	29-2	3 + 8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-			-			-					-	1:00	2	18-2	2 TP
IE Ph: 360-352-2110 Date: 11/11/1 Page: 1 of 6 Fax: 360-352-2113 Date: 11/11/1 Page: 1 of State: State: UN Zip: 4/64/051 Project Manager: Max U/15 Project Name: Hawrits FSIAHC Cotation: 4/1 43, 4/1-5 Date: 01-1/17 Cotation: 1/1/1 2441 Cotation: 4/1 43, 4/1-5 Date: 01-1/17 Cotation: 4/1 43, 4/1-5 Date: 01-1/17 Cotation: 1/1/1 2441 Cotation: Fax: 35, 4/17 -0.56, 4/6 Cotation: 4/1 43, 4/1-5 Date: 01-1/17 Cotation: 1/1/1 2441 Cotation: Fax: 35, 4/17 -0.56, 4/6 Cotation: 4/1 43, 4/1-5			X	X	X	X		X			X			1		Soil	10:54	2-	27-2	1 TP
IEPh: 360-352-2110Date: $11/11/14$ Page: 1of6Fax: 360-352-4154Date: $11/11/14$ Page: 1of1.SG 1 - MOREFax: 360-352-4154Project Manager: Max tuiltsPage: 1of1.SG 1 - MOREState: WN Zip: 984091Project Name: Haven's FisheleProject Name: Haven's Fishele11.AState: WN Zip: 984091Location: 411 93.4 Ar- ECity, State: 01-10.51.AState: WN Zip: 984091Location: 411 93.4 Ar- ECity, State: 01-10.51.AState: WN Zip: 984091Location: 411 93.4 Ar- ECity, State: 01-10.51.AState: WN Zip: 984091Location: 411 93.4 Ar- ECity, State: 01-10.51.AState: WN Zip: 984091Location: 411 93.4 Ar- ECity, State: 01-10.51.AState: WN Zip: 984091Location: 411 93.4 Ar- ECity, State: 01-10.51.AState: WN Zip: 984091Location: 411 93.4 Ar- ECity, State: 01-10.51.AState: WN Zip: 984091Location: 411 93.4 Ar- ECity, State: 01-10.52491-001EFax: 753-477-85846Email: E4/10.1050/05in501-nd-LeNo.5	Field Notes		ATTCY S 4	5. 63. CE	PR BY	Ma Providence	MA PACO	AN AT A CON	142 102 132	8888	10,000	10000		ontainer Type	e Co	Sami	Time	Depth	The Number	San N3.
IE Ph: 360-352-2110 Date: $11/11/14$ Page: 1/01/05 www.Lubyen 6 Fax: 360-352-4154 Date: $11/11/14$ Page: 1/01/05 Project Manager: $Ma \times 100/15$ Project Name: $Ha \sqrt{115}$ Page: 1/01/05 Image: 1/01/05 </td <td>yte .</td> <td>ole</td> <td>n-nd</td> <td>nSc</td> <td>YObi</td> <td>0</td> <td>10.5</td> <td>ha</td> <td>K+</td> <td></td> <td>Emai</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>41</td> <td>001F</td> <td>ject#2491-</td> <td>Client Pro</td>	yte .	ole	n-nd	nSc	YObi	0	10.5	ha	K+		Emai						41	001F	ject#2491-	Client Pro
IE Ph: 360-352-2110 Date: $11/11/14$ Page: 1/01/15 Module Project Manager: $Ma \times 10^{1/15}$ Module Image: 1/01/15 Module Image: 1/01/15 Image: 1/01/15 <td>Collection: 11/11/</td> <td>Date of (</td> <td></td> <td>5</td> <td>HCI</td> <td>110</td> <td>-</td> <td>R</td> <td>-</td> <td>ctor:</td> <td>Colle</td> <td></td> <td>6</td> <td>0584</td> <td>477 -</td> <td>753-</td> <td>Fax:</td> <td>211</td> <td>153-475-7</td> <td>hone:</td>	Collection: 11/11/	Date of (5	HCI	110	-	R	-	ctor:	Colle		6	0584	477 -	753-	Fax:	211	153-475-7	hone:
IE Ph: 360-352-2110 Date: $11/11/14$ Page: I of 6 Fax: 360-352-4154 Date: $11/11/14$ Page: I of 1SG1 - NICK Project Manager: Max I/I/IF Page: I of S Muscon State Project Name: Haven's Fs/ale Project Name: Page: I of	te: Olyanac	City, Sta		M	the	21	32	0	4	ion:	Locat	• • • •	-	1840	Zip: C	WA	State:		accord	City:
IE Ph: 360-352-2110 Date: 11/11/14 Page: / of 6 Fax: 360-352-4154 Date: 11/11/14 Page: / of 1.Sci 1. Noble Project Manager: Max Iui/I5			0	1ate	TS	IS	ver	Ha	Ime:	ct Na	Proje					P	Str	e st	3011 S Hus	Address:
IE Ph: 360-352-2110 6 Fax: 360-352-4154 Date: 11/11/14 Page: / of				15	6	F	Mo	er.	anag	ct Ma	Proje						×	Cloth	Obulisci I - N	Client:
	/ of	Page:						4	11/1	=	Date:					2110 4154	360-352-360-352-	Ph: C	7 Road NE VA 98506	1139 Libb Dlympia, V
ironmental Inc Chain of Custody Decord	www.LibbyEn					ord	eco	R	ody	Isto	CL.	101	hair	C			Inc.	ental,	Environmo	Libby

APPENDIX E

4139 Libby Road NE • Olympia, WA 98506-2518

October 17, 2014

Max Wills Robinson Noble 17625 130th Avenue NE, Suite 102 Woodinville, WA 98072

Dear Mr. Wills:

Please find enclosed the analytical data report for the Havens Estate Project located in Olympia, Washington. Water samples were analyzed for Total Metals Arsenic, Cadmium, Chromium, Lead, Zinc and Copper by EPA Method 7010 Series and Mercury by EPA Method 7471, Total Nickel by EPA Method 200.7 on October 12, 14 & 15, 2014.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work has been sent to Alan Wertjes.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sharly

Sherry L. Chilcutt Lab Manager / Senior Chemist Libby Environmental, Inc.

Phone (360) 352-2110 • Fax (360) 352-4154 • libbyenv@aol.com

www.LibbyEnvironmental.com

HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141009-1 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Metals in Water by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	µg/L	μg/L	µg/L	μg/L
Method Blank	10/12/14	nd	nd	nd	nd
MW-1	10/12/14	nd	nd	nd	nd
MW-1 Dup	10/12/14	nd	nd	nd	nd
Practical Quantita	tion Limit	5.0	0.5	5.0	3.0

"nd" Indicates not detected at the listed detection limits.

HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141009-1 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Sample Number	Date Analyzed	Lead (% Recovery)	Cadmium (% Recovery)	Chromium (% Recovery)	Arsenic (% Recovery)
LCS	10/12/14	119%	97%	92%	84%
MW-1 MS	10/12/14	111%	81%	88%	87%
MW-1 MSD	10/12/14	109%	84%	86%	87%
RPD	10/12/14	2%	4%	2%	0%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141009-1 Client Project # 2491-001F

Analyses of Total Mercury in Water by EPA Method 7470

Sample	Date	Mercury
Number	Analyzed	μg/L
Method Blank	10/15/14	nd
MW-1	10/15/14	nd
MW-1 Dup	10/15/14	nd
Practical Quantitation Limit		0.5

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Ramses Osorio

HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141009-1 Client Project # 2491-001F

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	10/15/14	105%
MW-1 MS	10/15/14	96%
MW-1 MSD	10/15/14	96%
RPD	10/15/14	0%

QA/QC for Mercury by EPA Method 7470

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141009-1 Client Project # 2491-001F

Analyses of Total Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	μg/L	μg/L
Method Blank	10/12/14	nd	nd
MW-1	10/12/14	nd	47.9
MW-1 Dup	10/12/14	nd	52.3
Practical Quantitation Limit		5.0	5.0

"nd" Indicates not detected at the listed detection limits.

HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L141009-1 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	10/12/14	105%	117%
MW-1 MS	10/12/14	106%	94%
MW-1 MSD	10/12/14	103%	106%
RPD	10/12/14	3%	11%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

SPECTRA Laboratories

2221 Ross Way * Tacoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 * www.spectra-lab.com

10/14/2014

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Jamie Deyman Project:Havens EstateClient ID:MW-1Sample Matrix:WaterDate Sampled:10/10/2014Date Received:10/13/2014Spectra Project:2014100327Spectra Number:1

Analyte	Result	Units	Method
Nickel	< 0.015	mg/L	EPA 200.7

ICP analysis: 10-14-14 SCJ

SPECTRA LABORATORIES

in.

Steve Hibbs, Laboratory Manager
2221 Ross Way * Tacoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 * www.spectra-lab.com

10/14/2014

Libby Environmental, Inc 4139 Libby Rd. NE Olympia, WA 98506 Units: mg/L Spectra Project: 2014100327 Applies to Spectra #'s 1

QUALITY CONTROL RESULTS ICP Metals SW846 6010B - Water/Liquid

	1	Method	Blank		
Date Digested:	10/14/2014		Date Analyzed:	10/14/2014	
		Element	Result		
		Nicke!	< 0.015		

			Blank Spike (LCS)			
Date Digested:	10/14/2014			Date Analy	zed:	10/14/2014
			Spike	LCS	LCS	
		Element	Added	Conc.	%Rec	
		Nickel	1.0	1.005	100.5	

ICS	Recourse	limite	80.1	2084
LAS	RECOVELY	muus	00-1	207a

	Ma	atrix Spike/	Matrix Spi	ke Duplic	ate (MS/MSI))		
Date Digested: Sample Spiked:	10/14/2014 2014100327-1				Date Analy	red:	10/14/2014	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Nickel		0.000	1.0	1.056	105.6	1.065	106.5	0.8

Recovery Limits 75-125% RPD Limit 20

Spectra Laboratories

Steven G. Hibbs

Laboratory Manager

TAT: 24HR 48HR 5-DAY	slet	er of Contain	Total Numbe	Adlan	oo a kig pawa	to an outpot	1 TOG, ABLONDE AND ADD ADD ADD ADD ADD ADD ADD ADD ADD	of thos lense fourio	ה המולאון לא הלוגר	greeth pay the o	ow to pay, Chord o	eymont under feite	Los, ACTION CLAUSE: In the event of orchoir of p	2
)		2	Seals Intact	me	Date / Ti			by:	Received		/ Time	Date	an quistion by.	é
	-	non.	Cold?						-				Since and he	
	-		Cond Cond	me of	Dale / Ti	-	11	by:	Received		/ Time	Date	elinquished by:	Re
Remarks:		Receipt:	Sample I	2/9 2/9	Co/	4	10/13	N	Tom	60	14/2	10.10	Kappa	
				F	-				1		Time	Date	alinguished by:	장:
				t	╞				T				7	11
	+			+	+				1				6	6
	+			+	+		-	-					5	in
	+		-	+	+			_					4	-
	+	-		+	+			_					3	10
	+	+		+	-			_					2	12
	+			+	+			_						1-3
	+			+	+			-					0	10
	-	+		+	-		_						9	0
	+			+	+			-					8	m
	+	-		+	+								7	-
	+	-		+	-			-					6	0
	+	-	-	+	+			-					5	(m
	+	-		+	+			-					4	~
	+			+	-			_					S	60
	+	7		+	-	1		4	×				2	
1 ION MOID	\downarrow	N		ť	-			T	Pal	FO	11:30		1 MW-1	
Flaid Notas	F: 38 					NA COLOR	(27-812) (27-81) (27-81) (27-8	ainer	a Cont	Sample	Time	Depth	Sample Number	
							Email:						Stent Project #	To
Collection: 10.9.14	Date of (a	Collecto				Fax:		hone:	U O
ate:	City, Sta					2	Location		Zip:		State:		aty:	10
		ALE	S EST	NEN	HA	Name	Project I						Iddress: SEC AROUG	Þ
	AN	DEYM	MIE	JA	jer.	Mana	Project I			HL I	NENTR	PONA	Hent: LIBBY EVVI	0
l of I	Page:	. 11-	5		.14	0.10	Date: 1			-2110 -4154	360-352	Ph: Fax	i se Lioby Road NE Nympia, WA 98506	O F
www.LibbyEnvironmental.com	227	FIN	00 b	ecor	y R	tod	n of Cus	Chai			, Inc.	nenta	Libby Environn	
														1

EGAL ACTION CLAUSE write overviol definite of a		lelinguished by:	onnyushida by,	alinnichad hu	Relinquished by:	17	16	15	14	13	12	1	10	9	8	7	6	J	4	ω	2	1 MW-1	Sample Number	lient Project # 2	hone: 253-475-	City: Tacana	Address: 2011 S H	client: K-abinson	139 Libby Road NE Dlympia, WA 98506	LINDY LIVINGIN
dyment and/or failure to pay. Close age		Date / Time	Date / Time	10-9.14/1240	Date / Time																	11:36	Depth Time	491-001F	7711 Fax: 2	State:	usan st s	Noble	Ph: 360-352-2 Fax: 360-352-4	וכוונמו, וווכ.
res to pay the costs of collection including court.	. (a second of	Received by:	Received by:	la ta	Received by:														Prioch	HNJ03	poly, 1	Sun Sunpres	Sample Container Type Type		123-472-580	WAY ZID: 42404	to A		110 154	0
costs and revealed attacky frees to be every			0	my 2 10.9.10	2																		102 002 100 100 001 00 102 002 002 100 00 102 002 002 100 00 102 002 002 00 102 002 00 102 00 10	Email: 1244	Le Collector:	Location: 4	Project Name:	Project Manag	Date: 10	a
And by a part of any or a going balance	Total Numb	Date / Time	Date / Time Good Cond	0421/1	Date / Time Sample																		ANTIOL OF CAL	enus @ roban sa	KARI THIAMA	olympia	HAVENS E	er. MAX will	9-14	y incluin
Distribution	17 NIA NIA TI	10.414	lition?		Receipt: Re																	××	Bar Cross And Parts	2 - noble . con	S Date of Coll	City, State:	state	2	Page:	
tion: White Lab. Yellow - File, Pile	AT. SAHD ASHD			E/M	marks:																		Field Notes		ection: 10 - 9-1	Olyandia. La			/ of /	www.LippyEnvironm

4139 Libby Road NE • Olympia, WA 98506-2518

January 16, 2015

Max Wills Robinson Noble 17625 130th Avenue NE, Suite 102 Woodinville, WA 98072

Dear Mr. Wills:

Please find enclosed the analytical data report for the Havens Estate Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Kurt Johnson Senior Chemist Libby Environmental, Inc.

Phone (360) 352-2110 • Fax (360) 352-4154 • libbyenv@aol.com

www.LibbyEnvironmental.com

HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L150108-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Metals in Water by EPA Method 7010 Series

Sample Number	Date Analyzed	Lead μg/L	Cadmium µg/L	Chromium µg/L	Arsenic µg/L
Method Blank	1/11/15	nd	nd	nd	nd
MW-1	1/11/15	nd	nd	nd	nd
MW-1 Dup	1/11/15	nd	nd	nd	nd
Practical Quantita	tion Limit	5.0	0.5	5.0	3.0

"nd" Indicates not detected at the listed detection limits.

HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L150108-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Sample Number	Date Analyzed	Lead (% Recovery)	Cadmium (% Recovery)	Chromium (% Recovery)	Arsenic (% Recovery)
LCS	1/11/15	91%	103%	92%	113%
MW-1 MS	1/11/15	106%	97%	90%	96%
MW-1 MSD	1/11/15	100%	95%	90%	101%
RPD	1/11/15	6%	2%	0%	5%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L150108-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Mercury in Water by EPA Method 7470

Sample	Date	Mercury
Number	Analyzed	μg/L
Method Blank	1/15/15	nd
MW-1	1/15/15	nd
MW-1 Dup	1/15/15	nd
Practical Quantitation Limit		0.5

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Ramses Osorio

HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L150108-2 Client Project # 2491-001F

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	1/15/15	91%
MW-1 MS	1/15/15	91%
MW-1 MSD	1/15/15	91%
RPD	1/15/15	0%

QA/QC for Mercury by EPA Method 7470

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Ramses Osorio

HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L150108-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	μg/L	µg/L
Method Blank	1/11/15	nd	nd
MW-1	1/11/15	nd	nd
MW-1 Dup	1/11/15	nd	nd
Practical Quantitation Limit		5.0	5.0

"nd" Indicates not detected at the listed detection limits.

HAVENS ESTATE PROJECT Robinson Noble Olympia, Washington Libby Project # L150108-2 Client Project # 2491-001F

QA/QC for Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	1/11/15	110%	115%
MW-1 MS	1/11/15	89%	111%
MW-1 MSD	1/11/15	86%	115%
RPD	1/11/15	3%	4%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

2221 Ross Way * Tacoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 * www.spectra-lab.com

01/13/2015

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Jamie Deyman Project:HavensClient ID:MW-1Sample Matrix:WaterDate Sampled:01/08/2015Date Received:01/09/2015Spectra Project:2015010192Spectra Number:1

Analyte	Result	Units	Method
Nickel	< 0.5	μg/L	EPA 200.8

ICPMS analysis: 1-13-15 SCJ

SPECTRA LABORATORIES

e ...

Steve Hibbs, Laboratory Manager a6/scj

2221 Ross Way * Tacoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 * www.spectra-lab.com

January 13, 2015

Libby Environmental, Inc.	Units:	ug/L
4139 Libby Rd NE	Spectra Project:	2015010192
Olympia, WA 98506	Applies to Spectra #'s	1

QUALITY CONTROL RESULTS

		-	Descent	Hank			
		aborator	y Reagent E	мапк	00.0240		
Date Digested: 1/13/2015				Date Anal	yzed:	1/13/2015	
	Element		CAS#	. a	Result	-	
	Nickel		7439-98-7		< 0.5		
	Labo	oratory Fo	ortified Blaz	nk (LFB)			
Date Digested: 1/13/2015				Date Anal	yzed:	1/13/2015	
			Spike	LCS	LCS		
	Element		Added	Conc.	%Rec		
	Nickel		100.0	97.61	97.6	-	
LCS Recovery limits 85-115	%						
	Matrix Spik	e/Matrix	Spike Dupli	icate (MS/	MSD)		
Date Digested: 1/13/2015				Date Anal	yzed:	1/13/2015	
Sample Spiked 2015010192	-1						
	Sample	Spike	MS	MS	MSD	MSD	
				8/ 8	Cone	0/Dag	PPD
Element	Conc.	Conc.	Conc.	%Rec	Cone	76ACC	Krb

Recovery Limits 70-130%

RPD Limit 20

SPECTRA LABORATORIES

Steven G. Hibbs

Laboratory Manager

TAT: 24HR 48HR 5-DAY	N	Total Number of Containers	Date / Time		Received by:	much s for some share co	/ Time	Date of payment and/or fail	Reinquished by: Leav. Action clause in the court of decision
Enn	N N/A	Seals Intact? Y							
インフ	Y N	Good Condition?	Ind ind	() IN ALL	Received by:		Time	1. 7. 15 Date	Relinquished by
Remarks:	eceipt	Sample R	Date / Time	X. A.	Repeived by:		Time	Date	Reinquispector:
								-	17
									16
									15
									14
									13
									12
									11
									10
									9
									8
									7
									6
									CT.
									4
results.									S
Dending total	_				,				2
Hold diss	X				Paly	Hza	1245		1 (nw-1
Field Notes	COX Statistics	Stream Contraction of the second	CANALOUS OF CONTRACTOR OF CONT	ACC GRANTING CAL	Container	Sample Type	Time	Depth	Sample Number
		1111	111	Email:					Client Project #
silection 1-8-15	Date of Co			Collector:			Fax:		Phone:
· Olympic, WA	City, State			Location:	ip:	2	State:		City:
		vens '	me: Hay	Project Na		ve)	ab	(see	Address:
7	Chilles	Sherry	inager:	Project Ma	- the	neutr	Wiron	11	client: Libby
l of	Page:		1-8-15	Date:		2110 4154	360-352-	Ph: Fax	4139 Libby Road NE Olympia, WA 98506
www.LibbyEnvironmental.com		14	ody Record	nain of Custo	C		Inc.	mental,	Libby Environ
			11	51010Kn107					

LEGAL ACTION CLAUSE: In the event of dutaut	Relinquished by:		Keiinquisned by:	1 Clar	Relinquished by:	17	16	15	14	13	12	11	10	9	8	7	6	G	4	3	2	1 110-1	Sample Number	Client Project # 249	Phone: 253 175 -	City: tarcance	Address: 2105 5 (Client: Rubinsan /	4139 Libby Road NE Olympia, WA 98506	Libby Environ
of payment and/or fallore to pay. Client a	Date / Time		Date / Time	1-8-12/1200	Date / Time																	12:15	Depth Time	I- OGIE	77/11 Fax:	State: L	: struct	Vote.	Ph: 360-352- Fax: 360-352-	nental, Inc.
troos to pay the costs of collection including cox	Received by:		Received by:	2 m 2	Received by:														0	1120	EDINH 1+	HEO LUNDER	Sample Container Type Type		252-472-056	NR Zip: 98402			2110 4154	0
int costs and reasonable attorney level to be determine			-	T 1-8-15	0																		A OS ANNON, ST ANNON, ST	Email: KH	-16 Collector: K	Location:4//	Project Name:	Project Manage	Date: 1-8	hain of Custody
d by a cout of law.	ate / Time Total Nun Contair	Seals Inta	ate / Time Temp.	1300 Good Con	ate / Time Sal																		Control Of Control Con	anas 6 1 dans	Trunds	26 publication	Havens	r: MAX Lulls	- 15	Record
Die	nber of 2	ICT? Y N NIA	1.4 °C	ndition? (Y) N	mple Receipt				1													X	a ecentral and a construction of the construct	a noble ca	Date of C	City, State			Page:	
Industrian Within 1 at Vallour Die Dat Outstand	TAT: 24HR 48HR 5-DAY)		EIN /	Remarks:					Y												Hold discolupo	Field Notes	1-1 WXal	ollection: 1- 8-15	: alumpic lut			/ of /	www.LibbyEnvironmental.com

4139 Libby Road NE • Olympia, WA 98506-2518

May 27, 2015

Max Wills Robinson Noble 17625 130th Avenue NE, Suite 102 Woodinville, WA 98072

Dear Mr. Wills:

Please find enclosed the analytical data report for the Wertjes Havens Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Kurt Johnson Senior Chemist Libby Environmental, Inc.

Phone (360) 352-2110 • Fax (360) 352-4154 • libbyenv@aol.com

www.LibbyEnvironmental.com

WERTJES HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L150505-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Metals in Water by EPA Method 7010 Series

Sample Number	Date Analyzed	Lead µg/L	Cadmium μg/L	Chromium µg/L	Arsenic µg/L
Method Blank	5/10/15	nd	nd	nd	nd
MW-1	5/10/15	nd	nd	nd	nd
MW-1 Dup	5/10/15	nd	nd	nd	nd
Practical Quantita	tion Limit	5.0	0.5	5.0	3.0

"nd" Indicates not detected at the listed detection limits.

WERTJES HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L150505-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Sample Number	Date Analyzed	Lead (% Recovery)	Cadmium (% Recovery)	Chromium (% Recovery)	Arsenic (% Recovery)
LCS	5/10/15	102%	87%	83%	99%
MW-1 MS	5/10/15	117%	83%	81%	120%
MW-1 MSD	5/10/15	111%	84%	84%	114%
RPD	5/10/15	5%	1%	4%	5%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

WERTJES HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L150505-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Mercury in Water by EPA Method 7470

Sample	Date	Mercury
Number	Analyzed	μg/L
Method Blank	5/12/15	nd
MW-1	5/12/15	nd
MW-1 Dup	5/12/15	nd
Practical Quantitation Limit		0.5

"nd" Indicates not detected at the listed detection limits.

WERTJES HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L150505-2 Client Project # 2491-001F

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	5/12/15	106%
MW-1 MS	5/12/15	97%
MW-1 MSD	5/12/15	111%
RPD	5/12/15	13%

QA/QC for Mercury by EPA Method 7470

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

WERTJES HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L150505-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	μg/L	μg/L
Method Blank	5/10/15	nd	nd
MW-1	5/10/15	nd	5.7
MW-1 Dup	5/10/15	nd	nd
Practical Quantitation Limit		5.0	5.0

"nd" Indicates not detected at the listed detection limits.

WERTJES HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L150505-2 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Sample Number	Date Analyzed	Copper (% Recovery)	Zinc (% Recovery)
LCS	5/10/15	117%	92%
MW-1 MS	5/10/15	111%	105%
MW-1 MSD	5/10/15	108%	111%
RPD	5/10/15	3%	6%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

2221 Ross Way * Tacoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 * www.spectra-lab.com

05/11/2015

	Project:	Wertjes Havens
	Client ID:	MW-1
Libby Environmental, Inc.	Sample Matrix:	Water
4139 Libby Rd NE	Date Sampled:	05/05/2015
Olympia, WA 98506	Date Received:	05/07/2015
Attn: Jamie Deyman	Spectra Project:	2015050160
	Spectra Number:	1

Analyte	Result	Units	Method
Nickel	< 0.015	mg/L	EPA 200.7

ICP analysis: 5-11-15 SCJ

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager

2221 Ross Way * Tacoma, WA 98421 * (253) 273 4850

• Fax (25

Fax (253) 572-9838 * www.spectra-lab.com

May 11, 2015

Libby Environmental, Inc. Units: mg/L 4139 Libby Rd NE Spectra Project: 2015050160 Olympia, WA 98506 Applies to Spectra #'s 1 QUALITY CONTROL RESULTS ICP Metals - EPA Method 200.7 - Water Laboratory Reagent Blank (LRB) Date Digested: 5/11/2015 Date Analyzed: 5/11/2015 Element Result Nickel < 0.015 Laboratory Fortified Blank (LFB) Date Digested: 5/11/2015 Date Analyzed: 5/11/2015 Spike LCS LCS Element Added Conc. %Rec Nickel 1.0 1.032 103.2 LCS Recovery limits 85-115% Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Digested: Sample Spiked:	5/11/2015 2015050180-1	20 A A A A A A A A A A A A A A A A A A A	•	1	Date Analy	vzed:	5/11/2015	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Nickel		0.000	1.0	1.015	101.5	0.992	99.2	2.3

Recovery Limits 70-130% RPD Limit 20

Spectra Laboratories

Steven G. Hibbs Laboratory Manager

		0	Containers	1 INDE	Date	and resummer the series of the	ton including court mails	a to pay the costs of code	N DAY LIMM SOTHE	manine main factor	Grand and Course and work of release of
(N N/A	X	Seals Intact?	1 Martin and a	0.00		ved by-	Recei	Time	Date /	elinguishen hy-
Sta	ô		Temp.	Time /	Date		veu by.	Ivece	ļ		.14
Record-pil-here:	Y N	?nc	Good Conditio	10.01	4	Ne	LAN STUG	Para	Time 1	Date/	elinquished by:
Remarks:	ceipt	le Rec	Samp	Time	Araie		ved by:	Rece	Time	Date /	Hor loss ()
					_						0
											0
											8
		-	_								7
	-	+									0
	_	-		_	_						5
		-			_						4
FIELD FILLEAPA	_			_							3
Cale Cita - 1											S
Hall And Alle Inde		X					poly	HzO R	1235	1	1 MW-1
Field Notas		127 1224	retained and the second	135 1384 - 1 480 8 3 5 1 480 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lice Conser	CLI COLORIZA	ontainer	Sample Co	Time	Depth	Sample Number
						Email:				2-30	Client Project # L1505
Collection: 5-5-10	Date of (97.	Collect			Fax:		Phone:
2 HAVENI)	City Sta	. VV	LIDERAL	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	in:	Locatio		Zip:	State:		City:
H	in the	- I			Name: 4	Project				Ve	Address: See abo
1 of 1	Page:	=	10	· (h	Mananer	Date: Project		104	4	-punnent	Client: Libby Envir
	100	0	1	J	,	1		110	360-352-21	Ph:	4139 Libby Road NE Olympia WA 98506
waar libburo internet	TILON	572	ICV P.	Recor	stody	in of Cu	Cha		Inc.	mental	Libby Environ

LEGAL ACTION CLAUSE in the event of default	Relinquished by:	Relinquished by:	Relinquished by:	10	9	Ø	7	σ	σ	4	ω	2	1 MW-1	Sample Number	Client Project # 249	Phone: 253-475	City: Taconor	Address: 2105 S	Client: Kobunson	Olympia, WA 98506	Libby Environ
of payment and/or failure to pay. Client agre	Date / Time	Date / Time	Date / Time										1235	Depth Time	1-001F	-7711 Fax: 2:	State: M	c sheet	Noble	Fax: 360-352-41	mental, Inc.
rseceived by:	Descind	Received by:	Received by:										H20 2 pary	Sample Container Type Type		53-472-584	JPT Zip: 98402			54	CT
un costs and reasonable attorney fees to ce		17 5/0	N II										X	off rising Class	Email: Kt	Collector:	Location:	Project Nam	Project Man	Date: 5/c	nain of Custo
Date / Time Total Cc	Seals	Pate / Time	Date / Time											Social Social Stress N. T.	henrose chun	KACT T	Olympic	ne: WEATS HA	ager: Max wi	IS IS	dy Record
Number of 2	s intact? VNN	Condition? W N	Sample Receipt										×	dial of the second seco	son-noble.cor	Date o	City, S	noens	115	Page:	
Distribution While - Lab Yellow -	A STANDARD	Record pH here:	Remarks:		x .								LIALD Dry 1	Field Notes	2	of Collection: 5/5/1	state: Olymony		and all	of	www.LibbyEnvi
A Pink - Originator	TA+	8						121					senturi			S	MA			1	ronmental.com

4139 Libby Road NE • Olympia, WA 98506-2518

August 25, 2015

Max Wills Robinson Noble 17625 130th Avenue NE, Suite 102 Woodinville, WA 98072

Dear Mr. Wills:

Please find enclosed the analytical data report for the Havens-Wertjes Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Thy I Mu

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Phone (360) 352-2110 • Fax (360) 352-4154 • libbyenv@aol.com

www.LibbyEnvironmental.com

HAVENS-WERTJES PROJECT Robinson Noble Olympia, Washington Libby Project # L150812-1 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Metals in Water by EPA Method 7010 Series

Sample Number	Date Analyzed	Lead (µg/l)	Cadmium (µg/l)	Chromium (µg/l)	Arsenic (ug/l)
Method Blank	8/18/15	nd	nd	nd	nd
MW-1	8/18/15	16	nd	nd	nd
MW-1 Dup	8/18/15	15	nd	nd	nd
Practical Quantita	tion Limit	5.0	1.0	5.0	5.0

"nd" Indicates not detected at the listed detection limits.

HAVENS-WERTJES PROJECT Robinson Noble Olympia, Washington Libby Project # L150812-1 Client Project # 2491-001F

QA/QC for Metals in Water by EPA Method 7010 Series

Sample Number	Date Analyzed	Lead (% Recovery)	Cadmium (% Recovery)	Chromium (% Recovery)	Arsenic (% Recovery)
LCS	8/18/15	116%	89%	116%	119%
MW-1 MS	8/18/15	101%	108%	106%	87%
MW-1 MSD	8/18/15	110%	115%	96%	82%
RPD	8/18/15	9%	6%	10%	6%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

HAVENS-WERTJES PROJECT Robinson Noble Olympia, Washington Libby Project # L150812-1 Client Project # 2491-001F

Analyses of Total Mercury in Water by EPA Method 7471

Sample	Date	Mercury
Number	Analyzed	(µg/l)
Method Blank	8/19/15	nd
MW-1	8/19/15	nd
MW-1 Dup	8/19/15	nd
Practical Quantitation Limit		0.5

"nd" Indicates not detected at the listed detection limits.

HAVENS-WERTJES PROJECT Robinson Noble Olympia, Washington Libby Project # L150812-1 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	8/19/15	98%
MW-1 MS	8/19/15	112%
MW-1 MSD	8/19/15	93%
RPD	8/19/15	19%

QA/QC for Mercury by EPA Method 7471

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

HAVENS-WERTJES PROJECT Robinson Noble Olympia, Washington Libby Project # L150812-1 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	μg/L	μg/L
Method Blank	8/18/15	nd	nd
MW-1	8/18/15	nd	16
MW-1 Dup	8/18/15	nd	15
Practical Quantitation Limit		5.0	5.0

"nd" Indicates not detected at the listed detection limits.

HAVENS-WERTJES PROJECT Robinson Noble Olympia, Washington Libby Project # L150812-1 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Metals in Water by EPA Method 7010 Series

Sample	Date	Copper	Zinc
Number	Analyzed	(% Recovery)	(% Recovery)
LCS	8/18/15	103%	124%
MW-1 MS	8/18/15	111%	85%
MW-1 MSD	8/18/15	107%	93%
RPD	8/18/15	4%	9%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

HAVENS-WERTJES PROJECT Robinson Noble Olympia, Washington Libby Project # L150812-1 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Disolved Lead in Water by EPA 7010 Series

Sample	Date	Lead
Number	Analyzed	μg/L
Method Blank	8/24/15	nd
MW-1	8/24/15	7.5
MW-1 Dup	8/24/15	5.9
Practical Quantitation Limit		5.0

"nd" Indicates not detected at the listed detection limits.

HAVENS-WERTJES PROJECT Robinson Noble Olympia, Washington Libby Project # L150812-1 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Dissolved Lead in Water by EPA 7010 Series

Sample	Date	Lead
Number	Analyzed	(% Recovery)
LCS	8/24/15	104%
MW-1 MS	8/24/15	105%
MW-1 MSD	8/24/15	92%
RPD	8/24/15	13%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

08/17/2015

Libby Environmental, Inc. 4139 Libby Rd NE Olympia, WA 98506 Attn: Jamie Deyman Project:Havens-WertjesClient ID:MW1Sample Matrix:WaterDate Sampled:08/12/2015Date Received:08/14/2015Spectra Project:2015080340Spectra Number:1

Analyte	Result	Units	Method	
Nickel	< 0.015	mg/L	EPA 200.7	

ICP analysis: 8-17-15 SCJ

SPECTRALABORATORIES DY

Steve Hibbs Laboratory Manager

2221 Re	18 * www	v.spectra-lab.com						
August 17, 2015								
Libby Environmental, Inc.			Units:			mg/L		
4139 Libby Rd NE					Spectra Proj	2015080340		
Olympia, WA 98506				Applies to Spectra #'s			1	
		QUAL	ITY CONTR	OL RESUL	TS			
		ICP Meta	ls - EPA Met	hod 200.7 - V	Vater			
		Labora	atory Reagen	t Blank (LR	(B)			
Date Digested:	8/17/2015				Date Analyz	ed:	8/17/2015	
		Element			Result			
		Nickel			< 0.015			
			E de	1 Block OF	'D)			
Data Digested:	8/17/2015	Labora	tory Forune	d Blank (LF	Date Analyz	ed.	8/17/2015	
Date Digested.	8/1//2015				Date Analyz		0/1//2015	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Nickel		1.0	1.054	105.4		
CS Pacovery limits 8	5 115%							
Les Recovery mana o	N	fatrix Spike/	Matrix Spike	Duplicate (MS/MSD)			
Date Digested:	8/17/2015	Date Analyzed:			8/17/2015			
Sample Spiked:	2015080318-1				8			
**************************************	ann an Thilling Bo							
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RF

1.0

0.000

0.974

97.4

0.955

95.5

2.0

Nickel

Recovery Limits 70-130% RPD Limit 20

Spectra Laboratories

for

Steven G. Hibbs
induction White I ab Vallow Elle Play Optionaut	Diat		to be determined by a coul of terr	1 COAD and reasonable affordly food	as to pay it to enally of epidecistic a set including each	V Septem under biture to pay. Coars agree	LECAL ACTION CUMUSE IN IN-INVENTION CONSIST.
TAT: 24HR 48HR (5-DAY	۲	Containers	Date / Time		received by.	Billing 2 Street	i vanadalari ara ay.
	Y N CHIA	2 Seals Intact?	501 51-41.8	Manutas	2 mart	Doto / Timo	Rallowished by
	N. 1. 2	Temp.	Date / Time	N. Y	Received by:	Uste / Time	Keingwisneg by:
	(C) N	Good Condition?			Util	115/18/12/15	Mar Film
Remarks:	Receipt	Sample	Date / Time		Received by:	Date / Time	Relinquisted by:
							17 /
							16
							15
							14
							13
						_	12
							11
							10
							9
							8
							7
							0
							5
							4
							3
							2
Hold Graissolved	XX				HJO Poly	- 11:00	1 MW
Field Notes		110 0010 Senit 00 0010 Senit 00 0010 Strate 0000	44441414660 44441414660 44441414660 44441414660 44441414660	105 0000 154 105 0000 154	Sample Container Type Type	Depth Time	Sample Number
	Len	2 aut. co	1:66yenve	Email:		-	Client Project #
ollection: 8/12/15	Date of Co		or:	Collect		Fax:	Phone:
· Olympia, WA	City, State		n:	Locatio	Zip:	State:	City:
	eres	s - W;	Name: Howen	Project		and	Address: Set ala
			Manager:	Project		iconuntal	client: Libby Env
/ of /	Page:		8/13/15	Date:	54	Ph: 360-352-21 Fax: 360-352-41	01ympia, WA 98506
www.LibbyEnvironmental.com	07205	g 2012.0	stody Record	hain of Cus	C	nental, Inc.	Libby Environr
					2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LEGAL AC		Polinni	Kelingi		10 Relinau	9	8	7	on	G	4	ω	2	-		Clien	Phon	City:	Addre	Clien	4139 Olymp	Lib
TON CLAUSE IN IN	nated by.	ichod hu	iished by:	R	ished by:				44 44					hiu	Sample Nu	Project #	e: 253-	1	iss: 210	= KOF	ia, WA 985	by En
e event of default of				{										1	mber	2491	.475-	Tar (cin	50	nasa)	06 NE	vironr
payment andros fails	Date	2	Date	8/12/15	Date									1	Depth	-001	-7711	Icr	Stres	NOF	Fax:	nental
ine to pay, Clent agr	/ IIme	1.40	/ Time	12:01	/ Time									11:00	Time	TI	Fax: 2	State: 1/	ET	ice.	360-352-2 360-352-4	, Inc.
and of fed of som				C						1				water	L. Sample Type		1-85	UT Zip			110 154	
of collection include	Received by		Received by	the atre	Dorfined by					5	2			I HINDEP	Containe		172-5	: 9846:				1
ig court costs and re			/	Arid							6	1	-6	SACE	97 033	F	946	2	7			Chain
asonable addonicy le				1								1			ALL DE CONTRACTOR	Email:	Collect	Locatio	Project	Project	Date:	of Cu:
dis to be desumned	Dat		Dat	8/12/13											Hite Case	Kthio	on KM	Dr: 4H	Name:	Manager	1 21/8	stody
by a cost of tax	e / Time		e / Time	C Dia											83 13 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	PSINIA	+	gant	Have	DAM	5	Recor
	Seals Intac Total Numb	Cold?	Good Cond	Sample											Color Alling	robin			175 -	× 60 11		p.
	17 er of Contaii		ition?	Receipt:								-		X	50 1383 1971 1983 1983 1983 1983 1983 1983 1983 1983	San - n			buinne	5		
Dist	ners 2	<	<											\otimes		10/06.0	Date of Co	City, State	f We		Page:	
roution. White -	E I III	SITIN	TANI	Record pH						May VI	Sistelvo	8-24-1		Hold 4	Field	2614	ollection:	E Oly	rtier		-	www.L
Lab, Yellow - Fi	Pular X	Print P	DARD	here:				-	1-11-1	n ema	E Leas	St Add		or dis	Notes		8/12/	a Ji cu	2		of	ibbyEnviro
le, Perik - Orgina		101	TA				1-1	THUN	× H · /	L STD	(Der	e'd		5000			15			No 1	1	nmental.co
8			ľ	1		-	-						-	1		-	-	_	-	2		3

APPENDIX F

Table F-1: Analytical Results for Soils

		Denth		PID	Gasoline	Diesel	Oil		BTEX	(mg/kg)		VOCe	s Metals (mg/kg)				CDAH	DAH	Semi-VOCe	PCB					
AOC	Sample #	(feet)	Field Screening Notes	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	Benzene	Toluene	Ethylbenzene	Xylenes	(mg/kg)	Pb	Pb-TCLP	Cd Cr (to	al) Cr V	As	Hg	Cu	Zn	Ni	(ug/kg)	(ug/kg)	(ug/kg)	(mg/kg)
				_						_									3.200	24.000	1.600				<u> </u>
		M	TCA		100/30	2,000	2,000	0.03	6	7	9	specific	250	5 mg/L (RCRA)	2 2,00	0 19	20	2	(B-nc)	(B-nc)	(B-nc)	specific	specific	specific	1
												•													
1	TP12-1	1	no indications	0.3	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	13	-	nd 27	-	7	nd	15	nd	24	-	-	-	nd
1	TP12-3	3	no indications	0.0	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 34	<1	9	nd	12	9	23	-	-	-	-
1	TP13-1	1	no indications	0.3	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	13	- 1	nd 8	-	7	nd	10	nd	24	-	-	-	nd
1	TP13-3	3	no indications	0.1	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	7	- 1	nd 13	-	8	nd	13	7	23	-	-	-	nd
1	TP14-1.5	1.5	no indications	0.2	nd	nd	416	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	5552	3.4	nd 11	<1	8	nd	3113	nd	26	nd (SIM)	-	-	0.5
1	TP14-3	3	no indications	0.1	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	21		nd 23	-	7	nd	15	nd	23	nd (SIM)	-	-	nd
1	TP15-1	1	no indications	0.1	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	7	-	nd 9	-	7	nd	10	nd	16	nd (SIM)	-	-	nd
1	TP15-3	3	no indications	0.0	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	-	nd 46	<1	9	nd	12	nd	20	nd (SIM)	-	-	nd
1	TP16-1	1	no indications	0.1	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	17	-	nd 39	<1	7	nd	10	nd	21	-	-	-	nd
1	TP16-3	3	no indications	0.1	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 25	-	8	nd	12	nd	23	-	-	-	-
1	TP17-1	1	no indications	0.0	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 85	<1	8	nd	12	nd	20	nd (SIM)	-	-	nd
1	TP17-3	3	no indications	0.1	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 15	-	7	nd	10	nd	19	nd (SIM)	-	-	nd
1	TP18-1	1	no indications	0.1	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	-	nd 57	<1	7	nd	11	nd	20	nd (SIM)	-	-	nd
1	TP18-3	3	no indications	0.1	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 11	-	7	nd	20	6	21	nd (SIM)	-	-	nd
1	TP19-1	1	no indications	0.0	-	nd (Mine	eral Oil only)	-	-	-	-	-	-	-		-	-	-	-	-	-	nd (SIM)	-	-	nd
1	TP19-3	3	no indications	0.0	-	nd (Mine	eral Oil only)	-	-	-	-	-	-	-		-	-	-	-	-	-	nd (SIM)	-	-	nd
1	TP20-1	1	no indications	0.0	-	nd (Mine	eral Oil only)	-	-	-	-	-	-	-		-	-	-	-	-	-	nd (SIM)	-	-	nd
1	TP20-3	3	no indications	0.0	-	nd (Mine	eral Oil only)	-	-	-	-	-	-	-		-	-	-	-	-	-	nd (SIM)	-	-	nd
1	TP21-1	1	no indications	0.2	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 56	-	8	nd	11	nd	19	nd (SIM)	-	-	nd
1	TP21-3	3	no indications	0.0	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 72	<1	8	nd	12	nd	23	nd (SIM)	-	-	nd
1	TP22-1	1	no indications	0.3	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	5	- 1	nd 59	<1	5	nd	5	9	18	nd (SIM)	-	-	nd
1	TP22-3	3	no indications	0.0	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 9	-	7	nd	nd	nd	20	-	-	-	-
1	TP23-1	1	no indications	0.3	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 34	-	5	nd	6	nd	16	nd (SIM)	-	-	nd
1	TP23-4	4	no indications	0.2	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 37	<0.5	7	nd	6	7	18	nd (SIM)	-	-	nd
1	TP24-1	1	no indications	0.0	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 53	<1	5	nd	7	nd	16	nd (SIM)	-	-	nd
1	TP24-3	3	no indications	0.1	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 23	-	nd	nd	8	nd	22	-	-	-	-
1	TP25-1	1	no indications	0.2	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	16	- 1	nd 19	-	7	nd	13	nd	24	nd (SIM)	-	-	nd
1	TP25-3	3	no indications	0.1	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	- 1	nd 83	<0.5	7	nd	7	nd	26	nd (SIM)	-	-	nd
1	TP26-2	2	no indications	0.1	-	-	-	-	-	-	-	-	8	- 1	nd 8	-	nd	nd	nd	nd	4	nd	nd	negligible1	-
1	TP27-2	2	no indications	0.2	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	-	nd 11	-	nd	nd	nd	nd	9	nd (SIM)	nd (SIM)	-	nd
1	TP28-2	2	no indications	0.3	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd		nd 10	-	nd	nd	nd	nd	15	nd (SIM)	nd (SIM)	-	nd
1	TP29-2	2	no indications	0.3	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	-	nd 11	-	nd	nd	nd	nd	8	nd (SIM)	nd (SIM)	-	nd
1	TP30-2	2	no indications	0.4	nd	nd	nd	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd (see VOCs)	nd	nd	-	nd 11	-	nd	nd	nd	nd	15	nd (SIM)	nd (SIM)	-	nd

¹ denotes compounds detected above PQL but below applicable MTCA cleanup limit

APPENDIX G

Robinson Noble, Inc. 2105 South C Street Tacoma, Washington 98402 (253) 475-7711

Project Name: _	John's Auto Wrecking		
Project Number: _	2491-001G	Project field bo	ok no.:
Well Name: _	MW-1	Date: _	10/9/2014

Physical Setting

Depth to water (ft)	9.30	Time collected:	11:30
Total well depth (ft)	17	Collected by:	КАТ
Screened interval (ft)	7-17	Weather:	Partly cloudy
Pumping method:	Bladder Pump	Notoo/Commonto:	
Pump setting:	14	Notes/Comments:	

Sampling and Water Quality Parameters

Time	Elapsed time (min)	Volume (gal)	Temp (°C)	Specific Conductivity (ms/cm/°C)	Total Dissolved Solids (g/L)	Dissolved Oxygen (mg/L)	Hd	Oxidation Reduction Potential (mV)	Turbidity (NTU)
11:00	0				STA	RT PURGE			
11:07	7	1	12.02	0.132	0.036	5.08	6.28	162	1.2
11:15	15	3	11.85	0.132	0.086	3.95	5.69	222	1.0
11:18	18	3.5	11.84	0.132	0.085	3.76	5.62	232	1.1
11:21	21	4	11.85	0.131	0.085	3.63	5.59	237	1.0
11:24	24	4.5	11.83	0.132	0.086	3.48	5.58	241	1.0
11:27	27	5	11.81	0.132	0.086	3.40	5.57	244	1.0
11:30	30	5.25	11.82	0.132	0.086	3.33	5.55	246	1.0

Time sampled:	11:30	Containers filled:	Preserved and unpreserved polys
t (min) sampled:	30	Sampled by:	КАТ
Analysis performed:	Metals	Laboratory name:	Libby Environmental
Date of delivery:	10/9/2014	Date of analysis:	10/12/2014

Robinson Noble, Inc. 2105 South C Street Tacoma, Washington 98402 (253) 475-7711

Project Name: _	John's Auto Wrecking		
Project Number: _	2491-001G	Project field bo	ook no.:
Well Name: _	MW-1	Date:	1/8/2015

Physical Setting

Depth to water (ft)	8.57	Time collected:	12:15
Total well depth (ft)	17	Collected by:	КАТ
Screened interval (ft)	7-17	Weather:	Partly cloudy
Pumping method:	Bladder Pump	Natas/Commonter	
Pump setting:	14	Notes/Comments:	

Sampling and Water Quality Parameters

Time	Elapsed time (min)	Volume (gal)	Temp (°C)	Specific Conductivity (ms/cm/°C)	Total Dissolved Solids (g/L)	Dissolved Oxygen (mg/L)	Hd	Oxidation Reduction Potential (mV)	Turbidity (NTU)
11:45	0				STA	RT PURGE			
11:52	7	1.25	12.05	0.139	0.042	4.98	6.40	192	1.4
12:00	15	3	11.64	0.138	0.093	3.70	5.54	243	1.2
12:03	18	3.25	11.52	0.139	0.093	3.76	5.66	241	1.1
12:06	21	4	11.64	0.139	0.093	3.54	5.59	242	1.2
12:09	24	4.5	11.62	0.139	0.094	3.43	5.57	240	1.1
12:12	27	5	11.65	0.138	0.093	3.33	5.58	245	1.1
12:15	30	5.25	11.64	0.138	0.094	3.29	5.57	243	1.1

Time sampled:	12:15	Containers filled:	Preserved and unpreserved polys
t (min) sampled:	30	Sampled by:	КАТ
Analysis performed:	Metals	Laboratory name:	Libby Environmental
Date of delivery:	1/8/2015	Date of analysis:	1/11/2015

Robinson Noble, Inc. 2105 South C Street Tacoma, Washington 98402 (253) 475-7711

Project Name: _	John's Auto Wrecking		
Project Number: _	2491-001G	Project field bo	ook no.:
Well Name: _	MW-1	Date: _	5/5/2015

Physical Setting

Depth to water (ft)	5.11	Time collected:	12:34
Total well depth (ft)	17	Collected by:	КАТ
Screened interval (ft)	7-17	Weather:	Clear
Pumping method:	Bladder Pump	Notoo/Commonto	
Pump setting:	12	Notes/Comments:	

Sampling and Water Quality Parameters

Time	Elapsed time (min)	Volume (gal)	Temp (°C)	Specific Conductivity (ms/cm/°C)	Total Dissolved Solids (g/L)	Dissolved Oxygen (mg/L)	Hd	Oxidation Reduction Potential (mV)	Turbidity (NTU)
12:05	0				STA	RT PURGE			
12:09	4	0.25	12.62	0.153	0.095	9.58	7.57	99	47.5
12:12	7	0.4	11.43	0.139	0.090	8.82	6.91	172	31.8
12:15	10	0.5	11.05	0.136	0.089	8.17	6.45	211	21.1
12:19	14	0.75	10.96	0.136	0.088	7.66	6.68	219	15.3
12:23	18	1	10.83	0.134	0.089	7.17	6.61	235	11.3
12:28	23	1.25	10.71	0.134	0.087	7.00	6.55	249	11.2
12:31	26	1.5	10.67	0.134	0.087	6.87	6.51	258	8.9
12:34	29	1.75	10.62	0.133	0.086	6.36	6.38	272	8.1

Time sampled:	12:34	Containers filled:	Preserved and unpreserved polys
t (min) sampled:	29	Sampled by:	КАТ
Analysis performed:	Metals	Laboratory name:	Libby Environmental
Date of delivery:	5/5/2015	Date of analysis:	5/10/2015

Robinson Noble, Inc. 2105 South C Street Tacoma, Washington 98402 (253) 475-7711

Project Name: _	John's Auto Wrecking		
Project Number: _	2491-001G	Project field bo	ok no.:
Well Name: _	MW-1	Date: _	8/12/2015

Physical Setting

Depth to water (ft)	6.57	Time collected:	11:00
Total well depth (ft)	17	Collected by:	KAT
Screened interval (ft)	7-17	Weather:	Clear
Pumping method:	Bladder Pump	Notoo/Commonto	
Pump setting:	13	Notes/Comments:	

Sampling and Water Quality Parameters

Time	Elapsed time (min)	Volume (gal)	Temp (°C)	Specific Conductivity (ms/cm/°C)	Total Dissolved Solids (g/L)	Dissolved Oxygen (mg/L)	Hd	Oxidation Reduction Potential (mV)	Turbidity (NTU)
10:30	0				STA	RT PURGE			
10:38	8	1	12.40	0.641	0.121	6.42	7.43	72	53.6
10:42	12	1.75	11.33	0.223	0.115	5.29	6.82	164	45.8
10:45	15	2.5	11.21	0.198	0.097	4.48	6.37	234	40.2
10:48	18	3	10.83	0.153	0.096	4.21	6.38	228	33.1
10:52	22	3.5	10.84	0.152	0.095	3.98	6.25	236	19.8
10:55	25	4.75	10.74	0.153	0.096	4.02	6.31	245	15.8
10:57	27	5	10.72	0.151	0.096	4.10	6.29	235	14.1
11:00	30	5.25	10.73	0.155	0.098	4.05	6.31	256	14.3

Time sampled:	11:00	Containers filled:	Preserved and unpreserved polys
t (min) sampled:	30	Sampled by:	КАТ
Analysis performed:	Metals	Laboratory name:	Libby Environmental
Date of delivery:	8/12/2015	Date of analysis:	8/18/2015

APPENDIX H

WETLAND DELINEATION REPORT

John's Wrecking Yard 411 93rd Avenue Southeast Olympia, Washington

Prepared by

Normandeau Associates, Inc. 1904 Third Avenue, Suite 1010 Seattle, Washington 98101

Prepared for Alan J. Wertjes Cooper Pt. Road SW, Building 3 Kent, Washington 98032

October 14, 2014

Table of Contents

1.0	Introduction 1
2.0	General Site Description 1
	2.1 Land Use and Landscape Setting12.2 Waters of the State22.3 Precipitation Data and Analysis3
3.0	Methods 4
4.0	Results 4
	4.1 Wetland A
5.0	References 10
Арр	endix A – FIGURESA-1
Арр	endix B – SITE PHOTOGRAPHSB-1
Арр	endix C – WETLAND DETERMINATION FORMSC-1
Арр	endix D – WETLAND RATING FORMSD-1
Арр	endix E – WETLAND SURVEY E-1

1.0 INTRODUCTION

This report has been prepared in response to a Washington State Department of Ecology request for wetland delineation for the John's Wrecking Yard site (the Site). The Site is enrolled in the Voluntary Cleanup Program ([VCP] VCP Project No. SW1127), and is currently being investigated and remediated. This report is intended to provide the formal wetland boundary delineation, establish the extent and quality of three wetlands previously identified, and provide supporting information regarding the species of plants and animals present on the Site.

2.0 GENERAL SITE DESCRIPTION

2.1 Land Use and Landscape Setting

The address of the Site is 411 93rd Avenue Southeast, and it is located within Section 23 of Township 17 north, Range 2 west, Willamette Meridian. Figure 1 shows the location of the Site. The Site comprises six contiguous parcels (Figure 2) identified by Thurston County Assessor-Treasurer records as parcel numbers 12723210100, 12723220200, 12723210400, 12723210401, 12723210700, and 12723210000. Thurston County Assessor-Treasurer records indicate these six parcels cover an area of approximately 15 acres.

The topography at the Site is relatively flat with a gentle slope to the south toward Hopkins Ditch (see Figures 1 and 2). Land surface elevations range from 202 feet above mean sea level (MSL) at the northern end of the Site, to 195 feet MSL near the south end of the Site along Hopkins Ditch.

A report by Robinson Noble (2013) indicates that the Site is underlain by glacial deposits of Vashon recessional outwash, a mix of poorly sorted silt, sand, and gravel, with an average thickness of approximately 25 feet. Underlying deposits are composed of advance outwash from the Vashon glaciation that consists of an admixture of clay, silt, sand, and gravel. These sediments are typically compact and have relatively low permeability.

Soils in the area of the Site have been mapped by the United States Department of Agriculture Natural Resources Conservation Service (NRCS 1990, NRCS 2013) as Nisqually loamy fine sand (covering approximately the northern three-quarters of the Site) and Norma fine sandy loam (covering approximately the southern quarter of the Site). Smaller areas of the Site are mapped as Everett very gravelly sandy loam and Tisch silt loam (the southeast corner of the Site), and a small area of Mukilteo muck (in the southwest). A summary of the characteristics of these soils is provided in Table 1.

Soil Map Unit	Taxonomy	Landform	Parent Material	Drainage Class	Hydric? (inclusions)
Nisqually loamy fine sand, 0 to 3 percent slopes	Vitrandic Xerumbrepts	Terraces	Sandy glacial outwash	Somewhat excessively drained	No Norma (Yes)
Norma fine sandy loam	Aquandic Humaquepts	Depressions and drainageways	Alluvium	Poorly drained	Yes
Everett very gravelly sandy loam, 3 to 15 percent slopes	Vitrandic Xerochrepts	Terraces	Glacial outwash	Somewhat excessively drained	No
Tisch silt loam	Typic Endoaquands	Depressions and drainageways	alluvium, volcanic ash, and diatomaceous earth	Very poorly drained	Yes
Mukilteo muck	Terric Medisaprists	Depressions	Herbaceous organic material	Very poorly drained	Yes Shalcar (Yes)

Table 1. Summar	v of Soils Ma	pped at the Site	(NRCS 2013.	1990).
	y or cono ma	pped at the one	(11100 ± 010)	1000/

Three of the mapped soils on the Site (Mukilteo muck, Norma fine sandy loam, and Tisch silt loam) are hydric soils. One of the remaining soils (Nisqually loamy fine sand) is not hydric, but it has inclusions of Shalcar soils, which are hydric. Overall, the soils mapped for the Site are likely to support wetlands.

2.2 Waters of the State

Surface water features present on the Site includes Hopkins Ditch, which is a small seasonal stream that traverses the southern portion of the Site from east to west. There is also a small pond present on the southern half of parcel 12723210700, just north of Hopkins Ditch. Hopkins Ditch typically only contains water during the wetter portions of the year and is often nearly dry in the late summer. Previous reports by Robinson Noble (2013) indicate that when there is water in the ditch it does not appear to flow and the ditch is, in fact, more akin to a linear series of small disconnected ponds. A similar observation was made during the wetland delineation. No flows were observed in Hopkins Ditch though water was present, and no culverts were positively identified at access road crossings.

The head of Hopkins Ditch is located just east of the Site, and the Site itself lies within the headwater-area of the Salmon Creek drainage basin, a part of Upper Chehalis Water Resource Inventory Area (WRIA) #23. Maps of this area show that Hopkins Ditch becomes Salmon Creek approximately 2 miles west of the Site (near Little Creek Road). Salmon Creek then flows into the Black River approximately 3 miles further west. The Black River eventually flows into the Chehalis River, which then flows to the sea at Grays Harbor.

Salmon Creek is identified in the WDFW PHS database as habitat for resident cutthroat trout (*Oncorhynchus clarki clarki*) (WDFW 2014), and in Salmonscape (WDFW 2014) as habitat for coho salmon (*Oncorhynchus kisutch*). WDFW also indicated that bridgelip sucker (*Catostomus columbianus*), Western brook lamprey (*Lampetra richardsonii*), speckled dace (*Rhinichthys osculus*), redside shiner (*Richardsonius balteatus*), Pacific lamprey (*Lampetra tridentata*), Northern pikeminnow (*Ptychocheilus oregonensis*), and sculpin (species in the family *Cottoidea*) are possibly present in Salmon Creek, and Olympic mudminnow (*Novumbra hubbsi*) habitat may be present in associated wetlands (T. Nation, Pers. comm.). Although sources do not show any of these species in Hopkins Ditch, no barriers to fish passage are identified downstream of the site that would preclude their presence.

2.3 **Precipitation Data and Analysis**

A comparison of historical precipitation data obtained from the WETS Station Olympia Weather Service Forecast Office (WSFO) (NRCS 2014) and recent observations from the National Weather Service (NWS) Olympia Airport station (NWS 2014) show that overall precipitation exceeded the high normal for the area by 0.59 inch for the 2 months preceding the delineation (Table 2). There were 0.09 inches of precipitation for the 2 weeks prior to the site visit, and none the preceding week. However, overall precipitation for the months of March and May exceeded the normal high, and April precipitation matched the normal high. Although little rain fell in the 2 weeks preceding the delineation (Table 3), approximately 0.50 inch of precipitation fell within 3 weeks of the site visit (May 23 to May 26). As a result, we believe the overall hydrologic conditions at the time of the wetland delineation likely reflected relatively normal summer conditions.

Month	Total Precipitation (inches)	Normal Range WETS (inches)	Within Normal Range	Average (inches)	Departure from Normal (inches)
March	9.17	3.84 - 6.23	Exceeds	5.29	2.94
April	4.26	2.48 - 4.26	Yes	3.58	0
Мау	3.34	1.37 - 2.75	Exceeds	2.27	0.59
June	0.88	1.20 - 2.13*	No	1.78*	-0.32
TOTAL	17.65	5.05 - 9.14	Exceeds	12.92	2.28

Table 2.	Summary of Precipitation in	Olympia,	Washington	(NRCS 2014,	NWS
2014).			_		

*These numbers reflect monthly totals.

Table 3. Daily Precipitation for	1 Week and 2 Weeks	Prior to the Site Visit -
Olympia Airport (NWS 2014).		

Site Visit Date	Prior 7-Day Total (inches)	Prior 14-Day Total (inches)
June 10, 2014	0.0	0.09

The NRCS growing season recorded in the Olympia Airport WETS table, based on 28°F for the 50 percentile, is 194 days beginning on April 14 and ending on October 25 (NRCS 2014). The date of the wetland delineation (June 10) falls within these growing season dates.

3.0 METHODS

Wetland determinations followed the U.S. Army Corps of Engineers (USACE) *Wetland Delineation Manual* (1987) and *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys and Coast Region (Version 2.0)* (2010). A background review was performed, including an assessment of the Site topography (Figures 1 and 2), Thurston County Wetland Inventory (Figure 3), hydric soils as identified by NRCS and Thurston County (Figure 4), and priority Habitats and Species information (WDFW 2014 <u>http://wdfw.wa.gov/mapping/phs/</u>). Plant names and wetland indicator status followed the 2014 National Wetland Plant List (NWPL) (Lichvar, R.W., M. Butterwick, N.C. Melvin, and W.N. Kirchner 2014).

The wetland review consisted of assessing vegetation, soil, and hydrologic characteristics to identify areas meeting the three-parameter wetland criteria. Normandeau staff completed the site reconnaissance and wetland delineation on June 10, 2014.

Site-specific methods for conducting the field investigation were used at the data plots. Factors such as type of wetland boundary (e.g., gradual versus abrupt), topography, and water flow were taken into account when selecting sample plot locations and determining boundaries. The paired sample plot was chosen to best represent the wetland and adjacent non-wetland.

The wetland boundaries and paired data plots were flagged in the field using numbered, colored surveyor pin-flags or tape, and the locations were collected by professional land surveyors (Larson and Associates). The wetlands were classified using the U.S. Fish and Wildlife Service Cowardin system (Cowardin, et al. 1979) and rated using the *Washington State Wetland Rating System for Western Washington—Revised* (Hruby 2004) (see Appendix C).

4.0 RESULTS

Three wetlands were identified on the Site (Wetland A, B, and C). Wetland A the largest of these 3 wetlands, and occupies the areas on either bank of Hopkins Ditch, extending upslope to the north and south. Wetland A extends off of the Site to the east and west. Wetland B is a smaller wetland located to the north of Wetland A (Figure 3). This wetland occupies a series of shallow depressions that adjoin the north side of Wetland A.

Wetland C is a small wetland that occupies a steep sided depression in the southeast corner of the Site, south of Wetland A. Detailed descriptions are provided below.

4.1 Wetland A

Description

Wetland A is a palustrine forested and emergent wetland approximately 50 acres in size, located along the banks of Hopkins Ditch. Approximately 3.8 acres (166,092 square feet) of this wetland are located on the Site (Figure 3). The wetland crosses the southern portion of the Site, sloping gently from east to west. The wetland is largely within the valley bottom of Hopkins Ditch, though it extends upslope to the north and south, as much as 200 feet in some places.

Vegetation in Wetland A includes forested and emergent habitats (Photos 1, 2 and 3). The forested portion of the wetland is largely dominated by black cottonwood (*Populus balsamifera*), Scouler's willow (*Salix scouleriana*), and cluster rose (*Rosa pisocarpa*), with an herbaceous stratum dominated by common bedstraw (*Gallium aparine*) (see Data Form A-W1, Photo 4). Along the southern boundary of Wetland A, this forested community includes Pacific willow (*Salix lasiandra*), salmonberry (*Rubus spectabilis*), reed canarygrass (*Phalaris arundinacea*), and climbing nightshade (*Solanum dulcamara*). This community extends offsite to the east. The emergent habitat onsite is dominated by reed canarygrass (see Data Form A-W2, Photo 5). Southwest of the Site, the emergent community includes areas of common cattail (*Typha latifolia*) and shallowly inundated areas that may result from downstream beaver activity.

The dominant species present in Wetland A are adapted to saturated soil conditions. The presence of these species satisfies the wetland vegetation criteria.

<u>Hydrology</u>

Hydrology in Wetland A appears to be primarily associated with surface water runoff and groundwater captured in Hopkins Ditch. These waters appear to inundate the areas beyond the ditch banks. These inundated areas include several small depressions that retain water. Areas to the south of the Site were shallowly inundated at the time of the wetland delineation.

Indicators of wetland hydrology observed at Plot A-W1 included saturated soils at 18 inches, algal crust, water stained leaves, and a sparsely vegetated concave surface. The determination of wetland hydrology at Plot A-W2 was based on the presence of secondary indicators, including landscape position, the presence of drainage patterns, adjacent areas with clear wetland hydrology, and the predominance of a plant community dominated by hydrophytic species. Offsite areas to the southwest of the Site include areas of shallow inundation. Presence of the indicators satisfies the wetland hydrology criterion.

<u>Soils</u>

Soils observed in Wetland A included a very dark gray (10YR 3/1) sandy loam overlying black (10YR 2/1) silt loam (extending from 9 to 18 inches below the surface). Below 18 inches, the soil matrix color changes to a dark grayish brown (2.5Y 4/2) with approximately 10 percent dark brown (10YR 3/3) redox concentrations, indicating a reduced matrix (see Data Form A-W1). Small pieces of the surface soils (very dark gray sandy loam) were also mixed into this stratum. These soils meet the criteria for a thick dark surface (A12) and satisfy the hydric soil criterion.

At plot location A-W2, the observed soils were composed of a very dark brown (10YR 2/2) sandy loam extending to 9 inches below the surface. From 9 to 18 inches below the surface, the soil color is a very dark grayish brown (10YR 3/2) with approximately 5 percent dark yellowish brown (10YR 3/4) redoximorphic features in the pore linings. Below 16 inches and extending to 21 inches, the matrix color changes to a very dark brown (10YR 2/2) and the percentage of redoximorphic features increases from 5 to approximately 10 percent. Soils at this location appear to meet the redox dark surface (F6) indicator, which meets the hydric soil criterion.

Adjacent Uplands

The northern buffer of Wetland A is disturbed upland meadow. Himalayan blackberry (*Rubus armeniacus*) and Scotch broom (*Cytisus scoparius*) are the dominant shrubs. The herbaceous species present include reed canarygrass, common velvetgrass (*Holcus lanatus*), bird's-foot trefoil (*Lotus corniculatus*), sweet vernalgrass (*Anthoxanthum odoratum*), annual bluegrass (*Poa annua*), white clover (*Trifolium repens*), red clover (*Trifolium pratense*), and common dandelion (*Taraxacum officinale*). Soils in this area were very dark grayish brown to very dark brown (10YR 3/2 and 2/2) sandy loams with no redoximorphic features, and appeared well drained. Glass, metal, and plastic were present throughout the soil profile, indicating past grading/filling activities on the Site (see Data Forms A-U0, A-U1, A-U2).

The southern buffer in Wetland A is predominantly upland coniferous forest. The dominant species present include Douglas-fir (*Pseudotsuga menziesii*), with the shrub understory dominated by dull oregongrape (*Mahonia nervosa*), snowberry (*Symphoricarpos albus*), beaked hazelnut (*Corylus cornuta*), Indian plum (*Oemleria cerasiformis*), and vine maple (*Acer circinatum*). Himalayan blackberry is present in this buffer in smaller quantities than to the north. The herbaceous layer is predominantly western swordfern (*Polystichum munitum*) and brackenfern (*Pteridium aquilinum*), although trailing dewberry (*Rubus ursinus*) are common, and some tiger lily (*Lilium columbianum*) was also identified in this area. Soils to the south are similar to the northern buffer (see Data Forms A-U1, A-U2, and C-U1), and do not exhibit hydric soil characteristics.

Rating, Function and Buffers

The wetland was rated as both depression and riverine wetland to determine the highest rating category. Wetland A scored low to moderate (20 points) for water quality, moderate to high (26 points) for hydrologic function, and low habitat (18 points) function, resulting in an overall rating of Category II.

The relatively low water quality score reflects the relatively limited area of shallow depression that can retain and treat water in Wetland A. The higher score for hydrologic function generally reflects the width of the wetland relative to the stream, the presence of dense vegetation that can slow water flows, and the potential for downstream flooding that this wetland has the opportunity to alleviate. The overall habitat function in Wetland A is limited by the disturbed buffers and limited connectivity of the system.

Category II wetlands in Thurston County with a habitat score below 18 require a 100-foot buffer to preserve habitat quality and water quality function (Thurston County Code [TCC] 24.30.045).

4.2 Wetland B

Description

Wetland B is a small (2,595 square feet~0.06 acre in size) palustrine emergent depressional wetland located in the southeast portion of the Site (Figure 3). The wetland occupies a series of shallow depressions on densely compacted soil, and is partially contiguous with Wetland A (Photo 6). Soil compaction in this area appears to result from use as an access road, and the surface materials appear consistent with gravel fill.

Vegetation

Vegetation in Wetland B is relatively sparse due to the compacted surface. The dominant species observed in Wetland B were common chickweed (*Stellaria media*) and tapertip rush (*Juncus acuminatus*). Small amounts of reed canarygrass and soft rush (*Juncus effusus*) were also present (see Data Form B-W1). The presence of these species satisfies the wetland vegetation criterion.

<u>Hydrology</u>

Wetland B appears to derive its moisture from surface runoff in the surrounding area. The shallow depressions and their compacted surfaces retain the water long enough to support a wetland plant community. Indicators of wetland hydrology observed in Wetland B include water marks and surface soil cracks. The presence of these indicators meets the wetland hydrology criterion.

Soils

Soils in Wetland B are extremely compacted due to past filling and use as an access road, and soil textures were visually estimated due to the presence of glass in the soil. The

upper stratum is a very dark gray (10YR 3/1) extremely gravelly silt loam extending to 9 inches. Beneath this stratum and extending to 12 inches, the soil is a very dark grayish brown (10YR 3/2) very gravelly silt loam, with approximately 10 percent dark yellowish brown (10YR 4/4) redoximorphic features. The soil from 12 to 13 inches is a very dark gray (2.5Y 3/1) silt loam. Excavation below this depth was not possible due to the extremely compact nature of the soils (Photo 7). This soil is close to meeting the criteria for the redox dark surface (F6) indicator, lacking only an additional inch of the strata above 12 inches. Hydric soils were assumed to be present for this area based on the compacted surface that acts as an aquatard, as well as the presence of a plant community dominated by wetland species. This approach is consistent with the "man induced" wetland approach described in the 1987 manual, which uses human induced changes in hydrology and the presence of wetlands.

Adjacent Uplands

The adjoining uplands to the east of Wetland B are dominated by birdsfoot trefoil (*Lotus cormiculatus*), colonial bentgrass (*Agrostis capillaris*), and white clover (*Trifolium repens*) (see Data Form B-W1). Soil in the sample pit consisted of a dark gray (10YR 4/1) very gravelly silt loam extending to approximately 5 inches, overlying a very dark grayish brown (10YR 3/2) very gravelly silt loam extending to 10 inches. No redoximorphic features were observed. Excavation was not possible below 10 inches. Wetland A is located to the south and west.

Rating, Function and Buffers

Wetland B scored low for water quality, hydrologic, and habitat functions (10, 4, and 11 points, respectively), resulting in an overall rating of Category IV.

The water quality function of Wetland B is limited by its small size, sparse vegetation, and small area of seasonal ponding. Hydrologic function is similarly limited by the small storage potential of the wetland and the absence of seasonally inundated areas that would provide water quality improvement. Wetland B has a single vegetation type and low plant diversity, resulting in limited habitat complexity and interspersion.

Category IV wetlands in Thurston County with a habitat score below 18 that drain to a Category II wetland (Wetland A) require a 100-foot buffer to preserve habitat quality and water quality function (TCC 24.30.045).

4.3 Wetland C

Description

Wetland C is a depression emergent wetland approximately 6,300 square feet (0.15 acre) in size, and is located in the southeast corner of the Site (Figure 3). The wetland occupies a steep-sided depression (Photo 8) and is not connected to the other wetlands on the Site.

Vegetation

Vegetation in Wetland C is primarily emergent, although a narrow (~ 5 feet wide) fringe of shrub vegetation is present along the banks. Vegetation in Wetland C is dominated by reed canarygrass, although smaller amount of climbing nightshade (*Solanum dulcamara*), a veronica species (likely grass-leaved speedwell [*Veronica scutellata*]), and common duckweed (*Lemna minor*) were observed. Hardhack (*Spiraea douglasii*) is present on the fringe of the wetland (See Data Form C-W1, Photo 9). The presence of these species meets the wetland plants criterion.

Hydrology

Wetland C appears to derive its water largely from runoff the surrounding uplands. Groundwater, however, may play a role in the water supply as indicated by presence of open water in June. Observed indicators of wetland hydrology include the presence of a high water table and surface inundation. The presence of these indicators meets the wetland hydrology criterion.

Soils

Soils observed in Wetland C were difficult to sample due to the inundation present during the delineation. A very dark brown (10YR 2/2) very gravelly loam extends from the surface to a depth of approximately 9 inches. Sampling below this depth was impractical due to the inundation, and redoximorphic features are difficult to discern under these conditions. Indicators of hydric soils were assumed due to the presence of a wetland dominated plant community that includes obligate species and the presence of surface inundation.

Adjacent Uplands

The upland to the north of Wetland C is the same upland forest described for the southern buffer of Wetland A. Species present include Douglas-fir, dull oregongrape, snowberry, beaked hazelnut, Indian plum, and vine maple, with smaller quantities of Himalayan blackberry. Herbaceous species present include western swordfern, brackenfern, trailing dewberry, and tiger lily (Photo 10). Soils in this adjacent upland are characterized in Data Form C-U1, and did not exhibit hydric soil characteristics (Photo 11). No indicators of wetland hydrology were observed in this area.

Rating, Function and Buffers

Wetland C scored low for water quality, hydrologic, and habitat functions (12, 18, and 15 points, respectively), resulting in an overall rating of Category III.

Water quality function in Wetland C is limited by the absence of seasonally inundated area (seasonal storage capacity above the permanently inundated areas) that would provide water quality improvement. Hydrologic function is limited by the small watershed that contributes to Wetland C. The primary limitations on habitat function in

Wetland C are the limited hydrologic structure, absence of multiple habitat types, and lack of complexity.

Category III wetlands in Thurston County with a habitat score below 18 that are less than 10,000 square feet are not a functional part of a mosaic wetland, do not support priority wildlife species, and do not drain to a stream or a Category I or II wetland, require a 50-foot buffer to preserve habitat quality and water quality function (TCC 24.30.045).

4.4 Wildlife Observed at the Site

Wildlife observed at the Site included red-tailed hawks (*Buteo jamaicensis* – Not PHS listed) sighted on the north side of Wetland A, and a great blue heron (*Ardea Herodias* – PHS listed species) sighted near Wetland B. Tracks from deer (likely Columbian black-tailed deer [*Odocoileus hemionus columbianus*] - PHS listed species), and raccoon (*Procyon lotor* – not PHS listed) were also observed near Wetland B. Inundated areas to the south of the Site may indicate the presence of beaver (*Castor canadensis* – not PHS listed) to the southwest. However, no gnawed stumps or cuttings were observed on the Site, even though there are willow present that provide desirable forage.

Hopkins Ditch has been straightened and channelized on the Site. The banks are approximately 12 to 18 inches high, and the channel, where observed, varied from 5-7 feet in width. Water observed in the ditch channel during the delineation was 12 to 18 inches deep, heavily stained with organic materials, and stagnant. No flowing water was observed during the field investigation. The channel appears to be blocked in at least one location, which would limit fish access to upstream areas during some flow conditions. Due to these conditions, the portions of Hopkins Ditch on the Site appear to provide limited potential habitat for fish species.

5.0 REFERENCES

- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. U.S. Government Printing Office, Washington, D.C. <u>http://www.fws.gov/wetlands/</u>.
- Hruby, T. 2004. Washington State Wetland Rating System for Western Washington—Revised. Washington State Department of Ecology Publication # 04-06-025. <u>http://www.ecy.wa.gov/pubs/0406025.pdf.</u>
- Lichvar, R.W., M. Butterwick, N.C. Melvin, and W.N. Kirchner. 2014. The National Wetland Plant List: 2014 Update of Wetland Ratings. Phytoneuron 2014-41: 1-42. <u>http://www.phytoneuron.net/</u>
- National Weather Service (NWS). 2014. NOWData NOAA Online Weather Data. Olympia, Washington. <u>http://www.nws.noaa.gov/climate/index.php?wfo=sew</u>. Accessed July 8, 2014.

Nation, Theresa - WDFW. 2014. Personal communication with P. Togher, October 1, 2014.

- Natural Resources Conservation Service. (NRCS), U. S. Department of Agriculture. 2014. Climate Analysis for Wetlands by County (Thurston County). <u>http://agacis.rcc-acis.org/53067/mtot</u> Accessed July 8, 2014.
- NRCS. 2013. Natural Resources Conservation Service. Custom Soil Resource Report for Thurston County Area, Washington - John's Wrecking Yard. Prepared online October, 2013.
- NRCS. 1990. Soil Survey of Thurston County, Washington.
- Robinson Noble. 2013. Remediation Investigation for John's Auto Wrecking 411 93rd Avenue Southeast, Olympia, Washington Facility/Site No. 57665495; VCP Project No. SW1127. July 2013. Prepared for the Estate of John Havens. Unpublished.
- StreamNet. 2014. StreamNet Interactive Mapper. <u>http://www.streamnet.org</u>. Accessed July 10, 2014.
- U.S. Army Corps of Engineers. 1987. Corps of Engineers Wetlands Delineation Manual (on-line edition). Vicksburg, Mississippi. <u>http://el.erdc.usace.army.mil/elpubs/pdf/wlman87.pdf.</u>
- U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0). Vicksburg, Mississippi. <u>http://www.usace.army.mil/Portals/2/docs/civilworks/</u> <u>regulatory/reg_supp/west_mt_finalsupp.pdf</u>.
- U.S. Army Corps of Engineers 2014. National Wetland Plant List, version 3.2 <u>http://wetland_plants.usace.army.mil/</u>
- U.S. Fish and Wildlife Service (USFWS). 2014. National Wetlands Inventory. Wetlands Mapper. <u>http://www.fws.gov/wetlands/Data/Mapper.html</u>.

APPENDIX A – FIGURES

Figure 1. Project Vicinity Map (Robinson Noble 2013).

Figure 2. Topography within the Site Vicinity (Thurston County GIS 2014).

Figure 3. Thurston County and National Wetland Inventory Wetlands within the Site Vicinity (Thurston County GIS 2014).

Figure 4. Soil Map Units within the Site Vicinity (Thurston County GIS 2014).

Figure 5. Wetland Delineation Field Sketch.

APPENDIX B – SITE PHOTOGRAPHS

Photograph 1. Wetland A, looking south at inundated area from west end of Site. (June 10, 2014).

Photograph 2. Wetland A, facing south from north side (June 10, 2014)

Photograph 4. Wetland A, Wetland Plot A-W1 (June 10, 2014).

Photograph 11. Wetland C, Upland Plot C-U1 (June 10, 2014).
APPENDIX C – WETLAND DETERMINATION FORMS

Project/Site John's Wrecking Yard	City/Cou	unty: Tเ	umwater/Thu	hurston Sampling Date: 6-10-1				
Applicant/Owner: Alan Wertjes	-	State:	WA		Sampling Po	oint:	A-U0	
Investigator(s): P. Togher, K. Snyder		Section	n, Township, I	Range:	S	23, T 17N	, R2W	
Landform (hillslope, terrace, etc.): Terrace		Local re	elief (concave	e, convex,	none):	Flat S	lope (%)	<5%
Subregion (LRR) A Lat: 46.95065	Lc	ong:	-122.90021	17 C	Datum:	WO	S 83	
Soil Map Unit Name Nisqually loamy fine sand (Vitrandic 2	Xerumbrept	ts)	NWI Cla	assification	n:	Upla	nd	
Are climatic/hydrologic conditions of the site typical for thi	s time of the	e year?	Y (If	no, explaii	n in remarks	s)		
Are vegetation, soil, or hydrology	siç	gnificantly	disturbed?					
Are vegetation, soil, or hydrology	na	aturally pro	blematic?	Are "norn	nal circumst	ances" pre	sent? Ye	s
SUMMARY OF FINDINGS				(If neede	d, explain ai	ny answers	in remark	s.)
Hydrophytic vegetation present? Y								
Hydric soil present? N		Is the sa	ampled area	within a w	wetland?	N	1	
Indicators of wetland hydrology present? N		f yes, opt	ional wetland	d site ID:				
Remarks: (Explain alternative procedures here or in a ser	parate repor	rt.)						
Plot is located near a ditch on the edge of the upl	and mead	yow that	predominat	tes on th	e site. The	e nearest	flag is A-	KS
14, located to the south. Wetland vegetation was	s present,	but hydr	ic soils and	l wetland	hydrology	/ were ab	sent.	
VEGETATION Use scientific names of plants								
At	solute D	ominan	Indicator	Dominar	nce Test Wo	orksheet		
<u>Tree Stratum</u> (Plot size: 10 meter) %	Cover tS	Species	Staus	Number	of Dominant	Species		
1				that are 0	OBL, FACW,	or FAC:	5	(A)
2				Total	Number of D	ominant		
3				Spec	ies Across a	II Strata:	6	(B)
4				Percent	of Dominant	Species	00.000/	
5				that are t	JDL, FACVV,	of FAC.	83.33%	(А/Б)
Sapling/Shrub stratum (Plot size: 5 meters)				Prevalen	ce Index W	orksheet		
1 Salix scouleriana	25	Y	FAC	Total % C	Cover of:			
2 Spiraea douglasii	10	Υ	FACW	OBL spec	cies C) x 1 =	0	
3 Sambucus racemosa	1	Ν	FACU	FACW sp	becies 3	5 x 2 =	70	
4				FAC spec	cies 11	$5 \times 3 =$	345	
5	26 - Т				ecies 2	$5 \times 4 =$	104	
Herb stratum (Plot size [,] 1 meter)		Jai Cover		Column to	otals 17	$\frac{76}{6}$ (A)	519	(B)
1 Holcus lanatus	50	V	FAC	Prevalen	raindex = F	$\frac{0}{2/\Delta} =$	2.95	(8)
2 Phalaris arundinacea	25		FACW	Trevalent			2.35	
3 Anthoxanthum odoratum	25	Y -	FAC	Hydroph	ytic Vegeta	tion Indica	ators:	
4 Rumex acetosa	10	N	FAC	Rapio	d test for hyd	drophytic v	egetation	
5 Lotus corniculatus	5	Ν	FAC	X Domi	inance test i	s >50%		
6				X Preva	alence index	(is ≤3.0*		
7				Morp	hogical ada	ptations* (p	orovide	
8				supp	orting data i	n Remarks	or on a se	eparate
9 10		<u> </u>		Shee	l) Iomotio hydr	ophytic vo	notation*	
····	115 = Tc	otal Cover		(expl	ain)	opriytic veç	getation	
Woody vine stratum (Plot size: 5 meters)	<u></u> 10			*Indicator	ra of hydria agi	l and watland	hydrology m	unt ho
1 Rubus armeniacus	25	Y	FACU	p	resent, unless	disturbed or	problematic	iusi be
2				Hydr	ophytic			
	25 = To	otal Cover		vege	tation	V		
				prese	ent?	ř		
Remarks: (Include photo numbers here or on a separate s	sheet)							
Vegetation in the sample location meets the h	ydrophytic	c vegeta	tion criterio	n.				

A-U0

Depth Matrix Redox Features (inches) Color (molst) % Type* Loc** Texture Remarks 0-3 10VR 2/2 100 Image: State and the state a	Profile Desc	ription: (Descr	ibe to th	e depth needed	to docu	ment the	e indicat	or or confirm the abser	nce of indicators.)		
(Inches) Color (moist) % Type* Loc** Texture Remarks 0-3 10VR 3/2 70 Image: State	Depth	Matrix		Rec	dox Feat	ures					
0-3 10YR 3/2 100 Sill loam 3-12 10YR 3/2 70 Sill loam 10YR 3/4 30 Sill loam 12-16 10YR 3/2 100 Sill loam 12/max 2 consentration, D = Depletion, RM = Reduced Matrix, MS = Masked Sand Grains. "Location: PL = Pore Lining, M = Matrix. Hydric Soll Indicators: Indicators for Problematic Hydric Solls: 2 cm Muck (Al0) Histico (A1) Stripped Matrix (S6) Commodely Matrix (F2) Other (explain in remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Other (explain in remarks) Depleted Matrix (F2) Depleted Below Dark Surface (A12) Depleted Matrix (F3) "Indicators of hydrophytic vegetation and wetland hydrology must be present, unead siturbed or problematic Sandy Gleyed Matrix (S4) Redox Depressions (F8) motionator of hydrophytic vegetation and wetland hydrology must be present, unead siturbed or problematic No hydric soil indicators found. Plast	(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks		
3.12 10YR 3/2 70 Silt loam 12.16 10YR 3/2 100 Silt loam 12.16 10YR 3/2 100 Silt loam 12.16 10YR 3/2 100 Silt loam "Type: C = Concentration, D = Depletion, RM = Reduced Matrix, MS = Masked Sand Grains"Location: PL = Pore Lining, M = Matrix "Hydric Soil Indicators: Indicators for Problematic Hydric Soils:	0-3	10YR 2/2	100					Silt loam			
10YR 3/4 30 Sill loam 12-16 10YR 3/2 100 Sill loam 12-16 10YR 3/2 100 Sill loam ** 12 100 Sill loam ** 12 100 Sill loam ** 10 100 Sill loam ** 100 100 100 ** 100 100 100 ** 100 100 100 ** 100 100 100 ** 100 100 100 ** 100 100 100 ** 100 100 100 ** 100 100 100 ** 100 100 100 ** 100 100 100 100 ** 100 100 100 100 100 ** 100 100 100 100 100 100 ** 100 100 100 100 100 100 ** 100 </td <td>3-12</td> <td>10YR 3/2</td> <td>70</td> <td></td> <td></td> <td></td> <td></td> <td>Silt loam</td> <td></td>	3-12	10YR 3/2	70					Silt loam			
12-16 10YR 3/2 100 Sitt leam 12-16 10YR 3/2 100 Sitt leam 12-16 10YR 3/2 100 Sitt leam 12-16 12 12 12 12 12-17 12 12 12 12 12 12-17 12 12 12 12 12 12 13-17 14 12		10YR 3/4	30					Silt loam			
Type: C Concentration, D = Depletion, RM = Reduced Matrix, MS = Masked Sand Grains. **Location: PL = Pore Lining, M = Matrix Hydric Soil Indicators: Indicators: Indicators for Problematic Hydric Soils: Hydric Soil Indicators: SandyRedox (S5) 2 cm Muck (A10) Histisol (A1) SandyRedox (S5) 2 cm Muck (A10) Hydric Soil Indicators: Indicators for Problematic Hydric Soils: 2 cm Muck (A10) Depleted Below Dark Surface (A12) Depleted Dark Surface (F6) "Indicators of hydrophylic vegetation and weltand for Sandy Gleyed Matrix (S4) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) hydrology must be present; unless disturbed or problematic Restrictive Layer (If observed): Type: Hydric soil present? N Papelet diatrix (S4) Redox Depressions (F8) Problematic Water-Stained Leaves (B9) Retrictive Layer (If observed): Water-Stained Leaves (B9) (Except MLRA 1, 2, 4A, and 4B) Depleted Dark 1, 2, 4A, and 4B) Surface Water (A1) Geenomphic Postian (E10) Depleted Dark 1, 2, 4A, and 4B) Depleted Dark 1, 2, 4A, and 4B) Saturation Ropeatis (B2) Hydrogen Suffice Odor(C4) Saturbace (C2) Saturbace (C2) Saturbace (B13) Oxadized Rhisospheres Along Living R	12-16	10YR 3/2	100					Silt loam			
Type: C = Concentration, D = Depletion, RM = Reduced Matrix, MS = Masked Sand Grains. **Location: PL = Pore Lining, M = Matrix Hydric Soil Indicators: Indicators for Problematic Hydric Soils: 2 cm Muck (A10) Histic Soil Indicators: SandyRedox (S5) 2 cm Muck (A10) Histic (A3) Loany Mucky (Mneral (F1) (Soccept MLRA 1) Very Shallow Dark Surface (TF2) Depleted Below Dark Surface (A12) Redox Dark Surface (F6) *Indicators of hydrophytic vegetation and welland Sandy Gleyd Matrix (S4) Depleted Dark Surface (F7) hydroicayr must be present, unless disturbed or problematic Sandy Gleyd Matrix (S4) Redox Dark Surface (F7) hydroicayr must be present, unless disturbed or problematic Participe Matrix (S4) Redox Depressions (F8) Hydric soil present? N Restrictive Layer (if observed): Type: Hydric soil present? N Participe Matrix (S4) Redox Depressions (F8) Secondary Indicators (minimum of two required: Stande Usaves (B9) (Except MLRA 1, 2, 4A, and 4B) Surface Water (A11) Water Stande Usaves (B9) (Except MLRA 1, 2, 4A, and 4B) Drainage Paterns (10) Drainage Paterns (10) Surface Water (B1) Aquatic Invertextrates (B13) Drainage Paterns (10) Drainage Paterus (11) Drainage Paterns (11)											
Type: C = Concentration, D = Depletion, RM = Reduced Matrix, MS = Masked Sand Grains. **Location: PL = Pore Lining, M = Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils: Histisc (A1) SandyRedox (S5) 2 cm Muck (A10) Histisc (A3) Loarny Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydric Soil Indicators: Concentration, PL = Pore Lining, M = Matrix Depleted Below Dark Surface (A11) Depleted Matrix (F3) Contexplain in remarks) Thick Dark Surface (A12) Redox Dark Surface (F6) *Indicators of hydrophytic vegetation and welland (S1) Sandy Usey Matrix (S4) Redox Depressions (F8) problematic Restrictive Layer (if observed): Type: Hydric soil present? N No hydric soil indicators found. Plastic found at 10" in pit, glass fragments in pit faces indicate past filling. HYDROLOGY Water-Stained Leaves (B9) (Except MLRA 1, 2, 4A, and 4B) Corange Paterne (B10) Saturation (A3) Saturation (NA1) Genomary Indicators (minimum of two required C2) Shallow Aquatar (D3) Privage Paterne (B10) Water Marks (B1) Aquatic Inverterized (B13) Genomary Indicators (Minimum of two required C2) Saturation (S0) Secondary Indicators (Minimum of two required C2)											
Type: C = Concentration, D = Depletion, RM = Redued Matrix, MS = Masked Sand Grains. "Location: PL = Pore Lining, M = Matrix Hydric Soil Indicators: Indicators for Problematic Hydric Soils: Indicators for Problematic Hydric Soils: Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Depleted Bolow Dark Surface (A11) Depleted Matrix (F2) Other (explain in remarks) Depleted Bolow Dark Surface (A12) Redox Dark Surface (F7) "Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) "Indicators of hydrophytic vegetation and weltand hydrology functions found. Plastic found at 10" in pit, glass fragments in pit faces indicate past filling. No hydric soil indicators found. Plastic found at 10" in pit, glass fragments in pit faces indicate past filling. HYDROLOGY Wetar Matrix (B1) Wetar Stained Leaves (B9) High Water Table (A22) (Except MLRA 1, 2, 4, and 4B) Secondary Indicators (minimum of two required Staturator (Vision A, and 4B) Ordrade Water (A11) Mater Stained Leaves (B9) Saturator Visible on Aerial Imagery (C9) High Water Table (A22) (Except MLRA 1, 2, 4, and 4B) Saturator Visible on Aerial Imagery (C9)											
Type: C = Concentration, D = Depletion, RM = Reduced Matix, MS = Masked Sand Grains. **Location: PL = Pore Lining, M = Matix Hydric Soil Indicators: Indicators for Problematic Hydric Soils: Histis (A1) SandyRedox (S5) 2 cm Muck (A10) Histis (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Suthde (A4) Loamy Gleeyed Matrix (F2) Other (explain in remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F3) **Indicators of hydrophytic vegetation and wetland in Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) **Indicators of hydrophytic vegetation and wetland or problematic Restrictive Layer (if observed): Type: Hydric soil present? N Type: Hydric soil indicators found. Plastic found at 10" in pit, glass fragments in pit faces indicate past filling. HYDROLOGY Wettand Hydrology Indicators: Primary Indicators (minimum of two required Water (A1) Saturation (A2) Saturation (A3) Saturatine Leaves (B3) Dry-Season Water Table (C2) Saturation Visible on Anria Imagery (C9) Saturation (A3) Saturation Cust (B1) Dry-Season Weter Table (C2) Saturation (C4) Saturation (C4) Saturation (C4) Surface S(B1) Presence of Resuced Irin Reduction											
Hydric Soil Indicators: Indicators for Problematic Hydric Soils: Histisol (A1) SandyRedox (S5) 2 cm Muck (A10) Histisol (A1) Satipped Matrix (S6) 2 cm Muck (A10) Black Histic (A2) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (F12) Hydrogen Suffice (A4) Depleted Matrix (F2) Other (explain in remarks) Thick Dark Surface (A12) Redox Dark Surface (F6) *Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic Sandy Gleyed Matrix (S4) Deepleted Dark Surface (F7) *Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic Restrictive Layer (if observed): Type: Hydric soil present? N Depleted Matrix (S4) Redox Dark Surface (F7) *Hydric soil present? N Remarks: No hydric soil indicators found. Plastic found at 10° in pit, glass fragments in pit faces indicate past filling. Wetrand Hydrology Indicators: Firmary Indicators (minimum of one is required; check all that apply) Secondary Indicators (minimum of two required: Saturation (A3) Saturation (RA11, 2, 4A, and 4B) Darker-Stained Leaves (B9) Verter-Stained Leaves (B9) Verter-Stained Leaves (B9) Onter-Stained Leaves (B9) Darker-Stained Leaves	*Type: C = C	oncentration. D	I = Depleti	on, RM = Reduce	ed Matrix	MS = N	/asked S	and Grains. **I ocati	on: PL = Pore Lining, M = Matrix		
Histisol (A1) SandyRedox (S5) 2 cm Muck (Å10) Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Users Loamy Wlacky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Depleted Below Dark Surface (A11) Depleted Matrix (F2) "Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic Sandy Gleyed Matrix (S4) Redox Depressions (F8) "Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic Remarks: No hydric soil indicators found. Plastic found at 10" in pit, glass fragments in pit faces indicate past filling. HyDROLOGY Water-Stained Leaves (B9) Water-Stained Leaves (B9) Water At Hydrology Indicators: (Except MLRA 1, 2, 4A, and 4B) Depleted Water (A1) Surface Water (A1) Water-Stained Leaves (B9) (Except MLRA 1, 2, 4A, and 4B) Surface Soli Cracks (B2) Hydrogen Sufface Oncews E(B3) Dry-Season Water Table (C2) Sediment Deposits (B3) Orthor Presence of Resuced Iron (C4) Seaturation Visible on Aerial Imagery (C9) Surface Soli Cracks (B6) Presence of Resuced Iron (C4) Seaturation Visible on Aerial Imagery (C9) Surface Soli Cracks (B6) Presence of Resuced Iron (C4) Seaturation Visible on Aerial Imag	Hydric So	il Indicators:	Dopiou			, mo n		Indicators for Prob	lematic Hydric Soils:		
Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (FF2) Black Histic (A3) Loamy Musky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF2) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Other (explain in remarks) Thick Dark Surface (A12) Redox Depressions (F8) "Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic Sandy Gleyed Matrix (S4) Redox Depressions (F8) "Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic Restrictive Layer (if observed):	Hist	sol (A1)		Sar	dyRedox	x (S5)		2 c	m Muck (A10)		
Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F3) "Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) "Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic Restrictive Layer (if observed): Type: Hydric soil present? N Depth (inches):	Hist	c Epipedon (A2)		Stri	pped Ma	trix (S6)		Re	d Parent Material (TF2)		
Hydrogen Sulfde (A4) Loamy Cleyed Matrix (F2) Other (explain in remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F3) "Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) "Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic Restrictive Layer (if observed): Type: Hydric soil present? N Pepth (inches): Hydric soil indicators found. Plastic found at 10" in pit, glass fragments in pit faces indicate past filling. Hydric soil present? N HYDROLOGY Water-Stained Leaves (B9) Secondary Indicators (minimum of two required that apply) Secondary Indicators (minimum of two required that apply) Secondary Indicators (minimum of two required that apply) WaterAction (A3) Sati Crust (B11) Dy-Season Water Table (C2) Generophytic Rest and that apply) Saturation (A3) Sati Crust (B1) Dy-Season Water Table (C2) Sediment Deposits (B3) Oxidized Rhisospheres Along Living Roots Shallow Aquatar (D3) Face that magery (C9) Saturation Visible on Aerial Imagery Surface Water (A1) Keent Iron Reduction in Thin Solis (C6) Resent Iron Reduction in Thin Solis (C6) Retend Irangery (C9) Statured tor Stressed Plants (D1)(LRRA) <td< td=""><td colspan="9">Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12)</td></td<>	Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12)										
Depleted Below Dark Surface (A12) Depleted Dark Varface (F6) *Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic Restrictive Layer (if observed): Type: N Depth (inches): Redox Depressions (F8) Problematic Remarks: No hydric soil indicators found. Plastic found at 10" in pit, glass fragments in pit faces indicate past filling. HYDROLOGY Wetand Hydrology Indicators: Primary Indicators (minimum of one is required: check all that apply) Secondary Indicators (minimum of two required: Strate Vaster-Stained Leaves (B9) High Water Table (A2) (Except MLRA 1, 2, 4A, and 4B) Saturation (A3) Saturation (A3) Sediment Deposits (B2) Hydrize Silied Carcus (B11) Dirate Restriction Visible on Aerial Imagery (C9) Saturation Visible on Aerial Imagery (C9) Surface Silic Concex (B6) Presence of Resuced Iron (C4) Startacion Visible on Aerial Imagery Staturation Visible on Aerial Imagery (C9) Surface Silic Concex (B6) Presence of Resuced Iron (C4) Startacion Visible on Aerial Imagery Staturation Visible on Aerial Imagery (C9) Surface Silic Concex (B6) Presence of Resuced Iron (C4) Startacion Visible on Aerial Imagery Staturation Visible on Aerial Imagery	Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in remarks)										
	Dep	leted Below Dark	(Surface	(A11)Dep	leted Ma	atrix (F3)	(50)				
		k Dark Surface (. dv Mucky Minora	A12)		lox Dark	Surface	(F6) co (E7)	*Indicators of hyd	lrophytic vegetation and weltand		
	San	Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) hydrology must be present, unless disturbed or Sandy Gleved Matrix (S4) Redox Depressions (F8) problematic									
Restrictive Layer (if observed): Type: Depth (inches):						00010110	(10)		prosionado		
Image: Depth (inches): Image: Depth (inches): Image: Depth (inches): Remarks: No hydric soil indicators found. Plastic found at 10" in pit, glass fragments in pit faces indicate past filling. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply) Secondary Indicators (minimum of two required: Surface Water (A1) Water-Stained Leaves (B9) Water-Stained Leaves (B9) High Water Table (A2) (Except MLRA 1, 2, 4A, and 4B) (Except MLRA 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Inverterbrates (B13) Dry-Season Water Table (C2) Saturation (A3) Oxidized Rhisospheres Along Living Roots Geomorphic Position (D2) Satiand Crust (B1) C3) Presence of Resuced Iron (C4) FAC-Neutral Test (D5) Surface Soil Cracks (B6) Recent Iron Reduction in Thin Soils (C6) Raied Ant Mounds (D6)(LRR A) Inundation Visible on Aerial Imagery Stunted or Stressed Plants (D1)(LRRA) Frost Heave Hummocks (D7) Surface water present? Yes No Z Depth (inches): Indicators of wetland Saturation present? Yes No X De	Restrictive Layer (if observed): Type: Hydric soil present? N										
Remarks: No hydric soil indicators found. Plastic found at 10" in pit, glass fragments in pit faces indicate past filling. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply) Secondary Indicators (minimum of two required; Surface Water (A1) Surface Water (A1) Water-Stained Leaves (B9) Water-Stained Leaves (B9) High Water Table (A2) (Except MLRA 1, 2, 4A, and 4B) Saturation (A3) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor(C4) Saturation (Visible on Aerial Imagery (C9) Drift Deposits (B3) Oxidized Rhisospheres Along Living Roots Geomorphic Position (D2) Algal Mat or Crust (B4) (C3) Shallow Aquatard (D3) Iron Deposits (B5) Presence of Resuced Iron (C4) Raied Ant Mounds (D6)(LRR A) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Frost Heave Hummocks (D7) Surface water present? Yes No X Depth (inches): Indicators of wetland hydrology present? N No X Depth (inches): <td colspan="10">Depth (inches):</td>	Depth (inches):										
Remarks: No hydric soil indicators found. Plastic found at 10" in pit, glass fragments in pit faces indicate past filling. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply) Secondary Indicators (minimum of two required; Surface Water (A1) Water Stained Leaves (B9) Water-Stained Leaves (B9) High Water Table (A2) (Except MLRA 1, 2, 4A, and 4B) Saturation (A3) Satal Crust (B1) Water Marks (B1) Aquatic Invertebrates (B13) Diff Deposits (B3) Oxidized Rhisospheres Along Living Roots Aligal Mat or Crust (B4) (C3) Iron Deposits (B5) Presence of Resuced Iron (C4) Sparsely Vegetated Concave Surface (B6) Other (Explain in Remarks) Field Observations: No Surface soil Cracks (B6) Other (Explain in Remarks) Field Observations: No Surface soillary fringe) No Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: No indicators of wetland hydrology found in pit. Nearby ditch was also investigated eoils similar, no hydrology in that	Depth (inches):										
HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply) Secondary Indicators (minimum of two required; Surface Water (A1) Surface Water (A1) Water-Stained Leaves (B9) Water-Stained Leaves (B9) High Water Table (A2) (Except MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor(C4) Saturation Visible on Aerial Imagery (C9) Algal Mat or Crust (B4) (C3) Oxidized Rhisospheres Along Living Roots Geomorphic Position (D2) Surface Soil Cracks (B6) Recent Iron Reduction in Thin Soils (C6) Raied Ant Mounds (D6)(LRR A) Inundation Visible on Aerial Imagery Stunted or Stressed Plants (D1)(LRRA) Fost Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Indicators of wetland hydrology present? N Surface water present? Yes No X Depth (inches): Indicators of wetland hydrology present? N Obscribe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: No X Depth (use also investig											
Primary Indicators (minimum of one is required; check all that apply) Secondary Indicators (minimum of two required; Primary Indicators (minimum of one is required; check all that apply) Secondary Indicators (minimum of two required; Surface Water (A1) Water-Stained Leaves (B9) Water-Stained Leaves (B9) High Water Table (A2) (Except MLRA 1, 2, 4A, and 4B) (Except MLRA 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor(C4) Saturation Visible on Aerial Imagery (C9) Orifi Deposits (B3) Oxidized Rhisospheres Along Living Roots Geomorphic Position (D2) Algal Mat or Crust (B4) (C3) FAC-Neutral Test (D5) Surface Soil Cracks (B6) Presence of Resuced Iron (C4) FAC-Neutral Test (D5) Surface water present? Yes No X Sufface water present? Yes No X Saturation present? Yes No X Depth (inches): Indicators of wetland hydrology present? N Sufface water present? Yes No X Depth (inches): Indicators of wetland hy	HYDROLC)GY drology Indicate	vre:								
Surface Water (A1) Water-Stained Leaves (B9) High Water Table (A2) (Except MLRA 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Water Marks (B1) Aquatic Invertebrates (B13) Drift Deposits (B2) Hydrogen Sulfide Odor(C4) Sulface Soil Cracks (B6) C(23) Iron Deposits (B5) Presence of Resuced Iron (C4) Surface Soil Cracks (B6) Recent Iron Reduction in Thin Soils (C6) Surface Water present? Yes Surface water present? Yes No X Depth (inches): Surface capillary fringe) No Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:	Primary India	ators (minimum	of one is	required: check	all that a	nnly)		Secondary In	dicators (minimum of two required		
High Water Table (A2) (Except MLRA 1, 2, 4A, and 4B) (Except MLRA 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B1) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor(C4) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Oxidized Rhisospheres Along Living Roots Geomorphic Position (D2) Algal Mat or Crust (B4) (C3) FAC-Neutral Test (D5) Iron Deposits (B5) Presence of Resuced Iron (C4) FAC-Neutral Test (D5) Surface Soil Cracks (B6) Recent Iron Reduction in Thin Soils (C6) Raied Ant Mounds (D6)(LRR A) Inundation Visible on Aerial Imagery Stunted or Stressed Plants (D1)(LRRA) Frost Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Frost Heave Hummocks (D7) Surface water present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland Mater table present? Yes No X Depth (inches): No Saturation present? Yes No	Surface	Nater (A1)		Wat	er-Staine	<u>ppiy</u> d Leaves	s (B9)	<u>Secondary III</u> Water-9	Stained Leaves (B9)		
Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor(C4) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Oxidized Rhisospheres Along Living Roots (C3) Geomorphic Position (D2) Algal Mat or Crust (B4) (C3) Presence of Resuced Iron (C4) Shallow Aquatard (D3) Iron Deposits (B5) Presence of Resuced Iron Reduction in Thin Soils (C6) Skied Ant Mounds (D6)(LRR A) Surface Soil Cracks (B6) Recent Iron Reduction in Remarks) Frost Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Frost Heave Hummocks (D7) Field Observations: No X Depth (inches): Indicators of wetland hydrology present? Saturation present? Yes No X Depth (inches): Indicators of wetland hydrology present? Mater table present? Yes No X Depth (inches): Indicators of wetland hydrology present? N Sturation present? Yes No X Depth (inches): Indicators of wetland hydrology present? N Mo indicators of wet	High Wa	ter Table (A2)		(Ex	cept MLF	RA 1, 2, 4	A, and 4	B) (Excep	t MLRA 1, 2, 4A, and 4B)		
Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor(C4) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Oxidized Rhisospheres Along Living Roots Geomorphic Position (D2) Algal Mat or Crust (B4) (C3) Shallow Aquatard (D3) Iron Deposits (B5) Presence of Resuced Iron (C4) FAC-Neutral Test (D5) Surface Soil Cracks (B6) Recent Iron Reduction in Thin Soils (C6) Raied Ant Mounds (D6)(LRR A) Inundation Visible on Aerial Imagery Stunted or Stressed Plants (D1)(LRRA) Frost Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Indicators of wetland Field Observations: No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): No Saturation present? Yes No X Depth (inches): No Motor corded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: No No No indicators of wetland bydrology found in pit Nearby ditch was also investigated soils similar, no bydrology in that	Saturatio	n (A3)		Salt	Crust (B	11)		Drainag	e Patterns (B10)		
Sediment Deposits (B2) Hydrogen Sulfide Odor(C4) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Oxidized Rhisospheres Along Living Roots Geomorphic Position (D2) Algal Mat or Crust (B4) (C3) Shallow Aquatard (D3) Iron Deposits (B5) Presence of Resuced Iron (C4) FAC-Neutral Test (D5) Surface Soil Cracks (B6) Recent Iron Reduction in Thin Soils (C6) Raied Ant Mounds (D6)(LRR A) Inundation Visible on Aerial Imagery Stunted or Stressed Plants (D1)(LRRA) Frost Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Indicators of wetland Field Observations: No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): No No Saturation present? Yes No X Depth (inches): Indicators of wetland Mater table present? Yes No X Depth (inches): No No Saturation present? Yes No X Depth (inches): No<	Water Mater Mate	arks (B1)		Aqu	atic Inver	tebrates	(B13)	Dry-Sea	ason Water Table (C2)		
Drift Deposits (B3) Oxidized Rhisospheres Along Living Roots Geomorphic Position (D2) Algal Mat or Crust (B4) (C3) Shallow Aquatard (D3) Iron Deposits (B5) Presence of Resuced Iron (C4) FAC-Neutral Test (D5) Surface Soil Cracks (B6) Recent Iron Reduction in Thin Soils (C6) Raied Ant Mounds (D6)(LRR A) Inundation Visible on Aerial Imagery Stunted or Stressed Plants (D1)(LRRA) Frost Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Frost Heave Hummocks (D7) Field Observations: Surface water present? Yes No X Depth (inches): Indicators of wetland hydrology present? N Saturation present? Yes No X Depth (inches): Indicators of wetland hydrology present? N Mater table present? Yes No X Depth (inches): Indicators of wetland hydrology present? N Saturation present? Yes No X Depth (inches): Indicators of wetland hydrology present? N Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: No No No No No No	Sedimen	t Deposits (B2)		Hyd	rogen Su	Ilfide Odo	or(C4)	Saturat	on Visible on Aerial Imagery (C9)		
Iron Deposits (B5) Presence of Resuced Iron (C4) FAC-Neutral Test (D5) Surface Soil Cracks (B6) Recent Iron Reduction in Thin Soils (C6) Raied Ant Mounds (D6)(LRR A) Inundation Visible on Aerial Imagery Stunted or Stressed Plants (D1)(LRRA) Frost Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Frost Heave Hummocks (D7) Field Observations: Surface water present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: No No No No indicators of wetland bydrology found in pit Nearby ditch was also investigated, soils similar, no bydrology in that No	Algal Ma	t or Crust (B4)		Uxic (C3)	lized Rhi	sosphere	s Along L	iving Roots Geomo	rpnic Position (D2) / Aquatard (D3)		
Surface Soil Cracks (B6) Recent Iron Reduction in Thin Soils (C6) Raied Ant Mounds (D6)(LRR A) Inundation Visible on Aerial Imagery Stunted or Stressed Plants (D1)(LRRA) Frost Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Frost Heave Hummocks (D7) Field Observations: Surface water present? Yes No X Depth (inches): Indicators of wetland Surface scale Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): No Cincludes capillary fringe) Depth (inches): No No No Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: No indicators of wetland hydrology found in pit Nearby ditch was also investigated soils similar, no hydrology in that	Iron Dep	osits (B5)		Pres	, sence of l	Resuced	Iron (C4)	FAC-Ne	eutral Test (D5)		
Inundation Visible on Aerial Imagery Stunted or Stressed Plants (D1)(LRRA) Frost Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Frost Heave Hummocks (D7) Field Observations: Surface water present? Yes No X Depth (inches): Indicators of wetland Water table present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland Includes capillary fringe) No X Depth (inches): No No Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: No No No No indicators of wetland hydrology found in pit Nearby ditch was also investigated soils similar, no hydrology in that No	Surface	Soil Cracks (B6)		Rec	ent Iron F	Reductior	n in Thin S	Soils (C6) Raied A	nt Mounds (D6)(LRR A)		
Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Field Observations: Surface water present? Yes No X Depth (inches): Indicators of wetland Water table present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland (includes capillary fringe) No X Depth (inches): Indicators of wetland Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: No No indicators of wetland bydrology found in pit Nearby ditch was also investigated, soils similar, no bydrology in that	Inundatio	n Visible on Aeria	al Imagery	/ Stur	nted or St	tressed P	lants (D1)(LRRA) Frost H	eave Hummocks (D7)		
Field Observations: Surface water present? Yes No X Depth (inches): Indicators of wetland Water table present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland (includes capillary fringe) No X Depth (inches): Indicators of wetland Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: No indicators of wetland bydrology found in pit Nearby ditch was also investigated, soils similar, no bydrology in that	Sparsely	Vegetated Conca	ave Surfa	ce (B8)Oth	er (Explai	in in Rem	arks)				
Surrace water present? Yes No X Depth (inches): Indicators of wetland Water table present? Yes No X Depth (inches): Indicators of wetland Saturation present? Yes No X Depth (inches): Indicators of wetland (includes capillary fringe) No X Depth (inches): Indicators of wetland Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: No Remarks: No indicators of wetland bydrology found in pit Nearby ditch was also investigated, soils similar, no bydrology in that	Field Obser	vations:	¥-	N.	v	Dart "	n ok - :)				
Saturation present? Yes No X Depth (inclus): hydrology present? N (includes capillary fringe) No X Depth (inclus): hydrology present? N Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: No No No No No indicators of wetland hydrology found in pit Nearby ditch was also investigated, soils similar, no hydrology in that No No No	Surface Wate	n present?	res Yes	NO No	× ×	Depth (I	nches):	In	dicators of wetland		
(includes capillary fringe) Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks:	Saturation bi	resent?	Yes	No	- <u>x</u>	Depth (i	nches):	"	hydrology present? N		
Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks:	(includes capillary fringe)										
Remarks: No indicators of wetland hydrology found in pit. Nearby ditch was also investigated, soils similar, no hydrology in that	Describe rec	orded data (strea	am gauge	e, monitoring well	, aerial p	hotos, p	revious i	nspections), if available:			
Remarks: No indicators of wetland hydrology found in nit. Nearby ditch was also investigated, soils similar, no hydrology in that											
No indicators of wetland hydrology found in nit. Nearby ditch was also investigated, soils similar, no hydrology in that	Remarker										
	No indice	itors of wetland	d hydro	loav found in n	it Nea	rhy dite	h was a	lso investigated soils	similar no hydrology in that		
pit to 20+ inches.	pit to 20+	inches	a nyuru				was a	ice investigated, solie	similar, no nyarology in that		
	F.1.0 20.										

Project/Site John's Wrecking Yard	City/0	County:	Tumwater/Th	urston	Sampling Date:	6-10-14	
Applicant/Owner: Alan Wertjes		State: WA			Sampling Point:		
Investigator(s): P. Togher, K. Snyder		Sect	ion, Townshij	p, Range:	S. 23, 1	Г 17N, R2W	
Landform (hillslope, terrace, etc.): Terrac	e	Local re	elief (concave	e, convex,	none): Flat	Slope (%)	<5%
Subregion (LRR A Lat: 46.95023605		Long:	-122.9010	812	Datum:	WGS 83	
Soil Map Unit Name Nisqually loamy fine sand (Vitrandio	c Xerumbr	epts)	NWI (Classificat	ion:	upland	
Are climatic/hydrologic conditions of the site typical for t	his time of	f the year?	Y (I	f no, expla	ain in remarks)	-	
Are vegetation , soil , or hydrolog	ду	significantl	y disturbed?				
Are vegetation , soil , or hydrolog	ду	naturally p	roblematic?	Are "no	rmal circumstances	s" present? Ye	s
SUMMARY OF FINDINGS				(If need	ed, explain any an	swers in remarks	s.)
Hydrophytic vegetation present? Y							
Hydric soil present? N		Is the s	sampled area	a within a	wetland?	Ν	
Indicators of wetland hydrology present? N		f yes, or	otional wetlar	nd site ID:	-		
Remarks: (Explain alternative procedures here or in a s	enarate re	enort)					
Plot is located near A-KS 9 on terrace above w	vetland A	,port.) \ Wetland	d venetation	n was nr	esent (primarily	rooted in the	
wetland) but hydric soils and wetland hydrology	v were al	hsent	a vegetatioi	r was pr	esent (primarily		
	, nore a						
VEGETATION Use scientific names of plants	Allt-	Deminen	lu di satan	Domina	naa Taat Warkah	oot	
Tree Stratum (Plot size: 10 meter)	Absolute % Cover	Dominan t Species	Staus	Numbo		ice	
1 Salix sitchensis	35	Y	FACW	that are	e OBL, FACW, or FA	AC: 4 ((A)
2 Populus balsamifera	15	Y	FAC	Tota	al Number of Domina	ant	、 <i>,</i>
3				Spe	ecies Across all Stra	ita: 6	(B)
4				Percer	nt of Dominant Spec	ies	
5				that are	OBL, FACW, or FA	AC: 66.67%	(A/B)
	50 =	= Total Cove	er	Drevela		h a a t	
Sapling/Shrub stratum (Plot size: 5 meters)	15	V	NII	Total %	Cover of:	neet	
2 Rosa pisocarna	5	1 Y	FAC	OBL sp	ecies 0 x	x1= 0	
3	0		- 1710	FACW	species 135	$x^2 = 270$	
4				FAC sp	ecies 20 >	x 3 = 60	
5				FACU s	pecies 10	x 4 = 40	
-	20 =	= Total Cove	er	UPL sp	ecies 0	x 5 = 0	
<u>Herb stratum</u> (Plot size: <u>1 meter</u>)				Column	totals <u>165</u> ((A) <u>370</u>	(B)
1 Phalaris arundinacea	100	Y	FACW	Prevale	nce Index = B/A =	2.24	
2				Lhudnen			
3				Hydrop	binytic vegetation	vtic vegetation	
5				X Dor	ninance test is >50	1%	
6				X Pre	valence index is ≤3	3.0*	
7				Mor	rphogical adaptatio	ns* (provide	
8				sup	porting data in Rer	marks or on a se	parate
9				she	et)		
10	100	<u></u>		Pro	blematic hydrophyl	tic vegetation*	
Woody vine stratum (Plot size: 5 meters)	100 -		:1	(ex	pial(1)		
1 Ruhus armeniacus	10	Y	FACU	*Indica	tors of hydric soil and v	vetland hydrology m	ust be
2	10	<u> </u>	1700	Нус	drophytic		
	10 =	- Total Cove	er	veg	jetation		
				pre	sent? Y		
Remarks: (Include photo numbers here or on a separate	e sheet)						
Vegetation in the sample location meets the	hydroph	ytic veget	ation criteri	on.			

Profile Des	cription: (Descr	ibe to th	e depth needed	to docu	ment the	e indicat	or or confirm the absen	ce of indicators.)
Depth	Matrix		Red	lox Feat	ures			
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks
0-6	10YR 2/2	100					Silt loam	
6-16	10YR 3/2	100					Silt loam	
0.10	10111072	100					One loan	
*T		Denleti			MC - 1	An alva al O		
"Type: C = C	Joncentration, D	= Deplet	on, RM = Reduce	ed Matrix	, MS = N	lasked S	and Grains. "Locati	on: PL = Pore Lining, M = Matrix
			Corr	d. Dede	(OF)			
	lisoi (A1)		Sar	aykeao:	x (55)		2 c	
HISI Dist	lic Epipedon (A2)		Stri	oped Ma	trix (S6)			a Parent Material (1F2)
	CK HISTIC (A3)	•	Loa	my Mucky	/ Mineral	(F1) (exc	ept MLRA 1) Ver	y Shallow Dark Surface (TF12)
Hyd	irogen Suifide (A4	+)		my Gley		x (FZ)	Otr	ier (explain in remarks)
	Derle Below Dark			neted Ma	atrix (F3)			
	ck Dark Surface (A12)		lox Dark	Surface	(F6)	*Indicators of hyd	rophytic vegetation and weltand
Sar	idy Mucky Minera	al (S1)	Dep	leted Da	ark Surfa	ce (⊢7)	hydrology must l	be present, unless disturbed or
Sar	idy Gleyed Matrix	: (S4)	Rec	lox Depr	essions	(F8)		problematic
Restrictive	Layer (if observ	ed):						
Туре:							Hydric soil prese	nt? <u>N</u>
Depth (inche	es):				-			
Wetland Hv	JG I drology Indicate	ors:						
Primary Indi	cators (minimum	of one is	required: check	all that a	nnlv)		Secondary In	dicators (minimum of two required)
<u>r milary mar</u> Surface	Water (A1)		Wat	or Staine	d Leaves	(B0)	<u>Secondary III</u> Water-S	tained Leaves (B9)
High Wa	iter Table (A2)		(Fx	cent MI F		s(Dອ) LΔ and 4	B) (Except	$\mathbf{MIRA} 1 2 \mathbf{4A} \text{ and } \mathbf{4B}$
Saturatio	on (A3)		Salt	Crust (B	11)	rA, and 4	Drainag	e Patterns (B10)
Water M	arks (B1)		Aqu	atic Inve	tebrates	(B13)	Drv-Sea	son Water Table (C2)
Sedimer	nt Deposits (B2)		Hyd	rogen Su	Ilfide Odd	or(C4)	Saturati	on Visible on Aerial Imagery (C9)
Drift Dep	oosits (B3)		Oxi	dized Rhi	sosphere	s Alona L	iving Roots Geomor	phic Position (D2)
Algal Ma	at or Crust (B4)		(C3)		0	Shallow	Aquatard (D3)
Iron Dep	osits (B5)		Pre	sence of	Resuced	Iron (C4)	FAC-Ne	utral Test (D5)
Surface	Soil Cracks (B6)		Rec	ent Iron I	Reductior	ו in Thin \$	Soils (C6) Raied A	nt Mounds (D6)(LRR A)
Inundatio	on Visible on Aeria	I Imager	/ Stu	nted or St	tressed P	Plants (D1)(LRRA) Frost He	eave Hummocks (D7)
Sparsely	Vegetated Conca	ve Surfa	ce (B8) Oth	er (Expla	in in Rem	narks)		
Field Obser	vations:							
Surface wat	er present?	Yes	No	X	Depth (i	nches):		
Water table	present?	Yes	No	X	Depth (i	nches):	In	dicators of wetland
Saturation p	resent?	Yes	No	Х	Depth (i	nches):	h	ydrology present? N
(Includes ca	piliary tringe)							
Describe rec	corded data (strea	am gaug	e, monitoring well	, aerial p	photos, p	revious ir	nspections), if available:	
Remarks:								
No india	ators of watland	d hydro	loav found in n	it				
		u nyuro	logy lound in p	it.				

Project/Site John's Wrecking Yard	City/0	County: 1	Tumwater/Th	urston	Sampling	Date:	6-10-14	
Applicant/Owner: Alan Wertjes	_	State: WA			Sampling Point: A-W1			
Investigator(s): P. Togher, K. Snyder		Secti	on, Township	o, Range:		S. 23, T 1	7N, R2W	
Landform (hillslope, terrace, etc.): Terrace	e	Local r	elief (concav	e, convex,	, none):	Flat	Slope (%)	<5%
Subregion (LRR A Lat: 46.9502361		Long:	-122.90108	312	Datum:	١	NGS 83	
Soil Map Unit Name Norma fine sandy loam (Aquandic H	lumaque	ots)	NWI C	Classificatio	on:	F	PFO	
Are climatic/hydrologic conditions of the site typical for the	nis time of	f the year?	Y (li	f no, expla	in in remai	rks)		
Are vegetation , soil , or hydrolog	у	significantly	y disturbed?					
Are vegetation , soil , or hydrolog	y	naturally pr	oblematic?	Are "nor	mal circum	stances" p	present? Ye	es
SUMMARY OF FINDINGS	- <u> </u>			(If neede	ed, explain	any answ	ers in remark	s.)
Hydrophytic vegetation present? Y								
Hydric soil present? Y		Is the s	ampled area	a within a	wetland?		Y	
Indicators of wetland hydrology present? Y		f yes, op	otional wetlan	d site ID:		A		
Remarks: (Explain alternative procedures here or in a se	narate re	nort)						
Plot is located near $A_{\rm L}$ KS 9 in wetland A All th	roo crite	ria nresen	t - the sam	nle locati	ion is in a	wetland		
		na presen	it - the sam	pie iocali			•	
VECETATION Line acientific names of plants								
VEGETATION Use scientific names of plants.	h 1 4 -	Daminan	lu alla atau	Domina	noo Tost V	Norkshoo	4	
A Tree Stratum (Plot size: 10 meter) %	6 Cover	t Species	Staus	Numbor	r of Domina		L	
1 Salix sitchensis	100	Y	FACW	that are	OBL, FAC	N, or FAC:	3	(A)
2 Populus balsamifera	10	Ν	FAC	Total	I Number o	f Dominant		()
3				Spe	cies Across	s all Strata:	3	(B)
4				Percent	t of Domina	nt Species		
5				that are	OBL, FAC	N, or FAC:	100.00%	(A/B)
	110 =	= Total Cove	r	Dreveler	nee Index	Markaha	-4	
<u>Sapiling/Shrub stratum</u> (Piot size: <u>5 meters</u>)	10	v	FAC	Total %	Cover of	worksne	et	
2	10			OBL spe	ecies	0 x 1	= 0	
3				FACW s	pecies	125 x 2	= 250	
4				FAC spe	ecies	20 x 3	= 60	
5				FACU sp	pecies	5 x 4	= 20	
	10 =	Total Cove	r	UPL spe	ecies	0 x 5	= 0	
<u>Herb stratum</u> (Plot size: <u>1 meter</u>)				Column	totals	150 (A)	330	(B)
1 Phalaris arundinacea	25	<u>Y</u>	FACW	Prevaler	nce Index =	= B/A =	2.20	
2 Galium aparine	5	N	FACU	L budrow	hutio Voca	tetion Inc	liantara	
3				пуагор і Rani	id test for h	vdrophyti	vegetation	
5				X Dom	ninance tes	st is >50%	ovogotation	
6				X Prev	alence ind	lex is ≤3.0 [°]	*	
7				Mor	phogical ad	daptations	* (provide	
8				supp	porting data	a in Rema	rks or on a se	eparate
9				shee	et)			
10	30 =	Total Cove	r	Prob (exp	olematic hy olain)	drophytic	vegetation*	
<u>Woody vine stratum</u> (Plot size: <u>5 meters</u>) 1				*Indicato	ors of hydric	soil and wetl ss disturbed	and hydrology n or problematic	nust be
2				Hyd	rophytic			
	0 =	Total Cove	r	vege	etation			
				pres	sent?	Y		
Remarks: (Include photo numbers here or on a separate	sheet)							
Vegetation in the sample location meets the	hydroph	ytic vegeta	ation criterio	on.				

A-W1

Profile Des	cription: (Descri	ibe to th	e depth needed	to docu	ument the	e indicat	or or confirm the at	osence of indicators.)
Depth	<u>Matrix</u>		Red	dox Feat	tures			
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks
+2-0	-	100					Duff	
0-9	10YR 3/1	100					Sandy loam	
9-18	10YR 2/1	100					Silt loam	
18-20+	2 5Y 4/2	70	10YR 3/1	20			Silt loam	Mixing of overlying horizon
10 20 -	2.01 4/2	10	10VP 3/3	10	6	M	Silt loam	Saturated
			1011 3/3	10		IVI	Sill IOalli	Saturated
*Type: C = 0	Concentration, D =	= Depleti	ion, RM = Reduce	ed Matrix	x, MS = N	Aasked S	and Grains. **Lo	ocation: PL = Pore Lining, M = Matrix
Hydric So	oil Indicators:				(0-)		Indicators for F	Problematic Hydric Soils:
His	tisol (A1)		Sar	ndyRedo	ox (S5)			_2 cm Muck (A10)
His	tic Epipedon (A2)		Stri	pped Ma	atrix (S6)	<i></i>		Red Parent Material (1F2)
Bla	ck Histic (A3)		Loa	my Muck	y Mineral	(F1) (exc	ept MLRA 1)	Very Shallow Dark Surface (TF12)
Hyd	drogen Sulfide (A4	1)	Loa	my Gley	ed Matrix	x (F2)		Other (explain in remarks)
Dep	oleted Below Dark	Surface	e (A11)Dep	pleted M	atrix (F3)			
X Thi	ck Dark Surface (/	A12)	Rec	lox Dark	Surface	(F6)	*Indicators of	hydrophytic vegetation and weltand
Sar	ndy Mucky Minera	ıl (S1)	Dep	pleted Da	ark Surfa	ce (F7)	hydrology m	ust be present, unless disturbed or
Sar	ndy Gleyed Matrix	: (S4)	Red	lox Depi	ressions ((F8)		problematic
Restrictive	Layer (if observe	ed):						
Туре:							Hydric soil pr	resent? Y
Depth (inche	es):				-			
Pomorko:								
HYDROLO	DGY							
Wetland Hy	drology Indicato	ors:						
Primary Indi	cators (minimum	of one is	required; check	all that a	apply)		<u>Secondar</u>	ry Indicators (minimum of two require
Surface	Water (A1)		X Wat	er-Staine	ed Leaves	s (B9)	Wa	ter-Stained Leaves (B9)
X High Wa	ater Table (A2)		(Ex	cept ML	RA 1, 2, 4	IA, and 4	B)(Ex	cept MLRA 1, 2, 4A, and 4B)
X Saturation	on (A3)		Salt	Crust (E	311)	(D40)	Dra	ainage Patterns (B10)
Water IV	larks (B1)		Aqu	atic inve	rtebrates	(B13)	Dry	-Season Water Table (C2)
Sedimer			— Hyd	Irogen St	unae Oad	or(C4)	Sat	uration Visible on Aerial Imagery (C9)
	DOSILS (B3)		UXI (C2	dized Rh	isosphere	es Along L	IVING ROOTS Geo	omorphic Position (D2)
	at of Crust (D4)		(C3) sence of	Resured	Iron(C4)		C Noutral Tast (D5)
Surface	Soil Cracks (B6)		Rec	ent Iron	Reduction	1011(04)	Soile (C6) Rai	ed Ant Mounds (D6)(I RR A)
	on Visible on Aeria	l Imagen		nted or S	tressed P	Plants (D1)(I RRA) Fro	st Heave Hummocks (D7)
X Sparsely	/ Vegetated Conca	ive Surfa	ce (B8)Oth	er (Expla	ain in Rem	arks)		
Field Obser	vations:					ianto)		
Surface wat	er present?	Yes	No	х	Depth (i	inches):		
Water table	present?	Yes	No		Depth (i	inches):		Indicators of wetland
Saturation p	resent?	Yes	X No		Depth (i	inches):	~18	hydrology present? Y
(includes ca	pillary fringe)					,		· · · · ·
Describe rea	corded data (strea	am gaug	e. monitorina well	l. aerial ı	photos. p	revious i	nspections). if availab	ble:
			-,	,ı	, .		···· · · · · · · · · · · · · · · · · ·	
Remarks:								
Remarks: Primary	indicators of we	etland h	ydrology found	d at sar	mple loc	ation.		
Remarks: Primary	indicators of we	etland h	ydrology found	d at sar	nple loc	ation.		

Project/Site John's Wrecking Yard	City/	County:	Tumwater/Th	urston Samp	ling Date:	6-10-14	
Applicant/Owner: Alan Wertjes	-	State:	WA	Sampl	ing Point:	A-U2	
Investigator(s): P. Togher, K. Snyder		Sect	tion, Townshi	p, Range:	S. 23, T ⁻	17N, R2W	
Landform (hillslope, terrace, etc.): slope		Local	relief (concav	ve, convex, none):	convex	Slope (%)	<5%
Subregion (LRRALat:46.95013114		Long:	-122.90143	363 Datum:		WGS 83	
Soil Map Unit Name Nisqually loamy fine sand (Vitrandic	: Xerumb	repts)	NWI C	Classification:		PEM	
Are climatic/hydrologic conditions of the site typical for the	nis time o	of the year?	Y (I	f no, explain in re	marks)	_	_
Are vegetation, soil, or hydrolog	łУ	significantl	ly disturbed?				
Are vegetation, soil, or hydrolog	ју <u> </u>	naturally p	roblematic?	Are "normal cire	cumstances"	present? Ye	S
SUMMARY OF FINDINGS				(If needed, exp	lain any answ	ers in remark	.s.)
Hydrophytic vegetation present? Y							
Hydric soil present? N		Is the s	sampled area	a within a wetlan	d?	N	
Indicators of wetland hydrology present? N		f yes, o	ptional wetlan	nd site ID:			
Remarks: (Explain alternative procedures here or in a se	eparate re	eport.)					
Plot is located near A-KS 5 and 6 in wetland A.	Wetlan	ıd vegetati [,]	on was pre	sent, but hydric	soils and v	vetland hydi	rology
were not. The sample location is not within a we	etland.						
VEGETATION Use scientific names of plants.							
A	Absolute	Dominan	Indicator	Dominance Te	st Workshee	ət	
<u>Tree Stratum</u> (Plot size: 10 meter)	% Cover	t Species	Staus	Number of Don	ninant Specie	s	
				that are OBL, F	ACW, or FAC	: 2	(A)
				Total Number	er of Dominan	t · · · ·	(ח)
<u> </u>				Species Au	ross all Suala	: <u> </u>	(в)
5				that are OBL, F	ACW, or FAC	3 : 66.67%	(A/B)
	0	= Total Cove	ər	,	,		(****)
Sapling/Shrub stratum (Plot size: 5 meters)				Prevalence Inc	lex Workshe	et	
1 Cytisus scoparius	15	Y	NI	Total % Cover of	of:		
2				OBL species	0 x 1	= 0	
3				FACW species	80 X 2	2 = 160	
4				FAC Species	$\frac{55}{10}$ x 4	1 = 40	
	15	= Total Cove	ər	UPL species	0 x 5	5 = 0	
Herb stratum (Plot size: 1 meter)				Column totals	145 (A) 365	(B)
1 Phalaris arundinacea	60	Y	FACW	Prevalence Inde	ex = B/A =	2.52	-
2 Holcus lanatus	30	Y	FAC				
3 Equisetum telmateia	20	Ν	FACW	Hydrophytic V	egetation In	dicators:	
4 Lotus corniculatus	15	<u>N</u>	FAC	Rapid test f	or hydrophyt	ic vegetation	
5 Anthoxanthum odoratum	10	<u>N</u>	FAC	X Dominance	test is >50%	۱ ۲	
6 Poa annua	10	<u> </u>	FACU			,	
8				Morphogica	al adaptations data in Rema	i^ (provide arks or on a second se	onarate
9				sheet)			parace
10				Problematio	c hydrophytic	vegetation*	
	145	= Total Cove	ər	(explain)		J	
Woody vine stratum (Plot size: 5 meters)				*Indicators of hy	dric soil and wet	land hydrology m	nust be
1				present,	unless disturbed	d or problematic	
2		<u></u>		Hydrophyt	IC		
	0	= I otal Cove	er	present?	Y		
Pemarka: (Include photo numbers here or on a senarate	e sheet)			•-			
Vegetation in the sample location meets the	hydroni	ovtic veget	etion criteri	on			
	nya.op.	lyno voget	duon onten	011.			

A-U2

Profile Desc	ription: (Descr	ibe to th	e depth needed	to docu	ment the	e indicat	or or confirm the absen	ce of indicators.)	
Depth	<u>Matrix</u>		Rec	lox Feat	ures				
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks	
0-3	10YR 2/2	100					Sandy loam	Fill material	
3-6	10YR 3/2	100					Sandy loam		
6-16	10YR 3/3	40					Sandy loam		
	10YR 3/1	20					Sandy loam		
	10YR 4/3	15					Sandy loam		
	10YR 4/1	10					Sandv loam		
	10YR 6/6	5					,		
	101110/0	5						N2 Carbon/charcoal	
*Type: C = C	Concentration D	- Depleti	on PM - Peduce	d Matrix		laskod S	and Grains **Locatio	n: PL - Pore Lining M - Matrix	
Hydric So	il Indicators:	- Depieti			., 1013 – 10	laskeu 3	Indicators for Prob	ematic Hydric Soils:	
Hist	$\frac{1}{1}$ $\frac{1}$		San	dyPaday	(95)			m Muck (A10)	
	isul (AT) is Eningdon (A2)		Sail		t_{riv} (SC)		Z U	Derent Meterial (TE2)	
	ic Epipedon (AZ)		Sui	oped ivia	UIX (50)	(54) (200		A Parent Material (TF2)	
	K HISUC (A3)	4			/ Wilneral	(F1) (exc	ept MLRA 1) Ver	y Shallow Dark Surface (TFT2)	
Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in remarks)									
Depleted Below Dark Surface (A11) Depleted Matrix (F3)									
	K Dark Surface (A12)		IOX Dark	Surface	(F6)	*Indicators of hydi	ophytic vegetation and weltand	
San	dy Mucky Minera	(S1)	Dep	leted Da	irk Surra		hydrology must b	be present, unless disturbed or	
San	Sandy Gleyed Matrix (S4) Redox Depressions (F8) problematic								
Restrictive	Layer (if observ	ed):							
Type:	<u>,</u>						Hydric soil preser	nt? <u>N</u>	
Depth (inche									
represen	t overlapping f	ill event	S.						
)GY drology Indicate	vre.							
Primory Indi	atoro (minimum	of one is	required: check	all that a	nnly)		Secondary Inc	liastors (minimum of two required)	
Finary mui		or one is	Tequired, check a	an Ctaina	<u>ppiy)</u>		Secondary Inc	tained Leaves (R0)	
Surface	vater (A1)			er-Staine		S (B9)	Vvater-S	tained Leaves (B9)	
	(A2)			Crust (B	(A I, Z, 4 11)	A, and 4	Drainage	Patterns (B10)	
Water M	arks (B1)			atic Inver	tebrates	(B13)	Drainage Drv-Sea	son Water Table (C2)	
Sedimer	t Deposits (B2)			rogen Su	lfide Odd	(C4)	Saturatio	on Visible on Aerial Imagery (C9)	
Drift Dep	osits (B3)		Oxic	lized Rhi	sosphere	es Alona I	iving Roots Geomor	phic Position (D2)	
Algal Ma	t or Crust (B4)		(C3))	ocopriore	lo / liong L	Shallow	Aquatard (D3)	
Iron Dep	osits (B5)		Pres	sence of	Resuced	Iron (C4)	FAC-Ne	utral Test (D5)	
Surface	Soil Cracks (B6)		Rec	ent Iron F	Reductior	n in Thin §	Soils (C6) Raied A	nt Mounds (D6)(LRR A)	
Inundatio	on Visible on Aeria	I Imagery	/ Stur	nted or St	tressed F	lants (D1)(LRRA) Frost He	ave Hummocks (D7)	
Sparsely	Vegetated Conca	ve Surfa	ce (B8) Othe	er (Explai	in in Rem	narks)			
Field Obser	vations:								
Surface wate	er present?	Yes	No	Х	Depth (i	nches):			
Water table	present?	Yes	No	Х	Depth (i	nches):	Inc	dicators of wetland	
Saturation p	resent?	Yes	No	Х	Depth (i	nches):	h	ydrology present? N	
(includes ca	biliary minge)								
Describe rec	orded data (strea	am gauge	e, monitoring well	, aerial p	hotos, p	revious in	nspections), if available:		
Remarks:									
No indica	ators of wetland	d hvdro	oav were obse	erved					
		, a. o	- 37						
1									

Project/Site John's Wrecking Yard	City/C	ounty:	Tumwater/Thu	urston	Sampling	Date:	6-10-14	
Applicant/Owner: Alan Wertjes	-	State:	WA		Sampling Point: A-W			
Investigator(s): P. Togher, K. Snyder		Secti	on, Township	, Range:	:	S. 23, T 1	7N, R2W	
Landform (hillslope, terrace, etc.): slope		Local ı	elief (concav	e, convex,	none):	convex	Slope (%)	<5%
Subregion (LRR A Lat: 46.95011182		Long:	-122.9013	37 I	Datum:	V	VGS 83	
Soil Map Unit Name Norma fine sandy loam (Aquandic Hu	umaquep	ts)	NWI	Classificati	ion:	F	PEM	
Are climatic/hydrologic conditions of the site typical for thi	is time of	the year?	Y (If	no, explai	in in remar	ks)		
Are vegetation , soil , or hydrology	/	significantl	y disturbed?					
Are vegetation , soil , or hydrology	/	naturally p	roblematic?	Are "norr	mal circum	stances" p	resent? Ye	es
SUMMARY OF FINDINGS				(If neede	d, explain	any answe	ers in remark	(s.)
Hydrophytic vegetation present? Y								
Hydric soil present? Y		Is the s	ampled area	within a	wetland?		Y	
Indicators of wetland hydrology present? Y		f yes, op	otional wetlan	d site ID:		A		
 Remarks: (Explain alternative procedures here or in a ser	parate rer	port.)						
Plot is located near A-KS 5 and 6 in wetland A	All three	e criteria	present - th	e sample	location	is in a w	etland	
		ontonia		o oumpio	location		odana.	
VEGETATION Liss scientific names of plants								
	hsolute	Dominan	Indicator	Domina	nce Test V	Vorksheet	-	
Tree Stratum (Plot size: 10 meter) %	Cover	t Species	Staus	Number	of Domina	nt Species		
1		·		that are	OBL, FACV	V, or FAC:	1	(A)
2				Total	Number of	Dominant		
3				Spee	cies Across	all Strata:	1	(B)
4				Percent	of Dominal	nt Species	100.000/	
5		Tatal Cava		that are	OBL, FACV	V, or FAC:	100.00%	(A/B)
Sapling/Shrub stratum (Plot size: 5 meters)		Total Cove	1	Prevaler	nce Index	Workshee	1	
1				Total % (Cover of:			
2				OBL spe	cies	0 x 1	= 0	
3				FACW s	pecies	100 x 2	= 200	
4				FAC spe	cies	0 x 3	= 0	
5				FACU sp	ecies	0 x 4	= 0	
Horb stratum (Plot size: 1 mater)	0 =	I otal Cove	r	UPL spe		$\frac{0}{100}$ (A)	= 0	(P)
<u>Herb stratum</u> (Plot size. <u>I meter</u>)	100	V		Descelar		D(A =	200	(D)
2	100	ř	FACVV	Prevalen	ice index =	Б/А =	2.00	
3				Hydroph	nytic Vege	tation Ind	icators:	
4				Rapi	d test for h	ydrophytic	vegetation	
5				X Dom	inance tes	t is >50%	•	
6				X Prev	alence ind	ex is ≤3.0*		
7				Morp	hogical ad	aptations*	(provide	
8				supp	orting data	in Remar	ks or on a se	eparate
9				snee	et) La ma a ti a la co		4 . 4: *	
·····	100 =	Total Cove		(expl	lain)	urophytic	regetation	
Woody vine stratum (Plot size: 5 meters)				*Indicato	, ore of bydric s	oil and wetle	and hydrology r	nuet ho
1				F	present, unles	s disturbed	or problematic	nust be
2				Hydi	rophytic			
	0 =	Total Cove	r	vege	etation	V		
				pres	CIIL (ľ		
Remarks: (Include photo numbers here or on a separate s	sheet)	<i></i>						
vegetation in the sample location meets the h	iyarophy	viic vegeta	ation criterio	on.				

A-W2

Profile Des	Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
Depth	<u>Matrix</u>		Rec	lox Feat	ures					
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks		
0-9	10YR 2/2	100					Sandy loam	Fill material		
9-16	10YR 3/2	95	10YR 3/4	5	С	PL	Sandy loam			
16-21+	10YR 2/2	90	10YR 3/4	10	С	PL	Sandy loam			
							,			
*Type: C = C	Concentration, D	= Depleti	on, RM = Reduce	ed Matrix	k, MS = N	/lasked S	and Grains. **Locatio	on: PL = Pore Lining, M = Matrix		
Hydric So	oil Indicators:		0	du Dia dia	(05)		Indicators for Probl	ematic Hydric Solls:		
Hist	(ISOI (A1) tia Eninadan (A2)		San	aykeao anad Ma	X (55)		2 cr	n Muck (A10) L Derent Meterial (TE2)		
	nc Epipedon (AZ)		Sun	oped ivia	Minoral	(E1) (oxo		v Shallow Dark Surface (TE12)		
	Hydrogen Sulfide (A4) Loamy Gleved Matrix (F2) Other (explain in remarks)									
Der	leted Below Dark	• <i>)</i> (Surface	(A11) Der	leted M	atrix (F3)	x (i Z)				
	ck Dark Surface (A12)	X Rec	lox Dark	Surface	(F6)	*Indicators of hydr	ophytic vegetation and weltand		
San	Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) hydrology must be present, unless disturbed or									
Sandy Gleyed Matrix (S4) Redox Depressions (F8) problematic										
Restrictive	l aver (if observ	ed).		· · · ·						
Type: Hydric soil present? Y										
Depth (inche	es):				-					
Deput (incles).										
Remarks:										
Redox te	atures begin a	t appro	ximately 9 inch	es tron	i the su	mace.	Observed soils appear	to most closely approach		
the F6 in	dicator.									
	OGY									
Wetland Hv	drology Indicate	ors:								
Primary Indi	cators (minimum	of one is	required: check	all that a	nnlv)		Secondary Ind	licators (minimum of two required)		
Surface	Water (A1)		Wat	er-Staine	ed Leaves	s (B9)	Water-Si	tained Leaves (B9)		
High Wa	iter Table (A2)		(Exc	cept MLF	RA 1, 2, 4	A, and 4	B) (Except	MLRA 1, 2, 4A, and 4B)		
Saturatio	on (A3)		 Salt	Crust (B	11)		X Drainage	e Patterns (B10)		
Water M	arks (B1)		Aqu	atic Inve	rtebrates	(B13)	Dry-Sea	son Water Table (C2)		
Sedimer	nt Deposits (B2)		Hyd	rogen Su	Ifide Odo	or(C4)	Saturatio	on Visible on Aerial Imagery (C9)		
Drift Dep	posits (B3)		Oxic	lized Rhi	sosphere	s Along L	iving Roots X Geomor	phic Position (D2)		
Algal Ma	at or Crust (B4)		(C3))	D		Shallow	Aquatard (D3)		
Iron Dep	OSIIS (B5)		Pres	sence of	Resuced	Iron (C4)		utral Test (D5)		
Surface	Soli Clacks (DO) on Visible on Aeria	l Imagan	/	ent fron i		l In Thin : lante (D1	VIPPA) Frost Ho	avo Hummocks (DZ)		
Sparsely	Vegetated Conca	ave Surfa	ce (B8) Oth	er (Expla	in in Rem	arks)				
Field Obser	vations:	- 3.10		(piu			I			
Surface wate	er present?	Yes	No	Х	Depth (i	nches):				
Water table	present?	Yes	No	X	Depth (i	nches):	Inc	dicators of wetland		
Saturation p	resent?	Yes	No	Х	Depth (i	nches):	hy	ydrology present? Y		
(includes capillary fringe)										
Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:										
Remarks:	1						- 11 - 4			
vvetland	nydrology assi	umed b	ased on the pre	esence	or secc	ndary i	ndicators. The data pl	iot is located in a marginal		
area con	necting two mo	ore clea	riy defined wet	land co	ommuni	ues.				

Project/Site John's Wrecking Yard	City/	County:	Tumwater/Th	urston	Sampling	Date:	6-10-14	Ļ
Applicant/Owner: Alan Wertjes		State:	WA		Sampling	Point:	B-U1	
Investigator(s): P. Togher, K. Snyder		Sect	ion, Township	, Range:	:	S. 23, T 17	N, R2W	
Landform (hillslope, terrace, etc.):	e	Local	relief (concav	e, convex,	none):	convex	Slope (%)	<5%
Subregion (LRR A Lat: 46.95029348		Long:	-122.9002	93 E	Datum:	W	GS 83	
Soil Map Unit Name Norma fine sandy loam (Aquandic	Humaque	pts)	NWI	Classificati	ion:	Upl	and	
Are climatic/hydrologic conditions of the site typical for t	his time o	of the year?	Y (II	no, explai	in in remar	ks)		
Are vegetation , soil , or hydrolog	gy	significant	ly disturbed?					
Are vegetation , soil , or hydrolog	ду	naturally p	roblematic?	Are "norr	mal circum	stances" pr	esent? Y	es
SUMMARY OF FINDINGS				(If neede	d, explain	any answei	rs in remar	ks.)
Hydrophytic vegetation present? Y								
Hydric soil present? N		Is the	sampled area	within a	wetland?		N	
Indicators of wetland hydrology present? N		If yes, o	optional wetla	nd site ID				
Remarks: (Explain alternative procedures here or in a s	enarate re	anort)						
Plot is located unslope and east of shallow den	receion r	port.) Door floge	B DT 6 and		and vege	tation was	nrecent	but
bydric sols and wetland bydrology were absent	The sai	ncai ilays mole locati	ion is not wi	thin a we	anu veye tland	เลแบท พละ	s present,	, but
nyune sols and weitand nyurology were absent.	. The Sal				dana.			
				<u> </u>		<u> </u>		
Tree Stratum (Plot cize: 10 motor)	Absolute %	Dominan t Species	Indicator	Dominar	nce lest v	vorksneet		
		t opecies	Slaus	Number	OBL FACV	nt Species	1	(A)
2				Total	Number of	Dominant		_(//)
3				Spec	cies Across	all Strata:	1	(B)
4				Percent	of Domina	nt Species		_ ` `
5				that are	OBL, FACV	V, or FAC:	100.00%	(A/B)
	0	= Total Cove	er					
<u>Sapling/Shrub stratum</u> (Plot size: <u>5 meters</u>)				Prevaler	nce Index	Worksheet		
1				Total % (Cover of:	• • •	0	
2						$\frac{0}{0}$ x 1 =	- 0	-
4				FAC spe	cies	$\frac{0}{60}$ x 3 =	= <u>180</u>	-
5				FACU sp	becies	$\frac{30}{1}$ x 4 =	: 4	-
	0	= Total Cove	er	UPL spe	cies	0 x 5 =	: 0	-
Herb stratum (Plot size: 1 meter)				Column t	totals	61 (A)	184	(B)
1 Lotus corniculatus	50	Y	FAC	Prevalen	ice Index =	: B/A =	3.02	-
2 Agrostis capillaris	10	Ν	FAC					-
3 Trifolium repens	1	Ν	FACU	Hydroph	nytic Vege	tation India	cators:	
4				Rapi	d test for h	ydrophytic	vegetation	
5				X Dom	inance tes	t is >50%		
8				Prev		ex is ≤3.0"		
8				Morp	onogical ad	aptations" (in Remark	(provide is or on a s	enarate
9				shee	et)	(III Koman	o or on a o	opulato
10				Prob	lematic hy	drophytic ve	egetation*	
	61	= Total Cove	er	(expl	lain)		-	
<u>Woody vine stratum</u> (Plot size: <u>5 meters</u>)				*Indicato	ors of hydric s	oil and wetlar	nd hydrology	must be
2				Hydi	rophytic		Propioritatio	
	0	= Total Cove	er	vege	etation			
				pres	ent?	Y		
Remarks: (Include photo numbers here or on a separate	e sheet)							
Species present in the sample location mee	ts the hy	drophytic	vegetation o	riterion.				

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
Depth	Matrix		Ree	dox Feat	ures				
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture		Remarks
0-5	10YR 4/1	100					Very gravelly silt	loam	Compacted fill
5-10	10YR 3/2	100					Very gravelly silt	loam	Compacted fill
10+							i er j gratten j ent		Shovel refused
101									Silover relused
*Type: C = 0	Concentration, D	= Depleti	on, RM = Reduc	ed Matrix	, MS = N	/lasked S	and Grains. **	Locatio	on: PL = Pore Lining, M = Matrix
Hydric Sc	il Indicators:						Indicators for	Probl	ematic Hydric Soils:
Hist	isol (A1)		Sar	dyRedo	x (S5)			2 cr	n Muck (A10)
Hist	ic Epipedon (A2)		Stri	pped Ma	trix (S6)		_	Red	l Parent Material (TF2)
Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12)									
Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in remarks)									
Dep	leted Below Dark	Surface	e (A11) Dep	leted Ma	atrix (F3)				
Thio	ck Dark Surface (A12)	Rec	lox Dark	Surface	(F6)	*Indicators	of hydr	ophytic vegetation and weltand
Sar	idy Mucky Minera	ıl (S1)	Dep	leted Da	irk Surfa	ce (F7)	hydrology	must b	e present, unless disturbed or
Sar	idy Gleyed Matrix	: (S4)	Red	lox Depr	essions ((F8)			problematic
Restrictive	Layer (if observ	ed):							
Туре: С	ompacted layer						Hydric soil	presen	nt? <u>N</u>
Depth (inche	es): Surface								
Remarks:									
Soil is extremely compacted and likely composed primarily of fill materials. Rootlets present but no roots. No redox									
features	apparent pron	ninent c	nes not obviou	IS	, -			P	
routeroo	apparent, pren								
Wetland Hy	drology Indicate	ors:							
Primary Indi	cators (minimum	of one is	required; check	all that a	pply)		Second	ary Ind	licators (minimum of two required)
Surface	Water (A1)		Wat	er-Staine	d Leaves	s (B9)	N	/ater-St	tained Leaves (B9)
High Wa	ter Table (A2)		(Ex	cept MLF	RA 1, 2, 4	A, and 4	B) (E	Except	MLRA 1, 2, 4A, and 4B)
Saturatio	on (A3)		Salt	Crust (B	11)		D	rainage	e Patterns (B10)
Water M	arks (B1)		Aqu	atic Inver	tebrates	(B13)	D	ry-Sea	son Water Table (C2)
Sedimer	t Deposits (B2)		Hyc	rogen Su	llfide Odo	or(C4)	S	aturatio	on Visible on Aerial Imagery (C9)
Drift Dep	osits (B3)		Oxi	dized Rhi	sosphere	s Along L	.iving RootsG	ieomor	phic Position (D2)
	It or Crust (B4)		(U3) sence of l	Resured	Iron (C4)	s	AC No.	Aquatard (D3)
Surface	Soil Cracks (B6)			ent Iron F	Reduction	1011(04)	Soils (C6)	aied Ar	nt Mounds (D6)(LRR A)
Inundatio	on Visible on Aeria	l Imager	/ Stu	nted or St	ressed P	lants (D1) (LRRA) F	rost He	ave Hummocks (D7)
Sparsely	Vegetated Conca	ve Surfa	ce (B8) Oth	er (Expla	in in Rem	narks)			
Field Obser	vations:								
Surface wat	er present?	Yes	No	Х	Depth (i	nches):			
Water table	present?	Yes	No	Х	Depth (i	nches):		Inc	licators of wetland
Saturation p	resent?	Yes	No	X	Depth (i	nches):		hy	vdrology present? N
(includes ca	(includes capillary fringe)								
Describe rec	corded data (strea	am gauge	e, monitoring wel	, aerial p	hotos, p	revious ir	nspections), if avail	able:	
Remarks									
No india	ators of wotlong	d hydro	ogy were ober	arved					
		anyuru		nveu.					
1									

Project/Site John's Wrecking Yard	City/	/County:	Tumwater/Th	urston Sam	pling Date:	6-10-14	ļ
Applicant/Owner: Alan Wertjes		State:	WA	Samp	oling Point:	B-W1	
Investigator(s): P. Togher, K. Snyder		Sec	ction, Townshi	p, Range:	S. 23, T 1	7N, R2W	
Landform (hillslope, terrace, etc.):	се	Loca	l relief (conca	/e, convex, none): concave	Slope (%)	<5%
Subregion (LRR A Lat: 46.95029348	3	Long:	-122.9002	293 Datum	1:	WGS 83	
Soil Map Unit Name Norma fine sandy loam (Aquandic	Humaque	epts)	NWI	Classification	1	PEM	
Are climatic/hydrologic conditions of the site typical for	this time of	of the year?	Y (lf no, explain in re	emarks)		
Are vegetation , soil , or hydrolo	ogy	significan	tly disturbed?				
Are vegetation , soil , or hydrolo	ogy	naturally	problematic?	Are "normal ci	rcumstances"	present? Y	es
SUMMARY OF FINDINGS		•		(If needed, exp	olain any answ	ers in remar	ks.)
Hydrophytic vegetation present? Y							
Hydric soil present? Y		Is the	sampled are	a within a wetla	nd?	Y	
Indicators of wetland hydrology present? Y		f yes, o	optional wetlar	nd site ID:	В		
Remarks: (Explain alternative procedures here or in a s	senarate r	eport)					
Plot is located in a shallow depression near fla	ane R DT	6 and 7	All three we	utland criteria a	re present -	The sample	-
location is within a wetland, but likely man indu	iced due	to roadwa	All thee we	n on on terra a	re present.	ine sample	,
		to rought	ay compaction				
	A1	D.	I. P. A.	Dominonoo T	aat Warkahas		
Tree Stratum (Plot size [,] 10 meter)	Absolute % Cover	t Species	Staus	Number of Do	minant Spacia	л	
1	/0 00101	t opooloo	Oldub	that are OBL,	FACW, or FAC	; : 1	(A)
2				Total Numb	per of Dominan	t	_(**)
3				Species A	cross all Strata	2	(B)
4				Percent of Do	minant Species	3	-
5				that are OBL,	FACW, or FAC	50.00%	(A/B)
	0	= Total Cov	/er		<u> </u>		
<u>Sapling/Shrub stratur</u> (Plot size: <u>5 meters</u>)	40	Ň	540	Prevalence In	dex Workshe	et	
1 Populus balsamitera	10	Y	FAC	OBL species	OT: 15 v 1	- 15	
				FACW species	$\frac{13}{2}$ x 2	$r = \frac{13}{4}$	-
4				FAC species	<u>10 x 3</u>	= 30	-
5		<u> </u>		FACU species	70 x 4	= 280	-
	10	= Total Cov	/er	UPL species	0 x 5	0 =	-
Herb stratum (Plot size: 1 meter)				Column totals	97 (A)	329	(B)
1 Stellaria media	70	Y	FACU	Prevalence Inc	1ex = B/A =	3.39	_
2 Juncus acuminatus	15	N	OBL				
3 Phalaris arundinacea	1	N	FACW	Hydrophytic V	legetation Inc	dicators:	
4 Juncus effusus	1	<u>N</u>	FACW	Rapid test	for hydrophyti	c vegetation	
5				Dominanc	e test is >50%	*	
7						* (
8		·		supporting	ai adaptations i data in Rema	irks or on a s	enarate
9				sheet)			opulato
10				Problemat	ic hydrophytic	vegetation*	
	87	= Total Cov	/er	(explain)		-	
Woody vine stratum (Plot size: 5 meters)		-		*Indicators of h	ydric soil and wet	land hydrology	must be
1		<u></u>		present	, unless disturbed	or problematic	
2		·		Hydrophy	tic		
	0	= Total Cov	/er	present?	Y		
Remarks: (Include photo numbers hard or on a consta	to shoot)						
Chickweed is recent growth and appears to		onal Oth	er vegetatio	n in the sample	a location m	oote the	
hydrophytic vegetation criterion.	DC 3643		or vogeration				
, ,							

Profile Des	cription: (Descr	ibe to th	e depth needed	to docu	ment the	e indicat	or or confirm the absen	ce of indicators.)
Depth	<u>Matrix</u>		Rec	lox Feat	ures			
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks
0-9	10YR 3/1	100					Ex gravelly silt loam	Fill material
9-12	10YR 3/2	80	10YR 4/4	10	С	М	V. gravelly silt loam	
			10VP 4/1	10	C C	N/	ti giatony entream	
		100	1011 4/1	10	C	IVI	0.111	
12-13	2/5Y 3/1	100					Silt loam	
13+								Shovel refused
*T				al Martuita	MO - 1	An alva al C		n Di – Dana Lining M – Matrix
1 ype: C = C	concentration, D	= Depleti	on, RM = Reduce	ed Matrix	α, MS = Ν	lasked S	and Grains. **Location	on: PL = Pore Lining, M = Matrix
Hydric So	Il Indicators:				(05)		Indicators for Probl	ematic Hydric Solis:
Hist	isol (A1)		San	dyRedo	x (S5)		2 cr	n Muck (A10)
Hist	ic Epipedon (A2)		Strip	pped Ma	trix (S6)			Parent Material (TF2)
Blac	CK Histic (A3)		Loai	ny Mucky	/ Mineral	(⊢1) (exc	ept MLRA 1) Ver	y Shallow Dark Surface (TF12)
Hyd	Irogen Sulfide (A4	4)	Loa	my Gley	ed Matrix	k (F2)	Oth	er (explain in remarks)
Dep	leted Below Dark	Surface	e (A11)Dep	leted Ma	atrix (F3)	(= -)		
	ck Dark Surface (A12)		lox Dark	Surface	(F6)	*Indicators of hydr	ophytic vegetation and weltand
San	idy Mucky Minera	al (S1)	Dep	leted Da	irk Surfa	ce (⊢7)	hydrology must b	be present, unless disturbed or
San	idy Gleyed Matrix	(S4)	Rec	ox Depr	essions ((F8)		problematic
Restrictive	Layer (if observe	ed):						
Type: C	ompacted layer						Hydric soil preser	nt? Y
Depth (inche	es): Surface							
Pemarke:								
(cracked to meetir	soils), and the ng the criteria fo	or the re	ice of plant con edox dark surfa	nmunity ice (F6)	/ domin) indicat	ated by tor, lack	species to hydric soil ing one inch of the B a	conditions. This soil is close above 12 inches.
HYDROLO)GY drology Indicate	ore.						
Drimony Indi	actors (minimum	of one is	required: abook	all that a	nnlu)		Casandan i Ina	licetore (minimum of two required)
Primary Indi	cators (minimum)	of one is	requirea; cneck a	all that a	<u>ppiy)</u>		Secondary Inc	ticators (minimum of two required)
Surface	Water (A1)		Wat	er-Staine		s (B9)	Water-S	tained Leaves (B9)
High VVa	ter Table (A2) $(A3)$			Cruct (B	(A 1, 2, 4	A, and 4	B) (Except	MLRA 1, 2, 4A, and 4B)
X Water M	arks (B1)			atic Inver	tebrates	(B13)	Drainaye	son Water Table (C2)
Sedimer	at Denosits (B2)		Hvd	rogen Su	lifide Odo	(C4)	Saturatio	on Visible on Aerial Imagery (C9)
Drift Der	(B3)			lized Rhi	sosnhere	s Alona I	iving Roots Geomor	phic Position (D2)
Algal Ma	it or Crust (B4)		(C3)		ooopnore	o / liong L	Shallow	Aquatard (D3)
Iron Dep	osits (B5)		Pres	sence of l	Resuced	Iron (C4)	FAC-Ne	utral Test (D5)
X Surface	Soil Cracks (B6)		Rec	ent Iron F	Reductior	n in Thin \$	Soils (C6) Raied A	nt Mounds (D6)(LRR A)
Inundatio	on Visible on Aeria	al Imagery	/ Stur	nted or St	ressed P	lants (D1)(LRRA) Frost He	ave Hummocks (D7)
Sparsely	Vegetated Conca	ave Surfa	ce (B8) Othe	er (Explai	in in Rem	arks)		
Field Obser	vations:							
Surface wate	er present?	Yes	No	Х	Depth (i	nches):		
Water table	present?	Yes	No	Х	Depth (i	nches):	Inc	dicators of wetland
Saturation p	resent?	Yes	No	Х	Depth (i	nches):	h	ydrology present? Y
(includes ca	pillary fringe)							
Describe rec	orded data (strea	am gauge	e, monitoring well	, aerial p	hotos, p	revious i	nspections), if available:	
			-					
Domortico	Pemarks:							
Deire	Tromano. Deine en l'indicateve of wetland by declary were alle anno d. The consult least's structure to set the d							
Primary	indicators of We	etiand h	iyarology were	opserv	ea. The	e sampl	e location is within a v	veuana.

Project/Site John's Wre	cking Yard		City/County:	Tumwater/Thursto	on Samplir	ng Date:	6-10-14	
Applicant/Owner: Ala	an Wertjes		State	WA	Samplin	g Point:	C-U1	
Investigator(s): P. Tog	her, K. Snyder		See	ction, Township, Ra	inge:	S. 23, T	17N, R2W	
Landform (hillslope, ter	race, etc.):	Terrace	Loca	l relief (concave, co	onvex, none):	convex	Slope (%)	<5%
Subregion (LRR A	Lat:	46.94951371	Long:	-122.9003055	Datum:		WGS 83	
Soil Map Unit Name Tis	ch silt loam (Ty	oic Endoaquands)		VWI Class	ification:	ι	Jpland	
Are climatic/hydrologic	conditions of the	e site typical for this	time of the year?	Y (If no,	explain in rem	arks)		
Are vegetation	, soil	, or hydrology	significar	itly disturbed?				
Are vegetation	, soil	, or hydrology	naturally	problematic? Are	e "normal circu	mstances"	present? Ye	s
SUMMARY OF FIN	DINGS			(If	needed, explai	in any ansv	vers in remark	(s.)
Hydrophytic vegeta	tion present?	N						
Hydric soil present?	?	Ν	Is the	sampled area wit	hin a wetland	?	Ν	
Indicators of wetlan	nd hydrology pre	sent? N	f yes,	optional wetland site	e ID:			

Remarks: (Explain alternative procedures here or in a separate report.)

Plot is located at the top of the slope north of Wetland C near flag C KS-1. All three criteria were absent. The sample location is not within a wetland.

	Absolute	Dominan	Indicator	Dominance Test Worksheet
<u>Tree Stratum</u> (Plot size: 10 meter)	% Cover	t Species	Staus	Number of Dominant Species
1 Pseudotsuga menziesii	50	Y	FACU	that are OBL, FACW, or FAC: 1 (A)
2				Total Number of Dominant
3				Species Across all Strata: 5 (B)
4				Percent of Dominant Species
5				that are OBL, FACW, or FAC: 20.00% (A/B)
	50	= Total Cover		
<u>Sapling/Shrub straturr</u> (Plot size: 5 meters)			Prevalence Index Worksheet
1 Cytisus scoparius	50	Y	NI	Total % Cover of:
2				OBL species 0 x 1 = 0
3				FACW species 0 x 2 = 0
4				FAC species $16 \times 3 = 48$
5				FACU species $110 \times 4 = 440$
	50	= Total Cover		UPL species $0 \times 5 = 0$
Herb stratum (Plot size: 1 meter)			Column totals 126 (A) 488 (B)
1 Pteridium aquilinum	40	Y	FACU	Prevalence Index = B/A = 3.87
2 Lotus corniculatus	10	N	FAC	
3 Agrostis capillaris	1	N	FAC	Hydrophytic Vegetation Indicators:
4				Rapid test for hydrophytic vegetation
5				Dominance test is >50%
6				Prevalence index is ≤3.0*
7				Morphogical adaptations* (provide
8				supporting data in Remarks or on a separate
9				sheet)
10				Problematic hydrophytic vegetation*
	51	= Total Cover		(explain)
Woody vine stratum (Plot size: 5 meters)			*Indicators of hydric soil and wetland hydrology must be
1 Rubus armeniacus	20	Y	FACU	present, unless disturbed or problematic
2 Rubus ursinus	5	Y	FAC	Hydrophytic
	25	= Total Cover		vegetation
				present? N
Remarks: (Include photo numbers here or on a separ	ate sheet)			
Vegetation in the sample location is domin	nated by u	plands spec	cies.	
5	,			

(Inches)			<u> </u>	ledox Fea	<u>tures</u>				
	Color (moist)	%	Color (moist) %	Type*	Loc**	Textu	ire	Remarks
0-3	10YR 2/2	100					V. gravelly s	andy loam	Fill
3-13	10YR 3/2	100					V. gravelly s	andy loam	Fill
13-15+	10YR 3/3	100					Sandy loam		Buried A horizon, moist
									·
ype: C = C	Concentration, D	= Depleti	ion, RM = Redu	uced Matri	x, MS = N	Masked S	and Grains.	**Locatio	n: PL = Pore Lining, M = Matri
Hydric So	il Indicators:						Indicator	s for Probl	ematic Hydric Soils:
Hist	isol (A1)		s	andyRed	ox (S5)			2 cn	n Muck (A10)
Hist	ic Epipedon (A2)		s	tripped M	atrix (S6)			Red	Parent Material (TF2)
Blac	ck Histic (A3)		L	pamy Mucl	ky Mineral	(F1) (exc	ept MLRA 1)	Very	/ Shallow Dark Surface (TF12)
Hyd	Irogen Sulfide (A	4)		oamy Gle	yed Matri	x (F2)		Othe	er (explain in remarks)
Dep	leted Below Dark	(Surface	e (A11)	epleted N	latrix (F3))			
	ck Dark Surface (A12)		edox Dar	k Surface	(F6)	*Indica	tors of hydr	ophytic vegetation and weltand
San	dy Mucky Minera	al (S1)	L	epieted D	ark Surfa		hydrol	logy must b	e present, unless disturbed or
San	idy Gleyed Matrix	(54)	P	edox Dep	ressions	(F8)			problematic
estrictive	Layer (if observe	ed):							
ype: <u>C</u>	ompacted layer				_		Hydric s	soil presen	t? <u>N</u>
epth (inche	es): Surface				_				
Colors au througho	re composite. out the profile.	The soi The soi	l is compose ls do not me	d primar et the hy	ily of fill dric soil	materia s criterio	ls - auto glas on.	s and sm	all metal car parts found
Colors a througho	re composite. out the profile.	The soi The soi	l is compose Is do not me	d primar et the hy	ily of fill dric soil	materia s criterio	ls - auto glas on.	s and sm	all metal car parts found
Colors an througho	re composite. out the profile. drology Indicato	The soi The soi	l is compose Is do not me	d primar et the hy	ily of fill dric soil:	materia s criterio	ls - auto glas on.	s and sm	all metal car parts found
Colors an througho /etland Hy rimary India	re composite. out the profile. drology Indicato cators (minimum	The soi The soi ors: of one is	l is compose ls do not me	d primar et the hy <u>k all that a</u>	ily of fill dric soil: 	materia s criterio	ls - auto glas on. <u>Sec</u>	s and sm	all metal car parts found
Colors an througho /etland Hy rimary India Surface	re composite. but the profile. drology Indicato cators (minimum Water (A1)	The soi The soi ors: of one is	l is compose ls do not me required; chec	d primar et the hy <u>k all that</u>	ily of fill dric soil: apply) ed Leaves	materia s criterio s (B9)	ls - auto glas on. <u>Sec</u>	ss and sma condary Ind Water-St	all metal car parts found icators (minimum of two requir ained Leaves (B9)
Colors an througho /etland Hy rimary India Surface High Wa	drology Indicato Cators (minimum Water (A1) ter Table (A2)	The soi The soi ors: of one is	I is compose Is do not me required; chec	d primar et the hy <u>k all that :</u> /ater-Stain Except ML	apply) ed Leaves	materia s criterio s (B9) 4A, and 4	ls - auto glas on. <u>Sec</u> B)	condary Ind Water-St	all metal car parts found icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B)
Colors an througho /etland Hy rimary India Surface High Wa Saturatio	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3)	The soi The soi ors: of one is	I is compose Is do not me	d primar et the hy <u>ek all that i</u> /ater-Stain Except ML alt Crust ()	apply) ed Leaves RA 1, 2, 4	materia s criterio s (B9) 4A, and 4	ls - auto glas on. <u>Sec</u> B)	condary Ind Water-St (Except Drainage	all metal car parts found <u>icators (minimum of two requir</u> ained Leaves (B9) MLRA 1, 2, 4A, and 4B) P Patterns (B10) are Water Table (C2)
Colors at througho /etland Hy rimary India Surface High Wa Saturatio Water M	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) tt Denorite (R2)	The soi The soi ors: of one is	I is compose Is do not me	d primar et the hy <u>k all that a</u> /ater-Stain Except ML alt Crust (I quatic Inve	apply) ed Leaves RA 1, 2, 4 311) ertebrates	materia s criterio s (B9) 4A, and 4 (B13)	ls - auto glas on. <u>Sea</u> B)	condary Ind Water-St (Except Drainage Dry-Seas	all metal car parts found icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) by Visible on Assiel Imagery (C0)
Colors an througho /etland Hy rimary India Surface High Wa Saturatic Water M Sedimer Drift Der	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) tt Deposits (B2) posits (B3)	The soi	I is compose Is do not me	d primar et the hy <u>k all that a</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S	apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd	s (B9) (B13) (C4)	ls - auto glas on. <u>Sec</u> B) 	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorr	all metal car parts found icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) n Visible on Aerial Imagery (C9) whic Position (D2)
Colors an througho /etland Hy rimary India Surface High Wa Saturatic Water M Sedimer Drift Dep Algal Ma	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) t or Crust (B4)	The soi	I is compose Is do not me	d primar et the hy <u>k all that a</u> /ater-Stain Except ML alt Crust (I quatic Invo ydrogen S xidized Rf 23)	apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd	materia s criterio s (B9) 4A, and 4 (B13) or(C4) es Along L	ls - auto glas on. B) .iving Roots	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow	all metal car parts found icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) n Visible on Aerial Imagery (C9) phic Position (D2) Aquatard (D3)
Vetland Hy Vetland Hy rimary India Surface High Wa Saturatic Water M Sedimer Drift Dep Algal Ma Iron Dep	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	The soi	I is compose Is do not me	d primar et the hy <u>ek all that a</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S vxidized Rh C3) resence o	apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd hisosphere	materia s criterio s (B9) 4A, and 4 (B13) or(C4) es Along L Iron (C4)	ls - auto glas on. B) .iving Roots	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow	all metal car parts found <u>icators (minimum of two requir</u> ained Leaves (B9) MLRA 1, 2, 4A, and 4B) P Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9) phic Position (D2) Aquatard (D3) utral Test (D5)
Colors an througho Vetland Hy rimary India Surface High Wa Saturatic Water M Sedimer Drift Dep Algal Ma Iron Dep Surface	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6)	The soi	I is compose Is do not me	d primar et the hy <u>k all that a</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S ixidized Rh C3) resence of ecent Iron	apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd hisosphere f Resuced Reduction	materia s criterio s (B9) 4A, and 4 (B13) or(C4) es Along L Iron (C4) n in Thin S	ls - auto glas on. B) .iving Roots Soils (C6)	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar	icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9) phic Position (D2) Aquatard (D3) utral Test (D5) It Mounds (D6)(LRR A)
Colors at througho Vetland Hy Primary India Surface High Wa Saturatic Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatic	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) it or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeria	The soi	I is compose Is do not me	d primar et the hy k all that i /ater-Stain alt Crust (I quatic Inve ydrogen S ixidized RH C3) resence of ecent Iron tunted or S	apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd hisosphere f Resuced Reduction Stressed F	materia s criterio s (B9) 4A, and 4 (B13) or(C4) es Along L Iron (C4) n in Thin S Plants (D1	ls - auto glas on. B) .iving Roots Goils (C6))(LRRA)	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost He	icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) n Visible on Aerial Imagery (C9) phic Position (D2) Aquatard (D3) utral Test (D5) it Mounds (D6)(LRR A) ave Hummocks (D7)
Colors an througho Vetland Hy rimary India Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatic Sparsely	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) at or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aeria v Vegetated Conce	The soi	I is compose Is do not me	d primar et the hy <u>ek all that a</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S yxidized Rł C3) resence o ecent Iron tunted or s ther (Expla	apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd nisosphere f Resuced Reduction Stressed F ain in Rem	materia s criteric s (B9) 4A, and 4 (B13) or(C4) es Along L lorn (C4) n in Thin S Plants (D1 narks)	ls - auto glas on. Sec B) .iving Roots Goils (C6) .(LRRA)	condary Ind Water-St Urainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost He	all metal car parts found icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9) whic Position (D2) Aquatard (D3) utral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
Vetland Hy Vetland Hy Vimary India Surface High Wa Saturatic Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatio Sparsely ield Obser	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) tt Deposits (B2) posits (B3) tt or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeria v Vegetated Conca vations:	The soi	I is compose Is do not me	d primar et the hy <u>ek all that a</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S vidized Rh C3) resence of ecent Iron tunted or S ther (Expla	apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd hisosphere f Resuced Reduction Stressed F ain in Rem	materia s criterio s (B9) 4A, and 4 (B13) or(C4) es Along L lron (C4) n in Thin S Plants (D1 narks)	ls - auto glas on. B) .iving Roots Soils (C6))(LRRA)	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost Hea	icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9) bhic Position (D2) Aquatard (D3) Itral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
Vetland Hy Vetland Hy Vetland Hy Varimary India Surface High Wa Saturatic Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatic Sparsely Vield Obser	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) at or Crust (B4) oosits (B5) Soil Cracks (B6) on Visible on Aeria v Vegetated Conca vations: er present?	The soi The soi ors: of one is al Imagen ave Surfa Yes	I is compose Is do not me	d primar et the hy <u>ek all that a</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S vidized Rh C3) resence of ecent Iron tunted or S ther (Expla-	apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd hisosphere f Resuced Reduction Stressed F ain in Rem	materia s criterio s (B9) 4A, and 4 (B13) or(C4) es Along L l Iron (C4) n in Thin S Plants (D1 narks) inches):	ls - auto glas on. B) .iving Roots	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost Hea	all metal car parts found icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) P Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9) phic Position (D2) Aquatard (D3) utral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
Vetland Hy Vetland Hy rimary India Surface High Wa Saturatic Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatic Sparsely Vater table	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeria v Vegetated Conca vations: er present? present?	The soi The soi ors: of one is al Imagery ave Surfa Yes Yes	I is compose Is do not me	d primar et the hy <u>sk all that i</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S ixidized Rł C3) resence of ecent Iron tunted or S ither (Expl: X X	apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd hisosphere f Resuced Reduction Stressed F ain in Rem Depth (i Depth (i	materia s criterio s (B9) 4A, and 4 (B13) or(C4) es Along L Iron (C4) n in Thin S Plants (D1 narks) inches):	ls - auto glas on. Ser B) iving Roots	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost He	icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) P Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9) phic Position (D2) Aquatard (D3) utral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
Colors an througho Vetland Hy rimary India Surface High Wa Saturatic Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatic Sparsely ield Obser urface wate vater table	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) at or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aeria v Vegetated Conca vations: er present? present? present?	The soi The soi ors: of one is of one is ave Surfa Yes Yes Yes Yes	I is compose Is do not me	d primar et the hy <u>k all that i</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S ixidized RF C3) resence of ecent Iron tunted or S ther (Expl: X X X	apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd hisosphere f Resuced Reduction Stressed F ain in Rem Depth (i Depth (i	materia s criterio s (B9) 4A, and 4 (B13) or(C4) es Along L Iron (C4) n in Thin S Plants (D1 narks) inches): inches): inches):	ls - auto glas on. B) 	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost Hes	icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9) ohic Position (D2) Aquatard (D3) utral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
Colors an througho Vetland Hy Primary India Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatio Sparsely Field Obser Surface wate Vater table Saturation p ncludes ca	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) arks (B1) at Deposits (B2) oosits (B3) at or Crust (B4) oosits (B5) Soil Cracks (B6) on Visible on Aeria v Vegetated Conca vations: er present? present? pillary fringe)	The soi The soi ors: of one is of one is ave Surfa Yes Yes Yes	I is compose Is do not me	d primar et the hy <u>k all that</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S xidized Rf C3) resence of ecent Iron tunted or S ther (Expl: X X	apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd hisosphere f Resuced Reduction Stressed F ain in Rem Depth (i Depth (i	materia s criterio s (B9) 4A, and 4 (B13) or(C4) es Along L lron (C4) n in Thin S Plants (D1 narks) inches): inches):	Is - auto glas	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost Heat Ind hy	icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9) ohic Position (D2) Aquatard (D3) utral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
Colors an througho Vetland Hy Primary India Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatio Sparsely Field Obser Surface wate Vater table Saturation p ncludes ca	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) oosits (B3) at or Crust (B4) oosits (B5) Soil Cracks (B6) on Visible on Aeria v Vegetated Conca vations: er present? present? present? pillary fringe) corded data (streat	The soi The soi ors: of one is al Imagery ave Surfa Yes Yes Yes	I is compose Is do not me	d primar et the hy <u>ek all that a</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S xidized Rł C3) resence of ecent Iron tunted or S ther (Expla <u>X</u> <u>X</u> <u>X</u>	ily of fill dric soil: apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd hisosphere f Resuced Reduction Stressed F ain in Rem Depth (i Depth (i) photos, p	materia s criteric s (B9) 4A, and 4 (B13) or(C4) es Along L lron (C4) n in Thin S Plants (D1 narks) inches): inches): inches):	Is - auto glas	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost He Inc hy available:	all metal car parts found icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9) ohic Position (D2) Aquatard (D3) utral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7) licators of wetland rdrology present? N
Colors an througho Vetland Hy rimary India Surface High Wa Saturatic Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatic Sparsely ield Obser Surface wate Vater table aturation p ncludes ca	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) tt Deposits (B2) posits (B3) tt or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeria v Vegetated Conca vations: er present? present? present? pillary fringe) corded data (streat	The soi The soi ors: of one is of one is ave Surfa Yes Yes Yes Yes	I is compose Is do not me	d primar et the hy <u>ek all that a</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S ixidized Rh C3) resence of ecent Iron tunted or S ther (Expla- <u>X</u> <u>X</u> <u>x</u> ell, aerial	ily of fill dric soil: apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd hisosphere f Resuced Reduction Stressed F ain in Rem Depth (i Depth (i Depth (i) photos, p	materia s criterio s (B9) 4A, and 4 (B13) or(C4) es Along L lorn (C4) n in Thin S Plants (D1 narks) inches): inches): inches): inches):	Is - auto glas	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost Hea Ind hy available:	icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9) ohic Position (D2) Aquatard (D3) Itral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
Colors an througho Vetland Hy <u>rimary India</u> Surface T High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Surface Water Surface Water inundatio Sparsely Vater table aturation p ncludes ca Describe rec	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) it Deposits (B2) posits (B3) it or Crust (B4) oosits (B5) Soil Cracks (B6) on Visible on Aeria v Vegetated Conca vations: er present? present? present? pillary fringe) corded data (streat	The soi The soi ors: of one is al Imagen ave Surfa Yes Yes Yes Yes am gauge	I is compose Is do not me	d primar et the hy <u>sk all that i</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S ixidized Rł C3) resence of ecent Iron tunted or S ither (Expl: X X X rell, aerial	ily of fill dric soil: apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd hisosphere f Resuced Reduction Stressed F ain in Rem Depth (i Depth (i Depth (i) photos, p	materia s criterio s (B9) 4A, and 4 (B13) or(C4) es Along L Iron (C4) n in Thin \$ Plants (D1 narks) inches): inches): inches): orevious in	Is - auto glas	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost Hea Inc hy available:	icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9) ohic Position (D2) Aquatard (D3) utral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
Colors an througho Vetland Hy rimary India Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatio Sparsely ield Obser unface wate vater table aturation p ncludes ca bescribe rec	drology Indicato cators (minimum Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) oosits (B3) at or Crust (B4) oosits (B5) Soil Cracks (B6) on Visible on Aeria vegetated Conca vations: er present? present? present? pillary fringe) corded data (streat	The soi The soi ors: of one is of one is al Imagen ave Surfa Yes Yes Yes Yes am gauge	I is compose Is do not me	d primar et the hy <u>k all that i</u> /ater-Stain Except ML alt Crust (I quatic Inve ydrogen S ixidized RF C3) resence of ecent Iron tunted or S ther (Expl: X X X Ell, aerial	ily of fill dric soil: apply) ed Leaves RA 1, 2, 4 311) ertebrates ulfide Odd hisosphere f Resuced Reduction Stressed F ain in Rem Depth (i Depth (i Depth (i photos, p	materia s criterio s (B9) 4A, and 4 (B13) or(C4) es Along L Iron (C4) n in Thin S Plants (D1 narks) inches): inches): inches): orevious in	Is - auto glas	condary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raied Ar Frost Heat Inc hy available:	icators (minimum of two requir ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9) ohic Position (D2) Aquatard (D3) utral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)

Project/Site John's Wrecking Yard		City/County:	Tumwater/Thurstor	n Sampli	ng Date:	6-10-14	
Applicant/Owner: Alan Wertjes		State:	WA	Samplir	ng Point:	C-W1	
Investigator(s): P. Togher, K. Snyd	er	Sec	tion, Township, Rar	nge:	S. 23, T ⁻	17N, R2W	
Landform (hillslope, terrace, etc.):	Depression	Loca	l relief (concave, cor	nvex, none):	concave	Slope (%)	<5%
Subregion (LRR A Lat:	46.94950969	Long:	-122.9003033	Datum:		WGS 83	
Soil Map Unit Name Tisch silt loam	(Typic Endoaquands)		NWI Classi	fication:		PEM	
Are climatic/hydrologic conditions of	f the site typical for this t	ime of the year?	Y (If no, e	explain in rem	narks)		
Are vegetation, soil	, or hydrology	significan	tly disturbed?				
Are vegetation , soil	, or hydrology	naturally	problematic? Are	"normal circu	umstances"	present? Ye	es
SUMMARY OF FINDINGS			(lf n	eeded, expla	in any answ	vers in remark	(s.)
Hydrophytic vegetation present	? <u>Y</u>						
Hydric soil present?	Y	Is the	sampled area with	in a wetland	l?	Y	
Indicators of wetland hydrology	present? Y	f yes, o	optional wetland site	ID:	С		

Remarks: (Explain alternative procedures here or in a separate report.)

Plot is located at the top of the slope north of Wetland C near flag C KS-1. All three criteria were present. The sample location is within a wetland.

	Absolute	Dominan	Indicator	Dominance Test Worksheet
Tree Stratum (Plot size: 10 meter)	% Cover	t Species	Staus	Number of Dominant Species
1 Pseudotsuga menziesii	20	Y	FACU	that are OBL, FACW, or FAC:4 (A)
2				Total Number of Dominant
3				Species Across all Strata: 5 (B)
4				Percent of Dominant Species
5				that are OBL, FACW, or FAC: 80.00% (A/B)
	20	= Total Cover		
Sapling/Shrub stratum (Plot size: 5 meters)			Prevalence Index Worksheet
1 Alnus rubra	30	Y	FACW	Total % Cover of:
2 Spiraea douglasii	20	Y	FACW	OBL species 4 x 1 = 4
3				FACW species 140 x 2 = 280
4				FAC species 5 x 3 = 15
5				FACU species 20 x 4 = 80
	50	= Total Cover		UPL species 0 x 5 = 0
Herb stratum (Plot size: 1 meter)			Column totals <u>169</u> (A) <u>379</u> (B)
1 Phalaris arundinacea	90	Y	FACW	Prevalence Index = B/A = 2.24
2 Solanum dulcamara	5	Y	FAC	
3 Veronica scutellata	3	N	OBL	Hydrophytic Vegetation Indicators:
4 Lemna minor	1	N	OBL	Rapid test for hydrophytic vegetation
5				X Dominance test is >50%
6				X Prevalence index is ≤3.0*
7				Morphogical adaptations* (provide
8				supporting data in Remarks or on a separate
9				sheet)
10				Problematic hydrophytic vegetation*
	99	= Total Cover		(explain)
Woody vine stratum (Plot size: 5 meters)			*Indicators of hydric soil and wetland hydrology must be
1				present, unless disturbed or problematic
2				Hydrophytic
	0	= Total Cover		vegetation
				present? Y
Remarks: (Include photo numbers here or on a separ	ate sheet)			
PSME rooted outside of the wetland. Vege	etation in t	he sample l	ocation is	dominated by hydrophytes.

C-W1

rofile Des	cription:	(Descri	be to th	e depth	needed			e maioat	or or confirm t		
Depth (Inches)	Color (<u>Matrix</u>	0/2	Color (<u>Red</u> moist)	dox Feat %	ures Type*	1.00**	Textur	2	Pemarks
			100		moist)	70	туре	LUC		. t le eme	Reillaiks
0-9	IUTR	K Z/Z	100						v. gravelly sli	lioam	Ob avail wafter a d
9+											Snovel refused
ype: C = 0	Concentra	ition, D =	= Depleti	on, RM =	Reduce	ed Matrix	k, MS = N	/lasked S	and Grains.	**Locatio	n: PL = Pore Lining, M = Matr
Hydric So	oil Indicat	ors:			-		(- -)		Indicators	for Proble	ematic Hydric Soils:
Hist	tisol (A1)	(10)			Sar	ndyRedo	x (S5)			2 cn	n Muck (A10)
Hisi	tic Epiped	on (A2)			Stri	pped Ma	trix (S6)	(F 1) (ava			Parent Material (TF2)
	trogen Su	AS) Ifide (A/	D D	•	Loa		y Minerai	(FI) (exce v (F2)	ept MLRA 1)		/ Shallow Dark Sunace (1F12
Der	pleted Bel	ow Dark	r) : Surface	(A11)	Der	pleted Ma	atrix (F3)	x (i Z)			
	ck Dark S	urface (/	A12)			lox Dark	Surface	(F6)	*Indicate	ors of hydr	ophytic vegetation and weltan
Sar	ndy Mucky	/ Minera	í (S1)		Dep	pleted Da	ark Surfa	ce (F7)	hydrolo	gy must b	e present, unless disturbed or
Sar	ndy Gleye	d Matrix	(S4)	•	Rec	lox Depr	essions ((F8)	,		problematic
estrictive	Layer (if	observe	ed):								
/pe:			,						Hydric so	oil presen	t? Y
-							•		-	-	
epth (inche emarks: Soils are	es): e too satu	urated	to samp	ble effec	tively.						
epth (inche emarks: Soils are	es): e too satu	urated	to samp	ble effec	tively.		-				
epth (inche emarks: Soils are YDROLC etland Hy	e too satu OGY rdrology I	urated t	to samp	ble effec	tively.		<u>-</u>				
epth (inche emarks: Soils are YDROL0 'etland Hy imary Indi	e too satu OGY vdrology l	urated t Indicato	to samp ors: of one is	ble effec	tively.	all that a			Seco	ondary Ind	icators (minimum of two requi
epth (inche emarks: Soils are YDROL(etland Hy rimary Indi Surface	es): too satu OGY rdrology I icators (mi Water (A1	urated t Indicato	to samp ors: of one is	ble effec	tively. ; <u>check</u> Wat	all that a	<u>pply)</u> d Leaves	s (B9)	Seco	ondary Ind Water-St	icators (minimum of two requi ained Leaves (B9)
epth (inche emarks: Soils are YDROL(etland Hy imary Indi (Surface High Wa	e too satu OGY /drology l /drology l /drology l /drology l /drology l /drology l	Indicato inimum) (A2)	to samp ors: of one is	ble effec	tively. ; <u>check</u> Wat	all that a ter-Staine cept MLF	<u>pply)</u> d Leaves	s (B9) A, and 4	<u>Secc</u>	ondary Ind Water-St _ (Except	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B)
epth (inche emarks: Soils are YDROL(etland Hy imary Indi Surface High Wa Saturatio	e too satu DGY /drology I /drology I /dcators (mi Water (A1 ater Table on (A3)	Indicato inimum) (A2)	to samp ors: of one is	ble effec	tively.	<u>all that a</u> ter-Staine cept MLf : Crust (B	<u>pply)</u> ed Leaves RA 1, 2, 4 11)	s (B9) IA, and 4	<u>Secc</u> В)	ondary Ind Water-St (Except Drainage	icators (minimum of two requ ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10)
epth (inche emarks: Soils are YDROL(etland Hy imary Indi Surface High Wa Saturatio Water M	e too satu DGY rdrology I ficators (mi Water (A1 ater Table (on (A3) larks (B1)	Indicato inimum) (A2)	to samp ors: of one is	ble effec	; <u>check</u> Wat Salt Aqu	all that a ter-Staine cept MLF Crust (B atic Inver	<u>pply)</u> ed Leaves RA 1, 2, 4 11) rtebrates	s (B9) IA, and 4 (B13) or(C4)	<u>Secc</u> B)	ondary Ind Water-St (Except Drainage Dry-Seas	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2)
epth (inche emarks: Soils are YDROL(etland Hy imary Indi Surface High Wa Saturatio Water M Sedimer Drift Der	e too satu DGY drology I dcators (mi Water (A1 ater Table on (A3) larks (B1) nt Deposits posits (B3)	Indicato inimum) (A2) s (B2)	to samp ors: of one is	ple effec	:tively. : <u>check</u> Wat (Ex Salt Aqu Hyd	all that a ter-Staine cept MLF Crust (B atic Inve lrogen Su dized Rhi	<u>pply)</u> ed Leaves RA 1, 2, 4 11) rtebrates ulfide Odo	s (B9) IA, and 4 (B13) or(C4)	B)	ondary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorr	icators (minimum of two requ ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) n Visible on Aerial Imagery (C9 bbic Position (D2)
epth (inche emarks: Soils are YDROLO etland Hy imary Indi C Surface High Wa C Saturatio Water M Sedimer Drift Dep Algal Ma	e too satu DGY drology I dcators (mi Water (A1 ater Table on (A3) larks (B1) ht Deposits posits (B3) at or Crust	Indicato inimum) (A2) s (B2) (B4)	to samp ors: of one is	ble effec	tively.	<u>all that a</u> er-Staine c ept MLf Crust (B atic Inve latic Inve lized Rhi)	<u>pply)</u> ed Leaves RA 1, 2, 4 11) rtebrates ulfide Odo	s (B9) IA, and 4 (B13) or(C4) es Along L	B)	ondary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 phic Position (D2) Aquatard (D3)
epth (inche emarks: Soils are YDROL(etland Hy imary Indi Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep	e too satu too satu DGY drology I vdrology I vdrology I Water (A1 ater Table on (A3) larks (B1) nt Deposits posits (B3) at or Crust posits (B5)	Indicato inimum) (A2) (B4)	to samp ors: of one is	ple effec	; check Wat (Ex Salt Aqu U Oxio (C3 Pres	all that a ter-Staine cept MLF : Crust (B atic Inve latic Inve lirogen Su dized Rhi) sence of	- pply) ed Leaves RA 1, 2, 4 11) rtebrates ulfide Odo isosphere Resuced	s (B9) IA, and 4 (B13) or(C4) es Along L Iron (C4)	B)	ondary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu	icators (minimum of two requ ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 phic Position (D2) Aquatard (D3) utral Test (D5)
epth (inche emarks: Soils are YDROL(etland Hy imary Indi Surface High Wa Saturatio Saturatio Vater M Sedimer Drift Dep Algal Ma Iron Dep Surface	e too satu DGY drology I dcators (mi Water (A1 ater Table on (A3) larks (B1) nt Deposits (B3) larks (B3) at or Crust posits (B5) Soil Crack	urated f Indicato inimum) (A2) (B2) (B4) (B4)	to samp ors: of one is	ole effec	; check Wat (Ex. Salt Aqu Hyd Oxid (C3 Pre: Rec	all that a ter-Staine cept MLF Crust (B latic Inver lrogen Su dized Rhi) sence of cent Iron 1	pply) ed Leaves RA 1, 2, 4 11) rtebrates ulfide Odo isosphere Resuced Resuced	s (B9) LA, and 4 (B13) or(C4) es Along L Iron (C4) n in Thin 5	<u>Secc</u> B) iving Roots Goils (C6)	ondary Ind Water-St Urainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 obic Position (D2) Aquatard (D3) Itral Test (D5) at Mounds (D6)(LRR A)
epth (inche emarks: Soils are YDROL(etland Hy imary Indi Surface High Wa Saturatic Water M Sedimer Drift Dep Algal Ma Iron Dep Surface	e too satu too satu DGY drology I drology I water (A1 ater Table on (A3) larks (B1) nt Deposits (B3) at or Crust posits (B3) soil Crack on Visible on Visible	Indicato inimum) (A2) (B4) (B4) (s (B6) on Aeria	to samp ors: of one is	required	ctively.	all that a ter-Staine cept MLF Crust (B togen Su dized Rhi) sence of sent Iron I nited or S	<u>pply)</u> ed Leaves RA 1, 2, 4 11) rtebrates ulfide Odo isosphere Resuced Resuced Reductior tressed P	s (B9) IA, and 4 (B13) or(C4) es Along L Iron (C4) n in Thin S Plants (D1	Second B)	ondary Ind Water-St (Except Drainage Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost He	icators (minimum of two requ ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 bhic Position (D2) Aquatard (D3) Itral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
epth (inche emarks: Soils are YDROL(etland Hy imary Indi Gurface High Wa Caturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatii Sparsel)	e too satu coordinational cators (mi Water (A1 ater Table on (A3) larks (B1) ht Deposits posits (B3) at or Crust posits (B5) Soil Crack on Visible y Vegetate	Indicato inimum) (A2) (B4) (B4) (S (B6) on Aeria d Conca	to samp ors: of one is I Imagery ve Surfa	required	tively.	all that a ter-Staine cept MLf Crust (B latic Inver logen Su dized Rhi) sence of cent Iron I nted or S er (Expla	<u>pply)</u> ed Leaves RA 1, 2, 4 11) rtebrates ulfide Odo isosphere Resuced Resuced Reductior tressed P in in Rem	s (B9) IA, and 4 (B13) or(C4) es Along L Iron (C4) n in Thin S Plants (D1 narks)	Secc B) iving Roots Soils (C6))(LRRA)	ondary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost He	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 ohic Position (D2) Aquatard (D3) Itral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
epth (inche emarks: Soils are YDROL(etland Hy imary Indi Surface High Wa Saturatio Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatio Sparsely eld Obser	e too satu e too satu DGY /drology I /drology I /	Indicato inimum) (A2) (B4) (s (B6) on Aeria d Conca	to samp ors: of one is I Imageny ve Surfa	required	tively.	all that a ter-Staine cept MLF Crust (B atic Inver rogen Su dized Rhi) sence of sent Iron I nted or S er (Expla	pply) ed Leaves RA 1, 2, 4 11) rtebrates Ilfide Odo isosphere Resuced Resuced Reductior tressed P in in Rem	s (B9) IA, and 4 (B13) or(C4) es Along L Iron (C4) in in Thin S Plants (D1 marks)	<u>Secc</u> B) iving Roots Soils (C6))(LRRA)	ondary Ind Water-St Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost Hea	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 bhic Position (D2) Aquatard (D3) Itral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
epth (inche emarks: Soils are YDROL(etland Hy imary Indi Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundati Sparsely eld Obser urface wat	e too satu e too satu DGY drology I drology I drol	urated f indicato inimum) (A2) (B4) (B4) (B4) (ss (B6) on Aeria d Conca	to samp ors: of one is I Imagery ve Surfar Yes Yes	required required (ce (B8) X	tively. : check Wat (Ex Salt Aqu Hyd (C3 Pre: Rec Stur Oth No No	all that a ter-Staine cept MLF Crust (B togen Su dized Rhi) sence of sent Iron I neted or S er (Expla	pply) ed Leaves RA 1, 2, 4 11) rtebrates ulfide Odo isosphere Resuced Resuced Resuced Resuced P in in Rem Depth (i	s (B9) IA, and 4 (B13) or(C4) Iron (C4) Iron (C4) Iron (C4) In Thin S Plants (D1 harks) inches):	<u>Secc</u> B) iving Roots Soils (C6))(LRRA) 1-4" 0	ondary Ind Water-St Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost He	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 obic Position (D2) Aquatard (D3) Itral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
epth (inche emarks: Soils are YDROLO etland Hy rimary Indi C Surface High Wa C Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundati Sparsely eld Obser urface wat /ater table aturation p	e too satu coordinations (mini- drology I drology I	Indicato inimum) (A2) (B4) (B4) (B4) (B4) (Conca d Conca	to samp rs: <u>of one is</u> I Imageny ve Surfa Yes Yes Yes Yes	nequired	tively.	all that a ter-Staine cept MLF Crust (B latic Invel lized Rhi) sence of sent Iron I nted or S er (Expla	pply) ed Leaves RA 1, 2, 4 11) rtebrates ulfide Odo isosphere Resuced Reductior tressed P in in Rem Depth (i Depth (i	s (B9) IA, and 4 (B13) or(C4) es Along L lron (C4) in Thin S Plants (D1 narks) inches): nches): nches):	Secc B)	ondary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raied Ar Frost He Inc hy	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 ohic Position (D2) Aquatard (D3) Itral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7) licators of wetland rdrology present?
epth (inche emarks: Soils are VDROLO Vetland Hy rimary Indi Surface High Wa Saturatio Vater M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundati Sparsely ield Obser urface wat /ater table aturation p ncludes ca	e too satu constant cons	urated f Indicato inimum) (A2) (B4) (B4) (B4) (B4) (B4) (B4) (B4) (Conca d Conca t?	to samp ors: of one is of one is l Imagery ve Surfac Yes Yes Yes Yes	required required (ce (B8) X X X	tively.	all that a ter-Staine cept MLF Crust (B latic Inver logen Su dized Rhi) sence of cent Iron I neted or S er (Expla	pply) ed Leaves RA 1, 2, 4 11) rtebrates ulfide Odo isosphere Resuced Reductior tressed P in in Rem Depth (i Depth (i	s (B9) A, and 4 (B13) or(C4) es Along L Iron (C4) n in Thin S Plants (D1 harks) inches): inches): inches):	Secc B)	ondary Ind Water-St Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raied Ar Frost He Inc hy	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 Dhic Position (D2) Aquatard (D3) Itral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
epth (inche emarks: Soils are YDROL(/etland Hy rimary Indi (Surface High Wa (Saturatio Vater M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatio Sparsely ield Obser urface wat /ater table aturation p ncludes ca escribe rec	e too satu constant cators (mi vater (A1 ater Table on (A3) larks (B1) nt Deposits boosits (B3) at or Crust boosits (B5) Soil Crack on Visible y Vegetate rvations: er present? pillary frin corded da	Indicato inimum) (A2) (B4) (B4) (B4) (B4) (B4) (B4) (B4) (B4	to samp ors: of one is of one is of one is ve Surfa Yes Yes Yes Yes Yes	required required (ce (B8) X X X x x x x	tively.	all that a ter-Staine cept MLF Crust (B latic Invel rogen Su dized Rhi) sence of sent Iron I nted or S er (Expla	pply) ed Leaves RA 1, 2, 4 11) rtebrates Ilfide Odo isosphere Resuced Reductior tressed P in in Rem Depth (i Depth (i Depth (i	s (B9) IA, and 4 (B13) or(C4) es Along L lron (C4) in Thin S Plants (D1 harks) inches): inches): inches): revious in	Soils (C6) (LRRA)	ondary Ind Water-St Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raied Ar Frost He Inc hy	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 ohic Position (D2) Aquatard (D3) Itral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
epth (inche emarks: Soils are IYDROLO /etland Hy rimary Indi X Surface High Wa X Saturatic Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundati Sparsely ield Obser urface wat /ater table aturation p ncludes ca escribe red	e too satu constant cons	urated f inimum) (A2) (B4) (B4) (s (B6) on Aeria d Conca t? <u>ge)</u> ta (strea	to samp ors: of one is of other of one is of other of other of other of other of	nequired required (ce (B8) X X X x x	tively. check Wat (Ex Salt Aqu Hyd Oxid (C3 Pre: Rec Stur Oth No No No No	all that a ter-Staine cept MLF Crust (B atic Invel rogen Su dized Rhi) sence of sent Iron I nted or S er (Expla	pply) ed Leaves RA 1, 2, 4 11) rtebrates ulfide Odo sosphere Resuced Reductior tressed P in in Rem Depth (i Depth (i Depth (i	s (B9) IA, and 4 (B13) or(C4) es Along L Iron (C4) in Thin S Plants (D1 narks) inches): inches): inches): inches): revious in	Soils (C6) (ILRRA) 1-4" 0 Surface Dispections), if av	ondary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raied Ar Frost He Inc hy	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 obic Position (D2) Aquatard (D3) Itral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
epth (inche emarks: Soils are IYDROLO /etland Hy rimary Indi X Surface High Wa X Saturatio Water M Sedimer Drift Deg Algal Ma Iron Dep Surface Inundati Sparsely ield Obser urface wat /ater table aturation p ncludes ca escribe rec	e too satu orgen orge	urated f Indicato inimum) (A2) (B4) (B4) (B4) (B4) (B4) (B4) (B4) (B4	to samp ors: of one is of one is of one is ve Surfac Yes Yes Yes Yes Yes m gauge	nequired	tively.	all that a ter-Staine cept MLF Crust (B latic Invel lrogen Su dized Rhi) sence of cent Iron I nted or S er (Expla	pply) ed Leaves RA 1, 2, 4 11) rtebrates ulfide Odo isosphere Resuced Reductior tressed P in in Rem Depth (i Depth (i Depth (i	s (B9) IA, and 4 (B13) or(C4) as Along L lron (C4) in Thin S lants (D1 arks) nches): nches): nches): nches): revious in	B)	ondary Ind Water-St (Except Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raied Ar Frost He Inc hy /ailable:	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B) P Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 ohic Position (D2) Aquatard (D3) Itral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)
epth (inche emarks: Soils are VDROLC letland Hy rimary Indi Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatii Sparsely leld Obser urface wat 'ater table aturation p ncludes ca escribe rec emarks: Primary	e too satu e too satu ode to	urated f Indicato inimum) (A2) (B4) (B4) (B4) (B4) (B4) (B4) (B4) (B4	to samp ors: of one is of one is of one is of one is ve Surface Yes Yes Yes Yes Yes	required required (ce (B8) X X X x x	tively.	all that a ter-Staine cept MLF Crust (B latic Invest logen Su dized Rhi) sence of sent Iron I nted or S er (Expla	pply) ed Leaves RA 1, 2, 4 11) rtebrates ilfide Odo isosphere Resuced Reductior tressed P in in Rem Depth (i Depth (i Depth (i Depth (i	s (B9) IA, and 4 (B13) or(C4) as Along L Iron (C4) in Thin S Plants (D1 harks) inches): inches): revious in revious in e sample	B) iving Roots Soils (C6) (LRRA) <u>1-4"</u> 0 Surface nspections), if av	ondary Ind Water-St Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raied Ar Frost He Inc hy /ailable:	icators (minimum of two requi ained Leaves (B9) MLRA 1, 2, 4A, and 4B) Patterns (B10) son Water Table (C2) In Visible on Aerial Imagery (C9 ohic Position (D2) Aquatard (D3) Itral Test (D5) It Mounds (D6)(LRR A) ave Hummocks (D7)

APPENDIX D – WETLAND RATING FORMS

WETLAND	RATING	FORM -	WESTERN	WASHING	TON
	MILLIO	ronn –		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Version 2 – Updated July 2006 to increase accuracy and reproducibility among users Updated Oct. 2008 with the new WDFW definitions for priority habitats

Name of	wetland (if known): <u>A</u>				Dat	e of site visit:	<u>6-10-14</u>
Rated by	: P. Togher Trained by Ecology? Yes	No 🗌			Ι	Date of trainin	g: <u>5/2005</u>
SEC: <u>23</u>	TOWNSHP: <u>17N</u> R	NGE: <u>2W</u>		Is	S/T/R in Appe	ndix D? Yes	🗌 No 🛛
	Map of wetland	l unit: Figu	ire Es	timated size <u>~</u> {	50 acres		
		SUMMA	RY OF RAT	ING			
Categor	y based on FUNCTIONS provided by	wetland:					
	Category I = Score > 70		Score for W	ater Quality Fu	inctions	14D/20R	
	Category II = Score 51 - 69		Score for	· Hydrologic Fu	inctions	16D/26R	
	Category III = Score 30 – 50		Score	e for Habitat Fu	inctions	18	
	Category IV = Score < 30		TOTA	AL Score for Fu	inctions	48D/64R	7
Category	y based on SPECIAL CHARACTERIS	TCS of Wet	land 🗌 I		I [] Does not ap	ply
	Final Catego)ry (choose	e the "highest	category from	n above")	II	
	Summary of basic in	nformation	about the we	tland unit.			
	Wetland Unit has Special Characteristics		Wetland used	d HGM Class for Rating			
	Estuarine Natural Haritage Wetland		Depression	al			
	Ratural Heritage welland		Lake-fring	<u>د</u>			
	Mature Forest		Slope				
	Old Growth Forest		Flats				
	Coastal Lagoon		Freshwater	[.] Tidal			
	Interdunal None of the above		Check if un HGM classe	it has multiple es present			
Does the need to r	e wetland being rated meet any of the protect the wetland according to the reg	criteria be ulations reg	low? If you a arding the spe	nswer YES to	any of the ques stics found in th	tions below yo ne wetland.	ou will
	Check List for Wetlands (in addition to the protecti	that Need . on recomm	Additional I ended for its	Protection category)		YES	NO
SP1. Ha Ea Fo	<i>Tas the wetland unit been documented a. ndangered animal or plant species (T/I or the purposes of this rating system, "cate or federal database.</i>	s a habitat f E species)? locumented'	<i>for any Federa</i> ' means the w	etland is on the	<i>atened or</i> e appropriate		
SP2. Ha	as the wetland unit been documented as indangered animal species? For the put etland is on the appropriate state databa- re categorized as Category 1 Natural He	s habitat for rposes of thi ase. Note: V pritage Wetla	<i>any State list</i> is rating system Wetlands with ands (see p. 19	ed Threatened m, "documente State listed pl 9 of data form)	or d" means the ant species		
SP3. D	oes the wetland unit contain individual	s of Priority	species listed	l by the WDFW	for the state?		
SP4. Do	oes the wetland unit have a local signif etland has been identified in the Shorel	<i>ïcance in aa</i> ine Master I	<i>ldition to its fi</i> Program, the (unctions? For Critical Areas C	example, the Ordinance, or		\boxtimes

To complete the next part of the data sheet you will need to determine the Hydrogeomorphic Class of the wetland being rated.

in a local management plan as having special significance.

The hydrogeomorphic classification groups wetlands in to those that function in similar ways. This simplifies the questions needed to answer how well the wetland functions. The Hydrogeomorphic Class of a wetland can be determined using the key below. See p. 24 for more detailed instructions on classifying wetlands. Wetland Rating Form – Western Washington, Version 2 (7/06), updated with new WDFW definitions Oct. 2008 Page 1 of 12

Wetland name or number \underline{A}

Classification of Vegetated Wetlands for Western Washington

If th mul	ne hydrologic criteria listed in each question do not apply to tiple HGM classes. In this case, identify which hydrologic	the entire unit being rated, you probably have a unit with criteria in questions 1-7 apply, and go to Question 8.
1.	Are the water levels in the entire unit usually controlled by NO – go to 2 If yes, is the salinity of the water during periods of ann YES – Freshwater Tidal Fringe If your wetland can be classified as a Freshwater Tidal Fringe is rated as an Estuarine wetland. Wetlands that were call estu Water Tidal Fringe in the Hydrogeomorphic Classification. Est this separation is being kept in this revision. To maintain consist note, however, that the characteristics that define Category I and	tides (i.e. except during floods)? YES – the wetland class is Tidal Fringe ual low flow below 0.5 ppt (parts per thousand)? NO – Saltwater Tidal Fringe (Estuarine) <i>use the forms for Riverine wetlands. If it is a Saltwater Tidal Fringe it</i> arine in the first and second editions of the rating system are called Salt stuarine wetlands were categorized separately in the earlier editions, and istency between editions, the term "Estuarine" wetland is kept. Please ad II estuarine wetlands have changed (see p).
2.	The entire wetland unit is flat and precipitation is only sour runoff are NOT sources of water to the unit. $\boxed{NO} = 90 \text{ to } 3$	rce (>90%) of water to it. Groundwater and surface water
	If your wetland can be classified as a "Flats" wetland.	use the form for Depressional wetlands.
3	Does the entire wetland meet both of the following criteria)
5.	 ☐ The vegetated part of the wetland is on the shores of the surface) where at least 20 acres (8ha) in si ☐ At least 30% of the open water area is deeper than 6 ☑ NO – go to 4 ☑ YES – The state of the	f a body of permanent open water (without any vegetation on ze; 5.6 (2 m)? ne wetland class is Lake-fringe (Lacustrine Fringe)
4.	 Does the entire wetland meet all of the following criteria? △ The wetland is on a slope (<i>slope can be very gradua</i> △ The water flows through the wetland in one direction subsurface, as sheetflow, or in a swale without □ The water leaves the wetland without being impour NOTE: Surface water does not pond in these shallow depressions or behind hummocks (dep ○ NO - go to 5 ○ YES - The state of th	al). on (unidirectional) and usually comes from seeps. It may flow t distinct banks. inded ? types of wetlands except occasionally in very small and pressions are usually <3 ft diameter and less than 1 foot deep). ne wetland class is Slope
5.	Does the entire wetland meet all of the following criteria?	ets inundated by overbank flooding from that stream or river. vo years. <i>ions that are filled with water when the river is not flooding</i> ne wetland class is Riverine
6.	Is the entire wetland unit in a topographic depression in wh the year. This means that any outlet, if present is higher the \square NO – go to 7 \square YES –	ich water ponds, or is saturated to the surface, at some time of an the interior of the wetland. The wetland class is Depressional
7.	Is the entire wetland located in a very flat area with no obv pond surface water more than a few inches. The unit seems wetland may be ditched, but has no obvious natural outlet. No – go to 8	ious depression and no overbank flooding. The unit does not s to be maintained by high groundwater in the area. The The wetland class is Depressional
8.	Your wetland unit seems to be difficult to classify and probably con- slope may grade into a riverine floodplain, or a small stream within BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REG AREAS IN THE UNIT (make a rough sketch to help you decide). rating system if you have several HGM classes present within your the second column represents 10% or more of the total area of the w than 10% of the unit, classify the wetland using the class that represe <u>HGM Classes within the wetland unit being rated</u> Slope + Riverine Slope + Depressional Slope + Lake-fringe Depressional + Riverine along stream within boundary Depressional + Lake-fringe Salt Water Tidal Fringe and any other class of	tains several different HGM classes. For example, seeps at the base of a a depressional wetland has a zone of flooding along its sides. GO IMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT Use the following table to identify the appropriate class to use for the wetland. NOTE: Use this table only if the class that is recommended in <i>v</i> etland unit being rated. If the area of the class listed in column 2 is less ents more than 90% of the total area. <i>HGM Class to Use in Rating</i> Riverine Depressional Lake-fringe Depressional Treat as ESTUARINE under wetlands with special
	freshwater wetland	characteristics

If you are unable still to determine which of the above criteria apply to your wetland, or you have more than 2 HGM classes within a wetland boundary, classify the wetland as **Depressional** for the rating.

D	Depressional and Flat Wetlands	Points
	WATER QUALITY FUNCTIONS – Indicators that wetland functions to improve water quality.	(only 1 score per box)
D 1	Does the wetland have the <u>potential</u> to improve water quality?	(see p.38)
	 D 1.1 Characteristics of surface water flows out of the wetland: Unit is a depression with no surface water leaving it (no outlet)points = 3 Unit has an intermittently flowing, OR highly constricted, permanently flowing outletpoints = 2 	Figure 🗌
	 Unit has an unconstricted, or slightly constricted, surface outlet (<i>permanently flowing</i>) points = 1 Unit is a "flat" depression (Q.7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch points = 1 (<i>If ditch is not permanently flowing treat unit as "intermittently flowing"</i>) Provide photo or drawing 	2
	D 1.2 The soil 2 inches below the surface (or duff layer) is clay or organic (<i>use NRCS definitions</i>) VES points = 4 NO points = 0	0
	 D 1.3 Characteristics of persistent vegetation (emergent, shrub, and/or forest Cowardin class): Wetland has persistent, ungrazed vegetation > = 95% of areapoints = 5 × Wetland has persistent, ungrazed vegetation > = 1/2 of areapoints = 3 × Wetland has persistent, ungrazed vegetation > = 1/10 of areapoints = 1 × 	Figure 🗌
	• Wetland has persistent, ungrazed vegetation < 1/10 of areapoints = 0	5
	 D 1.4 Characteristics of seasonal ponding or inundation: This is the area of the wetland that is ponded for at least 2 months, but dries out sometime during the year. Do not count the area that is permanently ponded. Estimate area as the average condition 5 out of 10 years. Area seasonally ponded is > 1/2 total area of wetland 	Figure 🗌
	 Area seasonally ponded is > 1/2 total area of wetland	0
	Total for D 1Add the points in the boxes above	7
D 2	Does the wetland have the <u>opportunity</u> to improve water quality? Answer YES if you know or believe there are pollutants in groundwater or surface water coming into the wetland that would otherwise reduce water quality in streams, lakes or groundwater downgradient from the wetland? Note which of the following conditions provide the sources of pollutants. A unit <u>may</u> have pollutants coming from several sources, but any single source would qualify as opportunity.	(see p. 44)
	 Grazing in the wetland or within 150 ft Untreated stormwater discharges to wetland Tilled fields or orchards within 150 ft. of wetland A stream or culvert discharges into wetland that drains developed areas, residential areas, farmed fields, roads, or clear-cut logging Residential, urban areas, golf courses are within 150 ft. of wetland 	
	Wetland is fed by groundwater high in phosphorus or nitrogen	Multiplier
	\square YES multiplier is 2 \square NO multiplier is 1	2
۲	<u>TOTAL</u> – Water Quality Functions Multiply the score from D1 by D2; then <i>add score to table on p. 1</i>	<u>14</u>
	HYDROLOGIC FUNCTIONS – Indicators that wetland unit functions to reduce flooding and stream degradation.	1
D 3	Does the wetland have the <u>potential</u> to reduce flooding and erosion?	(see p.46)
	 D 3.1 Characteristics of surface water flows out of the wetland unit Unit is a depression with no surface water leaving it (no outlet)points = 4	2
	 D 3.2 Depth of storage during wet periods. Estimate the height of ponding above the bottom of the outlet. For units with no outlet measure from the surface of permanent water or deepest part (if dry). Marks of ponding are 3 ft. or more above the surface or bottom of the outlet	3
	 D 3.3 Contribution of wetland unit to storage in the watershed: Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself. The area of the basin is less than 10 times the area of unit points = 5 The area of the basin is 10 to 100 times the area of the unit points = 3 The area of the basin is more than 100 times the area of the unit points = 0 Entire unit is in the FLATS class	3
	Total for D 3Add the points in the boxes above	8

Wetland name or number \underline{A}

D 4	Does the wetland have the opportunity to reduce flooding and erosion?	(see p. 49)
	Answer YES if the unit is in a location in the watershed where the flood storage, or reduction in water velocity, it provides helps protect downstream property and aquatic resources from flooding or excessive and/or erosive flows. Answer NO if the water coming into the wetland is controlled by a structure such as flood gate, tide gate, flap valve, reservoir etc. OR you estimate that more than 90% of the water in the wetland is from groundwater in areas where damaging groundwater flooding does not occur. <i>Note which of the following indicators of opportunity apply</i> .	(
	 Wetland drains to a river or stream that has flooding problems Wetland has no outlet and impounds surface runoff water that might otherwise flow into a river or stream that has flooding problems Other YES multiplier is 2 NO multiplier is 1 	Multiplier 2
•	<u>TOTAL</u> – Hydrologic Functions Multiply the score from D3 by D4; then <i>add score to table on p. 1</i>	<u>16</u>

Comments: <u>16</u>

R	Riverine and Freshwater Tidal Fringe Wetlands	Points
	WATER QUALITY FUNCTIONS – Indicators that wetland functions to improve water quality.	(only 1 score per box)
R 1	Does the wetland have the <u>potential</u> to improve water quality? (see p.52)	
	 R 1.1 Area of surface depressions within the riverine wetland that can trap sediments during a flooding event: Depressions cover > 3/4 area of wetland	Figure 🗌
	 Depressions present but cover < 1/2 area of wetland	2
	 R 1.2 Characteristics of the vegetation in the unit (areas with >90% cover at person height): Trees or shrubs > 2/3 area of the unit	Figure 🗌
	 Ungrazed herbaceous plants > 1/3 area of unit points = 3 Trees, shrubs, and ungrazed herbaceous < 1/3 area of unit points = 0 Aerial photo or map showing polygons of different vegetation types 	8
	Add the points in the boxes above	10
R 2	Does the wetland have the <u>opportunity</u> to improve water quality? Answer YES if you know or believe there are pollutants in groundwater or surface water coming into the wetland that would otherwise reduce water quality in streams, lakes or groundwater downgradient from the wetland. Note which of the following conditions provide the sources of pollutants. A unit may have pollutants coming from several sources, but any single source would qualify as opportunity. Grazing in the wetland or within 150 ft Untreated stormwater discharges to wetland Tilled fields or orchards within 150 ft. of wetland A stream or culvert discharges into wetland that drains developed areas, residential areas, farmed fields, roads, or clear-cut logging	(see p. 53)
	 Residential, urban areas, golf courses are within 150 ft. of wetland The river or stream linked to the wetland has a contributing basin where human activities have raised levels of sediment, toxic compounds or nutrients in the river water above standards for water quality 	Multiplier
	Other	2
•	TOTAL – Water Ouality Functions Multiply the score from R1 by R2: then <i>add score to table on p. 1</i>	20
•	TOTAL – Water Quality Functions Multiply the score from R1 by R2; then add score to table on p. 1 HYDROLOGIC FUNCTIONS – Indicators that wetland functions to reduce flooding and stream erosion.	<u>20</u>
• R 3	TOTAL – Water Quality Functions Multiplier is 2 Not induspiter is 1 TOTAL – Water Quality Functions Multiply the score from R1 by R2; then add score to table on p. 1 HYDROLOGIC FUNCTIONS – Indicators that wetland functions to reduce flooding and stream erosion. Does the wetland have the potential to reduce flooding and erosion?	20 (see p.54)
◆ R 3	TOTAL - Water Quality Functions Multiplier is 2 Multiplier is 1 TOTAL - Water Quality Functions Multiply the score from R1 by R2; then add score to table on p. 1 HYDROLOGIC FUNCTIONS – Indicators that wetland functions to reduce flooding and stream erosion. Does the wetland have the potential to reduce flooding and erosion? R 3.1 Characteristics of the overbank storage the wetland provides: Estimate the average width of the wetland perpendicular to the direction of the flow and the width of the stream or river channel (distance between banks). Calculate the ratio: (average width of unit) / (average width of stream between banks). • If the ratio is more than 20	20 (see p.54) Figure □
◆ R 3	TOTAL – Water Quality Functions Multiplier is 2 Multiplier is 1 TOTAL – Water Quality Functions Multiply the score from R1 by R2; then add score to table on p. 1 HYDROLOGIC FUNCTIONS – Indicators that wetland functions to reduce flooding and stream erosion. Does the wetland have the potential to reduce flooding and erosion? R 3.1 Characteristics of the overbank storage the wetland provides: Estimate the average width of the wetland perpendicular to the direction of the flow and the width of the stream or river channel (distance between banks). Calculate the ratio: (average width of unit) / (average width of stream between banks). • If the ratio is more than 20	20 (see p.54) Figure □ 6
• R 3	Not indupier is 1 TOTAL – Water Quality Functions Multiply the score from R1 by R2; then add score to table on p. 1 HYDROLOGIC FUNCTIONS – Indicators that wetland functions to reduce flooding and stream erosion. Does the wetland have the potential to reduce flooding and erosion? R 3.1 Characteristics of the overbank storage the wetland provides: Estimate the average width of the wetland perpendicular to the direction of the flow and the width of the stream or river channel (distance between banks). Calculate the ratio: (average width of unit) / (average width of stream between banks). • If the ratio is more than 20	20 (see p.54) Figure □ 6 Figure □
◆ R 3	Not multiplier is 1 TOTAL - Water Quality Functions Multiply the score from R1 by R2; then add score to table on p. 1 HYDROLOGIC FUNCTIONS – Indicators that wetland functions to reduce flooding and stream erosion. Does the wetland have the potential to reduce flooding and erosion? R 3.1 Characteristics of the overbank storage the wetland provides: Estimate the average width of the wetland perpendicular to the direction of the flow and the width of the stream or river channel (distance between banks). • If the ratio is more than 20. points = 9 • If the ratio is between 10 – 20. points = 6 • If the ratio is 5 - <10. points = 4 • If the ratio is 1 - <5. points = 1 • If the ratio is 1 - <5. points = 1 • If the ratio is 1 - <5. points = 2 • If the ratio is 1 - <5. points = 1 • If the ratio is < 1. points = 4 • If the ratio is of vegetation that slow down water velocities during floods: Treat large woody debris as "forest or shrub". Choose the points appropriate for the best description. (polygons need to have >90% cover at person height NOT Cowardin classes): • Forest or shrub for > 1/3 area OR herbaceous plants > 2/3 area. points = 7	20 (see p.54) Figure □ 6 Figure □ 7
• R 3	Total interpreting 2 Hor multiplier is 1 Total interpreting 2 R 3.1 Characteristics of the overbank storage the wetland provides: Estimate the average width of the wetland perpendicular to the direction of the flow and the width of the stream or river channel (distance between banks). If the ratio is more than 20. points = 9 If the ratio is 5 < 10. Points = 4 Points = 1 Aterial photo or map showing average widths <td< th=""><th>20 (see p.54) Figure □ 6 Figure □ 7 13</th></td<>	20 (see p.54) Figure □ 6 Figure □ 7 13
• R 3	TOTAL - Water Quality Functions Multiply the score from R1 by R2; then add score to table on p. 1 HYDROLOGIC FUNCTIONS - Indicators that wetland functions to reduce flooding and stream erosion. Does the wetland have the potential to reduce flooding and erosion? R 3.1 Characteristics of the overbank storage the wetland provides: Estimate the average width of the wetland perpendicular to the direction of the flow and the width of the stream or river channel (distance between banks). • If the ratio is between 10 – 20	20 (see p.54) Figure □ 6 Figure □ 7 [
◆ R 3 R 4	TOTAL – Water Quality Functions Numerication is 1 Note mathypeter is 1 TOTAL – Water Quality Functions Multiply the score from R1 by R2; then add score to table on p. 1 HYDROLOGIC FUNCTIONS – Indicators that wetland functions to reduce flooding and stream erosion. Does the wetland have the potential to reduce flooding and erosion? R 3.1 Characteristics of the overbank storage the wetland provides: Estimate the average width of the wetland perpendicular to the direction of the flow and the width of the stream or river channel (distance between banks). Calculate the ratio: (average width of unit) / (average width of stream between banks). • If the ratio is between 10 – 20	20 (see p.54) Figure □ 6 Figure □ 7 [
◆ <u>R</u> 3 <u>R</u> 4	TOTAL - Water Quality Functions Multiply the score from R1 by R2; then add score to table on p. 1 HYDROLOGIC FUNCTIONS - Indicators that wetland functions to reduce flooding and stream erosion. Does the wetland have the potential to reduce flooding and erosion? R 3.1 Characteristics of the overbank storage the wetland provides: Estimate the average width of the wetland perpendicular to the direction of the flow and the width of the stream or river channel (distance between banks). Calculate the ratio: (average width of unit) / (average width of stream between banks). • If the ratio is more than 20. points = 0 • If the ratio is between 10 - 20. points = 0 • If the ratio is 5 < (10. points = 4 • If the ratio is 5 < (10. points = 1 • If the ratio is 5 < (10. points = 1 • If the ratio is 1 < 5. points = 1 • If the ratio is 1 < (10. points = 1 • If the ratio is 1 < (10. points apportiate for the best description. (polygons need to have >90% cover at person height NOT Cowardin classes): • Forest or shrub for > 1/3 area OR herbaceous plants > 2/3 area points = 4 • Vegetation does not meet above criteria points = 1 • Vegetation does not meet above criteria points in the boxes above Does the wetland have the opportunity to reduce flooding and erosion? Astrial phot	20 (see p.54) Figure □ 6 Figure □ 7 [7 [3 (see p.57) Multiplier 2

Comments: _____

The	se questions apply to wetlands of all HGM classes.	Points
	HABITAT FUNCTIONS – Indicators that wetland functions to provide important habitat.	(only 1 score per box)
H 1	Does the wetland have the <u>potential</u> to provide habitat for many species?	
	H 1.1 <u>Vegetation structure</u> (see P. 72): Check the types of vegetation classes present (as defined by Cowardin) – Size threshold for each class is 1/4 acre or more than 10% of the area if unit is smaller than 2.5 acres. Aquatic Bed Emergent plants Scrub/shrub (areas where shrubs have > 30% cover) Forested (areas where trees have > 30% cover)	Figure 🗌
	If the unit has a forested class check if: \square The forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover)that each cover 20% within the forested polygon.Add the number of vegetation types that qualify. If you have:4 structures or more points = 42 structures points = 11 structure points = 0	2
	H 1.2 <u>Hydroperiods</u> (see p.73):	Figure 🗌
	Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or 1/4 acre to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present points = 3 Seasonally flooded or inundated 2 types present points = 1 Saturated only 1 type present points = 0 Permanently flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream in, or adjacent to, the wetland Lake-fringe wetland methods and the seasonally flowing stream in adjacent to, the wetland	
	Freshwater tidal wetland	3
	H 1.3 Richness of Plant Species (see p. 75): Count the number of plant species in the wetland that cover at least 10 ft ² (different patches of the same species can be combined to meet the size threshold) You do not have to name the species. Do not include Eurasian Milfoil, reed canarygrass, purple loosestrife, Canadian Thistle. If you counted: > 19 species points = 2 5 - 19 species points = 1 List species below if you want to: <	1
	H 1.4 Interspersion of Habitats (see p. 76): Decided from the diagrams below whether interspersion between Cowardin vegetation (described in H1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, medium, low, or none.	Figure <u> </u>
	Note: If you have 4 or more classes or 3 vegetation classes and open water, the rating is always "high". Use map of Cowardin classes.	3
	H 1.5 <u>Special Habitat Features</u> (see p. 77):	
	 Check the habitat features that are present in the wetland. The number of checks is the number of points you put into the next column. Large, downed, woody debris within the wetland (> 4 in. diameter and 6 ft. long) Standing snags (diameter at the bottom > 4 inches) in the wetland Undercut banks are present for at least 6.6 ft. (2m) and/or overhanging vegetation extends at least 3.3 ft. (1m) over a stream (or ditch) in, or contiguous with the unit, for at least 33 ft. (10m) Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet turned grey/brown) At least 1/4 acre of thin-stemmed persistent vegetation or woody branches are present in areas that are permanently or seasonally inundated (structures for egg-laying by amphibians) Invasive plants cover less than 25% of the wetland area in each stratum of plants 	
	NOTE: The 20% stated in early printings of the manual on page 78 is an error.	2
	H I TOTAL Score – potential for providing habitat Add the points in the column above	

Wetland name or number \underline{A}

Н2	2 Does the wetland have the <u>opportunity</u> to provide habitat for many species?					
	H 2.1	Buffers (see P. 80): Choose the description that best represents condition of buffer of wetland unit. The highest scoring criterion that applies to the wetland is to be used in the rating. See text for definition of "undisturbed". □ 100m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 95% of circumference. No structures are within the undisturbed part of buffer (relatively undisturbed also means no grazing, no landscaping, no daily human use)	Figure 🗌			
	H 2.2 Corridors and Connections (see p. 81)					
	n 2.2	 H 2.2.1 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 150 ft. wide, has at least a 30% cover of shrubs, forest or native undisturbed prairie, that connects to estuaries, other wetlands or undisturbed uplands that are at least 250 acres in size? (Dams in riparian corridors, heavily used gravel roads, paved roads, are considered breaks in the corridor). H 2.2.2 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 50 ft. wide, has at least 30% cover of shrubs or forest, and connects to estuaries, other wetlands or undisturbed uplands that are at least 25 acres in size? OR a Lake-fringe wetland, if it does not have an undisturbed corridor as in the question above? H 2.2.3 Is the wetland: Within 5 mi (8km) of a brackish or salt water estuary OR 				
		 Within 5 mi (8km) of a brackish or salt water estuary OR Within 3 miles of a large field or pasture (> 40 acres) OR Within 1 mile of a lake greater than 20 acres? 	1			

Comments: _____

NOTE: the connections of an ohnow to be relatively undisturbed. Bindiversity Areas and Corridors: Areas of habitat that are relatively important to various species of native fish and vibilitie (infl deceriptions in MVDF WFBs report, p. 152). Berbreeven Bulds: Variable size patches of grass and forbs on shallow soils over bedrock. Olde-growth/Mature forests; Clode-growth west of Cascade cerst) Stands of a least 2 tree species. forming a multi-layered canopy with occasional small openings; with at least 20 trees/ha (8 trees/area) > 81 cm (32 in) dthin or > 200 years of age. (Muture forests) Stands with average distances acceeding 53 cm (21 in) dthin; crown cover may be less that 10 out in old-growth. 80 - 200 years of west of the Cascade crest. Orgon white Oak: Voodanda Stands of pure oak or oak confier associations where canopy coverage of the oak component is important (full descriptions in WDFW PHS report p. 153). Bitpartim: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other. □ stream: The combination of physica. biological, and chemical processes and conditions that interact to provide functional information of physica. biological, and chemical processes and conditions that interact to provide functional information of physica. biological, and the definition of relatively undisturbed area in WDFW PHS report p. 161). Caves: A naturally occurring cellow S000 ft. These include Castal Nearshore. Open Coast Nearshore, and Paget Sound Nearshore habitars. These include Coastal Nearshore, and Paget Sound Nearshore, full descriptions of the part dead or dying and exhibit sufficient deaay characteristics to enable cavity exeavationis
More the connections: do not have to be relatively unifixituded. ■ Appendix Shands: Pure or mixed stands of aspen greater than 0.4 h (1 acre). ■ Biodiversity Areas and Corridors: Areas of habitat that are relatively important to various species of native fish and wildlife (full descriptions in WDFW PHS report p. 152). ■ Horbaceous Balds: Variable size patches of grass and forbs on stallow soils over bedrock. ■ Orgon White Oak: Woodlands Stands of an eless 2 tree species, forming a multiplayered canopy with occasional small openings: with a least 20 trees has (8 trees/arent) > 81 cm (32 in) dbh or > 200 years of age. (Mature forests) Stands with a verage diameters exceeding 53 cm (21 in) dbh; crown cover may be less than that found in old-growth; 80 - 200 years old west of the Cascade cress. ■ Orgon white Oak: Woodlands Stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (<i>Hull descriptions in WDFW PHS report p. 158</i>). ■ Kigen white Oak: Woodlands Stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (<i>Hull descriptions in WDFW PHS report p. 161</i>). ■ More Stating's Mutational or diphysical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources. ■ Nearshore: Kelavicely undisturbed nearshore habitatis. These include Costati Nearshore, Open Coast Nearshore, and Pupet Sound Nearshore, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources. ■ Nearshore: Kelavicely undisturbed nearshore habitatis. These inc
MOTE: the connection ⁵ do not ⁵ have to be relatively undification. □ Aspension: Shands: Pure or mixed stands of aspen greater than 0.4 h (1 acre). □ Biodiversity Areas and Corritors: Areas of habitat that are relatively important to various species of native fish and wildlife (full descriptions in WDFW PHS report p. 152). □ Horbaccous Balds: Variable size patches of grass and forbs on shallow soils over bedrock. □ Old-growth/Mature forests: (Old-growth with a least 20 trees paceis, forming a multi-lasyered canopy with occusional small openings: with a least 20 trees has (8 trees dance) > 81 cm (32 in) dbh or > 200 years of age. (Mature forests) Slands with average diameters exceeding 53 cm (21 in) dbh; crown cover may be less than that found in old-growth, 80 - 200 years old west of the Cascade crest. □ Oregon white Oak: Woodlands Stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (full descriptions in WDFW PHS report p. 158). ○ Riparian: The area adjacent to aquatic systems with howing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other. □ Westbid Partiers: Herabaccous, non-forsted plant communities that can either take the form of a dry prairie or a wet prairie (full descriptions in WDFW PHS report p. 161). □ Instrume area adometing universes in the oblistitis and the definition of relatively undisturbed nears in the oblistitis and the definition of relatively undisturbed are in WDFW report: pp. 167.109 and glossary in Appendix A). □ Covers: A naturally occurring bloss of motions and is large enough to contain a human. □ Off Di and glo
NOTE: the connection ² do not have to be relatively undisturbed. Aspen Stands: Pure or mixed stands of aspen greater than 0.4 ha (1 acre). Biodiversity Areas and Corridors: Areas of habitat that are relatively important to various species of native fish and wildlife (<i>full descriptions in WDFW PHS report p. 152</i>). Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock. Old-growth/Mature forests; (Old-growth west of Cascade crest) Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 20 trees/n (at 90 times) > 81 on (23 in) dbh or > 200 years of age. (Mature forests) Stands with average diameters exceeding 53 cm (21 in) dbh; crown cover may be less that 100%; decay, decadence, mumbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80 - 200 years old west of the Cascade crest. Oregon white Oak: Woodlands Stands of pure oak or oak/confire associations where canopy coverage of the oak component is important (<i>full descriptions in WDFW PHS report p.</i> 15.8). Riparian: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestriate locsystems which mutually influence each other. Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (<i>full descriptions in MDFW HBS report p.</i> 15.7). Instreme: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources. ad Puget Sound Nearshore. (<i>full descriptions of photitats </i>
NOTE: the connection ² do not have to be relatively undisturbed. Aspen Stands: Pure or mixed stands of aspen greater than 0.4 ha (1 acre). Biodiversity Areas and Corridors: Areas of habitat that are relatively important to various species of native fish and wildlife (<i>full descriptions in WDFW PHS report p. 152</i>). Herbaccous Balds: Variable size patches of grass and forbs on shallow soils over bedrock. Old-growth/Mature forests: (Old-growth west of Cascade crest) Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 2 tree species, formed material is generally less than that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80 - 200 years of age, (Mature forests) Stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (<i>iul descriptions in WDFW PHS report p.</i> 158). ⊘ Riparian: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestriat ecosystems which mutually influence each other. □ Hosteream: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources. □ Westside Prairies: 10.67-169 and glossary in Appendix A). □ WWEW Regort: pp. 167-169 and glossary in Appendix A). □ Haster section so areas of rock rubble ranging in average size 0.15 - 0.5 m (12.5 mosted) wild wild if section is a human. □ Hights: Greater than 7.6 m (25 ft) high and occuring below 5000 ft. □
NOTE: the connections do not have to be relatively undisturbed. Aspen Stands: Pure or mixed stands of aspen greater than 0.4 ha (1 acre). Biodiversity Areas and Corridors: Areas of habitat that are relatively important to various species of native fish and wildlife (full descriptions in WDFW PHS report p. 152). Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock. Old-growth/Mature forests: (Old-growth west of Cascade crest) Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 20 trees/ne (3 trees/acre) > 81 cm (32 in) dbh or > 200 years of age. (Mature forests); Stands with average diameters exceeding 53 cm (21 in) dbh; rown cover may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80 - 200 years of dwest of the Cascade crest) Biogen white Oak: Woodlands Stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (<i>full descriptions in WDFW PHS report p. 158</i>). Riparian: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other. Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (<i>full descriptions in WDFW PHS report p. 161</i>). Instream: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources. Westside Prairice; <i>P. 167-169 and glossary in Appendix A</i>).
NOTE: the connections do not have to be relatively undisturbed. Aspen Stands: Pure or mixed stands of aspen greater than 0.4 ha (1 acre). Biddiversity Areas and Corridors: Areas of habitat that are relatively important to various species of native fish and wildlife (full descriptions in WDFW PHS report p. 152). Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock. Old-growth/Mature forests: (Old-growth west of Cascade crest) Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 20 trees/ha (8 trees/acre) > 81 cm (32 in) dbh or > 200 years of age. (Mature forests) Stands with average diameters exceeding 53 cm (21 in) dbh; crown cover may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth/Mature forests). Oregon white Oak: Woodlands Stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (<i>full descriptions in WDFW PHS report p. 158</i>). Riparian: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other. Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (<i>full descriptions for MDFW PHS report p. 158</i>). Instream: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources. Westside Prairies: Herbaceous, out, oresystem of habitats: And the definition of relatively un
β_1

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Please determine if the wetland meets the attributes described below and circle the appropriate answers and Category.

	Wetland Type – Check off any criteria that apply to the wetland. Circle the Category when the appropriate					
	criteria	a are met.				
SC1	Estuar	rine wetlands? (see p.86)				
		Does the wetland unit meet the following criteria for Estuarine wetlands?				
		I he dominant water regime is tidal,				
		With a solicity prostor than 0.5 and				
		\square with a samity greater than 0.5 ppt. \square VFS = Costs SC 1.1 \square NO				
	6011	Letter statistic end within a National Wildlife Defense National Dark National Estrum Decome Natural				
	Area Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC					
	Area Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC $332-30-151?$ \Box YES = Category I \square NO = go to SC 1.2					
	SC 1.2	Is the wetland at least 1 acre in size and meets at least two of the following conditions?	Cat I			
		$\Box \mathbf{YES} = Category I \qquad \Box \mathbf{NO} = Category II$				
	☐ The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less than 10% cover of non-native plant species. If the non-native Sparting spin are only species.					
		that cover more than 10% of the wetland, then the wetland should be given a dual rating (I/II).				
		The area of Spartina would be rated a Category II while the relatively undisturbed upper marsh				
		with native species would be a Category 1. Do not, however, exclude the area of Spartina in determining the size threshold of 1 acre	Dual			
		\square At least 3/4 of the landward edge of the wetland has a 100 ft, buffer of shrub, forest, or un-grazed or	Rating			
		un-mowed grassland	I/II			
		The wetland has at least 2 of the following features: tidal channels, depressions with open water, or contiguous freshwater wetlands.				
SC2	<u>Natura</u>	al Heritage Wetlands (see p. 87)				
~		Natural Heritage wetlands have been identified by the Washington Natural Heritage Program/DNR as				
		either high quality undisturbed wetlands or wetlands that support state Threatened, Endangered, or				
		Sensitive plant species.				
	SC 2.1	Is the wetland being rated in a Section/Township/Range that contains a natural heritage wetland? (This				
		question is used to screen out most sites before you need to contact WNHP/DNR.)				
		S/T/R information from Appendix D G or accessed from WNHP/DNR web site				
	$\square YES Contact WNHP/DNR (see p. 79) and go to SC 2.2 \square NO$					
	SC 2.2 Has DNR identified the wetland as a high quality undisturbed wetland or as a site with state threatened					
	or endangered plant species? \Box VES = Category 1 \Box NO not a Heritage Watland					
	D (VES = Category 1 INO not a Heritage wetland				
SC3	Bogs (S	see p. 8/)				
		the key below to identify if the wetland is a beg. If you answer yes you will still need to rate the				
		wetland based on its function				
		1 Does the unit have organic soil horizons (i.e. layers of organic soil) either neats or mucks that				
		compose 16 inches or more of the first 32 inches of soil profile? (See Appendix B for a field key to				
		identify organic soils)? \Box YES = go to question 3 \boxtimes NO = go to question 2				
		2. Does the wetland have organic soils, either peats or mucks that are less than 16 inches deep over				
		bedrock, or an impermeable hardpan such as clay or volcanic ash. or that are floating on a lake or				
		pond? \square YES = go to question 3 \square NO = is not a bog for purpose of rating				
		3. Does the unit have more than 70% cover of mosses at ground level, AND other plants. if present.				
		consist of the "bog" species listed in Table 3 as a significant component of the vegetation (more				
		than 30% of the total shrub and herbaceous cover consists of species in Table 3)?				
		\square YES = Is a bog for purpose of rating \square NO = go to question 4				
		NOTE: If you are uncertain about the extent of mosses in the understory you may substitute that				
		criterion by measuring the pH of the water that seeps into a hole dug at least 16" deep. If the pH is				
		less than 5.0 and the "bog" plant species in Table 3 are present, the wetland is a bog.				
		4. Is the unit forested (> 30% cover) with sitka spruce, subalpine fir, western red cedar, western				
		hemlock, lodgepole pine, quaking aspen, Englemann's spruce, or western white pine. WITH any of				
		the species (or combination of species) on the bog species plant list in Table 3 as a significant				
		component of the ground cover (> 30% coverage of the total shrub/herbaceous cover)?	Cat. I			
		$\square YES = Category I \qquad \square NO = Is not a bog for purpose of rating$				

SC4	Forested Wetlands (see p. 90) Does the wetland have at least 1 acre of forest that meet one of these criteria for the Department of Fish and Wildlife's forests as priority habitats? If you answer yes you will still need to rate the wetland based on its function.						
	Old-growth forests: (west of Cascade Crest) Stands of at least two three species forming a multi- layered canopy with occasional small openings; with at least 8 trees/acre (20 trees/hectare) that are						
	at least 200 years of age OR have a diameter at breast height (dbh) of 32 inches (81 cm or more).						
	NOTE: The criterion for dbh is based on measurements for upland forests. Two-hundred year old trees in wetlands will often have a smaller dbh because their growth rates are often slower. The DFW						
	criterion is and "OR" so old-growth forests do not necessarily have to have trees of this diameter.						
	\square Mature forests: (west of the Cascade Crest) Stands where the largest trees are 80 – 200 years old OR have an average diameters (dbh) exceeding 21 inches (53 cm); crown cover may be less than						
	100%; decay, decadence, numbers of snags, and quantity of large downed material is generally						
	less than that found in old-growth.	Cat. I					
	$\square YES = Category I \qquad \square NO = not a forested wetland with special characteristics$						
SC5	<u>Wetlands in Coastal Lagoons</u> (see p. 91)						
	\Box The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from						
	marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks.						
	The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5						
	ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the hottom)						
	\Box YES = Go to SC 5.1 \Box NO not a wetland in a coastal lagoon						
	SC 5.1 Does the wetland meet all of the following three conditions?						
	The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing) and has						
	less than 20% cover of invasive plant species (see list of invasive species on p. 74). \Box At least 2/4 of the landward edge of the watered has a 100 ft buffer of should find the second seco						
	un-mowed grassland.	Cat. I					
	The wetland is larger than $1/10$ acre (4350 square ft.)	Cat. II					
	$\square YES = Category I \qquad \square NO = Category II$						
SC6	Interdunal Wetlands (see p. 93)						
	WBUO)?						
	\square YES = Go to SC 6.1 \square NO not an interdunal wetland for rating						
	If you answer yes you will still need to rate the wetland based on its functions.						
	In practical terms that means the following geographic areas: • Long Beach Peninsula lands west of SR 103						
	• Grayland-Westport lands west of SR 105						
	• Ocean Shores-Copalis – lands west of SR 115 and SR 109 SC 6.1. Is the wetland one acre or larger, or is it in a mosaic of wetlands that is one acre or larger?	Cat II					
	\square YES = Category II \square NO = go to SC 6.2						
	SC 6.2 Is the wetland between 0.1 and 1 acre, or is it in a mosaic of wetlands that is between 0.1 and 1 acre?	Cat. III					
	$\Box YES = Category III$						
	Choose the "highest" rating if wetland falls into several categories, and record on p. 1						
	If you answered NO for all types enter "Not Applicable" on p. 1	N/A					
L							

Comments: _____

WETLAND	RATING	FORM -	WESTERN	WASHINGTON
	MULTINO	ronn –		MADILITO I O

Version 2 – Updated July 2006 to increase accuracy and reproducibility among users Updated Oct. 2008 with the new WDFW definitions for priority habitats

Name of	f wetland (if known): <u>B</u>			Dat	e of site visit:	<u>6-10-14</u>
Rated by	y: <u>P. Togher</u> Trained by Ecology? Yes	🛛 No 🗌		Ľ	Date of training	g: <u>5/2005</u>
SEC: <u>23</u>	TOWNSHP: <u>17N</u>	RNGE: <u>2W</u>	Is	S/T/R in Appen	ndix D? Yes	🗌 No 🖂
	Map of wetland	unit: Figur	e Estimated size <u>~0.</u>	.15 acres		
		SUMMAI	PV OF PATING			
Categor	y based on FUNCTIONS provided by	y wetland:			⊠ IV	
	Catagory I = Score > 70		Score for Water Quality Fu	Inctions	10	
					10	
	Category II = Score $51 - 69$		Score for Hydrologic Fu	inctions	4	_
	Category III = Score $30 - 50$		Score for Habitat Fu	inctions	11	
	Category IV = Score < 30		TOTAL Score for Fu	inctions	25	
Categor	y based on SPECIAL CHARACTERIS	STCS of Wetl	and 🗌 I 🔤 I	I [] Does not ap	ply
	Final Catego	ory (choose	the "highest" category from	n above")	IV	
	Summary of basic i	nformation :	about the wetland unit			
	Wetland Unit has Special		Wetland HGM Class			
	Characteristics	-	used for Rating			
	Estuarine		Depressional			
	Natural Heritage Wetland		Riverine			
	Bog		Lake-fringe			
	Mature Forest		Slope			
	Old Growth Forest		Flats			
	Coastal Lagoon		Freshwater Tidal			
	None of the above		Check if unit has multiple HGM classes present			
Does the	e wetland being rated meet any of the	e criteria bel	ow? If you answer YES to	any of the quest	tions below yo	ou will
	Check I ist for Wetlands	that Need /	Additional Protection			
	(in addition to the protecti	ion recomme	ended for its category)		YES	NO
SP1. H Er Fo	Tas the wetland unit been documented a ndangered animal or plant species (7/1 or the purposes of this rating system, "a ate or federal database.	as a habitat fo E species)? documented"	or any Federally listed Threa means the wetland is on the	<i>atened or</i> e appropriate		\boxtimes
SP2. Ho En W	<i>Tas the wetland unit been documented a ndangered animal species?</i> For the puterland is on the appropriate state database categorized as Category 1 Natural Here	<i>as habitat for</i> proses of this ase. Note: Weritage Wetla	any State listed Threatened s rating system, "documente Vetlands with State listed pl ands (see p. 19 of data form)	or d" means the ant species		\boxtimes
SP3. D	oes the wetland unit contain individual	ls of Priority	species listed by the WDFW	for the state?		\boxtimes
SP4. D	oves the wetland unit have a local signifient of the second signification of the second secon	<i>ficance in ad</i> line Master P	dition to its functions? For Program, the Critical Areas C	example, the Ordinance, or		\bowtie

To complete the next part of the data sheet you will need to determine the Hydrogeomorphic Class of the wetland being rated.

in a local management plan as having special significance.

The hydrogeomorphic classification groups wetlands in to those that function in similar ways. This simplifies the questions needed to answer how well the wetland functions. The Hydrogeomorphic Class of a wetland can be determined using the key below. See p. 24 for more detailed instructions on classifying wetlands. Wetland Rating Form – Western Washington, Version 2 (7/06), updated with new WDFW definitions Oct. 2008 Page 1 of 12

Classification of Vegetated Wetlands for Western Washington

If the mult	he hydrologic criteria listed in each question do not apply to ltiple HGM classes. In this case, identify which hydrologic of	the entire unit being rated, you probably have a unit with criteria in questions 1-7 apply, and go to Question 8.
1.	Are the water levels in the entire unit usually controlled by NO – go to 2 If yes, is the salinity of the water during periods of ann YES – Freshwater Tidal Fringe If your wetland can be classified as a Freshwater Tidal Fringe is rated as an Estuarine wetland. Wetlands that were call estu Water Tidal Fringe in the Hydrogeomorphic Classification. Est this separation is being kept in this revision. To maintain consi note, however, that the characteristics that define Category I and	tides (i.e. except during floods)? YES – the wetland class is Tidal Fringe ual low flow below 0.5 ppt (parts per thousand)? NO – Saltwater Tidal Fringe (Estuarine) <i>use the forms for Riverine wetlands. If it is a Saltwater Tidal Fringe it</i> arine in the first and second editions of the rating system are called Salt tuarine wetlands were categorized separately in the earlier editions, and stency between editions, the term "Estuarine" wetland is kept. Please d II estuarine wetlands have changed (see p).
2.	The entire wetland unit is flat and precipitation is only sour runoff are NOT sources of water to the unit.	ce (>90%) of water to it. Groundwater and surface water
	\bowtie NO – go to 3 \bowtie YES – Th If your wetland can be classified as a "Flats" wetland.	e wetland class is Flats use the form for Depressional wetlands.
3.	Does the entire wetland meet both of the following criteria? The vegetated part of the wetland is on the shores o the surface) where at least 20 acres (8ha) in siz At least 30% of the open water area is deeper than 6 NO – go to 4 YES – Th	f a body of permanent open water (without any vegetation on ze; 5.6 (2 m)? e wetland class is Lake-fringe (Lacustrine Fringe)
4.	 Does the entire wetland meet all of the following criteria? △ The wetland is on a slope (slope can be very graduated) ○ The water flows through the wetland in one direction subsurface, as sheetflow, or in a swale without on the water leaves the wetland without being impour NOTE: Surface water does not pond in these shallow depressions or behind hummocks (dep NO – go to 5 YES – The state of the state o	al). on (unidirectional) and usually comes from seeps. It may flow t distinct banks. nded ? types of wetlands except occasionally in very small and pressions are usually <3 ft diameter and less than 1 foot deep). we wetland class is Slope
5.	Does the entire wetland meet all of the following criteria? ☐ The unit is in a valley or stream channel where it ge ☐ The overbank flooding occurs at least once every tw NOTE: <i>The riverine unit can contain depress</i> . ☐ NO – go to 6	ets inundated by overbank flooding from that stream or river. yo years. <i>ions that are filled with water when the river is not flooding</i> we wetland class is Riverine
6.	Is the entire wetland unit in a topographic depression in wh the year. This means that any outlet, if present is higher that \square NO – go to 7 \bigvee YES – 7	ich water ponds, or is saturated to the surface, at some time of an the interior of the wetland. The wetland class is Depressional
7.	Is the entire wetland located in a very flat area with no obvious pond surface water more than a few inches. The unit seems wetland may be ditched, but has no obvious natural outlet. \square No - go to 8 \square YES - 7	tous depression and no overbank flooding. The unit does not to be maintained by high groundwater in the area. The The wetland class is Depressional
8.	Your wetland unit seems to be difficult to classify and probably conslope may grade into a riverine floodplain, or a small stream within a BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGAREAS IN THE UNIT (make a rough sketch to help you decide). Tating system if you have several HGM classes present within your the second column represents 10% or more of the total area of the w than 10% of the unit, classify the wetland using the class that represent <i>HGM Classes within the wetland unit being rated</i>	tains several different HGM classes. For example, seeps at the base of a a depressional wetland has a zone of flooding along its sides. GO IMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT Use the following table to identify the appropriate class to use for the wetland. NOTE: Use this table only if the class that is recommended in retland unit being rated. If the area of the class listed in column 2 is less ents more than 90% of the total area.
	Slope + Riverine	Riverine
	Slope + Depressional	Depressional
	Slope + Lake-fringe	Lake-fringe
	Depressional + Riverine along stream within boundary	Depressional
	Depressional + Lake-fringe	Depressional
	Salt water 11dal Fringe and any other class of freshwater wetland	characteristics

If you are unable still to determine which of the above criteria apply to your wetland, or you have more than 2 HGM classes within a wetland boundary, classify the wetland as **Depressional** for the rating.

D	Depressional and Flat Wetlands	Points
	WATER QUALITY FUNCTIONS – Indicators that wetland functions to improve water quality.	(only 1 score per box)
D 1	Does the wetland have the <u>potential</u> to improve water quality?	(see p.38)
	 D 1.1 Characteristics of surface water flows out of the wetland: Unit is a depression with no surface water leaving it (no outlet)points = 3 Unit has an intermittently flowing, OR highly constricted, permanently flowing outlet points = 2 	Figure 🗌
	 Unit has an unconstricted, or slightly constricted, surface outlet (<i>permanently flowing</i>) points = 1 [2
	D 1.2 The soil 2 inches below the surface (or duff layer) is clay or organic (<i>use NRCS definitions</i>) YES points = 4 NO points = 0	0
	 D 1.3 Characteristics of persistent vegetation (emergent, shrub, and/or forest Cowardin class): Wetland has persistent, ungrazed vegetation > = 95% of areapoints = 5 Wetland has persistent, ungrazed vegetation > = 1/2 of areapoints = 3 Wetland has persistent, ungrazed vegetation > = 1/10 of areapoints = 1 × 	Figure 🗌
	• Wetland has persistent, ungrazed vegetation < 1/10 of areapoints = 0	1
	 D 1.4 Characteristics of seasonal ponding or inundation: This is the area of the wetland that is ponded for at least 2 months, but dries out sometime during the year. Do not count the area that is permanently ponded. Estimate area as the average condition 5 out of 10 years. Area seasonally ponded is > 1/2 total area of wetland provided for the seasonally points = 4 	Figure 🗌
	 Area seasonally ponded is > 1/4 total area of wetland	2
	Total for D 1Add the points in the boxes above	5
D 2	Does the wetland have the <u>opportunity</u> to improve water quality? Answer YES if you know or believe there are pollutants in groundwater or surface water coming into the wetland that would otherwise reduce water quality in streams, lakes or groundwater downgradient from the wetland? Note which of the following conditions provide the sources of pollutants. A unit may have pollutants coming from several sources, but any single source would qualify as opportunity. Grazing in the wetland or within 150 ft Untreated stormwater discharges to wetland	(see p. 44)
	 Tilled fields or orchards within 150 ft. of wetland A stream or culvert discharges into wetland that drains developed areas, residential areas, farmed fields, roads, or clear-cut logging Residential, urban areas, golf courses are within 150 ft. of wetland Wetland is fed by groundwater high in phosphorus or nitrogen 	Multiplier
	Other Former industrial area	2
	TOTAL Water Quality Europtions Multiply the score from D1 by D2: then add score to table on p. 1	
	HYDROLOGIC FUNCTIONS – Indicators that wetland unit functions to reduce flooding and stream degradation	10
D 3	Does the wetland have the potential to reduce flooding and erosion?	(see p.46)
	 D 3.1 Characteristics of surface water flows out of the wetland unit Unit is a depression with no surface water leaving it (no outlet)points = 4 Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2 Unit is a "flat" depression (Q.7 on key) or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch points = 1 (If ditch is not permanently flowing treat unit as "intermittently flowing") Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing) points = 0 	2
	 D 3.2 Depth of storage during wet periods. Estimate the height of ponding above the bottom of the outlet. For units with no outlet measure from the surface of permanent water or deepest part (if dry). Marks of ponding are 3 ft. or more above the surface or bottom of the outlet	0
	 D 3.3 Contribution of wetland unit to storage in the watershed: Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself. The area of the basin is less than 10 times the area of unit points = 5 The area of the basin is 10 to 100 times the area of the unit points = 3 The area of the basin is more than 100 times the area of the unit points = 0 Entire unit is in the FLATS class	0
	Add the points in the boxes above	<u> </u>

Wetland name or number <u>B</u>

D 4	Does the wetland have the <u>opportunity</u> to reduce flooding and erosion?	(see p. 49)
Answer YES if the unit is in a location in the watershed where the flood storage, or reduction in water velocit provides helps protect downstream property and aquatic resources from flooding or excessive and/or ero flows. Answer NO if the water coming into the wetland is controlled by a structure such as flood gate, tide gate, flap valve, reservoir etc. OR you estimate that more than 90% of the water in the wetland is from groundwater in areas where damaging groundwater flooding does not occur. <i>Note which of the following indicators of opportunity apply</i> .		
	Wetland is in a headwater of a river or stream that has flooding problems.	
	Wetland drains to a river or stream that has flooding problems Wetland has no outlet and impounds surface runoff water that might otherwise flow into a river or stream that has flooding problems	Multiplier
	\Box Other YES multiplier is 2 \Box NO multiplier is 1	2
•	<u>TOTAL</u> – Hydrologic Functions Multiply the score from D3 by D4; then <i>add score to table on p. 1</i>	<u>4</u>

Comments: <u>16</u>

The	se questions apply to wetlands of all HGM classes.	Points			
	HABITAT FUNCTIONS – Indicators that wetland functions to provide important habitat.				
H 1	1 Does the wetland have the <u>potential</u> to provide habitat for many species?				
	H 1.1 <u>Vegetation structure</u> (see P. 72): Check the types of vegetation classes present (as defined by Cowardin) – Size threshold for each class is 1/4 acre or more than 10% of the area if unit is smaller than 2.5 acres. Aquatic Bed Emergent plants Scrub/shrub (areas where shrubs have > 30% cover) Forested (areas where trees have > 30% cover)	Figure 🗌			
	If the unit has a forested class check if: The forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the forested polygon. Add the number of vegetation types that qualify. If you have: 4 structures or more points = 4 2 structures points = 1	0			
	H 1.2 Hydroperiods (see p.73): Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or 1/4 acre to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present points = 3 Seasonally flooded or inundated 3 or more types present points = 2 Occasionally flooded or inundated 2 types present points = 1 Saturated only 1 type present points = 0 Permanently flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream in, or adjacent to, the wetland	Figure 🛄			
	Freshwater tidal wetland = 2 points Map of hydroperiods	1			
	If 1.5 <u>Retifiess of Flant Species</u> (see p. 75). Count the number of plant species in the wetland that cover at least 10 ft ² (different patches of the same species can be combined to meet the size threshold) You do not have to name the species. Do not include Eurasian Milfoil, reed canarygrass, purple loosestrife, Canadian Thistle. If you counted: > 19 species points = 2 List species below if you want to: < 5 species points = 0				
	H 1.4 Interspersion of Habitats (see p. 76): Decided from the diagrams below whether interspersion between Cowardin vegetation (described in H1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, medium, low, or none.	Figure 🛄			
	Note: If you have 4 or more classes or 3 vegetation classes and open water, the rating is always "high".	0			
	Use map of Cowardin classes.				
	Check the habitat features (act p. 17). Check the habitat features that are present in the wetland. The number of checks is the number of points you put into the next column. Large, downed, woody debris within the wetland (> 4 in. diameter and 6 ft. long) Standing snags (diameter at the bottom > 4 inches) in the wetland Undercut banks are present for at least 6.6 ft. (2m) and/or overhanging vegetation extends at least 3.3 ft. (1m) over a stream (or ditch) in, or contiguous with the unit, for at least 33 ft. (10m) Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (<i>cut shrubs or trees that have not yet turned grey/brown</i>) At least 1/4 acre of thin-stemmed persistent vegetation or woody branches are present in areas that are permanently or seasonally inundated (<i>structures for egg-laying by amphibians</i>)				
	NOTE: The 20% stated in early printings of the manual on page 78 is an error.	0			
	H 1 TOTAL Score – potential for providing habitatAdd the points in the column above	1			

Wetland name or number \underline{B}

H 2	Does t	he wetland have the <u>opportunity</u> to provide habitat for many species?	(only 1 score per box)
	H 2.1	Buffers (see P. 80): Choose the description that best represents condition of buffer of wetland unit. The highest scoring criterion that applies to the wetland is to be used in the rating. See text for definition of "undisturbed". □ 100m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 95% of circumference. No structures are within the undisturbed part of buffer (relatively undisturbed also means no grazing, no landscaping, no daily human use) points = 5 □ 100m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 50% circumference	Figure 🗌
		Buffer does not meet any of the criteria above points = 0 Arial photo showing buffers	5
	H 2.2	 <u>Corridors and Connections</u> (see p. 81) H 2.2.1 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 150 ft. wide, has at least a 30% cover of shrubs, forest or native undisturbed prairie, that connects to estuaries, other wetlands or undisturbed uplands that are at least 250 acres in size? (Dams in riparian corridors, heavily used gravel roads, paved roads, are considered breaks in the corridor). □ YES = 4 points (go to H 2.3) □ NO = go to H 2.2.2 H. 2.2.2 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 50 ft. wide, has at least 30% cover of shrubs or forest, and connects to estuaries, other wetlands or undisturbed uplands that are at least 25 acres in size? OR a Lakefringe wetland, if it does not have an undisturbed corridor as in the question above? □ YES = 2 points (go to H 2.3) □ NO = go to H 2.2.3 H. 2.2.3 Is the wetland: Within 5 mi (8km) of a brackish or salt water estuary OR Within 3 miles of a large field or pasture (> 40 acres) OR 	1
		• Within 1 mile of a lake greater than 20 acres? \Box NO = 0 points	1

Comments: _____
	H 2.3 <u>Near or adjacent to other priority habitats listed by WDFW</u> (see p. 82): (see new and complete descriptions of WDFW priority habitats and the counties in which they can be found in the PHS report	
	http://wdfw wa gov/hab/phslist htm.)	
	Which of the following priority habitats are within 330 ft (100m) of the wetland unit?	
	NOTE: the connections do not have to be relatively undisturbed.	
	Aspen Stands: Pure or mixed stands of aspen greater than 0.4 ha (1 acre).	
	Biodiversity Areas and Corridors : Areas of habitat that are relatively important to various species of native fish	
	and wildlife (<i>full descriptions in WDFW PHS report p. 152</i>).	
	Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.	
	Old-growth/Mature forests: (Old-growth west of Cascade crest) Stands of at least 2 tree species, forming a multi-	
	layered canopy with occasional small openings; with at least 20 trees/ha (8 trees/acre) > 81 cm (32 in) dbh or >	
	200 years of age. (Mature forests) Stands with average diameters exceeding 53 cm (21 in) dbh; crown cover	
	may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally	
	less than that found in old-growth; 80 - 200 years old west of the Cascade crest.	
	Oregon white Oak: Woodlands Stands of pure oak or oak/conifer associations where canopy coverage of the oak	
	component is important (full descriptions in WDFW PHS report p. 158).	
	Riparian : The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and	
	terrestrial ecosystems which mutually influence each other.	
	Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (<i>full descriptions in WDFW PHS report p. 161</i>).	
	Instream: The combination of physical, biological, and chemical processes and conditions that interact to provide	
	functional life history requirements for instream fish and wildlife resources.	
	Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore,	
	and Puget Sound Nearshore. (full descriptions of habitats and the definition of relatively undisturbed are in	
	WDFW report: pp. 167-169 and glossary in Appendix A).	
	Caves: A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils,	
	rock, ice, or other geological formations and is large enough to contain a human.	
	Cliffs: Greater than 7.6 m (25 ft) high and occurring below 5000 ft.	
	Talus: Homogenous areas of rock rubble ranging in average size 0.15 - 2.0 m (0.5 - 6.5 ft), composed of basalt,	
	andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.	
	Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics	
	to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 51 cm (20 in) in	
	western wasnington and are $> 2 \text{ m}(6.5 \text{ ft})$ in neight. Priority logs are $> 30 \text{ cm}(12 \text{ m})$ in diameter at the largest	
	end, and > 0 in (20 ii) long. If we than $as 3 or more priority habitats = 4 points$	
	If we than $a \ge 2$ priority habitat = 5 points If we than $b \ge 1$ priority habitat = 1 points	
	If we find has I priority indicate $= 1$ point No babitate $= 0$ points	1
	Note: All vegetated wetlands are by definition a priority habitat but are not included in this list	1
	Nearby wetlands are addressed in question H 2.4)	
	H 2.4. Wotland Londsono: Choose the ana description of the landscape around the wetland that best fits (see p. 84)	
	There are at least 3 other wetlands within 1/2 mile and the connections between them are	
	• There are at least 5 other wetlands within 1/2 line, and the connections between them are relatively undisturbed (light grazing between wetlands OK as is lake shore with some boating	
	but connections should NOT be bisected by paved roads fill fields or other development points = $5 \square$	
	The wetland is I also frings on a lake with little disturbance and there are 2 other lake frings	
	• The wetland is Lake-inlige on a lake with intre disturbance and there are 5 other lake-inlige wetlands within $1/2$ mile points = 5	
	There are at least 2 other wetlends within $1/2$ mile. DUT the corrections between them are	
	• There are at least 5 other wetlands within $1/2$ mile, BUT the connections between them are disturbed	
	for the second for the second for the second for the second for the formation of the second for the second f	
	• The wetland fringe on a lake with disturbance and there are 5 other lake-fringe wetlands mithin $1/2$ mile	
	within $1/2$ mile	
	• There is at least 1 wetland within $1/2$ mile points = 2	3
	• There are no wetlands within $1/2$ mile points = 0	
	H 2 TOTAL Score – opportunity for providing habitat Add the scores from H2.1, H2.2, H2.3, H2.4	10
	TOTAL for H 1 from page 8	1
•	Total Score for Habitat FunctionsAdd the points for H 1 and H 2; then record the result on p. 1	<u>11</u>
Com	ments:	

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Please determine if the wetland meets the attributes described below and circle the appropriate answers and Category.

	Wetla	and Type – Check off any criteria that apply to the wetland. Circle the Category when the appropriate	
	criteria	a are met.	
SC1	Estuar	rine wetlands? (see p.86)	
		Does the wetland unit meet the following criteria for Estuarine wetlands?	
		The dominant water regime is tidal,	
		With a solicity creater than 0.5 met	
		\square with a samity greater than 0.5 ppt. \square VFS \square Co to SC 1.1 \square NO	
	CC 1 1	L the method and traiting Netloged Wildlife Defense Netloged Date Netloged Estrong Deserve Network	
	SC 1.1	Is the wetland unit within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural	Cat. 1
		Area Preserve, State Park of Educational, Environmental, of Scientific Reserve designated under WAC $332-30-151?$ \Box YES = Category I \Box NO = go to SC 1.2	
	SC 1.2	Is the wetland at least 1 acre in size and meets at least two of the following conditions?	Cot I
		$\Box \mathbf{YES} = \text{Category I} \qquad \Box \mathbf{NO} = \text{Category II}$	
		less than 10% cover of non-native plant species. If the non-native Sparting spin are only species	Cat II
		that cover more than 10% of the wetland, then the wetland should be given a dual rating (I/II).	
		The area of Spartina would be rated a Category II while the relatively undisturbed upper marsh	
		with native species would be a Category 1. Do not, however, exclude the area of Spartina in determining the size threshold of 1 acre	Dual
		\square At least 3/4 of the landward edge of the wetland has a 100 ft, buffer of shrub, forest, or un-grazed or	Rating
		un-mowed grassland	I/II
		The wetland has at least 2 of the following features: tidal channels, depressions with open water, or contiguous freshwater wetlands.	
SC2	<u>Natura</u>	al Heritage Wetlands (see p. 87)	
~		Natural Heritage wetlands have been identified by the Washington Natural Heritage Program/DNR as	
		either high quality undisturbed wetlands or wetlands that support state Threatened, Endangered, or	
		Sensitive plant species.	
	SC 2.1	Is the wetland being rated in a Section/Township/Range that contains a natural heritage wetland? (This	
		question is used to screen out most sites before you need to contact WNHP/DNR.)	
		S/T/R information from Appendix D	
	~~ • •	YES Contact WNHP/DNR (see p. 79) and go to SC 2.2	
	SC 2.2	Has DNR identified the wetland as a high quality undisturbed wetland or as a site with state threatened	Cat I
		or endangered plant species? \Box VCs = Catagory 1 \Box NC not a Haritage Watland	
	Dega ($\Box \mathbf{FES} = Category \mathbf{I}$	
SC3	Bogs (S	See p. 87)	
		the key below to identify if the wetland is a bog. If you answer yes you will still need to rate the	
		wetland based on its function	
		1. Does the unit have organic soil horizons (i.e. layers of organic soil), either peats or mucks, that	
		compose 16 inches or more of the first 32 inches of soil profile? (See Appendix B for a field key to	
		identify organic soils)? \Box YES = go to question 3 \boxtimes NO = go to question 2	
		2. Does the wetland have organic soils, either peats or mucks that are less than 16 inches deep over	
		bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on a lake or	
		pond? \square YES = go to question 3 \square NO = is not a bog for purpose of rating	
		3. Does the unit have more than 70% cover of mosses at ground level, AND other plants, if present,	
		consist of the "bog" species listed in Table 3 as a significant component of the vegetation (more	
		than 30% of the total shrub and herbaceous cover consists of species in Table 3)?	
		\square YES = Is a bog for purpose of rating $\widehat{\square}$ NO = go to question 4	
		NOTE: If you are uncertain about the extent of mosses in the understory you may substitute that	
		criterion by measuring the pH of the water that seeps into a hole dug at least 16" deep. If the pH is	
		less than 5.0 and the "bog" plant species in Table 3 are present, the wetland is a bog.	
		4. Is the unit forested (> 30% cover) with sitka spruce, subalpine fir, western red cedar, western	
		hemlock, lodgepole pine, quaking aspen, Englemann's spruce, or western white pine. WITH any of	
		the species (or combination of species) on the bog species plant list in Table 3 as a significant	
		component of the ground cover (> 30% coverage of the total shrub/herbaceous cover)?	C <u>at.</u> I
		$\square YES = Category I \qquad \square NO = Is not a bog for purpose of rating$	

SC4	 Forested Wetlands (see p. 90) Does the wetland have at least 1 acre of forest that meet one of these criteria for the Department of Fish and Wildlife's forests as priority habitats? If you answer yes you will still need to rate the wetland based on its function. □ Old-growth forests: (west of Cascade Crest) Stands of at least two three species forming a multi-layered canopy with occasional small openings; with at least 8 trees/acre (20 trees/hectare) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 inches (81 cm or more). NOTE: The criterion for dbh is based on measurements for upland forests. Two-hundred year old trees in wetlands will often have a smaller dbh because their growth rates are often slower. The DFW criterion is and "OR" so old-growth forests do not necessarily have to have trees of this diameter. □ Mature forests: (west of the Cascade Crest) Stands where the largest trees are 80 – 200 years old OR have an average diameters (dbh) exceeding 21 inches (53 cm); crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth. 	Cat I
	\square YES = Category I \square NO = not a forested wetland with special characteristics	
SC5	Wetlands in Coastal Lagoons (see p. 91) Does the wetland meet all of the following criteria of a wetland in a coastal lagoon? The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks. The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom.) YES = Go to SC 5.1 NO not a wetland in a coastal lagoon	
	 SC 5.1 Does the wetland meet all of the following three conditions? The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing) and has less than 20% cover of invasive plant species (see list of invasive species on p. 74). At least 3/4 of the landward edge of the wetland has a 100 ft. buffer of shrub, forest, or un-grazed or un-mowed grassland. The wetland is larger than 1/10 acre (4350 square ft.) YES = Category I NO = Category II 	Cat. I □ Cat. II
SC6	Interdunal Wetlands (see p. 93) Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? Image: Provide the second sec	
	If you answer yes you will still need to rate the wetland based on its functions. In practical terms that means the following geographic areas: • Long Beach Peninsula lands west of SR 103 • Grayland-Westport lands west of SR 105 • Ocean Shores-Copalis – lands west of SR 115 and SR 109	
	SC 6.1 Is the wetland one acre or larger, or is it in a mosaic of wetlands that is one acre or larger? \square YES = Category II \square NO = go to SC 6.2 SC 6.2 Is the wetland between 0.1 and 1 acre, or is it in a mosaic of wetlands that is between 0.1 and 1 acre?	Cat. II Ca <u>t.</u> III
	$\square YES = Category III$	
	Category of wetland based on Special Characteristics	
•	Choose the "highest" rating if wetland falls into several categories, and record on p. 1. If you answered NO for all types enter "Not Applicable" on p. 1	<u>N/A</u>

Comments: _____

Wetland name or number C

WETLAND	RATING	FORM -	WESTERN	WASHINGTON
---------	--------	--------	---------	------------

Version 2 – Updated July 2006 to increase accuracy and reproducibility among users Updated Oct. 2008 with the new WDFW definitions for priority habitats

Name of	wetland (if known): <u>C</u>				Dat	e of site visit:	<u>6-10-14</u>
Rated by	: <u>P. Togher</u> Trained by Ecology? Yes	s 🛛 No 🗌			D	Date of training	g: <u>5/2005</u>
SEC: <u>23</u>	TOWNSHP: <u>17N</u>	RNGE: <u>2W</u>		Is S	S/T/R in Apper	ndix D? Yes [
	Map of wetland	d unit: Figur	re Estim	ated size <u>~0.1</u>	<u>5 acres</u>		
		SUMMA	RY OF RATIN	G			
Categor	y based on FUNCTIONS provided l	by wetland:	I				
	Category I = Score > 70		Score for Wat	er Quality Fur	nctions	12	
	Category II = Score 51 - 69		Score for H	Ivdrologic Fur	nctions	18	
	Category III = Score $30 - 50$		Score f	or Habitat Fur	nctions	15	
	Category IV = Score < 30		TOTAL	Score for Fur	nctions	45	
Category	v based on SPECIAL CHARACTERI	STCS of Wet	land 🗌 I			Does not an	nlv
Category							pıy
	Final Categ	gory (choose	e the "highest" c	category from	above")	III	
	Summary of basic	information	about the wetla	and unit.			
	Wetland Unit has Specia	al	Wetland	HGM Class			
	Characteristics		used fo	or Rating			
	Natural Heritage Wetland	1	Riverine				
	Bog		Lake-fringe				
	Mature Forest		Slope				
	Old Growth Forest		Flats				
	Coastal Lagoon		Freshwater T	lidal			
	Interdunal None of the above		Check if unit HGM classes	has multiple present			
Does the	e wetland being rated meet any of the	ne criteria be	low? If you and	swer YES to a	ny of the quest	tions below yo	ou will
need to p	Check List for Wetlands	s that Need	Additional Pr	otection		YES	NO
SD1 H	(in addition to the protect	as a habitat f	or any Federall	v listed Threat	tanad or		
SF1. Ha Er Fo	<i>indangered animal or plant species (T</i> , or the purposes of this rating system, 'ate or federal database.	<i>"/E species)?</i> "documented"	' means the wet	land is on the	appropriate		\boxtimes
SP2. Ha Er we	as the wetland unit been documented ndangered animal species? For the p etland is on the appropriate state datal re categorized as Category 1 Natural F	as habitat for urposes of thi base. Note: V leritage Weth	any State listed is rating system, Wetlands with S ands (see p. 19 c	<i>Threatened o</i> "documented tate listed plat of data form)	r " means the nt species		\boxtimes
SP3. Do	oes the wetland unit contain individud	als of Priority	species listed b	y the WDFW	for the state?		\boxtimes
SP4. Do	oes the wetland unit have a local sign etland has been identified in the Shore	<i>ificance in aa</i> eline Master I	<i>ldition to its fun</i> Program, the Cri	<i>ctions</i> ? For exitical Areas Or	xample, the dinance, or		\boxtimes

To complete the next part of the data sheet you will need to determine the Hydrogeomorphic Class of the wetland being rated.

in a local management plan as having special significance.

The hydrogeomorphic classification groups wetlands in to those that function in similar ways. This simplifies the questions needed to answer how well the wetland functions. The Hydrogeomorphic Class of a wetland can be determined using the key below. See p. 24 for more detailed instructions on classifying wetlands. Wetland Rating Form – Western Washington, Version 2 (7/06), updated with new WDFW definitions Oct. 2008 Page 1 of 12

Classification of Vegetated Wetlands for Western Washington

If th mul	ne hydrologic criteria listed in each question do not apply to tiple HGM classes. In this case, identify which hydrologic of	the entire unit being rated, you probably have a unit with criteria in questions 1-7 apply, and go to Question 8.		
1.	Are the water levels in the entire unit usually controlled by NO – go to 2 If yes, is the salinity of the water during periods of ann YES – Freshwater Tidal Fringe If your wetland can be classified as a Freshwater Tidal Fringe is rated as an Estuarine wetland. Wetlands that were call estu Water Tidal Fringe in the Hydrogeomorphic Classification. Est this separation is being kept in this revision. To maintain consi note, however, that the characteristics that define Category I and	tides (i.e. except during floods)? YES – the wetland class is Tidal Fringe ual low flow below 0.5 ppt (parts per thousand)? NO – Saltwater Tidal Fringe (Estuarine) <i>use the forms for Riverine wetlands. If it is a Saltwater Tidal Fringe</i> arine in the first and second editions of the rating system are called Sa stuarine wetlands were categorized separately in the earlier editions, ar stency between editions, the term "Estuarine" wetland is kept. Please d II estuarine wetlands have changed (see p).	<i>it</i> llt nd	
2.	The entire wetland unit is flat and precipitation is only sour runoff are NOT sources of water to the unit. \square NO – go to 3 \square YES – Th	ce (>90%) of water to it. Groundwater and surface water we wetland class is Flats		
	If your wetland can be classified as a "Flats" wetland,	use the form for Depressional wetlands.		
3.	Does the entire wetland meet both of the following criteria? ☐ The vegetated part of the wetland is on the shores o the surface) where at least 20 acres (8ha) in siz ☐ At least 30% of the open water area is deeper than 6 \square NO – go to 4 \square YES – Th	? f a body of permanent open water (without any vegetation on ze; 5.6 (2 m)? he wetland class is Lake-fringe (Lacustrine Fringe)	1	
4.	 Does the entire wetland meet all of the following criteria? △ The wetland is on a slope (slope can be very graduated) ○ The water flows through the wetland in one direction subsurface, as sheetflow, or in a swale without on the water leaves the wetland without being impour NOTE: Surface water does not pond in these shallow depressions or behind hummocks (dep NO – go to 5 YES – The state of the state o	al). on (unidirectional) and usually comes from seeps. It may flow t distinct banks. nded ? types of wetlands except occasionally in very small and pressions are usually <3 ft diameter and less than 1 foot deep we wetland class is Slope	w).	
5.	Does the entire wetland meet all of the following criteria? ☐ The unit is in a valley or stream channel where it ge ☐ The overbank flooding occurs at least once every tw NOTE: The riverine unit can contain depress. ☐ NO – go to 6	ets inundated by overbank flooding from that stream or river. yo years. <i>ions that are filled with water when the river is not flooding.</i> . we wetland class is Riverine		
6.	Is the entire wetland unit in a topographic depression in wh the year. This means that any outlet, if present is higher that \square NO - go to 7 \bigvee YES - 7	ich water ponds, or is saturated to the surface, at some time c an the interior of the wetland. The wetland class is Depressional	of	
7.	Is the entire wetland located in a very flat area with no obvious pond surface water more than a few inches. The unit seems wetland may be ditched, but has no obvious natural outlet. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	ious depression and no overbank flooding. The unit does not s to be maintained by high groundwater in the area. The The wetland class is Depressional		
8.	Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within your wetland. NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the class listed in column 2 is less than 10% of the unit, classify the wetland unit heing rated HGM Classes to Use in Pating.			
	Slope + Riverine	Riverine		
	Slope + Depressional	Depressional		
	Slope + Lake-fringe	Lake-fringe		
	Depressional + Riverine along stream within boundary	Depressional		
	Depressional + Lake-fringe	Depressional		
	Salt Water Tidal Fringe and any other class of	Treat as ESTUARINE under wetlands with special		
	freshwater wetland	characteristics		

If you are unable still to determine which of the above criteria apply to your wetland, or you have more than 2 HGM classes within a wetland boundary, classify the wetland as **Depressional** for the rating.

D	Depressional and Flat Wetlands	Points
	WATER QUALITY FUNCTIONS – Indicators that wetland functions to improve water quality.	(only 1 score per box)
D 1	Does the wetland have the <u>potential</u> to improve water quality?	(see p.38)
	 D 1.1 Characteristics of surface water flows out of the wetland: Unit is a depression with no surface water leaving it (no outlet)points = 3 Unit has an intermittently flowing, OR highly constricted, permanently flowing outlet points = 2 	Figure 🗌
	 Unit has an unconstricted, or slightly constricted, surface outlet (<i>permanently flowing</i>)points = 1 Unit is a "flat" depression (Q.7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditchpoints = 1 (If ditch is not permanently flowing treat unit as "intermittently flowing") Provide photo or drawing 	3
	D 1.2 The soil 2 inches below the surface (or duff layer) is clay or organic (<i>use NRCS definitions</i>) VES points = 4 NO points = 0	0
	 D 1.3 Characteristics of persistent vegetation (emergent, shrub, and/or forest Cowardin class): Wetland has persistent, ungrazed vegetation > = 95% of areapoints = 5 Wetland has persistent, ungrazed vegetation > = 1/2 of areapoints = 3 × Wetland has persistent, ungrazed vegetation > = 1/10 of areapoints = 1 	Figure 🗌
	• Wetland has persistent, ungrazed vegetation < 1/10 of areapoints = 0	3
	 D 1.4 Characteristics of seasonal ponding or inundation: This is the area of the wetland that is ponded for at least 2 months, but dries out sometime during the year. Do not count the area that is permanently ponded. Estimate area as the average condition 5 out of 10 years. Area seasonally ponded is > 1/2 total area of wetland provide the seasonally points = 4 	Figure 🗌
	 Area seasonally ponded is > 1/4 total area of wetland points = 2 Area seasonally ponded is < 1/4 total area of wetland points = 0 Map of Hydroperiods 	0
-	Total for D 1Add the points in the boxes above	6
D 2	Does the wetland have the <u>opportunity</u> to improve water quality? Answer YES if you know or believe there are pollutants in groundwater or surface water coming into the wetland that would otherwise reduce water quality in streams, lakes or groundwater downgradient from the wetland? Note which of the following conditions provide the sources of pollutants. A unit may have pollutants coming from several sources, but any single source would qualify as opportunity.	(see p. 44)
	 Grazing in the wetland or within 150 ft Untreated stormwater discharges to wetland Tilled fields or orchards within 150 ft. of wetland A stream or culvert discharges into wetland that drains developed areas, residential areas, farmed fields, roads, or clear-cut logging Residential webs areas and for wetland that drains to field areas. 	
	Wetland is fed by groundwater high in phosphorus or nitrogen	Multiplier
	\square YES multiplier is 2 \square NO multiplier is 1	2
•	<u>TOTAL</u> – Water Quality Functions Multiply the score from D1 by D2; then <i>add score to table on p. 1</i>	<u>12</u>
	HYDROLOGIC FUNCTIONS - Indicators that wetland unit functions to reduce flooding and stream degradation.	1
D 3	Does the wetland have the <u>potential</u> to reduce flooding and erosion?	(see p.46)
	 D 3.1 Characteristics of surface water flows out of the wetland unit Unit is a depression with no surface water leaving it (no outlet)points = 4 Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2 Unit is a "flat" depression (Q.7 on key) or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch points = 1 (If ditch is not permanently flowing treat unit as "intermittently flowing") Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing) points = 0 	4
	 D 3.2 Depth of storage during wet periods. Estimate the height of ponding above the bottom of the outlet. For units with no outlet measure from the surface of permanent water or deepest part (if dry). Marks of ponding are 3 ft. or more above the surface or bottom of the outlet	5
	 D 3.3 Contribution of wetland unit to storage in the watershed: Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself. The area of the basin is less than 10 times the area of unit points = 5 The area of the basin is 10 to 100 times the area of the unit points = 3 The area of the basin is more than 100 times the area of the unit points = 0 Entire unit is in the FLATS class	0
	Total for D 3Add the points in the boxes above	9

-		
D 4	Does the wetland have the <u>opportunity</u> to reduce flooding and erosion?	(see p. 49)
	Answer YES if the unit is in a location in the watershed where the flood storage, or reduction in water velocity, it provides helps protect downstream property and aquatic resources from flooding or excessive and/or erosive flows. Answer NO if the water coming into the wetland is controlled by a structure such as flood gate, tide gate, flap valve, reservoir etc. OR you estimate that more than 90% of the water in the wetland is from groundwater in areas where damaging groundwater flooding does not occur. <i>Note which of the following indicators of opportunity apply</i> .	
	Wetland is in a headwater of a river or stream that has flooding problems.	
	Wetland drains to a river or stream that has flooding problems Wetland has no outlet and impounds surface runoff water that might otherwise flow into a river or stream that has flooding problems	Multiplier
	\square YES multiplier is 2 \square NO multiplier is 1	2
•	<u>TOTAL</u> – Hydrologic Functions Multiply the score from D3 by D4; then <i>add score to table on p. 1</i>	<u>18</u>

Comments: <u>16</u>

The	se questions apply to wetlands of all HGM classes.	Points
	HABITAT FUNCTIONS – Indicators that wetland functions to provide important habitat.	(only 1 score per box)
H 1	Does the wetland have the <u>potential</u> to provide habitat for many species?	
	H 1.1 Vegetation structure (see P. 72): Check the types of vegetation classes present (as defined by Cowardin) – Size threshold for each class is 1/4 acre or more than 10% of the area if unit is smaller than 2.5 acres. Aquatic Bed Emergent plants Scrub/shrub (areas where shrubs have > 30% cover) Forested (areas where trees have > 30% cover) (the unit have a forested class aback if	Figure 🛄
	If the unit has a forested class check if: Image: The unit has a forested class check if:	0
	H 1.2 Hydroperiods (see p.73): Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or 1/4 acre to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present points = 3 Seasonally flooded or inundated 3 or more types present points = 3 Occasionally flooded or inundated 2 types present points = 1 Saturated only 1 type present points = 0 Permanently flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream in, or adjacent to, the wetland	Figure <u> </u>
	Freshwater tidal wetland	2
	H 1.3 Richness of Plant Species (see p. 75): Count the number of plant species in the wetland that cover at least 10 ft ² (different patches of the same species can be combined to meet the size threshold) You do not have to name the species. Do not include Eurasian Milfoil, reed canarygrass, purple loosestrife, Canadian Thistle. If you counted: > 19 species points = 2 5 - 19 species points = 1 List species below if you want to:	1
	H 1.4 Interspersion of Habitats (see p. 76): Decided from the diagrams below whether interspersion between Cowardin vegetation (described in H1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, medium, low, or none.	Figure 🗌
	Note: If you have 4 or more classes or 3 vegetation classes and open water, the rating is always "high".	1
	 H 1.5 <u>Special Habitat Features</u> (see p. 77): Check the habitat features that are present in the wetland. The number of checks is the number of points you put into the next column. Large, downed, woody debris within the wetland (> 4 in. diameter and 6 ft. long) Standing snags (diameter at the bottom > 4 inches) in the wetland Undercut banks are present for at least 6.6 ft. (2m) and/or overhanging vegetation extends at least 3.3 ft. (1m) over a stream (or ditch) in, or contiguous with the unit, for at least 33 ft. (10m) Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet turned grey/brown) At least 1/4 acre of thin-stemmed persistent vegetation or woody branches are present in areas that are permanently or seasonally inundated (structures for egg-laying by amphibians) Invasive plants cover less than 25% of the wetland area in each stratum of plants NOTE: The 20% stated in early printings of the manual on page 78 is an error 	2
	H 1 TOTAL Score – potential for providing habitat Add the points in the column above	6

H 2	Does t	he wetland have the <u>opportunity</u> to provide habitat for many species?	(only 1 score per box)
	H 2.1	Buffers (see P. 80): Choose the description that best represents condition of buffer of wetland unit. The highest scoring criterion that applies to the wetland is to be used in the rating. See text for definition of "undisturbed". □ 100m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 95% of circumference. No structures are within the undisturbed part of buffer (relatively undisturbed also means no grazing, no landscaping, no daily human use)	Figure 🗌
	H 2.2	Corridors and Connections (see p. 81) H 2.2.1 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 150 ft. wide, has at least a 30% cover of shrubs, forest or native undisturbed prairie, that connects to estuaries, other wetlands or undisturbed uplands that are at least 250 acres in size? (Dams in riparian corridors, heavily used gravel roads, paved roads, are considered breaks in the corridor). □ YES = 4 points (go to H 2.3) □ NO = go to H 2.2.2 H. 2.2.2 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 50 ft. wide, has at least 30% cover of shrubs or forest, and connects to estuaries, other wetlands or undisturbed uplands that are at least 25 acres in size? OR a Lake-fringe wetland, if it does not have an undisturbed corridor as in the question above? □ YES = 2 points (go to H 2.3) □ NO = go to H 2.2.2 H. 2.2.3 Is the wetland: • Within 5 mi (8km) of a brackish or salt water estuary OR	
		 Within 3 miles of a large field or pasture (> 40 acres) OR Within 1 mile of a lake greater than 20 acres? 	1

Comments: _____

Com	ments:	
ب	Total Score for Habitat FunctionsAdd the points for H 1 and H 2; then record the result on p. 1	<u>15</u>
	TOTAL for H 1 from page 8	6
	H 2 TOTAL Score – opportunity for providing habitat Add the scores from H2.1, H2.2, H2.3, H2.4	9
	• There are no wetlands within $1/2$ mile	3
	within 1/2 mile points = 3 \square • There is at least 1 wetland within 1/2 mile points = 2 \square	
	• The wetland fringe on a lake with disturbance and there are 3 other lake-fringe wetlands	
	• There are at least 3 other wetlands within 1/2 mile, BUT the connections between them are disturbed points = 3 🖂	
	wetlands within $1/2$ mile	
	 but connections should NOT be bisected by paved roads, fill, fields, or other development points = 5 The wetland is Lake-fringe on a lake with little disturbance and there are 3 other lake-fringe 	
	• There are at least 5 other wethands within 1/2 line, and the connections between them are relatively undisturbed (light grazing between wetlands OK, as is lake shore with some boating,	
]	H 2.4 Wetland Landscape: Choose the one description of the landscape around the wetland that best fits (see p. 84)	
	Note: All vegetated wetlands are by definition a priority habitat but are not included in this list. Nearby wetlands are addressed in question H 2.4)	
,	If wetland has I priority habitat = 1 point No habitats = 0 points	1
	If we that has 2 priority habitats = 3 points If we have have a priority habitats = 3 points	
	western Washington and are $> 2 \text{ m}$ (6.5 ft) in height. Priority logs are $> 30 \text{ cm}$ (12 in) in diameter at the largest end, and $> 6 \text{ m}$ (20 ft) long. If wetland has 3 or more priority habitats = 4 points	
	Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 51 cm (20 in) in	
	andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.	
	Cliffs: Greater than 7.6 m (25 ft) high and occurring below 5000 ft. Talus: Homogenous areas of rock rubble ranging in average size 0.15 - 2.0 m (0.5 - 6.5 ft), composed of basalt	
	Caves: A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.	
	WDFW report: pp. 167-169 and glossary in Appendix A).	
	Nearshore : Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puert Sound Nearshore. (<i>ful descriptions of habitats and the definition of relatively undisturbed are in</i>	
	Instream: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.	
	westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (<i>full descriptions in WDFW PHS report p. 161</i>).	
	terrestrial ecosystems which mutually influence each other.	
	component is important (<i>full descriptions in WDFW PHS report p. 158</i>).	
	less than that found in old-growth; 80 - 200 years old west of the Cascade crest. Oregon white Oak: Woodlands Stands of pure oak or oak/conifer associations where canopy coverage of the oak	
	may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally	
	layered canopy with occasional small openings; with at least 20 trees/ha (8 trees/acre) > 81 cm (32 in) dbh or > 200 wars of aga. (Matura foracta) Standa with average diameters averaging 53 cm (21 in) dbh; grown actor	
	 Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock. Old-growth/Mature forests: (Old-growth west of Cascade crest) Stands of at least 2 tree species, forming a multi- 	
	and wildlife (<i>full descriptions in WDFW PHS report p. 152</i>).	
	Aspen Stands: Pure or mixed stands of aspen greater than 0.4 ha (1 acre).	
	Which of the following priority habitats are within 330 ft. (100m) of the wetland unit? <i>NOTE: the connections do not have to be relatively undisturbed.</i>	
	http://wdfw.wa.gov/hab/phslist.htm)	
]	H 2.3 <u>Near or adjacent to other priority habitats listed by WDFW</u> (see p. 82): (see new and complete	

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Please determine if the wetland meets the attributes described below and circle the appropriate answers and Category.

	Wetla	and Type – Check off any criteria that apply to the wetland. Circle the Category when the appropriate	
	criteria	a are met.	
SC1	Estuar	rine wetlands? (see p.86)	
		Does the wetland unit meet the following criteria for Estuarine wetlands?	
		The dominant water regime is tidal,	
		With a solicity creater than 0.5 met	
		\square with a samity greater than 0.5 ppt. \square VFS = Co to SC 1.1 \square NO	
	CC 1 1	L the method and traiting Netional Wildlife Defense Netional Dark Netional Esterony Deserve Network	
	SC 1.1	Is the wetland unit within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural	Cat. 1
		Area Preserve, State Park of Educational, Environmental, of Scientific Reserve designated under WAC $332-30-151?$ \Box YES = Category I \Box NO = go to SC 1.2	
	SC 1.2	Is the wetland at least 1 acre in size and meets at least two of the following conditions?	Cot I
		$\Box \mathbf{YES} = \text{Category I} \qquad \Box \mathbf{NO} = \text{Category II}$	
		less than 10% cover of non-native plant species. If the non-native Sparting spin are only species	Cat II
		that cover more than 10% of the wetland, then the wetland should be given a dual rating (I/II).	
		The area of Spartina would be rated a Category II while the relatively undisturbed upper marsh	
		with native species would be a Category 1. Do not, however, exclude the area of Spartina in determining the size threshold of 1 acre	Dual
		\square At least 3/4 of the landward edge of the wetland has a 100 ft, buffer of shrub, forest, or un-grazed or	Rating
		un-mowed grassland	I/II
		The wetland has at least 2 of the following features: tidal channels, depressions with open water, or contiguous freshwater wetlands.	
SC2	<u>Natura</u>	al Heritage Wetlands (see p. 87)	
~		Natural Heritage wetlands have been identified by the Washington Natural Heritage Program/DNR as	
		either high quality undisturbed wetlands or wetlands that support state Threatened, Endangered, or	
		Sensitive plant species.	
	SC 2.1	Is the wetland being rated in a Section/Township/Range that contains a natural heritage wetland? (This	
		question is used to screen out most sites before you need to contact WNHP/DNR.)	
		S/T/R information from Appendix D	
	~~ • •	YES Contact WNHP/DNR (see p. 79) and go to SC 2.2	
	SC 2.2	Has DNR identified the wetland as a high quality undisturbed wetland or as a site with state threatened	Cat I
		or endangered plant species? \Box VCs = Catagory 1 \Box NC not a Haritage Watland	
	Dega ($\Box \mathbf{FES} = Category \mathbf{I}$	
SC3	Bogs (S	See p. 87)	
		the key below to identify if the wetland is a bog. If you answer yes you will still need to rate the	
		wetland based on its function	
		1. Does the unit have organic soil horizons (i.e. layers of organic soil), either peats or mucks, that	
		compose 16 inches or more of the first 32 inches of soil profile? (See Appendix B for a field key to	
		identify organic soils)? \Box YES = go to question 3 \boxtimes NO = go to question 2	
		2. Does the wetland have organic soils, either peats or mucks that are less than 16 inches deep over	
		bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on a lake or	
		pond? \square YES = go to question 3 \square NO = is not a bog for purpose of rating	
		3. Does the unit have more than 70% cover of mosses at ground level, AND other plants, if present,	
		consist of the "bog" species listed in Table 3 as a significant component of the vegetation (more	
		than 30% of the total shrub and herbaceous cover consists of species in Table 3)?	
		\square YES = Is a bog for purpose of rating $\widehat{\square}$ NO = go to question 4	
		NOTE: If you are uncertain about the extent of mosses in the understory you may substitute that	
		criterion by measuring the pH of the water that seeps into a hole dug at least 16" deep. If the pH is	
		less than 5.0 and the "bog" plant species in Table 3 are present, the wetland is a bog.	
		4. Is the unit forested (> 30% cover) with sitka spruce, subalpine fir, western red cedar, western	
		hemlock, lodgepole pine, quaking aspen, Englemann's spruce, or western white pine. WITH any of	
		the species (or combination of species) on the bog species plant list in Table 3 as a significant	
		component of the ground cover (> 30% coverage of the total shrub/herbaceous cover)?	C <u>at.</u> I
		$\square YES = Category I \qquad \square NO = Is not a bog for purpose of rating$	

Wetland name or number <u>C</u>

SC4	 Forested Wetlands (see p. 90) Does the wetland have at least 1 acre of forest that meet one of these criteria for the Department of Fish and Wildlife's forests as priority habitats? If you answer yes you will still need to rate the wetland based on its function. Old-growth forests: (west of Cascade Crest) Stands of at least two three species forming a multi- 	
	layered canopy with occasional small openings; with at least 8 trees/acre (20 trees/hectare) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 inches (81 cm or more). NOTE: The criterion for dbh is based on measurements for upland forests. Two-hundred year old trees in wetlands will often have a smaller dbh because their growth rates are often slower. The DFW	
	 criterion is and "OR" so old-growth forests do not necessarily have to have trees of this diameter. Mature forests: (west of the Cascade Crest) Stands where the largest trees are 80 – 200 years old OR have an average diameters (dbh) exceeding 21 inches (53 cm); crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally 	
	less than that found in old-growth. \square YES = Category I \square NO = not a forested wetland with special characteristics	Cat. I
SC5	Wetlands in Coastal Lagoons (see p. 91)	
505	Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?	
	The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from	
	marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks.	
	\Box The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5	
	ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the	
	bottom.)	
	YES = Go to SC 5.1 NO not a wetland in a coastal lagoon	
	SC 5.1 Does the wetland meet all of the following three conditions?	
	The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing) and has	
	less than 20% cover of invasive plant species (see list of invasive species on p. 74).	
	At least 3/4 of the landward edge of the wetland has a 100 ft. buffer of shrub, forest, or un-grazed or	Cat. I
	un-mowed grassland.	
	The wetland is larger than $1/10$ acre (4350 square ft.)	Cat. II
	$\Box YES = Category I \qquad \Box NO = Category II$	
SC6	Interdunal Wetlands (see p. 93)	
	Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)?	
	\square YES = Go to SC 6.1 \square NO not an interdunal wetland for rating	
	If you answer yes you will still need to rate the wetland based on its functions.	
	In practical terms that means the following geographic areas:	
	• Gravland-Westport lands west of SR 105	
	• Ocean Shores-Copalis – lands west of SR 115 and SR 109	
	SC 6.1 Is the wetland one acre or larger, or is it in a mosaic of wetlands that is one acre or larger?	Cat. II
	$\square YES = Category II \qquad \square NO = go to SC 6.2$	
	SC 6.2 Is the wetland between 0.1 and 1 acre, or is it in a mosaic of wetlands that is between 0.1 and 1 acre?	Cat. III
	YES = Category III	
	Category of wetland based on Special Characteristics	
	Choose the "highest" rating if wetland falls into several categories, and record on p. 1.	
	If you answered NO for all types enter "Not Applicable" on p. 1	<u>N/A</u>

Comments: _____

APPENDIX E – WETLAND SURVEY

APPENDIX I

TERRESTRIAL ECOLOGICAL EVALUATION

John's Auto Wrecking 411 93rd Ave SE Olympia, Washington 98501-9701 Facility Site No. 57665495 VCP Project No. SW1613

Prepared for:

Havens Estate Investments, LLC Seattle, WA

Tacoma, WA

November 8, 2019

Prepared by:

Seattle, WA

Table of Contents

Та	bles	i
Fi	gures	i
1	Introduction	1
2	 Problem Formulation 2.1 CHEMICALS OF ECOLOGICAL CONCERN – PRE-REMEDIATION 2.2 CHEMICALS OF ECOLOGICAL CONCERN – POST-REMEDIATION 	1 1 5
3	Conclusions	7
4	References	7
Ap	pendix A. Terrestrial Ecological Evaluation Form	8
Ap	opendix B. Soil Concentrations	14
Ap	pendix C. Upper Confidence Limits Output from ProUCL	41

Tables

Table 1. Identification of chemicals of ecological concern in the northern half of the site – pre-remediation dataset	3
Table 2. Identification of chemicals of ecological concern in the southern half of the site –pre-remediation dataset	4
Table 3. Soil results that were removed to create the post-remediation dataset	5
Table 4. Screening results for chemicals of ecological concern – post-remediation dataset	6

Figures

Figure 1. Soil sampling and excavation locations

2

Acronyms

AOC	area of concern
COEC	chemical of ecological concern
MTCA	Model Toxic Control Act
PAHs	polycyclic aromatic hydrocarbons
TEE	Terrestrial Ecological Evaluation
UCL	upper confidence limit

WAC Washington Administrative Code	
------------------------------------	--

1 Introduction

The Washington State Department of Ecology's Model Toxics Control Act (MTCA) Cleanup Regulation (Chapter 173-340 WAC) includes procedures for "characterizing existing or potential threats to terrestrial plants or animals exposed to hazardous substances in soil." These procedures, collectively designated as a Terrestrial Ecological Evaluation (TEE), provide a tiered approach of increasing complexity, depending on the characteristics of the site, resulting in one of three outcomes:

- Document an exclusion from further TEE evaluations (WAC 173-340-7491)
- Conduct a simplified TEE (WAC 173-340-7492)
- Conduct a site-specific TEE (WAC 173-340-7493)

The site was previously occupied by a fairly extensive automobile wrecking-yard operation, but is now largely vacant and undeveloped land covering approximately 15 acres in six separate tax parcels (Robinson Noble 2013). Therefore, this site does not meet one of the primary TEE exclusions that there be less than 1.5 acres of contiguous undeveloped land on the site. The site also does not meet the criteria for a simplified TEE, because the "site is located on or directly adjacent to an area where management or land use plans will maintain or restore native or semi-native vegetation."¹ Consequently, a site-specific TEE is required for the John's Auto Wrecking site.

2 Problem Formulation

The first step in the site-specific TEE is the problem formulation, which consists of the determination of the chemicals of ecological concern (COECs), complete exposure pathways, terrestrial ecological receptors of concern, and a toxicological assessment.

2.1 CHEMICALS OF ECOLOGICAL CONCERN – PRE-REMEDIATION

Soil chemistry data have been collected at the site during various investigations beginning in 2008, at which time nine areas of concern (AOCs) were identified. The initial investigations of each AOC were completed in 2009, after which Ecology (2011) indicated that additional site characterization was needed. Additional characterization of soil chemistry was conducted in 2013, 2014, and 2016.

Much of the additional data were collected from wetland areas in the southern half of the site. A wetland delineation of this area conducted in 2014 identified three discrete wetlands in the southern half of the site (Normandeau 2014b).

Because of the presence of wetlands and the relatively large area of the site, it was divided into two halves for the purposes of determining the COECs for this TEE (Figure

¹ <u>http://www.ecy.wa.gov/programs/tcp/policies/terrestrial/SimplifiedorSitespecific.htm</u>

1). The northern half of the site is drier than the southern half and does not contain wetlands. Thirty soil sampling locations were included in the northern half of the site and 56 locations were included in the southern half of the site. All soil samples collected within the top six feet below ground surface (the assumed biologically active zone within MTCA) were compiled for this screening step.

Figure 1. Soil sampling and excavation locations

Chemicals that were detected at least once are listed in Tables 1 (northern half of the site) and 2 (southern half of the site), along with summary statistics and the results of the screening. The soil results used in the screening and the output from the ProUCL software used to calculate the 95% upper confidence limit (UCL) on the mean are provided in Appendix B. Not all the detected chemicals have ecological screening values in MTCA, so these chemicals were discussed qualitatively.

Comparison statistics (either the 95% UCL or the maximum detected concentration) were compared to the lowest ecological screening values from MTCA Table 749-3. Nine detected chemicals had screening values (Tables 1 and 2), including trace elements (arsenic, chromium, copper, lead, nickel, zinc), hydrocarbons (benzo(a)pyrene, diesel range organics), and PCBs.

Based on the screening assessment, five chemicals (arsenic, chromium, copper, lead, and diesel range organics) were determined to be COECs in the northern half of the site (Table 1). The comparison statistic for lead (674 mg/kg) had the greatest exceedance factor compared to the screening value.

For the southern half of the site, lead, nickel, and diesel range organics were determined to be COECs (Table 2). None of the exceedance factors were greater than two for these chemicals.

Chemical	Units	Detection Frequency	Comparison Statistic ^a	Comparison Result	Lowest Ecological Screening Value from MTCA Table 749-3
Arsenic	mg/kg	29/44	95% UCL	7.1	7
Chromium	mg/kg	33/44	95% UCL	42.3	42
Copper	mg/kg	32/43	95% UCL	398	50
Diesel range organics	mg/kg	2/13	Maximum	340	200
Lead	mg/kg	13/46	95% UCL	674	50
Nickel	mg/kg	42/43	95% UCL	26.7	30
Paraffin oils	mg/kg	1/13	Maximum	1,020	n/a
PCB-Aroclor 1254	mg/kg	1/27	Maximum	0.46	0.65
Zinc	mg/kg	13/43	95% UCL	5.6	86

Table 1. Identification of chemicals of ecological concern in the northern half of the site – pre-remediation dataset

^a 95% upper confidence limits (UCLs) on the mean or maximum concentrations were used for comparison statistic, as specified in WAC 173-340-7493(2)(a)(i). UCLs were determined using ProUCL (v. 5.0). The highest UCL of those recommended by the software is reported. When insufficient data were available to compute meaningful or reliable statistics, as indicated by ProUCL software, the maximum detected value was used as the comparison statistic.

n/a = not available

Chemical	Units	Detection Frequency	Comparison Statistic ^a	Comparison Result	Lowest Ecological Screening Value from MTCA Table 749-3
Arsenic	mg/kg	10/35	95% UCL	5.8	7
Benz[a]anthracene	mg/kg	2/8	Maximum	0.187	n/a
Benzo(a)pyrene	mg/kg	2/8	Maximum	0.202	12
Benzo(b)fluoranthene	mg/kg	3/8	95% UCL	0.194	n/a
Benzo(ghi)perylene	mg/kg	1/8	Maximum	0.115	n/a
Benzo(k)fluoranthene	mg/kg	1/8	Maximum	0.103	n/a
Chromium	mg/kg	14/35	95% UCL	7.8	42
Chrysene	mg/kg	2/12	Maximum	0.212	n/a
Copper	mg/kg	20/33	95% UCL	21	50
Diesel range organics	mg/kg	1/27	Maximum	320	200
Fluoranthene	mg/kg	2/8	Maximum	0.528	n/a
Indeno(1,2,3-cd)pyrene	mg/kg	1/8	Maximum	0.135	n/a
Lead	mg/kg	27/50	95% UCL	64.7	50
Nickel	mg/kg	30/33	95% UCL	47.5	30
Phenanthrene	mg/kg	2/8	Maximum	0.252	n/a
Pyrene	mg/kg	2/8	Maximum	0.416	n/a
Zinc	mg/kg	16/33	95% UCL	28.3	86

Table 2. Identification of chemicals of ecological concern in the southern half of the site – pre-remediation dataset

^a 95% upper confidence limits (UCLs) or maximum values used for comparison statistic, as specified in WAC 173-340-7493(2)(a)(i). UCLs were determined using ProUCL (v. 5.0). The highest UCL of those recommended by the software is reported. When insufficient data were available to compute meaningful or reliable statistics, as indicated by ProUCL software, the maximum detected value was used as the comparison statistic.

n/a = not available

The chemicals listed in Tables 1 and 2 that do not have screening values include paraffin oils (also known as kerosene) in the northern area and several polycyclic aromatic hydrocarbons (PAHs) in the southern area.

The only detected result (1,020 mg/kg) for paraffin oils was from a single sample (TP22-1) collected in 2013 from the driveway near the road. This location is located outside any of the nine AOCs at the site. Metal concentrations in this sample were very low. Given the low habitat value at this location and the infrequent detection on a site-wide basis, this chemical is not likely to represent any appreciable ecological risk.

The PAHs without screening values were detected at similar concentration ranges (0.103 to 0.528 mg/kg) to benzo(a)pyrene, which does have a screening value of 12 mg/kg. Using the concept of toxic equivalence to benzo(a)pyrene, these other PAHs are unlikely to represent any appreciable ecological risk since the concentrations are well below the screening value for benzo(a)pyrene.

2.2 CHEMICALS OF ECOLOGICAL CONCERN – POST-REMEDIATION

The results from the soil samples collected in 2009, 2013, 2014, and 2016 indicated that there were isolated areas with high lead concentrations at the site, and one small area around station WS-8 with elevated PAH concentrations. These areas were addressed in the summer of 2019 by excavating and removing the impacted soils. The approximate locations of the excavations are shown on Figure 1.

Confirmation soil samples were collected from the excavation areas and analyzed for lead (north excavation area, and south excavation areas 1 and 2) and carcinogenic PAHs (south excavation areas 2 and 3). The results were non-detect for all samples and analytes.

Some of the sample results included in the screening step document in Section 2.1 and Tables 1 and 2 are no longer relevant for the TEE since the soil that those samples represented has been removed. Therefore, the screen for chemicals of ecological concern was repeated using a post-remediation dataset that excluded those sample results listed in Table 3. The results in Table 3 are limited to those chemicals preliminarily identified as COECs in Section 2.1.

	Soil Results (mg/kg)				
Sample Location	Lead	Nickel	Arsenic	Chromium	Copper
North excavation					
TP14	5,552	24	8.0	116	3,113
South excavation 1					
WS-6	1,230	12.1	not COEC	not COEC	not COEC
WS-18	386	no data	not COEC	not COEC	not COEC
South excavation 2					
WS-8	525	18.1	not COEC	not COEC	not COEC
WS-11	67	no data	not COEC	not COEC	not COEC
South excavation 3					
PS1	34	10	not COEC	not COEC	not COEC

Table 3. Soil results that were removed to create the post-remediation dataset

COEC - chemical of ecological concern

The results of the post-remediation screening are summarized in Table 4. The output from the ProUCL software is provided in Appendix B. None of the COECs originally identified in the northern half of the site remained COECs after considering the post-remediation dataset. For the southern half of the site, diesel range organics and lead were no longer considered COECs. The comparison result for nickel (50.9 mg/kg) still exceeded the lowest screening value of 30 mg/kg, so nickel preliminarily remained a COEC. Nickel is discussed in greater detail below.

Chemical	Comparison Statistic	Comparison Result	Lowest Ecological Screening Value from MTCA Table 749-3	
Northern half of site				
Arsenic	95% UCL	7.0	7	
Chromium	95% UCL	37.9	42	
Copper	95% UCL	11.0	50	
Diesel range organics	95% UCL ^a	179	200	
Lead	95% UCL	11.1	50	
Southern half of site				
Diesel range organics	95% UCL ^a	77.7	200	
Lead	95% UCL ^a	34.3	50	
Nickel	95% UCL ^a	50.9	30	

 Table 4. Screening results for chemicals of ecological concern – post-remediation

 dataset

^a Diesel range organics were not detected frequently enough (two detections in north area, one detection in south area) to incorporate the non-detected values in a calculation of the 95% UCL statistic. As an alternative, a hypothetical 95% UCL was estimated assuming all results were detects, using the reporting limit for non-detect results. This likely overestimates the true 95% UCL.

The post-remediation dataset for nickel in the southern half of the site consists of 30 results. All but one of these results is less than the 30 mg/kg screening value (see Appendix B for data for all samples). A single result from 2013, from location HB9 near the southwestern corner of the site, was 209 mg/kg. This single result is responsible for elevating the 95% UCL above the screening value.

There are two lines of evidence to support the conclusion that nickel is not a COEC at this site. First, the 95% UCLs for both the pre-remediation (47.5 mg/kg) and post-remediation (50.9 mg/kg) datasets are very similar to the 90th percentile of natural background nickel concentrations in Puget Sound soil (Ecology 1994). MTCA (WAC 173-340-709) defines the appropriate statistic for background concentrations as the 90th percentile.

Second, field surveys conducted at the site indicate that nickel has not adversely affected the large wetland area where the elevated nickel concentration was detected. Location HB9, where the elevated nickel concentration was detected, is within a mature 50-acre forested and emergent wetland delineated in 2014 (Normandeau 2014b). The 30 mg/kg screening value for nickel is based on the protection of terrestrial plants. Other benchmarks presented in MTCA Table 749-3 are 200 and 980 mg/kg, for the protection of soil biota and wildlife, respectively. The 95% UCLs for nickel are well below these other benchmarks.

Although there are likely to be complete exposure pathways and terrestrial ecological receptors of concern at the site (Normandeau 2014a), no toxicological assessment or additional TEE analysis is warranted based on the lack of COECs at the site.

3 Conclusions

Because no COECs were identified during the problem formulation step, no additional TEE analysis is warranted. The site-specific TEE is considered to be complete for this site. The completed TEE form, documenting the decision flowchart and outcome of the site-specific TEE, is provided in Appendix A.

4 References

- Ecology. 1994. Natural background soils metals concentrations in Washington State Toxics Cleanup Program. Publication #94-115. Olympia, WA: Washington Department of Ecology.
- Ecology. 2011. Letter from Eugene Radcliff (Toxics Cleanup Program) dated August 23, 2011 to Alan J. Wertjes, regarding Ecology's conclusion that further action is needed at the John's Auto Wrecking site. Olympia, WA: Washington Department of Ecology, Southwest Regional Office.
- Normandeau. 2014a. Memorandum dated October 14, 2014 from Patrick J. Togher (Normandeau) to Alan J. Wertjes, re: John's Wrecking Yard Final TEE Memorandum. Seattle, WA: Normandeau Associates, Inc.
- Normandeau. 2014b. Wetland Delineation Report. John's Wrecking Yard, 411 93rd Avenue Southeast, Olympia, Washington. Prepared for Alan J. Wertjes. Normandeau Associates, Inc., Seattle, WA.
- Robinson Noble. 2013. John's Auto Wrecking, 411 93rd Avenue Southeast, Olympia, Washington. Facility/Site No. 54665495, VCP Project No. SW1127. Remedial Investigation. Robinson Noble, Woodinville, WA.

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: John's Auto Wrecking

Facility/Site Address:411 93rd Ave SE

Facility/Site No:57665495

VCP Project No.: SW1613

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name	Tad	Dest	hler
iname.	1 uu	000	1101

_{Title:}Owner

Organization: Coho Environmental LLC

Mailing address:533 NE 90th St.

City:Seattle		State:WA		Zip code:98115
Phone:2067789274	Fax:		E-mail:tad.de	eshler@cohoenvironmental.com

Step 3: DOC	UMENT EVALUATION TYPE AND RESULTS		
A. Exclusion	from further evaluation.		
1. Does the S	Site qualify for an exclusion from further evaluation?		
□ Y	es If you answered "YES," then answer Question 2.		
■ N Unkn	lo or If you answered " NO" or "UKNOWN," then skip to Step 3B of this form.		
2. What is th	e basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.		
Point of Co	ompliance: WAC 173-340-7491(1)(a)		
	All soil contamination is, or will be,* at least 15 feet below the surface.		
	All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.		
Barriers to	Exposure: WAC 173-340-7491(1)(b)		
	All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.		
Undevelop	ed Land: WAC 173-340-7491(1)(c)		
	There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.		
	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.		
Backgroun	d Concentrations: WAC 173-340-7491(1)(d)		
	Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.		
 * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. [±] "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. [#] "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife. 			

I	B. Simplified evaluation.			
-	1. Does the Site qualify for a simplified evaluation?			
		🗌 Y	es If you answered "YES," then answer Question 2 below.	
		N Unkn	o or or own If you answered " NO " or " UNKNOWN, " then skip to Step 3C of this form.	
2	2. Did you conduct a simplified evaluation?			
Yes If you answered "YES," then answer Question 3			es If you answered "YES," then answer Question 3 below.	
	🗌 No		o If you answered " NO ," then skip to Step 3C of this form.	
3. Was further evaluation necessary?			er evaluation necessary?	
		□ Y	If you answered "YES," then answer Question 4 below.	
		🗌 N	o If you answered " NO, " then answer Question 5 below.	
4	4. If fu	rther e	valuation was necessary, what did you do?	
			Used the concentrations listed in Table 749-2 as cleanup levels. <i>If so, then skip to</i> Step 4 of this form.	
			Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.	
ł	5. If no further evaluation was necessary, what was the reason? Check all that apply. Then skip to Step 4 of this form.			
	Exposure Analysis: WAC 173-340-7492(2)(a)			
 Area of soil contamination at the Site is not more than 350 square Current or planned land use makes wildlife exposure unlikely. Use 		Area of soil contamination at the Site is not more than 350 square feet.		
			Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.	
	Pathway Analysis: WAC 173-340-7492(2)(b)		nalysis: WAC 173-340-7492(2)(b)	
No potential exposure pathways from soil cont			No potential exposure pathways from soil contamination to ecological receptors.	
	Contaminant Analysis: WAC 173-340-7492(2)(c)			
			No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.	
			No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.	
			No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.	
			No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.	

C.	Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. <i>See</i> WAC 173-340-7493(1)(c).			
1.	Was there	a problem? Se	e WAC 173-340-7493(2).	
	Yes If you answered "YES," then answer Question 2 below.			
		o If you answ below:	If you answered " NO," then identify the reason here and then skip to Question below:	
			No issues were identified during the problem formulation step.	
			While issues were identified, those issues were addressed by the cleanup actions for protecting human health.	
2.	What did y	ou do to resolv	e the problem? See WAC 173-340-7493(3).	
	X	Used the conce Question 5 be	entrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to low.</i> For all chemicals except nickel	
	X	Used one or manual difference of the second	ore of the methods listed in WAC 173-340-7493(3) to evaluate and entified problem. <i>If so, then answer Questions 3 and 4 below</i> . Nickel	
3.	. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3).			
		Literature surveys.		
		Soil bioassays.		
		Wildlife exposure model.		
	Biomarkers.			
	X Site-specific field studies.			
	X Weight of evidence.		ence.	
		Other methods	approved by Ecology. If so, please specify:	
4.	What was t	he result of the	ose evaluations?	
	X	Confirmed ther	e was no problem.	
		Confirmed ther	e was a problem and established site-specific cleanup levels.	
5.	Have you a problem re	already obtaine solution steps	ed Ecology's approval of both your problem formulation and ?	
	□ Ye	es If so, pleas	se identify the Ecology staff who approved those steps:	
	No No			

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region:	Central Region:
Attn: VCP Coordinator	Attn: VCP Coordinator
3190 160 th Ave. SE	1250 West Alder St.
Bellevue, WA 98008-5452	Union Gap, WA 98903-0009
Southwest Region:	Eastern Region:
Attn: VCP Coordinator	Attn: VCP Coordinator
P.O. Box 47775	N. 4601 Monroe
Olympia, WA 98504-7775	Spokane WA 99205-1295

ECY 090-300 (07/2015) To request ADA accommodation including materials in a format for the visually impaired, call Ecology Toxic Cleanup Program 360-407-7170. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

North region

Sample_ID	Date	Arsenic (mg/kg)	Detected
ТР1-1' В	2/20/2009	5	No
TP2-1' A	2/20/2009	5	No
ТР2-1' В	2/20/2009	5	No
TP3-1A	2/20/2009	5	No
TP3-Surf B	2/20/2009	5	No
TP4-1'	2/20/2009	5	No
TP5-0.5'A	2/20/2009	5	No
TP5-Surf B	2/20/2009	5	No
CTP1B	8/18/2009	5	No
B15-3	2/25/2013	8.8	Yes
B16-3	2/25/2013	8.6	Yes
B17-3	2/25/2013	9.7	Yes
MW-4-3	2/25/2013	8.3	Yes
HB1-3	2/27/2013	8.9	Yes
HB2-3	2/27/2013	8.2	Yes
TP12-1	11/5/2014	7	Yes
TP12-3	11/5/2014	9	Yes
TP13-1	11/5/2014	7	Yes
TP13-3	11/5/2014	8	Yes
TP14-1.5	11/5/2014	8	Yes
TP14-3	11/5/2014	7	Yes
TP15-1	11/5/2014	7	Yes
TP15-3	11/5/2014	9	Yes
TP16-1	11/5/2014	7	Yes
TP16-3	11/5/2014	8	Yes
TP17-1	11/5/2014	8	Yes
TP17-3	11/5/2014	7	Yes
TP18-1	11/5/2014	7	Yes
TP18-3	11/5/2014	7	Yes
TP24-3	11/6/2014	5	No
TP26-2	11/6/2014	5	No
TP27-2	11/6/2014	5	No
TP28-2	11/6/2014	5	No
TP29-2	11/6/2014	5	No
TP30-2	11/6/2014	5	No
TP21-1	11/6/2014	8	Yes
TP21-3	11/6/2014	8	Yes
TP22-1	11/6/2014	5	Yes
TP22-3	11/6/2014	7	Yes
TP23-1	11/6/2014	5	Yes
TP23-4	11/6/2014	7	Yes
TP24-1	11/6/2014	5	Yes
TP25-1	11/6/2014	7	Yes
TP25-3	11/6/2014	7	Yes

North region

Sample_ID	Date	Chromium (mg/kg)	Detected
ТР1-1' В	2/20/2009	27	Yes
TP2-1' A	2/20/2009	8	Yes
ТР2-1' В	2/20/2009	13	Yes
TP3-1A	2/20/2009	116	Yes
TP3-Surf B	2/20/2009	23	Yes
TP4-1'	2/20/2009	9	Yes
TP5-0.5'A	2/20/2009	46	Yes
TP5-Surf B	2/20/2009	39	Yes
TP1-1' B	2/24/2009	59	Yes
TP2-1' A	2/24/2009	34	Yes
ТР2-1' В	2/24/2009	37	Yes
TP3-1A	2/24/2009	23	Yes
TP3-Surf B	2/24/2009	19	Yes
TP5-0.5'A	2/24/2009	83	Yes
TP5-Surf B	2/24/2009	8	Yes
CTP1B	8/18/2009	5	No
CTP1B	8/18/2009	9	Yes
B12-3	2/25/2013	5	No
B14-3	2/25/2013	5	No
B15-3	2/25/2013	5	No
B16-3	2/25/2013	5	No
B17-3	2/25/2013	5	No
MW-4-3	2/25/2013	5	No
B13-3	2/25/2013	7.6	Yes
B15-3	2/25/2013	8	Yes
B16-3	2/25/2013	8.4	Yes
B17-3	2/25/2013	7.3	Yes
B15-3	2/25/2013	25	Yes
B16-3	2/25/2013	85	Yes
B17-3	2/25/2013	57	Yes
MW-4-3	2/25/2013	72	Yes
MW-4-3	2/25/2013	53	Yes
B12-3	2/25/2013	11	Yes
B13-3	2/25/2013	10	Yes
B14-3	2/25/2013	11	Yes
B15-3	2/25/2013	11	Yes
B18-3	2/26/2013	5	No
B18-6	2/26/2013	5	No
HB1-3	2/27/2013	5	No
HB2-3	2/27/2013	5	No
HB1-3	2/27/2013	34	Yes
HB2-3	2/27/2013	15	Yes
HB1-3	2/27/2013	11	Yes
HB2-3	2/27/2013	56	Yes

North region

Sample_ID	Date	Copper (mg/kg)	Detected
CTP1B	8/14/2008	6	Yes
TP5-Surf B	2/20/2009	5	No
ТР1-1' В	2/20/2009	13	Yes
TP2-1' A	2/20/2009	15	Yes
ТР2-1' В	2/20/2009	10	Yes
TP3-1A	2/20/2009	12	Yes
TP3-Surf B	2/20/2009	10	Yes
TP4-1'	2/20/2009	12	Yes
TP5-0.5'A	2/20/2009	12	Yes
TP5-Surf B	2/20/2009	10	Yes
ТР1-1' В	2/24/2009	6	Yes
TP2-1' A	2/24/2009	7	Yes
ТР2-1' В	2/24/2009	8	Yes
TP3-1A	2/24/2009	13	Yes
TP3-Surf B	2/24/2009	7	Yes
TP5-0.5'A	2/24/2009	5	No
TP5-Surf B	2/24/2009	5	No
ТР1-1' В	2/25/2009	9	Yes
CTP1B	8/17/2009	5	No
CTP1B	8/18/2009	3113	Yes
B16-3	2/25/2013	13	Yes
B17-3	2/25/2013	14	Yes
MW-4-3	2/25/2013	11	Yes
B15-3	2/25/2013	5	No
B16-3	2/25/2013	5	No
B17-3	2/25/2013	20	Yes
MW-4-3	2/25/2013	10	Yes
B15-3	2/25/2013	11	Yes
B16-3	2/25/2013	20	Yes
B17-3	2/25/2013	11	Yes
MW-4-3	2/25/2013	5	No
B18-3	2/26/2013	12	Yes
B18-6	2/26/2013	12	Yes
B18-3	2/26/2013	5	No
B18-6	2/26/2013	5	No
B18-3	2/26/2013	5	No
B18-6	2/26/2013	5	No
HB1-3	2/27/2013	13	Yes
HB2-3	2/27/2013	12	Yes
HB1-3	2/27/2013	15	Yes
HB2-3	2/27/2013	12	Yes
HB1-3	2/27/2013	12	Yes
HB2-3	2/27/2013	5	Yes
Sample_ID	Date	Diesel Range Organics (mg/kg)	Detected
-----------	-----------	-------------------------------	----------
TP12-1	11/5/2014	50	No
TP13-1	11/5/2014	50	No
TP13-3	11/5/2014	50	No
TP14-1.5	11/5/2014	50	No
TP14-3	11/5/2014	50	No
TP15-1	11/5/2014	50	No
TP15-3	11/5/2014	50	No
TP16-1	11/5/2014	50	No
TP17-1	11/5/2014	50	No
TP17-3	11/5/2014	50	No
TP18-1	11/5/2014	50	No
TP18-3	11/5/2014	140	Yes
TP19-1	11/6/2014	340	Yes

Sample_ID	Date	Lead (mg/kg)	Detected
TP 3-Surface B	2/18/2009	5	No
TP 5-Surface B	2/18/2009	5	No
TP1-1' B	2/24/2009	13	Yes
TP2-1' A	2/24/2009	7	Yes
TP2-1' B	2/24/2009	5552	Yes
TP3-1A	2/24/2009	21	Yes
TP3-Surf B	2/24/2009	7	Yes
TP5-0.5'A	2/24/2009	5	No
TP5-Surf B	2/24/2009	17	Yes
CTP1B	8/18/2009	5	No
CTP1A	8/20/2009	5	No
CTP1B	8/20/2009	5	No
CTP1C	8/20/2009	5	No
CTP1A	8/25/2009	5	No
CTP1C	8/25/2009	5	No
B15-3	2/25/2013	5	No
B16-3	2/25/2013	230	Yes
B17-3	2/25/2013	5	No
MW-4-3	2/25/2013	13	Yes
HB1-3	2/27/2013	5	No
HB2-3	2/27/2013	27	Yes
TP12-1	11/5/2014	5	No
TP12-3	11/5/2014	5	No
TP13-1	11/5/2014	5	No
TP13-3	11/5/2014	5	No
TP14-1.5	11/5/2014	5	No
TP14-3	11/5/2014	5	No
TP15-1	11/5/2014	5	No
TP15-3	11/5/2014	5	Yes
TP16-1	11/5/2014	5	No
TP16-3	11/5/2014	5	No
TP17-1	11/5/2014	5	No
TP17-3	11/5/2014	5	No
TP18-1	11/5/2014	5	No
TP18-3	11/5/2014	16	Yes
TP19-3	11/6/2014	5	No
TP20-1	11/6/2014	5	No
TP20-3	11/6/2014	5	No
TP21-1	11/6/2014	26	Yes
TP21-3	11/6/2014	5	No
TP21-1	11/6/2014	5	No
TP21-3	11/6/2014	8	Yes
TP22-1	11/6/2014	5	No
TP22-3	11/6/2014	5	No
TP23-1	11/6/2014	5	No
TP23-4	11/6/2014	5	No

Sample_ID	Date	Nickel (mg/kg)	Detected
TP12-1	11/5/2014	25	Yes
TP12-3	11/5/2014	20	Yes
TP13-1	11/5/2014	32	Yes
TP13-3	11/5/2014	27	Yes
TP14-1.5	11/5/2014	5	No
TP14-3	11/5/2014	24	Yes
TP15-1	11/5/2014	23	Yes
TP15-3	11/5/2014	24	Yes
TP16-1	11/5/2014	23	Yes
TP16-3	11/5/2014	26	Yes
TP17-1	11/5/2014	23	Yes
TP17-3	11/5/2014	16	Yes
TP18-1	11/5/2014	20	Yes
TP18-3	11/5/2014	21	Yes
TP12-1	11/5/2014	4	Yes
TP12-3	11/5/2014	9	Yes
TP13-1	11/5/2014	15	Yes
TP13-3	11/5/2014	8	Yes
TP14-1.5	11/5/2014	15	Yes
TP24-1	11/6/2014	20.8	Yes
TP24-3	11/6/2014	22.4	Yes
TP25-1	11/6/2014	20	Yes
TP25-3	11/6/2014	20	Yes
TP26-2	11/6/2014	18.6	Yes
TP27-2	11/6/2014	20.8	Yes
TP28-2	11/6/2014	115	Yes
TP29-2	11/6/2014	25	Yes
TP30-2	11/6/2014	21	Yes
TP21-1	11/6/2014	23	Yes
TP21-3	11/6/2014	20	Yes
TP22-1	11/6/2014	19	Yes
TP22-3	11/6/2014	20	Yes
TP23-1	11/6/2014	21	Yes
TP23-4	11/6/2014	19	Yes
TP24-1	11/6/2014	23	Yes
TP24-3	11/6/2014	18	Yes
TP25-1	11/6/2014	20	Yes
TP25-3	11/6/2014	16	Yes
TP26-2	11/6/2014	18	Yes
TP27-2	11/6/2014	16	Yes
TP28-2	11/6/2014	22	Yes
TP29-2	11/6/2014	24	Yes
TP30-2	11/6/2014	26	Yes

Sample_ID	Date	Paraffin oils (mg/kg)	Detected
TP14-3	11/5/2014	100	No
TP15-1	11/5/2014	100	No
TP15-3	11/5/2014	100	No
TP16-1	11/5/2014	100	No
TP16-3	11/5/2014	100	No
TP17-1	11/5/2014	100	No
TP17-3	11/5/2014	100	No
TP18-1	11/5/2014	100	No
TP18-3	11/5/2014	100	No
TP21-1	11/6/2014	100	No
TP21-3	11/6/2014	100	No
TP22-1	11/6/2014	1020	Yes

Sample_ID	Date	PCB-Aroclor 1254 (mg/kg)	Detected
TP12-1	11/5/2014	0.5	No
TP12-3	11/5/2014	0.5	No
TP13-1	11/5/2014	0.5	No
TP13-3	11/5/2014	0.5	No
TP14-1.5	11/5/2014	0.5	No
TP14-3	11/5/2014	0.05	No
TP15-1	11/5/2014	0.5	No
TP15-3	11/5/2014	0.5	No
TP16-1	11/5/2014	0.05	No
TP16-3	11/5/2014	0.5	No
TP17-1	11/5/2014	0.5	No
TP17-3	11/5/2014	0.5	No
TP18-1	11/5/2014	0.5	No
TP18-3	11/5/2014	0.185	No
TP22-3	11/6/2014	0.02	No
TP23-1	11/6/2014	0.02	No
TP23-4	11/6/2014	0.5	No
TP24-1	11/6/2014	0.5	No
TP24-3	11/6/2014	0.5	No
TP25-1	11/6/2014	0.46	Yes
TP25-3	11/6/2014	0.5	No
TP26-2	11/6/2014	0.5	No
TP27-2	11/6/2014	0.5	No
TP28-2	11/6/2014	0.5	No
TP29-2	11/6/2014	0.5	No
TP30-2	11/6/2014	0.5	No
TP21-1	11/6/2014	0.5	No

Sample_ID	Date	Zinc (mg/kg)	Detected
TP12-1	11/5/2014	5	No
TP12-3	11/5/2014	9	Yes
TP13-1	11/5/2014	5	No
TP13-3	11/5/2014	7	Yes
TP14-1.5	11/5/2014	5	No
TP14-3	11/5/2014	5	No
TP15-1	11/5/2014	5	No
TP15-3	11/5/2014	5	No
TP16-1	11/5/2014	5	No
TP16-3	11/5/2014	5	No
TP17-1	11/5/2014	5	No
TP17-3	11/5/2014	5	No
TP18-1	11/5/2014	5	No
TP18-3	11/5/2014	6	Yes
TP21-3	11/6/2014	5	No
TP22-1	11/6/2014	5.3	Yes
TP22-3	11/6/2014	5	No
TP23-1	11/6/2014	25	Yes
TP23-4	11/6/2014	5	No
TP24-1	11/6/2014	5	No
TP24-3	11/6/2014	24.5	Yes
TP25-1	11/6/2014	23	Yes
TP25-3	11/6/2014	1	No
TP26-2	11/6/2014	1	No
TP27-2	11/6/2014	1	No
TP28-2	11/6/2014	19	Yes
TP29-2	11/6/2014	11	Yes
TP30-2	11/6/2014	9	Yes
TP21-1	11/6/2014	5	No
TP21-3	11/6/2014	5	No
TP22-1	11/6/2014	9	Yes
TP22-3	11/6/2014	5	No
TP23-1	11/6/2014	5	No
TP23-4	11/6/2014	7	Yes
TP24-1	11/6/2014	5	No
TP24-3	11/6/2014	5	No
TP25-1	11/6/2014	5	No
TP25-3	11/6/2014	5	No
TP26-2	11/6/2014	5	No
TP27-2	11/6/2014	5	No
TP28-2	11/6/2014	5	No
TP29-2	11/6/2014	5	No
TP30-2	11/6/2014	5	No

Sample_ID	Date	Arsenic (mg/kg)	Detected
TP10-1'	2/20/2009	5	No
TP11-1'	2/20/2009	5	No
TP6-Surf B	2/20/2009	5	No
TP8-3'	2/20/2009	5	No
TP9-Surf A	2/20/2009	5	No
TP9-1'B	2/20/2009	5	No
TP9 Surf B	2/20/2009	5	No
B10-4.5'	3/1/2009	5	No
B8-2.5'	3/1/2009	5	No
CTP6C	8/18/2009	5	No
B21-2	2/26/2013	8.1	Yes
B22-6	2/26/2013	6.6	Yes
B20-6	2/26/2013	5	No
B23-2	2/26/2013	7.8	Yes
MW-5-3	2/26/2013	8.6	Yes
B21-5	2/26/2013	5	No
MW-5-6	2/26/2013	6.7	Yes
B24-1	2/27/2013	6.5	Yes
HB3-3	2/27/2013	6.1	Yes
HB7-2	2/27/2013	6.5	Yes
HB8-3	2/27/2013	6.3	Yes
B25-2	2/27/2013	5	No
HB4-3	2/27/2013	5	No
HB10-1	2/28/2013	5.6	Yes
HB5-1	2/28/2013	5	No
HB6-1	2/28/2013	5	No
HB9-1	2/28/2013	5	No
PS1	3/29/2013	5	No
SS2	3/29/2013	5	No
SS3	3/29/2013	5	No
SS4	3/29/2013	5	No
SS5	3/29/2013	5	No
WS6	3/29/2013	5	No
WS7	3/29/2013	5	No
WS8	3/29/2013	5	No

Sample_ID	Date	Benz[a]anthracene (mg/kg)	Detected
PS1	3/29/2013	0.187	Yes
WS8	3/29/2013	0.0915	Yes
SS2	3/29/2013	0.0906	No
SS3	3/29/2013	0.107	No
SS4	3/29/2013	0.0815	No
SS5	3/29/2013	0.0723	No
WS6	3/29/2013	0.0815	No
WS7	3/29/2013	0.0768	No
PS1	3/29/2013	0.202	Yes
WS8	3/29/2013	0.085	Yes
SS2	3/29/2013	0.0906	No
SS3	3/29/2013	0.107	No
SS4	3/29/2013	0.0925	No
SS5	3/29/2013	0.0723	No
WS6	3/29/2013	0.0815	No
WS7	3/29/2013	0.0768	No

Sample_ID	Date	Benzo(b)fluoranthene (mg/kg)	Detected
PS1	3/29/2013	0.349	Yes
WS6	3/29/2013	0.0925	Yes
WS8	3/29/2013	0.153	Yes
SS2	3/29/2013	0.0906	No
SS3	3/29/2013	0.107	No
SS4	3/29/2013	0.0815	No
SS5	3/29/2013	0.0723	No
WS7	3/29/2013	0.0768	No

Sample_ID	Date	Benzo(ghi)perylene (mg/kg)	Detected
PS1	3/29/2013	0.115	Yes
SS2	3/29/2013	0.0906	No
SS3	3/29/2013	0.107	No
SS4	3/29/2013	0.0815	No
SS5	3/29/2013	0.0723	No
WS6	3/29/2013	0.0815	No
WS7	3/29/2013	0.0768	No
WS8	3/29/2013	0.0723	No

Sample_ID	Date	Benzo(k)fluoranthene (mg/kg)	Detected
PS1	3/29/2013	0.103	Yes
SS2	3/29/2013	0.0906	No
SS3	3/29/2013	0.107	No
SS4	3/29/2013	0.0815	No
SS5	3/29/2013	0.0723	No
WS6	3/29/2013	0.0815	No
WS7	3/29/2013	0.0768	No
WS8	3/29/2013	0.0723	No

Sample_ID	Date	Chromium (mg/kg)	Detected
TP10-1'	2/20/2009	5	No
TP11-1'	2/20/2009	5	No
TP6-Surf B	2/20/2009	5	No
TP8-3'	2/20/2009	5	No
TP9-Surf A	2/20/2009	5	No
TP9-1'B	2/20/2009	5	No
TP9 Surf B	2/20/2009	5	No
B10-4.5'	3/1/2009	5	No
B8-2.5'	3/1/2009	5	No
CTP6C	8/18/2009	5	No
B20-6	2/26/2013	5	No
B21-2	2/26/2013	8.7	Yes
B21-5	2/26/2013	13.2	Yes
B22-6	2/26/2013	7.2	Yes
B23-2	2/26/2013	6.6	Yes
MW-5-3	2/26/2013	13	Yes
MW-5-6	2/26/2013	17.4	Yes
B24-1	2/27/2013	9	Yes
B25-2	2/27/2013	7.9	Yes
HB3-3	2/27/2013	7.7	Yes
HB4-3	2/27/2013	7.6	Yes
HB7-2	2/27/2013	9.2	Yes
HB8-3	2/27/2013	7.9	Yes
HB10-1	2/28/2013	6.1	Yes
HB5-1	2/28/2013	5	No
HB6-1	2/28/2013	5	No
HB9-1	2/28/2013	5	No
WS6	3/29/2013	9.7	Yes
PS1	3/29/2013	5	No
SS2	3/29/2013	5	No
SS3	3/29/2013	5	No
SS4	3/29/2013	5	No
SS5	3/29/2013	5	No
WS7	3/29/2013	5	No
WS8	3/29/2013	5	No

Sample_ID	Date	Chrysene (mg/kg)	Detected
PS1	3/29/2013	0.212	Yes
WS8	3/29/2013	0.0996	Yes
SS2	3/29/2013	0.0906	No
SS3	3/29/2013	0.107	No
SS4	3/29/2013	0.0815	No
SS5	3/29/2013	0.0915	No
WS6	3/29/2013	0.0815	No
WS7	3/29/2013	0.0768	No

Sample_ID	Date	Copper (mg/kg)	Detected
TP9-Surf A	2/24/2009	5	Yes
TP11-1'	2/24/2009	5	No
TP8-3'	2/24/2009	5	No
TP9-1'B	2/24/2009	5	No
TP9 Surf B	2/24/2009	5	No
B10-4.5'	3/1/2009	5	No
B8-2.5'	3/1/2009	5	No
CTP6C	8/18/2009	11	Yes
B20-6	2/26/2013	5.9	Yes
B21-2	2/26/2013	6.1	Yes
B21-5	2/26/2013	6	Yes
B22-6	2/26/2013	6.9	Yes
B23-2	2/26/2013	9.6	Yes
MW-5-6	2/26/2013	34	Yes
MW-5-3	2/26/2013	23	Yes
B25-2	2/27/2013	5	No
B24-1	2/27/2013	6.3	Yes
HB3-3	2/27/2013	11	Yes
HB4-3	2/27/2013	5	Yes
HB7-2	2/27/2013	10	Yes
HB8-3	2/27/2013	13	Yes
HB10-1	2/28/2013	5.5	Yes
HB5-1	2/28/2013	5	No
HB6-1	2/28/2013	5	No
HB9-1	2/28/2013	5	No
PS1	3/2/2013	11	Yes
SS2	3/2/2013	8	Yes
WS6	3/2/2013	68	Yes
WS7	3/2/2013	12	Yes
WS8	3/2/2013	40	Yes
SS3	3/2/2013	5	No
SS4	3/2/2013	5	No
SS5	3/2/2013	5	No

Sample_ID	Date	Diesel Range Organics (mg/kg)	Detected
TP9-Surf A	2/20/2009	320	Yes
B20-6	2/26/2013	50	No
B21-2	2/26/2013	50	No
B21-5	2/26/2013	50	No
B22-6	2/26/2013	50	No
B23-2	2/26/2013	50	No
B23-4	2/26/2013	50	No
MW-5-3	2/26/2013	50	No
MW-5-6	2/26/2013	50	No
B24-1	2/27/2013	50	No
B24-2	2/27/2013	50	No
B25-2	2/27/2013	50	No
HB3-3	2/27/2013	50	No
HB4-3	2/27/2013	50	No
HB7-2	2/27/2013	50	No
HB8-3	2/27/2013	50	No
HB10-1	2/28/2013	50	No
HB5-1	2/28/2013	50	No
HB6-1	2/28/2013	50	No
HB9-1	2/28/2013	50	No
PS1	4/1/2013	50	No
SS2	4/1/2013	50	No
SS3	4/1/2013	50	No
SS4	4/1/2013	50	No
SS5	4/1/2013	50	No
WS6	4/1/2013	50	No
WS7	4/1/2013	50	No
WS8	4/1/2013	50	No

Sample_ID	Date	Fluoranthene (mg/kg)	Detected
PS1	3/29/2013	0.528	Yes
WS8	3/29/2013	0.216	Yes
SS2	3/29/2013	0.0906	No
SS3	3/29/2013	0.378	No
SS4	3/29/2013	0.0815	No
SS5	3/29/2013	0.153	No
WS6	3/29/2013	0.0815	No
WS7	3/29/2013	0.0768	No

Sample_ID	Date	Indeno(1,2,3-cd)pyrene (mg/kg)	Detected
PS1	3/29/2013	0.135	Yes
SS2	3/29/2013	0.0906	No
SS3	3/29/2013	0.378	No
SS4	3/29/2013	0.0815	No
SS5	3/29/2013	0.0723	No
WS6	3/29/2013	0.0815	No
WS7	3/29/2013	0.0768	No
WS8	3/29/2013	0.0723	No

Sample_ID	Date	Lead (mg/kg)	Detected
TP9-Surf A	2/20/2009	25	Yes
TP9-1'B	2/20/2009	6	Yes
TP10-1'	2/20/2009	5	No
TP11-1'	2/20/2009	5	No
TP6-Surf B	2/20/2009	5	No
TP8-3'	2/20/2009	5	No
TP9 Surf B	2/20/2009	5	No
B10-4.5'	3/1/2009	5	No
B8-2.5'	3/1/2009	5	No
CTP6C	8/18/2009	5	No
B20-6	2/26/2013	5	No
B21-5	2/26/2013	5	No
B22-6	2/26/2013	5	No
B23-2	2/26/2013	5	No
B21-2	2/26/2013	5.5	Yes
MW-5-3	2/26/2013	5	No
MW-5-6	2/26/2013	5	No
B24-1	2/27/2013	5	No
B25-2	2/27/2013	5	No
HB3-3	2/27/2013	5	No
HB4-3	2/27/2013	5	No
HB7-2	2/27/2013	5	No
HB8-3	2/27/2013	5	No
HB5-1	2/28/2013	5	No
HB6-1	2/28/2013	5	No
HB9-1	2/28/2013	5	No
HB10-1	2/28/2013	43	Yes
PS1	3/29/2013	34	Yes
SS2	3/29/2013	40	Yes
SS3	3/29/2013	25	Yes
SS4	3/29/2013	6	Yes
SS5	3/29/2013	22	Yes
WS6	3/29/2013	1230	Yes
WS7	3/29/2013	53	Yes
WS8	3/29/2013	525	Yes
WS 10	8/1/2016	165	Yes
WS 11	8/1/2016	67	Yes
WS 12	8/1/2016	21	Yes
WS 13	8/1/2016	47	Yes
WS 14	8/1/2016	1/	Yes
WS 15	8/1/2016	9	Yes
WS 16	8/1/2016	8	Yes
WS 17	8/1/2016	8	Yes
WS 18	8/1/2016	386	Yes
VVS 19	8/1/2016		Yes
VVS 20	8/1/2016	41	Yes

WS 21	8/1/2016	123	Yes
WS 22	8/1/2016	15	Yes
WS 23	8/1/2016	13	Yes
WS 24	8/1/2016	85	Yes

Sample_ID	Date	Nickel (mg/kg)	Detected
CTP6C	8/14/2008	21	Yes
TP11-1'	2/24/2009	23	Yes
TP8-3'	2/24/2009	13	Yes
TP9-Surf A	2/24/2009	30	Yes
TP9 Surf B	2/24/2009	40	Yes
TP9-1'B	2/24/2009	35	Yes
B10-4.5'	3/1/2009	20	Yes
B8-2.5'	3/1/2009	12	Yes
B20-6	2/26/2013	16	Yes
B21-2	2/26/2013	20.1	Yes
B21-5	2/26/2013	8.3	Yes
B22-6	2/26/2013	11.7	Yes
B23-2	2/26/2013	7.1	Yes
MW-5-3	2/26/2013	21.7	Yes
MW-5-6	2/26/2013	21.4	Yes
B25-2	2/27/2013	1.5	No
B24-1	2/27/2013	15.4	Yes
HB3-3	2/27/2013	19.9	Yes
HB4-3	2/27/2013	9.5	Yes
HB7-2	2/27/2013	15	Yes
HB8-3	2/27/2013	22.2	Yes
HB10-1	2/28/2013	1.5	No
HB6-1	2/28/2013	1.5	No
HB5-1	2/28/2013	15.7	Yes
HB9-1	2/28/2013	209	Yes
PS1	3/29/2013	10	Yes
SS2	3/29/2013	12	Yes
SS3	3/29/2013	8	Yes
SS4	3/29/2013	5	Yes
SS5	3/29/2013	3	Yes
WS6	3/29/2013	12.1	Yes
WS7	3/29/2013	12.5	Yes
WS8	3/29/2013	18.1	Yes

Sample_ID	Date	Phenanthrene (mg/kg)	Detected
SS2	3/29/2013	0.0906	No
SS3	3/29/2013	0.378	No
SS4	3/29/2013	0.0815	No
SS5	3/29/2013	0.0723	No
PS1	3/29/2013	0.252	Yes
WS8	3/29/2013	0.104	Yes
WS6	3/29/2013	0.0815	No
WS7	3/29/2013	0.0768	No

Sample_ID	Date	Pyrene (mg/kg)	Detected
SS2	3/29/2013	0.0906	No
SS3	3/29/2013	0.378	No
SS4	3/29/2013	0.0768	No
SS5	3/29/2013	0.216	No
PS1	3/29/2013	0.416	Yes
WS8	3/29/2013	0.185	Yes
WS6	3/29/2013	0.0815	No
WS7	3/29/2013	0.0768	No

Sample_ID	Date	Zinc (mg/kg)	Detected
TP11-1'	2/24/2009	1	No
TP8-3'	2/24/2009	1	No
TP9-1'B	2/24/2009	1	No
TP9-Surf A	2/24/2009	17	Yes
TP9 Surf B	2/24/2009	13	Yes
B10-4.5'	3/1/2009	3.4	Yes
B8-2.5'	3/1/2009	3.1	Yes
CTP6C	8/18/2009	29.4	Yes
B20-6	2/26/2013	5	No
B22-6	2/26/2013	5	No
B23-2	2/26/2013	5	No
B21-5	2/26/2013	12	Yes
B21-2	2/26/2013	5.8	Yes
MW-5-3	2/26/2013	20	Yes
MW-5-6	2/26/2013	20	Yes
HB3-3	2/27/2013	5	No
HB4-3	2/27/2013	5	No
HB7-2	2/27/2013	5	No
HB8-3	2/27/2013	5	No
B24-1	2/27/2013	6.3	Yes
B25-2	2/27/2013	6.1	Yes
HB10-1	2/28/2013	5	No
HB5-1	2/28/2013	5	No
HB6-1	2/28/2013	5	No
HB9-1	2/28/2013	5	No
SS3	3/2/2013	5	No
SS4	3/2/2013	5	No
WS7	3/2/2013	5	No
PS1	3/2/2013	40	Yes
SS2	3/2/2013	47	Yes
SS5	3/2/2013	6	Yes
WS6	3/2/2013	7.6	Yes
WS8	3/2/2013	156	Yes

General Statistics

Total Number of Observations	44	Number of Distinct Observations	10
Number of Detects	29	Number of Non-Detects	15
Number of Distinct Detects	10	Number of Distinct Non-Detects	1
Minimum Detect	5	Minimum Non-Detect	5
Maximum Detect	9.7	Maximum Non-Detect	5
Variance Detects	1.378	Percent Non-Detects	34.09%
Mean Detects	7.5	SD Detects	1.174
Median Detects	7	CV Detects	0.157
Skewness Detects	-0.548	Kurtosis Detects	0.396
Mean of Logged Detects	2.002	SD of Logged Detects	0.168

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.894	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.926	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.232	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.161	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	6.648	KM Standard Error of Mean	0.232
KM SD	1.51	95% KM (BCA) UCL	7.057
95% KM (t) UCL	7.037	95% KM (Percentile Bootstrap) UCL	7.03
95% KM (z) UCL	7.029	95% KM Bootstrap t UCL	7.041
90% KM Chebyshev UCL	7.343	95% KM Chebyshev UCL	7.658
97.5% KM Chebyshev UCL	8.095	99% KM Chebyshev UCL	8.953

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.519	Anderson-Darling GOF Test
5% A-D Critical Value	0.744	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.252	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.162	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

34.68	k star (bias corrected MLE)	38.65	k hat (MLE)
0.216	Theta star (bias corrected MLE)	0.194	Theta hat (MLE)
2011	nu star (bias corrected)	2242	nu hat (MLE)
		7.5	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	3.765	Mean	6.673
Maximum	9.7	Median	7
SD	1.542	CV	0.231

k hat (MLE)	18.32	k star (bias corrected MLE)	17.09
Theta hat (MLE)	0.364	Theta star (bias corrected MLE)	0.391
nu hat (MLE)	1612	nu star (bias corrected)	1503
Adjusted Level of Significance (β)	0.0445		
Approximate Chi Square Value (N/A, α)	1414	Adjusted Chi Square Value (N/A, β)	1412
95% Gamma Approximate UCL (use when n>=50)	7.093	95% Gamma Adjusted UCL (use when n<50)	7.108
Estimates of Ga	amma Para	meters using KM Estimates	
Mean (KM)	6.648	SD (KM)	1.51
Variance (KM)	2.281	SE of Mean (KM)	0.232
k hat (KM)	19.37	k star (KM)	18.07
nu hat (KM)	1705	nu star (KM)	1590
theta hat (KM)	0.343	theta star (KM)	0.368
80% gamma percentile (KM)	7.916	90% gamma percentile (KM)	8.714
95% gamma percentile (KM)	9.412	99% gamma percentile (KM)	10.82
Gamma	a Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (N/A, α)	1498	Adjusted Chi Square Value (N/A, β)	1495
95% Gamma Approximate KM-UCL (use when n>=50)	7.054	95% Gamma Adjusted KM-UCL (use when n<50)	7.068
Lognormal GO	F Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.85	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.926	Detected Data Not Lognormal at 5% Significance Leve	el
Lilliefors Test Statistic	0.266	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.161	Detected Data Not Lognormal at 5% Significance Leve	el
Detected Data N	lot Lognorn	nal at 5% Significance Level	
Lognormal ROS	Statistics	Using Imputed Non-Detects	
Mean in Original Scale	6.699	Mean in Log Scale	1.876
SD in Original Scale	1.503	SD in Log Scale	0.231
95% t UCL (assumes normality of ROS data)	7.08	95% Percentile Bootstrap UCL	7.07
95% BCA Bootstrap UCL	7.094	95% Bootstrap t UCL	7.062
95% H-UCL (Log ROS)	7.125		
Statistics using KM estimates of	on Logged	Data and Assuming Lognormal Distribution	
KM Mean (logged)	1.868	KM Geo Mean	6.476
KM SD (logged)	0.23	95% Critical H Value (KM-Log)	1.716
KM Standard Error of Mean (logged)	0.0352	95% H-UCL (KM -Log)	7.06
KM SD (logged)	0.23	95% Critical H Value (KM-Log)	1.716
KM Standard Error of Mean (logged)	0.0352		
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	5.795	Mean in Log Scale	1.632
SD in Original Scale	2.578	SD in Log Scale	0.538
95% t UCL (Assumes normality)	6.449	95% H-Stat UCL	6.924
DL/2 is not a recommended me	thod, provi	ded for comparisons and historical reasons	

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 7.037 95% KM (BCA) UCL 7.057

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	44	Number of Distinct Observations	26
Number of Detects	33	Number of Non-Detects	11
Number of Distinct Detects	25	Number of Distinct Non-Detects	1
Minimum Detect	7.3	Minimum Non-Detect	5
Maximum Detect	116	Maximum Non-Detect	5
Variance Detects	767.3	Percent Non-Detects	25%
Mean Detects	31.37	SD Detects	27.7
Median Detects	23	CV Detects	0.883
Skewness Detects	1.368	Kurtosis Detects	1.467
Mean of Logged Detects	3.086	SD of Logged Detects	0.862

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.823	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.931	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.192	Lilliefors GOF Test
5% Lilliefors Critical Value	0.152	Detected Data Not Normal at 5% Significance Level
	L	

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	24.78	KM Standard Error of Mean	4.017
KM SD	26.24	95% KM (BCA) UCL	31.81
95% KM (t) UCL	31.53	95% KM (Percentile Bootstrap) UCL	31.1
95% KM (z) UCL	31.39	95% KM Bootstrap t UCL	33.24
90% KM Chebyshev UCL	36.83	95% KM Chebyshev UCL	42.29
97.5% KM Chebyshev UCL	49.86	99% KM Chebyshev UCL	64.75

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.137	Anderson-Darling GOF Test
5% A-D Critical Value	0.765	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.187	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.156	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.415	k star (bias corrected MLE)	1.535	k hat (MLE)
22.17	Theta star (bias corrected MLE)	20.44	Theta hat (MLE)
93.41	nu star (bias corrected)	101.3	nu hat (MLE)
		31.37	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	23.53
Maximum	116	Median	11
SD	27.56	CV	1.171

k hat (MLE)	0.339	k star (bias corrected MLE)	0.331
Theta hat (MLE)	69.45	Theta star (bias corrected MLE)	71.12
nu hat (MLE)	29.82	nu star (bias corrected)	29.12
Adjusted Level of Significance (β)	0.0445		
Approximate Chi Square Value (29.12, α)	17.8	Adjusted Chi Square Value (29.12, β)	17.5
95% Gamma Approximate UCL (use when n>=50)	38.49	95% Gamma Adjusted UCL (use when n<50)	39.16
Estimates of Ga	amma Para	meters using KM Estimates	
Mean (KM)	24.78	SD (KM)	26.24
Variance (KM)	688.4	SE of Mean (KM)	4.017
k hat (KM)	0.892	k star (KM)	0.846
nu hat (KM)	78.49	nu star (KM)	74.47
theta hat (KM)	27.78	theta star (KM)	29.28
80% gamma percentile (KM)	40.36	90% gamma percentile (KM)	59.44
95% gamma percentile (KM)	78.78	99% gamma percentile (KM)	124.3
_			
Gamma	a Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (74.4 , α)	55.6	Adjusted Chi Square Value (74.47, β)	55.04
95% Gamma Approximate KM-UCL (use when n>=50)	33.19	95% Gamma Adjusted KM-UCL (use when n<50)	33.53
l ognormal GOI	F Test on F	etected Observations Only	
Shapiro Wilk Test Statistic	0.907	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.931	Detected Data Not Lognormal at 5% Significance Leve	el
Lilliefors Test Statistic	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.152	Detected Data Not Lognormal at 5% Significance Leve	el
Detected Data Not Lognormal at 5% Significance Level			
Lognormal ROS	Statistics	Using Imputed Non-Detects	
Mean in Original Scale	24.33	Mean in Log Scale	2.579
SD in Original Scale	26.9	SD in Log Scale	1.184
95% t UCL (assumes normality of ROS data)	31.15	95% Percentile Bootstrap UCL	31.29
95% BCA Bootstrap UCL	32.09	95% Bootstrap t UCL	32.88
95% H-UCL (Log ROS)	42.34		
Statistics using KM estimates of	on Logged	Data and Assuming Lognormal Distribution	
KM Mean (logged)	2.717	KM Geo Mean	15.13
KM SD (logged)	0.975	95% Critical H Value (KM-Log)	2.339
KM Standard Error of Mean (logged)	0.149	95% H-UCL (KM -Log)	34.44
KM SD (logged)	0.975	95% Critical H Value (KM-Log)	2.339
KM Standard Error of Mean (logged)	0.149		
	פ מי וח	totiotico	
DI /2 Normal		DI /2 Lon-Transformed	
Mean in Original Scale	24 15	Mean in Log Scale	2 544
SD in Original Scale	27.13	SD in Log Scale	1 207
95% t UCL (Assumes normality)	31.01	95% H-Stat LICI	42.6
DI /2 is not a recommended me	thod provi	ded for comparisons and historical reasons	.2.5

2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 42.29

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	43	Number of Distinct Observations	13
Number of Detects	32	Number of Non-Detects	11
Number of Distinct Detects	13	Number of Distinct Non-Detects	1
Minimum Detect	5	Minimum Non-Detect	5
Maximum Detect	3113	Maximum Non-Detect	5
Variance Detects	300637	Percent Non-Detects	25.58%
Mean Detects	108.3	SD Detects	548.3
Median Detects	12	CV Detects	5.062
Skewness Detects	5.657	Kurtosis Detects	32
Mean of Logged Detects	2.562	SD of Logged Detects	1.049

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.186	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.93	Detected Data Not Normal at 5% Significance Level			
Lilliefors Test Statistic	0.533	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.154	Detected Data Not Normal at 5% Significance Level			
Data stad Data A					

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	81.88	KM Standard Error of Mean	72.47
KM SD	467.7	95% KM (BCA) UCL	226.3
95% KM (t) UCL	203.8	95% KM (Percentile Bootstrap) UCL	226.2
95% KM (z) UCL	201.1	95% KM Bootstrap t UCL	9742
90% KM Chebyshev UCL	299.3	95% KM Chebyshev UCL	397.8
97.5% KM Chebyshev UCL	534.5	99% KM Chebyshev UCL	802.9

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	10.7	Anderson-Darling GOF Test
5% A-D Critical Value	0.85	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.524	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.168	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.312	k star (bias corrected MLE)	0.321	k hat (MLE)
347.2	Theta star (bias corrected MLE)	337.2	Theta hat (MLE)
19.97	nu star (bias corrected)	20.56	nu hat (MLE)
		108.3	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	80.61
Maximum	3113	Median	10
SD	473.5	CV	5.874

Theta httll u hat (MLE)4013Theta star (bas corrected in Signaticance (MLE)40.3Adjusted Level of Signaticance (N)0.0444u ustor (bias corrected in Signate Value (17.40, c)8.052Style Camma Approximate Chi Square Value (17.40, c)15.595% Gamma Adjusted UCL (use when n=>5015.595% Gamma Approximate UCL (use when n=>5015.595% Gamma Adjusted UCL (use when n=>5027.47K hat (0M)1.0306K start (ML37.5Variance (KM)2.0306K start (ML37.62Un bat (KM)2.0306K start (ML37.6295% Gamma Approximate UCL (use when n=>50)95% Gamma percentile (KM)1.3299% gamma percentile (KM1.6295% Gamma Approximate Chi Square Value (3.79, c)0.639Adjusted Chi Square Value (3.79, c)0.59895% Gamma Approximate Chi Square Value (3.79, c)0.639Adjusted Chi Square Value (3.79, c)0.59895% Gamma Approximate KM-UCL (use when n=>50)0.533Detected Data Not Logonomal at 5% Significance LevelLagonomal Approximate KM-UCL (use when n=>50)Lagonomal Approximate KM-UCL (use when n=>50)Detected Data Not Logonomal at 5% Significance LevelLillefors GOF TestDetected Data Not Logonomal at 5% Significance LevelLillefors Critical Value0.154Detected Data Not Logonomal at 5% Significance LevelDetected Data Not Logonomal at 5% Significance LevelDetected Data Not Logonomal at 5% Significance Level </th <th>k hat (MLE)</th> <th>0.201</th> <th>k star (bias corrected MLE)</th> <th>0.202</th>	k hat (MLE)	0.201	k star (bias corrected MLE)	0.202
n h akt (ME)17.28nu star (bias connected)97.4Adjusted Level of Significance ()0.04448.7517.75195% Camma Approximate ()CL (use when n=50)15.595% Camma Adjusted UCL (use when n=50)7.27795% Camma Approximate UCL (use when n=50)15.595% Camma Adjusted UCL (use when n=50)7.277Variance (MM)21877SE of Mean (KM)7.277Variance (KM)26721.8630.036110.14 nu har (KM)263290% gamma percentile (KM)162080% gamma percentile (KM)6.82490% gamma percentile (KM)162080% gamma percentile (KM)6.82490% gamma percentile (KM)162080% gamma percentile (KM)6.82490% gamma percentile (KM)162095% Gamma Approximate KM-UCL (use when n<50)95%95%162095% Gamma Approximate KM-UCL (use when n<51)95%1630162095% Gamma Approximate KM-UCL (use when n<51)95%15515595% Gamma Approximate KM-UCL (use when n<51)95%15515695% Gamma Approximate KM-UCL (use when n<51)95%15115195% Gamma Approximate KM-UCL (Use when n<51)95%15115195% Gamma Approximate KM-UCL (Use when n<51)95%15115195% Gamma Approximate KM-UCL (Us	Theta hat (MLE)	401.3	Theta star (bias corrected MLE)	398.3
Adjusted Level of Significance (i)0.8962Adjusted Chi Square Value (17.4), 08.9762SpSk Gamma Approximate UCL (use when n=>0)15.595% Gamma Adjusted UCL (use when n=>0)16.7SpSk Gamma Approximate UCL (use when n=>0)18.8SD (KM)47.7Maan (KM)218.70SE of Mean (KM)0.0306k tat (KM)0.0306Nu har (KM)2.036Nu tat (KM)18.8SD (KM)16.7Waan (KM)2.636Nu tat (KM)18.890% gamma percentile (KM)18.01SpSk Gamma Approximate Chi Square Value (XM)6.82490% gamma percentile (KM)18.02SpSk Gamma Approximate Chi Square Value (XM)6.83290% gamma percentile (KM)18.02SpSk Gamma Approximate Chi Square Value (XM)0.639Adjusted Chi Square Value (XP, R)18.05SpSk Gamma Approximate Chi Square Value (XP, R)0.533SpSk Gamma Adjusted KM-UCL (use when n=50)15.5SpSk Gamma Approximate KM-UCL (use when n=50)0.53Detected Data Not Logrommal at 5% Significance LeveLillefors Fort Statistic0.47Spajro Wilk GOF Test17.8Shapiro Wilk Test Statistic0.53Detected Data Not Logrommal at 5% Significance Leve17.8Detected Data Not Logrommal at 5% Significance Leve17.817.8Shapiro Wilk Test Statistic0.51Lillefors GOF Test2.51Shapiro Wilk Test Statistic0.53Detected Data Not Logrommal at 5% Significance Leve17.8Detected Data Not Logrommal at 5% Significance Leve17.817.8Shapiro Wilk Test St	nu hat (MLE)	17.28	nu star (bias corrected)	17.4
Approximate Chi Square Value (17.40, o) 8.962 Adjusted Chi Square Value (17.40, o) 8.751 95% Gamma Approximate UCL (use when n=>50) 156.5 95% Gamma Adjusted UCL (use when n=>50) 156.5 Bestimates of Gamma Adjusted UCL (use when n=>50) 156.5 95% Gamma Adjusted UCL (use when n=>50) 167.7 Mean (MM) 8.18 SD (MM) 47.7 Mean (MM) 2.636 0.0336 k star (KM) 0.42 95% gamma percentile (M) 16.52 90% gamma percentile (KM) 167.2 95% Gamma Approximate Chi Square Value (3.79, a) 0.558 95% Gamma Adjusted KM-UCL (use when <=50 157.5 Spreama Adjusted Chi Square Value (3.79, a) 0.558 95% Gamma Adjusted KM-UCL (use when <=50 58.5 Spreama Approximate Chi Square Value (3.79, a) 0.558 95% Gamma Adjusted KM-UCL (use when <=61 and 15 < n < 50 Spreama Adjusted KM-UCL (use when <=50 95% Gamma Adjusted KM-UCL (use when <=50 158.5 Spreama Adjusted KM-UCL (use when <=61 and 15 < n < 50 158.5 Spreama Adjusted KM-UCL (use when <=61 and 15 < n < 50 Spreama Adjusted KM-UCL (use when <=61 and 15 < n < 50 Spreama Adjusted KM-UCL (use when <=61 and 15 < n < 50 Spreama Adjusted KM-UCL (use when <=61 and 15 < n < 50 Spreama Adjusted K	Adjusted Level of Significance (β)	0.0444		
95% Gamma Approximate UCL (use when n=>0)16.595% Gamma Adjusted UCL (use when n=>0)16.1Estimates Gamma Adjusted UCL (use when n=>0)17.0 $S.G Man(M)$ 27.7Variance (M)2.536 $S.G Man(M)$ 2.70Man (M)2.536 $S.G Man(M)$ 2.70Mata (M)2.536 $S.G Man(M)$ 10.21OBS (Gamma Agusted M)10.2Sols (Gamma Agusted M)10.2Sols (Gamma Agusted Chi Square Value (3.79, 0)0.59Aguroximate Chi Square Value (3.79, 0)0.59OBS (Gamma Agusted Value (3.79, 0)0.59Sols (Gamma Agusted KH-UCL (use when n=>0)95% Gamma Agusted KH-UCL (use when n=>0)95%Sols (Gamma Agusted KH-UCL (use when n=>0)95%Cancer Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan= Agusted Value (3.79, 0)0.59Sols (Gamma Agusted KH-UCL (use when n=>0)95%Colspan= Colspan="2"Colspan= Colspan= Colspan="2"Colspan= Colspan= Colspan="2"Colspan= Colspan=	Approximate Chi Square Value (17.40, α)	8.962	Adjusted Chi Square Value (17.40, β)	8.751
Batinates discription with output of the set	95% Gamma Approximate UCL (use when n>=50)	156.5	95% Gamma Adjusted UCL (use when n<50)	160.3
Extension Unitary Standing of Salas				
Mean (KM)81.88SD (KM)47.7Variance (KM)21870SE of Mean (KM)72.77K hat (KM)0.3056Katar (KM)0.44nu hat (KM)2.536nu star (KM)1807BS% gamma percentile (KM)1827Thete star (KM)1807BS% gamma percentile (KM)452790% gamma percentile (KM)1807BS% gamma percentile (KM)452790% gamma percentile (KM)1807SS% gamma percentile (KM)452390% gamma percentile (KM)1807SS% Gamma Adjusted Chi Square Value (3.79, a)0.539Adjusted Chi Square Value (3.79, a)0.598SS% Gamma Approximate Chi Square Value (3.79, a)0.539S% Gamma Adjusted KM-UCL (use when n>=5095% Gamma Adjusted KM-UCL (use vhen n>=50118Chagener KM-UCL (use vhen Vilk COT Fat1847Shalpo YMIk COT Fat118118Shalpo SS (Di Gignia SC SC Field1848Sb in Gaga SC	Estimates of Ga	amma Parai	neters using KM Estimates	
Variance (KM)218770SE of Maen (KM)72.47k hat (KM)0.0306k star (KM)0.434n hu fk (KM)2.536n star (KM)10.4280% gamma percentile (KM)8.82490% gamma percentile (KM)10.4295% gamma percentile (KM)1.82490% gamma percentile (KM)10.7295% Gamma Approximate Chi Square Value (3.7.9, or0.53995% Gamma Adjusted Chi Square Value (3.7.9, or0.539Specification (use when n=>50)95% Gamma Adjusted Chi Square Value (3.7.9, or0.539Specification (use when n=>50)95% Gamma Adjusted Chi Square Value (3.7.9, or0.539Specification (use when n=>50)95% Gamma Adjusted Chi Square Value (3.7.9, or0.539Caparoma Idve to tractor to tractor of the colspan="2">Intert of the colspan="2">Intert of the colspan= 2"Specification (use when n=>50)95% Gamma Adjusted Chi Square Value (3.7.9, or0.539Caparoma Idve to tractor of the colspan="2">Intert of the colspan="2"Specification (use when n=>50)95% Gamma Adjusted Chi Square Value (3.7.9, or0.530Detected Data Not Lognormal at 5% Significance LevelDetected Data Not Lognormal at 5% Significance LevelSp Colspan="2">Detected Data Not Lognormal at	Mean (KM)	81.88	SD (KM)	467.7
khat (KM)0.0306kstar (KM)0.044nu hat (KM)2.636nu star (KM)1.87Nu star (KM)2.637The star (KM)3.0780% gamma percentile (KM)41.399% gamma percentile (KM)18.795% gamma percentile (KM)41.399% gamma percentile (KM)18.7Spöre Campa Aguate Chi Square Value (3.79, p)0.639Adjusted Chi Square Value (3.79, p)0.53995% Gamma Aguate Chi Square Value (3.79, p)95% Gamma Adjusted KM-UCL (use when n>=095% Gamma Adjusted KM-UCL (use when n>=095% Gamma Adjusted KM-UCL (use when n>=095% Gamma Aguate Chi Square Value (3.79, p)0.539Detected Data Not Lognomal at 5% Significance LevelChopmenti GVE: Visue when k<=1 and 15 < n < 50Shapiro Wik Crites Issuite:0.164Shapiro Wik Crites Issuite:0.1647Shapiro Wik Crites Issuite:Detected Data Not Lognomal at 5% Significance LevelDetected Data Not Lognomal at 5% Significance LevelBetected Data Not Lognomal at 5% Significance LevelSignificance LevelBetected Data Not Lognomal at 5% Significance Lev	Variance (KM)	218770	SE of Mean (KM)	72.47
nu hat (KM) 2.636 nu star (KM) 3.636 theta hat (KM) 2572 theta star (KM) 1000 B0% gamma percentile (KM) 3.632 99% gamma percentile (KM) 1010 Sp5% gamma percentile (KM) 0.630 Adjusted Chi Square Value (3.79, µ) 0.598 Sp5% Gamma Approximate (M-UCL (use when n=50) 95% Gamma Adjusted KM-UCL (use when n=50) 55% Lognomal JUS VIELU (USE when k=1 and 15 < n < 50) 55% Shapiro Wilk Test Statistic 0.431 Detected Data Not Lognormal at 5% Significance LUS Shapiro Wilk Test Statistic 0.361 Lillifors GOT Test Shapiro Wilk Test Statistic 0.361 Detected Data Not Lognormal at 5% Significance LUS Shapiro Wilk Test Statistic 0.361 Detected Data Not Lognormal at 5% Significance LUS Detected Data Not Lognormal at 5% Significance LUS 17.8 17.8 Shapiro Wilk Test Statistic 0.361 Detected Data Not Lognormal at 5% Significance LUS Detected Data Not Lognormal at 5% Significance LUS 17.8 17.8 Shapiro Wilk Test Statistic 0.361 Detected Data Not Lognormal at 5% Significance LUS Shapiro Migi	k hat (KM)	0.0306	k star (KM)	0.044
the take in terms2 F2the take at (KM)2 F2the test (KM)2 F32 F3 </th <td>nu hat (KM)</td> <td>2.636</td> <td>nu star (KM)</td> <td>3.785</td>	nu hat (KM)	2.636	nu star (KM)	3.785
80% gamma percentile (KM) 6.824 90% gamma percentile (KM) 187 95% gamma percentile (KM) 137 99% gamma percentile (KM) 1870 Caracter Square Value (3.79, o) 0.633 Adjusted Chi Square Value (3.79, p) 0.538 95% Gamma Adjusted KM-UCL (use when n=50) 85.3 95% Gamma Adjusted KM-UCL (use when n=50) 518.5 Caracter Statustic 0.453 0.549 0.558 Gamma Adjusted KM-UCL (use when n=50) 518.5 Caracter Statustic 0.447 Shapiro Wilk GOF Test 55% Significance Level Lilliefors Critical Value 0.351 Lilliefors GOF Test Caracter Statustic 0.351 Lilliefors GOF Test Detected Data Not Lognormal at 5% Significance Level Statustica using KM estimates 2.138 SD in Original Scale 87.2 95% <	theta hat (KM)	2672	theta star (KM)	1860
95% gamma percentile (KM)4195% gamma percentile (KM)187Caracteria Caracteria Car	80% gamma percentile (KM)	6.824	90% gamma percentile (KM)	104.2
Barbie CHUB USINGS Adjusted KM-UCL (use when n>=50) Adjusted KM-UCL (use when n>=50) Adjusted KM-UCL (use when n>=50) Sis Gamma Adjusted KM-UCL (when N==50) Letected Data Not Logonomal at 5% Significance Level Detected Data Not Logonomal at 5% Significance Level Significance Level Sis Gamma Adjusted KM-UCL (when N==50) Sis Gamma Adjusted KM-UCL (when	95% gamma percentile (KM)	413	99% gamma percentile (KM)	1870
Approximate Chi Square Value (3.79, a) 0.639 Adjusted Chi Square Value (3.79, a) 0.639 95% Gamma Approximate KM-UCL (use when n=>50) 95% Gamma Adjusted KM-UCL (use when n=>50) 518.3 Statistic Statistic Value (3.79, a) 0.530 0.537 518.3 Detected Data Not Lognormal at S% Significance Level Lilliefors Critical Value 0.531 Lilliefors GOF Test Statistic Statistic Value (3.63) Detected Data Not Lognormal at S% Significance Level Statistic Value (Mode Non-Detects Sp in Original Scale 81.2 21.3 Sp Significance Level 21.3 Sp in Original Scale 81.2 21.3 Sp Significance Level 21.3 21.3 Sp Significance Level 21.3 21.3 Sp Significance Level 21.3 21.3 Sp Signi Original Scale				
Approximate Chi Square Value (3.79, α) 0.639 Adjusted Chi Square Value (3.79, ρ) 0.598 95% Gamma Approximate KM-UCL (use when n>=50) 485.3 95% Gamma Adjusted KM-UCL (use when n<50) 518.5 B5% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50) 518.5 Coopormal GOF Stapiro Wilk Cett Statistic 0.447 Shapiro Wilk GOF Test Stapiro Wilk Critical Value 0.93 Detected Data Not Lognormal at 5% Significance Level Lilliefors Test Statistic 0.351 Lilliefors GOF Test 5%<	Gamma	a Kaplan-Me	eier (KM) Statistics	
95% Gamma Approximate KM-UCL (use when n>>50) 485.3 95% Gamma Adjusted KM-UCL (use when n<50) 518.5 S% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50) Lognormal GOF Test on Detected Observations Only 518.5 Shapiro Wilk Test Statistic 0.447 Shapiro Wilk GOF Test 1 5% Shapiro Wilk Test Statistic 0.33 Detected Data Not Lognormal at 5% Significance Level 1 Lilliefors Test Statistic 0.31 Lilliefors GOF Test 1 1 5% Shapiro Wilk Critical Value 0.33 Detected Data Not Lognormal at 5% Significance Level 1 Detected Data Not Lognormal at 5% Significance Level Signormal ROS Signormal ROS SD in Original Scale 81.24 Mean in Log Scale 2.138 SD Site Statistics using KM estimates 0.152 95% 2.33 3.33 SSS H-UCL (Log ROS) 2.319 KM Geo Mean 10.16 1.16 1.16 1.16 1.16 1.16 1.16 2.33	Approximate Chi Square Value (3.79, α)	0.639	Adjusted Chi Square Value (3.79, β)	0.598
95% Gamma Adjusted KM-UCL (use when k≤1 and 15 < n < 50) Lignormal GOF Test observations Only Shapiro Wilk Cest Statistic 0.447 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.93 Detected Data Not Lognormal at 5% Significance Level Lilliefors Test Statistic 0.351 Lilliefors GOF Test 5% Lilliefors Critical Value 0.154 Detected Data Not Lognormal at 5% Significance Level Detected Data Not Lognormal Distribution Significance Level Significance Level <t< th=""><td>95% Gamma Approximate KM-UCL (use when n>=50)</td><td>485.3</td><td>95% Gamma Adjusted KM-UCL (use when n<50)</td><td>518.5</td></t<>	95% Gamma Approximate KM-UCL (use when n>=50)	485.3	95% Gamma Adjusted KM-UCL (use when n<50)	518.5
Legnomal GCF :::::::::::::::::::::::::::::::::::	95% Gamma Adjuste	ed KM-UCL	(use when k<=1 and 15 < n < 50)	
Lognormal GOF Test on Detected Observations Only Shapiro Wilk Cest Statistic 0.447 Shapiro Wilk QOF Test 5% Shapiro Wilk Critical Value 0.35 Detected Data Not Lognormal at 5% Significance Level 5% Lilliefors Critical Value 0.154 Detected Data Not Lognormal at 5% Significance Level Detected Data Not Lognormal at 5% Significance Level Lognormal ROS Extistics Using Imputed Non-Detects Lognormal ROS Extistics Using Imputed Non-Detects Mean in Original Scale 81.28 Mean in Log Scale 2.138 95% tUCL (assumes normality of ROS data) 202.7 95% Percentile Bootstrap UCL 225.8 95% H-UCL (Log ROS) 27.08 95% Critical H Value (KM-Log) 2.343 KM Mean (logged) 0.319 KM Geo Mean 10.16 KM Standard Error of Mean (logged) 0.152 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 DL/2 Normal 0.152 DL/2 Normal 2.141 Shapin Wilk Critical Value (KM-Log) 2.343 Call Mean in Original Scale 3.19 Scoritical H Value (KM-Log) 2.343				
Shapiro Wilk Test Statistic 0.447 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.93 Detected Data Not Lognormal at 5% Significance Level 1 Lilliefors Critical Value 0.53 Lilliefors GOF Test 5% Lilliefors Critical Value 0.154 Detected Data Not Lognormal at 5% Significance Level Mean in Original Scale 81.28 Mean in Log Scale 2.138 Spin Log Scale 2.138 Spin Kog Scale 2.139 KM Scale Mestimates Verset Log Scale 2.139 <td colspan="</th> <td>Lognormal GO</td> <td>F Test on D</td> <td>etected Observations Only</td> <td></td>	Lognormal GO	F Test on D	etected Observations Only	
5% Shapiro Wilk Critical Value0.93Detected Data Not Lognormal at 5% Significance LevelLilliefors Test Statistic0.351Lilliefors GOF Test5% Lilliefors Critical Value0.154Detected Data Not Lognormal at 5% Significance LevelDetected Data Not Lognormal At 5% Significance LevelDi Noriginal Scale8181.28Mean in Original Scale95% t UCL (assumes normality of ROS data)95% H-UCL (Log ROS)27.08KM Geo Mean10.16KM Mean (logged)2.319KM Mean (logged)0.152DL/2 Normal Error of Mean (logged)0.15223.49KM Standard Error of Mean (logged)0.15221.41Mean in Original Scale81.24Mean in Log Scale2.141<	Shapiro Wilk Test Statistic	0.447	Shapiro Wilk GOF Test	
Lilliefors Test Statistic 0.351 Lilliefors GOF Test 5% Lilliefors Critical Value 0.154 Detected Data Not Lognormal at 5% Significance Level Detected Data Usynomial at 5% Significance Level Lognormal ROS Lognormal ROS Mean in Original Scale 81.28 Mean in Log Scale 2.138 SD in Original Scale 473.4 SD in Log Scale 1.178 95% t UCL (assumes normality of ROS data) 202.7 95% Bootstrap UCL 228.8 95% H-UCL (Log ROS) 27.08 95% Bootstrap UCL 224.7 Statistics using KM estimates KM Mean (logged) 2.319 KM Geo Mean 10.16 KM Mean (logged) 0.983 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 95% H-UCL (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 1.172 1.172 DL/2 Normal 81.24 Mean	5% Shapiro Wilk Critical Value	0.93	Detected Data Not Lognormal at 5% Significance Leve	el
5% Lilliefors Critical Value 0.154 Detected Data Not Lognormal at 5% Significance Level Detected Data Not Lognormal at 5% Significance Level Detected Data Not Lognormal at 5% Significance Level Lognormal ROS Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale 81.28 Mean in Log Scale 2.138 SD in Original Scale 473.4 SD in Log Scale 1.178 95% t UCL (assumes normality of ROS data) 202.7 95% Percentile Bootstrap UCL 225.8 95% BCA Bootstrap UCL 298.6 95% Bootstrap UCL 298.6 95% H-UCL (Log ROS) 27.08 708 7948 KM Geo Mean 10.16 KM Mean (logged) 2.319 KM Geo Mean 10.16 KM SD (logged) 0.983 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 2.343 2.343 KM Standard Error of Mean (logged) 0.152 2.343 2.343 KM Standard Error of Mean (logged) 0.152 2.343 2.343 KM Standard Error of Mean (logged) 0.152 2.343 2.141 <td>Lilliefors Test Statistic</td> <td>0.351</td> <td>Lilliefors GOF Test</td> <td></td>	Lilliefors Test Statistic	0.351	Lilliefors GOF Test	
Detected Data Not Lognormal at 5% Significance Level Lognormal ROS Subits Using Imputed Non-Detects Mean in Original Scale 81.28 Mean in Log Scale 2.138 SD in Original Scale 473.4 SD in Log Scale 1.178 95% t UCL (assumes normality of ROS data) 202.7 95% Percentile Bootstrap UCL 225.8 95% BCA Bootstrap UCL 298.6 95% Bootstrap tUCL 7948 95% H-UCL (Log ROS) 27.08 95% 10.16 KM Mean (logged) 2.319 KM Geo Mean 10.16 KM Mean (logged) 0.983 95% Critical H Value (KM-Log) 23.43 KM Standard Error of Mean (logged) 0.152 95% H-UCL (KM -Log) 23.43 KM Standard Error of Mean (logged) 0.152 2.343 2.343 KM Standard Error of Mean (logged) 0.152 2.343 2.343 L/2 Normal DL/2 Statistics 2.341 2.343 KM Standard Error of Mean (logged) 0.152 2.343 2.343 KM Standard Error of Mean (logged) 0.152 2.343 2.343 2.343 2.343 2.343 2.343 2.343 2.343 </th <td>5% Lilliefors Critical Value</td> <td>0.154</td> <td>Detected Data Not Lognormal at 5% Significance Leve</td> <td>el</td>	5% Lilliefors Critical Value	0.154	Detected Data Not Lognormal at 5% Significance Leve	el
Lognormal ROS: Using Imputed Non-DetectsMean in Original Scale81.28Mean in Log Scale2.138SD in Original Scale473.4SD in Log Scale2.13795% t UCL (assumes normality of ROS data)202.795% Percentile Bootstrap UCL25.895% BCA Bootstrap UCL298.695% Bootstrap t UCL294.895% H-UCL (Log ROS)27.0895% Bootstrap t UCL10.16KM Mean (logged)2.319KM Geo Mean10.16KM Mean (logged)0.98395% Critical H Value (KM-Log)2.343KM Standard Error of Mean (logged)0.15295% H-UCL (KM -Log)2.343KM Standard Error of Mean (logged)0.15295% Critical H Value (KM-Log)2.343KM Standard Error of Mean (logged)0.15295% Critical H Value (KM-Log)2.343KM Standard Error of Mean (logged)0.152EU/2 Log-TransformedL/2 NormalEU/2 Statistics2.343SD in Original Scale81.24Mean in Log Scale2.141SD in Original Scale473.4SD in Log Scale1.151SD in Original Scale473.4SD in Log Scale1.151SD in Original Scale81.24Mean in Log Scale1.151SD in Original Scale1.234SD in Log Scale1.151SD in Original Scale81.24SD in Log Scale1.151SD in Original Scale1.234SD in Log Scale1.151SD in Original Scale1.234SD in Log Scale1.151SD in Original Scale1.234 <td< th=""><td>Detected Data N</td><td>lot Lognorm</td><td>al at 5% Significance Level</td><td></td></td<>	Detected Data N	lot Lognorm	al at 5% Significance Level	
Mean in Original Scale81.28Mean in Log Scale2.138SD in Original Scale473.4SD in Log Scale1.17895% t UCL (assumes normality of ROS data)202.795% Percentile Bootstrap UCL25.895% BCA Bootstrap UCL298.695% Bootstrap t UCL794895% H-UCL (Log ROS)27.0827.0810.16KM Geo Mean10.16KM Mean (logged)2.319KM Geo Mean10.16KM SD (logged)0.98395% Critical H Value (KM-Log)2.343KM Standard Error of Mean (logged)0.15295% H-UCL (KM -Log)2.343KM Standard Error of Mean (logged)0.1522.343L/2 StatisticsDL/2 StatisticsDL/2 Normal2L/2 StatisticsOL/2 Log-TransformedMean in Original Scale81.24Mean in Log Scale2.141SD in Original Scale473.4SD in Log Scale1.17595% H-UCL (Assumes normality)202.795% H-Stat UCL26.18DL/2 Is not a recommended metrod, provided for comparisons and historical reasons2.141	Lognormal POS	Statiatica I	loing Imputed Nep Detecto	
Mean in Original Scale31.26Mean in LOg Scale2.136SD in Original Scale473.4SD in Log Scale1.17895% t UCL (assumes normality of ROS data)202.795% Percentile Bootstrap UCL225.895% BCA Bootstrap UCL298.695% Bootstrap t UCL794895% H-UCL (Log ROS)27.0895% Bootstrap t UCL7948Statistics using KM estimates or Logged Data and Assuming Lognormal DistributionKM Mean (logged)2.319KM Geo Mean10.16KM SD (logged)0.98395% Critical H Value (KM-Log)2.343KM Standard Error of Mean (logged)0.15295% H-UCL (KM -Log)2.343KM Standard Error of Mean (logged)0.15295% Critical H Value (KM-Log)2.343KM Standard Error of Mean (logged)0.152DL/2 StatisticsDL/2 StatisticsSD in Original Scale81.24Mean in Log Scale2.141SD in Original Scale473.4SD in Log Scale1.17695% t UCL (Assumes normality)202.795% H-Stat UCL26.18DL/2 Is not a recommended mett-d, provided for comparisons and historical reasons	Logionial Ros	01 20		2 120
95% t UCL (assumes normality of ROS data) 202.7 95% Percentile Bootstrap UCL 225.8 95% BCA Bootstrap UCL 298.6 95% Bootstrap t UCL 7948 95% H-UCL (Log ROS) 27.08 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution KM Mean (logged) 2.319 KM Geo Mean 10.16 KM SD (logged) 0.983 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 95% H-UCL (KM -Log) 23.49 KM SD (logged) 0.983 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 95% H-UCL (KM -Log) 2.343 KM Standard Error of Mean (logged) 0.152 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 1.152 2.343 KM Standard Error of Mean (logged) 2.343 2.343 KM Standard Error of Mean (logged) 2.343 KM S		01.20 172 1		2.130
95% FOCE (assume from any of ROS data) 202.7 95% Percentile bootstrap OCE 2233 95% BCA Bootstrap UCL 298.6 95% Bootstrap t UCL 7948 95% H-UCL (Log ROS) 27.08 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution KM Mean (logged) 2.319 KM Geo Mean 10.16 KM SD (logged) 0.983 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 95% H-UCL (KM -Log) 23.49 KM SD (logged) 0.983 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 95% H-UCL (KM -Log) 2.343 KM Standard Error of Mean (logged) 0.152 DL/2 Statistics DL/2 Statistics DL/2 Normal Error of Mean (logged) 0.152 CL/2 Normal Scale 81.24 Mean in Log Scale 2.141 SD in Original Scale 473.4 SD in Log Scale 1.157 95% t UCL (Assumes normality) 202.7 95% H-Stat UCL 26.18 DL/2 is not a recommended method, provided for comparisons and historical reasons	05% t LCL (accurace permetity of POS date)	473.4		1.170
95% BCA Bootstrap OCL 298.6 95% Bootstrap FOCL 7946 95% H-UCL (Log ROS) 27.08 95% H-UCL (Log ROS) 27.08 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution KM Mean (logged) 2.319 KM Geo Mean 10.16 KM SD (logged) 0.983 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 95% H-UCL (KM -Log) 2.343 KM SD (logged) 0.983 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 2.141 SD in Original Scale 81.24 Mean in Log Scale 2.141 SD in Original Scale 473.4 SD in Log Scale 1.157 95% t UCL (Assumes normality) 202.7 95% H-Stat UCL 26.18 DL/2 is not a recommended method, provided for comparisons and historical reasons 2.141 2.141		202.7	95% Percentile Bootstrap CCL	223.0
Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution KM Mean (logged) 2.319 KM Geo Mean 10.16 KM SD (logged) 0.983 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 95% H-UCL (KM -Log) 2.343 KM Standard Error of Mean (logged) 0.152 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 2.343 KM Standard Error of Mean (logged) 0.152 2.343 L/2 Statistics DL/2 Statistics 2.343 Mean in Original Scale 81.24 Mean in Log Scale 2.141 SD in Original Scale 473.4 SD in Log Scale 1.157 95% t UCL (Assumes normality) 202.7 95% H-Stat UCL 26.18 DL/2 is not a recommended method, provided for comparisons and historical reasons 26.18		290.0	95% Bootstap t OCL	7940
Statistics using KM estimates or Loged Data and Assuming Lognormal DistributionKM Mean (logged)2.319KM Geo Mean10.16KM SD (logged)0.98395% Critical H Value (KM-Log)2.349KM Standard Error of Mean (logged)0.15295% Critical H Value (KM-Log)2.343KM Standard Error of Mean (logged)0.1522.3432.343L/2 StatisticsDL/2 NormalDL/2 StatisticsMean in Original Scale81.24Mean in Log Scale2.141SD in Original Scale473.4SD in Log Scale1.15795% t UCL (Assumes normality)202.795% H-Stat UCL26.18DL/2 is not a recommended metworkstatistorical reasons35%	93% H-UCE (LOU KUS)	27.00		
KM Mean (logged)2.319KM Geo Mean10.16KM SD (logged)0.98395% Critical H Value (KM-Log)2.343KM Standard Error of Mean (logged)0.15295% H-UCL (KM -Log)23.49KM SD (logged)0.98395% Critical H Value (KM-Log)2.343KM Standard Error of Mean (logged)0.1522.343DL/2 StatisticsDL/2 StatisticsDL/2 NormalDL/2 StatisticsDL/2 NormalDL/2 Log-TransformedSD in Original Scale81.24Mean in Log Scale2.141SD in Original Scale473.4SD in Log Scale1.15795% t UCL (Assumes normality)202.795% H-Stat UCL26.18DL/2 is not a recommended method, provided for comparisons and historical reasons2.343	Statistics using KM estimates of	on Logged F	Data and Assuming Lognormal Distribution	
KM SD (logged)0.98395% Critical H Value (KM-Log)2.343KM Standard Error of Mean (logged)0.15295% H-UCL (KM -Log)23.49KM SD (logged)0.98395% Critical H Value (KM-Log)2.343KM Standard Error of Mean (logged)0.1522.343DL/2 StatisticsDL/2 NormalDL/2 StatisticsMean in Original Scale81.24Mean in Log Scale2.141SD in Original Scale473.4SD in Log Scale1.15795% t UCL (Assumes normality)202.795% H-Stat UCL26.18DL/2 is not a recommended method, provided for comparisons and historical reasons2.343	KM Mean (logged)	2.319	KM Geo Mean	10.16
KM Standard Error of Mean (logged) 0.152 95% H-UCL (KM -Log) 23.49 KM SD (logged) 0.983 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 0.152 2.343 DL/2 Statistics DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 81.24 Mean in Log Scale 2.141 SD in Original Scale 473.4 SD in Log Scale 1.157 95% t UCL (Assumes normality) 202.7 95% H-Stat UCL 26.18 DL/2 is not a recommended method, provided for comparisons and historical reasons 2.141	KM SD (logged)	0.983	95% Critical H Value (KM-Log)	2 343
KM SD (logged) 0.983 95% Critical H Value (KM-Log) 2.343 KM Standard Error of Mean (logged) 0.152 DL/2 Statistics DL/2 Normal DL/2 Statistics DL/2 Log-Transformed Mean in Original Scale 81.24 Mean in Log Scale 2.141 SD in Original Scale 473.4 SD in Log Scale 1.157 95% t UCL (Assumes normality) 202.7 95% H-Stat UCL 26.18 DL/2 is not a recommended method, provided for comparisons and historical reasons 2.141	KM Standard Error of Mean (logged)	0 152	95% H-UCL (KM -Log)	23 49
KM Standard Error of Mean (logged) 0.152 DL/2 Statistics DL/2 Log-Transformed Mean in Original Scale 81.24 SD in Original Scale 473.4 SD in Log Scale 1.157 95% t UCL (Assumes normality) 202.7 95% H-Stat UCL 26.18 DL/2 is not a recommended method, provided for comparisons and historical reasons 81.24 1.157	KM SD (loaged)	0.983	95% Critical H Value (KM-Log)	2 343
DL/2 Statistics DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 81.24 Mean in Log Scale 2.141 SD in Original Scale 473.4 SD in Log Scale 1.157 95% t UCL (Assumes normality) 202.7 95% H-Stat UCL 26.18 DL/2 is not a recommended method, provided for comparisons and historical reasons View Scale View Scale	KM Standard Error of Mean (logged)	0.152		
DL/2 StatisticsDL/2 NormalDL/2 Log-TransformedMean in Original Scale81.24Mean in Log Scale2.141SD in Original Scale473.4SD in Log Scale1.15795% t UCL (Assumes normality)202.795% H-Stat UCL26.18DL/2 is not a recommended method, provided for comparisons and historical reasons				
DL/2 NormalDL/2 Log-TransformedMean in Original Scale81.24Mean in Log Scale2.141SD in Original Scale473.4SD in Log Scale1.15795% t UCL (Assumes normality)202.795% H-Stat UCL26.18DL/2 is not a recommended method, provided for comparisons and historical reasons		DL/2 St	atistics	
Mean in Original Scale81.24Mean in Log Scale2.141SD in Original Scale473.4SD in Log Scale1.15795% t UCL (Assumes normality)202.795% H-Stat UCL26.18DL/2 is not a recommended method, provided for comparisons and historical reasons	DL/2 Normal		DL/2 Log-Transformed	
SD in Original Scale 473.4 SD in Log Scale 1.157 95% t UCL (Assumes normality) 202.7 95% H-Stat UCL 26.18 DL/2 is not a recommended method, provided for comparisons and historical reasons	Mean in Original Scale	81.24	- Mean in Log Scale	2.141
95% t UCL (Assumes normality) 202.7 95% H-Stat UCL 26.18 DL/2 is not a recommended method, provided for comparisons and historical reasons	SD in Original Scale	473.4	SD in Log Scale	1.157
DL/2 is not a recommended method, provided for comparisons and historical reasons	95% t UCL (Assumes normality)	202.7	95% H-Stat UCL	26.18
	DL/2 is not a recommended me	thod, provid	led for comparisons and historical reasons	

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 397.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	13	Number of Distinct Observations	3
Number of Detects	2	Number of Non-Detects	11
Number of Distinct Detects	2	Number of Distinct Non-Detects	1
Minimum Detect	140	Minimum Non-Detect	50
Maximum Detect	340	Maximum Non-Detect	50
Variance Detects	20000	Percent Non-Detects	84.62%
Mean Detects	240	SD Detects	141.4
Median Detects	240	CV Detects	0.589
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	5.385	SD of Logged Detects	0.627

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Normal GOF Test on Detects Only Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

30.98	KM Standard Error of Mean	79.23	KM Mean
N/A	95% KM (BCA) UCL	78.98	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	134.4	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	130.2	95% KM (z) UCL
214.3	95% KM Chebyshev UCL	172.2	90% KM Chebyshev UCL
387.5	99% KM Chebyshev UCL	272.7	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE)	5.405	k star (bias corrected MLE)	N/A
Theta hat (MLE)	44.4	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	21.62	nu star (bias corrected)	N/A
Mean (detects)	240		

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	79.23	SD (KM)	78.98
Variance (KM)	6238	SE of Mean (KM)	30.98
k hat (KM)	1.006	k star (KM)	0.825
nu hat (KM)	26.17	nu star (KM)	21.46
theta hat (KM)	78.73	theta star (KM)	95.99
80% gamma percentile (KM)	129.3	90% gamma percentile (KM)	191.2
95% gamma percentile (KM)	254.2	99% gamma percentile (KM)	402.4

Gamma Kaplan-Meier (KM) Statistics

- 5 95% Gamma Adjusted KM-UCL (use when n<50) 155.5
- Approximate Chi Square Value (21.46, α)11.9395% Gamma Approximate KM-UCL (use when n>=50)142.5

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

45	Mean in Log Scale	1.9
96.38	SD in Log Scale	2.189
92.64	95% Percentile Bootstrap UCL	93.72
125.6	95% Bootstrap t UCL	346
1990		
	45 96.38 92.64 125.6 1990	45Mean in Log Scale96.38SD in Log Scale92.6495% Percentile Bootstrap UCL125.695% Bootstrap t UCL1990

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	4.139	KM Geo Mean	62.72
KM SD (logged)	0.559	95% Critical H Value (KM-Log)	2.183
KM Standard Error of Mean (logged)	0.219	95% H-UCL (KM -Log)	104.3
KM SD (logged)	0.559	95% Critical H Value (KM-Log)	2.183
KM Standard Error of Mean (logged)	0.219		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed	insformed	
Mean in Original Scale	58.08	Mean in Log Scale	3.552
SD in Original Scale	90.47	SD in Log Scale	0.833
95% t UCL (Assumes normality)	102.8	95% H-Stat UCL	91.69

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 214.3

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	46	Number of Distinct Observations	11
Number of Detects	13	Number of Non-Detects	33
Number of Distinct Detects	11	Number of Distinct Non-Detects	1
Minimum Detect	5	Minimum Non-Detect	5
Maximum Detect	5552	Maximum Non-Detect	5
Variance Detects	2347047	Percent Non-Detects	71.74%
Mean Detects	457.1	SD Detects	1532
Median Detects	16	CV Detects	3.352
Skewness Detects	3.596	Kurtosis Detects	12.95
Mean of Logged Detects	3.229	SD of Logged Detects	1.882

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.332	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.482	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data Not Normal at 5% Significance Level
		10 1

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

124.1	KM Standard Error of Mean	132.8	KM Mean
373.9	95% KM (BCA) UCL	808.5	KM SD
374.1	95% KM (Percentile Bootstrap) UCL	341.1	95% KM (t) UCL
20589	95% KM Bootstrap t UCL	336.9	95% KM (z) UCL
673.6	95% KM Chebyshev UCL	505	90% KM Chebyshev UCL
1367	99% KM Chebyshev UCL	907.6	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.949	Anderson-Darling GOF Test
5% A-D Critical Value	0.853	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.458	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.259	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.24	k star (bias corrected MLE)	0.246	k hat (MLE)
1901	Theta star (bias corrected MLE)	1859	Theta hat (MLE)
6.252	nu star (bias corrected)	6.394	nu hat (MLE)
		457.1	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	129.2
Maximum	5552	Median	0.01
SD	818	CV	6.332
k hat (MLE)	0.111	k star (bias corrected MLE)	0.118
---	-------------	--	--------
Theta hat (MLE)	1169	Theta star (bias corrected MLE)	1096
nu hat (MLE)	10.17	nu star (bias corrected)	10.84
Adjusted Level of Significance (β)	0.0448		
Approximate Chi Square Value (10.84, α)	4.474	Adjusted Chi Square Value (10.84, β)	4.341
95% Gamma Approximate UCL (use when n>=50)	313	95% Gamma Adjusted UCL (use when n<50)	322.6
Estimates of Ga	amma Para	meters using KM Estimates	
Mean (KM)	132.8	SD (KM)	808.5
Variance (KM)	653708	SE of Mean (KM)	124.1
k hat (KM)	0.027	k star (KM)	0.0397
nu hat (KM)	2.481	nu star (KM)	3.652
theta hat (KM)	4924	theta star (KM)	3344
80% gamma percentile (KM)	7.033	90% gamma percentile (KM)	142
95% gamma percentile (KM)	634.1	99% gamma percentile (KM)	3146
Gamma	a Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (3.65, α)	0.589	Adjusted Chi Square Value (3.65, β)	0.553
95% Gamma Approximate KM-UCL (use when n>=50)	822.8	95% Gamma Adjusted KM-UCL (use when n<50)	876.3
95% Gamma Adjuste	ed KM-UCL	(use when k<=1 and 15 < n < 50)	
		· /	
Lognormal GO	F Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.715	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.866	Detected Data Not Lognormal at 5% Significance Lev	el
Lilliefors Test Statistic	0.332	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.234	Detected Data Not Lognormal at 5% Significance Lev	el
Detected Data N	lot Lognorn	nal at 5% Significance Level	
Lognormal ROS	Statistics	Using Imputed Non-Detects	
Mean in Original Scale	129.4	Mean in Log Scale	-1.359
SD in Original Scale	818	SD in Log Scale	3.789
95% t UCL (assumes normality of ROS data)	331.9	95% Percentile Bootstrap UCL	367.8
95% BCA Bootstrap UCL	497.5	95% Bootstrap t UCL	15071
95% H-UCL (Log ROS)	11229		
Statistics using KM estimates of	on Logged I	Data and Assuming Lognormal Distribution	
KM Mean (logged)	2.067	KM Geo Mean	7.902
KM SD (logged)	1.206	95% Critical H Value (KM-Log)	2.556
KM Standard Error of Mean (logged)	0.185	95% H-UCL (KM -Log)	25.9
KM SD (logged)	1.206	95% Critical H Value (KM-Log)	2.556
KM Standard Error of Mean (logged)	0.185		
	DL/2 S	tatistics	

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	131	Mean in Log Scale	1.57
SD in Original Scale	817.7	SD in Log Scale	1.433
95% t UCL (Assumes normality)	333.5	95% H-Stat UCL	24.54

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 673.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Total Number of Observations	43	Number of Distinct Observations	21
Number of Detects	42	Number of Non-Detects	1
Number of Distinct Detects	20	Number of Distinct Non-Detects	1
Minimum Detect	4	Minimum Non-Detect	5
Maximum Detect	115	Maximum Non-Detect	5
Variance Detects	239.6	Percent Non-Detects	2.326%
Mean Detects	22.47	SD Detects	15.48
Median Detects	20.8	CV Detects	0.689
Skewness Detects	5.384	Kurtosis Detects	32.94
Mean of Logged Detects	3.001	SD of Logged Detects	0.449

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.434	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.942	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.338	Lilliefors GOF Test
5% Lilliefors Critical Value	0.135	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	22.04	KM Standard Error of Mean	2.372
KM SD	15.37	95% KM (BCA) UCL	26.69
95% KM (t) UCL	26.03	95% KM (Percentile Bootstrap) UCL	26.25
95% KM (z) UCL	25.94	95% KM Bootstrap t UCL	30.49
90% KM Chebyshev UCL	29.15	95% KM Chebyshev UCL	32.38
97.5% KM Chebyshev UCL	36.85	99% KM Chebyshev UCL	45.64

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	4.053	Anderson-Darling GOF Test
5% A-D Critical Value	0.752	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.245	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.137	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

4.34	k star (bias corrected MLE)	4.657	k hat (MLE)
5.176	Theta star (bias corrected MLE)	4.824	Theta hat (MLE)
364.6	nu star (bias corrected)	391.2	nu hat (MLE)
		22.47	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

Minimum	4	Mean	22.07
Maximum	115	Median	20.8
SD	15.52	CV	0.703

k hat (MLE)	4.176	k star (bias corrected MLE)	3.9
Theta hat (MLE)	5.284	Theta star (bias corrected MLE)	5.658
nu hat (MLE)	359.1	nu star (bias corrected)	335.4
Adjusted Level of Significance (β)	0.0444		
Approximate Chi Square Value (335.38, α)	294	Adjusted Chi Square Value (335.38, β)	292.6
95% Gamma Approximate UCL (use when n>=50)	25.18	95% Gamma Adjusted UCL (use when n<50)	25.29
Estimates of Ga	amma Para	ameters using KM Estimates	
Mean (KM)	22.04	SD (KM)	15.37
Variance (KM)	236.2	SE of Mean (KM)	2.372
k hat (KM)	2.056	k star (KM)	1.928
nu hat (KM)	176.8	nu star (KM)	165.8
theta hat (KM)	10.72	theta star (KM)	11.43
80% gamma percentile (KM)	33.14	90% gamma percentile (KM)	43.23
95% gamma percentile (KM)	52.88	99% gamma percentile (KM)	74.33
Gamma	a Kaplan-N	leier (KM) Statistics	
Approximate Chi Square Value (165.83, α)	137.1	Adjusted Chi Square Value (165.83, β)	136.2
95% Gamma Approximate KM-UCL (use when n>=50)	26.66	95% Gamma Adjusted KM-UCL (use when n<50)	26.84
		Detected Observations Only	
Lognormal GO		Shopiro Wilk GOE Toot	
Shapiro Wilk Critical Value	0.755	Shapiro wilk GOF Test	~1
5% Shapiro Wik Chucal Value	0.942	Lillioforn COE Tost	-1
5% Lilliofora Critical Value	0.212	Detected Data Net Legnermal at 5% Significance Lev	~
	lot Lognor	mal at 5% Significance Level	51
Lognormal ROS	Statistics	Using Imputed Non-Detects	
Mean in Original Scale	22.15	Mean in Log Scale	2.981
SD in Original Scale	15.44	SD in Log Scale	0.461
95% t UCL (assumes normality of ROS data)	26.11	95% Percentile Bootstrap UCL	26.73
95% BCA Bootstrap UCL	29.34	95% Bootstrap t UCL	30.93
95% H-UCL (Log ROS)	25.06		
Statistics using KM estimates of	on Logged	Data and Assuming Lognormal Distribution	
KM Mean (logged)	2.963	KM Geo Mean	19.36
KM SD (logged)	0.501	95% Critical H Value (KM-Log)	1.902
KM Standard Error of Mean (logged)	0.0773	95% H-UCL (KM -Log)	25.43
KM SD (logged)	0.501	95% Critical H Value (KM-Log)	1.902
KM Standard Error of Mean (logged)	0.0773		
	DL/2 \$	Statistics	
DL/2 Normal		DL/2 Log-Transformed	• • = -
Mean in Original Scale	22	Mean in Log Scale	2.952
SD in Original Scale	15.59	SD in Log Scale	0.545
95% t UCL (Assumes normality)	26	95% H-Stat UCL	26.15
DL/2 is not a recommended me	thod, prov	ided for comparisons and historical reasons	

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 26.03 95% KM (BCA) UCL 26.69

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Total Number of Observations	43	Number of Distinct Observations	11
Number of Detects	12	Number of Non-Detects	31
Number of Distinct Detects	9	Number of Distinct Non-Detects	2
Minimum Detect	5.3	Minimum Non-Detect	1
Maximum Detect	25	Maximum Non-Detect	5
Variance Detects	58.58	Percent Non-Detects	72.09%
Mean Detects	12.9	SD Detects	7.654
Median Detects	9	CV Detects	0.593
Skewness Detects	0.785	Kurtosis Detects	-1.275
Mean of Logged Detects	2.403	SD of Logged Detects	0.571

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.805	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.278	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	4.321	KM Standard Error of Mean	1.05
KM SD	6.594	95% KM (BCA) UCL	6.891
95% KM (t) UCL	6.087	95% KM (Percentile Bootstrap) UCL	6.767
95% KM (z) UCL	6.048	95% KM Bootstrap t UCL	6.739
90% KM Chebyshev UCL	7.472	95% KM Chebyshev UCL	8.899
97.5% KM Chebyshev UCL	10.88	99% KM Chebyshev UCL	14.77

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.822	Anderson-Darling GOF Test
5% A-D Critical Value	0.738	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.253	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.247	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

2.608	k star (bias corrected MLE)	3.404	k hat (MLE)
4.946	Theta star (bias corrected MLE)	3.79	Theta hat (MLE)
62.6	nu star (bias corrected)	81.69	nu hat (MLE)
		12.9	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

Minimum	0.01	Mean	3.739
Maximum	25	Median	0.01
SD	6.99	CV	1.87

k hat (MLE)	0.206	k star (bias corrected MLE)	0.207
Theta hat (MLE)	18.12	Theta star (bias corrected MLE)	18.03
nu hat (MLE)	17.74	nu star (bias corrected)	17.84
Adjusted Level of Significance (β)	0.0444		
Approximate Chi Square Value (17.84, α)	9.273	Adjusted Chi Square Value (17.84, β)	9.058
95% Gamma Approximate UCL (use when n>=50)	7.191	95% Gamma Adjusted UCL (use when n<50)	7.362
Estimates of Ga	mma Para	meters using KM Estimates	
Mean (KM)	4.321	SD (KM)	6.594
Variance (KM)	43.48	SE of Mean (KM)	1.05
k hat (KM)	0.429	k star (KM)	0.415
nu hat (KM)	36.93	nu star (KM)	35.69
theta hat (KM)	10.06	theta star (KM)	10.41
80% gamma percentile (KM)	7.002	90% gamma percentile (KM)	12.12
95% gamma percentile (KM)	17.73	99% gamma percentile (KM)	31.76
0			
Gamma	Kapian-M	eler (KM) Statistics	22.66
Approximate Chi Square value $(55.69, \alpha)$	23.02	Adjusted Chi Square Value (35.09, p)	22.00
35% Gamma Approximate KM-OCL (use when h~-50)	0.099		0.004
Lognormal GOF	Test on D	Detected Observations Only	
Shapiro Wilk Test Statistic	0.876	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Lev	vel
Lilliefors Test Statistic	0.224	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.243	Detected Data appear Lognormal at 5% Significance Lev	/el
Detected Data app	ear Logno	rmal at 5% Significance Level	
Lognormal ROS	Statistics	Using Imputed Non-Detects	
Mean in Original Scale	4.927	Mean in Log Scale	0.908
SD in Original Scale	6.456	SD in Log Scale	1.208
95% t UCL (assumes normality of ROS data)	6.583	95% Percentile Bootstrap UCL	6.664
95% BCA Bootstrap UCL	6.912	95% Bootstrap t UCL	7.066
95% H-UCL (Log ROS)	8.363		
Statistics using KM estimates o			1 056
KM Mean (logged)	0.671		1.950
KM Stondard Error of Moon (logged)	0.179		2.493
KM Standard Error of Mean (logged)	0.170	95% FUCL (KM -Log)	0.0 2.402
KM Standard Error of Maan (logged)	0 178	95% Chucal H Value (RM-LOY)	2.493
Kin Standard Error of Mean (logged)	0.176		
	DL/2 S	statistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	5.263	- Mean in Log Scale	1.219
SD in Original Scale	6.222	SD in Log Scale	0.899
95% t UCL (Assumes normality)	6.859	95% H-Stat UCL	6.93
DI /Q is not a recommended met	had provid	ded for comparisons and historical reasons	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 5.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Total Number of Observations	35	Number of Distinct Observations	10
Number of Detects	10	Number of Non-Detects	25
Number of Distinct Detects	9	Number of Distinct Non-Detects	1
Minimum Detect	5.6	Minimum Non-Detect	5
Maximum Detect	8.6	Maximum Non-Detect	5
Variance Detects	0.92	Percent Non-Detects	71.43%
Mean Detects	6.88	SD Detects	0.959
Median Detects	6.55	CV Detects	0.139
Skewness Detects	0.753	Kurtosis Detects	-0.493
Mean of Logged Detects	1.92	SD of Logged Detects	0.135

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.9	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.274	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data Not Normal at 5% Significance Level
Detected Data appear A	pproxima	te Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	5.537	KM Standard Error of Mean	0.174
KM SD	0.979	95% KM (BCA) UCL	5.843
95% KM (t) UCL	5.832	95% KM (Percentile Bootstrap) UCL	5.826
95% KM (z) UCL	5.824	95% KM Bootstrap t UCL	5.894
90% KM Chebyshev UCL	6.06	95% KM Chebyshev UCL	6.297
97.5% KM Chebyshev UCL	6.626	99% KM Chebyshev UCL	7.272

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.538	Anderson-Darling GOF Test		
5% A-D Critical Value	0.724	Detected data appear Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.264	Kolmogorov-Smirnov GOF		
5% K-S Critical Value	0.266	Detected data appear Gamma Distributed at 5% Significance Level		
Detected data appear Comma Distributed at EV Significance Loval				

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

41.82	k star (bias corrected MLE)	59.65	k hat (MLE)
0.164	Theta star (bias corrected MLE)	0.115	Theta hat (MLE)
836.5	nu star (bias corrected)	1193	nu hat (MLE)
		6.88	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

4.529	Mean	0.90	Minimum
4.418	Median	8.6	Maximum
0.42	CV	1.90	SD
4.547	k star (bias corrected MLE)	4.95	k hat (MLE)
0.996	Theta star (bias corrected MLE)	0.91	Theta hat (MLE)
318.3	nu star (bias corrected)	346.7	nu hat (MLE)

Adjusted Level of Significance (β)	0.0425		
Approximate Chi Square Value (318.29, α)	278	Adjusted Chi Square Value (318.29, β)	276.2
95% Gamma Approximate UCL (use when n>=50)	5.186	95% Gamma Adjusted UCL (use when n<50)	5.219
Estimates of Ga	amma Paran	neters using KM Estimates	
Mean (KM)	5.537	SD (KM)	0.979
Variance (KM)	0.958	SE of Mean (KM)	0.174
k hat (KM)	32.01	k star (KM)	29.29
nu hat (KM)	2241	nu star (KM)	2050
theta hat (KM)	0.173	theta star (KM)	0.189
80% gamma percentile (KM)	6.375	90% gamma percentile (KM)	6.882
95% gamma percentile (KM)	7.321	99% gamma percentile (KM)	8.191
Gamma	a Kaplan-Me	er (KM) Statistics	
Approximate Chi Square Value (N/A, α)	1946	Adjusted Chi Square Value (N/A, β)	1941
95% Gamma Approximate KM-UCL (use when n>=50)	5.834	95% Gamma Adjusted KM-UCL (use when n<50)	5.848
Lognormal GO	F Test on De	etected Observations Only	
Shapiro Wilk Test Statistic	0.92	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Le	evel
Lilliefors Test Statistic	0.253	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.262	Detected Data appear Lognormal at 5% Significance Le	evel
Detected Data ap	pear Lognor	mal at 5% Significance Level	

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	4.969	Mean in Log Scale	1.56
SD in Original Scale	1.491	SD in Log Scale	0.297
95% t UCL (assumes normality of ROS data)	5.395	95% Percentile Bootstrap UCL	5.384
95% BCA Bootstrap UCL	5.417	95% Bootstrap t UCL	5.436
95% H-UCL (Log ROS)	5.452		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.698	KM Geo Mean	5.464
KM SD (logged)	0.156	95% Critical H Value (KM-Log)	1.729
KM Standard Error of Mean (logged)	0.0278	95% H-UCL (KM -Log)	5.794
KM SD (logged)	0.156	95% Critical H Value (KM-Log)	1.729
KM Standard Error of Mean (logged)	0.0278		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	3.751	Mean in Log Scale	1.203
SD in Original Scale	2.067	SD in Log Scale	0.465
95% t UCL (Assumes normality)	4.342	95% H-Stat UCL	4.325

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 5.832

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Total Number of Observations	8	Number of Distinct Observations	8
Number of Detects	3	Number of Non-Detects	5
Number of Distinct Detects	3	Number of Distinct Non-Detects	5
Minimum Detect	0.0925	Minimum Non-Detect	0.0723
Maximum Detect	0.349	Maximum Non-Detect	0.107
Variance Detects	0.018	Percent Non-Detects	62.5%
Mean Detects	0.198	SD Detects	0.134
Median Detects	0.153	CV Detects	0.677
Skewness Detects	1.344	Kurtosis Detects	N/A
Mean of Logged Detects	-1.77	SD of Logged Detects	0.67

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.915	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.299	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.425	Detected Data appear Normal at 5% Significance Level	
Detected Data appear Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.12	KM Standard Error of Mean	0.0392
KM SD	0.0904	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.194	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.184	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.237	95% KM Chebyshev UCL	0.291
97.5% KM Chebyshev UCL	0.365	99% KM Chebyshev UCL	0.51

Gamma GOF Tests on Detected Observations Only Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	3.457	k hat (MLE)
N/A	Theta star (bias corrected MLE)	0.0573	Theta hat (MLE)
N/A	nu star (bias corrected)	20.74	nu hat (MLE)
		0.198	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Mean 0.0806

Maximum	0.349	Median	0.01
SD	0.121	CV	1.501
k hat (MLE)	0.603	k star (bias corrected MLE)	0.46
Theta hat (MLE)	0.134	Theta star (bias corrected MLE)	0.175
nu hat (MLE)	9.653	nu star (bias corrected)	7.366
Adjusted Level of Significance (β)	0.0195		
Approximate Chi Square Value (7.37, α)	2.374	Adjusted Chi Square Value (7.37, β)	1.722
95% Gamma Approximate UCL (use when n>=50)	0.25	95% Gamma Adjusted UCL (use when n<50)	N/A
Estimates of Ga	mma Parame	ters using KM Estimates	
Mean (KM)	0.12	SD (KM)	0.0904
Variance (KM)	0.00817	SE of Mean (KM)	0.0392
k hat (KM)	1.763	k star (KM)	1.185
nu hat (KM)	28.2	nu star (KM)	18.96
theta hat (KM)	0.0681	theta star (KM)	0.101
80% gamma percentile (KM)	0.19	90% gamma percentile (KM)	0.265
95% gamma percentile (KM)	0.339	99% gamma percentile (KM)	0.508
Gamma	Kaplan-Meie	er (KM) Statistics	
Approximate Chi Square Value (18.96, α)	10.09	Adjusted Chi Square Value (18.96, β)	8.501
95% Gamma Approximate KM-UCL (use when n>=50)	0.226	95% Gamma Adjusted KM-UCL (use when n<50)	0.268
Lognormal GOF	- Test on Dete	ected Observations Only	
Shapiro Wilk Test Statistic	0.981	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Le	vel
Lilliefors Test Statistic	0.23	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.425	Detected Data appear Lognormal at 5% Significance Le	vel
Detected Data app	ear Lognorm	al at 5% Significance Level	
Lognormal ROS	Statistics Us	ing Imputed Non-Detects	
Mean in Original Scale	0.0888	Mean in Log Scale	-3.021
SD in Original Scale	0.116	SD in Log Scale	1.101
95% t UCL (assumes normality of ROS data)	0.166	95% Percentile Bootstrap UCL	0.161
95% BCA Bootstrap UCL	0.179	95% Bootstrap t UCL	0.354
95% H-UCL (Log ROS)	0.412		
Statistics using KM estimates o	n Logged Dat	ta and Assuming Lognormal Distribution	
KM Mean (logged)	-2.299	KM Geo Mean	0.1
KM SD (logged)	0.531	95% Critical H Value (KM-Log)	2.407
KM Standard Error of Mean (logged)	0.231	95% H-UCL (KM -Log)	0.187
KM SD (logged)	0.531	95% Critical H Value (KM-Log)	2.407
KM Standard Error of Mean (logged)	0.231		
	DL/2 Stat	istics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.101	Mean in Log Scale	-2.639
SD in Original Scale	0.108	SD in Log Scale	0.812
95% t UCL (Assumes normality)	0.173	95% H-Stat UCL	0.248
DL/2 is not a recommended me	thod, provide	d for comparisons and historical reasons	
Nonparamet	ric Distributio	n Free UCL Statistics	

Detected Data appear Normal Distributed at 5% Significance Level

95% KM (t) UCL 0.194

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Total Number of Observations	35	Number of Distinct Observations	14
Number of Detects	14	Number of Non-Detects	21
Number of Distinct Detects	13	Number of Distinct Non-Detects	1
Minimum Detect	6.1	Minimum Non-Detect	5
Maximum Detect	17.4	Maximum Non-Detect	5
Variance Detects	9.721	Percent Non-Detects	60%
Mean Detects	9.371	SD Detects	3.118
Median Detects	8.3	CV Detects	0.333
Skewness Detects	1.593	Kurtosis Detects	2.332
Mean of Logged Detects	2.195	SD of Logged Detects	0.292

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.826	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.244	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.226	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	6.749	KM Standard Error of Mean	0.502
KM SD	2.863	95% KM (BCA) UCL	7.594
95% KM (t) UCL	7.598	95% KM (Percentile Bootstrap) UCL	7.574
95% KM (z) UCL	7.575	95% KM Bootstrap t UCL	7.919
90% KM Chebyshev UCL	8.255	95% KM Chebyshev UCL	8.938
97.5% KM Chebyshev UCL	9.885	99% KM Chebyshev UCL	11.75

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.722	Anderson-Darling GOF Test	
5% A-D Critical Value	0.734	Detected data appear Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.201	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.229	Detected data appear Gamma Distributed at 5% Significance Level	
Detected data appear Commo Distributed at 5% Significance Level			

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	11.81	k star (bias corrected MLE)	9.324
Theta hat (MLE)	0.794	Theta star (bias corrected MLE)	1.005
nu hat (MLE)	330.6	nu star (bias corrected)	261.1
Mean (detects)	9.371		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

Minimum	0.01	Mean	4.835
Maximum	17.4	Median	3.93
SD	4.435	CV	0.917
k hat (MLE)	0.489	k star (bias corrected MLE)	0.466
Theta hat (MLE)	9.88	Theta star (bias corrected MLE)	10.36
nu hat (MLE)	34.26	nu star (bias corrected)	32.65

Estimates of Gamma Parameters using KM Estimates					
95% Gamma Approximate UCL (use when n>=50)	7.667	95% Gamma Adjusted UCL (use when n<50)			
Approximate Chi Square Value (32.65, α)	20.59	Adjusted Chi Square Value (32.65, β)			
Adjusted Level of Significance (β)	0.0425				

2.863	SD (KM)	6.749	Mean (KM)
0.502	SE of Mean (KM)	8.197	Variance (KM)
5.099	k star (KM)	5.556	k hat (KM)
356.9	nu star (KM)	388.9	nu hat (KM)
1.324	theta star (KM)	1.215	theta hat (KM)
10.75	90% gamma percentile (KM)	9.052	80% gamma percentile (KM)
15.56	99% gamma percentile (KM)	12.29	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (356.93, α)	314.2	Adjusted Chi Square Value (356.93, β)	312.3
95% Gamma Approximate KM-UCL (use when n>=50)	7.668	95% Gamma Adjusted KM-UCL (use when n<50)	7.714

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.909	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.874	Detected Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.181	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.226	Detected Data appear Lognormal at 5% Significance Level		
Detected Data appear Lognormal at 5% Significance Level				

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	6.013	Mean in Log Scale	1.642
SD in Original Scale	3.507	SD in Log Scale	0.56
95% t UCL (assumes normality of ROS data)	7.015	95% Percentile Bootstrap UCL	7.004
95% BCA Bootstrap UCL	7.027	95% Bootstrap t UCL	7.187
95% H-UCL (Log ROS)	7.32		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.844	KM Geo Mean	6.319
KM SD (logged)	0.337	95% Critical H Value (KM-Log)	1.824
KM Standard Error of Mean (logged)	0.0592	95% H-UCL (KM -Log)	7.434
KM SD (logged)	0.337	95% Critical H Value (KM-Log)	1.824
KM Standard Error of Mean (logged)	0.0592		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	5.249	Mean in Log Scale	1.428
SD in Original Scale	3.922	SD in Log Scale	0.661
95% t UCL (Assumes normality)	6.37	95% H-Stat UCL	6.567

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 7.714

95% GROS Adjusted Gamma UCL 7.841

20.14

7.841

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Total Number of Observations	33	Number of Distinct Observations	17
Number of Detects	20	Number of Non-Detects	13
Number of Distinct Detects	17	Number of Distinct Non-Detects	1
Minimum Detect	5	Minimum Non-Detect	5
Maximum Detect	68	Maximum Non-Detect	5
Variance Detects	247.2	Percent Non-Detects	39.39%
Mean Detects	14.87	SD Detects	15.72
Median Detects	9.8	CV Detects	1.058
Skewness Detects	2.508	Kurtosis Detects	6.587
Mean of Logged Detects	2.376	SD of Logged Detects	0.737

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.639	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.905	Detected Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.347	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.192	Detected Data Not Normal at 5% Significance Level		
Detected Data Not Normal at 5% Significance Level				

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	10.98	KM Standard Error of Mean	2.298
KM SD	12.87	95% KM (BCA) UCL	15.18
95% KM (t) UCL	14.87	95% KM (Percentile Bootstrap) UCL	14.67
95% KM (z) UCL	14.76	95% KM Bootstrap t UCL	18.74
90% KM Chebyshev UCL	17.87	95% KM Chebyshev UCL	21
97.5% KM Chebyshev UCL	25.33	99% KM Chebyshev UCL	33.85

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.618	Anderson-Darling GOF Test			
5% A-D Critical Value	0.756	Detected Data Not Gamma Distributed at 5% Significance Level			
K-S Test Statistic	0.264	Kolmogorov-Smirnov GOF			
5% K-S Critical Value	0.197	Detected Data Not Gamma Distributed at 5% Significance Level			
Detected Date Not Co	Detected Date Nat Comme Distributed at 5% Significance Level				

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.476	k star (bias corrected MLE)	1.697	k hat (MLE)
10.07	Theta star (bias corrected MLE)	8.757	Theta hat (MLE)
59.05	nu star (bias corrected)	67.9	nu hat (MLE)
		14.87	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

Minimum	0.01	Mean	9.013
Maximum	68	Median	5.9
SD	14.18	CV	1.573
k hat (MLE)	0.272	k star (bias corrected MLE)	0.268
Theta hat (MLE)	33.1	Theta star (bias corrected MLE)	33.66
nu hat (MLE)	17.97	nu star (bias corrected)	17.67

	0.0419	Adjusted Level of Significance (β)
Adjusted Chi Square Value (17.67, β)	9.154	Approximate Chi Square Value (17.67, α)
95% Gamma Adjusted UCL (use when n<50)	17.4	95% Gamma Approximate UCL (use when n>=50)

Estimates of Ga	imma Para	ameters using KM Estimates	
Mean (KM)	10.98	SD (KM)	12.87
Variance (KM)	165.6	SE of Mean (KM)	2.298
k hat (KM)	0.728	k star (KM)	0.682
nu hat (KM)	48.04	nu star (KM)	45.01
theta hat (KM)	15.08	theta star (KM)	16.1
80% gamma percentile (KM)	18.06	90% gamma percentile (KM)	27.73
95% gamma percentile (KM)	37.72	99% gamma percentile (KM)	61.63
Gamma	Kaplan-N	leier (KM) Statistics	
Approximate Chi Square Value (45.01, α)	30.62	Adjusted Chi Square Value (45.01, β)	30.01
Approximate KM-UCL (use when n>=50)	16.14	95% Gamma Adjusted KM-UCL (use when n<50)	16.47
Lognormal GOF	Test on	Detected Observations Only	

8.838

18.02

Shapiro Wilk Test Statistic	0.86	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.905	Detected Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.199	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.192	Detected Data Not Lognormal at 5% Significance Level	
Detected Data Not Lognormal at 5% Significance Level			

Mean in Original Scale	9.747	Mean in Log Scale	1.634
SD in Original Scale	13.74	SD in Log Scale	1.15
95% t UCL (assumes normality of ROS data)	13.8	95% Percentile Bootstrap UCL	14
95% BCA Bootstrap UCL	15.83	95% Bootstrap t UCL	16.89
95% H-UCL (Log ROS)	16.92		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.074	KM Geo Mean	7.959
KM SD (logged)	0.673	95% Critical H Value (KM-Log)	2.086
KM Standard Error of Mean (logged)	0.12	95% H-UCL (KM -Log)	12.79
KM SD (logged)	0.673	95% Critical H Value (KM-Log)	2.086
KM Standard Error of Mean (logged)	0.12		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.994	Mean in Log Scale	1.801
SD in Original Scale	13.58	SD in Log Scale	0.92
95% t UCL (Assumes normality)	14	95% H-Stat UCL	13.56

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 21

95% Gamma

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Total Number of Observations	50	Number of Distinct Observations	25
Number of Detects	27	Number of Non-Detects	23
Number of Distinct Detects	24	Number of Distinct Non-Detects	1
Minimum Detect	5.5	Minimum Non-Detect	5
Maximum Detect	1230	Maximum Non-Detect	5
Variance Detects	64078	Percent Non-Detects	46%
Mean Detects	112.2	SD Detects	253.1
Median Detects	25	CV Detects	2.255
Skewness Detects	3.769	Kurtosis Detects	15.47
Mean of Logged Detects	3.523	SD of Logged Detects	1.406

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.457	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.923	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.358	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.167	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	62.91	KM Standard Error of Mean	27.41
KM SD	190.2	95% KM (BCA) UCL	114.6
95% KM (t) UCL	108.9	95% KM (Percentile Bootstrap) UCL	113.7
95% KM (z) UCL	108	95% KM Bootstrap t UCL	184.9
90% KM Chebyshev UCL	145.1	95% KM Chebyshev UCL	182.4
97.5% KM Chebyshev UCL	234.1	99% KM Chebyshev UCL	335.6

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.133	A-D Test Statistic		
Detected Data Not Gamma Distributed at 5% Significance Lev	0.805	5% A-D Critical Value		
Kolmogorov-Smirnov GOF	0.242	K-S Test Statistic		
Detected Data Not Gamma Distributed at 5% Significance Lev	0.178	5% K-S Critical Value		
Detected Date Not Commo Distributed at 5% Significance Level				

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.526	k star (bias corrected MLE)	0.493
Theta hat (MLE)	213.2	Theta star (bias corrected MLE)	227.9
nu hat (MLE)	28.42	nu star (bias corrected)	26.6
Mean (detects)	112.2		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

Minimum	0.01	Mean	60.61
Maximum	1230	Median	6
SD	192.9	CV	3.182
k hat (MLE)	0.174	k star (bias corrected MLE)	0.177
Theta hat (MLE)	348.3	Theta star (bias corrected MLE)	342.6
nu hat (MLE)	17.4	nu star (bias corrected)	17.69

- Adjusted Level of Significance (β) 0.0452
- Approximate Chi Square Value (17.69, α) 9.168
- 95% Gamma Approximate UCL (use when n>=50) 117

Adjusted Chi Square Value (17.69, β) 8.985

95% Gamma Adjusted UCL (use when n<50) 119.3

Mean (KM)	62.91	SD (KM)	190.2
Variance (KM)	36177	SE of Mean (KM)	27.41
k hat (KM)	0.109	k star (KM)	0.116
nu hat (KM)	10.94	nu star (KM)	11.62
theta hat (KM)	575.1	theta star (KM)	541.6
80% gamma percentile (KM)	53.14	90% gamma percentile (KM)	176.6
95% gamma percentile (KM)	360.4	99% gamma percentile (KM)	926.1

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (11.62, α)	4.976	Adjusted Chi Square Value (11.62, β)	4.846
95% Gamma Approximate KM-UCL (use when n>=50)	146.9	95% Gamma Adjusted KM-UCL (use when n<50)	150.8

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.93	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.923	Detected Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.116	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.167	Detected Data appear Lognormal at 5% Significance Level	
Detected Data appear Lognormal at 5% Significance Level			

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	61.23	Mean in Log Scale	1.772
SD in Original Scale	192.7	SD in Log Scale	2.34
95% t UCL (assumes normality of ROS data)	106.9	95% Percentile Bootstrap UCL	112.1
95% BCA Bootstrap UCL	138.4	95% Bootstrap t UCL	231.1
95% H-UCL (Log ROS)	358.5		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.643	KM Geo Mean	14.05
KM SD (logged)	1.392	95% Critical H Value (KM-Log)	2.803
KM Standard Error of Mean (logged)	0.201	95% H-UCL (KM -Log)	64.67
KM SD (logged)	1.392	95% Critical H Value (KM-Log)	2.803
KM Standard Error of Mean (logged)	0.201		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	61.76	Mean in Log Scale	2.324
SD in Original Scale	192.5	SD in Log Scale	1.665
95% t UCL (Assumes normality)	107.4	95% H-Stat UCL	86.58

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 64.67

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Total Number of Observations	33	Number of Distinct Observations	30
Number of Detects	30	Number of Non-Detects	3
Number of Distinct Detects	29	Number of Distinct Non-Detects	1
Minimum Detect	3	Minimum Non-Detect	1.5
Maximum Detect	209	Maximum Non-Detect	1.5
Variance Detects	1304	Percent Non-Detects	9.091%
Mean Detects	22.92	SD Detects	36.12
Median Detects	15.55	CV Detects	1.576
Skewness Detects	5.028	Kurtosis Detects	26.57
Mean of Logged Detects	2.756	SD of Logged Detects	0.737

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.381	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.927	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.366	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.159	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	20.98	KM Standard Error of Mean	6.093
KM SD	34.41	95% KM (BCA) UCL	32.82
95% KM (t) UCL	31.3	95% KM (Percentile Bootstrap) UCL	32.33
95% KM (z) UCL	31	95% KM Bootstrap t UCL	53.96
90% KM Chebyshev UCL	39.25	95% KM Chebyshev UCL	47.53
97.5% KM Chebyshev UCL	59.03	99% KM Chebyshev UCL	81.6

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.169	Anderson-Darling GOF Test			
5% A-D Critical Value	0.764	Detected Data Not Gamma Distributed at 5% Significance Level			
K-S Test Statistic	0.256	Kolmogorov-Smirnov GOF			
5% K-S Critical Value	0.163	Detected Data Not Gamma Distributed at 5% Significance Level			
Detected Data Net Commo Distributed at 5% Cignificance Loval					

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.35	k star (bias corrected MLE)	1.475	k hat (MLE)
16.98	Theta star (bias corrected MLE)	15.54	Theta hat (MLE)
80.99	nu star (bias corrected)	88.5	nu hat (MLE)
		22.92	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

Minimum	0.01	Mean	20.84
Maximum	209	Median	15
SD	35.03	CV	1.681
k hat (MLE)	0.644	k star (bias corrected MLE)	0.606
Theta hat (MLE)	32.37	Theta star (bias corrected MLE)	34.41
nu hat (MLE)	42.5	nu star (bias corrected)	39.97

Adjusted Level of Significance (β)	0.0419		
Approximate Chi Square Value (39.97, α)	26.48	Adjusted Chi Square Value (39.97, β)	25.92
95% Gamma Approximate UCL (use when n>=50)	31.45	95% Gamma Adjusted UCL (use when n<50)	32.14

Estimates of Gamma Parameters using KM Estimates				
Mean (KM)	20.98	SD (KM)	34.41	
Variance (KM)	1184	SE of Mean (KM)	6.093	
k hat (KM)	0.372	k star (KM)	0.358	
nu hat (KM)	24.52	nu star (KM)	23.62	
theta hat (KM)	56.46	theta star (KM)	58.6	
80% gamma percentile (KM)	33.34	90% gamma percentile (KM)	60.36	
95% gamma percentile (KM)	90.53	99% gamma percentile (KM)	167.3	

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (23.62, α)	13.56	Adjusted Chi Square Value (23.62, β)	13.17
95% Gamma Approximate KM-UCL (use when n>=50)	36.54	95% Gamma Adjusted KM-UCL (use when n<50)	37.63

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.909	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.927	Detected Data Not Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.17	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.159	Detected Data Not Lognormal at 5% Significance Level		
Detected Data Not Lognormal at 5% Significance Level				

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	21.13	Mean in Log Scale	2.609
SD in Original Scale	34.86	SD in Log Scale	0.848
95% t UCL (assumes normality of ROS data)	31.41	95% Percentile Bootstrap UCL	31.99
95% BCA Bootstrap UCL	40.1	95% Bootstrap t UCL	55.27
95% H-UCL (Log ROS)	27.34		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.543	KM Geo Mean	12.71
KM SD (logged)	0.967	95% Critical H Value (KM-Log)	2.401
KM Standard Error of Mean (logged)	0.171	95% H-UCL (KM -Log)	30.58
KM SD (logged)	0.967	95% Critical H Value (KM-Log)	2.401
KM Standard Error of Mean (logged)	0.171		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	20.91	Mean in Log Scale	2.48
SD in Original Scale	34.99	SD in Log Scale	1.132
95% t UCL (Assumes normality)	31.22	95% H-Stat UCL	38.16

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 47.53

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Total Number of Observations	33	Number of Distinct Observations	17
Number of Detects	16	Number of Non-Detects	17
Number of Distinct Detects	15	Number of Distinct Non-Detects	2
Minimum Detect	3.1	Minimum Non-Detect	1
Maximum Detect	156	Maximum Non-Detect	5
Variance Detects	1400	Percent Non-Detects	51.52%
Mean Detects	24.54	SD Detects	37.42
Median Detects	12.5	CV Detects	1.524
Skewness Detects	3.248	Kurtosis Detects	11.54
Mean of Logged Detects	2.589	SD of Logged Detects	1.055

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.563	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.887	Detected Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.298	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.213	Detected Data Not Normal at 5% Significance Level		
Detected Data Not Normal at 5% Significance Level				

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	12.8	KM Standard Error of Mean	4.985
KM SD	27.69	95% KM (BCA) UCL	22.09
95% KM (t) UCL	21.24	95% KM (Percentile Bootstrap) UCL	22.07
95% KM (z) UCL	21	95% KM Bootstrap t UCL	35.56
90% KM Chebyshev UCL	27.75	95% KM Chebyshev UCL	34.53
97.5% KM Chebyshev UCL	43.93	99% KM Chebyshev UCL	62.4

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.789	Anderson-Darling GOF Test
5% A-D Critical Value	0.766	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.187	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.222	Detected data appear Gamma Distributed at 5% Significance Level
Setected data fellow Annu	C	Distribution at E0/ Cignificance Loval

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

0.814	k star (bias corrected MLE)	0.95	k hat (MLE)
30.17	Theta star (bias corrected MLE)	25.84	Theta hat (MLE)
26.03	nu star (bias corrected)	30.4	nu hat (MLE)
		24.54	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

Minimum	0.01	Mean	11.91
Maximum	156	Median	0.01
SD	28.48	CV	2.392
k hat (MLE)	0.204	k star (bias corrected MLE)	0.206
Theta hat (MLE)	58.33	Theta star (bias corrected MLE)	57.86
nu hat (MLE)	13.47	nu star (bias corrected)	13.58

Estimates of Ga	mma Paramete	rs using KM Estimates
95% Gamma Approximate UCL (use when n>=50)	25.72	95% Gamma Adjusted UCL (use when n<50)
Approximate Chi Square Value (13.58, α)	6.285	Adjusted Chi Square Value (13.58, β)
Adjusted Level of Significance (β)	0.0419	

27.69	SD (KM)	12.8	Mean (KM)
4.985	SE of Mean (KM)	766.8	Variance (KM)
0.214	k star (KM)	0.214	k hat (KM)
14.15	nu star (KM)	14.1	nu hat (KM)
59.7	theta star (KM)	59.92	theta hat (KM)
38.69	90% gamma percentile (KM)	17.45	80% gamma percentile (KM)
135.6	99% gamma percentile (KM)	64.73	95% gamma percentile (KM)

6.03

26.81

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (14.15, α)	6.673	Adjusted Chi Square Value (14.15, β)	6.409
95% Gamma Approximate KM-UCL (use when n>=50)	27.13	95% Gamma Adjusted KM-UCL (use when n<50)	28.25

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.948	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.887	Detected Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.14	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.213	Detected Data appear Lognormal at 5% Significance Level		
Detected Data appear Lognormal at 5% Significance Level				

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	12.59	Mean in Log Scale	1.206
SD in Original Scale	28.2	SD in Log Scale	1.69
95% t UCL (assumes normality of ROS data)	20.91	95% Percentile Bootstrap UCL	21.59
95% BCA Bootstrap UCL	25.86	95% Bootstrap t UCL	34.9
95% H-UCL (Log ROS)	38.21		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.455	KM Geo Mean	4.285
KM SD (logged)	1.369	95% Critical H Value (KM-Log)	2.92
KM Standard Error of Mean (logged)	0.279	95% H-UCL (KM -Log)	22.17
KM SD (logged)	1.369	95% Critical H Value (KM-Log)	2.92
KM Standard Error of Mean (logged)	0.279		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	13.01	Mean in Log Scale	1.581
SD in Original Scale	28.03	SD in Log Scale	1.307
95% t UCL (Assumes normality)	21.27	95% H-Stat UCL	21.97

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 28.25

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Total Number of Observations	43	Number of Distinct Observations	10
Number of Detects	28	Number of Non-Detects	15
Number of Distinct Detects	10	Number of Distinct Non-Detects	1
Minimum Detect	5	Minimum Non-Detect	5
Maximum Detect	9.7	Maximum Non-Detect	5
Variance Detects	1.419	Percent Non-Detects	34.88%
Mean Detects	7.482	SD Detects	1.191
Median Detects	7	CV Detects	0.159
Skewness Detects	-0.499	Kurtosis Detects	0.288
Mean of Logged Detects	1.999	SD of Logged Detects	0.171

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.894	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.236	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.164	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	6.616	KM Standard Error of Mean	0.235
KM SD	1.513	95% KM (BCA) UCL	7.028
95% KM (t) UCL	7.012	95% KM (Percentile Bootstrap) UCL	6.974
95% KM (z) UCL	7.003	95% KM Bootstrap t UCL	7.036
90% KM Chebyshev UCL	7.321	95% KM Chebyshev UCL	7.641
97.5% KM Chebyshev UCL	8.084	99% KM Chebyshev UCL	8.955

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.482	Anderson-Darling GOF Test
5% A-D Critical Value	0.744	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.256	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.165	Detected Data Not Gamma Distributed at 5% Significance Level
Detected Date Not Co		tributed at E0/ Significance Loval

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	37.54	k star (bias corrected MLE)	33.54
Theta hat (MLE)	0.199	Theta star (bias corrected MLE)	0.223
nu hat (MLE)	2102	nu star (bias corrected)	1878
Mean (detects)	7.482		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

า 6.617	Mean	n	Minimum
า 7	Median	n	Maximum
/ 0.238	CV)	SD
) 16.08	k star (bias corrected MLE))	k hat (MLE)
) 0.411	Theta star (bias corrected MLE))	Theta hat (MLE)
) 1383	nu star (bias corrected)) 14	nu hat (MLE)

Adjusted Level of Significance (β)	0.0444		
Approximate Chi Square Value (N/A, α)	1298	Adjusted Chi Square Value (N/A, β)	1295
95% Gamma Approximate UCL (use when n>=50)	7.053	95% Gamma Adjusted UCL (use when n<50)	7.068
Estimates of Ga	amma Para	meters using KM Estimates	
Mean (KM)	6.616	SD (KM)	1.513
Variance (KM)	2.291	SE of Mean (KM)	0.235
k hat (KM)	19.11	k star (KM)	17.79
nu hat (KM)	1643	nu star (KM)	1530
theta hat (KM)	0.346	theta star (KM)	0.372
80% gamma percentile (KM)	7.887	90% gamma percentile (KM)	8.689
95% gamma percentile (KM)	9.39	99% gamma percentile (KM)	10.8
Gamma	a Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (N/A, α)	1440	Adjusted Chi Square Value (N/A, β)	1437
95% Gamma Approximate KM-UCL (use when n>=50)	7.029	95% Gamma Adjusted KM-UCL (use when n<50)	7.044
Lognormal GO	F Test on D	Detected Observations Only	
Shapiro Wilk Test Statistic	0.851	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Lognormal at 5% Significance Lev	el
Lilliefors Test Statistic	0.271	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.164	Detected Data Not Lognormal at 5% Significance Lev	el
Detected Data N	lot Lognorr	nal at 5% Significance Level	
Lognormal ROS	Statistics	Using Imputed Non-Detects	
Mean in Original Scale	6.649	Mean in Log Scale	1.868
SD in Original Scale	1.529	SD in Log Scale	0.236
95% t UCL (assumes normality of ROS data)	7.041	95% Percentile Bootstrap UCL	7.034
95% BCA Bootstrap UCL	7.03	95% Bootstrap t UCL	7.027
95% H-UCL (Log ROS)	7.09		
Statistics using KM estimates of	on Logged	Data and Assuming Lognormal Distribution	
KM Mean (logged)	1.863	KM Geo Mean	6.444
KM SD (logged)	0.23	95% Critical H Value (KM-Log)	1.724
KM Standard Error of Mean (logged)	0.0357	95% H-UCL (KM -Log)	7.034
KM SD (logged)	0.23	95% Critical H Value (KM-Log)	1.724
KM Standard Error of Mean (logged)	0.0357		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	5.744	Mean in Log Scale	1.621	
SD in Original Scale	2.586	SD in Log Scale	0.54	
95% t UCL (Assumes normality)	6.407	95% H-Stat UCL	6.875	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 7.012 95% KM (BCA) UCL 7.028 KM H-UCL 7.034

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Total Number of Observations	43	Number of Distinct Observations	25
Number of Detects	32	Number of Non-Detects	11
Number of Distinct Detects	24	Number of Distinct Non-Detects	1
Minimum Detect	7.3	Minimum Non-Detect	5
Maximum Detect	85	Maximum Non-Detect	5
Variance Detects	553.8	Percent Non-Detects	25.58%
Mean Detects	28.73	SD Detects	23.53
Median Detects	21	CV Detects	0.819
Skewness Detects	1.068	Kurtosis Detects	0.102
Mean of Logged Detects	3.034	SD of Logged Detects	0.822

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.83	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.93	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.189	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.154	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	22.66	KM Standard Error of Mean	3.487
KM SD	22.5	95% KM (BCA) UCL	29.11
95% KM (t) UCL	28.52	95% KM (Percentile Bootstrap) UCL	28.48
95% KM (z) UCL	28.39	95% KM Bootstrap t UCL	29.67
90% KM Chebyshev UCL	33.12	95% KM Chebyshev UCL	37.86
97.5% KM Chebyshev UCL	44.43	99% KM Chebyshev UCL	57.35

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.2	Anderson-Darling GOF Test
5% A-D Critical Value	0.762	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.195	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.158	Detected Data Not Gamma Distributed at 5% Significance Level
Detected Date Not Gr		stributed at 5% Significance Lovel

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.553	k star (bias corrected MLE)	1.691	k hat (MLE)
18.5	Theta star (bias corrected MLE)	16.99	Theta hat (MLE)
99.4	nu star (bias corrected)	108.2	nu hat (MLE)
		28.73	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

Minimum	0.01	Mean	21.38
Maximum	85	Median	11
SD	23.86	CV	1.116
k hat (MLE)	0.341	k star (bias corrected MLE)	0.332
Theta hat (MLE)	62.77	Theta star (bias corrected MLE)	64.33
nu hat (MLE)	29.29	nu star (bias corrected)	28.58

Adjusted Level of Significance (β)	0.0444	
Approximate Chi Square Value (28.58, α)	17.38	Adjusted Chi Square Value (28.58, β)
95% Gamma Approximate UCL (use when n>=50)	35.16	95% Gamma Adjusted UCL (use when n<50)

Estimates of Ga	mma Parameters using KM Estimates		
Mean (KM)	22.66	SD (KM)	22.5
Variance (KM)	506.4	SE of Mean (KM)	3.487
k hat (KM)	1.014	k star (KM)	0.959
nu hat (KM)	87.18	nu star (KM)	82.43
theta hat (KM)	22.35	theta star (KM)	23.64
80% gamma percentile (KM)	36.59	90% gamma percentile (KM)	52.72
95% gamma percentile (KM)	68.9	99% gamma percentile (KM)	106.6
Gamma	Kaplan-Meier (KM) Statistics		

17.08

35.78

Approximate Chi Square Value (82.43, α)	62.51	Adjusted Chi Square Value (82.43, β)	61.91
95% Gamma Approximate KM-UCL (use when n>=50)	29.88	95% Gamma Adjusted KM-UCL (use when n<50)	30.17

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.896	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.93	Detected Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.187	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.154	Detected Data Not Lognormal at 5% Significance Level	
Detected Data Not Lognormal at 5% Significance Level			

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	22.23	Mean in Log Scale	2.54
SD in Original Scale	23.13	SD in Log Scale	1.131
95% t UCL (assumes normality of ROS data)	28.16	95% Percentile Bootstrap UCL	28.25
95% BCA Bootstrap UCL	28.76	95% Bootstrap t UCL	29.03
95% H-UCL (Log ROS)	37.29		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.669	KM Geo Mean	14.43
KM SD (logged)	0.934	95% Critical H Value (KM-Log)	2.291
KM Standard Error of Mean (logged)	0.145	95% H-UCL (KM -Log)	31.07
KM SD (logged)	0.934	95% Critical H Value (KM-Log)	2.291
KM Standard Error of Mean (logged)	0.145		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	22.02	Mean in Log Scale	2.492
SD in Original Scale	23.3	SD in Log Scale	1.171
95% t UCL (Assumes normality)	27.99	95% H-Stat UCL	38.13

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 37.86

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Total Number of Observations	42	Number of Distinct Observations	12
Number of Detects	31	Number of Non-Detects	11
Number of Distinct Detects	12	Number of Distinct Non-Detects	1
Minimum Detect	5	Minimum Non-Detect	5
Maximum Detect	20	Maximum Non-Detect	5
Variance Detects	11.91	Percent Non-Detects	26.19%
Mean Detects	11.39	SD Detects	3.451
Median Detects	12	CV Detects	0.303
Skewness Detects	0.523	Kurtosis Detects	1.178
Mean of Logged Detects	2.386	SD of Logged Detects	0.32

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.929	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.929	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.159	Lilliefors GOF Test
5% Lilliefors Critical Value	0.156	Detected Data Not Normal at 5% Significance Level
Detected Data I	Not Normal at 5% S	ignificance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	9.714	KM Standard Error of Mean	0.635
KM SD	4.049	95% KM (BCA) UCL	10.71
95% KM (t) UCL	10.78	95% KM (Percentile Bootstrap) UCL	10.76
95% KM (z) UCL	10.76	95% KM Bootstrap t UCL	10.82
90% KM Chebyshev UCL	11.62	95% KM Chebyshev UCL	12.48
97.5% KM Chebyshev UCL	13.68	99% KM Chebyshev UCL	16.03

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.861	Anderson-Darling GOF Test
5% A-D Critical Value	0.746	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.157	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.158	Detected data appear Gamma Distributed at 5% Significance Level
Setented data fallow Anny		Distribution at 5% Significance Loval

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

9.787	k star (bias corrected MLE)	10.81	k hat (MLE)
1.164	Theta star (bias corrected MLE)	1.053	Theta hat (MLE)
606.8	nu star (bias corrected)	670.3	nu hat (MLE)
		11.39	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

9.661	Mean	2.323	Minimum
10	Median	20	Maximum
0.436	CV	4.211	SD
4.489	k star (bias corrected MLE)	4.817	k hat (MLE)
2.152	Theta star (bias corrected MLE)	2.006	Theta hat (MLE)
377	nu star (bias corrected)	404.6	nu hat (MLE)
0.436 4.489 2.152 377	CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	4.211 4.817 2.006 404.6	SD k hat (MLE) eta hat (MLE) nu hat (MLE)

Estimates of Gamma Parameters using KM Estimates				
95% Gamma Approximate UCL (use w	hen n>=50) 1	0.94	95% Gamma Adjusted UCL (use when n<50)	10.99
Approximate Chi Square Value	(377.05, α) 33	33	Adjusted Chi Square Value (377.05, β)	331.6
Adjusted Level of Sigr	nificance (β) 0	0.0443		

4.049	SD (KM)	9.714	Mean (KM)
0.635	SE of Mean (KM)	16.39	Variance (KM)
5.361	k star (KM)	5.756	k hat (KM)
450.3	nu star (KM)	483.5	nu hat (KM)
1.812	theta star (KM)	1.688	theta hat (KM)
15.33	90% gamma percentile (KM)	12.96	80% gamma percentile (KM)
22.02	99% gamma percentile (KM)	17.48	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (450.30, α)	402.1	Adjusted Chi Square Value (450.30, β)	400.5
95% Gamma Approximate KM-UCL (use when n>=50)	10.88	95% Gamma Adjusted KM-UCL (use when n<50)	10.92

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.93	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.929	Detected Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.172	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.156	Detected Data Not Lognormal at 5% Significance Level		
Detected Data appear Approximate Lognormal at 5% Significance Level				

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	9.825	Mean in Log Scale	2.2
SD in Original Scale	3.996	SD in Log Scale	0.427
95% t UCL (assumes normality of ROS data)	10.86	95% Percentile Bootstrap UCL	10.82
95% BCA Bootstrap UCL	10.92	95% Bootstrap t UCL	10.95
95% H-UCL (Log ROS)	11.18		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.182	KM Geo Mean	8.866
KM SD (logged)	0.436	95% Critical H Value (KM-Log)	1.854
KM Standard Error of Mean (logged)	0.0683	95% H-UCL (KM -Log)	11.06
KM SD (logged)	0.436	95% Critical H Value (KM-Log)	1.854
KM Standard Error of Mean (logged)	0.0683		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.06	Mean in Log Scale	2.001
SD in Original Scale	4.935	SD in Log Scale	0.709
95% t UCL (Assumes normality)	10.34	95% H-Stat UCL	11.95

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 10.92

95% GROS Adjusted Gamma UCL 10.99

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Total Number of Observations	45	Number of Distinct Observations	10
Number of Detects	12	Number of Non-Detects	33
Number of Distinct Detects	10	Number of Distinct Non-Detects	1
Minimum Detect	5	Minimum Non-Detect	5
Maximum Detect	230	Maximum Non-Detect	5
Variance Detects	3922	Percent Non-Detects	73.33%
Mean Detects	32.5	SD Detects	62.63
Median Detects	14.5	CV Detects	1.927
Skewness Detects	3.38	Kurtosis Detects	11.58
Mean of Logged Detects	2.779	SD of Logged Detects	0.999

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.434	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.452	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level
Detected Data Not Normal at 5% Significance Level		

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	12.33	KM Standard Error of Mean	5.179
KM SD	33.27	95% KM (BCA) UCL	22.56
95% KM (t) UCL	21.04	95% KM (Percentile Bootstrap) UCL	22.2
95% KM (z) UCL	20.85	95% KM Bootstrap t UCL	58.77
90% KM Chebyshev UCL	27.87	95% KM Chebyshev UCL	34.91
97.5% KM Chebyshev UCL	44.68	99% KM Chebyshev UCL	63.87

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.553	Anderson-Darling GOF Test
5% A-D Critical Value	0.762	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.334	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.254	Detected Data Not Gamma Distributed at 5% Significance Level
Detected Date Not Co		tributed at E% Cignificance Loval

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.686	k star (bias corrected MLE)	0.84	k hat (MLE)
47.39	Theta star (bias corrected MLE)	38.68	Theta hat (MLE)
16.46	nu star (bias corrected)	20.17	nu hat (MLE)
		32.5	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

Minimum	0.01	Mean	8.674
Maximum	230	Median	0.01
SD	34.52	CV	3.98
k hat (MLE)	0.159	k star (bias corrected MLE)	0.163
Theta hat (MLE)	54.59	Theta star (bias corrected MLE)	53.18
nu hat (MLE)	14.3	nu star (bias corrected)	14.68

Adjusted Level of Significance (β)	0.0447		
Approximate Chi Square Value (14.68, α)	7.04	Adjusted Chi Square Value (14.68, β)	6.864
95% Gamma Approximate UCL (use when n>=50)	18.09	95% Gamma Adjusted UCL (use when n<50)	18.55

Estimates of Gamma Parameters using KM Estimates

33.27	SD (KM)	12.33	Mean (KM)
5.179	SE of Mean (KM)	1107	Variance (KM)
0.143	k star (KM)	0.137	k hat (KM)
12.88	nu star (KM)	12.37	nu hat (KM)
86.18	theta star (KM)	89.72	theta hat (KM)
36.31	90% gamma percentile (KM)	12.9	80% gamma percentile (KM)
162.8	99% gamma percentile (KM)	68.48	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (12.88, α)	5.812	Adjusted Chi Square Value (12.88, β)	5.655
95% Gamma Approximate KM-UCL (use when n>=50)	27.33	95% Gamma Adjusted KM-UCL (use when n<50)	28.09

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.84	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Lognormal at 5% Significance Level			
Lilliefors Test Statistic	0.219	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.243	Detected Data appear Lognormal at 5% Significance Level			
Detected Data appear Approximate Lognormal at 5% Significance Level					

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	9.359	Mean in Log Scale	0.108
SD in Original Scale	34.36	SD in Log Scale	2.137
95% t UCL (assumes normality of ROS data)	17.97	95% Percentile Bootstrap UCL	19.38
95% BCA Bootstrap UCL	25.7	95% Bootstrap t UCL	47.01
95% H-UCL (Log ROS)	38.17		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.921	KM Geo Mean	6.831
KM SD (logged)	0.715	95% Critical H Value (KM-Log)	2.087
KM Standard Error of Mean (logged)	0.111	95% H-UCL (KM -Log)	11.05
KM SD (logged)	0.715	95% Critical H Value (KM-Log)	2.087
KM Standard Error of Mean (logged)	0.111		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	10.5	Mean in Log Scale	1.413
SD in Original Scale	34.07	SD in Log Scale	0.971
95% t UCL (Assumes normality)	19.03	95% H-Stat UCL	9.279

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 11.05

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

45	Number of Distinct Observations	20
22	Number of Non-Detects	23
19	Number of Distinct Non-Detects	1
5.5	Minimum Non-Detect	5
165	Maximum Non-Detect	5
1655	Percent Non-Detects	51.11%
35.84	SD Detects	40.68
21.5	CV Detects	1.135
2.137	Kurtosis Detects	4.555
3.094	SD of Logged Detects	0.989
	45 22 19 5.5 165 1655 35.84 21.5 2.137 3.094	45Number of Distinct Observations22Number of Non-Detects19Number of Distinct Non-Detects5.5Minimum Non-Detect165Maximum Non-Detects1655Percent Non-Detects35.84SD Detects21.5CV Detects2.137Kurtosis Detects3.094SD of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.723	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.241	Lilliefors GOF Test
5% Lilliefors Critical Value	0.184	Detected Data Not Normal at 5% Significance Level
Detected Data I	Not Normal at 5% S	Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	20.08	KM Standard Error of Mean	4.849
KM SD	31.78	95% KM (BCA) UCL	29.14
95% KM (t) UCL	28.23	95% KM (Percentile Bootstrap) UCL	29.07
95% KM (z) UCL	28.05	95% KM Bootstrap t UCL	33.69
90% KM Chebyshev UCL	34.63	95% KM Chebyshev UCL	41.21
97.5% KM Chebyshev UCL	50.36	99% KM Chebyshev UCL	68.33

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.626	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.767	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.156	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.19	5% K-S Critical Value
		Detected data anneau

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.04	k star (bias corrected MLE)	1.169	k hat (MLE)
34.46	Theta star (bias corrected MLE)	30.66	Theta hat (MLE)
45.76	nu star (bias corrected)	51.44	nu hat (MLE)
		35.84	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

17.53	Mean	0.01	Minimum
0.01	Median	165	Maximum
1.908	CV	33.44	SD
0.2	k star (bias corrected MLE)	0.199	k hat (MLE)
87.47	Theta star (bias corrected MLE)	88.16	Theta hat (MLE)
18.03	nu star (bias corrected)	17.89	nu hat (MLE)

	0.0447	Adjusted Level of Significance (β)
Adjusted Chi Square Value (18.03, β)	9.415	Approximate Chi Square Value (18.03, α)
95% Gamma Adjusted UCL (use when n<50)	33.57	95% Gamma Approximate UCL (use when n>=50)

Estimates of Ga	imma Para	ameters using KM Estimates	
Mean (KM)	20.08	SD (KM)	31.78
Variance (KM)	1010	SE of Mean (KM)	4.849
k hat (KM)	0.399	k star (KM)	0.387
nu hat (KM)	35.92	nu star (KM)	34.86
theta hat (KM)	50.31	theta star (KM)	51.84
80% gamma percentile (KM)	32.28	90% gamma percentile (KM)	57.03
95% gamma percentile (KM)	84.35	99% gamma percentile (KM)	153.3
Gamma	Kaplan-N	Neier (KM) Statistics	
Approximate Chi Square Value (34.86, α)	22.35	Adjusted Chi Square Value (34.86, β)	22.02
95% Gamma Approximate KM-UCL (use when n>=50)	31.31	95% Gamma Adjusted KM-UCL (use when n<50)	31.79

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.957	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.911	Detected Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.0904	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.184	Detected Data appear Lognormal at 5% Significance Level		
Detected Data appear Lognormal at 5% Significance Level				

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	18.51	Mean in Log Scale	1.657
SD in Original Scale	32.94	SD in Log Scale	1.728
95% t UCL (assumes normality of ROS data)	26.76	95% Percentile Bootstrap UCL	26.8
95% BCA Bootstrap UCL	30.3	95% Bootstrap t UCL	33.18
95% H-UCL (Log ROS)	55.19		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.335	KM Geo Mean	10.33
KM SD (logged)	1.004	95% Critical H Value (KM-Log)	2.376
KM Standard Error of Mean (logged)	0.153	95% H-UCL (KM -Log)	24.49
KM SD (logged)	1.004	95% Critical H Value (KM-Log)	2.376
KM Standard Error of Mean (logged)	0.153		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	18.8	Mean in Log Scale	1.981
SD in Original Scale	32.77	SD in Log Scale	1.296
95% t UCL (Assumes normality)	27.01	95% H-Stat UCL	28.58

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 31.79 95% GROS Adjusted Gamma UCL 34.33

9.208

34.33

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

	General Statistic	S	
Total Number of Observations	13	Number of Distinct Observations	3
		Number of Missing Observations	0
Minimum	50	Mean	79.23
Maximum	340	Median	50
SD	82.21	Std. Error of Mean	22.8
Coefficient of Variation	1.038	Skewness	3.135
	Normal GOF Tes	t	
Shapiro Wilk Test Statistic	0.424	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.866	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.485	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.234	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5% Signi	ficance Level	
Ass	uming Normal Distr	ibution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	119.9	95% Adjusted-CLT UCL (Chen-1995)	137.9
		95% Modified-t UCL (Johnson-1978)	123.2
	Gamma GOF Tes	st	
A-D Test Statistic	3.581	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.742	Data Not Gamma Distributed at 5% Significance Leve	əl
K-S Test Statistic	0.508	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.239	Data Not Gamma Distributed at 5% Significance Leve	əl
Data Not Gamm	a Distributed at 5%	Significance Level	
	Gamma Statistic	5	
k hat (MLE)	2.292	k star (bias corrected MLE)	1.815
Theta hat (MLE)	34.56	Theta star (bias corrected MLE)	43.66
nu hat (MLE)	59.6	nu star (bias corrected)	47.18
MLE Mean (bias corrected)	79.23	MLE Sd (bias corrected)	58.82
		Approximate Chi Square Value (0.05)	32.42
Adjusted Level of Significance	0.0301	Adjusted Chi Square Value	30.68
Ass	uming Gamma Dist	ribution	
95% Approximate Gamma UCL (use when n>=50))	115.3	95% Adjusted Gamma UCL (use when n<50)	121.8
	Lognormal GOF To	est	
Shapiro Wilk Test Statistic	0.461	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.866	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.498	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.234	Data Not Lognormal at 5% Significance Level	
Data Not Lo	ognormal at 5% Sig	nificance Level	
	Lognormal Statisti	cs	
Minimum of Logged Data	3.912	Mean of logged Data	4.139
Maximum of Logged Data	5.829	SD of logged Data	0.582
Assu	ming Lognormal Dis	stribution	
95% H-UCL	107.8	90% Chebyshev (MVUE) UCL	109.9
95% Chebyshev (MVUE) UCL	126.5	97.5% Chebyshev (MVUE) UCL	149.6

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	116.7	95% Jackknife UCL	119.9
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	147.6	95% Chebyshev(Mean, Sd) UCL	178.6
97.5% Chebyshev(Mean, Sd) UCL	221.6	99% Chebyshev(Mean, Sd) UCL	306.1

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 178.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

	General Statistic	s	
Total Number of Observations	28	Number of Distinct Observations	2
		Number of Missing Observations	0
Minimum	50	Mean	59.64
Maximum	320	Median	50
SD	51.03	Std. Error of Mean	9.643
Coefficient of Variation	0.856	Skewness	5.292
	Normal GOF Tes	st	
Shapiro Wilk Test Statistic	0 194	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.924	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.539	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.164	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5% Signi	ficance Level	
٨٩٩	uming Normal Dist	ribution	
95% Normal LICI		95% UCI e (Adjusted for Skowneee)	
95% Normal OCL	76.07	95% Adjusted CLT LICL (Chen-1995)	85 81
35% Students-LOCE	70.07	95% Modified-t LICL (Johnson-1978)	77 67
			77.07
	Gamma GOF Te	st	
A-D Test Statistic	10.46	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.749	Data Not Gamma Distributed at 5% Significance Leve	el e
K-S Test Statistic	0.549	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.166	Data Not Gamma Distributed at 5% Significance Leve)
Data Not Gamm	a Distributed at 5%	significance Level	
	Gamma Statistic	s	
k hat (MLE)	4.703	k star (bias corrected MLE)	4.223
Theta hat (MLE)	12.68	Theta star (bias corrected MLE)	14.12
nu hat (MLE)	263.4	nu star (bias corrected)	236.5
MLE Mean (bias corrected)	59.64	MLE Sd (bias corrected)	29.02
		Approximate Chi Square Value (0.05)	201.9
Adjusted Level of Significance	0.0404	Adjusted Chi Square Value	199.9
Ass	uming Gamma Dist	ribution	
95% Approximate Gamma UCL (use when n>=50))	69.86	95% Adjusted Gamma UCL (use when n<50)	70.55
	Lognormal GOF T	est	
Shapiro Wilk Test Statistic	0.194	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.924	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.539	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.164	Data Not Lognormal at 5% Significance Level	
Data Not Lo	ognormal at 5% Sig	nificance Level	
	Lognormal Statist	ics	
Minimum of Logged Data	3.912	Mean of logged Data	3.978
Maximum of Logged Data	5.768	SD of logged Data	0.351
Assu	ming Lognormal Di	stribution	
95% H-UCL	64.31	90% Chebyshev (MVUE) UCL	68.21
95% Chebyshev (MVUE) UCL	73.42	97.5% Chebyshev (MVUE) UCL	80.67
Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	75.5	95% Jackknife UCL	N/A
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	88.57	95% Chebyshev(Mean, Sd) UCL	101.7
97.5% Chebyshev(Mean, Sd) UCL	119.9	99% Chebyshev(Mean, Sd) UCL	155.6

Suggested UCL to Use

95% Student's-t UCL 76.07

or 95% Modified-t UCL 77.67

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	30	Number of Distinct Observations	27
Number of Detects	27	Number of Non-Detects	3
Number of Distinct Detects	26	Number of Distinct Non-Detects	1
Minimum Detect	3	Minimum Non-Detect	1.5
Maximum Detect	209	Maximum Non-Detect	1.5
Variance Detects	1442	Percent Non-Detects	10%
Mean Detects	23.98	SD Detects	37.97
Median Detects	15.7	CV Detects	1.583
Skewness Detects	4.776	Kurtosis Detects	23.95
Mean of Logged Detects	2.778	SD of Logged Detects	0.771

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.393	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.923	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.362	Lilliefors GOF Test
5% Lilliefors Critical Value	0.167	Detected Data Not Normal at 5% Significance Level
Detected Data N	Not Normal at 59	6 Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	21.73	KM Standard Error of Mean	6.696
KM SD	35.99	95% KM (BCA) UCL	35.43
95% KM (t) UCL	33.11	95% KM (Percentile Bootstrap) UCL	34.96
95% KM (z) UCL	32.75	95% KM Bootstrap t UCL	58.22
90% KM Chebyshev UCL	41.82	95% KM Chebyshev UCL	50.92
97.5% KM Chebyshev UCL	63.55	99% KM Chebyshev UCL	88.36

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.928	Anderson-Darling GOF Test
5% A-D Critical Value	0.765	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.258	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.172	Detected Data Not Gamma Distributed at 5% Significance Level
Detected Date Not Co		tributed at E% Significance Loval

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.264	k star (bias corrected MLE)	1.395	k hat (MLE)
18.97	Theta star (bias corrected MLE)	17.19	Theta hat (MLE)
68.28	nu star (bias corrected)	75.31	nu hat (MLE)
		23.98	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	21.58
Maximum	209	Median	15.2
SD	36.69	CV	1.7
k hat (MLE)	0.599	k star (bias corrected MLE)	0.561
Theta hat (MLE)	36.06	Theta star (bias corrected MLE)	38.48
nu hat (MLE)	35.92	nu star (bias corrected)	33.66

Estimates of Gamma Parameters using KM Estimates						
95% Gamma Approximate UCL (use when n>=50)	33.96	95% Gamma Adjusted UCL (use when n<50)				
Approximate Chi Square Value (33.66, α)	21.39	Adjusted Chi Square Value (33.66, β)				
Adjusted Level of Significance (β)	0.041					

SD (KM) 35.99	21.73	Mean (KM)
SE of Mean (KM) 6.696	1295	Variance (KM)
k star (KM) 0.35	0.365	k hat (KM)
nu star (KM) 21.03	21.88	nu hat (KM)
theta star (KM) 62.02	59.6	theta hat (KM)
90% gamma percentile (KM) 62.75	34.42	80% gamma percentile (KM)
99% gamma percentile (KM) 175.4	94.47	95% gamma percentile (KM)

20.83

34.88

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (21.03, α)	11.61	Adjusted Chi Square Value (21.03, β)	11.21
95% Gamma Approximate KM-UCL (use when n>=50)	39.36	95% Gamma Adjusted KM-UCL (use when n<50)	40.77

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.923	Detected Data Not Lognormal at 5% Significance Level			
Lilliefors Test Statistic	0.173	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.167	Detected Data Not Lognormal at 5% Significance Level			
Detected Data Not Lognormal at 5% Significance Level					

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	21.88	Mean in Log Scale	2.608
SD in Original Scale	36.52	SD in Log Scale	0.897
95% t UCL (assumes normality of ROS data)	33.21	95% Percentile Bootstrap UCL	34.31
95% BCA Bootstrap UCL	40.67	95% Bootstrap t UCL	58.1
95% H-UCL (Log ROS)	30.03		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.541	KM Geo Mean	12.69
KM SD (logged)	1.011	95% Critical H Value (KM-Log)	2.492
KM Standard Error of Mean (logged)	0.188	95% H-UCL (KM -Log)	33.76
KM SD (logged)	1.011	95% Critical H Value (KM-Log)	2.492
KM Standard Error of Mean (logged)	0.188		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	DL/2 Log-Transformed		
Mean in Original Scale	21.66	Mean in Log Scale	2.471		
SD in Original Scale	36.65	SD in Log Scale	1.187		
95% t UCL (Assumes normality)	33.03	95% H-Stat UCL	43.59		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 50.92

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

APPENDIX J

The Olymp

www.theolympian.com

AFFIDAVIT OF PUBLICATION

Account #	Ad Number	Identification	PO	Amount	Cols	Lines
705026	0004043559	#6195 Robinson Noble, Max Wills, 17625 130th A		\$293.50	1	38
						1.

Attention:

WIRTH 5023-8TH AVENUE NE SEATTLE, WA 98105

#6195

#0395 Robinson Noble, Max Wills, 17625 130th Ave NE Ste 102 Woodinville, WA 98072, is seeking covorage under the 985hington State Department of Ecology's Construction Storewwiter 130th Ave NE Sie 102 Woodinvite, WA 98072, is seeking coverage under the Washington State Department of Ecology's Construction Storewater MPDES and State Wriste Discharge General Fermit, The proposed project, Johnn Ann Wrocking, is focetod 44.11 93rd Ave SE in Olympia in Thurston county. This project involves 0.9 acces of soli disturbance for Other (remediat escavation) construction activities, All discharges and runding goes to ground water. Any persons desring to present their views to the Washington State Department of Ecology reglauting this Application, or interested in Ecology's action on this Application, may notify Ecology in writing no later than 30 days of the last date of publication of this notice. Ecology reviews public commonts and considers whether disclarges from this project would cause a measurable charge in receiving water quality, and, if so, whether the overriding public interest according to Tier it antiblegredation requirements under WAC 173 201A.320. Comments can be submitted to Department of Ecology Allit. Water Quality Program. under mei 173 2018 320. Cemmänts can be submitted to: Depertment of Ecology Attn: Water Quality Program, Construction Stormwater P.O. Box 47595, Oympie, WA 98504-7698 Published January 18

ELIZABETH BROWN, being duly swom, deposes and says: That she is the Principal Clerk of The Olympian, a daily newspaper printed and published at Olympia, Thurston County, State of Washington, and having a general circulation therein, and which said newspaper has been continuously and uninterruptedly published in said County during a period of six months prior to the first publication of the notice, a copy of which is attached hereto; that said notice was published in The Olympian in accordance with RCW 65.16.020 and RCW 63.16.040, as amended, for:

Published On: January 28, 2019, February 04, 2019

(Principal Cletk)

Subscribed and sworn on this 5th day of February in the year of 2019 before me, a Notary Public, personally appeared before me Elizabeth Brown known or identified to me to be the person whose name subscribed to the within instrument, and being by first duly sworn, declared that the statements therein are true, and acknowledged to me that he/she executed the same.

ens

Notary Public in and for the state of Washington, residing at Olympia, Thurston County, Washington

Note: The above affidavit and fee is in compliance with RCW 63.16.030 and Sec. 3 Chapter 34, Laws of 1977

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

PO Box 47600 • Olympia, WA 98504-7600 • 360-407-6000 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

July 18, 2019

Max Wills Robinson Noble 17625 130th Ave NE Ste 102 Woodinville, WA 98072

RE: Coverage under the Construction Stormwater General Permit (CSWGP)

Permit number:	WAR306710	
Site Name:	Johns Auto Wreck	cing
Location:	411 93rd Ave SE	
	Olympia, WA	County: Thurston
Disturbed Acres:	0.9	

Dear Max Wills:

The Washington State Department of Ecology (Ecology) received your Notice of Intent for coverage under Ecology's Construction Stormwater General Permit (CSWGP). This is your permit coverage letter. Your permit coverage is effective July 18, 2019. Please retain this permit coverage letter as the official record of permit coverage for your site.

Ecology has approved use of electronic formats as long as they are easily produced on your construction site. A mobile friendly copy of the CSWGP permit, permit forms, and information related to your permit can be viewed and downloaded at <u>www.ecology.wa.gov/eCoverage-packet</u>. Please contact your Permit Administrator, listed below, if you would like to receive a hard copy of the CSWGP.

Please take time to read the entire permit and contact Ecology if you have any questions.

Electronic Discharge Monitoring Reports (WQWebDMR)

This permit requires that Permittees submit monthly discharge monitoring reports (DMRs) for the full duration of permit coverage (from issuance date to termination). DMRs must be submitted electronically using Ecology's secure online system, WQWebDMR. To sign up for WQWebDMR go to <u>www.ecy.wa.gov/programs/wq/permits/paris/webdmr.html</u>. If you have questions, contact the portal staff at (360) 407-7097 (Olympia area), or (800) 633-6193/option 3, or email <u>WQWebPortal@ecy.wa.gov</u>.

Max Wills July 18, 2019 Page 2

Appeal Process

You have a right to appeal coverage under the general permit to the Pollution Control Hearing Board (PCHB). Appeals must be filed within 30 days of the date of receipt of this letter. Any appeal is limited to the general permit's applicability or non-applicability to a specific discharger. The appeal process is governed by chapter 43.21B RCW and chapter 371-08 WAC. "Date of receipt" is defined in RCW 43.21B.001(2). For more information regarding your right to appeal, go to <u>https://fortress.wa.gov/ecv/publications/SummarvPages/1710007.html</u> to view Ecology's Focus Sheet: *Appeal of General Permit Coverage*.

Ecology Field Inspector Assistance

If you have questions regarding stormwater management at your construction site, please contact Carol Serdar of Ecology's Southwest Regional Office in Lacey at carol.serdar@ecy.wa.gov or (360) 407-6269.

Questions or Additional Information

Ecology is committed to providing assistance. Please review our web page at <u>www.ecology.wa.gov/constructionstormwaterpermit</u>. If you have questions about the Construction Stormwater General Permit, please contact your Permit Administrator. Josh Klimek at josh.klimek@ecy.wa.gov or (360) 407-7451.

Sincerely.

.

NA

Vincent McGowan, P.E., Manager Program Development Services Section Water Quality Program

				South Excavation #2 ~20'x20' to a max depth of 1'
	Note ditch	: The wet contains	land buffer are only a few sm	ea is dry between June and September and Hopkins all isolated pools (there is no flowing water).
	Note: Image from	PM: MTW	Thurston County	Figure 1
ROBINSON'	Thurston County Geodata	October 2018	T 17 N/R 02 W - 23	Excavation Location Map
NOBLE	2015 Aerials	2491-001G	Scale 1" = 100"	John's Auto Wrecking: Remedial Investigation

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

PO Box 47600 • Olympia, WA 98504-7600 • 360-407-6000 711 for Washington Relay Service * Persons with a speech disability can call 877-833-6341

November 4, 2019

Max Willis Robinson Noble 17625 130th Ave NE Ste 102 Woodinville, WA 98072-8706

RE: Notice of Termination of Coverage under the Construction Stormwater General Permit

Permit Number:	WAR306710
Site Name:	Johns Auto Wrecking
Location:	411 93rd Ave SE
	Olympia, WA (Thurston County)
Disturbed Acres:	.9

Dear Max Willis:

The Washington State Department of Ecology (Ecology) has reviewed your Notice of Termination (NOT) of coverage under the Construction Stormwater General Permit for the construction site shown above. Based on the NOT, Ecology is terminating your coverage under the permit as of October 23, 2019, finding the site has met the termination criteria outlined in the Permit under Special Condition S10.

Please ensure that you retain the Stormwater Pollution Prevention Plan (SWPPP) and copies of all of the application, inspection reports, and all other reports required by this permit for at least three years after the date of final stabilization of the construction site. These documents need to be available to Ecology and to the local government agencies with jurisdiction, upon request.

Appeal of this Action

You have a right to appeal this action. The appeal process is governed by chapter 43.21B RCW and chapter 371-08 WAC. "Date of receipt" is defined in RCW 43.21B.001(2).

To appeal, you must do the following within 30 days of the date of receipt of this letter:

- File your appeal and a copy of the permit cover page with the PCHB (see addresses below). Filing
 means actual receipt by the PCHB during regular business hours.
- Serve a copy of your appeal and the permit cover page on Ecology in paper form by mail or in person (see addresses below). Email is not accepted.

Max Willis November 4, 2019 Page 2

You must also comply with other applicable requirements in Chapter 43.21B RCW and Chapter 371-08 WAC.

Address and Location Information:

Street Addresses:	Mailing Addresses:
Department of Ecology	Department of Ecology
Attn: Appeals Processing Desk	Attn: Appeals Processing Desk
300 Desmond Drive SE	PO Box 47608
Lacey, WA 98503	Olympia, WA 98504-7608
Pollution Control Hearings Board (PCHB)	Pollution Control Hearings Board
1111 Israel Road SW, Suite 301	PO Box 40903
Tumwater, WA 98501	Olympia, WA 98504-0903

As required by State law (RCW 90.48.465), Ecology charges a fee for its discharge permits. Although your permit is terminated, you will receive an invoice for entire fiscal year if payment has not been received. Ecology *does not prorate fees* for permits terminated during the fiscal year.

If you would like more information on the fee process, please contact Charles Gilman at (360) 407-6425 or send email to charles.gilman@ecy.wa.gov.

If you have any questions regarding the termination process, please contact Josh Klimek at (360) 407-7451 or send email to JOKL461@ecy.wa.gov.

Sincerely,

Vina B. Mistam

Vince McGowan, P.E., Manager Program Development Services Section Water Quality Program

cc: Charles Gilman, Ecology/Water Quality Program/Fees

DETERMINATION OF NONSIGNIFICANCE

Max Willis Robinson Noble, Inc. 17625 130th Avenue NE, Suite 102 Woodinville WA 98071-8706

Judith Wirth Havens Estate Investments, LLC 5023 8th Avenue NE Seattle WA 98105-3602

The site is a former auto wrecking yard that has four small areas of ground contamination-the contaminant is lead. The proposal is to excavate all four areas, each approximately 10'x10' and one-foot deep, removing excavated materials to a designated landfill. The excavated areas will then be backfilled with clean material.

411 93rd Avenue SE, Olympia 23/17N/2W 12723210100, 12723220200, 12723210400, 12723210101, 12723210700, 12723210000,

The lead agency for this proposal has determined that it does not have a probable significant adverse impact upon the environment. An Environmental Impact Statement is not required under RCW 43.21C.030(2)(C). This decision was made after review by the Lead Agency of a completed Environmental Checklist and other information on file with the Lead Agency. This information is available to the public on request.

Thurston County Community Planning and Economic Development Bret Bures, Planning Manager

Leah Davis, Associate Planner

This Determination of Nonsignificance (DNS) is issued under 197-11-340(2); the lead agency will not act on this proposal for 14-days from the date of issue. No permits may be issued, and the applicant shall not begin work until after the comment and any appeal periods have expired and any other necessary permits are issued. If conditions are added, deleted, or modified during the 14-day review period, a modified MDNS will be issued. Otherwise, this MDNS will become final after the expiration of the comment deadline and appeal period, if applicable.

APPEALS: Threshold determinations may be appealed pursuant to TCC 17.09.160 if: (1) a written notice of appeal, meeting the requirements of TCC 17.09.160(D), and the appropriate appeal fee is received by the Thurston County Development Services Department within fourteen calendar days of the date of issuance of the threshold determination or, if there is a comment period under WAC 197-11-340, within seven calendar days of the last day of the comment period; and (2) the person filing the appeal meets the requirements of TCC 17.09.160(B).

NOTE: The issuance of this Determination of Nonsignificance does not constitute project approval. The applicant must comply with all applicable requirements of Thurston County and Washington State.

> Thurston County CPED, Leah Davis Building #1, Administration 2000 Lakeridge Drive SW Olympia, WA 98502 (360) 786-5582 leah.davis@co.thurston.wa.us

Department of Ecology cc: Adjacent Property Owners WA Dept. of Fish and Wildlife

Squaxin Indian Tribe Nisqually Tribe

Proponent:

Applicant:

Description of Proposal:

Location of Proposal: Section/Township/Range: Tax Parcel Numbers:

Threshold Determination:

Conditions/Mitigating Measures:

1. SEE ATTACHED

Jurisdiction: Lead Agency: Responsible Official:

Date of Issue: June 4, 2019 Comment Period ends: June 24, 2019 Appeal Period ends: July 1, 2019

ATTACHED CONDITIONS

CASE NO.: 2019101224 SEQUENCE NUMBERS: 19 103357 XA and 19 103356 XD

Background

This Determination of Non-Significance is based on the project as proposed and the impacts and mitigation reflected in the following materials:

- Environmental Checklist, received March 21, 2019
- Critical Areas Review Permit application, received March 21, 2019
- Site plan, received March 21, 2019
- ORCAA comments, received February 6, 2019
- Site visit, conducted May 13, 2019
- Washington State Department of Ecology letters, dated April 5, 2019 and April 22, 2019
- Washington State Dept. of Health comment, dated April 1, 2019
- Nisqually Tribe comment letter, dated April 1, 2019
- Squaxin Island Tribe comments, dated March 25, 2019

Conditions:

- Erosion control measure must be in place prior to any clearing, grading, or construction. The discharge of sediment-laden runoff or other pollutants to waters of the state is in violation of Chapter 90.48, Water Pollution Control, and WAC 173-201A, Water Quality Standards for Surface Waters of the State of Washington, and is subject to enforcement action. Erosion control measures must be in place prior to any clearing, grading or construction. These control measures must be effective to prevent soil from being carried into surface water by stormwater runoff. Sand, silt, clay particles, and soil will damage aquatic habitat and are considered pollutants when discharged to waters of the state.
- The issuance of a DNS does not constitute project approval. No work shall occur on site during the SEPA review process and the resolution of any appeals.
- 3. The applicant must comply with all applicable requirements of Thurston County Codes prior to receiving permit approval.
- 4. All grading and filling of land must utilize only clean fill. All other materials may be considered solid waste and permit approval may be required from your local jurisdictional health department prior to filling. All removed debris resulting from this project must be disposed of at an approved site. Contact the local jurisdictional health department for proper management of these materials.
- 5. A Construction Stormwater Permit from the Washington State Department of Ecology may be required.
- 6. If contamination is currently known or suspected during construction, testing of potentially contaminated media must be conducted. If contamination of soil or groundwater is readily visible, or is revealed by testing, the Washington State Department of Ecology must be notified. Contact the Environmental Report Tracking system Coordinator at the Southwest Regional Office at (360) 407-6300.
- All areas that are disturbed or newly created by construction activities shall be seeded, vegetated, or given some other equivalent type of protection against erosion.
- In the event of inadvertent discovery of human remains or artifacts, the applicant shall contact and Department of Archaeology and Historic Preservation (360) 586-3534.
- 9. All other applicable state, federal, and local permits must be obtained prior to the start of project work.

Q: Planning)Amanda Save File/Environmental Checklist XA/Decisions/dns/2019101224JohnsAutoWrecking LD.doc

COUNTY COMMISSIONERS

John Hutchings District One Gary Edwards District Two Tye Menser District Three

DEPARTMENT OF COMMUNITY PLANNING AND ECONOMIC DEVELOPMENT

Creating Solutions for Our Future

Joshua Cummings, Director

July 2, 2019

Max Wills Robinson Noble, Inc. 17625 130th Avenue NE, Suite 102 Woodinville WA 98072-8706 mwills@robinson-noble.com

SUBJECT: Critical Area Review Permit – John's Auto Wrecking Remediation Project No. 2019101224, Folder Sequence No. 19 103356 XD Location: 411 93rd Avenue SE, Olympia Parcels: 12723210100, 12723220200, 12723210400, 12723210401, 12723210700, 12723210000

Dear Mr. Wills:

Thurston County has completed a critical area review for toxics remediation on the subject parcels. The replacement work will include excavating four small contaminated areas, approximately 20 feet square and one foot deep. All contaminated material will be taken to an approved disposal site. Clean fill will then be placed in the excavated areas. The critical areas on site include, potential gopher habitat, areas of high ground water, and a stream with associated wetlands. All Critical Areas are regulated by the Thurston County Critical Area Ordinance (TCC 24). Remediation work in critical areas is allowed with approval of a Critical Area Review Permit (TCC 24.25.080).

The Critical Area Review permit is approved with the following conditions:

- The two southern-most remediation areas, near Hopkins Ditch, shall have silt fencing installed between the excavation area and the stream to prevent any soils from being carried into surface water.
- All conditions of the Mitigated Determination of Non-Significance shall be met before, during, and after construction.

If you wish to appeal this determination, please do so in writing on the enclosed administrative appeal form, accompanied by a nonrefundable fee of \$1,960.00. Any appeal must be *received* in the Permit Assistance Center on the second floor of Building #1 in the Thurston County

Courthouse complex no later than 4 p.m. on July 16, 2019. Postmarks are <u>not</u> acceptable. If your fee and completed appeal form are not filed by this time, you will be unable to appeal this determination. This deadline may <u>not</u> be extended.

If you should you have questions I can be reached at (360) 786-5582 or by email at leah.davis@co.thurston.wa.us.

Sincerely,

LahkDes

Leah Davis Associate Planner

Cc: Judith Wirth, via email (judithworth206@gmail.com)

Enclosures: Appeal form Approved Plan DNS with conditions

Q:\Planning\Amanda Save File\Critical Area Review Permit\2019101224JohnsAutocleanup.LD.docx

2000 Lakeridge Drive SW, Olympia, Washington 98502 (360) 786-5490/FAX (360) 754-2939 TDD (360) 754-2933 Website: www.co.thurston.wa.us/permitting

Project No. Appeal Sequence No.

APPEAL OF AN ADMINISTRATIVE DECISION

TO THE THURSTON COUNTY HEARING EXAMINER COMES NOW

on this day of	20, as an APPELLANT in the matter of an administrative decision rendered		
on	20, by	, relating to	

THE APPELLANT, after review and consideration of the reasons given by the administrative official for his/her decision, does now, give written notice of APPEAL to the Hearing Examiner of said decision under the provision(s) of the ordinances marked below.

17.09.160 SEPA 17.15.410 AG ACTIVITIES, CRITICAL AREAS 19.12.010 SHORELINE PROGRAM 20.60.060 ZONING 22.62.050 TUMWATER UGA ZONING 24.05.050 CRITICAL AREAS

□ 18.10.070 PLATTING & SUBDIVISION 21.81.070 LACEY UGA ZONING 23.72.190 OLYMPLA UGA ZONING 14.22.501 ABATEMENT OF DANGEROUS BUILDINGS

STATE THE BASIS OF THE APPEAL AS OUTLINED IN SECTION "A" ON REVERSE SIDE OF THIS FORM.

(If more space is required, please attach additional sheet.)

AND REQUESTS that the Hearing Examiner, having responsibility for review of such decisions will upon review of the record of the matters and the allegations contained in this appeal, find in favor of the appellant and reverse the administrative decision.

	APPELLANT NAME PRI	APPELLANT NAME PRINTED				
	SIGNATURE OF APPELI	.ANT				
	Address					
	Email:					
lease do not write below - for St	aff Use Only:					
iled with Community Plann	ing & Economic Development this	day of	20,			
y	Filing fee of \$1960.00*, r	eceipt no	by			

*The filing fee will cover staff time (for Planning, Environmental Health & Development Review), and Hearing Examiner time to hear the appeal and issue a decision. Additional fees will be billed if warranted.

THURSTON COUNTY PROCEDURE FOR APPEAL OF ADMINISTRATIVE DECISION TO HEARING EXAMINER

NOTE: THERE MAY BE NO EX PARTE (ONE-SIDED) CONTACT OUTSIDE A PUBLIC HEARING WITH EITHER THE HEARING EXAMINER OR WITH THE BOARD OF THURSTON COUNTY COMMISSIONERS ON APPEALS (Thurston County Code, Section 2.06.030).

The following is a description of the rules of procedure for appeals before the Hearing Examiner.

A. A FILED APPEAL MUST BE IN WRITING AND CONTAIN THE FOLLOWING

- 1. A brief statement as to how the appellant is significantly affected by or interested in the matter appealed;
- A brief statement of the appellant's issues on appeal, noting appellant's specific exceptions and objections to the decision or action being appealed;
- 3. The relief requested, such as reversal or modification.

B. PRE-HEARING CONFERENCE

- 1. All parties to an appeal hearing shall be prepared for a pre-hearing conference with the Thurston County Hearing Examiner. The pre-hearing conference is held to structure the scope of the hearing.
- 2. Pre-hearing conferences may be held by telephone conference call.
- The Hearing Examiner shall give reasonable notice to parties of any pre-hearing conference. Notice may be written or oral.
- All parties shall be represented at a pre-hearing conference unless they waive the right to be present or represented.
- Following the pre-hearing conference, the Hearing Examiner may issue an order reciting the actions taken or ruling on motions made at the conference.

C. PARTIES REPRESENTATIVE REQUIRED

When a party consists of more than one individual, or is a group, organization, corporation, or other entity, the appellant shall designate an individual to be its representative, and inform the Hearing Examiner's office of the name, address and telephone number of the designated representative. The rights of such an appellant shall be exercised by the person designated as the party representative. Notice or other communication to the party representative is considered to be notice or communication to party.

D. PARTIES' RIGHTS AND RESPONSIBILITIES

- Although Appellants and Applicants have the right to be represented by an attorney, representation by an attorney is not required. Attorney representation is not discouraged.
- 2. Where a party has designated a representative, the representative shall exercise the rights of the party.
- All parties and others participating in and observing hearings shall conduct themselves with civility and deal courteously with all persons involved in the proceedings.

E. HEARING FORMAT

- Appeal hearings, although generally informal in nature, shall have a structured format and shall be conducted in a manner deemed by the Hearing Examiner to make the relevant evidence most readily and efficiently available to the Examiner and to provide the parties a fair opportunity for hearing.
- 2. The order of an appeal hearing will generally be as follows:
 - a. Examiner's introductory statement;
 - b. Background presentation by Department;
 - c. Appellant's argument;
 - d. Department's presentation;
 - e. Applicant's presentation;
 - f. Rebuttal;
 - g. Closing argument of parties.
- F. Hearing Examiner Decision will be issued within ten (10) working days of the hearing unless additional time is agreed to by the parties.

5Apollo/Apps/Trock/Planning/Form/Current Apport Form/2011 apped adm des

North Excavation ~10'x10' to a max depth of 1.5'

V Road South

Existing Access Road

93rd Avenue South ast

South Excavation #3 ~20'x20' to a max depth of 1'

· MWW B

4- MW-2

Approx. location of emergency tank

0 11 5 11 10

	() and			South Excavation #2 ~20'x20' to a max depth of 1'
				South Excavation #1 ~20'x20' to a max depth of 1'
	Note	: The wet contains	land buffer area is only a few small is	dry between June and September and Hopkins solated pools (there is no flowing water).
ROBINSON' NOBLE	Note: Image from Thurston County Geodata 2015 Aerials	PM: MTW October 2018 2491-001G	Thurston County T 17 N/R 02 W - 23 Scale 1" = 100'	Figure Excavation Location Maj John's Auto Wrecking: Remedial Investigatio

CASE NO.: 2019101224 SEPA SEQUENCE NO.: 19 103357 XA CASE SEQUENCE NO.: 19 103356 XD

DETERMINATION OF NONSIGNIFICANCE

Proponent:

Applicant:

Description of Proposal:

Location of Proposal: Section/Township/Range: Tax Parcel Numbers:

Threshold Determination:

Conditions/Mitigating Measures:

1. SEE ATTACHED

Jurisdiction: Lead Agency: Responsible Official:

Date of Issue: June 4, 2019 Comment Period ends: June 24, 2019 Appeal Period ends: July 1, 2019 Max Willis Robinson Noble, Inc. 17625 130th Avenue NE, Suite 102 Woodinville WA 98071-8706

Judith Wirth Havens Estate Investments, LLC 5023 8th Avenue NE Seattle WA 98105-3602

The site is a former auto wrecking yard that has four small areas of ground contamination—the contaminant is lead. The proposal is to excavate all four areas, each approximately 10'x10' and one-foot deep, removing excavated materials to a designated landfill. The excavated areas will then be backfilled with clean material.

411 93rd Avenue SE, Olympia 23/17N/2W 12723210100, 12723220200, 12723210400, 12723210101, 12723210700, 12723210000,

The lead agency for this proposal has determined that it does <u>not have</u> a probable significant adverse impact upon the environment. An Environmental Impact Statement <u>is not</u> required under RCW 43.21C.030(2)(C). This decision was made after review by the Lead Agency of a completed Environmental Checklist and other information on file with the Lead Agency. This information is available to the public on request.

Thurston County Community Planning and Economic Development Bret Bures, Planning Manager

Leah Davis, Associate Planner

This Determination of Nonsignificance (DNS) is issued under 197-11-340(2); the lead agency will not act on this proposal for 14-days from the date of issue. No permits may be issued, and the applicant shall not begin work until after the comment and any appeal periods have expired and any other necessary permits are issued. If conditions are added, deleted, or modified during the 14-day review period, a modified MDNS will be issued. Otherwise, this MDNS will become final after the expiration of the comment deadline and appeal period, if applicable.

APPEALS: Threshold determinations may be appealed pursuant to TCC 17.09.160 if: (1) a written notice of appeal, meeting the requirements of TCC 17.09.160(D), and the appropriate appeal fee is received by the Thurston County Development Services Department within fourteen calendar days of the date of issuance of the threshold determination or, if there is a comment period under WAC 197-11-340, within seven calendar days of the last day of the comment period; and (2) the person filing the appeal meets the requirements of TCC 17.09.160(B).

<u>NOTE</u>: The issuance of this Determination of Nonsignificance <u>does not</u> constitute project approval. The applicant must comply with all applicable requirements of Thurston County and Washington State.

Thurston County CPED, Leah Davis Building #1, Administration 2000 Lakeridge Drive SW Olympia, WA 98502 (360) 786-5582 leah.davis@co.thurston.wa.us

Department of Ecology Adjacent Property Owners WA Dept. of Fish and Wildlife

cc:

Squaxin Indian Tribe Nisqually Tribe

P564

ATTACHED CONDITIONS

CASE NO.: 2019101224 SEQUENCE NUMBERS: 19 103357 XA and 19 103356 XD

Background

This Determination of Non-Significance is based on the project as proposed and the impacts and mitigation reflected in the following materials:

- Environmental Checklist, received March 21, 2019
- Critical Areas Review Permit application, received March 21, 2019
- Site plan, received March 21, 2019
- ORCAA comments, received February 6, 2019
- Site visit, conducted May 13, 2019
- Washington State Department of Ecology letters, dated April 5, 2019 and April 22, 2019
- Washington State Dept. of Health comment, dated April 1, 2019
- Nisqually Tribe comment letter, dated April 1, 2019
- Squaxin Island Tribe comments, dated March 25, 2019

Conditions:

- Erosion control measure must be in place prior to any clearing, grading, or construction. The discharge of sediment-laden runoff or other pollutants to waters of the state is in violation of Chapter 90.48, Water Pollution Control, and WAC 173-201A, Water Quality Standards for Surface Waters of the State of Washington, and is subject to enforcement action. Erosion control measures must be in place prior to any clearing, grading or construction. These control measures must be effective to prevent soil from being carried into surface water by stormwater runoff. Sand, silt, clay particles, and soil will damage aquatic habitat and are considered pollutants when discharged to waters of the state.
- The issuance of a DNS does not constitute project approval. No work shall occur on site during the SEPA review process and the resolution of any appeals.
- 3. The applicant must comply with all applicable requirements of Thurston County Codes prior to receiving permit approval.
- 4. All grading and filling of land must utilize only clean fill. All other materials may be considered solid waste and permit approval may be required from your local jurisdictional health department prior to filling. All removed debris resulting from this project must be disposed of at an approved site. Contact the local jurisdictional health department for proper management of these materials.
- 5. A Construction Stormwater Permit from the Washington State Department of Ecology may be required.
- 6. If contamination is currently known or suspected during construction, testing of potentially contaminated media must be conducted. If contamination of soil or groundwater is readily visible, or is revealed by testing, the Washington State Department of Ecology must be notified. Contact the Environmental Report Tracking system Coordinator at the Southwest Regional Office at (360) 407-6300.
- All areas that are disturbed or newly created by construction activities shall be seeded, vegetated, or given some other equivalent type of protection against erosion.
- In the event of inadvertent discovery of human remains or artifacts, the applicant shall contact and Department of Archaeology and Historic Preservation (360) 586-3534.
- 9. All other applicable state, federal, and local permits must be obtained prior to the start of project work.

Building Development Center

2000 Lakeridge Dr. SW, Olympia, WA 98502 (360)786-5490 / (360)754-2939 (Fax) TDD Line (360) 754-2933 Email: <u>permit@co.thurston.wa.us</u> <u>www.thurstoncountybdc.com</u> Creating Solutions for Our Future

MASTER APPLICATION

This application must accompany a project specific supplemental application.

STAFF USE ONLY	DATE STAMP
LABEL NOTE: ALL APPLICATIONS AND SITE PLANS MUST BE COMPLETED IN BLACK OR BLUE INK <u>ONLY</u>	
Gopher Soils 🗆 YES 🗆 NO Prairie Soils 🗆 YES 🗆 NO	Intake By:

PROJECT DESCRIPTION John's Auto Wrecking - Environmental Remediation

PROPERTY INFORMATION		
1. Tax Parcel Number(s) 12723210100; 12723220200 ;	12723210400; 12723210401	12723210700; 12723210000
2. Subdivision Name N/A	Lot	# N/A
3. Property Address 411 93rd Avenue Southeast	City Olympia	Zip Code 98501
4. Directions to Property (from nearest major road)		
Take exit 99 from I-5, drive east on 93rd Avenue SE approximatel between Tiley Road SW and Hart Road SE. The property is fence	y 1.75 miles. Property is located on t d and locked - access is via a gate of	the south side of 93rd Avenue SE on the NE corner of the property.
PROPERTY ACCESS		
5. Property Access SExisting Proposed		
6. Access Type Private Driveway Shared Drivew	ay Private Road Public Ro	oad
7. Property Access Issues (locked gate, gate code, dogs or o	ther animals) No Ves The	property is fenced and locked - key required.
Property owner is responsible for providing gate coo	le and securing animals prior	to site visit.
WATER/SEPTIC		
8. Water Supply Existing Proposed		
9. Water Supply Type Single Family Two Party	Well Group A Group B	
WATER SYSTEM NAME N/A - There is no	existing water supply on the site.	
10. Waste Water Sewage Disposal Existing Prop	posed	
11. Sewage Disposal System Type Individual Septic S	system Community System	Sewer
NAME OF PUBLIC SYSTEM N/A - There	is no existing sewage disposal system	m on the site.

BILLING OF INVOICES

The fee charged at the time of application co are used, a monthly billing invoice is genera	overs base hours listed on ted at the hourly rate liste	the fee schedule. When ba	se hours by a Department
exceed the base hours allotted, billing invoid	ces shall be mailed to: 🔽	Owner Applicant	Point of Contact
PROPERTY OWNER (additional property or	wner sheet can be obtained c	online at www.thurstoncountyl	odc.com)
Property Owner Name Havens Estate Inv	estments, LLC (Judith	Wirth)	
Mailing Address 5023 8th Avenue NE	City Sea	ttle State WA	Zip Code 98105-3602
Phone (206) 632-1924 C	ell ()	Fax (206)	632-1924
EMAIL judithworth206@gmail.com			
Communication	n from staff provided by	Email? YES NO	
Property Owner Signature*		Date_3	/21/2019
APPLICANT			
Applicant Name Havens Estate Investme	ents, LLC (Judith Wirth)	
Mailing Address 5023 8th Avenue NE	City Seat	ttleState_WA	Zip Code_98105-3602
Phone (206) 632-1924 Co	ell ()	Fax (206)	632-1924
EMAIL judithworth206@gmail.com			
Communication	from staff provided by	Email? YES NO	
Signature*		Date_3	/21/2019
OINT OF CONTACT (Person receiving all C	County correspondence)		
Name Max Wills (Robinson Noble, Inc.)			
Mailing Address 17625 130th Avenue N	E, Suite 102 _{City} Woo	dinville State WA	Zip Code 98072-8706
Phone (425) 488-0599 Ce	11 (206) 550-7215	Fax (4254	188-2330
EMAIL mwills@robinson-noble.com			
Communication	from staff provided by	Email? YES NO	
Signature*		Date_3/	/21/2019

*DISCLAIMER

Application is hereby made for a permit(s) to authorize the activities described herein. I certify that I am familiar with the information contained in the application package and that to the best of my knowledge and belief, such information is true, complete, and accurate. I further certify that I possess the authority to undertake the proposed activities. I hereby grant to the agencies to which this application is made or forwarded, the right to enter the above-described location to inspect the proposed, in-progress or completed work. I agree to start work only after all necessary permits/approvals have been received.

Revised 05/31/18

APPENDIX K

4139 Libby Road NE • Olympia, WA 98506-2518

July 21, 2016

Max Wills Robinson Noble 17625 130th Avenue NE, Suite 102 Woodinville, WA 98072

Dear Mr. Wills:

Please find enclosed the analytical data report for the Havens Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Phone (360) 352-2110 • Fax (360) 352-4154 • libbyenv@aol.com

www.LibbyEnvironmental.com

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L160715-5 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead
Number	Analyzed	(mg/kg)
Method Blank	7/20/16	nd
WS 10	7/20/16	165
WS 11	7/20/16	67
WS 12	7/20/16	21
WS 13	7/20/16	47
WS 14	7/20/16	17
WS 15	7/20/16	9.0
WS 16	7/20/16	7.5
WS 17	7/20/16	7.6
WS 18	7/20/16	386
WS 19	7/20/16	11
WS 19 Dup	7/20/16	11
WS 20	7/20/16	41
WS 21	7/20/16	123
WS 22	7/20/16	15
WS 23	7/20/16	13
WS 24	7/20/16	85
WS 24 Dup	7/20/16	90
Practical Quantitation Limit		5.0

Analyses of Total Lead in Soil by EPA Method 7010 Series

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Jamie Deyman

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L160715-5 Client Project # 2491-001F 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead
Number	Analyzed	(% Recovery)
LCS	7/20/16	115%
WS 24 MS	7/20/16	84%
WS 24 MSD	7/20/16	85%
RPD	7/20/16	1%

QA/QC for Lead in Soil by EPA Method 7010 Series

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Jamie Deyman

stribution: White - Lab. Yellow - File. Pink - Originator	D	o interesting	by fees to be determined by a cout of law.	costs and reasonable attorn	of collection including court	preas to pay the costs	ure to pay, Clent a	of payment and/or fail	GAL ACTION CLAUSE. In the event of default	LEC
		Total Number of	Date / Time		Received by:		a i lime	Date	emiquation of	
FIN	Y N N/A	Seals Intact?				<	1 1	Dat	plinni lichad hu	v
7 (°C	Temp.	Date / Time	1	Received by:"		1 Time	Date	eninquistied by:	2
ハイン しょう	Y N	Good Condition?	7/15/16 357	Delater	amart	30	41 2	11211C	alinewished her	
Remarks:	Receipt	Sample	Date / Time	3	Received by: -	1	a / Time	Date	eiinquished by:	K
									7	
									6	-
*	×				W	-	1400	e	5 224	1-
	×					6	0.551	1	4 2 2 2 3	-
	×						1340	0-1	3 W 2 2 2	
	×						1330	0-11/2	2 WS 21	
	×						1320	E	1 W S 20	-
	×						1310		0 WS 17.	-
	×				1		1300	-	BISM 6	
	X					-	12.45		LISN 8	
	×				1	-	1235	-	7 WS16	
	X				-	_	1230		6 WS 15	Ē
	X					-	1220	-	5WS14	
	×					-	12 10	-	452512	1
	×					-	1155	1	3 2 5 12	
	X				1	1	1145	1	2 2 5 11	
	×				4 22 544	2015	1130	0-1	1 22 10	-
Field Notes	ACKAR O MIC	1 6110 JO 0000	Covert AN SAL SAL	AOC ODED	Container Type	Sample Type	Time	Depth	Sample Number	-
	1015			\mathbf{X}					NJ · · · · · · · · · · · · · · · · · · ·	
det , can	やしっとい	LOBINS	ail: Mwices a				T	1-00	Slient Project # 299	
Collection: 7/15/15	Date of C	ACY	llector: MTW I	0			Fax:	7215	none: (244) 550	T
le:	City, Stat	A	ation: OLTMAN	Log	198072	JA ZI	State: 1	ILL E	ity: 100001001	
		5	ject Name: HAUKA	Pro	WITK IST	んちょう	AUT	130%	Address: 17625	Þ
	in	(W/(()	ject Manager: MAY	Pro			0865	NO LA	Slient: KOD, USO/	То
of 1	Page:		te: 7/15/16	Dat		-2110 -4154	360-352- c 360-352-	Fay	139 Libby Road NE Ilympia, WA 98506	0 4
www.LibbyEnvironmental.com		đ	ustody Record	nain of C	C		, Inc.	mental	LIDDY ENVIRON	
										-

3322 South Bay Road NE • Olympia, WA 98506-2957

July 17, 2019

Max Wills Robinson Noble 2105 South C Street Tacoma, WA 98402

Dear Mr. Wills:

Please find enclosed the analytical data report for the Haven Estate Invest Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

hy I Mu

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	ental,	Inc.		Cł	nain	of C	usto	ody F	Reco	orc	k					www.L	ibbyEnviror	nmental.com
4139 Libby Road NE	Ph:	360-352-2	110			_	0	-/01	10					2010-0225-5		1		1
Olympia, WA 98506	Fax:	360-352-4	154			Date	9:	14	1			11)	F	Page:		1	of	1
Client: KN	6					Proj	ect Ma	anager:	11	ax	h	<u>111 S</u>				_		
Address: 2105 5	C St					Proj	ect Na	ame:	Ha	rei	1 E	state	2	unves	t			
City: Tacoma		State:	WA Zip	98402		Loca	ation:	Joh	n's A	Vte	Wr	rectory	(City, Sta	ate:	Olym	lla, WA	1
Phone: 253-475-	7711	Fax:				Colle	ector:	Ma	thew	6	- W	12	[Date of	Colle	ection:	7/9/1	9
Client Project #	2491-	0016	-			Ema	iil: M	wills (a) ro	bu	1591-	noble	COM					
Sample Number	Depth	Time	Sample Type	Container Type	100	858 (PT-1)	15 50 12 1	Rep. H.C.R.	21 PH 22	4/20/20	10 10 AH 8210	10 80 10 10 10 10 10 10 10 10 10 10 10 10 10	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and a second	, S	E F	ield Notes	2
1 WS8-A	6**	14:20	501)	403 'ar										\times				
2 WS6-A	811	14:45	1	Ň										X				
3 WS21-A	€"	15:00	\checkmark	X										X				
4																		
5										j								
6																		
7																		
8																		
9																		
10													-					
11																		
12																		
13																		
14																		
15																		
16																		
17																		
Relinquished by	Date	/ Time		Received by:			-	Date	e / Time		5	Sample	Rece	eipt	Re	marks:		
Di	7 10 1	9 1418		haft			7	10/19	1418	3	Good (Condition?	, ``	Y N		ST	D	
Relinquished by:	Date	/ Time		Received by:				Date	e / Time		Temp.			°C		C	1 71	
		(] .		<u> </u>							Seals I	ntact?	1 Y	N N/A		1	214	
Relinquished by:	Date	/ lime		Received by:				Date	e / Time		Total N Con	lumber of Itainers			Т	AT: 24	HR 48H	R 5-DAY

LEGAL ACTION CLAUSE In the event of default of payment and/or failure to pay. Client agrees to pay the costs of collection including court costs and reasonable altorney fees to be determined by a cout of law.

Distribution: White - Lab, Yellow - File, Pink - Originator

HAVEN ESTATE INVEST PROJECT Robinson Noble Libby Project # L190710-7 Date Received 7/10/2019 Time Received 2:18 PM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody						
1. Is the Chain of Custody is complete?	\checkmark	Yes		No		
2. How was the sample delivered?		Hand Delivered	\checkmark	Picked Up		Shipped
Log In						
3. Cooler or Shipping Container is present.	\checkmark	Yes		No		N/A
4. Cooler or Shipping Container is in good condition.	\checkmark	Yes		No		N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes	\checkmark	No		N/A
6. Was an attempt made to cool the samples?	\checkmark	Yes		No		N/A
7. Temperature of cooler (0°C to 8°C recommended)		1.8	°C			
8. Temperature of sample(s) (0°C to 8°C recommended)		15.6	°C			
9. Did all containers arrive in good condition (unbroken)?	\checkmark	Yes		No		
10. Is it clear what analyses were requested?	1	Yes		No		
11. Did container labels match Chain of Custody?	\checkmark	Yes		No		
12. Are matrices correctly identified on Chain of Custody?	1	Yes		No		
13. Are correct containers used for the analysis indicated?	\checkmark	Yes		No		
14. Is there sufficient sample volume for indicated analysis?	\checkmark	Yes		No		
15. Were all containers properly preserved per each analysis?	\checkmark	Yes		No		
16. Were VOA vials collected correctly (no headspace)?		Yes		No	\checkmark	N/A
17. Were all holding times able to be met?	1	Yes		No		
Discrepancies/ Notes						
18. Was client notified of all discrepancies?		Yes		No	\checkmark	N/A
Person Notified:				Date:		
By Whom:				Via:		
Regarding:			-			
19. Comments.						

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/16/2019

Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506

Project:Haven Estate InvestDate Received:07/11/2019Spectra Project:2019070330

Client ID	Spectra #	Analyte	Result	Units	Method	<u>Matrix</u>	Date Sampled
WS8-A	1	TCLP Lead	< 0.025	mg/L	EPA 1311/6010D	Soil	07/09/2019
WS6-A	2	TCLP Lead	< 0.025	mg/L	EPA 1311/6010D	Soil	07/09/2019
WS21-A	3	TCLP Lead	< 0.025	mg/L	EPA 1311/6010D	Soil	07/09/2019

SPECTRA Laboratories

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

7/16/2019

Libby Environmen	tal, Inc				Units:		mg/L	
3322 South Bay Re	d, NE				Spectra Pro	ject:	2019070330)
Olympia, WA 985	506				Applies to	Spectra #'s	1-3	
						Analyst:	SCJ	
		OUA	LITY CON	TROL RES	SULTS			
		ICP Meta	ls SW846 6	010C - TCI	LP Extract			
			Method	d Blank				
Date Digested:	7/16/2019				Date Analy	zed:	7/16/2019	
		Element			Result	_		
		Lead			< 0.025			
		Labor	atory Cont	rol Sample	(LCS)			
Date Digested:	7/16/2019				Date Analy	zed:	7/16/2019	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec	_	
		Lead		1.0	1.041	104.1		
LCS Recovery limi	ts 80-120%							
	1	Matrix Spike	/Matrix Spi	ike Duplica	te (MS/MSD)		
Date Digested:	7/16/2019				Date Analy	zed:	7/16/2019	
Sample Spiked:	2019070301	-1						
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Lead		0.000	1.0	0.957	95.7	0.938	93.8	2.0

Recovery Limits 75-125% RPD Limit 20 Comment:

Spectra Laboratories

1 aboratory Manager

Libby Environm	ental, Inc.		5	nain of C	ustody Record			www.LibbyEnvironm	iental.com
3322 South Bay Road NE Olympia, WA 98506	Ph: 360-352-21 Fax: 360-352-41	10 75 54 75	190705	330 Dat	e: 7/11/19		Page:	of	
Client: LIDA ENVI	ronmented,	FINC.		Pro	ect Manager: Shurr	, Chilcutt			
Address: (See inloor	YE)			- P	ect Name: Haven	Estate	invest		
City:	State:	Zip:		Loc	ation: Jehns A.	راجم	City, State:	бM	
Phone:	Fax:			Col	lector: M G L		Date of Col	lection: 7/9/19	
Client Project # L190	1-01			Ĕ	ali: L'bby Env	@ Gmail	, cem		
4 - 7 1 / 2 8 - 7 - EN				9	CT LOT ACTO OF OFO	OTO OF	d stelen		
Sample Number	Depth Time	Sample Type	Container Type	AALANN SOL	A THAT HAT HAT HAT AND	21. 801 100 000 108 100 000 000 000 000 000	or or by	Field Notes	
1 WSA A	02M 117	1. 5	1 22				X		
2 W56-4	8 " 1445	-	-				X		
3 WS21-A 2 2011	6 1500	-	4				×		
4									
5									
Q									
7									
ω									
o									
10									
11									
12									
13									
14									
15									
16									
17									
Relinquished by:	Date / Time	æ	teceived by:		Date / Time	Sample R	eceipt R	emarks:	
4164	+141 61/61/1		d my	Junnette	CIEL PI-11-1	Good Condition?	N S		
Reinquished by:	Date / Time		teceived by:		Date / Time	Cooler Temp.	. 9 .0		
						Sample Temp.	0, 0,		
Kelinquished by:	Uate / IIme	Ľ	(eceived by:		Date / I me	Total Number of Containers	M	AT: 24HR 48HR	6-DAV
LEGAL ACTION CLAUSE: In the event of default of pays.	nent and/or faiture to pay. Client agrees	to pay the costs of co	Viection including court co	sts and resonable attomey	fees to be determined by a coul 🔤 law.		Distrib	ution: White - Lab, Yellow - File, F	Pink - Offernator

Libby Environmental, Inc. 3322 South Bay Road NE • Olympia, WA 98506-2957

August 21, 2019

Max Wills Robinson Noble 2105 South C Street Tacoma, WA 98402

Dear Mr. Wills:

Please find enclosed the analytical data report for the Havens Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

hy I Mu

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.
Libby Environmental, Inc.					Chain of Custody Record									www.l	LibbyE	nvironment	tal.com					
3322 South Bay Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	110 154			Da	te:	8	-10	1-1	9					Page	e:	V		of	l	
Client: Robins	non	Nov	ile,I	NC		Pro	Project Manager: Max Wills															
Address:			3			Pro	oject N	ame	:	140	ivi	ens	S,									
City: TALOMA State: WA Zip: 9					Lo	cation:		41		9	3	d , ;	SE	(City,	State	e:	Oly.	mpig	, wA		
Phone: 253-475-7	711	Fax:				Co	llector	:	Ma	X	6	Dil	5	r		Date	of C	olled	ction:	8	-19-1	9
Client Project #	249	11-001	G			En	nail:															
Sample Number	Depth	Time	Sample Type	Container Type	40	ese providence	N.ST 882	ALL AN	SID SI PHID		40+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 1	C 10 18210 1820	S mill 20	10 210 210 20 20 20 20 20 20 20 20 20 20 20 20 20	S Mel	100 M	adis A.		F	Field N	lotes	
1 NEX -2	2	930	S	402												X						
2 NEX2-2	2	935	_/	(X						
3 NEX3-2	2	940														X						
4 5-EX#1-1-2	2	1030														7						
5 5-EX#1-2-2	2	1035														Хļ						
6 PS-2-1	1	1100		-						\mathbf{X}												
7 PS-3-1	1	1105	Ø							ХI												
8							_			_												
9							_													and montpolene in		
10															_							
11																_						
12																						
13																						
14							_															
15																						
16																						
17				-																		
Relinquished by:	Date		76	Received by:	M	Ne		C	Date /	lime	13		Sam	ple	Reco	eipt		Ren	narks:			
Relinguished by:	Date	11411 / Time	50	Received by:	U	A		8	- /1-	Time		Good	Condi	tion?		Y	N	R	US	H	LEAD	•
	Duto			, soon ou gy.					2010/			Coole	In Tem	p.			°C	(46		PAL	
Relinquished by:	Date	/ Time		Received by:					Date /	Time		Total	Numb	er of			-		6	nt	1 2111	
				_								Co	ntaine	rs				TA	T: 24	HR	48HR 5	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay.	lient agrees to pay the costs of collection including court costs and reasonable attorne	v fees to be determined by a cout of law.
		,

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L190819-1 Client Project # 2491-001G 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Lead
Number	Analyzed	(mg/kg)
Method Blank	8/19/19	nd
NEX1-2	8/19/19	nd
NEX1-2 Dup	8/19/19	nd
NEX2-2	8/19/19	nd
NEX3-2	8/19/19	nd
S-EX#1-1-2	8/19/19	nd
S-EX#1-2-2	8/19/19	nd
Practical Quantitation Limit		5.0
"nd" Indicates not detected at the li	sted detection limits.	

Analyses of Total Lead in Soil by EPA Method 7010 Series

ANALYSES PERFORMED BY: Dirk Peterson

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L190819-1 Client Project # 2491-001G 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Date	Lead
Analyzed	(% Recovery)
8/19/19	100%
8/19/19	103%
8/19/19	109%
8/19/19	6%
	Date Analyzed 8/19/19 8/19/19 8/19/19 8/19/19

QA/QC for Total Lead in Soil by EPA Method 7010 Series

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

HAVENS PROJECT Robinson Noble Libby Project # L190819-1 Date Received 8/19/2019 Time Received 11:38 AM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By SC

Sample Receipt Checklist

Chain of Custody						
1. Is the Chain of Custody complete?	1	Yes		No		
2. How was the sample delivered?		Hand Delivered	\checkmark	Picked Up		Shipped
Log In						
3. Cooler or Shipping Container is present.	\checkmark	Yes		No		N/A
4. Cooler or Shipping Container is in good condition.	\checkmark	Yes		No		N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes	\checkmark	No		N/A
6. Was an attempt made to cool the samples?	\checkmark	Yes		No		N/A
7. Temperature of cooler (0°C to 8°C recommended)		-1.5	°C			
8. Temperature of sample(s) (0°C to 8°C recommended)		15.0	°C			
9. Did all containers arrive in good condition (unbroken)?	\checkmark	Yes		No		
10. Is it clear what analyses were requested?	1	Yes		No		
11. Did container labels match Chain of Custody?	1	Yes		No		
12. Are matrices correctly identified on Chain of Custody?	1	Yes		No		
13. Are correct containers used for the analysis indicated?	\checkmark	Yes		No		
14. Is there sufficient sample volume for indicated analysis?	\checkmark	Yes		No		
15. Were all containers properly preserved per each analysis?	1	Yes		No		
16. Were VOA vials collected correctly (no headspace)?		Yes		No	\checkmark	N/A
17. Were all holding times able to be met?	\checkmark	Yes		No		
Discrepancies/ Notes						
18. Was client notified of all discrepancies?		Yes		No	\checkmark	N/A
Person Notified:				Date:		
By Whom:				Via:		
Regarding:						
19. Comments.						

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: Havens Work Order Number: 1908271

August 21, 2019

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 2 sample(s) on 8/20/2019 for the analyses presented in the following report.

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Libby Environmental Havens	Work Order S	Sample Summary			
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received			
1908271-001	PS-2-1	08/19/2019 11:00 AM	08/20/2019 9:15 AM			
1908271-002	PS-3-1	08/19/2019 11:05 AM	08/20/2019 9:15 AM			

Case Narrative

WO#: **1908271** Date: **8/21/2019**

CLIENT:Libby EnvironmentalProject:Havens

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1908271** Date Reported: **8/21/2019**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 1908271

 Date Reported:
 8/21/2019

Client: Libby Environmental	ental Collection Date: 8/19/2019 11:00:00 AM								
Project: Havens									
Lab ID: 1908271-001				Matrix: So	oil				
Client Sample ID: PS-2-1									
Analyses	Result	RL	Qual	Units D		Date Analyzed			
Polyaromatic Hydrocarbons by	EPA Method 8	270 (SIM)		Batch	n ID:	25563 Analyst: SB			
Benz(a)anthracene	ND	42.8		µg/Kg-dry	1	8/20/2019 8:11:14 PM			
Chrysene	ND	42.8		µg/Kg-dry	1	8/20/2019 8:11:14 PM			
Benzo(b)fluoranthene	ND	42.8		µg/Kg-dry	1	8/20/2019 8:11:14 PM			
Benzo(k)fluoranthene	ND	42.8		µg/Kg-dry	1	8/20/2019 8:11:14 PM			
Benzo(a)pyrene	ND	42.8		µg/Kg-dry	1	8/20/2019 8:11:14 PM			
Indeno(1,2,3-cd)pyrene	ND	42.8		µg/Kg-dry	1	8/20/2019 8:11:14 PM			
Dibenz(a,h)anthracene	ND	42.8		µg/Kg-dry	1	8/20/2019 8:11:14 PM			
Surr: 2-Fluorobiphenyl	60.2	19.4 - 157		%Rec	1	8/20/2019 8:11:14 PM			
Surr: Terphenyl-d14 (surr)	77.8	31.5 - 173		%Rec	1	8/20/2019 8:11:14 PM			
Sample Moisture (Percent Mois	<u>ture)</u>			Batch	ו ID:	R53376 Analyst: SBM			
Percent Moisture	17.8	0.500		wt%	1	8/21/2019 8:15:06 AM			

Analytical Report

 Work Order:
 1908271

 Date Reported:
 8/21/2019

Client: Libby Environmental	Collection Date: 8/19/2019 11:05:00 AM								
Project: Havens									
Lab ID: 1908271-002				Matrix: Sc	oil				
Client Sample ID: PS-3-1									
Analyses	Result	RL	Qual	Units	DF	Date Analyzed			
Polyaromatic Hydrocarbons by	EPA Method 8	270 (SIM)		Batch	n ID:	25563 Analyst: SB			
Benz(a)anthracene	ND	46.9		µg/Kg-dry	1	8/20/2019 8:31:55 PM			
Chrysene	ND	46.9		µg/Kg-dry	1	8/20/2019 8:31:55 PM			
Benzo(b)fluoranthene	ND	46.9		µg/Kg-dry	1	8/20/2019 8:31:55 PM			
Benzo(k)fluoranthene	ND	46.9		µg/Kg-dry	1	8/20/2019 8:31:55 PM			
Benzo(a)pyrene	ND	46.9		µg/Kg-dry	1	8/20/2019 8:31:55 PM			
Indeno(1,2,3-cd)pyrene	ND	46.9		µg/Kg-dry	1	8/20/2019 8:31:55 PM			
Dibenz(a,h)anthracene	ND	46.9		µg/Kg-dry	1	8/20/2019 8:31:55 PM			
Surr: 2-Fluorobiphenyl	46.8	19.4 - 157		%Rec	1	8/20/2019 8:31:55 PM			
Surr: Terphenyl-d14 (surr)	71.7	31.5 - 173		%Rec	1	8/20/2019 8:31:55 PM			
Sample Moisture (Percent Moist	<u>ture)</u>			Batch	n ID:	R53376 Analyst: SBM			
Percent Moisture	22.1	0.500		wt%	1	8/21/2019 8:15:06 AM			

Fremont
[Analytical]

Project:

Libby Environmental CLIENT: Havens

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-25563	SampType: MBLK			Units: µg/Kg	Prep Date: 8/20/2019			RunNo: 533			
Client ID: MBLKS	Batch ID: 25563					Analysis Da	te: 8/20/20	19	SeqNo: 1056084		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	ND	40.0									
Chrysene	ND	40.0									
Benzo(b)fluoranthene	ND	40.0									
Benzo(k)fluoranthene	ND	40.0									
Benzo(a)pyrene	ND	40.0									
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	40.0									
Surr: 2-Fluorobiphenyl	521		500.0		104	19.4	157				
Surr: Terphenyl-d14 (surr)	534		500.0		107	31.5	173				

Sample ID: LCS-25563	SampType: LCS			Units: µg/Kg		Prep Date	8/20/2019	RunNo: 53380	
Client ID: LCSS	Batch ID: 25563					Analysis Date	8/20/2019	SeqNo: 1056085	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benz(a)anthracene	1,220	40.0	1,000	0	122	36.6	142		
Chrysene	987	40.0	1,000	0	98.7	43	165		
Benzo(b)fluoranthene	1,040	40.0	1,000	0	104	41	155		
Benzo(k)fluoranthene	961	40.0	1,000	0	96.1	30.6	164		
Benzo(a)pyrene	1,120	40.0	1,000	0	112	30.2	171		
Indeno(1,2,3-cd)pyrene	857	40.0	1,000	0	85.7	31.3	159		
Dibenz(a,h)anthracene	837	40.0	1,000	0	83.7	28	158		
Surr: 2-Fluorobiphenyl	472		500.0		94.4	19.4	157		
Surr: Terphenyl-d14 (surr)	567		500.0		113	31.5	173		
Sample ID: 1908270-002ADUP	SampType: DUP			Units: µg/Kg-c	Iry	Prep Date	8/20/2019	RunNo: 53380	
Client ID: BATCH	Batch ID: 25563					Analysis Date	8/20/2019	SeqNo: 1056087	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benz(a)anthracene	ND	43.8					0	30	
Chrysene	ND	43.8					0	30	

Fremont
Analytical

Work Order: 1908271

Work Order: 1908271								QCS	SUMMAI	RY REF	POR
CLIENT: Libby Enviro	onmental				Po	lyaroma	tic Hydro	ocarbons b	y EPA Met	thod 827	0 (SIM
Sample ID: 1908270-002ADUP	SampType: DUP			Units: ua/K	a-drv	Prep Da	te: 8/20/20	19	RunNo: 533	380	
Client ID: BATCH	Batch ID: 25563			13.11	yy	' Analvsis Da	te: 8/20/20	19	SeaNo: 10	56087	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(b)fluoranthene	ND	43.8						0		30	
Benzo(k)fluoranthene	ND	43.8						0		30	
Benzo(a)pyrene	ND	43.8						0		30	
Indeno(1,2,3-cd)pyrene	ND	43.8						0		30	
Dibenz(a,h)anthracene	ND	43.8						0		30	
Surr: 2-Fluorobiphenyl	392		547.0		71.6	19.4	157		0		
Surr: Terphenyl-d14 (surr)	433		547.0		79.2	31.5	173		0		
Sample ID: 1908270-002AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 8/20/20	19	RunNo: 533	380	
Client ID: BATCH	Batch ID: 25563					Analysis Da	te: 8/20/20	19	SeqNo: 10	56088	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	805	40.7	1,017	6.699	78.5	34.9	139				
Chrysene	739	40.7	1,017	0	72.6	45.2	146				
Benzo(b)fluoranthene	721	40.7	1,017	0	70.8	42.2	168				
Benzo(k)fluoranthene	738	40.7	1,017	0	72.5	20.5	150				
Benzo(a)pyrene	780	40.7	1,017	0	76.7	34.4	179				
Indeno(1,2,3-cd)pyrene	641	40.7	1,017	0	63.0	11.8	140				
Dibenz(a,h)anthracene	633	40.7	1,017	0	62.2	17.3	156				
Surr: 2-Fluorobiphenyl	350		508.7		68.9	19.4	157				
Surr: Terphenyl-d14 (surr)	366		508.7		71.9	31.5	173				
Sample ID: 1908270-002AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 8/20/20	19	RunNo: 533	380	
Client ID: BATCH	Batch ID: 25563					Analysis Da	te: 8/20/20	19	SeqNo: 10	56089	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

6.699

0

0

0

77.6

72.4

75.6

59.3

34.9

45.2

42.2

20.5

139

146

168

150

805.1

738.8

720.7

737.5

30

30

30

30

2.64

1.84

5.02

21.5

Chrysene

Benz(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

784

725

758

594

40.1

40.1

40.1

40.1

1,002

1,002

1,002

1,002

Work Order: 1908271

Project:

Libby Environmental CLIENT: Havens

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1908270-002AMSD	SampType: MSD			Units: µg/Kg	-dry	Prep Da	te: 8/20/20	19	RunNo: 533	380	
Client ID: BATCH	Batch ID: 25563					Analysis Da	te: 8/20/20	19	SeqNo: 105	56089	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(a)pyrene	730	40.1	1,002	0	72.9	34.4	179	780.3	6.68	30	
Indeno(1,2,3-cd)pyrene	658	40.1	1,002	0	65.7	11.8	140	641.0	2.59	30	
Dibenz(a,h)anthracene	648	40.1	1,002	0	64.7	17.3	156	632.9	2.43	30	
Surr: 2-Fluorobiphenyl	310		500.9		61.9	19.4	157		0		
Surr: Terphenyl-d14 (surr)	332		500.9		66.3	31.5	173		0		

Work Order: CLIENT: Project:	1908271 Libby Enviro Havens	nmental				QC SUMMARY REPORT Sample Moisture (Percent Moisture)
Sample ID: 19082	79-005ADUP	SampType: DUP			Units: wt%	Prep Date: 8/21/2019 RunNo: 53376
Client ID: BATCI	4	Batch ID: R53376				Analysis Date: 8/21/2019 SeqNo: 1055948
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Percent Moisture		11.0	0.500			11.05 0.919 20
Sample ID: 19082	71-001ADUP	SampType: DUP			Units: wt%	Prep Date: 8/21/2019 RunNo: 53376
Client ID: PS-2-1		Batch ID: R53376				Analysis Date: 8/21/2019 SeqNo: 1055960
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Percent Moisture		17.6	0.500			17.82 1.44 20

Sample Log-In Check List

CI	ient Name:	LIBBY	Work Or	der Num	nber: 1908271	
Lc	gged by:	Clare Griggs	Date Re	ceived:	8/20/2019	9:15:00 AM
Cha	in of Cust	ody				
1.	Is Chain of C	ustody complete?	Yes	✓	No 🗌	Not Present
2.	How was the	sample delivered?	<u>UPS</u>			
Log	In					
3.	Coolers are p	present?	Yes	✓	No 🗌	
4.	Shipping con	tainer/cooler in good condition?	Yes	✓	No 🗌	
5.	Custody Sea (Refer to com	s present on shipping container/cooler? ments for Custody Seals not intact)	Yes		No 🗌	Not Required 🗹
6.	Was an atter	npt made to cool the samples?	Yes	✓	No 🗌	
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes	✓	No 🗌	
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes	✓	No 🗌	
10.	Are samples	properly preserved?	Yes	✓	No 🗌	
11.	Was preserva	ative added to bottles?	Yes		No 🖌	NA 🗌
12.	Is there head	space in the VOA vials?	Yes		No 🗌	NA 🗹
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes	✓	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes	✓	No	
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes	✓	No 🗌	
17.	Were all hold	ing times able to be met?	Yes	✓	No 🗌	
<u>Spe</u>	cial Handl	ing (if applicable)				
18.	Was client no	otified of all discrepancies with this order?	Yes		No 🗌	NA 🗹
	Person	Notified: Date:				
	By Who	m: Via:	🗌 eMa	il 🗌 P	hone 🗌 Fax [In Person
	Regardi	ng:				
	Client Ir	structions:				
19.	Additional rer	narks:				

Item Information

Item #	Temp °C
Cooler	4.9
Sample	8.1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

	vibulina with the village file file	2		e stetermenod by a cost of law.	's and reasonable adomey fees to h	stection industry court cost	s to pey the costs of co	o pay, Olent apres	dynamic and/or failure 5	IL ACTION CUAUSE: In the event of default of	LEGA
VAC	TAT / 24HR 48HR 5		Containers	man / area		reversed by	-	1000			1.3
_		d	ample Temp.	CI-P LIION	Marine	10-1VA		Time	Data /	linguished by:	Rel
		5 0	voliai Tattib.	Qin lin our	inter	mail.				しない	~
_		ň	Conler Temp	Date / Time		Received by:	71	Time	Date /	inquished by:	Re
		Y N	Good Condition?			Uts		1250	6116110	71114	K
	Remarks:	ceipt	Sample Re	Date / Time		Received by:	- 71	Time	Date /	linguished by:	Re
											17
											16
											15
		-									14
											13
		_								10	N
											1
											10
		_								9	10
		-									0
		-								7	-
		_								0	6
			_							5	10
		_								4	1
		_								3	4
				×		F	+	N 05	-	275-3-1	
				×		4 02	Soil	1100	-	1 PS-2-1	1.
	Field Notes	RCRA Strategies	2 CA 81 CA 10 CA 1	ANTIOLOGIA ANTIOLOGIA ANTIOLOGIA ANTIOLOGIA ANTIOLOGIA ANTIOLOGIA ANTIOLOGIA ANTIOLOGIA ANTIOLOGIA ANTIOLOGIA ANTIOLOGIA ANTIOLOGIA ANTIOLOGIA	LOC SARES LOT	Container Type	Sample Type	Time	Depth	Sample Number	
			voilicom	Libbyenv@Gr	Email:				19-1	lient Project # LI208	Πο
F	Collection: 8-19-19	Date of		or: MW	Collect			Fax:		hone:	10
age	ite: WA	City, St		n:	Locatio	10	Zip	State:		ity:	To
12	DIVINDIA.		0	Name: Havens	Project				ubove	uddress: V See	Þ
of 1		++	ru Chilco.	Manager: Sher	Project			LINC	owww.ta	Ment: Libby Ewin	0
2	of	Page:		5/19/19	Date: (4154	: 360-352-	Fax	Nympia, WA 98506	0.0
al.con	www.LibbyEnvironmen	Z	100007	stody Record	hain of Cus	C		, Inc.	mental	Libby Environ	
											í

Libby Environmental, Inc. 3322 South Bay Road NE • Olympia, WA 98506-2957

August 21, 2019

Max Wills Robinson Noble 17625 130th Avenue NE, Suite 102 Woodinville, WA 98072

Dear Mr. Wills:

Please find enclosed the analytical data report for the Havens Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

hy I Mu

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	ental,	Inc.		Ch	air	1 0	f Cı	ust	od	y R	ec	ord	d							www.	LibbyEnvi	ronmei	ntal.com
3322 South Bay Road NE Olympia, WA 98506 Client:	Ph: Fax:	360-352-2 360-352-4	2110 1154				Date Proje	ect M	// d	jer:	9 M	Ax		310	(5		Page	ə:			of	1	
Address: 17625 13	oth As	5 NE	500	7E 102		Project Name: HAUTLAS																	
City: Washington State: WA Zip: 98072					Location: $OLTMPIA$ City, State: WA																		
Phone: 2α , 550	2-7715	Fax:					Colle	ector:	-	17	w						Date	e of C	ollec	tion:	8/19	1 19	
Client Project # 2.44	71-0	alG				Email: MWILL SQ ROBINSON - NUBLE, COM																	
Sample Number	Depth	Time	Sample Type	Container Type	15	000 m	ALL AN	+ -22 TH	ALL AND	S.B. S.	ALT CO	2 AH 02	10 10 AH 8210	nil 20	210 210 88082	SA SNe	3 ² 28	Netals		F	Field Note	es	
15-EX#2-1-2	2	1300	Sorc	402							X						X						
25-RX+12-2-2	2	13.5	Sola	402							X						Х						
3																							
4																							
5								_															
6																							
7																							
8																							
9																							
10																							
11																							
12																							
13																							
14																							
15																							
16																							
17																							
Relinquished by:	Date	/ Time		Received by:			I		-	Date	Time)		Sam	ple	Rec	eipt		Rem	arks:			
AM S/R	alry 1	1423)	quin,	1	N	n		8	19/10	1 1	4:26	Good	Cond	ition?		Y	Ν	LE	AD	RUS	H	
Relinquished by:	Date	/ Time		Received by:						Date	Time)	Coole	er Tem	np.			°C	PA		101		
													Samp	le Ter	np.			°C	1A	H	75 h	r	
Relinquished by:	Date	/ Time		Received by:						Date /	Time	•	Total Co	Numb	per of ers				TA	T: 24	1HR 48	HR	5-DAY

10

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L190819-2 Client Project # 2491-001G 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Lead
Number	Analyzed	(mg/kg)
Method Blank	8/19/19	nd
S-EX#2-1-2	8/19/19	nd
S-EX#2-2-2	8/19/19	nd
Practical Quantitation Limit		5.0
"nd" Indicates not detected at the lis	sted detection limits.	

Analyses of Total Lead in Soil by EPA Method 7010 Series

ANALYSES PERFORMED BY: Dirk Peterson

HAVENS PROJECT Robinson Noble Olympia, Washington Libby Project # L190819-2 Client Project # 2491-001G 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Date	Lead
Analyzed	(% Recovery)
8/19/19	100%
8/19/19	103%
8/19/19	109%
8/19/19	6%
	Date Analyzed 8/19/19 8/19/19 8/19/19 8/19/19

QA/QC for Total Lead in Soil by EPA Method 7010 Series

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

HAVENS PROJECT Robinson Noble Libby Project # L190819-2 Date Received 8/19/2019 Time Received 2:26 PM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By EN

Sample Receipt Checklist

Chain of Custody						
1. Is the Chain of Custody complete?	\checkmark	Yes		No		
2. How was the sample delivered?	\checkmark	Hand Delivered		Picked Up		Shipped
Log In						
3. Cooler or Shipping Container is present.		Yes	\checkmark	No		N/A
4. Cooler or Shipping Container is in good condition.		Yes		No	\checkmark	N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes		No	1	N/A
6. Was an attempt made to cool the samples?		Yes	\checkmark	No		N/A
7. Temperature of cooler (0°C to 8°C recommended)		N/A	°C			
8. Temperature of sample(s) (0°C to 8°C recommended)		15.7	°C			
9. Did all containers arrive in good condition (unbroken)?	\checkmark	Yes		No		
10. Is it clear what analyses were requested?	\checkmark	Yes		No		
11. Did container labels match Chain of Custody?	\checkmark	Yes		No		
12. Are matrices correctly identified on Chain of Custody?	\checkmark	Yes		No		
13. Are correct containers used for the analysis indicated?	\checkmark	Yes		No		
14. Is there sufficient sample volume for indicated analysis?	\checkmark	Yes		No		
15. Were all containers properly preserved per each analysis?	\checkmark	Yes		No		
16. Were VOA vials collected correctly (no headspace)?		Yes		No	1	N/A
17. Were all holding times able to be met?	\checkmark	Yes		No		
Discrepancies/ Notes						
18. Was client notified of all discrepancies?		Yes		No	1	N/A
Person Notified:			_	Date:		
By Whom:			_	Via:		
Regarding:			_			
19. Comments.						

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: Havens Work Order Number: 1908270

August 21, 2019

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 2 sample(s) on 8/20/2019 for the analyses presented in the following report.

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Libby Environmental Havens 1908270	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1908270-001	S-EX #2-1-2	08/19/2019 1:00 PM	08/20/2019 9:15 AM
1908270-002	S-EX #2-2-2	08/19/2019 1:05 PM	08/20/2019 9:15 AM

Case Narrative

WO#: **1908270** Date: **8/21/2019**

CLIENT:Libby EnvironmentalProject:Havens

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1908270** Date Reported: **8/21/2019**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 1908270

 Date Reported:
 8/21/2019

Client: Libby Environmental				Collection	Dat	te: 8/19/2019 1:00:00 PM
Project: Havens						
Lab ID: 1908270-001				Matrix: So	oil	
Client Sample ID: S-EX #2-1-2						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by E	PA Method 8	270 (SIM)		Batch	n ID:	25563 Analyst: SB
Benz(a)anthracene	ND	42.6		µg/Kg-dry	1	8/20/2019 7:50:32 PM
Chrysene	ND	42.6		µg/Kg-dry	1	8/20/2019 7:50:32 PM
Benzo(b)fluoranthene	ND	42.6		µg/Kg-dry	1	8/20/2019 7:50:32 PM
Benzo(k)fluoranthene	ND	42.6		µg/Kg-dry	1	8/20/2019 7:50:32 PM
Benzo(a)pyrene	ND	42.6		µg/Kg-dry	1	8/20/2019 7:50:32 PM
Indeno(1,2,3-cd)pyrene	ND	42.6		µg/Kg-dry	1	8/20/2019 7:50:32 PM
Dibenz(a,h)anthracene	ND	42.6		µg/Kg-dry	1	8/20/2019 7:50:32 PM
Surr: 2-Fluorobiphenyl	61.8	19.4 - 157		%Rec	1	8/20/2019 7:50:32 PM
Surr: Terphenyl-d14 (surr)	85.5	31.5 - 173		%Rec	1	8/20/2019 7:50:32 PM
Sample Moisture (Percent Moistu	<u>re)</u>			Batch	n ID:	R53376 Analyst: SBM
Percent Moisture	15.8	0.500		wt%	1	8/21/2019 8:15:06 AM

Analytical Report

 Work Order:
 1908270

 Date Reported:
 8/21/2019

Client: Libby Environmental				Collection	Dat	e: 8/19/2019 1:05:00 PM
Project: Havens						
Lab ID: 1908270-002				Matrix: So	oil	
Client Sample ID: S-EX #2-2-2						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by E	PA Method 8	<u>8270 (SIM)</u>		Batch	n ID:	25563 Analyst: SB
Benz(a)anthracene	ND	41.5		µg/Kg-dry	1	8/20/2019 6:27:36 PM
Chrysene	ND	41.5		µg/Kg-dry	1	8/20/2019 6:27:36 PM
Benzo(b)fluoranthene	ND	41.5		µg/Kg-dry	1	8/20/2019 6:27:36 PM
Benzo(k)fluoranthene	ND	41.5		µg/Kg-dry	1	8/20/2019 6:27:36 PM
Benzo(a)pyrene	ND	41.5		µg/Kg-dry	1	8/20/2019 6:27:36 PM
Indeno(1,2,3-cd)pyrene	ND	41.5		µg/Kg-dry	1	8/20/2019 6:27:36 PM
Dibenz(a,h)anthracene	ND	41.5		µg/Kg-dry	1	8/20/2019 6:27:36 PM
Surr: 2-Fluorobiphenyl	68.9	19.4 - 157		%Rec	1	8/20/2019 6:27:36 PM
Surr: Terphenyl-d14 (surr)	87.3	31.5 - 173		%Rec	1	8/20/2019 6:27:36 PM
Sample Moisture (Percent Moistu	<u>re)</u>			Batch	n ID:	R53376 Analyst: SBM
Percent Moisture	10.6	0.500		wt%	1	8/21/2019 8:15:06 AM

Fremont
[Analytical]

Work Order:	1908270
-------------	---------

Project:

Libby Environmental CLIENT: Havens

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-25563	SampType: MBLK		Units: µg/Kg		Prep Date: 8/20/2019	RunNo: 53380
Client ID: MBLKS	Batch ID: 25563				Analysis Date: 8/20/2019	SeqNo: 1056084
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Benz(a)anthracene	ND	40.0				
Chrysene	ND	40.0				
Benzo(b)fluoranthene	ND	40.0				
Benzo(k)fluoranthene	ND	40.0				
Benzo(a)pyrene	ND	40.0				
Indeno(1,2,3-cd)pyrene	ND	40.0				
Dibenz(a,h)anthracene	ND	40.0				
Surr: 2-Fluorobiphenyl	521		500.0	104	19.4 157	
Surr: Terphenyl-d14 (surr)	534		500.0	107	31.5 173	

Sample ID: LCS-25563	SampType: LCS			Units: µg/Kg		Prep Dat	e: 8/20/2019	RunNo: 53380	
Client ID: LCSS	Batch ID: 25563					Analysis Dat	e: 8/20/2019	SeqNo: 1056085	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref V	al %RPD RPDLimit 0	Qual
Benz(a)anthracene	1,220	40.0	1,000	0	122	36.6	142		
Chrysene	987	40.0	1,000	0	98.7	43	165		
Benzo(b)fluoranthene	1,040	40.0	1,000	0	104	41	155		
Benzo(k)fluoranthene	961	40.0	1,000	0	96.1	30.6	164		
Benzo(a)pyrene	1,120	40.0	1,000	0	112	30.2	171		
Indeno(1,2,3-cd)pyrene	857	40.0	1,000	0	85.7	31.3	159		
Dibenz(a,h)anthracene	837	40.0	1,000	0	83.7	28	158		
Surr: 2-Fluorobiphenyl	472		500.0		94.4	19.4	157		
Surr: Terphenyl-d14 (surr)	567		500.0		113	31.5	173		
Sample ID: 1908270-002ADUP	SampType: DUP			Units: µg/Kg-0	lry	Prep Dat	e: 8/20/2019	RunNo: 53380	
Client ID: S-EX #2-2-2	Batch ID: 25563					Analysis Dat	e: 8/20/2019	SeqNo: 1056087	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref V	al %RPD RPDLimit 0	Qual
Benz(a)anthracene	ND	43.8						0 30	
Chrysene	ND	43.8						0 30	

720.7

737.5

5.02

21.5

Fremont
Analytical

758

594

40.1

40.1

Work Order: 1908270	onmontal							QC S	SUMMA	RY REF	POR
Project: Havens	onnentai				Po	olyaromati	c Hydro	ocarbons b	y EPA Me	thod 827	0 (SI
Sample ID: 1908270-002ADUP	SampType: DUP			Units: µg/I	(g-dry	Prep Date	e: 8/20/20	19	RunNo: 53	380	
Client ID: S-EX #2-2-2	Batch ID: 25563					Analysis Date	e: 8/20/20	19	SeqNo: 10	56087	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzo(b)fluoranthene	ND	43.8						0		30	
Benzo(k)fluoranthene	ND	43.8						0		30	
Benzo(a)pyrene	ND	43.8						0		30	
Indeno(1,2,3-cd)pyrene	ND	43.8						0		30	
Dibenz(a,h)anthracene	ND	43.8						0		30	
Surr: 2-Fluorobiphenyl	392		547.0		71.6	19.4	157		0		
Surr: Terphenyl-d14 (surr)	433		547.0		79.2	31.5	173		0		
Sample ID: 1908270-002AMS	SampType: MS			Units: µg/ł	(g-dry	Prep Date	e: 8/20/20	19	RunNo: 53	380	
Client ID: S-EX #2-2-2	Batch ID: 25563					Analysis Date	e: 8/20/20	19	SeqNo: 10	56088	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benz(a)anthracene	805	40.7	1,017	6.699	78.5	34.9	139				
Chrysene	739	40.7	1,017	0	72.6	45.2	146				
Benzo(b)fluoranthene	721	40.7	1,017	0	70.8	42.2	168				
Benzo(k)fluoranthene	738	40.7	1,017	0	72.5	20.5	150				
Benzo(a)pyrene	780	40.7	1,017	0	76.7	34.4	179				
Indeno(1,2,3-cd)pyrene	641	40.7	1,017	0	63.0	11.8	140				
Dibenz(a,h)anthracene	633	40.7	1,017	0	62.2	17.3	156				
Surr: 2-Fluorobiphenyl	350		508.7		68.9	19.4	157				
Surr: Terphenyl-d14 (surr)	366		508.7		71.9	31.5	173				
Sample ID: 1908270-002AMSD	SampType: MSD			Units: µg/ł	(g-dry	Prep Date	e: 8/20/20	19	RunNo: 53	380	
Client ID: S-EX #2-2-2	Batch ID: 25563					Analysis Date	e: 8/20/20	19	SeqNo: 10	56089	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benz(a)anthracene	784	40.1	1,002	6.699	77.6	34.9	139	805.1	2.64	30	
Chrysene	725	40.1	1,002	0	72.4	45.2	146	738.8	1.84	30	

0

0

75.6

59.3

42.2

20.5

168

150

1,002

1,002

Benzo(b)fluoranthene

Benzo(k)fluoranthene

30

30

Work Order: 1908270

Project:

CLIENT: Libby Environmental Havens

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1908270-002AMSD	SampType: MSD			Units: μg/Kg	g-dry	Prep Da	te: 8/20/20	19	RunNo: 533	380	
Client ID: S-EX #2-2-2	Batch ID: 25563					Analysis Da	te: 8/20/20	19	SeqNo: 105	56089	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(a)pyrene	730	40.1	1,002	0	72.9	34.4	179	780.3	6.68	30	
Indeno(1,2,3-cd)pyrene	658	40.1	1,002	0	65.7	11.8	140	641.0	2.59	30	
Dibenz(a,h)anthracene	648	40.1	1,002	0	64.7	17.3	156	632.9	2.43	30	
Surr: 2-Fluorobiphenyl	310		500.9		61.9	19.4	157		0		
Surr: Terphenyl-d14 (surr)	332		500.9		66.3	31.5	173		0		

Work Order: CLIENT: Project:	1908270 Libby Enviro Havens	nmental				QC SUMMARY REPORT Sample Moisture (Percent Moisture)
Sample ID: 19082	79-005ADUP	SampType: DUP			Units: wt%	Prep Date: 8/21/2019 RunNo: 53376
Client ID: BATCI	4	Batch ID: R53376				Analysis Date: 8/21/2019 SeqNo: 1055948
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Percent Moisture		11.0	0.500			11.05 0.919 20
Sample ID: 19082	71-001ADUP	SampType: DUP			Units: wt%	Prep Date: 8/21/2019 RunNo: 53376
Client ID: BATCI	4	Batch ID: R53376				Analysis Date: 8/21/2019 SeqNo: 1055960
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Percent Moisture		17.6	0.500			17.82 1.44 20

Sample Log-In Check List

С	ient Name:	LIBBY	Work O	der Num	nber: 1908270	
Lo	ogged by:	Clare Griggs	Date Re	ceived:	8/20/2019	9:15:00 AM
<u>Cha</u>	in of Cust	ody				
1.	Is Chain of C	ustody complete?	Yes	✓	No 🗌	Not Present
2.	How was the	sample delivered?	<u>UPS</u>			
Log	<u>In</u>					
3.	Coolers are p	present?	Yes	✓	No 🗌	
4.	Shipping con	tainer/cooler in good condition?	Yes	✓	No 🗌	
5.	Custody Sea (Refer to con	ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes		No 🗌	Not Required 🗹
6.	Was an atter	npt made to cool the samples?	Yes	✓	No 🗌	
7.	Were all item	as received at a temperature of >0°C to 10.0°C*	Yes	✓	No 🗌	
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes	✓	No 🗌	
10.	Are samples	properly preserved?	Yes	✓	No 🗌	
11.	Was preserv	ative added to bottles?	Yes		No 🔽	NA 🗌
12.	Is there head	lspace in the VOA vials?	Yes		No 🗌	NA 🗹
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes	✓	No 🗌	
14.	Does paperw	rork match bottle labels?	Yes	✓	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes	✓	No 🗌	
17.	Were all hold	ling times able to be met?	Yes	✓	No 🗌	
<u>Spe</u>	cial Handl	ing (if applicable)				
18.	Was client no	otified of all discrepancies with this order?	Yes		No 🗌	NA 🗹
	Person	Notified: Date				
	By Who	vm: Via:	🗌 eMa	il 🗌 P	hone 🗌 Fax [In Person
	Regardi	ng:				
	Client Ir	nstructions:				
19	Additional rei	narks:				

Item Information

Item #	Temp °C
Cooler	4.9
Sample	8.1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

DAY	IAI: (24HR) 48HR 5-		CONTRACTOR	I be determined by a coult of law.	ts and resemble altomay fees a	spot unco dupping include	to pay the costs of co	Jay, Clent agreet	nent and/or failure it	EGAL ACTION CLAUSE: In the event of divisoil of paym
			otal Number of	Date / Time To		received by:		1 IIII	Date /	- the manufacture of the
		റ്	imple Temp.	8120119 9.17 Sa	MANT	Der XI		Timo	Data /	Relinnuished hv
		°C	poler Temp.	Date / Time	J	R S D				SJM
		Y N	ood Condition?	G		Consilved hur	000	Time	Date /	Relinquished by:
	Remarks:	eceipt	Sample Re	Date / Time		Received by:	107		1 S 19	MN LUMA TH
										17
										16
		-								15
		+								14
										13
		-								12
										11
		_								10
										9
										8
		-								7
		-								6
		-								5
		_								4
										ω
				×		-	1	1305	2	2 S-EX#2-2-2
	COLUMNIA I	\downarrow		×		Hoz Inr	105	1300	2	1S-EX#2-1-2
	Field Notes	S. Helais	48110 86110 86110 8610 8610 8610 8610 861	ANN	LOC BARDALIST	Container Type	Sample Type	Time	Depth	Sample Number
		n	mail.con	: libbychv@	Email				9-2	Client Project # L1908
F	Collection: 8/19/19	Date of		stor: M.W.	Collec			Fax:		Phone:
age	ate: Olympia, WA	City, St		ion:	Locat		Zip	State:		City:
12 0				et Name: Hawen	Projec				TUC)	Address: (See abo
of 1		cutt	W Chi	ot Manager: Shut	Projec		l'Inc.	renter	VIRININ	Client: LIDBY EN
2	l of (Page:		8/19/19	Date:		4154	360-352-4	Fax:	Olympia, WA 98506
ital.con	www.LibbyEnvironmen	9	190827	istody Record	hain of Cu	C		Inc.	iental	Libby Environm