

320 3rd Ave. N.E. Issaquah, WA 98027

> T: 425 . 427.0061 F: 425 . 427.0067

ADDITIONAL SUBSURFACE INVESTIGATION AND FEASIBILITY TESTING REPORT

TCP ID#NW1243

FORMER CITY HAND LAUNDRY PROPERTY 1002 4TH STREET BREMERTON, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 320 3rd Avenue Northeast Issaquah, Washington 98027

Farallon PN: 603-001

For:

Mr. Stuart Milbrad 1270 McGonagle Road Selah, Washington 98942

January 25, 2006

Prepared by: Jeffrey Kaspar, L.G., L.H.G.

Senior Project Manager

Reviewed by:

Ind Tohm

Clifford T. Schmitt, L.G., L.H.G. Principal

RECEIVED

FEB 1 0 2006

Cascadia Law Group PLLC

TABLE OF CONTENTS

EXECUTIVE SUMMARYvi						
1.0	INTRODUCTION1-1					
	1.1 PURPOSE 1-1 1.2 ORGANIZATION 1-1					
2.0	BACKGROUND					
3.0	FIELD PROGRAM					
	3.1SOIL BORING3-13.2MONITORING WELL INSTALLATION3-33.3GROUNDWATER MONITORING AND SAMPLING3-43.4AIR SPARGE PILOT TEST METHODS3-53.5CHEMICAL OXIDANT BENCH-SCALE TEST METHOD3-5					
4.0	RESULTS					
in: N	4.1GEOLOGY AND HYDROGEOLOGY4-14.2SOIL RESULTS4-14.2.1Halogenated Volatile Organic Compounds4-24.2.2Total Petroleum Hydrocarbons4-24.2.3Fraction Organic Carbon4-2					
1	4.3 GROUNDWATER RESULTS 4-2 4.3.1Water Quality Parameters 4-3 4.3.2Halogenated Volatile Organic Compounds 4-3 4.3.3Petroleum Hydrocarbons 4-4					
	4.4WASTE DISPOSAL					
	4.5.3Air Sparge Test Results Summary					
5.0	CONCLUSIONS					
	5.1CONSTITUENTS OF CONCERN.5-15.2HYDROGEOLOGY5-15.3SOIL.5-25.4GROUNDWATER5-35.5DEFINITION OF THE SITE.5-45.6AIR SPARGE AND OXIDANT FEASIBILITY TESTING5-5					
6.0	DATA GAPS AND FUTURE WORK					

7.0	REFERENCES	7-1		
8.0	LIMITATIONS	8-1	3	

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan Showing Existing Features & Former Potential Source Areas
- Figure 3 Additional Subsurface Investigation Boring and Well Locations
- Figure 4 Cross-Sections A-A', B-B' and C-C'
- Figure 5 Site Plan Showing Groundwater Surface Elevation Contours (6/9/2005)
- Figure 6 Site Plan Showing Soil Analytical Results
- Figure 7 Site Plan Showing Groundwater Analytical Results

TABLES

- Table 1
 Summary of Historical Soil Analytical Results
- Table 2
 Summary of Groundwater Surface Elevations
- Table 3 Summary of Soil Analytical Results Halogenated Volatile Organic Compounds
- Table 4
 Summary of Soil Analytical Results Total Petroleum Hydrocarbons
- Table 5
 Summary of Groundwater Quality Parameters
- Table 6
 Summary of Groundwater Analytical Results Halogenated Volatile Organic

 Compounds
 Compounds
- Table 7
 Summary of Groundwater Analytical Results Total Petroleum Hydrocarbons

APPENDICES

- Appendix A Boring/Well Construction Logs
- Appendix B Laboratory Analytical Reports
- Appendix C Air Sparge Pilot Test Results
- Appendix D Aerial Photographs
- Appendix E Chemical Oxidation Bench-Scale Test Results

ACRONYMS AND ABBREVIATIONS

AS	air sparge
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
cis-1,2-DCE	cis-1,2-dichloroethene
DRO	diesel-range organics
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
Farallon	Farallon Consulting, L.L.C.
foc	fraction organic carbon
g/kg	grams per kilogram
GRO	gasoline-range organics
HVOCs	halogenated volatile organic compounds
IOW	inches of water
mg/kg	milligrams per kilogram
MTCA	Model Toxics Control Act
ORO	oil-range organics
ORP	oxidation-reduction potential
PCE	tetrachloroethene
PID	photoionization detector
PQLs	practical quantitation limits
PVC	polyvinyl chloride
scfm	standard cubic feet per minute

	SECOR	SECOR International Incorporated
	Site	Former City Hand Laundry Property, 1002 4th Street, Bremerton, Washington
		and all areas where contamination originating from releases from the property
		have been confirmed
	SOD	soil oxidant demand
	SVE	soil vapor extraction
	TCE	trichloroethene
	TPH	total petroleum hydrocarbons
×.	μg/l	micrograms per liter
	USTs	underground storage tanks
	WAC 173-340	Chapter 173-340 of the Washington Administrative Code
	Work Plan	Work Plan, Additional Subsurface Investigation and Air Sparging Pilot Test,
		dated April 16, 2004, prepared by Farallon.

EXECUTIVE SUMMARY

Farallon Consulting, L.L.C. (Farallon) has prepared this report to document the results of the additional subsurface investigation work, air sparge (AS) pilot testing, and preliminary screening of oxidant-based remedial technologies as a component of a future cleanup action. This work was conducted at the Former City Hand Laundry Property, located at 1002 4th Street in Bremerton, Washington and adjacent properties where hazardous substances have been identified in soil and/or groundwater (herein referred to as the Site).

The purposes of the additional subsurface investigation were to further assess the lateral and vertical distribution of tetrachloroethene (PCE) in groundwater at the Former City hand Laundry Property, to confirm whether concentrations of PCE were present in soil and/or groundwater off Site; and also assess the potential presence of total petroleum hydrocarbons (TPH) in soil and groundwater. The purpose of the AS pilot testing was to evaluate whether AS will be a technically feasible remedial alternative for cleanup of groundwater at the Former City Hand Laundry Property. A preliminary screening of the potential for application of chemical oxidants and/or ozone was performed to evaluate whether oxidation technologies will be retained for further consideration as a potential feasible remediation alternative.

The work completed included: installation of seven monitoring wells, MW-4 through MW-10, to depths of 55 to 60 feet below the ground surface (bgs); installation of two AS pilot test wells, AS-1, and MW-1D, to a depth of approximately 80 feet bgs; installation of boring B-1 near the former location of the underground storage tank used for gasoline and diesel storage; submittal of select soil samples for laboratory analysis of PCE and associated degradation compounds as well as TPH as gasoline-range organics (GRO), diesel-range organics (DRO), oil-range organics (ORO), benzene, toluene, ethylbenzene and xylenes (BTEX), and fraction organic carbon (foc); completion of an AS feasibility pilot test; and completion of a bench-scale test to assess the potential for application of oxidant-based remedial alternatives.

The results of the soil sampling and analytical testing for petroleum hydrocarbons indicated that concentrations of GRO, DRO, ORO, and BTEX were below the laboratory practical quantitation limits (PQLs) for all soil samples but one. A single soil sample from boring B-1 contained a low concentration of GRO that was attributed to contribution from PCE present in the sample rather than GRO. Petroleum hydrocarbons as GRO, DRO, ORO, and BTEX were not detected at concentrations above the laboratory PQLs in any of the groundwater samples collected. Petroleum hydrocarbons will no longer be considered a constituent of potential concern for the Site based on the soil and groundwater results.

The results of the soil sampling and analytical testing for PCE and its degradation compounds indicated that concentrations of PCE exceeding the Washington State Department of Ecology (Ecology) Model Toxics Control Act Cleanup Regulation (MTCA) Method A cleanup level of 0.05 milligrams per kilogram at every boring where vadose zone soil samples were collected. Concentrations of PCE decreased significantly with depth. The vertical distribution of soil contamination has been adequately defined at the Site; however, the lateral distribution of PCE-

contamination in vadose zone soil has not been defined by the results of this investigation. The proposed application of soil vapor extraction (SVE) technology at the Site would address the PCE present in the vadose zone at the Former City Hand Laundry Property and areas immediately surrounding the property. No further investigation of the lateral distribution of the PCE and/or its degradation compounds in soil is necessary to proceed with selection and design of a remedial alternative for soil.

During this investigation, the highest concentrations of PCE in soil were detected at boring location MW-8, located northeast of the Former City Hand Laundry Property, near the southeast corner of the north adjacent church, where no known potential source of a PCE release exists. Farallon considered several potential scenarios to account for a release of PCE to the subsurface close to boring MW-8, including disposal to the ground surface, or releases from the sanitary sewer or storm drain system. Aerial photographs of the property reviewed by Farallon did not show obvious doors on the north side of the former building from which PCE or PCE-laden wastewater could have been dumped into the alley and flowed into the ground. The suspected location of the former side sewer connection for the building is on the southern portion of the property based on the configuration of the former drain piping in the former building and the City of Bremerton sanitary sewer main locations. Further the stormwater system that crosses to the north into the alley was not present prior to conversion of the property to a parking lot. The absence of any known underground piping that extends to the north limits the possibility of preferential transport of a PCE release via a utility corridor. The lateral distribution of contaminated soil to the north was not defined by this investigation nor has the origin of the contamination in this area been identified.

The laboratory analytical results of soil samples collected from depths of 50 to 55.5 feet bgs during the additional subsurface investigation indicate that the foc values in the saturated soil were below 0.0011 grams per gram. The foc is negligible, indicating that the sorptive capacity of the soil in the upper portion of the water-bearing zone is low. A low sorptive capacity means that retardation of certain contaminants such as PCE and TCE in the saturated zone will be minimal and contaminants will move only slightly slower than the groundwater velocity.

The calculated groundwater flow direction for the June 2005 monitoring and sampling event indicates that the groundwater flows is generally towards the southeast. The groundwater flow direction is different than what was expected based on previous investigation data, which had consistently indicated an easterly flow direction.

The water-bearing zone is continuous from the first encountered groundwater to the total depth of 80 feet bgs explored at the Site. There are no indications in the observed subsurface lithology of any continuous layers of lower-permeability soil that could act as an aquiclude or aquitard to the transport of groundwater. The thickness of the water-bearing zone is currently not known.

The groundwater elevation measurements for monitoring well pairs screened in the upper and lower portions of the water-bearing zone indicate that there is a downward vertical groundwater gradient from the upper portion of the water-bearing zone to the lower portion of the waterbearing zone. This means that contaminants in the upper portion of the water-bearing zone may be transported downward via the vertical gradient.

The results of groundwater monitoring and sampling in June 2005 indicate that the concentrations of PCE exceeding the MTCA Method A cleanup level were present at all of the monitoring well locations. Therefore, neither the lateral nor vertical distribution of PCE has been defined in groundwater. However, concentrations of PCE in groundwater decrease over an order of magnitude between wells screened near the top of the water-bearing zone and the interval screened by deep wells AS-1 and MW-10, which suggests that concentrations of PCE decrease below the MTCA Method A cleanup level slightly deeper than these wells are screened.

The results of the AS feasibility testing indicate that AS is a feasible remedial alternative for the remediation of PCE in groundwater at the Site within the vicinity of the Former City Hand Laundry Property boundaries and a limited distance around the property. AS is a complimentary technology used in conjunction with SVE, which had previously been demonstrated to be a technically feasible remedial alternative during a previous phase of work by Farallon. The results of the bench-scale chemical oxidation pilot testing for the application of oxidant-based technologies such as injection of liquid chemical oxidants or ozone gas, indicated that these technologies should be retained for further investigation via field-scale pilot testing. Application of chemical oxidants has the potential to treat PCE-contaminated groundwater that is beyond the practical treatment limits of AS and SVE technologies off the property. Application of ozone-based technologies may also be used to compliment AS and increase the rate of cleanup if AS alone has a limited affect.

The results of the investigation indicate that the Site boundaries have not been defined by the existing monitoring well network and extend beyond the limits of MW-4, MW-5, MW-6, MW-7, MW-8, and MW-10. Ecology will require that the Site boundaries be defined, which will likely require a combination of additional subsurface investigation and modeling to refine the understanding of the lateral and vertical distribution of the PCE in soil and/or groundwater.

Farallon proposes to install an AS/SVE system at the former City Hand Laundry Property as an interim remedial action to eliminate the source(s) of PCE in the subsurface and mitigate ongoing migration of PCE off of the Former City Hand Laundry Property. This interim remedial action will likely be incorporated into the final cleanup action plan for the Site. Farallon also proposes to further investigate the potential for application of chemical oxidants to treat select areas off-property. A field-scale pilot test will be proposed and would be conducted during the installation of the AS/SVE system. Farallon would also conduct another phase of investigation to refine the understanding of the lateral and vertical distribution of PCE off of the Former City Hand Laundry Property and better define the Site boundaries as required by Ecology under MTCA. The next phase of investigation should provide sufficient information on the potential distribution of PCE to meet the requirements under MTCA and proceed with the final cleanup action. A work plan describing the proposed work is forthcoming.

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this report to document the results of the additional subsurface investigation work, air sparge (AS) pilot testing, and preliminary screening of oxidant-based remedial technologies as a component of a future cleanup action. This work was conducted at the Former City Hand Laundry Property, located at 1002 4th Street in Bremerton, Washington and adjacent properties where hazardous substances have been identified in soil and/or groundwater (herein referred to as the Site) (Figure 1). The work was conducted in accordance with the substantive requirements of the Washington State Department of Ecology (Ecology) Model Toxics Control Act Cleanup Regulation (MTCA), as established in Chapter 173-340 of the Washington Administrative Code (WAC 173-340).

1.1 PURPOSE

Previous investigations have identified concentrations of tetrachloroethene (PCE) in soil and groundwater attributable to the former operation of a dry cleaning and laundry facility at the Former City Hand Laundry Property. The purposes of the additional subsurface investigation were to further assess the lateral and vertical distribution of PCE in groundwater at the Former City Hand Laundry Property, to confirm whether concentrations of PCE were present in soil and/or groundwater off Site; and also assess the potential presence of total petroleum hydrocarbons (TPH) in soil and groundwater. The purpose of the AS pilot testing was to evaluate whether AS will be a technically feasible remedial alternative for cleanup of groundwater at the Former City Hand Laundry Property. A preliminary screening of the potential for application of chemical oxidants and/or ozone was performed to evaluate whether a field-scale pilot test was warranted in the future, and whether oxidation technologies will be retained for further consideration as a potential feasible remediation alternative.

The scope of work was described in the Work Plan Additional Subsurface Investigation and Air Sparging Pilot Testing, prepared by Farallon and dated April 16, 2004 (Work Plan, Farallon 2004b). Ecology reviewed the Work Plan and provided comments in the Request for Review and Opinion Letter, Former City Hand Laundry, dated September 20, 2004 (Ecology 2004). The scope of work was modified per Ecology's comments and the changes were presented in the Response to Request for Review and Opinion Letter, prepared by Farallon and submitted to Ecology for review on March 14, 2005 (Farallon 2004c). Farallon received Ecology's verbal concurrence with the scope of work on March 29, 2005 (Ecology 2005).

1.2 ORGANIZATION

This report has been prepared to meet the documentation requirements for a groundwater investigation under the Model Toxics Control Act Cleanup Regulation (MTCA), specifically Section 840 of Chapter 173-340 of the Washington Administrative Code (WAC 173-340-840). The report has been organized into the following sections:

• Section 2 – Background. This section provides a description of the Site features, location, and environmental setting; a summary of historical Site use; and a summary of

previous environmental investigations conducted at the Site. The environmental setting includes a summary of the geology, hydrogeology, and historical land use pertaining to the Site. The summary of previous investigations includes work conducted by Farallon and others.

- Section 3 Field Program. This section provides a description of the subsurface investigation activities, including drilling and sampling protocols. Also included in this section is a description of the monitoring well development, sampling program, AS pilot test procedures, and bench-scale chemical pilot testing program.
- Section 4 –Results. This section presents the results of the subsurface investigation, including details of the drilling activities, soil sampling results, and groundwater monitoring results. Also included in this section are the results of the AS pilot test and bench-scale chemical oxidation pilot test.
- Section 5 Conclusions. This section presents Farallon's conclusions regarding the results of the subsurface investigation, the AS pilot test, and bench-scale chemical oxidation pilot test.
- Section 6 Data Gaps and Planned Work. This section presents a brief summary of the work to be performed, based on the results of the phase of work herein and the previous investigations.
- Section 7 References. This section presents a list of the documents cited in this report.
- Section 8 Limitations. This section presents Farallon's standard limitations associated with completion of the subsurface investigation, pilot testing, and preparation of this report.

2.0 BACKGROUND

The Site is located in Bremerton, Washington, in the vicinity of the intersection of Warren Avenue and 4th Street (Figure 1). The Former City Hand Laundry Property is located at the northwest corner of the intersection (Figure 2). The Former City Hand Laundry Property is currently an asphalt-paved parking lot for the Bremerton Christian Center, which is located immediately north of the parking lot. The Former City Hand Laundry Property includes two parking areas, eastern and western, which are divided by a planter strip located in the central portion of the property. An underground electric line that supplies power to the lighting system in the parking area is located beneath the planter strip divider.

The surrounding properties include the following: residences to the west; a concrete-paved alley, residences, and the Bremerton Christian Center to the north; Warren Avenue and the Land Title Building to the east; and 4th Street, a church, and a parking lot to the south. The general topography of the area slopes to the east, toward the Land Title Building and Puget Sound beyond. The topography of the Former City Hand Laundry Property slopes toward the north to an existing catch basin in the northeast quadrant of the eastern parking area.

A laundry and dry cleaning establishment occupied the Former City Hand Laundry Property from approximately 1940 to 1985. Background information provided to Farallon included a schematic site plan showing the approximate location of a Stoddard solvent dry cleaning machine, two locations for PCE-based dry cleaning machines, a dry cleaning machine sump and associated drain lines, a heating oil tank for a former boiler, and two former underground storage tanks (USTs) that were used for storage of gasoline, and later, diesel fuel, for City Hand Laundry vehicle use (Farallon 2004a). All former site improvements have been removed, but are depicted on Figure 2. The historic information was used to select the boring locations for investigations conducted by SECOR International Incorporated (SECOR) in May 1998, and by Farallon in September 1999 (SECOR 1998, Farallon 1999).

Aerial photographs of the Site vicinity were reviewed during the additional subsurface investigation to provide additional details on the Former City Hand Laundry Property layout and building features. Walker and Associates of Seattle, Washington provided aerial photographs dated April 6, 1977 and March 13, 1985. Copies of the aerial photographs are included in Appendix D.

The aerial photographs show that the former City Hand Laundry building was located on the eastern two-thirds of the property and extended from the north property line to the south property line. The western one-third of the property was used for parking. The arrangement of vehicles outside of the building in both aerial photographs suggests that the entrance to the building likely was located on the southwest corner of the building. Large delivery-type trucks are present on the 1985 aerial photograph at the northwest corner of the building, suggesting that there likely was a service entrance in this area.

Previous subsurface investigations at the Former City Hand Laundry Property have identified concentrations of PCE in soil and groundwater exceeding the MTCA Method A cleanup levels.

The laboratory analytical results of soil samples collected during investigations conducted between 1999 and 2000 detected concentrations of PCE in soil ranging from 0.02 milligrams per kilogram (mg/kg) to 7,200 mg/kg (Farallon 1999, Farallon 2004a). The highest concentrations of PCE in soil were identified near the former sump and drains for the laundry machines and the former location of the dry cleaning machine from 1961 to 1972 (Figure 2). The historical analytical results of soil samples are summarized on Table 1. A detailed summary of the results of previous subsurface investigations was provided in the Work Plan, including the suspected sources and distribution of PCE and other halogenated volatile organic compounds (HVOCs) in soil and groundwater with the former City Hand Laundry Property boundaries (Farallon 2004b).

Feasibility testing conducted by Farallon in 2003 included evaluation of soil vapor extraction (SVE) technology to remediate concentrations of PCE in soil at the Former City Hand Laundry Property exceeding the MTCA Method A cleanup levels. The results of the SVE pilot testing indicate that SVE would be an effective remedial technology (Farallon 2004a).

The above-referenced work was insufficient to assess the lateral and vertical distribution of the releases of PCE and petroleum hydrocarbons in soil or groundwater. This information is required to define the limits of the Site in accordance with the requirements under MTCA and to assess potential technically feasible remedial alternatives for the affected media. The confirmed presence of PCE in groundwater at concentrations exceeding the MTCA Method A groundwater cleanup level and possibility of off-property migration of the PCE-affected groundwater necessitated the need to assess potential technically feasible remedial alternatives for groundwater. A detailed summary of the specific data gaps was provided in the Work Plan (Farallon 2004b).

3.0 FIELD PROGRAM

The scope of work for the additional subsurface investigation program included the following elements:

- Installation of boring B-1 near the former location of the UST used for gasoline and diesel storage;
- Collection of soil samples from borings MW-8 and MW-9, located proximal to a former heating oil UST used to fuel a former boiler;
- Submittal of selected soil samples for laboratory analysis of PCE and associated degradation compounds; TPH as gasoline-range organics (GRO), diesel-range organics (DRO), oil-range organics (ORO), and benzene, toluene, ethylbenzene and xylenes (BTEX); and fraction organic carbon (foc);
- Installation of seven monitoring wells, MW-4 through MW-10 (Figure 3);
- Installation of two wells, AS pilot test well AS-1, and monitoring well MW-1D, for the performance of AS feasibility pilot testing;
- Completion of a laboratory bench-scale test of the soil oxidant demand (SOD) of the saturated soil matrix;
- Groundwater monitoring and sampling at monitoring wells MW-1 through MW-10, MW-1D and AS-1;
- Submittal of groundwater samples for laboratory analysis of HVOCs, GRO, DRO, ORO, and BTEX compounds;
- Performance of AS pilot testing at wells MW-1D and AS-1; and
- Preparation of this report.

The exploration locations referenced above are depicted on Figure 3. The additional subsurface investigation activities are described in detail in the following sections.

3.1 SOIL BORING

A private utility location survey was conducted by Applied Professional Services, Incorporated, of Issaquah, Washington, to locate underground utilities prior to drilling. After all boring locations had been cleared of underground utilities; nine borings were advanced by Cascade Drilling, Inc., of Woodinville, Washington using hollow-stem auger drilling methods. The drilling activities were conducted from May 7 through May 10, 2005. The approximate locations of the borings are shown on Figure 3.

At the request of Ecology (Ecology 2004), a shallow boring B-1 was also advanced to approximately 10 feet below ground surface (bgs) to assess the quality of soil adjacent to the former gasoline/diesel UST. Borings MW-4 and MW-5 were installed in the western parking lot at locations expected to be up-gradient (west) of the former potential source areas (Figure 3).

Borings MW-6 and MW-7 were installed on the east side of Warren Avenue to investigate the lateral extent of PCE in groundwater down-gradient of the Former City Hand Laundry Property (Figure 3).

Farallon collected soil samples from borings AS-1, MW-1D, MW-4, MW-5, MW-8, MW-9 and B-1 to screen for evidence of HVOC and/or petroleum contamination, and to generate a lithologic description of subsurface soil conditions. The boreholes drilled for the installation of monitoring well MW-1D and AS pilot test well AS-1 were not logged from the ground surface to depths of 50 feet and 60 feet bgs, respectively, because of their proximity to monitoring wells MW-1 and MW-3. No soil sampling was conducted at borings MW-6 and MW-7, located in the eastern traffic lane of Warren Avenue, or at boring MW-10, located in the southern traffic lane of 4th Street, because of the presence of overhead power lines that restricted use of the drilling sampling equipment and time limitations for working within the street as established by the Right-of-Way Permit issued by the City of Bremerton. Due to the distance of these borings from the potential sources of PCE, the absence of soil analytical data should not represent a potential future data gap. Groundwater analytical results from these monitoring wells and from those at the Former City Hand Laundry Property will provide sufficient information to estimate the distribution of PCE in soil.

Soil samples were collected at 5-foot intervals from the ground surface to the total depth of the boring except for borings MW-1D and AS-1 where the shallow soil lithology has previously been documented at nearby borings. The soil samples were collected in accordance with the American Society for Testing and Materials and U.S. Environmental Protection Agency (EPA) standard protocols. A Farallon scientist documented the soil lithology in accordance with the Unified Soil Classification System. The soil samples were screened in the field for the presence of volatile organic vapors using a photoionization detector (PID) and were examined for obvious signs of contamination, including visible discoloration, sheens, and odors. The detailed lithologic descriptions and PID readings for each sample interval are presented in the boring logs in Appendix A.

The soil samples collected for potential laboratory analysis were transferred directly from the split-spoon sampling device into laboratory-prepared sample containers following EPA Method 5035 sample collection protocols. All non-dedicated sampling equipment and supplies were decontaminated between uses. The labeled sample containers were immediately sealed with Teflon-lined screw caps and placed on ice in a cooler pending delivery to OnSite Environmental, Inc., of Redmond, Washington, for laboratory analysis. Chain-of-custody procedures were followed during transport of the samples from the Site to the laboratory.

Based on field observations and PID readings, Farallon selected 15 soil samples for laboratory analysis of HVOCs by EPA Method 8260B. Farallon also selected six soil samples from borings B-1, MW-8 and MW-9 for laboratory analysis of GRO, DRO, and BTEX by Northwest Method NWTPH-Gx, NWTPH-Dx and EPA Method 8021B, respectively. Three samples from the upper portion of the water-bearing zone were analyzed for foc by EPA Method 9060 Modified.

Boring B-1 was abandoned by filling the boring with hydrated bentonite pellets and repairing the surface with an asphalt patch. All waste soil generated was placed in appropriately labeled, steel

drums and stored at the Site pending profiling of the waste soil. Additional detail on the waste handling and disposal is presented in Section 4.4.

3.2 MONITORING WELL INSTALLATION

Farallon installed seven groundwater monitoring wells, MW-4 to MW-10, to evaluate groundwater conditions in the upper portion of the water-bearing zone; to assess the distribution of PCE; and to measure groundwater levels and estimate the groundwater gradient and flow direction. Monitoring well MW-1D and AS pilot test well AS-1 were installed to assess the vertical distribution of PCE and facilitate the AS pilot test. The well locations are depicted on Figure 3. Additional details on selection of the well locations are as follows:

- Monitoring wells MW-4 and MW-5 are located on the western portion of the Former City Hand Laundry Property, in an area presumably up-gradient of the suspected source areas based on previous investigation results. The monitoring wells were installed to assess the up-gradient limits of the distribution of PCE in soil and groundwater;
- Monitoring wells MW-6 and MW-7 are located on the east side of Warren Avenue in the presumed down-gradient groundwater flow direction based on the previous investigation results;
- Monitoring well MW-8 is installed to the north of the Former City Hand Laundry Property to assist in the characterization of PCE in groundwater in an assumed crossgradient location;
- Monitoring well MW-9 is located in the northeast portion of the Former City Hand Laundry Property, down-gradient of the previously confirmed release of PCE identified near monitoring well MW-1, associated with the former sump and drains for the laundry machines. The purpose of monitoring well MW-9 is to further characterize the lateral distribution of PCE in groundwater, serve as a potential SVE well, and as a future point of compliance well;
- Monitoring well MW-10 is installed to the south of the Former City Hand Laundry Property to assist in the characterization of PCE in groundwater in an assumed cross-gradient location; and
- Monitoring well MW-1D and AS pilot test well AS-1 are installed near existing monitoring wells MW-1 and MW-3, respectively.

Monitoring wells MW-4 through MW-10 were installed to total depths of 55 to 60 feet bgs. Wells AS-1 and MW-1D were installed to a depth of approximately 80 feet bgs. The wells were constructed in accordance with Chapter 173-160 of the Washington Administrative Code (WAC 173-160) guidelines. The wells were constructed with 2-inch diameter polyvinyl chloride (PVC) casing with traffic-rated, 8-inch steel flush-mounted monuments. Monitoring wells MW-4 through MW-10 were constructed with 10-foot well screen intervals, with approximately 7 feet of submerged screen based on observed groundwater levels at the time of drilling. Wells AS-1 and MW-10 were constructed with well screen intervals from approximately 78 to 80 feet bgs to

facilitate use as AS pilot test wells. The screened intervals were constructed with 0.020-inch slotted PVC. Detailed logs for the monitoring well construction are included in Appendix A.

The groundwater monitoring wells were developed using a surge block and submersible pump to remove fine materials until groundwater turbidity was minimized. The top of casing elevations for all new and existing groundwater monitoring wells were surveyed with respect to an arbitrary Site datum of 100.00 feet using differential leveling techniques. The surveyed elevations are summarized on Table 2. The well locations were measured relative to existing Site features and other monitoring wells at the Site using taping and measuring techniques.

The decontamination and well development water generated during drilling and well development were placed in appropriately labeled steel drums and stored at the Site pending profiling of the wastewater. Additional detail on the waste handling and disposal is presented in Section 4.4.

3.3 GROUNDWATER MONITORING AND SAMPLING

The groundwater levels in the monitoring wells were measured on June 9, 2005 to assess the approximate direction of groundwater flow and the hydraulic gradient. Prior to measurement, the water level was allowed to equilibrate to atmospheric conditions for a minimum period of 30 minutes after the well was opened. The groundwater level in each monitoring well was measured from the surveyed reference point on the top of the well casing using an electronic water level measurement instrument. The groundwater level measurements are provided on Table 2.

Each monitoring well was purged according to EPA low-flow sampling protocols using dedicated polyethylene tubing and a submersible bladder pump. Water quality parameters were measured with a YSI 650 XL multi-parameter water quality meter equipped with a flow-through cell to assess basic groundwater geochemistry, and to determine when groundwater that was representative of the surrounding formation had entered the monitoring well, as indicated by stabilization of the water quality parameters. The water quality parameters measured included pH, temperature, specific conductance, oxidation-reduction potential (ORP), turbidity, and dissolved oxygen content.

Following purging, the groundwater samples were collected by decanting the groundwater from the dedicated tubing directly into laboratory-prepared containers. The groundwater samples were then transported under chain-of-custody protocols to OnSite Environmental, Inc., for analysis of HVOCs using EPA Method 8260B, GRO by Northwest Method NWTPH-Gx and BTEX by EPA Method 8021B. The groundwater samples collected from monitoring wells MW-1, MW-8, and MW-9 were also analyzed for DRO and ORO by Northwest Method NWTPH-Dx. The groundwater samples collected from monitoring well AS-1, screened within the deeper portion of the water-bearing zone, were also submitted for laboratory analysis of the major cations calcium, iron, and manganese to evaluate the potential for AS to result in fouling of the well screen.

AIR SPARGE PILOT TEST METHODS 3.4

Farallon conducted two AS pilot tests at the Site to assess the feasibility of applying AS technology to remediate groundwater in the source area. The AS pilot tests were conducted at well AS-1 and monitoring well MW-1D.

Air was injected into the AS pilot test wells using a Gast Model 2067, 1.5-horsepower rotaryvane compressor. A Dwyer rotometer was connected to selected wellheads to monitor the flow rate throughout the AS pilot test. The observation wells were fitted with modified well caps equipped with a monitoring port to allow measurement of air pressure within each well. Air pressure and groundwater level measurements were taken immediately prior to beginning each AS pilot test.

The observation wells were monitored periodically for changes in air pressure using pressure gauges with ranges of 0 to 0.25 inches of water (IOW), 0 to 0.50 IOW, or 0 to 1.0 IOW. Groundwater levels were measured after the air pressure readings in each observation well reached the maximum observed air pressure during each constant flow rate test. The AS pilot testing was conducted for a duration of one to three hours at each flow rate until equilibrium of the pressure responses in the observation wells was achieved.

3.5 CHEMICAL OXIDANT BENCH-SCALE TEST METHOD

Farallon submitted soil samples collected from depths ranging from 60 to 70.5 feet bgs in the saturated zone at boring AS-1 for analysis of the SOD using potassium permanganate as a representative oxidant. The SOD is utilized as a screening tool to assess whether oxidation technologies should be retained for further consideration and whether a field-scale pilot test should be considered. If the saturated soil matrix has a high SOD, oxidant-based technologies will not be cost effective or efficient at removing the contaminants of concern. The oxidants do not preferentially treat the contaminants of concern; therefore, the natural SOD acts as competition, expending the oxidant applied, thus reducing the efficiency of the cleanup action and increasing the costs.

The soil samples submitted were submitted to OnSite Environmental, Inc. of Redmond, Washington for analysis of the SOD. The laboratory composited the soil samples and conducted the assessment of the SOD using potassium permanganate. The first phase of the test involved a preliminary screening of the SOD to estimate the dose of permanganate required for assessment of the SOD. The preliminary testing included combining 20 grams of the composite soil sample with a 1-gram per kilogram (g/kg) and a 5-gram per kilogram dose of potassium permanganate for a period of 24 hours to assess whether the oxidant was consumed. The results were then used to develop a range of dosages of permanganate to refine the assessment of the SOD.

The potassium permanganate dosage was varied from 0.05 to 1.0 g/kg based on the results of the preliminary SOD test. The permanganate was placed in solution and introduced into vials containing 20 grams of the composite soil sample. The vials were mixed by hand and then tested for potassium permanganate following 4 hours, 1 day, 4 days, and 7 days to assess the

consumption rate of the oxidant. The bench-scale test procedures and test results are included in Appendix E.

4.0 RESULTS

The results of the subsurface investigation are presented in the sections that follow. The MTCA Method A soil and groundwater cleanup levels, or where no MTCA Method A cleanup level exists, the MTCA Method B cleanup level, was used as the preliminary screening levels for all soil and groundwater analytical data. The final cleanup levels that are appropriate to the Site will be evaluated and selected prior to implementing a cleanup action.

4.1 GEOLOGY AND HYDROGEOLOGY

The boreholes drilled during the additional subsurface investigation encountered medium dense to dense sand and silty sand, with lenses of silt from beneath the asphalt and subgrade materials to an approximate depth of 30 feet bgs. Beneath the sand and silty sand was a gravelly sand to sandy gravel unit in which groundwater was encountered. A discontinuous layer of sand and gravel with silt was encountered at approximately 45 to 55 feet bgs. Cross-sections A–A' and C-C' (Figure 4) illustrate the soil lithology underlying the Site from west to east and Cross-section B–B' (Figure 4) from north to south. Soil observed during drilling of the borings indicated that there are minor lithologic changes within the soil matrix explored. However, there were no contiguous layers of soil that may represent potential confining layers that would inhibit the downward movement of contaminants to the maximum depth of exploration of 80 feet bgs. Boring logs for the borings completed during this investigation are presented in Appendix A.

The groundwater level measurements and calculated groundwater elevations are summarized in Table 2. On June 9, 2005, the groundwater elevations in the upper portion of the water-bearing zone ranged from 41.91 feet at monitoring well MW-10 to 47.33 feet at monitoring well MW-1 (Table 2). The groundwater elevations were calculated with respect to the arbitrary datum of 100 feet based on a surveyed point on the northern portion of each monitoring well casing. Based on the groundwater elevation measurements, the approximate direction of shallow groundwater flow beneath the Site was to the southeast (Figure 5). The average hydraulic gradient across the Site was 0.04 foot/foot.

Groundwater elevations in the deeper wells were 45.58 feet at monitoring well MW-1D, and 43.53 feet at air sparge pilot test well AS-1. Groundwater elevations in adjacent shallow wells were 47.33 feet at monitoring well MW-1, and 47.29 feet at monitoring well MW-3 (Figure 3). The relative differences in groundwater elevation between the well pairs were -1.75 feet for MW-1D/MW-1, and -3.76 feet for AS-1/MW-3. The negative difference in groundwater elevations, or "head" difference between the wells screened in the deeper portion of the water-bearing zone versus the shallow portion indicates that the vertical gradient is downward.

4.2 SOIL RESULTS

A summary of the analytical results for soil samples collected during the previous investigations is provided in Table 1. The analytical results for the soil samples collected during the additional subsurface investigation are summarized on Table 3 and presented on Figure 6. The laboratory

analytical results for the TPH and foc analyses are summarized in Tables 4 and 5, respectively. The laboratory analytical reports for this subsurface investigation are presented in Appendix B. The laboratory analytical results are discussed in detail in the following sections.

4.2.1 Halogenated Volatile Organic Compounds

The laboratory analytical results of soil samples collected during the additional subsurface investigation detected concentrations of PCE in all of the soil samples selected for laboratory analysis at concentrations ranging from 0.0031 mg/kg to 4 mg/kg (Table 3). Eleven of the fifteen soil samples submitted for laboratory analysis contained concentrations of PCE exceeding the MTCA Method A cleanup level of 0.05 mg/kg. The soil samples with concentrations of PCE exceeding the MTCA Method A cleanup level were collected at depths ranging from 5 to 45.5 feet bgs in borings B-1, MW-4, MW-5, MW-8 and MW-9.

The PCE degradation compounds, trichloroethene (TCE) and cis-1,2-dichloroethene (cis-1,2-DCE) were detected in soil samples collected at borings B-1, MW-4, MW-8 and MW-9 at depths ranging from 7.5 to 45.5 feet bgs. Concentrations of TCE and cis-1,2-DCE were below their respective MTCA cleanup levels for soil. Concentrations of the PCE degradation compounds trans-1,2-DCE, 1,1-DCE, and vinyl chloride were not detected above the laboratory practical quantitation limits (PQLs).

4.2.2 Total Petroleum Hydrocarbons

Concentrations of GRO, DRO, ORO or BTEX were not detected above the laboratory PQLs in the soil samples submitted from borings MW-8 and MW-9 (Table 4). A low concentration of GRO, at 8.9 mg/kg was detected in soil sample B1-5-6.5. However, the laboratory analytical report noted that the reported concentration of GRO was attributed to a single peak, which is likely PCE, and not the presence of GRO in the sample (Appendix B).

4.2.3 Fraction Organic Carbon

The soil samples collected from soil borings MW-4, MW-5 and MW-8 at depths of 50 to 55 feet bgs were submitted for laboratory analysis of foc. The laboratory analytical results did not detect foc above the laboratory PQL of 0.00110 gram per gram (Appendix B).

4.3 GROUNDWATER RESULTS

The field measurement and laboratory analytical results for the groundwater samples collected during the additional subsurface investigation are summarized on Tables 5 through 7 and presented on Figure 7. Summaries of historical groundwater analytical results for HVOCs and TPH are provided on Tables 6 and 7, respectively. The laboratory analytical reports for the subsurface investigation are presented in Appendix B. The field measurement and laboratory analytical results are discussed in the following sections.

4.3.1 Water Quality Parameters

The general groundwater quality parameters measured during the June 2005 groundwater monitoring and sampling event are summarized on Table 5 and follow:

- The groundwater temperature ranged from 13.7 degrees Celsius to 15.2 degrees Celsius;
- The measured concentrations of dissolved oxygen ranged from 6.7 to 9.3 milligrams per liter in the monitoring wells screened within the upper portion of the water-bearing zone;
- Dissolved oxygen concentrations in groundwater at wells screened within the deeper portion of the water-bearing zone, monitoring well MW-1D and well AS-1, were measured at 0.9 and 2.6 milligrams per liter, respectively;
- The measured ORP values ranged from 78.3 to 133.3 millivolts in groundwater at wells screened within the upper portion of the water-bearing zone;
- ORP values were 90.8 and 95.2 millivolts in groundwater at monitoring well MW-1D and well AS-1, which are screened within the deeper portion of the water-bearing zone; and
- Measured pH values ranged from 5.5 to 7.3 with no consistent differences between groundwater sampled from the upper or lower portions of the water-bearing zone.

The groundwater samples collected from the wells screened within the deeper portion of the water-bearing zone, monitoring well MW-1D and well AS-1, were submitted for laboratory analysis of total calcium, iron, and manganese in addition to the HVOC analysis. The laboratory analytical results for calcium were 18,000 and 20,000 micrograms per liter (μ g/l) in wells MW-1D and AS-1, respectively. Iron was detected at concentrations of 11,000 μ g/l and 9,200 μ g/l and manganese was detected at concentrations of 590 μ g/l and 940 μ g/l in wells MW-1D and AS-1, respectively (Table 5).

4.3.2 Halogenated Volatile Organic Compounds

Concentrations of PCE in groundwater samples collected from all monitoring wells exceeded the MTCA Method A cleanup level of 5.0 μ g/l. The detected concentrations of PCE ranged from 26 μ g/l in the groundwater sample collected monitoring well MW-1D from within the deeper portion of the water-bearing zone, to 2,100 μ g/l in the groundwater samples collected from monitoring wells MW-2 and MW-3 (Table 6, Figure 7).

A concentration of TCE of 5.9 μ g/l was detected in the groundwater sample collected from monitoring well MW-8, which is slightly above the MTCA Method A cleanup level of 5 μ g/l. Concentrations of TCE and cis-1,2-DCE were detected above the laboratory PQL but below their respective MTCA groundwater cleanup levels in the groundwater sample collected from monitoring well MW-1D. Concentrations of cis-1,2-DCE above the laboratory PQL but below the MTCA Method B cleanup level of 80 μ g/l (Table 6) were also detected in the groundwater samples collected from monitoring wells MW-8 and MW-9.

Chloroform was detected in groundwater samples collected from the deeper portion of the water-bearing zone at monitoring well MW-1D and well AS-1 at concentrations above the laboratory PQL but below the MTCA Method B cleanup level of 7.17 μ g/l. Chloroform is a common laboratory solvent and is also frequently identified in treated municipal water supplies; it is not likely related to releases at the Site. The laboratory analytical results did not detect concentrations of any other HVOCs exceeding the laboratory PQLs.

4.3.3 Petroleum Hydrocarbons

Concentrations of GRO, DRO, ORO, and/or BTEX above the laboratory PQLs were not detected in the groundwater samples collected from monitoring wells MW-1 through MW-10. The laboratory analytical results are summarized on Table 7. The laboratory analytical reports are attached in Appendix B.

4.4 WASTE DISPOSAL

A total of fifty-one 55-gallon drums of soil cuttings, purge water and decontamination water were generated during the additional subsurface investigation activities. Farallon prepared a letter requesting that a Contained-In Determination be granted for soils generated by the boring activities during the additional subsurface investigation. The letter requested that the soils containing the F-listed waste, PCE, be designated as non-hazardous waste under the principles of the Resource Conservation and Recover Act "Contained-In" Policy based on the laboratory analytical results of soil samples collected during the additional subsurface investigation, which detected concentrations of PCE up to 4 mg/kg. Ecology determined that the soil generated from soil borings AS-1, MW-1D, MW-7, MW-8 and MW-9 must be handled as dangerous (hazardous) waste. However, Ecology concurred that soil generated from soil borings B-1, MW-4, MW-5, MW-6, and MW-10 did not contain concentrations of PCE that warranted management of the soil as dangerous waste and granted permission to dispose of the soil as nonhazardous (solid) waste. Based on the requirements of the Contained-In Determination, the soil was transported to Columbia Ridge Landfill's Chemical Waste Management in Arlington, Oregon for direct landfilling and treatment.

A total of 6.8 tons of soil was transported from the Site and disposed of as non-hazardous waste at the Columbia Ridge Landfill in Arlington, Oregon in accordance with the conditions of the Contained-In Determination. A total of 10 tons of soil and 495 gallons of wastewater were transported from the Site and disposed of as hazardous waste at the Columbia Ridge Landfill's Chemical Waste Management in Arlington, Oregon for direct treatment/stabilization, and then landfilling in accordance with Ecology Dangerous Waste Regulations, WAC 173-303.

4.5 AIR SPARGE PILOT TEST RESULTS

Air sparging is a technology used in combination with SVE where groundwater has been affected by volatile organic compounds such as those identified at the Site. SVE and AS are proven technologies that are frequently selected as remedial alternatives and approved by Ecology at sites where conditions are conducive to their application. The feasibility of SVE was assessed during a previous investigation at the Site, with positive results. The results of the AS

pilot testing and conducted as wells AS-1 and MW-1D are described below. Summary tables showing the raw data collected during the AS pilot test and figures depicting the results of the AS pilot test are included in Appendix C.

4.5.1 Pilot Testing at Well AS-1

The pilot test at well AS-1 was conducted on July 13, 2005. The observation wells selected for the pilot test included monitoring wells MW-2, MW-3, MW-4, MW-5, MW-9 and MW-10 (Figure 3). The observation wells were selected based on their relative distances from well AS-1. The data collected during the pilot test at well AS-1 is summarized on Table C-1 of Appendix C. Figure C-1 depicts the observed pressure changes in the observation wells during the pilot test.

The AS pilot test consisted of injecting air at constant flow rates of 2.5 standard cubic feet per minute (scfm), 5 scfm, and 6.2 scfm for 1 to 2 hours at each flow rate to observe pressure changes in the observation wells (Table C-1). A positive response is indicated by a rise in pressure in the observation wells that is equal to or greater than a 0.1-IOW change from the initial baseline wellhead pressure reading. A rise in groundwater elevation was also used as a means of assessing whether there was a positive response.

The pressure measurements taken during the AS pilot test indicate a positive response in all of the observation wells (Figure C-1) at flow rates of 5 and 6.2 scfm. A positive response was observed at all flow rates in monitoring well MW-3, located 14 feet from well AS-1. Positive responses were also observed in monitoring wells MW-2, MW-5, MW-9, MW-4, and MW-10 at flow rates of 5 scfm and 6.2 scfm. The largest change in pressure in the monitoring wells used for observation occurred when the flow rate was changed from 2.5 scfm to 5 scfm. There was little to no difference in the observed response between flow rates of 5 and 6.2 scfm in most of the observation wells. Additionally, there was little to no difference in observed response in monitoring wells AS-1. The greatest response was observed in monitoring wells MW-5 and MW-10, located at distances of 58 and 78 feet, respectively, from well AS-1. The greater response in monitoring wells MW-5 and MW-10 likely is attributable to their construction, which consists of well screens extending 5 feet deeper than the other monitoring wells used for observation.

The changes in groundwater levels are depicted on Figure C-2. The greatest change in groundwater level during the pilot test at well AS-1 was at observation wells MW-5 and MW-10 with a rise of 0.07 feet and 0.09 feet, respectively. Groundwater level changes were also observed in observation wells MW-2, MW-3 and MW-4. The greatest changes in groundwater level were observed at a flow rate of 6.2 scfm, however, the groundwater level changes observed in monitoring wells MW-2, MW-3 and MW-4 were the same at all three pilot test flow rates.

4.5.2 Pilot Testing at MW-1D

The pilot test at monitoring well MW-1D was conducted on July 14, 2005. The observation wells selected for the pilot test included monitoring wells MW-1, MW-3, MW-4, MW-5, MW-8, MW-9 and MW-10 (Figure 3). The observation wells were selected based on their relative distances from well MW-1D. The data collected during the pilot test is summarized on Table C-

2 of Appendix C. Figure C-3 depicts the observed pressure changes in the observations wells during the pilot test.

The AS pilot test at monitoring well MW-1D consisted of injecting air at constant flow rates of 2.5 scfm, 5 scfm, and 6 scfm. Air pressure readings indicated a positive response in all observation wells at flow rates of 2.5, 5, and 6 scfm (Table C-2). The largest change in pressure in the observation wells occurred when the flow rate was changed from 2.5 to 5 scfm. There was little to no response difference with the flow increase from 5 to 6 scfm or with distance of the observation well from the AS pilot test well.

The changes in groundwater levels with respect to the groundwater levels measured before starting the pilot test at monitoring well MW-1D are depicted on Figure C-4 and in Table C-2. The greatest changes in groundwater levels during the pilot test were at observation wells MW-5 and MW-10 at a flow rate of 6 scfm. Observation wells MW-5 and MW-10 are located at distances of approximately 86 and 128 feet from AS pilot test well MW-1D, respectively. Smaller changes in groundwater levels were documented in observation wells located closer to the AS pilot test well.

4.5.3 Air Sparge Test Results Summary

The results of the AS pilot testing confirmed that AS is a technically feasible remedial alternative for cleanup of groundwater at the Former City Hand Laundry Property and the Site. Positive responses were observed in observation wells located up to 78 and 128 feet from the AS pilot test wells AS-1 and MW-ID, respectively. A conservative radius of influence of 45 feet from each AS well, which is based on a 60 percent reduction in the radius of influence observed during the AS pilot test at well AS-1, is appropriate for design of an AS system. This design radius is anticipated to be adequate to account for the variability in the subsurface lithology and response to the air injection. Based on the results of the AS pilot tests, a flow rate of 5 to 6 scfm to each well will be necessary to overcome the resistance of the soil formation in the saturated zone to air flow.

4.6 CHEMICAL OXIDATION BENCH-SCALE TEST

The presence of PCE in groundwater beyond the boundaries of the Former City Hand Laundry Property and the absence of detectable foc indicated that oxidant-based technologies could potentially be applicable for cleanup of HVOCs in the water-bearing zone. Oxidation technologies include both chemical oxidants such as permanganate (potassium or sodium), persulfate, and hydrogen peroxide (Fenton's Reagent), and ozone. Chemical oxidants may be injected into the water-bearing zone via monitoring wells or borings in areas where in situ remedial alternatives at the Former City Hand Laundry Property cannot effectively treat. This may include areas beneath the city streets and possibly adjacent properties where concentrations of HVOCs exceed the cleanup levels. Ozone may be introduced into an AS system to increase the rate of cleanup if the AS alone is not sufficiently rapid. The bench-scale test results are included in Appendix E and follow.

4.6.1 Bench-Scale Test Results

The results of the bench-scale testing conducted for a timeframe of 7 days indicated that the 7-day SOD value was 0.1-gram potassium permanganate per kilogram soil. The test results indicated that after 7 days, 100 percent of the potassium permanganate in the 0.5-g/kg dosage sample was consumed. Similarly, 97 percent of the potassium permanganate in the 0.1 g/kg dosage sample was consumed and 34 percent of the 1.0-g/kg dosage sample was consumed.

The bench-scale test was discontinued after 7 days because sufficient data were available to assess the SOD and confirm that the SOD is low. The results of the testing indicate that oxidant-based technologies should be retained for further evaluation as possible components of the cleanup action.

5.0 CONCLUSIONS

Conclusions of the additional subsurface investigation and feasibility testing are presented in the sections that follow. The conclusions include identification of the constituents of concern that will be retained throughout the cleanup action, the current understanding of soil and groundwater conditions, soil and groundwater quality, fate and transport characteristics, definition of the Site, and the potential application of AS and oxidant-based technologies for cleanup at the Site.

5.1 CONSTITUENTS OF CONCERN

Based on the results of the additional subsurface investigation and previous investigations, the only constituent of potential concern that was detected in soil exceeding the preliminary screening level is PCE. PCE will be retained as a constituent of concern for soil during the remedial action at the Site. PCE and TCE were detected in groundwater exceeding the preliminary screening levels and will be retained as constituents of concern for groundwater during the remedial action at the Site. Petroleum compounds are not present in soil or groundwater at concentrations that warrant further investigation or retention as constituents of concern.

5.2 HYDROGEOLOGY

The soil conditions encountered during the additional subsurface investigation are similar to those described during previous subsurface investigations and indicate that the subsurface lithology is composed of two general units. A heterogeneous mixture of sand and silty sand with traces of gravel extends from the ground surface to a total depth of approximately 25 to 30 feet bgs (Figure 4). The soil below 25 to 30 feet bgs consists of gravelly sand and sandy gravel with trace to minor amounts of silt to the total depth explored of 80 feet.

The laboratory analytical results of soil samples collected from depths of 50 to 55.5 feet bgs during the additional subsurface investigation indicate that the foc in the saturated soil were below 0.0011 grams per gram. The foc is negligible, indicating that the sorptive capacity of the soil in the upper portion of the water-bearing zone is low. A low sorptive capacity means that retardation of certain contaminants such as PCE and TCE in the saturated zone will be minimal and contaminants will move only slightly slower than the groundwater velocity. The sorptive capability of the unsaturated soil matrix has not been assessed; however, the decreasing concentrations of PCE from the ground surface to the water-bearing zone, and concentrations of PCE in groundwater immediately beneath the Former City Hand Laundry Property indicate that the overlying soil may have a greater sorptive capacity than the saturated zone.

Groundwater was measured at depths ranging from 45 feet to 54 feet below the top of the monitoring well casings during the June 2005 groundwater monitoring and sampling event. The calculated groundwater flow direction for the June 2005 monitoring and sampling event indicates that the groundwater flows is generally towards the southeast. The groundwater flow direction is different than what was expected based on previous investigation data, which had consistently

indicated an easterly flow direction. The addition of the new monitoring wells has refined the understanding of groundwater flow and potential distribution of PCE in groundwater.

The water-bearing zone is continuous from the first encountered groundwater to the total depth of 80 feet bgs explored at the Site. There are no indications in the observed subsurface lithology of any continuous layers of lower-permeability soil that could act as an aquiclude or aquitard to the transport of groundwater. The thickness of the water-bearing zone is currently not known.

The groundwater elevation measurements for monitoring well pairs screened in the upper and lower portions of the water-bearing zone indicate that there is a downward vertical groundwater gradient from the upper portion of the water-bearing zone to the lower portion of the water-bearing zone. This means that PCE in the upper portion of the water-bearing zone could be transported downward via the vertical gradient but should be diluted. The lower concentrations of PCE in the deeper portion of the water-bearing zone are consistent with a downward vertical gradient.

5.3 SOIL

The laboratory analytical results of soil samples collected during the additional subsurface investigation detected concentrations of PCE exceeding the MTCA Method A cleanup level of 0.05 mg/kg from depths of 5 to 45.5 feet bgs. The concentrations generally decreased approaching the saturated zone, which is consistent with the results of previous investigations.

The highest concentrations of PCE detected in soil during the additional subsurface investigation were identified in borings MW-8 (4 mg/kg) and MW-9 (3.8 mg/kg) at depths of 25 feet and 10 feet bgs, respectively. The soil analytical results from this and the previous Site investigations indicate that the PCE is widely distributed in the upper 20 feet of the shallow soil matrix underlying the Former City Hand Laundry Property and has reached groundwater.

The laboratory analytical results of soil samples collected from boring MW-8 detected concentrations of PCE exceeding the MTCA Method A cleanup level in samples collected at 10, 25, and 45 feet bgs. The highest concentration of PCE was detected in the soil sample collected from 25 feet bgs, indicating lateral transport of PCE in the vadose zone 35 to 50 feet from any known potential sources of PCE on the Former City Hand Laundry Property (Figure 3).

Farallon considered several potential scenarios to account for a release of PCE to the subsurface close to boring MW-8, including disposal to the ground surface, or releases from the sanitary sewer or storm drain system. Aerial photographs of the property reviewed by Farallon did not show any doors on the north side of the former building from which contaminant-laden wastewater or contaminants themselves could have been dumped into the alley and flowed into the ground (Appendix D). The suspected location of the former side sewer connection for the building is on the southern portion of the property. Further the stormwater system that crosses to the north into the alley was not present prior to conversion of the property to a parking lot. The absence of any known underground piping that extends to the north limits the possibility of preferential transport of PCE via a utility corridor. The lateral distribution of contaminated soil

to the north was not defined by this investigation nor has the origin of the contamination in this area been identified.

The detected concentrations of PCE at borings MW-4 and MW-5, located on the western portion of the parking lot exceeded the MTCA Method A cleanup levels. The depth of contamination detected at boring MW-4 extended to the saturated zone with concentrations ranging from 0.16 mg/kg at 10 to 11.5 feet bgs to 0.11 mg/kg at 45 to 45.5 feet bgs. The extent of PCE-contaminated soil to the west was not defined by data from borings MW-4 and MW-5. The source of the relatively low concentrations of PCE is interpreted to be vapor phase transport of PCE within the vadose zone from sources on the eastern portion of the property. Farallon expects that similar low-level concentrations of PCE may be present in the vadose zone throughout the area encompassed by the PCE-affected groundwater, including borings MW-6, MW-7, and MW-10. The concentrations of PCE in the upper portion of the vadose zone should diminish significantly with distance from the property; however, low-level concentrations of PCE may be present in vadose zone soil immediately above the capillary fringe zone.

The laboratory analytical results of soil samples collected during the additional subsurface investigation in the vicinity of the former petroleum source areas did not detect concentrations of petroleum compounds above the laboratory PQLs. Based on these results, petroleum hydrocarbons will not be considered constituents of concern for soil at the Site.

5.4 GROUNDWATER

The results of groundwater monitoring and sampling in June 2005 indicate that the concentrations of PCE exceeding the MTCA Method A cleanup level were present at all of the monitoring well locations. Therefore, neither the lateral nor vertical distribution of PCE has been defined in groundwater.

The laboratory analytical results detected PCE in monitoring well MW-1D and AS pilot test well AS-1, which are screened within the deeper portion of the water bearing zone at 80 feet bgs, at concentrations of 50 μ g/l and 26 μ g/l, respectively, which are above the MTCA Method A cleanup level of 5 μ g/l. The one to two order of magnitude lower concentrations of PCE in groundwater at deep wells MW-1D and AS-1 than detected in adjacent monitoring wells screened within the upper portion of the water-bearing zone indicate that PCE as dense nonaqueous-phase liquid likely is not present in the water-bearing zone. The concentrations of PCE detected in monitoring wells screened in the lower portion of the water-bearing zone are likely attributable to contaminated groundwater transported from the upper portion of the water-bearing zone due to the downward vertical gradient at the Site.

The presence of PCE-contaminated groundwater at monitoring wells MW-4 and MW-5 on the western portion of the Former City Hand Laundry Property, up-gradient of the known source areas and at monitoring wells MW-8 and MW-10, cross-gradient of the known source area, indicates that the lateral dispersion of PCE from the source areas was more widespread than anticipated. The distribution of contamination may be further refined in the future but is not required to proceed with assessment of potential technically feasible remedial alternatives.

5 - 3

The lateral distribution to the north has not been confirmed by this investigation. Further investigation may be limited due to access associated with the north adjacent property use as a church and utilities present, especially overhead power present along the west side of Warren Avenue and in the alley. Groundwater modeling may be necessary to further assess the distribution of PCE in groundwater to the north if empirical data cannot be collected via installation of additional monitoring well(s).

The laboratory analytical results for the June 2005 groundwater monitoring and sampling event did not detect concentrations of PCE degradation compounds that would typically indicate chemical or biological degradation are significant processes. However, the low concentrations of TCE and/or cis-1,2-DCE detected in the groundwater samples collected from monitoring wells MW-1D, MW-8 and MW-9 indicate evidence of some level of chemical or biological degradation. The preliminary assessment of the groundwater conditions suggests that the environment may not be sufficiently reducing to be amenable for bacteria capable of degrading HVOCs. Natural attenuation does not appear to be a potential feasible remedial alternative for the Site without altering the subsurface environment, and possibly injecting HVOC-degrading bacteria.

The laboratory analytical results of groundwater samples collected during the June 2005 groundwater monitoring and sampling event did not detect concentrations of petroleum hydrocarbons above the laboratory PQLs. Based on these results, petroleum hydrocarbons will not be considered a constituent of concern for groundwater at the Site.

5.5 **DEFINITION OF THE SITE**

The results of this and the previous investigations have confirmed that concentrations of PCE exceeding the MTCA Method A cleanup levels for soil and groundwater extend beyond the property boundary of the Former City Hand Laundry Property. Under MTCA, a Site is defined as any area that a hazardous substance has come to be located; therefore the boundaries of the Site have been confirmed to extend beyond the Former City Hand Laundry Property. The results of the investigation indicate that the Site boundaries have not been defined by the existing monitoring well network and extend beyond the limits of MW-4, MW-5, MW-6, MW-7, MW-8, and MW-10 (Figure 7).

Ecology will require that the Site boundaries be defined which will require a combination of additional subsurface investigation and modeling to refine the understanding of the lateral and vertical distribution of the PCE in soil and/or groundwater. The presence of private property, utilities, and structures in the area surrounding the Former City Hand Laundry Property will likely restrict the capability to perform subsurface investigation in all areas required to define the Site with empirical soil and/or groundwater data. Therefore, additional data concerning the geologic and hydrogeologic properties of the Site will be required to utilize modeling techniques along with empirical data to estimate the Site boundaries and define an appropriate cleanup action.

5.6 AIR SPARGE AND OXIDANT FEASIBILITY TESTING

The investigation data has confirmed that concentrations of PCE in groundwater that exceed the MTCA Method A cleanup level extend off the Former City Hand Laundry Property to the north, south, and east and to depths greater than 80 feet bgs. The results of the AS feasibility testing indicate that AS is a feasible remedial alternative for the remediation of PCE in groundwater at the Site within the vicinity of the Former City Hand Laundry Property boundaries and a limited distance around the property; however, AS wells and trenching cannot be extended beyond the property boundaries due to the presence of numerous utility corridors with main water, sewer, natural gas, and communication lines. The locations of these utilities are prohibitive to performing the trenching and pipe installation necessary to extend the AS system beyond the limits of the Former City Hand Laundry Property according to discussions with the City of Bremerton Engineering Department. However, an AS system may be designed to reach the maximum off-property extent without risking the integrity of underground utility lines, possibly utilizing AS wells drilled at an angle extending from the Former City Hand Laundry property to areas beneath the city streets.

Changes in air pressure and groundwater level in the observation wells during the AS pilot test indicate that there was a positive response at distances up to 128 feet from the AS pilot test wells. The observed responses were greater in monitoring wells with screened intervals extending deeper and closer to the AS pilot test wells; however, responses were observed across the entire screened interval of the water column. The lack of a consistent relationship in the pressure changes or groundwater levels with respect to the distance from the AS pilot test wells suggests that there are likely variable physical characteristics of the soil that are resulting in the preferential transport of sparge air. Because variations in the soil lithology could influence the flow of air through the subsurface, a conservative radius of 45 feet would be proposed for design purposes if this technology were used for groundwater remediation at the Site.

Well fouling can occur in AS wells through the disposition of naturally-occurring inorganic solutes such as calcium, iron and manganese or by growth of indigenous micro-organisms because of changes in the thermodynamic properties of the water-bearing zone, such as temperature and pressure, or because of changes in the chemical properties of groundwater, such as through the addition of oxygen (Driscoll, 1986). Inorganic fouling can result in precipitates composed of iron oxides or magnesium oxides that can cause well failure. Microbial bacterial deposits commonly found causing well failure in remediation systems include iron-related bacteria and sulfate reducing species.

The laboratory analytical results for groundwater collected from wells AS-1 and MW-ID detected iron content of 9.2 to 11 mg/l and calcium content of 18 to 20 mg/l (Table 5). Based on these results and the documented characteristics of the groundwater in wells AS-1 and MW-ID (i.e., temperature, dissolved oxygen, pH, ORP), well fouling may be a concern and would need to be addressed during the design/operation of an AS system.

The results of the preliminary screening of oxidant-based technologies indicate that the natural SOD of the saturated zone is low, which supports further assessment of the potential of oxidant-based technologies. Chemical oxidants have the potential to be utilized to treat PCE in the

saturated zone that extends beyond the effective treatment radius of SVE and AS technologies. The effective radius of injection, the potential rate of transport of the chemical oxidant in the groundwater media, and the residence time within the water-bearing zone requires further evaluation prior to utilizing this technology as a component of a cleanup action. A limited field-scale pilot test would need to be performed to assess the aforementioned parameters.

6.0 DATA GAPS AND FUTURE WORK

The remaining data gaps include the definition of the lateral and vertical distribution of the PCE, primarily in the groundwater media. Concentrations of PCE in soil to the south, east, and west of the Former City Hand Laundry Property are likely low and associated with vapor phase transport from PCE in the vadose zone and the underlying groundwater plume. The potential for an unidentified source of PCE in soil to the north of the Former City Hand Laundry Property exists but further investigation is restricted by the presence of the church and both underground and overhead utilities. SVE technology likely will address soil contamination at and surrounding the Former City Hand Laundry Property, thereby eliminating the need for further investigation of the exact limits of soil contamination at, and off of the Former City Hand Laundry Property.

A combination of empirical data and modeling will be utilized to refine the estimates of the distribution of PCE in groundwater. This will require additional monitoring wells combined with aquifer testing to assess the hydrogeologic characteristics of the water-bearing zone, including the hydraulic gradient, seepage velocity, effective porosity, and range of potential retardation factors. Farallon proposes to conduct another phase of investigation to refine the understanding of the distribution of PCE and acquire the necessary hydrogeologic data to perform groundwater modeling and assess the potential distribution of PCE in areas where empirical data cannot be collected. Following this phase of investigation, sufficient information on the potential distribution of PCE should be available to meet the requirements under MTCA.

Seasonal groundwater effects also require further investigation. Groundwater sampling at all the existing monitoring wells has been performed only in the summer of 2005. Quarterly groundwater sampling for a minimum of one year will be required to refine the understanding of the potential seasonal effects of groundwater fluctuations on the hydraulic gradient and groundwater flow direction, as well as any correlation with the concentrations of PCE observed in groundwater. Quarterly groundwater sampling will be initiated in early 2006.

Sufficient information is available to design an SVE and AS system for use at the Former City Hand Laundry Property to commence remediation of soil and groundwater. This would effectively reduce the PCE mass migrating off the Former City Hand Laundry Property and will result in attenuation of the plume down gradient. An SVE/AS system can be utilized as an interim remedial action and incorporated into the final cleanup action.

The existing data indicate that biodegradation likely is not a significant process in the upper or lower portions of the water-bearing zone but is occurring based on the very low levels of the PCE degradation products TCE and cis-1,2-DCE. Because biodegradation is minimal, natural attenuation would not result in a timely cleanup. This remedial alternative does not appear to be feasible as a component of the cleanup action for PCE in groundwater.

The preliminary screening of oxidant-based technologies indicate that further field-scale pilot testing is required to support potential design and implementation of this technology. The focus of a field-scale pilot test would be on the application of a chemical oxidant rather than ozone. Ozone requires a delivery system to constantly introduce ozone into the water-bearing zone due

to its extremely short residence time. Ozone may be retained for future consideration as an enhancement to the AS technology if the rate of cleanup using AS alone will not result in timely cleanup that meets the needs of all involved parties.

7.0 REFERENCES

Driscoll, Fletcher, D. 1986. "Well and Pump Maintenance and Rehabilitation." Groundwater and Wells. Second Edition. U.S. Filter/Johnson Screens, St. Paul, Minnesota. pp. 633-655.

Farallon Consulting, L.L.C. 1999. Phase II Subsurface Investigation, Land Title Building Parking Lot. December 6.

____. 2004a. Subsurface Investigation and Soil Vapor Extraction Feasibility Pilot Test. January 27.

_____. 2004b. Work Plan, Additional Subsurface Investigation and Air Sparging Pilot Testing. April 16.

_____. 2004c. Letter Regarding Response to Request for Review and Opinion Letter. To the Washington State Department of Ecology. March 14

SECOR International Incorporated. 1998. Land Title Building Site Investigation Report. June 12.

Washington State Department of Ecology (Ecology). 2001a. *Model Toxics Control Act Cleanup Regulation*. Chapters 173-340 of the Washington Administrative Code. February 12.

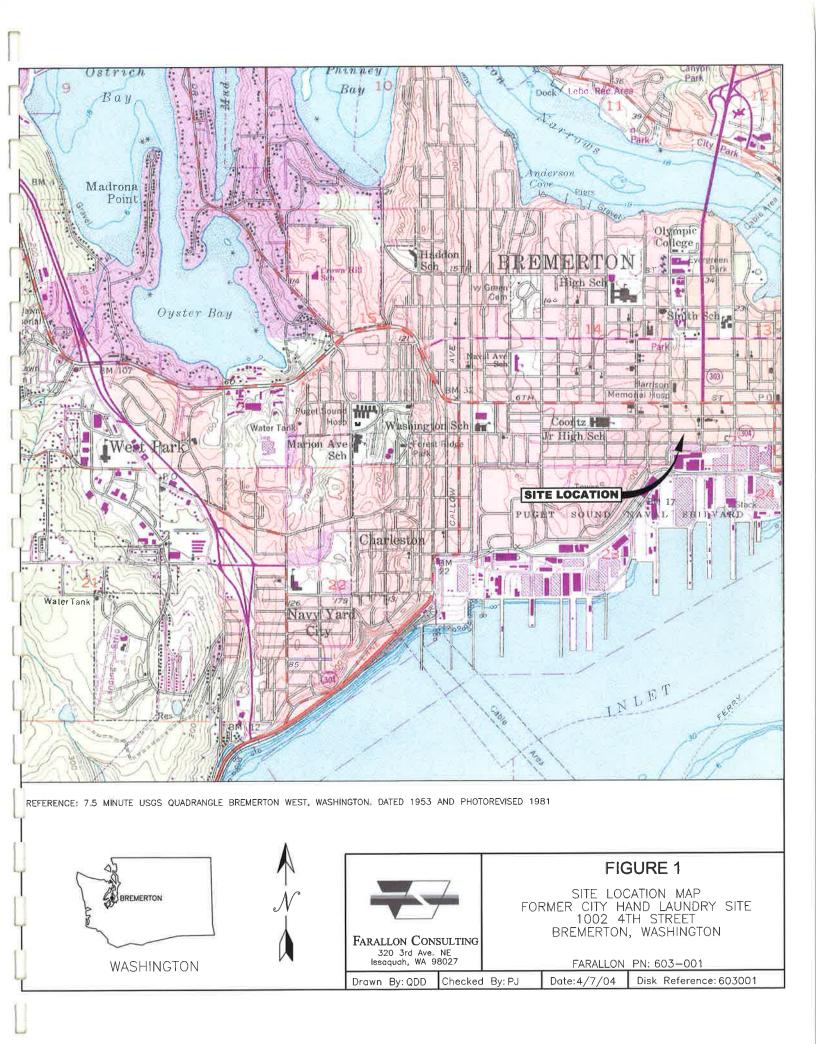
. 2001b. Cleanup Levels and Risk Calculations under the Model Toxics Control Act Cleanup Regulation, Version 3.1. November.

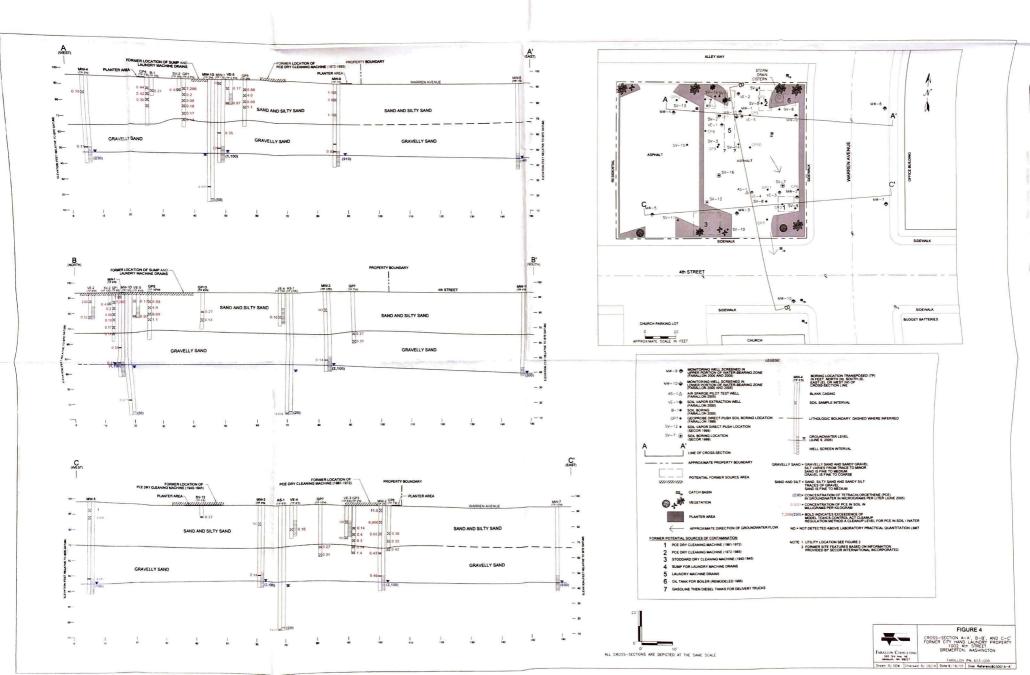
____. 2004. Letter Regarding Response to Request for Review and Opinion Letter, Former City Hand Laundry. To Farallon Consulting, L.L.C. September 20.

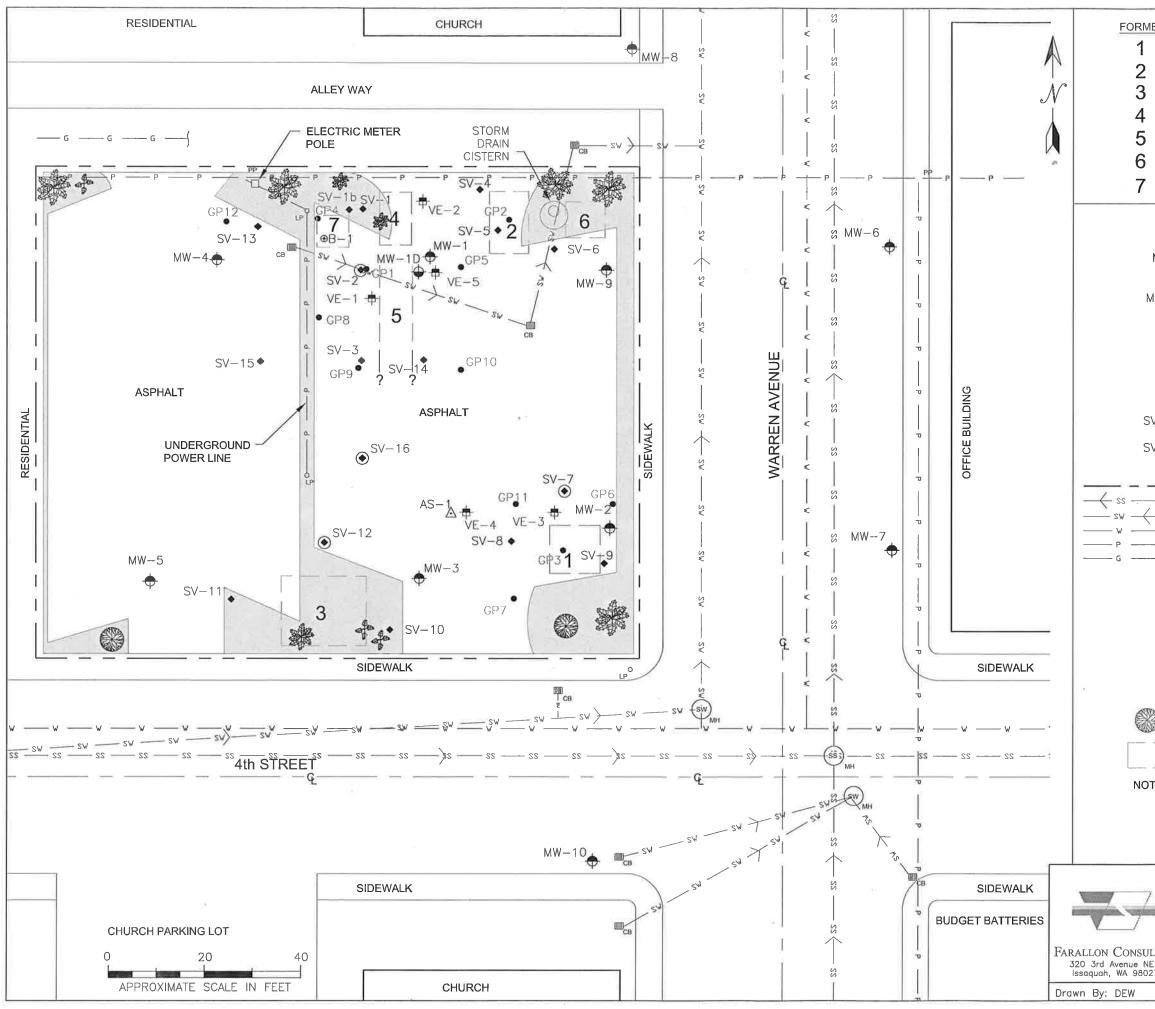
---. 2005. E-mail Message Regarding City Hand Laundry. From Nnamdi Madakor, VCP Policy and Technical Manager, Ecology Southwest Regional Office. March 29.

8.0 LIMITATIONS

The conclusions and recommendations contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location, and are subject to the following inherent limitations:

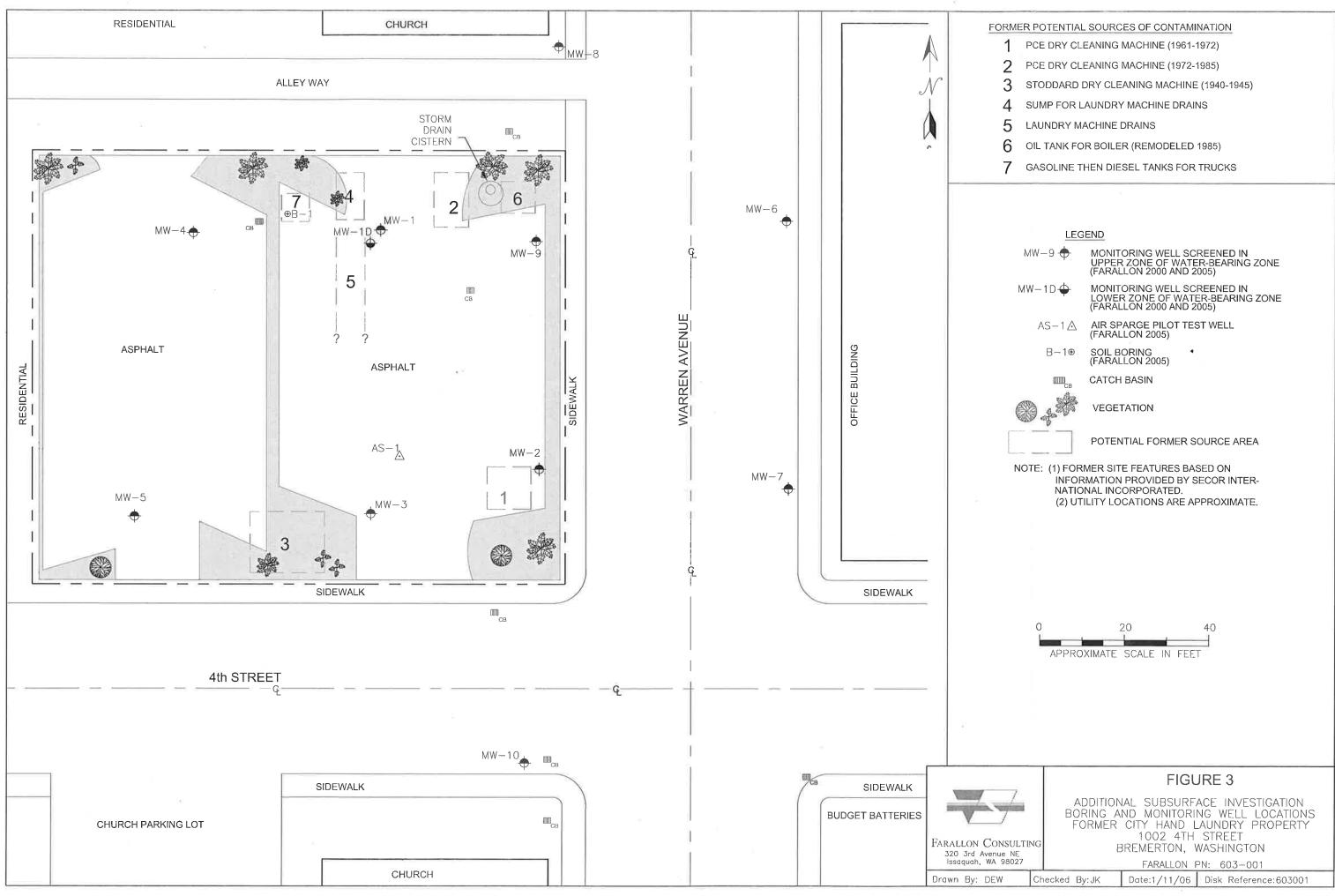

- Accuracy of Information. Certain information used by Farallon in this report/assessment has been obtained, reviewed, and evaluated from various sources believed to be reliable, including the previously discussed interviews. Although Farallon's conclusions, opinions, and recommendations are based in part on such information, Farallon's services did not include the verification of its accuracy or authenticity. Should such information prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.
- **Reconnaissance**. Farallon performed a reconnaissance of the Site that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions, while other areas received limited attention or were inaccessible at the time of our reconnaissance.

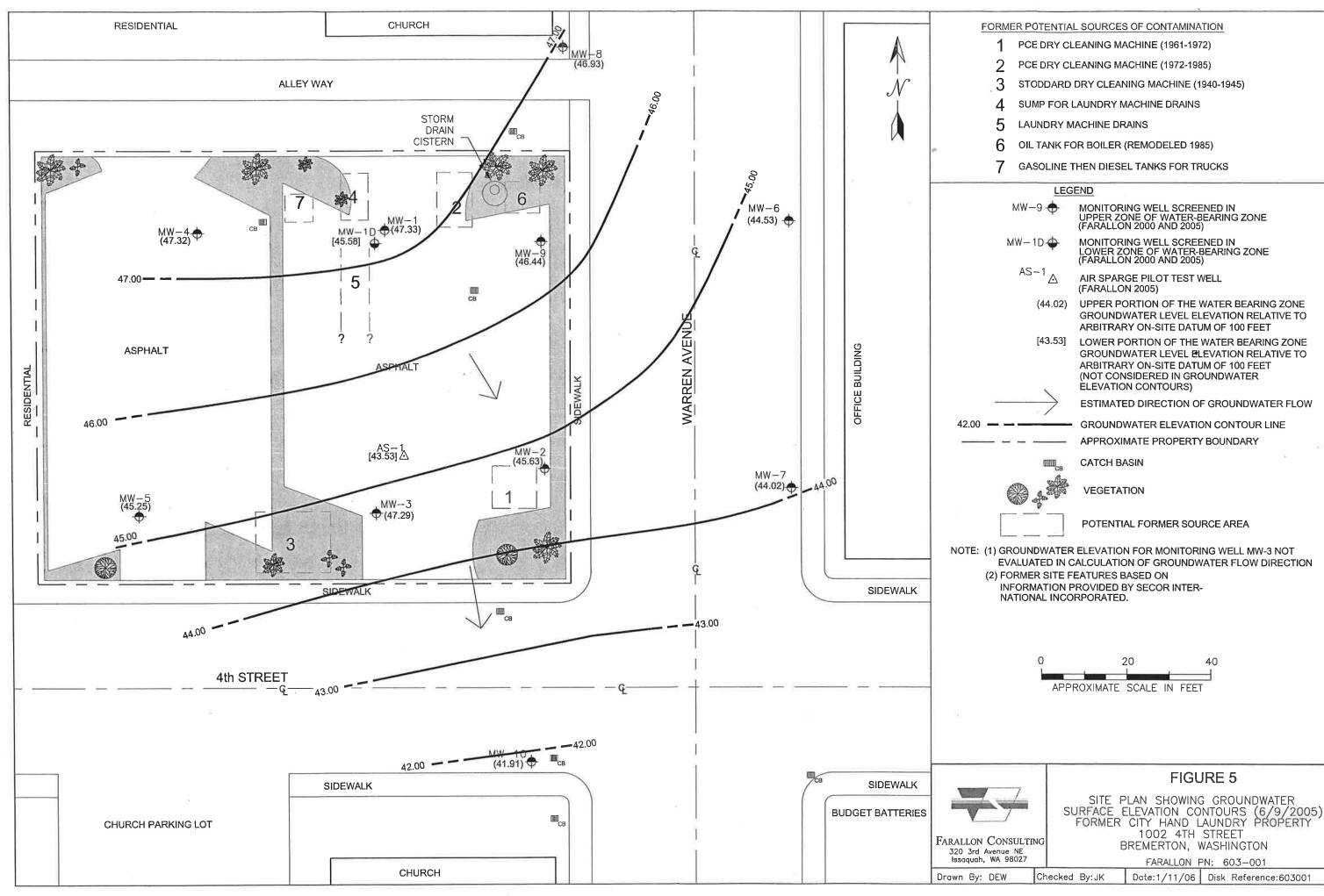

FIGURES


ADDITIONAL SUBSURFACE INVESTIGATION AND FEASIBILITY TESTING REPORT TCP ID#NW1243

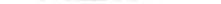
Former City Hand Laundry Property 1002 4th Street Bremerton, Washington

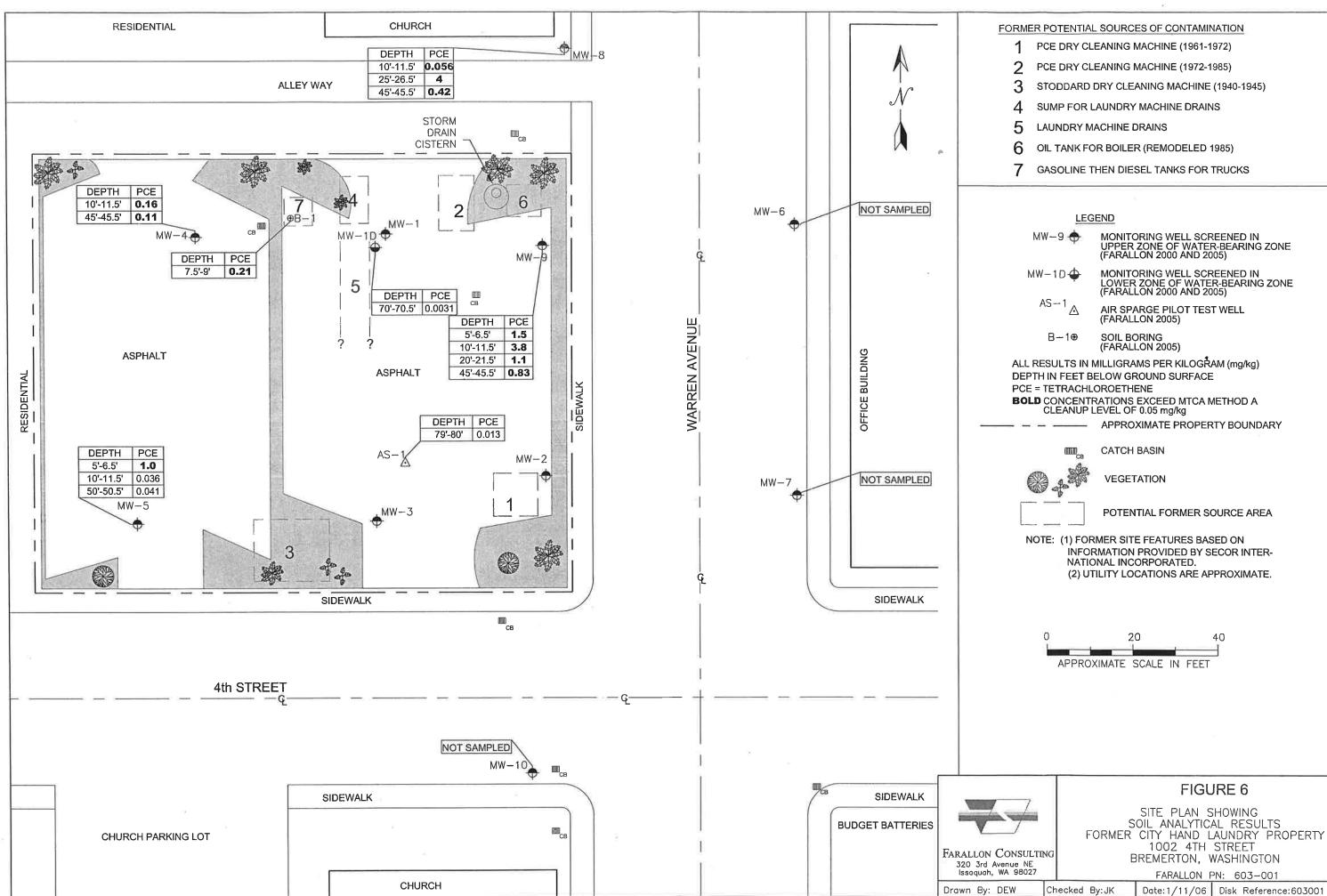
Farallon PN: 603-001

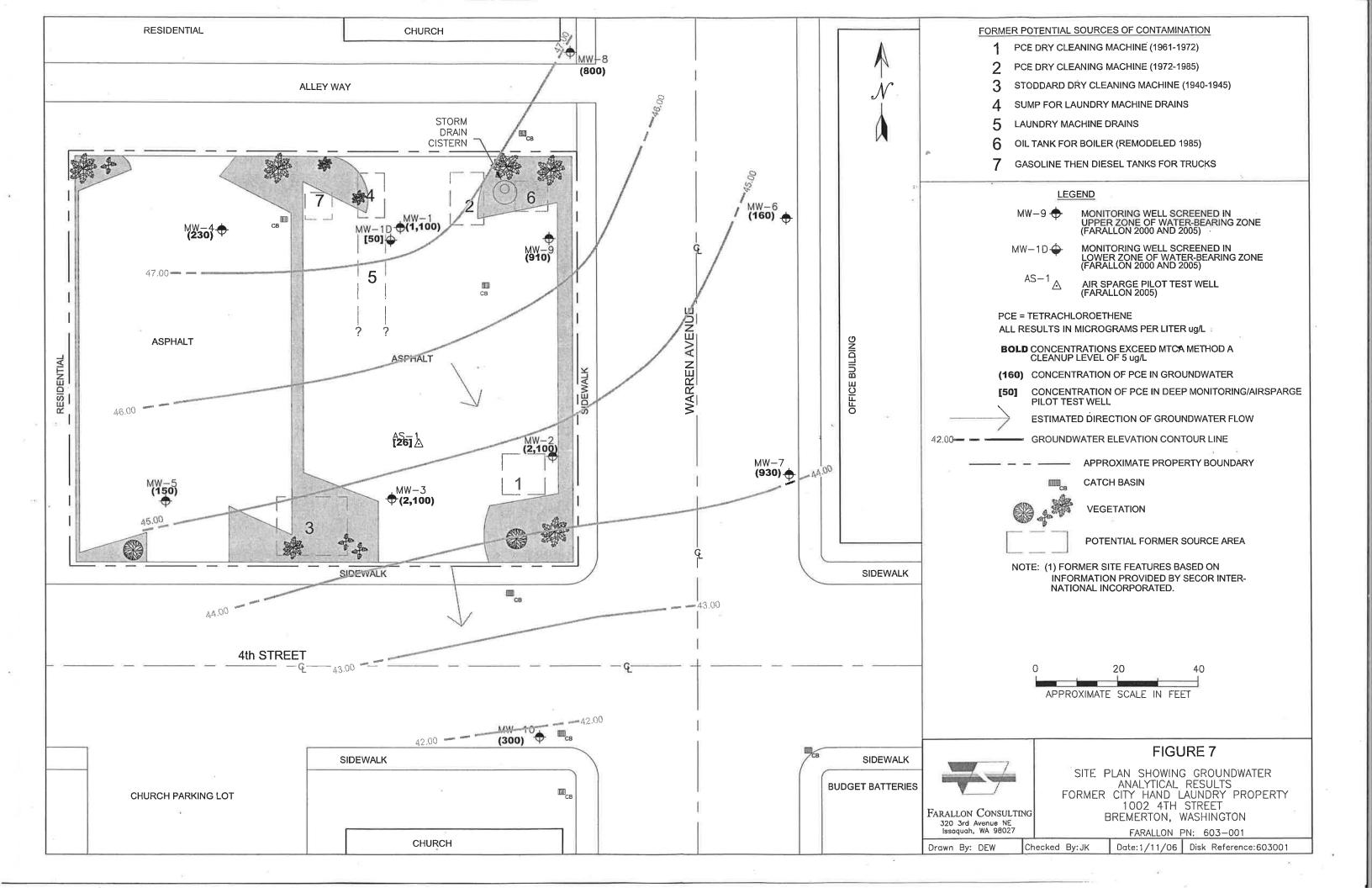




16	ER POTENTIAL SOURCES OF CONTAMINATION
	PCE DRY CLEANING MACHINE (1961-1972)
	PCE DRY CLEANING MACHINE (1972-1985)
	STODDARD DRY CLEANING MACHINE (1940-1945)
	SUMP FOR LAUNDRY MACHINE DRAINS
	LAUNDRY MACHINE DRAINS
	OIL TANK FOR BOILER (REMODELED 1985)
	GASOLINE THEN DIESEL TANKS FOR TRUCKS


	LEGE	END
MW-	9 🔶	MONITORING WELL SCREENED IN UPPER PORTION OF WATER-BEARING ZONE (FARALLON 2000 AND 2005)
MW-1	D 🔶	MONITORING WELL SCREENED IN LOWER PORTION OF WATER-BEARING ZONE (FARALLON 2000 AND 2005)
AS-	1	AIR SPARGE PILOT TEST WELL (FARALLON 2005)
B-	-1⊕	SOIL BORING (FARALLON 2005)
GP7	•	GEOPROBE DIRECT-PUSH SOIL BORING LOCATION (FARALLON 1999)
SV-12		SOIL VAPOR DIRECT-PUSH SOIL LOCATION (SECOR 1999)
SV-12		SOIL BORING LOCATION (SECOR 1999)
SS		APPROXIMATE SITE BOUNDARY SANITARY SEWER LINE & DIRECTION OF FLOW STORMWATER LINE & DIRECTION OF FLOW WATER LINE POWER LINE GAS LINE
.(SS MH	SANITARY SEWER MAN HOLE
	sw) _{MH}	STORMWATER MAN HOLE FIRE HYDRANT
	FH O LP	LIGHT POLE
		POWER POLE
Π	E CB	CATCH BASIN
8 . }	SF.	VEGETATION
		POTENTIAL FORMER SOURCE AREA
i i r	INFORINATION	MER SITE FEATURES BASED ON MATION PROVIDED BY SECOR INTER- NAL INCORPORATED. LITY LOCATIONS ARE APPROXIMATE.
		FIGURE 2
4		E PLAN SHOWING EXISTING FEATURES AND FORMER POTENTIAL SOURCES AREAS FORMER CITY HAND LAUNDRY PROPERTY
		1002 4TH STREET BREMERTON, WASHINGTON
027		FARALLON PN: 603-001


Checked By:JK Date:1/11/06 Disk Reference:603001



			FIGU	JRE 5				
	NG	SITE PLAN SHOWING GROUNDWATER SURFACE ELEVATION CONTOURS (6/9/2005) FORMER CITY HAND LAUNDRY PROPERTY 1002 4TH STREET BREMERTON, WASHINGTON						
027			FARALLON PN: 603-001					
	Ch	ecked By:JK	Date:1/11/06	Disk Reference:603001				
	_	,						

FORMER CITY HAND LAUNDRY PROPERTY

TABLES

ADDITIONAL SUBSURFACE INVESTIGATION AND FEASIBILITY TESTING REPORT TCP ID#NW1243

Former City Hand Laundry Property 1002 4th Street Bremerton, Washington

Farallon PN: 603-001

Table 1 Summary of Historical Soil Analytical Results Former City Hand Laundry Property Bremerton, Washington Farallon PN: 603-001

6 I -		6	Dite	Depth			Analyt	tical Results	(milligran	is per kilog	(ram)	
Sample Location	Sample Number	Sampled By	Date Sampled	(feet) ¹	PCE ²	TCE ²	cis-1,2 DCE ²	trans-1,2 DCE ²	1,1 DCE ²	Vinyl Chloride ²	DRO/ORO ³	BTEX ⁴
98 to 1999 S	ite Investigations											
SV-2	SV-2	SECOR	5/30/1998	8	0.43	ND	ND	ND	ND	ND		ND
SV-7	SV-7	SECOR	5/30/1998	9	0.68	ND	ND	ND	ND	ND		ND
SV-12	SV-12	SECOR	5/30/1998	8	0.27	ND	ND	ND	ND	ND		ND
SV-16	SV-16	SECOR	5/30/1998	8	0.4	ND	ND	ND	ND	ND	14 ⁻	ND
GP-1	GP1-6	Farallon	9/24/1999	6	7,200	30	14	0.32	ND	ND	· · · ·	
GP-1	GP1-10	Farallon	9/24/1999	10	0.2	ND	ND	ND	ND	ND		2.00
GP-1	GP1-14	Farallon	9/24/1999	14	0.09	0.17	ND	0.08	ND	ND	-	N#1
GP-1	GP1-17.5	Farallon	9/24/1999	17.5	0.18	ND	ND	ND	ND	ND	272	2.53
GP-1	GP1-22	Farallon	9/24/1999	22	0.17	ND	0.16	ND	ND	ND		040
GP-1	GP1-26	Farallon	9/24/1999	26	0.18	0.16	ND	0.07	ND	ND	·	
GP-2	GP2-6	Farallon	9/24/1999	6	0.45	ND	ND	ND	ND	ND	-	(*)
GP-2	GP2-10	Farallon	9/24/1999	10	0.46	ND	ND	ND	ND	ND	(4)	î#
GP-2	GP2-14	Farallon	9/24/1999	14	0.15	0.19	0.11	ND	ND	ND	350	// * 5
GP-2	GP2-18	Farallon	9/24/1999	18	0.4	0.24	ND	ND	ND	ND	(4)	200 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
GP-2	GP2-22	Farallon	9/24/1999	22	0.28	0.12	ND	0.07	ND	ND		
GP-2	GP2-26	Farallon	9/24/1999	26	0.28	0.07	ND	ND	ND	ND	-	3 9 2
GP-3	GP3-14	Farallon	9/24/1999	14	0.14	0.19	0.06	ND	ND	ND	®	-
GP-3	GP3-18	Farallon	9/24/1999	18	2.4	0.1	ND	0.07	ND	ND	270	
GP-3	GP3-22	Farallon	9/24/1999	22	0.3	0.07	ND	0.07	ND	ND	200	
GP-3	GP3-26	Farallon	9/24/1999	26	0.74	0.17	ND	0.08	ND	ND	14 A.	14
GP-3	GP3-30	Farallon	9/24/1999	30	1.4	ND	ND	ND	ND	ND	200	2.52
GP-4	GP4-6	Farallon	9/24/1999	6	0.44	ND	0.07	ND	ND	ND		(•)
GP-4	GP4-10	Farallon	9/24/1999	10	2.42	0.24	ND	ND	ND	ND		
GP-4	GP4-14	Farallon	9/24/1999	14	0.30	ND	ND	ND	ND	ND	340	
GP-4	GP4-18	Farallon	9/24/1999	18	ND	ND	ND	ND	ND	ND	14 L	18
GP-5	GP5-6	Farallon	9/24/1999	6	0.89	ND	ND	ND	ND	ND	(75)	352
GP-5	GP5-10	Farallon	9/24/1999	10	4.00	0.08	ND	ND	ND	ND		(1)
GP-5	GP5-14	Farallon	9/24/1999	14	0.09	ND	ND	ND	ND	ND	-	
GP-5	GP5-18	Farallon	9/25/1999	18	1.10	ND	ND	ND	ND	ND		00
GP-6	GP6-17	Farallon	9/25/1999	17	0.36	0.10	ND	ND	ND	ND		Ne.
GP-6	GP6-22	Farallon	9/25/1999	22	0.35	ND	ND	ND	ND	ND		
GP-6	GP6-27	Farallon	9/25/1999	27	0.42	ND	ND	ND	ND	ND	-	. (e)
GP-7	GP7-27	Farallon	9/25/1999	27	0.27	ND	ND	ND	ND	ND	12	
GP-7	GP7-32	Farallon	9/25/1999	32	0.31	ND	ND	ND	ND	ND		2. + :
GP-8	GP8-12	Farallon	9/25/1999	12	0.30	ND	ND	ND	ND	ND		
GP-8	GP8-17	Farallon	9/25/1999	17	0.14	ND	ND	ND	ND	ND	(*)	5. 8 2
GP9	GP9-12	Farallon	9/25/1999	12	0.23	ND	ND	ND	ND	ND		1
GP9	GP9-17	Farallon	9/25/1999	17	0.30	ND	ND	ND	ND	ND		
GP10	GP10-12	Farallon	9/25/1999	12	0.27	ND	ND	ND	ND	ND	140	
GP10	GP10-17	Farallon	9/25/1999	17	0.13	ND	ND	ND	ND	ND	1	75
GP11	GP11-7	Farallon	9/25/1999	7	0.55	ND	ND	ND	ND	ND	(#))	3 .
TCA Cleanu	CA Cleanup Levels				0.055	0.035	800 ⁶	1,600 ⁶	1.676	0.667 ⁶	2,000 ⁵	0.03/7/6/9

Page 1 of 2

Table 1 Summary of Historical Soil Analytical Results Former City Hand Laundry Property Bremerton, Washington Farallon PN: 603-001

							Analyt	tical Results	(milligran	is per kilog	(ram)	
Sample Location	Sample Number	Sampled By	Date Sampled	Depth (feet) ¹	PCE ²	TCE ²	cis-1,2 DCE ²	trans-1,2 DCE ²	1,1 DCE ²	Vinyl Chloride ²	DRO/ORO ³	BTEX ⁴
000 Site Inve	stigation											
MW-1	MW1-2.5 -3.5	Farallon	7/7/2000	2.5 - 3.5	1.8	ND	ND	ND	ND	ND	3.79	-
MW-1	MW1-35 - 35.5	Farallon	7/7/2000	35 - 35.5	0.35	ND	ND	ND	ND	ND	191	
MW-1	MW1-45 - 45.5	Farallon	7/7/2000	45 - 45.5	0.21	ND	ND	ND	ND	ND	-	
MW-2	MW2-2.5 - 4	Farallon	7/6/2000	2.5 - 4	11.0	ND	ND	ND	ND	ND		
MW-2	MW2-10 - 11.5	Farallon	7/6/2000	10 - 11.5	6,900	ND	ND	ND	ND	ND	NB6	-
MW-2	MW2-17.5 - 19	Farallon	7/6/2000	17.5 - 19	0.65	ND	ND	ND	ND	ND		
MW-2	MW2-30 - 31	Farallon	7/6/2000	30 - 31	0.43	ND	ND	ND	ND	ND	2 4 5	
MW-2	MW2-45-45.5	Farallon	7/6/2000	45 - 45.5	0.49	ND	ND	ND	ND	ND		•
MW-3	MW3-7.5 - 9	Farallon	7/5/2000	7.5 - 9	(e)	(a)	•		•	.(•)	ND	•
MW-3	MW3-12.5 - 14	Farallon	7/5/2000	12.5 - 14	ND	ND	ND	ND	ND	ND		-
MW-3	MW3-45 - 45.5	Farallon	7/5/2000	45 - 45.5	0.14	ND	ND	ND	ND	ND	7.53	
VE-1	VE1-7.5-9	Farallon	7/7/2000	7.5 - 9	0.18	ND	ND	ND	ND	ND		
VE-1	VE1-15-16.5	Farallon	7/7/2000	15 - 16.5	0.13	ND	ND	ND	ND	ND	545	÷
VE-2	VE2-5-6.5	Farallon	7/6/2000	5 - 6.5	230	ND	ND	ND	ND	ND	375	
VE-2	VE2-15-16.5	Farallon	7/6/2000	15 - 16.5	0.52	ND	ND	ND	ND	ND	945	•
VE-3	VE3-10-11.5	Farallon	7/5/2000	10 - 11.5	ND	ND	ND	ND	ND	ND		
VE-3	VE3-20-21.5	Farallon	7/5/2000	20 - 21.5	ND	ND	ND	ND	ND	ND	(e)	-
VE-4	VE4-15 - 16.5	Farallon	7/6/2000	15 - 16.5	0.16	ND	ND	ND	ND	ND	125	
VE-5	VE5- 5 - 6.5	Farallon	7/6/2000	5 - 6.5	0.17	ND	ND	ND	ND	ND	5.5	
VE-5	VE5 - 15 - 16	Farallon	7/6/2000	15 - 16	0.97	ND	ND	ND	ND	ND	2.45	
TCA Cleanu	p Levels				0.05 ⁵	0.035	800 ⁶	1,6006	1.67 ⁶	0.667 ⁶	2,000 ⁵	0.03/7/6/9

NOTES:

Results in BOLD denote concentrations above MTCA cleanup levels.

¹Depth in feet below ground surface.

²Analyzed by United States Environmental Protection Agency (EPA) Method 8021B or 8260.

³Analyzed by Washington State Department of Ecology (Ecology)-approved Method NWTPH-Dx.

⁴Analyzed by EPA Method 8020.

⁵ Ecology Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels, Chapter 173-340 of the Washington Administrative Code, Amended February 12, 2001, Table 740-1, Method A Soil Cleanup Levels for Unrestricted Land Uses.

⁶MTCA Cleanup Levels and Risk Calculations under MTCA (CLARC), Updated November 2001, Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway. = not analyzed

BTEX = benzene, toluene, ethylbenzene, and xylenes

DCE = dichloroethene

DRO/ORO = Total petroleum hydrocarbons as diesel-range organics / oil-range organics

ND = Indicates compound not detected above the laboratory practical quantitation limit PCE = tetrachloroethene

TCE = trichloroethene

Table 2Summary of Groundwater Surface ElevationsFormer City Hand Laundry PropertyBremerton, WashingtonFarallon PN: 603-001

	Screened Interval (feet				
Monitoring Well	,	Top of Casing		Depth to Water	Groundwater
Number	surface)	Elevation (feet) ²	Date Measured	(feet) ¹	Elevation (feet) ²
			7/19/2000	44.47	49.37
MW-1	45-55	93.84	4/25/2003	45.23	48.61
			6/9/2005	46.51	47.33
MW-1D	78-80	95.33	6/9/2005	49.75	45.58
			7/19/2000	46.90	48.34
MW-2	45-55	95.24	4/25/2003	47.72	47.52
<i>n</i>			6/9/2005	49.61	45.63
		96.18	7/19/2000	46.85	49.33
MW-3	45-55	90.18	4/25/2003	47.64	48.54
		96.2 ³	6/9/2005	48.91	47.29
MW-4	45-55	95.72	6/9/2005	48.4	47.32
MW-5	50-60	98.55	6/9/2005	53.3	45.25
MW-6	45-55	92.24	6/9/2005	47.71	44.53
MW-7	46-56	93.51	6/9/2005	49.49	44.02
MW-8	45-55	91.94	6/9/2005	45.01	46.93
MW-9	45-55	93.88	6/9/2005	47.44	46.44
MW-10	50-60	95.22	6/9/2005	53.31	41.91
AS-1	78-80	95.28	6/9/2005	51.75	43.53

NOTES:

¹Depth below top of well casing in feet.

² Relative to arbitrary datum of 100.00 feet

³Elevation re-surveyed during 2005 investigation.

Table 3 Summary of Soil Analytical Results - Halogenated Volatile Organic Compounds Former City Hand Laundry Property Bremerton, Washington Farallon PN: 603-001

G 1			Danth	I	Analytical F	Results (mil	ligrams pe	r kilogram)	2
Sample Location	Sample Number	Date Sampled	Depth (feet) ¹	РСЕ	ТСЕ	cis-1,2 DCE	trans-1,2 DCE	1,1 DCE	Vinyl Chloride
B-1	B1-7.5-9	5/8/2005	7.5-9	0.21	0.0091	0.012	< 0.00093	< 0.00093	< 0.00093
MW-1D	MW1D-70-70.5	5/8/2005	70-70.5	0.0031	< 0.00081	< 0.00081	< 0.00081	< 0.00081	< 0.00081
MW-4	MW4-10-11.5	5/7/2005	10-11.5	0.16	0.0019	0.0015	< 0.00093	< 0.00093	< 0.00093
MW-4	MW4-45-45.5	5/7/2005	45-45.5	0.11	< 0.00095	< 0.00095	< 0.00095	< 0.00095	< 0.00095
MW-5	MW5-5-6.5	5/7/2005	5-6.5	1.0 ³	< 0.00084	< 0.00084	< 0.00084	< 0.00084	< 0.00084
MW-5	MW5-10-11.5	5/7/2005	10-11.5	0.036	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
MW-5	MW5-50-50.5	5/7/2005	50-50.5	0.041	< 0.00079	< 0.00079	< 0.00079	< 0.00079	< 0.00079
MW-8	MW8-10-11.5	5/9/2005	10-11.5	0.056	< 0.00097	< 0.00097	< 0.00097	< 0.00097	< 0.00097
MW-8	MW8-25-26.5	5/9/2005	25-26.5	4	0.0022	0.004	< 0.00086	< 0.00086	< 0.00086
MW-8	MW8-45-45.5	5/9/2005	45-45.5	0.42	0.0023	0.0045	< 0.00093	< 0.00093	< 0.00093
MW-9	MW9-5-6.5	5/8/2005	5-6.5	1.5	< 0.00073	< 0.00073	< 0.00073	< 0.00073	< 0.00073
MW-9	MW9-10-11.5	5/8/2005	10-11.5	3.8	0.021	0.022	< 0.00069	< 0.00069	< 0.00069
MW-9	MW9-20-21.5	5/8/2005	20-21.5	1.1	0.0024	0.0031	< 0.00061	< 0.00061	< 0.00061
MW-9	MW9-45-45.5	5/8/2005	45-45.5	0.83	0.0028	0.0047	< 0.00081	< 0.00081	<0.00081
AS-1	AS1-79-80	5/7/2005	79-80	0.013	< 0.00095	< 0.00095	< 0.00095	< 0.00095	< 0.00095
MTCA Cleanu	p Levels			0.05 ⁴	0.034	800 ⁵	1,600 ⁵	1.67 ⁵	0.667 ⁵

NOTES:

Results in BOLD denote concentrations above MTCA cleanup levels.

< indicates concentrations not detected above the stated laboratory reporting limit.

¹Depth in feet below ground surface.

² Analyzed by United States Environmental Protection Agency (EPA) Method 8021B or 8260.

³Laboratory analytical report that the value reported exceeds the quantitation range and is an estimate.

⁴ Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels, Chapter 173-340 of the Washington Administrative Code, Amended February 12, 2001, Table 740-1, Method A Soil Cleanup Levels for Unrestricted Land Uses.

⁵ MTCA Cleanup Levels and Risk Calculations under MTCA (CLARC), Updated November 2001, Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway.

DCE = dichloroethene

PCE = tetrachloroethene

TCE = trichloroethene

Table 4Summary of Soil Analytical Results - Total Petroleum HydrocarbonsFormer City Hand Laundry PropertyBremerton, WashingtonFarallon PN: 603-001

S		D	Danth			Analytical	Results (milli	grams per l	kilogram)	
Sample Location	Sample Number	Date Sampled	Depth (feet) ¹	GRO ³	DRO ⁴	ORO ⁴	Benzene ⁵	Toluene ⁵	Ethylbenzene ⁵	Total Xylenes ⁵
B-1	B1-5-6.5	5/8/2005	5-6.5	8.9 ⁶	<31	<63	< 0.02	< 0.065	< 0.065	< 0.065
B-1	B1-7.5-9	5/8/2005	7.5-9	<5.7	<28	<57	< 0.02	< 0.057	< 0.057	< 0.057
B-1	B1-10-11.5	5/8/2005	10-11.5	<5.6	<27	<53	< 0.02	< 0.056	< 0.056	< 0.056
MW-8	MW8-10-11.5	5/9/2005	10-11.5	<26	<64	<130	-	-	-	-
MW-9	MW9-5-6.5	5/8/2005	5-6.5	-	<29	<58	-	-	-	-
MW-9	MW9-10-11.5	5/8/2005	10-11.5	-	<31	<61		-	-	-
MTCA Method	A Cleanup Levels ⁷			100	2,000	2,000	0.03	7	6	9

NOTES:

Results in BOLD denote concentrations above MTCA cleanup levels.

< indicates concentrations not detected above the stated laboratory reporting limit.

¹Depth in feet below ground surface.

³ Analyzed by Northwest Method NWTPH-HCID or NWTPH-Gx.

⁴ Analyzed by Northwest Method NWTPH-HCID or NWTPH-Dx.

⁵ Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁶Laboratory analytical report denotes that result is mainly attributed to a single peak (tetrachloroethene).

⁷ Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels, Chapter 173-340 of the Washington Administrative Code, Amended February 12, 2001, Table 740-1, Method A Soil Cleanup Levels for Unrestricted Land Uses.

GRO = total petroleum hydrocarbons as gasoline-range hydrocarbons

DRO = total petroleum hydrocarbons as diesel-range organics

ORO = total petroleum hydrocarbons as oil-range organics

"- " Not analyzed

Table 5Summary of Groundwater Quality ParametersFormer City Hand Laundry PropertyBremerton, WashingtonFarallon PN: 603-001

Monitoring Well Identification	Sample Identification	Date Sampled	Temperature (°C)	Specific Conductance (mS/cm)	рН	Dissolved Oxygen (mg/l)	Turbidity (NTUs)	Oxidation Reduction Potential (mV)	Total Calcium (µg/l)	Total Iron (µg/l)	Total Manganese (µg/l)
	MW-1	7/19/2000	Œ	0.8	6.3	8.5	-	155.0	-	-	-
MW-1	MW-1	4/25/2003	13.1	0.2	6.6	13.3	0.1	102.0	÷		
	MW1-061005	6/10/2005	14.5	0.2	6.3	9.1	-	129.1	-	-	-
MW-1D	MW1D-061005	6/10/2005	14.3	0.3	7.3	0.9	-	90.8	18,000	11,000	590
	MW-2	7/19/2000	IE	0.8	5.6	7.6	-	190.0			-
MW-2	MW-2	4/25/2003	14.0	0.2	6.3	15.2	0.2	99.3	-	<u> </u>	<u>نە</u>
	MW2-060905	6/9/2005	13.7	0.2	5.5	8.1	-	129.6	-		-
	MW-3	7/19/2000	Œ	3.6	6.4	6.7	-	161.0			
MW-3	MW-3	4/25/2003	13.4	0.2	6.3	13.1	0.1	128.6	75		- Fe
	MW3-061005	6/10/2005	14.4	0.2	6.6	8.6		114.7	-	8	-
MW-4	MW4-060905	6/9/2005	14.2	0.1	5.7	8.4	÷	113.7	-		1
MW-5	MW5-060905	6/9/2005	15.2	0.2	5.7	9.3		122.5	-		-
MW-6	MW6-061005	6/10/2005	14.0	0.2	5.8	7.5	-	133.3	-		-
MW-7	MW7-060905	6/9/2005	14.9	0.3	6.7	8.2		78.3	-		-
MW-8	MW8-061005	6/10/2005	13.8	0.2	6.4	8.7	Ĩ	128.1	-		-
MW-9	MW9-061005	6/10/2005	13.7	0.2	7.2	8.8	<u>-</u>	105.2	-	-	-
MW-10	MW10-060905	6/9/2005	14.8	0.2	5.7	6.7	-	118.1	-		<u> </u>
AS-1	AS1-061005	6/10/2005	14.5	0.3	7.1	2.6		95.2	20,000	9,200	940

NOTES:

- indicates parameter not measured/analyzed.

°C = degrees Celsius

- IE = instrument error
- $\mu g/l = micrograms per liter$
- mg/l = milligrams per liter
- mS/cm = milliSiemens per centimeter

mV = millivolts

NTU = nephelometric turbidity units

KåProjectol603001 Land Title BuildingiReports\Add Site Invert-Feas Test Rpt\Tubles\Add Site Invest-Feas Test Rpt Tubles,xlsT6 GW HVOCs

 Table 6

 Summary of Groundwater Analytical Results - Halogenated Volatile Organic Compounds

 Former City Hand Laundry Property

 Bremerton, Washington

 Farallon PN: 603-001

							Analytical Res	ults (microgran	ns per liter) ¹		
Monitoring Well Identification	Sample Identification	Date Sampled	PCE	TCE	cis-1,2-DCE	trans-1,2- DCE	1,1 DCE	Vinyl Chloride	Trichlorofluoromethane	1,1,1-TCA	Chloroform
	MW-1	7/19/2000	560	<10	<10	<10	<10	<10	<10	<10	<10
MW-I	MW-1	4/25/2003	1,600	5.6	8.1	0.87	<0.20	<0.20	<0.20	<0.20	0.26
	MW1-061005	6/10/2005	1,100	<10	<10	<10	<10	<10	<10	<10	<10
MW-1D	MW1D-061005	6/10/2005	50	0.3	0.25	<0,20	<0.20	<0.20	<0,20	<0.20	2
	MW-2	7/19/2000	1,100	<10	<10	<10	<10	<10	<10	<10	<10
MW-2	MW-2	4/25/2003	3,700	3.0	1,0	<0.20	<0.20	<0.20	0.27	0.32	0.61
	MW2-060905	6/9/2005	2,100	<10	<10	<10	<10	<10	<10	<10	<10
_	MW-3	7/19/2000	1,300	<10	<10	<10	<10	<10	<10	<10	<10
MW-3	MW-3	4/25/2003	3,100	2.2	0.42	<0.20	<0.20	<0.20	0.33	0.40	0.61
	MW3-061005	6/10/2005	2,100	<10	<10	<10	<10	<10	<10	<10	<10
MW-4	MW4-060905	6/9/2005	230	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-5	MW5-060905	6/9/2005	150	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-6	MW6-061005	6/10/2005	160	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	MW7-060905	6/9/2005	930	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
MW-8	MW8-061005	6/10/2005	800	5.9	11	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
MW-9	MW9-061005	6/10/2005	910	<4.0	6.5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
MW-10	MW10-060905	6/9/2005	300	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
AS-1	AS1-061005	6/10/2005	26	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	1.6
ATCA Clean	up Levels		5 ²	5 ²	80 ³	160 ³	0.0729 ³	0.2 ²	2,400 ³	200 ²	7.17 ³

NOTES:

Results in BOLD denote concentrations above the specified MTCA cleanup level.

< denotes analyte not detected above the stated laboratory reporting limit.

¹Analyzed by U.S. Environmental Protection Agency Method 8260B.

²Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels, Chapter 173-340 of the Washington Administrative Code, Amended February 12, 2001, Table 720-1, Method A Cleanup Levels for Groundwater.

³MTCA Cleanup Levels and Risk Calculations under MTCA (CLARC), Updated November 2001, Standard Method B Formula Values for Potable Ground Water. DCE = dichloroethene PCE = tetrachloroethene TCE = trichloroethene 1,1,1-TCA = 1,1,1-trichloroethane

Table 7 Summary of Groundwater Analytical Results - Total Petroleum Hydrocarbons Former City Hand Laundry Property Bremerton, Washington Farallon PN: 603-001

				Α	nalytical F	Results (mic	crograms	per liter)	1
Monitoring Well Identification	Sample Identification	Date Sampled	GRO ¹	DRO ²	ORO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
	MW-1	7/19/2000		-		-	40	-	
MW-1	MW-1	4/25/2003	<u>.</u>		-	-	-	_	14
	MW1-061005	6/10/2005	<100	<260	<410	<1.0	<1.0	<1.0	<1.0
	MW-2	7/19/2000	-				-	-	87
MW-2	MW-2	4/25/2003	_	97			-	-	
	MW2-060905	6/9/2005	<100	2 2		<1.0	<1.0	<1.0	<1.0
	MW-3	7/19/2000	1,000 ¹			<1.0	-		3.
MW-3	MW-3	4/25/2003	-	546	-	-	-	-	28
	MW3-061005	6/10/2005	<100	<u></u>		<1.0	<1.0	<1.0	<1.0
MW-4	MW4-060905	6/9/2005	<100			<1.0	<1.0	<1.0	<1.0
MW-5	MW5-060905	6/9/2005	<100			<1.0	<1.0	<1.0	<1.0
MW-6	MW6-061005	6/10/2005	<100	-	-	<1.0	<1.0	<1.0	<1.0
MW-7	MW7-060905	6/9/2005	<100	-	-	<1.0	<1.0	<1.0	<1.0
MW-8	MW8-061005	6/10/2005	<100	<260	<410	<1.0	<1.0	<1.0	<1.0
MW-9	MW9-061005	6/10/2005	<100	<250	<400	<1.0	<1.0	<1.0	<1.0
MW-10	MW10-060905	6/9/2005	<100	1	4	<1.0	<1.0	<1.0	<1.0
ITCA Metho	d A Cleanup Le	vels ⁴	800	500	500	5	1,000	700	1,000

NOTES:

< denotes analyte not detected above the stated laboratory practical reporting limit.

¹Analyzed by Northwest Method NWTPH-Gx.

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by U.S. Environmental Protection Agency 8021B.

⁴Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels,

Chapter 173-340 of the Washington Administrative Code, amended February 12, 2001,

Table 720-1, Method A Cleanup Levels for Groundwater.

" -- " not analyzed

DRO = total petroleum hydrocarbons as diesel-range organics

GRO = total petroleum hydrocarbons as gasoline-range hydrocarbons

ORO = total petroleum hydrocarbons as oil-range organics

APPENDIX A BORING/WELL CONSTRUCTION LOGS

ADDITIONAL SUBSURFACE INVESTIGATION AND FEASIBILITY TESTING REPORT TCP ID#NW1243

Former City Hand Laundry Property 1002 4th Street Bremerton, Washington

Farallon PN: 603-001

	- Anarat	320 3rd Avenue NE Issaquah, WA 98027		USCS	Classification and Graphic Legen
N	lajor Divis	ions	USCS Graphic Symbol	USCS Letter Symbol	Lithologic Description
coarse-	GRAVEL	CLEAN GRAVEL (Little	O PO	GW	Well graded GRAVEL, well graded GRAVEL with sand
Grained Soli (More Soli 50%	AND GRAVELLY SOIL (More	or no fines)	8 8	GP	Poorly graded GRAVEL, GRAVEL with sand
nan 50% f material s larger	than 50% of coarse	GRAVEL WITH FINES		GP-GM	Poorly graded GRAVEL - GRAVEL with sand and slit
han No. 00 sleve	fraction retained on	(Appreciable amount of fines)		GM	Silty GRAVEL
Izə)	No. 4 sleve)			GC	Clayey GRAVEL
	SAND AND	CLEAN SAND (Little or		SW	Well graded SAND
	SANDY SOIL (More than 50% of	no fines)		SP	Poorly graded SAND
	coarse fraction	SAND WITH FINES	THE	SP-SM	Poorly graded SAND - silty SAND
	passed through No.	(Appreciable amount of fines)		SM	Silty SAND
	4 sleve)		1/	SC	Clayey SAND
			111	SM-ML	SILT - Silty SAND
-Ine-	SILT AND		M	ML	SILT
Grained Soil (More	CLAY (Liquid limit less			CL	CLAY
han 50% of material s smaller	than 50)			OL	Organic SILT
han No. 200 sleve	SILT AND			мн	Inorganic SILT
size)	CLAY (Llquid limit greater			СН	Inorganic CLAY
	than 50)			ОН	Organic CLAY
		Highly Organic Soli		PT	Peat
OTHER	PAVEMENT		AND THE REAL	AC	Asphalt concrete
MATERIALS				со	Concrete
	OTHER			RK	Bedrock
			10/0	WD	Wood Debris
			11	DB	Debris (Miscellaneous)
			7////	PC	Portland cement
	_		11111	Leg	gend
	Sample In		i		Solid line indicates sharp
G		ple Interval		64	Dashed line indicates gradational
x x		el at time of drilling el at time of samoling		Benton	te contact between units. feet bgs = feet below ground surface
П	Water level at time of sampling		Sand P	NE = Not Encountered	
	Blank Cas	ing		83868	NA = Not Applicable PID = Photoionization Detector
	Screened Casing			Well Ca	p PN = Project Number ppm = Parts per Million
	lates\LogPlot\Litholog	y\Coverpage			USCS = Unified Soil Classification System

	V	320 3rd Avenue NE Issaquah, WA 98027		LO	g o	T C	Sorir	ıg:	MW-4		F	Page 1 of 2
Pro _00 Far	cati allc	t: Former City Hand Laundryon: Bremerton, Washingtonon PN: 603-001	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	eted:	Scott	5 103 75 ade Krue	30 Drive Hammer (Ib Depth of Water A Drilling Total Boring Dept		pth of Water ATD al Boring Depth (s.): D (ft bgs): h (ft bgs):		300 48 55.5 5
Lo	gge	ed By: J. Schmitt	Brining Method.		110110							
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Cor	ring/Well nstructior Details
0		0-2" Asphalt]	AC								
5	X	Silty SAND, fine to medium, with fine angular gravel gravel, brown, medium dense, moist, no odor.	, trends to trace	SM		90	10/10/11	0	MVV4-5-6.5			Concrete
 -		SAND, fine to medium, trace silt, brown with mottlin moist, no odor.	g, medium dense,	SP		100	12/13/13	0	MW4-10-11.5			Bentonite
- 5 — -		SAND, fine with lenses of silty sand, brown, mediun odor.		SM		100	12/13/13	NA	MW4-15-16.5			
-0	X	Silty SAND, fine with lenses of fine sand, brown, me moist, no odor.		SM		80	12/13/15	0	MW4-20-21.5		꺴쏊볓슻슻슻슻슻슻슻슻슻슻슻슻슻슻 옰걙랞볞쀭쁥쁥똜븮렮븮렮븮렮븮렮븮븮븮븮븮	PVC Blan
5-		SAND, fine to medium, trace silt, brown, medium de odor.	ense, moist, no	SP		70	12/15/15	0	MW4-25-26.5			
0		We	Construction	Inforr	natic) on	Gro	und (Surface Elevation	(#\.	N/	
Casi Scre	ing D en S		c: 2/12 Monterey : eal: Concrete eal: Bentonite	Sand	0		Тор	o of C ing A	asing Elevation (1 bandonment:		NA NA	A =

	V	FARALLON CONSULTING 320 3rd Avenue NE Issoquah, WA 98027		Lo	go	of	Bori	ng	:MW-4		Pa	age 2 of 2
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	Well struction)etails
30 -	X	SAND, fine to coarse, with fine to coarse rounded g brown, dense, moist, no odor. SAND, fine to coarse, with fine to coarse rounded g brown, very dense, moist, no odor.	ravel, trace silt,	SP-SM		2	4/5/50-5 50-6	0	MW4-30-31.5 MW4-35-35.5			Bentonite
 40-		GRAVEL, fine to coarse, rounded, with fine to coars very dense, moist, no odor.	1	GP /	80)	80	50-6	0	MW4-40-40.5			PVC Blank
45	- - -	GRAVEL, fine to coarse, rounded, with fine to coars very dense, moist, no odor.	se sand, brown,	GP /	8	100	50-6	0	MW4-45-45.5			Sandpack
50 -	-	GRAVEL, fine to coarse, with fine to coarse sand, b	prown, very dense,	GP /	8	100	50-5	0.5	MW4-50-50.5			Screen
55 -	-	GRAVEL mostly fine to coarse, with sand, fine to co dense, wet, no odor.	parse, brown, very	GP	व	100	50-5	1.1	MW4-55-55.5			
en -	-											

L	ha (T. Thuck Mary		Well C	onstruction Inform	nation	d Surface Elevati	ion (ft): NA
-	Monument Type: Flush Mou	nt	Filter Pack:	2/12 Monterey Sand	Ground	u ourrace Lievati	
	Casing Diameter (inches):	2-inch	FILLEF FACK.	Zi 12 Monterey Gund	Top of	Casing Elevation	n (ft): NA
Ĭ.	Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring	Abandonment:	NA
L	Screened Interval (ft bgs):	45-55	Annular Seal:	Bentonite	Surveyed Location	: X: NA	Y: NA

U

lie	nt:	320 3rd Avenue NE Issaquah, WA 98027 Stuart and Patricia Milbrad	Date/Time Started		5/7/08			_	MW-5	18"x 3	_	age 1 of 2
oc	ati	t: Former City Hand Laundry on:Bremerton, Washington	Date/Time Comple Equipment: Drilling Company	:		75 ade I	Drilling	Dep Tota	ve Hammer (Ibs.) oth of Water ATD al Boring Depth	(ft bgs (ft bgs)	5):	300 54 60
		n PN: 603-001 d By: J. Schmitt	Drilling Foreman: Drilling Method:		Scott Hollo		eger em Augei		al Well Depth (ft	bgs):		60
T	Sample Interval	Lithologic Descripti	ion	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID		Con	ing/Well struction)etails
)		0-2" Asphalt		SPHAL	T T							
- - - -	X	5-6.5' SAND, fine to medium, trace silt, brown, med no odor.	ium dense, moist,	SP		100	9/10/10	0.0	MW5-5-6.5			Concrete
	X	10-11.5' SAND, fine to coarse, trace fine rounded g brown, medium dense, moist, no odor.	ravel, trace silt,	SP		100	13/13/14	0.0	MW5-10-11.5		꺴냬슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻슻 햜쳐纹탒놂콎껆 것것이걙쎳뭑볞뺘攻윩指何워쳐?	Bentonite
	X	15-16.5' SAND, fine to coarse, trace fine rounded t gravel, medium dense, moist, no odor. Encountere stringer at 16.0'.		SM	- 10 11 11	100	14/15/15	0.0	MW5-15-16.5			
	X	20-21.5' SAND, fine to coarse, trace silt, trace fine i medium dense, moist, no odor.	rounded gravel,	SP		100	12/13/14	NA	MW5-20-21.5			PVC Blar
- - - -	X	25-26.5' Silty SAND, fine to medium, interbedded w sandy silt, brown, medium dense, moist, no odor.	vith stringers of	SM		100	13/15/15	NA	MW5-25-26.5			
)		nt Type: Flush Mount	Il Construction		natio) on	Gro	ound \$	Surface Elevation			

	V	FARALLON CONSULTING 320 3rd Avenue NE Issaquah, WA 98027	Lo	g	of	Bori	ing	:MW-5		Ρ	age 2 of 2
Depth (feet bgs.)	Sample Interval	Lithologic Description	ר גיג גיג	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed		Well Istructior Details
30	X	30-31.5' GRAVEL, fine to coarse, with fine to coarse s minor silt, brown, dense, moist, no odor.	+1	8	70	25/35/20	NA	MW5-30-31.5			Bentonite
35 –	-	35-35.5' GRAVEL, fine to coarse, subrounded to angu , coarse sand, trace to minor silt, brown, very dense, m	oist, no odor. //`′	8 0)	90	50-5	NA	MW5-35-35.5		뗿둲쁥녎욯똅뙲쒉븄뱮꼞슻볞놰탒쏊쏊 삥챵붃딦딿둲쇟렮븮묷렮렮렮렮렮븮햜쁥둲랦	
40 –		40-40.5' GRAVEL, fine to coarse, with fine to medium	sand, trace silt,	58.7	100	50-6	NA	MW5-40-40.5		static data and a subscription of the subscrip	PVC Blan
45 -		45-45.5' Rock in shoe, no recovery.	GP	a	0	50-5	NA				Sandpack
50 -		50-50.5' GRAVEL, with sand and silt, brown, very der	se, moist, no	189 [100	50-6	NA	MW5-50-50.5			Screen
55 -		55-55.5' GRAVEL, fine to coarse, with fine to coarse s	sand, brown, GP	ৰ <i>়</i>	100	50-6	NA	MW5-55-55.5			
60 -		59.5-60' SAND, fine to medium, trace rounded gravel dense, wet, no odor.	, brown, very	na	100	50-6	NA	MW5-59.5-60			

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: Flush Mount 2/12 Monterey Sand Filter Pack: Casing Diameter (inches): 2-inch Top of Casing Elevation (ft): NA Surface Seal: Concrete NA Boring Abandonment: Screen Slot Size (inches): 0.010 Annular Seal: Bentonite Surveyed Location: X: NA Y: NA Screened Interval (ft bgs): 50-60

	Z	320 3rd Avenue NE Issaquah, WA 98027							MW-8			Page 1 of 2
.00	jec ati	t: Former City Hand Laundry on: Bremerton, Washington	Date/Time Started: Date/Time Complet Equipment: Drilling Company: Drilling Foreman:	ted:	5/9/20 5/9/20 CME Casca Scott)05 ⁻ 75 ade l	1630 Drilling	Driv Dep Tota	npler Type: SS /e Hammer (Ibs.) oth of Water ATD al Boring Depth (al Well Depth (ft I	: (ft bg (ft bgs	s):	300 48 55.5 55
	_	2.4	Filling Method:				em Auger			- 3-,-		00
	Sample Interval	Lithologic Description	n	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Con	ring/Well nstruction Details
-		0-5' Air Knife/Vacuum excavated.										Concrete
5	X	5-6.5' SILT, trace fine sand, brown with orange mottlin moist, no odor.	g, medium stiff,	ML		100	4/5/5	NA	MW8-5-6.5			
	X	10-11.5' SILT, trace fine sand, brown with orange mot stiff, moist, no odor.	tling, medium	ML		100	10/10/11	ŇΑ	MW8-10-11.5			Bentonite
	X	15-16.5' SAND, fine to medium, greyish brown, mediu no odor.		SP		80	15/18/20	NA	MW8-15-16.5			PVC Blar
	X	20-21.5' SAND, fine to medium, greyish brown, mediu no odor.		SP		60	13/15/18	NA	MW8-20-21.5			
	X	25-26.5' SAND, fine to medium, with fine to coarse gra brown, medium dense, slightly moist, no odor.	avel, greyish	SP		75	30/32/35	NA	MW8-25-26:5			L.

	N.	FARALLON CONSULTING 320 3rd Avenue NE Issaquah, WA 98027	,	Lo	go	of	Bori	ing	:MW-8	a:	Pa	age 2 of 2
Depth (feet bgs.)	Sample Interval	Lithologic Description	n	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	Well struction)etails
-30 	X	30-30.5' Sandy GRAVEL, fine to coarse, subrounded greyish brown, very dense, slightly moist, no odor. 35-35.5' Sandy GRAVEL, fine to coarse, subrounded	/	GP /	8		50-6	NA	MW8-30-30.5 MW8-35-35.5		킍볞쳝퀯먣쒡턯볞쇘 웒 딦딦닅쎫뒛턆볞렮톉럜	Bentonite
- - - 40		40-40.5' SAND, fine to medium, with fine to coarse su subangular gravel, minor silt, grey brown, very dense,	b odor.	<u>````</u>		100	50-6	NA	MW8-40-40.5		꺴옱뀰볞볞棍붋춣썵퀂톎둲톎 깇퓲텩슻혦븮볞놂붱븮뷶	PVC Blank
 45 	X	45-45.5' GRAVEL, fine to coarse, subrounded to suba to medium sand, minor silt (nodules), greyish brown, v moist, no odor.	ingular, with fine	GP-GN		100	50-6	NA	MW8-45-45.5			Sandpack
 50 	×	50-50.5' Sandy GRAVEL, fine to coarse, rounded, min	nor silt, brown,	GP-GN	IJW	15	50-6	NA	MW8-50-50.5			Screen
55 -		55-55.5' Sandy GRAVEL, fine to coarse, with silt, brown	wn, dense, wet,	GM	<u>sal</u>	100	50-6	NA	MW8-55-55.5			
 									-			

N AT Thick Ma		Well C	onstruction Inform	nation Ground	Surface Eleva	ation (ft):	NA
Monument Type: Flush Mo	unt	Filter Pack:	2/12 Monterey Sand			. ,	NA
Casing Diameter (inches):	2-inch	T MGI T AGK.		Top of C	asing Elevati	ion (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring A	Abandonment	:	NA
Screened Interval (ft bgs):	45-55	Annular Seal:	Bentonite	Surveyed Location:	X: NA	Y: NA	

2050	V	320 3rd Avenue NE Issoquah, WA 98027	۵ ۲.		90			·g·	MW-9		F	Page 1 of 2
Pro _oc	cati allo	ct: Former City Hand Laundry ion: Bremerton, Washington on PN: 603-001	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ted:	Scott	75 ade l Krue	Drilling	Driv Dep Tota Tota	npler Type: SS ve Hammer (Ibs.) oth of Water ATD al Boring Depth al Well Depth (ft):) (ft l (ft b)	ogs): gs):	300 48 55.5 55.0
_0	gge	ed By: J. Schmitt	Drining method.							<u> </u>		
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Cor	ring/Well Instruction Details
0 -		0-2" Asphalt.	/	AC								1)
4	X	2.5-4' Sandy SILT, fine sand, yellow/brown with oran medium stiff, moist, no odor.	ge mottling,			100	4/5/5	1143	MW9-2.5-4			Concrete
5 - -	X	5-6.5' Silty SAND, fine, with stringers of sandy silt, ye with orange mottling, medium stiff, moist, no odor.	ellowish brown	SM		100	4/5/5	1495	MW9-5-6.5			
- 0		10-11.5' Silty SAND, fine, light greyish brown, mediu no odor.	m dense, moist,	SM		100	12/15/16	751	MW9-10-11.5			Bentonite
5-		15-16.5' SAND, fine to medium, with silt, (silty-fine s greyish brown, medium dense, moist, no odor.	and stringers),	SM		100	11/12/12	850	MW9-15-16.5			
 0 		20-21.5' SAND, fine to medium (trending to fine), tra brown, medium dense, moist, no odor.	ce silt, greyish	SP		75	14/15/15	1910	. MW9-20-21.5		a se a se	PVC Blan
5 —		25-26.5' SAND, fine to medium, trace to minor silt, tr brown, medium dense, moist, no odor.	ace gravel,	SP		80	12/13/15	3000+	MW9-25-26.5			
0												6
asī	ing D	nt Type: Flush Mount Filter Pack	Construction 2/12 Monterey s al: Concrete		natic	on	То	p of Ca	urface Elevation Ising Elevation (Dandonment:	• •	: NA NA	λ

Cast	V	FARALLON CONSULTING 320 3rd Avenue NE Issaquah, WA 98027		Lo	g	of	Bor	ing	:MW-9		Pa	age 2 of 2
Depth (feet bgs.)	Sample Interval	Lithologic Description	ו	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	Well struction)etails
30	X	30-31.5' Gravelly SAND, fine to medium, gravel is fine, silt, moist, dense, no odor.	, rounded, trace	SP		100	30/42/ 50-4	685	MW9-30-31.5	-		
35 –		35-35.5' Gravelly SAND, fine to medium, gravel mosti subrounded to subangular, trace silt, moist, dense, no	y fine, odor.	SP /	918	100	50-6	930	MW9-35-35.5		쁥쵌왥ኮ볞볞븮놰볞볛탒슻슻걙봕븅굲놰峭볞볞볞볞븮	Bentonite
40 -	- ×	40-40.5' Sandy GRAVEL, fine to coarse, rounded, trac moist, very dense, no odor.	e silt, brown,	GP ,	58	100	50-6	1190	MW9-40-40.5			PVC Blank
45 -	-	45-45.5' Sandy GRAVEL, fine to coarse, subrounded t trace silt, brown, moist, very dense, no odor.	o subangular, , , , , , , , , , , , , , , , , , ,	GP //	<u>)16</u>	100	50-6	1320	MW9-45-45.5			Sandpack
50 -	-	50-50.5' Sandy GRAVEL, fine to coarse, subrounded t trace silt, brown, wet, very dense, no odor.	to subangular,	GP /	.	60	50-5	271	MW9-50-50.5			Screen
 55 -	-	55-55.5' Sandy GRAVEL, mostly fine to coarse, minor dense, no odor.	silt, brown, wet,	GP-GM	12	[100	50-6	640	MW9-55-55.5			
60-	-											

Į.			Woll C	onstruction Inform	ation		
ł,	Monument Type: Flush Mou	nt		2/12 Monterey Sand	Ground	Surface Elevation	(ft): NA
	Casing Diameter (inches):	2-inch	Filter Pack:	Z/12 Monterey Sand	Top of C	asing Elevation (f	t): NA
Ĩ	Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring A	bandonment:	NA
L	Screened Interval (ft bgs):	45-55	Annular Seal:	Bentonite	Surveyed Location:	X: NA	Y: NA

[

	V	FARALLON CONSULTING 320 3rd Avenue NE Issaquah, WA 98027		Lo	g o	of E	Bori	ng:	MW-1D		
Pro Loo Fai	cat rallo	:: Stuart and Patricia Milbrad ct: Former City Hand Laundry ion: Bremerton, Washington on PN: 603-001 ed By: J. Schmitt	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	eted: ;	Scott	5 150 75 ade [Krue	00 Drilling	Dri De Toi Toi	mpler Type: SS ve Hammer (Ibs.) pth of Water ATD tal Boring Depth (ft tal Well Depth (ft	: (ft (ft b	ogs): 80
Depth (feet bgs.)	Sample Interval	Lithologic Descrip	tion	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0 0 30 - 10 - 15 - 20 - 25 - 30 - 30 - 35 - 35 -		Lithology not logged, see boring log for MW-1	ell Construction	NA		NA	NA	NA	NA		Concrete Bentonite PVC Blank
Cas Scre	ing C en S	ent Type: Flush Mount Diameter (inches): 2-inch Slot Size (inches): 0.010 Surface					Тс	op of C oring A	Surface Elevation asing Elevation (f bandonment: X: NA	ft):): NA NA NA

	V	FARALLON CONSULTING 320 3rd Avenue NE Issaquah, WA 98027		Lo	go	of I	Bori	ing	:MW-1D		P	age 2 of 2
Depth (feet bgs.)	Sample Interval	Lithologic Description		nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	Well struction Details
40 - - - 45 - -			5				2				a una una leva leva leva leva leva leva leva lev	Bentonite
50 — - -	X	Gravelly SAND, fine to coarse, sand is fine to coarse brown, very dense, slight odor.	e, rounded, wet,	SP		NA	NA	NA	MW1D-50-51.5			
- -	×	Silty GRAVEL, with sand, brown, very dense	^ ^	GM ,	12 I.	NA	NA	NA	MW1D-55-55.5		a ka ki ka ka ka ka Sistema ka ka ka	
- 60 — -		SAND, fine to medium, minor silt, very dense, slight	odor Gi	P-GM	שננ	NA	NA	NA	MW1D-60-60.5			PVC Blanl
65 — - -		SAND, fine to coarse. with fine gravel, minor silt (sil dense, slight odor	4-	P-SM	22	NA	NA	NA	MW1D-65-65.5			
70 —	- 	GRAVEL, with sand and silt, wet, dense, slight odo		GM ;	JCI.	NA	NA	NA	MW1D-70-70.5			
1	×	GRAVEL, with sand, minor silt, wet, dense, slight o	dor , Ģi	P-GŅ	DIZ	NA	NA	NA	MW1D-72.5-73			
75 —	-	Sandy GRAVEL, fine to coarse, sand is fine to coar very dense, no odor	se, trace silt, wet,	GP ,	147	NA	NA	NA	MW1D-75-75.5			Sandpack
80 —		Gravelly SAND, medium to coarse, gravel is fine to dense, no odor	coarse, very	SP	979		NA_	NA	MW1D-79.5-80			Screen

Monument Type:Flush MountCasing Diameter (inches):2-inchScreen Slot Size (inches):0.010Screened Interval (ft bgs):78-80

1

 Well Construction Information
 Ground Surface

 Filter Pack:
 2/12 Monterey Sand
 Top of Casing E

 Surface Seal:
 Concrete
 Boring Abandor

 Annular Seal:
 Bentonite
 Surveyed Location:
 X: NA

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA Boring Abandonment: NA Location: X: NA Y: NA

	V	FARALLON CONSULTING 320 3rd Avenue NE Issaquah, WA 98027		Lo	g o	of E	Bori	ng:	AS-1		Page 1 of 2	
Far	ojeo cat rallo	Stuart and Patricia Milbrad ct: Former City Hand Laundry ion: Bremerton, Washington on PN: 603-001 ed By: J. Schmitt	Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	Started: Sampler Type: SS 18"x 3" Completed: Drive Hammer (lbs.): 3 t: CME 75 Depth of Water ATD (ft bgs): 4 ompany: Cascade Drilling Total Boring Depth (ft bgs): 8 reman: Scott Krueger Total Well Depth (ft bgs): 8			'x 3" 300 bgs): 49 ogs): 80					
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	ion	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Boring/Wel Constructio Details	
											Concrete	
15		Lithology not logged, see boring log for VE-4.				NA	NA	NA	NA			
30											PVC Bla	лk
Mon Casi Scre	ing E een S	ent Type: Flush Mount Diameter (inches): 2-inch Slot Size (inches): 0.010 Surface S	Il Construction I k: 2/12 Monterey S eal: Concrete seal: Bentonite				То	p of C oring A	Surface Elevation asing Elevation (bandonment: X: NA	ft):): NA NA NA	

	V	FARALLON CONSULTING 320 3rd Avenue NE Issaquah, WA 98027		Lo	g	of	Bor	ing	:AS-1		Page	e 2 of 2
Deptn (reet bgs.)	Sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	onsti	ell ruction tails
0		Lithology not logged, see boring log for VE-4,				NA	NA	NA	NA		B	entonite Z
5		GRAVEL, fine to coarse, with fine to coarse sand, n dense, brown, no odor.	ninor silt, wet, very	BP-GM	212	NA	NA	NA	AS1-60-61		P	VC Blank
5- - -		GRAVEL, fine to coarse, with fine to coarse sand, to dense, brown, no odor.	ace silt, wet, very	GP /	250	NA	NA	NA	AS1-65-65.5			
-0	XX	GRAVEL, fine to coarse, trace coarse sand, wet, ve		GP ,	250	NA		NA NA	AS1-70-70.5 AS1-72.5-73			
5	×	Control Contro	nd, wet, very	GP ,		NA		NA	AS1-75-75.5		s	andpack
0 —	\boxtimes	SAND, medium to coarse, trace fine to coarse grav brown, no odor.	el, wet, very dense,	SP	<u>Dia</u>	NA	NA	NA	AS1-79-80		s	creen

Monument Type:Flush MountCasing Diameter (inches):2-inchScreen Slot Size (inches):0.010Screened Interval (ft bgs):78-80

 Well Construction Information

 Filter Pack:
 2/12 Monterey Sand

 Surface Seal:
 Concrete

 Annular Seal:
 Bentonite
 Surve

ation Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA Boring Abandonment: NA Surveyed Location: X: NA Y: NA

APPENDIX B LABORATORY ANALYTICAL REPORTS

ADDITIONAL SUBSURFACE INVESTIGATION AND FEASIBILITY TESTING REPORT TCP ID#NW1243

Former City Hand Laundry Property 1002 4th Street Bremerton, Washington

Farallon PN: 603-001

K:\Projects\603001 Land Title Building\Reports\Add Site Invest-Feas Test Rpt\Add Inv AS Feas Test Rpt.doc

152	JUN	0	2	20	105
					.0.5

May 19, 2005

Jeff Kaspar Farallon Consulting, LLC 320 3rd Avenue NE, Suite 200 Issaquah, WA 98027

Re: Analytical Data for Project 603-001 Laboratory Reference No. 0505-059

Dear Jeff:

Enclosed are the analytical results and associated quality control data for samples submitted on May 9, 2005.

Please note that the subcontracted data will follow in a later report.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baupleister Project-Manager

Enclosures

Date of Report: May 19, 2005 Samples Submitted: May 9, 2005 Laboratory Reference: 0505-059 Project: 603-001

Case Narrative

Samples were collected on May 7 and 8, 2005 and received by the laboratory on May 9, 2005. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in preweighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The gasoline result for sample B1-5-6.5 is mainly attributed to a single peak (PCE).

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Halogenated Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in preweighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The value reported for Tetrachloroethene for sample MW5-5-6.5 exceeds the quantitation range and is therefore an estimate. The sample was analyzed by low-level method with Tetrachloroethene exceeding the calibration range. The sample was next analyzed by high-level method with a non-detect result for Tetrachloroethene. The sample was reanalyzed by low-level method with a significantly lower result for Tetrachloroethene than the initial low-level analysis. The sampling site appears to be non-homogenous. The highest level of Tetrachloroethene detected is being reported.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed. Date of Report: May 19, 2005 Samples Submitted: May 9, 2005 Laboratory Reference: 0505-059 Project: 603-001

NWTPH-Gx/BTEX

Date Extracted:	5-10-05
Date Analyzed:	5-11-05

Matrix: Soil Units: mg/kg (ppm)

Client ID:	B1-5-6.5	B1-7.5-9
Lab ID:	05-059-46	05-059-47

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND	 i) 	0.020	ND		0.020
Toluene	ND		0.065	ND		0.057
Ethyl Benzene	ND		0.065	ND		0.057
m,p-Xylene	ND		0.065	ND		0.057
o-Xylene	ND		0.065	ND		0.057
TPH-Gas	8.9	Z	6.5	ND		5.7
Surrogate Recovery: Fluorobenzene	77%			77%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

3

Date of Report: May 19, 2005 Samples Submitted: May 9, 2005 Laboratory Reference: 0505-059 Project: 603-001

NWTPH-Gx/BTEX

Date Extracted:	5-10-05
Date Analyzed:	5-11-05
Matrix: Soil Units: mg/kg (ppm)	8

Client ID:	B1-10-11.5
Lab ID:	05-059-48

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.056
Ethyl Benzene	ND		0.056
m,p-Xylene	ND		0.056
o-Xylene	ND		0.056
TPH-Gas	ND		5.6

90%

Surrogate Recovery: Fluorobenzene

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:	5-10-05
Date Analyzed:	5-10-05

Matrix: Soil Units: mg/kg (ppm)

Lab ID: MB0510S2

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND	9	0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
TPH-Gas	ND		5.0
Surrogate Recovery: Fluorobenzene	89%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted:	5-10-05
Date Analyzed:	5-10&11-05

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	05-068-02 Original	05-068-02 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	80%	86%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX MS/MSD QUALITY CONTROL

Date Extracted:	5-10-05
Date Analyzed:	5-10-05

Matrix: Soil Units: mg/kg (ppm)

Spike Level (ppm): 2.45

Lab ID:	05-068-01 MS	Percent Recovery	05-068-01 MSD	Percent Recovery	RPD	Flags
Benzene	2.50	102	2.53	103	1	
Toluene	2.55	104	2.58	105	1	
Ethyl Benzene	2.57	105	2.59	105	1	
m,p-Xylene	2.56	105	2.57	105	0	
o-Xylene	2.57	105	2.59	106	0	

Surrogate Recovery:		
Fluorobenzene	85%	85%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	5-12-05
Date Analyzed:	5-12-05

Matrix: Soil Units: mg/kg (ppm)

Client ID: Lab ID:	MW9-5-6.5 05-059-29	MW9-10-11.5 05-059-30	B1-5-6.5 05-059-46
			κ.
Diesel Range:	ND	ND	ND
PQL:	29	31	31
Identification:			
Lube Oil Range:	ND	ND	ND
PQL:	58	61	63
Identification:		<u></u>)	
Surrogate Recovery			
o-Terphenyl:	147%	124%	131%
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted: Date Analyzed:	5-12-05 5-12-05	
Matrix: Units:	Soil mg/kg (ppm)	
Client ID: Lab ID:	B1-7.5-9 05-059-47	B1-10-11.5 05-059-48
Diesel Range: PQL: Identification:	ND 28	ND 27
Lube Oil Range: PQL: Identification:	ND 57	ND 53
Surrogate Recovery o-Terphenyl:	123%	130%
Flags:	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	5-12-05
Date Analyzed:	5-12-05

Matrix: Soil Units: mg/kg (ppm)

Lab ID:		MB0512S1

Diesel Range:	ND
PQL:	25
Identification:	

Lube Oil Range:	ND
PQL:	50
Identification:	

142%

Y

Surrogate Recovery o-Terphenyl:

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	5-12-05
Date Analyzed:	5-12-05

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID;	05-059-29	05-059-29 DUP
		÷.,
Diesel Range:	ND	ND
PQL:	25	25
RPD:	N/A	

Surrogate Recovery		
o-Terphenyl:	147%	147%
Flags:	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date	Extracted:
Date	Analyzed:

Matrix:	Soil
Units:	mg/kg (ppm)

5-10-05 5-10-05

Lab ID:	05-059-02
Client ID:	MW4-10-11.5

8	_		
Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.00093
Chloromethane	ND		0.00093
Vinyl Chloride	ND		0.00093
Bromomethane	ND		0.00093
Chloroethane	ND		0.00093
Trichlorofluoromethane	ND		0.00093
1,1-Dichloroethene	ND		0.00093
lodomethane	ND		0.0046
Methylene Chloride	0.0077	Н	0.0046
(trans) 1,2-Dichloroethene	ND		0.00093
1,1-Dichloroethane	ND		0.00093
2,2-Dichloropropane	ND		0.00093
(cis) 1,2-Dichloroethene	0.0015		0.00093
Bromochloromethane	ND		0.00093
Chloroform	ND		0.00093
1,1,1-Trichloroethane	ND		0.00093
Carbon Tetrachloride	ND		0.00093
1,1-Dichloropropene	ND		0.00093
1,2-Dichloroethane	ND		0.00093
Trichloroethene	0.0019		0.00093
1,2-Dichloropropane	ND		0.00093
Dibromomethane	ND		0.00093
Bromodichloromethane	ND		0.00093
2-Chloroethyl Vinyl Ether	ND		0.0046
(cis) 1,3-Dichloropropene	ND		0.00093
(trans) 1,3-Dichloropropene	ND		0.00093

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	05-059-02
Client ID:	MW4-10-11.5

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.00093
Tetrachloroethene	0.16		0.00093
1,3-Dichloropropane	ND		0.00093
Dibromochloromethane	ND	3	0.00093
1,2-Dibromoethane	ND		0.00093
Chlorobenzene	ND		0.00093
1,1,1,2-Tetrachloroethane	ND		0.00093
Bromoform	ND		0.00093
Bromobenzene	ND		0.00093
1,1,2,2-Tetrachloroethane	ND		0.00093
1,2,3-Trichloropropane	ND		0.00093
2-Chlorotoluene	ND		0.00093
4-Chlorotoluene	ND		0.00093
1,3-Dichlorobenzene	ND		0.00093
1,4-Dichlorobenzene	ND		0.00093
1,2-Dichlorobenzene	ND		0.00093
1,2-Dibromo-3-chloropropane	ND		0.0046
1,2,4-Trichlorobenzene	ND		0.00093
Hexachlorobutadiene	ND		0.0046
1,2,3-Trichlorobenzene	ND		0.00093

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	84	71-126
Toluene, d8	90	73-130
4-Bromofluorobenzene	89	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted: Date Analyzed:

Matrix:	Soil
Units:	mg/kg (ppm)

5-10-05

5-10-05

Lab ID: 05-059-09 Client ID: MW4-45-45.5

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.00095
Chloromethane	ND		0.00095
Vinyl Chloride	ND		0.00095
Bromomethane	ND	5	0.00095
Chloroethane	ND		0.00095
Trichlorofluoromethane	ND		0.00095
1,1-Dichloroethene	ND		0.00095
lodomethane	ND		0.0048
Methylene Chloride	0.0061	н	0.0048
(trans) 1,2-Dichloroethene	ND		0.00095
1,1-Dichloroethane	ND		0.00095
2,2-Dichloropropane	ND .		0.00095
(cis) 1,2-Dichloroethene	ND		0.00095
Bromochluromethane	ND		0.00095
Chloroform	ND		0.00095
1,1,1-Trichloroethane	ND		0.00095
Carbon Tetrachloride	ND		0.00095
1,1-Dichloropropene	ND		0.00095
1,2-Dichloroethane	ND		0.00095
Trichloroethene	ND		0.00095
1,2-Dichloropropane	ND		0.00095
Dibromomethane	ND		0.00095
Bromodichloromethane	ND		0.00095
2-Chloroethyl Vinyl Ether	ND		0.0048
(cis) 1,3-Dichloropropene	ND		0.00095
(trans) 1,3-Dichloropropene	ND		0.00095

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	05-059-09
Client ID:	MW4-45-45.5

Compound	Results	Flags	PQL
1,1,2-Tricaloroethane	ND		0.00095
Tetrachloroethene	0.11		0.00095
1,3-Dichloropropane	ND		0.00095
Dibromochloromethane	ND		0.00095
1,2-Dibromoethane	ND		0.00095
Chlorobenzene	ND		0.00095
1,1,1,2-Tetrachloroethane	ND		0.00095
Bromoform	ND		0.00095
Bromobenzene	ND		0.00095
1,1,2,2-Tetrachloroethane	ND		0.00095
1,2,3-Trichloropropane	ND		0.00095
2-Chlorotoluene	ND		0.00095
4-Chlorotoluene	ND		0.00095
1,3-Dichlorobenzene	ND		0.00095
1,4-Dichlorobenzene	ND		0.00095
1,2-Dichlcrobenzene	ND		0.00095
1,2-Dibromo-3-chloropropane	ND		0.0048
1,2,4-Trichlorobenzene	ND		0.00095
Hexachlorobutadiene	ND		0.0048
1,2,3-Trichlorobenzene	ND		0.00095

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	81	71-126
Toluene, d8	79	73-130
4-Bromofluorobenzene	87	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted: Date Analyzed:	5-10-05 5-10-05		
Matrix: Units:	Ś	Soil mg/kg (ppm)	
		05 050 10	

Lab ID:	05-059-12
Client ID:	MW5-5-6.5

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND -		0.00084
Chloromethane	ND		0.00084
Vinyl Chloride	ND		0.00084
Bromomethane	ND		0.00084
Chloroethane	ND		0.00084
Trichlorofluoromethane	ND		0.00084
1,1-Dichloroethene	ND		0.00084
lodomethane	ND		0.0042
Methylene Chloride	ND		0.0042
(trans) 1,2-Dichloroethene	ND		0.00084
1,1-Dichloroethane	ND		0.00084
2,2-Dichloropropane	ND		0.00084
(cis) 1,2-Dichloroethene	ND		0.00084
Bromochloromethane	ND		0.00084
Chloroform	ND		0.00084
1,1,1-Trichloroethane	ND		0.00084
Carbon Tetrachloride	ND		0.00084
1,1-Dichloropropene	ND		0.00084
1,2-Dichloroethane	ND		0.00084
Trichloroethene	ND		0.00084
1,2-Dichloropropane	ND		0.00084
Dibromomethane	ND		0.00084
Bromodichloromethane	ND		0.00084
2-Chloroethyl Vinyl Ether	ND		0.0042
(cis) 1,3-Dichloropropene	ND		0.00084
(trans) 1,3-Dichloropropene	ND		0.00084

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	05-059-12
Client ID:	MW5-5-6.5

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND	-	0.00084
Tetrachloroethene	1.0	E	0.00084
1,3-Dichloropropane	ND		0.00084
Dibromochloromethane	ND		0.00084
1,2-Dibromoethane	ND		0.00084
Chlorobenzene	ND -		0.00084
1,1,1,2-Tetrachloroethane	ND		0.00084
Bromoform	ND		0.00084
Bromobenzene	ND		0.00084
1,1,2,2-Tetrachloroethane	ND		0.00084
1,2,3-Trichloropropane	ND		0.00084
2-Chlorotoluene	ND		0.00084
4-Chlorotoluene	ND		0.00084
1,3-Dichlorobenzene	ND		0.00084
1,4-Dichlorobenzene	ND		0.00084
1,2-Dichlorobenzene	ND		0.00084
1,2-Dibromo-3-chloropropane	ND		0.0042
1,2,4-Trichlorobenzene	ND		0.00084
Hexachlorobutadiene	ND		0.0042
1,2,3-Trichlorobenzene	ND		0.00084

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	84	71-126
Toluene, d8	90	73-130
4-Bromofluorobenzene	80	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	5-11-05
Date Analyzed:	5-11-05

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 05-059-13 Client ID: MW5-10-11.5

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane	ND		0.0010
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0010
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
lodomethane	ND		0.0051
Methylene Chloride	ND		0.0051
(trans) 1,2-Dichloroethene	ND		0.0010
1,1-Dichloroethane	ND		0.0010
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0051
(cis) 1,3-Dichloropropene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID: Client ID:	05-059-13 MW5-10-11.5			
Compound 1,1,2-Trichloroethane Tetrachloroethene 1,3-Dichloropropane Dibromochloromethane 1,2-Dibromoethane Chlorober.zene 1,1,1,2-Tetrachloroethane Bromobenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane 2-Chlorotoluene 4-Chlorotoluene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropa 1,2,4-Trichlorobenzene Hexachlorobutadiene 1,2,3-Trichlorobenzene	ane	Results ND 0.036 ND ND ND ND ND ND ND ND ND ND ND ND ND	Flags	PQL 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0051 0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	76	71-126
Toluene, d8	84	73-130
4-Bromofluorobenzene	87	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted: Date Analyzed:

Matrix: Units:

Lab ID:	05-059-20
Client ID:	MW5-50-50.5

5-11-05 5-11-05

mg/kg (ppm)

Soil

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.00079
Chloromethane	ND		0.00079
Vinyl Chlcride	ND		0.00079
Bromomethane	ND		0.00079
Chloroethane	ND		0.00079
Trichlorofluoromethane	ND		0.00079
1,1-Dichloroethene	ND		0.00079
lodomethane	ND		0.0040
Methylene Chloride	0.0047	Н	0.0040
(trans) 1,2-Dichloroethene	ND		0.00079
1,1-Dichloroethane	ND		0.00079
2,2-Dichloropropane	ND		0.00079
(cis) 1,2-Dichloroethene	ND		0.00079
Bromochloromethane	ND		0.00079
Chloroform	ND		0.00079
1,1,1-Trichloroethane	ND		0.00079
Carbon Tetrachloride	ND		0.00079
1,1-Dichloropropene	ND		0.00079
1,2-Dichloroethane	ND		0.00079
Trichloroethene	ND	-	0.00079
1,2-Dichloropropane	ND		0.00079
Dibromomethane	ND		0.00079
Bromodichloromethane	ND		0.00079
2-Chloroethyl Vinyl Ether	ND		0.0040
(cis) 1,3-Dichloropropene	ND		0.00079
(trans) 1,3-Dichloropropene	ND		0.00079
•			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID: Client ID·	05-059-20 MW5-50-50.5			
Client ID Compound 1,1,2-Trichloroethane Tetrachloroethene 1,3-Dichloropropane Dibromochloromethane 1,2-Dibromoethane 1,2-Dibromoethane Chlorobenzene 1,1,2-Tetrachloroethane Bromoform Bromobenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane 2-Chlorotoluene 4-Chlorotoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	MW5-50-50.5	Results ND 0.041 ND ND ND ND ND ND ND ND ND ND ND ND ND	Flags	PQL 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene 1,2,3-Trichlorobenzene		ND ND ND ND		0.0040 0.00079 0.0040 0.00079

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	78	71-126
Toluene, d8	84	73-130
4-Bromofluorobenzene	87	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	5-10-05
Date Analyzed:	5-10-05

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	05-059-27
Client ID:	AS1-79-80

Compound Dichlorodifluoromethane Chloromethane Vinyl Chloride	Results ND ND ND	Flags	PQL 0.00095 0.00095 0.00095
Bromomethane	ND		0.00095
Chloroethane	ND		0.00095
Trichlorofluoromethane	ND		0.00095
1,1-Dichloroethene	ND		0.00095
lodomethane	ND		0.0047
Methylene Chloride	0.0076	Н	0.0047
(trans) 1,2-Dichloroethene	ND		0.00095
1,1-Dichl. roethane	ND		0.00095
2,2-Dichloropropane	ND		0.00095
(cis) 1,2-Dichloroethene	ND		0.00095
Bromochloromethane	ND		0.00095
Chloroform	ND		0.00095
1,1,1-Trichloroethane	ND		0.00095
Carbon Tetrachloride	ND		0.00095
1,1-Dichloropropene	ND		0.00095
1,2-Dichloroethane	ND		0.00095
Trichloroethene	ND		0.00095
1,2-Dichloropropane	ND		0.00095
Dibromomethane	ND		0.00095
Bromodichloromethane	ND		0.00095
2-Chloroethyl Vinyl Ether	ND		0.0047
(cis) 1,3-Dichloropropene	ND		0.00095
(trans) 1,?-Dichloropropene	ND		0.00095

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

22

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	05-059-27
Client ID:	AS1-79-80

Compound 1,1,2-Trichloroethane Tetrachloroethene 1,3-Dichloropropane Dibromochloromethane 1,2-Dibromoethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform Bromobenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane 2-Chlorotoluene	Results ND 0.013 ND ND ND ND ND ND ND ND ND	Flags	PQL 0.00095 0.00095 0.00095 0.00095 0.00095 0.00095 0.00095 0.00095 0.00095 0.00095 0.00095
Bromoform	ND		0.00095
Bromobenzene	ND		0.00095
1,1,2,2-Tetrachloroethane	ND		0.00095
1,2,3-Trichloropropane	ND		0.00095
2-Chlorotoluene	ND		0.00095
4-Chlorotaluene	ND		0.00095
1,3-Dichlorobenzene	ND		0.00095
1,4-Dichlorobenzene	ND		0.00095
1,2-Dichlorobenzene	ND		0.00095
1,2-Dibromo-3-chloropropane	ND		0.0047
1,2,4-Trichlorobenzene	ND		0.00095
Hexachlorobutadiene	ND		0.0047
1,2,3-Trichlorobenzene	ND		0.00095

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	80	71-126
Toluene, d8	85	73-130
4-Bromofluorobenzene	96	70-130

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	5-10&11-05
Date Analyzed:	5-10&11-05

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	05-059-29
Client ID:	MW9-5-6.5

Compound Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Iodomethane Methylene Chloride (trans) 1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane (cis) 1,2-Dichloroethene Bromochloromethane Chloroform	Results ND ND ND ND ND ND ND ND ND ND ND ND ND	Flags H	PQL 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073
1,1,1-Trichloroethane Carbon Tetrachloride	ND ND ND		0.00073 0.00073 0.00073
1,1-Dichloropropene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Dibromomethane Bromodichloromethane 2-Chloroethyl Vinyl Ether	ND ND ND ND ND ND		0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.0036
(cis) 1,3-Dichloropropene (trans) 1,3-Dichloropropene	ND ND		0.00073 0.00073

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	05-059-29
Client ID:	MW9-5-6.5

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.00073
Tetrachloroethene	1.5		0.037
1,3-Dichloropropane	ND		0.00073
Dibromochloromethane	ND		0.00073
1,2-Dibromoethane	ND		0.00073
Chlorobenzene	ND		0.00073
1,1,1,2-Tetrachloroethane	ND		0.00073
Bromoform	ND		0.00073
Bromobenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropronane	ND		0.00073
2-Chlorotoluene	ND		0.00073
4-Chlorotoluene	ND		0.00073
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2 Dichlorobenzene	ND ND		0.00073 0.00073 0.00073
1,2-Dibromo-3-chloropropane	ND		0.0036
1,2,4-Trichlorobenzene	ND		0.00073
Hexachlorobutadiene	ND		0.0036
1,1,1,2-Tetrachloroethane Bromoform Bromobenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane 2-Chlorotoluene 4-Chlorotoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND		0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	77	71-126
Toluene, d8	84	73-130
4-Bromofluorobenzene	80	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	5-10&11-05
Date Analyzed:	5-10&11-05

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 05-059-30 Client ID: MW9-10-11.5

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	· · · · · · · · · · · · · · · · · · ·	0.00069
Chloromethane	ND	5	0.00069
Vinyl Chlaride	ND		0.00069
Bromomethane	ND		0.00069
Chloroethane	ND		0.00069
Trichlorofluoromethane	ND		0.00069
1,1-Dichloroethene	ND		0.00069
lodomethane	ND		0.0035
Methylene Chloride	0.0040	н	0.0035
(trans) 1,2-Dichloroethene	ND		0.00069
1,1-Dichlcroethane	ND		0.00069
2,2-Dichloropropane	ND		0.00069
(cis) 1,2-Dichloroethene	0.022		0.00069
Bromochloromethane	ND		0.00069
Chloroform	ND		0.00069
1,1,1-Trichloroethane	ND		0.00069
Carbon Tetrachloride	ND		0.00069
1,1-Dichloropropene	ND		0.00069
1,2-Dichlo:oethane	ND		0.00069
Trichloroethene	0.021		0.00069
1,2-Dichloropropane	ND		0.00069
Dibromomethane	ND		0.00069
Bromodichloromethane	ND		0.00069
2-Chloroethyl Vinyl Ether	ND		0.0035
(cis) 1,3-Dichloropropene	ND		0.00069
(trans) 1,3-Dichloropropene	ND		0.00069

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	05-059-30
Client ID:	MW9-10-11.5

Compound	Results ND	Flags	PQL 0.00069
1,1,2-Trichloroethane Tetrachloroethene	3.8		0.22
1,3-Dichloropropane	ND		0.00069
	ND		0.00069
Dibromochloromethane	ND		0.00069
1,2-Dibromoethane	ND		0.00069
1,1,1,2-Tetrachloroethane	ND		0.00069
Bromoform	ND		0.00069
Bromobenzene	ND		0.00069
1,1,2,2-Tetrachloroethane	ND		0.00069
1,2,3-Trich ¹ oropropane	ND		0.00069
2-Chlorotoluene	ND		0.00069
4-Chlorotoluene	ND		0.00069
1,3-Dichlcrobenzene	ND		0.00069
1,4-Dichlorobenzene	ND		0.00069
1,2-Dichlorobenzene	ND		0.00069
1,2-Dibromo-3-chloropropane	ND		0.0035
1,2,4-Trichlorobenzene	ND		0.00069
Hexachlorc butadiene	ND		0.0035
1,2,3-Trichlorobenzene	ND		0.00069

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	78	71-126
Toluene, d ⁸		73-130
4-Bromofluorobenzene	90	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WK 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:		5-10&11-05
Date Analyzed:	a)	5-10&11-05

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	05-059-32	
Client ID:	MW9-20-21.5	

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.00061
Chlorome [®] hane	ND		0.00061
Vinyl Chloride	ND		0.00061
Bromomethane	ND		0.00061
Chloroethane	ND		0.00061
Trichlorofluoromethane	ND		0.00061
1,1-Dichloroethene	ND		0.00061
lodomethane	ND		0.0030
Methylene Chloride	0.0038	н	0.0030
(trans) 1,2-Dichloroethene	ND		0.00061
1,1-Dichloroethane	ND		0.00061
2,2-Dichloropropane	ND		0.00061
(cis) 1,2-Dichloroethene	0.0031		0.00061
Bromochloromethane	ND		0.00061
Chloroform	ND		0.00061
1,1,1-Trichloroethane	ND		0.00061
Carbon Tetrachloride	ND		0.00061
1,1-Dichloropropene	ND		0.00061
1,2-Dichloroethane	ND		0.00061
Trichloroethene	0.0024		0.00061
1,2-Dichloropropane	ND		0.00061
Dibromomethane	ND		0.00061
Bromodichloromethane	ND		0.00061
2-Chloroethyl Vinyl Ether	ND		0.0030
(cis) 1,3-Dichloropropene	ND		0.00061
(trans) 1,3-Dichloropropene	ND		0.00061

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	05-059-32
Client ID:	MW9-20-21.5

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.00061
Tetrachloroethene	1.1		0.039
1,3-Dichloropropane	ND		0.00061
Dibromochloromethane	ND		0.00061
1,2-Dibromoethane	ND		0.00061
Chlorobenzene	ND		0.00061
1,1,1,2-Tetrachloroethane	ND		0.00061
Bromoform	ND		0.00061
Bromobenzene	ND		0.00061
1,1,2,2-Tetrachloroethane	ND		0.00061
1,2,3-Trichloropropane	ND		0.00061
2-Chlorotoluene	ND		0.00061
4-Chlorotoluene	ND		0.00061
1,3-Dichlorobenzene	ND		0.00061
1,4-Dichlorobenzene	ND		0.00061
1,2-Dichlorobenzene	ND		0.00061
1,2-Dibromo-3-chloropropane	ND		0.0030
1,2,4-Trichlorobenzene	ND		0.00061
Hexachloroputadiene	ND		0.0030
1,2,3-Trichlorobenzene	ND		0.00061

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	84	71-126
Toluene, d8	86	73-130
4-Bromofluorobenzene	93	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	5-10&11-05 5-10&11-05
Date Analyzed:	5-10&11-05
Matrix:	Soil mg/kg (ppm)
Units:	mg/kg (ppm)

Lab ID: 05-059-37 Client ID: MW9-45-45.5

Compound	Results	Flags	PQL
Dichlorodifiuoromethane	ND		0.00081
Chloromethane	ND		0.00081
Vinyl Chloride	ND		0.00081
Bromomethane	ND		0.00081
Chloroethane	ND		0.00081
Trichlorofluoromethane	ND		0.00081
1,1-Dichloroethene	ND		0.00081
lodomethane	ND		0.0040
Methylene Chloride	0.0044	н	0.0040
(trans) 1,Dichloroethene	ND		0.00081
1,1-Dichloroethane	ND		0.00081
2,2-Dichloropropane	ND		0.00081
(cis) 1,2-Dichloroethene	0.0047		0.00081
Bromochloromethane	ND		0.00081
Chloroform	ND		0.00081
1,1,1-Trichloroethane	ND		0.00081
Carbon Tetrachloride	ND		0.00081
1,1-Dichloropropene	ND		0.00081
1,2-Dichleroethane	ND	08	0.00081
Trichloroethene	0.0028		0.00081
1,2-Dichloropropane	ND		0.00081
Dibromomethane	ND		0.00081
Bromodichloromethane	ND		0.00081
2-Chloroethyl Vinyl Ether	ND		0.0040
(cis) 1,3-[ichloropropene	ND		0.00081
(trans) 1,3-Dichloropropene	ND		0.00081

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

30

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID: Client ID:	05-059-37 MW9-45-45.5		
		s Flags	PQL 0.00081 0.0037 0.00081 0.00081 0.00081 0.00081 0.00081 0.00081 0.00081
1,2,3-Trich oropropane 2-Chlorotoluene 4-Chlorotoluene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trich;orobenzene Hexachlorobutadiene 1,2,3-Trichlorobenzene	ND ND ND ND ND ND ND ND ND ND ND		0.00081 0.00081 0.00081 0.00081 0.00081 0.0040 0.0040 0.0040 0.0040

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	82	71-126
Toluene, d8	91	73-130
4-Bromofl'iorobenzene	96	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date	Extracted:
Date	Analyzed:

Matrix: Soil Units: mg/kg (ppm)

5-10-05 5-10-05

Lab ID: 05-059-44 Client ID: MW1D-70-70.5

Compound	Results ND	Flags	PQL 0.00081
Dichlorodifluoromethane	ND		0.00081
Chloromethane	ND		0.00081
Vinyl Chloride			0.00081
Bromomethane	ND		0.00081
Chloroethane	ND		
Trichlorofluoromethane	ND		0.00081
1,1-Dichloroethene	ND		0.00081
lodomethane	ND		0.0040
Methylen Chloride	0.0063	Н	0.0040
(trans) 1,2-Dichloroethene	ND		0.00081
1,1-Dichloroethane	ND		0.00081
2,2-Dichloropropane	ND		0.00081
(cis) 1,2-Dichloroethene	ND		0.00081
Bromochloromethane	ND		0.00081
Chloroform	ND		0.00081
1,1,1-Trichloroethane	ND		0.00081
Carbon Tetrachloride	ND		0.00081
1,1-Dichloropropene	ND		0.00081
1,2-Dichloroethane	ND		0.00081
Trichloroethene	ND		0.00081
1,2-Dichloropropane	ND		0.00081
Dibromomethane	ND		0.00081
Bromodichloromethane	ND		0.00081
2-Chloroe hyl Vinyl Ether	ND		0.0040
(cis) 1,3-Dichloropropene	ND		0.00081
(trans) 1,3-Dichloropropene	ND		0.00081

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	
Client ID:	

05-059-44 MW1D-70-70.5

Compound 1,1,2-Trichloroethane Tetrachloroethene 1,3-Dichloropropane Dibromochloromethane 1,2-Dibromoethane Chlorobenzene 1,1,1,2-Tetrachloroethane Bromoform	Results ND 0.0031 ND ND ND ND ND ND	Flags	PQL 0.00081 0.00081 0.00081 0.00081 0.00081 0.00081 0.00081 0.00081
1,1,1,2-Tetrachloroethane	ND		0.00081
Bromoform	ND		0.00081
Bromobenzene	ND		0.00081
1,1,2,2-Tetrachloroethane	ND		0.00081
1,2,3-Trichloropropane	ND		0.00081
2-Chlorotoluene	ND		0.00081
4-Chlorotoluene	ND		0.00081
1,3-Dichlorobenzene	ND		0.00081
1,4-Dichlorobenzene	ND		0.00081
1,2-Dichlorobenzene	ND		0.00081
1,2-Dibromo-3-chloropropane	ND		0.0040
1,2,4-Trichlorobenzene	ND		0.00081
Hexachlorobutadiene	ND		0.0040
1,2,3-Trichlorobenzene	ND		0.00081

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	80	71-126
Toluene, d8	83	73-130
4-Bromofluorobenzene	94	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	5-10&11-05
Date Analyzed:	5-10&11-05
Matrix:	Soil
Units:	mg/kg (ppm)
	05 050 47

Lab ID:	05-059-47
Client ID:	B1-7.5-9

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.00093
Chloromethane	ND		0.00093
Vinyl Chlcride	ND		0.00093
Bromomethane	ND		0.00093
Chloroethane	ND		0.00093
Trichlorofluoromethane	ND		0.00093
1,1-Dichloroethene	ND		0.00093
lodomethane	ND		0.0047
Methylen Chloride	0.0080	н	0.0047
(trans) 1,2-Dichloroethene	ND		0.00093
1,1-Dichloroethane	ND		0.00093
2,2-Dichloropropane	ND		0.00093
(cis) 1,2-Dichloroethene	0.012		0.00093
Bromochloromethane	ND		0.00093
Chloroform	ND		0.00093
1,1,1-Trichloroethane	ND		0.00093
Carbon Tetrachloride	ND		0.00093
1,1-Dichloropropene	ND	6	0.00093
1,2-Dichloroethane	ND		0.00093
Trichloroethene	0.0091		0.00093
1,2-Dichloropropane	ND		0.00093
Dibromomethane	ND		0.00093
Bromodichloromethane	ND		0.00093
2-Chloroethyl Vinyl Ether	ND		0.0047
(cis) 1,3-Dichloropropene	ND		0.00093
(trans) 1,3-Dichloropropene	ND		0.00093
3			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	05-059-47
Client ID:	B1-7.5-9

Compound 1,1,2-Trichloroethane	Results ND	Flags	PQL 0.00093
Tetrachloroethene	0.21		0.046
1,3-Dichloropropane	ND		0.00093
Dibromochloromethane	ND		0.00093
1,2-Dibromoethane	ND		0.00093
Chlorobenzene	ND		0.00093
1,1,1,2-Tetrachloroethane	ND		0.00093
Bromoform	ND		0.00093
Bromobenzene	ND		0.00093
1,1,2,2-Tetrachloroethane	ND		0.00093
1,2,3-Trichloropropane	ND		0.00093
2-Chlorotoluene	ND		0.00093
4-Chlorotoluene	ND		0.00093
1,3-Dichlorobenzene	ND		0.00093
1,4-Dichlorobenzene	ND		0.00093
1,2-Dichlorobenzene	ND		0.00093
1,2-Dibromo-3-chloropropane	ND		0.0047
1,2,4-Tric'ilorobenzene	ND		0.00093
Hexachlorobutadiene	ND		0.0047
1,2,3-Trichlorobenzene	ND		0.00093

	Percent	Control
Surrogate	Recovery	Limits
Dibromofl ioromethane	78	71-126
Toluene, 68	82	73-130
4-Bromofluorobenzene	93	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 1 of 2

Date Extracted:	5-10-05
Date Analyzed:	5-10-05
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:

MB0510S1

Compound Dichlorodifluoromethane	Results ND	Flags	PQL 0.0010
Chloromethane	ND		0.0010
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0010
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
lodomethane	ND		0.0050
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
1,1-Dichloroethane	ND		0.0010
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 2 of 2

Lab ID:

MB0510S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0010
Tetrachloroethene	n ND		0.0010
1,3-Dichloropropane	ND		0.0010
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Bromoform	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chiorotoluene	ND		0.0010
1,3-Dichlerobenzene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	83	71-126
Toluene, d8	75	73-130
4-Bromofluorobenzene	81	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 1 of 2

Date Extracted:	5-11-05
Date Analyzed:	5-11-05

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:

MB0511S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane	ND		0.0010
Vinyl Chlcride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0010
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
lodomethane	ND		0.0050
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
1,1-Dichlcroethane	ND		0.0010
2,2-Dichlcropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichlcropropene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethył Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
(trans) 1, -Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W/ 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 2 of 2

Lab ID:

MB0511S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND	0	0.0010
Tetrachloroethene	ND		0.0010
1,3-Dichloropropane	ND		0.0010
Dibromochloromethane	ND		0.0010
1,2-Dibrornoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Bromoform	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trich propropane	ND		0.0010
2-Chloroteluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trich orobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	79	71-126
Toluene, do	84	73-130
4-Bromofl lorobenzene	84	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted:	5-10-05
Date Analyzed:	5-10-05
	· · · · · · · · · · · · · · · · · · ·

Matrix: Soil Units: mg/kg (ppm)

Lab ID: SB0510S1

Compound	Spike Amoun	SB	Percent Recovery	SBD	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorober.zene	0.0500 0.0500 0.0500 0.0500 0.0500	0.0474 0.0510 0.0519 0.0501 0.0502	104 100	0.0528 0.0484 0.0528 0.0496 0.0486	106 97 106 99 97	70-130 70-130 70-130 70-130 70-130	

		RPD	
	RPD	Limit	Flags
1,1-Dichloroethene	11	11	
Benzene	5	11	
Trichloroethene	2	13	
Toluene	1	11	
Chlorobenzene	3	12	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: May 19, 2005 Samples Submitted: May 9, 2005 Laboratory Reference: 0505-059 Project: 603-001

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted:	5-11-05
Date Analyzed:	5-11-05

Matrix: Soil Units: mg/kg (ppm)

Lab ID:

SB0511S1

Compound	Spike Amount	SB	Percent Recovery	SBD	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	0.0500	0.0521	104	0.0549	110	70-130	
Benzene	0.0500	0.0413	83	0.0428	86	70-130	
Trichloroethene	0.0500	0.0505	101	0.0509	102	70-130	
Toluene	0.0500	0.0491	98	0.0447	89	70-130	
Chlorobenzene	0.0500	0.0513	103	0.0494	99	70-130	

		RPD	
	RPD	Limit	Flags
1,1-Dichloroethene	5	11	
Benzene	4	11	
Trichloroethene	1	13	
Toluene	9	11	
Chlorobenzene	4	12	

Date of Report: May 19, 2005 Samples Submitted: May 9, 2005 Laboratory Reference: 0505-059 Project: 603-001

% MOISTURE

Date Analyzed: 5-10&12-05

Client ID	Lab ID	% Moisture
MW4-10-11.5	05-059-02	7
MW4-45-45.5	05-059-09	5
MW5-5-6 5	05-059-12	4
MW5-10- 1.5	05-059-13	4
MW5-50-50.5	05-059-20	7
AS1-79-80	05-059-27	23
MW9-5-6.5	05-059-29	14
MW9-10- 1.5	05-059-30	18
MW9-20-21.5	05-059-32	5
MW9-45-45.5	05-059-37	6
MW1D-70-70.5	05-059-44	19
B1-5-6.5	05-059-46	20
B1-7.5-9	05-059-47	12
B1-10-11.5	05-059-48	6

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

G - Insufficient sample quantity for duplicate analysis.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneit. The sample was re-extracted and re-analyzed with similar results.

L - The RP[is outside of the control limits.

M - Hydro arbons in the gasoline range (toluene-napthalene) are present in the sample.

O - Hydrocarbons indicative of diesel fuel are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surroga e recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

U - The analyte was analyzed for, but was not detected above the reported san ple quantitation limit.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to n atrix effects.

X - Sample extract treated with a silica gel cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Z - The gasoline result is mainly attributed to a single peak (PCE).

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

 \mathbf{X}

Chain of Custody

	1	
Page_	1	of

5

Environmental Inc.		Turnaround (in workin		it	La	bor	ato	ry	Nur	mbe	er:	0!	5-	0!	59									
14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • Fax: (425) 885-4603			And Color Statistics								語言	Re	que	stec	d Ar	naly	sis							
Company:		(Check	One)		PILICE							COLORING CO.												1
FATVALLON Project Number:	🔲 Sar	ne Day		1 Day					8260B															
603-001 Project Name:	2 D	21/		3 Day					/ 82(p						
FORT ALT HAND LOUDIDELL		-		-					Halogenated Volatiles by	700	≧		A	×	8									
FMP CITY HAND LAUNDRY Project Manager:	🛛 🕅 Sta	ndard (7 wo	orking da	ays)		EX		BOB	olatij	y 82	S.I.S		081	8151	etals									
SEFF KASPAR Sampled by: JOHN SCHMITT					GD	x/BT	×	y 82(ed V	les b	270(082	by 8	py .	Ň	als	1664			0	H		e	
NOHW SCHMITT		(oth	er)		王	D-H-	H-D	es	enat	olati	by 8	by 8	sides	cides	RCH	Met	Ā			0	\circ		Moisture	
	Date ampled	Time Sampled	Matrix	# of Cont.	UWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	lalog	Semivolatiles by 8270C	PAHs by 8270C / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals	TCLP Metals	HEM by	HΗΛ	H	11-	S		W %	
Lab ID Sample Identification S	ampieu	Sampleu		,	<u>sz</u>	Z	Z	>	T	0	0_	102	14	-	-		1	1						1
1 MW4-5-6.5 5	7105	0800	S	4		-			_		-	-			-	-		-	-				-	
2 mul-10-11,5		OGOY				5			Х	_	-							-						<u> </u>
3 MW4-15-16.5		0810																					_	
4 NAWY-20-21.5		0816																					_	
5 mwy-25-26.5		0820																						
1 mil 20 215		0825																						
6 muly-30-31,5		-			1			-		1														
7 mwy-35-35,5		0828				-		-	-	+	-	-		-	+	-	-	-						1
8 mW4-40-40.5		0834			_	_	-			-	-	-	_		-	-	-		-	-		_		/
8 mW4-40-40.5 9 mW4-45-45.5		0840		Y					X				_				_	-				_		<u>`</u>
10 mW4-50-50.5	\checkmark	0845	\downarrow	5										Sum Systems	10000					X				
Signature		Company				Date			Tim	e		Cor	nment	s/Spe	ecial I	nstru	iction	s:				TEL COM		
Relinquished by Jol Sd -t		FADY	ano	5			2/0	5	2	01	00	·												
Received by Art 51L		Forall				5/	1/04	6	8:	: 35,	An													
Relinquished by		-7		DY	,		10	10:	-1	10	\overline{o}													
Received by M.M.		10	B			5	19/1	25	1.	10	Ó	_												
Relinquished by		FARIL	i~			5/	4/0	5	4	70		4												
Received by art # 4		SRE	EDU	1		5	61	05	+ /	ο.	30							_						_
Reviewed by/Date	_	Reviewed	by/Date	·	_	_	_	_				Ch	roma -	togr	ams —	with	fina	l rep	ort 🗆]		1		

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Heport Copy - rink - Chem. Sopy

Heviewed by/Date		Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by		1		-Smm2-	17 mws-	16 MWS-	1	IN MWS-1	WWS-1	1	II MINA -	Company: Hole Number: Project Number: Project Name: Froject Name: Company: Company: Hole Company: Company: Project Number: Project Name: Froject Name: Froje	
	1	+# +W/ 11/	MIL MILL	- mm	+ + HU	JC 4/4C	1.000t	Signature	2	40-40.5	35-35.5	30-31.5	25-26-5	20-21.5	5-16.5		5-10.5	55-55	Hawp Lawp	
DISTRIBUTION LEGEND: White - OnSite Copy Yellow - report Copy - rink - Cirent copy	Deviewed hv/Date	L CESOS	Firal Im	05/25	GORFON	Fire Hon	Taraccon	Company	A NEW A	1148	IIIUS	1140	1134	1130	4511	0611	S111	H 5 0580 Saft/2	Turnaround Request (in working days) (Check One) Same Day 1 Day 2 Day 3 Day Standard (7 working days) (other) Date Time Sampled Sampled	
y- Yellow - Report Copy - Fink - Cherice		5/9/05 10.3"	54/15 10:30	2/5/05 1100	579/0511. or	5/4/15 8:5TM	delor 2000	Date Time	×							×	X		NWTPH-HCID Faboratory NWTPH-Gx/BTEX NWTPH-Dx Volatiles by 8260B Halogenated Volatiles by 8260B Semivolatiles by 8270C PAHs by 8270C / SIM	
	Chromatograms with final report				- <u>-</u>	<u></u>		Comments/Special Instructions:											PCBs by 8082 Pegge 8082 Pesticides by 8081A Pegge 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals Pege 8081 HEM by 1664 Pege 8081 VPH Pege 8081 FOC SOD	ע
									×	<						+			% Moisture	N

Chain of Custody

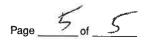
Page	2.	f 5
- v		-

Environmental Inc.		Turnaround (in workin			La	bora	ator	y N	lum	be	r:	05	5-1)5	9							
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Oh a sh	0.000								62.0P010255	10.00	ques		10.000	/sis				A.1.	61 (50) - (1 10 (5 / 20) 10 (5 / 20)	
FARALION Project Number: (063-001 Project Name:	- 20	(Check me Day Day		1 Day 3 Day				-	s by 8260B	20	5			(8)	-							
FIND CITY HAND LAUNDR Project Manager: JEFF KASPAN Sampled by: Sampled by:	T Sta	andard (7 wo (oth Time			NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by 8260B	Semivolatiles by 82/0C	PAHs by 8270C / SIM	PCBS by 8082	Pesticides by 8081A Herhicides hv 8151A	Total RCRA Metals	TCLP Metals	HEM by 1664	T	T	FOC	× 4.05		% Moisture
Lab ID Sample Identification	Sampled		Matrix	# of Cont,	MN	MN	NZ :	Vola	Halo	Ser	PAH		Pes	Tota	TCL	H	VPH	EPH	14	N	_	%
21 mW5-55-55.5	5/7/05	1715	S	5															χ			
22 MWS-59, J-100		12-25		4																	_	
23 AS1-60-61		1445		5																X		
24 AS1-65-65.5		1455		4																X		
25 AS1-70-70.5		1520		۱																X		
26 AJI-75-75.5		1530		4																		
22 ASI-79-80	4	1545		4				ľ	XL													X
28 MWG-2.5-4	5/8/05			4		Ξ.																
29 101109-5-10.5	í	0844		4			X	ľ	X		5											X
30 mwg-10-11,5	1	0848	\mathbf{A}	4	-		χı		X													4
Signature		Company		治-12-15年 第1923年 第1933年 第1933年		Date			Time	1. 1990 1987 (1)		Comr	nents/s	ipecial	Instr	uction	s: .`\	<u>(</u>			1.100	
Relinquished by Joa Shot		FAT	Lar	UDA.	1	1 1	8/0				20	2	k Y	inp	SI	an A	Te	t(m ?(+	1-1 k	:26 Jr	1-191	(41)
Received by		Iwally				11 1	105		8.5				-+	W.	5.0			21,		d	Salv	. lec
Relinquished by	<u> </u>	Funlly				5/	1/03	55	10:		_	P.	Lou	king m. o	fai	he Ist	mjo	211	Ujer	2 +0 -	10016	biler
Received by		Spei	=p~	1		1	1-				_					- ' •						
Relinquished by		OSE	-		-	61	9/0	V	11.	_												
Received by		Reviewed			÷	<u> </u>	uv	5	12	VU		Chro	omato	gram	s witl	h fina	l rep	ort 🗆	 			
Reviewed by/Date				-	-		-	-			2 4	-		-	3		1	;	N	-	1	

JISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Prink - Client Copy

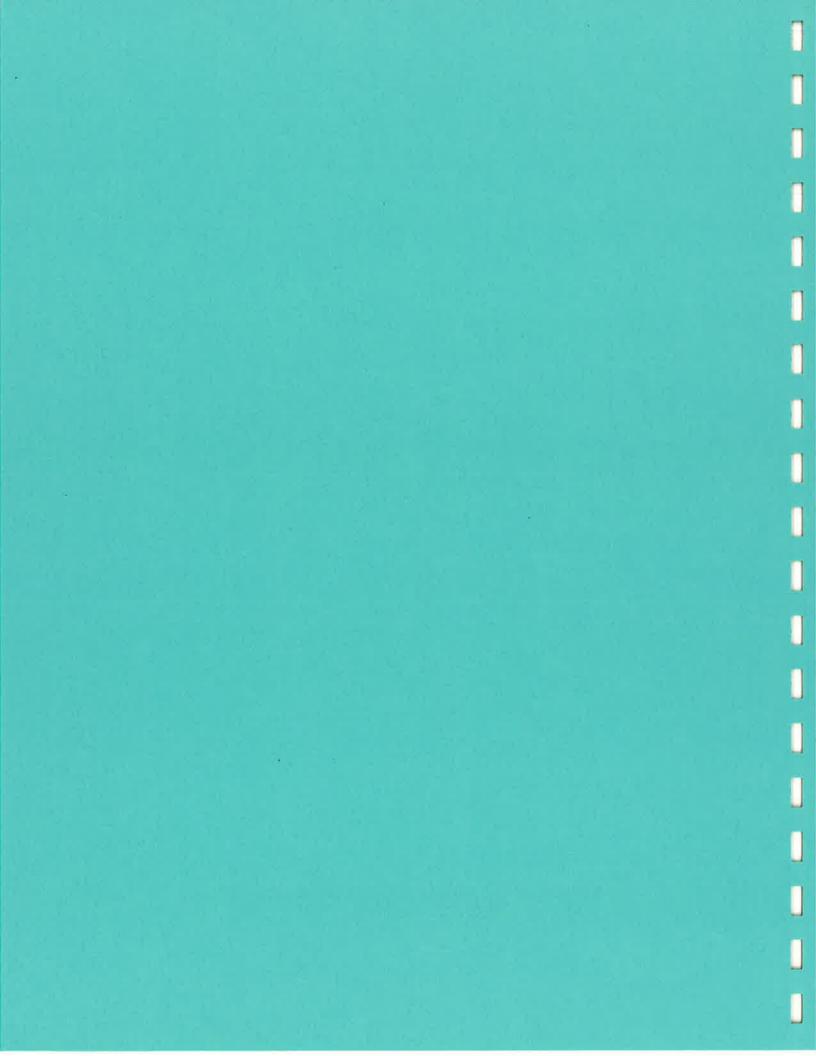
Chain of Custody

	Page	4	of	5
--	------	---	----	---


3

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		Turnaround (in workin		t i	La	bor	ato	ry l	Nur	nbe	er:	0	5 -	- 0	59)								
Phone: (425) 883-3881 • Fax: (425) 885-4603	-	(0)	~ ``									a:		ested	2 A 100-X	4:00 A.H	sis							
FARALLON Project Number:		(Check	-		COLUMN S			Compose .																
	Sar	me Day		1 Day					260B															
1003-001 Project Name:	20	ay		3 Day					by 8	0					(
From CITY HAND LAUNDRY Project Manager:	Sta	Indard (7 wo	orking da	ays)		×		ģ	atiles	8270	/ SIM		81A	151A	als (8									
Sampled by:					B	(/BTE		8260	loV b	ss by	270C	382	by 80	by 81	A Met	s	64							
Sampled by: 15 CHMITT		(oth	er)		H-H	Ю́Н.	XQ-H	es by	enate	olatile	by 82	by 8(ides	sides	RCR/	Meta	by 16			0.0	B			% Moisture
	Date Sampled	Time Sampled	Matrix	# of Cont.	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by 8260B	Semivolatiles by 8270C	PAHs by 8270C / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	HdV	ЕРН	15	Ň.	θ.		% W0
31 mWg - 15-16.5 3	ROT	0855	S	ч																		_		
32 MW9-20-21.5	Í	0406		Ч					X													_	_/	×
33 MW9-25-26.5		0410		μ																	9			
34 MW4-30-31.5		0416		3													_						\downarrow	
35 MW9-35-35.5		0970		4																		_	\rightarrow	_
34 MNW9-40-40,5		0926																					-	$\overline{}$
37 MANG- 45-45.5		0930			-				X							-	-		-				_	X
38 mwg - 50 - 50.5		0935			-									-			-							
34 mwg-55-55.5		0946			-					-		_		-		-	-					_	+	-
10 MWID-50-50.5	N Sectored	12-50 Company				Date			Time			Com	ment	is/Spe	cial I	nstru	ctions		Terror a				- 4-	
Signature Relinquished by		FIAR	A			1	1810	and the second	Contractor of	0	00			202.1000										
Received by MILS TL		Farali	m	A			ag /0			37														
Relinquished by		Firm	1/m				5/9/	65	10	: 30)													
Received by Ott Ht 4-		SPE	EDC	7*			5k			s. 3														
Relinquished by Bet#4		ce.	U			5	19/0	05	-11	,DI	2		3											
Received by		Declara 11				L	_	7				Chr		atogr	ame	with	final	repr	ort 🗆					_
Reviewed, by/Date		Reviewed I	by/Date	<u> </u>	-	_	-	_		نيبيا	5	<u>[</u>	-			with t		, opc			-	-	1	_

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy rink - Client copy



Chain of Custody

Phone: (425) 883-3881 • Fax: (425) 885-4603 Company: FATERLIDE Project Number: (63-00) Project Name: FMR. Crry Hund Lawnpry Project Manager: JEFF KASPAR Sampled by: SCHMITT	2 [(Check ume Day Day	One)	1 Dav							- 	Re	eque	este	d Ar	nàlv	eie					
(163-00) Project Name	2 [ime Day		1 Dav	a cancer of the	COMPARATOR OF THE											010					
(163-00) Project Name	2 [1 Dav							NUMBER OF		and a second sec					CITY 44				A COMPANY SHEE
Froject Name: Froz. Crry Hand Launpry Project Manager:		Day		, Duy					8260B													
FMR. Crry HAND LANNPRY				3 Day																		
Project Manager:				-					es b	700	Σ		∢	A	(8)							
EEE KACOAD		andard (7 wo	orking d	ays)		TEX		60B	olatil	oy 82	s/o		3081,	8151	etals							
Sampled by:		(oth	t r)		l⊟ Q	3x/B	×	y 82	led V	iles t	3270	3082	βλ	by a	MA	als	664			ادم	D	o
J SCHMAITT			er) Maarine		Ŧ	PH-(D-H-C	les b	genat	volat	βΛ	by 8	cides	cides	RCH	Met	b 1			00	6	bistur
	Date ampled	Time Sampled	Matrix	# of Cont.	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by 8270C	PAHs by 8270C / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	HdV	EPH	12	N	% Moisture
11 MWID-55-55,5 5	Kelos	1254	5	4																		
+2 MW17 - 60-60.5	1	1300	Ĩ	ľ																		
13 MWID-65-65.5		1305												2								
		1310	1	\mathbf{V}					X								<u> </u>		_			+
14 mw 12-70-70.5	+		1	5					1			_			_	. 74			_	-		$+\uparrow$
YS B1-2.5-4		1535	1			X	V				-	_		-	_							+
46 BI-5-6,5	1 1 1	1538				X	7 7				_			_					_	_	_	+
17 B1-7.5-9		1540		$\neg \checkmark$		A VZ	X		X													
18 B1-10-11.5	\mathbf{V}	1545	V	v		X	X															
						•																
Signature		Company	CAND SER			Date			Time			Comr	ments	/Spec	sial In	struc	tions					
Relinquished by		Fara	1100			5	8/0	5	A	0.0	20	2.	- L	-001	king	9 +	w,	re/a	ist	04	94.50	ine
Received by		Full.	n			51	9/05	-	8	5J	m		an	21	STE	X /	DK	60	die	sel)	ga sol	
Relinquished by		Frall	in				105		D;	30										/		
Received by Aut # 4		0	EL	54		5/2	10	J.	10	.3	0					s						
Relinquished by Qut # 4		u	4			5/4	3/0	55	11	in	0					34						
Received by M.U.		OSF				51	ilo	5	10	w												
Reviewed by/Date		Reviewed by	//Date			_		1				Chro	omate	ograi	ms w	vith fi	inal 1	repor	t 🗆			

DISTRIBUTION LEGEIND: White - OnSite Copy Yellow - report Copy Pink - Client Copy

June 10, 2005

Jeff Kaspar Farallon Consulting, LLC 320 3rd Avenue NE, Suite 200 Issaquah, WA 98027

Re: Analytical Data for Project 603-001 Laboratory Reference No. 0505-083

Dear Jeff:

Enclosed are the analytical results and associated quality control data for samples submitted on May 11, 2005.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 10, 2005 Samples Submitted: May 11, 2005 Laborator / Reference: 0505-083 Project: 6)3-001

Case Narrative

Samples were collected on May 9, 2005 and received by the laboratory on May 11, 2005. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Halogenated Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in preweighed 40 mL VOA vals within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis w II be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Date of Report: June 10, 2005 Samples Submitted: May 11, 2005 Laborator / Reference: 0505-083 Project: 603-001

NWTPH-HCID

Date Extracted:	5-11-05
Date Analyzed:	5-11 - 05

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	MW8-10-11.5
Lab ID:	05-083-02
Gasoline:	ND
PQL:	26
Diesel Fuel:	ND
PQL:	64
Lube Oil:	ND
PQL:	130
Surrogat∈ Recovery: o-Terphenyl	119%
Flags:	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: June 10, 2005 Samples S Ibmitted: May 11, 2005 Laboratory Reference: 0505-083 Project: 6 J3-001

NWTPH-HCID METHOD BLANK QUALITY CONTROL

Date Extracted:	5-11-05
Date Analyzed:	5-11-05

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0511S1
Gasoline:	ND
PQL:	20
Diesel Fu⊶l:	ND
PQL:	50
Lube Oil:	ND
PQL:	100
Surrogat∉ Recovery: o-Terpher⊧yl	134%

Flags

Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: June 10, 2005 Samples Submitted: May 11, 2005 Laborator / Reference: 0505-083 Project: 6 J3-001

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extra :ted:	5-17-05
Date Analyzed:	5-17-05
Bator analyzou	
Matrix:	Soil
Mault.	
Units:	mg/kg (ppm)

47.05

Lab ID: 05-083-02 **Client ID:** MW8-10-11.5

Compour d	Results	Flags	PQL
Dichlorod fluoromethane	ND		0.00097
Chloromethane	ND		0.00097
Vinyl Chloride	ND		0.00097
Bromomethane	ND		0.00097
Chloroethane	ND		0.00097
Trichloroflu promethane	ND		0.00097
1,1-Dichlor bethene	ND		0.00097
Iodometh: ne	ND		0.0048
Methylen Chloride	0.014	Н	0.0048
(trans) 1, -Dichloroethene	ND		0.00097
1,1-Dichloroethane	ND		0.00097
2,2-Dichloropropane	ND		0.00097
(cis) 1,2-Dichloroethene	ND		0.00097
Bromochlo omethane	ND		0.00097
Chloroform	ND		0.00097
1,1,1-Tric Iloroethane	ND		0.00097
Carbon Te trachloride	ND		0.00097
1,1-Dichleropropene	ND		0.00097
1,2-Dichloroethane	ND		0.00097
Trichloroethene	ND		0.00097
1,2-Dichloropropane	ND		0.00097
Dibromomothane	ND		0.00097
Bromodichloromethane	ND		0.00097
2-Chloroc hyl Vinyl Ether	ND		0.0048
(cis) 1,3-' ichloropropene	ND		0.00097
(trans) 1,3-Dichloropropene	ND		0.00097

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

5

Date of Report: June 10, 2005 Samples Submitted: May 11, 2005 Laborator / Reference: 0505-083 Project: 6)3-001

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	05-083-02
Client ID:	MW8-10-11.5

Compound 1,1,2-Tric'iloroethane Tetrachloroethene	Results ND 0.056	Flags	PQL 0.00097 0.00097
1,3-Dichloropropane	ND ND		0.00097 0.00097
Dibromochloromethane	ND		0.00097
Chlorobenzene	ND		0.00097
1,1,1,2-Te trachloroethane	ND		0.00097
Bromoform	ND		0.00097
Bromobenzene	ND		0.00097
1,1,2,2-Tetrachloroethane	ND		0.00097
1,2,3-Trichloropropane	ND		0.00097
2-Chlorotoluene	ND		0.00097
4-Chlorotol Jene	ND		0.00097
1,3-Dichlorobenzene	ND		0.00097
1,4-Dichlcrobenzene	ND		0.00097
1,2-Dichlc obenzene	ND		0.00097
1,2-Dibro.no-3-chloropropane	ND		0.0048
1,2,4-Trichlorobenzene	ND		0.00097
Hexachlorobutadiene	ND		0.0048
1,2,3-Trichlorobenzene	ND		0.00097

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	82	71-126
Toluene. d8	87	73-130
4-Bromofluorobenzene	92	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: June 10, 2005 Samples Submitted: May 11, 2005 Laboratory Reference: 0505-083 Project: 603-001

.

HALOGENATED VOLATILES by EPA 8260B

page 1 of 2

Date Extra :ted:	5-17-05
Date Analyzed:	5-17-05

Matrix:		Soil
Units:	8	mg/kg (ppm)

Lab ID:	05-083-05
Client ID:	MW8-25-26.5

Compour d Dichlorod fluoromethane	Results ND	Flags	PQL 0.00086
Chloromeshane	ND		0.00086
Vinyl Chloride	ND		0.00086
Bromomethane	ND		0.00086
Chloroethane	ND		0.00086
Trichloroflupromethane	ND		0.00086
1,1-Dichloroethene	ND		0.00086
lodomethrine	ND		0.0043
Methylene Chloride	0.0085	н	0.0043
(trans) 1,2-Dichloroethene	ND		0.00086
1,1-Dichloroethane	ND		0.00086
2,2-Dichloropropane	ND		0.00086
(cis) 1,2-Dichloroethene	0.0040		0.00086
Bromochlo omethane	ND		0.00086
Chloroform	ND		0.00086
1,1,1-Tric Iloroethane	ND		0.00086
Carbon Tetrachloride	ND		0.00086
1,1-Dichloropropene	ND		0.00086
1,2-Dichloroethane	ND		0.00086
Trichloroethene	0.0022		0.00086
1,2-Dichloropropane	ND		0.00086
Dibromomethane	ND		0.00086
Bromodichloromethane	ND		0.00086
2-Chloroethyl Vinyl Ether	ND		0.0043
(cis) 1,3-I ichloropropene	ND		0.00086
(trans) 1,3-Dichloropropene	ND		0.00086

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: June 10, 2005 Samples S ibmitted: May 11, 2005 Laborator / Reference: 0505-083 Project: 6)3-001

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	05-083-05
Client ID:	MW8-25-26.5

Compound	Results	Flags	PQL
1,1,2-Tric lloroethane	ND		0.00086
Tetrachloroethene	4.0		0.041
1,3-Dichloropropane	ND		0.00086
Dibromochloromethane	ND		0.00086
1,2-Dibromoethane	ND		0.00086
Chloroben, ene	ND		0.00086
1,1,1,2-Tetrachloroethane	ND		0.00086
Bromofor n	ND		0.00086
Bromober zene	ND		0.00086
1,1,2,2-Tetrachloroethane	ND		0.00086
1,2,3-Trichloropropane	NÐ		0.00086
2-Chlorotoluene	ND		0.00086
4-Chlorotol [,] Jene	ND		0.00086
1,3-Dichlor benzene	ND		0.00086
1,4-Dichk obenzene	ND		0.00086
1,2-Dichl. robenzene	ND		0.00086
1,2-Dibro no-3-chloropropane	ND		0.0043
1,2,4-Trichlorobenzene	ND		0.00086
Hexachlorobutadiene	ND		0.0043
1,2,3-Trichlorobenzene	ND		0.00086
	~		

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	83	71-126
Toluene, d8	88	73-130
4-Bromofluorobenzene	93	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: June 10, 2005 Samples Submitted: May 11, 2005 Laborator / Reference: 0505-083 Project: 6:03-001

HALOGENATED VOLATILES by EPA 8260B

page 1 of 2

Date Extra ited:	
Date Anal /zed:	

Matrix:	Soil
Units:	mg/kg (ppm)

5-17-05 5-17-05

05-083-09

MW8-45-45.5

Lab ID: Client ID:

Compound Dichlorod: Iuoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichloroft promethane 1,1-Dichloroethene Iodometh the Methylen: Chloride (trans) 1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane (cis) 1,2-Dichloroethene Bromochlo omethane Chloroforta 1,1,1-Tric tloroethane Carbon T strachloride	æ	Results ND ND ND ND ND ND ND ND ND ND ND 0.0045 ND ND ND ND ND	Flags	PQL 0.00093 0.00093 0.00093 0.00093 0.00093 0.00093 0.00093 0.0047 0.0047 0.00093 0.00093 0.00093 0.00093 0.00093 0.00093 0.00093 0.00093
	iei			
		ND		0.00093
1,1,1-Tric loroethane				
Carbon T strachloride				
1,1-Dichloropropene		ND		0.00093
1,2-Dichloroethane		ND		0.00093
Trichloroethene		0.0023		0.00093 0.00093
1,2-Dichlor propane		ND ND		0.00093
Dibromomothane		ND		0.00093
Bromodic'iloromethane 2-Chloroe hyl Vinyl Ether		ND		0.00093
(cis) 1,3-Lichloropropene		ND		0.00093
(trans) 1,3-Dichloropropene	54	ND		0.00093

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: June 10, 2005 Samples Submitted: May 11, 2005 Laborator / Reference: 0505-083 Project: 603-001

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID: 05-083-09 Client ID: MW8-45-45.5

Compour	Results	Flags	PQL
1,1,2-Tricnloroethane	ND		0.00093
Tetrachloroethene	0.42		0.053
1,3-Dichloropropane	ND		0.00093
Dibromochloromethane	ND		0.00093
1,2-Dibrorr oethane	ND		0.00093
Chlorobei zene	ND		0.00093
1,1,1,2-Te trachloroethane	ND		0.00093
Bromoforin	ND		0.00093
Bromobenzene	ND		0.00093
1,1,2,2-Tetrachloroethane	ND		0.00093
1,2,3-Trichloropropane	ND		0.00093
2-Chlorotoluene	ND		0.00093
4-Chlorotoluene	ND		0.00093
1,3-Dichlcrobenzene	ND		0.00093
1,4-Dichlc robenzene	ND		0.00093
1,2-Dichle robenzene	ND		0.00093
1,2-Dibromo-3-chloropropane	ND		0.0047
1,2,4-Trichlorobenzene	ND		0.00093
Hexachlorobutadiene	ND		0.0047
1,2,3-Trichlorobenzene	ND		0.00093

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	71-126
Toluene, d8	88	73-130
4-Bromofluorobenzene	91	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: June 10, 2005 Samples Submitted: May 11, 2005 Laborator / Reference: 0505-083 Project: 603-001

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 1 of 2

Date Extracted:	5-17-05
Date Anatyzed:	5-17-05
Matrix:	Soil

Units:	mg/kg (ppm)

Lab ID:

MB0517S1

Compouiid	Results Flag	s PQL 0.0010
Dichlorodiiluoromethane	ND	
Chloromethane	ND	0.0010
Vinyl Chloride	ND	0.0010
Bromomethane	ND	0.0010
Chloroethane	ND	0.0010
Trichlorofluoromethane	ND	0.0010
1,1-Dichlcroethene	ND	0.0010
Iodomethane	ND	0.0050
Methylene Chloride	ND	0.0050
(trans) 1,2-Dichloroethene	ND	0.0010
1,1-Dichloroethane	ND	0.0010
2,2-Dichloropropane	ND -	0.0010
(cis) 1,2-Di chloroethene	ND	0.0010
Bromochloromethane	ND	0.0010
Chloroforia	ND	0.0010
1,1,1-Tric'iloroethane	ND	0.0010
Carbon Tetrachloride	ND	0.0010
1,1-Dichloropropene	ND	0.0010
1,2-Dichloroethane	ND	0.0010
Trichloroethene	ND	0.0010
1,2-Dichloropropane	ND	0.0010
Dibromorrethane	ND	0.0010
Bromodic iloromethane	ND	0.0010
2-Chloroe hyl Vinyl Ether	ND	0.0050
(cis) 1,3-Dichloropropene	ND	0.0010
(trans) 1,3-Dichloropropene	ND	0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W/, 98052 (425) 883-3881

Date of Report: June 10, 2005 Samples Dubmitted: May 11, 2005 Laborator / Reference: 0505-083 Project: 6)3-001

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 2 of 2

Lab ID:

MB0517S1

Compound 1,1,2-Trichloroethane Tetrachloroethene 1,3-Dichloropropane Dibromoch oromethane 1,2-Dibror noethane Chlorobe zene 1,1,2-Ti trachloroethane Bromobenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane 2-Chlorotol iene 4-Chlorotol iene 1,3-Dichl. robenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlori butadiene	Results ND ND ND ND ND ND ND ND ND ND ND ND ND	Flags	PQL 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0050 0.0010
1,2,4-Trichlorobenzene Hexachlor: butadiene 1,2,3-Trich.orobenzene			

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	86	71-126
Toluene, d8	88	73-130
4-Bromofly probenzene	92	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: June 10, 2005 Samples Submitted: May 11, 2005 Laborator / Reference: 0505-083 Project: 6J3-001

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted	5-17-05
Date Ana /zed:	5-17-05

Matrix: Soil Units: mg/kg (ppm)

Lab ID:

SB0517S1

Compound	Spike Amount	SB	Percent Recovery	SBD	Percent Recovery	Recovery Limits	Flags
1,1-Dichlorpethene Benzene Trichloroe hene Toluene Chlorobe: zene		0.0518 0.0552 0.0563 0.0570 0.0574	104 110 113 114 115	0.0533 0.0546 0.0550 0.0554 0.0569	107 109 110 111 114	70-130 70-130 70-130 70-130 70-130	

		RPD	
	RPD	Limit	Flags
1,1-Dichluroethene	3	11	
Benzene	1	11	
Trichloroethene	2	13	
Toluene	3	11	
Chlorobenzene	1	12	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: June 10, 2005 Samples Submitted: May 11, 2005 Laboratory Reference: 0505-083 Project: 603-001

% MOISTURE

Date Ana',zed: 5-12-05

Client ID	Lab ID	% Moisture
MW8-10-11.5	05-083-02	22
MW8-25-26.5	05-083-05	5
MW8-455.5	05-083-09	8

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogat a recovery data is not available due to the high concentration of coeluting target compounds.

G - Insuffic ent sample quantity for duplicate analysis.

H - The an lyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

1 - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracte I and re-analyzed with similar results.

L - The RP) is outside of the control limits.

M - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

O - Hydrocarbons indicative of diesel fuel are present in the sample and are impacting the gasoline result.

- P The RPP of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

- W Matrix 3pike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a silica gel cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

06 June 2005

David Baumeister OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA/USA 98052 RE: N/A

Enclosed are the results of analyses for samples received by the laboratory on 05/11/05 13:15. If you have any guestions concerning this report, please feel free to contact me.

Sincerely,

Howland

Cherie Howland For Sandra Yakamavich Project Manager

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

 907.563.9200
 fax 907.563.9210

OnSite Environmental Inc. 14648 NE 95th Street Bedmond, WA/USA 98052	Project: N/A Project Number: 603-001 Project Manager: David Baumeister	Reported: 06/06/05 16:02
14648 NE 95th Street Redmond, WA/USA 98052		1

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW8-55-55.5	B5E0306-01	Soil	05/09/05 14:40	05/11/05 13:15

North Creek Analytical - Bothell

Cherie Howland For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200 fax 425.420.9210

 Spokane

 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509.924.9200 fax 509.924.9290

 Portland

 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200 fax 503.906.9210

 Bend

 2032 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310 fax 541.382.7588

 Anchorage

 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA/USA 98052 Project: N/A Project Number: 603-001 Project Manager: David Baumeister

Reported: 06/06/05 16:02

Physical Parameters by APHA/ASTM/EPA Methods

North Creek Analytical - Bothell

1	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	MW8-55-55.5 (B5E0306-01) Soil	Sampled: 05/09/05	514:40 Rea	ceived: 05/1	1/05 13:15					
1	Dry Weight	90.9	1.00	%	i	5E20050	05/20/05	05/23/05	BSOPSPL003R08	
11	Fractional Organic Carbon	ND	0.00110	g/g dry		5F06058	05/19/05	06/06/05	EPA 9060 Mod	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cherie Howland For Sandra Yakamavich, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 2 of 4

OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA/USA 98052 Project: N/A Project Number: 603-001 Project Manager: David Baumeister

Reported: 06/06/05 16:02

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control

North Creek Analytical - Bothell

			•							
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5E20050: Prepared 05/20/05	Using D	ry Weight								
Blank (5E20050-BLK1)										
Dry Weight	100	1.00	%							
Batch 5F06058: Prepared 06/03/05	Using G	eneral Pre	paration							
Blank (5F06058-BLK1)									5	
Fractional Organic Carbon	ND	0.00110	g/g							
LCS (5F06058-BS1)										
Fractional Organic Carbon	0.0317	0.00110	g/g	0.0299		106	80-120			
LCS Dup (5F06058-BSD1)										
Fractional Organic Carbon	0.0306	0.00110	g/g	0.0299		102	80-120	3.53	20	
Duplicate (5F06058-DUP1)					Source: I	B5E0310-	02			
Fractional Organic Carbon	ND	0.00110	g/g dry		ND			NA	25	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

 907.563.9200
 fax 907.563.9210

1	OnSite Environmental Inc.	Project: N/A	
1	14648 NE 95th Street	Project Number: 603-001	Reported:
	Redmond, WA/USA 98052	Project Manager: David Baumeister	06/06/05 16:02

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

Cherie Howland For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. Environmental Laboratory Network

		CHAIN OF CUSTODY RECO	rid BSE	0306 Pageof
14648 NE 95th Street, Redmond, WA 98052 (425) 883-386		nain of Custody	ry Reference #:	>8
Subcontract Laboratory: North Creek Analy				a
Phone #: (425)420 - 9205		P	roject Manager: Da	vid Baumeister
Date/Time:		F	Project Number:	603-001
Contact Person:			Project Name:	
		Matrix # Jars Analysis Requeste	c	Comments/Special Instructions
MW 8-55-55.5	5/9105-	SI For		
		Samples were not @2-6c upon recei	ptl	
			1	×
				*
Relinquished by:		Received by our Holo-	date: 5/11/05	
Company to the the	time:/2535	· · ·	time: 1255	
Relinquished by: 2 m Holl		Received by Slette Meaver	date:)5-11-05	
Company: NGAA	time: 1315	Company: NCA	time:\3i5	
Relinquished by:	date:	Received by:	date:	w/0 15.20
Company:	time:	Company:	time:	6 0 0 0 0 0

Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by to 2 2 4	Signature	10 min 8- 50-50,5	9 mwb- 45-45.5	8 mly 8- 40-40,5	7 mul- 35.35.5	6 mm 8-30-30.5		4 mm 8-20-21,5	3 may 2- 15-110,5	18-	1 mulk-5-10.5	Lab ID Sample Identification	1	JEFT KASPAN	Project Manager: Urry HAND LANDRY		1		14648 NE 95th Street • Redmond, WA 96052 Phone: (425) 883-3661 • Fax: (425) 885-4603	Environmental Inc.	Ansite A
Reviewed by/Date			35.40 FE 511/25 17	3/11/	-	FARALON 5/11/05/12	Company Date Time		1428 × X	1422 1 1	1415	1410	1400	1354	1348		56/05 1340 5 4	Date Time # of Sampled Sampled Matrix Cont. NWTT Volati Halog	PH-HO PH-G PH-D PH-D	CID k/BTE k 8260	0B	2 Day 3 Day	Same Day 1 Day 260B	(Check One)		Turnaround Request I aboratory Nur	Chain of Custody
/inkopy / Chromatograms with final report L			-242	1245		1200	2 Comments/Special Instructions:											Total TCLF HEM VPH EPH F(by 82 by 80 cides cides RCRA P Meta by 16	270C 082 by 80 by 8 by 8 a Met	/ SIM 081A 151A				Requested Analysis	Number: 05-08 \$	Page 1 of 2

-	. : }	1			2		ŝ	R: 6	(B)	2						
	Received by Vitant	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	Signature		11		K	4		mulk-<<	Company: Froject Number! Project Number! Project Name: (AD 3 - OO 1 Project Manager: Sampled by: Sample Ib: Tab ID Sample Identification	
DIST HIBU TION TEGEND: White Onsite Copy Yellow -			RSAC ER 5		STAR HO	Frailin 51	Company Date							dalor 1440 5 5	Turnaround Request (in working days) (Check One) Same Day 1 Day 2 Day 3 Day 2 Standard (7 working days) (other) Date Time # of	
Chromatogran			11105 1745-	11/5 12:45	11/5 12.00	105 1200	e Time Comments/Special Instructions:								Volatiles by 8260B Halogenated Volatiles by 8260B Semivolatiles by 8270C PAHs by 8270C / SIM PCBs by 8082 Pesticides by 8081A Herbicides by 8151A	
py py				12			ial Instructions:								Total RCRA Metals (8) TCLP Metals HEM by 1664 VPH EPH FOC % Moisture	

2

Analytical Testing and Mobile Laboratory Services

June 10, 2005

Jeff Kaspar Farallon Consulting, LLC 320 3rd Avenue NE, Suite 200 Issaquah, WA 98027

Re: Analytical Data for Project 603-001 Laboratory Reference No. 0505-059C

Dear Jeff:

Enclosed are the analytical results and associated quality control data for samples submitted on May 9, 2005.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

JUN 15

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baymeister

Project Manager

Enclosures

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200 fax 425.420.9210

 Spokane

 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509.924.9200 fax 509.924.9290

 Portland

 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

 907.563.9200 fax 907.563.9210

-96 June 2005

David Baumeister DnSite Environmental Inc.

14648 NE 95th Street

Redmond, WA/USA 98052

RE: N/A

Enclosed are the results of analyses for samples received by the laboratory on 05/11/05 13:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

te Howland

Cherie Howland For Sandra Yakamavich Project Manager

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bolhell, WA 98011-8244

 425,420.9200
 fax 425,420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509,924,9200
 fax 509,924,9290

 Portland
 9405 SW Nimbus Avenue, Beaverion, OR 97008-7132

 503,906,9200
 fax 503,906,9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541,383,9310
 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

 907,563.9200
 fax 907.563.9210

۱,	OnSite Environmental Inc.	Project:	N/A	
	14648 NE 95th Street	Project Number:	603-001	Reported:
	Redmond, WA/USA 98052	Project Manager:	David Baumeister	06/06/05 16:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW4-50-50.5	B5E0310-01	Soil	05/07/05 08:45	05/11/05 13:15
MW5-55-55.5	B5E0310-02	Soil	05/07/05 12:15	05/11/05 13:15

North Creek Analytical - Bothell

Cherie Honland

Cherie Howland For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200 fax 425.420.9210

 Spokane

 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509.924.9200 fax 509.924.9290

 Portland

 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

 907.563.9200 fax 907.563.9210

OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA/USA 98052 Project: N/A Project Number: 603-001 Project Manager: David Baumeister

Reported: 06/06/05 16:04

Physical Parameters by APHA/ASTM/EPA Methods

North	Creek	Analytical	- Bothell
-------	-------	------------	-----------

U			Reporting							
	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
n										
	MW4-50-50.5 (B5E0310-01) Soil	Sampled: 05/07/05	08:45 Re	ceived: 05/1	1/05 13:15					
	Dry Weight	92.8	1.00	%	1	5E20050	05/20/05	05/23/05	BSOPSPL003R08	
n	Fractional Organic Carbon	ND	0.00110	g/g dry	97	5F06058	05/19/05	06/06/05	EPA 9060 Mod	
	MW5-55-55.5 (B5E0310-02) Soil	Sampled: 05/07/05	12:15 Re	ceived: 05/2	1/05 13:15					
	Dry Weight	95.0	1.00	%	1	5E20050	05/20/05	05/23/05	BSOPSPL003R08	
Ē	Fractional Organic Carbon	ND	0.00110	g/g dry		5F06058	05/19/05	06/06/05	EPA 9060 Mod	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

 907.563.9200
 fax 907.563.9210

l	OnSite Environmental Inc.	Project:	N/A	
_	14648 NE 95th Street	Project Number:	603-001	Reported:
	Redmond, WA/USA 98052	Project Manager:	David Baumeister	06/06/05 16:04

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control

North Creek Analytical - Bothell

) t Notes
t Notes
)

North Creek Analytical - Bothell

Cherie Howland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425,420.9200
 fax 425,420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509.924,9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

 907.563.9200
 fax 907.563.9210

OnSite Environmental Inc.	Project: N/A	
14648 NE 95th Street	Project Number: 603-001	Reported:
Redmond, WA/USA 98052	Project Manager: David Baumeister	06/06/05 16:04

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

Cherie Howland For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

0		38);	2		9	
.*18.		CHAIN OF O	CUSTODY RECO	DRD BS	E0310	Page of
CAL OnSite Environmental Inc.	Davie	ed Chain of	Custody		a	-
4648 NE 95th Street, Redmond, WA 98052 (425) 883-388			Laborat	ory Reference #:	05-05	9
Subcontract Laboratory: North Creek Analyt	ical				4 ,	
Phone #: (425)420 - 9205					David Baumeister	
Date/Time:				Project Number:	603-00	
Contact Person:			S.	Project Name:		
OSE # Sample ID	Date Sampled		Analysis Request	ed	Comments/Sp	ecial Instructions
MW4-50-50.5	5/7/05 45	SI	FOC		-01	
MW5-55-55.5 (8	1 - 12:15	11	L		-02	
		•	N			
	Sam	ples were not (@2-6c upon receipti			
	1				*	
		<u> </u>	100	1 . 1 .		
- for	dates/11/05			date:5/11/85		
			AICA	time: 1255		
()			blette weaver	ATT		
Company: NCA		Company: N(. //	time: (3i5 date:		
Relinquished by:	date:	Received by: Company:		time:		15.20.000
Company:	lume.	Company.				

Dwijewed winoste	Received by a later 4	Relinquished by WAYS JUC	Received by MM	Relinquished by Paul St 4	Received by Myor JK	Relinquished by	Signalure	10 MWH-50-50.5	9 MWU45-45.5	8 mm w - 40-40.5	7 mwy-35-35,5	6 mwy-30-31,5	5 mwy-25-265	120-	3 MW4-15-16.5	2 mm-1-10-11.5	1 MW4-5-10.5	Samale Headingalon	Project Manager: JEFE KASPAN		Project Number:		Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • Fax: (425) 885-4603	Consite
Reviewed by/Date	Spectary	Frellan	980	SORADY	Farallin	FANALLEN	Company	× 5480 ×	0840 5	0834	0828	0825	0520	9/20	0(5)0	P CON	5745 0860 S 4	(other) Date Time # of H Sampled Watrix Cont.	ng days)	2 Day 3 Day	Same Day 1 Day	(Check One)	In working days)	Chain of Cu
Yellow - Report Copy Pink - Client Copy	5/9/0.5 10,30	571/15 /6170	5/9/05 in 00	5/9/051100	5/105 8:55/2	00:00 50/8/5	Date Time Comments/Special Instructions											NWTPH-G NWTPH-D Volatiles by Halogenate Semivolatii PAHs by 8 PCBs by 8 Pesticides Herbicides	x/BTEX x y 8260B ed Volatiles les by 8270 270C / SIM		260B	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Laboratory Number: 05-05	Gustoay
Chromatograms with final report						÷.	al matructions.											TCLP Met HEM by 10 VPH EPH FO SO	als 664				9	Page of

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Chain of Custody

Page	2	of	5

Environmental Inc. 1464B NE 951h Street • Redmond, WA 98052	i na seniti Na seniti di seniti Seniti di seniti di s	Turnaroung (in workin	(Reque Ig days)	st.	La	boı	rato	ory∣	Nur	nbe	er:	0!	5-	0	59									85
Phone: (425) 883-3881 • Fax: (425) 885-4603		(Check													i An		sis							
Project Number:	Sar	ne Day	,	1 Day					8260B															
Project Name:		ay		3 Day						S	V				(8)									
From CITY HAND LAUNDRY Project Manager:	Sta	ndard (7 w	orking d	ays)		Ж		SOB	olatile	y 827	VIS / C		081A	3151A	etals (
Sampled by: Scimmitt	-0_	(oth	ner)		HCID	NWTPH-Gx/BTEX	Ă	Volatiles by 8260B	Halogenated Volatiles	Semivolatiles by 8270C	PAHs by 8270C	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	letals	1664			ی	A		ture	
				- i o(NWTPH-H(VTPH	NWTPH-Dx	latiles	alogen	mivol	Hs by	(d s80	sticide	erbicid	tal RC	TCLP Metals	HEM by 1664	НЧЛ	EPH	706	5		Moisture	
	Sampled	Sampled			ź	ź	ź	8	<u>Ť</u>	Š	d.	ď	Å	Ĭ.	5	Ĕ	Ī	5	Ξ	IT I		-	%	
	17105	0850	5	4	-	-	-	-	1	-	<u> </u>	-	-				-	-	-					
12 MW5-5-6.5		115			-	-	-	-	Å		<u> </u>	_						-						
13 MW5-10-11.5		1120				_			X			-					-					_	X	4
14 MW5-15-16.5		1120										_						-					_	_
15 MWS-20-21.5		1130																		_			_	
16 mw5-25-26.5		1134																-					_	
17 mW5-30-31.5	-	1140																						
18 MWS - 35-35.5	Ę	1145																					_	
19 mu)5-40-40.5		1148																						
20 mWS - 50 - 50,5	¥	115Y		¥					X											and the state of the state			X	
Signalure		Company			我的考	Dat			Tim			Con	nment	s/Spi	cial di	istru	ct(o))s							
Relinquished by		FAR	ALLI	an _	-		8/0			200	11/2010/0	-			3	ti								
Received by		Faral			1	11	1	15	10	:55		-												
Relinquished by		5	254	504	/	1 1	1 1.	0:	51			2												
Received by		0	B			51	191	05	11	10														
Relinquished by		trav	Im		_	5/	90	5	11	170	_													
Received by Out #4		SPE	200	7		5/	9/0	كمد	16	5.2	20													-
Reviewed by/Date		Reviewed	by/Date		-							Ch	roma 	togra	ams v	with	final	repo	ort 🗋					5

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Heport Copy Pink - Client Copy

Chain of Custody

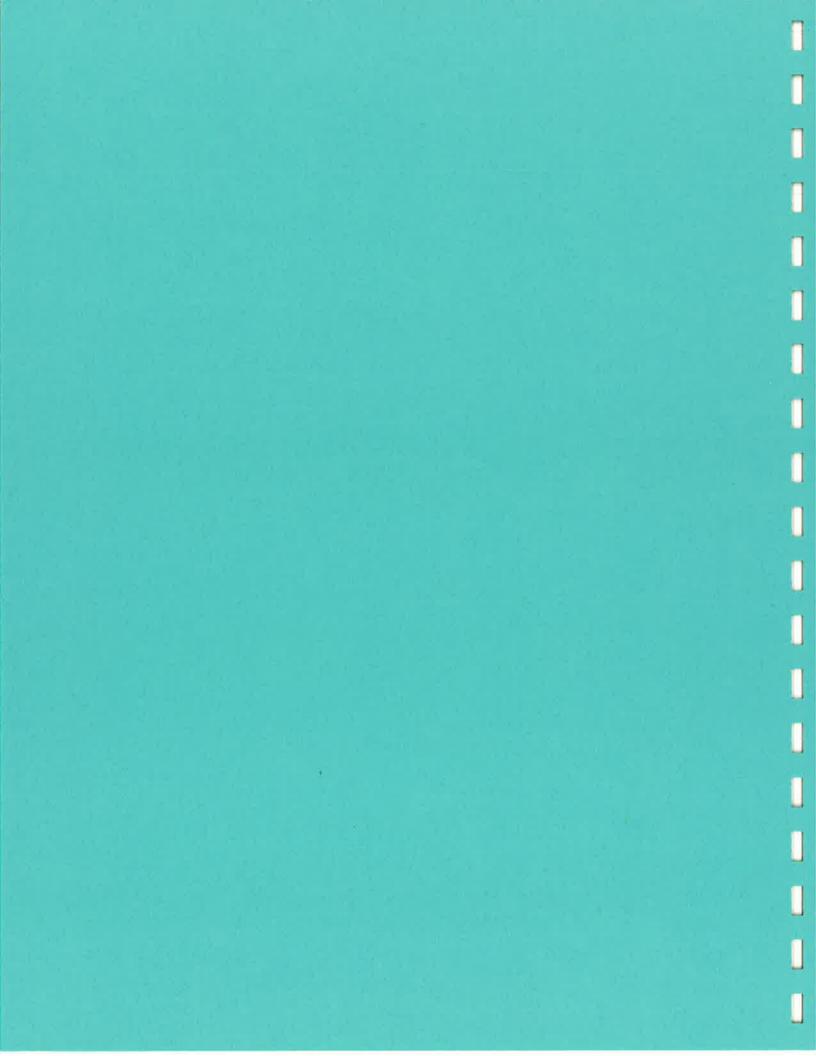
Page _ 3_ of _ 5_

Environmental Inc.		Turnaroung (in workir			La	bor	ratc	ory	Nu	mbe	er:	0 !	5 -	0	59		2221-112-5					ta 210 LOCT Freedom	
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	-	(Ob 1	0									Re	anbe	ste	d An	aly	sis	Di c					
FARALUN Project Number:		. (Check me Day	-	1 Day					ß														
(063-00) Project Name:		-		-					8260B														
Project Name: FMD CITY HAND HAUNDRY Project Manager:	20	Day	L.	3 Day					٦	200	SIM		_	4	(8)								
Project Manager:	Sta Sta	andard (7 w	orking d	ays)		TEX		60B	olatilo	oy 82	1~		3081/	8151.	etals						X		
JEFF KASPAN		(oth	arl		H-HCID	Gx/B	ň	by 82	ted v	tiles	8270	8082	s by l	s by	M AF	etals	1664			a)	A		e
c) Scimitt	Date -				I-H-I	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles	Semivolatiles by 8270C	PAHs by 8270C	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	-	-	20	6		Moisture
tab ID Sample Identification \$	Sampled	Sampled	Matrix	# ol Cant.	TWN	MN	ŇN	Vola	Halo	Sen	PAH	D D D	Pes	Her	Tota	TCL	Ê.	HdV	EPH	11-	5		%
21 MW5-55-55.5	5/7/05	1215	S	5									×							X	_	_	
22 mWS-59.5-60		12-25		4				-															
23 AS1-60-61		1445	24	5																	X		
24 AS1-65-65.5		1455		4																	X		
25 ASI-70-70.5		1520		Ĩ																	¥.		
26 AJI-75-75.5		1530		4					1													_	
22 ASI-79-80	7	1545		4		14			X														X
28 MW9-2,5-4	5/8/05	0840		4															_				
29 MW4-5-6,5		0844		4			X		X														X
30 mwg-10-11,5	Y	0848	¥	4			X,		X														4
Signature		Company	A STATE			Date	4		Time	1,64	igg:	Con	imenit 1	Spe C	cial In	strup	lions	31 (2 ler	at
Relinquished by		Frally	LOL	ion	r	5	181	105	9	0	00		X	Ur 1	non <	475 . /\	. <i>₀</i> ,	Te	1000	~/k	26 1	VTV	vals
Received by					_		1 1	5	8.	55	m	-	~	ta		50	V,	1-,	51.			r 1.	
Relinquished by		Frally	n			5/		5	1	13	<u> </u>	۱	L	oo ki	ing d	, N	hen	70	51	معرد	100	pel 1	æil e r
Received by Out # 4-		SPE	500	1		5/	9/0	25	-		30	-	4	m	ow	- 03	١.						
Relinquished by		U - O				5/0	9/0	25	-	1.0													
Received by MM		OSE	>			S	910	x	11	U)		-				_		-				
Reviewed by/Date		Reviewed	_		-)			_	<u> </u>				oma	togra	ims v -	vith 1	final	repo	rt 🗆	}	_		

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Chain of Custody

19 . r		~
Page 4	_of _	5


	- 2 [- 2] - 2] - 3 Sta	andard (7 wo (oth Time Sampled	Dorking da		NWTPH-HCID	NWTPH-Gx/BTEX			atiles by 8260B	8270C	/ SIM	Cold and	que	ste	5 9 An	5.10.2	Sis						
1 MUG-20-21.5	Date Sampled	me Day Day andard (7 wo (oth Time Sampled	Dorking da	3 Day ays)	PH-HCID	Gx/BTEX		260B	/olatiles by 8260B	y 8270C	/ SIM)81A	151A	als (8)								
$\frac{1}{2} \frac{1}{2} \frac{1}$	Dăte Sampled	andard (7 wo (oth Time Sampled	orking d	ays)	PH-HCID	Gx/BTEX		260B	/olatiles by B2(y 8270C	/ SIM)81A	151A	als (8)								
$\frac{1}{2} \frac{1}{2} \frac{1}$	Date Sampled	(oth Time Sampled	ier)		H-HCID	Gx/BTEX		260B	/olatiles	y 8270	/ SIM		81A	151A	als (8								
$\frac{1}{2} \frac{1}{2} \frac{1}$	Date Sampled	(oth Time Sampled	ier)		H-HCID	GX/BTE		lõ.	8	l ≳										- 1			
J SUMMITT Semple Identification 1 mW9-15-16.5 2 mW9-20-21.5	11	Time Sampled			主		X	y 82	ted	iles b	PAHs by 8270C	8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	tals	664			-)	0		e
1 mwg-15-16.5 3 2 mwg-20-21.5	11		Matrix	139 8 20 14 22	副臣	TPH-	NWTPH-Dx	Volatiles by 8260B	ogenal	Semivolatiles by	Is by 8	PCBs by 8082	ticides	bicide	I RCF	TCLP Metals	HEM by 1664	T	_	201	S		% Moisture
2 mwg-20-21.5	telor	0855		ii qi Conti	MN	MN	NN	Vola	Hald	Sen	PAF	PCE	Pes	Her	Tota	10	Ŷ	НИЛ	EPH	15	.01		1%
			S	4		-		-														_	
3 mwg-25-26.5		0406		4				-	X														\square
	_	0410		4	-																		
4 mW4-30-31.5		0916		3																			
5 mug-35-35.5		0420		4																			\square
4 mwg-40-40,5		0926																					
7 MW4-45-45.5		0930							X							;					_	_	X
8 mwg - 50 - 50,5		0435																				_	
4 mW4-55-55.5		0946																			_		
0 MW 1D-50-50.5	4	1250		¥					Tarabili anda	-	No.	-	10000	C1500	1000000	Tiechill	5245200	NUMBER OF STREET	3000500	(NIS)		10-15-140 (CA	August - Sa
		Company				Dafi	1.1						ment	/Spi	cial In	SITUC	lions		Contraction of the				
Relinquished by		FAR	AUG	on		5	8/0	55	2	0: m													
111 11		that G	m			15/	9. jo 579	5-		37													
Relinquished by		I WWI Soit	In En c			5	1	15		× 70													
cuer /		2000	<u>ц</u>	/		1/	1	25	-														
Relinquished by But #4						1	410		- 11.	1-1		1											
Reviewed hv/Date		Reviewed	by/Date			_											final	reno	rt 🗆				

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	BIS. I.	X	×.	18 BI-10.	17-18 FH	40 B1-5-	45 B1-2,5	YY MWIZ-	43 MW1 D-6	42 MUJ 17 - 6	4 MWID-S	Lab (D) Sampl	V NCHWY	JEFF KASPAR	Frink Crig Hu	e: V	Froject Number:	TARALLON		14648 NE 95th St	ON OnSite
	1 lla	aut # 4	0ut #4	THE ARM	MAR DC	0 00 A	neture			- 11,5	9-9	6,5	-4	70-70,5	65-65,5	60-60,7	5-55.5	Sample Identification	~	AIR	MAND LINUNDRY				Phone: (425) 883-3881 • Fax: (425) 885-4603	Invironmental Inc.	
Heviewed by/Uate	96	, e , ,	SOMEDY	Fraller	Frellow	Faranor	Company			N 1242 m m	I SHO	1538	5 551	1 3 7 7 7	1305	1 1300 1	5/4/65 1254 S 4	Date Time # of Sampled Sampled Matrix Cont.	(other)		Chandard (7 working dave)	2 Day 3 Day	Same Day 1 Day	(Check One)		Turnargund Request (in working days)	Chain of
Value Descri Dest Disk Client C	5/2/05 11M	5/9/05 11.00	5/9/05 10.30	5745 10:30	579/15 &157m	5/8/05 20.00	Date			XX	XXX	XX	* ~	×				NWTPI NWTPI NWTPI Volatile Haloge Semivo PAHs b	H-Gx H-Dx s by nated	/BTEX 8260B d Volat s by 8	iles t 2700		260B			Laboratory Number:	Custody
Chromatograms with final report				,	menter / UKO (Alegy	2 - Louking to relast of gashine	Comments/Special Instructions:											PCBs t Pesticic Herbicii Total R TCLP N HEM by VPH EPH FC	des b CRA Metali y 166	y 8081 by 815 Metals s	1A				Requested Analysis	05-059	Page 5 of
						ۍ ا				K		X		×				% Mois	sture						State of the second		5

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

ÿ

June 10, 2005

Jeff Kaspar Farallon Consulting, LLC 320 3rd Avenue NE, Suite 200 Issaquah, WA 98027

Re: Analytical Data for Project 603-001 Laboratory Reference No. 0506-033

Dear Jeff:

Enclosed are the analytical results and associated quality control data for samples submitted on June 2, 2005.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

JUN 1 5 2005

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

 $\langle \langle \langle \rangle \rangle$ David Baumeister

Project-Manager

Enclosures

Case Narrative

Samples were collected on May 27, 2005 and received by the laboratory on June 2, 2005. They were maintained at the laboratory at a temperature of 2°C to 6°C except as r oted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

HALOGENATED VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	6-7-05
Date Anal /zed:	6-7-05

Matrix:	Water			
Units:	ug/L (ppb)			

Lab ID:	06-033-01
Client ID:	DEV-1-052705

Compourad	Results	Flags	PQL
Dichlorod fluoromethane	ND		2.0
Chloromethane	ND		2.0
Vinyl Chloride	ND		2.0
Bromomethane	ND		2.0
Chloroethane	ND		2.0
Trichlorofluoromethane	ND		2.0
1,1-Dichlcoethene	ND		2.0
Iodometh ine	ND		10
Methylene Chloride	ND		10
(trans) 1,2-Dichloroethene	ND		2.0
1,1-Dichloroethane	ND		2.0
2,2-Dichloropropane	ND		2.0
(cis) 1,2-Dichloroethene	ND		2.0
Bromochloromethane	ND		2.0
Chloroforin	ND		2.0
1,1,1-Triciloroethane	ND		2.0
Carbon Tetrachloride	ND		2.0
1,1-Dichloropropene	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	ND		2.0
1,2-Dichloropropane	ND		2.0
Dibromon ethane	ND		2.0
Bromodic Iloromethane	ND		2.0
2-Chloroethyl Vinyl Ether	ND		10
(cis) 1,3-Dichloropropene	ND		2.0
(trans) 1,3-Dichloropropene	ND		2.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	06-033-01
Client ID:	DEV-1-052705

Compourd	Results	Flags	PQL
1,1,2-Tric loroethane	ND		2.0
Tetrachic oethene	450		2.0
1,3-Dichloropropane	ND		2.0
Dibromochloromethane	ND		2.0
1,2-Dibromoethane	ND		2.0
Chloroben-ene	ND		2.0
1,1,1,2-T. trachloroethane	ND		2.0
Bromofor in	ND =		10
Bromoberizene	ND	\$7	2.0
1,1,2,2-Tetrachloroethane	ND		2.0
1,2,3-Trichloropropane	ND		2.0
2-Chlorotoluene	ND		2.0
4-Chlorotol iene	ND		2.0
1,3-Dichlor chenzene	ND		2.0
1,4-Dichlcrobenzene	ND		2.0
1,2-Dichlc robenzene	ND		2.0
1,2-Dibro no-3-chloropropane	ND	(4)	10
1,2,4-Trichlorobenzene	ND		2.0
Hexachlorobutadiene	ND		2.0
1,2,3-Trichlorobenzene	ND		2.0

	Percent	Control
Surrogat :	Recovery	Limits
Dibromofiuoromethane	93	70-123
Toluene, d8	93	70-119
4-Bromofluorobenzene	102	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, Wr 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	6-7-05
Date Analyzed:	6-7-05

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 06-033-02 Client ID: DEV-2-052705

Compound	Results	Flags	PQL
Dichlorodifiuoromethane	ND		2.0
Chlorome hane	ND		2.0
Vinyl Chleride	ND	(i)	2.0
Bromomethane	ND		2.0
Chloroethane	ND		2.0
Trichlorofluoromethane	ND		2.0
1,1-Dichloroethene	ND		2.0
lodomethane	ND		10
Methylene Chloride	ND		10
(trans) 1,: -Dichloroethene	ND		2.0
1,1-Dichlcroethane	ND		2.0
2,2-Dichloropropane	ND		2.0
(cis) 1,2-Dichloroethene	2.8		2.0
Bromochloromethane	ND		2.0
Chloroform	ND		2.0
1,1,1-Trich'oroethane	ND		2.0
Carbon Tetrachloride	ND		2.0
1,1-Dichlcropropene	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	ND		2.0
1,2-Dichloropropane	ND		2.0
Dibromomethane	ND		2.0
Bromodichioromethane	ND		2.0
2-Chloroetl yl Vinyl Ether	ND		10
(cis) 1,3-Fichloropropene	ND		2.0
(trans) 1, 3-Dichloropropene	ND		2.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	06-033-02	
Client ID:	DEV-2-052705	
Compound		Results
4 4 0 Tricklene otherse		ND

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		2.0
Tetrachloroethene	440		2.0
1,3-Dichlcropropane	ND =		2.0
Dibromochloromethane	ND		2.0
1,2-Dibromoethane	ND		2.0
Chiorobenzene	ND		2.0
1,1,1,2-Tetrachloroethane	ND		2.0
Bromoform	ND		10
Bromoberzene	ND		2.0
1,1,2,2-Te trachloroethane	ND		2.0
1,2,3-Tric'iloropropane	ND		2.0
2-Chlorotoluene	ND		2.0
4-Chlorotoluene	ND		2.0
1,3-Dichlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
1,2-Dichlorobenzene	ND		2.0
1,2-Dibroi וס-3-chloropropane	ND		10
1,2,4-Trichlorobenzene	ND		2.0
Hexachlo obutadiene	ND		2.0
1,2,3-Trichlorobenzene	ND		2.0

	Percent	Control
Surrogate /	Recovery	Limits
Dibromofl Joromethane	93	70-123
Toluene, d8	93	70-119
4-Bromofluorobenzene	101 👘	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B Page 1 of 2

Date Extr icted:	6-7-05
Date Ana yzed:	6-7-05

Matrix:	Water	
Units:	ug/L (ppb)	

Lab ID:	06-033-03
Client ID:	DEV-3-052705

- -

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		2.0
Chloromethane	ND		2.0
Vinyl Chloride	ND		2.0
Bromomethane	ND		2.0
Chloroeth ine	ND	12	2.0
Trichlorof uoromethane	ND		2.0
1,1-Dichloroethene	ND		2.0
lodomethane	ND		10
Methylene Chloride	ND		10
(trans) 1,2-Dichloroethene	ND		2.0
1,1-Dichlor vethane	ND		2.0
2,2-Dichlor propane	ND		2.0
(cis) 1,2-L ichloroethene	2.6		2.0
Bromochloromethane	ND		2.0
Chlorofor n	ND		2.0
1,1,1-Trichloroethane	ND		2.0
Carbon Tetrachloride	ND		2.0
1,1-Dichloropropene	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	ND		2.0
1,2-Dichl ropropane	ND		2.0
Dibromon ethane	ND		2.0
Bromodichloromethane	ND		2.0
2-Chloroethyl Vinyl Ether	ND		10
(cis) 1,3-Dichloropropene	ND		2.0
(trans) 1,3-Dichloropropene	ND		2.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Roport: June 10, 2005 Samples Aubmitted: June 2, 2005 Laborator / Reference: 0506-033 Project: 6)3-001

HALOGENATED VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	06-033-03
Client ID	DEV-3-052705

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		2.0
Tetrachloroethene	310		2.0
1,3-Dichlompropane	ND		2.0
Dibromoch oromethane	ND		2.0
1,2-Dibror toethane	ND		2.0
Chlorobe [,] zene	ND		2.0
1,1,1,2-T-trachloroethane	ND		2.0
Bromoform	ND		10
Bromobenzene	ND		2.0
1,1,2,2-Tetrachloroethane	ND		2.0
1,2,3-Trich oropropane	ND	<i>6</i> .	2.0
2-Chloroto. iene	ND		2.0
4-Chlorotr luene	ND		2.0
1,3-Dichlcrobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
1,2-Dichlorobenzene	ND		2.0
1,2-Dibromo-3-chloropropane	ND		10
1,2,4-Trichlorobenzene	ND		2.0
Hexachlorobutadiene	ND		2.0
1,2,3-Trichlorobenzene	ND		2.0

	Percent		Control
Surrogate	Recovery	8	Limits
Dibromofluoromethane	90		70-123
Toluene, d3	96		70-119
4-Bromoflu probenzene	98		70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, Wr. 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Date Extracted:	6-7-05
Date Analyzed:	6-7-05

Matrix:	Water	
Units:	ug/L (ppb)	

Lab ID: MB0607W1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	_	0.20
Chloromethane	ND		0.20
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		0.20
Trichlorofluoromethane	ND		0.20
1,1-Dichic pethene	ND		0.20
Iodometh ine	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Di hloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chlorofor ו	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromon ethane	ND		0.20
Bromodic iloromethane	ND		0.20
2-Chloroe hyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

Lab ID:

MB0607W1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND 👘		0.20
Tetrachlo oethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Te trachloroethane	ND		0.20
Bromofor	ND		1.0
Bromobelizene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlc robenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogat :	Recovery	Limits
Dibromofluoromethane	95	70-123
Toluene, d8	93	70-119
4-Bromofluorobenzene	99	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B MS/MSD QUALITY CONTROL

Date Extracted:	6-7-05
Date Analyzed:	6-7-05

Matrix: Water Units: ug/L (ppb)

Lab ID: 06-032-07

	Sample	Spike		Percent		Percent	Recovery	
Compound	Amount	Amount	MS	Recovery	MSD	Recovery	Limits	Flags
1,1-Dichle roethene	ND	10.0	7.97	80	7.64	76	70-130	
Benzene	ND	10.0	9.47	95	ზ 95	90	71-128	
Trichloroethene	ND	10.0	8.88	89	8 .69 ⁻ 3	87	76-124	
Toluene	ND	10.0	9.89	99	9.48	95	74-124	÷
Chloroben z ene	ND	10.0	10.1	101	9.63	96	72-118	

	RPD	Limit	Flags
1,1-Dichloroethene	4	17	
Benzene	6	13	
Trichloroethene	2	12	
Toluene	4	14	
Chlorober zene	5	9	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to + high sample concentration, the amount spiked is insufficient for m aningful MS/MSD recovery data.

B - The an ilyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogat - recovery data is not available due to the high concentration of co-sluting target compounds.

G - Insuffir ent sample quantity for duplicate analysis.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneit . The sample was re-extracte I and re-analyzed with similar results.

L - The RFD is outside of the control limits.

M - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

O - Hydrocarbons indicative of diesel fuel are present in the sample and are impacting the gasoline result.

P - The RPL of the detected concentrations between the two columns is greater than 40.

Q - Surrog te recovery is outside of the control limits.

S - Surrog te recovery data is not available due to the necessary dilution of the sample.

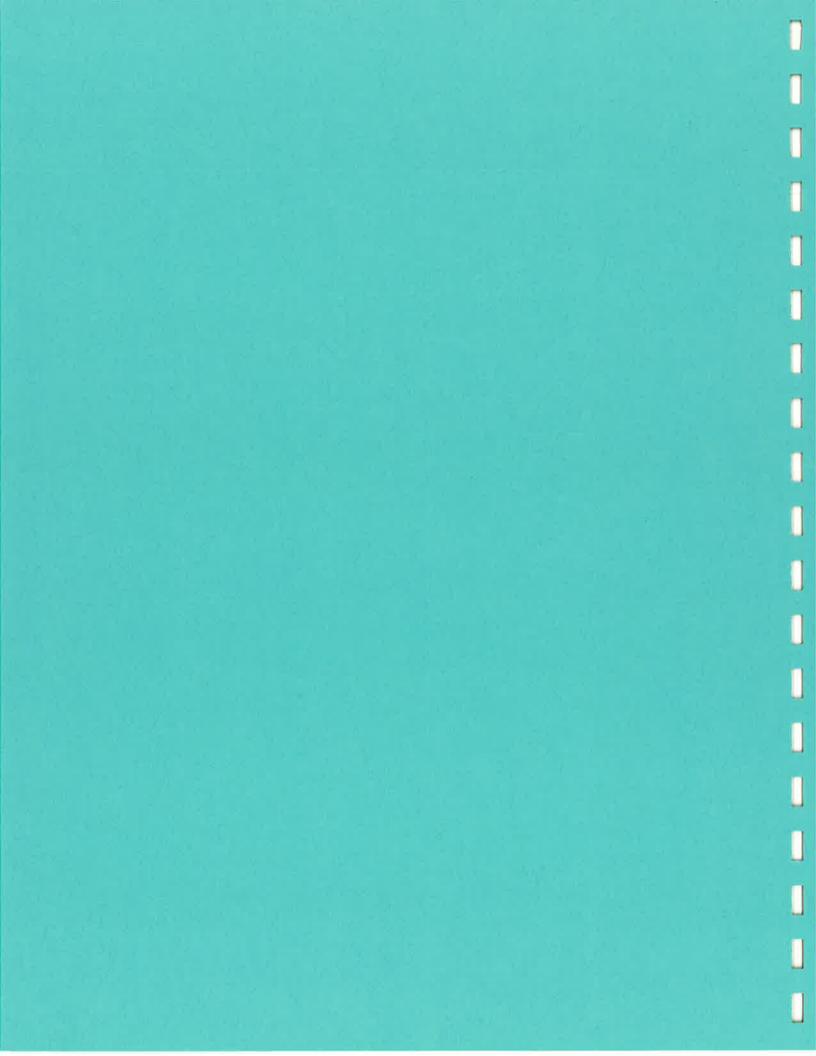
T - The sample chromatogram is not similar to a typical

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

V - Matrix Shike/Matrix Spike Duplicate recoveries are outside control limits dur to matrix effects.

W - Matrix pike/Matrix Spike Duplicate RPD are outside control limits due to n atrix effects.

X - Sample extract treated with a silica gel cleanup procedure.


Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not De ected at PQL PQL - Practical Quantitation Limit RPD - Rel, tive Percent Difference

	Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	Sign		/	~	Y	25	/		3 DFV-3-05	2 DEV-2-0	1 DEV-1-09	Company: FARAL-LON-L Project Number: 1003-001 Project Name: 025-001 Project Name: 025-001 Proj	
	1				WAPUNG	MUMER	ACC'A	Signature				•2	2			20422	20423	204250	OnSite Environmental Inc. 1448 NE 95th Street - Redmond, WA 98052 Phone: (425) 883-3881 • Fax: (425) 885-4603 Phone: (425) 883-4603 Phone: (425) 883-3881 • Fax: (425) 885-4603 Phone: (425) 883-4603 Phone: (426) Phone: (
DISTRIBUTIC								11-102/02-1		e.						4	_	5/22/05	Date Stand	
DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy	Reviewed by/Date			S N	Sper	Speed	Farallow	Company								2121	びつ	1208	ard Da (C	
White - OnSi	//Date			5		Ś	CZ									6		٤	Cound Request orking days) Theck One) Theck One) Theck One) Theck One) Theck One) Theck One) Theck One The the the the the the the the the the t	
te Copy Y	Î				X	8 开			(6) 		1		- 1 			4		V		
ellow - P				6	1/-	6/	6	Date											NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Dx Volatiles by 8260B	
leport C				12/05	105	5010	501												NWTPH-Dx	ê B
opy F	h i						1	Time								×	-	X		
Mik - O			- 55	Ū Ū	11	230	2030	me					-				×		Halogenated Volatiles by 8260B Semivolatiles by 8270C PAHs by 8270C / SIM	
lient (x.		8	0		õ	S		-								-		PAHs by 8270C / SIM	
ğ	Ch				I	<u>I</u>		S			-						1		PCBs by 8082	
ſ	roma							nmen											Pesticides by 8081A	
Ļ	togra							ls/Spe											Herbicides by 8151A	
4	Ims \	Э.						Comments/Special Instructions:											Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals HEM by 1664	
-l _i	with f	e) +-						struc											TCLP Metals	
4	Chromatograms with final report							tions:												
ł,	epor			, ¹															VPH O	
	đ	2					a.						-							
															<u> </u>					
									U.											
												1			-				<u>م</u>	
]											-				-	-			% Moisture	

ł

A. UNSITE Environmental Inc. Analytical Testing and Mobile Laboratory Services

> RECEIVED JUN 2 8 2005 BY:

June 24, 2005

Jeff Kaspar Farallon Consulting, LLC 320 3rd Avenue NE, Suite 200 Issaquah, WA 98027

Re: Analytical Data for Project 603-001 Laboratory Reference No. 0506-123

Dear Jeff:

Enclosed are the analytical results and associated quality control data for samples submitted on June 13, 2005.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister

Project Manager

Enclosures

Case Narrative

Samples were collected on June 9 & 10, 2005 and received by the laboratory on June 13, 2005. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Date Extracted:	6-20-05
Date Analyzed:	6-20-05

Matrix: Water Units: ug/L (ppb)

Client ID:	MW1-061005	MW2-060905
Lab ID:	06-123-01	06-123-03

	Result	Flags	PQL	Resu	Flags	PQL
Benzene	ND		1.0	ND	;ä	1.0
Toluene	ND		1.0	ND	×.	1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: Fluorobenzene	100%			93%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Date Extracted:	6-20-05
Date Analyzed:	6-20-05

Matrix: Water Units: ug/L (ppb)

Client ID:	MW3-061005	MW4-060905
Lab ID:	06-123-04	06-123-05

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: Fluorobenzene	97%			105%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Date Extracted:	6-20-05
Date Analyzed:	6-20-05

Matrix: Water Units: ug/L (ppb)

Client ID:	MW5-060905	MW6-061005
Lab ID:	06-123-06	06-123-07

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: Fluorobenzene	104%			105%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W \ 98052 (425) 883-3881

NWTPH-Gx/BTEX

Date Extracted:	6-20-05
Date Analyzed:	6-20-05

Matrix: Water Units: ug/L (ppb)

Client ID:	MW7-060905	MW8-961005
Lab ID:	06-123-08	06-12: 09

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Ben∠∋ne	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: Fluorobenzene	105%			106%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Date Extracted:	6-20-05
Date Analyzed:	6-20-05

Matrix: Water Units: ug/L (ppb)

Client ID:	MW9-061005	MW10-060905
Lab ID:	06-123-10	06-123-11

		Result	Flags	PQL	Result	Flags	PQL
	Benzene	ND		1.0	ND		1.0
	Toluene	ND		1.0	ND		1.0
1	Ethyl Benzene	ND		1.0	ND		1.0
	m,p-Xylene	ND		1.0	ND		1.0
	o-Xylene	ND		1.0	ND		1.0
	TPH-Gas	ND		100	ND		100
	Surrogate Recovery: Fluorobenzene	106%			104%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W/ 98052 (425) 883-3881

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:	6-20-05
Date Analyzed:	6-20-05

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0620W1

	Result	Flags	PQL
Benzene	ND		1.0
Toluene	ND		1.0
Ethyl Benzene	ND		1.0
m,p-Xylene	ND		1.0
o-Xylene	ND		1.0
TPH-Gas	ND		100
Surrogate Kecovery: Fluorobenzene	97%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extranted:	6-20-05
Date Ana ¹ yzed:	6-20-05

Matrix: Water Units: ug/L (ppb)

Lab ID:	06-165-01 Original	06-165-01 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	
Surrogate Recovery: Fluoroben≞ene	105%	105%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX MS/MSD QUALITY CONTROL

Date Extranted:	6-20-05
Date Analyzed:	6-20-05

Matrix: Water Units: ug/L (ppb)

Spike Level: 50.0 ppb

Lab ID:	06-165-01 MS	Percent Recovery	06-165-01 MSD	Percent Recovery	RPD	Flags
			94 - C			
Benzene	51.0	102	52.7	105	3	
Toluene	51.9	104	53.7	107	4	
Ethyl Benzene	52.0	104	53.9	108	4	
m,p-Xylene	51.7	103	53.6	107	3	
o-Xylene	51.8	104	53.9	108	4	

100%

Surrogate Recovery: Fluorobent ene 99%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	6-14-05
Date Analvzed:	6-14-05

Matrix: Water Units: mg/L (ppm)

Client ID: Lab ID:	MW1-061005 06-123-01	⁶ MW8-06100 5 06-123-09	MW9-061005 06-123-10
Diesel Range: PQL:	ND 0.26	ND 0.26	ND 0.25
Identification:			
		×	
Lube Oil Range:	ND	ND	ND
PQL:	0.41	0.41	0.40
Identification:			2 (****)
Surrogate Recovery			
o-Terphen_1;	139%	117%	112% -
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	6-14-05
Date Analyzed:	6-15-05

Matrix:	Water		
Units:	mg/L (ppm)		

Lab ID:	MB0614W1
	ţ.
Diesel Range:	ND
PQL:	0.25
Identification:	
Lube Oil Kange:	ND
PQL:	0.40
Identification:	***
Surrogate Recovery	
o-Terphenyl:	132%
Flags:	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	6-14-05
Date Analyzed:	6-15-05

Matrix:	Water	
Units:	mg/L (ppm)	

Lab ID:

06-117-01

06-117-01 DL P

Diesel Range: PQL:	ND 0.28	ND 0.26
RPD:	N/A	
		<u>ě</u>

Surrogate Recovery		
o-Terphenyl:	83%	80%
		a
Flags:	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	6-15-05
Date Analyzed:	6-15-05

Matrix:	Water	
Units:	ug/L (ppb)	

Lab ID:	06-123-01
Client ID:	MW1-061005

Compound	Results	Flags	PQL
Dichlorodi ^{, l} uoromethane	ND		10
Chloromethane	ND		10
Vinyl Chloride	ND		10
Bromomethane	ND		10
Chloroethane	NÐ		10
Trichlorofluoromethane	ND		10
1,1-Dichloroethene	ND		10
lodomethane	ND		50
Methylene Chloride	ND		50
(trans) 1,2-Dichloroethene	ND		10
1,1-Dichloroethane	ND		10
2,2-Dichloropropane	ND		10
(cis) 1,2-Dichloroethene	ND		10
Bromochleromethane	ND		10
Chloroform	ND		10
1,1,1-Trichloroethane	ND		10
Carbon Tetrachloride	ND		10
1,1-Dichloropropene	ND		10
1,2-Dichloroethane	ND		10
Trichloroethene	ND		10
1,2-Dichlor propane	ND		10
Dibromomethane	ND		10
Bromodichloromethane	ND		10
2-Chloroethyl Vinyl Ether	ND		50
(cis) 1,3-Dichloropropene	ND		10
(trans) 1,3-Dichloropropene	ND		10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8.260B page 2 of 2

Lab ID:	06-123-01
Client ID:	MW1-061005

Poculto	Flage	PQL
	Flays	10
		10
		10
		10
ND	¥.	50
ND		10
NÐ		10
ND		10
ND		10
ND		50
ND		10
ND		10
ND		10
	ND ND ND ND ND ND ND ND ND ND ND ND	ND 1100 ND ND ND ND ND ND ND ND ND ND

с.	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	70-123
Toluene, d8	88	70-119
4-Bromofluorobenzene	87	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W/: 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA ?260B page 1 of 2

Date Extra :ted:	6-15-05
Date Analyzed:	6-15-05
10 million (10 mil	

Matrix:	Water
Units:	ug/L (ppb)

06-123-02	
MW1D-061005	

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.20
Chloromethane	ND		0.20
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		0.20
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND	2	1.0
Methylene Chloride	ND		1.0
(trans) 1,2 Dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	0.25		0.20
Bromochloromethane	ND		- 0.20
Chloroform	2.0		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Te rachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	0.30		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	0.25		0.20
2-Chloroetnyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	
Client ID:	

06-123-02 MW1D-061005

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	50		0.40
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibron oethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trich`oropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trich orobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	88	70-123
Toluene, d8	89	70-119
4-Bromofluorobenzene	86	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W/ 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	6-15-05
Date Analyzed:	6-15-05

Matrix: Water Units: ug/L (ppb)

Lab ID: 06-123-03 Client ID: MW2-060905

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	-	10
Chloromethane	ND		10
Vinyl Chloride	ND		10
Bromomethane	ND		10
Chloroethane	ND	G.	10
Trichlorofluoromethane	ND		10
1,1-Dichloroethene	ND		10
lodomethane	ND		50
Methylene Chloride	ND		50
(trans) 1,2-Dichloroethene	ND		10
1,1-Dichloroethane	ND		10
2,2-Dichloropropane	ND		10
(cis) 1,2-Dichloroethene	ND		10
Bromochloromethane	ND		10
Chloroform	ND		10
1,1,1-Trichloroethane	ND		10
Carbon Tetrachloride	ND		10
1,1-Dichloropropene	ND		10
1,2-Dichlo cethane	ND		10
Trichloroethene	ND		10
1,2-Dichloropropane	ND		10
Dibromomethane	ND		10
Bromodichloromethane	ND		10
2-Chloroethyl Vinyl Ether	ND		50
(cis) 1,3-D chloropropene	ND		10
(trans) 1,3 Dichloropropene	ND		10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	06-123-03
Client ID:	MW2-060905

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		10
Tetrachloroethene	2100		10
1,3-Dichloropropane	ND		10
Dibromochloromethane	ND		10
1,2-Dibromoethane	ND		10
Chlorobenzene	ND		10
1,1,1,2-Tetrachloroethane	ND		10
Bromoform	ND		50
Bromobenzene	ND		10
1,1,2,2-Tetrachloroethane	ND		10
1,2,3-Trichloropropane	ND		10
2-Chlorotoluene	ND		10
4-Chloroto: Jene	ND		10
1,3-Dichlorobenzene	ND		10
1,4-Dichlorobenzene	ND	5	10
1,2-Dichlorobenzene	ND		10
1,2-Dibromo-3-chloropropane	ND		50
1,2,4-Trichlorobenzene	ND		10
Hexachlor vbutadiene	ND		10
1,2,3-Trichlorobenzene	ND		10

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	88	70-123
Toluene, d 3	87	70-119
4-Bromofluorobenzene	86	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W/ 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8.360B page 1 of 2

Date Extracted:	6-15-05
Date Analyzed:	6-15-05

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	06-123-04
Client ID:	MW3-061005

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		10
Chlorometl.ane	ND		10
Vinyl Chloride	ND		10
Bromomethane	ND		10
Chloroethane	ND		10
Trichlorofluoromethane	ND		10
1,1-Dichloroethene	ND		10
lodomethane	ND		50
Methylene Chloride	ND		50
(trans) 1,2-Dichloroethene	ND		10
1,1-Dichloroethane	ND		10
2,2-Dichloropropane	ND		10
(cis) 1,2-Dichloroethene	ND		10
Bromochlcromethane	ND		10
Chloroform	NÐ		10
1,1,1-Trichloroethane	ND		10
Carbon Tetrachloride	ND		10
1,1-Dichloropropene	ND		10
1,2-Dichloroethane	ND		10
Trichloroethene	ND		10
1,2-Dichloupropane	ND		10
Dibromomethane	ND		10
Bromodichloromethane	ND		10
2-Chloroethyl Vinyl Ether	ND		50
(cis) 1,3-Dichloropropene	ND		10
(trans) 1,3-Dichloropropene	ND		10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, Wk 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

a.

24

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID: Client ID:	06-123-04 MW3-061005			
Compound		Results ND	Flags	PQL 10
1,1,2-Trich oroethane				10
Tetrachloroethene		2100		10
1,3-Dichloropropane		ND		
Dibromochloromethane		ND		10
1,2-Dibromoethane		ND		10
Chlorobenzene		ND		10
1,1,1,2-Tetrachloroethane		ND		10
Bromofor n		ND		50
Bromobenzene		ND		10
1,1,2,2-Tetrachloroethane		ND		10
1,2,3-Trichloropropane		ND		10
2-Chlorotoluene		ND		10
4-Chlorotoluene		NÐ		10
1,3-Dichlo:obenzene		ND		10
1,4-Dichlorobenzene		ND		10
1,2-Dichlorobenzene		ND		10
1,2-Dibromo-3-chloropropan	е	ND		50
1,2,4-Trichlorobenzene		ND		10
Hexachlorobutadiene		ND		10
1,2,3-Trichlorobenzene		ND		10

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	89	70-123
Toluene, d8	88	70-119
4-Bromofly orobenzene	86	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W - 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 6260B page 1 of 2

Date Extracted:	6-15-05
Date Analyzed:	6-15-05

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	06-123-05	
Client ID:	MW4-060905	

Compound	Results Flags	PQL
Dichlorodifluoromethane	ND	1.0
Chloromethane	ND	1.0
Vinyl Chlo ⁱ de	ND	1.0
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
1,1-Dichloroethene	ND	1.0
lodomethane	ND	5.0
Methylene Chloride	ND	5.0
(trans) 1,2 Dichloroethene	ND	1.0
1,1-Dichloroethane	ND	1.0
2,2-Dichloropropane	ND	1.0
(cis) 1,2-Dichloroethene	ND	1.0
Bromochloromethane	ND	1.0
Chloroform	ND	1.0
1,1,1-Trichloroethane	ND	1.0
Carbon Tetrachloride	ND	1.0
1,1-Dichloropropene	ND	1.0
1,2-Dichloroethane	ND	1.0
Trichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
Dibromomethane	ND	1.0
Bromodich oromethane	ND	1.0
2-Chloroethyl Vinyl Ether	ND	5.0
(cis) 1,3-Dichloropropene	ND	1.0
(trans) 1,3-Dichloropropene	ND	1.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W & 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA &260B page 2 of 2

Lab ID:	06-123-05	
Client ID:	MW4-060905	

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		1.0
Tetrachloroethene	230		1.0
1,3-Dichlo opropane	ND		1.0
Dibromochloromethane	ND		1.0
1,2-Dibromoethane	ND		1.0
Chiorobenzene	ND		1.0
1,1,1,2-Tetrachloroethane	ND		1.0
Bromoform	ND		5.0
Bromobenzene	ND		1.0
1,1,2,2-Tet achloroethane	ND		1.0
1,2,3-Trichloropropane	ND		1.0
2-Chlorotoluene	ND		1.0
4-Chlorotoluene	ND		1.0
1,3-Dichlorobenzene	ND		1.0
1,4-Dichlorobenzene	ND		1.0
1,2-Dichlo obenzene	ND		1.0
1,2-Dibromo-3-chloropropane	ND		5.0
1,2,4-Trichlorobenzene	ND		1.0
Hexachlorobutadiene	ND		1.0
1,2,3-Trichlorobenzene	ND		1.0
4-Chlorotoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene	ND ND ND ND ND ND		1.0 1.0 1.0 5.0 1.0 1.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	70-123
Toluene, d8	88	70-119
4-Bromofluorobenzene	86	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extra .ted:	6-15-05
Date Analyzed:	6-15-05
Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	06-123-06
Client ID:	MW5-060905

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		1.0
Chloromethane	ND		1.0
Vinyl Chloride	ND		1.0
Bromometl ane	ND		1.0
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
1,1-Dichloroethene	ND		1.0
Iodomethane	ND		5.0
Methylene Chloride	ND		5.0
(trans) 1,2 Dichloroethene	ND		1.0
1,1-Dichloroethane	ND		1.0
2,2-Dichloropropane	ND		1.0
(cis) 1,2-Dichloroethene	ND		1.0
Bromochloromethane	ND		1.0
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		1.0
Carbon Tetrachloride	ND		1.0
1,1-Dichloropropene	ND		1.0
1,2-Dichloroethane	ND		1.0
Trichloroethene	ND		1.0
1,2-Dichloropropane	ND		1.0
Dibromomethane	ND		1.0
Bromodich oromethane	ND		1.0
2-Chloroethyl Vinyl Ether	ND		5.0
(cis) 1,3-Dichloropropene	ND		1.0
(trans) 1,3-Dichloropropene	ND		1.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID: Client ID:	06-123-06 MW5-060905		x :	
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		1.0
Tetrachloroethene		150		1.0
1,3-Dichloropropane		ND		1.0
Dibromochloromethane		ND		1.0
1,2-Dibron:oethane		ND		1.0
Chlorobenzene		ND		1.0
1,1,1,2-Tetrachloroethane		ND		1.0
Bromoform		ND		5.0
Bromobenzene		ND		1.0
1,1,2,2-Tetrachloroethane		ND		1.0
1,2,3-Trichloropropane		ND a		1.0
2-Chloroto Jene		ND		1.0
4-Chlorotoluene		ND		1.0
1,3-Dichlorobenzene		ND		1.0
1,4-Dichlorobenzene		ND		1.0
1,2-Dichlorobenzene		ND		1.0
1,2-Dibromo-3-chloropropan	е	ND		5.0
1,2,4-Trict lorobenzene		ND		1.0
Hexachlorobutadiene		ND		1.0
1,2,3-Trichlorobenzene		ND		1.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromoflu promethane	86	70-123
Toluene, d8	88	70-119
4-Bromofluorobenzene	84	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, Wr. 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to v hom it is addressed.

25

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	6-15-05
Date Analyzed:	6-15-05

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	06-123-07
Client ID:	MW6-061005

Compoun ⁴	Results	Flags	PQL
Dichlorodifluoromethane	ND		1.0
Chloromethane	ND		1.0
Vinyl Chloride	ND		1.0
Bromomethane	ND		1.0
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
1,1-Dichlor vethene	ND		1.0
Iodomethane	ND		5.0
Methylene Chloride	ND		5.0
(trans) 1,2-Dichloroethene	ND		1.0
1,1-Dichloroethane	ND	0	1.0
2,2-Dichloropropane	ND		1.0
(cis) 1,2-Dishloroethene	ND		1.0
Bromochloromethane	ND		1.0
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		1.0
Carbon Tetrachloride	ND		1.0
1,1-Dichloropropene	ND		1.0
1,2-Dichloroethane	ND		1.0
Trichloroet(;ene	NÐ		1.0
1,2-Dichlcropropane	ND		1.0
Dibromomethane	ND		1.0
Bromodichloromethane	ND		1.0
2-Chloroethyl Vinyl Ether	ND		5.0
(cis) 1,3-Dichloropropene	ND		1.0
(trans) 1,3 Dichloropropene	ND		1.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W/ 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID: Client ID:	06-123-07 MW6-061005		e e	
Compound		Results	Flags	PQL
1,1,2-Trich 'oroethane		ND		1.0
Tetrachloroethene		160		1.0
1,3-Dichloropropane		ND		1.0
Dibromochloromethane		ND		1.0 🗉
1,2-Dibromoethane		ND		1.0
Chlorobenzene		ND		1.0
1.1,1,2-Tetrachloroethane		ND		1.0
Bromoform		ND		5.0
Bromobenzene		ND		1.0
1,1,2,2-Tetrachloroethane		ND		1.0
1,2,3-Trichloropropane		ND		1.0
2-Chlorotoluene		ND		1.0
4-Chlorotoluene		ND		1.0
1,3-Dichlo. cbenzene		ND		1.0
1,4-Dichlorobenzene		ND		1.0
1,2-Dichlorobenzene		ND		1.0
1,2-Dibromo-3-chloropropan	e	ND		5.0
1,2,4-Trichlorobenzene		ND		1.0
Hexachlorobutadiene		ND		1.0
1,2,3-Trichlorobenzene		ND		1.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	70-123
Toluene, d8	88	70-119
4-Bromofluorobenzene	86	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	6-15-05
Date Analyzed:	6-15-05

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 06-123-08 Client ID: MW7-060905

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		4.0
Chloromethane	ND		4.0
Vinyl Chlo [;] ide	ND		4.0
Bromomethane	ND		4.0
Chloroethane	ND		4.0
Trichlorofluoromethane	ND		4.0
1,1-Dichloroethene	ND		4.0
lodomethane	ND		20
Methylene Chloride	ND		20
(trans) 1,2- ichloroethene	ND		4.0
1,1-Dichloroethane	ND		4.0
2,2-Dichloropropane	ND		4.0
(cis) 1,2-Dichloroethene	ND		4.0
Bromochloromethane	ND		4.0
Chloroform	ND		4.0
1,1,1-Trichloroethane	ND		4.0
Carbon Tetrachloride	ND		4.0
1,1-Dichloropropene	ND		4.0
1,2-Dichloroethane	ND		4.0
Trichloroethene	ND		4.0
1,2-Dichloropropane	ND		4.0
Dibromomethane	ND		4.0
Bromodich' promethane	ND		4.0
2-Chloroethyl Vinyl Ether	ND	2	20
(cis) 1,3-Dichloropropene	ND		4.0
(trans) 1,3-Dichloropropene	ND		4.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WF 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

ŝ

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	06-123-08
Client ID:	MW7-060905

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		4.0
Tetrachloroethene	930		4.0
1,3-Dichloropropane	ND		4.0
Dibromoch loromethane	ND		4.0
1,2-Dibromoethane	ND		4.0
Chlorobenzene	ND		4.0
1,1,1,2-Tetrachloroethane	ND	λ	4.0
Bromoform	ND		20
Bromobenzene	ND		4.0
1,1,2,2-Tetrachloroethane	ND		4.0
1,2,3-Trich oropropane	ND		4.0
2-Chlorotoluene	ND		4.0
4-Chlorotoluene	ND		4.0
1,3-Dichlorobenzene	ND		4.0
1,4-Dichlorobenzene	ND		4.0
1,2-Dichlorobenzene	ND		4.0
1,2-Dibron o-3-chloropropane	ND		20
1,2,4-Trich.orobenzene	ND		4.0
Hexachlorobutadiene	ND		4.0
1,2,3-Trichlorobenzene	ND		4.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	89	70-123
Toluene, d8	88	70-119
4-Bromofluorobenzene	85	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Date Extracted:	6-15-05
Date Analyzed:	6-15-05

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	06-123-09
Client ID:	MW8-061005

Compound	Results	Flags	PQL
Dichlorod ⁱ fluoromethane	ND		4.0
Chloromethane	ND		4.0
Vinyl Chloride	ND		4.0
Bromomethane	ND		4.0
Chloroethane	ND		4.0
Trichlorofluoromethane	ND		4.0
1,1-Dichlor-ethene	ND		4.0
lodomethane	ND		20
Methylene Chloride	ND		20
(trans) 1,2-Dichloroethene	ND		4.0
1,1-Dichloroethane	ND		4.0
2,2-Dichloropropane	ND		4.0
(cis) 1,2-Di hloroethene	11		4.0
Bromochloromethane	ND		4.0
Chloroform	ND		4.0
1,1,1-Trichloroethane	ND		4.0
Carbon Tetrachloride	ND		4.0
1,1-Dichloropropene	ND		4.0
1,2-Dichloroethane	ND		4.0
Trichloroetuene	5.9		4.0
1,2-Dichloropropane	ND		4.0
Dibromomethane	ND		4.0
Bromodichloromethane	ND		4.0
2-Chloroethyl Vinyl Ether	ND		20
(cis) 1,3-Dichloropropene	ND		4.0
(trans) 1,3-Dichloropropene	ND		4.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W.² 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	06-123-09
Client ID:	MW8-061005

Compound	Results	Flags	PQL
1,1,2-Tricl 'oroethane	ND		4.0
Tetrachloroethene	800		4.0
1,3-Dichloropropane	ND		4.0
Dibromochloromethane	ND		4.0
1,2-Dibromoethane	ND		4.0
Chlorobenzene	ND		4.0
1,1,1,2-Tetrachloroethane	ND		4.0
Bromoform	ND		20
Bromobenzene	ND	02	4.0
1,1,2,2-Tetrachloroethane	ND		4.0
1,2,3-Trichloropropane	ND		4.0
2-Chlorotoluene	ND		4.0
4-Chlorotoluene	ND		4.0
1,3-Dichlo: benzene	ND		4.0
1,4-Dichlorobenzene	ND		4.0
1,2-Dichlorobenzene	ND		4.0
1,2-Dibromo-3-chloropropane	ND		20
1,2,4-Trichlorobenzene	ND		4.0
Hexachlorobutadiene	ND		4.0
1,2,3-Trichlorobenzene	ND		4.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	88	70-123
Toluene, d8	87	70-119
4-Bromofli orobenzene	85	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8::60B page 1 of 2

Date Extracted:	6-15-05
Date Analyzed:	6-15-05
Matrix:	Water
Units:	ug/L (ppb)

1

Lab ID:	06-123-10
Client ID:	MW9-061005

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	-	4.0
Chloromethane	ND		4.0
Vinyl Chlo ide	ND		4.0
Bromomethane	ND		4.0
Chloroethane	ND		4.0
Trichlorofluoromethane	ND		4.0
1,1-Dichloroethene	ND		4.0
lodomethane	ND		20
Methylene Chloride	ND		20
(trans) 1,2-Dichloroethene	ND		4.0
1,1-Dichloroethane	ND		4.0
2,2-Dichloropropane	ND		4.0
(cis) 1,2-Dichloroethene	6.5		4.0
Bromochloromethane	ND		4.0
Chloroform	ND		4.0
1,1,1-Trichloroethane	ND		4.0
Carbon Te rachloride	ND		4.0
1,1-Dichloropropene	ND		4.0
1,2-Dichloroethane	ND		4.0
Trichloroethene	ND		4.0
1,2-Dichloropropane	ND		4.0
Dibromomethane	ND		4.0
Bromodict 'oromethane	ND		4.0
2-Chloroethyl Vinyl Ether	ND		20
(cis) 1,3-Dichloropropene	ND		4.0
(trans) 1,3-Dichloropropene	ND		4.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	06-123-10
Client ID:	MW9-061005

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		4.0
Tetrachloroethene	910		4.0
1,3-Dichloropropane	ND		4.0
Dibromochloromethane	ND		4.0
1,2-Dibromoethane	ND		4.0
Chlorobenzene	ND		4.0
1,1,1,2-Tetrachloroethane	ND		4.0
Bromoform	= ND		20
Bromobenzene	ND		4.0
1,1,2,2-Tetrachloroethane	ND		4.0
1,2,3-Trict 'oropropane	ND		4.0
2-Chlorotoiuene	ND		4.0
4-Chlorotoluene	ND		4.0
1,3-Dichlorobenzene	ND		4.0
1,4-Dichlorobenzene	ND		4.0
1,2-Dichlorobenzene	ND		4.0
1,2-Dibromo-3-chloropropane	ND		20
1,2,4-Trich orobenzene	ND		4.0
Hexachlorobutadiene	ND		4.0
1,2,3-Trichlorobenzene	ND		4.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	70-123
Toluene, d8	87	70-119
4-Bromofluorobenzene	86	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 82/60B page 1 of 2

Date Extracted:	6-15-05
Date Analyzed:	6-15-05

Matrix: Water Units: ug/L (ppb)

Lab ID:	06-123-11
Client ID:	MW10-060905

Compound	Results	Flags	PQL
Dichlorodifiuoromethane	ND		2.0
Chloromethane	ND		2.0
Vinyl Chloride	ND		2.0
Bromomethane	ND		2.0
Chloroethane	ND		2.0
Trichlorofluoromethane	ND		2.0
1,1-Dichlor cethene	ND		2.0
lodomethane	ND		· 10
Methylene Chloride	ND		10
(trans) 1,2-Dichloroethene	ND		2.0
1,1-Dichloroethane	ND		2.0
2,2-Dichloropropane	ND		2.0
(cis) 1,2-D chloroethene	ND		2.0
Bromochloromethane	ND		2.0
Chloroform	ND		2.0
1,1,1-Trichloroethane	ND		2.0
Carbon Tetrachloride	ND		2.0
1,1-Dichloropropene	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroernene	ND		2.0
1,2-Dichloropropane	ND		2.0
Dibromomethane	ND		2.0
Bromodichloromethane	ND		2.0
2-Chloroethyl Vinyl Ether	ND		10
(cis) 1,3-Dichloropropene	ND		2.0
(trans) 1,3 Dichloropropene	ND		2.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Lab ID:	06-123-11
Client ID:	MW10-060905

Compound	Results	Flags	PQL
1,1,2-Trich'oroethane	ND		2.0
Tetrachloroethene	300		2.0
1,3-Dichloropropane	ND		2.0
Dibromochloromethane	ND		2.0
1,2-Dibromoethane	ND		2.0
Chlorobenzene	ND		2.0
1,1,1,2-Te ⁺ rachloroethane	ND		2.0
Bromoforn	ND		10
Bromobenzene	ND		2.0
1,1,2,2-Tetrachloroethane	ND		2.0
1,2,3-Trichloropropane	ND 244		2.0
2-Chlorotoluene	ND		2.0
4-Chlorotoluene	ND		2.0
1,3-Dichlo benzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
1,2-Dichlorobenzene	ND		2.0
1,2-Dibromo-3-chloropropane	ND		10
1,2,4-Trichlorobenzene	ND		2.0
Hexachlorobutadiene	ND		2.0
1,2,3-Trichlorobenzene	ND		2.0

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	70-123
Toluene, d8	89	70-119
4-Bromoflu probenzene	86	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W v 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 82:60B page 1 of 2

Date Extracted:	6-15-05
Date Analyzed:	6-15-05

Matrix:	Water
Units:	ug/L (ppb)

Lab ID:	06-123-12
Client ID:	AS1-061005

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	-	0.20
Chloromethane	ND		0.20
Vinyl Chlo ^r ide	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		0.20
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND		0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	1.6		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Te rachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichloroethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodich. ^I oromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3-Dichloropropene	ND		0.20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8 260B page 2 of 2

Lab ID:	06-123-12
Client ID:	AS1-061005

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	26		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibron oethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tetrachloroethane	ND		0.20
Bromoform	< ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trich 'oropropane	ND		0.20
2-Chloroto uene	ND		0.20
4-Chlorotoluene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND	E	1.0
1,2,4-Trich orobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trichlorobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	70-123
Toluene, d8	88	70-119
4-Bromofluorobenzene	84	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W \ 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL page 1 of 2

Date Extracted:	6-15-05
Date Analyzed:	6-15-05

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: MB0615W1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.20
Chloromethane	ND		0.20
Vinyl Chloride	ND		0.20
Bromomethane	ND		0.20
Chloroethane	ND		0.20
Trichlorofluoromethane	ND		0.20
1,1-Dichloroethene	ND	*	0.20
lodomethane	ND		1.0
Methylene Chloride	ND		1.0
(trans) 1,2-Dichloroethene	ND		0.20
1,1-Dichloroethane	ND		0.20
2,2-Dichloropropane	ND		0.20
(cis) 1,2-Dichloroethene	ND		0.20
Bromochloromethane	ND		0.20
Chloroform	ND		0.20
1,1,1-Trichloroethane	ND		0.20
Carbon Tetrachloride	ND		0.20
1,1-Dichloropropene	ND		0.20
1,2-Dichlo cethane	ND		0.20
Trichloroethene	ND		0.20
1,2-Dichloropropane	ND		0.20
Dibromomethane	ND		0.20
Bromodichloromethane	ND		0.20
2-Chloroethyl Vinyl Ether	ND		1.0
(cis) 1,3-Dichloropropene	ND		0.20
(trans) 1,3 Dichloropropene	ND		0.20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 82 60B METHOD BLANK QUALITY CONTROL page 2 of 2

Lab ID:

MB0615W1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.20
Tetrachloroethene	ND		0.20
1,3-Dichloropropane	ND		0.20
Dibromochloromethane	ND		0.20
1,2-Dibromoethane	ND		0.20
Chlorobenzene	ND		0.20
1,1,1,2-Tet achioroethane	ND		0.20
Bromoform	ND		1.0
Bromobenzene	ND		0.20
1,1,2,2-Tetrachloroethane	ND		0.20
1,2,3-Trichloropropane	ND		0.20
2-Chlorotoluene	ND		0.20
4-Chlorotc ^a uene	ND		0.20
1,3-Dichlorobenzene	ND		0.20
1,4-Dichlorobenzene	ND		0.20
1,2-Dichlorobenzene	ND		0.20
1,2-Dibromo-3-chloropropane	ND		1.0
1,2,4-Trichlorobenzene	ND		0.20
Hexachlorobutadiene	ND		0.20
1,2,3-Trich orobenzene	ND		0.20

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	88	70-123
Toluene, c'8	89	70-119
4-Bromofluorobenzene	85	70-119

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, W/ 98052 (425) 883-3881

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted:	6-15-05
Date Analyzed:	6-15-05

Matrix: Water Units: ug/L (ppb)

Lab ID: SB0615W1

Compound	Spike Amount	SB	Percent Recovery	٤BD	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	10.0	9.23	92	9.11	91	70-130	
Benzene	10.0	9.96	100	957	96	70-130	
Trichloroethene	10.0	9.09	91	895	90	70-130	
Toluene	10.0	10.0	100	973	97	70-130	
Chlorobenzene	10.0	9.92	99	9.59	96	70-130	

	RPD	Limit	Flags	
	4	47		
1,1-Dichloroethene	1	17		
Benzene	4	13		
Trichloroethene	2	12		
Toluene	3	14		
Chlorobenzene	3	9		

TOTAL METALS EPA 6010B

Date Extranted: 6-16-05 Date Analyzed: 6-17,21&22-05

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 06-123-02 Client ID: MW1D-061005

Analyte	Method	Re <i>s</i> ult	PQL
Calcium	6010B	18000	1100
Iron	6010B	11000	56
Manganeso	6010B	590	11

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B

Date Extracted: 6-16-05 Date Analyzed: 6-17,21&22-05

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 06-123-12 Client ID: AS1-061005

Analyte	Method	Resi.t	PQL
Calcium	6010B	2000 章	1100
Iron	6010B	9200	56
Manganese	6010B	940	11

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, Wi 98052 (425) 883-3881

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTRUL

Date Extracted:	6-16-05
Date Analyzed:	6-17,21&22-05

MB0616W1

Matrix: Water Units: ug/L (ppb)

Lab ID:

Result PQL Method Analyte 6010B ND 1100 Calcium 56 6010B ND Iron 11 6010B ND Manganese

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:	6-16-05
Date Analyzed:	6-17,21&22-05

Matrix: Water Units: ug/L (ppb)

Lab ID: 06-139-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Calcium	8650	8890	3	1100	
Iron	6760	6270	8	56	
Manganese	104	97.2	7	11	

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	6-16-05
Date Analyzed:	6-17,21&22-05

Matrix: Water Units: ug/L (ppb)

Lab ID: 06-139-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Calcium	22000	29300	94	29200	93	0	
Iron	22000	26300	89	26100	88	1	e.
Manganese	1100	1110	91	1110	91	0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability wher analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

G - Insufficient sample quantity for duplicate analysis.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

O - Hydrocarbons indicative of diesel fuel are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greate; than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Coike/Matrix Spike Duplicate RPD are outside control limits due to ratrix effects.

X - Sample extract treated with a silica gel cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Chain of Custody

Environmental Inc.	Turnaround Request (in working days)	Laboratory Number:	06-123								
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	(Check One)		Requested Analysis								
Faranon Project Number: 603-001 Project Name:	Same Day 1 Day	py 8260B	S REMN								
FUNE CITY FLAND LAUNTRY	Standard (7 working days)	CID ABTEX B260B d Volatiles s by 8270 270C / SIM	82 y 8081A Metals (8) s (UcrioNS								
Sampled by:) Schminz / B Johnson		4-HG	by 800 cides b Cides b Metal	% Moisture							
Lab ID Sample Identification	Date Time # of Sampled Sampled Matrix Cont.	NWTPI NWTPI NWTPI Volatile Haloge Semivc	PCBs Pestia Herbi HEM HEM MM	N %							
1 mn1.061005	6/10/05/1145 W 7	XXX									
2 mWID-061005	1 1245 1 5	× –									
	(19/0× 1700) 5	XX									
4 min 3-061005	U/10/05 1545 5	XX									
5 mW4-060905	6/9/05 1400 5	* *									
6 mw 5-060905	4 1245 5	XX		-							
7 mw 10-061005	6/10/05 0948 5	7 7		-							
	USOT 1110 5	× ×									
9 mar 8-061005	6/10/00 1045 7	XX X									
10 mw 9-061005	+ 1455 - 7										
Relinquished by Kate Barts		$ \begin{array}{c c} Date & Time \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline $	Comments/Special Instructions: EDDS. Porenrial Stodda Solvens AT SITE. Please augmainy Gy BTE	ve)							
Received by	Aperly 1X	1	peculits as croddold salv	enst							
Relinquished by	dinanti, 18	1/17/05 154S	RESULTS AS STUDIED SOLV								
Received by All U/A	× (/)(3	6/1203 1393									
Received by			-								
Reviewed by/Date	Reviewed by/Date		Chromatograms with final report								
	DISTRIBUTION LEGEND: White - OnSite Copy	Yellow - report Copy Fink - Client C									

Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by		\int	/	/0	ł	15)	·,	12 AS1-0	- OI MM II	Company: Hada NE 95th Project Number: Project Number: Project Name: Project Name: Project Manager: Company Project Manager: Project Manager: Company Project Manager: Compa
L L L			CM Mar	V LUD NOV	1/10 Januly	The AS C	Signature						2	4	12	061005	MW10-060505	DnSite Environmental Inc. 1444 NE 95th Street - Redmond, WA 98052 Phone: (425) 883-3881 - Fax: (425) 885-4603 [b] [b] [b] [b] [c] [c] [c] [c] [c] [c] [c] [c] [c] [c
Reviewed by/Date			58(3)		Losel	- Facilian	Company				<i>x</i>					6/10/05 1635 W	dalos 1601 N	Turna (in v Came Da 2 Day Date Tur Sampled Sampled
			6/13/05/13		11	6/13/05 1	Date Time									M X	X	Image: Number of the state
Chromatograms			345 15 40	MS Please		SEDDS 50:	0											PCBs by 8082 Pesticides by 8081A Herbicides by 8151A
Chromatograms with final report			Appropriate	avent, fy	1 Stoddard		Instructions:						3	*		×		Total RCRA Metals (8) TCLP Metals HEM by 1664 VPH EPH Majun Cations Ca
			Sorread		Solvery	×				8								% Moisture

÷.

APPENDIX C AIR SPARGE PILOT TEST RESULTS

ADDITIONAL SUBSURFACE INVESTIGATION AND FEASIBILITY TESTING REPORT TCP ID#NW1243

Former City Hand Laundry Property 1002 4th Street Bremerton, Washington

Farallon PN: 603-001

K:\Projects\603001 Land Title Building\Reports\Add Site Invest-Feas Test Rpt\Add Inv AS Feas Test Rpt.doc

Table C-1 Summary of Air Sparge Pilot Test Results AS-1 Former City Hand Laundry, Bremerton Washington Farallon PN: 603-001

			MW-3	MW-2	MW-5	MW-9	MW-4	MW-1
Б	-			Distance fro	om AS Pilot	Test Well	AS-1 (feet)	
<u> </u>	ilot Test We	II AS-I	14	36	58	62	70	78
Time	Flow (scfm)	Pressure (PSI)	N	Ionitoring W	ellhead Pre	ssure (Incl	es of Wate	r)
1340	0	0	-0.005	-0.03	0	0	-0.01	-0.01
1400		12	0.030	0.050	0.030	0.050	0.035	0.005
1408		11.8	0.105	0.025	0.040	0.025	0.020	0.020
1415		11.5	0.035	0.045	0.050	0.045	0.040	0.045
1430		11.45	0.030	0.040	0.020	0.040	0.015	0.055
1445	2.5	11.5		0.020	0.045	0.020	0.035	0.050
1505		11.5	0.090	0.080	0.080	0.080	0.080	0.110
1525		11.5	0.080	0.080	0.115	0.080	0.105	0.105
1545		11.5	0.135	0.105	0.080	0.105	0.115	0.145
1605		11.5	0.900	0.055	0.160	0.055	0.070	0.095
N	faximum Observed	Response	0.900	0.105	0.160	0.105	0.115	0.14
Pressu	re Change Relative	to Background	0.905	0.135	0.160	0.105	0.125	0.15
1640		12.5	7 7		=	-	-	-
1648		12	0.085	0.065	0.095	0.075	0.085	0.130
1708	5	11.7	0.155	0.110	0.170	0.125	0.150	0.190
1730		11.6	0.155	0.120	0.160	0.125	0.150	0.215
1745		11.6	0.160	0.135	0.190	0.145	0.175	0.225
N	faximum Observed	Response	0.160	0.135	0.190	0.145	0.175	0.225
Pressu	re Change Relative	to Background	0.165	0.165	0.190	0.145	0.185	0.235
1810		12.2		-		-	-	-
1845	6.2	12.2	0.165	0.11	0.185	0.145	0.175	0.24
1910	0.2	11.9	0.155	0.115	0.230	0.155	0.210	0.260
1925		11.9	0.16	0.135	0.21	0.15	0.195	0.26
	faximum Observed		0.165	0.135	0.230	0.155	0.210	0.260
Pressu	re Change Relative	to Background	0.170	0.165	0.230	0.155	0.220	0.270
				Water Level	Measurem	ents (feet b	elow TOC)	
1300	0	187.	49.16	49.90	53.52	47.14	48.63	53.55
1620	2.5	4	49.12	49.88	53.49	47.15	48.61	53.48
1755	5	140)	49.12	49.88	53.45	47.16	48.61	53.48
1935	6.2	-	49.12	49.87	53.45	47.14	48.61	53.46
um Groun	dwater Level Chang	e Relative to Backgroun	0.04	0.03	0.07	0	0.02	0.09

NOTES:

Bold indicates a positive response, which is defined as a pressure change greater than 0.1 inches of water pressure change from the measured background pressure at time =0.

- = not measured

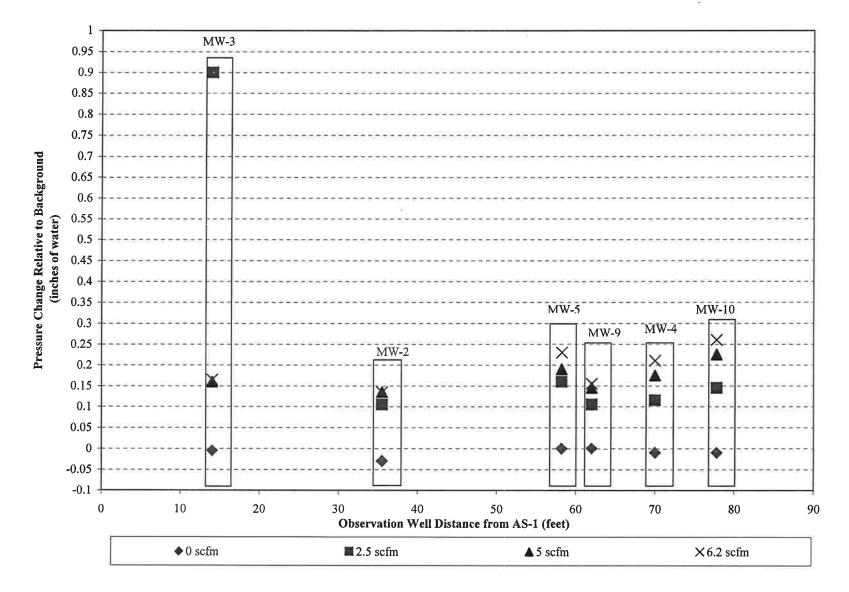
PSI = Pounds per square inch

scfm = standard cubic feet per minute

TOC = Top of well casing

Table C-2 Summary of Air Sparge Pilot Test Results MW-1D Former City Hand Laundry, Bremerton Washington Farallon PN: 603-001

			MW-1	MW-9	MW-4	MW-8	MW-3	MW-5	MW-10
וית					al Distance	from Sparg	e Well MW	-1D (feet)	
Pile	ot Test Well	MW-ID	6	27	48	50	66	86	128
Time	Flow (scfm)	Pressure (PSI)		Monito	ring Wellhe	ad Pressur	e (Inches of	Water)	
923	0	0	0.135	0.115	0.150	0.060	0.125	0.140	0.125
1014		13.25	0.130	0,115	0.175	0.640	0.150	0.160	0,140
1030		12.55	0.170	0.150	0.220	0.700	0.185	0.210	0.185
1050		12.4	0.165	0.150	0.205	0.700	0.165	0.195	0.165
1115	2.5	12.25	0.180	0.155	0.210	0.760	0.155	0.190	0.155
1135	4.5	12.35	0,180	0.160	0.240	0.820	0.210	0.230	0.215
1155		12.4	0.245	0.205	0.280	0.880	0.250	0.260	0.245
1220		12.35	0.260	0.225	0.310	0,000	0.265	0.290	0.250
1225		12.4	0.300	0.240	0.310	0.080	0.260	0.290	0.250
N	Aaximum Observed	Response	0.300	0.225	0.310	0.880	0.265	0.290	0.250
Pressu	re Change Relative	to Background	0.165	0.110	0.160	0.820	0.140	0.150	0.125
1312		13.2	0.280	0.260	0.370	0.130	0.270	0.360	0.260
1327		12.8	0.340	0.270	0.360	0.200	0.290	0.300	0.280
1345	5	12.8	0.330	0.290	0.370	0.210	0.290	0.320	0.300
1405	5	12.8	0.330	0.290	0.370	0.250	0.330	0.370	0.320
1430		12.8	0.380	0.340	0.420	0.260	0.330	0.380	0.320
1445		12.8	0.370	0.320	0.410	0.270	0.320	0.370	0.340
N	Aaximum Observed	Response	0.380	0.340	0.420	0.270	0.330	0.380	0.340
Pressu	re Change Relative	to Background	0.245	0.225	0.270	0.210	0.205	0.240	0.215
1500		13.2	0.380	0.340	0.450	0.420	0.360	0.390	0.340
1520	6	12.9	0.410	0.330	0.430	0.230	0.320	0.380	0.350
1535		12.8	0.345	0.290	0.390	0.260	0.290	0.340	0.320
1555		12.8	0.310	0.280	0.380	0.310	0.320	0.340	0.350
N	Aaximum Observed	Response	0.410	0.340	0.450	0.420	0.360	0.390	0.350
Pressu	re Change Relative	to Background	0.275	0.225	0.300	0.360	0.235	0.250	0.225
				Wate	r Level Me	asurements	(feet below	TOC)	
840	0	-	46.75	47.14	48.63	45.07	49.16	53.52	53.55
1240	2.5		46.67	47.10	48.58	45.12	49.10	53.44	53,44
1610	6		46.67	47.03	48.55	44.99	49.09	53.25	53.15
ım Groun	dwater Level Chang	e Relative to Backgrou	n 0.08	0.11	0.08	0.08	0.07	0.27	0.40


NOTES:

Bold indicates a positive response, which is defined as a pressure change greater than 0.1 inches of water pressure change from the measured background pressure at time =0.

- = not measured

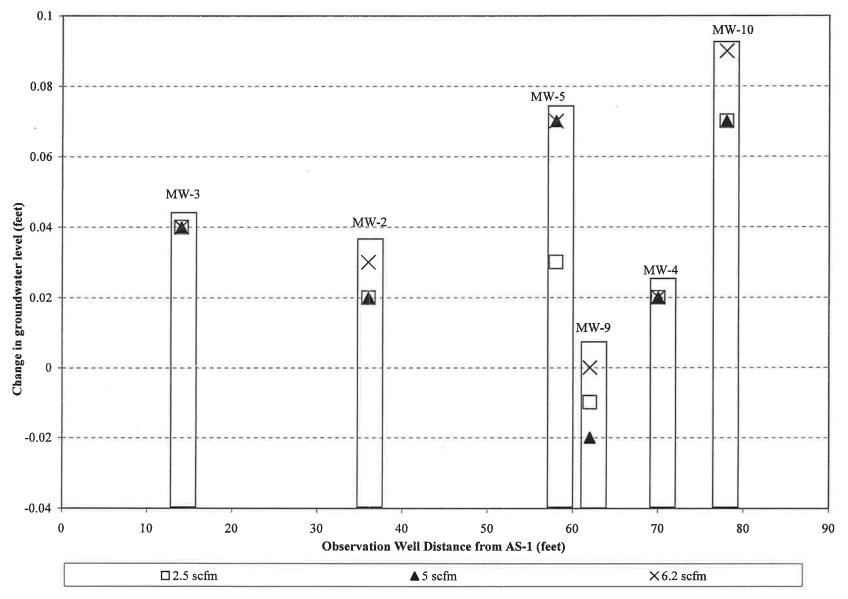

PSI = Pounds per square inch

Figure C-1 Observation Well Pressure Change Air Sparge Pilot Test Results AS-1 Former City Hand Laundry Property Bremerton, Washington Farallon PN: 603-001

K:\Projects\603001 Land Title Building\Reports\Add Site Invest-Feas Test Rpt\App C Air Sparge\603001 AS DATA:xlsFig C-1

Figure C-2 Observation Well Groundwater Level Change Air Sparge Pilot Test Results AS-1 Former City Hand Laundry Property Bremerton, Washington Farallon PN: 603-001

K:\Projects\603001 Land Title Building\Reports\Add Site Invest-Feas Test Rpt\App C Air Sparge\603001 AS DATA.xlsFig C-2

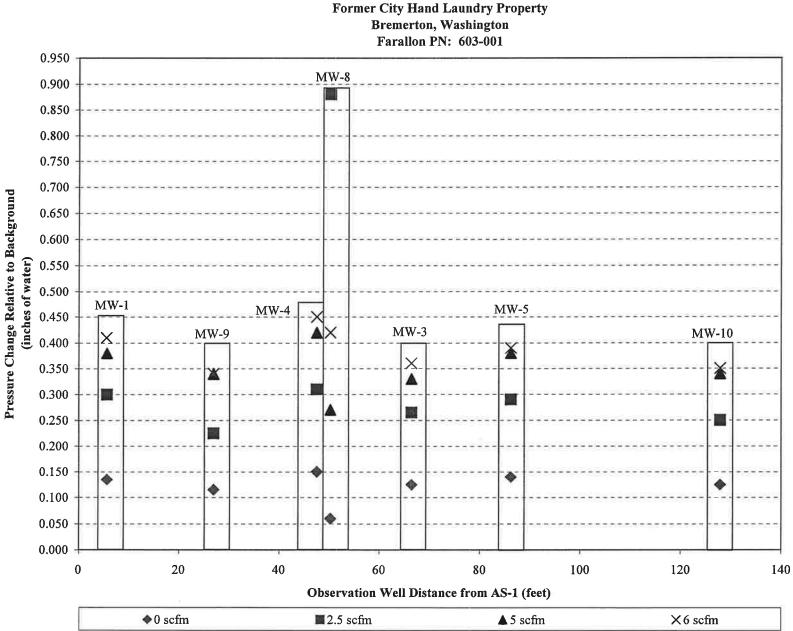
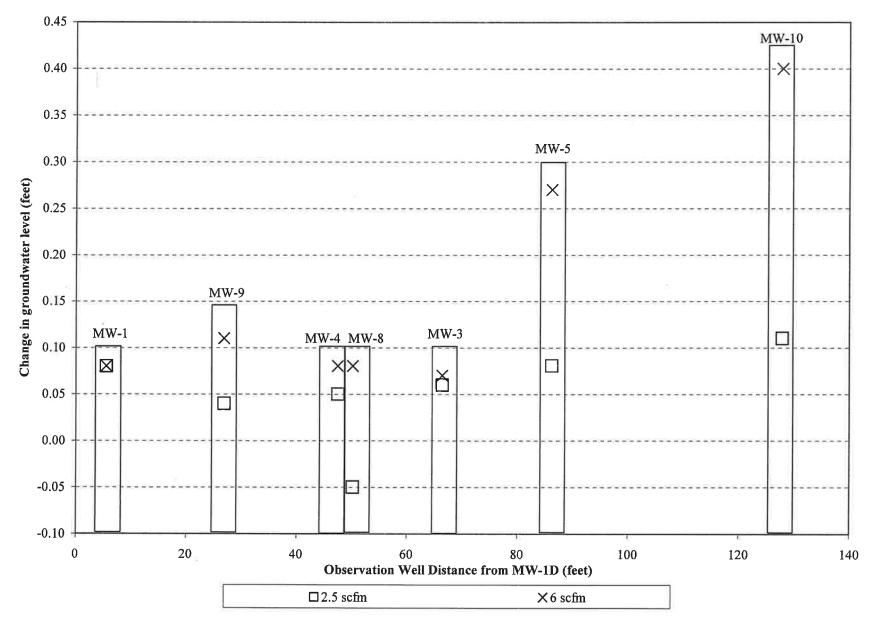
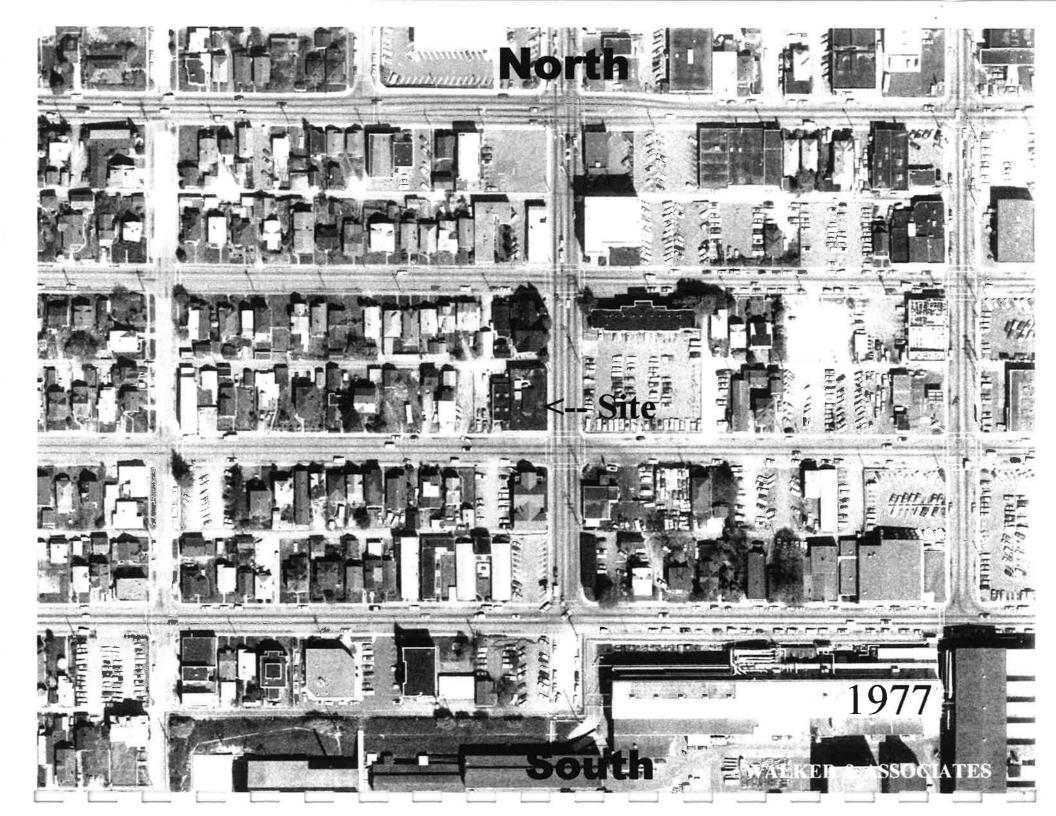
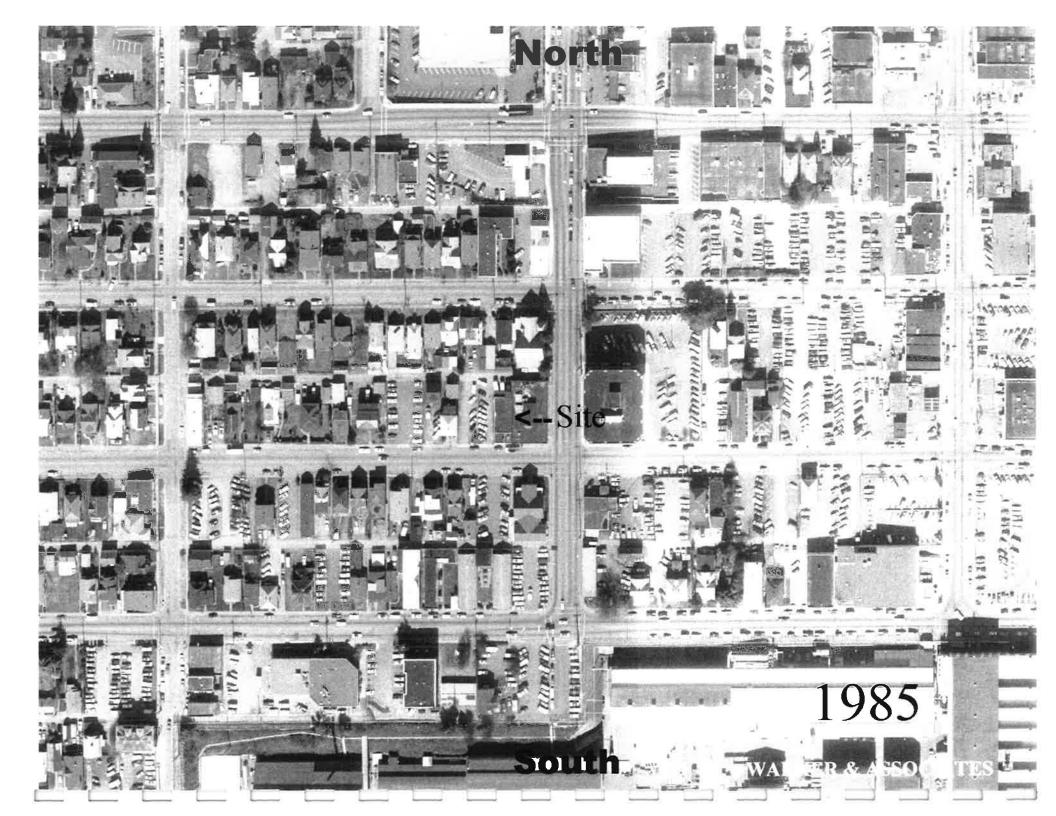



Figure C-3 **Observation Well Pressure Change** Air Sparge Pilot Test Results MW-1D Former City Hand Laundry Property

Figure C-4 Observation Well Groundwater Level Change Air Sparge Pilot Test Results MW-1D Former City Hand Laundry Property Bremerton, Washington Farallon PN: 603-001

K:\Projects\603001 Land Title Building\Reports\Add Site Invest-Feas Test Rpt\App C Air Sparge\603001 AS DATA xlsFig C-4


APPENDIX D AERIAL PHOTOGRAPHS


ADDITIONAL SUBSURFACE INVESTIGATION AND FEASIBILITY TESTING REPORT

TCP ID#NW1243

Former City Hand Laundry Property 1002 4th Street Bremerton, Washington

Farallon PN: 603-001

APPENDIX E CHEMICAL OXIDATION BENCH-SCALE TEST RESULTS

ADDITIONAL SUBSURFACE INVESTIGATION AND FEASIBILITY TESTING REPORT TCP ID#NW1243

Former City Hand Laundry Property 1002 4th Street Bremerton, Washington

Farallon PN: 603-001

May 24; 2005

Jeff Kaspar Farallon Consulting, LLC. 320 3^d Avenue VIE, Suite 200 Issaquah, WA 98027

Analytical Data for Project 603-001 Report of Findings, Permanganate Soil Oxidant Demand Laboratory Reference No. 0505-059B

Dear Jeff:

;92

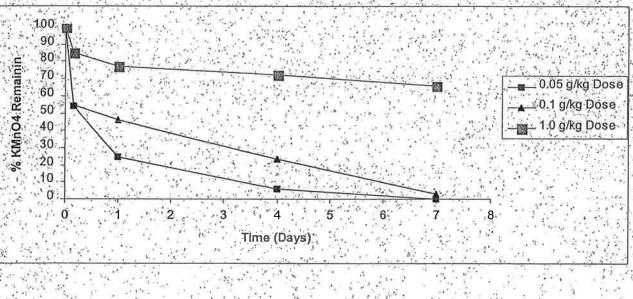
OnSite Environmental, Inc. recently measured permanganate soil oxidant demand (SOD) of soil from, Project 663-001, Soils were submitted on May 9, 2005.

The 7-Day SOD was found to be approximately 0.1 g KMnO4/kg soils. The procedures and results are discussed in detail below.

Procedures

Three soil samples (RSA)-60-61, ASA-65-65.5 and AS1-70-70.5), were composited and tested using various concentrations of KmnO4.

A preliminary testwas performed to estimate the SOD of the soil. Two vials containing 20 g composited soil and 20 mL of 1g/kg and 5 g/kg KMnO4 solution were prepared. The vials were capped, mixed by hand, then allowed to stand undisturbed. After 24 hours, the aqueous phases were filtered through a Sum filter and analyzed for residual KMnO4. The results were used to estimate the appropriate KMnO4 dosages in the SOD test.


To measure SOD, three series of vials each containing composited soil and KMnO4 solution were prepared. The initial conditions were as shown in Table 1. The vials were capped, and mixed intermittently by hand. Periodically, one vial from each series was destructively sampled and analyzed for residual KMnO4. Date of Report: May 24, 2005 Samples Submitted: May 9, 2005 Laboratory Reference: 0505-059B Project: 603-001

Test ID	Soil, g	KMnO ₄ Soln Added, mL	Initial KMnO ₄ conc., g/L	Initial KMnO ₄ dose, g/kg soil
SOD05	20	20		.05
SOD1	20	20	0.1	0.1
SOD-1	.20	20	1.0	1.0,

Table 1. SOD Test Conditions

Results and Discussion

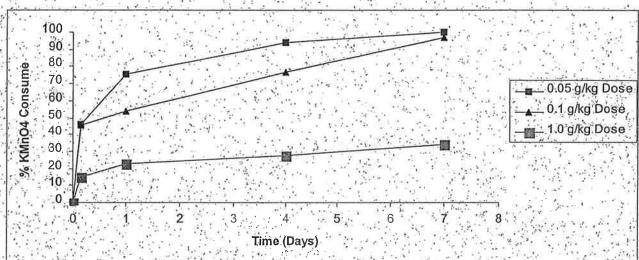

The KmnO4 in the 1g/kg and the 5g/kg dosed samples were not consumed within the 24 hour time period; indicating a lower soil oxidant demand. Therefore three different doses were used as indicated in the above Table 1. Vials were sampled and analyzed for KmnO4 concentration at 4 hour, 1 day, 4days, and 7 days. The results are summarized in the two figures below.

Figure 1. Percent of KMnO4 Remaining

Date of Report: May 24, 2005 Samples Submitted: May 9, 2005 Laboratory Reference: 0505-059B Project: 603-001

Figure 2. Percent of KMnO4 Consumed

Conclusions

One hundred percent of the KMnO4 was consumed within 7 days in the .05 g/kg Dose test and ninety seven percent in the 0-1 g/kg Dose test, while thirty four percent of the KMnO4 was consumed within 7 days in the 1.0 g/kg Dose test.

While the seventh day concentrations for the lower dose indicates that the 7 day SOD would be greater, than .05 g/kg (the fact that all KmnO₄ was consumed), the results for the 0.1 g/kg sample indicate an SOD of around 0.97 g/kg (the fact that consumption of permanganate leveled off at 97% after 7 days). The 7 day results for 1.0 g/kg sample shows that 34% of permanganate was consumed, indicating an SOD of 0.34 g/kg. That is possible since soil oxygen demand is documented to be dependent on the concentration of permanganate. The results from the lower concentration is more indicative of the actual SOD.

If you have any questions regarding this report, please do not hesitate to call me at (425) 883-3881. Thank you for the opportunity to be of service on this project.

Sincerely,

Podnozova

Arina Podnozova. Chemist

OnSite	Ch	ain (of C	lusi	toc	ly	1¥			62						Pa	age _	١	_of_	5
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052	Turharound (in workin			Labo	rato	ory N	lun	nber	:0!	5 -	05	9	10000000	2003-551702		10000000		Super Instant	NAMO IN A	ter here and the
Phone: (425) 883-3881 • Fax: (425) 885-4603	(Check	One)							and a	eght	siec	I Ai	ieliy.	sis						
603-001	🗌 Same Day	1					8260B													
E _ A = UA / ISSA	□ 2 Day ⊠ Standard (7 wo	3 arking days					iles by	8270C		A	1A	s (8)								
SEFE KASPAN		TKING Days		NWTPH-HCID NWTPH-Gx/BTEX		Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by 8270	082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals	នា	64			J	A		
JOHN SCHMITT	(oth		ria de	NWTPH-HCID NWTPH-Gx/B	NWTPH-Dx	tiles by	ogenate	Semivolatiles by	PCBs by 8082	ticides	oicides	I RCR/	TCLP Metals	A by 1664	-	-	0	0		% Moisture
Lah ID Sample Identification Sam	Date Time mpled Sampled	~		MN NN	MN	Vola	Halo	Ser	PCE DC	Pest	Hert	Tota	TCL	HEM	HdV	EPH	ĺΤ	UI	_	%
	7 15 0800	S	4		-			_	_									_	_	
2 muy-10-11.5	0504						Х		_	-								_	_	$ \lambda $
3 MW4-15-16.5	0810				_		_			_										
4 MW4-20-21.5	0816								_											
5 mW1-25-26.5	0820			3																
6 mwy-30-31,5	0825														N					
7 mwy-35-35,5	0828											_								
8 mW4-40-40.5	0834																			
9 mWy-:45-45.5	0840	ŝ.	5				Х												5.85	X
10 mW4-50-50.5	1 0845	\downarrow	5						500 50 50 80			2014120	N-2 SPRC				X			
Relinquished by	Company				<i>i 1</i>			H-Constantinue		minien	is Spe	BAN	nsinu							
Received by	1	quor	1		-1'	5	-	0:0 T												
Relinquished by	Foral			5	1/05	/		55/1												
Received by	40	ERI B	19	15	191	OS N		00												
Relinquished by	Frello		_	5	7/1	5	1657													ŵ
Received by Ort #4	Spa			0, 0	18/	05	i.	2,2	30											
n Service Serv	Br 1				-/	-		-	C	าฑ	gra	an	h	fine	~	ort 🗆		1	-	

OnSite		Ch	ain	of (Cu	st	od	ly											Pa	age _	2	_of_	5	-
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052	Turr (in	naround 1 working	Reques 3 days)	6	La	bor	ato	ry l	Nur	nbe	er: ()5	- (05	9		a-scenaria		MINE IN	0230446				
Phone: (425) 883-3881 • Fax: (425) 885-4603		(Check	One)										jues		Alat	allysi	s							のないである
(003-001 Project Name:	Same [2 Day	Day		1 Day 3 Day	ľ				by 8260B	0							2			8				
FUR CITY HAND LAUNDAY	Standa	rd (7 wo	rking da	ays)		TEX		60B	olatiles	oy 8270(C / SIM		3081A	AldI8	etais (o)									
JEPF KASPIAR Sampled by: J SCHMITT		(oth	ər)		NWTPH-HCID	WWTPH-Gx/BT	NWTPH-DX	Volatiles by 8260B	Halogenated Volatiles	Semivolatiles by 8270C	PAHs by 8270C / SIM	PCBs by 8082	Desticides by 8081A	Herbicides by 8151A		rcLP Metals	4EM by 1664			P	A		% Moisture	
ab ID Sample Identification 5	Date T Sampled Sa	Time mpled	Matrix		NWTF	NWTF	NWTF	Volatil	Halog	Semiv	PAHs	PCBS	Pestio	Herbid	iotal	TCLP	HEM	ЧРН	EPH	FOG	SC	_	% Wc	:
	17/05 00	150	5	4								_		_	_							_	-	
12 MW5-5-6:5	1 1	15							X					_			-					_	?	$\left \right $
13 MW5-10-11.5	11	20	: 0			_			X	*		_											N	L
14 MW5-15-16.5	11	20																						
15 MW5-20-21.5	1	130																						
16 mw5-25-26.5		34	<u>الا</u>																				.03	1
17 mw5-30-31.5	1	140	5																					
18 MWS - 35-35.5	1	145							21	i.c.														
19 mWS-40-40,5		48	<u>a</u>																					
20 mw5 - 50 - 50,5	¥ (1	15Y		∦		Date			X			Com	ments	Sper		stille	ligns			a tradition				X
Relinquished by Jal Salat	Ŧ	FARA	21.1.1-	~)			8/0			Die			Ministration of the second	Set Andrew					an star	00970		NOOT OF		0000
Received by	1	Frall	1			5	79/1	5	8	:55	Th													
Relinquished by		0		5D4	1	5	191	0:	F	1.6	20												×	
Received by		05	B			5	Isu	05	11	101														
Relinquished by	1	Firal	Im			5	房房	5	B:	i70														
Received by Out #4		SPE	50'	7		5	3/0	F.	10	3،4	is													
, Deviewed by thete	- L F	Re nd ermed h	v/Data			1	/					Chr	0,	- arai	nc	!*!~ +	ina'		ert 🗆		12		ŝ - 1	

	т. т	
MALO n	Site	
	vironmental	٠

Chain of Custody

Page <u>3</u> of <u>5</u>

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		Turnaround Request (in working days)					ato	ry l	Nur	nbe	er:	05	5 -	05	59								
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	One)	а 8								Re	que	ee I	/41i	alys	sis.						
Project Number: (063-001 Project Name:		me Day		1 Day					8260B														
FMR CITY MAND LAUNDRY Project Manager:	Sta	ndard (7 wc	لب orking da	3 Day ays)		EX		SOB	olatiles by	y 8270C	/ SIM		081A	Aldla	etals (8)						×		
JEFF KASPAN Sampled by: J.S.H.M.T.T	-0-	(oth	er)		WTPH-HCID	NWTPH-Gx/BTEX	XQ-H	Volatiles by 8260B	Halogenated Volatiles	Semivolatiles by 8270C	PAHs by 8270C	PCBs by 8082	Pesticides by 8081A	Herbicides by E	Total RCRA Metals (8)	rcLP Metals	by 1664				Ser		isture
	Date Sampled	Time Sampled	Matrix	#.ol. Cont.	NWTP	NWTP	NWTPH-Dx	Volatil	Halog	Semiv	PAHs	PCBs	Pestic	Herbio	Total	TCLP		ЧРН	EPH.	FOC	SC		% Moisture
21 mw5-55-55.5	5/7/05	1215	S	5																X			
22 mWS-59, 7-60		12-25		4																			
23 AS1-60-61		1445		5	8																X		
24 AS1-65-65.5	-	1455	×	4																	X		
25 ASI-70-70,5		1520		1																	X		
26 AJ1-75-75.5		1530		4					,			19.											
27 AS1-79-80	4	1545	-	4					X														Х
28 MW9-2,5-4	5/8/05	0840		4																			
29 MW9-5-6.5		0844		4			X		X														X
30 mwg-10-11,5	7	0848	¥	4			χ'		X										9				1
Relinguished by		Company				Daile	1		Time			Com	menils 1	Since	iial IIi	stine 1	llons	<u>کا (</u>		~		Nec.	
Received by		FAR		bon	(5	18/	05	0	0	00	-	X	on The	All a	0	0	Te	st	r / k	26 fr	cha i	(41)
Relinguished by		Findle				3	1/05	T	0:	130	en 1			.~v `		n	\		"1 -	امتدا	1 Jost	iel k	niler
Received by Received by		SPEE		1		5	11) 25		2-+		1	Lo F	on.	うれ	~ US	T.	70		U)ca	-1-1		ailer
Relinquished by		y	1			5/0	3/0	25		.0													
Received by		OSB	, ,			51	Sle	X		w													
		Rowlowed b	y/Data		0							Chr	mot	ograi	<u> </u>	••••+h 1	final	O	rt []	-			

Chain of Custody

OnSite	ite Unain (P	age _	4	_of _	5
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		Turnaround (in workin		i sanagara	La	bor	ato	r.y	Nur	nbe	er:	0!	5-	0	59)							
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	1	(Check	One)									in the second	11071	siec	Creation	A	sis.						
FARALION Project Number: (003-001 Project Name:		me Day	<i>2</i> 2	1 Day					8260B														
From CITY HAND LAUNDRY	2 C	ay Indard (7 wo	ہے orking da	3 Day ays)		×		в	Halogenated Volatiles by 8260B	8270C	SIM		31A	51A	lls (8)								
Sampled by:	0_	(oth	6		4 CID	WWTPH-Gx/BTEX	×	Volatiles by 8260B	ted Vola	Semivolatiles by 8270C	PAHs by 8270C / SIM	8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals	tals	1664			J			e
JSUMMITT Lab 10 Sample Identification S	Date Sampled	Time	Mairix	# of- Cont.	WTPH-HCID	WTPH-(WTPH-DX	olatiles l	alogena	emivola	AHs by	PCBs by 8082	esticides	erbicide	otal RCF	FCLP Metals	ą	HdV	EPH	0	SS		% Moisture
· · ·	Kelor	6855	S	Ц	Z	z	Z	>	I	<u></u>	<u>a</u>	<u>a.</u>	<u>a</u>	<u> </u>	Ĕ	Ĕ	<u> </u>	5	ш	<u>r-</u>			
32 mwg-20-21.5		0406		4					χ														X
33 MW9-25-26.5	_	0910		4																		_	
34 mwg-30-31.5 35 mwg-35-35.5	_	0916	2	34	-	-															_	+	
36 mwg-40-40,5		0920	-	1	-														-			\neg	
37 mwg-45-45.5		0930							X														X
38 mwg - 50 - 50,5		0935										3				0.000							
34 mwg-55-55.5		0946																					
40 MW ID - 50-50,5 Signature	×	12-50 Company		Y		Date			Time			Com	ments	IS and	alli		lions						
Relinquished by JoeSolt		FAR	Auc	\sim		(Sectors)	18/0	-	in a second s	Ð	and the second		6039993	1999 1999 1		02/650/92		116541495		18369H172	00000000	19.628	Perdoznozodnich
Received by		Frall	m			57	\$/0	5		J													
Relinquished by		Fralla				5	5/9/	5		30													
Relinquished by But #4		SOFED 4 u 4			5	1	25		Ø														
Received by						1	7-																
r wed b		Re t	v/D;			100				K 1	1	Chr	0	Trai	m	1.04	lina)	rt 🗖	-	-		

	8 B
A M	LonSite
	Environmental In
	14648 NE 95th Street - Redmond WA

Lab ID

14/

Chain of Custody

LINIA OnSite								• 7											P	age _	7	of	5
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		Turnaround (in workin		st	La	aboi	rato	ory	Nu	mbe	er:	0	5-	- 0	15	9			_				
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	-	(Check	One)									Re	que	stee	a Ar	nally	sis						
Company: TATLALOM Project Number:																							
(063-00) Project Name:		me Day		1 Day					8260B			4											- 585
Project Name: <u>Fmp</u> Crty Hand Launpry Project Manager:	20			3 Day					<u></u>] <u></u> ∂	Ŋ	v				œ								
Project Manager:	Sta	ndard (7 wo	rking da	ays)		Ш		0B	latile	/ 827	/ SIN		081A	151A	tals (8								
JEFF KASPAR	10_				ICID	X/BT	×	y 826	ed Vo	les by	270C	3082	by 8(by 8	A Me	als	1664			ذم	D		0
J. SCHMOTT	Date	(oth) Time	er)	# of	NWTPH-HCID	WWTPH-Gx/BTEX	NWTPH-DX	Volatiles by 8260B	Halogenated Volatiles	Semivolatiles by 8270C	PAHs by 8270C / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	rcLP Metals	百			500	6		% Moisture
Lab ID Sample Identification		Sampled	Matrix	Cont.	LMN	LMN	LMN	Volat	Halo	Semi	PAH	PCB	Pesti	Herb	Total	TCLF	HEM	ΗdΛ	EPH	12	V		% Mo
41 MWID-55-55.5	5/4/05	1254	2	4																			
42 MW17-60-60.5		1300	1																				\square
43 MWID-65-65,5		1305																					\square
44 MWID-70-70.5		1310		V					X														X
45 BI-2,5-4		1535		5																	+		
46 BI-5-6,5		1538		Ť		X	X											-		-			
47 B1-7.5-9		1540				X			V	\vdash										-	+	+	$\overline{1}$
48 B1-10-11.5	V	1545	V	$\neg \forall$		X	X2													-	+	+	\mathbb{H}
		1313			+									_		_		-		-		+	
39					-	-														-+		+	
Signature		Company.				Date			Hime				ments		18 M		ANGENE	01200					
Relinquished by		Farm				10000	10 C												25(of	GLSA	l'm.	
Received by		Frill				7	9/1	-	di di	15	m		a	L	STE	8/	'OK	201	die	sel	gass	שיויי	
Relinquished by		Frall	in la			57	9/15		D:		<i>.</i>					572 - 3		15 V 🛪	8 5 97	1	(
Received by Act # 4		SDE	FEL	54		5%	de	-9	r	23	20												
Relinquished by Qut # 4		4	1.010	 1		5%	3/0	25	-	10											ē.		
Received by		OSH	5			61	sli	-5		w			5										
Reviewed bv/Date	÷	Reviewed by	y/Date	-	1	120						Chr	·mot	oora	mou	"ith f	iro!	<u>ר</u> רי	rt 🖓	_		-	_

-

gi

1 -