

CSID No. 3512 Avista Service Center Garage Liner Repair and Groundwater Monitoring Report

Spokane Service Center Garage

1411 East Mission Avenue
Spokane, Washington
for
Avista Utilities
February 14, 2020

GeoEngineers (7)

523 East Second Avenue
Spokane, Washington 99202
509.363.3125

CSID No. 3512 Avista Service Center Garage Liner Repair and Groundwater Monitoring Report

 Spokane Service Center Garage

 Spokane Service Center Garage 1411 East Mission Avenue 1411 East Mission Avenue Spokane, Washington

 Spokane, Washington}

File No. 2522-079-03
February 14, 2020

Prepared for:
Avista Corporation
1411 East Mission Avenue
Spokane, Washington 99252
Attention: Bryce Robbert

Prepared by:
GeoEngineers, Inc.
523 East Second Avenue
Spokane, Washington 99202
509.363.3125

Joshua M. Lee, EIT
Staff Environmental Engineer

Bruce D. Williams
Senior Principal

JML:SHL:BDW:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0 INTRODUCTION 1
2.0 SITE DESCRIPTION AND BACKGROUND 1
2.1. Site Conditions 2
3.0 SCOPE OF SERVICES 2
4.0 LINER REPAIR 3
4.1. Liner Repair Activities 3
5.0 GROUNDWATER MONITORING 4
5.1.1. Monitoring Well Headspace Vapor 5
5.1.2. Groundwater Elevation 5
5.1.3. Groundwater Sampling 5
6.0 CHEMICAL ANALYTICAL RESULTS 5
6.1. Groundwater Chemical Analytical Results 5
7.0 SUMMARY 6
8.0 LIMITATIONS 6
9.0 REFERENCES 7

LIST OF TABLES

Table 1. Summary of Groundwater Level Measurements
Table 2. Summary of Groundwater Quality Measurements
Table 3. Summary Chemical Analytical Results - Petroleum Hydrocarbons, PCBs and PAHs - Groundwater

LIST OF FIGURES

Figure 1. Vicinity Map
Figure 2. Site Plan
Figure 3. Site Plan - Geosynthetic Liner
Figure 4. Cross Sections A-A', B-B' and C-C'
Figure 5. Pipe Trench Detail
Figure 6. Groundwater Elevation and Interpreted Flow Direction, January 3, 2020
Figures 7 through 16. Site Photographs

APPENDICES

Appendix A. Field Methods
Appendix B. Parametrix Liner Repair As-built Survey
Appendix C. Laboratory Reports and Data Validation Report
Appendix D. Spokane Environmental Solutions Documentation
Appendix E. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This report describes geosynthetic liner repair and groundwater monitoring conducted near the former Spokane Service Center (Service Center Garage) building on the Avista Corporation (Avista) Spokane campus. The site is located at 1411 East Mission Avenue in Spokane, Washington, as shown in the Vicinity Map, Figure 1.

Field activities were conducted in general accordance with the proposal dated December 17, 2019 for Work Authorization No. 1, signed on December 20, 2019. The work was performed in accordance with the Environmental Services Contract No. R-42955 between Avista and GeoEngineers, dated December 18, 2019. The site (Cleanup site ID No. 3512) was entered into the Washington State Department of Ecology's (Ecology) Voluntary Cleanup Program (VCP) in 2019 (VCP site No. EA0343).

2.0 SITE DESCRIPTION AND BACKGROUND

The Service Center Garage building was located on the Avista Spokane campus which resides on a 19.62-acre parcel in Spokane, Washington. The site is shown in Site Plan, Figure 2.

The Spokane River is located approximately 400 feet east of the former Service Center Garage building. Groundwater flows from southeast to northwest, away from the Spokane River, based on several groundwater monitoring events conducted between February 2018 and January 2020. The depth to groundwater beneath the former building is about 30 feet below ground surface (bgs).

The Service Center Garage building was used from 1955 to July 2018 to service fleet vehicles. The Service Center Garage building contained sub-slab hydraulic lifts for servicing line trucks in Bay 1, Bay 2, Bay 5 and Bay 7. The high bay area contained portable hydraulic lifts that were not located beneath the floor slab.

Avista demolished the Service Center Garage building in August 2018 and moved vehicle service operations to a new facility located in the northern area of the campus. The Service Center Garage building was located adjacent to the Auditorium/Cafeteria building as shown in Figure 2. Several canopies were located west of the Service Center Garage building and were demolished after completing demolition of the Service Center Garage building to make way for a future parking structure.

Soil assessment and remedial excavation activities were conducted between August 31 and October 3, 2018 at the Service Center Garage building. Groundwater assessment activities that bracketed the soil assessment and remedial activities were conducted at the Service Center Garage on August 17, August 20, October 10 and November 20, 2018.

Contaminants of concern for the Service Center Garage site are diesel- and oil-range petroleum hydrocarbons (DRPH and ORPH) and polycyclic aromatic hydrocarbons (PAHs) in soil and groundwater. Groundwater was additionally tested for polychlorinated biphenyls (PCBs).

Spokane Environmental Solutions (SES) excavated and disposed approximately 3,792 tons of contaminated soil from the Service Center Garage building remedial excavation at Waste Management's Graham Road Facility near Medical Lake, Washington. Complete removal of contaminated soil could not be conducted without affecting the structural integrity of nearby buildings or utility infrastructure.

Contaminated soil remained within the base of the remedial excavation at depths of about 15 to 24 feet bgs.

ACF West installed a low-density polyethylene (LLDPE) liner cap in the excavation footprint to reduce the potential for remnant contamination to leach to groundwater and was constructed to divert stormwater infiltration into a drainage pipe (GeoEngineers 2019a). The south section of liner was placed at a 1 percent grade draining north from 6 feet $81 / 2$ feet bgs to the drainage pipe collection trench. The north section of liner was placed a 4 percent grade draining south to the drainage pipe collection trench. The drainage pipe conveys infiltrated water at a 1.25 percent grade to a manhole that is connected to Avista's stormwater system. The liner excavation was backfilled and compacted the excavation with imported select fill and bedding sand.

On July 26, 2019 Avista installed replacement monitoring wells MW-1A and MW-5B outside of the parking structure construction area to avoid damaging the new wells (GeoEngineers 2019b).

During recent construction of a new parking garage near the capped area, Avista's parking garage construction contractor (Bouten) damaged portions of the HDPE liner while excavating to install a water line and stormwater drainage pipes. The damage to the liner compromised the remedial action conducted in 2018 by damaging the barrier controlling infiltration to the contaminated soil. The liner damage was discovered by Avista on December 6. 2019. Bouten's excavation contractor (J7) placed visqueen over the damaged portion of the liner on December 10, 2019. Avista recognized that damage had occurred and contracted with GeoEngineers to coordinate the repair of the liner, document their findings and collect groundwater samples until the liner was repaired to document that contaminant migration had not occurred and impacted groundwater.

2.1. Site Conditions

In general, the site is paved with exposed soil areas located within Service Center Garage area. A newly constructed parking garage structure is located to the west. Varying amounts of base gravels, silts, sands and gravels are present beneath the pavement, with the predominant soil types consisting of gravel to about 33 to 37 feet bgs. Below the gravels, sands with varying amounts of silt and gravel are generally present.

3.0 SCOPE OF SERVICES

Our scope of services included coordination and documentation of geosynthetic liner repairs, groundwater monitoring of five site wells until liner repairs were completed, and reporting. Our services were completed in general accordance with our proposal dated December 17, 2019.

The specific scope of services included:

- Updated existing health and safety plan to govern GeoEngineers employees.
- Conducted three biweekly groundwater monitoring events.
- Submitted groundwater samples to Eurofins TestAmerica Laboratory for chemical analysis of DRPH and ORPH using Northwest Method NWTPH-Dx, PCBs using Environmental Protection Agency (EPA) Method

8082, PAHs and naphthalene using EPA Method 8270D SIM. Groundwater samples were tested on standard (2 -week) turn-around time (TAT).

- Compiled and reviewed collected data and analytical results. Submitted analytical data to Ecology's Environmental Information Management System (EIM) database.
- Prepared preliminary plans depicting the expected repairs to restore the integrity of the liner.

■ Observed and documented SES to expose and assess the condition of the liner, and backfill the excavation following repairs.

- Observed and documented the condition of the damaged liner and the repair activities conducted by contractors [SES, BigSky Industrial (BigSky), CAD of Spokane (CAD) and ACF West].

■ Observed and documented a survey of the repaired or modified areas of the liner. GeoEngineers prepared as-built figures depicting the updated liner configuration using Parametrix's survey data.

- Prepared this Avista Service Center Garage Liner Repair report documenting the liner repair/modification, updating the liner design drawings and summarizing the groundwater monitoring data.

4.0 LINER REPAIR

GeoEngineers visited the site on December 10, 2019 to observe the extent of damage to the liner. GeoEngineers again visited the site on December 11, 2019 with SES to determine the schedule for liner repairs. The proposed excavation location was marked in the field and a one-call utility locate was requested before equipment was mobilized to the site.

Detailed descriptions of the liner repair and groundwater sampling events are provided below.

4.1. Liner Repair Activities

SES mobilized to the site on January 6, 2020 to expose the liner for repairs. Figures 3 through 5 depict the former liner construction and configuration, the areas of the liner repairs, and final as-built diagrams of the completed and repaired liner in the north portion of the constructed liner area. Figures 7 through 16 provide photographs of the liner exposure and repair activities. The following activities were performed for liner repairs:

■ Advanced Underground Utility Locating, LLC (AUUL) located utilities near the liner prior to excavation on January 6, 2020.

- SES excavated the area north of the liner drainage pipe using a track hoe, skid steer loader and hand tools. SES stockpiled the excavated soil on the on the ground surface above the undamaged portions of the liner. Damaged sections of liner were removed during excavation. SES exposed the liner area north of the drainage pipe; the drainage pipe did not appear to be damaged. Damage to the liner was observed north and west of the drainage pipe as shown in Figure 3. The area of liner requiring replacement was approximately 56 feet east to west (with slopes) by 42 feet north to south. SES documentation is found in Appendix D .
- BigSky cleared the liner seam area for access to weld the new liner section. BigSky used a vactor truck and pressurized water to expose the liner and remove approximately 2 cubic yards of soil from the liner
seam location. Soil removed by BigSky was fill material placed during the remedial excavation in 2018. Soil excavated by BigSky was disposed at Busy Bee Landfill and Wood Recycling Company in Spokane, Washington.
- SES graded the northern end of the excavation using the track hoe and hand tools.
- CAD mobilized to the site to place bedding sand within the excavation using a truck mounted conveyor belt system. CAD placed 30.26 tons of bedding sand from Central Pre-Mix in Spokane Valley, Washington. SES used hand tools to grade the bedding sand into an approximately 6 -inch-thick lift to bed the new replacement liner.
- AFC West mobilized to the site on January 8 and 9, 2020 and performed the following liner repair activities. Photographs of AFC liner repairs are found in Figures 11 through 14.
- Placed 180N Mirafi geotextile fabric over the bedding sand and under the exposed intact liner edge.
- Placed 40-mil thick textured geosynthetic liner material on top of the geotextile fabric.
- Band clamped and welded 40-mil geosynthetic boots at pipe penetrations around the newly installed utilities (hydrant valve, water line and stormwater pipe) within the excavation.
- Welded the new section of liner to the original liner located north and west of the liner drain.
- ACF West placed another layer of 180 N Mirafi geotextile fabric over the repaired section of geosynthetic liner.
- Parametrix mobilized to the site on January 9, 2020 to survey the lateral extents of the new section of liner, the general topography of the new section of liner, the liner repair seam connecting the new liner section to the original liner, and pipe penetrations through the liner. Parametrix survey data is found in Appendix B.

■ CAD returned to the site on January 9, 2020 to place 27.76 tons of bedding sand over the geotextile fabric.

- SES used hand tools to grade the bedding sand into an approximately 6-inch-thick lift over the geotextile fabric.
- SES placed a layer of orange plastic construction fencing on the bedding sand to act as an indicator layer for future excavation in the area.
- SES placed an approximately 8-inch lift of stockpiled soil overtop of the orange construction fence using the track hoe and skid steer loader.
- SES compacted the material using multiple passes of a vibratory, smooth-drum roller. The soil was compacted to a firm and unyielding state with no visible deflection. SES completed backfill and compaction of the excavation on January 9, 2020 and demobilized equipment from the site on January 10, 2020.

5.0 GROUNDWATER MONITORING

Groundwater monitoring was performed to document if the damage caused to the liner caused adverse impacts to groundwater beneath the site. Groundwater sampling events were conducted on December 20, 2019, and January 3 and 16, 2020. Liner repair activities were completed on January 9, 2020. IDW purge
water generated from groundwater sampling was contained in 5-gallon drums, labeled and stored at the Avista property pending disposal.

5.1.1. Monitoring Well Headspace Vapor

Monitoring well headspace vapors were measured using a photoionization detector (PID). Headspace measurements were collected by inserting the PID probe into the well casing immediately after removing the well cap and recording the maximum observed concentration. Headspace vapor concentrations were less than 5.0 parts per million (ppm) for the monitoring wells, as shown in Summary of Groundwater Level Measurements, Table 1.

5.1.2. Groundwater Elevation

Static depth to groundwater was measured in the five site groundwater monitoring wells using an electronic water level indicator. During the three events, depth to groundwater ranged from 18.72 feet (MW-3) to 39.16 feet (MW-1A) below the top of well casing, and groundwater elevations ranged from about 1868.85 feet in MW-3 to 1867.80 feet in MW-1A relative to the Washington State Plane System, NAD83, North Zone. Groundwater elevations are shown in Table 1.

Based on groundwater elevations measured on January 3, 2020, groundwater flow in the shallow unconfined aquifer beneath the property generally was toward the west-northwest, as shown in Groundwater Elevation and Interpreted Flow Direction January 3, 2020, Figure 6. The estimated hydraulic groundwater gradient of the shallow aquifer beneath the site was about 0.001 feet per foot (about 5 feet per mile) for the three groundwater events.

5.1.3. Groundwater Sampling

Groundwater monitoring wells were purged and sampled using dedicated tubing, a peristaltic pump or a bladder pump, and in general accordance with standard low-flow sampling methodology (EPA 2017). Groundwater quality parameters were usually measured at 3-minute intervals during well purging and samples were generally collected when water quality parameter stabilized in conformance with the criteria presented in Appendix A.

Laboratory prepared sample containers were filled, placed into a cooler on ice and submitted to the analytical laboratory for chemical analysis. Groundwater chemical analytical results are discussed in "Section 5.1". Groundwater field parameters are provided in Summary of Groundwater Quality Measurements, Table 2. Purge water generated during groundwater sampling was contained in 5-gallon buckets with lids, labeled and transferred to Avista for disposal.

6.0 CHEMICAL ANALYTICAL RESULTS

6.1. Groundwater Chemical Analytical Results

Groundwater samples were collected from MW-1A, MW-2, MW-3, MW-4 and MW-5B on December 20, 2019, and January 3 and 16, 2020 and submitted to TestAmerica for chemical analysis. Groundwater samples were kept in iced coolers between sampling and delivery to the analytical laboratory. Groundwater samples were submitted for the following chemical analyses:

- DRPH and ORPH using Northwest Method NWTPH-Dx;
- PCBs using EPA Method 8260C; and
- PAHs and naphthalene using EPA Method 8270D.

Chemical analytical results are summarized and compared to Model Toxics Control Act (MTCA) Method A cleanup levels in Summary of Chemical Analytical Results - Petroleum Hydrocarbons, PCBs and PAHs, Table 3 and below:

- DRPH, ORPH, PAHs, naphthalene and PCBs were either not detected or were detected at concentrations less than the respective MTCA Method A cleanup levels.

The data validation and laboratory chemical analytical reports are included in Appendix C.

7.0 SUMMARY

In January 2020, Avista repaired a section of geosynthetic liner at the Avista Service Center Garage site located at 1411 East Mission Avenue in Spokane, Washington. These activities were performed to repair damages to the liner caused by installation of utilities (fire hydrant and valve, water line, stormwater pipe) by Avista's parking structure contractor. GeoEngineers also performed bi-weekly groundwater monitoring of site wells to document if the damage caused to the liner had resulted in adverse impacts to groundwater beneath the site.

The liner was excavated using a track hoe and soil was cleared from the liner using a vactor truck and pressurized water. The liner was repaired by placing a new section of liner in the excavation and welding the new section of liner to the portion of the liner that was intact. The new utilities within the excavation penetrated the liner and were booted through the liner during the repair. The repaired section of liner has a modification to the grade, but the footprint is the similar and the liner will guide infiltrated water to the drain pipe connected to Avista's stormwater system. In our opinion, the repaired liner is protective and should continue to prevent mobilization of contaminants located beneath the liner.

Depth to groundwater was measured at five monitoring wells on December 20, 2019, and January 3 and 16, 2020. Data indicates a west-northwest groundwater flow, away from the Spokane River, in the shallow aquifer beneath the site. The average hydraulic gradient beneath the site was about 0.001 feet per foot.

Samples from the five monitoring wells from the December 20, 2019, and January 3 and 16, 2020 events were submitted for chemical analysis of DRPH, ORPH, PCBs and PAHs. Results are tabulated in Table 3. DRPH, ORPH, PAHs and PCBs were either not detected or were detected at concentrations less than the respective MTCA Method A cleanup levels.

8.0 LIMITATIONS

We have prepared this report for the exclusive use of Avista and their authorized agents.
Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Please refer to "Report Limitations and Guidelines for Use," Appendix E, for additional information pertaining to use of this report.

9.0 REFERENCES

GeoEngineers, Inc. "Draft Work Plan Groundwater Monitoring, Remedial Excavation and Geosynthetic L Liner Installation," prepared for Avista Corporation. August 2, 2018.

GeoEngineers, Inc. "CSID No. 3512 Revised Avista Service Center Garage Remedial Action," prepared for Avista Corporation. August 9, 2019a.

GeoEngineers, Inc. "CSID No. 3512 Monitoring Well Installation and July 31, 2019 Groundwater Monitoring Report." Prepared for Avista Corporation. September 13, 2019b.

GeoEngineers, Inc. "Draft Work Plan Geosynthetic Liner Repair and Groundwater Monitoring." Prepared for Avista Corporation. January 3, 2020.

Landau Associates, Inc. "Hydraulic Lift Excavations Spokane Service Center Garage," prepared for the Washington Water Power Company. November 6, 1995.

Memorandum from Sheila Pachernegg, P.E. Memorandum "Mission Garage - Hydraulic Lift Repairs," prepared for Avista Corporation. July 19, 1999.

Pacific Groundwater Group (Pacific), "Avista Injection Well 1, Construction, Testing, and Thermal Evaluation" prepared for Avista Corporation. January 2012.

Puls, R.W. and Barcelona, M.J., Low-flow (minimal drawdown) ground-water sampling procedures: EPA Ground Water Issue, April 1996, p.1-9.

Sheila Pachernegg P.E. "Hydraulic Lift Excavations Spokane Service Center Garage," prepared for Washington Water Power Licensing and Environmental Affairs. March 31, 1996.

Sheila Pachernegg, P.E. "Spokane Service Center Groundwater Monitoring," prepared for Washington Water Power. March 9, 1998.

Strata, A Professional Services Corporation. "Phase 1 Geotechnical Engineering Evaluation," prepared for Avista Corporation. September 8, 2017.
U.S. Environmental Protection Agency (EPA), Region 1, Low stress (low-flow) purging and sampling procedure for the collection of ground water samples from monitoring wells. EQASOP-GW4, Revision No. 4, September 19, 2017.

Washington State Department of Ecology, 2007. Model Toxics Control Act (MTCA) Cleanup Regulations, Washington Administrative Code, Chapter 173-340. November 2007.

GeoEngineers

Table 1
Summary of Groundwater Level Measurements
Avista - Spokane Service Center Spokane, Washington

Well Number	Top of Casing Elevation ${ }^{1}$ (feet)	Screen Elevation (feet)	Date Measured	Monitoring Well Headspace ${ }^{2}$ (ppm)	Depth to Groundwater ${ }^{3}$ (feet)	Groundwater Elevation ${ }^{1}$ (feet)	Change in Groundwater Elevation ${ }^{4}$ (feet)
MW-1A	1,906.96	1871.96 to 1861.96	12/20/19	0.4	39.09	1,867.87	NA
			01/03/20	0.0	39.16	1,867.80	-0.07
			01/16/20	0.0	38.76	1,868.20	0.40
MW-2	1,897.60	$\begin{gathered} 1,872.57 \\ \text { to } \\ 1,862.57 \end{gathered}$	12/20/19	0.1	29.55	1,868.05	NA
			01/03/20	0.0	29.60	1,868.00	-0.05
			01/16/20	1.1	29.21	1,868.39	0.39
MW-3	1,887.57	$\begin{gathered} 1,872.44 \\ \text { to } \\ 1,862.44 \end{gathered}$	12/20/19	0.0	19.10	1,868.47	NA
			01/03/20	0.1	19.15	1,868.42	-0.05
			01/16/20	0.0	18.72	1,868.85	0.43
MW-4	1,888.10	$\begin{gathered} 1,873.10 \\ \text { to } \\ 1,863.10 \\ \hline \end{gathered}$	12/20/19	0.0	19.74	1,868.36	NA
			01/03/20	0.0	19.79	1,868.31	-0.05
			01/16/20	0.2	19.38	1,868.72	0.41
MW-5B	1901.72	1868.97 to 1858.97	12/20/19	0.7	33.65	1,868.07	NA
			01/03/20	0.0	33.71	1,868.01	-0.06
			01/16/20	2.9	33.32	1,868.40	0.39

Notes:

${ }^{1}$ Elevations are referenced to the National Geodetic Vertical Datum of 1929 (NGVD29).
${ }^{2}$ Well headspace measurements were obtained using a photoionization detector immediately upon removal of the well's compression cap.
${ }^{3}$ Depth to water measurements obtained from the north side of the top of PVC well casing.
${ }^{4}$ Represents change in groundwater elevation from previous event, as measured in monitoring wells.
${ }^{5}$ Well screen length is unknown.
${ }^{6}$ Groundwater elevation is lower than the screened interval and might not represent actual groundwater elevation.
${ }^{7}$ Spokane River Stage provided by United States Geological Survey (USGS) gauge at Greene Street. Measured in feet.
NA = Not Applicable; NM = Not Measured

Table 2

Summary of Groundwater Quality Measurements

Avista - Spokane Service Center Spokane, Washington

Well Number	Date Measured	pH (pH units)	Specific Conductivity ($\mu \mathrm{S} / \mathrm{cm}$)	Redox Potential (mv)	Dissolved Oxygen (mg/L)	$\begin{gathered} \text { Turbidity }^{1} \\ \text { (NTU) } \end{gathered}$	Temperature (degrees C)
MW-1A	12/20/19	6.99	267.4	91.4	8.91	18.6	10.8
	01/03/20	10.93	76.5	78.9	8.88	3.0	9.1
	01/16/20	7.16	189.0	144.6	8.43	0.0	8.5
MW-2	12/20/19	7.33	240.8	99.9	7.51	4.9	10.8
	01/03/20	11.91	65.9	113.5	7.68	2.2	10.2
	01/16/20	7.32	197.0	113.4	7.53	2.2	10.4
MW-3	12/20/19	6.41	158.2	97.7	4.67	6.9	8.0
	01/03/20	11.53	44.3	107.0	4.99	2.2	7.2
	01/16/20	6.69	91.0	144.7	8.58	0.0	7.0
MW-4	12/20/19	6.73	240.4	96.8	5.67	6.7	10.0
	01/03/20	12.00	72.8	108.6	5.73	5.2	9.7
	01/16/20	6.81	185.0	130.8	6.10	0.3	9.1
MW-5B	12/20/19	7.42	248.8	64.0	8.52	31.2	10.4
	01/03/20	10.72	71.1	92.6	8.55	23.5	10.1
	01/16/20	7.64	197.0	117.5	8.41	38.2	11.1

Notes:

${ }^{1}$ Turbidity is not a natural attenuation parameter but was measured in the field to evaluate groundwater stabilization
${ }^{2} \mathrm{MW}-1$ went dry before sampling on $8 / 17 / 18$. The water quality parameters reflect measurements taken immediately prior to the water level dropping below the level of the pump.
$\mu \mathrm{S} / \mathrm{cm}=$ micro-Siemens per centimeter; $\mathrm{mV}=$ millivolts; $\mathrm{mg} / \mathrm{L}=$ milligrams per liter;
NTU = nephelometric turbidity unit; $\mathrm{C}=$ Celsius

Table 3
Summary of Chemical Analytical Results - Petroleum Hydrocarbons, PCBs and PAHs ${ }^{1}$ - Groundwater
Avista - Spokane Service Center
Spokane, Washington

Method	Analyte	Location ID Sample ID Sample Date		MW-1A						MW-2						MW-3					
				$\begin{gathered} \hline \text { MW-1A:122019 } \\ \text { 12/20/2019 } \end{gathered}$		$\begin{gathered} \hline \text { MW-1A:010320 } \\ 1 / 3 / 2020 \end{gathered}$		$\begin{gathered} \hline \text { MW-1A:011620 } \\ \text { 1/16/2020 } \end{gathered}$		$\begin{gathered} \hline \text { MW-2:122019 } \\ \text { 12/20/2019 } \end{gathered}$		$\begin{gathered} \hline \text { MW-2:010320 } \\ 1 / 3 / 2020 \end{gathered}$		$\begin{gathered} \hline \text { MW-2:011620 } \\ \text { 1/16/2020 } \end{gathered}$		$\begin{gathered} \hline \text { MW-3:122019 } \\ \text { 12/20/2019 } \end{gathered}$		$\begin{gathered} \hline \text { MW-3:010320 } \\ 1 / 3 / 2020 \end{gathered}$		$\begin{gathered} \hline \text { MW-3:011620 } \\ \text { 1/16/2020 } \\ \hline \end{gathered}$	
		Cleanup Level ${ }^{2}$	Units																		
NWTPH-DX ${ }^{3}$	Diesel-range hydrocarbons	0.5	mg/L	0.13^{7}	J	0.12^{7}	J	0.11^{4}	U	0.11^{4}	U	0.11^{4}	U	0.11^{4}		0.10^{4}	U	0.11^{4}	U	0.11^{4}	U
	Lube Oil-range Hydrocarbons	0.5	mg/L	0.18^{7}	J	0.12^{4}	U	0.12^{4}	U	0.12^{4}	U	0.12^{4}	U	0.12^{4}		0.11^{4}	U	0.12^{4}	U	0.12^{4}	U
PCB-Aroclors ${ }^{5}$	PCB-Aroclor 1016	0.1	$\mu \mathrm{g} / \mathrm{L}$	0.095	U	0.94	U	0.097	U	0.097	U	0.096	U	0.097	U	0.097	U	0.096	U	0.095	U
	PCB-Aroclor 1221		$\mu \mathrm{g} / \mathrm{L}$	0.095	U	0.94	U	0.097	U	0.097	U	0.096	U	0.097	U	0.097	U	0.096	U	0.095	U
	PCB-Aroclor 1232		$\mu \mathrm{g} / \mathrm{L}$	0.095	U	0.94	U	0.097	U	0.097	U	0.096	U	0.097	U	0.097	U	0.096	U	0.095	U
	PCB-Aroclor 1242		$\mu \mathrm{g} / \mathrm{L}$	0.095	U	0.94	U	0.097	U	0.097	U	0.096	U	0.097	U	0.097	U	0.096	U	0.095	U
	PCB-Aroclor 1248		$\mu \mathrm{g} / \mathrm{L}$	0.095	U	0.94	U	0.097	U	0.097	U	0.096	U	0.097	U	0.097	U	0.096	U	0.095	U
	PCB-Aroclor 1254		$\mu \mathrm{g} / \mathrm{L}$	0.095	U	0.94	U	0.097	U	0.097	U	0.096	U	0.097	U	0.097	U	0.096	U	0.095	U
	PCB-Aroclor 1260		$\mu \mathrm{g} / \mathrm{L}$	0.095	U	0.94	U	0.097	U	0.097	U	0.096	U	0.097	U	0.097	U	0.096	U	0.095	U
	PCB-Aroclor 1262		$\mu \mathrm{g} / \mathrm{L}$	0.095	U	0.94	U	0.097	U	0.097	U	0.096	U	0.097	U	0.097	U	0.096	U	0.095	U
	PCB-Aroclor 1268		$\mu \mathrm{g} / \mathrm{L}$	0.095	U	0.94	U	0.097	U	0.097	U	0.096	U	0.097	U	0.097	U	0.096	U	0.095	U
PAHs ${ }^{6}$	1-Methylnaphthalene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	U	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	2-Methylnaphthalene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	U	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Acenaphthene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	U	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Acenaphthylene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	U	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Anthracene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	U	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Benzo(a)anthracene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	J	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Benzo(a) pyrene	0.1	$\mu \mathrm{g} / \mathrm{L}$	0.084	J	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Benzo(b)fluoranthene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	U	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Benzo(g., , , i) perylene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084		0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	\checkmark
	Benzo(k)fluoranthene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	\cup	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Chrysene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	J	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Dibenzo(a, ,)anthracene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	U	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Fluoranthene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	J	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Fluorene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	U	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Indeno($1,2,3$-, , d) pyrene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	U	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Naphthalene	160	$\mu \mathrm{g} / \mathrm{L}$	0.084	U	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Phenanthrene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	U	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Pyrene	NE	$\mu \mathrm{g} / \mathrm{L}$	0.084	J	0.090	U	0.085	U	0.088	U	0.087	U	0.088	U	0.086	U	0.088	U	0.086	U
	Total CPAH TEQ (ND=0.5RL)	0.1	$\mu \mathrm{g} / \mathrm{L}$	0.063	U	0.068	U	0.064	U	0.066	-	0.066	U	0.066	U	0.065	U	0.066	U	0.065	U

Notes:
${ }^{1}$ Laboratory testing provided by TestAmerica Laboratores in in Spokane Valley, Washington
${ }^{2}$ Cleanup level refers to Model Toxics Control Act (MTCA) Method A Cleanup Level for Unrestricted Land Use
${ }^{3}$ Diesel- and Oil-range Petroleum Hydrocarbons (DRPH and ORPH) analyzed using Northwest Method NWTPH-Dx.
Result is reported to the method detection limit (MDL)
${ }^{\text {SPolychiorinated biphenyls (PCBs) analyzed using Environmental Protection Agency (EPA) Method 8082A. }}$
${ }^{6}$ Polycyclic aromatic hydrocarbons (PAHs) analyzed using EPA Method 8270D.
$\mu g / L=$ micrograms per Liter; $\mathrm{mg} / \mathrm{L}=$ milligrams per Liter; $\mathrm{U}=$ analyte was not detected at concentrations greater than the laboratory reporting limit; $\mathrm{J}=$ estimated result; "--" $=$ not analyzed
Sld = indicates the anayte was detected abve the laborator reporting imit
Bold Red= indicates the analyte was detected above the respective cleanup level.

© Sealed/Booted Liner Penetration
CROSS SECTION A-A'(A-A)

$\frac{\text { CROSS SECTION B-B' B-B }}{\text { SCALE: }}$

The subsurface conditions shown are based on interpolation between
widely spaceed explorations and should be considered apporoximate; actua
 This fifure is for informational purposes only. It is intended to assist in the
identification of features discussed in a related document. Data were
 guarantee these data are accurate or complete. There may have been
updates to the data since the publication of this figure. This figure is a
 na sine as the oficial document of record.

Cross Sections A-A', B-B' and C-C'
Service Center Garage Liner Repair and Groundwater Monitoring Report Spokane, Washington
GeoEngineers (1)

Notes: soll and backFll materials placed beneath the geosrnthetic cover were be compacted to a firm and unyeling state with no visible deflection.
. Beding sand consisted of material meeting wsdot standard specification 9.03.13.
3. 40 -MIL LINEAR LOW-DENSITY POLYETHYLENE (LLDPE) LINER.
4. GEOTEXTLLE FABRIC CONSIITED OF MIRAF I 180N.
5. If LINER dRain damage is observed, drain will be repalred per this pipe trench detal.

PIPE TRENCH DETAIL
SCALE: NOT TO SCALE
F10

Photograph 1. SES over excavates to expose damaged liner at the north end of the site, looking South.

Photograph 2. SES exposes damaged liner using pressurized water and a Hydroexcavator vacuum truck, looking West.

Site Photographs January 2020

Avista - Spokane Service Center
Spokane, Washington

GeoEngineers

Figure 7

Photograph 3. SES exposes section of damaged liner, looking West.

Photograph 4. Exposed section of damaged liner, looking North.

Site Photographs January 2020	
Avista - Spokane Service Center Spokane, Washington	
GEOENGINEERS	Figure 8

Photograph 5. Exposed section of damaged liner, looking East.

Photograph 6. SES places bedding sand for geosynthetic liner repair using two dump truck conveyor belt systems, looking North.

Site Photographs January 2020	
Avista - Spokane Service Center Spokane, Washington	
GEOENGINEERS	Figure 9

Photograph 7. SES prepares bedding sand for replacement liner section, looking Northwest.

Photograph 8. Bedding sand prepped for geosynthetic liner layout, looking Northeast.

Site Photographs January 2020

Avista - Spokane Service Center
Spokane, Washington

GeoEngineers

Figure 10

Photograph 9. ACF West places 40-mil thick LLDPE geosynthetic liner over bedding sand within the liner repair area, looking North.

Photograph 10. ACF West welds sections of replacement liner to the existing geosynthetic liner, looking North.

Site Photographs January 2020

Avista - Spokane Service Center
Spokane, Washington
GeoEngineers
Figure 11

Photograph 11. Welded liner boot around stormwater line, looking North.

Photograph 12. Welded liner boot around the east side of the protruding water line, looking East.

Site Photographs January 2020	
Avista - Spokane Service Center Spokane, Washington	
GEOENGINEERS	Figure 12

Photograph 13. Welded liner boot around the west side of the protruding water line, looking West.

Photograph 14. Welded liner boot around the north water valve stub, looking North.

Site Photographs January 2020

Avista - Spokane Service Center
Spokane, Washington

GeoEngineers

Figure 13

Photograph 15. Welded liner patch near the eastern edge on the existing liner, looking East.

Photograph 16. ACF West finishes welding replacement liner section to existing liner, looking Northwest.

Site Photographs January 2020
Avista - Spokane Service Center
Spokane, Washington
GeoEngineers
Figure 14

Photograph 17. ACF West places geotextile fabric over welded liner, looking Northwest.

Photograph 18. SES places approximately 4 -inches of bedding sand over geotextile fabric using a dump-truck conveyor belt system, looking Northwest.

Site Photographs January 2020	
Avista - Spokane Service Center Spokane, Washington	
GEOENGINEERS	Figure 15

Photograph 19. SES covers bedding sand with orange construction fencing, looking West.

Photograph 20. SES backfills over construction fencing with on-site excavation spoils, looking South.

Site Photographs January 2020

Avista - Spokane Service Center
Spokane, Washington
GeoEngineers (1)
Figure 16

GeoEngineers

Appendix A

Field Methods

APPENDIX A FIELD METHODS

Depth to Groundwater

Depth to groundwater measurements from the new wells were collected and recorded in the field notebook after the water level stabilized after well development. Depth to groundwater relative to the marked north side of the monitoring well casing rims was measured to the nearest 0.01 foot using an electronic water level indicator and recorded in the field notebook. Groundwater elevation was calculated by subtracting the depth-to-water measurement from the surveyed casing rim elevation. The electronic water level indicator was decontaminated with Liquinox ${ }^{\circledR}$ solution wash and a distilled water rinse prior to use in each well.

Groundwater Sampling

Following depth to groundwater measurements, groundwater samples were collected from the installed groundwater monitoring wells consistent with the EPA's low-flow groundwater sampling procedures (EPA 2017 and Puls and Barcelona 1996). Dedicated polyethylene tubing and a portable peristaltic pump or bladder pump were used for groundwater purging and sampling. During purging activities, water quality parameters, including pH , temperature, conductivity, dissolved oxygen and turbidity were measured using a multi-parameter meter equipped with a flow-through cell. Groundwater samples were collected after (1) water quality parameters stabilized; or (2) a maximum purge time of 30 minutes was achieved. During purging and sampling, drawdown was not allowed to exceed 0.3 feet and the purge rate did not exceed 400 milliliters per minute. Water quality parameter stabilization criteria included the following:

- Turbidity: ± 10 percent for values greater than 5 nephelometric turbidity units (ntu);
- Conductivity: ± 3 percent;
- pH: ± 0.1 unit;
- Temperature: ± 3 percent; and
- Dissolved oxygen: ± 10 percent.

Field water quality measurements and depth-to-water measurements were recorded on a Well Purging-Field Water Quality Measurement Form. The groundwater samples were transferred in the field to laboratoryprepared sample containers and kept cool during transport to the testing laboratory. Chain-of-custody (COC) procedures were observed from the time of sample collection to delivery to the testing laboratory consistent with the Quality Assurance Project Plan.

Decontamination Procedures

The objective of the decontamination procedure was to minimize the potential for cross contamination between monitoring wells. Sampling or measurement equipment was decontaminated in accordance with the following procedures before each sampling attempt or measurement:

- Brush equipment with a wire brush, if necessary, to remove large particulate matter.
- Rinse with potable tap water.

■ Wash with non-phosphate detergent solution (Liquinox ${ }^{\circledR}$ and potable tap water).

- Rinse with potable tap water.
- Rinse with distilled water.

Handling of Investigation-Derived Waste
IDW (purge water), was placed in 5-gallon buckets with lids. The drums were labeled with the monitoring well numbers, general contents and date. IDW generated on site was given to Avista for disposal.

Disposable items, such as sample tubing, gloves and paper towels, etc., were placed in plastic bags after use and deposited in trash receptacles for disposal.

APPENDIX B

Parametrix Liner Repair As-built Survey

Appendix C
 Laboratory Reports and Data Validation Report

Project: Avista - Service Center Garage Liner Repairs and Groundwater Monitoring December 2019 and January 2020 Groundwater Samples

GEI File No: 2522-079-03
Date: February 5, 2020
This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA 2009) of analytical data from the analyses of water samples collected as part of the December 2019 and January 2020 sampling events, and the associated laboratory quality control (QC) samples. The samples were obtained from the Spokane Service Center Garage site on the Avista Corporation Spokane campus located at 1411 East Mission Avenue in Spokane, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (EPA 2017) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Quality Assurance Project Plan (QAPP), Appendix A of the Work Plan, Groundwater Monitoring, Remedial Excavation and Geosynthetic Liner Installation (GeoEngineers 2018) and the Quality Assurance Project Plan (QAPP), Appendix A of the Draft Work Plan, Geosynthetic Liner Repair and Groundwater Monitoring (GeoEngineers 2020), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
$590-12497-1$	MW-1A:122019, MW-2:122019, MW-3:122019, MW-4:122019, MW-5B:122019
$590-12533-1$	MW-1A:01032020, MW-2:01032020, MW-3:01032020, MW-4:01032020, MW-5B:01032020
$590-12595-1$	MW-1A:01162020, MW-2:01162020, MW-3:01162020, MW-4:01162020, MW-5B:01162020

CHEMICAL ANALYSIS PERFORMED

Eurofins TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the samples using the following methods:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM; and
- Polychlorinated Biphenyls (PCBs) by Method SW8082A

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for each analysis. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius, with the exceptions noted below.

SDG 590-12497-1: One sample cooler temperature recorded at the laboratory was 15.0 degrees Celsius. It was determined through professional judgment that since the samples were received on ice at the laboratory the same day they were collected, and the cooling process had begun, this temperature should likely not affect the sample analytical results.

SDG 590-12595-1: One sample cooler temperature recorded at the laboratory was -0.5 degrees Celsius. It was determined through professional judgment that since the samples were not frozen, this temperature should not affect the sample analytical results.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. The surrogate percent recoveries for field samples were within the laboratory control limits, with the following exception:

SDG 590-12497-1: (PCBs) The percent recovery for surrogate decachlorobiphenyl was greater than the control limits in Sample MW-3:122019. There were no positive results for the PCB target analytes in this sample; therefore, no qualifications were required.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For each sample batch, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated.

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) sample set was performed in lieu of a MS/MSD analysis.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits, with the following exceptions:

SDG 590-12533-1: (PAHs) The percent recoveries for benzo(a)anthracene and pyrene were greater than the control limits in the LCS/LCSD sample set extracted on $1 / 9 / 2020$. There were no positive results for these target analytes in the associated field samples; therefore, no qualifications were required.

Additionally, in the same LCS/LCSD sample set, the percent recovery for benzo(b)fluoranthene was greater than the control limits in the LCSD; however, the percent recovery for this target analyte was within the control limits in the corresponding LCS. No action was required for this outlier.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate and LCS/LCSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD RPD values.

No analytical results were qualified. The data are acceptable for the intended use.

REFERENCES

GeoEngineers, Inc. 2018. "Work Plan, Groundwater Monitoring, Remedial Excavation and Geosynthetic Liner Installation," prepared for Avista Corporation. August 2, 2018.

GeoEngineers, Inc. 2020. "Draft Work Plan, Geosynthetic Liner Repair and Groundwater Monitoring," prepared for Avista Corporation. January 3, 2020.
U.S. Environmental Protection Agency (EPA). 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
U.S. Environmental Protection Agency (EPA). 2017. "Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review," EPA-540-R-2017-002. January 2017.

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane
11922 East 1st Ave
Spokane, WA 99206
Tel: (509)924-9200
Laboratory Job ID: 590-12497-1
Client Project/Site: Avista-Spokane Service Ctr/2522-079-02
Revision: 1
For:
GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: Josh Lee

Authorized for release by: 1/27/2020 9:29:16 AM
Randee Arrington, Project Manager II (509)924-9200
randee.arrington@testamericainc.com

LINKs

Review your project results through
TotalAccess

Have a Question?

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at:

www.testamericainc.com

Table of Contents

Cover Page 1
Table of Contents 2
Case Narrative 3
Sample Summary 4
Definitions 5
Client Sample Results 6
QC Sample Results 11
Chronicle 15
Certification Summary 17
Method Summary 18
Chain of Custody 19
Receipt Checklists 20

Case Narrative

Client: GeoEngineers Inc
Job ID: 590-12497-1
Project/Site: Avista-Spokane Service Ctr/2522-079-02

Job ID: 590-12497-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Report Revision 01/27/2020

All data was evaluated down to the MDL in the initial report. Per the client's request data for all methods except NWTPH-Dx was reprocessed and results reported to reporting limit (RL).

Receipt

The samples were received on 12/23/2019 4:35 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was $15.0^{\circ} \mathrm{C}$.

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: MW-1A:122019 (590-12497-1), MW-2:122019 (590-12497-2), MW-3:122019 (590-12497-3), MW-4:122019 (590-12497-4) and MW-5B:122019 (590-12497-5). The samples are considered acceptable since they were collected and submitted to the laboratory on the same day and there is evidence that the chilling process has begun.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method 8082A: Surrogate recovery for the following sample was outside control limits: MW-3:122019 (590-12497-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep
No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-12497-1	MW-1A:122019	Water	12/20/19 11:20	12/23/19 16:35	
590-12497-2	MW-2:122019	Water	12/20/19 14:53	12/23/19 16:35	
590-12497-3	MW-3:122019	Water	12/20/19 12:30	12/23/19 16:35	
590-12497-4	MW-4:122019	Water	12/20/19 13:45	12/23/19 16:35	
590-12497-5	MW-5B:122019	Water	12/20/19 09:52	12/23/19 16:35	

Qualifiers

GC Semi VOA		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. X	Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
2-Methylnaphthalene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
1-Methylnaphthalene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Acenaphthylene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Acenaphthene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Fluorene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Phenanthrene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Anthracene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Fluoranthene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Pyrene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Benzo[a]anthracene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Chrysene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Benzo[b]fluoranthene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Benzo[k]fluoranthene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Benzo[a]pyrene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Indeno[1,2,3-cd]pyrene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Dibenz(a,h)anthracene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1
Benzo[g,h,i]perylene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 17:45	1

Surrogate		\%Recovery	Qualifier		Limits
		88		$44-121$	
Nitrobenzene-d5		81	$44-120$		
2-Fluorobiphenyl (Surr)	80		$51-121$		

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.095		ug/L		01/07/20 14:16	01/07/20 18:21	1
PCB-1221	ND		0.095		ug/L		01/07/20 14:16	01/07/20 18:21	1
PCB-1232	ND		0.095		ug/L		01/07/20 14:16	01/07/20 18:21	1
PCB-1242	ND		0.095		ug/L		01/07/20 14:16	01/07/20 18:21	1
PCB-1248	ND		0.095		ug/L		01/07/20 14:16	01/07/20 18:21	1
PCB-1254	ND		0.095		ug/L		01/07/20 14:16	01/07/20 18:21	1
PCB-1260	ND		0.095		ug/L		01/07/20 14:16	01/07/20 18:21	1
PCB-1268	ND		0.095		ug/L		01/07/20 14:16	01/07/20 18:21	1
PCB-1262	ND		0.095		ug/L		01/07/20 14:16	01/07/20 18:21	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	62		20-120	01/07/20 14:16	01/07/20 18:21	1
DCB Decachlorobiphenyl (Surr)	80		32-123	01/07/20 14:16	01/07/20 18:21	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.13	J	0.24	0.11	mg/L		12/27/19 10:26	12/27/19 14:59	1
Residual Range Organics (RRO)	0.18	J	0.40	0.12	mg/L		12/27/19 10:26	12/27/19 14:59	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	88		50-150
n-Triacontane-d62	99		50-150

Prepared	Analyzed	Dil Fac
12/27/19 10:26	12/27/19 14:59	1
12/27/19 10:26	12/27/19 14:59	1

Date Received: 12/23/19 16:35

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
2-Methylnaphthalene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
1-Methylnaphthalene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Acenaphthylene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Acenaphthene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Fluorene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Phenanthrene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Anthracene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Fluoranthene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Pyrene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Benzo[a]anthracene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Chrysene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Benzo[b]fluoranthene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Benzo[k]fluoranthene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Benzo[a]pyrene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Indeno[1,2,3-cd]pyrene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Dibenz(a,h)anthracene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1
Benzo[g,h,i]perylene	ND		0.088		ug/L		12/26/19 15:57	12/26/19 18:08	1

\%Recovery	Qualifier		Limits
		$44-121$ 78 81	
$41-120$			

Prepared	Analyzed		Dil Fac
	12/26/19 15:57	12/26/19 18:08	
12/26/19 15:57	$12 / 26 / 19$	$18: 08$	
12/26/19 15:57	12/26/19 18:08		1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.097		ug/L		01/07/20 14:16	01/07/20 18:42	1
PCB-1221	ND		0.097		ug/L		01/07/20 14:16	01/07/20 18:42	1
PCB-1232	ND		0.097		ug/L		01/07/20 14:16	01/07/20 18:42	1
PCB-1242	ND		0.097		ug/L		01/07/20 14:16	01/07/20 18:42	1
PCB-1248	ND		0.097		ug/L		01/07/20 14:16	01/07/20 18:42	1
PCB-1254	ND		0.097		ug/L		01/07/20 14:16	01/07/20 18:42	1
PCB-1260	ND		0.097		ug/L		01/07/20 14:16	01/07/20 18:42	1
PCB-1268	ND		0.097		ug/L		01/07/20 14:16	01/07/20 18:42	1
PCB-1262	ND		0.097		ug/L		01/07/20 14:16	01/07/20 18:42	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	70		20-120	01/07/20 14:16	01/07/20 18:42	1
DCB Decachlorobiphenyl (Surr)	82		32-123	01/07/20 14:16	01/07/20 18:42	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.23		mg / L		12/27/19 10:26	12/27/19 15:43	1
Residual Range Organics (RRO)	ND		0.38	0.12			12/27/19 10:26	12/27/19 15:43	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	87		50-150
n-Triacontane-d62	94		50-150

Prepared	Analyzed	Dil Fac
12/27/19 10:26	12/27/19 15:43	1
12/27/19 10:26	12/27/19 15:43	

Date Received: 12/23/19 16:35

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
2-Methylnaphthalene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
1-Methylnaphthalene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Acenaphthylene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Acenaphthene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Fluorene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Phenanthrene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Anthracene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Fluoranthene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Pyrene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Benzo[a]anthracene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Chrysene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Benzo[b]fluoranthene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Benzo[k]fluoranthene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Benzo[a]pyrene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Indeno[1,2,3-cd]pyrene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Dibenz(a,h)anthracene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1
Benzo[g,h,i]perylene	ND		0.086		ug/L		12/26/19 15:57	12/26/19 18:31	1

\%Recovery	Qualifier	
		Limits
69		
76		

Prepared	Analyzed		Dil Fac
	12/26/19 15:57	12/26/19 18:31	
12/26/19 15:57	$12 / 26 / 19$	$18: 31$	
12/26/19 15:57	$12 / 26 / 19$	$18: 31$	

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:03	1
PCB-1221	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:03	1
PCB-1232	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:03	1
PCB-1242	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:03	1
PCB-1248	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:03	1
PCB-1254	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:03	1
PCB-1260	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:03	1
PCB-1268	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:03	1
PCB-1262	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:03	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	65		20-120	01/07/20 14:16	01/07/20 19:03	1
DCB Decachlorobiphenyl (Surr)	138	x	32-123	01/07/20 14:16	01/07/20 19:03	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.23	0.10	mg/L		12/27/19 10:26	12/27/19 16:04	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.38	0.11			12/27/19 10:26	12/27/19 16:04	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	86		50-150
n-Triacontane-d62	92		50-150

Prepared	Analyzed		Dil Fac
			12
12/27/19 10:26	12/27/19 16:04		1
12/27/19 10:26	12/27/19 16:04		1

Date Received: 12/23/19 16:35

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
2-Methylnaphthalene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
1-Methylnaphthalene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Acenaphthylene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Acenaphthene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Fluorene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Phenanthrene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Anthracene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Fluoranthene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Pyrene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Benzo[a]anthracene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Chrysene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Benzo[b]fluoranthene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Benzo[k]fluoranthene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Benzo[a]pyrene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Indeno[1,2,3-cd]pyrene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Dibenz(a,h)anthracene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1
Benzo[g,h,i]perylene	ND		0.087		ug/L		12/26/19 15:57	12/26/19 18:54	1

\%Recovery	Qualifier	
86 77 80	Limits $44-121$ $44-120$ $51-121$	

Prepared	Analyzed		Dil Fac
	12/26/19 15:57	12/26/19 18:54	
12/26/19 15:57	$12 / 26 / 19$	$18: 54$	
12/26/19 15:57	12/26/19 18:54		1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:24	1
PCB-1221	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:24	1
PCB-1232	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:24	1
PCB-1242	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:24	1
PCB-1248	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:24	1
PCB-1254	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:24	1
PCB-1260	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:24	1
PCB-1268	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:24	1
PCB-1262	ND		0.097		ug/L		01/07/20 14:16	01/07/20 19:24	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	75		20-120	01/07/20 14:16	01/07/20 19:24	1
DCB Decachlorobiphenyl (Surr)	91		32-123	01/07/20 14:16	01/07/20 19:24	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.23	0.11	mg/L		12/27/19 10:26	12/27/19 16:24	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.39	0.12			12/27/19 10:26	12/27/19 16:24	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	85		50-150
n-Triacontane-d62	91		50-150

Prepared	Analyzed		Dil Fac
$12 / 27 / 19$	$10: 26$	$12 / 27 / 19$	$16: 24$
12/27/19 10:26	$12 / 27 / 19$	$16: 24$	

Date Received: 12/23/19 16:35

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
2-Methylnaphthalene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
1-MethyInaphthalene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Acenaphthylene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Acenaphthene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Fluorene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Phenanthrene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Anthracene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Fluoranthene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Pyrene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Benzo[a]anthracene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Chrysene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Benzo[b]fluoranthene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Benzo[k]fluoranthene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Benzo[a]pyrene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Indeno[1,2,3-cd]pyrene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Dibenz(a,h)anthracene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1
Benzo[g,h,i]perylene	ND		0.084		ug/L		12/26/19 15:57	12/26/19 19:17	1

Benzo[g,h,i]perylene
ND 0.084
ug/L

Surrogate		\%Recovery	Qualifier	
Nitrobenzene-d5	87		Limits	
2-Fluorobiphenyl (Surr)	80		$44-121$	
p-Terphenyl-d14	80		$51-121$	

$\begin{array}{cccr}\text { Prepared } & \text { Analyzed } & \text { Dil Fac } \\ & \text { 12/26/19 15:57 } & 12 / 26 / 19 \text { 19:17 } & 1 \\ \text { 12/26/19 15:57 } & 12 / 26 / 1919: 17 & 1 \\ 12 / 26 / 1915: 57 & 12 / 26 / 1919: 17 & 1\end{array}$
Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.098		ug/L		01/07/20 14:16	01/07/20 19:45	1
PCB-1221	ND		0.098		ug/L		01/07/20 14:16	01/07/20 19:45	1
PCB-1232	ND		0.098		ug/L		01/07/20 14:16	01/07/20 19:45	1
PCB-1242	ND		0.098		ug/L		01/07/20 14:16	01/07/20 19:45	1
PCB-1248	ND		0.098		ug/L		01/07/20 14:16	01/07/20 19:45	1
PCB-1254	ND		0.098		ug/L		01/07/20 14:16	01/07/20 19:45	1
PCB-1260	ND		0.098		ug/L		01/07/20 14:16	01/07/20 19:45	1
PCB-1268	ND		0.098		ug/L		01/07/20 14:16	01/07/20 19:45	1
PCB-1262	ND		0.098		ug/L		01/07/20 14:16	01/07/20 19:45	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	71		20-120	01/07/20 14:16	01/07/20 19:45	1
DCB Decachlorobiphenyl (Surr)	87		32-123	01/07/20 14:16	01/07/20 19:45	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.23	0.10	mg/L		12/27/19 10:26	12/27/19 16:45	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.38	0.11	mg/L		12/27/19 10:26	12/27/19 16:45	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	84		50-150
n-Triacontane-d62	91		50-150

Prepared	Analyzed	Dil Fac
12/27/19 10:26	12/27/19 16:45	1
12/27/19 10:26	12/27/19 16:45	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-25814/1-A
Matrix: Water
Analysis Batch: 25812
MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
2-Methylnaphthalene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
1-Methylnaphthalene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Acenaphthylene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Acenaphthene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Fluorene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Phenanthrene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Anthracene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Fluoranthene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Pyrene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Benzo[a]anthracene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Chrysene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Benzo[bjfluoranthene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Benzo[kfluoranthene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Benzo[a]pyrene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Indeno[1,2,3-cd]pyrene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Dibenz(a,h)anthracene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1
Benzo[g,h,i]perylene	ND		0.090		ug/L		12/26/19 15:57	12/26/19 16:35	1

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 25814

MB MB

Surrogate	\%Recovery	Qualifier	Limits
Nitrobenzene-d5	87		44-121
2-Fluorobiphenyl (Surr)	78		44-120
p-Terphenyl-d14	78		51-121

Prepared	Analyzed	Dil Fac
12/26/19 15:57	12/26/19 16:35	1
12/26/19 15:57	12/26/19 16:35	1
12/26/19 15:57	12/26/19 16:35	1

Lab Sample ID: LCS 590-25814/2-A

Matrix: Water

Analysis Batch: 25812

| Analysis Batch: $\mathbf{2 5 8 1 2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte |

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-25814/2-AMatrix: WaterAnalysis Batch: 25812				Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 25814
	LCS	LCS		
Surrogate	\%Recovery	Qualifier	Limits	
Nitrobenzene-d5	93		44-121	
2-Fluorobiphenyl (Surr)	84		44-120	
p-Terphenyl-d14	81		51-121	

Lab Sample ID: LCSD 590-25814/3-A
Matrix: Water
Analysis Batch: 25812

Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	\%Rec	\%Rec. Limits	RPD	RPD Limit
Naphthalene	1.60	1.27		ug/L		80	52-120	12	21
2-Methylnaphthalene	1.60	1.32		ug/L		82	44-120	16	27
1-Methylnaphthalene	1.60	1.32		ug/L		82	49-120	7	26
Acenaphthylene	1.60	1.55		ug/L		97	57-120	5	21
Acenaphthene	1.60	1.46		ug/L		91	54-120	3	22
Fluorene	1.60	1.50		ug/L		94	59-120	4	18
Phenanthrene	1.60	1.55		ug/L		97	66-120	4	16
Anthracene	1.60	1.58		ug/L		99	59-120	4	18
Fluoranthene	1.60	1.63		ug/L		102	64-120	5	13
Pyrene	1.60	1.75		ug/L		109	61-120	5	17
Benzo[a]anthracene	1.60	1.76		ug/L		110	68-120	5	12
Chrysene	1.60	1.62		ug/L		101	69-120	5	14
Benzo[b]fluoranthene	1.60	1.77		ug/L		111	63-120	4	22
Benzo[k]fluoranthene	1.60	1.41		ug/L		88	67-120	8	19
Benzo[a]pyrene	1.60	1.53		ug/L		96	70-120	7	13
Indeno[1,2,3-cd]pyrene	1.60	1.52		ug/L		95	66-120	7	24
Dibenz(a,h)anthracene	1.60	1.48		ug/L		92	65-120	6	24
Benzo[g,h,i]perylene	1.60	1.51		ug/L		94	65-120	9	25

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 25814

LCSD LCSD

Surrogate		\%Recovery	Qualifier		Limits
		85		$44-121$	
Nitrobenzene-d5		79		$44-120$	
2-Fluorobiphenyl (Surr)		76	$51-121$		

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 590-25889/1-A
Matrix: Water
Analysis Batch: 25877

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCSD 590-25889/3-A Client Sample ID: Lab Control Sample Dup
Matrix: Water Prep Type: Total/NA
Analysis Batch: 25877

	Spike	LCSD	LCSD				\%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	\%Rec	Limits	RPD	Limit
PCB-1016	1.60	1.48		ug/L		92	51-120	7	26
PCB-1260	1.60	1.38		ug/L		86	42-120	3	21

Surrogate	\%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	54		20-120
DCB Decachlorobiphenyl (Surr)	91		32-123

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-25822/1-A
Matrix: Water
Analysis Batch: 25823

Analysis Batch: 25823						Prep Batch: 25822			
	MB Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.24	0.11	mg/L		12/27/19 10:26	12/27/19 11:47	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.40	0.12			12/27/19 10:26	12/27/19 11:47	1
(C25-C36)									
	MB	MB							
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	84		50-150				12/27/19 10:26	12/27/19 11:47	1
n-Triacontane-d62	87		50-150				12/27/19 10:26	12/27/19 11:47	1

Lab Sample ID: LCS 590-25822/2-A				Client Sample ID: Lab Control Sample			
Matrix: Water							Prep Ty
Analysis Batch: 25823							Prep
	Spike	LCS	LCS				\%Rec.
Analyte	Added	Result	Qualifier	Unit	D	\%Rec	Limits
Diesel Range Organics (DRO) (C10-C25)	1.60	1.48		mg/L		93	50-150
Residual Range Organics (RRO)	1.60	1.60		mg/L		100	50-150

	LCS LCS		
Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	91		50-150
n-Triacontane-d62	93		50-150

Lab Sample ID: LCSD 590-25822/3-A Client Sample ID: Lab Control Sample Dup
Matrix: Water
Analysis Batch: 25823
Analysis Batch: 25823
Analyte (C25-C36)

LCSD LCSD

Lab Chronicle

Client: GeoEngineers Inc

Client Sample ID: MW-1A:122019 Lab Sample ID: 590-12497-1
Date Collected: 12/20/19 11:20 Matrix: Water
Date Received: 12/23/19 16:35

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			268.8 mL	2 mL	25814	12/26/19 15:57	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			25812	12/26/19 17:45	NMI	TAL SPK
Total/NA	Prep	3510C			264 mL	2 mL	25889	01/07/20 14:16	NMI	TAL SPK
Total/NA	Analysis	8082A		1			25877	01/07/20 18:21	NMI	TAL SPK
Total/NA	Prep	3510C			249.4 mL	2 mL	25822	12/27/19 10:26	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			25823	12/27/19 14:59	NMI	TAL SPK

Client Sample ID: MW-2:122019
Date Collected: 12/20/19 14:53
Lab Sample ID: 590-12497-2
Matrix: Water
Date Received: 12/23/19 16:35

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			256.2 mL	2 mL	25814	12/26/19 15:57	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			25812	12/26/19 18:08	NMI	TAL SPK
Total/NA	Prep	3510C			256.7 mL	2 mL	25889	01/07/20 14:16	NMI	TAL SPK
Total/NA	Analysis	8082A		1			25877	01/07/20 18:42	NMI	TAL SPK
Total/NA	Prep	3510C			260.8 mL	2 mL	25822	12/27/19 10:26	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			25823	12/27/19 15:43	NMI	TAL SPK

Client Sample ID: MW-3:122019 Lab Sample ID: 590-12497-3
Date Collected: 12/20/19 12:30 Matrix: Water
Date Received: 12/23/19 16:35

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			262.4 mL	2 mL	25814	12/26/19 15:57	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			25812	12/26/19 18:31	NMI	TAL SPK
Total/NA	Prep	3510C			257.8 mL	2 mL	25889	01/07/20 14:16	NMI	TAL SPK
Total/NA	Analysis	8082A		1			25877	01/07/20 19:03	NMI	TAL SPK
Total/NA	Prep	3510C			262 mL	2 mL	25822	12/27/19 10:26	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			25823	12/27/19 16:04	NMI	TAL SPK

Client Sample ID: MW-4:122019
Date Collected: 12/20/19 13:45
Date Received: 12/23/19 16:35

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			257.4 mL	2 mL	25814	12/26/19 15:57	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			25812	12/26/19 18:54	NMI	TAL SPK
Total/NA	Prep	3510C			257 mL	2 mL	25889	01/07/20 14:16	NMI	TAL SPK
Total/NA	Analysis	8082A		1			25877	01/07/20 19:24	NMI	TAL SPK
Total/NA	Prep	3510C			255.5 mL	2 mL	25822	12/27/19 10:26	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			25823	12/27/19 16:24	NMI	TAL SPK

Client Sample ID: MW-5B:122019	Lab Sample ID: $590-12497-5$
Date Collected: 12/20/19 09:52	Matrix: Water

Date Received:

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			266.6 mL	2 mL	25814	12/26/19 15:57	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			25812	12/26/19 19:17	NMI	TAL SPK
Total/NA	Prep	3510C			255.8 mL	2 mL	25889	01/07/20 14:16	NMI	TAL SPK
Total/NA	Analysis	8082A		1			25877	01/07/20 19:45	NMI	TAL SPK
Total/NA	Prep	3510C			266.6 mL	2 mL	25822	12/27/19 10:26	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			25823	12/27/19 16:45	NMI	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number
Washington	$\frac{\text { Expiration Date }}{\text { C569 }} 01-06-21$	

Method Summary

Method	Method Description	Protocol	Laboratory
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL SPK

[^0]
Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Eurofins TestAmerica, Spokane
11922 East 1st Ave
Spokane. WA 99206
Phone: 509-924-9200 Fax: 509-924-9290

Login Sample Receipt Checklist

Login Number: 12497
List Source: Eurofins TestAmerica, Spokane
List Number: 1
Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	N/A	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane
11922 East 1st Ave
Spokane, WA 99206
Tel: (509)924-9200
Laboratory Job ID: 590-12533-1
Client Project/Site: Avista-Spokane Service Ctr/2522-079-02
For:
GeoEngineers Inc
523 East Second Ave
Spokane, Washington 99202
Attn: Josh Lee

Authorized for release by:
1/21/2020 1:45:36 PM
Randee Arrington, Project Manager II (509)924-9200
randee.arrington@testamericainc.com

LINKs

Review your project results through
TotalAccess

Have a Question?

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at:

www.testamericainc.com

Table of Contents

Cover Page 1
Table of Contents 2
Case Narrative 3
Sample Summary 4
Definitions 5
Client Sample Results 6
QC Sample Results 11
Chronicle 15
Certification Summary 17
Method Summary 18
Chain of Custody 19
Receipt Checklists 20

Case Narrative

Client: GeoEngineers Inc
Job ID: 590-12533-1
Project/Site: Avista-Spokane Service Ctr/2522-079-02

Job ID: 590-12533-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 1/6/2020 8:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was $2.3^{\circ} \mathrm{C}$.

GC/MS Semi VOA

Method 8270D SIM: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 590-25917 and analytical batch 590-25968 recovered outside control limits for several analytes. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8270D SIM: The continuing calibration verification (CCV) associated with batch 590-25968 recovered above the upper control limit for Pyrene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW-1A:01032020 (590-12533-1), MW-2:01032020 (590-12533-2), MW-3:01032020 (590-12533-3), MW-4:01032020 (590-12533-4), MW-5B:01032020 (590-12533-5) and (CCVIS 590-25968/3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method NWTPH-Dx: Surrogate recovery for the oil range in the CCV's for the following samples were outside the upper control limit: MW-1A:01032020 (590-12533-1), MW-2:01032020 (590-12533-2), MW-3:01032020 (590-12533-3), MW-4:01032020 (590-12533-4), MW-5B:01032020 (590-12533-5), (CCV 590-25941/20), (CCV 590-25941/30), (CCV 590-25941/9), (LCS 590-25947/2-A), (LCSD $590-25947 / 3-A$) and (MB 590-25947/1-A). The samples did not contain any target Residual Range Organics (RRO) (C25-C36) analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-12533-1	MW-1A:01032020	Water	01/03/20 09:28	01/06/20 08:30	
590-12533-2	MW-2:01032020	Water	01/03/20 13:45	01/06/20 08:30	
590-12533-3	MW-3:01032020	Water	01/03/20 11:55	01/06/20 08:30	
590-12533-4	MW-4:01032020	Water	01/03/20 12:55	01/06/20 08:30	
590-12533-5	MW-5B:01032020	Water	01/03/20 11:00	01/06/20 08:30	

Qualifiers

GC/MS Semi VOA
$\frac{\text { Qualifier }}{*} \quad \frac{\text { Qualifier Description }}{\text { LCS or LCSD is outside acceptance limits. }}$
GC Semi VOA

Qualifier
J
:---

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
व	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Date Received: 01/06/20 08:30

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
2-Methylnaphthalene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
1-Methylnaphthalene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Acenaphthylene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Acenaphthene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Fluorene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Phenanthrene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Anthracene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Fluoranthene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Pyrene	ND	*	0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Benzo[a]anthracene	ND	*	0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Chrysene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Benzo[b]fluoranthene	ND	*	0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Benzo[k]fluoranthene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Benzo[a]pyrene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Indeno[1,2,3-cd]pyrene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Dibenz(a,h)anthracene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1
Benzo[g,h,i]perylene	ND		0.090		ug/L		01/09/20 13:20	01/16/20 19:05	1

Surrogate		\%Recovery	Qualifier		Limits
		102		$44-121$	
Nitrobenzene-d5		86	$44-120$		
2-Fluorobiphenyl (Surr)	89	$51-121$			

| Prepared | Analyzed | Dil Fac |
| :---: | :---: | :---: | ---: |
| $01 / 09 / 2013: 20$ | $01 / 16 / 2019: 05$ | 1 |
| 01/09/20 13:20 | $01 / 16 / 2019: 05$ | 1 |
| 01/09/20 13:20 | $01 / 16 / 2019: 05$ | 1 |

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.094		ug/L		01/07/20 14:16	01/07/20 20:06	1
PCB-1221	ND		0.094		ug/L		01/07/20 14:16	01/07/20 20:06	1
PCB-1232	ND		0.094		ug/L		01/07/20 14:16	01/07/20 20:06	1
PCB-1242	ND		0.094		ug/L		01/07/20 14:16	01/07/20 20:06	1
PCB-1248	ND		0.094		ug/L		01/07/20 14:16	01/07/20 20:06	1
PCB-1254	ND		0.094		ug/L		01/07/20 14:16	01/07/20 20:06	1
PCB-1260	ND		0.094		ug/L		01/07/20 14:16	01/07/20 20:06	1
PCB-1268	ND		0.094		ug/L		01/07/20 14:16	01/07/20 20:06	1
PCB-1262	ND		0.094		ug/L		01/07/20 14:16	01/07/20 20:06	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	68		20-120	01/07/20 14:16	01/07/20 20:06	1
DCB Decachlorobiphenyl (Surr)	91		32-123	01/07/20 14:16	01/07/20 20:06	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.12	J	0.23	0.11	mg/L		01/13/20 14:28	01/13/20 20:30	1
Residual Range Organics (RRO)	ND		0.39	0.12	mg/L		01/13/20 14:28	01/13/20 20:30	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	96		50-150
n-Triacontane-d62	106		50-150

$\frac{\text { Prepared }}{}$		Analyzed	
	Dil Fac		
$01 / 13 / 2014: 28$		$01 / 13 / 2020: 30$	
$01 / 13 / 2014: 28$	$01 / 13 / 2020: 30$		1

Date Received: 01/06/20 08:30
Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
2-MethyInaphthalene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
1-Methylnaphthalene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Acenaphthylene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Acenaphthene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Fluorene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Phenanthrene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Anthracene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Fluoranthene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Pyrene	ND	*	0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Benzo[a]anthracene	ND	*	0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Chrysene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Benzo[b]fluoranthene	ND	*	0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Benzo[k]fluoranthene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Benzo[a]pyrene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Indeno[1,2,3-cd]pyrene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Dibenz(a,h)anthracene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1
Benzo[g,h,i]perylene	ND		0.087		ug/L		01/09/20 13:20	01/16/20 19:28	1

Surrogate		\%Recovery	Qualifier		Limits
		97		$44-121$	
Nitrobenzene-d5		83	$44-120$		
2-Fluorobiphenyl (Surr)	100	$51-121$			

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.096		ug/L		01/07/20 14:16	01/07/20 20:27	1
PCB-1221	ND		0.096		ug/L		01/07/20 14:16	01/07/20 20:27	1
PCB-1232	ND		0.096		ug/L		01/07/20 14:16	01/07/20 20:27	1
PCB-1242	ND		0.096		ug/L		01/07/20 14:16	01/07/20 20:27	1
PCB-1248	ND		0.096		ug/L		01/07/20 14:16	01/07/20 20:27	1
PCB-1254	ND		0.096		ug/L		01/07/20 14:16	01/07/20 20:27	1
PCB-1260	ND		0.096		ug/L		01/07/20 14:16	01/07/20 20:27	1
PCB-1268	ND		0.096		ug/L		01/07/20 14:16	01/07/20 20:27	1
PCB-1262	ND		0.096		ug/L		01/07/20 14:16	01/07/20 20:27	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	71		20-120	01/07/20 14:16	01/07/20 20:27	1
DCB Decachlorobiphenyl (Surr)	83		32-123	01/07/20 14:16	01/07/20 20:27	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.23	0.11	mg/L		01/13/20 14:28	01/13/20 20:52	1
Residual Range Organics (RRO)	ND		0.39	0.12	mg/L		01/13/20 14:28	01/13/20 20:52	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	95		50-150
n-Triacontane-d62	105		50-150

Prepared	Analyzed	Dil Fac
01/13/20 14:28	01/13/20 20:52	1
01/13/20 14:28	01/13/20 20:52	1

Date Received: 01/06/20 08:30

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
2-Methylnaphthalene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
1-Methylnaphthalene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Acenaphthylene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Acenaphthene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Fluorene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Phenanthrene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Anthracene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Fluoranthene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Pyrene	ND	*	0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Benzo[a]anthracene	ND	*	0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Chrysene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Benzo[b]fluoranthene	ND	*	0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Benzo[k]fluoranthene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Benzo[a]pyrene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Indeno[1,2,3-cd]pyrene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Dibenz(a,h)anthracene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1
Benzo[g,h,i]perylene	ND		0.088		ug/L		01/09/20 13:20	01/16/20 19:51	1

\%Recovery	Qualifier	
		Limits
73		$44-121$
83		$51-120$

Prepared		Analyzed	
Dil Fac			
$01 / 09 / 20$	$13: 20$	$01 / 16 / 20$	$19: 51$
		1	
$01 / 09 / 20$	$13: 20$	$01 / 16 / 20$	$19: 51$
		1	
$01 / 09 / 20$	$13: 20$	$01 / 16 / 20$	$19: 51$

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	0.096	ug/L		01/07/20 14:16	01/07/20 21:10	1
PCB-1221	ND	0.096	ug/L		01/07/20 14:16	01/07/20 21:10	1
PCB-1232	ND	0.096	ug/L		01/07/20 14:16	01/07/20 21:10	1
PCB-1242	ND	0.096	ug/L		01/07/20 14:16	01/07/20 21:10	1
PCB-1248	ND	0.096	ug/L		01/07/20 14:16	01/07/20 21:10	1
PCB-1254	ND	0.096	ug/L		01/07/20 14:16	01/07/20 21:10	1
PCB-1260	ND	0.096	ug/L		01/07/20 14:16	01/07/20 21:10	1
PCB-1268	ND	0.096	ug/L		01/07/20 14:16	01/07/20 21:10	1
PCB-1262	ND	0.096	ug/L		01/07/20 14:16	01/07/20 21:10	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	70		20-120	01/07/20 14:16	01/07/20 21:10	1
DCB Decachlorobiphenyl (Surr)	86		32-123	01/07/20 14:16	01/07/20 21:10	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.23	0.11	mg/L		01/13/20 14:28	01/13/20 21:34	1
Residual Range Organics (RRO)	ND		0.39	0.12	mg/L		01/13/20 14:28	01/13/20 21:34	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	103		50-150
n-Triacontane-d62	112		50-150

Prepared	Analyzed		Dil Fac
$01 / 13 / 2014: 28$		$01 / 13 / 2021: 34$	
$01 / 13 / 20$	$14: 28$	$01 / 13 / 2021: 34$	

Date Collected: 01/03/20 12:55
Date Received: 01/06/20 08:30

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
2-Methylnaphthalene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
1-Methylnaphthalene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Acenaphthylene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Acenaphthene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Fluorene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Phenanthrene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Anthracene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Fluoranthene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Pyrene	ND	*	0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Benzo[a]anthracene	ND	*	0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Chrysene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Benzo[b]fluoranthene	ND	*	0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Benzo[k]fluoranthene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Benzo[a]pyrene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Indeno[1,2,3-cd]pyrene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Dibenz(a,h)anthracene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1
Benzo[g,h,i]perylene	ND		0.086		ug/L		01/09/20 13:20	01/16/20 20:14	1

\%Recovery	Qualifier		Limits
			$44-121$
70			
90			$44-120$
$51-121$			

Prepared	Analyzed	Dil Fac
01/09/20 13:20	01/16/20 20:14	1
01/09/20 13:20	01/16/20 20:14	1
01/09/20 13:20	01/16/20 20:14	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.095		ug/L		01/07/20 14:16	01/07/20 21:30	1
PCB-1221	ND		0.095		ug/L		01/07/20 14:16	01/07/20 21:30	1
PCB-1232	ND		0.095		ug/L		01/07/20 14:16	01/07/20 21:30	1
PCB-1242	ND		0.095		ug/L		01/07/20 14:16	01/07/20 21:30	1
PCB-1248	ND		0.095		ug/L		01/07/20 14:16	01/07/20 21:30	1
PCB-1254	ND		0.095		ug/L		01/07/20 14:16	01/07/20 21:30	1
PCB-1260	ND		0.095		ug/L		01/07/20 14:16	01/07/20 21:30	1
PCB-1268	ND		0.095		ug/L		01/07/20 14:16	01/07/20 21:30	1
PCB-1262	ND		0.095		ug/L		01/07/20 14:16	01/07/20 21:30	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	69		20-120	01/07/20 14:16	01/07/20 21:30	1
DCB Decachlorobiphenyl (Surr)	91		32-123	01/07/20 14:16	01/07/20 21:30	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.23	0.10	mg/L		01/13/20 14:28	01/13/20 21:56	1
Residual Range Organics (RRO)	ND		0.38	0.11	mg/L		01/13/20 14:28	01/13/20 21:56	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	103		50-150
n-Triacontane-d62	112		50-150

Prepared		Analyzed	
		Dil Fac	
$01 / 13 / 2014: 28$		$01 / 13 / 2021: 56$	
$01 / 13 / 2014: 28$	$01 / 13 / 2021: 56$		1

Date Received: 01/06/20 08:30

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
2-Methylnaphthalene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
1-Methylnaphthalene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Acenaphthylene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Acenaphthene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Fluorene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Phenanthrene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Anthracene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Fluoranthene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Pyrene	ND	*	0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Benzo[a]anthracene	ND	*	0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Chrysene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Benzo[b]fluoranthene	ND	*	0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Benzo[k]fluoranthene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Benzo[a]pyrene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Indeno[1,2,3-cd]pyrene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Dibenz(a,h)anthracene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1
Benzo[g,h,i]perylene	ND		0.084		ug/L		01/09/20 13:20	01/16/20 20:37	1

\%Recovery	Qualifier		Limits
98		$44-121$ $91-120$ 86	$51-121$

Prepared	Analyzed		Dil Fac
$01 / 09 / 20$	$13: 20$	$01 / 16 / 20$	$20: 37$
01/09/20 13:20	$01 / 16 / 20$	$20: 37$	
01/09/20 13:20	$01 / 16 / 2020: 37$		1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.094		ug/L		01/07/20 14:16	01/07/20 21:51	1
PCB-1221	ND		0.094		ug/L		01/07/20 14:16	01/07/20 21:51	1
PCB-1232	ND		0.094		ug/L		01/07/20 14:16	01/07/20 21:51	1
PCB-1242	ND		0.094		ug/L		01/07/20 14:16	01/07/20 21:51	1
PCB-1248	ND		0.094		ug/L		01/07/20 14:16	01/07/20 21:51	1
PCB-1254	ND		0.094		ug/L		01/07/20 14:16	01/07/20 21:51	1
PCB-1260	ND		0.094		ug/L		01/07/20 14:16	01/07/20 21:51	1
PCB-1268	ND		0.094		ug/L		01/07/20 14:16	01/07/20 21:51	1
PCB-1262	ND		0.094		ug/L		01/07/20 14:16	01/07/20 21:51	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	72		20-120	01/07/20 14:16	01/07/20 21:51	1
DCB Decachlorobiphenyl (Surr)	92		32-123	01/07/20 14:16	01/07/20 21:51	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.22	0.10	mg/L		01/13/20 14:28	01/13/20 22:17	1
Residual Range Organics (RRO)	ND		0.37	0.11			01/13/20 14:28	01/13/20 22:17	1

(C25-C36)

Surrogate		\%Recovery O-Terphenyl n-Triacontane-d62	106
	114		

Prepared	Analyzed		Dil Fac
$01 / 13 / 20$	$14: 28$	$01 / 13 / 20$	$22: 17$
$01 / 13 / 20$	$14: 28$	$01 / 13 / 20$	$22: 17$
		1	

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-25917/1-A
Matrix: Water
Analysis Batch: 25968

Prepared	Analyzed	Dil Fac
01/09/20 13:20	01/16/20 17:32	1
01/09/20 13:20	01/16/20 17:32	1
01/09/20 13:20	01/16/20 17:32	

Lab Sample ID: LCS 590-25917/2-A

Matrix: Water

Analysis Batch: 25968
Analysis Batch: $\mathbf{2 5 9 6 8}$
Analyte

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-25917/2-A		Client Sample ID: Lab Control Sample
Matrix: Water		
Analysis Batch: 25968		
	LCS LCS	
Prep Type: Total/NA		
Prep Batch: 25917		

Lab Sample ID: LCSD 590-25917/3-A
Matrix: Water
Analysis Batch: 25968

Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	\%Rec	\%Rec. Limits	RPD	RPD Limit
Naphthalene	1.60	1.27		ug/L		80	52-120	1	21
2-Methylnaphthalene	1.60	1.31		ug/L		82	44-120	3	27
1-Methylnaphthalene	1.60	1.31		ug/L		82	49-120	0	26
Acenaphthylene	1.60	1.64		ug/L		102	57-120	3	21
Acenaphthene	1.60	1.47		ug/L		92	54-120	1	22
Fluorene	1.60	1.60		ug/L		100	59-120	1	18
Phenanthrene	1.60	1.68		ug/L		105	66-120	1	16
Anthracene	1.60	1.72		ug/L		108	59-120	0	18
Fluoranthene	1.60	1.85		ug/L		116	64-120	1	13
Pyrene	1.60	2.01	*	ug/L		126	61-120	4	17
Benzo[a]anthracene	1.60	2.03	*	ug/L		127	68-120	4	12
Chrysene	1.60	1.91		ug/L		120	69-120	5	14
Benzo[b]fluoranthene	1.60	2.01	*	ug/L		125	63-120	7	22
Benzo[k]fluoranthene	1.60	1.79		ug/L		112	67-120	3	19
Benzo[a]pyrene	1.60	1.83		ug/L		114	70-120	4	13
Indeno[1,2,3-cd]pyrene	1.60	1.84		ug/L		115	66-120	5	24
Dibenz(a,h)anthracene	1.60	1.77		ug/L		111	65-120	3	24
Benzo[g,h,i]perylene	1.60	1.83		ug/L		114	65-120	5	25

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 25917

LCSD LCSD

Surrogate	\%Recovery	Qualifier	Limits
Nitrobenzene-d5	93		44-121
2-Fluorobiphenyl (Surr)	69		44-120
p-Terphenyl-d14	90		51-121

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 590-25889/1-A
Matrix: Water
Analysis Batch: 25877

Analyte	MB Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.10		ug/L		01/07/20 14:16	01/07/20 17:18	1
PCB-1221	ND		0.10		ug/L		01/07/20 14:16	01/07/20 17:18	1
PCB-1232	ND		0.10		ug/L		01/07/20 14:16	01/07/20 17:18	1
PCB-1242	ND		0.10		ug/L		01/07/20 14:16	01/07/20 17:18	1
PCB-1248	ND		0.10		ug/L		01/07/20 14:16	01/07/20 17:18	1
PCB-1254	ND		0.10		ug/L		01/07/20 14:16	01/07/20 17:18	1
PCB-1260	ND		0.10		ug/L		01/07/20 14:16	01/07/20 17:18	1
PCB-1268	ND		0.10		ug/L		01/07/20 14:16	01/07/20 17:18	1

Client: GeoEngineers Inc
Job ID: 590-12533-1
Project/Site: Avista-Spokane Service Ctr/2522-079-02
Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCSD 590-25889/3-A Client Sample ID: Lab Control Sample Dup
Matrix: Water Prep Type: Total/NA
Analysis Batch: 25877

	Spike	LCSD	LCSD				\%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	\%Rec	Limits	RPD	Limit
PCB-1016	1.60	1.48		ug/L		92	51-120	7	26
PCB-1260	1.60	1.38		ug/L		86	42-120	3	21

Surrogate		\%Recovery	Qualifier		Limits
		54		$20-120$	
Tetrachloro-m-xylene		91	$32-123$		

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-25947/1-A
Matrix: Water
Analysis Batch: 25941

Analysis Batch: 25941						Prep Batch: 25947			
	MB Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.24	0.11	mg/L		01/13/20 14:28	01/13/20 17:39	1
Residual Range Organics (RRO) (C25-C36)	ND		0.40	0.12	mg/L		01/13/20 14:28	01/13/20 17:39	1
Surrogate	$\begin{array}{r} \text { MB } \\ \text { \%Recovery } \end{array}$	MB Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50-150				01/13/20 14:28	01/13/20 17:39	1
n-Triacontane-d62	104		50-150				01/13/20 14:28	01/13/20 17:39	1

Lab Sample ID: LCS 590-25947/2-A				Client Sample ID: Lab Control Sample			
Matrix: Water							Prep Ty
Analysis Batch: 25941							Prep
	Spike	LCS	LCS				\%Rec.
Analyte	Added	Result	Qualifier	Unit	D	\%Rec	Limits
Diesel Range Organics (DRO) (C10-C25)	1.60	1.64		mg/L		102	50-150
Residual Range Organics (RRO)	1.60	1.73		mg / L		108	50-150

	LCS LCS		
Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	104		50-150
n-Triacontane-d62	108		50-150

Lab Sample ID: LCSD 590-25947/3-A Client Sample ID: Lab Control Sample Dup
Matrix: Water
Analysis Batch: 25941

Analysis Batch: 25941	Spike	LCSD	LCSD	Unit	D		Prep Batch: 25947		
							\%Rec.		RPD
Analyte	Added	Result	Qualifier			\%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO) (C10-C25)	1.60	1.67		mg/L		104	50-150	2	25
Residual Range Organics (RRO)	1.60	1.77		mg/L		111	50-150	3	25

LCSD LCSD

	LCSD	LCSD	
Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	107		50-150
n-Triacontane-d62	112		50-150

Lab Chronicle

Client: GeoEngineers Inc

Client Sample ID: MW-1A:01032020
Lab Sample ID: 590-12533-1
Date Collected: 01/03/20 09:28
Matrix: Water
Date Received: 01/06/20 08:30

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			248.9 mL	2 mL	25917	01/09/20 13:20	AMB	TAL SPK
Total/NA	Analysis	8270D SIM		1			25968	01/16/20 19:05	NMI	TAL SPK
Total/NA	Prep	3510C			267.2 mL	2 mL	25889	01/07/20 14:16	NMI	TAL SPK
Total/NA	Analysis	8082A		1			25877	01/07/20 20:06	NMI	TAL SPK
Total/NA	Prep	3510C			259.2 mL	2 mL	25947	01/13/20 14:28	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			25941	01/13/20 20:30	NMI	TAL SPK

Client Sample ID: MW-2:01032020
Lab Sample ID: 590-12533-2 Matrix: Water
Date Collected: 01/03/20 13:45
Date Received: 01/06/20 08:30

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			259 mL	2 mL	25917	01/09/20 13:20	AMB	TAL SPK
Total/NA	Analysis	8270D SIM		1			25968	01/16/20 19:28	NMI	TAL SPK
Total/NA	Prep	3510C			259.8 mL	2 mL	25889	01/07/20 14:16	NMI	TAL SPK
Total/NA	Analysis	8082A		1			25877	01/07/20 20:27	NMI	TAL SPK
Total/NA	Prep	3510C			257.5 mL	2 mL	25947	01/13/20 14:28	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			25941	01/13/20 20:52	NMI	TAL SPK

Client Sample ID: MW-3:01032020 Lab Sample ID: 590-12533-3
Date Collected: 01/03/20 11:55
Matrix: Water
Date Received: 01/06/20 08:30

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			257.1 mL	2 mL	25917	01/09/20 13:20	AMB	TAL SPK
Total/NA	Analysis	8270D SIM		1			25968	01/16/20 19:51	NMI	TAL SPK
Total/NA	Prep	3510C			260.7 mL	2 mL	25889	01/07/20 14:16	NMI	TAL SPK
Total/NA	Analysis	8082A		1			25877	01/07/20 21:10	NMI	TAL SPK
Total/NA	Prep	3510C			257.3 mL	2 mL	25947	01/13/20 14:28	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			25941	01/13/20 21:34	NMI	TAL SPK

Client Sample ID: MW-4:01032020
Date Collected: 01/03/20 12:55
Date Received: 01/06/20 08:30

Client Sample ID: MW-5B:01032020	Lab Sample ID: $590-12533-5$
Date Collected: 01/03/20 11:00	Matrix: Water

Date Received: 01/06/20 08:30

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			268 mL	2 mL	25917	01/09/20 13:20	AMB	TAL SPK
Total/NA	Analysis	8270D SIM		1			25968	01/16/20 20:37	NMI	TAL SPK
Total/NA	Prep	3510C			266.8 mL	2 mL	25889	01/07/20 14:16	NMI	TAL SPK
Total/NA	Analysis	8082A		1			25877	01/07/20 21:51	NMI	TAL SPK
Total/NA	Prep	3510C			268.9 mL	2 mL	25947	01/13/20 14:28	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			25941	01/13/20 22:17	NMI	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Laboratory: Eurofins TestAmerica, Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	$\frac{\text { Expiration Date }}{01-06-21}$	
Washington		State Program	C569		
The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.					
Analysis Method	Prep Method	Matrix	Analyte		\bigcirc
8082A	3510C	Water	PCB-1262		
8082A	3510 C	Water	PCB-1268		
8270D SIM	3510 C	Water	1-Methylnaphthalene		
8270D SIM	3510 C	Water	2-Methylnaphthalene		¢
8270D SIM	3510C	Water	Acenaphthene		
8270D SIM	3510 C	Water	Acenaphthylene		9
8270D SIM	3510C	Water	Anthracene		
8270D SIM	3510 C	Water	Benzo[a]anthracene		
8270D SIM	3510 C	Water	Benzo[a]pyrene		
8270D SIM	3510 C	Water	Benzo[b]fluoranthene		
8270D SIM	3510 C	Water	Benzo[g,h,i]perylene		
8270D SIM	3510 C	Water	Benzo[k]fluoranthene		1
8270D SIM	3510 C	Water	Chrysene		
8270D SIM	3510 C	Water	Dibenz(a,h)anthracene		
8270D SIM	3510 C	Water	Fluoranthene		
8270D SIM	3510C	Water	Fluorene		
8270D SIM	3510C	Water	Indeno[1,2,3-cd]pyrene		
8270D SIM	3510 C	Water	Naphthalene		
8270D SIM	3510C	Water	Phenanthrene		
8270D SIM	3510 C	Water	Pyrene		
NWTPH-Dx	3510 C	Water	Residual Range Organics (RR	RO) (C25-C36)	

Method Summary

Method	Method Description	Protocol	Laboratory
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL SPK

[^1]
Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Eurofins TestAmerica, Spokane
11922 East 1st Ave
Spokane, WA 99206
Chain of Custody Record
Eurofins
Phone: 509-924-9200 Fax: 509-924-9290

Login Sample Receipt Checklist

Login Number: 12533
List Source: Eurofins TestAmerica, Spokane
List Number: 1
Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane
11922 East 1st Ave
Spokane, WA 99206
Tel: (509)924-9200
Laboratory Job ID: 590-12595-1
Client Project/Site: Avista-Spokane Service Ctr/2522-079-03
For:
GeoEngineers Inc
523 East Second Ave
Spokane, Washington 99202
Attn: Josh Lee

Authorized for release by: 1/31/2020 1:42:20 PM
Randee Arrington, Project Manager II (509)924-9200
randee.arrington@testamericainc.com

LINKs

Review your project results through
TotalAccess

Have a Question?

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at:

www.testamericainc.com

Table of Contents

Cover Page 1
Table of Contents 2
Case Narrative 3
Sample Summary 4
Definitions 5
Client Sample Results 6
QC Sample Results 11
Chronicle 15
Certification Summary 17
Method Summary 18
Chain of Custody 19
Receipt Checklists 20

Case Narrative

Job ID: 590-12595-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 1/17/2020 8:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was $-0.5^{\circ} \mathrm{C}$.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-12595-1	MW-1A:01162020	Water	01/16/20 12:00	01/17/20 08:20	
590-12595-2	MW-2:01162020	Water	01/16/20 14:40	01/17/20 08:20	
590-12595-3	MW-3:01162020	Water	01/16/20 12:58	01/17/20 08:20	
590-12595-4	MW-4:01162020	Water	01/16/20 13:45	01/17/20 08:20	
590-12595-5	MW-5B:01162020	Water	01/16/20 15:35	01/17/20 08:20	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Date Received: 01/17/20 08:20

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
2-Methylnaphthalene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
1-Methylnaphthalene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Acenaphthylene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Acenaphthene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Fluorene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Phenanthrene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Anthracene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Fluoranthene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Pyrene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Benzo[a]anthracene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Chrysene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Benzo[b]fluoranthene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Benzo[k]fluoranthene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Benzo[a]pyrene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Indeno[1,2,3-cd]pyrene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Dibenz(a,h)anthracene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1
Benzo[g,h,i]perylene	ND		0.085		ug/L		01/22/20 13:47	01/22/20 15:45	1

Surrogate		\%Recovery	Qualifier		Limits
		78		$44-121$	
Nitrobenzene-d5	77	$44-120$			
2-Fluorobiphenyl (Surr)	75	$51-121$			

Prepared	Analyzed	Dil Fac
01/22/20 13:47	01/22/20 15:45	1
01/22/20 13:47	01/22/20 15:45	1
01/22/20 13:47	01/22/20 15:45	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:18	1
PCB-1221	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:18	1
PCB-1232	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:18	1
PCB-1242	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:18	1
PCB-1248	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:18	1
PCB-1254	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:18	1
PCB-1260	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:18	1
PCB-1268	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:18	1
PCB-1262	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:18	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	68		20-120	01/28/20 11:59	01/28/20 18:18	1
DCB Decachlorobiphenyl (Surr)	72		32-123	01/28/20 11:59	01/28/20 18:18	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.25	0.11	mg/L		01/22/20 12:48	01/22/20 14:51	1
Residual Range Organics (RRO)	ND		0.41	0.12	mg/L		01/22/20 12:48	01/22/20 14:51	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	84		50-150
n-Triacontane-d62	89		50-150

Date Received: 01/17/20 08:20

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
2-Methylnaphthalene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
1-Methylnaphthalene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Acenaphthylene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Acenaphthene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Fluorene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Phenanthrene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Anthracene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Fluoranthene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Pyrene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Benzo[a]anthracene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Chrysene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Benzo[b]fluoranthene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Benzo[k]fluoranthene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Benzo[a]pyrene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Indeno[1,2,3-cd]pyrene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Dibenz(a,h)anthracene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1
Benzo[g,h,i]perylene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:08	1

\%Recovery	Qualifier		Limits		
		$44-121$			
72					
77				\quad	$44-120$
:---					
$51-121$					

Prepared	Analyzed		Dil Fac
	01/22/20 13:47	$01 / 22 / 20$	$16: 08$
01/22/20 13:47	$01 / 22 / 20$	$16: 08$	
01/22/20 13:47	$01 / 22 / 20$	$16: 08$	
			1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:39	1
PCB-1221	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:39	1
PCB-1232	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:39	1
PCB-1242	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:39	1
PCB-1248	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:39	1
PCB-1254	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:39	1
PCB-1260	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:39	1
PCB-1268	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:39	1
PCB-1262	ND		0.097		ug/L		01/28/20 11:59	01/28/20 18:39	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	75		20-120	01/28/20 11:59	01/28/20 18:39	1
DCB Decachlorobiphenyl (Surr)	78		32-123	01/28/20 11:59	01/28/20 18:39	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.24	0.11	mg/L		01/22/20 12:48	01/22/20 15:14	1
Residual Range Organics (RRO)	ND		0.40	0.12	mg/L		01/22/20 12:48	01/22/20 15:14	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	84		50-150
n-Triacontane-d62	91		50-150

Prepared	Analyzed		Dil Fac
$01 / 22 / 20$	$12: 48$	$01 / 22 / 20$	$15: 14$
01/22/20 12:48	$01 / 22 / 20$	$15: 14$	
			1

Date Received: 01/17/20 08:20

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
2-Methylnaphthalene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
1-Methylnaphthalene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Acenaphthylene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Acenaphthene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Fluorene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Phenanthrene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Anthracene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Fluoranthene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Pyrene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Benzo[a]anthracene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Chrysene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Benzo[b]fluoranthene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Benzo[k]fluoranthene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Benzo[a]pyrene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Indeno[1,2,3-cd]pyrene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Dibenz(a,h)anthracene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1
Benzo[g,h,i]perylene	ND		0.086		ug/L		01/22/20 13:47	01/22/20 16:31	1

\%Recovery	Qualifier		Limits
		$44-121$ 73 76	$44-120$ $51-121$

Prepared	Analyzed	Dil Fac
01/22/20 13:47	01/22/20 16:31	
01/22/20 13:47	01/22/20 16:31	
01/22/20 13:47	01/22/20 16:31	

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.095		ug/L		01/28/20 11:59	01/28/20 19:00	1
PCB-1221	ND		0.095		ug/L		01/28/20 11:59	01/28/20 19:00	1
PCB-1232	ND		0.095		ug/L		01/28/20 11:59	01/28/20 19:00	1
PCB-1242	ND		0.095		ug/L		01/28/20 11:59	01/28/20 19:00	1
PCB-1248	ND		0.095		ug/L		01/28/20 11:59	01/28/20 19:00	1
PCB-1254	ND		0.095		ug/L		01/28/20 11:59	01/28/20 19:00	1
PCB-1260	ND		0.095		ug/L		01/28/20 11:59	01/28/20 19:00	1
PCB-1268	ND		0.095		ug/L		01/28/20 11:59	01/28/20 19:00	1
PCB-1262	ND		0.095		ug/L		01/28/20 11:59	01/28/20 19:00	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	66		20-120	01/28/20 11:59	01/28/20 19:00	1
DCB Decachlorobiphenyl (Surr)	75		32-123	01/28/20 11:59	01/28/20 19:00	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.23	0.11	mg/L		01/22/20 12:48	01/22/20 15:37	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.39	0.12	mg/L		01/22/20 12:48	01/22/20 15:37	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	82		50-150
n-Triacontane-d62	89		50-150

Prepared	Analyzed	Dil Fac
01/22/20 12:48	01/22/20 15:37	1
01/22/20 12:48	01/22/20 15:37	1

Date Received: 01/17/20 08:20

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
2-Methylnaphthalene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
1-Methylnaphthalene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Acenaphthylene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Acenaphthene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Fluorene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Phenanthrene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Anthracene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Fluoranthene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Pyrene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Benzo[a]anthracene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Chrysene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Benzo[b]fluoranthene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Benzo[k]fluoranthene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Benzo[a]pyrene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Indeno[1,2,3-cd]pyrene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Dibenz(a,h)anthracene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1
Benzo[g,h,i]perylene	ND		0.088		ug/L		01/22/20 13:47	01/22/20 16:54	1

\%Recovery	Qualifier	
		Limits
82		$44-121$
86		

Prepared	Analyzed	Dil Fac
01/22/20 13:47	01/22/20 16:54	1
01/22/20 13:47	01/22/20 16:54	1
01/22/20 13:47	01/22/20 16:54	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:21	1
PCB-1221	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:21	1
PCB-1232	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:21	1
PCB-1242	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:21	1
PCB-1248	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:21	1
PCB-1254	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:21	1
PCB-1260	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:21	1
PCB-1268	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:21	1
PCB-1262	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:21	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	72		20-120	01/28/20 11:59	01/28/20 19:21	1
DCB Decachlorobiphenyl (Surr)	82		32-123	01/28/20 11:59	01/28/20 19:21	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.24	0.11	mg/L		01/22/20 12:48	01/22/20 16:00	1
Residual Range Organics (RRO)	ND		0.40	0.12	mg/L		01/22/20 12:48	01/22/20 16:00	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	84		50-150
n-Triacontane-d62	92		50-150

Prepared	Analyzed	Dil Fac
01/22/20 12:48	01/22/20 16:00	1
01/22/20 12:48	01/22/20 16:00	1

Date Received: 01/17/20 08:20
Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
2-Methylnaphthalene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
1-Methylnaphthalene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Acenaphthylene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Acenaphthene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Fluorene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Phenanthrene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Anthracene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Fluoranthene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Pyrene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Benzo[a]anthracene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Chrysene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Benzo[b]fluoranthene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Benzo[k]fluoranthene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Benzo[a]pyrene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Indeno[1,2,3-cd]pyrene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Dibenz(a,h)anthracene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1
Benzo[g,h,i]perylene	ND		0.089		ug/L		01/22/20 13:47	01/22/20 17:17	1

Surrogate	\%Recovery	Qualifier	Limits
Nitrobenzene-d5	74		44-121
2-Fluorobiphenyl (Surr)	75		44-120
p-Terphenyl-d14	78		51-121

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:42	1
PCB-1221	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:42	1
PCB-1232	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:42	1
PCB-1242	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:42	1
PCB-1248	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:42	1
PCB-1254	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:42	1
PCB-1260	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:42	1
PCB-1268	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:42	1
PCB-1262	ND		0.10		ug/L		01/28/20 11:59	01/28/20 19:42	1

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	69		20-120	01/28/20 11:59	01/28/20 19:42	1
DCB Decachlorobiphenyl (Surr)	77		32-123	01/28/20 11:59	01/28/20 19:42	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.24	0.11	mg/L		01/22/20 12:48	01/22/20 16:23	1
Residual Range Organics (RRO)	ND		0.39	0.12	mg/L		01/22/20 12:48	01/22/20 16:23	1

(C25-C36)

Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	80		50-150
n-Triacontane-d62	88		50-150

Prepared	Analyzed	Dil Fac
01/22/20 12:48	01/22/20 16:23	1
01/22/20 12:48	01/22/20 16:23	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-26080/1-A
Matrix: Water
Analysis Batch: 26083

Analyte	$\begin{array}{r} \text { MB } \\ \text { Result } \end{array}$	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
2-Methylnaphthalene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
1-Methylnaphthalene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Acenaphthylene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Acenaphthene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Fluorene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Phenanthrene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Anthracene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Fluoranthene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Pyrene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Benzo[a]anthracene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Chrysene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Benzo[b]fluoranthene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Benzo[k]fluoranthene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Benzo[a]pyrene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Indeno[1,2,3-cd]pyrene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Dibenz(a,h)anthracene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1
Benzo[g,h,i]perylene	ND		0.090		ug/L		01/22/20 13:47	01/22/20 14:36	1

Prepared	Analyzed	Dil Fac
01/22/20 13:47	01/22/20 14:36	1
01/22/20 13:47	01/22/20 14:36	1
01/22/20 13:47	01/22/20 14:36	1

Lab Sample ID: LCS 590-26080/2-A

Matrix: Water

Analysis Batch: 26083

Analysis Batch: 26083 Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Naphthalene	1.60	1.26		ug/L		79	52-120
2-Methylnaphthalene	1.60	1.29		ug/L		80	44-120
1-Methylnaphthalene	1.60	1.28		ug/L		80	49-120
Acenaphthylene	1.60	1.43		ug/L		89	57-120
Acenaphthene	1.60	1.39		ug/L		87	54-120
Fluorene	1.60	1.47		ug/L		92	59-120
Phenanthrene	1.60	1.52		ug/L		95	66-120
Anthracene	1.60	1.52		ug/L		95	59-120
Fluoranthene	1.60	1.57		ug/L		98	64-120
Pyrene	1.60	1.67		ug/L		104	61-120
Benzo[a]anthracene	1.60	1.62		ug/L		102	68-120
Chrysene	1.60	1.65		ug/L		103	69-120
Benzo[bjfluoranthene	1.60	1.72		ug/L		108	63-120
Benzo[k]fluoranthene	1.60	1.45		ug/L		91	67-120
Benzo[a]pyrene	1.60	1.49		ug/L		93	70-120
Indeno[1,2,3-cd] pyrene	1.60	1.53		ug/L		95	66-120
Dibenz(a,h)anthracene	1.60	1.49		ug/L		93	65-120
Benzo[g,h,i]perylene	1.60	1.51		ug/L		94	65-120

Client: GeoEngineers Inc

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

| Lab Sample ID: LCS 590-26080/2-A | | Client Sample ID: Lab Control Sample |
| :--- | ---: | :--- | :--- |
| Matrix: Water | | |
| Analysis Batch: 26083 | | |
| | LCS LCS | |
| Prep Type: Total/NA | | |
| Prep Batch: 26080 | | |

Lab Sample ID: LCSD 590-26080/3-A
Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 26080
Analysis Batch: 26083

Surrogate	LCSD \%Recovery	LCSD Qualifier	Limits
Nitrobenzene-d5	84		44-121
2-Fluorobiphenyl (Surr)	78		44-120
p-Terphenyl-d14	82		51-121

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 590-26130/1-A
Matrix: Water
Analysis Batch: 26131

Analyte	MB	MB							Dil Fac
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	
PCB-1016	ND		0.10		ug/L		01/28/20 11:58	01/28/20 17:15	1
PCB-1221	ND		0.10		ug/L		01/28/20 11:58	01/28/20 17:15	1
PCB-1232	ND		0.10		ug/L		01/28/20 11:58	01/28/20 17:15	1
PCB-1242	ND		0.10		ug/L		01/28/20 11:58	01/28/20 17:15	1
PCB-1248	ND		0.10		ug/L		01/28/20 11:58	01/28/20 17:15	1
PCB-1254	ND		0.10		ug/L		01/28/20 11:58	01/28/20 17:15	1
PCB-1260	ND		0.10		ug/L		01/28/20 11:58	01/28/20 17:15	1
PCB-1268	ND		0.10		ug/L		01/28/20 11:58	01/28/20 17:15	1

Client: GeoEngineers Inc
Job ID: 590-12595-1
Project/Site: Avista-Spokane Service Ctr/2522-079-03
Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCSD 590-26130/3-A Client Sample ID: Lab Control Sample Dup
Matrix: Water Prep Type: Total/NA
Analysis Batch: 26131

	Spike	LCSD	LCSD				\%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	\%Rec	Limits	RPD	Limit
PCB-1016	1.60	1.59		ug/L		99	51-120	11	26
PCB-1260	1.60	1.30		ug/L		81	42-120	2	21

Surrogate	\%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	60		20-120
DCB Decachlorobiphenyl (Surr)	88		32-123

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-26078/1-A
Matrix: Water
Analysis Batch: 26063

Analyte	$\begin{array}{r} \text { MB } \\ \text { Docult } \end{array}$ Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.24	0.11	mg/L		01/22/20 12:48	01/22/20 13:41	1
Residual Range Organics (RRO) (C25-C36)	ND		0.40	0.12	mg/L		01/22/20 12:48	01/22/20 13:41	1
Surrogate	MB \%Recovery	MB Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	84		50-150				01/22/20 12:48	01/22/20 13:41	1
n-Triacontane-d62	95		50-150				01/22/20 12:48	01/22/20 13:41	1

	LCS LCS		
Surrogate	\%Recovery	Qualifier	Limits
o-Terphenyl	94		50-150
n-Triacontane-d62	95		50-150

Lab Sample ID: LCSD 590-26078/3-A Client Sample ID: Lab Control Sample Dup
Matrix: Water
Analysis Batch: 26063

Analysis Batch: 26063	Spike Added	$\begin{aligned} & \text { LCSD } \\ & \text { Result } \end{aligned}$	LCSD		D		Prep Batch: 26			
						\%Rec.		RPD		
Analyte			Qualifier	Unit		\%Rec	Limits	RPD	Limit	
Diesel Range Organics (DRO) (C10-C25)	1.60	1.32		mg/L			82	50-150	0	25
Residual Range Organics (RRO)	1.60	1.61		mg/L		101	50-150	2	25	(C25-C36)

LCSD LCSD

Surrogate	LCSD	LCSD	
	\%Recovery	Qualifier	Limits
o-Terphenyl	92		50-150
n-Triacontane-d62	93		50-150

Lab Chronicle

Client: GeoEngineers Inc

Client Sample ID: MW-1A:01162020
Lab Sample ID: 590-12595-1
Date Collected: 01/16/20 12:00
Matrix: Water
Date Received: 01/17/20 08:20

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			264.2 mL	2 mL	26080	01/22/20 13:47	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			26083	01/22/20 15:45	NMI	TAL SPK
Total/NA	Prep	3510C			258.3 mL	2 mL	26130	01/28/20 11:59	AMB	TAL SPK
Total/NA	Analysis	8082A		1			26131	01/28/20 18:18	NMI	TAL SPK
Total/NA	Prep	3510C			242 mL	2 mL	26078	01/22/20 12:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			26063	01/22/20 14:51	NMI	TAL SPK

Client Sample ID: MW-2:01162020
Lab Sample ID: 590-12595-2 Matrix: Water
Date Collected: 01/16/20 14:40
Date Received: 01/17/20 08:20

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			255.8 mL	2 mL	26080	01/22/20 13:47	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			26083	01/22/20 16:08	NMI	TAL SPK
Total/NA	Prep	3510C			258.8 mL	2 mL	26130	01/28/20 11:59	AMB	TAL SPK
Total/NA	Analysis	8082A		1			26131	01/28/20 18:39	NMI	TAL SPK
Total/NA	Prep	3510C			250.9 mL	2 mL	26078	01/22/20 12:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			26063	01/22/20 15:14	NMI	TAL SPK

Client Sample ID: MW-3:01162020 Lab Sample ID: 590-12595-3
Date Collected: 01/16/20 12:58 Matrix: Water
Date Received: 01/17/20 08:20

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			261.1 mL	2 mL	26080	01/22/20 13:47	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			26083	01/22/20 16:31	NMI	TAL SPK
Total/NA	Prep	3510C			263.2 mL	2 mL	26130	01/28/20 11:59	AMB	TAL SPK
Total/NA	Analysis	8082A		1			26131	01/28/20 19:00	NMI	TAL SPK
Total/NA	Prep	3510C			257.1 mL	2 mL	26078	01/22/20 12:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			26063	01/22/20 15:37	NMI	TAL SPK

Client Sample ID: MW-4:01162020
Lab Sample ID: 590-12595-4
Date Collected: 01/16/20 13:45
Matrix: Water
Date Received: 01/17/20 08:20

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			255.5 mL	2 mL	26080	01/22/20 13:47	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			26083	01/22/20 16:54	NMI	TAL SPK
Total/NA	Prep	3510C			247.2 mL	2 mL	26130	01/28/20 11:59	AMB	TAL SPK
Total/NA	Analysis	8082A		1			26131	01/28/20 19:21	NMI	TAL SPK
Total/NA	Prep	3510C			248.9 mL	2 mL	26078	01/22/20 12:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			26063	01/22/20 16:00	NMI	TAL SPK

Client Sample ID: MW-5B:01162020	Lab Sample ID: 590-12595-5
Date Collected: 01/16/20 15:35	Matrix: Water

Date Collected: 01/16/20 15:35 Matrix: Water
Date Received: 01/17/20 08:20

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			253.9 mL	2 mL	26080	01/22/20 13:47	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			26083	01/22/20 17:17	NMI	TAL SPK
Total/NA	Prep	3510C			242.6 mL	2 mL	26130	01/28/20 11:59	AMB	TAL SPK
Total/NA	Analysis	8082A		1			26131	01/28/20 19:42	NMI	TAL SPK
Total/NA	Prep	3510C			254.2 mL	2 mL	26078	01/22/20 12:48	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			26063	01/22/20 16:23	NMI	TAL SPK

Laboratory References:
TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number
Washington		Expiration Date $01-06-21$

Method Summary

Method	Method Description	Protocol	Laboratory
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL SPK

[^2]
Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

CHAIN OF CUSTODY REPORT
invoice to:
Sane

Work Order \#:

TAL-1000 (07|4)

Login Sample Receipt Checklist

Login Number: 12595
List Source: Eurofins TestAmerica, Spokane
List Number: 1
Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Not present
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Appendix D Spokane Environmental Solutions Documentation

3810 East Boone Avenue, Suite 101
Spokane, Washington 99202
Phone (509) 688-5376

Invoice Date:	January 16, 2020
Customer:	GeoEngineers, Inc.
	523 East Second Avenue
	Spokane, WA 99202
Job Description:	Avista Service Center Garage Liner Excavation for Repairs
Job Location:	1411 East Mission Avenue, Spokane, WA

Job Date (s): \qquad

QUANTITY	DESCRIPTION	UOM	UNIT PRICE	EXTENDED PRICE
1	Labor \& Equipment	Lot	\$ 8,990.00	\$ 8,990.00
1	Equipment	Lot	\$	\$
1	Materials	Lot	\$ 435.00	\$ 435.00
1	Outside Services	Lot	\$ 8,316.00	\$ 8,316.00
THANK YOU FOR YOUR BUSINESS				\$ 17,741.00
			SALES TAX 8.9\%	\$1,578.95
			TOTAL INVOICE	\$19,319.95
			Jeff Heeter	Currency: USD

FED ID \#: 82-1501120
WA CCB \#SPOKAES832LR
ID CCB \#RCE-46695

A 1.5\% per month finance charge will be assessed for all past due invoices.

WWSS ASSOCIATES, INC
BIG SKY INDUSTRIAL
9711 W EUCLID ROAD
SPOKANE, WA 99224
509-624-4949
Invoice Number: 200104
Invoice Date: 1/7/2020
PO number: JEFF
Terms: Net 30

Bill To:
SPOKANE ENVIRONMENTAL SOLUTIONS, LLC SUZANNE@SPOKANEENVIRONMENTAL.COM SPOKANE, WA 99202

Due Date: 2/6/2020
Customer ID: 1592

Ship To:
SPOKANE ENVIRONMENTAL SOLUTIONS, LLC 3810 EAST BOONE AVE, SUITE 101
SPOKANE, WA 99202

Item ID	Description	Qty	UOM	Price
SEWER JET	VACUUM AVISTA LINER	4	hour	115.00
SUPPORT EQUIPMENT		1	lot	460.00
LABOR	7.5 hour	100.00		
MATERIALS	1 lot	37.50	281.25	

1,131.25

SERVICE REPORT

name: Spokane Emuiromment \%:

STREET

CITY
STATE \qquad ZIP
job description: Vac off Aust Linavien

DATE: $\quad 1-7-2020$
PRO. \#
Jeff
DEPT.\#
SEQUENCE \#
135096

P.O. Box 550
 Newman Lake, WA 99025

DATE	INVOICE NO.
$1 / 10 / 2020$	37683

BILL TO

Spokane Environmental Solutions
3810 E Boone, Ste 101
Spokane, WA 99202

Spokane
4625 E Trent Ave Spokane, WA 99212
509.536.1520

INVOICE
NO.: IN001197463
AGREEMENT NO: RC000120230
INVOICE AMOUNT: \$526.53
INVOICE DATE: 1/14/2020
INVOICE DUE DATE: 2/13/2020
CUSTOMER: 0015184
CUSTOMER PO:
CONTRACT START: 1/9/2020
START DATE: 1/9/2020
END DATE: 1/10/2020

JOBSITE:
1411 E MISSION AVISTA CORP OFFICE
1411 E Mission Ave
Spokane, WA 99252-2600
Spokane Environmental Solutions, LLC
3810 E Boone Ave
Suite \#101
Spokane, WA 99202-4561

JOBSITE CONTACT:

PHONE: 509-279-5559
ORDERED BY: Jeff Heeter
WRITTEN BY: David M Creamer
AMOUNT
$\$ 350.00$ AMOUNT

MISCELLANEOUS ITEMS	
1	Environmental Fee

1 CRS Truck Delivery $\$ 65.00$
1 CRS Truck Pickup $\$ 65.00$

PLEASE REMIT PAYMENT TO:

WESTERN STATES EQUIPMENT CO.
PO BOX 3805
Seattle, WA 98124-3805

Spokane
4625 E Trent Ave Spokane, WA 99212
509.536.1520
invoice
NO.: IN001197558
AGREEMENT NO: RC000119916
INVOICE AMOUNT: \$3,296.40
INVOICE DATE: 1/14/2020
INVOICE DUE DATE: 2/13/2020
CUSTOMER: 0015184
CUSTOMER PO:
CONTRACT START: 1/6/2020
START DATE: 1/6/2020
END DATE: 1/10/2020

```JOBSITE: 1411 E MISSION AVISTA CORP OFFICE 1411 E Mission Ave```			JOBSITE CONTACT:	
Spokane, WA 99252-2600			PHONE: 509-279-5559	
			ORDERED BY: Jeff Heeter	
			WRITTEN BY: David M Creamer	
QTY	DESCRIPTION			AMOUNT
1	ID NO: E0047822 SERIAL NO: FTL23299 Hours out: 410.1	Hours in: 423.5		\$1,100.00
	259D Multi Terrain Loader			
1	ID NO: E0032214 SERIAL NO: A4181BK20041			\$0.00
	72" GP BKT . 57 CYD SSL			
1	ID NO: E0029061 SERIAL NO: KC900869 Hours out: 1326	Hours in: 1335		\$1,600.00
	307E2 Track Excavator			
1	ID NO: E0026023 SERIAL NO: B0677020			\$0.00
	47" GD BKT .34YD3 304-306			
1	ID NO: E0049763 SERIAL NO: A418BBK22497			\$0.00
	36" HD BKT .51CYD 307-308 D/E			


MISCELLANEOUS ITEMS	AMOUNT	
21	Diesel Per Gallon	$\$ 105.00$
2	Environmental Fee	$\$ 27.00$
1	CRS Truck Delivery	$\$ 65.00$
1	CRS Truck Pickup	$\$ 65.00$
13	Diesel Per Gallon	$\$ 65.00$

## PLEASE REMIT PAYMENT TO:

WESTERN STATES EQUIPMENT CO.
PO BOX 3805
Seattle, WA 98124-3805

## APPENDIX E Report Limitations and Guidelines for Use

## APPENDIX E

## REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

## Environmental Services Are Performed for Specific Purposes, Persons and Projects

GeoEngineers has performed this liner repair and groundwater monitoring report for the Avista - Service Center Garage site in Spokane, Washington in general accordance with the proposal dated December 17, 2019. This report has been prepared for the exclusive use of Avista. This report is not intended for use by others and the information contained herein is not applicable to other properties.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment (ESA) study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and property. No one except Avista should rely on this environmental report without first conferring with GeoEngineers. Use of this report is not recommended for any purpose or project except the one originally contemplated.

## This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Avista - Service Center Garage site in Spokane, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, it is important not to rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made to the project or property after the date of this report, we recommend that GeoEngineers be given the opportunity to review our interpretations and recommendations. Based on that review, we can provide written modifications or confirmation, as appropriate.

## Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of Avista. No other party may rely on the product of our services unless we agree to such reliance in advance and in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services
have been executed in accordance with our Agreement with Avista and generally accepted environmental practices in this area at the time this report was prepared.

## Environmental Regulations Are Always Evolving

Some substances may be present in the vicinity of the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substances, change or if more stringent environmental standards are developed in the future.

## Uncertainty May Remain Even After This Phase II ESA is Completed

Performance of a Phase II ESA is intended to reduce uncertainty regarding the potential for contamination in connection with a property, but no ESA can wholly eliminate that uncertainty. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

## Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the subject property, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Please contact GeoEngineers before applying this report for its intended purpose so that GeoEngineers may evaluate whether changed conditions affect the continued applicability of the report.

## Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other properties or for other on-site uses of the affected soil and/or groundwater. Note that hazardous substances may be present in some of the on-site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject property or reuse of the affected soil or groundwater on-site to evaluate the potential for associated environmental liabilities. We are unable to assume responsibility for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject property to another location or its reuse on-site in instances that we did not know or could not control.

## Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the subject property. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an informed opinion about subsurface conditions throughout the property. Actual subsurface conditions may differ,
sometimes significantly, from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

## Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproduction is acceptable, but separating logs from the report can create a risk of misinterpretation.

## Read These Provisions Closely

It is important to recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are less exact than other engineering and natural science disciplines. Without this understanding, there may be expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you need to know more about how these "Report Limitations and Guidelines for Use" apply to your project or property.

## Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.

GeoEngineers


[^0]:    Protocol References:
    NWTPH = Northwest Total Petroleum Hydrocarbon
    SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates

[^1]:    Protocol References:
    NWTPH = Northwest Total Petroleum Hydrocarbon
    SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates

[^2]:    Protocol References:
    NWTPH = Northwest Total Petroleum Hydrocarbon
    SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates

