APPENDIX F MIDDOUR CONSUTLING LLC GROUNDWATER CONTROL DESIGN

INTERIM ACTION WORK PLAN
Block 38 West Property
500 through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019

Groundwater Control Plan Block 38 Seattle, Washington

October 17, 2018

Prepared for

GLY Construction 200 112th Avenue NE, Ste. 300 Bellevue, WA 98004

14241 NE Woodinville Duvall Rd, PMB 226 Woodinville, WA 98072 (425) 864-2719

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	1
SITE AND PROJECT DESCRIPTION	1
SOIL AND GROUNDWATER CONDITIONS	1
CONCEPTUAL GROUNDWATER CONTROL APPROACH	3
DEWATERING SYSTEM DESIGN CALCULATIONS Drawdown Analysis	3 4
DEWATERING SYSTEM CONSTRUCTION RECOMMENDATIONS General System Requirements	5 6
LIMITATIONS	7

LIST OF TABLES

<u>Table</u>1 Well Location and Elevation Data

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>
1	Dewatering System Layout
2	Excavation Drawdown Profiles
3	Drawdown vs. Distance Profile
4	Dewatering System Construction Details

INTRODUCTION

This report presents our Groundwater Control Plan and recommendations for the Block 38 project in Seattle Washington. GLY Construction (GLY) is the general contractor for the project and we understand the shoring, and dewatering services will be performed by subcontractors. We understand that temporary construction dewatering will be required to successfully install the shoring system and complete foundation construction. Our understanding of the excavation and shoring methods is based on conversations with GLY.

SITE AND PROJECT DESCRIPTION

The project site is located south of Lake Union on city block 38 which is bound by Mercer Street to the north, an alley to the east, Republican Street to the south, and Westlake Avenue North to the west. Buildings previously occupied portions of the site but will be demolished prior to construction. As with most urban projects, buried utilities are located in the streets that border the project site. The existing ground surface of the site slopes from about elevation 40 feet in the south end to about elevation 31 feet in the north end.

The Block 38 project consists of a multi-story building over a four level below-grade parking structure. The excavation for the parking structure will extend about 39 to 49 feet below existing grade and will be retained using solider pile and lagging shoring methods in conjunction with four rows of tiebacks. The bottom of footing for the majority of the foundation is elevation -8.0 feet though the elevator cores will likely extend a few feet below the mass excavation subgrade.

The geotechnical and hydrogeological information for the project was provided in the October 17, 2018 Geotechnical Engineering Services report prepared by GeoEngineers. Temporary shoring plans for the excavation were prepared by Ground Support LLC. We understand the excavation is scheduled to begin in the 2018/2019 winter and continuous construction dewatering will be required until sufficient structural weight of the building is constructed.

SOIL AND GROUNDWATER CONDITIONS

The geotechnical report provides a discussion of the site soil and groundwater conditions as determined from thirteen soil borings advanced 10 to 63 feet below existing grade and several soil borings from other surrounding geotechnical investigations. The soils at the site generally consist of fill, wood

waste, peat/organic silt, recent granular and fine-grained deposits, and glacially consolidated granular soils.

The fill soils are about 5 to 20 feet thick which includes the wood waste deposits. The fill soils consist of loose to very dense silty sand that contains gravel, cobbles and boulders and the wood waste contains wood debris to wood chips. The peat and organic silt deposits are up to 8 feet thick and typically occur below the fill soils and wood waste except for discrete locations where they are absent. The recent deposits are 3 to 17 feet thick and consist of loose to dense sand with varying silt content and soft to medium stiff silt. Underlying the recent deposits, glacially consolidated soils were encountered and consisted predominately of cohesionless sand with varying amounts of gravel and silt though layers of silt were encountered in some of the soil borings. The silt content of the cohesionless sand varies across the site but general consists of silty sand (SM) and sand with silt (SP-SM) to the explored depths. The glacially consolidated silt layers were not encountered in all of the soil borings as such the layers are discontinuous but typically were encountered between elevation 0 and -15 feet.

Groundwater levels measured in observation wells with screen intervals constructed in the recent deposits indicate the groundwater elevation was about 18 to 19 feet in August 2018 whereas observation wells with screen intervals constructed in the glacially consolidated soils indicate the groundwater elevation was 16 feet in August 2018. Based on the soils encountered in the soil borings, the deeper glacially consolidated soils may be partially confined by the overlying fine-grained soils and/or the higher water level in the fine-grained soils may be due to a greater capillary fringe. GeoEngineers estimates the static water level in the area to be about elevation 20 feet prior to significant construction dewatering in the South Lake Union area. GeoEngineers recommends a design groundwater elevation of 20 feet should be used for design of the permanent below-grade walls and mat foundations.

The geotechnical investigation did not perform any on site testing to characterize the hydraulic properties of the aquifer underlying the site nor were any gradation tests performed to estimate the hydraulic conductivity. Middour Consulting performed a pumping test for the Block 44 project which was located on the west side of Westlake Avenue North. The pumping test was performed in dewatering well located on the south side of the site on the sidewalk along Republican Street; the dewatering well was screened in the glacially consolidated granular soils. Analysis of the drawdown data using the Jacobs Method estimates the transmissivity to be 2.1 ft²/min and 1.6x10⁻⁵ for storativity which is unitless. The storativity value derived from the pumping test is reflective of a confined aquifer response. Analysis of the recovery data using the Theis Recovery Method estimates the transmissivity to be 1.8 ft²/min.

CONCEPTUAL GROUNDWATER CONTROL APPROACH

As described in the geotechnical report and briefly summarized above, the proposed excavation will encounter saturated soils at about elevation 18 to 19 feet. The majority of the saturated soils above elevation 0 feet on the east side of the site and above elevation 5 feet on the west side are fine-grained silt/clay, peat, organic silt, and wood waste. These soil types do not readily yield groundwater and generally the cost associated with implementing active groundwater control measures doesn't justify the minimal decrease in moisture content; the "dewatered" soils which are nearly saturated still require additional costs to excavate and haul off site. Unless the project team would like to explore groundwater control options for these soils, the GWCP assumes these soils will be excavated at the natural moisture content though some drainage may occur by dewatering the aquifer beneath these soils.

Based on the relatively coarse nature and thickness of the glacially consolidated aquifer as well as the successful performance of several dewatering systems in the area, groundwater control can be accomplished by a system of large diameter dewatering wells installed around the perimeter of the excavation. However, some of the soil borings encountered silt layers between elevation 0 and -15 feet which will remain saturated and/or perch groundwater above these soils. If the fine-grained soil layers are laterally continuous or encompass a significant area, additional wells and/or sump pumping may be required to control the perched groundwater if the layers are laterally extensive and exist above subgrade.

DEWATERING SYSTEM DESIGN CALCULATIONS

Dewatering system design calculations were performed to estimate potential discharge rates, the number of wells, and the spacing between wells required to lower the groundwater level two feet below subgrade. Dewatering calculations were performed using a computer spreadsheet model that accounts for well interference among multiple pumping wells and aquifer boundary conditions using the principle of superposition and image well theory. The spreadsheet model calculates the net drawdown from all pumping and image wells through a predetermined section of the aquifer by solving the Theis non-equilibrium equation for drawdown using the radius associated with each pumping and image well.

Soil and groundwater parameters used in the dewatering design calculations were derived from the project geotechnical report or were estimated from previous experience if not contained in the geotechnical report and are listed below:

- The aguifer is unconfined but locally it may be semi-confined to confined.
- Groundwater elevation is 16 feet for the glacially consolidated aquifer
- Aquifer thickness 40 feet
- Aquifer Transmissivity range 0.5 to 2.0 ft²/min
- Target dewatering elevation -10.0 feet; 2 feet below subgrade
- Specific yield is 0.15 (unitless)

Based on the transmissivity range, the spacing between wells could be up to 75 feet on-center but due to the presence of silt layers below elevation 0 feet, the well spacing was reduced to about 60 feet on-center. Design calculations using the soil and groundwater parameters listed above indicate eighteen dewatering wells installed at the locations shown on Figure 1 will lower groundwater levels down to the target dewatering elevation for the main excavation though additional groundwater control measures may be required to dewater perched water if the silt layers above subgrade are laterally extensive.

Based on the average transmissivity value of 1.5 ft²/min, the total discharge from the system of wells is estimated to be about 800 gpm after one week of operation and 540 gpm after one month of operation. The drawdown or cone of depression derived from the spreadsheet model is shown on Figure 2 which displays drawdown profiles parallel and perpendicular to the excavation.

DRAWDOWN ANALYSIS

Operation of the dewatering system will lower the piezometric level of the glacially consolidated aquifer and the drawdown may extend beneath subsurface and above ground structures and/or mobilize existing groundwater contaminate plumes. The drawdown profile shown on Figure 3 shows the lateral extent of drawdown projected from the west side of the excavation after one month of operation, assuming uniform aquifer conditions and properties. The spreadsheet model assumes homogeneous and isotropic subsurface conditions as such, the actual drawdown cone may deviate from our estimate depending on the actual subsurface properties. The cone of depression will continue to expand after one month of operation however, predicting the distance and amount of drawdown becomes increasingly difficult as the cone of depression encounters undocumented soils and aquifer conditions. Middour Consulting has not assessed the potential for dewatering induced settlement or mobilization of groundwater contaminate plumes nor has Middour Consulting implemented any engineering controls to

BLOCK 38 GWCP | Seattle, WA Project No. 18046002.01

limit the amount of drawdown. Middour Consulting's scope of work did not include these evaluations and Middour Consulting assumes no liability for impacts due to lowering of groundwater levels. We recommend geotechnical engineering and environmental disciplines review this plan to evaluate potential adverse effects due to lowering of groundwater levels.

DEWATERING SYSTEM CONSTRUCTION RECOMMENDATIONS

We recommend the dewatering/shoring subcontractor and/or GLY monitor the soldier pile installation to determine the presence/absence of silt layers elevation 0 and -8 feet and report this information to Middour Consulting. Should significant areas encounter a silt layer at a specific elevation, a vacuum wellpoint system or sump pumping will be required to remove perched groundwater that seeps through the shoring wall.

Dewatering Wells: Boreholes should be drilled using bucket auger drilling methods and should be 30- to 36-inch-diameter. *Drilling additives and/or slurry to maintain borehole wall stability shall not be used; maintaining a water head and/or casing the borehole are appropriate methods.* Well casings and screen should be 12-inch diameter Schedule 40 PVC. Based on the visual soil descriptions from the soil borings and previous experience in the area, well screens should consist of 30-slot screen size. For well screen lengths and bottom completion elevations refer to Table 1 and well construction details are provided on Figure 4.

We recommend that Middour Consulting monitor the initial drilling, well construction, and well development to verify site conditions. Subsequent wells should be logged and sampled by the driller. GLY or the dewatering subcontractor should notify Middour Consulting if subsurface conditions differ from those described in this report and/or those observed during drilling the first dewatering well. General locations of the dewatering wells are provided on Figure 1; more detailed locations are provided in Table 1.

Sand Pack: The available data indicate a dewatering well sand pack consisting of Cal Portland 8700 or equivalent should optimize retention of the formation and well yield. The gradation of the proposed sand pack is listed on the table in Figure 4. Well and seal construction should be consistent with WAC 173-160.

Development: Development is important to improve the hydraulic connection with the aquifer and provide a clean dewatering effluent with time. We recommend that each dewatering well be developed immediately upon completion. Development methods should utilize flow-surging and over-

BLOCK 38 GWCP | Seattle, WA Project No. 18046002.01 pumping until the discharge requirement is achieved. Development data should be documented to demonstrate that additional development would produce limited improvement.

Pumps: Pumps that are capable of operating in dry well conditions should be provided in each well. Initially pumps should be capable of providing up to 100 gpm under 70 feet of total dynamic head (TDH).

Header and Conveyance Piping: The main header and conveyance piping should be constructed using 12-inch-diameter PVC or HDPE pipe. The piping configuration should be located on the behind the dewater wells (i.e. away from the excavation) to minimize the potential for damage during excavation.

GENERAL SYSTEM REQUIREMENTS

Power Supply: A continuous main power supply from portable generators or line power is required for all dewatering systems. We recommend that a backup power source is available on site in the event of a power failure from the main power supply.

Observation Wells: GeoEngineers will provide the number and locations of the observation wells. We recommend the boreholes be drilled using air rotary or rotary wash drilling methods and should be a minimum 8-inch-diameter. Well casings and screen should be 2-inch diameter flush threaded Schedule 40 PVC. The well screen should be 20-slot with the screen interval from elevation -10 to -20 feet. The sand pack should consist of Cal Portland 8720 or equivalent.

System Performance and Water Level Monitoring: We recommend measuring water levels in the observation wells daily for a week prior to operating the dewatering system to establish baseline water levels. Groundwater levels in the dewatering wells and observation wells should be measured daily for the first week of operation and reported to Middour Consulting to assess the system performance. Drop tubes in the dewatering wells may be required to obtain accurate water levels if there is water cascading down the well screen.

Operation: The dewatering system should operate a minimum of two weeks prior to excavation below the static groundwater level. Visual observations of the discharge should be made several times a day during excavation, to monitor for increased turbidity levels. Middour Consulting should be contacted if the performance of the dewatering system changes significantly. This may include pumping rates that differ significantly from rates presented in this report, the occurrence of a sudden change in pumping rates or groundwater levels, or the occurrence of turbidity levels that exceed discharge limits.

BLOCK 38 GWCP | Seattle, WA Project No. 18046002.01

The dewatering system should be operated continuously until sufficient structural weight, as determined by the resident structural engineer, is constructed to counteract groundwater lateral and uplift forces.

Discharge Water Quality: Dewatering discharge will be routed to an onsite water quality treatment system; refer to the WaterTectonics submittal for more details.

Well Decommissioning: The dewatering wells should be decommissioned in accordance with WAC 173-160 upon completion of dewatering activities.

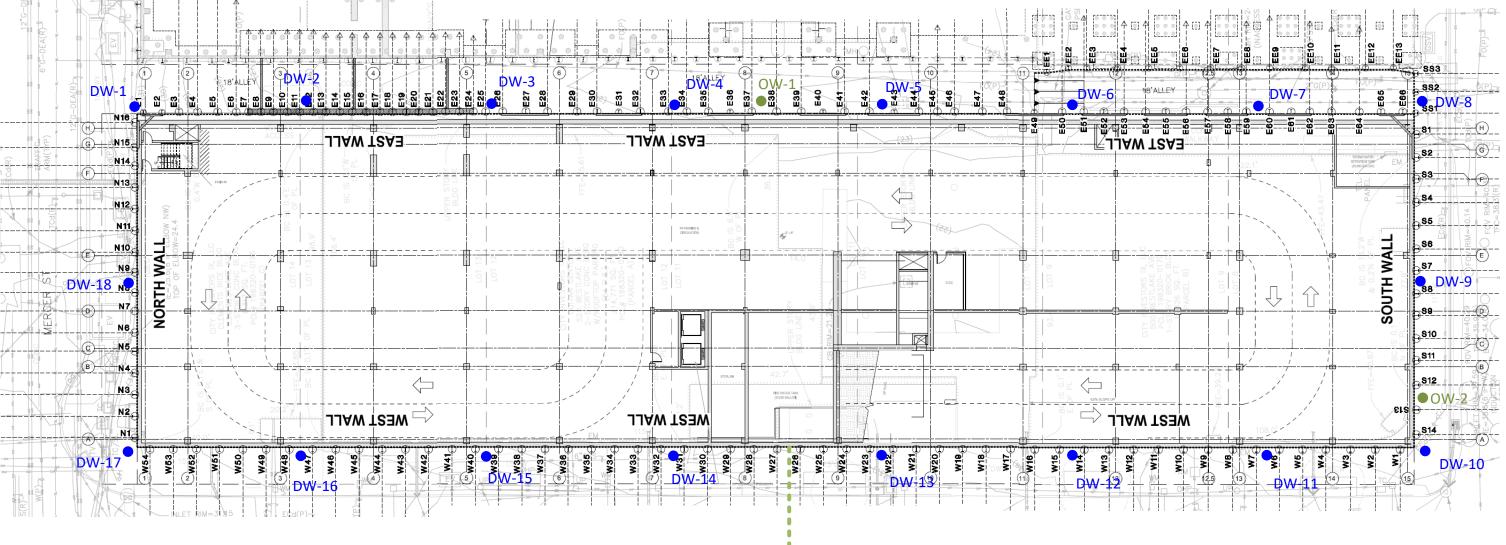
LIMITATIONS

This Groundwater Control Plan has been prepared for the exclusive use of GLY Construction for their proposed work on the Block 38 project in Seattle Washington. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Middour Consulting LLC. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Middour Consulting, shall be at the user's sole risk. Middour Consulting warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

MIDDOUR CONSULTING LLC

Mh son

Robert O. Middour, L.HG. Principal Hydrogeologist

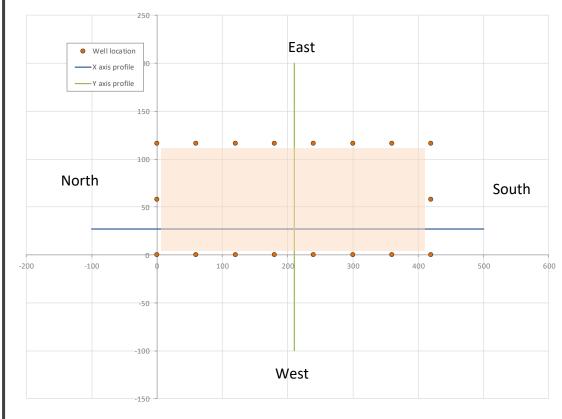

Hydrogeologist 819

ROBERT O. MIDDOUR

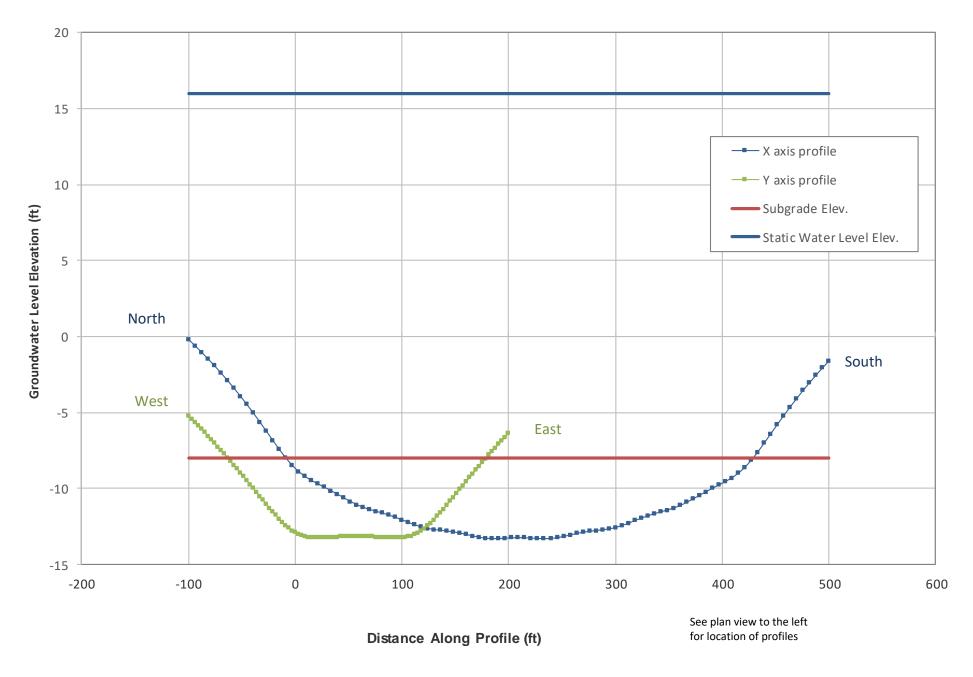
Well ID	Approximate Pile Location	Ground Surface Elevation (ft)	Bottom Well Elevation (ft)	Well Depth (ft)	Screen Length (ft)
DW-1	N16 / E1	31	-30	61	40
DW-2	E11 / E12	28	-30	58	40
DW-3	E25 / E26	25	-30	55	40
DW-4	E33 / E34	25	-30	55	40
DW-5	E42 / E43	25	-30	55	40
DW-6	E50 / E51	25	-30	55	40
DW-7	E59 / E60	25	-30	55	40
DW-8	SS1/SS2	41	-30	71	40
DW-9	S7 / S8	41	-30	71	40
DW-10	S14 / W1	40	-30	70	40
DW-11	W6/W7	40	-30	70	40
DW-12	W14 / W15	39	-30	69	40
DW-13	W22 / W23	38	-30	68	40
DW-14	W31 / W32	37	-30	67	40
DW-15	W39 / W40	36	-30	66	40
DW-16	W47 / W48	34	-30	64	40
DW-17	W54 / N1	32	-30	62	40
DW-18	N8/N9	31	-30	61	40

NOTES:

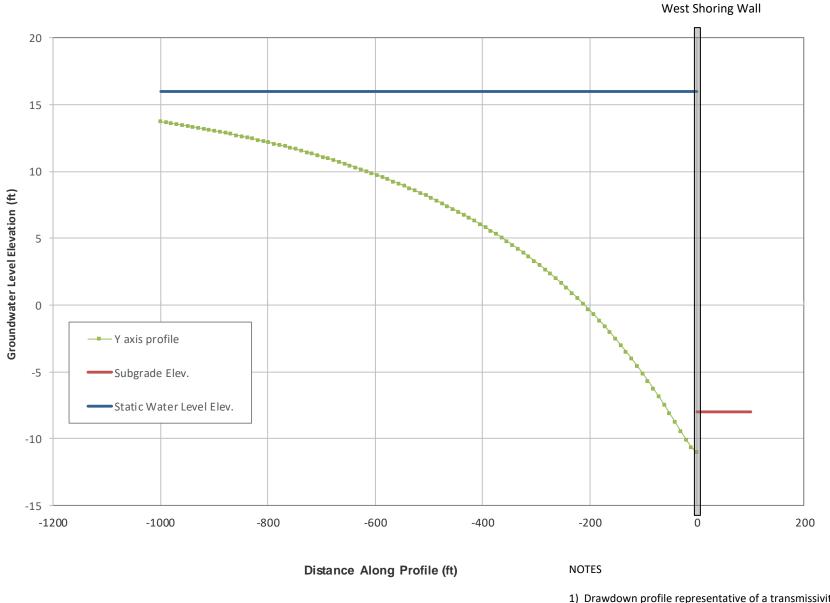
- 1) Locations of the dewatering wells are approximate, see Table 1 for exact locations (i.e. pile numbers). Locations can be moved to avoid conflicts with construction methods and/or utilities; new locations should be reviewed by Middour Consulting.
- 2) GeoEngineers to determine number and location of observation wells.
- 3) See Figure 4 for dewatering well construction details.

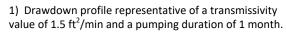


DEWATERING WELL LOCATIONS


FIGURE 1
Dewatering System Layout Plan

Plan View




NOTES

1) Drawdown profiles representative of a transmissivity value of 1.5 ft²/min and a pumping duration of 2 weeks.

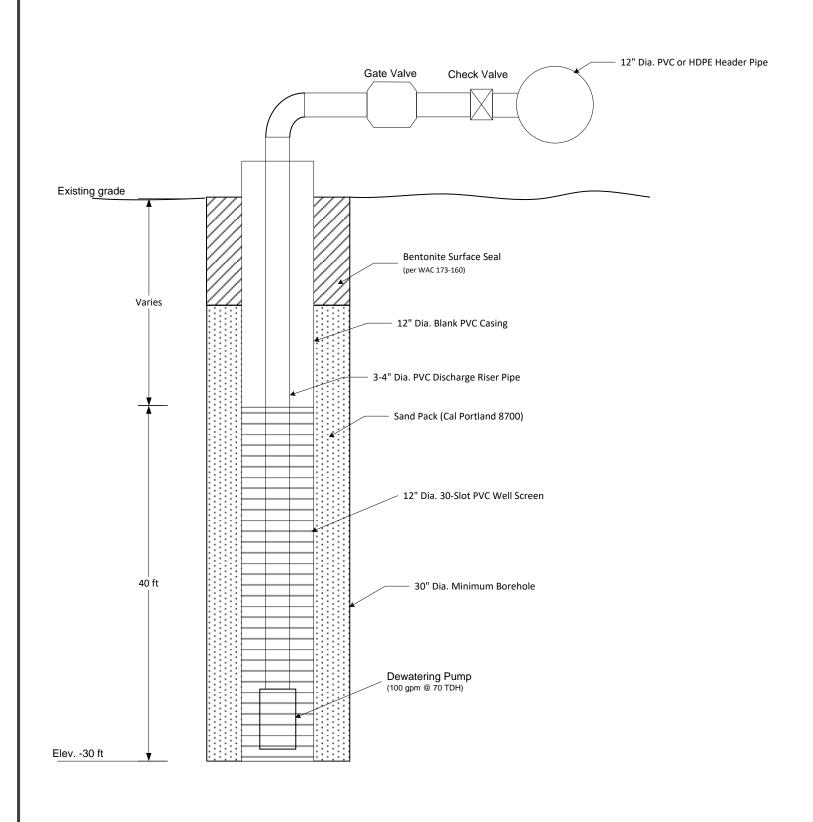


FIGURE 3 Drawdown vs Distance Profile

BLOCK 38 GWCP | Seattle, WA Project No. 18046002.01 | October 16, 2018

Not to Scale

NOTES:

Dewatering Wells: Boreholes should be drilled using bucket auger drilling methods and should be 30- to 36-inch-diameter. Drilling additives and/or slurry to maintain borehole wall stability shall not be used; maintaining a water head and/or casing the borehole are appropriate methods. Well casings and screen should be 12-inch diameter Schedule 40 PVC. Based on the visual soil descriptions from the soil borings and previous experience in the area, well screens should consist of 30-slot screen size. For well screen lengths and bottom completion elevations refer to Table 1. We recommend that Middour Consulting monitor the initial drilling, well construction, and well development to verify site conditions. Subsequent wells should be logged and sampled by the driller. GLY or the dewatering subcontractor should notify Middour Consulting if subsurface conditions differ from those described in this report and/or those observed during drilling the first dewatering well. General locations of the dewatering wells are provided on Figure 1; more detailed locations are provided in Table 1.

Sand Pack: The available data indicate a dewatering well gravel pack consisting of Cal Portland 8700 or equivalent shall optimize retention of the formation and well yield. The gradation of the proposed gravel pack is listed on the table below. Well and seal construction shall be consistent with WAC 173-160.

Development: Development is important to improve the hydraulic connection with the aquifer and provide a clean dewatering effluent with time. Each dewatering well shall be developed immediately upon completion. Development methods shall utilize flow-surging and over-pumping until the discharge requirement is achieved. Development data shall be documented to demonstrate that additional development would produce limited improvement.

Pumps: Pumps that are capable of operating in dry well conditions shall be provided in each well. Initially pumps shall be capable of providing up to 100 gpm under 70 feet of total dynamic head (TDH).

Header and Conveyance Piping: The main header and conveyance piping shall be constructed using 12-inch-diameter PVC or HDPE pipe. The piping configuration shall be located on the behind the dewater wells (i.e. away from the excavation) to minimize the potential for damage during excavation.

Power Supply: A continuous main power supply from portable generators or line power is required for all dewatering systems. We recommend that a backup power source is available on site in the event of a power failure from the main power supply.

Observation Wells: : GeoEngineers will provide the number and locations of the observation wells. We recommend the boreholes be drilled using air rotary or rotary wash drilling methods and should be a minimum 8-inch-diameter. Well casings and screen should be 2-inch diameter flush threaded Schedule 40 PVC. The well screen should be 20-slot with the screen interval from elevation -10 to -20 feet. The sand pack should consist of Cal Portland 8720 or equivalent.

System Performance and Water Level Monitoring: We recommend measuring water levels in the observation wells daily for a week prior to operating the dewatering system to establish baseline water levels. Groundwater levels in the dewatering wells and observation wells should be measured daily for the first week of operation and reported to Middour Consulting to assess the system performance. Drop tubes in the dewatering wells may be required to obtain accurate water levels if there is water cascading down the well screen.

Operation: The dewatering system should operate a minimum of two weeks prior to excavation below the static groundwater level. Visual observations of the discharge should be made several times a day during excavation, to monitor for increased turbidity levels. Middour Consulting should be contacted if the performance of the dewatering system changes significantly. This may include pumping rates that differ significantly from rates presented in this report, the occurrence of a sudden change in pumping rates or groundwater levels, or the occurrence of turbidity levels that exceed discharge limits. The dewatering system should be operated continuously until sufficient structural weight, as determined by the resident structural engineer, is constructed to counteract groundwater lateral and uplift forces.

Well Decommissioning: The dewatering wells should be decommissioned in accordance with WAC 173-160 upon completion of dewatering activities.

Sand Pack Gradations

Sive Size	Grain Size		Cal Portland (8700)		Cal Portland (8720)	
No.	(mm)	(thousandths)	% Finer	% Retained	% Finer	% Retained
3/8	9.51	374.4	100	0	100	0
No. 4	4.75	187.0	65	35	99	1
No. 8	2.38	93.7	4	96	79	21
No. 16	1.19	46.9	3	97	49	51
No. 30	0.595	23.4	1	99	23	77
No. 50	0.297	11.7	0.6	99.4	5	95
No. 100	0.149	5.9	0.4	99.6	0.8	99.2
No. 200	0.074	2.9	0.2	99.8	0.3	99.7

MIDDOUR CONSULTING LLC groundwater control for underground construction

APPENDIX G ENVIRONMENTAL MEDIA MANAGEMENT PLAN

INTERIM ACTION WORK PLAN
Block 38 West Property
500 through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019

Oakland | Folsom | Irvine

SUBSURFACE INVESTIGATION REPORT AND ENVIRONMENTAL MEDIA MANAGEMENT PLAN

BLOCK 38 WEST PROPERTY 500 THROUGH 536 WESTLAKE AVENUE NORTH SEATTLE, WASHINGTON

Submitted By: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 397-019

For:

City Investors IX LLC 505 5th Avenue South, Suite 900 Seattle, Washington 98104

December 28, 2018

Prepared by:

Thaddeus Cline, P.E., L.G., L.H.G. Principal Civil Engineer/Hydrogeologist

Reviewed by:

Clifford T. Schmitt, L.G., L.H.G. Principal Hydrogeologist

TABLE OF CONTENTS

ACR	ONYN	IS AND ABBREVIATIONS	iv
1.0	INTI	RODUCTION	1-1
	1.1	PURPOSE AND OBJECTIVES	1-1
	1.2	REPORT ORGANIZATION	1-2
2.0	BAC	KGROUND	2-1
	2.1	BLOCK 38 WEST DESCRIPTION	2-1
	2.2	BLOCK 38 WEST AND VICINITY LAND USES AND PRIOR	
		ENVIRONMENTAL ASSESSMENTS	2-1
	2.3	GEOLOGY AND HYDROGEOLOGY	2-3
	2.4	CONSTITUENTS AND MEDIA OF POTENTIAL CONCERN	2-5
3.0	SUB	SURFACE INVESTIGATIONS	3-1
	3.1	2014 SUBSURFACE INVESTIGATION	3-1
	3.2	2018 SUBSURFACE INVESTIGATION	
	3.3	ANALYTICAL RESULTS	
		3.3.1 Soil	3-5
		3.3.2 Groundwater	3-7
	3.4	SUSPECTED SOURCES OF CONTAMINATION	
	3.5	CONSTITUENTS AND MEDIA OF CONCERN	3-10
		3.5.1 Constituents of Concern	3-10
		3.5.2 Media of Concern	3-10
	3.6	BLOCK 38 HYDROGEOLOGY	3-10
	3.7	NATURE AND EXTENT OF CONTAMINATION	3-11
		3.7.1 Soil	3-11
		3.7.2 Groundwater	3-12
4.0	CON	STRUCTION EXCAVATION	4-1
	4.1	CLEANUP ACTION OBJECTIVES	4-1
	4.2	SCHEDULE AND RESTORATION TIME FRAME	4-1
	4.3	CONSTRUCTION MANAGEMENT	4-1
	4.4	ELEMENTS OF CLEANUP ACTION	4-2
		4.4.1 Site Preparation	4-3
		4.4.2 Dewatering and Wastewater Treatment and Discharge	
		4.4.3 Contaminated Soil Management	4-4
		4.4.4 Compliance Soil Monitoring	4-6
		4.4.5 Waterproof Concrete and Vapor Barrier Installation	4-8
	4.5	CLEANUP ACTION COMPLETION REPORT	
5.0	REF	ERENCES	5-1
6.0	LIM	ITATIONS	6-1

6.1 6.2	GENERAL LIMITATIONSLIMITATION ON RELIANCE BY THIRD PARTIES	
0.2	LIMITATION ON RELIANCE BY THIRD PARTIES	0-1
	FIGURES	
Figure 1	Vicinity Map	
Figure 2	Property Map	
Figure 3	Cross-Section A-A'	
Figure 4	Groundwater Analytical Results	
Figure 5	Groundwater Elevation Contours for August 30, 2018	
Figure 6	Soil Sample Analytical Results	
Figure 7	Estimated Excavation Areas, Elevations 26 to 20 Feet MSL	
Figure 8	Estimated Excavation Areas, Elevations 20 to 15 Feet MSL	
Figure 9	Estimated Excavation Areas, Elevations 15 to 10 Feet MSL	
Figure 10	Estimated Excavation Areas, Elevations 10 to 5 Feet MSL	
Figure 11	Estimated Excavation Areas, Elevations 5 to 0 Feet MSL	
Figure 12	Estimated Excavation Areas, Elevations 0 to -5 Feet MSL	
Figure 13	Estimated Excavation Areas, Elevations -5 to -10 Feet MSL	
	TABLES	
Table 1	Soil Analytical Results for TPH and BTEX	
Table 2	Soil Analytical Results for PAHs	
Table 3	Soil Analytical Results for Metals	
Table 4	Soil Analytical Results for Halogenated VOCs	
Table 5	Stabilized Groundwater Field Parameters	
Table 6	Groundwater Analytical Results for TPH and BTEX	
Table 7	Groundwater Analytical Results for PAHs	
Table 8	Groundwater Analytical Results for VOCs	
Table 9	Groundwater Elevations	
Table 10	Estimated Quantity of Impacted Soil	

APPENDICES

Appendix A Boring Logs and Well Completion Diagrams

Appendix B Laboratory Analytical Reports

Appendix C Category 1 Soil Analytical Data Tables

Appendix D Sampling and Analysis Plan

ACRONYMS AND ABBREVIATIONS

1998 EA Report Level I Environmental Site Assessment, Westlake Avenue Building, 534

Westlake Avenue North, Seattle, Washington dated March 25, 1998,

prepared by Terra Associates, Inc.

1999 EA Report letter regarding Preliminary Environmental Assessment Update, Westlake

Avenue Property (428, 500, 510, and 520 Westlake Avenue North), Seattle, Washington dated April 5, 1999, from Mr. Rob Roberts and Ms. Julie K.W. Wukelic of HartCrowser, Inc. to City Investors VII LLC c/o Mr. Joe

Delaney of Foster Pepper & Shefelman

2014 Subsurface

Investigation

subsurface investigation conducted at Block 38 West that commenced on

July 21, 2014

2018 Subsurface

Investigation

subsurface investigation conducted at Block 38 West that commenced on

August 20, 2018

bgs below ground surface

Block 38 East the eastern half of the block between Mercer Street to the north, Westlake

Avenue North to the west, Republican Street to the South, and a north-

south-trending alley bisecting the block to the east

Block 38 West the western half of the block between Mercer Street to the north, Westlake

Avenue North to the west, Republican Street to the South, and a north-

south-trending alley bisecting the block to the east

BTEX benzene, toluene, ethylbenzene, and xylenes

Building the new multi-story mixed-use building to be constructed on Block 38 West

City Investors City Investor IX LLC

Cleanup Action construction mass excavation with construction dewatering and disposal of

contaminated soil off Block 38 West

COCs constituents of concern

COPCs constituents of potential concern

cPAHs carcinogenic polycyclic aromatic hydrocarbons

CVOCs chlorinated volatile organic compounds

DRO total petroleum hydrocarbons as diesel-range organics

Ecology Washington State Department of Ecology

Ecology Guidance Guidance for Remediation of Petroleum Contaminated Sites dated June

2016, prepared by the Washington State Department of Ecology

EMMP Subsurface Investigation Report and Environmental Media Management

Plan, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington dated December 28, 2018, prepared by Farallon

Consulting, L.L.C. (this document)

EPA U.S. Environmental Protection Agency

Farallon Consulting, L.L.C.

GRO total petroleum hydrocarbons as gasoline-range organics

Lift Maps Environmental Media Management Plan Figures 7 through 13

mg/kg milligrams per kilogram

μg/l micrograms per liter

msl mean sea level

MTCA Washington State Model Toxics Control Act Cleanup Regulation

ORO total petroleum hydrocarbons as oil-range organics

PAHs polycyclic aromatic hydrocarbons

Republican Street

Drain

the 72-inch-diameter King County sewer main line in the Republican

Street right-of-way and its backfill

Subsurface

Investigations

the 2014 and 2018 Subsurface Investigations conducted at Block 38 West

SVOCs semivolatile organic compounds

total cPAHs TEC a toxic equivalent concentration using a method prescribed by MTCA

(WAC 173-340-708[e])

VOCs volatile organic compounds

WAC Washington Administrative Code

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Subsurface Investigation Report and Environmental Media Management Plan (EMMP) on behalf of City Investors IX LLC (City Investors) to support planning for redevelopment of the property at 500 through 536 Westlake Avenue North in the South Lake Union area of Seattle, Washington comprising the western half of the block between Mercer Street to the north, Westlake Avenue North to the west, Republican Street to the South, and a north-south–trending alley bisecting the block to the east, which is herein referred to as Block 38 West (Figures 1 and 2). The eastern half of the same block is referred to as Block 38 East; the whole block, including Blocks 38 West and 38 East, is referred to as Block 38. This EMMP summarizes results of subsurface investigations conducted to date at Block 38 West and presents a general plan for remediation of soil and groundwater impacted by prior releases of hazardous substances during planned redevelopment mass excavation at Block 38 West.

Redevelopment of Block 38 West is scheduled to begin in mid- to late 2019 and will entail construction of a multi-story mixed-use building (the Building) with a preliminary design for five stories above street level and four levels of parking below street level. The planned finish floor elevation of the lowest level of parking is 3.25 feet below mean sea level (North American Vertical Datum of 1988) (msl). Construction of the Building will require mass excavation across the entirety of Block 38 West. The excavation sidewalls will be retained using soldier pile and lagging shoring methods in conjunction with four rows of tiebacks. The bottom of footing elevation for the majority of the foundation will be about 8 feet below msl, or approximately 39 to 49 feet below existing grade throughout Block 38 West. Excavation for elevator cores likely will extend below the mass excavation subgrade (GeoEngineers, Inc. 2018; Middour Consulting LLC 2018).

Hazardous substances were detected in soil and groundwater samples collected from some locations at Block 38 West during subsurface investigations. Construction of the Building will require managing soil and groundwater impacted with hazardous substances. At some locations sampled during subsurface investigations at Block 38 West, hazardous substances were detected in soil or groundwater samples at concentrations exceeding Method A cleanup levels specified in the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), as established in Chapter 173-340 of the Washington Administrative Code (WAC 173-340). Cleanup of contaminated soil and groundwater will be conducted in conjunction with construction of the Building as an independent action in accordance with MTCA without direct oversight or approval by the Washington State Department of Ecology (Ecology).

1.1 PURPOSE AND OBJECTIVES

The purpose of this EMMP is to document results of subsurface investigations conducted to date at Block 38 West, and to provide general methodologies for testing, excavation, handling, and disposal of impacted soil (including soil exceeding applicable cleanup levels) as required by MTCA during redevelopment construction excavation.

1.2 REPORT ORGANIZATION

This EMMP has been organized into the following sections:

- Section 2, Background, provides a description of the property comprising Block 38 West, a summary of land uses and prior environmental assessments of Block 38 West and vicinity, and a description of constituents and media of potential concern at Block 38 West.
- Section 3, Subsurface Investigations, presents a summary of the methods and results of two subsurface investigations conducted by Farallon at Block 38 West.
- Section 4, Construction Excavation, provides a summary of the selected cleanup action, including remedial action objectives, schedule, and restoration time frame; describes how the cleanup action will be managed; and describes how the cleanup action will be documented.
- Section 5, References, provides a list of the source materials used in preparing this EMMP.
- Section 6, Limitations, provides Farallon's limitations associated with this EMMP.

2.0 BACKGROUND

This section provides a description of Block 38 West and a summary of current and historical uses of Block 38 West and near vicinity.

2.1 BLOCK 38 WEST DESCRIPTION

Block 38 West is in a commercial and light industrial area zoned as mixed residential/commercial in the South Lake Union Area (SM-SLU 175/85-280) approximately 1 mile north of downtown Seattle. According to King County (2013), Block 38 West comprises King County Parcel Nos. 1983200196 on the northern portion of Block 38 West (534 and 536 Westlake Avenue North), 1983200180 in the central portion of Block 38 West (520 Westlake Avenue North), and 1983200170 on the southern portion of Block 38 West (500 and 510 Westlake Avenue North).

Block 38 West totals approximately 0.34 acre of land developed with structures currently used for retail, temporary offices, storage, and automobile parking. Adjacent street elevations vary from about 41 feet above msl on Republican Street adjoining the southern portion of Block 38 West to about 31 feet above msl on Mercer Street adjoining the northern portion of Block 38 West. The alley bisecting Block 38 and along the eastern boundary of Block 38 West is accessed from Mercer Street and descends from street level to an elevation of about 23 feet above msl, and is used for vehicle access to a parking garage on Block 38 East and access to garage parking and a loading dock on Block 38 West. A historical timber framed trestle extends north from Republican Street into the Block 38 alley approximately 120 feet, to a point approximately 18 feet above the fenced-off southern portion of the alley.

A 72-inch-diameter King County sewer main line is present in the Republican Street right-of-way approximately 20 feet south of the southern boundary of Block 38 West. This sewer line and its backfill (Republican Street Drain) receive inflows from Seattle Public Utilities combined mains and flows westward toward Elliott Bay. The Republican Street Drain is known to draw shallow groundwater flow in the South Lake Union area, which then drains through the backfill material toward the west. The invert elevation of the reinforced concrete pipe of the Republican Street Drain at a manhole immediately southwest of Block 38 West is approximately 14.2 feet above msl and approximately 27 feet below ground surface (bgs).

2.2 BLOCK 38 WEST AND VICINITY LAND USES AND PRIOR ENVIRONMENTAL ASSESSMENTS

According to the Level I Environmental Site Assessment, Westlake Avenue Building, 534 Westlake Avenue North, Seattle, Washington dated March 25, 1998, prepared by Terra Associates, Inc. (1998) (1998 EA Report), a Level I Environmental Site Assessment was conducted in 1998 for the Westlake Avenue Building on the northernmost parcel of Block 38 West at 534 Westlake Avenue North. The 1998 EA Report concluded that the potential for contamination due to past or current practices at 534 Westlake Avenue North is low. The 1998 EA Report provided the following

information regarding the potential for past or current practices at other properties to affect conditions at 534 Westlake Avenue North:

- Six sites with active petroleum underground storage tanks were identified within a 1/8-mile radius of 534 Westlake Avenue North.
- Forty-four sites with leaking underground storage tanks were identified within a 0.5-mile radius of 534 Westlake Avenue North. Former operation of underground storage tanks at the north-adjacent Unocal property (Unocal station #5353 at 600 Westlake Avenue North, north of Block 38 West across Mercer Street; now also known as Block 37), at the Rosen property on Block 38 East (960 Republican Street), and at 500 Terry Avenue North (also referred to in prior documents as the Ivars Commissary) resulted in confirmed petroleum releases. The 1998 EA Report indicated cleanup actions had occurred at these properties, and acknowledged the potential for properties with leaking underground storage tanks to affect subsurface media at 534 Westlake Avenue North.
- Fifteen confirmed and suspected contaminated sites were identified within a 1-mile radius of 534 Westlake Avenue North. The 1998 EA Report concluded these properties posed minimal threat to 534 Westlake Avenue North.
- A coal gas facility (likely used for storage of gas manufactured at the coal gas plant 2 miles north, according to the 1998 EA Report) formerly was located at 815 Mercer Street, two blocks west of Block 38 West (the property known as Block 50). No documentation was available to the authors of the 1998 EA Report indicating that soil or groundwater contamination associated with the coal gas facility was present, and the 1998 EA Report considered the risk to 534 Westlake Avenue North from releases or operations at the former coal gas facility on Block 50 to be low.

HartCrowser, Inc. (1999) issued a letter regarding Preliminary Environmental Assessment Update, Westlake Avenue Property (428, 500, 510, and 520 Westlake Avenue North), Seattle, Washington dated April 5, 1999, from Mr. Rob Roberts and Ms. Julie K.W. Wukelic to City Investors VII LLC c/o Mr. Joe Delaney of Foster Pepper & Shefelman (1999 EA Report) pertaining to the two southern parcels of Block 38 West at 500, 510, and 520 Westlake Avenue North and a parcel at 428 Westlake Avenue North on the south-adjacent block (the property known as Block 39). The 1999 EA Report indicated a moderate potential for subsurface contamination at these properties based on field reconnaissance and environmental records review. The properties were not identified on agency environmental lists reviewed. Information presented in the 1999 EA Report pertaining to the two southern parcels of Block 38 West, in addition to information provided in the 1998 EA Report, is summarized below.

- Two blacksmith shops formerly present on the two southern parcels of Block 38 West, at 500 Westlake Avenue North from at least 1905 until 1919 and at 524 Westlake Avenue North, represented some potential for petroleum, solvent, or metals contamination to Block 38 West.
- A heating oil underground storage tank formerly present beneath the Republican Street sidewalk south of 500 Westlake Avenue North represented a low potential for petroleum

contamination. The underground storage tank was decommissioned in 1989 with documentation indicating that no petroleum-affected soil was observed.

- Hazardous building materials, including asbestos, lead-based paint, and polychlorinated biphenyls, potentially are present in the structures on the two southern parcels of Block 38 West.
- Former uses of the southern parcel of Block 38 West at 500 and 510 Westlake Avenue North since the 1890s include lumber storage, the blacksmith shop at 500 Westlake Avenue North, and retail/commercial (i.e., auto parts, appliances, school/office supply, furniture storage, clothing, outdoor equipment).
- Former uses of the middle parcel of Block 38 West at 520 Westlake Avenue North since the 1890s include lumber storage, a horse stable and wagon house, a blacksmith wagon shop at 524 Westlake Avenue North, auto repair, a veterinary hospital, parking, and retail operations.

2.3 GEOLOGY AND HYDROGEOLOGY

The Puget Sound region is underlain by Quaternary sediments deposited by a number of glacial episodes. Deposition occurred prior to, during, and following glacial advances and retreats, creating the existing subsurface conditions. The naturally occurring sediments in the South Lake Union area consist primarily of interlayered and/or sequential deposits of alluvial clays, silts, and sands that typically are situated over deposits of glacial till that consist of silty sand to sandy silt with gravel. Outwash sediments consisting of sands, silts, clays, and gravels were deposited by rivers, streams, and post-glacial lakes during glacial advances and recessions. Advance outwash sediments have been largely over-consolidated by the overriding ice sheets. These advance outwash sediments are overlain by a till-like layer and/or recessional outwash sediments that are less consolidated (Galster and Laprade 1991).

Block 38 West is approximately 600 feet south of Lake Union. According to a U.S. Geological Survey (1909) Seattle Special quadrangle map, the original shoreline of Lake Union extended farther south from its current location, to as far as the current location of Mercer Street. In the late 1800s and the early 1900s, the southern end of Lake Union was filled with sawdust and wood waste generated by lumber mill operations and with other fill materials.

A cross-section depicting the general lithology and hydrogeology of Block 38 West is presented on Figure 3, which is based on field observations made during the Subsurface Investigations as documented in boring logs (Appendix A). The location of the cross-section is shown on Figure 2. According to Farallon observations made during subsurface investigations conducted on adjacent properties and at Block 38 West and a review of boring logs from geotechnical drilling (GeoEngineers, Inc. 2018), three general stratigraphic units are present at Block 38 West:

• The shallowest unit consists of fill material with recent deposits, including lacustrine sediments, and comprises silt, sandy silt, and sand with variable gravel content. In some

- areas, this shallowest unit includes wood waste, peat, and organic silt. The shallowest unit is present across Block 38 West.
- The shallowest unit is underlain by a dense stratum of heterogeneous and anisotropic native glacially consolidated deposits comprising dense sand and variable silt and gravel content and very stiff to hard silt with variable sand and gravel content. According to GeoEngineers, Inc. (2018), the contact elevation to glacially consolidated soils typically slopes down to the north toward Lake Union, and at Block 38 West occurs between approximately 11 feet above msl and 6 feet below msl and represents competent bearing soils.
- Although not encountered to the maximum depth explored during the Subsurface Investigations (about 34 feet below msl at monitoring well FMW-130), glacially consolidated advance outwash deposits underlie the intermediate unit and comprise very dense sand with minor silt. This unit was encountered between about 20 and 30 feet below msl on the north-adjacent properties (Block 31 and Block 37).

Three general water-bearing zones are present at Block 38 West:

- The uppermost water-bearing zone encountered in the fill and underlying recent deposits is referred to in documents for other properties in the South Lake Union area as the Shallow Water-Bearing Zone. The Shallow Water-Bearing Zone at Block 38 West varies in thickness from approximately 5 to 15 feet and was encountered at depths ranging from approximately 5 to 8 feet bgs. Monitoring wells at Block 38 West are screened within the Shallow Water-Bearing Zone, with the exception of monitoring wells FMW-130 and FMW-136, which are screened in glacially consolidated deposits comprising the Intermediate Water-Bearing Zone described below.
- A deeper water-bearing zone below the Shallow Water-Bearing Zone, referred to as the Intermediate Water-Bearing Zone, is present in the glacially consolidated soil at Block 38 West encountered at approximate elevations between 5 and 10 feet above msl (approximately 15 to 20 feet bgs). The Intermediate Water-Bearing Zone is continuous across Block 38 West. Farallon has concluded based on the Subsurface Investigations that the Shallow Water-Bearing Zone at Block 38 West is in direct communication with the Intermediate Water-Bearing Zone (i.e., there is no aquitard separating these groundwater-bearing zones).
- Although not encountered to the maximum depth explored the during the Subsurface Investigations (about 34 feet below msl at monitoring well FMW-130), based on other subsurface investigations conducted in the vicinity, a third water-bearing zone, referred to as the Deep Outwash Aquifer, is presumed to be present at an approximate elevation of 35 feet below msl (approximately 60 feet bgs) in dense advance outwash sand deposits consisting of sand with minor silt. The Deep Outwash Aquifer was encountered at elevations between about 20 to 30 feet below msl at properties north of Mercer Street (Block 31 and Block 37). The thickness of the Deep Outwash Aquifer is not known. The occurrence of the Deep Outwash Aquifer and groundwater quality will be assessed during an upcoming investigation that will be reported separate from the EMMP.

2.4 CONSTITUENTS AND MEDIA OF POTENTIAL CONCERN

Constituents of potential concern (COPCs) at Block 38 West were selected based on the known historical uses of Block 38 West and vicinity summarized above, historical land fill known to have been placed in this area, and the potential for releases of contaminants at concentrations exceeding MTCA cleanup levels. The COPCs for soil and groundwater at Block 38 West are:

- Total petroleum hydrocarbons as gasoline-range organics (GRO);
- Total petroleum hydrocarbons as diesel-range organics and oil-range organics (DRO and ORO, respectively);
- Benzene, toluene, ethylbenzene, and xylenes (BTEX);
- Volatile organic compounds (VOCs), including chlorinated volatile organic compounds (CVOCs);
- Polycyclic aromatic hydrocarbons (PAHs) and other semivolatile organic compounds (SVOCs), including carcinogenic polycyclic aromatic hydrocarbons (cPAHs);
- Naphthalenes; and
- Metals (i.e., arsenic, cadmium, chromium, mercury, and lead).

3.0 SUBSURFACE INVESTIGATIONS

Results of the subsurface investigations conducted by Farallon at Block 38 West are summarized below. GeoEngineers, Inc. (2018) has separately presented results from its geotechnical engineering evaluation conducted in support of Block 38 West redevelopment.

Farallon conducted two subsurface investigations at Block 38 West. The first subsurface investigation commenced on July 21, 2014 and entailed installing and collecting samples from a 55-foot-deep monitoring well outside the existing building in the loading dock area, and collecting soil, reconnaissance groundwater, and groundwater samples (2014 Subsurface Investigation). The second subsurface investigation commenced on August 20, 2018 and entailed drilling at 11 locations within Block 38 West to depths of up to 50 feet bgs, collecting soil and reconnaissance groundwater samples, installing and collecting samples from five new monitoring wells, and collecting samples from the monitoring well installed during the 2014 Subsurface Investigation (2018 Subsurface Investigation). The objective of the 2014 Subsurface Investigation and the 2018 Subsurface Investigation (collectively, the Subsurface Investigations) was to obtain lithologic, hydrologic, and analytical data to characterize environmental conditions at Block 38 and inform the selection of remedial actions as set forth in this EMMP. Additionally, some of the data are to be used for geotechnical engineering design by others.

3.1 2014 SUBSURFACE INVESTIGATION

The 2014 Subsurface Investigation entailed the installation of monitoring well FMW-130 in the loading dock area outside the existing building (Figure 2). Methodology employed and results of the 2014 Subsurface Investigation are summarized below.

Soil samples were collected continuously during drilling of the boring for monitoring well FMW-130 to a depth of 60 feet bgs using sonic drilling methods on July 21 and 22, 2014 for lithologic logging. Soil samples also were obtained at 5-foot sampling intervals from a split-spoon sampler driven by a 140-pound hammer 18 inches into the soil formation for collection of blow counts (a metric for evaluating soil density required for geotechnical engineering analysis).

A Farallon Geologist observed subsurface conditions and prepared a boring log and well completion diagram for monitoring well FMW-130 (Appendix A). The information recorded on the boring log included soil types encountered, visual and olfactory evidence of contamination, and volatile organic vapor concentrations as measured using a photoionization detector. Soil samples were collected and transferred directly into laboratory-prepared glass sample containers fitted with Teflon-lined lids in accordance with Farallon's standard sampling procedures.

One reconnaissance groundwater sample was collected during drilling for a temporary monitoring well screened from 15 to 20 feet bgs on July 21, 2014. The reconnaissance groundwater sample was collected in general accordance with standard U.S. Environmental Protection Agency (EPA) (1996) low-flow groundwater sampling procedures. A 0.25-inch-diameter tube was inserted to near the center of the screened interval of the temporary monitoring well. Groundwater was

extracted using a peristaltic pump with a flow rate of less than 300 milliliters per minute until a steady flow was established and extracted groundwater cleared, after which the reconnaissance groundwater sample was collected in a laboratory supplied sample container.

Monitoring well FMW-130 was constructed on July 22, 2014 in accordance with the Minimum Standards for Construction and Maintenance of Wells, as established in WAC 173-160. The monitoring well was constructed using 2 inch-diameter Schedule 40 polyvinyl chloride casing and 0.010-inch slotted screen set from 45 to 55 feet bgs (22.8 to 32.8 feet below msl). This interval was selected for placement of the well screen due to the presence of permeable silty sand and well-graded gravel with silt and sand, and elevated photoionization detector readings that suggested the potential presence of VOCs. The monitoring well was completed at grade in a flush-mounted steel monument. The filter pack surrounding the well screen consisted of 10/20 Monterey filter sand from the bottom of the well screen to approximately 2 feet above the well screen. A 2-foot-thick hydrated bentonite pellet seal was emplaced on the top of the filter pack and a grout consisting of a cement and bentonite mix extended from a depth of about 40 feet bgs to about 1.5 feet bgs, where a flush mounted monument was installed at the ground surface. Monitoring well construction details are provided in Appendix A.

The monitoring well was developed by surging and purging with a submersible pump shortly after well construction was completed. Monitoring well FMW-130 was developed until the majority of fine-grained sediment was removed from the well screen and adjacent sand pack. Monitoring well FMW-130 was sampled during three groundwater monitoring events: July 24, 2014; July 3, 2017; and August 30, 2018. Prior to collecting groundwater samples, groundwater was purged with a submersible pump and routed through a flow-through water quality parameter meter. Water quality parameters, including temperature, pH, specific conductance, turbidity, oxidation-reduction potential, and dissolved oxygen, were monitored and recorded. Monitoring well FMW-130 was purged until parameters stabilized prior to collection of a groundwater sample.

Soil, reconnaissance groundwater, and groundwater samples were placed on ice in a cooler under standard chain-of-custody procedures, and delivered to OnSite Environmental Inc. of Redmond, Washington for laboratory analysis. One soil sample collected from the boring advanced for construction of monitoring well FMW-130 at a depth of 20 feet bgs was submitted for laboratory analysis. The soil sample was analyzed for the following constituents:

- GRO by Northwest Method NWTPH-Gx;
- DRO and ORO by Northwest Method NWTPH-Dx;
- BTEX by EPA Method 8021; and
- PAHs and other SVOCs by EPA Method 8270D.

The reconnaissance groundwater sample (collected in July 2014) and two groundwater samples (one sample collected in July 2014 and one collected in July 2017) were analyzed for the following constituents:

• GRO by Northwest Method NWTPH-Gx;

- BTEX by EPA Method 8021 (July 2014 reconnaissance groundwater sample only);
- VOCs, including BTEX and CVOCs, by EPA Method 8260C (July 2014 reconnaissance groundwater sample and groundwater sample collected during the July 2017 groundwater monitoring event); and
- CVOCs only by EPA Method 8260C (reconnaissance groundwater sample and groundwater samples collected during the July 2014 and July 2017 groundwater monitoring events).

3.2 2018 SUBSURFACE INVESTIGATION

The 2018 Subsurface Investigation entailed drilling on Block 38 West at eight locations within the existing building and three locations adjacent to the existing building (Figure 2). Five of the borings were completed as monitoring wells. Methodology and results of the 2018 Subsurface Investigation are summarized below.

Drilling was conducted using a limited access hollow-stem auger drilling rig between August 20 and 24, 2018 to advance 11 soil borings. Four of the borings within the existing building were completed as monitoring wells FMW-132 and FMW-134 through FMW-136, and one boring adjacent to the existing building was completed as monitoring well FMW-133 (Figure 4). Monitoring well screened intervals varied and were generally shallow, between 20.7 feet above msl and 14.9 feet below msl. Soil samples were collected from each boring generally at 5-foot sampling intervals from an 18-inch-long split-spoon sampler driven by a 140-pound hammer in advance of the lead auger into the soil formation for collection of blow counts. A Farallon Geologist observed subsurface conditions and prepared boring logs and well completion diagrams (Appendix A). The information recorded on the boring logs included soil types encountered, visual and olfactory evidence of contamination, and volatile organic vapor concentrations as measured using a photoionization detector. Soil samples were collected and transferred directly into laboratory-prepared glass sample containers fitted with Teflon-lined lids in accordance with Farallon's standard sampling procedures.

One reconnaissance groundwater sample was collected from each of borings FB-1, FB-3, and FB-5 during drilling for temporary monitoring wells. The reconnaissance groundwater samples were collected in general accordance with standard EPA (1996) low-flow groundwater sampling procedures. A 0.25-inch-diameter tube was inserted to near the center of the screened interval of each temporary monitoring well. Groundwater was extracted using a peristaltic pump with a flow rate of less than 300 milliliters per minute until a steady flow was established and extracted groundwater cleared, after which the reconnaissance groundwater sample was collected.

Monitoring wells FMW-132 through FMW-136 were constructed in accordance with the Minimum Standards for Construction and Maintenance of Wells, as established in WAC 173-160. The monitoring well was constructed using 1-inch-diameter Schedule 40 polyvinyl chloride casing and 0.010-inch slotted screen prepacks with Monterey filter sand. The monitoring wells were completed at grade in flush-mounted steel monument. A hydrated bentonite pellet seal was emplaced from the top of the filter pack to a depth of approximately 1 foot bgs. A 0.5-foot-thick

concrete surface seal was placed around the wells from the top of the bentonite to approximately 1 foot bgs and surrounding the flush-mounted monument up to the ground surface. Monitoring well construction details are provided in Appendix A.

The monitoring wells were developed using surging and purging with a peristaltic pump shortly after well construction was completed. Monitoring wells were developed until the majority of fine-grained sediment was removed from the well screen prepack assemblies. Monitoring wells FMW-132 through FMW-136, and monitoring well FMW-130 installed during the 2014 Subsurface Investigation, were sampled on August 30, 2018. Prior to collecting groundwater samples, groundwater was purged with a peristaltic pump and routed through a flow-through water quality parameter meter. Water quality parameters, including temperature, pH, specific conductance, turbidity, oxidation-reduction potential, and dissolved oxygen, were monitored and recorded. Monitoring wells were purged until parameters stabilized prior to collection of groundwater samples.

Soil, reconnaissance groundwater, and groundwater samples were placed on ice in a cooler under standard chain-of-custody procedures, and delivered to OnSite Environmental Inc. of Redmond, Washington for laboratory analysis. Select soil samples were analyzed for the following constituents:

- GRO by Northwest Method NWTPH-Gx;
- DRO and ORO by Northwest Method NWTPH-Dx;
- BTEX by EPA Method 8021;
- CVOCs by EPA Method 8260C;
- PAHs and other SVOCs by EPA Method 8270D; and
- Arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver by EPA Series Methods 200/6000/7000.

Reconnaissance groundwater samples were analyzed for the following constituents:

- GRO by Northwest Method NWTPH-Gx;
- DRO and ORO by Northwest Method NWTPH-Dx;
- BTEX by EPA Method 8021; and
- VOCs, including CVOCs and BTEX, by EPA Method 8260C.

Groundwater samples were analyzed for the following constituents:

- GRO by Northwest Method NWTPH-Gx;
- DRO and ORO by Northwest Method NWTPH-Dx;
- CVOCs and BTEX by EPA Method 8260C; and
- PAHs by EPA Method 8270D.

3.3 ANALYTICAL RESULTS

A summary of the analytical results for soil and groundwater samples collected by Farallon during Subsurface Investigations is presented below.

3.3.1 Soil

COPCs detected in soil samples are summarized in Figure 2. Analytical results for soil samples are presented in Tables 1 through 4 and described below. Laboratory analytical reports are provided in Appendix B.

3.3.1.1 Petroleum Hydrocarbons

A total of 28 soil samples, collected at depths up to 35 feet bgs, were analyzed for petroleum hydrocarbons.

DRO was detected in 7 of the 28 soil samples at concentrations ranging from 97 to 730 milligrams per kilogram (mg/kg), less than the MTCA Method A cleanup level of 2,000 mg/kg. These samples were collected from 7 of the 11 borings at depths ranging from 2.5 to 15 feet bgs. The laboratory report indicated that the DRO results may be impacted by hydrocarbons detected in the oil range (i.e., ORO) in two of the soil samples analyzed.

ORO was detected in 10 of the 28 soil samples at concentrations ranging from 250 to 3,700 mg/kg. These samples were collected from 8 of the 11 borings at depths ranging from 2.5 to 15 feet bgs. ORO was detected at concentrations exceeding the MTCA Method A cleanup level of 2,000 mg/kg at two locations: in a sample collected from boring FB-1 at a depth of 5 feet bgs, and in the boring for monitoring well FMW-132 in the existing building and within about 20 feet west of boring FB-1 at a depth of 5 feet bgs.

Two soil samples collected from boring FB-1, including the soil sample collected at a depth of 5 feet bgs, were re-analyzed for DRO and ORO after using the silica gel cleanup process intended to remove interference in analytical results presented by natural organic material in the sample aliquot, which could contribute to reported petroleum hydrocarbon concentrations using the standard analytical method without cleanup. DRO and ORO analyzed using silica gel cleanup were detected at lower concentrations than detected in the two soil samples analyzed without cleanup, suggesting some interference from natural organic material in these soil samples.

GRO was detected in one soil sample collected from boring FB-6 at a depth of 2.5 feet bgs at a concentration less than the MTCA Method A cleanup level of 100 mg/kg. The laboratory report indicated that the chromatogram for the GRO detected in the soil sample from boring FB-6 was not a typical gasoline.

3.3.1.2 Polycyclic Aromatic Hydrocarbons, Other Semivolatile Organic Compounds and Chlorinated Volatile Organic Compounds

Total cPAHs were calculated as a toxic equivalent concentration using a method prescribed by MTCA (WAC 173-340-708[e]): total cPAHs TEC. The calculation is based on a toxicity equivalency factor-weighted sum of concentrations of individual cPAHs.¹

A total of 20 soil samples, collected at depths up to 35 feet bgs, were analyzed for cPAHs, naphthalenes, other SVOCs, and 10 soil samples for CVOCs.

Total cPAHs TEC was detected in 6 of the 20 soil samples submitted for laboratory analysis at concentrations ranging from 0.036 to 12.5 mg/kg. These samples were collected from 5 of the 11 borings at depths ranging from 2.5 to 15 feet bgs. Total cPAHs TEC was detected at concentrations exceeding the MTCA Method A cleanup level of 0.1 mg/kg in 5 of the 6 soil samples where total cPAHs TEC was detected. The following five locations where total cPAHs TEC exceeded the MTCA Method A cleanup level are described below:

- A concentration of 3.4 mg/kg in the soil sample collected from boring FB-1 at 5 feet bgs;
- A concentration of 15 mg/kg in the soil sample collected from boring FB-2 at 5 feet bgs;
- A concentration of 0.52 mg/kg in the soil sample collected from boring FB-4 at 10 feet bgs;
- A concentration of 0.65 mg/kg in the soil sample collected from boring FB-6 at 2.5 feet bgs; and
- A concentration of 12.5 mg/kg in the soil sample collected from the boring for monitoring well FMW-132 at 5 feet bgs.

A total naphthalene concentration was calculated using the method prescribed by MTCA. The calculation is a sum of concentrations of three individual naphthalenes.² Total naphthalenes were detected in 13 of the 20 soil samples submitted for laboratory analysis at concentrations ranging from 0.029 to 6.6 mg/kg. The samples were collected from 9 of the 11 borings at depths ranging from 2.5 to 30 feet bgs. Total naphthalenes were detected at concentrations exceeding the MTCA Method A cleanup level of 5 mg/kg at one location, the boring for monitoring well FMW-132 at a depth of 5 feet bgs.

Some non-carcinogenic PAHs and other SVOCs³ were detected at concentrations exceeding laboratory reporting limits in 13 of the 20 soil samples submitted for laboratory

¹ Benzo(a)Pyrene, benzo(a)Anthracene, benzo(b)Fluoranthene, benzo(j,k)Fluoranthene, chrysene, dibenzo(a,h)Anthracene, and indeno(1,2,3-cd)Pyrene.

² Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene.

³ Acenaphthene, acenaphthylene, anthracene, benzo(g,h,i)Perylene, fluoranthene, fluorene, phenanthrene, pyrene, 2,4-dimethylphenol, carbazole, and dibenzofuran.

analysis, collected from 9 of the 11 borings at depths ranging from 2.5 to 35 feet bgs. Non-carcinogenic PAHs and other SVOCs were not detected at concentrations exceeding MTCA Method A cleanup levels or other MTCA cleanup criteria. Non-carcinogenic PAHs and other SVOCs were not detected at concentrations exceeding laboratory reporting limits in 7 of the 20 soil samples submitted for laboratory analysis, collected at depths of up to 30 feet bgs.

A total of seven soil samples, collected at depths up to 50 feet bgs, were analyzed for CVOCs. CVOCs were not detected at concentrations exceeding laboratory reporting limits in the soil samples collected from borings FB-02, FB-04, and FB-05 and monitoring wells FMW-135 and FMW-136 (Table 4).

3.3.1.3 Metals

Barium, chromium, lead, and/or mercury were detected at concentrations exceeding laboratory reporting limits, but less than MTCA Method A cleanup levels, in all 15 soil samples submitted for laboratory analysis, collected from 9 of the 11 borings at depths ranging from 5 to 35 feet bgs. The other metals tested were not detected at concentrations exceeding MTCA Method A cleanup levels or other MTCA criteria. No Toxicity Characteristic Leaching Procedure laboratory analysis was conducted for disposal characterization, as total metals concentrations were considerably less than 20 times the Toxicity Characteristic Leaching Procedure criteria for metals concentrations in soil acceptable for disposal at Subtitle D permitted facilities.

3.3.2 Groundwater

COPCs detected in groundwater samples are summarized in Figure 4. Stabilized groundwater field parameters measured during groundwater sampling are presented in Table 5. Analytical results for groundwater samples are presented in Tables 6 through 8 and described below. Laboratory analytical reports are provided in Appendix B.

3.3.2.1 Petroleum Hydrocarbons

DRO and/or ORO were detected at concentrations ranging from 260 to 1,000 micrograms per liter (μ g/l) in a reconnaissance groundwater sample collected in one boring, and in groundwater samples collected from three monitoring wells. DRO was detected at concentrations exceeding the MTCA Method A cleanup level of 500 μ g/l in groundwater samples collected from two locations: at a concentration of 660 μ g/l in the reconnaissance groundwater sample collected from borings FB-3; and at a concentration of 1,000 μ g/l⁴ in the groundwater sample collected from monitoring well FMW-134.

.

⁴ The laboratory report indicated that the concentration of petroleum hydrocarbons characterized as DRO in this groundwater sample was impacted by the hydrocarbons characterized as GRO.

GRO was detected in a reconnaissance groundwater sample collected from one boring and in a groundwater sample collected from one monitoring well at concentrations exceeding the MTCA Method A cleanup level of $800 \mu g/l$:

- OGRO was detected at a concentration of 2,100 μg/l in a reconnaissance groundwater sample collected at a depth of 15 to 20 feet bgs (7.2 to 2.2 feet above msl) in the boring for monitoring well FMW-130⁵ in July 2014. BTEX also was detected in this reconnaissance groundwater sample, and benzene was detected at a concentration of 5.1 μg/l, slightly exceeding the 5 μg/l MTCA Method A cleanup level. Toluene, ethylbenzene, and xylenes were not detected at concentrations exceeding MTCA Method A cleanup levels.
- GRO was detected at a concentration of 1,100 µg/1⁶, exceeding the MTCA Method A cleanup level, in a groundwater sample collected from monitoring well FMW-134.

GRO and BTEX were not detected at concentrations exceeding laboratory reporting limits in the other groundwater samples collected at Block 38 West.

3.3.2.2 Polycyclic Aromatic Hydrocarbons

Total cPAHs TEC was not detected at concentrations exceeding laboratory reporting limits in the six groundwater samples submitted for laboratory analysis.

Total naphthalenes were detected at concentrations ranging from 0.39 to 312 μ g/l in three of the seven groundwater samples submitted for laboratory analysis. Total naphthalenes were detected at concentrations exceeding the MTCA Method A cleanup level of 160 μ g/l at one location, monitoring well FMW-134.

Some non-carcinogenic PAHs were detected at concentrations exceeding laboratory reporting limits in four of the six groundwater samples submitted for laboratory analysis. The detected concentrations of non-carcinogenic PAHs were less than the MTCA Method A cleanup levels or other applicable MTCA cleanup criteria.

3.3.2.3 Volatile Organic Compounds

BTEX VOCs were discussed above in Section 3.3.2.1, Petroleum Hydrocarbons. Remaining VOCs were not detected at concentrations exceeding their respective MTCA Method A cleanup level for the groundwater samples noted below.

 1,1,1-Trichloroethane, cis-1,2-Dichloroethene, and chloroform were detected in a groundwater sample collected from monitoring well FMW-130 on July 24, 2014 at concentrations less than their respective MTCA cleanup criteria. These VOC

⁵ The screen for monitoring well FMW-130 subsequently was set between elevations of 22.8 to 32.8 feet below msl.

⁶ The laboratory report indicated that the concentration of petroleum hydrocarbons characterized as GRO in this groundwater sample was attributed to a single peak on the chromatogram, which was in the range of naphthalene. Naphthalene was quantified at a concentration of 160 μg/l in this groundwater sample.

constituents were not detected in the groundwater sample collected from monitoring well FMW-130 on July 3, 2017. Cis-1,2-Dichloroethene was detected again in a groundwater sample collected from monitoring well FMW-130 on August 30, 2018 at a concentration less than its MTCA cleanup level.

- Acetone was detected in a reconnaissance groundwater sample collected from boring FB-3 on August 23, 2018 at a concentration less than its MTCA cleanup level.
- Chloroform was detected in a groundwater sample collected from monitoring well FMW-135 on August 30, 2018 at a concentration less than its MTCA cleanup level.
- Chloroform was detected in a groundwater sample collected from monitoring well FMW-136 on August 30, 2018 at a concentration exceeding the MTCA cleanup level.

VOCs otherwise were not detected at concentrations exceeding the laboratory reporting limit or their respective MTCA Method A cleanup level in the remaining groundwater samples collected from Block 38 West.

3.4 SUSPECTED SOURCES OF CONTAMINATION

No specific uses or features have been confirmed as the source of soil and groundwater contamination at Block 38 West. Suspected sources of contamination include:

- Adjacent properties with documented petroleum releases referred to in Section 2.2, Block 38 West and Vicinity Land Uses and Prior Environmental Assessments, and migration to Block 38 West via groundwater transport from properties including the following:
 - o Rosen property on Block 38 East (960 Republican Street);
 - o Ivars Commissary (500 Terry Avenue North); and
 - o Former Unocal station (600 Westlake Avenue North, Block 37).
- Waste constituents, including naphthalenes and PAH constituents, migrating to Block 38
 West via groundwater transport from the former coal gas facility (815 Mercer Street, Block
 50).
- Possible spills and leaks of petroleum constituents associated with former equipment or auto parking/repair operations, blacksmith shops, and/or heating oil storage at Block 38 West.
- Possible placement of contaminated fill material at Block 38 West prior to construction of the existing building.
- Other possible unidentified sources beyond the boundaries of Block 38 West.

3.5 CONSTITUENTS AND MEDIA OF CONCERN

The results of the Subsurface Investigations indicate constituents of concern (COCs) and media of concern as summarized below.

3.5.1 Constituents of Concern

COCs identified for cleanup at Block 38 West consist of those COPCs detected in soil or groundwater samples collected from Block 38 West at concentrations exceeding MTCA Method A cleanup levels or other applicable MTCA cleanup criteria.

The COCs for soil are:

- ORO;
- Total naphthalenes; and
- Total cPAHs TEC.

The COCs for groundwater are:

- GRO;
- Benzene;
- DRO; and
- Total naphthalenes.

Chloroform was detected at a concentration exceeding the MTCA Method A cleanup level in a groundwater sample collected from monitoring well FMW-136 on August 30, 2018. Chloroform was detected in two other groundwater samples and in the water sample collected from the potable water supply, which was used during drilling. Chloroform is a byproduct of the treatment of municipal water supplies and also is a common contaminant in analytical laboratories and so was not retained as a COC for groundwater. Potable water was introduced to the subsurface during drilling to help control heaving sands and was subsequently recovered during well development. Potable water also can be introduced to the subsurface from leaking water supply and/or sewer piping in the vicinity.

3.5.2 Media of Concern

The media of concern at Block 38 West are soil and groundwater.

3.6 BLOCK 38 HYDROGEOLOGY

Groundwater levels were measured during the August 30, 2018 groundwater sampling event. Depth to water in monitoring wells FMW-130 and FMW-132 through FMW-136 ranged from 5.14 to 8.66 feet bgs (Table 9). Based on the depth-to-water measurements, groundwater elevations ranged from 16.32 to 18.15 feet msl at Block 38 West (Table 9). Based on groundwater levels measured in wells screened in the Shallow Water-Bearing Zone during the August 30, 2018

groundwater monitoring event (Table 9), the inferred groundwater flow direction for this zone is southerly, with a horizontal hydraulic gradient of approximately 0.006 feet/foot, and is inferred to steepen to the south toward the Republican Street Drain. The groundwater flow direction was not estimated for the Intermediate Water-Bearing Zone or the Deep Outwash Aquifer due to the insufficient number of wells screened in those water-bearing zones. A groundwater elevation contour map for the Shallow Water-Bearing Zone at Block 38 West is provided as Figure 5.

Groundwater flow direction in the vicinity of Block 38 West has been affected in recent years by transient conditions related to construction dewatering activities in the South Lake Union are and the presumed effects of groundwater infiltration into the Republican Street Drain structure or backfill. Other factors affecting groundwater flow direction in the Shallow Water-Bearing Zone at Block 38 West include groundwater recharge at higher elevations on Queen Anne Hill and Capitol Hill flowing eastward and westward, respectively, down toward the South Lake Union area and Lake Union itself; and variable characteristics of water-bearing fill. The groundwater flow direction at Block 38 West likely is variable over time.

3.7 NATURE AND EXTENT OF CONTAMINATION

Based on the results of the Subsurface Investigations, the nature and extent of contamination at Block 38 West is shown on Figure 6 for soil and Figure 4 for groundwater. Figure 3 shows the nature and extent of contamination at Block 38 West in vertical cross-section. Tables 1 through 8 present analytical results for COCs detected in soil and groundwater samples collected at Block 38 West. Figures 7 through 13 show the estimated lateral and vertical extents of impacted soil at Block 38 West in 5-foot-thick lifts for purposes of soil disposal planning during construction excavation.

3.7.1 Soil

COCs for soil were detected at concentrations exceeding their respective MTCA Method A cleanup levels in shallow soil samples collected from the following locations on the eastern portion of Block 38 West:

- Boring FB-1 ORO and total cPAHs TEC in a soil sample collected from 5 feet bgs;
- Boring FB-2 total cPAHs TEC in a soil sample collected from 5 feet bgs;
- Boring FB-4 total cPAHs TEC in a soil sample collected from 10 feet bgs;
- Boring FB-6 total cPAHs TEC in a soil sample collected from 2.5 feet bgs; and
- The boring for monitoring well FMW-132 ORO, total naphthalenes, and total cPAHs TEC in a soil sample collected from 5 feet bgs.

COCs detected in soil at concentrations exceeding their respective MTCA Method A cleanup levels at Block 38 West are bounded vertically by soil samples collected from boring FB-1 at a depth of 15 feet bgs, boring FB-2 at a depth of 25 feet bgs, boring FB-4 at a depth of 15 feet bgs, boring FB-6 at a depth of 10 feet bgs, and the boring for monitoring well FMW-133 at a depth of 10 feet bgs.

COCs detected in soil at concentrations exceeding their respective MTCA Method A cleanup levels at Block 38 West are bounded laterally to the west by soil samples collected from the boring for monitoring well FMW-135 and from borings FB-3 and FB-5, and bounded laterally to the south by soil samples collected from the borings for monitoring wells FMW-134 and FMW-136. The lateral extent of COCs detected in soil at concentrations exceeding MTCA Method A cleanup levels is not bounded to the north or to the east, as soil samples could not be collected during the Subsurface Investigations because of access limitations. In advance of or during redevelopment of Block 38 West, soil samples will be collected along the northern portion of the alley to define the eastern extent of shallow soil contamination encountered at Block 38 West.

3.7.2 Groundwater

COCs for groundwater were detected at concentrations exceeding their MTCA Method A cleanup levels in reconnaissance groundwater samples collected from the following locations:

- Boring FB-3 DRO in a reconnaissance groundwater sample collected from between 17 and 22 feet bgs; and
- The boring for monitoring well FMW-130 in July 2014 GRO, benzene, and total naphthalenes in a reconnaissance groundwater sample collected from 15 to 20 feet bgs.

COCs for groundwater were detected at concentration exceeding their respective MTCA Method A cleanup levels in groundwater samples collected from the following locations:

- Monitoring well FMW-134 GRO, DRO, and total naphthalenes; and
- Monitoring well FMW-136 chloroform.

The lateral extent of COCs in the Shallow Water-Bearing Zone at concentrations exceeding their respective MTCA Method A cleanup levels is not bounded off Block 38 West to the west, south, and east. Monitoring wells were not installed outside the Block 38 West property during the Subsurface Investigations. An assessment of deeper groundwater quality will be conducted in advance of redevelopment and will be reported in a later report. There are no data generated to date that suggest soil or groundwater contamination at Block 38 West currently extends to deeper water-bearing zones.

4.0 CONSTRUCTION EXCAVATION

This section describes the cleanup action selected for Block 38 West (Cleanup Action) and a plan for managing impacted soil during construction. The Cleanup Action will not foreclose future remedial action in the rights-of-way bounding Block 38 West.

For purposes of this document, the terms Contaminated Soil and Contaminated Groundwater refer to soil or groundwater containing COCs at concentrations exceeding MTCA Method A cleanup levels. The terms Impacted Soil and Impacted Groundwater, used in the context of materials management during construction, refer to soil and groundwater containing concentrations of constituents exceeding analytical laboratory reporting limits and criteria for off-site reuse, disposal, or discharge of clean soil or groundwater. Impacted Soil and Impacted Groundwater may, or may not, be considered as Contaminated Soil and Contaminated Groundwater depending on whether COCs were detected at concentrations exceeding MTCA cleanup levels. Management of Impacted Soil necessitates special handling considerations during construction. Impacted Groundwater requires special handling, and may require treatment, to comply with discharge protocols or authorizations. Impacted Soil or Impacted Groundwater may be distinguished from clean media with sample laboratory analysis and/or visual, olfactory, or field screening indications of elevated petroleum concentrations (e.g., staining, petroleum odors, volatile vapors measured with a photoionization detector).

4.1 CLEANUP ACTION OBJECTIVES

The objective of the Cleanup Action is to protect human health and the environment by meeting the requirements of MTCA for the Block 38 West property or the "site" as defined under MTCA.⁷

4.2 SCHEDULE AND RESTORATION TIME FRAME

The Cleanup Action will meet the requirements for cleanup actions under MTCA within an approximately 10-month period of construction, scheduled to begin in mid- to late 2019. Removal and off-site disposal of Contaminated Soil will result in achievement of cleanup standards for soil at Block 38 West over the course of a 2- to 3-month excavation period. Removal and treatment of Contaminated Groundwater will result in achievement of cleanup standards for groundwater at Block 38 West over the course of an estimated 8- to 10-month groundwater withdrawal and treatment period.

4.3 CONSTRUCTION MANAGEMENT

All construction work, including implementation of the Cleanup Action, will be managed by a general contractor selected by City Investors (General Contractor). Numerous specialty subcontractors will provide a range of services during construction of the Building and implementation of the Cleanup Action. Subcontractors most involved with implementation of the

⁷ Per WAC 173-340-200, the term "site" is used for the area where a hazardous substance has been deposited, stored, disposed of, or placed, or otherwise came to be located.

Cleanup Action will perform soil excavation (Excavation Subcontractor) and drilling services (Drilling Subcontractor) for installation of shoring components. Both the Excavation Subcontractor and the Drilling Subcontractor will generate Impacted Soil, which will require disposal at facilities permitted to receive the applicable type of soil. A dewatering consultant and a Contaminated Groundwater treatment consultant (collectively Wastewater Consultants) will provide City Investors with services related to operating the dewatering system and extracting and treating Impacted Groundwater (including Contaminated Groundwater) prior to discharge per a temporary discharge permit. An environmental consultant will provide City Investors with services related to implementation of the Cleanup Action (Environmental Consultant). Farallon has been selected by City Investors as the Environmental Consultant for the Cleanup Action. Implementation of the Cleanup Action will require the Environmental Consultant to consult with City Investors, the General Contractor, the Excavation Subcontractor, the Drilling Subcontractor, and the Wastewater Consultants regarding design and implementation of the Cleanup Action.

4.4 ELEMENTS OF CLEANUP ACTION

The Cleanup Action includes the following general elements that will be conducted during construction of the Building, detailed in the sections that follow. During construction, the contaminated Shallow Water-Bearing Zone and the upper portion of the Intermediate Water-Bearing Zone will be dewatered and contaminated soil removed as part of the excavation activities. After construction, these portions of the Shallow and Intermediate Water-Bearing Zones will no longer exist on the Block 38 West property. A waterproofing and vapor barrier will be installed along the exterior subsurface walls and the subsurface floor of the Building to prevent the Block 38 West property from being re-contaminated by hazardous substances that may remain in the adjoining rights-of-way. Following completion of the construction activities, compliance groundwater monitoring will not be conducted as the Shallow Water-Bearing Zone and upper portion of the Intermediate Water-Bearing Zone will no longer be present on the Block 38 West property.

- **Site preparation** includes decommissioning monitoring wells within the boundaries of Block 38 West, installing erosion-control measures prior to beginning excavation, and installing shoring piles and lagging for the excavation shoring system along the perimeter of Block 38 West.
- **Dewatering and wastewater treatment and discharge** includes installing a dewatering system to achieve sufficient groundwater drawdown to enable excavation to a desired depth, and installing a wastewater treatment system to treat COCs in groundwater extracted from the Shallow and Intermediate Water-Bearing Zones and the Deep Outwash Aquifer to achieve MTCA cleanup standards and the authorized discharge criteria. Discharged groundwater will be monitored to confirm that the authorized discharge limits are met.
- Contaminated soil management includes excavation, handling, transportation, and disposal of Contaminated Soil generated during mass excavation across the entirety of Block 38 West to approximately 10 feet below msl, and installation of shoring. Contaminated soil removed from Block 38 West will be managed and disposed of per

Ecology (2016) (Ecology Guidance), the disposal criteria of the disposal facilities selected by City Investors, and applicable hazardous waste regulations.

- Compliance soil monitoring includes performance and confirmation soil sampling and analysis to guide the excavation and handling of Contaminated Soil and to document compliance with MTCA Method A cleanup levels.
- Waterproof concrete and vapor barrier installation includes current construction plans that specify that the exterior walls and floor slab of the underground portion of the Building will be constructed of waterproof concrete below the water table and a vapor barrier will be installed above the water table. No provisions for drainage are planned or needed. The exterior walls and floor slab of the underground portion of the Building and the additional protective measures of the waterproof concrete and vapor barrier will prevent future migration of and potential exposure to contaminated groundwater, if present, emanating from sources at properties adjacent to or in the vicinity of Block 38 West.

4.4.1 Site Preparation

Preparation for implementation of the Cleanup Action and for construction of the Building includes installation of security and erosion controls per permitted construction plans. Work related to re-routing underground utilities out of the construction area or decommissioning them will be completed before construction excavation. Current construction plans specify that a system of soldier piles and lagging be installed around the outside perimeter of Block 38 West, which will be installed concurrently with implementation of the Cleanup Action.

Prior to construction excavation, the monitoring wells at Block 38 West will require decommissioning in accordance with the *Minimum Standards for Construction and Maintenance of Wells* (WAC 173-160). Each monitoring well will be decommissioned by backfilling the well casing with bentonite chips from the total depth of the installation to surface grade, and hydrating the bentonite with water in accordance with WAC 173-160-381. The flush-mounted well monuments will be removed.

4.4.2 Dewatering and Wastewater Treatment and Discharge

Construction excavation requires installation of a dewatering system and a wastewater treatment system per plans and specifications of the Wastewater Consultants. The dewatering system will achieve drawdown to approximately 2 feet below final subgrade to a maximum depth of approximately 10 feet below msl across Block 38 West for a period of up to approximately 10 months. The wastewater treatment system will treat groundwater extracted from the Shallow and Intermediate Water-Bearing Zones and the Deep Outwash Aquifer sufficient to achieve permit requirements prior to discharge to Lake Union or, alternatively, to meet criteria for discharge to the municipal sanitary sewer.⁸

Middour Consulting LLC (2018) prepared a groundwater control plan and specifications for a dewatering system to draw groundwater below the maximum excavation depth required for the

_

⁸ The wastewater treatment system will be designed to capture and treat stormwater on the construction site.

redevelopment design. Middour Consulting LLC (2018) indicates that eighteen 12-inch-diameter dewatering wells installed in 30- to 36-inch-diameter boreholes drilled around the perimeter of Block 38 West and screened from 10 feet above msl to 30 feet below msl will extract groundwater at a combined rate of about 800 gallons per minute after about 1 week of pumping, tapering to about 540 gallons per minute after a period of about 1 month of operation. Each well will have a pump capable of initially discharging up to 100 gallons per minute under 70 feet of total dynamic head. The dewatering system will be operated continuously until the excavation is complete, the exterior walls and the floor slab are constructed with waterproof concrete below the water table and a vapor barrier above, and sufficient structural weight of the Building is in place to counteract buoyancy. Dewatering system observation wells currently are being planned.

4.4.3 Contaminated Soil Management

Impacted Soil, including the Contaminated Soil generated during construction of the Building, will require special handling and disposal measures beyond those needed for handling and disposing of clean soil. Contaminated Soil will be excavated, segregated, stored temporarily, and disposed of off the site in accordance with Washington State Solid Waste Management Laws and Regulations (Chapter 70.95 of the Revised Code of Washington; WAC 173-351 and 173-304) and the Ecology Guidance. Based on data collected to date, approximately 76,000 tons of Impacted Soil is estimated to be present at Block 31 West, of which less than about 10 percent is estimated to be Contaminated Soil. Management of Impacted Soil, including Contaminated Soil, will be conducted concurrently with other construction activities such as shoring, dewatering, and excavation of Category 1 soil or clean soil that meets criteria for reuse as clean fill or meets acceptance criteria for disposal at a facility or site selected by the Excavation Subcontractor (Table 10). Appendix C includes soil data representative of Category 1 Soil at Block 38 West. Construction excavation will result in elimination of the Shallow Water-Bearing Zone and the upper portion of the Intermediate Water-Bearing Zone to the depth of final subgrade at Block 38 West

Construction workers encountering Impacted Soil will have completed 40-Hour Hazardous Waste Operations and Emergency Response training in accordance with Part 1910.120 of Title 29 of the Code of Federal Regulations and will have completed Annual 8-Hour Hazardous Waste Operations and Emergency Response refresher training, as needed.

Figures 7 through 13 show the estimated extent of Impacted Soil at Block 38 West in 30-foot-square grid cells and 5-foot-thick lifts (Lift Maps). The estimated extent of Impacted Soil shown on the Lift Maps is based on results from field observations and screening and on laboratory analytical results from the Subsurface Investigation. Lift Maps will be continually updated by the Environmental Consultant as new field-screening results and analytical data become available from performance soil samples collected during the Cleanup Action.

Supplemental characterization of soil, possibly including collection of soil samples from test pits, will be conducted during the Cleanup Action to refine estimated extents of Impacted Soil, including Contaminated Soil. Test pit soil sampling also will serve the purposes of performance and confirmation soil sampling described in more detail in Section 4.4.4, Compliance Soil

Monitoring, and Appendix D, Sampling and Analysis Plan. Test-pit soil sampling and analysis will be conducted by the Environmental Consultant using equipment and an operator provided by the Excavation Subcontractor.

Excavated soil that will be transported off Block 38 West for reuse or disposal will be segregated by category according to Ecology Guidance and/or acceptance criteria of the disposal facility. Four general categories of soil are anticipated to be managed during construction excavation and implementation of the Cleanup Action:

- Category 1 Soil has no olfactory, visual, or other evidence of contamination (e.g., odor, staining, sheen, elevated photoionization detector readings) and meets criteria for reuse as clean fill or meets acceptance criteria for disposal at a facility or site selected by the Excavation Subcontractor. Category 1 Soil does not include Impacted Soil and is not a threat to human health or the environment as indicated by the Ecology Guidance and can be reused where allowed under other regulations. Category 1 Soil will be segregated from Impacted Soil to the maximum extent practicable and transported off Block 38 West to the selected destination. Category 1 Soil is indicated by blue-green hatching on the Lift Maps. Appendix C includes soil data representative of Category 1 Soil at Block 38 West.
- Category 2 Soil contains COCs or other constituents at concentrations meeting acceptance criteria for disposal at the Category 2 disposal facility selected by City Investors, or by the Excavation Subcontractor with approval from City Investors. Category 2 Soil includes soil that may not contain detected concentrations of petroleum hydrocarbons, but exhibits olfactory, visual, or other evidence of contamination. Category 2 Soil includes Impacted Soil (but not Contaminated Soil) containing COCs and other constituents at concentrations meeting acceptance criteria for the Category 2 Soil disposal facility, and not meeting the criteria for handling as Category 1 Soil. Category 2 Soil is indicated by yellow shading on the Lift Maps.
- Category 3 Soil is excavated Impacted Soil containing COCs or other constituents at concentrations not meeting acceptance criteria for disposal at the Category 2 Soil disposal facility, but meeting acceptance criteria for disposal at the Category 3 disposal facility selected by City Investors, or by the Excavation Subcontractor with approval from City Investors. Category 3 Soil may require pre-treatment by the selected disposal facility prior to disposal. Category 3 Soil includes Contaminated Soil and Impacted Soil from Block 38 West containing constituent concentrations not meeting the criteria for disposal as Category 2 Soil. Category 3 Soil is indicated by orange shading on the Lift Maps.
- Category 3+ Soil is excavated Impacted Soil containing COCs or other constituents (e.g., wood material) not meeting acceptance criteria for disposal at the Category 3 Soil disposal facility, but meeting acceptance criteria for disposal at the Category 3+ disposal facility selected by City Investors, or by the Excavation Subcontractor with approval from City Investors. Category 3+ Soil may require pre-treatment by the selected disposal facility prior to disposal. Category 3+ Soil includes Contaminated Soil and Impacted Soil from Block 38 West containing constituent concentrations not meeting the criteria for disposal as Category 3 Soil. Category 3+ Soil is indicated by red shading on the Lift Maps.

The Environmental Consultant will observe the construction excavation and drilling during installation of select shoring piles to depths where Impacted Soil or Contaminated Soil is no longer anticipated, as reflected on the Lift Maps. The Environmental Consultant will conduct field screening, following the procedures described in the Sampling and Analysis Plan (provided as Appendix D), in areas of confirmed or suspected Impacted Soil to classify the soil as Category 2 or Category 3 Soil. Field screening may consist of visual observation for evidence of soil staining or discoloration, and/or notation of noticeable odors, and may include use of field instrumentation such as a photoionization detector for detection of volatile vapors. The Environmental Consultant will perform performance and confirmation soil sampling per Section 4.4.4, Compliance Soil Monitoring, and the Sampling and Analysis Plan (Appendix D). The Environmental Consultant will consult with the Excavation Subcontractor and the Drilling Subcontractor as needed regarding management of Impacted Soil based on soil categorization.

If direct loading of excavated soil into trucks is not feasible, temporary stockpiles will be maintained by the Excavation Subcontractor as needed to segregate soil by disposal category until it can be loaded into trucks. The Excavation Subcontractor will use discretion on best means and methods to construct and maintain stockpiles and to prevent intermixing of soil segregated by disposal category to the maximum extent practicable given the constraints of the construction project. The Excavation Subcontractor may consider use of physical barriers such as traffic plates beneath stockpiles to protect clean underlying soil, and/or concrete blocks between stockpiles to prevent commingling of segregated soil. Plastic sheeting should be placed on top of inactive stockpiles to prevent wind or runoff transport of Impacted Soil, and to prevent stockpile crosscontamination pending load-out. Plastic sheeting is not suitable for use beneath stockpiles of Impacted Soil placed on clean soil.

The Environmental Consultant will assist City Investors with manifesting trucks loaded with Impacted Soil, and tracking quantities of soil delivered to disposal facilities. Documentation of soil disposal will be maintained in the project file and used for purposes of regulatory closure under MTCA.

4.4.4 Compliance Soil Monitoring

Requirements for compliance monitoring during implementation of a cleanup action are specified in WAC 173-340-410. Three types of compliance monitoring are identified in MTCA: protection, performance, and confirmation monitoring. This section documents the compliance soil monitoring to be conducted by the Environmental Consultant as part of Cleanup Action.

Health and Safety Plans, including plans for protection monitoring, will be prepared for use by personnel working in the construction excavation. A site-specific Health and Safety Plan will be prepared for use by Farallon as the Environmental Consultant prior to construction excavation. The General Contractor and subcontractors are responsible for their own health and safety, and will follow their own Health and Safety Plans.

Performance and confirmation sampling to be implemented during the Cleanup Action is described in the following sections. Performance sampling includes collection of discrete soil samples to

identify Contaminated Soil for Cleanup Action excavation planning and regulatory purposes and to categorize Impacted Soil for disposal. Confirmation sampling includes collection of discrete soil samples to confirm the removal of Contaminated Soil from Block 38 West and to confirm achievement of soil cleanup standards. Compliance monitoring documentation requirements and the methodology for soil sampling by the Environmental Consultant are provided in the Sampling and Analysis Plan (Appendix D).

4.4.4.1 Performance Soil Sampling

Performance soil sampling includes collection of discrete in-situ soil samples for laboratory analysis to quantify the concentration of COCs (and other constituents required by the disposal facilities) in soil removed from an excavation area with known or suspected Impacted Soil. Results from performance soil sampling conducted to date are indicated on the Lift Maps (Figures 7 through 13) and were used to estimate the limits of Contaminated Soil. Results from future performance soil sampling will be used to refine the estimated lateral and vertical extent of Contaminated Soil and to categorize Impacted Soil for disposal. Key objectives of the performance soil sampling are to minimize the quantity of Impacted Soil requiring disposal as Category 2 or Category 3 Soil and to identify the limits of Contaminated Soil. Results from the performance soil sampling will be used to continually update the Lift Maps, and to track the progress of the Cleanup Action.

The locations and frequency of collection of performance soil samples will be at the discretion of the Environmental Consultant based on professional judgment, requirements for regulatory closure under MTCA, and requirements of the disposal facilities. The frequency of performance soil sampling will be dependent on existing soil analytical data and the results from field screening conducted by the Environmental Consultant, as described in Section 4.4.3, Contaminated Soil Management. If COCs or other constituents required for testing by the disposal facilities are detected in soil samples collected in a particular area, the area may be further divided by the Environmental Consultant into subareas, and additional performance samples may be collected to assess lateral extents. The frequency of performance soil sampling will be higher near the lateral and vertical limits of Contaminated Soil to provide sufficient samples for confirmation sampling. Confirmation soil sampling will be performed as described in Section 4.4.4.2, Confirmation Soil Sampling, to ensure that cleanup standards are met.

4.4.4.2 Confirmation Soil Sampling

Confirmation soil sampling will be conducted once performance soil sampling results indicate the excavation is approaching the lateral and vertical limits of Contaminated Soil. Confirmation soil sampling will consist of collecting and analyzing in-situ soil samples from the base and sidewalls of the excavation to confirm that no COCs are present at concentrations exceeding their respective MTCA cleanup levels. Performance soil sampling locations will be used as confirmation soil sampling points in cases where analytical results for the performance soil samples confirm that cleanup levels have been attained.

4.4.5 Waterproof Concrete and Vapor Barrier Installation

Current construction plans specify that the exterior walls and floor slab of the underground portion of the Building will be constructed along the boundaries of Block 38 West, and the floor will be constructed at approximately 8 feet below msl. The exterior walls and floor slab of the underground portion of the Building will be constructed of waterproof concrete below the water table and a vapor barrier will be installed above the water table. No provisions for drainage are planned or needed. The exterior walls and floor slab of the underground portion of the Building and the additional protective measures of the waterproof concrete and vapor barrier will prevent future migration of and potential exposure to contaminated groundwater, if present, emanating from sources at properties adjacent to or in the vicinity of Block 38 West.

4.5 CLEANUP ACTION COMPLETION REPORT

Following construction completion, the Environmental Consultant will prepare a Cleanup Action Completion Report documenting the Cleanup Action, per WAC 173-340-400(6)(b). The Cleanup Action Completion Report, in addition to reporting documenting the remedial investigation, feasibility study, and Cleanup Action Plan, will provide the technical basis to support a request for a No Further Action determination from Ecology, and a summary of the Cleanup Action, including the limits of the contaminated soil excavation, quantities of contaminated soil disposed of off the site, treatment of groundwater, and results from compliance monitoring.

5.0 REFERENCES

- Galster, Richard W., and William T. Laprade. 1991. "Geology of Seattle, Washington, United States of America." *Bulletin of the Association of Engineering Geologists* 28 (No. 3): 235-302.
- GeoEngineers, Inc. 2018. *Geotechnical Engineering Services, Block 38, Seattle, Washington.*Prepared for City Investors IX, LLC. October 17.
- HartCrowser, Inc. 1999. Letter Regarding Preliminary Environmental Assessment Update, Westlake Avenue Property (428, 500, 510, and 520 Westlake Avenue North), Seattle, Washington. From Rob Roberts and Julie K.W. Wukelic. To City Investors VI LLC, c/o Joe Delaney, Foster Pepper & Shefelman. April 5.
- King County. 2013. Parcel Viewer KCGIS Center, https://gismaps.kingcounty.gov/parcelviewer2/. (September 17, 2018.)
- Middour Consulting LLC. 2018. *Groundwater Control Plan, Block 38, Seattle, Washington*. Prepared for GLY Construction. October 17.
- Terra Associates, Inc. 1998. Level I Environmental Site Assessment, Westlake Avenue Building, 534 Westlake Avenue North, Seattle, Washington. Prepared for Marcus and Millichap. March 25.
- U.S. Geological Survey. 1909. *Seattle Special Quadrangle Map. May.*
- U.S. Environmental Protection Agency (EPA). 1996. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. Publication No. EQASOP-GW-001. July. Updated January 19, 2010.
- Washington State Department of Ecology (Ecology). 2016. *Guidance for Remediation of Petroleum Contaminated Sites*. (Revised.) Publication No. 10-09-057. June.

6.0 LIMITATIONS

6.1 GENERAL LIMITATIONS

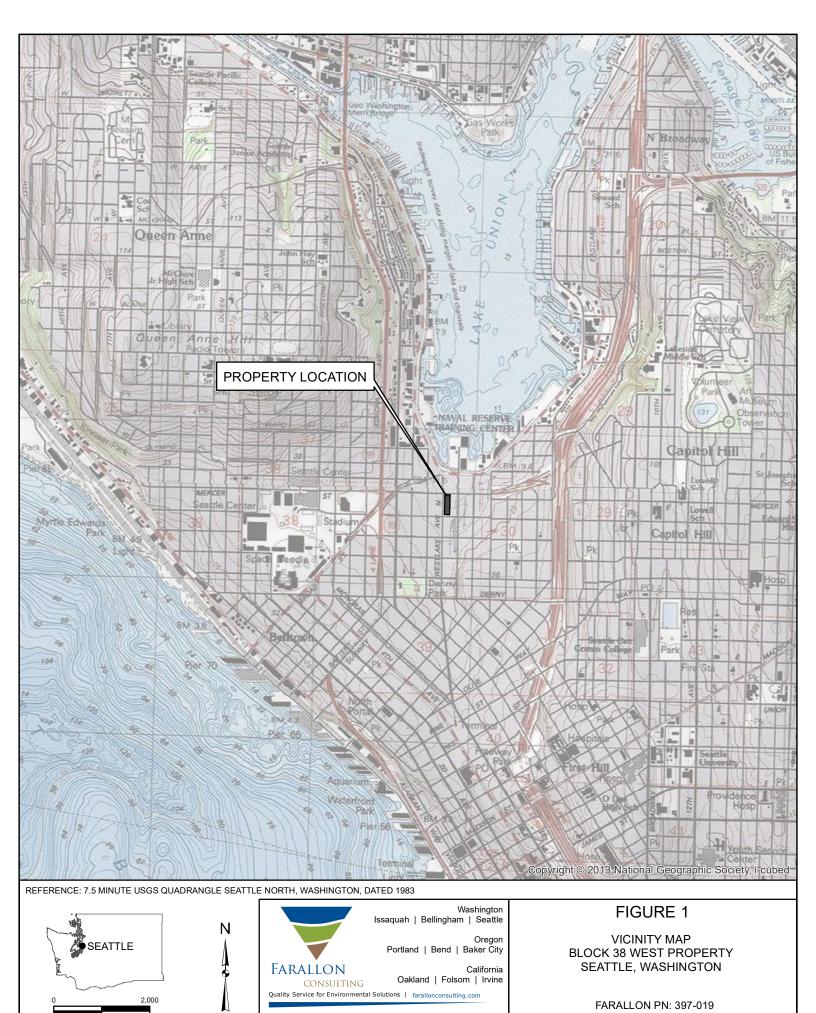
The conclusions contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:

- Accuracy of Information. Farallon obtained, reviewed, and evaluated certain information used in this report/assessment from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy or authenticity. Should the information upon which Farallon relied prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.
- Reconnaissance and/or Characterization. Farallon performed a reconnaissance and/or characterization of the Site that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions. Contamination may exist in other areas of the Site that were not investigated or were inaccessible. Site activities beyond Farallon's control could change at any time after the completion of this report/assessment.

For the foregoing reasons, Farallon cannot and does not warrant or guarantee that the Site is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions can be considered valid only as of the date of the report.

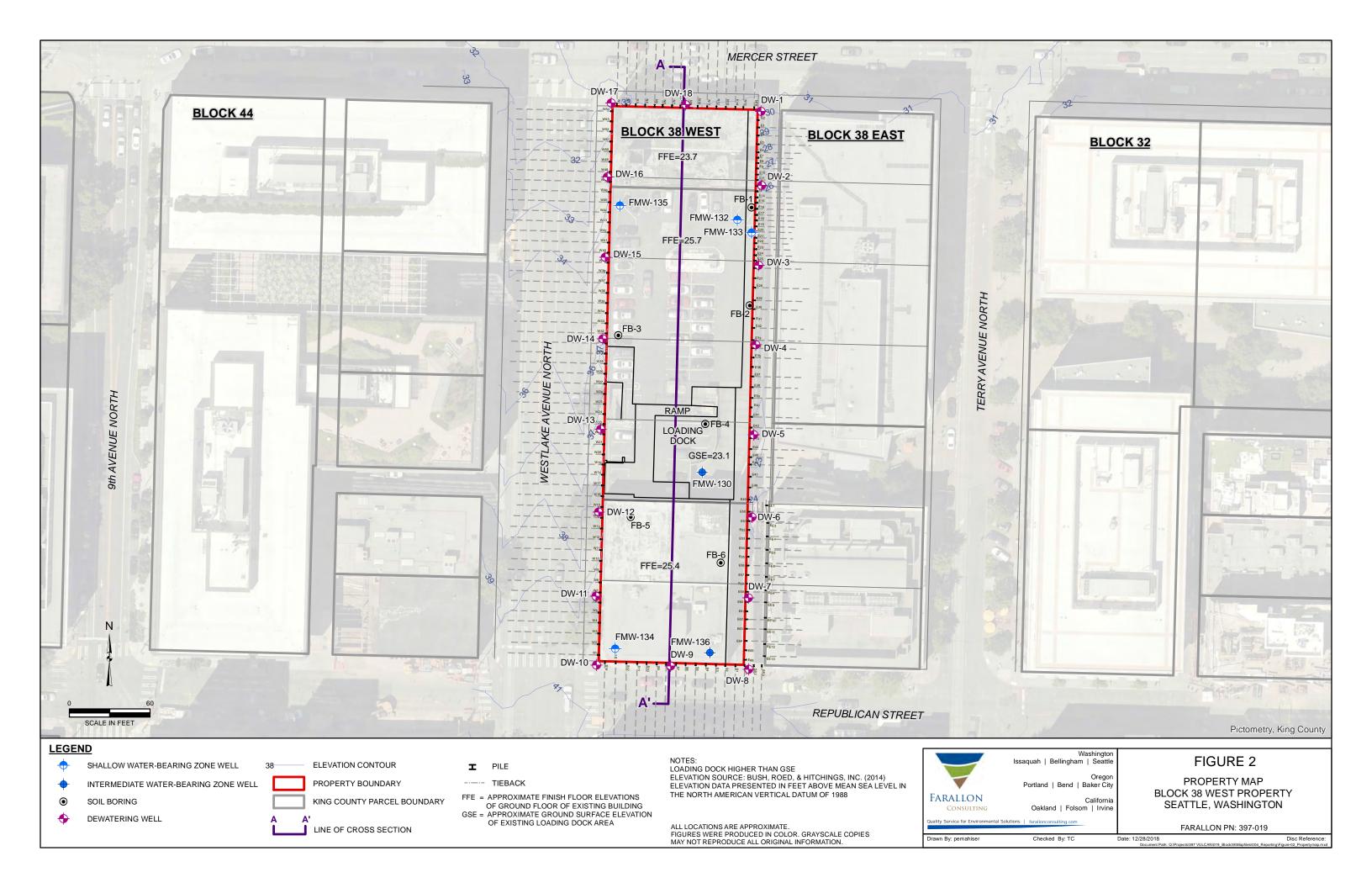
This report/assessment has been prepared in accordance with the contract for services between Farallon and City Investors IX LLC, and currently accepted industry standards. No other warranties, representations, or certifications are made.

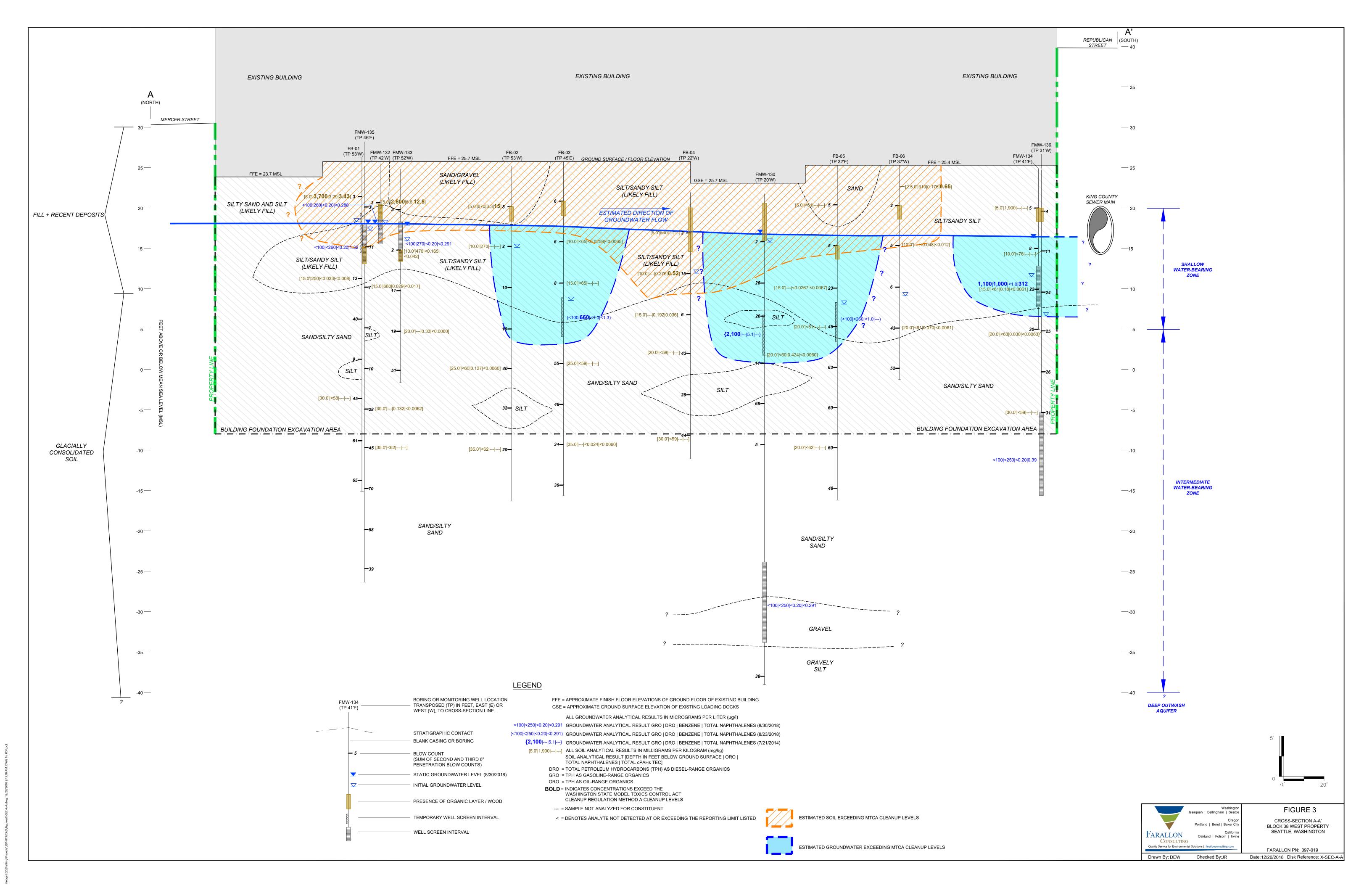
6.2 LIMITATION ON RELIANCE BY THIRD PARTIES

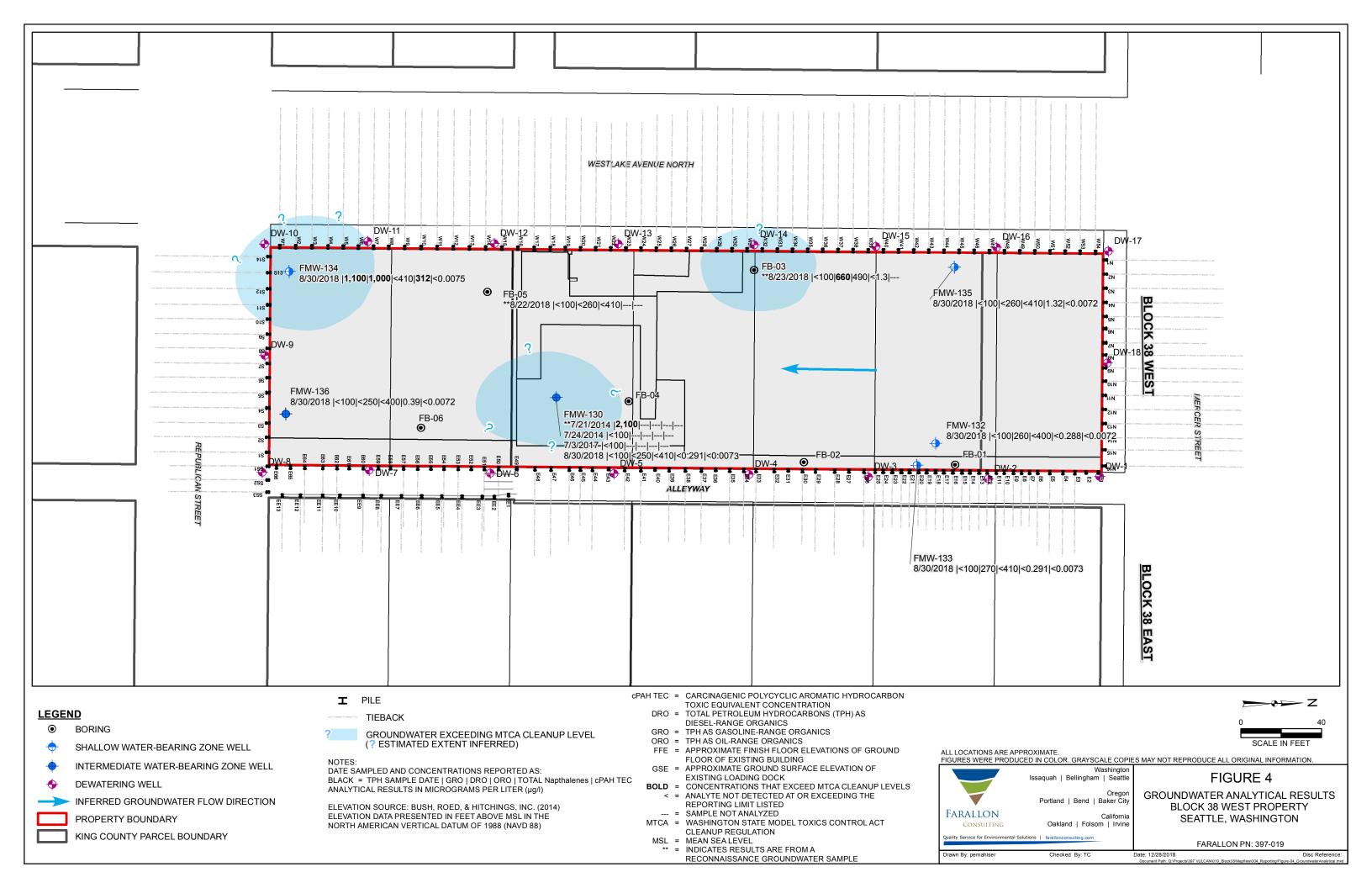

Reliance by third parties is prohibited. This report/assessment has been prepared for the exclusive use of City Investors IX LLC to address the unique needs of City Investors IX LLC at Block 38 West at a specific point in time.

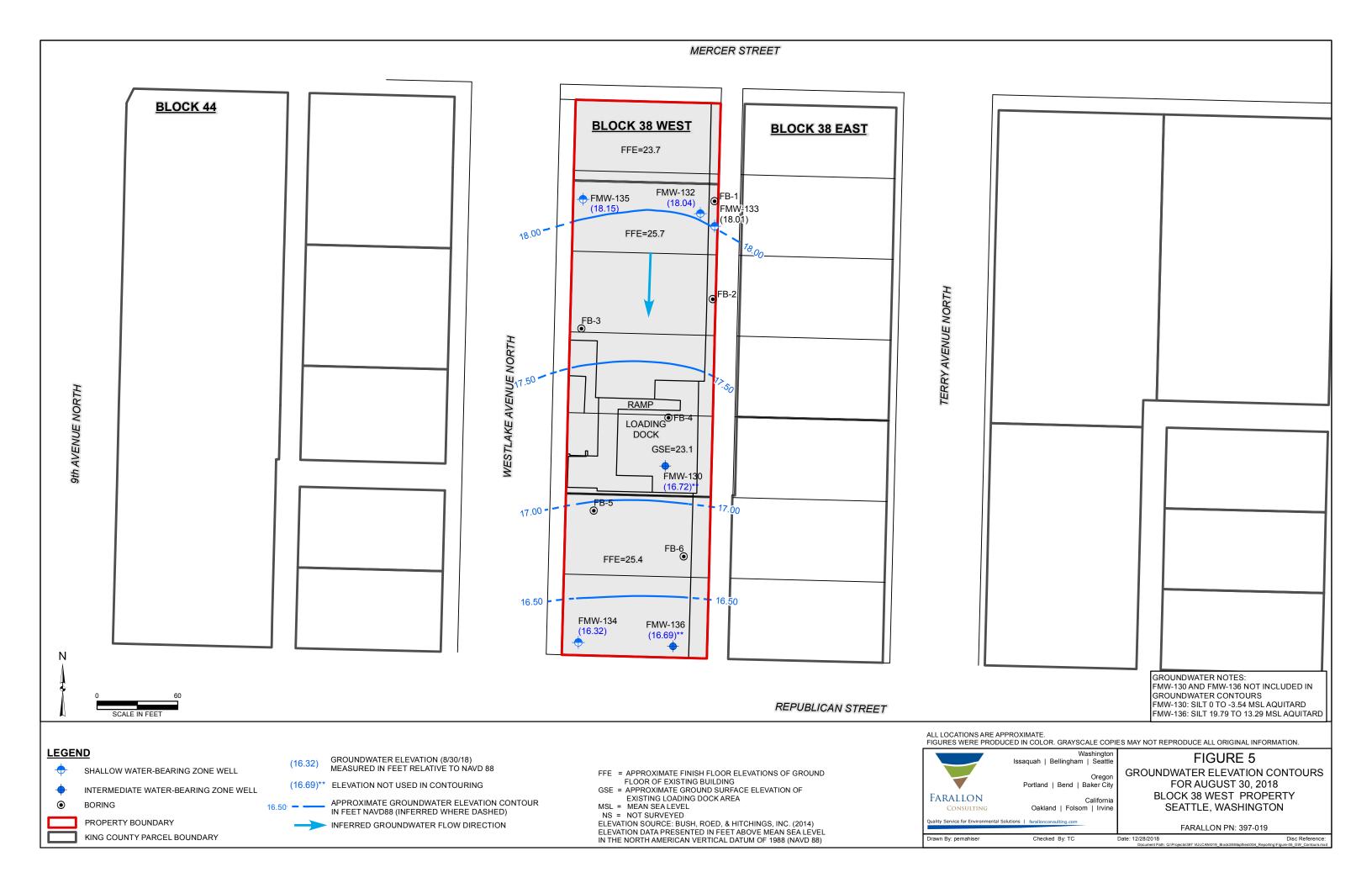
This is not a general grant of reliance. No one other than City Investors IX LLC may rely on this report unless Farallon agrees in advance to such reliance in writing. Any unauthorized use, interpretation, or reliance on this report/assessment is at the sole risk of that party and Farallon will have no liability for such unauthorized use, interpretation, or reliance.

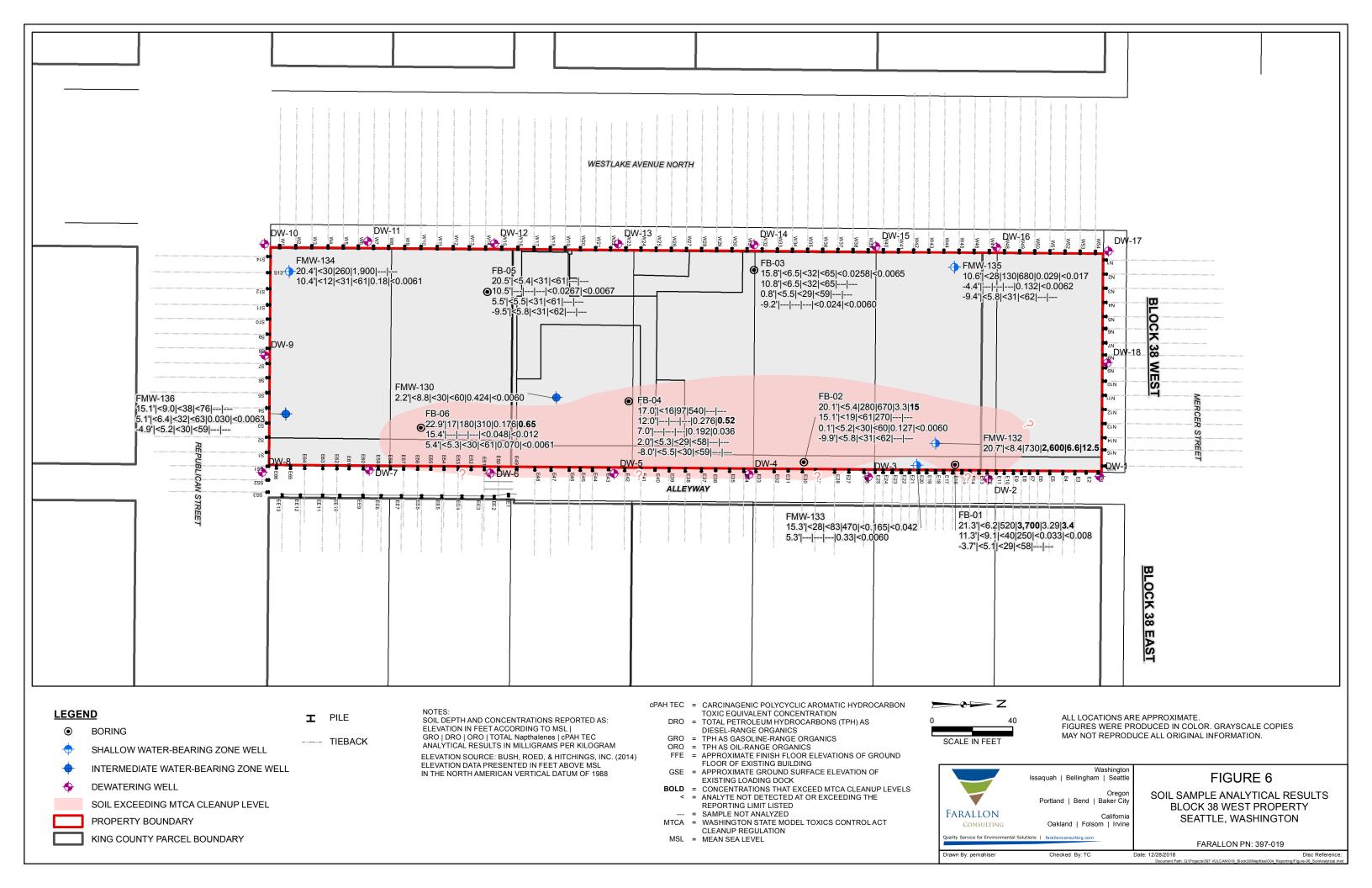
FIGURES

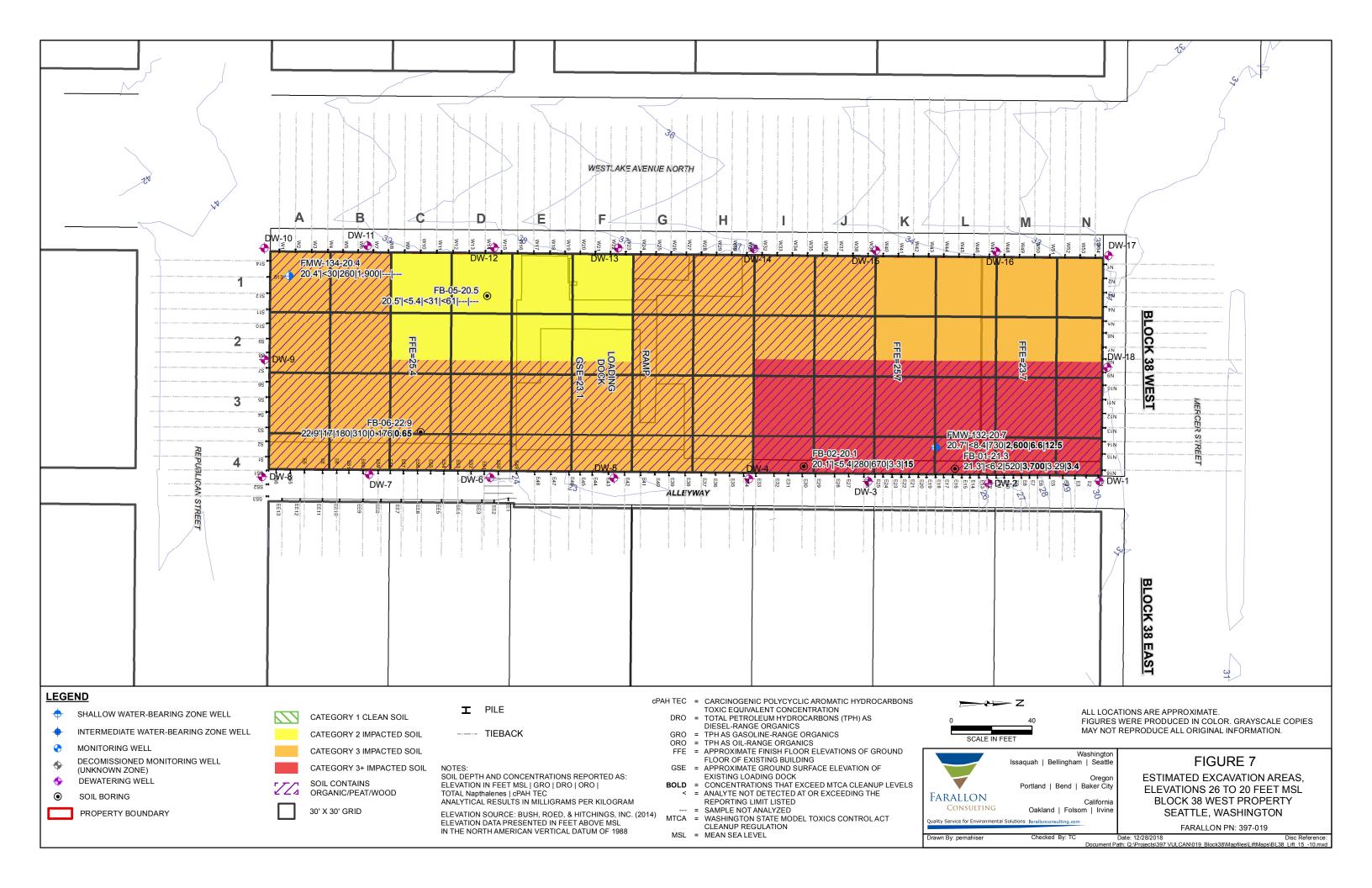

SUBSURFACE INVESTIGATION REPORT AND ENVIRONMENTAL MEDIA
MANAGEMENT PLAN
Block 38 West Property
500 through 536 Westlake Avenue North
Seattle, Washington

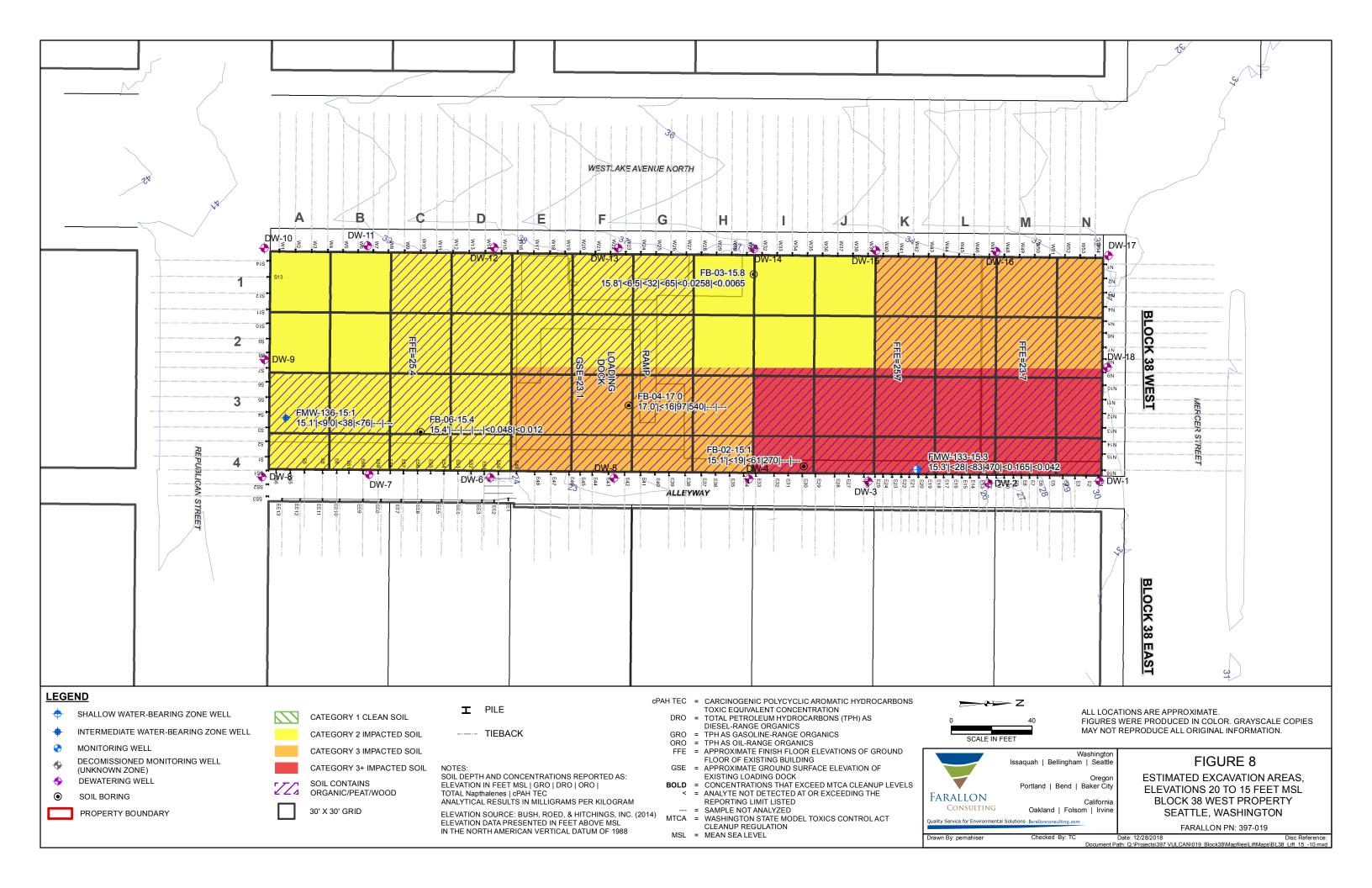

Farallon PN: 397-019

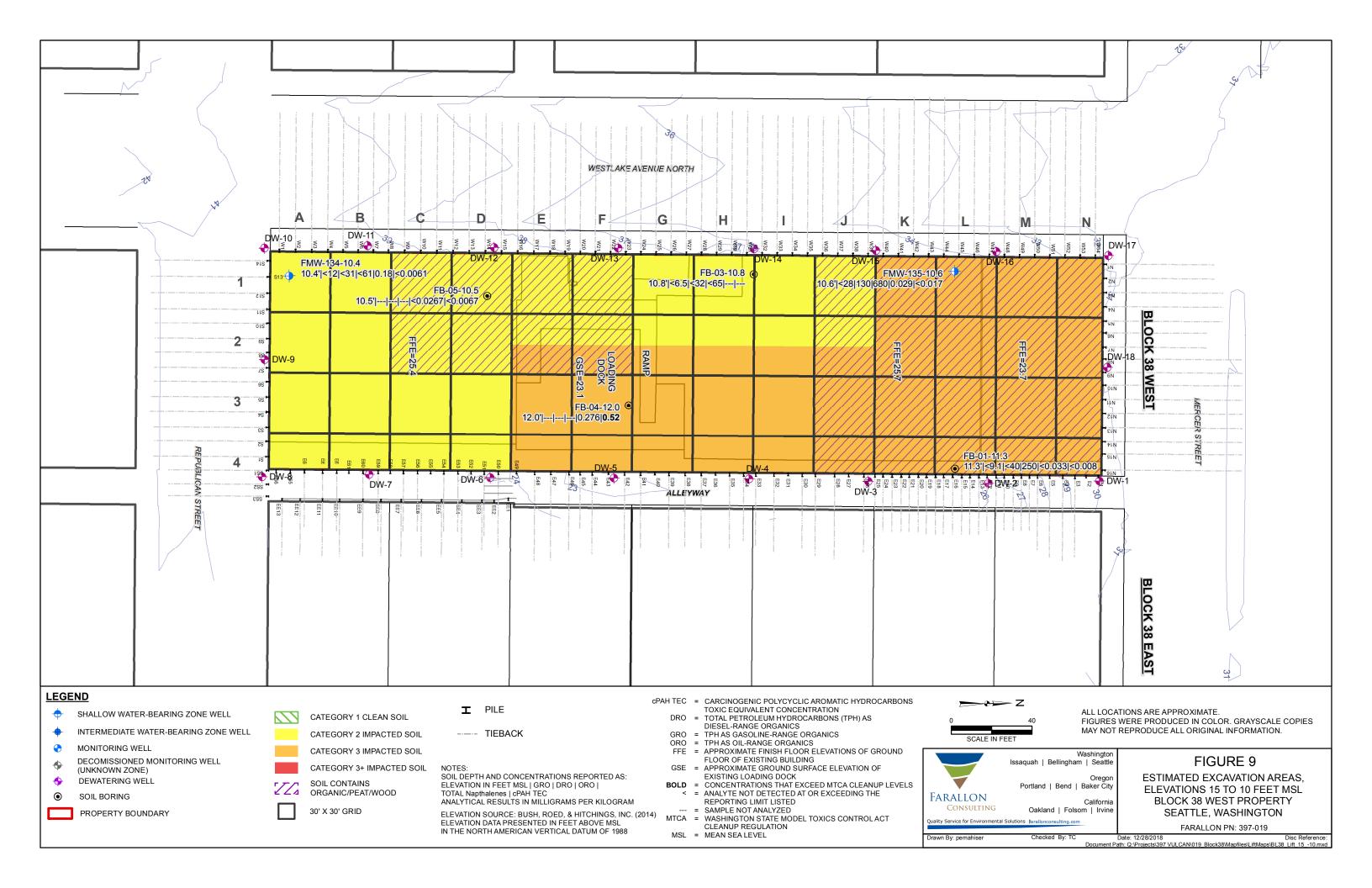


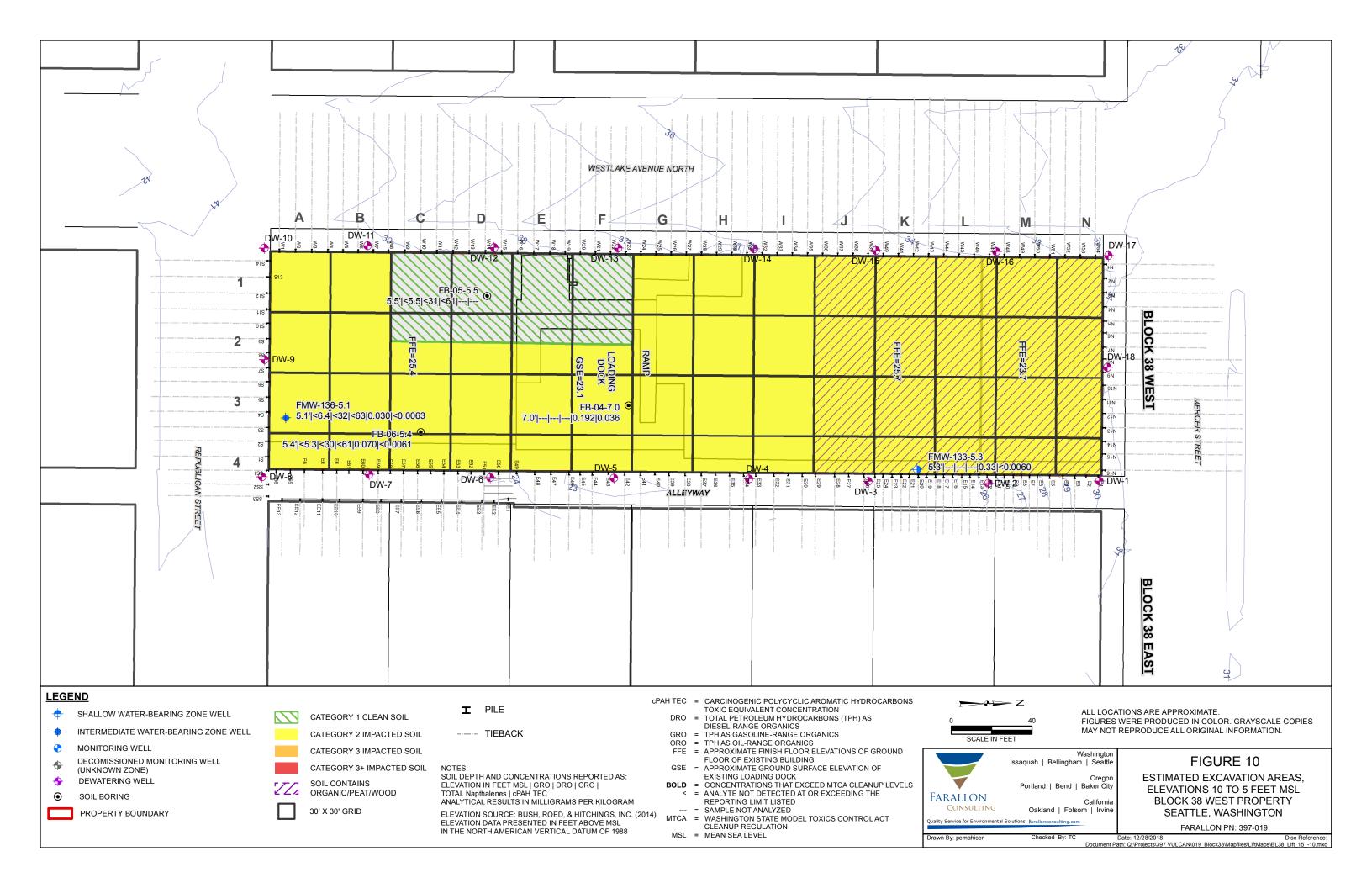

Drawn By: jjones

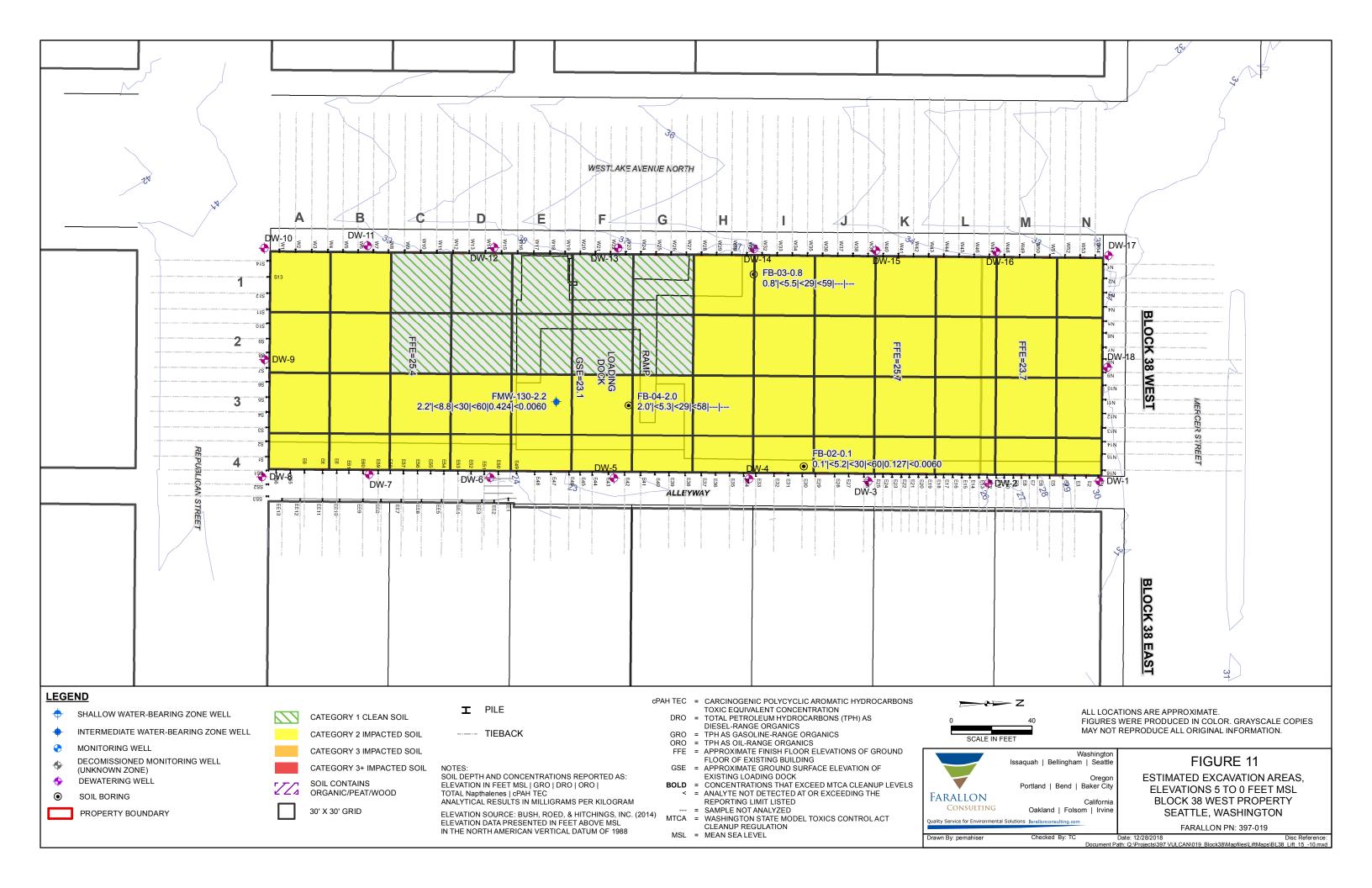

Checked By: BJ
Date: 10/29/2018
Document Path: Q:\Projects\397 VULCAN\019 Block38\Mapfiles\004_Reporting\Figure-01_SiteVicinity.mxd

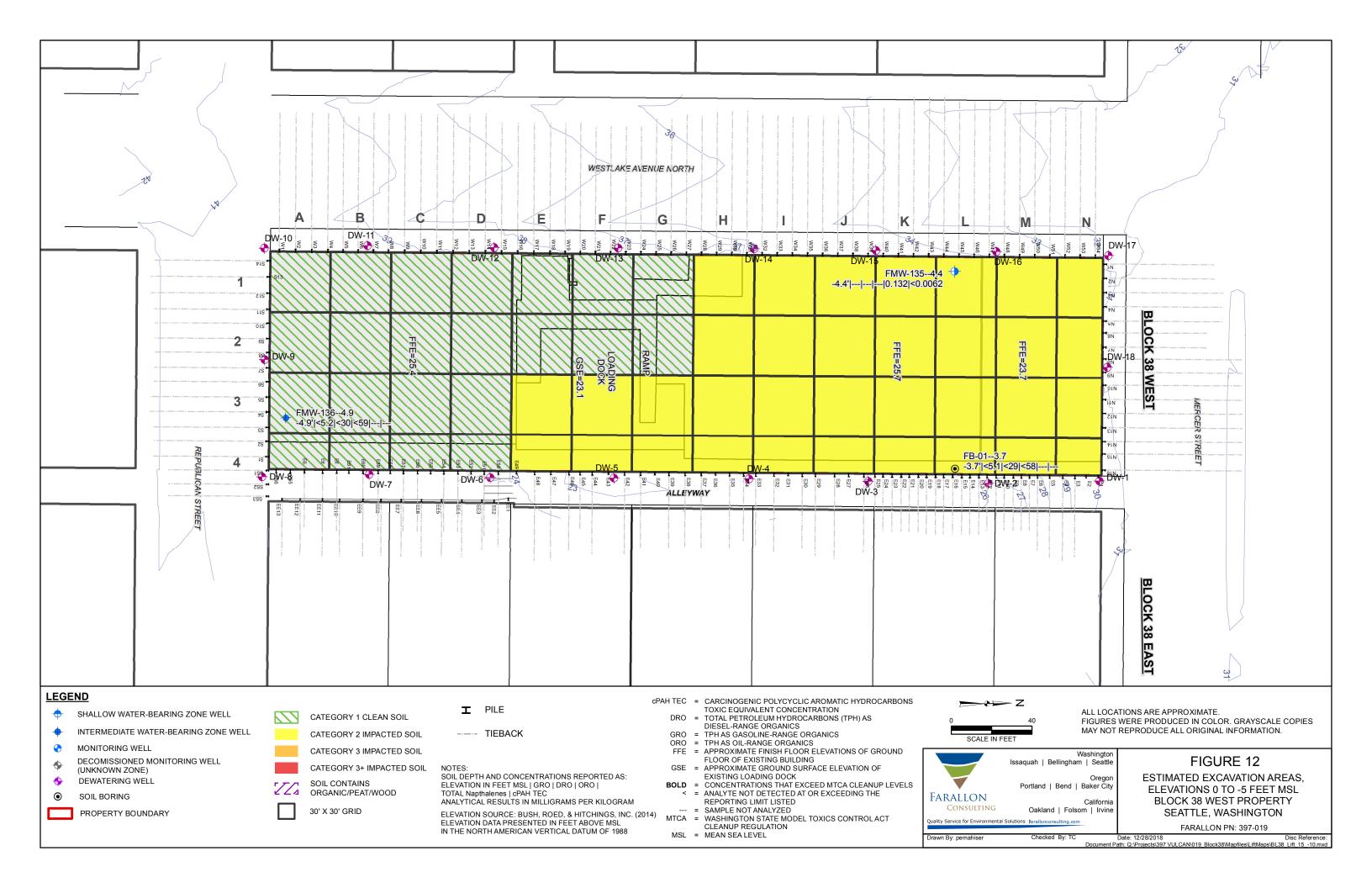












TABLES

SUBSURFACE INVESTIGATION REPORT AND ENVIRONMENTAL MEDIA
MANAGEMENT PLAN
Block 38 West Property
500 through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019

Table 1 Soil Analytical Results for TPH and BTEX Block 38 West Property Seattle, Washington

Farallon PN: 397-019

					Analytical Results (milligrams per kilogram)								
		Camala Dandh	Sample		NWTI	PH-Dx ²	NWTPH-Dx v	vith Silica Gel ²	NWTPH-Gx ³		EPA Method 8021B ⁴		
Sample Location	Sample Identification	Sample Depth (feet) ¹	Elevation (feet msl) ¹	Sample Date	DRO	ORO	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
	FB-01-5.0-082118	5.0	21.3	8/21/2018	520	3,700	510 N	1,100	< 6.2	< 0.020	< 0.062	< 0.062	< 0.124
FB-01	FB-01-15.0-082118	15.0	11.3	8/21/2018	< 40	250	< 40	< 81	< 9.1	< 0.020	< 0.091	< 0.091	< 0.182
	FB-01-30.0-082118	30.0	-3.7	8/21/2018	< 29	< 58			< 5.1	< 0.020	< 0.051	< 0.051	< 0.102
	FB-02-5.0-082018	5.0	20.1	8/20/2018	280 N	670			< 5.4	< 0.020	< 0.054	< 0.054	< 0.108
FB-02	FB-02-10.0-082018	10.0	15.1	8/20/2018	< 61	270			< 19	< 0.037	< 0.19	< 0.19	< 0.38
FB-02	FB-02-25.0-082018	25.0	0.1	8/20/2018	< 30	< 60			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104
	FB-02-35.0-082018	35.0	-9.9	8/20/2018	< 31	< 62			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116
	FB-03-10.0-082318	10.0	15.8	8/23/2018	< 32	< 65			< 6.5	< 0.020	< 0.065	< 0.065	< 0.130
FB-03	FB-03-15.0-082318	15.0	10.8	8/23/2018	< 32	< 65			< 6.5	< 0.020	< 0.065	< 0.065	< 0.130
	FB-03-25.0-082318	25.0	0.8	8/23/2018	< 29	< 59			< 5.5	< 0.020	< 0.055	< 0.055	< 0.110
	FB-04-5.0-082118	5.0	17.0	8/21/2018	97 N	540			< 16	< 0.033	< 0.16	< 0.16	< 0.32
FB-04	FB-04-20.0-082118	20.0	2.0	8/21/2018	< 29	< 58			< 5.3	< 0.020	< 0.053	< 0.053	< 0.106
	FB-04-30.0-082118	30.0	-8.0	8/21/2018	< 30	< 59			< 5.5	< 0.020	< 0.055	< 0.055	< 0.110
	FB-05-5.0-082218	5.0	20.5	8/22/2018	< 31	< 61			< 5.4	< 0.020	< 0.054	< 0.054	< 0.108
FB-05	FB-05-20.0-082218	20.0	5.5	8/22/2018	< 31	< 61			< 5.5	< 0.020	< 0.055	< 0.055	< 0.110
	FB-05-35.0-082218	35.0	-9.5	8/22/2018	< 31	< 62			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116
FB-06	FB-06-2.5-082218	2.5	22.9	8/22/2018	180	310			17 T	< 0.024	< 0.12	< 0.12	< 0.24
FB-00	FB-06-20.0-082218	20.0	5.4	8/22/2018	< 30	< 61			< 5.3	< 0.020	< 0.053	< 0.053	< 0.106
FMW-130	F-MW-130-20.0-072114	20.0	2.2	7/21/2014	< 30	< 60			< 8.8	< 0.020	< 0.088	< 0.088	< 0.176
FMW-132	FMW-132-5.0-082418	5.0	20.7	8/24/2018	730	2,600			< 8.4	< 0.020	< 0.084	< 0.084	< 0.168
FMW-133	FMW-133-10.0-082418	10.0	15.3	8/24/2018	< 83	470			< 28	< 0.057	< 0.28	< 0.28	< 0.56
FMW-134	FMW-134-5.0-082318	5.0	20.4	8/23/2018	260	1,900			< 30	< 0.059	< 0.30	< 0.30	< 0.60
FIVI W -134	FMW-134-15.0-082318	15.0	10.4	8/23/2018	< 31	< 61			< 12	< 0.023	< 0.12	< 0.12	< 0.24
FMW-135	FMW-135-15.0-082418	15.0	10.6	8/24/2018	130	680			< 28	< 0.055	< 0.28	< 0.28	< 0.56
LIMI M -133	FMW-135-35.0-082418	35.0	-9.4	8/24/2018	< 31	< 62			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116
	FMW-136-10.0-082218	10.0	15.1	8/22/2018	< 38	< 76			< 9.0	< 0.020	< 0.090	< 0.090	< 0.18
FMW-136	FMW-136-20.0-082218	20.0	5.1	8/22/2018	< 32	< 63			< 6.4	< 0.020	< 0.064	< 0.064	< 0.128
	FMW-136-30.0-082218	30.0	-4.9	8/22/2018	< 30	< 59			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104
MTCA Method	l A Cleanup Levels for Soil	5			2,000	2,000	2,000	2,000	30/100 ⁶	0.03	7	6	9

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

BTEX = benzene, toluene, ethylbenzene and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

msl = mean sea level

N = hydrocarbons in the oil-range are impacting the diesel-range result

ORO = TPH as oil-range organics

T = the sample chromatogram is not similar to a typical gasoline standard.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

⁻ denotes sample not analyzed.

¹Depth in feet below ground surface. Elevation in feet mean sea level using North American Vertical Datum of 1988.

²Analyzed by Northwest Method NWTPH-Dx. Results denoted as analyzed by NWTPH-Dx with silica gel were analyzed using a sample extract treated with sulfuric acid/silica gel cleanup procedure.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁶Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected.

Table 2 Soil Analytical Results for PAHs Block 38 West Property Seattle, Washington Farallon PN: 397-019

													Analytical	Results (mil	lligrams per	kilogram) ²								
									,	Non-Carcin	ogenic PAH		Maryticar	resures (min	ingrams per	Kilogi alli)				Carcinog	enic PAHs			
										ton curen	ogeme 11111	,								curting				
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Elevation (feet msl) ¹	Sample Date	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ^{3,5}	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{4,5}
FB-01	FB-01-5.0-082118	5.0	21.3	8/21/2018	0.99	1.1	1.2	3.29	0.46	0.32	1.0	1.9	4.8	0.46	5.4	6.8	2.5	2.6	2.9	0.76	3.1	0.45	1.6	3.4
1 0 01	FB-01-15.0-082118	15.0	11.3	8/21/2018	< 0.011	< 0.011	< 0.011	< 0.033	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.008
FB-02	FB-02-5.0-082018	5.0	20.1	8/20/2018	1.1	0.86	1.3	3.3	1.4	0.45	3.3	8.5	18	1.3	12	25	11	9.8	12	3.5	9.7	1.6	8.0	15
1 B-02	FB-02-25.0-082018	25.0	0.1	8/20/2018	0.083	0.020	0.024	0.127	0.027	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0060
FB-03	FB-03-10.0-082318	10.0	15.8	8/23/2018	< 0.0086	< 0.0086	< 0.0086	< 0.0258	< 0.0086	< 0.0086	< 0.0086	< 0.0086	0.011	< 0.0086	0.015	0.012	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0065
1 B-03	FB-03-35.0-082318	35.0	-9.2	8/23/2018	< 0.0080	< 0.0080	< 0.0080	< 0.024	< 0.0080	< 0.0080	< 0.0080	< 0.0080	0.015	< 0.0080	0.017	0.017	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0060
FB-04	FB-04-10.0-082118	10.0	12.0	8/21/2018	0.12	0.057	0.099	0.276	0.21	0.045	0.29	0.21	0.97	0.22	1.0	1.1	0.36	0.67	0.47	0.18	0.95	0.041	0.19	0.52
110-04	FB-04-15.0-082118	15.0	7.0	8/21/2018	0.052	0.048	0.092	0.192	0.049	< 0.0082	0.029	0.018	0.078	0.043	0.16	0.1	0.027	0.027	0.025	0.0099	0.028	< 0.0082	0.017	0.036
FB-05	FB-05-15.0-082218	15.0	10.5	8/22/2018	< 0.0089	< 0.0089	< 0.0089	< 0.0267	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0067
	FB-06-2.5-082218	2.5	22.9	8/22/2018	0.087	0.044	0.045	0.176	0.13	0.042	0.20	0.35	0.81	0.094	0.89	1.1	0.49	0.47	0.52	0.17	0.50	0.054	0.34	0.65
FB-06	FB-06-10.0-082218	10.0	15.4	8/22/2018	< 0.016 H	< 0.016 H	< 0.016 H	< 0.048	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	0.020 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.012
	FB-06-20.0-082218	20.0	5.4	8/22/2018	0.070	< 0.0081	< 0.0081	0.070	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0061
FMW-130	F-MW-130-20.0-072114	20.0	2.2	7/21/2014	0.38	0.016	0.028	0.424	0.014	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0060
FMW-132	FMW-132-5.0-082418	5.0	20.7	8/24/2018	2.0	2.0	2.6	6.6	1.5	0.10	3.3	4.4	15	0.84	18	27	9.4	11	10	2.9	13	1.4	4.1	12.5
FMW-133	FMW-133-10.0-082418	10.0	15.3	8/24/2018	< 0.055	< 0.055	< 0.055	< 0.165	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.042
171VI W -133	FMW-133-20.0-082418	20.0	5.3	8/24/2018	0.25	0.035	0.042	0.33	0.021	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0060
FMW-134	FMW-134-15.0-082318	15.0	10.4	8/23/2018	0.14	0.012	0.028	0.18	0.014	< 0.0081	< 0.0081	< 0.0081	< 0.0081	0.016	0.021	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0061
FMW-135	FMW-135-15.0-082418	15.0	10.6	8/24/2018	0.029	< 0.022	< 0.022	0.029	0.039	< 0.022	< 0.022	< 0.022	0.042	< 0.022	0.068	0.073	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.017
FWW-133	FMW-135-30.0-082418	30.0	-4.4	8/24/2018	0.12	0.012	< 0.0082	0.132	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0062
FMW-136	FMW-136-20.0-082218	20.0	5.1	8/22/2018	0.030	< 0.0084	< 0.0084	0.030	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0063
MTCA Method	A Cleanup Level for Soil 6							5	4,800 ⁷	NE	24,0007	NE	3,200 ⁷	3,200 ⁷	NE	2,400 ⁷								0.1

Results in **bold** denote concentrations exceeding applicable cleanup levels.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

H = sample analyzed outside of holding time

msl = mean sea level

NE = not established

PAHs = polycyclic aromatic hydrocarbons TEC = toxic equivalent concentration

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface. Elevation in feet mean sea level using North American Vertical Datum of 1988.

²Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM.

³Sum of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene.

⁴Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁵For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate total. If all constituent concentrations are non-detect, calculated total is indicated non-detect.

⁶Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

Washington State Department of Ecology Cleanup Levels and Risk Calculations, under MTCA Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

Table 3 Soil Analytical Results for Metals Block 38 West Property Seattle, Washington Farallon PN: 397-019

					Analytical Results (milligrams per kilogram) ²					
Sample Location	Sample Identification	Sample Depth (feet) 1	Sample Elevation (feet msl) ¹	Sample Date	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
FB-01	FB-01-15.0-082118	15.0	11.3	8/21/2018	< 0.81	60	< 8.1	< 0.40	< 16	< 1.6
FB-02	FB-02-10.0-082018	10.0	15.1	8/20/2018	< 1.2	36	24	1.2	< 12	< 2.5
FB-03	FB-03-10.0-082318	10.0	15.8	8/23/2018	< 0.65	100	8.9	< 0.32	< 13	< 1.3
FB-03	FB-03-35.0-082318	35.0	-9.2	8/23/2018	< 0.60	42	< 6.0	< 0.30	< 12	< 1.2
FB-04	FB-04-5.0-082118	5.0	17.0	8/21/2018	< 1.1	53	56	< 0.55	< 11	< 2.2
FB-05	FB-05-35.0-082218	35.0	-9.5	8/22/2018	< 0.62	38	< 6.2	< 0.31	< 12	< 1.2
FMW-133	FMW-133-10.0-082418	10.0	15.3	8/24/2018	< 1.7	29	18	< 0.83	< 17	< 3.3
TWIW-133	FMW-133-20.0-082418	20.0	5.3	8/24/2018	< 0.60	27	< 6.0	< 0.30	< 12	< 1.2
FMW-134	FMW-134-5.0-082318	5.0	20.4	8/23/2018	< 1.7	19	< 17	< 0.83	< 17	< 3.3
TWIW-134	FMW-134-15.0-082318	15.0	10.4	8/23/2018	< 0.61	42	< 6.1	< 0.30	< 12	< 1.2
	FMW-135-5.0-082418	5.0	20.6	8/24/2018	< 0.61	48	16	< 0.31	< 12	< 1.2
FMW-135	FMW-135-25.0-082418	25.0	0.6	8/24/2018	< 0.69	60	< 6.9	< 0.35	< 14	< 1.4
	FMW-135-30.0-082418	30.0	-4.4	8/24/2018	< 0.62	44	< 6.2	< 0.31	< 12	< 1.2
FMW-136	FMW-136-20.0-082218	20.0	5.1	8/22/2018	< 0.63	42	< 6.3	< 0.32	< 13	< 1.3
171V1 VV -130	FMW-136-30.0-082218	30.0	-4.9	8/22/2018	< 0.59	41	< 5.9	< 0.30	< 12	< 1.2
MTCA Cleanup Level	s for Soil ³				2	2,000	250	2	4004	400 ⁴

NOTES:

msl = mean sea level

 $[\]leq$ denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹Depth in feet below ground surface. Elevation in feet mean sea level using North American Vertical Datum of 1988.

²Analyzed by U.S. Environmental Protection Agency Methods 6010D/7471B.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section

⁹⁰⁰ of Chapter 173-340 of the Washington Administrative Code, as amended 2013, unless otherwise noted.

⁴Washington State Department of Ecology Cleanup Levels and Risk Calculations, under MTCA Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway,

Table 4 Soil Analytical Results for Halogenated VOCs Block 38 West Property

Seattle, Washington Farallon PN: 397-019

					Analytical Results (milligrams per kilogram) ²						
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Elevation (feet MSL) ¹	Sample Date	PCE	тсе	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride		
FB-02	FB-02-10.0-082018	10.0	15.1	8/20/2018	< 0.0028	< 0.0028	< 0.0028	< 0.0028	< 0.0028		
FB-02	FB-02-25.0-082018	25.0	0.1	8/20/2018	< 0.00085	< 0.00085	< 0.00085	< 0.00085	< 0.00085		
FB-04	FB-04-20.0-082118	20.0	2.0	8/21/2018	< 0.00093	< 0.00093	< 0.00093	< 0.00093	< 0.00093		
FB-05	FB-05-20.0-082218	20.0	5.5	8/22/2018	< 0.00090	< 0.00090	< 0.00090	< 0.00090	< 0.00090		
FMW-135	FMW-135-50.0-082418	50.0	-24.4	8/24/2018	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074		
FMW-136	FMW-136-10.0-082218	10.0	15.1	8/22/2018	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015		
171VI W -130	FMW-136-20.0-082218	20.0	5.1	8/22/2018	< 0.00094	< 0.00094	< 0.00094	< 0.00094	< 0.00094		
MTCA Clear	up Levels for Soil ³				0.05	0.03	160 ⁴	1,6004	0.674		

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

MSL = mean sea level

PCE = tetrachloroethene

TCE = trichloroethene

VOC = volatile organic compound

< denotes analyte not detected at or exceeding the reporting limit listed.

Depth in feet below ground surface. Elevation in feet mean sea level using North American Vertical Datum of 1988.

²Analyzed by U.S. Environmental Protection Agency Method 8260C.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

Table 5 Stabilized Groundwater Field Parameters Block 38 West Property Seattle, Washington

Farallon PN: 397-019

Monitoring Well	Screened Interval (feet msl) ¹	Date	Temperature (degrees Celsius)	pH (Standard Units)	Specific Conductivity (mS/cm)	Turbidity (NTU)
		7/24/2014	17.09	6.63	0.680	3.2
FMW-130	-22.8 to -32.8	7/3/2017	15.1	6.41	0.636	
		8/30/2018	15.3	6.60	0.665	9.2
FMW-132	20.7 to 15.7	8/30/2018	19.5	6.39	1.073	7.9
FMW-133	18.8 to 13.8	8/30/2018	18.4	6.28	1.188	5.1
FMW-134	13.4 to 8.4	8/30/2018	16.6	6.31	0.780	20.9
FMW-135	18.6 to 13.6	8/30/2018	18.5	6.47	0.897	55.2
FMW-136	-4.9 to -14.9	8/30/2018	16.3	6.59	0.483	11.2

NOTE:

mS/cm = milliSiemens per centimeter

msl = mean sea level

NTU = Nephelometric Turbidity Unit

[—] denotes parameter not measured

¹In feet above mean sea level using North American Vertical Datum of 1988.

Table 6 Groundwater Analytical Results for TPH and BTEX Block 38 West Property Seattle, Washington

Farallon PN: 397-019

			Screened	Analytical Results (micrograms per liter)							
Sample Location	Sample Date	Sample Identification	Interval (feet msl) ¹	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴	
			Reconnaissar	nce Groundwate	er Samples from	Borings					
FB-03	8/23/2018	FB-03-082318	8.8 to 3.8	660	490	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
FB-05	8/22/2018	FB-05-082218	8.5 to 3.5	< 260	< 410	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
FMW-130	7/21/2014	F-MW-130-GW1-072114	7.2 to 2.2			2,100	5.1	7.5	2.2	6.7	
			Groundw	ater Samples fro	om Monitoring V	Wells					
	7/24/2014	F-MW-130-072414				< 100	< 1.0	< 1.0	< 1.0	< 2.0	
FMW-130	7/3/2017	FMW-130-070317	-22.8 to -32.8			< 100	< 0.20	< 1.0	< 0.20	< 0.60	
	8/30/2018	FMW-130-083018		< 250	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
FMW-132	8/30/2018	FMW-132-083018	20.7 to 15.7	260	< 400	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
FMW-133	8/30/2018	FMW-133-083018	18.8 to 13.8	270	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
FMW-134	8/30/2018	FMW-134-083018	13.4 to 8.4	1,000 M	< 410	1,100 Z	< 1.0	< 5.0	< 1.0	< 3.0	
FMW-135	8/30/2018	FMW-135-083018	18.6 to 13.6	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
FMW-136	8/30/2018	FMW-136-083018	-4.9 to -14.9	< 250	< 400	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
	Potable Water Sample										
Potable Well	8/21/2018	POTABLE-082118	Unknown				< 0.20	< 1.0	< 0.20	< 0.60	
MTCA Method A Clea	MTCA Method A Cleanup Level for Groundwater ⁵					800/1,000 ⁶	5	1,000	700	1,000	

NOTES

Results in **bold** denote concentrations above applicable cleanup levels.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

M = hydrocarbons in the gasoline-range are impacting the diesel-range result

msl = mean sea level

ORO = TPH as oil-range organics

Z = the gasoline result is mainly attributed to a single peak (naphthalene)

< denotes analyte not detected at or above the reporting limit listed.

 $[\]label{eq:continuous} \mbox{$-$ denotes sample not analyzed.}$

¹In feet above mean sea level using North American Vertical Datum of 1988.

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8021B and/or 8260C.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative
Code as amonded 2013

⁶Cleanup level is 800 micrograms per liter if benzene is detected and 1,000 micrograms per liter if benzene is not detected.

Table 7 Groundwater Analytical Results for PAHs Block 38 West Property Seattle, Washington Farallon PN: 397-019

												Analytica	l Results (n	nicrograms	per liter) ²								
								N	Non-Carcin	ogenic PAH	S		·						Carcinoge	enic PAHs			
Sample Location	Sample Date	Sample Identification	Screened Interval (feet msl) ¹	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ³	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)pyrene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{4,5}
	-			•	-	-	-	Reco	onnaissance	Groundwa	ter Sample	s from Bori	ngs										
FB-03	8/23/2018	FB-03-082318	8.8 to 3.8	< 1.3			< 1.3																
			_					(Groundwate	er Samples i	from Monit	oring Wells											
FMW-130	8/30/2018	FMW-130-083018	-22.8 to -32.8	< 0.097	< 0.097	< 0.097	< 0.291	< 0.097	< 0.097	< 0.097	< 0.0097	< 0.097	< 0.097	< 0.097	< 0.097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0073
FMW-132	8/30/2018	FMW-132-083018	20.7 to 15.7	< 0.096	< 0.096	< 0.096	< 0.288	0.40	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0072
FMW-133	8/30/2018	FMW-133-083018	18.8 to 13.8	< 0.097	< 0.097	< 0.097	< 0.291	0.38	< 0.097	< 0.097	< 0.0097	< 0.097	0.098	< 0.097	< 0.097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0073
FMW-134	8/30/2018	FMW-134-083018	13.4 to 8.4	290	10	12	312	8.3	0.12	< 0.099	< 0.0099	< 0.099	1.6	0.48	< 0.099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0075
FMW-135	8/30/2018	FMW-135-083018	18.6 to 13.6	0.35	0.68	0.29	1.32	0.39	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0072
FMW-136	8/30/2018	FMW-136-083018	-4.9 to -14.9	0.39	< 0.096	< 0.096	0.39	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0072
										Potable Wa	ter Sample												
Potable Well	8/21/2018	POTABLE-082118	Unknown	< 1.0			< 1.0																
MTCA Method A	A Cleanup Leve	l for Groundwater 6					160	960 ⁷	NE	4,800 ⁷	NE	640 ⁷	640 ⁷	NE	480 ⁷								0.1

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

 $cPAHs = carcinogenic\ polycyclic\ aromatic\ hydrocarbons$

msl = mean sea level

NE = not established PAHs = polycyclic aromatic hydrocarbons

TEC = toxic equivalent concentration

< denotes analyte not detected at or exceeding the reporting limit listed.

[—] denotes sample not analyzed.

¹In feet above mean sea level using North American Vertical Datum of 1988.

²Analyzed by U.S. Environmental Protection Agency (EPA) Method 8270D/SIM. FB-03 and Potable Well samples analyzed by EPA Method 8260C.

³Sum of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene.

⁴Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁵For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate total. If all constituent concentrations are non-detect, calculated total is indicated non-detect.

⁶Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the

Washington Administrative Code, as revised 2013, unless otherwise noted.

⁷MTCA Cleanup Levels and Risk Calculations, Standard Method B Values for Groundwater, https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

Table 8 Groundwater Analytical Results for Detected VOCs Block 38 West Property Seattle, Washington

Farallon PN: 397-019

			Screened	Analytical	Results (microgra	ams per liter) ²
Sample Location	Sample Date	Sample Identification	Interval (feet msl) ¹	1,1,1- Trichloroethane	Chloroform	cis-1,2- Dichloroethene
		Reconnaissance Groun	ndwater Sampl	es from Borings		
FB-03	8/23/2018	FB-03-082318	8.8 to 3.8	< 0.20	< 0.20	< 0.20
FB-05	8/22/2018	FB-05-082218	8.5 to 3.5	< 0.20	< 0.20	< 0.20
FMW-130	7/21/2014	F-MW-130-GW1-072114	7.2 to 2.2	< 0.20	< 0.20	< 0.20
		Groundwater Sam	ples from Moni	toring Wells		
	7/24/2014	F-MW-130-072414		0.26	0.91	0.51
FMW-130	7/3/2017	FMW-130-070317	-22.8 to -32.8	< 0.20	< 0.20	< 0.20
	8/30/2018	FMW-130-083018		< 0.20	< 0.20	0.27
FMW-132	8/30/2018	FMW-132-083018	20.7 to 15.7	< 0.20	< 0.20	< 0.20
FMW-133	8/30/2018	FMW-133-083018	18.8 to 13.8	< 0.20	< 0.20	< 0.20
FMW-134	8/30/2018	FMW-134-083018	13.4 to 8.4	< 1.0	< 1.0	< 1.0
FMW-135	8/30/2018	FMW-135-083018	18.6 to 13.6	< 0.20	0.41	< 0.20
FMW-136	8/30/2018	FMW-136-083018	-4.9 to -14.9	< 0.20	2.7	0.36
		Potable	e Water Sample	e		
Potable Well	8/21/2018	POTABLE-082118	Unknown	< 0.20	16	< 0.20
MTCA Cleanup Le	vels for Groundwa	ter ³		200 ⁴	1.41	16

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

msl = mean sea level

VOCs = volatile organic compounds

< denotes analyte not detected at or exceeding the reporting limit listed.

¹In feet above mean sea level using North American Vertical Datum of 1988.

²Analyzed by U.S. Environmental Protection Agency Method 8260C. Only detected VOCs shown; see lab report for full list of analytes.

³Washington State Model Toxics Control Act (MTCA) Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B Values for Groundwater, https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx, unless otherwise noted.

⁴MTCA Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013.

Table 9 Groundwater Elevations Block 38 West Property Seattle, Washington Farallon PN: 397-019

	Screened Interval	Screened Interval	Top of Casing Elevation	M. ii . D.	Depth to Water	Water Level Elevation
Location	(feet bgs) ¹	(feet msl) ²	(feet msl) ²	Monitoring Date	(feet) ³	(feet msl) ²
FMW-130	45.0 to 55.0	-22.8 to -32.8	21.86	8/30/2018	5.14	16.72
FMW-132	5.0 to 10.0	20.7 to 15.7	25.48	8/30/2018	7.44	18.04
FMW-133	6.5 to 11.5	18.8 to 13.8	24.87	8/30/2018	6.86	18.01
FMW-134	12.0 to 17.0	13.4 to 8.4	24.98	8/30/2018	8.66	16.32
FMW-135	7.0 to 12.0	18.6 to 13.6	25.29	8/30/2018	7.14	18.15
FMW-136	30.0 to 40.0	-4.9 to -14.9	24.79	8/30/2018	8.10	16.69

Notes:

bgs = below ground surface

msl = mean sea level

¹Depth in feet below ground surface.

²In feet above mean sea level using North American Vertical Datum of 1988.

³In feet below top of well casing.

	Increased Codd		Imr	nacted	Elevatio	,					Weight of Lorenzated	Categ	ory 2 ²	Categ	ory 3 ²	Categ	gory 3+ ²
Lift (feet msl) ¹	Impacted Grid Cell Identification	Impacted Area (square feet)		Rar (feet	ıge	Impa Thickne		Volume (cubic feet)	Volume (cubic yards)	Conversion Factor (tons per cubic yard)	Weight of Impacted Soil (tons)	Without Wood Debris/Organics	With Wood Debris/Organics	Without Wood Debris/Organics	With Wood Debris/Organics	Without Wood Debris/Organics	With Wood Debris/Organics
	A 1	900	26)	5,400	200	1.7	340				X		
	A 2	900	26)	5,400	200	1.7	340				X		
	A 3	900	26					5,400	200	1.7	340				X		
	A 4	540	26					3,240	120	1.7	204				X		
	B 1	900	26)	5,400	200	1.7	340				X		
	B 2	900	26				-	5,400	200	1.7	340				X		
	B 3	900	26					5,400	200	1.7	340				X		
	B 4	540	26					3,240	120	1.7	204				X		
	C 1 C 2	900 600	26					5,400 3,600	200 133	1.7	340 227						
	C 2	300	26 26)	1,800	67	1.7 1.7	113	X		X			
	C 2	900	26					5,400	200	1.7	340			X			
	C 4	540	26					3,240	120	1.7	204			X			
	D 1	900	26)	5,400	200		340			A			
	D 2	600	26					3,600	133	1.7	227	X					
	D 2	300	26)	1,800	67	1.7	113	A			X		
	D 3	900	26					5,400	200	1.7	340				X		
	D 4	540	26					3,240	120	1.7	204				X		
	E 1	900	26				,	5,400	200		340						
	E 2	600	26				,	3,600	133	1.7	227	X					
	E 2	300	26					1,800	67	1.7	113				X		
	E 3	900	26)	5,400	200	1.7	340				X		
	E 4	540	26)	3,240	120	1.7	204				X		
	F 1	900	26	5 to	20	()	5,400	200	1.7	340	X					
	F 2	600	26	5 to	20	()	3,600	133	1.7	227	X					
26 to 20	F 2	300	26	5 to	20	()	1,800	67	1.7	113				X		
	F 3	900	26		20	()	5,400	200	1.7	340				X		
	F 4	540	26	5 to	20	()	3,240	120	1.7	204				X		
	G 1	900	26)	5,400	200		340				X		
	G 2	900	26)	5,400	200	1.7	340				X		
	G 3	900	26)	5,400	200	1.7	340				X		
	G 4	540	26)	3,240	120	1.7	204				X		
	H 1	900	26)	5,400	200		340				X		
	H 2	900	26)	5,400	200	1.7	340				X		
	H 3	900	26					5,400	200	1.7	340				X		
	H 4	540	26)	3,240	120		204				X		
	I 1	900	26)	5,400	200		340				X		
	I 2	600	26				5	3,600	133	1.7	227 113				X		v
	I 2	300 900	26				5	1,800 5,400	200	1.7 1.7	340						X X
	I 3	540	26)	3,240	120	1.7	204						X
	J 1	900	26)	5,400	200		340				X	 	Λ
	J 2	600	26)	3,600	133	1.7	227				X		
	J 2	300	26) -	1,800	67	1.7	113				Λ		X
	J 3	900	26				,)	5,400	200	1.7	340						X
	J 4	540	26				, ,	3,240	120	1.7	204						X
	K 1	900	26					5,400	200		340			X			11
	K 2	600	26				,	3,600	133	1.7	227			X		1	
	K 2	300	26)	1,800	67	1.7	113						X
	K 3	900	26)	5,400	200	1.7	340						X
	K 4	540	26	5 to	20	()	3,240	120	1.7	204						X

		_	
Farallon	PN:	397-	019

1	Impacted Grid		Impacted	Elevation					Weight of Impacted	Categ	ory 2 ²	Categ	ory 3 ²	Cate	gory 3+ ²
Lift (feet msl) ¹	-	Impacted Area (square feet)	Rar (feet	ige	Impacted Thickness (feet)	Volume (cubic feet)	Volume (cubic yards)	Conversion Factor (tons per cubic yard)	Soil (tons)	Without Wood Debris/Organics	With Wood Debris/Organics	Without Wood Debris/Organics	With Wood Debris/Organics	Without Wood Debris/Organics	With Wood Debris/Organics
	L 1	900	26 to	20	6	5,400	200	1.7	340			X			
1	L 2	600	26 to		6	3,600	133	1.7	227			X			
1	L 2	300	26 to		6	1,800	67	1.7	113						X
1	L 3	900	26 to		6	5,400	200	1.7	340						X
1	L 4	540	26 to		6	3,240	120	1.7	204						X
1	M 1	900	26 to		6	5,400	200	1.7	340			X			
26 to 20	M 2	600	26 to		6	3,600	133	1.7	227			X			3 7
(cont.)	M 2 M 3	300 900	26 to		6	1,800 5,400	67 200	1.7 1.7	113 340						X
1	M 4		26 to		6	3,240	120	1.7							X
1	N 1	540 690	26 to		6	3,240 4,140	153		204 261			v			X
1	N 1	460	26 to 26		6	2,760	102	1.7 1.7	174			X X			
1	N 2	230	26 to		6	1,380	51	1.7	87			Λ			X
1	N 3	690	26 to		6	4,140	153	1.7	261						X
1	N 4	324	26 to		6	1,944	72	1.7	122						X
——	A 1	900	20 to		5	4,500	167	1.7	283	X					21
1	A 2	900	20 to		5	4,500	167	1.7	283	X					
1	A 3	900	20 to		5	4,500	167	1.7	283		X				
1	A 4	540	20 to		5	2,700	100	1.7	170		X				
1	B 1	900	20 to		5	4,500	167	1.7	283	X					
1	B 2	900	20 to		5	4,500	167	1.7	283	X					
1	В 3	900	20 to		5	4,500	167	1.7	283		X				
1	B 4	540	20 to		5	2,700	100	1.7	170		X				
1	C 1	900	20 to	15	5	4,500	167	1.7	283		X				
1	C 2	900	20 to	15	5	4,500	167	1.7	283		X				
1	C 3	900	20 to	15	5	4,500	167	1.7	283		X				
1	C 4	540	20 to	15	5	2,700	100	1.7	170		X				
1	D 1	900	20 to	15	5	4,500	167	1.7	283		X				
1	D 2	900	20 to	15	5	4,500	167	1.7	283		X				
1	D 3	900	20 to	15	5	4,500	167	1.7	283		X				
1	D 4	540	20 to	15	5	2,700	100	1.7	170		X				
1	E 1	900	20 to		5	4,500	167	1.7	283		X				
20 to 15	E 2	780	20 to		5	3,900	144	1.7	246		X				
20 10 10	E 2	120	20 to		5	600	22	1.7	38				X		
1	E 3	900	20 to		5	4,500	167	1.7	283				X		
1	E 4	540	20 to		5	2,700	100	1.7	170		**		X		
1	F 1	900	20 to		5	4,500	167	1.7	283		X				
1	F 2	780	20 to		5	3,900	144	1.7	246		X		77		
1	F 2	120	20 to		5	600	22	1.7	38				X		
1	F 3	900	20 to		5	4,500	167	1.7	283 170				X		
1	F 4	540	20 to		5	2,700	100	1.7			v		X		
1	G 1	900	20 to		5	4,500 3,900	167 144	1.7 1.7	283 246		X X				
1	G 2 G 2	780 120	20 to		5	3,900 600	22	1.7	38		Λ		X		
1	G 2	900	20 to 20 to		5	4,500	167	1.7	283				X		
1	G 4	540	20 to		5	2,700	100	1.7	170				X		
1	H 1	900	20 to		5	4,500	167	1.7	283	X			Λ		
1	H 2	780	20 to		5	3,900	144	1.7	246	X					
1	H 2	120	20 to		5	600	22	1.7	38	Λ.			X		
1	H 3	900	20 to		5	4,500	167	1.7	283				X		
1	H 4	540	20 to		5	2,700	100	1.7	170				X		

				Imn	antad E	Elevation						Categ	ory 2 ²	Categ	ory 3 ²	Cate	gory 3+ ²
11			•	_	Rang	ge						Without Wood	With Wood	Without Wood	With Wood	Without Wood	With Wood
1	,		(1 /	20			-				` ´		_	_	_		
12 900 20 10 15 5 4,500 167 17 288		I 2	780	20	to		5	3,900									
The color of the		I 2	120	20	to	15	5	600	22	1.7							X
18		I 3		20	to	15	5										X
18		I 4		20	to		5	,									X
13 14 15 16 17 18 18 18 18 18 18 18				20	to												
15 15 15 15 15 15 15 15												X					
The color of the																	
No. No.																	
No. Proceed Service Proc																	X
K 10																	
No. 1															X		V
Second S																	
Coulty County C	20 to 15																
1.2															v		Λ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(cont.)																
T. 3															Λ		Y
1																	
M 900								,									
M2															Y		Λ
M 2																	
M 3															71		X
M 4																	
N																	
N 2				20	to										X		
N 2																	
N S 690 20				20	to												X
A 1 900 15 10 15 10 10 5 4,500 167 1.7 283 X		N 3	690	20	to		5	3,450	128								
A 2 900		N 4	324	20	to	15	5	1,620	60	1.7	102						X
A 3 900		A 1	900	15	to	10	5	4,500	167	1.7	283	X					
A 4		A 2		15	to	10	5		167	1.7							
B 900 15 to 10 5 4,500 167 1.7 283 X		A 3		15	to	10											
B 2 900		A 4		15	to	10	5										
B 3 900 15 to 10 5 4,500 167 1.7 283 X							5			1.7							
B 4											283	X					
Stoto Property P																	
C 2 900 15 to 10 5 4,500 167 1.7 283 X												X					
15 to 10 C 3 900 15 to 10 5 4,500 167 1.7 283 X																	
C 4 540 15 to 10 5 2,700 100 1.7 170 X X S	15. 10											ļ	X				
D 1 900 15 to 10 5 4,500 167 1.7 283 X X S S S 4,500 167 1.7 283 X X S <th< td=""><td>15 to 10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	15 to 10																
D 2 900 15 to 10 5 4,500 167 1.7 283 X X S S S 4,500 167 1.7 283 X S																	
D 3 900 15 to 10 5 4,500 167 1.7 283 X S S S E D A S D B	1																
D 4 540 15 to 10 5 2,700 100 1.7 170 X X S S C												v	X				
E 1 900 15 to 10 5 4,500 167 1.7 283 X X E 2 750 15 to 10 5 3,750 139 1.7 236 X X E 2 150 15 to 10 5 750 28 1.7 47 X X E 3 900 15 to 10 5 4,500 167 1.7 283 X X												V V					
E 2 750 15 to 10 5 3,750 139 1.7 236 X E 2 150 15 to 10 5 750 28 1.7 47 X X E 3 900 15 to 10 5 4,500 167 1.7 283 X X													v				
E 2 150 15 to 10 5 750 28 1.7 47 47 X E 3 900 15 to 10 5 4,500 167 1.7 283 X X												1					
E 3 900 15 to 10 5 4,500 167 1.7 283 X													Λ		Y		
														X	Λ		
												1		X			

, 7											Categ	ory 2 ²	Catego	ory 3 ²	Cate	gory 3+ ²
Lift (feet msl) ¹	Impacted Grid Cell Identification	Impacted Area (square feet)	lmp	acted El Rango (feet ms	9	Impacted Thickness (feet)	Volume (cubic feet)	Volume (cubic yards)	Conversion Factor (tons per cubic yard)	Weight of Impacted Soil (tons)	Without Wood Debris/Organics	With Wood	Without Wood Debris/Organics	With Wood Debris/Organics	Without Wood	With Wood Debris/Organics
	F 1	900	15	to	10	5	4,500	167	1.7	283		X				
i	F 2	750	15		10	5	3,750	139	1.7	236		X				
i	F 2	150	15		10	5	750	28	1.7	47				X		
i	F 3	900	15		10	5	4,500	167	1.7	283			X			
i	F 4	540	15		10	5	2,700	100	1.7	170	V		X			
i	G 1 G 2	900 750	15 15		10	5	4,500 3,750	167 139	1.7 1.7	283 236	X X					
i	G 2	150	15		10	5	750	28	1.7	47	Λ		X			
i	G 3	900	15		10	5	4,500	167	1.7	283			X			
i	G 4	540	15		10	5	2,700	100	1.7	170			X			
, 	H 1	900	15		10	5	4,500	167	1.7	283	X					
i	H 2	750	15	to	10	5	3,750	139	1.7	236	X					
i	H 2	150	15	to	10	5	750	28	1.7	47			X			
i	H 3	900	15		10	5	4,500	167	1.7	283			X			
,	H 4	540	15		10	5	2,700	100	1.7	170			X			
,	I 1	900	15		10	5	4,500	167	1.7	283						
,	I 2	750	15		10	5	3,750	139	1.7	236	X		37			
i	I 2	150	15		10	5	750	28	1.7	47			X			
i	I 3	900 540	15		10	5	4,500 2,700	167 100	1.7	283 170			X X			
15 to 10	J 1	900	15 15		10	5	4,500	167	1.7 1.7	283		X	Λ			
(cont.)	J 2	750	15		10	5	3,750	139	1.7	236	-	X				
(cont.)	J 2	150	15		10	5	750	28	1.7	47		Λ		X		
i	J 3	900	15		10	5	4,500	167	1.7	283				X		
i	J 4	540	15		10	5	2,700	100	1.7	170				X		
,	K 1	900	15		10	5	4,500	167	1.7	283				X		
i	K 2	900	15	to	10	5	4,500	167	1.7	283				X		
i	K 3	900	15	to	10	5	4,500	167	1.7	283				X		
i	K 4	540	15	to	10	5	2,700	100	1.7	170				X		
i	L 1	900	15		10	5	4,500	167	1.7	283				X		
i	L 2	900	15		10	5	4,500	167	1.7	283				X		
i	L 3	900	15		10	5	4,500	167	1.7	283				X		
i	L 4	540	15		10	5	2,700	100	1.7	170				X		
i	M 1	900	15		10	5	4,500	167	1.7	283				X		
i	M 2	900	15		10	5	4,500	167	1.7	283				X		
,	M 3 M 4	900 540	15 15		10	5	4,500 2,700	167 100	1.7 1.7	283 170	1			X		
,	N 1	690	15		10	5	3,450	128		217				X		
i l	N 2	530	15		10	5	2,650	98	1.7	167				X		
i	N 2	160	15		10	5	800	30	1.7	50				X		
i	N 3	690	15		10	5	3,450	128	1.7	217				X		
<u>, </u>	N 4	324	15		10	5	1,620	60	1.7	102				X		
	A 1	900	10	to	5	5	4,500	167	1.7	283						
ſ	A 2	900	10		5	5	4,500	167	1.7	283	X					
,	A 3	900	10		5	5	4,500	167	1.7	283	X					
,	A 4	540	10		5	5	2,700	100	1.7	170	X					
10 4 5	B 1	900	10		5	5	4,500	167	1.7	283	X					
10 to 5	B 2	900	10		5	5	4,500	167	1.7	283	X					
,	B 3 B 4	900 540	10		5	5	4,500 2,700	167 100	1.7 1.7	283 170	X X					
,	C 2	150	10		5	5	750	28	1.7	47	X					
,	C 3	900	10		5	5	4,500	167	1.7	283	X				 	
i l	C 4	540	10		5	5	2,700	100	1.7	170	X					

	Imposted Crid		Impacted Elevation					Weight of Impacted	Catego	ory 2 ²	Catego	ory 3 ²	Categ	gory 3+ ²
Lift (feet msl) ¹	Impacted Grid Cell Identification	Impacted Area (square feet)	Range (feet msl) ¹	Impacted Thickness (feet)	Volume (cubic feet)	Volume (cubic yards)	Conversion Factor (tons per cubic yard)	Soil (tons)	Without Wood Debris/Organics	With Wood Debris/Organics	Without Wood Debris/Organics	With Wood Debris/Organics	Without Wood Debris/Organics	With Wood Debris/Organics
(1000 11151)	D 2	150	10 to 5	5	750	28	1.7	47	Ü		ě	0	8	-
	D 3	900	10 to 5	5	4,500	167	1.7	283	X					
	D 4	540	10 to 5	5	2,700	100	1.7	170	X					
	E 2	150	10 to 5	5	750	28	1.7	47						
	E 3	900	10 to 5	5	4,500	167	1.7	283	X					
	E 4	540	10 to 5	5	2,700	100	1.7	170	X					
	F 2	150	10 to 5	5	750	28	1.7	47						
	F 3	900	10 to 5	5	4,500	167	1.7	283	X					
	F 4	540	10 to 5	5	2,700	100	1.7	170	X					
	G 1	900	10 to 5	5	4,500	167	1.7	283						
	G 2	900	10 to 5	5	4,500	167	1.7	283	X					
	G 3	900	10 to 5	5	4,500	167	1.7	283	X					
	G 4	540	10 to 5	5	2,700	100	1.7	170	X					
	H 1	900	10 to 5	5	4,500	167	1.7	283	X					
	H 2	900	10 to 5	5	4,500	167	1.7	283	X					
	H 3	900	10 to 5	5	4,500 2,700	167	1.7 1.7	283	X					
	H 4	540 900	10 to 5	5	4,500	100		170 283	X					
	I 1 I 2	900	10 to 5 10 to 5	5	4,500	167 167	1.7 1.7	283	X X					
	I 3	900	10 to 5	5	4,500	167	1.7	283	X					
10 to 5	I 4	540	10 to 5	5	2,700	100	1.7	170	X					
(cont.)	J 1	900	10 to 5	5	4,500	167	1.7	283		X				
	J 2	900	10 to 5	5	4,500	167	1.7	283		X				
	J 3	900	10 to 5	5	4,500	167	1.7	283		X				
	J 4	540	10 to 5	5	2,700	100	1.7	170		X				
	K 1	900	10 to 5	5	4,500	167	1.7	283		X				
	K 2	900	10 to 5	5	4,500	167	1.7	283		X				
	K 3	900	10 to 5	5	4,500	167	1.7	283		X				
	K 4	540	10 to 5	5	2,700	100	1.7	170		X				
	L 1	900	10 to 5	5	4,500	167	1.7	283		X				
	L 2	900	10 to 5	5	4,500	167	1.7	283		X				
	L 3	900	10 to 5	5	4,500	167	1.7	283		X				
	L 4	540	10 to 5	5	2,700	100	1.7	170		X				
	M 1	900	10 to 5	5	4,500	167	1.7	283		X				
	M 2	900	10 to 5	5	4,500	167	1.7	283		X				
	M 3	900	10 to 5	5	4,500	167	1.7	283		X				
	M 4	540	10 to 5	5	2,700	100	1.7	170		X				
	N 1 N 2	690 690	10 to 5	5	3,450 3,450	128 128	1.7 1.7	217 217		X X				
	N 2 N 3	690	10 to 5 10 to 5	5	3,450 3,450	128	1.7	217		X				
	N 3	324		5	1,620	60	1.7	102		X				-
	IN 4	324	10 to 5)	1,020	60	1./	102		Λ				

	Impacted Grid		Impacted Elevation					Weight of Impacted	Categ	ory 2 ²	Catego	ory 3 ²	Categ	ory 3+ ²
Lift (feet msl) ¹	-	Impacted Area (square feet)	Range (feet msl) ¹	Impacted Thickness (feet)	Volume (cubic feet)	Volume (cubic yards)	Conversion Factor (tons per cubic yard)	Soil (tons)	Without Wood Debris/Organics	With Wood Debris/Organics	Without Wood Debris/Organics	With Wood Debris/Organics	Without Wood Debris/Organics	With Wood Debris/Organics
	A 1	900	5 to 0	5	4,500	167	1.7	283	X					
	A 2	900	5 to 0	5	4,500	167	1.7	283						
	A 3	900	5 to 0	5	4,500	167	1.7	283						
	A 4	540	5 to 0	5	2,700	100	1.7	170	X					
	B 1	900	5 to 0	5	4,500	167	1.7	283	X					
	B 2	900	5 to 0	5	4,500	167	1.7	283	X					
	В 3	900	5 to 0	5	4,500	167	1.7	283						
	B 4	540	5 to 0	5	2,700	100	1.7	170	X					
	C 3	900	5 to 0	5	4,500	167	1.7	283	X					
	C 4	540	5 to 0	5	2,700	100	1.7	170	X					
	D 3	900	5 to 0	5	4,500	167	1.7	283	X					
	D 4	540	5 to 0	5	2,700	100	1.7	170						
	E 3	900	5 to 0	5	4,500	167	1.7	283	X					
	E 4	540	5 to 0	5	2,700	100	1.7	170	X					
	F 3	900	5 to 0	5	4,500	167	1.7	283	X					
	F 4	540	5 to 0	5	2,700	100	1.7	170	X					
	G 3	900	5 to 0	5	4,500	167	1.7	283	X					
	G 4	540	5 to 0	5	2,700	100	1.7	170	X					
	H 1	900	5 to 0	5	4,500	167	1.7	283	X					
	H 2	900	5 to 0	5	4,500	167	1.7	283	X					
	Н 3	900	5 to 0	5	4,500	167	1.7	283	X					
	H 4	540	5 to 0	5	2,700	100	1.7	170	X					
5 to 0	I 1	900	5 to 0	5	4,500	167	1.7	283	X					
3 10 0	I 2	900	5 to 0	5	4,500	167	1.7	283						
	I 3	900	5 to 0	5	4,500	167	1.7	283	X					
	I 4	540	5 to 0	5	2,700	100	1.7	170	X					
	J 1	900	5 to 0	5	4,500	167	1.7	283						
	J 2	900	5 to 0	5	4,500	167	1.7	283						
	J 3	900	5 to 0	5	4,500	167	1.7	283						
	J 4	540	5 to 0	5	2,700	100	1.7	170	X					
	K 1	540	5 to 0	5	2,700	100		170						
	K 2	900	5 to 0	5	4,500	167	1.7	283						
	K 3	900	5 to 0	5	4,500	167	1.7	283						
	K 4	540	5 to 0	5	2,700	100	1.7	170						
	L 1	900	5 to 0	5	4,500	167	1.7	283						
	L 2	900	5 to 0	5	4,500	167	1.7	283						
	L 3	900	5 to 0	5	4,500	167	1.7	283						
	L 4	540	5 to 0	5	2,700	100	1.7	170						
	M 1	900	5 to 0	5	4,500	167	1.7	283						
	M 2	900	5 to 0	5	4,500	167	1.7	283						
	M 3	900	5 to 0	5	4,500	167	1.7	283						
	M 4	540	5 to 0	5	2,700	100	1.7	170						
	N 1	690	5 to 0	5	3,450	128	1.7	217						
	N 2	690	5 to 0	5	3,450	128	1.7	217						
	N 3	690	5 to 0	5	3,450	128	1.7	217						
	N 4	324	5 to 0	5	1,620	60	1.7	102	X					

	Impacted Grid		Impacted Elevation					Weight of Impacted	Categ	ory 2 ²	Catego	ory 3 ²	Cate	gory 3+ ²
Lift (feet msl) ¹		Impacted Area (square feet)	Range (feet msl) ¹	Impacted Thickness (feet)	Volume (cubic feet)	Volume (cubic yards)	Conversion Factor (tons per cubic yard)	Soil (tons)	Without Wood Debris/Organics	With Wood Debris/Organics	Without Wood Debris/Organics	With Wood Debris/Organics	Without Wood Debris/Organics	With Wood Debris/Organics
	E 3	900	0 to -5	5	4,500	167	1.7	283	X					
	E 4	540	0 to -5	5	2,700	100	1.7	170	X					
	F 3	900	0 to -5	5	4,500	167	1.7	283	X					
	F 4	540	0 to -5	5	2,700	100	1.7	170	X					
	G 3	900	0 to -5	5	4,500	167	1.7	283	X					
	G 4	540	0 to -5	5	2,700	100	1.7	170	X					
	H 1	900	0 to -5	5	4,500	167	1.7	283	X					
	H 2	900	0 to -5	5	4,500	167	1.7	283	X					
	Н 3	900	0 to -5	5	4,500	167	1.7	283	X					
	H 4	540	0 to -5	5	2,700	100	1.7	170	X					
	I 1	900	0 to -5	5	4,500	167	1.7	283	X					
	I 2	900	0 to -5	5	4,500	167	1.7	283	X					
	I 3	900	0 to -5	5	4,500	167	1.7	283	X					
	I 4	540	0 to -5	5	2,700	100	1.7	170	X					
	J 1	900	0 to -5	5	4,500	167	1.7	283	X					
	J 2	900	0 to -5	5	4,500	167	1.7	283	X					
0 to -5	J 3	900	0 to -5	5	4,500	167	1.7	283	X					
0 10 5	J 4	540	0 to -5	5	2,700	100	1.7	170	X					
	K 1	900	0 to -5	5	4,500	167	1.7	283	X					
	K 2	900	0 to -5	5	4,500	167	1.7	283	X					
	K 3	900	0 to -5	5	4,500	167	1.7	283	X					
	K 4	540	0 to -5	5	2,700	100	1.7	170	X					
	L 1	900	0 to -5	5	4,500	167	1.7	283	X					
	L 2	900	0 to -5	5	4,500	167	1.7	283	X					
	L 3	900	0 to -5	5	4,500	167	1.7	283	X					
	L 4	540	0 to -5	5	2,700	100	1.7	170	X					
	M 1	900	0 to -5	5	4,500	167	1.7	283	X					
	M 2	900	0 to -5	5	4,500	167	1.7	283	X					
	M 3	900	0 to -5	5	4,500	167	1.7	283	X					
	M 4	540	0 to -5	5	2,700	100	1.7	170	X					
	N 1	690	0 to -5	5	3,450	128	1.7	217	X					
	N 2	690	0 to -5	5	3,450	128	1.7	217	X					
	N 3	690	0 to -5	5	3,450	128	1.7	217	X					
	N 4	324	0 to -5	5	1,620	60	1.7	102	X					
						Total Estimated Tor	nages of Impacted Soil	76,080	35,895	12,059	5,200	16,345	0	6,582

NOTES

¹Elevation in feet above mean sea level (msl) (NAVD 88).

 $^2\mathrm{Petroleum\text{-}contaminated}$ soil disposal classification according to CEMEX disposal criteria.

msl = mean sea level

APPENDIX A BORING LOGS AND WELL COMPLETION DIAGRAMS

SUBSURFACE INVESTIGATION REPORT AND ENVIRONMENTAL MEDIA

MANAGEMENT PLAN

Block 38 West Property

500 through 536 Westlake Avenue North

Seattle, Washington

Farallon PN: 397-019

USCS Classification and Graphic Legend

N	lajor Divis	ions	USCS Graphic Symbol		USCS Letter Symbol		Lithologic Description
Coarse-	GRAVEL	CLEAN GRAVEL (Little			GW	Well graded GRA	VEL, well graded GRAVEL with sand
Grained Soil (More than 50%	AND GRAVELLY SOIL (More	or no fines)	□ □ □ □		GP	Poorly graded GR	AVEL, GRAVEL with sand
of material is larger	than 50% of coarse	GRAVEL WITH FINES (Appreciable amount of		G	P-GM	Poorly graded GR	AVEL - GRAVEL with sand and silt
than No. 200 sieve	fraction retained on	fines)			GM	Silty GRAVEL	
size)	No. 4 sieve)		/ · / · / · / · / · / · / · / · / · / ·		GC	Clayey GRAVEL	
	SAND AND SANDY	CLEAN SAND (Little or no fines)			sw	Well graded SANI)
	SOIL (More than 50% of	no inica)			SP	Poorly graded SA	ND
	coarse	SAND WITH FINES (Appreciable amount of		S	P-SM	Poorly graded SA	ND - silty SAND
	passed through No.	fines)			SM	Silty SAND	
	4 sieve)				sc	Clayey SAND	
				SI	M-ML	SILT - Silty SAND	
Fine- Grained	SILT AND CLAY (Liquid				ML	SILT	
Soil (More than 50%	limit less than 50)		7		CL	CLAY	
of material is smaller					OL	Organic SILT	
than No. 200 sieve	SILT AND CLAY (Liquid		ЩЩ		MH	Inorganic SILT	
size)	limit greater than 50)				СН	Inorganic CLAY	
	, 				ОН	Organic CLAY	
		Highly Organic Soil			PT	Peat	
OTHER MATERIALS	PAVEMENT				AC	Asphalt concrete	
					СО	Concrete	
	OTHER				RK	Bedrock	
					WD	Wood Debris	
			277777		DB	Debris (Miscellane	eous)
				1	PC	Portland cement	
	Sample In	terval			Le	gend	Solid line indicates sharp contact between units well defined.
G	Grab Sam	ple Interval		O p <	Cemen	t Grout	Dashed line indicates gradational contact between units.
•	Water leve	el at time of drilling			Benton	ite	feet bgs = feet below ground surface NE = Not Encountered
\Box	Water leve	el at time of sampling					NA = Not Applicable
	Blank Cas	ing			Sand P	ack	PID = Photoionization Detector PN = Project Number
	Screened	eened Casing			Well Ca	ар	*ppm = parts per million total organic vapors in isobutylene equivalents using a 10.6 electron volt lamp USCS = Unified Soil Classification System

Page 1 of 2

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

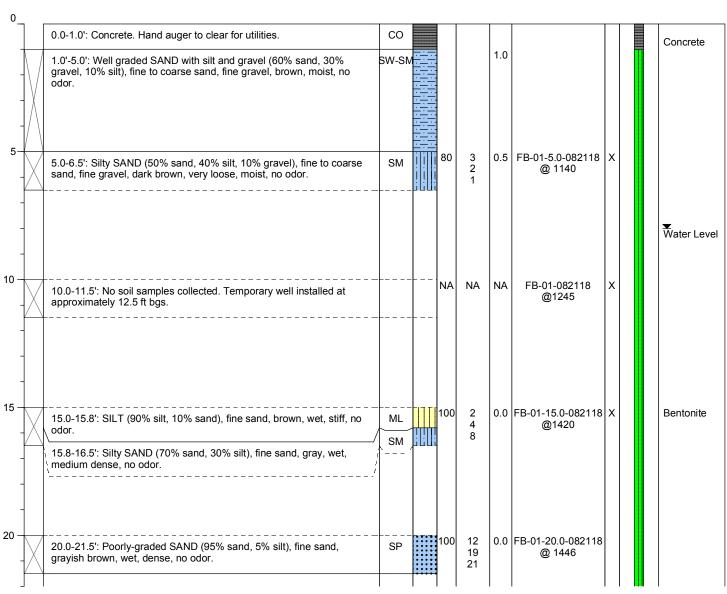
Farallon PN: 397-019

Logged By: Greg Peters

08/21/2018 @ 1126 Sampler Type: 1.5 Split Spoon Date/Time Started:

08/21/2018 @ 1540 Drive Hammer (lbs.): **Date/Time Completed:**

MiniTrack **Equipment: Drilling Company:** Geologic Drilling


Drilling Method: Hollow Stem Auger

Blaine Gibson

140 Depth of Water ATD (ft bgs): 8.0 Total Boring Depth (ft bgs): 41.5 Total Well Depth (ft bgs): NA

Sample Interval Control (feet bgs.) Control (feet bgs.) Lithologic Description	USCS USCS Graphic USCS Graphic USCS Graphic W Recovery Blow Counts 8/8/8 Construction Details
---	---

Drilling Foreman:

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA **Annular Seal:** X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment: Bentonite** Y: NA

Page 2 of 2

8.0

41.5

NA

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:**

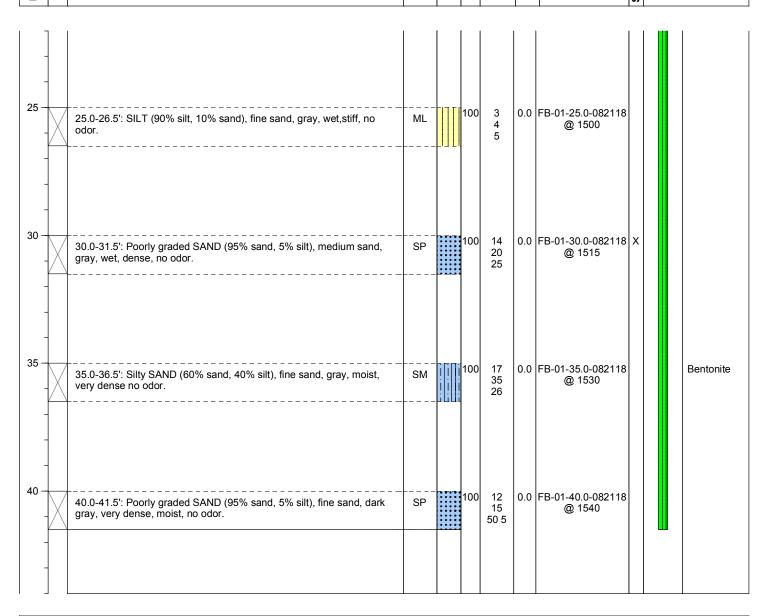
Drilling Company:

08/21/2018 @ 1540 Drive Hammer (lbs.):

08/21/2018 @ 1126 Sampler Type: 1.5 Split Spoon

140

Equipment: MiniTrack


Geologic Drilling

Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs): Total Well Depth (ft bgs):

Blaine Gibson **Drilling Foreman:**

Drilling Method: Hollow Stem Auger

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** % Recovery Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Casing Diameter (inches): Top of Casing Elevation (ft): NA NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 2

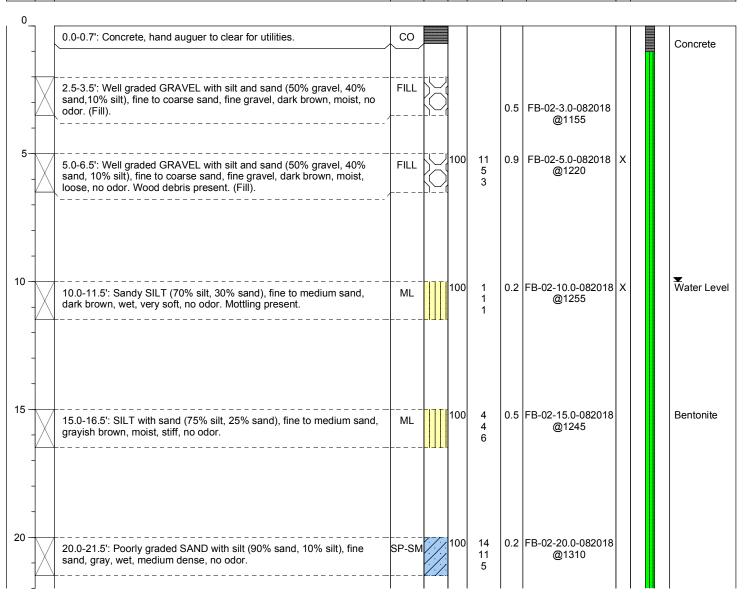
City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

08/20/2018 @ 1045 Sampler Type: 1.5 Split Spoon Date/Time Started:


08/20/2018 @ 1545 Drive Hammer (lbs.): 140 **Date/Time Completed:**

Mini-track Depth of Water ATD (ft bgs): 10.0 **Equipment: Drilling Company:** Geologic Drilling Total Boring Depth (ft bgs): 41.5

Total Well Depth (ft bgs): Blaine Gibson **Drilling Foreman:** NA

Hollow Stem Auger **Drilling Method:**

Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
-------------------	-----------------	------------------------	------	--------------	------------	-------------------	-----------	-----------	-----------------	--

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 2 of 2

140

10.0

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: Date/Time Completed:

Equipment:

Drilling Company:

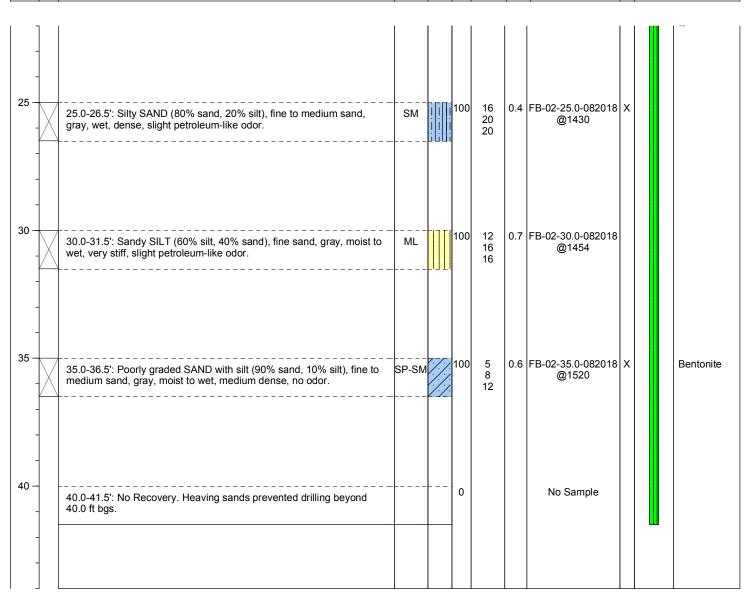
Drilling Foreman:

Drilling Method:

08/20/2018 @ 1045 Sampler Type: 1.5 Split Spoon

08/20/2018 @ 1545 Drive Hammer (lbs.):

Depth of Water ATD (ft bgs):


Total Boring Depth (ft bgs): 41.5

Total Well Depth (ft bgs): NA

Blaine Gibson Hollow Stem Auger

Geologic Drilling

Mini-track

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 2

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:**

08/23/2018 @ 1200 Sampler Type: 1.5 Split Spoon

08/23/2018 @ 1540 Drive Hammer (lbs.):

140

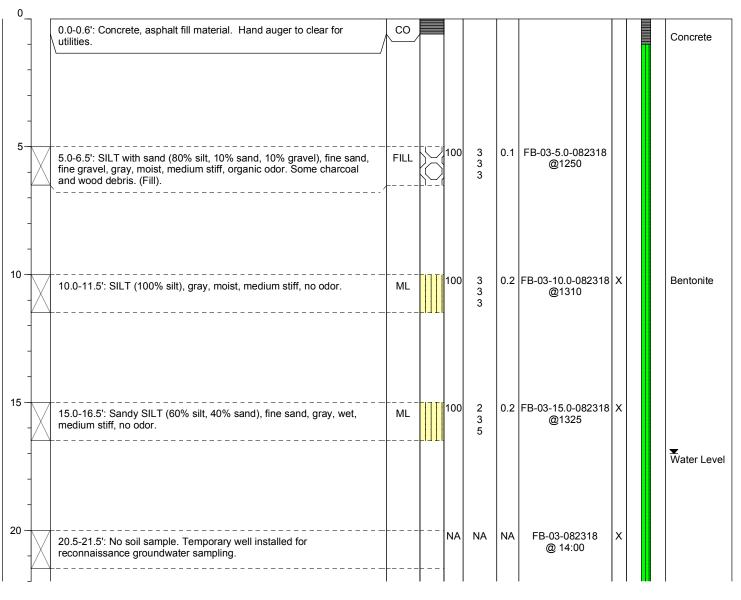
Equipment:

Mini-track

Depth of Water ATD (ft bgs):

Drilling Company: Drilling Foreman:

Drilling Method:


Geologic Drilling Blaine Gibson

Total Boring Depth (ft bgs): 41.5 Total Well Depth (ft bgs): NA

Hollow Stem Auger

17.0

Blow Counts 8/8/8 Depth (feet bgs.) Sample Analyzed Sample Interval **USCS Graphic** Recovery Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Well Construction Information Monument Type: NA Filter Pack: NA NA Casing Diameter (inches): Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA X:NA

Y: NA

Lithologic Description

Log of Boring: FB-03

Page 2 of 2

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:** 08/23/2018 @ 1200 Sampler Type: 1.5 Split Spoon

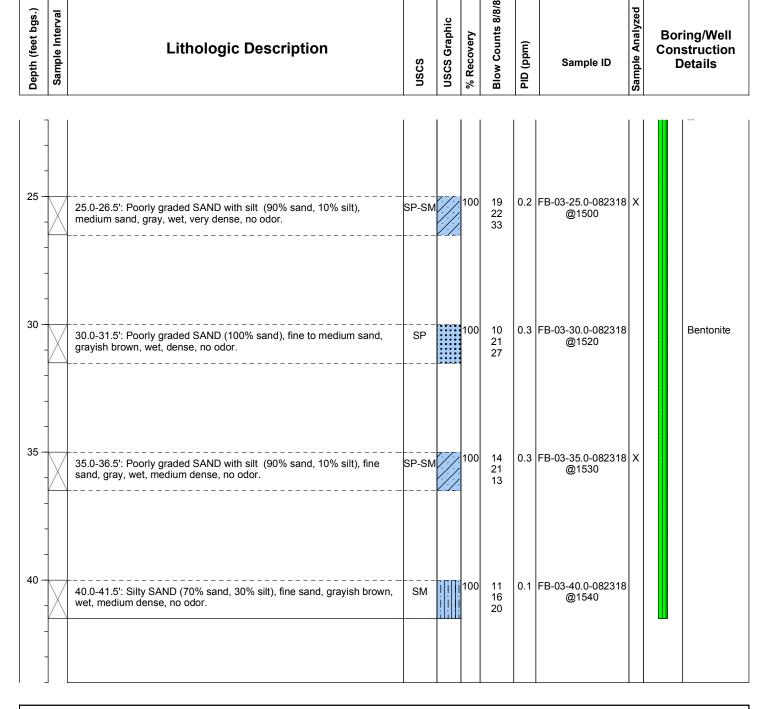
08/23/2018 @ 1540 Drive Hammer (lbs.):

Sample ID

140 17.0

Equipment: Drilling Company: Mini-track Geologic Drilling Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs):

Drilling Foreman:


Blaine Gibson

41.5 Total Well Depth (ft bgs): NA

Drilling Method:

Hollow Stem Auger

Boring/Well Construction **Details**

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Casing Diameter (inches): Top of Casing Elevation (ft): NA NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 1

140

17.0

NA

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: Date/Time Completed:

Drilling Foreman:

Drilling Method:

08/21/2018 @ 0645 Sampler Type: 1.5 Split Spoon

08/21/2018 @ 0900 Drive Hammer (lbs.):

Depth of Water ATD (ft bgs):

Mini-track Equipment: **Drilling Company:**

Geologic Drilling Blaine Gibson

Total Boring Depth (ft bgs): 33.0

Total Well Depth (ft bgs):

Hollow Stem Auger

Depth (feet bgs.) Sample Interval

Lithologic Description

USCS Graphic Counts Recovery <u></u>8

(mdd) 吕

Sample Analyzed Boring/Well Construction Sample ID **Details**

0 AC 0.0-2.0': Asphalt. Hand auger to clear for utilities. Concrete FILL 2.0-3.0': SILT with sand (80% silt, 20% sand), fine sand, dark brown, FB-04-3.0-082118 0.5 moist, petroleum-like odor. Peat and orgranic material present. (Fill). @0645 FB-04-5.0-082118 100 0.9 5.0-6.5': SILT with sand (80% silt, 20% sand), fine sand, dark brown, FILL @0650 moist, very soft, no odor. Debris and organic material present. (Fill). 10 0.2 FB-04-10.0-082118 X 100 Bentonite 10.0-11.5': SILT with sand (80% silt, 20% silt), fine to medium sand, **FILL** 5 @0710 dark brown, moist to wet, stiff, no odor. Debris present. (Fill). 10 15 100 0.5 FB-04-15.0-082118 X 15.0-16.5': Silty SAND (80% sand, 20% silt), fine to medium sand, @0735 gray, wet, loose, no odor. Water Level 20 0.2 FB-04-20.0-082118 X 20.0-21.5': Poorly graded sand (100% sand), fine to medium sand, 15 @0745 gray, wet, dense, no odor. 28 25 0.4 FB-04-25.0-082118 100 10 Bentonite 25.0-26.5': SILT with sand (60% silt, 40% sand), fine sand, gray, wet, ML @0815 11 very stiff, no odor. 17 30 0.7 FB-04-30.0-082118 X 100 9 30-31.5': Poorly graded SAND (100% sand), fine to medium sand, 14 @0850 gray, wet, dense, no odor. 30 35 Refusal at 33.0' bgs due to heaving sands.

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA **Annular Seal:** X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment: Bentonite** Y: NA

Page 1 of 2

140

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:**

Equipment:

Drilling Company:

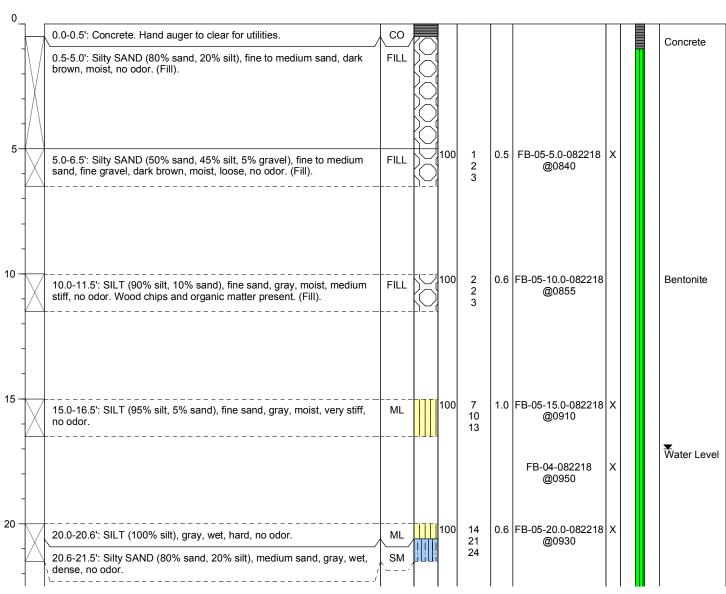
Drilling Foreman:

Drilling Method:

Mini-track

Geologic Drilling

Blaine Gibson


08/22/2018 @ 0815 Sampler Type: 1.5 Split Spoon

08/22/2018 @ 1140 Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): 17.0 Total Boring Depth (ft bgs): 41.5

Total Well Depth (ft bgs): NA

Hollow Stem Auger

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA **Annular Seal:** X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 2 of 2

17.0

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: Date/Time Completed:

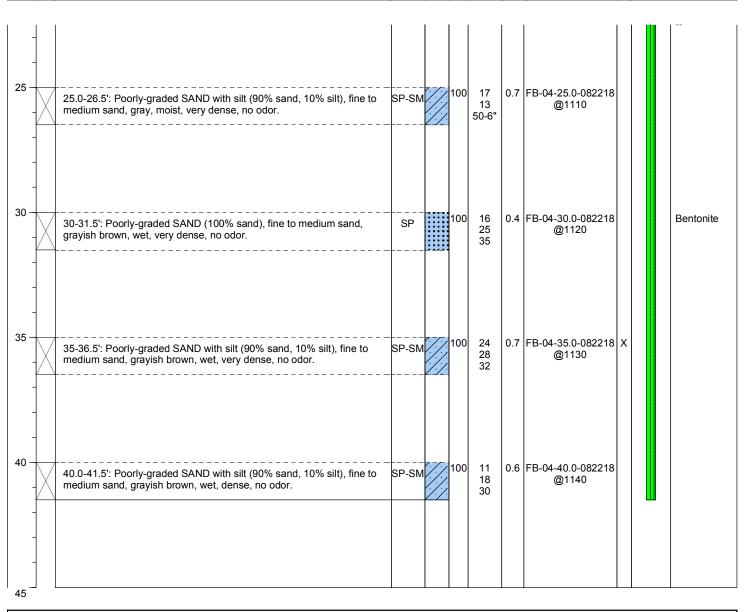
Equipment:

Drilling Foreman:

Drilling Method:

08/22/2018 @ 0815 Sampler Type: 1.5 Split Spoon

08/22/2018 @ 1140 Drive Hammer (lbs.): 140


Mini-track Depth of Water ATD (ft bgs): **Drilling Company:**

Geologic Drilling Blaine Gibson

Total Boring Depth (ft bgs): 41.5

Total Well Depth (ft bgs): NA

Hollow Stem Auger

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 1

16.0

NA

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

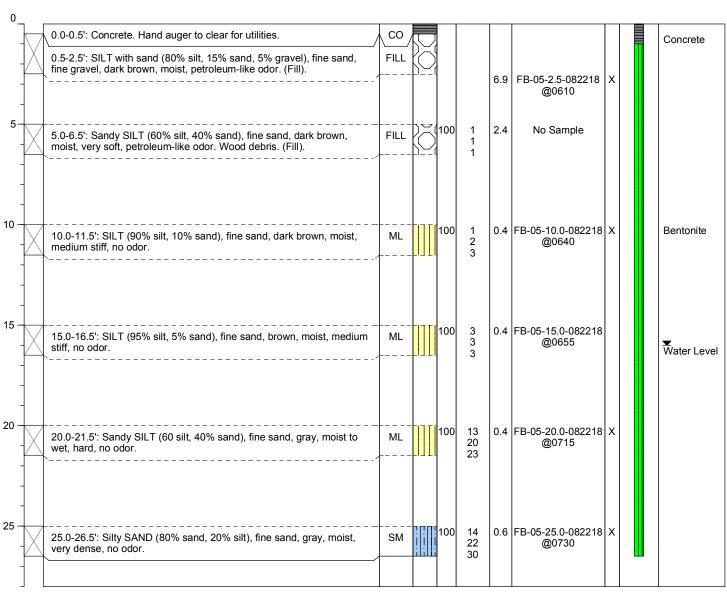
Date/Time Started:

08/22/2018 @ 0610 Sampler Type: 1.5 Split Spoon 140

08/22/2018 @ 0730 Drive Hammer (lbs.): **Date/Time Completed:**

Depth of Water ATD (ft bgs):

Equipment: Drilling Company: Drilling Foreman:


Geologic Drilling Blaine Gibson

Mini-track

Total Boring Depth (ft bgs): 26.5 Total Well Depth (ft bgs):

Drilling Method: Hollow Stem Auger

Depth (feet bgs.) Sample Interval	Lithologic Description	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
--------------------------------------	------------------------	------	--------------	------------	-------------------	-----------	-----------	-----------------	--

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA **Annular Seal:** X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 3

Boring/Well

Construction

Details

Washington Builders LLC Client:

Project: Block 43

Sample Interval

Location: Block 38, Seattle, WA

Farallon PN: 397-010

Logged By: Dincer Kayhan

Date/Time Started: 7/21/14 @ 0945 7/22/14 @ Date/Time Completed:

Spider 1576

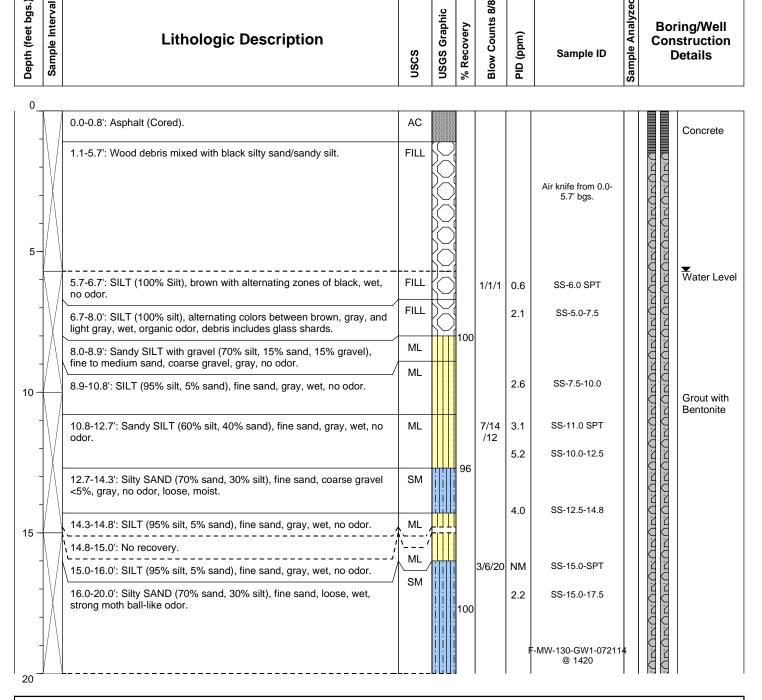
Cascade Drilling

Zane Huckins

Sonic

Equipment:

Drilling Company: Drilling Foreman:


Drilling Method:

Sampler Type: PE Bags

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 5.7 Total Boring Depth (ft bgs): 60.0

Total Well Depth (ft bgs): 55

Blow Counts 8/8/8 Sample Analyzed **USGS Graphic** % Recovery (mdd) **Lithologic Description** Sample ID 吕

Monument Type: Flush Mount Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 45.0-55.0 **Well Construction Information**

Filter Pack: 10/20 Sand Surface Seal: Concrete **Annular Seal: Bentonite Boring Abandonment:**

Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location:

X:NA Y: NA 23

Page 2 of 3

Client: Washington Builders LLC

Project: Block 43

Location: Block 38, Seattle, WA

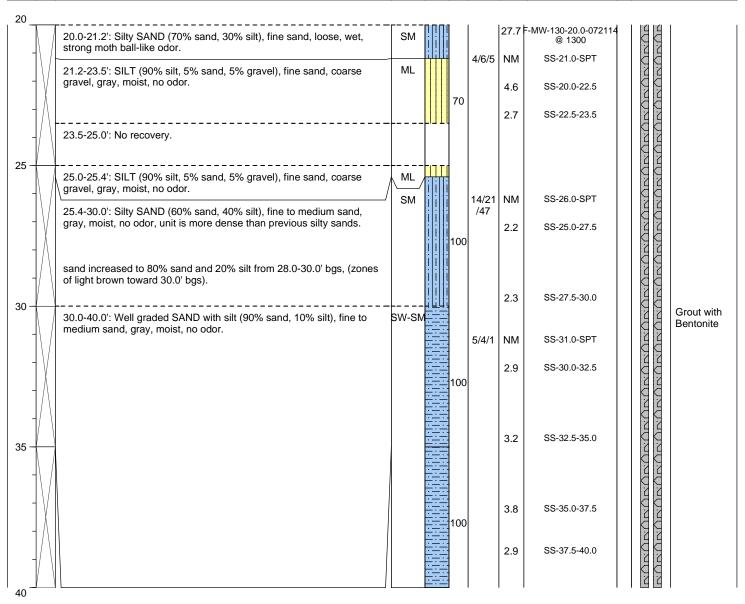
Farallon PN: 397-010

Logged By: Dincer Kayhan

Date/Time Started: 7/21/14 @ 0945 **Date/Time Completed:** 7/22/14 @

Equipment:
Drilling Company:

Drilling Company: Cascade Drilling
Drilling Foreman: Zane Huckins


Spider 1576

Drilling Method: Sonic

Sampler Type: PE Bags

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 5.7
Total Boring Depth (ft bgs): 60.0

Total Well Depth (ft bgs): 55

Monument Type: Flush Mount
Casing Diameter (inches): 2
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 45.0-55.0

Well Construction Information

Filter Pack: 10/20 Sand Surface Seal: Concrete Annular Seal: Bentonite Boring Abandonment: NA

Ground Surface Elevation (ft): 23

Top of Casing Elevation (ft): NA

Surveyed Location: X: NA

Y: NA

Page 3 of 3

Client: Washington Builders LLC

Project: Block 43

Location: Block 38, Seattle, WA

Farallon PN: 397-010

Logged By: Dincer Kayhan

Date/Time Started: 7/21/14 @ 0945

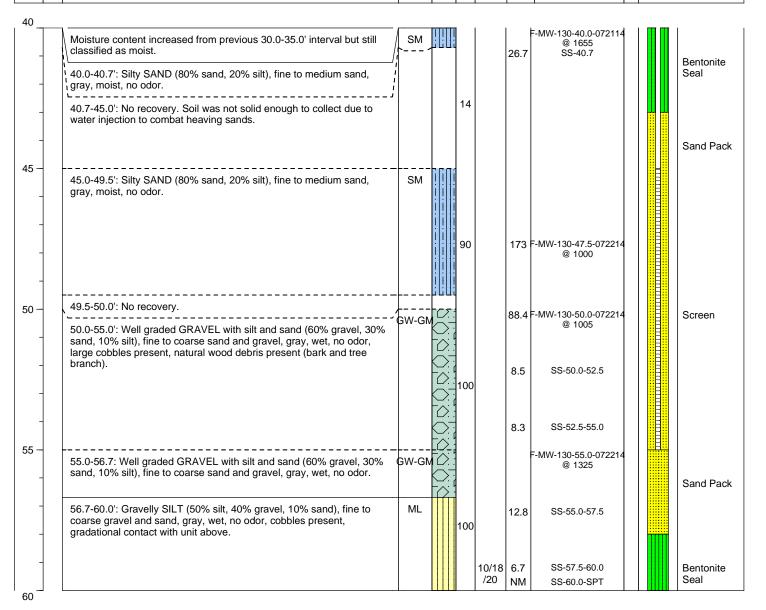
Date/Time Completed: 7/22/14 @ **Equipment:** Spider 1576

Drilling Company: Cascade Drilling
Drilling Foreman: Zane Huckins

Drilling Method: Sonic

Sampler Type: PE Bags

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 5.7
Total Boring Depth (ft bgs): 60.0


Total Well Depth (ft bgs): 55

Sample Interval

NSCS

USCS

U

Monument Type: Flush Mount
Casing Diameter (inches): 2
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 45.0-55.0

Well Construction Information

Filter Pack: 10/20 Sand Surface Seal: Concrete Annular Seal: Bentonite Boring Abandonment: NA

Ground Surface Elevation (ft):

Top of Casing Elevation (ft):

Surveyed Location: X:NA

Y: NA

23

Page 1 of 1

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:**

Equipment:

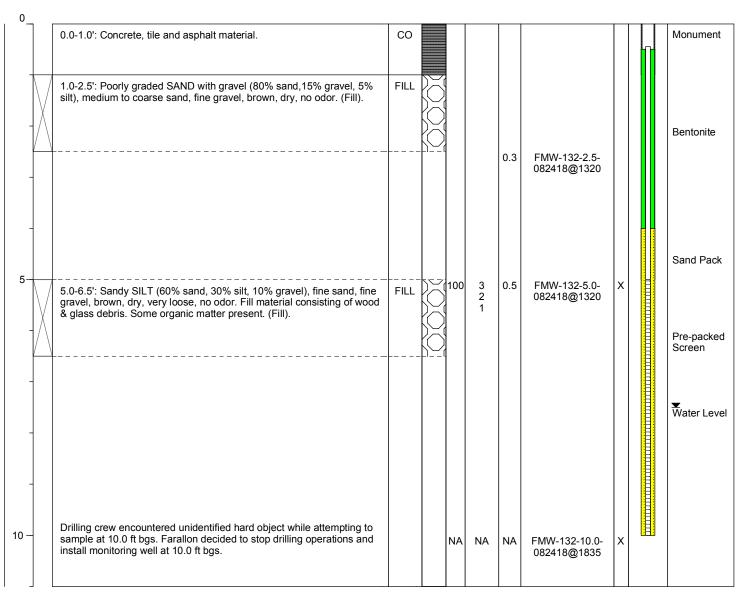
Drilling Company:

Drilling Foreman:

Mini-track

Geologic Drilling

08/24/2018 @ 1530 Drive Hammer (lbs.):


08/24/2018 @ 1330 Sampler Type: 1.5 Split spoon 140

Depth of Water ATD (ft bgs): 7.5 Total Boring Depth (ft bgs): 10.0

Total Well Depth (ft bgs): Blaine Gibson 10.0

Hollow Stem Auger **Drilling Method:**

Sample luterval Lithologic Description	nscs	SCS Gr	% Recovery Blow Counts 8/8/8	PID (ppm)	Oampie ib	Sample Analyzed	Boring/Well Construction Details
---	------	--------	------------------------------	-----------	-----------	-----------------	--

Monument Type: Flush Mount Casing Diameter (inches): 10 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 5.0-10.0 **Well Construction Information**

Filter Pack: Silica/Sand Surface Seal: Grout/Concrete **Annular Seal:** Bentonite/Grout **Boring Abandonment:**

Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location: X:NA

Y: NA

NA

Page 1 of 1

9.0

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:**

08/24/2018 @ 1745 Sampler Type: 1.5 Split Spoon

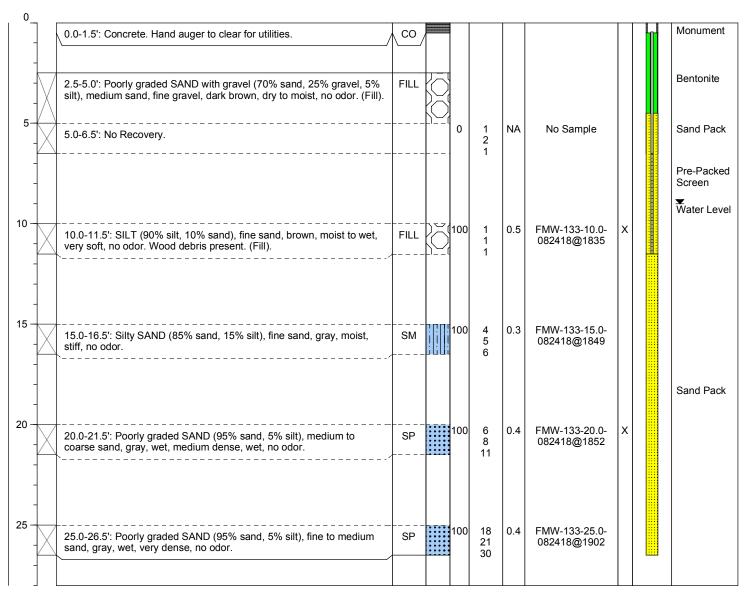
08/24/2018 @ 1902 Drive Hammer (lbs.):

140

Equipment:

Mini-track

Depth of Water ATD (ft bgs):


Drilling Company: Drilling Foreman:

Geologic Drilling Blaine Gibson

Total Boring Depth (ft bgs): 26.5 Total Well Depth (ft bgs): 11.5

Drilling Method: Hollow Stem Auger

Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Counts **Boring/Well** Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** <u></u>8 吕

Monument Type: Flush Mount Casing Diameter (inches): 10 Screen Slot Size (inches): 0.01 Screened Interval (ft bgs): 6.5 - 11.5 **Well Construction Information**

Filter Pack: Silica/Sand Surface Seal: Grout/Concrete

Annular Seal: NΑ **Boring Abandonment:** NA Ground Surface Elevation (ft): Top of Casing Elevation (ft):

Surveyed Location: X:NA Y: NA NA NA

Page 1 of 1

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started:

Drilling Company:

Drilling Method:

08/24/2018 @ 1030 Drive Hammer (lbs.):

08/24/2018 @ 0700 Sampler Type: 1.5 Split Spoon 140

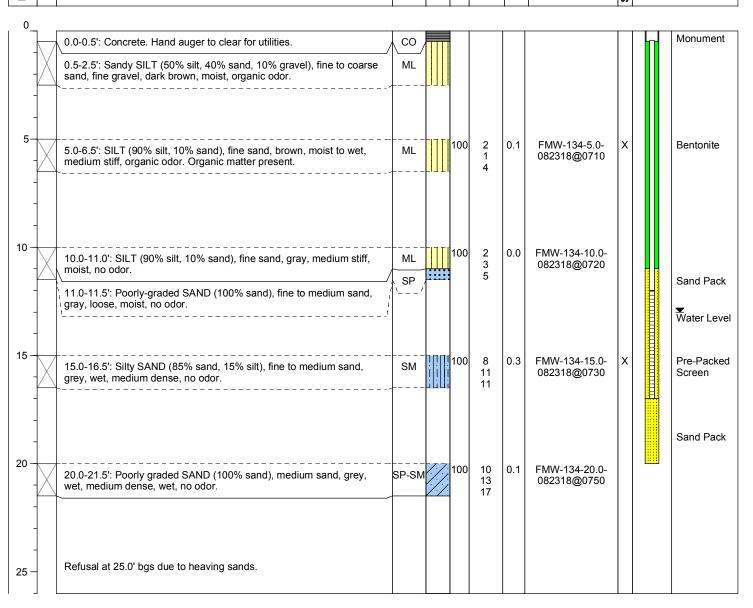
Date/Time Completed: Equipment:

Mini-track

Geologic Drilling

Depth of Water ATD (ft bgs):

13.0 Total Boring Depth (ft bgs): 20.0


Total Well Depth (ft bgs): **Drilling Foreman:** Blaine Gibson

Hollow Stem Auger

Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Counts Recovery (mdd) **Lithologic Description** Sample ID <u></u>8 吕

Boring/Well Construction **Details**

17.0

Monument Type: Flush Mount Casing Diameter (inches): 10 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 12.0-17.0

Well Construction Information Filter Pack: Silica/Sand

Surface Seal: Grout/Concrete Annular Seal: Bentonite/Grout

Boring Abandonment:

Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location: X:NA

Y: NA

NA

Page 1 of 2

Client: City Investors IX LLC
Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: 08/24/2018 @ 0700 \$

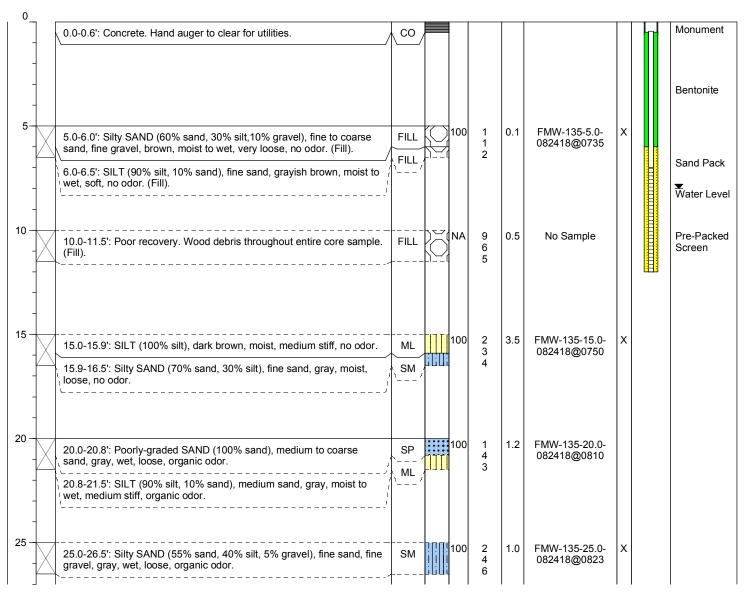
Date/Time Completed: 08/24/2018 @ 0950

Equipment: Mini-track

Drilling Company: Geologic Drilling

Drilling Foreman: Blaine Gibson

Drilling Method: Hollow Stem Auger


08/24/2018 @ 0700 Sampler Type: 1.5 Split Spoon

08/24/2018 @ 0950 Drive Hammer (lbs.): 140

Depth of Water ATD (ft bgs): 8.0

Total Boring Depth (ft bgs): 51.5

Total Well Depth (ft bgs): 12.0

Monument Type: Flush Mount
Casing Diameter (inches): 1.0
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 7.0-12.0

Well Construction Information
Filter Pack: Silica/Sand

Filter Pack: Silica/Sand
Surface Seal: Grout/Concrete
Annular Seal: Bentonite/Grout
Boring Abandonment: NA

Ground Surface Elevation (ft):
Top of Casing Elevation (ft):

NA

NA

Surveyed Location: X: NA
Y: NA

Page 2 of 2

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:**

08/24/2018 @ 0950 Drive Hammer (lbs.):

08/24/2018 @ 0700 Sampler Type: 1.5 Split Spoon

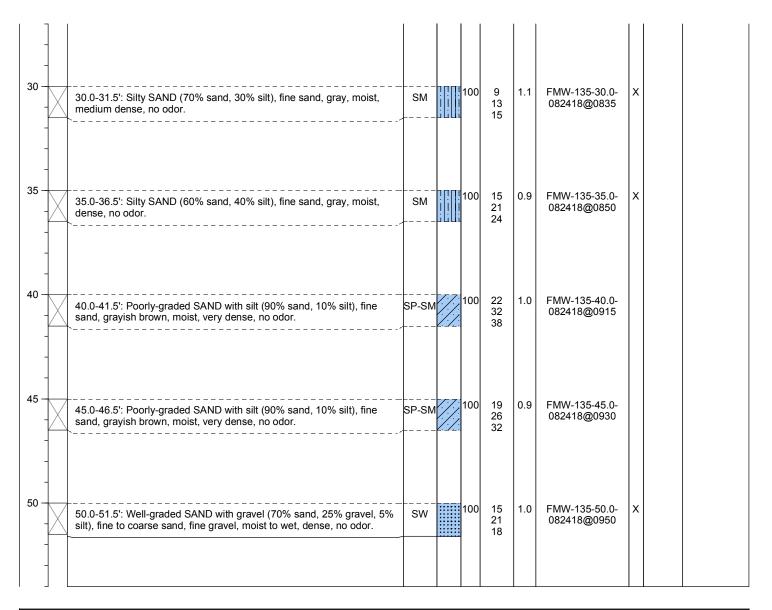
140

Equipment: Drilling Company:

Drilling Foreman:

Drilling Method:

Mini-track Geologic Drilling


Blaine Gibson

Depth of Water ATD (ft bgs):

8.0 Total Boring Depth (ft bgs): 51.5

Hollow Stem Auger

Total Well Depth (ft bgs): 12.0

Monument Type: Flush Mount Casing Diameter (inches): 10 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 7.0-12.0 **Well Construction Information**

Filter Pack: Silica/Sand Surface Seal: Grout/Concrete Annular Seal: Bentonite/Grout **Boring Abandonment:**

Top of Casing Elevation (ft): Surveyed Location: X:NA Y: NA

Ground Surface Elevation (ft):

NA NA

Page 1 of 1

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:**

08/22/2018 @ 1310 Sampler Type: 1.5 Split Spoon

08/22/2018 @ 1400 Drive Hammer (lbs.):

140 18.0

Equipment:

Mini-track

Depth of Water ATD (ft bgs):

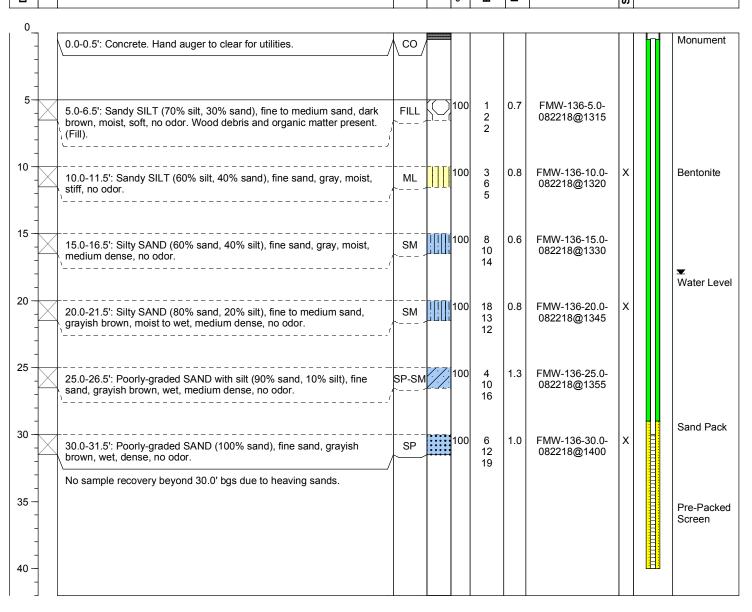
Drilling Company: Drilling Foreman:

Geologic Drilling Blaine Gibson

Total Boring Depth (ft bgs): 40.0 Total Well Depth (ft bgs): NA

Drilling Method: Hollow Stem Auger

Sample Analyzed


Depth (feet bgs.) Sample Interval **Lithologic Description**

USCS Graphic Recovery

Counts (mdd) <u></u>8 吕

Sample ID

Boring/Well Construction **Details**

Monument Type: Flush Mount Casing Diameter (inches): 10 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 30.0-40.0

Well Construction Information Filter Pack:

Silica/Sand Surface Seal: Grout/Concrete Annular Seal: Bentonite/Grout

Boring Abandonment:

Top of Casing Elevation (ft): Surveyed Location: X:NA

Y: NA

Ground Surface Elevation (ft):

NA NA

APPENDIX B LABORATORY ANALYTICAL REPORTS

SUBSURFACE INVESTIGATION REPORT AND ENVIRONMENTAL MEDIA
MANAGEMENT PLAN
Block 38 West Property
500 through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 30, 2014

Cliff Schmitt Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-010

Laboratory Reference No. 1407-172

Dear Cliff:

Enclosed are the analytical results and associated quality control data for samples submitted on July 22, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 30, 2014 Samples Submitted: July 22, 2014 Laboratory Reference: 1407-172

Project: 397-010

Case Narrative

Samples were collected on July 21 and 22, 2014 and received by the laboratory on July 22, 2014. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

The chromatogram for sample F-MW-130-GW1-072114 is not similar to a typical gas.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Date of Report: July 30, 2014 Samples Submitted: July 22, 2014 Laboratory Reference: 1407-172 Project: 397-010

NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-MW-130-GW1-072114					
Laboratory ID:	07-172-02					
Benzene	5.1	1.0	EPA 8021B	7-24-14	7-24-14	
Toluene	7.5	1.0	EPA 8021B	7-24-14	7-24-14	
Ethyl Benzene	2.2	1.0	EPA 8021B	7-24-14	7-24-14	
m,p-Xylene	3.4	1.0	EPA 8021B	7-24-14	7-24-14	
o-Xylene	3.3	1.0	EPA 8021B	7-24-14	7-24-14	
Gasoline	2100	100	NWTPH-Gx	7-24-14	7-24-14	Т

Surrogate: Percent Recovery Control Limits Fluorobenzene 95 71-112

Date of Report: July 30, 2014 Samples Submitted: July 22, 2014 Laboratory Reference: 1407-172 Project: 397-010

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Dogult	DOL	Mothod	Date	Date	Elogo
nesuit	PQL	wethod	Prepared	Anaryzeu	Flags
MB0724W1					
ND	1.0	EPA 8021B	7-24-14	7-24-14	
ND	1.0	EPA 8021B	7-24-14	7-24-14	
ND	1.0	EPA 8021B	7-24-14	7-24-14	
ND	1.0	EPA 8021B	7-24-14	7-24-14	
ND	1.0	EPA 8021B	7-24-14	7-24-14	
ND	100	NWTPH-Gx	7-24-14	7-24-14	
	ND ND ND ND	MB0724W1 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0	MB0724W1 ND 1.0 EPA 8021B ND 1.0 EPA 8021B	Result PQL Method Prepared MB0724W1 ND 1.0 EPA 8021B 7-24-14 ND 1.0 EPA 8021B 7-24-14	Result PQL Method Prepared Analyzed MB0724W1 ND 1.0 EPA 8021B 7-24-14 7-24-14 ND 1.0 EPA 8021B 7-24-14 7-24-14

Percent Recovery Control Limits Surrogate: Fluorobenzene 99 71-112

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE			Орто							90
Laboratory ID:	07-20	09-02								
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:				•	•			•		
Fluorobenzene						97 96	71-112			

MATRIX SPIKES

WATTER OF INEO											
Laboratory ID:	07-209-02										
	MS	MSD	MS	MSD		MS	MSD				
Benzene	52.9	54.0	50.0	50.0	ND	106	108	78-120	2	12	
Toluene	54.7	55.9	50.0	50.0	ND	109	112	80-121	2	12	
Ethyl Benzene	55.1	55.9	50.0	50.0	ND	110	112	81-120	1	13	
m,p-Xylene	55.8	56.7	50.0	50.0	ND	112	113	81-119	2	13	
o-Xylene	55.4	56.0	50.0	50.0	ND	111	112	79-117	1	13	
Surrogate:											

Fluorobenzene 102 102 71-112

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-MW-130-GW1-072114					
Laboratory ID:	07-172-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chloromethane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Vinyl Chloride	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromomethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chloroethane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Iodomethane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Methylene Chloride	ND	1.0	EPA 8260C	7-23-14	7-23-14	
(trans) 1,2-Dichloroethen	e ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromochloromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chloroform	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Trichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Dibromomethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromodichloromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	7-23-14	7-23-14	
(cis) 1,3-Dichloropropene	e ND	0.20	EPA 8260C	7-23-14	7-23-14	
(trans) 1,3-Dichloroprope	ne ND	0.20	EPA 8260C	7-23-14	7-23-14	

4-Bromofluorobenzene

99

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: F-M	IW-130-GW1-07211	4				
Laboratory ID:	07-172-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Tetrachloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Dibromochloromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromoform	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Bromobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260C	7-23-14	7-23-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	62-122				
Toluene-d8	101	70-120				

71-120

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0723W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chloromethane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Vinyl Chloride	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromomethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chloroethane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Iodomethane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Methylene Chloride	ND	1.0	EPA 8260C	7-23-14	7-23-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromochloromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chloroform	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Trichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Dibromomethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromodichloromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	7-23-14	7-23-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-23-14	7-23-14	

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0723W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Tetrachloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Dibromochloromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromoform	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Bromobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	62-122				
Toluene-d8	100	70-120				
4-Bromofluorobenzene	97	71-120				

HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	23W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.90	10.1	10.0	10.0	99	101	63-142	2	17	
Benzene	10.1	10.0	10.0	10.0	101	100	78-125	1	15	
Trichloroethene	10.4	10.0	10.0	10.0	104	100	75-125	4	15	
Toluene	10.1	9.91	10.0	10.0	101	99	80-125	2	15	
Chlorobenzene	9.83	9.74	10.0	10.0	98	97	80-140	1	15	
Surrogate:										
Dibromofluoromethane					95	98	62-122			
Toluene-d8					101	101	70-120			
4-Bromofluorobenzene					95	97	71-120			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical gas.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Chain of Custody

Page_
-
어 -
_

lan.

Data Package: Standard	Reviewed/Date	Received	Relinquished	Received	Relinquished ,	Received	Relinquished	Signature				4 DRILLING WATER	3 F-MW-130-40.0-072114	2 F-MW-130-G-W1-072114	F-WW-130-200-07214	Lab ID Sample Identification	DINCER KATHAN	CLIFF SUMIT	BLOCK 43 Project Manager:	397-010	TARALEN Project Number:		Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052
ndard Level III Level IV	Reviewed/Date		(7	(Sea 1)	Street	オプセチとうて	Company			· ·	7/22/19 0815 W	7/21/14 1655 5	7/21/14 1420 W	7/21/14 1300 S	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)
Electronic Data Deliverables (EDDs)				7/22/14 ///5	1/22/11 M12	7244 1000	14	Date Time				ω -	4	7	7 7	Semivo	H-HCI H-Gx/ H-Gx H-Dx es 826 enated	D BTEX OC Volatil	es 8260C D/SIM		6		Laboratory Number:
8) 🗆	Chromatograms with final report							Comments/Special Instructions				Holl		STAZ DARD TAT	TOTO THE GRADINALS	PCBs & Organo Organo Chlorin Total F Total M	8082A ochlori ipphosp ated A CCRA I	/SIM (I	ow-level) sticides 80 Pesticides 8	3270D/			07-172

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 5, 2014

Cliff Schmitt Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-010

Laboratory Reference No. 1407-172B

Dear Cliff:

Enclosed are the analytical results and associated quality control data for samples submitted on July 22, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-010

Case Narrative

Samples were collected on July 21 and 22, 2014 and received by the laboratory on July 22, 2014. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 397-010

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	F-MW-130-20.0-072114				7	90
Laboratory ID:	07-172-01					
Benzene	ND	0.020	EPA 8021B	7-31-14	8-1-14	
Toluene	ND	0.088	EPA 8021B	7-31-14	8-1-14	
Ethyl Benzene	ND	0.088	EPA 8021B	7-31-14	8-1-14	
m,p-Xylene	ND	0.088	EPA 8021B	7-31-14	8-1-14	
o-Xylene	ND	0.088	EPA 8021B	7-31-14	8-1-14	
Gasoline	ND	8.8	NWTPH-Gx	7-31-14	8-1-14	

Surrogate: Percent Recovery Control Limits
Fluorobenzene 102 71-121

Project: 397-010

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0731S1					
Benzene	ND	0.020	EPA 8021B	7-31-14	7-31-14	
Toluene	ND	0.050	EPA 8021B	7-31-14	7-31-14	
Ethyl Benzene	ND	0.050	EPA 8021B	7-31-14	7-31-14	
m,p-Xylene	ND	0.050	EPA 8021B	7-31-14	7-31-14	
o-Xylene	ND	0.050	EPA 8021B	7-31-14	7-31-14	
Gasoline	ND	5.0	NWTPH-Gx	7-31-14	7-31-14	

Surrogate: Percent Recovery Control Limits Fluorobenzene 107 71-121

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-27	75-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Toluene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	۱A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						109	109	71-121			
SPIKE BLANKS											
Laboratory ID:	SB07	31S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.998	1.04	1.00	1.00		100	104	73-121	4	10	
Toluene	1.07	1.13	1.00	1.00		107	113	75-124	5	10	
Ethyl Benzene	1.07	1.12	1.00	1.00		107	112	75-125	5	9	
m,p-Xylene	1.08	1.13	1.00	1.00		108	113	75-126	5	9	
o-Xylene	1.07	1.11	1.00	1.00		107	111	74-123	4	8	
Surrogate:	·										
Fluorobenzene						104	107	71-121			

Project: 397-010

NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-MW-130-20.0-072114					
Laboratory ID:	07-172-01					
Diesel Range Organics	ND	30	NWTPH-Dx	8-1-14	8-1-14	_
Lube Oil Range Organics	s ND	60	NWTPH-Dx	8-1-14	8-1-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				

Project: 397-010

NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0801S1					_
Diesel Range Organics	ND	25	NWTPH-Dx	8-1-14	8-1-14	
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-1-14	8-1-14	_
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				

					Source	Percen	t Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recover	y Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	07-29	97-03								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						95 10	50-150			

Project: 397-010

SEMIVOLATILES EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: F-N	/IW-130-20.0-072114					
Laboratory ID:	07-172-01					
n-Nitrosodimethylamine	ND	0.040	EPA 8270D	8-1-14	8-2-14	
Pyridine	ND	0.40	EPA 8270D	8-1-14	8-2-14	
Phenol	ND	0.040	EPA 8270D	8-1-14	8-2-14	
Aniline	ND	0.20	EPA 8270D	8-1-14	8-2-14	
bis(2-Chloroethyl)ether	ND	0.040	EPA 8270D	8-1-14	8-2-14	
2-Chlorophenol	ND	0.040	EPA 8270D	8-1-14	8-2-14	
1,3-Dichlorobenzene	ND	0.040	EPA 8270D	8-1-14	8-2-14	
1,4-Dichlorobenzene	ND	0.040	EPA 8270D	8-1-14	8-2-14	
Benzyl alcohol	ND	0.20	EPA 8270D	8-1-14	8-2-14	
1,2-Dichlorobenzene	ND	0.040	EPA 8270D	8-1-14	8-2-14	
2-Methylphenol (o-Cresol)	ND	0.040	EPA 8270D	8-1-14	8-2-14	
bis(2-Chloroisopropyl)ether	ND	0.040	EPA 8270D	8-1-14	8-2-14	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.040	EPA 8270D	8-1-14	8-2-14	
n-Nitroso-di-n-propylamine	ND	0.040	EPA 8270D	8-1-14	8-2-14	
Hexachloroethane	ND	0.040	EPA 8270D	8-1-14	8-2-14	
Nitrobenzene	ND	0.040	EPA 8270D	8-1-14	8-2-14	
Isophorone	ND	0.040	EPA 8270D	8-1-14	8-2-14	
2-Nitrophenol	ND	0.040	EPA 8270D	8-1-14	8-2-14	
2,4-Dimethylphenol	ND	0.040	EPA 8270D	8-1-14	8-2-14	
bis(2-Chloroethoxy)methane	ND	0.040	EPA 8270D	8-1-14	8-2-14	
2,4-Dichlorophenol	ND	0.040	EPA 8270D	8-1-14	8-2-14	
1,2,4-Trichlorobenzene	ND	0.040	EPA 8270D	8-1-14	8-2-14	
Naphthalene	0.38	0.040	EPA 8270D	8-1-14	8-2-14	
4-Chloroaniline	ND	0.20	EPA 8270D	8-1-14	8-2-14	
Hexachlorobutadiene	ND	0.040	EPA 8270D	8-1-14	8-2-14	
4-Chloro-3-methylphenol	ND	0.040	EPA 8270D	8-1-14	8-2-14	
2-Methylnaphthalene	0.028	0.0079	EPA 8270D/SIM	8-1-14	8-1-14	
1-Methylnaphthalene	0.016	0.0079	EPA 8270D/SIM	8-1-14	8-1-14	
Hexachlorocyclopentadiene	ND	0.040	EPA 8270D	8-1-14	8-2-14	
2,4,6-Trichlorophenol	ND	0.040	EPA 8270D	8-1-14	8-2-14	
2,3-Dichloroaniline	ND	0.040	EPA 8270D	8-1-14	8-2-14	
2,4,5-Trichlorophenol	ND	0.040	EPA 8270D	8-1-14	8-2-14	
2-Chloronaphthalene	ND	0.040	EPA 8270D	8-1-14	8-2-14	
2-Nitroaniline	ND	0.040	EPA 8270D	8-1-14	8-2-14	
1,4-Dinitrobenzene	ND	0.040	EPA 8270D	8-1-14	8-2-14	
Dimethylphthalate	ND	0.040	EPA 8270D	8-1-14	8-2-14	
1,3-Dinitrobenzene	ND	0.040	EPA 8270D	8-1-14	8-2-14	
2,6-Dinitrotoluene	ND	0.040	EPA 8270D	8-1-14	8-2-14	
1,2-Dinitrobenzene	ND	0.040	EPA 8270D	8-1-14	8-2-14	
Acenaphthylene	ND	0.0079	EPA 8270D/SIM	8-1-14	8-1-14	
3-Nitroaniline	ND	0.040	EPA 8270D	8-1-14	8-2-14	

Project: 397-010

SEMIVOLATILES EPA 8270D/SIM

page 2 of 2

Laboratory ID: 07-172-01 2,4-Dinitrophenol ND	Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
2.4-Dinitrophenol ND	Client ID: F-N	MW-130-20.0-072114					
2.4-Dinitrophenol ND							
Acenaphthene			0.20	EPA 8270D	8-1-14	8-2-14	
A-Nitrophenol ND		0.014			8-1-14	8-1-14	
2.4-Dinitrotoluene			0.040		8-1-14	8-2-14	
Dibenzofuran ND		ND		EPA 8270D	8-1-14	8-2-14	
2,3,6,6-Tetrachlorophenol ND							
2.3.4.6-Tetrachlorophenol ND					8-1-14		
Diethylphthalate	-			EPA 8270D			
4-Chlorophenyl-phenylether ND 0.040 EPA 8270D 8-1-14 8-2-14 4-Nitroaniline ND 0.040 EPA 8270D 8-1-14 8-2-14 Fluorene ND 0.040 ND 0.0079 EPA 8270D/SIM 8-1-14 8-2-14 N-Nitrosodiphenylamine ND 0.040 EPA 8270D 8-1-14 8-2-14 N-Nitrosodiphenylamine ND 0.040 EPA 8270D 8-1-14 8-2-14 N-Nitrosodiphenylamine ND 0.040 EPA 8270D 8-1-14 8-2-14 1,2-Diphenylyhydrazine ND 0.0079 EPA 8270D/SIM 8-1-14 8-2-14 1,2-Diphenylyhyhyhyhyhyhyhyhyhyhyhyhyhyhyhyhyhyhy							
4-Nitroanilline	• •						
Fluorene							
4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270D 8-1-14 8-2-14 n-Nitrosodiphenylamine ND 0.040 EPA 8270D 8-1-14 8-2-14 1,2-Diphenylhydrazine ND 0.040 EPA 8270D 8-1-14 8-2-14 4-Bromophenyl-phenylether ND 0.040 EPA 8270D 8-1-14 8-2-14 Hexachlorobenzene ND 0.040 EPA 8270D 8-1-14 8-2-14 Pentachlorophenol ND 0.040 EPA 8270D 8-1-14 8-2-14 Pentachlorophenol ND 0.040 EPA 8270D/SIM 8-1-14 8-2-14 Phenanthrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Anthracene ND 0.040 EPA 8270D 8-1-14 8-1-14 Anthracene ND 0.040 EPA 8270D 8-1-14 8-2-14 Fluoranthene ND 0.040 EPA 8270D 8-1-14 8-2-14 Fluoranthene ND 0.040 EPA 8270D/SIM 8-1-14							
ND 0.040 EPA 8270D 8-1-14 8-2-14							
1,2-Diphenylhydrazine 4-Bromophenyl-phenylether ND 0.040 EPA 8270D 8-1-14 8-2-14 4-Bromophenyl-phenylether ND 0.040 EPA 8270D 8-1-14 8-2-14 Hexachlorobenzene ND 0.040 EPA 8270D 8-1-14 8-2-14 Pentachlorophenol ND 0.20 EPA 8270D 8-1-14 8-2-14 Pentachlorophenol ND 0.20 EPA 8270D 8-1-14 8-2-14 Phenanthrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Carbazole ND 0.040 EPA 8270D 8-1-14 8-1-14 8-2-14 Di-n-butylphthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Piluoranthene ND 0.040 EPA 8270D 8-1-14 8-2-14 Pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzidine ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Butylbenzylphthalate ND 0.0079 EPA 8270D 8-1-14 8-1-14 8-1-14 Butylbenzylphthalate ND 0.0079 EPA 8270D 8-1-14 8-2-14 Butylbenzylphthalate ND 0.040 EPA 8270D 8-1-14 8-1-14 8-2-14 Butylbenzylphthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Benzo[a]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 8-2-14 Benzo[a]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]pyrene ND 0.0079 EPA							
A-Bromophenyl-phenylether ND 0.040 EPA 8270D 8-1-14 8-2-14 Hexachlorobenzenee ND 0.040 EPA 8270D 8-1-14 8-2-14 Pentachlorophenol ND 0.20 EPA 8270D 8-1-14 8-2-14 Phenanthrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 8-1-14 Anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 8-1-14 Carbazole ND 0.040 EPA 8270D 8-1-14 8-1-14 8-1-14 Benzidine ND 0.040 EPA 8270D 8-1-14 8-2-14 Dibenzidine ND 0.040 EPA 8270D 8-1-14 8-2-14 Benzidine ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 8-1-14 Benzidine ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 8-1-14 Benzidine ND 0.0079 EPA 8270D 8-1-14 8-2-14 Benzidine ND 0.0040 EPA 8270D 8-1-14 8-2-14 Benzidine ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 Benzidine ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8-1-14 8							
Hexachlorobenzene ND 0.040 EPA 8270D 8-1-14 8-2-14 Pentachlorophenol ND 0.20 EPA 8270D 8-1-14 8-2-14 Pentachlorophenol ND 0.0079 EPA 8270D 8-1-14 8-1-14 Anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Carbazole ND 0.040 EPA 8270D 8-1-14 8-2-14 Di-n-butylphthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Fluoranthene ND 0.040 EPA 8270D 8-1-14 8-2-14 Fluoranthene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzidine ND 0.0079 EPA 8270D 8-1-14 8-2-14 Pyrene ND 0.0079 EPA 8270D 8-1-14 8-2-14 Butylbenzylphthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Butylbenzylphthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Benzo[a]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-2-14 Benzo[a]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-2-14 Benzo[a]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[b]fluoranthene ND 0.0040 EPA 8270D 8-1-14 8-2-14 Benzo[b]fluoranthene ND 0.0040 EPA 8270D 8-1-14 8-2-14 Benzo[b]fluoranthene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]hjlperylene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzolade 85 34 - 10							
Pentachlorophenol ND							
Phenanthrene ND							
Anthracene	· · · · · · · · · · · · · · · · · · ·						
Carbazole ND 0.040 EPA 8270D 8-1-14 8-2-14 Di-n-butylphthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Fluoranthene ND 0.0079 EPA 8270D/SIM 8-1-14 8-2-14 Benzidine ND 0.40 EPA 8270D 8-1-14 8-2-14 Pyrene ND 0.0079 EPA 8270D 8-1-14 8-2-14 Butylbenzylphthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Butylbenzylphthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Butylbenzylphthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Benzo[a]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-2-14 Chrysene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Di-n-octylphthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Benzo[b]fluoranthene ND 0.040 EPA 8270D/SIM 8-1-14 8-1-14<							
Di-n-butylphthalate							
Fluoranthene							
Benzidine							
ND							
Butylbenzylphthalate							
bis-2-Ethylhexyladipate ND 0.040 EPA 8270D 8-1-14 8-2-14 8,3,3'-Dichlorobenzidine ND 0.20 EPA 8270D 8-1-14 8-2-14 Benzo[a]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Bis(2-Ethylhexyl)phthalate ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Bis(2-Ethylhexyl)phthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Benzo[b]fluoranthene ND 0.040 EPA 8270D 8-1-14 8-2-14 Benzo[b]fluoranthene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[j,k)fluoranthene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Indeno[1,2,3-cd]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a,h]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 78 24 - 105 Phenol-d6 85 34 - 101 Nitrobenzene-d5 72 32 - 102 2-Fluorobiphenyl 75 44 - 100 2,4,6-Tribromophenol 67 34 - 124	•						
3,3'-Dichlorobenzidine							
Benzo[a]anthracene							
Chrysene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 bis(2-Ethylhexyl)phthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Di-n-octylphthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Benzo[b]fluoranthene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Indeno[1,2,3-cd]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Dibenz[a,h]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[g,h,i]perylene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 78 24 - 105 Phenol-d6 85 34 - 101 Nitrobenzene-d5 72 32 - 102 2-Fluorobiphenyl							
bis(2-Ethylhexyl)phthalate							
Di-n-octylphthalate ND 0.040 EPA 8270D 8-1-14 8-2-14 Benzo[b]fluoranthene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Indeno[1,2,3-cd]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Dibenz[a,h]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[g,h,i]perylene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Surrogate: Percent Recovery Control Limits 8-1-14 8-1-14 8-1-14 2-Fluorophenol 78 24 - 105 8-1-14 8-1-14 8-1-14 Nitrobenzene-d5 72 32 - 102 32 - 102 32 - 102 2-Fluorobiphenyl 75 44 - 100 44 - 100 2,4,6-Tribromophenol 67 34 - 124	=						
Benzo[b]fluoranthene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo(j,k)fluoranthene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Indeno[1,2,3-cd]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Dibenz[a,h]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[g,h,i]perylene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 78 24 - 105 Phenol-d6 85 34 - 101 Nitrobenzene-d5 72 32 - 102 2-Fluorobiphenyl 75 44 - 100 2,4,6-Tribromophenol 67 34 - 124							
Benzo(j,k)fluoranthene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[a]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Indeno[1,2,3-cd]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Dibenz[a,h]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[g,h,i]perylene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 78 24 - 105 Phenol-d6 85 34 - 101 Nitrobenzene-d5 72 32 - 102 2-Fluorobiphenyl 75 44 - 100 2,4,6-Tribromophenol 67 34 - 124							
Benzo[a]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Indeno[1,2,3-cd]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Dibenz[a,h]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[g,h,i]perylene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 78 24 - 105 Phenol-d6 85 34 - 101 Nitrobenzene-d5 72 32 - 102 2-Fluorobiphenyl 75 44 - 100 2,4,6-Tribromophenol 67 34 - 124						-	
Indeno[1,2,3-cd]pyrene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Dibenz[a,h]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[g,h,i]perylene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Surrogate: Percent Recovery Control Limits 24-105 8-1-14 8-1-14 Phenol-d6 85 34-101 34-101 32-102 32-102 32-102 2-Fluorobiphenyl 75 44-100 34-124							
Dibenz[a,h]anthracene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Benzo[g,h,i]perylene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Surrogate: Percent Recovery Control Limits 24-105 2-Fluorophenol 78 24-105 Phenol-d6 85 34-101 Nitrobenzene-d5 72 32-102 2-Fluorobiphenyl 75 44-100 2,4,6-Tribromophenol 67 34-124							
Benzo[g,h,i]perylene ND 0.0079 EPA 8270D/SIM 8-1-14 8-1-14 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 78 24 - 105 Phenol-d6 85 34 - 101 Nitrobenzene-d5 72 32 - 102 2-Fluorobiphenyl 75 44 - 100 2,4,6-Tribromophenol 67 34 - 124							
Surrogate: Percent Recovery Control Limits 2-Fluorophenol 78 24 - 105 Phenol-d6 85 34 - 101 Nitrobenzene-d5 72 32 - 102 2-Fluorobiphenyl 75 44 - 100 2,4,6-Tribromophenol 67 34 - 124							
2-Fluorophenol 78 24 - 105 Phenol-d6 85 34 - 101 Nitrobenzene-d5 72 32 - 102 2-Fluorobiphenyl 75 44 - 100 2,4,6-Tribromophenol 67 34 - 124				_, , , o_, ob, o.ivi	J	J	
Phenol-d6 85 34 - 101 Nitrobenzene-d5 72 32 - 102 2-Fluorobiphenyl 75 44 - 100 2,4,6-Tribromophenol 67 34 - 124		•					
Nitrobenzene-d5 72 32 - 102 2-Fluorobiphenyl 75 44 -100 2,4,6-Tribromophenol 67 34 - 124							
2-Fluorobiphenyl 75 44 -100 2,4,6-Tribromophenol 67 34 - 124							
2,4,6-Tribromophenol 67 34 - 124							
Terphenvl-d14 74 47 - 114	Terphenyl-d14	74	47 - 114				

Project: 397-010

SEMIVOLATILES EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
riidiyto	Rooun	. 42	Motiloa	Tropurou	Allaryzou	i iugo
Laboratory ID:	MB0801S1					
n-Nitrosodimethylamine	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Pyridine	ND	0.33	EPA 8270D	8-1-14	8-1-14	
Phenol	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Aniline	ND	0.17	EPA 8270D	8-1-14	8-1-14	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2-Chlorophenol	ND	0.033	EPA 8270D	8-1-14	8-1-14	
1,3-Dichlorobenzene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
1,4-Dichlorobenzene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Benzyl alcohol	ND	0.17	EPA 8270D	8-1-14	8-1-14	
1,2-Dichlorobenzene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270D	8-1-14	8-1-14	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270D	8-1-14	8-1-14	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270D	8-1-14	8-1-14	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Hexachloroethane	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Nitrobenzene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Isophorone	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2-Nitrophenol	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2,4-Dimethylphenol	ND	0.033	EPA 8270D	8-1-14	8-1-14	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2,4-Dichlorophenol	ND	0.033	EPA 8270D	8-1-14	8-1-14	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Naphthalene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
4-Chloroaniline	ND	0.17	EPA 8270D	8-1-14	8-1-14	
Hexachlorobutadiene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2,3-Dichloroaniline	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2-Chloronaphthalene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2-Nitroaniline	ND	0.033	EPA 8270D	8-1-14	8-1-14	
1,4-Dinitrobenzene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Dimethylphthalate	ND	0.033	EPA 8270D	8-1-14	8-1-14	
1,3-Dinitrobenzene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2,6-Dinitrotoluene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
1,2-Dinitrobenzene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
3-Nitroaniline	ND	0.033	EPA 8270D	8-1-14	8-1-14	

Project: 397-010

SEMIVOLATILES EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0801S1					
2,4-Dinitrophenol	ND	0.17	EPA 8270D	8-1-14	8-1-14	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
4-Nitrophenol	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2,4-Dinitrotoluene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Dibenzofuran	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270D	8-1-14	8-1-14	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Diethylphthalate	ND	0.17	EPA 8270D	8-1-14	8-1-14	
· ·		0.033		8-1-14 8-1-14	8-1-14	
4-Chlorophenyl-phenylether4-Nitroaniline	ND ND		EPA 8270D	8-1-14 8-1-14	8-1-14 8-1-14	
		0.033	EPA 8270D			
Fluorene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
4,6-Dinitro-2-methylphenol	ND ND	0.17	EPA 8270D	8-1-14	8-1-14	
n-Nitrosodiphenylamine	ND	0.033	EPA 8270D	8-1-14	8-1-14	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270D	8-1-14	8-1-14	
4-Bromophenyl-phenylether		0.033	EPA 8270D	8-1-14	8-1-14	
Hexachlorobenzene	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Pentachlorophenol	ND	0.17	EPA 8270D	8-1-14	8-1-14	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
Anthracene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
Carbazole	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Di-n-butylphthalate	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
Benzidine	ND	0.33	EPA 8270D	8-1-14	8-1-14	
Pyrene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
Butylbenzylphthalate	ND	0.033	EPA 8270D	8-1-14	8-1-14	
bis-2-Ethylhexyladipate	ND	0.033	EPA 8270D	8-1-14	8-1-14	
3,3'-Dichlorobenzidine	ND	0.17	EPA 8270D	8-1-14	8-1-14	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
Chrysene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
bis(2-Ethylhexyl)phthalate	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Di-n-octylphthalate	ND	0.033	EPA 8270D	8-1-14	8-1-14	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
Indeno[1,2,3-cd]pyrene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	8-1-14	8-1-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	85	24 - 105				
Phenol-d6	90	34 - 101				
Nitrobenzene-d5	79	32 - 102				
2-Fluorobiphenyl	77	44 -100				
2,4,6-Tribromophenol	76	34 - 124				
Terphenyl-d14	77	47 - 114				

Project: 397-010

SEMIVOLATILES EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	801S1								
	SB	SBD	SB	SBD	SB	SBD				
Phenol	0.798	1.02	1.33	1.33	60	77	41 - 104	24	36	
2-Chlorophenol	0.799	1.03	1.33	1.33	60	77	41 - 100	25	42	
1,4-Dichlorobenzene	0.373	0.507	0.667	0.667	56	76	34 - 100	30	48	
n-Nitroso-di-n-propylamine	0.401	0.495	0.667	0.667	60	74	41 - 98	21	30	
1,2,4-Trichlorobenzene	0.395	0.502	0.667	0.667	59	75	30 - 105	24	46	
4-Chloro-3-methylphenol	0.877	1.02	1.33	1.33	66	77	57 - 101	15	27	
Acenaphthene	0.388	0.455	0.667	0.667	58	68	56 - 95	16	22	
2,4-Dinitrotoluene	0.422	0.485	0.667	0.667	63	73	63 - 110	14	23	
Pentachlorophenol	0.972	1.14	1.33	1.33	73	86	35 - 120	16	29	
Pyrene	0.454	0.502	0.667	0.667	68	75	56 - 114	10	25	
Surrogate:										
2-Fluorophenol					59	80	24 - 105			
Phenol-d6					67	84	34 - 101			
Nitrobenzene-d5					58	74	32 - 102			
2-Fluorobiphenyl					63	74	44 -100			
2,4,6-Tribromophenol					60	72	34 - 124			
Terphenyl-d14					66	74	47 - 114			

Project: 397-010

% MOISTURE

Date Analyzed: 8-1-14

Client ID Lab ID % Moisture

F-MW-130-20.0-072114 07-172-01 16

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Chain of Custody

- 690	Dage
	grane
9	O _f
-	

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)	equest days)		Lab	Laboratory Number:	Vio	Z	mbe	35							07	1	-1	N				
	(Check One)	1e)	-	-								_	_			-	-	-		-			
TAPALOZ	0,500	1 Day		_								M		_		_	_	_	_				
Project Number:	Calle Day			-							_				_		_	_	_				
397-010	2 Days	3 Days		—							04D				_		_	_	_				
Project Name:	Standard (7 Days)	(S)						3260C	0000	level)	des 80	icides 8	cides 8				664A						
Project Manager:	The state of the s	Duyo)	ner					iles	Hs)	(low	- 4.1			s	s	_	se) ·		_	_			
CLIFE SCHMIT								√olat	I PAH	SIM	- D			/letal:	/letal		grea		_				
	(other)	3			ìx	X		ed \	level	30340				A N	A N	als	ind	_	_	_			re
DINGER KAYHAN	1				'H-G	H-D		enate	ow-le	X-5/110-130				RCR	MTC	Met	(oil a						istur
ab ID Sample Identification	Date Time Sampled Sampled	Matrix	Numb	NWTP	NWTP	NWTP	Volatil	Haloge	Semiv (with lo	PAHs	PCBs			Total F	Total N	TCLP	HEM (7	5) li	9	% Mo
F-MW-130-20,0-07214	7/2/14 1300	h	4	2	9	(X)		phi 2	(X)	1	4	\$	4				#	#	1	H	1	P	(X)
	7/21/19 1420	3	9	9. 1	Ae.			۶.	1 4		5	752	D	DARD	6		7	F	1				
3 F-MW-130-40.0-072114	7/21/14 1655	S	4																				DIR
4 DRILLING WATER	7/22/19 0815	٤	W					-)	Hol	E	1						
	2	ř.													9								
	-	3.4																					
													-			+	+		-				
Signature	Company			Date	te		Time			Com	ments	Comments/Special Instructions	ial In:	truct	ions						_		
Relinquished	778	チレらて		7	7/22	14	091	0	Q		2)	5	-	2	4	3	4	V	D)	2	- R	~	11/1/ 4/2/14 DR/2 day Ton
Received	Shr	677		1	722	MH	0	900			(7	Q			0	-	7	-	(
Relinquished ,	75	Cook	1	V	22	J.	ž	2															
Received	4	128c		7	22	14	1	5	'														
Relinquished	('																	
Received																							
Reviewed/Date	Reviewed/Date	Date		+						Chro	natoo	Chromatograms with final report	With	final I	epon"								

Data Package: Standard

Level III

Level IV

Electronic Data Deliverables (EDDs)

.

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 30, 2014

Cliff Schmitt Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-010

Laboratory Reference No. 1407-172

Dear Cliff:

Enclosed are the analytical results and associated quality control data for samples submitted on July 22, 2014.

Please note that this is a *revised* report, and replaces the original dated July 30, 2014, due to a requested change of the Halogenated Volatiles to full list Volatiles.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-010

Case Narrative

Samples were collected on July 21 and 22, 2014 and received by the laboratory on July 22, 2014. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

The chromatogram for sample F-MW-130-GW1-072114 is not similar to a typical gas.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 397-010

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-MW-130-GW1-072114					
Laboratory ID:	07-172-02					
Benzene	5.1	1.0	EPA 8021B	7-24-14	7-24-14	
Toluene	7.5	1.0	EPA 8021B	7-24-14	7-24-14	
Ethyl Benzene	2.2	1.0	EPA 8021B	7-24-14	7-24-14	
m,p-Xylene	3.4	1.0	EPA 8021B	7-24-14	7-24-14	
o-Xylene	3.3	1.0	EPA 8021B	7-24-14	7-24-14	
Gasoline	2100	100	NWTPH-Gx	7-24-14	7-24-14	Т

Surrogate: Percent Recovery Control Limits
Fluorobenzene 95 71-112

Project: 397-010

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0724W1					
Benzene	ND	1.0	EPA 8021B	7-24-14	7-24-14	
Toluene	ND	1.0	EPA 8021B	7-24-14	7-24-14	
Ethyl Benzene	ND	1.0	EPA 8021B	7-24-14	7-24-14	
m,p-Xylene	ND	1.0	EPA 8021B	7-24-14	7-24-14	
o-Xylene	ND	1.0	EPA 8021B	7-24-14	7-24-14	
Gasoline	ND	100	NWTPH-Gx	7-24-14	7-24-14	
•		_				

Surrogate: Percent Recovery Control Limits Fluorobenzene 99 71-112

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	07-20	09-02								
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:	•	•						•		
Fluorobenzene						97 96	71-112			

MATRIX SPIKES

MATRIX SFIRES											
Laboratory ID:	07-2	09-02									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	52.9	54.0	50.0	50.0	ND	106	108	78-120	2	12	
Toluene	54.7	55.9	50.0	50.0	ND	109	112	80-121	2	12	
Ethyl Benzene	55.1	55.9	50.0	50.0	ND	110	112	81-120	1	13	
m,p-Xylene	55.8	56.7	50.0	50.0	ND	112	113	81-119	2	13	
o-Xylene	55.4	56.0	50.0	50.0	ND	111	112	79-117	1	13	
Surrogate:											

Fluorobenzene 102 102 71-112

Project: 397-010

VOLATILES EPA 8260C page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-MW-130-GW1-072114					
Laboratory ID:	07-172-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chloromethane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Vinyl Chloride	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromomethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chloroethane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Acetone	ND	6.4	EPA 8260C	7-23-14	7-23-14	
Iodomethane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Carbon Disulfide	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Methylene Chloride	ND	1.0	EPA 8260C	7-23-14	7-23-14	
(trans) 1,2-Dichloroethene	e ND	0.20	EPA 8260C	7-23-14	7-23-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Vinyl Acetate	ND	1.0	EPA 8260C	7-23-14	7-23-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
2-Butanone	ND	5.0	EPA 8260C	7-23-14	7-23-14	
Bromochloromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chloroform	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Benzene	6.1	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Trichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Dibromomethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromodichloromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
2-Chloroethyl Vinyl Ether	ND	1.9	EPA 8260C	7-23-14	7-23-14	
(cis) 1,3-Dichloropropene	. ND	0.20	EPA 8260C	7-23-14	7-23-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	7-23-14	7-23-14	
Toluene	4.3	1.0	EPA 8260C	7-23-14	7-23-14	
(trans) 1,3-Dichloroprope	ne ND	0.20	EPA 8260C	7-23-14	7-23-14	

Project: 397-010

Toluene-d8

4-Bromofluorobenzene

VOLATILES EPA 8260C page 2 of 2

Date Date Analyte Result **PQL** Method **Prepared** Analyzed Flags Client ID: F-MW-130-GW1-072114 Laboratory ID: 07-172-02 1,1,2-Trichloroethane 0.20 **EPA 8260C** 7-23-14 7-23-14 ND Tetrachloroethene ND 0.20 **EPA 8260C** 7-23-14 7-23-14 ND 0.20 **EPA 8260C** 7-23-14 7-23-14 1,3-Dichloropropane 2-Hexanone ND 2.9 **EPA 8260C** 7-23-14 7-23-14 Dibromochloromethane ND 0.20 **EPA 8260C** 7-23-14 7-23-14 1.2-Dibromoethane ND 0.20 **EPA 8260C** 7-23-14 7-23-14 Chlorobenzene ND 0.20 EPA 8260C 7-23-14 7-23-14 1,1,1,2-Tetrachloroethane ND 0.20 **EPA 8260C** 7-23-14 7-23-14 Ethylbenzene 0.20 **EPA 8260C** 7-23-14 7-23-14 1.6 m,p-Xylene 2.2 0.40 **EPA 8260C** 7-23-14 7-23-14 o-Xylene 2.3 0.20 **EPA 8260C** 7-23-14 7-23-14 Styrene ND 0.20 **EPA 8260C** 7-23-14 7-23-14 ND 1.0 **EPA 8260C** 7-23-14 7-23-14 Bromoform 0.23 0.20 **EPA 8260C** 7-23-14 7-23-14 Isopropylbenzene Bromobenzene ND 0.20 **EPA 8260C** 7-23-14 7-23-14 1,1,2,2-Tetrachloroethane ND 0.20 **EPA 8260C** 7-23-14 7-23-14 1,2,3-Trichloropropane ND 0.20 **EPA 8260C** 7-23-14 7-23-14 n-Propylbenzene ND 0.20 **EPA 8260C** 7-23-14 7-23-14 ND 0.20 7-23-14 7-23-14 2-Chlorotoluene EPA 8260C 4-Chlorotoluene ND 0.20 **EPA 8260C** 7-23-14 7-23-14 1,3,5-Trimethylbenzene 1.2 0.20 **EPA 8260C** 7-23-14 7-23-14 ND tert-Butylbenzene 0.20 **EPA 8260C** 7-23-14 7-23-14 1,2,4-Trimethylbenzene 2.6 0.20 **EPA 8260C** 7-23-14 7-23-14 sec-Butylbenzene ND 0.20 **EPA 8260C** 7-23-14 7-23-14 0.20 1,3-Dichlorobenzene ND **EPA 8260C** 7-23-14 7-23-14 ND 0.20 **EPA 8260C** 7-23-14 7-23-14 p-Isopropyltoluene EPA 8260C 1,4-Dichlorobenzene ND 0.20 7-23-14 7-23-14 7-23-14 1,2-Dichlorobenzene ND 0.20 **EPA 8260C** 7-23-14 ND 0.20 **EPA 8260C** 7-23-14 7-23-14 n-Butylbenzene 7-23-14 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260C 7-23-14 ND 0.20 1,2,4-Trichlorobenzene **EPA 8260C** 7-23-14 7-23-14 ND Hexachlorobutadiene 0.20 **EPA 8260C** 7-23-14 7-23-14 Е Naphthalene 650 1.0 **EPA 8260C** 7-23-14 7-23-14 1,2,3-Trichlorobenzene ND 0.20 **EPA 8260C** 7-23-14 7-23-14 Percent Recovery Surrogate: Control Limits Dibromofluoromethane 99 62-122

70-120

71-120

101

99

Project: 397-010

VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

Page 1 of 2

Matrix: Water Units: ug/L

-	_			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0723W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chloromethane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Vinyl Chloride	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromomethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chloroethane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Acetone	ND	6.4	EPA 8260C	7-23-14	7-23-14	
lodomethane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Carbon Disulfide	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Methylene Chloride	ND	1.0	EPA 8260C	7-23-14	7-23-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Vinyl Acetate	ND	1.0	EPA 8260C	7-23-14	7-23-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
2-Butanone	ND	5.0	EPA 8260C	7-23-14	7-23-14	
Bromochloromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chloroform	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Benzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Trichloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Dibromomethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromodichloromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
2-Chloroethyl Vinyl Ether	ND	1.9	EPA 8260C	7-23-14	7-23-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	7-23-14	7-23-14	
Toluene	ND	1.0	EPA 8260C	7-23-14	7-23-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-23-14	7-23-14	

Project: 397-010

4-Bromofluorobenzene

VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0723W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Tetrachloroethene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
2-Hexanone	ND	2.9	EPA 8260C	7-23-14	7-23-14	
Dibromochloromethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Chlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Ethylbenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
m,p-Xylene	ND	0.40	EPA 8260C	7-23-14	7-23-14	
o-Xylene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Styrene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromoform	ND	1.0	EPA 8260C	7-23-14	7-23-14	
Isopropylbenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Bromobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-23-14	7-23-14	
n-Propylbenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
tert-Butylbenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
sec-Butylbenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
p-Isopropyltoluene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
n-Butylbenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	7-23-14	7-23-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Naphthalene	ND	1.0	EPA 8260C	7-23-14	7-23-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-23-14	7-23-14	
Surrogate:	Percent Recovery	Control Limits		<u> </u>		
Dibromofluoromethane	100	62-122				
Toluene-d8	100	70-120				
i Gidelle-do	100	10-120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

71-120

97

Project: 397-010

VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

		Percent		cent	Recovery	RPD				
Analyte	Result		Spike Level		Rec	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	23W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.90	10.1	10.0	10.0	99	101	63-142	2	17	
Benzene	10.1	10.0	10.0	10.0	101	100	78-125	1	15	
Trichloroethene	10.4	10.0	10.0	10.0	104	100	75-125	4	15	
Toluene	10.1	9.91	10.0	10.0	101	99	80-125	2	15	
Chlorobenzene	9.83	9.74	10.0	10.0	98	97	80-140	1	15	
Surrogate:										
Dibromofluoromethane					95	98	62-122			
Toluene-d8					101	101	70-120			
4-Bromofluorobenzene					95	97	71-120			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical gas.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Chain of Custody

	-
5	מ
C	ane
- 1	U
	-
	2
- 3	÷
-1	
4	-
4	

lo-

772	Revie	Received	Relin	Received	Relin	Received	Relin					-	7	w	ھ	_	Lab ID	Diversion by:	CLI FF	Projec	W	Company: FBP Project Nu	
Data Package: Standard	Reviewed/Date	ived	Relinquished	ived	Relinquished ,	ived	Relinquished	Gignature					DRILLING WATER	F-MW-130-40.0-072114	F-MW-130-GW1-072114	F-MW-130-20:0-07214		DINCER KAMAN	FF SUMIT	BLock 43 Project Manager:	317-010	Company: 下角にみにらい Project Number:	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
				4				0					7/22/19	7/21/14	7/21/19	7/21/14	Date Sampled			Star (TPI	2 Days	Sam	
Level III Le	Reviewed/Date		(9	SP	Street	7700	Company					2180	7/21/14 1655	1420	1300	Time Sampled	(other)		Standard (7 Days) (TPH analysis 5 Days)	ays [Same Day [(in working days)
Level IV	Ö			27	(Cas)	7	PALOZ				-		٤	S	3	u	Matrix				3 Days] 1 Day	ays)
											+	+	W	4	d	9	Numbe			ners			
Electr		-		7	V	2)	7	Date		+					4	×	NWTPH						Laboratory Nu
Electronic Data Deliverables (EDDs)				2	22	722	7/22	te							4		NWTPH						ora
)ata D				14	T	H	14			+							NWTPH	l-Dx					ton
elivera				1	×	-	0	Time		+							Volatile	s 8260	OC				Z
bles (E				S	51	1000	00	е							8	4	Haloge	nated	Volatile	es 8260C			ımber:
DDs)				١,			9								. 4	19	Semivo (with lo						er:
	Chro							Con								1				ow-level)			
	mato							nment				-			Ŋ	5	PCBs 8						
	gram							s/Spe		1					752	D				ticides 80			
	s with							Comments/Special Instructions							7	1				esticides			
1	final							struc		-					100	01	Total R			erbicides (8151A		
	Chromatograms with final report							tions	-				E C		5	197	Total M						
									-		-		E				TCLP N						
					¥				-	+		1			7	4				e) 1664A			i
										+					F	#		_					
															1)4	0						N
									 -	-	-	-				1	N						
																0							
										-		-				10/1							

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 28, 2014

Jennifer Moore Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-010

Laboratory Reference No. 1407-225

Dear Jennifer:

Enclosed are the analytical results and associated quality control data for samples submitted on July 24, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-010

Case Narrative

Samples were collected on July 24, 2014 and received by the laboratory on July 24, 2014. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 397-010

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
F-MW-130-072414					
07-225-01					
ND	1.0	EPA 8021B	7-25-14	7-25-14	
ND	1.0	EPA 8021B	7-25-14	7-25-14	
ND	1.0	EPA 8021B	7-25-14	7-25-14	
ND	1.0	EPA 8021B	7-25-14	7-25-14	
ND	1.0	EPA 8021B	7-25-14	7-25-14	
ND	100	NWTPH-Gx	7-25-14	7-25-14	
	F-MW-130-072414 07-225-01 ND ND ND ND ND	F-MW-130-072414 07-225-01 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0	F-MW-130-072414 07-225-01 ND 1.0 EPA 8021B ND 1.0 EPA 8021B	Result PQL Method Prepared F-MW-130-072414 07-225-01 In the second of the second	F-MW-130-072414 07-225-01 ND 1.0 EPA 8021B 7-25-14 7-25-14 ND 1.0 EPA 8021B 7-25-14 7-25-14

Surrogate: Percent Recovery Control Limits
Fluorobenzene 93 71-112

Project: 397-010

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0725W1					
Benzene	ND	1.0	EPA 8021B	7-25-14	7-25-14	
Toluene	ND	1.0	EPA 8021B	7-25-14	7-25-14	
Ethyl Benzene	ND	1.0	EPA 8021B	7-25-14	7-25-14	
m,p-Xylene	ND	1.0	EPA 8021B	7-25-14	7-25-14	
o-Xylene	ND	1.0	EPA 8021B	7-25-14	7-25-14	
Gasoline	ND	100	NWTPH-Gx	7-25-14	7-25-14	

Surrogate: Percent Recovery Control Limits Fluorobenzene 95 71-112

					Source	Per	cent	Recove ry		RPD	
Analyte	Result		Spike	Spike Level		Recovery		Limits	RPD	Limit	Flags
DUPLICATE										-	
Laboratory ID:	07-22	25-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Toluene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	۱A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						93	93	71-112			
SPIKE BLANKS											
Laboratory ID:	SB07	25W1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	51.0	49.9	50.0	50.0		102	100	86-116	2	11	
Toluene	51.5	50.6	50.0	50.0		103	101	86-117	2	12	
Ethyl Benzene	50.9	49.7	50.0	50.0		102	99	86-118	2	13	
m,p-Xylene	51.0	49.9	50.0	50.0		102	100	86-118	2	14	
o-Xylene	50.9	49.9	50.0	50.0		102	100	85-117	2	14	
Surrogate:											

Fluorobenzene 94 95 71-112

Project: 397-010

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

Ŭ				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-MW-130-072414					
Laboratory ID:	07-225-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Chloromethane	ND	1.0	EPA 8260C	7-25-14	7-25-14	
Vinyl Chloride	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Bromomethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Chloroethane	ND	1.0	EPA 8260C	7-25-14	7-25-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
lodomethane	ND	1.0	EPA 8260C	7-25-14	7-25-14	
Methylene Chloride	ND	1.0	EPA 8260C	7-25-14	7-25-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
(cis) 1,2-Dichloroethene	0.51	0.20	EPA 8260C	7-25-14	7-25-14	
Bromochloromethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Chloroform	0.91	0.20	EPA 8260C	7-25-14	7-25-14	
1,1,1-Trichloroethane	0.26	0.20	EPA 8260C	7-25-14	7-25-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Trichloroethene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Dibromomethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Bromodichloromethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	7-25-14	7-25-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260C	7-25-14	7-25-14	

Project: 397-010

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-MW-130-072414					
Laboratory ID:	07-225-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Tetrachloroethene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Dibromochloromethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Chlorobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Bromoform	ND	1.0	EPA 8260C	7-25-14	7-25-14	
Bromobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2-Dibromo-3-chloropropane	e ND	1.3	EPA 8260C	7-25-14	7-25-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	62-122				
Toluene-d8	102	70-120				
		74.400				

Project: 397-010

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0725W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Chloromethane	ND	1.0	EPA 8260C	7-25-14	7-25-14	
Vinyl Chloride	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Bromomethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Chloroethane	ND	1.0	EPA 8260C	7-25-14	7-25-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Iodomethane	ND	1.0	EPA 8260C	7-25-14	7-25-14	
Methylene Chloride	ND	1.0	EPA 8260C	7-25-14	7-25-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Bromochloromethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Chloroform	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Trichloroethene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Dibromomethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Bromodichloromethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	7-25-14	7-25-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-25-14	7-25-14	

Project: 397-010

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratori ID:	NADOZOEVA/A					
Laboratory ID:	MB0725W1	0.00	EDA 00000	7.05.44	7.05.44	
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Tetrachloroethene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Dibromochloromethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Chlorobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Bromoform	ND	1.0	EPA 8260C	7-25-14	7-25-14	
Bromobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-25-14	7-25-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2-Dibromo-3-chloropropane	ND	1.3	EPA 8260C	7-25-14	7-25-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-25-14	7-25-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	62-122				
Toluene-d8	99	70-120				
4-Bromofluorobenzene	95	71-120				

Project: 397-010

HALOGENATED VOLATILES EPA 8260C MS/MSD QUALITY CONTROL

Matrix: Water Units: ug/L

					Source	Per	cent	Recovery		RPD	
Analyte	Result		Spike	Spike Level		Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	07-22	25-01									
	MS	MSD	MS	MSD		MS	MSD				
1,1-Dichloroethene	9.22	9.29	10.0	10.0	ND	92	93	57-133	1	15	
Benzene	9.68	9.81	10.0	10.0	ND	97	98	78-117	1	15	
Trichloroethene	9.61	9.56	10.0	10.0	ND	96	96	77-120	1	15	
Toluene	9.48	9.60	10.0	10.0	ND	95	96	80-115	1	15	
Chlorobenzene	9.26	9.32	10.0	10.0	ND	93	93	80-122	1	15	
Surrogate:											
Dibromofluoromethane						99	102	62-122			
Toluene-d8						99	101	70-120			
4-Bromofluorobenzene						95	97	71-120			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Chain of Custody

Page ____ of ___

Reviewed/Date Data	Received	Relinquished	Received	Relinquished	Received	Relinquished Man O	Signature					1	1 F-MW-130-072417	Lab ID Sample Identification	Samples by: Ostron	Jen Mose	Project Name: VIQX LS	397-00	Project Number	Company: Company: C	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052
Reviewed/Date					X (%)	from tarallon	Company			/ RO			17 7/24/14 1053 W	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	X Same Day	(Check One)	(in working days)
Chronic Data Deliverables (EDDs) 🛘					7/24/14/1352	7/24/H 1352							X	NWTP NWTP NWTP Volatile Haloge Semive (with le	H-HCIII H-Gx/E H-Gx H-Dx es 8260 enated olatiles ow-leve 8270D/	BTEX OC Volatile 8270D,	s 8260C				Laboratory Number:
Chromatograms with final report ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐							Comments/Special Instructions							Organo Organo Chlorir Total F	nated A RCRA M MTCA M Metals	cid Her Aetals	esticides 80 esticides bicides	8270D/			07-225

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 11, 2017

Rob Leet Farallon Consulting 1809 7th Ave., Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019

Laboratory Reference No. 1707-004

Dear Rob:

Enclosed are the analytical results and associated quality control data for samples submitted on July 3, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-019

Case Narrative

Samples were collected on July 3, 2017 and received by the laboratory on July 3, 2017. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 397-019

NWTPH-Gx

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-130-070317					
Laboratory ID:	07-004-01					
Gasoline	ND	100	NWTPH-Gx	7-6-17	7-6-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	61-118				

Project: 397-019

NWTPH-Gx QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0706W1					
Gasoline	ND	100	NWTPH-Gx	7-6-17	7-6-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	61-118				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-3	53-32									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N/	4	NA	NA	30	
Surrogate:	•				•	•			•		
Fluorobenzene						86	85	61-118			

Project: 397-019

VOLATILES EPA 8260C Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-130-070317					
Laboratory ID:	07-004-01					
Dichlorodifluoromethane	ND	0.35	EPA 8260C	7-5-17	7-5-17	
Chloromethane	ND	1.3	EPA 8260C	7-5-17	7-5-17	
Vinyl Chloride	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Bromomethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Chloroethane	ND	1.0	EPA 8260C	7-5-17	7-5-17	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Acetone	ND	5.0	EPA 8260C	7-5-17	7-5-17	
Iodomethane	ND	1.7	EPA 8260C	7-5-17	7-5-17	
Carbon Disulfide	ND	0.43	EPA 8260C	7-5-17	7-5-17	
Methylene Chloride	ND	1.0	EPA 8260C	7-5-17	7-5-17	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Vinyl Acetate	ND	1.0	EPA 8260C	7-5-17	7-5-17	
2,2-Dichloropropane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
2-Butanone	ND	5.0	EPA 8260C	7-5-17	7-5-17	
Bromochloromethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Chloroform	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Benzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Trichloroethene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Dibromomethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Bromodichloromethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	7-5-17	7-5-17	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	7-5-17	7-5-17	
Toluene	ND	1.0	EPA 8260C	7-5-17	7-5-17	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260C	7-5-17	7-5-17	

Project: 397-019

VOLATILES EPA 8260C

Page 2 of 2

A color	5	DOL		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-130-070317					
Laboratory ID:	07-004-01	2.22	EDA 0000			
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Tetrachloroethene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,3-Dichloropropane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
2-Hexanone	ND	2.0	EPA 8260C	7-5-17	7-5-17	
Dibromochloromethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Chlorobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Ethylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
m,p-Xylene	ND	0.40	EPA 8260C	7-5-17	7-5-17	
o-Xylene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Styrene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Bromoform	ND	1.0	EPA 8260C	7-5-17	7-5-17	
Isopropylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Bromobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
n-Propylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
tert-Butylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
sec-Butylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
p-Isopropyltoluene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
n-Butylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260C	7-5-17	7-5-17	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Hexachlorobutadiene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Naphthalene	ND	1.0	EPA 8260C	7-5-17	7-5-17	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	77-129				

 Dibromofluoromethane
 103
 77-129

 Toluene-d8
 99
 80-127

 4-Bromofluorobenzene
 105
 80-125

Project: 397-019

VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0705W2					
Dichlorodifluoromethane	ND	0.35	EPA 8260C	7-5-17	7-5-17	
Chloromethane	ND	1.3	EPA 8260C	7-5-17	7-5-17	
Vinyl Chloride	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Bromomethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Chloroethane	ND	1.0	EPA 8260C	7-5-17	7-5-17	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Acetone	ND	5.0	EPA 8260C	7-5-17	7-5-17	
lodomethane	ND	1.7	EPA 8260C	7-5-17	7-5-17	
Carbon Disulfide	ND	0.43	EPA 8260C	7-5-17	7-5-17	
Methylene Chloride	ND	1.0	EPA 8260C	7-5-17	7-5-17	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Vinyl Acetate	ND	1.0	EPA 8260C	7-5-17	7-5-17	
2,2-Dichloropropane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
2-Butanone	ND	5.0	EPA 8260C	7-5-17	7-5-17	
Bromochloromethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Chloroform	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Benzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Trichloroethene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Dibromomethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Bromodichloromethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	7-5-17	7-5-17	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	7-5-17	7-5-17	
Toluene	ND	1.0	EPA 8260C	7-5-17	7-5-17	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-5-17	7-5-17	

Project: 397-019

VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
_aboratory ID:	MB0705W2					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Tetrachloroethene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,3-Dichloropropane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
2-Hexanone	ND	2.0	EPA 8260C	7-5-17	7-5-17	
Dibromochloromethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Chlorobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Ethylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
m,p-Xylene	ND	0.40	EPA 8260C	7-5-17	7-5-17	
o-Xylene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Styrene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Bromoform	ND	1.0	EPA 8260C	7-5-17	7-5-17	
Isopropylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Bromobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-5-17	7-5-17	
n-Propylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
tert-Butylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
sec-Butylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
p-Isopropyltoluene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
n-Butylbenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	7-5-17	7-5-17	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Hexachlorobutadiene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Naphthalene	ND	1.0	EPA 8260C	7-5-17	7-5-17	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-5-17	7-5-17	
Surrogate:	Percent Recovery	Control Limits				

Surrogate:	Percent Recovery	Control Limits
Dibromofluoromethane	94	77-129
Toluene-d8	97	80-127
4-Bromofluorobenzene	102	80-125

Project: 397-019

VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

	Result				Per	cent	Recovery		RPD	
Analyte			Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	05W2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	7.70	7.67	10.0	10.0	77	77	63-127	0	17	
Benzene	10.0	10.2	10.0	10.0	100	102	76-121	2	12	
Trichloroethene	8.43	8.41	10.0	10.0	84	84	64-120	0	15	
Toluene	10.3	10.6	10.0	10.0	103	106	82-120	3	13	
Chlorobenzene	8.96	9.40	10.0	10.0	90	94	80-120	5	14	
Surrogate:										
Dibromofluoromethane					100	100	77-129			
Toluene-d8					95	95	80-127			
4-Bromofluorobenzene					103	103	80-125			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody Chack Const. Chack Similar Chack Const. Chack Const.	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature						1 FMW-130-070317	Lab ID Sample Identification	Sampled by: HI SUNS	too lest	Project Manager XIOR 38	Project Names	Project Number: Na J A D	Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.	OnSite
Volatiles 8260C Halogenated Volatiles 8260C EDB EPA 8011 (Waters Only) Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level) PCBs 8082A Organophosphorus Pesticides 8081B Organophosphorus Pesticides 8270D/SIM Chlorinated Acid Herbicides 8151A Total RCRA Metals	Reviewed/Date				(250	Toollog	Company			/	\/ \/		9:40 Water	Time Sampled Matrix			Standard (7 Days) (TPH analysis 5 Days)			ck One)	(in working days)		Chain of
Ata Package: Standard Chlorinated Acid Herbicides 8151A Total RCRA Metals Total RCRA Metals Organochlorine Pesticides 8151A Total RCRA Metals Organochlorine Pesticides 8151A Total RCRA Metals Organochlorine Pesticides 8151A Organochlorine Pesticides 8151A						2501 1/5/2	3-17				1				NWTP NWTP NWTP Volatile Haloge	H-HCIE H-Gx/E H-Gx H-Dx ([es 8260	Acid	1/SG C	С	up)		11		Custody
		Standard Level III Level IV						Comments/Special Instructions	/					×	PCBs Organi Organi Chlorir Total F Total N TCLP	olatiles bw-leve 8270D/8 8082A ochlorir ophosp nated A RCRA M ATCA M Metals oil and	8270E SIM (Id	D/SIM s) byw-level ticides 8 Pesticides probicides) 38081E 488888888888888888888888888888888888	270D/S		07-00		_

Chain of Custody

ing Services Turnaround Request	ntal Inc.
Lahoratory Number: 07-00	
07-001	Page
	of

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 24, 2018

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019

Laboratory Reference No. 1808-217

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on August 21, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-019

Case Narrative

Samples were collected on August 20, 2018 and received by the laboratory on August 21, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

The MTCA Method A cleanup level of 0.030 ppm for Benzene is not achievable for sample FB-02-10.0-082018 due to the low dry weight of the sample.

Total Metals EPA 6010D/7471B Analysis

The duplicate RPD for Chromium is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-02-5.0-082018					
Laboratory ID:	08-217-02					
Benzene	ND	0.020	EPA 8021B	8-21-18	8-21-18	
Toluene	ND	0.054	EPA 8021B	8-21-18	8-21-18	
Ethyl Benzene	ND	0.054	EPA 8021B	8-21-18	8-21-18	
m,p-Xylene	ND	0.054	EPA 8021B	8-21-18	8-21-18	
o-Xylene	ND	0.054	EPA 8021B	8-21-18	8-21-18	
Gasoline	ND	5.4	NWTPH-Gx	8-21-18	8-21-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	57-129				
Client ID:	FB-02-10.0-082018					
Laboratory ID:	08-217-03					
Benzene	ND	0.037	EPA 8021B	8-21-18	8-21-18	
Toluene	ND	0.19	EPA 8021B	8-21-18	8-21-18	
Ethyl Benzene	ND	0.19	EPA 8021B	8-21-18	8-21-18	
m,p-Xylene	ND	0.19	EPA 8021B	8-21-18	8-21-18	
o-Xylene	ND	0.19	EPA 8021B	8-21-18	8-21-18	
Gasoline	ND	19	NWTPH-Gx	8-21-18	8-21-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	57-129				
Client ID:	FB-02-25.0-082018					
Laboratory ID:	08-217-06					
Benzene	ND	0.020	EPA 8021B	8-21-18	8-21-18	_
Toluene	ND	0.052	EPA 8021B	8-21-18	8-21-18	
Ethyl Benzene	ND	0.052	EPA 8021B	8-21-18	8-21-18	
m,p-Xylene	ND	0.052	EPA 8021B	8-21-18	8-21-18	
o-Xylene	ND	0.052	EPA 8021B	8-21-18	8-21-18	
Gasoline	ND	5.2	NWTPH-Gx	8-21-18	8-21-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	57-129				

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-02-35.0-082018					
Laboratory ID:	08-217-08					
Benzene	ND	0.020	EPA 8021B	8-21-18	8-21-18	
Toluene	ND	0.058	EPA 8021B	8-21-18	8-21-18	
Ethyl Benzene	ND	0.058	EPA 8021B	8-21-18	8-21-18	
m,p-Xylene	ND	0.058	EPA 8021B	8-21-18	8-21-18	
o-Xylene	ND	0.058	EPA 8021B	8-21-18	8-21-18	
Gasoline	ND	5.8	NWTPH-Gx	8-21-18	8-21-18	

Surrogate: Percent Recovery Control Limits Fluorobenzene 85 57-129

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0821S1					
Benzene	ND	0.020	EPA 8021B	8-21-18	8-21-18	
Toluene	ND	0.050	EPA 8021B	8-21-18	8-21-18	
Ethyl Benzene	ND	0.050	EPA 8021B	8-21-18	8-21-18	
m,p-Xylene	ND	0.050	EPA 8021B	8-21-18	8-21-18	
o-Xylene	ND	0.050	EPA 8021B	8-21-18	8-21-18	
Gasoline	ND	5.0	NWTPH-Gx	8-21-18	8-21-18	

Surrogate: Percent Recovery Control Limits Fluorobenzene 84 57-129

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Red	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-17	70-14									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA		I	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		I	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		I	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		I	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						89	91	57-129			
SPIKE BLANKS											
Laboratory ID:	SB08	21S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.875	0.882	1.00	1.00		88	88	69-111	1	10	
Toluene	0.868	0.873	1.00	1.00		87	87	70-114	1	11	
Ethyl Benzene	0.868	0.876	1.00	1.00		87	88	70-115	1	10	
m,p-Xylene	0.860	0.863	1.00	1.00		86	86	72-115	0	10	
o-Xylene	0.890	0.884	1.00	1.00		89	88	71-115	1	11	
Surrogate:											
Fluorobenzene						86	86	57-129			

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-02-5.0-082018					
Laboratory ID:	08-217-02					
Diesel Range Organics	280	150	NWTPH-Dx	8-22-18	8-22-18	N
Lube Oil Range Organics	670	310	NWTPH-Dx	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	FB-02-10.0-082018					
Laboratory ID:	08-217-03					
Diesel Range Organics	ND	61	NWTPH-Dx	8-22-18	8-22-18	
Lube Oil Range Organics	270	120	NWTPH-Dx	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
Client ID:	FB-02-25.0-082018					
Laboratory ID:	08-217-06					
Diesel Range Organics	ND	30	NWTPH-Dx	8-22-18	8-22-18	
Lube Oil Range Organics	ND	60	NWTPH-Dx	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	FB-02-35.0-082018					
Laboratory ID:	08-217-08					
Diesel Range Organics	ND	31	NWTPH-Dx	8-22-18	8-22-18	
Lube Oil Range Organics	ND	62	NWTPH-Dx	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits	INVVIIII-DX	0-22-10	0-22-10	
o-Terphenyl	81	50-150				
o- i erprieriyi	01	30-130				

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0822S2					
Diesel Range Organics	ND	25	NWTPH-Dx	8-22-18	8-22-18	
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	121	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-17	70-16								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range Organics	149	126	NA	NA		NA	NA	17	NA	
Surrogate:										
o-Terphenyl						115 103	50-150			

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-02-10.0-082018					
Laboratory ID:	08-217-03					
Dichlorodifluoromethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Chloromethane	ND	0.014	EPA 8260C	8-21-18	8-21-18	
Vinyl Chloride	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Bromomethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Chloroethane	ND	0.014	EPA 8260C	8-21-18	8-21-18	
Trichlorofluoromethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,1-Dichloroethene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
lodomethane	ND	0.028	EPA 8260C	8-21-18	8-21-18	
Methylene Chloride	ND	0.014	EPA 8260C	8-21-18	8-21-18	
(trans) 1,2-Dichloroethene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,1-Dichloroethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
2,2-Dichloropropane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
(cis) 1,2-Dichloroethene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Bromochloromethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Chloroform	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,1,1-Trichloroethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Carbon Tetrachloride	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,1-Dichloropropene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,2-Dichloroethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Trichloroethene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,2-Dichloropropane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Dibromomethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Bromodichloromethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
2-Chloroethyl Vinyl Ether	ND	0.014	EPA 8260C	8-21-18	8-21-18	
(cis) 1,3-Dichloropropene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
(trans) 1,3-Dichloropropend	e ND	0.0028	EPA 8260C	8-21-18	8-21-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-02-10.0-082018					
Laboratory ID:	08-217-03					
1,1,2-Trichloroethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Tetrachloroethene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,3-Dichloropropane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Dibromochloromethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,2-Dibromoethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Chlorobenzene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,1,1,2-Tetrachloroethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Bromoform	ND	0.014	EPA 8260C	8-21-18	8-21-18	
Bromobenzene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,1,2,2-Tetrachloroethane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,2,3-Trichloropropane	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
2-Chlorotoluene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
4-Chlorotoluene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,3-Dichlorobenzene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,4-Dichlorobenzene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,2-Dichlorobenzene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
1,2-Dibromo-3-chloropropan	e ND	0.014	EPA 8260C	8-21-18	8-21-18	
1,2,4-Trichlorobenzene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Hexachlorobutadiene	ND	0.014	EPA 8260C	8-21-18	8-21-18	
1,2,3-Trichlorobenzene	ND	0.0028	EPA 8260C	8-21-18	8-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	68-139				
Toluene-d8	104	79-128				

4-Bromofluorobenzene

87

71-132

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-02-25.0-082018					
Laboratory ID:	08-217-06					
Dichlorodifluoromethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Chloromethane	ND	0.0043	EPA 8260C	8-21-18	8-21-18	
Vinyl Chloride	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Bromomethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Chloroethane	ND	0.0043	EPA 8260C	8-21-18	8-21-18	
Trichlorofluoromethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,1-Dichloroethene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
lodomethane	ND	0.0085	EPA 8260C	8-21-18	8-21-18	
Methylene Chloride	ND	0.0043	EPA 8260C	8-21-18	8-21-18	
(trans) 1,2-Dichloroethene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,1-Dichloroethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
2,2-Dichloropropane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
(cis) 1,2-Dichloroethene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Bromochloromethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Chloroform	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,1,1-Trichloroethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Carbon Tetrachloride	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,1-Dichloropropene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,2-Dichloroethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Trichloroethene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,2-Dichloropropane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Dibromomethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Bromodichloromethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
2-Chloroethyl Vinyl Ether	ND	0.0043	EPA 8260C	8-21-18	8-21-18	
(cis) 1,3-Dichloropropene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
(trans) 1,3-Dichloropropene	e ND	0.00085	EPA 8260C	8-21-18	8-21-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-02-25.0-082018					
Laboratory ID:	08-217-06					
1,1,2-Trichloroethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Tetrachloroethene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,3-Dichloropropane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Dibromochloromethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,2-Dibromoethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Chlorobenzene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,1,1,2-Tetrachloroethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Bromoform	ND	0.0043	EPA 8260C	8-21-18	8-21-18	
Bromobenzene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,1,2,2-Tetrachloroethane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,2,3-Trichloropropane	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
2-Chlorotoluene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
4-Chlorotoluene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,3-Dichlorobenzene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,4-Dichlorobenzene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,2-Dichlorobenzene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
1,2-Dibromo-3-chloropropan	e ND	0.0043	EPA 8260C	8-21-18	8-21-18	
1,2,4-Trichlorobenzene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Hexachlorobutadiene	ND	0.0043	EPA 8260C	8-21-18	8-21-18	
1,2,3-Trichlorobenzene	ND	0.00085	EPA 8260C	8-21-18	8-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	68-139				
Toluene-d8	108	79-128				

4-Bromofluorobenzene

105

71-132

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0821S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Chloromethane	ND	0.0050	EPA 8260C	8-21-18	8-21-18	
Vinyl Chloride	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Bromomethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Chloroethane	ND	0.0050	EPA 8260C	8-21-18	8-21-18	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
lodomethane	ND	0.0050	EPA 8260C	8-21-18	8-21-18	
Methylene Chloride	ND	0.0065	EPA 8260C	8-21-18	8-21-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Bromochloromethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Chloroform	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Dibromomethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Bromodichloromethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	8-21-18	8-21-18	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0821S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Dibromochloromethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Chlorobenzene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Bromoform	ND	0.0050	EPA 8260C	8-21-18	8-21-18	
Bromobenzene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
2-Chlorotoluene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
4-Chlorotoluene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	8-21-18	8-21-18	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	8-21-18	8-21-18	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	8-21-18	8-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	89	68-139				
Toluene-d8	99	79-128				
4-Bromofluorobenzene	89	71-132				

Project: 397-019

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rece	overy	Limits	RPD	RPD Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	21S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0511	0.0534	0.0500	0.0500	102	107	53-141	4	17	
Benzene	0.0432	0.0439	0.0500	0.0500	86	88	70-130	2	15	
Trichloroethene	0.0520	0.0545	0.0500	0.0500	104	109	74-122	5	16	
Toluene	0.0493	0.0505	0.0500	0.0500	99	101	76-130	2	15	
Chlorobenzene	0.0477	0.0479	0.0500	0.0500	95	96	75-120	0	14	
Surrogate:										
Dibromofluoromethane					95	92	68-139			
Toluene-d8					97	98	79-128			
4-Bromofluorobenzene					94	92	71-132			

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-02-25.0-082018					
Laboratory ID:	08-217-06					
n-Nitrosodimethylamine	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Pyridine	ND	0.40	EPA 8270D	8-22-18	8-22-18	
Phenol	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Aniline	ND	0.20	EPA 8270D	8-22-18	8-22-18	
bis(2-Chloroethyl)ether	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2-Chlorophenol	ND	0.040	EPA 8270D	8-22-18	8-22-18	
1,3-Dichlorobenzene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
1,4-Dichlorobenzene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Benzyl alcohol	ND	0.20	EPA 8270D	8-22-18	8-22-18	
1,2-Dichlorobenzene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2-Methylphenol (o-Cresol)	ND	0.040	EPA 8270D	8-22-18	8-22-18	
bis(2-Chloroisopropyl)ether	ND	0.040	EPA 8270D	8-22-18	8-22-18	
(3+4)-Methylphenol (m,p-Creso	ol) ND	0.040	EPA 8270D	8-22-18	8-22-18	
n-Nitroso-di-n-propylamine	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Hexachloroethane	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Nitrobenzene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Isophorone	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2-Nitrophenol	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2,4-Dimethylphenol	ND	0.040	EPA 8270D	8-22-18	8-22-18	
bis(2-Chloroethoxy)methane	e ND	0.040	EPA 8270D	8-22-18	8-22-18	
2,4-Dichlorophenol	ND	0.040	EPA 8270D	8-22-18	8-22-18	
1,2,4-Trichlorobenzene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Naphthalene	0.083	0.040	EPA 8270D	8-22-18	8-22-18	
4-Chloroaniline	ND	0.20	EPA 8270D	8-22-18	8-22-18	
Hexachlorobutadiene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
4-Chloro-3-methylphenol	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2-Methylnaphthalene	0.024	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
1-Methylnaphthalene	0.020	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
Hexachlorocyclopentadiene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2,4,6-Trichlorophenol	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2,3-Dichloroaniline	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2,4,5-Trichlorophenol	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2-Chloronaphthalene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2-Nitroaniline	ND	0.040	EPA 8270D	8-22-18	8-22-18	
1,4-Dinitrobenzene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Dimethylphthalate	ND	0.040	EPA 8270D	8-22-18	8-22-18	
1,3-Dinitrobenzene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2,6-Dinitrotoluene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
1,2-Dinitrobenzene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Acenaphthylene	ND	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
3-Nitroaniline	ND	0.040	EPA 8270D	8-22-18	8-22-18	

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	FB-02-25.0-082018				•	
Laboratory ID:	08-217-06					
2,4-Dinitrophenol	ND	0.20	EPA 8270D	8-22-18	8-22-18	
Acenaphthene	0.027	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
4-Nitrophenol	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2,4-Dinitrotoluene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Dibenzofuran	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2,3,5,6-Tetrachlorophenol	ND	0.040	EPA 8270D	8-22-18	8-22-18	
2,3,4,6-Tetrachlorophenol	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Diethylphthalate	ND	0.20	EPA 8270D	8-22-18	8-22-18	
4-Chlorophenyl-phenylether	ND	0.040	EPA 8270D	8-22-18	8-22-18	
4-Nitroaniline	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Fluorene	ND	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
4,6-Dinitro-2-methylphenol	ND	0.20	EPA 8270D	8-22-18	8-22-18	
n-Nitrosodiphenylamine	ND	0.040	EPA 8270D	8-22-18	8-22-18	
1,2-Diphenylhydrazine	ND	0.040	EPA 8270D	8-22-18	8-22-18	
4-Bromophenyl-phenylether	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Hexachlorobenzene	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Pentachlorophenol	ND	0.20	EPA 8270D	8-22-18	8-22-18	
Phenanthrene	ND	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
Anthracene	ND	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
Carbazole	ND	0.040	EPA 8270D	8-22-18	8-22-18	
Di-n-butylphthalate	ND	0.20	EPA 8270D	8-22-18	8-22-18	
Fluoranthene	ND	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
Benzidine	ND	0.40	EPA 8270D	8-22-18	8-22-18	
Pyrene	ND	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
Butylbenzylphthalate	ND	0.20	EPA 8270D	8-22-18	8-22-18	
bis-2-Ethylhexyladipate	ND ND	0.20	EPA 8270D	8-22-18	8-22-18	
3,3'-Dichlorobenzidine	ND ND	0.20	EPA 8270D	8-22-18	8-22-18	
Benzo[a]anthracene	ND ND	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
Chrysene	ND ND	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
bis(2-Ethylhexyl)phthalate	ND ND	0.20	EPA 8270D/SIM	8-22-18	8-22-18	
Di-n-octylphthalate	ND ND	0.20	EPA 8270D	8-22-18	8-22-18	
Benzo[b]fluoranthene	ND ND	0.0080		8-22-18		
			EPA 8270D/SIM	_	8-22-18	
Benzo(j,k)fluoranthene	ND ND	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
Benzo[a]pyrene	ND ND	0.0080	EPA 8270D/SIM	8-22-18 8-22-18	8-22-18	
Indeno[1,2,3-cd]pyrene	ND ND	0.0080	EPA 8270D/SIM		8-22-18	
Dibenz[a,h]anthracene	ND ND	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
Benzo[g,h,i]perylene	ND	0.0080	EPA 8270D/SIM	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	74 72	19 - 103				
Phenol-d6	72 60	30 - 103 37 - 105				
Nitrobenzene-d5	69 77	27 - 105				
2-Fluorobiphenyl	77	36 - 102				
2,4,6-Tribromophenol	82	33 - 110				
Terphenyl-d14	74	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0822S1					
n-Nitrosodimethylamine	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Pyridine	ND	0.33	EPA 8270D	8-22-18	8-22-18	
Phenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Aniline	ND	0.17	EPA 8270D	8-22-18	8-22-18	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Chlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,3-Dichlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,4-Dichlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Benzyl alcohol	ND	0.17	EPA 8270D	8-22-18	8-22-18	
1,2-Dichlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270D	8-22-18	8-22-18	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270D	8-22-18	8-22-18	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270D	8-22-18	8-22-18	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Hexachloroethane	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Nitrobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Isophorone	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Nitrophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4-Dimethylphenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4-Dichlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Naphthalene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
4-Chloroaniline	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Hexachlorobutadiene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,3-Dichloroaniline	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Chloronaphthalene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Nitroaniline	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,4-Dinitrobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Dimethylphthalate	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,3-Dinitrobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,6-Dinitrotoluene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,2-Dinitrobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
3-Nitroaniline	ND	0.033	EPA 8270D	8-22-18	8-22-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0822S1					
2,4-Dinitrophenol	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
4-Nitrophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4-Dinitrotoluene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Dibenzofuran	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Diethylphthalate	ND	0.17	EPA 8270D	8-22-18	8-22-18	
4-Chlorophenyl-phenylether		0.033	EPA 8270D	8-22-18	8-22-18	
4-Nitroaniline	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Fluorene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
4,6-Dinitro-2-methylphenol	ND	0.17	EPA 8270D	8-22-18	8-22-18	
n-Nitrosodiphenylamine	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270D	8-22-18	8-22-18	
4-Bromophenyl-phenylether	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Hexachlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Pentachlorophenol	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Anthracene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Carbazole	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Di-n-butylphthalate	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Benzidine	ND	0.33	EPA 8270D	8-22-18	8-22-18	
Pyrene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Butylbenzylphthalate	ND	0.17	EPA 8270D	8-22-18	8-22-18	
bis-2-Ethylhexyladipate	ND	0.17	EPA 8270D	8-22-18	8-22-18	
3,3'-Dichlorobenzidine	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Chrysene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
bis(2-Ethylhexyl)phthalate	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Di-n-octylphthalate	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Indeno[1,2,3-cd]pyrene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	86	19 - 103				
Phenol-d6	87	30 - 103				
Nitrobenzene-d5	84	27 - 105				
2-Fluorobiphenyl	92	36 - 102				
2,4,6-Tribromophenol	99	33 - 110				
Terphenyl-d14	92	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

						Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	ı	Reco	very	Limits	RPD	Limit	Flags
SPIKE BLANKS											_
Laboratory ID:	SB08	22S1									
	SB	SBD	SB	SBD	(SB	SBD				
Phenol	0.988	1.12	1.33	1.33	•	74	84	45 - 94	13	29	
2-Chlorophenol	1.05	1.21	1.33	1.33	•	79	91	46 - 94	14	33	
1,4-Dichlorobenzene	0.511	0.581	0.667	0.667	•	77	87	42 - 91	13	37	
n-Nitroso-di-n-propylamine	0.506	0.568	0.667	0.667	•	76	85	45 - 100	12	26	
1,2,4-Trichlorobenzene	0.559	0.579	0.667	0.667	:	84	87	45 - 100	4	32	
4-Chloro-3-methylphenol	1.09	1.13	1.33	1.33	;	82	85	55 - 97	4	21	
Acenaphthene	0.539	0.564	0.667	0.667	;	81	85	48 - 91	5	21	
4-Nitrophenol	1.06	1.17	1.33	1.33	;	80	88	53 - 102	10	20	
2,4-Dinitrotoluene	0.527	0.583	0.667	0.667		79	87	47 - 96	10	19	
Pentachlorophenol	1.34	1.40	1.33	1.33	1	101	105	35 - 125	4	26	
Pyrene	0.534	0.561	0.667	0.667		80	84	55 - 110	5	17	
Surrogate:											
2-Fluorophenol						72	81	19 - 103			
Phenol-d6						73	80	30 - 103			
Nitrobenzene-d5						72	73	27 - 105			
2-Fluorobiphenyl						79	80	36 - 102			
2,4,6-Tribromophenol						86	85	33 - 110			
Terphenyl-d14						76	78	38 - 108			

Project: 397-019

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-02-10.0-082018					
Laboratory ID:	08-217-03					
Arsenic	ND	12	EPA 6010D	8-23-18	8-23-18	
Barium	190	6.1	EPA 6010D	8-23-18	8-23-18	
Cadmium	ND	1.2	EPA 6010D	8-23-18	8-23-18	
Chromium	36	1.2	EPA 6010D	8-23-18	8-23-18	
Lead	24	12	EPA 6010D	8-23-18	8-23-18	
Mercury	1.2	0.61	EPA 7471B	8-22-18	8-22-18	
Selenium	ND	12	EPA 6010D	8-23-18	8-23-18	
Silver	ND	2.5	EPA 6010D	8-23-18	8-23-18	

Project: 397-019

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0823SM1					
Arsenic	ND	5.0	EPA 6010D	8-23-18	8-23-18	
Barium	ND	2.5	EPA 6010D	8-23-18	8-23-18	
Cadmium	ND	0.50	EPA 6010D	8-23-18	8-23-18	
Chromium	ND	0.50	EPA 6010D	8-23-18	8-23-18	
Lead	ND	5.0	EPA 6010D	8-23-18	8-23-18	
Selenium	ND	5.0	EPA 6010D	8-23-18	8-23-18	
Silver	ND	1.0	EPA 6010D	8-23-18	8-23-18	
Laboratory ID:	MB0822S1					
Mercury	ND	0.25	EPA 7471B	8-22-18	8-22-18	-

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-23	39-08									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		ı	NA	NA	NA	20	
Barium	92.2	83.3	NA	NA		I	NA	NA	10	20	
Cadmium	ND	ND	NA	NA		ı	NA	NA	NA	20	
Chromium	8.30	5.65	NA	NA		ı	NA	NA	38	20	K
Lead	ND	ND	NA	NA		ı	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		- 1	NA	NA	NA	20	
Silver	ND	ND	NA	NA			NA	NA	NA	20	
Laboratory ID:	08-2	18-01									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-23	39-08									
•	MS	MSD	MS	MSD		MS	MSD				
Arsenic	93.1	95.5	100	100	ND	93	96	75-125	3	20	
Barium	188	184	100	100	92.2	96	92	75-125	2	20	
Cadmium	46.3	45.8	50.0	50.0	ND	93	92	75-125	1	20	
Chromium	102	102	100	100	8.30	94	94	75-125	0	20	
Lead	232	233	250	250	ND	93	93	75-125	1	20	
Selenium	91.2	92.2	100	100	ND	91	92	75-125	1	20	
Silver	21.8	21.9	25.0	25.0	ND	87	88	75-125	1	20	
Laboratory ID:	08-2	18-01									
Mercury	0.562	0.540	0.500	0.500	0.0190	109	104	80-120	4	20	

Date of Report: August 24, 2018 Samples Submitted: August 21, 2018 Laboratory Reference: 1808-217 Project: 397-019

% MOISTURE

Date Analyzed: 8-22-18

Client ID	Lab ID	% Moisture
FB-02-5.0-082018	08-217-02	18
FB-02-10.0-082018	08-217-03	59
FB-02-25.0-082018	08-217-06	17
FB-02-35.0-082018	08-217-08	19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

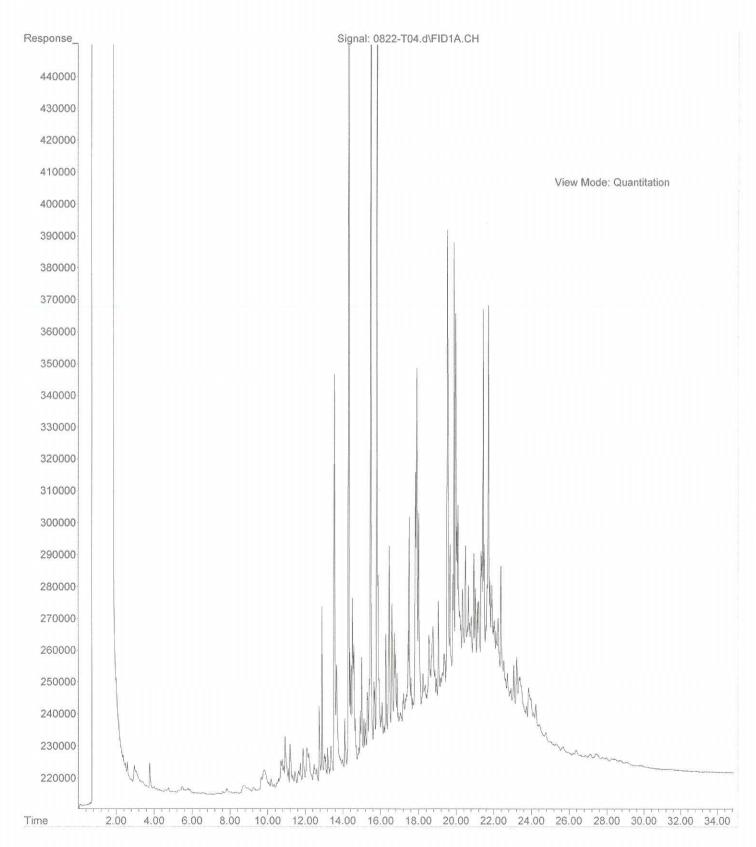
RPD - Relative Percent Difference

Chain c

	-	-	ď		
	-2	=	5	_	
			9	Ħ	
			- 67		
	-	_	_		
	- 4	-		9	
	ч	-		d	
		=	_	_	
	-6	_		١.	
	ñ	-		r.	
	- 2		-		
	в	Z/A	п		
	ч	9	10		
			ьď	bo	
		=		г	
	6		9	1	
	ų		d	,	
		=	=		
	- 6	_	٦	١.	
	1		蚯		
				1	
- 1		e	_	1	
		_	9	1	

around Request working days)	
Laboratory Number:	odolody
08-217	Page of

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		8 88-02-35:0-082018	7 FB-02 - 30.0 - 082018	6 FB-02-25-0-082018	5 FB-02-20-0-082018	4 FB-02-15.0-082018	3 FB02- 100-082018	2 FB-02-50-082018	1 F6-02-30-082018	Lab ID Sample Identification	Sampled Dy: Gree Robes	Javour Prenk	Project Name: Block 38 West Property	Project Number: 397 - 019	Company: FIGHER LUON	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052
Reviewed/Date					280	farallen	Company		D 1520	1454	1-130	1810	1845	1235	1 220	820118 1155 Soil	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days) (TPH analysis 5 Days)	☐ 2 Days 📈 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)
					8/21/18	8/20/18	Date 1		メメ		× ×	14-12-24		× ×	×	V	NWTP NWTP NWTP	PH-Dx (D BTEX	ners				Laboratory Nu
Chromatograms with final report ☐ Electronic Data Deliverables (EDDs) ☐	Data Package: Standard Level III Level IV	""	time respectful sont	to the fire was to	months unit para souther all all	1845 Please Contact Project Manage	Time Comments/Special Instructions				× ×			У У			Halogo EDB E Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I	EPA 80 rolatiles row-leve 8270D 8082A 8082A ROCHORO RCRA Metals	Volatiil (Wa s 8270il s R270il s R270i	s) pw-level) sticides 8 Pesticides erbicides	081B es 8270 8151A	D/SIM		Number: 08-217
(EDDs)			817	7.00	F	Taker											% Moi	isture						

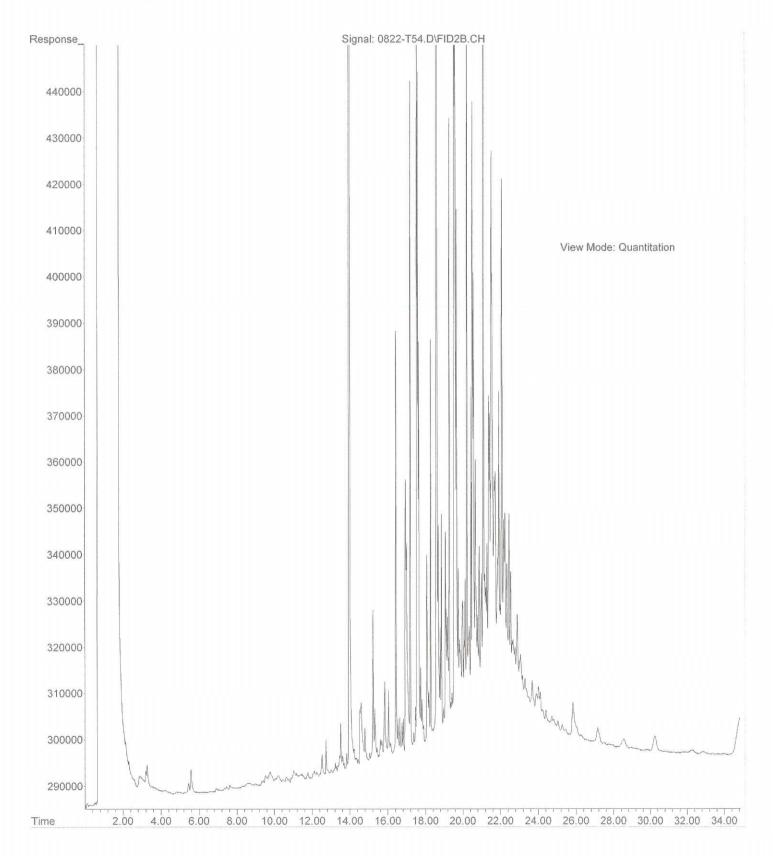

File :C:\msdchem\1\data\T180822\0822-T04.d

Operator : JT Acquired : 22 Aug 2018 11:01 using AcqMethod T180110F.M

Instrument : Teri

Sample Name: 08-217-02 5X

Misc Info : Vial Number: 4


Operator : JT

Acquired : 22 Aug 2018 11:01 using AcqMethod T180110F.M

Instrument : Teri

Sample Name: 08-217-03

Misc Info : Vial Number: 54

September 26, 2018

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019

Laboratory Reference No. 1808-217B

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on August 21, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 26, 2018 Samples Submitted: August 21, 2018 Laboratory Reference: 1808-217B

Project: 397-019

Case Narrative

Samples were collected on August 20, 2018 and received by the laboratory on August 21, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: September 26, 2018 Samples Submitted: August 21, 2018 Laboratory Reference: 1808-217B Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Date

Date

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-02-5.0-082018					
Laboratory ID:	08-217-02					
n-Nitrosodimethylamine	ND	0.30	EPA 8270D	9-1-18	9-24-18	
Pyridine	ND	3.0	EPA 8270D	9-1-18	9-24-18	
Phenol	ND	0.30	EPA 8270D	9-1-18	9-24-18	
Aniline	ND	1.5	EPA 8270D	9-1-18	9-24-18	
bis(2-Chloroethyl)ether	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2-Chlorophenol	ND	0.30	EPA 8270D	9-1-18	9-24-18	
1,3-Dichlorobenzene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
1,4-Dichlorobenzene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
Benzyl alcohol	ND	1.5	EPA 8270D	9-1-18	9-24-18	
1,2-Dichlorobenzene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2-Methylphenol (o-Cresol)	ND	0.30	EPA 8270D	9-1-18	9-24-18	
bis(2-Chloroisopropyl)ether	ND	0.30	EPA 8270D	9-1-18	9-24-18	
(3+4)-Methylphenol (m,p-Cresol		0.30	EPA 8270D	9-1-18	9-24-18	
n-Nitroso-di-n-propylamine	ND	0.30	EPA 8270D	9-1-18	9-24-18	
Hexachloroethane	ND	0.30	EPA 8270D	9-1-18	9-24-18	
Nitrobenzene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
Isophorone	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2-Nitrophenol	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2,4-Dimethylphenol	ND	0.30	EPA 8270D	9-1-18	9-24-18	
bis(2-Chloroethoxy)methane	e ND	0.30	EPA 8270D	9-1-18	9-24-18	
2,4-Dichlorophenol	ND	0.30	EPA 8270D	9-1-18	9-24-18	
1,2,4-Trichlorobenzene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
Naphthalene	1.1	0.30	EPA 8270D	9-1-18	9-24-18	
4-Chloroaniline	ND	1.5	EPA 8270D	9-1-18	9-24-18	
Hexachlorobutadiene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
4-Chloro-3-methylphenol	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2-Methylnaphthalene	1.3	0.30	EPA 8270D	9-1-18	9-24-18	
1-Methylnaphthalene	0.86	0.30	EPA 8270D	9-1-18	9-24-18	
Hexachlorocyclopentadiene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2,4,6-Trichlorophenol	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2,3-Dichloroaniline	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2,4,5-Trichlorophenol	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2-Chloronaphthalene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2-Nitroaniline	ND	0.30	EPA 8270D	9-1-18	9-24-18	
1,4-Dinitrobenzene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
Dimethylphthalate	ND	0.30	EPA 8270D	9-1-18	9-24-18	
1,3-Dinitrobenzene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2,6-Dinitrotoluene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
1,2-Dinitrobenzene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
Acenaphthylene	0.45	0.30	EPA 8270D	9-1-18	9-24-18	
3-Nitroaniline	ND	0.30	EPA 8270D	9-1-18	9-24-18	

Date of Report: September 26, 2018 Samples Submitted: August 21, 2018 Laboratory Reference: 1808-217B Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FB-02-5.0-082018			•	•	
Laboratory ID:	08-217-02					
2,4-Dinitrophenol	ND	1.5	EPA 8270D	9-1-18	9-24-18	
Acenaphthene	1.4	0.30	EPA 8270D	9-1-18	9-24-18	
4-Nitrophenol	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2,4-Dinitrotoluene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
Dibenzofuran	0.71	0.30	EPA 8270D	9-1-18	9-24-18	
2,3,5,6-Tetrachlorophenol	ND	0.30	EPA 8270D	9-1-18	9-24-18	
2,3,4,6-Tetrachlorophenol	ND	0.30	EPA 8270D	9-1-18	9-24-18	
Diethylphthalate	ND	1.5	EPA 8270D	9-1-18	9-24-18	
4-Chlorophenyl-phenylether		0.30	EPA 8270D	9-1-18	9-24-18	
4-Nitroaniline	ND	0.30	EPA 8270D	9-1-18	9-24-18	
Fluorene	1.3	0.30	EPA 8270D	9-1-18	9-24-18	
4,6-Dinitro-2-methylphenol	ND	1.5	EPA 8270D	9-1-18	9-24-18	
n-Nitrosodiphenylamine	ND	0.30	EPA 8270D	9-1-18	9-24-18	
1,2-Diphenylhydrazine	ND	0.30	EPA 8270D	9-1-18	9-24-18	
4-Bromophenyl-phenylether		0.30	EPA 8270D	9-1-18	9-24-18	
Hexachlorobenzene	ND	0.30	EPA 8270D	9-1-18	9-24-18	
				9-1-18		
Pentachlorophenol	ND 12	1.5	EPA 8270D		9-24-18	
Phenanthrene	3.3	0.30	EPA 8270D	9-1-18	9-24-18	
Anthracene		0.30	EPA 8270D	9-1-18	9-24-18	
Carbazole	0.55	0.30	EPA 8270D	9-1-18	9-24-18	
Di-n-butylphthalate	ND	1.5	EPA 8270D	9-1-18	9-24-18	
Fluoranthene	18	0.30	EPA 8270D	9-1-18	9-24-18	
Benzidine	ND	3.0	EPA 8270D	9-1-18	9-24-18	
Pyrene	25	1.2	EPA 8270D	9-1-18	9-25-18	
Butylbenzylphthalate	ND	1.5	EPA 8270D	9-1-18	9-24-18	
bis-2-Ethylhexyladipate	ND	1.5	EPA 8270D	9-1-18	9-24-18	
3,3'-Dichlorobenzidine	ND	1.5	EPA 8270D	9-1-18	9-24-18	
Benzo[a]anthracene	9.8	0.30	EPA 8270D	9-1-18	9-24-18	
Chrysene	9.7	0.30	EPA 8270D	9-1-18	9-24-18	
bis(2-Ethylhexyl)phthalate	ND	1.5	EPA 8270D	9-1-18	9-24-18	
Di-n-octylphthalate	ND	1.5	EPA 8270D	9-1-18	9-24-18	
Benzo[b]fluoranthene	12	0.30	EPA 8270D	9-1-18	9-24-18	
Benzo(j,k)fluoranthene	3.5	0.30	EPA 8270D	9-1-18	9-24-18	
Benzo[a]pyrene	11	0.30	EPA 8270D	9-1-18	9-24-18	
Indeno[1,2,3-cd]pyrene	8.0	0.30	EPA 8270D	9-1-18	9-24-18	
Dibenz[a,h]anthracene	1.6	0.30	EPA 8270D	9-1-18	9-24-18	
Benzo[g,h,i]perylene	8.5	0.30	EPA 8270D	9-1-18	9-24-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	63	19 - 103				
Phenol-d6	73	30 - 103				
Nitrobenzene-d5	<i>73</i>	27 - 105				
2-Fluorobiphenyl	91	36 - 102				
2,4,6-Tribromophenol	79	33 - 110				
Terphenyl-d14	97	38 - 108				

Date of Report: September 26, 2018 Samples Submitted: August 21, 2018 Laboratory Reference: 1808-217B

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Analyte	nesun	I GL	Metriou	Перигеи	Anaryzea	i iugo
Laboratory ID:	MB0901S1					
n-Nitrosodimethylamine	ND	0.033	EPA 8270D	9-1-18	9-4-18	
Pyridine	ND	0.33	EPA 8270D	9-1-18	9-4-18	
Phenol	ND	0.033	EPA 8270D	9-1-18	9-4-18	
Aniline	ND	0.17	EPA 8270D	9-1-18	9-4-18	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2-Chlorophenol	ND	0.033	EPA 8270D	9-1-18	9-4-18	
1,3-Dichlorobenzene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
1,4-Dichlorobenzene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
Benzyl alcohol	ND	0.17	EPA 8270D	9-1-18	9-4-18	
1,2-Dichlorobenzene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270D	9-1-18	9-4-18	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270D	9-1-18	9-4-18	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270D	9-1-18	9-4-18	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270D	9-1-18	9-4-18	
Hexachloroethane	ND	0.033	EPA 8270D	9-1-18	9-4-18	
Nitrobenzene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
Isophorone	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2-Nitrophenol	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2,4-Dimethylphenol	ND	0.033	EPA 8270D	9-1-18	9-4-18	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2,4-Dichlorophenol	ND	0.033	EPA 8270D	9-1-18	9-4-18	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
Naphthalene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
4-Chloroaniline	ND	0.17	EPA 8270D	9-1-18	9-4-18	
Hexachlorobutadiene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2,3-Dichloroaniline	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2-Chloronaphthalene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2-Nitroaniline	ND	0.033	EPA 8270D	9-1-18	9-4-18	
1,4-Dinitrobenzene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
Dimethylphthalate	ND	0.033	EPA 8270D	9-1-18	9-4-18	
1,3-Dinitrobenzene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2,6-Dinitrotoluene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
1,2-Dinitrobenzene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
3-Nitroaniline	ND	0.033	EPA 8270D	9-1-18	9-4-18	

Date of Report: September 26, 2018 Samples Submitted: August 21, 2018 Laboratory Reference: 1808-217B Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0901S1					
2,4-Dinitrophenol	ND	0.17	EPA 8270D	9-1-18	9-4-18	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
4-Nitrophenol	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2,4-Dinitrotoluene	ND	0.033	EPA 8270D	9-1-18	9-4-18	
Dibenzofuran	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270D	9-1-18	9-4-18	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270D	9-1-18	9-4-18	
Diethylphthalate	ND	0.17	EPA 8270D	9-1-18	9-4-18	
4-Chlorophenyl-phenylether		0.033	EPA 8270D	9-1-18	9-4-18	
4-Nitroaniline	ND	0.033	EPA 8270D	9-1-18	9-4-18	
Fluorene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
4,6-Dinitro-2-methylphenol	ND	0.17	EPA 8270D	9-1-18	9-4-18	
n-Nitrosodiphenylamine	ND	0.033	EPA 8270D	9-1-18	9-4-18	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270D	9-1-18	9-4-18	
4-Bromophenyl-phenylether		0.033	EPA 8270D	9-1-18	9-4-18	
Hexachlorobenzene	ND ND	0.033		9-1-18	9-4-18	
	ND ND		EPA 8270D			
Pentachlorophenol	ND ND	0.17	EPA 8270D EPA 8270D/SIM	9-1-18	9-4-18	
Phenanthrene		0.0067		9-1-18	9-4-18	
Anthracene	ND ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
Carbazole	ND ND	0.033	EPA 8270D	9-1-18	9-4-18	
Di-n-butylphthalate	ND	0.17	EPA 8270D	9-1-18	9-4-18	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
Benzidine	ND	0.33	EPA 8270D	9-1-18	9-4-18	
Pyrene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
Butylbenzylphthalate	ND	0.17	EPA 8270D	9-1-18	9-4-18	
bis-2-Ethylhexyladipate	ND	0.17	EPA 8270D	9-1-18	9-4-18	
3,3'-Dichlorobenzidine	ND	0.17	EPA 8270D	9-1-18	9-4-18	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
Chrysene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
bis(2-Ethylhexyl)phthalate	ND	0.17	EPA 8270D	9-1-18	9-4-18	
Di-n-octylphthalate	ND	0.17	EPA 8270D	9-1-18	9-4-18	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
Indeno[1,2,3-cd]pyrene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	9-1-18	9-4-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	89	19 - 103				
Phenol-d6	91	30 - 103				
Nitrobenzene-d5	<i>75</i>	27 - 105				
2-Fluorobiphenyl	83	36 - 102				
2,4,6-Tribromophenol	99	33 - 110				
Terphenyl-d14	101	38 - 108				

Date of Report: September 26, 2018 Samples Submitted: August 21, 2018 Laboratory Reference: 1808-217B Project: 397-019

PAHs EPA 8270D/SIM **SB/SBD QUALITY CONTROL**

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	01S1								
	SB	SBD	SB	SBD	SB	SBD				
Phenol	1.09	1.18	1.33	1.33	82	89	45 - 94	8	29	
2-Chlorophenol	1.03	1.10	1.33	1.33	77	83	46 - 94	7	33	
1,4-Dichlorobenzene	0.521	0.524	0.667	0.667	78	79	42 - 91	1	37	
n-Nitroso-di-n-propylamine	0.526	0.582	0.667	0.667	79	87	45 - 100	10	26	
1,2,4-Trichlorobenzene	0.519	0.555	0.667	0.667	78	83	45 - 100	7	32	
4-Chloro-3-methylphenol	1.04	1.19	1.33	1.33	78	89	55 - 97	13	21	
Acenaphthene	0.533	0.577	0.667	0.667	80	87	48 - 91	8	21	
4-Nitrophenol	0.917	1.03	1.33	1.33	69	77	53 - 102	12	20	
2,4-Dinitrotoluene	0.407	0.460	0.667	0.667	61	69	47 - 96	12	19	
Pentachlorophenol	1.08	1.26	1.33	1.33	81	95	35 - 125	15	26	
Pyrene	0.581	0.627	0.667	0.667	87	94	55 - 110	8	17	
Surrogate:										
2-Fluorophenol					81	82	19 - 103			
Phenol-d6					<i>79</i>	84	30 - 103			
Nitrobenzene-d5					69	74	27 - 105			
2-Fluorobiphenyl					76	78	36 - 102			
2,4,6-Tribromophenol					84	91	33 - 110			
Terphenyl-d14					85	87	38 - 108			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page	
o	

	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		10000000	8/00-80 - 050 - 02-02	7 FB-02 - 36-0-082018	6 FB-02-25-0-0872018	5 FB-02-20-0-082018	4 FB-02-15.0-082018	3 FB-02- 10-0-082018	2 FB-02-50-087018	1 F6-02-3:0-082018	Lab ID Sample Identification	Sampled by: Gree Ray	Javan Prouk	Project Name: Block 38 West Property	Project Number: 397 - 019	Company: home allow	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
	Reviewed/Date					2800	favaller	Company		4	4 A 0251 F	1454	1-130	1810	1848	1235	1 120	8/20/18 1155 Soil 5	Date Time Sampled Sampled Matrix	(other)	Contai	Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)
						8/21/18 1000	8/20/18 184S	Date Time		Ţ	メ		× × ×			× ×	×		NWTF NWTF Volatil Halog	PH-Dx (les 826 enated EPA 80	BTEX Coc Coc Volatil	d / SG Cl es 82600 ters Only)		Laboratory Number:
@Anamois regrested 9/24	Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV	of siles and sold	time requests !		1	Please Powlant Project Who	Comments/Special Instructions					×			\ \ \	The state of the s		(with I PAHs PCBs Organ Organ Chlori Total I TCLP	8082A nochlor nophos inated A RCRA I MTCA	el PAH /SIM (I ine Pes phorus Acid H Metals Metals	s) ow-level) sticides 8 Pesticides erbicides	081B es 8270 8151A		08-217
(418)80.841	bles (EDDs)		0)	Russia	2020	Anna	Manager				×		×			×	×		% Mo	isture					

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 27, 2018

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019

Laboratory Reference No. 1808-229

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on August 22, 2018.

Please note that the data for the additionally requested analyses will follow in the final report.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-019

Case Narrative

Samples were collected on August 21, 2018 and received by the laboratory on August 22, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

The MTCA Method A cleanup level of 0.030 ppm for Benzene is not achievable for sample FB-04-5.0-082118 due to the low dry weight of the sample.

Total Metals EPA 6010D/7471B Analysis

The duplicate RPD for Chromium is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

ome. mg/ng (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-04-5.0-082118					
Laboratory ID:	08-229-02					
Benzene	ND	0.033	EPA 8021B	8-22-18	8-22-18	
Toluene	ND	0.16	EPA 8021B	8-22-18	8-22-18	
Ethyl Benzene	ND	0.16	EPA 8021B	8-22-18	8-22-18	
m,p-Xylene	ND	0.16	EPA 8021B	8-22-18	8-22-18	
o-Xylene	ND	0.16	EPA 8021B	8-22-18	8-22-18	
Gasoline	ND	16	NWTPH-Gx	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	57-129				
Client ID:	FB-04-20.0-082118					
Laboratory ID:	08-229-05					
Benzene	ND	0.020	EPA 8021B	8-22-18	8-22-18	
Toluene	ND	0.053	EPA 8021B	8-22-18	8-22-18	
Ethyl Benzene	ND	0.053	EPA 8021B	8-22-18	8-22-18	
m,p-Xylene	ND	0.053	EPA 8021B	8-22-18	8-22-18	
o-Xylene	ND	0.053	EPA 8021B	8-22-18	8-22-18	
Gasoline	ND	5.3	NWTPH-Gx	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	57-129				
Client ID:	FB-04-30.0-082118					
Laboratory ID:	08-229-07					
Benzene	ND	0.020	EPA 8021B	8-22-18	8-22-18	_
Toluene	ND	0.055	EPA 8021B	8-22-18	8-22-18	
Ethyl Benzene	ND	0.055	EPA 8021B	8-22-18	8-22-18	
m,p-Xylene	ND	0.055	EPA 8021B	8-22-18	8-22-18	
o-Xylene	ND	0.055	EPA 8021B	8-22-18	8-22-18	
Gasoline	ND	5.5	NWTPH-Gx	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	57-129				

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

Analyte	Danieli					
	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-01-5.0-082118					
Laboratory ID:	08-229-08					
Benzene	ND	0.020	EPA 8021B	8-22-18	8-22-18	
Toluene	ND	0.062	EPA 8021B	8-22-18	8-22-18	
Ethyl Benzene	ND	0.062	EPA 8021B	8-22-18	8-22-18	
m,p-Xylene	ND	0.062	EPA 8021B	8-22-18	8-22-18	
o-Xylene	ND	0.062	EPA 8021B	8-22-18	8-22-18	
Gasoline	ND	6.2	NWTPH-Gx	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	57-129				
Client ID:	FB-01-15.0-082118					
Laboratory ID:	08-229-09					
Benzene	ND	0.020	EPA 8021B	8-22-18	8-22-18	
Toluene	ND	0.091	EPA 8021B	8-22-18	8-22-18	
Ethyl Benzene	ND	0.091	EPA 8021B	8-22-18	8-22-18	
m,p-Xylene	ND	0.091	EPA 8021B	8-22-18	8-22-18	
o-Xylene	ND	0.091	EPA 8021B	8-22-18	8-22-18	
Gasoline	ND	9.1	NWTPH-Gx	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	57-129				
Client ID:	FB-01-30.0-082118					
Laboratory ID:	08-229-12					
Benzene	ND	0.020	EPA 8021B	8-22-18	8-22-18	
Toluene	ND	0.051	EPA 8021B	8-22-18	8-22-18	
Ethyl Benzene	ND	0.051	EPA 8021B	8-22-18	8-22-18	
m,p-Xylene	ND	0.051	EPA 8021B	8-22-18	8-22-18	
o-Xylene	ND	0.051	EPA 8021B	8-22-18	8-22-18	
Gasoline	ND	5.1	NWTPH-Gx	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	57-129				

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0822S1					
Benzene	ND	0.020	EPA 8021B	8-22-18	8-22-18	
Toluene	ND	0.050	EPA 8021B	8-22-18	8-22-18	
Ethyl Benzene	ND	0.050	EPA 8021B	8-22-18	8-22-18	
m,p-Xylene	ND	0.050	EPA 8021B	8-22-18	8-22-18	
o-Xylene	ND	0.050	EPA 8021B	8-22-18	8-22-18	
Gasoline	ND	5.0	NWTPH-Gx	8-22-18	8-22-18	
C	Domoont Doooling	Caratral Limita				

Surrogate: Percent Recovery Control Limits Fluorobenzene 83 57-129

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-22	29-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Toluene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						104	102	57-129			
SPIKE BLANKS											
Laboratory ID:	SB08	22S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.855	0.924	1.00	1.00		86	92	69-111	8	10	
Toluene	0.842	0.912	1.00	1.00		84	91	70-114	8	11	
Ethyl Benzene	0.843	0.915	1.00	1.00		84	92	70-115	8	10	
m,p-Xylene	0.826	0.900	1.00	1.00		83	90	72-115	9	10	
o-Xylene	0.853	0.919	1.00	1.00		85	92	71-115	7	11	
Surrogate:	·								·		
Fluorobenzene						83	89	57-129			

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-01-5.0-082118					
Laboratory ID:	08-229-08					
Diesel Range Organics	520	320	NWTPH-Dx	8-22-18	8-24-18	
Lube Oil Range Organics	3700	640	NWTPH-Dx	8-22-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	FB-01-15.0-082118					
Laboratory ID:	08-229-09					
Diesel Range Organics	ND	40	NWTPH-Dx	8-22-18	8-23-18	
Lube Oil Range Organics	250	81	NWTPH-Dx	8-22-18	8-23-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	116	50-150				
Client ID:	FB-01-30.0-082118					
Laboratory ID:	08-229-12					
Diesel Range Organics	ND	29	NWTPH-Dx	8-22-18	8-23-18	
Lube Oil Range Organics	ND	58	NWTPH-Dx	8-22-18	8-23-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
• •						

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0822S4					
Diesel Range Organics	ND	25	NWTPH-Dx	8-22-18	8-22-18	_
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				_
o-Terphenyl	131	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-23	31-10								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						55 64	50-150			

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-01-5.0-082118					
Laboratory ID:	08-229-08					
Diesel Range Organics	510	160	NWTPH-Dx	8-22-18	8-25-18	X1,N
Lube Oil Range Organics	1100	320	NWTPH-Dx	8-22-18	8-25-18	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				
Client ID:	FB-01-15.0-082118					
Laboratory ID:	08-229-09					
Diesel Range Organics	ND	40	NWTPH-Dx	8-22-18	8-25-18	X1
Lube Oil Range Organics	ND	81	NWTPH-Dx	8-22-18	8-25-18	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0822S4					
Diesel Range Organics	ND	25	NWTPH-Dx	8-22-18	8-25-18	X1
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-22-18	8-25-18	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										_
Laboratory ID:	08-23	31-10								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						<i>55 64</i>	50-150			

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-04-5.0-082118					_
Laboratory ID:	08-229-02					
Diesel Range Organics	97	55	NWTPH-Dx	8-23-18	8-23-18	N
Lube Oil Range Organics	540	110	NWTPH-Dx	8-23-18	8-23-18	
Surrogate:	Percent Recovery	Control Limits				_
o-Terphenyl	85	50-150				
Client ID:	FB-04-20.0-082118					
Laboratory ID:	08-229-05					
Diesel Range Organics	ND	29	NWTPH-Dx	8-23-18	8-23-18	_
Lube Oil Range Organics	ND	58	NWTPH-Dx	8-23-18	8-23-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	FB-04-30.0-082118					
Laboratory ID:	08-229-07					
Diesel Range Organics	ND	30	NWTPH-Dx	8-23-18	8-23-18	
Lube Oil Range Organics	ND	59	NWTPH-Dx	8-23-18	8-23-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0823S2					
Diesel Range Organics	ND	25	NWTPH-Dx	8-23-18	8-23-18	
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-23-18	8-23-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-22	29-05								
	ORIG	DUP								_
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										_
o-Terphenyl						96 63	50-150			

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-04-20.0-082118					
Laboratory ID:	08-229-05					
Dichlorodifluoromethane	ND	0.0013	EPA 8260C	8-22-18	8-22-18	
Chloromethane	ND	0.0046	EPA 8260C	8-22-18	8-22-18	
Vinyl Chloride	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Bromomethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Chloroethane	ND	0.0046	EPA 8260C	8-22-18	8-22-18	
Trichlorofluoromethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,1-Dichloroethene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
lodomethane	ND	0.0046	EPA 8260C	8-22-18	8-22-18	
Methylene Chloride	ND	0.0046	EPA 8260C	8-22-18	8-22-18	
(trans) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,1-Dichloroethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
2,2-Dichloropropane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
(cis) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Bromochloromethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Chloroform	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,1,1-Trichloroethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Carbon Tetrachloride	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,1-Dichloropropene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,2-Dichloroethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Trichloroethene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,2-Dichloropropane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Dibromomethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Bromodichloromethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
2-Chloroethyl Vinyl Ether	ND	0.0046	EPA 8260C	8-22-18	8-22-18	
(cis) 1,3-Dichloropropene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
(trans) 1,3-Dichloropropend	e ND	0.00093	EPA 8260C	8-22-18	8-22-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-04-20.0-082118					
Laboratory ID:	08-229-05					
1,1,2-Trichloroethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Tetrachloroethene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,3-Dichloropropane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Dibromochloromethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,2-Dibromoethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Chlorobenzene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,1,1,2-Tetrachloroethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Bromoform	ND	0.0046	EPA 8260C	8-22-18	8-22-18	
Bromobenzene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,1,2,2-Tetrachloroethane	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260C	8-22-18	8-22-18	
2-Chlorotoluene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
4-Chlorotoluene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,3-Dichlorobenzene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,4-Dichlorobenzene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,2-Dichlorobenzene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
1,2-Dibromo-3-chloropropan	e ND	0.0060	EPA 8260C	8-22-18	8-22-18	
1,2,4-Trichlorobenzene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Hexachlorobutadiene	ND	0.0046	EPA 8260C	8-22-18	8-22-18	
1,2,3-Trichlorobenzene	ND	0.00093	EPA 8260C	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	68-139				
Toluene-d8	100	79-128				

4-Bromofluorobenzene

103

71-132

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0822S1					
Dichlorodifluoromethane	ND	0.0014	EPA 8260C	8-22-18	8-22-18	
Chloromethane	ND	0.0050	EPA 8260C	8-22-18	8-22-18	
Vinyl Chloride	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Bromomethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Chloroethane	ND	0.0050	EPA 8260C	8-22-18	8-22-18	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Iodomethane	ND	0.0050	EPA 8260C	8-22-18	8-22-18	
Methylene Chloride	ND	0.0050	EPA 8260C	8-22-18	8-22-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Bromochloromethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Chloroform	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Dibromomethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Bromodichloromethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	8-22-18	8-22-18	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
· · · ·						

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0822S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Dibromochloromethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Chlorobenzene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Bromoform	ND	0.0050	EPA 8260C	8-22-18	8-22-18	
Bromobenzene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260C	8-22-18	8-22-18	
2-Chlorotoluene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
4-Chlorotoluene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
1,2-Dibromo-3-chloropropane	ND	0.0065	EPA 8260C	8-22-18	8-22-18	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	8-22-18	8-22-18	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	8-22-18	8-22-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	68-139				
Toluene-d8	100	79-128				
4-Bromofluorobenzene	104	71-132				

Project: 397-019

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Reco	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	22S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0491	0.0531	0.0500	0.0500	98	106	53-141	8	17	
Benzene	0.0466	0.0535	0.0500	0.0500	93	107	70-130	14	15	
Trichloroethene	0.0469	0.0529	0.0500	0.0500	94	106	74-122	12	16	
Toluene	0.0490	0.0543	0.0500	0.0500	98	109	76-130	10	15	
Chlorobenzene	0.0444	0.0496	0.0500	0.0500	89	99	75-120	11	14	
Surrogate:										
Dibromofluoromethane					96	91	68-139			
Toluene-d8					103	100	79-128			
4-Bromofluorobenzene					103	104	71-132			

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Potable-082118					
Laboratory ID:	08-229-16					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Chloromethane	ND	1.0	EPA 8260C	8-23-18	8-23-18	
Vinyl Chloride	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Bromomethane	ND	2.0	EPA 8260C	8-23-18	8-23-18	
Chloroethane	ND	1.0	EPA 8260C	8-23-18	8-23-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Acetone	10	5.0	EPA 8260C	8-23-18	8-23-18	
Iodomethane	ND	5.0	EPA 8260C	8-23-18	8-23-18	
Carbon Disulfide	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Methylene Chloride	ND	1.0	EPA 8260C	8-23-18	8-23-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Vinyl Acetate	ND	1.0	EPA 8260C	8-23-18	8-23-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
2-Butanone	ND	5.0	EPA 8260C	8-23-18	8-23-18	
Bromochloromethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Chloroform	16	0.20	EPA 8260C	8-23-18	8-23-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Benzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Trichloroethene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Dibromomethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Bromodichloromethane	1.6	0.20	EPA 8260C	8-23-18	8-23-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-23-18	8-23-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	8-23-18	8-23-18	
Toluene	ND	1.0	EPA 8260C	8-23-18	8-23-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-23-18	8-23-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Potable-082118					
Laboratory ID:	08-229-16					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Tetrachloroethene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
2-Hexanone	ND	2.0	EPA 8260C	8-23-18	8-23-18	
Dibromochloromethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Chlorobenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Ethylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
m,p-Xylene	ND	0.40	EPA 8260C	8-23-18	8-23-18	
o-Xylene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Styrene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Bromoform	ND	1.0	EPA 8260C	8-23-18	8-23-18	
Isopropylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Bromobenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
n-Propylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
n-Butylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2-Dibromo-3-chloropropane	. ND	1.0	EPA 8260C	8-23-18	8-23-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	8-23-18	8-23-18	
Naphthalene	ND	1.0	EPA 8260C	8-23-18	8-23-18	
1,2,3-Trichlorobenzene	ND	0.26	EPA 8260C	8-23-18	8-23-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	90	75-127				

M

4-Bromofluorobenzene

Toluene-d8

80-127

78-125

85

96

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0823W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Chloromethane	ND	1.0	EPA 8260C	8-23-18	8-23-18	
Vinyl Chloride	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Bromomethane	ND	2.0	EPA 8260C	8-23-18	8-23-18	
Chloroethane	ND	1.0	EPA 8260C	8-23-18	8-23-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Acetone	ND	5.0	EPA 8260C	8-23-18	8-23-18	
lodomethane	ND	5.0	EPA 8260C	8-23-18	8-23-18	
Carbon Disulfide	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Methylene Chloride	ND	1.0	EPA 8260C	8-23-18	8-23-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Vinyl Acetate	ND	1.0	EPA 8260C	8-23-18	8-23-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
2-Butanone	ND	5.0	EPA 8260C	8-23-18	8-23-18	
Bromochloromethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Chloroform	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Benzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Trichloroethene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Dibromomethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Bromodichloromethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-23-18	8-23-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	8-23-18	8-23-18	
Toluene	ND	1.0	EPA 8260C	8-23-18	8-23-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-23-18	8-23-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Analyte	Nesuit	I QL	Metriod	rrepared	Analyzeu	i lags
Laboratory ID:	MB0823W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Tetrachloroethene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
2-Hexanone	ND	2.0	EPA 8260C	8-23-18	8-23-18	
Dibromochloromethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Chlorobenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Ethylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
m,p-Xylene	ND	0.40	EPA 8260C	8-23-18	8-23-18	
o-Xylene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Styrene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Bromoform	ND	1.0	EPA 8260C	8-23-18	8-23-18	
Isopropylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Bromobenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-23-18	8-23-18	
n-Propylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
n-Butylbenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-23-18	8-23-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-23-18	8-23-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	8-23-18	8-23-18	
Naphthalene	ND	1.0	EPA 8260C	8-23-18	8-23-18	
1,2,3-Trichlorobenzene	ND	0.26	EPA 8260C	8-23-18	8-23-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limit
Dibromofluoromethane 89 75-127
Toluene-d8 89 80-127
4-Bromofluorobenzene 97 78-125

Project: 397-019

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Result		Spike	Level	Rece	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	23W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.8	10.2	10.0	10.0	108	102	62-129	6	15	
Benzene	10.6	9.90	10.0	10.0	106	99	77-127	7	15	
Trichloroethene	10.1	9.52	10.0	10.0	101	95	70-120	6	15	
Toluene	10.4	9.86	10.0	10.0	104	99	82-123	5	15	
Chlorobenzene	10.0	9.49	10.0	10.0	100	95	79-120	5	15	
Surrogate:										
Dibromofluoromethane					89	90	75-127			
Toluene-d8					89	90	80-127			
4-Bromofluorobenzene					96	97	78-125			

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-01-5.0-082118					
Laboratory ID:	08-229-08					
n-Nitrosodimethylamine	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Pyridine	ND	8.6	EPA 8270D	8-22-18	8-24-18	
Phenol	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Aniline	ND	4.3	EPA 8270D	8-22-18	8-24-18	
bis(2-Chloroethyl)ether	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2-Chlorophenol	ND	0.86	EPA 8270D	8-22-18	8-24-18	
1,3-Dichlorobenzene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
1,4-Dichlorobenzene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Benzyl alcohol	ND	4.3	EPA 8270D	8-22-18	8-24-18	
1,2-Dichlorobenzene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2-Methylphenol (o-Cresol)	ND	0.86	EPA 8270D	8-22-18	8-24-18	
bis(2-Chloroisopropyl)ether	ND	0.86	EPA 8270D	8-22-18	8-24-18	
(3+4)-Methylphenol (m,p-Creso	l) ND	0.86	EPA 8270D	8-22-18	8-24-18	
n-Nitroso-di-n-propylamine	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Hexachloroethane	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Nitrobenzene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Isophorone	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2-Nitrophenol	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2,4-Dimethylphenol	ND	0.86	EPA 8270D	8-22-18	8-24-18	
bis(2-Chloroethoxy)methane	e ND	0.86	EPA 8270D	8-22-18	8-24-18	
2,4-Dichlorophenol	ND	0.86	EPA 8270D	8-22-18	8-24-18	
1,2,4-Trichlorobenzene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Naphthalene	0.99	0.86	EPA 8270D	8-22-18	8-24-18	
4-Chloroaniline	ND	4.3	EPA 8270D	8-22-18	8-24-18	
Hexachlorobutadiene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
4-Chloro-3-methylphenol	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2-Methylnaphthalene	1.2	0.86	EPA 8270D	8-22-18	8-24-18	
1-Methylnaphthalene	1.1	0.86	EPA 8270D	8-22-18	8-24-18	
Hexachlorocyclopentadiene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2,4,6-Trichlorophenol	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2,3-Dichloroaniline	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2,4,5-Trichlorophenol	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2-Chloronaphthalene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2-Nitroaniline	ND	0.86	EPA 8270D	8-22-18	8-24-18	
1,4-Dinitrobenzene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Dimethylphthalate	ND	0.86	EPA 8270D	8-22-18	8-24-18	
1,3-Dinitrobenzene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2,6-Dinitrotoluene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
1,2-Dinitrobenzene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Acenaphthylene	0.32	0.034	EPA 8270D/SIM	8-22-18	8-24-18	
3-Nitroaniline	ND	0.86	EPA 8270D	8-22-18	8-24-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FB-01-5.0-082118			•	-	
Laboratory ID:	08-229-08					
2,4-Dinitrophenol	ND	4.3	EPA 8270D	8-22-18	8-24-18	
Acenaphthene	0.46	0.034	EPA 8270D/SIM	8-22-18	8-24-18	
4-Nitrophenol	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2,4-Dinitrotoluene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Dibenzofuran	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2,3,5,6-Tetrachlorophenol	ND	0.86	EPA 8270D	8-22-18	8-24-18	
2,3,4,6-Tetrachlorophenol	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Diethylphthalate	ND	4.3	EPA 8270D	8-22-18	8-24-18	
4-Chlorophenyl-phenylether	ND	0.86	EPA 8270D	8-22-18	8-24-18	
4-Nitroaniline	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Fluorene	0.46	0.034	EPA 8270D/SIM	8-22-18	8-24-18	
4,6-Dinitro-2-methylphenol	ND	4.3	EPA 8270D	8-22-18	8-24-18	
n-Nitrosodiphenylamine	ND	0.86	EPA 8270D	8-22-18	8-24-18	
1,2-Diphenylhydrazine	ND	0.86	EPA 8270D	8-22-18	8-24-18	
4-Bromophenyl-phenylether	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Hexachlorobenzene	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Pentachlorophenol	ND	4.3	EPA 8270D	8-22-18	8-24-18	
Phenanthrene	5.4	0.86	EPA 8270D	8-22-18	8-24-18	
Anthracene	1.0	0.86	EPA 8270D	8-22-18	8-24-18	
Carbazole	ND	0.86	EPA 8270D	8-22-18	8-24-18	
Di-n-butylphthalate	ND	4.3	EPA 8270D	8-22-18	8-24-18	
Fluoranthene	4.8	0.86	EPA 8270D	8-22-18	8-24-18	
Benzidine	ND	8.6	EPA 8270D	8-22-18	8-24-18	
Pyrene	6.8	0.86	EPA 8270D	8-22-18	8-24-18	
Butylbenzylphthalate	ND	4.3	EPA 8270D	8-22-18	8-24-18	
bis-2-Ethylhexyladipate	ND	4.3	EPA 8270D	8-22-18	8-24-18	
3,3'-Dichlorobenzidine	ND	4.3	EPA 8270D	8-22-18	8-24-18	
Benzo[a]anthracene	2.6	0.86	EPA 8270D	8-22-18	8-24-18	
Chrysene	3.1	0.86	EPA 8270D	8-22-18	8-24-18	
bis(2-Ethylhexyl)phthalate	ND	4.3	EPA 8270D	8-22-18	8-24-18	
Di-n-octylphthalate	ND	4.3	EPA 8270D	8-22-18	8-24-18	
Benzo[b]fluoranthene	2.9	0.86	EPA 8270D	8-22-18	8-24-18	
Benzo(j,k)fluoranthene	0.76	0.034	EPA 8270D/SIM	8-22-18	8-24-18	
Benzo[a]pyrene	2.5	0.86	EPA 8270D	8-22-18	8-24-18	
Indeno[1,2,3-cd]pyrene	1.6	0.86	EPA 8270D	8-22-18	8-24-18	
Dibenz[a,h]anthracene	0.45	0.034	EPA 8270D/SIM	8-22-18	8-24-18	
Benzo[g,h,i]perylene	1.9	0.86	EPA 8270D	8-22-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits			<u> </u>	
2-Fluorophenol	52	19 - 103				
Phenol-d6	61	30 - 103				
Nitrobenzene-d5	68	27 - 105				
2-Fluorobiphenyl	88	36 - 102				
2,4,6-Tribromophenol	66	33 - 110				
Terphenyl-d14	94	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

		201		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0822S1					
n-Nitrosodimethylamine	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Pyridine	ND	0.33	EPA 8270D	8-22-18	8-22-18	
Phenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Aniline	ND	0.17	EPA 8270D	8-22-18	8-22-18	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Chlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,3-Dichlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,4-Dichlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Benzyl alcohol	ND	0.17	EPA 8270D	8-22-18	8-22-18	
1,2-Dichlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270D	8-22-18	8-22-18	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270D	8-22-18	8-22-18	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270D	8-22-18	8-22-18	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Hexachloroethane	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Nitrobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Isophorone	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Nitrophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4-Dimethylphenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4-Dichlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Naphthalene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
4-Chloroaniline	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Hexachlorobutadiene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,3-Dichloroaniline	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Chloronaphthalene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Nitroaniline	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,4-Dinitrobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Dimethylphthalate	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,3-Dinitrobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,6-Dinitrotoluene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,2-Dinitrobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Acenaphthylene						
	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[j,k)fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Nb	Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
2.4-Dinitrophenol ND	Laboratory ID:	MR0822S1					
Acenaphthene ND			0.17	FPΔ 8270D	8-22-18	8-22-18	
A-Nitrophenol ND							
2.4-Diinitrotoluene ND 0.033 EPA 8270D 8-22-18 8-22-18 Dibenzofuran ND 0.033 EPA 8270D 8-22-18 8-22-18 2.3.6.6-Tetrachlorophenol ND 0.033 EPA 8270D 8-22-18 8-22-18 Diethylphthalate ND 0.017 EPA 8270D 8-22-18 8-22-18 4-Chlorophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Nitroanlline ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Britonophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 4-B-Diphenylydracine ND 0.047 EPA 8270D 8-22-18 8-22-18 4-B-Driphenylydrazine ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phenylether ND 0.0							
Dibenzofuran ND							
2,3,4,6-Tetrachlorophenol ND							
2,3 4,6 Tetrachlorophenol ND							
Diethylphthalate	•						
4-Chiorophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Nitroaniline ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Nitroaniline ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 4-Nitrosodiphenylamine ND 0.033 EPA 8270D 8-22-18 8-22-18 1,2-Diphenylhydrazine ND 0.033 EPA 8270D 8-22-18 8-22-18 1,2-Diphenylhydrazine ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phenylether ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 4-Bromophenyl-phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-	-						
4-Nitroanilline							
Fluorene					-		
4,6-Dinitro-2-methylphenol ND 0.17 EPA 8270D 8-22-18 8-22-18 n-Nitrosodiphenylamine ND 0.033 EPA 8270D 8-22-18 8-22-18 1,2-Diphenylhydrazine ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 Hexachlorobenzene ND 0.033 EPA 8270D 8-22-18 8-22-18 Pentachlorophenol ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Pentachlorophenol ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Phenanthrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Carbazole ND 0.033 EPA 8270D 8-22-18 8-22-18 Di-n-butylphthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.0067 EPA 82							
n-Nitrosodiphenylamine							
1,2-Diphenylhydrazine ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 Hexachlorobenzene ND 0.033 EPA 8270D 8-22-18 8-22-18 Pentachlorophenol ND 0.17 EPA 8270D 8-22-18 8-22-18 Phenanthrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Carbazole ND 0.033 EPA 8270D 8-22-18 8-22-18 Di-n-butylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[a]anthracene ND 0.0067 EP							
4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 Hexachlorobenzene ND 0.033 EPA 8270D 8-22-18 8-22-18 Pentachlorophenol ND 0.17 EPA 8270D 8-22-18 8-22-18 Phenanthrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Din-butylphthalate ND 0.033 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.033 EPA 8270D 8-22-18 8-22-18 Butylbenzylphthalate ND 0.033 EPA 8270D 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D/SIM <							
Hexachlorobenzene					-		
Pentachlorophenol ND 0.17 EPA 8270D 8-22-18 8-22-18 Phenanthrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Carbazole ND 0.033 EPA 8270D 8-22-18 8-22-18 Di-n-butylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylkexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[a]anthracene ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18							
Phenanthrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Carbazole ND 0.033 EPA 8270D 8-22-18 8-22-18 Di-n-butylphthalate ND 0.017 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.033 EPA 8270D/SIM 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 Berzofajanthracene ND 0.007 EPA 8270D/SIM 8-22-18 8-22-18 Berzofajanthracene ND 0.0067 EPA 8270D/SIM <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Carbazole ND 0.033 EPA 8270D 8-22-18 8-22-18 Di-n-butylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Butylbenzylphthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Din-octylphthalate ND 0.17 EPA 8270D/SIM 8-22-18<							
Carbazole ND 0.033 EPA 8270D 8-22-18 8-22-18 Di-n-butylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.033 EPA 8270D/SIM 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo(ajanthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Di-n-octylphthalate ND 0.17 EPA 8270D/SIM							
Di-n-butylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.33 EPA 8270D/SIM 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo(ajanthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.017 EPA 8270D 8-22-18 8-22-18 Chrysene ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 Dioctylphthalate ND 0.17 EPA 8270D/SIM 8-							
Fluoranthene							
Benzidine ND 0.33 EPA 8270D 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 3,3'-Dichlorobenzidine ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo([b]thilate ND 0.0067<							
Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 3,3'-Dichlorobenzidine ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.17 EPA 8270D 8-22-18 8-22-18 Chrysene ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 Disic(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Bisic(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[j]fluoranthene ND 0.0067 EPA 82							
Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 3,3'-Dichlorobenzidine ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.017 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[b]fluoranthene <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 3,3'-Dichlorobenzidine ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]athyrichtene	-						
3,3'-Dichlorobenzidine ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorobhenol 86 19 - 103 Phenol-d6 8		ND		EPA 8270D	8-22-18	8-22-18	
Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6	bis-2-Ethylhexyladipate	ND		EPA 8270D	8-22-18	8-22-18	
Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphe	3,3'-Dichlorobenzidine	ND	0.17	EPA 8270D	8-22-18	8-22-18	
bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Di-n-octylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo(j,k)fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 24,6-Tribromophenol 99 33 - 110	Chrysene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo(j,k)fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	bis(2-Ethylhexyl)phthalate	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Benzo(j,k)fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Di-n-octylphthalate	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Indeno[1,2,3-cd]pyrene			EPA 8270D/SIM			
Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Surrogate:	Percent Recovery	Control Limits				
Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	2-Fluorophenol	86	19 - 103				
2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Phenol-d6	87	30 - 103				
2,4,6-Tribromophenol 99 33 - 110	Nitrobenzene-d5	84	27 - 105				
	2-Fluorobiphenyl	92	36 - 102				
Terphenyl-d14 92 38 - 108	2,4,6-Tribromophenol	99	33 - 110				
	Terphenyl-d14	92	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Red	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	22S1								
	SB	SBD	SB	SBD	SB	SBD				
Phenol	0.988	1.12	1.33	1.33	74	84	45 - 94	13	29	
2-Chlorophenol	1.05	1.21	1.33	1.33	79	91	46 - 94	14	33	
1,4-Dichlorobenzene	0.511	0.581	0.667	0.667	77	87	42 - 91	13	37	
n-Nitroso-di-n-propylamine	0.506	0.568	0.667	0.667	76	85	45 - 100	12	26	
1,2,4-Trichlorobenzene	0.559	0.579	0.667	0.667	84	87	45 - 100	4	32	
4-Chloro-3-methylphenol	1.09	1.13	1.33	1.33	82	85	55 - 97	4	21	
Acenaphthene	0.539	0.564	0.667	0.667	81	85	48 - 91	5	21	
4-Nitrophenol	1.06	1.17	1.33	1.33	80	88	53 - 102	10	20	
2,4-Dinitrotoluene	0.527	0.583	0.667	0.667	79	87	47 - 96	10	19	
Pentachlorophenol	1.34	1.40	1.33	1.33	101	105	35 - 125	4	26	
Pyrene	0.534	0.561	0.667	0.667	80	84	55 - 110	5	17	
Surrogate:										
2-Fluorophenol					72	81	19 - 103			
Phenol-d6					73	80	30 - 103			
Nitrobenzene-d5					72	73	27 - 105			
2-Fluorobiphenyl					79	80	36 - 102			
2,4,6-Tribromophenol					86	85	33 - 110			
Terphenyl-d14					76	78	38 - 108			

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	FB-04-10.0-082118	I QL	Metriod	Перагеи	Analyzeu	i iags
Laboratory ID:	08-229-03					
n-Nitrosodimethylamine	ND	0.083	EPA 8270D	8-22-18	8-24-18	
Pyridine	ND	0.83	EPA 8270D	8-22-18	8-24-18	
Phenol	ND	0.083	EPA 8270D	8-22-18	8-24-18	
Aniline	ND	0.42	EPA 8270D	8-22-18	8-24-18	
bis(2-Chloroethyl)ether	ND	0.083	EPA 8270D	8-22-18	8-24-18	
2-Chlorophenol	ND	0.083	EPA 8270D	8-22-18	8-24-18	
1,3-Dichlorobenzene	ND	0.083	EPA 8270D	8-22-18	8-24-18	
1,4-Dichlorobenzene	ND	0.083	EPA 8270D	8-22-18	8-24-18	
Benzyl alcohol	ND	0.42	EPA 8270D	8-22-18	8-24-18	
1,2-Dichlorobenzene	ND	0.083	EPA 8270D	8-22-18	8-24-18	
2-Methylphenol (o-Cresol)	ND	0.083	EPA 8270D	8-22-18	8-24-18	
bis(2-Chloroisopropyl)ether	ND	0.083	EPA 8270D	8-22-18	8-24-18	
(3+4)-Methylphenol (m,p-Cresol		0.083	EPA 8270D	8-22-18	8-24-18	
n-Nitroso-di-n-propylamine	ND	0.083	EPA 8270D	8-22-18	8-24-18	
Hexachloroethane	ND	0.083	EPA 8270D	8-22-18	8-24-18	
Nitrobenzene	ND	0.083	EPA 8270D	8-22-18	8-24-18	
Isophorone	ND	0.083	EPA 8270D	8-22-18	8-24-18	
2-Nitrophenol	ND	0.083	EPA 8270D	8-22-18	8-24-18	
2,4-Dimethylphenol	ND	0.083	EPA 8270D	8-22-18	8-24-18	
bis(2-Chloroethoxy)methane		0.083	EPA 8270D	8-22-18	8-24-18	
2,4-Dichlorophenol	ND	0.083	EPA 8270D	8-22-18	8-24-18	
1,2,4-Trichlorobenzene	ND	0.083	EPA 8270D	8-22-18	8-24-18	
Naphthalene	0.12	0.083	EPA 8270D	8-22-18	8-24-18	
4-Chloroaniline	ND	0.42	EPA 8270D	8-22-18	8-24-18	
Hexachlorobutadiene	ND	0.083	EPA 8270D	8-22-18	8-24-18	
4-Chloro-3-methylphenol	ND	0.083	EPA 8270D	8-22-18	8-24-18	
2-Methylnaphthalene	0.099	0.083	EPA 8270D	8-22-18	8-24-18	
1-Methylnaphthalene	0.057	0.003	EPA 8270D/SIM	8-22-18	8-24-18	
Hexachlorocyclopentadiene	ND	0.017	EPA 8270D	8-22-18	8-24-18	
2,4,6-Trichlorophenol	ND ND	0.083	EPA 8270D	8-22-18	8-24-18	
2,3-Dichloroaniline	ND ND	0.083	EPA 8270D	8-22-18	8-24-18	
2,4,5-Trichlorophenol	ND ND	0.083	EPA 8270D	8-22-18	8-24-18	
2-Chloronaphthalene	ND ND	0.083	EPA 8270D EPA 8270D	8-22-18	8-24-18	
2-Nitroaniline	ND ND	0.083	EPA 8270D EPA 8270D	8-22-16 8-22-18	8-24-18	
1,4-Dinitrobenzene	ND ND	0.083	EPA 8270D	8-22-18	8-24-18	
Dimethylphthalate	ND ND	0.083	EPA 8270D	8-22-18	8-24-18	
1,3-Dinitrobenzene	ND ND	0.083	EPA 8270D	8-22-18	8-24-18	
2,6-Dinitrotoluene	ND ND	0.083	EPA 8270D EPA 8270D	8-22-18	8-24-18	
1,2-Dinitrobenzene	ND ND	0.083	EPA 8270D EPA 8270D	8-22-16 8-22-18	8-24-18	
Acenaphthylene	0.045	0.063	EPA 8270D/SIM	8-22-16 8-22-18	8-24-18	
3-Nitroaniline	0.045 ND	0.017	EPA 8270D/SIM	8-22-16 8-22-18	8-24-18	
3-MillOdfillifie	ND	0.063	EFA 02/0D	0-22-10	0-24-10	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-04-10.0-082118					
Laboratory ID:	08-229-03					
2,4-Dinitrophenol	ND	0.42	EPA 8270D	8-22-18	8-24-18	_
Acenaphthene	0.21	0.083	EPA 8270D	8-22-18	8-24-18	
4-Nitrophenol	ND	0.083	EPA 8270D	8-22-18	8-24-18	
2,4-Dinitrotoluene	ND	0.083	EPA 8270D	8-22-18	8-24-18	
Dibenzofuran	0.12	0.083	EPA 8270D	8-22-18	8-24-18	
2,3,5,6-Tetrachlorophenol	ND	0.083	EPA 8270D	8-22-18	8-24-18	
2,3,4,6-Tetrachlorophenol	ND	0.083	EPA 8270D	8-22-18	8-24-18	
Diethylphthalate	ND	0.42	EPA 8270D	8-22-18	8-24-18	
4-Chlorophenyl-phenylether	ND	0.083	EPA 8270D	8-22-18	8-24-18	
4-Nitroaniline	ND	0.083	EPA 8270D	8-22-18	8-24-18	
Fluorene	0.22	0.083	EPA 8270D	8-22-18	8-24-18	
4,6-Dinitro-2-methylphenol	ND	0.42	EPA 8270D	8-22-18	8-24-18	
n-Nitrosodiphenylamine	ND	0.083	EPA 8270D	8-22-18	8-24-18	
1,2-Diphenylhydrazine	ND	0.18	EPA 8270D	8-22-18	8-24-18	U1
4-Bromophenyl-phenylether	ND	0.083	EPA 8270D	8-22-18	8-24-18	•
Hexachlorobenzene	ND	0.083	EPA 8270D	8-22-18	8-24-18	
Pentachlorophenol	ND	0.42	EPA 8270D	8-22-18	8-24-18	
Phenanthrene	1.0	0.083	EPA 8270D	8-22-18	8-24-18	
Anthracene	0.29	0.083	EPA 8270D	8-22-18	8-24-18	
Carbazole	ND	0.083	EPA 8270D	8-22-18	8-24-18	
Di-n-butylphthalate	ND	0.42	EPA 8270D	8-22-18	8-24-18	
Fluoranthene	0.97	0.083	EPA 8270D	8-22-18	8-24-18	
Benzidine	ND	0.83	EPA 8270D	8-22-18	8-24-18	
Pyrene	1.1	0.083	EPA 8270D	8-22-18	8-24-18	
Butylbenzylphthalate	ND	0.42	EPA 8270D	8-22-18	8-24-18	
	ND ND	0.42	EPA 8270D EPA 8270D	8-22-18	8-24-18	
bis-2-Ethylhexyladipate	ND ND	0.42				
3,3'-Dichlorobenzidine			EPA 8270D	8-22-18	8-24-18	
Benzo[a]anthracene	0.67	0.083	EPA 8270D	8-22-18	8-24-18	
Chrysene	0.95	0.083	EPA 8270D	8-22-18	8-24-18	
bis(2-Ethylhexyl)phthalate	ND	0.42	EPA 8270D	8-22-18	8-24-18	
Di-n-octylphthalate	ND	0.42	EPA 8270D	8-22-18	8-24-18	
Benzo[b]fluoranthene	0.47	0.083	EPA 8270D	8-22-18	8-24-18	
Benzo(j,k)fluoranthene	0.18	0.083	EPA 8270D	8-22-18	8-24-18	
Benzo[a]pyrene	0.36	0.083	EPA 8270D	8-22-18	8-24-18	
Indeno[1,2,3-cd]pyrene	0.19	0.083	EPA 8270D	8-22-18	8-24-18	
Dibenz[a,h]anthracene	0.041	0.017	EPA 8270D/SIM	8-22-18	8-24-18	
Benzo[g,h,i]perylene	0.21	0.083	EPA 8270D	8-22-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	41	19 - 103				
Phenol-d6	48	30 - 103				
Nitrobenzene-d5	<i>4</i> 5	27 - 105				
2-Fluorobiphenyl	55	36 - 102				
2,4,6-Tribromophenol	64	33 - 110				
Terphenyl-d14	60	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0822S1					
n-Nitrosodimethylamine	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Pyridine	ND	0.33	EPA 8270D	8-22-18	8-22-18	
Phenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Aniline	ND	0.17	EPA 8270D	8-22-18	8-22-18	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Chlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,3-Dichlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,4-Dichlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Benzyl alcohol	ND	0.17	EPA 8270D	8-22-18	8-22-18	
1,2-Dichlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270D	8-22-18	8-22-18	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270D	8-22-18	8-22-18	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270D	8-22-18	8-22-18	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Hexachloroethane	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Nitrobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Isophorone	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Nitrophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4-Dimethylphenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4-Dichlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Naphthalene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
4-Chloroaniline	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Hexachlorobutadiene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,3-Dichloroaniline	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Chloronaphthalene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2-Nitroaniline	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,4-Dinitrobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Dimethylphthalate	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,3-Dinitrobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
2,6-Dinitrotoluene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
1,2-Dinitrobenzene	ND	0.033	EPA 8270D	8-22-18	8-22-18	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
3-Nitroaniline	ND	0.033	EPA 8270D	8-22-18	8-22-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[j,k)fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Nb	Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
2.4-Dinitrophenol ND	Laboratory ID:	MR0822S1					
Acenaphthene ND			0.17	FPΔ 8270D	8-22-18	8-22-18	
A-Nitrophenol ND							
2.4-Diinitrotoluene ND 0.033 EPA 8270D 8-22-18 8-22-18 Dibenzofuran ND 0.033 EPA 8270D 8-22-18 8-22-18 2.3.6.6-Tetrachlorophenol ND 0.033 EPA 8270D 8-22-18 8-22-18 Diethylphthalate ND 0.017 EPA 8270D 8-22-18 8-22-18 4-Chlorophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Nitroanlline ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Britonophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 4-B-Diphenylydracine ND 0.047 EPA 8270D 8-22-18 8-22-18 4-B-Driphenylydrazine ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phenylether ND 0.0							
Dibenzofuran ND							
2,3,4,6-Tetrachlorophenol ND							
2,3 4,6 Tetrachlorophenol ND							
Diethylphthalate	•						
4-Chiorophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Nitroaniline ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Nitroaniline ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 4-Nitrosodiphenylamine ND 0.033 EPA 8270D 8-22-18 8-22-18 1,2-Diphenylhydrazine ND 0.033 EPA 8270D 8-22-18 8-22-18 1,2-Diphenylhydrazine ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phenylether ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 4-Bromophenyl-phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-	-						
4-Nitroanilline							
Fluorene					-		
4,6-Dinitro-2-methylphenol ND 0.17 EPA 8270D 8-22-18 8-22-18 n-Nitrosodiphenylamine ND 0.033 EPA 8270D 8-22-18 8-22-18 1,2-Diphenylhydrazine ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 Hexachlorobenzene ND 0.033 EPA 8270D 8-22-18 8-22-18 Pentachlorophenol ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Pentachlorophenol ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Phenanthrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Carbazole ND 0.033 EPA 8270D 8-22-18 8-22-18 Di-n-butylphthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.0067 EPA 82							
n-Nitrosodiphenylamine							
1,2-Diphenylhydrazine ND 0.033 EPA 8270D 8-22-18 8-22-18 4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 Hexachlorobenzene ND 0.033 EPA 8270D 8-22-18 8-22-18 Pentachlorophenol ND 0.17 EPA 8270D 8-22-18 8-22-18 Phenanthrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Carbazole ND 0.033 EPA 8270D 8-22-18 8-22-18 Di-n-butylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[a]anthracene ND 0.0067 EP							
4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-22-18 8-22-18 Hexachlorobenzene ND 0.033 EPA 8270D 8-22-18 8-22-18 Pentachlorophenol ND 0.17 EPA 8270D 8-22-18 8-22-18 Phenanthrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Din-butylphthalate ND 0.033 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.033 EPA 8270D 8-22-18 8-22-18 Butylbenzylphthalate ND 0.033 EPA 8270D 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D/SIM <							
Hexachlorobenzene					-		
Pentachlorophenol ND 0.17 EPA 8270D 8-22-18 8-22-18 Phenanthrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Carbazole ND 0.033 EPA 8270D 8-22-18 8-22-18 Di-n-butylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylkexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[a]anthracene ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18							
Phenanthrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Carbazole ND 0.033 EPA 8270D 8-22-18 8-22-18 Di-n-butylphthalate ND 0.017 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.033 EPA 8270D/SIM 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 Berzofajanthracene ND 0.007 EPA 8270D/SIM 8-22-18 8-22-18 Berzofajanthracene ND 0.0067 EPA 8270D/SIM <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Carbazole ND 0.033 EPA 8270D 8-22-18 8-22-18 Di-n-butylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Butylbenzylphthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Din-octylphthalate ND 0.17 EPA 8270D/SIM 8-22-18<							
Carbazole ND 0.033 EPA 8270D 8-22-18 8-22-18 Di-n-butylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.033 EPA 8270D/SIM 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo(ajanthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Di-n-octylphthalate ND 0.17 EPA 8270D/SIM							
Di-n-butylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzidine ND 0.33 EPA 8270D/SIM 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo(ajanthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.017 EPA 8270D 8-22-18 8-22-18 Chrysene ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 Dioctylphthalate ND 0.17 EPA 8270D/SIM 8-							
Fluoranthene							
Benzidine ND 0.33 EPA 8270D 8-22-18 8-22-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 3,3'-Dichlorobenzidine ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo([b]thilate ND 0.0067<							
Pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 3,3'-Dichlorobenzidine ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.17 EPA 8270D 8-22-18 8-22-18 Chrysene ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.17 EPA 8270D/SIM 8-22-18 8-22-18 Disic(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Bisic(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[j]fluoranthene ND 0.0067 EPA 82							
Butylbenzylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 3,3'-Dichlorobenzidine ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.017 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[b]fluoranthene <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-22-18 8-22-18 3,3'-Dichlorobenzidine ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]athyrichtene	-						
3,3'-Dichlorobenzidine ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorobhenol 86 19 - 103 Phenol-d6 8		ND		EPA 8270D	8-22-18	8-22-18	
Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6	bis-2-Ethylhexyladipate	ND		EPA 8270D	8-22-18	8-22-18	
Chrysene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphe	3,3'-Dichlorobenzidine	ND	0.17	EPA 8270D	8-22-18	8-22-18	
bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Di-n-octylphthalate ND 0.17 EPA 8270D 8-22-18 8-22-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo(j,k)fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 24,6-Tribromophenol 99 33 - 110	Chrysene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo(j,k)fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	bis(2-Ethylhexyl)phthalate	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Benzo(j,k)fluoranthene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Di-n-octylphthalate	ND	0.17	EPA 8270D	8-22-18	8-22-18	
Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Indeno[1,2,3-cd]pyrene			EPA 8270D/SIM			
Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-22-18 8-22-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
2-Fluorophenol 86 19 - 103 Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	8-22-18	8-22-18	
Phenol-d6 87 30 - 103 Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Surrogate:	Percent Recovery	Control Limits				
Nitrobenzene-d5 84 27 - 105 2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	2-Fluorophenol	86	19 - 103				
2-Fluorobiphenyl 92 36 - 102 2,4,6-Tribromophenol 99 33 - 110	Phenol-d6	87	30 - 103				
2,4,6-Tribromophenol 99 33 - 110	Nitrobenzene-d5	84	27 - 105				
	2-Fluorobiphenyl	92	36 - 102				
Terphenyl-d14 92 38 - 108	2,4,6-Tribromophenol	99	33 - 110				
	Terphenyl-d14	92	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Red	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										_
Laboratory ID:	SB08	322S1								
	SB	SBD	SB	SBD	SB	SBD				
Phenol	0.988	1.12	1.33	1.33	74	84	45 - 94	13	29	
2-Chlorophenol	1.05	1.21	1.33	1.33	79	91	46 - 94	14	33	
1,4-Dichlorobenzene	0.511	0.581	0.667	0.667	77	87	42 - 91	13	37	
n-Nitroso-di-n-propylamine	0.506	0.568	0.667	0.667	76	85	45 - 100	12	26	
1,2,4-Trichlorobenzene	0.559	0.579	0.667	0.667	84	87	45 - 100	4	32	
4-Chloro-3-methylphenol	1.09	1.13	1.33	1.33	82	85	55 - 97	4	21	
Acenaphthene	0.539	0.564	0.667	0.667	81	85	48 - 91	5	21	
4-Nitrophenol	1.06	1.17	1.33	1.33	80	88	53 - 102	10	20	
2,4-Dinitrotoluene	0.527	0.583	0.667	0.667	79	87	47 - 96	10	19	
Pentachlorophenol	1.34	1.40	1.33	1.33	101	105	35 - 125	4	26	
Pyrene	0.534	0.561	0.667	0.667	80	84	55 - 110	5	17	
Surrogate:										
2-Fluorophenol					72	81	19 - 103			
Phenol-d6					73	80	30 - 103			
Nitrobenzene-d5					72	73	27 - 105			
2-Fluorobiphenyl					79	80	36 - 102			
2,4,6-Tribromophenol					86	85	33 - 110			
Terphenyl-d14					76	78	38 - 108			

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM SB/SBD QUALITY CONTROL

Project: 397-019

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-04-5.0-082118					
Laboratory ID:	08-229-02					
Arsenic	ND	11	EPA 6010D	8-23-18	8-23-18	_
Barium	290	5.5	EPA 6010D	8-23-18	8-23-18	
Cadmium	ND	1.1	EPA 6010D	8-23-18	8-23-18	
Chromium	53	1.1	EPA 6010D	8-23-18	8-23-18	
Lead	56	11	EPA 6010D	8-23-18	8-23-18	
Mercury	ND	0.55	EPA 7471B	8-23-18	8-23-18	
Selenium	ND	11	EPA 6010D	8-23-18	8-23-18	
Silver	ND	2.2	EPA 6010D	8-23-18	8-23-18	

Client ID:	FB-01-15.0-082118					
Laboratory ID:	08-229-09					
Arsenic	ND	16	EPA 6010D	8-23-18	8-23-18	
Barium	110	4.0	EPA 6010D	8-23-18	8-23-18	
Cadmium	ND	0.81	EPA 6010D	8-23-18	8-23-18	
Chromium	60	0.81	EPA 6010D	8-23-18	8-23-18	
Lead	ND	8.1	EPA 6010D	8-23-18	8-23-18	
Mercury	ND	0.40	EPA 7471B	8-23-18	8-23-18	
Selenium	ND	16	EPA 6010D	8-23-18	8-23-18	
Silver	ND	1.6	EPA 6010D	8-23-18	8-23-18	

RPD

Date of Report: August 27, 2018 Samples Submitted: August 22, 2018 Laboratory Reference: 1808-229

Project: 397-019

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0823SM1					
Arsenic	ND	5.0	EPA 6010D	8-23-18	8-23-18	
Barium	ND	2.5	EPA 6010D	8-23-18	8-23-18	
Cadmium	ND	0.50	EPA 6010D	8-23-18	8-23-18	
Chromium	ND	0.50	EPA 6010D	8-23-18	8-23-18	
Lead	ND	5.0	EPA 6010D	8-23-18	8-23-18	
Selenium	ND	5.0	EPA 6010D	8-23-18	8-23-18	
Silver	ND	1.0	EPA 6010D	8-23-18	8-23-18	
Laboratory ID:	MB0823S1					
Mercury	ND	0.25	EPA 7471B	8-23-18	8-23-18	

Source

Percent

Recovery

					Result		CCIII	recovery		111 0	
Analyte	Result		Spike	Spike Level		Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-23	39-08									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
Barium	92.2	83.3	NA	NA		1	NA	NA	10	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	8.30	5.65	NA	NA		1	NA	NA	38	20	K
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	08-23	39-08									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-23	39-08									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	93.1	95.5	100	100	ND	93	96	75-125	3	20	
Barium	188	184	100	100	92.2	96	92	75-125	2	20	
Cadmium	46.3	45.8	50.0	50.0	ND	93	92	75-125	1	20	
Chromium	102	102	100	100	8.30	94	94	75-125	0	20	
Lead	232	233	250	250	ND	93	93	75-125	1	20	
Selenium	91.2	92.2	100	100	ND	91	92	75-125	1	20	
Silver	21.8	21.9	25.0	25.0	ND	87	88	75-125	1	20	
Laboratory ID:		39-08									
Mercury	0.555	0.554	0.500	0.500	0.00530	110	110	80-120	0	20	

Project: 397-019

% MOISTURE

Date Analyzed: 8-22-18

Client ID	Lab ID	% Moisture
FB-04-3.0-082118	08-229-02	54
FB-04-10.0-082118	08-229-03	60
FB-04-20.0-082118	08-229-05	14
FB-04-30.0-082118	08-229-07	15
FB-01-5.0-082118	08-229-08	22
FB-01-15.0-082118	08-229-09	38
FB-01-30.0-082118	08-229-12	13

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page_ 000

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished		10 FB-01- 2	9 80-01-13	8 78-09-5	7 FB-04-3	6 FB-04-2	S FB-04-2	4 FB-04-	3 FB-04 -	2 FB-04-	1 FB-04-	Lab ID Sam	Sampled by: Grea	Toylect Mallager. Jaylour	Stock	Project Number: 397 - 019	MARALION		Analytical Labor 14648 NE 95t
					2		Signature	20.0-082118	15.0-682118	5.0 - 08218	30-0 - 08248	25.0-08418	20.0 -08218	15.0-082/18	10.0-082/18	5-0-082/18	3-0-082118	Sample Identification	V	Russk	38 West Property	019	Š	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052
								Ø.								_	8/21/18	Date Sampled			Stai (TPI	▼ 2 Days	San		л. П
Reviewed/Date					6		Company	MHG	orn	NHO	0850	5180	0745	0735	0710	650	2490	Time Sampled	(other)		Standard (7 Days) (TPH analysis 5 Days)	ays	Same Day	(Check One)	Turnaround Request (in working days)
ate					32			AT .								_	Soil	Matrix			ays)	X 3 Days	☐ 1 Day		quest ays)
								4									a		er of C		ers				
							0							- 1					H-HCIE H-Gx/E						La
					R		Date		メ	×	×	100	×	The T		メ		NWTP		DIEA				-	Laboratory Nu
					100				X	×	×		X			×		NWTP	H-Dx (Acid	I / SG Cle	ean-up)		-	tory
					8		Time												es 8260						N I
					33								×								es 8260C				ımber:
0					G	l.				~						_			olatiles	.83	ers Only)				7
hrom	ata P		\bigcirc	()	3	X	Comm		0	X				-	×			(with l	ow-leve	PAHS				_	08
atogra	Data Package:		D	A		D	ents/S											PCBs	8082A						2
ms wi			ماده	des	•	X-Added	pecial											Organ	ochlori	ne Pes	ticides 80	081B			2
Chromatograms with final report \Box	Standard		00	~00)	6	Comments/Special Instructions											Organ	ophosp	horus	Pesticide	s 8270	D/SIM		9
ıl repo			2	121	-	30	ctions									- (erbicides	8151A			
	Level III		1/4	7	-	22			X							X			ATCA N						
Electro	=		OQ1			200			7	0									Metals	Totalo				_	
onic Da	Lev	\	OAdded 8/27/18.08/	190		22/18.08			3	13								HEM (oil and	grease	e) 1664A			_	
ıta Deli	Level IV	(\ \	\sim			X	8								A	CU	18	G				
verable			PI,	Loy	,	2,2			×	×								2 1	DAY	T	AT				
Electronic Data Deliverables (EDDs)		1	<i>J</i> .	I day TAT	4						×		×		×	X		3 9	DAY	TH	+7				
)s) 🗌			\	1	7	doy			×	X	X		X		×	×		% Moi	sture		11.				

Chain of Custody

Page of _

							-																
Revi	Rece	Relir	Rece	Relir	Received	Relin		1			16	5	7	W	12	=	Lab ID	Samp	Projec	Projec	Projec	Company:	
Reviewed/Date	Received	Relinquished	Received	Relinquished	sived	Relinquished					Potable - 0	FB01 - 082118	FB-01-4	FB-01-3	FB-01-3	FB-01-2		Sampled by:	Project Manager:	Project Name:	Project Number:	any:	
					8	AA	Signature				-082118	82118	811280-0-01-110-10-82	35.0-082118	15-01-30-0-08218	FB-01-25:0-082/18	Sample Identification						Phone: (425) 883-3881 • www.onsite-env.com
											斑				_	8/198	Date Sampled	Ε		Sta	2 Days	Sar	
Reviewed/Date						forester	Company				655	BHU	1540	1530	1515	1500	Time Sampled	(other)		Standard (7 Days)	ays	Same Day	(Check One)
ate					38	Ken					Wooder	Waster	Soil	Soil	Soi 1	Soil	Matrix		2,7	avs)	3 Days	Th Day	(i)
										1	\$	00	N	N	2	S			ontaine	rs			
					000	00	D					1						H-HCII H-Gx/E					
					183	8/11/1	Date					1			×		NWTP						-
					37	18						X			×				Acid /	SG Cle	an-up)		
					9	191	Time				×						Volatile		Volatiles	8260C			
					8	5						T					EDB E	PA 801	1 (Wate	rs Only)			- -
Chr	Data			1-	Z	8	Cor					Ha							8270D/	SIM			
Chromatograms with final report □	a Pacl			I'me	May 8es	Please	Comments/Special Instructions					D							SIM (lov	v-level)			
grams	Package:		Č	0	38		s/Spe				-	1					PCBs		na Danti	-1-1 00	101 D		4
with	Standard		Ç	9		Confact	cial In					'				-			ne Pestion			D/SIM	-
final r			N D	I directions.	and	foct.	struct												cid Herl				_ (
eport			TO	,		8	ons										Total F	RCRA N	/letals				-
	Level III			t's	My Com	poloct											Total N	ITCA N	/letals				
ectron				ē -	B	1											TCLP	Metals					
Electronic Data Deliverables (EDDs)	Level IV				Souple his around	Marrager											HEM (oil and	grease)	1664A			
Deliv	Z				3	nas																	
erables					9	to									×		2		4'	TA	7		_
(EDD:					3c	fer					×						31	YAC	TA	T			_
(s)					E	,									X		% Moi:	sture					

p

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 4, 2018

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019

Laboratory Reference No. 1808-271

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on August 23, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-019

Case Narrative

Samples were collected on August 22, 2018 and received by the laboratory on August 23, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

Units: mg/kg (ppm)

0 0 W 1 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-136-10.0-082218	}				
Laboratory ID:	08-271-02					
Benzene	ND	0.020	EPA 8021B	8-24-18	8-24-18	
Toluene	ND	0.090	EPA 8021B	8-24-18	8-24-18	
Ethyl Benzene	ND	0.090	EPA 8021B	8-24-18	8-24-18	
m,p-Xylene	ND	0.090	EPA 8021B	8-24-18	8-24-18	
o-Xylene	ND	0.090	EPA 8021B	8-24-18	8-24-18	
Gasoline	ND	9.0	NWTPH-Gx	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	57-129				
Client ID:	FMW-136-20.0-082218	;				
Laboratory ID:	08-271-04					
Benzene	ND	0.020	EPA 8021B	8-24-18	8-24-18	
Toluene	ND	0.064	EPA 8021B	8-24-18	8-24-18	
Ethyl Benzene	ND	0.064	EPA 8021B	8-24-18	8-24-18	
m,p-Xylene	ND	0.064	EPA 8021B	8-24-18	8-24-18	
o-Xylene	ND	0.064	EPA 8021B	8-24-18	8-24-18	
Gasoline	ND	6.4	NWTPH-Gx	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	57-129				
Client ID:	FMW-136-30.0-082218	}				
Laboratory ID:	08-271-06					
Benzene	ND	0.020	EPA 8021B	8-24-18	8-24-18	
Toluene	ND	0.052	EPA 8021B	8-24-18	8-24-18	
Ethyl Benzene	ND	0.052	EPA 8021B	8-24-18	8-24-18	
m,p-Xylene	ND	0.052	EPA 8021B	8-24-18	8-24-18	
o-Xylene	ND	0.052	EPA 8021B	8-24-18	8-24-18	
Gasoline	ND	5.2	NWTPH-Gx	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	57-129				

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0824S1					
Benzene	ND	0.020	EPA 8021B	8-24-18	8-24-18	
Toluene	ND	0.050	EPA 8021B	8-24-18	8-24-18	
Ethyl Benzene	ND	0.050	EPA 8021B	8-24-18	8-24-18	
m,p-Xylene	ND	0.050	EPA 8021B	8-24-18	8-24-18	
o-Xylene	ND	0.050	EPA 8021B	8-24-18	8-24-18	
Gasoline	ND	5.0	NWTPH-Gx	8-24-18	8-24-18	
Currogoto	Doroont Doooyom	Controllimita				

Surrogate: Percent Recovery Control Limits Fluorobenzene 86 57-129

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Red	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-27	71-02									
	ORIG	DUP									_
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						94	95	57-129			
SPIKE BLANKS											
Laboratory ID:	SB08	24S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.873	0.924	1.00	1.00		87	92	69-111	6	10	
Toluene	0.863	0.912	1.00	1.00		86	91	70-114	6	11	
Ethyl Benzene	0.860	0.915	1.00	1.00		86	92	70-115	6	10	
m,p-Xylene	0.841	0.897	1.00	1.00		84	90	72-115	6	10	
o-Xylene	0.872	0.916	1.00	1.00		87	92	71-115	5	11	
Surrogate:											

85

91

57-129

Fluorobenzene

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-136-10.0-082218					
Laboratory ID:	08-271-02					
Diesel Range Organics	ND	38	NWTPH-Dx	8-24-18	8-24-18	
Lube Oil Range Organics	ND	76	NWTPH-Dx	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	FMW-136-20.0-082218					
Laboratory ID:	08-271-04					
Diesel Range Organics	ND	32	NWTPH-Dx	8-24-18	8-27-18	
Lube Oil Range Organics	ND	63	NWTPH-Dx	8-24-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	66	50-150				
Client ID:	FMW-136-30.0-082218					
Laboratory ID:	08-271-06					
Diesel Range Organics	ND	30	NWTPH-Dx	8-24-18	8-24-18	
Lube Oil Range Organics	ND	59	NWTPH-Dx	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	77	50-150				

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0824S1					
Diesel Range Organics	ND	25	NWTPH-Dx	8-24-18	8-24-18	
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recover	y Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-24	15-02								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						56 9	0 50-150			

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-136-10.0-082218					
Laboratory ID:	08-271-02					
Dichlorodifluoromethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Chloromethane	ND	0.0077	EPA 8260C	8-24-18	8-24-18	
Vinyl Chloride	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Bromomethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Chloroethane	ND	0.0077	EPA 8260C	8-24-18	8-24-18	
Trichlorofluoromethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Iodomethane	ND	0.0077	EPA 8260C	8-24-18	8-24-18	
Methylene Chloride	ND	0.0077	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	e ND	0.0015	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
2,2-Dichloropropane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Bromochloromethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Chloroform	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
1,1,1-Trichloroethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Carbon Tetrachloride	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloropropene	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
1,2-Dichloroethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
1,2-Dichloropropane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Dibromomethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Bromodichloromethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
2-Chloroethyl Vinyl Ether	ND	0.0077	EPA 8260C	8-24-18	8-24-18	
(cis) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
(trans) 1,3-Dichloroprope	ne ND	0.0015	EPA 8260C	8-24-18	8-24-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: F	MW-136-10.0-082218					
Laboratory ID:	08-271-02					
1,1,2-Trichloroethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
1,3-Dichloropropane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Dibromochloromethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
1,2-Dibromoethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Chlorobenzene	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260C	8-24-18	8-24-18	
Bromoform	ND	0.0077	EPA 8260C	8-24-18	8-24-18	
Bromobenzene	ND	0.093	EPA 8260C	8-24-18	8-24-18	
1,1,2,2-Tetrachloroethane	ND	0.093	EPA 8260C	8-24-18	8-24-18	
1,2,3-Trichloropropane	ND	0.093	EPA 8260C	8-24-18	8-24-18	
2-Chlorotoluene	ND	0.093	EPA 8260C	8-24-18	8-24-18	
4-Chlorotoluene	ND	0.093	EPA 8260C	8-24-18	8-24-18	
1,3-Dichlorobenzene	ND	0.093	EPA 8260C	8-24-18	8-24-18	
1,4-Dichlorobenzene	ND	0.093	EPA 8260C	8-24-18	8-24-18	
1,2-Dichlorobenzene	ND	0.093	EPA 8260C	8-24-18	8-24-18	
1,2-Dibromo-3-chloropropar	ne ND	0.46	EPA 8260C	8-24-18	8-24-18	
1,2,4-Trichlorobenzene	ND	0.093	EPA 8260C	8-24-18	8-24-18	
Hexachlorobutadiene	ND	0.46	EPA 8260C	8-24-18	8-24-18	
1,2,3-Trichlorobenzene	ND	0.093	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	68-139				
Toluene-d8	98	79-128				

4-Bromofluorobenzene

83

71-132

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-136-20.0-082218					
Laboratory ID:	08-271-04					
Dichlorodifluoromethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
Chloromethane	ND	0.0047	EPA 8260C	8-24-18	8-24-18	
Vinyl Chloride	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
Bromomethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
Chloroethane	ND	0.0047	EPA 8260C	8-24-18	8-24-18	
Trichlorofluoromethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
lodomethane	ND	0.0047	EPA 8260C	8-24-18	8-24-18	
Methylene Chloride	ND	0.0047	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	e ND	0.00094	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
2,2-Dichloropropane	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
Bromochloromethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
Chloroform	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
1,1,1-Trichloroethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
Carbon Tetrachloride	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloropropene	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
1,2-Dichloroethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
1,2-Dichloropropane	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
Dibromomethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
Bromodichloromethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
2-Chloroethyl Vinyl Ether	ND	0.0047	EPA 8260C	8-24-18	8-24-18	
(cis) 1,3-Dichloropropene	ND	0.00094	EPA 8260C	8-24-18	8-24-18	
(trans) 1,3-Dichloroprope	ne ND	0.00094	EPA 8260C	8-24-18	8-24-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID: FN	IW-136-20.0-082218	}					
Laboratory ID:	08-271-04						
1,1,2-Trichloroethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
Tetrachloroethene	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
1,3-Dichloropropane	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
Dibromochloromethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
1,2-Dibromoethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
Chlorobenzene	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
1,1,1,2-Tetrachloroethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
Bromoform	ND	0.0047	EPA 8260C	8-24-18	8-24-18		
Bromobenzene	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
1,1,2,2-Tetrachloroethane	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
1,2,3-Trichloropropane	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
2-Chlorotoluene	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
4-Chlorotoluene	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
1,3-Dichlorobenzene	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
1,4-Dichlorobenzene	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
1,2-Dichlorobenzene	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
1,2-Dibromo-3-chloropropane	e ND	0.0047	EPA 8260C	8-24-18	8-24-18		
1,2,4-Trichlorobenzene	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
Hexachlorobutadiene	ND	0.0047	EPA 8260C	8-24-18	8-24-18		
1,2,3-Trichlorobenzene	ND	0.00094	EPA 8260C	8-24-18	8-24-18		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	97	68-139					
Toluene-d8	104	79-128					
4.5		74 400					

4-Bromofluorobenzene

98

71-132

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/kg

Offits. Hig/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0824S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Chloromethane	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
Vinyl Chloride	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Bromomethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Chloroethane	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
lodomethane	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
Methylene Chloride	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Bromochloromethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Chloroform	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Dibromomethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Bromodichloromethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0824S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Dibromochloromethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Chlorobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Bromoform	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
Bromobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
2-Chlorotoluene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
4-Chlorotoluene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	68-139				
Toluene-d8	101	79-128				
4-Bromofluorobenzene	97	71-132				

Project: 397-019

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Rece	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	24S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0480	0.0510	0.0500	0.0500	96	102	53-141	6	17	
Benzene	0.0481	0.0509	0.0500	0.0500	96	102	70-130	6	15	
Trichloroethene	0.0506	0.0520	0.0500	0.0500	101	104	74-122	3	16	
Toluene	0.0513	0.0551	0.0500	0.0500	103	110	76-130	7	15	
Chlorobenzene	0.0488	0.0506	0.0500	0.0500	98	101	75-120	4	14	
Surrogate:										
Dibromofluoromethane					98	94	68-139			
Toluene-d8					101	103	79-128			
4-Bromofluorobenzene					98	98	71-132			

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: F	MW-136-20.0-082218					
Laboratory ID:	08-271-04					
n-Nitrosodimethylamine	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Pyridine	ND	0.42	EPA 8270D	8-27-18	8-30-18	
Phenol	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Aniline	ND	0.21	EPA 8270D	8-27-18	8-30-18	
bis(2-Chloroethyl)ether	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2-Chlorophenol	ND	0.042	EPA 8270D	8-27-18	8-30-18	
1,3-Dichlorobenzene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
1,4-Dichlorobenzene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Benzyl alcohol	ND	0.21	EPA 8270D	8-27-18	8-30-18	
1,2-Dichlorobenzene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2-Methylphenol (o-Cresol)	ND	0.042	EPA 8270D	8-27-18	8-30-18	
bis(2-Chloroisopropyl)ether	ND	0.042	EPA 8270D	8-27-18	8-30-18	
(3+4)-Methylphenol (m,p-Creso	ol) ND	0.042	EPA 8270D	8-27-18	8-30-18	
n-Nitroso-di-n-propylamine	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Hexachloroethane	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Nitrobenzene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Isophorone	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2-Nitrophenol	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2,4-Dimethylphenol	ND	0.042	EPA 8270D	8-27-18	8-30-18	
bis(2-Chloroethoxy)methane	e ND	0.042	EPA 8270D	8-27-18	8-30-18	
2,4-Dichlorophenol	ND	0.042	EPA 8270D	8-27-18	8-30-18	
1,2,4-Trichlorobenzene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Naphthalene	0.030	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
4-Chloroaniline	ND	0.21	EPA 8270D	8-27-18	8-30-18	
Hexachlorobutadiene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
4-Chloro-3-methylphenol	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2-Methylnaphthalene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
1-Methylnaphthalene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
Hexachlorocyclopentadiene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2,4,6-Trichlorophenol	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2,3-Dichloroaniline	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2,4,5-Trichlorophenol	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2-Chloronaphthalene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2-Nitroaniline	ND	0.042	EPA 8270D	8-27-18	8-30-18	
1,4-Dinitrobenzene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Dimethylphthalate	ND	0.042	EPA 8270D	8-27-18	8-30-18	
1,3-Dinitrobenzene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2,6-Dinitrotoluene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
1,2-Dinitrobenzene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Acenaphthylene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
3-Nitroaniline	ND	0.042	EPA 8270D	8-27-18	8-30-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: FN	/IW-136-20.0-082218					
Laboratory ID:	08-271-04					
2,4-Dinitrophenol	ND	0.21	EPA 8270D	8-27-18	8-30-18	
Acenaphthene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
4-Nitrophenol	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2,4-Dinitrotoluene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Dibenzofuran	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2,3,5,6-Tetrachlorophenol	ND	0.042	EPA 8270D	8-27-18	8-30-18	
2,3,4,6-Tetrachlorophenol	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Diethylphthalate	ND	0.21	EPA 8270D	8-27-18	8-30-18	
4-Chlorophenyl-phenylether	ND	0.042	EPA 8270D	8-27-18	8-30-18	
4-Nitroaniline	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Fluorene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
4,6-Dinitro-2-methylphenol	ND	0.21	EPA 8270D	8-27-18	8-30-18	
n-Nitrosodiphenylamine	ND	0.042	EPA 8270D	8-27-18	8-30-18	
1,2-Diphenylhydrazine	ND	0.042	EPA 8270D	8-27-18	8-30-18	
4-Bromophenyl-phenylether	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Hexachlorobenzene	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Pentachlorophenol	ND	0.21	EPA 8270D	8-27-18	8-30-18	
Phenanthrene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
Anthracene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
Carbazole	ND	0.042	EPA 8270D	8-27-18	8-30-18	
Di-n-butylphthalate	ND	0.21	EPA 8270D	8-27-18	8-30-18	
Fluoranthene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
Benzidine	ND	0.42	EPA 8270D	8-27-18	8-30-18	
Pyrene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
Butylbenzylphthalate	ND	0.21	EPA 8270D	8-27-18	8-30-18	
bis-2-Ethylhexyladipate	ND	0.21	EPA 8270D	8-27-18	8-30-18	
3,3'-Dichlorobenzidine	ND	0.21	EPA 8270D	8-27-18	8-30-18	
Benzo[a]anthracene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
Chrysene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
bis(2-Ethylhexyl)phthalate	ND	0.21	EPA 8270D	8-27-18	8-30-18	
Di-n-octylphthalate	ND	0.21	EPA 8270D	8-27-18	8-30-18	
Benzo[b]fluoranthene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo(j,k)fluoranthene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo[a]pyrene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
Indeno[1,2,3-cd]pyrene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
Dibenz[a,h]anthracene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo[g,h,i]perylene	ND	0.0084	EPA 8270D/SIM	8-27-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits	217102702701111	0 27 10	0 20 10	
2-Fluorophenol	67	19 - 103				
Phenol-d6	68	30 - 103				
Nitrobenzene-d5	62	27 - 105				
2-Fluorobiphenyl	69	36 - 102				
2,4,6-Tribromophenol	78	33 - 110				
Terphenyl-d14	72	38 - 108				
1	=					

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0827S2					
n-Nitrosodimethylamine	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Pyridine	ND	0.33	EPA 8270D	8-27-18	8-28-18	
Phenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Aniline	ND	0.17	EPA 8270D	8-27-18	8-28-18	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2-Chlorophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,3-Dichlorobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,4-Dichlorobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Benzyl alcohol	ND	0.17	EPA 8270D	8-27-18	8-28-18	
1,2-Dichlorobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270D	8-27-18	8-28-18	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270D	8-27-18	8-28-18	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270D	8-27-18	8-28-18	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Hexachloroethane	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Nitrobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Isophorone	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2-Nitrophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,4-Dimethylphenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,4-Dichlorophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Naphthalene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
4-Chloroaniline	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Hexachlorobutadiene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,3-Dichloroaniline	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2-Chloronaphthalene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2-Nitroaniline	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,4-Dinitrobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Dimethylphthalate	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,3-Dinitrobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,6-Dinitrotoluene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,2-Dinitrobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
3-Nitroaniline	ND	0.033	EPA 8270D	8-27-18	8-28-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0827S2					
2,4-Dinitrophenol	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
4-Nitrophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,4-Dinitrotoluene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Dibenzofuran	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Diethylphthalate	ND	0.17	EPA 8270D	8-27-18	8-28-18	
4-Chlorophenyl-phenylether		0.033	EPA 8270D	8-27-18	8-28-18	
4-Nitroaniline	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Fluorene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
4,6-Dinitro-2-methylphenol	ND	0.17	EPA 8270D	8-27-18	8-28-18	
n-Nitrosodiphenylamine	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270D	8-27-18	8-28-18	
4-Bromophenyl-phenylether	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Hexachlorobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Pentachlorophenol	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Anthracene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Carbazole	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Di-n-butylphthalate	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Benzidine	ND	0.33	EPA 8270D	8-27-18	8-28-18	
Pyrene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Butylbenzylphthalate	ND	0.17	EPA 8270D	8-27-18	8-28-18	
bis-2-Ethylhexyladipate	ND	0.17	EPA 8270D	8-27-18	8-28-18	
3,3'-Dichlorobenzidine	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Chrysene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
bis(2-Ethylhexyl)phthalate	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Di-n-octylphthalate	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Indeno[1,2,3-cd]pyrene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	79	19 - 103				
Phenol-d6	82	30 - 103				
Nitrobenzene-d5	78	27 - 105				
2-Fluorobiphenyl	83	36 - 102				
2,4,6-Tribromophenol	94	33 - 110				
Terphenyl-d14	84	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-2	45-02									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	1.14	1.11	1.33	1.33	ND	86	83	37 - 94	3	27	
2-Chlorophenol	1.15	1.12	1.33	1.33	ND	86	84	37 - 95	3	32	
1,4-Dichlorobenzene	0.550	0.554	0.667	0.667	ND	82	83	23 - 97	1	37	
n-Nitroso-di-n-propylamine	0.562	0.552	0.667	0.667	ND	84	83	40 - 91	2	28	
1,2,4-Trichlorobenzene	0.586	0.564	0.667	0.667	ND	88	85	37 - 93	4	30	
4-Chloro-3-methylphenol	1.15	1.11	1.33	1.33	ND	86	83	46 - 96	4	25	
Acenaphthene	0.581	0.573	0.667	0.667	ND	87	86	43 - 90	1	25	
4-Nitrophenol	1.15	1.18	1.33	1.33	ND	86	89	31 - 104	3	28	
2,4-Dinitrotoluene	0.607	0.576	0.667	0.667	ND	91	86	31 - 96	5	32	
Pentachlorophenol	1.34	1.36	1.33	1.33	ND	101	102	20 - 123	1	29	
Pyrene	0.590	0.590	0.667	0.667	ND	88	88	28 - 114	0	35	
Surrogate:											
2-Fluorophenol						80	81	19 - 103			
Phenol-d6						83	82	30 - 103			
Nitrobenzene-d5						74	73	27 - 105			
2-Fluorobiphenyl						78	79	36 - 102			
2,4,6-Tribromophenol						91	92	33 - 110			
Terphenyl-d14						80	80	38 - 108			

Project: 397-019

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-136-20.0-082218					
Laboratory ID:	08-271-04					
Arsenic	ND	13	EPA 6010D	8-28-18	8-30-18	
Barium	46	3.2	EPA 6010D	8-28-18	8-30-18	
Cadmium	ND	0.63	EPA 6010D	8-28-18	8-30-18	
Chromium	42	0.63	EPA 6010D	8-28-18	8-30-18	
Lead	ND	6.3	EPA 6010D	8-28-18	8-30-18	
Mercury	ND	0.32	EPA 7471B	8-27-18	8-27-18	
Selenium	ND	13	EPA 6010D	8-28-18	8-30-18	
Silver	ND	1.3	EPA 6010D	8-28-18	8-30-18	

Client ID:	FMW-136-30.0-082218					
Laboratory ID:	08-271-06					
Arsenic	ND	12	EPA 6010D	8-28-18	8-30-18	
Barium	45	3.0	EPA 6010D	8-28-18	8-30-18	
Cadmium	ND	0.59	EPA 6010D	8-28-18	8-30-18	
Chromium	41	0.59	EPA 6010D	8-28-18	8-30-18	
Lead	ND	5.9	EPA 6010D	8-28-18	8-30-18	
Mercury	ND	0.30	EPA 7471B	8-27-18	8-27-18	
Selenium	ND	12	EPA 6010D	8-28-18	8-30-18	
Silver	ND	1.2	EPA 6010D	8-28-18	8-30-18	

Project: 397-019

TOTAL METALS EPA 6010D/7471B METHOD BLANK QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0828SM1					
Arsenic	ND	10	EPA 6010D	8-28-18	8-30-18	
Cadmium	ND	0.50	EPA 6010D	8-28-18	8-30-18	
Chromium	ND	0.50	EPA 6010D	8-28-18	8-30-18	
Lead	ND	5.0	EPA 6010D	8-28-18	8-30-18	
Selenium	ND	10	EPA 6010D	8-28-18	8-30-18	
Silver	ND	1.0	EPA 6010D	8-28-18	8-30-18	
Laboratory ID:	MB0827S1					
Mercury	ND	0.25	EPA 7471B	8-27-18	8-27-18	
Laboratory ID:	MB0828SM3					
Barium	ND	2.5	EPA 6010D	8-28-18	8-30-18	

Project: 397-019

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

Onits. Hig/Ng (ppin	')				Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-24	45-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		١	۱A	NA	NA	20	
Cadmium	ND	ND	NA	NA		N	۱A	NA	NA	20	
Chromium	35.3	42.0	NA	NA		N	۱A	NA	17	20	
Lead	ND	ND	NA	NA		N	۱A	NA	NA	20	
Selenium	ND	ND	NA	NA		N	۱A	NA	NA	20	
Silver	ND	ND	NA	NA		١	NA .	NA	NA	20	
Laboratory ID:	08-24	45-05									
Mercury	ND	ND	NA	NA		١	NΑ	NA	NA	20	
Laboratory ID:	08-24	45-01									
Laboratory 12.	ORIG	DUP									
Barium	69.6	60.3	NA	NA		١	lΑ	NA	14	20	
MATRIX SPIKES											
	00.2	45-01									
Laboratory ID:	MS	MSD	MS	MSD		MS	MSD				
					ND			75 405		20	
Arsenic	95.8 46.4	96.1	100	100	ND	96	96	75-125	0	20	
Cadmium	46.4	47.9	50.0	50.0	ND	93	96	75-125	3	20	
Chromium Lead	133	141 250	100 250	100 250	35.3 ND	98 97	106	75-125 75-125	6	20	
Selenium	243 93.1	96.9	100	250 100		93	100 97	75-125 75-125	3	20 20	
		96.9 22.6	25.0	25.0	ND ND	93 90	90		4	20	
Silver	22.4	22.0	25.0	25.0	ND	90	90	75-125	1	20	
Laboratory ID:	08-24	45-05									
Mercury	0.529	0.523	0.500	0.500	0.0116	103	102	80-120	1	20	
Laboratory ID:	08-24	15-01									
Laboratory ID.	MS	MSD	MS	MSD		MS	MSD				
Parium	186	183	100	100	69.6	116	113	75-125	2	20	
Barium	100	103	100	100	09.60	110	113	10-125		20	

Project: 397-019

% MOISTURE

Date Analyzed: 8-24-18

Client ID	Lab ID	% Moisture
FMW-136-10.0-082218	08-271-02	34
FMW-136-20.0-082218	08-271-04	21
FMW-136-30.0-082218	08-271-06	15

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Pa
ge
_
<u>o</u>
~

Sample S		_	-	-	-	Т	T					T	6	(1)	_	(N	0)		Lab	CC.		P	7.7	5	
Company Sample Sample Time Sample Sample Sample Time Sample Samp	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received HOLLES LOCAL	Relinquished	Signature					- 30.0 -	-250	-10.01	Fmw-136-15-0-	-136-10-0		Lab ID Sample Identification	Sres	Javan	Block 38	39-	-	
Date	Re						1	Comp	1		\		1-				-	18/298				Standaro (TPH ana	2 Days	Same Da	(Q)
NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Gx NWTPH-Gx NWTPH-Dx (viewed/Date					A	Lad	pany					1.00	355	She	330	310			(other)		d (7 Days) alysis 5 Days)			neck One)
NWTPH-Gx													-					4				iers			
Chromatograms with final report Level Range Rang						6/3	8/2	Date					X		X		X				BTEX				
Chromatograms with final report Level Rack Ametals Total MTCA Metals Total MTC					-	JR 1	181	=					X		X		X					d / SG C	ean-up		
Chromatograms with final report						17	-	ne							X		X				A. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
Standard Chlorinated Acid Herbicides 8270D/SIM Chlorinated Acid Herbicides 8151A Total RCRA Metals Total MTCA Metals	유	Da	>					00			-				X				Semi	/olatile:	s 8270[D/SIM)		
Standard Chlorinated Acid Herbicides 8270D/SIM Chlorinated Acid Herbicides 8151A Total RCRA Metals Total MTCA Metals	romato	ta Pack	I	in	1 8		100	mment											PAHs	8270D	/SIM (lo				
Total MTCA Metals	grams		000	2	0	R	6	s/Spec	_	-		-		-								ticides 8	081B		_
Total MTCA Metals	with fi	Stand		É	+	4	2	ial Ins				+	-	_				-	Organ	nophos	phorus	Pesticid	es 8270	D/SIM	
Total MTCA Metals	nal re	100 100	0			3	7	tructio				1							Chlor	inated .	Acid He	erbicides	8151A	g	_
Total MTCA Metals TCLP Metals HEM (oil and grease) 1664A	port [1		d t		E	SUC			1		X		X				Total	RCRA	Metals				_
Ctronic Date Ve C t 3 C		vel III	o	ā	100	Dir.													Total	MTCA	Metals				
	ctronic Data				& time	3	Project															e) 1664A			
	les (EDDs)				Z.	per																			
©S (EDDs)										1	1	\top	X		X		X		% Mo	isture					

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 4, 2018

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019

Laboratory Reference No. 1808-272

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on August 23, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-019

Case Narrative

Samples were collected on August 22, 2018 and received by the laboratory on August 23, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX (soil) Analysis

The chromatogram for sample FB-06-2.5-082218 is not similar to a typical gas.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-06-2.5-082218					
Laboratory ID:	08-272-01					
Benzene	ND	0.024	EPA 8021B	8-24-18	8-24-18	
Toluene	ND	0.12	EPA 8021B	8-24-18	8-24-18	
Ethyl Benzene	ND	0.12	EPA 8021B	8-24-18	8-24-18	
m,p-Xylene	ND	0.12	EPA 8021B	8-24-18	8-24-18	
o-Xylene	ND	0.12	EPA 8021B	8-24-18	8-24-18	
Gasoline	17	12	NWTPH-Gx	8-24-18	8-24-18	Т
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	57-129				
Client ID:	FB-06-20.0-082218					
Laboratory ID:	08-272-04					
Benzene	ND	0.020	EPA 8021B	8-24-18	8-24-18	
Toluene	ND	0.053	EPA 8021B	8-24-18	8-24-18	
Ethyl Benzene	ND	0.053	EPA 8021B	8-24-18	8-24-18	
m,p-Xylene	ND	0.053	EPA 8021B	8-24-18	8-24-18	
o-Xylene	ND	0.053	EPA 8021B	8-24-18	8-24-18	
Gasoline	ND	5.3	NWTPH-Gx	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	57-129				
Client ID:	FB-05-5.0-082218					
Laboratory ID:	08-272-06					
Benzene	ND	0.020	EPA 8021B	8-24-18	8-24-18	_
Toluene	ND	0.054	EPA 8021B	8-24-18	8-24-18	
Ethyl Benzene	ND	0.054	EPA 8021B	8-24-18	8-24-18	
m,p-Xylene	ND	0.054	EPA 8021B	8-24-18	8-24-18	
o-Xylene	ND	0.054	EPA 8021B	8-24-18	8-24-18	
Gasoline	ND	5.4	NWTPH-Gx	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	57-129				

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-05-20.0-082218					
Laboratory ID:	08-272-09					
Benzene	ND	0.020	EPA 8021B	8-24-18	8-24-18	
Toluene	ND	0.055	EPA 8021B	8-24-18	8-24-18	
Ethyl Benzene	ND	0.055	EPA 8021B	8-24-18	8-24-18	
m,p-Xylene	ND	0.055	EPA 8021B	8-24-18	8-24-18	
o-Xylene	ND	0.055	EPA 8021B	8-24-18	8-24-18	
Gasoline	ND	5.5	NWTPH-Gx	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	57-129				
Client ID:	FB-05-35.0-082218					
Laboratory ID:	08-272-12					
Benzene	ND	0.020	EPA 8021B	8-24-18	8-24-18	
Toluene	ND	0.058	EPA 8021B	8-24-18	8-24-18	
Ethyl Benzene	ND	0.058	EPA 8021B	8-24-18	8-24-18	
m,p-Xylene	ND	0.058	EPA 8021B	8-24-18	8-24-18	
o-Xylene	ND	0.058	EPA 8021B	8-24-18	8-24-18	
Gasoline	ND	5.8	NWTPH-Gx	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	57-129				

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0824S1					
Benzene	ND	0.020	EPA 8021B	8-24-18	8-24-18	
Toluene	ND	0.050	EPA 8021B	8-24-18	8-24-18	
Ethyl Benzene	ND	0.050	EPA 8021B	8-24-18	8-24-18	
m,p-Xylene	ND	0.050	EPA 8021B	8-24-18	8-24-18	
o-Xylene	ND	0.050	EPA 8021B	8-24-18	8-24-18	
Gasoline	ND	5.0	NWTPH-Gx	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits	•		•	

Surrogate: Percent Recovery Control Limits
Fluorobenzene 86 57-129

A 1 4.	_	. 14	0.11		Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-27	71-02								
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						94 95	57-129			
SPIKE BLANKS										
Laboratory ID:	SB08	2451								

O										
Laboratory ID:	SB08	324S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzene	0.873	0.924	1.00	1.00	87	92	69-111	6	10	
Toluene	0.863	0.912	1.00	1.00	86	91	70-114	6	11	
Ethyl Benzene	0.860	0.915	1.00	1.00	86	92	70-115	6	10	
m,p-Xylene	0.841	0.897	1.00	1.00	84	90	72-115	6	10	
o-Xylene	0.872	0.916	1.00	1.00	87	92	71-115	5	11	
Surrogate:										

Surrogate: 85 91 57-129

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-05-082218					
Laboratory ID:	08-272-14					
Benzene	ND	1.0	EPA 8021B	8-27-18	8-27-18	
Toluene	ND	1.0	EPA 8021B	8-27-18	8-27-18	
Ethyl Benzene	ND	1.0	EPA 8021B	8-27-18	8-27-18	
m,p-Xylene	ND	1.0	EPA 8021B	8-27-18	8-27-18	
o-Xylene	ND	1.0	EPA 8021B	8-27-18	8-27-18	
Gasoline	ND	100	NWTPH-Gx	8-27-18	8-27-18	

Surrogate: Percent Recovery Control Limits Fluorobenzene 98 66-117

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0827W2					
Benzene	ND	1.0	EPA 8021B	8-27-18	8-27-18	
Toluene	ND	1.0	EPA 8021B	8-27-18	8-27-18	
Ethyl Benzene	ND	1.0	EPA 8021B	8-27-18	8-27-18	
m,p-Xylene	ND	1.0	EPA 8021B	8-27-18	8-27-18	
o-Xylene	ND	1.0	EPA 8021B	8-27-18	8-27-18	
Gasoline	ND	100	NWTPH-Gx	8-27-18	8-27-18	

Surrogate: Percent Recovery Control Limits Fluorobenzene 111 66-117

					Source	Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-27	76-03									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	NA	NA	NA	30	
Surrogate:											
Fluorobenzene						101	93	66-117			
MATRIX SPIKES											
Laboratory ID:	08-27	76-03									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	53.6	51.8	50.0	50.0	ND	107	104	82-122	3	11	
Toluene	52.2	50.4	50.0	50.0	ND	104	101	83-123	4	12	
Ethyl Benzene	52.3	50.6	50.0	50.0	ND	105	101	83-123	3	12	
m,p-Xylene	51.7	50.2	50.0	50.0	ND	103	100	83-123	3	12	
o-Xylene	52.3	51.0	50.0	50.0	ND	105	102	83-123	3	11	
Surrogate:											
Fluorobenzene						103	104	66-117			

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-06-2.5-082218					
Laboratory ID:	08-272-01					
Diesel Range Organics	180	43	NWTPH-Dx	8-27-18	8-27-18	
Lube Oil Range Organics	310	87	NWTPH-Dx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Client ID:	FB-06-20.0-082218					
Laboratory ID:	08-272-04					
Diesel Range Organics	ND	30	NWTPH-Dx	8-27-18	8-27-18	
Lube Oil Range Organics	ND	61	NWTPH-Dx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	117	50-150				
Client ID:	FB-05-5.0-082218					
Laboratory ID:	08-272-06					
Diesel Range Organics	ND	31	NWTPH-Dx	8-27-18	8-27-18	
Lube Oil Range Organics	ND	61	NWTPH-Dx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	131	50-150				
Client ID:	FB-05-20.0-082218					
Laboratory ID:	08-272-09					
Diesel Range Organics	ND	31	NWTPH-Dx	8-27-18	8-27-18	
Lube Oil Range Organics	ND	61	NWTPH-Dx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	56	50-150				
Client ID:	FB-05-35.0-082218					
Laboratory ID:	08-272-12					
Diesel Range Organics	ND	31	NWTPH-Dx	8-27-18	8-27-18	
Lube Oil Range Organics	ND	62	NWTPH-Dx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0827S2					
Diesel Range Organics	ND	25	NWTPH-Dx	8-27-18	8-27-18	
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-27	72-01								
	ORIG	DUP								
Diesel Range Organics	101	73.8	NA	NA		NA	NA	31	NA	
Lube Oil Range Organics	177	148	NA	NA		NA	NA	18	NA	
Surrogate:										
o-Terphenyl						88 102	50-150			

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FB-05-082218					
Laboratory ID:	08-272-14					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-27-18	8-27-18	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenvl	92	50-150				

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0827W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	8-27-18	8-27-18	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-2	70-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range Organics	0.687	0.476	NA	NA		NA	NA	36	NA	
Surrogate:										
o-Terphenyl						88 82	50-150			

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-05-20.0-082218					
Laboratory ID:	08-272-09					
Dichlorodifluoromethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Chloromethane	ND	0.0045	EPA 8260C	8-24-18	8-24-18	
Vinyl Chloride	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Bromomethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Chloroethane	ND	0.0045	EPA 8260C	8-24-18	8-24-18	
Trichlorofluoromethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
lodomethane	ND	0.0045	EPA 8260C	8-24-18	8-24-18	
Methylene Chloride	ND	0.0045	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
2,2-Dichloropropane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Bromochloromethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Chloroform	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,1,1-Trichloroethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Carbon Tetrachloride	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloropropene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,2-Dichloroethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,2-Dichloropropane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Dibromomethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Bromodichloromethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
2-Chloroethyl Vinyl Ether	ND	0.0045	EPA 8260C	8-24-18	8-24-18	
(cis) 1,3-Dichloropropene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
(trans) 1,3-Dichloropropene	e ND	0.00090	EPA 8260C	8-24-18	8-24-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-05-20.0-082218					
Laboratory ID:	08-272-09					
1,1,2-Trichloroethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,3-Dichloropropane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Dibromochloromethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,2-Dibromoethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Chlorobenzene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,1,1,2-Tetrachloroethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Bromoform	ND	0.0045	EPA 8260C	8-24-18	8-24-18	
Bromobenzene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,1,2,2-Tetrachloroethane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,2,3-Trichloropropane	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
2-Chlorotoluene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
4-Chlorotoluene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,3-Dichlorobenzene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,4-Dichlorobenzene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,2-Dichlorobenzene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
1,2-Dibromo-3-chloropropane	e ND	0.0045	EPA 8260C	8-24-18	8-24-18	
1,2,4-Trichlorobenzene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Hexachlorobutadiene	ND	0.0045	EPA 8260C	8-24-18	8-24-18	
1,2,3-Trichlorobenzene	ND	0.00090	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	68-139				
Toluene-d8	100	79-128				
4.5 (1)	0.4	74 400				

4-Bromofluorobenzene

94

71-132

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0824S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Chloromethane	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
Vinyl Chloride	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Bromomethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Chloroethane	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
lodomethane	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
Methylene Chloride	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Bromochloromethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Chloroform	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Dibromomethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Bromodichloromethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0824S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Dibromochloromethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Chlorobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Bromoform	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
Bromobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
2-Chlorotoluene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
4-Chlorotoluene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	8-24-18	8-24-18	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	68-139				
Toluene-d8	101	79-128				
4-Bromofluorobenzene	97	71-132				

Project: 397-019

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	24S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0480	0.0510	0.0500	0.0500	96	102	53-141	6	17	
Benzene	0.0481	0.0509	0.0500	0.0500	96	102	70-130	6	15	
Trichloroethene	0.0506	0.0520	0.0500	0.0500	101	104	74-122	3	16	
Toluene	0.0513	0.0551	0.0500	0.0500	103	110	76-130	7	15	
Chlorobenzene	0.0488	0.0506	0.0500	0.0500	98	101	75-120	4	14	
Surrogate:										
Dibromofluoromethane					98	94	68-139			
Toluene-d8					101	103	79-128			
4-Bromofluorobenzene					98	98	71-132			

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-05-082218					
Laboratory ID:	08-272-14					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Chloromethane	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Vinyl Chloride	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromomethane	ND	2.0	EPA 8260C	8-29-18	8-29-18	
Chloroethane	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Iodomethane	ND	5.0	EPA 8260C	8-29-18	8-29-18	
Methylene Chloride	ND	1.0	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromochloromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Chloroform	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Dibromomethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromodichloromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-29-18	8-29-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-29-18	8-29-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-05-082218					
Laboratory ID:	08-272-14					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Dibromochloromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Chlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromoform	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Bromobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-29-18	8-29-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	8-29-18	8-29-18	
1,2,3-Trichlorobenzene	ND	0.26	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	90	75-127				
Toluene-d8	90	80-127				

4-Bromofluorobenzene

78-125

99

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0829W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Chloromethane	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Vinyl Chloride	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromomethane	ND	2.0	EPA 8260C	8-29-18	8-29-18	
Chloroethane	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Iodomethane	ND	5.0	EPA 8260C	8-29-18	8-29-18	
Methylene Chloride	ND	1.0	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromochloromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Chloroform	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Dibromomethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromodichloromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-29-18	8-29-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-29-18	8-29-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0829W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Dibromochloromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Chlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromoform	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Bromobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-29-18	8-29-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	8-29-18	8-29-18	
1,2,3-Trichlorobenzene	ND	0.26	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	87	75-127				
Toluene-d8	88	80-127				
4-Bromofluorobenzene	95	78-125				

Project: 397-019

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike Level		Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	29W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.6	10.0	10.0	10.0	106	100	62-129	6	15	
Benzene	11.1	10.5	10.0	10.0	111	105	77-127	6	15	
Trichloroethene	10.7	9.96	10.0	10.0	107	100	70-120	7	15	
Toluene	11.1	10.5	10.0	10.0	111	105	82-123	6	15	
Chlorobenzene	10.5	9.70	10.0	10.0	105	97	79-120	8	15	
Surrogate:										
Dibromofluoromethane					85	89	75-127			
Toluene-d8					88	89	80-127			
4-Bromofluorobenzene					93	94	78-125			

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-06-2.5-082218					
Laboratory ID:	08-272-01					
n-Nitrosodimethylamine	ND	0.058	EPA 8270D	8-27-18	8-30-18	
Pyridine	ND	0.58	EPA 8270D	8-27-18	8-30-18	
Phenol	ND	0.058	EPA 8270D	8-27-18	8-30-18	
Aniline	ND	0.29	EPA 8270D	8-27-18	8-30-18	
bis(2-Chloroethyl)ether	ND	0.058	EPA 8270D	8-27-18	8-30-18	
2-Chlorophenol	ND	0.058	EPA 8270D	8-27-18	8-30-18	
1,3-Dichlorobenzene	ND	0.058	EPA 8270D	8-27-18	8-30-18	
1,4-Dichlorobenzene	ND	0.058	EPA 8270D	8-27-18	8-30-18	
Benzyl alcohol	ND	0.29	EPA 8270D	8-27-18	8-30-18	
1,2-Dichlorobenzene	ND	0.058	EPA 8270D	8-27-18	8-30-18	
2-Methylphenol (o-Cresol)	ND	0.058	EPA 8270D	8-27-18	8-30-18	
bis(2-Chloroisopropyl)ether	ND	0.058	EPA 8270D	8-27-18	8-30-18	
(3+4)-Methylphenol (m,p-Creso	l) ND	0.058	EPA 8270D	8-27-18	8-30-18	
n-Nitroso-di-n-propylamine	ND	0.058	EPA 8270D	8-27-18	8-30-18	
Hexachloroethane	ND	0.058	EPA 8270D	8-27-18	8-30-18	
Nitrobenzene	ND	0.058	EPA 8270D	8-27-18	8-30-18	
Isophorone	ND	0.058	EPA 8270D	8-27-18	8-30-18	
2-Nitrophenol	ND	0.058	EPA 8270D	8-27-18	8-30-18	
2,4-Dimethylphenol	ND	0.058	EPA 8270D	8-27-18	8-30-18	
bis(2-Chloroethoxy)methane	e ND	0.058	EPA 8270D	8-27-18	8-30-18	
2,4-Dichlorophenol	ND	0.058	EPA 8270D	8-27-18	8-30-18	
1,2,4-Trichlorobenzene	ND	0.058	EPA 8270D	8-27-18	8-30-18	
Naphthalene	0.087	0.058	EPA 8270D	8-27-18	8-30-18	
4-Chloroaniline	ND	0.29	EPA 8270D	8-27-18	8-30-18	
Hexachlorobutadiene	ND	0.058	EPA 8270D	8-27-18	8-30-18	
4-Chloro-3-methylphenol	ND	0.058	EPA 8270D	8-27-18	8-30-18	
2-Methylnaphthalene	0.045	0.012	EPA 8270D/SIM	8-27-18	8-28-18	
1-Methylnaphthalene	0.044	0.012	EPA 8270D/SIM	8-27-18	8-28-18	
Hexachlorocyclopentadiene	ND	0.058	EPA 8270D	8-27-18	8-30-18	
2,4,6-Trichlorophenol	ND	0.058	EPA 8270D	8-27-18	8-30-18	
2,3-Dichloroaniline	ND	0.058	EPA 8270D	8-27-18	8-30-18	
2,4,5-Trichlorophenol	ND	0.058	EPA 8270D	8-27-18	8-30-18	
2-Chloronaphthalene	ND	0.058	EPA 8270D	8-27-18	8-30-18	
2-Nitroaniline	ND	0.058	EPA 8270D	8-27-18	8-30-18	
1,4-Dinitrobenzene	ND	0.058	EPA 8270D	8-27-18	8-30-18	
Dimethylphthalate	ND	0.058	EPA 8270D	8-27-18	8-30-18	
1,3-Dinitrobenzene	ND	0.058	EPA 8270D	8-27-18	8-30-18	
2,6-Dinitrotoluene	ND	0.058	EPA 8270D	8-27-18	8-30-18	
1,2-Dinitrobenzene	ND	0.058	EPA 8270D	8-27-18	8-30-18	
Acenaphthylene	0.042	0.012	EPA 8270D/SIM	8-27-18	8-28-18	
3-Nitroaniline	ND	0.058	EPA 8270D	8-27-18	8-30-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

Analyte Result PQL Method Prepared Analyte Client ID: FB-06-2.5-082218 Baboratory ID: Baboratory ID: 08-272-01 Baboratory ID: Baboratory	0-18 0-18 0-18 0-18 0-18 0-18
Laboratory ID: 08-272-01 2,4-Dinitrophenol ND 0.29 EPA 8270D 8-27-18 8-30 Acenaphthene 0.13 0.058 EPA 8270D 8-27-18 8-30 4-Nitrophenol ND 0.058 EPA 8270D 8-27-18 8-30 2,4-Dinitrotoluene ND 0.058 EPA 8270D 8-27-18 8-30	0-18 0-18 0-18 0-18 0-18 0-18
2,4-Dinitrophenol ND 0.29 EPA 8270D 8-27-18 8-30 Acenaphthene 0.13 0.058 EPA 8270D 8-27-18 8-30 4-Nitrophenol ND 0.058 EPA 8270D 8-27-18 8-30 2,4-Dinitrotoluene ND 0.058 EPA 8270D 8-27-18 8-30	0-18 0-18 0-18 0-18 0-18 0-18
Acenaphthene 0.13 0.058 EPA 8270D 8-27-18 8-30 4-Nitrophenol ND 0.058 EPA 8270D 8-27-18 8-30 2,4-Dinitrotoluene ND 0.058 EPA 8270D 8-27-18 8-30	0-18 0-18 0-18 0-18 0-18 0-18
4-Nitrophenol ND 0.058 EPA 8270D 8-27-18 8-30 2,4-Dinitrotoluene ND 0.058 EPA 8270D 8-27-18 8-30	0-18 0-18 0-18 0-18 0-18
2,4-Dinitrotoluene ND 0.058 EPA 8270D 8-27-18 8-30)-18)-18)-18)-18
)-18)-18)-18
Dibenzofuran ND 0.058 FPA 8270D 8-27-18 8-30)-18)-18
0.000 E17(0270D 0.2710 0.000)-18
2,3,5,6-Tetrachlorophenol ND 0.058 EPA 8270D 8-27-18 8-30	
2,3,4,6-Tetrachlorophenol ND 0.058 EPA 8270D 8-27-18 8-30	
Diethylphthalate ND 0.29 EPA 8270D 8-27-18 8-30	<i>-</i> 18
4-Chlorophenyl-phenylether ND 0.058 EPA 8270D 8-27-18 8-30	·-18
4-Nitroaniline ND 0.058 EPA 8270D 8-27-18 8-30	·-18
Fluorene 0.094 0.058 EPA 8270D 8-27-18 8-30	·-18
4,6-Dinitro-2-methylphenol ND 0.29 EPA 8270D 8-27-18 8-30	·-18
n-Nitrosodiphenylamine ND 0.058 EPA 8270D 8-27-18 8-30	-18
1,2-Diphenylhydrazine ND 0.16 EPA 8270D 8-27-18 8-30)-18 U1
4-Bromophenyl-phenylether ND 0.058 EPA 8270D 8-27-18 8-30	·-18
Hexachlorobenzene ND 0.058 EPA 8270D 8-27-18 8-30	·-18
Pentachlorophenol ND 0.29 EPA 8270D 8-27-18 8-30	·-18
Phenanthrene 0.89 0.058 EPA 8270D 8-27-18 8-30	·-18
Anthracene 0.20 0.058 EPA 8270D 8-27-18 8-30	·-18
Carbazole ND 0.058 EPA 8270D 8-27-18 8-30	·-18
Di-n-butylphthalate ND 0.29 EPA 8270D 8-27-18 8-30	·-18
Fluoranthene 0.81 0.058 EPA 8270D 8-27-18 8-30	·-18
Benzidine ND 0.58 EPA 8270D 8-27-18 8-30	·-18
Pyrene 1.1 0.058 EPA 8270D 8-27-18 8-30	·-18
Butylbenzylphthalate ND 0.29 EPA 8270D 8-27-18 8-30	·-18
bis-2-Ethylhexyladipate ND 0.29 EPA 8270D 8-27-18 8-30	·-18
3,3'-Dichlorobenzidine ND 0.29 EPA 8270D 8-27-18 8-30	·-18
Benzo[a]anthracene 0.47 0.012 EPA 8270D/SIM 8-27-18 8-28	-18
Chrysene 0.50 0.058 EPA 8270D 8-27-18 8-30	·-18
bis(2-Ethylhexyl)phthalate ND 0.29 EPA 8270D 8-27-18 8-30	·-18
Di-n-octylphthalate ND 0.29 EPA 8270D 8-27-18 8-30	·-18
Benzo[b]fluoranthene 0.52 0.012 EPA 8270D/SIM 8-27-18 8-28	-18
Benzo(j,k)fluoranthene 0.17 0.012 EPA 8270D/SIM 8-27-18 8-28	-18
Benzo[a]pyrene 0.49 0.012 EPA 8270D/SIM 8-27-18 8-28	-18
Indeno[1,2,3-cd]pyrene 0.34 0.012 EPA 8270D/SIM 8-27-18 8-28	-18
Dibenz[a,h]anthracene 0.054 0.012 EPA 8270D/SIM 8-27-18 8-28	-18
Benzo[g,h,i]perylene 0.35 0.012 EPA 8270D/SIM 8-27-18 8-28	-18
Surrogate: Percent Recovery Control Limits	
2-Fluorophenol 65 19 - 103	
Phenol-d6 65 30 - 103	
Nitrobenzene-d5 63 27 - 105	
2-Fluorobiphenyl 76 36 - 102	
2,4,6-Tribromophenol 80 33 - 110	
Terphenyl-d14 83 38 - 108	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-06-20.0-082218					
Laboratory ID:	08-272-04					
n-Nitrosodimethylamine	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Pyridine	ND	0.40	EPA 8270D	8-27-18	8-30-18	
Phenol	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Aniline	ND	0.20	EPA 8270D	8-27-18	8-30-18	
bis(2-Chloroethyl)ether	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2-Chlorophenol	ND	0.040	EPA 8270D	8-27-18	8-30-18	
1,3-Dichlorobenzene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
1,4-Dichlorobenzene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Benzyl alcohol	ND	0.20	EPA 8270D	8-27-18	8-30-18	
1,2-Dichlorobenzene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2-Methylphenol (o-Cresol)	ND	0.040	EPA 8270D	8-27-18	8-30-18	
bis(2-Chloroisopropyl)ether	ND	0.040	EPA 8270D	8-27-18	8-30-18	
(3+4)-Methylphenol (m,p-Creso	ol) ND	0.040	EPA 8270D	8-27-18	8-30-18	
n-Nitroso-di-n-propylamine	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Hexachloroethane	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Nitrobenzene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Isophorone	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2-Nitrophenol	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2,4-Dimethylphenol	ND	0.040	EPA 8270D	8-27-18	8-30-18	
bis(2-Chloroethoxy)methane	e ND	0.040	EPA 8270D	8-27-18	8-30-18	
2,4-Dichlorophenol	ND	0.040	EPA 8270D	8-27-18	8-30-18	
1,2,4-Trichlorobenzene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Naphthalene	0.070	0.040	EPA 8270D	8-27-18	8-30-18	
4-Chloroaniline	ND	0.20	EPA 8270D	8-27-18	8-30-18	
Hexachlorobutadiene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
4-Chloro-3-methylphenol	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2-Methylnaphthalene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
1-Methylnaphthalene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
Hexachlorocyclopentadiene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2,4,6-Trichlorophenol	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2,3-Dichloroaniline	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2,4,5-Trichlorophenol	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2-Chloronaphthalene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2-Nitroaniline	ND	0.040	EPA 8270D	8-27-18	8-30-18	
1,4-Dinitrobenzene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Dimethylphthalate	ND	0.040	EPA 8270D	8-27-18	8-30-18	
1,3-Dinitrobenzene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2,6-Dinitrotoluene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
1,2-Dinitrobenzene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Acenaphthylene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
3-Nitroaniline	ND	0.040	EPA 8270D	8-27-18	8-30-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	FB-06-20.0-082218			-	-	
Laboratory ID:	08-272-04					
2,4-Dinitrophenol	ND	0.20	EPA 8270D	8-27-18	8-30-18	
Acenaphthene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
4-Nitrophenol	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2,4-Dinitrotoluene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Dibenzofuran	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2,3,5,6-Tetrachlorophenol	ND	0.040	EPA 8270D	8-27-18	8-30-18	
2,3,4,6-Tetrachlorophenol	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Diethylphthalate	ND	0.20	EPA 8270D	8-27-18	8-30-18	
4-Chlorophenyl-phenylether	ND	0.040	EPA 8270D	8-27-18	8-30-18	
4-Nitroaniline	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Fluorene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
4,6-Dinitro-2-methylphenol	ND	0.20	EPA 8270D	8-27-18	8-30-18	
n-Nitrosodiphenylamine	ND	0.040	EPA 8270D	8-27-18	8-30-18	
1,2-Diphenylhydrazine	ND	0.040	EPA 8270D	8-27-18	8-30-18	
4-Bromophenyl-phenylether	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Hexachlorobenzene	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Pentachlorophenol	ND	0.20	EPA 8270D	8-27-18	8-30-18	
Phenanthrene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
Anthracene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
Carbazole	ND	0.040	EPA 8270D	8-27-18	8-30-18	
Di-n-butylphthalate	ND	0.20	EPA 8270D	8-27-18	8-30-18	
Fluoranthene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
Benzidine	ND	0.40	EPA 8270D	8-27-18	8-30-18	
Pyrene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
Butylbenzylphthalate	ND	0.20	EPA 8270D	8-27-18	8-30-18	
bis-2-Ethylhexyladipate	ND	0.20	EPA 8270D	8-27-18	8-30-18	
3,3'-Dichlorobenzidine	ND	0.20	EPA 8270D	8-27-18	8-30-18	
Benzo[a]anthracene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
Chrysene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
bis(2-Ethylhexyl)phthalate	ND	0.20	EPA 8270D	8-27-18	8-30-18	
Di-n-octylphthalate	ND	0.20	EPA 8270D	8-27-18	8-30-18	
Benzo[b]fluoranthene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo(j,k)fluoranthene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo[a]pyrene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
Indeno[1,2,3-cd]pyrene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
Dibenz[a,h]anthracene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo[g,h,i]perylene	ND	0.0081	EPA 8270D/SIM	8-27-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	70	19 - 103				
Phenol-d6	71	30 - 103				
Nitrobenzene-d5	64	27 - 105				
2-Fluorobiphenyl	71	36 - 102				
2,4,6-Tribromophenol	80	33 - 110				
Terphenyl-d14	75	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-05-15.0-082218					
Laboratory ID:	08-272-08					
n-Nitrosodimethylamine	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Pyridine	ND	0.45	EPA 8270D	8-27-18	8-30-18	
Phenol	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Aniline	ND	0.22	EPA 8270D	8-27-18	8-30-18	
bis(2-Chloroethyl)ether	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2-Chlorophenol	ND	0.045	EPA 8270D	8-27-18	8-30-18	
1,3-Dichlorobenzene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
1,4-Dichlorobenzene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Benzyl alcohol	ND	0.22	EPA 8270D	8-27-18	8-30-18	
1,2-Dichlorobenzene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2-Methylphenol (o-Cresol)	ND	0.045	EPA 8270D	8-27-18	8-30-18	
bis(2-Chloroisopropyl)ether	ND	0.045	EPA 8270D	8-27-18	8-30-18	
(3+4)-Methylphenol (m,p-Creso	l) ND	0.045	EPA 8270D	8-27-18	8-30-18	
n-Nitroso-di-n-propylamine	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Hexachloroethane	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Nitrobenzene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Isophorone	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2-Nitrophenol	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2,4-Dimethylphenol	ND	0.045	EPA 8270D	8-27-18	8-30-18	
bis(2-Chloroethoxy)methane	e ND	0.045	EPA 8270D	8-27-18	8-30-18	
2,4-Dichlorophenol	ND	0.045	EPA 8270D	8-27-18	8-30-18	
1,2,4-Trichlorobenzene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Naphthalene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
4-Chloroaniline	ND	0.22	EPA 8270D	8-27-18	8-30-18	
Hexachlorobutadiene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
4-Chloro-3-methylphenol	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2-Methylnaphthalene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
1-Methylnaphthalene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
Hexachlorocyclopentadiene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2,4,6-Trichlorophenol	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2,3-Dichloroaniline	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2,4,5-Trichlorophenol	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2-Chloronaphthalene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2-Nitroaniline	ND	0.045	EPA 8270D	8-27-18	8-30-18	
1,4-Dinitrobenzene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Dimethylphthalate	ND	0.045	EPA 8270D	8-27-18	8-30-18	
1,3-Dinitrobenzene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2,6-Dinitrotoluene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
1,2-Dinitrobenzene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Acenaphthylene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
3-Nitroaniline	ND	0.045	EPA 8270D	8-27-18	8-30-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	FB-05-15.0-082218			-	-	
Laboratory ID:	08-272-08					
2,4-Dinitrophenol	ND	0.22	EPA 8270D	8-27-18	8-30-18	
Acenaphthene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
4-Nitrophenol	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2,4-Dinitrotoluene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Dibenzofuran	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2,3,5,6-Tetrachlorophenol	ND	0.045	EPA 8270D	8-27-18	8-30-18	
2,3,4,6-Tetrachlorophenol	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Diethylphthalate	ND	0.22	EPA 8270D	8-27-18	8-30-18	
4-Chlorophenyl-phenylether	ND	0.045	EPA 8270D	8-27-18	8-30-18	
4-Nitroaniline	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Fluorene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
4,6-Dinitro-2-methylphenol	ND	0.22	EPA 8270D	8-27-18	8-30-18	
n-Nitrosodiphenylamine	ND	0.045	EPA 8270D	8-27-18	8-30-18	
1,2-Diphenylhydrazine	ND	0.045	EPA 8270D	8-27-18	8-30-18	
4-Bromophenyl-phenylether	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Hexachlorobenzene	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Pentachlorophenol	ND	0.22	EPA 8270D	8-27-18	8-30-18	
Phenanthrene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
Anthracene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
Carbazole	ND	0.045	EPA 8270D	8-27-18	8-30-18	
Di-n-butylphthalate	ND	0.22	EPA 8270D	8-27-18	8-30-18	
Fluoranthene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
Benzidine	ND	0.45	EPA 8270D	8-27-18	8-30-18	
Pyrene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
Butylbenzylphthalate	ND	0.22	EPA 8270D	8-27-18	8-30-18	
bis-2-Ethylhexyladipate	ND	0.22	EPA 8270D	8-27-18	8-30-18	
3,3'-Dichlorobenzidine	ND	0.22	EPA 8270D	8-27-18	8-30-18	
Benzo[a]anthracene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
Chrysene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
bis(2-Ethylhexyl)phthalate	ND	0.22	EPA 8270D	8-27-18	8-30-18	
Di-n-octylphthalate	ND	0.22	EPA 8270D	8-27-18	8-30-18	
Benzo[b]fluoranthene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo(j,k)fluoranthene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo[a]pyrene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
Indeno[1,2,3-cd]pyrene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
Dibenz[a,h]anthracene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo[g,h,i]perylene	ND	0.0089	EPA 8270D/SIM	8-27-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits		<u> </u>	0 _0 .0	
2-Fluorophenol	60	19 - 103				
Phenol-d6	61	30 - 103				
Nitrobenzene-d5	57	27 - 105				
2-Fluorobiphenyl	66	36 - 102				
2,4,6-Tribromophenol	78	33 - 110				
Terphenyl-d14	76	38 - 108				
· 1	* ~					

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0827S2					
n-Nitrosodimethylamine	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Pyridine	ND	0.33	EPA 8270D	8-27-18	8-28-18	
Phenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Aniline	ND	0.17	EPA 8270D	8-27-18	8-28-18	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2-Chlorophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,3-Dichlorobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,4-Dichlorobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Benzyl alcohol	ND	0.17	EPA 8270D	8-27-18	8-28-18	
1,2-Dichlorobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270D	8-27-18	8-28-18	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270D	8-27-18	8-28-18	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270D	8-27-18	8-28-18	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Hexachloroethane	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Nitrobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Isophorone	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2-Nitrophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,4-Dimethylphenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,4-Dichlorophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Naphthalene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
4-Chloroaniline	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Hexachlorobutadiene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,3-Dichloroaniline	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2-Chloronaphthalene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2-Nitroaniline	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,4-Dinitrobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Dimethylphthalate	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,3-Dinitrobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,6-Dinitrotoluene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,2-Dinitrobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
3-Nitroaniline	ND	0.033	EPA 8270D	8-27-18	8-28-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MD092752			-	-	
Laboratory ID:	MB0827S2 ND	0.17	EPA 8270D	8-27-18	8-28-18	
2,4-Dinitrophenol	ND ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Acenaphthene						
4-Nitrophenol	ND ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,4-Dinitrotoluene	ND ND	0.033	EPA 8270D	8-27-18	8-28-18	
Dibenzofuran	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Diethylphthalate	ND	0.17	EPA 8270D	8-27-18	8-28-18	
4-Chlorophenyl-phenylether		0.033	EPA 8270D	8-27-18	8-28-18	
4-Nitroaniline	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Fluorene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
4,6-Dinitro-2-methylphenol	ND	0.17	EPA 8270D	8-27-18	8-28-18	
n-Nitrosodiphenylamine	ND	0.033	EPA 8270D	8-27-18	8-28-18	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270D	8-27-18	8-28-18	
4-Bromophenyl-phenylether	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Hexachlorobenzene	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Pentachlorophenol	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Anthracene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Carbazole	ND	0.033	EPA 8270D	8-27-18	8-28-18	
Di-n-butylphthalate	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Benzidine	ND	0.33	EPA 8270D	8-27-18	8-28-18	
Pyrene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Butylbenzylphthalate	ND	0.17	EPA 8270D	8-27-18	8-28-18	
bis-2-Ethylhexyladipate	ND	0.17	EPA 8270D	8-27-18	8-28-18	
3,3'-Dichlorobenzidine	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Chrysene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
bis(2-Ethylhexyl)phthalate	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Di-n-octylphthalate	ND	0.17	EPA 8270D	8-27-18	8-28-18	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Indeno[1,2,3-cd]pyrene	ND ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Dibenz[a,h]anthracene	ND ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
	ND ND	0.0067	EPA 8270D/SIM	8-27-18	8-28-18	
Benzo[g,h,i]perylene	Percent Recovery	Control Limits	LFA 02/UD/SIIVI	0-21-10	0-20-10	
Surrogate: 2-Fluorophenol	79	19 - 103				
Phenol-d6	79 82	19 - 103 30 - 103				
Nitrobenzene-d5	78 92	27 - 105 26 - 102				
2-Fluorobiphenyl	83	36 - 102				
2,4,6-Tribromophenol	94	33 - 110				
Terphenyl-d14	84	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-2	45-02									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	1.14	1.11	1.33	1.33	ND	86	83	37 - 94	3	27	
2-Chlorophenol	1.15	1.12	1.33	1.33	ND	86	84	37 - 95	3	32	
1,4-Dichlorobenzene	0.550	0.554	0.667	0.667	ND	82	83	23 - 97	1	37	
n-Nitroso-di-n-propylamine	0.562	0.552	0.667	0.667	ND	84	83	40 - 91	2	28	
1,2,4-Trichlorobenzene	0.586	0.564	0.667	0.667	ND	88	85	37 - 93	4	30	
4-Chloro-3-methylphenol	1.15	1.11	1.33	1.33	ND	86	83	46 - 96	4	25	
Acenaphthene	0.581	0.573	0.667	0.667	ND	87	86	43 - 90	1	25	
4-Nitrophenol	1.15	1.18	1.33	1.33	ND	86	89	31 - 104	3	28	
2,4-Dinitrotoluene	0.607	0.576	0.667	0.667	ND	91	86	31 - 96	5	32	
Pentachlorophenol	1.34	1.36	1.33	1.33	ND	101	102	20 - 123	1	29	
Pyrene	0.590	0.590	0.667	0.667	ND	88	88	28 - 114	0	35	
Surrogate:											
2-Fluorophenol						80	81	19 - 103			
Phenol-d6						83	82	30 - 103			
Nitrobenzene-d5						74	73	27 - 105			
2-Fluorobiphenyl						78	79	36 - 102			
2,4,6-Tribromophenol						91	92	33 - 110			
Terphenyl-d14						80	80	38 - 108			

Project: 397-019

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-05-35.0-082218					
Laboratory ID:	08-272-12					
Arsenic	ND	12	EPA 6010D	8-28-18	8-30-18	
Barium	58	3.1	EPA 6010D	8-28-18	8-30-18	
Cadmium	ND	0.62	EPA 6010D	8-28-18	8-30-18	
Chromium	38	0.62	EPA 6010D	8-28-18	8-30-18	
Lead	ND	6.2	EPA 6010D	8-28-18	8-30-18	
Mercury	ND	0.31	EPA 7471B	8-27-18	8-27-18	
Selenium	ND	12	EPA 6010D	8-28-18	8-30-18	
Silver	ND	1.2	EPA 6010D	8-28-18	8-30-18	

Project: 397-019

TOTAL METALS EPA 6010D/7471B METHOD BLANK QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0828SM1					
Arsenic	ND	10	EPA 6010D	8-28-18	8-30-18	
Cadmium	ND	0.50	EPA 6010D	8-28-18	8-30-18	
Chromium	ND	0.50	EPA 6010D	8-28-18	8-30-18	
Lead	ND	5.0	EPA 6010D	8-28-18	8-30-18	
Selenium	ND	10	EPA 6010D	8-28-18	8-30-18	
Silver	ND	1.0	EPA 6010D	8-28-18	8-30-18	
Laboratory ID:	MB0827S1					
Mercury	ND	0.25	EPA 7471B	8-27-18	8-27-18	
Laboratory ID:	MB0828SM3					
Barium	ND	2.5	EPA 6010D	8-28-18	8-30-18	

Project: 397-019

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

eme. mg/ng (ppm					Source		cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:		45-01									
-	ORIG	DUP									
Arsenic	ND	ND	NA	NA		١	۱A	NA	NA	20	
Cadmium	ND	ND	NA	NA		١	۱A	NA	NA	20	
Chromium	35.3	42.0	NA	NA		١	۱A	NA	17	20	
Lead	ND	ND	NA	NA		١	۱A	NA	NA	20	
Selenium	ND	ND	NA	NA		١	۱A	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	08-24	45-05									
Mercury	ND	ND	NA	NA		N	۱A	NA	NA	20	
Laboratory ID:	08-24										
	ORIG	DUP									
Barium	69.6	60.3	NA	NA		N	NA	NA	14	20	
					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-24	45-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	95.8	96.1	100	100	ND	96	96	75-125	0	20	
Cadmium	46.4	47.9	50.0	50.0	ND	93	96	75-125	3	20	
Chromium	133	141	100	100	35.3	98	106	75-125	6	20	
Lead	243	250	250	250	ND	97	100	75-125	3	20	
Selenium	93.1	96.9	100	100	ND	93	97	75-125	4	20	
Silver	22.4	22.6	25.0	25.0	ND	90	90	75-125	1	20	
Labaratan ID.	00.0	45.05									
Laboratory ID:		45-05							_		
Mercury	0.529	0.523	0.500	0.500	0.0116	103	102	80-120	11	20	
Laboratory ID:	08-24	45-01									
	MS	MSD	MS	MSD		MS	MSD				
Barium	186	183	100	100	69.6	116	113	75-125	2	20	

Project: 397-019

% MOISTURE

Date Analyzed: 8-24&27-18

Client ID	Lab ID	% Moisture
FB-06-2.5-082218	08-272-01	42
FB-06-20.0-082218	08-272-04	18
FB-05-5.0-082218	08-272-06	18
FB-05-15.0-082218	08-272-08	25
FB-05-20.0-082218	08-272-09	18
FB-05-35.0-082218	08-272-12	19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical gas.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page 1 of 2

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Date Land	Relinquished	Signature	10 FB-05- 25-0-082218	9 FB-05- 20-0-082218	6 FB-05-15.0-087218) FB-05-10:0-082218	6 FB-05-50-682218	5 FB-06-25.0-082218	4 Fg-06-70.0-08228	3 FB-06-15-10-082218	2 FB-06-10.0-082218	1 FB-06-2:5-082218	Lab ID Sample Identification	Greg Refer	Byon Ruark	Project Manager: Block 38 West Roperty	397-019	Posings Number CLON	Phone: (425) 883-3881 • www.onsite-env.com	14648 NE 95th Street - Redmond WA 98052
Reviewed/Date						favallen	Company	A 0111 4	0630	0910	0855	0840	0730	ono	8558	8640	Spelos oblo Soil	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	(in working days)
					(1718KP18	8/2/8 1820	Date Time		× ×			×		メ			× ×	NWTF NWTF NWTP Volatil Haloge	'H-Dx (es 826 enated	BTEX Acid	d / SG Cl	;			Laboratory Number:
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard ☐ Level III ☐ Level IV ☐	X - Added 8/24/18. DIR (STA	Somole (b	him around the for each	thanaser for manges and	Please Contact Project	Comments/Special Instructions			×	*			*			×	Semiv (with le PAHs : PCBs Organ Organ Chlorin Total F Total N TCLP	olatiles ow-lev 8270D, 8082A ochlori ophosp nated A RCRA M MTCA M	s 8270E el PAH: /SIM (Id /SIM		081B es 8270	D/SIM		Pr: 08-272
Os) 🗆	\	A							×	×		X		×			X	% Moi:	sture						

Chain of Custody

Page 2 of 2

						_	_		-				_	_			,								
Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Mother Lizer	Relinquished	Signature							H FG-05-082218	13 FB-05-40-0-08-248	10 FB-05 - 35.0 - 08 2218	11 FB-05-30.0-082218	Lab ID Sample Identification	Sairbier Dy	Connelled by:	Project Manager:		Project Number:	Company:	Analytical Laboratory lesting Services 14648 NE 95th Street + Redmond, WA 98052 Phone: W951 883-8881 • www.onsite-povices
Rev						3	Company							+		_	8/20/8	Date Sampled S			Standard (7 Days) (TPH analysis 5 Days)	2 Days	Same Day	(C)	iurnar (in w
Reviewed/Date					K	fourall.	any							0950 L	into :	1130	1120	Time Sampled	(other)		d (7 Days) alysis 5 Days			(Check One)	(in working days)
						F								Water	Soil	Soil	Soil	Matrix			•	3 Days	1 Day		186
														ه	W	N	N	Numl	per of (Contair	ners				
									-	_	4							NWTF	PH-HCI	D					La
					90	5	Date		-	_	4			X		×		NWTF	PH-Gx/	BTEX					Laboratory Number:
					N	10		_	_	_	4							NWTF	PH-Gx						ato
					8	8	1		_	_	4			×		×		NWTF	PH-Dx (Acid	d / SG CI	ean-up	o)		2
					I	or	Time		-	+	+							-	les 826						lun
					J	8			-	-	+			×		_					es 8260C				nbe
0	0								-	+	+								PA 80	W	ters Only)		\dashv	7.7
hrom	Data Package:			6			Comm		-	-	+		-			_		(with I	low-lev	el PAH	s)			_	
atogr	acka				70	7	ients/	_	-		+			_					NO. 00 100 00 00		ow-level)			\dashv	0
ams '					10		Speci	_		+	+								8082A		sticides 8	0010		\dashv	00
Chromatograms with final report □	Standard			_	se lage	2	Comments/Special Instructions		+	+	+										Pesticide		UD/SIN	_	-2
inal re	25-25				of		tructi		1	+	+								5 95 64		erbicides			_	7
port					H		sno			+	+					×			RCRA M					\dashv	N
	Level III				•						+					/-		Total !	MTCA I	Vetals				\dashv	
ectror										+	1							TCLP	Metals	8					
nic Dat	Level IV								T	\top	1							HEM	(oil and	grease	e) 1664A				
ta Deli																									
verabl																									
es (EC																									
Electronic Data Deliverables (EDDs)																									
														1		X		% Moi	isture						

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 7, 2018

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019

Laboratory Reference No. 1808-272B

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on September 5, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-019

Case Narrative

Samples were collected on August 22, 2018 and received by the laboratory on August 23, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Semivolatiles EPA 8270D/SIM Analysis

Per client request, sample FB-06-10.0-082218 was extracted and analyzed out of hold-time.

The Spike Blank Duplicate associated with sample FB-06-10.0-082218 had one recovery slightly above control limits. The sample was non-detect for this analyte so no further action was taken.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-06-10.0-082218					
Laboratory ID:	08-272-02					
n-Nitrosodimethylamine	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Pyridine	ND	0.82	EPA 8270D	9-6-18	9-6-18	
Phenol	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Aniline	ND	0.41	EPA 8270D	9-6-18	9-6-18	
bis(2-Chloroethyl)ether	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2-Chlorophenol	ND	0.082	EPA 8270D	9-6-18	9-6-18	
1,3-Dichlorobenzene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
1,4-Dichlorobenzene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Benzyl alcohol	ND	0.41	EPA 8270D	9-6-18	9-6-18	
1,2-Dichlorobenzene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2-Methylphenol (o-Cresol)	ND	0.082	EPA 8270D	9-6-18	9-6-18	
bis(2-Chloroisopropyl)ether	ND	0.082	EPA 8270D	9-6-18	9-6-18	
(3+4)-Methylphenol (m,p-Creso	ol) ND	0.082	EPA 8270D	9-6-18	9-6-18	
n-Nitroso-di-n-propylamine	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Hexachloroethane	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Nitrobenzene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Isophorone	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2-Nitrophenol	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2,4-Dimethylphenol	ND	0.082	EPA 8270D	9-6-18	9-6-18	
bis(2-Chloroethoxy)methane	e ND	0.082	EPA 8270D	9-6-18	9-6-18	
2,4-Dichlorophenol	ND	0.082	EPA 8270D	9-6-18	9-6-18	
1,2,4-Trichlorobenzene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Naphthalene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
4-Chloroaniline	ND	0.41	EPA 8270D	9-6-18	9-6-18	
Hexachlorobutadiene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
4-Chloro-3-methylphenol	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2-Methylnaphthalene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
1-Methylnaphthalene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
Hexachlorocyclopentadiene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2,4,6-Trichlorophenol	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2,3-Dichloroaniline	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2,4,5-Trichlorophenol	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2-Chloronaphthalene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2-Nitroaniline	ND	0.082	EPA 8270D	9-6-18	9-6-18	
1,4-Dinitrobenzene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Dimethylphthalate	ND	0.082	EPA 8270D	9-6-18	9-6-18	
1,3-Dinitrobenzene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2,6-Dinitrotoluene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
1,2-Dinitrobenzene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Acenaphthylene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
3-Nitroaniline	ND	0.082	EPA 8270D	9-6-18	9-6-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

Analista	Dogult	DOL	Mathad	Date	Date	Flana
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
	FB-06-10.0-082218					
Laboratory ID:	08-272-02	0.44	EDA 0070D	0.0.40	0.0.40	
2,4-Dinitrophenol	ND	0.41	EPA 8270D	9-6-18	9-6-18	
Acenaphthene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
4-Nitrophenol	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2,4-Dinitrotoluene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Dibenzofuran	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2,3,5,6-Tetrachlorophenol	ND	0.082	EPA 8270D	9-6-18	9-6-18	
2,3,4,6-Tetrachlorophenol	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Diethylphthalate	ND	0.41	EPA 8270D	9-6-18	9-6-18	
4-Chlorophenyl-phenylether	ND	0.082	EPA 8270D	9-6-18	9-6-18	
4-Nitroaniline	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Fluorene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
4,6-Dinitro-2-methylphenol	ND	0.41	EPA 8270D	9-6-18	9-6-18	
n-Nitrosodiphenylamine	ND	0.082	EPA 8270D	9-6-18	9-6-18	
1,2-Diphenylhydrazine	ND	0.082	EPA 8270D	9-6-18	9-6-18	
4-Bromophenyl-phenylether	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Hexachlorobenzene	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Pentachlorophenol	ND	0.41	EPA 8270D	9-6-18	9-6-18	
Phenanthrene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
Anthracene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
Carbazole	ND	0.082	EPA 8270D	9-6-18	9-6-18	
Di-n-butylphthalate	ND	0.93	EPA 8270D	9-6-18	9-6-18	U1
Fluoranthene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	01
Benzidine	ND	0.82	EPA 8270D	9-6-18	9-6-18	
Pyrene	0.020	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
Butylbenzylphthalate	ND	0.41	EPA 8270D	9-6-18	9-6-18	
	ND ND	0.41		9-6-18	9-6-18	
bis-2-Ethylhexyladipate			EPA 8270D			
3,3'-Dichlorobenzidine	ND ND	0.41	EPA 8270D	9-6-18	9-6-18	
Benzo[a]anthracene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
Chrysene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
bis(2-Ethylhexyl)phthalate	ND	0.41	EPA 8270D	9-6-18	9-6-18	
Di-n-octylphthalate	ND	0.41	EPA 8270D	9-6-18	9-6-18	
Benzo[b]fluoranthene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
Benzo(j,k)fluoranthene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
Benzo[a]pyrene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
Indeno[1,2,3-cd]pyrene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
Dibenz[a,h]anthracene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
Benzo[g,h,i]perylene	ND	0.016	EPA 8270D/SIM	9-6-18	9-6-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	64	19 - 103				
Phenol-d6	79	30 - 103				
Nitrobenzene-d5	76	27 - 105				
2-Fluorobiphenyl	76	36 - 102				
2,4,6-Tribromophenol	86	33 - 110				
Terphenyl-d14	82	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

Ameloda	Desails	DOL	Marthaul	Date	Date	FI
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0906S2					
n-Nitrosodimethylamine	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Pyridine	ND	0.33	EPA 8270D	9-6-18	9-6-18	
Phenol	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Aniline	ND	0.17	EPA 8270D	9-6-18	9-6-18	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2-Chlorophenol	ND	0.033	EPA 8270D	9-6-18	9-6-18	
1,3-Dichlorobenzene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
1,4-Dichlorobenzene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Benzyl alcohol	ND	0.17	EPA 8270D	9-6-18	9-6-18	
1,2-Dichlorobenzene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270D	9-6-18	9-6-18	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270D	9-6-18	9-6-18	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270D	9-6-18	9-6-18	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Hexachloroethane	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Nitrobenzene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Isophorone	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2-Nitrophenol	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2,4-Dimethylphenol	ND	0.033	EPA 8270D	9-6-18	9-6-18	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2,4-Dichlorophenol	ND	0.033	EPA 8270D	9-6-18	9-6-18	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Naphthalene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
4-Chloroaniline	ND	0.17	EPA 8270D	9-6-18	9-6-18	
Hexachlorobutadiene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2,3-Dichloroaniline	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2-Chloronaphthalene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2-Nitroaniline	ND	0.033	EPA 8270D	9-6-18	9-6-18	
1,4-Dinitrobenzene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Dimethylphthalate	ND	0.033	EPA 8270D	9-6-18	9-6-18	
1,3-Dinitrobenzene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2,6-Dinitrotoluene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
1,2-Dinitrobenzene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
3-Nitroaniline	ND	0.033	EPA 8270D	9-6-18	9-6-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0906S2					
2,4-Dinitrophenol	ND	0.17	EPA 8270D	9-6-18	9-6-18	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
4-Nitrophenol	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2,4-Dinitrotoluene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Dibenzofuran	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270D	9-6-18	9-6-18	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Diethylphthalate	ND	0.17	EPA 8270D	9-6-18	9-6-18	
4-Chlorophenyl-phenylether		0.033	EPA 8270D	9-6-18	9-6-18	
4-Nitroaniline	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Fluorene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
4,6-Dinitro-2-methylphenol	ND	0.17	EPA 8270D	9-6-18	9-6-18	
n-Nitrosodiphenylamine	ND	0.033	EPA 8270D	9-6-18	9-6-18	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270D	9-6-18	9-6-18	
4-Bromophenyl-phenylether	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Hexachlorobenzene	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Pentachlorophenol	ND	0.17	EPA 8270D	9-6-18	9-6-18	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
Anthracene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
Carbazole	ND	0.033	EPA 8270D	9-6-18	9-6-18	
Di-n-butylphthalate	ND	0.17	EPA 8270D	9-6-18	9-6-18	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
Benzidine	ND	0.33	EPA 8270D	9-6-18	9-6-18	
Pyrene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
Butylbenzylphthalate	ND	0.17	EPA 8270D	9-6-18	9-6-18	
bis-2-Ethylhexyladipate	ND	0.17	EPA 8270D	9-6-18	9-6-18	
3,3'-Dichlorobenzidine	ND	0.17	EPA 8270D	9-6-18	9-6-18	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
Chrysene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
bis(2-Ethylhexyl)phthalate	ND	0.17	EPA 8270D	9-6-18	9-6-18	
Di-n-octylphthalate	ND	0.17	EPA 8270D	9-6-18	9-6-18	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
Indeno[1,2,3-cd]pyrene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	9-6-18	9-6-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	73	19 - 103				
Phenol-d6	83	30 - 103				
Nitrobenzene-d5	82	27 - 105				
2-Fluorobiphenyl	82	36 - 102				
2,4,6-Tribromophenol	86	33 - 110				
Terphenyl-d14	80	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	906S2								
	SB	SBD	SB	SBD	SB	SBD				
Phenol	0.940	0.997	1.33	1.33	71	75	45 - 94	6	29	
2-Chlorophenol	0.963	1.05	1.33	1.33	72	79	46 - 94	9	33	
1,4-Dichlorobenzene	0.405	0.493	0.667	0.667	61	74	42 - 91	20	37	
n-Nitroso-di-n-propylamine	0.495	0.576	0.667	0.667	74	86	45 - 100	15	26	
1,2,4-Trichlorobenzene	0.480	0.537	0.667	0.667	72	81	45 - 100	11	32	
4-Chloro-3-methylphenol	1.08	1.19	1.33	1.33	81	89	55 - 97	10	21	
Acenaphthene	0.531	0.589	0.667	0.667	80	88	48 - 91	10	21	
4-Nitrophenol	1.17	1.33	1.33	1.33	88	100	53 - 102	13	20	
2,4-Dinitrotoluene	0.534	0.606	0.667	0.667	80	91	47 - 96	13	19	
Pentachlorophenol	1.46	1.78	1.33	1.33	110	134	35 - 125	20	26	1
Pyrene	0.523	0.592	0.667	0.667	78	89	55 - 110	12	17	
Surrogate:										
2-Fluorophenol					68	70	19 - 103			
Phenol-d6					77	79	30 - 103			
Nitrobenzene-d5					80	76	27 - 105			
2-Fluorobiphenyl					79	85	36 - 102			
2,4,6-Tribromophenol					82	91	33 - 110			
Terphenyl-d14					76	85	38 - 108			

Project: 397-019

% MOISTURE

Date Analyzed: 8-24,27&9-5-18

Client ID Lab ID % Moisture

FB-06-10.0-082218 08-272-02 59

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Pac
ge _
-
9
7)
10

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished		10 FB-05-	9 FB-05-	8 FB-05-) FB-05-	6 FB-05-	5 FB-06	4 78-06-	3 FB-06-	d FB-06-	1 FB-06-	Lab ID S:	Sampled by. Gred	byon byon	Project Manager:	3	Company: FARA CLON	
					DART DEFEN	A A	Signature	250-082218	812290-0.02	15.0-087218	10.0 -082218	50-682218	25.0-082218	10.0 - 08228	1500-082218	872280-0.01	2.5-082218	Sample Identification	Perfect	in Ruark	38 West Roperty	397-09	LLON	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
Reviewed/Date					SE.	favallen	Company	A on A	0630	0910	0833	0840	0730	ono	2655	8640	8/2/18 0610 Soil	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days) (TPH analysis 5 Days)		Same Day 1 Day	(in working days)
					17181603	- 8/m/8 185	Date Time	=	× ×			×		メメ			55 ×	Numb NWTP NWTP	H-Gx H-Dx ([D BTEX	ers / SG Cle		зу	Laboratory Number:
Chromatograms with final report	Data Package: Starkard L	So artismo	The state of the	The same of the same) Mangon In	SO Place Continue	Comments/Special Instructions		×	*	<i>y</i>			*		8	×	EDB E Semive (with lo	PA 801 colatiles by level 8270D/8 8082A cochloring phospinated A	1 (Wate 8270D, I PAHs) SIM (lov ne Pesti horus F		s 8270D	/SIM	nber: 08-272
☐ Electronic Data Deliverables (EDDs) ☐	[See 9/5] [Xei: 178 (STA)	Wed 8/2011 P. Dis (STA)	TWIC YOU COME	and the second	hand	t Project			×)	×		×		× 1		8	×	Total M TCLP N HEM (c	Metals	letals	1664A			

Company: Project Number:	Ana Pho
	OnSite Environmental Inc. Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com

Chain of Custody

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Modelle Liter	Relinquished	Signature			14 FG-05-082218	13 FB-05-40-0-08228	1d FB-05 - 35.0 - 08 2218	11 FB-05- 30.0 -082218	Lab ID Sample Identification	Sampled by:		Project Manager:	Project Name:	Project Number:	Company:	Analytical Laboratory Testing Services 14648 NE 95th Street - Redmond, WA 98052 Phone: (425) 883-3881 - www.onsite.env.com
Reviewed/Date					94	towal	Company			1 0950	luto	1 1130	8/24/8 1120	Date Time Sampled Sampled	(other)		Standard (7 Days) (TPH analysis 5 Days)	2 Days	Same Day	(Check One)	(in working days)
ite						Man				water 12	5016 5	Soil 5	Soil 5	Matrix Numb	er of C	_	ays)	3 Days	1 Day		ays)
					8931	8/22/18	Date			メ		メ		NWTPI NWTPI	H-Gx/E H-Gx	BTEX					Laboratory N
				,	CHB	\$ 1850	Time			×		×		Volatile	es 8260 enated	OC Volatile	es 82600))		y Number:
Chromatograms with final report	Data Package: Star			(See lase	<u> </u>	Comments/Special Instructions							Semivo (with lo PAHs 8	platiles ow-leve 3270D/S 3082A	8270E I PAHs SIM (Ic	/SIM				- 80
	Standard Level			0	exe 1.		nstructions					*		Chlorin Total R Total M	cra M	cid He	Pesticid		_	1	272
Electronic Data Deliverables (EDDs)	Level IV											×		HEM (c	il and (grease	1664A				

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 6, 2018

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019

Laboratory Reference No. 1808-277

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on August 24, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-019

Case Narrative

Samples were collected on August 23, 2018 and received by the laboratory on August 24, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

The MTCA Method A cleanup level of 0.030 ppm for Benzene is not achievable for sample FMW-134-5.0-082318 due to the low dry weight of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-134-5.0-082318					
Laboratory ID:	08-277-01					
Benzene	ND	0.059	EPA 8021B	8-27-18	8-27-18	
Toluene	ND	0.30	EPA 8021B	8-27-18	8-27-18	
Ethyl Benzene	ND	0.30	EPA 8021B	8-27-18	8-27-18	
m,p-Xylene	ND	0.30	EPA 8021B	8-27-18	8-27-18	
o-Xylene	ND	0.30	EPA 8021B	8-27-18	8-27-18	
Gasoline	ND	30	NWTPH-Gx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	57-129				
Client ID:	FMW-134-15.0-082318	;				
Laboratory ID:	08-277-03					
Benzene	ND	0.023	EPA 8021B	8-27-18	8-27-18	
Toluene	ND	0.12	EPA 8021B	8-27-18	8-27-18	
Ethyl Benzene	ND	0.12	EPA 8021B	8-27-18	8-27-18	
m,p-Xylene	ND	0.12	EPA 8021B	8-27-18	8-27-18	
o-Xylene	ND	0.12	EPA 8021B	8-27-18	8-27-18	
Gasoline	ND	12	NWTPH-Gx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	57-129				
Client ID:	FB-03-10.0-082318					
Laboratory ID:	08-277-06					
Benzene	ND	0.020	EPA 8021B	8-27-18	8-27-18	
Toluene	ND	0.065	EPA 8021B	8-27-18	8-27-18	
Ethyl Benzene	ND	0.065	EPA 8021B	8-27-18	8-27-18	
m,p-Xylene	ND	0.065	EPA 8021B	8-27-18	8-27-18	
o-Xylene	ND	0.065	EPA 8021B	8-27-18	8-27-18	
Gasoline	ND	6.5	NWTPH-Gx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	57-129				

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-03-15.0-082318					
Laboratory ID:	08-277-07					
Benzene	ND	0.020	EPA 8021B	8-27-18	8-27-18	
Toluene	ND	0.065	EPA 8021B	8-27-18	8-27-18	
Ethyl Benzene	ND	0.065	EPA 8021B	8-27-18	8-27-18	
m,p-Xylene	ND	0.065	EPA 8021B	8-27-18	8-27-18	
o-Xylene	ND	0.065	EPA 8021B	8-27-18	8-27-18	
Gasoline	ND	6.5	NWTPH-Gx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	57-129				
Client ID:	FB-03-25.0-082318					
Laboratory ID:	08-277-08					
Benzene	ND	0.020	EPA 8021B	8-27-18	8-27-18	
Toluene	ND	0.055	EPA 8021B	8-27-18	8-27-18	
Ethyl Benzene	ND	0.055	EPA 8021B	8-27-18	8-27-18	
m,p-Xylene	ND	0.055	EPA 8021B	8-27-18	8-27-18	
o-Xylene	ND	0.055	EPA 8021B	8-27-18	8-27-18	
Gasoline	ND	5.5	NWTPH-Gx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	57-129				

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0827S2					
Benzene	ND	0.020	EPA 8021B	8-27-18	8-27-18	
Toluene	ND	0.050	EPA 8021B	8-27-18	8-27-18	
Ethyl Benzene	ND	0.050	EPA 8021B	8-27-18	8-27-18	
m,p-Xylene	ND	0.050	EPA 8021B	8-27-18	8-27-18	
o-Xylene	ND	0.050	EPA 8021B	8-27-18	8-27-18	
Gasoline	ND	5.0	NWTPH-Gx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Fluorobenzene 90 57-129

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Red	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-27	76-04									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA		I	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		I	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		I	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		I	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						99	94	57-129			
SPIKE BLANKS											
Laboratory ID:	SB08	27S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.923	0.893	1.00	1.00		92	89	69-111	3	10	
Toluene	0.915	0.880	1.00	1.00		92	88	70-114	4	11	
Ethyl Benzene	0.918	0.886	1.00	1.00		92	89	70-115	4	10	
m,p-Xylene	0.907	0.877	1.00	1.00		91	88	72-115	3	10	
o-Xylene	0.917	0.882	1.00	1.00		92	88	71-115	4	11	
Surrogate:											
Fluorobenzene						89	86	57-129			

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Water
Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FB-03-082318	FQL	Wethod	Frepareu	Allalyzeu	i iags
Laboratory ID:	08-277-12					
Benzene	ND	1.0	EPA 8021B	8-28-18	8-28-18	
Toluene	ND	1.0	EPA 8021B	8-28-18	8-28-18	
Ethyl Benzene	ND	1.0	EPA 8021B	8-28-18	8-28-18	
m,p-Xylene	ND	1.0	EPA 8021B	8-28-18	8-28-18	
o-Xylene	ND	1.0	EPA 8021B	8-28-18	8-28-18	
Gasoline	ND	100	NWTPH-Gx	8-28-18	8-28-18	

Surrogate: Percent Recovery Control Limits Fluorobenzene 111 66-117

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0828W1					
Benzene	ND	1.0	EPA 8021B	8-28-18	8-28-18	
Toluene	ND	1.0	EPA 8021B	8-28-18	8-28-18	
Ethyl Benzene	ND	1.0	EPA 8021B	8-28-18	8-28-18	
m,p-Xylene	ND	1.0	EPA 8021B	8-28-18	8-28-18	
o-Xylene	ND	1.0	EPA 8021B	8-28-18	8-28-18	
Gasoline	ND	100	NWTPH-Gx	8-28-18	8-28-18	

Surrogate: Percent Recovery Control Limits Fluorobenzene 112 66-117

Analyte DUPLICATE Laboratory ID:	Res 08-27 ORIG	7-12	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
Laboratory ID:											
	ORIG										
		DUP									
Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	NA	NA	NA	30	
Surrogate:											
Fluorobenzene						111	113	66-117			
MATRIX SPIKES											
Laboratory ID:	08-27	7-12									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	50.9	52.1	50.0	50.0	ND	102	104	82-122	2	11	
Toluene	50.2	51.2	50.0	50.0	ND	100	102	83-123	2	12	
Ethyl Benzene	50.6	51.9	50.0	50.0	ND	101	104	83-123	3	12	
m,p-Xylene	50.1	51.2	50.0	50.0	ND	100	102	83-123	2	12	
o-Xylene	50.7	51.8	50.0	50.0	ND	101	104	83-123	2	11	
Surrogate:											

100 100

66-117

Fluorobenzene

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-134-5.0-082318					
Laboratory ID:	08-277-01					
Diesel Range Organics	260	83	NWTPH-Dx	8-28-18	8-28-18	
Lube Oil Range Organics	1900	170	NWTPH-Dx	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	FMW-134-15.0-082318					
Laboratory ID:	08-277-03					
Diesel Range Organics	ND	31	NWTPH-Dx	8-28-18	8-28-18	
Lube Oil Range Organics	ND	61	NWTPH-Dx	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	124	50-150				
Client ID:	FB-03-10.0-082318					
Laboratory ID:	08-277-06					
Diesel Range Organics	ND	32	NWTPH-Dx	8-28-18	8-28-18	
Lube Oil Range Organics	ND	65	NWTPH-Dx	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits		0 20 .0	0 20 .0	
o-Terphenyl	75	50-150				
Client ID:	FB-03-15.0-082318					
Laboratory ID:	08-277-07					
Diesel Range Organics	ND	32	NWTPH-Dx	8-28-18	8-28-18	
Lube Oil Range Organics	ND	65	NWTPH-Dx	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits	<u> </u>			
o-Terphenyl	92	50-150				
Client ID:	FB-03-25.0-082318					
Laboratory ID:	08-277-08					
Diesel Range Organics	ND	29	NWTPH-Dx	8-28-18	8-28-18	
Lube Oil Range Organics	ND ND	29 59	NWTPH-Dx NWTPH-Dx	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits	14441111-DX	0-20-10	0-20-10	
o-Terphenyl	77	50-150				
0- i erpiletiyi	//	30-130				

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0828S1					
Diesel Range Organics	ND	25	NWTPH-Dx	8-28-18	8-28-18	
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	08-27	77-03								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										

o-Terphenyl 124 113 50-150

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

• /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-03-082318					
Laboratory ID:	08-277-12					
Diesel Range Organics	0.66	0.25	NWTPH-Dx	8-28-18	8-30-18	
Lube Oil Range Organics	0.49	0.41	NWTPH-Dx	8-28-18	8-30-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0828W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	8-28-18	8-28-18	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	118	50-150				

					Source	Perce	ent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Result	Recov	ery/	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB082	28W1									
	ORIG	DUP									_
Diesel Fuel #2	0.920	0.849	NA	NA		NA	١	NA	8	NA	
Lube Oil	ND	ND	NA	NA		NA	١	NA	NA	NA	
Surrogate:											
o-Terphenyl						103	106	50-150			

Project: 397-019

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-03-082318					
Laboratory ID:	08-277-12					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Chloromethane	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Vinyl Chloride	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromomethane	ND	2.0	EPA 8260C	8-29-18	8-29-18	
Chloroethane	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Acetone	7.4	5.0	EPA 8260C	8-29-18	8-29-18	
lodomethane	ND	5.0	EPA 8260C	8-29-18	8-29-18	
Carbon Disulfide	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Methylene Chloride	ND	1.0	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Vinyl Acetate	ND	1.0	EPA 8260C	8-29-18	8-29-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2-Butanone	ND	5.0	EPA 8260C	8-29-18	8-29-18	
Bromochloromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Chloroform	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Benzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Dibromomethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromodichloromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-29-18	8-29-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	8-29-18	8-29-18	
Toluene	ND	1.0	EPA 8260C	8-29-18	8-29-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-29-18	8-29-18	

Project: 397-019

VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-03-082318					
Laboratory ID:	08-277-12					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2-Hexanone	ND	2.0	EPA 8260C	8-29-18	8-29-18	
Dibromochloromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Chlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Ethylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
m,p-Xylene	ND	0.40	EPA 8260C	8-29-18	8-29-18	
o-Xylene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Styrene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromoform	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Isopropylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
n-Propylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
n-Butylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-29-18	8-29-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Naphthalene	ND	1.3	EPA 8260C	8-29-18	8-29-18	
1,2,3-Trichlorobenzene	ND	0.26	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	75-127				
	_					

4-Bromofluorobenzene

Toluene-d8

80-127

78-125

96

106

Project: 397-019

VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0829W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Chloromethane	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Vinyl Chloride	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromomethane	ND	2.0	EPA 8260C	8-29-18	8-29-18	
Chloroethane	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Acetone	ND	5.0	EPA 8260C	8-29-18	8-29-18	
lodomethane	ND	5.0	EPA 8260C	8-29-18	8-29-18	
Carbon Disulfide	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Methylene Chloride	ND	1.0	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Vinyl Acetate	ND	1.0	EPA 8260C	8-29-18	8-29-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2-Butanone	ND	5.0	EPA 8260C	8-29-18	8-29-18	
Bromochloromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Chloroform	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Benzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Dibromomethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromodichloromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-29-18	8-29-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	8-29-18	8-29-18	
Toluene	ND	1.0	EPA 8260C	8-29-18	8-29-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-29-18	8-29-18	

Project: 397-019

VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Analyto	Rooun	. 42	motriou	rioparou	Midiyeda	i lugo
Laboratory ID:	MB0829W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2-Hexanone	ND	2.0	EPA 8260C	8-29-18	8-29-18	
Dibromochloromethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Chlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Ethylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
m,p-Xylene	ND	0.40	EPA 8260C	8-29-18	8-29-18	
o-Xylene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Styrene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromoform	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Isopropylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Bromobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-29-18	8-29-18	
n-Propylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
n-Butylbenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260C	8-29-18	8-29-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-29-18	8-29-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	8-29-18	8-29-18	
Naphthalene	ND	1.3	EPA 8260C	8-29-18	8-29-18	
1,2,3-Trichlorobenzene	ND	0.26	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits

Dibromofluoromethane 87 75-127

Toluene-d8 88 80-127

4-Bromofluorobenzene 95 78-125

Project: 397-019

VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

	Result				Per	cent	Recovery		RPD	
Analyte			Spike	Spike Level		overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	29W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.6	10.0	10.0	10.0	106	100	62-129	6	15	
Benzene	11.1	10.5	10.0	10.0	111	105	77-127	6	15	
Trichloroethene	10.7	9.96	10.0	10.0	107	100	70-120	7	15	
Toluene	11.1	10.5	10.0	10.0	111	105	82-123	6	15	
Chlorobenzene	10.5	9.70	10.0	10.0	105	97	79-120	8	15	
Surrogate:										
Dibromofluoromethane					85	89	75-127			
Toluene-d8					88	89	80-127			
4-Bromofluorobenzene					93	94	78-125			

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: FN	/IW-134-15.0-082318					
Laboratory ID:	08-277-03					
n-Nitrosodimethylamine	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Pyridine	ND	0.41	EPA 8270D	8-29-18	8-29-18	
Phenol	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Aniline	ND	0.20	EPA 8270D	8-29-18	8-29-18	
bis(2-Chloroethyl)ether	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2-Chlorophenol	ND	0.041	EPA 8270D	8-29-18	8-29-18	
1,3-Dichlorobenzene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
1,4-Dichlorobenzene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Benzyl alcohol	ND	0.20	EPA 8270D	8-29-18	8-29-18	
1,2-Dichlorobenzene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2-Methylphenol (o-Cresol)	ND	0.041	EPA 8270D	8-29-18	8-29-18	
bis(2-Chloroisopropyl)ether	ND	0.041	EPA 8270D	8-29-18	8-29-18	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.041	EPA 8270D	8-29-18	8-29-18	
n-Nitroso-di-n-propylamine	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Hexachloroethane	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Nitrobenzene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Isophorone	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2-Nitrophenol	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2,4-Dimethylphenol	ND	0.041	EPA 8270D	8-29-18	8-29-18	
bis(2-Chloroethoxy)methane	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2,4-Dichlorophenol	ND	0.041	EPA 8270D	8-29-18	8-29-18	
1,2,4-Trichlorobenzene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Naphthalene	0.14	0.041	EPA 8270D	8-29-18	8-29-18	
4-Chloroaniline	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Hexachlorobutadiene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
4-Chloro-3-methylphenol	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2-Methylnaphthalene	0.028	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
1-Methylnaphthalene	0.012	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
Hexachlorocyclopentadiene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2,4,6-Trichlorophenol	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2,3-Dichloroaniline	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2,4,5-Trichlorophenol	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2-Chloronaphthalene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2-Nitroaniline	ND	0.041	EPA 8270D	8-29-18	8-29-18	
1,4-Dinitrobenzene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Dimethylphthalate	ND	0.041	EPA 8270D	8-29-18	8-29-18	
1,3-Dinitrobenzene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2,6-Dinitrotoluene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
1,2-Dinitrobenzene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Acenaphthylene	ND	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
3-Nitroaniline	ND	0.041	EPA 8270D	8-29-18	8-29-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID: FM	/W-134-15.0-082318					
Laboratory ID:	08-277-03					
2,4-Dinitrophenol	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Acenaphthene	0.014	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
4-Nitrophenol	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2,4-Dinitrotoluene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Dibenzofuran	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2,3,5,6-Tetrachlorophenol	ND	0.041	EPA 8270D	8-29-18	8-29-18	
2,3,4,6-Tetrachlorophenol	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Diethylphthalate	ND	0.20	EPA 8270D	8-29-18	8-29-18	
4-Chlorophenyl-phenylether	ND	0.041	EPA 8270D	8-29-18	8-29-18	
4-Nitroaniline	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Fluorene	0.016	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
4,6-Dinitro-2-methylphenol	ND	0.20	EPA 8270D	8-29-18	8-29-18	
n-Nitrosodiphenylamine	ND	0.041	EPA 8270D	8-29-18	8-29-18	
1,2-Diphenylhydrazine	ND	0.041	EPA 8270D	8-29-18	8-29-18	
4-Bromophenyl-phenylether	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Hexachlorobenzene	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Pentachlorophenol	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Phenanthrene	0.021	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
Anthracene	ND	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
Carbazole	ND	0.041	EPA 8270D	8-29-18	8-29-18	
Di-n-butylphthalate	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Fluoranthene	ND	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
Benzidine	ND	0.41	EPA 8270D	8-29-18	8-29-18	
Pyrene	ND	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
Butylbenzylphthalate	ND	0.20	EPA 8270D	8-29-18	8-29-18	
bis-2-Ethylhexyladipate	ND	0.20	EPA 8270D	8-29-18	8-29-18	
3,3'-Dichlorobenzidine	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Benzo[a]anthracene	ND	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
Chrysene	ND	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
bis(2-Ethylhexyl)phthalate	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Di-n-octylphthalate	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Benzo[b]fluoranthene	ND	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo(j,k)fluoranthene	ND	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[a]pyrene	ND	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
Indeno[1,2,3-cd]pyrene	ND	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
Dibenz[a,h]anthracene	ND	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[g,h,i]perylene	ND	0.0081	EPA 8270D/SIM	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits		0 =0 10	0 20 10	
2-Fluorophenol	71	19 - 103				
Phenol-d6	71	30 - 103				
Nitrobenzene-d5	65	27 - 105				
2-Fluorobiphenyl	70	36 - 102				
2,4,6-Tribromophenol	79	33 - 110				
Terphenyl-d14	69	38 - 108				
. 1						

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-03-10.0-082318					
Laboratory ID:	08-277-06					
n-Nitrosodimethylamine	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Pyridine	ND	0.43	EPA 8270D	8-29-18	8-29-18	
Phenol	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Aniline	ND	0.22	EPA 8270D	8-29-18	8-29-18	
bis(2-Chloroethyl)ether	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2-Chlorophenol	ND	0.043	EPA 8270D	8-29-18	8-29-18	
1,3-Dichlorobenzene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
1,4-Dichlorobenzene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Benzyl alcohol	ND	0.22	EPA 8270D	8-29-18	8-29-18	
1,2-Dichlorobenzene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2-Methylphenol (o-Cresol)	ND	0.043	EPA 8270D	8-29-18	8-29-18	
bis(2-Chloroisopropyl)ether	ND	0.043	EPA 8270D	8-29-18	8-29-18	
(3+4)-Methylphenol (m,p-Creso	l) ND	0.043	EPA 8270D	8-29-18	8-29-18	
n-Nitroso-di-n-propylamine	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Hexachloroethane	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Nitrobenzene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Isophorone	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2-Nitrophenol	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2,4-Dimethylphenol	ND	0.043	EPA 8270D	8-29-18	8-29-18	
bis(2-Chloroethoxy)methane	e ND	0.043	EPA 8270D	8-29-18	8-29-18	
2,4-Dichlorophenol	ND	0.043	EPA 8270D	8-29-18	8-29-18	
1,2,4-Trichlorobenzene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Naphthalene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
4-Chloroaniline	ND	0.22	EPA 8270D	8-29-18	8-29-18	
Hexachlorobutadiene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
4-Chloro-3-methylphenol	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2-Methylnaphthalene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
1-Methylnaphthalene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
Hexachlorocyclopentadiene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2,4,6-Trichlorophenol	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2,3-Dichloroaniline	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2,4,5-Trichlorophenol	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2-Chloronaphthalene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2-Nitroaniline	ND	0.043	EPA 8270D	8-29-18	8-29-18	
1,4-Dinitrobenzene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Dimethylphthalate	ND	0.043	EPA 8270D	8-29-18	8-29-18	
1,3-Dinitrobenzene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2,6-Dinitrotoluene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
1,2-Dinitrobenzene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Acenaphthylene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
3-Nitroaniline	ND	0.043	EPA 8270D	8-29-18	8-29-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	FB-03-10.0-082318			•	•	
Laboratory ID:	08-277-06					
2,4-Dinitrophenol	ND	0.22	EPA 8270D	8-29-18	8-29-18	
Acenaphthene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
4-Nitrophenol	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2,4-Dinitrotoluene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Dibenzofuran	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2,3,5,6-Tetrachlorophenol	ND	0.043	EPA 8270D	8-29-18	8-29-18	
2,3,4,6-Tetrachlorophenol	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Diethylphthalate	ND	0.22	EPA 8270D	8-29-18	8-29-18	
4-Chlorophenyl-phenylether		0.043	EPA 8270D	8-29-18	8-29-18	
4-Nitroaniline	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Fluorene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
4,6-Dinitro-2-methylphenol	ND	0.22	EPA 8270D	8-29-18	8-29-18	
n-Nitrosodiphenylamine	ND	0.043	EPA 8270D	8-29-18	8-29-18	
1,2-Diphenylhydrazine	ND	0.043	EPA 8270D	8-29-18	8-29-18	
4-Bromophenyl-phenylether		0.043	EPA 8270D	8-29-18	8-29-18	
Hexachlorobenzene	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Pentachlorophenol	ND	0.22	EPA 8270D	8-29-18	8-29-18	
Phenanthrene	0.015	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
Anthracene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
Carbazole	ND	0.043	EPA 8270D	8-29-18	8-29-18	
Di-n-butylphthalate	ND	0.22	EPA 8270D	8-29-18	8-29-18	
Fluoranthene	0.011	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
Benzidine	ND	0.43	EPA 8270D	8-29-18	8-29-18	
Pyrene	0.012	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
Butylbenzylphthalate	ND	0.22	EPA 8270D	8-29-18	8-29-18	
bis-2-Ethylhexyladipate	ND	0.22	EPA 8270D	8-29-18	8-29-18	
3,3'-Dichlorobenzidine	ND	0.22	EPA 8270D	8-29-18	8-29-18	
Benzo[a]anthracene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
Chrysene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
bis(2-Ethylhexyl)phthalate	ND	0.22	EPA 8270D	8-29-18	8-29-18	
Di-n-octylphthalate	ND	0.22	EPA 8270D	8-29-18	8-29-18	
Benzo[b]fluoranthene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo(j,k)fluoranthene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[a]pyrene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
Indeno[1,2,3-cd]pyrene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
Dibenz[a,h]anthracene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[g,h,i]perylene	ND	0.0086	EPA 8270D/SIM	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits		0 20 10	0 20 10	
2-Fluorophenol	60	19 - 103				
Phenol-d6	61	30 - 103				
Nitrobenzene-d5	52	27 - 105				
2-Fluorobiphenyl	54	36 - 102				
2,4,6-Tribromophenol	56	33 - 110				
Terphenyl-d14	52	38 - 108				
. S. prioriyi G i Ŧ	OZ.	00 100				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-03-35.0-082318					
Laboratory ID:	08-277-10					
n-Nitrosodimethylamine	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Pyridine	ND	0.40	EPA 8270D	8-29-18	8-29-18	
Phenol	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Aniline	ND	0.20	EPA 8270D	8-29-18	8-29-18	
bis(2-Chloroethyl)ether	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2-Chlorophenol	ND	0.040	EPA 8270D	8-29-18	8-29-18	
1,3-Dichlorobenzene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
1,4-Dichlorobenzene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Benzyl alcohol	ND	0.20	EPA 8270D	8-29-18	8-29-18	
1,2-Dichlorobenzene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2-Methylphenol (o-Cresol)	ND	0.040	EPA 8270D	8-29-18	8-29-18	
bis(2-Chloroisopropyl)ether	ND	0.040	EPA 8270D	8-29-18	8-29-18	
(3+4)-Methylphenol (m,p-Creso	l) ND	0.040	EPA 8270D	8-29-18	8-29-18	
n-Nitroso-di-n-propylamine	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Hexachloroethane	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Nitrobenzene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Isophorone	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2-Nitrophenol	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2,4-Dimethylphenol	ND	0.040	EPA 8270D	8-29-18	8-29-18	
bis(2-Chloroethoxy)methane	e ND	0.040	EPA 8270D	8-29-18	8-29-18	
2,4-Dichlorophenol	ND	0.040	EPA 8270D	8-29-18	8-29-18	
1,2,4-Trichlorobenzene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Naphthalene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
4-Chloroaniline	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Hexachlorobutadiene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
4-Chloro-3-methylphenol	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2-Methylnaphthalene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
1-Methylnaphthalene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Hexachlorocyclopentadiene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2,4,6-Trichlorophenol	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2,3-Dichloroaniline	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2,4,5-Trichlorophenol	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2-Chloronaphthalene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2-Nitroaniline	ND	0.040	EPA 8270D	8-29-18	8-29-18	
1,4-Dinitrobenzene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Dimethylphthalate	ND	0.040	EPA 8270D	8-29-18	8-29-18	
1,3-Dinitrobenzene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2,6-Dinitrotoluene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
1,2-Dinitrobenzene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Acenaphthylene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
3-Nitroaniline	ND	0.040	EPA 8270D	8-29-18	8-29-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	FB-03-35.0-082318			-	-	
Laboratory ID:	08-277-10					
2,4-Dinitrophenol	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Acenaphthene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
4-Nitrophenol	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2,4-Dinitrotoluene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Dibenzofuran	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2,3,5,6-Tetrachlorophenol	ND	0.040	EPA 8270D	8-29-18	8-29-18	
2,3,4,6-Tetrachlorophenol	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Diethylphthalate	ND	0.20	EPA 8270D	8-29-18	8-29-18	
4-Chlorophenyl-phenylether	ND	0.040	EPA 8270D	8-29-18	8-29-18	
4-Nitroaniline	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Fluorene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
4,6-Dinitro-2-methylphenol	ND	0.20	EPA 8270D	8-29-18	8-29-18	
n-Nitrosodiphenylamine	ND	0.040	EPA 8270D	8-29-18	8-29-18	
1,2-Diphenylhydrazine	ND	0.040	EPA 8270D	8-29-18	8-29-18	
4-Bromophenyl-phenylether	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Hexachlorobenzene	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Pentachlorophenol	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Phenanthrene	0.017	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Anthracene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Carbazole	ND	0.040	EPA 8270D	8-29-18	8-29-18	
Di-n-butylphthalate	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Fluoranthene	0.015	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Benzidine	ND	0.40	EPA 8270D	8-29-18	8-29-18	
Pyrene	0.017	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Butylbenzylphthalate	ND	0.20	EPA 8270D	8-29-18	8-29-18	
bis-2-Ethylhexyladipate	ND	0.20	EPA 8270D	8-29-18	8-29-18	
3,3'-Dichlorobenzidine	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Benzo[a]anthracene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Chrysene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
bis(2-Ethylhexyl)phthalate	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Di-n-octylphthalate	ND	0.20	EPA 8270D	8-29-18	8-29-18	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[a]pyrene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Indeno[1,2,3-cd]pyrene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[g,h,i]perylene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits		0 20 10	0 20 10	
2-Fluorophenol	75	19 - 103				
Phenol-d6	78	30 - 103				
Nitrobenzene-d5	69	27 - 105				
2-Fluorobiphenyl	73	36 - 1 <i>0</i> 2				
2,4,6-Tribromophenol	84	33 - 110				
Terphenyl-d14	75	38 - 108				
	, 0	00 100				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

				Date	Date	Flore	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Laboratory ID:	MB0829S1						
n-Nitrosodimethylamine	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Pyridine	ND	0.33	EPA 8270D	8-29-18	8-29-18		
Phenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Aniline	ND	0.17	EPA 8270D	8-29-18	8-29-18		
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2-Chlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
1,3-Dichlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
1,4-Dichlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Benzyl alcohol	ND	0.17	EPA 8270D	8-29-18	8-29-18		
1,2-Dichlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270D	8-29-18	8-29-18		
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270D	8-29-18	8-29-18		
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270D	8-29-18	8-29-18		
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Hexachloroethane	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Nitrobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Isophorone	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2-Nitrophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,4-Dimethylphenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,4-Dichlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Naphthalene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
4-Chloroaniline	ND	0.17	EPA 8270D	8-29-18	8-29-18		
Hexachlorobutadiene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
4-Chloro-3-methylphenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Hexachlorocyclopentadiene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,4,6-Trichlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,3-Dichloroaniline	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,4,5-Trichlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2-Chloronaphthalene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2-Nitroaniline	ND	0.033	EPA 8270D	8-29-18	8-29-18		
1,4-Dinitrobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Dimethylphthalate	ND	0.033	EPA 8270D	8-29-18	8-29-18		
1,3-Dinitrobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,6-Dinitrotoluene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
1,2-Dinitrobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Acenaphthylene				8-29-18			
	ND	0.0067	EPA 8270D/SIM	0-29-10	8-29-18		

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags	
Laboratory ID:	MB0829S1						
2,4-Dinitrophenol	ND	0.17	EPA 8270D	8-29-18	8-29-18		
Acenaphthene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
4-Nitrophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,4-Dinitrotoluene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Dibenzofuran	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Diethylphthalate	ND	0.17	EPA 8270D	8-29-18	8-29-18		
4-Chlorophenyl-phenylether		0.033	EPA 8270D	8-29-18	8-29-18		
4-Nitroaniline	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Fluorene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
4,6-Dinitro-2-methylphenol	ND	0.17	EPA 8270D	8-29-18	8-29-18		
n-Nitrosodiphenylamine	ND	0.033	EPA 8270D	8-29-18	8-29-18		
1,2-Diphenylhydrazine	ND	0.033	EPA 8270D	8-29-18	8-29-18		
4-Bromophenyl-phenylether	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Hexachlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Pentachlorophenol	ND	0.17	EPA 8270D	8-29-18	8-29-18		
Phenanthrene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Anthracene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Carbazole	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Di-n-butylphthalate	ND	0.17	EPA 8270D	8-29-18	8-29-18		
Fluoranthene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Benzidine	ND	0.33	EPA 8270D	8-29-18	8-29-18		
Pyrene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Butylbenzylphthalate	ND	0.17	EPA 8270D	8-29-18	8-29-18		
bis-2-Ethylhexyladipate	ND	0.17	EPA 8270D	8-29-18	8-29-18		
3,3'-Dichlorobenzidine	ND	0.17	EPA 8270D	8-29-18	8-29-18		
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Chrysene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
bis(2-Ethylhexyl)phthalate	ND	0.17	EPA 8270D	8-29-18	8-29-18		
Di-n-octylphthalate	ND	0.17	EPA 8270D	8-29-18	8-29-18		
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Indeno[1,2,3-cd]pyrene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Surrogate:	Percent Recovery	Control Limits					
2-Fluorophenol	79	19 - 103					
Phenol-d6	79	30 - 103					
Nitrobenzene-d5	73	27 - 105					
2-Fluorobiphenyl	<i>7</i> 5	36 - 102					
2,4,6-Tribromophenol	88	33 - 110					
Terphenyl-d14	81	38 - 108					

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM MS/MSD QUALITY CONTROL

					Source	Percent		Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											_
Laboratory ID:	08-22	29-04									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	1.15	0.989	1.33	1.33	ND	86	74	37 - 94	15	27	
2-Chlorophenol	1.21	1.03	1.33	1.33	ND	91	77	37 - 95	16	32	
1,4-Dichlorobenzene	0.568	0.493	0.667	0.667	ND	85	74	23 - 97	14	37	
n-Nitroso-di-n-propylamine	0.580	0.501	0.667	0.667	ND	87	75	40 - 91	15	28	
1,2,4-Trichlorobenzene	0.563	0.505	0.667	0.667	ND	84	76	37 - 93	11	30	
4-Chloro-3-methylphenol	1.11	1.03	1.33	1.33	ND	83	77	46 - 96	7	25	
Acenaphthene	0.585	0.526	0.667	0.667	0.0395	82	73	43 - 90	11	25	
4-Nitrophenol	1.15	1.03	1.33	1.33	ND	86	77	31 - 104	11	28	
2,4-Dinitrotoluene	0.575	0.516	0.667	0.667	ND	86	77	31 - 96	11	32	
Pentachlorophenol	1.38	1.22	1.33	1.33	ND	104	92	20 - 123	12	29	
Pyrene	0.582	0.518	0.667	0.667	0.0828	75	65	28 - 114	12	35	
Surrogate:											
2-Fluorophenol						85	71	19 - 103			
Phenol-d6						84	73	30 - 103			
Nitrobenzene-d5						72	65	27 - 105			
2-Fluorobiphenyl						77	70	36 - 102			
2,4,6-Tribromophenol						92	84	33 - 110			
Terphenyl-d14						78	71	38 - 108			

Project: 397-019

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-134-5.0-082318					
Laboratory ID:	08-277-01					
Arsenic	ND	17	EPA 6010D	8-29-18	8-31-18	
Barium	110	8.3	EPA 6010D	8-29-18	8-31-18	
Cadmium	ND	1.7	EPA 6010D	8-29-18	8-31-18	
Chromium	19	1.7	EPA 6010D	8-29-18	8-31-18	
Lead	ND	17	EPA 6010D	8-29-18	8-31-18	
Mercury	ND	0.83	EPA 7471B	8-29-18	8-29-18	
Selenium	ND	17	EPA 6010D	8-29-18	8-31-18	
Silver	ND	3.3	EPA 6010D	8-29-18	8-31-18	

Client ID:	FMW-134-15.0-082318					
Laboratory ID:	08-277-03					
Arsenic	ND	12	EPA 6010D	8-29-18	8-31-18	
Barium	48	3.0	EPA 6010D	8-29-18	8-31-18	
Cadmium	ND	0.61	EPA 6010D	8-29-18	8-31-18	
Chromium	42	0.61	EPA 6010D	8-29-18	8-31-18	
Lead	ND	6.1	EPA 6010D	8-29-18	8-31-18	
Mercury	ND	0.30	EPA 7471B	8-29-18	8-29-18	
Selenium	ND	12	EPA 6010D	8-29-18	8-31-18	
Silver	ND	1.2	EPA 6010D	8-29-18	8-31-18	

Client ID:	FB-03-10.0-082318					
Laboratory ID:	08-277-06					
Arsenic	ND	13	EPA 6010D	8-29-18	8-31-18	
Barium	230	3.2	EPA 6010D	8-29-18	8-31-18	
Cadmium	ND	0.65	EPA 6010D	8-29-18	8-31-18	
Chromium	100	0.65	EPA 6010D	8-29-18	8-31-18	
Lead	8.9	6.5	EPA 6010D	8-29-18	8-31-18	
Mercury	ND	0.32	EPA 7471B	8-29-18	8-29-18	
Selenium	ND	13	EPA 6010D	8-29-18	8-31-18	
Silver	ND	1.3	EPA 6010D	8-29-18	8-31-18	

Project: 397-019

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-03-35.0-082318					
Laboratory ID:	08-277-10					
Arsenic	ND	12	EPA 6010D	8-29-18	8-31-18	
Barium	44	3.0	EPA 6010D	8-29-18	8-31-18	
Cadmium	ND	0.60	EPA 6010D	8-29-18	8-31-18	
Chromium	42	0.60	EPA 6010D	8-29-18	8-31-18	
Lead	ND	6.0	EPA 6010D	8-29-18	8-31-18	
Mercury	ND	0.30	EPA 7471B	8-29-18	8-29-18	
Selenium	ND	12	EPA 6010D	8-29-18	8-31-18	
Silver	ND	1.2	EPA 6010D	8-29-18	8-31-18	

Project: 397-019

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0829SM1					
ND	5.0	EPA 6010D	8-29-18	8-31-18	
ND	2.5	EPA 6010D	8-29-18	8-31-18	
ND	0.50	EPA 6010D	8-29-18	8-31-18	
ND	0.50	EPA 6010D	8-29-18	8-31-18	
ND	5.0	EPA 6010D	8-29-18	8-31-18	
ND	5.0	EPA 6010D	8-29-18	8-31-18	
ND	1.0	EPA 6010D	8-29-18	8-31-18	
MB0829S1					
ND	0.25	EPA 7471B	8-29-18	8-29-18	
	MB0829SM1 ND ND ND ND ND ND ND ND ND N	MB0829SM1 ND 5.0 ND 2.5 ND 0.50 ND 0.50 ND 5.0 ND 5.0 ND 5.0 ND 1.0 MB0829S1	MB0829SM1 ND 5.0 EPA 6010D ND 2.5 EPA 6010D ND 0.50 EPA 6010D ND 0.50 EPA 6010D ND 5.0 EPA 6010D ND 5.0 EPA 6010D ND 5.0 EPA 6010D ND 1.0 EPA 6010D MB0829S1	Result PQL Method Prepared MB0829SM1 5.0 EPA 6010D 8-29-18 ND 2.5 EPA 6010D 8-29-18 ND 0.50 EPA 6010D 8-29-18 ND 0.50 EPA 6010D 8-29-18 ND 5.0 EPA 6010D 8-29-18 ND 5.0 EPA 6010D 8-29-18 ND 1.0 EPA 6010D 8-29-18 MB0829S1	Result PQL Method Prepared Analyzed MB0829SM1 S.0 EPA 6010D 8-29-18 8-31-18 ND 2.5 EPA 6010D 8-29-18 8-31-18 ND 0.50 EPA 6010D 8-29-18 8-31-18 ND 0.50 EPA 6010D 8-29-18 8-31-18 ND 5.0 EPA 6010D 8-29-18 8-31-18 ND 5.0 EPA 6010D 8-29-18 8-31-18 ND 1.0 EPA 6010D 8-29-18 8-31-18 MB0829S1 MB0829S1 MB0829S1 8-31-18

				Source	Pe	rcent	Recovery		RPD	
Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
08-27	77-03									
ORIG	DUP									
ND	ND	NA	NA		1	NA	NA	NA	20	
39.8	42.3	NA	NA		1	NΑ	NA	6	20	
ND	ND	NA	NA		1	NA	NA	NA	20	
34.5	36.2	NA	NA		1	NΑ	NA	5	20	
ND	ND	NA	NA		1	NA	NA	NA	20	
ND	ND	NA	NA		1	NA	NA	NA	20	
ND	ND	NA	NA		1	NA	NA	NA	20	
08-27	77-03									
ND	ND	NA	NA		1	NA	NA	NA	20	
08-27	77-03									
MS	MSD	MS	MSD		MS	MSD				
98.9	98.4	100	100	ND	99	98	75-125	0	20	
148	148	100	100	39.8	109	109	75-125	0	20	
49.4	48.5	50.0	50.0	ND	99	97	75-125	2	20	
137	136	100	100	34.5	102	102	75-125	0	20	
242	239	250	250	ND	97	96	75-125	1	20	
100	101	100	100	ND	100	101	75-125	0	20	
22.9	22.7	25.0	25.0	ND	92	91	75-125	1	20	
08-27	77-03									
0.534	0.537	0.500	0.500	0.0115	105	105	80-120	1	20	
	08-27 ORIG ND 39.8 ND 34.5 ND ND 08-27 ND 08-27 148 49.4 137 242 100 22.9	ND ND 39.8 42.3 ND ND 34.5 36.2 ND ND ND ND ND ND ND ND 08-277-03 ND ND 08-277-03 MS MSD 98.9 98.4 148 148 49.4 48.5 137 136 242 239 100 101 22.9 22.7	08-277-03 ORIG DUP ND ND NA 39.8 42.3 NA ND ND NA 34.5 36.2 NA ND ND NA O8-277-03 MS MSD MS 98.9 98.4 100 148 148 100 49.4 48.5 50.0 137 136 100 242 239 250 100 101 100 22.9 22.7 25.0	08-277-03 ORIG DUP ND ND NA NA 39.8 42.3 NA NA ND ND NA NA 34.5 36.2 NA NA ND ND NA NA O8-277-03 MS MSD MS MSD 98.9 98.4 100 100 148 148 100 100 148 148 100 100 149.4 48.5 50.0 50.0 137 136 100 100 242 239 250 250 100 101 100 100 22.9 22.7 25.0 25.0	Result Spike Level Result 08-277-03 ORIG DUP ND ND NA NA 39.8 42.3 NA NA ND ND NA NA ND ND NA NA ND ND NA NA ND ND NA NA 08-277-03 ND NA NA 98.9 98.4 100 100 ND 148 148 100 100 39.8 49.4 48.5 50.0 50.0 ND 137 136 100 100 34.5 242 239 250 250 ND 100 101 100 100 ND 08-277-03 ND ND ND ND ND	Result Spike Level Result Rec 08-277-03 ORIG DUP DUP ND ND NA NA I 39.8 42.3 NA NA I ND ND NA NA I 08-277-03 ND NA NA I 08-277-03 MS MSD MS MS 98.9 98.4 100 100 ND 99 148 148 100 100 39.8 109 49.4 48.5 50.0 50.0 ND 99 137 136 100 100 34.5 102 242 239 250 250 ND 97 100 101 100 ND ND 92	Result Spike Level Result Recovery 08-277-03 ORIG DUP ND ND NA	Result Spike Level Result Recovery Limits 08-277-03 ORIG DUP ND ND NA NA NA ND ND NA NA NA NA 08-277-03 ND NA NA NA NA ND ND NA NA NA NA 08-277-03 ND MS MSD MS MSD 98.9 98.4 100 100 ND 99 98 75-125 148 148 100 100 39.8 109 109 75-125 49.4 48.5 50.0 50.0 ND 99 97 75-125	Result Spike Level Result Recovery Limits RPD 08-277-03 ORIG DUP ND ND ND NA	ND

Project: 397-019

% MOISTURE

Date Analyzed: 8-27&28-18

Client ID	Lab ID	% Moisture
FMW-134-5.0-082318	08-277-01	70
FMW-134-15.0-082318	08-277-03	18
FB-03-10.0-082318	08-277-06	23
FB-03-15.0-082318	08-277-07	23
FB-03-25.0-082318	08-277-08	15
FB-03-35.0-082318	08-277-10	16

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page 1 of 2

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	10 FB-03-35-0-08-2318	9 76-03-30.0-082318	8 FB-03-25-0-082318	7 96-05-15.0-08236	818280-0.01-60-81	5 1903-50-082318	1 FMW-134-20:0-082388	3 FMW-134-15:0-08 2318	2 FMW-134-100-082318	1 FNW-134-5:0-08e318	Lab ID Sample Identification	sampled by:	Journ Ryork	Project Name: Block 38 wast Property	397-019	FARCA LLON	Allalytical Latoratory lesting services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
Reviewed/Date					OK.	forrador	Company	V V 0251 V	0251	1500	(375	1310	1250	0750	9730	0720 5	8/21/18 0710 Soil 5	Date Time Sampled Sampled Sampled Matrix	(other)	Contail	Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)
				9 14 17	8/24/18 1100	8/23/5 1857	Date Time			メ	× ×	×			メ		X	NWTF NWTF NWTF Volatil	les 826 enated	BTEX Acid	d / SG Cl es 82600 ters Only))	Laboratory Number:
Chromatograms with final report ☐ Electronic Data Deliverables (EDDs) ☐	Data Package: Standard ☐ Level III ☐ Level IV ☐ CSTA	X-Added 8/27/18, D3	him Court mortions !!	by Sample anothered and June my	Mary Droger Infer	Disago C Jut Disagt Marcayler	Comments/Special Instructions	× × ×		У.	×	× × ×			× × ×		×	Semin (with I PAHs PCBs Organ Chloric Total I TCLP	volatiles low-levelevenesses 8270D 88082A nochlor nophos inated MTCA Metals	s 8270 el PAH /SIM (li /sine Pes phorus Acid Haw Wetals	D/SIM s) pw-level) sticides 8 Pesticid	081B es 8270 8151A		r: 08-2//

			THE RES		
14648 NE 95th Street · Redmond, W/	Analytical Laboratory Testing Services	Environmental inc		Oncito	

Chain of Custody

Page 2 of

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature				13 Fmw-134-2.5-082318	12 FB-03-682318	11 FS-03-40.0-082318	Lab ID Sample Identification	Sampled by:	i Najaon man iagan	Project Name:	riged number:	Particular Vision Control of Cont	Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052
Reviewed/Date					386		Company				8 23/18 0700 SOIL	8/23/18 1400 Woden	8/23/18 1540 Soil	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)
					8/24/18 1100		Date Time				78	N X X X X X X X X X X X X X X X X X X X	W To	NWTP NWTP NWTP Volatile	PH-Dx (D BTEX	d/SG Clubs 8260C)		Laboratory Number:
Chromatograms with final report ☐ Electronic Data Deliverables (EDDs) ☐	Data Package: Standard ☐ Level III ☐ Level IV ☐				See verge I.	2	Comments/Special Instructions							Semiv (with In PAHs in PCBs Organ Organ Chlorin Total F Total In TCLP	rolatiles ow-leve 8270D/ 8082A ochlori ophosp nated A RCRA M MTCA M	8270E el PAHs SIM (lo SIM (lo		081B es 8270		M	per: 08-277
DDs)														% Moi	sture				_		

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 5, 2018

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019

Laboratory Reference No. 1808-292

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on August 25, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-019

Case Narrative

Samples were collected on August 24, 2018 and received by the laboratory on August 25, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

The MTCA Method A cleanup level of 0.030 ppm for Benzene is not achievable for sample FMW-135-15.0-082418 due to the low dry weight of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-135-15.0-082418					
Laboratory ID:	08-292-02					
Benzene	ND	0.055	EPA 8021B	8-27-18	8-28-18	
Toluene	ND	0.28	EPA 8021B	8-27-18	8-28-18	
Ethyl Benzene	ND	0.28	EPA 8021B	8-27-18	8-28-18	
m,p-Xylene	ND	0.28	EPA 8021B	8-27-18	8-28-18	
o-Xylene	ND	0.28	EPA 8021B	8-27-18	8-28-18	
Gasoline	ND	28	NWTPH-Gx	8-27-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	57-129				
Client ID:	FMW-135-35.0-082418					
Laboratory ID:	08-292-06					
Benzene	ND	0.020	EPA 8021B	8-27-18	8-28-18	
Toluene	ND	0.058	EPA 8021B	8-27-18	8-28-18	
Ethyl Benzene	ND	0.058	EPA 8021B	8-27-18	8-28-18	
m,p-Xylene	ND	0.058	EPA 8021B	8-27-18	8-28-18	
o-Xylene	ND	0.058	EPA 8021B	8-27-18	8-28-18	
Gasoline	ND	5.8	NWTPH-Gx	8-27-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	57-129				

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0827S1					
Benzene	ND	0.020	EPA 8021B	8-27-18	8-27-18	
Toluene	ND	0.050	EPA 8021B	8-27-18	8-27-18	
Ethyl Benzene	ND	0.050	EPA 8021B	8-27-18	8-27-18	
m,p-Xylene	ND	0.050	EPA 8021B	8-27-18	8-27-18	
o-Xylene	ND	0.050	EPA 8021B	8-27-18	8-27-18	
Gasoline	ND	5.0	NWTPH-Gx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Fluorobenzene 90 57-129

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-27	76-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Toluene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	۱A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	۱A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						104	103	57-129			
SPIKE BLANKS											
Laboratory ID:	SB08	27S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.923	0.893	1.00	1.00		92	89	69-111	3	10	
Toluene	0.915	0.880	1.00	1.00		92	88	70-114	4	11	
Ethyl Benzene	0.918	0.886	1.00	1.00		92	89	70-115	4	10	
m,p-Xylene	0.907	0.877	1.00	1.00		91	88	72-115	3	10	
o-Xylene	0.917	0.882	1.00	1.00		92	88	71-115	4	11	
Surrogate:		·									· · · · · · · · · · · · · · · · · · ·
Fluorobenzene						89	86	57-129			

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

3 3 (1)	D	201	B.B. (1)	Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-135-15.0-082418					
Laboratory ID:	08-292-02					
Diesel Range Organics	130	83	NWTPH-Dx	8-28-18	8-28-18	
Lube Oil Range Organics	680	170	NWTPH-Dx	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				
Client ID:	FMW-135-35.0-082418					
Laboratory ID:	08-292-06					
Diesel Range Organics	ND	31	NWTPH-Dx	8-28-18	8-28-18	
Lube Oil Range Organics	ND	62	NWTPH-Dx	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analvzed	Flags
METHOD BLANK	rtoourt	. 42	moniou	rioparoa	Analyzou	i lugo
Laboratory ID:	MB0828S1					
Diesel Range Organics	ND	25	NWTPH-Dx	8-28-18	8-28-18	_
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				_
o-Terphenyl	111	50-150				

Matrix: Soil

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-27	77-03								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						124 113	50-150			

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-135-50.0-082418					
Laboratory ID:	08-292-09					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	8-28-18	8-29-18	
Chloromethane	ND	0.0037	EPA 8260C	8-28-18	8-29-18	
Vinyl Chloride	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Bromomethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Chloroethane	ND	0.0037	EPA 8260C	8-28-18	8-29-18	
Trichlorofluoromethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,1-Dichloroethene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
lodomethane	ND	0.0053	EPA 8260C	8-28-18	8-29-18	
Methylene Chloride	ND	0.0037	EPA 8260C	8-28-18	8-29-18	
(trans) 1,2-Dichloroethene	e ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,1-Dichloroethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
2,2-Dichloropropane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Bromochloromethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Chloroform	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,1,1-Trichloroethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Carbon Tetrachloride	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,1-Dichloropropene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,2-Dichloroethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Trichloroethene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,2-Dichloropropane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Dibromomethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Bromodichloromethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
2-Chloroethyl Vinyl Ether	ND	0.0037	EPA 8260C	8-28-18	8-29-18	
(cis) 1,3-Dichloropropene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
(trans) 1,3-Dichloroprope	ne ND	0.00074	EPA 8260C	8-28-18	8-29-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: FN	IW-135-50.0-082418					
Laboratory ID:	08-292-09					
1,1,2-Trichloroethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Tetrachloroethene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,3-Dichloropropane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Dibromochloromethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,2-Dibromoethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Chlorobenzene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,1,1,2-Tetrachloroethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Bromoform	ND	0.0037	EPA 8260C	8-28-18	8-29-18	
Bromobenzene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,1,2,2-Tetrachloroethane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,2,3-Trichloropropane	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
2-Chlorotoluene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
4-Chlorotoluene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,3-Dichlorobenzene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,4-Dichlorobenzene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,2-Dichlorobenzene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
1,2-Dibromo-3-chloropropane	ND	0.0037	EPA 8260C	8-28-18	8-29-18	
1,2,4-Trichlorobenzene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Hexachlorobutadiene	ND	0.0037	EPA 8260C	8-28-18	8-29-18	
1,2,3-Trichlorobenzene	ND	0.00074	EPA 8260C	8-28-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	68-139				
Toluene-d8	100	79-128				
4-Bromofluorobenzene	102	71-132				

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Offits. Hig/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0828S2					
Dichlorodifluoromethane	ND	0.0015	EPA 8260C	8-28-18	8-28-18	
Chloromethane	ND	0.0050	EPA 8260C	8-28-18	8-28-18	
Vinyl Chloride	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Bromomethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Chloroethane	ND	0.0050	EPA 8260C	8-28-18	8-28-18	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Iodomethane	ND	0.0065	EPA 8260C	8-28-18	8-28-18	
Methylene Chloride	ND	0.0050	EPA 8260C	8-28-18	8-28-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Bromochloromethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Chloroform	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Dibromomethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Bromodichloromethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
2-Chloroethyl Vinyl Ether	ND	0.0074	EPA 8260C	8-28-18	8-28-18	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0828S2					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Dibromochloromethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Chlorobenzene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Bromoform	ND	0.0050	EPA 8260C	8-28-18	8-28-18	
Bromobenzene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
2-Chlorotoluene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
4-Chlorotoluene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	8-28-18	8-28-18	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	8-28-18	8-28-18	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	68-139				
Toluene-d8	106	79-128				
4-Bromofluorobenzene	108	71-132				

Project: 397-019

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	28S2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0608	0.0586	0.0500	0.0500	122	117	53-141	4	17	
Benzene	0.0636	0.0600	0.0500	0.0500	127	120	70-130	6	15	
Trichloroethene	0.0588	0.0580	0.0500	0.0500	118	116	74-122	1	16	
Toluene	0.0628	0.0621	0.0500	0.0500	126	124	76-130	1	15	
Chlorobenzene	0.0559	0.0532	0.0500	0.0500	112	106	75-120	5	14	
Surrogate:										
Dibromofluoromethane					99	99	68-139			
Toluene-d8					108	107	79-128			
4-Bromofluorobenzene					108	109	71-132			

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: FN	/IW-135-15.0-082418					
Laboratory ID:	08-292-02					
n-Nitrosodimethylamine	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Pyridine	ND	1.1	EPA 8270D	8-29-18	8-30-18	
Phenol	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Aniline	ND	0.56	EPA 8270D	8-29-18	8-30-18	
bis(2-Chloroethyl)ether	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2-Chlorophenol	ND	0.11	EPA 8270D	8-29-18	8-30-18	
1,3-Dichlorobenzene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
1,4-Dichlorobenzene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Benzyl alcohol	ND	0.56	EPA 8270D	8-29-18	8-30-18	
1,2-Dichlorobenzene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2-Methylphenol (o-Cresol)	ND	0.11	EPA 8270D	8-29-18	8-30-18	
bis(2-Chloroisopropyl)ether	ND	0.11	EPA 8270D	8-29-18	8-30-18	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.11	EPA 8270D	8-29-18	8-30-18	
n-Nitroso-di-n-propylamine	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Hexachloroethane	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Nitrobenzene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Isophorone	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2-Nitrophenol	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2,4-Dimethylphenol	ND	0.11	EPA 8270D	8-29-18	8-30-18	
bis(2-Chloroethoxy)methane	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2,4-Dichlorophenol	ND	0.11	EPA 8270D	8-29-18	8-30-18	
1,2,4-Trichlorobenzene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Naphthalene	0.029	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
4-Chloroaniline	ND	0.56	EPA 8270D	8-29-18	8-30-18	
Hexachlorobutadiene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
4-Chloro-3-methylphenol	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2-Methylnaphthalene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
1-Methylnaphthalene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
Hexachlorocyclopentadiene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2,4,6-Trichlorophenol	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2,3-Dichloroaniline	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2,4,5-Trichlorophenol	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2-Chloronaphthalene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2-Nitroaniline	ND	0.11	EPA 8270D	8-29-18	8-30-18	
1,4-Dinitrobenzene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Dimethylphthalate	ND	0.11	EPA 8270D	8-29-18	8-30-18	
1,3-Dinitrobenzene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2,6-Dinitrotoluene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
1,2-Dinitrobenzene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Acenaphthylene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
3-Nitroaniline	ND	0.11	EPA 8270D	8-29-18	8-30-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	MW-135-15.0-082418			•	•	_
Laboratory ID:	08-292-02					
2,4-Dinitrophenol	ND	0.56	EPA 8270D	8-29-18	8-30-18	
Acenaphthene	0.039	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
4-Nitrophenol	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2,4-Dinitrotoluene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Dibenzofuran	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2,3,5,6-Tetrachlorophenol	ND	0.11	EPA 8270D	8-29-18	8-30-18	
2,3,4,6-Tetrachlorophenol	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Diethylphthalate	ND	0.56	EPA 8270D	8-29-18	8-30-18	
4-Chlorophenyl-phenylether	ND	0.11	EPA 8270D	8-29-18	8-30-18	
4-Nitroaniline	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Fluorene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
4,6-Dinitro-2-methylphenol	ND	0.56	EPA 8270D	8-29-18	8-30-18	
n-Nitrosodiphenylamine	ND	0.11	EPA 8270D	8-29-18	8-30-18	
1,2-Diphenylhydrazine	ND	0.11	EPA 8270D	8-29-18	8-30-18	
4-Bromophenyl-phenylether	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Hexachlorobenzene	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Pentachlorophenol	ND	0.56	EPA 8270D	8-29-18	8-30-18	
Phenanthrene	0.068	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
Anthracene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
Carbazole	ND	0.11	EPA 8270D	8-29-18	8-30-18	
Di-n-butylphthalate	ND	0.56	EPA 8270D	8-29-18	8-30-18	
Fluoranthene	0.042	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
Benzidine	ND	1.1	EPA 8270D	8-29-18	8-30-18	
Pyrene	0.073	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
Butylbenzylphthalate	ND	0.56	EPA 8270D	8-29-18	8-30-18	
bis-2-Ethylhexyladipate	ND	0.56	EPA 8270D	8-29-18	8-30-18	
3,3'-Dichlorobenzidine	ND	0.56	EPA 8270D	8-29-18	8-30-18	
Benzo[a]anthracene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
Chrysene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
bis(2-Ethylhexyl)phthalate	ND	0.56	EPA 8270D	8-29-18	8-30-18	
Di-n-octylphthalate	ND	0.56	EPA 8270D	8-29-18	8-30-18	
Benzo[b]fluoranthene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
Benzo(j,k)fluoranthene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
Benzo[a]pyrene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
Indeno[1,2,3-cd]pyrene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
Dibenz[a,h]anthracene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
Benzo[g,h,i]perylene	ND	0.022	EPA 8270D/SIM	8-29-18	8-31-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	58	19 - 103				
Phenol-d6	60	30 - 103				
Nitrobenzene-d5	59	27 - 105				
2-Fluorobiphenyl	65	36 - 102				
2,4,6-Tribromophenol	76	33 - 110				
Terphenyl-d14	71	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

A 1 . 4 .	5	DO 1	88.41 × 1	Date	Date	
Analyte Client ID: FN	Result //W-135-30.0-082418	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	08-292-05	0.044	EDA 0070D	0.00.40	0.00.40	
n-Nitrosodimethylamine	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Pyridine	ND	0.41	EPA 8270D	8-29-18	8-30-18	
Phenol	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Aniline	ND	0.21	EPA 8270D	8-29-18	8-30-18	
bis(2-Chloroethyl)ether	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2-Chlorophenol	ND	0.041	EPA 8270D	8-29-18	8-30-18	
1,3-Dichlorobenzene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
1,4-Dichlorobenzene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Benzyl alcohol	ND	0.21	EPA 8270D	8-29-18	8-30-18	
1,2-Dichlorobenzene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2-Methylphenol (o-Cresol)	ND	0.041	EPA 8270D	8-29-18	8-30-18	
bis(2-Chloroisopropyl)ether	ND	0.041	EPA 8270D	8-29-18	8-30-18	
(3+4)-Methylphenol (m,p-Cresol)		0.041	EPA 8270D	8-29-18	8-30-18	
n-Nitroso-di-n-propylamine	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Hexachloroethane	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Nitrobenzene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Isophorone	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2-Nitrophenol	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2,4-Dimethylphenol	ND	0.041	EPA 8270D	8-29-18	8-30-18	
bis(2-Chloroethoxy)methane	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2,4-Dichlorophenol	ND	0.041	EPA 8270D	8-29-18	8-30-18	
1,2,4-Trichlorobenzene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Naphthalene	0.12	0.041	EPA 8270D	8-29-18	8-30-18	
4-Chloroaniline	ND	0.21	EPA 8270D	8-29-18	8-30-18	
Hexachlorobutadiene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
4-Chloro-3-methylphenol	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2-Methylnaphthalene	ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
1-Methylnaphthalene	0.012	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
Hexachlorocyclopentadiene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2,4,6-Trichlorophenol	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2,3-Dichloroaniline	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2,4,5-Trichlorophenol	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2-Chloronaphthalene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2-Nitroaniline	ND	0.041	EPA 8270D	8-29-18	8-30-18	
1,4-Dinitrobenzene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Dimethylphthalate	ND	0.041	EPA 8270D	8-29-18	8-30-18	
1,3-Dinitrobenzene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2,6-Dinitrotoluene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
1,2-Dinitrobenzene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Acenaphthylene	ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
3-Nitroaniline	ND	0.041	EPA 8270D	8-29-18	8-30-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	/IW-135-30.0-082418		Wethou	rrepared	Analyzeu	ı iags
Laboratory ID:	08-292-05					
2,4-Dinitrophenol	ND	0.21	EPA 8270D	8-29-18	8-30-18	
Acenaphthene	ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
4-Nitrophenol	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2,4-Dinitrotoluene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Dibenzofuran	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2,3,5,6-Tetrachlorophenol	ND	0.041	EPA 8270D	8-29-18	8-30-18	
2,3,4,6-Tetrachlorophenol	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Diethylphthalate	ND	0.21	EPA 8270D	8-29-18	8-30-18	
4-Chlorophenyl-phenylether	ND	0.041	EPA 8270D	8-29-18	8-30-18	
4-Nitroaniline	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Fluorene	ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
4,6-Dinitro-2-methylphenol	ND	0.0002	EPA 8270D	8-29-18	8-30-18	
n-Nitrosodiphenylamine	ND ND	0.21	EPA 8270D EPA 8270D	8-29-18	8-30-18	
1,2-Diphenylhydrazine	ND ND	0.041	EPA 8270D EPA 8270D	8-29-18	8-30-18	
4-Bromophenyl-phenylether	ND ND	0.041	EPA 8270D	8-29-18	8-30-18	
Hexachlorobenzene	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Pentachlorophenol	ND	0.041	EPA 8270D	8-29-18	8-30-18	
Phenanthrene	ND ND	0.21	EPA 8270D/SIM	8-29-18	8-29-18	
Anthracene	ND ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
Carbazole	ND	0.0082	EPA 8270D/SIM	8-29-18	8-30-18	
	ND	0.041				
Di-n-butylphthalate Fluoranthene	ND ND	0.21	EPA 8270D	8-29-18 8-29-18	8-30-18 8-29-18	
Benzidine	ND ND	0.0062	EPA 8270D/SIM EPA 8270D	8-29-18		
					8-30-18	
Pyrene	ND ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
Butylbenzylphthalate	ND ND	0.21	EPA 8270D	8-29-18	8-30-18	
bis-2-Ethylhexyladipate	ND	0.21	EPA 8270D	8-29-18	8-30-18	
3,3'-Dichlorobenzidine	ND	0.21	EPA 8270D	8-29-18	8-30-18	
Benzo[a]anthracene	ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
Chrysene	ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
bis(2-Ethylhexyl)phthalate	ND	0.21	EPA 8270D	8-29-18	8-30-18	
Di-n-octylphthalate	ND	0.21	EPA 8270D	8-29-18	8-30-18	
Benzo[b]fluoranthene	ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo(j,k)fluoranthene	ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[a]pyrene	ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
Indeno[1,2,3-cd]pyrene	ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
Dibenz[a,h]anthracene	ND ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[g,h,i]perylene	ND	0.0082	EPA 8270D/SIM	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	73 72	19 - 103				
Phenol-d6	72 64	30 - 103 37 - 105				
Nitrobenzene-d5	64 71	27 - 105 26 - 102				
2-Fluorobiphenyl		36 - 102				
2,4,6-Tribromophenol	80 79	33 - 110				
Terphenyl-d14	<i>7</i> 8	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0829S1					
n-Nitrosodimethylamine	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Pyridine	ND	0.33	EPA 8270D	8-29-18	8-29-18	
Phenol	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Aniline	ND	0.17	EPA 8270D	8-29-18	8-29-18	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2-Chlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18	
1,3-Dichlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
1,4-Dichlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Benzyl alcohol	ND	0.17	EPA 8270D	8-29-18	8-29-18	
1,2-Dichlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270D	8-29-18	8-29-18	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270D	8-29-18	8-29-18	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270D	8-29-18	8-29-18	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Hexachloroethane	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Nitrobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Isophorone	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2-Nitrophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2,4-Dimethylphenol	ND	0.033	EPA 8270D	8-29-18	8-29-18	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2,4-Dichlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Naphthalene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
4-Chloroaniline	ND	0.17	EPA 8270D	8-29-18	8-29-18	
Hexachlorobutadiene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2,3-Dichloroaniline	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2-Chloronaphthalene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2-Nitroaniline	ND	0.033	EPA 8270D	8-29-18	8-29-18	
1,4-Dinitrobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Dimethylphthalate	ND	0.033	EPA 8270D	8-29-18	8-29-18	
1,3-Dinitrobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2,6-Dinitrotoluene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
1,2-Dinitrobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
3-Nitroaniline	ND	0.033	EPA 8270D	8-29-18	8-29-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0829S1					
2,4-Dinitrophenol	ND	0.17	EPA 8270D	8-29-18	8-29-18	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
4-Nitrophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2,4-Dinitrotoluene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Dibenzofuran	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Diethylphthalate	ND	0.17	EPA 8270D	8-29-18	8-29-18	
4-Chlorophenyl-phenylether		0.033	EPA 8270D	8-29-18	8-29-18	
4-Nitroaniline	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Fluorene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
4,6-Dinitro-2-methylphenol	ND	0.17	EPA 8270D	8-29-18	8-29-18	
n-Nitrosodiphenylamine	ND	0.033	EPA 8270D	8-29-18	8-29-18	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270D	8-29-18	8-29-18	
4-Bromophenyl-phenylether	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Hexachlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Pentachlorophenol	ND	0.17	EPA 8270D	8-29-18	8-29-18	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
Anthracene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
Carbazole	ND	0.033	EPA 8270D	8-29-18	8-29-18	
Di-n-butylphthalate	ND	0.17	EPA 8270D	8-29-18	8-29-18	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
Benzidine	ND	0.33	EPA 8270D	8-29-18	8-29-18	
Pyrene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
Butylbenzylphthalate	ND	0.17	EPA 8270D	8-29-18	8-29-18	
bis-2-Ethylhexyladipate	ND	0.17	EPA 8270D	8-29-18	8-29-18	
3,3'-Dichlorobenzidine	ND	0.17	EPA 8270D	8-29-18	8-29-18	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
Chrysene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
bis(2-Ethylhexyl)phthalate	ND	0.17	EPA 8270D	8-29-18	8-29-18	
Di-n-octylphthalate	ND	0.17	EPA 8270D	8-29-18	8-29-18	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
Indeno[1,2,3-cd]pyrene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	79	19 - 103				
Phenol-d6	79	30 - 103				
Nitrobenzene-d5	73	27 - 105				
2-Fluorobiphenyl	75	36 - 102				
2,4,6-Tribromophenol	88	33 - 110				
Terphenyl-d14	81	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source		cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											_
Laboratory ID:	08-2	29-04									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	1.15	0.989	1.33	1.33	ND	86	74	37 - 94	15	27	_
2-Chlorophenol	1.21	1.03	1.33	1.33	ND	91	77	37 - 95	16	32	
1,4-Dichlorobenzene	0.568	0.493	0.667	0.667	ND	85	74	23 - 97	14	37	
n-Nitroso-di-n-propylamine	0.580	0.501	0.667	0.667	ND	87	75	40 - 91	15	28	
1,2,4-Trichlorobenzene	0.563	0.505	0.667	0.667	ND	84	76	37 - 93	11	30	
4-Chloro-3-methylphenol	1.11	1.03	1.33	1.33	ND	83	77	46 - 96	7	25	
Acenaphthene	0.585	0.526	0.667	0.667	0.0395	82	73	43 - 90	11	25	
4-Nitrophenol	1.15	1.03	1.33	1.33	ND	86	77	31 - 104	11	28	
2,4-Dinitrotoluene	0.575	0.516	0.667	0.667	ND	86	77	31 - 96	11	32	
Pentachlorophenol	1.38	1.22	1.33	1.33	ND	104	92	20 - 123	12	29	
Pyrene	0.582	0.518	0.667	0.667	0.0828	75	65	28 - 114	12	35	
Surrogate:											
2-Fluorophenol						85	71	19 - 103			
Phenol-d6						84	73	30 - 103			
Nitrobenzene-d5						72	65	27 - 105			
2-Fluorobiphenyl						77	70	36 - 102			
2,4,6-Tribromophenol						92	84	33 - 110			
Terphenyl-d14						78	71	38 - 108			

Project: 397-019

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-135-5.0-082418					
Laboratory ID:	08-292-01					
Arsenic	ND	12	EPA 6010D	8-28-18	8-31-18	
Barium	120	3.1	EPA 6010D	8-28-18	8-31-18	
Cadmium	ND	0.61	EPA 6010D	8-28-18	8-31-18	
Chromium	48	0.61	EPA 6010D	8-28-18	8-31-18	
Lead	16	6.1	EPA 6010D	8-28-18	8-31-18	
Mercury	ND	0.31	EPA 7471B	8-29-18	8-29-18	
Selenium	ND	12	EPA 6010D	8-28-18	8-31-18	
Silver	ND	1.2	EPA 6010D	8-28-18	8-31-18	

Client ID:	FMW-135-25.0-082418					
Laboratory ID:	08-292-04					
Arsenic	ND	14	EPA 6010D	8-28-18	8-31-18	
Barium	120	3.5	EPA 6010D	8-28-18	8-31-18	
Cadmium	ND	0.69	EPA 6010D	8-28-18	8-31-18	
Chromium	60	0.69	EPA 6010D	8-28-18	8-31-18	
Lead	ND	6.9	EPA 6010D	8-28-18	8-31-18	
Mercury	ND	0.35	EPA 7471B	8-29-18	8-29-18	
Selenium	ND	14	EPA 6010D	8-28-18	8-31-18	
Silver	ND	1.4	EPA 6010D	8-28-18	8-31-18	

Client ID:	FMW-135-30.0-082418					
Laboratory ID:	08-292-05					
Arsenic	ND	12	EPA 6010D	8-28-18	8-31-18	
Barium	66	3.1	EPA 6010D	8-28-18	8-31-18	
Cadmium	ND	0.62	EPA 6010D	8-28-18	8-31-18	
Chromium	44	0.62	EPA 6010D	8-28-18	8-31-18	
Lead	ND	6.2	EPA 6010D	8-28-18	8-31-18	
Mercury	ND	0.31	EPA 7471B	8-29-18	8-29-18	
Selenium	ND	12	EPA 6010D	8-28-18	8-31-18	
Silver	ND	1.2	EPA 6010D	8-28-18	8-31-18	

Project: 397-019

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK				-	-	
Laboratory ID:	MB0828SM2					
Arsenic	ND	10	EPA 6010D	8-28-18	8-29-18	
Barium	ND	2.5	EPA 6010D	8-28-18	8-29-18	
Cadmium	ND	0.50	EPA 6010D	8-28-18	8-29-18	
Chromium	ND	0.50	EPA 6010D	8-28-18	8-28-18	
Lead	ND	5.0	EPA 6010D	8-28-18	8-29-18	
Selenium	ND	10	EPA 6010D	8-28-18	8-29-18	
Silver	ND	1.0	EPA 6010D	8-28-18	8-29-18	
Laboratory ID:	MB0829S1					
Mercury	ND	0.25	EPA 7471B	8-29-18	8-29-18	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-26	65-16									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		ı	NA	NA	NA	20	
Barium	22.1	19.5	NA	NA		1	NΑ	NA	13	20	
Cadmium	25.2	23.2	NA	NA		1	NΑ	NA	8	20	
Chromium	8.95	7.40	NA	NA		1	NA	NA	19	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NΑ	NA	NA	20	
Laboratory ID:	08-27	77-03									
Mercury	ND	ND	NA	NA		1	NΑ	NA	NA	20	
MATRIX SPIKES	20.04										
Laboratory ID:		65-16									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	111	112	100	100	ND	111	112	75-125	1	20	
Barium	141	139	100	100	22.1	119	117	75-125	1	20	
Cadmium	75.1	75.9	50.0	50.0	25.2	100	101	75-125	1	20	
Chromium	109	108	100	100	8.95	100	99	75-125	1	20	
Lead	237	239	250	250	ND	95	95	75-125	1	20	
Selenium	104	101	100	100	ND	104	101	75-125	2	20	
Silver	25.6	25.4	25.0	25.0	ND	102	102	75-125	1	20	
Laboratory ID:	08-27	77-03									
Mercury	0.534	0.537	0.500	0.500	0.0115	105	105	80-120	1	20	
111010419	0.004	3.001	0.000	3.000	3.0110			00 120			

Project: 397-019

% MOISTURE

Date Analyzed: 8-27&28-18

Client ID	Lab ID	% Moisture
FMW-135-5.0-082418	08-292-01	18
FMW-135-15.0-082418	08-292-02	70
FMW-135-25.0-082418	08-292-04	28
FMW-135-30.0-082418	08-292-05	19
FMW-135-35.0-082418	08-292-06	19
FMW-135-50.0-082418	08-292-09	16

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

T
g
0
1
ł.
0
\rightarrow

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		9 FMW135-50-0 -082415	8 FMW-135-450-082418.	7 tmw-135-40-0-082418	6 FMW 155-35-0-082418.	5 film-135-30-0-082418	4 FMW-135-250-082468	3 FMW-185-260-082418	2 FMW-135-150-082418	1 FMW-135-50-082418	14648 NE 95th Street · Redmond, WA 98052 Phone: (425) 883-3881 · www.onsite-env.com Company: Favallar Project Number: 397-019 Project Name: Mock 38 west Paperty Project Manager: Sawaw Rock Sampled by: Greg Retendance Sample Identification	Analytical Laboratory Testing Services
Reviewed/Date				\	見る方及	foraller	Company	1	T 0850 T	0930	8815	0850	0835	0823	0810	0750	8/24/6 0735 Soil 5	(in working days) (Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (TPH analysis 5 Days) (other) Date Time Sampled Sampled Matrix Number	Turnaround Request
				2	875/18 840	8/24/18 0840	Date Time		>			×				メ		NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Gx NWTPH-Dx (Acid / SG Clean-up) Volatiles 8260C Halogenated Volatiles 8260C EDB EPA 8011 (Waters Only)	
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard	X-Added 8/27/18. 08(STA)	thre Confirmation	100 house	and the same same	please Contact Projet mounty	Comments/Special Instructions						× +	×		× ×	×	Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level) PCBs 8082A Organochlorine Pesticides 8081B Organophosphorus Pesticides 8270D/SIM Chlorinated Acid Herbicides 8151A Total RCRA Metals Total MTCA Metals TCLP Metals HEM (oil and grease) 1664A	000

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 5, 2018

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019

Laboratory Reference No. 1808-293

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on August 25, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-019

Case Narrative

Samples were collected on August 24, 2018 and received by the laboratory on August 25, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Semivolatiles EPA 8270D/SIM Analysis

Sample FMW-133-20.0-082418 had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-132-5.0-082418					
Laboratory ID:	08-293-02					
Benzene	ND	0.020	EPA 8021B	8-27-18	8-28-18	
Toluene	ND	0.084	EPA 8021B	8-27-18	8-28-18	
Ethyl Benzene	ND	0.084	EPA 8021B	8-27-18	8-28-18	
m,p-Xylene	ND	0.084	EPA 8021B	8-27-18	8-28-18	
o-Xylene	ND	0.084	EPA 8021B	8-27-18	8-28-18	
Gasoline	ND	8.4	NWTPH-Gx	8-27-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	57-129				
Client ID:	FMW-133-10.0-082418	;				
Laboratory ID:	08-293-03					
Benzene	ND	0.057	EPA 8021B	8-27-18	8-28-18	
Toluene	ND	0.28	EPA 8021B	8-27-18	8-28-18	
Ethyl Benzene	ND	0.28	EPA 8021B	8-27-18	8-28-18	
m,p-Xylene	ND	0.28	EPA 8021B	8-27-18	8-28-18	
o-Xylene	ND	0.28	EPA 8021B	8-27-18	8-28-18	
Gasoline	ND	28	NWTPH-Gx	8-27-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
Eluarahanzana	00	F7 120				

Project: 397-019

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0827S1					
Benzene	ND	0.020	EPA 8021B	8-27-18	8-27-18	
Toluene	ND	0.050	EPA 8021B	8-27-18	8-27-18	
Ethyl Benzene	ND	0.050	EPA 8021B	8-27-18	8-27-18	
m,p-Xylene	ND	0.050	EPA 8021B	8-27-18	8-27-18	
o-Xylene	ND	0.050	EPA 8021B	8-27-18	8-27-18	
Gasoline	ND	5.0	NWTPH-Gx	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits			•	

Surrogate: Percent Recovery Control Limits Fluorobenzene 90 57-129

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-27	76-01									
	ORIG	DUP									_
Benzene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						104	103	57-129			
SPIKE BLANKS											
Laboratory ID:	SB08	327S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.923	0.893	1.00	1.00		92	89	69-111	3	10	
Toluene	0.915	0.880	1.00	1.00		92	88	70-114	4	11	
Ethyl Benzene	0.918	0.886	1.00	1.00		92	89	70-115	4	10	
m,p-Xylene	0.907	0.877	1.00	1.00		91	88	72-115	3	10	
o-Xylene	0.917	0.882	1.00	1.00		92	88	71-115	4	11	
Surrogate:					·					·	

86

57-129

Fluorobenzene

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-132-5.0-082418					
Laboratory ID:	08-293-02					
Diesel Range Organics	730	180	NWTPH-Dx	8-28-18	8-30-18	
Lube Oil Range Organics	2600	360	NWTPH-Dx	8-28-18	8-30-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	FMW-133-10.0-082418					
Laboratory ID:	08-293-03					
Diesel Range Organics	ND	83	NWTPH-Dx	8-28-18	8-28-18	
Lube Oil Range Organics	470	170	NWTPH-Dx	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0828S1					
Diesel Range Organics	ND	25	NWTPH-Dx	8-28-18	8-28-18	
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-27	77-03								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						124 113	50-150			

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: FM	W-132-5.0-082418					
Laboratory ID:	08-293-02					
n-Nitrosodimethylamine	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Pyridine	ND	4.8	EPA 8270D	8-29-18	8-31-18	
Phenol	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Aniline	ND	2.4	EPA 8270D	8-29-18	8-31-18	
bis(2-Chloroethyl)ether	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2-Chlorophenol	ND	0.48	EPA 8270D	8-29-18	8-31-18	
1,3-Dichlorobenzene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
1,4-Dichlorobenzene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Benzyl alcohol	ND	2.4	EPA 8270D	8-29-18	8-31-18	
1,2-Dichlorobenzene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2-Methylphenol (o-Cresol)	ND	0.48	EPA 8270D	8-29-18	8-31-18	
bis(2-Chloroisopropyl)ether	ND	0.48	EPA 8270D	8-29-18	8-31-18	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.48	EPA 8270D	8-29-18	8-31-18	
n-Nitroso-di-n-propylamine	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Hexachloroethane	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Nitrobenzene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Isophorone	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2-Nitrophenol	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2,4-Dimethylphenol	ND	0.48	EPA 8270D	8-29-18	8-31-18	
bis(2-Chloroethoxy)methane	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2,4-Dichlorophenol	ND	0.48	EPA 8270D	8-29-18	8-31-18	
1,2,4-Trichlorobenzene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Naphthalene	2.0	0.48	EPA 8270D	8-29-18	8-31-18	
4-Chloroaniline	ND	2.4	EPA 8270D	8-29-18	8-31-18	
Hexachlorobutadiene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
4-Chloro-3-methylphenol	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2-Methylnaphthalene	2.6	0.48	EPA 8270D	8-29-18	8-31-18	
1-Methylnaphthalene	2.0	0.48	EPA 8270D	8-29-18	8-31-18	
Hexachlorocyclopentadiene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2,4,6-Trichlorophenol	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2,3-Dichloroaniline	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2,4,5-Trichlorophenol	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2-Chloronaphthalene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2-Nitroaniline	ND	0.48	EPA 8270D	8-29-18	8-31-18	
1,4-Dinitrobenzene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Dimethylphthalate	ND	0.48	EPA 8270D	8-29-18	8-31-18	
1,3-Dinitrobenzene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2,6-Dinitrotoluene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
1,2-Dinitrobenzene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Acenaphthylene	0.10	0.0095	EPA 8270D/SIM	8-29-18	8-29-18	
3-Nitroaniline	ND	0.48	EPA 8270D	8-29-18	8-31-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: F	MW-132-5.0-082418					
Laboratory ID:	08-293-02					
2,4-Dinitrophenol	ND	2.4	EPA 8270D	8-29-18	8-31-18	
Acenaphthene	1.5	0.48	EPA 8270D	8-29-18	8-31-18	
4-Nitrophenol	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2,4-Dinitrotoluene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Dibenzofuran	0.70	0.48	EPA 8270D	8-29-18	8-31-18	
2,3,5,6-Tetrachlorophenol	ND	0.48	EPA 8270D	8-29-18	8-31-18	
2,3,4,6-Tetrachlorophenol	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Diethylphthalate	ND	2.4	EPA 8270D	8-29-18	8-31-18	
4-Chlorophenyl-phenylether	ND	0.48	EPA 8270D	8-29-18	8-31-18	
4-Nitroaniline	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Fluorene	0.84	0.48	EPA 8270D	8-29-18	8-31-18	
4,6-Dinitro-2-methylphenol	ND	2.4	EPA 8270D	8-29-18	8-31-18	
n-Nitrosodiphenylamine	ND	0.48	EPA 8270D	8-29-18	8-31-18	
1,2-Diphenylhydrazine	ND	0.48	EPA 8270D	8-29-18	8-31-18	
4-Bromophenyl-phenylether	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Hexachlorobenzene	ND	0.48	EPA 8270D	8-29-18	8-31-18	
Pentachlorophenol	ND	2.4	EPA 8270D	8-29-18	8-31-18	
Phenanthrene	18	0.48	EPA 8270D	8-29-18	8-31-18	
Anthracene	3.3	0.48	EPA 8270D	8-29-18	8-31-18	
Carbazole	1.1	0.48	EPA 8270D	8-29-18	8-31-18	
Di-n-butylphthalate	ND	2.4	EPA 8270D	8-29-18	8-31-18	
Fluoranthene	15	0.48	EPA 8270D	8-29-18	8-31-18	
Benzidine	ND	4.8	EPA 8270D	8-29-18	8-31-18	
Pyrene	27	0.48	EPA 8270D	8-29-18	8-31-18	
Butylbenzylphthalate	ND	2.4	EPA 8270D	8-29-18	8-31-18	
bis-2-Ethylhexyladipate	ND	2.4	EPA 8270D	8-29-18	8-31-18	
3,3'-Dichlorobenzidine	ND	2.4	EPA 8270D	8-29-18	8-31-18	
Benzo[a]anthracene	11	0.48	EPA 8270D	8-29-18	8-31-18	
Chrysene	13	0.48	EPA 8270D	8-29-18	8-31-18	
bis(2-Ethylhexyl)phthalate	ND	2.4	EPA 8270D	8-29-18	8-31-18	
Di-n-octylphthalate	ND	2.4	EPA 8270D	8-29-18	8-31-18	
Benzo[b]fluoranthene	10	0.48	EPA 8270D	8-29-18	8-31-18	
Benzo(j,k)fluoranthene	2.9	0.48	EPA 8270D	8-29-18	8-31-18	
Benzo[a]pyrene	9.4	0.48	EPA 8270D	8-29-18	8-31-18	
Indeno[1,2,3-cd]pyrene	4.1	0.48	EPA 8270D	8-29-18	8-31-18	
Dibenz[a,h]anthracene	1.4	0.48	EPA 8270D	8-29-18	8-31-18	
Benzo[g,h,i]perylene	4.4	0.48	EPA 8270D	8-29-18	8-31-18	
Surrogate:	Percent Recovery	Control Limits				_
2-Fluorophenol	54	19 - 103				
Phenol-d6	53	30 - 103				
Nitrobenzene-d5	67	27 - 105				
2-Fluorobiphenyl						
	77	36 - 102				
2,4,6-Tribromophenol Terphenyl-d14		36 - 102 33 - 110				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: FM	IW-133-10.0-082418					
Laboratory ID:	08-293-03					
n-Nitrosodimethylamine	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Pyridine	ND	2.8	EPA 8270D	8-29-18	8-30-18	
Phenol	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Aniline	ND	1.4	EPA 8270D	8-29-18	8-30-18	
bis(2-Chloroethyl)ether	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2-Chlorophenol	ND	0.28	EPA 8270D	8-29-18	8-30-18	
1,3-Dichlorobenzene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
1,4-Dichlorobenzene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Benzyl alcohol	ND	1.4	EPA 8270D	8-29-18	8-30-18	
1,2-Dichlorobenzene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2-Methylphenol (o-Cresol)	ND	0.28	EPA 8270D	8-29-18	8-30-18	
bis(2-Chloroisopropyl)ether	ND	0.28	EPA 8270D	8-29-18	8-30-18	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.28	EPA 8270D	8-29-18	8-30-18	
n-Nitroso-di-n-propylamine	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Hexachloroethane	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Nitrobenzene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Isophorone	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2-Nitrophenol	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2,4-Dimethylphenol	ND	0.28	EPA 8270D	8-29-18	8-30-18	
bis(2-Chloroethoxy)methane	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2,4-Dichlorophenol	ND	0.28	EPA 8270D	8-29-18	8-30-18	
1,2,4-Trichlorobenzene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Naphthalene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
4-Chloroaniline	ND	1.4	EPA 8270D	8-29-18	8-30-18	
Hexachlorobutadiene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
4-Chloro-3-methylphenol	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2-Methylnaphthalene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
1-Methylnaphthalene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
Hexachlorocyclopentadiene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2,4,6-Trichlorophenol	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2,3-Dichloroaniline	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2,4,5-Trichlorophenol	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2-Chloronaphthalene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2-Nitroaniline	ND	0.28	EPA 8270D	8-29-18	8-30-18	
1,4-Dinitrobenzene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Dimethylphthalate	ND	0.28	EPA 8270D	8-29-18	8-30-18	
1,3-Dinitrobenzene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2,6-Dinitrotoluene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
1,2-Dinitrobenzene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Acenaphthylene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
3-Nitroaniline	ND	0.28	EPA 8270D	8-29-18	8-30-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: FN	IW-133-10.0-082418					
Laboratory ID:	08-293-03					
2,4-Dinitrophenol	ND	1.4	EPA 8270D	8-29-18	8-30-18	
Acenaphthene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
4-Nitrophenol	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2,4-Dinitrotoluene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Dibenzofuran	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2,3,5,6-Tetrachlorophenol	ND	0.28	EPA 8270D	8-29-18	8-30-18	
2,3,4,6-Tetrachlorophenol	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Diethylphthalate	ND	1.4	EPA 8270D	8-29-18	8-30-18	
4-Chlorophenyl-phenylether	ND	0.28	EPA 8270D	8-29-18	8-30-18	
4-Nitroaniline	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Fluorene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
4,6-Dinitro-2-methylphenol	ND	1.4	EPA 8270D	8-29-18	8-30-18	
n-Nitrosodiphenylamine	ND	0.28	EPA 8270D	8-29-18	8-30-18	
1,2-Diphenylhydrazine	ND	0.28	EPA 8270D	8-29-18	8-30-18	
4-Bromophenyl-phenylether	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Hexachlorobenzene	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Pentachlorophenol	ND	1.4	EPA 8270D	8-29-18	8-30-18	
Phenanthrene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
Anthracene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
Carbazole	ND	0.28	EPA 8270D	8-29-18	8-30-18	
Di-n-butylphthalate	ND	1.4	EPA 8270D	8-29-18	8-30-18	
Fluoranthene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
Benzidine	ND	2.8	EPA 8270D	8-29-18	8-30-18	
Pyrene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
Butylbenzylphthalate	ND	1.4	EPA 8270D	8-29-18	8-30-18	
bis-2-Ethylhexyladipate	ND	1.4	EPA 8270D	8-29-18	8-30-18	
3,3'-Dichlorobenzidine	ND	1.4	EPA 8270D	8-29-18	8-30-18	
Benzo[a]anthracene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
Chrysene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
bis(2-Ethylhexyl)phthalate	ND	1.4	EPA 8270D	8-29-18	8-30-18	
Di-n-octylphthalate	ND	1.4	EPA 8270D	8-29-18	8-30-18	
Benzo[b]fluoranthene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo(j,k)fluoranthene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[a]pyrene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
Indeno[1,2,3-cd]pyrene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
Dibenz[a,h]anthracene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[g,h,i]perylene	ND	0.055	EPA 8270D/SIM	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	57	19 - 103				
Phenol-d6	61	30 - 103				
Nitrobenzene-d5	52	27 - 105				
2-Fluorobiphenyl	59	36 - 102				
2,4,6-Tribromophenol	73	33 - 110				
Terphenyl-d14	65	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Amaluta	Danik	DOL	Marthaul	Date	Date	-
Analyte Client ID: Fl	Result MW-133-20.0-082418	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	08-293-05	0.040	EDA 0070D	0.20.40	0.20.40	
n-Nitrosodimethylamine	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Pyridine	ND ND	0.40	EPA 8270D	8-29-18	8-30-18	
Phenol	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Aniline	ND	0.20	EPA 8270D	8-29-18	8-30-18	
bis(2-Chloroethyl)ether	ND ND	0.040	EPA 8270D	8-29-18	8-30-18	
2-Chlorophenol	ND	0.040	EPA 8270D	8-29-18	8-30-18	
1,3-Dichlorobenzene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
1,4-Dichlorobenzene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Benzyl alcohol	ND	0.20	EPA 8270D	8-29-18	8-30-18	
1,2-Dichlorobenzene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2-Methylphenol (o-Cresol)	ND	0.040	EPA 8270D	8-29-18	8-30-18	
bis(2-Chloroisopropyl)ether	ND	0.040	EPA 8270D	8-29-18	8-30-18	
(3+4)-Methylphenol (m,p-Cresol	,	0.040	EPA 8270D	8-29-18	8-30-18	
n-Nitroso-di-n-propylamine	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Hexachloroethane	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Nitrobenzene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Isophorone	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2-Nitrophenol	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2,4-Dimethylphenol	0.091	0.040	EPA 8270D	8-29-18	8-30-18	
bis(2-Chloroethoxy)methane	e ND	0.040	EPA 8270D	8-29-18	8-30-18	
2,4-Dichlorophenol	ND	0.040	EPA 8270D	8-29-18	8-30-18	
1,2,4-Trichlorobenzene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Naphthalene	0.25	0.040	EPA 8270D	8-29-18	8-30-18	
4-Chloroaniline	ND	0.20	EPA 8270D	8-29-18	8-30-18	
Hexachlorobutadiene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
4-Chloro-3-methylphenol	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2-Methylnaphthalene	0.042	0.040	EPA 8270D	8-29-18	8-30-18	
1-Methylnaphthalene	0.035	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Hexachlorocyclopentadiene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2,4,6-Trichlorophenol	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2,3-Dichloroaniline	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2,4,5-Trichlorophenol	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2-Chloronaphthalene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2-Nitroaniline	ND	0.040	EPA 8270D	8-29-18	8-30-18	
1,4-Dinitrobenzene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Dimethylphthalate	ND	0.040	EPA 8270D	8-29-18	8-30-18	
1,3-Dinitrobenzene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2,6-Dinitrotoluene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
1,2-Dinitrobenzene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Acenaphthylene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
3-Nitroaniline	ND	0.040	EPA 8270D	8-29-18	8-30-18	

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	MW-133-20.0-082418			•	•	
Laboratory ID:	08-293-05					
2,4-Dinitrophenol	ND	0.20	EPA 8270D	8-29-18	8-30-18	
Acenaphthene	0.021	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
4-Nitrophenol	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2,4-Dinitrotoluene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Dibenzofuran	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2,3,5,6-Tetrachlorophenol	ND	0.040	EPA 8270D	8-29-18	8-30-18	
2,3,4,6-Tetrachlorophenol	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Diethylphthalate	ND	0.20	EPA 8270D	8-29-18	8-30-18	
4-Chlorophenyl-phenylether		0.040	EPA 8270D	8-29-18	8-30-18	
4-Nitroaniline	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Fluorene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
4,6-Dinitro-2-methylphenol	ND	0.20	EPA 8270D	8-29-18	8-30-18	
n-Nitrosodiphenylamine	ND	0.040	EPA 8270D	8-29-18	8-30-18	
1,2-Diphenylhydrazine	ND	0.040	EPA 8270D	8-29-18	8-30-18	
4-Bromophenyl-phenylether		0.040	EPA 8270D	8-29-18	8-30-18	
Hexachlorobenzene	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Pentachlorophenol	ND	0.20	EPA 8270D	8-29-18	8-30-18	
Phenanthrene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Anthracene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Carbazole	ND	0.040	EPA 8270D	8-29-18	8-30-18	
Di-n-butylphthalate	ND	0.20	EPA 8270D	8-29-18	8-30-18	
Fluoranthene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Benzidine	ND	0.40	EPA 8270D	8-29-18	8-30-18	
Pyrene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Butylbenzylphthalate	ND	0.20	EPA 8270D	8-29-18	8-30-18	
bis-2-Ethylhexyladipate	ND	0.20	EPA 8270D	8-29-18	8-30-18	
3,3'-Dichlorobenzidine	ND	0.20	EPA 8270D	8-29-18	8-30-18	
Benzo[a]anthracene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Chrysene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
bis(2-Ethylhexyl)phthalate	ND	0.20	EPA 8270D	8-29-18	8-30-18	
Di-n-octylphthalate	ND	0.20	EPA 8270D	8-29-18	8-30-18	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[a]pyrene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Indeno[1,2,3-cd]pyrene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Benzo[g,h,i]perylene	ND	0.0080	EPA 8270D/SIM	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	51	19 - 103				
Phenol-d6	70	30 - 103				
Nitrobenzene-d5	66	27 - 105				
2-Fluorobiphenyl	72	36 - 102				
2,4,6-Tribromophenol	27	33 - 110				Q
Terphenyl-d14	74	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	Flores	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Laboratory ID:	MB0829S1						
n-Nitrosodimethylamine	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Pyridine	ND	0.33	EPA 8270D	8-29-18	8-29-18		
Phenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Aniline	ND	0.17	EPA 8270D	8-29-18	8-29-18		
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2-Chlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
1,3-Dichlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
1,4-Dichlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Benzyl alcohol	ND	0.17	EPA 8270D	8-29-18	8-29-18		
1,2-Dichlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270D	8-29-18	8-29-18		
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270D	8-29-18	8-29-18		
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270D	8-29-18	8-29-18		
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Hexachloroethane	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Nitrobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Isophorone	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2-Nitrophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,4-Dimethylphenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,4-Dichlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Naphthalene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
4-Chloroaniline	ND	0.17	EPA 8270D	8-29-18	8-29-18		
Hexachlorobutadiene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
4-Chloro-3-methylphenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-29-18	8-29-18		
Hexachlorocyclopentadiene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,4,6-Trichlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,3-Dichloroaniline	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,4,5-Trichlorophenol	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2-Chloronaphthalene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2-Nitroaniline	ND	0.033	EPA 8270D	8-29-18	8-29-18		
1,4-Dinitrobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Dimethylphthalate	ND	0.033	EPA 8270D	8-29-18	8-29-18		
1,3-Dinitrobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
2,6-Dinitrotoluene			EPA 8270D	8-29-18	8-29-18		
1,2-Dinitrobenzene	ND	0.033	EPA 8270D	8-29-18	8-29-18		
Acenaphthylene				8-29-18			
	ND	0.0067	EPA 8270D/SIM	0-29-10	8-29-18		

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Laboratory ID: MB0829S1	Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
2.4-Dinitrophenol ND	Laboratory ID:	MR0820S1					
Acenaphthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 4-Nitrophenol ND 0.033 EPA 8270D 8-29-18 8-29-18 2,4-Dinitrotoluene ND 0.033 EPA 8270D 8-29-18 8-29-18 2,3,5,6-Tetrachlorophenol ND 0.033 EPA 8270D 8-29-18 8-29-18 2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270D 8-29-18 8-29-18 1,2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270D 8-29-18 8-29-18 1,2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270D 8-29-18 8-29-18 1,2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270D 8-29-18 8-29-18 4-Nitroanline ND 0.033 EPA 8270D 8-29-18 8-29-18 4-Nitroanline ND 0.033 EPA 8270D 8-29-18 8-29-18 4-G-Dinitro-2-methylphenol ND 0.17 EPA 8270D 8-29-18 8-29-18 4-G-Dinitro-2-methylphydrazine ND <t< td=""><td></td><td></td><td>0.17</td><td>FPΔ 8270D</td><td>8-20-18</td><td>8-20-18</td><td></td></t<>			0.17	FPΔ 8270D	8-20-18	8-20-18	
A-Nitrophenol ND							
2.4-Dinitrotoluene ND 0.033 EPA 8270D 8-29-18 8-29-18 Dibenzofuran ND 0.033 EPA 8270D 8-29-18 8-29-18 2,3,5,6-Tetrachlorophenol ND 0.033 EPA 8270D 8-29-18 8-29-18 Diethylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 4-Chlorophenyl-phenylether ND 0.033 EPA 8270D 8-29-18 8-29-18 4-Nitroanlline ND 0.033 EPA 8270D 8-29-18 8-29-18 4-Nitroanlline ND 0.033 EPA 8270D 8-29-18 8-29-18 Hoursene ND 0.0667 EPA 8270D 8-29-18 8-29-18 4-Bromophenyl-phenylamine ND 0.033 EPA 8270D 8-29-18 8-29-18 1-2-Diphenylhydrazine ND 0.033 EPA 8270D 8-29-18 8-29-18 4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-29-18 8-29-18 4-Bromophenyl-phenylether ND 0.033 EPA 82	-						
Dibenzofuran ND							
2,3,5,6-Tertrachlorophenol ND 0.033 EPA 8270D 8-29-18 8-29-18 2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270D 8-29-18 8-29-18 Diethylphthalate ND 0.033 EPA 8270D 8-29-18 8-29-18 4-Chlorophenyl-phenylether ND 0.033 EPA 8270D 8-29-18 8-29-18 4-Nitroanilline ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Fluorene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Fluorene ND 0.007 EPA 8270D 8-29-18 8-29-18 Horrophenyl-phenylamine ND 0.033 EPA 8270D 8-29-18 8-29-18 1,2-Diphenyldyrdzaine ND 0.033							
2.3.4.6-Tetrachlorophenol ND							
Diethylphthalate							
4-Chlorophenyl-phenylether ND 0.033 EPA 8270D 8-29-18 8-29-18 4-Nitroaniline ND 0.033 EPA 8270D 8-29-18 8-29-18 Fluorene ND 0.0067 EPA 8270D 8-29-18 8-29-18 4,6-Dinitro-2-methylphenol ND 0.033 EPA 8270D 8-29-18 8-29-18 1,2-Diphenylhydrazine ND 0.033 EPA 8270D 8-29-18 8-29-18 1,2-Diphenylhydrazine ND 0.033 EPA 8270D 8-29-18 8-29-18 4-Bromophenyl-phenylether ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 4-Bromophenyl-phenylether ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
4-Nitroanilline							
Fluorene							
4,6-Dinitro-2-methylphenol ND 0.17 EPA 8270D 8-29-18 8-29-18							
n-Nitrosodiphenylamine							
1,2-Diphenylhydrazine ND 0.033 EPA 8270D 8-29-18 8-29-18 4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-29-18 8-29-18 Hexachlorobenzene ND 0.033 EPA 8270D 8-29-18 8-29-18 Pentachlorophenol ND 0.17 EPA 8270D/SIM 8-29-18 8-29-18 Phenanthrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Carbazole ND 0.033 EPA 8270D/SIM 8-29-18 8-29-18 Di-n-butylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzidine ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo(alpantracene ND 0.17 EPA 8270D/SIM <							
4-Bromophenyl-phenylether ND 0.033 EPA 8270D 8-29-18 8-29-18 Hexachlorobenzene ND 0.033 EPA 8270D 8-29-18 8-29-18 Pentachlorophenol ND 0.17 EPA 8270D 8-29-18 8-29-18 Phenanthrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Carbazole ND 0.033 EPA 8270D/SIM 8-29-18 8-29-18 Din-butylphthalate ND 0.033 EPA 8270D/SIM 8-29-18 8-29-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzidine ND 0.33 EPA 8270D/SIM 8-29-18 8-29-18 Benzidine ND 0.17 EPA 8270D/SIM 8-29-18 8-29-18 Butylbenzylphthalate ND 0.17 EPA 8270D/SIM 8-29-18 8-29-18 Butylbenzyladipate ND 0.17 EPA 8270D/SIM <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Hexachlorobenzene ND 0.033 EPA 8270D 8-29-18 8-29-18 Pentachlorophenol ND 0.17 EPA 8270D 8-29-18 8-29-18 8-29-18 Pentachlorophenol ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Renathracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Renathracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Renathracene ND 0.0067 EPA 8270D 8-29-18 8-29-18 Renathracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Renathracene ND 0.17 EPA 8270D 8-29-18 8-29-18 Renathracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Renathracene ND 0.17 EPA 8270D 8-29-18 8-29-18 Renathracene ND 0.17 EPA 8270D 8-29-18 8-29-18 Renathracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Renathracene Renathracene Renathracene Renathracene Renathracene Renathracene Renathracene Renathracene							
Pentachlorophenol ND							
Phenanthrene							
Anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Carbazole ND 0.033 EPA 8270D 8-29-18 8-29-18 Di-n-butylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzidine ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-29-18 8-29-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D/SIM							
Carbazole ND 0.033 EPA 8270D 8-29-18 8-29-18 Di-n-butylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzidine ND 0.033 EPA 8270D 8-29-18 8-29-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D/SIM 8-29-18 8-29-18 Di-n-octylphthalate ND 0.0067 EPA 8270D/SIM <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Di-n-butylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzidine ND 0.33 EPA 8270D/SIM 8-29-18 8-29-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-29-18 8-29-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-29-18 8-29-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.17 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270							
Fluoranthene							
Benzidine ND 0.33 EPA 8270D 8-29-18 8-29-18 Pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-29-18 8-29-18 spanding ND 0.17 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[b]fillucranthene ND 0.0067							
Pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Butylbenzylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-29-18 8-29-18 3,3'-Dichlorobenzidine ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.017 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.017 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Bis-20-Ithylhexyllphthalate ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM							
Butylbenzylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-29-18 8-29-18 3,3'-Dichlorobenzidine ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[b]fluoranthene <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
bis-2-Ethylhexyladipate ND 0.17 EPA 8270D 8-29-18 8-29-18 3,3'-Dichlorobenzidine ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]hjariphyrene	_						
3,3'-Dichlorobenzidine ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 79 19 - 103 Phenol-d6<							
Benzo[a]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Chrysene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[g,h,i]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Surrogate: Percent Recovery Control Limits 2-29-18 8-29-18 8-29-18 Vitrobenzene-d5 73							
Chrysene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 79 30 - 103 Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 2,4,6-							
bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Di-n-octylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 79 19 - 103 Phenol-d6 79 30 - 103 Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 24,6-Tribromophenol 88 33 - 110							
Di-n-octylphthalate ND 0.17 EPA 8270D 8-29-18 8-29-18 Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 79 19 - 103 Phenol-d6 79 30 - 103 Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 2,4,6-Tribromophenol 88 33 - 110							
Benzo[b]fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo(j,k)fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 79 19 - 103 Phenol-d6 79 30 - 103 Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 2,4,6-Tribromophenol 88 33 - 110							
Benzo(j,k)fluoranthene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 79 19 - 103 Phenol-d6 79 30 - 103 Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 2,4,6-Tribromophenol 88 33 - 110	• •						
Benzo[a]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 79 19 - 103 Phenol-d6 79 30 - 103 Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 2,4,6-Tribromophenol 88 33 - 110							
Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 79 19 - 103 Phenol-d6 79 30 - 103 Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 2,4,6-Tribromophenol 88 33 - 110	<u> </u>						
Dibenz[a,h]anthracene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 79 19 - 103 Phenol-d6 79 30 - 103 Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 2,4,6-Tribromophenol 88 33 - 110							
Benzo[g,h,i]perylene ND 0.0067 EPA 8270D/SIM 8-29-18 8-29-18 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 79 19 - 103 Phenol-d6 79 30 - 103 Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 2,4,6-Tribromophenol 88 33 - 110							
Surrogate: Percent Recovery Control Limits 2-Fluorophenol 79 19 - 103 Phenol-d6 79 30 - 103 Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 2,4,6-Tribromophenol 88 33 - 110							
2-Fluorophenol 79 19 - 103 Phenol-d6 79 30 - 103 Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 2,4,6-Tribromophenol 88 33 - 110					<u> </u>	<u> </u>	
Phenol-d6 79 30 - 103 Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 2,4,6-Tribromophenol 88 33 - 110		-					
Nitrobenzene-d5 73 27 - 105 2-Fluorobiphenyl 75 36 - 102 2,4,6-Tribromophenol 88 33 - 110	•						
2-Fluorobiphenyl 75 36 - 102 2,4,6-Tribromophenol 88 33 - 110							
2,4,6-Tribromophenol 88 33 - 110							
	Terphenyl-d14	81	38 - 108				

Project: 397-019

SEMIVOLATILE ORGANICS EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-2	29-04									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	1.15	0.989	1.33	1.33	ND	86	74	37 - 94	15	27	
2-Chlorophenol	1.21	1.03	1.33	1.33	ND	91	77	37 - 95	16	32	
1,4-Dichlorobenzene	0.568	0.493	0.667	0.667	ND	85	74	23 - 97	14	37	
n-Nitroso-di-n-propylamine	0.580	0.501	0.667	0.667	ND	87	75	40 - 91	15	28	
1,2,4-Trichlorobenzene	0.563	0.505	0.667	0.667	ND	84	76	37 - 93	11	30	
4-Chloro-3-methylphenol	1.11	1.03	1.33	1.33	ND	83	77	46 - 96	7	25	
Acenaphthene	0.585	0.526	0.667	0.667	0.0395	82	73	43 - 90	11	25	
4-Nitrophenol	1.15	1.03	1.33	1.33	ND	86	77	31 - 104	11	28	
2,4-Dinitrotoluene	0.575	0.516	0.667	0.667	ND	86	77	31 - 96	11	32	
Pentachlorophenol	1.38	1.22	1.33	1.33	ND	104	92	20 - 123	12	29	
Pyrene	0.582	0.518	0.667	0.667	0.0828	75	65	28 - 114	12	35	
Surrogate:											
2-Fluorophenol						85	71	19 - 103			
Phenol-d6						84	73	30 - 103			
Nitrobenzene-d5						72	65	27 - 105			
2-Fluorobiphenyl						77	70	36 - 102			
2,4,6-Tribromophenol						92	84	33 - 110			
Terphenyl-d14						78	71	38 - 108			

Project: 397-019

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-133-10.0-082418					
Laboratory ID:	08-293-03					
Arsenic	ND	17	EPA 6010D	8-28-18	8-31-18	_
Barium	200	8.3	EPA 6010D	8-28-18	8-31-18	
Cadmium	ND	1.7	EPA 6010D	8-28-18	8-31-18	
Chromium	29	1.7	EPA 6010D	8-28-18	8-31-18	
Lead	18	17	EPA 6010D	8-28-18	8-31-18	
Mercury	ND	0.83	EPA 7471B	8-29-18	8-29-18	
Selenium	ND	17	EPA 6010D	8-28-18	8-31-18	
Silver	ND	3.3	EPA 6010D	8-28-18	8-31-18	

Client ID:	FMW-133-20.0-082418				
Laboratory ID:	08-293-05				
Arsenic	ND	12	EPA 6010D	8-28-18	8-31-18
Barium	50	3.0	EPA 6010D	8-28-18	8-31-18
Cadmium	ND	0.60	EPA 6010D	8-28-18	8-31-18
Chromium	27	0.60	EPA 6010D	8-28-18	8-31-18
Lead	ND	6.0	EPA 6010D	8-28-18	8-31-18
Mercury	ND	0.30	EPA 7471B	8-29-18	8-29-18
Selenium	ND	12	EPA 6010D	8-28-18	8-31-18
Silver	ND	1.2	EPA 6010D	8-28-18	8-31-18

Project: 397-019

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK				-	-	
Laboratory ID:	MB0828SM2					
Arsenic	ND	5.0	EPA 6010D	8-28-18	8-29-18	
Barium	ND	2.5	EPA 6010D	8-28-18	8-29-18	
Cadmium	ND	0.50	EPA 6010D	8-28-18	8-29-18	
Chromium	ND	0.50	EPA 6010D	8-28-18	8-28-18	
Lead	ND	5.0	EPA 6010D	8-28-18	8-29-18	
Selenium	ND	5.0	EPA 6010D	8-28-18	8-29-18	
Silver	ND	1.0	EPA 6010D	8-28-18	8-29-18	
Laboratory ID:	MB0829S1					
Mercury	ND	0.25	EPA 7471B	8-29-18	8-29-18	

					Source	Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-26	55-16									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
Barium	22.1	19.5	NA	NA		1	NΑ	NA	13	20	
Cadmium	25.2	23.2	NA	NA		1	NΑ	NA	8	20	
Chromium	8.95	7.40	NA	NA		1	NΑ	NA	19	20	
Lead	ND	ND	NA	NA		1	NΑ	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NΑ	NA	NA	20	
Silver	ND	ND	NA	NA		1	NΑ	NA	NA	20	
Laboratory ID:	08-27	77-03									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-26	55-16									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	111	112	100	100	ND	111	112	75-125	1	20	
Barium	141	139	100	100	22.1	119	117	75-125	1	20	
Cadmium	75.1	75.9	50.0	50.0	25.2	100	101	75-125	1	20	
Chromium	109	108	100	100	8.95	100	99	75-125	1	20	
Lead	237	239	250	250	ND	95	95	75-125	1	20	
Selenium	104	101	100	100	ND	104	101	75-125	2	20	
Silver	25.6	25.4	25.0	25.0	ND	102	102	75-125	1	20	
Laboratory ID:	08-27	77-03									
Mercury	0.534	0.537	0.500	0.500	0.0115	105	105	80-120	1	20	

Project: 397-019

% MOISTURE

Date Analyzed: 8-27&28-18

Client ID	Lab ID	% Moisture
FMW-132-5.0-082418	08-293-02	30
FMW-133-10.0-082418	08-293-03	70
FMW-133-20.0-082418	08-293-05	17

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page _____ of ___

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature			6 Mmw-133-25.0-08248	5 Fmm-133- 2000-082468	4 FMW-133-150-08248	3 FMW-133-100-082418	2 fmw-132-50-082418	1 FMW-132-2-5-082418	Lab ID Sample Identification	Sampled by Grea Reters	Jovan Ruark	Project Manager: Block 38 West Papenty	397-019	Project Number	Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052
Reviewed/Date					ORING K	Tavallou	Company			1 1902 -1	852	1849	1835	1430 5	8/24/by 1300 Soi) 5	Date Time Sampled Sampled Sampled Matrix	(other)	Contai	Standard (7 Days) (FPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)
					Ons sikels	0480 81/he/8	Date Time						*	メ		NWTF NWTF Volatil Halog	PH-Dx (es 826 enated	BTEX Aci	d / SG C es 82600 ters Only	0	o)		Laboratory Number:
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV	X-Added 8/27 118. DS ()	a the		Manager two months	Heave contact project	Comments/Special Instructions				メ		*	*		Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I	rolatiles ow-lev 8270D 8082A sochlori ophosi nated / RCRA I MTCA I	s 8270i el PAH /SIM (li /SIM (D/SIM s) pw-level) sticides & Pesticides	8081B es 8270			: 08-293
/erables (EDDs)		212		Lx-matix	and	ed					×		>	×		% Moi	sture						

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 11, 2018

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019

Laboratory Reference No. 1808-374

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on August 31, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-019

Case Narrative

Samples were collected on August 30, 2018 and received by the laboratory on August 31, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx Analysis

The gasoline result for sample FMW-134-083018 is mainly attributed to a single peak (Naphthalene).

Volatiles EPA 8260C Analysis

Some MTCA Method A cleanup levels are non-achievable for sample FMW-134-083018 due to the necessary dilution of the sample.

PAHs EPA 8270D/SIM Analysis

The associated method blank had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 397-019

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-134-083018					
Laboratory ID:	08-374-01					
Gasoline	1100	100	NWTPH-Gx	9-6-18	9-6-18	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	114	66-117				
Client ID:	FMW-133-083018					
Laboratory ID:	08-374-02					
Gasoline	ND	100	NWTPH-Gx	9-6-18	9-6-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	112	66-117				
Client ID:	FMW-132-083018					
Laboratory ID:	08-374-03					
Gasoline	ND	100	NWTPH-Gx	9-6-18	9-6-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	112	66-117				
Client ID:	FMW-130-083018					
Laboratory ID:	08-374-04					
Gasoline	ND	100	NWTPH-Gx	9-6-18	9-6-18	
Surrogate:	Percent Recovery	Control Limits			_	
Fluorobenzene	111	66-117				

Project: 397-019

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0906W3					
Gasoline	ND	100	NWTPH-Gx	9-6-18	9-6-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	66-117				

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE			•							
Laboratory ID:	08-38	30-02								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:			•	•					•	

Fluorobenzene 112 112 66-117

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Amaluta	Dogult	DOL	Mathad	Date	Date	Flores
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-134-083018					
Laboratory ID:	08-374-01	0.00	NIMTOLLO	0.7.40	0.0.40	
Diesel Range Organics	1.0	0.26	NWTPH-Dx	9-7-18	9-8-18	М
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	9-7-18	9-8-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	FMW-133-083018					
Laboratory ID:	08-374-02					
Diesel Range Organics	0.27	0.26	NWTPH-Dx	9-7-18	9-8-18	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	9-7-18	9-8-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	FMW-132-083018					
Laboratory ID:	08-374-03					
Diesel Range Organics	0,26	0.25	NWTPH-Dx	9-7-18	9-8-18	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	9-7-18	9-8-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	FMW-130-083018					
Laboratory ID:	08-374-04					
Diesel Range Organics	ND	0.25	NWTPH-Dx	9-7-18	9-8-18	
Lube Oil Range Organics	ND ND	0.25 0.41	NWTPH-Dx NWTPH-Dx	9-7-18 9-7-18	9-8-18	
			INVVIEN-DX	9-1-10	9-0-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				-	-	
Laboratory ID:	MB0907W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	9-7-18	9-8-18	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	9-7-18	9-8-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-37	74-01								
	ORIG	DUP								
Diesel Range Organics	1.03	1.01	NA	NA		NA	NA	2	NA	М
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						100 94	50-150			

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-134-083018					
Laboratory ID:	08-374-01					
Dichlorodifluoromethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Chloromethane	ND	5.0	EPA 8260C	9-5-18	9-5-18	
Vinyl Chloride	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Bromomethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Chloroethane	ND	5.0	EPA 8260C	9-5-18	9-5-18	
Trichlorofluoromethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloroethene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
lodomethane	ND	5.0	EPA 8260C	9-5-18	9-5-18	
Methylene Chloride	ND	5.0	EPA 8260C	9-5-18	9-5-18	
(trans) 1,2-Dichloroethene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloroethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
2,2-Dichloropropane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
(cis) 1,2-Dichloroethene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Bromochloromethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Chloroform	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,1,1-Trichloroethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Carbon Tetrachloride	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloropropene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Benzene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2-Dichloroethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Trichloroethene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2-Dichloropropane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Dibromomethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Bromodichloromethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
2-Chloroethyl Vinyl Ether	ND	5.0	EPA 8260C	9-5-18	9-5-18	
(cis) 1,3-Dichloropropene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Toluene	ND	5.0	EPA 8260C	9-5-18	9-5-18	
(trans) 1,3-Dichloropropene	e ND	1.0	EPA 8260C	9-5-18	9-5-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

A 1 4:	D	DOL	88 .41 . 1	Date	Date	-1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
	FMW-134-083018					
Laboratory ID:	08-374-01					
1,1,2-Trichloroethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Tetrachloroethene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,3-Dichloropropane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Dibromochloromethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2-Dibromoethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Chlorobenzene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,1,1,2-Tetrachloroethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Ethylbenzene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
m,p-Xylene	ND	2.0	EPA 8260C	9-5-18	9-5-18	
o-Xylene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Bromoform	ND	5.0	EPA 8260C	9-5-18	9-5-18	
Bromobenzene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,1,2,2-Tetrachloroethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2,3-Trichloropropane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
2-Chlorotoluene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
4-Chlorotoluene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,3-Dichlorobenzene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,4-Dichlorobenzene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2-Dichlorobenzene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2-Dibromo-3-chloropropane	e ND	5.0	EPA 8260C	9-5-18	9-5-18	
1,2,4-Trichlorobenzene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Hexachlorobutadiene	ND	5.0	EPA 8260C	9-5-18	9-5-18	
1,2,3-Trichlorobenzene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	75-127				

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-133-083018					
Laboratory ID:	08-374-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chloromethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromomethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chloroethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
lodomethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Methylene Chloride	ND	2.0	EPA 8260C	9-5-18	9-5-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chloroform	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Benzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Trichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Dibromomethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-5-18	9-5-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Toluene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260C	9-5-18	9-5-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-133-083018					
Laboratory ID:	08-374-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Ethylbenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
m,p-Xylene	ND	0.40	EPA 8260C	9-5-18	9-5-18	
o-Xylene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromoform	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Bromobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	75-127				

Surrogate:	Percent Recovery	Control Limit
Dibromofluoromethane	116	75-127
Toluene-d8	107	80-127
4-Bromofluorobenzene	89	78-125

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-132-083018					
Laboratory ID:	08-374-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chloromethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromomethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chloroethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
lodomethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Methylene Chloride	ND	2.0	EPA 8260C	9-5-18	9-5-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chloroform	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Benzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Trichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Dibromomethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-5-18	9-5-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Toluene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260C	9-5-18	9-5-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-132-083018					
Laboratory ID:	08-374-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Ethylbenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
m,p-Xylene	ND	0.40	EPA 8260C	9-5-18	9-5-18	
o-Xylene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromoform	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Bromobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	75-127				
Taluana do	105	00 127				

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-130-083018					
Laboratory ID:	08-374-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chloromethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromomethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chloroethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
lodomethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-5-18	9-5-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
(cis) 1,2-Dichloroethene	0.27	0.20	EPA 8260C	9-5-18	9-5-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chloroform	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Benzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Trichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Dibromomethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-5-18	9-5-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Toluene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-5-18	9-5-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-130-083018					
Laboratory ID:	08-374-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Ethylbenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
m,p-Xylene	ND	0.40	EPA 8260C	9-5-18	9-5-18	
o-Xylene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromoform	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Bromobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	118	75-127				

Surrogate: Percent Recovery Control Lim
Dibromofluoromethane 118 75-127
Toluene-d8 108 80-127
4-Bromofluorobenzene 86 78-125

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Offits. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0905W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chloromethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromomethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chloroethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
lodomethane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Methylene Chloride	ND	2.0	EPA 8260C	9-5-18	9-5-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chloroform	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Benzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Trichloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Dibromomethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-5-18	9-5-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Toluene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
• •						

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0905W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Ethylbenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
m,p-Xylene	ND	0.40	EPA 8260C	9-5-18	9-5-18	
o-Xylene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Bromoform	ND	1.0	EPA 8260C	9-5-18	9-5-18	
Bromobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-5-18	9-5-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-5-18	9-5-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-5-18	9-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	75-127				
-						

Project: 397-019

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Result		Spike	Spike Level		Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	05W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	7.44	7.44	10.0	10.0	74	74	62-129	0	15	
Benzene	8.58	8.79	10.0	10.0	86	88	77-127	2	15	
Trichloroethene	8.79	8.75	10.0	10.0	88	88	70-120	0	15	
Toluene	9.25	9.39	10.0	10.0	93	94	82-123	2	15	
Chlorobenzene	9.02	9.13	10.0	10.0	90	91	79-120	1	15	
Surrogate:										
Dibromofluoromethane					105	107	75-127			
Toluene-d8					105	104	80-127			
4-Bromofluorobenzene					85	86	78-125			

Project: 397-019

PAHs EPA 8270D/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-134-083018					
Laboratory ID:	08-374-01					
Naphthalene	290	9.9	EPA 8270D/SIM	9-4-18	9-5-18	
2-Methylnaphthalene	12	2.0	EPA 8270D/SIM	9-4-18	9-5-18	
1-Methylnaphthalene	10	2.0	EPA 8270D/SIM	9-4-18	9-5-18	
Acenaphthylene	0.12	0.099	EPA 8270D/SIM	9-4-18	9-5-18	
Acenaphthene	8.3	2.0	EPA 8270D/SIM	9-4-18	9-5-18	
Fluorene	1.6	0.099	EPA 8270D/SIM	9-4-18	9-5-18	
Phenanthrene	0.48	0.099	EPA 8270D/SIM	9-4-18	9-5-18	
Anthracene	ND	0.099	EPA 8270D/SIM	9-4-18	9-5-18	
Fluoranthene	ND	0.099	EPA 8270D/SIM	9-4-18	9-5-18	
Pyrene	ND	0.099	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[a]anthracene	ND	0.0099	EPA 8270D/SIM	9-4-18	9-5-18	
Chrysene	ND	0.0099	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[b]fluoranthene	ND	0.0099	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo(j,k)fluoranthene	ND	0.0099	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[a]pyrene	ND	0.0099	EPA 8270D/SIM	9-4-18	9-5-18	
Indeno(1,2,3-c,d)pyrene	ND	0.0099	EPA 8270D/SIM	9-4-18	9-5-18	
Dibenz[a,h]anthracene	ND	0.0099	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[g,h,i]perylene	ND	0.0099	EPA 8270D/SIM	9-4-18	9-5-18	
Surrogate:	Percent Recovery	Control Limits	_			•
2-Fluorobiphenyl	64	21 - 110				
Pyrene-d10	73	19 - 111				

Terphenyl-d14

73

32 - 137

Project: 397-019

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-133-083018					
Laboratory ID:	08-374-02					
Naphthalene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
2-Methylnaphthalene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
1-Methylnaphthalene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Acenaphthylene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Acenaphthene	0.38	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Fluorene	0.098	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Phenanthrene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Anthracene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Fluoranthene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Pyrene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[a]anthracene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Chrysene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[b]fluoranthene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo(j,k)fluoranthene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[a]pyrene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Indeno(1,2,3-c,d)pyrene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Dibenz[a,h]anthracene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[g,h,i]perylene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Surrogate:	Percent Recovery	Control Limits				•
2-Fluorobiphenyl	78	21 - 110				
Pyrene-d10	89	19 - 111				
Town born of ald 4	00	00 407				

Project: 397-019

PAHs EPA 8270D/SIM

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-132-083018					
Laboratory ID:	08-374-03					
Naphthalene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
2-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
1-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Acenaphthylene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Acenaphthene	0.40	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Fluorene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Phenanthrene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Anthracene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Fluoranthene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Pyrene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[a]anthracene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Chrysene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[a]pyrene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Indeno(1,2,3-c,d)pyrene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[g,h,i]perylene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	21 - 110				
Pyrene-d10	84	19 - 111				

Project: 397-019

PAHs EPA 8270D/SIM

·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-130-083018					
Laboratory ID:	08-374-04					
Naphthalene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
2-Methylnaphthalene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
1-Methylnaphthalene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Acenaphthylene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Acenaphthene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Fluorene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Phenanthrene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Anthracene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Fluoranthene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Pyrene	ND	0.097	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[a]anthracene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Chrysene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[b]fluoranthene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo(j,k)fluoranthene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[a]pyrene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Indeno(1,2,3-c,d)pyrene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Dibenz[a,h]anthracene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[g,h,i]perylene	ND	0.0097	EPA 8270D/SIM	9-4-18	9-5-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	21 - 110				
Pyrene-d10	85	19 - 111				
Terphenyl-d14	84	32 - 137				

Project: 397-019

PAHS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0904W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Acenaphthene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Fluorene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Phenanthrene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Anthracene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Fluoranthene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Pyrene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Chrysene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	115	21 - 110				Q
Pyrene-d10	88	19 - 111				
Terphenyl-d14	117	32 - 137				

Project: 397-019

PAHS EPA 8270D/SIM SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	04W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.343	0.271	0.500	0.500	69	54	28 - 109	23	38	
Acenaphthylene	0.384	0.320	0.500	0.500	77	64	37 - 111	18	26	
Acenaphthene	0.375	0.304	0.500	0.500	75	61	41 - 113	21	33	
Fluorene	0.366	0.339	0.500	0.500	73	68	47 - 114	8	23	
Phenanthrene	0.363	0.339	0.500	0.500	73	68	50 - 113	7	18	
Anthracene	0.380	0.362	0.500	0.500	76	72	50 - 117	5	18	
Fluoranthene	0.396	0.381	0.500	0.500	79	76	52 - 120	4	15	
Pyrene	0.395	0.381	0.500	0.500	79	76	51 - 128	4	31	
Benzo[a]anthracene	0.428	0.413	0.500	0.500	86	83	57 - 127	4	15	
Chrysene	0.414	0.413	0.500	0.500	83	83	51 - 120	0	15	
Benzo[b]fluoranthene	0.412	0.402	0.500	0.500	82	80	54 - 124	2	17	
Benzo(j,k)fluoranthene	0.426	0.418	0.500	0.500	85	84	50 - 127	2	18	
Benzo[a]pyrene	0.414	0.398	0.500	0.500	83	80	50 - 120	4	16	
Indeno(1,2,3-c,d)pyrene	0.407	0.390	0.500	0.500	81	78	46 - 132	4	20	
Dibenz[a,h]anthracene	0.416	0.403	0.500	0.500	83	81	49 - 129	3	18	
Benzo[g,h,i]perylene	0.412	0.402	0.500	0.500	82	80	45 - 130	2	19	
Surrogate:										
2-Fluorobiphenyl					69	56	21 - 110			
Pyrene-d10					79	78	19 - 111			
Terphenyl-d14					79	77	32 - 137			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Z The gasoline result is mainly attributed to a single peak (Naphthalene).

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Project Number: Project Name: Received Relinquished Reviewed/Date Relinquished Relinquished Fmw-130-083018 +my-132-08308 Fmw-133-0839/8 FMW-134-083018 favaller Black 38 West 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com 397-019 Jouen Rusule Sample Identification Refers Standard (7 Days) Same Day

124

70

819

X

X

X

×

X

X

X

火

×

X

1034

Time Sampled

Matrix

(other)

Number of Containers

NWTPH-Dx (Acid / SG Clean-up)

EDB EPA 8011 (Waters Only) Semivolatiles 8270D/SIM

PAHs 8270D/SIM (low-level)

Organochlorine Pesticides 8081B

Chlorinated Acid Herbicides 8151A

Organophosphorus Pesticides 8270D/SIM

(with low-level PAHs)

Total RCRA Metals

Total MTCA Metals

HEM (oil and grease) 1664A

TCLP Metals

% Moisture

PCBs 8082A

Halogenated Volatiles 8260C + BTEX

NWTPH-HCID

NWTPH-Gx/BTEX NWTPH-Gx

Volatiles 8260C

Reviewed/Date

Chromatograms with final report

Electronic Data Deliverables (EDDs) 🗌

Data Package: Standard

Level

 \equiv

Level IV

X-DAded PHINB, DB CSTA

animum sund furname

31/18/1015

1 Jose

Comments/Special Instructions

Chain of Custody

vironmental Inc.		Clialli of oddiody	Page_	of
ytical Laboratory Testing Services 48 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)	Laboratory Number:	08-374	
1000 0001				

(Check One)

3 Days

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 11, 2018

Javan Ruark Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 397-019

Laboratory Reference No. 1808-375

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on August 31, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 397-019

Case Narrative

Samples were collected on August 30, 2018 and received by the laboratory on August 31, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PAHs EPA 8270D/SIM Analysis

The associated method blank had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 397-019

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-135-083018					
Laboratory ID:	08-375-01					
Gasoline	ND	100	NWTPH-Gx	9-6-18	9-6-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	110	66-117				
Client ID:	FMW-136-083018					
Laboratory ID:	08-375-02					
Gasoline	ND	100	NWTPH-Gx	9-6-18	9-6-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	110	66-117				

Project: 397-019

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0906W3					
Gasoline	ND	100	NWTPH-Gx	9-6-18	9-6-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	66-117				

Analyto	Res	sul4	Spike I	ovol	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flage
Analyte	Kes	Suit	Spike i	_evei	Result	Recovery	LIIIIIIS	KPD	Lillill	Flags
DUPLICATE										
Laboratory ID:	08-38	30-02								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:		•			•		•			

112 112 66-117 Fluorobenzene

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water
Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-135-083018					_
Laboratory ID:	08-375-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	9-7-18	9-8-18	_
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	9-7-18	9-8-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	FMW-136-083018					
Laboratory ID:	08-375-02					
Diesel Range Organics	ND	0.25	NWTPH-Dx	9-7-18	9-8-18	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	9-7-18	9-8-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

Project: 397-019

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0907W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	9-7-18	9-8-18	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	9-7-18	9-8-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-37	74-01								
	ORIG	DUP								
Diesel Range Organics	1.03	1.01	NA	NA		NA	NA	2	NA	М
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						100 94	50-150			

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-135-083018					
Laboratory ID:	08-375-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloromethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
lodomethane	ND	1.5	EPA 8260C	9-10-18	9-10-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroform	0.41	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Benzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Trichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Toluene	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-135-083018					
Laboratory ID:	08-375-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Ethylbenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
m,p-Xylene	ND	0.40	EPA 8260C	9-10-18	9-10-18	
o-Xylene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromoform	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Bromobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	75-127				
Toluene-d8	108	80-127				

80-127 Toluene-d8 108 78-125 4-Bromofluorobenzene 84

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-136-083018					
Laboratory ID:	08-375-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloromethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
lodomethane	ND	1.5	EPA 8260C	9-10-18	9-10-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(cis) 1,2-Dichloroethene	0.36	0.20	EPA 8260C	9-10-18	9-10-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroform	2.7	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Benzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Trichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Toluene	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260C	9-10-18	9-10-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-136-083018					
Laboratory ID:	08-375-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Ethylbenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
m,p-Xylene	ND	0.40	EPA 8260C	9-10-18	9-10-18	
o-Xylene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromoform	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Bromobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	75-127				
Toluene-d8	107	80-127				

4-Bromofluorobenzene

84

78-125

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Offits. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0910W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloromethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
lodomethane	ND	1.5	EPA 8260C	9-10-18	9-10-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroform	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Benzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Trichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Toluene	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	

Project: 397-019

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0910W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Ethylbenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
m,p-Xylene	ND	0.40	EPA 8260C	9-10-18	9-10-18	
o-Xylene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromoform	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Bromobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	75-127				
-						

Project: 397-019

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	10W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.2	9.81	10.0	10.0	102	98	62-129	4	15	
Benzene	9.94	9.63	10.0	10.0	99	96	77-127	3	15	
Trichloroethene	9.86	9.35	10.0	10.0	99	94	70-120	5	15	
Toluene	10.2	9.78	10.0	10.0	102	98	82-123	4	15	
Chlorobenzene	9.76	9.14	10.0	10.0	98	91	79-120	7	15	
Surrogate:										
Dibromofluoromethane					109	111	75-127			
Toluene-d8					107	107	80-127			
4-Bromofluorobenzene					86	85	78-125			

Project: 397-019

PAHs EPA 8270D/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-135-083018					
Laboratory ID:	08-375-01					
Naphthalene	0.35	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
2-Methylnaphthalene	0.29	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
1-Methylnaphthalene	0.68	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Acenaphthylene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Acenaphthene	0.39	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Fluorene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Phenanthrene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Anthracene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Fluoranthene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Pyrene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[a]anthracene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Chrysene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[a]pyrene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Indeno(1,2,3-c,d)pyrene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[g,h,i]perylene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	50	21 - 110				
Pyrene-d10	62	19 - 111				

Terphenyl-d14 62 32 - 137

Project: 397-019

PAHs EPA 8270D/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-136-083018					
Laboratory ID:	08-375-02					
Naphthalene	0.39	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
2-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
1-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Acenaphthylene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Acenaphthene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Fluorene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Phenanthrene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Anthracene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Fluoranthene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Pyrene	ND	0.096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[a]anthracene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Chrysene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[a]pyrene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Indeno(1,2,3-c,d)pyrene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Benzo[g,h,i]perylene	ND	0.0096	EPA 8270D/SIM	9-4-18	9-5-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	83	21 - 110				
Pyrene-d10	84	19 - 111				

Terphenyl-d14 83 32 - 137

Project: 397-019

PAHS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0904W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Acenaphthene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Fluorene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Phenanthrene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Anthracene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Fluoranthene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Pyrene	ND	0.10	EPA 8270D/SIM	9-4-18	9-4-18	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Chrysene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	9-4-18	9-4-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	115	21 - 110				Q
Pyrene-d10	88	19 - 111				
Terphenyl-d14	117	32 - 137				

Project: 397-019

PAHS EPA 8270D/SIM SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	04W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.343	0.271	0.500	0.500	69	54	28 - 109	23	38	
Acenaphthylene	0.384	0.320	0.500	0.500	77	64	37 - 111	18	26	
Acenaphthene	0.375	0.304	0.500	0.500	75	61	41 - 113	21	33	
Fluorene	0.366	0.339	0.500	0.500	73	68	47 - 114	8	23	
Phenanthrene	0.363	0.339	0.500	0.500	73	68	50 - 113	7	18	
Anthracene	0.380	0.362	0.500	0.500	76	72	50 - 117	5	18	
Fluoranthene	0.396	0.381	0.500	0.500	79	76	52 - 120	4	15	
Pyrene	0.395	0.381	0.500	0.500	79	76	51 - 128	4	31	
Benzo[a]anthracene	0.428	0.413	0.500	0.500	86	83	57 - 127	4	15	
Chrysene	0.414	0.413	0.500	0.500	83	83	51 - 120	0	15	
Benzo[b]fluoranthene	0.412	0.402	0.500	0.500	82	80	54 - 124	2	17	
Benzo(j,k)fluoranthene	0.426	0.418	0.500	0.500	85	84	50 - 127	2	18	
Benzo[a]pyrene	0.414	0.398	0.500	0.500	83	80	50 - 120	4	16	
Indeno(1,2,3-c,d)pyrene	0.407	0.390	0.500	0.500	81	78	46 - 132	4	20	
Dibenz[a,h]anthracene	0.416	0.403	0.500	0.500	83	81	49 - 129	3	18	
Benzo[g,h,i]perylene	0.412	0.402	0.500	0.500	82	80	45 - 130	2	19	
Surrogate:										
2-Fluorobiphenyl					69	56	21 - 110			
Pyrene-d10					79	78	19 - 111			
Terphenyl-d14					79	77	32 - 137			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

70	
age	
~	٠
of	
	of

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signatuya			1			2 tmw-136-083018	1 Fmw-125-083018	Lab ID Sample Identification	Sampled by: Gras Paleus	Project Manager: Jovan Rues 12	Project Name: Hock 38 West	Project Number: 397-019	Company: tavellow	Analytical Laboratory lesting services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
Reviewed/Date					1000	farallan	Company						8/30/13 11 SI Water 11	Stally 1545 Water 11		(other)		Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(In working days)
					8/3//18/015	8/30/ch 1839	Date Time						×	× ×	NWTP NWTP Volatil Haloge	PH-Gx/PH-Gx PH-Dx () es 8260 enated	Acid OC Volatile	/ SG CI	+ 18		Laboratory Number:
Chromatograms with final report ☐ Electronic Data Deliverables (EDDs) ☐	Data Package: Standard 🗆 Level III 🗎 Level IV 🗆	X-90000 914 (18-35 (STA)	and winderstand there of.	Theread los on In	1. and anotypes	And Sudant project	Comments/Special Instructions	31.4					×		(with I PAHs PCBs Organ Organ Chlori Total I TCLP	8082A nochlori nophosp inated A RCRA M MTCA M Metals	el PAHs (SIM (lo ne Pest bhorus Acid He Metals Metals		081B es 8270 8151A		08-3/5

APPENDIX C CATEGORY 1 SOIL ANALYTICAL DATA TABLES

SUBSURFACE INVESTIGATION REPORT AND ENVIRONMENTAL MEDIA

MANAGEMENT PLAN

Block 38 West Property

500 through 536 Westlake Avenue North

Seattle, Washington

Farallon PN: 397-019

Table 1

Soil Analytical Results for TPH and BTEX South Lake Union Block 38

Seattle, Washington Farallon PN: 397-019

				Analytical Results (milligrams per kilogram)										
				NWT	PH-Dx ²	NWTPH-Gx ³		EPA Met	hod 8021B ⁴					
		Sample Depth												
Sample Location	Sample Identification	(feet) ¹	Sample Date	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes				
FB-01	FB-01-30.0-082118	30.0	8/21/2018	< 29	< 58	< 5.1	< 0.020	< 0.051	< 0.051	< 0.102				
FB-02	FB-02-35.0-082018	35.0	8/20/2018	< 31	< 62	< 5.8	< 0.020	< 0.058	< 0.058	< 0.116				
FB-03	FB-03-15.0-082318	15.0	8/23/2018	< 32	< 65	< 6.5	< 0.020	< 0.065	< 0.065	< 0.130				
FB-03	FB-03-25.0-082318	25.0	8/23/2018	< 29	< 59	< 5.5	< 0.020	< 0.055	< 0.055	< 0.110				
FB-04	FB-04-20.0-082118	20.0	8/21/2018	< 29	< 58	< 5.3	< 0.020	< 0.053	< 0.053	< 0.106				
FD-04	FB-04-30.0-082118	30.0	8/21/2018	< 30	< 59	< 5.5	< 0.020	< 0.055	< 0.055	< 0.110				
	FB-05-5.0-082218	5.0	8/22/2018	< 31	< 61	< 5.4	< 0.020	< 0.054	< 0.054	< 0.108				
FB-05	FB-05-20.0-082218	20.0	8/22/2018	< 31	< 61	< 5.5	< 0.020	< 0.055	< 0.055	< 0.110				
	FB-05-35.0-082218	35.0	8/22/2018	< 31	< 62	< 5.8	< 0.020	< 0.058	< 0.058	< 0.116				
FMW-135	FMW-135-35.0-082418	35.0	8/24/2018	< 31	< 62	< 5.8	< 0.020	< 0.058	< 0.058	< 0.116				
FMW-136	FMW-136-10.0-082218	10.0	8/22/2018	< 38	< 76	< 9.0	< 0.020	< 0.090	< 0.090	< 0.18				
1101 00 -130	FMW-136-30.0-082218	30.0	8/22/2018	< 30	< 59	< 5.2	< 0.020	< 0.052	< 0.052	< 0.104				
MTCA Method A C	Cleanup Levels for Soil ⁵			2,000	2,000	30/1006	0.03	7	6	9				

NOTES:

EPA = U.S. Environmental Protection Agency

BTEX = benzene, toluene, ethylbenzene and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

⁻ denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁶Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected.

Table 2 Soil Analytical Results for Halogenated VOCs South Lake Union Block 38

Seattle, Washington Farallon PN: 397-019

				Analytical Results (milligrams per kilogram) ²						
		Sample Depth				cis-1,2-	trans-1,2-	Vinyl		
Sample Location	Sample Identification	(feet) ¹	Sample Date	PCE	TCE	Dichloroethene	Dichloroethene	Chloride		
FB-04	FB-04-20.0-082118	20.0	8/21/2018	< 0.00093	< 0.00093	< 0.00093	< 0.00093	< 0.00093		
FB-05	FB-05-20.0-082218	20.0	8/22/2018	< 0.00090	< 0.00090	< 0.00090	< 0.00090	< 0.00090		
FMW-135	FMW-135-50.0-082418	50.0	8/24/2018	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074		
FMW-136	FMW-136-10.0-082218	10.0	8/22/2018	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015		
MTCA Cleanup Lo	evels for Soil ³			0.05	0.03	160 ⁴	1,6004	0.674		

NOTES:

PCE = tetrachloroethene

TCE = trichloroethene

VOCs = volatile organic compounds

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8260C.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁴Washington State Cleanup Levels and Risk Calculations under MTCA Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

Table 3 Soil Analytical Results for PAHs **South Lake Union Block 38** Seattle, Washington Farallon PN: 397-019

				Analytical Results (milligrams per kilogram) ²																			
					Non-Carcinogenic PAHs Carcinogenic PAHs																		
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes³	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{4,5}
FB-05	FB-05-15.0-082218	15.0	8/22/2018	< 0.0089	< 0.0089	< 0.0089	< 0.0267	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	0.0067
FB-06	FB-06-10.0-082218	10.0	8/22/2018	< 0.016 H	< 0.016 H	< 0.016 H	< 0.048	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	0.020 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	0.012
MTCA Method A C	Cleanup Level for Soil 6						5	4,800 ⁷	NE	24,000 ⁷	NE	3,200 ⁷	3,200 ⁷	NE	$2,400^{7}$								0.1

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM.

 $^3\mathrm{Sum}$ of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene.

⁴Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁵For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁶Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses,

Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁷Washington State Department of Ecology Cleanup Levels and Risk Calculations, under MTCA Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

cPAHs = carcinogenic polycyclic aromatic hydrocarbons H = sample analyzed outside of holding time

NE = not established

PAHs = polycyclic aromatic hydrocarbons

TEC = toxic equivalent concentration

Table 4

Soil Analytical Results for Detected SVOCs

South Lake Union Block 38 Seattle, Washington

Farallon PN: 397-019

				Analytical Results (milligrams per kilogram) ²						
Samula Lagation	Commis Islandificadion	Sample Depth	Cample Date	2,4-Dimethylphenol	Carbazole	Dibenzofuran				
Sample Location	Sample Identification	(feet) ¹	Sample Date	2,4-Dimethylphenol	Cardazole	Dibenzoluran				
FB-05	FB-05-15.0-082218	15.0	8/22/2018	< 0.045	< 0.045	< 0.045				
FB-06	FB-06-10.0-082218	10.0	8/22/2018	< 0.082 H	< 0.082 H	< 0.082 H				
MTCA Cleanup Lo	evels for Soil ³			1,600	NE	80				

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

H = sample analyzed outside of holding time NE = not established SVOCs = semivolatile organic comounds

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8270D or 8270D/SIM. Only detected SVOCs shown in table; see lab report for full list of analytes.

³Washington State Cleanup Levels and Risk Calculations under the Washington State Model Toxics Control Act (MTCA) Cleanup Regulation, Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clare/Reporting/ChemicalQuery.aspx

Table 5 Soil Analytical Results for Metals South Lake Union Block 38 Seattle, Washington

Farallon PN: 397-019

					Analytical Results (milligrams per kilogram) ²						
Sample Location	Sample Identification	Sample Depth (feet) 1	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
FB-05	FB-05-35.0-082218	35.0	8/22/2018	< 12	58	< 0.62	38	< 6.2	< 0.31	< 12	< 1.2
EMW 125	FMW-135-5.0-082418	5.0	8/24/2018	< 12	120	< 0.61	48	16	< 0.31	< 12	< 1.2
FMW-135	FMW-135-25.0-082418	25.0	8/24/2018	< 14	120	< 0.69	60	< 6.9	< 0.35	< 14	< 1.4
FMW-136	FMW-136-30.0-082218	30.0	8/22/2018	< 12	45	< 0.59	41	< 5.9	< 0.30	< 12	< 1.2
MTCA Cleanup Levels	20	16,000 ⁴	2	2,000	250	2	4004	400 ⁴			

NOTES:

(Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Methods 6010D/7471B.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013, unless otherwise noted.

⁴Washington State Department of Ecology Cleanup Levels and Risk Calculations, under MTCA Standard Method B Formula Values for Soil

APPENDIX D SAMPLING AND ANALYSIS PLAN

SUBSURFACE INVESTIGATION REPORT AND ENVIRONMENTAL MEDIA
MANAGEMENT PLAN
Block 38 West Property
500 through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019

SAMPLING AND ANALYSIS PLAN

APPENDIX D

ENVIRONMENTAL MEDIA MANAGEMENT PLAN BLOCK 38 WEST PROPERTY 500 THROUGH 536 WESTLAKE AVENUE NORTH SEATTLE, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 397-019

For:

City Investors IX LLC 505 5th Avenue South, Suite 900 Seattle, Washington 98104

December 28, 2018

Prepared by:

Javan Ruark, L.G. Associate Geologist

Reviewed by:

Thaddeus Cline, P.E., L.G., L.H.G. Principal Civil Engineer/Hydrogeologist

Clifford T. Schmitt, L.G., L.H.G. Principal Hydrogeologist

Mord T. Schnett

TABLE OF CONTENTS

2.1 MANAGEMENT. 2-1 2.2 FIELD COORDINATOR 2-1 2.3 FIELD SCIENTISTS. 2-1 2.4 QUALITY ASSURANCE/QUALITY CONTROL MANAGER 2-1 2.5 DATA MANAGER 2-2 2.6 LABORATORY PROJECT MANAGER 2-2 3.0 DATA QUALITY OBJECTIVES AND MEASUREMENT CRITERIA 3-1 3.1 PRECISION 3-1 3.2 ACCURACY 3-2 3.3 REPRESENTATIVENESS 3-3 3.4 COMPARABILITY 3-3 3.5 COMPLETENESS 3-3 4.0 DOCUMENTATION AND RECORD KEEPING 4-1 4.1 FIELD RECORDS 4-1 4.1.1 Field Report Form 4-1 4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.1 FIELD SCREENING	1.0	INT	RODUC	ΓΙΟΝ	1-1						
2.2 FIELD COORDINATOR 2-1 2.3 FIELD SCIENTISTS 2-1 2.4 QUALITY ASSURANCE/QUALITY CONTROL MANAGER 2-1 2.5 DATA MANAGER 2-1 2.6 LABORATORY PROJECT MANAGER 2-2 3.0 DATA QUALITY OBJECTIVES AND MEASUREMENT CRITERIA 3-1 3.1 PRECISION 3-1 3.2 ACCURACY 3-2 3.3 REPRESENTATIVENESS 3-3 3.4 COMPARABILITY 3-3 3.5 COMPLETENESS 3-3 4.0 DOCUMENTATION AND RECORD KEEPING 4-1 4.1 FIELD RECORDS 4-1 4.1.1 Field Report Form 4-1 4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 5-1 5.1 Visual and Olfactory Observations 5-2 5.1.2 Or	2.0	PRO	JECT O	RGANIZATION AND RESPONSIBILITIES	2-1						
2.3 FIELD SCIENTISTS 2-1 2.4 QUALITY ASSURANCE/QUALITY CONTROL MANAGER 2-1 2.5 DATA MANAGER 2-1 2.6 LABORATORY PROJECT MANAGER 2-2 3.0 DATA QUALITY OBJECTIVES AND MEASUREMENT CRITERIA 3-1 3.1 PRECISION 3-1 3.2 ACCURACY 3-2 3.3 REPRESENTATIVENESS 3-3 3.4 COMPARABILITY 3-3 3.5 COMPLETENESS 3-3 4.0 DOCUMENTATION AND RECORD KEEPING 4-1 4.1 FIELD RECORDS 4-1 4.1.1 Field Report Form 4-1 4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 Visual and Olfactory Observations 5-2 5.1.2 </th <th></th> <th>2.1</th> <th>MANA</th> <th>AGEMENT</th> <th> 2-1</th>		2.1	MANA	AGEMENT	2-1						
2.4 QUALITY ASSURANCE/QUALITY CONTROL MANAGER 2-1 2.5 DATA MANAGER 2-1 2.6 LABORATORY PROJECT MANAGER 2-2 3.0 DATA QUALITY OBJECTIVES AND MEASUREMENT CRITERIA 3-1 3.1 PRECISION 3-1 3.2 ACCURACY 3-2 3.3 REPRESENTATIVENESS 3-3 3.4 COMPARABILITY 3-3 3.5 COMPLETENESS 3-3 4.0 DOCUMENTATION AND RECORD KEEPING 4-1 4.1 FIELD RECORDS 4-1 4.1.1 Field Report Form 4-1 4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 <t< td=""><td></td><td>2.2</td><td colspan="9">FIELD COORDINATOR</td></t<>		2.2	FIELD COORDINATOR								
2.5 DATA MANAGER 2-1 2.6 LABORATORY PROJECT MANAGER 2-2 3.0 DATA QUALITY OBJECTIVES AND MEASUREMENT CRITERIA 3-1 3.1 PRECISION 3-1 3.2 ACCURACY 3-2 3.3 REPRESENTATIVENESS 3-3 3.4 COMPARABILITY 3-3 3.5 COMPLETENESS 3-3 4.0 DOCUMENTATION AND RECORD KEEPING 4-1 4.1 FIELD RECORDS 4-1 4.1.1 Field Report Form 4-1 4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 Visual and Olfactory Observations 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance S		2.3	FIELD	SCIENTISTS	2-1						
2.5 DATA MANAGER 2-1 2.6 LABORATORY PROJECT MANAGER 2-2 3.0 DATA QUALITY OBJECTIVES AND MEASUREMENT CRITERIA 3-1 3.1 PRECISION 3-1 3.2 ACCURACY 3-2 3.3 REPRESENTATIVENESS 3-3 3.4 COMPARABILITY 3-3 3.5 COMPLETENESS 3-3 4.0 DOCUMENTATION AND RECORD KEEPING 4-1 4.1 FIELD RECORDS 4-1 4.1.1 Field Report Form 4-1 4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 Visual and Olfactory Observations 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance S		2.4	QUAL	ITY ASSURANCE/QUALITY CONTROL MANAGER	2-1						
3.0 DATA QUALITY OBJECTIVES AND MEASUREMENT CRITERIA 3-1 3.1 PRECISION 3-1 3.2 ACCURACY 3-2 3.3 REPRESENTATIVENESS 3-3 3.4 COMPARABILITY 3-3 3.5 COMPLETENESS 3-3 4.0 DOCUMENTATION AND RECORD KEEPING 4-1 4.1 FIELD RECORDS 4-1 4.1.1 Field Report Form 4-1 4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-4 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3.1 Trip Blanks 5-6 5.		2.5									
3.1 PRECISION 3-1 3.2 ACCURACY 3-2 3.3 REPRESENTATIVENESS 3-3 3.4 COMPARABILITY 3-3 3.5 COMPLETENESS 3-3 4.0 DOCUMENTATION AND RECORD KEEPING 4-1 4.1 FIELD RECORDS 4-1 4.1.1 Field Report Form 4-1 4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 Visual and Olfactory Observations 5-2 5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-4 5.2.2 Confirmation		2.6	LABO	RATORY PROJECT MANAGER	2-2						
3.2 ACCURACY 3-2 3.3 REPRESENTATIVENESS 3-3 3.4 COMPARABILITY 3-3 3.5 COMPLETENESS 3-3 4.0 DOCUMENTATION AND RECORD KEEPING 4-1 4.1 FIELD RECORDS 4-1 4.1.1 Field Report Form 4-1 4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 Visual and Olfactory Observations 5-2 5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil SaMPLING 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.4 Sample Designation 5-5 5.3.1 <td>3.0</td> <td>DAT</td> <td>'A QUAI</td> <td>LITY OBJECTIVES AND MEASUREMENT CRITERIA</td> <td>A 3-1</td>	3.0	DAT	'A QUAI	LITY OBJECTIVES AND MEASUREMENT CRITERIA	A 3-1						
3.3 REPRESENTATIVENESS 3-3 3.4 COMPARABILITY 3-3 3.5 COMPLETENESS 3-3 4.0 DOCUMENTATION AND RECORD KEEPING 4-1 4.1 FIELD RECORDS 4-1 4.1.1 Field Report Form 4-1 4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 Visual and Olfactory Observations 5-2 5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil SaMPLING 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-6		3.1	PRECI	[SION	3-1						
3.4 COMPARABILITY 3-3 3.5 COMPLETENESS 3-3 4.0 DOCUMENTATION AND RECORD KEEPING 4-1 4.1 FIELD RECORDS 4-1 4.1.1 Field Report Form 4-1 4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 FIELD SCREENING Observations 5-2 5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil Sheen Test 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2		3.2									
3.5 COMPLETENESS		3.3	REPRI	ESENTATIVENESS	3-3						
4.0 DOCUMENTATION AND RECORD KEEPING 4-1 4.1 FIELD RECORDS 4-1 4.1.1 Field Report Form 4-1 4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 FIELD SCREENING 5-2 5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6		3.4	COMP	PARABILITY	3-3						
4.1 FIELD RECORDS. 4-1 4.1.1 Field Report Form. 4-1 4.1.2 Soil Sample Data Log Form. 4-1 4.1.3 Sample Labels. 4-1 4.1.4 Chain of Custody Form. 4-2 4.1.5 Soil Disposal Tracking Sheet. 4-2 4.1.6 Field Maps (Lift Maps). 4-2 4.2 LABORATORY DATA REPORTS. 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING. 5-1 5.1 FIELD SCREENING. 5-2 5.1.1 Visual and Olfactory Observations. 5-2 5.1.2 Organic Vapor Screening. 5-2 5.1.3 Soil Sheen Test. 5-3 5.2 SOIL SAMPLING. 5-3 5.2.1 Performance Soil Sampling. 5-3 5.2.2 Confirmation Soil Sampling. 5-4 5.2.4 Sample Designation. 5-5 5.3 QA/QC SAMPLES. 5-6 5.3.1 Trip Blanks. 5-6 5.3.2 Temperature Blanks. 5-6		3.5	COMP	PLETENESS	3-3						
4.1.1 Field Report Form	4.0	DOC	CUMENT	TATION AND RECORD KEEPING	4-1						
4.1.2 Soil Sample Data Log Form 4-1 4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 FIELD SCREENING 5-2 5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6		4.1	FIELD	RECORDS	4-1						
4.1.3 Sample Labels 4-1 4.1.4 Chain of Custody Form 4-2 4.1.5 Soil Disposal Tracking Sheet 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 FIELD SCREENING 5-2 5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6			4.1.1	Field Report Form	4-1						
4.1.4 Chain of Custody Form			4.1.2	Soil Sample Data Log Form	4-1						
4.1.5 Soil Disposal Tracking Sheet. 4-2 4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS. 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING. 5-1 5.1 FIELD SCREENING. 5-2 5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening. 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6			4.1.3	Sample Labels	4-1						
4.1.6 Field Maps (Lift Maps) 4-2 4.2 LABORATORY DATA REPORTS 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 FIELD SCREENING 5-2 5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6			4.1.4	Chain of Custody Form	4-2						
4.2 LABORATORY DATA REPORTS. 4-3 5.0 FIELD SCREENING AND SOIL SAMPLING. 5-1 5.1 FIELD SCREENING. 5-2 5.1.1 Visual and Olfactory Observations. 5-2 5.1.2 Organic Vapor Screening. 5-2 5.1.3 Soil Sheen Test. 5-3 5.2 SOIL SAMPLING. 5-3 5.2.1 Performance Soil Sampling. 5-3 5.2.2 Confirmation Soil Sampling. 5-4 5.2.3 General Field Procedures. 5-4 5.2.4 Sample Designation. 5-5 5.3 QA/QC SAMPLES. 5-6 5.3.1 Trip Blanks. 5-6 5.3.2 Temperature Blanks. 5-6			4.1.5	Soil Disposal Tracking Sheet	4-2						
FIELD SCREENING AND SOIL SAMPLING 5-1 5.1 FIELD SCREENING 5-2 5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6			4.1.6	Field Maps (Lift Maps)	4-2						
5.1 FIELD SCREENING 5-2 5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6		4.2	LABO								
5.1.1 Visual and Olfactory Observations 5-2 5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6	5.0	FIEI	LD SCRE	EENING AND SOIL SAMPLING	5-1						
5.1.2 Organic Vapor Screening 5-2 5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6		5.1	FIELD	SCREENING	5-2						
5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6			5.1.1	Visual and Olfactory Observations	5-2						
5.1.3 Soil Sheen Test 5-3 5.2 SOIL SAMPLING 5-3 5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6			5.1.2	Organic Vapor Screening	5-2						
5.2.1 Performance Soil Sampling 5-3 5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6			5.1.3								
5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6		5.2	SOIL S	SAMPLING	5-3						
5.2.2 Confirmation Soil Sampling 5-4 5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6			5.2.1	Performance Soil Sampling	5-3						
5.2.3 General Field Procedures 5-4 5.2.4 Sample Designation 5-5 5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6			5.2.2	- -							
5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6			5.2.3	1 0							
5.3 QA/QC SAMPLES 5-6 5.3.1 Trip Blanks 5-6 5.3.2 Temperature Blanks 5-6			5.2.4	Sample Designation	5-5						
5.3.1 Trip Blanks		5.3	QA/Q0	<u>. </u>							
5.3.2 Temperature Blanks											
1				•							
			5.3.3	1							

6.0	SAM	IPLE HANDLING AND CHAIN-OF-CUSTODY PROCEDURES	6-1
	6.1	SAMPLE PACKAGING AND SHIPMENT	6-1
	6.2	CHAIN-OF-CUSTODY PROCEDURES	6-1
7.0	SAM	IPLE ANALYSIS	7-1
	7.1	ANALYTICAL METHODOLOGY	7-1
	7.2	ANALYTICAL LABORATORY QUALITY CONTROL CHECKS	7-2
		7.2.1 Method Blanks	7-3
		7.2.2 Surrogate Spikes	7-3
		7.2.3 Calibration Check Standards	7-3
	7.3	LABORATORY DELIVERABLES	7-3
8.0	REF	ERENCE	8-1

ATTACHMENT

Attachment 1 Field Forms

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) prepared this Sampling and Analysis Plan (SAP) on behalf of Lakefront Investors IX LLC (Lakefront Investors) to present the requirements and methodology for sample collection and laboratory analysis activities related to the planned redevelopment at the property at 500 through 536 Westlake Avenue North in Seattle, Washington (herein referred to as Block 38 West). The SAP presents project-specific protocols and information pertaining to sampling and analysis procedures to be used during the redevelopment at Block 38 West in accordance with the Environmental Media Management Plan (EMMP) to which this SAP is attached as Appendix D.

The objective of the cleanup action to be conducted during construction excavation will be to protect human health and the environment and to satisfy the requirements for regulatory closure and a No Further Action determination from the Washington State Department of Ecology (Ecology) under the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), as established in Chapter 173-340 of the Washington Administrative Code (WAC 173-340). The cleanup action summarized in the EMMP describes the following general elements: site preparation, dewatering and wastewater treatment and discharge, contaminated soil management, compliance soil monitoring, and waterproof barrier installation. The cleanup action entails mass excavation of contaminated soil until cleanup objectives identified in the EMMP are achieved.

The purpose of the SAP is to specify requirements for field screening and compliance monitoring soil sample collection and laboratory analysis activities to be conducted during the excavation of impacted soil at Block 38 West, to ensure data are collected in accordance with technically acceptable protocols and that analytical results will meet the data quality objectives (DQOs) for the cleanup action.

2.0 PROJECT ORGANIZATION AND RESPONSIBILITIES

This section identifies key personnel related to the cleanup action excavation at Block 38 West and their responsibilities.

2.1 MANAGEMENT

The Farallon Principal is Mr. Thaddeus Cline, who will provide overall program guidance to support staff and will have a direct line of communication with Lakefront Investors.

The Farallon Project Manager is Mr. Javan Ruark, whose primary role is to ensure compliance with the requirements of this SAP during implementation of the cleanup action.

The Farallon Health and Safety Coordinator is Mr. Joe Rounds, who will provide support in implementing health and safety protocols for Farallon field personnel.

2.2 FIELD COORDINATOR

The Farallon Field Coordinator will be responsible for monitoring Farallon field activities and supporting the Field Scientist(s). The Field Coordinator will ensure that appropriate protocols for sample collection, preservation, and holding times are observed, and will submit or arrange for submittal of soil samples to the designated laboratory for analyses. Farallon Engineer Mr. Russell Luiten has been assigned the Field Coordinator role for the cleanup action excavation at Block 38 West.

2.3 FIELD SCIENTISTS

Farallon Field Scientists are experienced field technicians with training in field procedures related to cleanup action excavations and the methodology described in this SAP. Personnel assigned to the Field Scientist role have not yet been named for the cleanup action excavation.

2.4 QUALITY ASSURANCE/QUALITY CONTROL MANAGER

Farallon Associate Geologist Mr. Ruark will serve as the Farallon Quality Assurance and Quality Control (QA/QC) Manager, providing QA/QC oversight for field screening, soil sampling, and laboratory analytical programs; ensuring that field data are collected and documented appropriately; coordinating with the analytical laboratories; and overseeing data quality assessment and quality assurance coordination.

2.5 DATA MANAGER

Ms. Jeannette Mullin will serve as the Farallon Data Manager, and will compile field measurements and analytical data into a project database, review the data for completeness and consistency, conduct data quality assessment activities, and review assigned data qualifiers based on results of data quality assessment.

2.6 LABORATORY PROJECT MANAGER

OnSite Environmental, Inc. in Redmond, Washington (OnSite) is the analytical laboratory selected for this project. Mr. David Baumeister will serve as the Laboratory Project Manager, overseeing laboratory operations associated with the receipt of environmental samples, chemical analyses, and laboratory report preparation for this project.

OnSite will be responsible for the following tasks:

- Performing laboratory analysis of samples using the methods outlined in the SAP;
- Adhering to documentation, custody, and sample logbook procedures;
- Meeting reporting and QA/QC requirements;
- Delivering electronic data deliverables as specified in the SAP;
- Meeting turnaround times for deliverables as described in the SAP; and
- Allowing the Farallon QA/QC Manager to perform laboratory and data audits as requested.

OnSite will be certified through Ecology and the National Environmental Laboratory Accreditation Program for the analytical methods performed.

3.0 DATA QUALITY OBJECTIVES AND MEASUREMENT CRITERIA

DQOs provide a qualitative and quantitative framework pertaining to laboratory analysis of soil samples collected during the cleanup action excavation, including a series of planning steps based on the scientific method around which data collection programs are designed. The use of DQOs ensures that:

- The objectives of field screening, soil sampling, and laboratory analysis to be conducted during the cleanup action excavation are clearly defined;
- The type, quantity, and quality of environmental data used in decision making are appropriate for their intended application; and
- Acceptable levels of decision error and performance goals are specified, such that the quantity and quality of data needed to support management decisions are provided.

The objectives of field screening, soil sampling, and laboratory analysis are to obtain data documenting the effectiveness of the cleanup action so that the cleanup action objectives indicated in the EMMP and summarized in Section 1, Introduction, are met. The overall QA/QC objective for this SAP is to develop and implement procedures that will ensure the collection of representative data of known and acceptable quality.

Measurement quality indicators pertaining to field sampling and laboratory analysis are generally defined in terms of five parameters:

- Precision;
- Accuracy;
- Representativeness;
- Comparability; and
- Completeness.

Each parameter is defined below. Specific QC objectives for sample collection and laboratory analyses are set forth below.

3.1 PRECISION

Precision measures the reproducibility of measurements under a given set of conditions and pertains to laboratory analytical results. The goal is to maintain a level of analytical precision consistent with the objectives of the cleanup action. Work for this project will adhere to established protocols as presented in this SAP. Precision will be evaluated using laboratory duplicate results as applicable per the analytical methods. Analytical precision measurements may be carried out

on project-specific samples at the discretion of the Field Coordinator. The equation used to evaluate precision is:

$$RPD = \frac{(A-B)}{[\frac{(A+B)}{2}]} \times 100\%$$

Where:

RPD = relative percent difference

A = Analytical result from one of two duplicate measurements

B = Analytical result from the second measurement

Plus or minus 35 percent RPD is the criterion for sufficient precision for this project.

3.2 ACCURACY

Accuracy (or bias) is an expression of the degree to which a measured value conforms to the reference value and pertains to laboratory analytical results. Laboratory blanks and surrogate standards will be used to evaluate the bias of the analytical data.

Accuracy can be expressed as a percentage of the true or reference value, or as percent recovery in analyses where reference materials are not available and spiked samples are analyzed. The equation used to determine percent recovery for spiked samples is:

Percent Recovery =
$$\frac{A-X}{B}$$
 x 100%

Where:

A = Value measured in spiked sample or standard

X = Value measured in original sample

B = True value of amount added to sample or true value of standard

The equation used to determine percent recovery for reference materials is:

Percent Recovery =
$$\frac{A}{B} \times 100\%$$

Where:

A = Value measured in control or reference sample

B = Established concentration of the control or reference sample

Method blank analytical results can reflect systematic bias resulting from contamination of samples during laboratory analysis, and as such, any detected values will be evaluated.

Recovery of 60 to 140 percent is the criterion for sufficient accuracy for this project.

Trip blank analytical results may be evaluated to check for procedural contamination, cross-contamination, and contamination during shipment and storage of samples collected for

volatile organic compounds (VOC) analysis, which includes benzene. Up to one trip blank, filled with analyte-free deionized water and preserved with hydrochloric acid, may be submitted to the project laboratory for each cooler containing samples for analysis for benzene. After their preparation, the trip blank sample containers are not to be opened until the containers have been returned to the laboratory.

3.3 REPRESENTATIVENESS

Representativeness is the degree to which laboratory analytical data accurately and precisely represent conditions in the project area. Representativeness is dependent on sampling and analytical variability and the variability of environmental media. The sampling plan, sample collection techniques, sample handling protocols, analytical methods, and data review procedures have been developed to ensure that the results obtained are representative of conditions at Block 38 West.

3.4 COMPARABILITY

Comparability is a qualitative parameter expressing the confidence with which a data set can be compared with another. Comparability will be maintained through consistent use of the field sampling and laboratory analytical methodologies set forth in the SAP, and through the use of established QA/QC procedures and appropriately trained personnel. In addition, the use of standard methods and procedures for both sample collection and laboratory analysis will make the data collected comparable to internal and other data generated.

3.5 COMPLETENESS

Completeness is defined as a measure of the amount of valid data obtained from an event or investigation compared to the total amount obtained. Completeness (C) will be calculated as follows:

 $C = \frac{[(\text{number of acceptable data points}) \times 100]}{(\text{total number of data points collected})}$

The measurement quality objective for completeness for all components of this project is 95 percent. Data that have been qualified as estimated because the QC criteria were not met will be considered valid for the purpose of assessing completeness. Data that have been qualified as rejected will not be considered valid for the purpose of assessing completeness.

Completeness of 95 percent is the criterion for sufficient completeness for this project.

4.0 DOCUMENTATION AND RECORD KEEPING

Procedures, observations, and test results will be documented for sample collection, laboratory analysis and reporting, and data quality assessment activities. Procedures for documentation of these activities are described in this section.

4.1 FIELD RECORDS

Documentation of field activities will be provided on Field Report forms, Soil Sample Data Log forms, sample and waste material labels, Chain of Custody forms, Soil Disposal Tracking Sheets, and field maps. Documentation generated during the field program will be scanned for electronic archive with hard copies retained in the project file and included in the reports generated, as appropriate.

4.1.1 Field Report Form

Field personnel will be required to keep a daily record of field activities on a Field Report form. Field notes will be as descriptive and inclusive as possible, enabling independent parties to reconstruct the sampling situation from the recorded information. Language will be objective, factual, and free of inappropriate terminology. A summary of daily events will be provided on the Field Report form. At a minimum, field documentation will include the date, job number, project identification and location, weather conditions, sample collection data, personnel present and responsibilities, field equipment used, and any field activities performed during the day. In addition, if other forms or documents such as well-head surveys or maps are completed or used, these documents will be cited in and attached to the Field Report form. Field personnel will sign the completed Field Report form. A copy of the Field Report form is included in Attachment 1.

4.1.2 Soil Sample Data Log Form

A Soil Sample Data Log form will be used to record soil field measurements, observations, and samples collected for analysis. The Soil Sample Data Log form will be completed by the Field Scientist at the time of sample collection. A copy of a Soil Sample Data Log form is included in Attachment 1.

4.1.3 Sample Labels

A sample label is filled out and affixed to appropriate sample containers immediately prior to sample collection. Each sample collected will be assigned a unique sample identifier and number. The sample identifier and number will be filled out in indelible ink and affixed to sample containers immediately prior to sample collection. The sample identifier will be placed on the sample label, Field Report form, and Chain of Custody form. In addition to the sample identifier and number, the sample labels will include the client name, project name and number, date and time of sample collection, sampler's initials, analytical method, and analyte preservative(s).

4.1.4 Chain of Custody Form

The written procedures that are followed whenever samples are collected, transferred, stored, analyzed, or destroyed are designed to create an accurate written record that can be used to trace the possession and handling of the sample from the moment of its collection through analysis and reporting of analytical values. This written record, the Chain of Custody form, will be filled out by the Farallon Field Scientist at the time a sample is obtained. The Farallon Field Scientist will sign and date the Chain of Custody form to relinquish custody of the samples to another party such as the analytical laboratory.

Samples submitted to the laboratory are accompanied by a Chain of Custody form. This form is checked for accuracy and completeness, signed, and dated by the laboratory sample custodian accepting the sample. At the laboratory, each sample is assigned a unique, sequential laboratory identification number that is stamped or written on the Chain of Custody form.

Samples are held under internal chain of custody in the Sample Control room under the appropriate storage conditions (e.g., ambient, refrigeration, frozen). The laboratory Project Manager assigned to a particular client is responsible for tracking the status of the samples throughout the laboratory. Samples are signed out of the Sample Control room in a sample control logbook by the analyst who will prepare the samples for analysis.

The Chain of Custody form includes the client name, project name and number, date and time sampled, sample identifier, sampler's initials, analysis, and analyte preservative(s), if any. A copy of the Chain of Custody form is included in Attachment 1.

4.1.5 Soil Disposal Tracking Sheet

A Soil Disposal Tracking Sheet will be used to document and track the soil excavated and disposed of during the cleanup action. The form will include: the categorization of the soil (Category 2 and Category 3), the source area and depth of the soil disposed as described using the grid system shown on the series of maps with an overlay grid system (Lift Maps) provided in the EMMP, the time the truck transporting the soil departs the site, the name of the trucking company, and the identification number for the truck. A copy of the Soil Disposal Tracking Sheet is included in Attachment 1. Minor modifications may be made to the Soil Disposal Tracking Sheet to satisfy specific project requirements.

4.1.6 Field Maps (Lift Maps)

The EMMP includes Lift Maps that will be used to record the locations for soil samples collected and features related to excavation progress. The locations will be documented on the Lift Maps by the Field Scientist at the time the observation is made and/or sample collection. In addition, Farallon field personnel will track changes in topographic elevations as the excavation progresses and the approximate locations of stockpiled soil segregated by category. The Lift Maps will be updated continually during the cleanup action excavation, and final versions will be maintained in the project files.

4.2 LABORATORY DATA REPORTS

Activities and results associated with analysis of the samples submitted to the analytical laboratory will be documented at the analytical laboratory.

The analytical laboratory will provide analytical results and associated documentation for each sample in a standard data package for each sample delivery group or analytical batch. Each data package will contain the information required for a complete quality assurance review, including the following:

- **Project Narrative.** This summary, presented in a cover letter, will discuss problems (including deviations from applicable laboratory Standard Operating Procedures and this SAP), if any, encountered during analysis. This summary will discuss but not be limited to QC, sample shipment, sample storage, and analytical difficulties. Any actual or perceived problems identified and their resolution will be documented with as much detail as appropriate.
- Chain-of-Custody Records. Legible copies of the Chain of Custody forms will be provided as part of the data package. This documentation will include the time of receipt and the condition of each sample received by the laboratory. Additional internal tracking of sample custody by the laboratory also will be documented.
- **Sample Results.** The data package will summarize the results for each sample analyzed. The summary will include the following information, where applicable:
 - o Field sample identification and the corresponding laboratory sample identification;
 - Sample matrix;
 - o Date of sample extraction;
 - Date and time of analysis;
 - Weight and/or volume used for analysis;
 - o Final dilution volume or concentration factor for the sample;
 - o The instrument used for analysis;
 - Method detection limits;
 - Method reporting limits;
 - Analytical results with units identified; and
 - Data qualifiers and their definitions.
- QC Summaries. This section will contain the results of the laboratory QC procedures. Each QC sample analysis will be documented with the same information required for the sample results (see above). No recovery or blank corrections will be made by the laboratory. The required summaries are listed below; additional information may be requested.

- **Method Blank Analysis.** The method blank analyses associated with each sample and the concentrations of all compounds of interest will be reported.
- **Surrogate Spike Recovery.** Surrogate spike recovery data will be reported. The names of compounds added, percent recoveries, and range of acceptable recoveries will be listed.

5.0 FIELD SCREENING AND SOIL SAMPLING

The procedures for soil field screening and soil sampling are described in this section. Field screening techniques will be used by the Field Scientist to obtain real-time information for guiding the cleanup action excavation activities and the segregation of waste soil for disposal, and for identifying areas for soil sampling. Additional information pertaining to field screening and soil sampling is provided in the EMMP.

Soil sampling will be conducted for purposes of cleanup action excavation performance and protection monitoring. Descriptions of soil sampling procedures are provided in Section 5.2, Soil Sampling.

Field screening and soil sampling data will be documented on appropriate field records, as described in Section 4, Documentation and Record Keeping. Proper personal protective equipment will be used during field screening and soil sample collection per the Health and Safety Plan prepared for Block 38 West.

Four general categories of soil are expected to be encountered during implementation of the cleanup action excavation, as described in the EMMP and summarized below:

- Category 1 Soil has no olfactory, visual, or other evidence of contamination (e.g., odor, staining, sheen, elevated photoionization detector readings) and meets criteria for reuse as clean fill or meets acceptance criteria for disposal at a facility or site selected by the excavation subcontractor. Category 1 Soil is not a threat to human health or the environment and can be reused where allowed under other regulations. Areas of Category 1 Soil are indicated by blue-green hatching on the Lift Maps in the EMMP.
- Category 2 Soil contains constituents at concentrations not meeting acceptance criteria for the Category 1 Soil disposal facility or for reuse as clean fill off Block 38 West, but meeting acceptance criteria for disposal at the selected Category 2 Soil disposal facility. Category 2 Soil may not contain concentrations of constituents of concern detected in laboratory analyses, but instead could exhibit olfactory, visual, or other evidence of impact. Areas of Category 2 Soil are indicated by yellow shading on the Lift Maps in the EMMP.
- Category 3 Soil contains constituents at concentrations exceeding acceptance criteria for disposal at the selected Category 2 Soil disposal facility, but meeting acceptance criteria for disposal at the Category 3 Soil disposal facility. Areas of Category 3 Soil are indicated by orange shading on the Lift Maps in the EMMP.
- Category 3+ Soil contains constituents and other material (e.g., wood debris) not meeting acceptance criteria for disposal at the Category 3 Soil disposal facility, but meeting acceptance criteria for disposal at the selected Category 3+ disposal facility. Category 3+ Soil may require pre-treatment by the selected disposal facility prior to disposal. Areas of Category 3+ Soil are indicated by red shading on the Lift Maps in the EMMP.

Lift Maps will be updated continually during the cleanup action excavation to document the extent of the soil categories encountered.

5.1 FIELD SCREENING

Field screening will be performed by the Field Scientist to guide the cleanup action excavation work and to supplement soil sample analytical data, as needed, in identifying extents of the general categories of soil for purposes of soil handling and disposal and regulatory closure under MTCA.

Field screening will consist of any or all of the following:

- Visual and olfactory observations;
- Organic vapor screening; and
- Soil sheen testing.

Results of field screening will be recorded by the Field Scientist on a Field Report form and/or Lift Maps.

Soil sampling procedures for cleanup action excavation performance and confirmation monitoring are discussed in Section 5.2, Soil Sampling.

5.1.1 Visual and Olfactory Observations

Field Scientist visual and olfactory observations will include at a minimum: elevation and soil lift identification, Unified Soil Classification System soil description, estimated soil moisture, physical indications of contamination (e.g., odor, staining), and estimate of percentage of wood debris by volume.

5.1.2 Organic Vapor Screening

Organic vapor screening may be performed by the Field Scientist using a calibrated photoionization detector (PID) for purposes of identifying soil containing VOCs or for health and safety monitoring. A PID reading exceeding ambient or background concentrations indicates potential confirmation of VOC concentrations in a soil sample. Organic vapor screening will be conducted as follows:

- Approximately 100 grams of the soil sample will be sealed in a heavy resealable plastic bag, and care will be taken to leave air (headspace) in the bag for the volatile organic vapors to collect;
- The sealed bag will be shaken to volatilize the contaminants in the soil;
- After waiting approximately 5 minutes, the Field Scientist will insert the PID probe tip into a small opening in the seal at the top of the bag, and the highest PID reading will be recorded on the Soil Sample Data Log form; and

• The bag will be resealed after taking the headspace reading in case further assessment of the sample is needed.

5.1.3 Soil Sheen Test

Soil sheen testing will be performed for purposes of identifying soil containing petroleum hydrocarbons. The Field Scientist will place a soil sample into a clean sample jar and add fresh water. The surface of the water will then be observed for the presence or absence of a sheen in accordance with *Guidance for Remediation of Petroleum Contaminated Sites* dated 2016, prepared by Ecology (2016) (Ecology Guidance), with the following sheen descriptors noted:

- NS No visible sheen on the water surface.
- SS Slight (i.e., light, colorless, dull) sheen on the water surface, with irregular non-rapid spread. Natural organic oils or iron bacteria in the soil may produce a slight sheen.
- MS Moderate (i.e., pronounced over limited area) sheen. Sheen may have some color/iridescence, with irregular and possibly rapid spread, but does not spread over entire water surface.
- HS Heavy sheen with pronounced color/iridescence and rapid spread, with the sheen covering the entire water surface.

Decaying organic matter and/or iron bacteria can produce a rainbow-like sheen similar to an oil sheen. However, these sheens typically can be broken up when agitated or disturbed, unlike oil sheens, which can be iridescent.

5.2 SOIL SAMPLING

The cleanup action excavation provides for compliance monitoring soil sampling in accordance with WAC 173-340-410 to document the effectiveness of the cleanup action excavation. The following sections summarize the methodology for compliance monitoring to be conducted as performance soil sampling and confirmation soil sampling, as described in the EMMP. Performance soil sample results will be used to identify the limits of the cleanup action excavation and may also be used, as needed, to document compliance of soil with waste profiles approved by selected disposal facilities. Confirmation soil sampling results will confirm compliance with cleanup objectives identified in the EMMP, to the extent practicable, at the limits of the cleanup action excavation. Data pertaining to soil sampling will be recorded by the Field Scientist on a Field Report form, a Soil Sample Data Log form, and/or Lift Maps. Soil sampling methodology is discussed in Section 6, Sample Handling and Chain-of-Custody Procedures.

5.2.1 Performance Soil Sampling

Performance soil sampling will involve collecting discrete in-situ soil samples for laboratory analysis. Performance soil samples generally will be collected from test pits excavated by a track-hoe in advance of mass excavation and at the direction of the Field Scientist. Performance soil

samples may in some cases be used for confirmation soil samples when data indicate that cleanup objectives identified in the EMMP have been attained.

The frequency and location of performance soil sampling will be dependent on the sampling data available at that time and results of field screening described in Section 5.1, Field Screening, and at the discretion of the Field Scientist. Performance soil sample locations and elevations will be measured using a geographic positioning system or by a construction land surveyor, and will be clearly indicated on the Lift Maps.

Lift Maps will be updated continually with results of field screening and performance soil sampling, and will be used for planning of additional performance soil sampling, to minimize the amount of contaminated soil requiring off-site disposal, and to minimize the amount of soil requiring off-site disposal at a higher cost. If soil contamination is confirmed in a Lift Map grid area, the grid area may be divided further into subareas and additional performance samples collected to assess the lateral extent of contamination, as needed. The frequency of performance soil sampling may be higher near the lateral and vertical limits of the cleanup action excavation to confirm that cleanup objectives are attained.

5.2.2 Confirmation Soil Sampling

Confirmation soil sampling will be conducted once performance soil sampling results indicate the excavation is approaching the lateral and vertical limits of Contaminated Soil. Confirmation soil sampling will consist of collecting and analyzing in-situ soil samples from the base and sidewalls of the excavation to confirm that no constituents of concern are present at concentrations exceeding their respective cleanup levels. Performance soil sampling locations will be used as confirmation soil sampling points in cases where analytical results for the performance soil samples confirm that cleanup levels have been attained.

5.2.3 General Field Procedures

Soil samples will be collected and handled in accordance with the general procedures listed below:

- Don a new pair of powder-free nitrile gloves prior to collecting each individual soil sample to avoid potential cross-contamination.
- Collect soil samples directly from the top 6 inches of exposed surface of the sidewalls and/or bottom of the cleanup action excavation, unless otherwise directed by the Farallon Project Manager or Field Coordinator, using decontaminated stainless steel sampling tools or sampling kits specific to the U.S. Environmental Protection Agency (EPA) Method 5035A sampling protocol to analyze for VOCs (as applicable). If sampling personnel are not allowed into the excavation area due to health and safety concerns, samples can be collected directly from the excavator bucket, taking care to collect soil from the center of the bucket and not to collect soil samples that have come in contact with the excavator bucket. Samples collected for laboratory analyses should only come into contact with decontaminated stainless steel equipment or laboratory certified-clean sample containers.

- If VOC analyses are to be conducted, fill VOC-specific sampling vials as soon as possible from the excavator bucket or exposed soil to minimize volatilization of VOCs. VOC samples will be prepared in accordance with the EPA Method 5035A sampling protocol for VOCs in soil. This method entails collection of approximately 5 grams of a representative soil sample using a dedicated sampling tool from target locations into a standard 40-milliliter, septum-sealed, threaded screw-capped glass vial containing a laboratory-provided preservative.
- For all other analyses, transfer the soil immediately to an 8-ounce, laboratory-supplied and certified-clean sampling container using a decontaminated stainless steel spoon. Care will be taken not to handle the seal or the inside cap of the container when placing the sample into the container. The container will be filled to eliminate headspace and the seal/cap will be secured. Non-dedicated sampling equipment will be decontaminated between uses, as appropriate.
- Place soil sample containers into a cooler chilled to approximately 4 degrees Celsius immediately upon collection.
- Record the following information, at a minimum, on the Soil Sample Data Log form during sampling: sample identification, sample depth, Unified Soil Classification System soil description, soil moisture, and physical indications of contamination (e.g., visual observations, PID readings).
- Label the sample container with the client name, project name and number, date and time sampled, sample identification, sampler's initials, analysis, and analyte preservative(s), if any.
- Log the sample on a Chain of Custody form and place into a cooler on ice for transport to the laboratory under standard chain-of-custody protocols. The Chain of Custody form will clearly indicate that each sample is to be thoroughly homogenized by the laboratory.
- Discard of all disposable sampling and health and safety supplies and equipment in an appropriate waste dumpster on Block 38 West.
- Deliver soil samples to the analytical laboratory as soon as possible after sampling in order for the laboratory to analyze the samples within regulatory holding times as described in Section 7, Sample Analysis.

5.2.4 Sample Designation

Each soil sample collected during the cleanup action will be assigned a unique sample identifier. The soil sample identifier will be filled out in indelible ink on sample labels affixed to appropriate containers immediately prior to sample collection.

Soil samples collected from interior portions of the excavation will be assigned a unique sample identifier that will include the components listed below:

• Lift Map grid designation (e.g., A2);

- Grid quarter designation, as appropriate:
 - o Northwest (NW)
 - o Northeast (NE)
 - o Southeast (SE)
 - Southwest (SW)
 - Center (C);
- Elevation of the surface soil sample in feet above mean sea level (msl); and
- Sampling date (e.g., MMDDYY).

For example, the soil sample collected from the northwestern portion of grid square G2 at 15 feet above msl on October 30, 2019 would be assigned the sample identifier G2-NW-15-103019.

Soil samples collected from the sidewalls of the excavation will include a designation of WL before the grid number. For example, the soil sample collected from the southwestern sidewall of grid G2 at 15 feet above msl on October 30, 2019 would be assigned the sample identifier WLG2-SW-15-103019.

5.3 QA/QC SAMPLES

QA/QC samples will be used to evaluate sample heterogeneity, laboratory homogenization procedures, and the potential for cross-contamination for volatile constituents, as appropriate and directed by the Farallon Project Manager. Field QA/QC samples will be documented on the Field Report forms and may include the collection of temperature blanks and trip blanks (for VOC samples). A description of the QA/QC samples that may be used for Block 38 West is provided in the following sections.

5.3.1 Trip Blanks

Analyses of trip blanks are performed to evaluate outside contributions of VOCs during transport of the sample containers to and/or from the laboratory. A trip blank is prepared by the laboratory and included in each sample cooler containing samples for analysis for VOCs.

5.3.2 Temperature Blanks

One temperature blank will be included in each cooler in which samples are stored and/or shipped. A temperature blank is prepared by the analytical laboratory and is prepared by pouring distilled/deionized water into a vial and tightly closing the lid.

5.3.3 Laboratory Duplicate Samples

OnSite will provide one laboratory duplicate result for each analysis within each analytical laboratory report. The laboratory duplicate samples used will either be taken from the laboratory-

homogenized samples collected from Block 38 West or from other samples analyzed within that sample batch at the laboratory.

6.0 SAMPLE HANDLING AND CHAIN-OF-CUSTODY PROCEDURES

This section discusses the sample handling and chain-of-custody procedures to be used during the cleanup action excavation. Analytical method-specific containers, preservation, and holding times are summarized in Section 7.1, Analytical Methodology.

6.1 SAMPLE PACKAGING AND SHIPMENT

Samples shipped for laboratory analysis will be packaged according to applicable regulations and the recommendations of the laboratory performing the analysis. Performance and confirmation soil samples will be transported by courier or by Farallon staff to the analytical laboratory within 1 working day of sample collection.

The following procedures (representing the minimum shipping and handling requirements) will be used for sample packaging:

- Bubble-wrap bags or an equivalent will be used to protect glass sample containers.
- Sample containers will be placed upright into a cooler and checked against the Chain of Custody form to ensure that all samples are listed and placed into the correct cooler.
- One copy of the Chain of Custody form will be detached and retained by the Farallon Field Scientist for submittal to the Farallon Project Manager with the daily field notes.
- Remaining paperwork will be sealed in a resealable plastic bag and taped to the inside of the cooler lid.
- One to three resealable bags will be filled with ice and included in the cooler. All ice will be double-bagged in heavy-duty bags.
- The cooler will be sealed with a chain-of-custody seal.
- The cooler will be taped shut using shipping tape.
- Extraneous stickers will be removed from the cooler.

6.2 CHAIN-OF-CUSTODY PROCEDURES

An important component of data collection is the ability to demonstrate that samples were obtained from the stated locations and that samples reached the laboratory or archive location without alteration. Evidence of collection, shipment, laboratory receipt, and laboratory custody until disposal or archive must be properly documented. Documentation will be accomplished through a Chain of Custody form that documents each sample and identifies the individuals responsible for sample collection, shipment, and receipt. A sample is considered in one's custody if at least one of the following criteria is met:

• The sample is in a person's actual possession or view;

- The sample is placed in a container and secured with an official seal (signed and dated by the custodian) such that the sample cannot be reached without the seal being broken;
- The sample is locked and only accessible by the custodian after having been in the person's actual possession; or
- The sample is in a secured area, restricted to authorized personnel (e.g., laboratory).

A laboratory typically will not accept samples for analysis without a correctly prepared Chain of Custody form. The Chain of Custody form must be signed by each individual who has the sample in his/her custody. A Chain of Custody form is to be prepared for each sample shipped to a laboratory for analysis. Information on this form correlates with other supporting documentation, including sample labels and sample collection logs.

The Chain of Custody form accounts for the elapsed time and custodians of the sample from the time of its collection. The individuals who have physically handled the sample or witnessed initial sample collection and packaging (e.g., a sample team member) must be identified on the form. A sample team member relinquishes the sample by signing the Chain of Custody form. Individuals who either relinquish or receive samples must include their complete names, company affiliation, and the date and time the samples were relinquished and received. The times the samples are relinquished and received by the next custodian should coincide, with the exception of transfer by commercial carriers. Commercial carriers will not be required to sign the Chain of Custody form; however, their waybill or shipment tracking number must be included on the Chain of Custody form as described below.

If a sample is to be stored for a period of time (e.g., overnight), measures are to be taken to secure the sample container in a manner that provides only the custodian of record with access. If samples are relinquished to a commercial carrier (e.g., UPS, Federal Express), the carrier waybill or shipment tracking number will be recorded and a copy of the waybill will be attached to the Chain of Custody form. These documents are maintained with other field documentation. The original Chain of Custody form will be sealed inside the shipping container with the samples.

If a correction is made to the Chain of Custody form, the correction should be made by the originator of the change, who will draw a single line through the error; initial and date the correction; and, if necessary, provide an explanation of the change. The documentation should have sufficient detail to clearly document the change to a third-party reviewer.

7.0 SAMPLE ANALYSIS

This section summarizes analytical laboratory methodology. OnSite has been selected as the analytical laboratory for this project. OnSite is Ecology-certified and meets Ecology and EPA QA/QC requirements.

7.1 ANALYTICAL METHODOLOGY

Analytical methods for performance and/or confirmation soil samples for constituents of concern for the cleanup action identified in the Cleanup Action Plan include:

- Total petroleum hydrocarbons as diesel-range organics and as oil-range organics by Northwest Method NWTPH-Dx;
- Total petroleum hydrocarbons as gasoline-range organics by Northwest Method NWTPH-Gx;
- Benzene by EPA Method 8021B;
- Total carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270D/SIM; and
- Total naphthalenes (a sum of naphthalene, 2-methylnaphthalene, and 1 methylnaphthalene) and cPAHs by EPA Method 8270D/SIM.

Farallon may perform additional laboratory analyses if unforeseen conditions are encountered (e.g., a previously unknown area of soil contamination is discovered) during the cleanup action excavation in order to adequately assess the soil for disposal. Any additional analysis of soil samples will be conducted in accordance with the sampling requirements described in MTCA (Table 830-1 of WAC 173-340-900).

Although the soil sample analytical turnaround times will vary depending on the cleanup action excavation schedule, most performance and confirmation soil samples will require expedited turnaround times to prevent potential construction delays.

Analytical method containers, preservation, and holding times for the planned analytical methods include the following:

- Total petroleum hydrocarbons as diesel-range organics and as oil-range organics by Northwest Method NWTPH-Dx:
 - o Sample container: one 4-ounce, laboratory-supplied, clear wide-mouth jar;
 - o Preservation: chilled to less than 6 degrees Celsius;
 - o Holding time: 14 days to extraction and 40 days to analyze after extraction; and
 - o Standard turnaround time: 5 working days.

- Total petroleum hydrocarbons as gasoline-range organics by Northwest Method NWTPH-Gx:
 - o Sample container: one 4-ounce, laboratory-supplied, clear wide-mouth jar;
 - o Preservation: chilled to less than 6 degrees Celsius;
 - o Holding time: 14 days to analyze; and
 - Standard turnaround time: 5 working days.
- Benzene by EPA Method 8021B:
 - o Sample containers: one 40-milliliter laboratory-supplied volatile organic analysis container without a stir bar; one 4-ounce, clear wide-mouth jar;
 - o Preservation: chilled to less than 6 degrees Celsius;
 - o Holding time: 14 days to analyze; and
 - Standard turnaround time: 5 working days.
- Total naphthalenes and cPAHs by EPA Method 8270D/SIM:
 - o Sample container: one 4-ounce, laboratory-supplied, clear wide-mouth jar;
 - o Preservation: chilled to less than 6 degrees Celsius;
 - o Holding time: 14 days to extraction and 40 days to analyze after extraction; and
 - o Standard turnaround time: 7 working days.

With laboratory pre-approval, it may be possible to collect one sample container for more than one analysis. If additional analyses are to be conducted for unforeseen conditions, contact the laboratory for specifics of the methods regarding containers, preservation, holding times, and standard turnaround times.

Reporting limits will be the analytical laboratory's practical quantitation limits, which are the lowest concentrations that can be reliable measured during routine laboratory operation conditions using approved methods.

Farallon will obtain analytical results from the laboratory in electronic format and the data will undergo a QA/QC review at the time of receipt by the Farallon QA/QC Manager. The analytical results will be compiled into the Farallon project database by the Farallon Data Manager, and plotted on draft Lift Maps as needed. Updated Lift Maps will be used to evaluate whether sufficient performance and/or confirmation soil samples have been collected to meet the requirements of MTCA and the Ecology Guidance.

7.2 ANALYTICAL LABORATORY QUALITY CONTROL CHECKS

Internal analytical laboratory QC checks will be used to monitor data integrity. These checks will include method blanks, internal standards, surrogate standards, and calibration standards.

Surrogate recoveries will be evaluated using laboratory control limits. Laboratory control charts will be used to determine long-term instrument trends.

Results of QC samples from each sample group will be reviewed by the laboratory immediately following sample group analysis. The QC sample results will then be evaluated to determine whether control limits have been exceeded. If control limits are grossly exceeded in the sample group, the Farallon QA/QC Manager will be contacted immediately and a corrective action (e.g., method modifications followed by reprocessing of the affected samples) will be initiated prior to processing a subsequent group of samples.

The primary chemical standards and standard solutions used in this project will be traceable to the National Institute of Standards and Technology, the Environmental Resource Associates, the National Research Council of Canada, or other documented and reliable commercial sources. Standards will be validated to determine their accuracy by comparison with an independent standard. Any impurities identified in a standard will be documented.

7.2.1 Method Blanks

Method blanks are analyzed to assess possible laboratory contamination at all stages of sample preparation and analysis. The method blank for analyses must be less than the method reporting limit of any single target analyte or compound. If a method blank exceeds this criterion for any analyte or compound and the concentration of the analyte or compound in the samples is less than 5 times the concentration found in the method blank (10 times for common contaminants), analysis must stop, and the source of contamination must be eliminated or reduced.

7.2.2 Surrogate Spikes

Surrogates are compounds that are unlikely to occur under natural conditions and have properties similar to the analytes of interest. Surrogates are added to the samples prior to purging or extraction and are used primarily for organic samples analyzed by gas chromatography and/or mass spectrometry methods. The surrogate spike provides broader insight into the proficiency and efficiency of an analytical method on a sample-specific basis. This control reflects analytical conditions that may not be attributable to the sample matrix. The project samples and associated sample QC to be analyzed by organic methods will be spiked with appropriate surrogate compounds as defined in the analytical methods.

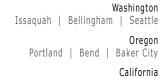
7.2.3 Calibration Check Standards

Calibration check standards analyzed within a particular analytical series provide information regarding instrument stability and validate instrument calibration. The analytical frequency of calibration check standards is specified by the analytical method.

7.3 LABORATORY DELIVERABLES

The analytical laboratory will provide analytical results and associated documentation for each sample in a data package for each sample delivery group or analytical batch as specified in Section

4.2, Laboratory Data Reports. Laboratory data requested on expedited turnaround times may be submitted as draft results, with the final analytical data package and electronic deliverables to follow within a turnaround time of 1 business day from the time of sample receipt at the laboratory for performance and confirmation soil samples.


8.0 REFERENCE

Washington State Department of Ecology (Ecology). 2016. *Guidance for Remediation of Petroleum Contaminated Sites*. (Revised.) Publication No. 10-09-057. Washington State Department of Ecology Toxics Cleanup Program. June.

ATTACHMENT 1 FIELD FORMS

SAMPLING AND ANALYSIS PLAN Block 38 West Property 500 through 536 Westlake Avenue North Seattle, Washington

Farallon PN: 397-019

Oakland | Sacramento | Irvine

	FIELD	REPORT		
				Page of
Date:	_ Project #:		Task #:	
Project:		_ Site Address:		
Client:		_ Contractor:		
Weather:		_ Temp:	-	
Equipment Used:				
	Mileage:			
Contractor	Staff			
Prepared By:		_ Reviewed By:		
Comments:				

FIELD REPORT (continued) Page ___ of ___

Soil Sample Data Log

PID Model & Serial No: Headspace Container: Sample Method: Equip Decon:		☐ 16 oz gl	ass iger er wash	☐ Direct push ☐ Split spoon ☐ DIST/DEION 1 Rinse ☐ Isopropanol					rallon P/N: ibration Date/S ther orer nalyte-free final ther solvent	rd: ☐ Other ☐ Tap water final rinse ☐ DIST/DEION final rinse ☐ Air Dry		
Test Pit/Boring Location	Sample ID	Time	Depth	PID	Odoi	r	Sheen Tare Weight	Staining Field Weight	Containers	Lithological Description R	emarks	
			•				3	8		 C A		

Sheet

of

2 oz = two-ounce jars

4 oz = four-ounce jars

OnSite	14648 NE 95th Street Redmond, WA 98052 (425) 883-3881
Environ	mental Inc.
Client	
Project	F.
Sample ID	
Date	Time
Analysis	Preservative

Chain of Gustody

Page	of	

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		TURNERUT INVOVATI)	iliserjie gotava	E l (La	bor	ato	ry l	Nur	nbe	er:			-	***************************************					**********			********
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:												F)(E	(0	કો(લ(il /Air	nally	sis.						
ounipary. પ્રદે ^ત ્		(Check	(One)						l				1.5										
Project Number:	│ ☐ Sar	ne Day		1 Day					<u>e</u>													1	
· 194		•							826(
Project Name:] 🗌 2 D			3 Day				١,٠	s by	20,	>			-	(8)					***************************************	***************************************		
Project Manager:	│ 🗀 Sta	ndard (7 w	orking d	ays)		E E		80	olatile	y 827	IIS / S		081A	1151	tals (•							
Sampled by:	<u> </u>	(oth	ner)		NWTPH-HCID	NWTPH-Gx/BTEX	Ϋ́C,	Volatiles by 8260B	Halogenated Volatiles by 8260B	Semivolatiles by 8270C	PAHs by 8270C / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664			İ			ture
ab ID Sample Identification S	Dala ampled	Time Sampled	Мани	#di Mill	WTP	WTP	NWTPH-Dx	olatile	aloge	emivo	AHs b	CBs b	esticio	erbicic	otal R(CLPN	EM by	HdΛ	EPH				% Moisture
Compensation C	rambied	Stillation	mema	lume	Z	Z	Z	>	I	S	<u> </u>	Ω.	С.	エ	<u> </u>	<u> </u>	工	>_	ш				<u>85</u>
												-			***************************************					 			—
				-		•																	

		•																					***************************************

	-		***************************************																				
	***************************************		***************************************																				
Signature		Company		1		ionita	1		irinte			<u>Gom</u>	ilente Menie	e e	alejiili	510C	ilone					1	
Relinquished by																							
Received by							,																
Relinquished by			***************************************							,													
Received by																							
Relinquished by																							
Received by		***************************************	***************************************	***************************************		·	***************************************		***************************************														
Reviewed by/Date		Reviewed b	y/Date									Chro	mat	ogra	ms v	vith f	inal ı	epoi	t 🗆				

											Farallon Field or Office
Date	Time I ama Gita	Tournatur	Touch Identification	Container Identification	Dill est elice	Destination Leadell	Field Classification	Grid	Depth (feet below ground	Elevation (feet relative to	
Transported	Time Leave Site	Transporter	Truck Identification	(as applicable)	Bill of Lading	Destination Landfill	(1, 2, 3, 3+)	Location	surface)	mean sea level)	Comments
					+						
1											
					+						
	I		i		I	I	I	l	1	I	

APPENDIX H HEALTH AND SAFETY PLAN

INTERIM ACTION WORK PLAN Block 38 West Property 500 through 536 Westlake Avenue North Seattle, Washington

Farallon PN: 397-019

HEALTH AND SAFETY PLAN

CONSTRUCTION SUPPORT AND SOIL EXCAVATION SOUTH LAKE UNION BLOCK 38 WEST PROPERTY 500 THROUGH 536 WESTLAKE AVENUE NORTH SEATTLE, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 397-019

For:
City Investors IX LLC
c/o Vulcan Inc.
505 5th Avenue South, Suite 900
Seattle, Washington 98104

September 12, 2019

HEALTH AND SAFETY PLAN REVIEW AND APPROVAL

Client: City Investors IX, LLC		Facility Name: South Lake	e Union Block 38
,		West Property	
Type of Work: Construction su	pport and	Project No. : 397-019	
soil excavation			
Start Date: September 13, 2019)	End Date: March 13, 2020	<u> </u>
Plan Expiration Date: March months)	13, 2020 (La	ast day of expected field wo	ork or no longer than 6
APPROVED BY:		•	
Suzy Stumpf Project Manager		Signature Signature	September 12, 2019 Date
<u>Joseph Rounds</u> Health and Safety Coordinator	9	Signature	September 12, 2019 Date
Clifford T. Schmitt Principal-in-Charge	Cun	Wil T. Sthreet	September 12, 2019

This Health and Safety Plan (HASP) was written for the use of Farallon Consulting, L.L.C. (Farallon) and its employees. It may be used also by trained and experienced Farallon subcontractors as a guidance document. However, Farallon does not guarantee the health or safety of any person entering this site.

Due to the potentially hazardous nature of the site and the activities occurring thereon, it is not possible to discover, evaluate, or provide protection for all possible hazards that may be encountered. Strict adherence to the health and safety guidelines set forth herein will reduce, but does not eliminate, the potential for injury. The health and safety guidelines in this HASP were prepared specifically for this site, its conditions, purposes, dates of field work, and personnel, and must be amended if conditions change.

Farallon claims no responsibility for the use of this HASP by others. This HASP will provide useful information to subcontractors and will assist them in developing their own HASP, but it should not be construed as a substitute for their own HASP. Subcontractors should sign this HASP (see Attachment 1, *Health and Safety Plan Acknowledgment and Agreement Form*) as an acknowledgement of hazard information and as notice that this HASP does not satisfy their requirement to develop their own HASP.

CONTENTS

1.0	SITE	-SPECIFIC INFORMATION	1-1
	1.1	BACKGROUND INFORMATION	1-1
	1.2	SCOPE OF WORK	1-1
	1.3	SITE-SPECIFIC SAFETY CONCERNS	1-3
2.0	DRU	G AND ALCOHOL POLICY	2-1
3.0	WEA	PONS POLICY	3-1
4.0	INCI	DENT PREPAREDNESS AND RESPONSE	4-1
	4.1	HEALTH AND SAFETY PREPAREDNESS	4-1
	4.2	INJURY OR ILLNESS	4-1
	4.3	REPORTING PROCEDURES FOR MINOR CUTS, SCRATCHES	3,
		BRUISES, ETC.	4-2
	4.4	NEAR MISSES	4-2
	4.5	MEDICAL INCIDENTS NOT REQUIRING AMBULANCE	
		SERVICE	
	4.6	EMERGENCY CASES REQUIRING AMBULANCE SERVICE	4-3
	4.7	EMPLOYEE DEATH, OR HOSPITALIZATION OF ONE OR	
		MORE EMPLOYEES	
	4.8	RESPONSE TO SPILLS OR UTILITY BREACHES	
	4.9	NOTIFICATIONS	_
	4.10	SHUTOFF VALVES AND/OR SWITCHES FOR UTILITIES AN PRODUCTS	
		PRODUCTS	4-3
5.0	EME	RGENCY RESPONSE AND EVACUATION PLAN	5-1
6.0	LOC	AL EMERGENCY CONTACT NAMES AND TELEPHONE	
	NUM	BERS	6-1
7.0	PRO.	JECT PERSONNEL AND RELEVANT INFORMATION	7-1
, • •	7.1	PROJECT PERSONNEL CONTACT INFORMATION	
0.0	DOT!		0.4
8.0	POT	ENTIAL CHEMICAL EXPOSURE	8-1
9.0	POT	ENTIAL SITE HAZARDS AND APPROPRIATE PRECAUTIO	NS 9-1
	9.1	ENVIRONMENTAL DRILLING	9-1
		EXCAVATION ACTIVITIES	
	9.3	UNDERGROUND STORAGE TANK DECOMMISSIONING	
	9.4	MONITORING WELL SAMPLING/GAUGING	9-17
10.0	WAS	TE CHARACTERISTICS	10-1
11.0	TRA	FFIC CONTROL	11-1

ATTACHMENTS

Attachment 1	Health and Safety Plan Acknowledgement and Agreement Form
Attachment 2	Directions to Hospital
Attachment 3	Potential Topics for Daily Health and Safety Meeting
Attachment 4	Daily Health and Safety Briefing Log
Attachment 5	Incident Report Form
Attachment 6	Near Miss and Safety Observation Report
Attachment 7	Utility Clearance Logs
Attachment 8	Farallon Field Personnel Training Dates
Attachment 9	Air Monitoring Table and Forms

1.0 SITE-SPECIFIC INFORMATION

Information specifically pertaining to the project site, the scope of work for the project, and related safety concerns are discussed in this section.

1.1 BACKGROUND INFORMATION

Farallon Consulting, L.L.C. (Farallon) has prepared this Health and Safety Plan (HASP) for the property at 500 through 536 Westlake Avenue North in the South Lake Union area of Seattle, Washington comprising the western half of the block between Mercer Street to the north, an alley bisecting Block 38 to the east, Republican Street to the south, and Westlake Avenue North to the west, which is commonly known as the Block 38 West Property (herein referred to as the Site). The Site consists of King County Parcel Nos. 1983200196, 1983200180, and 1983200170, totaling 1.05 acres of land formerly occupied by an office building, a retail store, and a restaurant, which currently are being demolished.

Redevelopment of the Site is scheduled to begin in late 2019 and will entail construction of a multistory mixed-use building (the Building) with a preliminary design for five stories above street level and four levels of parking below street level. The planned finished floor elevation of the lowest level of parking is -2.5 feet North American Vertical Datum of 1988 (NAVD88). Construction of the Building will require mass excavation across the entirety of the Site. The excavation sidewalls will be retained using soldier pile and lagging shoring methods in conjunction with four rows of tiebacks. The bottom of the footing elevation for the majority of the foundation will be about -10 feet NAVD88, or approximately 39 to 49 feet below existing grade throughout the Site. Excavation for elevator cores likely will extend below the mass excavation subgrade.

Hazardous substances were detected in soil and groundwater samples collected from some locations at the Site during subsurface investigations at concentrations exceeding Method A cleanup levels specified in the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), as established in Chapter 173-340 of the Washington Administrative Code. Construction of the Building will require managing soil and groundwater impacted with hazardous substances. Cleanup of impacted soil and groundwater will be conducted in conjunction with construction of the Building as an independent action in accordance with MTCA without direct oversight or approval by the Washington State Department of Ecology.

Farallon's role in the next phase of work is to provide soil sampling and stockpile segregation advice to the excavation contractor and to observe and collect soil or groundwater samples from borings and wells at the Site.

1.2 SCOPE OF WORK

This HASP was prepared for the use of Farallon personnel while performing the following tasks at the Site in accordance with the following documents (collectively referred to as the Scope of Work):

• South Lake Union Block 38 West Property, Recommended Work Elements, City Investors IX LLC, Addendum No. 1, undated, prepared by Farallon;

- South Lake Union Block 38 West Property, Recommended Work Elements Addendum No. 4, undated, prepared by Farallon; and
- South Lake Union Block 38 West Property, Recommended Work Elements Addendum No. 5 dated September 6, 2019, prepared by Farallon.

The Scope of Work includes the following tasks pertinent to this HASP:

- Task 3: Phillips 66-Related Contamination. Task 3 has been developed to provide technical support during the installation of dewatering wells and excavation of the drill pit at Block 37, which is required for the installation of conveyance lines associated with the dewatering system for the redevelopment at the Site. Petroleum-impacted soil and groundwater is expected to be encountered during the excavation of the drill pit due to historical releases of petroleum at Block 37. Farallon will provide technical support to evaluate and profile impacted soil or groundwater encountered during the installation of dewatering wells and conveyance lines. The technical support will include the following work elements:
 - o Planning and coordinating with Phillips 66 for the scheduled work activities.
 - Observing and collecting soil samples during the installation of dewatering wells at Block 37.
 - o Providing technical assistance to profile and dispose of impacted soil that will be generated during the excavation for the conveyance lines at Block 37.
- Task 13: Construction Dewatering Support. Farallon will provide technical support during
 the design of certain components of the dewatering system (i.e., well heads, conveyance
 piping, treatment system for chlorinated volatile organic compounds), observation during
 installation of the dewatering conveyance pipe under Mercer Street and the dewatering wells
 at the Site. The activities for Task 13 include:
 - Collecting soil samples during installation of the dewatering conveyance pipe under Mercer Street either from cuttings as they are generated or from stockpiled material for laboratory analysis.
 - Collecting soil samples during drilling at select dewatering wells on the Site for lithologic logging and screening for indications of contamination.
- Task 14: Mass Excavation Support. Farallon will provide construction support and planning at the Site during the mass excavation. The activities for Task 14 will include the following:
 - Observing test-pitting activities that will include using a track-hoe to excavate to depths of approximately 15 feet below ground surface.
 - Collecting soil samples from the test pits for lithologic logging and screening for indications of contamination.
 - Observation of mass excavation of impacted soil during day shifts, with night shifts if necessary.
 - Collection of performance and confirmation soil samples during mass excavation activities.

The excavation subcontractor will be responsible for coordinating loading and off-Site disposal of each truck and/or container load of clean and impacted soil during construction. In addition, the general contractor will be responsible for setup, operation, maintenance, and reporting of wastewater discharges during the redevelopment project.

The tasks and subtasks will be conducted in a manner consistent with the methods and assumptions outlined in the Scope of Work.

1.3 SITE-SPECIFIC SAFETY CONCERNS

This phase of the project involves mass excavation of impacted soil, drilling and well installation, excavation dewatering, and the potential for monitoring well abandonment or underground storage tank (UST) removal. Specific hazards that the field employee(s) will encounter on this project include, but are not limited to:

- Working around heavy equipment;
- Working with hand tools and small mechanical equipment;
- Working in an open excavation with major redevelopment work;
- Working in an area where crane use is ongoing;
- Pedestrian traffic;
- Truck traffic;
- Pinch points;
- Work exclusion zone safety;
- Slips, trips, and falls;
- Loud noise;
- Chemical exposure related to impacted soil, groundwater, and windblown dust; and
- Environmental hazards, including exposure to sun, heat, and cold.

2.0 DRUG AND ALCOHOL POLICY

It is Farallon's policy to maintain a drug-free workplace. Farallon has a responsibility to all of its staff members to provide a safe and inoffensive work environment, and a responsibility to its clients to provide accurate and consistent service. For these reasons, Farallon prohibits the following behavior by staff members in the field:

- Use of tobacco in any form by any person at any time in sensitive or hazardous areas that may pose a health and safety or environmental risk. The Site Health and Safety Officer (SHSO) may designate an area away from hazards that is safe for tobacco use.
- Possession or consumption of alcohol and/or marijuana, or being under the influence of alcohol and/or marijuana during field activities.
- Abuse of prescription and/or over-the-counter drugs in such a manner as to negatively impact performance or field safety.
- Possession, use, sale, or being under the influence of illicit drugs while in the field or during any work hours.

Violation of any of the above codes of conduct is grounds for immediate removal from the project Site and discipline in accordance with Farallon company policy. If an incident occurs as a result of an employee's actions, drug and alcohol testing will be performed in accordance with Farallon company policy.

3.0 WEAPONS POLICY

Farallon employees, contractors, subcontractors, and their employees working at the Site are to ensure that they do not bring weapons onto the work site. Weapons include but are not limited to guns, knives, and explosives. Tools that are used during the course of field events, including but not limited to box knives, are exempt from this weapons policy. All vehicles and persons can be subjected to search while working at the property.

Failure to comply with the weapons policy can result in disciplinary action for the individual(s) involved in accordance with Farallon company policy.

4.0 INCIDENT PREPAREDNESS AND RESPONSE

Farallon employees and subcontractors working at the Site must be prepared to respond appropriately to an incident involving injury, illness, death, spills, or utility breaches. This section outlines the degree of preparedness required for employees at a work site, and describes the actions to be taken in the event of a health and safety incident.

4.1 HEALTH AND SAFETY PREPAREDNESS

All individuals working at the Site are required to be familiar with the contents of this HASP. Additionally, the items on the following health and safety preparedness list should be reviewed prior to the commencement of work and during daily health and safety meetings:

- The directions to the hospital (provided in Attachment 2);
- The locations of first aid kits, personal eye washes, and fire extinguishers (located in Site vehicles);
- The locations of the keys to Site vehicles; and
- Hand sign language providing for the immediate stoppage of work (such as a horizontal hand movement in front of the neck).

Additional topics for daily health and safety meetings are included in Attachment 3, Potential Topics for Daily Health and Safety Meeting. Participation in daily health and safety meetings should be documented in Attachment 4, Daily Health and Safety Briefing Log.

4.2 INJURY OR ILLNESS

If an injury or illness occurs, the following actions should be taken, regardless of the severity of the injury or illness:

- Stop work.
- Determine whether emergency response staff (e.g., fire, ambulance) are necessary. If so, dial 911 on a cell phone or the closest available telephone. Describe the location of the injured person and provide other details as requested. If an individual requires non-emergency medical care at a hospital, follow the directions to the nearest hospital, which are provided in Attachment 2. IF EMERGENCY MEDICAL CARE IS NEEDED, CALL 911.
- Administer first aid to the individual immediately, using the first aid kit provided in the Site vehicle. Use the bloodborne pathogens kit and personal eyewash, as needed.
- Notify the SHSO immediately. The SHSO is responsible for preparing and submitting an Incident Report form to Farallon's Health and Safety Coordinator (HSC) within 24 hours of the incident, and for notifying the employee's supervisor and the Principal-in-Charge. The Incident Report form is provided in Attachment 5.

• All incidents must be reported to the HSC within 24 hours; however, the actual investigation need not be completed within 24 hours. A telephone message that includes the date, time, and general incident circumstances should be left at one of the following numbers if the HSC cannot be reached directly:

HSC work phone: (425) 295-0800HSC cell phone: (206) 484-2748

o If the HSC cannot be located, contact the Principal-in-Charge

• The SHSO will assume responsibility during a medical emergency until emergency response personnel arrive at the Site.

4.3 REPORTING PROCEDURES FOR MINOR CUTS, SCRATCHES, BRUISES, ETC.

Every occupational illness or injury is to be reported immediately by the employee to the SHSO. The SHSO is to complete the Incident Report form provided in Attachment 5, and report the incident to the HSC.

4.4 NEAR MISSES

A near miss is defined as an incident in which no personal injury is sustained and no property damage is incurred, but in which injury and/or property damage could have occurred under slightly different timing or location.

In the event of a near miss, the following actions are to be taken:

- Stop work if there is immediate danger of injury or property damage;
- Report the near miss to the SHSO as soon as practicable;
- Resume work upon satisfactory resolution of the near-miss condition, if work was stopped, and document the corrective action(s) taken by the SHSO; and
- Complete and submit the Near Miss Report and Safety Observation Report form in Attachment 6 to the HSC within 2 business days.

4.5 MEDICAL INCIDENTS NOT REQUIRING AMBULANCE SERVICE

Medical incidents not requiring ambulance services include injuries and conditions such as minor lacerations and sprains. In the event of an injury, an illness, or a condition that does not require ambulance service, the following actions are to be taken:

- Stop work.
- Administer first aid as necessary to stabilize the individual for transport to the hospital.
- The SHSO is to facilitate prompt transportation of the individual to the hospital. Directions to the nearest hospital are provided in Attachment 2.

- A representative of Farallon or the subcontractor is to drive the individual to the medical
 facility and remain at the facility until the individual is able to return to the work site, or
 arrangements for further care have been established.
- If the driver is not familiar with the route to the hospital, a second person who is familiar with the route is to accompany the driver and the injured employee to the hospital.
- If it is necessary for the SHSO to accompany the injured employee to a medical facility, provisions must be made for another employee who is trained and certified in first aid to act as the temporary SHSO before work at the work site can resume.
- If the injured employee is able to return to the work site the same day, he/she is to bring a statement from the doctor that provides the following information:
 - Date of incident
 - Employee's name
 - Diagnosis
 - O Date he/she is able to return to work, and whether regular or light duty
 - O Date he/she is to return to the doctor for a follow-up appointment, if necessary
 - Signature and address of doctor
- The SHSO is to complete the Incident Report form provided in Attachment 5, and report the incident to the HSC.
- If the injured employee is unable to return to the work site the same day, the employee who transported him/her should bring the statement from the doctor back to the work site. The information on this statement should be reported to the HSC immediately.

4.6 EMERGENCY CASES REQUIRING AMBULANCE SERVICE

In the event of an injury or illness that requires emergency response and transport to a hospital by ambulance the following actions should be taken:

- **Dial 911** to request ambulance service;
- Notify the SHSO;
- Administer first aid until the ambulance service arrives;
- One designated company representative should accompany the injured employee to the medical facility and remain there until final diagnosis, treatment plan, and other relevant information has been obtained; and
- The SHSO is to complete the Incident Report form provided in Attachment 5, and report the incident to the HSC immediately.

4.7 EMPLOYEE DEATH, OR HOSPITALIZATION OF ONE OR MORE EMPLOYEES

The procedures outlined in Section 6.2 should be followed in the event of an employee injury or illness. If an employee fatality occurs, the HSC, local emergency personnel, and the coroner must be notified <u>immediately</u>. The HSC will initiate the required State of Washington Department of Labor and Industries and Occupational Safety and Health Administration (OSHA) notifications within 8 hours of a fatality or the hospitalization of one or more employees.

4.8 RESPONSE TO SPILLS OR UTILITY BREACHES

The location of underground utilities (e.g., product, sewer, telephone, fiber optic) and facilities (e.g., USTs, septic tanks, utility vaults) is to be noted prior to commencement of intrusive subsurface work activities. Use the public and private locate services as required and complete the Utility Clearance Log (Attachment 7). If a utility line or tank is breached or a spill or release occurs, the event is to be documented on the Incident Report form provided in Attachment 5 as soon as possible. The date, time, name of the person(s) involved, actions taken, and discussions with other affected parties are to be included. The SHSO, Project Manager (PM), and client are to be notified immediately. The PM is to notify the regulatory authority and/or utility company, as necessary.

In the event of a spill or release, the following actions should be taken:

- Stay upwind of the spill or release.
- Don appropriate personal protective equipment (PPE).
- Turn off equipment and other sources of ignition.
- Turn off pumps and shut valves to stop the flow or leak.
- Plug the leak or collect drippings, if possible.
- Use sorbent pads to collect the product and impede its flow, if possible.
- Dial 911 or telephone the local fire department immediately if a fire or another emergency situation develops.
- Inform the Farallon PM of the situation.
- Determine whether the client would like Farallon to repair the damage or would rather use an emergency repair contractor.
- Advise the client of spill discharge notification requirements, and establish who will complete and submit the required forms. *Do not report or submit information to an agency without the client's consent*. Document each interaction with the client and regulators, and note in writing names, titles, authorizations, refusals, decisions, and commitments to any action.

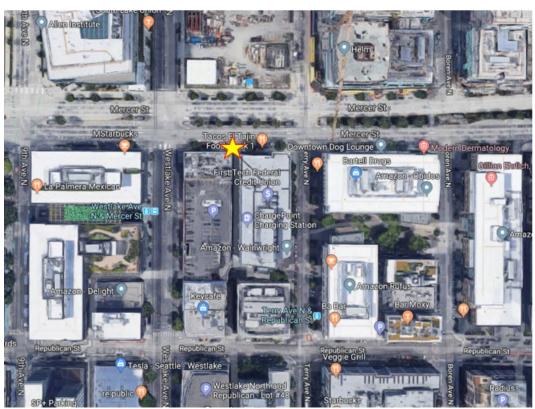
- Do not transport or approve transportation of contaminated soils or product until proper manifests have been completed and approved. Be aware that soil and/or product may meet criteria for hazardous waste.
- Do not sign manifests as a generator of wastes. Contact the PM to discuss waste transportation.

4.9 NOTIFICATIONS

A spill or release requires completion of an Incident Report form (provided in Attachment 5) per Farallon's Health and Safety program. The PM must involve the client and/or generator in the incident reporting process. The client and/or generator is under obligation to report the incident to the appropriate government agency(ies). If the spill extends into waterways, the Coast Guard and the National Response Center must be notified immediately by the client or with client permission (1-800-424-8802).

4.10 SHUTOFF VALVES AND/OR SWITCHES FOR UTILITIES AND PRODUCTS

Before starting work, locate, discuss, and list on the Daily Health and Safety Briefing Log the locations of utility and product line shutoff valves and switches on the work site. Review the location of shutoff valves and switches with other field personnel before beginning work.


5.0 EMERGENCY RESPONSE AND EVACUATION PLAN

Farallon personnel and subcontractors working on the Site are to be aware of Site-specific emergency and evacuation procedures, including alarm systems and evacuation plans and routes. If an incident occurs that requires emergency response, such as a fire or spill, CALL 911 and request assistance. Farallon staff, subcontractors, and/or others working in an area where an emergency occurs are to evacuate to a safe location away from the incident area, preferably upwind, and take attendance.

For this project, the emergency evacuation gathering location is directly south of Mercer Street, on the northern boundary and at the northeast corner of the Block 38 West Property.

If the emergency causes the route to be obstructed, Farallon personnel and subcontractors are to move to an open area upwind of the hazard area, and remain there until instructed by emergency response personnel (e.g., police, fire, ambulance personnel, paramedics) to do otherwise.

Subcontractors have the responsibility to account for their own employees and provide requested information to emergency response personnel immediately upon request. Farallon staff, subcontractors, and/or contractors may not reenter the scene of the emergency without specific approval from emergency response personnel.

6.0 LOCAL EMERGENCY CONTACT NAMES AND TELEPHONE NUMBERS

Local emergency response personnel can be contacted at the following numbers. Directions and a map to the hospital are included in Attachment 2.

Emergency Contact	Name and Location	Telephone No.
Hospital	Virginia Mason Hospital and Seattle Medical Center 1100 9 th Avenue Seattle, Washington	(206) 223-6600
Police	Seattle Police Department – West Precinct 810 Virginia Street Seattle, Washington	911 or (206) 625-5011
Fire	Seattle Fire Station 2 2320 4 th Avenue Seattle, Washington	911 or (206) 386-1400
National Response Center		1-800-424-8802
Washington State Department of Ecology		(360) 407-6300
Poison Control		1-800-222-1222

7.0 PROJECT PERSONNEL AND RELEVANT INFORMATION

The following section provides contact information for the project and the HSC and client-specific health and safety requirements. Farallon field personnel training and medical surveillance dates are included in Attachment 8.

7.1 PROJECT PERSONNEL CONTACT INFORMATION

Questions about this project that are posed by neighbors, the press, or other interested parties should be directed to the Principal-in-Charge at Farallon: (425) 295-0801.

PERSONNEL TITLE PERSONNEL NAME PERSONNEL CONTACT INFORMATION	GENERAL PROJECT RESPONSIBILITIES
Health and Safety Coordinator Joseph Rounds Office: (425) 295-0800 Cell: (206) 484-2748	Provide support in implementing HASP. Provide immediate support upon notice of any incident.
Principal-in-Charge Clifford Schmitt Office: (425) 295-0801 Cell: (425) 765-3365	Provide immediate support upon notice of any incident.
Project Manager Suzy Stumpf Office: (425) 394-4442 Cell: (303) 489-1032	Provide immediate support upon notice of any incident.
Client Contact Sean Biehl Office: (206) 342-2614	Provide known analytical data from work performed by others. Provide notice of Site hazards. Provide access to Site. Provide information regarding available emergency supplies at the Site.

8.0 POTENTIAL CHEMICAL EXPOSURE

Farallon employees working at the Site may become exposed to the chemicals listed in the table below. These chemicals are present either due to current Site activities or due to the presence of contamination. This table should be reviewed prior to the start of work and questions directed to the SHSO. Air monitoring may be required at the Site based on the scope of work for the project. The Farallon Project Manager and SHSO will let the Farallon Field Scientists know if air monitoring will be required for the scope of work.

The air monitoring table and forms are included in Attachment 9.

	POTENTIAL AIRBORNE CHEMICALS ON SITE FOR THIS PROJECT REVIEW THIS TABLE AND CONTACT THE SHSO WITH ANY QUESTION						
Chemical (or Class)	OSHA PEL ACGIH TLV	Other Pertinent Limits	Properties	Routes of Exposure or Irritation	Acute Health Effects	Chronic Health Effects/ Target Organs	
Tetrachloroethene (perchloroethylene)	PEL – 100 ppm TLV – 25 ppm	PEL C – 200 ppm TLV STEL – 100 ppm IDLH – 150 ppm NIOSH considers this compound to be a carcinogen.	Colorless liquid with a mild, chloroform-like odor.	Inhalation; skin absorption; ingestion; eye contact.	Irritation to eyes, skin, nose, throat, respiratory system; nausea; flushed face, neck; vertigo (an illusion of movement); dizziness; lack of coordination; headache; skin erythema (redness).	Somnolence (sleepiness, unnatural drowsiness); liver damage; potential occupational liver carcinogen. Target Organs: Eyes, skin, respiratory system, liver, kidneys, CNS.	
Toluene	PEL – 200 ppm TLV – 50 ppm	NIOSH REL – 100 ppm TWA; 150 ppm STEL ILDH – 500 ppm	Sweet, pungent, benzene-like odor.	Eye contact.	Skin (dermatitis); eye, respiratory tract irritant; headache; dizziness; weakness; fatigue.	CNS; liver; kidneys; skin.	
Benzene	PEL – 1 ppm TLV – 0.5 ppm (skin)	PEL STEL – 5 ppm IDLH – 500 ppm	Characteristic benzene odor.	Inhalation; dermal; ingestion; eye contact.	Skin (dermatitis); eye, respiratory tract irritant; headache; dizziness; nausea.	Carcinogen; CNS; eye damage; bone marrow; blood; skin; leukemia.	
Naphthalene	PEL – 10 ppm TLV – 10 ppm	TLV STEL – 15 ppm NIOSH REL – 10 ppm REL STEL – 15 ppm IDLH – 250 ppm	Mothball-like odor.	Inhalation; dermal; ingestion; eye contact.	Skin, eye, mucous membrane irritant, nausea.	Eyes, blood, skin, liver, kidney, RBC; CNS.	

POTENTIAL AIRBORNE CHEMICALS ON SITE FOR THIS PROJECT REVIEW THIS TABLE AND CONTACT THE SHSO WITH ANY QUESTION

Chemical (or Class)	OSHA PEL ACGIH TLV	Other Pertinent Limits	Properties	Routes of Exposure or Irritation	Acute Health Effects	Chronic Health Effects/ Target Organs
Xylenes	PEL – 100 ppm TLV – 100 ppm	TLV STEL – 500 ppm NIOSH REL – 100 ppm NIOSH REL STEL – 100 ppm IDLH – 900 ppm	Aromatic odor.	Inhalation; dermal; ingestion; eye contact.	Throat, skin irritant (dermatitis); headache; nausea; drowsiness; fatigue.	CNS, liver, kidneys, skin, gastrointestinal damage; eye damage.
Ethylbenzene	PEL – 100 ppm TLV – 100 ppm	PEL STEL – 125 ppm TLV STEL – 125 ppm NIOSH REL – 100 ppm REL STEL – 125 ppm IDLH – 800 ppm	Pungent, aromatic odor.	Inhalation; dermal; ingestion; eye contact.	Skin, eye, mucous membrane irritant; headache; dizziness; drowsiness.	Eyes; respiratory tract; skin; CNS; blood; kidneys; liver.
2-Butanone (methyl ethyl ketone)	PEL – 200 ppm TLV – 200 ppm	NIOSH REL – 200 ppm REL STEL – 300 ppm TLV STEL – 300 ppm	Colorless liquid with a moderately sharp, fragrant, mint- or acetone-like odor.	Inhalation; dermal; ingestion; eye contact.	Irritation to eyes, skin, nose; headache; dizziness; vomiting; dermatitis.	Eyes; skin; respiratory system; CNS.
Lead	$PEL - 0.05 \ mg/m^3$ $TLV - 0.05 \ mg/m^3$	IDLH – 100 mg/m ³	A heavy, flexible, soft, gray solid.	Inhalation; dermal; ingestion; eye contact.	Lassitude (weakness, exhaustion); abdominal pain; gingival lead line; tremor; irritation to eyes; hypotension.	Insomnia; facial pallor; anorexia; weight loss; malnutrition; constipation; colic; anemia; paralysis of wrist, ankles; kidney disease; encephalopathy; potential for damage to eyes, gastrointestinal tract, CNS, kidneys, blood, gingival tissue.

POTENTIAL AIRBORNE CHEMICALS ON SITE FOR THIS PROJECT REVIEW THIS TABLE AND CONTACT THE SHSO WITH ANY QUESTION Chronic Routes of **OSHA PEL Other Pertinent** Exposure or Health Effects/ Chemical **Acute Health** (or Class) **ACGIH TLV** Limits **Properties** Irritation **Effects Target Organs** Gastrointestinal bleeding; Liquid with a enlarged liver; potential NIOSH considers this Inhalation: Weakness; abdominal pain; PEL - 1 ppmpleasant odor at occupational liver Vinyl chloride material to be a dermal; eye pallor or cyanosis of high carcinogen; damage to TLV - 1 ppmcarcinogen. extremities; liquid frostbite. contact. concentrations. CNS, blood, respiratory system, lymphatic system. Irritation to eyes, skin; headache; vertigo (an illusion Cardiac arrhythmias; Colorless liquid PEL C - 200 ppmInhalation; of movement); visual paresthesia; liver injury; (unless dyed PEL - 100 ppmTrichloroethene dermal; disturbance; fatigue; NIOSH considers potential occupational blue) with a

chloroform-like

odor.

ingestion; eye

contact.

NOTES:

°F = degrees Fahrenheit

(trichloroethylene)

ACGIH = American Conference of Governmental Industrial Hygienists

TLV - 50 ppm

trichloroethylene to be a

carcinogen.

AIHA = American Industrial Hygiene Association

AIHA WEEL = AIHA-set workplace environmental exposure limits

C = ceiling limit

CNS = central nervous system

CVS = cardiovascular system

IDLH = immediately dangerous to life or health

mg/m3 = milligrams per cubic meter

NIOSH = National Institute for Occupation Safety and Health

OSHA = Occupation Safety and Health Administration

PEL = permissible exposure limit

ppm = parts per million

RBC = red blood cells

REL = recommended exposure limit set by NIOSH

Skin = skin absorption

STEL = short-term exposure limit

TLV = threshold limit value set by ACGIH

TWA = time-weighted average

carcinogen of liver.

kidney.

giddiness; tremor; nausea;

somnolence (sleepiness,

unnatural drowsiness); vomiting; dermatitis.

9.0 POTENTIAL SITE HAZARDS AND APPROPRIATE PRECAUTIONS

Activities listed may be associated with work performed by others. The information contained in this section is for the use of Farallon personnel and not intended for use by others. The following tables list potential hazards and appropriate precautions associated with planned field work.

The following are a few basic guidelines to remember while performing field work at the Site:

- No eating, drinking, or smoking on the Site;
- No wearing contact lenses on the Site;
- No facial hair that will interfere with proper respirator fit when respirators are required; and
- A safety meeting will be held every day, even if only one person is working on the project on a given day.

9.1 ENVIRONMENTAL DRILLING

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Clear drilling locations.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, and work gloves.	Traffic hazards. Overhead or underground installations. Product releases. Property damage. Occupant inconvenience.	 Refer to Utility Clearance Log (Attachment 7). Coordinate with Site Manger (or designee) to minimize potential conflicts. Review proposed locations against available construction drawings and known utilities, tanks, product lines, etc. Mark out the proposed borehole locations. Call underground utility locating service for public line location clearance and obtain a list of utilities being contacted. If necessary, coordinate private line locator for private property. Maintain minimum distance of 5 feet from marked utilities. Develop a traffic control plan with the client and local agencies, as applicable, which may include use of cones, barrier tape, jersey barriers, etc.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Mobilize with equipment/supplies suitable for drilling.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, and work gloves.	Vehicle accident. Lifting hazards. Delay or improper performance of work due to improper equipment on Site.	 Begin each work day with tailgate safety meeting. Follow safe driving procedures. Employ safe lifting procedures. Verify that subcontractors are aware of their responsibilities for labor, equipment, and supplies. Review permit conditions.
Visually clear proposed drilling locations.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, and work gloves.	Underground or overhead installations.	 Complete Utilities and Structures checklist on the Utility Clearance Log (provided in Attachment 7) and adjust drilling locations as necessary. If drilling within 3 feet of marked utilities, must daylight utility to verify location.
Set up necessary traffic control.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, and work gloves.	Struck by vehicle during placement. Vehicle accident resulting from improper placement of traffic control equipment.	Use buddy system for implementing traffic control plan, such as setting out cones and tape to define the safety area.
Assist with setup of rig.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, and work gloves.	Vehicle accident during rig movement. Damage caused by rig while accessing set-up location. Contact with overhead installations. Soft terrain. Unexpected rig movement.	 All staff should know the location of the kill switch for the drilling rig. Verify a clear pathway to the drilling location and clearance for raising mast. Provide hand signals and guidance to the driver, as needed, to place rig. Visually inspect rig (e.g., fire extinguisher on board, no oil or other fluid leaks, cabling and associated equipment in good condition, pressurized hoses secured with whip-checks or adequate substitute, jacks in good condition). Use wooden blocks under jacks to spread load, if necessary. Chock wheels.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Set up exclusion zone(s) and work stations (drilling and logging and/or sample collection).	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, and work gloves.	Struck by vehicle during setup. Slip or fall hazards.	Implement exclusion zone setup. Set up work stations with clear walking paths to and from rig. Use safety tape and cone(s).
Clear upper 5 feet of drilling location using post-hole digger or hand auger.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, and work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, and chemical-resistant apron as required.	Back strain. Exposure to chemical hazards. Hitting an underground utility. Repetitive motion.	 Keep full-face respirator with organic vapor cartridges readily accessible. Initiate air quality monitoring in accordance with the air monitoring protocol presented in Attachment 9. Stand upwind to avoid exposure when possible. Use the organic vapor monitor aggressively to track the airborne concentration of contaminants close to potential sources such as the core when it is raised from the hole, the core when opened, etc. Evaluate any soil samples inside a resealable plastic bag at arm's length. DO NOT EVALUATE THE SAMPLE IN THE OPEN, IN ORDER TO AVOID UNNECESSARY EXPOSURE. Use correct lifting techniques and tools. Complete the Pre-Drilling section of the Borehole Clearance Review form.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Drilling.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Heat or cold. Eye injury. Noise. Exposure to chemical hazards. Breaching an underground utility. Trip or fall. Equipment failure.	 Stand clear of operating equipment. Use correct lifting techniques. Monitor air quality in accordance with the air monitoring protocol presented in Attachment 9. Monitor drilling progress. Keep work area clear of tripping or slipping hazards. Perform periodic visual inspections of drill rig.
Collect samples in accordance with sampling plan.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Heat or cold. Eye injury. Noise. Exposure to chemical hazards. Breaching an underground utility. Trip or fall. Equipment failure.	 Stand clear of operating equipment. Use correct lifting techniques. Monitor air quality in accordance with the air monitoring protocol presented in Attachment 9. Monitor drilling progress. Keep work area clear of tripping or slipping hazards. Perform periodic visual inspections of drill rig.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Manage cuttings.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Heat or cold. Eye injury. Noise. Exposure to chemical hazards. Breaching an underground utility. Trip or fall. Equipment failure.	 Stand clear of operating equipment. Use correct lifting techniques. Monitor air quality in accordance with the air monitoring protocol presented in Attachment 9. Monitor drilling progress. Keep work area clear of tripping or slipping hazards. Perform periodic visual inspections of drill rig.
Backfill borehole.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Trip hazards. Eye injury from splashing or release of pressurized grout.	 Mix grout to specification and completely fill the hole. Use proper lifting techniques. Keep work area clear of tripping hazards. Verify presence of and/or authorization by required grouting inspectors.
Develop well.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Physical injury from mechanical failure, drill rig, or air compressor. Trip hazards. Exposure to contaminants. Electric shock.	 Verify that equipment is in good working order and that pressurized hoses are whip-checked. Keep full-face respirator with organic cartridges readily accessible. Keep work area orderly. Any generators must be equipped with a ground fault circuit interrupter.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Gauge water levels and product thickness in wells, where applicable.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Inhalation or dermal exposure to chemical hazards. Repetitive motion.	 Have full-face respirator with organic cartridges readily accessible. Conduct air quality monitoring in accordance with the protocol presented in Attachment 9. Maintain a safe distance from the well head. Bend at knees rather than at the waist.
Purge well(s) and collect purge water.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Inhalation or dermal exposure to chemical hazards. Slip or fall. Contaminated water spill.	 Use proper lifting techniques. Use PPE, and adhere to air monitoring guidelines as presented in Attachment 9. Keep work area clear of tripping or slipping hazards. Store purge water in appropriate containers.
Collect groundwater samples in accordance with sampling plan.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Cross-contamination. Back strain. Inhalation or dermal exposure to chemical hazards. Slip or fall. Improper labeling or storage of samples. Injury from broken sample bottle (cuts or acid burns).	 Decontaminate sampling equipment between each well (unless disposable). Use proper lifting techniques. Have full-face respirator with organic cartridges within 3 to 5 feet of working location, and readily accessible. Label samples in accordance with sampling plan. Keep samples stored in appropriate containers, at correct temperature, and away from work area. Handle bottles carefully.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
Dispose of or store any purge water on the Site.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Exposure to contaminants.	 Use suitable equipment to transport water (e.g., pumps, drum dollies). Have full-face respirator with organic cartridges within 3 to 5 feet of working location, and readily accessible. Label storage containers properly, and locate in an isolated area away from traffic and other Site functions. Coordinate off-Site disposal (where applicable).
Clean the Site; demobilize.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Traffic. Lifting hazards.	 Use buddy system to remove traffic control, as necessary. Leave the Site clear of refuse and debris. Clearly mark or barricade any borings that need topping off or curing at a later time. Notify Site personnel of departure, final well locations, and any cuttings and/or purge water left on the Site. Use proper lifting techniques.
Package and deliver samples to laboratory.		Back strain. Traffic accidents.	 Handle and pack bottles carefully (e.g., bubble wrap bags). Use proper lifting techniques. Apply safe driving practices.
Typical work.	Steel-toed and -shank shoes, hard hat, safety glasses with side shields, hearing protection, reflective safety vest, leather gloves for non-chemical aspects of work. Chemical-resistant gloves and apron if chemical exposure is suspected.	Weather-related incidents: automobile accidents, slips or falls.	 Check weather reports daily. Project visits are not to be performed during inclement weather. Sampling may be performed during light rain mist. Wear raincoats. Drive at speed limit or less, as needed, to keep a safe distance from vehicle in front. Avoid short stops.

I.l. C4	Danier al Director d'ins Esperience	Provided Herende	Catharl Astions
Job Steps Typical work.	Personal Protective Equipment	Potential Hazards Cold stress.	 Critical Actions For temperatures below 40°F, adequate insulating clothing must be worn. If the temperature is below 20°F, workers will be allowed to enter a heated shelter at regular intervals. Warm, sweet drinks should be available. Coffee intake should be limited. No one should begin work or return to work from a heated shelter with wet clothes. Workers should be aware of signs of cold stress, such as heavy shivering, pain in fingers or toes, drowsiness, or irritability. Onset of any of these signs is an indication that immediate return to a heated shelter is needed. Refer to ACGIH TLV Booklet for the section on Cold Stress.
Typical work.		Heat stress.	 Discuss health effects and symptoms during daily health and safety meetings. Drink water regularly (at least one cup every 20 to 30 minutes, depending upon level of effort and the PPE worn). Refer to ACGIH TLV booklet for heat stress guidance, especially regarding PPE, type of work, and frequency of breaks. Breaks should be taken in an area cooler than the work area. Monitor temperature and relative humidity using a wetbulb globe temperature meter.

Job Steps	Personal Protective Equipment	Potential Hazards	Critical Actions
A safety meeting will be held every day, even if only one person is working on the project on a given day.			 Topics are to always include the work scheduled for the day and restatement of hazards and the means to avoid them. Other topics may include sampling in general, and advances in technology and how they may be applied to the project. Use the <i>Daily Health and Safety Briefing Log</i> in Attachment 4 to log the topics discussed.

9.2 EXCAVATION ACTIVITIES

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Clear excavation locations.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Traffic hazards. Overhead and underground installations. Product releases. Property damage. Dealer inconvenience.	 Refer to Utility Clearance Log. Coordinate with facility contact (or designee) to minimize potential conflicts. Review proposed locations against available construction drawings and known utilities, tanks, product lines, etc. Mark out the proposed excavation locations. Call the underground utility locating service for public line location clearance. Obtain a list of utilities being contacted. If necessary, coordinate private line locator for private property. Maintain minimum distance of 5 feet from marked utilities.
Set up necessary traffic control.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Being struck by vehicle during placement. Vehicle accident as a result of improper traffic control equipment placement.	 Use buddy system to place traffic control. Implement traffic control plan as required.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Set up exclusion zone(s) and stockpile area and establish work areas/heavy equipment	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Injury or exposure to public or other Site personnel. Slip or fall hazards.	 Implement exclusion zone set-up instructions. Establish clear walking paths between work stations.
pathways.		On-Site vehicular accident with heavy equipment.	
Hand digging/post-holing where necessary to expose and protect underground installations as needed.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Damage to lines and associated physical hazards or property damage.	 Use hand tools whenever possible. Use proper lifting techniques. Barricade or cover holes until job has been
	Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Injury or vehicle damage from falling into a hole.	completed.
Assist with setup of heavy equipment.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Damage caused by heavy equipment while accessing set-up location. Being struck by equipment.	 Verify a clear pathway to excavation and stockpiling locations. Provide hand signals and guidance to driver as needed to place rig. Visually inspect equipment (e.g., fire extinguisher on board, no oil or other fluid leaks, cabling and associated equipment in good condition, pressurized hoses secured with whip-checks or adequate substitute, jacks in good condition). Maintain eye contact with operator.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Commence excavation.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Heat or cold exposure. Exposure to chemical hazards. Hitting an underground or overhead utility. Flammable or oxygendeficient atmosphere from accumulated vapors. Trip or fall. Side wall cave-in. Equipment failure. Noise.	 Monitor weather conditions and take breaks as needed for cold or hot weather. Conduct air monitoring as presented in Attachment 9. Include Lower Explosive Limit (LEL) and oxygen (O2) monitoring. If >10% LEL or O2 <19.5%, discontinue work or ventilate area with explosion-proof equipment. Maintain required excavation set-backs for workers and equipment. Monitor condition of side walls and surrounding ground conditions. Keep work area clear of tripping or slipping hazards. Perform periodic visual inspections of heavy equipment and keep equipment a minimum of 5 feet from excavation edge, or 1 foot away from the edge for every foot of depth, if greater than 5 feet deep. Perform necessary soil classification. Slope or bench walls, or shore excavation to prevent cavein. Keep all spoils more than 2 feet from excavation edge. Keep excavation entry controlled and equipped with required ladders and crosswalks.
Collect samples in accordance with sampling plan.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Cave-in of side wall if entering excavation. Injury from heavy equipment. Exposure to Site contaminants.	 Stay out of excavation whenever possible (collect samples from backhoe bucket). Use agreed-upon hand signals with heavy equipment operators. Monitor air around excavation in accordance with the protocol presented in Attachment 9.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Store excavated materials according to Site-specific requirements.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Exposure to public. Traffic hazard, obstruction, or inconvenience to business operation. Improper storage or disposal.	 Have necessary storage containment and labeling available on the Site. Place materials in isolated location away from traffic and other Site functions. Stockpile excavated materials on suitable plastic or in appropriately designed container. Cover with plastic, and barricade access to waste in accordance with local regulations. Coordinate proper disposal off the Site, where applicable.
Backfill excavation.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Being struck by heavy equipment. Side wall collapse. Damage or accidents resulting from subsequent subsidence.	 Use agreed-upon hand signals with heavy equipment operators. Compact soils to meet specifications. Maintain eye contact with equipment operators.
Clean the Site; demobilize.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Traffic. Safety hazard left on the Site. Lifting hazards.	 Use buddy system to remove traffic control, as necessary. Leave Site clear of refuse and debris. Notify business personnel of departure. Use proper lifting techniques or use mechanical assistance.
Package and deliver samples to laboratory.		Back strain. Traffic accidents.	 Handle and pack bottles carefully (e.g., bubble wrap bags). Use proper lifting techniques. Apply safe driving practices.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions			
General	General					
Typical work.	Steel-toed and -shank shoes, hard hat, safety glasses with side shields, hearing protection, reflective safety vest, and leather gloves for non-chemical aspects of the work. If equipment contamination is suspected, wear chemical-resistant gloves during decontamination of equipment.	Weather-related incidents: automobile accidents, slips or falls.	 Check weather reports daily. Project visits are not to be performed during inclement weather. Sampling may be performed during light rain mist. Wear raincoats. Drive at the speed limit or less as needed to keep safe distance from vehicle in front. Avoid short stops. 			
A safety meeting will be held each day, even if only one person is working on the project on any given day.			 Topics are always to include the work scheduled for that day, and restatement of hazards and the means to avoid them. Other topics may include sampling in general, and advances in technology and how they may be applied to the project. Use the <i>Daily Health and Safety Briefing Log</i> provided in Attachment 4 to log the topics discussed. 			

9.3 UNDERGROUND STORAGE TANK DECOMMISSIONING

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Eliminate all potential sources of ignition.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Explosion. Fire.	 Ban smoking. Shut down all open-flame and spark-producing equipment within vapor hazard. Use only explosion-proof equipment in hazard area. Ground heavy equipment that will or may touch the UST.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Clear overburden (e.g., concrete, pavement, rebar).	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Explosion. Fire. Release of product. Injury from heavy equipment. Back strain. Hand, eye, or foot injury from hand tools. Trip or fall. Noise. Traffic hazards.	 Watch for underground utilities and product piping. Keep clear of heavy equipment. Use agreed-upon hand signals. Keep area as clear of loose debris and other trip hazards, as possible. Heed vehicle backup alarm. Establish eye contact with operator.
Disconnect and drain product lines and vent lines.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Explosion. Fire. Product spill. Chemical exposure.	 Use non-sparking tools. Place containment (e.g., bucket) under points where lines will be disconnected or cut. Cap or remove lines. Conduct air monitoring for previous contents in accordance with Attachment 9.
Remove product and residues from UST.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Explosion. Fire. Product spill. Chemical exposure.	 Locate vacuum truck and other vehicles upwind of UST and outside probable path of vapor dispersion. Keep area vapor-free. Discharge vacuum pump exhaust through a hose directed downwind of the tank area. Use explosion-proof or air-driven pumps. Bond (or otherwise ground) pump motors and suction hoses to the tank. Avoid using plastic (PVC) or other non-conductive pick-up tubes on vacuum trucks to minimize static charge build-up.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Purge UST vapors rather than inerting them.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Explosion. Fire. Inhalation of vapors (for both workers and the public).	 Frequently test the percentage of the Lower Explosion Limit (LEL) in the bottom, middle, and top of tank. O₂ must be <10% in tank. Bond drop tube (if not already connected) to UST. Use hot water spray rather than steam to clean UST to minimize static build up. If using steam, bond or ground all isolated conductors and objects, including discharge hose, that are subject to impingement or condensation. Vent purged UST fumes a minimum of 12 feet above ground and/or 3 feet above adjacent rooflines.
Inert UST vapors rather than purging them.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Explosion. Fire. Inhalation of vapors (for both workers and the public). Skin burns from dry ice. Injury from compressed gas (nitrogen) cylinder failure. Bottled carbon dioxide (CO ₂) condensation causing static electricity and associated explosion and/or fire hazard. Slip, trip, or fall when accessing tank. Risks from climbing ladder to access UST.	 Frequently test the percentage of O₂ in the bottom, middle, and top of tank. O₂ must be <10% in UST. Carbon dioxide (dry ice): Avoid skin contact. Wear resistant gloves and long sleeves. Nitrogen gas: Keep compressed gas cylinders secured; use correct regulators and cylinder caps. Introduce nitrogen, which is lighter than air, near bottom of UST to get effective purge. Bond or ground cylinder nozzle. CO₂ (bottled gas): Not recommended because of condensation formation. If CO₂ is used, follow the precautions for nitrogen gas bottles. Vent exhaust vapors a minimum of 12 feet above ground and/or 3 feet above adjacent rooflines.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Prepare UST for removal from excavation.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Product spill. Slip or fall from top of UST.	Plug or cap all accessible holes. One plug should have a 0.125-inch vent hole to allow for pressure changes.
	Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.		
Excavate around UST.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Injury from heavy equipment. Cave in of excavation walls. Explosion. Fire. Slip or fall due to uneven work surfaces. Struck by excavator.	 Maintain safe distance from equipment and excavation—a minimum of 1 foot away from the edge of the excavation for each foot of depth. Stay in sight lines of operators. Use agreed-upon hand signals. Heed equipment backup alarm. Establish eye contact with operator. Monitor air for LEL conditions and wind direction. Ventilate as needed.
Remove UST.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Snapping cables/straps. Injury from heavy equipment. Explosion. Fire. Product spill. Exposure to vapors.	 Inspect cables and strapping. Stay clear of equipment and tank removal pathway. Monitor air for LEL conditions, personnel exposure, and wind direction. Ventilate as needed. Stay away from UST ends in particular, the weakest point in the event of an explosion. Have spill containment available.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Collect samples according to sampling plan.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Collapse of side walls. Injury from heavy equipment. Slip or fall due to uneven terrain.	 Stay out of excavation. Collect samples from backhoe bucket at safe distance from edge of excavation. Keep footing secure.
Load and transport UST and associated piping.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Material falling from truck. Explosion. Fire. Risks from equipment backing up.	 Verify that all material is secured to truck. Recheck vapor concentrations in UST and vent as needed. Heed backup alarms on vehicles.

9.4 MONITORING WELL SAMPLING/GAUGING

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Mobilize with equipment/supplies suitable for sampling.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Vehicle accident. Lifting hazards. Delay or unsafe performance of work due to lack of necessary equipment on Site. Cross-contamination of wells.	 Follow safe driving procedures. Use proper lifting techniques. Review work plan to determine equipment/supply needs. Verify that all sampling/gauging equipment has been decontaminated. Bring ice for sample storage. Review the HASP. Gather the necessary PPE.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Set up necessary traffic control.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Struck by vehicle during placement. Vehicle accident as a result of improper traffic-control equipment placement.	Use buddy system for placing traffic control. Refer to the traffic control plan section of the HASP (which may include specific requirements based on encroachment permit).
Set up exclusion zone(s).	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Struck by vehicle. Slip or fall hazards to workers.	 Face incoming traffic. Implement exclusion zone setup instructions of the HASP (e.g., barricades, caution tape, cones). Set up work area free of trip hazards.
Gauge water levels and product thickness (where applicable) in wells.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Inhalation of, or dermal exposure to, chemical hazards. Repetitive motion.	 Wear required PPE. Initiate air quality monitoring in accordance with the HASP. Maintain a safe distance from wellhead. Bend at knees rather than at waist.
Purge well(s) and collect purge water.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Cross-contamination. Back strain. Inhalation of, or dermal exposure to, chemical hazards. Slip or fall. Contaminated water spill.	 Decontaminate purging equipment between each sampling location. Use proper lifting techniques. Use PPE and conduct monitoring in accordance with the HASP. Keep work area clear of tripping or slipping hazards. Store purge water in appropriate containers.

Job Steps	Personal Protective Equipment	Potential Hazard	Critical Actions
Collect samples in accordance with sampling plan.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Cross-contamination. Back strain. Inhalation of, or dermal exposure to, chemical hazards. Slip or fall. Improper labeling or storage. Injury from broken sample bottle (e.g., cut or acid burn).	 Decontaminate sampling equipment between each well (unless disposable equipment). Use proper lifting techniques. Use PPE in accordance with the HASP. Label samples in accordance with sampling plan. Keep samples stored in suitable containers, at correct temperature, and away from work area. Handle bottles carefully.
Dispose of or store purge water on the Site.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves. Respirator with organic vapor cartridges, chemical-resistant gloves, chemical-resistant apron as required.	Back strain. Exposure to contaminants. Damage or injury from improper use of on-Site treatment system equipment. Improper storage or disposal.	 Use suitable equipment to transport water (e.g., pumps, drum dollies). Wear PPE in accordance with the HASP. Review any necessary instructions for use of on-Site treatment systems. Label storage containers properly and locate in an isolated area away from traffic and other Site functions. Coordinate off-Site disposal, where applicable.
Clean the Site; demobilize.	Reflective vest, steel-toed and -shank shoes, hard hat, safety glasses with side shields, ear plugs or muffs, work gloves.	Traffic. Safety hazard left on the Site. Lifting hazard.	 Use buddy system to remove traffic control, as necessary. Leave the Site clear of refuse and debris. Notify business personnel of departure, and of any purge water left on the Site. Use proper lifting techniques.
Package and deliver samples to laboratory.		Bottle breakage. Back strain.	 Handle and pack bottles carefully (e.g., bubble wrap bags). Use proper lifting techniques.

10.0 WASTE CHARACTERISTICS

Waste anticipate	ed to be generated of	on the Site:						
Type(s): \(\sum \text{Liq}	uid 🛚 Solid	Sludge	Other					
The approximate	e volume for each a	inticipated wast	e stream:					
Waste: Contan	ninated soil	Approximate	Volume: Unknown					
Waste: Ground	Waste: Groundwater Approximate Volume: Unknown							
Characteristics:								
Corrosive	☐ Flammable/Ig	nitable	Radioactive	⊠ Toxic				
Reactive	Unknown	□Ot	ther (specify)					

11.0 TRAFFIC CONTROL

Work on the Site will be conducted in areas where access is primarily controlled. An exclusion zone will be placed around the work area to prevent undesirable interface between pedestrian traffic and project workers and equipment. These devices may include:

- Cones;
- Tubular markers; and
- Barricade tape.

Cones/tubular markers and barricade tape will be used to inhibit access to the work area in locations where pedestrians will be encountered.

ATTACHMENT 1 HEALTH AND SAFETY PLAN ACKNOWLEDGEMENT AND AGREEMENT FORM

HEALTH AND SAFETY PLAN South Lake Union Block 38 West Property 500 Through 536 Westlake Avenue North Seattle, Washington

HEALTH AND SAFETY PLAN ACKNOWLEDGMENT AND AGREEMENT FORM

(All Farallon and subcontractor personnel must sign on a daily basis.)

This Health and Safety Plan (HASP) has been developed for the purpose of informing Farallon employees of the hazards they are likely to encounter on the project site, and the precautions they should take to avoid those hazards. Subcontractors and other parties at the site must develop their own HASP to address the hazards faced by their own employees. Farallon will make a copy of this HASP available to subcontractors and other interested parties to fully disclose hazards we may be aware of, and to satisfy Farallon's responsibilities under the Occupational Safety and Health Administration (OSHA) Hazard Communication standard. Similarly, subcontractors and others on site are required to inform Farallon of any hazards they are aware of or that their work on site might possibly pose to Farallon employees, including but not limited to Material Safety Data Sheets for chemicals brought on site. This plan should NOT be understood by contractors to provide information pertaining to all of the hazards that a contractor's employees may be exposed to as a result of their work.

All parties conducting site activities are required to coordinate their activities and practices with the project Site Health and Safety Officer (SHSO). Your signature below affirms that you have read and understand the hazards discussed in this HASP, and that you understand that subcontractors and other parties working on site must develop their own HASP for their employees. Your signature also affirms that you understand that you could be prohibited by the SHSO or other Farallon personnel from working on this project for not complying with any aspect of this HASP. The SHSO will be noted on the sheet below on a daily basis.

	HEALTH AND SAFETY PLAN ACKNOWLEDGMENT AND AGREEMENT FORM						
Check for SHSO	Name	Title	Signature	Company	Date		

	HEALTH AND SAFETY PLAN ACKNOWLEDGMENT AND AGREEMENT FORM					
Check for SHSO	Name	Title	Signature	Company	Date	
51150	1 (unic	Title	Signature	Company	Dutt	

ATTACHMENT 2 DIRECTIONS TO HOSPITAL

HEALTH AND SAFETY PLAN South Lake Union Block 38 West Property 500 Through 536 Westlake Avenue North Seattle, Washington

DIRECTIONS TO HOSPITAL

530 Westlake Ave N

Seattle, WA 98109

†	1.	Head north on Westlake Ave N toward Merce	r St
r÷	2.	Turn right at the 1st cross street onto Mercer	- 154 ft St
L ,	3.	Turn right onto Fairview Ave N	- 0.2 mi
4	4.	Use any lane to turn left onto Boren Ave	0.5 mi
			0.6 mi

Virginia Mason Hospital and Seattle Medical Center

1100 9th Ave, Seattle, WA 98101

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route.

ATTACHMENT 3 POTENTIAL TOPICS FOR DAILY HEALTH AND SAFETY MEETING

HEALTH AND SAFETY PLAN South Lake Union Block 38 West Property 500 Through 536 Westlake Avenue North Seattle, Washington

POTENTIAL TOPICS FOR DAILY HEALTH AND SAFETY MEETING

Emergency response plan, emergency vehicle (full of fuel) and muster point
Route to medical aid (hospital or other facility)
Work hours. Is night work planned?
Hand signals around heavy equipment
Traffic control
Pertinent legislation and regulations
Above- and below-ground utilities (energized or de-energized)
Material Safety Data Sheets
Reporting an incident: to whom, what, why, and when to report
Fire extinguisher and first aid kit locations
Excavations, trenching, sloping, and shoring
Personal protective equipment and training
Safety equipment and training
Emergency telephone location(s) and telephone numbers (in addition to 911)
Eye wash stations and washroom locations
Energy lock-out/tag-out procedures. Location of "kill switches," etc.
Weather restrictions
Site security. Site hazards. Is special waste present?
Traffic and people movement
Working around machinery (both static and mobile)
Sources of ignition, static electricity, etc.
Stings, bites, large animals, and other nature-related injuries and conditions
Working above grade
Working at isolated sites
Decontamination procedures (for both personnel and equipment)
How to prevent falls, trips, sprains, and lifting injuries
Right to refuse unsafe work
Adjacent property issues (e.g., residence, business, school, daycare center)

ATTACHMENT 4 DAILY HEALTH AND SAFETY BRIEFING LOG

HEALTH AND SAFETY PLAN South Lake Union Block 38 West Property 500 Through 536 Westlake Avenue North Seattle, Washington

DAILY HEALTH AND SAFETY BRIEFING LOG

PROJECT INFORMATION								
Farallon PN:		Project Name:						
Site Address:		City/State:						
	MEETING	INFORMATION						
Conducted By:		Weather:						
Major Job Task:		Date:						
1	DAILY EQUIP	MENT CHECKLIST						
☐ Site Check In	☐ First Aid Kit l	Location(s)	☐ Ear Plugs (if required)					
☐ Proper ID/Safety Credentials ☐	☐ Fire Extinguis	sher Location(s)	☐ Hand Protection (if required)					
☐ Hard Hat	☐ Eye Wash Sta	tion	☐ Face Shield (if required)					
☐ Safety Glasses	☐ Traffic Contro	ol (if needed)	☐ Respirator (if required)					
☐ Orange Reflective Vest (H or X bad	ck BNSF)							
☐ Safety Toe Boots (lace up and leath	ner BNSF)							
I	HEALTH AND	SAFETY BRIEFING	7					
☐ Head Count (No. of employees:)		☐ Chemical/Contamir	nant Hazards					
☐ Emergency Response		☐ Health Hazards						
☐ Who will? (Provide names below	7.)	☐ Environmental Haz	ards					
Call 911:		☐ Physical Hazards						
Alternate to call 911:		☐ Slips, Trips, and Fa	lls					
Provide First Aid/CPR:		☐ Utility Locates						
☐ Emergency Exits/Rally Points/Hos	pital Route	☐ Utility/Product Shut-Off Valves/Switches						
☐ Site Security and Exclusion Zone		☐ Near Miss Reporting (reminder to look)						
☐ Vehicle/Equipment-Specific Safety	/ Practices	☐ Incident Reporting (procedures and forms)						
☐ Stop Work Authority		☐ Traffic Control						
☐ Excavation Safety (if applicable)		☐ HASP Reviewed and Signed						
OTHER SITE-SPE	CIFIC HEALT	TH AND SAFETY ISS	SUES DISCUSSED					
1)								
,								
,								
NAME	CC	OMPANY	SIGNATURE					
□ Safety Toe Boots (lace up and leath □ Head Count (No. of employees:) □ Emergency Response □ Who will? (Provide names below Call 911: Alternate to call 911: Provide First Aid/CPR: □ Emergency Exits/Rally Points/Hos □ Site Security and Exclusion Zone □ Vehicle/Equipment-Specific Safety □ Stop Work Authority □ Excavation Safety (if applicable) OTHER SITE-SPE 1) 2) 3) 4) 5)	pital Route CCIFIC HEALT ALTH AND SA	☐ Chemical/Contamir ☐ Health Hazards ☐ Environmental Haz ☐ Physical Hazards ☐ Slips, Trips, and Fa ☐ Utility Locates ☐ Utility/Product Shu ☐ Near Miss Reportin ☐ Incident Reporting ☐ Traffic Control ☐ HASP Reviewed an	ards ards t-Off Valves/Switches g (reminder to look) (procedures and forms) ad Signed SUES DISCUSSED					

ATTACHMENT 5 INCIDENT REPORT FORM

HEALTH AND SAFETY PLAN South Lake Union Block 38 West Property 500 Through 536 Westlake Avenue North Seattle, Washington

Oregon Portland | Baker City

California

Oakland | Folsom | Irvine

INCIDENT REPORT FORM

This report must be completed by the employee or Health and Safety Coordinator (HSC) immediately upon learning of the incident. The completed report must be reviewed and signed by Project Principal, within 24 hours of the incident, even if the employee is not available to review and sign. The employee or employee's doctor must submit a copy of the doctor's report to Joe Rounds within 24 hours of the initial exam and any subsequent exams. After hours or weekends, please call Joe Rounds: Mobile (206) 484-2748. Document the incident with photographs if possible. For environmental releases, discuss possible regulatory spill reporting with the Project Principal.

EMPLOYEE INFORMATION									
Employee Name:				Employee Title:					
Employment Status: Full-Time Part-Time H	ourly-As-Needed		Year	rs Employed at Faral	nployed at Farallon Consulting, L.L.C. (Farallon)?				
INCIDENT TYPE									
☐ Fatality ☐ Ind	ustrial Non-Recordable			Spill/Leak		General Liability			
☐ Lost Workday (LW) ☐ No.	n-Industrial		□ 1	Product Integrity		Vandalism/Criminal Activity			
☐ Restricted Duty ☐ Off	-the-Job Injury]	Equipment		Notice of Violation			
☐ OSHA Medical or Illness w/o LW ☐ Mo	tor Vehicle Accident		□ 1	Business Interruption	n \square	Other			
☐ First Aid ☐ Fire	e								
INCIDENT DESCRIPTION									
Date of incident, injury, or onset of illness: Click or	tap to enter a date.		Time	e of incident, injury	or onset of illness:	\square AM \square PM			
Brief description of incident. Provide full incident det	ails on Page 2.								
Describe the equipment, materials, or chemicals that of inhaled, or material swallowed; what the employee was		.g., the	mach	hine employee struck	against or which s	truck employee; the vapor			
manae, or material strains wee, what are employee we	as menig, pannig, etc.).								
			т.	1					
Date employer notified: Click or tap to enter a date	2.		Time	e employer notified:		□ AM □ PM			
To whom reported?									
INJURY OR ILLNESS INFORMATION									
Exact Location of Incident (address, geographical location)	ation, floor, building, etc.):								
County:		On En	nploy	/er's premises? ☐ Y	es 🗆 No				
Describe the specific injury or illness (e.g., puncture,	cut, contusion, strain, fractu	ıre, skir	n rash	h, etc.):					
Body part(s) affected (e.g., back, left wrist, right eye,	etc.):								
Name and address of Health Care Provider:						Phone No.:			
Treated in Emergency Room: ☐ Yes ☐ No			Hosp	pitalized Overnight a	s Inpatient: Yes	□ No			
Injury/Illness Severity	Time Loss (Check all t	that ap	ply.)		Workday Phase				
☐ No treatment required.	☐ No time loss.				☐ Performing nor	mal work duties.			
	☐ Return to work the n	ext day	/.		☐ During meal pe				
☐ First aid only.	☐ Restricted activity.				☐ During rest per				
	Begin date:					g work area or site.			
☐ Professional medical treatment.	Return date:				☐ Chronic exposu				
	☐ Lost workday, not at	work.			☐ Other, specify:				
☐ Fatality. Enter date: Click or tap to enter a	Begin date:								
date. Return date:									

MOTOR VEHICLE ACCIDENT (M	VA)								
Professional Driver? ☐ Yes ☐ No	Total	Total Years Driving:					Company V	ehicle? □ Yes □] No
Vehicle Type:	Vehic	le Owner (not Faral	llon):				Vehicle Lice	ense Plate:	
No. of Vehicles Towed:		No. of Injuries:			No. of Fatali	ties:			
Insurance information for other driver(s):									
Witness Name:		Address:				Phone	e No.:		
Witness Name: Address:						Phone	e No.:		
THIRD PARTY PROPERTY DAMAGE (INCLUDING UTILITIES – PLEASE PROVIDE PHOTOS)									
Owner Name for Damaged Property:	Address:					Phone No.:			
Description of Damage:									
Property Owner Insurance information:								n	
Witness Name:			Address:					Phone No.:	
Witness Name:			Address:					Phone No.:	
Detailed Description of Events (Use space below to provide full de	etailed	description of	incident	t Include S	Snecific Act	ivity I)uring Inci	ident (Lifting	. Pushing
Walking, etc.)	· · · · · · · · · · · · · · · · · · ·	description of	meraem	. Include (peeme rec	ivity i	ouring inc	uent (Enting	,, 1 usning,
SIGNATURES OF EMPLOYEE	AND I	REVIEWERS							
Name (print):		Signature:			Т	itle:			Date:
Employee:					•				
Employee's Group Manager:									<u> </u>
Regional Operations Manager:									•
Farallon Corporate Health and Safety Coo	rdinato	r:			J				I
				T					
Entered into Database By:				Date:					

ATTACHMENT 6 NEAR MISS AND SAFETY OBSERVATION REPORT

HEALTH AND SAFETY PLAN South Lake Union Block 38 West Property 500 Through 536 Westlake Avenue North Seattle, Washington

NEAR MISS AND SAFETY OBSERVATION REPORT

This report is to be filled out by any employee involved in or witnessing a near miss, or making a safety observation. A near miss is an occurrence that did not result in any personal injury, property damage, environmental release, or production interruption, but could have under slightly different circumstances. A safety observation is witnessing any activity that places a person or property at risk of injury, accident, or damage but does not fit the definition of a near miss. These are very important indicators of potentially harmful future accidents, and provide valuable insights to preventing personal injury and/or property damage.

PROJECT INFORMATION		
Farallon PN:	Project Name:	
Site Address:	City/State:	
NEAR MISS/SAFETY OBSERVATION INF	ORMATION	
Employee Completing Report:		
Date: Click or tap to enter a date.	Time:	\square AM \square PM
Near Miss Category: Choose an item.		
Exact Location:		
Description of Potential Incident or Hazard:		
Corrective Action Taken:		
Lessons Learned:		
SIGNATURES AND NOTIFICATIONS		
Date employer notified: Click or tap to enter a date.	Time employer r	notified:
To whom reported?		
Employee Signature:		Date:
HSC Signature:		Date:
Entered into Database By:		Date:

ATTACHMENT 7 UTILITY CLEARANCE LOGS

HEALTH AND SAFETY PLAN South Lake Union Block 38 West Property 500 Through 536 Westlake Avenue North Seattle, Washington

LITH ITV CLEARANCE LOC

Duainat Nama:			I CLE						
				Project Number: Date of Work:					
Instructions . This le excavation (e.g., test	_		•		taff meml	oer before	any Fa	rallon-directed	
DRIL	LING OR	EXCAV	ATION	WORK I	MAY NO	T COMM	1ENCE		
\mathbf{U}	NTIL UTII	LITY L	OCATES	HAVE !	BEEN C	OMPLET	ED		
(see the C	One-Call U	tility Lo	cate Requ	iest Prod	edure or	the follow	wing pa	ige)	
Farallon is responsible drilling or directing from marked utilities hand tools. Any drill its location.	test pit exca s if possible	vation c . Any ex	operations.	Drilling within 3	locations feet of a r	s should be narked uti	e a min lity mus	imum of 5 feet st be done with	
Owners of undergro private property. Ow appurtenances. Utilit	ners of unde	erground	l utilities a	re <u>not re</u>	equired to	mark exis	sting ser	rvice laterals or	
Private utility locate Site electric distribut						nd other b	uried ut	ilities (e.g., on-	
Re-mark after 10 day	s or mainta	in as app	oropriate.						
Utility Locate Chec	klist								
☐ Attach map showi	<u></u>	and/or ex	veavation	cites and	known u	tilities			
☐ Attach copy of Or	-						totus oo	m/\	
One-Call Utility		•		cket (mup	0.// W W W .S	Carchanus	iaius.co	1111/	
•			_	7:4 60-	441 1	_1	1:4 C.	:11-1-114\	
☐ Attach copy of Sic				11y 01 Se	eattie; che	ck munici	panty 10	or availability)	
☐ Attach copy of Pr		•		1 1			C 1		
☐ Photograph all exc			ing localio	ons and d	iownioad	to project	me		
☐ Review utilities w				D 1					
Name:				Phone: _					
<u>Utilities and Structu</u>	<u>ures</u>								
Utility Type	Utility	Name	Public Marke		Utilities	ivate s/Laterals ed (Y/N)	(flags	rking Method, wooden stakes, n pavement, etc.)	
Petroleum product lin	es							,	
Natural gas line									
Water line									
Sewer line									
Storm drain									
Telephone cable									
Electric power line									
Product tank	1								
Septic tank/drain field Other	<u>a</u>								
Farallon Consulting,					_				
Field Team Leader:					Date	:			

ONE-CALL UTILITY LOCATE REQUEST PROCEDURE

THE ONE-CALL UTILITY NOTIFICATION CENTER REQUIRES 48 HOURS NOTICE TO MARK UTILITIES BEFORE YOU CAN DIG OR DRILL

Washington: 1-800-424-5555

Washington state law states that "before commencing **any** excavation," the excavator or driller must provide notice to all owners of underground utilities by use of the One-Call locator service, and that the excavator or driller shall not dig or drill until all known utilities are marked. To fully comply with the law, you **must** take the following steps:

- 1. Call before you dig or drill: Notify the One-Call Utility Notification Center (OCUNC) a minimum of 48 hours (2 full business days) before digging or drilling. Provide the following required information:
 - a. Your name and phone number, company name and mailing address, and Farallon Account Number 25999.
 - b. The type of work being done.
 - c. Who the work is being done for.
 - d. The county and city where the work is being done.
 - e. The address or street where the work is being done.
 - f. Marking Instructions: "Generally locate entire site including rights-of-way and easements."

Provide the following information if applicable or requested:

- a. The name and phone number of an alternate contact person.
- b. If the work is being done within 10 feet of any overhead power lines.
- c. The nearest cross street.
- d. The distance and direction of the work site from the intersection.
- e. Township, range, section, and quarter section of the work site.
- 2. Record the utilities that will be notified: OCUNC will tell you the utilities that are on or adjacent to the work site, based on their database. Record the name(s) of the utility on the reverse side of this form.
- 3. After the 48-hour waiting period, confirm that the utility locations have been marked: Before digging or drilling, walk the work site and confirm that the utility companies have marked the utility locations in the field.
- **4. If a locate appears to be missing:** If a utility locate appears to be missing and the utility company has not notified you that there are no utilities in the area, call OCUNC and:
 - a. Provide the OCUNC locate number.
 - b. Clearly state which utility has not been marked. The call is being recorded.
 - c. Ask for a contact person at that utility.
 - **d.** Call the contact person for the missing utility locate: Determine why there is no utility locate in the field.

Electric =	Gas-Oil-Steam =	Comm- $CATV$ =	Water =	Sewer =	Temp Survey =
RED	VELLOW	ORANGE	RLUE/PURPLE	CRFFN	PINK

- e. Record the reason(s) for the missing locate(s): There are valid reasons that locates do not appear in the field (e.g., there are no utilities located on the work site or the utility has been abandoned). However, IF THEY ARE LATE, YOU MUST WAIT TO DRILL OR DIG. If the utility fails to mark a locate within the required 48 hours (2 full business days), the utility is liable for delay costs.
- **5. Hand dig within 3 feet of a marked utility:** When digging or drilling within 3 feet of any marked utility, the utility must be exposed <u>first</u> by using hand tools.
- **6. Record reason(s) for missing locate(s)**: There may be reasons that locates do not appear in the field (e.g., no utilities are located on the site, utility has been abandoned). Record the reason given. IF THEY ARE LATE YOU WAIT TO DRILL OR DIG. If the utility failed to mark within the required two days, they are liable for delay costs.

Electric =	Gas-Oil-Steam =	Comm-CATV =	Water =	Sewer =	Temp Survey =
RED	YELLOW	ORANGE	BLUE/PURPLE	GREEN	PINK

FARALLON CONSULTING, L.L.C. TELEPHONE CONVERSATION

975 5 th Avenue Northwest	Date:	Tiı	Time:							
Issaquah, Washington	Project Name:									
98027	Job No.:									
	Phone No.: <u>1-800-424-5555</u> Prepared By/Initials:									
	Call:	Ц	Piaced	Ш	Received					
Contact/Title:										
Agency/Region: One-Call Utility Notification	ation Center									
PROJECT:										
1. Your name and the Farallon Account	No. #25999:									
2. What is the type of work being conduc										
2. What is the type of work being conduc	ica (c.g., chv	ii Viiiit	iitai ui iiiiiig	5, test p	it excavation).					
3. Who is the property owner?										
4. County and city were work is being do										
5. Address or street where work is taking	g piace?									
6. Nearest cross street?										
7. Distance and direction of the work site fi	rom the interse	ection?								
8. Marking Instructions (generally lo										
easements):										
9. What time and date will the locate be con										
10. Utility Locate Request Number?										
11. Utilities that will be notified?										
12. Any Overhead Concerns?										
re:		Ps	age.		of					

Note: Bold indicates required information.

ATTACHMENT 8 FARALLON FIELD PERSONNEL TRAINING DATES

HEALTH AND SAFETY PLAN South Lake Union Block 38 West Property 500 Through 536 Westlake Avenue North Seattle, Washington

Health and Safety Certifications and Training

									Expiration	on Dates					<u>-</u>	
	Medical	Monitoring	al al	93	Test			Extinguisher Training		o.	Harassment Training			isor	40 Hour Training Taken (Initial)	Jer
Name	Date of Last Exam	Next Exam Due	Annual/Biennial	Resp. Clearance	Respirator Fit	CPR	First Aid	Fire Extinguis	BNSF E-Railsafe (Bi-annual)	BNSF Contract Orientation (Annual)	Harassm	GHS Training	Lead Awareness	8 Hour Supervisor	40 Hour Traini	8 Hour Refresher
Bailey, Amber	04/08/19	04/08/21	В	04/19/17	04/08/19	11/02/18	11/02/18	06/16/16	12/06/19	11/28/19	06/04/18		02/07/19	10/30/17	11/22/13	02/07/19
Bakouros, Apostolis	06/19/19			06/19/19				07/01/19			NA					
Banfield, Chantal	10/15/18	10/15/20	В	10/15/18		11/02/18	11/02/18	06/14/17	06/14/19	11/13/19	10/16/18		01/25/19		10/11/18	01/25/19
Bowser, Matthew	04/05/19	04/05/21	В	04/12/17	07/25/19	11/02/18	11/02/18	05/16/16	07/21/19	07/30/19	05/11/18		01/29/19	10/30/17	06/11/15	01/29/19
Brown, Stuart	05/02/19	05/02/21	В	08/23/18	05/02/19	01/11/17	01/11/17	06/28/11			05/09/18		01/25/19	06/28/11	09/08/08	01/25/19
Burns, Anastasia	04/26/18	04/25/20	В	04/26/18	07/01/16	11/02/18	11/02/18	05/16/16	01/25/20	04/25/19	05/08/18		04/19/19	10/30/17	09/15/14	04/19/19
Charney, Ryan	02/12/19	02/12/21	В	02/12/19	02/12/19			02/11/19			02/11/19		02/22/19	02/06/18	01/03/15	02/22/19
Cordell, Phil	08/27/18	08/27/20	В	08/27/18		04/05/17	04/05/17	09/17/18			09/11/18		01/25/19	06/20/08	11/15/05	01/25/19
Emahiser, Parker	04/30/19	04/30/21	В	04/18/17	04/30/19	12/21/17	12/21/17	05/16/16			06/07/18		01/25/19		02/17/13	01/25/19
Ferreira, Gabriela	03/19/18	03/18/20	В	03/19/18		01/04/18	01/04/18	03/26/18			05/10/18		01/31/19		09/18/15	01/31/19
Fisco, Gavin	08/08/18	08/07/20	В	08/08/18	08/08/18	09/26/16	09/26/16	05/18/16			05/17/18		01/25/19	12/12/14	05/04/07	01/25/19
Garvin, Paul	03/13/18	03/12/20	В	03/13/18		09/22/17	09/22/17	08/29/16	12/04/19	01/29/19	07/13/18		01/25/19	10/30/17	06/22/12	01/25/19
Gehring, Megan	07/10/19	07/10/21	В	07/10/19	07/15/19											
Loeb, Steffany	07/10/19	07/10/21		07/10/19												
Luiten, Russell	N/A	N/A	В	04/19/17	04/12/17	11/02/18	11/02/18	05/17/16	11/15/19	12/29/18	09/13/18		01/25/19	12/19/17	6/2012?	01/25/19
Ostrom, Ryan	04/15/19	04/15/21	В	04/11/17	04/15/19	11/02/18	11/02/18	06/06/16	11/15/19	07/31/18	05/07/18		01/25/19	10/30/17	05/09/13	01/25/19
Pehlivan, Yusuf	04/26/19	04/26/21	В	05/13/17	05/03/17	10/19/17	10/19/17	05/04/17			06/29/18		01/25/19	02/02/13	10/17/09	01/25/19
Peters, Greg	05/28/19	05/28/21	В	06/07/19	05/28/19	11/02/18	11/02/18	06/12/17	01/31/20	01/30/19	05/08/18		01/25/19		03/12/17	01/25/19
Rayl, Katie	10/17/17	10/17/19	В	10/17/17	10/17/17	10/10/16	10/10/16	10/26/17			05/08/18		01/25/19		11/19/14	01/25/19
Roskamp, Melissa	12/20/18	12/19/20	В	12/20/18				04/18/19			01/02/19		01/25/19		07/26/13	01/25/19
Scott, Ken	01/18/18	01/18/20	В	01/18/18	04/14/17	11/02/18	11/02/18	09/02/16	04/19/19	05/22/19	05/09/18		01/25/19	02/17/05	09/01/95	01/25/19
Smith, Julia	06/19/19			06/19/19	06/21/19			06/23/19			NA					
Taylor, Brenden	04/24/18	04/23/20	В	04/24/18		03/01/18	03/01/18	08/23/16		05/11/17	05/22/18		01/25/19	04/17/09	07/18/06	01/25/19
Thompson, Lisa	11/30/18	11/29/20	В	11/30/18		10/07/18	10/07/18	11/29/18	12/11/20	12/12/19	11/28/18		02/05/19		12/07/18	02/05/19
Train, Brittany	06/19/19	06/19/21	В	06/19/19				06/14/19			06/14/19					
Turpen, Nate	05/30/19	05/30/21	В	06/14/17	05/30/19	01/16/18	01/16/18	06/14/17	10/24/19	11/19/19	07/06/18		01/25/19	02/19/19	06/09/17	01/25/19
Wishnoff, Benjamin						11/24/15	04/16/16	06/24/16			06/29/18		01/25/19	06/09/15	05/29/07	01/25/19

ATTACHMENT 9 AIR MONITORING TABLE AND FORMS

HEALTH AND SAFETY PLAN South Lake Union Block 38 West Property 500 Through 536 Westlake Avenue North Seattle, Washington

ACTION LEVEL TABLE FOR AIR MONITORING

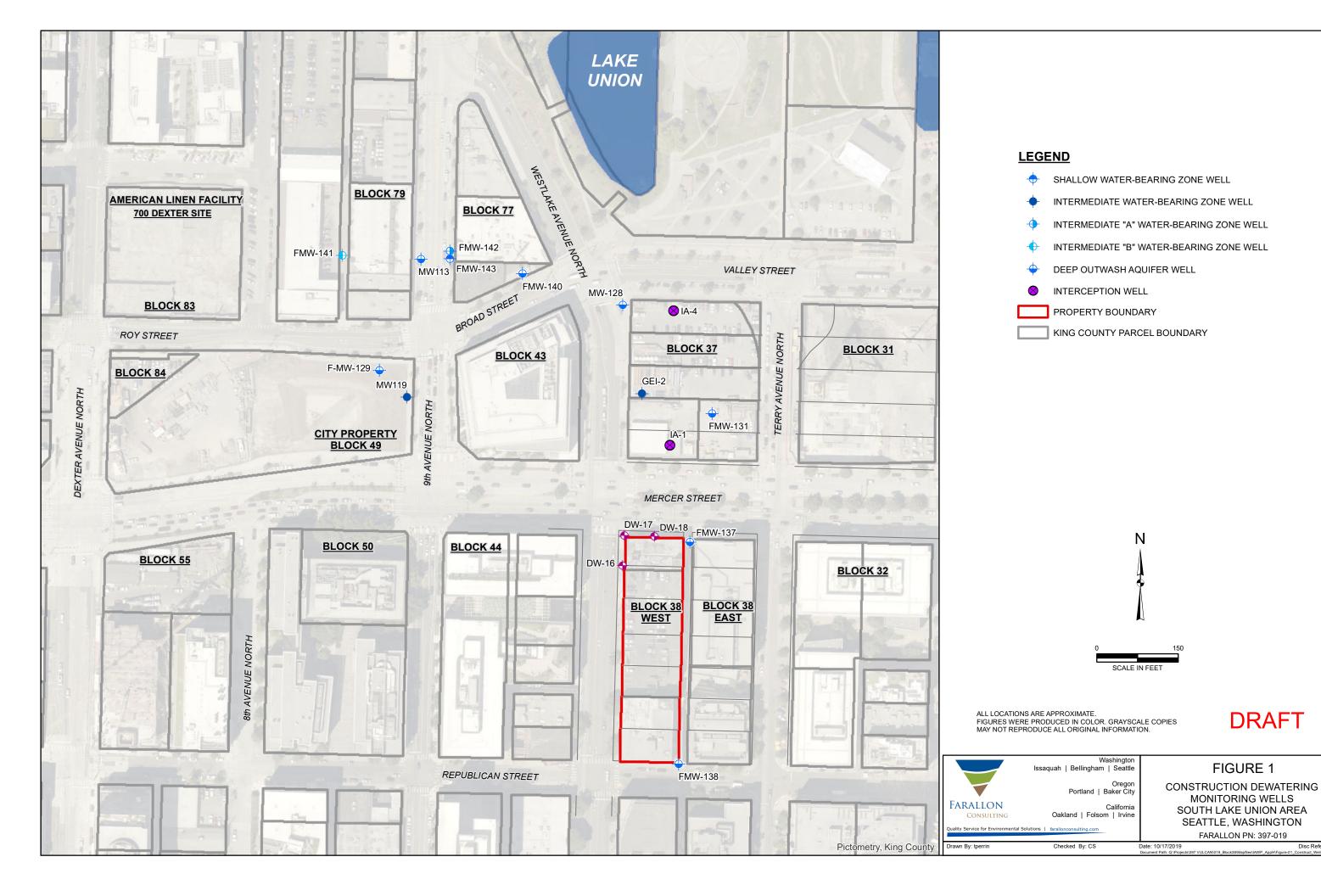
The Air Monitoring table (following page) presents protocol for monitoring ambient air for constituents of concern and other parameters that may affect worker safety. Please note the following with respect to use of this table:

- The Level for Respirator Use indicates the concentration at which a respirator must be donned. It does not require that the job stop. The respirator is a piece of equipment that is to be used while determining why a concentration has reached that level. Implement engineering controls such as water mist, spray foam, plastic cover, etc. to reduce the concentration.
- The Level for Work Stoppage indicates the concentration at which work on the job must stop. Determine why a concentration has reached that level, and how it can be decreased. Site evacuation is not necessary at this level. Stopping work does not imply that the concentration level will decrease. Implement engineering controls to reduce the concentration; resume work when it is safe to do so.
- These values can be modified under particular Site conditions and with specific knowledge of the contaminant(s). Should such conditions arise, contact Farallon's Health and Safety Officer at (425) 295-0800.

AIR MONITORING

Chemical (or Class)	Monitoring Equipment	Task	Monitoring Frequency and Location	Level for Respirator Use	Level for Work Stoppage
Volatile Organic Vapors	Flame ionization detector (FID)/photoionization detector (PID) as appropriate for chemicals of concern. Read manual to determine. Draeger Tube for vinyl chloride (Model 1/a; Part Number 67 28031). Draeger Tube for benzene (Model 0.5/a).	From start of mobilization to completion and demobilization.	Sampling should be continuous during the project while disturbing potentially contaminated soil, uncovering and/or removing tanks and piping, or drilling —at least every 15 minutes in the breathing zone. Sample at the exclusion zone boundaries every 30 minutes. Continuously sample during each soil and groundwater sampling interval. If 10 parts per million (ppm) in breathing zone, collect a Draeger Tube for benzene and/or vinyl chloride (depending upon contaminants of concern).	20 ppm above background sustained in breathing zone for 2 minutes, and no benzene and/or vinyl chloride tube discoloration. If a color change appears on the tube for benzene or vinyl chloride at 10 ppm on FID/PID, don respirator. If no Draeger Tube is available, the level for respirator use is to be 5 ppm.	50 ppm above background in breathing zone and no vinyl chloride or benzene tube discoloration. Stop work if tube indicates > 1 ppm for benzene or vinyl chloride. If no Draeger Tube is available, stop work at 25 ppm.
Metals (Dust and Particulates)	XRF Spectrometer as appropriate for metals of concerns. Read manual to determine. Laboratory analysis for specific metals known to potentially be at levels exceeding respiratory protection requirements.	From start of mobilization to completion and demobilization.	Sampling should be continuous during the project while disturbing potentially contaminated soil at least every 15 minutes in the breathing zone. Sample at the exclusion zone boundaries every 30 minutes. Continuously during each sampling interval or excavation lift (as possible).	1 mg/m3 for mercury. Any detectable concentration of cadmium less than the PEL of 0.005 mg/m3. 0.5 mg/m3 for lead.	2.5 mg/m3 for mercury. Any concentration exceeding 0.005 mg/m3 for cadmium. 50 mg/m3 for lead.

AIR MONITORING EQUIPMENT CALIBRATION/CHECK LOG


Date	Instrument/ Model No.	Serial No.	Battery Check OK?	Zero Adjust OK?	Calibration Gas (ppm)	Reading (ppm)	Leak Check	Performed By	Comments

AIR MONITORING LOG

Date	Time	Location	Source/Area/ Breathing Zone	Instrument	Concentration/Units	Sampled by

APPENDIX I CONSTRUCTION DEWATERING GROUNDWATER MONITORING PROGRAM

INTERIM ACTION WORK PLAN
Block 38 West Property
500 through 536 Westlake Avenue North
Seattle, Washington

Table 1

Construction Dewatering Groundwater Monitoring Program Block 38 West Property

Seattle, Washington Farallon PN: 397-019

Well No.	Well Classification	Static Condition Event (September)	Startup Event (September) ¹	November	December	January	February	March	April	May	June	July	Final Event (August)	Transducer Monitoring
	BMR-Dexter Monitoring Wells													
MW113	Deep		X	X	X	X	X	X		X			X	
MW119	Intermediate		X	X	X	X	X	X		X			X	
MW128	Deep		X		X		X		X		X		X	
Vulcan or Vulcan-Affiliated Entity Monitoring Wells														
FMW-129	Deep		X	X	X	X	X	X		X			X	X
FMW-131	Deep		X										X	X
FMW-137	Deep	X	X										X	X
FMW-138	Deep	X	X										X	X
FMW-140	Deep		X	X	X	X	X	X		X			X	X
FMW-141	Intermediate		X	X	X	X	X	X		X			X	X
FMW-142	Intermediate													
FMW-143	Shallow													
GEI-2	Intermediate		X	X	X	X	X	X	X	X	X	X	X	X
Vulcan-Affiliated Entity Interim Action Wells														
IA-1 ²	Deep		X	X	X	X	X	X	X	X	X	X	X	
IA-4 ²	Deep		X		X		X		X		X		X	
City Investors Dewatering Wells														
DW-16 ³	Dewatering		X	X	X	X	X	X	X	X	X	X	X	
DW-17 ³	Dewatering		X	X	X	X	X	X	X	X	X	X	X	
DW-18 ³	Dewatering		X	X	X	X	X	X	X	X	X	X	X	

NOTES:

Schedule assumes dewatering starts in late September 2019 at Block 37 and late October 2019 at Block 38.

Low-flow samples to be collected ta top, middle, and bottom of dewatering screen (60-foot total installed length).

³ Sample from near the bottom of the dewatering well screened interval.