

15600 NE 8<sup>th</sup> Street, Suite B1, 617 Bellevue, WA 98008 <u>Dylan@GallowayEnvironmental.com</u>

January 16, 2019

Sunset Chevrolet, Inc. Mitchell Development Attn: Ms. Christi Acuna 910 Traffic Avenue Sumner, WA 98390

*E-mailed to:* <u>CristiAcuna@SunsetChev.com</u>

SUBJECT: GROUNDWATER MONITORING REPORT FOR THE NATIONAL AUTO PARTS PROPERTY AT 16008 60<sup>TH</sup> STREET EAST, SUMNER, WASHINGTON 98390; WA ECOLOGY SITE ID #1304, CLEANUP SITE #3653, VCP PROJECT #SW1547

Dear Ms. Acuna:

This letter report presents Galloway Environmental, Inc.'s (GEI's) findings from recent sampling of seven groundwater monitoring wells at the National Auto Parts property, located at 16008 60<sup>th</sup> Street East in Sumner, Washington (hereafter referred to as "the Site." The Washington State Department of Ecology (Ecology) Site Identification (ID) for the Site is #1304. Ecology's Cleanup Site ID for the Site is #3653. Ecology's Voluntary Cleanup Project ID for the Site is SW1547.

The Site is situated immediately southeast of the intersection of 60<sup>th</sup> Street East and 160<sup>th</sup> Avenue East. It is approximately 0.4 miles north of State Route (SR) 410 and 1.7 miles east of SR 167 in an area of residential and commercial properties (see Attachment 1, Figure 1). Pierce County lists the Site to be associated with the property listed as parcel numbers 0520198006 and 2006198700. Parcel 0520198006 is listed as "Phil's Speed Shop, LLC" which consists of approximately 1.58 acres of land and includes a 9,300 square foot (sf) storage/warehouse. Parcel 2006198700 is listed as "Sumner National Auto Parts, Inc" and does not have acreage listed.

This work was conducted as a continuance to an independent remedial action undertaken by GEI for Mr. Phil Mitchell with the primary goal to evaluate groundwater conditions upgradient and downgradient of the former source area of contamination to confirm the effectiveness of the recent Independent Remedial Action at the Site.

# BACKGROUND

Sumner National Auto Parts operated a retail auto parts supply store with an "out of vehicle" engine rebuild and metal machine shop since the facility was constructed in 1979 until it was recently closed. The machine shop area occupied approximately 4,500 sf and the retail sales and storage area occupied approximately 3,000 sf.

Reportedly, an unknown amount of spent parts cleaning solutions and caustic spray were released to a concrete slab and soils along the eastern side of the building near the structure's exterior door. The Washington State Department of Ecology (Ecology) responded to a citizen complaint regarding the spill and determined that the Site was impacted by petroleum hydrocarbons, metals, and several parts-cleaning solvents.

The owner contracted EnCo Environmental Company (EnCo) to conduct several environmental studies and develop an Environmental Cleanup Plan for the Site. Based on laboratory analyses of soil and groundwater samples collected during the environmental studies, EnCo developed an *Independent Remedial Cleanup Action Work Plan*, dated May 23, 2017, hereafter referred to as the "Work Plan."

Between October 2017 and January 2018, a remedial excavation was conducted at the Site in general accordance with the Work Plan. The primary objective of remediating the Site was to ensure the protection of human health and the environment.

National Auto Parts, 16008 60<sup>th</sup> Street East, GWM Letter Report January 16, 2019, Page 2

The remedial excavation generally included the removal of 262.92 tons of impacted soils. The excavated soil was transported for disposal at the LRI Landfill, located at 17925 Meridian Street East in Puyallup, Washington under the Waste Disposal Authorization (WDA) number 2188. During the excavation work, GEI collected soil samples for laboratory analyses to document the effectiveness of the removals (performance samples) and to document the remaining concentrations of contaminants of concern (COCs) from the final limits of excavation (confirmation samples).

Based on laboratory analytical results of the confirmation soil samples collected from the final limits of excavation, all known soils COCs have been satisfactorily removed from the Site.

Between August 13, 2018 and August 14, 2018, GEI oversaw the installation of six groundwater monitoring wells at the Site. One pre-existing well (MW-1), situated in the central region of the Site, was installed on October 30, 2015. The six additional wells (MW-2 through MW-7) were installed in general accordance with the Work Plan and GEI's proposal number 2709.03, dated September 7, 2017. The installation included one well in the western perimeter of the Site (MW-2), two north of the remedial excavation area (MW-3 and MW-4), two east of the remedial excavation area (MW-5 and MW-6), and one in the upgradient position (MW-7). The locations are depicted in Figure 2 of Attachment 1 of this report.

During drilling activities for MW-2 through MW-7, GEI field-screened soil for indications of impacts (e.g., odors, staining, elevated photoionization detector [PID]) readings. GEI also collected soil samples from each borehole for analyses of petroleum hydrocarbons, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and total metals. At each sample point, Cascade advanced an 18-inch long split spoon sampling device. Upon reaching the terminal depths of each sample point, the sample device was extracted from the borehole and the accompanying soil sample was retained and field screened. Soil samples collected for laboratory analysis were placed directly into new laboratory-supplied glass containers.

In accordance with the Work Plan and Ecology's Opinion Letter dated July 12, 2017, GEI submitted the soil samples to a Washington State Certified laboratory (OnSite Environmental, located at 14648 NE 95<sup>th</sup> Street in Redmond, Washington) to test for petroleum hydrocarbons using the Northwest Total Petroleum Hydrocarbons as Hydrocarbon Identification (NWTPH-HCID), VOCs, PAHs, PCBs, and metals (arsenic, barium, cadmium, chromium, and lead).

Laboratory analyses of all soil samples resulted in either non-detectable concentrations or detected concentrations at levels below their respective action levels.

On August 31, 2018, GEI collected groundwater samples from each well for laboratory analysis. The samples were submitted the to OnSite Environmental to test for petroleum hydrocarbons, VOCs, PAHs, PCBs, dissolved and total metals (arsenic, barium, cadmium, chromium, and lead), and hexavalent chromium. Laboratory analyses of all groundwater samples resulted in either non-detectable concentrations or detected concentrations of analytes at levels below their respective action levels with exception to dissolved and total arsenic. Dissolved arsenic was detected in the groundwater samples collected from MW-3, MW-5, and MW-7 at concentrations of 9.0 micrograms per liter ( $\mu$ g/L), 5.4  $\mu$ g/L, and 5.9  $\mu$ g/L, respectively. Total arsenic was detected in the groundwater samples collected from MW-7 at concentrations of 12.0  $\mu$ g/L, 5.8  $\mu$ g/L, and 6.4  $\mu$ g/L, respectively and slightly exceed the Model Toxics Control Act (MTCA) Method A Cleanup Level of 5.0  $\mu$ g/L.

# **GROUNDWATER MONITORING**

On December 20, 2018, GEI collected groundwater samples from each of the seven on-site groundwater monitoring wells. Prior to sample collection, GEI gauged and purged each well to determine the depths to groundwater, confirm stabilized groundwater conditions, and attain representative groundwater samples. The purging and sampling methods included the use of a low-flow peristaltic pump and dedicated tubing which directed the samples into new laboratory supplied glass containers. During the purging process, water quality parameters were measured using a multiparameter water quality meter (model YSI 556 MPS) fitted with a flow-through cell to measure pH, temperature, conductivity, and dissolved oxygen (DO). The meter was calibrated prior to use using a 3-point pH calibration process (pH valued at 4.02, 7.02, and 10.04) and a 3-point conductivity process (conductivity valued at 84 micrograms per centimeter [ $\mu$ g/cm], 1,413  $\mu$ g/cm, and 12,880  $\mu$ g/cm).

The pH measured at the conclusion of the purging process for all wells ranged from 5.58 (MW-5) to 6.27 (MW-2). The conductivity measured at the conclusion of the purging process for all wells ranged from 1.126

milliSiemens per centimeter (mS/cm) (MW-6) to 0.274 mS/cm. The DO measured at the conclusion of the purging process for all wells ranged from 0.60 milligrams per liter (mg/L) (MW-2) to 1.63 mg/L (MW-5). Turbidity was observed to be clear in all wells at the conclusion of the purging process. GEI purged a minimum of three well volumes from each well prior to sample collection.

# Chemical Analysis of Groundwater Samples

GEI submitted the samples to OnSite to test for petroleum hydrocarbon identification using the Northwest Total Petroleum Hydrocarbons as Hydrocarbon Identification (NWTPH-HCID) with follow-up to detected analyte(s) and dissolved MTCA 5 Metals (arsenic, cadmium, chromium, lead, and mercury) using the US EPA 200.8/7470A Method. Petroleum constituents (benzene, toluene, ethylbenzene, and xylenes), PAHs, PCBs, and hexavalent chromium were eliminated from the analyte list during this sampling event since they were not detected at appreciable levels during the groundwater monitoring event in August 2018.

# Sample Handling, Storage, and Shipment

The samples were packaged properly according to the current DOT requirements. Ice was added to ensure that the samples were kept at approximately 4 degrees Celsius ( $^{\circ}$ C). The samples were kept chilled between the time of the sampling and the time of the analytical processing.

The samples were hand-delivered to the analytical laboratory on their collection date under proper chain-ofcustody protocols on the same day as collection. A field logbook documented the field activities, observations, and other relevant information regarding the sampling.

# Equipment Decontamination

The samples were collected at each sample location using procedures designed to minimize the risk of cross contamination of the samples. All sampling equipment that could come into direct contact with sample media was decontaminated before starting work and between each sampling location. The following procedure was used for cleaning all sampling equipment:

- Remove gross contamination by brushing/wiping and rinsing with potable water.
- Wash and scrub with laboratory grade detergent (i.e., Aquinox®).
- Rinse with distilled water.
- Air dried.

# Groundwater Sample Analytical Results

Laboratory analyses of all groundwater samples resulted in either non-detectable concentrations or detected concentrations at levels below their respective action levels. These are further discussed below and presented in Table 1 (Attachment 2). The laboratory analytical report is attached as Appendix B.

# Petroleum Hydrocarbons

Laboratory analysis resulted in the detection of petroleum hydrocarbons as diesel in the groundwater collected from MW-4 at a concentration of 0.27 mg/L, below the MTCA Method A Cleanup Level of 0.5 mg/L. Laboratory analysis did not result in a detection of any other petroleum compound at concentrations equal to or exceeding their respective laboratory practical quantitation limits (PQLs) in any of the other groundwater samples analyzed.

# <u>Metals</u>

Dissolved arsenic was detected in the groundwater sample collected from MW-7 at a concentration of 3.2  $\mu$ g/L below the MTCA Method A Cleanup Level of 5.0  $\mu$ g/L. Laboratory analysis did not result in a detection of any other metals analytes at concentrations equal to or exceeding their respective laboratory PQLs in any of the groundwater samples analyzed

# **CONCLUSIONS AND RECOMMENDATIONS**

Based on laboratory analyses, the groundwater in all groundwater monitoring wells sampled during this monitoring event were confirmed to have either non-detectable concentrations of contaminants of concern or detected concentrations at levels below their respective MTCA Method A Cleanup Action Levels.

GEI recommends continued monitoring of the groundwater in all seven groundwater monitoring wells.

GEI further recommends continued elimination of future analyses of PAHs, PCBs, total metals, and hexavalent chromium.

National Auto Parts, 16008 $60^{\rm th}$  Street East, GWM Letter Report January 16, 2019, Page 4

Should you have any questions regarding this report or if you would like to discuss our findings, please contact me at the addresses listed at the top of this letter.

Respectfully Submitted, GALLOWAY ENVIRONMENTAL, INC.

Dylan Galloway, REA *President* 

ATTACHMENT 1

FIGURES



Source: MyTopo.com, GEI Project 37018





Source: Google Earth, May, 2018, GEI Project 37018

# ATTACHMENT 2

# ANALYTICAL TABLES

|                  |                   |                                        |          |          |          |           |                 |          |              |                |                  | Analyte         |                     |                    |           |             |         |          |            |         |                    |              |          |         |
|------------------|-------------------|----------------------------------------|----------|----------|----------|-----------|-----------------|----------|--------------|----------------|------------------|-----------------|---------------------|--------------------|-----------|-------------|---------|----------|------------|---------|--------------------|--------------|----------|---------|
| Sample<br>Number | Date of<br>Sample | Total Petroleum Hydrocarbons<br>(mg/L) |          |          |          | Fuel Cons | tituents (μg/L) |          | Polycyclic   | Aromatic Hydro | ocarbons         | Polychlorinated |                     |                    | Dissolved | Metals (µg/ | /L)     |          | Hexavalent |         | Tot                | al Metals (μ | g/L)     |         |
|                  |                   | Gasoline                               | Diesel   | Lube Oil | Benzene  | Toluene   | Ethylbenzene    | Xylenes  | Phenanthrene | Fluoranthene   | Pyrene           | Biphenyl (μg/L) | Arsenic             | Barium             | Cadmium   | Chromium    | Lead    | Mercury  | (μg/L)     | Arsenic | Barium             | Cadmium      | Chromium | Lead    |
| MW-1             | 8/31/2018         | ND <0.10                               | ND <0.26 | ND <0.41 | ND <0.20 | ND <1.0   | ND <0.20        | ND <0.60 | ND <0.094    | ND <0.094      | ND <0.094        | ND <0.047       | ND <3.0             | ND <25             | ND <4.0   | ND <10      | ND <1.0 |          | ND <10     | ND <3.3 | ND <28             | ND <4.4      | ND <11   | ND <1.1 |
|                  | 12/20/2018        | ND <0.10                               | ND <0.26 | ND <0.41 |          |           |                 |          |              |                |                  |                 | ND <3.0             |                    | ND <4.0   | ND <10      | ND <1.0 | ND <0.50 | )          |         |                    |              |          |         |
| MW-2             | 8/31/2018         | ND <0.10                               | ND <0.25 | ND <0.40 | ND <0.20 | ND <1.0   | ND <0.20        | ND <0.60 | ND <0.094    | ND <0.094      | ND <0.094        | ND <0.047       | ND <3.0             | 39                 | ND <4.0   | ND <10      | ND <1.0 |          | ND <10     | ND <3.3 | 59                 | ND <4.4      | ND <11   | ND <1.1 |
|                  | 12/20/2018        | ND <0.10                               | ND <0.25 | ND <0.40 |          |           |                 |          |              |                |                  |                 | ND <3.0             |                    | ND <4.0   | ND <10      | ND <1.0 | ND <0.50 | )          |         |                    |              |          |         |
| MW-3             | 8/31/2018         | ND <0.10                               | ND <0.25 | ND <0.40 | ND <0.20 | ND <1.0   | ND <0.20        | ND <0.60 | ND <0.095    | ND <0.095      | ND <0.095        | ND <0.047       | 9.0                 | 37                 | ND <4.0   | ND <10      | ND <1.0 |          | ND <10     | 12.0    | 69                 | ND <4.4      | ND <11   | ND <1.1 |
|                  | 12/20/2018        | ND <0.10                               | ND <0.25 | ND <0.40 |          |           |                 |          |              |                |                  |                 | ND <3.0             |                    | ND <4.0   | ND <10      | ND <1.0 | ND <0.50 | )          |         |                    |              |          |         |
| MW-4             | 8/31/2018         | ND <0.10                               | ND <0.25 | ND <0.40 | ND <0.20 | ND <1.0   | ND <0.20        | ND <0.60 | ND <0.096    | ND <0.096      | ND <0.096        | ND <0.047       | ND <3.0             | 40                 | ND <4.0   | ND <10      | ND <1.0 |          | ND <10     | ND <3.3 | 63                 | ND <4.4      | ND <11   | ND <1.1 |
|                  | 12/20/2018        | ND <0.10                               | 0.27     | ND <0.40 |          |           |                 |          |              |                |                  |                 | ND <3.0             |                    | ND <4.0   | ND <10      | ND <1.0 | ND <0.50 | )          |         |                    |              |          |         |
| MW-5             | 8/31/2018         | ND <0.10                               | ND <0.25 | ND <0.40 | ND <0.20 | ND <1.0   | ND <0.20        | ND <0.60 | ND <0.10     | ND <0.10       | ND <0.10         | ND <0.047       | 5.4                 | 43                 | ND <4.0   | ND <10      | ND <1.0 |          | ND <10     | 5.8     | 50                 | ND <4.4      | ND <11   | ND <1.1 |
|                  | 12/20/2018        | ND <0.10                               | ND <0.25 | ND <0.40 |          |           |                 |          |              |                |                  |                 | ND <3.0             |                    | ND <4.0   | ND <10      | ND <1.0 | ND <0.50 | )          |         |                    |              |          |         |
| MW-6             | 8/31/2018         | ND <0.10                               | ND <0.26 | ND <0.41 | ND <0.20 | ND <1.0   | ND <0.20        | ND <0.60 | ND <0.10     | ND <0.10       | ND <0.10         | ND <0.047       | ND <3.0             | 52                 | ND <4.0   | ND <10      | ND <1.0 |          | ND <10     | ND <3.3 | 57                 | ND <4.4      | ND <11   | ND <1.1 |
|                  | 12/20/2018        | ND <0.10                               | ND <0.25 | ND <0.40 |          |           |                 |          |              |                |                  |                 | ND <3.0             |                    | ND <4.0   | ND <10      | ND <1.0 | ND <0.50 | )          |         |                    |              |          |         |
| MW-7             | 8/31/2018         | ND <0.10                               | ND <0.25 | ND <0.41 | ND <0.20 | ND <1.0   | ND <0.20        | ND <0.60 | ND <0.097    | ND <0.097      | ND <0.097        | ND <0.047       | 5.9                 | 32                 | ND <4.0   | ND <10      | ND <1.0 |          | ND <10     | 6.4     | 34                 | ND <4.0      | ND <10   | ND <1.0 |
|                  | 12/20/2018        | ND <0.10                               | ND <0.25 | ND <0.40 |          |           |                 |          |              |                |                  |                 | 3.2                 |                    | ND <4.0   | ND <10      | ND <1.0 | ND <0.50 | )          |         |                    |              |          |         |
| MTCA Met<br>Le   | hod Action<br>vel | 0.8/1.0 <sup>a</sup>                   | 0.5      | 0.5      | 5.0      | 1,000     | 700             | 1,000    | NVE          | NVE            | 480 <sup>b</sup> | 0.1             | 5.0/10 <sup>c</sup> | 3,200 <sup>b</sup> | 5.0       | 50          | 15      | 2.0      | 48         | 5.0     | 3,200 <sup>b</sup> | 5.0          | 50       | 15      |

Notes:

mg/L Milligrams per liter

Micrograms per liter μg/L

Model Toxics Control Act (MTCA) Method A Action Level is 0.8 mg/L with benzene present and 1.0 mg/L without benzene present а

MTCA Method B Action Level is cited due to no establishment of MTCA Method A Action Level b

c MTCA Method A Action Level is 5.0  $\mu$ g/L; Ecology's Maximum Contaminant Level is 10 mg/L ND< Not detected. The value after the '<' is the laboratory practical quantitation limit (PQL)

9.0 Bold and shaded gray result indicates exceedance of MTCA Action Level

NVE No Value Established

-- Not analyzed

# APPENDIX A

FIELD FORMS

| Project                                                            | t No                                                                                                  | 3701                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WAT                                                                                  | TER S                                                                               | SAMPLING LOG Sheet of                                                                                                          |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Project<br>Project<br>Client<br>Measu<br>Water<br>Purgin<br>Sample | t Name:<br>t Location<br><i>M.+A</i><br>ring Poin<br>column<br>og metho<br>er <u>D</u> (<br>e preserv | <u>Nat</u><br>n: <u>160</u><br>nt <u>N</u><br>in well<br>d <del>7</del><br>hallow | f' A h<br>$a \otimes b D f$<br>$d \otimes b $ | ~<br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u><br><u>+</u> | Vell No.<br>We<br>Site Ma<br>Initia<br>Gallons<br>Volum<br>per & ty<br><u>ice</u> Ot | <u>Mu</u><br>Il Loca<br>nager<br>I deptl<br>per fo<br>ne purp<br>pe of c<br>her (de | $\frac{J-1}{Date & Time Started 12/20/18 0940}$ ation & diameter $\frac{5W}{20000000}$ $1000000000000000000000000000000000000$ |
| Time                                                               | Temperature (°C)                                                                                      | PH                                                                                | nshing (μS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dissolved Oxygen                                                                     | Water Color                                                                         | DESCRIPTION<br>(Volume purged between measurements)                                                                            |
| 0945                                                               | 10,01                                                                                                 | 6.41                                                                              | 0.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | slt<br>turbib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.87                                                                                 | sit                                                                                 | O.I Sul total                                                                                                                  |
| 0951                                                               | 10.15                                                                                                 | 5.67                                                                              | 0.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.45                                                                                 | cr                                                                                  | 0.25 gal Notal                                                                                                                 |
| 0458                                                               | 10.12                                                                                                 | 5.79                                                                              | 0.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.48                                                                                 | 11                                                                                  | 1.05-1 total                                                                                                                   |
| 1004                                                               | 10.10                                                                                                 | 5.80                                                                              | 0191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.38                                                                                 | or                                                                                  | 1.255-1 Nul                                                                                                                    |
| 1010                                                               | 10.10                                                                                                 | 5.82                                                                              | 0.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.34                                                                                 | ar                                                                                  | 2.0 5.1 total                                                                                                                  |
|                                                                    |                                                                                                       |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                                                                                     | 1014 cullent white-simple<br>field filtered the simple protons for methods                                                     |
|                                                                    |                                                                                                       |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                                                                                     |                                                                                                                                |
| Well c                                                             | asing vol                                                                                             | umes                                                                              | (gal/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 1.25″                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =0.077, 3                                                                            | 1.5″=0.                                                                             | 10, 2"=0.16, 2.5"=0.24, 3"=0.37, 3.5=0.50, 4"=0.65, 6"=1.46                                                                    |

| GALL                                                                       | )WAY E                                                                                                   | NVIR                                                                                          | ONME                                               | ENTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ., INC.,                                                                               | 15600                                                                                         | NE 8 <sup>th</sup> St, Suite B1,617, Bellevue, WA 98008 (425)894-8607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project                                                                    | No. <u>3</u>                                                                                             | 7018                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WAT                                                                                    | TER S                                                                                         | AMPLING LOG Sheet of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Project<br>Project<br>Client<br>Measu<br>Water<br>Purgin<br>Sampl<br>Sampl | Name:<br>Location<br><u>Middeli</u><br>ring Poir<br>column i<br>ng metho<br>er_ <u>D</u> Ge<br>e preserv | Nestrin<br>n: <u>Iloa</u><br>Devel<br>in well<br>d <u>Perio</u><br>d <u>Perio</u><br>vation : | nul Auto<br>28 60ms<br>0pment<br>10,5<br>stultic P | > W<br>wite<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br> | Vell No.<br>Wel<br>Site Mar<br>Initial<br>Gallons<br>Volum<br>er & tyj<br><u>ce</u> Ot | <u>mw</u><br>Il Locat<br>nager <u></u><br>I depth<br>per fo<br>ne purg<br>pe of co<br>her (de | The fine Started $12/20/18$ $1150$<br>tion & diameter $W d/ 31d_2 2^{-1}$<br>DGallowy Logged By $DGallowyto water 3.28 Depth to well bottom 13.80ot 0.16 Gallons in well 1.68 (A3=5.04)Gallons in well 1.68 (A3=5.04)$ |
| Time                                                                       | Femperature (°C)                                                                                         | Hd                                                                                            | μ5/εμ<br>Conductivity (μS)                         | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | וואאל/<br>Dissolved Oxygen                                                             | Water Color                                                                                   | DESCRIPTION<br>(Volume purged between measurements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1200                                                                       | )1.91°C                                                                                                  | 6.24                                                                                          | 0,257                                              | ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.0)                                                                                   | CIr                                                                                           | 0,25 gal total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1207                                                                       | 12.16                                                                                                    | 6.30                                                                                          | 0.267                                              | cir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.98                                                                                   | 61                                                                                            | 1.0 5-1 total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1214                                                                       | 12:29                                                                                                    | 6.29                                                                                          | 0.271                                              | Cir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.60                                                                                   | cir                                                                                           | 2.0 gal total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 121                                                                        | 12,27                                                                                                    | 6.28                                                                                          | 0.273                                              | ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.63                                                                                   | 11-                                                                                           | 3,0 gal total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1228                                                                       | 12.28                                                                                                    | 6.28                                                                                          | 0,274                                              | c1r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.63                                                                                   | cir                                                                                           | 4,0 gul total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1235                                                                       | 12.28                                                                                                    | 6.27                                                                                          | 0.274                                              | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 061                                                                                    | Cr                                                                                            | 5.0gal tak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1240                                                                       | 12.29                                                                                                    | 6.27                                                                                          | 0.274                                              | ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.60                                                                                   | ur                                                                                            | 5.5 gal total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                            |                                                                                                          |                                                                                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        | ×                                                                                             | 1244 Collect water Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Well casing volumes (gal/ft) - 1.25"=0.077, 1.5"=0.10, 2"=0.16, 2.5"=0.24, 3"=0.37, 3.5=0.50, 4"=0.65, 6"=1.46

Signature\_

4

Date 12/20/18

| GALLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WAY E            | NVIR  | ONME                         | NTAL      | , INC.,                  | 15600 1     | NE 8 <sup>th</sup> St, Suite B1,617, Bellevue, WA 98008 (425)894-8607 |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|------------------------------|-----------|--------------------------|-------------|-----------------------------------------------------------------------|--|--|--|--|
| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No3              | 7018  |                              |           | WAT                      | ER S        | AMPLING LOG Sheet of                                                  |  |  |  |  |
| Project Name: <u>Midnual Arb</u> Well No. <u>MW-3</u> Date & Time Started <u>12/20/18</u> <u>12.50</u><br>Project Location: <u>1608 60<sup>n</sup> Str</u> Well Location & diameter <u>E 4/44</u> <u>2''</u><br>Client <u>Mitchell Development</u> Site Manager <u>Drallwing</u> Logged By <u>Drallwing</u><br>Measuring Point <u>N</u> Initial depth to water <u>3.68</u> Depth to well bottom <u>13.63</u><br>Water column in well <u>9.95</u> Gallons per foot <u>0.16</u> Gallons in well <u>1.59 (35-4.77)</u><br>Purging method <u>Periskellic Pump</u> Volume purged <u>5.52</u> Decontamination <u>Aprinex ID1 wick</u><br>Sampler <u>Drallwing</u> Number & type of containers <u>2-1/21 Miss</u> , <u>2-1/21 Polyc</u> , <u>3-44-04.004s</u><br>Sample preservation method: <u>Harific</u> Other (describe) |                  |       |                              |           |                          |             |                                                                       |  |  |  |  |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temperature (°C) | pH    | میں کہ میں Conductivity (µS) | Turbidity | ws く<br>Dissolved Oxygen | Water Color | DESCRIPTION<br>(Volume purged between measurements)                   |  |  |  |  |
| 12.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.10            | 6,06  | 0,198                        | Cle       | 3.79                     | ur          | 0.25 gul total                                                        |  |  |  |  |
| 1305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.39            | 6.04  | 0.203                        | cir       | 0.89                     | cir         | 1.0 gal total                                                         |  |  |  |  |
| 1312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.55            | 6.06  | 0.205                        | clr       | 0.87                     | CIF         | 2.0 gul total                                                         |  |  |  |  |
| 1319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.65            | 6.07  | 6.205                        | ar        | 0,86                     | CIE         | 3.0 gal ton l                                                         |  |  |  |  |
| 1326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.66            | 6.08  | 0.204                        | Ur        | 0.90                     | cir         | 4.0 Sal home                                                          |  |  |  |  |
| <u>1334</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11-66            | 6.08  | 0,204                        | Clr       | 0.87                     | cir         | Signi total                                                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |       |                              |           |                          |             |                                                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |       |                              |           |                          |             |                                                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |       |                              |           |                          |             | 1357 Collect Water Sumply                                             |  |  |  |  |
| Well c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | asing vo         | lumes | (gal/ft)                     | - 1.25″-  | =0.077, 1                | 1.5″=0.     | 10, 2″=0.16, 2.5″=0.24, 3″=0.37, 3.5=0.50, 4″=0.65, 6″=1.46           |  |  |  |  |
| Signa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ture             | 4     | hay                          |           | an * 1                   |             | Date 12/20/18                                                         |  |  |  |  |

| Project                                                                                         | t No. <u>3</u> | 1018     |                 |          | WAT        | FER S    | SAMPLING LOG Sheet of                                       |  |  |  |  |
|-------------------------------------------------------------------------------------------------|----------------|----------|-----------------|----------|------------|----------|-------------------------------------------------------------|--|--|--|--|
|                                                                                                 |                |          |                 |          |            |          |                                                             |  |  |  |  |
| Project                                                                                         | t Name:        | Nutr     | nal Auto        | » W      | /ell No.   | Mu       | D-4 Date & Time Started 12/20/18 1348                       |  |  |  |  |
| Project                                                                                         | t Location     | n: 16a   | is 60ms         | tĒ       | We         | ll Loca  | tion & diameter E-Central to Bly 2"                         |  |  |  |  |
| Client                                                                                          | Mitchell       | Develop  | ment            | 9        | Site Ma    | nager _  | D. Gallowing Logged By DGallowing                           |  |  |  |  |
| Measuring Point $N$ Initial depth to water <u>3.38</u> Depth to well bottom <u>13.78</u>        |                |          |                 |          |            |          |                                                             |  |  |  |  |
| Water column in well 10.4 Gallons per foot $0.16$ Gallons in well $1.66$ ( $\kappa_3 = 4.98$ )  |                |          |                 |          |            |          |                                                             |  |  |  |  |
| Purging method Restable Purp Volume purged 5.0 Decontamination Aquine & Di water                |                |          |                 |          |            |          |                                                             |  |  |  |  |
| Sampler D Gullewy Number & type of containers 2 - 1/2 L Antes, 2 - 1/2 L Polys, 3 - 40 - L VOAs |                |          |                 |          |            |          |                                                             |  |  |  |  |
| Sample preservation method: Hel $k^2$ Other (describe)                                          |                |          |                 |          |            |          |                                                             |  |  |  |  |
|                                                                                                 |                | 1        |                 |          |            |          |                                                             |  |  |  |  |
|                                                                                                 | C)             |          | tr<br>(Sl       |          | len<br>Zen |          |                                                             |  |  |  |  |
|                                                                                                 | ure (°         |          | rs/c            |          | OXYS       | or       | DESCRIPTION                                                 |  |  |  |  |
|                                                                                                 | eratı          |          | ,<br>uctiv      | dity     | lved       | r Col    |                                                             |  |  |  |  |
| lime                                                                                            | ſemp           | H        | Cond            | lurbi    | Disso      | Nate     | (Volume purged between measurements)                        |  |  |  |  |
|                                                                                                 |                |          |                 |          |            |          |                                                             |  |  |  |  |
| 1350                                                                                            | 9.58           | 5.94     | 0.166           | dr       | 3,20       | CIF      | 0.25 gul total                                              |  |  |  |  |
| 1357                                                                                            | 9.89           | 5.91     | 0.168           | elr      | 1.49       | CIE      | 1.0 galtutal                                                |  |  |  |  |
| 1404                                                                                            | 10,2)          | 5.95     | 0,171           | Ur       | 0.91       | Lir      | 2.0 gal total                                               |  |  |  |  |
| 14 II                                                                                           | 10,43          | 5.98     | 0.174           | Ur       | 0.71       | Cir      | 3.0 gal tutal                                               |  |  |  |  |
| 1417                                                                                            | 10.54          | 6.00     | 0,176           | cr       | 0.61       | cir      | 4.0 sal total                                               |  |  |  |  |
| 1425                                                                                            | 10,54          | 6.01     | 0.177           | ar       | 0.62       | dr       | Sogal total                                                 |  |  |  |  |
| 1100                                                                                            |                |          |                 | -        |            |          | 5                                                           |  |  |  |  |
|                                                                                                 |                |          |                 |          |            |          |                                                             |  |  |  |  |
|                                                                                                 | ξ.<br>K        |          |                 |          |            |          | 1430 vollert water sumple                                   |  |  |  |  |
|                                                                                                 |                | <b>.</b> | L               | <b> </b> | l          |          |                                                             |  |  |  |  |
| TA7-11 -                                                                                        | asing vol      | lumes    | (gal/ft)        | - 1.25"= | =0.077,    | 1.5"=0.1 | 10, 2"=0.16, 2.5"=0.24, 3"=0.37, 3.5=0.50, 4"=0.65, 6"=1.46 |  |  |  |  |
| wen c                                                                                           |                |          | ί, <sup>γ</sup> |          |            |          |                                                             |  |  |  |  |

.

| Project | t No      | 37018         |               |       | WAT         | TER S    | SAMPLING LOG Sheet of                                    |
|---------|-----------|---------------|---------------|-------|-------------|----------|----------------------------------------------------------|
| Project | Name:     | Netru         | mal Aut       | N W   | Vell No.    | mu       | Date & Time Started 12/20/18 1540                        |
| Project | Location  | n: <u>16a</u> | ok bomst      | É     | We          | ll Loca  | tion & diameter E Prop Portuek - /canke 2"               |
| Client  | Mitchell  | Devel         | 10 print      | :     | Site Ma     | nager    | DGallwing Logged By DGallwing                            |
| Measu   | ring Poir | nt _N         |               |       | Initia      | l deptł  | n to water <u>3.34</u> Depth to well bottom <u>14.29</u> |
| Water   | column i  | n well        | 10.95         |       | Gallons     | per fo   | $0.16$ Gallons in well $1.75 (x_3 = 5.2)$                |
| Purgir  | ig metho  | d <u>Pe</u>   | staltic T     | Pump  | Volum       | ne purg  | ged _ 5.5 gal Decontamination Agenor DI the              |
| Sampl   | er_D6     | allow         | 1             | Numb  | er & ty     | pe of c  | ontainers 2-1/22 Ambers, 2-1/22 Polys, 3-40 ML UDAS      |
| Sample  | e preserv | ation         | ,<br>method   | HNU3  | 1ce Ot      | her (de  | escribe)                                                 |
|         |           |               |               |       |             |          |                                                          |
|         | (°C)      |               | 5/em<br>(JuS) |       | ッケル<br>Vgen |          | DESCRIPTION                                              |
|         | ture      |               | m,<br>ivity   | >     | v Ox        | olor     |                                                          |
| e       | npera     |               | iduct         | bidit | solve       | ter C    |                                                          |
| Tim     | Ten       | Ηd            | Cor           | Tur   | Dis         | Wa       | (Volume purged between measurements)                     |
| 1545    | 9.21      | 5.91          | 0,143         | Cle   | 3.02        | CIE      | 0,2554 total                                             |
| 1548    | 9.35      | 5.91          | 0.144         | CIF   | 2.69        | cir      | 1.0 sal total                                            |
| KSY     | 9.53      | 5.89          | 0.144         | ur    | 2,50        | clr      | 1.5 gal total                                            |
| 1101    | 9-710     | 5.87          | 0,145         | CI-   | 2.33        | CIF      | 2.5 celtobal                                             |
|         | 967       | 586           | 0.111         | 0-    | 20          | CIE      | 2 Sal tom                                                |
| 1608    | 7.9 7     | 5.00          | 0,146         |       | 5.0         | <u> </u> |                                                          |
| 615     | 9.98      | 5.85          | 0.147         | Cr    | 1.78        | Cir      | 4.5 Sel total                                            |
| 632     | 9.99      | 51.58         | 0.48          | Cr    | 1.63        | Cr       | Sisgul tom                                               |
|         |           |               |               |       |             |          |                                                          |
|         | ja<br>v   |               |               |       |             |          | 1628 collectwater Sample                                 |

Signature\_

0

88.45

Date 12/20/18

| Project                                                                              | No. <u>3</u> | 7018           |                |       | WAT                                                  | TER S      | SAMPLING LOG Sheet of                        |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------|----------------|----------------|-------|------------------------------------------------------|------------|----------------------------------------------|--|--|--|--|--|--|
| Project                                                                              | : Name:      | Nation         | ul Auto        | W     | Well No. MW-6 Date & Time Started 12/20/18 1440      |            |                                              |  |  |  |  |  |  |
| Project                                                                              | Location     | n: <u>1600</u> | 8 60ms         | ē     | We                                                   | ll Loca    | tion & diameter <u>E &amp; Blag</u>          |  |  |  |  |  |  |
| Client                                                                               | Witchel      | Devel          | opment         |       | Site Ma                                              | nager      | D Gallowy Logged By DGallowy                 |  |  |  |  |  |  |
| Measu                                                                                | ring Poi     | nt <u>N</u>    |                |       | Initia                                               | l deptł    | to water $3.30$ Depth to well bottom $14.10$ |  |  |  |  |  |  |
| Water                                                                                | column       | in well        | 10,9           | 8     | Gallons per foot Gallons in well $\frac{1.73}{x3:5}$ |            |                                              |  |  |  |  |  |  |
| Purging method Porstaltic Pour Volume purged 6.0 Decontamination Ag                  |              |                |                |       |                                                      |            |                                              |  |  |  |  |  |  |
| Sampler D Gallowy Number & type of containers 2-1/2 L Ambers 21/2 L Polys 3-4UML WAS |              |                |                |       |                                                      |            |                                              |  |  |  |  |  |  |
| Sample                                                                               | e preserv    | vation         | method         | HNU:  | ice Ot                                               | her (de    | escribe)                                     |  |  |  |  |  |  |
| Sample preservation method: <u>HCL (ce_</u> Other (describe)                         |              |                |                |       |                                                      |            |                                              |  |  |  |  |  |  |
|                                                                                      | e (°C        |                | mS/e<br>ty (hS |       | ms//                                                 | 5          | DESCRIPTION                                  |  |  |  |  |  |  |
|                                                                                      | eratuı       |                | ıctivil        | lity  | ved C                                                | Colo       |                                              |  |  |  |  |  |  |
| ime                                                                                  | empe         | H              | Condu          | urbid | lissol                                               | Vater      | (Volume purged between measurements)         |  |  |  |  |  |  |
| L                                                                                    | L            | <u> </u>       | 0              | F     |                                                      | >          |                                              |  |  |  |  |  |  |
| 1445                                                                                 | 8.95         | 5_91           | 0.121          | CIr   | 5.64                                                 |            | 0.450 total                                  |  |  |  |  |  |  |
| 1450                                                                                 | 9.19         | 5.89           | 0.121          | LIC   | 2.00                                                 | CIr        | 1.0 sel total                                |  |  |  |  |  |  |
| 1456                                                                                 | 9.45         | 5.8-           | 0,120          | ci-   | 1.36                                                 | <i>Lir</i> | 2.0 gul titul                                |  |  |  |  |  |  |
| 1503                                                                                 | 9.68         | 5.88           | 0.121          | Ur    | 0.94                                                 | cir        | 3.0 gal total                                |  |  |  |  |  |  |
| 1510                                                                                 | 9.74         | 5.90           | 0,123          | ar    | 0,81                                                 | ar         | 4.0 gal total                                |  |  |  |  |  |  |
| 1517                                                                                 | 9.75         | 5.94           | 0.125          | cir   | 0.80                                                 | CIE        | 5.0 gal total                                |  |  |  |  |  |  |
| 1524                                                                                 | 9.75         | 5.93           | 0.126          | ar    | 0,80                                                 | ur         | 6.0 Sal total                                |  |  |  |  |  |  |
|                                                                                      |              |                |                |       |                                                      |            |                                              |  |  |  |  |  |  |
|                                                                                      | ******       |                |                |       |                                                      |            | 1530 collect water Sample                    |  |  |  |  |  |  |

2 × 1

| GALLO                                                                                                                             | OWAY F                                                                 | ENVIF          | RONMI        | ENTAL    | ., INC.,     | , 15600 | NE 8 <sup>th</sup> St, Suite B1,617, Bellevue, WA 98008 (425)894-8607 |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------|--------------|----------|--------------|---------|-----------------------------------------------------------------------|--|--|--|--|
| Projec                                                                                                                            | t No?                                                                  | 37018          | 5            |          | WAT          | TER S   | SAMPLING LOG Sheet of                                                 |  |  |  |  |
|                                                                                                                                   |                                                                        |                |              |          |              |         |                                                                       |  |  |  |  |
| Projec                                                                                                                            | t Name:                                                                | Nash           | mal Au       | to N     | /ell No.     | mu      | $\sim -7$ Date & Time Started $\frac{12/20/18}{1030}$                 |  |  |  |  |
| Projec                                                                                                                            | t Location                                                             | n: <u>16</u> 0 | 28 602 30    | STE      | We           | ll Loca | tion & diameter Sc Porthan of Hoperby 2                               |  |  |  |  |
| Client                                                                                                                            | Client Mitcheli Development Site Manager D Gallowy Logged By D Gallowy |                |              |          |              |         |                                                                       |  |  |  |  |
| Measuring Point $\underline{N}$ <u>porbon</u> Initial depth to water <u>3</u> , $\underline{N}$ Depth to well bottom <u>13.85</u> |                                                                        |                |              |          |              |         |                                                                       |  |  |  |  |
| Water column in well <u>10,74</u> Gallons per foot <u>0,16</u> Gallons in well <u>1.72</u> $(3,3,5)$                              |                                                                        |                |              |          |              |         |                                                                       |  |  |  |  |
| Purging method Peristallic Pump Volume purged 5,55 thurs Decontamination Aguna D H20                                              |                                                                        |                |              |          |              |         |                                                                       |  |  |  |  |
| Sampler D (Tallowy Number & type of containers 2-1/22 Ambers 2-1/22 Polys 3 40m2 vors                                             |                                                                        |                |              |          |              |         |                                                                       |  |  |  |  |
| Sample preservation method: Hcl clceOther (describe)                                                                              |                                                                        |                |              |          |              |         |                                                                       |  |  |  |  |
|                                                                                                                                   |                                                                        |                | ()           |          | Ę            |         | т.                                                                    |  |  |  |  |
|                                                                                                                                   | e (°C                                                                  |                | y (µS        |          | wyge<br>Xyge | *       | DESCRIPTION                                                           |  |  |  |  |
|                                                                                                                                   | ratur                                                                  |                | ru<br>ctivit | ty       | ed O         | Color   |                                                                       |  |  |  |  |
| Time                                                                                                                              | Temper                                                                 | Hq             | Condue       | Turbidi  | Dissolv      | Water ( | (Volume purged between measurements)                                  |  |  |  |  |
| 1040                                                                                                                              | 12.45                                                                  | 6.45           | 0,281        | Slight   | 2.98         | Sight   | 0.1 gal total                                                         |  |  |  |  |
| 1044                                                                                                                              | 12.32                                                                  | 6.32           | 0.273        | Slight   | 2.53         | いいち     | 0.52~1 1021                                                           |  |  |  |  |
| 1052                                                                                                                              | 12.36                                                                  | 6.25           | 0.258        | clr      | 1.63         | cir     | 1.5gul tom                                                            |  |  |  |  |
| 100                                                                                                                               | 12.39                                                                  | 6.24           | 0.252        | de       | 1.32         | cir     | 2.5gcl total                                                          |  |  |  |  |
| 1108                                                                                                                              | 12,47                                                                  | 6.22           | 0.231        | Clr      | 0.92         | cir     | 3,552 total                                                           |  |  |  |  |
| 1116                                                                                                                              | 12.49                                                                  | 6.21           | 0.220        | 41       | 0.78         | (1-     | 4.5 Sal Whl                                                           |  |  |  |  |
| 1124                                                                                                                              | 12.50                                                                  | 6.21           | 0.219        | CIT      | 6,76         | cir     | 5.5gal total                                                          |  |  |  |  |
|                                                                                                                                   |                                                                        |                |              |          |              |         |                                                                       |  |  |  |  |
|                                                                                                                                   |                                                                        |                |              |          |              |         | 1127 collect week: sample                                             |  |  |  |  |
| Well c                                                                                                                            | asing vol                                                              | umes           | (gal/ft) -   | - 1.25″= | =0.077, 1    | .5″=0.1 | 10, 2″=0.16, 2.5″=0.24, 3″=0.37, 3.5=0.50, 4″=0.65, 6″=1.46           |  |  |  |  |
| Signat                                                                                                                            | ure                                                                    | 2              | N            |          |              |         | Date 12/20/18                                                         |  |  |  |  |

# APPENDIX B

LABORATORY ANALYTICAL REPORT



January 3, 2019

Dylan Galloway Galloway Environmental, Inc. 15600 NE 8th Street, Suite B1, 617 Bellevue, WA 98008

Re: Analytical Data for Project 37018 Laboratory Reference No. 1812-218

Dear Dylan:

Enclosed are the analytical results and associated quality control data for samples submitted on December 21, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures



Date of Report: January 3, 2019 Samples Submitted: December 21, 2018 Laboratory Reference: 1812-218 Project: 37018

### **Case Narrative**

Samples were collected on December 20, 2018 and received by the laboratory on December 21, 2018. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.



OnSite Environmental, Inc. 14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

### HYDROCARBON IDENTIFICATION NWTPH-HCID

Matrix: Water Units: mg/L (ppm)

|                         |                  |                |              | Date     | Date     |       |
|-------------------------|------------------|----------------|--------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method       | Prepared | Analyzed | Flags |
| Client ID:              | MW-1             |                |              |          |          |       |
| Laboratory ID:          | 12-218-01        |                |              |          |          |       |
| Gasoline Range Organics | ND               | 0.10           | NWTPH-HCID   | 12-26-18 | 12-26-18 |       |
| Diesel Range Organics   | ND               | 0.26           | NWTPH-HCID   | 12-26-18 | 12-26-18 |       |
| Lube Oil Range Organics | ND               | 0.41           | NWTPH-HCID   | 12-26-18 | 12-26-18 |       |
| Surrogate:              | Percent Recovery | Control Limits |              |          |          |       |
| o-Terphenyl             | 96               | 50-150         |              |          |          |       |
|                         |                  |                |              |          |          |       |
| Client ID:              | MW-2             |                |              |          |          |       |
| Laboratory ID:          | 12-218-02        |                |              |          |          |       |
| Gasoline Range Organics | ND               | 0.10           | NWTPH-HCID   | 12-26-18 | 12-26-18 |       |
| Diesel Range Organics   | ND               | 0.25           | NWTPH-HCID   | 12-26-18 | 12-26-18 |       |
| Lube Oil Range Organics | ND               | 0.40           | NWTPH-HCID   | 12-26-18 | 12-26-18 |       |
| Surrogate:              | Percent Recovery | Control Limits |              |          |          |       |
| o-Terphenyl             | 95               | 50-150         |              |          |          |       |
|                         | MAK 2            |                |              |          |          |       |
|                         | IVI VV-3         |                |              |          |          |       |
| Laboratory ID:          | 12-218-03        | 0.40           |              | 40.00.40 | 10.00.10 |       |
| Gasoline Range Organics | ND               | 0.10           | NW IPH-HCID  | 12-26-18 | 12-26-18 |       |
| Diesel Range Organics   | ND               | 0.25           | NW IPH-HCID  | 12-26-18 | 12-26-18 |       |
| Lube Oil Range Organics | ND               | 0.40           | NW I PH-HCID | 12-26-18 | 12-26-18 |       |
| Surrogate:              | Percent Recovery | Control Limits |              |          |          |       |
| o-lerphenyl             | 94               | 50-150         |              |          |          |       |
| Client ID:              | MW-4             |                |              |          |          |       |
| Laboratory ID:          | 12-218-04        |                |              |          |          |       |
| Gasoline Range Organics |                  | 0.10           |              | 12-26-18 | 12-26-18 |       |
| Diesel Range Organics   | Detected         | 0.10           | NWTPH-HCID   | 12-26-18 | 12-26-18 |       |
| Lube Oil Range Organics | ND               | 0.20           | NWTPH-HCID   | 12-26-18 | 12-26-18 |       |
| Surrogate:              | Percent Recovery | Control Limits |              | 12 20 10 | 12 20 10 |       |
| o-Ternhenvl             | 98               | 50-150         |              |          |          |       |
| o resplicity            | 30               | 00 100         |              |          |          |       |
| Client ID:              | MW-5             |                |              |          |          |       |
| Laboratory ID:          | 12-218-05        |                |              |          |          |       |
| Gasoline Range Organics | ND               | 0.10           | NWTPH-HCID   | 12-26-18 | 12-26-18 |       |
| Diesel Range Organics   | ND               | 0.25           | NWTPH-HCID   | 12-26-18 | 12-26-18 |       |
| Lube Oil Range Organics | ND               | 0.40           | NWTPH-HCID   | 12-26-18 | 12-26-18 |       |
| Surrogate:              | Percent Recovery | Control Limits |              |          |          |       |
| o-Terphenvl             | 88               | 50-150         |              |          |          |       |



OnSite Environmental, Inc. 14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

### HYDROCARBON IDENTIFICATION NWTPH-HCID

| 5 (T)                   |                  |                |            | Date     | Date     |       |
|-------------------------|------------------|----------------|------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method     | Prepared | Analyzed | Flags |
| Client ID:              | MW-6             |                |            |          |          |       |
| Laboratory ID:          | 12-218-06        |                |            |          |          |       |
| Gasoline Range Organics | ND               | 0.10           | NWTPH-HCID | 12-26-18 | 12-26-18 |       |
| Diesel Range Organics   | ND               | 0.25           | NWTPH-HCID | 12-26-18 | 12-26-18 |       |
| Lube Oil Range Organics | ND               | 0.40           | NWTPH-HCID | 12-26-18 | 12-26-18 |       |
| Surrogate:              | Percent Recovery | Control Limits |            |          |          |       |
| o-Terphenyl             | 107              | 50-150         |            |          |          |       |
| Client ID:              | MW-7             |                |            |          |          |       |
| Laboratory ID:          | 12-218-07        |                |            |          |          |       |
| Gasoline Range Organics | ND               | 0.10           | NWTPH-HCID | 12-26-18 | 12-26-18 |       |
| Diesel Range Organics   | ND               | 0.25           | NWTPH-HCID | 12-26-18 | 12-26-18 |       |
| Lube Oil Range Organics | ND               | 0.40           | NWTPH-HCID | 12-26-18 | 12-26-18 |       |
| Surrogate:              | Percent Recovery | Control Limits |            |          |          |       |
| o-Terphenyl             | 104              | 50-150         |            |          |          |       |



### HYDROCARBON IDENTIFICATION NWTPH-HCID QUALITY CONTROL

|                         |                  |                |            | Date     | Date     |       |
|-------------------------|------------------|----------------|------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method     | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |            |          |          |       |
| Laboratory ID:          | MB1226W1         |                |            |          |          |       |
| Gasoline Range Organics | ND               | 0.10           | NWTPH-HCID | 12-26-18 | 12-26-18 |       |
| Diesel Range Organics   | ND               | 0.25           | NWTPH-HCID | 12-26-18 | 12-26-18 |       |
| Lube Oil Range Organics | ND               | 0.40           | NWTPH-HCID | 12-26-18 | 12-26-18 |       |
| Surrogate:              | Percent Recovery | Control Limits |            |          |          |       |
| o-Terphenyl             | 90               | 50-150         |            |          |          |       |



### DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

| 5 (11 )                 |                  |                |          | Date     | Date     |       |
|-------------------------|------------------|----------------|----------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method   | Prepared | Analyzed | Flags |
| Client ID:              | MW-4             |                |          |          |          |       |
| Laboratory ID:          | 12-218-04        |                |          |          |          |       |
| Diesel Range Organics   | 0.27             | 0.25           | NWTPH-Dx | 12-26-18 | 12-26-18 |       |
| Lube Oil Range Organics | ND               | 0.40           | NWTPH-Dx | 12-26-18 | 12-26-18 |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 98               | 50-150         |          |          |          |       |



Date of Report: January 3, 2019 Samples Submitted: December 21, 2018 Laboratory Reference: 1812-218 Project: 37018

### DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

|                         |                  |                |          | Date     | Date     |       |
|-------------------------|------------------|----------------|----------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method   | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |          |          |          |       |
| Laboratory ID:          | MB1226W1         |                |          |          |          |       |
| Diesel Range Organics   | ND               | 0.25           | NWTPH-Dx | 12-26-18 | 12-26-18 |       |
| Lube Oil Range Organics | ND               | 0.40           | NWTPH-Dx | 12-26-18 | 12-26-18 |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 90               | 50-150         |          |          |          |       |

|                |       |       |             |    | Source | Perc | cent   | Recovery |       | RPD   |  |
|----------------|-------|-------|-------------|----|--------|------|--------|----------|-------|-------|--|
| Analyte        | Res   | Spike | Spike Level |    | Reco   | very | Limits | RPD      | Limit | Flags |  |
| DUPLICATE      |       |       |             |    |        |      |        |          |       |       |  |
| Laboratory ID: | 12-23 | 30-01 |             |    |        |      |        |          |       |       |  |
|                | ORIG  | DUP   |             |    |        |      |        |          |       |       |  |
| Diesel Range   | ND    | ND    | NA          | NA |        | N    | A      | NA       | NA    | NA    |  |
| Lube Oil Range | ND    | ND    | NA          | NA |        | N    | A      | NA       | NA    | NA    |  |
| Surrogate:     |       |       |             |    |        |      |        |          |       |       |  |
| o-Terphenyl    |       |       |             |    |        | 72   | 73     | 50-150   |       |       |  |



#### DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | MW-1      |      |           |          |          |       |
| Laboratory ID: | 12-218-01 |      |           |          |          |       |
| Arsenic        | ND        | 3.0  | EPA 200.8 |          | 12-26-18 |       |
| Cadmium        | ND        | 4.0  | EPA 200.8 |          | 12-26-18 |       |
| Chromium       | ND        | 10   | EPA 200.8 |          | 12-26-18 |       |
| Lead           | ND        | 1.0  | EPA 200.8 |          | 12-26-18 |       |
| Mercury        | ND        | 0.50 | EPA 7470A |          | 1-2-19   |       |
| Client ID:     | MW-2      |      |           |          |          |       |
| Laboratory ID: | 12-218-02 |      |           |          |          |       |
| Arsenic        | ND        | 3.0  | EPA 200.8 |          | 12-26-18 |       |
| Cadmium        | ND        | 4.0  | EPA 200.8 |          | 12-26-18 |       |
| Chromium       | ND        | 10   | EPA 200.8 |          | 12-26-18 |       |
| Lead           | ND        | 1.0  | EPA 200.8 |          | 12-26-18 |       |
| Mercury        | ND        | 0.50 | EPA 7470A |          | 1-2-19   |       |
| Client ID:     | MW-3      |      |           |          |          |       |
| Laboratory ID: | 12 219 02 |      |           |          |          |       |
|                | ND        | 3.0  | EDV 200 8 |          | 12-26-18 |       |
| Cadmium        |           | 3.0  | EPA 200.8 |          | 12-20-10 |       |
| Chromium       | ND        | 10   | EPA 200.0 |          | 12-20-10 |       |
| Lead           | ND        | 10   | EPA 200.8 |          | 12-26-18 |       |
| Mercurv        | ND        | 0.50 | EPA 7470A |          | 1-2-19   |       |
| <u></u>        |           |      |           |          |          |       |
| Client ID:     | MW-4      |      |           |          |          |       |
| Laboratory ID: | 12-218-04 |      |           |          |          |       |
| Arsenic        | ND        | 3.0  | EPA 200.8 |          | 12-26-18 |       |
| Cadmium        | ND        | 4.0  | EPA 200.8 |          | 12-26-18 |       |
| Chromium       | ND        | 10   | EPA 200.8 |          | 12-26-18 |       |



Lead

Mercury

OnSite Environmental, Inc. 14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 (425) 883-3881

1.0

0.50

EPA 200.8

EPA 7470A

12-26-18

1-2-19

ND

ND

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

### DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

| 0 (11 )        |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | MW-5      |      |           |          |          |       |
| Laboratory ID: | 12-218-05 |      |           |          |          |       |
| Arsenic        | ND        | 3.0  | EPA 200.8 |          | 12-26-18 |       |
| Cadmium        | ND        | 4.0  | EPA 200.8 |          | 12-26-18 |       |
| Chromium       | ND        | 10   | EPA 200.8 |          | 12-26-18 |       |
| Lead           | ND        | 1.0  | EPA 200.8 |          | 12-26-18 |       |
| Mercury        | ND        | 0.50 | EPA 7470A |          | 1-2-19   |       |

| Client ID:     | MW-6      |      |           |          |  |
|----------------|-----------|------|-----------|----------|--|
| Laboratory ID: | 12-218-06 |      |           |          |  |
| Arsenic        | ND        | 3.0  | EPA 200.8 | 12-26-18 |  |
| Cadmium        | ND        | 4.0  | EPA 200.8 | 12-26-18 |  |
| Chromium       | ND        | 10   | EPA 200.8 | 12-26-18 |  |
| Lead           | ND        | 1.0  | EPA 200.8 | 12-26-18 |  |
| Mercury        | ND        | 0.50 | EPA 7470A | 1-2-19   |  |

| Client ID:     | MW-7      |      |           |          |  |
|----------------|-----------|------|-----------|----------|--|
| Laboratory ID: | 12-218-07 |      |           |          |  |
| Arsenic        | 3.2       | 3.0  | EPA 200.8 | 12-26-18 |  |
| Cadmium        | ND        | 4.0  | EPA 200.8 | 12-26-18 |  |
| Chromium       | ND        | 10   | EPA 200.8 | 12-26-18 |  |
| Lead           | ND        | 1.0  | EPA 200.8 | 12-26-18 |  |
| Mercury        | ND        | 0.50 | EPA 7470A | 1-2-19   |  |



OnSite Environmental, Inc. 14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

#### DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

|                |          |      |           | Date     | Date     |       |
|----------------|----------|------|-----------|----------|----------|-------|
| Analyte        | Result   | PQL  | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK   |          |      |           |          |          |       |
| Laboratory ID: | MB1221F1 |      |           |          |          |       |
| Arsenic        | ND       | 3.0  | EPA 200.8 | 12-21-18 | 12-26-18 |       |
| Cadmium        | ND       | 4.0  | EPA 200.8 | 12-21-18 | 12-26-18 |       |
| Chromium       | ND       | 10   | EPA 200.8 | 12-21-18 | 12-26-18 |       |
| Lead           | ND       | 1.0  | EPA 200.8 | 12-21-18 | 12-26-18 |       |
| Laboratory ID: | MB1221F1 |      |           |          |          |       |
| Mercury        | ND       | 0.50 | EPA 7470A | 12-21-18 | 1-2-19   |       |
|                |          |      |           |          |          |       |

|                |       |       |       |         | Source | Pe  | rcent | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | RPD |  |
|----------------|-------|-------|-------|---------|--------|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|
| Analyte        | Re    | sult  | Spike | e Level | Result | Rec | overy | Recovery         RPD           Imits         RPD         Limit         F           NA         7         20           NA         7         20           NA         NA         20           MSD | Flags |     |  |
| DUPLICATE      |       |       |       |         |        |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |  |
| Laboratory ID: | 12-23 | 30-02 |       |         |        |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |  |
|                | ORIG  | DUP   |       |         |        |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |  |
| Arsenic        | 10.8  | 11.6  | NA    | NA      |        |     | NA    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7     | 20  |  |
| Cadmium        | ND    | ND    | NA    | NA      |        |     | NA    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA    | 20  |  |
| Chromium       | ND    | ND    | NA    | NA      |        |     | NA    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA    | 20  |  |
| Lead           | ND    | ND    | NA    | NA      |        |     | NA    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA    | 20  |  |
| Laboratory ID: | 12-23 | 30-01 |       |         |        |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |  |
| Mercury        | ND    | ND    | NA    | NA      |        |     | NA    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA    | 20  |  |
| MATRIX SPIKES  |       |       |       |         |        |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |  |
| Laboratory ID: | 12-23 | 30-02 |       |         |        |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |  |
|                | MS    | MSD   | MS    | MSD     |        | MS  | MSD   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |  |
| Arsenic        | 219   | 218   | 200   | 200     | 10.8   | 104 | 103   | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | 20  |  |
| Cadmium        | 197   | 197   | 200   | 200     | ND     | 98  | 99    | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     | 20  |  |
| Chromium       | 184   | 186   | 200   | 200     | ND     | 92  | 93    | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | 20  |  |
| Lead           | 199   | 197   | 200   | 200     | ND     | 99  | 98    | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | 20  |  |
| Laboratory ID: | 12-23 | 30-01 |       |         |        |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |  |



Mercury

11.5

11.7

12.5

OnSite Environmental, Inc. 14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 (425) 883-3881

12.5

ND

92

93

75-125

2

20

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

10



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical \_\_\_\_\_
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference



OnSite Environmental, Inc. 14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

| Reviewed/Date                                    | Received                                  | Relinquished | Received | Relinquished     | Received Warden Lizeu | Relinquished                 | Signature                     | / |   | 7 MW-7   | 6 mw-6 | S-MM | H mw-4                                  | -3 MM | 2-MM 6 | 1 mw-1          | Lab ID Sample Identification                                                                | Dentification                                                                                                        | Project Manager. D (nationing                                                               | Project Name:<br>Natural Auto                             | 31018                       | Project Number: | 14648 NE 95th Street - Redmond, WA 98052<br>Phone: (425) 883-3881 - www.onsite-env.com | Analytical Laboratory Testing Services | INA OnSite |
|--------------------------------------------------|-------------------------------------------|--------------|----------|------------------|-----------------------|------------------------------|-------------------------------|---|---|----------|--------|------|-----------------------------------------|-------|--------|-----------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-----------------|----------------------------------------------------------------------------------------|----------------------------------------|------------|
| Reviewed/Date                                    |                                           |              |          |                  | SF.                   | - 6E1                        | Company                       |   |   | ¥ 1127 ↓ | 1530   | 1628 | 1430                                    | 1337  | 1244   | 12/20/18 1074 W | Date Time<br>Sampled Sampled Matrix                                                         | (other)                                                                                                              |                                                                                             | Standard (7 Days)                                         | 2 Days 3 Days               | Same Day 1 Day  | (In working days)<br>(Check One)                                                       | Turnaround Request                     | Chain of   |
|                                                  |                                           |              |          |                  | 12120 SI 118/BI       | 2560 Silizfel                | Date Time                     |   | / | K        | K      | ×    | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | ×     | X      | 7 × 1           | Numb<br>NWTF<br>NWTF<br>NWTF<br>NWTF<br>Volati<br>Halog<br>EDB I                            | PH-HC<br>PH-Gx/<br>PH-Gx<br>PH-Gx<br>PH-Dx<br>les 826<br>enated                                                      | Contain<br>ID<br>BTEX<br>( Acid<br>SOC<br>I Volatile<br>111 (Wat                            | / SG C<br>s 82600                                         | lean-uj<br>C                | p)              |                                                                                        | Laboratory Number                      | f Custody  |
| Chromatograms with final report 🗌 Electronic Dat | Data Package: Standard 🛛 Level III 🖾 Leve |              |          | (X) Added 12/28/ |                       | Matals analysis - Samples an | Comments/Special Instructions |   |   | ×        | ×      | ×    | *                                       | ×     | ×      | *               | Semity<br>(with<br>PAHs<br>PCBs<br>Organ<br>Organ<br>Chlor<br>Total<br>Total<br>TCLP<br>HEM | volatile<br>low-lev<br>8270E<br>8082/<br>nochlor<br>nochlor<br>nophos<br>inated<br>RCRA<br>MTCA<br>Metal<br>(oil and | s 8270D<br>vel PAHs<br>VSIM (Io<br>A<br>rine Pess<br>sphorus<br>Acid He<br>Metals<br>s<br>s | /SIM<br>)<br>w-level)<br>icides 8<br>Pesticid<br>rbicides | 3081B<br>les 827<br>s 8151/ | 70D/SIM<br>A    |                                                                                        | 12-218                                 | Page       |
| ta Deliverables (EDDs)                           |                                           |              | Ŧ        | 18 ×1            | 1                     | ~ *                          |                               |   |   |          |        |      |                                         |       |        |                 | % Mo                                                                                        | isture                                                                                                               |                                                                                             |                                                           |                             |                 |                                                                                        |                                        | of         |