APPENDIX D

Stormwater Engineering Plan

Discharge Permits

Stormwater Pollution Prevention Plan

STORMWATER ENGINEERING REPORT

Stormwater Treatment System for Samson Tug and Barge / Duwamish Metal Fabrication

6361 First Avenue South Seattle, WA 98108

July 31, 2013 REVISED: March 7, 2016

Prepared by:

Michael Johnson, PE Lean Environment Incorporated 4500 15th Street East Tacoma, WA 98424

Lean Envir•nment

Table of Contents

1.	Certification	4
2.	Executive Summary	5
3.	Introduction / Background	6
4.	Engineering Report Requirements (Chapter 173-240-130 WAC)	
SE	 ECTION I – Facility Description (a-b) Facility and process description (c) Characterization of flows and site conditions (i) The quantity and quality of all process wastewater and method of disposal; (ii) The quantity of domestic wastewater and how it is disposed of; (iii) The quantity and quality of noncontact water (including air conditioning) (iv) The quantity of water consumed or lost to evaporation 	
SE	ECTION II – Treatment Process Description	
		27 26
	 (f)A discussion of the suitability of the proposed site for the facility (g)A description of the treatment process and operation, including a flow diagram; 	
	(h) All necessary maps and layout sketches;(i)Provisions for bypass, if any;	27
	 (k) Results to be expected from the treatment process including the predicted wastewater characteristics, as shown in the waste discharge 	27
	 (I) A description of the receiving water, location of the point of discharge, applicable water quality standards, and how water quality standards 	27
	(m) Detailed outfall analysis;	17 29

SECTION III – Related Facilities (NOT APPLICABLE)

SECTION IV – SYSTEM CONSTRUCTION and OPERATIONS	
(q) A statement expressing sound engineering justification that the proposed	
facility will meet applicable permit effluent limitations or pretreatment standards	
or both;	29
(r) A discussion of the method of final sludge disposal selected and	
any alternatives considered with reasons for rejection;	29
(s) A statement regarding who will own, operate, and maintain the	
system after construction;	30
(t) A statement regarding compliance with any state or local water quality	
management plan or any plan adopted under the Federal Water	
Pollution Control Act as amended;	30
(u)Provisions for any committed future plans	30
(v) A discussion of the various alternatives evaluated, if any,	
and reasons they are unacceptable;	31
(w)A timetable for final design and construction;	31
(x) A statement regarding compliance with the State Environmental Policy	
Act (SEPA) and the National Environmental Policy Act (NEPA), if applicable;	33
(y) Additional items to be included in an engineering report for a solid	
waste leachate treatment system are NOT APPLICABLE (i-iv)	

LIST OF FIGURES AND TABLES

- FIGURE 1 Proximity Map and Aerial View of Site
- FIGURE 2 Duwamish Stormwater Conveyances
- FIGURE 3 Stormwater Sheet Flow
- FIGURE 4 Stormwater Treatment Schematic
- TABLE A Stormwater Sampling Historical Results
- TABLE B Volume and Flows Calculated for a Range of Annual Treatment Levels
- TABLE CFlow Rates by Return Frequency
- TABLE D Particle Size Distribution
- TABLE E Stormwater Benchmarks
- TABLE F Additional Sampling Requirements
- TABLE G Reserved
- TABLE H
 Electrocoagulation Field Trial Results
- APPENDIX A ECOLOGY TCP FACT SHEET
- APPENDIX B CHAPTER 173-240-130 WAC
- APPENDIX C WHMM2012 MODEL RESULTS
- APPENDIX D COMPONENT DRAWINGS
- APPENDIX E RESERVED
- APPENDIX F PARTICLE DISTRIBUTION STUDY
- APPENDIX G STORM CONVEYANCE SURVEY 2/2016

1. CERTIFICATION

The following Engineering Report has been prepared in conformance to sound engineering principles and standards, and with the requirements of Chapter 173-240-130 WAC. The Engineering Report contained herein has been prepared by or under the direct supervision of the undersigned Professional Engineer Licensed in the State of Washington.

Michael McCutcheon Johnson, PE License Number 34993 March 2016 – Tacoma, WA

2. EXECUTIVE SUMMARY

SAMSON TUG AND BARGE (SAMSON) is a marine container and bulk material shipping facility located on the Duwamish River at 6361 1st Avenue South in Seattle, Washington. DUWAMISH METAL FABRICATION (DMF) occupies the contiguous site to the south and shares common ownership and overlapping stormwater management systems. The site has been used for marine transportation under various management structures at the 1st Avenue location since the 1940s. Industrial activities at the site include loading and unloading of barges, unloading of trucks, containerizing and freight consolidation. (Figure 1).

The facility's primary stormwater management system collects stormwater from approximately 3.0 acres of mostly unpaved surface on the Samson site into seven catch basins for discharge via private storm sewer westbound into the Duwamish Waterway. DMF has an additional 3 catch basins that collect flow from mostly paved surfaces and from the roof of the fabrication building. The DMF site covers 1.7 acres. The total area of the site is 4.7 acres, most of which drains to the Duwamish via the existing 10" outfall located approximately 100 feet north of the fabrication building (Outfall 1). The wastewater from a wheel-wash at northeast corner of the site is collected and transported off-site by vacuum truck. There were previously three outfalls at the site, but two have been permanently closed and their flows diverted to Outfall 1 or sanitary sewer. Portions of the site are leased from the City of Seattle and the Port of Seattle, and are included in the total area for which treatment will be provided.

The facility is industrial in nature and discharges stormwater under Department of Ecology's NPDES Stormwater Industrial General Permit. Pursuant to permit condition SA.1. The facility must use adaptive management with the objective of discharge at or below benchmark values. The facility has not consistently met benchmark values for turbidity, total copper and total zinc.

For the purposes of this report, the Samson and DMF sites are considered together and will be referred to as the "facility" or the "site".

The facility is currently undergoing a remedial investigation and feasibility study for site cleanup relevant to legacy issues at the site and involving a number of review agencies. Final cleanup is expected to include excavation and removal of contaminated soils and possibly capping or paving the site. Areas outside of current industrial activity are outside the scope of this report.

The intent of this engineering report is to address stormwater treatment in the current site conditions and at the current stage of remedial investigation, prior to significant remedial activity. It is expected that the site characteristics will change as a result of remediation. An updated engineering report will be submitted for any substantive changes would impact the character of the influent or tributary areas. In the interim, the stormwater treatment system will be generated during cleanup operations.

An interim Engineering Report was submitted in February of 2014 for the construction of a temporary stormwater treatment system. This report addresses the upgrades to the system to include increasing the size and efficiency of treatment units, documentation of performance characteristics, and future upgrades relevant to the operation of the system under changing site conditions.

The stormwater treatment system consists of the following elements:

- 1. Installation of pumps in an existing collection sump upstream from Outfall 1.
- 2. Installation of an overflow riser to bypass overflows greater than the design storm directly to Outfall 1.
- 3. Electrocoagulation of the stormwater at the 98% treatment level (per WHMM 2012)
- 4. Gravity sedimentation of the coagulated total flow.
- 5. Polishing through sand filtration, with recirculation through the filters as allowed by flow conditions to the 98% level.
- 6. Discharge via Outfall 1.

Based on data from laboratory and field tests it is expected that the proposed system will consistently produce treated stormwater below benchmark goals. Additional structural BMPs associated with site cleanup upstream are expected to enhance the performance of the system and improve performance.

3. INTRODUCTION AND BACKGROUND

Samson Tug and Barge (Samson) and Duwamish Metal Fabrication (DMF) occupy contiguous sites and share common ownership and co-mingled stormwater management systems. The following engineering report is intended to provide sufficient information to allow for the design, construction and operation of a stormwater treatment system from the combined stormwater flow to pretreat water discharged to the Duwamish Waterway via a private stormwater conveyance. The proposed treatment system will be an interim measure, to function until the site cleanup has been completed and the site has been repaved. At that time a permanent treatment system will be designed, reviewed, and installed.

This report also fulfills the requirement under Level III corrective action as required by Washington state Industrial Stormwater General Permit (ISWGP) requirements for construction of stormwater treatment systems for systems with three or more benchmark exceedances for a given parameter in a single year. The site has been identified for clean-up for several contaminants of concern, including heavy metals, under the Model Toxics Control Act. An agreed order is presently being administered by Ecology and sampling plans submitted for approval. (See APPENDIX A – FACT SHEET)

4. ENGINEERING REPORT REQUIREMENTS

SECTION I - Facility Description (WAC 173-240-130(2)(a-b))

SAMSON TUG AND BARGE (SAMSON) is a marine container and bulk material shipping facility located on the Duwamish River at 6361 1st Avenue South in Seattle, Washington. The facility has been under the current operators control since 2001. Industrial activities at the site include loading and unloading of barges, unloading of trucks, containerizing cargo and freight consolidation (Figure 1). Samson is contiguous to Duwamish Metal Fabrication (DMF) located on the south end of the subject property.

The buildings at the Samson, or north, part of the facility are used for offices and administrative duties. On the DMF side to the south, the buildings are used for metal fabrication, welding and assembly. Smaller buildings at the south end of the facility are used for storage and offices.

The combined facility's primary stormwater management system collects stormwater from approximately 3.6 acres of unpaved surface and one acre of roofs into 11 catch basins for discharge via private storm sewer westbound into the Duwamish Waterway. The facility discharges stormwater under Department of Ecology's NPDES Stormwater Industrial General Permit. Pursuant to permit condition S1.A the facility must use adaptive management with the objective of discharge at or below benchmark values. The facility has not consistently met benchmark values for turbidity, total copper and total zinc.

The latitude and longitude of the present facility outfall is approximately 47° 32' 38.29" N by 122 ° 20' 09.00"W (Google maps) The site map is shown as Figure 2, represents the stormwater handling layout and location of the catch basins and collection system.

The site is 750 feet long (north to south) and 300 feet wide (east to west) at its largest dimension. The northern section (Samson) is trapezoidal approximately 300' by 350'. The southern portion (DMF and Samson) is approximately right-triangular in shape with the legs 300 feet and 450 feet in length. The sections are approximately 3.0 acres and 1.7 acres, respectively.

The facility is operating under an Agreed Order DE 9844 (4/23/2013).

Per Ecology Fact Sheet, Duwamish Marine Center leases portions of the property to other companies. Samson tug and Barge operates in the northern portion of the Duwamish Marine Center and Duwamish Metal Fabricators operates on the southern portion of the property. Historically, the site operated as a marine shipyard, rail yard, junk dealer, various construction service companies, and a barge shipping terminal. A marine railway operated next to the southwestern shoreline from 1940 to the mid-1970s.

Several environmental investigations have been conducted at the Duwamish Marine Center. Soil and groundwater investigations performed at the property in 2000 and 2002 showed petroleum hydrocarbons, metals, polychlorinated biphenyls (PCBs), and polynuclear aromatic

hydrocarbons (PAHs) above cleanup levels in soil and groundwater. The groundwater also contained solvents. Sediments adjacent to the site contain PCBs and PAHs.

Approximately 50 cubic yards of lead contaminated soil that classified as hazardous waste were excavated and removed from the central area of the site. Samples collected after the soil removal from the bottom and sidewalls of the removal area confirmed that this lead contaminated soil was removed from the property.

Groundwater was sampled at one of the wells at the Duwamish Marine Center in November 2003 and February, May, and August 2004. Total mercury and petroleum hydrocarbons were detected in groundwater above levels of concern.

The Agreed Order is a legal agreement between Ecology and the potentially liable persons (PLPs). It describes the work that the PLPs agrees to perform on the site. It ensures timely cleanup that protects human health and the environment according to Washington State's cleanup law—the Model Toxics Control Act, and the Sediment Management Standards. Work to be performed includes a **Remedial Investigation and Feasibility Study (RI/FS)**. The RI includes sampling to define the nature and extent of contamination in soil, groundwater, surface water, and sediments. The FS presents the results of the RI and evaluates cleanup alternatives. Ecology also requires the PLP to complete a draft Cleanup Action Plan (draft CAP). The draft CAP uses the RI/FS to identify a preferred cleanup action and a schedule to cleanup the contamination.

The Duwamish Marine Center site is located within the larger Lower Duwamish Waterway (LDW) cleanup site. The LDW site is both a state and federal cleanup covering about 5.5 miles of the Duwamish River south of Harbor Island. The LDW sediments are contaminated with several hazardous substances, including PCBs, arsenic, dioxins/furans, and PAHs. The Duwamish Marine Center site is one of several areas near the LDW that is being addressed. It will be cleaned up as necessary to reduce the threat to human health and the environment from pollution. This work will also assist in preventing recontamination of the sediments after the LDW site cleanup is complete. Ecology is working with the U.S. Environmental Protection Agency (EPA) and other local agencies and businesses to clean up the Lower Duwamish.

Existing Stormwater Handling Facilities

The Samson facility currently has eight catch basins covering the northern portion of the subject property. There are no detention facilities. Four of the catch basins are located along the waterfront portion of the subject property and gravity flow to the south, with three catch basins set along the 1st Avenue South (eastern) portion of the property. DMF stormwater primary drainage consists of three catch basins that gravity flow to Outfall 1. The Samson collection and conveyance system serves approximately 2.9 impervious acres (Figure 2) which drain to Outfall 1. The DMF facility is approximately 1.7 acres. A small slab is located between the DMF facility and storage building, the parking lot to the south of the DMF facility, and the roofs of the metal

fabrication facility, the Samson Facility and a small dispatch office trailer comprise the fixed portion of the impervious surface.

A segregated section of approximately 0.5 acre on the northern portion of the site is hydraulically connected to a closed and locked outfall at the northern edge of the shoreline. This collection system includes the tributary area in and around CB09, and is pumped from a collection sump and catch basin (CB09) to the treatment system via CB07.

A roof area of about 2500 square feet on the south side of the DMF building drains to the south by sheet flow, into a City right-of-way. This flow will be intercepted with a roof gutter and conveyed by pipe to the stormwater treatment system.

At least 90% of the site is defined to be impervious per Ecology specifications.

Existing Water Quality Facilities

A temporary stormwater treatment facility is located at Outfall 1, collecting much of the water from both Samson site and DMF. Samson and DMF have no other functional stormwater or industrial wastewater facilities. Both sites are served by City of Seattle sewer discharging to King County Industrial Waste facilities at West Point. Neither site has an industrial waste water permit or industrial discharge authorization.

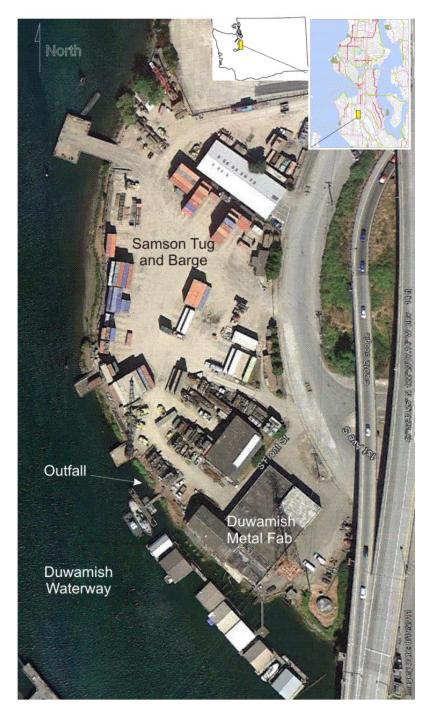
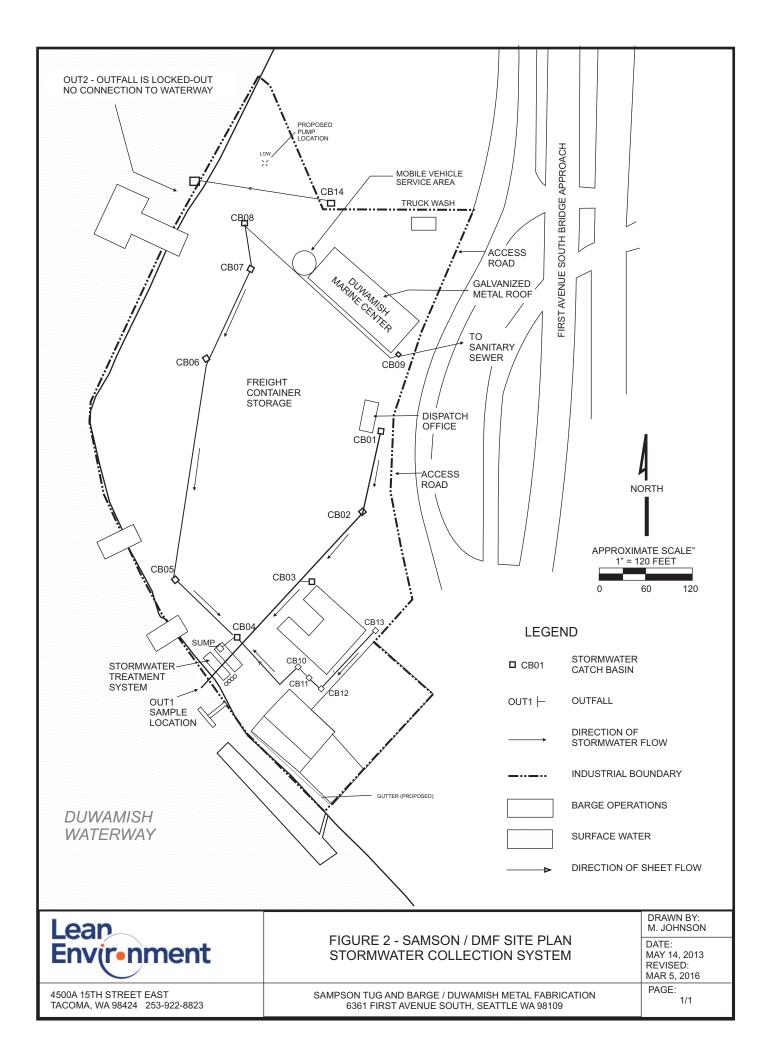
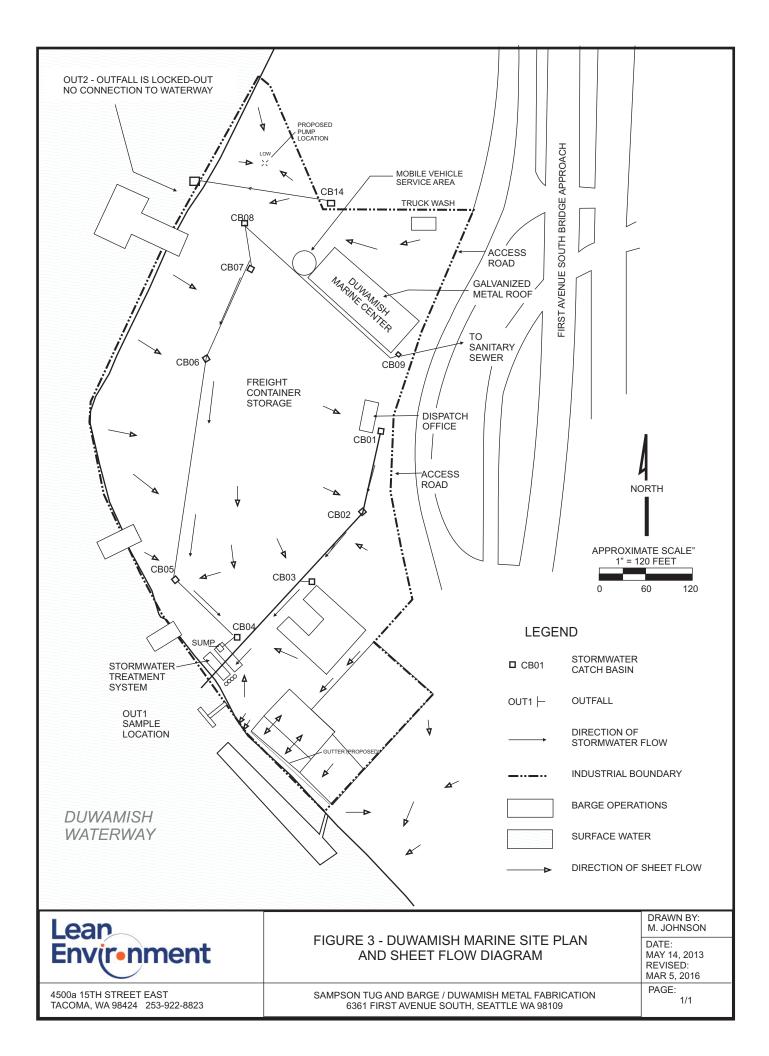




FIGURE 1 Vicinity Map and Aerial Photo of Site © Google Earth, 8/2011

SECTION II - Stormwater Characterization (WAC 173-240-130(c)(i-iv))

The stormwater generated at the Samson / DMF site exhibits common industrial pollutants such as high turbidity, copper and zinc. The current sampling location for SAMSON is OUTFALL1 (Figure 2). DMF began regular sampling in 2011. Discharge Monitoring Report (DMR) data was evaluated from October 2010 to December 2015 and is tabulated below in TABLE A.

	Sampling	Turbidity	Copper, Total	Zinc, Total	рН	Sheen?
Location	QUARTER	(NTU)	(mg/L)	(mg/L)	(su)	
OUTFALL1	4Q.2010	>2000	1640	4330	8	Ν
OUTFALL1	1Q.2011	923	122	362	8	Ν
OUTFALL1	2Q.2011	763 1312	180	676	7.5	N
OUTFALL1	3Q.2011	1312	204	713	6.5	Ν
OUTFALL1	4Q.2011	NS 67	NS	NS	NS	NS
OUTFALL1	1Q.2012	0	120	315	6.7	Ν
OUTFALL1	2Q.2012	>3000	365	1060	8.6	Ν
OUTFALL1	3Q.2012	NS	NS	NS	NS	NS
OUTFALL1	4Q.2012	>3000	146	616	8.7	N
OUTFALL1	1Q.2013	12	5.12	23.8	8.2	N
OUTFALL1	2Q.2013	954	399	1680	8.4	Ν
OUTFALL1	3Q.2013					
OUTFALL1	4Q.2013	226 2	172	817	8.1	Ν
OUTFALL1	1Q.2014	94	136	520	6.6	Ν
OUTFALL1	2Q.2014	188	54.9	168	7.9	Ν
OUTFALL1	3Q.2014	388	229	1280	8.6	Ν
OUTFALL1	4Q.2014	226	172	817	8.1	Ν
OUTFALL1	4Q.2014	8	3.5	11.9	7.4	Ν
OUTFALL1	1Q.2015	>3000	1060	5490	8.5	Ν
OUTFALL1	2Q.2015					
OUTFALL1	3Q.2015	4	6.71	12.9	6.7	Ν
OUTFALL1	4Q.2015	5	3.6	5.04	6.4	Ν

TABLE A

Stormwater Monitoring – Summary of Results

Additional parameters sampled for 2Q.2102 at DMF include NWTPH 6.3 mg/l and lead (Pb) at 373 μ g/l.

Water Quality Design Storm

According to the SWMMWW, Volume V, Chapter 4.1.1, the design flow for the stormwater system must meet the 24-hour storm with a six month return frequency for the location. The DOE's approved stormwater calculation program, WWHM 2012, does not compute the actual full value of the 6-month storm, but rather flows that correspond to percentages of the total

annual runoff that must be treated. The standard value for the treatment level is 91% of annual runoff, but other values may be used. Table B below shows the volume and flows calculated for a range of annual treatment levels at the site.

Treatment Level	24-hr Volume (acre-feet)	On-line Flow (CFS)	Off-line Flow (CFS)	Off-line Flow (GPM)	
91%	0.5842	0.7116	0.4360	196	
93%	0.6324	0.8565	0.4941	222	
95%	0.6911	0.9650	0.5753	258	
97%	0.9200	1.1543	0.7075	318	
98%	1.1238	1.3158	0.8195	368	
99%	1.2029	1.6320	1.0289	462	

TABLE B

Volume and Flows Calculated for a Range of Annual Treatment Levels

The calculations above are based on 4.7 acres of completely impervious surface, using the SeaTac gauge and a 1.00 precipitation scale factor, computed with WWHM 2012. Beyond the 99% treatment level, WWHM 2012 does not generate useful numbers. If the 100% level is input to the model, for example, WWHM calculates flows that are greater than the 100-year storm.

The treatment system for the site is designed to treat 98% of the annual flow. The reason for selecting this high treatment level is that the high levels of turbidity of bypassed runoff can significantly increase the turbidity of the combined treated and untreated flow. At the 98% level, assuming a linear relationship and that the turbidity of the treated flow is 0 NTU, the remaining 2% of flow can have a turbidity no higher than 1250 NTU or the 25 NTU benchmark for combined flows will be exceeded. To achieve that level of turbidity reduction in the bypass flow, erosion control BMPs like catch basin inserts and straw bales will be strategically placed upstream to reduce influent TSS loading.

98% of the stormwater will undergo treatment via sedimentation, electrocoagulation and sand filtration. The floc formed through the portion undergoing electrocoagulation will contribute to accelerated formation of colloidal particles throughout the treatment train, and will affect sedimentation and filtration for the full 98% design flow. The portion not undergoing EC will overflow from the primary mixing zone into Sedimentation Zone 1 and be co-mingled through Sedimentation Zone 2 and Sedimentation Zone 3 prior to sand filtration. (See FIGURE 4).

In addition to the WQ Design Storm, TABLE C lists relevant significant storm events and flow rates of interest by return frequency:

Return Frequency	Cubic Feet / Second
2-year	1.81
5-year	2.29
10-year	2.61
25-year	3.03
50-year	3.35
100-year	3.68

TABLE (
---------	--

Flow Rates by Return Frequency

While WWHM 2012 does not calculate the full value of the six-month storm, its value may be approximated by taking it as 72% of the 2-year storm. In this case, 72% of 1.81 CFS is 1.30 CFS, which falls between the values listed in the Treatment Level table above for on-line and off-line flows at the 99% treatment level. The 1.30 CFS flow will be used here as the full value of the 6-month storm:

6-month storm 1.30 CFS

Quantity of Domestic and Non-Contact Wastewater WAC 173-240-130(c)(ii-iii))

Domestic Wastewater is not disposed via surface conveyance or stormwater systems. There is no non-contact cooling water in use at the site.

Quantity of Water Lost to Evaporation WAC 173-240-130(c)(iv)

There will be considerable evaporative losses through the rainy and dry seasons, but are not considered as part of the flow calculations or sizing of the stormwater system.

Petroleum Hydrocarbons

Fats, oil and grease (FOG) is expected to be a parameter of concern for SAMSON / DMF stormwater discharges, based on results of visual monitoring. The heavy equipment used throughout the Samson site is a potential source for petroleum hydrocarbons. Oil sheens are not visible in the stormwater, but it likely the oil present is bound to soil particles carried in the stormwater (see TSS/Turbidity below). Given the high sediment load in the stormwater, oil/water separators would be expected to plug up with sediment quickly. Oil will be more effectively removed by removing the soil particles with which it is bound.

TSS / Turbidity

Turbidity and suspended solids at the Samson / DMF facility are significant issues for the management of stormwater at the site. The turbidity is created by heavy forklifts transporting 40' shipping containers across unpaved surfaces – which leads to muddy site conditions, high turbidity and suspended solids during storm events. Turbidity is occasionally in excess of the 3,000 NTU operating range of field instrumentation. TSS was measured in a single sample at 2,810 mg/L. That sample was analyzed for particle size distribution, with the following results:

Particle Size (microns)	Volume (or mass) Percentage
1-5	0.9
5-15	5.0
15-30	11.8
30-50	16.1
50-100	66.3
ТА	BLE D

Particle Size Distribution

The administrative requirements of the Agreed Order make structural BMPs such as paving and capping impractical in the timeframe required for implementation of Level 3 treatment. As a result, significant measures must be undertaken to reduce turbidity in the treatment process.

Acidity / Alkalinity and pH

The pH of stormwater has significant impact on the ability of treatment technology to be effective in removal of heavy metals. The facility DMR data shows a relatively stable pH ranging from 6.5 - 8.5. pH is controlled as a feature of the metals absorption process. Additional controls of pH will not be necessary

Heavy Metals, Copper and Zinc

Metals are commonly associated with runoff from industrial, commercial and residential land use. Historical land uses at Samson /DMF include a shipping terminal for rail-based transportation, junk yard, construction services yard, etc. dating prior to the Second World War. Significant and potentially contaminated fill from the Duwamish waterway may have been used at the site dating from the inception of industrial activity. Heavy forklifts are used throughout the site, and may contribute metals from tires, brakes, fluids and from the transport of other materials. Based on the current and historical uses of the site, copper and zinc are expected to be routinely present in site stormwater. Comparing Table A concentrations to stormwater data tabulated for Washington facilities in the manufacturing industrial category, SAMSON / DMF zinc concentrations are above the benchmark of 117 μ g/L. Copper concentrations are above the benchmark level of 14 μ g/L. Given historical site use and current industrial activity, and the likelihood of a protracted process in obtaining required Ecology TCP approval for structural BMPs, metals are expected to continue to occur at concentrations in excess of benchmarks in the influent stormwater.

Receiving Water: Duwamish Waterway

The SAMSON/DMF site is located on the Duwamish River just downstream of the first Avenue South Bridge, which is along the Duwamish Waterway approximately 3.0 miles south of the mouth to Elliot Bay, approximately River Mile (RM) 3. The stormwater management system at SAMSON / DMF discharges directly to the Duwamish Waterway via private stormwater collection and conveyance).

The Duwamish Waterway is subject to significant tidal fluctuations, and is estuarine, stratified, with the upper layer of freshwater flowing to Puget Sound and a marine water underflow that is tidally driven upstream (south) several miles.

A regional storm sewer outfall is located immediately upstream of the site, under the First Avenue South Bridge. The outfall has been abandoned by the City of Seattle but the actual extent of any remaining flow or overflow is unknown.

Duwamish Waterway use-designations vary depending on location. Specific use designation to River Mile 11 are: aquatic life use for salmonid rearing and migration, only; secondary-contact recreational uses; water supply uses for industrial, agricultural and stock water; and miscellaneous uses (wildlife habitat, fish harvesting, commerce/ navigation, boating and aesthetics) (WAC 173-201A-602). Water quality standards for the waterway are specified in Washington State's surface water quality standards (chapter 173-201A WAC).

The Duwamish Waterway has been the site of industrial activity for over a century. The Lower Duwamish Waterway (LDW) was added to EPA's National Priorities (Superfund) List in 2001. In addition to extensive investigatory and cleanup actions in and along the waterway, source control efforts have been implemented to reduce the conveyance of stormwater pollutants to the waterway. Seattle Public Utilities (SPU) reports there are approximately 230 piped outfalls, ditches, and streams discharging to the LDW; over 200 of the piped outfalls are public and private storm drains.

Six records are reported for Category 5/303(d) listings for water in the Duwamish Waterway (per Ecology's Water Quality Assessment for Washington Simple Query Tool) for fecal coliform and dissolved oxygen. Two Category 4A listings for ammonia nitrogen are also noted. Duwamish Waterway is covered by a state water cleanup plan (also known as TMDL) for ammonia-N (Water Quality Improvement Projects for King County). PCB and PAH tissue listings are also noted downstream in the LDW.

ISWGP Compliance and Stormwater Pollution Prevention Plan

Samson has been subject to the Industrial Stormwater General Permit for several years, and has recently updated its Stormwater Pollution Prevention Plan. Stormwater best management practices described in the facility's Stormwater Pollution Prevention Plan (SWPPP) have been updated and submitted to the Department of Ecology. (Samson, Blue Environmental, 2016).

There are three classes of best management practices (BMPs): operational, structural, and treatment. Operational BMPs are management practices that prevent or reduce pollutants from entering stormwater. Examples include housekeeping practices, inspections and corrective actions, source reduction, covering potential sources with tarps or inside of building structures, preventive maintenance procedures, spill prevention and cleanup, employee training, and performance incentives. Structural BMPs are physical and often permanent changes in a facility

that prevent stormwater from contacting pollutants, or keep pollutants from entering stormwater. Treatment BMPs are systems, operations, devices or facilities that are designed to remove pollutants after they have been introduced to stormwater. These BMPs are briefly summarized below.

Operational BMPs and Structural BMPs

Based on a review of the original 2010 SWPPP, operational and structural controls have been upgraded to be consistent with those typical of this facility type and operations. The use of unpaved surfaces by heavy (shipping container) fork trucks creates significant issues with turbidity and associated metals content of the system. See the discussion portion below for the implications of other regulatory action regarding the structural BMPs.

Treatment BMPs

A temporary treatment BMPs currently in-use at Samson or DMF. Additional discussion of treatment BMPs occurs in Section IV. The addition of significant structural BMPs are not feasible in light of the on-going RI/FS to assure a timely implementation of Treatment BMPs. Development and approval of sampling plans, and especially the potential for conflict in the RI/FS process renders the paving or structural improvement of the site impractical at this time.

Additional structural controls are required at the site to assure all industrial stormwater at the site is collected and the discharge of contaminants to any treatment system is minimized. Specifically:

Additional Structural Controls

- 1. Install gutters, collection systems and/or roof drains on the DMF storage building located at the west end of its complex.
- 2. Inspect the existing berm along the west side of the site and fill any gaps to prevent potential discharge of sheet flow directly to the Duwamish Waterway. At a minimum, berms, ecology blocks or silt fencing along the waterfront portion should be maintained.
- 3. Maintain wheel washing station to be consistent with site conditions.

While most of these improvements are not within the scope of the treatment system design, it is believed that their eventual implementation will render the treatment system described herein more effective and assist in consistent attainment of stormwater benchmarks as established in the ISWGP.

Alternatives Analysis for Treatment Technology

Operational and structural BMPs currently are employed by Samson / DMF. BMP effectiveness is monitored visually and stormwater has been sampled during the quarterly permit sampling requirement. Laboratory data from sampling results indicate that Samson and DMF require additional treatment for the control of metals and turbidity in stormwater runoff discharged from the site. The following narrative section describes the technical assessment, which includes treatment technologies identified by Ecology, and Samson / DMF evaluation of options for

treatment technologies. The regulatory requirements (Benchmarks) for all technologies are as follows:

Turbidity	< 25 NTU			
Copper	< 14 ug/l			
Zinc	< 117 ug/l			
Lead (Pb)	< 87 ug/l			
TPH	<10 mg/l			
pH	5.0 – 9.0 SU			
TABLE E				

Stormwater Benchmark Limits

The benchmarks must be met for a combination of treated and bypassed flows. The relative volumes of treated and bypassed flows are indicated by the water quality treatment level, which is customarily 91%. At this site, with its high level of TSS and turbidity, a design treatment level of \98% will be used.

With the exception of pH and probably TPH, all the benchmarks are exceeded at this site under present conditions.

Regulatory requirements

Ecology primarily regulates stormwater runoff from industrial facilities through the Industrial Stormwater General Permit (ISWGP). This NPDES permit requires stormwater dischargers to implement operational, structural and treatment BMPs to control stormwater pollutants. BMPs are specified in permits, guidance documents, and the Stormwater Management Manual for Western Washington (SWMMWW). Ecology does not mandate specific treatment BMPs for removal of metals from industrial stormwater, except that the ISWGP requires the use of treatment BMPs that are consistent with the SWMMWW.

Additional Requirements in Support of Remedial Investigation

In addition to the benchmarks for constituents required under the ISWGP, The Department of Ecology has indicated that certain contaminants that may be present in the soils at the site may present in the stormwater. Additional sampling parameters may be added to the quarterly ISGP list on request. Analyses and treatment of these parameters is beyond the scope of this document.

SECTION III: Stormwater Treatment System

All descriptions reference FIGURE 4 on page 24. Based on the data in Table A and the evaluation of benchmarks in the ISWGP, the facility requires, at a minimum, enhanced treatment for metals (Zinc and Copper) and turbidity. The proposed treatment train will include flow equalization, pre-treatment coagulation, gravity pre-settling, electrocoagulation, dissolved air (gas) flotation (DAF), settling, clarification, and pressure sand filtration. Backwash from the sand filters will be returned to the head of the system.

The treatment system is design to treat 98% of the annual runoff volume, which corresponds to an off-line flow rate of 368 GPM. A maximum of 189 GPM will be added back to the head of the system during sand filter backwash cycles. Flows greater than 368 GPM (0.82CFS) will be bypassed to discharge from the inlet sump without treatment.

NOTE: While design flows will provide reasonable accuracy of the required capacity, the model is based on an entirely impervious surface with no infiltration, detention or evaporation on the property. The property in its current condition is largely unpaved, but must be considered impervious because of the industrial activity on the site. Based on visual observation during peak storm events, the actual maximum flow rate appears to be in the range of 100-150 GPM (conservative) – and as a result the system as-designed will have significantly higher hydraulic capacity than will be initially required. The system will function adequately as site conditions change in the event of capping, paving or other physical changes are affected during the remedial activity.

Transfer to EC Treatment Zone

Turbidity is expected to be a major contributor to many of the issues at Samson / DMF. Turbidity is typically caused by suspended particles in stormwater. These particles can be made of finely divided clays or silt, due to electronegativity of terminal oxygen in the particles, tend to have negative external charge, therefore repel each other and resist forming larger colloidal particles. FIGURE 5 shows the bench top results of single pass coagulation reactor.

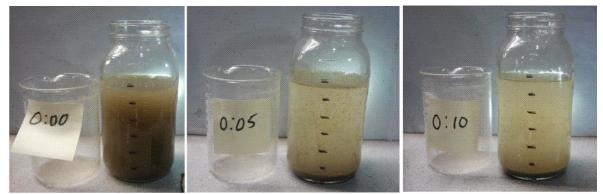
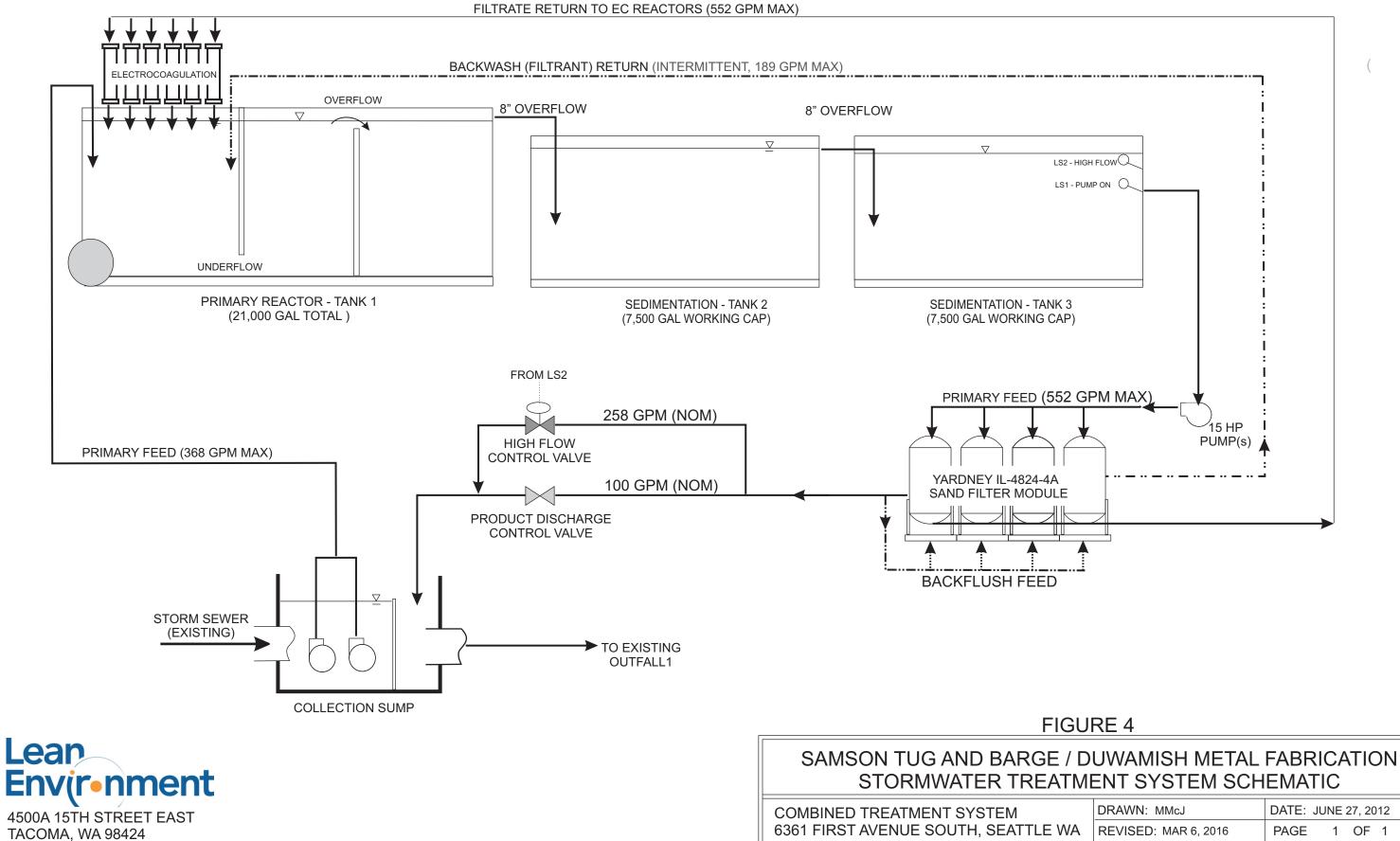


FIGURE 5 Single-Pass Coagulation Reactor Jar Test (Time in minutes, marks in inches)

The stormwater to be treated is pumped via two submersible pumps into a treatment the EC treatment mixing zone in the primary reactor tank (Tank 1), but is not initially transferred through reactors. The untreated water is mixed with recirculated water from the sand filters that has passed through the EC reactors, which provides activated ionic sites for coagulation to be initiated. Mixing the untreated water in this way allows the coagulation reaction to begin, without risking contamination or fouling of the reactors. Maximum back wash flow rate is 189 GPM. Due to high influent suspended solids, the pretreatment tank will require periodic cleaning. Solids will be managed per Department of Ecology regulations (WAC 173-303).


The overflow from the mixing zone will flow into a stilling zone in the primary reactor tank. The combined volume of mixing zone and stilling zone is 21,000 Gallons. Stormwater will flow over a weir into sedimentation from the mixing zone to the stilling zone in the reactor tank, and then flow by gravity through an 8" pipe into coagulation/sedimentation Tank 2. The volume of the coagulation/sedimentation tanks is 7500 gallons each. Following further coagulation and sedimentation, the stormwater then overflows through a box weir into final coagulation sedimentation Tank 3. A float switch in the final tank will actuate the main sand filter pump, and a second float switch in Tank 3 will actuate the high flow control valve (V2). Following the sand filter, the majority of the flow (nominally 50% - 85%) will be diverted through a flow control valve through the electrocoagulation reactors while a smaller fraction (nominally 15-50%) will be discharged through the outfall riser and to the Duwamish River.

Flow Control

The EC process is initiated by water flowing from the sand filter through the EC reactors at the headworks of the treatment train, where it is mixed with incoming stormwater water. The recirculation rate is fixed by the pump velocity, while the discharge will be controlled by discharge control valves that regulate the flow of water to the Duwamish River. A low-flow valve will allow a predetermined rate (50-100 GPM) to discharge during all flow conditions. When tank levels reach a high level float switch (Figure 4) a second air actuated valve opens allowing discharge of the full WQ design flow. The balance of the flows is pumped to the electrocoagulation (EC) units. In all flow scenarios, the proportion of stormwater recirculated to the EC treatment section is expected to provide adequate treatment to achieve benchmarks over several passes (two or more) under all flow conditions.

Electrocoagulation

With the exception of the sand filter, coagulation occurs throughout the treatment train. The first chamber in the primary treatment reactor Tank 1 is referred to as the mixing zone, in which incoming stormwater is mixed with recirculated water passing through one of sixteen electrocoagulation reactors. During the electrocoagulation process, small amount of gases are formed, promoting the flotation (dissolved air flotation, or DAF) of oils and low density solids. The turbulence within this section will not allow appreciable settling, but coarser particles will settle in the mixing zone of Tank 1 while smaller particles will begin to coagulate as they pass through subsequent zones. The EC reactors provide chemical reduction of dissolved pollutants at the anode surface and an activated charge to which suspended anionic particles (e.g. silicates) are attracted and form larger particles that can be filtered or settle.

	1					
	DRAWN: MMcJ	DATE: JUNE 27, 2012				
VA	REVISED: MAR 6, 2016	PAGE 1 OF 1				

Traditional EC has been in use since the 1920's, which is a class of electrochemical processes that uses an electrochemical reaction to form colloidal particles by placing a voltage across electrodes immersed in a flowing system. Electrical charge destabilizes ionic particles and generates an ionic coagulant by oxidation of anodes and metal reduction at cathodes. It is effective for formation of large colloidal particles that are otherwise predisposed to mutual repulsion due to weak ionic forces. Such conditions are common among silicate based clays. Several processes work concurrently to remove solids. The primary pollutant removal mechanisms are as follows:

Coagulation is initiated by the use of direct current (DC) to disrupt the stability of charged suspended particles, and promote the chemical oxidation of anode at a fixed rate into the effluent to be treated. Both divalent (+2) and trivalent (+3) ions are temporarily formed in the oxidation of the anode, with high charge density that attract weakly ionic suspended particles and begin accumulation of larger colloidal particles. This charge is distributed over the entire colloidal particle, thereby increasing the size of the particles over time. The process of colloid formation accelerates as charge is preserved for most species, until the density and size of the particle cause precipitation.

The pH of the water is changed only slightly by the electrocoagulation process. Formation of hydrogen ions on the cathode will generally outpace the formation of oxygen on the anode, leaving a slight net increase in residual hydroxide formation, thereby raising pH slightly. Reactor residence time will not be adequate to affect bulk pH significantly.

Other mechanisms include chemical reduction of metals such as zinc, which can precipitate as primary metals or be plated onto the cathode. Gas bubbles form during the reduction of hydrogen ions to H_2 gas, while oxygen gas forms on the anode. Bubbles affect surface tension and facilitate large colloidal particles to form in the same manner as dissolved air flotation (DAF). The particles that are lower in bulk density can be bound to the bubbles by surface tension and float to the surface for collection by a skimmer.

The four EC test-units used in the field tests were eight inches in diameter and thirty-six inches long. Electrode surface areas, electrode materials, operational voltages and amperage are considered proprietary. Based on the results of field testing, it is determined that sixteen reactors are needed to meet the 98% flow criteria. EC performance *may* be enhanced by the addition of sodium chloride up to 1 mS conductivity, or up a mass fraction of 0.03% NaCl. For reference, the Duwamish is brackish, and the TDS of sea water is 3.3%. Addition of salt will be controlled by a conductivity controller and LDI metering pump, but will be avoided if possible.

Settling and Sedimentation – Tank 1

From the mixing zone next to the EC reactors, water will overflow to the next chamber for settling of solids. The primary treatment tank (Tank 1) is eight feet wide, forty feet long, and carrying depth up to ten feet deep, with a volume of 21,000 gallons and a surface area in the sedimentation zone of 160 SF. Maximum flow through the mixing zone at any time will be the

treatment flow rate (368 GPM) plus the minimum recirculation rate (184 GPM), for a total flow of 552 GPM. With an ideal overflow rate of 3.45 GPM/SF and a usable rate of about 80% of that, or 4.31 GPM/SF, the settling zone of Tank 1 should be able to remove soil particles down to the size of smaller than 65 microns. According to the particle size distribution table (Table D), 66% of the TSS consists or particles greater than 50 microns. Smaller particles will continue on to the next sedimentation zone (Tank 2 and 3) and then on to filtration. To minimize turbulence, an adjustable box weir will be used at the exit of Tank 2 and entrance to Tank 3 a smooth collection riser will be used at the outlet.

Clarification – Sedimentation in Tanks 2 and 3

Following Tank 1 the flow will be carried by gravity to the downstream sedimentation tanks (Tank 2 and 3), where heavy coagulated particles (floc) will settle out and supernatant and any remaining light particles will rise to the surface. The total volume of each of these chambers is eight feet wide, twenty feet long, and seven feet deep. The two tanks are arranged in series, each twenty feet long and each with a volume of 8360 gallons and a surface area of 160 SF. The ideal available overflow rate is 3.45 GPM/SF in each chamber at design flow, with a usable rate of about 80% of that, or 4.31 GPM/SF.

When the final settling (overflow) and rise rates of the floc are determined through field testing at start-up, it will be possible to estimate the extent of TSS removal in the clarification step.

The goal of clarification is to reduce the load on the sand filters as much as practical, not to achieve complete removal of TSS and the associated pollutants that are bound to it. Complete removal by gravity would require much more area than is available at the site. The clarification step allows an appreciable amount of sediment to accumulate in a place where it can easily be removed and to reduce the loading on the sand filters, which will in turn extend run time between backwashes and allow for greater recirculation through the filters at flows less than the design flow.

Pressure Sand Filtration

After clarification, the design flow will be pumped to the sand filters. The filters are made by Yardney Filtration Systems (Model IL-4824-4A) and consist of four interconnected 48" diameter sand filters with a sand media designed to filter down to 20 microns at a flow rate of 504 to 756 GPM with all four filters operating, or 378 to 567 GPM with one filter down for backwash. Maximum operating pressure is 80 psi, but these units will be design to operate at a maximum of 50 psi. The peak filtration rate is 15 GPM/SF, the maximum allowed for gravity sand filters under Volume 5, Chapter 8 of the WWSWMM. Total surface area of the Yardney Model IL-4824-4A is 50.24 square feet, and therefore has a nominal capacity of 753 GPM per the Ecology criteria. The design filtration rate can be achieved by a pressure filter using a much finer sand gradation than a gravity system, which allows a pressure filter to trap correspondingly smaller particles at the same filtration rate. The recommended sand gradation shown in the WWSWMM is for gravity filters and is not applicable in the case of pressure filters.

The design rate for the treatment system is 552 GPM, including backwash flow. With one filter down for backwash the remaining three filters can handle up to 564 GPM so the performance of the system will be within design flow requirements even when one filter is backwashing.

The filter controller will begin the backwash based on manual settings on an adjustable timer. Only one filter at a time will be backwashed, to assure that three filters are available at any time. The backwash flow rate is expected to be a maximum of 189 GPM for a duration of three to five minutes, as recommended by Yardney's engineer. In operation it may be necessary to adjust flow and duration somewhat to meet actual conditions. Backwash water will be pumped back to the pretreatment tank at the head of the treatment system.

When all four filters are operating, they will have a total flow capacity of 756 GPM, which provides 388 GPM of excess capacity available for treating flows that exceed the 98% treatment level flow of 368 GPM, a factor of 1.1 times the design treatment flow. When one filter is down for backwash and its 189 GPM backwash flow is added to the 368 GPM, creating a total flow 546 GPM, there is 21 GPM excess capacity available below the three-filter capacity of 567 GPM.

Field experience has shown that recirculation of treated effluent improves clarity with each cycle. To take advantage of the excess capacity available during four- filter operation and to further clean the stormwater, 552 GPM will be recirculated through the sand filters while four filters are operating regardless of the rate of discharge. This will provide a recirculation factor of about 5:1 under low flow conditions and 1.5:1 at peak flow. When one filter is down for backwash, the recirculation system will be turned off by the same controller that turns the backwash cycle on, and the remaining three filters will operate within their capacity. As supernatant from the backflush is introduced into the headworks, there is no net change in the rate of flow through the system, only the proportion of the recirculation that is introduced to the EC reactors during backflush. The pumped flow rate does not change appreciably during backflush.

The backwash duration will be one to five minutes out of a total expected cycle time of 60 minutes for each filter, allowing up to 50% of the design flow to be completely recirculated once during peak flow conditions. At flows below the design flow, or most of the time, the recirculation rate will be much higher.

There are several options for managing recirculation and enhancing the single-pass performance of the sand filters. All of the recirculation methods have advantages and disadvantages (e.g. finer sand versus increased backflush frequency); the final determination that will be made during the start-up and optimization phase after the single pass efficiency is determined.

Improvements included in this engineering report include provision of additional storage and sedimentation capacity, additional EC capacity, high solids EC reactors, and automated flow

controls. The backflush is also introduced directly into the mixing zone to accelerate coagulation.

Treatment Description Summary

The proposed treatment system consists of a series of collection sump, pre-sedimentation and flow equalization, electrocoagulation, sedimentation and clarification, recirculated sand filtration with automatic backwash and treatment of back wash flow, as described above.

Capacity and Sizing (WAC 173-303-130(d))

The treatment system is designed to ultimately treat 98% of the annual treatment volume, at a flow rate of 368 GPM. Excess flows will be bypassed. Stormwater is collected through the existing conveyance system to the first catch basin upstream from the outfall, where it is pumped to a pre-sedimentation/equalization zone in Tank 1, which also receives backwash flow from the sand filters. From there, stormwater overflows by gravity to a sedimentation zone in the primary treatment tank. After settling, then flows into a series of two settling tanks (Tank 2 and 3). Float switches actuate a pump which sends the stormwater is pumped through the sand filters to an array of 8 or more electrocoagulation (EC) units. After coagulation, the recirculated flow repeats the pattern through a clarification chamber for partial removal of the flocculated sediment particles. Prior to discharge, polishing is accomplished through pressure sand filtration with recirculation. The treated stormwater flows through discharge control valves (CV1 and CV2) to existing OUTFALL1. Since the system bypass is located at the catch basin, the system is offline. The Water Quality design flow rate is 368 GPM, which will treat 98% of the annual flow. Calculations are provided in Appendix C.

The lift pumps are of adequate size to transfer stormwater to the pre-sedimentation / equalization tank and provide a minimum flow rate of 368 GPM. Two 1.5 HP lift pumps (or equivalent) are controlled by level switches and transfer the stormwater to the first stage in the treatment system. The collection sump will provide a minimum detention volume of 90 gallons. Stormwater collection system piping will contribute an unknown volume of detention.

Clarification tanks (Sedimentation Zones 2 and 3) with a total working volume of 8400 gallons will precede the sand media filters. Floc particles that are not removed in the clarifier are pumped to the pressure sand filters. The four filters are sized such that backwash flow can be recirculated to the influent stage and the remaining three filters can still treat the design flow.

Sand filters are comprised of a skid with four four-foot diameter Yardney (Model IL-4824-4A) sand filters. Each filter will be capable of treating approximately 189 GPM each. The media will be operated at a maximum hydraulic loading rate of 15 GPM/SF. The backwash rate will be determined in the field, but according the manufacturer it is typically 189 GPM with a duration of three to five minutes. Total volume should be no more than 1000 gallons per cycle.

Amount and Kind of Chemicals Used – WAC 173-240-130(d)

No chemicals will be used. NaCl brine may be used at a future date to control conductivity to 1,000 uS controlled by a conductivity controller and LMI metering pump.

Provisions for Bypass (WAC 173-303-130(i))

The sump pumps are comprised of two centrifugal pumps with a minimum capacity of 368 GPM (0.81 CFS) with 10 feet of head. Should these pumps not be adequate to handle instantaneous storm flows, the excess water will overflow a riser within the sump and bypass to the main discharge pipe and Outfall 1. The bypass structure will be designed to handle the 100-year storm (3.57 CFS) in bypass mode.

Physical Provision for Oil and Hazardous Material Spill Control (WAC 173-303-130(j))

The tanks function as emergency reservoirs to collect and capture any accidental releases that may find their way to the stormwater. Residual and/or spilled oils will be retained in DAF Zone and Sedimentation Zone 1 with underflow and a storage capacity in excess of 300 gallons.

Results to be Expected from the Treatment Process (WAC 173-303-130(k))

Bench-scale studies have shown that the proposed treatment process will provide adequate treatment to meet benchmarks in the ISWGP as shown in Table E.

Additional contaminants of concern are expected to meet surface water quality criteria concurrently with the treatment of suspended solids, metals and oils. Additional treatment elements may be added in the future (e.g. carbon adsorption, anthracite filtration, etc.) as they are determined to be technically feasible and in the event that the proposed system in not effective in meeting Ecology requirements.

PARAMETER	INITIAL Concentration (ug/l)	SETTLED Concentration (ug/l)	TREATED Concentration (ug/l)	% Removal	Fraction of Benchmark
COPPER	148.7	59.6	1.7	98.8%	0.121
LEAD (Pb)	189.1	44.6	0.3	99.8%	0.003
ZINC	598.6	320.9	15.4	97.4	0.131

TABLE H EC Field Trial Results

Results from the electrocoagulation field trials (using EC and settling without filtration) are tabulated in TABLE H.

Description of Receiving Water, Location of the Point of Discharge (WAC 173-303-130(k)) The SAMSON/DMF site is located on the Duwamish River just downstream of the first Avenue South Bridge, which is along the Duwamish Waterway approximately 3.0 miles south of the mouth to Elliot Bay, approximately River Mile (RM) 3. The stormwater management system at

SAMSON / DMF discharges directly to the Duwamish Waterway via private stormwater collection and conveyance on 1st Ave S (Figure 2).

The Duwamish Waterway is subject to significant tidal fluctuations, and is estuarine, stratified, with the upper layer of freshwater flowing to Puget Sound and a marine water underflow that is tidally driven upstream (south) several miles.

A regional storm sewer outfall is located immediately upstream of the site, under the First Avenue South Bridge. Stormwater from throughout the Georgetown area has historically collected and discharged untreated via the Michigan Street conveyance to the Duwamish Waterway. It is not clear the extent to which large upstream flows have been diverted, but the impacts of concentrated upstream urban and industrial discharge are highly variable and have significant impact on receiving water quality.

Duwamish Waterway use-designations vary depending on location. Specific use designation to River Mill 11 are: aquatic life use for salmonid rearing and migration, only; secondary-contact recreational uses; water supply uses for industrial, agricultural and stock water; and miscellaneous uses (wildlife habitat, fish harvesting, commerce/ navigation, boating and aesthetics) (WAC 173-201A-602). Water quality standards for the waterway are specified in Washington State's surface water quality standards (chapter 173-201A WAC).

The Duwamish Waterway has been the site of industrial activity for over a century. The Lower Duwamish Waterway (LDW) was added to EPA's National Priorities (Superfund) List in 2001. In addition to extensive investigatory and cleanup actions in and along the waterway, source control efforts have been implemented to reduce the conveyance of stormwater pollutants to the waterway. Seattle Public Utilities (SPU) reports there are approximately 230 piped outfalls, ditches, and streams discharging to the LDW; over 200 of the piped outfalls are public and private storm drains.

Six records are reported for Category 5/303(d) listings for water in the Duwamish Waterway (per Ecology's Water Quality Assessment for Washington Simple Query Tool) including fecal coliform and dissolved oxygen. Two Category 4A listings for ammonia nitrogen are also noted. Duwamish Waterway is covered by a state water cleanup plan (also known as TMDL) for ammonia-N (Water Quality Improvement Projects for King County. PCB and PAH tissue listings are also noted.

Detailed Outfall Analysis (WAC 173-303-130(m))

The outfall for the Samson / DMF site is at a single 10" pipe located approximately 3 feet above mean high tide. The current at the location is influenced by both tide and river levels, and is also may be influenced by the Michigan Street stormwater outfall located approximately 200 feet upstream of the STB / DMF outfall.

The receiving water is estuarine with adequate surface flows to immediately mix and diffuse the stormwater outfall with the receiving waters. USGS Stream flow data indicate long-term median flows in the Duwamish Basin exceed 765 CFS. This flow rate rises significantly during storm events, but may be cut in half during the dry summer months. Maximum flows from the site are not expected to approach one-part-per thousand of the receiving waters under any conceivable scenario.

The Lower Duwamish Waterway (LDW) is located south of Elliott Bay in Seattle, Washington (FIGURE 1). The LDW Site consists of 5.5 miles of the Duwamish Waterway as measured from the southern tip of Harbor Island to just south of the Norfolk Combined Sewer Overflow (CSO) (Figure 1). The LDW has been identified as a Superfund site by the U.S. Environmental Protection Agency (EPA) and a Model Toxics Control Act (MTCA) site by the Washington State Department of Ecology (Ecology).

The proposed location of the treatment system is adjacent to the existing CB04. This location is proximal to the shoreline of the Duwamish River and maybe subject to approval from the Port of Seattle, who owns the land and leases the adjacent property to Samson/DMF. Other permits may be required by the City of Seattle and a State Environmental Policy Act (SEPA) checklist may be prepared and submitted to the City with the application. If no local permits are required for system installation, the SEPA checklist may be submitted to Ecology.

SAMSON/DMF is not aware of a state or local water quality management plan relevant to discharge other than those indicated in the discussion on receiving water bodies.

Justification that the System Will Meet ISWGP Benchmarks (WAC 173-303-130(q)) The treatment system described herein is primarily mechanical in nature. Bench-level testing and filed data confirm that a sound engineering basis and justification that the system will meet the required benchmarks from the Stormwater General Permit.

Method of Final Sludge Disposal (WAC 173-303-130(r))

The sludge generated from the treatment process will be subject to both Dangerous Waste regulations and as clean-up solids under the Model Toxics Control Act. The solids will be profiled and analyzed for contaminants of concern and disposed in accordance with all applicable regulations. (Disposal in a hazardous waste landfill or other appropriate means is a likely result.)

Ownership, Operation and Maintenance of the Treatment System (WAC 173-303-130(s)) The property owner, represented by Jim Gilmur, will own the treatment system. Filtration Systems will operate and maintain the treatment system on behalf of the property owner.

Conformance with Water Quality Management Plans ((WAC 173-303-130(t))

Samson / DMF outfalls are part of a facility engaged in a number of regulatory actions relating to the historical practices in the Lower Duwamish Waterway and the DMC site Agreed Order. (WAC 173-303-130(u))

Other Requirements (Chapter 173-240-130 (2)(r-y))

The facility will be located adjacent to CB04 as shown in FIGURE 2. The potential for remedial activity throughout the site suggests that the system must be flexible and capable of being moved in the event that remedial activity is required. The selected modular system should be moved relatively easily in the event that Ecology TCP / RI/FS and/or remedial activity is required. For emergency or extreme flows, an overflow (flow splitter) will allow stormwater to be conveyed under conditions similar to existing.

The system will be wholly owned and operated by the property owner, represented by Mr. Jim Gilmur. System maintenance requirements will be outlined in detail after detail design is complete and indicated in the System Operations and Maintenance Manual.

Sludge will be removed from the pre-settling tanks, settling tank, and the clarification tanks using a commercial vacuum truck. It will be managed and disposed of as solid waste after sampling, analysis and designation following the procedures of WAC 173-303.

The sand filter media will be removed using a commercial vacuum truck. It will be managed and disposed of as solid waste after sampling, analysis and designation following the procedures of Chapter 173-303 WAC.

Provisions for any Committed Future Plans ((WAC 173-303-130(t))

There are no committed future plans aside from those stated above. Requirements for clean-up activity and mobility are assumed, given the possibility for sampling and/or remedial activity at the site. Future improvements may include expansion of storage and sedimentation capacity, expansion of EC capacity (residence time) and/or additional treatment elements to ensure conformance to surface water quality criteria. Addition of carbon adsorption or anthracite filtration may be indicated if higher than anticipated levels of organics or petroleum hydrocarbons are encountered.

Stormwater discharges must not cause or contribute to a violation of the surface water quality standards of chapter 173-201A WAC. Based on performance data from the bench testing and field testing of the EC / sand filter / sedimentation combination, stormwater from the facility is expected to meet benchmarks and surface water quality criteria in the receiving waters.

A discussion of the various alternatives evaluated, if any, and reasons they are unacceptable ((WAC 173-303-130(2)(v))

A good deal of effort was invested in evaluating all treatment options for the DMC site in light of the challenges of RI/FS and the high levels of suspended solids and other contaminants. It is clear that extensive sedimentation / settling will be necessary to remove the bulk of he suspended solids. There is no space available for detention facilities in-ground, and the flexibility mandated by the on-going remedial investigation is precludes surface impoundments or other structural BMPs. As a result, pressure filters were considered a necessary element for successful management of the suspended solids.

Other technologies, oil / water separators, adsorption systems, Enpurion® Metals Treatment, StormwateRx Purus and Aquip systems were considered for the other pollutants expected to be present in the system. None could have singularly achieved the results anticipated with the combination of EC / sedimentation and sand filtration. Future analysis for TPHDx and TPHGx will determine the extent to which the EC will contribute to DAF for oils and insoluble liquids.

Implementation Schedule ((WAC 173-303-130(2)(w))

A proposed schedule for implementation is provided in Table 11. Implementation dates are target dates, set to allow SAMSON to have an operating system at the start of the Fall 2012 wet weather season. Longer Ecology approval periods will shift the schedule accordingly.

(Partial implementation is acceptable per R Wright – provided no environmental risk is incurred. Use of settling tanks and sand filters can be completed prior to final certification.)

Submit Engineering Report – March 2016 Receive Approval of Engineering Report – June 2016 Testing Sand Filtration and Sedimentation Steps – March 2016 Conduct final Field Studies for Flow and Polishing – March 2016 Complete testing of Pretreatment / Advanced Pretreatment – March 2016 EC Installation, Pre-Treatment Tank and Final Construction – March 2016 Preliminary start-up and define operation parameters – March 2016 Update SWPPP – March 2016 Ecology Approval of SWPPP and O&M – June 2016 Completion and Final Start-up – March 2016

Compliance with SEPA and NEPA Where Applicable ((WAC 173-303-130(2)(x))

Discussion with City of Seattle (per Mr. Plowman) has indicated the site is eligible for exemption from Shoreline permit process and an exemption application is being prepared for submission to the City of Seattle. The City will not be a lead agency for SEPA. A SEPA Checklist has been prepared and will be forwarded to the Department of Ecology as the lead agency upon completion.

APPENDIX A ECOLOGY FACT SHEET

Toxics Cleanup Program

Duwamish Marine Center

August 2011

Agreed Order For a Remedial Investigation and Feasibility Study Available for Public Review and Comment

Public Comment Invited

The Washington Department of Ecology (Ecology) invites comments on an Agreed Order (legal agreement) with the James D. and Jacqueline H. Gilmur Living Trust, owners of the Duwamish Marine Center site. The Agreed Order requires a Remedial Investigation (RI), Feasibility Study (FS) and the preparation of a draft Cleanup Action Plan (CAP).

You are invited to:

- **Review** the Agreed Order, including the Scope of Work, Schedule and Public Participation Plan.
- Send your comments to Ecology for consideration. Comments will be accepted from August 1 30, 2011.

See the box at the right for details about where to review documents and submit comments.

Site Location

The site is located at 6365 First Avenue South in Seattle, Washington, on the east side of the Lower Duwamish Waterway (LDW) (see page 3). The site is bordered on the north by the Lone Star Investors property, on the east by First Avenue S, on the south and west by the LDW, and on the northwest by Slip 2. Final site boundaries will be defined by the extent of contamination determined during the RI.

Site Background

Duwamish Marine Center leases portions of the property to other companies. Samson Tug and Barge operates in the northern portion of the Duwamish Marine Center and Duwamish Metal Fabricators operates on the southern portion of the property. Historically, the site operated as a marine shipyard, rail yard, junk dealer, various construction service companies, and a barge shipping terminal. A marine railway operated next to the southwestern shoreline from 1940 to the mid-1970s.

COMMENTS ACCEPTED

August 1 - 30, 2011

Submit Comments and Technical Questions to:

Victoria Sutton, Site Manager WA Department of Ecology Toxics Cleanup Program Northwest Regional Office 3190 160th Ave SE Bellevue, WA 98008 Phone: (425) 649-7219 E-mail: Victoria.Sutton@ecy.wa.gov

Public Involvement

Meg Bommarito Phone: (425) 649-7256 Email: Meg.Bommarito@ecy.wa.gov

Document Review Locations:

South Park Branch

Seattle Public Library 8604 Eighth Ave S. Seattle, WA 98108 Phone: (206) 615-1688 Hours: Mon. and Tues. 1 - 8 p.m. Wed. and Thurs. 11 a.m. - 6 p.m. Saturday 11 a.m. - 6 p.m. Friday and Sunday Closed.

WA Department of Ecology Northwest Regional Office

3190 160th Ave SE Bellevue, WA 98008 Call for an appointment: (425) 649-7190

Ecology's Toxics Cleanup Web site

https://fortress.wa.gov/ecy/gsp/ Sitepage.aspx?csid=4146

Facility Site ID #: 21945598

Previous Investigations and Cleanup Work

Several environmental investigations have been conducted at the Duwamish Marine Center. Soil and groundwater investigations performed at the property in 2000 and 2002 showed petroleum hydrocarbons, metals, polychlorinated biphenyls (PCBs), and polynuclear aromatic hydrocarbons (PAHs) above cleanup levels in soil and groundwater. The groundwater also contained solvents. Sediments adjacent to the site contain PCBs and PAHs.

Approximately 50 cubic yards of leadcontaminated soil that classified as hazardous waste were excavated and removed from the central area of the site. Samples collected after the soil removal from the bottom and sidewalls of the removal area confirmed that this lead contaminated soil was removed from the property.

Groundwater was sampled at one of the wells at the Duwamish Marine Center in November 2003 and February, May, and August 2004. Total mercury and petroleum hydrocarbons were detected in groundwater above levels of concern.

Overview of the Agreed Order

The Agreed Order is a legal agreement between Ecology and the potentially liable persons (PLPs). It describes the work that the PLPs agrees to perform on the site. It ensures timely cleanup that protects human health and the environment according to Washington State's cleanup law—the Model Toxics Control Act, and the Sediment Management Standards.

Work to be performed includes a **Remedial Investigation and Feasibility Study (RI/FS).** The RI includes sampling to define the nature and extent of contamination in soil, groundwater, surface water, and sediments. The FS presents the results of the RI and evaluates cleanup alternatives. Ecology also requires the PLP to complete a draft Cleanup Action Plan (**draft CAP**). The draft CAP uses the RI/FS to iden-

Contaminants of Concern

Contamination at this site is from historical operations. Soil, groundwater and sediment contaminants include:

- Metals
- Polychlorinated biphenyls (PCBs)
- Polynuclear aromatic hydrocarbons (PAHs)
- Petroleum hydrocarbons
- Solvents

More information about these contaminants is available at the Agency for Toxic Substances & Disease Registry's Web page:

http://www.atsdr.cdc.gov/toxfaqs/index.asp

tify a preferred cleanup action and a schedule to cleanup the contamination.

Public Participation Plan

Ecology and the PLPs are committed to providing the public with timely information and meaningful opportunities to participate in the cleanup process. Ecology worked with the PLPs and stakeholders to draft a Public Participation Plan. This plan describes how citizens and interested parties can learn about and provide input on the cleanup.

What Happens Next?

- Once the public comment period ends, Ecology will review and consider all comments received.
- The Agreed Order and Public Participation Plan may be modified based upon your comments.
- As other documents on the site are developed, the public will be notified of future public comment periods.

Lower Duwamish Waterway Cleanup

The Duwamish Marine Center site is located within the larger Lower Duwamish Waterway (LDW) cleanup site. The LDW site is both a state and federal cleanup covering about 5.5 miles of the Duwamish River south of Harbor Island. The LDW sediments are contaminated with several hazard-ous substances, including PCBs, arsenic, dioxins/furans, and PAHs.

The Duwamish Marine Center site is one of several areas near the LDW that is being addressed. It will be cleaned up as necessary to reduce the threat to human health and the environment from pollution. This work will also assist in preventing recontamination of the sediments after the LDW site cleanup is complete.

Ecology is working with the U.S. Environmental Protection Agency (EPA) and other local agencies and businesses to clean up the Lower Duwamish. For more information see Ecology's Web site: <u>http://www.ecy.wa.gov/programs/tcp/sites_brochure/lower_duwamish/lower_duwamish_hp.html</u> and EPA's Web Site: <u>http://yosemite.epa.gov/r10/cleanup.nsf/sites/LDuwamish</u>

Duwamish Marine Center King County, WA

Public Comment Period on an Agreed Order for Investigation and Cleanup

Public Comment Period: August 1 to August 30, 2011

Facility Site ID #: 21945598

If you need this publication in an alternative format, call reception at (425) 649-7070. Persons with hearing loss, call 711 for Washington Relay Service. Persons with speech disability call 877-833-6341. El periodo de comentario público para la Orden Acordada y el Plan de Participación del Público para el Sitio del Centro Marino Duwamish comienza el 1 de agosto y termina el 30 de agosto de 2011. Para obtener más información, por favor comuníquese con Gustavo Ordóñez al (360) 407-6619 o por correo electrónico a gord461@ecy.wa.gov.

Thời gian thu nhận sự đóng góp ý kiến liên hệ đến tài liệu Sắc lệnh Đồng thuận và Kế hoạch Hợp tác Công cộng tại Duwamish Marine Center bắt đầu từ ngày 1 tháng 8 đến hết ngày 30 tháng 8 năm 2011. Để biết thêm chi tiết xin liên lạc với ông Lê Teddy, số điện thoại 360 -407-6948 hoặc gửi đến teddy.le@ecy.wa.gov.

在此時間,華盛頓州生態部征詢公眾對Duwamish海洋中心的調查

清理的工作同意命令 (AgreedOrder)和公眾參与計划

(PublicParticipationPlan)的建議。欲了解更多信息,請聯系林昊

(425) 649-7187。電子信箱: hlin461@ecy.wa.gov。

Want to get more involved with efforts to clean up the Duwamish River? Contact the Duwamish River Cleanup Coalition at james@duwamishcleanup.org, (206) 954-0218 or visit http://www.duwamishcleanup.org/index.html

APPENDIX B

WAC 173-240-130 Engineering Report Requirements

(1) The engineering report for an industrial wastewater facility must be sufficiently complete so that plans and specifications can be developed from it without substantial changes. Two copies of the report must be submitted to the department for approval.

(2) The engineering report shall include the following information together with any other relevant data as requested by the department:

(a) Type of industry or business;

(b) The kind and quantity of finished product;

(c) The quantity and quality of water used by the industry and a description of how it is consumed or disposed of, including:

(i) The quantity and quality of all process wastewater and method of disposal;

(ii) The quantity of domestic wastewater and how it is disposed of;

(iii) The quantity and quality of noncontact cooling water (including air conditioning) and how it is disposed of; and

(iv) The quantity of water consumed or lost to evaporation.

(d) The amount and kind of chemicals used in the treatment process, if any;

(e) The basic design data and sizing calculations of the treatment units;

(f) A discussion of the suitability of the proposed site for the facility;

(g) A description of the treatment process and operation, including a flow diagram;

- (h) All necessary maps and layout sketches;
- (i) Provisions for bypass, if any;

(j) Physical provision for oil and hazardous material spill control or accidental discharge prevention or both;

(k) Results to be expected from the treatment process including the predicted wastewater characteristics, as shown in the waste discharge permit, where applicable;

(I) A description of the receiving water, location of the point of discharge, applicable water quality standards, and how water quality standards will be met outside of any applicable dilution zone;

(m) Detailed outfall analysis;

(n) The relationship to existing treatment facilities, if any;

(o) Where discharge is to a municipal sewerage system, a discussion of that system's ability to transport and treat the proposed industrial waste discharge without exceeding the municipality's allocated industrial capacity. Also, a discussion on the effects of the proposed industrial discharge on the use or disposal of municipal sludge;

(p) Where discharge is through land application, including seepage lagoons, irrigation, and subsurface disposal, a geohydrologic evaluation of factors such as:

(i) Depth to groundwater and groundwater movement during different times of the year;

(ii) Water balance analysis of the proposed discharge area;

(iii) Overall effects of the proposed facility upon the groundwater in conjunction with any other land application facilities that may be present;

(q) A statement expressing sound engineering justification through the use of pilot plant data, results from other similar installations, or scientific evidence from the literature, or both, that the effluent from the proposed facility will meet applicable permit effluent limitations or pretreatment standards or both;

(r) A discussion of the method of final sludge disposal selected and any alternatives considered with reasons for rejection;

(s) A statement regarding who will own, operate, and maintain the system after construction;

(t) A statement regarding compliance with any state or local water quality management plan or any plan adopted under the Federal Water Pollution Control Act as amended;

(u) Provisions for any committed future plans;

(v) A discussion of the various alternatives evaluated, if any, and reasons they are unacceptable;

(w) A timetable for final design and construction;

(x) A statement regarding compliance with the State Environmental Policy Act (SEPA) and the National Environmental Policy Act (NEPA), if applicable;

(y) Additional items to be included in an engineering report for a solid waste leachate treatment system are:

(i) A vicinity map and also a site map that shows topography, location of utilities, and location of the leachate collection network, treatment systems, and disposal;

(ii) Discussion of the solid waste site, working areas, soil profile, rainfall data, and groundwater movement and usage;

(iii) A statement of the capital costs and the annual operation and maintenance costs;

(iv) A description of all sources of water supply within two thousand feet of the proposed disposal site. Particular attention should be given to showing impact on usable or potentially usable aquifers.

APPENDIX C WWHM2012 PROJECT REPORT

Project Name: Alt. Duwamish Site Name: Alt. Duwamish Site Address: City : Report Date: 3/4/2016 Gage : Seatac Data Start : 1948/10/01 00:00 Data End : 2009/09/30 00:00 Precip Scale: 1.00 Version : 2013/04/29

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Basin 1 Bypass: No

GroundWater: No

Pervious Land Use	<u>Acres</u>
Pervious Total	0
Impervious Land Use PARKING FLAT	Acres 4.75
Impervious Total	4.75
Basin Total	4.75

Element Flows To:		
Surface	Interflow	Groundwater

MITIGATED LAND USE
Name : Basin 1
Bypass: No
GroundWater: No
Pervious Land Use Acres

Pervious Total	. 0	
Impervious Lan PARKING FLAT	d Use Acres 4.75	
Impervious Tot	al 4.75	
Basin Total	4.75	
Element Flows Surface	To: Interflow	Groundwater
	ANALYSIS RESULTS Stream Protection Durat	ion
Total Pervious Total Imperviou	us Area:4.75 use Totals for POC #1 Area:0	
--		
Flow Frequency Return Period 2 year 5 year 10 year 25 year 50 year 100 year	Return Periods for Predex Flow(cfs) 1.811002 2.287511 2.611268 3.031227 3.352653 3.681885	veloped. POC #1
Flow Frequency Return Period 2 year 5 year 10 year 25 year 50 year 100 year	Return Periods for Mitiga Flow(cfs) 1.811002 2.287511 2.611268 3.031227 3.352653 3.681885	ated. POC #1

Stream Protection Duration

		ed and Mitigated.	POC #1
Year	Predeveloped	Mitigated	
1949	2.346	2.346	
1950	2.535	2.535	
1951	1.465	1.465	
1952	1.303	1.303	
1953	1.407	1.407	
1954	1.473	1.473	
1955	1.670	1.670	
1956	1.643	1.643	
1957	1.864	1.864	
1958	1.504	1.504	
1959	1.534	1.534	
1960	1.505	1.505	
1961	1.592	1.592	
1962	1.387	1.387	
1963	1.541	1.541	
1964	1.511	1.511	
1965	1.920	1.920	
1966	1.284	1.284	
1967	2.212	2.212	
1968	2.515	2.515	
1969	1.749	1.749	
1970	1.687		
1971	2.012	1.687 2.012	
1972	2.077		
1973	1.258	2.077 1.258	
1974	1.836		
1975	2.115	1.836	
1976	1.422	2.115	
1977	1.540	1.422	
1978		1.540	
1979	1.884	1.884	
1979	2.579	2.579	
	2.314	2.314	
L981	1.893	1.893	
1982	2.669	2.669	
L983	2.172	2.172	
L984	1.370	1.370	
L985	1.888	1.888	
L986	1.637	1.637	
987	2.525	2.525	
.988	1.532	1.532	
1989	1.916	1.916	
.990	3.227	3.227	
.991	2.578	2.578	
.992	1.357	1.357	
.993	1.175	1.175	
.994	1.278	1.278	
.995	1.678	1.678	
.996	1.786	1.786	
.997	1.734	1.734	
.998	1.758	1.758	
.999	3.596	3.596	
:000	1.790	1.790	
001	1.967	1.967	
002	2.294	2.294	
003	1.783	1.783	

2004	3.365	3.365
2005	1.538	1.538
2006	1.358	1.358
2007	3.145	3.145
2008	2.533	2.533
2009	2.341	2.341

Stream Protection Duration

	Annual Peaks for	Predeveloped and Mitigated. POC #1
Rank	Predeveloped	Mitigated
1	3.5962	3.5962
2	3.3647	3.3647
3	3.2272	3.2272
4	3.1449	3.1449
5	2.6686	2.6686
6	2.5788	2.5788
7	2.5781	2.5781
8	2.5346	2.5346
9	2,5331	2.5331
10	2.5251	2.5251
11	2.5154	2.5154
12	2.3456	2.3456
13	2.3408	2.3408
14	2.3135	2.3135
15	2.2944	2.2944
16	2.2123	2.2123
17	2.1721	2.1721
18	2.1147	2.1147
19	2.0773	2.0773
20	2.0122	2.0122
21	1.9668	1.9668
22	1.9200	1.9200
23	1.9158	1.9158
24	1.8925	1.8925
25	1.8882	1.8882
26	1.8838	1.8838
27	1.8639	1.8639
28	1.8356	1.8356
29	1.7900	1.7900
30	1.7858	1.7858
31	1.7826	1.7826
32	1.7578	1.7578
33	1.7486	1.7486
34	1.7342	1.7342
35	1.6870	1.6870
36	1.6782	1.6782
37	1.6699	1.6699
38	1.6430	1.6430
39	1.6366	1.6366
40	1.5923	1.5923
41	1.5413	1.5413
42	1.5400	1.5400
43	1.5376	1.5376
44	1.5341	1.5341
45	1.5319	1.5319
46	1.5114	1.5114

47 48	1.5054 1.5041	1.5054 1.5041
49	1.4727	1.4727
50	1.4652	1.4652
51	1.4220	1.4220
52	1.4074	1.4074
53	1.3874	1.3874
54	1.3701	1.3701
55	1.3580	1.3580
56	1.3569	1.3569
57	1.3034	1.3034
58	1.2838	1.2838
59	1.2785	1.2785
60	1.2579	1.2579
61	1.1752	1.1752

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev			je Pass/Fail
0.9055	1805	1805	100	Pass
0.9302	1637	1637	100	Pass
0.9549	1476	1476	100	Pass
0.9797	1346	1346	100	Pass
1.0044	1228	1228	100	Pass
1.0291	1102	1102	100	Pass
1.0538	1005	1005	100	Pass
1.0785	922	922	100	Pass
1.1033	853	853	100	Pass
1,1280	794	794	100	Pass
1.1527	726	726	100	Pass
1.1774	665	665	100	Pass
1.2021	610	610	100	Pass
1.2268	572	572	100	Pass
1.2516	533	533	100	Pass
1.2763	488	488	100	Pass
1.3010	450	450	100	Pass
1.3257	420	420	100	Pass
1.3504	389	389	100	Pass
1.3752	364	364	100	Pass
1.3999	339	339	100	Pass
1.4246	316	316	100	Pass
1.4493	296	296	100	Pass
1.4740	271	271	100	Pass
1.4987	256	256	100	Pass
1.5235	238	238	100	Pass
1.5482	221	221	100	Pass
1.5729	208	208	100	Pass
1.5976	196	196	100	Pass
1.6223	181	181	100	Pass
1.6471	171	171	100	Pass
1.6718	161	161	100	Pass
1.6965	148	148	100	Pass

1.7212 1.7459 1.7707 1.7954 1.8201 1.8448 1.8695 1.9190 1.9437 1.9684 1.9931 2.0178 2.0426 2.0673 2.0426 2.0673 2.0920 2.1167 2.1414 2.1662 2.2403 2.2650 2.2403 2.2650 2.2897 2.3145 2.3392 2.3639 2.3639 2.3639 2.3886 2.4133 2.4628 2.4628 2.5122 2.5369 2.5617 2.5864 2.5122 2.5369 2.5617 2.5864 2.6605 2.6852 2.7100 2.7347 2.7594 2.7841 2.8088	$\begin{array}{c} 139\\ 135\\ 122\\ 113\\ 107\\ 105\\ 100\\ 92\\ 87\\ 84\\ 73\\ 71\\ 66\\ 32\\ 58\\ 54\\ 52\\ 50\\ 46\\ 52\\ 50\\ 46\\ 45\\ 40\\ 39\\ 33\\ 29\\ 28\\ 25\\ 221\\ 20\\ 17\\ 13\\ 12\\ 9\\ 9\\ 9\\ 9\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\$	$\begin{array}{c} 139\\ 135\\ 122\\ 113\\ 107\\ 105\\ 100\\ 92\\ 87\\ 84\\ 73\\ 71\\ 66\\ 63\\ 62\\ 58\\ 54\\ 52\\ 50\\ 46\\ 55\\ 22\\ 21\\ 20\\ 17\\ 13\\ 12\\ 9\\ 9\\ 9\\ 9\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\$	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
2.6852 2.7100 2.7347 2.7594 2.7841 2.8088	8 8 8 8 8 8	8 8 8 8 8 8	100 100 100 100 100	Pass Pass Pass Pass Pass
2.8336 2.8583 2.8830 2.9077 2.9324 2.9572 2.9819 3.0066 3.0313 3.0560 3.0807 3.1055	8 7 7 7 7 7 6 6 6 6 6	8 7 7 7 7 7 7 6 6 6 6 6	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass

.

3.1302	6	6	100	Pass	
3.1549	5	5	100	Pass	
3.1796	5	5	100	Pass	
3.2043	4	4	100	Pass	
3.2291	3	3	100	Pass	
3.2538	3	3	100	Pass	
3.2785	2	2	100	Pass	
3.3032	2	2	100	Pass	
3.3279	2	2	100	Pass	
3.3527	2	2	100	Pass	

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 1.1238 acre-feet On-line facility target flow: 1.3158 cfs. Adjusted for 15 min: 1.3158 cfs. Off-line facility target flow: 0.8195 cfs. Adjusted for 15 min: 0.8195 cfs.

Wetlands Fluctuation for POC 1 Average Annual Volume (acft) Month Predevel Mitigated Percent Pass/Fail Jan 99.2889 99.2889 100.0 Pass Feb 65.4492 65.4492 100.0 Pass 54.6347 Mar 54.6347 100.0 Pass Apr 32.6702 32.6702 100.0 Pass May 18.3911 18.3911 100.0 Pass Jun 15.7518 15.7518 100.0 Pass Jul 7.2548 7.2548 100.0 Pass Aug 13.2479 13.2479 100.0 Pass Sep 21.9609 21.9609 100.0 Pass Oct 53,5964 53.5964 100.0 Pass Nov 106.3644 106.3644 100.0 Pass Dec 103.5156 103.5156 100.0 Pass Day Predevel Mitigated Percent Pass/Fail Jan1 4.4780 4.4780 100.0 Pass 2 2.5266 2.5266 100.0 Pass 3 3.3312 3.3312 100.0 Pass 4 4.0251 4.0251 100.0 Pass 5 3.2818 3.2818 100.0 Pass 6 4.1269 4.1269 100.0 Pass 7 2.8772 2.8772 100.0 Pass 8 3.2664 3.2664 100.0 Pass 9 2.7977 2.7977 100.0 Pass 10 2.5398 2.5398 100.0 Pass 11 2.8291 2.8291 100.0 Pass 12 3.7160 3.7160 100.0 Pass 13 4.4387 4.4387 100.0 Pass 14 3.1992 3.1992 100.0 Pass 15 2.9780 2.9780 100.0 Pass 16 3.0955 3.0955 100.0 Pass 17 3.4340 100.0 3.4340 Pass 18 3.4186 3.4186 100.0 Pass

19	3.0981	3.0981	100.0	Pass
20	2.8031	2.8031	100.0	Pass
21	2.7746	2.7746	100.0	Pass
22	3.9892	3.9892	100.0	Pass
23	3.7642	3.7642	100.0	Pass
24	2.4419	2.4419	100.0	Pass
25	2.3817	2.3817	100.0	Pass
26	2.4771	2.4771	100.0	Pass
27	2.5581	2.5581	100.0	
28	3.2526	3.2526	100.0	Pass
29	3.0559	3.0559	100.0	Pass
30	3.5243			Pass
31		3.5243	100.0	Pass
Feb1	2.4839	2.4839	100.0	Pass
	2.3797	2.3797	100.0	Pass
2	1.8461	1.8461	100.0	Pass
3	1.9840	1.9840	100.0	Pass
4	1.5646	1.5646	100.0	Pass
5	2.5774	2.5774	100.0	Pass
6	2.3362	2.3362	100.0	Pass
7	3.3346	3.3346	100.0	Pass
8	2.2877	2.2877	100.0	Pass
9	1.9281	1.9281	100.0	Pass
10	1.8426	1.8426	100.0	Pass
11	2.8523	2.8523	100.0	Pass
12	2.2244	2.2244	100.0	Pass
13	2.0777	2.0777	100.0	Pass
14	2.6817	2.6817	100.0	Pass
15	3.1104	3.1104	100.0	Pass
16	2.6116	2.6116	100.0	Pass
17	2.9964	2.9964	100.0	Pass
18	3.2459	3.2459	100.0	Pass
19	1.7345	1.7345	100.0	Pass
20	2.1334	2.1334	100.0	Pass
21	1.8674	1.8674	100.0	Pass
22	2.0744	2.0744	100.0	Pass
23	2.4206	2.4206	100.0	Pass
24	2.2036	2.2036	100.0	Pass
25	1.7648	1.7648	100.0	Pass
26	2.1858	2.1858	100.0	Pass
27	2.2532	2.2532	100.0	Pass
28	1.7350	1.7350	100.0	Pass
29	1.9656	1.9656	100.0	Pass
Mar1	1.8674	1.8674	100.0	Pass
2	2.8208	2.8208	100.0	Pass
3	1.9768	1.9768	100.0	Pass
4	2.4396	2.4396	100.0	Pass
5	1.1026	1.1026	100.0	Pass
6	1.4074	1.4074	100.0	Pass
7	2.0721	2.0721	100.0	Pass
8	2.4649	2.4649	100.0	Pass
9	2.0826	2.0826	100.0	Pass
10	2.3600	2.3600	100.0	Pass
11	2.6941	2.6941	100.0	Pass
12	1.5490	1.5490	100.0	Pass
13	1.7340	1.7340	100.0	Pass
14	2.0154	2.0154	100.0	Pass
15	1.6409	1.6409	100.0	Pass

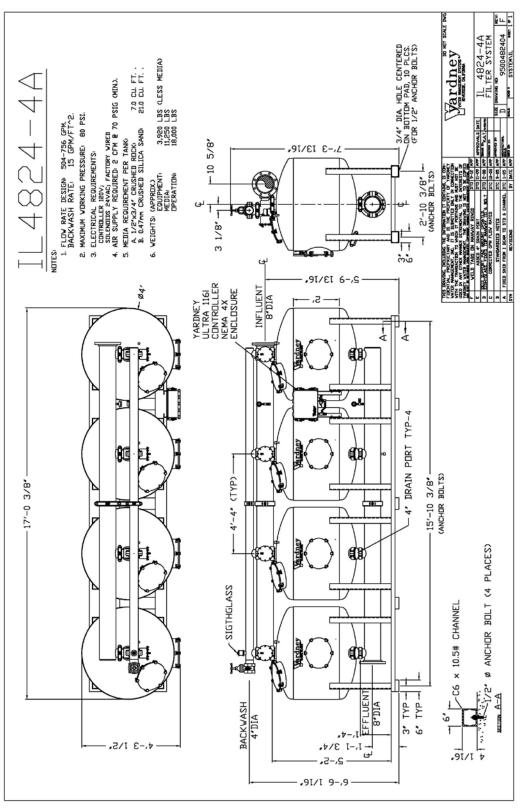
16	1 5005	1 6005	100.0	_
16 17	1.5035	1.5035	100.0	Pass
	1.9686	1.9686	100.0	Pass
18	1.2215	1.2215	100.0	Pass
19	1.2491	1.2491	100.0	Pass
20	0.9020	0.9020	100.0	Pass
21	2.1614	2.1614	100.0	Pass
22	2.1459	2.1459	100.0	Pass
23	1.8967	1.8967	100.0	Pass
24	1.3346	1.3346	100.0	Pass
25	1.3658	1.3658	100.0	Pass
26	1.3112	1.3112	100.0	Pass
27	1.3346	1.3346	100.0	Pass
28	1.6179	1.6179	100.0	Pass
29	1.3820	1.3820	100.0	Pass
30	1.0567	1.0567	100.0	Pass
31	1.1831	1.1831	100.0	Pass
Apr1	1.1879	1.1879	100.0	Pass
2	1.2534	1.2534	100.0	Pass
3	1.8777	1.8777	100.0	Pass
4	1.3598	1.3598	100.0	Pass
5	1.2159	1.2159	100.0	Pass
6	0.7474	0.7474	100.0	Pass
7	1.3729	1.3729	100.0	Pass
8	1.4986	1.4986	100.0	Pass
9	0.8964	0.8964	100.0	Pass
10	1.2019	1.2019	100.0	Pass
11	1 .1178	1.1178	100.0	Pass
12	1.4948	1.4948	100.0	Pass
13	1.0965	1.0965	100.0	Pass
14	0.9844	0.9844	100.0	Pass
15	1.5216	1.5216	100.0	Pass
16	1.0258	1.0258	100.0	Pass
17	0.4949	0.4949	100.0	Pass
18	2.0740	2.0740	100.0	Pass
19	0.6897	0.6897	100.0	Pass
20	0.4159	0.4159	100.0	Pass
21	1.0607	1.0607	100.0	Pass
22	1.2841	1.2841	100.0	Pass
23	0.7706	0.7706	100.0	Pass
24	0.5526	0.5526	100.0	Pass
25	0.4070	0.4070	100.0	Pass
26	1.1676	1.1676	100.0	Pass
27	0.6253	0.6253	100.0	Pass
28	1.0950	1.0950	100.0	Pass
29	1.0004	1.0004	100.0	Pass
30	0.9134	0.9134	100.0	Pass
May1	0.5965	0.5965	100.0	Pass
2	0.4744	0.4744	100.0	Pass
3	0.6538	0.6538	100.0	Pass
4	0.6684	0.6684	100.0	Pass
5	0.7589	0.7589	100.0	Pass
6	0.4770	0.4770	100.0	Pass
7	0.3847	0.3847	100.0	Pass
8	0.4069	0.4069	100.0	Pass
9	0.4677	0.4677	100.0	Pass
10	0.7585	0.7585	100.0	Pass
11	0.3898	0.3898	100.0	Pass

10	0 4400	0 4400		_
12	0.4492	0.4492	100.0	Pass
13	0.7595	0.7595	100.0	Pass
14	0.5665	0.5665	100.0	Pass
15	0.4528	0.4528	100.0	Pass
16	0.4511	0.4511	100.0	Pass
17	0.6076	0.6076	100.0	Pass
18	0.7821	0.7821	100.0	Pass
19	0.4300	0.4300	100.0	Pass
20	0.3316	0.3316	100.0	Pass
21	0.3130	0.3130	100.0	Pass
22	0.5755	0.5755	100.0	Pass
23	0.6064	0.6064	100.0	Pass
24	0.3102	0.3102	100.0	
25	0.8599			Pass
		0.8599	100.0	Pass
26	0.6287	0.6287	100.0	Pass
27	0.5962	0.5962	100.0	Pass
28	0.9570	0.9570	100.0	Pass
29	0.8809	0.8809	100.0	Pass
30	0.8841	0.8841	100.0	Pass
31	0.7391	0.7391	100.0	Pass
Jun1	0.4955	0.4955	100.0	Pass
2	0.8374	0.8374	100.0	Pass
3	0.8618	0.8618	100.0	Pass
4	0.4283	0.4283	100.0	Pass
5	0.8890	0.8890	100.0	Pass
6	0.7167	0.7167	100.0	Pass
7	0.5829	0.5829	100.0	Pass
8	0.6718	0.6718	100.0	Pass
9	0.6753	0.6753	100.0	
10	0.7237	0.7237	100.0	Pass
11	0.6287			Pass
12		0.6287	100.0	Pass
	0.1992	0.1992	100.0	Pass
13	0.1805	0.1805	100.0	Pass
14	0.3532	0.3532	100.0	Pass
15	0.3907	0.3907	100.0	Pass
16	0.6933	0.6933	100.0	Pass
17	0.2285	0.2285	100.0	Pass
18	0.2513	0.2513	100.0	Pass
19	0.5074	0.5074	100.0	Pass
20	0.5052	0.5052	100.0	Pass
21	0.2771	0.2771	100.0	Pass
22	0.3803	0.3803	100.0	Pass
23	1.3586	1.3586	100.0	Pass
24	0.3609	0.3609	100.0	Pass
25	0.2437	0.2437	100.0	Pass
26	0.2841	0.2841	100.0	Pass
27	0.4353	0.4353	100.0	Pass
28	0.3944	0.3944	100.0	Pass
29	0.4579	0.4579	100.0	Pass
30	0.5036	0.5036	100.0	
Jul1	0.3088	0.3088	100.0	Pass
2	0.2927			Pass
2		0.2927	100.0	Pass
4	0.1881	0.1881	100.0	Pass
	0.3650	0.3650	100.0	Pass
5	0.1454	0.1454	100.0	Pass
6	0.3016	0.3016	100.0	Pass
7	0.3911	0.3911	100.0	Pass

•	0 4054	· · · · · ·		_
8	0.4854	0.4854	100.0	Pass
9	0.2781	0.2781	100.0	Pass
10	0.1010	0.1010	100.0	Pass
11	0.4923	0.4923	100.0	Pass
12	0.3484	0.3484	100.0	Pass
13	0.3225	0.3225	100.0	Pass
14	0.0296	0.0296	100.0	Pass
15	0.6973	0.6973	100.0	Pass
16	0.1790	0.1790	100.0	Pass
17	0.0798	0.0798	100.0	Pass
18	0.2044	0.2044	100.0	Pass
19	0.1464	0.1464	100.0	Pass
20	0.0824	0.0824	100.0	Pass
21	0.2012	0.2012	100.0	Pass
22	0.1252	0.1252	100.0	
23	0.0625	0.0625		Pass
24	0.0917		100.0	Pass
25	0.4990	0.0917	100.0	Pass
25		0.4990	100.0	Pass
	0.1146	0.1146	100.0	Pass
27	0.0958	0.0958	100.0	Pass
28	0.0206	0.0206	100.0	Pass
29	0.0584	0.0584	100.0	Pass
30	0.0428	0.0428	100.0	Pass
31	0.2204	0.2204	100.0	Pass
Aug1	0.3037	0.3037	100.0	Pass
2	0.3848	0.3848	100.0	Pass
3	0.1890	0.1890	100.0	Pass
4	0.0435	0.0435	100.0	Pass
5	0.4349	0.4349	100.0	Pass
6	0.4978	0.4978	100.0	Pass
7	0.0613	0.0613	100.0	Pass
8	0.4026	0.4026	100.0	Pass
9	0.0846	0.0846	100.0	Pass
10	0.1714	0.1714	100.0	Pass
11	0.1625	0.1625	100.0	Pass
12	0.0981	0.0981	100.0	Pass
13	0.6035	0.6035	100.0	Pass
14	0.6900	0.6900	100.0	Pass
15	0.2018	0.2018	100.0	Pass
16	0.3524	0.3524	100.0	Pass
17	0.6549	0.6549	100.0	Pass
18	0.5743	0.5743	100.0	Pass
19	0.2659	0.2659	100.0	Pass
20	0.5354	0.5354	100.0	Pass
21	0.7877	0.7877	100.0	Pass
22	1.2060	1.2060	100.0	Pass
23	0.7542	0.7542	100.0	Pass
24	0.5271	0.5271	100.0	Pass
25	0.6555	0.6555	100.0	Pass
26	0.6313	0.6313	100.0	Pass
27	0.4491	0.4491	100.0	Pass
28	0.6392	0.6392	100.0	Pass
29	0.3057	0.3057	100.0	Pass
30	0.3595	0.3595	100.0	Pass
31	0.5247	0.5247	100.0	Pass
Sep1	0.6284	0.6284	100.0	Pass
2	0.3999	0.3999	100.0	Pass

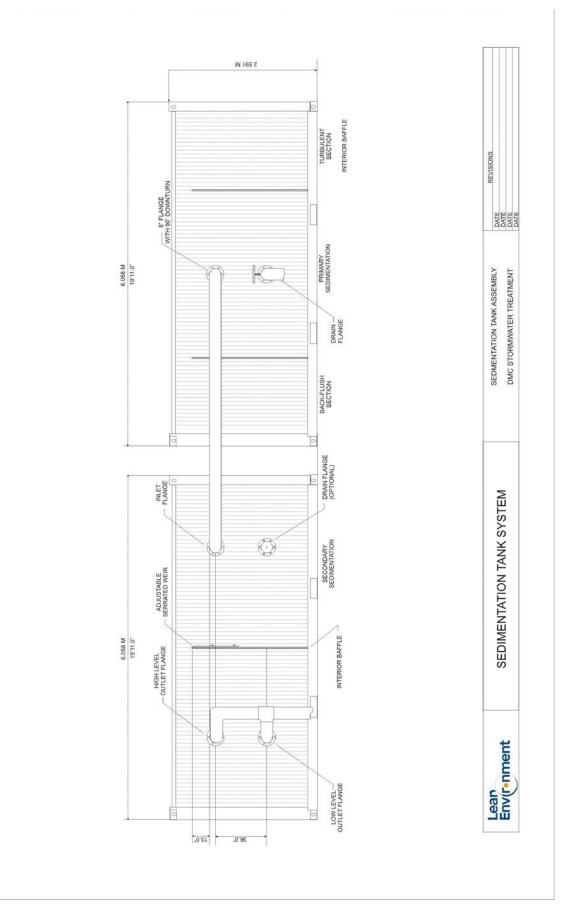
~	0 0044			_
3	0.7244	0.7244	100.0	Pass
4	0.3139	0.3139	100.0	Pass
5	0.6725	0.6725	100.0	Pass
6	0.1196	0.1196	100.0	Pass
7	0.6324	0.6324	100.0	Pass
8	0.3731	0.3731	100.0	Pass
9	0.8233	0.8233	100.0	Pass
10	0.5177	0.5177	100.0	Pass
11	0.2125	0.2125	100.0	Pass
12	0.3287	0.3287	100.0	Pass
13	0.8620	0.8620	100.0	Pass
14	0.4932	0.4932	100.0	Pass
15	0.6258	0.6258	100.0	Pass
16	1.8991	1.8991	100.0	Pass
17	0.7496	0.7496	100.0	
18	0.9704			Pass
		0.9704	100.0	Pass
19	0.8329	0.8329	100.0	Pass
20	0.6732	0.6732	100.0	Pass
21	1.4969	1.4969	100.0	Pass
22	0.8728	0.8728	100.0	Pass
23	0.8228	0.8228	100.0	Pass
24	0.7740	0.7740	100.0	Pass
25	0.8392	0.8392	100.0	Pass
26	0.8752	0.8752	100.0	Pass
27	0.9661	0.9661	100.0	Pass
28	0.6096	0.6096	100.0	Pass
29	1.3287	1.3287	100.0	Pass
30	0.7175	0.7175	100.0	Pass
Oct1	0.7646	0.7646	100.0	Pass
2	1.1286	1.1286	100.0	Pass
3	1.5776	1.5776	100.0	Pass
4	1.0652	1.0652	100.0	Pass
5	2.1167	2.1167	100.0	Pass
6	0.9887	0.9887	100.0	Pass
7	2.3762	2.3762	100.0	Pass
8	2.1350	2.1350	100.0	Pass
9	1.8320	1.8320	100.0	Pass
10	0.8033	0.8033	100.0	Pass
11	1.0062	1.0062	100.0	Pass
12	1.1429	1.1429	100.0	Pass
13	1.2450	1.2450	100.0	Pass
14	1.0546	1.0546	100.0	Pass
15	1.2294	1.2294	100.0	Pass
16	1.9554	1.9554	100.0	Pass
17	1.6107	1.6107	100.0	Pass
18	2.1659	2.1659	100.0	Pass
19	3.7622	3.7622	100.0	Pass
20	2.2140	2.2140	100.0	Pass
21	1.9338	1.9338	100.0	Pass
22	1.6222	1.6222	100.0	Pass
23	1.7698	1.7698	100.0	Pass
24	1.9538	1.9538	100.0	Pass
25	2.2960	2.2960	100.0	Pass
26	2.7061	2.7061	100.0	Pass
27	2.3016	2.3016	100.0	Pass
28	2.0022	2.0022	100.0	
29	1.5052	1.5052	100.0	Pass
~ >	1,0002	1.0002	100.0	Pass

30	2.6233	2.6233	100.0	Pass
31	2.2749	2.2749	100.0	Pass
Nov1	2.9461	2.9461	100.0	Pass
2	3.9294	3.9294	100.0	Pass
3	3.7539	3.7539	100.0	Pass
4	2.0958	2.0958	100.0	Pass
5	3.5256	3.5256	100.0	Pass
6	2.6031	2.6031	100.0	Pass
7	2.4574	2.4574	100.0	Pass
8	3.6930	3.6930	100.0	Pass
9	3.7911	3.7911	100.0	Pass
10	4.7183	4.7183	100.0	Pass
11	4.0633	4.0633	100.0	Pass
12	4.0766	4.0766	100.0	Pass
13	3.2383	3.2383	100.0	Pass
14	2.5405	2.5405	100.0	Pass
15	3.5734	3.5734	100.0	Pass
16	3.4589	3.4589	100.0	Pass
17	2.9321	2.9321	100.0	Pass
18	4.9792	4.9792	100.0	Pass
19	4.4600	4.4600	100.0	Pass
20	3.0785	3.0785	100.0	Pass
21	2.9679	2.9679	100.0	Pass
22	4.8355	4.8355	100.0	Pass
23	4.9964	4.9964	100.0	Pass
24	4.9812	4.9812	100.0	Pass
25	3.4292	3.4292	100.0	Pass
26	2.9742	2.9742	100.0	Pass
27	2.7029	2.7029	100.0	Pass
28	3.2258	3.2258	100.0	Pass
29	4.0833	4.0833	100.0	Pass
30	3.6613	3.6613	100.0	Pass
Dec1	3.8754	3.8754	100.0	Pass
2	4.9434	4.9434	100.0	Pass
3	2.5690	2.5690	100.0	Pass
4	3.7864	3.7864	100.0	Pass
5	2.9753	2.9753	100.0	Pass
6	2.5987	2.5987	100.0	Pass
7	2.8827	2.8827	100.0	Pass
8	3.5133	3.5133	100.0	Pass
9	4.0727	4.0727	100.0	Pass
10	3.7355	3.7355	100.0	Pass
11	3.8035	3.8035	100.0	Pass
12	3.8206	3.8206	100.0	Pass
13	3.8372	3.8372	100.0	Pass
14	4.3619	4.3619	100.0	Pass
15	3.3097	3.3097	100.0	Pass
16	2.5848	2.5848	100.0	Pass
17	2.6209	2.6209	100.0	Pass
18	2.8731	2.8731	100.0	Pass
19 20	3.9123 3.3022	3.9123	100.0	Pass
20	2.8344	3.3022	100.0	Pass
21		2.8344	100.0	Pass
22	3.0659	3.0659	100.0	Pass
24	2.5252 2.9643	2.5252	100.0	Pass
24 25	2.9643 3.9186	2.9643	100.0	Pass
20	3.9100	3.9186	100.0	Pass

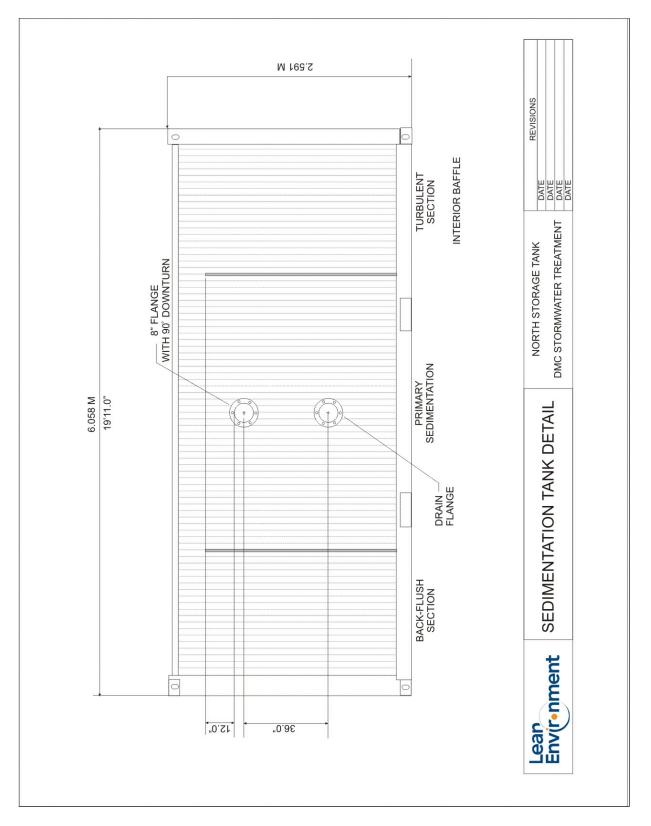

Perlnd and Implnd Changes

No changes have been made.

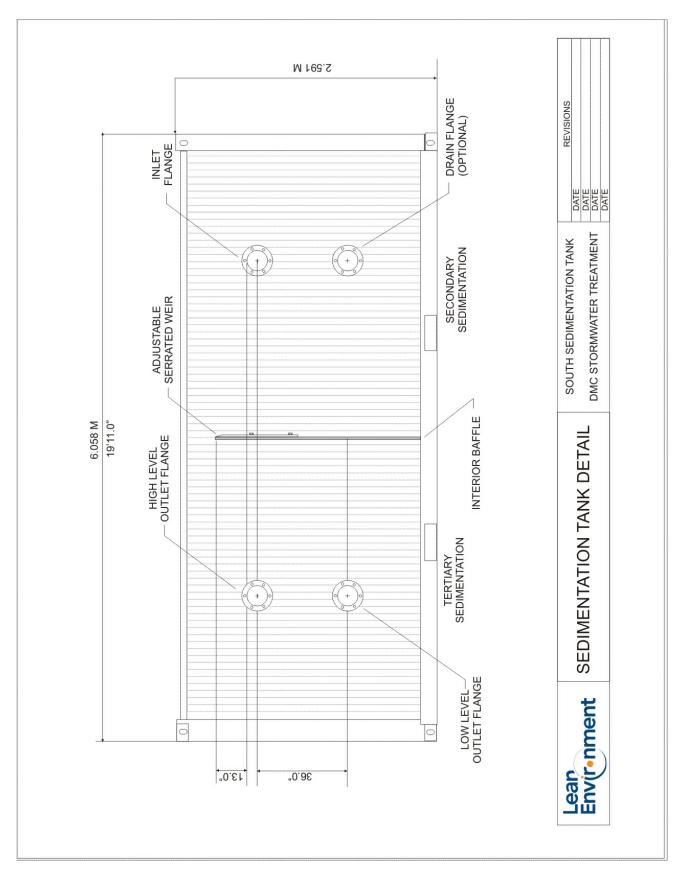
This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2013; All Rights Reserved.



Lean Env(r•nment



APPENDIX D - COMPONENT DRAWINGS



APPENDIX F Particle Distribution Study

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

04/01/2013

Lean Environmental 4500 15th St E Fife, WA 98424 Attn: Dan Rich Project:Duwamish MarineClient ID:1Sample Matrix:WaterDate Sampled:03/20/2013Date Received:03/20/2013Spectra Project:2013030467Spectra Number:1

Analyte	Result	Units	Method
Particle Count	757,875,000 *	#/cc	NSF
Total Suspended Solids	2810	mg/L	SM 2540-D

* Please see attached scans.

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager

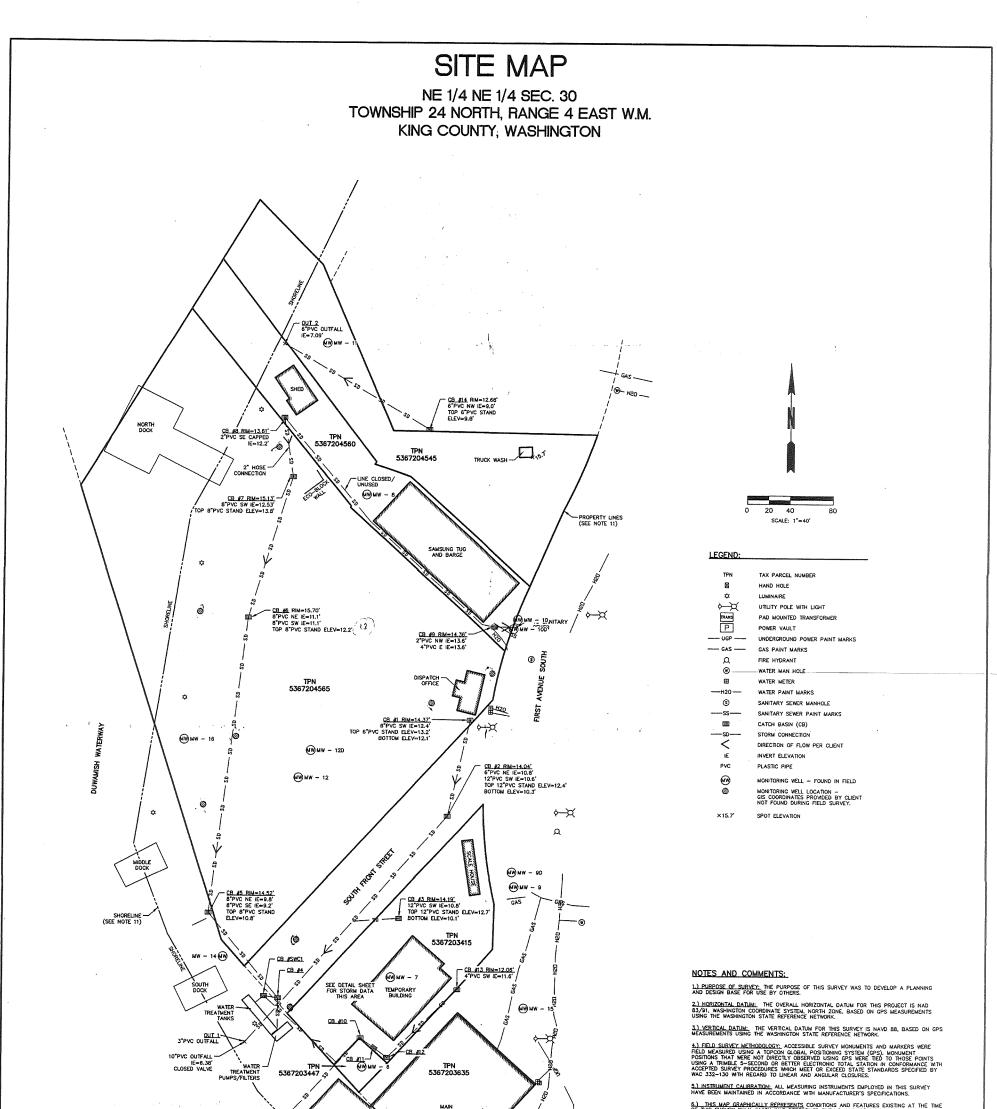
Steve Hibbs, Laboratory Manager ^{a6/mh} 04-01-2013 BLANK

44		Interim	Spectrex Laser Particle Counter 800-822-	
# um	%	Count		20
$\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4$	0.00 39.29 12.50 8.93 16.07 3.57 3.57 3.57 3.57 1.79	0 15 5 3		Filter 0%
	3.57 3.57 3.57 3.57 1.79	0 		A-T 32 s
<u>999</u> - <u>1010</u> -1111	0.00 5.36 0.00 0.00 1.79 0.00			S-T 32 s
_14_14	1.79 0.00 3.57 0.00 0.00 0.00 0.00			Dilut'n 1.00:1
<u>- 18 - 22</u> - <u>19 - 27</u> - <u>20 - 32</u> - <u>21 - 37</u>	<u> 0.00 </u>			Offset 0.00V
$\begin{array}{c} 1.5 \\ -16 \\ -17 \\ -18 \\ -22 \\ -20 \\ -22 \\ -20 \\ -22 \\$	<u>-0.00</u> -0.00	0 0 0 0	-4 -1 -1 -1	Gain 5.55x
$-\frac{20}{27}$ $\frac{62}{67}$ $-\frac{28}{29}$ $\frac{72}{77}$ $-\frac{20}{30}$ $\frac{82}{82}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0		Counts 39
<u>31 87</u> <u>32 92</u>	0.00 0.00 0.00 0.00	0	" " "	NSF Groups

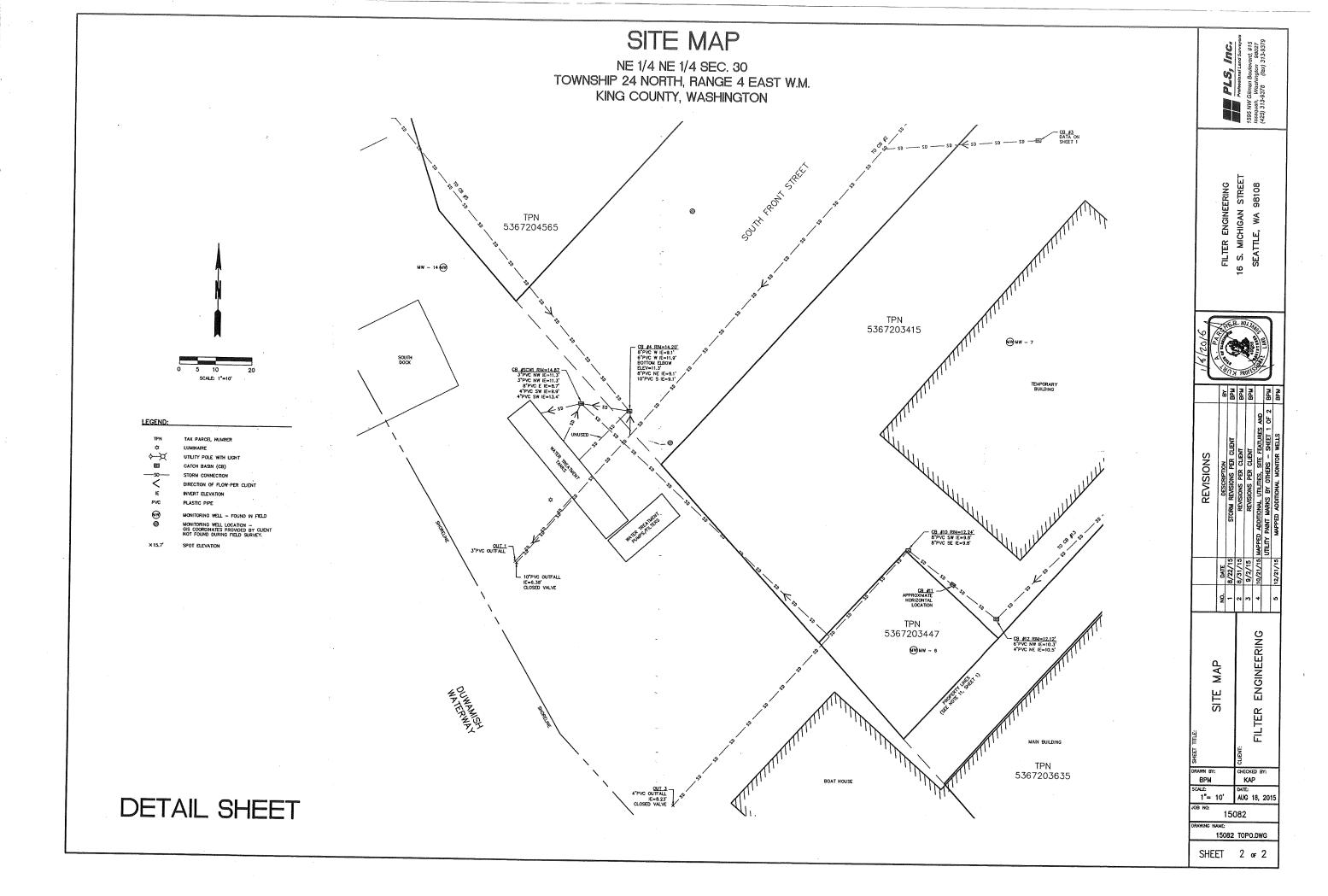
NSF Class	Size	Total counts /cc	Counts percent	Surface area percent	Volume percent
	allie seed that held talk that talk and		400		
#1	< 1	0.00	0.00%	0.00%	0.00%
#2	1-5	29.61	76.79%	16.57%	7.22%
#3	5-15	7.57	19.64%	52.22%	50.03%
#4	15-30	1.38	3.57%	31.21%	42.75%
#5	30-50	0.00	0.00%	0.00%	0.00%
#6	50-100	0.00	0.00%	0.00%	0.00%
Total c Mean Stand	size: 3.6	6/cc 4um 3um			

NSF Bin	Size	Total counts /cc	Counts percent	Surface area percent	Volume percent
Bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30	 1um 2um 3um 4um 5um 6um 7um 8um 9um 10um 11um 12um 10um 11um 12um 12um<!--</td--><td>/cc 0.00 15.15 4.82 3.44 6.20 1.38 1.38 1.38 0.69 0.00 2.07 0.00</td><td>percent 0.00% 39.29% 12.50% 8.93% 16.07% 3.57% 3.57% 3.57% 0.00%</td><td>percent 0.00% 1.53% 1.94% 3.12% 9.99% 3.47% 4.99% 6.80% 4.44% 0.00% 20.80% 0.00% 0.00% 11.72% 0.00% 0.00% 31.21% 0.00% 0.0%</td><td>percent 0.00% 0.27% 0.59% 1.28% 5.08% 2.08% 3.44% 5.26% 3.79% 0.00% 0.00% 14.42% 0.00% 14.42% 0.00%</td>	/cc 0.00 15.15 4.82 3.44 6.20 1.38 1.38 1.38 0.69 0.00 2.07 0.00	percent 0.00% 39.29% 12.50% 8.93% 16.07% 3.57% 3.57% 3.57% 0.00%	percent 0.00% 1.53% 1.94% 3.12% 9.99% 3.47% 4.99% 6.80% 4.44% 0.00% 20.80% 0.00% 0.00% 11.72% 0.00% 0.00% 31.21% 0.00% 0.0%	percent 0.00% 0.27% 0.59% 1.28% 5.08% 2.08% 3.44% 5.26% 3.79% 0.00% 0.00% 14.42% 0.00% 14.42% 0.00%
31 32	87um 92um >	0.00 0.00 0.00	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%
	TOTALS	38.56	100.00%	100.00%	100.00%

04-01-2013 Lean Environment Spectra # 2013030467-1 Client ID: 1


	Interim	Spectrex Laser Particle Counter 800-822-	3940 v8.13f
# um %		0 30 60 90 120 150 180 210 240 270	300
$ \begin{array}{r} - & - & - & - & - & - & - & - & - & - $	$\frac{0}{0}$	┍╴╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸	
-1 1 10.0	/0 101 71280		Filter
-2 - 2 - 27.7 -3 - 3 - 22.4	12 226		0%
-4 - 4 - 12.4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
-5 - 5 - 7.3 -6 - 6 - 4.5	50 45		A-T
$-\frac{7}{7}$, $\frac{7}{7}$, $\frac{2}{7}$	2 27		32 s
$-\frac{8}{0}$ $\frac{8}{0}$ $\frac{2}{1}$			
			S-T
11 11 10)010		32 s
<u>-12 12 0.6</u> - <u>13 13 0.3</u>	27 2		
<u> 14 14 0.6</u>	7 3 8 5		Dilut'n
$ \begin{array}{r} 18 & 10 & 0.6 \\ -14 & 14 & 0.6 \\ -15 & 15 & 0.6 \\ -16 & 16 & 0.1 \\ -17 & 17 & 1.0 \\ -18 & 22 & 0.8 \\ \end{array} $	<u>8 6</u>		750000
-17 - 17 - 1.0)8 10		
<u>-18-22 0.8</u>	848		Offset
$ \begin{array}{r} -19 & 27 & 0.8 \\ -20 & 32 & 0.2 \\ -21 & 37 & 0.1 \\ \end{array} $	34 <u>8</u> 24 2		0.00V
$-\frac{21}{21}$ $\frac{37}{37}$ -0.1	2 1		
$-\frac{22}{22}$ $\frac{42}{47}$ $\frac{0.3}{0.4}$	3		Gain
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	jā j		5.55x
-25-57 0.0			0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Counts
$-\frac{28}{28}$ $\frac{72}{12}$ 0.0	<u> </u>	7	5787500
$-\frac{29}{20}$ $\frac{77}{20}$ 0.1	$\frac{2}{2}$ 1	10 (* 11))))))))))	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 1		NSF
<u>-32 92 0.0</u>	<u>ō</u> <u>ó</u>		Groups
>0.0	0 0	4	Groups

NSF Class	Size	Total counts /cc	Counts percent	Surface area percent	Volume percent
#1 #2 #3 #4 #5 #6	5-1510 15-3020 30-506,	0.00 50,243,452.07 69,916,448.40 6,825,928.06 ,352,016.80 537,154.86	0.00% 72.60% 22.42% 3.54% 0.84% 0.60%	0.00% 6.55% 16.03% 18.96% 16.44% 42.02%	0.00% 0.93% 4.96% 11.76% 16.05% 66.29%
	unts: 757,875 1 factor: 7500				


Mean size: 4.91um Standard dev: 7.44um

04-01-2013 Lean Environment Spectra # 2013030467-1 Client ID: 1

NSF Bin	Size	Total counts /cc	Counts percent	Surface area percent	Volume percent
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 31\\ 32\end{array}$	2um2 3um1 4um9 5um5 6um3 7um2 8um1 9um1 10um8 11um7 12um5 13um2 14um4 15um5 16um 7 17um8 22um6 32um1 37um 9 42um2 47um 9 52um 57um 57um 72um 77um 9 82um 9 87um 9 82um 9 87um 9	0.00 6,224,201.15 10,013,554.22 69,916,448.40 4,089,248.30 5,977,147.72 4,142,090.10 0,644,054.48 7,865,047.15 3,101,034.57 ,337,022.00 543,019.91 ,161,013.62 ,779,007.33 ,367,011.52 161,013.62 94,002.10 ,166,878.74 ,352,016.80 352,016.80 814,861.94 07,430.97 0.00 0.00 814,861.94 0.00 0.00 0,00 814,861.94 0.00 0.00 0,	0.00% 10.06% 27.71% 22.42% 12.41% 7.39% 4.50% 2.72% 2.36% 1.73% 1.10% 1.00% 0.68% 0.37% 0.58% 0.68% 0.37% 0.58% 0.68% 0.10% 1.08% 0.24% 0.24% 0.12% 0.36% 0.12% 0.00% 0.00% 0.00% 0.00% 0.12% 0.00% 0.12% 0.00% 0.00% 0.12% 0.00% 0.12% 0.00% 0.00% 0.00% 0.12% 0.00% 0.0% 0.0% 0.0%	0.00% 0.13% 1.39% 2.54% 2.50% 2.32% 2.04% 1.68% 1.90% 1.76% 1.38% 1.51% 1.23% 0.78% 1.42% 1.93% 0.34% 3.92% 5.10% 7.68% 3.08% 2.06% 7.97% 3.33% 0.00% 0.00% 1.57% 0.00% 1.57% 0.00% 1.57% 0.00% 1.57% 0.00% 1.57% 0.00% 1.57% 0.00% 1.12% 11.40% 0.00% 0.00% 1.00%	0.00% 0.01% 0.14% 0.35% 0.43% 0.47% 0.48% 0.44% 0.55% 0.56% 0.47% 0.56% 0.48% 0.32% 0.63% 0.32% 0.63% 0.89% 0.16% 2.00% 3.16% 5.54% 2.53% 1.88% 8.01% 3.64% 0.00% 1.00% 0.00% 15.58% 0.00% 15.58% 0.00% 14.13% 16.80% 19.77% 0.00% 0.00% 100.00%
	IUTALS/	57,875,000.19	100.00%	100.00%	100.00%

4"PVC OUTAL CLOSED VALVE	BUILDING BUI	 B.1. THIS MAP GRAPHICALLY PREPERSENTS CONDITIONS AND FRATURES EXISTING AT THE TIME OF THIS SURVEY ONLY, WHICH WAS PREPORTED UNRING JULY OF 2015. T.1. THIS SURVEY ONLY, WHICH WAS PREPORMED DURING JULY OF 2015. T.1. THIS SURVEY ONLY, WHICH WAS PREPORMED DURING JULY OF 2015. T.1. THIS SURVEY ONLY, WHICH WAS PREPORMED PERSON OR PRESONS WITHOUT THE EXPRESS RECENTINGATION. ON THIS SURVEYOR TO ANY UNRIANDE PERSON OR PRESONS WITHOUT THE EXPRESS RECENTINGATION. ON THIS SURVEYOR MAINS SUCH PARTY. B.1. FOR YOUR INFORMATION. 0.0833 FEET = 1 INCH ON THE GROUND J. KING COUNTY TAX PARCEL NUMBERS: SURVEYOR UNLY, SAFZORDAY 12, SOFZOL4565, S387204566, AND S3872045455 T.10. THE LINDERGROUND UTILITES SHOWN HEEGON MAYE BEEN LOCATED FROM A GOMMATION OF: 1). THE FIELD SURVEYED LOCATION OF VISITE SURVEYED LOCATION OF PAINT OR OTHER MARKS OR MARKERS FLACED BY AN UNDERGROUND UTILITY STRUCTURES SUCH AS MANNOLE UDS, GRATES, GAS AND WATER VALVE, LOS, ETC 2). AS-MAINTON OF: 1). THE FIELD SURVEYED LOCATION OF PAINT OR OTHER MARKS OR MARKERS FLACED BY AN UNDERGROUND UTILITY SURVEYED LOCATION OF PAINT OR OTHER MARKS OR MARKERS FLACED BY AN UNDERGROUND UTILITY OF STRUCTURES SUCH AS MANNOR DETAILS THAT THE THAT THE UNDERGROUND UTILITY SURVEYED LOCATION OF PAINT OR OTHER MARKS OR SURFACE MARK UNLIFY ONLY FOR THIS PROCECT. UTILITY INVERTE LEVATIONS AND PRE / FLOW LINE UNDERGROUND UTILITY SURVEYED LOCATION OF RAME. THAT THE UNDERGROUND UTILITY SURVEYED ON THIS PROCED. MUTHY THEED BY PLS, INC. NOR OTHERS TO SURFACE MARK UNLITY UNITS FOR THE ENDERGROUND FROM THE COUNTS FROM THE GO OF THE SURVEY. THE COURTER OF THIS SURVEY. THE COURDER OF THIS SURVEY. THE COURTER OF THIS SU
SHEET TITLE:	NO. DATE DESCRIPTION BY	FILTER ENGINEERING
	1 6/22/15 STORM REVISIONS PER CLIENT BPM 2 8/31/15 REVISIONS PER CLIENT BPM 3 9/2/15 REVISIONS PER CLIENT BPM 4 10/21/15 MAPPED ADDITIONAL UTILITIES, SITE FEATURES AND UTILITY PAINT MARKS BY OTHERS - SHEET 1 OF 2 BPM	16 S. MICHIGAN STREET Professional Land Surveyors SEATTLE, WA 98108 Usablington 96027 (425) 313-9378 (fax) 313-9379
2 6 2015	5 12/21/15 MAPPED ADDITIONAL MONITOR WELLS BPM	

This page was intentionally left blank.

DUWAMISH METAL FAB

STORMWATER POLLUTION PREVENTION PLAN

Prepared for

DUWAMISH METAL FAB SEATTLE, WA

Prepared by Blue Environmental 800 5th Ave #101-251 Seattle, WA 98104

August 2016

STORMWATER POLLUTION PREVENTION PLAN DUWAMISH METAL FAB SEATTLE, WA

TABLE OF CONTENTS

1.0 STORMWATER POLLUTION PREVENTION PLAN PURPOSE AND OBJECTIVES

- 1.1 SWPPP LOCATION AND PUBUC ACCESS
- 1.2 SWPPP REVIEW AND REVISIONS
- 1.3 RECORDKEEPING

2.0 FACILITY DESCRIPTION

- 2.1 SITE DESCRIPTION
- 2.2 FACILITY OPERATION
- 2.3 FACILITY STORMWATER DRAINAGE SYSTEM
 - 2.3.1 Non-Storm Water Discharges

2.3.2 Significant Spills or Leaks of Toxic or Hazardous Pollutants to Stormwater

3.0 NARRATIVEDESCRIPTION

- 3.1 AREAS ASSOCIATED WITH INDUSTRIAL ACTIVITIES
 - 3.1.1 Equipment Maintenance
 - 3.1.2 Equipment Washing
 - 3.1.3 Outdoor Storage Areas
 - 3.1.4 Oil Storage
- 3.2 POTENTIAL STORMWATER POLLUTANTS

4.0 STORMWATER BEST MANAGEMENT PRACTICES

- 4.1 OPERATIONAL BMPS
 - 4.1.1 Stormwater Pollution Prevention Team
 - 4.1.2 Good Housekeeping
 - 4.1.3 Preventive Maintenance
 - 4.1.4 Spill Prevention and Emergency Cleanup
 - 4.1.5 Employee Training
 - 4.1.6 Inspections
- 4.2 SOURCE CONTROL AND TREATMENT BMPS
 - 4.2.1 Equipment Maintenance
 - 4.2.2 Equipment Washing
 - 4.2.3 Oil Storage
 - 4.2.4 Outdoor Storage
 - 4.2.5 Erosion and Sediment Control

TABLE OF CONTENTS (Continued)

5.0 MONTIORING PLAN

- 5.1 Monitoring Location
- 5.2 Monitoring Frequency
- 5.3 Monitoring Parameters
- 5.4 Monitoring Methods
 - 5.4.1 Sample Containers
 - 5.4.2 Sample Preservation
 - 5.4.3 Sample Storage and Delivery
 - 5.4.4 Holding Times
 - 5.4.5 Packaging
- 5.5 REPORTING AND RECORDKEEPING

FIGURES

- 1 Vicinity Map
- 2 Site Drainage Map

TABLES

- 3-1 Potential Stormwater Pollutants
- 5-1 Stormwater Monitoring Parameters

APPENDICES

- A General Information Summary & Spill Contacts
- B Stormwater Inspection and Training Forms and Monitoring Records

ACRONYMS AND ABBREVIATIONS

BMPs - Best Management Practices DMR - Discharge Monitoring Report Ecology - Washington State Department of Ecology EPA - Environmental Protection Agency General Permit - The Industrial Stormwater General Permit effective date October 1st, 2010 ug/L - Micrograms per liter mg/L - Milligrams per liter MSDS - Material Safety Data Sheet NOI - Notice of Intent NPDES - National Pollutant Discharge Elimination System PMI - Preventive Maintenance Inspection SPCC - Spill Prevention, Control and Countermeasures SWPPP - Stormwater Pollution Prevention Plan

STORMWATER POLLUTION PREVENTION PLAN DUWAMISH METAL FAB SEATTLE, WA

1.0 STORMWATER POLLUTION PREVENTION PLAN PURPOSE AND OBJECTIVES

The Washington State Department of Ecology's (Ecology) Industrial Stormwater General Permit (General Permit) requires the development and implementation of a Stormwater Pollution Prevention Plan (SWPPP) emphasizing stormwater Best Management Practices (BMPs). The purpose of the General Permit is to establish controls that can address sources of stormwater pollutants at a broad range of facilities. BMPs are the physical, structural, operational or administrative means of providing the appropriate controls.

The major objectives of the SWPPP are:

- 1. To eliminate the discharges of process wastewater, domestic wastewater and non-contact cooling water to stormwater drainage systems;
- 2. To implement BMPs that will identify the sources of stormwater pollution and reduce or eliminate stormwater pollutants.
- 3. To prevent violations of surface water quality, ground water quality and sediment management standards.

This SWPPP is intended to comply with the requirements for SWPPPs as specified in the General Permit effective on January 2, 2015.

1.1 SWPPP LOCATION AND PUBLIC ACCESS

The facility is located at 16 S. Michigan Street, Seattle, WA. A copy of the SWPPP will be located on site and shall be made available if requested by Ecology, and if a written request is received from the general public.

1.2 SWPPP REVIEW AND REVISIONS

Ecology may notify the Facility if the SWPPP does not meet the minimum requirements for stormwater pollution prevention plans established in the General Permit. Following such notification, a plan for modification of the SWPPP and a schedule for implementing any modifications must be submitted to Ecology within 30 days of receipt of the notice.

The Facility will modify the SWPPP whenever there is a change in design, construction, operation or maintenance that causes the SWPPP to be less effective in controlling pollutants. The SWPPP may also be modified whenever a self-inspection reveals that the description of potential pollutant sources or established pollution

prevention measures and controls are inadequate. Appropriate modifications must be made within two weeks of the self-inspection and implementation of modifications must occur in a timely manner.

1.3 RECORDKEEPING

Reports will be kept of all significant events, such as spills or releases, which result in stormwater pollution, as well as in-house inspection reports, follow-up responses to any deficiencies noted during inspections, documentation describing any significant changes in on-site activities. Copies of discharge monitoring reports submitted to Ecology will also be kept with the SWPPP (Appendix B). These reports will be maintained on site with the SWPPP for at least five years.

2.0 FACILITY DESCRIPTION

The Facility is located at 16 S Michigan Street, Seattle, Washington (Figure 1). A general site information summary is included in Appendix A.

2.1 SITE DESCRIPTION

The majority of the site is paved with asphalt with the exception of a truck scale, shipping dock and two concrete pads. The upland portion of the site is used by Filter Engineering for the storage of a variety of construction and marine related equipment and materials, including: ship/boat parts, vehicles, electric generators, empty above ground storage tanks (AST's), pallets, metal pieces and other heavy equipment.

2.2 FACILITY OPERATION

Duwamish Metal Fab's permitted process is steel fabrication that includes grinding, cutting, welding, bending, drilling and generally crafting various steel components described in the detail drawing.

The process begins with coordinating the first steel to be fabricated with the steel stock. Material handling laborers ensure that the fitters have the exact steel inventory at different fitting stations when the steel is required. In tandem, template makers create disposable cardboard-like templates used for cutting steel. These templates take the guesswork out of the shop workers hands. They fabricate the steel to match the template and an accurate steel detail piece is produced.

There are two most common welding processes – arc welding and gas welding. Gas welding is a process in which heat is generated with an electric arc formed between a metal electrode and the metal being welded. An inert gas, typically helium or argon protects the arc from contamination. General gas techniques are TIG (tungsten-inert-gas) and MIG (metal-inert-gas) welding.

Carbon arc welding is a puddling process in which the heat from an electric arc generates a small pool of molten metal that can be added to using metal from a filler rod. This is commonly referred to as stick welding. Welding techniques for field erection of steel or shop fabrication are similar.

After the fabricated assembly is transported to the site, the only work remaining is unloading, sorting, storage and erection.

Other permitted activity at the site includes bulk loading and unloading of marine cargo at the dock at the south end of the property. Operations include private barges that use the Duwamish Metal Fab dock and crane to load and unload cargo. All bulk material is contained in shipping containers. Items too large for shipping containers such as fabricated steel structures or marine pilings are transloaded directly.

2.3 FACILITY STORMWATER DRAINAGE SYSTEM

The stormwater drainage system consists of three catch basins located adjacent to the indoor metal fabrication area. All three catch basins connect to a stormwater treatment system shared with Samson Tug and Barge. After all stormwater is treated it discharges to the Lower Duwamish Waterway.

2.3.1 Non-Stormwater Discharges

Federal law and the General Permit prohibit most non-stormwater discharges unless specifically permitted under an individual NPDES permit. Typical nonstormwater discharges not authorized by the General Permit include the following: (May not exist at this site)

- Vehicle and equipment wash water;
- Floor drains connected to the storm drainage system;
- Steam cleaning discharges; and
- Vactor truck (catch basin or sump cleaning) liquids.

Non-stormwater discharges <u>authorized</u> by the General Permit include:

- Discharges from fire-fighting activities;
- Fire hydrant flushing;
- Potable water sources including water line flushing;
- Irrigation drainage;
- Lawn watering;
- Uncontaminated groundwater;
- Foundation or footing drains where flows are not contaminated with process materials and;
- Discharges from spring;

As discussed in Section 4.1.6, monthly inspections will be conducted to ensure compliance with the Industrial Stormwater General Permit and the Stormwater Pollution Prevention Plan. This inspection will be performed on a monthly basis beginning in January 2010.

Routine observations may at any time result in identification of unauthorized discharges. All Facility staff will be trained to recognize such discharges and to report it to the Facility Manager for follow-up action.

2.3.2 Significant Spills or Leaks of Toxic or Hazardous Pollutants to Stormwater

The facility is currently under an agreed order with the Department of Ecology regarding soil/groundwater contamination.

3.0 NARRATIVE DESCRIPTION

The General Permit requires the following elements be included in a SWPPP:

- An assessment and description of existing and potential pollutant sources, and;
- A description of the BMPs that are needed to reduce the potential for discharge of significant amounts of pollutants, including operational, source control and treatment BMPs.

Operational BMPs may consist of administrative policies, operating procedures, the prohibition of undesirable practices, maintenance procedures, training, good housekeeping, and other managerial practices to prevent or reduce pollution of waters of the state. Source control BMPs are physical, structural or mechanical devices or structures that are intended to prevent pollutants from entering stormwater. Treatment BMPs are structures or devices designed to remove pollutants from stormwater.

3.1 AREAS ASSOCIATED WITH INDUSTRIAL ACTIVITIES

The SWPPP must address all areas which are associated with industrial activities and which have been or may potentially be sources of stormwater pollutants. The following paragraphs briefly describe the areas at the Facility that are associated with industrial activity, and identify the materials that may be stored or used in those areas.

3.1.1 Equipment Maintenance

Routine maintenance/service is performed on site under cover whenever possible. When large equipment like the crane cannot be serviced under cover proper secondary containment is used. Fueling is delivered on site via wet-hosing. The shop floor is flat, unbroken concrete.

3.1.2 Equipment Washing

As specified in the Permit no vehicle or equipment washing is done on site.

3.1.3 Outdoor Storage Areas

Various metal parts, are stored near the metal fabrication shop. Vehicles are stored near the weigh scales. Other miscellaneous materials are stored at the north end of the site.

3.1.4 Oil Storage

Oil storage and handling practices are described in the SPCC Plan, referenced into this document.

3.2 POTENTIAL STORMWATER POLLUTANTS

Table 3-1 lists categories of significant materials that have a reasonable potential to be present in the stormwater discharges from the Facility.

Table 3-1
Potential Stormwater Pollutants

Location	Pollutants
Outdoor storage area	Heavy metals and sediments
Material loading and unloading	Heavy metals, oil and grease
Parking area	Oil and grease
Transloading Dock	Oil or Fuel from the Crane

4.0 STORMWATER BEST MANAGEMENT PRACTICES

This section describes the stormwater BMP's appropriate for the Facility.

4.1 Operational BMP's

The Facility implements six operational BMPs, described in this section:

- 1. SWPPP Team
- 2. Good Housekeeping
- 3. Preventive Maintenance
- 4. Spill Prevention and Emergency Response
- 5. Employee Training
- 6. Inspections

4.1.1 Stormwater Pollution Prevention Team

A Stormwater Pollution Prevention Team has been formed by the Facility. The individuals on the team are responsible for developing the SWPPP and assisting the Facility Manager in implementing, maintaining and modifying the plan. The team members are the Facility Manager, service workers, and an inspection and sampling subcontractor, Blue Environmental. The SWPPP responsibilities of these team members are listed below:

<u>Site Manager</u>

- Overall compliance with stormwater regulations and stormwater discharge permit;
- Spill notification;
- Initiation of corrective actions;
- Retention of records;

Service workers

- Implementation of good housekeeping practices; and
- Implementation of routine preventive maintenance practices.

Blue Environmental

• Training of employees on SWPPP responsibilities including updates;

- Implementation of stormwater monitoring plans;
- SWPPP amendments;
- Stormwater monitoring and reporting;
- Facility Inspections and SWPPP evaluations.

4.1.2 Good Housekeeping

Good housekeeping involves maintaining a clean and orderly work environment. A clean and orderly environment reduces the possibility of accidental spills caused by mishandling of equipment, and should also reduce safety hazards to personnel. Examples of good housekeeping practices that may be employed by the Facility include:

- Neat and orderly storage of chemicals, with proper labeling;
- Prompt cleanup and removal of spillage;
- Regular pickup and disposal of garbage and rubbish;
- Regular cleaning of floors using brooms;
- Provisions for proper storage of material containers;
- Prevention of accumulations of liquid or solid chemicals on the ground or the floor;
- Water tight lids on solid waste receptacles; and
- Quarterly Sweep outdoor paved surfaces to remove accumulated sediments.

4.1.3 Preventive Maintenance

Preventive maintenance involves the inspection of equipment and systems to reveal conditions that might result in discharges of pollutants to the storm drain system, and subsequent correction of those conditions by adjustment, repair or replacement of worn parts before the equipment or systems fail. The preventive maintenance program involves:

- Identifying equipment and systems, which, could fail and release liquid materials if not properly maintained;
- Adjusting, repairing and replacing parts and equipment when necessary;

• Maintaining complete records of deficiencies and corrective actions;

The Facility may perform inspections to detect potential problems before they occur. All inspections and resulting corrective action taken are documented.

4.1.4 Spill Prevention and Emergency Cleanup

The General Permit requires the implementation of spill prevention and emergency cleanup procedures. Spill prevention and response procedures are described in the facility's SPCC plan, which is incorporated into this SWPPP.

4.1.5 Employee Training

The Facility trains employees in understanding and implementing the SWPPP. Employee training is essential to the effective implementation of the SWPPP. The purpose of the training program is to inform personnel at all levels of responsibility of the components and goals of the SWPPP. The training addresses each component of the SWPPP, including operational and source control BMPs, spill prevention and response, good housekeeping and material management practices and stormwater monitoring. Employee training in good housekeeping incorporates the following topics:

- The importance of good housekeeping;
- The prompt cleanup of spilled materials to prevent stormwater contamination;
- The locations where brooms, vacuums, sorbents, and other good housekeeping and spill response equipment are stored;
- Securing drums and containers and checking for leaks and spills; and
- Maintaining a regular schedule for housekeeping.

Tools used in the training sessions may include employee handbooks, films and slide presentations, handouts, or drills. Spill control and response training is described in the SPCC Plan.

The Service Manager will document employee training and maintain the training records.

4.1.6 Inspections

At a minimum, Blue Environmental will conduct twelve (12) monthly inspections. The inspections will be visual inspections (visual monitoring) performed in conjunction with the quarterly stormwater sampling, as outlined in Section 5. Visual observations during quarterly inspections will include: (1) description of potential pollutant sources, suspended solids, oil and grease, discolorations, turbidity and odor in the vicinity of stormwater outfalls; (2) evaluation of the adequacy of BMPs being used; and (3) determination of whether the SWPPP is up-to-date.

Blue Environmental will perform all SWPPP inspections. Appendix B contains inspection report forms for the various SWPPP inspections described in this section. All records of these inspections will be retained with this SWPPP for at least five (5) years after the date of the inspection.

4.2 SOURCE CONTROL AND TREATMENT RMPS

The Facility employs source control BMPs for all of its industrial activities. These BMPs were identified based upon guidance in Ecology's Manual. These BMPs are discussed in the following paragraphs.

4.2.1 Equipment Maintenance

In accordance with the Manual, the following BMPs are implemented to address equipment maintenance performed on site:

- Maintenance/service activities are conducted on site under cover; when this is not possible proper secondary containment is used
- Activities conducted outdoors employ spill prevention measures and have spill kits readily accessible;
- Incoming equipment is inspected for leaks; and
- Drip pans or absorbent materials are used to collect drips or leaks during dismantling of oil-containing parts or removal of fluids, or when a leaking piece of equipment is identified.

4.2.2 Equipment Washing

No equipment washing is done on site in accordance with the guidelines of the General Permit.

4.2.3 Oil Storage

The following BMPs for oil storage have been or will be implemented by the Facility:

• Implementing procedures in SPCC Plan;

- Secondary containment (concrete pads or containment pallets, with capacity of 110% of capacity of largest container) will be provided for lube oils and other oils stored outdoors or with the potential to be spilled to the outdoors; and;
- Spill response kits are maintained at convenient locations (shown on Figure 2).

4.2.4 Outdoor Storage

The following BMPs are being implemented at the Facility to prevent stormwater pollution from outdoor storage activities:

- Weekly inspections of parked equipment in gravel parking areas for evidence of leaks;
- Drip pans or absorbent materials may be used to collect drips or leaks during dismantling of oil-containing parts or removal of fluids, or when a leaking piece of equipment is identified;
- Store oily equipment/parts indoors or on covered (with tarps) pallets to prevent contact with rain and runoff;

4.2.5 Erosion and Sediment Control

The unpaved areas of the site are a potential source of sediment discharge to the storm drain system. The Facility is implementing the following BMPs to control sediment discharge from the site:

- Sweep paved surfaces in high-traffic areas as necessary;
- Catch basin inspected on a monthly basis;
- Install and maintain perimeter controls in areas not draining to storm drain system.
- 4.2.6 Treatment System

The treatment system consists of pumps that move the water to the sedimentation tanks, electrocoagulation cells to flock the water, pressurized sand filtration and a polishing unit at the end of the treatment train. The treatment system is designed to treat flows from Samson Tug (3 acres) and Duwamish Metal Fab (1.7 acres). All stormwater from the site is discharged through outfall 1. A detailed engineering report with flow calculations, treatment system layout and technology details are referenced in the appendix.

5.0 MONITORING PLAN

This section describes the stormwater monitoring program that will be implemented at the Facility in compliance with the General Permit. Monitoring will consist of both visual observations of discharge water quality and sample collection and analysis. Laboratory analyses will be performed by a contracted laboratory accredited under the provisions of the Accreditation of Environmental Laboratories (Chapter 173-50 WAC).

5.1 MONITORING LOCATIONS

Stormwater sample collection takes place at one location, Outfall 01. The outfall reflects the impact of the industrial activity on the site prior to discharge in to the Duwamish Waterway.

5.2 MONITORING FREQUENCY

Sample collection and analysis will be performed quarterly. The quarters are defined as:

- 1st Quarter: January-March;
- 2nd Quarter: April-June;
- 3rd Quarter: July-September; and
- 4th Quarter: October-December.

To the extent practicable, samples will be collected during rainfall events with the following characteristics:

- The rainfall event should be sampled within the first 12 hours of discharge. If a sample cannot be taken within the first 12 hours an explanation will be included with the sampling records; and
- A first fall storm event will be taken after October 1st of each year that precipitation occurs and results in a stormwater discharge from the facility.

Stormwater sampling personnel will monitor weather forecasts and local precipitation records to identify potential qualifying sampling events, and mobilize to sample when conditions are likely to produce a qualifying rainfall

event. Samples will be collected during normal business hours and during daylight hours only.

5.3 MONITORING PARAMETERS

Stormwater samples will be analyzed for parameters listed in Table 5-1.

Parameter	Units	Analytical Method	Benchmark Value
рН	Standard Units	Meter	5-9 SU
Turbidity	NTU	Meter	25 NTU
Oil Sheen	Yes/No	Visual	N/A
Zinc	ug/L	EPA 200.8	117 ug/L
Copper	ug/L	EPA 200.8	14 ug/L
Lead	ug/L	EPA 200.8	81.6 ug/L
ТРН	mg/L	NWTPH-Dx	10 mg/L
TSS	mg/L	SM 2540 D	30mg/L per day

Table 5-l Stormwater Monitoring Parameters

5.4 MONITORING METHODS

Samples will be single grab samples collected within the first 12 hours after discharge from the sampling points. This will require observing the sampling locations during a candidate rainfall event to determine at what time discharge begins. Due to the impervious nature of the site, the time at which discharge begins may be reasonably soon after the start of rainfall.

Sampling personnel will be responsible for maintaining the integrity of samples from the time of collection to the time of delivery to a contracted analytical laboratory.

5.4.1 Sample Containers

Sample bottles, extra bottles for breakage, bottle labels may be kept on site for the water samples.

5.4.2 Sample Preservation

Cooling after sample collection is the only preservation required for all of the analytes. Cooling should reduce the sample temperature to 4 degrees Celsius within

30 to 60 minutes of collection. Some parameters will require chemical preservation, as identified in Table 5-3. The laboratory will supply preservatives.

5.4.3 Sample Storage and Delivery

Samples will be delivered to the laboratory each sampling day, or at the latest the following morning. Samples may also be express-mailed following appropriate chain-of-custody procedures.

5.4.4 Holding Times

Holding times are the allowable elapsed time between sample collection and extraction, preparation, or analysis of the sample. If a sample is not analyzed within the designated holding time, the analytical results may be compromised. Thus, it is important that the laboratory meet all specified holding times and make every effort to prepare and analyze the samples immediately after they are received. Prompt analysis also allows the laboratory time to review the data, and if inconsistencies are found, to re-process the affected samples.

5.4.5 Packaging

The sample cooler(s) will be filled with packing material and bottles and left with enough room for ice. Chain of custody seals (provided by the laboratory) will be affixed to the cooler. \cdot

If samples are delivered the day after the sampling event, a sufficient amount of ice will be maintained in the cooler during overnight storage.

Table 5-3 presents a summary of sample containers, required sample volumes, holding times and preservation methods for the parameters to be monitored at the Facility.

5.5 REPORTING AND RECORDKEEPING

Monitoring reports must be submitted to the Department of Ecology quarterly, corresponding to each sampling event. The monitoring data must be summarized, reported and submitted electronically using the Secure Access Washington Database

If approval is received a paper Discharge Monitoring Report (DMR) form may be mailed to:

Industrial Stormwater Permit Manager Department of Ecology Water Quality Program PO Box 47696 Olympia, WA 98504-7696

The DMRs must be submitted no later than 45 days following the end of the last calendar day of each monitoring period. Copies of laboratory reports will be maintained on-site along with copies of DMRs and records of visual observations. All of these records must be maintained for at least five years.

APPENDICIES

APPENDIX A

General Information Summary

STORMWATER POLLUTION PREVENTION PLAN for DUWAMISH METAL FAB SEATTLE, WASHINGTON

GENERAL INFORMATION

Mailing Address:	16 S. Michigan Street	
	Seattle, WA 98108	

Facility Owner: Duwamish Metal Fab

Facility Phone Number: (206) 762-8799

Stormwater Pollution Prevention Team:

Clint Harris – Owners Representative

SIC Code: 3449

Correspondence regarding this plan should be directed to:

Clint Harris Owners Representative

If the spill causes discharge of harmful quantities of oil into or upon the navigable waters of the United States, then the SPCC plan coordinator will immediately notify:

CEMS 888-450-0907

National Response Center 800/424-8802

or

U.S. EPA 800/564-7577 or 206-553-1200

Local and state agencies will be notified as needed and determined by the plan coordinator.

Department of Ecology (24 hr)

425-649-7000

If, at any time, there is a question of whether to report a release to the environment, REPORT THE RELEASE. Failure to report is subject to a maximum of \$10,000 fine and/or one year imprisonment.

The following information is required in reporting:

Name of the reporter Name of the Company involved Name and address of the plant or facility Telephone number The sources, causes, quantities, locations, and duration of the release Nature of any inquiries or property damage, if any Other relevant information, such as weather conditions Corrective actions being taken APPENDIX B

This page was intentionally left blank.

Stormwater Pollution Prevention Plan (SWPPP)

Samson Tug & Barge Company and Duwamish Marine Center 6361 1st Avenue South, Seattle, Washington

Updated

November 2015

Table of Contents

1.0	Introduction
1.1	Purpose of the SWPPP3
2.0	Facility Assessment
2.1	General Nature of Facility Activity3
2.2	Maps of Site4
2.3	Description of Storm Drainage and Outfalls4
2.4	Industrial Activity4
2.5	Inventory of Materials4
2.6	Potential Pollutants
3.0	Stormwater Controls
3.1	Pollution Prevention Team5
3.2	Good Housekeeping6
3.3	Preventive Maintenance7
3.4	Spill Prevention, Reporting and Emergency Cleanup7
3.5	Training7
3.6	Illicit Discharge Detection and Elimination7
3.7	Maintenance and Repair of Vehicles and Equipment7
3.8	Mobile Fueling
3.9	Erosion and Sediment Control9
4.0	Monitoring9
4.1	Discharging to Puget Sound Sediment Cleanup Site11
5.0	Administrative Requirements
5.1	Reporting and Record Keeping12
5.2	Certification of the SWPPP13
6.0	References14

1.0 Introduction

Federal regulations, administered by the Washington State Department of Ecology (Ecology), require the Samson Tug and Barge Facility at 6361 1st Avenue South, Seattle, Washington to have a General Industrial Stormwater Permit (hereafter referred to as the "Permit"). The purpose of the regulation is to protect water quality by reduction the amount of pollutants in stormwater. The permit covers the Facility as shown in Figure 1. A copy of the Permit is at the back of this Stormwater Prevention Plan (SWPPP).

1.1 Purpose of the SWPPP

This SWPPP provides for identification of the potential sources of pollution that could affect the quality of stormwater discharged from the facility. It also describes the Best Management Practices (BMPs) used to reduce pollutants in stormwater discharges associated with the facility.

2.0 Facility Assessment

The Samson Tug and Barge Facility is approximately 5 acres in size and is located at 6361 1st Avenue South, Seattle, Washington (Figure 1). The facility is owned by the Gilmur/Hale Family Trust. Operators on the site include Samson Tug and Barge Company and the Duwamish Marine Center.

2.1 General Nature of Facility Activity

The Facility's primary object is the loading and unloading of cargo containers from seagoing ships. Samson operates on the northern end of the facility and provides bi-weekly barge service to Alaska from Seattle. Various types of cargo are shipped via 20 or 40 ft shipping containers. The primary cargo shipped consists of fish, fish products, construction equipment, and vehicles. The loading equipment (forklifts, cranes, etc.) are maintained on site. Maintenance includes engine maintenance, lubrication and pressure washing. Samson's busy season is from spring through fall. The yard is often full of cargo during this time.

Duwamish Marine Center operates on the southern portion of the site primarily as a transfer facility for sediments being shipping to Waste Management in Seattle, Washington. Duwamish Marine Center is a certified waste recipient for transfer of dredged sediment. Dredged sediment is placed in lined containers and transferred to trucks at the facility. The trucks then transport the sediment to Waste Management in Seattle, Washington. Duwamish Marine Center's busy season is in winter. The site is general level and primarily unpaved. The average elevation of the site is approximately + 18 ft MLLW.

Three buildings are present on the site. Roofing materials for the building are as follows:

- 1) The Duwamish Marine Center has a galvanized metal roof,
- 2) The Dispatch Office has a composite tile roof, and
- 3) The Storage Building has a canvas (or fabric) roof.

2.2 Maps of Site

Maps of the site are shown in Figure 1 through 3. Figure 1 shows site features such as buildings, catch basins and stormwater drainage structures. Figure 2 shows an outline of the stormwater drainage areas for each stormwater discharge point, surface water locations, area where stormwater discharges to ground, and areas of potential soil erosion. Figure 3 shows locations of industrial activity at the facility and materials exposed to stormwater.

2.3 Description of Storm Drainage and Outfalls

Nine catch basins and two outfalls are present on the facility (Fig. 2). Seven catch basins drain the southern 4 acres and discharge to Outfall 1. Two catch basins drain the northern 1 acre and are directed toward Outfall 2, which is locked and sealed. Stormwater from the northern drainage area is pumped to the stormwater treatment system.

Stormwater infiltrates into the ground and flows through catch basins toward the outfalls. According to site personnel, stormwater has never been observed going over the top of the bank of the property.

Stormwater from the site discharges to the Lower Duwamish Waterway.

2.4 Industrial Activity

Industrial activities at the facility include the following:

- Loading and loading of Containerized and Bulk Cargo
- Access Roads for Shipping and Receiving
- Temporary Storage of Raw Materials
- Barge Operations
- Vehicle and equipment maintenance and fueling
- Vehicle wash area

Areas of industrial activities are shown on Figure 3.

2.5 Inventory of Materials

Materials handled or stored at the site that can be exposed to stormwater include scrap metal, metal cargo, automobiles, tires, diesels, dredged sediments, steel drums, forklifts and cranes.

2.6 Potential Pollutants

The locations of various activities that could be sources of pollution are shown on Figure 3 and are described below.

Mobile Vehicle Service Area

With the exception of the cranes located on the dock apron, maintenance of vehicles and equipment occurs in front of the Duwamish Marine Center building. Servicing involves replacement of coolant and lubricants, and fueling. Potential pollutants from this activity include oil, grease, diesel and antifreeze. Stormwater from this rea drains to Catch Basin 8 and is pumped to the stormwater treatment system.

Vehicle Washing Area

Vehicles are steam cleaned in the area shown on Figure 3. Wastewater from steam cleaning is contained and pumped to the stormwater treatment system. No wash waster is discharged to the Duwamish Waterway. Solids from vehicle washing are contained and appropriately disposed of.

Barge Operations

Large cranes are situated near docks on the northern and southern end of the site to load and unload cargo (Figure 3). Cranes are serviced at the dock side. Maintenance is limited to various lubricants and oils. Leaks could occur from hydraulic hoses. Potential pollutants from this activity include oil and grease. Stormwater from this area drains to Outfall 1 which discharges to the Lower Duwamish Waterway.

Container Yard

The container handling equipment (top picks and forklifts) have hydraulic oil lines that can break, spilling oil. Additional, significant truck traffic I present within the unpaved container yard. Potential pollutants from the container yard include oil, grease, lead and zinc. Stormwater form this area primarily drains to Outfall 1 which discharges to the Lower Duwamish Waterway.

Temporary Storage of Materials

Materials such as metals are stored temporarily at locations show in Figure 3. Potential pollutants from the temporary storage of these materials include oil, grease, lead and zinc. Stormwater form this area primarily drains to Outfall 1 which discharges to the Lower Duwamish Waterway.

Access Roads for Shipping and Receiving

Access roads for the facility are shown on Figure 3. Since the site is unpaved, track out of dirt can occur onto public roadways. A potential pollutant from this activity is elevated turbidity in stormwater.

Voluntary MTCA Cleanup

The site is currently undergoing a Voluntary Cleanup in accordance with the Model Toxics Control Act (MTCA) due to historic release of contaminants at the site. The cleanup is currently in the investigative phase. The approximate boundaries of impacted soils are shown in Figure 3. Potential pollutants in near surface soils primarily consist of metals, hydrocarbons, and PCBs. Stormwater from this area primarily drains to Outfall 1 which discharges to the Duwamish Waterway.

3.0 Stormwater Controls

Stormwater will be managed by implementing appropriate Best Management Practices (BMPs) at the facility. This section describes the BMPs that will be used. BMPs were selected from the Storm Water Management Manual for Wester Washington using the presumptive method.

3.1 Pollution Prevention Team

A stormwater pollution prevention team shall be responsible for developing, implementing, maintain, and updating this SWPPP. The members of the team will be familiar with all aspects of management and

operations of the facility. The members of the team and their primary responsibilities include the following: implementing, maintaining, record keeping, reporting, and, inspecting, training, and testing. The current team members are listed in Table 1.

Stormwater Pollution Prev	Stormwater Pollution Prevention Team			
Name	Title	Responsibility		
Wally Stilson	Port Captain for Samson Tug & Barge (Permittee)	Corporate signatory authority; review and implementation of the SWPPP and permit renewal		
James D. Gilmur	Property Owner/ Operator of the Duwamish Marine Center (Co-Permittee)	Co- signatory authority; review and implementation of the SWPPP.		
Richard Seslar	Seattle Facilities and Safety Operations Manager/ SWPPP Coordinator	Onsite coordination of all components of the SWPPP; oversees good housekeeping practices and BMPs. Responsible for monthly site inspections, record-keeping, and reporting.		
Site Staff		Implementation of operational source control BMPs (e.g. good housekeeping, fueling procedures, preventive maintenance, etc.), promptly identify conditions not meeting SWPPP, perform SWPPP tasks as directed.		
Blue Environmental	Contracted Environmental Consultant	Responsible for stormwater sampling and water quality reporting, as well as annual training. Responsible for analysis of monitoring data. Recommends new BMPs, if required.		

Table 1

3.2 Good Housekeeping

Good housekeeping is an ongoing approach to improve and maintain a clean and orderly work environment. BMPs for good housekeeping at this facility will consist of the following:

- Promptly contain and clean up solid and liquid pollutant leaks and spills including oils and fuels, and dust from operations on any area expose to stormwater.
- Do not hose down pollutants from any areas to the ground, storm drains, or receiving water unless necessary for dust control purposes to meet air quality regulations and unless the pollutants are convey to a treatment system approved by the local jurisdiction.

- Clean oils, debris, sludge, etc. from all BMP systems regularly, including catch basins, boomed areas, and conveyance systems, to prevent contamination of stormwater.
- Promptly repair or replace all leaking connections, pipes, hoses, valves, etc., which can contaminate stormwater.
- Use solid absorbents, e.g. clay and peat absorbents and rags for cleanup of liquid spills/leaks, where practicable.

3.3 Preventive Maintenance

A preventive maintenance program shall be employed at this facility, which includes inspection and maintenance of stormwater management devices and drainage systems and routing inspections of industrial facility operations including vehicle maintenance. Equipment such as containers (drums), and outside piping, pumps and process equipment shall be checked regularly for signs of deterioration.

Catch basins on the site shall be inspected quarterly for buildup of sediments. Catch basins shall be cleaned out when accumulated material comes within 18 inches of the bottom of the lowest pipe exiting the catch basin. Sediments in the catch basins shall be removed and disposed of by a contractor to perform such work. Records of catch basins inspection and cleanout will be maintained with compliance records.

3.4 Spill Prevention, Reporting and Emergency Cleanup

The facility maintains a spill plan which is provided in Attachment A. Employees of the facility shall be made aware of response procedures, including material handling and storage requirements. Spill kits and cleanup equipment shall be stored in locations close to areas of potential spills.

3.5 Training

Onsite training of key personnel responsible for compliance with the SWPPP shall be provided annually. All operators on the site shall be familiarized with the major elements of the plan. Training shall include identifying pollutant sources, understanding pollutant control measures, spill prevention and response, good housekeeping, and environmental acceptable material handling/management practices. The training will focus on how employees make a difference in complying with the SWPPP and preventing contamination of stormwater. Temporary workers and others at the site will be given appropriate training information at the conclusion of the site safety meeting or on an as-needed basis.

3.6 Illicit Discharge Detection and Elimination

Illicit discharges are any discharges that are not composed entirely of stormwater with limited exceptions (e.g., firefighting) listed in the Permit. Illicit discharges are prohibited at the Facility. A dry season inspection will be performed to determine if illicit discharges are occurring. Any discharges identified during the inspection, or at any other time, will be eliminated as soon as practicable.

3.7 Maintenance and Repair of Vehicles and Equipment

Leaks and spills of fluids that occur during the repair of vehicles and equipment shall use good housekeeping and cover and containment BMPs. Employees shall:

• Inspect for leaks all incoming vehicles and equipment stored temporarily outside.

- Use drip pans or containers under parts or vehicles that drip or are likely to drip liquids, such as during dismantling of liquid containing parts or removal or transfer of liquids.
- Retain and maintain an appropriate oil spill cleanup kit on-site for rapid cleanup of material spills.
- Remove batteries and liquids from vehicles and equipment in designated areas designed to prevent stormwater contamination. Store cracked batteries in a covered non-leaking secondary containment systems.
- Empty oil and fuel filters before disposal. Provide for proper disposal of waste oil and fuel.

Samson employees currently keep maintenance records and check lists for vehicles and equipment. A copy of the current check list is provided in Attachment B.

3.8 Mobile Fueling

The following BMPs will be implemented for mobile fueling on the site.

- Ensure that all mobile operations are approved by the local fire department and comply with local and Washington State fire codes.
- Ensure the presence and the constant observation/monitoring of the driver/operator at the fuel transfer location at all times during fuel transfer and ensure that the following procedures are implemented at the fuel transfer locations:
 - Locating the point of fueling at least 25 feet from the nearest storm drain or inside an impervious containment with a volumetric holding capacity equal to or greater than 110 percent of the fueling tank volume, or covering the storm drain to ensure no inflow of spilled or leaked fuel. Storm drains that convey the inflow to a spill control separator approved by the local jurisdiction and the fire department need not be covered. Potential spill/leak conveyance surfaces must be impervious and in good repair.
 - Placement of a drip pan, or an absorbent pad under each fueling location prior to and during all dispensing operations. The pan (must be liquid tight) and the absorbent pad must have a capacity of 5 gallons. Spills retained in the drip pan or the pad need not be reported.
- The handling and operation of fuel transfer hoses and nozzle, drip pan(s), and absorbent pads as needed to prevent spills/leaks of fuel from reaching the ground, storm drains, and receiving waters.
- Not extending the fueling hoses across a traffic lane without fluorescent traffic cones, or equivalent devices conspicuously placed so that all traffic is blocked from cross the fuel hose.
- Removing the fill nozzle and cessation of filing when automatic shut-off valve engages. Do not allow automatic shutoff fueling nozzles to be locked in the open position.
- Not "topping off" the fuel receiving equipment.
- Provide the driver/operator of the fueling vehicle with adequate flashlights or other mobile lighting to view fill openings with poor accessibility. Consult with local fire department for additional lighting requirements.

3.9 Erosion and Sediment Control

Erosion and sediment control BMPs are needed at this site to minimize track out of dirt onto public roadways. The following BMPs will be implemented at this site during operating hours.

Grated Exits

Grates will be installed in areas where truck exit the site to help minimize track out of dirt onto public roadways. Truckers will be instructed to drive over the grates prior to exiting the facility, so that excess dirt can be contained on the facility. Grates will be inspected at least twice/year and will be cleaned out on an as needed basis.

Vacuum Sweeper

During times of significant trucking activity, it's possible that track out of dirt may still occur even with grate exits. If this occurs, a vacuum sweeper will be employed on an as needed basis to minimize dirt track out onto road ways.

Catch Basin Inlet Protection

Where catch basins are located outside of vehicle traffic or storage areas, inlet protections (such as silt fence, hay bales, or wattles) will be installed to reduce the volume of sediment entering the conveyance system.

4.0 Monitoring

In accordance with the permit, stormwater monitoring and sampling shall be performed quarterly at location OUT1 (Figure 2).

First Quarter: January, February, March Second Quarter: April, May, June Third Quarter: July, August, September Fourth Quarter: October, November, December

Stormwater quality conditions at the site will be monitored by a contracted consultant or qualified technician. Stormwater will be collected in general accordance with Ecology's Guidance Document, "How to Do Storm Water Sampling. A Guide for Industrial Facilities." (December 2002). Samples will be tested for pH, Turbidity, Oil, and Grease, and, Zinc in accordance with the methods identified in Table2. Visual observations of sheen, odor, discoloration, turbidity, and odor will be noted on field forms.

Samples will be taken to Fremont Analytical in Seattle, Washington.

Stormwater Samplin	ng Parameters				
Parameter	Units	Benchmark Value	Analytical Method	Laboratory Quantitation Level	Minimum Sampling
Turbidity	NTU	25 NTU	EPA 180.1 Meter	0.5	Quarterly
рН	Standard Units	5.0-9.0 pH	Meter/ Paper	±0.5	Quarterly
Oil Sheen	Yes/No	No visible oil sheen	N/A	N/A	Quarterly
Zinc, Total	μg/L	117 ug/L	EPA 200.8	2.0	Quarterly
Copper, Total	μg/L	14 μg/L	EPA 200.8	2.5	Quarterly
Industry-Specific Be	nchmarks and Sampling	Requirement	•		
Petroleum Hydrocarbons	mg/L	10 mg/L	ECY NWTPH Dx	0.1	Quarterly
Sampling and Efflue	nt Limit Applicable to Di	ischarges to 303(d)-listed	Waters/Puget Sound Se	diment Cleanup	
Total Suspended Solids(TSS)	mg/L	30 mg/L(Maximum Daily Effluent Limit)	SM 2540 D	5	Quarterly

Table 2.

For each measurement or sample taken, the following information shall be recorded: (1) the date, exact place, method, and time of sampling or measurement; (2) the individual who performed the sampling or measurement; (3) the dates are analyses were performed; (4) the laboratory that performed the analyses; (5) the analytical techniques or methods used; and (6) the result of all analyses. Also, visual observations of the presence of floating materials including oil and grease, visible sheen, discoloration, turbidity, and odor shall be noted on the sampling forms (Attachment C). Sampling and laboratory chain-of-custody forms shall be signed by the individual conducting the sampling. Copies of sampling forms will be retained with SWPPP compliance records.

Analytical and testing result will be compared against benchmark values stated in the permit and identified in Table 2.

At this facility, the sampling point, OUT1, is exposed during mid to low tides, therefore stormwater sampling will occur as soon as the tide has dropped low enough to expose the sampling point.

Discharge Monitoring Reports (DMRs) will be submitted quarterly to Ecology. If there is no discharge during the entire quarter, a report will be submitted stating that no discharge occurred. DMRs must be submitted to Ecology within 45 days following the end of the reporting period:

First Quarter	Not later than May 15
Second Quarter	Not later than August 15
Third Quarter	Not later than November 15
Fourth Quarter	Not later than February 15

DMRs and SMRs shall also be submitted electronically using Department of Ecology's Water Quality Permitting Portal.

If a sample is taken but one or more of the criteria listed above are not met, the report will include an explanation identifying what criteria were not met and why.

Annual Reports shall be submitted no later than May 15th of each year. The annual report shall include the following information:

4.1 Discharging to Puget Sound Sediment Cleanup Site

In accordance with the 2015-2019 ISGP update, Total Suspended Solid (TSS) was added as one of the stormwater sampling parameter as a requirement of discharging to a Puget Sound Sediment Cleanup Site. The sample shall be taken at least once per quarter. Benchmarks and sampling requirement can be found in Table 2.

In addition, accumulated solids from storm drain lines (including inlets, catch basins, sumps, conveyance lines, and oil/water separators) shall be removed at least once prior to October 1, 2016. Line shall also be cleaned (e.g., jetting, vacuuming, removal, loading, storage and/or transport) using BMPs to prevent discharges of storm drain solids to surface waters of the state.

Storm drains solids must also be sampled and analyzed at least once prior to October 1, 2016. Sampling parameters and analytic methods are listed in Table 3.

Analyte	Method in Sediment	Quantitation Level ^a			
Conventional Parameters	Conventional Parameters				
Percent total solids	SM 2540G, or ASTM Method D 2216	NA			
Total organic carbon	Puget Sound Estuary Protocols (PSEP 1997), or EPA 9060	0.1%			
Grain size	Ecology Method Sieve and Pipette (ASTM 1997), ASTMD422, or PSEP 1986/2003	NA			
Metals					
Antimony, Total	EPA Method 200.8 (ICP/MS) , EPA Method 6010 or EPA Method 6020	0.2 mg/kg dw ^b			
Arsenic, Total	EPA Method 200.8 (ICP/MS) , EPA Method 6010 or EPA Method 6020	0.1 mg/kg dw			
Beryllium, Total	EPA Method 200.8 (ICP/MS) , EPA Method 6010 or EPA Method 6020	0.2 mg/kg dw			
Cadmium, Total	EPA Method 200.8 (ICP/MS) , EPA Method 6010 or EPA Method 6020	0.2 mg/kg dw			

Table 3

Chromium, Total	EPA Method 200.8 (ICP/MS) , EPA Method 6010 or EPA Method 6020	0.5 mg/kg dw	
Copper, Total	EPA Method 200.8 (ICP/MS) , EPA Method 6010 or EPA Method 6020	0.2 mg/kg dw	
Lead, Total	EPA Method 200.8 (ICP/MS) , EPA Method 6010 or EPA Method 6020	0.2 mg/kg dw	
Mercury, Total	EPA Method 1631E, or EPA Method 7471B	0.005 mg/kg dw	
Nickel, Total	EPA Method 200.8 (ICP/MS) , EPA Method 6010 or EPA Method 6020	0.1 mg/kg dw	
Selenium, Total	EPA Method 200.8 (ICP/MS) , EPA Method 6010 or EPA Method 6020	0.5 mg/kg dw	
Silver, Total	EPA Method 200.8 (ICP/MS) , EPA Method 6010 or EPA Method 6020	0.1 mg/kg dw	
Thallium, Total	EPA Method 200.8 (ICP/MS) , EPA Method 6010 or EPA Method 6020	0.2 mg/kg dw	
Zinc, Total	EPA Method 200.8 (ICP/MS) , EPA Method 6010 or EPA Method 6020	5.0 mg/kg dw	
Organics			
PAH compounds ^c	EPA Method 8270 D	70 μg/kg dw	
PCBs (aroclors), Total ^d	EPA Method 8082	10 μg/kg dw	
Petroleum Hydrocarbons			
NWTPH-Dx	NWTPH-Dx	25.0-100.0 mg/kg dw	

5.0 Administrative Requirements

This SWPPP shall be retained on-site or within reasonable access of the site and be immediately available, upon request, to Ecology.

5.1 Reporting and Record Keeping

Records of all monitoring information, inspections and visual observations, corrective actions and follow-up activities, and copies of all reports, shall be maintained for a minimum of five (5) years.

Reports that are completed throughout the year will be kept onsite and made available for regulatory inspections. These reports include:

- Catch basin inspection forms (quarterly)
- Catch Basin Cleanout Records
- Preventive Maintenance Forms

- Employee Training (annually)
- Stormwater Sampling Forms (quarterly)
- Discharge Monitoring Reports (quarterly)
- Annual Reports (annually)

5.2 Certification of the SWPPP

The permittee and co-permittee shall ensure implementation of this SWPPP

"I certify under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Base on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

//signed// By: Richard Seslar PERMITTEE //Signed// BY: Jerry Morgan CO-PERMITTEE

Seattle Facilities and Safety Operations Manager TITLE

Director of Sales TITLE

6.0 References

Department of Ecology, December 2002. "How to do Storm Water Sampling. A Guide for Industrial Facilities."

STORM WATER SAMPLING FIELD LOG

Samson Facility 6361 1st Avenue South, Seattle, WA

Sample Station	Time Rainfall Began	Date	20	Name of Sampler	Number of bottles	Turbidity	Visual Observations

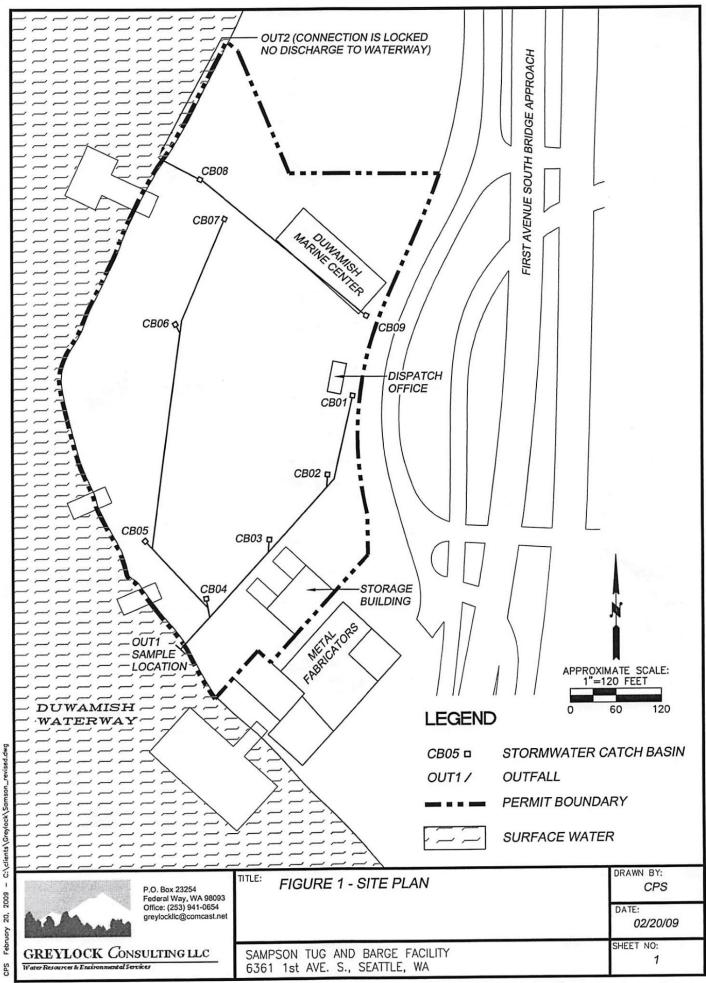
LIFT TRUCK OPERATOR'S DAILY/WEEKLY INSPECTION REPORT INTERNAL COMBUSTION LIFT TRUCKS

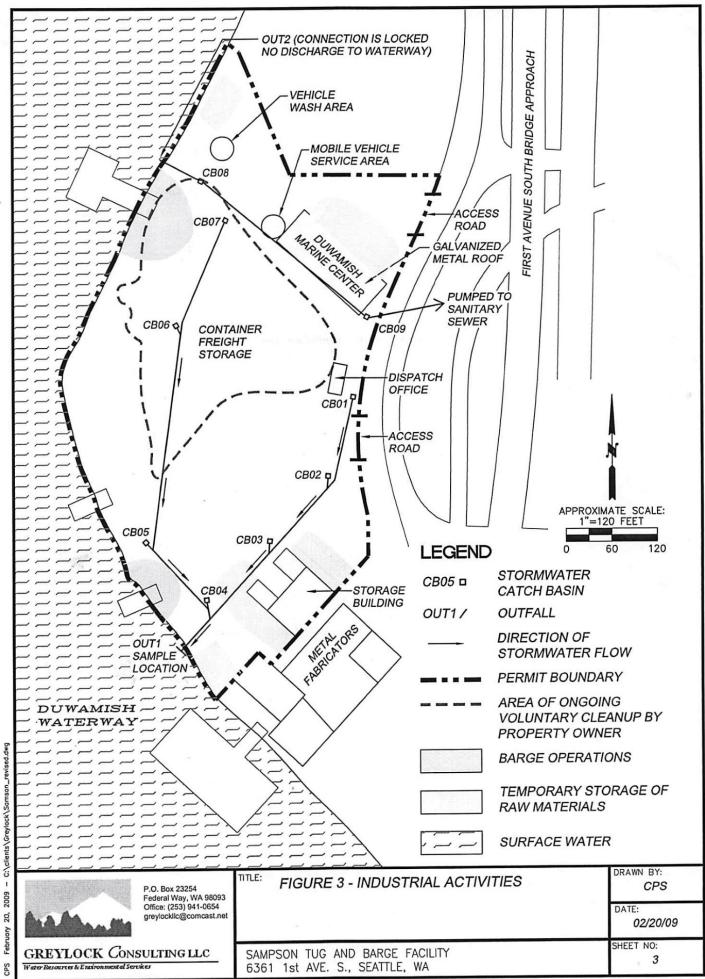
OPERATOR'S	NAME
UNIT NO.	

HOUR METER READING (START OF WEEK)

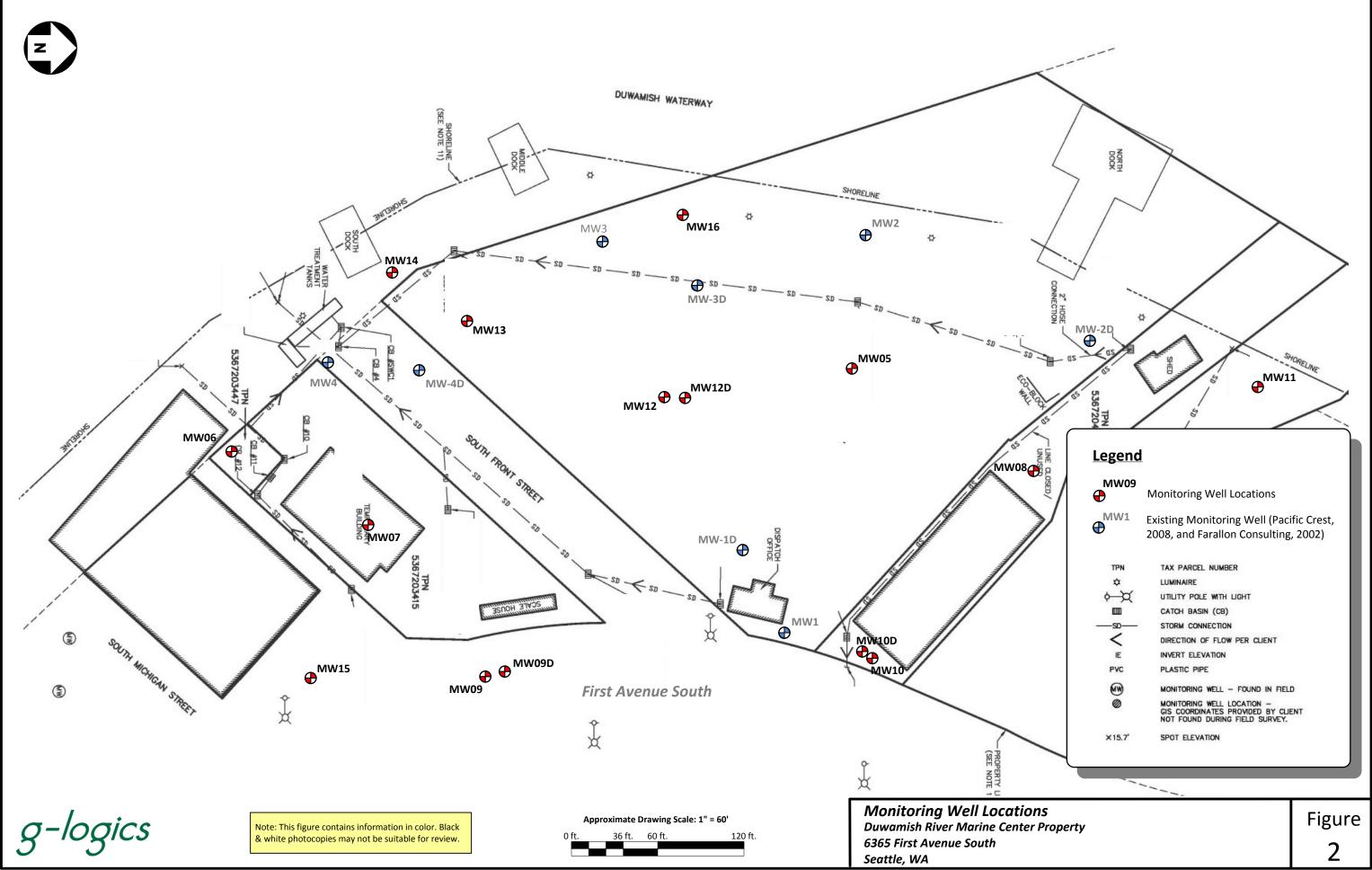
_ MODEL ______ SERIAL NUMBER ______ SPECIAL ATTACHMENTS _____

SHIFT 1____2___3____


IMPORTANT!


This check must be made by the truck operator daily at the start of the shift.

	Sunday		Monday		Tuesday		Wednesday		Thursday		Friday		Saturday	
Daily Inspection Check List for Week Beginning, 19	ок	Needs Attn.	ок	Needs Attn.	ок	Needs Attn.	ок	Needs Attn.	ок	Needs Attn.	ок	Needs Attn.	ок	Needs Attn.
 Engine OII— Check level. (When oil must be added, show number of quarts in "needs attn." column.) 														
2. Fuel System— Check for leaks. (Report any leaks immediately.)							etket 1							
3. Radiator— Check coolant level. (Caution.)														
 Tires— Check for foreign particles, gouges and cuts; check pneumatic tire pressure. 														
5. Mast, Carriage, Fork or Attachment— Check for loose or missing bolts and damage; check chain; check adjustment and operation.														
6. Oil and Water— Check for leaks.														L
7. Truck Damage— Explain in remarks section.														
8. Operator's Compartment— Inspect for cleanliness.														
9. Engine Oil Gauge— • Check pressure. (Report any abnormal pressure reading.)					ali sata apagaita t									
10. Fuel— Check level.														
11. Ammeter— Check charging rate (Report unusual readings.)														
12. Safety Equipment (Rotating lights, back-up alarms, etc.)— Check operation.														
13. Steering— Check operation.														
14. Brakes— Check brake pedal travel and parking brake adjustment.														
15. Truck Operation — Report any unusual operation or noises.														<u> </u>


REMARKS: _____

		WEEKLY	CHECK (Operato	rs' Signature)	(Date)
	ОК	Needs Attn.		OK	Needs Attn.
1. Clean Air Cleaner*			5. Oil Lines for Leaks		A
2. Hydraulic Oil Level			6. Battery Compartment and Electrolyte Level		
3. Oil Clutch Level 4. Transmission Oil Level			7. Power Steering Oil Level 8. Lift Chain Adjustment		
*Where operating conditions require in acc	ordance with agr	eement.			
REMARKS:					

. .

Mapping Reference: PLS, Inc. Survey Dated 9/2/2015

*Precautions the employees may take to lessen the possibility of exposure by usage of appropriate protective measures.

Anyone having questions about this plan please contact the terminal manager, tug captain or port captain. We will use this plan as a guideline to protect our employees from the dangers of any chemical product we may use in our operation. This plan should be available for all crews to read and should be available for any inquiries by OSHA.

X. Hazardous Material Spill Notification

An oil or hazardous material spill in a terminal yard or into the water from a terminal or a vessel will be reported as directed in the following instructions:

- 1. Oil/Haz Spill T/B Annahootz SOPEP
- 2. Oil/Haz Spill Deck Cargo Barges Shipboard Oil Pollution Emergency Plan
- 3. Oil/Haz Spill Terminals or Unattached Tugs Take the following action:

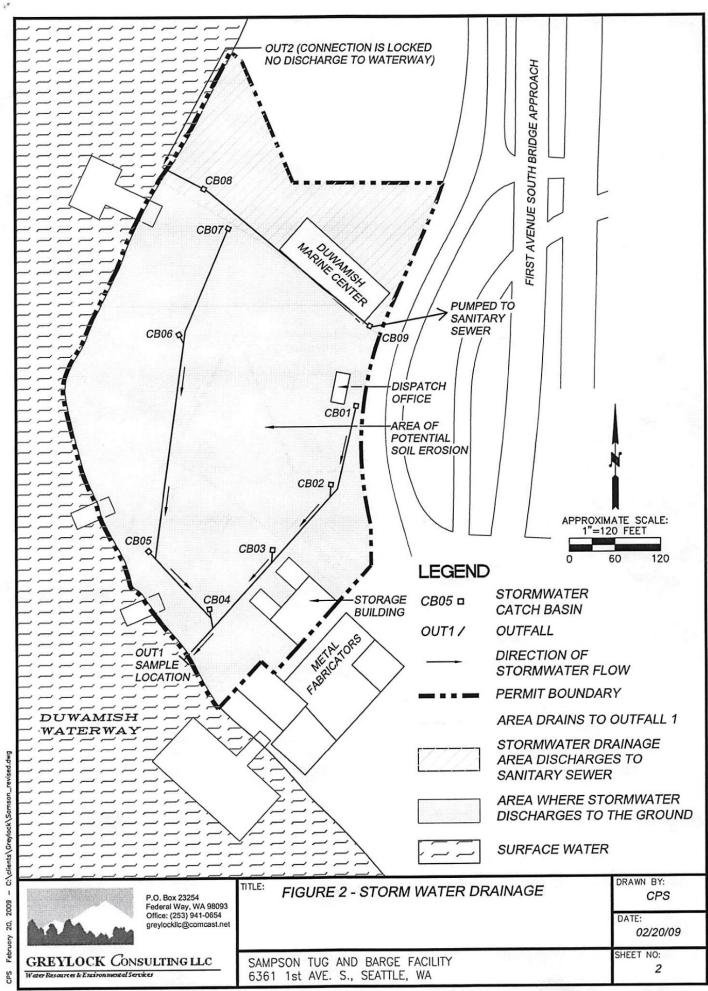
A. Action Steps:

 Shut off ignition sources 	
•Warn people in area	
•Contain the spill	
 Notify company and agencies 	
 Stop the product flow 	
 Use personal protection equipment 	
 Obtain any assistance needed 	
 Complete the spill report 	

B. Notification - notify appropriate personnel and agencies as soon as possible and commence response action.

Sitka office:		Fax 907-747-5370
Port Captain Wally Stilson:	907-747-5048 (h) 90	07-738-3380 (c)
USCG National Response:	1-800-424-8802	
Alaska Dept. Of Environmental Co	inservation:	1-800-478-9300
Washington Dept. Emergency Service	vices:	1-800-258-5990
Washington Maritime:	206-448-7557; Char	nnel 20 VHF Radio
USCG MSO Seattle:	206-217-6232	
USCG MSO Juneau:	907-463-2450	
USCG MSO Anchorage:	907-271-6700	
USCG MSO Valdez:	907-835-4793	
USCG MSO Kodiak:	907-487-5750	

ADEC Juneau: Anchorage: Kodiak: 907-465-5340 907-349-7755 907-486-6760 Fax 907-486-6749


C. Record and provide the information from the Time Line Sheet to the Port Captain when making notification. Continue to use the Time Line Sheet throughout the incident. This will become part of the official record of a spill.

D. Post Spill Action - Provide written report to Port Captain on incident including copy of Time Line Sheet, response taken, amount of oil recovered, amount of time and equipment expended. Include copies of state or federal documents.

:,

i

ł

Stormwater Pollution Prevention Plan Samson Tug & Barge/Duwamish Marine Center

Stormwater Pollution Prevention Plan Samson Tug & Barge/Duwamish Marine Center This page was intentionally left blank.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

PO Box 47600 • Olympia, WA 98504-7600 • 360-407-6000 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

December 3, 2014

Kirk Miles Terminal Manager Samson Tug And Barge Company Inc 6361 1st Ave S Seattle, WA 98108-3228 Facility Name: SAMSON TUG & BARGE SEATTLE FAC Location: 6361 1ST AVE S Seattle, WA 98108-3282 Permit No: WAR011484 County: King

RE: Reissuance of Coverage under the Industrial Stormwater General Permit

Dear Kirk Miles:

The Washington Department of Ecology (Ecology) has reissued the Industrial Stormwater General Permit (permit). A copy of your new permit is enclosed. **Retain this letter with your permit and Stormwater Pollution Prevention Plan. It is the official record of permit coverage for your facility.** Ecology issued the final permit December 3, 2014 and it becomes effective January 2, 2015.

Permit Overview

The new permit has a number of changes. The most significant changes are summarized in the enclosed "Summary of Changes" table. You can find more information on Ecology's website at: <u>http://www.ecy.wa.gov/programs/wq/stormwater/industrial/index.html</u>. Please contact Ecology if you have any questions.

New Reporting Requirements

Beginning in 2015, you must submit Discharge Monitoring Reports and Annual Reports electronically, using Ecology's Water Quality Permitting Portal– Permit Submittals application, unless a waiver from electronic reporting has been granted. You can find more information regarding Ecology's Water Quality Permitting Portal on our website at: http://www.ecy.wa.gov/programs/wq/permits/paris/webdmr.html.

If you have technical questions regarding Ecology's Water Quality Permitting Portal, please contact the portal staff at (800) 633-6193/option 3 or email WQWebPortal@ecy.wa.gov.

Site Specific Monitoring Requirements

Enclosed is a summary of the monitoring requirements for your facility. This summary is based on the best information available to Ecology about your facility. If you believe there is a discrepancy between what the permit requires and the enclosed summary, please contact Ecology immediately. In the case of a difference between the permit as applied to your facility and the summary, the permit requirements take precedence. Industrial Stormwater General Permit Holder December 3, 2014 Page 2

Your Right to Appeal the Permit

You have a right to appeal the terms and conditions of this general permit to the Pollution Control Hearing Board (PCHB) within 30 days of the date of receipt of this permit issuance notice. The appeal process is governed by Chapter 43.21B RCW and Chapter 371-08 WAC. "Date of receipt" is defined in RCW 43.21B.001(2).

To appeal you must do the following within 30 days of the date of receipt of this notice:

- File your appeal and a copy of this notice with the PCHB (see addresses below). Filing means actual receipt by the PCHB during regular business hours.
- Serve a copy of your appeal and this notice on Ecology in paper form by mail or in person. (See addresses below.) E-mail is not accepted.

Address and Location Information

Street Addresses	Mailing Addresses
Department of Ecology	Department of Ecology
Attn: Appeals Processing Desk	Attn: Appeals Processing Desk
300 Desmond Drive SE	PO Box 47608
Lacey, WA 98503	Olympia, WA 98504-7608
Pollution Control Hearings Board	Pollution Control Hearings Board
1111 Israel Road SW, Suite 301	PO Box 40903
Tumwater, WA 98501	Olympia, WA 98504-0903

For Additional Information or Assistance

Ecology is committed to providing assistance to you. Please review our web page at <u>http://www.ecy.wa.gov/programs/wq/stormwater/industrial/index.html</u>. For questions about transfers, terminations, and other administrative issues, please contact Josh Klimek at <u>jokl461@ecy.wa.gov</u> or (360) 407-7451.

If you have questions regarding stormwater management issues at your site, please contact Greg Stegman at <u>GSTE461@ecy.wa.gov</u> or (425) 649-7019.

Questions

If you have questions regarding the permit, please contact Jeff Killelea at jeff.killelea@ecy.wa.gov or (360) 407-6127.

Sincerely,

Bill Moan

Bill Moore, P.E., Manager Program Development Services Section Water Quality Program

Enclosures

Permit No: WAR011484 Facility Name: SAMSON TUG & BARGE SEATTLE FAC Location: 6361 1ST AVE S Seattle, WA 98108-3282 SIC Codes: 4491

Summary of Your Facility's ISGP Monitoring Requirements

This summary is based on the best information available to Ecology about your facility. If you believe there is a discrepancy between what the permit requires and the enclosed summary, please contact Ecology immediately. In the case of a difference between the permit as applied to your facility and the summary, the permit requirements take precedence.

Benchmarks and Sampling Requirements Applicable to All Facilities (Condition S5, Table 2)

Parameter	Units	Benchmark Value	Analytical Method	Laboratory Quantitation Level ¹
Turbidity	NTU	25	EPA 180.1 Meter	0.5
pН	SU	Between 5.0 - 9.0	Meter/Paper ²	±0.5
Oil Sheen	Yes/No	No visible oil sheen	N/A	N/A
Copper, Total	µg/L	Western WA: 14 Eastern WA: 32	EPA 200.8	2.0
Zinc, Total	µg/L	117	EPA 200.8	2.5

¹The Permittee shall ensure laboratory results comply with the quantitation level (QL) specified in the table. However, if an alternate method from 40 CFR Part 136 is sufficient to produce measurable results in the sample, the Permittee may use that method for analysis. If the Permittee uses an alternative method it must report the test method and QL on the discharge monitoring report.

²Permittees shall use either a calibrated pH meter or narrow-range pH indicator paper with a resolution not greater than ± 0.5 Standard Units.

Industry-Specific Benchmarks and Sampling Requirements (Condition S5, Table 3)

Parameter	Units	Benchmark Value	Analytical Method	Laboratory Quantitation Level ¹			
Petroleum Hydrocarbons	mg/L	10	ECY NWTPH Dx	0.1			
¹ The Permittee shall ensure laboratory results comply with the quantitation level (QL) specified in the table. However, if an alternate method from 40 CFR Part 136 is sufficient to produce measurable results in the sample, the Permittee may use that method for analysis. If the Permittee uses an alternative method it must report the test method and QL on the discharge monitoring report.							

Sampling and Effluent Limits Applicable to Discharges to 303(d)-listed Waters (Condition S6, Table 6)

Parameter	Units	Maximum Daily ¹	Analytical Method ²	Laboratory Quantitation Level ³	Impairment Type
Total Suspended Solids (TSS)	mg/L	30	SM 2540 D	5	303(d)/Puget Sound Sediment Cleanup

¹Maximum daily effluent limit means the highest allowable daily discharge. The daily discharge means the discharge of a pollutant measured during a calendar day. The daily discharge is the average measurement of the pollutant over the day; this does not apply to pH.

²Or other equivalent method with the same reporting level.

³The Permittee shall ensure laboratory results comply with the quantitation level (QL) specified in the table. However, if an alternate method from 40 CFR Part 136 is sufficient to produce measurable results in the sample, the Permittee may use that method for analysis. If the Permittee uses an alternative method it must report the test method and QL on the discharge monitoring report.

Additional Sampling

Ecology may have established site-specific sampling requirements in addition to those contained in the ISGP (Administrative Order, permit modification, etc.). These additional requirements are not addressed in this summary.

This page was intentionally left blank.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

PO Box 47600 • Olympia, WA 98504-7600 • 360-407-6000 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

December 3, 2014

James Gilmur President Duwamish Metal Fabrication 16 S Michigan St Seattle, WA 98108-3256 Facility Name: Duwamish Metal Fabrication Location: 16 S MICHIGAN ST Seattle, WA 98108 Permit No: WAR125423 County: King

RE: Reissuance of Coverage under the Industrial Stormwater General Permit

Dear James Gilmur:

The Washington Department of Ecology (Ecology) has reissued the Industrial Stormwater General Permit (permit). A copy of your new permit is enclosed. **Retain this letter with your permit and Stormwater Pollution Prevention Plan. It is the official record of permit coverage for your facility.** Ecology issued the final permit December 3, 2014 and it becomes effective January 2, 2015.

Permit Overview

The new permit has a number of changes. The most significant changes are summarized in the enclosed "Summary of Changes" table. You can find more information on Ecology's website at: <u>http://www.ecy.wa.gov/programs/wq/stormwater/industrial/index.html</u>. Please contact Ecology if you have any questions.

New Reporting Requirements

Beginning in 2015, you must submit Discharge Monitoring Reports and Annual Reports electronically, using Ecology's Water Quality Permitting Portal– Permit Submittals application, unless a waiver from electronic reporting has been granted. You can find more information regarding Ecology's Water Quality Permitting Portal on our website at: <u>http://www.ecy.wa.gov/programs/wq/permits/paris/webdmr.html</u>.

If you have technical questions regarding Ecology's Water Quality Permitting Portal, please contact the portal staff at (800) 633-6193/option 3 or email WQWebPortal@ecy.wa.gov.

Site Specific Monitoring Requirements

Enclosed is a summary of the monitoring requirements for your facility. This summary is based on the best information available to Ecology about your facility. If you believe there is a discrepancy between what the permit requires and the enclosed summary, please contact Ecology immediately. In the case of a difference between the permit as applied to your facility and the summary, the permit requirements take precedence. Industrial Stormwater General Permit Holder December 3, 2014 Page 2

Your Right to Appeal the Permit

You have a right to appeal the terms and conditions of this general permit to the Pollution Control Hearing Board (PCHB) within 30 days of the date of receipt of this permit issuance notice. The appeal process is governed by Chapter 43.21B RCW and Chapter 371-08 WAC. "Date of receipt" is defined in RCW 43.21B.001(2).

To appeal you must do the following within 30 days of the date of receipt of this notice:

- File your appeal and a copy of this notice with the PCHB (see addresses below). Filing means actual receipt by the PCHB during regular business hours.
- Serve a copy of your appeal and this notice on Ecology in paper form by mail or in person. (See addresses below.) E-mail is not accepted.

Address and Location Information

Street Addresses	Mailing Addresses
Department of Ecology	Department of Ecology
Attn: Appeals Processing Desk	Attn: Appeals Processing Desk
300 Desmond Drive SE	PO Box 47608
Lacey, WA 98503	Olympia, WA 98504-7608
Pollution Control Hearings Board	Pollution Control Hearings Board
1111 Israel Road SW, Suite 301	PO Box 40903
Tumwater, WA 98501	Olympia, WA 98504-0903

For Additional Information or Assistance

Ecology is committed to providing assistance to you. Please review our web page at <u>http://www.ecy.wa.gov/programs/wq/stormwater/industrial/index.html</u>. For questions about transfers, terminations, and other administrative issues, please contact Josh Klimek at <u>jokl461@ecy.wa.gov</u> or (360) 407-7451.

If you have questions regarding stormwater management issues at your site, please contact Greg Stegman at <u>GSTE461@ecy.wa.gov</u> or (425) 649-7019.

Questions

If you have questions regarding the permit, please contact Jeff Killelea at jeff.killelea@ecy.wa.gov or (360) 407-6127.

Sincerely,

Bill Moan

Bill Moore, P.E., Manager Program Development Services Section Water Quality Program

Enclosures

Permit No: WAR125423 Facility Name: Duwamish Metal Fabrication Location: 16 S MICHIGAN ST Seattle, WA 98108 SIC Codes: 3449

Summary of Your Facility's ISGP Monitoring Requirements

This summary is based on the best information available to Ecology about your facility. If you believe there is a discrepancy between what the permit requires and the enclosed summary, please contact Ecology immediately. In the case of a difference between the permit as applied to your facility and the summary, the permit requirements take precedence.

Benchmarks and Sampling Requirements Applicable to All Facilities (Condition S5, Table 2)

Parameter	Units	Benchmark Value	Analytical Method	Laboratory Quantitation Level ¹
Turbidity	NTU	25	EPA 180.1 Meter	0.5
pH	SU	Between 5.0 - 9.0	Meter/Paper ²	±0.5
Oil Sheen	Yes/No	No visible oil sheen	N/A	N/A
Copper, Total	µg/L	Western WA: 14 Eastern WA: 32	EPA 200.8	2.0
Zinc, Total	µg/L	117	EPA 200.8	2.5

¹The Permittee shall ensure laboratory results comply with the quantitation level (QL) specified in the table. However, if an alternate method from 40 CFR Part 136 is sufficient to produce measurable results in the sample, the Permittee may use that method for analysis. If the Permittee uses an alternative method it must report the test method and QL on the discharge monitoring report.

²Permittees shall use either a calibrated pH meter or narrow-range pH indicator paper with a resolution not greater than ± 0.5 Standard Units.

Industry-Specific Benchmarks and Sampling Requirements (Condition S5, Table 3)

Parameter	Units	Benchmark Value	Analytical Method	Laboratory Quantitation Level ¹
Lead, Total	µg/L	81.6	EPA 200.8	0.5
Petroleum Hydrocarbons	mg/L	10	ECY NWTPH Dx	0.1

¹The Permittee shall ensure laboratory results comply with the quantitation level (QL) specified in the table. However, if an alternate method from 40 CFR Part 136 is sufficient to produce measurable results in the sample, the Permittee may use that method for analysis. If the Permittee uses an alternative method it must report the test method and QL on the discharge monitoring report.

Sampling and Effluent Limits Applicable to Discharges to 303(d)-listed Waters (Condition S6, Table 6)

Parameter	Units	Maximum Daily ¹	Analytical Method ²	Laboratory Quantitation Level ³	Impairment Type
Total Suspended Solids (TSS)	mg/L	30	SM 2540 D	5	303(d)/Puget Sound Sediment Cleanup

¹Maximum daily effluent limit means the highest allowable daily discharge. The daily discharge means the discharge of a pollutant measured during a calendar day. The daily discharge is the average measurement of the pollutant over the day; this does not apply to pH.

²Or other equivalent method with the same reporting level.

³The Permittee shall ensure laboratory results comply with the quantitation level (QL) specified in the table. However, if an alternate method from 40 CFR Part 136 is sufficient to produce measurable results in the sample, the Permittee may use that method for analysis. If the Permittee uses an alternative method it must report the test method and QL on the discharge monitoring report.

Additional Sampling

Ecology may have established site-specific sampling requirements in addition to those contained in the ISGP (Administrative Order, permit modification, etc.). These additional requirements are not addressed in this summary.

APPENDIX E

Boring/Well Logs

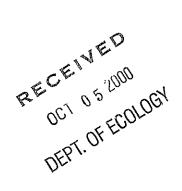
PRELIMINARY PHASE II SUBSURFACE INVESTIGATION

DUWAMISH MARINE CENTER PROPERTY 6365 FIRST AVENUE SOUTH SEATTLE, WASHINGTON 98108

September 13, 2000

PREPARED BY:

The Riley Group, Inc. 10728 Lake City Way NE Seattle, WA 98125


PREPARED FOR:

Mr. Jim Gilmur % Duwamish Marine Center 16 South Michigan Street Seattle, Washington 98108

Riley Project No. 2000-122

Offices located in Washington, Oregon and California

10728 Lake City Way N.E. • Seattle, WA 98125 • Tel (206) 417-0551 • Fax (206) 417-0552 http://www.Riley-Group.com

Logged by D. Holmes on July 17, 2000

former and the

West and a start of the

Section of the sectio

Subserver and and

Excavated using a Case 580 rubber-tired backhoe operated by Mr. Joe Koivu of Duwamish Marine Center.

Depth (feet)	Sample ID/ Interval	Moisture Content (%)	PID (ppm)	nscs	Soil Description
	-		<u> </u>	F (GP)	Sparse grass over brownish gray sandy gravel FILL to 4 inches.
1	1.5'	11	8.0	(SP) F (GP)	Gravelly sand FILL to 1.0 feet, grayish brown, fine grained, pebble to cobble gravel, abundant debris including concrete, brick, wood, damp. TP-1-1.5' (9:10) Sandy gravel FILL to 2.3 feet, brownish gray, sand medium-grained, pebble to cobble gravel including basalt fragments, damp.
3	2.5'	15	0.0	F	TP-1-2.5' (9:20) Sand FILL to 3.2 feet with sparse gravel and wire debris, very dark gray, medium-grained, odor of decay, faint odor of hydrocarbons, damp (possible disturbed native soil).
4	4.5'		5.0	F (SM)	Silty sand FILL with very sparse debris (brick fragments) to at least 5 feet, dark gray, medium- to fine-grained, damp (possible slightly disturbed native soil). TP-1-4.5' (9:30)
5	-				
6	-				
	-				
	-				
	-				
+					
I					
		•			tion: 5.0 feet. Unit breaks are based upon visual olor, texture, and amount of debris present.
		<u></u>			Duwamish Marine Center Property
	1072	e Rile	CITY WA	NY NE	2000-122 Log of Test Pit IP-1 Figure A-1
- 10 TO	SEA'	TTLE, WA	ASHING	TON 981	25 Logged by: D. Holmes Date Logged: 7/17/2000

Logged by D. Holmes on July 17, 2000

Excavated using a Case 580 rubber-tired backhoe operated by Mr. Joe Koivu of Duwamish Marine Center.

Depth (feet)	Sample ID/ Interval	Moisture Content (%)	PID (ppm)	nscs		S	oil Descriptio	on	
1	-			F (GP)		gravel/gravelly sand , pebble gravel, minc			y, medium
2	2'		0.0	F (SP)	gravel, r	ILL to 3.25 feet, brow minor debris includin nts, damp. 7 (10:00)		-	•
3	-					Et (40.0E) Condu Or		fact destaurs .	
4	3.5'	12	2.1	F (GP)	gravel, s includin	5' (10:05) Sandy Grasand medium-grained generative frage in the second	d, very dark gray	/, abundant deb	ris
5	4.5'	18	4.1	F (SP)	TP-2-4. medium	silty lenses, damp. . 5' (10:10) Sand FILL n-grained, minor deb ILL to at least 7.0 fee	ris as above, dar	mp.	ad slightly
6	5.5'	22	4.0	F (SP)	moist (p	bossible native soil). 5' (10:15)	r, very daik gray	, medium-graine	su, siiginay
7	-								
						.0 feet. Unit breat exture and amour		•	
	TL	o Dilo	n C#	011m	Inc		amish Marine	e Center Prop	erty
	1072	e Rile	ČITY WA	AY NE	1	Riley Project # 2000-122	Log of Tes		Figure A-2
	SBA	TTLE, WA	42 U INO	LTOIN 39		Logged by: D. Site Addres		Date La South, Seattle, Wash	ogged: 7/17/2000 ington 98108
<u></u>						······································			29

Logged by D. Holmes on July 17, 2000

Excavated using a Case 580 rubber-tired backhoe operated by Mr. Joe Koivu of Duwamish Marine Center.

.....

Depth (feet)	Sample ID/ Interval	Moisture Content (%)	PID (ppm)	nscs	Soil Description				
	-			F (GP)	Sandy gravel FILL to 1 foot, light brown, medium grained, pebble gravel, minor metal debris, dry.				
1 -				F (GP)	Sandy gravel FILL to at least 6.5 feet bgs, very dark gray, medium-grained, pebble gravel, decreasing gravel to 2.5 feet bgs, slightly moist, increasing moisture with depth to moist at 6.5 feet.				
3	-								
4				F (SP)					
5									
6	5.5'	15	6.3		TP-3-5.5' (10:15) Sand FILL as above, debris includes rubber, cans, metal cuttings, wood, concrete fragments. @ 6.5' - encountered large concrete clast and backfilled excavation.				
7									
			,		ation: 6.5 feet. Unit breaks are based upon visual color, texture and amount of debris present.				
					Duwamish Marine Center Property				
	Th 1072	e Rile Blake (y Gr City Wa	<i>oup,</i> . Ny ne	Inc. Riley Project # Log of Test Pit TP-3 Figure A-	.3			
	SEA'	TTLE, WA	ASHING	TON 981	Logged by: D. Holmes Date Logged: 7/17/2000 Site Address: 6365 First Avenue South, Seattle, Washington 98108				

Logged by D. Holmes on July 17, 2000

Rabourses and

Converses?

Same and a second

÷. A Excavated using a Case 580 rubber-tired backhoe operated by Mr. Joe Koivu of Duwamish Marine Center.

			,		
Depth (feet)	Sample ID/ Interval	Moisture Content (%)	PID (ppm)	nscs	Soil Description
1 2 3 4 5 6 7	<i>ё</i>	19	27.0	F (GP) F (SP)	Soil Description Sandy gravel FILL to 1 foot, light brown, medium grained, pebble gravel, minor metal debris, dry. Silty sand with gravel FILL to at least 3.5 feet bgs, black, medium-grained, very dark gray, medium-grained, pebble gravel, slightly moist, increasing moisture with depth. TP-4-2' (11:30) Black silty sand FILL as above, abundant metal cuttings/debris. @ 3.5' - encountered large concrete clast or a concrete slab and backfilled excavation.
+					
, <u>, , , , , , , , , , , , , , , , , , ,</u>					ation: 3.5 feet. Unit breaks are based upon visual color, texture and amount of debris present.
					Duwamish Marine Center Property
	1072	e Rile	y Gr	OUP, Y NE	
	SEA	TTLE, WA	-sninu	1014 98:	
. <u></u>					Site Address: 6365 First Avenue South, Seattle, Washington 98108

Boring B-1

Logged by D. Holmes on August 3, 2000 Driller: R & R Drilling

Drilled using Mobile B-61, 4.5" ID HSA with 140 lb. hammer.

ANONE A

#10%motovoorentee

ATTOM STREET WORK

SSSS and and a state of the

Contraction of the second seco

Depth (feet)	Sample ID/ Interval	(N) Blows/ft	Moisture Content (%)/ Water Table	PID (ppm)	nscs	Soil Description
						Dust over brownish gray sandy gravel gravel (FILL), gravel pea to pebble sized, sand medium-grained, dry.
	1	50/4"		na		1 - No recovery, probable sandy gravel fill, very dense. (8:35)
5	2	77/10"		0.3	F (GP)	2 - Sandy gravel FILL, gray, gravel pea-sized to pebble, sand fine-grained, dry, very dense. (8:45)
	3	28		0.3		3 - Sandy pebble gravel FILL, dark gray, sand fine- to medium grained, minor silt and clay, sheet metal noted in sample, damp, medium dense. (9:00)
10	4	17		0.0		4 - Clayey sandy pebble gravel FILL, dark grayish brown, sand medium- to fine-grained, wet, medium dense. (9:10)
15	5	68/10" 50/4"		na 12.6	F (SM) F (GP)	 5 - Silty sand/sandy silt FILL, very dark gray, sand fine-grained, pebble in sample shoe, very little recovery, wet, very dense. (9:15) (a) 14' - refusal (drilling through wire rope). 6 - Sandy pea gravel FILL, black, abundant wood and wire rope fragments, sand medium- to coarse-grained, sheen present, pizza-like odor noted, very dense. (9:30)
20						
	g	roundw	ater sa	mple	was no	eet. Groundwater encountered at 10.5 feet bgs. A ot retreivable. Groundwater exhibited a very faint t east of the south edge of the north dock.
	5 m	יית	<u> </u>		T -10	Duwamish Marine Center Property
E	1072 SEA	E KILE 28 LAKE (ATTLE, W	e y Gro city way ashingto	up, 1 7 NE ON 9813	25	Riley Project # 2000-122 Log of Boring B-1 Figure A-5 Logged by: D. Holmes Date Logged: 8/3/2000 Site Address; 6365 First Avenue South, Seattle, Washington 98108
					}	32

Boring B-2

Logged by D. Holmes on August 3, 2000. Driller: R & R Drilling

Drilled using Mobile B-61, 4.5" ID HSA with 140 lb. hammer.

.

Depth (feet)	Sample ID/ Interval	(N) Blows/ft	Moisture Content (%)/ Water Table	PID (ppm)	nscs	Soil Description
						Tan-colored sandy pebble gravel FILL, sand fine- to medium-grained, machine shop-type metal cuttings present in drill cuttings at a depth of 8 inches. Extremely hard drilling to 3.0 feet.
5	1	36	7.0	132	F (GP & SP)	1 - Gravelly sand FILL with wood fragments and metal cuttings, black, sand medium-grained, pebble gravel, dense, damp. (10:40)
						@ 6' - very hard drilling with abundant metal cuttings in drill cuttings.
	2	26		53.2	<u> </u>	2 - Upper 6": Wood and rubber tire fragments in a sand matrix (FILL). Lower 12": SAND, very dark gray to black, medium-fine-grained, damp,
10			V		SP	medium dense. (10:50)
15	3	12		1.5	ML	3 - SILT with very fine-grained sand, brownish gray, moderate to high plasticity, very moist, stiff. (10:55)
20	4	35		0.0	SP	4 - SAND, very dark gray to black, medium- to medium-coarse-grained, 1.5-inch thick silt bed and 1.5" peat bed present in center of sample (both light brown), wet, dense. (11:05)
	G	iroundv	vater sa	mple	B-2-W	eet. Groundwater encountered at 10.8 feet bgs. / obtained at 11:15. Boring located 84 feet south of prises building.
					r	Duwamish Marine Center Property
	1072	8 LAKE	ey Gro city way ashingto	้ พิย		Riley Project # 2000-122 Log of Boring B-2 Figure A-6 Logged by: D. Holmes Date Logged: 8/3/2000 Site Address: 6365 First Avenue South, Seattle, Washington 98108

<u> </u>		<u></u>				Boring B-3
		l by D. Ho R & R Dri	olmes on A illing	ugust 3	3, 2000	Drilled using Mobile B-61, 4.5" ID HSA with 140 lb. hammer.
Depth (feet)	Sample ID/ Interval	(N) Blows/ft	Moisture Content (%)/ Water Table	(mqq) Olq	uscs	Soil Description
						Brush and 5/8" crushed rock over gray sandy pebble gravel fill, sand medium grained, very hard drilling to 7.0'.
	1	50/5"		na		1 - No recovery, probable sandy gravel fill, very dense. (12:35)
5						@ 5' to 5.5' - white rock fragments (quartzite) in cuttings along with T-shirt and rag fragments. Very difficult drilling.
•						@ 7' - cuttings become fine-grained sand.
-	2	11		0.0	F	2 - Gravelly sand with silt (FILL), grayish brown, medium- to fine-grained, pebble gravel, glass fragments present, damp, medium dense. (13:05)
10					(GP &	@ 10' - encountered black sand fill with pizza-like odor.
15	3	30		0.0	SP)	3 - Gravel with silt and sand (FILL), black, sand medium- to coarse-grained, pebble gravel, glass fragments present, faint pizza-like odor noted, wet, medium dense. (13:15)
20	4	30		0.0		4 - Silty sand (FILL), black, medium to fine-grained, minor pebble gravel present, "greasy" appearance, glass and wood fragments present, pizza-like odor noted, wet, medium dense. (13:20)
						@ 21' - cuttings become silty sand, probable fill/native soil interface.
	5	23		0.0	SP	5 - SAND, black, medium- to coarse grained, slight "greasy" appearance, wet, very faint pizza-like odor noted, wet, medium dense. (13:35)
3-3-Ŵ	obtain	ed at 13	3:45. No	oticea	ble sh	vater encountered at 12.0 feet bgs. Groundwater sample een on groundwater. Boring located 180 feet west- outh-southwest of boring B-1.
		Th + 7	~			Duwamish Marine Center Property
	1072	8 LAKE (city way ashingto	' NE		Riley Project # 2000-122Log of Boring B-3Figure A-7Logged by: D. HolmesDate Logged: 8/3/2000
		, , , , , , , , , , , , , , , ,			-	Site Address: 6365 First Avenue South, Seattle, Washington 98108

Boring B-4

Logged by D. Holmes on August 3, 2000 Driller: R & R Drilling

8000000 and 2008

kan mut

1

Drilled using Mobile B-61, 4.5" ID HSA with 140 lb. hammer.

Depth (feet)	Sample ID/ Interval	(N) Blows/ft	Moisture Content (%)/ Water Table	PID (ppm)	nscs	Soil Description
5	B 1	50/6"		na	F	Dust over brownish gray sandy gravel gravel (FILL), gravel pea to pebble sized, sand medium-grained, dry. 1 - No recovery, sample was one large fragment of basalt (FILL), very dense. (14:35)
	2	34	V	na	 	2 - No recovery, sample was large basalt fragment with approximately 1-ounce of brown, medium-grained sand (FILL), dense. (14:45)
10	3	8		0.0	OL	3 - Organic silty CLAY, brown, moderately plastic, damp, medium soft, damp. (15:15) @ 12' - cuttings are medium-grained black sand to 14.5 feet.
15	4	9		0.0	SP	4 - As sample 3 above, highly plastic, wood fibers present, wet, stiff. (15:20)
20						
	G	Broundv		as not	samp	eet. Groundwater encountered at 9.25 feet bgs. bled. Boring located 68 feet northeast of the south
	1072	8 LAKE	e y Gro čity way ashingto	NĒ		Duwamish Marine Center Property Riley Project # Log of Boring B-4 Figure A-8 2000-122 Log of Boring B-4 Figure A-8 Logged by: D. Holmes Date Logged: 8/3/2000 Site Address: 6365 First Avenue South, Seattle, Washington 98108

T: 425 . 427.0061 F: 425 . 427.0067

SITE CLOSURE REPORT

GILMUR/HALE FAMILY TRUST SITE 6365 FIRST AVENUE SOUTH SEATTLE, WASHINGTON

> Submitted by: Farallon Consulting, L.L.C. 320 3rd Avenue NE, Suite 200 Issaquah, Washington 98027

> > Farallon PN: 781-001

For: Mr. Jim Gilmur 16 South Michigan Street Seattle, Washington 98108

September 25, 2002

Prepared by:

Lauren Carroll Senior Hydrogeologist

Reviewed by:

Peter Jewett Principal

					N CONSUI ve. NE, Suit					LOG OF BORING B-1	
		6: F	mur/Hal 365 1st / Seattle, arallon	Issaqua le Family Avenue Washin PN: 781	ih, WA 9802 y Trust South gton -001	27	Drilling C Drilling F	e Compli company orman	eted : 3-1 : Ca: : Ca:	(Page 1 of 1) 13-02/1030 Sampler Type : 1.5" splitspoon 13-02/1050 Depth Of Water ATD -: 7.5' ascade Drilling Total Depth : 9' asey Goble	
		Lo	gged By	<u>y: Jim P</u>	ender	<u>L</u>	Drilling M	lethod	: Ge	eoprobe with autohammer	
	Depth in Feet	Sample Interval	Time	% Rec- overy	Sample ID	Sample		nscs	GRAPHIC	DESCRIPTION	Water Level
	-00-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		1035	70	B1-0-3	Y	0	GM		Gravelly SILT with sand, medium brown-gray, slightly moist, plastic debris (Fill)	
	-	$\left \right $						SW	•	SAND, poorly sorted medium sand, gray (Fill) Woody debis, some plastic, creosote-like odor (Fill)	
			1040	10	B1-3-6		0				
	1			75			0	SM			₩
	-							sw		SAND with silt, very fine, wet, gray, no odor (Fill)	
08-14-2002 W:\Projects\781001 Duwamish Marine\Drawings_Plots\b-1.bor	- - - - - -										
W:\Projects\781001 Duwamish	- - - - - - - - - - - - - - - - - - -	REVIA	TIONS								
08-14-2002 V	~DD		10110							LOG OF BORING B-1 (Page 1 of 1)	1
1											

and the second s

()

•

		320) 3rd Av Issaqua	N CONSUI ve. NE, Suit ih, WA 9802	e 200				(Page 1 o	f 1)
	63 5 F	865 1st / Seattle, Farallon	e Family Avenue Washiny PN: 781 y: Jim P	South gton -001		Date/Tim Date/Tim Drilling C Drilling F Drilling N	e Corr ompar orman	npteted:3 ny::0 ;0	13-02/1000 Sampler Type : 1.5" spl 13-02/1025 Depth Of Water ATD : 7.0'-7.5 ascade Drilling Total Depth : 12' asey Goble	tspoon
Depth in Feet	Sample Interval	Time	% Rec- overy	Sample ID	Sample Analyzec		uscs	GRAPHIC	DESCRIPTION	Depth in Feet
0-				<u></u>			GM		Silty sandy GRAVEL, fine sand, dark brown, gray, light brown in color (Fill)	-0-
-	IXI	1005	80	B2-0-3	Y	o	sw	+ + e = .e. .	SAND, fine, orangish brown to dark brown, moist (Fill)	
-	Ш						SM		Silty SAND, gray, trace gravel (angular), moist (Fill)	
	\mathbb{N}						SM		Sand and silt, gray, moist (Fill)	— ·
5-	١Ň	1010	60	B2-3-6		0		<u>(0)(0)</u>	Whitish, solid substance (fractured) Wood and glass debris, black, with sandy SILT, minor	
		1015	50	B2-6-9		0	GM		Sandy, silty GRAVEL (fractured), fine to coarse, fine sand, sub-round to angular (Fill)	-
			25			0			Glass and plastic debris, wet (Fill) Wet, more glass and plastic observed, minimal recove no sand (Fill)	y, 10-
20-	REVIA	TIONS								20-
1001									LOG OF BORING	Э B-2

 \bigcirc

ſ

 $\langle \rangle$

FARALLON CONSULTING 320 3rd Ave. NE, Suite 200 Issonuch WA 98027												
Gilmur/Hale Family Trust 6365 1st Avenue South Seattle, Washington Farallon PN: 781-001						Date/Time Started : 3-13-02/0900 Sampler Type : 1.5" splits Date/Time Completed : 3-13-02/0920 Depth Of Water ATD : ~7.5' Drilling Company : Cascade Drilling Total Depth : 9' Drilling Forman : Casey Goble : 2.5''' : 2.5'''						
Sample Interval	Time	% Rec- overy	Sample	Sample	PID	nscs	GRAPHIC			Depth in Feet	Water Level	
M	0905	100	B3-0-3	Y	2.0	sw GW SW		Silty, gravelly SAND, fi brown to black, moist,	ine, fine to coarse gravel, dark metal and glass debris (Fill)	0-		
	0910	100	B3-3-6		0			SAND, dark brown to b	plack moist, fine to medium	5-		
M	0915	90	B3-6-9		0	SW				-	• • • • • • • • • • • • • • • • • • •	
										10 - - - -		
										- - - - -		
15												
	Sample Interval	Gilmur/Hal G365 1st / Seattle, Farallon Logged B Time 0905 0910 0910	320 3rd Avenue Seattle, Washin Farallon PN: 781 Logged By: Jim F Time % Rec- overy 0905 100 0910 100 0915 90	320 3rd Ave. NE, Suil Issoquoh, WA 9807 Gilmur/Hale Family Trust 6365 1st Avenue South Seattle, Washington Farallon PN: 781-001 Logged By: Jim Pender Image: South Seattle, Washington Farallon PN: 781-001 Logged By: Jim Pender Image: South Seattle, Washington Farallon PN: 781-001 Logged By: Jim Pender Image: South Seattle, Washington Image: South Seattle, Washington	320 3rd Ave. NE, Suite 200 Issoquah, WA 98027 Gilmur/Hale Family Trust 6365 1st Avenue South Seattle, Washington Farallon PN: 781-001 Logged By: Jim Pender Image: Sample Sample Sample Sample Overy Image: Sample Sam	320 3rd Ave. NE, Suite 200 Issoquch, WA 98027 Gilmur/Hale Family Trust 6365 1st Avenue South Seattle, Washington Date/Tim	320 3rd Ave. NE, Suite 200 Issoquah, WA 98027 Gilmur/Hale Family Trust 6365 1st Avenue South Seattle, Washington Date/Time Star Date/Time Com Drilling Company Drilling C	320 3rd Ave. NE, Suite 200 Issoquoh, WA 98027 Gilmur/Hale Family Trust G365 114 Avenue South Seattle, Washington Date/Time Completed :: Date/Time Completed :: Date/Time Completed :: Date/Time Completed :: Drilling Company :: Drilling Forman :: Drilling Method :: Drilling Method :: Drilling Method :: Drilling Company :: Drilling Comp	Standard, WA 2002 Gilmur/Hale Family Trust S365 1st Avenue South Seattle, Washington Date/Time Staned :: 3-13-02/0920 Galta Venue South Seattle, Washington Date/Time Completed :: 3-13-02/0920 Farallon PN: 781-001 Dilling Company :: Cascade Drilling Company :: Cascade Driling :: Cas	120 120 <td>1300 and wes NE Subject (Page 1 of 1) 1300 and wes NE Subject Date/Time Subject Sampler Type 1:5" splitspoon 1300 and wes NE Subject Date/Time Subject :3-15-02/0900 Depth Of Water ATD :-7.6" 1300 and wes NE Subject Date/Time Subject :3-15-02/0900 Depth Of Water ATD :-7.6" 1500 and wes Net Subject Date/Time Complete: :3-15-02/0900 Depth Of Water ATD :-7.6" 1500 and West Net Subject Dilling Forman :Caeey Golde :Caeey Golde Depth of Water ATD :-7.6" 1500 and West Net Subject Dilling Forman :Caeey Golde DESCRIPTION Depth is net constraints 1500 and West Net Subject Sample Representation Net Subject Sample Representation Net Subject Depth is net constraints 1500 and Net Subject Sample Representation Net Subject Sample Representation Net Subject Depth is net constraints 1500 and Net Subject Sample Representation Net Subject Sample Representation Net Subject Depth is net constraints Depth is net constraints 100 and Subject 100 B3-0-3 Y 2.0 SW SAND west representation Net Subject SanD west representation Net Subject SanD west representat</td>	1300 and wes NE Subject (Page 1 of 1) 1300 and wes NE Subject Date/Time Subject Sampler Type 1:5" splitspoon 1300 and wes NE Subject Date/Time Subject :3-15-02/0900 Depth Of Water ATD :-7.6" 1300 and wes NE Subject Date/Time Subject :3-15-02/0900 Depth Of Water ATD :-7.6" 1500 and wes Net Subject Date/Time Complete: :3-15-02/0900 Depth Of Water ATD :-7.6" 1500 and West Net Subject Dilling Forman :Caeey Golde :Caeey Golde Depth of Water ATD :-7.6" 1500 and West Net Subject Dilling Forman :Caeey Golde DESCRIPTION Depth is net constraints 1500 and West Net Subject Sample Representation Net Subject Sample Representation Net Subject Depth is net constraints 1500 and Net Subject Sample Representation Net Subject Sample Representation Net Subject Depth is net constraints 1500 and Net Subject Sample Representation Net Subject Sample Representation Net Subject Depth is net constraints Depth is net constraints 100 and Subject 100 B3-0-3 Y 2.0 SW SAND west representation Net Subject SanD west representation Net Subject SanD west representat	

 \bigcirc

()

		FA	0 3rd Av	N CONSUI ve. NE, Suit h, WA 9802	e 200				LOG OF E	BORING B-4 (Page 1 of 1)	-	
	63 F	365 1st / Seattle, arallon	e Family Avenue Washing PN: 781 y: Jim P	South gton -001		Date/Tim Date/Tim Drilling C Drilling F Drilling N	ie Com Iompar orman	pleted:3 iy :0 :0	3-13-02/0930 3-13-02/0950 Cascade Drilling Casey Goble Geoprobe with autohamm	Sampler Type : 1.5" splitspo Depth Of Water ATD : ~8.0' Total Depth : 9' er	ion	
Depth in Feet	Sample Interval	Time	% Rec- overy	Sample ID	Sample Analyzed	1	USCS	GRAPHIC	E	DESCRIPTION	Depth in Feet	
0 - - -		0940	100	B4-0-3	Y	5.0	GM SM		sand, light to dark br angular (Fill)	silt, fine to coarse gravel, fine own, moist, subround to fractured 	0-	
		0945	100	B4-3-6		0	SP SW		SAND, fine to mediu moist, no odor (Fill)	m, well sorted, black-gray, very mount of coarse rounded gravel	5-	
		0950	90	B4-6-9		0	sw sw sw sw		SAND, fine to mediu moist, no odor, visibl	wn (sharp contact) (Fill)	-	
10											10-	
- - - 15 - - -											15-	
- - - 20- - ABB	REVIA	TIONS									20-	
										LOG OF BORING (Page		

(

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,) 3rd Av	CONSUL re. NE, Suit	e 200				LOG OF BO	ORING B-5 (Page 1 of 1)		
		63 F	365 1st / Seattle, arallon	Issoquo le Family Avenue Washing PN: 781 /: Jim P	South gton -001	27	Date/Tim Date/Tim Drilling C Drilling F	e Com ompan orman	pleted : 3 ly : 0 : 0	3-13-02/1100 3-13-02/1130 Cascade Drilling Casey Goble Geoprobe with autohammer	Sampler Type : 1.5" splitspo Depth Of Water ATD : 8.5' Total Depth : 9'	on	
Depti in Feet	h t	Sample Interval	Time	% Rec- overy	Sample ID	Sample	PID	uscs	GRAPHIC		SCRIPTION	Depth in Feet	Water Level
O				80			0	SW SM Fill	30. 30. 30. 30. 30. 30. 30. 30. 30. 30.	SAND, medium brown Silty SAND with gravel glass), brown to black, moist (Fill) Plastic, rubble, glass, a	, debris (plastic, rubber, metal, medium grained, well sorted,	0	
5			1110	60	B5-3-4	Y	150	SM		Silty SAND, fine to me and wood debris (Fill)	dium grained, black, with plastic		-
			1120	25	B5-6-9	Y	0	SM		Silty SAND, fine to mer with glass, wood, and p No recovery from the b		- - - - -	×
10)											10	
1015-0-500r												-	
	;											- 15 - - -	
		evia [.]	TIONS								LOG OF BORING	 B-5	
uo-14-2002											(Page		

 $\left(\right)$

•

(

				D 3rd Av	N CONSUL 19. NE, Suit	e 200				LOG OF B	ORING B-6 (Page 1 of	1)	
N v dans v		63 F	Imur/Hal 365 1st / Seattle, Farallon	e Family Avenue Washin PN: 781	South gton -001		Date/Tim Date/Tim Drilling C Drilling F Drilling N	ie Com ompar orman	ipleted : : iy : (; (3-13-02/0815 3-13-02/0850 Cascade Drilling Casey Goble Geoprobe with autohammer	Sampler Type : 1.5" split Depth Of Water ATD : 7'-7.5' Total Depth : 9'		
	Depth in Feet	Sample Interval	Time	% Rec- overy	Sample ID	Sample	PID	USCS	GRAPHIC		ESCRIPTION	Depth in Feet	Water Level
	0		0835	75	B6-0-3	Y	O	GM SP		coarse sand, subround to dark brown, moist, r SAND, fine to medium	fine to coarse gravel, fine to ded to angular fractured, medium to odor (Fill) grained well sorted, silt lens one feet, brown to black, very moist,	- 0-	<u> </u>
	5		0840	80	B6-3-4		0	SP			, well sorted, very moist, brown,	- 5-	1 1 1 1 - T - T - T
			0845	80	B6-6-9		O	ML		SILT, gray, wet (Fill)		-	
bor												10-	<u> </u>
08-14-2002 W-Projects\781001 Duwamish Marine\Drawings_Plots\b-6.bor	15											15-	
V/Projects/781001 E	20-						. <u> </u>					20-	
08-14-2002 M	ABB	KEVIA	TIONS								LOG OF BORING	B-6 ge 1 of 1)	

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			3rd Av	n Consui 7e. NE, Suit	e 200				LOG OF B	ORING B-7		
	6: F	Imur/Ha 365 1st / Seattle, Farallon	Issoquo le Family Avenue Washin PN: 781 y: Jim P	ih, WA 9802 y Trust South gton -001	27	Date/Tim Date/Tim Drilling C Drilling F Drilling N	ie Com Compar orman	ipleted : 3 iy : 0 : 0	3-13-02/1135 3-13-02/1200 Cascade Drilling Casey Goble Geoprobe with autohammer	(Page 1 of 1) Sampler Type : 1.5" splitspo Depth Of Water ATD : ~10' Total Depth : 11'(refusal)	on	
Depth	ample Interval	<u>9960 D</u>	%					GRAPHIC		SCRIPTION	Depth	Water Level
Feet	Sam	Time	Rec- overy	Sample ID	Sample Analyzed	PID (units)	nscs	GRA		· · · · · · · · · · · · · · · · · · ·	Feet	Wate
-		1140	100	B7-2-4	Ŷ	0	GМ		subround to subangula slightly moist (Fill)	ilt, fine to coarse grained, ar, light brown to light gray,	-	-
-							sw		with metal shavings (F		-	
5			100		- 	0	ML FILL	100	SILT, gray, stiff, slightl Plastic, metal and woo		5	
-		1150	100	B6-6-7.5	Y	0	SP			well sorted, black, moist (Fill)		
- - - 10-			50				ML		SAND, black wet, with	sibly some concrete (Fill)	 10	
-	V V						SP		Refusal at 11' bgs.		-	
1007, F-11600											-	
											15	-
											• • •	
											- 20-	
АВВ	Revia	TIONS								LOG OF BORING	3-7	J
										(Page	1 of 1)	

C

 \bigcirc

V	**************************************	320) 3rd Av Issaqua	CONSUI ve. NE, Suit h, WA 9802	e 200				(Page 1 of 1)		
	63 (F	mur/Hai 365 1st / Seattle, arallon gged By	Avenue Washin PN: 781	South gton -001		Date/Tim Date/Tim Drilling C Drilling F Drilling M	ie Com compai orman	npleted : 3 ny : (: (-13-02/1300 Sampler Type : 1.5" splitspo -13-02/1325 Depth Of Water ATD : NA ascade Drilling Total Depth : 9' asey Goble eeoprobe with autohammer	on	
Depth in Feet	Sample Interval	Time	% Rec- overy	Sample	Sample	PID	nscs	GRAPHIC	DESCRIPTION	Depth in Feet	
0		1300	60	B8-2-3	Y	0	GW SM		Sandy GRAVEL, fine to coarse grained sand, subround to angular, medium brown to blue gray in color, wet (Fill) Sandy SILT/silty SAND, moist, dark brown in color, gray SILT at bottom two inches (Fill)	0 - - -	╌┿╾┉┎┉┎┎╶
- - 5 -			20			0	ML SW Fill		SILT, gray, moist (Fill) SAND, coarse gravelly, light tan (Fill) Woody plywood debris	5-	
		1315		B8-7.5-9		0	GW Fill SP		Sandy GRAVEL, fine to coarse grained wet (possibly from puddle at ground surface) (Fill) Woody debris SAND, fine to medium, well sorted, brown to black, moist (Fill)		
- - 10 - - - -	<u>/ 1</u>				<u> </u>	L	<u> </u>			- - 10 - -	I I I I I I I I I I I I I I I I I I I
										-	-
15 - - -										15 - - - -	
- - - 20 -	REVIA	TIONS									
100									LOG OF BORING	3-8	

.

(

		** 100 C-0			CONSUL					LOG OF B	ORING B-9		
ĺ				lssaqua	re. NE, Suit h, WA 980:					1. ALM AND ALM AND A	(Page 1 of 1)		
		63 (F	65 1st / Seattle, arallon	e Family Avenue Washing PN: 781 y: Jim P	South gton -001		Date/Tim Date/Tim Drilling C Drilling F Drilling N	ie Com Iompan orman	pleted : 3 iy : 0 ; 0	3-13-02/1340 3-13-02/1350 Cascade Drilling Casey Goble Geoprobe with autohammer	Sampler Type : 1.5" splitspo Depth Of Water ATD : NA Total Depth : 5'(refusal)	on	
			<u>9900 D</u>										
	Depth in Feet	Sample Interval	Time	% Rec- overy	Sample ID	Sample Analyzed		nscs	GRAPHIC	DE	ESCRIPTION	Depth in Feet	Water Level
	0-							sw			, fine to medium grained (Fill)	0~	-
	-	X		100	B9-1.5-2	Y	0	GM SP		moist (Fill)	sand, fine to coarse grained, 	-	
	-				B9-3-4.5		o	SM			fine to medium grained, well black, moist (Fill)	-	
	- 5							ML		SILT with gravel and w	vood debris.	- 5~	
	-	r											
	1											-	
	-											-	
	-											-	
	-											-	
	10										3	10	
	-											_	
	-											-	
9.bor	-											-	
Plots\b	-											•	
ravrings	15-											15-	
Aarine\D	-											•	
amish A	-											-	
01 Duw	- -											+	
cts/781(-											-	
W:\Proje	20 – ABB	REVIAT	TIONS									20-	
08-14-2002 W:\Projects\781001 Duwarnish Marine\Drawings Plots\b-9.bor											LOG OF BORING	3-9	
8-1											(Page 1	1 of 1)	

 \bigcirc

	ę	7 FA	RALLO	n Consui ve. ne, suit	TING				LOG OF BORII	NG B-10		
	/		Issaqua	nh, WA 980	27					(Page 1 of 1)		
	6	ilmur/Ha 365 1st / Seattle, Farallon ogged B	Avenue Washin PN: 781	South gton -001		Date/Tim Date/Tim Drilling C Drilling F Drilling M	e Com ompan orman	pleted:3 by::0 :0	-13-02/1450 D	ampler Type : 1.5" splitspo pepth Of Water ATD : 8' otal Depth : 9'	on	
]											
Depth in Feet	Sample Interval	Time	% Rec- overy	Sample ID	Sample Analyzec	1	nscs	GRAPHIC	DESCF	RIPTION	Depth in Feet	Water Level
0							GW	с. 	Sandy GRAVEL, fine to could blue gray to tan in color, sub	rse grained, light brown to angular (Fill)	0	
-	X	1440	90	B10-1-3	Y	0	SP		SAND, fine to medium grain brown in color, moist (Fill)		-	
- 5 -			40				SM		Silty SAND with minor amou recovered (Fill)		5-	
			60				SP		SAND, fine to medium grain brown, wet below 7.5' (Fill)	ea, weii sortea, meaium	-	V
10											10-	
- 15 											15-	
											- - - - -	
20- ABB		TIONS		· · · · · · · · · · · · · · · · · · ·							20-	
										LOG OF BORING E	8-10	
3						<u> </u>	<u></u>			(Page	1 of 1)	

 \bigcirc

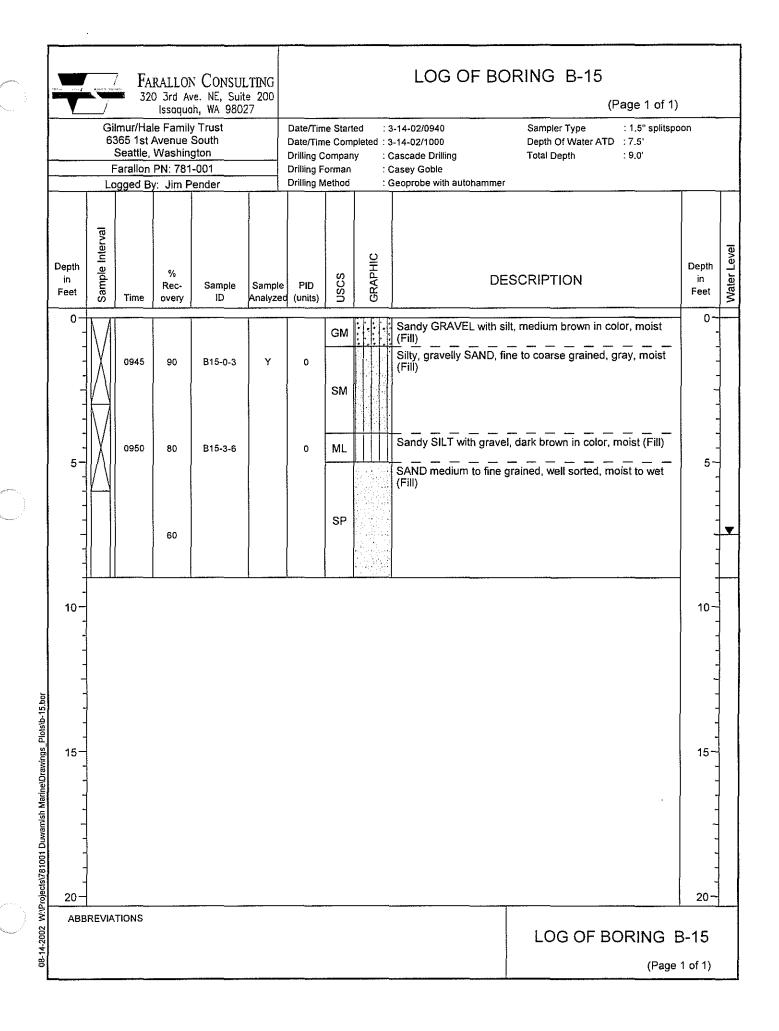
 $\left(\right)$

			7 Fa 32	0 3rd Av	N CONSUI ve. NE, Suit	e 200				LOG OF BORING B-11 (Page 1 of 1)		
		63 F	365 1st / Seattle, aralion	Issoque le Famili Avenue Washin PN: 781 y: Jim P	South gton -001		Date/Tim Date/Tim Drilling C Drilling F Drilling M	e Com ompar orman	pleted : 3 ny : 0 ; 0	B-14-02/1000 Sampler Type : 1,5" splitspoo B-14-02/1025 Depth Of Water ATD : 7,5' Cascade Drilling Total Depth : 9' Casey Goble Geoprobe with autohammer		
	epth in eet	Sample Interval	Time	% Rec- overy	Sample ID	Sample	PID	USCS	GRAPHIC	DESCRIPTION	Depth in Feet	Water Level
	0		1005	100	B11-0-3	Y	D	SP		SAND, medium to coarse grained, well sorted, medium brown, moist (Fill)	-0 	-
	- 5- -	M	1010	100	B11-3-6		0	SM		Gravely Silty SAND with plastic, rubber, and glass debris (Fill) SAND, fine to medium grained, well sorted, color grades from medium gray to dark gray, grades from moist to wet (Fill)	- - 5- -	
			1015	75			0	SP			-	
	- 10 - - - - -										- - - - - -	and the second descent of the second descent descent descent and the second descent descent descent descent des
rine/Drawings_Plots/b-11.bc											- 15 -	
08-14-2002 W/ProjectsV781001 Duwamish Marine\Drawings_PlotsIb-11.bor												
2002 W:NPro	20 — АВВІ	REVIA	TIONS							LOG OF BORING B	 -11	
08-14-										(Page 1		

 $\left(\right)$

	oyr Maria ar a V	dente your	7 Fa	RALLO O 3rd Av	N CONSUI ve. NE, Suit	LTING e 200				LOG OF BC	DRING B-12		
	V	6	lmur/Ha 365 1st , Seattle, Farallon		ih, WA 9802 y Trust South gton -001		Date/Tim Date/Tim Drilling C Drilling F Drilling M	e Com ompar orman	pleted : 3 iy : 0 : 0	3-14-02/1040 3-14-02/1100 Cascade Drilling Casey Goble Geoprobe with autohammer	(Page 1 of 1) Sampler Type : 1.5" splitspo Depth Of Water ATD : 6.0' Total Depth : 9.0'		
	Depth in Feet	Sample Interval	Time	% Rec- overy	Sample	Sample	PID	nscs	GRAPHIC		SCRIPTION	Depth in Feet	Water Level
	0-	M	1045	60	B12-0-1	Y	0	SP		SAND, medium to cou moist (Fill)	rse grained, well sorted, light tan,	0-	-
	-	\mathbb{N}	1046	60	B12-1-3		0	SM			ine gravel, fine to coarse grained		
	5	\mathbb{N}	1050	50	B12-3-6		o	SP			grained, well sorted, blue-gray	5-	
	-	\mathbb{N}	1055	75	B12-6-9		0	SP		grades from very mois	t to wet	• • •	
	-	$\ /\ $						ML		SILT, stiff, gray, wet.		-	
	10											10-	
08-14-2002 W:\Projects\781001 Duwamish Marine\Drawings_Plots\b-12.bor	- - - - - - - - - - - - - - - - - - -											15-	
rojects/78	20-											- 20-	
-2002 W:V	ABB	REVIA	TIONS								LOG OF BORING E	3-12	
08-14											(Page	1 of 1)	

 $\langle \rangle$


(

A	New York	7 FA	RALLO	N CONSUI ve. NE, Suit					LOG OF BO	DRING B-13		
	6	ilmur/Ha 365 1st . Seattle, Farallon	Issoque le Famili Avenue Washin PN: 781	ih, WA 9802 y Trust South gton -001	27	Drilling C Drilling F	e Com ompar orman	pleted : 3 iy : 0 : 0	3-13-02/1515 3-13-02/1535 Cascade Drilling Casey Goble	(Page 1 of 1) Sampler Type : 1.5" splitspo Depth Of Water ATD : 7.0' Total Depth : 9.0'	on	
		ogged B	y: Jim F	ender	T 1	Drilling N	lethod	: 0	Geoprobe with autohammer	• • • • • • • • • • • • • • • • • • • •		1
Depth in Feet	Sample Interval	Time	% Rec- overy	Sample ID	Sample Analyzed		nscs	GRAPHIC	DE	ESCRIPTION	Depth in Feet	Water Level
0-		1520	75	B13-0-3	Y	0	GM		Silty GRAVEL with sar fine to coarse grained of metal shard debris (nd, fine to coarse grained gravel, sand, brown, moist, minor amount (Fill)	0 	-
5-		1525	40	B13-3-6		0	GW			o coarse grained, gray, moist (Fill) , gray, slightly moist (Fill)	5-	
							SM					•
		1530	5				SM		Silty SAND with gravel	, black, wet		
10-											10-	
-13.bor											•	
elDrawings_Plots/b	- - - -										- 15- -	
06-14-2002 W:ProjectsV 81001 Duwamish MarineUrawings, Plotsb-13.bor - 07 BI											-	
20-			<u>.</u>								20-	
ABI	BREVIA	TIONS								LOG OF BORING E	8-13	
16-14										(Page		

 \bigcirc

()

.

) 3rd Av	K CONSUI re. NE, Suit	e 200				LOG OF BC	DRING B-14		
	V	636 S Fa	65 1st / eattle, arallon	Issaqua e Family Avenue Washiny PN: 781 /: Jim P	South gton -001	27	Date/Tim Date/Tim Drilling C Drilling F Drilling N	ie Com Iompar orman	pleted:3 iy::0 :0	3-13-02/1455 3-13-02/1510 Cascade Drilling Casey Goble Seoprobe with autohammer	(Page 1 of 1) Sampler Type : 1.5" splitspo Depth Of Water ATD : 4.0' Total Depth : 4.5'(refusal)	ion	
Der in Fe	oth	Sample Interval	Time	% Rec- overy	Sample ID	Sample	PID	USCS	GRAPHIC		ESCRIPTION	Depth in Feet	Water Level
		X	1500	90 25	B14-2-3	Y	0	GW SP SW			grained, well sorted, medium bist to very moist (Fill) dium to fine grained, well sorted, ill)	0	
	5]					<u> </u>			Refusal at 4.5'	······································	5~	
											· ·	- 10 - - -	
08-14-2002 W.Projects\781001 Duwamish Marine\Drawings_Plots\b-14.bor	5 - - - - - - - - - - - - - - - - - - -												
W:\Projects\7			ONS									20-	
08-14-2002			·····								LOG OF BORING E		

 \bigcirc

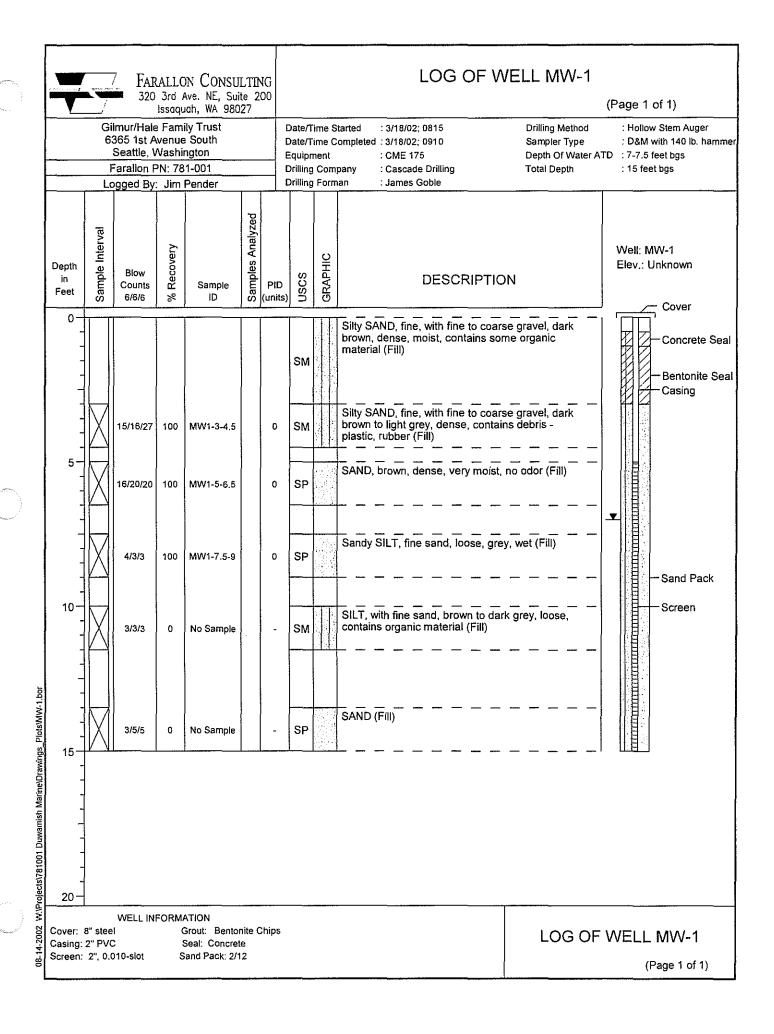
			7 FA 320	0 3rd Av	к Consui /e. NE, Suit /h, WA 9802	e 200				LOG OF BC	DRING B-16	(Page 1 of 1)		
		63 F	365 1st / Seattle, arallon	le Family Avenue Washin PN: 781 y: Jim P	y Trust South gton -001		Date/Tim Date/Tim Drilling C Drilling F Drilling M	ie Com compai orman	npleted : 3 ny : (i : (3-14-02/0905 3-14-02/0935 Cascade Drilling Casey Goble Geoprobe with autohammer	Sampler Type Depth Of Water ATI Total Depth	: 1.5" splitspo D : 6.0'-6.5' : 9.0'	on	
	Depth in Feet	Sample Interval	Time	% Rec- overy	Sample ID	Sample		nscs	GRAPHIC	DE	SCRIPTION		Depth in Feet	Water Level
	0	M	0915	80	B16-0-1.5	Y	0	sм		Silty SAND with gravel			0	
			0916	80	B16-1.5-3 B16-3-6		0	SP		SAND, medium to fine black, grades from mo	grained, well sorted, d ist to wet (Fill)	dark gray to		
	- - - 10- - - - -							ML		Sandy SILT, medium g	ıray, wet (Fill)		- - - 10- - - - - -	
00-14-2002 W.Projects/781001 Duwannish Marine\Drawings_Plots\b-16.bor	- - - - - - - - -													
14-2002 WAProjects/781001 Duwa	- 	REVIA	TIONS								LOG OF B	ORING E	- - 20- 8-16	
08-1										· · · · · · · · · · · · · · · · · · ·	l	(Page	1 of 1)	

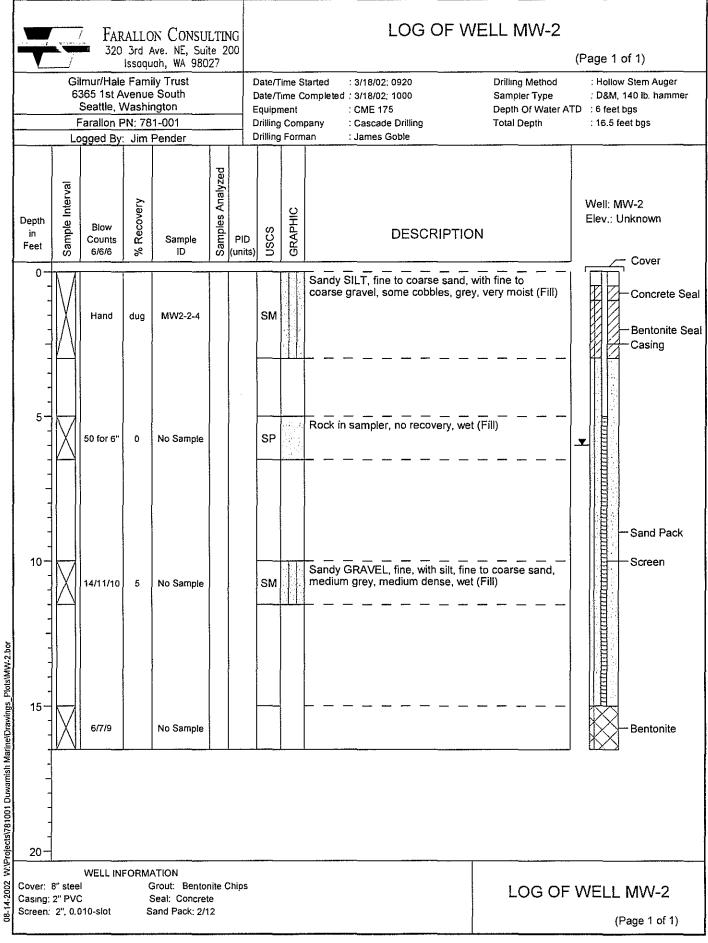
.

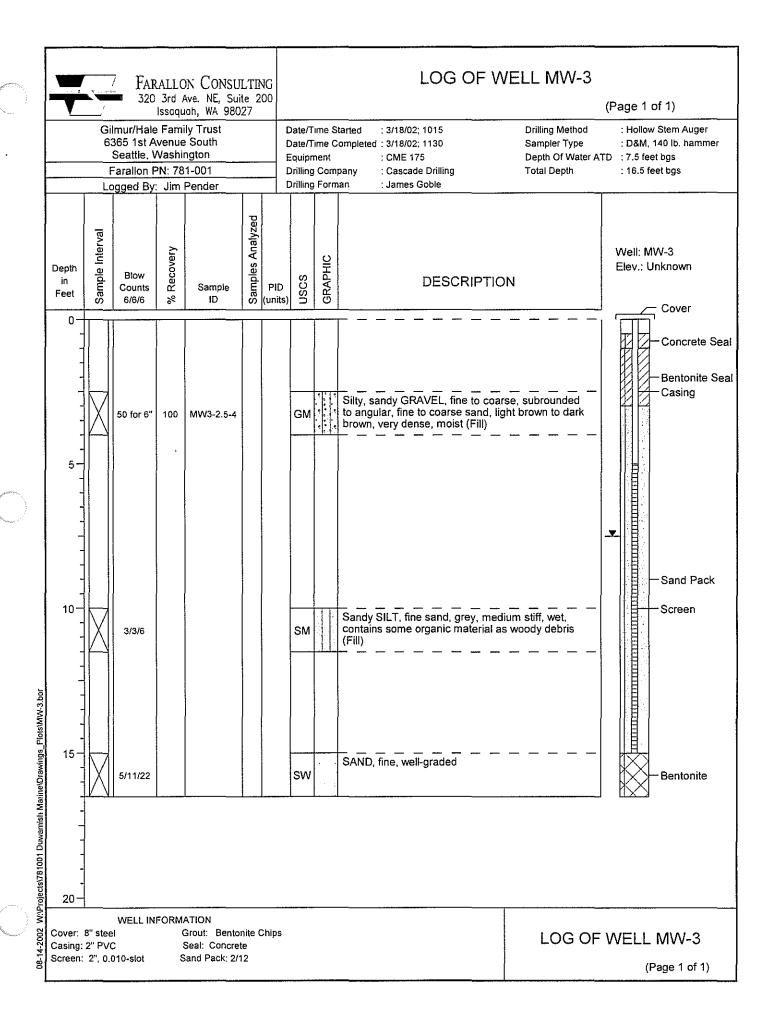
	a constant	7 Fa 32	0 3rd Av	r Consui /e. NE, Suit	e 200	LOG OF BORING B-17 (Page 1 of 1)									
	6	/ Issaquah, WA 98027 (Page 1 of 1) Gilmur/Hale Family Trust Date/Time Started : 3-14-02/0815 Sampler Type : 1.5" splitspoor 6365 1st Avenue South Date/Time Completed : 3-14-02/0840 Depth Of Water ATD : 6.0' Seattle, Washington Drilling Company : Cascade Drilling Total Depth : 7.5' Farallon PN: 781-001 Drilling Forman : Casey Goble Drilling Method : Geoprobe with autohammer													
			y, Jill r									 			
Depth in Feet	Sample Interval	Time	% Rec- overy	Sample ID	Sample Analyzec		nscs	GRAPHIC	DE	SCRIPTION	Depth in Feet	Water Level			
0		0820	100	B17-0-3	Y	0	SM		Silty SAND with gravel coarse grained, fine to angular gravel (Fill)	, light brown to gray, fine to course grained subrounded to	-0 				
5-	X	0825	70	B17-4-5		0	SM		SILT/silty SAND/sandy black, wet (Fill)	, fine to medium grained sand,					
-	\mathbb{N}	0830	100	B17-6-7.5			Fill	D D D D D D D D D D D D D D D D D D D	Debris mixed with silty,	, sandy gravel (Fill)	-				
- - - 10- - -											- - - 10				
											• 				
- - - -											- 15 -				
20-											20-				
ABB	REVIA	TIONS								LOG OF BORING	3-17				
8										(Page	1 of 1)				

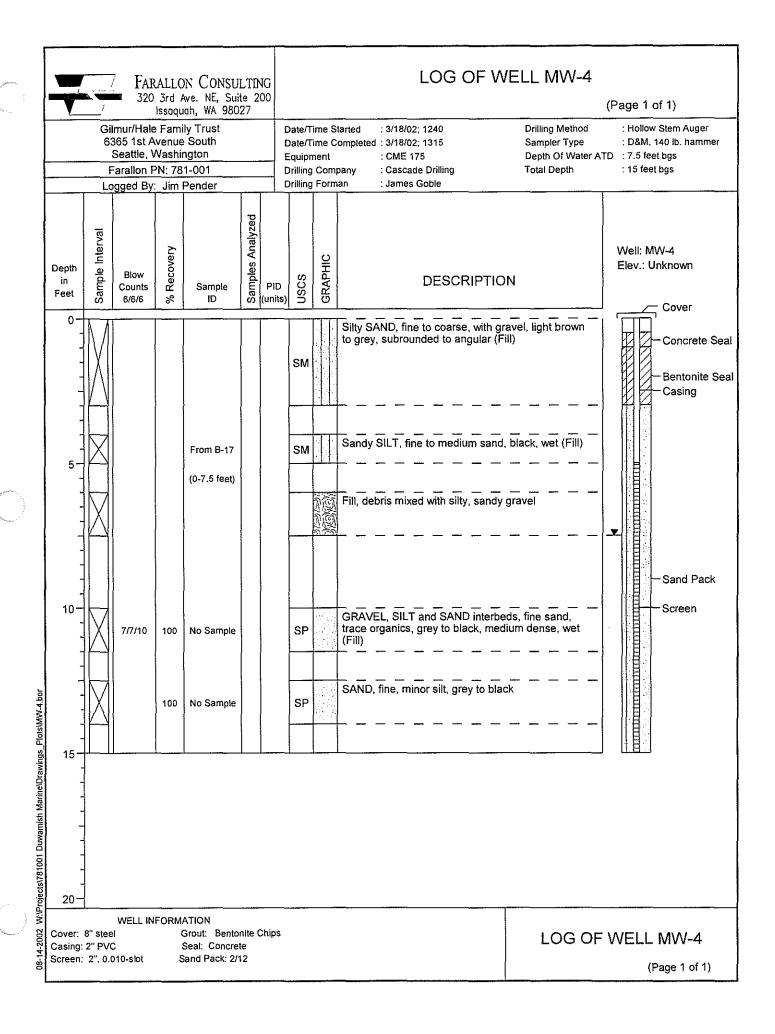
 \bigcirc

 \square


			7 Fa 32	0 3rd Av	N CONSUI ve. NE, Suit	e 200	LOG OF BORING B-18 (Page 1 of 1)									
		6: 	365 1st . Seattle, Farallon	Issoque le Famil Avenue Washin PN: 781 y: Jim F	South gton -001	27	Date/Tim Date/Tim Drilling C Drilling F Drilling N	e Com ompar orman	ipleted:3 iy :0 :0	3-14-02/0845 3-14-02/0905 Cascade Drilling Casey Goble Geoprobe with autohammer	Sampler Type : 1.5" splitspo Depth Of Water ATD : 7.0' Total Depth : 9.0'	. <u> </u>				
	Depth in Feet	Sample Interval	Time	% Rec- overy	Sample ID	Sample	PID	uscs	GRAPHIC		ESCRIPTION	Depth in Feet	Water Level			
	0-	N /						SP		SAND, fine to medium	grained, well sorted	0-				
			0850	60	B18-0-3	Y	0	sw		Gravelly SAND with sil gravel, dark brown, mo (Fill)	t, fine to coarse grained sand and bist, angular to subrounded gravel					
	- - 5 - - - - - - - - - - - - - - - -		0855	70 60	B18-4-6		0	SP		SAND, fine to medium brown-gray to grayish (Fill)	grained, well sorted, medium black, grades from moist to wet	5-				
18.bor	10											10-				
08-14-2002 W:\Projects\781001 Duwamish Marine\Drawings_Plots\b-18.bor	- 15 - - - - - - - - - - - - - - - - - -											15				
2 W:\Proj	20	REVIA	TIONS									20-				
08-14-200											LOG OF BORING E					
Ĺ											\i age					


 $\left(\right)$


	Part of				N CONSUI ve. NE, Suit		LOG OF BORING B-19									
	V	6	ilmur/Ha 365 1st Seattle, Farallon	Issoque le Famil Avenue Washin PN: 781	ih, WA 9802 y Trust South gton -001		Date/Tim Date/Tim Drilling C Drilling F Drilling N	ie Com Compar orman	(Page 1 of 1) Sampler Type : 1.5" splitspo Depth Of Water ATD : 8.5" Total Depth : 9.0'	on						
	Depth in Feet	Sample Interval	Time	% Rec- overy	Sample	Sample	PID	nscs	GRAPHIC	Geoprobe with autohammer	SCRIPTION	Depth in Feet	Water Level			
	0 		1405	100	B19-1.5-3	Y	0	SW GM SM		angular, light brown, fir Silty SAND, fine to me	fine to course grained, rounded to ne grained sand, moist (Fill) dium grained, dark brown in color, black coating, light petroleum	0-				
	- - - 5		1410	90	B19-3- 6		0	SP		SAND fine to medium	grained, well sorted, minor d SILT/silty SAND. Moderately (Fill)	5-				
								GM		Silty, Sandy GRAVEL, moist to wet, some wo	fine grained, gray, grades from ody debris (Fill)	- - - - - - -				
	- 10 - -		1	 , , ,				£	ц <u>, 1 в с г</u>	<u> </u>		10				
gs_Plots\b-19.bor	- - - - - 15-															
08-14-2002 W:\Projects\781001 Duwamish Marine\Drawings_Plots\b-19.bor	- - - -											-				
02 W:NProjects/781001	20 — ABB	BREVIA	TIONS									20-				
08-14-20											LOG OF BORING E					


(

()

PACIFIC CREST ENVIRONMENTAL

REMEDIAL INVESTIGATION REPORT

GILMUR/HALE FAMILY TRUST 6365 FIRST AVENUE SOUTH SEATTLE, WASHINGTON

Submitted by:

Pacific Crest Environmental, LLC

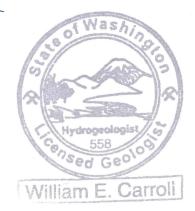
1531 Bendigo Boulevard North North Bend, Washington 98045

Pacific Crest PN: 107-001

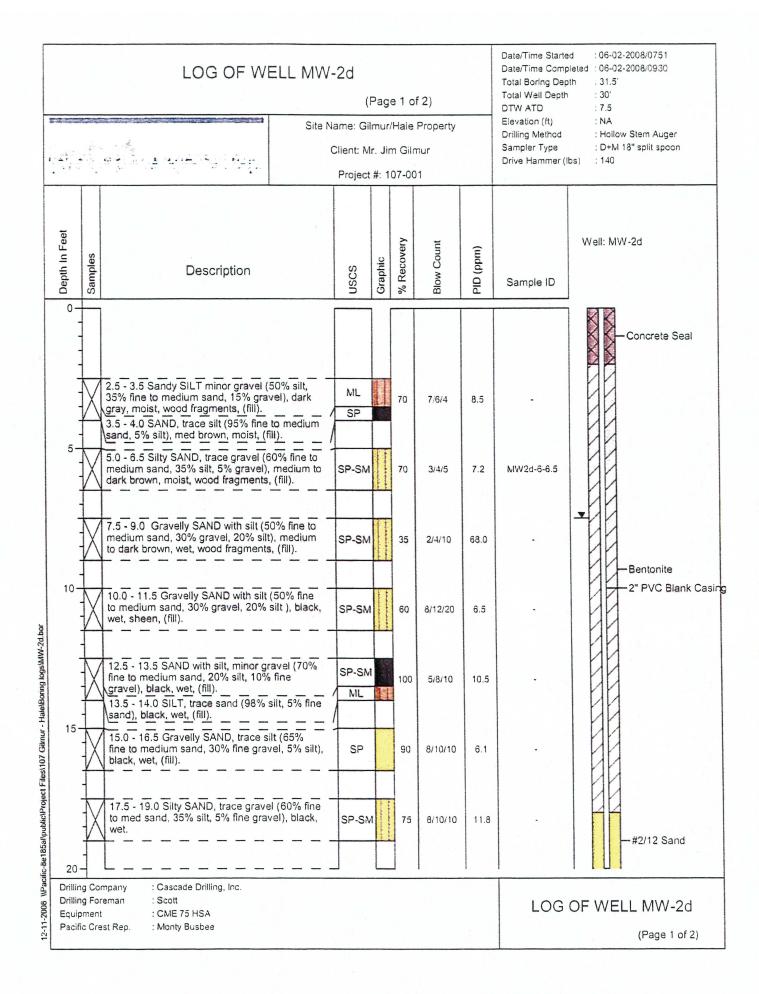
For: Mr. Jim Gilmur 16 South Michigan Street Seattle, Washington 98108

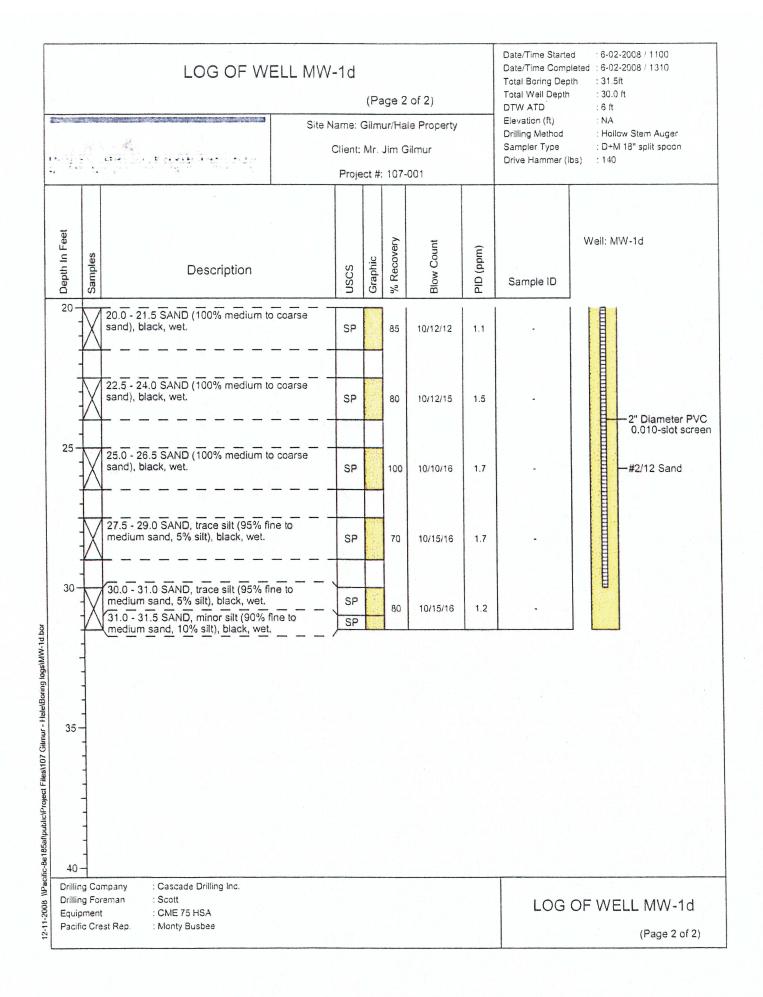
May 11, 2009

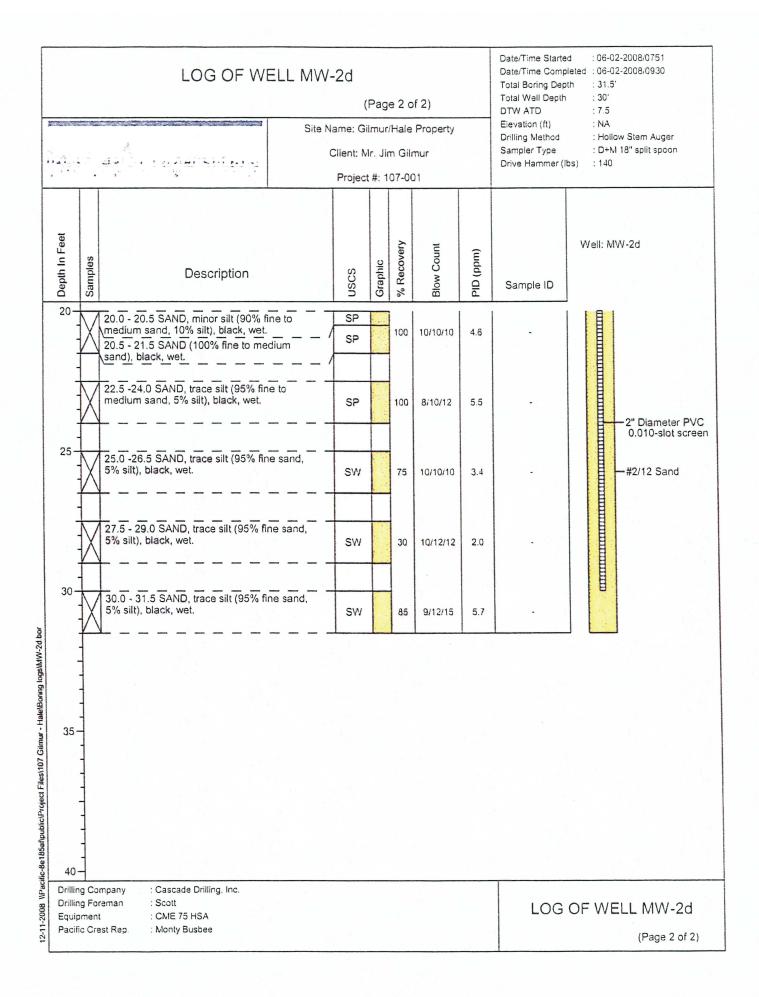
Prepared by: 111

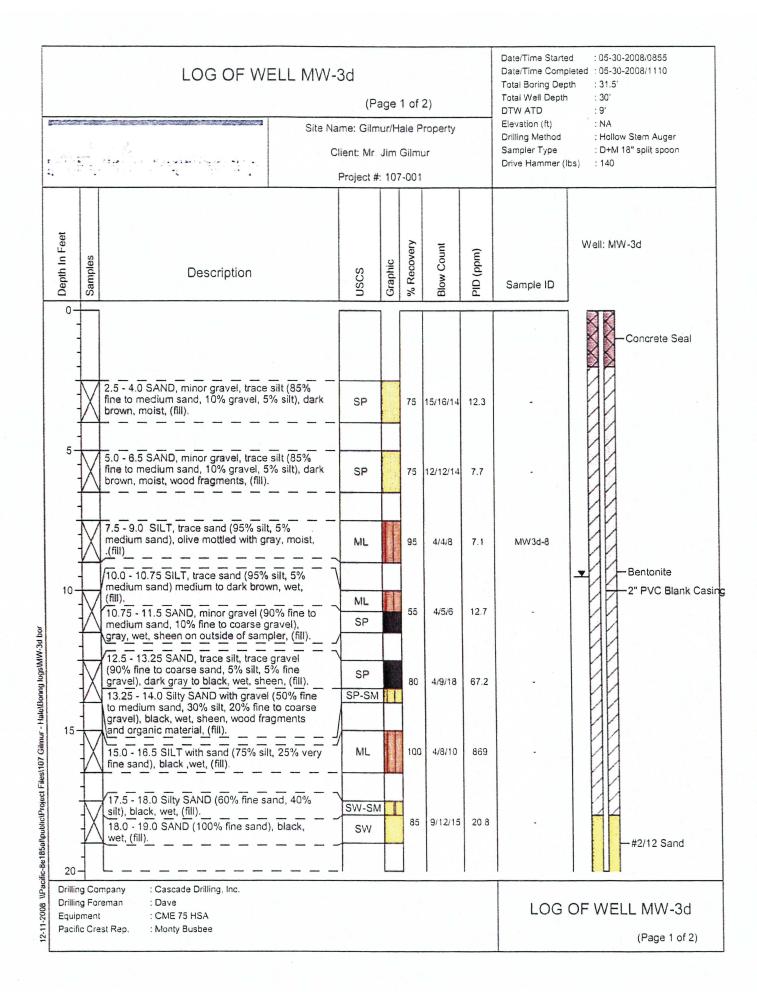

Annica Nord Staff Geologist William Carroll, L.H.G.

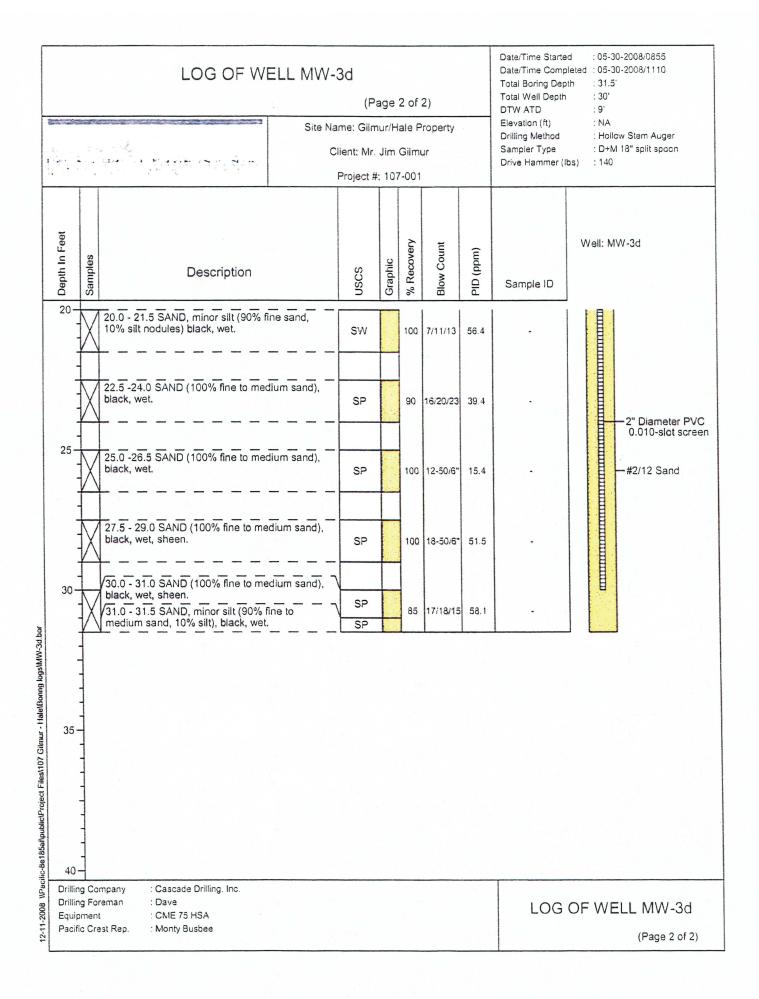
Principal Geologist

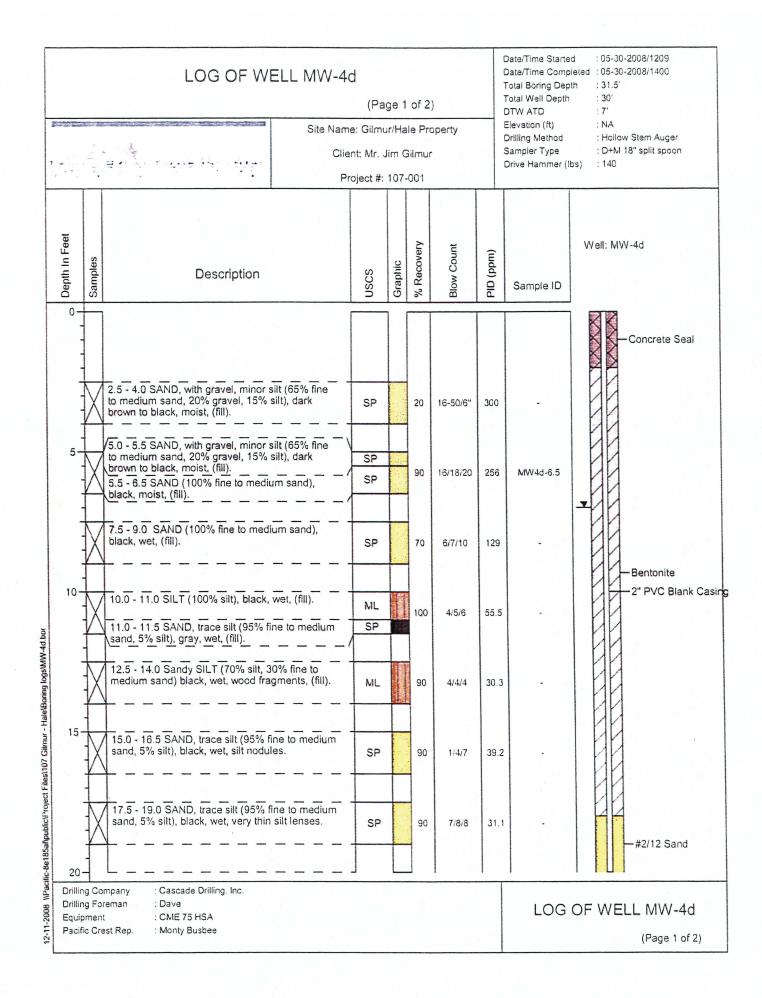

Reviewed by:

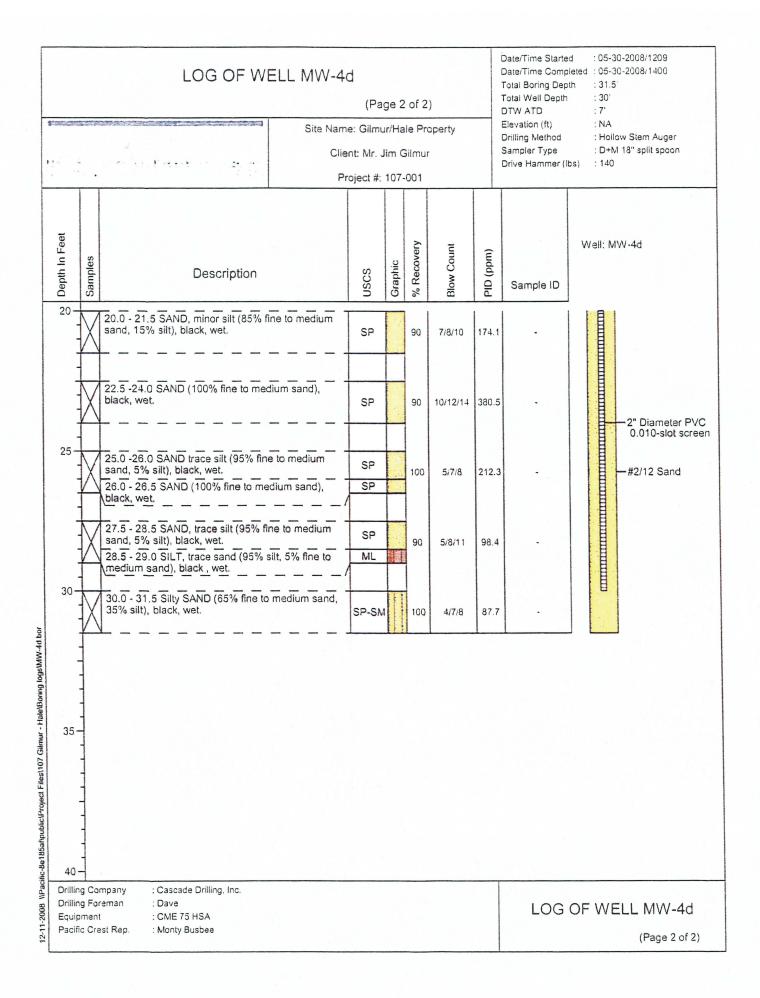

aunt and


Lauren G. Carroll, L.H.G. Principal Hydrogeologist




10.1 Interdum sandy, medium-cark brown, wet, fill). ML 100 2/2/2 0.9 - 10.5 - 11.5 SILT (100% silt), medium-dark brown, wet, wood fragments, (fill). ML 100 2/2/2 0.9 - 11.5 - 13.5 Sandy SILT (60% silt, 40% fine-medium sand), black, wet, (fill). ML 100 4/4/4 0.4 - 11.5 - 14.0 SAND, trace silt (95% fine to medium sand, 5% silt), black, wet. SP 95 4/10/12 0.4 - 11.5 - 16.5 SAND, trace silt (95% fine to medium sand, 5% silt), black, wet. SP 95 4/10/12 0.4 - 11.5 - 19.0 SAND (100% medium to coarse sand), black, wet. SP 100 4/4/4 0.4 -			LOG OF WELL	_ MW-10		^D age 1	l of 2)		Total Boring Dep Total Well Depth DTW ATD	bleted : 6-02-2008 / 1310 bth : 31.5ft : 30.0 ft : 6 ft
Project #: 107-001 understand Description grad big gra									Drilling Method Sampler Type	: Hollow Stem Auger : D+M 18" split spoon
0 2.5 - 4.0 Sandy SiLT minor gravel (55% silt, 35% fine sand, 10% fine gravel), black, dry, (fill), 60 11-15/6" 35.0 - 5 50 - 6.0 SAND, minor gravel, trace silt (80% fine to medium sand, 15% fine gravel), black, dry, (fill), 90 12/15/18 4.2 MW1d-5.0-6.5 5 5.0 - 6.0 SAND, Tizce silt (85% fine to medium sand, 5% silt), black, wet. (fill), SP 90 12/15/18 4.2 MW1d-5.0-6.5 7 5.1 - 8.5 SAND, Tizce silt (85% fine to medium sand, 5% silt), black, wet. (fill), SP 100 2/2/2 0.8 - 10 7.5 - 8.5 SAND, Tizce silt (85% fine to medium sand, black, wet. (fill), SP 100 2/2/2 0.8 - 10 7.5 - 13.5 Sandy SILT, Tizce sand (95% silt, 5% fine to medium sand), medium-dark brown, wet. torwn, wet, wood fragments. (fill), ML 100 2/2/2 0.9 - 11.5 - 14.0 SAND, trace silt (95% fine to medium sand, 5% silt), black, wet. SP 95 4/10/12 0.4 - 15 11.5 - 16.5 SAND, trace silt (95% fine to medium sand, 5% silt), black, wet. SP 95 4/10/12 0.4 - 17.5 - 19.0 SAND (100% medium to coarse sand), blac				Pro	oject	#: 107	-001			
2.5 - 4 0 Sandy SiLT minor gravel (55% sit, 35% fine sand, 10% fine gravel), black, dry, (fil). ML 60 11-15/6* 35.0 5 5.0 - 6.0 SAND, minor gravel, trace sit (80%, fine to medium sand, 15% fine gravel), black, dry, (fill). SP 90 12/15/18 4.2 MW1d-5.0-6.5 7.5 - 7.6 S SAND (100% fine to medium sand), 5% sit), black, dry, (fill). SP 90 12/15/18 4.2 MW1d-5.0-6.5 7.5 - 7.6 S SAND (100% fine to medium sand), 5% sit), black, wet, (fill). SP 100 2/2/2 0.6 7.5 - 7.6 S SAND (100% fine to medium sand), 5% sit, 5% fine to medium sand), medium-dark brown, wet, (mill). SP 100 2/2/2 0.6 10 10.5 - 11.5 SiLT (100% sit), medium-dark brown, wet, (mill). ML 100 2/2/2 0.9 11.5 - 13.5 Sandy SiLT (60% sit, 40% Mill 100 2/2/2 0.9 . 11.5 - 14.0 SAND, trace sit (05% fine to medium sand), black, wet, (fill). MIL 100 4/4/4 0.4 11.5 - 15.0 SAND, trace sit (05% fine to medium sand, 5% sit), black, wet, (fill). SP 95 4/10/12 0.4 11.5 - 16.5 SAND, trace sit (05% fine to medium sand, 5% sit), black, wet, (fill). SP 95 4/10/12 0.4 <t< th=""><th>Depth In Feet</th><th>Samples</th><th>Description</th><th>LISCS</th><th>Grachie</th><th>% Recovery</th><th>Blow Count</th><th>PID (ppm)</th><th>Sample ID</th><th>Well: MW-1d</th></t<>	Depth In Feet	Samples	Description	LISCS	Grachie	% Recovery	Blow Count	PID (ppm)	Sample ID	Well: MW-1d
35% fine sand, 10% fine gravel), black, dry, (fill), NL 60 11-15/6" 35.0 5 50 - 6.0 SAND, minor gravel, trace silt (80%, fine to medium sand, 15% fine gravel, 5% silt), black, dry, (fill), SP 90 12/15/18 4.2 NW14-5.0-6.5 6 11-15/6" 35.0 - - - - 7 5 5 SAND (100% fine to medium sand), black, wet, (fill), SP 90 12/15/18 4.2 NW14-5.0-6.5 8 - - - - - - - 7 5 8.5 SAND (100% fine to medium sand), black, wet, (fill), SP 100 2/2/2 0.6 - 10 10.0 0.0 SILT with sand (80% silt, 5% fine to medium sand), black, wet, (fill), - - - - 10 10.5 SILT (100% silt, 100% silt, 40% fine to medium sand), black, wet, (fill), - - - - 11.5.5 SAND, trace silt (95% fine to medium sand, 5% silt), black, wet. SP 100 4/4/4 0.4 - 11.5.5 SAND, trace silt (95% fine to medium sand, 5% silt), black, wet. SP 95 4/10/12 0.4 - 11.5.5 SA	-0									Concrete Seal
Image: Second start of the second s	-	X	35% fine sand, 10% fine gravel), black, c			60	11-15/6"	35.0		
sand, 5% sill), black, wet, (fill). SP 100 2/2/2 0.6 10 10.0 - 10.5 SILT, trace sand (95% silt, 5% fine to medium sand), black, wet, (fill). ML 100 2/2/2 0.6 10 10.0 - 10.5 SILT, trace sand (95% silt, 5% fine to medium sand), medium-dark brown, wet, (fill). ML 100 2/2/2 0.6 10 10.5 - 11.5 SILT (100% silt), medium-dark brown, wet, (fill). ML 100 2/2/2 0.9 12.5 - 13.5 Sandy SILT (60% silt, 40% fine-medium sand), black, wet, (fill). ML 100 4/4/4 0.4 15 15.0 - 16.5 SAND, trace silt (95% fine to medium sand, 5% silt), black, wet. SP 95 4/10/12 0.4 15 15.0 - 16.5 SAND, trace silt (95% fine to medium sand, 5% silt), black, wet. SP 95 4/10/12 0.4	5-	X	fine to medium sand, 15% fine gravel, 5% black, dry, (fill). 6.0 - 6.5 SAND (100% fine to medium sa	% silt), Si	1	90	12/15/18	4.2	MW1d-5.0-6.5	
10 10.0 - 10.5 SILT, trace sand (95% silt, 5% fine to medium sand), medium-dark brown, wet, (fill) ML 100 2/2/2 0.9 - 10 10.5 - 11.5 SILT (100% silt), medium-dark brown, wet, wood fragments, (fill). ML 100 2/2/2 0.9 - 11.5 - 13.5 Sandy SILT (60% silt, 40% fine-medium sand), black, wet, (fill). ML 100 4/4/4 0.4 12.5 - 13.5 Sandy SILT (60% silt, 40% fine-medium sand), black, wet, (fill). ML 100 4/4/4 0.4 13.5 - 14.0 SAND, trace silt (95% fine to medium sand, 5% silt), black, wet. SP 95 4/10/12 0.4 15 15.0 - 16.5 SAND, trace silt (95% fine to medium sand, 5% silt), black, wet. SP 95 4/10/12 0.4 16 17.5 - 19.0 SAND (100% medium to coarse sand), black, wet. SP 95 100 4/4/4 0.4	-	X	sand, 5% silt), black, wet, (fill). 8.5 - 9.0 SILT with sand (80% silt, 20% fi	ine to		100	2/2/2	0.6	-	
100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4 1100 100 4/4/4 0.4	10-		to medium sand), medium-dark brown, w (fill) 10.5 - 11.5 SILT (100% silt), medium-da	vet, M		100	2/2/2	0.9		2" PVC Blank C
15.0 - 16.5 SAND, trace silt (95% tine to medium sand, 5% silt), black, wet. SP 95 4/10/12 0.4 - 17.5 - 19.0 SAND (100% medium to coarse sand), black, wet. SP 100 4/4/4 0.4 -			fine-medium sand), black, wet, (fill). 13.5 - 14.0 SAND, trace silt (95% fine to			100	4/4/4	0.4		
X sand), black, wet. SP 100 4/4/4 0.4 -	15-		15.0 - 16.5 SAND, trace silt (95% fine to medium sand, 5% silt), black, wet.		P	95	4/10/12	0.4	-	
20			17.5 - 19.0 SAND (100% medium to coa sand), black, wet.		Р	100	4/4/4	0.4		-#2/12 Sand





LIMITED PHASE II SUBSURFACE INVESTIGATION REPORT

GILMUR SOUTH PARCEL 16 SOUTH MICHIGAN STREET SEATTLE, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 320 3rd Avenue NE Issaquah, Washington 98027

Farallon PN: 781-003

For:

Mr. Jim Gilmur 16 South Michigan Street Seattle, Washington 98108

April 5, 2004

Prepared by:

Deborah Gardner, L.H.G. Associate Geologist

Reviewed by:

Lauren Carroll, L.H.G. Senior Hydrogeologist

			FARALLON CONSULTING 320 3rd Avenue NE Issoquoh, WA 98027]	Loş	g of B	oring: SB	-1		P	age 1 of	1
Far		Gilm Seatt 'N: 7	Jim Gilmur nur South Property Ele, Washington 781-003 John Schmitt	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	0 G C K	1/09/04 16 1/09/04 17 eoprobe ascade ascy Gobe	00 Disposabl Depth of Y Total Bor	e sleeves: Water AT	Y D: 4		foot et bgs et bgs.	
Depth (feet bgs.)	uscs	Graphic	Lithologic Descriptio	n	Sample Interval	% Recovery	Sample ID	PID (ppm)	Sample Analyzed	Water Level	Temporary well	Depth (feet bgs.)
	GP ML ML		 0-2' CONCRETE. 2-6' Sandy GRAVEL, brown, moist, no odo whitish sandy substance similar to concrete version of sample not observed. Soi description of sample residue. 10-12' SILT?, wet. Sample not observed. Soi type based on driller's description of sample 	washout. l type based on driller's il type based on Soil		10	SB1-2-6	5.6				
20 Bor Not	ing Aba es:	ndonm	Boring Details ent: Bentonite backfill.	Reconnaissance Groundwater Sample Collection DetailsScreen interval from:4 to: 7 ft.Screen Slot Size (inches):0.0Purging method:PeristalticSampling method:Peristaltic						0.010		

			FARALLON CONSULTING 320 3rd Avenue NE Issaquah, WA 98027	Log of Boring: SB-2 Page 1 of 1									
Far		Giln Seat N:	Jim Gilmur nur South Property tle, Washington 781-003 John Schmitt	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	01/09/04 1415 01/09/04 1535 Geoprobe Cascade Kasey Gobel Direct Push		35 Disposable Depth of V Total Bori						
Depth (feet bgs.)	uscs	Graphic	Lithologic Description	a	Sample Interval	% Recovery	Sample ID	PID (ppm)	Sample Analyzed	Water Level	Temporary well	Depth (feet bgs.)	
			0-2' CONCRETE. 2-2.5' Pieces of cement and asphalt (6"). Re large concrete pieces obstructing sample tube	fusal at 2.5' due to e under concrete slab.									
- - - 20 Bor Not	ring Aban res:	ndonm	Boring Details ent: Bentonite backfill.	Screen Purgin Time b	inteı g me egin	val from: thod: purging:		reen Slot pling metl	Size (i hod:	nches)	n: N/A	20	

			FARALLON CONSULTING 320 3rd Avenue NE Issaquah, WA 98027	Log of Boring: SB-3 Page 1 of 1										
Far		Giln Seat 'N:	Jim Gilmur nur South Property tle, Washington 781-003 John Schmitt	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	01 Ge Ca Ka	/09/04 0850 /09/04 1200 eoprobe ascade ascy Gobel irect Push	x	e sleeves: Vater AT	Ү D: б	fe	foot et bgs et bgs.			
Depth (feet bgs.)	uscs	Graphic	Lithologic Descriptio	n	Sample Interval	% Recovery	Sample ID	PID (ppm)	Sample Analyzed	Water Level	Temporary well	Depth (feet bgs.)		
	SP		 0-2' CONCRETE, consecutive slabs of 4", i 2-8' SAND, fine to medium, trace rounded no odor, no sheen. 2-2.5' Very light brown coloration. 2.5' Becomes brown coloration. 6' Becomes wet, dark greyish brown colorat 8-10' SILT, trace fine sand, organic present olive grey, soft, wet, organic odor, no sheen 8.5' Becomes brown with light orange mott 	gravel, trace silt, moist, ion, no odor, no sheen. (highly decayed wood),		50	SB3-2-6 SB3-6-8 SB3-8-10	6.6 6.8 7.4	Y					
20 Bon Not	ring Aba tes:	ndonm	Boring Details ent: Bentonite backfill.	Screen i Purging Time be	interv ; met egin p	val from: hod: purging:	Peristaltic Sam 1130 Time san	creen Slo pling me	t Size (i thod:	nches)): Peris	20 s 0.010 taltic 1147		

			FARALLON CONSULTING 320 3rd Avenue NE Issaquah, WA 98027	Log of Boring: SB-4 Page 1 of 1									
Far		Gilm Seatt N: 7	Fim Gilmur ur South Property Ie, Washington 781-003 ohn Schmitt	Date/Time Started: Date/Time Completed Equipment: Drilling Company: Drilling Foreman: Drilling Method:	1: 0 C C	11/09/04 12 11/09/04 14 Geoprobe Cascade Kasey Gobe Direct Push	10 Disposable Depth of V Total Bori	e sleeves: Vater ATI	Y • 6.	5 fe	foot et bgs et bgs.		
Depth (feet bgs.)	USCS	Graphic	Lithologic Descriptio	n	Sample Interval	% Recovery	Sample ID	PID (ppm)	Sample Analyzed	Water Level	Temporary well	Depth (feet bgs.)	
	SP SP-SM ML		0-10" CONCRETE. 10"-6' SAND, trace silt, fine to medium, bro odor, no sheen. 6-7' Silty SAND, fine, brown, wet, no odor, 7-8' SILT, trace fine to medium sand, greyis odor, no sheen.	no sheen.		70 60 60	SB4-1-4 SB4-4-6 SB4-6-8	5.2	Y				
	ring Aba tes:	ndonm	Boring Details ent: Bentonite backfill.	Purg Time	en inte ing me e begin	rval from: ethod: purging:	Peristaltic Sam 1340 Time sam	Sample C creen Slot upling met nple collec 84-GW	Size (i hođ:	nches): (Perist	0.010	

			FARALLON CONSULTING 320 3rd Avenue NE issoquah, WA 98027	Log of Boring: SB-5 Page 1 of 1									
Far		Gilm Seatt N:	Jim Gilmur nur South Property tle, Washington 781-003 John Schmitt	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	01/09/04 01/09/04 Geoprobe Cascade Kasey Gobel Direct Push	Sampler T Disposable Depth of V Total Bori	e sleeves: Vater ATI	Y 9: 5	ı by 4 fee		· · · · · · · · · · · · · · · · · · ·		
Depth (feet bgs.)	uscs	Graphic	Lithologic Description	n	Sample Interval % Recovery	Sample ID	PID (ppm)	Sample Analyzed	Water Level	Temporary well	Depth (feet bgs.)		
0	SP-SM SP ML ML		 0-3" ASPHALT. 3"-1' SAND with silt and fine gravel, sand fibrown, moist, no odor, no sheen. 1-6' SAND, fine to medium, trace fine round brown, moist, no odor, no sheen. 5' Becomes wet. 6-8' SILT, trace fine sand, organics (highly d brown, wet, no odor, no sheen. 8-12' SILT, trace fine sand, brown, wet, no odor, no sheen. 	ded gravel, trace silt,		SB5-1-4 SB5-4-6 SB5-6-8	4.4 3.2 4.4						
1	ring Aba tes:	ndonr	Boring Details nent: Bentonite backfill.	Screen i Purging Time bo	econnaissan interval from: method: gin purging: water Sample J	Peristaltic San 0800 Time sar	Sample (creen Slot upling met nple collec B5-GW	Size (i hod:	nches): (Peris	0.010		

LDWSE 12.3.24 r.4 04 106 104 DRAFT - Issued for Client Review

LIMITED PHASE II SUBSURFACE INVESTIGATION REPORT

GILMUR NORTH PARCEL 6357 FIRST AVENUE SOUTH SEATTLE, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 320 3rd Avenue NE Issaquah, Washington 98027

Farallon PN: 781-002

For:

Mr. Jim Gilmur 16 South Michigan Street Seattle, Washington 98108

April 6, 2004

Prepařed by:

Jeff Keller Staff Chemist

Reviewed by:

Lauren Carroll, L.H.G. Senior Hydrogeologist

	The second secon		320 3rd Avenue NE Issaquah, WA 98027							Pa	age 1 of	1
roj oca	nt: ect: ation: allon P ged By	Gilm Seatt N: 7	Jim Gilmur nur North Property cle, Washington 781-002 Tohn Schmitt	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	0 G C K	1/08/04 150 1/08/04 160 eoprobe ascade ascade asey Gobel irect Push	00 Disposable Depth of V Total Bori	e sleeves: Vater ATI	Y D: 7.	5 fee	foot et bgs et bgs.	
Deptil (rect ngo.)	USCS	Graphic	Lithologic Description	u Inferval	mi mut aiduma	% Recovery	Sample ID	PID (ppm)	Sample Analyzed	Water Level	Temporary well	Danth (faat hee)
	GP-GM GP	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 0-1' Sandy GRAVEL with silt, gravel mostly to brownish grey, dense, no odor, no sheen. 1-5' Sandy GRAVEL mostly fine, angular, the brownish grey, dense, no odor, no sheen. 3.5-5' slight orange/grey mottling. 	/		90	SB1-0-4	5.3				
)	SP	8	5-9' SAND fine to medium, trace coarse, tra silt, greyish brown, moist, no odor.7.5' Becomes wet.	ce fine gravel, trace		100	SB1-5-8	5.4	Y	¥		
0	SM ML	000	9-10' Silty SAND, fine to medium, greyish b 10-12' SILT, trace fine sand, trace organics, wet, no odor, no sheen.)		75	SB1-10-12	5.4				1
5												1
Bor	ing Abai	ndonme	Boring Details ent: Bentonite backfill.	Re Screen in Purging i	ter	al from:		Sample (creen Slot	Size (i			0.01

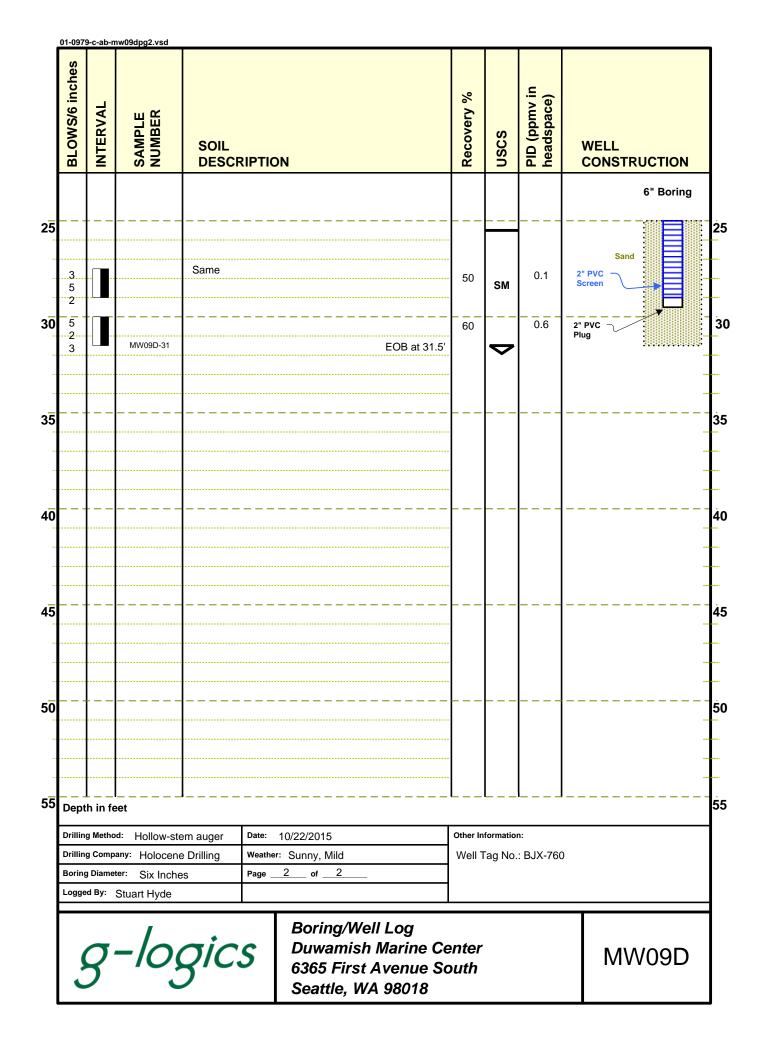
		Anna and	FARALLON CONSULTING 320 3rd Avenue NE Issaquah, WA 98027		Log	g of B	Boring: SB-	-1A		Pa	ige 1 of 1	1
Far		Gilm Seat	Jim Gilmur nur North Property tle, Washington 781-002 John Schmitt	Date/Time Started: Date/Time Complet Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ted: 0 C K	1/08/04 14 1/08/04 14 eoprobe ascade asey Gobe	45 Disposabl Depth of V Total Bor	e sleeves: Water AT	Y D: N	/A fee		
Depth (feet bgs.)	USCS	Graphic	Lithologic Description	n	Sample Interval	% Recovery	Sample ID	PID (ppm)	Sample Analyzed	Water Level	Temporary well	Depth (feet bgs.)
	GP		0-2' Sandy GRAVEL, brown, moist, very der 2' Refusal due to very dense gravel.	nse.		20	SB1A-0-2	-				
Bor	ing Aba	ndonme	Boring Details ent: Bentonite backfill.	Pur	een inter ging met e begin j	val from: hod: ourging:	Sam	Sample (creen Slot apling met aple collec	t Size (i thod:	nches)	:	20

			FARALLON CONSULTING 320 3rd Avenue NE Issoquah, WA 98027		Log	g of E	Boring: SB-	-1B		Pa	age 1 of	1
Fara		Gilm Seatt 'N: 7	Jim Gilmur uur North Property tle, Washington 781-002 John Schmitt	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	eted: 0 C : C K	1/08/04 14 1/08/04 15 eoprobe ascade asey Gobe	500 Disposabl Depth of V Total Bor		Y D: N	/A fee		
Depth (feet bgs.)	USCS	Graphic	Lithologic Description	1	Sample Interval	% Recovery	Sample ID	PID (ppm)	Sample Analyzed	Water Level	Temporary well	Depth (feet bgs.)
0	GP	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0-3' Sandy GRAVEL, brown, moist, dense.			20	SB1B-0-4	5.3				
- 10	SP		 3-5' SAND, fine to medium, with gravel, darlorganic odor, no sheen. 4-5' sample not retained. 5' Refusal. 	k brown, moist, dense,		20	SB1B-4-5	-				5
Bori	ing Aba es:	ndonme	Boring Details ent: Bentonite backfill.	Pu Tir	reen inter rging met me begin	val from: hod: purging:	San	Sample (Screen Slot npling met nple collect	t Size (i thod:	nches):	20 S

			Issaquah, WA 98027							Pa	age 1 of	1
oca	nt: ect: tion: allon H ged By	Gilm Seat PN: 7	Jim Gilmur hur North Property tle, Washington 781-002 John Schmitt	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	0 G C K	1/08/04 1: 1/08/04 14 eoprobe ascade ascy Gobe irect Push	25 Disposabl Depth of Total Bor	e sleeves: Water AT	Y D: 8	fee	foot et bgs et bgs.	
Deptil (leet bgs.)	uscs	Graphic	Lithologic Description	n	Sample Interval	% Recovery	Sample ID	PID (ppm)	Sample Analyzed	Water Level	Temporary well	Donth (foot hac)
	SP		0-8' SAND with gravel, trace silt, sand fine t to coarse, subrounded, brown, moist, no odor	to medium, gravel fine r.		70	SB2-0-4	6.0				
			7.5' Becomes very moist		X	60	SB2-4-8	6.1		×		
0	SP		8' Refusal due to wood. Move boring 5 feet s sampling at 8 feet. 8-10' Same as above, wet.	outh and resume						-		1
U .	ML SM	0.00	10-11' Sandy SILT (organic), sand mostly fin decayed wood present, black, organic odor, n 11-12' Silty SAND, fine, dark grey, wet, no o	o sheen.	$\underline{\left\langle \right.}$	75	SB2-8-12	6.4				
15												1
			Boring Details	R	ecor	inaissan	ce Groundwater :	Sample	Collec	tion	Detail	2
Bori Note		ndonme			interv g met	val from: hod:	to: 12ft. S Peristaltic San	creen Slot pling met nple collec	t Size (i thod:	nches)	r: (Peris	0.01

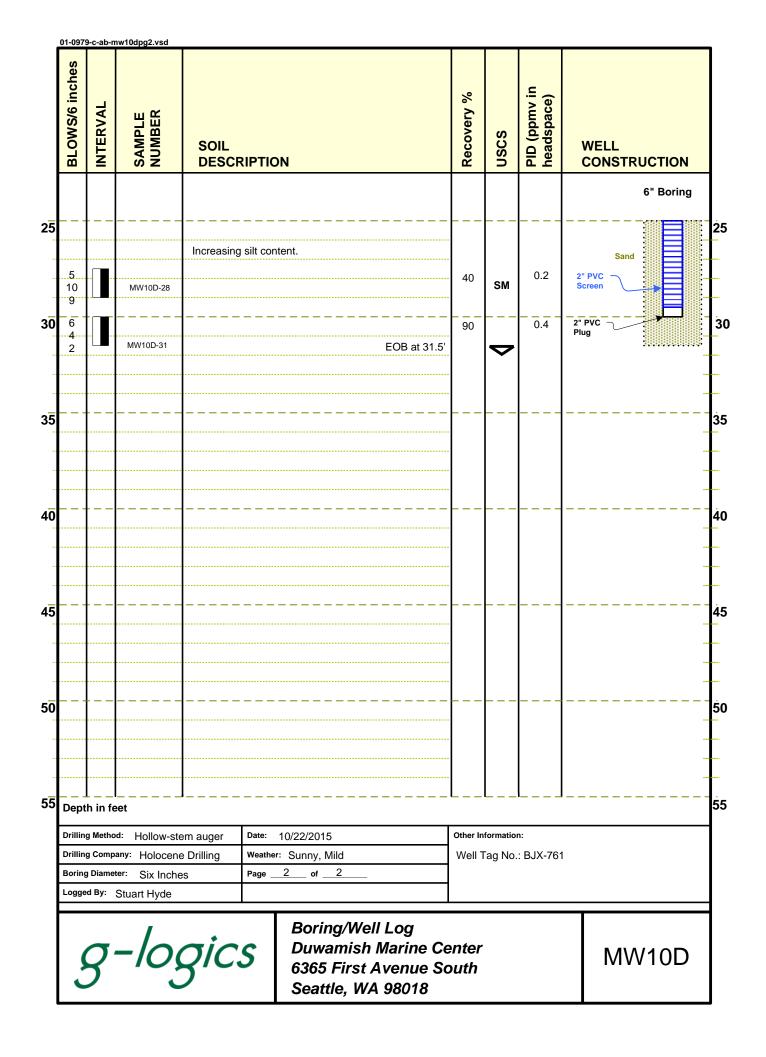
	W	- de	Issoquah, WA 98027				<u>1997</u>			Pa	ge 1 of	1
oca	nt: ect: tion: allon F ged By	Gilm Seat N: 7	Jim Gilmur nur North Property tle, Washington 781-002 John Schmitt	Date/Time Started: Date/Time Complete Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ed: 0 G C K	1/08/04 10 1/08/04 1 ieoprobe ascade ascy Gobe	310 Disposabl Depth of Total Bor	Type: le sleeves: Water ATI ing Depth	Y D: 8	fee	foot t bgs t bgs.	
reput (rect ogs)	USCS	Graphic	Lithologic Description	n	Sample Interval	% Recovery	Sample ID	(mqq) (IIA	Sample Analyzed	Water Level	Temporary well	Douth (foot has)
Γ	14	• # •	0-3" CEMENT		1.1			T]
	SP		4"-3' Gravelly SAND, fine, angular (fill), tra no odor.	ce silt, brown, moist,		75	SB3-0-3	6.5				
	ML		3-5' SILT, minor fine sand, trace gravel, grey odor	y, moist, slight organic								
	SM	0	5-5.5' Silty SAND, fine to coarse, degraded a	sphalt present, moist,	$\frac{1}{1}$							
	ML		5.5-8' SILT, minor fine sand, trace gravel, gr	rey, moist, no odor.		60	SB3-4-8	6.0				
			8' Trends to gravelly SILT, wet, grey, no odo	r.						X	III	
0	ML					70	SB3-8-12	6.0	Y			1
											E	
5												1
												2
	-		Boring Details				nce Groundwater					s
	ng Aba s: Ten		ent: Bentonite backfill. well repeatedly went dry during sampling.	Purg	en inter ging met e begin p		Peristaltic Sar	Screen Slot npling met mple collec	hod:		Peris	0.01 stalti 131

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUC	TION
			Surface: 6					6"	Boring
				" Gravel/Quarry Spalls	·			Well -	
			Metal det	oris in cuttings				Monument Concrete	
28	· ·				50		0	Seal	
8 19	╽└┚┛╷	MW05-03		irk gray, slightly moist, sandy SILT, som	e	ML		Bentonite	
8				ood debris at 3'. rk gray, moist, silty, gravelly SAND, fine	80		0	<u>Seal</u>	
-16 19	<u></u> <u> </u>	MW05-06		Il graded. Wood debris at 7.5'.				2" PVC —	
2				n odor and possible staining at 11'.	5	SM	0	Blank	
1					0			Sand	
2	╏┌╼╾╎								 :_
3 3	┼╴┫╌┥	MW05-10					0		
5				t at 12.5'. Organics (grasses) present a	T				-
4 4	ł. – .	MW05-13	12.0-14.	Thin silt lenses throughout.	50	SM	0	2" PVC 📉	-
4	╏└╌┚┛╴╽							Screen	
2	╏╷┓┛╽		16-24': Da	ark gray, wet, slightly silty SAND, poorly	, 60		0		-
4 6			graded.						
									
						SM/ SP		2" PVC –	-
3	╏┌┓┳╴╽	 MW05-20			50			Plug	-: 📕
2 3	₽	111103-20	Increasin	g silt content at 22.5'.			0		
<u> </u>									
			-						
				EOB at 24	.0'				
Dept	LI th in fe	et	J		L		•	'	
Drillin	g Metho	d: Hollow-st	em auger	Date: 10/19/2015	Other I	Informatio	n:		
Drillin	ig Compa	any: Holocen	e Drilling	Weather: Cloudy, Mild			: BJX-75		
	g Diamet	0	es	Page <u>1</u> of <u>1</u>	PID	was not	functionir	ng correctly.	
	Q .	Stuart Hyde	qic	<i>S</i> <i>Boring/Well Log</i> <i>Duwamish Maring</i> <i>6365 First Avenue</i>				MW	05


BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRU	JCTION
			Surfaces	5" Gravel/Quarry Spalls					6" Boring
			Sunace. 6					Well —	
								Monument Concrete Seal	
3 2	•••	MW06-03	2.5-8': Browner 2.5-8': Browne	own and gray, moist, slightly silty SAND	100	sw	0	Gear	 -
3			wen grad	<i></i>				Bentonite Seal	
2		MW06-05	Slight asp	bhalt odor at 5'.	100		0		
2								2" PVC Blank	-
3 1			8-10.5': 0	aray, moist, SILT with organics, slight	100	ML/	0		
2			organic o			OL		Sand	
2				': Gray, moist to very moist, silty SAND,	fine 60	SM	0		
2		MW06-11	grain, sor	ne organics.	¥				-
1 1					100	SP	0	2" PVC	
1		MW06-14		': Dark gray, wet, SAND, fine to medium					
2				orly sorted. Varying silt content through	ut 50		0		_
5 13			unit.					2" PVC Plug	-
7					10	SP	0		
8									-
8 6		MW06-20		EOB at	21.5' 60		0		
U									
Dep	LI th in fe	 et	J		L	L	I	·	
Drillir	ng Metho	d: Hollow-ste	em auger	Date: 10/21/2015	Other I	nformatio	n:		
Drillir	ng Comp	any: Holocen		Weather: Cloudy, Mild	Well [·]	Tag No.	: BJX-75	5	
	g Diamet	^{ter:} Six Inche Stuart Hyde	es	Page <u>1</u> of <u>1</u>	PID v	vas not	functionir	ig correctly.	
	<i>q</i> ⁱ	-/09	qic	<i>S</i> <i>Boring/Well Log</i> <i>Duwamish Marine</i> 6365 First Avenue		,		MV	V06

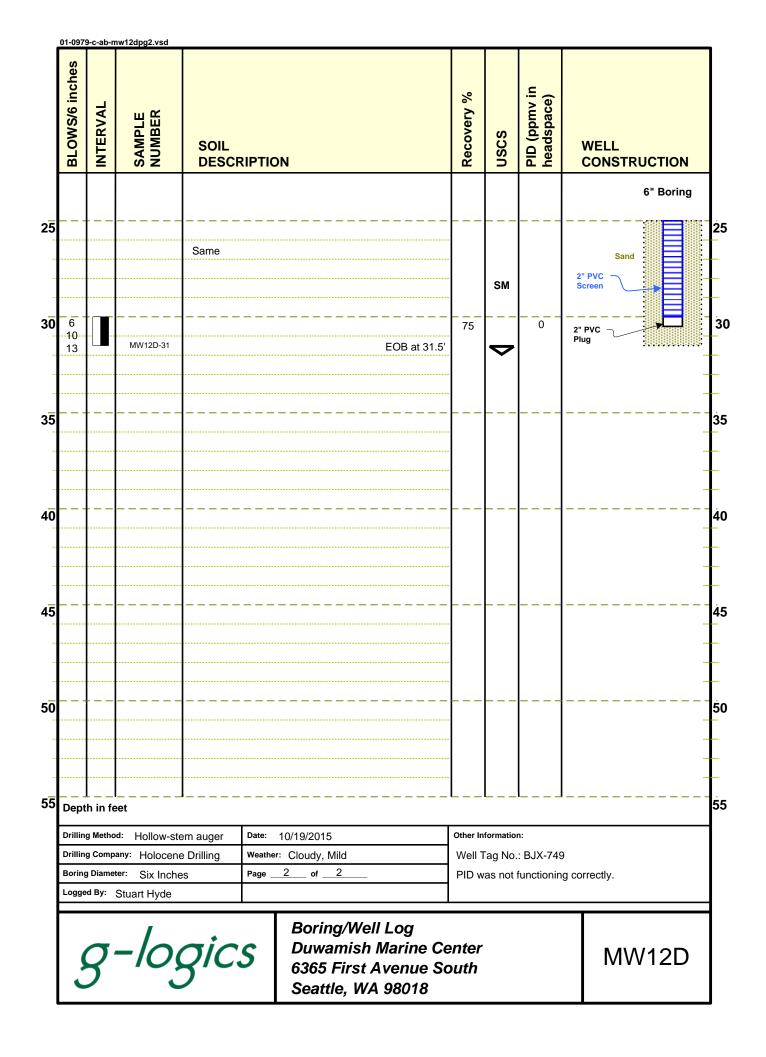
	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION		Recovery %	nscs	PID (ppmv in headspace)	WEL	L ISTRUCTIO	N
											6" Bori	ng
_				Surface: 6	" Concrete					— — — — Well		
										Monument Co	oncrete	
	3 5	-			Dauly and a state after the U. C.A.		75	SM	0		Seal	
	э 3		MW07-04	2.5-10.5': some org	Dark gray, moist, silty, gravelly SA	ND,				E	Sentonite	
	3				unito.		60		0		Seal	
	6 I 1			Becomes	very moist/wet with slight asphalt o	odor				2" PVC Blank		
	4			at 8'.			80		0	DIdIIK		
	6 7		MW07-08								Sand	-
_	2	-┌╼┲-╽		10 5 12	Gray-brown, moist, SILT, trace orga		100		0			-
	1 2			10.0-12	Gray-brown, moist, Sill, trace ofgi	ai ii 65.	.00	ML	Ŭ			
	4					≚	75		0			
	3 2		MW07-13	12.5-21.5	': Dark gray/black, wet, silty SAND,	medium	-	SM	U	2" PVC Screen		
	2 3	╺┌╼ <u>┲</u> ╸╽			grain, trace organics, well graded.			L				-
	3			Thin silt l	enses throughout unit.		100		0			
	2 5									2" PVC Plug		
	5 7		MW07-18				60	SM	0			
	7											
	9 9						70		0			
1	0				EO	B at 21.5'						99999
_	- 1			1								
D	ept	h in fe		J			L	L	L			
D	rilling	g Method	Hollow-st	em auger	Date: 10/20/2015		Other In	formatio	n:			
_			ny: Holocen	e Drilling	Weather: Sunny, Mild				: BJX-754			
_		Diamete		es	Page1 of1		PID w	as not	functionin	g correctly	у.	
	Jyge	и ву: {	Stuart Hyde		l							
	\$	<u></u>	-10	qic	<i>S</i> Boring/Well Lo Duwamish Mai 6365 First Ave	rine Ce					MW07	

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION		Recovery %	nscs	PID (ppmv in headspace)		ELL INSTRU	CTION	
				Curría a su d	" Oceanote						6	" Boring	
					Concrete					— — — We			
										Monume	nt Concrete Seal		
	24 13	••					75		0		Seal		0
	13 18			grain, sor	rown-yellow, dry, slightly silty SA	ND, coarse		SP			Bentonite Seal		
	5						60	<u>_ 3</u>	0				`
	8 7		MW08-06	Fill debris	(brick pieces and asphalt) at 8'.					2" PV Blank			
	6	•	N///00 00	Wet at 9'.			50		0				-
	6 3		MW08-08			·····¥					Sand		-
_	2			10-21.5':	Brown, wet, silty SAND, fine grair	n, well	40		0				-
	2 2		MW08-11		arying silt content.								
	3						75	SM	0	2" PV			-
	2 2			Lenses co 18'.	ontaining organics present at 12',	15', and				2" PV Scree		×	-
_	3		MW08-15				90		0				-
	4 3									2" PVC Plug			
	5	•					40	ѕм	0		/	*	
	6 7												-
-	3						50		0				-
	2 4		MW08-21		E	OB at 21.5'							Ű
				1									
													_
0)ept	h in fe	et	J			L	L	I				
C	rilling	g Metho	d: Hollow-st	em auger	Date: 10/20/2015		Other In	formatio	n:				
-			any: Holocen		Weather: Sunny, Mild				: BJX-752				
-		d By:	^{er:} Six Inche Stuart Hyde	es	Page <u>1</u> of <u>1</u>		PID w	as not	functionir	g correc	tly.		
	\$? '	-10	qic	<i>S</i> Boring/Well L Duwamish Ma 6365 First Ave	arine Ce					MW	/08	


BI OWS/6 inches		INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION		Recovery %	nscs	PID (ppmv in headspace)	WE	LL NSTRUC	CTION	
											6'	Boring	
	- +			Surface: (Gravel					 Well			
										Monument C	oncrete Seal		ļ
				2555'	Brown, moist, silty, gravelly		50	SМ	0				-
12				graded.	sown, moist, siity, graveily	SAND, Well					Bentonite Seal		-
6			MW09-05	- ⁻	Brown, moist, slightly silty S		60		0				Ì
9 11				gravel, po	orly graded. Wet lens at 8-8	3.5'.		SP		2" PVC Blank	$\overline{}$		
							80		0	Dialik			_
3			MW09-08		rown, moist, SILT with orga	nics, varying					Sand :		-
-1	_			fine sand	content.		100						-
1 1								ML	0.4				-
י 2							75						ŀ
3			MW09-13			_			0	2" PVC Screen	$\overline{}$		
1				13-21.5':	Dark gray, wet, silty SAND,	fine to medium	L	L					
2 5				grain, wel	l graded. Thin silt lenses th	roughout.	40		0.4				_
4			MW09-16					SM		2" PVC	<u>ا</u>		-
4							20		0	Plug	·		-
4													-
5	-†		MW09-20				30		0.2				-
3						EOB at 21.5'							-
	-												
													_
				J			L	L	L				
De	pth	n in fe	et										
_		Metho			Date: 10/22/2015			formatio		_	_	_	-
			any: Holocene		Weather: Sunny, Mild Page1 of1		Well T	ag No.	: BJX-759	9			
	-	Diamet	^{er:} Six Inche Stuart Hyde	es	Page1 of1								
	5		-10	qic	<i>S</i> <i>Boring/We</i> <i>Duwamisl</i> 6365 First	ell Log n Marine Ce Avenue So					MW	09	

		INTERVAL	SAMPLE NUMBER	SOIL DESCI	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONS	- STRUCTIC)N
				Surface: G	aravel					6" Bor	ing
									— — — — — — Well — Monument		
1	9 1 3			(road base	own, dry, silty, gravelly SAND, fine gra e). Turns blue/gray at 3.5-4'.		SM	0.1	Conc	seal	
-1	0		MW09D-05	4-6.5': Da fine grain.	rk gray and black, dry, slightly silty SA	ND, 50		0.1		Seal	
))			5					2" PVC — Blank		
	5. 1				ay-brown, moist, interbedded sandy S SAND, some organics, fine grain.	ILT 75	ML/	0			
	2				AND, Some organics, fine gran.		SM				
	2 		MW09D-10		ay-brown, moist, SILT, some gravel a	nd 40		0.4			
				organics.		100	ML			Sand	-
:	2 3							0.6		Sand	
	5		MW09D-14	1	Brown and dark gray, wet, silty SAND		-				-
	4 3	-		grain, wel	graded.	100		0.0			-
	, 1 2 4		MW09D-18				SM	0.5	2" PVC — Screen		
-	 1					100		0.5			-
	, 1										
	7 Э		MW09D-23			100		0			
1	1										
	5			Varying le	nses of organics.	30	SM	0.3			
	3		MW09D-26								-
									2" PVC 一 Plug		
 -	enti	h in fe]		L	L				
_	-	g Metho		am augor	Date: 10/22/2015	Other It	formatio	n:			
_	_		iny: Holocene		Weather: Sunny, Mild			.: BJX-760)		
⊢	-	Diamet	0.000	es	Page of						
				qic	S Boring/Well Log Duwamish Marin 6365 First Avenu		,		N	1W09I	 D

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTF	RUCTION
			Our faire and						6" Boring
	+		Surface: 2	" Pavement				 Well → ↗	
								Monument Concrete Sea	
6 6	╋				0			- Cea	
8	╏└╌┚┛╴┟		5-6': Blue	-gray, moist, silty, gravelly SAND, well			1	Benton	
7	╋			rick debris present in sampler.	60	SM	0.3		
15 16		MW10-06	6-8': Blac	k and gray, dry, slightly silty SAND, poo	ly	SP		2" PVC – Blank	
2	<mark>↓┌╻┓</mark> ╷		graded.		50		0.5		
1	╏└╹┛╹╽		0.401 D	we and arous projet OILT servers in the		1		Sai	nd 📕 🗕
1	╋┍╼┲╸╽	MW10-10		wn and gray, moist, SILT, some organie ed fine SANDS throughout unit.	s. 100	 мL	0.2		
1 1	╊╹└┚┛╹╊			perched groundwater at 10.5'.					
4					100		0.4		
5 8							0.4	2" PVC Screen	
2	┼┌╼┲╴╟					-			_
1	+-	MW10-16					0.4		
2 1		1010-10	16-19' [.] Bl	ack/gray, wet, silty SAND with organics		ѕм			-
3		MW10-18			40		0.4	2" PVC Plug	
6									
2 6					0				-
7				EOB at	21.5'				
									-
									-
	† ·					·			
									_
	ļ								-
									-
Dept	⊥l. th in fe		J		L	L	I		
	ng Method		mource	Date: 10/22/2015	Othor I	nformatio	n.		
		I: Hollow-ste		Weather: Sunny, Mild			n: .: BJX-76	2	
	g Diamet			Page of			0		
Logge	ed By:	Stuart Hyde							
9	<i>q</i> .	-10,	qic	S Boring/Well Log Duwamish Marine 6365 First Avenue				M	W10


		INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION		Recovery %	nscs	PID (ppmv in headspace)		VELL	TRUC	TION	
												6"	Boring	
	- +			Surface: 4	" Pavement							-,==		_
										Monu				
	<u>,</u>			2.5-5.5': 8	Brown, slightly moist, silty, gravelly S	AND.		SM			Concr S	ete BRR eal		Š
6					ed. Brick debris in sampler. Turns to I		50	311	0.3					ŝ
Ę	5		MW10D-04	green at 3							Bent	onite Seal		ŝ
- {				_ [*]	Black/brown, dry, slightly silty SAND.		75	20	0					8
<u>(</u> 1			MW10D-06					SP			PVC —			Š
				Little to n	p recovery at 7.5' and 10'.		0			Bla	ink			ŝ
	2						0	?						8
	3													Ì
2							5							ŝ
2				10-31.5':	Brown, very moist, silty SAND with g	ravel,								
2	,			well grade	ed.	∇	50							
2	2		MW10D-13	Turns gra	y and wet at 13'.	-		ѕм	0		:	Sand		
2	2													
				Thin SILT	lenses throughout unit.		50		0.2					
-2														
4	4						60							
8	3	-	MW10D-18						0.1	2"	PVC –			
	7									Sci	reen	÷		
Ę	5						25		0.4					1
Ę														
							25	SМ	0.2			•		
8	5						-		0.2					÷
Ş	9	•	MW10D-24											
	1 1			Same			30		0.2					
4														
										2" P\	/c			
										Plug		·		
D	epth	n in fe	et											
Dr	illing	Metho	d: Hollow-ste	em auger	Date: 10/22/2015		Other In	formatio	n:					
Dr	illing	Compa	any: Holocene	e Drilling	Weather: Sunny, Mild		Well T	ag No.	: BJX-761	1				
Вс	oring	Diamet	er: Six Inche	es	Page <u>1</u> of <u>2</u>									
Lo	ggeo	By:	Stuart Hyde											
	\$? '	-109	qic	<i>S</i> <i>Boring/Well Log</i> <i>Duwamish Mari</i> 6365 First Aven Seattle, WA 980	ne Cel ue So					Μ	W1	0D	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
			Curfaces (6" Boring	
	+			" Concrete				Well	
7 8				Gray-brown, moist, slightly silty SAND. g gravel at 5'.	10	SM	0	Monument Concrete Seal	
6 15 14 3			5.5-6.5': (Gray, moist, clayey SILT, some organics	. 75	ML	0	Bentonite Seal	
14 28 50/6				able found in auger. Appears to have be red beginning at 2.5'.	en 0	?	0	Blank >>	
2 6 2		 MW11-11		ray/brown, wet, very silty SAND, fine to ain, well graded.	- ≧ 75	SM	0		
1 1 1			12.5-14':	ck from 11-11.5'. Light brown, slightly moist, SILT and SA some organics.	100 ND,	SM/ ML	0	2" PVC Screen	
2 2 5		 MW11-16		own, wet, silty SAND, some organics ar	nd 75	SM	0	2" PVC	
3 2 4			17-21.5': poorly gra	Gray, slightly silty SAND, medium grain.		SP	0	Plug	
3 2 3		MW11-20		EOB at	75 21.5'	~	0		
Dep	 oth in fo	 eet]			_L]	
Drill	ing Metho	od: Hollow-st	em auger	Date: 10/20/2015	Other	Informatio	n:		
Bori	ng Diame	•	-	Weather: Sunny, Mild Page			.: BJX-75: functionin	3 ng correctly.	
	<u>9</u>		gic	<i>S</i> <i>Boring/Well Log</i> <i>Duwamish Marine</i> 6365 First Avenue Seattle, WA 98018	South			MW11	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTR	RUCTION
										6" Boring
			Surface: 6	" Gravel/Quarry Spalls					 Well —	
									Monument Concrete	
17			2.5-5.5': E	Brown, dry, slightly silty SAND, r	nedium	90		0	Seal Bentoni	
9 11			grain, poo	orly graded. Silt lens at 3.5-4'.		00	SP		Se	
	┦┌╼ ┛	MW12-04								
11-				rk gray, silty, gravelly SAND, so	me	75	Γ	0	2" PVC Blank	
17		MW12-06		slight odor.			SM	0		-
. 7 9	-+-			k gray, moist, SAND, medium g Vet at 10.5' (perched water).	ram, poorly	60				
10	-╂-└-■-			roleum/tar odor and possible sta	aining at				Sar	id 🔚 🔚
7	┦┌┲┤		10.5-11'.			60	<u>⊢ − −</u>	0		
- 3 - 3	╹╂╹└┚┛╹╵	MW12-11		Light gray, slightly moist, SILT.			ML			
3						75	SM/	0		
2					∇		ML	0	2" PVC Screen	
6										_
3	-+			ray, wet, silt SAND, medium gra	in, well	75	SM	0		
3		MW12-16	graded. S	ilt lenses throughout unit.					2" PVC Plug	-
5 6	-+-					5	SP	0		
-7					EOB at 19'					
	+		1					0		
										-
	+						L – –			
										-
										-
	-									-
Dep	th in fe	et	-			-	-	•		
Drilli	ng Metho	d: Hollow-st	em auger	Date: 10/20/2015		Other In	formatio	n:		
		any: Holocen	e Drilling	Weather: Cold				: BJX-75 [,]		
	ng Diame	•	es	Page1 of1		PID w	as not	functionin	ig correctly.	
Logg	jea By:	Stuart Hyde								
	\mathcal{S}^{\prime}	-10	qic	<i>S</i> <i>Boring/Well</i> <i>Duwamish M</i> 6365 First A	larine Ce				M	W12

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUC	TION
								6"	Boring
			Surface: 6	" Gravel/Quarry Spalls					
			2.5-11': B	rown, moist, slightly silty SAND, mediu	m			Monument Concrete	
			grain, poo	orly graded.	60		0	Seal	
14 8			Turns gra	y with increasing gravel at 5'.		SP		Bentonite	
28	┨╷ ╶ ┲┲╴	MW12D-04							
7							0		
8			Turns mo	ist with little gravel at 7.5'				2" PVC Blank	
3 6	+-	MW12D-08		10' (perched groundwater).			0		
8	 - - 								
4		MW12D-10			75		0		
1		MW12D-11	11-13': G	ray, moist, SILT, some organics.		ML			
					100		0		
3 4	13-31': (ray, wet, silty SAND, medium grain, we	ell			Sand .	
	┦┌┲╸	MW12D-14	graded.	s throughout unit.	90		0		
2 4	+- 	MW12D-16	Sill lense						
4									
4	+-					SM	0	2" PVC —	
4								Screen	
1					5		0		
2									
2	·	MW12D-23			60		0		
2 4	↓	10100 120-23	Increased	l organics at 23' (grass/reeds).					
2	╊┍╼┲╸				100		0		
3 4	† [] -					SM			
	ļ								
	 	L	J		L	-L	L		
рер	th in fe	et		-					
	ng Metho			Date: 10/19/2015		nformatio		•	
	g Diame	any: Holocene ter: Six Inche		Weather: Cloudy, Mild Page of			.: BJX-749	9 ng correctly.	
	-	Stuart Hyde		· J · ·		mas nul		ig concetty.	
	9	-10	qic	<i>S</i> Boring/Well Log Duwamish Marin 6365 First Avenu Seattle, WA 9801	e South			MW1	2D

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	RIPTIC	DN		Recovery %	nscs	PID (ppmv in headspace)	WE	LL NSTRU(CTION	
				Surface: 0	Gravel							6	" Boring	
										1	Wel Monumen	t 🌆		
	16 20 21			2.5-6.5': E	Blue-gra	y, slightly moist, silty, gra	avelly	50	SM	0		Seal		Sector Sector
_	10 16 21		MW13-04	SAND, w	ell grade	d. Organics present at 6	6.5'. 	100		0	2" PVC	Seal		
ľ	21 10 9 9							0	?		Blank	Sand :	*	
	9 1 2 3		MW13-10	10-13': G increasing		brown, moist, SILT, orga	nic content	75	ML	0				-
-	4 6 7		MW13-13					60		0	2" PVC Screen			-
	2 4 5			13-21.5': grain. Va		et, slightly silty SAND, m content.	edium	75		0				
	4 4 5		MW13-18	Same				50	SM	0	2" PVC Plug		*	
-	2 5 4		MW13-21				EOB at 21.5'	50		0				-
														-
-														
	Dept	h in fe		J				L	L	L				
	Drillin	g Metho	d: Hollow-ste	em auger	Date:	10/21/2015		Other In	formatio	n:				
1	Boring	g Diamet	any: Holocene er: Six Inche Stuart Hyde	-	Weathe Page _	r: Cloudy, Mild <u>1</u> of <u>1</u>				: BJX-75		ly.		
		\mathcal{P}^{i}	-10	qic	S	Boring/Well L Duwamish M 6365 First Av	arine Ce					MW	/13	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	RIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION
			Surface: 0					6" Boring
	+							Well
								Concrete Seal Bentonite
8 18	-+-	MW14-03	2.5-4': Bro	own/gray, moist, silty, gravelly, SAND.	100	ѕм	1.0	Seal
13				d brick debris present at 3.5' (fill).				2" PVCT
6 8		10000			75		1.6	
9		MW14-06		lue-gray, slightly moist, sandy SILT, som tle to no recovery.		ſ		
13 12	-+-		gravon En		0	ML		
6						L		Sand :
0		MW14-11			2			2" PVC Screen
1 2			12.5-18':	Black (stained), very moist, SILT and	70			
1			SAND, fir	e grain, some organics.		ML/	3.8	2" PVC ¬
- <u>-</u>	┦┌┓┛		Wet at 15		≚	SM		
1 1	•+-	MW14-16	Strong oil	y odor and staining, decreasing at 16.5'.	70		0.6	
6					70		0.2	
11 9				Dark gray, wet, slightly silty SAND, no oc	or	SP	0.2	Bentonite Seal
6	┦┌┓╸		or staining	j.			0.5	
-7 8	け			EOB at 2			0.5	
								-
	<u> </u>							
								-
								-
	1	L]		L	L]
Dep	oth in f	eet						
	ng Meth			Date: 10/21/2015		nformatio		
	ng Com	eter: Six Inche	-	Weather: Sunny, Mild Page 1	Well	Tag No.	.: BJX-758	8
	-	Stuart Hyde		·····				
	q	-10	qic	<i>S</i> <i>Boring/Well Log</i> <i>Duwamish Marine</i> 6365 First Avenue				MW14

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION			Recovery %	nscs	PID (ppmv in headspace)		ELL DNSTRU	CTION	
				Curferen	" Acebok							6	" Boring	
				Surface: 4								ell —		
									SM		Monume	Concrete		
	7				Brown, moist, silty	SAND, metal/trash	debris	75		0		Seal		
	9 12			(fill).								Bentonite Seal		
_	4	╺┌─┲┲╸╿				t, slightly silty SAND	,	100	SP					<u>-</u>
	9 7		MW15-06	some gra	v c i.					ĩ				-
-								400		0	2" PV			
-	2 0							100			Blank	·		
ŀ	1			8-11': Gra	y/brown, moist, S	SILT with organics, c	rganic		ML			Sand		
	1			odor.				100		0				
	2		MW15-11	Turns to v	ery silty SAND w	ith organics at 11-13	3'		SM					
	2							75		0				-
-	2 3										2" PV Scree		╞	-
	2	╺┌─┲╾╢	 MW15-15	42.04.5%				100		0				-
-	3 5		1010013-13		orly graded.	ightly silty SAND, m	ealum	100		0				-
-	-			grain, poc	iny graded.			75	SP		2" PV Plug	c _		-
-	3 4	-						75		0	Flug			-
-	5													
	12 11		MW15-20					100		0				
	10					EOB	at 21.5'		\bigtriangledown			3		
_		!												
-														
-														
]										
I	Dept	h in fe	et		 									
1	Drilling	g Methoo	: Hollow-ste	em auger	Date: 10/21/20	15		Other In	formatio	n:				
	Drilling	g Compa	ny: Holocen	e Drilling	Weather: Cloudy			Well T	ag No.	: BJX-756	6			
-		j Diamet		es	Page <u>1</u> of			PID w	as not	functionin	g prope	erly.		
	ogge	d By:	Stuart Hyde											
	\$	\mathcal{T}	-10	qic	S Bor Duv 636	ing/Well Log vamish Marii 5 First Aveni	ne Ce					MW	/15	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
			Surface: 0					6" Boring
					·		 	Well
16 17 17		MW16-03		rown, very moist, silty, gravelly SAND, anics, well graded. Metal/trash debris a	50 t 2'.	SM	0	Monument Concrete Seal Bentonite Seal
3	┾╷╌┓╾╿ ┽╷╵ ┛ ╌┥		Turns dar	k gray at 5.5'.	60		0	
5 5 12 17		MW16-06	Brick/fill d	ebris encountered at 7.5-10'.		SM	0	2" PVC Blank Sand
3	╪╶╼╾╿ ┽╎ ╹ ╹┼	MW16-10		ck (stained?) at 10-11'	75	SP	0	
6 3 6 4		MW16-13	grain, poc 12-17.5':	ay/black, moist, SAND, trace silt, medi rly graded. Dark gray, very moist, silty SAND, som	60	SP	0	2" PVC Screen
50/6		MW16-15		d organics. y odor and possible staining at 15-16'. '.	75		0	
2 3 5	•	MW16-18		': Gray, wet, slightly silty SAND, some ood debris. Silt lens at 21'.	90	SP	0	2" PVC Plug
1 -3 -5		MW16-20		EOB at	21.5'	マ	0	
								-
Dep	th in fe]		······	L	L	
Drillin	ng Metho	d: Hollow-ste	em auger	Date: 10/19/2015	Other I	nformatio	n:	
	ng Compa g Diamet	any: Holocene	-	Weather: Cloudy, Cool Page of			: BJX-748	
	-	^{er:} Six Inche Stuart Hyde	əsi	ימשס <u>י</u> טו <u>י</u>		vas not		ng properly.
	g.	-10,	qic	<i>S</i> <i>Boring/Well Log</i> <i>Duwamish Marine</i> 6365 First Avenue				MW16

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	IPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
			Surface: 6"	Gravel						
			0.5-3': Brov	wn, very moist, silty SANE), some trash					
			debris, no	odor or obvious staining.			SM		Temporary Boring. Backfilled with	-
			3-8': Gray,	moist, gravelly, clayey, S	AND/SILT, slight	70		0.0	Bentonite	
	<u> </u>		petroleum	oil odor, possible staining	<u>.</u>		L			
			Wood deb	ris at 5'			SC/			_
	 	GLB01-07		jects at 7 to 7.5'. Strong o	creosote odor,			3.5		-
	₽₽		possible p	ling debris.		60				
			8-14': Brov				 Sм	0.0		
		GLB01-12		ht odor and possible stai		50				-
			Perched g	roundwater at 9'.						-
		GLB01-14						0.0		_
	L_ _		14-16': Bro	wn/gray, moist SILT, no o	odor or staining.		-ml-			
	╎╤╧╵╎					75				_
				ck/dark gray, wet, SAND,				0.0		-
			trace silt, s	light odor and potential st	aining.		SP			
		0.00				400				-
	┼┻╴╶│	GLB01-20			EOB at 20.0'	100				
					EOB at 20.0					-
										-
			-							-
										-
Dept	L th in fe]			L	L	L		
Drillin	g Metho	d: Direct Pu	sh	Date: 3/29/2016		Other In	formatio	n:		
		any: Holocen	e	Weather: Cloudy						
	g Diamet		nes	Page <u>1</u> of <u>1</u>	_					
Logge	са Бу:	Stuart Hyde	aic	Boring Lo	og h Marine Ce	nter				
	<i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-105 <i>B</i>-1								GLB01	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL		N		Recovery %	uscs	PID (ppmv in headspace)	WEL CON	L STRUCTION
			Surface: 6"	Gravel							
			0.5-3.5': Gi	ray/brov	vn, dry, silty, grav	elly SAND, some					
			brick/trash	debris,	sweet odor and p	ossible staining				Tem	porary Boring.
		GLB02-03	at 2-3'.					SM			ckfilled with Bentonite
	╎┷╤┈╎								0.1		-
									1.4		
						D, some organics					
		GLB02-08	staining th		burned oil odor ar				3.4		-
	₽≜		Stairing th	rougnot							
			Water at 1	2'.		~	10	SМ			
						_	=				-
		GLB02-14									
			Oily slick a	ppeara	nce at 12-16'.			L			
	╎ _╇ ╺ <mark>┢</mark>						15				
		GLB02-17			, SAND, medium				2.5		
				rance, b	ourned oil odor an	d possible		SP			
		01 000 00	staining.								
	┼╈╴╶│	GLB02-20				EOB at 20.0'			1.9		
						LOD at 20.0					-
											-
											-
Dept	L th in fe		J				-L	L			
Drillin	g Metho	d: Direct Pu	sh	Date:	3/28/2016		Other In	formatio	n:		
Drillin	g Comp	any: Holocen	e	Weather	Cloudy		1				
	g Diamet		nes	Page	_1 of1		4				
Logge	ed By:	Stuart Hyde									
9	? '	-10	gic.	5		og h Marine C t Avenue S					GLB02

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	RIPTIO	N		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
			Surface: 6"	Gravel						
		GLB03-04	crushed ro obvious oc	ock/trash lor or sta	moist, silty, grave /brick debris throug aining. pist, silty SAND, so	ghout, no	100	SM	0.0	Temporary Boring. Backfilled with Bentonite
			trace grav		ered trash and woo	od debris,				
		GLB03-08			ery moist to wet at sible staining.	12', silty SAND,	75	SM	1.5	
					lark gray, wet GRA	VEL, pea size.	75	GP	0.1	
						¥		SМ	0.5	
	┝╶╌│╌ ┼┳╌╋╌┄	GLB03-17	15-17': Da grained, m		moist, SILT and S	AND, very fine	100	SM/ ML	0.2	
		GLB03-20	17-20': Da	ırk gray,	wet, silty SAND, p	ossible staining	100	SM	0.1	
			at 17', slig	nt odor.		EOB at 20.0'		\checkmark		
						·				
Dept	th in fe	 eet]			·	L	L		
	g Metho		-		3/28/2016		Other In	formatio	n:	
Boring	g Diame	any: Holocen ter: Two inch Stuart Hyde		Weather Page	: Cloudy 1of1	-				
	Q ¹		qic.	5		g h Marine Ce Avenue Sc				GLB03

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	RIPTIO	N			Recovery %	nscs	PID (ppmv in headspace)		
			Surface: 6	" Gravel								
	† -		0.5-2': Re	d/brown,	moist, silty,	gravelly SAND,	some			0.0		
					lor or stainin					1.2	Te	emporary Boring. Backfilled with
		GLB04-04						100	SM	1.2		Bentonite
	┼╈┳┄	GLD04-04	2 12'- Cro	w moiot	oilty group	ly SAND, some		100				
						it. Trash debris f						
		GLB04-07				ay, crushed rock						
					ssible fill mat		aı	75	SM	1.5		
	₽ ₩ 		2.3,4, ai	iu o , pos				10		1.0		
										_ <u></u>		
		GLB04-12						75		-		
	- •		12-15': Gi	ray, very	moist to wet	at 14', very fine	SAND			0.5		
						12-13', diminish			SM/ ML			
			with depth		a otaning at	, a						
								100		0.2		
	╎┱╧┈											
			15-20': Gi	ray, wet,	slightly silty	SAND, fine to co	arse		SM			
	11				us odor or sta							
		GLB04-20						100		0.1		
	⁺∎					EOB at	20.0'		$\mathbf{\nabla}$			
Dept	h in fe		J				l		L			
Drillin	g Metho	d: Direct Pu	sh	Date:	3/28/2016			Other In	formatio	n:		
Drillin	g Comp	any: Holocen	e	Weather	: Cloudy							
	g Diame		nes	Page	of	1						
Logge	ed By:	Stuart Hyde										
9	Q^{\prime}	-10	qic	S		g Log mish Marii First Aveni						GLB04

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESCR	IPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION
	┤╤╴╌		Surface: 6"	Gravel				
		GLB05-04	gravelly SA	wn, to dark gray at 1.5', slightly moist, sil ND, some trash debris at 1.5 to 4', sligh ossible staining at 1.5 to 4'.		SM	8.8	Temporary Boring. Backfilled with Bentonite
		GLB05-08		gray, very moist, SAND, medium grain, ded, faint odor and possible staining.	0	SP	0.1	
		GLB05-12	throughout	vn/gray, moist, SILT, varying sand conte , no odor or staining. wn/gray, moist, very silty SAND with	nt 100	мL	0.2 0.2	 - -
				ood debris.	100		0.2	-
				own/gray, wet, slightly silty SAND, some no obvious odor or staining.	▲ 100	SM		-
		GLB05-20		EOB at 20.0	75	~	0.1	
Dep	th in fe]		L	L		
Drillir	ng Metho ng Comp ng Diame	any: Holocene	e	Date: 3/28/2016 Weather: Cloudy Page _1	Other Ir	formatio	n:	
		Stuart Hyde	qic:	S Boring Log Duwamish Marine 6365 First Avenue		,		GLB05

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
			Surface: 6	" Gravel				
	+ -			ay to dark gray at 2', moist silty S me trash/brick debris, petroleum		SM	0.1	Temporary Boring. Backfilled with
	┤ <mark>╺╺</mark> ┯╶┤	GLB06-04	staining fr		80	-	1.1	Bentonite
		GLB06-07	staining.	ue-gray, moist, SILT and CLAY, s		ML/ CL	0.0	
	│ _₽ ≜		debris, no		70	ѕм	$\left \right $	-
		GLB06-09		AND, some clay and organics, trock debris.	ash/	_	0.0	
	┼╧╤╌╴			Dark gray, very moist, SILT and (dor or staining.	CLAY, no 20	ML/ CL		-
		GLB06-14		Dark gray, wet, silty SAND, decre ith depth, no obvious odor or stai	ning.	SM	0.0	
	┝┳╺┻				100		0.0	-
				ark gray, wet, SAND, medium gra or or staining.		SP		-
	 ▲ 	GLB06-20		EOI	100 3 at 20.0'		0.0	
								-
								-
								- -
	th in fe			-				
	g Metho	d: Direct Pu	-	Date: 3/29/2016 Weather: Cloudy		Information		I boring. Driller moved
Borin	g Diamet			Page of			d redrilled	
5	<i>g</i> .	-10	gic	<i>S</i> Boring Log Duwamish Ma 6365 First Av Seattle, WA				GLB06

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	RIPTIO	N		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
			Surface: 6'	Gravel							_
	••••	GLB07-04	0.5-8': Bro odor or sta		st, silty SANI	D, some gravel, no	50	SM	1.8	Temporary Boring. Backfilled with Bentonite	-
				· ·							
		GLB07-08			n 4' to 8'. Oil sample tube	y burnt odor and	10		4.6		-
						0', wet at 12', SAND g at 8' to 10'.	30	SP/ GP	0.0		
							· ≚	SM/			-
	- # #	GLB07-15	and SILT,	slight m	arine odor.	noist, very fine SAN	60	ML	0.0		
		GLB07-19	grained, ti	ace silt,	no odor or s	AND, medium taining. ïine SAND and SILT	3	SP SM/			-
	-		no odor o	r staining	<u>. </u>	EOB at 20.0)'		0.0		
											-
											-
											-
Dept	h in fe]				L	_L]		
Drillin		any: Holocen	e	Weather	3/28/2016 : Cloudy		Other I	Informatic	on:		
	g Diamet ed By:	^{ær:} Two inch Stuart Hyde	nes	Page	_1 of	1					
	? '	-10	qic	<i>S</i>		g Log mish Marine First Avenue				GLB07	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESCR	IPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
	- -		Surface: 6" (Gravel				
			0.5-4': Brow odor or stain	vn, slightly moist, silty, gravelly SAND, r ning.	o 50	SM	0.0 0.3	Temporary Boring. Backfilled with Bentonite
	** *** ***		No recover	y from 4' to 8'.				
		GLB08-08	8-10': Dark	gray, wet, silty SAND, some organics,	0		0.0	- - -
		GLB08-12	10-13': Brov	ining, perched groundwater at 8' wn, slightly moist to wet at 12', very fine SILT, some organic and wood debris, ne odor.	100	SM/ ML	0.1 0.0	
		GLB08-16		k gray, wet, SAND, medium grained, tra r or staining.	75 ce	SP	0.0	
	.	GLB08-20		EOB at 20.0	50	▽	0.0	-
								-
								- - -
Dept	LI th in fe	et	J		L	.∟	I J	
Drillin Boring	g Diamet	any: Holocen	e	Date: 3/28/2016 Weather: Cloudy Page 1	Other I	nformatio	n:	
	$\boldsymbol{\varsigma}^{\cdot}$	-10	gics	S Boring Log Duwamish Marine 6365 First Avenue				GLB08

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESCF	RIPTIO	N		Recovery %	USCS	PID (ppmv in headspace)	WEI	
			Surface: 6"	Gravel							
		GLB09-03	gravel, sor	me orgar		silty SAND with o odor or staining.	75	SM	0.0	Ten B	nporary Boring. ackfilled with Bentonite
	-		6-9.5': Dai	rk gray, r	moist, SAND	, medium grained, li			0.0		
		GLB09-08	silt, no odo				75	SP	0.0		
				increasin	ng sand cont	ret at 12', SILT with ent with depth, orga	nic 100		0.0		
		GLB09-14				lty SAND, trace ht at 18', no odor or					
	╺		staining.				100	SM	0.0		
	·····	GLB09-20				EOB at 20.0	100	\bigtriangledown			
Dept	th in fe]								
	g Metho				3/29/2016		Other	Informatio	on:		
	g Compa	any: Holocen		Weather Page	: Cloudy 1of	1					
		Stuart Hyde									
	\boldsymbol{Q}^{\prime}	-10	qic.	5		g Log mish Marine First Avenue					GLB09

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	RIPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
			Surface: 6	" Gravel						
	┼┳╴─			own, moist, silty, gravelly SAND,						
				<pre></pre>				0.0	Temporary Boring.	
							SM		Backfilled with	
		GLB10-04	3-8': Dark	gray, silty SAND, some clay, so	me brick/	60	511	4.4	Bentonite	
			glass/tras	h debris, petroleum oil odor and	possible					
			staining.					0.1		
	┼╤╧╌	GLB10-08				50	SP			
				ary from 0' to 10'		0				
	┼┻╴─			ery from 8' to 10'. EOB at 10.0	Refusal		\checkmark			
				LOD at 10.0						
										-
										_
										-
										-
										_
	ļ									
Dept	LI th in fe		J		L		L	<u>ا</u> _ا		
Drillin	ng Metho	d: Direct Pu	ish	Date: 3/29/2016	0	ther Inf	formatio	n:		
Drillin	ng Comp	any: Holocen		Weather: Cloudy	F	Refusa	al at 10)'. Moved t	forward one foot and tried	
Boring	g Diame	er: Two incl	hes	Page of	a	again.	Refus	al again a	t 10'.	
Logge	ed By:	Stuart Hyde								_
	<i>g</i> ⁱ	-10	gic	S Boring Log Duwamish M 6365 First Av					GLB10	

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESCR	RIPTIO	N		Recovery %	nscs	PID (ppmv in headspace)		
	- #		Surface: 6"	Gravel							
			some brick odor or sta	/crushed ining.	rock/ trash de	ravelly SAND, bris, no obvious	100	SM	0.1	Te	emporary Boring. Backfilled with Bentonite
		GLB11-06	3-5.5" Rec		wn, moist, siity	/ SAND, no odor or			0.3		
					y, moist, silty S ote odor at 5.5;	SAND with gravel, ; and 7.5'.	100				
	·	GLB11-12			ay, moist very nd content wit	fine SAND and h depth.	60	SM/ ML	0.2		
		GLB11-15			ay, wet, slightly ent at 14.5'.	v silty SAND,	2	SM	0.2		
						edium grained, or, no staining.	100	SP	0.4		
	.	GLB11-20				EOB at 20.0'	100	~			
Dept	h in fe		J				_L	L			
Drillin Boring	g Diame	any: Holocene	e	Weather:	8/28/2016 Cloudy 1of1		Other In	formatio	n:		
		-10,	qic.	5		Log ish Marine C rst Avenue S					GLB11

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESCF	RIPTION		Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUC	TION
	- -		Surface: 6"	Gravel						
		GLB12-04	0.5-4.5': Bi no odor or		t, silty SAND, some gra	avel, 90	SM	0.0	Temporary Bo Backfilled v Bentonite	vith
		GLB12-06			oist, SAND, medium			0.2		
	••••	GLB12-10				75	SP	0.0		-
	┼┝╴╌ ┥╋╋┈				noist SILT with organic t 13', no odor or stainir		ML	0.0		
		GLB12-14				100		0.1		-
	·····			Brown/gray, wet, o odor or stainin	SAND, medium grain		SP			-
		GLB12-20			EOB at 20	100).0'	~	0.1		- -
										-
										-
Dept	th in fe	 eet]			L				
Drillin Boring	g Diame	any: Holocen	e	Date: 3/29/20 Weather: Cloud Page 1 0		Other	Informatio	on:		
		-109	qic.	Boi 5 Du 636	ring Log wamish Marin 55 First Avenu				GLB	12

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	IPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
			Surface: 6" (Gravel				
		GLB13-01 GLB13-04		n/gray, dry, silty, gravelly SAND, some d wood debris at 1', no odor or staining		ѕм	0.2	Temporary Boring. Backfilled with Bentonite
			Rock in sho	e, no recovery				
	┼┯┻╌				0	?		-
			8-12': Gray, or staining.	wet, slightly silty SAND, no obvious o		_SP_		
	┢	GLB13-12			10			-
			No recovery					-
	┝╤┢╸╌				0	?		-
					0			-
				EOB at 20.				
								-
								-
]					
	th in fe		sh	Date: 3/28/2016	Other I	nformatio	n:	
Drillin	g Compa	any: Holocen	e	Weather: Cloudy				
		^{ær:} Two incł Stuart Hyde	nes	Page <u>1</u> of <u>1</u>	_			
			gics	5 Boring Log Duwamish Marine 6365 First Avenue Seattle, WA				GLB13

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	RIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION
	- -		Surface: 18	8" Concrete				
		GLB14-02	1.5-2.5': B	rown, wet, silty SAND, no odor or stainir	ng. 50	sм	0.0	Temporary Boring. Backfilled with Bentonite
		GLB14-06		ay, dry to wet at 4', SAND and GRAVEL ock fill), no odor or staining.	60	GW	0.0	
		GLB14-12		k gray, dry to wet at 10', silty SAND, taining, no odor.	5	SM	0.0	
		GLB14-15			100		0.0	
		GLB14-15		rk gray, wet, slightly silty SAND, some odor or staining.	100	SM	0.0	
				EOB at 20.	0'			
Dept	th in fe							
Drillin Boring	g Diame	any: Holocen	е	Date: 3/29/2016 Weather: Cloudy Page	Other I	nformatic	on:	
•	Q ^r	-10	qic.	<i>S</i> <i>Boring Log</i> <i>Duwamish Marine</i> 6365 First Avenue				GLB14

APPENDIX F

G-Logics Tidal Influence Study

Appendix F Tidal-Influence Study Duwamish Marine Center Property 6365 First Avenue South Seattle, WA 98018

Prepared for:	Mr. Clint Harris
	Duwamish Marine Center
	16 South Michigan St.
	Seattle, WA 98108

Prepared by: G-Logics, Inc. 40 2nd Avenue SE Issaquah, WA 98027

> Telephone: (425) 391-6874 Facsimile: (425) 313-3074

February 18, 2020

G-Logics Project 01-0979-F Copyright 2020 G-Logics, Inc. All Rights Reserved

G-Logics has prepared this document only for our client's use, only for the purposes stated herein, and subject to any stated limitations. Use of this document by regulatory agencies is regarded as a "fair use" and is not a violation of our copyright. Regulatory agencies also may make additional copies of this document for their internal and public use, as required by law. All other copies or uses of this document must acknowledge our copyright and indicate that permission to copy/use has been received from G-Logics and our Client.

g-logics

February 18, 2020 G-Logics Project 01-0979-G

Mr. Clint Harris Duwamish Marine Center 16 South Michigan St. Seattle, WA 98108

Subject: Appendix F Tidal-Influence Study Duwamish Marine Center Property 6365 First Avenue South Seattle, WA 98018

Dear Mr. Harris:

Presented in this document are the results of G-Logics Tidal-Influence Study, performed at the above-referenced property (the "Property"). This report documents the purpose, approach, and results of this study. We trust the information presented in this report meets your needs at this time. Should you require additional information or have any questions, please contact us at your convenience.

Sincerely, G-Logics, Inc.

Rory L. Galloway, LG, LHG Principal Stuart Hyde, LG Project Geologist

> G-Logics, Inc. 40 2nd Avenue SE Issaquah, WA 98027 T: 425-391-6874 F: 425-313-3074 01-0979-G-AF-RT.doc

TABLE OF CONTENTS

1.0	INTRODUCTION1
2.0	TIDAL-INFLUENCE STUDY BACKGROUND1
3.0	DATA COLLECTION1
3.1	ITidal-Influence Study Approach2
3.2	
4.0	TIDAL-INFLUENCE STUDY RESULTS3
4.]	IGroundwater-Elevation Fluctuations and Tidal Lag Times3
4.2	2 Well Distance vs Chloride Concentrations 4
4.3	3Mean Groundwater Elevations and Groundwater-Flow Direction4
4.4	4Mean Vertical and Lateral-Hydraulic Gradients5
4.5	
5.0	CONCLUSIONS6
6.0	OPINIONS6
7.0	LIMITATIONS7
8.0	REFERENCES8

FIGURES

Figure 1:	Tidal-Study Well Locations
Figure 2:	Average Groundwater Fluctuations
Figure 3:	Average Chloride Isocontours
Figure 4a:	Mean Groundwater Isocontours
Figure 4b:	Lateral Hydraulic Gradients
Figure 5:	Low Tide Groundwater Isocontours
Figure 6:	High Tide Groundwater Isocontours

TABLES

Table 1:	Well Information, Groundwater Elevations, and Tidal Lag Times
Table 2:	Groundwater Geochemical Parameters
Table 3a:	Vertical Hydraulic Gradient for Paired Wells
Table 3b:	Lateral Hydraulic Gradient for Shallow-Zone Wells

GRAPHS

Graph 1:	Shallow Wells – Groundwater Elevation Measurements
Graph 2:	Deep Wells – Groundwater Elevation Measurements

- Graph 3-1: Well Pair MW10/MW10D Groundwater Elevation Comparison
- Graph 3-2: Well Pair MW12/MW12D Groundwater Elevation Comparison
- Graph 4: Well Distance From Shoreline vs Groundwater-Elevation Fluctuations
- Graph 5: Well Distance From Shoreline vs Chloride Concentration
- Graph 6-1: Well MW06 Hydrograph
- Graph 6-2: Well MW07 Hydrograph
- Graph 6-3: Well MW08 Hydrograph
- Graph 6-4: Well MW09D Hydrograph
- Graph 6-5: Well MW10 Hydrograph
- Graph 6-6: Well MW10D Hydrograph
- Graph 6-7: Well MW11 Hydrograph
- Graph 6-8: Well MW12 Hydrograph
- Graph 6-9: Well MW12D Hydrograph
- Graph 6-10: Well MW13 Hydrograph
- Graph 6-11: Well MW16 Hydrograph

g-logics

1.0 INTRODUCTION

G-Logics has completed a Tidal-Influence Study for the subject Property (Duwamish Marine Center Property), located at 6365 First Avenue South, in Seattle, WA (Figure 1). Water levels were measured throughout the Property to assess the Duwamish River's tidal influence relative to groundwater elevations. Work was conducted in August 2016 and was performed in accordance with G-Logics workplan dated June 7, 2016. Results of the tidal-influence study are presented in this report and are subject to the presented limitations.

2.0 TIDAL-INFLUENCE STUDY BACKGROUND

Tidal fluctuations in the adjacent Lower Duwamish Waterway (LDW) can influence nearshore groundwater elevations, which in turn may affect the movement of groundwater and contaminants on the Property. Continuous groundwater-elevation data was collected in wells throughout the Property in order to calculate mean groundwater elevations and hydraulic gradients (vertical and lateral). With this information, measured groundwater elevations were used to assess the net groundwater-flow direction, as well as groundwater flow directions during low and high-tide events.

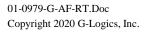
Results of the tidal influence study also provides information on groundwater-elevation fluctuations due to tidal inundation and tidal-lag times across the Property. Because it was suspected that individual wells are affected at different times with respect to the rising and falling tides, this study also provides information for when groundwater sampling should be scheduled in respect to tidal events in the LDW.

3.0 DATA COLLECTION

The tidal-influence study was conducted by placing in-situ pressure transducers/data loggers in twelve monitoring wells situated across the Site. The pressure transducers recorded measurements of water levels, water pressures, and temperatures for five days. The approach for collecting data for this study is described below.

3.1 Tidal-Influence Study Approach

The tidal-influence study was started on August 25, 2016. In order to continuously collect data across the Site, a transducer was submerged into the following wells.


- <u>Shallow-Zone Wells</u>: MW05, MW06, MW07, MW08, MW10, MW11, MW12, MW13, MW16
- <u>Deep-Zone Wells</u>: MW-9D, MW-10D, MW-12D.
- <u>Temporary Stilling Well</u>: SW-01

The wells listed above were selected to provide an array of locations across the Property at varying depths and distances from the shoreline. Although MW09 was identified in our workplan as part of our tidal study, the well was omitted. We do not know why it was excluded. Use of transducers followed procedures outlined in Ecology's *Standard Operating Procedure for the use of Submersible Pressure Transducers During Groundwater Studies*, dated February 25, 2015. A temporary well, placed into the Duwamish River, was constructed for this study. This "stilling well" was installed along the Middle Dock to measure tide levels in the Duwamish River. Additionally, a barometric sensor was placed in a secure location on the site to measure and record barometric fluctuations during the study period. All data loggers were programmed to record pressure readings (water levels) at 15-minute intervals during the study period.

Water levels were manually measured in the wells at the beginning and end of the study in order to convert the pressure-transducer readings to groundwater elevations and to confirm that each transducer remained at a fixed depth in the well.

3.2 Data-Collection Methods

Data loggers (In-Situ, Inc. Level TROLL 700) were deployed and securely placed in all wells. Barometric pressure was recorded using a BaroTROLL 500 instrument. Water levels were measured and logged every 15-minutes for five days. Vented pressure transducers were used to compensate for atmospheric pressure changes so barometric corrections to water-level data were not required. A barometric pressure transducer was deployed to record barometric pressure fluctuations over the test period in the event that barometric corrections were required (e.g., if a transducer vent line became obstructed).

4.0 TIDAL-INFLUENCE STUDY RESULTS

The findings of this tidal-influence study are presented below. In general, tidal fluctuations occur twice a day with two high tides and two low tides. During the study period, the high tide-peak elevations for the LDW and all wells varied by approximately one foot or less. In contrast, low-tide elevations within a single day varied by as much as approximately six feet in the LDW and wells closest to the shoreline. Because of this, reference to the "low-low" tide refers to the lower-elevation low-tide event for each day during the study.

Hydrographs for the shallow-zone wells and deep-zone wells are presented in Graphs 1 and 2, respectively. Additionally, the hydrographs for well pairs MW10/10D and MW12/12D are presented on Graphs 3-1 and 3-2, respectively.

4.1 Groundwater-Elevation Fluctuations and Tidal Lag Times

Groundwater-elevation fluctuations were calculated in the shallow-zone wells to assess the magnitude of groundwater response to the tidal fluctuations. Fluctuations in each shallow-zone well were calculated between the high and low-low tide each day between August 26 and August 29, 2016. The daily fluctuations then were averaged for each well, with results ranging from 3.89 and 7.33 feet across the Property. Greatest groundwater fluctuations were measured in the vicinity of well MW08 and generally in wells nearest to the LDW shoreline fluctuations also were observed to decrease with distance from the shoreline. In general, an inverse-linear correlation is present between well distance from the shoreline and groundwater fluctuations. Calculated groundwater-elevation fluctuations are presented in Table 1 and are plotted against well distance from the shoreline in Graph 4. An isocontour map is shown on Figure 2 to present the magnitude of groundwater fluctuations across the Property.

The time delay between a tidally-influenced change in a surface-water body and corresponding change in groundwater is referred to as tidal-lag time. For this project, the time lag was calculated as the difference in time between low tides at the stilling well and corresponding troughs in each monitoring well between August 26 and August 29, 2019. In general, the lag time of water-level changes is shortest near the LDW and increases with distance inland. Average low-tide lag times were calculated for each well, with results ranging from 18 minutes to 117 minutes. Average lag times over the 5-day period also are presented in Table 1.

g-logics

4.2 Well Distance vs Chloride Concentrations

In addition to groundwater data collected during this study, chloride concentrations measured in wells during groundwater sampling events were plotted against well distance from the shoreline. This process was completed to assess the tidal intrusion of surface water (saltwater) into upland groundwater on the Property. Chloride concentrations (analogous to salinity concentrations) measured in groundwater on the Property ranged from 1.11 to 4,870 mg/L (see Table 2). Chloride concentrations across the Property also are presented on the isocontour map in Figure 3. Graph 5 plots average chloride concentrations in each well against well distance from the shoreline. The trend line for the data yield an inverse-power correlation and demonstrates that chloride concentrations rapidly diminish with distance from the shoreline.

The LDW is considered marine water under Washington State water-quality standards due to salinity concentrations greater than 1 part per thousand (1,000 mg/L). In contrast, a study conducted by the United States Geological Survey (USGS) analyzed chloride concentrations in five freshwater streams in Washington State, with the average concentration of 9.14 mg/L (USGS, 2009). In addition, the study found that groundwater from shallow monitoring wells in urban areas across the United States contained a median chloride concentration of 46 mg/L.

Based on the USGS study and the chloride concentrations measured in upgradient wells on the Property (7.46 to 20.8 mg/L), groundwater with chloride concentrations greater than 50 mg/L is considered to be impacted by tidal intrusion of LDW surface water. Chloride concentrations measured on the Property indicate that tidal intrusion affects upland groundwater quality between approximately 120 feet (northern portions of the Property) and 200 feet (central and southern portions of the Property) inland from the LDW shoreline.

4.3 Mean Groundwater Elevations and Groundwater-Flow Direction

The Serfes method (Serfes, 1991) was used to calculate the mean groundwater elevations in each observed well over a 72-hour period (August 26, 2016 at 12:00 a.m. to August 28, 2016 at 11:45 p.m.). The Serfes method uses moving averages over a 72-hour period to filter the tidal-influenced elevations and produce a mean groundwater elevation. Hydrographs for each observed well are presented in Graphs 6-1 through 6-11 and include the results of the filtering process, as well as the mean groundwater elevation calculated using the Serfes method. The results of these calculations also are presented in Table 1.

g-logics

Figure 4a presents the mean groundwater elevations, interpreted groundwater-elevation isocontours, and groundwater-flow directions of the shallow-zone wells based on the results. Mean groundwater elevations ranged between 5.34 and 6.14 feet (above the North American Vertical Datum of 1988, NAVD 88). Groundwater flow is generally to the south, southwest, and west towards the LDW shoreline.

4.4 Mean Vertical and Lateral-Hydraulic Gradients

Mean vertical-hydraulic gradients were calculated for the shallow and deep-zone well pairs MW10/10D and MW12/12D To calculate the vertical-hydraulic gradient, the difference in mean-groundwater elevations for each well pair (deep well minus shallow well) were divided by the elevation difference in well-screen midpoints (also deep minus shallow). For the shallow-zone wells screened across the water table, well-screen midpoints were calculated for the saturated portion of the well screen. Positive values indicate an upward hydraulic gradient, with negative values indicating downward gradients. A downward gradient was present in well pair MW10/10D at -0.021 ft/ft. Conversely, an upward gradient was present in well pair MW12/12D at 0.032 ft/ft. Table 3a presents the vertical hydraulic gradients calculated for each well pair. In addition, Graphs 3-1 and 3-2 present the mean groundwater elevations of each well pair for visual comparison.

Lateral-hydraulic gradients were calculated for three shallow-zone well sets: wells MW06, 07, and 13; wells MW12, 13, and 16; and wells MW10, 11, 16. These well sets were chosen based on well distribution across the Property and the general flow characteristics indicated on Figure 4a (groundwater-flow directions and relative gradient based on isocontours). Lateral-hydraulic gradients were calculated using the standard "three-point problem" for groundwater flow. Hydraulic gradients across the Property ranged from 0.0016 to 0.0049 ft/ft, with flow directions to the south, southwest, and west. Table 3b and Figure 4b present the gradients and lateral-flow directions for each well set.

4.5 Low and High Tide Groundwater Elevations and Flow Direction

Average elevations for the high and low-low tides over the study period are presented in Table 1. These averages were calculated using elevation information collected between August 26 and August 29, 2016. Interpreted isocontours for average low-low and high-tide groundwater elevations in shallow-zone wells are presented on Figure 5 and Figure 6, respectively. These figures also present an interpretation of flow directions during the low-low and high-tide events. In general, groundwater flows toward the river during low-low

g-logics

tides. However, high tides in the LDW cause temporary and lesser groundwater flow and gradient reversals inland across the entire Property.

5.0 CONCLUSIONS

Based on the results of the tidal-influence study, the following conclusions regarding meangroundwater elevations, tidal fluctuations, hydraulic gradients, and tidal influence of the LDW on the Property are presented below.

- Mean groundwater elevations were calculated using the Serfes Method over a 72-hour period. Mean groundwater elevations on the Property ranged from 5.34 to 6.14 feet. Mean groundwater-flow directions in shallow-zone wells were to the south, southwest, and west.
- All monitoring wells at the Site are tidally influenced, with elevation fluctuations ranging from 3.89 to 7.33 feet. The magnitude of elevation changes is greatest near the shoreline and decreases with distance inland.
- The lag time of water-level changes is shortest near the LDW and increases with distance inland. Water-level elevations closely follow tide stages. Average lag times range from 18 minutes to 117 minutes.
- Mean vertical-hydraulic gradients were calculated for two well pairs: a mean downward gradient of 0.021 ft/ft in MW10/10D and a mean upward gradient of 0.032 ft/ft in MW12/12D.Although, as shown on Graph 3-1, wells MW10/10D appear to shift from a downward gradient at low tide towards no vertical gradient at high tide. In contrast, the vertical-hydraulic gradient in wells MW12/12D appears to maintain an upward vertical gradient, regardless of tide conditions (Graph 3-2).
- Lateral-hydraulic gradients were calculated across the Property for three well sets. Lateral gradients ranged from 0.0016 to 0.0049 ft/ft, generally in the direction of the LDW (south, southwest, and west).
- Chloride concentrations measured in groundwater on the Property ranged from 1.11 to 4,870 mg/L. Chloride concentrations indicate that tidal intrusion of surface water occurs on the Property and affects upland groundwater quality to distances between 120 and 200 feet inland of the LDW shoreline.

6.0 **OPINIONS**

Although groundwater elevations in wells distant from the LDW shoreline show a response to tidal fluctuations, the groundwater-elevation fluctuations in distant wells likely are due to

g-logics

mounding of groundwater as it encounters saltwater from the LDW. This mounding causes temporary groundwater-flow reversals in the "upgradient" direction. However, mean groundwater elevations indicate that net flow is to the west towards the LDW.

Based on groundwater-elevation fluctuations, hydraulic gradients, tidal-lag times, and chloride concentrations, all areas on the Property within approximately 120 feet of the LDW shoreline appear to be strongly hydraulically connected to the LDW surface water. The affected areas of the shallow aquifer likely are more transmissive with greater surface-water infiltration inland. These areas also coincide with locations that have been filled with dredged and/or imported material. Additionally, based on the data, the central and southern portion of the Property (south of well MW12) appear to be impacted by surface-water infiltration further inland than the northern portion of the Property, to distances of approximately 200 feet.

Lastly, to collect a representative and conservative groundwater sample (i.e., a water that contains the most amount of groundwater as opposed to surface water), efforts should be made to collect samples within 3 hours (either side) of low-tide. Samples collected during this time period would be most representative of groundwater which flows in the direction of the LDW.

7.0 LIMITATIONS

The scope of work on this project was presented in our identified workplan and subsequently approved by the Duwamish Marine Center. Please be aware our scope of work was limited to those items specifically identified in the workplan. Other activities not specifically included in the presented scope of work (in a workplan, correspondence, or this report) are excluded and are therefore not part of our services.

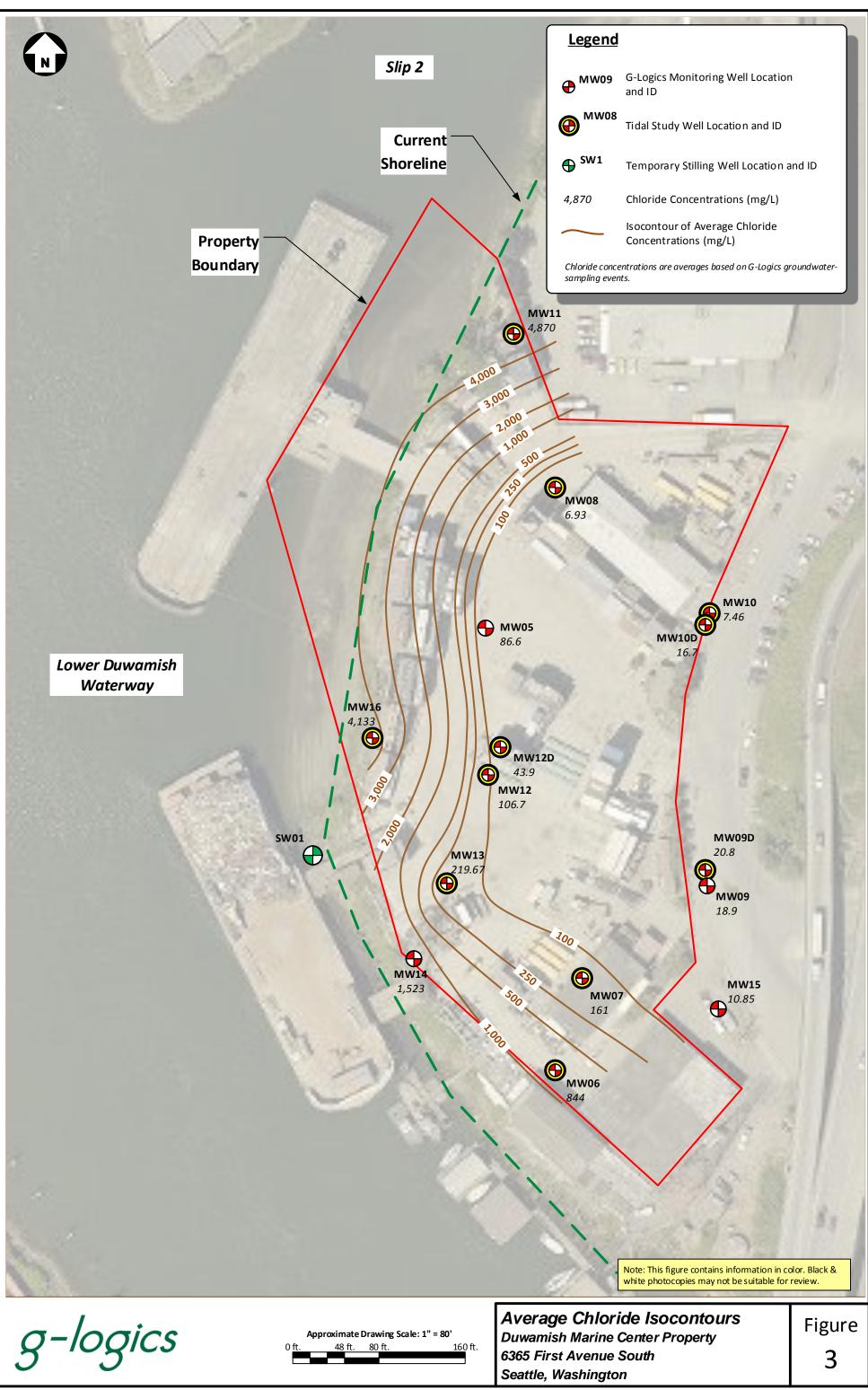
Land use, site conditions (both on-site and off-site), and other factors will change over time. Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings, and opinions can be considered valid only as of the date of the site visit.

This report is prepared for the sole use of our client. The scope of services performed during this assessment may not be appropriate for the needs of other users. Re-use of this document or the findings, conclusions, or recommendations presented herein, are at the sole risk of said user(s). Our client and regulatory agencies also may make additional copies of

this document for their internal and public use, or as required by law. All other users of this document must acknowledge our copyright and indicate that permission to use has been received from G-Logics and our Client. Any party other than our client who would like to use this report shall notify G-Logics of such intended use by executing the "Permission and Conditions for Use and Copying" contained in this document. Based on the intended use of the report, G-Logics may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements will release G-Logics from any liability resulting from the use of this report by any unauthorized party.

No warranty, either express or implied, is made.

8.0 **REFERENCES**


Serfes, Michael E. (August 1991). *Determining the Mean Hydraulic Gradient of Ground Water Affected by Tidal Fluctuations*. Ground Water Journal, Volume 29, Number 4, July-August 1991.

United States Geological Survey. (2009). *Chloride in Groundwater and Surface Water in Areas Underlain by the Glacial Aquifer System, Northern United States.* Scientific Investigations Report 2009-5086.

FIGURES

01-0979-G-AF-F5.vsd

Project

TABLES

TABLE 1 Well Information, Groundwater Fle

Well Information, Groundwater Elevations, and Tidal Lag Times

Duwamish Marine Center

6365 First Avenue South

Seattle, Washington

Location Designation	Approximate Distance to Shoreline (ft)	Elevation Top of PVC Casing (ft)	Depth to Top of Screen (ft)	Depth to Bottom of Screen (ft)	Well Diameter (in.)	High Tide, Average Depth to Water (ft) (1)	Low-Low Tide, Average Depth to Water (ft) (1)	High Tide, Average Groundwater Elevation (ft)	Low Tide, Average Groundwater Elevation (ft)	Mean GW Elevation (ft) (2)	Groundwater Elevation Fluctuations (ft) (1)	Average Tidal Lag Time (hr:min:sec)
SW01		17.33	10	20	2	8.66	19.40	8.67	-2.07	4.902	10.74	
MW05 (3)	116	16.48	10	20	2	9.61		6.87		5.94		0:18:45
MW06	86	12.73	8	18	2	5.05	11.34	7.68	1.39	5.34	6.29	0:41:15
MW07	160	14.93	7	17	2	7.66	12.75	7.27	2.18	5.51	5.09	1:00:00
MW08	136	14.41	8	18	2	6.33	13.66	8.08	0.75	5.56	7.33	0:37:30
MW09D	307	14.97	14	29	2	7.66	12.26	7.31	2.71	5.57	4.60	1:26:15
MW10	322	15.07	9	19	2	7.78	11.67	7.29	3.40	5.87	3.89	1:56:15
MW10D	322	15.03	14.5	29.5	2	7.64	12.10	7.39	2.93	5.70	4.46	1:22:30
MW11	40	14.25	8	18	2	6.13	12.87	8.12	1.38	5.80	6.74	0:18:45
MW12	137	16.70	7.5	17.5	2	8.55	14.63	8.15	2.07	5.88	6.09	0:48:45
MW12D	147	16.80	15	30	2	8.37	14.48	8.43	2.32	6.14	6.11	0:45:00
MW13	93	15.23	8	18	2	7.68	12.64	7.55	2.59	5.72	4.96	0:37:30
MW16	30	17.42	9	19	2	9.80	16.39	7.62	1.03	5.34	6.59	0:37:30

Notes:

(1) High and low-low tide average based on groundwater elevations collected over four days, 8/26/2016 to 8/29/2016. Groundwater fluctuations were calculated using these averages.

(2) Mean groundwater elevations calculated using the Serfes Method (1991) with data collected over a 72-hour period, 8/26/2016 at 12:00 a.m. to 8/28/2016 at 11:45 p.m.

(3) Data from well MW05 not used for groundwater-elevation measurements due to the transducer being out of water during low-tide events.

TABLE 2 Groundwater Geochemical Parameters Duwamish Marine Center 6365 First Avenue South Seattle, Washington

Seattle, was	migion							
Exploration Location	Observation Date	Approxim	nate Distance the inate Distance international shore international states of the state	the month?	etivity Insient	Inved Orygen P	wed Oxygen	molt) Ovidaits
MW05	Average (3)	155	86.6	0.923	3.8		6.97	-65.4
MW06	Average (3)	86	844	3.450	36.6	2.34	6.39	15.1
MW07	Average (3)	160	161	1.200	25.5	2.52	6.52	-131.4
MW08	Average (3)	136	6.93	0.408	15.0	1.57	7.18	-78.3
MW09	Average (3)	305	18.9	1.040	20.6	4.18	6.38	88.2
MW09D	Average (3)	307	20.8	0.417	21.6	2.22	6.58	-69.5
WW10	Average (3)	322	7.46	0.329	33.3	3.50	6.52	54.3
MW10D	Average (3)	322	16.1	0.299	21.7	2.19	6.51	-51.0
WW 11	Average (3)	40	4,870	16.664	9.0	0.82	7.33	-43.9
MW12	Average (3)	137	107	1.183	17.4	2.56	6.60	-126.2
MW12D	Average (3)	147	43.9	0.625	15.2	1.43	6.54	-90.1
MW13	Average (3)	93	220	1.589	12.0	1.27	6.67	-136.1
MW14	Average (3)	36	1,523	5.015	31.1	2.81	6.85	-119.1
MW15	Average (3)	235	11	0.234	41.0	4.93	6.33	50.3
WW16	Average (3)	30	4,133	10.885	13.3	1.35	7.15	-140.7
SW01	Average (3)	0						

Notes: Refer to site diagram(s) for well locations.

(1) Fluctuation of groundwater elevations in each well were calculated between low-low and high-high tide for each day and averaged.

(2) Brackish water in tidal estuaries contain chloride levels between 500 and 5,000 mg/L. Drinking water standards for chloride are 500 mg/L.

(3) Geochemical-parameter values are averages based on the groundwater-sampling events outlined in Table 2-8 of the RI report.

TABLE 3a **Vertical Hydraulic Gradient for Paired Wells Duwamish Marine Center** 6365 First Avenue South Seattle, Washington

Well Pair Identification	Elevation Top of PVC Casing (ft)	Depth to Top of Screen (ft)	Depth to Bottom of Screen (ft)	Elevation of Top of Screen (ft)	Elevation of Bottom of Screen (ft)	Well Screen Midpoint Elevation (ft)	Mean GW Elevation (ft)	Mean Vertical Gradient (ft/ft)
MW10	15.07	9.00	19.00	6.07	-3.93	0.97	5.87	-0.021
MW10D	15.03	14.50	29.50	0.53	-14.47	-6.97	5.70	-0.021
MW12	16.70	7.50	17.50	9.20	-0.80	2.54	5.88	0.032
MW12D	16.80	15.00	30.00	1.80	-13.20	-5.70	6.14	0.002

Notes:

Mean groundwater elevations calculated using the Serfes Method (1991) with data collected over a 72-hour period, 8/26/2016 at 12:00 a.m. to 8/28/2016 at 11:45 p.m. Mean vertical-hydraulic gradient calculated by dividing the difference between deep and shallow wells by the elevation difference between the well-screen midpoints. Only saturated/submerged portions of the well screen were used to calculate vertical gradient.

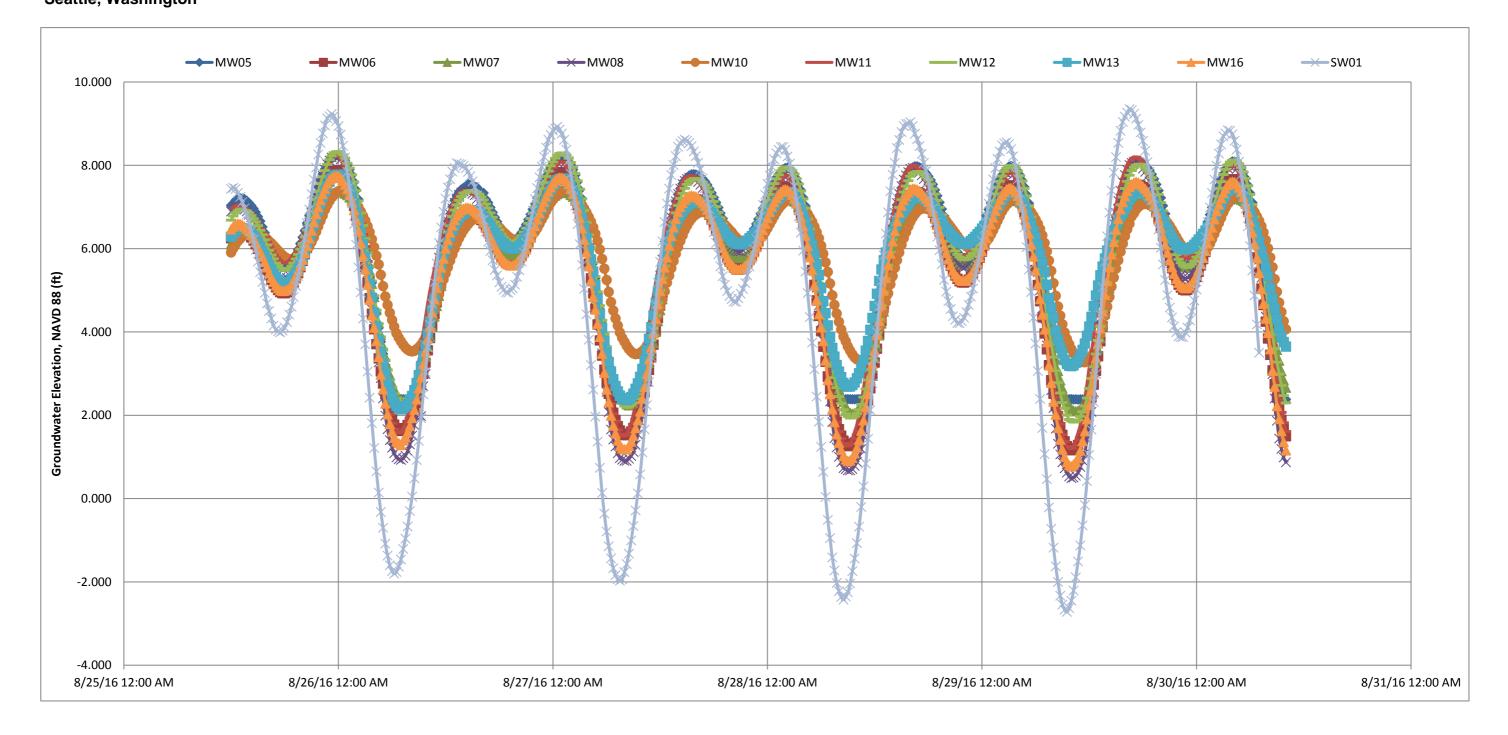
Positive value indicates an upward vertical gradient. Negative values indicate a downward vertical gradient.

TABLE 3b

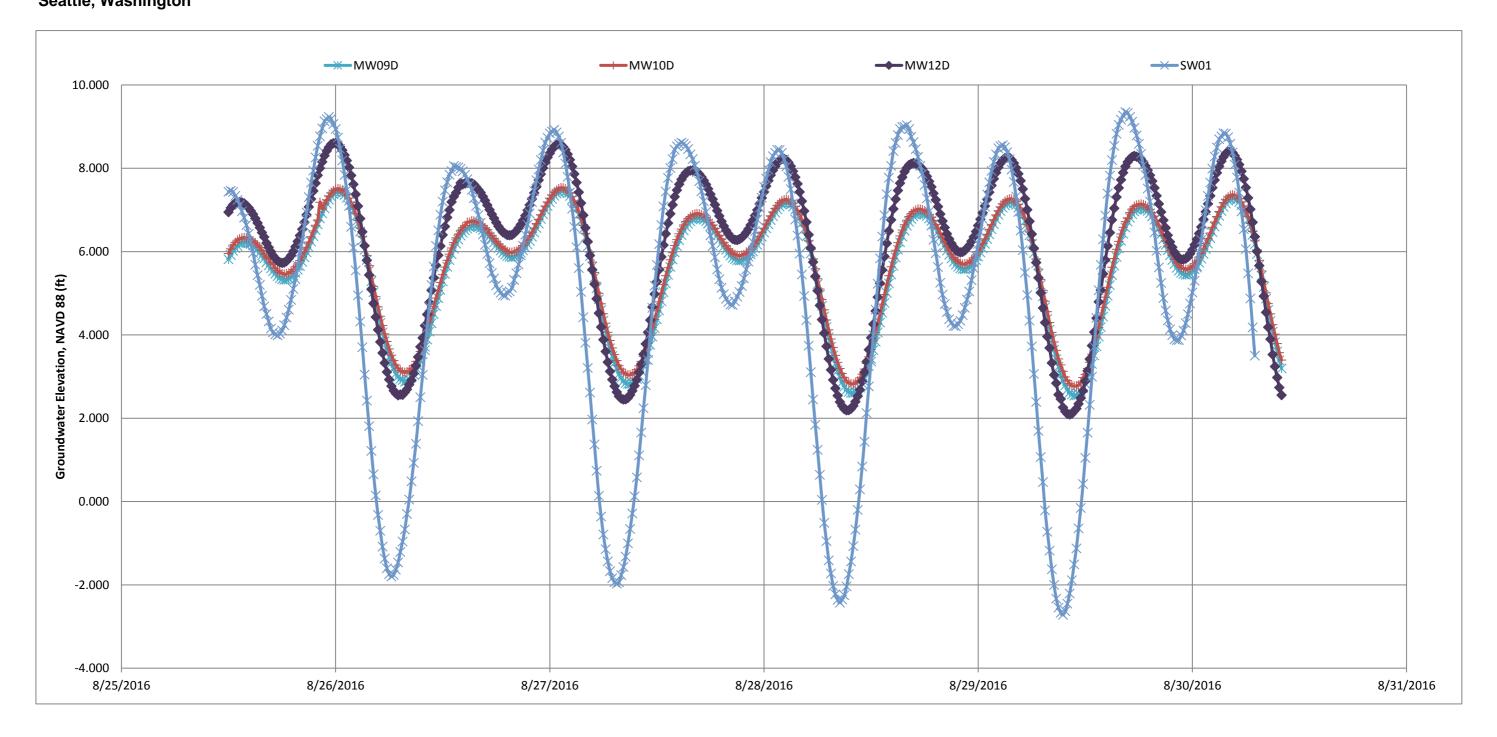
Lateral Hydraulic Gradient for Shallow-Zone Well Sets Duwamish Marine Center 6365 First Avenue South Seattle, Washington

Well Identification	Mean GW Elevation (ft)	Average Lateral Gradient (ft/ft)	Groundwater Flow Direction (degrees)
MW06	5.336		
MW07	5.508	0.0021	172
MW13	5.720		
MW12	5.878		
MW13	5.720	0.0049	274
MW16	5.337		
MW10	5.871		
MW11	5.800	0.0016	243
MW16	5.337		

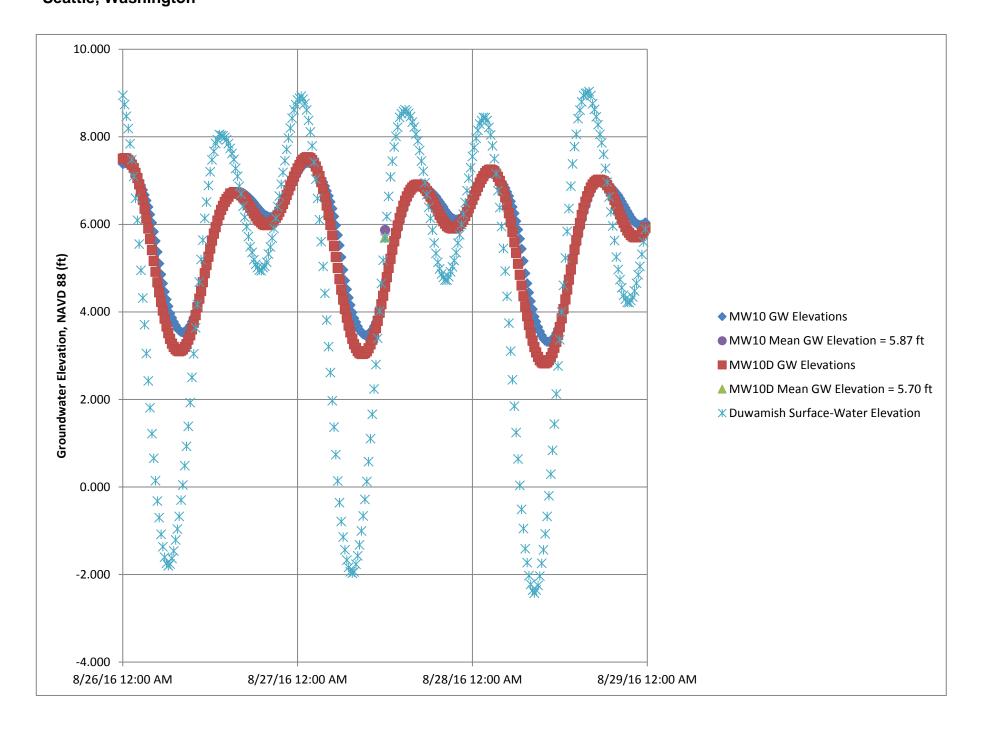
Notes:

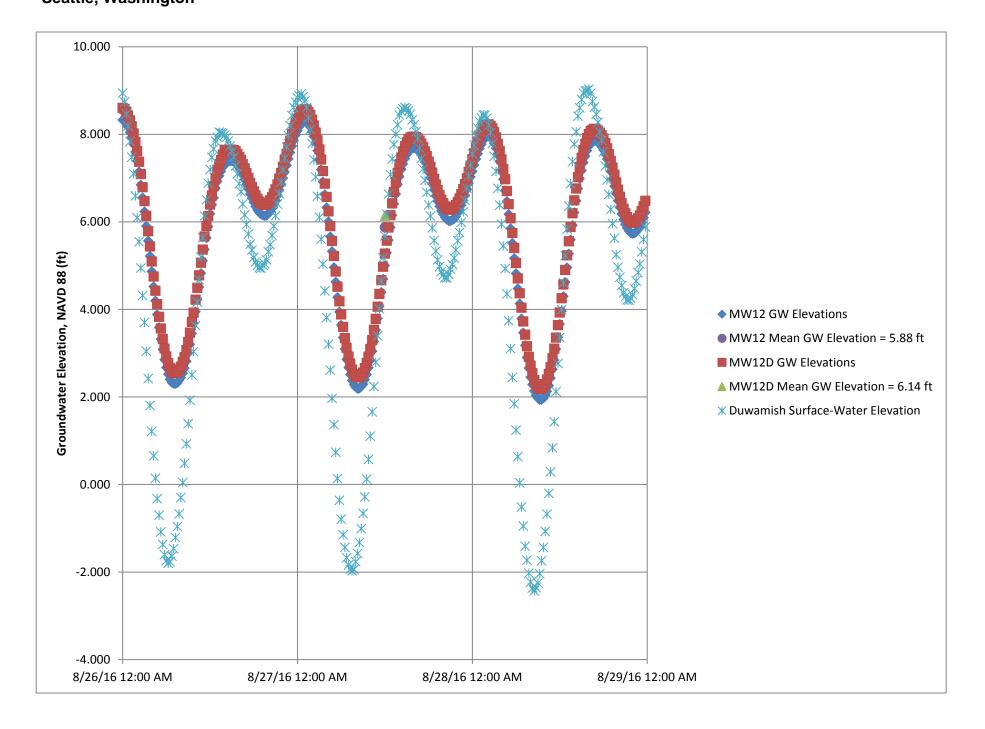

Mean groundwater elevations calculated using the Serfes Method (1991) with data collected over a 72-hour period, 8/26/2016 at 12:00 a.m. to 8/28/2016 at 11:45 p.m.

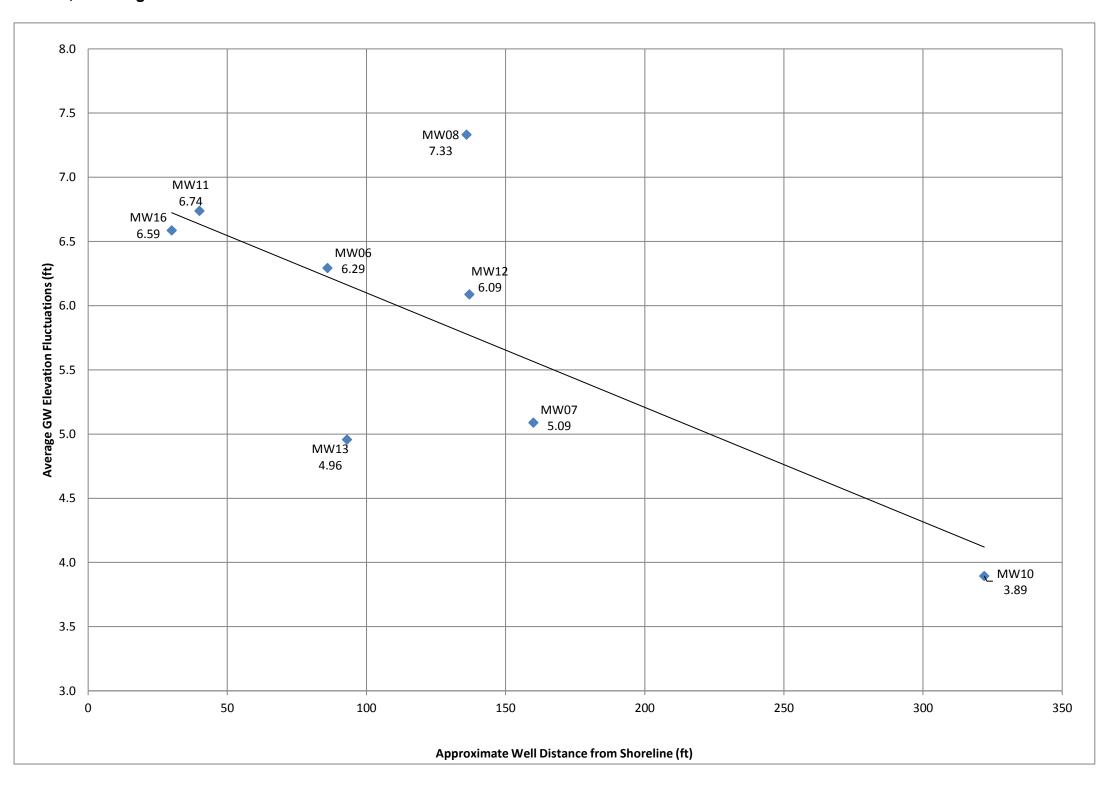
Lateral hydraulic gradients were calculated using the solution to the standard "three-point problem" for groundwater flow.


Groundwater-flow direction are in degrees, clockwise from north.

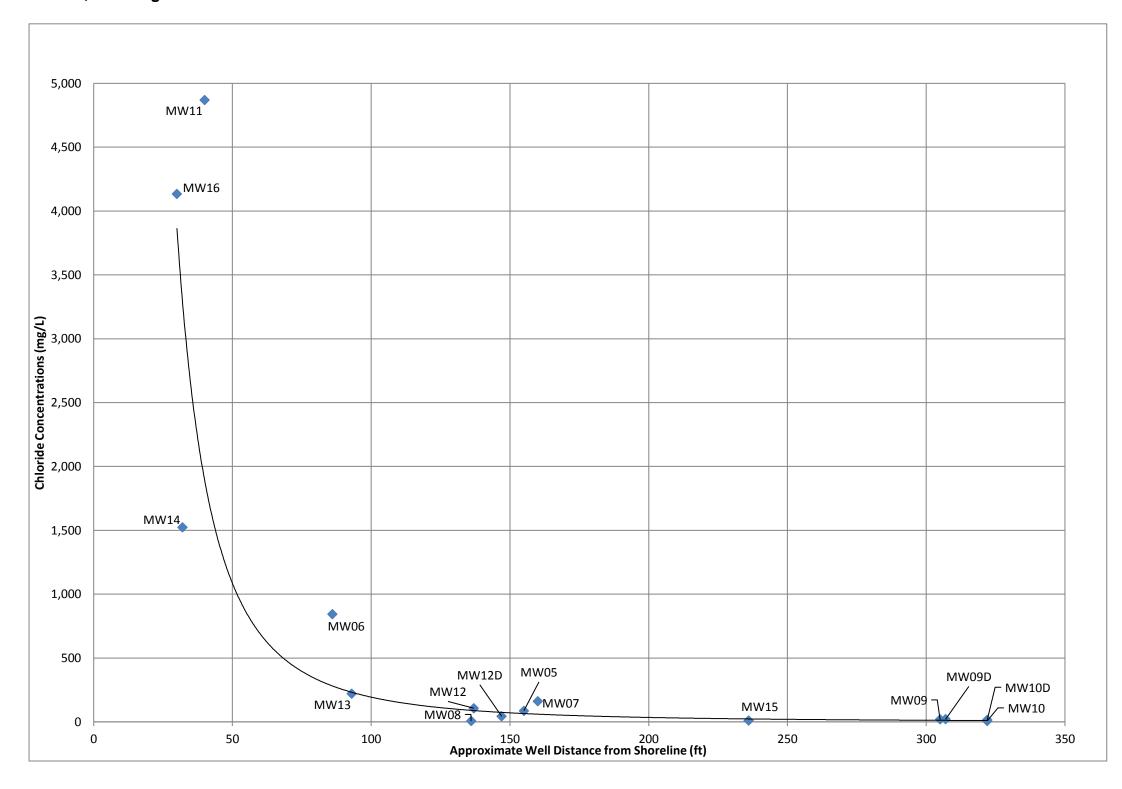
GRAPHS


GRAPH 1 Shallow Wells - Groundwater Elevation Measurements Duwamish Marine Center 6365 First Avenue South Seattle, Washington


GRAPH 2 Deep Wells - Groundwater Elevation Measurements Duwamish Marine Center 6365 First Avenue South Seattle, Washington


GRAPH 3-1 Well Pair MW10/MW10D Groundater Elevation Comparison Duwamish Marine Center 6365 First Avenue South Seattle, Washington

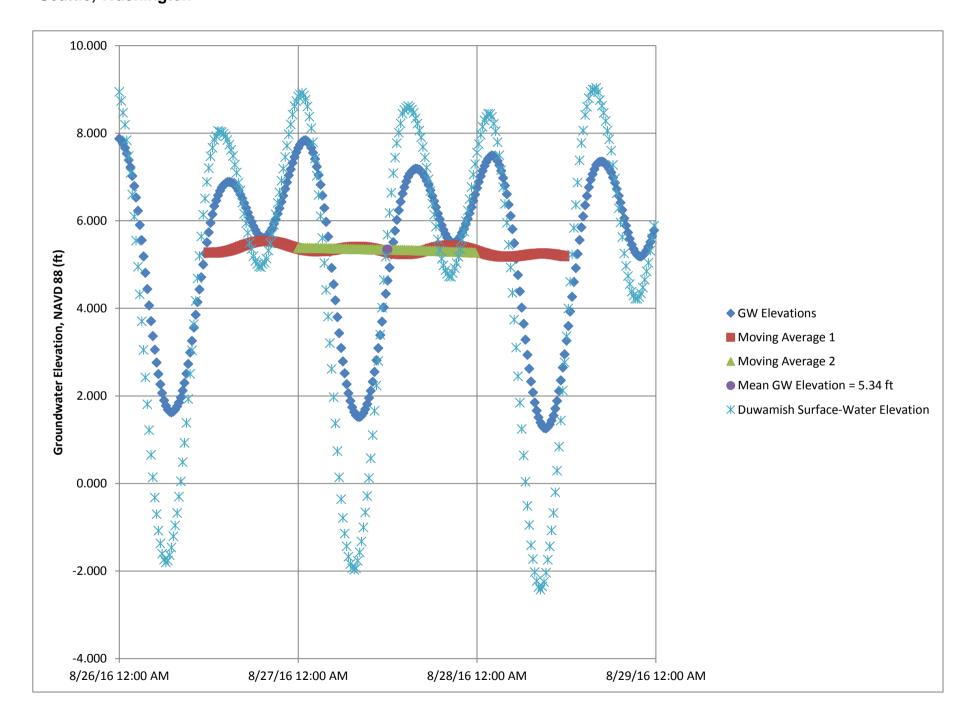
GRAPH 3-2 Well Pair MW12/MW12D Groundater Elevation Comparison Duwamish Marine Center 6365 First Avenue South Seattle, Washington


GRAPH 4 Well Distance From Shoreline vs Groundwater-Elevation Fluctuations **Duwamish Marine Center** 6365 First Avenue South Seattle, Washington

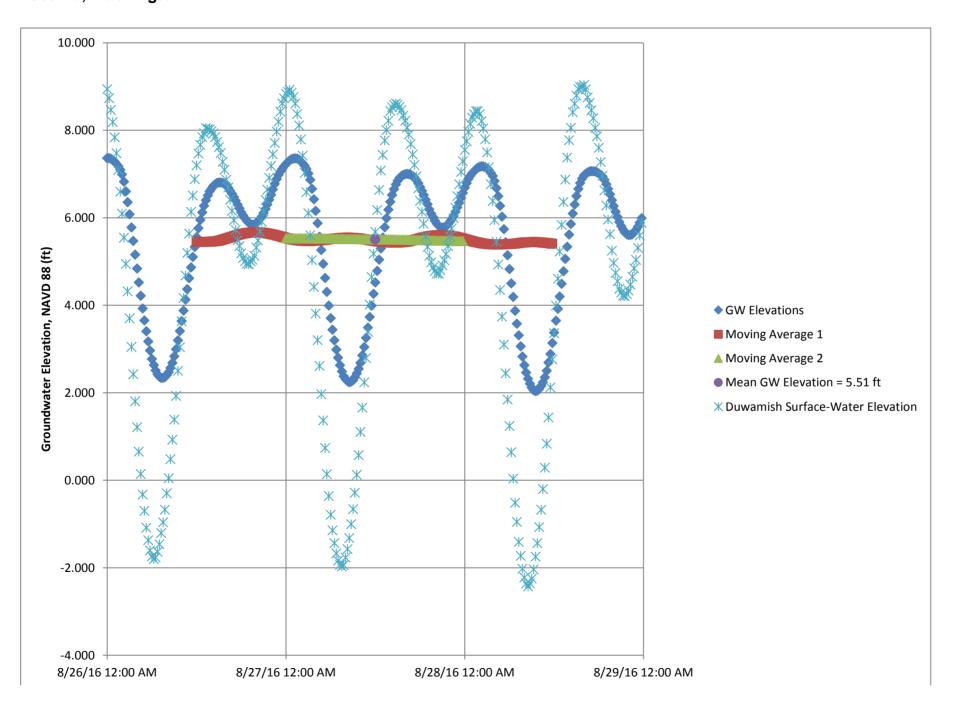
Notes:

Fluctuation of groundwater elevations in each shallow well were calculated between high and low-low tide for each day between 8/26/2016 and 8/29/2016. These values were then averaged for each well.

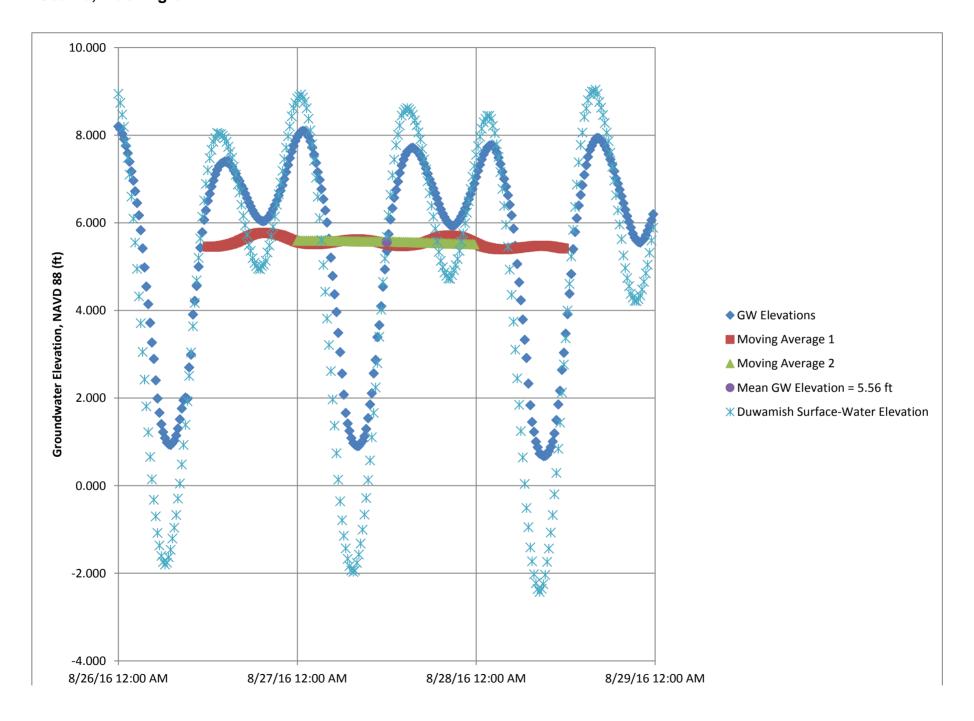
GRAPH 5 Well Distance From Shoreline vs Chloride Concentration Duwamish Marine Center 6365 First Avenue South Seattle, Washington

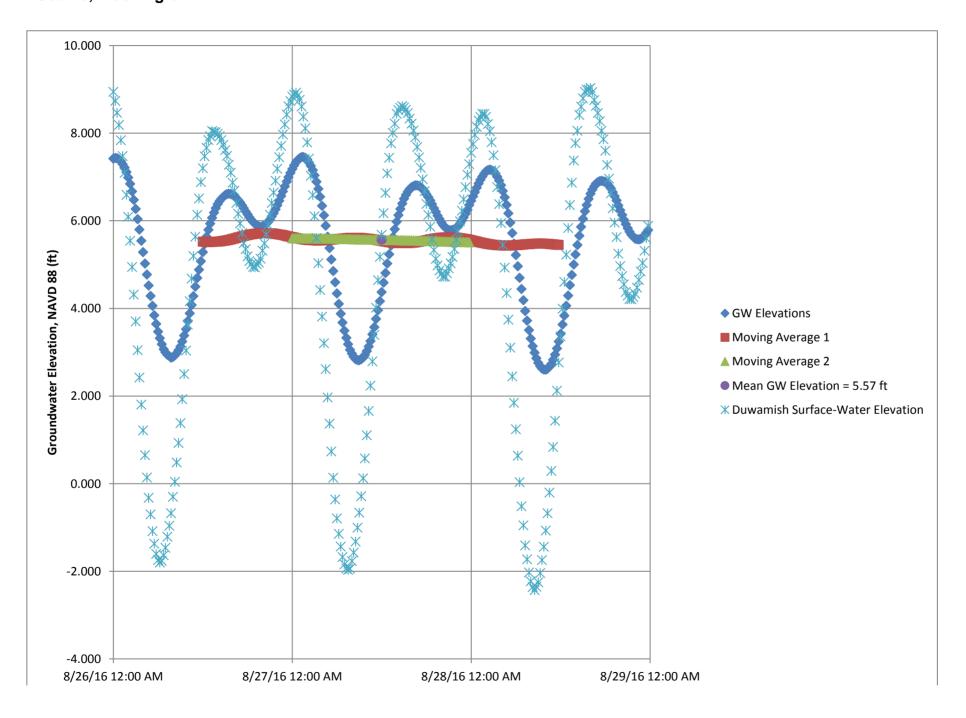


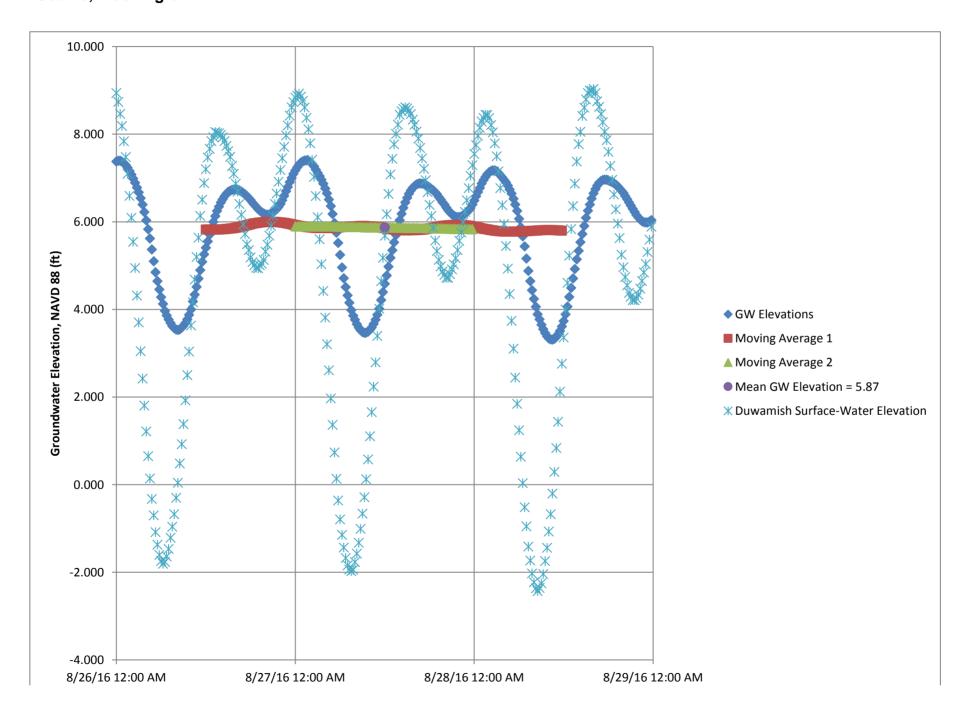
Notes:

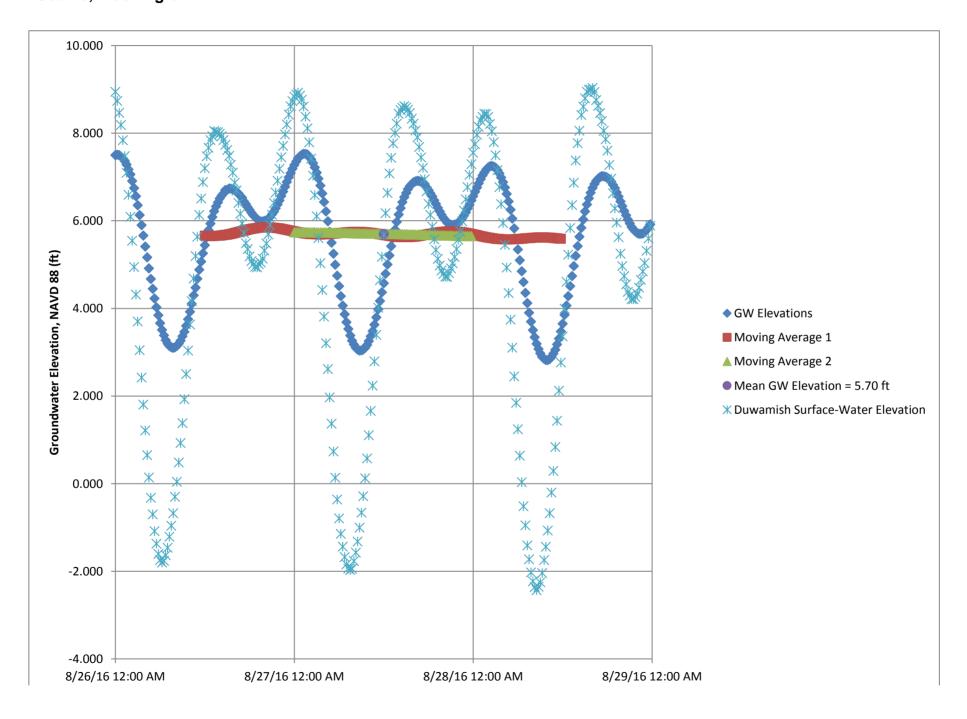

Brackish water in tidal estuaries contain chloride levels between 500 and 5,000 mg/L.

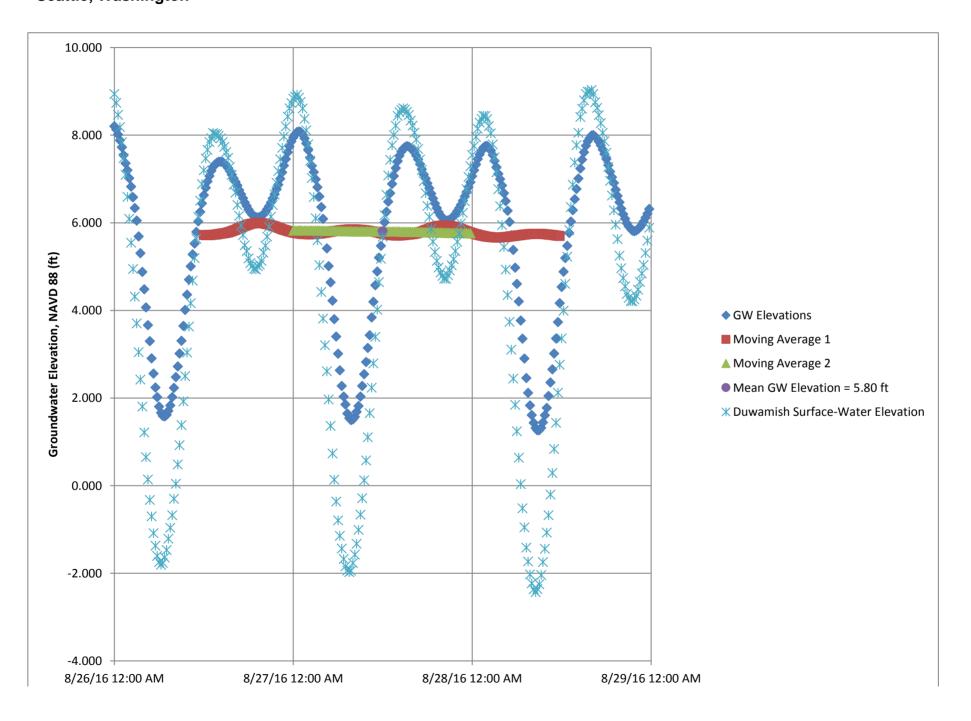
Geochemical-parameter values are averages based on the groundwater-sampling events outlined in Table 2-8 of the RI report.

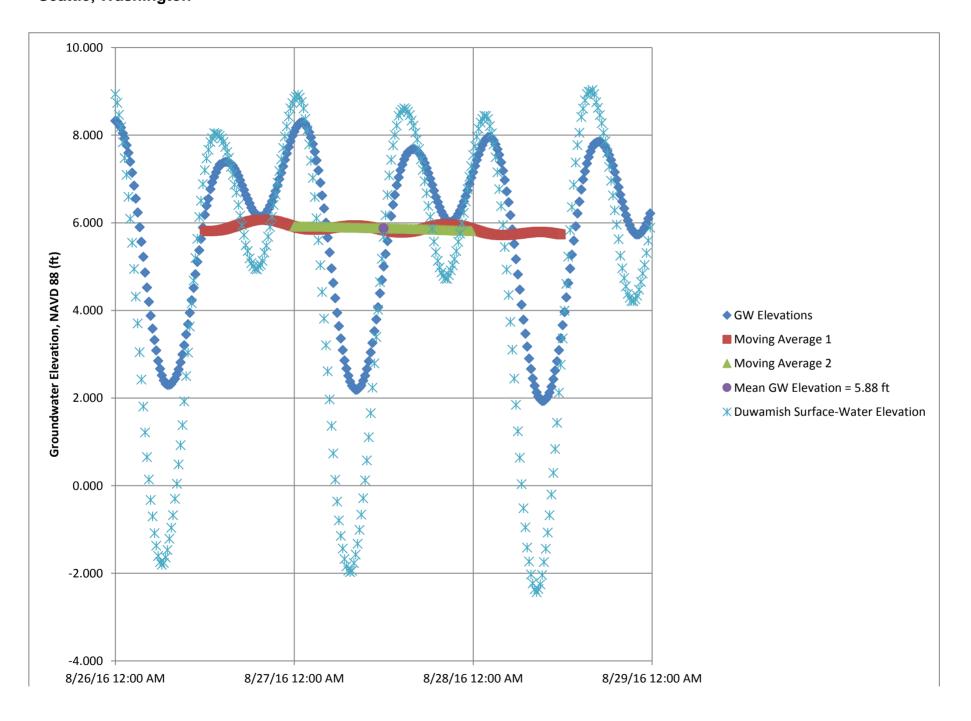

GRAPH 6-1 Well MW06 Hydrograph Duwamish Marine Center 6365 First Avenue South Seattle, Washington

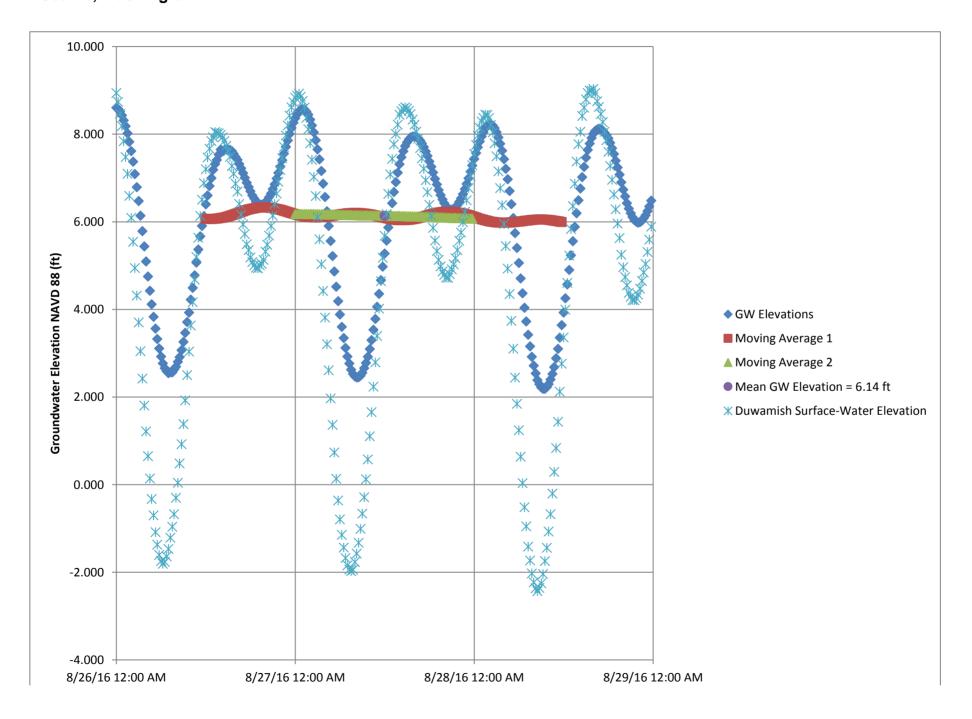

GRAPH 6-2 Well MW07 Hydrograph Duwamish Marine Center 6365 First Avenue South Seattle, Washington

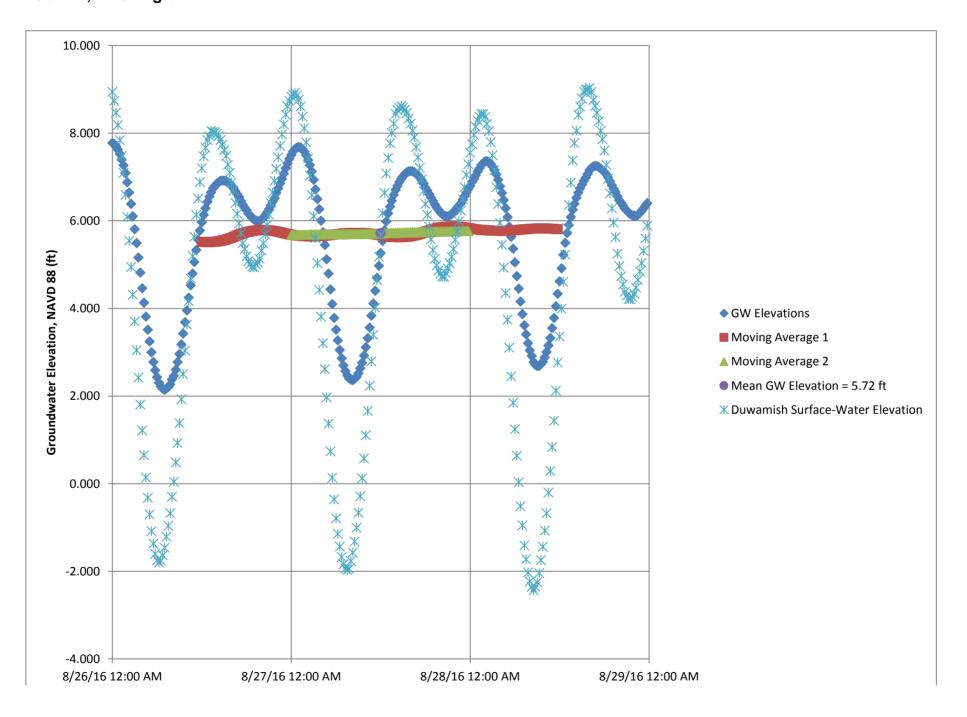

GRAPH 6-3 Well MW08 Hydrograph Duwamish Marine Center 6365 First Avenue South Seattle, Washington

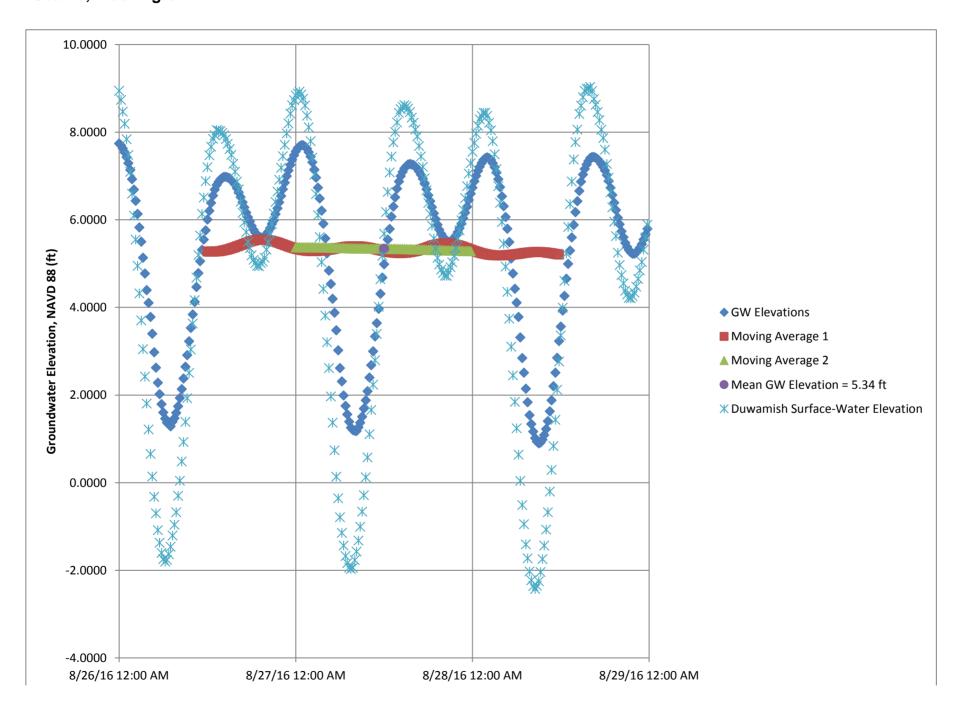

GRAPH 6-4 Well MW09D Hydrograph Duwamish Marine Center 6365 First Avenue South Seattle, Washington


GRAPH 6-5 Well MW10 Hydrograph Duwamish Marine Center 6365 First Avenue South Seattle, Washington


GRAPH 6-6 Well MW10D Hydrograph Duwamish Marine Center 6365 First Avenue South Seattle, Washington


GRAPH 6-7 Well MW11 Hydrograph Duwamish Marine Center 6365 First Avenue South Seattle, Washington


GRAPH 6-8 Well MW12 Hydrograph Duwamish Marine Center 6365 First Avenue South Seattle, Washington


GRAPH 6-9 Well MW12D Hydrograph Duwamish Marine Center 6365 First Avenue South Seattle, Washington

GRAPH 6-10 Well MW13 Hydrograph Duwamish Marine Center 6365 First Avenue South Seattle, Washington

GRAPH 6-11 Well MW16 Hydrograph Duwamish Marine Center 6365 First Avenue South Seattle, Washington

APPENDIX G

Terrestrial and Ecological Evaluation

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name:

Facility/Site Address:

Facility/Site	No.
r aomty/One	, 110.

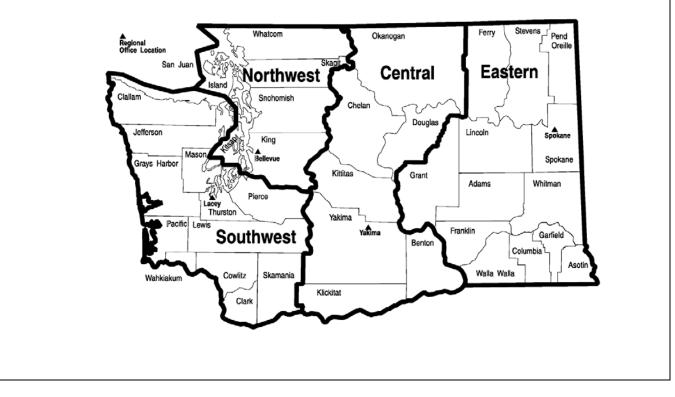
VCP Project No.:

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name:				Title:
Organization:				
Mailing address:				
City:		Sta	te:	Zip code:
Phone:	Fax:		E-mail:	

Step 3: DOO	CUMENT EVALUATION TYPE AND RESULTS
A. Exclusior	n from further evaluation.
1. Does the	Site qualify for an exclusion from further evaluation?
	fes If you answered "YES," then answer Question 2.
	No or If you answered " NO" or "UKNOWN," then skip to Step 3B of this form.
2. What is th	ne basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.
Point of C	ompliance: WAC 173-340-7491(1)(a)
	All soil contamination is, or will be,* at least 15 feet below the surface.
	All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.
Barriers to	Exposure: WAC 173-340-7491(1)(b)
	All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
Undevelop	ped Land: WAC 173-340-7491(1)(c)
	There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.
	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.
Backgrour	nd Concentrations: WAC 173-340-7491(1)(d)
	Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.
acceptable to E * "Undevelope prevent wildlife # "Contiguous"	based on future land use must have a completion date for future development that is Ecology. d land" is land that is not covered by building, roads, paved areas, or other barriers that would from feeding on plants, earthworms, insects, or other food in or on the soil. undeveloped land is an area of undeveloped land that is not divided into smaller areas of nsive paving, or similar structures that are likely to reduce the potential use of the overall area


В.	Simplified	evaluation.
1.	Does the S	Site qualify for a simplified evaluation?
	□ Y	es If you answered "YES," then answer Question 2 below.
	🗌 N Unkn	lo or own If you answered " NO " or " UNKNOWN, " then skip to Step 3C of this form.
2.	Did you co	onduct a simplified evaluation?
	□ Y	es If you answered "YES," then answer Question 3 below.
		lo If you answered " NO ," then skip to Step 3C of this form.
3.	Was furthe	er evaluation necessary?
	□ Y	es If you answered "YES," then answer Question 4 below.
		lo If you answered " NO, " then answer Question 5 below.
4.	lf further e	valuation was necessary, what did you do?
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.
5.	If no furthe to Step 4 o	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.
	Exposure /	Analysis: WAC 173-340-7492(2)(a)
		Area of soil contamination at the Site is not more than 350 square feet.
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.
	Pathway A	nalysis: WAC 173-340-7492(2)(b)
		No potential exposure pathways from soil contamination to ecological receptors.
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.

C.	the problem	fic evaluation. A site-specific evaluation process consists of two parts: (1) formulating n, and (2) selecting the methods for addressing the identified problem. Both steps isultation with and approval by Ecology. <i>See</i> WAC 173-340-7493(1)(c).
1.	Was there	a problem? See WAC 173-340-7493(2).
	Y	es If you answered "YES," then answer Question 2 below.
	□ N	⁰ If you answered " NO ," then identify the reason here and then skip to Question 5 below:
		No issues were identified during the problem formulation step.
		While issues were identified, those issues were addressed by the cleanup actions for protecting human health.
2.	What did y	ou do to resolve the problem? See WAC 173-340-7493(3).
		Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below.
		Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>
3.		ducted further site-specific evaluations, what methods did you use? nat apply. See WAC 173-340-7493(3).
		Literature surveys.
		Soil bioassays.
		Wildlife exposure model.
		Biomarkers.
		Site-specific field studies.
		Weight of evidence.
		Other methods approved by Ecology. If so, please specify:
4.	What was	the result of those evaluations?
		Confirmed there was no problem.
		Confirmed there was a problem and established site-specific cleanup levels.
5.		already obtained Ecology's approval of both your problem formulation and esolution steps?
	□ Y	es If so, please identify the Ecology staff who approved those steps:
	□ N	0

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region:	Central Region:
Attn: VCP Coordinator	Attn: VCP Coordinator
3190 160 th Ave. SE	1250 West Alder St.
Bellevue, WA 98008-5452	Union Gap, WA 98903-0009
Southwest Region:	Eastern Region:
Southwest Region: Attn: VCP Coordinator	Eastern Region: Attn: VCP Coordinator
Attn: VCP Coordinator	Attn: VCP Coordinator

ECY 090-300 (07/2015) To request ADA accommodation including materials in a format for the visually impaired, call Ecology Toxic Cleanup Program 360-407-7170. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

Duwamish Marine Center, 01-0979-6, 5/2/17

Documentation Form

	Terrestrial Concern	Response (Circle One)
*1	Is the site is located on or directly adjacent to an area where management or land use plans will maintain or restore <u>native</u> or <u>semi-native</u> vegetation?	Yes / No
*2a	Is the site used by a <u>threatened or endangered</u> species?	Yes / No
*2b	Is the site used by a <u>wildlife species classified by the</u> state department of fish and wildlife as a "priority species" or "species of concern" under Title 77 RCW?	Yes / No
*2c	Is the site used by <u>a plant species classified by the</u> Washington state department of Natural Resources natural heritage program as "endangered," <u>"threatened," or "sensitive"</u> under Title 79 RCW.	Yes No
*3	Is the site (area where the contamination is located) located on a property that contains at least ten acres of <u>native vegetation</u> within 500 feet of the area where the contamination is located?	Yes No
4	Has the department determined that the site may present a risk to significant wildlife populations?	Yes No

*1 This includes for example, green-belts, protected wetlands, forestlands, locally designated environmentally sensitive areas, open space areas managed for wildlife, and some parks or outdoor recreation areas. This does not include park areas used for intensive sport activities such as baseball or football.

*2a What are the threatened or endangered species in Washington state?

*2b Which plant species are classified as threatened, endangered, or sensitive? Where can I find out more information about this topic?

*2c For plants, "used" means that a plant species grows at the site or has been found growing at the site. For animals, "used" means that individuals of a species have been observed to live, feed or breed at the site.

*3 For this analysis, do not include native vegetation beyond the property boundary.

The following sources shall be used in making this determination: Natural Vegetation of Oregon and Washington, J.F. Franklin and C.T. Dyrness, Oregon State University Press, 1988, and L.C. Hitchcock, C.L. Hitchcock, J.W. Thompson and A. Cronquist, 1955-1969, <u>Vascular Plants of the Pacific Northwest(</u>5 volumes). Areas planted with native species for ornamental or landscaping purposes shall not be considered to be native vegetation. [WAC 173-340-7491(2)(c)(i)]

 (Here's a link to the <u>Seattle Public Library</u> and the <u>Washington State</u> <u>Library</u> to borrow a copy of Natural Vegetation of Oregon and Washington, J.F. Franklin and C.T. Dyrness, Oregon State University Press, 1988, or you may purchase it through your favorite bookseller. Here's an additional link to a useful online <u>Field Guide to Selected Rare</u> <u>Plants of Washington</u> developed by the Washington State Department of Natural Resources' Natural Heritage Program (WNHP) and the Spokane District of the U.S.D.I. Bureau of Land Management (BLM) which contains fact sheets for 139 vascular plant species and one lichen species.
 <u>Here is an aid to calculating area</u> and an <u>aerial photo depicting a site</u>, its 500 foot boundary and several labeled circles identifying various areas for reference in judging the area of native vegetation within the 500 foot radius.

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493] [Index of Tables]

[TEE Home]

Terrestrial Ecological Evaluation Process- Simplified Evaluation

Criteria # (Concern)	Criteria	Response (Circle One)
1 (exposure)	Is the total area of soil contamination at the site less than or equal to 350 square feet	Yes (End TEE) No
2 (exposure)	Does land use at the site and surrounding area make substantial wildlife exposure unlikely based on completion of <u>Table 749-1</u> ?	Yes (End TEE) / No
3 (pathway)	Is there a potential exposure pathway from soil contamination to soil biota, plants, or wildlife?	Yes No (End TEE)
4 (contaminant)	Are the hazardous substances at your site listed in <u>Table 749-2</u> and is (or will) their location in the soil at your site be at a depth not exceeding the point of compliance, and at concentrations that do not exceed the values provided in <u>Table 749-2</u> .	Yes (End TEE) No Note: You must perform bioassays for contaminants at your site if no table value is provided.
5 (contaminant)	Will hazardous substances listed in <u>Table 749-2</u> be present in the soil at your site within 6 feet of the ground surface at concentrations likely to be toxic, or with the potential to bioaccumulate, based on bioassays using methods approved by the department.	Yes) No (End TEE)

Documentation Form

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493] [Index of Tables]

[TEE Home]

Table 749-1

Simplified Terrestrial Ecological Evaluation-Exposure Analysis Procedure

Estimate the area of contiguous (connected) <u>undeveloped land</u> on the site or within 500 feet of any area of the site to the nearest 1/2 acre (1/4 acre if the area is less than 0.5 acre).

1) From the table below, find the number of points correcter this number in the field to the right.	responding to the area a	and	4
	Area (acres)	Points	
	0.25 or less	4	
	0.5	5	
	1.0	6	
	1.5	7	
	2.0	8	
	2.5	9	
	3.0	10	
	3.5	11	
	4.0 or more	12	
2) Is this an <u>industrial</u> or <u>commercial</u> property? If yes, a score of 1	enter a score of 3. If n	o, enter	3
$(B)^{a}$ Enter a score in the box to the right for the habitat collowing rating system ^b . High=1, Intermediate=2,	uality of the site, using Low=3	g the	3
4) Is the undeveloped land likely to attract wildlife? If pox to the right. If no, enter a score of $2.^{\circ}$	yes, enter a score of 1	in the	2
5) Are there any of the following soil contaminants pres dioxins/furans, PCB mixtures, DDT, DDE, DDD, aldrin endosulfan, endrin, heptachlor, benzene hexachloride, t bentachlorophenol, pentachlorobenzene? If yes, enter a right. If no, enter a score of 4.	n, chlordane, dieldrin, oxaphene, hexachlorob		1
6) Add the numbers in the boxes on lines 2-5 and enter right. If this number is larger than the number in the bo evaluation may be ended.			9

Notes for Table 749-1

^a It is expected that this habitat evaluation will be undertaken by an experienced field biologist. If this is not the case, enter a conservative score of (1) for questions 3 and 4.

^b **Habitat rating system.** Rate the quality of the habitat as high, intermediate or low based on your professional judgment as a field biologist. The following are suggested factors to consider in making this evaluation:

Low: Early <u>successional</u> vegetative stands; vegetation predominantly noxious, nonnative, exotic plant species or weeds. Areas severely disturbed by human activity, including intensively cultivated croplands. Areas isolated from other habitat used by wildlife.

High: Area is ecologically significant for one or more of the following reasons: Late-<u>successional</u> native plant communities present; relatively high species diversity; used by an uncommon or rare species; <u>priority habitat</u> (as defined by the Washington Department of fish and Wildlife); part of a larger area of habitat where size or fragmentation may be important for the retention of some species.

Intermediate: Area does not rate as either high or low.

^c Indicate "yes" if the area attracts wildlife or is likely to do so. Examples: Birds frequently visit the area to feed; evidence of high use b mammals (tracks, scat, etc.); habitat "island" in an industrial area; unusual features of an area that make it important for feeding animals; heavy use during seasonal migrations.

[Area Calculation Aid] [Aerial Photo with Area Designations] [TEE Table 749-1] [Index of Tables]

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493]

[TEE Home]

Duwamish Marine Center: Uplands Ecological Risk Analysis

Memorandum

То:	Victoria Sutton, Site Manager	
	Toxics Cleanup Program	
	Northwest Regional Office	
From:	Arthur Buchan, Toxicologist Information & Policy Section Toxics Cleanup Program	
Data		
Date:	November 07, 2017	

This memorandum represents a Department of Ecology uplands ecological risk analysis with recommendations regarding the Remedial Investigation/Feasibility Study Work Plan (Sound Earth Strategies 2013), and Updates to the Remedial Investigation/Feasibility Study Work Plan (Sound Earth Strategies 2014) for the Duwamish Marine Center Site (Facility Site ID No. 21945598), located at:

Duwamish Marine Center 6365 First Avenue South Seattle, WA

Determination:

Ecology has reviewed the applicability of a Terrestrial Ecological Evaluation (TEE), WAC 173-340-7490 through 7494 (Ecology, 2007) based on the information provided (Sound Earth Strategies 2013, 2014). The recommendations that have been made in this memorandum are based on future cleanup decisions that will be made by the consultant/property owner.

For Questions regarding this Memorandum, please contact:

Arthur Buchan Phone: (360) 407-7146 Email: <u>abuc461@ecy.wa.gov</u>

Comments/Recommendations

Exclusionary Criteria

No further evaluation of the TEE is required if any of the below exclusionary criteria are met at the site:

- 1. **Contamination below the point of compliance (340-7491(1) (a)).** This exclusion should not apply. It appears contamination is located at a shallower depth than 15 ft bgs.
- 2. Incomplete exposure pathway (340-7491(1) (b)). This exclusion should not apply. It appears there are complete exposure pathways in the upland area. A figure with the exposure pathways has been provided in Appendix A (*Duwamish Marine Center Site Exposure Pathways*). However, if all soil contaminated with hazardous substances is, or will be, covered by buildings, paved roads, pavement, or other physical barriers that would prevent plants or wildlife from being exposed to the soil contamination, then (with the implementation of an institutional control to maintain that barrier) the site would qualify for this exclusion.
- Area of contiguous undeveloped land (340-7491(1) (c)). This exclusion should not apply. It appears that there is greater than 0.25 acres of contiguous undeveloped land on or within 500 ft of the site (app. 1.98 acres on the site, 0.32 acres off the site), and it also appears hazardous bioaccumulatives are present (i.e. pentachlorophenol, PCB mixtures, etc.). Please see Appendix B and C (*Duwamish Marine Center Site Contiguous Undeveloped Land*).

<u>Discussion</u>: It appears that the site does not qualify for an exclusion from the TEE requirements unless the conditions of Exclusionary Criteria (2) have been met.

Simplified or Site-Specific Criteria:

If the site cannot be excluded as discussed above, then a simplified or site-specific TEE is required. A site-specific TEE is required if any of the below criteria apply:

- 1. Management or land use plans maintain or restore native vegetation (340-7491(2) (a) (i)). It does not appear that this criterion would apply.
- 2. Use by threatened or endangered species (340-7491(2) (a) (ii)). It does not appear that this criterion would apply.
- 3. Amount of native vegetation located on the property within 500 ft. of the site (340-7491(2) (a) (iii)). It does not appear that this criterion would apply. There does not appear to be greater than 10 acres of native vegetation within 500 ft of the site, located within the property boundaries. Please see either Appendix A, B, or C.
- 4. **Department determination (340-7491(2) (a) (iv)).** This criterion should not apply. The department has not determined that the site may present a risk to significant wildlife populations.

Discussion: It appears that this site would qualify for a Simplified TEE. It does not appear that a Site-Specific TEE would be necessary.

<u>TEE Summary</u>: It appears a simplified TEE would be required at this site unless the site has been excluded from the TEE requirements as described under the Exclusionary Criteria (2).

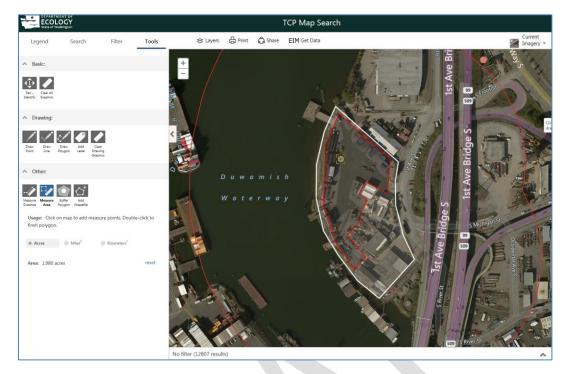
Simplified TEE Requirements:

The simplified TEE evaluation may be ended if any of the following criteria apply:

- 1. **Exposure analysis (total area of soil contamination) (340-7492(2) (a) (i)).** This criterion should not apply. It appears the total area of soil contamination > 350 square feet.
- 2. Exposure analysis (substantial wildlife exposure) (340-7492(2) (a) (ii)). It appears this criterion could apply. This information should be verified. However, under the scenario presented, the Simplified TEE may be ended if substantial wildlife exposure is unlikely. This would be indicated by point total in Box 6 > Box 1. The undeveloped land located within the site should be considered as the largest area of contiguous undeveloped land at approximately 1.9 acres. Based on the acreage (2.0 acres), the point total assigned should be 8 pts. This point total would then be compared to the points added for boxes 2-5 (which is 9). Under this scenario, the simplified process should be ended. Please see Appendix D (Duwamish Marine Center Site: Table 749-1, Exposure Analysis Scenario).
- 3. Pathways analysis (340-7492(2) (b)). This criterion should not apply. It appears there is contamination in the undeveloped areas within the site. However, as with the Exclusionary Criteria described above, if all soil contaminated with hazardous substances is, or will be, covered by buildings, paved roads, pavement, or other physical barriers that would prevent plants or wildlife from being exposed to the soil contamination, then (with the implementation of an institutional control to maintain that barrier) the site would qualify for either an exclusion, or qualify to end the Simplified TEE.
- 4. **Contaminants analysis (340-7492(2) (c)).** This criterion should not apply. There appears to be contaminants sampled and analyzed for that are above the values listed in Table 749-2 (either unrestricted or industrial/commercial columns).

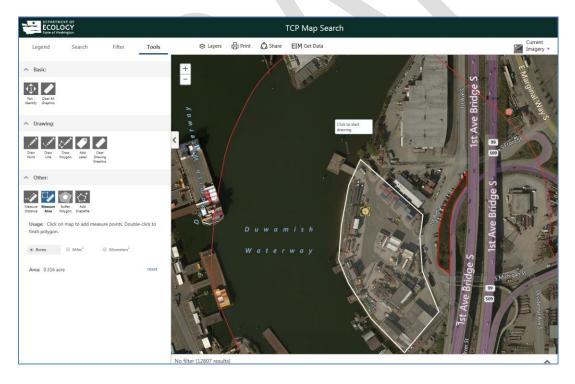
<u>Discussion:</u> It appears that (in most likelihood) a simplified TEE would be required at this site, unless it has been established that an incomplete pathway either currently exists, or is planned to be implemented at this site. If it has been established that an incomplete pathway is applicable, then it may be excluded with the implementation of an environmental covenant designed to maintain the barrier. However (if the site is not excluded), it appears that the site would qualify for a Simplified TEE, that could possibly be ended under the Exposure Analysis Scenario (substantial wildlife exposure) (340-7492(2) (a) (ii)), with the understanding that the information used to assign point totals in Appendix D has been verified and agreed upon by Ecology.

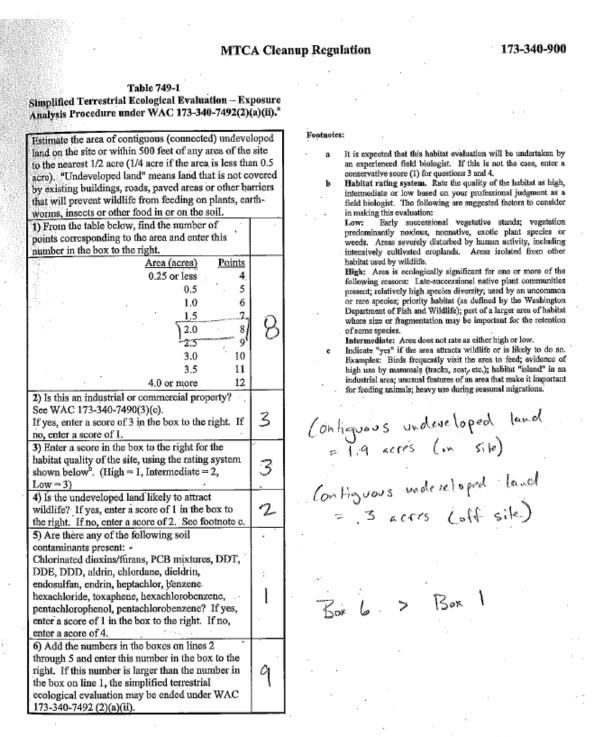

References Cited


Ecology. (2007). *Model Toxics Control Act statute and regulation, Chapter 173-340 WAC.* (Ecology Publication No. 94-06). Lacey, WA: Washington State Department of Ecology, Toxics Cleanup Program.

Sound Earth Strategies. (2013). *Remedial Investigation/Feasibility Study Work Plan: Duwamish Marine Center.* Sound Earth Strategies, Inc., 2013.

Sound Earth Strategies. (2014). *Technical Memorandum: Updates to the Remedial Investigation/Feasibility Study Work Plan: Duwamish Marine Center.* Sound Earth Strategies, Inc., 2014.


Appendix A: Duwamish Marine Center Site - Exposure Pathways



Appendix B: Duwamish Marine Center Site with 500 ft. Buffer- Contiguous Undeveloped Land (On-Site)

Appendix C: Duwamish Marine Center Site with 500 ft. Buffer- Contiguous Undeveloped Land (Off-Site)

Appendix D: Duwamish Marine Center Site: Table 749-1, Exposure Analysis Scenario

October 12, 2007

Page 245

Appendix E: Duwamish Marine Center Site: List of Contaminants of Ecological Concern under the Simplified TEE Scenario.

	Procedure."	l Ecological			
		tion (mg/let)	OTHER CHLORINATED ORGA	NICS:	
	Soil concentrat		Chlorinated dibenzofurans (total)	3E-06 mg/kg	3E-06 mg
Priority contaminant	Unrestricted land use ^b	Industrial or commercial site	Chlorinated dibenzo-p-dioxins (total)	5E-06 mg/kg	5E-06 mg
ACCENT OF CAL			Hexachlorophene .	Sec note d	See no
METALS:	See note d.	See note d	PCB mixtures (total)	2 mg/kg	2 mg
Antimony	20 mg/kg	20 mg/kg	Pentachlorobenzene	168 mg/kg	Sec no
Arsenic III	95 mg/kg	260 mg/kg	OTHER NONCHLORINATED O		· .
Arsenic V	1,250 mg/kg	1,320 mg/kg	Acenaphthene	See note d	See no
Barium	25 mg/kg	See note d	Benzo(a)pyrene	30 mg/kg	300 m
Beryllium	25 mg/kg 25 mg/kg	36 mg/kg	Bis (2-ethylhexyl) phthalate	See note d	Sec no
Cadmium	42 mg/kg	135 mg/kg	Di-n-butyl phthalate	200 mg/kg	See no
Chromium (total)	42 mg/kg See note d	See note d	PETROLEUM:		
Cobalt	100 mg/kg	550 mg/kg	A CONTRACT OF		12,000 mg/k except that t
Copper		220 mg/kg		l	concentratio
Lead	220 mg/kg	See note d	Gasoline Range Organics	200 mg/kg	shail not exc
Magnesium	See note d	23,500 mg/kg	Gasonie range org		residual satu tion at the se
Manganese		9 mg/kg	· · ·	1	surface.
Mercury, inorganic	9 mg/kg	0.7 mg/kg			15,000 mg/
Mercury, organic	0.7 mg/kg	71 mg/kg			except that
Molybdenum	See note d	1,850 mg/kg		460 mg/kg	shall not ex
Nickel	100 mg/kg		Diesel Range Organics	100 110 10	residual sat
Selenium	0.8 mg/kg	0.8 mg/kg See note d			tion at the s surface.
Silver	See note d				
Tin	275 mg/kg	See note d	We also denote		
Vanadium	26 mg/kg	See note d	Footnotes:		
Zinc	270 mg/kg	570 mg/kg	a Caution on misusing the Caution on misusing the Caution of the C	developed for 1195	at sites where
PESTICIDES:			15 - transfel analo	aical evaluation 18	e not required.
Aldicarb/aldicarb sulfone (total)	See note d	See note d	and make intended to b	e protective of	terrestriat ecc
Aldrin	0.17 mg/kg	0.17 mg/kg	receptors at every site. do not necessarily trigge	r requirements for	cleanup acuor
Benzene hexachloride (including lindane)		10 mg/kg	this chapter. The table	etes	for burboses a
Carbofuran	See note d	See note d	This list does not imply	y that sampling m le at every site.	Sampung su
Chlordane	1 mg/kg	7 mg/kg	and the three chi	micals that might	t he present D
Chlorpyrifos/chlorpyrifos-methy (total)	A See note d	See note d	available information, su at the site.	ich as current and j	past uses of ca
DDT/DDD/DDE (total)	1 mg/kg	1 mg/kg	an commercial		
Dieldrin	0.17 mg/kg	0.17 mg/kg	East amonio tree the val	ence state most lil	cely to be app
Endosulfan	See note d	See note d	for site conditions, unl	ess laboratory into licenate between sa	aturated, anacra
Endrin	0.4 mg/kg	0.4 mg/kg	manaturated perchic sta	tes resulting in th	ie alternating i
Heptachlor/heptachlor epoxide (total)	0.6 mg/kg		of arsenic III and arsen apply.	ic V, the arsenic I	II concentratio
Hexachlorobenzene	31_mg/kg		d Safe concentration has 340-7492(2)(c).		
Parathion/methyl parathion (tota	al) See note d				
Pentachlorophenol	11 mg/kg				
Toxaphene	See note d	See note d			